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Résumé: La présente thèse porte sur l’étude et la modélisation des ècoulements tur-
bulents diphasiques avec un intérêt particulier pour les mécanismes de turbulence induite
par une phase dispersée. L’objectif est de proposer des modèles réduits d’intérêt pour les
applications et de comprendre la physique à la base du problème à travers de simulations
numériques directes (DNS). Ce travail se compose de deux parties.

Dans la première partie l’attention est portée sur les écoulements gaz-particules solides
de petite taille en suivant une approche eulérienne (pour le fluide) - lagrangienne (pour
les particules). Nous avons proposé un modèle lagrangien stochastique pour le suivi des
particules dans un champ de vitesse à grandes échelles (Large-Eddy-Simulation) dans le
cas d’écoulements dilués, c’est à dire où la concentration des particules est petite et on
peut négliger l’effet des particules sur le fluide. Le modèle a été testé pour un canal plan
turbulent avec des résultats très proches de la DNS.

Ensuite nous avons proposé un modèle pour les écoulements denses (fraction de masse
de la phase solide dispersée élevé), avec un couplage de type “two-way”, avec la prise en
compte des collisions d’un point de vue statistique. Dans le modèle, nous avons choisi de
séparer la vitesse des particules dans une composante spatialement corrélée et un résidu
décorrelé, et cela nous a permis de considérer correctement l’effet des collisions et de définir
différents temps caractéristiques, essentiels pour modéliser les deux différentes parties. Ce
modèle a été testé et validé dans plusieurs cas homogènes et non-homogènes, avec un intérêt
particulier pour la turbulence induite par les particules (Cluster-Induced-Turbulence).

La deuxième partie est consacrée à l’étude du mouvement de remontée des bulles
gazeuses dans un liquide. Tel problème a été traité avec un code numérique (Basilisk) qui
résout les deux fluides ainsi que l’interface avec une méthode “Volume-Of-Fluid”. En util-
isant une configuration périodique avec une seule bulle, afin de valider le code numérique,
différents cas de la littérature ont été analysés. L’attention a été consacrée d’abord sur
plusieurs problèmes techniques, comme les critères pour le raffinement local du maillage
adaptatif et le rapport entre les densités des deux fluides. Ensuite nous avons étudié une
configuration de colonne de bulles, caractérisée par une couche avec une fraction volumique
élevé de bulles, posés initialement sur le fond d’un réservoir et qui, grâce à la force de flot-
tabilité, remontent dans le fluide. Avec une étude des spectres et des PDFs nous avons
caractérisé les fluctuations induites par les bulles dans le fluide.



ii

Sommario: La presente tesi concerne lo studio e la modellizzazione di flussi turbolenti
bifase, con particolare interesse ai meccanismi di turbolenza indotta dalla fase dispersa.
L’obiettivo è di proporre modelli ridotti di interesse applicativo e di comprendere la fisica
alla base del problema attraverso delle simulazioni numeriche dirette (DNS). Il lavoro si
articola in due parti.

Nella prima parte l’attenzione è stata posta su flussi gas-particelle solide di piccola taglia
seguendo un approccio Euleriano (per il fluido) - Lagrangiano (per le particelle). È stato
proposto un modello stocastico Lagrangiano per il tracciamento di particelle all’interno
di un campo di velocità a grandi scale (Large-Eddy-Simulation) nel caso di flussi diluiti,
ovvero laddove la concentrazione di particelle è bassa e può quindi essere trascurato l’effetto
delle particelle sui fluid. Tale modello è stato testato in un canale piano turbolento con
risultati molto vicini a quelli della DNS.

Successivamente è stato proposto un modello per flussi densi (elevata frazione di massa
della fase solida dispersa), con accoppiamento di tipo “two-way”, considerando da un punto
di vista statistico anche le collisioni tra particelle. In tale modello è stata introdotta la
novità di separare la velocità delle particelle in una componente spazialmente correlata e
un residuo scorrelato, che ha permesso di considerare correttamente l’effetto delle collisioni
e di definire diversi tempi caratteristici, fondamentali per modellizzare i due diversi con-
tributi. Tale modello è stato testato e validato in diversi casi omogenei e non-omogenei,
con particolare interesse per il problema di turbolenza indotta dalle particelle (Cluster-
Induced-Turbulence).

La seconda parte è incentrata sullo studio del moto di risalita di bolle gassose all’interno
di un liquido. Tale problema è stato affrontato con un codice numerico (Basilisk) che risolve
i due fluidi e l’interfaccia con un metodo “Volume-Of-Fluid”. Utilizzando una configurazione
periodica con una singola bolla, al fine di validare il codice numerico, sono stati analizzati
diversi casi di riferimento della letteratura. È stata posta l’attenzione su alcuni problemi
tecnici, quali i criteri per il raffinamento locale della griglia adattiva e il rapporto delle
densità dei due fluidi. Infine è stata studiata la configurazione della colonna di bolle
caratterizzata da uno strato ad alta concentrazione volumica di bolle posto inizialmente
sul fondo di un recipiente e che per effetto della forza di galleggiamento risale all’interno
del liquido. Particolare enfasi è stata posta nello studio delle fluttuazioni indotte dalle
bolle nel liquido, analizzando spettri e PDFs.
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Preface

With multiphase flows we intend those flows where at least two separate phases coexist
at the same time in different region of the space and interact reciprocally. Their study
has a long history in the scientific literature and their interest is constantly increasing,
since they are present in a number of applications and can be encountered in everyday life
very frequently. To cite some examples, just think to the drops of rain falling through the
air, or to the ashes blown from a vulcan and dispersed at great distances by the wind,
or again to a boiler where air bubbles may nucleate and rise inside a liquid. This is to
convince who is not familiar with the subject that their understanding is crucial and that
numerical and physical experiments can give an important contribution to strengthen the
actual knowledge of the topic and to ameliorate existing models for the prediction of these
flows.

A key point is the mutual interaction between the two phases, and in particular the
continuous exchange of momentum and energy. When one of the two phases is dispersed in
the form of inclusions in a continuum (e.g. solid particles in air, air bubbles in a liquid), a
possible approach, is to consider the integral effect of the forces exerted by the continuous
phase onto the surface of the dispersed one. If the dispersed phase is sufficiently small
compared to the smallest fluid scales, like for instance for particles with a diameter of the
order of the micrometer up to tenths of millimeter, the particle can safely be considered as
a material point, whose acceleration depends on the force exerted by the fluid. Otherwise,
if this separation of scales is not marked, the size of the particle should not be neglected.
This is particularly important for drops and bubbles, whose size can be likely of the order of
the millimeter, and where shape deformations can also be relevant and enhance non-trivial
dynamics.

An interesting mechanism that can occur in presence of two-phase flows is the agitation
induced in the carrier phase by the dispersed one. From the third principle of mechanics
it is clear that if one phase (the carrier) exerts a force on the other phase (the dispersed),
which is the sum of several contribution like drag, lift and added mass, then a reaction, of
the latter on the former, of equal magnitude but opposite sign occurs. Now, if the dispersed
phase consists in a small number of particles/bubbles and we are interested in large scale
dynamics, this effect can be safely neglected, otherwise it might have an important impact.
More specifically what matters is the portion of volume occupied by one phase with respect
to the other, called volume fraction, α. For values of α > 10−3, the coupling between the
phases starts to be important. There are two concurrent effects that might modify the
continuum velocity field of the carrier phase: the first one is inherently due to the fact
that a secondary phase is present and occupy a certain region of the space that cannot
thus be occupied by the first one; the second one is related to the force that the dispersed
phase exerts on the continuum. When the volume fraction is high enough (of the order
of few percent) the back-reaction might enhance significative fluctuations in the principal
phase, and when the latter becomes the main mechanism of disturbances generation within
the flow, it is also referred as cluster/bubble induced turbulence. Indeed, this agitation
shares several similarities with classical single-phase turbulence like the highly unsteady
motion, the difficult predictability and the power-law scaling of energy, for instance. In
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Figure 1: Instantaneous snapshot of the vorticity in the wakes of a swarm of rising bubbles.

bubbly flows those situations are also called bubble-induced agitation [Riboux 2010], or
pseudo-turbulence to highlight the different nature with respect to classical turbulence. In
figure 1 we show an example of the agitation induced by rising bubbles.

The objective of this thesis is, thus, to analyze the mechanisms of this phenomenon
in those cases where it is still not completely clear, and to elaborate and test multiphase
models that can accurately predict and describe the physics of the observed problem. To
reach this goal we have make use of several instruments that are commonly adopted in the
multiphase community and we have followed different numerical approach depending on the
specific case. When available, we have compared our results with experiments performed by
other authors, like for instance the homogeneous fully developed cluster-induced-turbulence
numerical simulation of [Capecelatro 2015], or the bubble-induced turbulence experiment
of [Riboux 2010].

The work has been focused on two different parts, respectively particle-laden and bub-
bly flows, which have been faced with different approaches and perspectives. Because of
the advancement in the study of particle-laden flows, which are more mature and which
offer a wide range of numerical and physical experiments, in this part it has been possible
to be somehow more technical, answering to specific modelling questions. On the contrary,
the part on bubbly flows has been more exploratory and fundamental, in order to provide a
further analysis of some mechanisms that are still not completely clear. Indeed, the study
of turbulent bubbly flows is more recent, and even if experiments are rather advanced, the
numerical approach is still in development, and is progressing at great steps.

The manuscript is therefore divided in three parts and is organised as follows: the first
part recalls some concepts of turbulent and multiphase flows, focusing on the main physical
features of those flows and drawing a picture of the actual state-of-the-art. Then, the
methodologies that have been adopted within the course of our work have been described
putting forward the key-points and the drawbacks of each one.

In part II the problem of describing inertial particles in turbulence has been addressed.
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We have considered point-particles, because of their negligible size with respect to tur-
bulence scales and we have considered several regimes of particle concentration. Firstly,
in the dilute regime (low particle concentration) we have focused on the mechanism of
particle preferential concentration, which is the key feature for those flows and that have
a great impact in practical applications (e.g. particle accumulations near to the wall).
Using direct numerical simulation (DNS) data for the assessment, we have proposed a La-
grangian stochastic model for tracking particles in dilute turbulent flows in the framework
of a Large-Eddy-Simulation (LES) where only a filtered fluid velocity field is available,
resulting in the loss of the small scale fluid fluctuations. The stochastic particle model has
given excellent results in the estimation of the particle near-wall concentration, which is
usually underestimated in LES without particle models, and this result has been confirmed
by the good reconstruction of the fluid-phase statistics.

Secondly, we have investigated the dense regime (high particle concentration), where
turbulence can be modulated by the particle phase and the mechanism of energy generation
by the secondary phase can become predominant. For this case, because of the increased
complexity (e.g. the back-reaction of the particle on the fluid might easily give rise to
numerical instabilities), we have proposed a particle stochastic model to be coupled with
the Reynolds-Averaged (RA) fluid-phase equations. This choice has been motivated also
by the fact that no Lagrangian particle model for dense flows was present for high volume
fraction regime, i.e. CIT. Therefore we have proposed a new stochastic model that can
take into account also particle collisions and we have tested it in several homogeneous
applications of increasing complexities up to the CIT, obtaining excellent results. Finally,
we have tested it also in a non-homogeneous application, which has results particularly
challenging. Indeed, the increased complexity due to spatial fluxes and boundary layers
makes the resolution of the problem with two-way coupling particularly difficult, with
possible numerical instabilities triggered by the back-reaction of particles. For this non-
homogeneous application it has been necessary to develop and validate a new numerical
scheme for the solution of coupled stochastic differential equations. Even though results
are yet less conclusive, we have found consistent results with literature studies.

In part III, we have studied the problem of bubbly flows at moderate to high Reynolds
number. The objective was still to investigate the mechanisms of turbulence (agitation)
generation by the dispersed phase. However in this case, in the perspective of reach-
ing a good knowledge of the subject to support lower-order models, we needed to start
from performing numerical experiments (DNS), because of the need to further analyze
several situations of interest. Indeed, albeit some experiments have been done, providing
interesting ideas, there are several questions that still remain open related to the bubble
agitation mechanism. To follow a rigorous path, we have tested a numerical code capable
of describing two-phase interfacial flows (Basilisk), in several rising bubbles configuration,
reproducing literature results. Finally, we have performed several 2-dimensional and the
first well resolved 3-dimensional DNS of a bubble column to study more in detail the
bubble-induced turbulence. Results, show the presence of a typical marker for this situa-
tion, identified in the presence of a slope close to −3 in velocity spectra and in asymmetric
probability distributions of the velocity fluctuations, which were evidenced also in experi-
mental results. Results seem to suggest many cascade dynamics in different regimes, and
work to better understand it appears necessary.
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A work resulting from a collaboration with colleagues of Grenoble University about
stochastic modelling of the fluid acceleration in a wall-bounded flow is then presented in
appendix A

As it can be seen, the work has been strongly transversal, touching different problematic
but with the same common thread of the turbulence induced by a secondary phase. Hence,
the methodologies adopted to accomplish this survey have been several. Each chapter of
the thesis has been conceived as self-contained and it corresponds to a dedicated paper
published, submitted or in preparation to an international scientific journal. Therefore,
even if there might be some repetition in the introductory parts of some chapter, the struc-
ture and the contents should remain clear, and will facilitate the reader who is interested
only in some specific case.



Part I

Overview of the Thesis





Chapter 1

Background concepts

1.1 Turbulent flows

Turbulent flows can be observed frequently in our everyday surroundings, ranging from
large-scale flows, as ocean and atmosphere circulation, to small-scale ones, as the water
flowing in a river or in a waterfall, the smoke from a chimney and the wind on a car. Their
range is thus large and the variety of flow scales to be considered is related to the problem
size. Nonetheless, the equations describing the motion of Newtonian incompressible fluids
are apparently simple. Indeed, the conservation of mass is given by

∂Ui
∂xi

= 0 , (1.1)

and momentum by
∂Ui
∂t

+ Uj
∂Ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2Ui
∂xj∂xj

+ fi (1.2)

where ρ and ν are the fluid density and kinematic viscosity, U is the velocity field, p is
the related pressure field, and f is an eventual external acceleration field, like for instance
gravity.

It has long been observed that fluid flows can be calm, moving on parallel paths, or
energetic and chaotic. In a classic experiment [Reynolds 1883] O. Reynolds found that
these two states of the flow, called laminar and turbulent, could be seen in water flowing
through a glass pipe by changing what became known as the Reynolds number. The
Reynolds number is the non-dimensional number that controls the transition between a
laminar flow and a turbulent flow, and is written

Re =
inertial terms

viscous terms
=
UL

ν
(1.3)

where U and L are some characteristic velocity and length of the flow. The Reynolds
number compares the viscous terms, which tend to dampen motion, with the inertial terms
that tend to amplify it. In the experiments Reynolds found that for low Reynolds number
conditions the dye injected in the flow did not mix, implying that all streamlines remained
parallel to the direction of the flow, while for larger Reynolds number the system exhibited
a turbulent state, characterized by a time dependent velocity profile and mixing of the
injected dye. Therefore it is commonly stated that ifRe� 1 the flow can become turbulent,
i.e. infinitesimal disturbances grow indefinitely in time and make the flow chaotic. In the
years many researchers have found common characteristics to a wide variety of turbulent
flows and, even if a shared formal definition is not always agreed by everybody, the main
features of turbulent flows are: (i) the velocity field, as well as other observables, varies
significantly and irregularly over time and space. In particular, due to the nature of the
system of equations, instantaneous turbulent quantities are not predictable: even if they
can be described deterministically by Navier-Stokes equations (NS, eqs. (1.1)-(1.2)), they
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experience a high sensitivity to initial conditions and therefore different realizations can
differ significantly. (ii) A statistical description, however, is meaningful and can provide a
quantitative analysis, i.e. while the instantaneous velocity Ui(x, t) is not predictable, the
average velocity at that position and time 〈Ui(x, t)〉 is stable and can be predicted. This is
the reason why a statistical approach is suitable for turbulence. (iii) From a physical point
of view the main features of turbulent flows are their large variety of scales, from large ones
where energy is injected from the extern, to small ones where it is dissipated, and their
highly diffusive behaviour. Because of the latter, turbulence is very efficient at mixing, a
quality often appreciated for engineering purposes. The transfer of energy from large to
small scales is referred as energy cascade and is one of the key features of turbulence. In
particular it is nowadays well known that the spectral energy density evolves as the power
of −5/3 of the wavenumber in the inertial range of scales, which is the intermediate part
between energy injection and energy dissipation.

Different theory of turbulence has been given by many authors over years, starting
from the precursor works of [Richardson 1922, Kolmogorov 1941a, Kolmogorov 1941b],
and a clear and exhaustive description can be found in different text books [Hinze 1975,
Frisch 1995, Pope 2000]. In this work we will concentrate mainly in the statistical descrip-
tion of turbulence, therefore in the following we will briefly recall the main key concepts
useful for such approach.

1.1.1 A statistical description of turbulent flows

Since the fluid velocity U of a turbulent flow is a random variable, its instantaneous value
at a certain position and time is not meaningful for a quantitative characterisation of the
flow. We should rather look at the probability of the velocity to be in a certain range
of values at a certain position and time, i.e. at its probability density function (PDF),
f(V; x, t). In terms of this PDF, the mean velocity field can be computed as a statistical
moment:

〈U(x, t)〉 =

∞∫∫∫

−∞

Vf(V; x, t)dV . (1.4)

Using this definition the instantaneous velocity field can be decomposed in a mean part
and a fluctuation (which by definition has zero mean):

U(x, t) = 〈U(x, t)〉+ u(x, t) (1.5)

which is known as Reynolds decomposition. If the average operator is applied to the NS
equations, and using its properties of commutation with the differentiation, the following
Reynolds-Averaged NS equation can be obtained for the transport of mean momentum

∂〈Ui〉
∂t

+ 〈Uj〉
∂〈Ui〉
∂xj

+
∂〈uiuj〉
∂xj

= −1

ρ

∂〈p〉
∂xi

+ ν
∂2〈Ui〉
∂xj∂xj

+ 〈fi〉 . (1.6)

This equation looks very similar to the NS equation (1.2), with the exception of the term
containing the mean of the product of the fluctuating velocities, 〈uiuj〉, which is called
Reynolds-stress tensor. This term is of fundamental importance in the statistical descrip-
tion of turbulence and has a direct effect on the mean velocity. For this reason, if we are
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seeking for a numerical solution of equation (1.6), we need either to model it or to add a
transport equation for it. Still starting from equation (1.2), after some manipulation, a set
of transport equations for the Reynolds-stresses (or alternatively for the turbulent kinetic
energy k = 〈uiui〉/2) can be found:

∂〈uiuj〉
∂t

+ 〈Uj〉
∂〈uiuj〉
∂xj

+
∂

∂xk
Tkij = Pij +Rij − εij (1.7)

where T , P, R and εij represent respectively the transport, production, pressure-rate-of-
strain and dissipation tensors. Qualitatively, the interaction between the Reynolds-stress
and the mean-flow gradient transfers energy from the mean flow to turbulence scales, where
then is dissipated by viscous friction. A detailed description of all terms can be found in
turbulence textbooks [Pope 2000], but even at first sight it is clear that a "closure" problem
arises. In fact in the transport equation of a turbulent statistical quantity, it will always
appear at least some higher order moment responsible for the turbulent transport, i.e. the
Reynolds-stress tensor 〈uiuj〉 in the momentum equation, the third order tensor Tkij , the
redistribution Rij and the dissipation εij in the Reynolds-stress equation, and so on. This
is to say that when dealing with a statistical equation, a closure, and therefore a model,
is needed at some level of the description, since the equations for a statistical moment of
order n will always involve some quantity of the order n+ 1.

1.2 Multiphase flows

When more than a phase is present at the same time we speak of multiphase flows. These
flows play a significant role in nature and in man-made systems [Crowe 2011]. We encounter
two-phase flows in liquid at a free surface, such as when drinking, washing and cooking,
as well as in flows laden with solid particles such as rivers transporting sediments or
in volcanic plinian eruptions. Similarly, such flows are in abundance also in industrial
applications: heat-transfer by boiling, steel making and nuclear plants just to cite a few
examples. These type of flows can be classified into five categories: (i) gas-liquid, (ii)
liquid-liquid, (iii) gas-solid, (iv) liquid-solid and (v) three-phase flows. From a physical
point of view categories (i) and (ii) deal both with two fluids and therefore they could
be grouped together. Another possible criterion for the classification could be that of
the relative density between the phases, which may introduce a relative drift in dispersed
flows. Concerning gas-liquid and liquid-liquid flows, depending on the form of the interface
between the two media and on their material properties, different regimes can be found
[McQuillan 1985]. This is illustrated in Figure 1.1 which shows a range of regimes for
the case of a boiling liquid (for example water) in a classical vertical heat exchanger. At
the bottom of the tube, the liquid has not yet started to boil and we have a single-phase
turbulent flow. When nucleation starts at the walls, bubbles can be found as separate
inclusions within the liquid (bubbly flows). Then, as more vapour is created we go through
the so-called slug and plug regimes where vapour occupies a more important volumetric
fraction. As the liquid continues to boil, we find the annular regime with a thin liquid layer
at the walls and a central vapour flow with small droplets carried by the vapour. Thus, the
scenario ranges from a dispersed two-phase flow, where one phase is a continuum (liquid)
and the other phase appears as separate inclusions dispersed within the continuous one,
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Figure 1.1: Two phase flow regimes on heat exchanger pipes.

to interfacial two-phase flows where large coherent regions of the two different phases
coexist, separated by an interface which can deform. For gas-solid flows the situation is
more straightforward, since solid particles cannot coalesce and change shape. However,
many different regimes are still possible, depending on particle size, mass loading and flow
configuration: we speak of particle-laden flows when we have discrete particles within a
continuous flow of gas, or of fluidized beds when a gas is introduced into a vessel containing
particles which, depending on the gas flow rate, can be suspended by the gas rising through
the bed assuming different patterns. In this work we have studied particle-laden flows and
bubbly-flows, which belong both to the category of dispersed flows. However, the approach
can be completely different, depending mainly on the typical size of the dispersed phase.
Namely a point-particle approximation can be possible for both cases if the diameter of
the particle (bubble) is small, but even in this case the forces exerted by the continuous
fluid on the dispersed phase are of different nature. Moreover, if a finite-size approach is
adopted, secondary effects like shape deformation have to be accounted for in bubbly flows.

1.2.1 Particle-laden flows

In particle-laden flows a point-particle approximation can be done if the particle diameter
is small compared to the smallest flow scale, i.e. the Kolmogorov scale η in turbulent
flows. In this framework a Lagrangian description is more natural than an Eulerian one,
and particles can be tracked according to the equations of particle motion derived by
[Maxey 1983, Gatignol 1983] where the fluid forces on the sphere were calculated from the
results of an unsteady Stokes flow:

dxp
dt

= Up , (1.8)
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dUp

dt
=

(
1− ρf

ρp

)
g +

Us −Up

τp
(1 + 0.15Re0.687

p )

+
ρf
ρp

DUp

Dt
+ CL

ρf
ρp

[(Us −Up)× ω]

+
9µ

dpρp
√
πν

∫ t

0

(
dUs

dt
− dUp

dt

)
dτ

(t− τ)0.5

+
ρf
2ρp

(
DUs

Dt
− dUp

dt

)
(1.9)

where Up is the particle velocity and Us is the fluid velocity at the particle position,
namely the fluid velocity "seen" by the particle. Then ρf and ρp are the fluid and particle
densities, dp is the particle diameter, ν and µ are the kinematic and dynamic viscosities
of the fluid, CL is the lift coefficient and ω is the vorticity of the fluid. Finally Rep is
the particle Reynolds number defined with the particle diameter as length scale and a
characteristic velocity of the particle depending on the flow configuration, and τp is the
characteristic time of the particle, defined by:

τp =
ρpd

2
p

18ρfν
. (1.10)

The first two terms on the right hand side of equation (1.9) are the Archimede force and
the drag, while the other terms are in order the effect of the pressure gradient, the lift, the
Basset term and the added mass term. The Archimede force accounts for the compensation
of gravity by the particle’s buoyancy. The Stokes drag force is due to the relative velocities
between the particle and the fluid. The pressure gradient term is equivalent to the fluid
particle acceleration at the center of mass, the lift is the transverse force present in a
rotational fluid; the Basset term takes into account the history of particle motion, i.e.
the interaction of a particle with its own wake, and finally the added mass is due to the
displaced fluid caused by particle motion. As we will consider the case of heavy particles, so
that the fluid density is order of magnitude lower than the particle density, the equation of
the particle motion can be simplified further. It has been shown that with the assumption
of ρp/ρf � 1 drag is the only significant force acting on the particle, so that the simplified
equation that will be treated in this work is:

dUp

dt
=

Us −Up

τp
+ g . (1.11)

One of the key features of particle-laden flows is the tendency of particles to concentrate
non-uniformly in turbulent flows, with local regions of anomalously high or low concentra-
tions [Eaton 1994, Balachandar 2010]. Figure 1.2, taken from [Pozorski 2009], shows the
preferential concentration of particles in homogeneous isotropic turbulence (HIT) for differ-
ent particle Stokes number, which is a non-dimensional number that compares the particle
time-scale to a fluid time-scale (in this case the Kolmogorov time-scale, i.e. St = τp/τη).
Particles sample different flow regions being captured or repulsed by turbulence structures
depending on their inertia. In fact the dense particles cannot follow the instantaneous
fluid flow streamlines so an individual particle does not necessarily remain with a given
fluid element: if we imagine a heavy particle interacting with a vortex, we can expect the
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Figure 1.2: Particle preferential concentration: instantaneous particle positions obtained
from particle tracking in a DNS for different Stokes number, based on the Kolmogorov
time scale. (a) St = 0.01; (b) St = 0.2; (c) St = 0.7; (d) St = 1; (e) St = 2; (f) St = 4.
Reprinted from [Pozorski 2009]

particle being thrown away by centrifugal forces, therefore accumulating in the surround-
ing regions of vortices, and in-between them. On the contrary, particles lighter than the
fluid (gas bubbles in liquids) tend to remain trapped in the core low-pressure region of vor-
tices. This physical mechanisms of preferential concentration is nowadays well understood
in dilute flows, nevertheless it remains challenging to properly capture it with modeled
equations, such as Reynolds-Average turbulence models or Lage-Eddy simulations, where
not all turbulence scales are resolved [Marchioli 2008b, Pozorski 2009].

It is worth remarking that equations (1.2),(1.11) are valid for dilute flows, i.e. when
the volume fraction of the particle phase αp is small, implying a mass loading ϕ =

(αpρp)/(αfρf ) < 0.1. Beyond this limit other effects need to be considered for both
phases. In "moderately dense" suspensions two-way coupling between the phases starts
to play a role, i.e. particles are felt by the fluid and the back-reaction should be taken
into account in the NS equations (1.2). Experiments [Kulick 1994], Eulerian-Lagrangian
[Sundaram 1999] and fully resolved calculations [Garcia-Villalba 2012] have shown that
wakes generated by small and large particles could have a direct contribution to the turbu-
lent kinetic energy production and dissipation even at low mass loading. For mass-loading
of order one or larger the interphase coupling can modify the energy spectrum, leading to
a scaling law E(k) ∝ k−4, that emerges at small scales where the particle forcing balances
the viscous dissipation [Gualtieri 2017]. Going further into the "dense" regime, particle-
particle collisions become crucial and should therefore be explicitly considered in equation
(1.11). Vreman et al. [Vreman 2009] showed through simulations at high-mass loading,
that particle collisions can deeply modify mean velocity and energy of both phases. Fi-
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nally, at sufficiently high mass loading, particle clusters may spontaneously arise due to
momentum coupling between the phases and generate and sustain turbulence in the fluid
phase, referring to it as cluster-induced-turbulence (CIT) [Capecelatro 2015]. In this par-
ticular case, it has been also shown that separating the particle velocity in a correlated and
an uncorrelated in space component can be crucial in turbulence modelling, allowing for
instance to identify a different time-scale for collisions, which depend only on uncorrelated
motion (granular temperature).

1.2.2 Bubbly flows

In bubbly flows the same Lagrangian point-particle approach described above is still
possible, but usually consists in a bigger approximation with respect to solid particles.
When such approach is adopted we should rather talk of light particles. In numeri-
cal simulations however this is still the only viable approach if we want to simulate a
huge number of bubbles, in order to assess phenomena like preferential concentration
[Spelt 1997, Tagawa 2012]. Not only bubble size, which is usually comparable or larger of
the smallest fluid scales, but also their deformability and their complex dynamics cannot
be described with such approach. Moreover, bubbles can coalesce and breakup, therefore
changing not only their shape but also the size. In this work we do not consider the
phases of nucleation, growth and collapse of bubbles [Blander 1975, Atchley 1989], but we
will deal only with already formed bubbles which can only coalesce with other bubbles or
breakup. In particular we consider gas bubbles dispersed in a liquid, rising under the effect
of buoyancy.

In two fluids flows, therefore, the governing equations are the Navier-Stokes equations
(1.1)-(1.2) in both fluids with different density and viscosity in the gas and in the liquid
phase. A sharp interface separates the two fluids and determines a sudden change in
their properties. For continuum scales we can safely assume that interfaces have vanishing
thickness. Intermolecular forces, such as van der Waals forces that play an important
role in interface physics are modelled by retaining the effect of surface tension. From a
molecular point of view, surface tension arises because the interface is not an optimal region
thermodynamically. From a mechanical point of view surface tension is simply a force per
unit length acting parallel to the surface. It is then straightforward to show that in the
Navier-Stokes equation of momentum a term must be added only where the interface is
present, resulting in [Tryggvason 2011]:

ρ
∂Ui
∂t

+ ρUj
∂Ui
∂xj

= − ∂p

∂xi
+

∂

∂xj
(2µDij) + ρfi + ρfσiδs , (1.12)

where δs = δs(x − xs) is a dirac delta function that identify the presence of the surface,
Dij = (∂Ui/∂xj + ∂Uj/∂xi)/2, and

fσ = σκn +∇sσ (1.13)

is the surface force. The first term is the constant part, depending on the surface tension
(a material property), the local curvature κ = ∇ ·n and the surface normal, while the last
term is different from zero only if a non-constant surface tension is present. In practice the
surface tension balance the jump in pressure across the interface and jump relations can
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be derived analogously to shock waves. It is worth remarking that since the surface force
acts in the plane of the surface, if we integrate it over the whole closed surface, it gives a
null contribution.

Many physical parameters may characterise the problem, as the gas volume fraction, the
size of bubbles, viscosities and densities of the two fluids, and so on. However, generally this
kind of problems are described in terms of non-dimensional numbers. The rise of buoyant
bubbles is governed by four non-dimensional groups. Two are the density and viscosity
ratio of the two fluids, respectively ρb/ρl and µb/µl, where the subscript b indicates the
bubble phase and l the continuum phase (liquid). For air bubbles in water, their values are
of the order ρb/ρl ' 10−3 and µb/µl ' 10−2. The other two groups can be chosen among
different possibilities, but usually in buoyancy driven bubbly flows the Galileo number Ga
(or equivalently the Archimede number Ar =

√
Ga) and the Bond (or Eotvos) number are

used, defined as:

Ga ≡ ρl|ρb − ρl|gd3
b

µ2
l

, (1.14)

and

Bo ≡ |ρb − ρl|gd
2
b

σ
. (1.15)

Sometimes, especially in the chemical engineering literature, the Archimede number is
replaced by the Morton number. The Archimede number is a Reynolds number defined a
priori by using a velocity scale U =

√
gdb based on the gravity acceleration and the bubble

diameter, without the knowledge of the bubble velocity. The Bond number compares
gravity with capillary forces.

The rise of a single buoyant bubble, as a function of Ar and Bo, is nowadays well
understood [Clift 1978, Cano-Lozano 2016]. When Bo is low, meaning high surface tension
or small bubble diameter, the bubble remain spherical as it rises. Increasing Bo the bubble
can still remain spherical, in the case of low Ar (high viscosity), or change shape becoming
first ellipsoidal and then skirted, but still with a straight path, for higher Ar. Increasing
further Ar the wake of the deformed bubble may become unstable, determining a spiral, a
planar zig-zag or a chaotic path, depending on the respective values of the non-dimensional
groups. A summary of all possible bubble shapes [Clift 1978] and paths [Cano-Lozano 2016]
are reported in Figures 1.3 - 1.4 obtained respectively from experiments and numerical
simulations. In Figure 1.3 it is also given a graphical correlation between the Reynolds
number, the Bond number and the Morton number, Mo = Bo3/Ar. It has been shown
that the departure of the bubble trajectory from a straight line is associated with the
occurrence of a pair of counterrotating streamwise vortices for the case of a planar zig-
zag path, and of a pair of intertwined counterrotating vortices for the case of an helical
path. Despite this, the boundaries delimiting the different path regimes are not always
in a perfect agreement between experiments and numerical simulations also because of
the presence of surfactants in experiments that may alter the boundary conditions at the
interface.

Swarms of buoyant rising bubbles have equally been studied in literature, both
via experiments [Lance 1991, Riboux 2010, Alméras 2017] and numerical simulations
[Esmaeeli 1999, Loisy 2017]. Firstly it has been pointed out that the mean bubble ve-
locity is lower with respect to a single bubble, scaling with some exponential law of the
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Figure 1.3: Phase diagram summarizing the different shapes of bubbles in experiments.
Reprinted from [Clift 1978].
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Figure 1.4: Phase diagram summarizing the different styles of path observed in numerical
simulations (rectilinear, 4; planar zigzag, •; flattened spiral, H; spiral (helical), �; and
chaotic, �) Reprinted from [Cano-Lozano 2016].
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volume fraction. Then the interaction with turbulence as well as the agitation generated
in the wakes when rising in a quiescent liquid are just two examples of the variety of issues
arising in those flows. In particular there is some evidence [Riboux 2010] that the spectral
energy density evolves as the power of −3 of the wavenumber, recovering at small scales
the classic −5/3 characterising turbulence.

To conclude this introductory part, let us say a word about models in multiphase flows.
In numerical simulations, with the described continuum Eulerian formulation, only a few
number of bubbles can be resolved at limited rising Reynolds number. Industrial-size
multiphase flows must by necessity rely on statistical models, based on average equations.
With an approach analogous to single-phase turbulent flows, average equations can be
derived resulting in a two-fluid description: multiplying equation (1.12) by the bubble and
the liquid volume fractions, respectively, give rise to separate average transport equations
for the two fluids [Drew 1983, Ishii 1987, Zhang 1994]. As in the turbulence problem, the
averaged equations have several unclosed terms which need to be modeled.



Chapter 2

Methodology

In this section, a brief overview of all the methodologies used in this thesis is presented.
Every problem that is addressed in this work is resolved through a numerical approach,
therefore we will talk about the numerical methods to solve the equations of motions in
each particular case, being them exact or modeled. First of all we summarise the methods
and the approach used. The first part of the thesis on particle-laden flows is focused on
modelling through a point-particle Lagrangian approach for the particle-phase and Eulerian
Reynolds-Average Navier Stokes (RANS) / Large-Eddy simulations (LES) models for the
fluid phase. In particular in dilute flows we have used a Lagrangian stochastic model for the
particle phase, coupled with Large-Eddy models for the fluid phase. Moreover a comparison
with direct-numerical simulations (DNS) data of Eulerian-Lagrangian simulations carried
out in [Marchioli 2008b] has been done, post-processing already available data. In dense
particle laden flows we have used a similar approach, coupling a Lagrangian stochastic
model for particles, to Eulerian RANS equations for the fluid. However, albeit similar at a
first glance, the stochastic models for the dilute and the dense case are rather different. In
fact, the model used with LES is a model for the filtered density function of the velocity
(FDF), while the one used with RANS is for the probability density function of the velocity
(PDF). Hence, the first is related with filtered quantities, while the second with averaged
ones. In the following we will talk mainly of the more "classical" PDF methods, since the
formalism and the reasoning driving the FDF methods is analogous. By the way, more
details on the filtered-density-function model we have used, can be found in chapter 3.
Finally, bubbly flows have been investigated by means of direct numerical simulations,
solving both the liquid and the gas separated by the bubble interface, using the Basilisk
solver. Figure 2.1 shows a scheme of the various methodologies used in this thesis to
emphasize the different levels of description that have been used. It should be clear how
in the first part it has been possible to cover different techniques and methods, from the
numerical experiment (DNS) to large-scale and statistical models, while in the second part,
being the topic less advanced, we have focused on DNS to provide useful informations for
future modelling works.

METHODOLOGIES

particle-laden flows bubbly flows

RANS / PDF

LES / VFDF

Eulerian-Lagrangian DNS VOF Two-!uid DNS

Figure 2.1: Summary of the methodologies used in the thesis.
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2.1 Eulerian-Lagrangian DNS of turbulent particle-laden
flows

This methodology refers to solving the Navier-Stokes equations for the fluid-phase and
then using the fluid velocity field to evaluate the forces on the point-particle and track
them according to equation (1.11). In particular we refer to direct-numerical simulation
(DNS) when all the scales of the fluid are solved up to the Kolmogorov dissipative scale η.
This is a huge problem when we consider turbulent flows at high Reynolds number since
the dimension of the dissipative scales (η) and its characteristic time (τη) are related with
Reynolds number by the Kolmogorov relations:

η/l0 ∼ Re
− 3

4
l (2.1)

τη/τ0 ∼ Re
− 1

2
l , (2.2)

where l0 and τ0 are the reference length- and time-scale of the problem. These relationships
yields that the requirements on the grid spacing and on the computational time-step are
roughly

∆x,∆y,∆z ≤ η ≈ l0Re
− 3

4
l (2.3)

1

∆t
≥ fk ≈ νl−2

0 Re
3
2
l (2.4)

Thus, because of the high number of scales to be solved, DNS of high Reynolds turbulent
flows implies high computational costs and in many practical engineering cases is not
possible. Moreover the computational requirements are also increased by the presence
of the dispersed phase which is usually represented by a huge number of point particles
(O(105)) in order to have accurate statistics. Fortunately, in dilute flows (see chapter 3),
two-way coupling between the phases is weak and can be neglected, hence, the two-phases
can be simulated separately.

In the present work EL-DNS data have been used in the context of particle-laden dilute
flows. Simulations were performed in [Marchioli 2008b], therefore we will say just a few
words on the numerical code used. The fluid-phase is solved transforming field variables
into wavenumber space through a pseudo-spectral incompressible flow solver that uses
a Fourier-Galerkin method in the homogeneous directions and a Chebyshev-collocation
method in the non-homogeneous direction. A two-level, explicit Adams-Bashfort scheme
for the non-linear terms, and an implicit Crank-Nicholson scheme for the viscous terms
are employed for time advancement. On the other hand the time advancement of the
equations of particle motion is done through a Runge-Kutta fourth order scheme and the
fluid velocity is evaluated at the particle position through a second-order interpolation for
the estimation of the drag force. More details can be found in [Marchioli 2002].

2.2 LES of turbulent particle-laden flows

A less accurate approach, for the solution of Navier-Stokes equations is the so called Large
Eddy Simulation or LES. In large-eddy simulation, the larger three-dimensional unsteady
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turbulent motions are directly represented, whereas the effects of the smaller scale motions
are modeled. Nearly all of the computational effort in DNS is expended on the smallest,
dissipative motions, whereas the energy and anisotropy are contained predominantly in
the larger scales.
In LES, the dynamics of large scales (which are affected by the flow geometry and are
not universal) are computed explicitly, the influence of the smaller scales (which have, to
some extent, a universal character) being represented by simple models. Thus, compared
with DNS, the vast computational cost of explicitly representing the small fluctuations is
avoided.
If we introduce a filtering operator, [Pope 2000]

Ũ(x, t) =

∫

Ω
G(r,x)U(x− r, t)dr , (2.5)

where Ω is the flow domain, G(r,x) the filter function and U(x, t) the quantity that has to
be filtered, we can decompose the velocity U(x, t) into the sum of a filtered (or resolved)
component Ũ(x, t) and a residual (or subgrid-scale) component u′(x, t). In this case Ũ(x, t)

(three dimensional and time dependent) represent the motion of the large eddies.
If we consider a filter operator ·̃ that decompose a generic quantity in filtered and residual,
the filtered continuity and Navier-Stokes equations can be rewritten as follows:

∂Ũj
∂xj

= 0 , (2.6)

∂Ũi
∂t

+ Ũj
∂Ũi
∂xj

= −1

ρ

∂p̃

∂xi
+ ν

∂2Ũi
∂xj∂xj

− ∂τij
∂xj

. (2.7)

where τij = ŨiUj−ŨiŨj is the SGS stress term that must be modeled to close the equation.
The closure problem is one of the central problems in LES. The most commonly used
SGS models are the Smagorinsky model and its variants. They model the unresolved
turbulent scales, in analogy with the Bousinnesq hypothesis, through the addition of an
eddy viscosity into the governing equations. The basic formulation of the Smagorinsky
model [Smagorinsky 1963] is:

τij −
δij
3
τkk = −2νT S̃ij (2.8)

where:

S̃ij =
1

2

(
∂Ũi
∂xj

+
∂Ũj
∂xi

)
(2.9)

is an entry of the strain rate tensor and the eddy viscosity νt is calculated as:

νT = (Cs∆g)
2
√

2S̃ijS̃ij (2.10)

where ∆g is the grid size and Cs is a constant. Many techniques have been developed to
calculate Cs. Some models use a static value for Cs, often calculated from experiments of
similar flows to those being modeled. Other models dynamically calculate Cs (dynamic
Germano model [Germano 1992]) as a function of space and time. In some cases, as
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usually happen in two-phase flow LES, the SGS term is completely neglected with the
assumption that the long term behaviour of heavy particles is merely affected by the large
scale structures.
Most commonly the filter used is defined in the spectral space as in the case of spectral or
pseudo-spectral codes, so that it operate a cut-off of the highest wave numbers as follows:

Ĝα(k) =

{
1 if − π/∆α ≤ k ≤ π/∆α

0 otherwise
(2.11)

In the present work the numerical scheme used for LES simulations is the same as the
one used in DNS, being an adaptation of the same numerical code. Particles are tracked
again with a Runge-Kutta fourth order scheme and using the filtered fluid velocity at the
particle position for the estimation of the drag force. It is worth remarking that if no
subgrid model is used for the particle phase, this approach will result in wrong estimation
of particle trajectories due to several sources of error: among them, the most important
are the error in the estimation of the drag due to the fact that only the filtered velocity
is available (differently to DNS), and the error in the estimation of the filtered velocity
itself due to the model used for the closure. More details on this approach will be given in
chapter 3.

2.3 RANS of turbulent particle-laden flows

RANS models are the lower order models in terms of computational costs and accuracy in
the hierarchy DNS - LES - RANS, yet the most widely used in practical applications. As
outlined in section 1.1.1 a statistical description of turbulent flows is straightforward due
to their chaotic nature. Introducing a probability density function of the velocity field let
us separate the velocity field in an average part and a fluctuation, for every position and
time. Moreover the averaging concept can be applied directly to the transport equations
of mass and momentum resulting in a set of Reynolds-averaged unclosed equations. In
this thesis we have used Reynolds-stress models, i.e. a model has been introduced in
the Reynolds-stress equations. This means that in the most general situation we have to
solve a set of ten equations: the conservation of mass, the three component of the mean
momentum equations, and six equations for the Reynolds-stress transport. An additional
scalar equation for the transport of the dissipation ε has also to be introduced to close
completely the system. In literature there are several RANS models for single-phase flows of
different accuracy and complexity [Pope 2000]. In order of increasing complexity, the most
widely used are the Rotta model, the Launder-Reece-Rodi for isotropisation of production
(LRR-IP) model [Launder 1975] and elliptic relaxation models [Durbin 1991]. All models
are constructed starting from the exact averaged transport equations already introduced
in section 1.1.1. The transport of mean momentum, eq. (1.6) does not raise any problem,
since the only unknowns it contains are the mean velocity, the given mean pressure and
the Reynolds stresses. On the other hand, the exact transport equation of the Reynolds
stresses, eq. (1.7), need to be modeled. Namely, the Rotta model, based on experimental
evidence, consists in a redistribution term in place of the pressure-rate-of strain term, of
the form:

Rij = −CR
ε

k
(〈uiuj〉 −

3

2
kδij) , (2.12)
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where CR is the Rotta constant. Analogously the LRR-IP model consists in the same term
with the addition of a redistribution of production. The transport term T is treated in the
same way in the different models, through the decomposition:

Tkij = −ν ∂〈uiuj〉
∂xk

+
2

3
δij
〈ukp′〉
ρ

+ 〈uiujuk〉 = T (v)
kij + T (p′)

kij + T (u)
kij . (2.13)

The viscous transport is already in closed form, while the pressure transport and turbulent
convection are usually closed through gradient-diffusion models. For instance, we have
adopted the model of Daly and Harlow [Daly 1970] which uses the Reynolds-stress tensor
to define an anisotropic diffusion coefficient:

T ′kij = −CS
k

ε
〈ukul〉

∂〈uiuj〉
∂xl

(2.14)

where CS is a model constant. Finally, the dissipation tensor, at high Reynolds number
and away from the walls, is taken to be isotropic:

εij =
2

3
εδij . (2.15)

It is worth adding that in presence of walls that limit the flow, the basic Reynolds-stress
turbulence models need to be modified using damping functions and anisotropic dissipation
tensors [Pope 2000].

The standard model equation for the dissipation ε used in Reynolds-stress models is
that proposed by Hanjalic and Launder [Hanjalić 1972]:

Dε

Dt
=

∂

∂xi

(
Cε
k

ε
〈uiuj〉

∂ε

∂xj

)
+Cε1

Pε
k
− Cε2

ε2

k
, (2.16)

with Cε = 0.15, Cε1 = 1.44 and Cε2 = 1.92.
In this section we have briefly given an overview of standard RANS models used in

single phase flows to give the main tools to understand following sections. In particular, in
chapter 4, these models will be used as basis to build Reynolds-averaged models for dense
two-phase flows, i.e. where the dispersed particles have an effect on the fluid phase (and
therefore on its transport equations).

2.4 PDF methods

This class of methods provide an alternative approach to turbulence, yet still in the context
of statistical methods. Instead of modelling directly the fluid-phase averaged equations,
one can work on the PDF which is used for the evaluation of means as statistical moments.
This results in mesoscopic models which lie between the DNS/LES and RANS.

As every statistical system, the dynamics of the PDF of a turbulent flow can be de-
scribed by a proper transport equation. In general terms one can always state a duality
between the deterministic description of the chaotic system and its PDF, namely, if we
consider as observable the velocity of a fluid particle, its dynamics will be given by:

DU

Dt
= A(x,U) (2.17)
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and the respective PDF f(V; x, t) will be described by:

∂f

∂t
+ Vi

∂f

∂xi
= − ∂

∂Vi

(
f
〈
A
∣∣∣V
〉)

, (2.18)

which is called Liouville equation. The same problem of the other modelling approaches to
turbulence arises, i.e. an higher order term (the acceleration, A) is involved and equation
(2.18) is unclosed. Usually the Lagrangian approach is preferred because is more straight-
forward to understand and to be solved numerically. In fact the outcome is the same, we
solve the Eulerian transport equation of a PDF or the Lagrangian stochastic equations
of the statistical particles related to it through a Monte-Carlo simulation. The average
quantities of interest can then be obtained by means of statistical moments or ensemble
averages, respectively. The simpler possible model is the Langevin equation, which is a
stochastic differential equation of the form:

dU(t) = γU(t) +K(t) (2.19)

where K(t) is a Gaussian stochastic process (〈K(t)〉 = 0, 〈K(t)2〉 = Γ) which is decorre-
lated at different times (〈K(t)K(t′)〉 = 0 for t 6= t′). Equation (2.19) can be solved as an
initial value problem:

U(t) = U0 exp(−γt) + exp(−γt)
∫ t

0
exp(γs)K(s) . (2.20)

Using the properties of the stochastic process K(t) the mean autocovariance is found to
be

R(τ) ≡ 〈U(t)U(t+ τ)〉 =
Γ

2γ
exp(−γτ) in the limit of t→∞ . (2.21)

The Lagrangian integral time-scale is defined with the autocorrelation function ρ(τ) =

R(τ)/〈U(t)2〉, as
TL ≡

∫ ∞

0
ρ(τ)dτ = −1

γ
. (2.22)

In homogeneous isotropic turbulence (HIT), in order to have a constant turbulent kinetic
energy, it must be

Γ =
2σ2

TL
(2.23)

with σ2 = 2/3k. Therefore the Langevin equation (2.19) can be recast in the form

dU(t) = −U(t)

TL
dt+

(2σ2

TL

)(1/2)
dW (t) , (2.24)

where W (t) is a normalised Gaussian process (zero mean, unit variance) called a Wiener
process.

The scaling of Kolmogorov theory can be applied to this model by considering the
second order Lagrangian structure function SL2 (τ) = 〈[U(t + τ) − U(t)]2〉 in the inertial-
range timescales:

SL2 (τ) = C0ετ for τη � τ � TL , (2.25)
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where C0 is a universal constant; whereas the Langevin model gives

SL2 (τ) =
2σ2

TL
τ . (2.26)

Therefore the Langevin equation is consistent with the Kolmogorov hypothesis of a linear
dependence of SL2 (τ) on τ , and the inverse of the Lagrangian time-scale can be expressed
as

T−1
L =

3

4
C0
ε

k
, (2.27)

where C0 is a model constant not necessarily equal to C0. The final form of the Langevin
model in HIT will be:

dU(t) = −3

4
C0
ε

k
U(t)dt+ (C0ε)

(1/2) dW (t) . (2.28)

This form of the Langevin equation has been the foundation of the Lagrangian stochastic
modelling of turbulence. This model has several important limitations, which have been
addressed with a wide variety of approaches. The nature of these approaches depends on
the model application and the specific statistical results sought, e.g. models used to predict
pollution in the atmospheric boundary layer have different requirements than the models
used to predict mixing of chemical species in an engineering application. The literature
regarding Lagrangian stochastic models in turbulence is vast [Pope 2000], and a complete
summary is not attempted here. It is worth remarking that each stochastic Lagrangian
model has as counterpart a corresponding PDF equation, e.g. the Fokker-Planck equation
for the Langevin model, and consequently corresponds to a precise Reynolds-stress model
[Pope 1994b].

This brief description of PDF methods and of the derivation of the basic Langevin
equation for turbulent flows, was aimed just introducing those concepts for those who are
not familiar with. In this work this approach has been used to model particle-laden flows
in those cases where the fluid-phase is not resolved through a DNS but with some modeled
equations, e.g. RANS or LES (see chapters 3-4). Indeed a stochastic model can be sought
to reintroduce the correct amount of fluctuations that have been lost with the averaging
or filtering of the fluid velocity.

In literature different models have been proposed for this purpose [Minier 2001,
Pozorski 2009] conceived for dilute flows. For our work focused on particles, a starting
point was the model proposed for dilute flows which consisted in adding a stochastic equa-
tion that describe the fluid velocity seen by the particle, Us, to equation 1.11, as follows:

dUp,i =
Us,i − Up,i

τp
dt+ gi dt (2.29)

dUs,i = − 1

ρf

∂〈pf 〉
∂xi

dt+ (〈Up,j〉 − 〈Uf,j〉)
∂〈Uf,i〉
∂xj

dt+
1

T ∗L,i
(Us,i − 〈Uf,i〉) dt

+ gi dt+
[
εf

(
C0bi

k̃f
kf

+
2

3

(
bi
k̃f
kf
− 1

))]1/2
dWs,i . (2.30)

where 〈Uf 〉, 〈pf 〉, kf and εf are respectively the mean velocity, pressure, turbulent kinetic
energy and dissipation obtained from the resolved fluid-phase RANS equations. T ∗L and
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k̃f are a modified time-scale and kinetic energy to take into account particle inertia. For
more details on all terms see [Minier 2001]. It is clear how the model is an extension of
the Generalised-Langevin-Model (GLM) [Pope 2000] for single-phase flows, with a different
Lagrangian time-scale, which appears in the drift term (third term on r.h.s in eq. (2.30))
and indirectly in the diffusion coefficient (last term on r.h.s in eq. (2.30)), and an additional
term to model the crossing trajectory effect between fluid and inertial particles. Indeed,
the fact that an element ideally attached to an inertial particle has a different dynamics
with respect to a fluid particle is modeled in two different steps. Firstly, the inertia of the
particle, namely τp, is taken into account in the Lagrangian time-scale, varying the fluid
time-scale TL by a coefficient which depends on particle inertia: in the limit of vanishing
inertia it will give T ∗L → TL since particles behave like tracers, whereas in the limit of high
inertia it will tend to the fluid Eulerian time-scale T ∗L → TE since particles are nearly at
a stand-still with respect to fluid elements. Secondly, it is taken into account the possible
mean drift between fluid and particles due to external forces, e.g. gravity.

Taking this model as a reference, we have extended it to dense flows in chapter 4, and
we have derived a new model for the filtered-density-function (to be used with LES in
dilute flows) in chapter 3. It is worth mentioning that numerical schemes for stochastic
equations are not trivial and classical schemes for ordinary differential equations cannot
be used because of the presence of noise terms. A detailed description of the numerical
schemes used is given in each chapter.

2.5 DNS of bubbly flows

As outlined in section 1.2.2 the approach we have adopted for the solution of bubbly flows
is to consider the two fluids as continuum with different density and viscosity, separated
by a sharp interface which results in a sudden change of the fluid characteristics. With
this type of approach the two fluid have to be solved up to the smallest scales, i.e. the
Kolmogorov scale if turbulence is present. In any case, even if turbulence is not present,
the requirements on the grid spacing might be very strict, dictated by the necessity to
reconstruct accurately the geometry of the bubble surface. The key point with respect to
standard single-phase DNS is the reconstruction and the advection of the interface. The
two fluids are generally identified using a marker function that takes different values in
the different fluids. As the fluids move, and the interface change location, the marker
function must be updated. Different methods have been proposed in literature, which
include the Volume-of-fluid (VOF) method, the level-set, the phase-field and the CIP. An
alternative approach can be that of tracking directly the boundary between the different
fluids using marker points, and reconstructing the marker function from the location of
the interface. These methods are usually referred as front-tracking methods. In this thesis
we have make use of the Basilisk code which relies on the VOF method constructed on
regular or adaptive Eulerian grids. It is worth remarking that VOF methods have some
advantages with respect to the others and in particular to the front-tracking ones: (i) they
preserve mass in a natural way; (ii) changes of topology as breakups or coalescences are
implicit in the algorithm.

In the following we will present briefly the numerical schemes of which we have make
use within the Basilisk solver.
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Figure 2.2: A sketch of the VOF function representation in Eulerian method and of the
front-tracking Lagrangian markers for the interface advection

2.5.1 Basilisk code

Basilisk (http://basilisk.fr) is an ensemble of solver-blocks written using an extension
to the C programming language, called Basilisk C, useful to write discretisation schemes
in Cartesian grids. Instead of writing an entirely new code, existing blocks of code were
combined to solve Navier-Stokes equations with two fluids. As anticipated in section 1.2.2,
the incompressible, variable-density, Navier-Stokes equations with surface-tension are

ρ
(∂Ui
∂t

+ Uj
∂Ui
∂xj

)
= − ∂p

∂xi
+
∂2µDij

∂xj
+ fi + σκδsni , (2.31)

∂ρ

∂t
+
∂ρUi
∂xj

= 0 , (2.32)

∂Ui
∂xi

= 0 , (2.33)

where Dij = (∂jUi + ∂iUj)/2. For two-phase flows we can introduce the volume fraction f
of the first fluid and define the two densities and viscosities as

ρ(f) = fρ1 + (1− f)ρ2 , (2.34)

µ(f) = fµ1 + (1− f)µ2 , (2.35)

where ρ1, ρ2 and µ1, µ2 are the densities and viscosities of the first and second fluid. The
time discretisation is staggered in time for the volume fraction/density and pressure, reult-

http://basilisk.fr
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ing in a second-order accurate time scheme:

ρn+ 1
2

[Un+1
i − Uni

∆t
+ U

n+ 1
2

j

∂U
n+ 1

2
i

∂xj

]
= −∂p

n+ 1
2

∂xi
+

∂

∂xj
[µn+ 1

2 (Dn
ij +Dn+1

ij )] + (σκδsni)
n+ 1

2 ,

(2.36)

cn+ 1
2 − cn− 1

2

∆t
+

∂

∂xi
(cnUni ) = 0 , (2.37)

∂

∂xi
Uni = 0 . (2.38)

The system is then further simplified using a time-splitting projection method

ρn+ 1
2

[U∗i − Uni
∆t

+ U
n+ 1

2
j

∂U
n+ 1

2
i

∂xj

]
= −∂p

n+ 1
2

∂xi
+

∂

∂xj
[µn+ 1

2 (Dn
ij +D∗ij) + (σκδsni)

n+ 1
2 ,

(2.39)

Un+1
i = U∗i −

∆t

ρn+ 1
2

∂pn+ 1
2

∂xi
, (2.40)

∂

∂xi
Un+1
i = 0 , (2.41)

which requires the solution of the Poisson equation

∂

∂xi

[ ∆t

ρn+ 1
2

∂pn+ 1
2

∂xi

]
=
∂U∗i
∂xi

(2.42)

in order to verify the incompressibility relation

∂

∂xi
Un+1
i = 0 . (2.43)

This problem is solved using the multi-level Poisson-Helmholtz solver, once the advection
term is provided. The spatial discretisation is done with a finite volume centered method
and the advection term U

n+ 1
2

i ∂(U
n+ 1

2
i )/∂xj is estimated using the Bell-Colella-Glaz second-

order unsplit upwind scheme. A regular cartesian multilevel grid can be used as well as an
adaptive quadtree/octree grid [Popinet 2009], see figure 2.3.

2.5.1.1 Volume-of-fluid advection scheme

To solve the advection equation (2.37) for the volume fraction Basilisk uses a piecewise-
linear geometrical Volume-Of-Fluid (VOF) scheme [Scardovelli 1999] generalised for the
quad/octree spatial discretisation. The two steps of the geometrical VOF schemes are
(i) the interface reconstruction, and (ii) the geometrical flux computation and interface
advection.

In piecewise-linear interface construction (PLIC) methods the interface is approximated
by a local segment of equation

m · x = mxx+myy = α , (2.44)
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Figure 2.3: A sketch of the quadtree grid structure with adaptive refinement.

Figure 2.4: Geometrical flux estimation.

where x and y are the local axis of the cell under consideration. Firstly the normal m

is determined with the volume fraction in the cell and in the neighbouring ones using
the Mixed-Youngs-Centered scheme [Aulisa 2007], which chose the best approximation
between the Central and the Young schemes. Then, the interface line (2.44) is moved
along the normal by changing α to obtain the desired volume fraction. Using geometrical
arguments, e.g. the symmetry of a Cartesian cell, it is possible to find α without the need
of an iterative procedure [Tryggvason 2011].

For the advection of the interface the geometrical flux is evaluated through an Eulerian-
split method that evaluates the upwind flux of volume leaving the cell for the solution of
equation (2.37). The principle of geometrical flux estimation is illustrated in figure 2.4.

2.5.1.2 Surface tension

The surface tension term in (2.39) is approximated with the continuum-surface-force (CSF)
approach of Brackbill [Brackbill 1992] as follows:

σκδsn ≈ σκ∇f , (2.45)

This approach is known to suffer from problematic parasitic currents when applied to the
case of a stationary droplet in theoretical equilibrium with certains implementations of
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the CSF scheme, e.g. with staggered discretisations (velocity and pressure field on shifted
grids). This inconvenience has been avoided in Basilisk with the use of a collocated scheme
to ensure a correct force-surface tension balance.

Estimating curvature has traditionally been the major challenge for Volume-Of-Fluid
schemes. For this reason many recommend level-set, coupled VOF/level-set or front- track-
ing schemes as alternatives. In Basilisk a height function curvature calculation is used,
which has been shown to give practical estimates of the curvature which are comparable in
accuracy to estimates obtained using the differentiation of exact level-set functions. The al-
gorithm consists in: (i) evaluating the best alignment of the stencil (horizontal or vertical)
based on the direction of the normal to the interface; (ii) building a discrete approxima-
tion of the interface height y = h(x) (resp. x = h(y)) by summing the volume fractions
in each columns (resp.line); (iii) using finite-difference approximations of the derivatives of
the discretised height-function to compute the curvature:

κ =
h′′

(1 + h′2)3/2


x=0

. (2.46)

All the algorithms that have been presented, have been generalised for a use with
quad/octree grids. For more details on the numerical schemes see [Popinet 2009] and
http://basilisk.fr.

http://basilisk.fr
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This chapter is the result of a joint work with the University of Udine and is reported
here as it appears in the journal Physics of Fluids. We tackle here the problem of particle
dispersion in dilute flows before moving to dense flows in next chapters. The motion of
inertial particle in turbulence is well understood nowadays and in literature there are many
works on the subject. The point-particle approach is the most regularly used, but fluid
models like LES or RANS still lack in the predictions of relevant quantities. Therefore we
have proposed and assessed a stochastic model for particle-laden flows in a Large-Eddy
Simulation (LES) context in a non-homogeneous application. In the framework of the
thesis the objective was to see if in Eulerian-Lagrangian simulations, stochastic models
can constitute a viable approach for the reconstruction of the lost fluid-phase fluctuations
after averaging or filtering. We have put particular emphasis on the phenomenon of particle
preferential concentration, which generates clustering and accumulation in the near wall
region of a turbulent channel flow, and that can be crucial in many practical applications.
Indeed, it is well known that when inertial particles are tracked within a LES flow field, the
phenomenon of particle accumulation near to the wall is very often underestimated. With
the present model, that aim at reconstructing the fluid-phase fluctuations, we show that
we are able to recover in most cases DNS accuracy for the velocity statistics and particle
concentration.

We think that a complete comprehension of the physics behind particle dispersion in
turbulence is fundamental before moving to more complex regimes where the turbulence
is modified by the presence of particles and collisions might be present. For this reason,
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this first part of the thesis has constituted an important step in view of the following
developments.
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Abstract: The Eulerian-Lagrangian approach based on Large-Eddy Simulation (LES)
is one of the most promising and viable numerical tools to study particle-laden turbulent
flows when the computational cost of Direct Numerical Simulation (DNS) becomes too ex-
pensive. The applicability of this approach is however limited if the effects of the Sub-Grid
Scales (SGS) of the flow on particle dynamics are neglected. In this paper, we propose
to take these effects into account by means of a Lagrangian stochastic SGS model for the
equations of particle motion. The model extends to particle-laden flows the velocity-filtered
density function method originally developed for reactive flows. The underlying filtered
density function is simulated through a Lagrangian Monte Carlo procedure that solves a
set of Stochastic Differential Equations (SDEs) along individual particle trajectories. The
resulting model is tested for the reference case of turbulent channel flow, using a hybrid
algorithm in which the fluid velocity field is provided by LES and then used to advance the
SDEs in time. The model consistency is assessed in the limit of particles with zero inertia,
when “duplicate fields” are available from both the Eulerian LES and the Lagrangian track-
ing. Tests with inertial particles were performed to examine the capability of the model
to capture particle preferential concentration and near-wall segregation. Upon comparison
with DNS-based statistics, our results show improved accuracy and considerably reduced
errors with respect to the case in which no SGS model is used in the equations of particle
motion.

3.1 Introduction

Over the past decades major modelling efforts have been devoted to the prediction of
single-phase turbulent flows by means of Large Eddy Simulation (LES) [Rogallo 1984,
Sagaut 2006, Lesieur 2005]. The pioneering model was developed by Smagorinsky
[Smagorinsky 1963], based on an eddy viscosity closure that relates the unknown Sub-
Grid Scale (SGS) stresses to the strain rate of the large flow scales to mimic the
dissipative behavior of the unresolved flow scales. Subsequent extensions to dynamic
[Germano 1991, Germano 1992] or stochastic models [Zamansky 2013] have improved
the quality and reliability of LES, especially for cases where mass, heat and momen-
tum transfer are controlled by the large scales of the flow. Much work has been
done also to improve the applicability of LES to chemically-reacting turbulent flows
[Fox 2003, Pope 2013] and, more recently, to dispersed turbulent flows [Fox 2012]. The
first LES of particle-laden flow, in particular, was performed under the assumption of
negligible contribution of the SGS fluctuations to the filtered fluid velocity seen by iner-
tial particles [Armenio 1999]: The choice was justified considering that inertial particles
act as low-pass filters that respond selectively to removal of SGS flow scales according to
a characteristic frequency proportional to 1/τp, where τp is the particle relaxation time
(a measure of particle inertia). The same assumption has been used in other studies
[Yamamoto 2001, Vance 2006, Dritselis 2011, Afkhami 2015] in which the filtering due to
particle inertia and the moderate Reynolds number of the flow had a relatively weak ef-
fect on the (one-particle, two-particles) dispersion statistics examined. However, several
studies [Kuerten 2006, Marchioli 2008b, Calzavarini 2011] have demonstrated that neglect-
ing the effect of SGS velocity fluctuations on particle motion leads to significant errors in
the quantification of large-scale clustering and preferential concentration, two macroscopic
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phenomena that result from particle preferential distribution at the periphery of strong
vortical regions into low-strain regions [Fessler 1994, Wang 1993b, Rouson 2001]. It is now
well known that LES without SGS modelling for the dispersed phase is bound to underesti-
mate preferential concentration and, in turn, deposition fluxes and near-wall accumulation
[Soldati 2012, Soldati 2009, Picciotto 2005]. These flaws have obvious consequences on the
applicability of LES to industrial processes and environmental phenomena such as mix-
ing, combustion, depulveration, spray dynamics, pollutant dispersion, or cloud dynamics
[Balachandar 2010]. Recent analyses based on Direct Numerical Simulation (DNS) of tur-
bulence have also shown that neither deterministic models nor stochastic homogeneous
models have the capability to correct fully the inaccuracy of the LES approach due to SGS
filtering [Marchioli 2008a, Bianco 2012, Geurts 2012, Chibbaro 2014]. Prompted by the
above-mentioned findings, some attempts have been made on a heuristic ground, both for
isotropic [Pozorski 2009, Gobert 2010, Shotorban 2005, Cernick 2015] and wall-bounded
flows [Michałek 2013, Jin 2015].

An interesting and viable modelling alternative is represented by the Probability Den-
sity Function (PDF) approach, which has proven useful for LES of turbulent reactive flows
[Colucci 1998, Jaberi 1999, Gicquel 2002, Sheikhi 2003, Sheikhi 2007, Sheikhi 2009]. The
LES formalism is based on the concept of Filtered Density Function (FDF), which is es-
sentially the filtered fine-grained PDF of the transport quantities that characterize the
flow. In this framework, the SGS effect is included in a set of suitably-defined Stochas-
tic Differential Equations (SDEs), where the effects of advection, drag non-linearity and
poly-dispersity appear in a closed form. This constitutes the primary advantage of the
PDF/FDF approach with respect to other statistical procedures, in which these effects
require additional modelling [Pope 2000].

The objective of the present work is to apply the FDF-based LES formalism for particle-
laden turbulent flows. To this aim, several issues must be addressed with respect to the
FDF approach already available for turbulent reactive flows. First, the FDF must be La-
grangian since particle dynamics are addressed naturally from the Lagrangian viewpoint.
In addition, inertial particles behave like a compressible phase and therefore the mass
density function should be considered. This leads to the definition of a joint Lagrangian
Filtered Mass Density Function (LFMDF), which represents the mathematical framework
required to implement the FDF approach in LES [Minier 2015b]. In particular, a suit-
able transport equation must be developed for the LFMDF such that the effects of SGS
convection appear in closed form (the unclosed terms in the transport equation can be
modelled following a procedure similar to Reynolds averaging). In this paper, the nu-
merical solution of the LFMDF transport equation is achieved by means of a Lagrangian
Monte Carlo procedure. The consistency of this procedure is assessed by comparing the
first two moments of the LFMDF with those obtained from the Eulerian LES of the flow.
The results provided by the LFMDF simulations are compared with those predicted by
the original Smagorinsky closure, as well as those of the “dynamic” Smagorinsky model, for
the reference case of turbulent channel flow. The LFMDF performance is further assessed
upon direct comparison with a DNS dataset, paying particular attention to the results for
particle preferential concentration.
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3.2 Problem Formulation

In the mathematical description of turbulent dispersed flows, the relevant transport vari-
ables are the fluid velocity Ui(x, t), the pressure P , the particle position xp(t), and the
particle velocity Up(xp(t), t). In this work, we consider heavy particles carried by an
incompressible Newtonian fluid. The equations of motion for the fluid are, in scalar form:

∂Ui
∂xi

= 0 , (3.1)

∂Ui
∂t

+ Uj
∂Ui
∂xj

= − 1

ρf

∂P

∂xi
+ νf

∂2Ui
∂x2

j

, (3.2)

where ρf and νf are the density and the kinematic viscosity of the fluid, respectively. LES
of turbulence involves the use of a spatial filter [Germano 1992]:

f̃(x, t) =

∫ ∞

−∞
f(y, t)G(y,x)dy , (3.3)

where G is the filter function, f̃ represents the filtered value of the transport variable f ,
and f ′ = f − f̃ denotes the fluctuation of f with respect to the filtered value. We consider
spatially- and temporally-invariant, localized filter functions, thus G(y, x) ≡ G(x−y) with
the properties, G(x) = G(−x), and

∫
G(x)dx = 1. Starting from Eqns. (3.1) and (3.2) ,

application of the filtering operator (3.3) yields:

∂Ũj
∂xj

= 0 , (3.4)

∂Ũi
∂t

+ Ũj
∂Ũi
∂xj

= − 1

ρf

∂P̃

∂xi
+ νf

∂2Ũi
∂x2

j

− ∂τ̃ij
∂xj

, (3.5)

where τ̃ij = ŨiUj − ŨiŨj is the SGS tensor component [Germano 1992]. To close the
SGS stress tensor, three different cases have been considered in order to compare the
differences produced on particle tracking: (1) no SGS model, (2) Smagorinsky SGS model
[Smagorinsky 1963] and (3) Germano (dynamic Smagorinsky) SGS model [Germano 1991,
Germano 1992, Lilly 1992]. In the case without SGS model, the contribution of the SGS
is completely ignored and τ̃i,j = 0. The Smagorinsky model reads [Smagorinsky 1963]:

τ̃i,j −
2

3
kδi,j = −2νtS̃i,j , (3.6)

S̃i,j =
1

2

(∂Ũi
∂xj

+
∂Ũj
∂xi

)
, (3.7)

νt = (CS∆)2S , (3.8)

with CS = 0.065 [Moin 1982], S =
√
S̃i,jS̃i,j and ∆ the characteristic length of the filter.

The dynamic version of the Smagorinsky model provides a means of approximating CS
(the reader is referred to [Germano 1992] for further details on the model).

For the case of heavy particles (with density ρp � ρf ), drag is the dominant force. Ne-
glecting gravity to focus on turbulence effects on particles [Marchioli 2002, Picciotto 2005,
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Soldati 2009] the equations of particle motion in the Lagrangian framework, and in vector
form, read as [Clift 1978]:

dxp
dt

= Up , (3.9)

dUp

dt
=

1

τp
(Us −Up) , (3.10)

where Us = U(xp, t) is the fluid velocity seen by a particle along its trajectory, and:

τp =
ρp
ρf

4 dp
3CD|Ur|

, (3.11)

is the particle relaxation time, with dp the particle diameter, CD = 24
Rep

(1 + 0.15Re0.687
p )

the drag coefficient and Ur = Up−Us the particle-to-fluid relative velocity at the particle
position. Similarly to what already done for the fluid phase, it is possible to derive the
filtered version of Eqns. (3.9) and (3.10). The Lagrangian nature of these equations,
however, does not allow a straightforward derivation unless the SGS effects on particle
motion are disregarded. In this case one can write:

dx̃p
dt

= Ũp , (3.12)

dŨp

dt
=

Ũs − Ũp

τ̃p
, (3.13)

where τ̃p is the particle relaxation timescale expressed in terms of the filtered relative
velocity Ũr. A more precise definition of the filtering procedure for the particle-phase
quantities is given in the following section.

3.3 Definition of the Filtered Density Function

3.3.1 Particle phase

In two-phase flows the exact governing equations are Lagrangian. Accordingly, we in-
troduce a Lagrangian Filtered Mass Density Function (LFMDF) formally defined for N
individual particles in the domain at the time t as [Minier 2015b]:

F̃ pL(t; yp,Vp,Vs) =

∫ N∑

i=1

mp,iG(y − y′p)δ(y
′
p − xp,i(t))⊗ δ(Vp −Up,i(t))⊗ δ(Vs −Us,i(t))dy

′

=

N∑

i=1

mp,iG(y − xp,i(t))⊗ δ(Vp −Up,i(t))⊗ δ(Vs −Us,i(t)) , (3.14)

where mp,i is the mass of the i-th particle. From the LFMDF, it is possible to derive
formally the corresponding Eulerian Filtered Mass Density Function (EFMDF):

F̃ pE(t,x;Vp,Vs) ≡ F̃ pL(t; yp = x,Vp,Vs) =

=

N∑

i=1

mp,iG(x− xp,i(t))⊗ δ(Vp −Up,i(t))⊗ δ(Vs −Us,i(t)) . (3.15)
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Let us now consider the conditional filtered value of a variable Q(t), which is defined as
follows:

〈Q̃(t)|yp,Vp,Vs〉 =

∑N
i=1Qimp,iG(yp − xp,i)⊗ δ(Vp −Up,i(t))⊗ δ(Vs −Us,i(t))

F̃ pL(t; y,Vp,Vs)
. (3.16)

Equations (3.15) and (3.16) imply that:

(i) if Q(t) = const. then 〈Q̃(t)|y,Vp,Vs〉 = const.

(ii) if Q(t) ≡ Q̂(x(t),Up(t),Us(t)), where the hat symbol indicates that the variable Q
is completely defined by the variables x(t), Up(t), and Us(t), then 〈Q̃(t)|y,Vp,Vs〉 =

Q̂(y,Vp,Vs)

(iii) the following integral property for any variable Q(t,x) holds:

αp(t,x)〈ρ〉pQ̃(t,x) =

∫ ∫
〈Q̃|y = x,Vp,Vs〉 F̃ pE(t,x;Vp,Vs) dV dUs , (3.17)

where αp(t,x)〈ρ〉p =
∫
F̃ pE(t,x; Vp,Vs) dVp dVs is the filtered local value of the particle

mass fraction at time t and position x. From these equations, it follows that the filtered
value of any function of the variables in the state-vector is obtained by integration in the
sample space:

αp(t,x)〈ρ〉pQ̃(t,x) =

∫ ∫
Q̂(Vp,Vs) F̃ pE(t,x; V,Us) dV dUs . (3.18)

3.3.2 LFMDF transport equation

To derive the LFMDF transport equation, the time derivative of the fine-grained density
function given by Eq. (3.14) is considered. In the present study we are interested in the
case on mono-disperse flow, so we assume that all particles have the same mass (namely
mp,i is the same for i = 1, ..., N). We can thus derive:

∂F̃ pL
∂t

=
N∑

i=1

(
mp,i

∂G

∂t
δVpVs +mp,iG

∂δVp
∂t

δVs +mp,iG
∂δVs
∂t

δVp

)

=

N∑

i=1

(
mp,i

∂G

∂x

dxi
dt
δVpUs −mp,iG

dUp,i

dt

∂δVp
∂Vp

δUs −mp,iG
dUs,i

dt

∂δVs
∂Vs

δVp

)

=

N∑

i=1

(
−mp,i

∂G

∂y

dxi
dt
δVpUs −mp,iG

dUp,i

dt

∂δVp
∂Vp

δUs −mp,iG
dUs,i

dt

∂δVs
∂Vs

δVp

)

=
N∑

i=1

(
− ∂

∂y
(mp,iG

dxi
dt
δVpUs)−

∂

∂Vp
(mp,iG

dUp,i

dt
δVpδUs)−

∂

∂Vs
(mp,iG

dUs,i

dt
δVpδVs)

)

= − ∂

∂y

[〈
d̃x

dt
|y,Vp,Us

〉
F̃ pL

]
− ∂

∂Vp

[〈
d̃Up

dt
|y,Vp,Us

〉
F̃ pL

]
− ∂

∂Vs

[〈
d̃Us

dt
|y,Vp,Vs

〉
F̃ pL

]

= −∂[ VpF̃
p
L ]

∂y
− ∂

∂Vp

[
−Vp −Vs

τp
F̃ pL

]
− ∂

∂Vs

[ 〈
ÃUs |y,Vp,Us

〉
F̃ pL

]
. (3.19)
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The LFMDF transport equation can be also written separating the filtered and unresolved
parts as follows:

∂F̃ pL
∂t

+
∂
(

ŨpF̃
p
L

)

∂y
=− ∂

∂Vp

[
ÃUp F̃

p
L

]
− ∂

∂Vs

[
ÃUsF̃

p
L

]

− ∂

∂y

[ (
Vp − Ũp

)
F̃ pL

]

− ∂

∂Vp

{[〈
ÃUp |y,Vp,Vs

〉
− ÃUp

]
F̃ pL

}

− ∂

∂Vs

{[〈
ÃUs |y,Vp,Vs

〉
− ÃUs

]
F̃ pL

}
, (3.20)

where the first term on the right-end side corresponds to the effects of resolved scales
whereas the last three terms take into account the effects of the unresolved scales. The
EFMDF F̃ pE follows by definition the same transport equation.

3.3.3 Modeled LFMDF transport equation

The Langevin model previously developed for turbulent polydispersed flows [Minier 2001,
Minier 2004, Minier 2015b] is employed here to close the LFMDF transport equation. The
modeled LFMDF equation reads as:

− ∂

∂Vs

[ 〈
ÃUs |y,Vp,Us

〉
F̃ pL

]

≈ − ∂

∂Vs,i

{[
− 1

ρf

∂P̃

∂xi
+ νf∆Ũi +

(
Ũp,j − Ũj

) ∂Ũi
∂xj
− Vs,i − Ũi

T ∗L,i

]
F̃ pL

}

+
1

2

∂2

∂V 2
s,i

{
ε̃

[
C0bi

k̂SGS
kSGS

+
2

3

(
bi
k̂SGS
kSGS

− 1
)]

F̃ pL

}
, (3.21)

where we have defined the Lagrangian timescale in the longitudinal direction (i = 1), and
in the transversal directions (i = 2 and i = 3 respectively) as:

T ∗L,1 =
TSGS√

1 + β2
|Ũr|2

2kSGS/3

, T ∗L,2 = T ∗L,3 =
TSGS√

1 + 4β2
|Ũr|2

2kSGS/3

, (3.22)

with β = TL/TE [Wang 1993a], and:

ε̃ = (CS∆)2S , kSGS = Cε(∆ε̃)
2/3 , TSGS =

kSGS
ε̃

(
1

2
+

3

4
C0

)−1

, (3.23)

where ε̃ is the SGS dissipation rate, ∆ is the filter width, kSGS is the SGS kinetic energy,
and TSGS is the SGS time-scale. This model is consistent with the Generalised Langevin
Model [Pope 2000]. The auxiliary subgrid turbulent kinetic energy is defined as follows:

k̂SGS =
3

2

∑3
i=1 bi[Ũ

2
s,i − Ũs,iŨs,i]∑3
i=1 bi

, (3.24)

with bi = TSGS/T
∗
L,i.
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3.3.4 Equivalent Stochastic System

The LFMDF transport equation is of the Fokker-Planck kind and provides all the statistical
information of the state-vector. However, the most convenient way to solve this equation
is through a Lagrangian Monte Carlo method, since the LFMDF equation is equivalent
to a system of SDEs in a weak sense [Gardiner 1990]. This approach applies naturally
to the dispersed phase since its evolution equations are Lagrangian. The system of SDEs
corresponding to Eq. (3.21) reads as:

dxp,i = Up,i dt , (3.25)

dUp,i =
Us,i − Up,i

τp
dt , (3.26)

dUs,i = − 1

ρf

∂P̃

∂xi
dt+ νf∆Ũi +

(
Ũp,j − Ũj

) ∂Ũi
∂xj

dt− Us,i − Ũi
T ∗L,i

dt+Bs,ij dWi , (3.27)

where the term dWi denotes a Wiener process [Gardiner 1990]. In the following we discuss
the results obtained with two choices for the diffusion matrix Bs,ij =

√
C∗i ε̃ δij :

1. a simplified model C∗i ≈ C0 bi + 2
3(bi − 1), referred to as LFMDF1 hereinafter.

2. the complete model C∗i =
[
C0bi

k̂SGS
kSGS

+ 2
3

(
bi
k̂SGS
kSGS

− 1
)]

, referred to as LFMDF2 here-
inafter;

It is worth noting that the diffusion matrix, Bs,ij , is diagonal but not isotropic. This is cru-
cial to reproduce a correct energy flux from the resolved scales to the unresolved ones, and
represents a necessary requirement to consider the model acceptable [Minier 2014]. Using
the same closure as that of single-phase flows, namely Bs,ij =

√
C0 ε̃ δij , is inconsistent

with the modeled SGS dissipation rate ε̃.
When dealing with dispersed flows, a limit case of particular importance to assess the

capability of a SGS particle model is that of inertia-free particles. These particles behave
like fluid tracers and are characterized by τp → 0: The particle model must be consistent
with a correct model in this limit [Minier 2014]. When τp → 0, our model reduces to:

dxp,i = Up,i dt , (3.28)

Up,i = Us,i , (3.29)

dUs,i = − 1

ρf

∂P̃

∂xi
dt+ νf∆Ũi −

Us,i − Ũi
TL,i

dt+
√
C0ε̃ dWi , (3.30)

which is the stochastic system equivalent to the Velocity Filtered Density Function (VFDF)
model proposed by Gicquel et al. for the fluid [Gicquel 2002]. This model is consistent with
the exact zero-th and first moment equations; but more complete models for the second
central moment are also available [Gicquel 2002, Dreeben 1998, Wacławczyk 2004].

3.4 Numerical method

The numerical solution of the LES/LFMDF model is obtained using a hybrid Eulerian
mean-field LES/Lagrangian Monte Carlo procedure, where the filtered fluid properties
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are computed on a mesh while the statistics of the dispersed phase are calculated from
particles moving in the computational domain. This procedure has been used previously
in the context of RANS [Peirano 2006]. Specifically, let {Y[x]} be the set of filtered fluid
flow fields at the different mesh points and let {Y(N)} be the set of filtered fluid flow
fields interpolated at particle locations. Let {Z(N)} be the set of variables “attached” to
the particles and let {Z[x]} be the set of statistics (defined at cell centres) extracted from
{Z(N)}. The first step (operator F ) is to solve the PDEs for the fluid:

{Y[x]}(tn)
F−→ {Y[x]}(tn+1) . (3.31)

The second step (projection, operator P ) consists of calculating the filtered fluid properties
and the filtered particle properties at particle locations:

{Y[x]}(tn) and {Z[x]}(tn)
P−→ {Y(N)}(tn) and {Z(N)}(tn) . (3.32)

Then, the stochastic differential system can be integrated in time (operator T ):

{Z(N)}(tn)
T−→ {Z(N)}(tn+1) . (3.33)

Finally, from the newly computed (at particle locations) set of variables, new statistical
moments are evaluated at cell centres (operator A):

{Z(N)}(tn+1)
A−→ {Z[x]}(tn+1) . (3.34)

The operator F is a pseudo-spectral method based on trasforming the field variables
into wavenumber space, using Fourier representations for the periodic streamwise and
spanwise (homogeneous) directions and a Chebyshev representation for the wall-normal
(non-homogeneous) direction. The projection step, required to evaluate fluid and particle
quantities at particle positions, is achieved with three different techniques:

• no-interpolation (zero-th order, not symmetric in the wall normal direction): The
values of the filtered quantities at the upstream neighbour node of the cell containing
the particle are used.

• NGP (Nearest Grid Point, symmetric in the wall-normal direction): The average
values of the filtered quantities at each node of the cell containing the particle are
used.

• interpolation: A second-order interpolation of the Eulerian quantities at grid nodes
is performed to obtain quantities at the particle position.

Previous studies have shown that no improvement is obtained using higher-order interpo-
lation schemes [Peirano 2006] . In fact, higher-order schemes may even lead to larger errors
in hybrid formulations like the one considered here.

The local instantaneous properties of the dispersed phase are obtained by solving the
set of SDEs via the operator T . In particular, the numerical solution of the modelled
stochastic equations is obtained representing the modelled LFMDF through an ensemble of
N statistically identical Monte Carlo particles. Each of these particles carries information
pertaining to the fluid velocity seen by the particle, U

(n)
s (t), to the particle velocity, U

(n)
p (t),



3.4. Numerical method 41

and to the particle position, x
(n)
p (t), where n = 1, 2, . . . , N . This information is updated

upon time-integration of Eqns. (3.25)-(3.27). This system of SDEs has multiple scales and
may become stiff, in particular for particles with very small inertia. Moreover, in wall-
bounded flows the characteristic fluid time scales become smaller in the near-wall region,
thus complicating the integration. For these reasons, an ad-hoc unconditionally-stable,
second-order accurate numerical scheme has been developed and implemented here. The
scheme is based on that put forward in the RANS context [Peirano 2006]: It adopts the
Itô’s convention and is developed starting from the analytical solution of Eqns. (3.25)-
(3.27) with constant coefficients. Such a scheme ensures stability and consistency with all
limit cases. The first-order scheme is the following Euler-Maruyama:

xn+1
p,i = xnp,i +A1 U

n
p,i +B1 U

n
s,i + C1 [Tni C

n
i ] + Ωn

i , (3.35)

Un+1
p,i = Unp,i exp(−∆t/τnp ) +D1 U

n
s,i + [Tni C

n
i ](E1 −D1) + Γni , (3.36)

Un+1
s,i = Uns,i exp(−∆t/Tni ) + [Tni C

n
i ][1− exp(−∆t/Tni )] + γni , (3.37)

where the coefficients are given by the following relations:

A1 = τnp [1− exp(−∆t/τnp )] ,

B1 = θni [Tni (1− exp(−∆t/Tni )−A1] with θni = Tni /(T
n
i − τnp ) ,

C1 = ∆t−A1 −B1 ,

D1 = θni [exp(−∆t/Tni )− exp(−∆t/τnp )] ,

E1 = 1− exp(−∆t/τnp ) .

and γni ,Γ
n
i ,Ω

n
i are stochastic integrals. The details of the scheme as well as the analytical

solutions are given in Appendix 3.A. The second-order scheme is derived using a predictor-
corrector technique, in which the prediction step is the first-order scheme given by Eqns.
(3.35)-(3.37) [Peirano 2006].

Particle statistics are evaluated by considering the ensemble of particles NE located
within a small volume of fluid δV (a box of size ∆E,1 ×∆E,2 ×∆E,3) centered around a
given point x. This ensemble provides one-time one-point statistics. For reliable statistics
with minimal numerical dispersion, it is desirable to minimize the size of the averaging
domain, namely ∆E = 3

√
∆E,1∆E,2∆E,3 → 0, and maximize the number of Monte Carlo

particles, namely NE →∞. By doing so, the ensemble statistics tend to the desired filtered
values:

ãE =
1

NE

∑

n∈∆E

a(n) NE→∞−−−−−→
∆E→0

ã (3.38)

τE(a, b) =
1

NE

∑

n∈∆E

(a(n) − ãE)(b(n) − b̃E)
NE→∞−−−−−→
∆E→0

τ(a, b) (3.39)

where a(n) and b(n) denote typical information carried by the n-th particle, for instance
its velocity components, and the arrows indicate the limit operator. Since we are adopting
a Monte Carlo procedure in a LES/LFMDF approach, the quantities obtained following
Eqn. (3.39) are filtered Eulerian quantities, ã, and subgrid quantities, τ(a, b), respectively.
For example, one can evaluate the particle filtered velocity as:

Ũp,i(x) ' 1

Nx

Nx∑

n=1

U
(n)
p,i . (3.40)
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Analogous expressions can be written for all other filtered quantities.
The mean-field LES solver also computes the filtered fluid velocity field so that there

is a “redundancy" of the first filtered moments in the τp → 0 limit. In this case, both the
spectral method and the Monte Carlo procedure yield the solution for the particle number
density and velocity fields. These fields are referred to as “duplicate fields" hereinafter,
and can be exploited to assess the accuracy of the model [Muradoglu 1999, Jenny 2001].
The characteristics of our scheme are summarized in Table 3.1.

3.5 Results

In the present study, the LES/LMFDF approach is applied to track inertial particles in gas-
solid turbulent channel flow. The fluid considered is air (assumed to be incompressible and
Newtonian) with density ρf = 1.3 kg/m3 and kinematic viscosity νf = 1.57 · 10−5 m2/s.
The reference geometry consists of two infinite flat parallel walls: the origin of the coordi-
nate system is located at the center of the channel, with the x−, y− and z− axes pointing
in the streamwise, spanwise and wall-normal directions, respectively. Periodic boundary
conditions are imposed on the fluid velocity field in x and y, and no-slip boundary condi-
tions are imposed at the walls. Calculations were performed on a computational domain of
size 4πh× 2πh× 2h in x, y and z, respectively [Soldati 2009]. The domain was discretised
using a 32 × 32 × 33 grid with uniform cell spacing in the homogeneous directions and
non-uniform cell distribution in the wall-normal direction (Chebyshev collocation points)
[Marchioli 2008c]. Simulations were performed with a coarsening factor CF = 8 with re-
spect to the reference DNS, at a shear Reynolds number Reτ = 300 based on the half width
h of the channel, and using a fixed time step (see Table 3.2). DNS is based on a pseudo-
spectral incompressible flow solver that uses a Fourier-Galerkin method in x and y, and a
Chebyshev-collocation method in z. A two-level, explicit Adams-Bashforth scheme for the
nonlinear terms, and an implicit Crank-Nicolson scheme for the viscous terms are employed
for time advancement. More details can be found in [Marchioli 2002, Marchioli 2008c]. Par-
ticles with density ρp = 103 kg/m3 and Stokes numbers as given in Table 3.3, were injected
in the flow at randomly-chosen locations under fully-developed flow conditions. Since we
are concerned with a Monte-Carlo simulation, a large number of particles is required to
minimize statistical errors. In the consistency assessments (see Section 3.5.1), the num-
ber of particles per cell was varied selecting Npc = 20, 40, and 80, while simulations with
inertial particles were performed imposing Npc = 40: This latter value corresponds to a
total number of particles N ' 1.31 · 106 in the domain. Particles rebound elastically upon

spectral LES Particle solver mean-field duplicate
variables variables variables fields

(fluid limit)
Ũi Xp,i Ũi ,

∂P̃
∂xi

ρf

P̃ Up,i , Us,i
∂Ũi
∂xj

∆Ũi Ũi

Table 3.1: Summary of the LES/LFMDF solution procedure.
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Time step ∆t 4.2 · 10−5 [s]

∆t+ = ∆tu2
τ/νf 0.15 [w.u.]

DNS grid size Nx ×Ny ×Nz 256× 256× 257

LES grid size Nx ×Ny ×Nz 32× 32× 33

Table 3.2: Simulation parameters for the fluid. Superscript + represents variables in wall
units, obtained using the shear velocity and the fluid kinematic viscosity.

impact with the wall when their center is less than a diameter away from the wall itself.
In the following, both instantaneous and time-averaged results are discussed. In partic-

ular, we examine Reynolds averaged statistics, denoted by an overbar and obtained upon
averaging the filtered velocity over the homogeneous flow directions and in time.

3.5.1 Assessment of consistency and convergence

The purpose of this section is to demonstrate the consistency of the LFMDF formulation in
the τp → 0 limit, and to show its convergence. To these objectives, the results obtained via
the LES/mean-field are compared against those provided by the LFMDF approach. Given
the accuracy of the spectral method, such a comparative validation represents a robust
way to assess the performance of the LFMDF solution provided by the Monte Carlo simu-
lation. We are particularly interested in examining the particle velocity statistics, but also
the particle number density distribution, which is the macroscopic result of turbophore-
sis [Marchioli 2002, Soldati 2009] and should remain uniform in the whole domain when
τp → 0. For these observables, we compare the statistics obtained from the Monte Carlo
simulation, namely from the solution of Eqns. (3.25)-(3.27), with those of the Eulerian
pseudo-spectral simulation, which solves for Eqns. (3.1)-(3.2). As mentioned, in the fluid
limit this is equivalent to solving Eq. (3.30), and the resulting duplicate fields (indicated
in Table 3.1) should be consistent. The values suggested in the literature for the model
parameters are chosen here: C0 = 2.1 , Cε = 1, β = 0.8 [Minier 2001]. We have also
checked the convergence with respect to Npc, which is achieved for Npc ≥ 40.

Figure 3.1 shows the Reynolds-averaged particle number density, C/Cin (with Cin the
number density at the time of particle injection), and particle streamwise velocity, Ux
along the wall-normal coordinate. The different profiles correspond to different interpola-
tion techniques. To avoid cross-effects, no subgrid model is used in the Eulerian simulation.
While velocity appears unaffected by the particular interpolation technique employed (re-
sults are perfectly consistent), particle number density is sensitive. In particular significant
errors in the near-wall region are found when no interpolation is performed or when the

St τp [s] d+
p [w.u.] dp [µm]

1 0.283 · 10−3 0.153 10.2

5 1.415 · 10−3 0.342 22.8

25 7.077 · 10−3 0.763 50.9

Table 3.3: Simulation parameters for the particles.
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nearest-grid-point technique is used. A second-order interpolation, however, is sufficient to
recover the expected behaviour and ensure C/Cin ' 1 everywhere (as expected for tracer
particles). In figure 3.2, the averaged number density profile and the averaged velocity
provided by the different SGS models for the fluid are shown. The LFMDF model ap-
pears to be consistent with all models tested, since the C/Cin profile remains uniform once
the stationary state is reached and the velocity is (again) perfectly consistent. It is also
observed that, in the τp → 0 limit, the first moments of the Germano model are nearly
the same as those obtained without SGS model. Therefore results discussed hereinafter
refer to simulations performed using the Germano model for the fluid phase, unless oth-
erwise stated. A further proof of consistency is provided by figure 4.9, which shows the
scatter plots of the streamwise and wall-normal velocity components, indicated as Ũx and
Ũz respectively. Velocities in the Eulerian simulations were evaluated at the center of the
computational cells. The velocity correlation is quite satisfactory, except perhaps for very
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Figure 3.3: Scatter plot correlating particle velocity components evaluated from LES and
from LFMDF: (a) streamwise component, (b) wall-normal component.

small values of Ũx.
To assess the consistency of the LFMDF formulation from a physical (and more in-

tuitive) point of view, in Fig. 3.4, we compare the near-wall fluid streaks that can be
rendered from the Eulerian LES (panel a) and from the Monte Carlo LFMDF simulation
(panel b). Streaks are known to play a crucial role in determining the transport mech-
anisms in turbulent boundary layers [Picciotto 2005, Marchioli 2002], and are visualised
here by instantaneous contour plots of the fluctuating streamwise velocity on a x-y plane
located at a distance z+ = 10 from the wall. Visual inspection shows only small differ-
ences in the color map, indicating that the streaks, and indirectly the near-wall turbulent
coherent structures that generate it, are indeed recovered by the LFMDF simulation in the
fluid limit.

To complete the model assessment, we have also checked the sensitivity of Reynolds
averaging to the size of the reference volume δV (introduced in Section IV) over which
averaging is performed. To this aim, we considered different grids made of cubic volumes
centered around the LES (Eulerian) nodes. The size of each volume, ∆E , was varied to
be either smaller or larger than the cell size ∆ in the reference 323 LES grid. Figure 3.5
shows the averaged filtered streamwise velocity at varying ∆E (with a fixed number of
particles per cell, Npc = 40). It can be seen that all profiles overlap even for large ∆E

(∆E = 2∆) indicating that the mean filtered velocity is not sensitive to the size of the
averaging volume, at least in the range of ∆E analysed. For this reason we have chosen
∆E = ∆ for all simulations. To test this choice we have also considered higher-order
moments, namely the root mean square (rms) of filtered velocity, and we have analysed
the convergence in relation to the DNS results. In figure 3.6 we show the rms of the filtered

velocity, defined as rms(Ũ) =

√
(Ũ − Ũ)2. The different profiles do not collapse and the

LFMDF is in better agreement than LES with DNS, when the volume size is ∆E = ∆,
confirming the validity of the overall method in the fluid limit. It is worth noting that
the discrepancy between Eulerian LES and LFMDF is not related to some incongruity,
since these two models are not fully consistent at the Reynolds-stress level. As suggested
in previous studies [Gicquel 2002], an even better convergence to DNS would be probably
possible with smaller ∆E and much higher N . However, this choice would increase the
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Figure 3.4: Near-wall fluid velocity streaks. Low-speed (high-speed) streaks are rendered
using colored contours of negative (positive) streamwise fluctuating velocity on a horizontal
plane at z+ = 10 from the wall. Top panel refers to the Eulerian LES, performed with
no SGS model for the particles and with Npc = 40; bottom panel refers to the LFMDF
simulation.

computational cost considerably thus making the model not relevant application-wise.

3.5.2 Model assessment with inertial particles

In this section we validate the LFMDF approach for the case of inertial particles via com-
parative assessment against DNS data. In particular, first we exploit DNS to determine
the range of empirical constants appearing in the LFMDF sub-model (a priori assess-
ment). Second, we compare the predictions of the LFMDF-based simulations with the
statistics provided by DNS, which is regarded here as the reference numerical experiment
(a posteriori assessment). In the latter case, comparison is also made with the statistics
provided by LES when no particle SGS model is used, in order to point out the impact
of the proposed stochastic model on statistics. As mentioned, one of the main difficul-
ties of modelling inertial particle dynamics in LES is to capture preferential concentration
[Marchioli 2008a, Marchioli 2008b]. Hence, the primary observable considered for com-
parative assessment is the instantaneous particle number density distribution along the
wall-normal direction, which is a macroscopic manifestation of preferential concentration.
Such comparison is particularly severe since any error associated with the proposed particle
SGS model will inevitably sum up over time and may thus lead to significant deviations
in the final density distribution (we remark here that all LES/LFMDF simulations are
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carried out with a rather large coarsening factor, CF = 8 with respect to DNS).
Figure 3.7 shows the particle number density profiles along the wall-normal coordinate

for different Stokes numbers. Two different formulations of the proposed LFMDF model
are tested: The simplified LFMDF1 formulation, and the complete LFMDF2 formulation
(see Sec. 3.3.4). In both formulations we use C0 = 2.1 , Cε = 1, β = 0.8. The LFMDF1
predictions (dark magenta profiles) deviate substantially from the reference DNS results
(red profiles) for all Stokes numbers: This is due, of course, to the assumption of isotropic
velocity fluctuations on which the LFMDF1 formulation is based. On the other hand, the
LFMDF2 formulation, which has a more complete diffusion term, leads to improved pre-
dictions (black profiles), especially for the two larger Stokes numbers: St = 5, panel (b);
and St = 25, panel (c). Discrepancies, however, are still evident and lead to a significant
over-estimation (under-estimation) of particle accumulation in the viscous sub-layer for the
smaller St = 1 (large St = 25) particles, as shown in Fig. 3.7(a) and in Fig. 3.7(c) respec-
tively. The main reasons are that the present model does not have all the necessary viscous
terms needed to capture properly the flow dynamics in the viscous sublayer [Colucci 1998,
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Figure 3.7: Comparison of particle number density distributions predicted by two different
particle SGS model formulations: Simplified stochastic model (LFMDF1, O) and complete
stochastic model (LFMDF2, 4). See also Sec. 3.3.4. Other symbols: � DNS, ◦ LES
without particle SGS model. Panels: (a) St = 1 particles, (b) St = 5 particles, (c) St = 25

particles. Profiles are computed at t+ = 2130 after particle injection into the flow.

Jaberi 1999, Gicquel 2002, Sheikhi 2003, Sheikhi 2007, Sheikhi 2009, Wacławczyk 2004],
and also that the closure of the LMFDF2 formulation involves two parameters, C0 and Cε,
which are known to be quite sensitive to the characteristic features of both the turbulent
flow and the numerical approach. For instance, turbulent theory gives the value C0 = 2.1

for stochastic models in homogeneous flows [Pope 2000], whereas numerical simulations of
wall-bounded flows in the RANS framework suggest to set C0 = 3.5 [Minier 1999]. Since
we are mostly interested in the near-wall statistics, in the following we shall limit ourselves
to the complete model LFMDF2, and neglect the isotropic LFMDF1 formulation, which
underestimates particle number density in the wall-normal direction and is not sensitive to
the Stokes number (hence it cannot take into account inertial effects on particle dispersion
[Zhao 2012]). Nevertheless, we remark here that the LFMDF1 formulation is much simpler
than the complete model and appears to work reasonably well outside of the viscous sub-
layer in the case of small Stokes numbers. Therefore its use could be considered to study
particle dynamics far from the wall or in unbounded flows (e.g. jets and mixing layers).

In this study, we exploit DNS to obtain a priori estimates of the two model constants.
We remark that our purpose is not to find optimal values for C0 and Cε, but rather to
quantify the sensitivity of the model to a change in the value of these constants. Figure
3.8 shows the number density profiles obtained at varying C0 (while keeping Cε constant
and equal to 1). This figure shows that C0 has a significant influence on particle wall-
normal accumulation only for large-inertia particles (high Stokes numbers), and suggests
that C0 = 3.5 provides the best predictions over the range of Stokes numbers considered
here. This result is in agreement with [Dreeben 1998, Minier 1999]. We performed a similar
analysis to estimate Cε while keeping C0 constant (and equal to 3.5). Results are shown in
Fig. 3.9 and demonstrate that Cε affects particle spatial distribution at all Stokes numbers.
In particular, we observe higher accumulation of particles at the wall for smaller values
of Cε. This finding indicates that the diffusion term is at least as important as the drift
term in the present flow configuration. Based on this comparison, we select Cε = 0.1 to
calibrate the LFMDF model.

A combined analysis of Figs. 3.8 and 3.9 indicates that, regardless of the value con-
sidered for C0 and Cε, the near-wall volume concentration of small inertia particles (rep-
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Figure 3.8: Effect of parameter C0 on particle number density along the wall-normal
coordinate (a-priori estimate). Red symbols (�) refer to the DNS result, all other symbols
refer to LES results obtained with the LFMDF2 model. Panels: (a) St = 1, (b) St = 5,
(c) St = 25. Profiles are computed at t+ = 2130 after particle injection.
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Figure 3.9: Effect of parameter Cε on particle number density along the wall-normal co-
ordinate (a-priori estimate). Red symbols (�) refer to the DNS result, all other symbols
refer to LES results obtained with the LFMDF2 model. Panels: (a) St = 1, (b) St = 5,
(c) St = 25. Profiles are computed at t+ = 2130 after particle injection.

resented by the St = 1 particles in this study) is always overestimated by the LFMDF2
model, whereas the opposite occurred with the LFMDF1 model (see Fig. 3.7a). For such
particles, therefore, the critical modelling issue in order to retrieve the correct physical
behaviour seems to be the closure of the diffusion term. We remark here that particles
with small inertia are subject to a weaker turbophoretic wallward drift and tend to remain
more homogeneously distributed within the flow domain [Soldati 2009, Marchioli 2002].
As a consequence, the instantaneous Eulerian statistics that can be extracted from local
particle ensemble averages may exhibit significant statistical errors in the near-wall region,
where the control volumes to which averaging is applied become smaller and smaller. This
source of error becomes less important as particle inertia increases, namely as particle
accumulation in the near-wall region increases with St.

The key quantity for a correct evaluation of the diffusion term is the kinetic energy
ratio k̂SGS/kSGS . If k̂SGS is computed from Eq. (3.24), which implies Lagrangian ensemble
averaging, then it will be affected by the resulting statistical error. To improve the model,
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Figure 3.10: Comparative assessment of the LFMDF2 model with Eq. (3.41): Predictions
of the instantaneous particle number density at varying Stokes numbers (4) are compared
with DNS results (�) and with LES results with no particle SGS model (◦). Panels: (a)
St = 1, (b) St = 5, (c) St = 25. Profiles are computed at t+ = 2130 after particle injection.

we propose a new formulation to evaluate kSGS , which is slightly different from Eq. (3.23):

kSGS = τ(Us,i, Us,i) =
1

2

3∑

i=1

[
Ũ2
s,i − (Ũs,i)

2
]
. (3.41)

In the limit of Npc →∞, Eq. (3.41) is equivalent to Eq. (3.24), but is expected to decrease
the variance of the model estimations for finite values of Npc at small Stokes numbers. In
the following, results for the St = 1 particles refer to calculations performed using this
new formulation, unless otherwise stated. In particular, Fig. 3.10 shows the comparison
of the LFMDF results for particle number density. For completeness, also the LES results
without particle SGS model are included. The overshoot of particle accumulation at the
wall for St = 1 is strongly reduced with respect to the predictions reported in Figs. 3.8 and
3.9, and there is a nearly perfect match with the DNS profile for the intermediate-inertia
particles (St = 5, Fig. 3.10b). As expected, wall accumulation at large Stokes numbers is
unaffected. We remark that the values of particle number density within a distance of few
wall units from the wall are very noisy even in DNS [Prevel 2013]: This implies that the
only relevant information one can extract from the viscous sublayer portion of the profiles
shown in Fig. 3.10 is just the trend in model performance at varying particle inertia.

To provide a phenomenological perspective to our discussion, we complement the
statistical description of particle wall-normal distribution with the analysis of par-
ticle clustering in the near-wall region. As demonstrated in previous studies (see
[Marchioli 2002, Picciotto 2005, Soldati 2009] and references therein, for a review), the
tendency that inertial particles have to form clusters is crucial to develop peaks of par-
ticle concentration within the flow. Therefore, a reliable particle SGS model should be
able to capture (in a statistical sense) also these phenomena. To perform this analysis,
we quantify particle clusters by means of Voronoï diagrams, which represent an efficient
and robust tool to diagnose and quantify clustering [Monchaux 2010]. One Voronoi cell
is defined as the ensemble of points that are closer to a given particle than to any other
particle in the flow: The area of a Voronoï cell is therefore the inverse of the local particle
number density. In addition Voronoï areas are naturally evaluated around each particle
and, differently from standard box counting methods, provide a direct measure of particle
preferential concentration at inter-particle length scale [Monchaux 2010].
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Figure 3.11: Voronoï tessellation for the St = 5 particles on a wall-parallel fluid slab
(1 ≤ z+ ≤ 5) at time t+ = 2130 after particle injection. Particle clusters are in dark gray,
voids are in light gray. Panels: (top) DNS, (middle) LES with no particle SGS model,
(bottom) LES with the calibrated LMFDF2 model.

An example of Voronoï diagram for the present channel flow configuration is shown in
Fig. 3.11, which focuses on the instantaneous distribution of the St = 5 particles within
a wall-parallel fluid slab of thickness 1 ≤ z+ ≤ 5. Only a portion of the x − y plane
is shown to highlight the presence of the well-known particle streaks. Compared to the
visualisation provided by DNS (Fig. 3.11a), both LES results (with no particle SGS model
in Fig. 3.11(b); with the LMFDF model in Fig. 3.11(c), respectively) show broader particle
streaks and wider inter-cluster spacing. Clusters and voids are identified by comparing the
PDF of Voronoï areas obtained from the simulations to that of a synthetic random Poisson
process, whose shape is well approximated by a Gamma distribution [Monchaux 2010].
This comparison is shown in Fig. 3.12, where the Voronoï areas are normalized using the
average Voronoï area, Ā (equivalent to the inverse of the mean particle number density),
independent of the spatial organization of the particles.

As found previously [Monchaux 2010], in the case of heavy particles, the PDFs clearly
depart from the Poisson distribution, with higher probability of finding depleted regions
(large Voronoï areas) and concentrated regions (small Voronoï areas), a typical signature
of preferential concentration. In the present study, the inclusion of the LMFDF model into
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Figure 3.12: PDF of normalized Voronoï areas (V = A/Ā) of St = 5 particles on a wall-
parallel fluid slab located at distance 1 ≤ z+ ≤ 5 from the wall.

the LES has little effect on the prediction of concentrated regions, and the first cross-over
point, Vc, representing the threshold value below which Voronoï areas are considered to
belong to a cluster, occurs at slightly larger values than in DNS. The model improves
prediction of depleted regions even if the second cross-over point, Vv, representing the
threshold value above which Voronoï areas are considered to belong to a void, is always
well predicted.

To complete the LFMDF model assessment, in Fig. 3.13 we show the statistics of
the root mean square of particle velocity. In particular, we focus on the streamwise and
wall-normal components, which are the most interesting as far as particle wall transport
is concerned. It can be seen that the calibrated LFMDF improves the LES prediction for
all Stokes numbers, with just small (yet persistent) discrepancies for the wall-normal rms
of the St = 1 particles (Fig. 3.13d). This explains the peak of concentration observed for
these particles in the number density statistics.
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Figure 3.13: Comparative assessment of the LFMDF2 model: Prediction of the particle
velocity rms at varying Stokes number (4) are compared with DNS results (——) and
with LES results with no particle SGS model (◦). Panels: (a),(d) St = 1, (b),(e) St = 5,
(c)-(f) St = 25; (a)-(c) streamwise component, (d)-(f) wall-normal component. Statistics
are obtained averaging over a time window ∆t+ = 1800.

3.6 Discussion and conclusions

In this work, we have assessed the performance of a new FDF approach to the simu-
lation of turbulent dispersed flows. The approach is derived from RANS-based models
that have been successfully applied to the simulation of reactive and polydispersed flows
[Pope 2000, Fox 2012, Peirano 2006, Minier 2015b]. We have adopted a Lagrangian Fil-
tered Mass Density Function (LFMDF) model that provides the Lagrangian probability
density function of the SGS particle variables and of the fluid velocity seen by the par-
ticles. Important features of the proposed method are that (1) at variance with reactive
flows, the approach is Lagrangian and (2) a mass density function is considered, as done in
compressible flows. The exact transport equation for the LFMDF has been presented, and
a modeled transport equation for the filtered density function has been considered using
a closure strategy inspired by PDF methods. Specifically, two different formulations have
been proposed, which differ in the treatment of the SGS scales. The simpler formulation,
which assumes isotropic flow conditions, appears to work reasonably well away from the
wall and for small-Stokes-number particles. The complete formulation, which accounts
for flow anisotropy, works better close to the wall and with intermediate- to large-Stokes-
number particles.

The modeled LFMDF transport equation has been solved numerically using a La-
grangian Monte Carlo scheme and considering a set of equivalent stochastic differential
equations. These equations have been discretized with an unconditionally-stable numerical
scheme based on the analytical solution that the equations admit with constant coefficients.
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This scheme is the natural extension of the one developed in the context of RANS simu-
lations and is the key ingredient for the treatment of multi-scale problems. A turbulent
channel flow at shear Reynolds number Reτ = 300 based on the channel half height has
been simulated and the results yield by the LFMDF method in conjunction with LES have
been compared with those provided by large-eddy simulations in which no SGS model is
included in the particle equations. To provide a numerical experiment as reference, results
from DNS of the same flow configuration have been considered as well. It is important to
remark here that Reynolds number effects on the considered statistics are expected to be
marginal up to Reτ ' 900 [Geurts 2012], so that present results can be considered reliable
below such threshold value.

The convergence of the Monte Carlo simulations and the consistency of the LFMDF
formulation in the fluid-tracer limit have been assessed by comparing particle number
density and low-order velocity moments with those obtained from in the purely Eulerian
framework. The good agreement of duplicate (Eulerian and Lagrangian) fields demon-
strates that the model can safely be applied in the case of particles with small or negligible
inertia. We were also able to quantify the effect that the number of particles needed to
compute the statistical observables of interest (especially the number density distribution)
may have.

The a priori assessment made against DNS allowed us to calibrate the values of the
model coefficients for the specific channel flow parameters considered in the present study.
Even without dynamic calibration of the coefficients, the a posteriori assessment made
against DNS and no-model LES show improved predictions of particle statistics (e.g. par-
ticle number density along the wall-normal coordinate and particle velocity fluctuations),
especially at intermediate Stokes numbers. In spite of this, however, it should be noted
that the LFMDF is a purely statistical method, and therefore can not recover much as far
as turbulent coherent structures are concerned.

In our opinion, the LFMDF formulation considered in this paper provides a rigorous
and physically-sound approach to the large-eddy simulation of turbulent dispersed flows.
Compared to the existing stochastic models, it offers a sound theoretical framework in
which the basic exact equations for the particle phase are approximated by Lagrangian
closures without requiring ad-hoc term. In particular, the approach ensures consistency
(up to second-order) among the moments extracted from the stochastic particle system in
the tracer-particle limit, a property that not all stochastic models and heuristic approaches
possess. Moments consistency in the tracer limit is one of the requirements set forth in
the recent analysis of the formulation of stochastic models for single- and two-phase flows
[Minier 2014]. Compared to structural subgrid scale models for particles, the main ad-
vantage of the LFMDF approach is its ability to provide reasonably accurate predictions
regardless of the grid coarseness and of the flow Reynolds number: approximate decon-
volution is known to worsen its performance on coarse grids at high Reynolds numbers,
when the range of unresolved scales that cannot be reconstructed by deconvolution widens
[Gobert 2010]; fractal interpolation is inaccurate at low Reynolds numbers, when the fluid
velocity changes relatively smoothly in the domain and therefore interpolation becomes
inefficient since there is no fractal form to be copied [Marchioli 2008a]. The discretized
equations of the LFMDF model are also very easy to code and require incremental com-
putational costs compared to LES with no SGS model. While we believe it should be used
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as the natural framework to develop Lagrangian sub-grid models for the dispersed phase,
we are also aware that there is room for further improving the quality and predictive ca-
pabilities of the model. A first step would be the development of a dynamic procedure to
determine the optimal values of the model coefficients, possibly as a function of the par-
ticle Stokes number. Another improvement could be represented by the implementation
of higher order closures in the Langevin equation for the fluid velocity seen by the parti-
cles. Finally, it would be very useful to implement low-Re corrections to better capture
the near-wall behaviour of the statistics: This should improve the model predictions at
relatively low particle inertia (e.g. St = 1 in the present study).
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3.A Weak first-order Numerical scheme

The analytical solution to the Eqns. (3.25)-(3.27) can be obtained with constant coef-
ficients, resorting to Itô’s calculus in combination with the method of the variation of
constants. Let us consider the fluid velocity seen by the particles, for instance. One
seeks a solution of the form Us,i(t) = Hi(t) exp(−t/Ti), where Hi(t) is a stochastic process
defined by (indicating T ∗L,i with Ti for ease of notation):

dHi(t) = exp(t/Ti)[Ci dt+ B̌i dWi(t)], (3.42)

that is, by integration on a time interval [t0, t] (∆t = t− t0),

Us,i(t) = Us,i(t0) exp(−∆t/Ti) + Ci Ti [1− exp(−∆t/Ti)] (3.43)

+B̌i exp(−t/Ti)
∫ t

t0

exp(s/Ti) dWi(s), (3.44)

where B̌i = Bii since Bij is a diagonal matrix. The derivation of the weak first-order
scheme is now rather straightforward since the analytical solutions to Eqns. (3.25)-(3.27)
with constant coefficients have been already calculated. Indeed, the Euler scheme (which is
a weak scheme of order 1) is simply obtained by freezing the coefficients at the beginning
of the time interval ∆t = [tn, tn+1]. Let Zni and Zn+1

i be the approximated values of
Zi(t) at time tn and tn+1, respectively. The Euler scheme is then simply written by using
the expression reported in Table 5.3 and expressing the stochastic integrals through the
Choleski algorithm, as reported in Table 3.5. The second-order scheme is based on a
prediction-correction algorithm, in which the prediction step is the first-order scheme of
equations (3.35)-(3.37) and the corrector step is generated by a Taylor expansion under
the assumption that the acceleration terms vary linearly with time [Peirano 2006].
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Table 3.4: Analytical solutions to system (3.27) for time-independent coefficients.

xp,i(t) = xp,i(t0) + Up,i(t0)τp[1− exp(−∆t/τp)] + Us,i(t0) θi{Ti[1− exp(−∆t/Ti)]

+ τp[exp(−∆t/τp)− 1]}+ [Ci Ti]{∆t− τp[1− exp(−∆t/τp)]− θi(Ti[1− exp(−∆t/Ti)]

+ τp[exp(−∆t/τp)− 1])}+ Ωi(t) (3.45)

with θi = Ti/(Ti − τp)
Up,i(t) = Up,i(t0) exp(−∆t/τp) + Us,i(t0) θi[exp(−∆t/Ti)− exp(−∆t/τp)]

+ [Ci Ti]{[1− exp(−∆t/τp)]− θi[exp(−∆t/Ti)− exp(−∆t/τp)]}+ Γi(t) (3.46)

Us,i(t) = Us,i(t0) exp(−∆t/Ti) + Ci Ti[1− exp(−∆t/Ti)] + γi(t) (3.47)

The stochastic integrals γi(t), Γi(t), Ωi(t) are given by:

γi(t) = B̌i exp(−t/Ti)
∫ t

t0

exp(s/Ti) dWi(s), (3.48)

Γi(t) =
1

τp
exp(−t/τp)

∫ t

t0

exp(s/τp) γi(s) ds, (3.49)

Ωi(t) =

∫ t

t0

Γi(s) ds. (3.50)

By resorting to stochastic integration by parts, γi(t), Γi(t), Ωi(t) can be written:

γi(t) = B̌i exp(−t/Ti) I1,i, (3.51)

Γi(t) = θi B̌i [exp(−t/Ti) I1,i − exp(−t/τp) I2,i], (3.52)

Ωi(t) = θi B̌i {(Ti − τp) I3,i − [Ti exp(−t/Ti) I1,i − τp exp(−t/τp) I2,i]}, (3.53)

with I1,i =

∫ t

t0

exp(s/Ti) dWi(s), I2,i =

∫ t

t0

exp(s/τp) dWi(s), I3,i =

∫ t

t0

dWi(s).
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Table 3.5: Derivation of the covariance matrix for constant coefficients.

〈γ2
i (t)〉 = B̌2

i

Ti
2

[1− exp(−2∆t/Ti)] where B̌2
i = B2

ii (3.54)

〈Γ2
i (t)〉 = B̌2

i θ
2
i

{
Ti
2

[1− exp(−2∆t/Ti)]−
2τpTi
Ti + τp

[1− exp(−∆t/Ti) exp(−∆t/τp)]

+
τp
2

[1− exp(−2∆t/τp)]
}

(3.55)

1

B̌2
i θ

2
i

〈Ω2
i (t)〉 = (Ti − τp)2∆t+

T 3
i

2
[1− exp(−2∆t/Ti)] +

τ3
p

2
[1− exp(−2∆t/τp)]

− 2T 2
i (Ti − τp)[1− exp(−∆t/Ti)] + 2τ2

p (Ti − τp)[1− exp(−∆t/τp)]

− 2
T 2
i τ

2
p

Ti + τp
[1− exp(−∆t/Ti) exp(−∆t/τp)] (3.56)

〈γi(t) Γi(t)〉 = B̌2
i θi Ti

{
1

2
[1− exp(−2∆t/Ti)]−

τp
Ti + τp

[1− exp(−∆t/Ti) exp(−∆t/τp)]

}

〈γi(t) Ωi(t)〉 = B̌2
i θi Ti

{
(Ti − τp)[1− exp(−∆t/Ti)]−

Ti
2

[1− exp(−2∆t/Ti)]

+
τ2
p

Ti + τp
[1− exp(−∆t/Ti) exp(−∆t/τp)]

}
(3.57)

1

B̌2
i θ

2
i

〈Γi(t) Ωi(t)〉 = (Ti − τp){Ti[1− exp(−∆t/Ti)]− τp[1− exp(−∆t/τp)]}

− T 2
i

2
[1− exp(−2∆t/Ti)]−

τ2
p

2
[1− exp(−2∆t/τp)]

+ Tiτp [1− exp(−∆t/Ti) exp(−∆t/τp)] (3.58)

The stochastic integrals γni , Ωn
i , Γni are simulated by:

γni = P i11 G1,i,

Ωn
i = P i21 G1,i + P i22 G2,i

Γni = P i31 G1,i + P i32 G2,i + P i33 G3,i,

where G1,i, G2,i, G3,i are independent N (0, 1) random variables.

The coefficients P i11, P
i
21, P

i
22, P

i
31, P

i
32, P

i
33 are defined as:

P i11 =
√
〈(γni )2〉,

P i21 =
〈Ωn

i γ
n
i 〉√

〈(γni )2〉
, P i22 =

√
〈(Ωn

i )2〉 − 〈Ω
n
i γ

n
i 〉2

〈(γni )2〉 ,

P i31 =
〈Γni γni 〉√
〈(γni )2〉

, P i32 =
1

P i22

(〈Ωn
i Γni 〉 − P i21P

i
31), P i33 =

√
〈(Γni )2〉 − (P i31)2 − (P i32)2).
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In this chapter we have faced the problem of dense fluid-particle flows in homoge-
neous flow conditions. The work is under revision for publication on the Journal of
Fluid Mechanics. Initially it was conceived in two parts: part (i) was about the model
derivation (arXiv:1803.00251), while part (ii) proposed several homogenous applications
(arXiv:1803.00318). Under the review process it has been merged in a single paper,
shortening some parts to make it more readable. Therefore we propose here the work as-is
in the actual revised form, and we will add more details on the part of model derivations
at the end of the chapter.

As it was shown in the previous chapter particles tend to cluster when they are im-
mersed in a turbulent flow and thus regions with high concentrations, where two-way
coupling becomes important, might arise. More simply, in some cases, the coupling can be
important just because the initial particle concentration is high, yet uniform. To address
the coupling regime we have proposed a stochastic particle model based on the RANS/PDF
formalism.

The objective was to try to recreate a homogeneous cluster-induced-turbulence, where,
starting from rest, particles start to fall under the effect of gravity and induce turbulence
in the carrier phase. This effect however can be seen only if the particle mass loading is
high enough, resulting in a moderately dense regime, where also inter-particle collisions
might play an important role.

Hence, we have proposed a stochastic model that separate the particle velocity into a
correlated and an uncorrelated in space component, which are treated as two separate pro-
cesses. In this way collisions can be correctly taken into account in the non correlated part

arXiv:1803.00251
arXiv:1803.00318
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and it is also possible to identify different Lagrangian time scales for the two components,
which are important to identify the correct rate of energy transfer from the correlated to the
uncorrelated part, and to couple the fluid and particle phases. Moreover, we have shown
that the model is fully consistent, in a statistical sense, to the hydrodynamic description
proposed by [Capecelatro 2015]. Overall the model has provided excellent results in the
CIT case, compared to DNS, and has proved to be consistent also at lower mass loadings,
below the collisional regime but where particle-turbulence modulation is still present.

Beside this, we have also proposed a compact form of the model without the velocity
decomposition but still with two-way coupling, and we have shown that, thanks to some
improvements with respect to existing models, it is able to trigger the instability which
leads to the generation of turbulence. However only a qualitative agreement with the DNS
can be reached. This has proven the idea behind this part of work, that was to see if a
simple stochastic model for particle-laden flows with two-way coupling, was or not a good
candidate to reproduce the phenomenon of turbulence generation by a dispersed phase.

A key point in both models, that was not present in stochastic models for dilute flows,
is the possibility to predict a drift velocity ud = 〈Us〉−〈Uf 〉, (where Us is the fluid velocity
seen by the particles) which is necessary in order to have a production of energy in the
fluid due to the particle-phase, and which is therefore fundamental to reproduce CIT.
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Abstract: Inertial particles in turbulent flows are characterised by preferential con-
centration and segregation and, at sufficient mass loading, dense particle clusters may
spontaneously arise due to momentum coupling between the phases. These clusters, in
turn, can generate and sustain turbulence in the fluid phase, which we refer to as cluster-
induced turbulence (CIT). In the present work, we tackle the problem of developing a
framework for the stochastic modelling of moderately dense particle-laden flows, based on
a Lagrangian probability-density-function formalism. This framework includes the Eule-
rian approach, and hence can be useful also for the development of two-fluid models. A
rigorous formalism and a general model have been put forward focusing, in particular,
on the two ingredients that are key in moderately dense flows, namely, two-way coupling
in the carrier phase, and the decomposition of the particle-phase velocity into its spa-
tially correlated and uncorrelated components. Specifically, this last contribution allows
to identify in the stochastic model the contributions due to the correlated fluctuating en-
ergy and to the granular temperature of the particle phase, which determines the time
scale for particle–particle collisions. The model is then validated and assessed against
direct-numerical-simulation data for homogeneous configurations of increasing difficulty:
(i) homogeneous isotropic turbulence, (ii) decaying and shear turbulence, and (iii) CIT.

4.1 Introduction

Particle-laden flows represent an important class of natural and industrial flows
[Crowe 2011]. In many applications, these flows are heavily loaded with particles
[Stickel 2005, Forterre 2008, Guazzelli 2011] and are often turbulent [Balachandar 2010].
Given the complexity of the physical phenomena involved in such flows, they remain rela-
tively poorly understood and, notably, the formulation of physically sound reduced models
is mandatory for practical purposes. To guide this development it is very useful to dis-
entangle the different physical mechanisms at play, and in particular to understand how
to cope with the effect of increasing the particle mass loading and the consequent grow-
ing importance of collisions and two-way coupling. Indeed, the back reaction exerted by
the particles on the fluid gives rise to an extra complexity in modelling [Elghobashi 1994].
The understanding of the mechanisms at play, even at a purely qualitative level, is an
important subject of research for developing efficient models of relevance to applications
[Post 2002, Jenny 2012, Gualtieri 2017]. Unfortunately, it is hard to find clear-cut frontiers
between the different regimes [Elghobashi 1992], and thus some heuristic considerations are
always needed.

Generally speaking, two classes of probability-density-function (pdf) modelling ap-
proaches can be chosen for turbulent flows, namely, Eulerian and Lagrangian [Pope 2000].
When the flow is dilute or moderately dense, the Lagrangian pdf approach is mature
[Minier 2014] and has the desirable features detailed below [Peirano 2006]. On the other
hand, when the volume occupied by the particles is relatively large, collisions are com-
pletely dominant, the matter becomes granular, turbulence is absent (or has no effect on
the particles) and a hydrodynamic approach is often natural [Puglisi 2014]. We consider in
this work the intermediate regime of moderately dense turbulent flows, which is less clear.

From a historical perspective, turbulence models for dense flows have been developed
in an Eulerian pdf framework on a purely heuristic grounds in analogy with single-phase
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models [Elghobashi 1983, Viollet 1994]. Only recently, it has been shown that most of
those models suffer from some drawbacks and a more rigorous approach has been fol-
lowed to formulate a complete Reynolds-stress model [Fox 2014]. From a modelling point
of view, the key, but often overlooked, point for the modelling of turbulent dense flows
seems to be the separation between the spatially correlated part, contributing to the tur-
bulent kinetic energy, and the uncorrelated part, responsible for the granular temperature
[Dasgupta 1994, Février 2005]. This decomposition is motivated by several works in the
literature [Capecelatro 2015, Capecelatro 2016b] which pointed out that it leads to a clear
distinction between the particle turbulent kinetic energy, related to the spatially correlated
part, and the granular temperature due to the uncorrelated part. These two quantities are
driven by different mechanisms and therefore need to be modelled separately in moder-
ately dense flows [Capecelatro 2015]. In particular, owing to the fact that particle–particle
collisions are driven by the spatially uncorrelated velocity component, this decomposition
is thought to be crucial for collisional flows. Based upon this decomposition, we have de-
veloped in the present work a Lagrangian pdf approach, which leads to a stochastic model
for the particle phase, that has to be coupled with a consistent Reynolds-stress model for
the fluid.

There were several motivations for choosing a Lagrangian pdf approach: (i) it is
more intuitive for particle-laden flows and therefore relevant; (ii) some specific issues are
particularly arduous to tackle in the Eulerian pdf approach, requiring the Lagrangian
one, namely, local but nonlinear phenomenon like polydispersity and chemical reactions
[Pope 2000, Fox 2003]; (iii) the Lagrangian pdf approach provides more detailed informa-
tion, in particular the velocity of the fluid seen by particles is available whereas it is not in
Eulerian pdf models; moreover, it is possible to capture the crossing-trajectory effect due
to the mean drift of particles due to the spatial variation of fluid velocity [Minier 2001];
(iv) the possibility to test different models will provide insights into the role of each term,
notably the granular energy, in the development of the particle and fluid turbulence; (v)
it is quite difficult to propose sound and realisable Eulerian moment equations for the
particle phase, wherein many terms appear unclosed. The development of the Lagrangian
pdf approach also helps to derive consistent Eulerian pdf models, which cannot be derived
in other ways.

More specifically, in this work, we test two Lagrangian pdf models describing the parti-
cle phase, coupled with Reynolds-average Eulerian equations for the fluid phase. The first
model is based on the velocity partitioning between correlated and uncorrelated compo-
nents. The second one is a simplified version, where only the total particle velocity, derived
as the sum of the two components, is resolved, leading to the lack of distinction between
the particle turbulent kinetic energy and the granular temperature. We focus here on sta-
tistically homogeneous turbulence. In particular, the goal of the paper is to understand if
the pdf models are able to deal with the momentum and energy exchange between phases,
and the particle concentration fluctuations. These ingredients are essential in all mod-
erately dense particle-laden flows, and therefore it is important to use the homogeneous
cases in order to isolate their modelling from other complex features present in inhomoge-
neous configurations (e.g. spatial fluxes). In particular, we are interested in cluster-induced
turbulence (CIT), which occurs in fluid–particle flows when (i) the mean mass loading ϕ,
defined by the ratio of the specific masses of the particle and fluid phases, is of order one or



4.1. Introduction 63

larger; and (ii) the difference between the mean phase velocities is non-zero. Interestingly,
in statistically stationary flows, fluctuations in particle concentration can generate and
sustain fluid-phase turbulence, which we refer to as fully developed CIT. Given that the
density ratio ρp

ρf
is very large in gas–particle flows, CIT is ubiquitous in practical engineer-

ing and environmental flows when body forces or inlet conditions generate a mean velocity
difference, such as the gravity-driven flows studied herein. Some fundamental properties
of such flows has been recently studied via Eulerian–Lagrangian numerical simulations
[Capecelatro 2014, Capecelatro 2015], which will be used for comparison. Notably, the use
of models can be relevant to emphasise the mechanisms underlying the volume-fraction
fluctuations.

From a physical point of view, we want to assess the pdf models with respect to their
ability to reproduce the statistical features of both the particle and fluid phases at high
mass loading. It is well known that turbulent particle-laden flows in the dilute limit,
where the fluid-phase turbulence interacts with inertial particles without significant feed-
back from the particles, display a preferential concentration of particles in certain regions
[Balkovsky 2001, Balachandar 2010]. In particular, it is well established that dilute suspen-
sions of heavy particles in isotropic turbulence will preferentially concentrate in regions of
high strain rate and low vorticity [Eaton 1994]. When two-way coupling between the phases
is non-negligible, additional effects may be responsible for enhancing the settling rate and
spatial segregation of the particles. Among the possible effects, it is worth mentioning
the enhancement of particle settling velocity with increasing volume fraction [Bosse 2006],
and the creation of strong anisotropy due to the crossing-trajectory effect [Ferrante 2003]
causing also a drag reduction. However, even more impressive is the situation at higher
mass loading, where the fluctuating segregation of particles, together with collisions, have
been found to create large clusters that induce turbulence in a fluid otherwise at rest
[Glasser 1998, Capecelatro 2015], giving rise to CIT. Notably, in gravity-driven CIT, par-
ticles accumulate in regions of low vorticity, as is seen in classical preferential concentration
of low-mass-loading suspensions. However, in CIT the vorticity is generated in shear layers
between clusters, unlike in classical preferential concentration, where vorticity would exist
even in the absence of the disperse phase.

The goal of the present work is precisely to understand whether the proposed pdf
models are capable of reproducing quantitatively the phenomena observed in homogeneous
particle-laden flows, and also to determine which elements are necessary to trigger the
instability leading to CIT.

The paper is organised as follows. In §4.2 we derive the exact Lagrangian pdf equations,
which are the starting point to build the pdf model. In §4.3 the Lagrangian pdf model for
the particle phase is presented, followed in §4.4 by the one for the fluid velocity seen by
particles, and in §4.5 the Eulerian Reynolds-average (RA) model for the fluid phase. Then,
in §4.6 RA equations corresponding to the Lagrangian pdf model and in §4.7 the complete
set of fluid- and particle-phase RA equations are specified for the statistically homogeneous
case. In §4.8, the models are applied to increasingly more complex particle-laden flows and
the results compared to data from the literature, and finally in §4.9, conclusions are drawn
concerning the relative merits of the proposed pdf models, along with a discussion of future
challenges to be faced with applying them to spatially inhomogeneous flows.
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4.2 Rationale for the model construction

When dealing with fluid–particle flows, several levels of description are possible, depend-
ing on the amount of information we retain and on the accuracy we are willing to ac-
cept. A direct-numerical simulation (DNS) of the Navier–Stokes (NS) equations where the
fluid phase is completely resolved around particles, along with the application of no-slip
boundary conditions on the particle surface, is what we refer to as the microscopic de-
scription [Ten Cate 2004, Chouippe 2015, Picano 2015, Tanaka 2017]. It implies a large
amount of information to be handled, since we need a sufficient number of points per
particle diameter to describe accurately particle geometry and fluid–particle interactions.
Therefore the number of resolved particles is generally limited because of the high com-
putational demand, and this level of description is often unnecessary since particles are
small enough to justify a point-wise approximation [Gatignol 1983, Maxey 1983], even
though finite-size effects are important for small systems [Pedley 1992], and larger parti-
cles [Picano 2013, Mehrabadi 2018].

Adopting a Lagrangian point of view, small particles with a high particle–fluid density
ratio, ρp/ρf � 1, can be treated as point particles, where the equation of motion for a
particle (k) reduces to:

dV
(k)
p

dt
=

Uf (xp)−V
(k)
p

τp
+ g + A(k)

c (4.1)

where Uf (xp) is the fluid velocity at the particle position, g is gravity acceleration, Ac is
the acceleration term due to collisions, and τp is the particle relaxation time

τp =
ρpd

2
p

18ρfνf
. (4.2)

Instead of building a pdf model directly on (4.1), we propose to do an intermedi-
ate step where we apply a Lagrangian coarse-graining operator, fL(x(k)(t),Vp, t), to
(4.1). This function is the Lagrangian pdf counterpart of the kinetic approach devel-
oped for rapid granular flows animated by elastic or inelastic collisions [Jenkins 1983,
Brey 1998, Brilliantov 2010], and used in the Eulerian pdf description of turbulent flows
[Capecelatro 2015]. Therefore, this procedure allows to find a Lagrangian pdf level of de-
scription. In particular, this operator is a local average and yields a decomposition of the
particle velocity into a spatially correlated component and an uncorrelated one, as initially
introduced by [Février 2005] in the dilute case. Moreover the coarse-graining operator has
the following properties: (i) the residual part has zero mean; (ii) the residual part is un-
correlated with the filtered part. With this definition, we have that the hydrodynamic or
correlated component is

Ṽp(x
(k)(t), t) =

∫
Vpf

L(x(k)(t),Vp, t) dVp, (4.3)

and the complete velocity is given by

V(k)
p = Ṽp(x

(k)(t), t) + δV(k)
p (4.4)

where we have indicated the coarse-grained quantities with the tilde symbol ˜ . It
is interesting to remark that this coarse graining shares some similarity with a recent
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Lagrangian pdf large-eddy simulation filtering formalism applied to particle-laden flows
[Innocenti 2016].

We can now apply the coarse-graining operator to (4.1), neglecting for the moment the
effect of collisions:

d̃Vp,i
dt

=
∂Ṽp,i
∂t

+ Ṽp,j
∂Ṽp,i
∂xj

+
∂ ˜δVp,iδVp,j

∂xj
=
Ũf,i − Ṽp,i

τp
+ gi. (4.5)

The Lagrangian transport equation of Ṽp,i can therefore be expressed as

dṼp,i
dt

=
∂Ṽp,i
∂t

+ Vp,j
∂Ṽp,i
∂xj

=
∂Ṽp,i
∂t

+ Ṽp,j
∂Ṽp,i
∂xj

+ δVp,j
∂Ṽp,i
∂xj

=
Ũf,i − Ṽp,i

τp
+ gi −

∂ ˜δVp,iδVp,j
∂xj

+ δVp,j
∂Ṽp,i
∂xj

. (4.6)

On the other hand, it is also possible to explicitly express the residual part, since its
material derivative is given by

dδVp,i
dt

=
d(Vp,i − Ṽp,i)

dt

=
Ũf,i − Vp,i

τp
+ gi −

Ũf,i − Ṽp,i
τp

− gi +
∂ ˜δVp,iδVp,j

∂xj
− δVp,j

∂Ṽp,i
∂xj

= −δVp,i
τp

+
∂ ˜δVp,iδVp,j

∂xj
− δVp,j

∂Ṽp,i
∂xj

. (4.7)

Multiplying (4.7) by δVp,j and summing with its transpose term, the Lagrangian transport
equation for the uncorrelated energy tensor, i.e. the particle-phase pressure tensor, can be
obtained:

d(δVp,iδVp,j) = −2
δVp,iδVp,j

τp
dt− δVp,iδVp,k

∂Ṽp,j
∂xk

dt− δVp,jδVp,k
∂Ṽp,i
∂xk

dt

+ δVp,i
∂ ˜δVp,jδVp,k

∂xk
dt+ δVp,j

∂ ˜δVp,iδVp,k
∂xk

dt. (4.8)

Following this decomposition, we can thus define two different Lagrangian stochastic pro-
cesses, one for the coarse-grained particle velocity and one for the residual component:





dṼp,i =
Ũf,i − Ṽp,i

τp
dt+ gidt−

∂ ˜δVp,iδVp,k
∂xk

dt+ δVp,k
∂Ṽp,i
∂xk

dt

dδVp,i = −δVp,i
τp

dt+
∂ ˜δVp,iδVp,k

∂xk
dt− δVp,k

∂Ṽp,i
∂xk

dt

(4.9)

These equations are the Lagrangian pdf counterpart of the Eulerian equations of
[Jenkins 1983] and [Capecelatro 2015] and we will refer to them as Lagrangian pdf equa-
tions.
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It is important to underline that this picture is valid for a given fluid realisation. For
laminar flows, which are not sensitive to initial and boundary conditions, the flow is always
the same, independent from the realisation, given the geometry and the initial state. For
turbulent flows, the situation is more complicated and, because of the inevitable presence
of small perturbations, the instantaneous field changes at each realisation. Therefore if
one performs averages of the relevant observables over different realisations, the statistical
quantities obtained are the Reynolds-averaged (RA) ones. In particular, the RA transport
equations obtained from (4.9) (reported in appendix 4.A), are not closed and cannot be
used without a modelling step. Instead of modelling directly the RA equations, as done
for instance by [Capecelatro 2016b], we model here the Lagrangian pdf equations through
a stochastic approach in order to retrieve the correct terms in an average sense.

4.3 Lagrangian pdf model for the particle phase

To clearly explain the derivation of the pdf model, we need to introduce some concepts
related to the averaging procedure. Keeping in mind the definition of a phase-average (PA)
[Capecelatro 2015], where a quantity is weighted with the volume fraction when averaging,
we recall that the RA of a Lagrangian quantity is also a PA, since we are implicitly
weighting with the phase volume fraction. In particular, if we indicate the average with
brackets 〈·〉, we will have for the fluid phase 〈(·)〉f = 〈αf (·)〉/〈αf 〉 and for the particle phase
〈(·)〉p = 〈αp(·)〉/〈αp〉, where 〈αp〉 and 〈αf 〉 = 1 − 〈αp〉 are respectively the particle-phase
and the fluid-phase volume fractions. To simplify the notation we will drop the subscript
indicating the phase, except when doing cross averages, as for instance a fluid quantity
weighted with the particle volume fraction.

From the definition of the coarse-graining operator given in §4.2, we have that

〈Ṽp〉 = 〈Vp〉, 〈δVp〉 = 0. (4.10)

The total particle-phase fluctuating energy is defined by

κp =
1

2
〈vp · vp〉 (4.11)

where vp = Vp − 〈Vp〉 is the total fluctuation in the particle velocity, which can also be
expressed as the sum of two contributions: the fluctuation of the coarse-grained, correlated
part, ṽp = Ṽp − 〈Ṽp〉, and the uncorrelated part, δVp. By means of this decomposition,
the total particle-phase fluctuating energy can, in turn, be split in two contributions, the
turbulent particle-phase kinetic energy and the granular temperature:

κp = kp +
3

2
〈Θp〉 (4.12)

where
kp =

1

2
〈ṽp · ṽp〉 〈Θ〉p =

1

3
〈 ˜δVp · δVp〉. (4.13)

The granular temperature can equally be found from the trace of the particle-phase pressure
tensor

〈P〉 = 〈 ˜δVp ⊗ δVp〉. (4.14)
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The distinction between kp and 〈Θp〉, as already said, is crucial in turbulence modelling
of multiphase flows because, for example, they have different boundary conditions and the
particle–particle collision frequency depends on Θp [Capecelatro 2016b].

4.3.1 Modelled equations

To distinguish modelled terms from exact ones, we will call Up the model for Ṽp, and
δvp the model for δVp. It is worth recalling that Up and δvp are two stochastic processes
modelling the particle total velocity, and therefore they are both advected by it, i.e., by
Vp = Up + δvp.

Keeping in mind (4.9), the principle that drives the modelling is to retain the closed
terms (drag force), which can be expressed exactly, while the transport terms, which involve
spatial gradients (last two terms in (4.9)) are split in a mean part and a fluctuation.
The mean part, being available from Lagrangian averages, is plugged in the model, while
fluctuations are modelled through white noises and drift terms. Those terms have been
constructed in order to give the correct RA equations when compared to the exact ones
in appendix 4.A. We recall that RA quantities can be found as statistical moments of the
underlying pdf.

The proposed stochastic model for the particle phase reads

d xp,i =Vp,i dt = (Up,i + δvp,i) dt, (4.15)

dUp,i =
Us,i − Up,i

τp
dt+ gi dt−

1

〈αp〉ρp
∂〈αp〉ρp〈Pij〉

∂xj
+ δvp,j

∂〈Up,i〉
∂xj

dt

− 1

TLp
(Up,i − 〈Up,i〉) dt+

√
Cpεp dWp,i, (4.16)

d δvp,i =− δvp,i
τp

dt+
1

〈αp〉ρp
∂〈αp〉ρp〈Pij〉

∂xj
− δvp,j

∂〈Up,i〉
∂xj

dt+Bδ,ij dWδ,j

− (1 + e)(3− e)
4τc

δvp,i dt+

√
1

2τc
(1 + e)2〈Θp〉 dWc,i. (4.17)

The first term of the RHS of (4.16) is the drag force related to the correlated part of the
particle velocity, in which Us stands for the model for Ũf , the fluid velocity seen by the
particle (whose expression will be given in the following) and τp the particle relaxation time.
The second term is the effect of gravity, g, while the third is a pressure term, in which ρp
is the particle density, αp the particle-phase volume fraction and 〈Pij〉 = 〈δvp,iδvp,j〉 is the
particle-phase pressure tensor. The fourth and fifth terms are production and relaxation,
respectively, in which TLp is the particle Lagrangian time scale defined by:

TLp =

(
1

2
+

3

4
C0p +

fs
2

)−1 kp
εp

, (4.18)

where kp = 1
2〈up ·up〉 is the particle-phase turbulent kinetic energy with up = Up−〈Up〉, εp

represents the particle-phase dissipation, to be specified shortly, and C0p is a free parameter
equivalent to C0 for the fluid Lagrangian time [Pope 2000]. Finally, the last contribution
is a diffusion term, in which Cp is a model constant to be a priori assigned and dWp,i is
a Wiener stochastic process [Gardiner 1990]. The constant Cp in the diffusion coefficient
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of (4.16) is related to the Lagrangian timescale to obtain a redistribution tensor and a
dissipation tensor, by the relation

Cp = C0p +
2

3
fs. (4.19)

The parameter fs is introduced to account for anisotropy in the particle-phase dissipation
tensor [Capecelatro 2016b], which is needed to predict the anisotropy of the particle-phase
pressure tensor 〈P〉. The last two terms in (4.16) in particular, are those used to model un-
closed fluctuations in (4.9) and they give at the RA level a redistribution and a dissipation
term (εp) in the equation of the particle Reynolds-stresses.

The first four terms in the RHS of (4.17) are analogous to the ones in (4.16). However, in
order to obtain the correct averaged equations, we have had to break the original symmetry
of the two parts. In particular, while the averaged terms are the same for the correlated and
uncorrelated parts, the fluctuating ones cannot be. In the model for the fluctuations, dWδ

is a Wiener process and Bδ is a diffusion matrix, whose expression is given in the following.
The last two terms take into account collisions; e is a restitution coefficient, to be a priori
specified, dWc,i is another Wiener process uncorrelated with dWδ,i, since they represent
different physics, and 〈Θp〉 is the granular temperature, defined as 〈Θp〉 = 1

3〈δvp · δvp〉.
Finally, τc is a characteristic time for collisions, having the following expression:

τc =

√
πdp

6Cc〈αp〉〈Θp〉1/2
, (4.20)

dp being the particle diameter and Cc a model parameter [Capecelatro 2016b]. This
Lagrangian model for collisions gives, at the RA level, the same model as in
[Capecelatro 2016b]. This collision model is applicable to rapid granular flows that can
be modelled by the Boltzmann equation with inelastic hard-sphere collisions, i.e., the col-
lisional and frictional contributions are not accounted for in the particle-phase pressure
tensor.

When the correlation 〈δvp,iδvp,j〉 is evaluated, the diffusion matrix Bδ must give the
particle-phase Reynolds-stress multiplied by the proper coefficient added to a diagonal
isotropic part. Using the Choleski decomposition (see appendix 4.B) we obtain:

Bδ,11 =

(
fs
εp
kp
〈up,1up,1〉+ (1− fs)

2

3
εp

)1/2

,

Bδ,i1 =
1

Bδ,11

(
fs
εp
kp
〈up,iup,1〉

)
, 1 < i ≤ 3

Bδ,ii =


fs

εp
kp
〈up,iup,i〉+ (1− fs)

2

3
εp −

i−1∑

j=1

B2
δ,ij




1/2

, 1 < i ≤ 3

Bδ,ij =
1

Bδ,jj

(
fs
εp
kp
〈up,iup,j〉 −

j−1∑

k=1

Bδ,ikBδ,jk

)
, 1 < j < i ≤ 3

Bδ,ij = 0, i < j ≤ 3 (4.21)

where repeated indices do not imply summation.
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As in Lagrangian pdf methods for single-phase flows [Pope 2000], it should be borne
in mind that such a model is intended to represent the pdf, or the statistical moments,
associated with the particle phase, and not the instantaneous particle dynamics, which is
“fictitious”.

4.4 Lagrangian pdf model for the fluid seen by particles

The equation for the particle velocity (4.16) contains the velocity of the fluid at the position
of the particle, or the fluid seen by particles. Since in RANS simulations we have no access
to this quantity, nor to its average, a model for it has to be specified. Furthermore, given
that we are considering flow with two-way coupling, this effect has to be included also in
the fluid-phase equation. We develop in this section a new stochastic model for Us, which
will be a Langevin equation of the type

dUs,i = [As,i +Ap→s,i] dt+Bs,ij dWs,j (4.22)

where Ap→s,i represents explicitly the effect of the particles on the fluid, and dWs,j is a
different Wiener process from those present in (4.16) and (4.17). The drift term, As,
is modelled following the path pointed out for dilute flows [Minier 2001, Minier 2004,
Peirano 2006]:

As,i = −〈αf 〉
ρf

∂〈pf 〉
∂xi

+ (〈Up,j〉 − 〈Uf,j〉)
∂〈Uf,i〉
∂xj

+Gij (Us,j − 〈Uf,j〉) + gi. (4.23)

The first term of the RHS is the pressure-gradient term, where ρf is the fluid density
and pf the fluid pressure, which models the fluid pressure gradient seen by particles. In
general, the subscript f denotes a flow variable in the fluid phase. This pressure term has
been weighted by the local averaged fluid volume fraction in order to model the possible
presence of a drift velocity even in homogeneous flows. The second term models the
crossing-trajectory effect (CTE), while the third term is a relaxation term, where

Gij = − 1

T ∗L,i
δij +Gaij (4.24)

is the matrix defining the corresponding Reynolds stress model. The first part is the
simplified Langevin model (SLM) adapted to the inertial particles, while Ga is a traceless
matrix to be added to generalise the model. For instance, the Launder–Reece–Rodi model
[Launder 1975] (LRR-IP) model reads

Gaij = C2f
∂〈Uf,i〉
∂xj

(4.25)

and C2f is the isotropisation-of-production (IP) constant, usually taken C2f = 3
5 consistent

with rapid-distortion theory.
T ∗L,i is a modified time scale that take into account particle inertia according to

Csanady’s analysis:

T ∗L,i =
TLf√

1 + ζiβ2 3|〈Ur〉|2
2kf

(4.26)
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where
TLf =

1(
1
2 + 3

4C0f

) kf
εf

(4.27)

is the Lagrangian time scale, C0f being linked to the Rotta constant by the relation

C0f =
2

3

(
CR − 1

)
, (4.28)

and the relative velocity is defined by

Ur = Up −Us. (4.29)

Moreover, ζ1 = 1 in the mean drift direction and ζ2,3 = 4 in the cross directions, β =

TLf/TEf is the ratio of the Lagrangian and Eulerian timescales [Wang 1993a].
The modelling of the two-way coupling term instead is as follows. The exact expression

for the two-way coupling term, Ap→s, which is induced by the presence of the discrete
particles, is not a priori known. The underlying force corresponds to the exchange of
momentum between the fluid and particles, but should not be confused with the total
force acting on particles since the latter includes external forces such as gravity. The effect
of particles on fluid properties is expressed directly in the model for Us through a simple
stochastic equation. The force exerted by one particle on the fluid corresponds to the drag
force written here as

Fp→f = −mp
Us −Up

τp
(4.30)

where mp is the mass of a particle. The total force acting on the fluid element surrounding
a discrete particle is then obtained as the sum of all elementary forces, Fp→f , and the
resulting acceleration is modelled here as [Peirano 2002]

Ap→s,i = −ϕUs,i − Up,i
τp

(4.31)

where ϕ is the mean mass loading, ϕ =
〈αp〉ρp
〈αf 〉ρf .

4.4.1 Closure of the diffusion coefficient

The drift terms are given by (4.23) and (4.31), but the diffusion coefficient needs to be
specified in order to obtain a complete closure. Analogously to dilute flows, we look for a
diffusion matrix in a diagonal, but anisotropic form. To close this term, we consider the
decay of the turbulent kinetic energy in the homogeneous case, in absence of mean shear,
and we make the following assumption

dkf
dt
' dkf@p

dt
(4.32)

where kf = 1
2〈uf ·uf 〉 is the turbulent kinetic energy of the fluid phase, with uf = Uf−〈Uf 〉

the fluid fluctuation, and kf@p = 1
2〈uf · uf 〉p is the turbulent kinetic energy of the fluid

phase seen by the particles. It is worth recalling that fluid-phase RA terms such as kf
and 〈Uf,i〉 are known from the RA transport equation, which will be presented in §4.5. A
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possible alternative could be to impose an analogous relation, but for all the Reynolds-
stress components, which would lead to a much more complex model.

Recalling the phase averaging introduced in §4.3, we can obtain the following equality
for the fluid velocity fluctuations:

〈uf 〉p = 〈Uf − 〈Uf 〉f 〉p = 〈Us〉 − 〈Uf 〉. (4.33)

Thus, (4.32) can be rewritten as

dkf
dt

=
1

2

d

dt

3∑

i=1

[〈U2
s,i〉+ 〈Uf,i〉2 − 2〈Us,i〉〈Uf,i〉] (4.34)

where time variations of the fluid velocity and the fluid velocity seen by particles in the
homogeneous case are expressed by

d〈Uf,i〉
dt

= fi + gi + ϕ
〈Up,i − Us,i〉

τp
, (4.35)

dUs,i = 〈αf 〉fi dt−
1

T ∗L,i
(Us,i − 〈Uf,i〉) dt+ gi dt+ ϕ

Up,i − Us,i
τp

dt+Bs,ii dWs,i , (4.36)

d〈U2
s,i〉
dt

= 2〈αf 〉fi〈Us,i〉 −
2

T ∗L,i
〈U2

s,i〉+
2

T ∗L,i
〈Us,i〉〈Uf,i〉+ 2gi〈Us,i〉

+ 2ϕ
〈Up,iUs,i〉 − 〈U2

s,i〉
τp

+B2
s,ii , (4.37)

d〈Uf,i〉2
dt

= 2〈Uf,i〉
d〈Uf,i〉
dt

= 2fi〈Uf,i〉+ 2gi〈Uf,i〉+ 2ϕ〈Uf,i〉
〈Up,i − Us,i〉

τp
, (4.38)

d〈Us,i〉〈Uf,i〉
dt

= − 1

T ∗L,i
(〈Uf,i〉〈Us,i〉 − 〈Uf,i〉2) + fi(〈αf 〉〈Uf,i〉+ 〈Us,i〉)

+ gi(〈Uf,i〉+ 〈Us,i〉) + ϕ〈Uf,i〉
〈Up,i − Us,i〉

τp
+ ϕ〈Us,i〉

〈Up,i − Us,i〉
τp

(4.39)

with fi = −(1/ρf )∂〈pf 〉/∂xi. Now, if we substitute (4.37)–(4.39) into (4.34), the following
relation is obtained:

dkf
dt

= −εf +

3∑

i=1

[
ϕ
〈Up,iUs,i〉 − 〈U2

s,i〉
τp

− ϕ〈Uf,i〉
〈Up,i − Us,i〉

τp

]

=
3∑

i=1

[
− 1

T ∗L,i
〈(Us,i − 〈Uf,i〉)2〉 − 〈αp〉fi(〈Us,i〉 − 〈Uf,i〉) +

B2
s,ii

2
+ ϕ
〈up,ius,i〉 − 〈u2

s,i〉
τp

]
.

(4.40)

The terms (1/T ∗L,i)〈(Us,i − 〈Uf,i〉)2〉 and εf can be rearranged together, whereas the other
terms are redistributed on each corresponding component shown above. The result is

B2
s,ii = 2ϕ

〈Up,i − Us,i〉
τp

(〈Us,i〉 − 〈Uf,i〉) + 2〈αp〉fi(〈Us,i〉 − 〈Uf,i〉)

+ εf

[
C0bi

k̃f
kf

+
2

3

(
bi
k̃f
kf
− 1

)]
(4.41)
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with bi = TL/T
∗
L,i and

k̃f =
3

2

∑3
i=1 bi〈(Us,i − 〈Uf,i〉)2〉∑3

i=1 bi
. (4.42)

Therefore the final form of the Lagrangian pdf equation for the fluid velocity seen by
particles, to be coupled with (4.15)–(4.17) for the particle position and velocity, is

dUs,i(t) = −〈αf 〉
ρf

∂〈pf 〉
∂xi

dt+ (〈Up,j〉 − 〈Uf,j〉)
∂〈Uf,i〉
∂xj

dt

+Gij(Us,j − 〈Uf,j〉) dt− ϕ
(
Us,i − Up,i

τp

)
dt+ gi dt

+
[
εf

(
C0bi

k̃f
kf

+
2

3

(
bi
k̃f
kf
− 1

))
+ 2ϕ

〈Up,i − Us,i〉
τp

(〈Us,i〉 − 〈Uf,i〉)

− 2
〈αp〉
ρf

∂〈pf 〉
∂xi

(〈Us,i〉 − 〈Uf,i〉)
]1/2

dWs,i . (4.43)

It is worth remarking that in the presence of a mean shear, the anisotropic term Gaij should
also be considered in the derivation of the diffusion coefficient, which will give rise to an
additional term in (4.41) in analogy with single phase flows [Pope 1994a]:

2

3
C2fPSfs (4.44)

where PSfs is one-half the trace of the tensor

PSfs = − (〈(Us − 〈Uf 〉)⊗ (Us − 〈Uf 〉)〉 · ∇〈Uf 〉)† . (4.45)

The set of equations for the particle and fluid velocities can be recast in vector form as
follows:

dX = A dt+ [B]dW (4.46)

where A is the drift term, and

X =




Up

δvp
Us


 [B] =



C[I] 0 0 0

0 [Bδ] K[I] 0

0 0 0 [Bs]


 dW =




dWp

dWδ

dWc

dWs


 (4.47)

C =
√
Cpεp is the diagonal diffusion coefficient in the equation of the correlated velocity

and K =
√

1/(2τc)(1 + e2)〈Θp〉 is the diagonal diffusion coefficient for the collisions in the
uncorrelated velocity equation.

4.5 Eulerian pdf model for the fluid phase

The RA fluid-phase equations (4.114)–(4.117) could easily be replaced by a suitable RANS
model (k–ε, Reynolds-stress models, see [Pope 2000]); however, single-phase turbulence
models typically do not take into account two-way coupling between the phases. Thus,
both in the momentum and in the Reynolds-stress equations, we need to formulate the
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terms that mimic this effect. We follow here the approach first proposed by [Peirano 2002].
We consider the direct effect of the particles on the fluid through a random force. Since
a fluid and a discrete particle will not be present at the same spatial position in the same
instant with probability one, we define this random force as

Apf ≡
ρp
ρf

Up −Us

τp
(4.48)

with a probability 〈αp〉(t,xf ), where Apf is a random variable which is formed from the
discrete particles at the location xp = x.

In other words, from the stochastic models for the discrete particles, or from the one-
point particle pdf value at location x = xf , we form the random variables Apf with the
same distribution. This random term mimics the reverse forces due to the discrete particles
and is only non-zero where the fluid particle is in the close neighbourhood of a discrete
particle. At the location x considered, Apf is defined as a random acceleration term in the
equation for Uf , correlated with Uf , so that we have

〈Apf 〉 =
ρp
ρf

〈
Up −Us

τp

〉
=
ρp
ρf

〈
Up −Uf

τp

〉

p

, (4.49a)

〈Apf ⊗Uf 〉 =
ρp
ρf

〈
(Up −Us)⊗Us

τp

〉
=
ρp
ρf

〈
(Up −Uf )⊗Uf

τp

〉

p

. (4.49b)

Thus, the resulting RA equations for the fluid phase will be

∂

∂t
(〈αf 〉ρf ) +∇ · (〈αf 〉 ρf 〈Uf 〉) = 0, (4.50)

∂〈αf 〉〈Uf 〉
∂t

+∇ · 〈αf 〉(〈Uf 〉 ⊗ 〈Uf 〉+ 〈uf ⊗ uf 〉) = −〈αf 〉
ρf
∇〈pf 〉

+ 〈αf 〉ν∇2〈Uf 〉+
〈αp〉ρp
ρf

〈
Up −Us

τp

〉
+ 〈αf 〉g. (4.51)

The resulting Reynolds-stress transport equation is closed here by the LRR-IP
model [Pope 2000], and the two-way coupling term of (4.49b):

∂〈αf 〉〈uf ⊗ uf 〉
∂t

+∇ · 〈αf 〉(〈Uf 〉 ⊗ 〈uf ⊗ uf 〉) =∇ · (〈αf 〉ν∇〈uf ⊗ uf 〉)

+L+ 〈αf 〉Pf + 〈αf 〉Rf −
2

3
〈αf 〉εfI + 〈αp〉[〈Πp ⊗Uf 〉 − 〈Uf 〉 ⊗ 〈Πp〉]† (4.52)

where the symbol (·)† implies the summation of a second-order tensor with its transpose.
The turbulent mean-gradient production term is defined by

Pf = −(〈uf ⊗ uf 〉 ·∇〈Uf 〉)† (4.53)

and the pressure-redistribution term is modeled by

Rf = −CRf
εf
kf

(
〈uf ⊗ uf 〉 −

2

3
kfI

)
− C2f

(
Pf −

2

3
PfI

)
. (4.54)



74 Chapter 4. A Lagrangian pdf model for dense fluid particle flows

The transport term L may be modelled with the different standard models present in
literature [Pope 2000]. Here we leave it in an unclosed form, since it does not play a role
in the homogeneous flows presented hereinafter.

Some remarks are in order concerning the fluid-phase Reynolds-stress model. Following
[Capecelatro 2016b], we have chosen the LRR-IP model, which is widely used and give
reasonably good results, but any other realisable Reynolds-stress model could be chosen, if
needed. The important point is that it has been demonstrated that a realisable Reynolds-
stress model exists for every Lagrangian pdf model for the fluid [Pope 1994a]. Furthermore,
consistency between Eulerian and Langrangian models of the fluid should be always assured
[Muradoglu 2001, Chibbaro 2011, Minier 2014]. Notably, the Rotta model is consistent
with the standard Langevin model (SLM) for the fluid [Pope 2000], and for this reason
it is usually chosen as the standard model to be used in hybrid Eulerian/Lagrangian pdf
approach [Minier 2014].

4.6 RA equations

The Fokker–Planck (FP) equation corresponding, from the pdf point of view, to the La-
grangian system of stochastic differential equations (4.15)–(4.17), (4.43), is defined in ap-
pendix 4.C. It can be used to derive the PA equations for the particle phase by integration
of the Eulerian mass density function (mdf), FEp (t,x; Up, δvp,Us), over the phase space:

〈αp〉(t,x)ρp〈O〉p(t,x) :=

∫
O(Up, δvp,Us) F

E
p (t,x; Up, δvp,Us) dUp dδvp dUs (4.55)

where O is a generic observable attached to a discrete particle.
Closed RA transport equations can now be derived from the FP equation. The so-

obtained RA continuity equation is the following

∂

∂t
(〈αp〉ρp) +∇ · (〈αp〉 ρp〈Up〉) = 0. (4.56)

The momentum equation reads

〈αp〉 ρp
D

Dt
〈Up〉 = −∇ · 〈αp〉 ρp(〈up ⊗ up〉+ 〈P〉) + 〈αp〉 ρp

〈
Us −Up

τp

〉
+ 〈αp〉g (4.57)

where D/Dt = ∂/∂t + 〈Up〉 · ∇. Second-order moments, on the other hand, give the
following equations for the particle-phase Reynolds stress:

〈αp〉ρp
D

Dt
〈up ⊗ up〉 = −∇ · (〈αp〉 ρp〈up ⊗ up ⊗ up〉)− 〈αp〉ρp(〈up ⊗ up〉 ·∇〈Up〉)†

+
〈αp〉 ρp
τp

(〈us ⊗ up〉 − 〈up ⊗ up〉)† + 〈αp〉ρpRp − 〈αp〉ρpεp (4.58)

where the redistribution is expressed by

Rp = −CRp
εp
kp

(
〈up ⊗ up〉 −

2

3
kpI

)
(4.59)

with
CRp = 1 +

3

2
C0p, (4.60)
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and the dissipation tensor is closed using the Rotta model [Pope 2000]:

εp = εp

[
fs
〈up ⊗ up〉

kp
+ (1− fs)

2

3
I

]
. (4.61)

The transport equation for the particle-phase pressure tensor is

〈αp〉ρp
D

Dt
〈P〉 =−∇ · [〈αp〉 ρp(〈up ⊗P〉+ 〈Q〉)]− 〈αp〉ρp(〈P〉 ·∇〈Up〉)† + 〈αp〉ρpεp

− 2

τp
〈αp〉ρp〈P〉+

1

2τc
[(1 + e)2〈Θp〉I− (1 + e)(3− e)〈P〉]. (4.62)

Comparing (4.58), (4.62) to (4.112), (4.113), we can see that the closed terms have been
reproduced correctly in the Lagrangian pdf model, while the previously unclosed terms
such as dissipation are now modelled.

Particular attention should be given to the closure of the term εp = 〈P · ∇ṽp〉, which
plays the role of a sink in the equation of the particle-phase turbulent kinetic energy and
of a source in the equation of the particle-phase pressure tensor. In analogy to single-phase
flow, where dissipation of turbulent kinetic energy leads to viscous heating, it is modelled
as a particle-phase anisotropic dissipation tensor εp, whose trace divided by two gives the
scalar particle-phase dissipation εp. As shown in [Capecelatro 2015, Capecelatro 2016a],
when the mean mass loading is significant, the particle-phase pressure tensor is highly
anisotropic due to the source term εp (i.e., fs ≈ 0.93 in (4.61)).

The transport equation of the scalar particle-phase dissipation is modelled as follows:

∂〈αp〉εp
∂t

+∇ · (〈αp〉〈Up〉εp) =∇ ·
[
〈αp〉

(
νp +

νp,t
σε,p

)
∇εp

]

− 〈αp〉Cε1p〈up ⊗ up〉 :∇〈Up〉
εp
kp
− 〈αp〉Cε2p

ε2
p

kp
+ 〈αp〉

C3p

τp

(
kfp
kf@p

εf − βp εp
)

(4.63)

where Cε1p, Cε2p, C3p and βp are model parameters. Equation (4.63) differs slightly from
the model in [Fox 2014] because kfp is known in the Lagrangian pdf model proposed here.
Now that we have modelled the particle-phase dissipation, we can define a timescale for the
particle phase Tp = kp/εp to be used in the model equation for the fluid-phase dissipation.

For the fluid-phase dissipation, we propose the following model, built with the standard
single-phase fluid dissipation model equation [Pope 2000] and an additional contribution
due to particle–fluid interactions:

∂〈αf 〉εf
∂t

+∇ · (〈αf 〉〈Uf 〉εf ) =∇ ·
[
〈αf 〉

(
ν +

νt
σε

)
∇εf

]

− 〈αf 〉Cε1f 〈uf ⊗ uf 〉 : (∇〈Uf 〉)
εf
kf
− 〈αf 〉Cε2f

ε2
f

kf

+
ρp〈αp〉
ρf

C3f

τp

(
kfp
kf@p

εp − βfεf
)

+
ρp〈αp〉
ρf

C4

τp

(〈Up〉 − 〈Uf 〉) · 〈ud〉
2

εp
kp

(4.64)

where Cε1f , Cε2f , C3f , βf and C4 are model constants, and 〈ud〉 = 〈Us〉− 〈Uf 〉. Here, we
have split the total energy rate dissipation into two contributions, arising from the energy
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exchange between phases (fourth term on the r.h.s.), and from the drag production (last
term).

The Lagrangian pdf approach is tantamount to computing the entire pdf of the variables
considered in the state vector. Compared with an Eulerian moment approach, it means
that more information is available. Notably, we wish to derive here the RA equations for
the mean fluid velocity seen by the particles 〈Us〉, and for all the second-order velocity
moments, 〈us ⊗ us〉, 〈us ⊗ up〉, which cannot be accessed in present two-fluid models. We
can obtain the RA equations starting from the transport equation of the Eulerian mdf FEp
(4.119):

〈αp〉 ρp
D

Dt
〈Us〉 = −∇ · (〈αp〉 ρp〈us ⊗ up〉)

+ 〈αp〉 ρp
[
−〈αf 〉

ρf
∇〈pf 〉+ (∇〈Uf 〉) · (〈Up〉 − 〈Uf 〉) + G · (〈Us〉 − 〈Uf 〉) + g

]

− 〈αp〉 ρpϕ
(〈Us −Up〉

τp

)
(4.65)

where D/Dt = ∂/∂t+ 〈Up〉 ·∇.
For the second-order moments we obtain

〈αp〉ρp
D

Dt
〈us ⊗ up〉 = −∇ · [〈αp〉 ρp(〈us ⊗ up ⊗ up〉+ 〈us ⊗ δvp ⊗ δvp〉)]

− 〈αp〉ρp(〈us ⊗ up〉 ·∇〈Up〉T )− 〈αp〉ρp[(〈up ⊗ up〉+ 〈δvp ⊗ δvp〉) ·∇〈Us〉T ]

+ 〈αp〉 ρpG · 〈us ⊗ up〉T + 〈αp〉 ρpϕ
〈up ⊗ up〉 − 〈us ⊗ up〉

τp

− 〈αp〉 ρp
1

TLp
◦ 〈up ⊗ us〉+ 〈αp〉 ρp

〈us ⊗ us〉 − 〈up ⊗ us〉
τp

(4.66)

and

〈αp〉ρp
D

Dt
〈us ⊗ us〉 = −∇ · (〈αp〉 ρp〈us ⊗ us ⊗ us〉)− 〈αp〉ρp(〈us ⊗ us〉 ·∇〈Us〉)†

+ 〈αp〉 ρp(G · 〈us ⊗ us〉)† + 〈αp〉 ρpϕ
〈us ⊗ up〉† − 2〈us ⊗ us〉

τp
+ 〈αp〉 ρp〈BsB

T
s 〉 (4.67)

where the ◦ symbol denotes an element-by-element product.
Eulerian transport equations for the cross-correlations 〈up⊗ δvp〉 and 〈us⊗ δvp〉 could

also be written to demonstrate that δvp is uncorrelated with the other variables. Also, it is
important to note that these moment equations are, in general, not closed (e. g. the turbu-
lent fluxes involve the third-order moments). However, for statistically homogeneous flows
such as particle-laden isotropic turbulence [Février 2005, Sundaram 1999, Elghobashi 1994]
and CIT [Capecelatro 2015], the spatial gradients (except for fluid pressure, whose gradient
is constant) are zero, and a closed set of moment equations results.
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4.7 Statistically homogeneous equations

4.7.1 Particle phase

For statistically homogeneous flow, the Eulerian equations corresponding to the stochastic
equation system (4.15)–(4.17) and (4.43) are the following:

d〈Up〉
dt

=
1

τp
〈Us −Up〉+ g, (4.68)

〈δvp〉 = 0, (4.69)

d〈Us〉
dt

= −〈αf 〉
ρf
∇〈pf 〉+ G · (〈Us〉 − 〈Uf 〉) +

ϕ

τp
〈Up −Us〉+ g. (4.70)

The particle-phase pressure tensor, 〈P〉 = 〈δvp ⊗ δvp〉, is found from

d〈P〉
dt

= PP + εp −
2

τp
〈P〉+

1

2τc
[(1 + e)2〈Θp〉I− (1 + e)(3− e)〈P〉] (4.71)

where 〈Θp〉 = 1
3Trace(〈P〉) and the production term due to mean velocity gradients is

PP = −(〈P〉 ·∇〈Up〉)† . (4.72)

For the particle-phase Reynolds-stress tensor, we obtain

d〈up ⊗ up〉
dt

= Pp +Rp − εp. (4.73)

The redistribution term is expressed as

Rp = −CRp
εp
kp

(
〈up ⊗ up〉 −

2

3
kpI

)
(4.74)

The production term in (4.73) is defined by Pp = PSp + PDp where PSp is the mean-
shear-production term, given by

PSp = −(〈up ⊗ up〉 ·∇〈Up〉)†; (4.75)

and PDp is the drag-production term, given by

PDp =
1

τp
(〈us ⊗ up〉† − 2〈up ⊗ up〉). (4.76)

The fluid-seen Reynolds-stress tensor is found from

d〈us ⊗ us〉
dt

= Ps + (G · 〈us ⊗ us〉)† + 〈BsB
T
s 〉 (4.77)

where Bs is the diffusion matrix in (4.43) and kf@p = 1
2〈(Us − 〈Uf 〉) · (Us − 〈Uf 〉)〉. The

production term in (4.77) is defined by Ps = PSs + PDs where PSs is the mean-shear-
production term, given by

PSs = −(〈us ⊗ us〉 ·∇〈Us〉)†; (4.78)



78 Chapter 4. A Lagrangian pdf model for dense fluid particle flows

and PDs is the drag-production term, given by

PDs =
ϕ

τp
(〈us ⊗ up〉† − 2〈us ⊗ us〉). (4.79)

The fluid–particle covariance Reynolds-stress tensor is found from

d〈us ⊗ up〉
dt

= Psp + G · 〈us ⊗ up〉T −
1

TLp
〈up ⊗ us〉 (4.80)

where kfp = 1
2〈us · up〉. The production term in (4.80) is defined by Psp = PSsp +PDsp

where PSsp is the mean-shear-production term, given by

PSsp = −〈us ⊗ up〉 ·∇〈Up〉T − (〈up ⊗ up〉+ 〈P〉) ·∇〈Us〉T ; (4.81)

and PDsp is the drag-production term, given by

PDsp =
1

τp
(〈us ⊗ us〉 − 〈up ⊗ us〉) +

ϕ

τp
(〈up ⊗ up〉 − 〈us ⊗ up〉). (4.82)

The particle-phase dissipation equation becomes

dεp
dt

= (Cε1pPSp − Cε2pεp)
εp
kp

+
C3p

τp

(
kfp
kf@p

εf − βp εp
)
. (4.83)

Finally, all the fluid-phase quantities are obtained through the RA equations presented in
§4.7.3.

4.7.2 Simplified model for particle phase

We propose here a simplified model for the particle phase, where collisions between particles
are neglected and only the total particle velocity is modelled, thus loosing information
about its decomposition into the correlated and uncorrelated parts. In particular, this
corresponds to assuming that the particle velocity coincides with the correlated part, i.e.
Vp = Up. The resulting set of SDEs for the simplified model is




dxp,i(t) = Vp,i dt,

dVp,i(t) =
Us,i − Vp,i

τp
dt+ gi dt,

dUs,i(t) = −〈αf 〉
ρf

∂〈pf 〉
∂xi

dt− 1

T ∗L,i
(Us,i − 〈Uf,i〉) dt− ϕ

(
Us,i − Vp,i

τp

)
dt+ gi dt

+
[
εf

(
C0fbi

k̃f
kf

+
2

3

(
bi
k̃f
kf
− 1
))

+2ϕ
〈Vp,i − Us,i〉

τp
(〈Us,i〉 − 〈Uf,i〉)

−2
〈αp〉
〈αf 〉ρf

∂〈pf 〉
∂xi

(〈Us,i〉 − 〈Uf,i〉)
]1/2

dWs,i

(4.84)

where all of the parameters were defined in the complete model above.
The corresponding Eulerian RA equations for statistically homogeneous flow are

d〈Vp〉
dt

=
1

τp
〈Us −Vp〉+ g, (4.85)
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d〈Us〉
dt

= −〈αf 〉
ρf
∇〈pf 〉 −

1

T∗L
◦ (〈Us〉 − 〈Uf 〉) +

ϕ

τp
〈Vp −Us〉+ g. (4.86)

For the second-order moments, we obtain

d〈vp ⊗ vp〉
dt

= PV p+
1

τp
(〈us ⊗ vp〉† − 2〈vp ⊗ vp〉), (4.87)

d〈us ⊗ vp〉
dt

= PV sp −
1

T∗L
◦ 〈us ⊗ vp〉+

1

τp
(〈us ⊗ us〉 − 〈vp ⊗ us〉)

+
ϕ

τp
(〈vp ⊗ vp〉 − 〈us ⊗ vp〉),

(4.88)

d〈us ⊗ us〉
dt

= PSs −
2

T∗L
◦ 〈us ⊗ us〉+ 〈BsB

T
s 〉+

ϕ

τp
(〈us ⊗ vp〉† − 2〈us ⊗ us〉). (4.89)

The mean-shear-production terms are

PV p = −(〈vp ⊗ vp〉 ·∇〈Vp〉)† (4.90)

and
PV sp = −〈us ⊗ vp〉 ·∇〈Vp〉T − 〈vp ⊗ vp〉 ·∇〈Us〉T . (4.91)

This model is similar to the model previously proposed by [Minier 2004, Peirano 2006] for
the fluid velocity seen by the particles, but with a modified diffusion term, as discussed in
detail in §4.4.1. Furthermore, both models have the same dilute limit (〈αf 〉 = 1).

4.7.3 Fluid phase

The Eulerian RA equation describing the fluid-phase mass balance for a statistically ho-
mogeneous flow reduces to

d〈αf 〉
dt

= 0 (4.92)

i.e., 〈αf 〉 is constant. The fluid-phase velocity and Reynolds stresses are found from

d〈Uf 〉
dt

= − 1

ρf
∇〈pf 〉+

ϕ

τp
〈Up −Us〉+ g, (4.93)

and

d〈uf ⊗ uf 〉
dt

= Pf − CRf
εf
kf

(
〈uf ⊗ uf 〉 −

2

3
kfI

)
− C2f

(
PSf −

2

3
PSfI

)
− 2

3
εfI (4.94)

where kf = 1
2〈uf · uf 〉. The production term is Pf = PSf + PDf where PSf is the

mean-shear-production term, given by

PSf = −(〈uf ⊗ uf 〉 ·∇〈Uf 〉)†; (4.95)

and PDf is the drag-production term, given by

PDf =
ϕ

τp
[〈us ⊗ (up − us)〉+ 〈Us −Uf 〉 ⊗ 〈Up −Us〉]†. (4.96)
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In (4.94), CRf is the Rotta constant for the redistribution [Pope 2000], and PSf =
1
2 trace(PSf ).

The fluid-phase dissipation equation becomes:

dεf
dt

= (Cε1fPSf − Cε2fεf )
εf
kf

+ C3f
ϕ

τp

(
kfp
kf@p

εp − βfεf
)

+ C4
εp
kp
PD (4.97)

with
PD =

ϕ

τp

〈Us −Uf 〉 · 〈Up −Uf 〉
2

. (4.98)

If the RA equations for the fluid phase are coupled with the simplified model described
in §4.7.2, Up must be replaced with Vp. Moreover, the particle-phase Lagrangian time-scale
kp/εp is not specified, and it is thus replaced by a fluid time-scale through a proportionality
constraint:

εp
kp

= α
εf
kf@p

. (4.99)

Now, substituting (4.99) in (5.45) and incorporating α in the model constants, gives the
following equation for dissipation:

dεf
dt

= (Cε1fPSf − Cε2fεf )
εf
kf

+ C3f
ϕ

τp

(
kp
kf@p

kfp − βfkf@p

)
εf
kf@p

+ C4
εf
kf@p

PD (4.100)

The values of C3f and C4 in (4.100) may need to be adjusted as compared to (5.45) to
account for the alternative time scale.

4.8 Numerical results

We present three spatially homogeneous examples of increasing complexity: (i) isotropic
turbulence with one-way coupling [Février 2005], (ii) isotropic decaying [Sundaram 1999]
and sheared turbulence [Ahmed 2000] with two-way coupling, and (iii) gravity-driven CIT
[Capecelatro 2015]. The first example is aimed at appraising the partitioning of the par-
ticle kinetic energy, the second at testing the dynamics in the absence/presence of shear
production (i.e., PSf ) without a mean velocity difference, and the third, and most impor-
tant one, at validating the model for production due to a mean velocity difference (i.e.,
(4.98)).

4.8.1 Homogeneous isotropic turbulence

In order to illustrate the effectiveness of the decomposition of the particle velocity, we
apply the models developed for the particle phase to the homogeneous isotropic turbulence
simulations of [Février 2005] for non-collisional particles. For this example, the mean ve-
locities Up, Uf , Us are null, and ϕ = 0. At a first glance it may appear odd to compare
the results of a model developed for collisional flows to DNS data for non-collisional par-
ticles. However, the crucial point for the modelling is the correlation between the fluid
and particle velocities as captured by kf and kp, respectively. The applicability of the
proposed models to non-collisional flows depends on the model used for turbulent dissi-
pation, since the relative balance between kp and Θp is determined by εp, for both dilute
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and dense flows. The scope of this section is thus to verify if in the dilute case, where
collisions do not play any role, energy budgets are well predicted. The point-particle DNS
simulations of [Février 2005] use one-way coupling with stationary fluid turbulence, and a
particle-Reynolds-number-dependent drag coefficient fD (instead of a constant τp). There-
fore, the drag time scale is Stokes-number-dependent, and only qualitative comparisons
can be made.

When a cloud of particles is put into a box filled with a homogeneous, isotropic turbu-
lent flow and thus is agitated by the fluid turbulence, after a transient period, the statistics
of particle velocities will reach equilibrium values. These limit values are of course functions
of the (constant) statistics of the fluid (its mean kinetic energy, the Lagrangian timescale,
among others). The relations giving the equilibrium values in terms of the fluid statistics
are called the Tchen’s relations. They were first obtained by [Tchen 1947] and later refor-
mulated by [Hinze 1975]. In Tchen or Hinze’s works, the determination of the equilibrium
values was obtained through spectral analysis and manipulation of the fluid and particle
energy spectra, where the fluid spectrum is assumed to have an exponential form. This
derivation can be cumbersome and the physical meaning of the exponential form is not
obvious. On the other hand, the same relations are derived from the Lagrangian pdf model
in a straightforward way.

In forced, homogeneous, isotropic turbulence without body forces, all mean veloci-
ties are zero and the Reynolds-stress and particle-phase pressure tensors are isotropic.
Moreover, kf@p = kf . With one-way coupling and fixed kf and εf , the relevant moment
equations from the complete model for the particle phase reduce to

dkp
dt

=
2

τp
(kfp − kp)− εp, (4.101a)

3

2

d〈Θp〉
dt

= −3〈Θp〉
τp

+ εp, (4.101b)

dkfp
dt

= −
(

1

TLf
+

1

TLp

)
kfp +

1

τp
(kf − kfp), (4.101c)

dεp
dt

= −Cε2p
ε2
p

kp
+
C3p

τp

(
kfp
kf

εf − βpεp
)

(4.101d)

where TLf is given by (4.27) and TLp by (4.18). After a transient period, all the statistics
reach their steady-state values. This yields

2
kfp − kp

τp
− εp = 0, (4.102a)

−3〈Θp〉
τp

+ εp = 0, (4.102b)

kf
τp
−
(

1

τp
+

1

TLf
+

1

TLp

)
kfp = 0, (4.102c)

St2p −
C3p

Cε2p

(
kfp
kp
Stf − βpStp

)
= 0 (4.102d)

where Stp = τpεp/kp and Stf = τpεf/kf . Summing (4.102a) and (4.102b) then yields

kfp = κp, (4.103)
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which can be used together with (4.102c) to obtain a Tchen-like relation:

κp =
1

1 + τp/T ′L
kf (4.104)

with C0 = C0p = C0f and

1

T ′L
=

1

TLf
+

1

TLp
=

(
1

2
+

3

4
C0

)(
εf
kf

+
εp
kp

)
. (4.105)

Here, τp/T ′L is an effective integral-scale Stokes number for the particles. Furthermore,
Stp is constant, and can be related to Stf using (4.102a) and (4.102d). With βp = 1, this
relation depends only on the parameter ratio C3p

Cε2p
, and thus Stp = Stf when C3p = 2Cε2p.

Note that the value of Stp controls the ratio kp/κp = 2/(2 + Stp) and, as expected, all of
the particle-phase kinetic energy is spatially correlated when Stp = 0.

[Février 2005] presented time-dependent DNS results of particle-laden homogeneous
and isotropic turbulence for Stf = 0.81 and ϕ = 0, for three sets of initial conditions: (i)
κp = kfp = 1, kp = 1; (ii) κp = kfp = 0, kp = 0; and (iii) κp = 0.83, kp = kfp = 0.
We reproduced the same cases by solving the dimensionless forms of system (4.101) with
the following values of the model constants: C0 = 1, Cε2p = 1.92, C3p = 3.5 and βp = 1.
For consistency with kp, εp is initially set to zero when kp = 0 and for case (i) the initial
value of dissipation is εp = 2. Figure 4.1(a) shows the time evolution of κp, kp and Θp

obtained with the full model for the three different sets of considered initial conditions,
while the evolution of κp obtained with the simplified model for the same cases is reported
in figure 4.1(b). Moreover, 4.1(c) shows the same quantities as in figure 4.1(a) obtained
with the model proposed in [Fox 2014] and 4.1(d) the results of the DNS of [Février 2005].
In all cases, after a transient a steady state is reached, as expected. It can be seen how
in DNS the total particle kinetic energy is distributed in the correlated part and in the
uncorrelated granular temperature. This energy partition is satisfactorily captured by our
complete model as well as by the model proposed in [Fox 2014]. Clearly, the simplified
model can only give the total energy κp, which is however in good agreement with that of
DNS and of more complete models. The transient behaviour is also in very good qualitative
agreement with that obtained in DNS.

4.8.2 Decaying and homogeneous-shear flow

In this section we focus on the particle–turbulence interactions in homogeneous flows, and,
in particular, on the cases simulated by DNS in [Sundaram 1999] for decaying turbulence
and in [Ahmed 2000] for homogeneous-shear flows. For these examples, the mean velocities
Up, Uf , Us are null. In both cases the particle-phase volume fraction is such that two-
way interactions need to be considered: flow modification by non-collisional point particles
reveal a non-trivial dependence on the particle Stokes number and mass loading ϕ. It is
thus interesting to verify if our model is able to reproduce such physics and if the same
dependencies on the particle Stokes number are found.

The Eulerian RA equations describing the fluid and particle phases for the con-
sidered cases have been shown in §4.7. In particular, in the shear flow case a con-
stant shear is present Sf = ∂〈Uf,1〉/∂x2, while Sf = 0 in decaying turbulence. Grav-
ity and collisions are not considered in these test cases. Note that when Sf is null
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Figure 4.1: Time evolution of the dimensionless particle-phase energy components for
Stf = 0.81. The curves correspond to the three considered sets of initial conditions: case
(i) solid lines; (ii) dashed lines; and (iii) + line. κp is plotted in blue, kp in green and
3
2Θp in red. (a) Simulations with the complete particle model (4.101). (b) Simulations
carried out with the simplified particle model (4.84) with C0 = 2.1. Only total kinetic
energy κp is computed. (c) Results from [Fox 2014] with the same initial conditions as in
(a). (d) Results of point-particle DNS from figure 8 of [Février 2005], where the results are
in dimensional form. The notation in [Février 2005] is q2

p = κp, q̃2
p = kp, δq2

p = 3
2Θp and

τFfp ∝ τD.
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(i.e., decaying turbulence), all second-order tensors will be isotropic so that only their
traces are needed. Otherwise the non-zero components of the second-order moments are
(i, j) = (1, 1), (1, 2), (2, 1), (2, 2), (3, 3).

The mean gradients for the particle phase and fluid seen obey

dSp
dt

=
1

τp
(Ss − Sp), (4.106a)

dSs
dt

=
1

τp
(Sf − Ss). (4.106b)

In the following, the particle-phase velocity is initially the same as the fluid-phase velocity
such that Sp(t) = Ss(t) = Sf and thus system (4.106) is not needed.

It is worth noting that, even in these simple flow conditions, the model still retains some
of its features, as, for instance, the distinction between the fluid kinetic energy and the
fluid–particle velocity correlation, which can be computed from Lagrangian quantities by
averaging, i.e. kfp = 1

2〈up,kus,k〉, while in Eulerian models that do not account for the fluid
seen by the particles (see [Fox 2014]), it is modeled as kfp = (kfkp)

1/2. Moreover, it should
be remarked that only a part of the crossing trajectory effect is taken into account, that is
when there is a mean drift, and thus, a mean relative velocity between fluid and particles.
This means that in the case that we are testing, the modified Lagrangian timescale equals
the fluid Lagrangian timescale, T ∗L = TL, for all Stokes numbers. Conversely, particle
inertia should affect the Lagrangian timescale of the fluid velocity seen by the particles.
In particular, if we consider the limit cases, we have two situations: particles with very
low inertia, i.e. τp/TL � 1, follow almost exactly the fluid, yielding T ∗L = TL for the
fluid velocity seen. Particles with high inertia, i.e. τp/TL � 1, are nearly at a standstill
with respect to the fluid and therefore, the fluid velocity seen time scale is approximately
the Eulerian time scale, T ∗L = TE . This inconsistency has already been pointed out by
[Pozorski 1998], and, even if it can be neglected in flows where a mean drift drives the
particles, becoming secondary, here it is of crucial importance, especially if we are interested
in finding the trends of the decay rate with respect to particle inertia. For this reason we
propose to add a Stokes dependence in Cε2 of the kind Cε2 = C (1−ϕSt) with C = 1.92, in
order to retrieve the good trend with St. Note that this simple model, which was also used
in [Fox 2014] for the same test case, is just qualitative and valid for the range of conditions
considered herein. A more refined analysis may be necessary for general situations.

4.8.2.1 Decaying turbulence

Concerning the values of other model constants, they are the same as in the stationary case,
i.e. Cε2 = Cε2p = Cε2f , β = βf = βp = 1, C3 = C3f = C3p = 3.5 and C0 = C0f = C0p = 1.
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As Sf = 0, the isotropic model equations for kf , kf@p, kp and kfp are solved directly:

dkf
dt

=
2ϕ

τp
(kfp − kf@p)− εf , (4.107a)

dkf@p

dt
=

2ϕ

τp
(kfp − kf@p)− εf , (4.107b)

dkp
dt

=
2

τp
(kfp − kp)− εp, (4.107c)

dkfp
dt

=
1

τp
[kf@p + ϕkp − (1 + ϕ)kfp]−

(
1

2
+

3

4
C0

)(
εf
kf

+
εp
kp

)
kfp, (4.107d)

dεf
dt

= −Cε2
ε2
f

kf
+ C3

ϕ

τp

(
kfp
kf@p

εp − εf
)
, (4.107e)

dεp
dt

= −Cε2
ε2
p

kp
+
C3

τp

(
kfp
kf@p

εf − εp
)
. (4.107f)

In the decaying turbulence test, initial conditions for the simulation are kf (0) = kf@p(0) =

kp(0) = kfp(0) = 1.314, in accordance with the DNS by [Sundaram 1999], and εf (0) =

εp(0) = 1.0112. Moreover, the mass loading is set to ϕ = 0.162. Note that because
kf (0) = kf@p(0), the first two equations in system (4.107) will yield kf (t) = kf@p(t) so
that only kf is required to model decaying turbulence for this case.

Figure 4.2(a) shows the time evolution of the fluid turbulent kinetic energy obtained
with the particle models, for particle sets characterized by four different Stokes numbers,
namely St = τp/Te = 0 (fluid tracers), St = 0.17, St = 0.35 and St = 0.69 (where
Te = 1.7328 is the initial eddy-turnover time in DNS of [Sundaram 1999]). Note that the
case at St = 0 was obtained from the particle equations as the limit case for τp/TL � 1, as
described in appendix A. Figures 4.2(b)–2(d) show the same quantities as in figure 4.2(a),
obtained by the simplified version of the present model, the Eulerian model by [Fox 2014]
and the DNS by [Sundaram 1999] respectively. The same comparisons for the particle-
phase turbulent kinetic energy are reported in figure 4.3. It can be seen that the effect
of the Stokes number on the decay of the turbulent kinetic energy of both the fluid and
the particle phases is qualitatively well captured by the present stochastic model, in its
complete version as well as in the simplified one, although the initial stages of the time
evolution are quite different from the DNS results.

4.8.2.2 Homogeneous-shear flow

We consider now the case of a homogeneous shear flow with Sf = 0.6 as in [Fox 2014], and
solve the anisotropic model equations given in §4.7. The mass loading is ϕ = 0.162 and
the initial conditions εf (0) = εp(0) = 0.25. As in the previous decaying case, simulations
have been carried out for the following four Stokes numbers: St = 0, 0.17, 0.35, 0.69. The
values of the constants in our model are the same as in the previous case of homogeneous
decaying turbulence with Cε1f = Cε1p = 1.44, which are standard values for single-phase
turbulence models [Pope 2000]. For the simplified model Cε1f = 1.2. Figure 4.4 shows the
time evolution of the fluid turbulent kinetic energy obtained with the particle model, both
in its complete and simplified versions, with the same quantity obtained from the Eulerian
model in [Fox 2014]. Comparison should also be made with the DNS data of [Ahmed 2000].
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Figure 4.2: Fluid turbulent kinetic energy as a function of the non-dimensional time,
t/Te, in decaying fluid–particle turbulence: (a) complete particle model, (b) simplified
particle model, (c) [Fox 2014] Eulerian model and (d) DNS of [Sundaram 1999]. The
curves correspond to four different Stokes number: St = 0, solid line; St = 0.17, dashed
lines; St = 0.35, dotted lines; St = 0.69, dash-dotted lines. In panel (c) the light dotted
line is relative to an additional value of the Stokes number, not reported in the other
panels; in panel (d) Tf ∝ kf .
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Figure 4.3: Particle-phase fluctuating energy as a function of the non-dimensional time,
t/Te, in decaying fluid–particle turbulence: (a) complete particle model, (b) simplified
particle model, (c) Eulerian model of [Fox 2014] and (d) DNS of [Sundaram 1999]. The
curves correspond to the following Stokes number: St = 0.17, dashed lines; St = 0.35,
dotted lines; St = 0.69, dash-dotted lines. In panel (c) the light dotted line is relative to
an additional value of the Stokes number, not reported in the other panels; in panel (d)
Tf ∝ kf .
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Figure 4.4: Homogeneous shear flow. Fluid turbulent kinetic energy as a function of the
non-dimensional time, t/Te with (a) the complete stochastic model; (b) the simplified
stochastic model and (c) the Eulerian model by [Fox 2014]. The curves correspond to four
different Stokes numbers: St = 0, solid line; St = 0.17, dashed lines; St = 0.35, dotted
lines; St = 0.69, dash-dotted lines. In panel (c) the light dotted line is relative to an
additional value of the Stokes number, not reported in the other panels.

For all the models, the time behaviour is qualitatively similar to that observed in DNS,
with an initial decrease of the fluid turbulent kinetic energy followed by an increase. The
value of the minima of kf given by the complete model are closer to those obtained in
DNS. Moreover, the effect of particle inertia on the time evolution of kf is also correctly
captured, i.e., the rate of increase of the fluid turbulent kinetic energy after the minimum
is reduced as the inertia of the particles increases. The same effect is found also for the
particle-phase fluctuating energy, κp, in agreement with [Fox 2014], as it can be seen in
figure 4.5. No DNS data are available for this quantity.

4.8.3 Cluster-induced turbulence

To isolate the effect of turbulence generated by particles through two-way coupling, we
consider a flow initially at rest laden with a random distribution of finite-size particles
of diameter dp subject to gravity oriented in the downward x1 direction. The physical
parameters are chosen to correspond to the Euler–Lagrange (EL) point-particle simulation
of [Capecelatro 2015] as summarized in table 4.1. The dimensionless two-phase parameters
that characterize the flow include the particle-to-fluid density ratio ρp/ρf = 1000, the
average particle-phase volume fraction 〈αp〉 = 0.01 and the particle Reynolds numbers
Rep = τpgdp/νf = 1 where τp = ρpd

2
p/(18ρfνf ) is the particle relaxation time, νf is the
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Figure 4.5: Homogeneous shear flow. Particle-phase fluctuating energy as a function of
the non-dimensional time, t/Te with (a) complete particle model; (b) simplified particle
model and (c) Eulerian model in [Fox 2014]. The curves correspond to the Stokes numbers:
St = 0.17, dashed lines; St = 0.35, dotted lines; St = 0.69, dash-dotted lines. In panel (c)
the light dotted line is relative to an additional value of the Stokes number, not reported
in the other panels.

fluid-phase kinematic viscosity and g is the magnitude of the gravity vector. Combination
of these non-dimensional numbers yields the mass loading ϕ = ρp〈αp〉/(ρf 〈αf 〉) = 10.1,
where 〈αf 〉 = 1 − 〈αp〉 is the average fluid-phase volume fraction. Finally, V = gτp is the
settling velocity for a single particle.

The CIT case is statistically homogeneous in all directions with periodic boundary con-
ditions; therefore, in the context of the present formalism, it reduces to a 0-D description,
with only the time dependency. Moreover, as in the previous considered cases, since the
RA equations obtained from the stochastic ones are in closed form for a homogeneous con-
figuration, we can limit ourselves to solving a system of coupled ODEs, instead of carrying
out a Lagrangian Monte-Carlo simulation. The simulation is performed starting from an
initial condition where both the particle and fluid phases are at rest and it is evolved in
time up to the steady state. The fluid-phase pressure gradient is dynamically adjusted in
order to keep the mean fluid velocity 〈Uf 〉 equal to zero. The model constants have been
set in order to obtain a good prediction of the steady-state values for first-order moments.
The values, so obtained, are reported in tables 4.2–4.3. A comment is in order concerning
the values of C0f and C3p. These values are taken different from those used in the isotropic
cases previously analysed. The results obtained in the CIT case with the previous values
are in reasonable agreement with the full numerical simulation, but show some discrep-
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Physical parameters
dp Particle diameter 0.09 mm
ρp Particle density 1000 kg m−3

ρf Fluid density 1 kg m−3

νf Fluid kinematic viscosity 1.8 · 10−5 m2 s−1

g Gravity magnitude 8 m s−2

Non-dimensional parameters
e Restitution coefficient 0.90
〈αp〉 Mean particle volume fraction 0.01

ϕ Mean mass loading 10.1

Rep Particle Reynolds number 1

Dimensional parameters
τp Drag time 0.025 s
V Settling velocity 0.20 m s−1

Table 4.1: Fluid–particle parameters used in CIT simulations [Capecelatro 2015].

C0f C0p Cε2 C3f C3p C4 fs βf Cc
3.5 0.18 1.92 3.5 7.0 6.81 0.4 1 1

Table 4.2: Values of the model constants used in CIT simulations for the complete model.

ancy which has been eliminated using the values proposed in table 4.2. In fact, C3p has
an insignificant effect on the asymptotic results, but the present higher value smooths the
transient dynamics. In contrast, the value of C0f turns out to be key to get the correct
level of turbulent kinetic energy.

The steady-state solution of first-order moments equations yields 〈Us,1 − Up,1〉 = V,
which agrees with the EL simulations of [Capecelatro 2015], and

〈Us,1〉 = −〈αp〉(1 + ϕ)
T ∗L,1
τp
V (4.108)

where, using the definition in §4.4.1,

T ∗L,1
τp

=

[(
1

2
+

3

4
C0f

)2 (
1 +

3β2V2

2kf

)]−1/2
1

Stf
(4.109)

and Stf =
τpεf
kf

. β = TLf/TEf is set equal to 0.8. In fully developed CIT, the tur-
bulence is generated by the clusters and the resulting Stokes number is nearly constant
[Capecelatro 2016b]. The complete model therefore predicts that the steady-state value of

C0f Cε2 C3f C4 βf
0.8 6 0.02 0.1 0.75

Table 4.3: Values of the model constants used in CIT simulations for the simplified model.
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〈Us,1〉/V depends on the particle volume fraction, the mass loading, and the dimension-
less fluid-phase turbulent kinetic energy 2kf/V2. The prediction of 〈Us〉 is perhaps the
most important contribution of the Lagrangian pdf model for CIT because information on
the fluid seen by the particles is not available in most multiphase turbulence models for
fluid–particle flows [?, see, e.g.,]for details]Fox2014.

The second-order moments have two independent, non-zero components, i.e., the ver-
tical (1, 1) and horizontal (2, 2). For the fluid phase, these are found by solving (4.94).
In CIT, the fluid-phase Reynolds stresses are anisotropic because of the mean velocities
appearing in Pf,11. In general, redistribution is weak so that 〈u2

f,2〉 � 〈u2
f,1〉. In CIT, the

anisotropy of the particle-phase pressure tensor arises due to the source terms εp,11, εp,22,
whose anisotropy is controlled by fs. For example, if fs = 1 and collisions are negligible,
the particle-phase pressure tensor and Reynolds stresses will have the same anisotropy.
The value of the free parameter Cc in the collision term, on the other hand, will control
the anisotropy of the particle-phase pressure tensor. For the particle phase, the Reynolds
stresses are found by solving (4.73). The anisotropy of the particle-phase Reynolds stresses
arises due to the production terms, i.e., due to the anisotropy of 〈us,iup,j〉. The latter are
found by solving (4.66). Likewise, the Reynolds stresses for the fluid seen by the particles
are found from (4.77). As seen for the fluid phase, the anisotropy of fluid seen is mainly due
to the production terms, but is also due to the directional dependence of T ∗L,i. The dissipa-
tion rates εp and εf are found by solving (5.28) and (5.45) with the mean-shear-production
terms set to zero.

Figures 4.6–4.8 show the time evolution of some mean velocities and second-order
moments of both the fluid and particle phase, obtained with the complete and simplified
models. It can be seen that all the quantities, after a transient of about 80–100τp due to
the non-trivial coupling between particles and fluid, tend to a steady value. The dashed
horizontal line in the figures is the steady-state value obtained in the EL simulation by
[Capecelatro 2015]. It can be seen that the mean velocities (figure 4.6) are well captured
by both the complete and simplified models. As anticipated, an important feature of
the Lagrangian pdf models is to provide a prediction of the fluid velocity seen by the
particles, as compared to Eulerian pdf models in which it must be a priori specified. As
for the second-order moments (figures 4.7 and 4.8), the complete model still gives a good
agreement with EL simulations for both the fluid and particle phases, while the simplified
version significantly overestimates the steady-state values.

Tables 4.4–4.6, in which the steady-state values of particle and fluid statistics are
reported, confirm the previous observations. Table 4.5 also shows the repartition of the
particle turbulent kinetic energy, κp, into the coherent part, kp, and granular temperature,
Θp. For the simplified model, by definition, Θp = 0 and κp = kp. The complete model
also underestimates the granular temperature, most likely due to underestimating the
value of εp through the choice of C3p. Nonetheless, the decomposition of the particle
turbulent kinetic energy appears to be essential to well predict second-order statistics, as
done by the complete model in contrast to the simplified one. The complete model also
well reproduces the fact that for all the quantities, except for the uncorrelated part of
the particle velocity, turbulence fluctuations in the vertical direction are much higher than
those in the horizontal directions. The complete model is able to correctly reproduce the
anisotropy of the second-order tensors while the simplified model only gives a qualitative
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2kf/V2 〈u2
f,1〉/(2kf ) 〈u2

f,2〉/(2kf )

EL simulation 8.04 0.82 0.09

Complete model 8.74 0.93 0.04

Simplified model 16.60 0.98 0.01

Table 4.4: Steady-state values of fluid-phase velocity statistics. EL simulation data are
taken from [Capecelatro 2015].

〈Up,1〉/V
EL simulation −2.28

Complete model −2.28

Simplified model −2.22

2κp/V2 〈v2
p,1〉/(2κp) 〈v2

p,2〉/(2κp)
EL simulation 5.41 0.78 0.11

Complete model 5.13 0.81 0.09

Simplified model 12.71 0.96 0.02

kp/κp 〈u2
p,1〉/(2kp) 〈u2

p,2〉/(2kp)
EL simulation 0.89 0.81 0.09

Complete model 0.99 0.81 0.09

3〈Θp〉/(2κp) 〈P11〉/(3〈Θp〉) 〈P22〉/(3〈Θp〉)
EL simulation 0.11 0.51 0.25

Complete model 0.01 0.49 0.25

Table 4.5: CIT - Steady-state values of particle-phase velocity statistics. EL simulation
data are taken from [Capecelatro 2015].

agreement.

Finally in figure 4.9 it is shown the time evolution of the correlation coefficient

ρfp =
kfp√
kf@pkp

, (4.110)

which proves the importance of having a stochastic model that predicts kfp, leading to a
correlation coefficient ρfp that can vary in time, instead of setting it to a constant value.
Moreover, we can then use ρfp in the dissipation–exchange terms in (4.63) and (4.64). For
example, similar to the model proposed by [Fox 2014], kfpεfkf@p

and kfpεp
kf@p

in (4.63) and (4.64),
respectively, could be replaced with ρfp

√
εpεf , which may help to increase the value of εp

when applied to CIT.
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〈Us,1〉/V
EL simulation −1.25

Complete model −1.28

Simplified model −1.22

2kf@p/V2 〈u2
s,1〉/(2kf@p) 〈u2

s,2〉/(2kf@p)

EL simulation 8.32 0.85 0.07

Complete model 8.06 0.88 0.06

Simplified model 15.36 0.96 0.02

2kfp/V2 〈us,1up,1〉/(2kfp) 〈us,2up,2〉/(2kfp)
EL simulation 5.45 0.82 0.09

Complete model 5.13 0.82 0.09

Simplified model 12.71 0.96 0.02

Table 4.6: CIT - Steady-state values of fluid-phase turbulence statistics seen by particles.
EL simulation data are taken from [Capecelatro 2015].
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Figure 4.6: Time evolution of the vertical mean fluid velocity seen by the particles (a) and of
the vertical mean particle velocity (b) from the complete (red line) and from the simplified
(blue dot-dashed line) stochastic model. The horizontal black dashed line represents the
steady state mean velocity from the DNS of [Capecelatro 2015].
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Figure 4.7: Time evolution of second-order moments of the vertical mean fluid velocity seen
by the particles (a) and of the vertical mean particle velocity (b) from the complete (red
line) and from the simplified (blue dot-dashed line) stochastic model. The horizontal black
dashed line represents the steady state mean velocity from the DNS of [Capecelatro 2015].
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Figure 4.8: Time evolution of 〈up,1us,1〉 (a) and of kf (b) from the complete (red line) and
from the simplified (blue dot-dashed line) stochastic model. The horizontal black dashed
line represents the steady state mean velocity from the DNS of [Capecelatro 2015].
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Figure 4.9: Time evolution of ρfp = kfp/(kf@pkp)
1/2 from the complete stochastic model.

The horizontal black dashed line represents the steady-state mean value from the DNS of
[Capecelatro 2015]
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4.9 Discussion and conclusions

The main objective of this work was to develop a novel pdf modelling approach for particle-
laden turbulent flows including in a statistical sense particle–particle collisions. The ap-
proach is based on the development of a modelled equation for the one-particle Lagrangian
pdf. As for the single-phase turbulent pdf approach [Pope 2000, Fox 2003], the corre-
sponding Reynolds-averaged moment equations are taken as a useful guideline for the con-
struction of a sound model. In the present case, the recent Reynolds-averaged framework
developed by [Fox 2014] and validated in [Capecelatro 2016b] has been taken as reference.
One of the most original points of the present approach consists in developing a Lagrangian
pdf model based upon the decomposition of the velocity into two separate particle-phase
velocity variables (Up and δvp), which are statistically uncorrelated. This decomposition
has been found to be key in the correct reproduction of moderately dense particle flows
and has been never used before in the framework of Lagrangian pdf modelling, where only
the total particle velocity is available.

The new framework put forward is very general, but a precise model has to be pro-
posed to make actual simulations. From a technical point of view, we have proposed a new
stochastic model, which represents the joint state variables (xp,Vp, δvp,Us) as a diffusion
process, or informally a Langevin equation, that is the corresponding joint pdf is given by a
Fokker–Planck equation. The model has been built phenomenologically, and the unclosed
terms in the exact Lagrangian equations have been replaced by return-to-equilibrium and
fluctuating terms, following fluctuation–dissipation arguments [Marconi 2008]. To high-
light the role of the decomposition of the velocity, we have also developed a simplified
model that takes into account the two-way coupling between the phases but does not con-
sider the presence of an uncorrelated part of the velocity. This model bears some similarity
to a previous proposition [Minier 2001, Peirano 2006], but in fact even this model is new
since it differs in the closure of the drift and diffusion coefficients. In particular, it has been
built to describe the presence of a drift velocity even in homogeneous cases. The Reynolds-
averaged equations derived from the complete pdf model are shown to be consistent with
the ones obtained in the Eulerian framework [Fox 2014]. On the other hand, and this is one
of the significant advantages of Lagrangian pdf approaches [Pope 2000, Minier 2001], the
level of content of the present model is more detailed, notably the fluid velocity seen by the
particles Us is included and therefore all the related one-point moments can be computed.
When the mean mass loading is non-negligible, the dynamics of the fluid velocity seen by
the particles is strongly affected by coupling with the particle phase. The Lagrangian pdf
model thus provides a closure for the moments of Us, which need a closure in the Eulerian
framework. It is expected that the present model has the same range of validity as the
corresponding Eulerian one, namely it should be valid for moderate mean mass loadings
where volume fraction is only a few percent αp ≤ 0.05. For higher mass loading, new
terms should be added taking into account rheological effects. This is a challenging and
interesting perspective.

Once the pdf formalism and the Lagrangian pdf model were defined, we have validated
it using the same test cases employed to validate a recently developed Eulerian model
[Fox 2014, Capecelatro 2015]. In particular, the Lagrangian pdf model is applied to statis-
tically homogeneous flows of increasing difficulty, namely, (i) particle-laden homogeneous
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isotropic turbulence [Février 2005, Sundaram 1999], (ii) homogeneous sheared turbulence
[Elghobashi 1994], and (iii) CIT [Capecelatro 2015]. In the first two cases, the mean fluid-
and particle-phase velocities are null, and hence the production of fluid-phase turbulence
by fluid drag is absent. These cases are useful for validating the coupling terms in the La-
grangian pdf model for the exchange of turbulent kinetic energy between the two phases,
and their dependence on the mass loading. In contrast, case (iii) provides a difficult and
physically more interesting validation test of the model for 〈Us〉. Indeed it determines the
mean slip velocity between the two phases (see (4.57)), and of the exchange/dissipation
models, which determine the relative contributions of correlated kp and uncorrelated Θp

turbulent kinetic energy. Interestingly, the steady-state model for 〈Us〉 given in (4.108)
is relatively simple (compare, for example, the correlation used in [Capecelatro 2016b]),
with the Lagrangian time scale T ∗L,1 playing a prominent role. The complete and simplified
models are both qualitatively in agreement with DNS and experiments in the homogeneous
isotropic and shear cases, although the simplified model cannot predict the quantities re-
lated to the uncorrelated part of the velocity. Instead, important differences are encoun-
tered for the CIT case. While the complete pdf model gives satisfactory results for all
observables, the simplified model is able to provide good predictions for the first moments
but strongly overestimates the energy. This result is important, since it demonstrates
that the decomposition of the particle velocity into correlated and uncorrelated parts is
necessary to correctly represent the dynamics of moderately dense flows. From a physical
point of view, it is interesting to note, however, that even though the agreement is only
qualitative, the simple two-way coupling, without collisions, is able to induce CIT.

To conclude, in this work we have developed a general approach, in which we have
proposed a specific model validated in some relevant test cases. To assess and improve the
model, it would be interesting, in future work, to investigate CIT over a wide range of 〈αp〉
and ϕ values to determine whether the parameters in the model for T ∗L,1 should depend on
these quantities. In fact, it would be useful to develop a model for the fluid pressure gradient
seen by particles directly from DNS. More generally, the complete pdf model should be
tested for inhomogeneous particle-laden flows wherein the spatial transport terms play an
important role. For example, the particle-laden channel flows of [Capecelatro 2016a, ?]
would be a challenging test cases. In particular, for channel flows the correlated and
uncorrelated particle velocity components generate separate spatial fluxes for all statistics.
From the RA model developed in [Capecelatro 2016b], it is known that, depending on
the Stokes number, one or the other of these fluxes may be dominant. As a result, the
wall-normal distribution of 〈αp〉, as well as other statistics, is very sensitive to how the
spatial fluxes are modelled. In any case, as shown in this work, it can be expected that by
including a stochastic model for Us the resulting models for the spatial fluxes will provide
more robust closures for inhomogeneous turbulent particle-laden flows.
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4.A Exact Reynolds-average equations

4.A.1 Particle phase

We show here the RA form of the Lagrangian pdf transport equations (4.9)–(4.8). It
is worth noting that they correspond exactly to the RA transport equations obtained in
[Capecelatro 2015] from the corresponding hydrodynamics ones. From the equation for Ṽp

(4.9), applying a RA (ensemble averaging over a large number of fluid realizations), the
exact RA equations can be retrieved for the particle mean velocity 〈Vp〉 = 〈Ṽp〉:

∂〈αp〉〈Ṽp〉
∂t

+∇ · 〈αp〉(〈Ṽp〉 ⊗ 〈Ṽp〉+ 〈P〉) = 〈αp〉
(〈

Ũf − Ṽp

τp

〉
+ g

)
. (4.111)

The Reynolds stresses of the correlated part 〈ṽp⊗ ṽp〉 can be obtained analogously, and it
gives the following Eulerian transport equation:

∂〈αp〉〈ṽp ⊗ ṽp〉
∂t

+ ∇ · 〈αp〉(〈Ṽp〉 ⊗ 〈ṽp ⊗ ṽp〉) +∇ · 〈αp〉〈ṽp ⊗ ṽp ⊗ ṽp〉 =

− 〈αp〉(〈ṽp ⊗ ṽp〉 ·∇〈Ṽp〉)† − 〈αp〉〈ṽp ⊗∇ · ( ˜δVp ⊗ δVp)〉†

+〈αp〉
(〈ũf ⊗ ṽp〉 − 〈ṽp ⊗ ṽp〉)†

τp
. (4.112)

Finally, applying first the coarse-graining operator and then the RA one to (4.8), we get
the equation for the particle-phase pressure tensor:

∂〈αp〉〈P〉
∂t

+ ∇ · 〈αp〉
(
〈Ṽp〉 ⊗ 〈P〉+ 〈 ˜δVp ⊗ δVp ⊗ δVp〉+ 〈 ˜δVp ⊗ δVp ⊗ ṽp〉

)
=

−2〈αp〉
〈P〉
τp
− 〈αp〉(〈P〉 ·∇〈Ṽp〉)† − 〈αp〉〈P ·∇ṽp〉† . (4.113)

4.A.2 Fluid phase

Taking the RA of the hydrodynamic fluid-phase equations, see [Capecelatro 2015], yields
the RA fluid-phase transport equation. It gives for the volume fraction:

∂〈αf 〉
∂t

+∇ · 〈αf 〉〈Uf 〉f = 0. (4.114)

For the fluid velocity:

∂〈αf 〉〈Uf 〉f
∂t

+∇ · 〈αf 〉(〈Uf 〉f ⊗ 〈Uf 〉f + 〈uf ⊗ uf 〉f ) =

− 〈αf 〉
ρf
∇〈pf 〉+

〈αf 〉
ρf
∇ · 〈σf 〉 − 〈αf 〉ϕ

〈
Uf −Up

τp

〉

p

+ 〈αf 〉g (4.115)

where

ϕ =
ρp〈αp〉
ρf 〈αf 〉

(4.116)

is the mean mass loading, and 〈uf ⊗ uf 〉f is the fluid-phase Reynolds stress tensor.
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And for the Reynolds-stress tensor we find

∂〈αf 〉〈uf ⊗ uf 〉f
∂t

+∇ · 〈αf 〉(〈Uf 〉f ⊗ 〈uf ⊗ uf 〉f + 〈uf ⊗ uf ⊗ uf 〉f ) =

− 〈αf 〉(〈uf ⊗ uf 〉f · ∇〈Uf 〉f )† +
〈αf 〉
ρf

(∇ · 〈σf ⊗ uf 〉 − ∇〈pfuf 〉)†

− 〈αf 〉
ρf

(〈σf · ∇uf 〉 − 〈pf∇uf 〉)†

+
〈αf 〉ϕ
τp

[〈uf ⊗ up〉p − 〈uf ⊗ uf 〉p + 〈uf 〉p ⊗ (〈Up〉p − 〈Uf 〉f )]†. (4.117)

The fluid-phase variables that are averaged with respect to the particle phase, i.e. 〈uf 〉p,
appear due to fluid–particle coupling (e. g. due to clusters).

4.B Simulation of a Gaussian vector: the Choleski decompo-
sition

Let X = (X1, . . . , Xd) be a Gaussian vector defined by a zero mean and a covariance matrix
Cij = 〈XiXj〉. For all positive symmetric matrices (such as Cij), there exists a (lower or
upper) triangular matrix Pij which satisfies

C = PPt =⇒ Cij =
d∑

k=1

PikPjk.

P is given by the Choleski algorithm (here for the lower triangular matrix):

Pi1 =
Ci1√
C11

, 1 6 i 6 d

Pii =


Cii −

i−1∑

j=1

Pij




1/2

, 1 < i 6 d

Pij =
1

Pjj

(
Cij −

j−1∑

k=1

PikPjk

)
, 1 < j < i 6 d

Pij = 0, i < j 6 d.

Let G = (G1, . . . , Gd) be a vector composed of independent N (0, 1) Gaussian random
variables, then it can be shown that the vector Y = PG is a Gaussian vector of zero mean
and whose covariance matrix is C = PPt. Therefore, X and Y are identical, that is

X = PG =⇒ Xi =

d∑

k=1

PikGk. (4.118)

4.C Fokker–Planck equation

The state vector of the Lagrangian description, given by Z = (xp,Up, δvp,Us), is asso-
ciated with a single particle, while 〈Z〉 stands for 〈Z〉[x(k)]. The particle system is thus
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represented by this set of Lagrangian pdf equations, where the particle state variables are
modelled through a Langevin equation, or to be more rigorous as a diffusion process. This
set of Lagrangian pdf equations for the trajectories of the sample particles corresponds,
from the pdf point of view, to the following Fokker–Planck (FP) equation for the Eulerian
mass density function (mdf) [Pope 1985, Minier 2001, Fox 2003]:

∂FEp
∂t

+ Up,i

∂FEp
∂xi

+ δvp,i
∂FEp
∂xi

=

− ∂

∂Up,i

([
(Us,i −Up,i)

τp
− 1

〈αp〉ρp
∂〈αp〉ρp〈Pij〉

∂xj
+ δvp,j

∂〈Up,i〉
∂xj

− 1

TLp
(Up,i − 〈Up,i〉) + gi

]
FEp

)

+
1

2
Cpεpδij

∂2FEp
∂Up,i∂Up,j

− ∂

∂δvp,i

([
−δvp,i

τp
+

1

〈αp〉ρp
∂〈αp〉ρp〈Pij〉

∂xj
− δvp,j

∂〈Up,i〉
∂xj

− (1 + e)(3− e)
4τc

δvp,i

]
FEp

)

+
1

2

[
(BδB

T
δ )ij +

1

2τc
(1 + e)2〈Θp〉δij

]
∂2FEp

∂δvp,i∂δvp,j

+

[〈αf 〉
ρf

∂〈pf 〉
∂xi

− (〈Up,j〉 − 〈Uf,j〉)
∂〈Uf,i〉
∂xj

− gi
]
∂FEp
∂Us,i

− ∂

∂Us,i

[(
Gij(Us,j − 〈Uf,j〉)− ϕ

(Us,i −Up,i)

τp

)
FEp

]
+

1

2
B2
s,ii

∂2FEp
∂Us,i∂Us,i

(4.119)

where Bs,ii is the diffusion matrix given by (4.41), and it is not given here explicitly for
the sake of clarity. FEp (t,x; Up, δvp,Us) is the probable mass of discrete particles in an
element in the phase-space of volume dUp dδvp dUs at a position x.

4.D Fluid–particle limit

The limit behaviour of the equations is only shown in homogeneous isotropic conditions
for the sake of simplicity. In the limit case of tracer particles, i.e., τp → 0, we know from
the equations for the stochastic model that Up → Us and Us → Uf , but we do not know if
the model equation for Us is exactly the same as Up. At the same time we have that the
particle-phase uncorrelated velocity goes to zero, which is consistent. When the particle
inertia becomes very small where βp = βf → 1 and kfp = kf@p → kf , the particle-phase
dissipation tends to εp → εf , as we can see from (4.120) and (4.121):

dεf
dt

= (Cε1P − Cε2εf )
εf
kf

+ C3
ϕ

τp

( kfp
kf@p

εp − βf εf
)
, (4.120)

dεp
dt

= (Cε1P − Cε2εp)
εp
kp

+ C3
1

τp

( kfp
kf@p

εf − βp εp
)
. (4.121)

Now we can check what happens to the stochastic equation for Us. From the spatially
homogeneous Lagrangian model, we can obtain

dUs + ϕdUp = − 1

TL
Us dt−

ϕ

TLp
Up dt+

√
C0εf dWs + ϕ

√
C0pεp dWp. (4.122)
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Now, when τp → 0, we can use one of the two equations to prove dUs = dUp, while the
other two will give δvp → 0 and

dUs = − 1

TL
Us dt+

1

(1 + ϕ)

√
C0εf (dWs + ϕdWp). (4.123)

To obtain exactly the same equation as for one-way coupling, the white noise of the particle
equation dWp should be replaced, in this limit, by the one employed in the fluid velocity
equation dWs.1 If this is not done, when the transport equation of the second-order
moments is evaluated, i.e., d〈U2

s 〉, there will be a spurious term −2ϕ/(ϕ+ 1)2C0εf due to
the fact that the two noises are uncorrelated. In any case, this term goes consistently to
zero when the mass fraction ϕ vanishes.

1In terms of the distribution function (i.e., weak convergence), the sum of two Wiener processes
multiplied by constants is equivalent to a third Wiener process multiplied by the sum of the constants
[Kloeden 1992].
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4.5 Supplementary material: a detailed description of the
coarse-graining steps

We provide here all the coarse-graining steps that have been followed for the derivation of
the model and that may help in the collocation of the latter. In particular, we show how
the model is conceived to be consistent with the exact hydrodynamic mesoscopic Eulerian
description of the particle phase. Since the microscopic particle-resolved level is generally
too detailed for realistic applications, it is tempting to search for a kinetic description of
the particle phase, in analogy with the Boltzmann treatment of the molecules of a fluid
[Cercignani 1988]. If the fluid presence can be neglected (a dense dry suspension), this is the
standard problem of granular flows. Grains replace molecules as microscopic constituents
and a kinetic equation can be written for a probability density function (pdf) f(x,Vp, t),
where x,Vp represent the possible position and velocity of the grains. In principle, the
approach is justified, yet the difficult issue here is to propose a suitable closure for the
collision term, since grains are different from molecules and notably collisions are not
necessarily elastic. In such a framework, the kinetic approach has been developed for rapid
granular flows animated by elastic or inelastic collisions that drive the distribution function
towards a local Maxwell–Boltzmann equilibrium [Jenkins 1983, Jenkins 1985, Lun 1986,
Brey 1998, Brilliantov 2010].

When the suspension is not dry, the fluid phase has to be added. If we consider that
the fluid velocity at the position of each particle is known (from numerical simulations
or analytical specification), the generalisation consists in specifying the force exerted by
the fluid on particles, which is added as an external term in the kinetic equation, but
the distribution function remains well defined as f(x,Vp, t). The kinetic equation reads
[Jenkins 1983]

∂f

∂t
+

∂

∂x
· (Vpf) +

∂

∂Vp
· [(Ap + g)f ] = C (4.124)

where Ap is the acceleration due to fluid–particle interactions, g is the gravity acceleration
and C is the collision operator. It is worth underlining that if the fluid field is not known, the
problem is not well posed and the kinetic approach, that is only x and Vp are considered as
variables, is incomplete [Minier 2015a]. The kinetic level of description can be considered
valid in a wide range of situations. In analogy with statistical mechanics terminology, this
is the mesoscopic level of description.

From the kinetic equation it is possible to derive corresponding hydrodynamic equations
through averaging over the kinetic distribution function [Huang 1963]. These equations are
purely formal if a systematic procedure to compute averages is not given and the distri-
bution function is unknown. If one considers local equilibrium, notably the Maxwellian
for elastic collisions, it is possible to resort to the Chapman–Enskog asymptotic method,
valid for the kinetic theory of dilute gases [Chapman 1970]. First works derived hydro-
dynamic equations considering Maxwellian equilibrium and in absence of the fluid-phase
force, yet small deviations from Maxwellian can be taken into account considering instead
the Sonine polynomials [Van Noije 1998, Garzó 2012]. Assuming that particles are fric-
tionless hard spheres of equal density and diameter (i.e. monodisperse) and that collisions
are nearly elastic, the conservation of mass and momentum of the hydrodynamic variables
(zeroth and first-order moments of the kinetic distribution function), in the presence of a
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constant-density fluid, are given by the following equations:

∂αp
∂t

+∇ · αpUp = 0, (4.125)

∂αpUp

∂t
+∇ · αp(Up ⊗Up + P) = αp

(
Uf −Up

τp
+ g

)
(4.126)

where αp is the particle-phase volume fraction, Up is the particle-phase velocity (it should
not be confused with Up within the paper, which stands for the modelled particle velocity),
Uf is the fluid-phase velocity and P is the particle-phase pressure tensor, given by the
second-order moments of the kinetic distribution function [Jenkins 1983]. From (4.126),
the transport equation for the particle-phase velocity tensor product can be obtained as

∂αpUp ⊗Up

∂t
+∇ · (αpUp⊗Up⊗Up) + [Up⊗∇ · (αpP)]† = αp

[
Up ⊗

(
Uf −Up

τp
+ g

)]†

(4.127)
where the symbol [·]† implies the summation of a second-order tensor with its transpose.
For non-equilibrium flows a transport equation for the pressure tensor is necessary, and
can be derived from (4.124) and (4.127):

∂αpP

∂t
+∇ ·αp(Up⊗P+Q) = −αp(P ·∇Up)

†− 2

τp
αpP+

12√
πdp

α2
pΘ

1/2(∆∗−P). (4.128)

In this equation Θ (= 1
3Tr(P)) is the granular temperature, Q is a heat-flux tensor that

contains the third-order central moments of the velocity distribution function, and the last
term on the right-hand side is the particle–particle collision term that has been closed
using the Bhatnagar–Gros–Krook (BGK) approximation [Bhatnagar 1954] extended to
inelastic collisions [Passalacqua 2011], where 0 ≤ e ≤ 1 is the coefficient of restitution, dp
is the particle diameter and ∆∗ is the second-order moments of the collisional equilibrium
distribution, given by

∆∗ =
1

4
(1 + e)2ΘI +

1

4
(1− e)2P. (4.129)

By taking one-third of the trace of (4.128), the equation for the granular temperature can
be found

∂αpΘ

∂t
+∇ · αp

(
UpΘ +

2

3
q

)
= −2

3
αpP : ∇Up −

2

τp
αpΘ−

6(1− e2)√
πdp

α2
pΘ

3/2 (4.130)

where q is the granular temperature flux, i.e. the trace of Q. This is the hydrodynamic
level of description and is inherently macroscopic.

It can be seen how the set of hydrodynamic mesoscopic equations (4.126)-(4.128) is
the Eulerian equivalent of the Lagrangian coarse-grained equation (4.9) derived within
the paper. Indeed, the Lagrangian coarse-graining operator defined in section 4.2 is the
counterpart of the kinetic distribution function defined in equation (4.124).

The exact RA transport equations may be derived taking the RA of the hydrodynamic
equations (4.125)–(4.128) and keeping in mind the PA decomposition defined in section
4.3. Taking the RA of (4.125) yields

∂〈αp〉
∂t

+∇ · 〈αp〉〈Up〉p = 0. (4.131)
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The PA particle-phase momentum equation found from (4.126) is given by

∂〈αp〉〈Up〉p
∂t

+∇ · 〈αp〉(〈Up〉p ⊗ 〈Up〉p + 〈P〉p) = 〈αp〉
(〈

Uf −Up

τp

〉

p

+ g

)
(4.132)

where 〈P〉p = 〈P〉p + 〈up ⊗ up〉p is the sum of the particle-phase stress tensor and the
particle-phase Reynolds stress tensor.

The PA particle-phase stress tensor that appears in 〈P〉p is governed by the following
equation found from (4.128):

∂〈αp〉〈P〉p
∂t

+∇ · 〈αp〉(〈Up〉p ⊗ 〈P〉p + 〈up ⊗P〉p + 〈Q〉p) =

− 〈αp〉(〈P〉p ·∇〈Up〉p + 〈P ·∇up〉p)† −
2

τp
〈αp〉〈P〉p +

12〈αp〉√
πdp
〈αpΘ1/2(∆∗ −P)〉p.

(4.133)

Taking the RA of the granular temperature transport equation (4.130) (or one-third the
trace of (4.133)) yields

∂〈αp〉〈Θ〉p
∂t

+∇ · 〈αp〉
(
〈Up〉p〈Θ〉p + 〈upΘ〉p +

2

3
〈q〉p

)

= −2

3
〈αp〉(〈P〉p : ∇〈Up〉p + 〈P : ∇up〉p)−

2

τp
〈αp〉〈Θ〉p −

6(1− e2)√
πdp

〈α2
pΘ

3/2〉. (4.134)

The transport equation for the particle-phase Reynolds stress tensor is computed by sub-
tracting the transport equation for the particle-phase mean velocity tensor product from
the RA of (4.127), yielding

∂〈αp〉〈up ⊗ up〉p
∂t

+∇ · 〈αp〉(〈Up〉p ⊗ 〈up ⊗ up〉p + 〈up ⊗ up ⊗ up〉p + 〈P⊗ up〉†p) =

− 〈αp〉(〈up ⊗ up〉p ·∇〈Up〉p)† + 〈αp〉〈P ·∇up〉†p +
〈αp〉
τp

(〈uf ⊗ up〉p − 〈up ⊗ up〉p)†.

(4.135)
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This chapter shows the application of the model derived in chapter 4 to a non-
homogeneous flow. We have addressed the problem of turbulence transition in a particle-
laden channel flow, considering the work of [Capecelatro 2018] as reference. In particular,
we have tested different mass loadings, from ϕ = 0 to ϕ = 2 showing a qualitative agree-
ment with DNS in the prediction of the energy decrease from low to intermediate mass
loadings. Specifically, these tests were useful to prove the robustness of the model, since we
have kept the same constants as in the homogeneous CIT at ϕ = 10, addressing a rather
different flow condition, where CIT is not yet present.

As for the previous chapters, we propose the work in a self-contained matter, therefore
the reader might find some repetitions in the introductory parts, e.g. in section 5.2 where
the Eulerian-Lagrangian approach for particle laden flows is explained. In addition to the
previous part of model derivation and homogeneous applications, we have rephrased the
fluid and particle model equations for the channel flow and we have proposed a numerical
scheme for the solution of the Lagrangian stochastic equations with two-way coupling and
velocity decomposition. In the previous chapters, where only homogeneous applications
were tested, a numerical solution of the Lagrangian particle equations was not needed,
but the corresponding Eulerian equations were directly simulated, since if a homogeneous
condition holds, they can be recasted in a closed form. Here, on the contrary, the problem
dependency on the wall-normal coordinate precludes the direct solution of the Eulerian
particle transport equations because of the additional unclosed transport terms. Hence,
to avoid additional modelling it is necessary to solve the Lagrangian form of the particle
equations through a Monte-Carlo simulation. The numerical scheme has several novelties
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compared to existing ones for dilute flows, namely the accounting of two-way coupling and
particle velocity decomposition.

5.1 Introduction

Particle-laden turbulent flows are present in a number of industrial and geophysical ap-
plications and their study has a long history in the literature. Depending on the vol-
ume fraction of the particle phase within the flow, different regimes have been identified
with totally different mechanisms of energy production and transfer between the phases
[Capecelatro 2018]. Several pioneering works [Wang 1993b, Eaton 1994, Marchioli 2002]
have investigated the so called dilute regime, where interphase coupling might be null or
weak and the majority of the fluid-phase turbulence is generated by mean-shear produc-
tion. In this regime particles exhibit several features dues to the interaction with turbulent
structures, like for instance their tendency to addensate in particular regions of the flow, de-
pending on their inertia, and to form clusters [Balachandar 2010]. At sufficiently high mass
loading (ϕ = (ρpαp)/(ρfαf ) ≥ 10), recent works [Capecelatro 2015] have shown that even
in homogeneous conditions, spatial fluctuations of particle clusters can generate turbulence
even in a resting fluid just under the effect of gravity. Under these conditions turbulence is
mainly fed by the interaction with particles instead of the classical mean-shear production
and the primary source of turbulence production is a term proportional to the drift velocity
and to the mean slip between the phases. At intermediate mass loadings, of order unity,
it has been found [Dritselis 2016, Gualtieri 2013, Capecelatro 2018] that particles tend to
reduce the turbulent kinetic energy of the carrier phase and relaminarization of the flow is
even possible.

The most widely used numerical approach for particle-laden flows is Eulerian-
Lagrangian (EL) point-particle simulation, where the continuous fluid phase is described
by means of a Direct Numerical Simulation (DNS) or using some turbulence modelling
(Reynolds-Averaged equations, Large-Eddy-Simulations), and the dispersed particle phase
is tracked from a Lagrangian point of view [Maxey 1983, Gatignol 1983]. This type of ap-
proach offers an extremely good approximation whenever particles are very small compared
to the smallest turbulence length scales, otherwise particle size should be taken into ac-
count explicitly through particle-resolved simulations [Burton 2005, Uhlmann 2008]. The
coupling of turbulence fluid models with the Lagrangian equations of particle motion has
been shown to suffer from several drawbacks, e.g. a wrong estimation of particle clustering
and concentration, because of the lack of informations dues to the reduced level of descrip-
tion [Marchioli 2008b, Pozorski 2009]. Several works have shown the possibility of partially
reconstructing the fluid-phase fluctuations by means of a stochastic model in the equation
of particle motion [Peirano 2006, Minier 2015b, Innocenti 2016] for dilute flows. Our re-
cent work have extended the possibility to use this class of models for cases characterized
by high mass loading. Namely it has been developed a stochastic particle model for the
case of homogeneous fully developed cluster-induced-turbulence (CIT), based on the exact
mesoscopic equations derived from the kinetic-theory of collisional fluid-particle flows. In
the present chapter we apply this model to a non-homogeneous flow, i.e. a channel flow,
comparing our results with the EL-DNS of [Capecelatro 2018]. The objective is to test the
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model to see if it is able to capture the transition of the flow that occurs when increasing
the mass loading from zero to values above unity. In section 5.2 we recall the equations
describing the fluid-particle flow and some concepts on phase-averaging.

In section 5.3 we summarise the model equation for the channel flow case; in 5.4 the
flow and geometric parameters of the flow are described; in section 5.5 a new numerical
scheme is derived for the solution of coupled stochastic equations; in section 5.6 we show
results for tracer and inertial particles with mass loadings up to ϕ = 2.

5.2 The Eulerian-Lagrangian description for particle-laden
flows

In this section we present the governing equations describing solid spherical particles in
a constant-density gas. Unlike in single-phase flows where the Navier-Stokes equations
can be directly averaged to obtain a set of mean-flow equations [Pope 2000], special care
needs to be taken for turbulent multiphase flows. The fluid and particle phase equations
are presented in the following section, followed by the model equations recasted for the
channel flow.

5.2.1 Fluid phase

Hydrodynamic equations for the fluid phase are obtained by applying a volume-filtering
operator to the microscale NS equations [Anderson 1967]. This for a constant-density fluid
gives:

∂αf
∂t

+∇ · αfUf = 0 (5.1)

and

∂αfUf

∂t
+∇ · (αfUf ⊗Uf ) = − 1

ρf
∇pf +

1

ρf
∇ · σf − αfΦ

Uf −Up

τp
+ αfg (5.2)

where Uf and pf are the instantaneous fluid-phase velocity and pressure, αf is the fluid-
phase volume fraction, ρf and νf are the fluid-phase density and kinematic viscosity and
g the acceleration due to gravity. The particle characteristic time scale τp is defined as

τp =
ρpd

2
p

18ρfνf
(5.3)

with ρp and dp being, respectively, the particle-phase density and diameter. The (instan-
taneous) mass loading Φ is defined as

Φ =
ρpαp
ρfαf

. (5.4)

The fluid-phase viscous stress tensor is defined as

σf = ρfνf [∇Uf + (∇Uf )T − 2

3
∇ ·UfI] (5.5)

where I is the identity tensor. The unclosed terms coming from the volume filtering of the
microscopic stress tensor have been neglected here since it has been shown that they do not
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influence noticeably the flow physics [Capecelatro 2015]. Moreover, concerning the effects
of the particles on the fluid, we have retained only the drag force, since we are considering
cases where ρp/ρf � 1.

From (5.2) and enforcing (5.1), a transport equation for the fluid-phase velocity tensor
product can be found

∂αfUf ⊗Uf

∂t
+∇ · (αfUf ⊗Uf ⊗Uf ) = − 1

ρf
(Uf ⊗∇pf )† +

1

ρf
(Uf ⊗∇ · σf )†

− αfΦ

[
Uf ⊗

(
Uf −Up

τp

)]†
+ αf (Uf ⊗ g)†. (5.6)

5.2.2 Particle phase

As anticipated in the introduction, we neglect the finite-size effect and hence the displace-
ment of a point-wise particle is described by the following Newton’s second law of motion
[Gatignol 1983, Maxey 1983]

dV
(k)
p

dt
=

Uf [x
(k)
p ]−V

(k)
p

τp
+ F(k)

c + g (5.7)

where x
(k)
p is the position of particle k and Fc is the collisional acceleration experienced by

the particle. Moreover, as previously said, since it is assumed that ρp � ρf , only the drag
force exerted by the fluid is considered, while all other contributions from the fluid phase
(e. g. added mass and lift forces) are neglected.

5.2.3 Phase average

Analogous to Favre averaging in variable density flows, the phase average (PA) is use-
ful in multiphase modelling. In particular, if we indicate the average with brackets
〈·〉, we will have for the fluid phase 〈(·)〉f = 〈αf (·)〉/〈αf 〉 and for the particle phase
〈(·)〉p = 〈αp(·)〉/〈αp〉, where 〈αp〉 and 〈αf 〉 = 1−〈αp〉 are respectively the averaged particle-
phase and the fluid-phase volume fractions. Fluctuations about the PA fluid velocity are
expressed as

uf = Uf − 〈Uf 〉f with 〈uf 〉f = 0 (5.8)

but in general 〈uf 〉p 6= 0. This gives for the fluid-phase turbulent kinetic energy

kf =
1

2
〈uf · uf 〉f (5.9)

Similarly, the PA can be applied to the particle-phase component. As described in
[Capecelatro 2015] and in chapter 4, in dense fluid-particle flows the particle velocity may
be conveniently decomposed into its spatially correlated and uncorrelated components, i.e.
Vp = Up + δvp. With this definition, when applying the PA to the particle fluctuating
energy, this can be decomposed into the granular temperature

〈Θ〉p =
1

3
〈δvp · δvp〉p , (5.10)
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and into the turbulent particle kinetic energy

kp =
1

2
〈up · up〉p , (5.11)

with the total fluctuating energy being

κp =
1

2
〈vp · vp〉p = kp +

3

2
〈Θ〉p (5.12)

To simplify the notation we will drop the subscript indicating the phase. The distinction
between kp and 〈Θp〉, as already said, is crucial in turbulence modelling of multiphase flows
because, for example, they have different boundary conditions and the particle–particle
collision frequency depends on Θp [Capecelatro 2016b].

If the PA operator is applied to the NS equations (5.1)-(5.2), (5.6), the exact RA
fluid-phase transport equations can be found. Similarly, if the PA operator is applied to
the mesoscopic particle-phase equations [Capecelatro 2015], one can find the RA transport
equations for the fluid phase. In this work we use the model recently derived in chapter
4, that consists in a set of Eulerian RA equations for the fluid and stochastic Lagrangian
equations for the particles. In particular, the fluid RA equations are an extension of the
single-phase Reynolds-stress model, where two-way coupling additional terms have been
derived consistently with the exact RA transport equations, and the Lagrangian particle
stochastic equations are modeled in such a way that the exact RA equations are retrieved in
a statistical sense. For more details on the model derivation and term-to-term comparison
between modeled and exact RA equations we refer the reader to chapter 4

5.3 Lagrangian pdf model for vertical channel flow

Here we provide an overview of the model equations for dense fluid–particle flows, adapted
to a vertical channel flow configuration. We consider a vertical channel flow of width W ,
with the span-wise direction denoted by x, the wall-normal direction as y ( 0 ≤ y ≤ W

), and the vertical direction as z. All statistical quantities depend only on the wall-
normal direction, y. The fluid–particle model consists in a set of Reynolds-Average (RA)
equations for the fluid phase and in a set of Lagrangian stochastic equations for the particle
phase. In the RA fluid-phase model equations the only relevant quantities for the channel
flow application are the following: 〈Uf,z〉 (mean vertical velocity), 〈uf,xuf,x〉, 〈uf,yuf,y〉,
〈uf,zuf,z〉, 〈uf,yuf,z〉 (Reynolds-stress tensor). In addition, a transport equation for the
fluid-phase dissipation εf has to be included to close the model. On the other hand, the
modeled Lagrangian quantities are yp (particle wall-normal position), δvp, Up and Us,
which are respectively the uncorrelated, the correlated in space particle velocity and the
fluid velocity seen by particles. The stream-wise and span-wise components of the particle
position are not relevant since the channel is homogeneous in those directions and particle
statistics are evaluated over slabs parallel to the channel walls.

5.3.1 Stochastic model for particle phase

The set of stochastic equations for the particle phase, expressed for a homogeneous flow,
is detailed in (5.13)–(5.19) below.

dyp = Vp,y dt = (Up,y + δvp,y) dt (5.13)
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where yp is the particle wall-normal position and Vp is the particle velocity. As previously
explained, following [Février 2005] and [Capecelatro 2015], the particle velocity is decom-
posed in a spatially correlated part Up, and in a uncorrelated residual, δvp. The former is
governed by

dUp,i =
Us,i − Up,i

τp
dt+ gi dt−

1

〈αp〉ρp
∂〈αp〉ρp〈Pij〉

∂xj
+ δvp,j

∂〈Up,i〉
∂xj

dt

− 1
TLp

(Up,i − 〈Up,i〉) dt+
√
Cpεp dWp,i.

(5.14)

The first term of the RHS of (5.14) is the drag force related to the correlated part of the
particle velocity, in which τp is given in (5.3). The second term is the effect of gravity,
g = [0, 0, g]T , while the third is a pressure term, in which 〈Pij〉 = 〈δvp,iδvp,j〉 is the
particle-phase pressure tensor. It is worth remarking that in a Lagrangian approach,
when doing an ensemble average of particle quantities over a computational cell, we are
intrinsically weighting with the volume fraction. The fourth and fifth terms are production
and relaxation, respectively, in which TLp is the particle Lagrangian time scale:

TLp =
2(

1 + 3
2C0p+fs

) kp
εp
. (5.15)

Finally, the last contribution is a diffusion term, in which Cp is a model constant related
to C0p by the relation

Cp = C0p +
2

3
fs , (5.16)

where fs is defined in the following. Finally, εp is the particle dissipation and dWp,i is a
Wiener stochastic process.

The uncorrelated residual velocity is modelled by

d δvp,i = −δvp,i
τp

dt+
1

〈αp〉ρp
∂〈αp〉ρp〈Pij〉

∂xj
− δvp,j

∂〈Up,i〉
∂xj

dt+Bδ,ij dWδ,j

−(1 + e)(3− e)
4τc

δvp,i dt+

√
1

2τc
(1 + e)2〈Θp〉 dWc,i.

(5.17)

The first four terms in the RHS of (5.17) are analogous to the ones in (5.14). In particular,
dWδ is a Wiener stochastic process and Bδ is a diffusion matrix, whose expression will be
given in the following. The last two terms take into account collisions; e is a restitution
coefficient, to be a priori specified, dWc is another Wiener process and 〈Θp〉 is the granular
temperature, defined in (5.10) Finally, τc is a characteristic time for collisions, having the
following expression:

τc =

√
πdp

6Cc〈αp〉〈Θp〉1/2
, (5.18)

Cc being a model parameter [Capecelatro 2016b].
The model for the fluid velocity seen by the particles is a generalisation of the model

for dilute flows proposed by [Minier 2001], in which we use a modified pressure gradient
weighted with the fluid-phase volume fraction, and a different diffusion coefficient which
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takes into account possible velocity difference between the fluid average velocity, 〈Uf 〉 and
the mean fluid velocity seen by particles, 〈Us〉. This results in the following equation:

dUs,i(t) = −〈αf 〉
ρf

∂〈pf 〉
∂xi

dt+Gi,j(Us,j − 〈Uf,j〉) dt− ϕ
(
Us,i − Up,i

τp

)
dt+ gi dt

+
[
εf

(
C0fbi

k̃f
kf

+ 2
3

(
bi
k̃f
kf
− 1
))

+2ϕ
〈Up,i − Us,i〉

τp
(〈Us,i〉 − 〈Uf,i〉)

−2
〈αp〉
ρf

∂〈pf 〉
∂xi

(〈Us,i〉 − 〈Uf,i〉) + 2
3C2fPSfs

]1/2
dWs,i.

(5.19)
The first term of the RHS is the pressure gradient term. The second term is a relaxation
term, where

Gij = − 1

T ∗L,i
δij +Gaij . (5.20)

T ∗L,i is a modified fluid time-scale, which takes into account the anisotropy of the flow and
particle inertia, defined by

T ∗L,i =
TLf√

1 + ζiβ2 3|〈Ur〉|2
2kf

, TLf =
2(

1 + 3
2C0f

) kf
εf

(5.21)

where ζ1 = 1 in the mean drift direction and ζ2,3 = 4 in the cross directions, β = TLf/TEf
is the ratio of the Lagrangian and the Eulerian timescales and Ur = Up−Us is the relative
velocity. kf and εf are the fluid turbulent kinetic energy and dissipation. Ga is a traceless
matrix added to generalize the model as shown in Part I:

Gaij = C2f
∂〈Uf,i〉
∂xj

. (5.22)

It corresponds to the Isotropization-of-production (IP) contribution in the Launder-Reece-
Rodi model [Launder 1975] (LRR-IP), with C2f being the IP constant. The value of the
model constant C0f is established by the relation, see [Pope 1994b]:

C0f =
2

3
(CRf − 1) . (5.23)

where CRf is the Rotta constant. The third term in (5.19) accounts for two-way coupling.
Finally, the last term is a stochastic diffusion process extended to dense flows in which
bi = TLf/T

∗
L,i,

k̃f =
3

2

∑3
i=1 bi〈(Us,i − 〈Uf,i〉)2〉∑3

i=1 bi
(5.24)

and PSfs is one-half the trace of the tensor

PSfs = − (〈(Us − 〈Uf 〉)⊗ (Us − 〈Uf 〉)〉 · ∇〈Uf 〉)† . (5.25)

The Wiener process dWs is uncorrelated with those present in the particle equations.
When the correlation 〈δvp,iδvp,j〉 is evaluated, the diffusion matrix Bδ must give the

particle-phase Reynolds-stress tensor multiplied by the proper coefficient together with a
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diagonal isotropic part. Using a Choleski decomposition we obtain:

Bδ,11 =

[
fs
εp
kp
〈up,1up,1〉+ (1− fs)

2

3
εp

]1/2

,

Bδ,i1 =
1

Bδ,11
fs
εp
kp
〈up,iup,1〉, 1 < i ≤ 3

Bδ,ii =


fs

εp
kp
〈up,iup,i〉+ (1− fs)

2

3
εp −

i−1∑

j=1

B2
δ,ij




1/2

, 1 < i ≤ 3

Bδ,ij =
1

Bδ,jj

(
fs
εp
kp
〈up,iup,j〉 −

j−1∑

k=1

Bδ,ikBδ,jk

)
, 1 < j < i ≤ 3

Bδ,ij = 0, i < j ≤ 3 ;

(5.26)

where 0 ≤ fs ≤ 1 is a parameter tuning the anisotropy of the particle dissipation tensor.
The latter is defined as follows:

εp = εp

[
fs
〈up ⊗ up〉

kp
+ (1− fs)

2

3
I

]
(5.27)

where εp is one-half the trace of εp.
The particle-phase dissipation is modelled through an Eulerian equation in analogy to

single-phase flows [Fox 2014]:

dεp
dt

= (Cε1pPSp − Cε2pεp)
εp
kp

+
C3p

τp

(
kfp
kf@p

εf − βp εp
)

(5.28)

where Cε1p, Cε2p, C3p and βp are model parameters.
To summarize, the particle-phase is described by the following system of stochastic

differential equation:
dZp = A dt+ [B] dW , (5.29)

where A is the drift term, and

Zp =




Up

δvp
Us


 [B] =



C[I] 0 0 0

0 [Bδ] K[I] 0

0 0 0 [Bs]


 dW =




dWp

dWδ

dWc

dWs


 (5.30)

C =
√
Cpεp is the diagonal diffusion coefficient in the equation of the correlated velocity

and K =
√

1/(2τc)(1 + e2)〈Θp〉 is the diagonal diffusion coefficient for the collisions in the
uncorrelated velocity equation.

5.3.2 Fluid phase model

The transport of the RA fluid-phase volume fraction 〈αf 〉 reduces to the wall-normal
component

∂〈αf 〉〈Uf,y〉
∂y

= 0. (5.31)
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Since the wall-normal velocity is null at the walls, this expression yields 〈Uf,y〉(y) = 0.
The only non-zero components of the fluid-phase momentum equation are given by:

0 = − 1

ρf

∂〈pf 〉
∂y

− 1

〈αf 〉
∂〈αf 〉〈uf,yuf,y〉

∂y
− ϕ

τp
〈Us,y〉, (5.32)

∂〈Uf,z〉
∂t

= − 1

ρf

∂〈pf 〉
∂z

− 1

〈αf 〉
∂〈αf 〉〈uf,yuf,z〉

∂y
+ νf

∂2〈Uf,z〉
∂y2

− g +
ϕ

τp
(〈Up,z〉 − 〈Us,z〉),

(5.33)

where the RA mass loading ϕ(y) varies only in the y direction. From equation (5.32) the
pressure gradient in the y direction can be determined, and it can be used in the Lagrangian
equation of Us.

There are four non-zero components of the Reynolds-stress tensor; the corresponding
governing equations are the following:

∂〈uf,xuf,x〉
∂t

=Rf,xx − εf,xx +DEf,xx +
1

〈αf 〉
∂

∂y
〈αf 〉(νft + νf )

∂〈uf,xuf,x〉
∂y

, (5.34)

∂〈uf,yuf,y〉
∂t

=Rf,yy − εf,yy +DEf,yy +
1

〈αf 〉
∂

∂y
〈αf 〉(νft + νf )

∂〈uf,yuf,y〉
∂y

, (5.35)

∂〈uf,zuf,z〉
∂t

=Rf,zz − εf,zz − 2〈uf,yuf,z〉
∂〈Uf,z〉
∂y

+DEf,zz +DPf,zz

+
1

〈αf 〉
∂

∂y
〈αf 〉(νft + νf )

∂〈uf,zuf,z〉
∂y

, (5.36)

∂〈uf,yuf,z〉
∂t

=Rf,yz − εf,yz − 〈uf,yuf,y〉
∂〈Uf,z〉
∂y

+DEf,yz +
1

〈αf 〉
∂

∂y
〈αf 〉(νft + νf )

∂〈uf,yuf,z〉
∂y

.

(5.37)

DPf,ij and DE ij are the drag production and the drag exchange tensors:

DPf,ij =
2ϕ

τp
(〈Us,z〉 − 〈Uf,z〉)(〈Up,z〉 − 〈Uf,z〉)δizδjz, (5.38)

DEf,ij =
ϕ

τp
(〈us,iup,j〉+ 〈up,ius,j〉 − 2〈(Us,i − 〈Uf,i〉)(Us,j − 〈Uf,j〉)〉). (5.39)

Rf,ij is the redistribution tensor for which the LRR-IP model has been used:

Rf,ij = −CR
εf
kf

(
〈uf,iuf,j〉 −

2

3
kfδij

)
−C2f

(
PSf,ij −

2

3
PSfδij

)
(5.40)

with
PSf,ij = −〈uf,iuf,k〉

∂〈Uf,j〉
∂xk

− 〈uf,juf,k〉
∂〈Uf,i〉
∂xk

; (5.41)
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and PSf = 1
2 trace(PSf ).

The wall-normal transport terms for the Reynolds-stress tensors are closed using a
gradient-diffusion model with the following turbulent viscosity:

νft = Cs
kf
εf
〈uf,yuf,y〉. (5.42)

The standard value for the model constant is Cs = 0.22. An anisotropic form of the dissipa-
tion tensor has been chosen, including a low-Reynolds model when the wall is approached:

εf,ij = fs
〈uf,iuf,j〉

kf
+ (1− fs)

2

3
εδij (5.43)

with
fs = exp

[
−
(ReL

150

)2]
(5.44)

and ReL = k2
f/(νf · εf ).

Quantities involving Up and Us are available from the Lagrangian particle solver. To
completely close the above set of equations describing the fluid phase we still need a
transport equation for the fluid dissipation:

∂εf
∂t

= (Cε1fPSf − Cε2fεf )
εf
kf

+ C3f
ϕ

τp

(
kfp
kf@p

εp − βfεf
)

+ C4
εp
kp
DP + (

νft
σε

+ νf )
∂2εf
∂y2

(5.45)
where Cε1f , Cε2f , C3f , βf and C4 are model constants, and DP is one half the trace of
DPf,ij . To better capture the near-wall behavior, the fluid-phase turbulence integral time
scale is defined as Tf = max(kf/εf , 6

√
νf/εf ) in the RA equations.

To initially simplify the computations, we have neglected the spatial variations of the
volume fraction, leading to replace the correct diffusive terms, in (5.34)-(5.37), with an
approximation of them

1

〈αf 〉
∂

∂y

[
〈αf 〉(νft + νf )

∂

∂y
〈uf,iuf,j〉

]
' ∂

∂y

[
(νft + νf )

∂

∂y
〈uf,iuf,j〉

]
(5.46)

It is worth remarking that this fluid model is the same of the one that have been
presented in chapter 4, with some minor modifications already present in literature
[Pope 2000], to take into account low Reynolds effects near to the wall.

5.4 Channel flow configuration

The present study considers a vertical channel flow of width 2W , with the span-wise
direction denoted by x, the wall-normal direction as y ( 0 ≤ y ≤ 2W ), and the vertical
stream-wise direction as z. The same flow parameters as in the DNS of [Capecelatro 2018]
have been chosen and are reported in table 5.1. The prescribed friction Reynolds number
is Reτ = (uτ · W )/νf = 300, where the channel half-width W is equal to 1.8cm and
uτ is the friction velocity. The numerical discretisation consists in a 1-dimensional grid
allocated along the wall-normal direction. Namely a uniform grid spacing is imposed, with
a total number of points Ny = 200, which leads to a discretisation size ∆y+ = 1.5. Here
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FLOW

x
y

z

Figure 5.1: channel geometry

the superscript + denotes normalisation with the viscous scales for length νf/uτ and time
νf/u

2
τ .

The fluid is subjected to a mean pressure gradient and to the gravity acceleration,
both in the vertical direction, the latter being constant, while the pressure gradient being
dynamically adjusted in order to keep a constant mass flow rate after the injection of
particles. Once a steady state is reached with the desired shear Reynolds number, Reτ ,
particles are injected randomly with an initial velocity equal to the mean fluid velocity
interpolated at particle position. It is worth remarking that we are dealing with statistical
particles which have only the aim of reconstructing the associated statistical quantities,
i.e. mean velocity, root mean square, etc. This means also that the particle volume
fraction is not directly connected to the total number of particles, i.e. doubling the volume
fraction does not require to double the number of particles. Indeed at the beginning of the
computation the average volume fraction 〈αp〉 (where the overbar imply spatial averaging
over the wall normal coordinate) is fixed, and then the local mean volume fraction 〈αp〉
is scaled to the initial one through a constant. The mean mass loading of the channel is
defined by:

Φ =
ρp
ρf

〈αp〉
〈αf 〉

(5.47)

The mass loading ranges from 0 ≤ Φ ≤ 2 corresponding to 0 ≤ 〈αp〉 ≤ 0.001. The density
ratio is ρp/ρf = 2000. The particle Stokes number that has been considered corresponds to
the smaller case of [Capecelatro 2018], namely Stτ = τpuτ/W = 0.21, corresponding to a
particle diameter d+

p = 0.74 , 2.39. The particle Reynolds number for this class of particles
is Rep = dpτpg/νf = 0.32. The values used in the simulations are summarised in table
5.1. Each simulation has been performed with the same number of statistical particles
Np = 5 · 104.

The nominal pressure gradient for the unladen case (which is known once the shear
Reynolds is fixed), is dynamically adjusted in the laden cases, in order to maintain a
constant bulk fluid velocity in the vertical direction,

Uf,z =
1

Wαf

∫ W

0
〈αf 〉(y)〈Uf,z〉(y) dy, (5.48)
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5.5 Numerical approach

The fluid-particle flow is simulated through an hybrid Eulerian/Lagrangian algorithm.
Fluid-phase equations are discretised on the Eulerian regular grid, while particle-phase
equations are discretised just in time through a numerical scheme suitable for stochastic
differential equations, which will be described in the following. The algorithm can be
decomposed in different steps:

• Evaluation of RA quantities of the particle phase (i.e. 〈Up,z〉, 〈Us,z〉, etc.): quantities
attached to single particles are averaged over computational cells (infinite slices par-
allel to the wall) by means of an ensemble average and reported on the Eulerian grid
nodes. Calling a(n) a quantity attached to the nth particle, the ensemble average
will be given by

〈aE〉 =
1

NE

∑

n∈∆E

a(n) NE→∞−−−−−→
∆E→0

〈a〉 (5.49)

where NE is the number of particles in the cell and ∆E is the cell size. For reliable
statistics with minimal numerical dispersion, it is desirable to minimise the size of
the averaging domain, namely ∆E → 0, and maximize the number of statistical
particles, namely NE → ∞. But since the Lagrangian equations are coupled with
the Eulerian RA fluid-phase equations, it is not required to use finer discretisation
than the Eulerian one because that would not increase the global accuracy, but
would probably lead to misleading spurious effects. Thus, for averaging Lagrangian
quantities we have used the same Eulerian grid used to discretise the fluid-phase
equations.

• Particle and fluid RA quantities, that are needed in the stochastic equations, are
interpolated at each particle position with a second order interpolation.

• Equations (5.29) are advanced in time through an Euler first order scheme for stochas-
tic equations, which is inspired by the one proposed by [Peirano 2006], but with the
addition of two-way coupling terms. Namely, two-way coupling prevents from solv-
ing the three equations of Us,i, Up,i and xp,i in cascade as typically done in dilute
flows. For this reason an initial diagonalisation of the system of equations is needed
to uncouple the variables Up,i and Us,i.

• Equations (5.33)-(5.37),(5.45) are advanced in time with a finite difference semi-
implicit scheme (viscous terms), including the two-way coupling terms not present
in the classical Reynolds-stress models for single-phase flows.

• The mean pressure gradient is updated manually every Npres steps to adjust the
mass flow rate. Too rapid changes of this terms may lead to numerical instabilities,
therefore it is more suitable to reach the desired mass flow rate by steps where each
time a steady state is reached before changing the pressure gradient.

Initial condition for the fluid phase are those obtained at steady state in the dilute case
(without two-way coupling).
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5.5.1 Fluid phase

The Eulerian equations describing the fluid phase are discretized through a finite difference
scheme, both in space and time. For the space discretization we have used a second order
semi-implicit centered scheme, where convective non-linear terms are treated explicitly,
while diffusive terms are implicit. The discretization of the mean momentum equation in
the vertical direction yields:

〈Uf,z〉n+1
i − 〈Uf,z〉ni

∆t
= −Cf −

〈uf,yuf,z〉ni+1 − 〈uf,yuf,z〉ni−1

2∆y

+
νf
〈αf 〉ni

〈Uf,z〉n+1
i+1 − 2〈Uf,z〉n+1

i + 〈Uf,z〉n+1
i−1

∆y2
− g +

ϕni
τp

(〈Up,z〉ni − 〈Us,z〉ni ) (5.50)

where Cf stands for the mean pressure gradient.
For the Reynolds stresses and the fluid dissipation we apply the same reasoning and we

obtain analogous discretised equations. The 6 fluid variables are then grouped in a single
vector

X = [〈Uf,z〉 〈uf,xuf,x〉 〈uf,yuf,y〉 〈uf,zuf,z〉 〈uf,yuf,z〉 εf ], (5.51)

of length Ny×6, and the matrix associated to the system is built. The equations are, thus,
put in the form [A]Xn+1 = b, and the system is solved to find fluid quantities at n+ 1.

No-slip boundary condition are imposed for the mean velocity and all Reynolds stresses
at the wall, while at the channel center we impose a symmetry condition, with the only
exception of 〈uf,yuf,z〉 which must be zero (antisymmetric). The boundary condition on
the fluid dissipation εf is of zero-flux at the wall and at the channel center.

It is worth remarking that the source terms due to two way coupling with the particle-
phase, are obtained by means of ensemble averages of stochastic quantities, therefore can
be noisy and be the cause of numerical issues. Two strategies are used to smooth these
quantities: using a high number of statistical particles (i.e. Np = 5 · 104 particles corre-
sponds to an average number of particles per cell Ncell = 250), and time-averaging of the
ensemble-averaged quantities.

5.5.2 Particle phase

Stochastic differential equations need ad-hoc numerical scheme for a proper discretization.
In particular [Peirano 2006] have proposed a first and a second order scheme based on the
analytical solution with constant coefficients in time. That scheme cannot be used with
the particle model that we have proposed since two-way coupling modifies the nature of
the system of SDEs, as a consequence of the appearance of Up in the equation of Us. This
leads to a complete coupling between the two equations of the particle velocity and the
fluid velocity seen which prevents us to directly find the analytical solution with constant
coefficient of Us. The strategy we have adopted has been to put the system of SDEs in
diagonal form in order to uncouple Us and Up.

We start by considering the sub-system composed by the equations of Up and Us which
can be put in vectorial form as follows (the i index stands for the three spatial dimensions)

dXi = Ci dt+ [A]iXi dt+ [B]idWi, (5.52)
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with

Xi =

(
Up,i
Us,i

)
Ci =

(
〈Up,i〉/TLp − 1

〈αp〉ρp
∂〈αp〉ρp〈Pij〉

∂xj
+ δvp,j

∂〈Up,i〉
∂xj

+ gi

− 1
ρf

∂〈pf 〉
∂xi

+ 〈Uf,i〉/T ∗L,i + gi

)
(5.53)

[A]i =

[ −(1/τp + 1/TLp) 1/τp
ϕ/τp −(1/T ∗L,i + ϕ/τp)

]
[B]i =

[
C 0

0 Bs,i

]
(5.54)

where Bs,i is the diffusion coefficient of Us,i, C the constant diffusion coefficient of Up and
dWi = (dWp,i dWs,i)

T . To simplify the derivation of the numerical scheme we have
decided to treat explicitly the production term δvp,j

∂〈Up,i〉
∂xj

, otherwise the system would
have been fully coupled, not only in the three variables Up, Us, δvp, but also in the three
directional component x, y, z, yielding a system matrix of size 9× 9 to be diagonalized for
each particle. With the actual explicit treatment, on the contrary, we have to diagonalize
three 2× 2 more handling matrices. If we diagonalize the system we obtain

dYi = [T ]−1
i Ci dt+ [D]iYi dt+ [T ]−1

i [B]idWi, (5.55)

where [T ]i and [D]i are the eigenvector matrix and the eigenvalues diagonal matrix relative
to [A]i, and the transformation is given by Xi = [T ]iYi. Now we can decouple the two
components of Yi and write the equations in the following form

dYi,1 = Ki,1 dt− λi,1Yi,1 dt+ Zi,11 dWp,i + Zi,12 dWs,i, (5.56)

dYi,2 = Ki,2 dt− λi,2Yi,2 dt+ Zi,21 dWp,i + Zi,22 dWs,i, (5.57)

where λi,j are the opposite of the eigenvalues. For each component the analytic solution
with constant coefficients in time can be found following the same reasoning adopted by
[Peirano 2006]. We look for a solution of the form

Yi,j(t) = Hi,j(t) exp(−tλi,j), (5.58)

with
dHi,j(t) = exp(tλi,j)[Ki,j dt+ Zi,j1 dWp,i + Zi,j2 dWs,i]. (5.59)

Integration between t0 and t gives

Yi,j(t) = Yi,j(t0) exp(−∆tλi,j) +
Ki,j

λi,j
[1− exp(−∆tλi,j)]

+ Zi,j1 exp(−tλi,j)
∫ t

t0

exp(sλi,j)dWp,i + Zi,j2 exp(−tλi,j)
∫ t

t0

exp(sλi,j)dWs,i,

(5.60)

where λi,j , Ki,j , Zi,jk are frozen at time t0. The analytical solution of Up and Us can be
found transforming back from Xi to Yi.

Stochastic integrals appearing in the analytical solution can be discretised by using the
Choleski algorithm. The resulting numerical scheme and the covariance matrices for the
evaluation of the stochastic integrals are reported in the Appendix 5.A.

The uncorrelated velocity, δvp, can be treated separately from the previous ones since
it has been uncoupled considering it explicitly in the Up equation. The production term
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δvp,j∂〈Up,i〉/∂xj , couples the three components of δvp, thus a diagonal decomposition
would be necessary to obtain three independent equations, one for each spatial compo-
nent. However, analogously to how we treated it in equation (5.52) we have considered it
explicitly (fixed at time step n), therefore no diagonalisation is needed. We recall that the
stochastic process of the uncorrelated velocity is described by the following equation:

d δvp,i = −δvp,i
Tδ

dt+Kδ,ij dt+Bδ,ij dWδ,j +Bc dWc,i , (5.61)

with

1

Tδ
=

1

τp
+

(1 + e)(3− e)
4τc

Kδ,ij =
1

〈αp〉ρp
∂〈αp〉ρp〈Pij〉

∂xj
− δvp,j

∂〈Up,i〉
∂xj

Bc =

√
1

2τc
(1 + e)2〈Θp〉 .

and [Bδ] defined in equations (5.26). Equation (5.61) is formally equal to equation (5.56),
therefore the same derivation is adopted, leading to the following analytical solution with
constant coefficients:

δvp,i(t) = δvp,i(t0) exp(−∆t/Tδ) +Kδ,ijTδ[1− exp(−∆t/Tδ)]

+Bδ,ij exp(−t/Tδ)
∫ t

t0

exp(s/Tδ)dWδ,j +Bc exp(−t/Tδ)
∫ t

t0

exp(s/Tδ)dWc,i.

(5.62)

Finally the equation of the particle position (5.13) can be solved by integrating it in
time and substituting the expressions of Up and δvp:

xp(t) = xp(t0) +

∫ t

t0

Up ds+

∫ t

t0

δvp ds. (5.63)

The complete expression is reported in table 5.3. Particular care must be taken in the
discretisation of stochastic integrals to obtain the correct correlations between variables.
The detailed form of the numerical scheme is reported in Appendix 5.A

5.6 Results

5.6.1 Test of consistency with tracer particles

The new numerical scheme proposed to solve the stochastic system of equations of the
particle-phase has been validated in the dilute case, i.e. at negligible volume fraction of
the particle-phase 〈αp〉 → 0. Specifically, we have tested a dilute channel with tracer
particles of vanishing inertia, i.e. τp → 0, and we have compared our results with the ones
obtained for the dilute model of Peirano et al. [Peirano 2006].

For this test case the shear Reynolds number is Reτ = 300 and the particle time scale
τp = 10−6. All other parameters are reported in table 5.1. The values of the constants
obtained from the Cluster-Induced-Turbulence (CIT) study in chapter 4 have been used
and are reported in table 5.2. For a comparison with the numerical scheme for the dilute
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Physical parameters
Ub bulk velocity 5.02 m s−1

δ channel half width 1.8 cm
dpf
dz pressure gradient 14.81 Pa

g gravity magnitude −9.81 m s−2

ρp particle density 2000 kg m−3

ρf fluid density 1 kg m−3

νf fluid kinematic viscosity 1.8× 10−5 m2 s−1

τp particle relaxation time 10−6 0.0128 s

dt time step 10−4 s

Table 5.1: Fluid and particle parameters used in the simulations, in accordance with the
Eulerian-Lagrangian DNS cases of [Capecelatro 2018]. The corresponding shear Reynolds
number is Reτ = 300.

C0f C0p Cε1 Cε2 C3f C3p C4 fs β

3.5 0.18 1.44 1.92 3.5 7.0 6.81 0.4 1

Table 5.2: Model constants.

model of [Peirano 2006], the same constants (C0, Cε1, Cε2) have been used. A side-by-side
comparison is made in figure (5.2) between the numerical scheme of [Peirano 2006] for one-
way coupling (left panels) and the new numerical scheme proposed for two-way coupling
(right panels), at ϕ = 0. From top to bottom are reported the mean velocity and the three
diagonal components of the Reynolds stresses. Statistics related to particles are obtained
averaging locally inside the cell. It can be seen that the two numerical schemes are fully
consistent and that their solutions tend to the RA one. Indeed Us and Up are exactly
superimposed and empty symbols corresponding to Us are barely visible.

5.6.2 Inertial particles with two-way coupling

Some of the cases of the EL simulations of [Capecelatro 2018] have been reproduced,
namely particles with Stokes number St = 0.21 at different mass loading, starting from
zero up to ϕ = 2. To reach the higher values of the volume fraction we have continuously
increased it starting from zero, in order to avoid numerical instabilities, and at each in-
termediate step we have waited for the simulation to reach a stationary state. We start
by showing results at mass loading zero ϕ = 0 compared to the EL-DNS ones in order to
show the initial bias between the two solutions. Indeed it is worth remembering that we
are using a relatively simple Reynolds-stress model to describe the fluid phase and that a
perfect recovery of the DNS solution cannot be expected in this case. To obtain a better
agreement more complex models might be used, as for instance the non-local elliptic re-
laxation model [Durbin 1991], but they are out of the scope of this work. In fact here we
just focus on the behaviour with the mass loading with respect to the dilute case. Fig-
ure 5.3 shows fluid-phase statistics from RANS and DNS for the average vertical velocity
and Reynolds-stresses. These figures are intended to show the initial bias between the



5.6. Results 121

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.2  0.4  0.6  0.8  1

〈 
U

z
 〉

y / δ

〈 Uf 〉
〈 Us 〉
〈 Up 〉

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.2  0.4  0.6  0.8  1

〈 
U

z
 〉

y / δ

〈 Uf 〉
〈 Us 〉
〈 Up 〉

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0  0.2  0.4  0.6  0.8  1

〈 
u

i u
j 〉

y / δ

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0  0.2  0.4  0.6  0.8  1
〈 

u
i u

j 〉

y / δ

Figure 5.2: Mean velocity and Reynolds-stresses with tracer particles (τp = 10−6) in the
dilute limit (ϕ = 0). On left panels results with the numerical scheme of [Peirano 2006], on
right panels results with the new numerical scheme. All quantities are made dimensionless
with the RANS bulk velocity Ub = 3.346m/s. RA fluid velocity (lines), fluid velocity
seen by particles (symbols), particle velocity (filled symbols). 〈uf,yuf,y〉 (red solid line),
〈uf,zuf,z〉 (blue dotted line), 〈uf,yuf,z〉 (black dash dotted line), 〈us,yus,y〉 (red empty
circles), 〈us,zus,z〉 (blue empty squares), 〈us,yus,z〉 (black empty diamonds), 〈up,yup,y〉 (red
filled circles), 〈up,zup,z〉 (blue filled squares), 〈up,yup,z〉 (black filled diamonds) .

model and the DNS and for mass loadings different from zero we will adimensionalise each
quantity with the corresponding one at ϕ = 0.

5.6.2.1 Mean velocities

We analyze here the mean velocities of the fluid-particle flow. The average velocities of the
fluid and of particles obtained with the proposed model are compared in Figures 5.4 with
the respective ones of the EL-DNS of [Capecelatro 2018], at different mass loadings. In this
figures we have adimensionalised the DNS and the model velocities with their respective
bulk velocity, i.e. Ub = 5.02m/s for the DNS, and Ub = 3.345m/s for the model. It is
evident how the model is able to capture the modulation that the particles exert on the
fluid when varying the volume fraction of the particle. The particle-phase velocity exhibits
a significant slip at the wall, as expected, and its prediction is good near the wall and at
the channel center. However, the quantitative agreement is not completely satisfactory
and the sensitivity to φ seems to be overestimated in the results obtained with the present
model. This may be due to the fact that the model constants have not been calibrated for
each case considered; conversely, the same values as for homogeneous CIT have been used.

Indeed, it is known how the drift velocity is sensitive to the model constants, see
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Figure 5.3: Mean velocity and Reynolds-stresses of the fluid-phase at ϕ = 0. Lines corre-
sponds to EL-DNS, symbols to the model. 〈uf,xuf,x〉 (red solid line, squares), 〈uf,yuf,y〉
(blue dotted line, triangles), 〈uf,zuf,z〉 (black dashed line, circles), 〈uf,yuf,z〉 (magenta dash
dotted line, downward triangles).
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Figure 5.4: Mean velocity of the fluid and particle phase at different mass loading for
St = 0.021 particles. Lines corresponds to EL-DNS, symbols to the model. Velocities
are adimensionalised with the respective bulk velocity. 〈Uf,z〉 (black dashed line, circles),
〈Up,z〉 (magenta dotted line, diamonds). ϕ = 0.2 (a), ϕ = 1 (b), ϕ = 2 (c)
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Figure 5.5: Variations of the mean fluid velocity with respect to the solution at ϕ = 0.
Lines corresponds to EL-DNS, symbols to the model. Velocities are adimensionalised with
the DNS bulk velocity. ϕ = 0.2 (solid line, ×), ϕ = 1 (dashed line, ∗). ϕ = 2 (dotted line,
◦).

[Capecelatro 2016b], and in particular to C2, which in the present case has been set to
zero. In particular, as previously said, constants have been tuned on a homogeneous CIT
case at ϕ = 10, therefore it is not surprising that at low mass loading results are not very
satisfactory. It may be inferred that increasing the mass loading the used values of the
constants should be more adequate and this could probably lead also to a better quantita-
tive agreement. If we look to the relative variations with respect to the the reference value
at ϕ = 0

Qr =
Q(ϕ)−Q(ϕ = 0)

Q(ϕ = 0)
, (5.64)

the trend with mass loading bodes well for further tests at higher values, as it can be seen
in figure 5.5

5.6.2.2 Energy

The kinetic energies for the fluid and particle phase are compared in figure 5.6. As discussed
earlier for the mean velocity a quantitative agreement is not in our expectations and a
better optimization of the constant would be needed. Nevertheless it is interesting how the
model is able to capture the decrease of the fluid kinetic energy when increasing the mass
fraction. It has been shown [Capecelatro 2018] that there is a real transition that happens
around mass loading ϕ = 2 and that above this value energy increases again. The reason
is that after a laminarization of the flow due to the presence of particles, clusters start to
become dominant, and their fluctuations induce turbulence again in the fluid phase (CIT).
Therefore it is encouraging that even if the constants have been optimised on a CIT case,
the model behaves qualitatively well also at low volume fraction, where the mechanism of
energy transfer is qualitatively different. Concerning the particle-phase energy, we see that
after an initial increase from ϕ = 0.2 to ϕ = 1, that the model describe consistently with
the DNS, at ϕ = 2 we have a further increase instead of a reduction. This could be due to
a too low dissipation of particle energy towards the granular temperature, and might be
adjusted by working on the model constants in the equation of εp.
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Figure 5.6: Energy of the fluid and particle phase at different mass loading. Lines corre-
sponds to EL-DNS, symbols to the model. Energy is adimensionalised with the DNS bulk
velocity. kf (black dashed line, circles), kp (magenta dotted line, diamonds). ϕ = 0.2 (a),
ϕ = 1 (b), ϕ = 2 (c)

In figure 5.7 we show the trend of the average fluid turbulent kinetic energy with respect
to the mass loading. As outlined above, the model predicts well the energy decrease, and
apart an initial bias, the relative variations are in very good agreement with the EL-DNS.

Finally we have looked at the anisotropy of the Reynolds stresses. In homogeneous
CIT the Reynolds stresses are highly anisotropic with the zz component significantly larger
than the other two. In the channel case we can notice how the anisotropy becomes more
and more pronounced when increasing the mass loading and thus moving towards the CIT
mechanism. The agreement with the EL-DNS results is satisfactory and the zz contribution
to kf increase from an initial 50% to above 80% for ϕ = 2.

5.7 Conclusions

In this work we show the application of the stochastic model for dense particle-laden flows
proposed in this thesis, to a turbulent channel flow. We have rephrased the model equa-
tions for this non-homogeneous application and we have proposed a new numerical scheme
for the solution of the Lagrangian stochastic equations. In particular, the particle-phase
equations have been solved numerically using a Monte Carlo approach. The Lagrangian
equations include some new numerical difficulties due to two-way coupling compared to
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Figure 5.8: Fluid phase reynolds stress components at different mass loading. Lines cor-
responds to EL-DNS, symbols to the model. 〈uf,xuf,x〉 (red solid line, squares), 〈uf,yuf,y〉
(blue dotted line, triangles), 〈uf,zuf,z〉 (black dashed line, circles). ϕ = 0.2 (a), ϕ = 1 (b),
ϕ = 2 (c)
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already existing models for dilute flows [Peirano 2006]. The particle and the fluid-seen
velocity equations are fully coupled and therefore an initial diagonalisation of the system
is needed for each statistical particle. Then, a numerical scheme can be derived based on
the analytical solution that the equations admit with constant coefficients. The scheme
includes also the additional terms that are present in the particle velocity equations not
present in the dilute model, as well as the new equations for the uncorrelated component
of the particle velocity δvp.

A turbulent channel flow at shear Reynolds number Reτ = 300 has been simulated
reproducing the same configuration of the EL-DNS of [Capecelatro 2018] that have been
taken as reference to assess the model. The numerical scheme has been first validated in
a test of consistency with tracer particles at negligible mass loading and the solution has
been compared to that obtained by the numerical scheme for dilute flows in the same flow
conditions. Direct comparison shows that the scheme reproduces exactly the same results
as those of the dilute scheme and that in both cases an excellent consistency is obtained,
i.e. the solution from the Lagrangian tracer particles recovers the one from the Eulerian
fluid RA equations.

Then, inertial particles with Stokes number St = 0.21 have been simulated at different
mass-loading reproducing some of the cases of the reference EL-DNS. The values of the
model constants have not been changed from those obtained in the fully developed homo-
geneous CIT case of chapter 4, which was for high Stokes number particles at high mass
loading ϕ = 10. Thus, the agreement with DNS results is at best qualitative, since we have
tested only cases at mass loading 0 ≤ ϕ ≤ 2. In fact, even with constants optimized on a
case based on CIT mechanism, the model meets the good trends with respect to the mass
loading. It has been discussed in [Capecelatro 2018] how different regimes are encountered
when increasing the volume fraction, from weak interphase coupling (ϕ ≤ 1) where the
dominant mechanism for generating fluid-phase turbulent kinetic energy is the mean-shear
production, to moderate coupling (2 ≤ ϕ ≤ 4) where the flow relaminarizes, to strong
coupling (ϕ ≥ 10) with CIT. Therefore, since different mechanisms are at play, we cannot
expect to obtain a quantitative agreement for all cases by keeping the same values of the
constants. Indeed we have shown that the model is able to capture some modulation of the
particles on the fluid velocity, but with the present constants the variations of the mean
velocity profile appear to be too sensitive to the mass fraction. However the constant re-
duction of turbulent kinetic energy is well captured and the repartition of energy between
the different Reynolds-stress components is in good agreement with EL-DNS results. It is
worth remarking that the strong anisotropy of the Reynolds-stress tensor in the homoge-
neous CIT is one of its key feature, therefore the trend that we have obtained up to ϕ = 2

is positive and bodes well for higher mass-loadings.
Albeit preliminary, overall results are very encouraging for future developments. It

would be of interest to test the model at higher mass loading in the CIT range and for
different particle Stokes number. Because of the low computational cost of the simulations
we could also adopt techniques of uncertainty quantification to find a suitable set of con-
stants capable of reproducing all cases with also a satisfactory quantitative accuracy in
order to make the model viable for practical applications.
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5.A Numerical scheme

Table 5.3: Analytical solutions to system (5.29) for time-independent coefficients.

Up,i(t) =
{
Yi,1(t0) exp(−∆tλi,1) +

Ki,1

λi,1
[1− exp(−∆tλi,1)] + γi,p1 + γi,s1

}
[T11]i

+
{
Yi,2(t0) exp(−∆tλi,2) +

Ki,2

λi,p2
[1− exp(−∆tλi,2)] + γi,p2 + γi,s2

}
[T12]i ,

(5.65)

Us,i(t) =
{
Yi,1(t0) exp(−∆tλi,1) +

Ki,1

λi,1
[1− exp(−∆tλi,1)] + γi,p1 + γi,s1

}
[T21]i

+
{
Yi,2(t0) exp(−∆tλi,2) +

Ki,2

λi,2
[1− exp(−∆tλi,2)] + γi,p2 + γi,s2

}
[T22]i , (5.66)

δvp,i(t) = δvp,i(t0) exp(−∆t

Tδ
) +Kδ,ij · Tδ

[
1− exp(−∆t

Tδ
)
]
+σδ,ij + σc,i , (5.67)

xp,i(t) = xp,i(t0) +
{Yi,k(t0)

λi,k
[1− exp(−∆tλi,k)] +

Ki,k

λi,k
[∆t+

1

λi,k
(exp(−∆tλi,k)− 1)]

}
[T1k]i + Πip + Πis

+ δvp,i(t0)Tδ[1− exp(−∆t/Tδ)] +Kδ,ij · Tδ
[
∆t− Tδ

(
1− exp(−∆t

Tδ
)
)]

+ Σδ,ij + Σc,i, (5.68)

The stochastic integrals are given by:

γi,p1(t) = Zi,11 exp(−tλi,1)

∫ t

t0

exp(sλi,1)dWp,i, γi,s1(t) = Zi,12 exp(−tλi,1)

∫ t

t0

exp(sλi,1)dWs,i,

γi,p2(t) = Zi,21 exp(−tλi,2)

∫ t

t0

exp(sλi,2)dWp,i, γi,s2(t) = Zi,22 exp(−tλi,2)

∫ t

t0

exp(sλi,2)dWs,i,

Γi,p1(t) =

∫ t

t0

γi,p1(s) ds, Γi,s1(t) =

∫ t

t0

γi,s1(s) ds,

Γi,p2(t) =

∫ t

t0

γi,p2(s) ds, Γi,s2(t) =

∫ t

t0

γi,s2(s) ds,

Πip(t) = Γi,p1(t)[T11]i + Γi,p2(t)[T12]i, Πis(t) = Γi,s1(t)[T11]i + Γi,s2(t)[T12]i,

σδ,ij(t) = Bδ,ij exp(−t/Tδ)
∫ t

t0

exp(s/Tδ)dWδ,i,

σc,i(t) = Bc exp(−t/Tδ)
∫ t

t0

exp(s/Tδ)dWc,i,

Σδ,ij(t) =

∫ t

t0

σδ,ij(s) ds, Σc,i(t) =

∫ t

t0

σc,i(s) ds.
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Table 5.4: First-order temporal discretization (Euler scheme)

Numerical integration of the system:

Un+1
p,i =

{
Y n
i,1 exp(−∆tλni,1) +

Kn
i,1

λni,1
[1− exp(−∆tλni,1)] + γni,p1 + γni,s1

}
[T11]i

+
{
Y n
i,2 exp(−∆tλni,2) +

Kn
i,2

λni,2
[1− exp(−∆tλni,2)] + γni,p2 + γni,s2

}
[T12]ni , (5.69)

Un+1
s,i =

{
Y n
i,1 exp(−∆tλni,1) +

Kn
i,1

λni,1
[1− exp(−∆tλni,1)] + γni,p1 + γni,s1

}
[T21]ni

+
{
Y n
i,2 exp(−∆tλni,2) +

Kn
i,2

λni,2
[1− exp(−∆tλni,2)] + γni,p2 + γni,s2

}
[T22]ni , (5.70)

δvn+1
p,i = δvnp,i exp(−∆t

Tnδ
) +Kn

δ,ij · Tnδ
[
1− exp(−∆t

Tnδ
)
]
+σnδ,ij + σnc,i , (5.71)

xn+1
p,i = xnp,i +

{Y n
i,k

λni,k
[1− exp(−∆tλni,k)] +

Kn
i,k

λni,k
[∆t+

1

λni,k
(exp(−∆tλni,k)− 1)]

}
[T1k]

n
i + Πn

ip + Πn
is

+ δvnp,iT
n
δ [1− exp(−∆t/Tnδ )] +Kn

δ,ij · Tnδ
[
∆t− Tnδ

(
1− exp(−∆t

Tnδ
)
)]

+ Σn
δ,ij + Σn

c,i, (5.72)

The stochastic integrals are simulated by (analogously for σnδ,ij and σ
n
c,i):

γni,p1 = P i11p G1,i, γni,s1 = P i11s G4,i

γni,p2 = P i21p G1,i + P i22p G2,i, γni,s2 = P i21s G4,i + P i22s G5,i

Πn
ip = P i31p G1,i + P i32p G2,i + P i33p G3,i, Πn

is = P i31s G4,i + P i32s G5,i + P i33s G6,i

where Gk,i are independent N (0, 1) random variables.

The coefficients P i11p, P
i
21p, P

i
22p, P

i
31p, P

i
32p, P

i
33p, (analogously for Pijs) are defined as:

P i11p =
√
〈(γni,p1)2〉,

P i21p =
〈γni,p1γni,p2〉√
〈(γni,p1)2〉

, P i22p =

√
〈(γni,p2)2〉 −

〈γni,1γni,p2〉2
〈(γni,p1)2〉 ,

P i31p =
〈γni,p1Πn

ip〉√
〈(γni,p1)2〉

, P i32p =
1

P i22p

(〈γni,p2Πn
i 〉 − P i21pP

i
31p), P i33p =

√
〈(Πn

ip)
2〉 − P i231p − P i

2

32p).

(5.73)
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Table 5.5: Covariance matrix

〈γ2
i,p1〉 =

1

2

Z2
i,11

λi,1

(
1− exp(−2∆tλi,1)

)

〈γ2
i,p2〉 =

1

2

Z2
i,21

λi,2

(
1− exp(−2∆tλi,2)

)

〈γi,p1γi,p2〉 =
1

2

Zi,11Zi,21

(λi,1 + λi,2)

(
1− exp(−∆t(λi,1 + λi,2))

)

〈γi,p1Πip〉 = −T [1, 1]i
2λ2

i,1

Z2
i,11

(
1− exp(−2∆tλi,1)

)
− T [1, 2]i
λi,2(λi,1 + λi,2)

Zi,11Zi,21

(
1− exp(−∆t(λi,1 + λi,2))

)

+
Zi,11

λi,1

(
T [1, 1]i

Zi,11

λi,1
+ T [1, 2]i

Zi,21

λi,2

)(
1− exp(−∆tλi,1)

)

〈γi,p2Πip〉 = −T [1, 2]i
2λ2

i,2

Z2
i,21

(
1− exp(−2∆tλi,2)

)
− T [1, 1]i
λi,1(λi,1 + λi,2)

Zi,11Zi,21

(
1− exp(−∆t(λi,1 + λi,2))

)

+
Zi,21

λi,2

(
T [1, 1]i

Zi,11

λi,1
+ T [1, 2]i

Zi,21

λi,2

)(
1− exp(−∆tλi,2)

)

〈Π2
ip〉 = −T [1, 1]2i

2λ3
i,1

Z2
i,11

(
1− exp(−2∆tλi,1)

)
+
T [1, 2]2i

2λ3
i,2

Z2
i,21

(
1− exp(−2∆tλi,2)

)
+

(T [1, 1]iZi,11

λi,1
+
T [1, 2]Zi,21

λi,2

)2
∆t+ 2

T [1, 1]iT [1, 2]i
λi,1λi,2(λi,1 + λi,2)

Zi,11Zi,21

(
1− exp(−∆t(λi,1 + λi,2))

)

− 2T [1, 1]i
Zi,11

λ2
i,1

(
T [1, 1]i

Zi,11

λi,1
+ T [1, 2]i

Zi,21

λi,2

)(
1− exp(−∆tλi,1)

)

− 2T [1, 2]i
Zi,21

λ2
i,2

(
T [1, 1]i

Zi,11

λi,1
+ T [1, 2]i

Zi,21

λi,2

)(
1− exp(−∆tλi,2)

)





Part III

Bubbly flows





Chapter 6

Bubbly flows: phenomenology of free rise
and bubble-induced turbulence at high

Reynolds numbers.

In this chapter, as outlined in part I, we have analyzed a different type of multiphase flows,
namely bubbly flows. In continuity with part II the objective is to study the generation of
turbulence by a dispersed phase, which in the present case is represented by gas bubbles
rising within a liquid. The driving motor that induces the agitation in the carrier phase is
gravity, as in CIT, but resulting in the present case in a reverse direction of the velocity
of the bubble that rises under the effect of buoyancy. A totally different approach and
methodology have been adopted with respect to previous chapters, namely we have carried
out direct numerical simulations of the bubbly flows. Indeed, turbulent bubbly flows are
so complex that there is no realistic numerical experiment so far concerning the collective
dynamics of many bubbles. Important experiments have been carried out in the last
decades, yet a precise understanding of the mechanisms underlying the phenomenology
encountered is still lacking. Hence before coming up with some models, fully resolved
numerical simulations are needed in order to provide useful analysis. In particular we have
investigated some physical aspects about the wake agitation that have been put forward
in a recent experiment [Riboux 2010]. In the perspective of providing a systematic and
consistent study, we have followed some benchmark tests available in the literature on the
numerical simulation of rising bubbles to assess the accuracy of the flow solver Basilisk
in this configuration. In particular we have verified the possibility of using numerical
grids with an adaptive refinement, which is one of the key feature of the Basilisk code.
It is evident that having a grid with an high level of refinement only where it is required
(inside bubbles, in the neighborhood of the interface and in the wakes) can be a great
advantage, especially if bubbles are concentrated in a restricted area of the domain as is
in bubble columns. This will make more accessible also the possibility of resolving large
domains where bubbles are free to evolve and interact and have sufficient space to attain
fully developed wakes [Cano-Lozano 2016]. However, deciding some criterion for the grid
adaptation is not trivial and one has to make sure not to under-resolve the problem if a
certain degree of accuracy has to be achieved.

At this stage this part is not yet in preparation for publication, since we are waiting for
some simulations to be fully accomplished for a further analysis. We present thus the results
of the 2-dimensional numerical simulations concerning the bubble column configuration at
a fixed volume fraction and varying the bubble diameter. A fully resolved 3-dimensional
simulation with 256 bubbles is still running and results will be analysed as soon as possible.
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6.1 Introduction

Multiphase flows are ubiquitous in nature and represent one of the main subject of study
in fluid mechanics [Prosperetti 2009]. Among the various kind of multiphase flows, bubbly
flows represent a challenging and key field of investigation, both for their fundamental
dynamics and their numerous applications in engineering and environmental applications
[Prosperetti 2004, Magnaudet 2000, Ern 2012].

In particular, bubble columns offer a privileged configuration to be studied. Indeed,
they are conceptually simple: a gas is sparged at the bottom of a liquid-filled vessel and
the bubbles rise under the effect of buoyancy. High transfer rates can then be attained
owing to the increased contact area between the gas and the liquid phases, and to the liquid
agitation induced by the bubble motion. On one hand, they are employed in industrial
device in relation to efficient heat and mass transfer characteristics. On the other hand,
this configuration appears as good benchmark to analyse the fundamental features of the
bubble dynamics, as highlighted in the pioneering work of [Lance 1991]. Since a reliable
prediction of bubble residence time and available interfacial area is crucial for an accurate
design of industrial devices, the understanding of bubble flow dynamics is essential. In
particular, due to the large density difference between gases and liquids, under the effect of
buoyancy the bubbles rise with a velocity considerably different from the liquid. They thus
induce velocity disturbances in the liquid that collectively generate a complex agitation. In
generic flows, this bubble-induced agitation, also called pseudo-turbulence, is often coupled
to a turbulent agitation inherent to the liquid phase. However, the understanding of the
pure bubble-induced agitation, without a previous turbulent motion of the liquid, is key
to grasp the physics of more complex flows.

For this reason, several experimental studies have been carried out to investigate
this kind of problem in different configurations [Zenit 2001, Martínez-Mercado 2007,
Riboux 2010]. This research has highlighted some characteristics of the bubble-induced
agitation. When a single bubble is present, it has been showed that the average rise veloc-
ity is a non-monotonic function of the diameter and, more amazing, that path instability
may occur producing complex oscillating trajectories [Mougin 2001, Ern 2012]. Further-
more, the bubble produces a velocity disturbance in the surrounding fluid. In particular,
at large Reynolds number, a flow disturbance that decays as r−3 [Batchelor 2000], and a
wake whose mean velocity decays with the vertical distance from the bubble z as z−1 in
a laminar flow [Batchelor 2000] and as z−2/3 in a turbulent one [Pope 2000]. This is an
important fact, since it means that the superposition of non-interacting bubbles leads to
the divergence of the variance of the liquid velocity with the number of bubbles. However,
it is an experimental evidence [Risso 2002] that at moderate-to-large Reynolds numbers
(Re & 100) there is no such a divergence of the velocity variance because the wakes of
interacting bubbles are attenuated. That shows that at large Reynolds numbers the dom-
inant mechanism underlying liquid agitation is the nonlinear wake interaction. Therefore,
the results obtained with a small amount of bubbles which interact only weakly are of a
little relevance to understand large-Reynolds number flows, typical of experiments.

When many bubbles are present, the main phenomenology is the following [Risso 2018]:
(i) At variance with particle-laden flows [Toschi 2009, Balachandar 2010], no significant
clustering is observed, when a homogeneous swarm of spherical bubbles are considered.
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(ii) The average rise velocity of the bubbles is lower than in the isolated bubble case, and
the dependence on the volume fraction is still not clear. (iii) Bubble velocity fluctuations
seem to present a strong asymmetry between horizontal and vertical fluctuations. (iv)
The agitation of the liquid clearly increases with the bubble volume fraction. Its energy
spectrum (E(k)) appears to display a crossover between a steeper (E ∼ k−3) slope at large
scales and a milder one at small scales (E ∼ k−5/3). (v) The probability density function
(pdf) of the vertical fluctuations is strongly skewned and thus non-gaussian, while the
horizontal one is symmetrical and more near to a gaussian curve.

These characteristics have been revealed through important experiments which are far
from being easy. For instance, it is difficult to avoid any external effects on the swarm,
to impose precise homogeneous conditions and monodispersity. Furthermore, even though
the measurement tools have been largely improved in the last decades, not all the above
statement have the same robustness. In particular, measurements of the bubble and liquid
fluctuations are very difficult and surely affected by large errors. Hence, an assessment of
the above phenomenology is still important. Furthermore, some of the physical mecha-
nisms that cause this dynamics remain to be unfold. Notably, the scale dependence of the
spectrum remains unclear and the precise mechanism underlying the turbulence production
is not known.

From the above consideration, it appears clear that numerical experiments, i.e. di-
rect numerical simulations (DNS), of such flows are highly attractive since they permit to
analyse idealised configurations and, thus, complement the experiments to understand the
fundamental physics, and also they provide key guidelines in view of the development of
more approximate models. For such reasons, huge efforts have been made to develop effi-
cient numerical approaches in the last decades [Tryggvason 2011]. In particular, numerical
simulations of columns of few tens of bubbles in channel flows have been carried out in many
configurations at moderate Re number [Esmaeeli 1998, Esmaeeli 1999, Esmaeeli 2005], and
more recently some tentative has been made to simulate homogeneous swarms at higher
Reynolds number flows with very few bubbles [Roghair 2011, Roghair 2013].

However, several issues afflict DNS of bubbly flows. As it has been said before, the
numerical experiments must consider a sufficiently large number of interacting bubbles to
represent soundly the dynamics of realistic flows at high Reynolds numbers. Secondly, it
has been clearly pointed out in a recent important work [Cano-Lozano 2016] that under-
resolving the bubble dynamics, that means to use an insufficient number of mesh nodes to
describe each bubble, affects dramatically the results obtained. The differences between
real DNS of bubbly flows and under-resolved numerical simulations are unfortunately not
only quantitative but also qualitative, which means that under-resolved simulations fail to
capture even the régimes of the flow. Moreover, in the cited work a large campaign on
numerical simulations neatly indicates that the number of points required to discretize the
problem grows almost linearly with the Re number. The final drawback of DNS is that,
as in general for numerical simulations of turbulent flows [Pope 2000], yet even more truly
for multiphase flows, it is difficult to achieve Reynolds numbers as large as those obtained
in experiments. Furthermore, we shall show in this work, that to have realistic value of the
surface tension and of the density ratio between the liquid and gas phases is also necessary
to avoid spurious effects. At the light of such constraints, while simulations carried out at
small Re can be considered confidently, a well resolved DNS of bubble swarm at high Re
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is still lacking.
Concerning the phenomenology, the issue of the dependence of the rise velocity from

the bubble volume fraction has been recently addressed in the case of moderate Re and
with ordered arrays, which can be simulated using a single bubble [Loisy 2017]. We will
assess some of those results performing with our different numerical approach some of the
numerical experiments . On the other hand, our main aim will be to focus on the statistical
properties of the flow, using both two-dimensional and three-dimensional configurations.
Notably, we compute the statistics in the region within the bubble swarm. Both energy
distribution and velocity pdfs will be analysed.

6.2 Mathematical formulation

6.2.1 Problem statement

We investigate in this work the dynamics of a monodisperse suspension of bubbles rising
under the action of buoyancy in a fluid initially at rest. The density, the viscosity and the
surface tension of each fluid is considered constant during each numerical experiment. The
gravity is assumed to be always aligned in the vertical direction and the possible influence
of the orientation of the gravity is out of the scope of the present work. Different con-
figurations of increasing difficulty are studied. First we consider an infinite homogeneous
suspension, which is represented by the periodic repetition of cubic unit cell containing a
given number of bubbles. When a single bubble is considered, we describe an ordered array
of bubbles. Then we consider a more realistic configuration, in which a given number of
bubbles are initially randomly distributed at the bottom of a channel and rise through it.
This problem is analyzed in two dimensions varying several parameters and then is studied
in three dimension at a high Reynolds number.

Many physical parameters may characterize the problem: the gas volume fraction, the
number of bubbles, the diameter of the bubbles d calculated as the diameter of the sphere
of equivalent volume, the gravity acceleration g, the viscosity of the two fluids µb, µl, their
densities ρb, ρl, and the surface tension σ. We use the subscripts b for bubbles and l for
liquid. Generally, the problem is physically described in terms of the dimensionless groups.
Four dimensionless groups can be formed in addition to the number of bubbles and the
volume fraction. Two are the density and viscosity ratio, ρb

ρl
and µb

µl
. We briefly analyse

the impact of the density ratio, but in almost all simulations we have fixed ρb/ρl = 10−3

and µb = µl = 10−2, which are typical values for air bubbles in water.
The other two dimensionless groups are the Galileo number

Ga ≡ ρl|∆ρ|gd3
b

µ2
l

, (6.1)

where ∆ρ = ρb− ρl, or equivalently the Archimedes number Ar ≡
√
Ga, and the Bond (or

Eotvos ) number

Bo ≡ |∆ρ|gd
2
b

σ
(6.2)

These numbers indicate the importance of buoyancy and surface tension and do not include
the velocity of the bubble. This allows to fix them a priori on the basis of the problem
chosen, which is useful for numerical experiments.
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When bubbles move, a typical velocity-scale has to be added among the relevant quan-
tities. We compute at each time the velocity of each volume of fluid for both phases. From
that, we can compute the average of the bubble velocity in the whole domain 〈Ub〉. Thus,
it is possible to define the Reynolds number based on this velocity

Re ≡ 〈Ub〉db
νl

, (6.3)

where νl is the kinematic viscosity of the liquid. It is also possible to use another group
which compares the dynamic effects with the surface tension, the Weber number

We ≡ ρb〈Ub〉2db
σ

=
BoRe2

Ga
. (6.4)

It is important to note that the mean bubble velocity may or may not reach a stationary
state in our numerical experiments, so that in general the dynamic dimensionless numbers
are dependent on time Re = Re(t).

In the first part of this work, we analyse the relation U = U(Nb, φ,Bo,Ga) comparing
with recent numerical studies obtained with different methods. We will measure also the
impact of the density ratio, notably on the rate of coalescence. In the second part, we will
study the phenomenology of some realistic configuration with the parameters fixed as in
typical experiments.

6.2.2 Governing equations

Both fluids are governed by Navier-Stokes equations, which in the incompressible read

∇ · ui = 0 (6.5)
∂ui
∂t

+∇ · (ui ⊗ ui) =
1

ρi
(−∇pi +∇ · (2µiDi)) + fi , (6.6)

where Di = [∇ui + (∇ui)T]/2 is the symmetric gradient tensor, the subscript i indicates
each phase i = b, l, and fi represents the acceleration due to volume forces, which in the
present case are the gravity fi = g.

In addition, the appropriate boundary conditions at the interface between the phases
are to be imposed. As common for incompressible viscous flows no slip conditions are
imposed at interfaces [Tryggvason 2011]. Moreover, since we do not consider any phase
change, the interfacial condition for viscous fluid is simply ub = ul, or

[u]S = 0 (6.7)

where we have used the jump notation, i.e. the notation [x]S = xb − xl. When the
surface tension is constant, as considered in the present work, the normal stress displays
a discontinuity at the interface, whereas the shear stress is continuous. The jump at the
interface is given by

[p] = σκn , (6.8)

where n is the unit normal vector defined as directed outward from the bubbles, and κ

is the main curvature of the interface. This set of equations are solved through the code
Basilisk (http://basilisk.fr) with the numerical methods that have been described in
section 2.5.1. We recall in the following just a few key features of the method.

http://basilisk.fr
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6.3 Numerical method

Basilisk is an ensemble of solver-blocks written using an extension to the C programming
language, called Basilisk C, useful to write discretization schemes in Cartesian grids (see
http://www.basilisk.fr/).

Space is discretized using a Cartesian (multi-level or tree-based) grid where the variables
are located at the center of each control volume (a square in 2-D, a cube in 3-D). The
possibility to adapt locally the grid is key to efficiently simulate some multiphase flows
[Popinet 2003]. Criteria on the velocity and on the density of each phase are used to
decide the local refinement of the grid, possibly constraining it with some maximum level.
In particular, int this way it is possible to have well resolved bubbles without using the
same refinement far from them, where the dynamics is simpler and small scales are not
present.

In our work, Navier-Stokes equations are integrated by a projection method
[Chorin 1969]. Standard second-order numerical schemes for the spatial gradients are
used [Popinet 2003, Popinet 2009, Lagrée 2011]. In particular, the velocity advection
term ∂j(ujui)

n+1/2 is estimated by means of the Bell-Colella-Glaz second-order unsplit
upwind scheme [Popinet 2003]. In this way, the problem is reduced to the solution of a
3D Helmholtz-Poisson problem for each primitive variable and a Poisson problem for the
pressure correction terms. Both the Helmholtz-Poisson and Poisson problems are solved
using an efficient multilevel Poisson [Popinet 2003].

The time advancing is made through a fractional-step method using a staggered dis-
cretization in time of the velocity and the scalar fields [Popinet 2009]: one supposes the
velocity field to be known at time n and the scalar fields (pressure, temperature, density)
to be known at time n− 1/2, and one computes velocity at time n+ 1 and scalars at time
n+ 1/2. Basilisk uses a variable time-step to ensure the following CFL condition

(
u

∆x
+

v

∆y
+

w

∆z

)
∆t ≤ CFL (6.9)

is verified.
With regard to the interface between the fluids, it is tracked with a Volume-Of-Fluid

method [Hirt 1981, Scardovelli 1999] (see section 2.5.1).
Periodic, no-slip and free-slip boundary conditions will be imposed in the different

computations considered.
More details about the numerical method can be found in section 2.5.1.

6.4 Arrays of bubbles

6.4.1 Validation tests

To assess the accuracy of the numerical code for the simulation of two-phase bubbly
flows, we have reproduced several literature test cases [Esmaeeli 1998, Esmaeeli 1999,
Sangani 1987] which have been considered very recently with another numerical approach
[Loisy 2017]. In particular we have focused on the configuration of array of rising bub-
bles, which, in the presence of gravity acceleration, start to rise inside a heavier fluid at
rest, due to the buoyancy force. After an initial transient where bubbles accelerate, the
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forces that the surrounding fluid exerts on the bubbles reach an equilibrium condition and
bubbles velocity attains a steady value. Depending on bubbles size, surface tension and
density, they may follow non-rectilinear paths, with periodic or chaotic lateral oscillations
[Cano-Lozano 2016]. All benchmark tests consists in a regular array of bubbles, which
numerically is reproduced by a single bubble in a periodic cell. Changing the cell size with
respect to the bubble size, we can adjust the volume fraction of the array. It is worth
remarking that since the computational domain is unbounded in all directions, an addi-
tional body force −〈ρ〉g must be added to avoid that the system accelerates in the vertical
downward direction.

As a first validation, we reproduced the simulations of [Esmaeeli 1998] of a 2-
dimensional array of rising bubbles with the following non-dimensional numbers:

Ar = 5.6 Bo = 1 ρb/ρl = 0.05 µb/µl = 0.05

The volume fraction is ϕ = 0.125. A regular grid with different level of resolutions has been
tested to check the convergence of the numerical code. The details of the different grids
(number of total grid points N , and number of grid points-per-bubble diameter, db/∆)
are reported in table 6.2. Figure 6.1 shows the rise Reynolds number Re = (ρlUbdb)/µl
for the actual computation compared to figure 1 of [Esmaeeli 1998]. The transient rise is
reproduced accurately, with the rise Reynolds attaining its steady value at approximately
t = 3. We show here also that the 642 grid is not fully converged as in[Esmaeeli 1998], but
the steady value of Re for the converged grid (the 1282) is in excellent agreement.

N 322 642 1282 2562

db/∆ 12.5 25 50 100

Table 6.1: Grid resolutions for the 2-D array of bubbles of [Esmaeeli 1998]
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Figure 6.1: Time evolution of the Reynolds number of the rising deformable bubbles at
moderate Reynolds number, for different grid resolution. Present results on the left panel,
DNS by[Esmaeeli 1998] on the right panel.

We have tested the numerical code also for moderate Reynolds number, reproducing the
test case proposed by Esmaeeli et al. in [Esmaeeli 1999]. For this case the flow parameters
are

Ar = 29.9 Bo = 2 ρb/ρl = 0.1 µb/µl = 0.1 .
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The details of the different grids are reported in table 6.2. Results are shown in figure

N 163 323 643 1283

db/∆ 10 20 40 80

Table 6.2: Grid resolutions for the 3-D array of bubbles of [Esmaeeli 1999]

6.2, where they are compared against both the original DNS and the more recent one
[Esmaeeli 1999, Loisy 2017]. We have used a more refined grid with respect to both other
DNS to test the convergence in a rigorous way. We have found, as for the 2D case, that
the grid convergence is not achieved with the number of points indicated in previous works
[Esmaeeli 1999, Loisy 2017], where the author indicate 30 points per diameter as sufficient.
We have also compared our simulations with the theory of Sangani [Sangani 1987] for the
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Figure 6.2: Time evolution of the rise Reynolds number for different grid resolution.
Present results on the left panel, Loisy et al. results on the right panel. In the right
panel "prior DNS" stands for Esmaeeli et al. , while present DNS for Loisy et al.

Stokes flow regime. The configuration consists in a cubic array of spherical bubbles at
different volume fraction. The resolution adopted for this test case is db/∆ = 64 and the
non-dimensional numbers of the simulation are:

Ar = 0.15 Bo = 0.38 ρb/ρl = 0.1 µb/µl = 0.1 .

In Figure 6.3, we plot the steady state velocity of the bubble array normalized with the ve-
locity of a single isolated bubble. The agreement between the numerical and the analytical
solution U

U0
= 1− 1.1734µ∗φ1/3 +O(φ), is excellent.

6.4.2 3-D oblique rise of bubbles

The last set of test cases is the oblique rise of periodic arrays of bubbles performed by
[Loisy 2017], which pointed out that for certain values of the non-dimensional parameters,
bubbles that in an unbounded liquid would follow a straight vertical path, can experience
an oblique trajectory (not aligned with gravity) at certain volume fractions. In particular,
in these regimes fluctuations enter at play and affect the bubble dynamics. Analytical
considerations support the possibility of a non-trivial vertical path indicating a possible
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Figure 6.3: Steady state bubble velocity for an array of rising bubbles in Stokes flow
conditions at different volume fraction (symbols), compared to the analytical solution of
Sangani [Sangani 1987].

transition for Ar ≈ 20. In particular three different oblique regimes have been found:
(a) a steady oblique rise, (b) an oscillatory oblique rise, with a bubble motion oscillating
around a straight oblique path, and (c) a chaotic oblique rise. Such a behaviour had
been previously noticed numerically [Sankaranarayanan 2002], but using a diffuse interface
method and a small density ratio.

In the present work we have simulated again the configurations that gave origin to the
three regimes in [Loisy 2017] with a slightly increased resolution, to test if our numerical
approach confirms the previous results, which were obtained with a level-set method and
a diffuse interface. The parameters of the simulations are reported in table 6.3. The

Case Ar Bo φ

a 29.9 2 0.008

b 40.7 0.38 0.13

c 40.7 0.38 0.038

Table 6.3: Non-dimensional parameters for the 3D-oblique test case.

density ratio and the viscosity ratio between the two phases are the same for all the cases,
ρb/ρl = 0.005, µb/µl = 0.01. The number of points is varied with the domain size in
order to get always the same resolution db/∆ = 40 for all cases. Results are shown in
figures 6.4-6.5, where for each regime we compare our results to those of previous DNS by
[Loisy 2017].

The correct regime is captured in each case, while the transition may occur at a different
time with respect to [Loisy 2017] since it is triggered by numerical asymmetry. The steady
value of the different components of the Reynolds number is in excellent agreement for
cases (a) and (b), while in case (c) where a steady regime is not reached, we can quantify
the accuracy by comparing the oscillation period.
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Figure 6.4: Time evolution of the three component of the rise Reynolds numbers for two
different cases of steady oblique rise, regime (a). Present results on the left panel, DNS
by [Loisy 2017] on the right panel.

6.5 Technical issues

In the previous section, we have analysed some cases of ordered arrays of bubbles to validate
the numerical approach and compare with recent simulations carried out with a different
method. In this section, we pursue the technical analysis considering some issues which
are crucial from a computational point of view and may significantly alter the results of
the simulations of turbulent multiphase flows. In particular, we have seen that the density
ratio between the two phases is generally very high (about 1000) in realistic flows. That
brings a considerable computational effort to guarantee the convergence of the method,
and therefore it may be tempting to use smaller ratio in order to speed up simulations,
considering the complexity of multiphase flows. In some cases, the correct physics can be
correctly reproduced with a density ratio well below the realistic value [Diotallevi 2009],
but that cannot be claimed in general. This is clearly a key issue for direct numerical
simulations of multiphase flows.

The other issue we will analyse is the impact of the grid refinement. While convergence
tests have been made for all the previous test-cases, it is yet useful to investigate this
point in more complex configurations. Indeed, multiphase flows at high Reynolds number
cannot be trustfully reproduced without a sufficient resolution [Cano-Lozano 2016]. This
issue deserves thus particular attention.
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regime (c), oscillatory oblique rise. Present results on the left panel, DNS by [Loisy 2017]
on the right panel.

6.5.1 Coalescence

We study first from a qualitative point of view the coalescence of two bubbles. The study
of fluid particle dynamics (coalescence and breakup) is of continuous interest because of
its relevance to many industrial applications involving multiphase flow. In effect, it has
been empirically shown that the dynamics of bubbly flows may be dependent from coa-
lescence and breakage phenomena, changing the distribution of diameters and the number
of bubbles. Together with breakup and mass transfer, coalescence is responsible for the
evolution of drop and bubble sizes in multiphase flows. Compared to breakup, coalescence
is considered more complex, since it involves not only interactions of bubbles with the
surrounding liquid, but also those between bubbles themselves once they are brought to-
gether by the external flow or by body forces. This is a vast subject of research [Liao 2010]
and a precise analysis of this issue is out of the scope of the present work. However, it is
important to have some control on this process to avoid spurious effects and it constitutes
an interesting configuration to test the influence of numerical set-up. Generally speaking,
in present attempts to carry out DNS of bubbly flows there are some methods which pre-
vent the possibility of coalescence [Tryggvason 2011, Loisy 2017]. This is convenient from
a practical point of view, but it cannot be considered entirely satisfactory since in general
turbulent flows in presence of buoyancy, coalescences may happen. On the contrary, VOF
methods, like that used in the present work, tend to make the coalescence rate too high
[Scardovelli 1999], if numerical parameters are not well controlled. In a recent work, co-
alescence has been observed in VOF simulations of turbulent droplet flows [Dodd 2016],
but the issue of a possible spurious impact of numerics has not be considered.

Here we consider for this purpose two bubbles in a two-dimensional box of side 20 times
the diameter of the bubbles with periodic boundary conditions. The physical parameters
are fixed in such a way that dimensionless numbers are Ar = 30, Bo = 0.1 and µb/µl = 100.
Unfortunately, due to the limited understanding of the processes underlying coalescence,
it is still neded to resort to empirical correlations. To date, no satisfactory models taking
into account all mechanisms and applicable to a wide range of conditions are available in
literature [Jakobsen 2005]. Based on physical intuition and empirical evidence, the rate
of coalescence depends on the diameters of the bubbles, their relative velocity and the
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Figure 6.6: Contour plot of the vorticity at three instants of time. The grid is highlighted
to show the degree of refinement and to clearly indicate the two bubbles. Right column:
simulation with ρl/ρb = 100; Left column: simulation with ρl/ρb = 1000.

turbulent rate of energy dissipation, in turbulent flows. Obviously, statistically the rate
of coalescence depends on the volume fraction of the bubbles. We consider two bubbles
of equal diameter put initially at a distance of 1.5 diameters. The lower bubble is at
0.75 diameter from the bottom. The two bubble are initially at rest in a quiescent fluid.
They start moving because of buoyancy, inducing vorticity fluctuations and creating wakes
behind. From a physical point of view, those are precisely the mechanisms which bring
bubbles to collide and, with a certain probability, to coalesce. With the physical parameters
and initially condition chosen, the probability of coalescence is not zero but quite low, on
the basis of standard empirical models [Prince 1990]. Hence we shall consider our numerical
approach satisfying if coalescence is avoided in this case. In figure 6.6, we show three times
of this dynamics, displaying also the vorticity field, for the first configuration studied. In
this case, as highlighted in the figure, we have used a very high refinement of the grid,
with a maximum refinement for the adaptive grid of 213 points, which we are sure to
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be at convergence. Thus, we can assess the influence of the density ratio without other
possible parameters at play. In the left column of the figure we plot the results obtained
considering a density ratio of ρl/ρb = 100, when coalescence happens. The coalescence
process appears to go forward following several subprocesses, as expected by the theory:
(1) the two bubbles collide, trapping a small amount of liquid between them; (2) bubbles
keep in contact till the liquid film drains out to a critical thickness; (3) the film ruptures
resulting in coalescence. Our simulations seem to indicate that in this particular case,
dominated by buoyancy the coalescence happens following the classical drainage model
[Shinnar 1960]. Indeed turbulent fluctuations and relative velocity are not sufficient to
trigger a faster process. In the right column, we show the same cases obtained with a
density ratio of ρl/ρb = 1000. In this case, the coalescence does not occur. We have
investigated different density ratio in the range ρl/ρb ∈ [10, 1000] (not shown here for the
sake of clarity), and it turns out that the threshold for coalescence is about ρl/ρb = 500.
Our results therefore point out that to can reproduce multiphase flows, a realistic density
ratio is mandatory, while it possibly may be slightly less than the actual one.

Once analysed the impact of the density ratio, we focused on the grid. We have
carried out the simulation of the same test-case taking the density ratio ρl/ρb = 1000,
with different grids, coarser than the previous one that had a maximum refinement of
NMax = 213 points. We have found that convergence is attained with NMax = 212, when
the results are the same of those obtained with NMax = 213, and shown in figure 6.6. Yet,
as shown in figure 6.7, in the simulation with NMax = 211 the coalescence occurs even
with the correct density ratio. Furthermore, we can see from the figure 6.7 that both the
mechanisms and the typical time-scales of the process leading to the coalescence are the
same as those displayed in the left column of figure 6.6. In particular, the vorticity field
at the end of the process appears to be almost identical. That means that, concerning the
coalescence rate, a too coarse grid will act in a similar way to a density ratio too low. It
is important to underline here that the strong impact of the grid is related to the high Ar
number used in the simulations.

In some cases, it can be nevertheless relevant to avoid a priori coalescence, although the
theoretical rate may be slightly more than zero. This can be the case, when one would like
to focus on the the study of some theoretical mechanisms, through experiments, without
considering a particular realistic configurations. For such cases, an algorithm has been
implemented in Basilisk to completely forbid the coalescence.

6.5.2 Grid refinement effect

We have then studied in a more quantitative way the impact of the grid used.
To do that, we have replicated the results obtained by [Cano-Lozano 2016] to study the

behaviour of a single bubble rising “in a large tank” i.e. far from any boundaries. We have
used only the same physical parameters that we would like to use for the realistic bubble
column. Namely, we fix Ar = 185 and Bo = 0.28. The acceleration of gravity is set to
unity, which gives a characteristic rise velocity also of order unity, which gives a maximum
time for the simulation comparable to the domain size. In this regime, it turns out that
bubble trajectories are between the rectilinear and the chaotic, as found in the original
paper [Cano-Lozano 2016].

As shown in figure 6.9, we have simulated the bubble rise with three different grids.
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Figure 6.7: Contour plot of the vorticity at three instants of time. The grid is highlighted
to show the degree of refinement and to clearly indicate the two bubbles. It is possible
to see that even with the present grid which is well refined (NMax = 211) some details of
the wake and of the film surrounding the bubbles are lost with respect to the more refined
simulations displayed in Fig. 6.6 right column.
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Figure 6.8: Mesh adaptation around a rising bubble with three different error threshold on
the velocity: top panel err = 0.01, mid panel err = 0.003, bottom panel err = 0.001.
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Figure 6.9: On the left panel time evolution of the bubble rising Reynolds number for the
three simulations with different threshold for the grid refinement. On the right panel time
evolution of the total number of cells in the domain for the same simulations.

The total maximum points allowed is always the same, NMax = 212 such that the
maximum refinement is of 82 points per diameter. However, we have performed three
different simulations at varying the threshold of the error in velocity, namely fixed at
errv = 0.001; 0.003; 0.01, in absolute value. From figure 6.9, it is possible to see that in the
coarse grid, the neighbourhoods of the wake region and the bubble are discretized with few
points and most of the flow is described with very few points. On the other hand, in the
grid more refined, a large portion of the flow around the bubble, including the whole wake,
appears to be described with the maximum number of points allowed, indicating that with
that error threshold no difference is made in this region. This inability to discriminate the
presence of gradients over large scales suggest a possible over-refinement. The issue has
been investigated more quantitatively looking at the dynamics of the three configurations.
In Fig. 6.9a, we show the evolution of the rise velocity of the bubble, which is given by
the Reynolds number in dimensionless form. It is possible to appreciate that there is no
difference in practice between the results obtained with the two more refined grids (the
difference is less than 1%), whereas there is a discrepancy in the final rise-velocity between
these two simulations and the coarse-grid one, the error is of the order of 5%. That in-
dicates that the three grids are sufficient to get a qualitative reproduction of the physics
of the problem but that only the two more refined are at convergence. In figure 6.9b, we
display the impact of the grid choice in a computational sense. Of course, the coarse grid
demands much less points, yet what is interesting is the trend. From figure 6.9a, we can
see that a transient is present of about 8÷ 10 unit times. We should expect therefore that
approximately after that period of time, a stabilisation in the number of grid points would
be reached too. That is precisely what is observed for the intermediate grid. The coarse
one, attains a plateau too early, and on the contrary the fine grid continues to increase
the number of points monotonically. That seems to indicate again an over-refinement of
the bubble, which results in an useless increasing of the number of points and thus of
computational time. It is worth emphasising that there is a strong link between physical
properties and numerical issues. Furthermore, it is important to stress how important is
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not to overlook this kind of issue. While the simulation of a single bubble remains feasible
even with the over-refined grid thanks to the adaptive mesh, it would not be possible to
tackle a problem with many bubbles with the same grid. Moreover, without adaptive mesh
even the single bubble case appears desperate at this large Reynolds numbers. In opposi-
tion, to use a too coarse grid may make the computation easy but it makes the simulations
largely unreliable.

In the following simulations, we shall use the intermediate grid requirements, if not
explicitly indicated.

6.6 Bubble column configuration

Figure 6.10: Bubble positions within the domain at t = 0 for simulation (a).

In this section we show the results of the 2-dimensional bubble column configuration.
Namely, it consists in a square domain with the vertical direction z aligned with gravity,
which acts downward. As in previous simulations we have used a non-dimensional descrip-
tion, therefore the dimensions are given in multiples of the bubble diameter. The tank, of
size 50d × 50d, is filled with a liquid and 32 initially spherical bubbles are placed at the
bottom, in a region confined between z = 0 and z = 8d, and are homogeneously distributed
in the lateral direction y, avoiding initial bubbles overlapping, with a minimum distance
between them of 1 diameter. This results in a local volume fraction in the region 0 ≤ z ≤ 8

of α ' 7%. The domain is closed at the bottom by the presence of a wall (no-slip boundary
condition), and an outflow boundary condition is used at the top, while on the lateral sides
the domain is periodic. At t = 0 both the liquid and the bubbles are at rest conditions. A
picture of the initial condition is shown in figure 6.10

Case Ar Bo N db/∆

a 100 0.12 4096 82

b 140 0.20 8192 164

c 313 0.56 16384 328

Table 6.4: Non-dimensional parameters for the 2-dimensional bubble column. N represents
the grid resolution.

The flow parameters are given with the non-dimensional groups defined in the previous
sections. The viscosity and density ratios are constant in all the simulations and their
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values are µl/µb = 100 and ρl/ρb = 1000. The other two groups are fixed by keeping
constants the values of the surface tension and gravity and by varying the bubble diameter
to have a more physical scaling. Specifically, the physical parameters are very close to
those of air and water, having been fixed to σ = 0.05N/m and µl = 7× 10−4 Pa. Varying
the bubble diameter from d = 0.8mm to d = 1.7mm results in Ar numbers ranging from
Ar ' 100 − 300. Three different simulations with bubbles of different diameters have
been carried out, and the corresponding parameters are reported in table 6.4. In all the
three cases we have used regularly spaced grids with different resolutions accordingly to
the increasing bubble Reynolds number. A regular grid has been preferred to the adaptive
one since in 2 dimensions the gain with adaptivity is not evident, and because a regular
spacing facilitates in the evaluation of statistics, providing a constant resolution in the
whole domain. In any case, the resolution requirements to get physical-sound results have
been always fulfilled, as highlighted in the table 6.4.
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Figure 6.11: Velocities of the bubbles with respect to time. On left panel case (a), on right
panel case (b).

We have started by analyzing the energy spectra of the velocity field. Since the problem
is non-homogeneous and non-stationary, particular care must be taken in the definition of
the interrogation window. In the experiment of [Riboux 2010], spectra are evaluated after
the passage of the bubble swarm in a centered square box. In the present work we have
preferred to investigate also the region where bubbles are still present, because we have
observed that waiting the passage of all the bubbles may result in wakes in the decaying
regime, where most of the information is lost. This is due mainly to the fact that 2D
interactions are stronger and have longer range with respect to 3D, resulting in a more
disturbed path of the bubbles in the wakes which can deviate significantly from the vertical
motion with non-trivial downward motion at some instants. Indeed, as shown in figure
6.11, we have observed that after a short time from the beginning, the swarm spreads
and is stretched in the vertical direction, and a few bubbles remain trapped in the wake
region with a significantly lower vertical velocity. Moreover, coalescences are present and
contribute to retarding some bubbles rise. The velocities of the bubbles for case (a) and
(b), see Figure 6.11, confirms that after an initial transient, a few bubbles are involved by
high levels of fluctuations with respect to the mean velocity of the front.
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The spectra Sii = 〈|ûi|2〉, where ûi is the Fourier transform of the velocity fluctuation
in the i direction, are evaluated separately for the vertical and the horizontal components.
The transform is performed in the y direction, which can reasonably be considered as
homogeneous, for both the components of the velocity and is then averaged in the z
direction over windows of length 5d, which has been found to be homogeneous. In all
the figures the energy is made non-dimensional with the corresponding standard deviation
and on the x axis we show the reciprocal of the wavelength (λ−1), which is still in non-
dimensional units, yielding that λ = 1 corresponds to the bubble diameter.

In Figure 6.12 we show the spectra of the vertical velocity fluctuations for case (a)
evaluated at different times, and on two different averaging windows, namely 15d ≤ z ≤
20d and 20d ≤ z ≤ 25d. It is worth remembering that time is made non-dimensional
with

√
db/g. It can be seen that the spectra slope appears rather constant, without

relevant changes at some characteristic scale of the flow. A slope slightly steeper than −3

is identified and it appears robust with no significance time-dependence during the passage
of bubbles. It can also be seen that after all bubbles have gone out from the interrogation
window, the spectrum starts to decay rapidly.
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Figure 6.12: Spectra of the vertical component of the velocity for bubbles with Ar = 100

and Bo = 0.1 evaluated at different times. On the left panel the interrogation window is
between 15 and 20 bubble diameters (in the vertical direction), while on the right panel is
between 20 and 25. The dashed line represents the −3 slope.
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Figure 6.13: Vorticity field for bubbles with Ar = 100 and Bo = 0.1 evaluated at t = 14.
On the top panel we show the domain between 20 and 25 bubble diameters in the vertical
direction, on the bottom panel between 15 and 20.

In Figure 6.13 we show the vorticity field in the two portions of domain that have
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Figure 6.14: Vorticity field for bubbles with Ar = 100 and Bo = 0.1 evaluated at t = 20.
The window is between 15 and 20 bubble diameters in the vertical direction.

been used for the evaluation of the spectra at a fixed time t = 14. This vorticity field
shows that the spectra scaling-law that has been found has little relation to the structures
of the wakes, since in the upper window no significant interaction between the wakes is
present, albeit the resulting spectra are very close to those obtained in the lower window.
That suggests that spectra are dominated by the coherent structures originated around
the bubbles of the scale of the diameter. Smaller scales dynamics appears to be largely
dominated.

Figure 6.14 shows the vorticity field at t = 20 in the decaying regime. In this case, the
flow appears to be laminar with only some fluctuations at the largest scale.
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Figure 6.15: Spectra of the vertical component of the velocity for bubbles with Ar = 140

and Bo = 0.2 evaluated at different times. On the left panel the interrogation window is
between 15 and 20 bubble diameters (in the vertical direction), while on the right panel is
between 20 and 25. The dashed line represents the −3 slope.
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Figure 6.16: Vorticity field for bubbles with Ar = 140 and Bo = 0.2 evaluated at t = 20.
On the top panel we show the domain between 20 and 25 bubble diameters in the vertical
direction, on the bottom panel between 15 and 20.

In Figure 6.15 we show the spectra relatives to case (b). We can see a similar scaling to



6.6. Bubble column configuration 153

case (a), but here the slope in the part at low wave numbers, i.e. for wave lengths bigger
than the bubble diameter, seems closer to −3 while a slight change happen at smaller
scales. Figure 6.16 shows the vorticity field for this case at t = 20, suggesting a stronger
interaction between bubble wakes for this case.
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Figure 6.17: Spectra of the vertical component of the velocity for bubbles with Ar = 313

and Bo = 0.56 evaluated at different times. The interrogation window is between 15 and
20 bubble diameters (in the vertical direction). The dashed line represents the −3 slope,
the dashed-dotted line the −2 slope.

-3

-2

-1

0

1

2

3

Figure 6.18: Vorticity field for bubbles with Ar = 313 and Bo = 0.33 evaluated at t = 12.
The window is between 15 and 20 bubble diameters in the vertical direction.

Figure 6.17 shows energy spectra for case (c) at Ar = 313. For this case only times up
to t = 12 are available at the moment. However, it is interesting to see how the scaling
is substantially different with respect to the previous cases at least at t = 12. Indeed,
a first part at large scales appears more flat with a slope close to −2, while in the part
at smaller scales we can see again the −3 scaling. However we think that the underlying
physical mechanism at the origin of this behaviour might be rather different. While, in
cases (a) and (b) the spectrum is strongly dominated by the coherent structures of the
wakes, here, because of the much higher Reynolds number, some turbulent mechanism is
expected to play a more important role, even if the number of bubbles is limited. The
behaviour of the spectrum at the largest scales for this case could be related to the 2-d
inverse cascade. Notably, bubbly dynamics leads to an injection of energy at the scale of
the bubble diameter, energy is then transferred at larger scales by the inverse cascade of
energy, and a corresponding −5/3 scaling of the spectrum is displayed. The second part of
the spectrum, which reveals a −3 scaling, should be linked to a direct cascade of enstrophy
present at small scales. We are pursuing this analysis, analysing the simulations available,
building further data at longer times and carrying out new simulations at different volume
fraction. In order to emphasize the more complex structure of the flow at high Ar number,
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Figure 6.19: Spectra of the horizontal component of the velocity. Top left panel case (a),
top right panel case (c), bottom panel case (c). The window is between 15 and 20 bubble
diameters in the vertical direction. The dashed line represents the −3 slope.

the Figure 6.18 shows the vorticity field at t = 12. The strong interaction between wakes
and the presence of dynamics at small scales is visible.

For the sake of completeness in Figure 6.19 we show the spectra of the horizontal
velocity component for the three cases evaluated in the window 15 ≤ z ≤ 20. It can be
seen that they are qualitatively similar to those of the vertical component of the velocity.

To further investigate the spectra scalings we have used a recent method [Chen 2006,
Xiao 2009] that has proved powerful, based on the filter approach, which is adopted in
large-eddy simulations. We have applied this methodology to the velocity field, obtaining
informations about the energy flux. The interesting advantage with respect to a spectral
approach is that one can gain details also on the locality of the cascade, differentiating
regions with positive or negative fluxes. We have applied a Gaussian filter to the velocity
field in the same spatial windows considered above at different times. The filter is defined
as:

Gl(r) =
1

l
G(

r

l
) with G(r) =

√
6

π
exp(−6r2) , (6.10)

where l is the filter width. The application of the latter to the velocity field, yields the
filtered velocity field:

ul(x) =

∫
Gl(r)u(x + r)dr . (6.11)

Numerically, the filtering is performed in spectral Fourier space, multiplying the quantity
to be filtered by the Fourier transform of the filter

Ĝl(k) = exp(−k2l2/24) , (6.12)

and then transforming back into the physical space. The so obtained filtered field contains
only the contribution from eddies larger than l and its transport equation can be obtained
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applying the filter to the Navier-Stokes equations. Analogously, the equation for the large-
scale kinetic energy, el = 1/2|ul|2, can be obtained:

∂el
∂t

+∇ · ql = −Πl −D , (6.13)

where ql is the transport term, D is the large scale dissipation, and

Πl = −Sl : τ (6.14)

is the local energy flux. Sl and τ , are the filtered strain tensor and the subgrid scale tensor,
defined as:

Sl =
1

2

(∂ul,i
∂xj

+
∂ul,j
∂xi

)
, τ = uul − ulul . (6.15)

The term Πl identify the presence of a local direct (positive) or inverse (negative) energy
cascade according to its sign. In Figure 6.20 we show the spatial distribution of Πl (with
l = 0.5, 0.1db) for the case with Ar = 313 at t = 12. It can be noted how the regions
of higher energy transfer are in the neighbourhood of the bubbles and how positive and
negative areas are present over the whole domain. In particular smaller scales transfer is
effective only in the vicinity of bubbles.

Figure 6.20: Local energy flux at t = 12 for case c at Ar = 313. In the upper panel the
filter length is l = 0.5db, in the lower panel l = 0.1db. The color scale is the same in both
panels.

If a spatial average is done at each different value of the filter width, one can find the
average transfer of energy at each scale. Results are reported in Figure 6.21 for the three
different simulations. They show that for the higher Ar number case the energy flux is
negative at all scales, while in the other two cases it is mostly positive, giving a plausible
explanation to the different spectra scaling found in case c. It is worth remarking that
since the problem is non-stationary, this statistic can depend on time, affecting both the
shape and sign of the mean fluxes. This analysis, however, has pointed out the presence
of a transfer of energy, which exhibits a maximum around the bubble diameter, and the
presence of instantaneous local positive and negative energy fluxes over the whole domain.

Finally we have looked at the probability density functions of the velocity fluctuations.
Figures 6.22-6.23 show the PDFs of the two velocity components at various times. The first
remark is that a time-dependent dynamics is clearly noticeable. Even from the qualitative
point of view, the pdf display huge variations in the tails with respect to the time and to
the window chosen, that is with respect to the particular region where they are calculated.
Flow is clearly statistically unsteady and non-homogeneous in the vertical direction. Fur-
thermore, fluctuations in the vertical direction are not isotropic, as it can be seen from
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Figure 6.21: Mean energy flux with different filter length for the three simulations at
t = 10, 12, 12 respectively. The spatial window is the same as in the computations of
spectra.

the strongly asymmetric PDFs on left column. This is due to the fact that upward fluc-
tuations are more probable because of the entrainment of the fluid in bubble wakes. The
fluctuations of the horizontal component instead are more isotropic, resulting in symmetric
PDFs, since bubble wakes are axisymmetric and the distribution of bubbles is uniform in
the horizontal direction. These numerical results seem therefore in agreement with the
results obtained in experiments. It is worth noting that fluctuations tend to a more sym-
metric gaussian behaviour in the decaying regime, where bubbles are absent since some
time. The statistics of the velocity are thus consistent with the previous analysis based on
spectra and vorticity field.

10
-
3

10
-
2

10
-
1

10
0

-3 -2 -1  0  1  2  3

P
D

F

Uz / uz

t = 10

t = 11

t = 12

t = 14

t = 16

t = 18

t = 20

10
-
3

10
-
2

10
-
1

10
0

-3 -2 -1  0  1  2  3

P
D

F

Uy / uy

t = 10
t = 11
t = 12
t = 14
t = 16
t = 18
t = 20

Figure 6.22: PDF of the velocity fluctuations in the vertical zz (left panel) and lateral yy
(right panel) directions. Bubbles with Ar = 100 and Bo = 0.1.

As already said in the introduction, the 3-d simulation with 256 bubbles at Ar = 180 is
running, and a complete analysis is not yet possible, being the bubbles still in a transient
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Figure 6.23: PDF of the velocity fluctuations in the vertical zz (left panel) and lateral yy
(right panel) directions. Bubbles with Ar = 140 and Bo = 0.2.

phase. A snapshot at t = 6 of the bubbles and of the vorticity field generated by the wakes
is shown in Figure 6.24.

6.7 Conclusions

In this part of the thesis we have investigated several buoyancy driven bubbly flows. A
comparison with literature studies in the case of periodic arrays of rising bubbles has been
done, to assess the accuracy and the performance of the numerical code that has been used.
Overall we have found a very good agreement with both 2-d and 3-d literature results, where
simulations were performed with different interface advection methods. Moreover, we have
then studied the oblique rise of buoyant bubbles in periodic arrays, confirming the recent
results of [Loisy 2017], where an oblique path of the bubble set on at certain values of the
volume fraction.

Before starting simulations with many bubbles, we have studied some technical issues
related to the numerics. First we have evaluated the possibility of having coalescences in
2-d simulations with two raising bubbles at an initial distance of 1.5d. We have found
that the density ratio of the two fluids plays an important role and that to avoid excessive
numerical coalescences it is necessary to have realistic densities. Moreover, we have also
demonstrated that the grid refinement can help, too. Indeed, in principle with an adaptive
refinement of the gap between the bubbles up to high levels, it would be possible to resolve
the film, recovering the correct levels of pressure that would repel the bubbles. Then we
have studied more in the detail the criteria for the grid refinement, studying the 3-d rise
of a single bubble to fix the parameters for the 3-d simulation with more bubbles.

Afterwards, we have performed computations of a two-dimensional bubble column at
moderate and high Reynolds numbers and with a volume fraction of about 10% in the
bubble layer. In this configuration, we have analyzed the velocity fluctuations in both
phases finding different behaviour at different Reynolds number, even if the −3 slope
of the spectra seems to be a key feature of this type of flow also in 2-d. As expected
PDFs shows the strong anisotropy of the flow fluctuations in the vertical direction, while
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Figure 6.24: Snapshot of the 3D simulation at t = 6 after the release. The VOF field is
showed with blue iso-surfaces and the λ2 vorticity field is shown with grey contours. On
the right wall is shown the level of mesh adaptation, while on the left panel the vertical
velocity of the field.

horizontal fluctuations are symmetric. A scale-by-scale analysis of energy transfer has also
shown the presence of energy fluxes at scales within two decades of the bubble diameter.
We are pursuing this analysis to give a further comprehension of the scalings that have
been found.

Another future development of the work would be to present and analyse the bud-
gets of the momentum and energy equation in relation to the development of two-
fluid models, that is Reynolds averaged Navier-Stokes (RANS). Indeed, the two-fluid
model [Drew 1983, Drew 2006] probably represents the most widely adopted approach
to describe the spatial and temporal evolution of gas-liquid flows in systems of prac-
tical relevance, due to its moderate computational cost. Unfortunately, it is known
since longtime that the numerical stability of the solution obtained from the two-fluid
model depends on the characteristics of the underlying equations that may be complex
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[Stuhmiller 1977, Ramshaw 1978]. In such a case, the equations are not hyperbolic and
the discretized equations do not allow a grid-converged solution to be achieved, and un-
stable modes in the solution appear, severely affecting the model prediction and its sensi-
tivity to grid refinement. To ensure the hyperbolicity of the system and therefore stability,
an ad-hoc pressure term is usually introduced by hand [Prosperetti 1987]. The shape of
the term is yet controversial [Tiselj 1997] and its properties has been extensively stud-
ied [Davidson 1990, Song 2001]. While the functional dependence on the volume fraction
seems to be clearly established [Panicker 2018], the multiplicative factors are unknown and
may be found only from DNS or experiments. Therefore, the present DNS results could be
used to analyse the momentum balance budget, and notably one should evaluate all the
forces acting on the bubble in order to disentangle the contribution due to this interfacial
term. Since this term is actually proportional to the gradient of the volume fraction ∇α,
it is evident that this term is crucial when a jump in volume fraction is present, and this
is precisely the case in a bubble column.





Chapter 7

Conclusions

In this work we have presented a broad study on gravity driven dispersed multiphase flows,
dealing with two different categories of problems, namely inertial solid particles in a gas,
and gaseous bubbles in a liquid. We have put particular emphasis on the mechanisms of
interaction between the carrier and the dispersed phase and in particular on the possibility
to have large fluctuations in the carrier phase induced by the non-stationary motion of
the dispersed one, leading to the generation of turbulence or pseudo-turbulence. The two
class of problems that we have handled share similar features, but imply descriptions at
different scales, from micrometer particles to millimeter bubbles, and therefore distinct
methodologies have been required to cope with them.

In part II we have dealt with the problem of particle-laden turbulent flows in the dilute
and in the dense regime, proposing, validating and testing two different models for the
two regimes. For the dilute regime we have proposed a Lagrangian stochastic model based
on the filtered-density-function to track point-particles in a Large-Eddy-Simulation flow
field. The proposed model has been tested in a turbulent channel flow; in particular its
capabilities in correctly capturing the phenomenon of particle preferential concentration
have been investigated. We have shown that by reintroducing the correct amount of
fluctuations that are lost because of the filtering in LES, the model prediction of the
particle concentration near the wall is good if compared to Eulerian-Lagrangian DNS and
a significant improvement of accuracy with respect to the case without particle sub-grid
scale model is obtained. This is confirmed by an excellent estimation of the particle velocity
statistics which are correlated with the fluxes of particles towards and away from the wall.
Summarizing, our work indicates that a Lagrangian modelling approach for particle-laden
flows is physically-sound and can be useful in those cases where Eulerian fluid models are
too coarse to accurately track point-particles.

We have then investigated the dense regime at moderate particle concentration, propos-
ing a Lagrangian stochastic model that considers two-way coupling and inter-particle col-
lisions. The model has been derived on a rigorous formalism that shows that it is fully
consistent with a Eulerian hydrodynamic description, where particle-phase mesoscale dy-
namics is derived from the kinetic equation. We adopted a decomposition of the particle
velocity into a correlated part, related to cluster dynamics, and into a uncorrelated part,
related to crossing trajectories and collisions. This made possible to identify the different
relevant time scales. We were particularly interested in cluster-induced turbulence, and
we have found that the particle model, coupled with a RANS model for the fluid, is able
to capture the triggering of turbulence in a homogeneous flow, and to accurately predict
the turbulent kinetic energy in both phases, as well as the anisotropy of the flow, if com-
pared to Eulerian-Lagrangian two-way coupled DNS [Capecelatro 2015]. A compact, less
complex, version of the model has also been proposed and tested to show that two-way
coupling is sufficient to generate turbulence, but not to have a quantitative description of
the energy production. In order to capture entirely the phenomenon, one should rely on
the velocity decomposition.
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The particle model for the dense regime, that was derived in a general form, has then
been tested also in a non-homogeneous application, i.e. a turbulent channel flow. For
this more complex case we have first derived a Lagrangian numerical scheme for stochastic
equations in non-homogeneous problems, and in presence of two-way coupling, which has
been tested and validated. Then, based on a very recent DNS study [Capecelatro 2018]
that has analyzed the mechanisms of turbulence modulation by the particles in a channel
flow, we have tested our model at different particle mass loadings, showing, in agreement
with DNS, a decrease in the fluid turbulent kinetic energy when increasing the mass loading
from zero to two, and an increase in the anisotropy of the flows. Even though these results
are not conclusive and further simulations are under investigation, they show nevertheless
that the stochastic model proposed for dense-collisional flows is capable to give useful
insights also in non-homogeneous flows, and also in those regimes at moderate particle
loadings where only some modulation of turbulence is present.

In the final part of the thesis (part III) we have investigated buoyancy-driven bubbly
flows with a VOF-DNS methodology using the Basilisk code. We have repeated several
literature benchmark tests for single bubbles rising at low to moderate Reynolds numbers
in periodic domains, finding a comparable accuracy with front-tracking and level-set meth-
ods. We have studied some technical aspects related to the numerical code, specifically the
numerical treatment of bubble coalescences and the grid refinement threshold, finding that
having realistic density ratios in gas-liquid flows has a major impact on dynamics and in
particular is important to avoid non-physical coalescences. Finally, we have shown results
for the 2-dimensional bubble column configuration at intermediate to high Reynolds num-
bers, which shows several common features with the experimental results [Riboux 2010].
For all the Reynolds numbers a clear asymmetry is present in the PDF of the vertical
velocity fluctuations with a strong deviation from gaussianity. For the lower Reynolds
numbers, we have found at intermediate wave lengths a scaling of the spectra close to −3,
while at smaller scales a somehow steeper behaviour is present. For the highest Reynolds
number case, Ar = 313, a different scaling is found, that could be linked to a possible
inverse cascade. This scenario has yet to be confirmed by new data not available at the
moment. Even if the mechanisms of energy cascades are different between 2-d and 3-d, we
think that 2-d simulations have been useful to approach the problem and to give evidence
of the possible similarities that are shared with the 3-dimensional case.

Summarizing, despite the extent and the complexity of the subject, in our contribu-
tion we have addressed several specific problems. As for particle-laden flows, the goal
was to develop models capable of reproducing the intriguing physical mechanisms that
characterize this class of flows, as e.g. particle-induced-turbulence. This has been possi-
ble thanks to the fact that the study of particles in turbulence is advanced and one can
rely on a wide literature. Indeed, mechanisms like preferential concentration and particle-
turbulence modulation, even though driven by a non-trivial physics, have been studied
in details, providing a useful analysis for the derivation of simpler models that can grasp
the key mechanisms. On the other hand, bubbly flows have required a more fundamental
study, since the mechanisms of momentum and energy exchange between the phases is
less clear, and features like the finite size and the deformability of the dispersed phase
make the problem challenging. The rising motion of bubbles has fascinated many since
a long time, and has been rather well understood, but collective dynamics of flows with
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many interacting bubbles that generate strong agitations in the liquid, are still less clear.
Recently, several experiments have underlined some intriguing features that can be es-
sential for the development of models. However, numerical simulations with many rising
bubbles at high Reynolds number are still in their early days, and thus we think that our
work has given a contribution for a deeper understanding, even if a further analysis is still
needed. It is worth remarking that thanks to different types of tackled flow problems, it
has been possible during this thesis to learn and to develop different methodologies, choos-
ing the most suitable for each case. In the context of turbulent two-phase flows, we have
worked with Large-Eddy-Simulations, Reynolds-Averaged and PDF models, and two-fluids
direct numerical simulations, ranging from a more theoretical approach, for the derivation
of 1-D homogeneous models, to realistic numerical experiments, accomplished with large
simulations.

As for future developments, in the particle dense regime, further studies for the channel
flow configuration at higher mass loadings could be useful for a complete appraisal of the
model, in particular to see whether after the initial decrease of the fluid kinetic energy,
above a certain threshold of particle concentration, Cluster-Induced-Turbulence appears,
with a new increase of turbulence. Attaining such high mass loadings is not trivial nu-
merically in non-homogeneous applications, because the budgets of the momentum and
fluid energy become dominated by the exchange terms with the particle-phase, and the
Reynolds-stress fluid model does not play an important role anymore. Moreover the cou-
pling terms coming from the stochastic model are intrinsically noisy and particular care
must be taken to avoid instabilities in the Eulerian RA equations, like for instance having
enough particles to have good statistics, or developing further ad-hoc numerical treatments
for these terms.

On the other side, even if we have shown that the model predictions at low to inter-
mediate mass loadings follow the good trend, we think that results in this regime could
be improved by a further analysis. In this regard, it is possible to proceed on two fronts:
firstly, having a more precise fluid model would be surely of help, as we have seen that the
Reynolds stress model that we have used is rather inaccurate even for the single phase. An
alternative could be to use elliptic-relaxation models that have been shown to give excellent
results for channel flows. However, note that changing the fluid-phase model might require
also some adaptation of the particle one (namely in the Us equation) to avoid inconsisten-
cies. Secondly, the model constants could be calibrated more specifically for this regime.
Indeed, it is unlikely that the model could accurately predict all concentration regimes,
by using the constant values optimized to reproduce the CIT mechanisms, as done in the
present thesis. With a further analysis and with additional DNS data, a dependence of
the model constants on the mass loading parameter might be found, or techniques like
uncertainty quantification could be used to find a suitable set that minimizes the errors
in a certain range of flow parameters. Finding more general constants would make the
model best suited also for those problems where there are strong differences of particle
concentration within the domain, like for instance in river sedimentation and transport
[Muste 2005, Chauchat 2017].

Bubble-induced agitation leaves room for much work, too. A further analysis of the
2-d case can be useful to thoroughly explain the scaling of energy spectra, for instance by
carrying out a scale-by-scale budget analysis. Moreover, further simulations at different
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volume fractions would be interesting to investigate if some dependence to this parameter
is present. Albeit we have shown the importance of having well resolved grids to avoid
numerical coalescences, some merging still occurs, and it would be interesting to study
if the change of the bubble typical size has an impact on the agitation induced in the
fluid. On the modelling side, budget analysis of the averaged quantities might give a useful
contribution in the development of two-fluids RA models. In particular this configuration
was also chosen in order to investigate the presence of a dispersion term, proportional
to the gradients of volume fraction ∇α, which is empirically added to two-fluids models
to ensure the hyperbolicity of the system of equations. Finally 3-d simulations could
also give an important contribution in this sense as well as for the comprehension of the
physics. It would be interesting to do a quantitative comparison of the 3-d results with
the experimental study of [Riboux 2010], since the setup is very similar, even if a limited
number of bubbles have been simulated. This comparison could give additional insight,
making possible a further analysis of the induced-agitation with tools that might not be
used in an experimental analysis. Once this mechanisms will be completely characterized
alone, it would be certainly of interest to study the interaction of the collective dynamics
of bubbles with an already existing turbulent flow, to see how wakes agitation modifies
classic shear-turbulence.
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I. INTRODUCTION

Stochastic processes are fundamental in the description of nonequilibrium systems[1, 2] and their use to build a
theory of turbulence dates back to first works of Kraichnan[3, 4]. While they have proven to be useful for theoret-
ical analysis of specific issues[5], they are mainly used as a tool to develop models that can be applied to general
applications[6, 7]. In this framework, stochastic models describe only a coarse-grained version of the full turbulent
flow, and notably they focus generally on the dynamics of the one-point and one-time probability density function
(pdf) of the state-vector of the system. That is tantamount to have access to all the moments of the variables retained
in the state vector, at each point and each time. These models ara valuable for environmental and engineering appli-
cations, but they are also relevant to understand the phenomenology of turbulence, since they may indicate which is
a minimal model giving an accurate description of the flow.
As usual, the choice of the state-vector is key to have an approximate but still accurate description of the turbulent

flow considered. In particular, it is essential to retain enough variables to have a state-vector which can be described as
markovian[8]. Since these models are conceived to tackle general non-homogeneous model, the state vector is usually
limited to the position and velocity of the fluid particles x,V, and these observables are modelled as a diffusion
process, that which is justified by Kolmogorov theory[9, 10]. The validity of such models may become questionable in
some circumstances. The criterion used to include only fluid particle location and velocity in the state-vector is to have
separation of scales τη ≪ TL, where τη is the smallest time-scale, namely the Kolmogorov time-scale τη ≡ ( ν

〈ǫ〉)
1/2, and

TL is the integral scale, typical of large-scales of the flow. This criterion is no longer met at low Reynolds numbers,
with the Reynolds number defined as Re = UL

ν where U,L are typical velocity and length of large scales and ν is
the kinematic viscosity. In this case, there is no more the separation of scale justifying the markovian description of
the process x,V. Therefore, more variables should be added and notably the fluid particle accelerations. This can
happen in two cases, in homogeneous flows with low Re, or in general non-homogeneous flows at high Re but which
include walls. Indeed, near to the walls viscous friction cannot be neglected. Some proposals have been made early
for the former case[11, 12], but the first experiments accessing Lagrangian fluid acceleration[13, 14] have motivated
many attempts in the following with the purpose of fitting the experimental data, but without a sound link with
turbulence theory[15], but in few exception[16, 17].
Yet, the latter case is more important since realistic flows are non-homogeneous and have very high Re.
The aim of this letter is to propose a first model including the acceleration of fluid particles in the general case

of non-stationary and inhomogeneous turbulence, and is motivated by very recent accurate measurements of the
acceleration in turbulent channel-flow at high Re-number[18]. The model developed will be general so that it can be
used in all realistic flows of practical interest.

II. MODEL

The model we propose has the following form

dxi = Ui dt (1)

dUi = −1

ρ

∂〈P 〉
∂xi

dt+Aij(Ui − 〈Ui〉) dt+ fi dt, (2)

dfi = −βfidt+
√
BdWi. (3)

We use Kolmogorov theory to give an estimate of typical time-scales. Considering δUτ = |U(t + τ) − U(t)| ⇒
DL

2 = 〈(δUτ )
2〉 ∼ C0〈ǫ〉 τ, where C0 is a constant. This implies for the velocity autocorrelation function that

RL(τ) =
〈U(t)U(t+τ)〉

u2 ∼ 1− DL
2 (τ)
2u2 ∼ 1− C0

2
τ
T , with T the time-scale of large scales, such that RL(τ) ∼ 1 in the inertial

range far from boundaries when τ ≪ T . We can generalise for higher-order statistics DL
n (τ) = 〈dnu

dtn (t)
dnu
dtn (t + τ)〉,

and the same hypotheses yield DL
n (τ) =

(
vη
τn
η

)2

α(x) = ν1/2−n〈ǫ〉n+1/2α(x) .Where vη ≡ (ν〈ǫ〉)1/4, τη ≡
(

ν
〈ǫ〉

)1/2

,

x = τ
τη

and α(x) is related to the correlation and should be an universal function. If τ is in the inertial range we

can demand that the correlation is independent of the viscosity. Then, we find DL
n (τ) = 〈ǫ〉τ1−2n ⇔ α(x) ∼ x(1−2n).

Hence, for n = 1 we can find the acceleration correlation behaviour RA(τ) = 〈A(t+τ)A(t)〉
〈A2〉 ∼ τη

τ , and for n = 2 the

case of derivative of acceleration RȦ(τ) ∼
( τη

τ

)3
. These correlations show that the turbulent acceleration and higher

derivatives of velocity depend explicitly on the fluid viscosity ν. Since for high-Reynolds number the viscosity affect
only the very small-scale turbulent motion, in locally isotropic turbulence these variables are determined largely by
the very small-scale motions (l ≤ η). On the basis of these estimates, the fluid particle acceleration timescale β−1 is
taken proportional to the local Kolmogorov timescale, assuming a constant of proportionality of one we get β−1 = τη.
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To fix the diffusion term, we demand to be consistent with the state-of-the-art Langevin model for non-homogeneous
flows[10]. which has the following expression

dXi = Ui dt

dUi = −1

ρ

∂〈P 〉
∂xi

dt+Gij (Ui − 〈Ui〉) dt+
√
C0〈ǫ〉dWi (4)

with Gij = − 1
TL

δij + Ga
ij with TL = (12 + 3

4C0)
−1 k

〈ǫ〉 , and Ga
ij is a traceless matrix. We take Ga

ij = 0 for the sake

of simplicity, which corresponds to the Rotta model for the Reynolds stress equations[6]. In the acceleration-based
model equations (1)-(3), the Reynolds-stress equations are

∂〈uiuj〉
∂t

+ 〈Uk〉
∂〈uiuj〉
∂xk

+
∂〈uiujuk〉

∂xk
=− 〈uiuk〉

∂〈Uj〉
∂xk

− 〈ujuk〉
∂〈Ui〉
∂xk

+ 〈uiaj〉+ 〈ujai〉.
(5)

where the correlations 〈ujai〉 are solutions of transport equations, which reflect the non-zero memory effects due to
the colored noise in the velocity equation. Specifically, the transport equations for the velocity-acceleration correlation
are

∂〈uiaj〉
∂t

+ 〈Uk〉
∂〈uiaj〉
∂xk

+
∂〈uiajuk〉

∂xk
= +Gik〈ajuk〉+ 〈aiaj〉 − 〈ajuk〉

∂〈Ui〉
∂xk

− 〈uiaj〉
τη

; (6)

and for the variance of acceleration

∂〈aiaj〉
∂t

+ 〈Uk〉
∂〈aiaj〉
∂xk

+
∂〈aiajuk〉

∂xk
= −2

〈aiaj〉
τη

+Bδij . (7)

The finite value of timescale τη is responsable of the memory effect, thus, in the limit of τη → 0, the same source term in

Reynolds-stress equations as given by the model (4) should be found. In this limit, we have 〈aiaj〉 → Bτη
2 ⇒ 〈uiaj〉 =

τη(〈aiaj〉− 〈uiaj〉
TL

) =
Bτ2

η

2 , therefore, in order to have the correct limit, it is necessary to impose B = C0〈ǫ〉( 1
τ2
η
+ 1

τηTL
).

Taking the trace of Reynolds-stress equations, the equation for turbulent kinetic energy is retrieved. Considering
the homogeneous case, we obtain the following relation 2

∑
i〈uiai〉 = −〈ǫ〉,which defines implicitly the turbulent

dissipation for our stochastic model.

III. NUMERICAL SCHEME

We study the turbulent flow in a channel between two parallel walls separated by a distance 2h using the same
Reynolds number (Reτ = uτh

ν ≈ 1440) in both experiments and simulations, where uτ is the friction velocity associated
to the shear stress τw at the wall and ν the kinematic viscosity. In the following, the superscript + indicates
quantities expressed in wall units, nondimensionalized by uτ and ν. Experiments have been recently described[18], the
numerical setup is detailed in the supplemental material. Equation (3) is a stochastic differential equation of the form
dX = A dt+BX dt+D dW(t). This vector stochastic differential equation is stiff, since we have lim

y→0
det[B] = −∞.

Indeed, T−1
L ∼ − ǫ

k and near to the wall this means T−1
L ∼ −1

y2 , which grows without bound. Moreover near the

wall Ui − 〈Ui〉 ∼ y, for the no-slip boundary condition. Thus, the drift coefficient [B]U scales with 1/y and remains
unbounded for y → 0. Special numerical treatment is therefore required. Furthermore, the time-scale β may be
very small and instabilities may arise also far from boundaries if the time-step is bigger (typically in the inertial
range) and the numerical scheme is not stable. To address these issues, we have developed a new numerical scheme
unconditionally stable, following the same approach used in similar problems[19, 20]. Taking the matrix coefficients
A,B,D frozen during a time-step ∆t, we have obtained analytical solutions using the integrating factor e−Bt. The
numerical scheme is presented in the supplemental material[21]. On the other hand, the equations (3) contain several
average fields, which have to be computed at each time-step. As in typical engineering calculations[6, 22], we use here a
hybrid approach, computing the needed average quantities (〈U〉, 〈P 〉, ǫ, k) solving the Reynolds averaged Navier-Stokes
(RANS) equations. In particular, to highlight the characteristics of the new model proposed for the acceleration, we
use here the Rotta model, which is consistent with the model 4 when Ga

ij = 0, as considered in the present work.
Since we want to analyse the behaviour near to the wall, we have added the standard Low-Re wall treatments[6].
More details can be found in the supplemental material.
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IV. RESULTS
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FIG. 1. Mean (a) and variance velocity profiles (b). Comparison between experiments (points) and the present model (lines).
All quantities are normalized in wall units.

In Fig. 1, mean and variance velocity profiles from experiments and simulations are compared. Both experimental
and numerical profiles are obtained by sampling the instantaneous velocity of particles conditioned by their wall
distance y+. While both mean streamwise velocity profiles present a clear logarithmic behavior in the region 50 .
y+ . 1200, an important quantitative discrepancy is displayed. This evidence is related to the RANS model used to
provide 〈U〉, and present results are in line with expected values[6, 19, 23]. Similar remarks can be made for wall-
normal and transverse velocity variances, which are known to be underestimated in the Rotta model. Furthermore,
the anisotropy is largely diminished as intrinsic in this kind of model. Instead, for the streamwise velocity variance
experiments are in decent agreement with the simulations, notably for y+ < 50. These variance results are in better
agreement with experiments than those obtained from the RANS computations. This means that the acceleration
model is able to improve the representation of the Reynolds stresses.
Figure 4 shows the mean and variance acceleration profiles obtained by our experiments and model. The agreement

between experiments and simulations is fairly good, and notably the model gives correctly the negative peak of mean
streamwise acceleration at y+ ≈ 7, which is a viscous effect. That shows that the acceleration model together with a
RANS model including the boundary layer is able to describe this effect, despite the absence of ad-hoc low-Re terms
in the stochastic model. Profiles of acceleration variance (Fig. 2) reveal qualitative agreement between both sets of
data, although large uncertainty is seen in the experimental results near the wall. Considering also corresponding DNS
results[18], larger errors in variances are found in the model with respect to the mean accelerations. In particular, a
slight overestimation of the spanwise variance is present and, more pronounced, the model display all the peak around
the same position, whereas experiments and DNS show some variability. Nevertheless, at their respective peaks,
the standard deviation of acceleration is larger than the magnitude of the mean acceleration for all sets, indicating
that the present stochastic model is already able to reproduce the acceleration fluctuations that govern the dynamics
near the wall. Figures 3a-b show various components of the acceleration correlation tensor ρij calculated at different
initial wall distances y+0 . The agreement is globally good, showing that the stochastic model fairly reproduce both the
inhomogeneity and the anisotropy of the flow, since all components are different and the decorrelation time change
with the distance. A less good agreement is found in the long-time behaviour at y+ = 1000, notably for ρzz . However,
the model results are more similar to DNS ones, and furthermore it is worth stressing that to perform a stringent
test of the approach, a coarse grid is used in the middle of the channel, as usual in RANS simulations. That causes a
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FIG. 2. Mean and variance acceleration profiles. Comparison between experiments (points) and model simulations lines.

high level of error for measurments at large y+. Fair convergence to DNS results is found with a fine mesh.

Fig. 13 shows the probability distribution function (PDF) of the three acceleration components obtained at different
wall distances. All curves present very long tails corresponding to extremely high acceleration events associated to
intermittency. Once again, good agreement is achieved between the experiments and the model, notably in the core of
the PDF and for the spanwise components. The model displays a more important number of negative extreme events
in the streamwise events, but this is in line with DNS results[18] and due to the fact that in numerical computations
it is possible to record the events very near-to-the-wall.

V. CONCLUSIONS

In this letter, we have proposed and compared against experiments in a channel-flow a novel stochastic model, which
includes the fluid particle acceleration. This models generalises both the previous propositions for the acceleration in
isotropic flows and the general models for non-homogeneous flows. To deal with the fluid averages in the coefficients,
In this work, we have used a hybrid RANS/PDF approach which is the one typically used in realistic computations.
Furthermore, since this is the first validation of such a model and in order to carry out a stringent assessment of
the stochastic model, we have chosen to not use sophisticated models for the fluid that might have improved the
overall results but also blur the picture. A standard Rotta Reynolds-stress model is used, which is consistent with
the standard Langevin model for the velocity[6]. For such a reason, we have put forward the simplest model which
is derived using Kolmogorov theory and previous stochastic models. In particular, the use of the moment equations
for the covariance of the velocity and acceleration has been found key to get a closure. Furthermore, while we have
included in the RANS model some low-Re features, we have developped a stochastic model which does not take into
account explicitly those effect in the velocity. However, since the inclusion of the acceleration should bring some of
those effects, present results are also useful to disentangle which of those effects can be obtained in this way and which
are to be introduced at the level of the velocity. However, given that average observables used in the stochastic model
are far from the experimental ones, the overall behaviour of the model is remarkable showing that it captures most
of the features revealed by experiments. In particular we model directly only the isotropic part of the acceleration,
yet the whole model is nonlinear and is capable to model decently the anisotropy of the flow. More specifically,
results show an improvement of the Reynolds stress, notably the stream-wise component is now in agreement with
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lations are computed as: ρij(τ, y0) =
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experiments. That emphasises that the acceleration introduces some of the near-to-the-wall effects not included in
the velocity model. The acceleration is globally in line with experiments and DNS. Both first and second moments are
in good agreement with experiments. The Lagrangian autocorrelation given by the model reproduces correctly the
time-scale and the non-homogeneous affects. The behaviour at very short-time scale is slightly different, this is due to
the introduction of a white noise at the level of the acceleration, which is therefore non-differentiable and singular at
the origin. Interestingly, also the pdfs are well captured, at least at qualitative level, displaying skewness, anisotropy
and far-from-gaussian tails, even without taking into account intermittency in the model. This shows that in wall
flows, most of the extreme events are related to non-homogeneity. In conclusion, we believe that the present form of
the stochastic model is adequate to model wall flows in realistic case. In order to improve further the performances,
notably to get the correct anisotropy in Reynolds stress, improvements would be: (a) to add intermittency effects
in the turbulent dissipation [6] and/or in the acceleration[17]; (b) to use a more general model for the velocity with
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Gij = − 1
TL

δij + Ga
ij and Ga a modelling traceless matrix. It is known that elliptic relaxation models are able to

retrieve exact results for the Reynolds stress [6]. (c) Viscous effects could be added, even though they are known to
have a very small impact[23].
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