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Abstract 

 

Apoptosis is an essential physiological process through which organisms are able to 

equilibrate their cell numbers and maintain tissues in healthy and functional conditions. Despite 

the recent advances in the field, little is known on the molecular mechanisms controlling 

individual cell decisions to either engage or avoid the activation of this pathway upon cancer 

treatment, which inevitably impacts on therapeutics development. 

 To obtain a global view of the intervening proteins and their role on cell response dynamics 

to anti-cancer drugs, a new and detailed description of the apoptosis pathway at the receptor 

level was translated into a system of ordinary differential equations. The model was calibrated 

to single-cell data, from recent experiments on a population of HeLa cells exhibiting a highly 

heterogeneous response when exposed to the death-inducing ligand TRAIL. The sensitivities 

of the apoptotic reactions in our model were evaluated using the diversity of experimental 

behaviors observed in vitro. A series of computational tests and analyses were performed with 

our model to identify the origins of cell response heterogeneity. New features of the apoptotic 

pathway emerged from a comparison of different heterogeneity modeling approaches, 

detecting a set of key reactions to be further expanded.  

These analyses yield new biological insights and highlights the importance of refining 

regulation of death receptor complex activity, possibly through Caspase-10 as suggested from 

new experimental discoveries. This thesis offers a novel framework that can be used to uncover 

important biological insights using single-cell data of heterogeneous dynamical pathways. 

 

 

Keywords: Extrinsic apoptosis; Mass-action differential equations; Cell fate decision; 

Heterogeneity; Parameter distribution; Caspase-8 regulation; Predictive models.  
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Résumé 

 
 
L'apoptose est un processus physiologique essentiel permettant aux organismes de maintenir 

leurs tissus dans des conditions fonctionnelles. Lors du traitement du cancer, les mécanismes 

moléculaires qui contrôlent la décision cellulaire d’engager ou d’éviter l’activation de cette 

voie sont mal connus, ce qui a un impact important sur le développement thérapeutique. 

Pour obtenir une vue globale du rôle des protéines impliquées dans la dynamique de la réponse 

cellulaire aux anticancéreux, une nouvelle description détaillée de la voie de l'apoptose au 

niveau du récepteur a été implémentée en un système d'équations différentielles ordinaires. Le 

modèle a été calibré sur des données expérimentales en cellule unique, de populations de 

cellules HeLa présentant une réponse hautement hétérogène au ligand, TRAIL. Les sensibilités 

des réactions apoptotiques dans notre modèle ont été évaluées en utilisant la diversité des 

comportements expérimentaux observés in vitro. Une série de tests et d'analyses informatiques 

ont été effectués avec notre modèle pour identifier les origines de l'hétérogénéité de la réponse 

cellulaire, faisant émerger de nouvelles caractéristiques de la voie apoptotique. 

Ces analyses apportent de nouvelles connaissances biologiques et soulignent l’importance de 

la régulation du complexe des récepteurs de la mort, éventuellement par la Caspase-10, comme 

le suggèrent de nouvelles découvertes expérimentales. Cette thèse offre une nouvelle approche 

pour découvrir des informations biologiques importantes en utilisant des données en cellule 

unique, de voies de signalisation à dynamiques hétérogènes. 

 
 
 
 
Mots-clés : Apoptose extrinsèque ; Equation différentielles d'action de masse ; Décision de la 

mort cellulaire ; Hétérogénéité ; Distribution de paramètres ; Régulation de la 

Caspase-8 ; Modèles prédictifs.  
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Glossary 
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tBid: truncated Bid 

TNF: Tumor necrosis factor  

TRAIL: Tumor necrosis factor-related apoptosis inducing ligand 

TRAIL-R 1/2/3/4: Trail receptor 1/2/3/4 

XIAP: X-linked inhibitor of apoptosis protein 
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Chapter 1 
 

 

 

1 Introduction 
 

 

“The unexamined life is not worth living” 

- Socrates 

 

 

1.1 Motivations 

Apoptosis: an important pathway in systems biology and medicine 

Apoptosis comprises a set of chemical reactions through which cells can be eliminated when 

exposed to intracellular or extracellular stress signaling events (Renault and Chipuk, 2014; Tait 

and Green, 2010). When cell damage becomes relevant and endangers the rightful genotypic 

transmission to the incoming cell generations the cell generally chooses to commit apoptosis 

in order to protect the tissue from alarming and malignant mutations that can propagate to a 

tissue-level. The proper control of apoptosis is thus essential for the correct development of 

biological tissues and maintenance of homeostasis and its deregulation is commonly associated 

to disease conditions (Jacobson et al., 1997; Kerr et al., 1972). Inhibition of apoptosis often 

correlates with immune disorders and cancer formation and its excessive activation is an 

underlying feature of Parkinson, Alzheimer and Huntington’s disease. (Brown and Attardi, 

2005; Qi and Shuai, 2016).   
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Apoptosis is defined as either intrinsic or extrinsic depending on the origin of the death-

signaling stimulus (Dewson and Kluck, 2009; Rehm et al., 2002). In the intrinsic apoptosis 

pathway the signal source is due to an intracellular event caused e.g. by a viral infection, 

excessive exposure to an oxidative stress or high levels of a DNA-damaging agent, such as UV 

radiation, that lead to the activation of a mitochondrial dependent pathway and the production 

of effector caspases. The proteins belonging to the effector caspase family are capable for 

cleaving a subset of intracellular targets, ultimately causing nuclear condensation, DNA 

fragmentation and consequent cell death (Brenner and Mak, 2009; Brune and Andoniou, 2017). 

The extrinsic apoptosis pathway is triggered instead by a death-ligand that interacts with the 

death-receptors on the cell membrane, activating an intra-cellular cascade that results in the 

production of initiator caspases. These are capable of directly activating effector caspases in 

the so-called type I cells. However, in some cell-lineages known as type II cells, effector 

caspases are inhibited by a pool of existing anti-apoptotic proteins and the initiator caspases 

must follow an indirect pathway and cause first the release of molecular substances from the 

mitochondria to inhibit the anti-apoptotic proteins present in the cell. In fact, both intrinsic and 

extrinsic pathways intersect at the level of the mitochondria, differing solely in their signal 

provenience. In the two pathways the same order is followed: initiator caspases are activated 

first and only afterwards there’s a rise on the effector caspases concentration inside the cell.   

Although massively studied, it is still unclear which step by step conditions or molecular 

proportions of pro- and anti-apoptotic proteins should be achieved along the several stages of 

the pathway for the cell to irreversibly commit to death. This has direct implications in clinical 

applications, for instance in cancer. Cancer cells typically possess innate resistances to both 

chemotherapy and death-inducing drug agents rendering them almost unaffected to these 

approaches (Almendro et al., 2013; Fulda and Vucic, 2012; Juin et al., 2013; Lopes et al., 

2007). In some cases, resistance arises from specific mutations at the genomic level (Holohan 

et al., 2013). However, in general, non-genetic factors seem to be the key mechanisms behind 

resistance to drug and chemotherapy treatments (Cohen et al., 2008; Kreso et al., 2013; Roesch 

et al., 2010; Roux et al., 2015; Sharma et al., 2010; Spencer et al., 2009). In worse case 

scenarios these factors can accumulate and eventually persist at the cell population level (Brock 

et al., 2009; Wakamoto et al., 2013). 

The link between the miss-regulation of apoptosis and the resulting phenotypic impairments 

make it a very challenging topic in both biology and medicine. One of the major drawbacks is 
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to understand why the phenotypic responses of clonal or sister cells are so highly heterogeneous 

when exposed to identical death signals (Balázsi et al., 2011). This effect, described as 

“fractional-response”, is a hallmark of apoptosis and is a topic that has been under intense 

investigation in the past decades.  

Multiple modeling efforts have tried to bring to light levels of interactions and mechanisms 

of control that can make cells to choose between life (apoptosis escape) and death (apoptosis 

commitment). Along the next lines of the manuscript, the role of the most important proteins 

of the apoptotic system and a proposed mathematical model will be discussed in parallel as an 

attempt to tackle this question. In chapter 1, a deep inspection of the literature gathered a 

theoretical scheme of the extrinsic apoptotic reactions and a general explanation on the most 

relevant biological events is provided. A quick overview of previous models is also given, with 

a focus on five models that show how the modeling questions in apoptosis evolved in the past 

two decades. Chapter 1 ends with a simple description of noise in biology, its different sources 

and the existing strategies to model each noise source. In Chapter 2, the ARROM1 

mathematical model is built from the biological information explained in Chapter 1. The signal 

of the available data set is briefly explained along with some methods to match the model 

output with the experimental signal information. Arguments are then presented on the 

hypothesis that the reactions defined in the literature might be incomplete and an extra set of 

proteins might exist so that model fittings become more coherent with respect to previous 

parameter values available in the literature. Chapter 3 provides some examples of how the new 

model version, with two new proteins, reproduces known biological results, validating the 

model approach. In Chapter 4, the noise sources introduced in chapter 1 are simulated into the 

model equations and an inspection is performed to verify which of them can reproduce the 

heterogeneity observed in the data set. Chapter 5 continues with the fits of the entire cell 

population and the analysis of which resulting distributions in parameter values and initial 

conditions contain the largest differences between the population of resistant and sensitive 

cells. Hypothesis are presented for the dependencies that might exist between the new proposed 

proteins in Chapter 2 and their connection to FLIP or Caspase-8, the two major apoptotic 

intervenients at the receptor level. Finally, Chapter 6 summarizes the results of this thesis and 

proposes new directions in the modeling field of apoptosis.  
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1.2 Apoptosis signaling network 

1.2.1 TRAIL, a death-inducing molecular agent initiating apoptosis 

Tumor necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL) is a cysteine 

polypeptide belonging to the class of death-inducing ligand molecules termed TNF-

superfamily, capable of selectively triggering apoptosis in cancer cells in vitro and in vivo 

(Ashkenazi et al., 1999; Walczak et al., 1999). Its application in the cancer-therapy field has 

been especially encouraging due to its singular mode of action, not only because of its exclusive 

impact on cancer cells, but also because of its capability of triggering an intracellular death 

response independent of the p53 signaling cascade that is commonly mutated in a variety of 

cancer entities (Kozłowska and Puszynski, 2016; Muller and Vousden, 2013; Olivier et al., 

2010).   

Like the majority of the TNF-family members, TRAIL’s induction of an apoptotic response 

depends on its ability to recruit complementary death-receptors to the cell membrane in order 

to form relatively stable homodimers or heterodimers at the cell surface. In particular, two 

classes of death-receptors, the class TRAIL-receptor 1 (TRAIL-R1/DR4) and/or the class 

TRAIL-receptor 2 (TRAIL-R2/DR5) aggregate with TRAIL to form active structures capable 

of propagating the death signal to the interior of the cell (Hymowitz et al., 1999; Jones et al., 

1999). Although a natural component of the human bloodstream, TRAIL baseline 

concentration is insufficient to induce an apoptotic response in natural tissues and its biological 

role in normal conditions is therefore unknown. (Gibellini et al., 2007; Mariani et al., 1997).  

As part of an anti-cancer drug therapy TRAIL shows ulterior advantages as it doesn’t 

promote the usual toxicity signals derived from cross-activation of pro-survival inflammatory 

pathways observed in other TNF members (Ashkenazi et al., 1999; Roberts et al., 2011; 

Walczak et al., 1999). However, it is also long known that besides the desired apoptotic 

response TRAIL also unleashes the activation of the NF-KB pathway (Chaudhary et al., 1997; 

Degli-Esposti et al., 1997; Schneider et al., 1997; Trauzold et al., 2001) , MAPK pathway (Tran 

et al., 2001), and PI3K pathways (Azijli et al., 2012; Xu et al., 2010), all of these pro-survival 

and undesired secondary signalling pathways. The result is an overall decrease of efficiency of 

the treatment as at the same time it induces pro-apoptotic signals, TRAIL also unleashes 

parallel pro-survival signalling responses.  
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Up to these days TRAIL tests in clinical trials have proven rather disappointing as it was 

shown in a recent metastatic pancreatic cancer study where phase II-trial patients revealed no 

overall improvement neither in 12-month survival rate nor on overall survival rate in 

comparison with a gemcitabine monotherapy [gemcitabine is a common chemotherapeutic 

agent] (Kretz et al., 2018). Other DR agonistic antibodies including mapatumumab, 

drozitumab, conatumumab , lexatumumab and LBY135 , all triggering extrinsic apoptosis in a 

manner similar to TRAIL, have all been discontinued after revealing also unfruitful results in 

clinical applications (Herbst et al., 2010; Merchant et al., 2012; Rocha Lima et al., 2012; 

Sharma et al., 2014; Younes et al., 2010). The reasons explaining their unsuccess are still to be 

properly characterized. In future applications, the optimal direction strategy will pass by the 

development of more potent and stable drugs that can successfully stimulate the extrinsic 

apoptosis pathway in a selective manner, avoiding the activation of undesired pro-survival 

responses. For that matter it is necessary to unveil the dynamics of these interlinked pathways 

and to understand the different thresholds that allows the cell to activate a so called “fractional 

survival”, where some cells avoid the apoptotic death-fate and resist the therapy (Shlyakhtina 

et al., 2017). 

Recent findings suggest that the interaction between the death-ligand TRAIL and the 

complementary death receptors is already a decisive factor that distinguishes the downstream 

activated pathways. Incomplete trimeric interactions with just two binding sites attached in a 

TRAIL-R1-TRAIL complex are sufficient for activation of a NF-kB signaling response 

(Morton et al 2015) and a specific oligomerization between trimeric complexes may be 

required for the proper activation of the apoptotic signal (Wajant, 2019). A detail understanding 

of these interactions is thus essential.  

The time of application has also shown to be important. A pulse-like TRAIL dosage instead 

of a continuous treatment has demonstrated to be associated with therapy efficacy. In a study 

from 2016 it was shown that a 1-min pulse of TNF was more efficient in inducing a cell 

apoptotic response than a 30-min or 60-min pulse and it was as efficient as a continuous 

treatment with a 10-hours dosage. The conclusion was that the timing of cell exposure impacts 

cell fate decision and long applications may stimulate the death receptors in such a way that 

they can be more prone to activate secondary pro-survival responses. Short-pulse scenarios are 

then related with weaker NF-kB signaling and stronger pro-apoptotic outcomes (Lee et al., 

2016).    
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The application of the drug, and specifically the time of successive dosages, has also shown 

interesting dynamics. As a consequence of the augmented levels of pro-survival proteins during 

the hours that follow a first TRAIL dosage, the subsequent rounds may end up ineffective if a 

“drug-holiday” is not considered. In this sense, and similar to other chemotherapy drug 

scenarios, it can be beneficial to establish neutral periods of non-administration until the pro-

survival protein levels return to their basal levels (Becker et al., 2011; Das Thakur et al., 2013).  

The adequate treatment may pass by the right usage and combination of multiple drugs 

while also considering the timing of TRAIL application so that in the end the cell system can 

be sensitized into a correct cell death direction.  

 

1.2.2 DR4 and DR5, decoy death receptors, and clustering modes with TRAIL 

 TRAIL can bind to a variety of death-receptors (DR) in the cell membrane. The receptor 

isoforms propagating the apoptotic signal are the DR4 and DR5 that exist in a stable 

equilibrium of monomer and dimeric versions, being the monomeric the most common based 

on molecular studies of CD95 (Liesche et al., 2018). The binding affinity between monomeric 

receptors is low, justifying the existence of a higher proportion of monomeric receptors (Chan, 

2000; Clancy et al., 2005; Neumann et al., 2014).  Despite less common, not all the receptors 

in the cell membrane are functional and another class, termed decoy receptors (DcR), is able 

to interfere with the death-ligand signal and disrupt the interaction with the adequate receptors 

DR4/DR5. These are the TRAIL-R3 (DcR1) and the TRAIL-R4 (DcR2) receptors which not 

only compete for direct contact with the ligand but are also capable of sequestering free 

DR4/DR5 receptors and bind to them, forming non-functional complexes (LeBlanc and 

Ashkenazi, 2003). 

1.2.3 DISC complex, the basic unit structure for activation of Caspase-8, and 

the role of FLIP as an inhibitor of apoptosis  

TRAIL sequentially adds receptor molecules DR4/DR5 until a trimeric complex is formed. 

After the trimerization, other molecules join with the death receptors to form a functional 

death-inducing signalling complex (DISC), capable of propagating the signal to the remaining 

steps of the network. These are the FAS-associated death domain (FADD) molecule and the 

initiator pro-caspase 8 (pC8), added in the same order and in a sequential manner (Dickens et 

al., 2012). While the receptor multimerization and association with the ligand is a quick 
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process, the addition of FADD is a limiting and delayed step, essential for the binding of pC8 

to the DISC platform (Pennarun et al., 2010).  FADD binds to one assembled trimeric receptor 

complex and acts as an adaptor molecule for the recruitment of several pro-caspases, allowing 

a first pC8 to be fixed and directly bind to its death effector domain (DED). From there, a 

second pro-caspase can bind to the free DED of the first pro-caspase and a chain of interlinked 

molecules is sequentially formed (Schleich et al., 2016). Once a dimerization occurs, by 

proximity-induced catalytic activation, a functional form of the pro-caspases is released from 

the receptors, in the form of caspase 8 (C8), sending the apoptotic signal from the receptors to 

downstream reactions occurring in the cytoplasm of the cell (de Miguel et al., 2016; Dickens 

et al., 2012) .  

A controlling step in this process depends on a homolog molecule with a very similar 

structure to that of the pro-caspases, the FADD-like IL-1-converting enzyme (FLICE)-

inhibitory protein (c-FLIP), that competes for a binding position with FADD suppressing the 

elongation chain of linked pro-caspases and obstructing their activation (Hughes et al., 2016). 

Its major role is to hinder the apoptotic signal setting a threshold between quantities of pro-

apoptotic caspases vs. the quantity of pro-survival FLIP molecules in the DISC unit.  

1.2.4 Caspase-8, a threshold for cell-fate decision 

The requirements for the activation of C8 is the presence of a DISC assembled structure 

with at least two attached pC8 chains, interlinked through their DED domains. In this 

configuration, the two pC8 proteins inter-activate themselves and form a single structure with 

catalytic activity that is next released from the DISC unit and navigates into the cytoplasm to 

participate in the cleavage of downstream molecules. The amount of C8 released from the 

receptor in this way is essential as a first step towards an apoptotic cell response but yet little 

is known about the actual mechanisms that control C8 numbers inside the cell.  

Recently, with the scope of understanding and quantifying the C8 activity level in  apoptotic 

committed cells, Roux and colleagues analyzed hundreds of HeLa-cells treated with TRAIL at 

multiple concentrations and concluded that the dynamics of the C8 protein plays a central role 

in cell-fate decision, unveiling a necessary relationship between the rate of C8 activity (k) and 

the time of maximum C8 activity (𝝉) for cells to properly engage into apoptosis (Roux et al., 

2015). Each cell was fitted to the parametric model 𝒌 ∗ (𝒕 − 𝒕𝟎)𝟐 and the optimal maximum 

derivative value, 𝒎𝒂𝒙(𝟐𝒌 ∗ [𝒕 − 𝒕𝟎]), that best separated the group of sensitive cells from the 
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group of resistant cells was defined as 𝜽. The maximum derivative value assigned to 𝜽 can 

then be interpreted as a biological threshold, able to distinguish surviving cells from dying cells 

in the (k, 𝝉) space (red line in figure 1-C). 

The work was pioneer in the field by presenting for the first time a metric to predict 

apoptosis propensity on a given cell. Although simplified by the usage of the lumped 

parameters k and 𝝉, the approach was accurate enough to correctly forecast the cell fate of more 

than 80% of the cell population in several cell lines. This number, as a result of a model 

approximation that considered uniquely DISC-related events, agreed with the result of  Gaudet 

and colleagues that mentions that the non-DISC related proteins contribute to the overall 

heterogeneity of the apoptotic signal in a range of 20% (Gaudet et al., 2012).  

An interesting conclusion of this study was that cells can be sensitized to cross 𝜽 in multiple 

ways such as by increasing the ligand (TRAIL) concentration (by stabilizing the DISC and 

consequently augmenting the C8 rate of activation (k)) or by adding drugs that stabilize the C8 

molecule (e.g. bortezomib, an inhibitor of protein degradation triggered in a proteasome 

dependent way) [increasing the time of C8 activation (𝝉)].  In the opposite direction, cells can 

also turn more resistant to apoptosis by overexpressing anti-apoptotic proteins as the FLIP 

isoforms (specially the FLIP-s (FLIP short) configuration). All these scenarios are DISC-

related events and do not change 𝜽 = 2.61x10−3 s−1. However, when adding a drug acting 

downstream of C8 activation, the value of the threshold changes in a concomitant way. This 

was verified by the addition of the pro-apoptotic BCL-2 inhibitor, ABT-263, that by decreasing 

the mitochondrial outer membrane permeabilization (MOMP) “sensitivity”, it was able to 

lower 𝜽 in those cell populations, making them more prone to die. In the end, the framework 

was especially relevant as it compiled information from C8 trajectories that varied importantly 

in signal and had (k, 𝝉) pair values changing tenfold and threefold, respectively, across the cell 

populations (Roux et al., 2015).  

Although simple in the description of the underlying apoptotic pathway, the work still has 

the potential to be further explored and extended so as to include the role of other molecules 

also activated under an apoptotic stimulus but known to be C8-independent (Scott et al., 2017). 

A more complete version would be most useful to understand in better detail how to make a 

cell irreversibly enter in the death-region space (figure 1-C, D).  The framework suggests 

several ways in which cells can be sensitized to cross the theta-threshold line but cells still 

remain close to the theta vicinity, calling for more effective co-drugging treatments.  
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A) 

 

 

 

B) 

 

 

C) 

 

D) 

 

E) 

 

Figure 1. A cell fate prediction arising from contribution of both rate and duration of C8 activity.  
A) A simplified scheme for the activation of C8 from the DISC and consequent cleavage of its substrate ICRP (a 

reporter fluorescent protein), returning the output signal of the cleaved fluorescence reporter (FR).  The lumped 

parameter k represents the rate of C8 activation and t0 the time required to start receiving the signal from the first 

cleaved ICRP molecule. B) The shape of an output signal produced by an averaged surviving and dying cell. 

Dying cells have a more pronounced parabolic trajectory curve, a sign of higher C8 activities. The model 𝑭𝑹(𝒕) =

𝒌(𝒕 − 𝒕𝟎)𝟐 describes the period after ligand stimulation, when C8 activity increases and follows a quadratic 

polynomial curve and is valid until the maximum value of dFR/dt, corresponding to the maximum C8 activity 

value at time t = 𝝉. C) Dosage increase of the ligand causes an overall increase in C8 activity (k) and a small 

decrease on the time interval required to reach the associated maximum activity (𝝉). The 𝜽-value of the population 

remained unchanged D), E) Co-treatments cause a deviation on the (k, 𝝉) values of a mean-cell of the population 

and on the landscape of the 𝜽 curve. Figure adapted from (Roux et al., 2015).   

 

 

𝜃𝑇 𝜃𝑇 
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1.2.5 Bcl-2 like proteins, pro- and anti-apoptotic roles 

Once the DISC complexes are activated and functional C8 is generated, a group of proteins 

of the BCL-2 family group intervenes into the apoptosis cascade and holds the next decision to 

block the incoming signal or propagate it to the mitochondria outer membrane (MOM). This 

decision point, specific of type II cells,  starts with the C8 cleavage of the Bcl-2 family member 

Bcl-2 homology domain 3 (BH3) interacting domain (Bid) into a truncated form tBid that, in 

this form, is translocated from the cytosol to the MOM where it can interact with other elements 

of the Bcl-2 family. This step is of major importance and should be a result of sustained C8 

activation in order to reach an important pool of tBid molecules and surpass an irreversible 

pro-apoptotic threshold.  

 The molecular targets of tBid are the Bcl-2-associated X protein (Bax) and Bcl-2 

homologous antagonist killer (Bak), both responsible for MOMP and propagation of the 

apoptotic signal (Green, 2004; Huang et al., 2016). The agent tBid allows the oligomerization 

of Bax and Bak to occur, changing them into an active form that is capable of perforating the 

MOM and transform it into an all-or-none MOMP signal.  

A tight level of control is also set by a group of pro-survival proteins, unbalancing the signal 

from Bax and Bak and allowing the cell to control spurious apoptotic stimulus. Under these 

conflicting forces a minimum limit is then set for Bax and Bak pro-apoptotic intensity. Among 

the pro-survival proteins there is the B-cell lymphoma-extra-large (Bcl-XL) and the myeloid 

leukemia cell differentiation proteins (Mcl-1) which bind to Bax and Bak and convert them 

into their inactive and non-oligomerized form not capable of triggering MOMP (Llambi et al., 

2011; Willis, 2005).  

As a synthesis, the Bcl-2 family members can be divided into three groups: pore-forming 

effector proteins, Bax and Bak; BH3-like proteins such as tBid; and the pro-survival proteins 

such as Bcl-2, Bcl-xL and Mcl-1. The effector proteins are capable of forming mitochondrial 

pores but only after a conformational change induced by the BH3-like proteins (Chipuk et al., 

2010). On the other hand the pro-survival proteins sequester the pro-apoptotic ones, rendering 

them inactive until a sufficiently high stoichiometric proportion of BH3-like proteins 

participates and sets the effector proteins free from the inhibitory effect of the pro-survival 

proteins (Sarosiek et al., 2013). This occurs by direct competition where the BH3-like proteins 

interact with the pro-survival Bcl-2 members and release them from the effector proteins, 

making them accumulate at the MOM. Lower intensity apoptotic signals are not able to 
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summon sufficient BH3-like proteins and in these conditions effector proteins are constantly 

translocated by the pro-survival proteins from the MOM back to the cytosol (Edlich et al., 

2011; Schellenberg et al., 2013; Todt et al., 2015). 

A positive feedback loop has been proposed for the BCL-2 effector family member Bax, 

where already activated Bax could reinforce the apoptotic signal by contributing to the 

activation of still inactive Bax molecules (Cui et al., 2008; Tan et al., 2006). In this way the 

cell could decrease the necessary levels of tBid required to trigger MOMP or reinforce the 

response into an all-or-none switch. This complicated network of interactions is not completely 

understood and may hide other still unknown dynamics.  

 

 

1.2.6 MOMP, an irreversible commitment to cell-death 

Upon a sufficient amount of tBid accumulation and Bax / Bak oligomerization at the MOM, 

the MOMP event ensues and molecular agents such as cytochrome c (CyC) and the second 

mitochondrial activator of caspases (Smac) are released from the mitochondrial 

intermembrane space (IMS) into the cytoplasm (Tait and Green, 2010). Both of these agents 

are implicated in effector caspases activation (Galluzzi et al., 2009). CyC accumulation 

together with the apoptotic protease activating factor-1 (Apaf-1) create the apoptosome, a 

stimulation platform for caspase-9 (C9) activation. C9 positively contributes for the activation 

of the effector caspases -3 (C3), -6 (C6) and -7 (C7) and from this point apoptosis is irreversibly 

unleashed (Riedl and Salvesen, 2007). Smac contributes to effector caspases onset by causing 

direct binding and inhibition of X-linked inhibitor of apoptosis protein (XIAP), ensuring a fast 

activation of C3, C7 and C9 and a stronger pro-apoptotic response (Deng, 2002).  

While the onset of MOMP is highly variable and can last up for several hours after an 

extrinsic or intrinsic apoptotic stimulus exposure, the time frame of a MOMP response after 

tBid translocation to the membrane is in the order of minutes and suggests a switch type like-

response (Albeck et al., 2008; Goldstein et al., 2000; Rehm et al., 2009). The speed of MOMP 

event depends on the accumulation of Bax/Bak at the MOM. Since only 10% of the Bax 

cytosolic pool is already sufficient to cause MOM depolarization and consequent MOMP, the 

speed of these ending processes is fast and tightly regulated among all the molecular 

intervenients (Hantusch et al., 2018).  
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After MOMP signaling, all the above identified processes are reinforced by a positive 

feedback look of the form C3 → C6 → C8 that strengthens the apoptotic response inside the 

cell (Cowling and Downward, 2002; Sohn et al., 2005) and convert it into a “point of no return” 

towards cell death (Bhola and Letai, 2016).   

 

 

1.2.7 Global overview on the extrinsic apoptosis pathway 

To summarize the contents explained in sections 1.2.1 - 1.2.6 a scheme is presented in 

figure 2, with a global overview on the most representative reactions of the extrinsic apoptosis 

pathway. On a general outlook, two types of signaling events counteract the correct progression 

of the apoptotic signal: native anti-apoptotic proteins and active degradation of the existing 

pro-apoptotic proteins. The former includes the negative effect of decoy receptors on TRAIL, 

the action of FLIP on the inhibition of the DISC, the impact of the Bcl-2 pro-survival proteins 

on sequestration of the Bcl-2 effectors and also the binding and inactivation of C3 by XIAP. 

The second line of defense against apoptosis relies on the ubiquitin-mediated degradation of 

pro-apoptotic proteins by the proteasome complex. That is achieved for instance by XIAP that 

induces not only direct contact inhibition over the effector caspase C3 but also degrades it 

through this mechanism (Suzuki et al., 2001). The presence of multiple layers of control is an 

opportunity and a challenge for scientists in the field of biology and mathematical modelling 

in the incoming years, not only for the local dynamics that mediate every step decision but also 

on the global aspects that inter-regulate the pathway.  
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Figure 2. Summary network of the extrinsic apoptosis signaling pathway. 

TRAIL interacts with the death-receptors DR4/DR5 forming a trimeric structure that attaches FADD in the cell 

membrane. Pro-caspase-8/10 and FLIP compete for FADD-binding, assembling one active caspase-8/10 molecule 

when two procaspase-8/10 interact without the interference of FLIP. Bid is then cleaved to tBid by the active 

caspases and migrates into the mitochondrial outer membrane wall where it oligomerizes Bax and Bak.  These 

two effector proteins have to increase in number until surpassing the level of the anti-apoptotic Bcl-2 members 

Bcl-2 and Bcl-XL. When MOMP is triggered cytochrome C and Smac lead to the activation of C3,C6 and C7 that 

further reinforce the apoptotic signal by increasing the level of active C8 through a positive feedback loop. Figure 

extracted from (R Safa, 2013). 
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1.3 Modelling in Apoptosis 

 

1.3.1 Fussenegger’s model, 2000 

Models of Apoptosis date as far back as the beginning of the century when Fussenegger 

and colleagues proposed a model for apoptosis with both extrinsic and intrinsic associated 

pathways (Fussenegger et al., 2000). The model included some of the knowledge of the time 

such as the receptor role in the activation of functional C8 and the importance of mitochondria 

in intersecting and transducing both exterior and stress-induced signals. Assembling those 

facts, the authors were capable of describing known phenomena like the ability to inhibit the 

apoptotic cascade by overexpressing inhibitors of the apoptotic proteins (IAPs) and to define 

quantitative proportions of anti-apoptotic BCL-2 molecules necessary to reduce the amount of 

produced effector caspases in the system. Also, supported by cancer-like scenarios with an 

overexpression of BCL2-anti-apoptotic proteins, the model permitted the calculation of 

compensation ratios of pro-apoptotic proteins that could reverse the resistant phenotype and a 

relevant role was given to the reactions happening at the receptor level in what concerns their 

impact on the overall response of the system (figure 3-C) ).  

Although not entirely innovative in its conclusions it was a pioneer work that launched the 

usage of ODE’s in the mathematical field of apoptosis in a manner that agreed with the 

biological description of the known chemical reactions. In what concerns the underlying 

mathematical approach, the model did not follow standard mass-action description and the 

expression for the rates laws are somehow unclear. Same examples are provided in table 1.  

 

Table 1. Sample of some of the rate laws used in Fussenegger’s publication 

Rate of death domain clustering Rate of FADD addition 

  

Rate of formation of the Apaf-1 Rate of effector Caspases activation 
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A) 

 

B) 

 

C) 

 

D) 

 

Figure 3. Fussenegger’s apoptosis-related model results.  

A), B), C) The authors have shown that different anti-apoptotic proteins cause dissimilar effects on the level of 

initiator caspases (C8) and executioner caspases (C3/C6/C7). A) Overexpressing inhibitor of apoptosis protein 

(IAP) diminishes the final steady state values of C9 and that of the executioner caspases. C8 evolution is 

unchanged after IAP overexpression (middle blue-line). B) FLIP overexpression impacts the levels of all three 

represented caspases. C) Increasing five times the amount of decoy-receptor proteins causes a larger decrease in 

the fraction of executioner caspases than overexpression of IAP ten times the standard levels. The remark is that 

receptor events have a larger impact on the output of the simulated signaling cascade. D) A cancerous cell, defined 

by high levels of anti-apoptotic proteins such as Bcl-XL, regains executioner caspases basal levels when submitted 

to elevating levels of pro-apoptotic proteins like the Bcl-2-interacting killer (Bik). Figure extracted from 

(Fussenegger et al., 2000).  
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Summary 

 Global description of the underlying biological processes 

 Therapeutic strategies point to the apoptotic receptor reactions as an 

important target that should be up- or down- regulated in the case of 

cancer and Alzheimer’s disease, respectively 

 Role of the receptor compartment as an important layer of the network   

 Mathematical rate laws are not clear 

 Incomplete and oversimplified representation of the receptor valency 

 Caspase-8 dynamics, as explained in section 1.2.4 of this manuscript, 

was not known back at the time of the publication 
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1.3.2 Albeck’s EARM1 model, 2008 

An upgrade on the Fussenegger’s model was given by Albeck and colleagues on a global 

vision of the extrinsic apoptosis signaling pathway (Albeck et al., 2008). The authors increased 

the previous description to a four-compartment model named EARM1 (extrinsic apoptosis 

reaction model 1) containing a receptor compartment (figure 4, gray box), a mitochondrial 

compartment (figure 4, yellow box), a C3-associated positive feedback loop compartment 

(figure 4, green box) and a posT-MOMP compartment (figure 4, blue box).  

 

Figure 4. Albeck’s EARM1 network of reactions.  

A four-compartment model was proposed by Albeck and colleagues for the extrinsic apoptosis pathway. In the 

receptor compartment (gray area) the formation of the DISC is simplified by the attachment of a single ligand, 

after which C8 is directly activated into C8*. The production of C8 is simplified with a lumped representation 

that does not correspond to the dynamics explained in section 1.2.4 of this manuscript. The mitochondrial 

compartment (yellow area) includes a vast number of reactions from the cleavage of Bid into tBid promoted by 

C8, down to the formation of the apoptosome after MOMP.  A simplified illustration of the positive feedback loop 

reinforcing C8 activation is included (green area). The feedback loop was shortened and C6 was activated by C3* 

without any intermediate steps. Finally, in blue, active C3* cleaves PARP into cPARP and irreversible apoptosis 

is reached. All the boxes highlighted in pink refer to nodes were available experimental data existed in the form 

of a signal emitted by a reporter protein (RP).  Figure extracted from (Albeck et al., 2008).  
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 The authors were able to explain two-time separated events: a pre-MOMP variable time 

delay period followed by a posT-MOMP spontaneous event “snap-action” signal 

corresponding to effector caspases activation in cells treated with cycloheximide (a potent 

inhibitor of protein synthesis). The high heterogeneity on the delay period was associated to 

the level of activity of the initiator caspase C8, which was confirmed experimentally (Albeck 

et al., 2008). This activity depended on the dose of the ligand but the influence dissipated at 

the mitochondria level with the MOMP, formation of pores, SMAC release and effector 

caspases activation being dose independent through an irreversible cell fast switch-type 

activation signal. In fact, in order to agree with the dynamics of the experimental data, the snap-

action signal topology depended critically on the reactions happening in the mitochondrial 

compartment, setting a local control that is independent from the upstream parts of the network 

such as the receptor layer. The snap-action signal was also shown to be independent of the 

downstream feedback loop C3 → C6 → C8, not requiring the reinforcement of a positive 

feedback interaction to establish the all-or-none behavior of MOMP.  

At the time, no quantifications were established on the topic of “fractional killing”. This 

was a direct consequence of treating cells with cycloheximide, which creates a biological 

context that inevitably leads to cell death, independently of activation of apoptosis. In this 

setting, the authors were unable to study different contributions of the network for the 

underlying cell-fate death or survival decision.    

The EARM1 was further on extended up to EARM1.4 version. Spencer and colleagues used 

EARM1.1 to show that variability in protein initial conditions could reproduced the 

experimental distributions in time-of-death (Spencer et al., 2009). Variability in time-of-death 

was found to be caused by specific proteins of the apoptosis pathway, which were defined as 

sensitive nodes of the network, and were obtained with simulations on the EARM1.3 version 

(Gaudet et al., 2012). Finally, an EARM1.4 model proposal allowed a study to establish the 

ratio of XIAP/C3 as a distinguishing factor in cells executing a type I (mitochondrial-

independent) or type II (mitochondrial-dependent) apoptosis. Type I occurs when this ratio is 

small and type II is preferable when the same ratio attains higher values (Aldridge et al., 2011).   
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Summary 

 First steps in the positioning of C8 dynamics as a central node of the 

network controlling the variability in time-of-death 

 Description of the MOMP event as a switch type response that depends 

on the movement of proteins through different compartments where the 

scales of the reaction rates change 

 A small number of pore molecules is enough to release a wave of SMAC 

and CyC to the cytosol, resulting in a snap action signal independent of 

upstream or downstream events 

 Units of [molecules per cytosolic compartment] are not clear and 

difficult to reproduce 

 Incomplete representation of the receptor valency 

 Caspase-8 dynamics, as explained in section 1.2.4 of this manuscript, 

was not known back at the time of the publication 
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1.3.3 Schlatter’s & Calzone’s model, two Boolean modeling approaches 

The transduction and processing of intracellular signals often results from the contribution 

of multiple chemical agents and signaling pathways whose exact dynamics are frequently 

unknown. This lack of information greatly compromises the usage of continuous-time 

modelling approaches, which depend on precise model parameters, and can eventually bias 

model predictions. In this sense a simpler but useful alternative to study the interactions in a 

reaction network is to consider a Boolean or logical modeling framework to qualitatively assess 

the interactions and dependencies between the considered molecular species. The 

concentration of every element is replaced by a binary variable {0, 1}, in either an “on” or 

“off” state, and the collection of interactions is embed in an oriented graph that can integrate 

several types of dependencies, including activation and inhibition effects and positive and 

negative feedback loops.  

In the field of apoptosis two studies based on Boolean formalisms stand out by the 

complexity and relevance of their conclusions, the work of (Schlatter et al., 2009) and (Calzone 

et al., 2010). In the former, a large network of reactions describing the intrinsic and extrinsic 

apoptosis and a myriad of associated pathways was proposed to analyze the effect of an input 

of Fas ligand, TNF-a, UV-B irradiation, interleukin-1b and insulin into the phenotype outcome 

of the system. The complexity of the reported interactions made the authors choose for a multi-

value node representation where each variable could assume multiple states, instead of the 

common “1” or “0” and all-or-none definition, to account for “low-active amount” and “high-

active amount” and establish higher-valued states where one variable could surpass the 

inhibitory role of another or instead reinforce the inhibition of a given substrate. The inclusion 

of more detailed timescale dynamics, with subsets of reactions being active only at certain time 

points, proved also essential to reproduce threshold dependencies and reaction delays that are 

known to be apoptotic signatures. The phenotypic outcome of the system was found to depend 

considerably on the feedback loops and highly connected nodes which included crosstalks with 

the survival and insulin pathways. A non-reported negative feedback loop from Smac to RIP 

(a central molecule in the necroptosis pathway inhibiting DISC and C8 activation) was 

suggested as a mechanism to enhance the stability of the DISC structures and lead to more 

effective apoptotic responses (Schlatter et al., 2009). Although hypothetical, the possibility of 

uncovering a new level of regulation in an already complex network is definitely one of the 

potential benefits of using modeling approaches and overall strengthen the results of this 

model.  

The model of (Calzone et al., 2010) tried to establish a functional relationship between the 

NF-kB survival pathway and the cellular decision for either apoptosis or RIP1-dependent 

necrosis, after activation of the death-receptors on the cell membrane. By assembling a large 

network of reactions with the most representative elements of these three signaling pathways, 

the C3 activation, a significant drop in ATP levels and emergence of NF-kB were set as 

representative hallmarks of apoptosis, necrosis and survival decisions, respectively. A Boolean 

variable was assigned to each node and rules were imposed to define multiple events, such as 

the activation of a protein. For instance, C8 was considered to effectively change into an active 

state after direct stimulation by either DISC-TNF or DISC-FAS but only in the absence of 

FLIP.  In this case, the associated logical rule was defined as (DISC-TNF OR DISC-FAS) 

AND NOT FLIP. By analyzing the multiple steady-states of their system, the authors could 
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propose novel insights about cellular decisions towards different cell-death modalities. Even 

in the presence of C8-mediated cleavage of RIP1 the system was shown to contain attractors 

eventually converging into a necrotic phenotype, suggesting that the presence of C8 per se does 

not imply a cellular apoptotic response.  For cells in which important apoptotic elements were 

mutated (APAF1, BAX, C8, FADD deletions and z-VAD treatment), simulations uncovered 

the existence of an optimal TNF treatment coincident with maximum proportions of obtained 

necrotic cells. The authors also found the role of the positive feedback loop from C3 to C8 to 

be non-essential when TNF or FAS levels were constant in the cell medium. Oppositely, when 

the same ligands are to be administrated in pulses the feedback loop ensures the persistence of 

the apoptotic signal (Calzone et al., 2010). This result reassures the importance of positive 

feedback loops in natural tissues where the cell receives non-sustained death-signals from its 

surrounding environment. The work still has the potential to uncover, with the availability of 

more data, the paradigms of cell decision towards necrosis, necroptosis or apoptosis and 

enlighten how we can force the cell into a specific type of death.  

In what concerns the modeling framework, many formulations are available (among 

Boolean, ODE’s or PDE’s) and the modeler can choose for a more qualitative or quantitative 

approach according to the data at hand and the desired analysis or conclusions to extract. Some 

authors chose to build hybrid models combining both Boolean and ODE components and some 

are available in the field of apoptosis, such as the model for the NF-kB module proposed by 

(Chaves et al., 2009).  
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1.3.4 Bertaux’s model, a stochastic protein-turnover approach 2014 

It is long known that identical sister cells often respond in different ways when exposed to 

equivalent stimulus. In apoptosis these differences have been attributed to inequalities in 

protein numbers that, when summed up for the plethora of intra-signaling reactions of a 

network, can influence the phenotype decision. In an effort to study these effects, Bertaux and 

colleagues used the EARM1 model, previously proposed by Albeck, and added a second 

contribution in the form of a gene stochastic layer (Bertaux et al., 2014). Each protein of the 

network interacted with other proteins of the system and also received an extra-input signal 

resulting from the fluctuations of the corresponding gene expression (figure 5). The goal was 

to follow the impact of random fluctuations in time in the absolute protein quantities, instead 

of the traditional sampling of variable initial conditions at the beginning of the simulation that 

is a common tool used to reproduce the behavior of non-identical cells. This analysis allowed 

for the simulation of a population of sister cells whose proteome decorrelate in time due to the 

inherent fluctuations of the underlying gene expression, as observed experimentally (Spencer 

et al., 2009).    

 

Figure 5. Bertaux’s stochastic protein turnover model.  

All the network of proteins of the EARM1 model was equipped with a stochastic layer using a random telegraph 

approach: mRNA production and degradation rates were modeled as stochastic processes with protein production 

and degradation rates treated as deterministic processes. Simulations for the stochastic elements were executed 

with the Gillespie algorithm. Figure extracted from (Bertaux et al., 2014).  

The approach allowed the authors to evaluate the contribution of intrinsic noise, produced 

at the gene layer, and conclude that it was enough to justify the temporal and reversal resistance 

to TRAIL observed in HeLa cells after an initial TRAIL exposure (Flusberg et al., 2013). Their 

congruence with the experimental results required the fluctuations of the short-lived protein 

Mcl1 to be large and rare, imposing low value ranges for the ON-OFF promoter switching rates 

of this protein. In this case modelling was able to explain the acquired resistance of cells already 
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treated with TRAIL as a complex interplay of three distinct effects: selection acting on the cells 

with the highest anti-apoptotic protein amounts; transcriptional noise making protein 

production to switch between on and off states and protein degradation as a force that tends to 

decay protein numbers back to their original values (making resistance only temporary). The 

co-participation of these environmental pressures could not be deduced without a modelling 

approach and reinforced the need of mathematical laws to determine and quantify individual 

system-level contributions.  

By assembling Mcl1 dynamics with rare and large fluctuations,  FLIP with promoter fast 

turnover rates and a default model of protein turnover for the remaining proteins of the system, 

the authors could also reproduce the MOMP time distributions registered by Spencer and 

colleagues (Spencer et al., 2009). The work was important as it defined a strategy to introduce 

fluctuations in a principled manner and study the contribution of gene expression variability in 

networks of interacting proteins.  

 

Summary 

 A methodology was proposed to analyze the effect of gene expression 

fluctuations on a given network of interacting proteins   

 A justification was presented for the temporal and reversal resistance acquired 

by HeLa cells after a TRAIL exposure 

 After cell division, the loss of synchrony of sister cells with time was 

reproduced, in line with the findings of Spencer and colleagues 

 Model parameters were fitted from a data set concerning cells treated with 

TRAIL and cycloheximide. Cycloheximide blocks protein production and 

changes the universe of interactions at the protein level. This may cause the 

model predictions to be unrealistic in HeLa cells treated exclusively with 

TRAIL 

 Incomplete representation of the receptor valency 

 Caspase-8 dynamics followed the same representation as in Albeck’s EARM1 

model 

 Under-estimation of the role of FLIP, which is known to be a potent inhibitor 

of apoptosis 
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1.3.5 A summary list of models of apoptosis  

 

Author / Year Focus of the model  

(Fussenegger et al., 2000) Intrinsic + Extrinsic apoptosis 

(Bentele et al., 2004) Extrinsic apoptosis 

(Eissing et al., 2004) Positive feedback loop of C3 on C8 

(Hua et al., 2005) Extrinsic apoptosis 

(Stucki and Simon, 2005) Mitochondria + IAP + C3 

(Bagci et al., 2006) C8 + Mitochondrial reactions 

(Legewie et al., 2006) Intrinsic + Extrinsic Apoptosis 

(Rehm et al., 2006) Effector caspases dynamics 

(Chen et al., 2007b) Bcl-2 apoptotic switch 

(Chen et al., 2007a) Bax + Bcl-2 interaction 

(Albeck et al., 2008) Extrinsic apoptosis 

(Cui et al., 2008) Bcl-2 dynamics 

(Chaves et al., 2009) Apoptosis + NF-kB dynamics 

(Schlatter et al., 2009) Intrinsic + Extrinsic apoptosis 

(Zhang et al., 2009) Intrinsic + Extrinsic apoptosis 

(Calzone et al., 2010) Apoptosis + NF-kB + Necrosis pathways 

(Howells et al., 2011) Bcl-2 dynamics 

(Aldridge et al., 2011) Extrinsic apoptosis: Type I vs Type II cells 

(Huber et al., 2011) Bcl-2 family members dynamics 

(Gaudet et al., 2012) Extrinsic apoptosis 

(Stoma et al., 2013) Extrinsic apoptosis Type I vs Type II cells 

(Bertaux et al., 2014) Extrinsic apoptosis 

(Kallenberger et al., 2014) C8 dynamics 

(Würstle et al., 2014) Intrinsic apoptosis 

(Воропаева and Voropaeva, 2017) P53 dynamics 
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(Roux et al., 2015) C8 dynamics 

(Paek et al., 2016) Intrinsic apoptosis: p53 dynamics 

(Ballweg et al., 2017) P53 dynamics + Bax dynamics  

(Yin et al., 2017) Bcl-2 dynamics 

(Bouhaddou et al., 2018) Pan-cancer pathways, including apoptosis 

(Buchbinder et al., 2018) Extrinsic apoptosis 

(Márquez-Jurado et al., 2018) Extrinsic apoptosis: Role of mitochondria 

(Lederman et al., 2018) Extrinsic apoptosis: Role of TRAIL 

(Miura et al., 2018) Intrinsic apoptosis: JNK dynamics 

(Chong et al., 2019) Intrinsic apoptosis: p53 dynamics 
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1.4 Heterogeneity in biology, intrinsic and extrinsic noise 

Signals in biology are noisy. Even when an adequate degree of confidence lies in the 

technique used for signal acquisition and the experimentally-associated errors are minimized, 

cells have nonetheless their own inherent stochastic fluctuations. These fluctuations are caused 

by inter-cellular differences in genetic and non-genetic expression levels that contribute for 

unique cell signatures in time (Chabot et al., 2007; Elowitz, 2002; Newman et al., 2006; 

Ozbudak et al., 2002; Raj et al., 2006; Raser, 2004; Stewart-Ornstein et al., 2012). The exact 

role and nature of signal fluctuations in biology is not entirely understood but some defend that 

cell diversification might be essential for the evolution of life. The presence of non-

homogenous cells among a cell population allows both adaptation and robustness of the 

organism to different stresses and a high-level tissue response might depend on the inclusion 

of heterogeneous single-cell outputs as a whole (Bódi et al., 2017; Dueck et al., 2016; Lehner 

and Kaneko, 2011; Pujadas and Feinberg, 2012). Although positive and advantageous in the 

sense of evolution it can also be extremely deleterious when it promotes drug-resistant 

phenotypes, such as is often the case in cancer cells.   

The current literature summarizes heterogeneity in biology as the result of intrinsic and 

extrinsic noise contributions. Intrinsic noise is derived directly from the reaction kinetics, a 

natural consequence of the thermodynamics of every chemical process that causes the reaction 

times to be stochastic (Gillespie, 1976). This impacts the absolute number of reaction products 

at a given time point, such as the total quantity of expressed RNA and proteins, causing even 

isogenic cells to decorrelate importantly in a matter of few hours (Spencer et al., 2009) . This 

phenomenon is highly dependent on the quantity of the intervening molecules and is 

increasingly relevant for systems with low number of particles. It is usually introduced in 

studies of gene expression and RNA dynamics where the reactants are not abundant but its 

influence on large scale signaling networks, where protein quantities are commonly high, has 

been confirmed to be minimal (Iwamoto et al., 2016; Labavić et al., 2019). The inclusion of 

intrinsic noise in model simulations usually follows the Gillespie algorithm, which returns an 

exact solution for the associated master equation (Gillespie, 1977). For gene expression 

models, where intrinsic noise is more notable, ON-OFF “ telegraph-models” are well 

established and are able to explain gene noise levels and its impact in RNA and protein amounts 

(Blake et al., 2006, 2003; Golding et al., 2005; Harper et al., 2011; Lionnet and Singer, 2012; 

Raj et al., 2006; Raj and van Oudenaarden, 2008; Raser, 2004; Suter et al., 2011).      



47 
 

Different from the intrinsic noise, the extrinsic noise relates instead to differences in protein 

numbers that are naturally diverse in distinct cells, up- or down-regulating the associated 

signaling pathways in which they participate. It is not certain if intrinsic and extrinsic noise are 

related and if extrinsic noise is not more than a direct consequence of fluctuations in gene 

expression that cause consequent variability in protein numbers (Eling et al., 2019). From the 

point of view of mathematical approaches it can be modelled as a deterministic event by setting 

different protein initial conditions on each simulated cell (Gaudet et al., 2012). The simulation 

of extrinsic noise is usually considered by sampling initial conditions with a coefficient of 

variation (CV) =30% around the initial mean values, a typical value for protein variability in 

biological systems (Sigal et al., 2006; Spencer et al., 2009).   

In summary, intrinsic noise refers to the natural randomness of a reaction event, either to 

produce or not produce a biochemical product. Distinctly, extrinsic noise points to the system 

at a beginning of the simulation, with the differences in protein quantities in the cell population 

being sampled and transferred to the model as a set of different initial conditions. Depending on 

the signaling pathway at study, the magnitude of each noise source may vary and it is unclear 

which contribution is more relevant for total signal variability in every scenario. Usually when 

the object of study is the interaction between proteins, commonly expressed in abundant 

amounts, extrinsic noise is expected to have a more preponderant effect. By contrast, in gene 

layouts and mRNA interactions, with molecular numbers in much lower scales, intrinsic noise 

starts having a non-negligent contribution. 

The inclusion of both types of noise has been introduced and compared in recent studies.  

One example was the switch-like activation of nuclear ERK under EGF stimulation. To 

understand these dynamics and the impact of noise on the all-or-none decision of activating 

nuclear ERK, an ODE model was built and both noise contributions were simulated. In this 

study the authors concluded that the observed experimental heterogeneity could be reproduced 

by imposing a CV=25% in protein initial quantities, a range compatible with experimentally 

determined protein variability in apoptosis. This result gave evidence for the role of extrinsic 

noise as the main source of variability in this system. Intrinsic noise input was found to be 

negligibly small for the abundance of the simulated proteins (Iwamoto et al., 2016). One 

important result of the same work was the finding that proteins participating in enzymatic 

reactions act as “sensitive nodes” of the network, contributing more pronouncedly to the 

generated output heterogeneity than the remaining proteins involved in simpler binding-
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unbinding reactions. This evidence set for the first time the hypothesis that cells can use certain 

types of chemical interactions to control or amplify their underlying extrinsic noise.  

Efforts to understand the allowed window of variability in intervening proteins and 

consequences for signal transmission are becoming a new trend in systems biology. In the 

context of the cell cycle, Bouhaddou and colleagues were able to correlate entry into S-phase 

in actively dividing cells with the initial levels of C-RAF and B-RAF proteins, therefore 

creating a metric for cell cycle progression. These two RAF isoforms are produced in relatively 

low amounts and are consequently subject to substantial intrinsic noise when expressed. Their 

noise level is amplified downstream by a positive feedback loop that results in an all-or-none 

activation switch of cJun, thereby forming a decision point for entry into S-phase. To simulate 

the natural variability in protein and mRNA numbers the authors performed simulations with 

intrinsic noise on an initial standard cell and let the molecular numbers fluctuate over a period 

of 24h simulation time. This technique is an approach to obtain a population of distinct cells, 

each with their own proteomic signature that can then be used as the model new set of initial 

conditions. In this way the authors could use the obtained distributions of protein levels to also 

infer the impact of extrinsic noise on the model output and observe threshold effects of the two 

RAF proteins isoforms on cell cycle progression (Bouhaddou et al., 2018). 

In the field of apoptosis, the idea of obtaining a separating metric that can accurately 

predict the commitment into effective death is also receiving strong attention. It has been 

addressed that required levels of C8 activity for TRAIL-treated cells are necessary to properly 

engage cells into an apoptotic phenotype (Roux et al., 2015). Others suggested the 

mitochondria to be the central player of apoptosis, capable of modulating each cell individual 

time-of-death and the overall content of the cell apoptotic proteins (Márquez-Jurado et al., 

2018). In this last result, the authors could observe that resistant and sensitive cells had clear 

differences in their mitochondrial numbers and a direct correlation was established between 

higher cellular mitochondrial content and an augmented probability of entry into apoptosis and 

reduced time-of-death. This defined a novel threshold for mitochondrial content, responsible 

for a range of variability in apoptotic protein numbers in the order of 50%, and established 

mitochondrial density as a new metric for prediction of resistance/sensitivity to apoptotic death 

(Márquez-Jurado et al., 2018). 
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Heterogeneity in the apoptosis signaling pathway 

Apoptosis is a fascinating pathway to study due to its singular dynamics and long list of 

contributing agents. One of its underlying and most curious aspects is related to the 

heterogeneity of every cell decision to either engage, properly fulfill the pathway and commit 

to death, or to avoid the stimulus, consider the signal as spurious and remain alive. This 

property receives the name of “fractional-response” and describes the capacity of closely 

related cells (such as sister cells) to present distinct phenotypic outputs when exposed to the 

same stimulus.  

The reason to explain “fractional-response” in the apoptosis signaling pathway arises from 

both extrinsic and intrinsic noise contributions causing every cell to be unique in terms of its 

biomolecular content. This behavior is observed even for saturating drug doses, showing that 

it is due to an intrinsic property of the system (Roux et al., 2015). When focusing exclusively 

on the population of sensitive cells (dead cells), a high degree of heterogeneity is nonetheless 

observed in every cell’s time-of-death (Rehm et al., 2009; Spencer et al., 2009). Attention has 

been given to this phenomenon and nowadays the most accepted hypothesis is that variability 

in apoptotic protein levels is the main cause of dispersion in individual cell-fate response and 

in the distribution of time-of-death (Spencer et al., 2009).One argument supporting this idea 

resides on the fact that cells co-treated with cycloheximide and actinomycin D present an 

equivalent extent of variability on maximum C8 activity levels, excluding genetic contributions 

as the main cause for heterogeneity in the apoptotic response (figure 6).   

Another evidence was presented by Spencer and colleagues that showed that sister cells 

who underwent a recent division cycle have similar times-of-death during a short initial period 

but synchrony is lost as the time post-division increases (Bhola and Simon, 2009; Rehm et al., 

2009; Spencer et al., 2009). This supports the hypothesis that cell-to-cell differences in protein 

levels justify their time-of-death: recently divided cells who obtained similar protein content 

from the mother cell die synchronously. As time post-division increases, intrinsic noise acts on 

the cell and causes fluctuations in sister cells proteomic content, decorrelating their associated 

time-of-death (Sigal et al., 2006). The result was also confirmed through modeling. When 

changing protein initial conditions in the EARM1 model equations, the resulting distributions 

in time-of-death reproduced the experimental variability, setting extrinsic noise as the major 

contributor for cell’s variability in the apoptotic response (Gaudet et al., 2012; Spencer et al., 

2009). Furthermore, heterogeneity was found to derive mostly from the intervening proteins 



50 
 

upstream of the MOMP event, namely the quantity of expressed receptors, pC8 and the BCL-

2 family agents setting a complex interplay between several molecular contributors (Albeck et 

al., 2008).  

 

 

Figure 6. Variability on maximum C8 activity values for a population of HeLa Cells under different co-

treatment scenarios.  

Five different scenarios are represented. NCT refers to “normal condition treatment” and illustrates cells treated 

exclusively with the death-ligand TRAIL at 50 ng/ml. CHX indicates a co-treatment with cycloheximide, an 

inhibitor of protein synthesis. MG-132 is a non-specific inhibitor of protein degradation, ActD an inhibitor of 

RNA transcription and Q-VD a strong inhibitor of C8 activation. The first, third and fourth columns have similar 

distributions on the registered maximum C8 activity values, an argument that the contribution provided by the 

gene layer does not justify by itself the observed heterogeneity.   

Inhibiting… 
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Heterogeneity on the reaction rates, a rational for non-reliability on the 

signaling reactions  

When the network of proteins in a signaling pathway is not fully known or there are external 

events that may affect the cell volume, such as cell size increase along the cell cycle, one may 

consider variability on the reaction rates to justify scaling effects on the parameter values. This 

approach was used to study global noise effects on a gene expression model in bacteria and in 

cellular growth (Labhsetwar et al., 2013; Mori et al., 2016; Sherman et al., 2015) and in the 

analysis of p53 dynamics in intrinsic apoptosis (Ballweg et al., 2017). On one of these studies, 

Sherman and colleagues used a standard “telegraph-model” and included an extra non-intrinsic 

variability on mRNA and proteins, on both production and degradation rates, obtaining 

Gumbel-like distributions for the production of proteins. While varying the reaction rates, the 

resulting protein distributions acquired ranges that intrinsic noise alone could not provide. This 

approach was useful to discriminate unexplained noise sources but it required the solving of 

rather complicated mathematical expressions and the usage of simplifications that were very 

particular to that study, making it difficult to extrapolate to general scenarios (Sherman et al., 

2015).  

With this quick review on the different approaches used to simulate generic noise in 

biology, an emerging idea is that there is currently room for improvement and a concrete and 

unifying concept on how to simulate noise is still unavailable. Efforts on this field would be an 

undeniable contribution to both biology and medicine, providing more in-deep explanation for 

the always present heterogeneity in the cell universe. That would impact a considerable number 

of therapeutic approaches, namely in cancer, which demands more studies to understand the 

origins of cell-to-cell heterogeneity and to edify strategies to model its sources and the 

consequent emerging resistant phenotypes.     
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Chapter 2 

 

 

2 Modeling receptor-ligand interactions for 

the extrinsic apoptosis pathway  

 

 

“We built too many walls and not enough bridges” 

- Isaac Newton 

 

 

Many unanswered questions remain in apoptosis. Some of them relate to the regulatory 

mechanisms that control the passage or the inhibition of the signaling pathway in its several 

steps. This decision is made at innumerous points, starting by the number of activated receptors 

contributing to total DISC-created structures, followed by the rate and quantity of C8 activated 

molecules, competing quantities of Bcl-2 pro-survival and pro-apoptotic proteins, and many 

others. Determining the basis of the different and sequential threshold events requires a 

combination of adequate experimental data with explanatory system biology approaches.     

Models of apoptosis are common and a summary list was provided in section 1.3.4. Some 

concern a whole-system approach (Albeck et al., 2008; Bertaux et al., 2014; Fussenegger et al., 

2000)  while others were more synthetic and oriented to a specific subset of the network (Chen 

et al., 2007a; Cui et al., 2008; Roux et al., 2015; Yin et al., 2017). The mathematical methods 

employed for the system analysis are also quite diverse. Some authors interpret threshold 
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events as a “first-passage time” problem (Ghusinga and Singh, 2019; Paek et al., 2016) 

associated to when a protein reaches a critical level for the first time. This methodology has 

been commonly supported by stochastic models of gene expression to account for noise 

contributions in threshold-crossing events. With these techniques, protein levels become 

variable and a distribution for “first passage time” is obtained, allowing the modelers to infer 

the type of feedback interactions that can decrease noise effect on the mean-value of these 

distributions. In particular, Ghusinga et Singh determined “buffering” strategies to filter noise 

depending if the relevant protein is stable or unstable. For stable long-lived proteins the 

inexistence of any feedback regulation seems to be the best scenario for the cell to control its 

molecular heterogeneity. When otherwise the protein is unstable, the presence of a positive 

feedback loop turns out to be the optimal strategy to increase the threshold-time accuracy 

(Ghusinga and Singh, 2019).   

Big models assembling a multitude of interacting signaling pathways have also been 

emerging. With the goal of understanding the impact of a series of pathways in cancer and how 

they participate in the cell stochastic decision to proliferate or die, Bouhaddou and colleagues 

designed a model with a substantial network of proteins to unveil the origins of cell fate 

decision in cancer cells (Bouhaddou et al., 2018). Each of the model subnetworks was 

simplified and no conclusions were extracted about the agents controlling cell-fate decision. 

Nonetheless the work was an evidence that efforts to build robust and “complete” networks are 

rising despite the associated simulation challenges. The tendency for the incoming years is to 

increase network information and avoid over-simplified assumptions so that single-cell 

interpretations can be made.     

 Some of the most famous works in the apoptosis modelling field have focused their results 

in the BCL-2 family interactions and how a switch-like activation can be achieved during 

MOMP (Albeck et al., 2008). This switch-like activation is frequently considered a bistable 

result from which the cell can bifurcate between the branch of life or death (Bagci et al., 2006; 

Cui et al., 2008; Kolch et al., 2015; Legewie et al., 2006) but little attention has been given to 

the upstream reactions and their potential impact on cell-fate decision (Eissing et al., 2004).  

In this project, a new model is proposed for the receptor-associated reactions of the extrinsic 

apoptosis pathway. The model gathers the set of reactions that start with TRAIL interaction 

with the complementary death-receptors, includes the formation of active DISC structures and 

finishes with the production of active C8 and subsequent cleavage of its substrate Bid. While 
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modeling this set of reactions the work tries to elucidate possible factors explaining the 

heterogeneity observed on C8 activity values in a previous work (Roux et al., 2015) and 

pinpoint differences on the receptor layer reactions that can distinguish resistant cells from 

sensitive cells. The mathematical formalism was chosen to be simple and reproducible by 

others and results from direct application of mass-action rate laws to the associated chemical 

events. This approach was chosen so that the contribution of all the considered molecular 

agents could be analyzed without simplified lumped parameters and “ad-hoc” mathematical 

expressions. In this way and using parameter rates in line with already published values, the 

dynamics of C8 activation, the role of FLIP as a strong anti-apoptotic protein, the increase in 

C8 activity for higher ligand valencies, among other known facts, were explicitly studied in a 

descriptive network that also permitted the inclusion of different noise sources so that a 

justification could be presented for the degree of heterogeneity observed in the extrinsic 

apoptosis signaling pathway. This and further modelling versions could take us one step closer 

to the elucidation of “fractional killing” and to the identification of its molecular determinants. 

 

 

2.1 A network of reactions defining a model structure for the 

receptor layer of the extrinsic apoptosis network  

    

Modelling TRAIL interactions  

The literature concerning TRAIL, its structure and interaction modes with the death 

receptors is vast and not entirely clear. In this framework, TRAIL interactions with the death 

receptors were assumed to occur exclusively among TRAIL and monomeric receptors. 

Interactions between TRAIL and already formed dimeric or trimeric receptors could have been 

considered but recent findings suggest that dimeric and trimeric pre-established configurations 

do not contribute to the apoptotic signaling response (Liesche et al., 2018).  Following this 

idea, TRAIL is presumed to react with a single receptor molecule in a reversible manner 

according to,  

TRAIL + R ↔ TRAIL: R                       (complex monomerization) 
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TRAIL is also administrated in a pulse-like way so that the initial number of molecules of 

TRAIL are not re-introduced in the system and the initial quantity decays while reacting with 

the existing monomeric receptors in the cell membrane. TRAIL synthesis rate is then set to 

zero.  

 

 

Modelling TRAIL-receptor interactions  

Amid the four classes of death-receptors mentioned in section 1.2.2, just one hypothetic 

receptor class was considered in the model reactions. This class referred to the DR4/DR5 

receptors which were grouped and modelled as a single class R, given their equivalent pro-

apoptotic role. The decoy receptors were not incorporated due to their scarce proportion in the 

cell membrane (Zhang et al., 2000).  

TRAIL ligand interacts with an increasing number of receptors according to the next rules, 

 TRAIL: R + R ↔ TRAIL: 2R                         (complex dimerization) 

TRAIL: 2R + R ↔ TRAIL: 3R                      (complex trimerization) 

                                      → R                                                                  (R-protein synthesis) 

                                      R →                                                         (R-protein degradation) 

All reactions are reversible to account for attachment and detachment events and delays 

between TRAIL exposure and the formation of an active death-ligand-three-receptor complex. 

The R protein is a natural component of the cell membrane and it is assumed to be constitutively 

produced and degraded by the cell.     

  

Modelling DISC events 

A considerable number of reactions are important to study at this point. The inclusion of the 

pro-caspases and the FLIP molecules into the receptor complexes is essential to gather both 

pro-apoptotic and anti-apoptotic effects taking place at the DISC structure and evaluate their 

overall contributions to the propagation or filtering of the apoptotic signal. For that matter, a 

simplification of nomenclature is first applied and the only modelled pro-caspase was pC8. 

Some authors defend that pC8 and pC10 share an equivalent pro-apoptotic role while others 
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place the last as an anti-apoptotic agent (Horn et al., 2017). To avoid introducing unclear 

dynamics, pC10 was removed from the modelling approach. As for FADD, its participation in 

the model reactions was also discarded and instead it was assumed that each receptor can attach 

one pC8 or FLIP molecule per binding site, permitting a better quantification of the number of 

attached molecules into the DISC unit. When two pC8 molecules connect to the DISC the 

minimum structure is gathered to produce an active C8, independently if it contains additional 

FLIP molecules or not. The next set of reactions summarizes the above considerations:  

 

TRAIL: 2R + n1 ∗ pC8 + m1 ∗ FLIP → TRAIL: 2R: n1pC8: m1FLIP 

(Addition of pC8 and/or FLIP to a dimeric complex) 

TRAIL: 3R + n2 ∗ pC8 + m2 ∗ FLIP → TRAIL: 3R: n2pC8: m2FLIP 

(Addition of pC8 and/or FLIP to a trimeric complex) 

→ pC8                                                                               (synthesis of pro-caspase) 

→ FLIP                                                                                        (synthesis of FLIP) 

 pC8 →                                                                         (degradation of pro-caspase) 

FLIP →                                                                                  (degradation of FLIP)  

The integers n1, m1, n2, m2 are stoichiometric constants defining the number of pC8 or 

FLIP molecules attaching to the respective complex. Their values can assume the quantities 

(n1,m1)={0,1,2} and (n2,m2)={0,1,2,3} , with (n1 + m1) = {1,2}, and (n2 + m2) = {1,2,3}. 

Dimeric and trimeric complexes cannot attach more than two or three molecules, respectively. 

Different possible combinations of n1, m1, n2 and m2 generate a vast number of complexes 

that do not contribute to the propagation of the apoptotic signal and are thus capable of creating 

non-negligible delays on the response of the system.   
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Modelling C8 production 

The dynamics of C8 were detailly included in the model as this is one of the new points that 

distinguishes the current approach from previous models. C8 activation occurs when two 

contiguous pC8 molecules interact and inter-promote the cleavage of each other’s DED 

domains (de Miguel et al., 2016; Dickens et al., 2012; Horn et al., 2017). While this is simple 

for a dimeric ligand with two attached receptors, where two pC8 molecules link directly with 

two receptor sites to form an active C8 molecule, in the case of a trimeric ligand its exact 

dynamics are not precisely known (Wajant, 2019). Here it is assumed that for a ligand with 

valency n, higher than 2, a total of  𝐶2
𝑛  receptor site combinations can be used to produce a 

functional C8 molecule.  

Combining the interplay of FLIP as an inhibitor of apoptosis and the fact that two pC8 

molecules should effectively bind to form an active C8, the next set of reactions define the only 

possible pathways culminating with C8 activation under a trimeric ligand stimulus, such as 

TRAIL.  

TRAIL: 2R + pC8 ↔ TRAIL: 2R: pC8 

TRAIL: 2R: pC8 + pC8 ↔ TRAIL: 2R: 2pC8 

TRAIL: 2R: 2pC8 ↔ TRAIL: 2R + C8 

(C8 production in a dimeric receptor-valid conformation) 

 

TRAIL: 3R + pC8 ↔ TRAIL: 3R: pC8 

TRAIL: 3R: pC8 + pC8 ↔ TRAIL: 3R: 2pC8 

TRAIL: 3R: 2pC8 ↔ TRAIL: 3R + C8 

(C8 production in a trimeric receptor-valid conformation) 
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TRAIL: 3R + FLIP ↔ TRAIL: 3R: FLIP 

TRAIL: 3R: FLIP + pC8 ↔ TRAIL: 3R: FLIP: pC8 

TRAIL: 3R: FLIP: pC8 + pC8 ↔ TRAIL: 3R: FLIP: 2pC8 

TRAIL: 3R: FLIP: 2pC8 ↔ TRAIL: 3R: FLIP + C8 

(C8 production in a trimeric receptor-valid conformation) 

No more than one FLIP molecule can attach to the trimeric configuration, otherwise there is 

not enough free receptor sites to bind two pC8 molecules and generate an active C8 protein.  

 

Modelling C8 interactions 

The model proposed for this project does not include downstream reactions after the C8 

cleavage of its substrate Bid and as so the dynamics of the Bcl-2 like family members were not 

considered. In the available experimental data set a fluorescent probe was used as a method to 

follow the C8 dynamics in time, which in the model reactions is represented as the molecule 

FP. This probe is built artificially to contain a protein structure similar to Bid, so that it can 

also be targeted and cleaved by C8 and return an emission signal in its cleaved form, here 

represented by cFP.   

C8 + Bid → C8 + tBid                                    (C8 cleavage of Bid) 

C8 + FP → C8 + cFP                                      (C8 cleavage of FP) 

The two processes were simulated as having equal reaction rates since both Bid and FP 

contain equivalent protein structures and, intuitively, their interaction with C8 should occur at 

a similar pace.  

In figure 7 a summary of the most important molecular products participating in the 

simulated network of reactions is represented.  
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Figure 7. Network structure for the modeled receptor-reactions in the extrinsic apoptosis pathway.  

TRAIL interacts with death-receptors, giving rise to monomeric, dimeric and trimeric TRAIL-Receptor structures. 

In each form, pC8 and FLIP can attach to the available number of docking sites and produce intermediate 

complexes. When a structure contains two interacting pC8 molecules, an active C8 is generated that then cleaves 

Bid and FP to tBid and cFP, respectively. Green boxes: TRAIL; Orange boxes: Receptor; Red boxes: FLIP; Pallid 

Green boxes: pC8; Blue boxes: C8; Purple boxes: Bid; Pallid purple boxes: tBid; Pallid pink boxes: FP; Pink 

boxes: cFP.  
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2.2 Available Experimental data  

All the results concerning this thesis were obtained by matching generated model outputs 

against an extensive data set of HeLa Cells available in the work of (Roux et al., 2015). The 

data contemplated several treatment scenarios with cells administrated with TRAIL drug doses 

of 2.5 ng/ml, 5 ng/ml, 10 ng/ml, 25 ng/ml , 50 ng/ml , 100 ng/ml , 250 ng/ml and 500 ng/ml. 

Multiple co-drugging treatments were also available in the data set. Even though the full data 

set was rich in its case-by-case description, the focus of this thesis was the subset of single-cell 

trajectories at the specific dose treatment of TRAIL at 50 ng/ml. The decision came directly 

from the opportunity to perform direct comparisons with other modeling approaches also 

conducted at this ligand concentration, such as the EARM1 model (Albeck et al., 2008). A 

chance then stands for future projects to later extend this analysis to other ligand concentrations 

and eventually include the remaining scenarios of the data-set.  

The data consisted on single-cell time course trajectories displaying a fluorescence 

emission signal throughout a 10-hour experiment duration, each data point separated from the 

previous by an interval time frame of 5 min duration. The fluorescence signal, named FRET, 

followed a previous molecular construction approach proposed by others (Albeck et al., 2008) 

and returned the ratio emitted by a molecular probe in its cleaved form relative to its signal in 

its uncleaved form. The probe is composed of a protein sequence similar to Bid, a substrate of 

C8, and acts as a decoy molecule and a direct reporter of C8 activity in time. To include 

information about the survival fraction of the population, all the cells were also identified at 

the end of the experiment as either resistant or sensitive, allowing for relationships to be 

established between cell-fate decision and C8 activity.   

The general features of every single cell signal are described in figure 8. Resistant cells 

remained alive for the full-time length of the treatment and are defined by a complete sigmoidal 

shape curve with a delay-phase, an exponential growing phase and a stationary phase. Sensitive 

cells do not present the stationary phase, since cells perished, and the correspondent signal 

finishes before the end of the treatment.  



61 
 

 

Figure 8. General features of the FRET-signal of an arbitrary cell.  

Three main features can be distinguished: delay, exponential and stationary phases. The delay-phase corresponds 

to a residual signal where just a few fraction of the fluorescent probe molecules were cleaved by a still low number 

of C8 molecules. The exponential phase reflects an abrupt increase in C8 levels and a consequent pronounced 

increase in FRET signal. The stationary phase refers to the saturation and/or exhaustion of C8 molecules, lending 

the FRET signal into a stationary value.  

When studying the cell population signal it is possible to confirm that, in average, the 

exponential phase for the sensitive population is more pronounced, consistent with section 

1.2.4, where the sensitive population is expected to attain higher C8 activity values. To 

illustrate this effect, the signal in time for the entire cell population was assembled in sensitive 

and resistant populations and represented in figure 9.    
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A) 

 

B) 

 

Figure 9.  Signal in time of the cell population for a TRAIL treatment of 50ng/ml.  

(A) The collection of cell trajectories in the data set is represented in two colors. Red trajectories refer to resistant 

cells, cells that remain alive ten hours after the treatment. Green trajectories represent sensitive cells, cells that 

respond to the treatment and died before the ten hours’ time frame. (B) Evolution in time for the median resistant 

cell and for the median sensitive cell. The median sensitive cell has a more pronounced exponential phase, 

showing a higher mean C8 activity for this cell group.   
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Considering the results of figure 9 each cell was studied in terms of its maximum slope 

value in the exponential phase and how that value integrated or diverged from the remaining 

values inside the same phenotype group and in the opposing phenotype group. The first step 

was to assure compatibility between the model output and the experimental data units. The 

FRET signal in time of every single-cell was the result of a fluorescent emission signal captured 

by a microscope and had to be translated into the absolute number of cleaved cFP molecules. 

This conversion required some mathematical formalism explained in detail in section 2.3.  

To keep coherence with previous models the parameter values representing reaction rates 

were kept as close as possible to already published values. Among the long list of models of 

section 1.3.4, the EARM1 model of Albeck and colleagues had the largest available list of 

parameters and was therefore chosen as the reference for the majority of the parameter’s values. 

An adjustment of units was nonetheless necessary. The non-zero protein initial conditions in 

this work are given in absolute number of molecules, different from the units of 

molecules/cytosolic compartment in Albeck’s model. To adjust both units the a-priori 

knowledge of the “cytosolic compartment” (CC) was essential. A cell compartment in Albeck’s 

model relates to the proportion of the whole-cell volume occupied by the specific compartment 

where the protein lies inside the cell. This fraction of the whole cell volume is not explicit in 

EARM1’s supplementary data but allows one to determinate the necessary CC factor. Defining 

molecules/cell compartment by the abbreviation mol_per_CC the following series of 

operations return the CC factor,  

 

 𝑚𝑜𝑙_𝑝𝑒𝑟_𝐶𝐶    =
𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝐶𝐶
  ⇔   𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠 = 𝐶𝐶 ∗ 𝑚𝑜𝑙_𝑝𝑒𝑟_𝐶𝐶         (1)             

 

𝑀 =
𝑚𝑜𝑙

𝑉
    ⇔  𝑀 = 

𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝑉∗𝑁𝐴
       

   (2) 
 

By joining (1) and (2),  

 

𝑀 = 
𝐶𝐶 ∗ 𝑚𝑜𝑙_𝑝𝑒𝑟_𝐶𝐶

𝑉∗𝑁𝐴
   ⇔  𝐶𝐶 = 

𝑀∗𝑉∗𝑁𝐴 

𝑚𝑜𝑙_𝑝𝑒𝑟_𝐶𝐶
      

(3) 

 

In (3), M defines the molar concentration, mol the number of moles in a volume V of the 

cell and 𝑁𝐴 the Avogadro’s number  6 ∗ 1023 particles/mol. The CC factor is directly obtained 
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by replacing the values in table 2, extracted from Albeck’s supplementary table S5 (Albeck et 

al., 2008), into (3) .  

 
Table 2. Values extracted from EARM1’s supplementary table S5 in order to calculate the Cytosolic 

volume factor. 

State variable Model IC 

(mol_per_CC) 
Model IC 

(M) 
Cell Volume 

(V) 

[L] 3 ∗ 103 5.1 ∗ 10−9 = 50 𝑛𝑔/𝑚𝑙 10−12 𝑙 

* IC stands for initial condition; “L“ is the ligand molecule TRAIL 

 

𝐶𝐶 = 
5.1∗10−9∗10−12∗6∗1023

3∗103  ≈ 1.02                 (4) 

 

Given that the value of CC is remarkably close to the unity the decision was to use units of 

molecules/CC simply as molecules without further inter-conversions.   

 

 

2.3 Conversion of FRET-signal into number of ICRP-cleaved 

molecules  

To convert the fluorescence (or Förster) resonance energy transfer (FRET) signal of each 

single-cell into the corresponding number of cleaved initiator caspase FRET reporter molecules 

(abbreviated ICRP) a method was followed from (Birtwistle et al., 2011). In their work, 

expressions were presented for the FRET donor and FRET acceptor channels in different 

microscopy emission scenarios that related fraction of emission signal from direct fluorescent 

protein excitation and FRET-induced emission signal. For the used data-set of (Roux et al 

2015), with the general signal landscape represented in figure 8, the received signal in time 

FRET-ratio (t) results from the division of two quantities:    

 𝐹𝑅𝐸𝑇 − 𝑟𝑎𝑡𝑖𝑜(𝑡) = 𝐹𝑅(𝑡) =     
𝐶𝐹𝑃−𝑠𝑖𝑔𝑛𝑎𝑙(𝑡)

𝐹𝑅𝐸𝑇−𝑠𝑖𝑔𝑛𝑎𝑙(𝑡)
                        (5) 

The CFP(t)-signal relates to the direct emission of the excited Cyan Fluorescent Protein. 

The FRET-signal (t) is instead the emission of the FRET acceptor, here Yellow fluorescent 

protein (YFP), to which the FRET donor, here excited CFP, transferred its excitation energy. 

As long as the initiator caspase FRET reporter remained uncleaved, with CFP neighboring 



65 
 

YFP, the CFP-signal(t) was minimized and the FRET-signal(t) was maximized. After the onset 

of C8 activation the proportion of still bound CFP-YFP decreased and the FRET-ratio(t) rose 

due to the joint effects of loss in CFP quenching (CFP-signal(t) increase) accompanied by loss 

in FRET (a FRET-signal(t) decrease).  

A technique to convert the FRET-ratio(t) into number of cleaved ICRP molecules is to use 

the equations provided by Birtwistle and colleagues under the context of how the fluorescent 

probes interacted in this experimental construction. Considering that the CFP-signal(t) was the 

donor channel output after direct excitation of the donor channel and the FRET-signal(t) the 

acceptor channel output due to excitation of the donor channel, (5) can immediately be re-

written in a form that agrees with the nomenclature of Birtwistle et al, where  𝐼𝐷
𝑑𝑜𝑛 is the 

intensity in the donor channel after donor channel excitation and  𝐼𝐴
𝑑𝑜𝑛 the intensity in the 

acceptor channel after donor channel excitation (Birtwistle et al., 2011). 

𝐹𝑅(𝑡) =     
𝐶𝐹𝑃−𝑠𝑖𝑔𝑛𝑎𝑙(𝑡)

𝐹𝑅𝐸𝑇−𝑠𝑖𝑔𝑛𝑎𝑙(𝑡)
   =  

𝐼𝐷
𝑑𝑜𝑛

𝐼𝐴
𝑑𝑜𝑛                                 (6) 

In line with the same work, (6) can be further extended into (7)  using the equations 7) and 

9) present in the work of  (Birtwistle et al., 2011).  

𝐼𝐷
𝑑𝑜𝑛

𝐼𝐴
𝑑𝑜𝑛 =   

𝑁𝐷
∗ (1−𝐸𝜑𝐹)𝑓𝐷𝐷

𝑁𝐷
∗ 𝐸𝜑𝐹𝑓𝐴𝐴+ 𝑁𝐷

∗ (1−𝐸𝜑𝐹)𝑓𝐴𝐷
                            (7) 

Given that 𝑁𝐷
∗𝐸𝜑𝐹 stands for the fraction of donor molecules contributing for FRET signal, 

which in this case refers to the number of non-cleaved fluorescent probes FP(t), and 

𝑁𝐷
∗(1 − 𝐸𝜑𝐹) defines the number of already cleaved fluorescent probes ICRP(t), (7) can be 

adjusted into a more readable form, 

𝐼𝐷
𝑑𝑜𝑛

𝐼𝐴
𝑑𝑜𝑛 =   

𝐼𝐶𝑅𝑃(𝑡)𝑓𝐷𝐷

𝐹𝑃(𝑡)𝑓𝐴𝐴+ 𝐼𝐶𝑅𝑃(𝑡)𝑓𝐴𝐷
                                     (8) 

It is worth mentioning that the conversion of (7) into (8) assumed the approximation 𝐸 ≈

1, where 𝐸 refers to the FRET efficiency of every donor molecule. With 𝐸 = 1 it is 

hypothesized that every fluorescent probe molecule in the binding form CFP-YFP is capable 

of inducing FRET, which might seem restrictive and even unrealistic in some experimental 

scenarios. In the specific case of the data-set at hand an argument supporting this approximation 
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comes from the posT-treatment applied on the raw FR(t) signal. All the FR(t) trajectories were 

subtracted by their initial value FR(0) so that each cell-signal started at zero. As a consequence, 

the increase in FR(t) signal reflected the contribution of newly cleaved ICRP(t) probes 

corresponding to the term 𝑁𝐷
∗(1 − 𝐸𝜑𝐹). In this case 𝑁𝐷

∗𝐸𝜑𝐹 will be the not-yet cleaved 

fluorescent probes FP(t) and the same proportions are obtained for the cleaved and non-cleaved 

probes as those deduced if assuming 𝐸 = 1.   

If one excludes the degradation of the probes during the time frame of the experiments a 

conservation law can be written, where the initial number of bound fluorescent probes 𝐹𝑃(0) 

is conserved among the total of cleaved 𝐼𝐶𝑅𝑃(𝑡) and uncleaved forms 𝐹𝑃(𝑡).  

𝐼𝐶𝑅𝑃(𝑡) + 𝐹𝑃(𝑡) = 𝐹𝑃(0)                                            (9) 

By replacing (9) into (8) ,  

𝐹𝑅(𝑡) =    
𝐼𝐶𝑅𝑃(𝑡)𝑓𝐷𝐷

[𝐹𝑃(0)−𝐼𝐶𝑅𝑃(𝑡)]𝑓𝐴𝐴+ 𝐼𝐶𝑅𝑃(𝑡)𝑓𝐴𝐷
                               (10) 

and finally solving (10) in order to 𝐼𝐶𝑅𝑃(𝑡) returns (11), which can be simplified into (12) 

with the approximations 
𝑓𝐷𝐷

𝑓𝐴𝐴
 ≈ 1 and 

𝑓𝐴𝐷

𝑓𝐴𝐴
≈ 0 . The parameters 𝑓𝐴𝐴 and 𝑓𝐴𝐷 represent the 

fractions of the acceptor and donor emissions exclusively captured by the acceptor channel, 

respectively, and 𝑓𝐷𝐷 stands for the fraction of the donor emission captured by the donor 

channel. The first ratio 
𝑓𝐷𝐷

𝑓𝐴𝐴
 can be easily tuned by the user and as explained by Birtwistle and 

his colleagues in page 4 of their work, setting this ratio to the unity is a valid approximation 

(Birtwistle et al., 2011). The second ratio  
𝑓𝐴𝐷

𝑓𝐴𝐴
 is expected to be very small as the crosstalk of 

photons between different channels should be inferior to the number of photons emitted and 

received inside the same channel.  

𝐼𝐶𝑅𝑃(𝑡) =    
𝐹𝑃(0) ∗ 𝐹𝑅(𝑡)

𝑓𝐷𝐷
𝑓𝐴𝐴

 + 𝐹𝑅(𝑡) [1−
𝑓𝐴𝐷
𝑓𝐴𝐴

]
                             (11) 

 

𝐼𝐶𝑅𝑃(𝑡) = 𝐹𝑃(0)  ∗  
𝐹𝑅(𝑡)

1+𝐹𝑅(𝑡)
                                           (12) 
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 With (12) one can relate the fluorescent ratio in time FR(t) with the effective number of 

cleaved fluorescent proteins ICRP(t), for a given initial quantity of uncleaved fluorescent 

protein FP(0).  ICRP(t) in units of molecules can then be used as input in a set of ODE’s for 

fitting purposes, adjusting the output units between the model (density of molecules) and the 

experimental trajectories [FRET (FR) signal].  In the following sections the ICRP molecules 

are denoted as cFP, a simplified nomenclature to refer to cleaved fluorescent protein. 

 

2.4 ARROM1:  Initial conditions and parameter values 

ODE equations resulting from mass action rate laws need both initial conditions and reaction 

rates to be fully-known in order to perform a model simulation. In the model hereby presented, 

the initial conditions referred to a vector-list including a total of twenty-eight protein species 

(signaling proteins in section 2.1 plus intermediate complexes). This vector, altogether with 

seventy-six parameters defined the model in its original form. This initial version was named 

“Apoptosis receptor reaction ODE model-version 1” (ARROM1) and the choice to implement 

it in the form of an ODE modeling approach resulted from the goal of actively simulating the 

time-course dynamics of all the proteins in section 2.1. The law of mass action allows for a 

detailed description of the binding and dissociation reactions between molecular species, taking 

into account the stoichiometry of the different molecules that participate in each reaction. This 

framework provides a more realistic way to model the steps following TRAIL - receptor 

binding.  

Given that some of the seventy-six parameter values of ARROM1 were not available in the 

literature, some simplifications were made at the level of the enzymatic reactions. These were 

grouped according to the similarity of the interacting proteins. All forward and reverse 

reactions adding or removing FLIP from a complex with equal number of receptors were given 

the same reaction rates. The exact same principle was applied for pC8: three groups for the 

forward reactions and three groups for the reverse reactions, each group referring to a number 

of receptors from one to three. These simplifications, although small, led to a simpler model 

version, now with thirty-two parameters. The tables A1.1 and A1.2 in Appendix 1 contain the 

full list of averaged initial conditions along with the parameter values used as initial_guess to 

run the model simulations.  

All the fittings to the ARROM1 model were executed by means of the MATLAB fitting 

algorithm fminsearchbnd with imposed boundaries. The algorithm searches for a combination 
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of parameter values that minimizes the objective function defined by the user, here the squared 

difference between the cFP(t) model output and the experimental trajectory. This command 

differs from the standard fminsearch command by allowing the user to set lower and upper 

boundaries on the landscape of possible fitted parameter vectors proposed by the algorithm and 

is available to download from the Mathworks file exchange webpage. The fitting changed the 

vector of initial conditions and reaction rates in table A1.1 and A1.2 in such a way that 

variations were constrained as much as possible to maintain the magnitudes similar to those of 

the initial_guess.   

 

2.5  ARROM2: a ligand-receptor model with an extra set of 

proposed reactions 

ARROM1 assumes a rich description of the reactions occurring in the receptor layer of the 

extrinsic apoptosis pathway. The first test was to check if the model was capable of fitting a 

median_cell trajectory without changing the parameter values indicated in table A1.2. Here, 

the median_cell was the cell with the median maximum slope value of the whole cell 

population and its trajectory can be seen as a “median” behavior of the C8-apoptotic signal in 

HeLa cells when treated with TRAIL at 50 ng/ml. This test validates if initial condition 

variation, using the protein values in table A1.1 as initial_guess, was sufficient to reproduce 

the median_cell FRET-signal. The resulting fit was poor and the vector of parameters in table 

A1.2 had to be included in the fit and allowed to vary.  Different initial_guess vectors were 

tested in the surrounding 100-fold vicinity, by scaling each initial_guess entry by a random 

assigned-value in the interval [0.1: 10], and the obtained fit was equally poor proving the need 

to include higher parameter variability.  

Since some parameter rates are unknown and no certainty exists on the magnitude of their 

values, the fminsearchbnd algorithm was allowed to perform a fit to the median_cell while 

changing the ARROM1 model parameters inside a bounded interval [1/factor; 

factor]*parameter_values_initial_guess, with factor=10000 (parameter_values_initial_guess 

defines the vector of parameters in table A1.2). This approach gave a very large margin for the 

fitting algorithm to check for different parameter combinations that could provide a good fit. 

The produced fit was very proximal to the median_cell experimental trajectory (figure 10). The 

differences between the parameter_values_initial_guess and the parameter values obtained 
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after the fit were analyzed and assigned to three clusters depending on the scale of their relative 

deviations. These values are listed in Appendix 2, table A2.1.  

 

Figure 10.  Fitting the median_cell of the HeLa-cell population treated with TRAIL at 50ng/ml.  
In red, the median-cell of the experimental data set. In blue, the output of the ARROM1 model when fitting both 

initial conditions and parameter values to the median_cell. The model returned a residual value of 7.4e4 molecules, 

one order of magnitude lower than the maximum attained value for cFP molecules, proving the quality of the fit 

(Here the residual value refers to the sum of squared differences between the cFP model output and the median 

experimental trajectory).   

The parameter_values_initial_guess changed substantially after fitting the ARROM1 

model to the median_cell trajectory. Focusing on the parameters with relative deviations 

superior to one-hundred (table A2.1) their effective contributions to the model output can be 

tested by means of a recent algorithm proposed by (Casagranda et al., 2018). This method 

essentially weights each differential equation term and erases terms with percentage 

contributions lower than a chosen threshold-value. Setting a value of 10% for this threshold 

and consequently eliminating all the terms with lower contributions in time, only the 

parameters [2, 4, 6, 16] stood out with higher than threshold values. The figures 11-14 show 

the decision analysis for the parameter [2, 4, 6, 16] altogether with the contribution in time for 
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all the remaining terms in the differential equations in which they participate. All the ARROM1 

model equations are available in Appendix 4 of this manuscript.   

Parameter 2 = k2 

A) 

 

B) 
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C) 

 

Figure 11. Most contributing terms in the ARROM1 model for the set of ODE equations where k2 

intervenes.  The vector of parameters used to run the simulation results from the fit of ARROM1 model to 

the median_cell trajectory.   
Representation of the relative contribution in time for all the terms in the ODE equation 1, 2 and 3 of the ARROM1 

model. In each figure, the value of the threshold is represented in red by delta=0.1.  The contribution in time 

highlighted in bold blue illustrates the term with k2. In the plots A), B) and C) the differential equation term with 

k2 has either a predominant contribution (plot-A) or an increasing contribution in time (plot-B and plot-C). The 

plots were generated according to the method proposed by (Casagranda et al., 2018).  

 

 

Parameter 4 = k4 

A) 
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B) 

 

 

Figure 12. Most contributing terms in the ARROM1 model for the set of ODE equations where k4 

intervenes.  The vector of parameters used to run the simulation results from the fit of ARROM1 model to 

the median_cell trajectory.   
Representation of the relative contribution in time for all the terms in the ODE equation 3 and 4 of the ARROM1 

model. In each figure, the value of the threshold is represented in red by delta=0.1.  The contribution in time 

highlighted in bold blue illustrates the term with k4. In the plots A) and B) the differential equation terms with k4 

have a predominant contribution in time. The plots were generated according to the method proposed by 

(Casagranda et al., 2018).  

 

 

Parameter 6 = k6 

A) 
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B) 

 

 

C) 

 

 

Figure 13. Most contributing terms in the ARROM1 model for the set of ODE equations where k6 

intervenes.  The vector of parameters used to run the simulation results from the fit of ARROM1 model to 

the median_cell trajectory.   
Representation of the relative contribution in time for all the terms in the ODE equation 2, 4 and 5 of the ARROM1 

model.  In each figure, the value of the threshold is represented in red by delta=0.1.  The contribution in time 

highlighted in bold blue illustrates the term with k6. In the plots A), B) and C) the differential equation terms with 

k6 have a predominant contribution in time. The plots were generated according to the method proposed by 

(Casagranda et al., 2018).  
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Parameter 16 = k16 

A) 

 

B) 
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F) 
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G) 

 

Figure 14. Most contributing terms in the ARROM1 model for the set of ODE equations where k16 

intervenes.  The vector of parameters used to run the simulation results from the fit of ARROM1 model to 

the median_cell trajectory.   
Representation of the relative contribution in time for all the terms in the ODE equation 5, 11, 13, 14, 16, 24 and 

26 of the ARROM1 model.  In each figure, the value of the threshold is represented in bold red by delta=0.1.  The 

contribution in time highlighted in bold blue illustrates the term with k16. In the plots B), E), F) and G) the 

differential equation terms with k16 have a predominant contribution in time. For the remaining plots, k16 either 

has a decreasing or a negligible contribution in time. The plots were generated according to the method proposed 

by (Casagranda et al., 2018).  

When analyzing figure 14 an immediate observation is that some of the differential 

equations in which k16 participates show a relative contribution in time for this parameter that 

is not significant (figure 14-A, C, D). The parameter 16 is related to the dissociation of pC8 

molecules from a given complex. In figures 14-E, F, G the represented ODE equations refer to 

complexes where the pC8 is still part of the molecule and the same plots show that in these 

cases the term with parameter 16 has a dominant relative contribution. In figure 14-A, C, D the 

input from parameter 16 in the respective ODE’s is due to the conservation of mass between 

reactions and the dynamics of these three complexes depends mostly on other terms. As so, 

parameter 16 was accepted as an important contributor of the parameter deviation indicated in 

table A2.1.   

To validate the importance of the parameters [2, 4, 6, 16] on the fitting quality of the 

ARROM1 model to the experimental median_cell, a second fit was performed, this time 
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constraining the parameters in table A1.2 into a range between [0.1; 

10]*parameter_values_initial_guess, except for parameters [2, 4, 6, 16] which were allowed 

to vary in an unconstraint interval. This way it was possible to access the dependence of the 

model output with respect to this subset of parameters. In these conditions the model fit was 

still very close to the experimental trajectory. Table 3 shows the initial_guess_values and the 

variation obtained for the parameters [2, 4, 6,16] after fitting the experimental median_cell in 

the described conditions.    

Table 3. Comparison of parameter values before and after fitting the experimental median_cell while 

allowing the parameters [2, 4, 6, 16] to vary in an unbound interval.  

All the parameter list and initial conditions in the ARROM1 model was allowed to vary in a constrained small 

range [0.1 ; 10]* parameter_values_initial_guess with the exception of parameter [2, 4, 6, 16] that were given 

unbound limits. 

Parameter Initial guess (𝑠−1) After fitting (𝑠−1) 

2 3.8 ∗ 10−3 1.6 

4 3.8 ∗ 10−3  81.7 

6 3.8 ∗ 10−3 950.4 

16 10−3 13.32 

 

 

Table 3 shows a rescaling between three and five orders of magnitude on the four 

parameters [2, 4, 6, 16] after the fitting was performed. This highlights a scenario where the 

network of reactions considered in ARROM1 is insufficient to clearly explain the experimental 

FRET signal and a large variation on a small subset of parameters is necessary to compensate 

for the missing reactions. Given that in table 3 the variation on the parameters [2, 4 , 6, 16] was 

sufficient to produce a good fit to the median_cell  the assumption is that the missing reactions 

might exist in these four nodes of the network.  

It is not possible to exclude that another combination of parameters with unlimited bounds, 

other than the parameters [2 4 6 16], could also provide a good fitting to the median_cell.  

However, in quantitative terms, these four parameters were part of the group with the highest 

relative deviations (table A2.1) and with the highest contributions to the model output as shown 

in figure 11-14, standing out from other parameters. 
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In synthesis, the correct fitting of the median_cell required both initial conditions and 

parameters to change their initial_guess_values in table A1.2. Nonetheless, the variation of the 

parameters [2, 4, 6, 16] was already enough to return an equally good fit to the median cell, 

with the values shown in table 3. The strategy was then to propose a new reaction scheme for 

the nodes of the model associated to these four parameters. Since they refer to dissociation 

reactions occurring at the level of the receptor, one can argue that a common unknown protein 

might be controlling the dissociation of chemical species from the DISC complex. To test this 

hypothesis the protein was named a generic protein molecule X. The simplest approach is to 

assume that X directly interacts with an anchored substrate at the receptor level and causes the 

release of a molecule from this configuration. Given that the parameters [2,4,6,16] describe 

receptor dissociation and pC8 dissociation events, which are clearly not equivalent reactions, 

the molecule X was further divided into X1 and X2, each protein responsible for one of the 

chemical processes represented in (13) and (14),  

TRAIL: nR +  X1  →  TRAIL: (𝑛 − 1)R + R +  X1                                  (13) 

 TRAIL: 3R: mpC8 +  X2  →  TRAIL: 3R: (𝑚 − 1)pC8 + pC8 +  X2                  (14) 

In the above reactions (13) and (14), integer numbers n and m are included to represent the 

stoichiometry of the associated molecule. Integers n and m can assume the values {1, 2, 3} and 

{1}, respectively. The numbers n=1, n=2 and n=3 are associated to the parameters 2, 4 and 6, 

respectively. The parameter 16 is linked to the values m ∈ {1, 2}. The aim was to verify if the 

inclusion of (13) and (14) into ARROM1 would decrease the relative deviation on the 

parameters [2, 4, 6, 16] and ideally if the fits could be performed changing only the initial 

conditions of the system, while fixing the vector of parameters or at least narrowing their 

variation into a small range. This would be a hint that the weight given by the model on these 

reaction events would be distributed through the new added reactions (13) and (14).  To 

simplify the model, at this point it is further assumed that the concentration of both proteins 

X1 and X2 remain constant, avoiding the introduction of two new differential equations whose 

dynamics are virtually unknown.  

The ensemble of ARROM1 together with the modified reactions (13), (14) was named the 

new model version ARROM2. Incorporating the new reactions in the model implies that 

parameters [2, 4, 6] are multiplied by X1 and that parameter 16 is multiplied by X2 only in the 

pC8 dissociation reactions not involving FLIP. Accordingly, parameters [2, 4, 6] and the X1 
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value are not independent, and X1 is fixed at 1000 molecules. Parameter 16 appears in the 

equations with FLIP independently of X2, so both parameter 16 and X2 are fitted.  

A repetition of the previous test was then conducted and, as before, ARROM2 was fitted 

to the median_cell and the new relative deviation on the model parameters [2, 4, 6, 16] was 

asserted after the fitting. In this case all the parameters were restricted to a local interval of 

[0.1; 10]*initial_guess_values in table A1.2. The results of the test are shown in table 4. A 

complete list of the model parameters resulting from this fitting is available in table A3.1.  

Table 4. Comparison of parameter values [2, 4, 6, 16] and protein X2, before and after fitting of the 

experimental median_cell to the ARROM2 model. 

All the parameter list in ARROM2 together with its vector of initial conditions varied in a constrained small 

range of [0.1; 10]*initial_guess_value. 

Parameter Initial guess  After fitting  

2 3.8 ∗ 10−3 (𝑠−1) 4.3 ∗ 10−3 (𝑠−1) 

4 3.8 ∗ 10−3(𝑠−1) 4.5 ∗ 10−3 (𝑠−1) 

6 3.8 ∗ 10−3 (𝑠−1) 9.8 ∗ 10−3 (𝑠−1) 

16 10−3 (𝑠−1) 2 ∗ 10−3 (𝑠−1) 

X1 103 molecules 103 molecules 

X2 103 molecules 3.05 ∗ 103 molecules 

 

The values in table 4 now show a more reasonable variation on the parameters [2, 4, 6, 16] 

after fitting the median_cell trajectory. The addition of the two new proteins X1 and X2 at 

realistic amounts tuned the system and made it more controlled at the parameter level no longer 

requiring large variations on their orders of magnitude in order to fit the experimental 

median_cell.  

It is possible that other unknown X proteins might exist and interact on other points of the 

network but here the main conclusion is that ARROM1 seemed to be incomplete and additional 

agents had to be included to absorb the parameter discrepancy in table A2.1.  
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Chapter 3 

 

 

3 Validation of ARROM2: a receptor-

ligand model in agreement with 

experimental data 

 

 

“He who thinks great thoughts, often makes great errors” 

- Martin Heidegger 

 

 

3.1 FLIP, a strong anti-apoptotic protein with irreversible binding 

at the DISC structure 

The participation of FLIP as an inhibitor of apoptosis is a fundamental control step that 

limits the amount of C8 molecules activated from the DISC complex. In previous publications 

it was shown that the overexpression of FLIP could reduce the apoptotic stimulus down to 

spurious levels (R Safa, 2013; Thome et al., 1997) and a proportion of 2:3 in the ratio of FLIP-

s:pC8 proteins was verified to set the C8 activity levels to nearly insignificant values and reduce 

the death rate to less than 5% in HeLa cell populations treated with TRAIL (Roux et al., 2015).  

The balance between pro-apoptotic and anti-apoptotic stimulus at the DISC results from a 

complex interplay of pC8 molecules, FLIP and perhaps the involvement of still undetermined 
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inputs like the proteins X1 and X2 (proposed in section 2.4). As one can review from table 

A1.1, the mean pC8 and FLIP values in an average HeLa cell are around 150000 and 10000 

molecules, respectively. This proportion greatly favors the pro-apoptotic response of pC8 given 

that the binding and unbinding rates for pC8 and FLIP are equal in the ARROM2 model. The 

justification for equal association rates is that FLIP and pC8 share the same structure, with the 

exception that FLIP has one less DED domain in one of its terminals  (Schleich et al., 2016). 

Accordingly, the rate at which the two molecules attach to the receptor molecules through their 

DED should be identical. However, since FLIP does not chain with other pC8 or FLIP 

molecules, the rate at which it detaches from the receptor complex might be different from the 

pC8 detachment rate.  

In figure 15 different scenarios are compared, with FLIP unbinding rates at different levels. 

The result of Roux and colleagues is recovered only by setting a much lower dissociation rate 

for FLIP, in the limit equal to zero, corresponding to a scenario of an irreversible reaction. This 

hypothesis agrees with the idea that FLIP can block the pC8 elongation chains forming non-

functional heterodimers (Schleich et al., 2016).   

Given the agreement between experimental results and model predictions in figure 15, all 

the simulations with the ARROM2 model in the next sections had the FLIP dissociation rates 

replaced by zero so as to include the result of this section. Tests confirmed that replacing FLIP 

dissociation rate by zero does not affect the fitting quality of the model to the median_cell, 

reproducing an equally good fit as the one shown in figure 10.  
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A) 

 

B) 

 

Figure 15. FLIP unbinding rates show evidence of an irreversible reaction.  

A) Standard dissociation rates for both pC8 and FLIP molecules do not show the expected decrease in C8 activity 

(decrease in maximum slope in the exponential phase) when FLIP is overexpressed. B) For a null value of FLIP 

dissociation rate from the receptor an increase in the anti-apoptotic potency of FLIP occurs and the output signal 

decreases abruptly for higher FLIP initial concentrations. For an initial quantity of FLIP equal to 105 molecules 

[
2

3
 pC8(0) = 

2

3
∗ 150000] (result of Roux and colleagues) the amount of cleaved cFP molecules decreases almost 

ten times (red curve) and the maximum derivative in the exponential phase also decreases importantly.  
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3.2 Dimeric vs. Trimeric ligand valency, an unequal receptor 

binding rate 

Increase in C8 activity for higher order assembled receptor clusters is a known result with 

clinical relevance. Up to date, death-ligands have been tested for a valency order up to 8 

(capable of attaching up to 8 receptors) and the overall conclusion is that ligand valency is 

positively correlated with an increase in the potency of the resulting death signal (Roux et al., 

2015; Swers et al., 2013).  

In this thesis, the death-ligand, TRAIL, is an input molecule capable of forming at 

maximum a trimeric interaction with the associating receptors. No experimental data was 

available to study the dynamics of a specific ligand with valency higher than three but 

ARROM2 allows one to analyze the signal of a trimeric assembled cluster and compare it with 

the total C8 activity signal generated by a dimeric assembled cluster. The simulation of a ligand 

with valency two was performed by setting the three-receptor binding rate k5 to zero, resulting 

in a TRAIL-receptor cluster with a maximum of two-attached receptors. Also, the result from 

section 3.1 was included and FLIP detachment rates (parameters [8, 10, 14] in ARROM2 

model) were set to zero.  

The comparison between the full trimeric model and the simplified dimeric model returned 

the output in figure 16, where it’s clear that the dimeric and the trimeric versions return an 

identical cFP signal when the binding and detachment rates of receptors in the TRAIL:2R and 

TRAIL:3R complexes are assumed to be equal  (figure 16-A) ). To correct for this unrealistic 

result, multiple tests were performed where it was possible to conclude that most of the C8 

molecules were produced from the dimeric structure TRAIL:2R:2pC8. This was due in part 

from the fact that the rates of receptor binding and unbinding were equal in both dimeric and 

trimeric configurations (as originally proposed in table A1.2). Consequently, as the C8 

production from the dimeric complex is faster, the dimeric structure TRAIL:2R:2pC8 ended 

up having a dominant contribution in the total generated C8. To increase the trimeric 

contributions on the ratio of total activated C8, from both TRAIL:3R:2pC8 and 

TRAIL:3R:2pC8:FLIP, a higher rate had to be set on the reaction TRAIL:2R + R → TRAIL:3R 

(binding receptor reaction, parameter k5 on table A3.2) or ,alternatively, a lower rate could on 

the reaction TRAIL:3R → TRAIL:2R + R (unbinding receptor reaction, parameter k6 on table 

A3.2). With these modifications, the TRAIL:3R/TRAIL:2R proportion raised substantially and 

C8 production from TRAIL:3R complexes became more pronounced.  
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Setting the referred binding or dissociation rate to a higher and lower value, respectively, 

produced the expected result, with a higher maximum slope for the simulated cFP signal (figure 

16-B). Biologically, this result has implications on the binding/unbinding scheme between 

receptors. Once a dimeric configuration is formed, the addition of a third receptor can perhaps 

be eased to form a more stable structure. In this scenario, the dissociation of a receptor from 

this more stable structure becomes more difficult and the correspondent dissociation rate 

decreases. For an arbitrary number of receptors, the continuous addition of an extra receptor 

would lead to more stable complexes, increasing the binding rate of the next receptor to be 

added and decreasing its dissociation rate after formation of the correspondent complex.  

The result obtained in this section could be extended to a valency of order n. If C8 activity 

is expected to increase relative to the valency of order n-1 then the binding affinity of the 

reaction TRAIL: (n-1) R + R → TRAIL:nR should be higher than the binding affinity of 

TRAIL: (n-2) R + R → TRAIL: (n-1)R (addition of more receptors is favored) and the 

dissociation rate of TRAIL:nR should be lower than the dissociation rate of TRAIL:(n-1)R 

(unbinding of receptors is not favored). Tests confirmed that replacing k5 and k6 by the 

simulated proportions did not affect the fitting quality of the model to the median_cell, 

reproducing an equally good fit as the one shown in figure 10. 
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A) 

 
B) 

 

Figure 16. Ligand valency results impose higher binding rates and/or lower dissociation rates of the 

receptor in the trimeric complex. 

 A) Assuming an equal binding/unbinding rate of the receptor molecule in the dimeric and trimeric complexes 

results in indistinguishable C8 activity levels for both valencies. B) Higher C8 activities for a trimeric ligand 

imply the trimeric complex to be a more stable structure. Accordingly, both the rates of formation and dissociation 

of a trimeric complex have to be higher and lower, respectively, than the ones of a dimeric complex.  The pallid 

blue curve represents the ARROM2 model (with both dimeric and trimeric complexes) with all the original rates 

of table A3.2. The C8 activity (maximum slope of the curve) increases as the parameter k6 (rate of receptor 

dissociation from TRAIL:3R) diminishes and the parameter k5 (rate of production of TRAIL:3R) increases. The 

parameters [8, 10, 14] were set to zero to include the result from section 3.1 in which FLIP shows evidence of low 

dissociation rates. Parameter k4 refers to the dissociation rate of a receptor from the dimeric structure TRAIL:2R.  
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Chapter 4 

 

 

4 Sources of heterogeneity in apoptotic cell-

fate decision  

 

 

“The task is not to see what has never been seen before, but to think what has never been 

thought before about what you see everyday” 

- Erwin Schrödinger 

 

 

As discussed in the previous section 1.4, one of the ambitions of this work was to propose 

an explanation for the heterogeneity of cell-response in Hela cells when treated with the death-

inducing ligand TRAIL. The variability is a limiting factor that weakens the effect of clinical 

drugs and overall hardens the comprehension of the extrinsic apoptosis pathway. To describe 

the observed variability in the experimental data set, different tests with the ARROM2 model 

were executed to explore the contributions of different sources of variability in the signaling 

network. Three potential sources of heterogeneity were studied: intrinsic noise, extrinsic noise 

and parameter noise. The results from sections 3.1 and 3.2 were included, by replacing 

parameters [8, 10, 14] by zero, and also decreasing parameter k6 by 10-fold and increasing 

parameter k5 by 10-fold. These modifications were applied on the list of parameters in table 

A3.2.  
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Throughout this thesis, three properties of the model and data curves will be considered to 

qualify variability in cell response: 

 Starting delay: Each single cell trace presents a time-lag between drug 

administration and onset of response;  

 Kick-off slope: the derivative of cFP activation, which was identified in (Roux et 

al., 2015) as a distinguishing feature between phenotypes;  

 Steady-state value: after 10 hours, resistant cells approach a steady state in the 

amount of cFP. Here steady state does not refer to the end value of the simulated 

curve but instead to its value at the end of the experimental follow-up, at t=10 hours;  

4.1 Intrinsic noise: A computational approach with the Gillespie 

algorithm 

A simplified stochastic version of the ARROM2 model was implemented following the 

standards of the Gillespie algorithm (Gillespie, 1977). All the main branches of the 

deterministic model were kept, preserving TRAIL:R, TRAIL:R:FLIP, TRAIL:R:pC8, 

TRAIL:2R, TRAIL:2R:FLIP, TRAIL:2R:pC8, TRAIL:2R:pC8, TRAIL:3R:FLIP, 

TRAIL:3R:pC8, TRAIL:3R:2pC8, the C8 production and respective substrates cleavage. All 

the other intermediate complexes in the deterministic version were excluded. This reduction 

accelerated the system so that it could produce a reasonable amount of simulations in useful 

time.  

The first step, commonly ambiguous when performing stochastic tests with the Gillespie 

algorithm, was to decide for an adequate scaling parameter omega(Ω). Omega is the usual 

parameterization related to the system’s size, allowing one to inter-convert molecular 

concentrations (deterministic version) into number of molecules (stochastic version). Omega 

dimensions are given in volume units and it acts as a tuning parameter, scaling the system into 

a more deterministic or stochastic configuration. Increasing values of omega denote a rise in 

the associated volume of the system, defining a more “deterministic-like approach” with larger 

molecular numbers. Oppositely, decreasing values of omega reflect lower particle quantities in 

a smaller simulated volume and a higher stochasticity of the associated system (Gonze and 

Ouattara, 2014). No “a-priori” values exist for omega and different scales were tested to inspect 

the generated degree of variability around a referenced curve.  Figure 17 shows the output of 

the stochastic implementation of ARROM2, for different values of omega, altogether with the 

deterministic version of the selected curve.   
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C) 

 

Figure 17. Stochastic simulation of the ARROM2 model using the Gillespie algorithm.  

Intrinsic noise generates random perturbations in the reaction events and distorts the signal of the curves. A) 

Ω=0.01, B) Ω=0.03, C) Ω=0.05. Gray curves represent the experimental trajectories of the data set of HeLa-Cells 

treated with TRAIL at 50 ng/ml. The red curve is the deterministic representation of a reference curve. All the 

curves in orange tone define stochastic simulations of the referenced curve, obtained by implementing the 

stochastic algorithm originally proposed by Gillespie (Gillespie, 1977) . Fifty stochastic simulations are 

represented in each of the three plots A), B) and C).  

From figure 17, and for the tested omega values, two extreme scenarios can be contemplated. 

In figure 17-A, with Ω =0.01, the system is highly stochastic and the simulated curves shows 

delay-phases of variable duration, whereas for simulations with omega larger or equal to 0.05 

the landscape of the simulated curves is already too close to the reference curve and does not 

reproduce the heterogeneity profile of the data-set. For Ω=0.01 the range of slopes and delays 

due to intrinsic noise are much larger than those observed in experiments, while the 

intermediate value Ω=0.03 generates a reasonable variability, quite close to that observed in 

the data-set. Nevertheless, for all Ω values, the acquired window of steady state values is too 

narrow and does not seem to reflect the spread in the experimental trajectories. The conclusion 

is that intrinsic noise is not enough to explain cell heterogeneity in the extrinsic apoptosis 

pathway.    
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4.2 Extrinsic noise: a computational approach with initial 

condition variation. 

Extrinsic noise refers to differences in initial protein quantities in different cells. Here, the 

impact of this noise source was done by simulating one thousand median_cell trajectories with 

a different set of initial conditions and asserting if the resulting curves could reproduce the 

variability of the data-set. The initial condition variation was executed by choosing a random 

value for each protein inside an interval of 30% around the protein median_cell initial content 

(table A3.1). The value of 30% was chosen from previous results, where protein variability in 

the extrinsic apoptosis pathway has already been reported to be in a range of 30% (Spencer et 

al., 2009).  The vector of parameters in table A3.2 , after the modifications derived from section 

3, remained equal across the one thousand simulations. As confirmed in figure 18, the variation 

in initial conditions produced curves overlapping with the entire sample of cell trajectories, and 

reproducing all three curve properties (starting delay, kick-off slope and steady state values), 

setting extrinsic noise as a good candidate to explain the heterogeneity of the system. This 

outcome reinforces previous results suggesting that protein numbers control the heterogeneity 

of response in the extrinsic apoptosis pathway (Gaudet et al., 2012; Spencer et al., 2009).  
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B)                  

            

Figure 18. Extrinsic noise, simulation of median_cell with one thousand different initial conditions.  
The median_cell initial conditions were sampled one thousand times in an interval of A) 15%, B) 30% around the 

mean_initial_values and the resulting curves are represented (pallid blue) altogether with the experimental 

trajectories (gray) and the median_cell trajectory with no extrinsic noise (dark blue). Two plots are represented to 

show a trend for extrinsic noise when set to lower or higher values.  

 

 

 

 

 

 

 

 

 

cF
P

 m
o

le
cu

le
s 



93 
 

4.3 Parameter noise: a computational approach with variation in 

reaction rates 

Variation in the parameter rates has been addressed as a possible noise source in biological 

systems (Llamosi et al., 2016; Sherman et al., 2015). Here, by performing one thousand 

simulations with the median_cell parameters varied in a range of 15%, 30% and 45% around 

the initial values (Table A3.2 with the results from section 3 included) one can conclude that 

the resulting curves only match the dispersion of the data set for a parameter noise set around  

45% (figure 19-B). In this case, the curves reproduce the range of maximum slopes but their 

geometry in the stationary phase does not correspond to the observed steady-state dispersion 

in the experimental trajectories. Although parameter noise can also be a justification for 

variability in C8 activity levels (distribution of maximum slope values), the fact that the 

concept of parameter variability it’s not entirely realistic, the steady state distribution values 

are not entirely recovered and that variability in protein initial conditions already returned the 

correct profile for the cell population ended up in the exclusion of this noise source as a fully 

plausible explanation for cell decision in apoptosis.  
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B)  

 

C) 

 

Figure 19. Parameter noise simulation on the ARROM2 model.  

Heterogeneity caused by imposing variability on the parameter values of the median_cell. In gray, all the 

experimental trajectories of the data set. The median_cell parameter vector was sampled one thousand times in an 

A) 30% B) 45% C) 60% interval around its initial values and the resulting curves, represented in pink, cannot 

reproduce entirely the steady-state dispersion of the experimental trajectories. The median_cell initial trajectory 

without parameter variation is shown in red.  
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Chapter 5 

 
 

 

5 Fitting the entire cell population and 

searching for signatures in sensitive and 

resistant populations   

 

 

“Life is like riding a bicycle. To keep your balance you must keep moving” 

- Albert Einstein 

 

 

Understanding the determinants of cell resistance to TRAIL is a fundamental topic in recent 

studies (Roux et al., 2015; Spencer et al., 2009) and a goal in apoptosis modelling (Bertaux et 

al., 2014; Bouhaddou et al., 2018; Buchbinder et al., 2018). In this thesis, the employed strategy 

to decipher the origins of fractional killing followed an individual fitting of the ARROM2 

model to every single cell in the data set. The fitting to a total of four hundred and fourteen 

cells returned a distribution of parameter values that was inspected in order to extract the most 

relevant divergences specifically assigned to each phenotype. The list of 

parameters_initial_guess used for the fitting of the cell trajectories is available in table A3.2, 

where the results of section 3 were also included: FLIP dissociation rates [k8, k10, k14] were 

set to zero, parameter k5 multiplied by 10 and parameter k6 divided by 10. Following the result 

from section 4.2 and 4.3 , where both protein initial condition variation and parameter noise 
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contribute for the heterogeneity of model simulations, the methodology followed a cell-by-cell 

fitting allowing a varying set of initial conditions and a varying vector of parameters. Given 

the results of chapter 4 and the lower contribution of parameter noise in total generated 

heterogeneity, a restrained interval of 2-fold variation was set on the parameters_initial_guess 

in table A3.2, while a more significant interval of 10-fold variation was allowed for the initial 

condition amounts of the proteins {R, FLIP, pC8, Bid, FP, X2}. Under this framework 

ARROM2 captured the variability of cell responses over the ensemble of cell trajectories 

(figure 20). 

After fitting the entire cell population the distributions of fitted parameter values and initial 

conditions were examined and the most relevant differences were detected over the list of fitted 

initial conditions. These differences were then represented through a moving average approach, 

which plots the dependence of the kick-off slope on the initial conditions of the system, as 

represented in figure 21.  

By inspection of figure 21 one can observe different distributions in the group of resistant 

and sensitive cells.  In figure 21-A), B), C) expected trends were obtained with the sensitive 

group showing higher Receptor and pC8 protein levels but reduced amounts of FLIP. An 

unexpected result was nonetheless obtained for protein X2. This protein is an extra component 

of the network whose presence was deduced in section 2.4 and it was assumed to be a 

contributing element in anti-apoptotic reactions at the DISC. Higher concentrations of this 

protein should then relate to the resistant phenotype but in fact the opposite relationship was 

obtained (figure 21 -D). A hypothesis then rose that more complex dynamics could be linked 

to this protein and eventually contributing to distinguish between the sensitive and resistant 

phenotypes. An intuitive test was to check if X2 could be under direct control of C8 and if 

more pronounced C8 dynamics (sensitive group) could impact the absolute X2 numbers inside 

the cell. We then establish a hypothetical relationship between X2 and C8 with descriptive 

dynamics in the form of a Hill-positive (HP) or Hill-negative (HN) function. 

𝐻𝑃(𝐶8) =  𝛼   
𝐶8

𝛽+𝐶8
                                            (15)  

𝐻𝑁(𝐶8) =  𝛼   
𝛽

𝛽+𝐶8
                                            (16) 
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Cell #6 
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Cell #7 

 

Figure 20. Fitting ARROM2 to single cells requires protein number variability and small parameter 

variation to reproduce the cell population trajectories.  

The three fits assemble the possible type of curves faced by the algorithm when fitting the data set. The general 

quality of the fit of the model is optimal for curves in any of the three represented geometries. Cell#5 is described 

for a time frame of 600 minutes and is thus a resistant cell. Cell#6 and Cell#7 have shorter time lengths, 

corresponding to sensitive cells. Both cell#6, with a parabolic shape trajectory, and cell #5 and cell#7, with a 

sigmoidal trajectory, are well fitted by ARROM2 model. The fitting was performed with fminsearchbnd and the 

set of initial conditions in table A3.1 was allowed to vary one order of magnitude around the initial_guess_values. 

The parameter vector varied in an interval of 2-fold around the values in table A3.2.   

In (15) and (16) , where 𝛼 and 𝛽 are real numbers, a simplified representation of a positive 

and negative feedback interactions are given, respectively, from C8 to X2. These assumptions 

can validate if a direct or an indirect relationship between C8, a major pro-apoptotic protein, 

and X2, a suggested new element, could exist in the simulated system. To confirm or reject this 

hypothesis the X2 protein was replaced by both expressions in ARROM2 equations and, in 

each case, different alpha and beta values were simulated together with the list of parameters 

and initial conditions in table A3.1 and A3.2.  To verify the interactions (15) and (16) at the 

population level, the generated curve was simulated with varying initial conditions in a range 

of 30%, similar to the previous test in figure 18. For any values of 𝛼 and 𝛽 , X2 had no relevant 

contribution on the simulated heterogeneity of the cFP signal. Interactions of the form (15) and 

(16) were then discarded for X2.  

With the test failing for X2 we then evaluated the impact of the same interactions on 

protein X1. Considering a positive feedback input from C8 to X1, of the same form as in (15), 

an unexpected result was obtained. The dispersion of the simulated curve, with 30% variation 

on protein initial condition values, generated a window of heterogeneity on the cFP signal that 
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recovered the broad landscape of the experimental trajectories. This result can be confirmed in 

figure 22, for 𝛼 = 1000 and 𝛽 = 0.05 ∗ 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 (𝐶8[𝑡]). The value of 𝛼 refers to the initial 

amount of X1 set to 1000, as in table A3.1. On the other hand  𝛽 is a fraction of the maximum 

𝐶8[𝑡] value, computed from the original model ARROM2 without feedback, to reflect the 

dependency of the feedback strength on the absolute C8 values. In light of these results, a 

connection was then supposed to exist between the two mentioned proteins. A positive 

feedback of the form HP (C8) implies that, in the initial stages of apoptosis, low C8 levels lead 

to low receptor dissociation thus favoring DISC formation. With C8 increasing in concentration 

in the sensitive phenotype, receptor dissociation also increases, inhibiting DISC formation. 

Therefore, the role of X1 may be related to a fine-tuned regulation of C8 signaling, possibly 

amplifying the differences between initial C8 concentrations, to be reflected in a larger range 

of kick-off slopes, which are a main distinguishing property between phenotypes. Searching 

the literature for proteins playing similar tasks to the hypothesized X1 interactions a possible 

candidate was found to be Caspase-10 (C10). The experiments reported in (Horn et al., 2017) 

indicate interesting dynamics for C10, a protein that shares some properties with C8. Among 

other observations the authors found that: (i) C10 impairs DISC-mediated C8 activation and 

(ii) in the absence of C8, neither C10 nor FLIP can bind to the DISC. Thus protein C10 seems 

to be under direct influence of C8. Based on these features and the model simulations with X1 

= HP(C8), a reasonable hypothesis is that the unknown protein X1 may represent the 

contribution of C10 on the extrinsic apoptosis pathway and a proposed map of interactions is 

given in figure 23, where the described negative feedback loop was included into the receptor 

reaction network of the extrinsic apoptosis pathway.  
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A) 

 

 

B) 

 

C) 

 

D) 

 

Figure 21. Moving-average reveals trends on initial conditions that correlate with increase in C8 activity. 

Extrinsic noise actuates in all of the proteins of the system and different combinations may lead to a different 

phenotypic outcome. The C8 activity in the interval [120-180] corresponds to the largest fraction of fitted 

maximum derivative values in resistant cells (red line). The interval of C8 activity [200-260] represents the largest 

fraction of fitted maximum derivative values in sensitive cells (blue line). Each point in the vertical axis refers to 

the mean value found for the cells having the C8 activity indicated in the horizontal axis. A)-D) Initial conditions 

with distinct landscapes for increasing C8 activity in resistant vs. sensitive cells. A) Receptor distribution B) pC8 

distribution C) FLIP distribution D) X2 distribution.  
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A) 

 
B) 

 

Figure 22. A possible negative feedback loop between X1 and C8.   

Replacing X1 by expression (15) returns a population dynamics similar to the one obtained with ARROM2 model 

when simulated without any assumption for X1 (figure 18). A) The experimental median_cell trajectory is 

compared against cFP curves for increasing values of beta.  B) A 30% variation on protein initial condition values 

recovers a very good extent of the population dynamics with the assumed positive feedback interaction. 
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Figure 23. Inclusion of a negative feedback in the receptor reactions of the extrinsic apoptosis pathway.  

Novel interactions are colored in blue. Simplified notations were used for representation purposes: T stands for 

TRAIL, R for death receptors, F for FLIP, p for pC8, B for Bid, tB for tBid, FP for fluorescent reporter protein 

and cFP for cleaved fluorescence protein. Reaction rates of the forward and reverse reactions are indicated outside 

and inside brackets, respectively. C8 induces the activation of the protein X1, that we here assume to represent 

the role of C10, and C10 extracts receptors from the DISC complexes. C10 leads a trimeric complex into a dimeric 

form and, although not represented, C10 can also retrieve a receptor from the T:2R conformation and convert it 

into a monomeric form.  
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Chapter 6 

 
 

 

6  Discussion and perspectives 

 

 

“We are what we repeatedly do. Excellence, then, is not an act, but a habit” 

- Aristotle 

 

 

In this thesis, a large data set of HeLa cells treated with the death-inducing ligand TRAIL 

was analyzed in order to study the dynamical behavior of the proteins participating in the 

receptor-associated reactions of the extrinsic apoptosis pathway. The population of treated cells 

was described by a highly heterogeneous output fluorescent signal that was quantitatively 

translated into levels of active C8, an important pro-apoptotic agent whose activity is known 

to be correlated with the strength of the apoptotic signal. Relating the timing and activity of C8 

protein in each treated cell generated a previous separation criteria for resistant and sensitive 

cells, with sensitive cells lending into a region in space with higher C8 activity values and/or 

higher timing of maximal C8 activity (Roux et al., 2015).  Here, the strategy was to extend this 

concept by augmenting the description of the resistant and the sensitive phenotypes.  

To address these questions, an exhaustive inclusion of the underlying chemical reactions 

of the extrinsic apoptosis pathway was implemented and translated into a system of ODE’s to 

obtain a global picture of the intervening proteins acting upstream of C8 activation. The 
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implemented network reflected a local layer of reactions associated to the receptor 

compartment of the cell and intuitively the model was named ARROM (Apoptosis receptor 

reactions ODE model). The model represented new features of the apoptotic pathway that were 

generally simplified in other models, namely the correct receptor stoichiometry with multiple 

ligand-complexes combinations in the DISC structure before activation of C8. This elaborated 

version allowed for a more detailed analysis of the receptor-layer events and a more robust 

study of the signal variability of the data-set. In the work of (Roux et al., 2015), that variability 

was assessed in terms of the rate of C8 activation (k) and the time of maximum C8 activity (𝝉), 

which spanned tenfold and two to threefold, respectively, among individual C8 trajectories. In 

this thesis each cell-attained maximum C8 activity level, defined in (Roux et al., 2015) as a 

distinguishing feature between sensitive from resistant cells, was obtained directly from the 

maximum derivative of the fitted cFP(t) signal.  

To extract single cell features and later correlate them to one of the two phenotypes, the 

ARROM model was independently fitted to every single cell creating a high-dimensional 

matrix of initial conditions and parameter values, a strategy that differed from the usual 

approach of selecting a median-cell and fitting the model exclusively to that median-cell 

profile. This method allowed the obtained distributions of protein numbers and parameter 

values to be examined and led us to the conclusion that a too-high parameter variability was a 

possible sign of missing components in the considered network of reactions. Since the 

parameter variability was especially large in two specific nodes of the network a hypothesis 

emerged about the existence of two unknown proteins X1 and X2. Further tests confirmed that 

the adjustment of the ARROM model, redefined to include X1 and X2, decreased the fitted 

parameter variability among single-cells to acceptable levels, providing an evidence for the 

existence of proteins that were not yet described in the literature. The exact dynamics of these 

proteins are naturally unknown but some simple tests elucidated that a positive feedback 

interaction from C8 to X1 could define a regulatory mechanism through which cells regulate 

their levels of active C8 and avoid weak apoptotic signals, triggering apoptosis in a more 

efficient manner. For the protein X1, we considered its dynamics to relate to those of C10, a 

protein that was recently identified as an anti-apoptotic agent contributing importantly for 

apoptosis resistance (Horn et al., 2017). Further work would be to extend ARROM2 and 

explicitly model the dynamics of C10 and include the cooperative binding effects between C8 

and C10. These dynamics are studied in more detail in the publication that resulted from this 
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thesis (Gomes-Pereira et al., 2020). In any case, the most important message brought by X1 

and X2 is that agreement of ARROM1 with previous reaction rates in the literature required 

extra elements to be inserted in the modeled cascade of reactions and its inclusion allowed 

novel proteomic signatures to be established for the sensitive and resistant phenotypes. For a 

given treated cell to cross a biological threshold on C8 activity and become sensitive, the model 

simulations show that the cell should present considerable amounts of R, pC8, X1 and X2 

proteins and reduced amounts of FLIP, otherwise the cell resists the treatment.   

Interesting insights about FLIP and the interaction schemes in receptor clusters were also 

deduced from the ARROM simulations. For FLIP, a strong inhibitor of apoptosis, congruence 

between simulations and a previous result from (Roux et al., 2015), which correlated 

overexpression of FLIP with a decrease in C8 activity, imposed the FLIP dissociation rates 

from the DISC to be extremely low, supporting the hypothesis that FLIP is a blocking agent 

forbidding the attachment of other molecules to the DISC structures. This result is in line with 

the recent view of C8 being activated from a chain of interacting molecules that can be 

interrupted by the addition of FLIP (Hughes et al., 2016). As for the receptor interactions in 

the cell membrane, an old result mentioning an increase in apoptotic signal for higher receptor 

structures could only be reproduced if those clusters became more and more stable as they grew 

in number, a new result that may help to characterize and understand the death-receptor 

interactions inside these clusters. Specifically, the addition of extra receptors supports a rise in 

C8 signal if and only if the association and dissociation rates of the new complex increases and 

decreases, respectively, compared to the same rates of the complex with less attached receptors, 

which might indicate increased stability for higher-order receptor structures.   

In order to associate the heterogeneity of the data-set with biological noise sources 

described in the literature several tests were made. Intrinsic noise for instance, the noise related 

to the propensity of every chemical reaction, didn’t create sufficient variability to recover the 

dispersion of the signal output and was ruled out from the possible mechanisms through which 

cells vary their response and deviate their phenotype outcome. Alternatively, both extrinsic 

noise and parameter noise were capable of inducing sufficient perturbation on a random curve 

and recover entirely and partially, respectively, the profile of the whole data set. Simulations 

with extrinsic noise, often assumed as variability on protein initial quantities in distinct cells, 

reproduced several features including the dispersion in slope values and in final steady state 

levels. The parameter noise, an approach to model unknown global noise components, captured 
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the distribution of maximum slope values but failed to generate enough variability on steady 

state levels. Extrinsic noise then urged as a possible justification for cell fate decision, either to 

escape or enroll into apoptosis, although it is not clear if parameter noise can also participate 

up to some extent in this choice. As mentioned in previous studies of apoptosis, the 

heterogeneity of response of individual cells results from an interplay of multiple contributing 

factors (Gaudet et al., 2012; Spencer et al., 2009), and further ameliorations on the model could 

disentangle the extrinsic and parameter noise contributions and give a clearer justification of 

their contributing percentages on the total observed heterogeneity.  

The set of ODE equations, as contemplated on the ARROM model, presents advantages 

and disadvantages. One limitation of the model is that cell commitment into apoptosis is 

measured in terms of the maximum derivative value of the cFP signal in time, which results 

from the receptor-associated network of reactions. Consequently, the described propensity for 

cell-death refers to a C8-related threshold and not to the overall global propensity for cell-

death. Downstream of C8 activation, the full apoptotic pathway encompasses other restraining 

steps such as the MOMP threshold and those also contribute for the treatment outcome. The 

simplicity of adding more mass-action law rates into the ARROM2 model could compensate 

for this limitation and upgrade the model to more solid versions. The NF-kB survival pathway, 

which is known to be also induced by TRAIL was not included in the discussed ARROM 

versions. These survival pathways may modulate the C8 activity and its dynamics may be 

important to add in the future in order to provide a more complete representation of the 

underlying biology. Another known feature is the “memory” effect observed for cells after a 

first TRAIL treatment, in which a lag-period is later-on required for the cell population to 

respond equally to a second TRAIL treatment (Flusberg et al., 2013). In a future study these 

mechanisms could be studied and adequately included into ARROM2 in order to extract 

associated molecular factors and enrich our view of these events. Nonetheless, ARROM2 can 

be used as a robust tool to analyze potentially interesting experimental scenarios, such as co-

drugging treatments, and check for consequent impacts in C8 activity in terms of the dynamics 

of the already considered proteins.  Also, in line with the results of (Roux et al., 2015), the 

conclusions presented in this text can be extended into other cell lines other than HeLa-cells, 

such as H1993, ACHN, H2170 and H1703 which show similar C8-dynamics in time after 

TRAIL exposure. 
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The continued usage of quantitative approaches has already highlighted several features of 

the apoptosis network in the past and is an undeniable tool to keep deepening our understanding 

of how cells flee from the dead phenotype. A more robust comprehension of these processes 

could solidify existing clinical strategies and maybe recover the once-promising anti-cancer 

therapy using TRAIL agonists.  
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Chapter 7 

 
 

7 Appendix 
 

 

7.1 Appendix 1: ARROM1 model inputs 

TABLE A1.1. LIST OF AVERAGED NON-ZERO INITIAL CONDITION VALUES FOR ARROM1 AND 

ARROM2 MODEL SIMULATIONS. 

The values attributed to R, FLIP, pC8 and Bid were experimentally determined from western blots extracts.  

TRAIL quantity was extracted from the work of (Albeck et al., 2008). The fluorescent-reporter protein FP is 

known to be produced in excessive amounts compared to its homologous protein Bid and was assumed to exist 

in a double amount. 

List of variables with non-zero 

initial values  Number of Molecules 

TRAIL 1500 (50𝑛𝑔/𝑚𝑙) 

R 32000 

FLIP 10000 

pC8 150000 

Bid 2000000 

FP 4000000 
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TABLE A1.2. LIST OF ARROM1 MODEL REACTIONS AND CORRESPONDING PARAMETER VALUES.  

Some parameters were extracted from known references in the field of Apoptosis modeling. The unit 

“Mol” refers to molecules. 

Reactions 
Parameter 

values 
Units Reference 

    

Core Reactions    

TRAIL + R → TRAIL:R k1=5e-7 mol-1.s-1 (Szegezdi et al., 2012) 

TRAIL:R → TRAIL + R k2=3.81e-3 s-1 (Szegezdi et al., 2012) 

TRAIL:R + R → TRAIL:2R k3=1.92e-5* mol-1.s-1 (Szegezdi et al., 2012) 

TRAIL:2R → TRAIL:R + R k4=k2 s-1 (Szegezdi et al., 2012) 

TRAIL:2R + R → TRAIL:3R k5=k3 mol-1.s-1 (Szegezdi et al., 2012) 

TRAIL:3R → TRAIL:2R + R k6=k4 s-1 (Szegezdi et al., 2012) 

TRAIL:R + FLIP → TRAIL:R:FLIP k7=1e-6 mol-1.s-1 (Albeck et al., 2008) 

TRAIL:R:FLIP → TRAIL:R + FLIP k8=1e-3 s-1 (Albeck et al., 2008) 

TRAIL:2R: nFLIP: mpC8 + FLIP→  

TRAIL:2R:(n+1)FLIP:mpC8 

n=0,1; 

m=0,1; 

n+1+m=1,2; 

k9=k7 mol-1.s-1  

TRAIL:2R: nFLIP: mpC8 →  

TRAIL:2R:(n-1)FLIP:mpC8 + FLIP 

n=1,2;  

m=0,1;  

n+m-1=0,1; 

k10=k8 s-1  

TRAIL:2R:npC8:mFLIP + pC8→ 

TRAIL:2R:(n+1)pC8:mFLIP 

n=0,1; 

m=0,1; 

n+1+m=1,2; 

k11=k7 mol-1.s-1  
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TRAIL:2R:npC8:mFLIP →  

TRAIL:2R:(n-1)pC8:mFLIP + pC8 

n=1;  

m=0,1;  

n+m=1,2; 

k12=k8 s-1  

TRAIL:3R:nFLIP:mpC8 + FLIP → 

TRAIL:3R:(n+1)FLIP:mpC8 

n=0,1,2; 

m=0,1,2; 

n+1+m=1,2,3; 

k13=k7 mol-1.s-1  

TRAIL:3R:nFLIP:mpC8 → 

TRAIL:3R:(n-1)FLIP:mpC8 + FLIP 

n=0,1,2; 

m=0,1,2; 

n+m=1,2,3; 

k14=k8 s-1  

TRAIL:3R:npC8:mFLIP + pC8 → 

TRAIL:3R:(n+1)pC8:mFLIP 

n=0,1,2; 

m=0,1,2; 

n+1+m=1,2,3; 

k15=k7 mol-1.s-1  

TRAIL:3R:npC8:mFLIP → 

TRAIL:3R:(n-1)pC8:mFLIP + pC8 

n=1; 

m=0,1,2; 

n+m=1,2,3; 

k16=k8 s-1  

 

 

Activation of Caspase-8    

TRAIL:2R:2pC8 → 

TRAIL:2R + C8 

 

TRAIL:3R:2pC8 →  

TRAIL:3R + C8 

TRAIL:3R:FLIP:2pC8 →  

TRAIL:3R:FLIP + C8 

k17=1          s-1 (Albeck et al., 2008) 

 

 

Caspase-8 reactions    

C8 + Bid → C8:Bid 

C8 + FP  → C8:FP 
k18=1e-7 mol-1.s-1 (Albeck et al., 2008) 
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Caspase-8 substrate cleavage    

C8:Bid → C8 + tBid 

C8:FP  → C8 + cFP 
k19=1    s-1 (Albeck et al., 2008) 

 

 

 

Protein synthesis    

→ TRAIL 0 mol.s-1  

→ R k20=1e-4 mol.s-1  

→ pC8 k21=1e-4 mol.s-1  

→ FLIP ** k22=1e-2 mol.s-1  

→ Bid ** k23=1e-2 mol.s-1  

→ FP ** k32=1e-2 mol.s-1  

 

 

Protein degradation    

TRAIL →  k24=1e-7 s-1  

R →  k25=7.13e-6 s-1 (Bertaux et al., 2014) 

FLIP →  k26=3.9e-4 s-1 (Bertaux et al., 2014) 

pC8 →  k27=7.13e-6 s-1 (Bertaux et al., 2014) 

C8 → k28=7.13e-4 s-1  

Bid →  k29=7.13e-6 s-1 (Bertaux et al., 2014) 

tBid → k30=7.13e-6 s-1  

cFP → k31=1e-7 s-1  

*  Using the reaction rates available for DR5 receptors. The original values were given in units of M-1.s-1. A 

conversion to mol-1.s-1 was done using the scaling factor 5.8824e11 deduced from EARM1’s supplementary 

table s5 in (Albeck et al., 2008).   

** Following the same proportions as in (Bertaux et al., 2014), FLIP and Bid synthesis rate were set to a 

magnitude of 100-fold the synthesis rates of R and pC8. FP has a protein structure equivalent to Bid and as so its 

basal synthesis rate was set to an equal value.   
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7.2 Appendix 2: ARROM1 fit to the median_cell 

TABLE A2.1 : FULL LIST OF RELATIVE DEVIATIONS FOR THE PARAMETER SET IN THE ARROM1 

MODEL AFTER FITTING THE MEDIAN_CELL TRAJECTORY. 

Parameters with relative deviations higher than 5 ∗ 102 are highlighted in black boxes, lower than 102 

in white boxes and all the values in between in grey boxes. 

All parameters Initial Guess (i) 
k(i)  

after fitting 

Relative Deviation 

|𝐈𝐧𝐢𝐭𝐢𝐚𝐥 𝐠𝐮𝐞𝐬𝐬 [𝐢] –  𝐤[𝐢] |

𝐈𝐧𝐢𝐭𝐢𝐚𝐥 𝐠𝐮𝐞𝐬𝐬 [𝐢] 
 

k1 5 ∗ 10−7  1.3 ∗ 10−5 24.7 

k2 3.8 ∗ 10−3 1 2.64 ∗ 102 

k3 1.9 ∗ 10−5 4.3 ∗ 10−4 21.5 

k4 3.8 ∗ 10−3 3.7 9.7 ∗ 102 

k5 1.9 ∗ 10−5 7.1 ∗ 10−4 36.2 

k6 3.8 ∗ 10−3 1.5 3.9 ∗ 102 

k7 10−6 1.3 ∗ 10−4 1.2 ∗ 102 

 k8 10−3 0.2 2.3 ∗ 102 

k9 10−6 9 ∗ 10−5 87.6 

k10 10−3 3.4 ∗ 10−2 32.7 

k11 10−6 8.4 ∗ 10−5 82.5 

k12 10−3 5.1 ∗ 10−3 4.1 

k13 10−6 2.3 ∗ 10−4 2.3 ∗ 102 

k14 10−3 1.9 ∗ 10−2 18 

 k15  10−6 7.5 ∗ 10−6 6.5 

k16 10−3 1.4 1.4 ∗ 103 

k17 1 62 61 

k18 10−7 1.2 ∗ 10−5 3.19 ∗ 102 

k19 1 10−2 1 

k20 10−4 3.4 ∗ 10−2 3.3 ∗ 102 

k21 10−4 2.1 ∗ 10−2 2.1 ∗ 102 
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k22 10−2 6.5 ∗ 10−2 5.5 

k23 10−2 1.2 1.2 ∗ 102 

k24 10−7 8.6 ∗ 10−6 85 

k25 7.1 ∗ 10−6 5.7 ∗ 10−5 7 

k26 3.9 ∗ 10−4 5.2 ∗ 10−4 3.4 ∗ 10−1 

k27 7.1 ∗ 10−6 1.5 ∗ 10−4 20.6 

k28 7 ∗ 10−4 5.7 7.9 ∗ 102 

k29 7.1 ∗ 10−6 7.7 ∗ 10−5 9.9 

k30 7.1 ∗ 10−6 2.9 ∗ 10−4 40.1 

k31  10−7 3.1 ∗ 10−5 3.2 ∗ 102 

k32 10−2 2.1 ∗ 10−1 20.4 
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7.3 Appendix 3: ARROM2 fit to the median_cell 

TABLE A3.1 PROTEIN INITIAL CONDITION VALUES BEFORE AND AFTER FITTING THE MEDIAN_CELL 

TO THE ARROM2 MODEL.  

List of variables with 

non-zero initial values  

Number of Molecules 

(initial_guess) 

Number of Molecules 

(after_fitting) 

TRAIL 1500 (50𝑛𝑔/𝑚𝑙) 1500 

R 32000 9028 

FLIP 10000 11674 

pC8 150000 50533 

Bid 2000000 2265400 

FP 4000000 844770 

X1 1000 1000 

X2 1000 3050 

 

 

TABLE A3.2 PARAMETER LIST VECTOR BEFORE AND AFTER FITTING THE MEDIAN_CELL TO THE 

ARROM2 MODEL.  

The initial_guess was part of the input introduced into the fminsearchbnd algorithm to initiate the fit. 

All parameters Initial Guess 
ARROM2 fitting 

median_cell  

 k1 5 ∗ 10−7  7.14 ∗ 10−6 

k2 3.8 ∗ 10−3 4.3 ∗ 10−3 

k3  1.9 ∗ 10−5 2.38 ∗ 10−5 

k4 3.8 ∗ 10−3 4.5 ∗ 10−3 

k5 1.9 ∗ 10−5 1.46 ∗ 10−5 

k6 3.8 ∗ 10−3 9.8 ∗ 10−3 

k7 10−6 7.14 ∗ 10−6 
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k8 10−3 5.12 ∗ 10−4 

k9 10−6 7.14 ∗ 10−6 

k10  10−3 10−3 

k11 10−6 7.14 ∗ 10−6 

k12 10−3 10−3 

k13 10−6 7.14 ∗ 10−6 

k14 10−3 1.2 ∗ 10−3 

 k15 10−6 7.14 ∗ 10−6 

k16 10−3 2 ∗ 10−3 

k17 1 0.68 

k18 10−7 7.14 ∗ 10−6 

k19 1 0.92 

k20 10−4 1.24 ∗ 10−4 

k21 10−4 1.12 ∗ 10−4 

k22 10−2 9.5 ∗ 10−3 

k23 10−2 1.48 ∗ 10−2 

k24 10−7 7.14 ∗ 10−6 

k25 7.1 ∗ 10−6 7.14 ∗ 10−6 

k26 3.9 ∗ 10−4 1.95 ∗ 10−4 

k27 7.1 ∗ 10−6 7.14 ∗ 10−6 

k28 7 ∗ 10−4 1.7 ∗ 10−3 

k29 7.1 ∗ 10−6 7.14 ∗ 10−6 

k30 7.1 ∗ 10−6 7.18 ∗ 10−6 

k31  10−7 7.14 ∗ 10−6 

k32 10−2 1.17 ∗ 10−2 
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7.4 Appendix 4 : ARROM1 model equations 

All equations were written using mass-action rate laws. The models were implemented and 

simulated in Matlab (2017), using the built-in solver of ordinary differential equations ode15s. 

Parameter estimation was performed using the command fminsearchbnd.  

𝑑 𝑇𝑅𝐴𝐼𝐿(𝑡)

𝑑𝑡
    =  − 𝑘1 ∗ 𝑇𝑅𝐴𝐼𝐿(𝑡) ∗ 𝑅(𝑡) + 𝑘2 ∗ 𝑇𝑅𝐴𝐼𝐿: 𝑅(𝑡) − 𝑘24 ∗ 𝑇𝑅𝐴𝐼𝐿(𝑡)               (13) 

 

𝑑 𝑅(𝑡)

𝑑𝑡
    =  𝑘20 +  𝑘1 ∗ 𝑇𝑅𝐴𝐼𝐿(𝑡) ∗ 𝑅(𝑡) − 𝑘4 ∗ 𝑇𝑅𝐴𝐼𝐿: 2𝑅(𝑡) − 𝑘5 ∗ 𝑅(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 2𝑅(𝑡)  

+ 𝑘6 ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅(𝑡) + 𝑘2 ∗ 𝑇𝑅𝐴𝐼𝐿: 𝑅(𝑡) − 𝑘3 ∗ 𝑅(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 𝑅(𝑡) 

−𝑘25 ∗ 𝑅(𝑡)                                                                                                                  (14) 

 

𝑑 𝑇𝑅𝐴𝐼𝐿:𝑅(𝑡)

𝑑𝑡
    =   𝑘1 ∗ 𝑇𝑅𝐴𝐼𝐿(𝑡) ∗ 𝑅(𝑡) + 𝑘4 ∗ 𝑇𝑅𝐴𝐼𝐿: 2𝑅(𝑡) − 𝑘2 ∗ 𝑇𝑅𝐴𝐼𝐿: 𝑅(𝑡)  

−𝑘3 ∗ 𝑇𝑅𝐴𝐼𝐿: 𝑅(𝑡) ∗ 𝑅(𝑡) − 𝑘7 ∗ 𝑇𝑅𝐴𝐼𝐿: 𝑅(𝑡) ∗ 𝐹𝐿𝐼𝑃(𝑡) 

+𝑘8 ∗ 𝑇𝑅𝐴𝐼𝐿: 𝑅: 𝐹𝐿𝐼𝑃(𝑡)                                                                   (15) 

 

𝑑 𝑇𝑅𝐴𝐼𝐿:2𝑅(𝑡)

𝑑𝑡
    =   −𝑘4 ∗ 𝑇𝑅𝐴𝐼𝐿: 2𝑅(𝑡) − 𝑘5 ∗ 𝑇𝑅𝐴𝐼𝐿: 2𝑅(𝑡) ∗ 𝑅(𝑡) 

−𝑘9 ∗ 𝐹𝐿𝐼𝑃(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 2𝑅(𝑡) − 𝑘11 ∗ 𝑝𝐶8(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 2𝑅(𝑡) 

+𝑘17 ∗ 𝑇𝑅𝐴𝐼𝐿: 2𝑅: 2𝑝𝐶8(𝑡) +  𝑘10 ∗ 𝑇𝑅𝐴𝐼𝐿: 2𝑅: 𝐹𝐿𝐼𝑃(𝑡) 

+𝑘12 ∗ 𝑇𝑅𝐴𝐼𝐿: 2𝑅: 𝑝𝐶8(𝑡) +  𝑘6 ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅(𝑡) 

+ 𝑘3 ∗ 𝑅(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 𝑅(𝑡)                                                                (16) 
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𝑑 𝑇𝑅𝐴𝐼𝐿:3𝑅(𝑡)

𝑑𝑡
    =   −𝑘5 ∗ 𝑅(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 2𝑅(𝑡) − 𝑘6 ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅(𝑡) 

−𝑘13 ∗ 𝐹𝐿𝐼𝑃(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅(𝑡) − 𝑘15 ∗ 𝑝𝐶8(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅(𝑡) 

−𝑘17 ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 2𝑝𝐶8(𝑡) + 𝑘14 ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 𝐹𝐿𝐼𝑃(𝑡) 

−𝑘16 ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 𝑝𝐶8(𝑡)                                                                 (17) 

 

 

𝑑 𝐹𝐿𝐼𝑃(𝑡)

𝑑𝑡
    =   𝑘22 − 𝑘9 ∗ 𝐹𝐿𝐼𝑃(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 2𝑅(𝑡) + 𝑘10 ∗ 𝑇𝑅𝐴𝐼𝐿: 2𝑅: 2𝐹𝐿𝐼𝑃(𝑡) 

+𝑘10 ∗ 𝑇𝑅𝐴𝐼𝐿: 2𝑅: 𝐹𝐿𝐼𝑃(𝑡) − 𝑘9 ∗ 𝐹𝐿𝐼𝑃(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 2𝑅: 𝐹𝐿𝐼𝑃(𝑡) 

−𝑘13 ∗ 𝐹𝐿𝐼𝑃(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅(𝑡) + 𝑘14 ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 2𝐹𝐿𝐼𝑃(𝑡)         

−𝑘13 ∗ 𝐹𝐿𝐼𝑃(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 2𝐹𝐿𝐼𝑃(𝑡) + 𝑘14 ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 3𝐹𝐿𝐼𝑃(𝑡)  

+𝑘14 ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 𝐹𝐿𝐼𝑃 − 𝑘13 ∗ 𝐹𝐿𝐼𝑃(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 𝐹𝐿𝐼𝑃(𝑡) 

−𝑘7 ∗ 𝐹𝐿𝐼𝑃(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 𝑅(𝑡) + 𝑘8 ∗ 𝑇𝑅𝐴𝐼𝐿: 𝑅: 𝐹𝐿𝐼𝑃(𝑡) − 𝑘26 ∗ 𝐹𝐿𝐼𝑃(𝑡) 

+𝑘10 ∗ 𝑇𝑅𝐴𝐼𝐿: 2𝑅: 𝐹𝐿𝐼𝑃: 𝑝𝐶8(𝑡) + 𝑘14 ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 2𝐹𝐿𝐼𝑃: 𝑝𝐶8(𝑡)      (18) 

 

𝑑 𝑇𝑅𝐴𝐼𝐿:𝑅:𝐹𝐿𝐼𝑃(𝑡)

𝑑𝑡
    =   𝑘7 ∗ 𝐹𝐿𝐼𝑃(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 𝑅(𝑡) − 𝑘8 ∗ 𝑇𝑅𝐴𝐼𝐿: 𝑅: 𝐹𝐿𝐼𝑃(𝑡)            (19) 

 

𝑑 𝑇𝑅𝐴𝐼𝐿:2𝑅:𝐹𝐿𝐼𝑃(𝑡)

𝑑𝑡
    =   𝑘9 ∗ 𝐹𝐿𝐼𝑃(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 2𝑅(𝑡) + 𝑘10 ∗ 𝑇𝑅𝐴𝐼𝐿: 2𝑅: 2𝐹𝐿𝐼𝑃(𝑡) 

−𝑘10 ∗ 𝐹𝐿𝐼𝑃(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 2𝑅: 𝐹𝐿𝐼𝑃(𝑡) 

−𝑘11 ∗ 𝑝𝐶8(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 2𝑅: 𝐹𝐿𝐼𝑃(𝑡) 

+𝑘12 ∗ 𝑇𝑅𝐴𝐼𝐿: 2𝑅: 𝐹𝐿𝐼𝑃: 𝑝𝐶8(𝑡)                                          (20) 

 

𝑑 𝑇𝑅𝐴𝐼𝐿:2𝑅:2𝐹𝐿𝐼𝑃(𝑡)

𝑑𝑡
    =  −𝑘10 ∗ 𝑇𝑅𝐴𝐼𝐿: 2𝑅: 2𝐹𝐿𝐼𝑃(𝑡) 

+𝑘9 ∗ 𝐹𝐿𝐼𝑃(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 2𝑅: 𝐹𝐿𝐼𝑃(𝑡)                                 (21) 
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𝑑 𝑝𝐶8(𝑡)

𝑑𝑡
    =  𝑘21 − 𝑘11 ∗ 𝑝𝐶8(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 2𝑅(𝑡) − 𝑘11 ∗ 𝑝𝐶8(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 2𝑅: 𝐹𝐿𝐼𝑃(𝑡) 

+𝑘12 ∗ 𝑇𝑅𝐴𝐼𝐿: 2𝑅: 𝐹𝐿𝐼𝑃: 𝑝𝐶8(𝑡) + 𝑘12 ∗ 𝑇𝑅𝐴𝐼𝐿: 2𝑅: 𝑝𝐶8(𝑡) 

−𝑘11 ∗ 𝑇𝑅𝐴𝐼𝐿: 2𝑅: 𝑝𝐶8(𝑡) ∗ 𝑝𝐶8(𝑡) − 𝑘15 ∗ 𝑝𝐶8(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅(𝑡) 

−𝑘15 ∗ 𝑝𝐶8(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 2𝐹𝐿𝐼𝑃(𝑡) + 𝑘16 ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 2𝐹𝐿𝐼𝑃: 𝑝𝐶8(𝑡) 

−𝑘15 ∗ 𝑝𝐶8(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 𝐹𝐿𝐼𝑃(𝑡) + 𝑘16 ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 𝐹𝐿𝐼𝑃: 𝑝𝐶8(𝑡) 

−𝑘15 ∗ 𝑝𝐶8(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 𝐹𝐿𝐼𝑃: 𝑝𝐶8(𝑡) + 𝑘16 ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 𝑝𝐶8(𝑡) 

−𝑘15 ∗ 𝑝𝐶8(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 𝑝𝐶8(𝑡) − 𝑘27 ∗ 𝑝𝐶8(𝑡)                                   (22) 

 

𝑑 𝑇𝑅𝐴𝐼𝐿:2𝑅:𝐹𝐿𝐼𝑃:𝑝𝐶8(𝑡)

𝑑𝑡
    =  𝑘11 ∗ 𝑝𝐶8(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 2𝑅: 𝐹𝐿𝐼𝑃(𝑡) 

−𝑘12 ∗ 𝑇𝑅𝐴𝐼𝐿: 2𝑅: 𝐹𝐿𝐼𝑃: 𝑝𝐶8(𝑡) 

−𝑘10 ∗ 𝑇𝑅𝐴𝐼𝐿: 2𝑅: 𝐹𝐿𝐼𝑃: 𝑝𝐶8(𝑡)                                   (23) 

 

𝑑 𝑇𝑅𝐴𝐼𝐿:3𝑅:𝐹𝐿𝐼𝑃(𝑡)

𝑑𝑡
    =  𝑘13 ∗ 𝐹𝐿𝐼𝑃(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅(𝑡) + 𝑘14 ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 2𝐹𝐿𝐼𝑃(𝑡) 

−𝑘14𝑇𝑅𝐴𝐼𝐿: 3𝑅: 𝐹𝐿𝐼𝑃(𝑡) 

−𝑘13 ∗ 𝐹𝐿𝐼𝑃(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 𝐹𝐿𝐼𝑃(𝑡) 

−𝑘15 ∗ 𝑝𝐶8(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 𝐹𝐿𝐼𝑃(𝑡) 

+𝑘17 ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 𝐹𝐿𝐼𝑃: 2𝑝𝐶8(𝑡) 

+𝑘16 ∗ 𝑝𝐶8(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 𝐹𝐿𝐼𝑃: 𝑝𝐶8(𝑡)                          (24) 
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𝑑 𝑇𝑅𝐴𝐼𝐿:3𝑅:2𝐹𝐿𝐼𝑃(𝑡)

𝑑𝑡
    =  −𝑘14 ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 2𝐹𝐿𝐼𝑃(𝑡) 

−𝑘13 ∗ 𝐹𝐿𝐼𝑃(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 2𝐹𝐿𝐼𝑃(𝑡) 

−𝑘15 ∗ 𝑝𝐶8(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 2𝐹𝐿𝐼𝑃(𝑡) 

+𝑘16 ∗ 𝐹𝐿𝐼𝑃(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 2𝐹𝐿𝐼𝑃: 𝑝𝐶8(𝑡) 

+𝑘14 ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 3𝐹𝐿𝐼𝑃(𝑡) 

+𝑘13 ∗ 𝐹𝐿𝐼𝑃(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 𝐹𝐿𝐼𝑃(𝑡)                               (25) 

 

𝑑 𝑇𝑅𝐴𝐼𝐿:3𝑅:3𝐹𝐿𝐼𝑃(𝑡)

𝑑𝑡
    =  𝑘13 ∗ 𝐹𝐿𝐼𝑃(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 2𝐹𝐿𝐼𝑃(𝑡) 

−𝑘14 ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 3𝐹𝐿𝐼𝑃(𝑡)                                              (26) 

 

𝑑 𝑇𝑅𝐴𝐼𝐿:3𝑅:2𝐹𝐿𝐼𝑃:𝑝𝐶8(𝑡)

𝑑𝑡
    =  𝑘15 ∗ 𝑝𝐶8(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 2𝐹𝐿𝐼𝑃(𝑡) 

−𝑘16 ∗ 𝑝𝐶8(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 2𝐹𝐿𝐼𝑃: 𝑝𝐶8(𝑡) 

−𝑘14 ∗ 𝑝𝐶8(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 2𝐹𝐿𝐼𝑃: 𝑝𝐶8(𝑡)                (27) 

 

𝑑 𝑇𝑅𝐴𝐼𝐿:2𝑅:𝑝𝐶8(𝑡)

𝑑𝑡
    = −𝑘17 ∗ 𝑇𝑅𝐴𝐼𝐿: 2𝑅: 2𝑝𝐶8(𝑡) + 𝑘11 ∗ 𝑝𝐶8(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 2𝑅: 𝑝𝐶8(𝑡)                                                                                                       

(28) 

 

𝑑 𝑇𝑅𝐴𝐼𝐿:2𝑅:2𝑝𝐶8

𝑑𝑡
 = −𝑘17 ∗ 𝑇𝑅𝐴𝐼𝐿: 2R:2𝑝𝐶8(𝑡) + 𝑘11 ∗ 𝑇𝑅𝐴𝐼𝐿: 2𝑅: 𝑝𝐶8(𝑡) ∗ 𝑝𝐶8(𝑡)  

(29) 

𝑑 𝑇𝑅𝐴𝐼𝐿:3𝑅:𝑝𝐶8(𝑡)

𝑑𝑡
    = 𝑘15 ∗ 𝑝𝐶8(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅(𝑡) − 𝑘16 ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 𝑝𝐶8(𝑡) 

−𝑘15 ∗ 𝑝𝐶8(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 𝑝𝐶8(𝑡) 

−𝑘13 ∗ 𝐹𝐿𝐼𝑃(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 𝑝𝐶8(𝑡)                                        (30) 
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𝑑 𝑇𝑅𝐴𝐼𝐿:3𝑅:2𝑝𝐶8(𝑡)

𝑑𝑡
    = −𝑘17 ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 2𝑝𝐶8(𝑡) 

+𝑘15 ∗ 𝑝𝐶8(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 𝑝𝐶8(𝑡)                                      (31) 

 

𝑑 𝑇𝑅𝐴𝐼𝐿:3𝑅:𝐹𝐿𝐼𝑃:𝑝𝐶8(𝑡)

𝑑𝑡
    = 𝑘15 ∗ 𝑝𝐶8(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 𝐹𝐿𝐼𝑃(𝑡) 

−𝑘16 ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 𝐹𝐿𝐼𝑃: 𝑝𝐶8(𝑡) 

−𝑘15 ∗ 𝑝𝐶8(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 𝐹𝐿𝐼𝑃: 𝑝𝐶8(𝑡) 

+𝑘14 ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 2𝐹𝐿𝐼𝑃: 𝑝𝐶8(𝑡) 

+𝑘13 ∗ 𝐹𝐿𝐼𝑃(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 𝑝𝐶8(𝑡)                            (32) 

 

 

𝑑 𝑇𝑅𝐴𝐼𝐿:3𝑅:𝐹𝐿𝐼𝑃:2𝑝𝐶8(𝑡)

𝑑𝑡
    = −𝑘17 ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 𝐹𝐿𝐼𝑃: 2𝑝𝐶8(𝑡) 

+𝑘15 ∗ 𝑝𝐶8(𝑡) ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 𝐹𝐿𝐼𝑃: 𝑝𝐶8(𝑡) 

+𝑘13 ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 2𝑝𝐶8(𝑡)                                            (33) 

 

𝑑 𝐶8(𝑡)

𝑑𝑡
    = −𝑘18 ∗ 𝐶8(𝑡) ∗ 𝐵𝑖𝑑(𝑡) + 𝑘19 ∗ 𝐶8: 𝐵𝑖𝑑(𝑡) − 𝑘18 ∗ 𝐶8(𝑡) ∗ 𝐹𝑃(𝑡)            

 +𝑘19 ∗ 𝐶8(𝑡) ∗ 𝐹𝑃(𝑡) + 𝑘19 ∗ 𝐶8: 𝐵𝑖𝑑(𝑡) + 𝑘17 ∗ 𝑇𝑅𝐴𝐼𝐿: 2𝑅: 2𝑝𝐶8(𝑡)    

+𝑘17 ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 2𝑝𝐶8(𝑡) + 𝑘17 ∗ 𝑇𝑅𝐴𝐼𝐿: 3𝑅: 𝐹𝐿𝐼𝑃: 2𝑝𝐶8(𝑡)          

−𝑘28 ∗ 𝐶8(𝑡)                                                                                                              (34)                          

 

𝑑 𝐵𝑖𝑑(𝑡)

𝑑𝑡
    = 𝑘23 − 𝑘18 ∗ 𝐶8(𝑡) ∗ 𝐵𝑖𝑑(𝑡) − 𝑘29 ∗ 𝐵𝑖𝑑(𝑡)                                                     (35) 
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𝑑 𝐶8:𝐵𝑖𝑑(𝑡)

𝑑𝑡
    = 𝑘18 ∗ 𝐶8(𝑡) ∗ 𝐵𝑖𝑑(𝑡) − 𝑘19 ∗ 𝐶8: 𝐵𝑖𝑑(𝑡)                                                     (36) 

 

𝑑 𝑡𝐵𝑖𝑑(𝑡)

𝑑𝑡
    = 𝑘19 ∗ 𝐶8: 𝐵𝑖𝑑(𝑡) − 𝑘30 ∗ 𝑡𝐵𝑖𝑑(𝑡)                                                                      (37) 

 

𝑑 𝐹𝑃(𝑡)

𝑑𝑡
    = 𝑘32 − 𝑘18 ∗ 𝐶8(𝑡) ∗ 𝐹𝑃(𝑡)                                                                                      (38) 

 

𝑑 𝐶8:𝐹𝑃(𝑡)

𝑑𝑡
    = 𝑘18 ∗ 𝐶8(𝑡) ∗ 𝐹𝑃(𝑡) − 𝑘19 ∗ 𝐶8: 𝐹𝑃(𝑡)                                                         (39) 

 

𝑑 𝑐𝐹𝑃(𝑡)

𝑑𝑡
    = 𝑘19 ∗ 𝐶8: 𝐹𝑃(𝑡) − 𝑘31 ∗ 𝑐𝐹𝑃(𝑡)                                                                          (40) 
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7.5 Appendix 5: A new method to quantify parameter variability 

among different parameter populations 

One of the problems studied in this thesis is that of using a mathematical model of the 

apoptosis pathway to distinguish between two groups of cells, resistant and sensitive. In the 

case of single-cell data, several approaches may be considered to model parameter estimation. 

In a direct approach, each single cell trace is first separately fitted to the model, to obtain one 

parameter set for each cell; in a second step, the distribution of parameters can then be studied. 

To take into account both population and individual effects, (Llamosi et al., 2016) proposed a 

new mixed-effect population-based parameter estimation, where all cell traces are fitted to 

obtain the parameters of a single lognormal distribution; the individual cell parameters are then 

characterized by this distribution. However, here the entire cell sample is divided into 

subpopulations exhibiting distinct physiological responses, and a slightly different question is 

considered: that of finding the global aspects distinguishing between two separate 

subpopulations within the same population. To address this question, first, the direct approach 

will be used to fit each single trace and obtain one set of parameters for each cell. Second, the 

parameter distributions for each subpopulation will be compared to extract distinguishing 

features. In this method, two distributions are said to be “different”, in a generic view, in three 

standard scenarios.  

 

o Different mean_values and different standard_deviations                             (A7.1) 

o Different mean_values and same standard_deviations                                  (A7.2) 

o Same mean_values and different standard_deviations                                  (A7.3) 

In these three scenarios one can seek for parameter differences, independently of the form 

of the corresponding distributions.  The first step is to calculate the mean and standard deviation 

(std) of the parameters in each of the fitted populations. Afterwards, these mean and std 

quantities have to be normalized so that the set of parameters can be compared, regardless of 

their differences in magnitudes and unit dimensions. The normalization step is achieved simply 

by dividing the mean and std of every parameter by the corresponding norm. This procedure is 

done according to expressions (41) and (42), with each parameter vector entry designated by “ 

par_i ” .  
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𝑘𝑚𝑒𝑎𝑛_𝑛𝑜𝑟𝑚_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_1 =   
𝑘𝑚𝑒𝑎𝑛_𝑝𝑎𝑟_𝑖,𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_1

√∑ (𝑘𝑚𝑒𝑎𝑛_𝑝𝑎𝑟_𝑖,𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑗)
2𝑛

𝑗=1

                   (41) 

𝑘𝑠𝑡𝑑_𝑛𝑜𝑟𝑚_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_1 =   
𝑘𝑠𝑡𝑑_𝑝𝑎𝑟_𝑖,𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_1

√∑ (𝑘𝑠𝑡𝑑_𝑝𝑎𝑟_𝑖,𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑗)
2𝑛

𝑗=1

                      (42) 

The index “ j ”, in both expressions is an integer number representing a given sampled 

subpopulation and “ n ” is the total number of fitted subpopulations. The denominator in those 

expressions is thus the Euclidian norm of the vector of means or std_values among the 

subpopulations. Both (41) and (42) are then repeated for all subpopulations j such that a 

normalized mean and std value exists for every fitted subpopulation.  

Once the first-order moments (mean and std) are normalized, a reference point is 

established. Supposing that the parameters have exactly the same fitted values across all the 

sampled subpopulations, expressions (41) and (42) equal 
1

√𝑛
, and the reference point becomes 

(
1

√𝑛
, … ,

1

√𝑛
) in 𝑅𝑛 space, with n the number of subpopulations. Treating separately the mean 

and the std normalized space, the distance d between the reference point and each normalized 

value is determined by the usual Euclidian distance.   

𝑑𝑚𝑒𝑎𝑛_𝑛𝑜𝑟𝑚 = ‖(
1

√𝑛
, … ,

1

√𝑛
) − (𝑘𝑚𝑒𝑎𝑛_𝑛𝑜𝑟𝑚_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_1, … , 𝑘𝑚𝑒𝑎𝑛_𝑛𝑜𝑟𝑚_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑛)‖ 

(43) 

𝑑𝑠𝑡𝑑_𝑛𝑜𝑟𝑚 = ‖(
1

√𝑛
, … ,

1

√𝑛
) − (𝑘𝑠𝑡𝑑_𝑛𝑜𝑟𝑚_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_1, … , 𝑘𝑠𝑡𝑑_𝑛𝑜𝑟𝑚_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑛)‖ 

(44) 

Both expressions (43) and (44) are then to be applied to all the parameter vector entries so 

that a list of distances can be obtained for the whole vector.  In this situation an ordered list can 

be produced, from the furthest to the closest parameter distances relative to the reference point. 

For 𝑛 = 2  or 𝑛 = 3, the normalized first-order moments can be represented on the positive 

quadrant of an orthogonal axis of dimension n, through circles centered on the reference point 
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and with a radius of 𝑑𝑚𝑒𝑎𝑛_𝑛𝑜𝑟𝑚 or 𝑑𝑠𝑡𝑑_𝑛𝑜𝑟𝑚 in the normalized mean and the std space, 

respectively [see figure A.1) and A.2) ].  

The final step is to use the already ordered distance 𝑑𝑚𝑒𝑎𝑛_𝑛𝑜𝑟𝑚 and 𝑑𝑠𝑡𝑑_𝑛𝑜𝑟𝑚 to define 

the groups A7.1 , A7.2 and A7.3. The first group A7.1,  contains the parameters with the highest 

distances in both 𝑑𝑚𝑒𝑎𝑛_𝑛𝑜𝑟𝑚 and 𝑑𝑠𝑡𝑑_𝑛𝑜𝑟𝑚. The second group A7.2, contains the parameters 

with the highest 𝑑𝑚𝑒𝑎𝑛_𝑛𝑜𝑟𝑚 and lowest 𝑑𝑠𝑡𝑑_𝑛𝑜𝑟𝑚. Finally, the group A7.3, contains the 

parameters which appear in the lowest 𝑑𝑚𝑒𝑎𝑛_𝑛𝑜𝑟𝑚 and highest 𝑑𝑠𝑡𝑑_𝑛𝑜𝑟𝑚 entries. Defining the 

low_value_list and the high_value_list is not trivial. Once the 𝑑𝑚𝑒𝑎𝑛_𝑛𝑜𝑟𝑚 and 𝑑𝑠𝑡𝑑_𝑛𝑜𝑟𝑚 lists 

are organized, in increasing or decreasing fashion, both lists have a length equal to the total 

number of parameters. Choosing the first and the last  ceil[0.3*number_of_parameters] 

(high_30%_candidates and low_30%_candidates) entries of those lists seems to return a 

correct prediction for this algorithm, for models with number_of_parameters >10, as in all the 

model versions in this thesis.     

  

Example:  

Application of the methodology for identification of distinguishing 

parameters, among the populations of sensitive and resistant cells, fitted by the 

ARROM1 model in section 2.5 

1) Population = [sensitive cells ; resistant cells]   →  𝑛 = 2 

2) 𝑘𝑚𝑒𝑎𝑛_𝑛𝑜𝑟𝑚_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_1 =   
𝑘𝑚𝑒𝑎𝑛_𝑝𝑎𝑟_𝑖,𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_1

√∑ (𝑘𝑚𝑒𝑎𝑛_𝑝𝑎𝑟_𝑖,𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑗)
22

𝑗=1

 

𝑘𝑚𝑒𝑎𝑛_𝑛𝑜𝑟𝑚_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_2 =   
𝑘𝑚𝑒𝑎𝑛_𝑝𝑎𝑟_𝑖,𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_2

√∑ (𝑘𝑚𝑒𝑎𝑛_𝑝𝑎𝑟_𝑖,𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑗)
22

𝑗=1

 

𝑘𝑠𝑡𝑑_𝑛𝑜𝑟𝑚_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_1 =   
𝑘𝑠𝑡𝑑_𝑝𝑎𝑟_𝑖,𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_1

√∑ (𝑘𝑠𝑡𝑑_𝑝𝑎𝑟_𝑖,𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑗)
22

𝑗=1
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𝑘𝑠𝑡𝑑_𝑛𝑜𝑟𝑚_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_2 =   
𝑘𝑠𝑡𝑑_𝑝𝑎𝑟_𝑖,𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_2

√∑ (𝑘𝑠𝑡𝑑_𝑝𝑎𝑟_𝑖,𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑗)
22

𝑗=1

 

 

3) Number_of_parameters= 32 

Reference point = (
1

√2
,

1

√2
) 

4) Obtain 𝑑𝑚𝑒𝑎𝑛_𝑛𝑜𝑟𝑚 and 𝑑𝑠𝑡𝑑_𝑛𝑜𝑟𝑚 for every par={1,…,32}: 

𝑑𝑚𝑒𝑎𝑛_𝑛𝑜𝑟𝑚 = ‖(
1

√2
,

1

√2
) − (𝑘𝑚𝑒𝑎𝑛_𝑛𝑜𝑟𝑚_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_1, 𝑘𝑚𝑒𝑎𝑛_𝑛𝑜𝑟𝑚_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_2)‖ 

𝑑𝑠𝑡𝑑_𝑛𝑜𝑟𝑚 = ‖(
1

√2
,

1

√2
) − (𝑘𝑠𝑡𝑑_𝑛𝑜𝑟𝑚_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_1, 𝑘𝑠𝑡𝑑_𝑛𝑜𝑟𝑚_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_2)‖ 

5) Organize 𝑑𝑚𝑒𝑎𝑛_𝑛𝑜𝑟𝑚 and 𝑑𝑠𝑡𝑑_𝑛𝑜𝑟𝑚 in ascending order, from the lowest valued distances 

to the highest valued distances. 

6) Define low_30%_value_list and high_30%_value_list as the first and the last 10 entries of 

each sorted  𝑑𝑚𝑒𝑎𝑛_𝑛𝑜𝑟𝑚 and 𝑑𝑠𝑡𝑑_𝑛𝑜𝑟𝑚 lists, in ascending order (10 entries = ceil [ 0.3 * 

32] ).  

7) Represent the normalized mean_parameter_space and the normalized 

std_parameter_space as proposed in the text [figure A.1) and A.2)] 

8) With the low_30%_value_list and high_30%_value_list construct the groups A7.1, A7.2 

and A7.3.  

A7.1 = {high_30%_value_list_mean} ∩ {high_30%_value_list_std} 

= {18, 11, 28, 31, 14, 24, 5, 32, 21, 7} ∩ {27, 18, 4, 6, 32, 21, 13, 26, 24, 2} 

         = {18 , 21, 24 , 32}  
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A7.2 = {high_30%_value_list_mean} ∩ {low_30%_value_list_std} 

= {18, 11, 28, 31, 14, 24, 5, 32, 21, 7} ∩ {23, 1, 22, 14, 19, 25, 17, 8, 10, 11} 

= {11, 14} 

A7.3 = {low_30%_value_list_mean} ∩ {high_30%_value_list_std} 

= {3, 8, 15, 16, 2, 9, 20, 12, 26, 13} ∩ {27, 18, 4, 6, 32, 21, 13, 26, 24, 2} 

= {2 , 13, 26} 

 

9) The list of most deviating parameters is then 𝑝 = ⋃ {𝐴7. 𝑖}3
𝑖=1  

= {2, 11, 13, 14, 18, 21, 24, 26, 32} 

Among the candidates, the list p contains k2 as one of the most deviating parameters. This 

parameter was identified in section 2.5 was one of the nodes of the network where the 

parameter discrepancy after the fit was most pronounced, showing that this algorithm also 

allows the detection of some of the critical nodes. Nonetheless, it is important to highlight 

that the analysis in section 2.5 resulted from a single fit of the ARROM1 model to the 

median_cell and in this algorithm all the curves, on both sensitive and resistant 

subpopulations, had to be fitted and their parameters compared. The most deviating 

parameters across an entire data-set are not expected to be exactly equal as the ones that 

deviate the most in one single fit.  

This methodology is at the basis of an ongoing complementary study of the ARROM2 

model, focusing on the output list p and on the role of these parameters and how they shape 

the apoptosis pathway dynamics.  
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Figure A.1) Representation of the parameter set of the ARROM2 model in the normalized mean space 

after fitting the sensitive and the resistant cell populations 

Fitting the entire collection of resistant and sensitive cells in the data-set returned a matrix of fitted parameter 

vectors that best matched every single-cell trajectory. Following the algorithm proposed in this section led to the 

identification of the parameters [2, 8, 9, 16, 26] as a subset of those that deviated the least in terms of their means 

and their circular orbits are thus in the vicinity of the reference point =(
1

√2
,

1

√2
) [green orbits with parameters 

represented in green]. Oppositely, the parameters [5, 7, 11, 18, 24, 31, 32] are a subset of those with the largest 

differences in means among the population of sensitive and resistant cells and their orbits are the furthest away 

from the reference point (blue orbits with parameters represented in pink). For illustration purposes, only a subset 

of the least and most deviating parameters is represented. The algorithm returned a total of 10 least-deviating 

parameters and 10 most-deviating parameters in total.  
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Figure A.2) Representation of the parameter set of the ARROM2 model in the normalized standard 

deviation space after fitting the sensitive and the resistant cell populations 

Fitting the entire collection of resistant and sensitive cells in the data-set returned a matrix of fitted parameter 

vectors that best matched every single-cell trajectory. Following the algorithm proposed in this section led to the 

identification of the parameters [1, 10, 14, 19, 23, 25 ] as a subset of those that deviated the least in terms of their 

standard deviations and their circular orbits are thus in the vicinity of the reference point =(
1

√2
,

1

√2
) [green orbits, 

with parameters represented in green]. Oppositely, the parameters [2, 4, 6, 13, 18, 21, 24, 26, 27, 32]  are the 

parameters with the largest differences in standard deviations among the population of sensitive and resistant cells 

and their orbits are the furthest away from the reference point (blue orbits with parameters represented in pink). 

For illustration purposes, only a subset of the least deviating parameters is represented. The algorithm returned a 

total of 10 least-deviating parameters.  

 

 

 

The End 
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