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Standardisation and automatisation of the diagnosis of patients with
disorders of consciousness: a machine learning approach applied to

electrophysiological brain and body signals.

Advances in modern medicine have led to an increase of patients diagnosed with disor-
ders of consciousness (DOC). In these conditions, patients are awake, but without behavioural
signs of awareness. An accurate evaluation of DOC patients has medico-ethical and societal
implications, and it is of crucial importance because it typically informs prognosis. Misdi-
agnosis of patients, however, is a major concern in clinics due to intrinsic limitations of be-
havioural tools. One accessible assisting methodology for clinicians is electroencephalogra-
phy (EEG). In a previous study, we introduced the use of EEG-extracted markers and machine
learning as a tool for the diagnosis of DOC patients. In this work, we developed an automated
analysis tool, and analysed the applicability and limitations of this method. Additionally, we
proposed two approaches to enhance the accuracy of this method: (1) the use of multiple
stimulation modalities to include neural correlates of multisensory integration and (2) the
analysis of consciousness-mediated modulations of cardiac activity. Our results exceed the
current state of knowledge in two dimensions. Clinically, we found that the method can be
used in heterogeneous contexts, confirming the utility of machine learning as an automated
tool for clinical diagnosis. Scientifically, our results highlight that brain-body interactions
might be the fundamental mechanism to support the fusion of multiple senses into a unique
percept, leading to the emergence of consciousness. Taken together, this work illustrates the
importance of machine learning to individualised clinical assessment, and paves the way for
inclusion of bodily functions when quantifying global states of consciousness.
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Normalisation et automatisation du diagnostic des patients atteints de
troubles de la conscience: une approche par apprentissage automatique

appliquée aux signaux électrophysiologiques du cerveau et du corps.

Les progrès de la médecine moderne ont entraîné une augmentation du nombre de pa-
tients ayant des troubles de la conscience (DOC). Ces derniers, alors qu’ils sont éveillés,
ne présentent pas de signes comportementaux de conscience. L’évaluation comportemen-
tale précise de ces patients a des implications médico-éthiques et sociales cruciales, car elle
conditionne généralement le pronostic. Ainsi, les erreurs diagnostiques liées aux limites in-
trinsèques des outils comportementaux sont une préoccupation majeure pour les cliniciens
et l’électroencéphalographie (EEG) pourrait s’avérer utile. Dans une étude précédente, nous
avions introduit l’utilisation de marqueurs extraits de l’EEG et l’apprentissage supervisé pour
le diagnostic des patients DOC. Dans ce travail, nous avons développé cet outil et analysé
son applicabilité et ses limites. De plus, nous avons proposé deux approches pour améliorer
la précision de cette méthode: (1) l’utilisation de multiples modalités de stimulation pour
inclure des corrélats neuronaux de l’intégration multisensorielle et (2) l’analyse des mod-
ulations de l’activité cardiaque par la conscience. Nos résultats dépassent l’état actuel des
connaissances dans deux dimensions. Cliniquement, nous avons constaté que la méthode
pouvait être utilisée dans des contextes hétérogènes, confirmant l’utilité de l’apprentissage
automatique en tant qu’outil automatisé de diagnostic clinique. Scientifiquement, nos résul-
tats soulignent que les interactions cerveau-corps pourraient être le mécanisme fondamental
pour soutenir l’intégration multisensorielle en un percept unique, conduisant à l’émergence
de la conscience. Au total, ces travaux illustrent l’importance de l’apprentissage automa-
tique pour une évaluation individualisée de la conscience et ouvrent la voie à l’inclusion des
fonctions corporelles pour la quantification des états de conscience.
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Estandarización y automatización en el diagnóstico de pacientes con
desordenes de conciencia: aprendizaje automático aplicado a señales

electrofisiológicas del cerebro y el cuerpo.

Avances en la medicina moderna han llevado a un incremento en el número de pacientes
diagnosticados con desordenes de consciencia (DOC). En estas condiciones, los pacientes
se encuentran despiertos, pero no muestran signos de entendimiento acerca de si mismos o
el lugar donde se encuentran. Una evaluación precisa de los pacientes tiene implicaciones
medico-éticas y sociales, y es de suma importancia porque típicamente informa el pronós-
tico. Los diagnósticos erróneos, no obstante, es una gran preocupación en las clínicas debido
a las limitaciones intrínsecas de las herramientas de diagnostico basados en comportamiento.
Una tecnología accesible para asistir a los médicos es la electroencefalografía (EEG). In un
estudio previo, introducimos el uso de marcadores extraídos de EEG en combinación con
aprendizaje automático como una herramienta para el diagnostico de pacientes DOC. En este
trabajo, desarrollamos una herramienta de análisis automatizado, y analizamos la aplicabil-
idad y limitaciones de este método. Adicionalmente, proponemos dos enfoques para incre-
mentar la precision del diagnóstico: (1) el uso de múltiples modalidades de estimulación para
incluir los correlatos neuronales de la integración multisensorial y (2) el análisis de las mod-
ulaciones de la actividad cardíaca mediadas por la conciencia. Nuestros resultados exceden
el conocimiento actual en dos dimensiones. Clínicamente, encontramos que el método puede
ser utilizada en contextos heterogéneos, confirmando la utilidad del aprendizaje automático
como una herramientas para el diagnóstico clínico. Científicamente, nuestros resultados re-
saltan que las interacciones entre el cerebro y el cuerpo pueden ser el mecanismo funda-
mental para sostener la fusión de multiples sentidos en una única percepción, conduciendo a
la emergencia de la consciencia. En conjunto, este trabajo ilustra la importancia del apren-
dizaje automático para la evaluación clínica individualizada, y crea un punto de partida para
la inclusión de las funciones corporales en la cuantificación de los estados de conciencia
globales.
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2 CHAPTER 1. INTRODUCTION

1.1 The study of Consciousness

1.1.1 Conscious Access vs Conscious States

Throughout history, the term consciousness has been studied from disciplines as philosophy,
psychology and biomedical sciences. Nowadays, there is still no universal definition for such
an ambiguous concept (Baars, 2015). Depending on the use of the word conscious, it can
refer to the state of consciousness or to conscious access or processing. In its intransitive
use (e.g. “the patient is still conscious”), it refers to the state of consciousness, also called
wakefulness or vigilance. In its transitive use (e.g. “I was not conscious of the red light”), it
refers to access or processing of a specific piece of information. The information accessed
consciously at a given moment defines the conscious content, which can be reported (Dehaene
and Changeux, 2011).

1.1.2 Disorders of Consciousness

The state of consciousness, at the same time, is a multidimensional construct (Bayne et al.,
2016). This means that it can be expressed in several distinct states which describe arousal
level, cognitive function, and bodily states. In lack of a full description of these dimensions
of each state of consciousness, we will here adopt a simplified definition coming from clinical
practice (Posner et al., 2007). Clinical neurologists typically evaluate consciousness on two
dimensions, arousal and awareness. Arousal refers to the level of wakefulness and is clin-
ically indicated by eyes-opening. Awareness refers to the contents of consciousness and it
is clinically evaluated by command following and by observing nonreflex behaviours. What
is further known from clinics is that the relationship between these two dimensions is not
always a positive one. The introduction of the mechanical ventilator in the 1950s and the
development of intensive care in the 1960s made it possible for many patients to sustain their
vegetative functions and allowed them to survive their severe injuries. Despite such advance-
ment, many patients were found to suffer from altered states of consciousness, which had
never been encountered before as these patients would normally die from apnea (Laureys and
Boly, 2007). Patients in a vegetative state/unresponsive wakefulness syndrome (VS/UWS),
although they show intermittent periods of wakefulness, they do not respond to stimulation
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evidencing awareness of self and the environment (Jennett and Plum, 1972). Even when pa-
tients show discernible signs of behavioural non-reflex activity, coined as the minimally con-
scious state (MCS), they remain unable to communicate and are considered with impaired
consciousness (Giacino et al., 2002). When patients regain the capacity of functional com-
munication or object user are considered to be emerged from MCS (EMCS). An illustration
comparing the different consciousness states is shown in Figure 1.1 on the following page.

1.1.3 Why diagnosis is important?

The impact of such profound states of unconsciousness is reflected in the composition of the
first bioethical committees discussing the redefinition of life and death, hence predicting the
medico-ethical legal, and societal debates that were to follow (Beecher et al., 1968). Debates
of this kind mainly stem from how consciousness is considered in these conditions (Racine
et al., 2008). For example, with a wide European survey among healthcare professionals there
was a unanimous support for pain perception in MCS (96%) but less for the VS/UWS (56%)
(Demertzi et al., 2009). Similarly, the majority (66%) of healthcare professionals agreed to
withdraw life-sustaining treatment from chronic VS/UWS patients whereas only 28% agreed
so for the chronic MCS (Demertzi et al., 2011). Additionally, disorders of consciousness
have required the mediation of legal authorities in order to regulate end-of-life decisions
(Quill, 2005): in the absence of a written statement about end-of-life preference from pa-
tients’ behalf (advance directive), a surrogate decision maker is eligible to mediate trying to
maximise patients’ self-determination and protect their interests (Bernat, 2002, 2004). As
such, conflicts of interest among caregivers can arise leading to wide societal debates (Quill,
2005; Striano et al., 2009). Also, treatment resources are not unlimited. The allocation of
medical resources and the economics at the end of life have not yet been fully determined for
patients for whom the dilemma on treating becomes crucial either because treatments are not
guaranteed as successful (i.e., the condition is too bad to be treated) or unkind (i.e., the qual-
ity of life of those surviving is not acceptable) (Fins, 2003). Finally, the ethical significance
of consciousness has raised many discussions as to whether greater sentience entails greater
quality of life. As being conscious entails being conscious both of wellbeing and suffering
(Kahane and Savulescu, 2009), it might hence not be in patients’ best interest to preserve
life-sustaining aids (Horne, 2009).
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Figure 1.1: Simplified illustration of the two major components of consciousness: the level (wakefulness) and
the content of consciousness (awareness). Normal physiological states (purple) present a positive correlation.
Patients in coma or anaesthesia (gray) are unconscious and they cannot be awakened. DOC patients are awake
but do not present signs of awareness (VS/UWS patients; blue) or show inconsistent but discernible signs of
behavioural activity (MCS patients; green). Adapted from Laureys 2005b
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Taken collectively, to evaluate consciousness in noncommunicating patients has medico-
ethical significance. To date, efforts are focused on determining reliable diagnostic labels.
Diagnosis is considered a crucial level, because it typically informs about patients’ progno-
sis, i.e., unresponsive patients have less favourable outcome as compared to those in MCS
(Faugeras et al., 2017), and may influence clinical management and treatment options (Jox
et al., 2012).

1.2 State of the art of DOC diagnosis

1.2.1 Current tools for DOC diagnosis

Behavioural evaluation

Voluntary and reflexive behaviours are difficult to distinguish. Clinicians and caregivers
could miss the subtle signs of consciousness behaviour present in MCS patients. Despite
the specification of a diagnostic criteria for MCS (Giacino et al., 2002), a study showed
that non-standardised observation presented a 41% misdiagnosis of VS/UWS patients when
compared with a standardised scale (Schnakers et al., 2009). Among the several sources of
variance that contribute to this misdiagnosis, the patient’s fluctuations in terms of arousal,
fatigue, illness, pain, cortical sensory deficits, motor impairments or cognitive disturbance
decreases the probability of observing signs of consciousness (Schnakers et al., 2015). Tak-
ing this fact into account, behavioural evaluations should occur repeatedly over time and
should be sensitive enough to detect this subtle but meaningful fluctuations.

Conventional bedside assessment procedures as the Glasgow Coma Scale (GCS; Teasdale
and Jennett 1974) are designed to detect gross changes in behaviour rather than reflexive from
voluntary behaviour. An alternative scale which present higher sensitivity in detecting levels
of brainstem function in the acute stage of brain injury is the Full Outline of UnResponsive-
ness score (FOUR score) (Wijdicks et al., 2005). Neverhteless, this score does not include a
systematic assessment of signs of consciousness (Giacino et al., 2002) and it may not capture
the transition from VS to MCS (Schnakers et al., 2006; Bruno et al., 2011).

Standardised neurobehavioral assessment measures tailored for DOC patients include the
Coma Recovery Scale – Revised (CRS-R) (Giacino et al., 2004), the Coma-Near Coma Scale
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(CNC) (Rappaport et al., 1992), the Western Neurosensory Stimulation Profile (WNSSP)
(Ansell and Keenan, 1989), the Western Head Injury Matrix (WHIM) (Shiel et al., 2000),
and the Sensory Modality Assessment and Rehabilitation Technique (SMART) (Wilson and
Gill-Thwaites, 2000). Although item content varies across measures, all evaluate behavioural
responses to a variety of auditory, visual, motor, and communication prompts.

Neuroimaging

Nowadays, behavioural assessment of DOC remains the ‘gold standard‘ due to the lack of an
objective test of consciousness. Nevertheless, neuroimaging permits objective documentation
of central nervous system damage after acquired brain injury. Scientifically, neuroimaging
studies contributes to a better understanding of the neural correlates of human conscious-
ness. Clinically, they provide additional information concerning diagnosis, prognosis and the
course of recovery of consciousness, and can serve as surrogate markers for novel therapeutic
interventions (Giacino et al., 2014).

Structural neuroimaging techniques used in DOC comprises Magnetic Resonance Imag-
ing (MRI) and Computed Tomography (CT). These images allow the visualisation of the
location and extent of brain damage, but cannot reliably differentiate VS/UWS from MCS
patients. A previous study showed that structural MRI can predict the outcome of DOC
patients; for example, the presence of corpus callosum and dorsolateral brain-stem lesions
correlates with the lack of recovery at the group level (Kampfl et al., 1998). However, the
recently developed quantitative diffusion tensor imaging (DTI) techniques, which permit as-
sessment of structural white matter damage, have been shown to outperform clinical markers
in predicting 1-year functional outcome at the individual-patient level in patients with trau-
matic (Galanaud et al., 2012) or anoxic (Luyt et al., 2012) brain injury.

Functional neuroimaging can measure brain function, either in active or passive (resting)
states. Among the available technologies, functional MRI (fMRI), F-fluorodeoxyglucose
PET (FDG-PET) and Electroencephalography (EEG) have helped understanding DOC. Each
technique measures different aspects: FDG-PET measures the brain’s metabolic activity,
fMRI the haemodynamic activity and EEG the electrical activity.

A recent study used FDG-PET to measure whole-brain glucose metabolic state, conclud-
ing that this quantification allows accurate diagnosis and prediction of disorders of conscious-
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Figure 1.2: FDG-PET images for representative group samples as extracted from Stender et al. 2016.

ness (Figure 1.2; Stender et al. 2014). Nevertheless, in the same work, the authors depict the
need for high standards in image quality and registration.

Using fMRI, studies have been carried using auditory, tactile or visual stimuli, depicting
near-normal cortical activation patterns in MCS patients contrary to the low-level activations
in VS/UWS patients (Laureys and Schiff, 2012). Despite their potential value as prognostic
markers, the diagnostic value and interpretation of activation fMRI studies in DOC in terms
of the presence or absence of residual consciousness have remained controversial. Indeed, in
the absence of a full understanding of the neural correlates of consciousness, deficient cortical
activation to external stimuli does not necessarily prove the absence of consciousness (Lau-
reys, 2005a). On the other hand, task-free resting-state fMRI measurements are also used for
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Figure 1.3: Regions showing higher functional connectivity in MCS patients as compared to VS/UWS patients
(extracted from Demertzi et al. 2015).

diagnosis of DOC. In a recent study, automatic classification using functional connectivity
between left auditory, right auditory and occipital cortex was able to determine the conscious
state of 20 out of 22 patients (figure 1.3; Demertzi et al. 2015).

Electrophysiology

Another technique consists of studying the electrical activity of neurons or muscles. The term
electrophysiology encompass several particular techniques, depending on the source of the
signals. A common technique used throughout this entire thesis is electroencephalography
(EEG) which focus on measuring the electrical activity of the cerebral cortex.



1.3. ELECTROENCEPHALOGRAPHY 9

1.3 Electroencephalography

1.3.1 What is EEG?

How does it work?

Electroencephalography (EEG) is an electrophysiological technique for the recording of elec-
trical activity arising form the human brain. The history of EEG goes back to the 19th century,
starting by Richard Caton in 1875 who performed the first known neurophysiologic recording
of animals using a galvanometer. It was not until 1924 when the first studies in human began,
made by Has Berger, a German psychiatrist (St. Louis and Frey, 2016).

EEG uses the principle of differential amplification, or recording voltage differences be-
tween different points using a pair of electrodes that compares one active exploring electrode
site with another neighbouring or distant reference electrode. This differences are measured
in volts (typically microvolts or µV ).

An EEG acquisition system consists on a set of delicate electrodes connected to a set of
differential amplifiers (one for each channel), following by filters. Before the digital era, this
amplified signals were written by a mechanical pen directly into a rolling paper, leaving ink
traces of waveforms that mirrored the electrical potential differences on the scalp. Modern
systems contains analog-to-digital converters (ADC) that transforms the analog signal into
discrete digital data, readable by a computer or microprocessor which can be used to store
the acquired signals (Sanei and Chambers, 2007).

The electrodes used to sense the voltage differences are crucial for acquiring high quality
data. Nowadays, electrodes can be used to record neuronal activity in the scalp (EEG), brain
cortex (Electrocorticography; ECoG), brain tissue (Local Field Potentials; LFP) or single
neurons (single-unit recordings). Nevertheless, except for scalp EEG, the mentioned tech-
niques are invasive and requires surgical procedures. Scalp EEG electrodes are pasted or
glued to the scalp. For multichannel recordings with a large number of electrodes, caps are
often used.
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What do we measure?

The nerve cells in the brain produce signals that are called action potentials. These action
potentials move from one cell to another across a gap called the synapse. Special chemicals
called neurotransmitters help the signals to move across the gap. There are two types of
neurotransmitters, one will help the action potential to move to the next cell (excitatory), the
other will stop it moving to another nerve cell (inhibitory).

The electrical activity measured by scalp EEG recordings is generated by similarly ori-
ented groups of cerebral cortical neurons near the scalp where the recording electrodes are
placed. Each scalp electrode collects, at a minimum, an estimated 6 cm2 synchronous cortical
activity. The majority of the electrical activity collected in the EEG is generated by groups
of pyramidal neurons. These cells have cell bodies primarily in layers three and five of the
cerebral cortex. The electrical activity recorded on the scalp represents the summation of the
inhibitory or excitatory postsynaptic potentials (not action potentials, they are too short to be
recordable) from thousands of pyramidal cells near each recording electrode. This summated
activity can be represented as a field with positive and negative poles (dipole).

There are systematic interconnections between cortical neurons, as well as cortical to
subcortical connections to structures such as the thalamus, that have well-developed feed-
back linkages. Any sinusoidal rhythmic activity seen on the EEG is thought to represent
oscillatory communications between the cortex and deeper, subcortical structures. These
communication loops occur when the cortex is at rest or is not performing any specific task.
Once the cortex has a task to perform, the electrical activity of the cortex desynchronises, and
lower amplitude, faster electrical rhythms take predominance until the cortex completes its
task and returns to a resting state (St. Louis and Frey, 2016).

Resolution, precision and accuracy of EEG

The differences between precision, resolution and accuracy are subtle but important. Resolu-
tion refers to the number of data samples by unit time, precision refers to the certainty of the
measurements at teach time point and accuracy to the relationship between the timing of the
EEG signal and the biophysical event that lead to that signal.

The temporal resolution of the EEG is given by the sampling rate of the acquisition, gen-
erally between 100 Hz and 20 Khz, depending on the purpose of the acquisition. For most
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analysis on scalp EEG, resolutions between 250 Hz and 1000 Hz are sufficient and appropri-
ate. In contrast, the temporal precision depends on the analysis applied. Raw (unprocessed
data) have the highest temporal precision because each sample was taken at a precise time
point. Nevertheless, filtered data is a weighted average of the temporal surrounding activity,
which reduces the temporal precision. In terms of accuracy, the EEG is extremely accu-
rate because brain electrical activity travels instantaneously from the neurons generating the
electrical field to the electrodes measuring them.

Although EEG has high temporal precision, resolution and accuracy, it is not the case for
spatial properties, as they are considered low compared to neuroimaging techniques such as
fMRI. The spatial resolution of EEG is determined by the number of electrodes. Common
configurations consists on 21 electrodes (10-20 standard; Jasper 1958), 32, 64, 128 and 256.
The spatial precision of the EEG is considered low, although it can be improved by spatial
filters. In terms of accuracy, the problem is that one electrode does not reflect the activity from
neurons directly below that electrode, but rather a complex mixture of activities from many
brain regions close to and distant from it. Furthermore, the extent to which one brain region
contributes to the signal recorded from each EEG electrode depends on cortical anatomy and
to what extent that brain region is active at a given point in time (Cohen, 2014).

1.3.2 What do we analyse in EEG?

Oscillations

An oscillation is a rhythmic alternation of states. They can occur in time or in space, and are
commonly seen in physical and biological systems. In the brain, they refer to fluctuations
in the excitability of neurons or populations of neurons. Neural oscillations are observed on
many spatial and temporal scales (Varela et al., 2001) and have been linked to many neurobi-
ological events ranging from long-term potentiation to conscious perception (Buzsáki, 2009;
Engel et al., 2001; Herrmann et al., 2010; Kistler et al., 2000; Klimesch et al., 2007; McBain
and Kauer, 2009). These neurobiological mechanisms are fairly well understood (Buzsáki
et al., 2012; Wang, 2010) although uncertainties remain in the extent to which different fac-
tors contribute to the signal recoded by EEG, in part due to the complexity of the models and
the difference in spatial scale between individual neurons and scalp EEG.



12 CHAPTER 1. INTRODUCTION

Brain rhythmic activity contains multiple frequencies simultaneously, which can be sepa-
rated through signal processing techniques. These rhythms are grouped into bands, defined as
delta (2-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (15-30 Hz), lower gamma (30-80 Hz), up-
per gamma (80-150 Hz). Although there are more oscillations, there bands are most typically
associated with cognitive processes, defined from neurobiological mechanisms of brain oscil-
lations, including synaptic decay and signal transmission dynamics (Buzsáki, 2009; Buzsáki
and Draguhn, 2004; Kopell et al., 2010; Niedermeyer and Silva, 2004; Wang, 2010)

Changes in rhythmic activity correlate with task demands, including perceptual, cogni-
tive, motor, linguistic, social, emotional, mnemonic and other functional processes (Cohen,
2014).

Event-related Potentials (ERPs)

One way to study the human brain function is by analysing the reactions of the brain to a
variety of stimuli. Some of these reactions may be associated with clear cut changes in the
EEG; some others, however, consist of changes that are difficult to visualise. These EEG
changes may be treated globally under the common term event-related potentials (ERPs); a
subset of the ERPs are sensory (visual, auditory, somatosensory) evoked potentials (ERPs).

ERPs are usually defined in the time domain as the brain electrical activity that is trig-
gered by the occurrence of particular events or stimuli. A basic problem of analysis is how
to detect ERP activity within the often much larger ongoing EEG or background activity.
According to the most widely accepted model, ERPs are signals generated by neural popu-
lations that are time-locked to the stimulus; these signals would be summed to the ongoing
EEG activity. According to another model, however, ERPs are assumed to result, at least
partially, from a reorganisation of the ongoing activity (Sayers et al., 1974). More recently,
a study demonstrated that ERPs could be generated by stimulus-induced phase resetting of
ongoing EEG components (Makeig et al., 2004).

The ERP waveform can be quantitatively characterised across three main dimensions:
amplitude, latency, and scalp distribution. In addition, an ERP signal may also be analysed
with respect to the relative latencies between its subcomponents. The amplitude provides
an index of the extent of neural activity (and how it responds functionally to experimental
variables), the latency (i.e. the time point at which peak amplitude occurs) reveals the timing
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Figure 1.4: Timeseries of two auditory evoked responses corresponding to an oddball paradigm. Rare trials
(blue) present distinct evoked responses when compared to frequent trials (red). This classic paradigm elicits
a P300 wave. The two main components of the wave are a negative deflection 100 ms after the stimuli (N100)
and a positivity 300ms after the stimuli (P300).

of this activation, and the scalp distribution provides the pattern of the voltage gradient of a
component over the scalp at any time instant (Sanei and Chambers, 2007).

The ERP signals are either positive, represented by the letter P, such as P300, or negative,
represented by the letter N, such as N100 and N400 (see figure 1.4 for an example). The digits
indicate the time in terms of milliseconds after the stimuli (audio, visual, or somatosensory).
The amplitude and latency of the components occurring within 100 ms after stimulus onset
are labelled oxogenous, and are influenced by physical attributes of stimuli such as intensity,
modality, and presentation rate. On the other hand, endogenous components such as P300
are nonobligatory responses to stimuli, and vary in amplitude, latency, and scalp distribution
with strategies, expectancies, and other mental activities triggered by the event eliciting the
ERP. These components are not influenced by the physical attributes of the stimuli (Sanei and
Chambers, 2007).

The ERP parameters such as amplitude and latency are the indicators of the function
of the brain neurochemical systems. ERPs are also related to the circumscribed cognitive
process. For example, there are interesting correlations between late-evoked positivities and
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memory, N400 and semantic processes, or the latencies of ERPs and the timing of cognitive
processes. Therefore, the ERP parameters can be used as indicators of cognitive processes
and dysfunctions not accessible to behavioural testing.

Nevertheless, there are overlapping components within ERPs, which represent specific
stages of information processing, which are difficult to distinguish (Frodl-Bauch et al., 1999;
Dien et al., 2003). An example is the composite P300 wave, a positive ERP component,
which occurs with a latency of about 300 ms after novel stimuli, or task-relevant stimuli,
which requires an effortful response on the part of the individual under test (Frodl-Bauch
et al., 1999; Dien et al., 2003; Kok et al., 2004; Friedman and Cycowicz, 2001).

In the P300 wave (figure 1.4 on the preceding page), the elicited ERPs are comprised of
two main components: the mismatch negativity (MMN) and the P300 complex. The MMN
is the earliest ERP activity that indicates that the brain has detected a change in a background
of brain homogeneous events, and it has been detected even when the stimuli are unattended
or ignored. Because the MMN is evoked by stimuli that fall outside the focus of attention, it
is considered to be a relatively automatic, pre-attentive response to stimulus deviance (Fried-
man and Cycowicz, 2001). The P300 complex represents cognitive functions involved in
orientation of attention, contextual updating, response modulation, and response resolution
(Dien et al., 2003; Kok et al., 2004), and consists mainly of two overlapping subcomponents
P3a and P3b (Frodl-Bauch et al., 1999; Friedman and Cycowicz, 2001; Comerchero and
Polich, 1999). P3a reflects an automatic orientation of attention to novel or salient stimuli in-
dependent of task relevance. Profrontal, frontal, and anterior temporal brain regions play the
main role in generating P3a, giving it a frontocentral distribution (Friedman and Cycowicz,
2001). In contrast, P3b has a greater centroparietal distribution due to its reliance on poste-
rior temporal, parietal, and posterior cingulate cortex mechanisms (Frodl-Bauch et al., 1999;
Dien et al., 2003). The P3b wave is though to reflect a higher-order violation of subject’s
expectaions of a given rule, constructed over a longer time period than the MMN, and has
been closely linked to working memory (Goldstein et al., 2002; Polich, 2007) and conscious
access (Dehaene et al., 2006; Dehaene and Changeux, 2011).

According to the classic view, ERP analysis is based on two basic assumptions: (1) the
electrical response evoked from the brain is invariably delayed relative to the stimulus and
(2) the ongoing activity is a stationary noise, the samples of which may or may not be corre-
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lated. Thus, ERP detection becomes a question of improving signal-to-noise ratio. A simple
method to detect ERPs is to average across many repetitions (trials) with the main objective,
of course, to increase the signal-to-noise ratio so that the EEG background activity is atten-
uated (Niedermeyer and Silva, 2004). Nevertheless, quantifying ERPs can be difficulty for
several reasons, including environmental artifacts and intra-subject variability. This problem
of classification can be solved using multivariate statistical methods (Donchin, 1969) and
multivariate pattern (MVP) analysis King et al. (2013a).

1.4 Electroencephalography in DOC patients

Regarding EEG, we must differentiate between the ERP-based or active, passive and resting
state methods used for the diagnosis of disorders of consciousness. The multidimensional
construct of consciousness can be assessed through a variety of stimulation and recording
paradigms, each one addressing particular aspects of consciousness across the spectrum of
pathologies with disorders of consciousness.

For example, in case of comatose state, Brainstem Auditory Evoked Potentials (BAEPs),
Middle Latency Auditory Evoked Potentials (MLAEPs), Somatosensory Evoked Potentials
(SEPs) and Visual Evoked Potentials (VEP) are general indicators of prognosis The pres-
ence of these potentials indicate preserved brainstem, sensory pathways and primary cortex
function (Garcia-Larrea et al., 1992; Litscher, 1995). Nevertheless, these potentials are not
related to cognition or high order function, hence they only indicate a bad prognosis with the
absence of responses. Contrarily, cognitive ERPs are used to assess and predict higher order
functions as language, attention and working memory.

The N400 (negative deflection 400 ms after the stimuli) ERP is found in healthy subjects
when they see or hear semantically anomalous sentences like “The coffee is too hot to fly”
versus “The coffee is too hot to drink” (Schoenle and Witzke, 2004), hence used a test to
probe linguistic capabilities. When applied to DOC patients, the presence of an N400 due
to semantic processing indicates preserved cognitive function and has only been detected in
MCS patients (Rohaut et al., 2015).

Neural responses to motor imagery and spatial navigation tasks have proven to detect
consciousness (Goldfine et al., 2011; Cruse et al., 2011, 2012) by asking subjects to imag-
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ine movements or navigate spatially and analysing the oscillatory responses. However, the
specificity and sensitivity of this marker is still under discussion (Goldfine et al., 2013).

Another classic ERP used in DOC is the MMN (mismatch negativity, see 1.3.2 on page 12).
In comatose patients, these evoked potential elicited by novelty detection (oddball paradigms)
has been reported as a highly specific (>90%) predictor of awakening (Kane et al., 1993; Fis-
cher et al., 2004; Naccache et al., 2005). Highly associated with the novelty P300, and with
several flavours ranging from auditory beeps (Naccache et al., 2005) to the subject’s own
name (Fischer et al., 2010; Schnakers and Laureys, 2009), this ERPs has not proved to be
always specific in regard to diagnosis of DOC in post-comatose states as MCS or VS/UWS:
they have been detected in both MCS and VS/UWS patients (Faugeras et al., 2011; Naccache
et al., 2005; Fischer et al., 2010).

The main reason for the specificity failure of the novelty P300 ERPs is that this particular
complex represents several cognitive functions and consists of two overlapping subcompo-
nents (P3a, P3b, see 1.3.2 on page 12). In 2009, Bekinschtein et al. 2009 proposed a two-level
hierarchical oddball paradigm designed to differentiate the MMN and P3b responses (for de-
tails, see 1.5.2 on page 18). This new paradigm named Local-Global presented an effect when
subjects were able to maintain conscious attention, thus implying capacity for conscious ac-
cess. When applied to DOC patients, it was only detected in EMCS and MCS patients, with
an exception of two VS/UWS patients that later recovered (Faugeras et al., 2012). Neverthe-
less, the main caveat of this test is its low sensitivity: it was detected in 53.8% of the EMCS
patients and only 14.3% of the MCS patients.

Interestingly, a recent work proposed a multidimensional cognitive evaluation of DOC
patients using ERPs (Sergent et al., 2017). During a 1.5 hour session, patients were probed
for own name recognition, temporal attention, spatial attention, detection of spatial incon-
gruence, motor planning and modulation of these effects by global context, reflecting higher-
level function. This proof-of-concept study revealed that the combination of several ERP
markers increased diagnostic sensitivity, particularly in the detection of minimally conscious
states with the presence of high-level effects.

So far, these ERPs are mainly elicited by auditory, somatosensory and in less frequency,
visual stimuli. The main reason behind this unbalance is the difficulty to force patients to
open their eyes and fixate in the case of visual stimuli. An alternative stimulation is the use
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of Transcranial Magnetic Stimulation (TMS).
The Integrated Information Theory of consciousness (Tononi et al., 2016) states that,

phenomenologically, each conscious experience is both differentiated (composed of several
phenomenal distinctions that exist within it) and integrated (the distinctions are bound to-
gether in various ways). These properties, from a neurophysiological point of view, rely on
the ability of multiple, functionally specialised areas of the brain to interact rapidly to form an
integrated whole (Dehaene and Changeux, 2011; Friston, 2002; Laureys, 2005b; Tononi and
Koch, 2008). In Information Theory, integration and differentiation is also defined as com-
plexity. Under this premises, the spatio-temporal complexity of an EEG can act as a proxy
to the combination of integration and segregation. Casali et al. 2013 proposed a marker of
brain complexity that quantifies the response to direct cortical stimulation using TMS and
measured by EEG, named Perturbational Complexity Index (PCI). In a follow-up study on a
cohort of 38 MCS and 43 VS/UWS patients, authors reported a sensitivity of 94.7% and a
specificity of 80% (Casarotto et al., 2016).

In a recent review, Bai et al. 2017 report several common aspects among various studies
on resting state (or spontaneous) EEG recordings in DOC patients: spectrum power differ-
ences in alpha, delta and theta bands between MCS and VS/UWS patients; ratios between
higher and lower frequencies correlates with CRS-R scores; spectral entropy, markers of EEG
complexity and functional connectivity differentiates patients groups.

One particular work, analysed in this thesis, is the one presented by Sitt et al. 2014 which
combines EEG-extracted markers from diverse theoretical frameworks and uses machine
learning to predict the diagnosis of individual patients. In particular, they analyse dozens of
markers including ERPs from the Local-Global paradigm and markers of information, com-
plexity, connectivity and spectral power, obtaining an AUC of 78% when used to diagnose a
cohort of 68 MCS and 75 VS/UWS patients.

1.5 Methods used in this thesis

1.5.1 The Coma Recovery Scale (Revised)

The current gold standard for the behavioural diagnosis of DOC patients is the Coma Recov-
ery Scale - Revised (CRS-R). This scale, initially described in Giacino et al. 1991 and later
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revised in Giacino et al. 2004 was developed to characterise and monitor patients, detect-
ing subtle but potentially meaningful changes in neurobehavioural function, while ensuring
proper interrater reliability.

The CRS-R consists of 26 hierarchically arranged items that comprise 6 subscales ad-
dressing auditory, visual, motor, oromotor, communication, and arousal processes. Scoring
is based on the presence or absence of specific behavioural responses to sensory stimuli ad-
ministered in a standardised manner. The lowest item on each subscale represents reflexive
activity, whereas the highest items represent cognitively mediated behaviours. Depending on
the different scores in the subscales, the CRS-R will diagnose the patient as VS/UWS, MCS
or EMCS.

1.5.2 The Local-Global paradigm

As described previously in 1.4 on page 15, the MMN and P3b events are close in time and
extremely difficult to differentiate in individual subjects. For that purpose, Bekinschtein et al.
2009 propose a new paradigm named Local-Global which adds a second level of novelties
to a classic oddball paradigm. A first level of regularities is defined at a local (or within
trial) level, while the second level is defined at a global (or across trial) level. While disrup-
tions of the local level regularities elicits the MMN and P3a ERPs, disruptions of the global
regularities elicits a P3b ERP.

Each trial of the paradigm is formed by 5 consecutive sounds lasting 50 ms, with a 150-
millisecond gap between the sounds’ onsets and an intertrial interval ranging from 1,350 to
1,650 milliseconds. The fifth sound can be either equal to or different from the first four;
this defines whether the trial is standard or deviant at the local level. The second level of
regularities is defined across trials (or at a global level); frequent trials (80%) define the
regularity, and rare ones (20%) violate this regularity.

Two types of stimulation blocks are played to the subjects; in the XX blocks, the frequent
stimulus corresponds to five equal sounds (local standard and global standard [LSGS]). In
contrast, the infrequent stimulus corresponds to four equal sounds followed by a fifth different
sound (local deviant and global deviant [LDGD]). In the XY blocks, the frequent stimulus
corresponds to four equal sounds and a fifth different sound (local deviant and global standard
[LDGS]). The infrequent stimulus corresponds to 5 equal sounds (local standard and global
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Figure 1.5: Illustration of the Local-Global paradigm.
Each trial of the auditory paradigm was composed by
5 consecutive sounds. Four equal sounds define a local
regularity (music notes). The fifth sound could be equal
or different, defining a local standard or deviant trial,
respectively. At a second level, frequent trials (80%,
green shaded area) defined a global regularity and rare
trials (20%, red shaded area) violated this regularity.

deviant [LSGD]). For more details see figure 1.5.

The local effect is quantified by contrasting all local deviant (LD) trials (LDGS+LDGD)
versus all local standard (LS) trials (LSGS+LSGD). The global effect is quantified by con-
trasting all global deviant (GD) trials (LSGD+LDGD) versus all global standard (GS) trials
(LSGS+LDGS). All subjects were presented with these four conditions, twice for each block
type. Each block started with 20–30 global standard trials to establish the global regularity
before the occurrence of the first global deviant trial. An example of the neural response to
the Local-Global paradigm is shown in 1.6 on the next page.

Subjects were instructed to count the GD trials and asked after each stimulation block
( 3.5 minutes). For patients, if they appeared asleep, they were stimulated with pressure as
recommended in the arousal facilitation protocol in the CRS-R.

1.5.3 Machine Learning

According to Mitchell 1997, “the field of machine learning is concerned with the question on
how to construct computer programs that automatically improve with experience”. Through-
out this thesis, we will focus on a specific type of learning named supervised learning, that
is, algorithms that could learn from examples provided by a supervisor. In this case, the algo-
rithm is first presented with a set of samples and its corresponding labels (training set). Once
the algorithm has learnt from the examples, one can feed it with an independent set of sam-
ples (test set) and ask the algorithm to classify the samples based on the knowledge obtained
from the training set. The performance of the algorithm can be assessed by comparing the
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Figure 1.6: Local and Global effects as measured with EEG in one of the directors of this thesis. Timeseries of
the Local Effect around the Fz electrode (top left) present the MMN around 140 ms after the onset of the 5th
sound only when it is different from the first four. The associated scalp map (top right) shows a frontal/central
negativity and a posterior positivity. Timeseris of the Global Effect around the Pz electrode (bottom left) depict
the P3b component starting around 350ms after the onset of the 5th sound. The associated scalp map (bottom
right) presents a central/posterior positivity.
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labels provided by the algorithm and the ones provided by the supervisor. An good algorithm
is the one who provides accurate labels within some reasonable error.

A classification algorithm can be univariate or multivariate. In the first case, a single vari-
able or feature is provided for each sample. Multivariate Pattern Analysis (MVPA) classifiers
refers to classification algorithms that uses more than one feature for each sample. Depend-
ing on the algorithm and the number of features, some of them could be discarded to reduce
dimensionality. This is called feature selection.

Cross Validation

In order to test the real performance of a classification algorithm, one must provide two sets
of representative data from the underlying real population distribution. For the train set,
it should be big enough so the algorithm learns generalizable rules and not particular and
specific to the available samples. For the test set, its size will have a direct impact on the
variance of the estimated performance.

A common problem we face when evaluating models in neuroimaging and clinical ap-
plications is that the number of available samples is severely limited. For example, data
from DOC patients in the Pitié-Salpêtrière hospital in Paris is acquired weekly: 52 samples
a year in the best case scenario. To address this issue, a widely used validation technique
is to partition the available data into independent sets and use them for training and testing
the algorithm. In order to reduce variability, this action can be repeated with different par-
titions. This method is called cross-validation and there are several partitioning schemes.
We here focus on two particular methods: Stratified Shuffle Split (also called Monte Carlo
cross-validation) and Stratified K-Fold.

The Stratified Shuffle Split method consists on randomly shuffling the data and splitting
the data into two partitions for training and testing the algorithm. The sizes of the partition
are determined by the user, but both of them respects the label distributions of the original set.
This action is repeated several times and the performance is estimated across the repetitions.
A disadvantage of this methods is that there is no guarantee that a sample will be used for the
validation set, and that validation sets overlap.

In the Stratified K-fold cross validation, samples are split into K different groups (folds)
that respects the original label distributions. The algorithm is then trained on K−1 folds and
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tested on the remaining one. This action is repeated K times with a different testing fold. An
advantage of this method is that it guarantees that each samples is used for validation exactly
once.

Area under the ROC curve (ROC-AUC)

Univariate and multivariate discrimination performance was summarised with Area Under the
Curve (AUC) calculated from the receiver operator characteristic (ROC). For a binary clas-
sification system, the ROC pits the detection probability, commonly referred to as sensitivity
against the probability of false alarm (1 - sensitivity). These probabilities are empirically
estimated by moving the decision cut-off along the sorted values of a continuous variable,
e.g. a score, and evaluating its relation to the true label. In the case of traditional model-free
univariate analysis, the score is the EEG-marker itself, in the case of univariate or multivari-
ate machine learning it is the predicted probability of a given sample to belong to the target
class. The AUC can then be conveniently used to summarise the performance, where a score
of 0.5 is uninformative and equals to random guessing whereas a score of 1 amounts to per-
fect classification and 0 to total confusion, indicating negative correlation between the score
and the label.

1.5.4 Statistics

Statistical analysis encompassed correlations using Pearson product–moment correlation co-
efficient (r) and Spearman rank correlation coefficient (rho) with corresponding probability
values. Pearson chi-square and Wilcoxon rank sum test were used to test for independence
between the diagnosis and the demographic information of the patients. Bayesian ANOVA
was performed to test the differences between groups using the BayesFactor R package (JZS
Bayes factor with “medium” default prior setting r = 0.5; Rouder et al. 2012; Morey et al.
2014; R Development Core Team 2016. Bayes factor (BF) interpretation was done accord-
ing to the Kass & Raftery scale (Kass and Raftery, 1995). Differences between groups were
also tested using 2-sided paired samples signed tests. Different between conditions at single
subjects and group level were tested using paired t-tests. Performance of MVPA models was
assessed using the Area Under the Curve (AUC). MVPA models were tested using nonpara-
metric Kruskal–Wallis test adjusted for multiple comparisons. We extended our visualisations
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into hypothesis tests by employing the percentile bootstrap (Efron and Tibshirani, 1994). Ac-
cordingly, we generated 2000 bootstrap samples by drawing with uniform probability and
replacement n samples from the dataset. The test-statistic of interest was then evaluated on
each bootstrap sample. Two-sided 95% confidence intervals were obtained by querying the
2.5 and 97.5 percentiles and the significance-level was then obtained by inversion of the con-
fidence interval that excluded the value under H0.

1.6 This work

1.6.1 Purpose

The purpose of this thesis is to analyse the current EEG-based tools used to diagnose disorders
of consciousness with two major objectives: (1) validate and standardise the usage of state-
of-the-art tools based on machine learning methods and (2) analyse and propose novel tests
in order to increase the sensitivity of the current tool and improve the diagnostic accuracy.

1.6.2 Description of chapters

Chapter 2: Automation and identification of robust EEG-extracted markers for the
diagnosis of DOC. As a first step, we analyse the validity and clinical usage of a previous
publication which combines EEG-extracted markers and a Support Vector Machine classifier
to diagnose DOC patients. In order to develop an online clinical tool, we automate the process
and analyse the application across different clinical setups.

Chapter 3: Towards cross-modal integration as a measure of consciousness. Previous
works on diagnosis of DOC using auditory ERP analyses show high specificity but low sen-
sitivity. Past research on multimodal stimulation suggest the existence of a variety of neural
responses that can be measured using EEG. In this chapter, we analyse the possibility of using
the neural responses to multimodal stimulation and cross-modal integration for the diagnosis
of DOC.
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Chapter 4: Brain-Body interactions as a diagnostic marker for DOC. So far, all the
assisting technologies used to diagnose DOC patients are based on a strict neuro-centric
approach. Nevertheless, past research on healthy subjects demonstrate interactions between
the body and the brain, which are also affected by cognitive processes. In this chapter, we
shift away from this neuro-centric approach and analyse the possibility of evaluating DOC
patients via the embodied paradigm, according to which body-brain functions contribute to a
holistic approach to conscious processing.

Chapter 5: Summary and final remarks. In this chapter, we summarise the findings and
discuss future lines of research.



Chapter 2

Automation and identification of robust
EEG-extracted markers for the diagnosis
of DOC

Parts of the work described in this chapter has been accepted for publication as “Robust EEG-based
cross-site and cross-protocol classification of states of consciousness”. Raimondo F.*, Engemann
DA.*, King JR., Rohaut B., Louppe G., Faugeras F,. Annen J,. Cassol H., Gosseries O., Fernandez
Slezak D., Laureys S., Naccache L., Dehaene S., Sitt JD. Brain, to be published in Volume 141, Issue
11, November 2018.
Additionally, this work was the basis for a case report published as “Probing consciousness
in a sensory-disconnected paralysed patient”. Rohaut B., Raimondo F., Galanaud D., Valente
M,. Sitt JD., Naccache L. Brain Injury, Volume 31, Issue 8, Pages 1-6. 2017.
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2.1 Background

Over the last decade, several electrophysiological signatures of consciousness has been pro-
posed, varying from simple quantifications of ERPs or oscillations, to complex topological
summaries of connectivity. This chapter is based on one of the key studies in EEG-based
DOC diagnosis (Sitt et al., 2014). This work analysed dozens of EEG-markers obtained from
more than 150 EEG recordings of the Local-Global paradigm. The authors demonstrated that
by using a Support Vector Machine (SVM) classifier combining several EEG-markers, the
diagnostic precision was higher than any of the individual markers. Furthermore, when the
clinical (behavioural) diagnosed VS/UWS patients where classified by the SVM as MCS pa-
tients, the proportion of those who later showed signs of consciousness significantly increased
(Sitt et al., 2014).

The main result, a gain in diagnostic precision by combining several EEG measures, has
both theoretical and clinical implications. Theoretically, the results indicate that the mark-
ers addresses distinct and dissociable features of conscious states. Clinically, they depict
the usefulness of combining EEG measures for the diagnosis. Particularly, the increase in the
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probability of recovery of those clinically VS patients classified as MCS using the EEG mark-
ers, indicates that this approach is discovering information that could escape highly trained
clinicians. Taken together, these results provide the basis for a reliable bedside tool to probe
consciousness in DOC patients.

2.2 Objectives

In this chapter, we will focus on the follow-up analysis after the work published in Sitt et al.
2014. The purpose of this work has both clinical and scientific objectives:

1. Evaluate the use of the previously developed model for the diagnosis of DOC in a
clinical environment.

2. Provide a semi-supervised algorithm to obtain the results, in which there is no need for
human intervention.

3. Analyse the implications of modifying data acquisition conditions in order to assess
the use of the developed tool across clinical centres with heterogeneous EEG systems
and acquisition protocols.

4. Obtain insight from the classification model and determine which are the markers that
drives the distinction between VS/UWS and MCS patients.

2.3 Automation

2.3.1 Reasons to rewrite the code and automate the process

The development of a clinical tool that goes beyond research requires a high grade of attention
to the software development processes. For example, a defect in a news website or word
processor application could result on the inability to perform a certain task, the loss of data
or a security breach. Nevertheless, the magnitude of this events do not directly compare to
a defect in a software that predicts the diagnosis of a patient. The clinicians might take end-
of-life decisions upon the wrong results due to an error in the software. It is of uttermost
importance to ensure a high quality software through the development process.
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Particularly in data handling for machine learning applications, it is crucial that the fea-
tures are well defined and obtained in an objective manner, with no prior knowledge of the
output to be predicted. When it comes to EEG, one of the first steps is to identify non-neural
signals or artifacts. In addition to the neuronal activity, EEG captures the electrical activity
of muscles, cardiac activity, movements and environmental noise. A common procedure is to
visually inspect the recording and discard the portions of data that are contaminated by any
of this artifacts. This procedure is prune to be subjective, hence a potential problem is a bias
in the extracted features.

To address these potentials problems, the proposed solution is to create a high quality
software which extracts the features in a fully unsupervised manner.

2.3.2 Software Implementation

The software was written in Python and C, using open-source libraries. All the EEG-measures
described in Sitt et al. (2014) were re-implemented taking advantage of the already optimised
Numpy and Scipy libraries for fast algebra and scientific computing (Jones et al., 2001). For
general data processing and visualisation, we used the open source MNE software package
(Gramfort et al., 2013, 2014). Machine learning was performed using the scikit-learn library
(Pedregosa et al., 2012). Bash scripts and GNU-parallel (Tange, 2011) were used to distribute
processes and obtain results in a faster way.

2.3.3 Preprocessing

The first procedure after data acquisition, and before the computation of ERPs and EEG-
extracted markers is called preprocessing. The objective of the preprocessing step is straight-
forward: convert raw and contaminated data into artifact-free data ready to analyse. Depend-
ing on the analysis to be done, the steps and tools used in preprocessing can vary.

Data was first filtered using a 0.5 Hz high-pass 6th order and a 45 Hz low-pass 8th order
FFT-based Butterworth filters. The second step consisted on epoching (separate in trials)
from -200ms to 1336ms relative the onset of the first sound of the Local-Global paradigm.

We then used an adaptive outlier detection algorithm specifically developed to detect
and reject contaminated electrodes and epochs. This adaptive algorithm first selects bad
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electrodes where more than 50 % of the epochs present a peak-to-peak amplitude higher than
100 µV . The second step consists on computing the variance of each individual channel
and its corresponding z-score across all channels. Channels with a z-score greater than 4 are
discarded. This operation is repeated 4 times. The remaining data is then analysed at the
epoch level: epochs with more than 10% of the channels outside the 100 µV peak-to-peak
amplitude range are then discarded. Finally, the second step is repeated, but with the standard
deviation of the channels filtered with a 4th order Butterworh high-pass filter at 25 Hz.

In order to use the same set of electrodes for every patients, electrodes marked as “bad” by
the outlier algorithm are interpolated using a spherical spline interpolation. Data was finally
re-referenced using an average reference and baseline corrected over the first 200 ms window
preceding the onset of the first sound.

The development of the peak-to-peak amplitude rejection algorithm led to the develop-
ment of an automated algorithm for rejection and repair of bad trials in EEG and MEG sig-
nals. This algorithm estimates the individual peak-to-peak threshold for each channel, rather
than M/EEG system-dependent user set threshold (Jas et al., 2016). The presented method
capitalises on cross-validation in conjunction with a robust evaluation metric to estimate the
optimal peak-to-peak threshold, extended to a more sophisticated algorithm which estimates
this threshold for each sensor yielding trial-wise bad sensors. Depending on the number of
bad sensors, the trial is then repaired by interpolation or excluded from subsequent analysis.

2.3.4 Optimisations and Performance

Among the EEG-extracted measures used, three of them needed a reimplementation in Python:
Permutation Entropy (PE; Bandt and Pompe 2002), Weighted Symbolic Mutual Information
(wSMI; King et al. 2013b) and Kolmogorov-Chaitin complexity (K; Sitt et al. 2014).

Due to the complexity of the algorithms, optimisations were done in C using OpenMP
for multithreading, with its corresponding Python bindings. This allowed to perform the
computation of all the markers for a single subject in about 30 minutes in a 16 Gb RAM Intel
Core i7 type workstation.

These benchmarks are particularly relevant for the practical purpose of the system. The
current implementation facilitates the computation of reference models that are estimated
on EEG-measures from hundreds of clinical recordings to predict unseen patients. This not
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only facilitates more frequent updates of these reference models, which may be required
for research purposes. It also lowers the maintenance burdens, i.e., of detecting and fixing
software bugs.

2.4 Replication

To validate, both the results from Sitt et al. 2014 and our Python implementation, we com-
puted all the markers and the main analysis of the previous study, using the same original
data. After preprocessing, we analysed a final cohort of 98 patients with 142 recordings (see
Paris 1 in 2.2 on page 41).

At the univariate group level, we obtained the same results. Figure 2.2 on page 32 shows
the topographical maps originally published in Sitt et al. 2014 (Figure 2.1 on the facing page)
and the results obtained with the Python implementation.

2.4.1 Methods

For the multivariate analysis, we computed the cross-validation (CV) accuracy using the
markers extracted with our implementation. We extracted 28 EEG-markers as described in
detail in Sitt et al. 2014. These markers can be grouped into four conceptual families, i.e.,
information theory, connectivity, spectral, and evoked response markers (See Table 1). In
the original publication, additional markers were used but were omitted due to previously
reported unsatisfying performance or redundancy. For a full list of markers and abbreviations
see Table 2.1 on page 33.

For each marker, we extracted four summary statistics. Aggregations over epochs were
done using an 80% trimmed mean and the standard deviation to account for the average and
its fluctuations over time. Aggregations over electrodes were computed using the mean and
standard deviation to account for the average and topographical fluctuations. Some markers
presented additional dimensions which were aggregated using a mean or median, according
to the corresponding literature. For example, we would first compute either the mean or the
standard deviation across epochs, and then the mean or the standard deviation across sen-
sors. Throughout the chapter we refer to these marker subtypes as “mean,mean”, “std,mean”,
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Figure 2.1: Scalp topographies of the most discriminatory measures. The fifth column indicates whether the VS
and MCS patients were significantly different (Black: p = 0.01, light grey: p = 0.05, white: not significant,
uncorrected). The sixth column shows the statistics of a regression analysis of the measure across the four states
of consciousness (VS < MCS < CS (EMCS) < healthy controls (H). Black: p = 0.01, light grey: p = 0.05,
white: not significant, uncorrected). Extracted from Sitt et al. 2014.
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Figure 2.2: Reproduction of the figure from Sitt et al. 2014 using our Python implementation.
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Abbreviation Marker Family
PE Θ Permutation Entropy information theory
K Kolmogorov Complexity information theory
wSMI Θ Symbolic Mutual Information (weighted) connectivity
α Alpha PSD spectral
‖α‖ Normalized Alpha PSD spectral
β Beta PSD spectral
‖β‖ Normalized Beta PSD spectral
δ Delta PSD spectral
‖δ‖ Normalized Delta PSD spectral
γ Gamma PSD spectral
‖γ‖ Normalized Gamma PSD spectral
θ Theta PSD spectral
‖θ‖ Normalized Theta PSD spectral
MSF Median Power Frequency spectral
SE90 Spectral Edge 90 spectral
SE95 Spectral Edge 95 spectral
SE Spectral Entropy spectral
CNV Contingent Negative Variation evoked
P1 P100 evoked potential evoked
P3A P3a evoked potential evoked
P3B P3b evoked potential evoked
GD-GS full contrast evoked
LD-LS full contrast evoked
LSGD-LDGS full contrast evoked
LSGS-LDGD full contrast evoked
∆P3A Contrasted P3A (LD vs LS) evoked
∆P3B Contrasted P3B (GD vs GS) evoked
∆MMN Contrasted MNN (LD vs LS) evoked

Table 2.1: Acronyms used for EEG-measures
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Figure 2.3: Diagram of the dimensions for each of the families of markers. To compute the scalar values,
dimensions were first aggregated by epochs (1), then by sensors (2), and finally, if needed, by the remaining
dimensions. (3)

“mean,std” and “std,std” and in figures, for brevity, “m,m”, “s,m”, “m,s”, “s,s”. A description
on the dimensions and the procedure can be seen in Figure 2.3

These markers were then fitted into a classifier trained to distinguish between the VS/UWS
and MCS patients. The classification algorithm used in the original publication consisted on
a Support Vector Machine (SVM). The SVM-based classifier (SVC) aims at finding the opti-
mal linear combination of features (w) that separates the training samples with distinct classes
in the hyperspace of features. A penalisation parameter is used to find a solution which is
likely to generalise to another dataset, and hence avoid over-fitting. Here, the penalisation
parameter C, was chosen by nested cross-validation among the values = [.001 .01 .1 .2 .5 1 2
10] using a grid-search method (Pedregosa et al., 2012). The SVC can provide a continuous
probability by fitting the distribution of the samples with regard to w (Platt, 1999).

Additionally, we used the Extremely Randomised Trees (ET) algorithm (Geurts et al.,
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2006) to address a potential decrease of performance when generalising to new data. Unlike
Support Vector Machines, Extremely Randomised Trees are non-parametric and robust by
design, and are not sensitive to the measurement scale of the input data. This algorithm can
handle so-called wide datasets in which more variables than samples are available. More-
over, it belongs to the family of adaptive algorithms capable of scaling the complexity of
the learned model to the amount of data available. The algorithm achieves its efficiency by
generalising the non-linear decision tree approach. Single decision trees are non-parametric
rule-based models that automatise variable selection and can be thought of as learning a “re-
gression surface” from the data by recursive orthogonal partitioning (Efron and Hastie, 2016).
In other words, decision trees map joint value ranges of the input variables to values of the
outcome variable. However, decision trees poorly generalise to new data. The Extremely
Randomised Trees retains all benefits of decision trees while mitigating their excessive vari-
ance and poor generalisation capability. This is achieved by averaging over many randomly
constructed, hence uncorrelated, decision trees. To avoid overfitting, we used 2000 trees, lim-
ited the tree depth to a value of four and to maximise randomisation and minimise masking
effects in feature importances (Louppe et al., 2013), we constrained the maximum number of
features used for finding split points to one.

For cross-validation, a group Monte Carlo sampling scheme was used with a training
set size of 80 percent, a testing set size of 20 percent and 50 iterations. The Monte Carlo
procedure is known to minimise estimation variance and has been shown to yield low positive
cross-validation bias (Varoquaux et al., 2017). The group variant consisted in exclusively
assigning subjects to either the test or the train sets in order further avoid positive bias due to
intra-subject sample correlations that are known to inflate the performance and constitute a
violation to the assumptions of generalisation inference.

2.4.2 Results

Using our automated implementation, we obtained an AUC of 78.32% with the SVM classi-
fier and an AUC of 77.35% with the ET algorithm, consistent with the 78% AUC reported in
Sitt et al. 2014.
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2.5 Validation

Despite the successful replication of the results obtained in Sitt et al. (2014), there was still a
methodological risk: with repeated analysis on the same data, one risks to overfit the classifier
and overestimate its diagnostic accuracy. For this purpose, the recommended approach is to
test the accuracy on unobserved data. We then analysed 107 recordings from 92 patients
registered after 2014 (see Paris 2 in 2.2 on page 41).

2.5.1 Methods

To assess the diagnostic accuracy on new data, we contrasted the performance of the classi-
fiers against empirically estimated chance levels. These values were obtained from dummy
classifiers which generates random predictions based on simple rules that do not depend on
the actual predictors but could nevertheless lead to correct guess. Common dummy classi-
fiers consist in 1) predicting the most frequent class, and 2) stratified random guessing while
respecting the class distributions. We then used the bootstrap method to analyse the AUC and
differences of the means. Following the recommendations by Efron and Tibshirani 1993, we
generated 2000 samples by drawing with uniform probability and with replacement.

2.5.2 Results

The resulting performance of the SVM showed a mean AUC of 74.27% while the ET classi-
fier presented a mean AUC of 72.91%. Both performances were significantly different from
the chance level AUC of 50.01% as estimated by a dummy classifier (figure 2.4 on the facing
page).

Even though the classifiers performed similarly, one key aspect is still unanswered: is the
combination of markers better than any marker alone? In other words, the use of a multivari-
ate classifier is still not tested against univariate solutions. The direct comparison between
the univariate model-free AUC and multivariate models is not entirely correct. In the first
case, we do not build a predictive model but test how ‘good‘ each marker separates the MCS
and VS/UWS patients. Indeed, the in-sample estimation of the univariate AUC might give
positively distorted estimates of true classification performance. To use a directly compara-
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Figure 2.4: Our new implementation, tested on unobserved data, presents an AUC of 74.27% with an SVM
classifier and 72.91% with an Extremely Randomised Trees algorithm (top). When compared to a dummy
classifier to estimate the empirical chance level, the results of the classifiers are significantly different (bottom).
The results where computed using 2000 bootstrap replicates.
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Figure 2.5: Multivariate classifiers outperforms univari-
ate counterparts. Both SVM (blue) and ET (red) mul-
tivariate classifiers presented a superior AUC than the
respective univariate versions on α(m,m) (dashed)
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ble measure, we trained univariate versions of SVM and ET classifiers. This allowed us to
use the identical classification and prediction framework as for our multivariate analysis and
obtain predicted probabilities of DOC diagnosis from single markers.

Interestingly, both univariate SVM and ET depicted alpha power (mean, mean) as the best
univariate marker with an AUC of 71.40% and 67.53% respectively. Nevertheless, both of
them were under their respective multivariate mean (figure 2.5).

2.6 Clinical application

2.6.1 Report

Once the markers were recomputed and validated, the next step was to use this procedure in
the clinical settings. Having a trained classifier with an automated method could be useful to
predict the diagnosis of patients based on the EEG-extracted markers. MNE-Python provides
a useful reporting tool: a self-contained HTML file with images and text that can be eas-
ily transferred by mail and reviewed even without internet connection. This report provides
quantitative information on the preprocessing results, individual markers values, ERP time-
series and statistics, as well as results from the multivariate (SVM) and univariate (Logistic
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Figure 2.6: A self contained HTML-report presents all the results from the automated processing. This includes
quantitative information regarding the preprocessing procedures, markers, statistics and predictions.

Regression) classifications (Figure 2.6).

2.7 Further steps: towards a universal tool

So far, we have provided strong evidence supporting our classification model for the auto-
mated diagnosis of DOC patients. Nevertheless, the domain of application is still restricted:
all the data comes from the same clinical centre, acquired with the same EEG system and un-
der the same conditions. If the purpose is to build a tool that can be used to assess disorders
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of consciousness, it is important to assess the behaviour of such procedures under different
conditions.

In clinical applications, we identified three main sources of variability related to EEG-
based diagnosis of DOC. First, the behavioural assessment, despite the standardisation efforts
and guidelines, are performed differently. Second, EEG systems configurations varies from
clinical centres: the amount of electrodes and positions, the sampling rate and the recording
quality changes depending on the brand and model of the acquisition systems. Finally, every
clinical centre performs the EEG acquisitions under its own protocols: stimulation paradigms
or resting state with varying parameters, including the recording length.

To assess the possibility of creating a universal tool for the EEG-based diagnosis of DOC,
a generalisation analysis must be carried out to address the potential limitations. What is the
optimal duration for individual EEG-recordings? Which stimuli and task should the patient
be exposed to, if any? How many EEG sensors should be used, and where should they be
located? Can the same machine learning algorithm operate on recordings acquired in different
clinical centres?

To answer these questions, we probed the robustness and generality of EEG-signatures of
consciousness under several simulated and real conditions. We first analysed the potential use
of the tool across different EEG-systems using simulated electrodes montages and recording
length from the EEG data recorded at the Pitié Salpêtrière hospital in Paris, France. Finally,
we analysed a cross-clinical centre analysis and cross-protocol generalisation using resting
state EEG data from the Liège University Hospital in Belgium. A description of the dataset
can be found in table 2.2 on the next page.

2.7.1 Generalisation to difference EEG recording configurations

Methods To assess the potential use across incompatible EEG systems, we downsampled
the data spatially and temporally after the preprocessing step. Spatially, we selected standard
EEG configurations with 6 different number of electrodes (256, 128, 64, 32, 16, 8). Position
were selected such that they approximated realistic EEG caps respecting the international 10-
20 system. Temporally, we reduced the amount of epochs to 6 different percentages (1, 5, 25,
50, 75, 100), respecting the proportions of conditions within the Local Global paradigm. See
figure 2.7 on page 42 for a graphical representation of the selected electrodes and temporal
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Protocol Auditory Local Global Task Resting State
Dataset Paris 1 Paris 2 Liège
n(EEG) 142 107 78
n(patients) 98 92 78
n(UWS) 75 52 22
n(MCS) 66 56 57
Sex ratio (male/female) 2.0 1.9 1.2
Age (M [SD]), in years 46.5 [17.8] 45.4 [17.7] 38.0 [14.3]
Delay (M [SD]), in days 125.9 [372.9] 299.5 [823.6] 1040.5 [1227.6]
Delay (MD), in days 30.0 40.5 529.0
Delay (SD) 372.8 823.6 1227.6
Delay (min to max), in days 6 to 2611 8 to 6570 11 to 5380
Anoxia (%) 29.6 30.4 N/A
Stroke (%) 29.6 15.2 N/A
TBI (%) 23.5 28.2 48.1
Other (%) 18.4 29.4 N/A

Table 2.2: Description of the three datasets used throughout the analysis in this chapter. Paris 1 refers to the
data used in Sitt et al. 2014 and in section 2.4 on page 30, Paris 2 to the data used for the validation analysis in
section 2.5 on page 36. Data provided by the Liège university hospital was used in section 2.7.2 on page 43.

subsampling.

Results When we compared the univariate in-sample performance of the markers from the
cross-validated multivariate AUC using the SVM and ET classifiers, we observed that many
individual markers exhibited dramatic variability of performance across different combina-
tions of sensor and epochs configurations. Nevertheless, the multivariate classifiers fluctuated
between 70.94% and 78.33% for the SVM and 72.08% and 77.76 % for the ET (figure 2.8 on
the next page).

Although the overall performance of the multivariate classifiers were in similar ranges,
the ET classifier seems to be more stable than the SVM with alternative spatial configurations
(figure 2.9 on page 43). Both classifiers tended to improve as more epochs and sensors
were used. For the ET classifier, optimal performance was achieved with 128 electrodes.
Nevertheless, reasonable performance could still be obtained with only 16 electrodes and a
minimum of epochs. On the other hand, the SVM classifier peak accuracy stands at 256
electrodes and 100% epochs, but stability is severely affected by the amount of epochs and
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Figure 2.7: Alternative EEG configurations with 6 dif-
ferent number of electrodes (256, 128, 64, 32, 16, 8).
Position were selected such that they approximated re-
alistic EEG caps respecting the international 10-20 sys-
tem. Temporally, we reduced the amount of epochs to 6
different percentages (1, 5, 25, 50, 75, 100), respecting
the original proportion of trials.
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Figure 2.9: Performance of the ET is more stable across spatial and temporal configurations compared to the
SVM. Both classifiers present a trend to better accuracy with more epochs and electrodes. Nevertheless, SVM
presents higher variability when the number of epochs is reduced.

sensors.

2.7.2 Generalisation to Resting State

When training the classifiers on the all available data from Paris (Paris 1 and Paris 2) but
ignoring the markers derived from evoked responses (table 2.1) the ET achieved an AUC of
78.28% on the Liège resting state data and the SVM an AUC of 81.62% (figure 2.10 on the
next page). Both classifiers presented significant differences compared to a dummy classifier.

We then compared the univariate and multivariate generalisation performances. Interest-
ingly, the best univariate performance was achieved with alpha power with the (mean, mean)

variation in the ET and the (mean, std) variation in the SVM, with AUCs of 74.85% and
75.73% respectively (figure 2.11 on page 45).

Finally, and coming back to the EEG configuration generalisation analysis, we tested the
performance of the models across the temporal and spatial subsamplings. We trained and
tested our models using each one of the 36 EEG configurations (see 2.7 on the preceding
page) independently, yielding a total of 1296 experiments (36 × 36). When trained on the



44 CHAPTER 2. EEG-BASED DOC DIAGNOSIS

SVM Extra Trees Dummy
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AU
C

0.0 0.1 0.2 0.3 0.4 0.5 0.6
AUC(CLF) - AUC(Dummy)

SVM

ET

Figure 2.10: Both our models generalise to resting state. The ET classifier present an AUC of 78.28% and the
SVM classifier an AUC of 81.62%. When compared to a dummy classifier to estimate the empirical chance
level, the results of the classifiers are significantly different (bottom). The results where computed using 2000
bootstrap replicates.
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Figure 2.11: Multivariate classifiers outperforms uni-
variate counterparts also when generalising to resting
state data. Both SVM (blue) and ET (red) multivari-
ate classifiers presented a superior AUC than its uni-
variate versions on α(m, s) (dashed blue) and α(m,m)
(dashed red).

Paris 1 dataset and tested on Paris 2, both multivariate models outperformed the best uni-
variate ones. Mean AUCs were as follows: SVM AUC 72.30%, ET AUC 73.20%, SVM
|α(s,m)| AUC 69.58% and ET α(m,m) AUC 70.99%. When trained on Paris and tested on
Liège, the same effect was achieved: SVM AUC 75.97%, ET AUC 76.59%, SVM α(m,m)

AUC 73.47% and ET α(m,m) AUC 73.04%. Nevertheless, as depicted before, best perfor-
mances are achieved with the SVM classifier: 80.55% and 82.95% vs 78.77% and 81.20%
obtained with the ET classifier for the Paris 2 and Liège test sets respectively. For a visual
representation, see 2.12 on the following page.

2.7.3 Discussion

These findings show that robust generalisation can be achieved despite changes in the spa-
tiotemporal configurations of the EEG and the recording protocols. We compared systemati-
cally two different multivariate models that always outperformed its univariate counterparts.
While certain EEG-signatures, i.e., alpha band power and its fluctuations turned out to be
useful as stand-alone classifiers we found that the advantage of multivariate over univariate
classification was most striking when systematic differences between the training and testing
sets were present. We showed that by relying on a robust classification algorithm, mean-
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Figure 2.12: ET classifier presents less variability than SVM across spatiotemporal subsamplings. All the
different spatial and temporal configurations were considered for training and testing (1296 combinations, 36
for each set). The corresponding best univariate models were also considered next to the multivariate ones.
The distribution of AUC scores is indicated by the histograms for both validation (left) and generalisation
(right) sets. Samples are depicted underneath the histograms, with black solid lines indicating the mean of the
distributions. Both multivariate classifiers outperformed the corresponding best univariate ones. In both cases,
the ET classifier presented less variance, although the highest accuracy was always obtained using the SVM
model.

ingful generalisation could be achieved even if the performance of individual markers varied
systematically between datasets.

Our results demonstrate that diagnosis of DOC patients can be robustly inferred from
multivariate pattern classification using a wide array of EEG configurations. This was also
the case with a minimum of sensors and epochs and even when EEG configurations differed
on the training and testing data, e.g., when training on 10% of the epochs with 8 sensors
and testing on all epochs with 256 sensors. We observed that many individual markers were
highly variable. Nonetheless, our models fluctuated between AUC scores of 71% and 78%
for the SVM and 72% and 77% for the ET.

It is important to note though, that the choice between the SVM and ET classifiers should
be done based on the domain of application. While SVM reported higher AUCs for most
cases, the variability across conditions was always lower with the ET classifier. In that sense,
the ET is preferred as the model to Fit Them All, since it can absorb the heterogeneity of the
datasets. On the other hand, if the priority is to maximise the AUC, then our recommendation
is to maintain the data variability as low as possible and use an SVM classifier, since in
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homogeneous data outperformed the ET in most of the cases.

2.8 Insights from Machine Learning

It is possible to analyse, post-hoc, which are the markers that the models are using to perform
the classification. In 2.7 on page 39 we showed that the Extra Trees classifier was robust
and could serve as a model to Fit Them All since it tolerates the variability on the individ-
ual markers due to heterogeneous EEG spatial and temporal configurations. Given that the
ET classifier trained on one configuration generalises above chance for other configurations,
one can argue that this classifier is capturing the common substrate of the EEG markers that
allows the distinction between VS/UWS and MCS patients, disregarding the spatial and tem-
poral resolutions of the recordings. Hence, analysing the groups of forests can depict if such
common substrate is related to one or several particular markers, or it is the combination and
interaction among all of them what allows the model to maintain its performance.

2.8.1 Methods

To obtain this insight, we extracted the variable importance metric from the Extra Trees clas-
sifiers. When entropy is used as impurity criterion, this multivariate metric can be shown to
correspond to a weighted average of the mutual information between one variable and the
outcome, conditionally over any possible configuration of any subset of the other variables
(Louppe et al., 2013). Moreover, it has been shown that in fully randomised trees variable
importance is only driven by relevant variables and not uninformative ones (Louppe et al.,
2013). Also, the variable importance can deviate systematically from the univariate AUC
whenever information is shared between markers or the model has identified non-linear in-
teraction effects. To enforce this interpretation, we used entropy as impurity measure and
only used one single marker for splitting, which maximised randomisation and made the
tree-growing independent from the data (Geurts et al., 2006; Louppe et al., 2013).
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2.8.2 Results

Inspecting all 36 DOC-Forest classifiers trained on the Paris 1 dataset using different EEG-
configurations, we observed that markers contributing most strongly on average belonged to
different conceptual families (Figure 2.13 on the facing page left). Specifically, permuta-
tion entropy and long-range connectivity also in the theta band as well as alpha frequency
band power were top ranked, both, in terms of univariate discrimination and variable im-
portance. In contrast, evoked markers, on average, often assumed values below 0.89%,
which is less than would be expected if all markers were equally influential. We observed a
positive but non-linear relationship between average AUC and average variable importance
(rhoSpearman = 0.82, p < 0.001). It can be seen that highly performing markers were dispro-
portionally more important than expected for a linear association.

When we compared the models variable importance against each marker’s out-of-sample
performance for the validation and generalisation cases (Figure 2.13 on the next page middle
and right), we also found positive non-linear correlations in Paris 1→ 2 (rhoSpearman = 0.48,
p < 0.001) and Paris→ Liège (rhoSpearman = 0.521, p < 0.001). The display reveals that
several univariate models showed reasonable generalisation performance with AUC values
beyond .70. Highly performing markers were disproportionally more important for the DOC-
Forest than would have been expected assuming a linear relationship. Again, these findings
suggest that the DOC-Forest achieves generalisation by preferentially enhancing the influence
of reliable markers.

2.8.3 Discussion

Our findings suggested that protocol-general markers were, overall, more reliable. Strikingly,
these markers belong to different conceptual families were all related to neuronal dynamics
in the theta and alpha range (Figure 2.13 on the facing page). The robustness of these markers
may be explained by the fact that no excessive averaging is needed for their extraction and
their characteristic EEG-topographies are simple and easy to capture with few sensors. How-
ever, the tight relationship between variable importance and conditional mutual information
(Louppe, 2014) suggests that these top-performing markers carry independent information.
Indeed, recent research has suggested a rather complex picture of functional and pathophys-
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Figure 2.13: We observed a positive but non-linear relationship between univariate AUC and variable impor-
tance in the ET classifier. Left plot depicts the correlation between the univariate AUC and variable importance
of the ET classifier when averaged across the 36 experiments. Middle and Right plots depicts the same corre-
lation for the validation and generalisation cases. Colours indicate the family of the marker, while the shape
depicts the variant. The three correlations were statistically tested using Spearman rank correlation coefficient.

iological landscapes. The complexity of theta-band signals and their long-range interactions
could reflect distinct memory processes underlying consciousness, such as access and main-
tenance (Axmacher et al., 2010). Similarly, alpha band power may reflect global arousal and
demands for dynamic inhibition required for functional encapsulation of cortical networks
(For an overview see Sadaghiani and Kleinschmidt 2016). Moreover, intact consciousness
has been related to the peak frequency of alpha and theta band oscillations originating from
distinct cerebral generators (Schiff, 2010; Williams et al., 2013). This is further complicated
by the fact that these generators can be selectively disrupted for different aetiologies and
can show a variety of regional effects during anaesthesia (Purdon et al., 2013). While future
experimental research is desirable to disentangle these facets, our findings suggest that the
presence of independent physiological sources of information may enhance generalisation as
it is unlikely that all of them are jointly corrupted on new data samples.

Markers of Evoked Potentials are subject to extensive neuroscientific validation and intu-
itively support clinical reasoning. The P3 markers, for example, belong to the most studied
indices of consciousness in the EEG literature and are commonly used in brain computer in-
terfaces settings (Lulé et al., 2013). They have been related to processing novelty in bottom-
up information, the global neuronal workspace, access consciousness, and context-updating
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(Dehaene et al., 2006; Donchin and Coles, 1988; Pins and Ffytche, 2003; Polich, 2007; Ser-
gent et al., 2005). Considering such markers for multivariate analysis may, thus, improve
interpretability. Additionally, evoked markers indexing auditory novelty have been shown to
be rather specific than sensitive (King et al., 2013a). Like-wise, it could be the case that can-
didate signatures of conscious access, e.g., P3b, may be more relevant to distinguish MCS+
from MCS- patients (Naccache, 2017). Although being deemphasised by the ET classifier,
evoked markers may still have contributed positively. Indeed, excluding all evoked mark-
ers from the Paris 1 to Paris 2 generalisation actually reduced the performance marginally
(AUC = 71%). One could, therefore, argue that, evoked markers should be considered for
multivariate analysis applied to DOC whenever available, alongside a few robust markers.

2.9 Summary

In this chapter, we analysed and compared two multivariate classifiers for the diagnosis of
disorders of consciousness. We demonstrated that electrophysiological signatures of con-
sciousness can be robustly exploited across contexts and protocols by relying on robust ma-
chine learning techniques. We validated on unseen data, analysed generalisation to resting
state EEG and analysed the individual marker contribution to the multivariate model.

The significant generalisation from task to resting state EEG deserves separate considera-
tion. It is well conceivable that EEG signatures related to the functional axis of consciousness
(Sergent et al., 2017), are accessible during task and resting state EEG. Accordingly, chang-
ing states of consciousness should impact markers of global house-keeping functions such
as alpha band power, global long-range connectivity or signal complexity, irrespective of the
context. For instance, for a patient with locked-in syndrome we observed EEG-patterns sim-
ilar to healthy persons during rest (Rohaut et al., 2017). And indeed, we observed significant
generalisation from task to resting state EEG.

These findings imply that EEG signatures of consciousness can be reliably extracted from
different contexts and combined into coherent predictive models, encouraging future efforts
in large-scale data-driven clinical neuroscience.
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In the previous chapter, we analysed a solution to address one of the main problems of
the Local-Global paradigm as a tool for the diagnosis of DOC: it is highly specific, but not
sensitive. If the test is positive, the patient is clearly able to maintain conscious attention
and thus in a higher state of consciousness. Nevertheless, conscious but inattentive healthy
controls presented a negative outcome for the test (Bekinschtein et al., 2009).
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The proposed solution using machine learning increases its sensitivity, nonetheless, it
requires a dataset in which all the samples have already been labelled. Such cohort of patients
required 6 years (from 2008 to 2014) of data acquisition. And even if one is able to acquire
such data, there still no error-free and objective gold standard (Schnakers et al., 2009; Wannez
et al., 2017), and one risks to reason in a circular manner: i.e. building a tool to label patients
that works as good as the experts.

Furthermore, it is often the case that patients presents sensorimotor impairments. The
Local-Global test relies only on auditory stimulation, which could yield negative results in
case of auditory impairments. In 2017, we reported a case in which the test failed, but the
machine learning approach described in chapter 2 on page 25 detected signs of consciousness
(Rohaut et al., 2017) on a patient with no responses to auditory stimulation.

In this chapter, we propose to address these issues by analysing neural correlates of mul-
tisensory integration in DOC patients, with the objective to create a more sensitive test, in-
dependent of a database of previously diagnosed patients, and able to be used in sensory
impaired patients.

3.1 Background

The way we experience our environment is by ongoing interactions between our brains and
our senses (Ernst and Bülthoff, 2004). The brain is able to assemble impressions of the
outside world and, in conjunction with intrinsic cognitive processes (memory, language, ex-
ecutive function), is able to “know” that these images and patterns are being viewed by and
belong to the self (Fabrega, 2000). The senses provide the link between the body and the en-
vironment. The synergy or interaction among the senses, and the fusion of their information
content, is described as multisensory integration (Stein and Stanford, 2008).

As regards external sources, evolution has provided us with a specialised set of sensory
organs, each of which is linked to multiple specialised brain regions. There are obvious ad-
vantages associated with having multiple senses: each sense is of optimal usefulness in a
different circumstance, and collectively they increase the likelihood of detecting and identi-
fying events or objects of interest. However, the greater advantage comes with the ability to
fuse the information content of different senses. In this case, the integrated product reveals
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more about the nature of the external event and does so in a faster and more accurate man-
ner than would be predicted from the sum of its individual contributors (Stein and Stanford,
2008).

Neuronal mechanisms of multisensory integration in the cortex have been studied and are
nowadays well characterised from single neuron perspective to whole brain function (Stein
and Stanford, 2008; Clavagnier et al., 2004; Lütkenhöner et al., 2002; Senkowski et al., 2008;
Stekelenburg and Vroomen, 2007; Karns and Knight, 2009; Driver and Noesselt, 2008). On
the relation between multisensory integration and consciousness, previous studies focused on
attention and conscious content (Hartcher-O’Brien et al., 2017; Talsma and Woldorff, 2005),
and bodily self-consciousness (Blanke, 2012). At any given moment, only a limited amount
of information is consciously accessed and defines the current conscious content, which is
reportable by the perceiving subject. At the same time, many other processing streams co-
occur but remain nonconscious (Dehaene and Changeux, 2011), such as subliminal stimuli,
motor reflex or sensory analysis (Kouider and Dehaene, 2007). By manipulating visual per-
ception and creating a disruption with somatosensory input, a previous study recreated the
neurological condition of out-of-body experiences, a disturbance of bodily self-consciousness
(Lenggenhager et al., 2007). A recent work studied the effects of multisensory integration
when stimuli were presented below the threshold of perception, concluding that multisensory
inputs, even outside of awareness, are integrated and affect the phenomenological content
of bodily self-consciousness (Salomon et al., 2017). Collectively, these studies show that
multisensory integration can be studied either by manipulating the way sensory stimuli are
combined or how intense these stimuli are. Importantly, they indicate that multisensory inte-
gration is realised beyond reportability. Interestingly, though, no much is known about how
the conscious state affects multisensory integration. This knowledge is important if we were
to tackle the necessary conditions for subjective experience (or self) to happen. Essentially,
an unsolved issue is whether our ongoing sense of self, which presents itself so clearly in
typical wakefulness but seems to demolish in sleep and anaesthesia, is preserved even when
we are unable to report upon it (Windt and Metzinger, 2007). Importantly for clinics, could
patients in vegetative/unresponsive conditions be considered as retaining basic subjective ex-
periences?

Past research on ERPs depicts enhanced neural responses to multimodal stimulation when
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compared to unimodal stimuli (Giard and Peronnet, 2006; Talsma and Woldorff, 2005; Teder-
Sälejärvi et al., 2002; Fort et al., 2002). In a recent publication, Chennu et al. 2013 uses a
variant of the auditory Local-Global paradigm adding laterality mismatches. the effect of
contralateral deviants depicted stronger MMN responses, reflecting the integrative processing
of patterns across both auditory cortices to detect laterality shifts, and larger P300s waves,
indexing the greater amount of cortical activation generated by the rare shifts in laterality of
tones.

Taken together, these results suggest the existence of a variety of distinct neural responses
that can be measured using EEG. While they have been linked to conscious content and at-
tention, the relation between the neural components of multisensory integration and state of
consciousness remains unexplored. It is hereby proposed to add cross-modal stimuli as an
extra layer to the Local-Global paradigm which is expected to promote multisensory integra-
tion, and therefore increase the sensitivity to detect consciousness in various states.

3.2 Hypotheses

For the purpose of this study, we propose an extension of the Local-Global paradigm to
include three stimulation modalities (auditory, somatosensory and visual) that contains uni-
modal (same stimuli) and cross-modal (two modalities) trials.

The following are the working hypotheses:

1. Unimodal within-trial effects will differ between stimulation modalities, as a result of
the different cortical sensory pathways.

2. Unimodal Global effects (associated with conscious processing) will be present and
indistinctively of the stimulation modality, as a result of higher cognitive function not
attributed to sensory pathways. All stimulation modalities will induce the same ERP.

3. Cross-modal and unimodal within-trial effects will differ, depicting the differential neu-
ral responses to cross-modal stimulation.

4. Within-trial effects will be detected in some DOC patients. Not all MCS patients will
show the effect, with less proportion for VS/UWS patients, as a result of restricted
cerebral integrity.
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Figure 3.1: Illustration of the hypotheses, depicting the
number of subjects presenting within-trial, cross-modal
and global effects in relation to the state of conscious-
ness. In short, we expect that conscious subjects will
show global effects while unconscious subjects will be
able to show some local effects. The cross-modal effects
will fall in between, because they require the interaction
between sensory-specific cortical areas.

5. Global effects will be detected only in patients with preserved levels of awareness,
implying the presence of multisensory integration induced by cross-modal stimulation.

6. Effects to cross-modal stimulation are expected to lay in an intermediate level. They
will be present in fewer patients as compared to the within-trial effect and in more
patients as compared to the global effect. Importantly, the presence of this response
will not imply the presence of global effects (conscious attention).

At a first stage, the study will focus on the additional stimulation modalities, i.e. the local

and global effects in the unimodal conditions (hypotheses 1 and 2).

3.3 Methods

3.3.1 Cross-modal Local-Global

In contrast to the original paradigm presented in Bekinschtein et al. 2009 in which the two
different stimuli are presented as different tones, and in order to keep the conditions equal
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across stimulation modalities, this new version of the stimulation paradigm uses laterality as
the rule, as introduced in Chennu et al. 2013. In other words, local standard trials presents
all five stimuli either on the left or right sides, while local deviant trials presents the fifth
stimulus on the opposite side to the first four. Side is chosen randomly with 50% chance each
and timings between stimulus and trials were as in the original version. As described in 1.5.2
on page 18, two types of blocks are defined. In the XX blocks, the frequent trials (80%
of trials) correspond to five ipsilateral stimuli (local standard and global standard [LSGS]).
In contrast, the infrequent stimulus (20% of trials) corresponds to four ipsilateral stimuli
followed by a fifth contralateral stimulus (local deviant and global deviant [LDGD]). In the
XY blocks, the frequent and rare stimulus are reversed: four ipsilateral stimuli followed by
a contralateral one defines the global regularity (local deviant and global standard [LDGS])
which is violated by five ipsilateral stimuli (local standard and global deviant [LSGD]).

In order to differentiate the effects of this paradigm from the previously described in 1.5.2
on page 18, we will define two main effects: the Laterality Mismatch and the Rule Mismatch

effects. The Laterality Mismatch effect is quantified by contrasting the trials with a fifth
contralateral stimuli (all local deviant trials; LDGS+LDGD) versus the trials with all ipsi-
lateral stimuli (all local standard; LSGS+LSGD). The Rule Mismatch effect is quantified by
contrasting the rare trials (all global deviant; LSGD+LDGD) versus the rare ones (all global
standard; LSGS+LDGS).

In each recording ( 20 minutes), subjects were presented with these four conditions, twice
for each block type (XX, XY, XX, XY). Each block started with 24 global standard trials to
establish the regularity. Subjects were instructed to count the GD trials and asked to report
this number after each stimulation block ( 4.5 minutes).

Stimulations were presented as sounds, vibrations or visual stimuli. Sounds were pre-
sented using insert earphones either to the left or right ears. Vibrations were generated by
two Eccentric Rotating Mass motors attached to the wrists (one in each wrist) and controlled
by two Texas Instruments DRV2605 haptic driver for independent behaviour. Visual stimuli
was delivered using two independent 8x8 LED matrix placed within virtual reality goggles
that isolated the left and right visual fields. All devices were controlled by an Arduino Zero
microcontroller that executed the stimulation as previously described.

For each recording, two stimulation modalities were selected: one for the first four stimuli
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Figure 3.2: Illustration of the modification of the Local-Global paradigm that uses laterality as the difference
between stimuli instead of modality-specific differences. Each trial is composed by 5 stimuli over a 600 ms
interval as in the original paradigm (see 1.5 on page 19). The first four stimuli are delivered to the same side
defining the local regularity. The fifth stimulus can be ipsilateral or contralateral, defining a local standard or
deviant trial respectively. At the global (or across trial) level, the regularities are defined by frequent trials (80%,
green shaded area) and violated by rare trials (20%, red shaded area). The choice of side for each trial is done
pseudorandomly, keeping a balance of 50% for each side.
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Figure 3.3: Illustration of the types of trials used in the
Cross-modal Local-Global paradigm. Three different
stimulation modalities were possible. For each record-
ing, two modalities were selected, defining 9 types of
recordings. The matrix illustrates all the possible com-
binations, with the trials corresponding to unimodal
recordings in the diagonal.

VisualAuditory Haptic
1 Trial

of each trial, and the second for the last stimulus of each trial. Depending on the selection of
the stimulation modalities, recordings were either unimodal (equal modalities) or crossmodal

(different modalities). A total of 9 different types or recordings were possible (figure 3.3).

3.3.2 Subjects

A group of 44 right-handed healthy volunteers (35/9 female/male, mean ± STD age is
25.20 ± 4.1) participated in the study. Inclusion criteria was set to individuals aged 18-80
with normal binaural hearing, no tactile or visual impairment and no history of neurological
or psychiatric disease. Participants were recruited via the RISC system from the Centre Na-
tionale de la Recherche Scientifique (CNRS) in France. Subjects gave written and consent to
participate in the study and received a remuneration of e40. Each participant was subject to
three recordings which shared the same stimulation modality for the last stimulus (one row
of figure 3.3) during a one hour session.

3.3.3 EEG acquisition

Data were acquired using 256-channel high density EEG net and a Net Amps 300 amplifier
developed by Electrical Geodesics. Data were preprocessed in Python using MNE-Python
(Gramfort et al., 2013, 2014) and a self-developed python library. EEG data were filtered
between 0.5 and 45Hz and epoched 200ms before and 1356ms after trial onset. Artefacts were
rejected by visual inspection of all channels. Channels which did not record activity were
excluded from further analysis and interpolated at a later stage. Artefacts originating from eye
blinks, muscle movements and electrical interference were visually identified and removed
using independent component analysis (Lee et al., 1999). Following the interpolation of
missing channels, data were re-referenced to the average and baseline-corrected relative to a
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200ms interval before the presentation of the last stimulus in the five-stimulus trial sequence.
We then removed channels from the face and neck, retaining a total of 224 channels for
further analysis.

3.3.4 Analysis

Evoked Responses (ERP) were computed by averaging all trials for each condition described
in 3.3.1 on page 55. Additionally, to characterise the temporal dynamics of the observed
effects, Time Generalisation decoding was performed as described in King and Dehaene
2014.

Time Decoding consists of training a MVPA classifier to separate between the trials con-
ditions using the values in each electrode as features and trials as samples. At each time point
t, a linear SVM estimator is trained and tested using Stratified 5-Fold cross validation and
the performance is measured using the ROC-AUC metric. The Time Generalisation decoding
consists on testing each one of the previously described estimators at all the different times
points. That is, train an estimator on time t and test the ability to classify trials at a a different
time point t′, so as to estimate whether the scalp pattern is similar between t and t′.

Similarity of patterns across stimulation modalities were tested using Time Generalisation
with different training and testing conditions. That is, each estimator is trained to differentiate
trials A from B when using a modality X , and its discrimination accuracy is evaluated on the
same type of trials but with the stimulation modality Y . In this case, the results reveals the
similarities between scalp patterns that are transferred from modality X to Y .

3.3.5 Group-Level analysis

In order to perform decoding at the group level, it is not enough to use the averaged epochs
of each subject, as the amount of samples for the decoding will be equal to the number of
subjects (N <= 15). To overcome this issue, trials were averaged in groups (meta-epochs) of
10 epochs for each subject. Each group of epochs was randomly sampled 50 times, creating
50 different meta-epochs per subject. Decoding performance was estimated on each one of
the meta-epochs sets.
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3.3.6 Statistics

Evoked Responses (ERP) contrasts and Time Generalisation decodings were statistically
tested using nonparametric permutation cluster test (Maris and Oostenveld, 2007). The sta-
tistical function was set to paired t-tests for the ERPs and independent samples t-test for the
decoding. The clustering t-threshold was set equivalent to p < 0.05 for the give number of
subjects or samples respectively.

3.4 Results

3.4.1 ERP analysis

We first analysed the Laterality Mismatch effect, by contrasting the trials with ipsilateral
stimuli against the ones with contralateral stimuli. For the auditory modality, the time series
differ with a central negative deflection around 100 ms, and a centro-posterior positive peak
with a maximum at 200 ms after the onset of the 5th stimuli (Figure 3.4 on page 62 top).
Somatosensory contralateral stimuli, on the other hand, depicted an earlier frontal negative
deflection (50ms to 150 ms after the onset of the 5th stimuli) and longer central positivity
with a maximum around 300 ms after the onset (Figure 3.4 middle). For the visual modality,
a negative deflection was detected from 50ms to 200ms after the onset of the 5th stimuli and
a positive centro-posterior positive activation from 200ms to 400ms after the onset of the 5th
stimuli (Figure 3.4 bottom). Nonparametric permutation cluster test indicated that 2 of the 3
contrasts were significantly different with p = 0.0002 for the auditory modality, p = 0.06 for
the somatosensory modality and p = 0.01 for the visual modality.

Correspondingly, we performed the same analysis on the Rule Mismatch effect, by con-
trasting the frequent and rare trials. For the auditory stimulation, the contrast depicted a
long-lasting posterior positivity starting 300ms after the onset of the 5th sound, till the end
of the trial (Figure 3.5 on page 63 top). The somatosensory modality presented the same
long lasting positivity, with an additional early frontal positivity around 200-250ms, which
presents the characteristics of time-locked eye blinks (Figure 3.5 on page 63 middle). Finally,
the visual modality presented the posterior positivity starting 400 ms after the onset of the 5th
sound, and an additional frontal positivity from 0 to 300ms, also consistent with the pattern of
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eye-blinks (Figure 3.5 on page 63 center). Nonparametric permutation cluster test indicated
that the 3 contrasts were significantly different with p = 0.0002 for the auditory modality,
p = 0.0012 for the somatosensory modality and p = 0.0006 for the visual modality.

3.4.2 ERP characterisation through MVPA

As a first step, we characterised the spatiotemporal patterns of the laterality and rule mis-
matches for each one of the stimulation modalities. Using Time Decoding, we found that
Laterality Mismatches presented short patterns between 175ms to 250ms after the onset of
the stimuli when stimulated with sounds, from 100ms to 375ms when stimulated with vi-
brations and from 200ms to 400ms when stimulated visually (Figure 3.6 on page 64) left).
For the Rule Mismatches, the patterns appeared later and were more sustained in time. From
250ms to 600ms for auditory stimulation, 350 to 700 ms for somatosensory stimulation and
400ms to 700ms for visual stimulation.

To compare the spatiotemporal patterns, we applied the Time Generalisation decoding
using different training and testing modalities. When we tested the Laterality Mismatches, we
found a decrease in the decoding accuracy to almost the chance level (Figure 3.7 on page 65).
That is, spatial patterns that separate with high AUC the ipsilateral and contralateral trials
differ across modalities. In contrast, for the Rule Mismatches, the spatiotemporal patterns of
the decoding accuracy are preserved, with some temporal shifts (Figure 3.8 on page 66).

3.5 Discussion

In this chapter, we aimed at analysing the viability of creating a multisensory Local-Global
test with the objective of increasing its sensitivity while providing an alternative for auditory
impaired patients. We proposed a novel stimulation paradigm in which stimuli is presented
with sounds, vibrations and lights, while keeping the two-level oddball structure of the orig-
inal Local-Global paradigm. We then analysed the neural responses to the effects for each
oddball level as measured on healthy controls. We found that the effect of the Laterality Mis-
match (short-term within trial mismatch) presented distinct spatiotemporal patterns across
stimulation modalities. On the other hand, the Rule Mismatch effect (across-trial mismatch)
were similar and shared spatiotemporal patterns across the three stimulation modalities.
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Figure 3.4: Topographies and ROI plots for the Laterality Mismatches comparing ipsilateral and contralateral
stimuli for auditory (top), somatosensory (middle) and visual (bottom) modalities. Topographies depict the
values of the contrast (subtraction) between conditions for the 224 scalp electrodes. Time series represents the
average values around Cz for each condition. The t = 0 for the x-axis corresponds to the onset of the 5th
stimuli.



3.5. DISCUSSION 63

Deviant - Standard
0 ms 50 ms 100 ms 150 ms 200 ms 250 ms 300 ms 350 ms 400 ms 450 ms 500 ms 550 ms 600 ms

V
-4.0
-2.0
0.0
2.0
4.0

800 600 400 200 0 200 400 600
Time (ms)

2

1

0

1

2

3

4

E
vo

ke
d 

R
es

po
ns

e 
(

V)

Around Pz

Deviant
Standard
Deviant SEM
Standard SEM

Deviant - Standard
0 ms 50 ms 100 ms 150 ms 200 ms 250 ms 300 ms 350 ms 400 ms 450 ms 500 ms 550 ms 600 ms

V
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0

800 600 400 200 0 200 400 600
Time (ms)

2

1

0

1

2

3

E
vo

ke
d 

R
es

po
ns

e 
(

V)

Around Pz

Deviant
Standard
Deviant SEM
Standard SEM

Deviant - Standard
0 ms 50 ms 100 ms 150 ms 200 ms 250 ms 300 ms 350 ms 400 ms 450 ms 500 ms 550 ms 600 ms

V
-3.0
-2.0
-1.0
0.0
1.0
2.0
3.0

800 600 400 200 0 200 400 600
Time (ms)

2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

E
vo

ke
d 

R
es

po
ns

e 
(

V)

Around Pz

Deviant
Standard
Deviant SEM
Standard SEM

Rule Mismatch

A
ud

ito
ry

S
om

at
os

en
so

ry
V

is
ua

l

Figure 3.5: Topographies and ROI plots for the Rule Mismatches comparing standard and deviant stimuli for
auditory (top), somatosensory (middle) and visual (bottom) modalities. Topographies depict the values of the
contrast (subtraction) between conditions for the 224 scalp electrodes. Time series represents the average values
around Pz for each condition. The t = 0 for the x-axis corresponds to the onset of the 5th stimuli
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Figure 3.6: While Laterality Mismatch decoding patterns differ across stimulation modalities, Rule Mismatch
decoding patterns do not present differences. Each one of the 6 images depicts the decoding AUC for each train-
ing and testing time. Decoding patterns of Laterality Mismatch (left) present a significant high AUC between
100ms and 400ms after the onset of the stimuli with some differences between auditory (top), somatosensory
(middle) and visual (bottom) stimulation modalities. In contrast, Rule Mismatches (right) present later and
longer decoding patterns. Significant clusters (p < 0.05) are depicted in color.
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Figure 3.7: Spatiotemporal patterns of neural activity in response to Laterality Mismatches are not transferable
across stimulation modalities. Each row of images depict the decoding AUC when training and testing using
different pairs of modalities. Significant clusters (p < 0.05) are depicted in colour.



66 CHAPTER 3. CROSS-MODAL INTEGRATION

0.2 0.0 0.2 0.4 0.6
Testing Time (s)

0.2

0.0

0.2

0.4

0.6

Tr
ai

ni
ng

 T
im

e 
(s

)

Rule Mismatch (Auditory to Somatosensory)

0.2 0.0 0.2 0.4 0.6
Testing Time (s)

0.2

0.0

0.2

0.4

0.6

Tr
ai

ni
ng

 T
im

e 
(s

)

Rule Mismatch (Somatosensory to Auditory)

0.2 0.0 0.2 0.4 0.6
Testing Time (s)

0.2

0.0

0.2

0.4

0.6

Tr
ai

ni
ng

 T
im

e 
(s

)

Rule Mismatch (Somatosensory to Visual)

0.2 0.0 0.2 0.4 0.6
Testing Time (s)

0.2

0.0

0.2

0.4

0.6

Tr
ai

ni
ng

 T
im

e 
(s

)

Rule Mismatch (Visual to Somatosensory)

0.2 0.0 0.2 0.4 0.6
Testing Time (s)

0.2

0.0

0.2

0.4

0.6

Tr
ai

ni
ng

 T
im

e 
(s

)

Rule Mismatch (Auditory to Visual)

0.2 0.0 0.2 0.4 0.6
Testing Time (s)

0.2

0.0

0.2

0.4

0.6

Tr
ai

ni
ng

 T
im

e 
(s

)

Rule Mismatch (Visual to Auditory)

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

A
U

C

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

A
U

C
0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

A
U

C

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

A
U

C

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

A
U

C

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

A
U

C

Rule Cross-Modal Decoding

Figure 3.8: Spatiotemporal patterns of neural activity in response to Rule Mismatches are similar across stim-
ulation modalities, with specific temporal shifts. Each row of images depict the decoding AUC when training
and testing using different pairs of modalities. Significant clusters (p < 0.05) are depicted in colour.
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Our results are consistent with previous reports on ERPs. Despite the fact that the original
auditory Local-Global used tones as a varying factor instead of laterality, the obtained results
with auditory stimulation are consistent with Bekinschtein et al. 2009, Chennu et al. 2013
(classic ERP analysis) and King et al. 2014 (Time Generalisation decoding). Regarding visual
ERPs, we also found later responses to stimuli when compared to auditory responses, as
reported in Giard and Peronnet 2006; Talsma and Woldorff 2005; Teder-Sälejärvi et al. 2002.

The Time Generalisation decoding across modalities depicted distinct spatiotemporal pat-
terns for the Laterality Mismatch effect. This can be explained by the fact that the different
responses are generated by the sensory-specific cortices, resulting in modality-specific com-
ponents, as described in Giard and Peronnet 2006.

On the other hand, the Time Generalisation decoding across modalities did not show
differences for the Rule Mismatch effect, besides the delay in the visual response. This
results can be attributed to the fact that the obtained response, a P3b potential, reflects higher-
order violation of the subjects expectation, which are not directly linked to the stimulation
modality and the sensory pathways, but to the task being performed. This results are coherent
with previous work on the P3b component, which associates the P3b to working memory
(Goldstein et al., 2002; Polich, 2007) and conscious access (Dehaene et al., 2006).

Taken together, this preliminary results suggest that at a first step, the sensory-specific
cortical areas are activated, while the task is then resolved in a common manner, indepen-
dently of the modalities involved. This results settles the basis for the study of cross-modal
interactions in relation to states of consciousness. Future work applied under different states
of consciousness is needed to determine whether somatosensory and visual Laterality Mis-
matches responses are also nonconscious as the auditory Local Effect (Faugeras et al., 2012;
Bekinschtein et al., 2009). Interestingly, this paradigm also contemplates using more than
one modality in order to perform the task. This raises the questions on how and when is
the information of these two modalities merged, and how this processing is affected by the
different states of consciousness.

All in all, we believe that these results settles the bases for a deeper study with scientific
and clinical implications. Scientifically, it paves the way for the study of the relation between
multisensory integration and consciousness. Clinically, it is a start in the development of
novel clinical tool which can help overcome the limitations of the current auditory Local-
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Global paradigm when applied to auditory impaired patients (Rohaut et al., 2017).



Chapter 4

Brain-Body interactions as a diagnostic
marker for DOC

The work described in this chapter has been published as “Brain–heart interactions reveal conscious-
ness in noncommunicating patients”. Raimondo F., Rohaut B., Demertzi A., Valente M., Engemann
DA., Salti M., Fernandez Slezak D., Naccache L., Sitt JD. Annals of Neurology, Volume 82, Issue 4,
October 2017.
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4.1 Background

A common aspect of the assisting technologies currently used to evaluate DOC patients is
that all of them adapted a strict neuro-centric approach. However, classic (Critchley et al.,
2001; Craig, 2002) and more recent studies (Critchley et al., 2001; Gray et al., 2007; Park
et al., 2014; Seth et al., 2012; Park and Tallon-Baudry, 2014) in healthy subjects demonstrate
that brain modulation of peripheral body functions are affected by concomitant cognitive
processes. This evidence make the ‘brain-body’ interaction a relevant and promising space
to evaluate consciousness level in patients. Cardiac activity is one of such peripheral body
signals that has been linked to cognitive processes. For example, ‘bradycardia of attention’
refers to the effect of heartbeat frequency deceleration when the subject is engaged in an ac-
tive cognitive task (such as target detection or auditory odd-ball counting) (Lacey and Lacey,
1978). Depending on the stimulation inter-trial interval, this cardiac cycle slowing is reversed
when, or after, the target is detected (Van Der Molen et al., 1983; Jennings and Wood, 1977).
More recently, it was also shown that by quantifying the neural events locked to heartbeats,
one could predict whether a subject would report a fast flashing visual stimulus as perceived
or not (Park et al., 2014). In addition, during complex cognitive processing, such as when
playing chess, the heartrate dynamics, as measured before players made a move, could pre-
dict the likelihood of them eventually committing an error (Leone et al., 2012). Heartbeat-
evoked cortical responses were further shown to differ in auditory interoceptive learning tasks
(Canales-Johnson et al., 2015). Taken together, these studies suggest a bi-directional interac-
tion between brain and heart that can be modulated by cognitive processes.

As regards patients with DOC, previous work has shown that cardiac autonomic mark-
ers, such as Heart Rate (HR) and Heart Rate Variability (HRV), were markers of autonomic
system malfunction (dysautonomia) in traumatic brain injuries (Baguley et al., 1999). Specif-
ically, patients with low scores on the Glasgow Coma Scale had altered autonomic functions
including tachycardia and low HRV (Baguley et al., 2006). More recently, the same markers
have been used to differentiate between VS/UWS and MCS when patients’ cardiac activity
was recorded during sleep or after noxious stimulation (Leo et al., 2016). However, the link
between these autonomic markers and conscious stimuli processing in DOC patients remains
unknown.
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In this chapter, we aimed at (1) evaluating if the heart-brain interactions could charac-
terise the state-of-consciousness of DOC patients and (2) determining if the EKG-extracted
information could complement the EEG evaluations of the patients. For the first objective, we
quantified the modulation of cardiac cycle during the Local-Global paradigm (Bekinschtein
et al., 2009) (see 1.5.2 on page 18). For the second objective, we contrasted the performance
of multivariate patient classification of the state-of-consciousness at the single patient level
using either only the EEG markers or using the combination of EEG and cardiac cycle mod-
ulation markers.

4.2 Hypotheses

We hereby defined two working hypotheses:

1. Patients overall cardiac activity (HR and HRV) will be as described in previous works
(Leo et al., 2016).

2. Markers of cardiac modulation by cognitive function, tested with the Local Global
paradigm (see 1.5.2 on page 18), are expected to be present under the same conditions
as the neural responses measured with the EEG. That is, the local effect should not
discriminate between the patients group (Faugeras et al., 2011) and the global effect
should be present only in patients with preserved levels of consciousness (Faugeras
et al., 2012; King et al., 2013a).

Additionally, in order to test whether EKG has additional information to the EEG, we
will test if the combination of EEG and EKG-extracted features modifies the accuracy of
an automatic diagnosis by machine learning. If the accuracy is higher, this will mean that
the EKG-extracted information is partially independent and complements the EEG-extracted
information.
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4.3 Baseline cardiac activity

4.3.1 Methods

Subjects and Patients Patients admitted for consciousness evaluation at the Neurological
Department of the Pitié-Salpêtrière Hospital, Paris between February 2008 and April 2015
were included. The neurological evaluation of the patients’ disorders of consciousness was
performed by trained clinicians using the Coma Recovery Scale–Revised (CRS-R) as de-
scribed in 1.5.1. Behavioural evaluations were performed systematically before each EEG
recording.

In the present chapter, we aimed at characterising the cardiac cycle in relation to the
state of consciousness as a post-hoc analysis. Since no EKG was available during the EEG
evaluations, EKG time series were obtained using independent component analysis (ICA) on
the EEG recordings for each patient. The current analysis only used the temporal location of
the R wave peaks.

From the 259 patients originally assessed with EEG (130 VS/UWS, 129 MCS), 132 pa-
tients (51%; 60 VS/UWS, 72 MCS) were rejected due to the lack of a clear EEG recording or
EKG reconstructed source that produced at least 40 samples for each stimulation block type.
There were no differences between the included and excluded patients in terms of diagnostic
state (χ2[1, n = 259] = 2.07, p = 0.15) and sex (χ2[1, n = 259] = 0.21, p = 0.64). Included
patients were older than excluded patients (48± 18 vs 44± 17 years; W = 6701, p = 0.04),
and more patients suffered from anoxic as compared to traumatic injuries in the included
group compared to the excluded group (χ2[4, n = 259] = 12.84, p = 0.01).

A final cohort of 127 (49%) patients remained: 70 VS/UWS (20 females, mean age =

45 ± 19 years, range 17 − 80, 12 traumatic, 21 assessed in a chronic setting [ie, >2 months
postinsult]), and 57 MCS (17 females, mean age = 52±16 years, range 21−79, 13 traumatic,
17 assessed in a chronic setting). Patient groups did not differ in terms of gender (χ2[1, n =

127] = 6.2e−31, p = 1), etiologies (χ2[4, n = 127] = 9.4, p = 0.051), and chronicity
(χ2[1, n = 127] = 2e−30, p = 1). MCS patients were older than VS/UWS patients (52 ± 16

vs 45 ± 19; W = 2435, p = 0.03). No patient had any history of cervical spinal cord injury
or symptoms of autonomic dysfunction (eg, hemodynamic instability, abnormal HRV) at the
time of EEG recording.
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EKG Extraction from EEG In the absence of direct recordings of cardiac activity, EKG
was extracted from the EEG using Independent Component Analysis. The independent com-
ponents (IC) corresponding to the EKG were selected by visual inspection based on the spa-
tial and temporal representation of the QRS complex. Raw EEG data was first filtered using
an 8th order low-pass Butterworth filter at 45Hz and a 4th order high-pass filter at 0.5Hz
(Figure 4.1 on the following page; top). Secondly, we computed three different ICA decom-
positions:

1. FastICA (Hyvärinen and Oja, 2000) parametrised to obtain the components that explain
99% of the variance and computed from raw filtered data.

2. INFOMAX (Bell and Sejnowski, 1995; Lee et al., 1999) parametrised to obtain 256
components from raw filtered data and

3. INFOMAX in combination to artifact channels rejection. Individual channels were
removed when the temporal variance was more than 3 standard deviations away from
the mean of the variance of the rest of the channels.

The independent component with the EKG information was selected based on the time se-
ries and the weights’ topographies by visual inspection (Figure 4.1 on the next page; bottom).
The selected time series had to clearly contain the R-peak corresponding to the QRS complex.
The R-peak had to be easily detected by using a simple threshold. The corresponding topog-
raphy had to concentrate the mixing weights on the frontal right and posterior left electrodes.
These electrodes are located in the right cheek, left maxillary junction and underneath the left
mastoid, as depicted by previous studies on cardiac electrical fields (Dirlich et al., 1997).

We then picked the algorithm that presented the clearest decomposition, usually the one
with the highest rank in descending order of explained variance. Finally, R-peaks onsets were
obtained automatically by the algorithm described in Elgendi 2013. Subjects for which the
EKG component was unclear were excluded from the analysis. Exclusion criteria was set to
any of: EKG reconstructed signal with no clear R-peaks, detection failure by the automatic
algorithm, or a topography of corresponding weights with a mix of peripheral and central
electrodes.
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Patient 002 (VS/UWS)
(A) Electroencephalogram

(B) ICA Decomposition

Figure 4.1: (A) Filtered EEG time series from 7 EEG sensors from one VS/UWS patient. (B) Corresponding
time series of 7 ICA components extracted from the previous EEG recording and the respective weights to-
pographies. The independent component with cardiac information is shown in red. Dotted lines represents the
automatically detected R-peak.
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Baseline cardiac activity The overall heart rate (HR) was computed by averaging the dif-
ferences between consecutive R-peaks (RR Intervals) during the whole recording. Following
the method described in Deboer et al. 1984, heart rate variability (HRV) spectral variables
were obtained by computing the power spectrum decomposition on the point events time
series from the detected R-peaks. Power Spectral Density was estimated in whole record-
ing using Welch’s method with 32768 samples (131.072s) per segment and 28672 samples
(114.688s) overlap using a Hanning window. HRV variables were extracted from the sum of
the spectral power in three frequency bands: 1) very low frequencies (VLF, range 0–0.04Hz),
2) low frequencies (LF, range 0.04–0.15Hz) and 3) high frequencies (HF, range 0.15–0.4Hz).

R-peak locked EEG evoked responses EEG recordings were filtered as previously de-
scribed, segmented from -200ms to 600ms relative to the onset of the R-peak and baseline
corrected using the 200ms long window before R-peak. Bad channels and trials were rejected
based on peak to peak amplitude exceeding 100µV . Bad channels were interpolated. The re-
maining trials were averaged. We performed a group analysis and obtained the mean evoked
response for each group, and contrasted the VS/UWS mean evoked activity to the MCS one.
Statistics on EEG responses were done using non-parametric cluster corrected permutation
test (Maris and Oostenveld, 2007).

4.3.2 Results

EKG extraction method validation To test the homogeneity of the EKG-related ICA de-
compositions between groups, we computed the mean IC weights across subjects for the
selected components. A sensor-wise Bayesian t-test showed evidence for no difference in
the weights between the MCS and VS/UWS groups (Figure 4.2 on the following page; top).
We then averaged the cardiac cycle locked to the QRS complex at the group level and the
contrasted the obtained time series between clinical groups (Figure 4.2; bottom). A single
channel cluster permutation test found only one significant difference (p = 0.017) between
184 and 344 ms after the R-peak, consistent with the location of the T wave. No difference
was found in the QRS complex.

Finally, we aimed at ensuring that the results obtained in terms of cardiac cycle induced
by the processing of the auditory stimulation paradigm were not a side-effect of the EKG
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(A) Group IC Topographies

> >

(B) Group EKG

No difference

Neutral

Difference

2LN(BF01) > 2

2LN(BF01) < -2

Figure 4.2: (A) Mean weights topographies for each clinical group (left). A sensor-wise Bayesian t-test shows
evidence for no difference in the topographies between groups (right). (B) Mean and standard error of the mean
for each clinical group QRS complex from the ICA-extracted EKG. A single channel cluster permutation test
indicated significant differences (p = 0.017) only between 184 and 344ms after the R-peak, consistent with the
location of the T wave.
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extraction methodology. In other words, we focused on testing that EEG-ICA extraction
methodology was not injecting relevant EEG related activity to the EKG extracted signal.
For this objective, we compared pure EKG to EEG extracted EKG. We performed simulta-
neous EEG-EKG recordings in an independent group of 24 healthy subjects and 32 patients
(14 VS/UWS, 18 MCS). We applied the same EKG extraction method previously described
and obtained 12 (50%) healthy subjects and 12 (37.5%; 3 VS/UWS; 9 MCS) patients with
both direct EKG and indirect EEG-extracted EKG. We contrasted the two corresponding
EKG time series in each trial, by subtracting the timing of the R-peaks in the direct EKG
signal from EEG-extracted signal (Figure 4.3). A repeated measures Bayesian ANOVA was
computed using the REKG-REEG time differences as the study variable; trial types (LSGS,
LDGD, LDGS and LSGD) and clinical state as factors. All the models including the trial
type as a factor presented positive evidence in favour of no difference (BF01 ≥ 4.27). Fur-
thermore, the model that tested the interaction between clinical state and trial type presented
even stronger evidence of no difference (BF01 ≥ 15). Given that the only information used
in this study was the timing of the R-peaks (automatically extracted and analysed within sub-
jects), the here presented validation results strongly suggest that no effect was induced by the
adopted EKG extraction methodology.

Heart Rate and Heart Rate Variability Overall Heart Rate was similar in patients across
the two diagnostic groups (BF10 = 0.73; Figure 4.4 on the facing page A). When patients
with overlapping behavioural CRS-R scores (CRS-R=6 or 7; 10 MCS; 20 VS/UWS) were
excluded from the analysis to match the population in previous works (Leo et al., 2016)
there was evidence for faster heart frequencies in the VS/UWS group (BF10 = 8.80). In
the VS/UWS group, a positive correlation was identified between the HR and the CRS-R
scores (ρ = 0.27, p = 0.02). No such correlation was found for the MCS patients. Similarly,
HRV markers were comparable in both diagnostic groups (Figures 4.4 on the next page B-
D), HRV high frequencies BF10 = 0.62; HRV low frequencies BF10 = 0.36, HRV very
low frequencies BF10 = 0.21). In the VS/UWS group a positive correlation was identified
between the CRS-R and the HRV markers in high frequencies (ρ = 0.40, p = 0.0007) and
in low frequencies (ρ = 0.27, p = 0.02). No such correlations were identified for the MCS
group in either frequency.
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Figure 4.3: EKG and ECG extraction methods comparison. We evaluated two independent groups of healthy
controls (n=12) and patients (n=12) using simultaneous EEG and EKG recordings. For each subject, EKG was
also extracted using the described ICA method. We then computed the differences between each R-peak onset
detected in the direct EKG and the corresponding R-peak detected using ICA (left). Right panel shows the
mean difference and 95% CI for each type of trial and subject as measured in samples (1 sample = 4 ms). Using
Bayesian ANOVA, we found no evidence for a difference as an effect of the trial type (BF01 ≥ 4.27) and strong
evidence for no difference for the interaction between the type of trial and the clinical state (BF01 ≥ 15)

R-peak locked EEG evoked responses In terms of evoked responses to the cardiac activity
as measured by EEG, a sharp peripheral bipolar topography was observed at the R-peak for
both clinical groups (Figure 4.5 A and B). Between 0 and 250ms after the R-peak, both groups
presented topographies following the pattern of the cardiac field artifact (CFA; Dirlich et al.
(1997)). A cluster-level permutation test revealed a single significant cluster (p = 0.034;
Figure 4.5 on page 80 C) located between 144 and 540ms after the R-peak, with two spatial
patterns, one similar to the CFA associated to the T-wave between 144 and 340ms, and second
central spatial pattern after 340ms.

4.4 Cardiac markers of cognitive processing

4.4.1 Methods

To evaluate potential phase shifts in the cardiac cycle associated to the processing of different
types of auditory stimuli, two intervals temporally locked to the onset of the fifth sound were
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(A) Heart Rate (B) Heart Rate Variability (High Frequencies)

(C) Heart Rate Variability (Low Frequencies) (D) Heart Rate Variability (Very Low Frequencies)

r=0.31
p=0.01

r=0.40
p=0.0007

r=0.30
p=0.01

r=0.14
p=0.23

Figure 4.4: Cardiac autonomic markers show no difference between clinical groups. Lower CRS-R scores
in VS/UWS patients correlates with a faster and less variable cardiac cycle as a manifestation of the overall
deterioration of the clinical condition. Each panel depicts the cardiac marker values (y-axis, Heart rate (A),
Heart rate variability in high frequencies (B), in low frequencies (C), and in very low frequencies (D)) for each
patient (dot), categorised by clinical group (top, 70 VS/UWS, 57 MCS, 12 Healthy) and by Coma Recovery
Scale-Revised scores (CRS-R, bottom - only for patients). The Spearman’s regression line between the scores
and the EKG-related markers for the VS/UWS patients, indicates a significant positive correlation between the
CRS-R score and RR interval (A), Heart Rate Variability in high frequencies (B), and in low frequencies (C).
Boxplots with interquartile range, median (black line) and mean (dashed line) represent the distribution of data
in both clinical groups.
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(A) R-Peak locked Evoked Responses
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(B) MCS - VS/UWS Contrast
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Figure 4.5: R-peak locked EEG evoked responses shows differences between clinical groups. (A) Mean EEG
topographies for each clinical group time locked to the R-peak at 0, 100, 250, 350, 450 and 500 ms. (B) Contrast
and statistical comparison of the R-peak evoked potentials between clinical groups. (C) The left panel shows
the only significant cluster of a permutation analysis (p = 0.034), the electrodes composing the cluster are
shown with white circles (left). The right panel shows the time series of the corresponding cluster (mean and
standard deviation across subjects). Two main modulations are observed, (1) in the time window corresponding
to the T wave, a left-posterior positivity and a right-frontal negativity ; and, (2) a central electrode spatial pattern
positivity after the T-wave (>350ms), suggesting differences in the brain processing of the heart activity between
VS/UWS and MCS patients.
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Figure 4.6: Two consecutive EKG QRS complexes de-
fined an RR interval. Overall heart rate was computed
from the robust average of the RR intervals. Conscious
response to the stimulation was analysed based on the
definition of two intervals: (1) the PRE interval, mea-
sured between the R-peak previous to the 5th sound and
the onset of that sound and (2) the POST interval, mea-
sured between the onset of the 5th sound and the fol-
lowing R-peak. In order to avoid coupling with the
heartbeats, trials in which the sound was less than 20
ms or more than 600 ms apart from the R-peak were
discarded.

defined (Figure 4.6 on page 81): (1) the PRE interval: the interval between the heartbeat
(defined by the location of the R-peak) preceding the onset of the auditory stimulation, and
(2) the POST interval: the interval between the stimulus onset and the following heartbeat.
All time intervals were then labelled according to the contained auditory stimulation follow-
ing the Local-Global paradigm (XX block: LSGS or LDGD; XY block: LDGS or LSGD;
see 1.5.2 on page 18).

Finally, In order to avoid using peaks without a clearly defined temporal association to
a given heartbeat (and not the previous or following one), we restricted the analysis to the
trials in which both the PRE and POST intervals were between 20 and 600 milliseconds.
A mean of 520 ± 150 trials per subject were included while 135 ± 100 trials were rejected
(20 ± 13%). A repeated measures Bayesian ANOVA was computed for each interval using
the ratio of rejected trials as the study variable and the trial label and clinical state as factors.
All the models including the clinical state factor presented evidence for no difference (PRE
BF01 ≥ 2.35; POST BF01 ≥ 2.61). When the models included the trial type factor, the test
showed strong evidence for no difference (PRE BF01 ≥ 39.19; POST BF01 ≥ 45.17).

To test if conscious processing of auditory regularities affects the ongoing cardiac activity,
we analysed the PRE and POST stimulus intervals for each group of subjects in relation with
the type of trials. For the Local effect, each subject mean of the PRE and POST intervals
corresponding to LD trials were subtracted from the mean of the LS ones. Similarly, for
the Global effect, the mean of the PRE and POST intervals corresponding to GD trials were
subtracted from the mean of GS ones.
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4.4.2 Results

There was no evidence for difference in cardiac cycle modulation between groups due to
the processing of the Local regularities in either the PRE (BF10 = 0.19) or the POST
(BF10 = 0.19) intervals (Figure 4.7 on the next page). Within the groups, neither the
VS/UWS nor the MCS patients presented significant differences between LS and LD tri-
als (sign-test LD-LS trials, VS/UWS p > 0.7, MCS p > 0.2). In the case of the Global effect
(GS vs GD trials), there was no evidence of modulation difference between groups due to the
global auditory processing in the PRE interval (BF10 = 0.21). On the contrary, in the POST
interval, there was a strong evidence for a difference between the MCS and VS/UWS groups
(BF10 = 43.07). This result is explained by a shortening of the POST intervals in the GD tri-
als compared to the GS trials in the MCS patients (sign-test GD-GS trials, p = 0.007) and no
difference between GD and GS in the VS/UWS patients (sign-test GD-GS trials, p = 0.55).
The small sample of healthy controls (N=12) included in this study presented a pattern of
results similar to the MCS subjects (although not statistically significant).

4.5 EEG and EKG Multivariate Pattern Analysis

4.5.1 Methods

In order to analyse the relevance and independence of the markers to the diagnosis of DOC,
we used Multivariate Pattern Analysis in combination with wrappers algorithms for feature
selection (Kohavi and John, 1997). This method consists on training classifiers with different
set of features and comparing the obtained performance. Based on the performance com-
parisons, a set of features can be defined as (1) strongly or weakly relevant when they are
partially independent and contribute to an optimal classification or (2) irrelevant, when they
do not contribute to the classification.

Multivariate pattern analyses were done using 120 EEG-extracted markers (correspond-
ing to quantification of power spectrum and complexity in individual EEG sensors and in-
formation sharing between EEG sensors) as described in Sitt et al. 2014 (see chapter 2 on
page 25) and 8 EKG extracted markers: HR, HRV (high, low and very low frequency), Local
PRE, Local POST, Global PRE and Global POST. We trained a Support Vector Classifier



4.5. EEG AND EKG MULTIVARIATE PATTERN ANALYSIS 83

Local
Effect

Global
Effect

*

Figure 4.7: Violations of global regularities induce cardiac cycle phase acceleration only in minimally conscious
patients. Local violations did not affect the ongoing cardiac activity for the intervals between the stimulation
onset and the preceding R-peak (PRE, top left) nor the following R-peak (POST, top right). Similarly, global
violations did not affect the ongoing cardiac activity at the PRE interval (bottom left). In clear contrast, they
induced shortened POST intervals (bottom right) only in the minimally conscious state (MCS) group (between-
group contrast BF10 = 43.07; within-group sign-test p = 0.007). The small sample of healthy controls
included in this study presented a pattern of results similar to the MCS subjects (although not statistically
significant). Each dot represents a patient in vegetative state/unresponsive wakefulness syndrome (VS/UWS,
N=70), in minimally consciousness state (MCS, N=57) or a healthy control (Healthy, n=12). Boxplots with
interquartile range, median (black line) and mean (dashed line) represent the distribution of data in the clinical
groups.
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(SVC) to distinguish between the VS/UWS and the MCS patients with a penalisation pa-
rameter (C) equal to 1. The SVC was repeatedly cross-validated with randomised stratified
k-folding (k=8). Previously to the training of the classifier, relevant features were automat-
ically selected keeping the highest 20% of the ANOVA F-value scores. Performance of the
classifier was measured using AUC scores.

We defined 3 sets of features: (1) EKG markers of cognitive processes, corresponding to
the PRE and POST intervals for the Local and Global contrasts (termed EKGcog), (2) EKG
markers of baseline vegetative function (termed EKGveg) corresponding to the HR and HRV
in the three frequencies previously defined and (3) EEG markers. We estimated the accu-
racy of the classification algorithm with 6 different combinations of these sets of markers:
(1) EEG+EKGcog+EKGveg, (2) EEG+EKGcog , (3) EEG+EKGveg, (4) EEG markers
only, (5) EEG with both EKGcog and EKGveg markers shuffled and (6) EKGcog+EKGveg

markers only. To minimise the effect of the random selection of folds, the AUC scores were
averaged across 250 repetitions.

4.5.2 Results

Correlation between EEG and EKG markers of consciousness We first tested the rela-
tionship between cardiac cycle modulation markers and EEG markers that previously were
reported to distinguishing VS/UWS and MCS patients in Sitt et al. 2014. The modulation
of the POST interval due to the Global Effect significantly correlated with EEG Kolmogorov
Complexity (K; r = −2.31, p = 0.02), Permutation Entropy (PE; r = −2.63, p = 0.01),
Spectral Entropy (SE; r = −2.3, p = 0.02), Weighted Symbolic Mutual Information (wSMI;
r = −0.19, p = 0.02) and normalised Delta Power (r = 0.2, p = 0.02). No correlation was
found between EEG evoked responses to the Global Effect and the phase shifts computed in
the EKG (See 4.1 on the next page 1 for all markers). Nevertheless, none of the computed
correlations survived a false discovery rate correction from multiple comparisons.

Multivariate patient classification by means of EKG and EEG markers To determine
if the EKG extracted information is partially independent to the consciousness related in-
formation extracted from the EEG, we trained classifiers to distinguish clinical groups and
compared the performance of using as features EEG makers alone or combinations of EEG
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Marker R Statistic p value p value (FDR)
PE Θ -2.63 0.009 * 0.138
K -2.31 0.022 * 0.138
wSMI Θ -2.34 0.020 * 0.138
α -1.30 0.192 0.412
‖α‖ -1.31 0.190 0.412
β -1.91 0.058 0.251
‖β‖ -1.53 0.128 0.349
δ 0.85 0.393 0.562
‖δ‖ 2.40 0.017 * 0.138
γ -1.67 0.096 0.321
‖γ‖ -1.43 0.154 0.385
θ -0.50 0.616 0.744
‖θ‖ -0.94 0.345 0.562
MSF -1.61 0.108 0.324
SE90 -1.87 0.062 0.251
SE95 -1.84 0.067 0.251
SE -2.30 0.023 * 0.138
CNV 0.45 0.649 0.744
P1 -0.22 0.820 0.848
P3A -0.86 0.387 0.562
P3B -1.11 0.265 0.501
GD-GS 0.54 0.589 0.744
LD-LS 0.43 0.662 0.744
LSGD-LDGS -0.31 0.756 0.810
LSGS-LDGD -0.99 0.320 0.562
∆P3A -0.02 0.979 0.979
∆P3B -0.42 0.669 0.744
∆MMN -0.86 0.387 0.562

Table 4.1: Correlations between the Global Effect values as measured by the EKG POST interval and EEG
markers used to diagnose the state of consciousness in DOC patients.
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and EKG markers. Multivariate analysis combining EEG and EKGcog showed better per-
formance compared to EEG and EKGveg markers and EEG markers alone (Figure 4.8 on
the facing page). Combining the EKGcog and EEG markers led to an improvement of the
performance (EEG+EKGcog, AUC=76.1%; EEG+EKGcog+EKGveg, AUC=75.7%). On
the other hand, when EKGcog markers were not included in the MVPA the performance
did not differ from EEG alone (EEG only, AUC=73.7%; EEG+EKGveg, AUC=73.3%).
As a control test for the effect of the number of features, classification was also computed
combining EEG and label-shuffled EKG markers; in this case, the AUC was estimated at
73.6%. Using solely cardiac markers, the classifier performed above chance with a mean
AUC of 60.1%. When we compared the performance of MVPAs that included EEG features,
we only found significant differences when the MVPAs also included EKGcog versus when
the MVPAs did not include these cardiac features (p < 1e−9, Kruskall-Willis test, corrected
for multiple comparisons). The inclusion of EKGveg features didn’t significantly changed
the performance of the tested MVPA classifiers (p > 0.1).

4.6 Discussion

We here aimed at characterising consciousness state in patients with DOC by means of base-
line heart activity and heart-brain interactions. We tested if cardiac-extracted information
can complement single-patient EEG-based classification performance. When we contrasted
behaviourally non-overlapping VS/UWS and MCS patients we found higher HR and HRV in
the VS/UWS than MCS group, in accordance to Leo et al. (2016). This comparison included
MCS patients who were in the higher end of the CRS-R scale versus the VS/UWS patients
who were in the lower end of the CRS-R. When all DOC patients were included in order to
retain clinical reality we did not find group differences of overall cardiac autonomic markers
between the groups. This suggests a common underlying baseline cardiac function across
patients. Interestingly, we found a positive correlation between CRS-R total scores and three
autonomic markers (HR, HRV HF and HRF LF) only in the VS/UWS patients.

Our results are consistent with previous findings showing a relationship between the level
of consciousness and dysautonomia in DOC after traumatic brain injuries. Specifically, low
CRS-R scores were related to tachycardia in patients with low scores on the Glasgow Coma
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Figure 4.8: Cognitive EKG markers carries partially independent information from EEG. Six distinct multi-
variate classifiers were trained to distinguish between VS/UWS and MCS patients using different combinations
of EKG and EEG markers. We used as features combinations of 120 EEG markers, cognitive EKG markers
(EKGcog; PRE and POST intervals, Local and Global effects contrasts) and the vegetative function markers
(EKGveg; Heart Rate and Variability). All the models that summed EEG markers and EKGcog , presented a
significant increase in the classification accuracy (compared to MVPA of EEG without EKGcog , p < 1e−9).
Using only EEG markers (mean AUC 73.7%) showed no significant difference with EEG in combination with
EKGveg markers (mean AUC 73.3%). As a control to equalise the number of features, the combination of
EEG and all of the EKG markers with shuffled labels reported a mean AUC of 73.3%. When we used only
EKG markers, the classifier performed above chance, obtaining a mean AUC of 60.1%. Means were estimated
using 250 repetitions of stratified 8-fold cross validation. Each dot represents the mean value across folds for
each repetition. Boxplots with interquartile range, median and mean (dotted line) represent the distribution of
values for each set of features.
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Scale (Baguley et al., 1999) and to lower HRV (in both high and low frequencies), which was
considered as a symptom of a neurological disconnection syndrome (Baguley et al., 2006).
Taken together, these results suggest that the diversity of behaviours characterising conscious
states (associated with cortical processing) does not necessarily translate into strong correla-
tions with autonomic markers, such as HR and HRV. Therefore, the observed differences in
these markers in VS/UWS patients on the lower end of the CRS-R scale seems to be associ-
ated with an overall deterioration of clinical condition, rather than to cognitive processing.

Our analysis of the heart evoked potentials revealed two results. First, we observed a
statistical difference between VS/UWS and MCS in the CFA corresponding to the T wave
but no difference in association to the QRS wave. The differences observed in the T-wave
between VS/UWS and MCS patients, in the shape of a dipole with a left-posterior positivity
and a right-frontal negativity, are similar to the reported cardiac repolarisation changes in-
duced by mental stress (Gray et al., 2007) and neurodegeneration or stroke (García-Cordero
et al., 2016). Although previous works depict a main modulation during the time window
corresponding to the T-wave with frontal negativities, in our study the differences between
the groups of DOC patients are highlighted by the cluster statistic in the posterior positive
side of the dipole. Second, we found differences between VS/UWS and MCS patients in a
time window after the T-wave. Crucially, this difference had a different topography to the
previously described CFA. The maximal differences in the EEG were obtained in the central
electrodes. Taken together these results further suggest differences in heart-brain interaction
between VS/UWS and MCS patients.

In terms of cognitive processing, we analysed the cardiac activity while patients were
evaluated with the Local Global paradigm aiming to probe cognitive-related responses on car-
diac markers. Such brain-heart interactions have been previously shown in protocols where,
by quantifying neural events locked to heartbeats, one could predict whether a subject would
report a fast flashing visual stimulus as perceived or not (Park et al., 2014). In addition,
during complex cognitive processing, such as when playing chess, the heartrate dynamics,
as measured before players made a move, could predict the likelihood of them eventually
committing an error (Leone et al., 2012). Heartbeat-evoked cortical responses were further
shown to differ in auditory interoceptive learning tasks (Canales-Johnson et al., 2015) and
emotional states (Couto et al., 2015). Taken together, these studies suggest a bi-directional
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interaction between brain and heart that can be modulated by cognitive processes.

In our protocol, we found that the cardiac cycle was modulated by the processing of
global auditory regularities only in the MCS group. Specifically, MCS patients showed an
acceleration of the timing of the heartbeat following the auditory stimulus (shortening of the
POST interval) which disrupted the global regularity. No such modulation of cardiac cycle
was found in the VS/UWS patients, nor any effect was found in either group for the local
irregularities. No modulations of the PRE intervals were found, this suggests that the only
observed modulation is a direct effect of the cognitive process of the stimulation. It is im-
portant to compare this results with previous works that analysed the evoked responses in the
EEG using the same protocol. These studies show that the violations of local regularities (in
the form of a mismatch negativity response) can be detected in healthy and awake controls
but also unconscious conditions such as subjects during sleep, coma and VS/UWS (Faugeras
et al., 2011; Strauss et al., 2015; Morlet and Fischer, 2013). In contrast, disruptions of the
global regularities (eliciting a P3b response) are only present in conscious and attentive sub-
jects (although see Tzovara et al. (2015) and Naccache et al. (2015) for ongoing discussions).
The fact that cardiac cycle modulation effect was present only associated to global irregular-
ities (which requires maintaining conscious attention) and only in the MCS patients (who are
generally characterized by more complex brain function compared to VS/UWS patients; Gi-
acino et al. 2014) suggests that the source of this effect is a brain-driven indirect modulation
due to the conscious processing of information.

A recent study demonstrated a link between conscious perception and cardiac activity
in normal subjects (Park et al., 2014). Specifically, in visual detection task, subjects’ heart
rate decreased during a warning cue and increased immediately after reporting the perception
or not of the stimuli following the cue. When subjects responded correctly, following RR
intervals were significantly shorter than the ones corresponding to an incorrect response. This
indicates an interaction between conscious perception and the modulation of cardiac activity.
Interestingly, previous studies showed that the characterisation of the modulation depends
on the stimulation inter-trial interval. With short intervals, this cardiac slowing is reversed
within the same cycle that the target is detected (Van Der Molen et al., 1983; Jennings and
Wood, 1977). In our work we depict a shortening of the RR interval containing the stimuli.
Nevertheless, only when the stimulus is known to produce neural modulations and only in
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patients with higher level of consciousness. Our attention-driven effect is consistent with
these previous results and characterises the modulation in relation to the subjects’ overall
level of consciousness.

Having a proficient test at the single-subject level is a clinical necessity in order to re-
duce the diagnostic uncertainty each case. The modulation of the heart cycle within each
subject was not powerful enough to have a significant effect to distinguish the clinical state
of individual subject. With the aim of improving the single case performance of diagnostics
tests, and particularly in terms of EEG, we have shown that multivariate classification per-
formance of the combination of 120 EEG markers (such as quantifications comprising con-
nectivity analysis, information complexity, spectral analysis and evoked related potentials)
outperformed the univariate classification accuracy, when markers were considered individu-
ally. This combination of EEG markers allowed an enhanced classification of conscious state
at single-patient level (Sitt et al., 2014). Although the cardiac measures alone did not allow
a single subject diagnosis, combining information from both neural and cardiac sources in-
creased significantly the accuracy of the classification of these patients. This indicates that
the information extracted from the modulations of cardiac activity due to cognitive process-
ing is partially independent from the neural correlates of consciousness as measured by EEG.
To our knowledge, this is the first time that body-related signals are considered as contribut-
ing factors in data-driven diagnosis in patient with DOC. We think that such an embodied
approach to cognition (Clark, 1999) paves the way for further investigations of body-brain
interactions in DOC which might be informative not only for clinics but also for tracing the
neural correlates of consciousness. In the future, and with the aim of improving the single
case performance of this test, we will introduce novel versions of stimulation paradigm (with
stimulations contextually locked to the ongoing cardiac cycle).

In conclusion, we show a relation between autonomic nervous system function and a stim-
ulation paradigm exposing subjects to violations of auditory regularities in MCS patients. Our
results suggest that cardiac cycle modulation is relevant for the assessment of patients with
DOC because it potentially carries partially independent information when taken together
with neural correlates of consciousness. We think that our work opens a window to the study
of DOC via the embodied paradigm, according to which body-brain functions contribute to a
holistic approach to conscious processing.



Chapter 5

Summary and final remarks

In chapter one, we described the fundamentals of EEG, the problematic of DOC, and the
current state-of-the-art tools for the diagnosis of DOC. In chapter two, we analysed the va-
lidity and robustness of an automatic processing and DOC diagnostic method based on EEG-
extracted markers. We tested this method under distinct simulated and real conditions from
different clinical centres, concluding that the model extracts reliable signatures of conscious-
ness, maintaining the diagnostic accuracy across conditions. In chapter three, we aimed at
extending our knowledge on multisensory integration and states of consciousness. For this
purpose, we introduced a modification of an auditory paradigm, currently used to assess the
diagnosis of DOC patients, to include somatosensory and visual stimulation. We tested this
paradigm on healthy controls, obtaining results consistent with previous works on multisen-
sory integration. In chapter four, we moved away from a strict neurocentric approach for the
study of consciousness and included bodily signals in our analysis. We found that the already
known brain-heart interactions are mediated by the state of consciousness. Interestingly, this
modulation of cardiac activity by cognitive processes is present only in the group of DOC
patients showing high-order behavioural responses.

The present work exceed the current state of knowledge at two dimensions. Clinically,
our work on automated EEG-based diagnosis confirms and expands the utility of machine
learning as an assisting technology for the clinical management of DOC. On the one hand,
the here proposed automated diagnostic tool validates previous findings. On the other, it gen-
eralises to other experimental setups and recording conditions. Therefore, our results provide
support for the use of EEG-extracted markers and machine learning in clinical settings, in a
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flexible and reliable way. At the same time, it permits the extrapolation to other experimental
application, such as the multisensory cross-modal investigation as a supplementary marker of
conscious state. In that case, the here proposed methods can be used synergically with other
physiologically-extracted information.

Scientifically, it sheds light on the relationship between states of consciousness and the
embodied paradigm to cognition. To date, consciousness is directly inferred by means of
subjective reports, task performance and by observing nonreflex behaviours. In the absence
of subjective reportability, like in DOC patients, it is challenging to know whether patients
retain any form of subjective experiences. According to cognitive science, subjectivity is a
construct which can be approached hierarchically, from the experience of a "me" shaped by
perceptions of others and their perceptions of me (social self), to being a continuous person
over time (narrative self), to the experience of a sense of reality of the world and of me within
it (minimal self) (Seth, 2013). Especially the case of the minimal self can be understood
as the conscious experience of being someone, which is pre-reflective in nature, i.e. inde-
pendent from explicit cognition and linguistic properties (Gallagher, 2000). Contemporary
neurocognitive approaches, which are formulated based on reportable experiences, imply that
undifferentiated brain activity might account for the inability to retain subjective experience.
Therefore, the self in unconscious conditions is severely compromised and therefore absent.
Alternatively, embodiment, a position in cognitive neuroscience and philosophy of mind, pro-
vides a more specific framework for the study of minimal selfhood by emphasising the role of
body in shaping cognition (Varela et al., 1991). According to the theory, an organism is con-
sidered to be a self when the following conditions are jointly met: a) it possesses volume in
space (localised within bodily boundaries), b) it recognises a global body representation (the
body is perceived as a whole as opposed to localised body parts and isolated movements),
and c) it possesses a visuospatial frame of reference/ egocentric model of reality. In other
words, subjectivity in its fundamental form is the process of the conscious experience of
being a distinct, holistic entity, embodied and embedded in space and time (Blanke and Met-
zinger, 2009). Consequently, to infer the presence of a minimal self “it is sufficient to show a
passive, multisensory and globalised availability of an integrated, transparent and global rep-
resentation of the spatiotemporally situated body”(Blanke and Metzinger, 2009). The here
presented work on brain-heart interaction bridges the empirical gap of the relationship be-
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tween subjective experience and altered states of consciousness in DOC because it extends
from a merely neurocentric approach. It shows that human cognition is realised holistically
adding to growing evidence that the mind is a dynamic process between the organism and the
world.
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and MCS patients using different combinations of EKG and EEG markers.
We used as features combinations of 120 EEG markers, cognitive EKG mark-
ers (EKGcog; PRE and POST intervals, Local and Global effects contrasts)
and the vegetative function markers (EKGveg; Heart Rate and Variability).
All the models that summed EEG markers and EKGcog, presented a sig-
nificant increase in the classification accuracy (compared to MVPA of EEG
without EKGcog, p < 1e−9). Using only EEG markers (mean AUC 73.7%)
showed no significant difference with EEG in combination with EKGveg

markers (mean AUC 73.3%). As a control to equalise the number of features,
the combination of EEG and all of the EKG markers with shuffled labels re-
ported a mean AUC of 73.3%. When we used only EKG markers, the classi-
fier performed above chance, obtaining a mean AUC of 60.1%. Means were
estimated using 250 repetitions of stratified 8-fold cross validation. Each dot
represents the mean value across folds for each repetition. Boxplots with in-
terquartile range, median and mean (dotted line) represent the distribution of
values for each set of features. . . . . . . . . . . . . . . . . . . . . . . . . . 87
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