Fundamentals of General Relativity

CHAPTER 1

1.1. Gravitatio mundi, a brief historical prelude 9 But Kepler not only destroyed the antique edi ce; he erected a new one in its place. His Laws are not of the type which appear self-evident, even in retrospect (as, say, the Law of Inertia appears to us); the elliptic orbits and the equations governing planetary velocities strike us as "constructions" rather than "discoveries". In fact, they make sense only in the light of Newtonian Mechanics. From Kepler's point of view, they did not make much sense; he saw no logical reason why the orbit should be an ellipse instead of an egg. Accordingly, he was more proud of his ve perfect solids than of his Laws; and his contemporaries, including Galileo, were equally incapable of recognizing their signi cance. The Keplerian discoveries were not of the kind which are "in the air" of a period, and which are usually made by several people independently; they were quite exceptional one-man achievements. That is why the way he arrived at them is particularly interesting.

Nonetheless, the basic new concepts involved in articulating this new, clockwork-type worldview presented great conceptual di culties. In the Astronomia Nova, for example, Kepler wrestled profusely with the concept of the "force" causing the motions in his imagined clockwork universe [Kepler 1609] (taken from [Koestler 1959]):

1.4. Gravitational waves and extreme-mass-ratio inspirals 1.5. The self-force problem
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General Thesis Summary

The principal subject of this thesis is the gravitational two-body problem in the extreme-mass-ratio regime-that is, where one mass is signi cantly smaller than the other-in the full context of our contemporary theory of gravity, general relativity. We divide this work into two broad parts: the rst provides an overview of the theory of general relativity along with the basic mathematical methods underlying it, focusing on its canonical formulation and perturbation techniques; the second is dedicated to a presentation of our novel work in these areas, focusing on the problems of entropy, motion and the self-force in general relativity.

We begin in Part I, accordingly, by o ering a historical introduction to general relativity as well as a discussion on current motivation from gravitational wave astronomy in Chapter 1. Then, in Chapter 2, we turn to a detailed technical exposition of this theory, focusing on its canonical (Hamiltonian) formulation. We end this part of the thesis with a rigorous development of perturbation methods in Chapter 3. For the convenience of the reader, we summarize some basic concepts in di erential geometry needed for treating these topics in Appendix A.

In Part II, we begin with a study of entropy theorems in classical Hamiltonian systems in Chapter 4, and in particular, the issue of the second law of thermodynamics in classical mechanics and general relativity, with a focus on the gravitational two-body problem. Then in Chapter 5, we develop a general approach based on conservation laws for calculating the correction to the motion of a su ciently small object due to gravitational perturbations in general relativity. When the perturbations are attributed to the small object itself, this e ect is known as the gravitational self-force. It is what drives the orbital evolution of extreme-mass-ratio inspirals: compact binary systems where one mass is much smaller than-thus e ectively orbiting and eventually spiralling into-the other, expected to be among the main sources for the future space-based gravitational wave detector LISA. In Chapter 6, we present some work on the numerical computation of the scalar self-force-a helpful testbed for the gravitational case-for circular orbits in the frequency domain, using a method for tackling distributional sources in the eld equations called the Particle-without-Particle method. We include also, in Appendix B, some work vii on the generalization of this method to general partial di erential equations with distributional sources, including also applications to other areas of applied mathematics. We summarize our ndings in this thesis and o er some concluding re ections in Chapter 7.

Resum General de la Tesi

(translation in Catalan)

El tema principal d'aquesta tesi és el problema gravitacional de dos cossos en el règim de raons de masses extremes -és a dir, on una massa és signi cativament més petita que l'altra -en el context complet de la nostra teoria contemporània de la gravetat, la relativitat general. Dividim aquest treball en dues grans parts: la primera proporciona una visió general de la teoria de la relativitat general juntament amb els mètodes bàsics matemàtics en què s'hi basa, centrant-se en la seva formulació canònica i les tècniques de pertorbació; la segona està dedicada a presentar la nostra contribució en aquests àmbits, centrada en els problemes de l'entropia, el moviment i la força pròpia en la relativitat general.

Comencem a la part I, en conseqüència, oferint una introducció històrica a la relativitat general, així com una discussió sobre la motivació actual a partir de l'astronomia d'ones gravitacionals al capítol 1. A continuació, al capítol 2, passem a una exposició tècnica detallada d'aquesta teoria, centrada sobre la seva formulació canònica (hamiltoniana). Acabem aquesta part de la tesi amb un desenvolupament rigorós de mètodes de pertorbació al capítol 3. Per a la comoditat del lector, resumim alguns conceptes bàsics en geometria diferencial necessaris per a tractar aquests temes a l'apèndix A.

A la part II, comencem amb un estudi dels teoremes d'entropia en sistemes clàssics hamiltonians al capítol 4, i en particular, la qüestió de la segona llei de la termodinàmica en la mecànica clàssica i la relativitat general, amb el focus en el problema gravitatori de dos cossos. Al capítol 5, desenvolupem una anàlisi general basada en lleis de conservació per a calcular la correcció en el moviment d'un objecte prou petit a causa de les pertorbacions gravitacionals de la relativitat general. Quan les pertorbacions s'atribueixen al propi objecte petit, aquest efecte es coneix com a força pròpia gravitacional. És el que impulsa l'evolució orbital de les caigudes en espiral amb raó de masses extrema: sistemes binaris compactes on una massa és molt menor que -i per tant, efectivament orbita i, nalment, fa espirals cap a -l'altre. Es preveu que siguin una de les principals fonts del futur detector d'ones gravitacionals LISA, situat en l'espai. Al capítol 6, es presenta un treball sobre el càlcul numèric de la força pròpia escalar -una prova útil per al cas gravitatori -per òrbites circulars en el domini de freqüència, utilitzant un mètode per abordar fonts de distribució en les equacions de camp anomenat el mètode Partícula-sense-Partícula. Incloem també, en l'apèndix B, alguns treballs sobre la generalització d'aquest mètode a equacions diferencials parcials generals amb fonts distribucionals, incloent també aplicacions a altres àrees viii de matemàtiques aplicades. Resumim els nostres resultats en aquesta tesi i oferim algunes re exions nals al capítol 7.

Résumé Général de la Thèse

(translation in French)

Le sujet principal de cette thèse est le problème gravitationnel à deux corps dans le régime des quotients extrêmes des masses -c'est-à-dire où une masse est nettement plus petite que l'autre -dans le contexte complet de notre théorie contemporaine de la gravité, la relativité générale. Nous divisons ce travail en deux grandes parties : la première fournit un aperçu de la théorie de la relativité générale ainsi que des méthodes mathématiques de base qui la sous-tendent, en mettant l'accent sur sa formulation canonique et les techniques de perturbation; la seconde est consacrée à une présentation de notre travail novateur dans ces domaines, en se concentrant sur les problèmes de l'entropie, du mouvement et de la force propre dans la relativité générale.

Nous commençons par la partie I en proposant une introduction historique à la relativité générale ainsi qu'une discussion sur la motivation actuelle à partir de l'astronomie des ondes gravitationnelles au chapitre 1. Ensuite, au chapitre 2, nous abordons un exposé technique détaillé de cette théorie, en nous concentrant sur sa formulation canonique (hamiltonienne). Nous terminons cette partie de la thèse par un développement rigoureux des méthodes de perturbation au chapitre 3. Pour la commodité du lecteur, nous résumons quelques concepts de base de la géométrie di érentielle nécessaires pour traiter ces sujets dans l'annexe A.

Dans la partie II, nous commencerons par une étude des théorèmes de l'entropie dans les systèmes hamiltoniens classiques au chapitre 4, et en particulier par la question de la deuxième loi de la thermodynamique dans la mécanique classique et la relativité générale, en mettant l'accent sur le problème gravitationnel à deux corps. Ensuite, au chapitre 5, nous développons une analyse générale basée sur les lois de conservation pour calculer la correction au mouvement d'un objet su samment petit dues aux perturbations gravitationnelles dans la relativité générale. Lorsque les perturbations sont attribuées au petit objet lui-même, cet e et s'appelle la force propre gravitationnelle. C'est ce que détermine l'évolution orbitale des inspirals avec quotients extrêmes des masses : des systèmes binaires compacts dans lesquels une masse est beaucoup plus petite que -e ectivement orbitant et nissant en faire des spirales dans -l'autre. On s'attend à ce qu'elles soient l'une des principales sources et parmi les plus intéressantes pour le futur détecteur spatial d'ondes gravitationnelles LISA. Au chapitre 6, nous présentons quelques travaux sur le calcul numérique de la force propre scalaire -un test utile pour le cas gravitationnel -pour les orbites circulaires dans le domaine fréquentiel, en utilisant une méthode pour traiter les ix sources distributionnelles dans les équations de champ appelée la méthode Particule-sans-Particule. Nous incluons également, dans l'annexe B, des travaux sur la généralisation de cette méthode aux équations aux dérivées partielles générales avec sources distributionnelles, ainsi que des applications à d'autres domaines des mathématiques appliquées. Nous résumons nos résultats de cette thèse et proposons quelques ré exions nales au chapitre 7.
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Notation and Conventions

Here we summarize the basic notation and mathematical conventions used throughout this thesis. For more details, de nitions and useful results, see Appendix A.

We reserve script upper-case letters (A , B, C , ...) for denoting mathematical spaces (manifolds, curves etc.). The n-dimensional Euclidean space is denoted as usual by R n , the n-sphere of radius r by S n r , and the unit n-sphere by S n = S n 1 . For any two spaces A and B that are topologically equivalent (i.e. homeomorphic), we indicate this by writing A B.

The set of (k, l)-tensors (tensors with k covariant indices and l contravariant indices) on any manifold U is denoted by T k l (U ). In particular, T U = T 1 0 (U ) is the tangent bundle and T * U = T 0 1 (U ) the dual thereto, i.e. the cotangent bundle. A spacetime is a (3+1)-dimensional Lorentzian manifold, typically denoted by M . We work in the (-, +, +, +) signature. Any (k, l)-tensor in M is equivalently denoted either using the (boldface) index-free notation A ∈ T k l (M ) following the practice of, e.g., [START_REF] Misner | Gravitation[END_REF][START_REF] Hawking | The Large Scale Structure of Space-Time[END_REF], or the abstract index notation

A a 1 •••a k b 1 •••b l ∈ T k l (M )
following that of, e.g., [START_REF] Wald | General Relativity[END_REF]; that is, depending upon convenience, we equivalently write

A = A a 1 •••a k b 1 •••b l ∈ T k l (M ) , (0.0.1)
with Latin letters from the beginning of the alphabet (a, b, c, ...) being used for abstract spacetime indices (0, 1, 2, 3). The components of A in a particular choice of coordinates {x α } 3 α=0 are denoted by A α 1 •••α k β 1 •••β l , using Greek (rather than Latin) letters from the beginning of the alphabet (α, β, γ, ...). Spatial indices on an appropriately de ned (threedimensional Riemannian spacelike) constant time slice of M are denoted using Latin letters from the middle third of the alphabet in Roman font: in lower-case (i, j, k, ...) if they are abstract, and in upper-case (I, J, K, ...) if a particular choice of coordinates {x I } 3 I=1 has been made.

More generally, when discussing any n-dimensional manifold of interest, we may write this as a collection of objects (U , g U , ∇ U ), where U is the manifold itself, g U is a metric de ned on it, and ∇ U the derivative operator compatible with this metric. Its natural volume form is given by

U = det g U dx 1 ∧ • • • ∧ dx n , (0.0.2) xiii
where ∧ is the wedge product. Let S S 2 be any (Riemannian) closed two-surface that is topologically a twosphere. Latin letters from the middle third of the alphabet in Fraktur font (i, j, k, ...) are reserved for indices of tensors in T k l (S ). In particular, for S 2 itself, S ij is the metric, D i the associated derivative operator, and S 2 ij the volume form; in standard spherical coordinates {θ, φ}, the latter is simply given by S 2 = sin θ dθ ∧ dφ .

(0.0.3) Contractions are indicated in the usual way in the abstract index notation: e.g., U a V a is the contraction of U and V . Equivalently, when applicable, we may simply use the "dot product" in the index-free notation, e.g. U a V a = U • V , A ab B ab = A : B etc. We must keep in mind that such contractions are to be performed using the metric of the space on which the relevant tensors are de ned. Additionally, often we nd it convenient to denote the component (projection) of a tensor in a certain direction determined by a vector by simply replacing its pertinent abstract index therewith: e.g., we equivalently write

U a V b = U • V = U V = V U , A ab U a = A U b , A ab U a V b = A U V etc.
For any (0, 2)tensor A ab , we usually write its trace (in non-boldface) as A = A a a = tr(A), except if A is a metric, in which case A is typically reserved for denoting the determinant. Finally, let U and V be any two di eomorphic manifolds and let f : U → V be a map between them. This naturally de nes a map between tensors on the two manifolds, which we denote by f * : T k l (U ) → T k l (V ) and its inverse (f -1 ) * = f * : T k l (V ) → T k l (U ). We generically refer to any map of this sort as a tensor transport [START_REF] Felsager | Geometry, Particles, and Fields[END_REF]]. It is simply the generalization to arbitrary tensors of the pushforward f * : T U → T V and pullback f * : T * V → T * U , the action of which is de ned in the standard way-see, e.g., Appendix C of [START_REF] Wald | General Relativity[END_REF]]. (Note that our convention of sub-/super-scripting the star is the generally more common one used in geometry [START_REF] Felsager | Geometry, Particles, and Fields[END_REF][START_REF] Lee | Introduction to Smooth Manifolds[END_REF]; it is sometimes opposite to and sometimes congruous with that used in the physics literature, e.g. [START_REF] Wald | General Relativity[END_REF]] and [START_REF] Carroll | Spacetime and Geometry: An Introduction to General Relativity[END_REF]] respectively). xiv
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1.1 Detail of Kepler's model of Solar System motion based on Pythagorean solids, taken from [START_REF] Koestler | The Sleepwalkers[END_REF]] (adapted from Mysterium Cosmographicum [START_REF] Kepler | Prodromus dissertationum cosmographicarum, continens mysterium cosmographicum, de admirabili proportione orbium coelestium, deque causis coelorum numeri, magnitudinis, motuumque periodicorum genuinis & propriis, demonstratum, per quinque regularia corpora geometrica[END_REF]). A property of all Pythegorean solids, of which ve exist, is that they can be exactly inscribed into-as well as circumscribed around-spheres. As only six planets were then known (from Mercury to Jupiter), this seemed to leave room for placing exactly these ve perfect solids between their orbits (determined as an appropriate cross-section through the inscribing/circumscribing spheres). This gure shows the orbits of the planets up to Mars inclusive.

1.2 A gure of an ellipse (dotted oval) circumscribed by a circle from Astronomia Nova [START_REF] Kepler | seu physica coelestis, tradita commentariis de motibus stellae Martis ex observationibus G.V. Tychonis Brahe[END_REF]].

1.3 Newton's solution of the two-body problem in the Principia. Extracted here are the gure used for his Proposition LVIII , as well as his Corollary 1 to this proposition [START_REF] Newton | Philosophiae naturalis principia mathematica[END_REF]]: "Hence two bodies attracting each other with forces proportional to their distance, describe (by Prop. X), both round their common centre of gravity, and round each other, concentric ellipses; and, conversely, if such gures are described, the forces are proportional to the distances. " [START_REF] Chandrasekhar | Newton's Principia for the Common Reader[END_REF] 1.4 Sketch of an extreme-mass-ratio inspiral (EMRI), a two-body system consisting of a stellar-mass compact object (SCO), usually a stellar-mass black hole, of mass m ∼ 10 0-2 M , orbiting and eventually spiralling into a (super-) massive black hole (MBH), of mass M ∼ 10 4-7 M , and emitting gravitational waves in the process.

1.5 The main approaches used in practice for the modeling of compact object binaries as a function of the mass ratio (increasing from 1) and the inverse separation involved. For high separations between the bodies, post-Newtonian and post-Minkowskian methods are used. For low separations and low mass ratios, numerical relativity is used. For low separations and extreme mass ratios, as the scale of a numerical grid would have to span orders of magnitude thus rendering it impracticable, perturbation theory must be used-in particular, self-force methods.

xv 1.6 A depiction of the perturbative problem for the gravitational self-force (GSF).

In particular, this represents one of the most popular conceptions of a so-called "self-consistent" approach [START_REF] Gralla | A rigorous derivation of gravitational self-force[END_REF]: at a given step (on a given Cauchy surface) in the time evolution problem, one computes the "correction to the motion" away from geodesic ( C ) in the form of a deviation vector Z a , determined by the GSF. Then, at the next time step, one begins on a new ("corrected") geodesic ( C ), computes the new deviation vector, and so on.

2.1 A compact region V in a spacetime M where the variation of physical elds are non-zero.

2.2 A depiction (in (2 + 1) dimensions) of the foliation of a spacetime (M , g) into Cauchy surfaces (Σ, h), where h is the metric induced on Σ by g. These surfaces are de ned by the constancy of a time function, t(x a ) = const., which uniquely determine a normal vector n. Additionally, one must de ne a time ow vector eld t on M the integral curves of which intersect the"same spatial point" (with the same coordinates x i ) on di erent slices.

2.3 A depiction (in (1 + 1) dimensions) of the spacetime M as constituted by a family of embedded submanifolds Σ t obtained from an embedding map i t : Σ → M . Three such submanifolds are shown at three di erent times, with the time ow vector eld identifying the spatial coordinates between them.

2.4 An illustration of the transformation f : T Q → T * Q from the con guration space tangent bundle into the phase space P = T * Q. For example, suppose we have a two-dimensional con guration ϕ = {ϕ 1 , ϕ 2 } (visually represented as one dimension), and correspondingly φ = { φ1 , φ2 }. Suppose that here, φ2 is in the kernel of this map, i.e. it maps trivially to π 2 such that the only primary constraint is 0 = π 2 = ζ. The primary constraint surface C thus has coordinates {ϕ, π 1 }.

2.5 An illustration of the con guration space tangent bundle T Q, the phase space P = T * Q, the primary constraint surface C , and the full constraint surface C with their respective coordinates, and the maps/operations that respectively transform from one of these spaces to the next.

2.6 A visual representation of the "gauge freedoms" of GR. The embedding i t : Σ → M is shown in blue, along with the transformations on this embedding permitted by the constraints, shown in di erent colours. In particular, the primary constraints imply that we can change i t to a new embedding ĩt , shown in red, resulting from a change in the time ow vector eld t → t (or equivalently, (N, N ) → ( Ñ , Ñ )). The embedded surface itself does not change, i.e. Σt = ĩt (Σ) = i t (Σ) = Σ t , but the identi cation of spatial coordinates on xvi sequential Cauchy surfaces in the family of embeddings does. On the other hand, the Hamiltonian constraint implies the freedom to change from i t to i t , shown in green, which is a change of foliation, or time function rede nition t(x a ) → t (x a ), such that Σ t = i t (Σ) does not coincide with Σ t = i t (Σ).

Finally, the momentum constraint implies the freedom to map the spatial metric h in Σ by a di eomorphism φ, h → φ * h.

3.1 Representation of a one-parameter family of spacetimes {M (λ) } λ≥0 used for perturbation theory. Each of the M (λ) are depicted visually in (1 + 1) dimensions, as leaves of a ( ve-dimensional) product manifold N = M (λ) × R, with the coordinate λ ≥ 0 representing the perturbative expansion parameter. A choice of a map (or gauge) ϕ (λ) : M → M (λ) , the ow of which is de ned by the integral curves of a vector eld X ∈ T N , gives us a way of identifying any point p ∈ M = M (0) on the background to one on some perturbed (λ > 0) spacetime, i.e. p → ϕ (λ) (p).

3.2 A gauge transformation consists in choosing a di erent vector eld in T N , or equivalently a di erent associated di eomorphism, for identifying points between the background and the perturbed spacetimes. In this illustration, the point p ∈ M is mapped under the ow of X to the same point in M (λ) as is q ∈ M under the ow of Y (for p = q and X = Y). One thus has a gauge transformation on the background q → Ψ (λ) (q) = p.

4.1 The idea of the proof for the Poincaré recurrence theorem.

4.2

The idea of the perturbative approach is to evaluate Ṡ along di erent directions in phase space away from equilibrium, and arrive at a contradiction with its strict positivity.

4.3

The topological approach relies on phase space compactness and Liouville's theorem, i.e. the fact that the Hamiltonian ow is volume-preserving.

5.1 A worldtube boundary B (topologically R × S 2 ) in M , with (outward-directed) unit normal n a . The change in matter four-momentum between two constant time slices of this worldtube is given by the ux of the normal projection (in one index) of the matter stress-energy-momentum tensor T ab through the portion of B bounded thereby.

5.2 A portion of a quasilocal frame (B; u) in a spacetime M , bounded by constant t two-surfaces S i and S f . In particular, B R × S 2 is the union of all integral curves (two-parameter family of timelike worldlines), depicted in the gure as dotted red lines, of the vector eld u ∈ T B which represents the unit four-velocity of quasilocal observers making up the congruence. The unit normal xvii to B (in M ) is n and the normal to each constant t slice S of B is ũ (not necessarily coincidental with u). Finally, H (with induced metric σ) is the two-dimensional subspace of T B consisting of the spatial vectors orthogonal to u. Note that unlike S , H need not be integrable (indicated in the gure by the failure of H to make a closed two-surface).

5.3 Representation of a one-parameter family of quasilocal frames {(B (λ) ; u (λ) )} λ≥0 embedded correspondingly in a family of spacetimes {M (λ) } λ≥0 .

5.4 Representation of the Gralla-Wald family of spacetimes {M (λ) } λ≥0 . (This is an adaptation of Fig. 1 of [START_REF] Gralla | A rigorous derivation of gravitational self-force[END_REF].) The lined green region that " lls in" M (λ) for r ≤ Cλ is the "small" object which "scales down" to zero "size" and "mass" in the background M . The solid black lines represent taking the "ordinary limit" (the "far away" view where the motion appears reduced to a worldline) and the dashed black lines the "scaled limit" (the "close by" view where the rest of the universe appears "pushed away" to in nity). The worldline C , which can be proven to be a geodesic, is parametrized by za (τ ) and has four-velocity Ů . The deviation vector Z on C is used for formulating the rst-order correction to the motion.

5.5 A family of rigid quasilocal frames {(B (λ) ; u (λ) )} embedded in the Gralla-Wald family of spacetimes {M (λ) } such that the inverse image of any such perturbed quasilocal frame in the background is inertial with the point particle approximation of the moving object, i.e. is centered on the geodesic C .

5.6 An instantaneous rigid quasilocal frame (S 2 r , r 2 S, D) (where S and D respectively are the metric and derivative compatible with the unit two-sphere) inertial with the background "point particle". This means that the latter is located at the center of our Fermi normal coordinate system. 5.7 A family of rigid quasilocal frames {(B (λ) ; u (λ) )} embedded in the Gralla-Wald family of spacetimes {M (λ) } inertial with the moving object in M (λ) . This means that B (λ) is de ned by the constancy of the Gralla-Wald r coordinate in M (λ) , for any r > Cλ. Thus, the inverse image B of B (λ) in the background M is centered, in general, not on the geodesic C followed by the point particle background approximation of the object, but on some timelike worldline C = C , with four-velocity U = Ů , which may be regarded as an approximation on M of the "true motion" of the object in M (λ) . Between C and C there is a deviation vector Z, which is to be compared with the deviation vector ("correction to the motion") in the Gralla-Wald approach.

5.8 An instantaneous rigid quasilocal frame (S 2 r , r 2 S, D) (where S and D respectively are the metric and derivative compatible with the unit two-sphere) xviii inertial with the moving object in the perturbed spacetime. This means that the point particle approximation of this object in the background spacetime is not located at the center of our Fermi normal coordinate system. Instead, it is displaced in some direction ρ I , which must be O(λ).

6.1 Schematic representation of the PwP formulation. The eld equations with singular source terms become homogeneous equations at each side of the particle worldline together with a set of jump conditions to communicate their solutions.

A.1 An illustration of two manifolds (M , g) and ( M , g) with a map φ : M → M between them. This identi es any point p ∈ M with p = φ(p) ∈ M , and can be used, for example, to push-forward the vector v ∈ T p M to φ * v ∈ T p M . If φ is a di eomorphism, a general transport of tensors from one manifold to the other can be de ned. Note that in this notation, the metric g of M is not necessarily the same as the metric transported from M , i.e. φ * g. If indeed φ * g = g, then φ is called an isometry-a symmetry of the metric.

A.2 An illustration of the meaning of the Lie derivative along a vector eld v in (M , g) of a tensor A, depicted here for ease of visualization in the case where A is a vector. In particular, one compares A 0 = (A) p 0 at the point p 0 corresponding to t = 0 in the ow φ (v) t with its value A t = (A) pt at the point p t = φ (v)

t (p 0 ) for some t > 0 by transporting the latter back to p 0 , i.e. one compares A 0 with (φ (v) -t ) * A at p 0 . Their di erence divided by t, in the small t limit, is the Lie derivative. B.8 Price evolution and convergence of the numerical scheme for the problem (B.5.5).

B.9 Solution and convergence of the numerical scheme for the problem (B.6.1).

B.10Solution (with N = 80) of the same problem as in Figure B.9 but using ω = 24.
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[ Einstein and Infeld 1938] Introduction Chapter summary. In this introduction, we present a brief history of the gravitational two-body problem and of the conception of gravitation in physics more generally, as well as a discussion of the current relevance of this problem-focusing on the extrememass-ratio-regime-in the era of gravitational wave astronomy.

We begin in Section 1.1 with a historical discussion of the gravitational two-body problem in pre-relativistic physics. Newton's work, especially the Principia, is undeniably regarded as constituting the rst true solution to this problem. We discuss its relevance, including Newton's own views on gravity, as well as the path immediately leading to it, especially the work of Kepler. In Section 1.2, we provide an account of the development of general relativity, our contemporary theory of gravity, including extracts from Einstein's own papers summarizing the essential content of the theory. With this occasion, we de ne and establish the notation we use in this thesis for the most basic mathematical objects.

In Section 1.3, we then discuss the interpretation of general relativity, and especially Einstein's views. Instead of the general idea of "gravity as geometry", an interpretation he seems to have found rather uninteresting due to its generality, he was much more fascinated with the connection between gravity and inertia, in particular, as established through the equation of motion for idealized particles, the geodesic equation.

This leads us, in Section 1.4, to a discussion of the current relevance of the problem of motion in general relativity thanks to the opportunities presented by the advent of gravitational-wave astronomy. In particular, we focus on systems called extreme-massratio inspirals (EMRIs): these are compact binary systems where one object is much less massive than-thus e ectively orbiting and eventually spiraling into-the other. Usually, the latter is a (super-) massive black hole at a galactic center, and the former is a stellarmass black hole or a neutron star. It is anticipated that these will be one of the main sources for space-based gravitational wave detectors, speci cally for the LISA mission expected to launch in the 2030s.

Finally, in Section 1.5, we enter into a bit of detail on the technical problem of modeling EMRIs. This involves calculating the correction to the motion, away from geodesic, caused by the backreaction of (the mass of) the orbiting object upon the gravitational eld. This Chapter 1. Introduction phenomenon is known as the gravitational self-force, and will be one of the major themes of this thesis.

Introducció (chapter summary translation in Catalan). En aquesta introducció, presentem una breu història del problema gravitatori de dos cossos i de la concepció de la gravitació en física més generalment, així com una discussió de la rellevància actual d'aquest problema -centrat en el règim de raons de masses extremes -en l'era de l'astronomia de les ones gravitacionals.

Comencem a la secció 1.1 amb una discussió històrica del problema gravitatori de dos cossos en física pre-relativista. L'obra de Newton, especialment els Principia, és considerada la primera veritable solució a aquest problema. Es discuteix la seva rellevància, incloent les opinions pròpies de Newton sobre la gravetat, així com el camí que hi dirigeix directament, especialment el treball de Kepler.

A la secció 1.2, exposem el desenvolupament de la relativitat general, la nostra teoria contemporània de la gravetat, inclosos extractes dels propis treballs d'Einstein que resumeixen el contingut essencial de la teoria. Amb aquesta ocasió, de nim i establim la notació que fem servir en aquesta tesi per als objectes matemàtics més bàsics.

A la secció 1.3, es discuteix la interpretació de la relativitat general, i especialment les opinions d'Einstein. Enlloc de la idea general de la "gravetat com a geometria", una interpretació que sembla haver trobat poc interessant per la seva generalitat, estava molt més fascinat per la connexió entre la gravetat i la inèrcia, en particular, com es va establir mitjançant l'equació del moviment per partícules idealitzades, l'equació geodèsica.

Això ens porta, a la secció 1.4, a una discussió sobre la rellevància actual del problema del moviment en la relativitat general gràcies a les oportunitats que presenta l'arribada de l'astronomia d'ones gravitacionals. En particular, ens centrem en caigudes en espiral amb raó de masses extrema (extreme-mass-ratio inspirals, EMRIs): es tracta de sistemes binaris compactes on un objecte és molt menys massiu que -de manera que orbita i, nalment, fa espirals cap a -l'altre. Normalment, aquest últim és un forat negre (super) massiu en un centre galàctic, i el primer és un forat negre de massa estel•lar o una estrella de neutrons. Es preveu que aquesta sigui una de les principals fonts per als detectors d'ones gravitacionals basades en l'espai, en particular per a la missió LISA que es preveu llançar a la dècada dels 2030.

Finalment, a la secció 1.5, introduïm una mica de detall sobre el problema tècnic de modelar EMRIs. En particular, es tracta de calcular la correcció al moviment, allunyada del geodèsic, causada per la retroacció de (la massa de) l'objecte orbitant sobre el camp gravitatori. Aquest fenomen es coneix com la força pròpia gravitacional i serà un dels principals temes d'aquesta tesi.

Introduction (chapter summary translation in French). Dans cette introduction, nous présentons un bref historique du problème gravitationnel à deux corps et de la conception plus générale de la gravitation dans la physique, ainsi qu'une discussion sur la pertinence actuelle de ce problème -en se concentrant sur le régime des quotients extrêmes des masses -dans l'ère de l'astronomie des ondes gravitationnelles.

Nous commençons à la section 1.1 avec une discussion historique sur le problème gravitationnel à deux corps dans la physique pré-relativiste. Les travaux de Newton, en particulier le Principia, sont indéniablement considérés comme constituant la première véritable solution à ce problème. Nous discutons de sa pertinence, y compris de la propre vision de Newton sur la gravité, ainsi que du chemin qui y conduit immédiatement, en particulier les travaux de Kepler.

Dans la section 1.2, nous décrivons l'évolution de la relativité générale, notre théorie contemporaine de la gravité, avec des extraits d'articles d'Einstein résumant le contenu essentiel de la théorie. À cette occasion, nous dé nissons et établissons la notation que nous utilisons dans cette thèse pour les objets mathématiques les plus fondamentaux.

Dans la section 1.3, nous discutons ensuite de l'interprétation de la relativité générale et en particulier des points de vue d'Einstein. Au lieu de l'idée générale de la "gravité en tant que géométrie", une interprétation qu'il semble avoir trouvée pas assez inintéressante en raison de sa généralité, il était beaucoup plus fasciné par le lien entre la gravité et l'inertie, en particulier, établi par l'équation du mouvement de particules idéalisées, l'équation géodésique.

Ceci nous amène, dans la section 1.4, à une discussion sur la pertinence actuelle du problème du mouvement en relativité générale, grâce aux possibilités o ertes par l'avènement de l'astronomie des ondes gravitationnelles. En particulier, nous nous concentrons sur les systèmes appelés inspirals avec quotients extrêmes des masses (extrememass-ratio inspirals, EMRIs en italique car mot non français dans le contexte ; encore une fois, voire si non déjà dit) : il s'agit de systèmes binaires compacts où un objet est beaucoup moins massif que -ce qui permet e ectivement une orbite et au nal en spirallant dans l'autre. Habituellement, le dernier est un trou noir (super) massif à un centre galactique et le premier est un trou noir à masse stellaire ou une étoile à neutrons. On s'attend à ce qu'ils soient l'une des principales sources de détecteurs d'ondes gravitationnelles situés dans l'espace, en particulier pour la mission LISA qui devrait être lancée dans les années 2030.

En n, dans la section 1.5, nous entrons dans les détails sur le problème technique de la modélisation des EMRIs. En particulier, il s'agit de calculer la correction du mouvement, loin de la géodésique, provoquée par la réaction en arrière (de la masse) de l'objet en orbite dans le champ gravitationnel. Ce phénomène est connu sous le nom de la force propre gravitationnelle et il constituera l'un des thèmes majeurs de cette thèse.

Chapter 1. Introduction

Gravitatio mundi, a brief historical prelude

The gravitational two-body problem, in its broadest form, has always occupied a role apart in the historical development of physics, astronomy, mathematics, and even philosophy: How does one massive object move around another, and why that particular motion? From labyrinthine epicycles, to Keplerian orbits, to the notion of a universal gravitational "force" and beyond, the centuries-old struggle to tackle this question directly precipitated-more so, arguably, than any other single physical problem-the emergence of modern scienti c thought around the turn of the 18th century. Up to the present day, with vast opportunities currently presented by the revolutionary expansion of observational astronomy into the domain of gravitational waves, understanding and solving this problem has remained as galvanizing an incentive as ever for both technical as well as conceptual advances.

From our contemporary point of view, the two parts of the problem as formulated above-on the one hand, the empirical question of how motion occurs in a gravitational two-body system, and on the other hand, the theoretical question of why it is that (rather than any other conceivable) motion-are indisputably regarded as having reached their rst true synthesis in the work of Newton, above all in the Principia [Newton 1687] 1 . Certainly, hardly any of Newton's preeminent predecessors, from the ancient Greeks to the astronomers of the Renaissance, fell short of taking an avid interest in not only how the Moon and the planets moved, but why they moved so-or, perhaps o ering a better sense of the epochal mindset, "what" moved them so. Still, pre-Newtonian "explanations" of heavenly mechanics generally appear to us today to rest rather closer to the realm of myth than to that of scienti c theory.

The gure which stood at the point of highest in ection in the evolution of the intellectual mentality towards answering this latter, theoretical type of question was at the same time one of the greatest empiricists and mystics-Johannes Kepler (1571Kepler ( -1630)). A restlessly contradictory character throughout his life, we can glean a brief sense of the dramatic psychological uxes that marked it-and therethrough, ultimately, his entire era-by simply recalling Kepler's two most famous theoretical models for Solar System motion [START_REF] Koestler | The Sleepwalkers[END_REF]]. When he was in his mid-20s, he developed in a book called Mysterium Cosmographicum [START_REF] Kepler | Prodromus dissertationum cosmographicarum, continens mysterium cosmographicum, de admirabili proportione orbium coelestium, deque causis coelorum numeri, magnitudinis, motuumque periodicorum genuinis & propriis, demonstratum, per quinque regularia corpora geometrica[END_REF]] a model in which the orbits of the planets around the Sun are determined by a particular embedding of Pythagorean solids 2 centered thereon, see Fig. 1.1. Then, a little over a decade later, in Astronomia Nova [START_REF] Kepler | seu physica coelestis, tradita commentariis de motibus stellae Martis ex observationibus G.V. Tychonis Brahe[END_REF]], he put forth an 1 For an English translation with excellent accompanying commentary by Chandrasekhar for today's "common reader", see [START_REF] Chandrasekhar | Newton's Principia for the Common Reader[END_REF]]. 2 Also known as Platonic solids, or perfect solids, these are the set of three-dimensional solids with identical faces (regular, convex polyhedra). It was shown by Euclid that only ve such solids exist. They are [START_REF] Koestler | The Sleepwalkers[END_REF]]: empirical model of elliptical orbits, based on the observations of Tycho Brahe, establishing what we nowadays refer to as Kepler's laws of planetary motion 3 . See Fig 1 .2. What may be called the (neo-) Platonic basis of "explanation" underlying the former stands, to the modern reader, in radically sharp contrast with the manifestly quasi-mechanistic one at the basis of the latter. This reasoning is brought by Kepler to its logical end in a letter to Herwart, which he wrote as Astronomia Nova was nearing completion (taken from [START_REF] Koestler | The Sleepwalkers[END_REF]):

My aim is to show that the heavenly machine is not a kind of divine, live being, but a kind of clockwork [...] insofar as nearly all the manifold motions are caused by a most simple [...] and material force, just as all motions of the clock are caused by a simple weight. And I also show how these physical causes are to be given numerical and geometrical expression.

One discerns in these lines an approach towards the sort of thinking that ultimately led to the paradigmatic Newtonian explanation of the elliptical shapes of the planetary orbits.

Arthur Koestler, in his authoritative history of pre-Newtonian cosmology The Sleepwalkers [START_REF] Koestler | The Sleepwalkers[END_REF]], to which we have referred so far a few times, traces out in great detail the work of Kepler and especially his "giving of the laws" of planetary motion. He summarizes their signi cance: Some of the greatest discoveries [...] consist mainly in the clearing away of psychological road-blocks which obstruct the approach to reality; which is why, post factum, they appear so obvious. In a letter to Longomontanus 33 Kepler quali ed his own achievement as the "cleansing of the Augean stables".

(1) the tetrahedron (pyramid) bounded by four equilateral triangles; (2) the cube; (3) the octahedron (eight equilateral triangles); (4) the dodecahedron (twelve pentagons) and (5) the icosahedron (twenty equilateral triangles).

The Pythagoreans were fascinated with these, and associated four of them (1,2,3, and 5, in the above numbering) with the "elements" ( re, earth, air, and water, respectively) and the remaining one (4, the dodecahedron) with quintessence, the substance of heavenly bodies. The latter was considered dangerous, and so " [o]rdinary people were to be kept ignorant of the dodecahedron" [START_REF] Sagan | Cosmos[END_REF]]. 3 In fact, only the rst two of what we today refer to as the three Keplerian laws of planetary motion were proposed in this work (the third he found a bit later): (1) the orbits of planets are ellipses with the Sun at a focus; (2) the planets move such that equal areas in the orbital plane are "swept out", by a straight line with the Sun, in equal time. It is interesting to remark that these were actually discovered in reverse order. For a detailed historical account, see Part Four, Chapter 6 of [START_REF] Koestler | The Sleepwalkers[END_REF]]. A property of all Pythegorean solids, of which ve exist, is that they can be exactly inscribed into-as well as circumscribed around-spheres. As only six planets were then known (from Mercury to Jupiter), this seemed to leave room for placing exactly these ve perfect solids between their orbits (determined as an appropriate cross-section through the inscribing/circumscribing spheres). This gure shows the orbits of the planets up to Mars inclusive. This kind of force [...] cannot be regarded as something which expands into the space between its source and the movable body, but as something which the movable body receives out of the space which it occupies... It is propagated through the universe ... but it is nowhere received except where there is a movable body, such as a planet. The answer to this is: although the moving force has no substance, it is aimed at substance, i.e., at the planet-body to be moved... Koestler remarks, interestingly, that Kepler's description above actually seems to be "closer to the modern notion of the gravitational or electro-magnetic eld than to the classic Newtonian concept of force" [START_REF] Koestler | The Sleepwalkers[END_REF]].

With Newton's arrival on the scene, the vision of a mechanistic clockwork universe took de nitive shape in the form of three laws of motion and the inverse-square law of universal gravitation-with Kepler's three laws recovered from these as particular consequences [START_REF] Newton | Philosophiae naturalis principia mathematica[END_REF]]. What was particularly crucial here was the veritable introduction-or, at the very least, the unprecedented clari cation-of a new sort of reasoning, one rooted in the idea that any useful description of fundamental physical phenomena must assume a universal and mathematical4 character-a sort of reasoning then called natural philosphy, and which later came to be referred to more commonly as science.

Chapter 1. Introduction Koestler once again does better than we can to contextualize the relevance of this moment [START_REF] Koestler | The Sleepwalkers[END_REF]]:

It is only by bringing into the open the inherent contradictions, and the metaphysical implications of Newtonian gravity, that one is able to realize the enormous courage -or sleepwalker's assurance -that was needed to use it as the basic concept of cosmology. In one of the most reckless and sweeping generalizations in the history of thought, Newton lled the entire space of the universe with interlocking forces of attraction, issuing from all particles of matter and acting on all particles of matter, across the boundless abysses of darkness.

But in itself this replacement of the anima mundi by a gravitatio mundi would have remained a crank idea or a poet's cosmic dream; the crucial achievement was to express it in precise mathematical terms, and to demonstrate that the theory tted the observed behaviour of the cosmic machinerythe moon's motion round the earth and the planets' motions round the sun.

Newton, of course, was famously aware of the "inherent contradictions" to which Koestler is referring. While comments to this e ect appear in the Principia itself [START_REF] Newton | Philosophiae naturalis principia mathematica[END_REF]], in a letter to Bentley just a few years later, he could not have been clearer vis-à-vis what he thought about his proposed theory-and in particular, the physical conception of gravitation o ered by it (taken from [START_REF] Koestler | The Sleepwalkers[END_REF]]):

It is inconceivable, that inanimate brute matter should, without the mediation of something else which is not material, operate upon and a ect other matter without mutual contact, as it must be, if gravitation in the sense of Epicurus, be essential and inherent in it. And this is one reason why I desired you would not ascribe innate gravity to me. That gravity should be innate, inherent, and essential to matter, so that one body may act upon another at a distance through a vacuum, without the mediation of anything else, by and through which their action and force may be conveyed from one to another, is to me so great an absurdity that I believe no man who has in philosophical matters a competent faculty of thinking can ever fall into it. Gravity must be caused by an agent acting constantly according to certain laws; but whether this agent be material or immaterial, I have left open to the consideration of my readers.

No less di cult for the consideration of Newton's readers at that time was the new mathematics describing this metaphysically mysterious "agent". In fact, Newton notoriously avoided publishing his work on calculus-which he referred to as the "method of uxions"-for decades, leading to the infamous controversy with Leibnitz over its discovery [START_REF] Gleick | Isaac Newton[END_REF]]. Meanwhile, the Principia [Newton 1687], though clearly bearing the basic elements of the in nitesimal analysis at the basis of calculus, was written essentially, one might say in "brute-force" style, in the technical language then commonly understood: Euclindean geometry. Newton presented his solution of the two-body problem-the proof F 1.3. Newton's solution of the two-body problem in the Principia. Extracted here are the gure used for his Proposition LVIII , as well as his Corollary 1 to this proposition [START_REF] Newton | Philosophiae naturalis principia mathematica[END_REF]]: "Hence two bodies attracting each other with forces proportional to their distance, describe (by Prop. X), both round their common centre of gravity, and round each other, concentric ellipses; and, conversely, if such gures are described, the forces are proportional to the distances. " [START_REF] Chandrasekhar | Newton's Principia for the Common Reader[END_REF] of elliptical planetary motion as a consequence of his laws-in the Principia, Book I, Section XI, Propositions LVII-LXIII [START_REF] Newton | Philosophiae naturalis principia mathematica[END_REF]]. See Fig. 1.3.

Soon afterward, the issue of perturbations to a two-body orbit from a third body, and more generally the question of the stability of the entire Solar System, quickly gained interest. Newton also raised this problem, and seems to have been doubtful about the possibility of long-term Solar System stability. Subsequent investigation into this issue went hand in hand with the development of perturbation theory, especially thanks to the work of Lagrange and Laplace. See [START_REF] Laskar | Is the Solar System Stable?[END_REF]] for a detailed review of the history and the current status of this problem, including the discovery in the last few decades of chaos in Solar System dynamics.

The advent of relativity

While there certainly existed some known empirical discrepancies with Newton's theory by the end of the 19th century-among the most notable being, especially in view of the two-body problem, the perihelion precession of Mercury known since 1859-what primarily led to its overthrow had, at least in the vision of its chief perpetrator, much more to Chapter 1. Introduction do with its eminently long-standing "inherent contradictions". Einstein, indeed, often regarded his development of relativity5 as merely the proverbial cleansing of the Newtonian stables [START_REF] Einstein | What Is the Theory of Relativity?[END_REF]]:

Let no one suppose [...] that the mighty work of Newton can really be superseded by [general relativity] or any other theory. His great and lucid ideas will retain their unique signi cance for all time as the foundation of our whole modern conceptual structure in the sphere of natural philosophy.

There is a good deal of di erence between the circumstances surrounding the emergence of general relativity compared with that of the Newtonian theory. While the latter went hand in hand with strong empirical contingencies-primary among these being, as we have seen, solving the two-body problem-the former was driven much more by basic conceptual and logical questions. Cornelius Lanczos, a mathematician contemporary with Einstein, comments [START_REF] Lanczos | The Variational Principles of Mechanics[END_REF]]:

Einstein's Theory of General Relativity [...] was obtained by mathematical and philosophical speculation of the highest order. Here was a discovery made by a kind of reasoning that a positivist cannot fail to call "metaphysical, " and yet it provided an insight into the heart of things that mere experimentation and sober registration of facts could never have revealed.

Viewed from such a standpoint, the local e ects of special relativity-time dilation, length contraction and all the rest-as well as the globally curved (non-at) geometry of the spacetime we inhabit can be regarded as following, essentially, as logical consequences from: (i) on the one hand, demanding consistency between the physical laws then known (in particular, as concerns the Maxwellian theory of electromagnetism), and (ii) on the other hand, dispensing with what appeared to be the most unnecessary assumptions causing the "inherent contradictions" of the Newtonian theory: in particular, the notion of absolute space, and connected with this, the formulation of physical laws in a privileged-the so-called inertial-class of coordinate reference frames. It is quite remarkable how what may look from this point of view as a sort of exercise in logic has ultimately produced such wonderfully diverse physical insights into the nature of gravity, and even-though this generally took longer to understand-the sorts of basic objects that can exist in our Universe, such as black holes and gravitational waves.

An issue that attracted much of Einstein's attention throughout his development of general relaitivity was that of the motion of an idealized "test" mass, that is, one provoking no backreaction in the eld equations of the theory [START_REF] Renn | The Genesis of General Relativity[END_REF][START_REF] Lehmkuhl | Why Einstein did not believe that general relativity geometrizes gravity[END_REF]. Already in 1912, in a note added in proof to [START_REF] Einstein | Zur Theorie des statischen Gravitationsfeldes[END_REF]], he stated for the rst time that the geodesic equation, that is, the extremization of curve length,

δ ˆds = 0 , (1.2.1)
is the equation of motion of point particles "not subject to external forces". In this case, ds is an in nitesimal distance element in any curved four-dimensional spacetime. By this point, Einstein understood that the basic mathematical methods for studying spacetime curvature, logically identi ed as gravity, were those of di erential geometry pioneered during the previous century by Gauss, the Bolyais (Farkas and his son János), Lobachevsky, Riemann, Ricci and Levi-Civita, to name a few of the main players6 . Thus the basic object, in a theory fundamentally concerned with length measurements (in the broadest sense), is the metric tensor, denoted g µν in Einstein's original notation. This object de nes the notion of in nitesimal distance ds, and hence also that of motion [START_REF] Einstein | Zum gegenwärtigen Stande des Gravitationsproblems[END_REF]] (taken from [START_REF] Lehmkuhl | Why Einstein did not believe that general relativity geometrizes gravity[END_REF]]):

A free mass point moves in a straight and uniform line according to [our Eq.

(1.2.1)], where

ds 2 = µν g µν dx µ dx ν . (1.2.2) [. . . ]
In general, every gravitational eld is going to be de ned by ten components g µν , which are functions of [local coordinates] x 1 , x 2 , x 3 , x 4 .

In 1914, Einstein actually used the word "geodesic" for the rst time to refer to lengthextremizing curves [START_REF] Lehmkuhl | Why Einstein did not believe that general relativity geometrizes gravity[END_REF]]. Then, in 1915, the theory was completed with the promulgation of the nal form of the gravitational eld equations governing his g µν [START_REF] Einstein | Die Feldgleichungen der Gravitation[END_REF] (English translation in [Einstein 1996a]). In a paper consolidating the theory the following year, Einstein summarizes the main ideas [START_REF] Einstein | Die Grundlage der allgemeinen Relativitätstheorie[END_REF]] (taken from [Einstein 1996b]):

We make a distinction hereafter between "gravitational eld" and "matter" in this way, that we denote everything but the gravitational eld as "matter. " Our use of the word therefore includes not only matter in the ordinary sense, but the electromagnetic eld as well.

Chapter 1. Introduction [...] [We] require for the matter-free gravitational eld that the symmetrical [Ricci tensor], derived from the [Riemann tensor], shall vanish. Thus we obtain ten equations for the ten quantities g µν [...].

[...] It must be pointed out that there is only a minimum of arbitrariness in the choice of these equations. For besides [the Ricci tensor] there is no tensor of second rank which is formed from the g µν and its derivatives, contains no derivations higher than second, and is linear in these derivatives.* These equations, which proceed, by the method of pure mathematics, from the requirement of the general theory of relativity, give us, in combination with the equations of motion [our Eq. (1.2.1)], to a rst approximation Newton's law of attraction, and to a second approximation the explanation of the motion of the perihelion of the planet Mercury discovered by Leverrier (as it remains after corrections for perturbation have been made). These facts must, in my opinion, be taken as a convincing proof of the correctness of the theory. ____________ * Properly speaking, this can be a rmed only of [a linear combination of the Ricci tensor and the metric times the Ricci scalar]. [...] We could have done no better ourselves to summarize the essential content of the theory of general relativity, modulo the inclusion of matter, which we address momentarily.

While so far we have been quoting Einstein directly along with his still widely used notation for spacetime indices-that is, with Greek letters-we shall, in our notation throughout this thesis, use Latin letters for spacetime indices instead, broadly following the conventions of [START_REF] Wald | General Relativity[END_REF]]. (In principle, these are to be understood as abstract indices. While this may be slightly abused sometimes if convenient and understood, we typically try to indicate when a particular choice of coordinates is employed by explicitly changing the indexing style, as further elaborated in the Notation and Conventions.) Thus, we denote by g ab (a, b = 0, 1, 2, 3) the spacetime metric, and we work in the (-+ ++) signature. Using the summation convention that Einstein introduced not too long after Eq. (1.2.2), the square of the in nitesimal line element ds in terms of the metric components is given by:

ds 2 = g ab dx a dx b , (1.2.3)
where x a = {x 0 , x 1 , x 2 , x 3 } are local coordinates.

We will often nd it convenient to talk about tensors without always having to explicitly write their indices. For example, for referring to the mathematical object (metric tensor) g ab we sometimes use, when more convenient, the completely equivalent (slanted boldface) index-free notation7 g, following the classic conventions of [START_REF] Misner | Gravitation[END_REF][START_REF] Hawking | The Large Scale Structure of Space-Time[END_REF]. This is the same idea as using either v i (i = 1, 2, 3) or, equivalently, v to represent abstractly the same object (in this case, a vector, e.g. a velocity) in classical physics. Interchanging between these two notations will make our expressions more compact and readable, and our language more uid. For example, with a vector v a and another w a , index-free denoted v and w respectively, we write their inner product (with respect to the metric g) as v • w = g ab v a w b = v a w a . We sometimes use similar notation for the "double" inner product, i.e. double contractions, e.g. for two rank-2 contravariant tensors A ab and B ab , we write A : B = g ac g bd A ab B cd = A ab B ab .

Another helpful piece of notation we shall frequently employ is the use of indexfree vectors (written in slanted bold) "as indices". This is meant to indicate projection in that index into the direction of the corresponding vector. For example, for any rank-2 contravariant tensor A, we can write some of its projections in the directions of the vectors v and w as:

A vb = A ab v a (which is now a rank-1 contravariant tensor), A vw = A ab v a w a
(which is a scalar) etc.

These conventions naturally generalize to tensors of higher rank. For more details, see the Notation and Conventions as well as Appendix A.

The next basic object we need to de ne is the metric-compatible derivative operator or connection ∇ a (or ∇). It is the unique derivative operator the action of which on the metric makes the latter vanish, i.e. ∇ a g bc = 0 (or ∇g = 0). Equivalently, its action on an arbitrary vector eld v is

∇ a v b = ∂ a v b + Γ b ac v c
, with ∂ a denoting the usual partial derivative and Γ c ab = 1 2 g cd (∂ a g bd + ∂ b g ad -∂ d g ab ) the Christo el symbols. (If we had any other derivative operator on the RHS instead of the partial derivative, the latter are generally referred to as connection coe cients.) The action of ∇ on arbitrary tensors can be generalized from this.

We typically denote a spacetime, that is, a four-dimensional Lorentzian manifold, by M . If a metric g and a compatible derivative ∇ are also de ned on the manifold M , then a spacetime more formally refers to the collection of objects

(M , g, ∇) , (1.2.4)
such that ∇g = 0 in M . We denote the set of all (k, l)-tensors in M (tensors with k covariant and l contravariant indices) by T k l (M ). In our notation, the geodesic equation [Eq. (1.2.1)] is the same, and equivalent to the condition that the four-velocity u a of the curve de ned as a geodesic is paralleltransported therealong, i.e. it satis es u a ∇ a u b = 0, or in index-free notation,

∇ u u = 0 .
(1.2.5) nonetheless still a rank-2 contravariant tensor, this notation is then typically reserved for referring instead to the trace.
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In local coordinates x a , this in turn is equivalent to

ẍa + Γ a bc ẋb ẋc = 0 , (1.2.6)
where an overdot indicates a total derivative with respect to the (a ne) parameter of the curve.

The notion of curvature is encoded in the Riemann tensor R abc d , de ned from the derivative operator ∇ in the usual way: for any dual vector ω a ,

(∇ a ∇ b -∇ b ∇ a ) ω c = R abc d ω d . (1.2.7) Moreover, R ac = R abc b is the Ricci tensor 8 and, as usual, R = tr(R) = g ab R ab = R a a is
its trace, the Ricci scalar.

De ning the Einstein tensor as

G = R - 1 2 Rg , (1.2.8)
the eld equation of general relativity for the matter-free gravitational eld, as Einstein introduced it above, is G = 0 .

(1.2.9) (This is equivalent to R = 0.) Matter, in the precise sense de ned above by Einstein and the one to which we shall also adhere, is described by a stress-energy-momentum (symmetric rank-2 contravariant) tensor T ab . If a matter action S M is known (constructed from a Lagrangian yielding the correct matter eld equations), T is simply de ned, up to a factor, as the functional derivative of this action with respect to the metric,

T = - 2 √ -g δS M δg .
(1.2.10)

The Einstein equation in general states that this sources the Einstein tensor, (1.2.11) where κ = 8πG N /c 4 is the Einstein constant, with G N the Newton constant and c the speed of light. Note that we sometimes use the interchangeable nomenclature "Einstein equations" (in plural) to refer to the (ten) components of Eq. (1.2.11).

G = κT in M ,

Geometry, gravity and motion

While Newton brazenly left "open to the consideration of [his] readers" the task of contemplating the nature his omnipresent gravitational "agent", Einstein had signi cantly more to say on this topic in the light and context of his own theory. A simpli cation of the main message of general relativity-re ected, at the most basic level, in the interpretation of the spacetime metric g ab as the "gravitational eld"-is that gravity ought to be conceived of as nothing more than the manifestation of curvature in the geometry of spacetime. This is quite a generally accepted point of view today, and Einstein himself seems to have endorsed it at least at some "operational" level.

However, it seems that, to Einstein, the essence of the theory was more subtle than simply "reducing physics to geometry", a phrase to which he oftentimes attributed no, or otherwise completely tautological, meaning-insofar as the basic mathematical language of any theory of physics, at least in the post-Newtonian paradigm, lends itself to some level of geometric representation by virtue of its ultimate association to our spatial experiences: from the eld lines of Maxwell's theory that we have all seen plainly materialized, for example, in the orientation of iron shavings on a sheet of paper underneath a magnet, to more abstract constructs like the Hamiltonian phase space, described (as we shall see in ample detail in the next chapter of this thesis) by beautiful geometrical ideas of their own, in this case those of symplectic geometry. Indeed, Einstein explicitly complains about this in a letter to Lincoln Barnett towards the end of this life [START_REF] Lehmkuhl | Why Einstein did not believe that general relativity geometrizes gravity[END_REF]]:

I do not agree with the idea that the general theory of relativity is geometrizing Physics or the gravitational eld. The concepts of Physics have always been geometrical concepts and I cannot see why the g ik eld should be called more geometrical than f.[or] i.[nstance] the electromagnetic eld or the distance of bodies in Newtonian Mechanics9 . The notion comes probably from the fact that the mathematical origin of the g ik eld is the Gauss-Riemann theory of the metrical continuum which we wont look at as a part of geometry. I am convinced, however, that the distinction between geometrical and other kinds of elds is not logically found.

Instead, both during and after the development of general relativity, Einstein was much more fascinated with the connection implied by his theory between gravity and inertia-in particular, through the geodesic equation. The seeds of this lie in the equivalence principle, and speci cally in his famous "fortunate thought" of 1907, which he recollects in 1920 (from [START_REF] Lehmkuhl | Why Einstein did not believe that general relativity geometrizes gravity[END_REF]):

Then I had the most fortunate thought of my life in the following form: The gravitational eld only has a relative existence in a manner similar to the electric eld generated by electro-magnetic induction. Because for an observer in free-fall from the roof of a house, there is during the fall-at least in his immediate vicinity-no gravitational eld. Namely, if the observer lets go of any bodies, Chapter 1. Introduction they remain, relative to him, in a state of rest or uniform motion, independent of their special chemical or physical nature.

In a series of lectures a year later, he elaborates upon his thoughts connecting these ideas [START_REF] Einstein | Four Lectures on the Theory of Relativity[END_REF]] (from [START_REF] Einstein | Four Lectures on the Theory of Relativity, Held at Princeton University in May 1921[END_REF]]):

A material particle upon which no force acts moves, according to the principle of inertia, uniformly in a straight line. [...] The natural, that is, the simplest, generalization of the straight line which is meaningful in the system of concepts of the general (Riemannian) theory of invariants is that of the straightest, or geodesic, line. We shall accordingly have to assume, in the sense of the principle of equivalence, that the motion of a material particle, under the action only of inertia and gravitation, is described by the equation,

d 2 x µ ds 2 + Γ µ αβ dx α ds dx β ds = 0 . (1.3.1)
In fact, this equation reduces to that of a straight line if all the components, Γ µ αβ , of the gravitational eld vanish.

[...] [The above equations, our Eq. (1.3.1)] express the in uence of inertia and gravitation upon the material particle. The unity of inertia and gravitation is formally expressed by the fact that the whole left-hand side of [our Eq. (1.3.1)] has the character of a tensor (with respect to any transformation of coordinates), but the two terms taken separately do not have tensor character. In analogy with Newton's equations, the rst term would be regarded as the expression for inertia, and the second as the expression for the gravitational force.

It is worth underlining that the latter is only an analogy-and one that comes about only if one happened to be concerned with comparing general relativity to another speci c theory, in this case the Newtonian one. To some extent, Einstein seems to have appreciated the uni cation of gravity and inertia in his theory, through the geodesic equation, similarly to that achieved between electricity and magnetism through Maxwell's equations. The interesting discrepancy, nevertheless, is that Einstein perceived his uni cation to lie not in the eld equations of the theory itself (i.e. the Einstein equation), as had been the case with the electromagnetic uni cation, but rather in the equation of motion of idealized "test" particles.

Not surprisingly, perhaps, Einstein as well as others eventually became interested in the question of whether the geodesic equation could actually be obtained, under suitable conditions, as a consequence of the gravitational eld equations-in lieu of postulating it as an independent, additional assumption. The rst results in this direction began to arrive in the 1930s. In one of Einstein's rst seminal papers speci cally focused on this issue, co-written with Rosen, we see articulated the view that, indeed, the " eld" concept ought to lie at the basis of motion [START_REF] Einstein | The Particle Problem in the General Theory of Relativity[END_REF]:

The main value of the considerations we are presenting consists in that they point the way to a satisfactory treatment of gravitational mechanics. One of the imperfections of the original relativistic theory of gravitation was that as a eld theory it was not complete; it introduced the independent postulate that the law of motion of a particle is given by the equation of the geodesic. A complete eld theory knows only elds and not the concepts of particle and motion. For these must not exist independently from the eld but are to be treated as part of it. On the basis of the description of a particle without singularity, one has the possibility of a logically more satisfactory treatment of the combined problem: The problem of the eld and that of the motion coincide.

Einstein continued working on this problem [START_REF] Einstein | The Gravitational Equations and the Problem of Motion[END_REF], and by 1946 when he wrote the appendix to the third edition of his Meaning of Relativity [START_REF] Einstein | The Meaning of Relativity[END_REF]], he was satis ed that it "has been shown that this law of motion-generalized to the case of arbitrarily large gravitating masses-can be derived from the eld equations of empty space alone".

Since then, work in this direction has continued, and a variety of proofs have been put forward over the decades for the geodesic equation as the equation of motion of idealized "test" particles following from the eld equations of general relativity. See [START_REF] Geroch | Motion of a body in general relativity[END_REF][START_REF] Ehlers | Equation of motion of small bodies in relativity[END_REF] for some of the most famous such proofs. See also [START_REF] Weatherall | Geometry and Motion in General Relativity[END_REF]] for a recent general review of the most widely used approaches, as well as an interesting novel proposal.

These proofs often-though certainly not always-involve, in some way, the modeling of the "test" particle as matter concentrated at a spatial point. In other words, one has a stress-energy-momentum tensor T PP ab for a point-particle, which is given by [START_REF] Gralla | A rigorous derivation of gravitational self-force[END_REF]:

T PP ab = m u a u b √ -g δ x i -z i , (1.3.2)
where m is the mass, δ is in this case the three-dimensional Dirac delta function with x i denoting spatial coordinates, z i is the parametrization of the worldline in terms of proper time and u a is the four-velocity (understood here as a function of proper time). The next logical step from here is to pose the following problem: If a matter stressenergy-momentum tensor such as (1.3.2) is used to model the moving "small" mass m, this will source a similarly "small" correction to the spacetime metric g ab through the Einstein equation. This, in turn, will induce a "small" correction to the (geodesic) motion. For historical reasons, mostly having to do with an analogous phenomenon in classical electromagnetism (see, e.g., Chapter 16 of [START_REF] Jackson | Classical Electrodynamics[END_REF], this e ect is referred to as the gravitational self-force. The analogy at the root of this nomenclature, of course, should be as clear as that of Einstein when talking, vis-à-vis the Newtonian theory, of the Christo el symbols expressing "the gravitational force" [START_REF] Einstein | Four Lectures on the Theory of Relativity[END_REF]].
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Until the last quarter century or so, the issue of the gravitational self-force had not been extensively studied. Concordantly, there had not been any truly compelling empirical opportunities available in astrophysics where self-force e ects might be seen to play an important role. Now however, with the recent discovery of gravitational waves, a new window has been opened upon a wide variety of astrophysical phenomena, and especially binary systems in very strong gravitational regimes-including, prospectively, ones where the self-force plays a protagonistic role.

Gravitational waves and extreme-mass-ratio inspirals

The recent advent of gravitational wave astronomy-propelled by the ground-based direct detections achieved by the LIGO/Virgo collaboration (see [START_REF] Abbott | GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs[END_REF] for the detections during the O1 and O2 observing runs), the success of the LISA Path nder mission as a proof of principle for future space-based interferometric detectors [START_REF] Armano | Beyond the Required LISA Free-Fall Performance: New LISA Path nder Results down to 20 muHz[END_REF][START_REF] Armano | Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Path nder Results[END_REF], and the subsequent approval of the LISA mission for launch in the 2030s [START_REF] Amaro-Seoane | Laser Interferometer Space Antenna[END_REF], 2013]-has generally brought a multitude of both practical and foundational problems to the foreground of gravitational physics today. While a plethora of possibilities for gravitational wave sources are actively being investigated theoretically and anticipated to become accessible observationally, both on the Earth as well as in space, the most ubiquitous class of such sources has manifestly been-and foreseeably will remain-the coalescence of compact object binaries [START_REF] Celoria | Lecture notes on black hole binary astrophysics[END_REF][START_REF] Colpi | Gravitational Wave Sources in the Era of Multi-Band Gravitational Wave Astronomy[END_REF]. These are two-body systems consisting of a pair of compact objects, say of masses M 1 and M 2 , orbiting and eventually spiraling into each other. Each of these is, usually, either a black hole (BH) or a neutron star. There are also more general possibilities being investigated, including that of having a brown dwarf as one of the objects [Amaro-Seoane 2019].

The LIGO/Virgo detections during the rst scienti c runs [START_REF] Abbott | GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs[END_REF]], O1 and O2, have all involved binaries of stellar-mass compact objects (SCOs) located in our local neighbourhood. These have comparable masses, of the order of a few tens of solar masses each (M 1 ∼ M 2 ∼ 10 0-2 M ). In addition second-and third-generation terrestrial detectors can also eventually see intermediate-mass-ratio inspirals, binaries consisting of an intermediate-mass BH, of 10 2-4 M , and an SCO. While there is as yet no direct evidence for the existence of the former sorts of objects, there are good reasons to anticipate their detection (through gravitational waves) most likely at the centers of globular clusters, and their study provides an essential link to the strongly perturbative regime of compact object binary dynamics.

It is even further in this direction that future space-based detectors such as LISA are anticipated to take us. In particular, LISA is expected to see extreme-mass-ratio inspirals (EMRIs) [Amaro-Seoane 2018], compact binaries where M 1 M 2 . An elementary sketch F 1.4. Sketch of an extreme-mass-ratio inspiral (EMRI), a two-body system consisting of a stellar-mass compact object (SCO), usually a stellarmass black hole, of mass m ∼ 10 0-2 M , orbiting and eventually spiralling into a (super-) massive black hole (MBH), of mass M ∼ 10 4-7 M , and emitting gravitational waves in the process. is depicted in Figure 1.4. The more massive object could be a (super-) massive black hole (MBH) of mass M 1 = M ∼ 10 4-7 M located at a galactic center, with the signi cantly less massive object-e ectively orbiting and eventually spiraling into the MBH-being an SCO: either a stellar-mass black hole or a neutron star, with M 2 = m ∼ 10 0-2 M .

Average estimates indicate that LISA will be able to see on the order of hundreds of EMRI events per year [START_REF] Babak | Science with the space-based interferometer LISA. V. Extreme mass-ratio inspirals[END_REF], with an expectation of observing, for each, thousands of orbital cycles over a period on the order of one year before the nal plunge [START_REF] Barack | Self-force and radiation reaction in general relativity[END_REF]]. The trajectories de ning these cycles and the gravitational wave signals produced by them will generally look much more complex than the relatively generic signals from mergers of stellar-mass black holes of comparable masses as observed, for example, by LIGO/Virgo.

EMRIs will therefore o er an ideal experimental milieu for strong gravity: the complicated motion of the SCO around the MBH will e ectively "map out" the geometry-that is, the gravitational eld-around the MBH, thus presenting us with an unprecedented opportunity for studying gravity in the very strong regime [START_REF] Babak | Science with the space-based interferometer LISA. V. Extreme mass-ratio inspirals[END_REF][START_REF] Berry | The unique potential of extreme mass-ratio inspirals for gravitational-wave astronomy[END_REF]. In particular, among the possibilities o ered by EMRIs are the measurement of the mass and spin of the MBH to very high accuracy, testing the validity of the Kerr metric as the correct description of BHs within general relativity (GR), and testing GR itself as the correct theory of gravity.

Yet, the richness of the observational opportunities presented by EMRIs comes with an inexorable cost: that is, a signi cant and as yet ongoing technical challenge in their theoretical modeling. This is all the more pressing as the EMRI signals expected from LISA are anticipated to be much weaker than the instrumental noise of the detector. E ectively, what this means is that extremely accurate models are necessary in order to produce the waveform templates that can be used to extract the relevant signals from the detector data stream. At the theoretical level, the problem of EMRI modeling cannot be tackled directly F 1.5. The main approaches used in practice for the modeling of compact object binaries as a function of the mass ratio (increasing from 1) and the inverse separation involved. For high separations between the bodies, post-Newtonian and post-Minkowskian methods are used. For low separations and low mass ratios, numerical relativity is used. For low separations and extreme mass ratios, as the scale of a numerical grid would have to span orders of magnitude thus rendering it impracticable, perturbation theory must be used-in particular, self-force methods.

with numerical relativity (used for the LIGO/Virgo detections), simply due to the great discrepancy in (mass/length) scales; however, for the same reason, the approach that readily suggests itself is perturbation theory. See Figure 1.5 for a graphic depicting the main methods used for compact object binary modeling in the di erent regimes. In particular, modeling the strong gravity, extreme mass ratio regime turns out to be equivalent to a general and quite old problem which can be posed in any (not just gravitational) classical eld theory: the so-called self-force problem.

The self-force problem

Suppose we are dealing with a theory for a eld ψ(x) in some spacetime. If the theory admits a Lagrangian formulation, we can usually assume that the eld equations have the general form

L[ψ (x)] = S (x) , (1.5.1)
where L is a (partial, possibly nonlinear and typically second-order) di erential operator, and we refer to S as the source of the eld ψ. Broadly speaking, the problem of the self-force is to nd solutions ψ(x) satisfying (1.5.1) when S is "localized" in spacetime. Intuitively, it is the question of how the existence of a dynamical ( eld-generating) "small object" (a mass, a charge etc.) backreacts upon the total eld ψ, and hence in turn upon its own future evolution subject to that eld. Thus, an essential part of any detailed selfforce analysis is a precise speci cation of what exactly it means for S to be localized.

In standard approaches, one typically devises a perturbative procedure whereby S ends up being approximated as a distribution, usually a Dirac delta, compactly supported on a worldline-that is, the background (zeroth perturbative order) worldline of the small object. However, this already introduces a nontrivial mathematical issue: if L is non-linear (in the standard PDE sense), then the problem (1.5.1) with a distributional source S is mathematically ill-de ned, at least within the classical theory of distributions [START_REF] Schwartz | Théorie des distributions[END_REF]] where products of distributions do not make sense [Schwartz 1954] 10 .

One might therefore worry that nonlinear physical theories, such as GR, would a priori not admit solutions sourced by distributions, and we refer the interested reader to [START_REF] Geroch | Strings and other distributional sources in general relativity[END_REF] for a classic detailed discussion of this topic. The saving point is that, while the full eld equation (in this case, the Einstein equation) may indeed be generally non-linear, if we devise a perturbative procedure (where the meaning of the perturbation is prescribed in such a way as to account for the presence of the small object itself), then the rst-order eld equation is, by construction, linear in the ( rst-order) perturbation δψ of ψ. Thus, assuming the background eld is a known exact solution of the theory, it always makes sense to seek solutions δψ to δL[δψ (x)] = S (x) ,

(1.5.2) for a distributional source S, where δL indicates the rst-order part of the operator L in the full eld equation (1.5.1). As this only makes sense for the (linear) rst-order problem, such an approach becomes again ill de ned if we begin to ask about the (nonlinear) secondor any higher-order problem. Additional technical constructions are needed to deal with these, the most common of which for the gravitational self-force has been the so-called "puncture" (or "e ective source") method [Barack and Golbourn 2007;[START_REF] Barack | M-mode regularization scheme for the selfforce in Kerr spacetime[END_REF][START_REF] Barack | Self-force and radiation reaction in general relativity[END_REF][START_REF] Vega | Regularization of elds for self-force problems in curved spacetime: Foundations and a time-domain application[END_REF]; similar ideas have proven to be very useful also in numerical relativity [START_REF] Baker | Gravitational-Wave Extraction from an Inspiraling Con guration of Merging Black Holes[END_REF]Campanelli et Chapter 1. Introduction al. 2006]. For work on the second-order equation of motion for the gravitational selfforce problem, see e.g. [START_REF] Gralla | Second-order gravitational self-force[END_REF][START_REF] Pound | Nonlinear gravitational self-force: Second-order equation of motion[END_REF][START_REF] Pound | Second-Order Gravitational Self-Force[END_REF]. For now, we assume that we are interested here in the rst-order self-force problem (1.5.2) only. Now concretely, in GR, our physical eld ψ is simply the spacetime metric g ab (where Latin letters from the beginning of the alphabet indicate spacetime indices), and following standard convention we denote a rst-order perturbation thereof by δg ab = h ab . The problem (1.5.2) is then just the rst-order Einstein equation,

δG ab [h cd ] = κT PP ab , (1.5.3)
where G ab is the Einstein tensor, κ = 8π (in geometrized units c = G = 1) is the Einstein constant, and T PP ab the energy-momentum tensor of a "point particle" (PP) compactly supported on a given worldline C . We will return later to discussing this more precisely, but in typical approaches, C turns out to be a geodesic-that is, the "background motion" of the small object, which is in this case a small mass 11 . Thus, simply solving (1.5.3) for h ab assuming a xed C for all time, though mathematically well-de ned, is by itself physically meaningless: it would simply give us the metric perturbations caused by a small object eternally moving on the same geodesic. Instead what we would ultimately like is a way to take into account how h ab modi es the motion of the small object itself. Thus in addition to the eld equation (1.5.3), any self-force analysis must be supplemented by an equation of motion (EoM) telling us, essentially, how to move from a given background geodesic C at one step in the (ultimately numerical) time evolution problem to a new background geodesic C at the next time step-with respect to which the eld equation (1.5.3) is solved anew, and so on. This is sometimes referred to as a "self-consistent" approach. See Fig. 1.6 for a visual depiction.

The rst proposal for an EoM for the gravitational self-force (GSF) problem was put forward in the late 1990s, since known as the MiSaTaQuWa equation after its authors [START_REF] Mino | Gravitational radiation reaction to a particle motion[END_REF][START_REF] Quinn | Axiomatic approach to electromagnetic and gravitational radiation reaction of particles in curved spacetime[END_REF]]. On any C , it reads:

Za = -Eb a Z b + F a [h tail cd ; Ů e ] . (1.5.4)
The LHS is a second (proper) time derivative of a deviation vector Z a on C pointing in the direction of the "true motion" (away from C ), to be de ned more precisely later. On the RHS, Eab is the electric part of the Weyl tensor on C , such that the rst term is a usual "geodesic deviation" term. The second term on the RHS is the one usually understood as being responsible for self-force e ects: F a [•; •] is a four-vector functional of a symmetric rank-2 contravariant tensor and a vector, to which we refer in general (for any arguments) as the GSF functional. In any spacetime with a given metric gab and compatible derivative F 1.6. A depiction of the perturbative problem for the gravitational self-force (GSF). In particular, this represents one of the most popular conceptions of a so-called "self-consistent" approach [START_REF] Gralla | A rigorous derivation of gravitational self-force[END_REF]: at a given step (on a given Cauchy surface) in the time evolution problem, one computes the "correction to the motion" away from geodesic ( C ) in the form of a deviation vector Z a , determined by the GSF. Then, at the next time step, one begins on a new ("corrected") geodesic ( C ), computes the new deviation vector, and so on.

operator ∇a , it is explicitly given by the following simple action of a rst-order di erential operator:

F a [H bc ; V d ] = -gab + V a V b ∇c H bd - 1 2 ∇b H cd V c V d . (1.5.5)
While this is easy enough to calculate once one knows the arguments, the main technical challenge in using the MiSaTaQuWa equation (1.5.4) lies precisely in the determination thereof: in particular, h tail ab is not the full metric perturbation h ab which solves the eld equation (1.5.3), but instead represents what is called the "tail" integral of the Green functions of h ab [START_REF] Poisson | The Motion of Point Particles in Curved Spacetime[END_REF]]. This quantity is well de ned, but di cult to calculate in practice and usually requires the xing of a perturbative gauge-typically the Lorenz gauge, ∇b (h ab -1 2 h cd gcd gab ) = 0. Physically, h tail ab can be thought of as the part of the full perturbation h ab which is scattered back by the spacetime curvature. (In this way, h ab Chapter 1. Introduction can be regarded as the sum of h tail ab and the remainder, what is sometimes called the "instantaneous" or "direct" part h direct ab , responsible for waves radiated to in nity [A. D. A. M. [START_REF] Spallicci | Self-force driven motion in curved spacetime[END_REF].)

An alternative, equivalent GSF EoM was proposed by Detweiler and Whiting in the early 2000s [START_REF] Detweiler | Self-force via a Green's function decomposition[END_REF]. It relies upon a regularization procedure for the metric perturbations, i.e. a choice of a decomposition for h ab [the full solution of the eld equation (1.5.

3)] into the sum of two parts: one which diverges-in fact, one which contains all divergent contributions-on C , denoted h S ab (the so-called "singular" eld, related to the "direct" part of the metric perturbation), and a remainder which is nite, h R ab (the so-called "regular" eld, related to the "tail" part), so that one writes h ab = h S ab + h R ab . An analogy with the self-force problem in electromagnetism gives some physical intuition behind how to interpret the meaning of this decomposition [START_REF] Barack | Self-force and radiation reaction in general relativity[END_REF], with h S ab ∼ m/r having the heuristic form of a "Coulombian self-eld". However, no procedure is known for obtaining the precise expression of h S ab in an arbitrary perturbative gauge, and moreover, once a gauge is xed (again, usually the Lorenz gauge), this splitting is not unique [START_REF] Barack | Self-force and radiation reaction in general relativity[END_REF]. Nevertheless, if and when such an h S ab is obtained (from which we thus also get h R ab = h ab -h S ab ), the Detweiler-Whiting EoM for the GSF reads:

Za = -Eb a Z b + F a [h R cd ; Ů e ] .
(1.5.6)

The EoMs (1.5.4) and (1.5.6) are equivalent in the Lorenz gauge and form the basis of the two most popular methods used today for the numerical computation of the GSF. Yet a great deal of additional technical machinery is required for handling gauge transformations. This is essential because, in the EMRI problem, the background spacetime metricthat of the MBH-is usually assumed to be Schwarzschild-Droste or Kerr. Perturbation theory for such spacetimes has been developed and is most easily carried out in, respectively, the so-called Regge-Wheeler and radiation gauges; in other words, in practice, it is often di cult (though not infeasible-see, e.g., [START_REF] Barack | Perturbations of Schwarzschild black holes in the Lorenz gauge: Formulation and numerical implementation[END_REF]) to compute h ab directly in the Lorenz gauge for use in (1.5.4) or (1.5.6).

A proposal for an EoM for the GSF problem that is valid in a wider class of perturbative gauges was presented by Gralla in 2011 [START_REF] Gralla | Gauge and averaging in gravitational self-force[END_REF]]. It was therein formulated in what are called "parity-regular" gauges, i.e. gauges satisfying a certain parity condition. This condition ultimately has its origins in the Hamiltonian analysis of Regge andTeitleboim in the 1970s [Regge and[START_REF] Regge | Role of surface integrals in the Hamiltonian formulation of general relativity[END_REF], wherein the authors introduce it in order to facilitate the vanishing of certain surface integrals and thus to render certain general-relativistic Hamiltonian notions, such as multipoles and "center of mass", wellde ned mathematically. In parity-regular gauges (satisfying the Regge-Teitleboim parity condition), the Gralla EoM-mathematically equivalent, in the Lorenz gauge, to the MiSa-TaQuWa and the Detweiler-Whiting EoMs-is:

Za = -Eb a Z b + 1 4π lim r→0 Ŝ2 r S 2 F a [h cd ; Ů e ] .
(1.5.7)

The GSF (last) term on the RHS is obtained in this approach by essentially relating the deviation vector Z a (the evolution of which is expressed by the LHS) with a gauge transformation vector and then performing an "angle average" over a "small" r-radius twosphere S 2 r , with S 2 the volume form of the unit two-sphere, of the so-called "bare" GSF,

F a [h bc ; Ů d ].
The latter is just the GSF functional [Eq. (1.5.5)] evaluated directly using the full metric perturbatiuon h ab (i.e. the "tail" plus "direct" parts, or equivalently, the "regular" plus "singular" parts), around (rather than at the location of) the distributional source. The point therefore is that this formula never requires the evaluation of h ab on C itself, where it is divergent by construction; instead, away from C it is always nite 12 , and (1.5.7) says that it su ces to compute the GSF functional (1.5.5) with h ab directly in the argument (requiring no further transformations), and integrate it over a small sphere.

The manifest advantage of (1.5.7) relative to (1.5.4) or (1.5.6) is that no computations of tail integrals or regularizations of the metric perturbations are needed at all. Yet, to our knowledge, there has thus far been no attempted numerical computation of the GSF using this formula. One of the issues with this remains that of the perturbative gauge: depending upon the detailed setup of the problem, one may still not easily be able to compute h ab directly in a parity-regular gauge (although manifestly, working in the parity-regular "nostring" radiation gauge [START_REF] Pound | Gravitational self-force from radiation-gauge metric perturbations[END_REF]] may be useful for a GSF calculation in Kerr), i.e. a gauge in which (1.5.7) is strictly valid, and so further gauge transformations may be needed. Aside from the practical issues with a possible numerical implementation of this, there is also a conceptual issue: this formula originates from an essentially mathematical argument-by a convenient "averaging" over the angles-so as to make it well-de ned in a Hamiltonian setting via a relation to a canonical de nition of the center of mass. Yet its general form as a closed two-surface integral suggestively hints at the possibility of interpreting it not merely as a convenient mathematical relation, but as a real physical ux of (some notion of) "gravitational momentum". We contend and will demonstrate in Chapter 1. Introduction this thesis (speci cally, in Chapter 5) that indeed an even more general version of (1.5.7), not restricted by any perturbative gauge choice (so long as one does not construct it in such a way that produces divergences in h away from C ), results from the consideration of momentum conservation laws in GR.

CHAPTER 2

Canonical General Relativity

Chapter summary. The aim of this chapter is to introduce the basic mathematical language and technical machinery of the theory of general relativity following variational methods. We focus especially on developing the canonical formulation of general relativity, also known as the Hamiltonian or (3 + 1) formulation. In essence, this provides a way of turning the second-order eld equations of the theory for the spacetime metric into a rst-order time-evolution problem for the induced spatial three-metric and its conjugate momentum. There are, however, also constraint equations in addition to these (constraining permissible initial conditions as well as their development subject to the dynamical equations), and their proper handling requires a great deal of subtlety. The existence of constraints in general relativity is in fact directly related to-and o ers fruitful insight on-the gauge freedom available in the theory.

We begin in Section 2.1 with a brief introduction. We generally discuss four broad areas of application for canonical general relativity: mathematical relativity, numerical relativity, quantum gravity, and the issue of gravitational energy-momentum. We return to each of these in the nal section of this chapter with speci c examples, once we have developed the mathematical tools in detail.

In Section 2.2, we present the Lagrangian formulation of classical eld theories in general, and then general relativity in particular, forming the typical starting point of any canonical analysis. We comment on the appearance of constraint equations already at the Lagrangian level, a proper explanation of which requires the canonical picture.

In Section 2.3, we develop the canonical formulation of eld theories in general, with a careful accounting of the issue of constraints. To this end, we prescribe here the general recipe for foliating spacetime into constant-time spatial (Cauchy) three-surfaces, such that a notion of time evolution in spacetime can be de ned. We also de ne the canonical phase space and the Hamiltonian equations of motion for general eld theories, introducing the basic mathematical methods of symplectic geometry.

Then, in section 2.4, we proceed to apply this formalism to general relativity in order to formulate it as a canonical theory. In particular, the canonical variables are the induced three-metric on each spatial slice (associated with the choice of foliation), as well as the lapse function and the shift vector (associated with a choice of a time ow vector eld), plus their respective conjugate momenta. The lapse and shift are not dynamical variables:

Chapter 2. Canonical General Relativity their associated equations are rst-order in time, and their conjugate momenta vanish. These constitute the constraints of general relativity.

Finally, in Section 2.5, we return in greater detail to the four broad areas of application of canonical general relativity enumerated in the introductory section, and we provide illustrations with explicit examples.

Relativitat general canònica (chapter summary translation in Catalan). L'objectiu d'aquest capítol és introduir el llenguatge matemàtic bàsic i la maquinària tècnica de la teoria de la relativitat general seguint mètodes variacionals. Ens centrem especialment en desenvolupar la formulació canònica de la relativitat general, també coneguda com la formulació hamiltoniana o (3+1). En essència, això proporciona una manera de convertir les equacions de camp de segon ordre de la teoria per al tensor mètric de l'espai-temps en un problema d'evolució temporal de primer ordre per al tensor mètrica espacial tridimensional induït i el seu moment conjugat. Tanmateix, també hi ha equacions de restricció a més d'aquestes (restringint les condicions inicials admissibles, així com el seu desenvolupament subjecte a les equacions dinàmiques), i el seu correcte maneig requereix molta subtilesa. L'existència de restriccions en la relativitat general està directament relacionada amb -i ofereix una visió útil sobre -la llibertat de mesura disponible en la teoria.

Comencem a la Secció 2.1 amb una breu introducció. Generalment es discuteixen quatre àmplies àrees d'aplicació de la relativitat general canònica: la relativitat matemàtica, la relativitat numèrica, la gravetat quàntica i el tema de l'energia i la quantitat de moviment gravitatòria. Tornem a cadascun d'aquests a la secció nal d'aquest capítol amb exemples especí cs, un cop desenvolupades les eines matemàtiques en detall.

A la secció 2.2, presentem la formulació lagrangiana de les teories de camps clàssics en general, i la relativitat general en particular, formant el punt de partida típic de qualsevol anàlisi canònica. Comentem l'aparició d'equacions de restricció ja a nivell lagrangià, una explicació adequada de la qual es requereix la formulació canònica.

A la secció 2.3, desenvolupem la formulació canònica de les teories de camps en general, amb una acurada explicació del problema de les restriccions. Amb aquesta nalitat, prescrivim aquí la recepta general per foliar l'espai-temps en superfícies espacials tridimensionals de temps constant (superfícies Cauchy), de manera que es pot de nir una noció d'evolució en el temps en l'espai-temps. També de nim l'espai de fase canònica i les equacions de moviment hamiltonianes per a les teories generals de camp, introduint els mètodes matemàtics bàsics de la geometria simplectica.

A continuació, a la secció 2.4, procedim a aplicar aquest formalisme a la relativitat general per tal de formular-lo com a teoria canònica. En particular, les variables canòniques són el tensor mètric tridimensional induït en cada llesca espacial (associat a l'elecció de la foliació), així com la funció de lapse i el vector de shift (associats amb una elecció d'un camp vectorial de ux de temps), més els seus moments conjugats respectius. El lapse i el shift no són variables dinàmiques: les seves equacions associades són de primer ordre en el temps i els seus moments conjugats desapareixen. Aquests constitueixen les restriccions de la relativitat general.

Finalment a la secció 2.5, tornem amb més detall a les quatre àmplies àrees d'aplicació de la relativitat general canònica enumerades a la secció introductòria, i proporcionem il•lustracions amb exemples explícits.

Relativité générale canonique (chapter summary translation in French). Le but de ce chapitre est de présenter le langage mathématique de base et la machinerie technique de la théorie de la relativité générale suivant les méthodes variationnelles. Nous nous concentrons particulièrement sur le développement de la formulation canonique de la relativité générale, également connue sous le nom de la formulation hamiltonienne ou (3 + 1). En substance, cela fournit un moyen de transformer les équations de champ de deuxième ordre de la théorie pour le tenseur métrique de l'espace-temps en un problème d'évolution temporelle de premier ordre pour le tenseur métrique spatial trois-dimensionnel induit et son moment conjugué. Cependant, il existe également des équations de contrainte (restreignant les conditions initiales admissibles ainsi que leur développement en fonction des équations dynamiques), et leur traitement correct nécessite beaucoup de subtilité. L'existence de contraintes dans la relativité générale est en fait directement liée à -et o re un éclairage utile sur -la liberté de jauge disponible dans la théorie.

Nous commençons à la section 2.1 avec une brève introduction. Nous traitons généralement quatre grands domaines d'application de la relativité générale canonique : la relativité mathématique, la relativité numérique, la gravitation quantique et la question de l'énergie et la quantité de mouvement gravitationnelles. Nous reviendrons sur chacun d'eux dans la dernière section de ce chapitre avec des exemples spéci ques, une fois que nous aurons développé les outils mathématiques en détail.

Dans la section 2.2, nous présentons la formulation lagrangienne des théories de champ classiques en général, puis de la relativité générale en particulier, constituant le point de départ typique de toute analyse canonique. Nous commentons sur l'apparition d'équations de contraintes déjà au niveau lagrangien, dont l'explication correcte nécessite la formulation canonique.

Dans la section 2.3, nous développons la formulation canonique des théories de champ en général, tenant en compte la question des contraintes. À cette n, nous prescrivons ici la recette générale de feuilleter l'espace-temps en surfaces spatiales trois-dimensionnelles à temps constant (surfaces de Cauchy), de manière à pouvoir dé nir une notion d'évolution temporelle dans l'espace-temps. Nous dé nissons également l'espace des phases canonique et les équations hamiltoniennes du mouvement pour les théories générales du champ, en introduisant les méthodes mathématiques de base de la géométrie symplectique.
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Ensuite, dans la section 2.4, nous appliquons ce formalisme à la relativité générale a n de la formuler en tant que théorie canonique. En particulier, les variables canoniques sont le tenseur métrique trois-dimensionnel induite sur chaque tranche spatiale (associée au choix de la foliation), et la fonction de déchéance (lapse) et le vecteur de décalage (shift) (associés au choix d'un champ de vecteurs de ux temporel), ainsi que leurs moments conjugués respectifs. La déchéance et le décalage ne sont pas de variables dynamiques : leurs équations associées sont du premier ordre dans le temps et leurs moments conjugués disparaissent. Celles-ci constituent les contraintes de la relativité générale.

En n, dans la section 2.5, nous reviendrons plus en détail sur les quatre grands domaines d'application de la relativité générale canonique énumérés dans la section introductive et nous fournissons des illustrations avec des exemples explicites.

Introduction

There are a number of diverse motivations for casting GR into a canonical form, and for our choice to introduce the topic in this way. We begin by enumerating four broad areas of interest, and comment more on each, focusing on speci c examples of applications, in the nal section of this chapter.

(1) Mathematically, canonical methods provide a very useful way to develop the sort of geometrical tools generally used for studying subsets of spacetimes, in particular by splitting them up into (usually, families of lower-dimensional) hypersurfaces via some established procedure. The classical Hamiltonian approach splits spacetime into spatial slices de ned, for example, by the constancy of a time function, and is thus adapted to studying "the entire space" at di erent instants of time. Similar technical constructions can be employed for studying the dynamics of nite (bounded) systems within a spacetime throughout some span of time; in such a case, one could foliate spacetime, for instance, by the constancy of a radial function in order to study the dynamics of the resulting worldtubes. (We shall see more along these lines in Chapter 5.) Spacetime splittings of this sort, and especially (3 + 1) splittings, have supplied the basic framework for many important results in the mathematics of GR.

(2) Practically, canonical methods form the basis of numerical relativity-that is, formulating the Einstein equation as a suitable set of time-dependent partial di erential equations (PDEs) which, given some appropriate initial data, can be evolved on computers to obtain numerical solutions. Simulations of strongly dynamical gravitational systems rely critically on methods of this sort.

(3) In going beyond GR, in particular in seeking theories of quantum gravity, canonical methods are often regarded as a key connection between the languages of GR and quantum mechanics. Indeed, typical canonical quantization procedures follow some variant of transforming classical canonical variables into operators on a Hilbert space of quantum states. Loop quantum gravity, for example, is a candidate theory of quantum gravity which essentially attempts to do this for gravitational canonical variables de ned in a suitable way.

(4) Last but not at all least, from a physical point of view, canonical methods form the traditional starting point for understanding the notion of gravitational energy-momentum. In particular, they can supply de nitions of gravitational energy-momentum of an entire spacetime under some speci c conditions, e.g. the Arnowitt-Deser-Misner (ADM) energy-momentum for asymptotically-at spacetimes. On the other hand, canonical methods are not designed to be able to say much more than this, and in particular, anything about the gravitational energy-momentum of a nite spatial region within some spacetime. For the latter, methods such as the worldtube boundary splittings mentioned in (1) are better designed, yet to this day no general consensus exists among relativists on the "best" way to do this. We will comment more on this in later chapters of this thesis, but we end here by remarking that, nevertheless, any proposed de nition for gravitational energy-momentum of a nite system is generally expected to agree with, e.g., the ADM energy-momentum in the at asymptotic limit.

Canonical GR encompasses a variety of possible formulations of GR in terms of some chosen canonical variables (con gurations and their conjugate momenta). The rst canonical formulation of GR was achieved in 1950, following a quantum gravity motivation, by [START_REF] Pirani | On the Quantization of Einstein's Gravitational Field Equations[END_REF][START_REF] Pirani | On the Quantization of the Gravitational Field of General Relativity[END_REF], and independently the following year by [START_REF] Anderson | Constraints in Covariant Field Theories[END_REF].

Then, [Dirac 1958a,b] formulated the general framework for working with constrained Hamiltonian systems, a topic we systematically develop in this chapter before applying it to GR. Beginning in the following year, Arnowitt, Deser and Misner [START_REF] Arnowitt | Dynamical Structure and De nition of Energy in General Relativity[END_REF] devised the rst coordinate-independent canonical formulation of GR, since then known eponymously as the ADM formulation. Following a series of further papers in the ensuing years, the authors summarized their results in a 1962 review article [START_REF] Arnowitt | The dynamics of general relativity[END_REF], republished more recently [START_REF] Arnowitt | Republication of: The dynamics of general relativity[END_REF]]. Today, it remains undoubtedly the most famous basic canonical formulation of GR.

Over the decades, other formulations have been developed in response to the application needs-e.g., the Ashtekar variable formulation used in quantum gravity, the Chapter 2. Canonical General Relativity Baumgarte-Shapiro-Shibata-Nakamura (BSSN) and generalized harmonic formulations used widely in numerical relativity (upon which we will elaborate further in the nal section), and numerous others.

Our presentation of canonical GR in this chapter is based, in its broadest outlines, on Chapter 10 and Appendix E of [START_REF] Wald | General Relativity[END_REF]], in combination with Chapter 3 of [START_REF] Bojowald | Canonical Gravity and Applications: Cosmology, Black Holes, and Quantum Gravity[END_REF]] (especially for the general formulation canonical theories and constraints). See also Chapter 4 of [START_REF] Poisson | A Relativist's Toolkit: The Mathematics of Black-Hole Mechanics[END_REF]] for many of the the step-by-step computations, largely omitted here in lieu of directly stating the main results.

For mathematical clari cations, we generally refer to [START_REF] Lee | Introduction to Smooth Manifolds[END_REF] for geometry (see also [START_REF] Nakahara | Geometry, Topology and Physics[END_REF]], written with more of a view towards physics), and [START_REF] Evans | Partial Di erential Equations[END_REF]] for PDE theory.

2.2. Lagrangian formulation 2.2.1. Lagrangian formulation of general eld theories. Let (M , g, ∇) be any (3 + 1)-dimensional spacetime. Suppose that we are interested in a theory describing a collection of elds ψ = {ψ A (x a )} A∈I in M , where A ∈ I is a general (possibly multi-) index for the elds ψ A (and will be accordingly omitted if understood), i.e. it can include tensor indices, eld indices etc. For example, if we are considering only gravity, then ψ = g, i.e. our collection of elds includes only the spacetime metric g ab . If we are considering gravity coupled to a matter eld, for example Maxwellian electromagnetism, then ψ = {g, F }, where F ab is the Faraday tensor.

Let S[ψ] be a functional of ψ. Let {ψ (λ) } λ∈R be a smooth one-parameter family of eld values and let δψ A = (∂ λ ψ A (λ) )| λ=0 . For all such families, suppose moreover that (∂ λ S[ψ (λ) ])| λ=0 exists and also that there exists a smooth eld χ A dual to ψ A (meaning

that if ψ A ∈ T k l (M ), then χ A ∈ T l k (M )), such that ∂S ∂λ λ=0 = ˆM e χ A δψ A . (2.2.1)
Here, for reasons that will become transparent shortly, we choose to write the integral with respect to the Minkowski volume form1 ,

e = dx 0 ∧ dx 1 ∧ dx 2 ∧ dx 3 = d 4 x . (2.2.2)
The factor of √ -g, with g = det(g), multiplying the above to yield the volume form of M ,

M = √ -g e , (2.2.3)
is absorbed into the de nition of χ A . Then, S[ψ] is said to be functionally di erentiable at ψ = ψ (0) and its functional derivative is de ned as

δS δψ A ψ (0) = χ A .
(2.2.4)

We will now focus our attention upon a certain class of such functionals S. Let V be a compact region in M such that supp(δψ A ) ⊂ V (i.e. δψ A takes non-zero values only in the interior of V ). See Fig. 2.1. We assume that S has the form

S [ψ] = ˆV e L [ψ] ,
(2.2.5)

such that L [ψ] = √ -gf ψ A , ∇ψ A , . . . , ∇ • • • ∇ψ A (2.2.6)
where f is a local function of ψ A and a nite number of its derivatives. If S is functionally di erentiable and extremized at the eld values ψ A which are solutions to the eld equations of the theory, then S is referred to as an action. We then refer to L as the Lagrangian density, and the speci cation of such an L is what is meant by a Lagrangian formulation of the theory. Note that we may have g ∈ ψ (i.e. the gravitational eld may be included in the theory, as in GR), and this is the reason for which we have preferred to simply absorb the √ -g (in this case, ψ dependent) factor into L, and thus to write S as an integral with respect to the at volume form e instead of the natural spacetime volume form M . All major theories of classical physics, including GR, admit a Lagrangian formulation. In other words, their eld equations are equivalent to the extremization of an action S[ψ] with respect to their physical elds ψ, which in turn can be shown to be equivalent to a system of PDEs known as the Euler-Lagrange equations. For eld theories of typical interest, including GR and Maxwellian electromagnetism (EM), L depends on ψ A and its rst derivatives only, i.e. L = √ -gf (ψ A , ∇ψ A ). In this case, these equations are

0 = δS δψ A ⇔ 0 = ∂L ∂ψ A + 1 2 ∂L ∂(∇ a ψ A ) ∇ a ln (-g) -∇ a ∂L ∂(∇ a ψ A )
.

(2.2.7)

These are second-order PDEs for ψ A . Now x a coordinate system {x α } = {t, x i }. Clearly, all terms which are second order in the derivatives of ψ will emerge from the nal term of the above equation: by implicit di erentiation, this is

∇ α ∂L ∂(∇ α ψ A ) = ∂ 2 L ∂(∇ α ψ A )∂ψ B ∇ α ψ B + ∂ 2 L ∂(∇ α ψ A )∂(∇ β ψ B ) ∇ α ∇ β ψ B . (2.2.8) F 2.1. A compact region V in a spacetime M
where the variation of physical elds are non-zero.

The coe cient of the second term on the RHS above is known as the principal symbol of the PDE; the α = t = β component of this term contains all the second time derivatives of the elds. Thus, the Euler-Lagrange equations have the form

0 = W AB ∂ 2 t ψ B + l A , (2.2.9)
where we have de ned

W AB = ∂ 2 L ∂(∇ t ψ A )∂(∇ t ψ B ) , (2.2.10)
and l A indicates lower (i.e. rst and zeroth) order terms in time derivatives. It is thus apparent that if and only if W AB is non-degenerate in the indices A, B ∈ I will we be able to obtain a complete set of solutions to the coupled set of equations, i.e. a set of n = card(I ) (the cardinality of I ) solutions. If that is the case, we would be able to invert W AB and write the complete system explicitly as

0 = ∂ 2 t ψ B + W -1 AB l A . (2.2.11)
If W AB is degenerate, however, then ψ A and its derivatives up to rst order in time and second order in space (and in particular, their initial conditions for the time evolution problem) cannot take arbitrary values. Speci cally, they must yield an l A which is in the image of W AB seen as a linear mapping between vector spaces, the dimension of which is thus less than n. Equivalently, W AB can be seen as a matrix (with indices in I ) that has (n -rank(W AB )) null eigenvectors v A j , with j (in serif font) used to label the set of these eigenvectors (each having components labelled by A ∈ I ). In other words, v A j are such that v A j W AB = 0. Multiplying the Euler-Lagrange equation by v A j on the left thus yields the independent equations, 0 = v A j l A .

(2.2.12)

These equations are known as constraints, since they do not involve second time derivatives of the elds and are thus not regarded as "dynamical" i.e. they do not prescribe the time evolution. We will gain a deeper appreciation for what this means once we pass to the Hamiltonian picture, but before we do, let us apply our ideas so far to GR.

2.2.2. Lagrangian formulation of GR. In vacuum, our only eld is the gravitational eld, ψ = g. If, in addition to the requirement that supp(δg) ⊂ V we also assume that supp(∇δg) ⊂ V , then the Einstein equation can be recovered fully from an action of the form (2.2.5). In particular, (2.2.13) are the Einstein-Hilbert action and Lagrangian respectively, with κ denoting the Einstein constant, κ = 8πG/c 4 = 8π in units of G = 1 = c. This formulation of GR was rst proposed by [START_REF] Hilbert | Die Grundlagen der Physik[END_REF]].

S EH [g] = ˆV e L EH [g] , L EH = 1 2κ √ -gR ,
In modern Lagrangian formulations of GR, however, it is typical not to assume anything about the support of ∇δg, and in particular its values on the bounday ∂V . Equivalently, only the metric components (and not the derivatives thereof) are to be regarded as being "held xed on the boundary" when one "varies the action". In this case, one must add a boundary term to (2.2.13) in order to cancel contributions involving ∇δg. In particular, this is known as the Gibbons-Hawking-York boundary term, rst proposed by [START_REF] York | Role of Conformal Three-Geometry in the Dynamics of Gravitation[END_REF]] and later developed by [START_REF] Gibbons | Action integrals and partition functions in quantum gravity[END_REF]. It is given by the integral of the trace of the extrinsic curvature (or second fundamental form) of ∂V , (2.2.14) where γ = g| ∂V is the induced metric on ∂V and n is the normal vector thereto. Thus, including a (boundary) integral of K = tr(K) in the action with the appropriate numerical factor, we will henceforth take

K ab = γ ac ∇ c n b ,
S G [g] = S EH + 1 κ ˆ∂V ∂V K (2.2.15)
to be the total gravitational action, i.e. the action of GR. For more on this, see also [J. D. [START_REF] Brown | Action and Energy of the Gravitational Field[END_REF] Here, G is the Einstein tensor of g and Π is the so-called canonical momentum of ∂V (the nomenclature of which will become clearer when we pass to the Hamiltonian formulation in the next section), given in terms of the extrinsic curvature by Π = K -Kγ. Thus, from (2.2.16), the stationary action principle yields the vacuum Einstein equation, G = 0 , (2.2.17) provided only that δγ| ∂V = 0.

The appearance of constraints can already be seen manifestly at the level of the full Einstein equation (2.2.17). Choose a coordinate system {x α } = {t, x i }. Then, by direct computation (writing the components of the Einstein tensor G αβ purely in terms of those of the metric g), one nds that

G t t = l ,
(2.2.18) 

G t i = l i , (2.2.19) G ij = - 1 2 g tt ∂ 2 t g ij - 1 2 g ij (g tk g tl -g tt g kl )∂ 2 t g kl + l ij , (2. 
M R × Σ , (2.3.1)
where Σ is a Cauchy surface-a closed set which does not intersect its chronological future, and the domain of dependence of which is the entire spacetime. As we wish to refrain from entering here into any further technicalities pertaining to general-relativistic causal structure, a broad and important subject in its own right, we refer the interested F 2.2. A depiction (in (2+1) dimensions) of the foliation of a spacetime (M , g) into Cauchy surfaces (Σ, h), where h is the metric induced on Σ by g. These surfaces are de ned by the constancy of a time function, t(x a ) = const., which uniquely determine a normal vector n. Additionally, one must de ne a time ow vector eld t on M the integral curves of which intersect the"same spatial point" (with the same coordinates x i ) on di erent slices.

reader to [START_REF] Hawking | The Large Scale Structure of Space-Time[END_REF] and Chapter 8 of [START_REF] Wald | General Relativity[END_REF] for precise topological de nitions of these terms. Physically, Σ can be thought of as representing the entire (three-dimensional) space at a given instant of time.

Thus, given (2.3.1), a canonical formulation must begin with a speci cation of the meaning of "time" and "change in time". This means that one must specify a choice of a foliation of spacetime into "constant time" Riemannian three-slices ("instants of time"), as well as a "time direction" (indicating how one identi es spatial points on the slices at "different times"). Typically one does this by introducing, respectively, a time function t(x a ) on M such that ∇ a t is everywhere timelike (which is always possible if M is globally hyperbolic), along with a time ow vector eld t a in T M such that t a ∇ a t = 1 (intuitively ensuring that the interpretation of "time" implied by these two objects is consistent). These are shown in Fig. 2.2.

In this way, the surfaces of constant t in M are spacelike Cauchy surfaces, and the integral curves of t de ne a mapping between spatial slices as follows: one identi es the intersections of any particular integral curve of t with all constant t slices as being the F 2.3. A depiction (in (1 + 1) dimensions) of the spacetime M as constituted by a family of embedded submanifolds Σ t obtained from an embedding map i t : Σ → M . Three such submanifolds are shown at three di erent times, with the time ow vector eld identifying the spatial coordinates between them.

"same spatial point" (i.e. as corresponding to the same "spatial" coordinate x i ). The condition ∇ t t = 1 guarantees that any integral curve of t will intersect any constant t slice exactly once, making the identi cation well-de ned.

A very useful equivalent picture of this construction can be phrased in the language of the theory of embeddings. (See, e.g., [START_REF] Giulini | Dynamical and Hamiltonian Formulation of General Relativity[END_REF]] for more on this.) In particular, the global hyperbolicity condition (2.3.1) implies the existence of a one-parameter family of embedding maps

i t : Σ → M (2.3.2)
of a ("time-evolving") Cauchy surface Σ into the spacetime ("at di erent times"), such that Σ t = i t (Σ) ⊂ M constitute the (spacelike) Riemannian slices of M . In particular, for any spatial point p ∈ Σ, the two spacetime points i t 1 (p) ∈ Σ t 1 and i t 2 (p) ∈ Σ t 2 are identi ed as the "same spatial point at di erent times". Specifying such a one-parameter family (2.3.2) of embeddings is mathematically equivalent to specifying a time function and a time ow vector eld in M . See Fig. 2.3 for a visual representation. Before de ning additional structures, we can already use the above to specify what we mean precisely by the "time derivative" of a given quantity. Let A ∈ T k l (M ) be any tensor in our spacetime. Then we de ne its time rate of change, or "time derivative", Ȧ simply as its Lie derivative L along the time ow vector eld t, Ȧ = L t A .

(2.3.3)

Let n a be the unit (future-oriented) normal to Σ. Note that this is uniquely determined once t(x a ) is speci ed. (In particular, n = -(∇t)/ (∇t) • (∇t), with the minus sign ensuring the future orientation.) We thus have a natural spatial volume (three-) form

Σ abc = M
abcd n d induced by the spacetime volume form M (through projection with n). However, as in the Lagranigian formulation, it will be convenient to work instead with at volume forms: in particular, e on M (as before), and e on Σ. The latter is notationally distinguished from the former by writing it in upright rather than italic font (though the context usually leaves little danger for confusion), and its components are obtained by projecting e with t, i.e. e abc = e abcd t d .

Although we will endeavor to refrain from entering here into excessive geometrical technicalities, a few further de nitions and citations of some mathematical results are useful before returning-as we promise we shall, and thereby in a very illustrative wayto physics.

First, let h = g| Σ be the metric induced by g on Σ. In abstract index notation, we could equivalently translate this into the object h ij i.e. as a tensor in Σ (an embedded submanifold of M ), or as h ab , i.e. a tensor on the full spacetime M . In principle and unless otherwise made explicit, we prefer to retain the meaning of all abstract geometric expressions as referent to quantities living in M (so, e.g., h a priori equates to the spacetime eld h ab ). One can always project these into any submanifold U ⊂ M , in particular by contracting the expressions (over all indices) with the induced metric g U corresponding thereto, whenever desired. Henceforth we use the notation (•)| U to refer precisely to such a projection of any quantity (•) onto a submanifold U . Now, the spatial metric h naturally determines a compatible derivative operator D on Σ. In turn, D de nes in the usual way the (spatial) Riemann tensor R abcd of h on Σ, written in calligraphic font to distinguish it from the (Roman font) spacetime Riemann tensor R abcd of g. The extrinsic curvature of Σ is also de ned in the usual way, as the projected spacetime derivative of the normal vector; equivalently, it can also be shown to equal half the normal Lie derivative of the spatial metric:

K ab = h ac ∇ b n c = 1 2 L n h ab . (2.3.4)
Using these de nitions, one can prove by direct computation the following relations for the projections onto Σ of the spacetime Riemann tensor and one normal projection of the spacetime Riemann tensor (see, e.g., Chapter 3 of [START_REF] Bojowald | Canonical Gravity and Applications: Cosmology, Black Holes, and Quantum Gravity[END_REF]] for the step-by-step computations):

R abcd | Σ = R abcd -K ad K bc + K ac K bd , (2.3.5) R nabc | Σ = D c K ab -D b K ac .
(2.3.6)

The rst equation (2.3.5) is usually called the Gauss equation, and the second equation (2.3.5) is called the Peterson-Mainardi-Codazzi equation or (especially common in physics, although historically unfair, as we will shortly clarify) simply the Codazzi equation. These are classic results in the theory of embeddings, rst discovered in the pioneering days of di erential geometry in the early-to-mid 19th century. See [START_REF] Abbena | Modern Di erential Geometry of Curves and Surfaces with Mathematica[END_REF]] for more historical and mathematical details. The Gauss equation (2.3.5) was rst obtained by its eponym [START_REF] Gauss | Disquisitiones Generales circa Super cies Curvas[END_REF]] in two dimensions. It became known as the Theorema Egregium ("remarkable theorem"), and has since then remained one of the most famous results in geometry. It tells us how the curvature-that is, the Riemann tensor-of the embedded surface (Σ) relates to that of the entire manifold (M ) through the extrinsic curvature (K).

The ) was rst obtained by [START_REF] Peterson | Über die Biegung der Flächen[END_REF]], and later independently by [START_REF] Mainardi | Sulle coordinate curvilinee d'una super cie dello spazio[END_REF]] and [START_REF] Codazzi | Sulle coordinate curvilinee d'una super cie dello spazio[END_REF]]. It expresses the projection onto the hypersurface (Σ) of one normal projection of the Riemann tensor of the entire manifold (M ) in terms of derivatives of the extrinsic curvature (K).

These are completely general conditions that are satis ed by any embedding-in this case, of a three-dimensional spacelike hypersurface into a spacetime. It will be especially interesting for our purposes to consider the contracted form of these equations: in particular, by contracting an appropriate pair of spacetime indices in (2.3.5)-(2.3.6) and reexpressing the results in terms of the Einstein tensor G = R -1 2 Rg, one nds by direct computation that

2 G nn | Σ = R -K : K + K 2 ,
(2.3.7)

G na | Σ = D b K ab -D a K . (2.3.8)
We stress once again that these are purely geometrical requirements that the embedding must satisfy. Yet, though we have apparently said nothing so far about physics, the cognizant reader will appreciate that setting the above equations to zero gives precisely the "time-time" and "time-space" Einstein equations in typical canonical form, and we already know from our earlier discussion at the end of the previous section that these contain no second time derivatives. Hence it seems that we have already obtained the canonical constraints of GR without yet essentially doing anything (except anticipating the vacuum Einstein equation) from the point of view of physics! All that we have done is to set up the hypersurface embedding, as is needed for our subsequent canonical formulation (of any eld theory).

Finally, it is worth pointing out here one nal remark which follows directly from these geometrical identities, and which also sheds some insight into physics. In particular, one can contract the Gauss equation (2.3.5) to express the Ricci scalar R of g in terms of the Ricci scalar R of h and the extrinsuc curvature K of Σ. The result is [START_REF] Giulini | Dynamical and Hamiltonian Formulation of General Relativity[END_REF]]:

R = R + K : K -K 2 + 2∇ • (Kn -∇ n n) .
(2.3.9)

Up to a factor, this is of course simply the Lagrangian of GR in the bulk (i.e. the Einstein-Hilbert Lagrangian). As the nal term is a divergence and hence will only contribute a boundary term, we see from this that the gravitational action in the bulk is simply:

S G | int(V ) = 1 2κ ˆV M R + K : K -K 2 .
(2.3.10)

We have, in this way, a heuristic conceptual link to the meaning of the Lagrangian in classical particle mechanics as the "kinetic minus potential energy": the spatial curvature scalar R can be regarded as minus the "gravitational potential energy" (so that, the greater the curvature, the greater the magnitude of the "potential energy", negatively-signed overall) and the extrinsic curvature terms (K : K -K 2 ) as the "gravitational kinetic energy" (an analogy that becomes clearer later when we see how the extrinsic curvature is essentially equivalent to the canonical gravitational momentum, such that these are "momentum squared" terms). Of course this analogy is rather vague and not meant to be taken too formally; we will carefully treat the basic questions surrounding notions of "gravitational energy" at the end of this chapter once we have established the full canonical formulation.

2.3.2. Phase space. Now that we have a splitting of our spacetime, (2.3.11) into Cauchy surfaces Σ with all major geometrical constructions that will be needed in place, we may con dently return to physics. The next step in the canonical formulation of a theory is to introduce the elds by prescribing what is referred to as a con guration ϕ = {ϕ A (x i )} A on Σ. Physically, this is understood to describe the "instantaneous" con guration of the spacetime elds ψ(x a ), at a particular "time" t (correspondent to a particular Σ t in the spacetime foliation). Thus it is usually (though by no means necessarily, as one has freedom in how exactly to proceed) de ned simply by a direct projection onto Σ of ψ, i.e. ϕ = ψ| Σ . (In fact, while this is a natural starting point, often this de nition does not by itself strictly su ce; in particular, there may be important degrees of freedom lost in the projection, and one must devise a procedure for taking these into account too. As we shall see and elaborate upon, this happens in GR.)

M = t Σ t R × Σ ,
Once the con guration variables ϕ of the theory have all been de ned, one de nes

Q = ϕ x i (2.3.12)
to be the set of all possible (i.e., physically/mathematically permissible) con gurations of the collection of elds ϕ A . This is a functional space referred to as the con guration space of the theory. Now one must also prescribe what are referred to as the canonical (or conjugate) momenta π = {π A (x i )} A of the elds ϕ A , such that π A is dual to ϕ A in all indices. We will see momentarily how the Lagrangian L[ψ] can be used to devise such a prescription (given the de nition of ϕ). Once this is in hand, the set

P = {(ϕ, π)} = T * Q (2.3.13)
of all possible con gurations and momenta taken together will simply constitute the cotangent bundle of the con guration space, T * Q. This is called the phase space 2 of the theory.

Phase space (for any eld theory) is a particular example of what is referred to as a symplectic manifold. Such objects have been extensively studied by geometers, and today symplectic geometry is a broad and fruitful area of mathematics in its own right. (See, e.g., the reviews/books [START_REF] Silva | Lectures on Symplectic Geometry[END_REF][START_REF] Silva | Symplectic geometry[END_REF][START_REF] Hofer | Symplectic Invariants and Hamiltonian Dynamics[END_REF].) Historically, this eld originated precisely from the advent of classical Hamiltonian particle mechanics (much as variational calculus and functional analysis were heavily precipitated by classical Lagrangian particle mechanics), and so it is worth our time to brie y o er a description of phase space in symplectic language before moving on to formulate the Hamiltonian equations of motion.

In general, a symplectic manifold (W ; ω) is any 2n-dimensional manifold W equipped with a two-form ω, called a symplectic form, provided that the latter satis es two conditions: (i) ω is closed (i.e. d W ω = 0, where d W is the exterior derivative on W ); (ii) ω is non-degenerate (i.e. at any point p ∈ W and for any vectors X p , Y p ∈ T p W , if ı Xp ı Yp ω p = 0 ∀Y p ∈ T p W where ı is the interior product on W , then X p = 0) 3 .

Having claimed that the phase space P = {(ϕ A (x i ), π A (x i ))} is an example of a symplectic manifold, we ought to show it by producing the symplectic form. In order to 2 The origin of the nomenclature is from statistical mechanics, where many of these methods were rst developed. See [START_REF] Davies | The Physics of Time Asymmetry[END_REF][START_REF] Sklar | Physics and Chance: Philosophical Issues in the Foundations of Statistical Mechanics[END_REF][START_REF] Brown | Boltzmann's H-theorem, its discontents, and the birth of statistical mechanics[END_REF] for good historical accounts. 3 A natural generalization of this notion which has been developed more recently is that of a multisymplectic form: this is de ned as a k-(not necessarily two-) form µ ∈ Ω k (V ) on a manifold V of any (not necessarily even) dimension, satisfying the same rst property as in the usual symplectic case (i.e. it is closed, d V µ = 0), along with a slightly more general version of the second (nondegeneracy) property, called 1-nondegeneracy: that is, one requires, for X p ∈ T p V , that ı Xp η p = 0 if and only if X p = 0. For k = 2 and an even-dimensional V , this recovers the usual notion of a symplectic form. See [START_REF] Román-Roy | Some Properties of Multisymplectic Manifolds[END_REF][START_REF] Ryvkin | An invitation to multisymplectic geometry[END_REF] and references therein for more mathematical details. Multisymplectic geometry has been usefully applied in recent years to the formulation of canonical eld theories, including GR; see [Gaset andRomán-Roy 2019, 2018;[START_REF] Nissenbaum | Multisymplectic Geometry in General Relativity and other Classical Field Theories on Manifolds with Boundaries: A Deobfuscating Role[END_REF]] and references therein. do this, we rst need therefore to further clarify what we mean by an exterior derivative d P on P. Because we are dealing here with functional spaces, we must use the functional exterior derivative on P which we denote by δ = d P (not to be confounded in meaning with the δψ A on M from the Lagrangian analysis); see [START_REF] Crnković | Symplectic geometry and (super-)Poincaré algebra in geometrical theories[END_REF][START_REF] Crnković | Covariant description of canonical formalism in geometrical theories[END_REF]] for more technical details on this. For example, δϕ A (x i ) and δπ A (x i ) are one-forms on P, and so for any functional (zero-form) F [ϕ A , π A ] on P, for example, we have that the action of δ yields the one-form

δF [ϕ, π] = ˆΣ e δF δϕ A (x i ) δϕ A (x i ) + δF δπ A (x i ) δπ A (x i ) , (2.3.14)
where δF/δf (x i ) indicates the functional derivative of F , as de ned in the previous section and restricted to functionals on Σ. A wedge product can be naturally de ned to obtain p-forms, and the action of δ also easily generalizes thereto.

We are now ready to write down the symplectic form ω for our phase space (P; ω). It is possible to show (a result known generally as the Darboux theorem) that, at least locally, ω is always given by: (2.3.15) which can be checked to satisfy the symplectic form conditions4 . In the case that there is only one (tensorial) eld variable in ϕ, it can furthermore be proved that the symplectic form ω is also the volume form P , conventionally denoted as P = Ω, on P, that is to say, we have Ω = ω. If there are N elds in ϕ, then a volume form Ω on P is given simply by the N -th exterior power of the symplectic form, in particular Ω = [(-1) N (N -1)/2 /N !]ω ∧N .

ω = ˆΣ e δπ A ∧ δϕ A ,
We will need just a few more de nitions and results before proceeding to the equations of motion. Let F (P) = {F : P → R} be the set of all functionals (zero-forms) on the phase space (P; ω). For any F [ϕ A , π A ] ∈ F (P), the symplectic form ω de nes a vector eld X F ∈ T P associated to F , referred to as the Hamiltonian vector eld (HVF) of F , via the relation

ı X F ω = -δF , (2.3.16)
where ı is the interior product on P. We furthermore de ne an operation {•, •} : F × F → R known as the Poisson bracket, which for any two functionals F, G ∈ F is given by:

{F, G} = ˆΣ e δF δϕ A (x i ) δG δπ A (x i ) - δF δπ A (x i ) δG δϕ A (x i )
.

(2.3.17)
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Finally, let Y ∈ T P be any vector eld in P. We can use it to de ne the action of a map Φ (Y ) t : P × R → P by requiring that Φ (Y ) t moves points around in P along the integral curves of Y (as a function of the parameter t ∈ R). Mathematically, this means that such a map is de ned by the ordinary di erential equation: 

dΦ (Y ) t dt = Y • Φ (Y ) t . ( 2 
H ϕ A , π A = ˆΣ e H ϕ A , π A , (2.3.19)
where H is a local function of (ϕ A , π A ), referred to as the Hamiltonian density-which, provided no confusion is created, we will also simply call the Hamiltonian-such that the eld equations of the original spacetime eld theory (for ψ in M ) are equivalent to the canonical (or Hamiltonian) equations of motion for the phase space variables,

φA = ϕ A , H = δH δπ A , (2.3.20) πA = π A , H = - δH δϕ A , (2.3.21)
with the last equality in each line following from the general de nition of the Poisson bracket (2.3.17). More generally, the time derivative (Lie derivative along the time ow vector eld) of any functional F ∈ F (P) is given by the Poisson bracket with the Hamiltonian H, which we can write as

Ḟ = {F, H} = X H (F ) , (2.3.22) 5 Let Φ (Y ) t be such that (Φ (Y ) t ) * ω = ω.
Equivalently, L Y ω = 0. Recall Cartan's "magic formula", which tells us that the action of the Lie derivative when acting on forms can be expressed as

L Y = ı Y • d + d • ı Y .
In our case, as we have seen, d is the functional exterior derivative δ, so we have 0

= L Y ω ⇔ 0 = ı Y (δω) + δ(ı Y ω).
But ω is closed (i.e. δω = 0, the rst symplectic form property), so this is equivalent to 0 = δ(ı Y ω) ⇔ ı Y ω = δF for some F ∈ F (P). This is the same as the de nition (2.3.16), i.e. it is equivalent to saying that Y is an HVF (speci cally,

Y = X -F ).
where X H ∈ T P is the HVF of the Hamiltonian,

X H = ˆΣ e δH δπ A δ δϕ A - δH δϕ A δ δπ A . (2.3.23)
Put di erently, the time evolution of any quantity through P is represented by the integral curves of the HVF of the Hamiltonian, X H . We refer to the ow Φ (X H ) t : P×R → P generated thereby as the Hamiltonian ow, and for simplicity we will henceforth denote it simply as Φ t = Φ (X H ) t

. Following our discussion at the end of the last subsection, the fact that X H is an HVF guarantees that Φ t is a canonical transformation. In particular, it preserves the symplectic (as well as volume) form:

L X H ω = 0 = L X H Ω . (2.3.24)
This result is commonly known as is Louville's theorem.

We have expended much e ort so far on developing the technical machinery for a canonical analysis without yet prescribing the recipe for explicitly computing the most important pieces: the canonical momenta and the Hamiltonian itself! Assuming a Lagrangian formulation of the theory exists, the de nition typically ascribed to the former is: (2.3.25) and to the latter:

π A = ∂L ∂ φA ,
H = φA π A -L , (2.3.26)
called the Legendre transform of the Lagrangian. Let us consider in turn the subtleties presented by these de nitions. First, the denition of the canonical momenta (2.3.25) may be seen as expressing π A as a function of (ϕ A , φA ), given explicitly by the φA partial of L(ϕ A , φA ) on the RHS. A one-to-one correspondence between the con guration time derivatives φA and the momenta π A exists if and only if it is possible to invert this mapping, i.e. to write all φA as functions of π A (and possibly ϕ A ). If this is not possible (as we will see in GR), then some of the φA will not represent true "dynamical" degrees of freedom, but instead will de ne the constraints.

Let us see how this works in a bit more detail. Let f : T Q → T * Q denote the mapping taking points from the set {(ϕ, φ)}, which is simply the tangent space T Q of the con guration space, into the phase space variables {(ϕ, π)} according to the rule (2.3.25), i.e.

f : T Q →T * Q ϕ A , φA → ϕ A , π A ϕ A , φA = ϕ A , ∂ φA L ϕ A , φA .
(2.3.27)

The inverse function theorem tells us that for f -1 : T * Q → T Q to exist, we must have det(Jac(f )) = 0. In particular, this requires det(W AB ) = 0, i.e. the non-degeneracy of Chapter 2. Canonical General Relativity the matrix W AB given by (2.3.28) where in the last equality we have used the momentum de nition (2.3.25). It should not surprise the reader that this is essentially the same as the principal symbol of the general Euler-Lagrange equations (2.2.10) that we encountered earlier! Thus, if the function (2.3.27) does not have an inverse (that is, it has an inverse only on a restriction of its domain), or equivalently the matrix (2.3.28) is degenerate, then not all n of the φA can be solved for in terms of the π A , and those which cannot will consequently avoid picking up an additional time derivative in the equations of motion. These therefore de ne constraints on the second-order equations for the true "dynamical" degrees of freedom in (ϕ A , π A ).

W AB = ∂π A ∂ φB = ∂ 2 L ∂ φB ∂ φA ,
Suppose f has m degeneracy directions, i.e. m of the φA map trivially onto the π A . This is equivalent to the existence of m phase space functionals ζj ∈ F (P), ∀1 ≤ j ≤ m, which identically vanish for solutions satisfying the equations of motion of the theory, i.e. 0 = ζj .

(2.3.29)

Such constraints are called primary constraints. As we will see (and as the notation using tildes anticipates), these may actually not be the only phase space constraints for our theory; in particular, consistency conditions involving the primary constraints ζj may imply additional, independent constraints-and we shall concretely see how so in the next subsection. For the moment, let us simply assume henceforth that all the constraints of the theory-however they are obtained-are collected into the set ζ = {ζ j } j , with the index j here running over a possibly larger range than just from 1 to m, and with the rst m of them being the primary constraints just discussed (and notationally identi ed with tildes), i.e. ζ j = ζj for 1 ≤ j = j ≤ m.

The ζj may be regarded as coordinates locally orthogonal to the image of the function (2.3.27), such that locally P has a complete set of coordinates given by (ϕ A , π A , ζj ). This is illustrated visually in Fig 2 .4. For convenience, we henceforth rede ne the set π in P to include not only those momenta π A which can be solved for, but also the primary constraints ζj , i.e. π = {π A , ζj }, such that an arbitrary point in P is still labeled as (ϕ, π). Henceforth, though we will continue to simply call it the "phase space" if the context is clear enough, we will formally refer to P = {(ϕ, π)} as the unconstrained, or full phase space.

A few more de nitions follow naturally from these considerations and will be useful for us to establish here before moving on. We o er in Fig. 2.5 a visual depiction to make the story a little bit easier to follow. F 2.4. An illustration of the transformation f : T Q → T * Q from the con guration space tangent bundle into the phase space P = T * Q. For example, suppose we have a two-dimensional con guration ϕ = {ϕ 1 , ϕ 2 } (visually represented as one dimension), and correspondingly φ = { φ1 , φ2 }. Suppose that here, φ2 is in the kernel of this map, i.e. it maps trivially to π 2 such that the only primary constraint is 0 = π 2 = ζ. The primary constraint surface C thus has coordinates {ϕ, π 1 }.

We de ne the primary constraint surface C ⊆ P as the submanifold of the phase space where only the primary constraints ζj vanish (with no conditions assumed on nonprimary constraints ζ j for j ≥ m + 1, if any exist):

C = (ϕ, π) ∈ P| 0 = ζ .
(2.3.30)

Meanwhile, the constraint surface or, for emphasis, full constraint surface C ⊆ C is the submanifold of P where all the constraints (the primary ζ plus any other constraints, ζ in total) are satis ed:

C = { (ϕ, π) ∈ P| 0 = ζ} . (2.3.31)
We will accordingly also nd it useful to de ne operations of equality under primary and full constraint imposition. In particular, we use the symbols " =" and "=" respectively to indicate these, such that a = b means that a| C = b| C , and a = b that a| C = b| C . Now, let us turn to a discussion of the de nition of the Hamiltonian (2.3.26) as a Legendre transform of L : T Q → R. In particular, we have-just as in the case of the momentum de nition (2.3.25)-a functional prescription in terms of (ϕ, φ) (i.e., as a functional F 2.5. An illustration of the con guration space tangent bundle T Q, the phase space P = T * Q, the primary constraint surface C , and the full constraint surface C with their respective coordinates, and the maps/operations that respectively transform from one of these spaces to the next. on the tangent bundle T Q). In other words, the de nition gives us H [ϕ, φ]. How can we know, in general, that this H is also-as it ought to be for this procedure to make sense-a well-de ned functional H[ϕ, π] on the phase space (cotangent bundle) P = T * Q, irrespective of the existence of constraints? (I.e, how can we know that under the mapping f : T Q → T * Q given by Eqn. (2.3.27), the transformation of H always "avoids" any degeneracy directions that may arise from its non-invertibility?) An easy way to see this is by computing the exterior derivative of the Legendre transform (2.3.33) where to obtain the last equality the momentum de nition π A = ∂L/∂ φA (2.3.25) was once again used, such that no term linear in δ φ remains. Hence the exterior derivative (2.3.33) of the Hamiltonian functional H is always a linear combination only of δϕ A and δπ A , making it a well-de ned one-form on P, implying that H itself is a well-de ned zero-form (functional) on P. Now we must verify that this H = φA π A -L indeed gives the correct (canonical) equations of motion (2.3.20)-(2.3.21) for the theory. For their formulation, it will in fact be more convenient to rst de ne what is referred to as the total Hamiltonian, which we denote as H ∈ F (P), given by: .3.34) This is simply the Hamiltonian H we have been working with so far (obtained via the Legendre transform), plus an arbitrary linear combination of the primary constraints ζj , with m coe cient functions λj ∈ F (P) playing the role of Lagrange multipliers. We shall see the usefulness of this momentarily. We remark for now that by construction, H

H = φA π A -L (2.3.26), immediately yielding δH = ˆΣ e φA δπ A + π A δ φA - ∂L ∂ϕ A δϕ A - ∂L ∂ φA δ φA (2.3.32) = ˆΣ e - ∂L ∂ϕ A δϕ A + φA δπ A ,
H = H - λj ζj , H = ˆΣ e H . ( 2 
will coincide with H on the (primary and thus also full) constraint surface,

H = H = H. Combining H = φA π A -L (2.3.26) and H = H -λ • ζ (2.3.34), one can isolate for the Lagrangian as: L = φA π A -H -λ • ζ.
Integrating both sides over (a nite range of) t, and then taking their variation (i.e. viewing the arguments of both sides as one-parameter families in λ, in the sense of the previous section, and applying ∂ λ | λ=0 ), a straightforward computation shows that the stationary action principle 0 = δS[ψ] = ´dte L is equivalent to the following system of equations in P:

φA = ϕ A , H + ζj δ λj δπ A , = δ H δπ A + ζj δ λj δπ A , (2.3.35) πA = π A , H -ζj δ λj δϕ A , = - δ H δϕ A -ζj δ λj δϕ A .
(2.3.36)

So on the constraint surface C , we indeed recover the standard form of the canonical equations of motion in terms of the total Hamiltonian:

φA = ϕ A , H , (2.3.37) πA = π A , H . (2.3.38)
2.3.4. Constraints and the reduced phase space. Let us now address the subtleties that the presence of constraints poses to our Hamiltonian analysis.

First, suppose that all primary constraints are indeed satis ed, i.e. ζj = 0, so that we are on C in P. For ease in following the discussion, consulting again Figs. 2.4 and 2.5 is useful. Observe that the vanishing of ζ on C necessarily implies that their time derivatives ζ vanish thereon too. These are called consistency conditions: (2.3.39) where in the last equality we have simply used the de nition of the total Hamiltonian

0 = ζj = ζj , H = ζj , H - λk ζj , ζk ,
H = H -λ • ζ (2.3.34).
From this we see that the multiplicative functions (Lagrange multipliers) λj can be fully determined (i.e. m independent equations for them can be obtained by inverting the above equation) if and only if det({ ζj , ζk }) = 0. Otherwise, the system formed by the vanishing of the primary constraints coupled with the consistency conditions (2.3.39) is under-determined, and therefore has to be augmented by further equations, which we can now interpret as constituting the additional constraints in ζ j (those for j ≥ m + 1).

To obtain these equations, let {v j ĵ } be the set of m ≤ m null-eigenvectors, indexed in the set by 1 ≤ ĵ ≤ m (and with components indexed by j), of the matrix { ζj , ζk }, i. Assuming that with these, one now obtains a complete system, then one takes the complete set of ( m + m) constraints ζ j to be simply the set of the ( m) primary and ( m)

secondary constraints ζ = { ζ, ζ}. (In the index notation, we set ζ m+k = ζk , ∀1 ≤ k = k ≤ m.
) This happens to be the case in GR (which, as we shall see, has a total of eight constraints, with m = 4 primary constraints and m = 4 secondary constraints)6 . Now we turn to a di erent and also very useful way of looking at how to classify the (total set of) constraints ζ. It may be motivated by re ecting upon the following question: assuming we are indeed only interested in those eld con gutations which satisfy the constraints, i.e. only in points (ϕ, π) living on C , could we simply regard C in some operational sense as an "e ective" phase space? The answer in general is no: in particular, C will not in general be a symplectic manifold.

To be more precise, let i : C → P be the embedding of C in P. We denote by ω| C = i * ω the pullback of the symplectic form ω of the phase space P to the constraint surface C . In general, as we will show presently, ω| C is unfortunately not a symplectic form on C . Thus ω| C is sometimes instead referred to as the presymplectic form.

In order to make progress, the following classi cation of constraint functions ζ ∈ F (P) is useful.

• A constraint ζ ∈ F (P) is called a rst-class constraint if its HVF X ζ is every- where tangent to C (i.e. X ζ ∈ T C ). • A constraint ζ ∈ F (P) is called a second-class constraint if its HVF X ζ is nowhere tangent to C (i.e. p ∈ P so that (X ζ ) p ∈ T p C ).
Now suppose that among the constraint functions ζ in our eld theory, say ζ 1 = f , is rst-class. One nds that the interior product between its HVF and the presymplectic form vanishes: that is, ı

X f ω| C = i * (ı X f ω) = i * (∇f ) = 0,
using the de nition of the HVF. This means that ω| C is degenerate (with the degeneracy directions spanned by the HVFs of the rst-class constraints), and hence cannot be a symplectic form. Conversely, ω| C will be a symplectic form (on all of C ) if and only if all constraints ζ are second-class constraints.

Once again it may appear that we are getting too lost in mathematical abstractions, but this is where we gain a meaningful insight into physics. It happens that in many classical eld theories of interest, including GR and EM, all constraints ζ j turn out to be rst-class. The degeneracy directions of the presymplectic form ω| C in these theories correspond to what at the Lagrangian level are seen as gauge transformations: that is, maps of of the elds ψ which do not change the Lagrangian L(ψ, ∇ψ). For example, this corresponds to the U(1) symmetry of EM and the di eomorphism invariance of GR. We will see explicitly how the latter works when we nally arrive at the canonical formulation of GR in the next section.

Just before doing so, it is salient to address a slightly more technical question, one upon which we will not dwell further in this chapter than the next few paragraphs, but which will reappear in our work on entropy in Chapter 4. Namely, it is the issue of how exactly we do, in fact, recover a symplectic structure for some "e ective" subset of the phase space that interests us for the meaningful study of dynamics-which, so far, has intuitively meant the constraint surface C ⊂ P. In principle, a symplectic form on C could be obtained if one directly factors out the HVFs of the constraints (which span its kernel) living on T C , by simply identifying all points on the orbits of their ow in C . These are concordantly called gauge orbits. Thus, one could work with a factor space P ⊂ C de ned simply as the space of gauge orbits in C , and which therefore is, by construction, symplectic (with the factored presymplectic form).

However, depending on the desired aim of implementing the canonical construction of a eld theory, taking such an approach can turn out to be problematic. This happens in particular if the theory happens to be di eomorphism invariant (such as GR), in which case "time evolution" in the sense de ned at the beginning of this subsection (of the "instantaneous con guration" in the Hamiltonian theory) can equivalently be regarded as e ected by spacetime di eomorphisms (of the full metric g in the Lagrangian theory).
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Hence moving to the space of gauge orbits in C essentially renders the dynamics nonexistent: they become entirely trivial, because they are essentially factored out of P, leaving one with no more sense of "motion through phase space". This issue is developed in clear and lengthy detail in [Schi rin [START_REF] Schi Rin | Measure and Probability in Cosmology[END_REF].

There exist two possible solutions for ameliorating this di culty-that is, for obtaining a symplectic structure out of ω| C which does still preserve a nontrivial notion of "time evolution":

(1) Instead of passing to the space of gauge orbits, one may instead choose a representative of each gauge orbit [Schi rin [START_REF] Schi Rin | Measure and Probability in Cosmology[END_REF]]. The idea is that one can nd a surface S ⊂ C such that each gauge orbit in C intersects S once and only once. (In fact, sometimes a family of such surfaces that work in localised regions of C is needed, but we keep our discussion here simpli ed.) The choice of S is not unique, and so taking a di erent surface S e ectively amounts to a change of description-the freedom of which, in the context of our spacetime splitting, corresponds to "time evolution" (i.e. change of representative Cauchy surface in spacetime) on one hand and the associated spatial di eomorphisms on the other. As we shall discuss further, this is what is e ectively encoded in the constraints of GR. It is beyond our scope here to enter further into the concrete technicalities of this procedure; for the interested reader, they are elaborated in [Schi rin [START_REF] Schi Rin | Measure and Probability in Cosmology[END_REF]. The key point is essentially that the subspace S of the constraint surface C resulting from such a construction can be shown to be symplectic,. Therefore, one can work with the symplectic form ω| S obtained by pulling back ω| C to S .

(2) A speci c choice of gauge may be explicitly xed, such that the combination of the constraints ζ j coupled with the gauge-xing conditions becomes secondclass. This idea is developed further in Chapter 3 of [START_REF] Bojowald | Canonical Gravity and Applications: Cosmology, Black Holes, and Quantum Gravity[END_REF]]. One can by such a procedure obtain a symplectic structure on a subspace of the constraint surface S ⊂ C where the (explicitly chosen) gauge-xing conditions are satis ed, and where one will thus have a symplectic form ω| S (for the xed gauge).

In other to keep our discussion general, unless otherwise stated, we refer to the symplectic manifold (S ; ω| S ) as the reduced phase space irrespective of whether procedure (a) or (b) is used to de ne it.

2.4. Canonical formulation of general relativity 55

Canonical formulation of general relativity

Now that we have established the procedure for producing a canonical formulation of any eld theory given that a Lagrangian formulation exists, let us apply it to GR.

2.4.1. Canonical variables. As the only physical eld is the metric g, the rst immediately suggestible choice for a con guration variable ϕ is the metric h induced by g on each Cauchy surface Σ, i.e. h = g| Σ . In index notation, this is given by

h ab = g ab + n a n b .
(2.4.1)

Now, observe that taking h to be the only gravitational con guration variable would not su ce: there are ten independent eld variables in g, and h accounts for only six of these! We would not obtain a complete set of equations of motion from this procedure unless all (ten) eld variables present in the spacetime metric are mapped to the same number of eld variables in ϕ.

Intuitively, the four degrees of freedom "missing" from h are the "time-time" and "time-space" components of the spacetime metric g, which may be regarded as the projections g tt = g ab t a t b and (g • t)| Σ = g ab t a h bc . There is a one-to-one correspondence between these spacetime metric projections and the choice of the time ow vector eld t itself. (In other words, these four degrees of freedom simply encode the freedom in identifying spatial points between Cauchy slices.) However, note that we cannot include t as such in ϕ to account for these degrees of freedom, as t of course does not live in Σ. In particular, in general it has nonvanishing projections both normally and orthogonally to a Cauchy slice. As the former is a scalar, n • t, which may thus be regarded as a function on Σ, and the latter is a vector, t| Σ = t•h, in the tangent space of Σ, we may correspondingly take these quantities to account for the full set of spacetime metric degrees of freedom in ϕ. They are referred to as the lapse function and shift vector respectively:

N = -n • t ∈ F (Σ) , (2.4.2) N = t| Σ = h • t ∈ T Σ .
(2.4.3)

Note that this implies t = N n + N . Now we have all the pieces for writing down the con guration space of GR:

ϕ G = (N, N , h) , (2.4.4)
where all con guration variables are properly de ned on Σ and ultimately encode the full set of (ten) eld variables present in the spacetime metric g. The next step is to write the gravitational action (2.2.15) in terms of ϕ G = (N, N , h) and φG = ( Ṅ , Ṅ , ḣ) instead of the spacetime metric g. The calculation is long but generally straightforward (using all the de nitions we have established), and we omit writing it explicitly here. The result can be found, e.g., in Chapter 3 of [START_REF] Bojowald | Canonical Gravity and Applications: Cosmology, Black Holes, and Quantum Gravity[END_REF]].
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With L G (ϕ G , φG ) in hand, one can then use it to determine the set of canonical momenta corresponding to the con guration ϕ G . Let π (N ) , π (N ) a and π ab (h) denote, respectively, the canonical momenta of N , N a and h ab , such that the total set of canonical momenta is π G = (π (N ) , π (N ) , π (h) ). We follow standard convention and henceforth drop the "(h)" from the canonical momentum of the metric, so we simply write π ab (h) = π ab and

π G = (π (N ) , π (N ) , π) . (2.4.5)
Each of these can be computed as the appropriate partials of L G (N, N , h, Ṅ , Ṅ , ḣ) using the general canonical momentum de nition (2.3.25):

π (N ) = ∂L G ∂ Ṅ = 0 , (2.4.6) π (N ) = ∂L G ∂ Ṅ = 0 , (2.4.7) π = ∂L G ∂ ḣ = √ h (K -Kh) , (2.4.8)
where K = tr(K).

2.4.2. Constraints. Notice that the canonical momenta π (N ) and π (N ) corresponding respectively to the lapse and the shift both vanish identically. These equations, therefore, identify precisely the degeneracy directions of the map f :

T Q → T * Q (2.3.27) dis- cussed earlier, which in this case maps (N, N , h, Ṅ , Ṅ , ḣ) → (N, N , h, π (N ) , π (N ) , π).
Consequently, π (N ) = 0 = π (N ) can be taken directly to be the ( m = 4) primary con-

straints of GR, ζ = { 1 √ h π (N ) , 1 √ h π (N )
} where we have introduced the (nonvanishing) factors of 1 √ h for convenience. We write these constraints as

ζG = 1 √ h π (N ) , (2.4.9) ζG = 1 √ h π (N ) , (2.4.10)
(with the realization that the indices j on the primary constraints that we were using earlier are in this case spacetime indices).

Physically, this means that the lapse and shift are not dynamical variables. Thus, there exists freedom in choosing them. Equivalently, there is freedom in choosing the time ow vector eld in the spacetime foliation, which in turn translates into the freedom of how to identify spatial points at di erent instants of time. In this way, we can see that these primary constraints (2.4.9)-(2.4.10) are a manifestation of the coordinate freedom of GR.

Next we must ask: are these all the constraints? To investigate, let us compute their time derivatives and equate them to zero on the primary constraint surface (amounting to the consistency conditions (2.3.39)):

0 = ζG = π(N) = π(N) , HG = π(N) , H G = - √ hC , (2.4.11) 0 = ζG = π(N) = π(N) , HG = π(N) , H G = - √ hC .
(2.4.12)

The RHS's-whatever they are-have to vanish, and so (up to a factor of √ h, extracted for convenience) are identi ed as the secondary constraints, typically denoted vis-à-vis our earlier notation as C = ζG and C = ζG (thus the ĵ indices in ζĵ are also spacetime indices here). This is because the equations { π(N) , H G } = 0 = { π(N) , H G } specify precisely the degeneracy directions of the matrix of Poisson brackets of the primary constraints,

{ ζG j , ζG k }. Direct computation of the brackets { π(N) , H G } and { π(N) , H G } yields the ex- pressions: C = -R + 1 h π : π - 1 2 π 2 , (2.4.13) C = D • 1 √ h π , (2.4.14)
where R is the Ricci scalar of h and π = tr(π).

Observe that these are precisely the contracted Gauss-Peterson-Mainardi-Codazzi equations, (2.3.7) and (2.3.8) respectively, encountered earlier as inevitable geometrical conditions on the hypersurface embedding! In the present context, they are known as the Hamiltonian constraint (2.4.13) and momentum constraint (2.4.14), and they complete the set of (eight) constraints of GR. The existence of these secondary constraints is physically related, just as the primary ones although via a slightly di erent mechanism, to coordinate or "gauge" freedom in GR.

In particular, the Hamiltonian constraint implies a time function rede nition freedom, t(x) → t (x) (invariance under a "change of time coordinate"). This essentially means that one can perform the slicing of spacetime into Cauchy surfaces completely as one wishes. The detailed proof of the equivalence between this freedom and the Hamiltonian constraint is a bit subtle and involves the introduction of a few additional technical constructs that we would like to avoid here. Thus we simply omit it, and we refer the interested reader to Chapter 3 of [START_REF] Bojowald | Canonical Gravity and Applications: Cosmology, Black Holes, and Quantum Gravity[END_REF]].

The momentum constraint also implies some form of gauge freedom-in this case, spatial di eomorphism invariance, i.e., the freedom to transform the three-metric h by the action of a di eomorphism φ : Σ → Σ within the Cauchy surface, i.e. h → φ * h, without changing the equations of motion. This may be regarded as the freedom to choose a di erent spatial coordinate system (within Σ). We leave the proof of this claim to the end of this section, where we will be able to show it quite succinctly using the symplectic structure.
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The constraints of GR

Type

Primary Secondary 

Name Lapse Shift Hamiltonian Momentum momentum momentum constraint constraint constraint constraint De nition 0 = π (N ) 0 = π (N ) 0 = C 0 = C Eqn. ( 2 
Σ Map t → t t(x a ) → t (x a ) h → φ * h T 1.
The constraints of GR. These are classi ed into primary and secondary constraints, with the name, equation, and DoF (degree of freedom) associated to each as well as the map permitted by the latter.

We summarize the constraints of GR in Table 1. A visual depiction of the gauge freedoms related to each of the constraints is shown in Fig. 2.6.

We end our discussion on constraints here by remarking on the subtle di erence in the meaning of "coordinate freedom" in GR implied by the primary versus the secondary constraints. The secondary constraints-the momentum and Hamiltonian constraints-are respectively equivalent to re-labeling spatial coordinates within a Cauchy surface, and relabeling the time coordinate (the Cauchy surface foliation within the spacetime). Instead, the primary constraints-the vanishing of the lapse and shift momentum-are about the freedom in how one identi es spatial coordinates on a particular Cauchy surface to coordinates on other embedded Cauchy surfaces in the future (themselves possessing their own spatial di eomorphism invariance), via the time ow vector eld. Nevertheless, these two sorts of freedoms are not completely independent of each other, a fact which is encoded in the consistency requirement ∇ t t = 1.

2.4.3. The Hamiltonian and the equations of motion. The computation of the gravitational Hamiltonian H G , and hence from this, the total gravitational Hamiltonian HG = H G -λζ G -λ • ζG needed to obtain the equations of motion, now follows by directly applying the recipe outlined in the previous section for general eld theories. We have laid out all the basic ingredients and from here, conceptually, this is relatively straightforward, however the computation itself turns out to be quite lengthy. Detailed step-by-step presentations can be found, e.g., in Chapter 3 of [START_REF] Bojowald | Canonical Gravity and Applications: Cosmology, Black Holes, and Quantum Gravity[END_REF]] or Chapter F 2.6. A visual representation of the "gauge freedoms" of GR. The embedding i t : Σ → M is shown in blue, along with the transformations on this embedding permitted by the constraints, shown in di erent colours. In particular, the primary constraints imply that we can change i t to a new embedding ĩt , shown in red, resulting from a change in the time ow vector eld t → t (or equivalently, (N, N ) → ( Ñ , Ñ )). The embedded surface itself does not change, i.e. Σt = ĩt (Σ) = i t (Σ) = Σ t , but the identi cation of spatial coordinates on sequential Cauchy surfaces in the family of embeddings does. On the other hand, the Hamiltonian constraint implies the freedom to change from i t to i t , shown in green, which is a change of foliation, or time function rede nition t(x a ) → t (x a ), such that Σ t = i t (Σ) does not coincide with Σ t = i t (Σ). Finally, the momentum constraint implies the freedom to map the spatial metric h in Σ by a di eomorphism φ, h → φ * h.

4 of [START_REF] Poisson | A Relativist's Toolkit: The Mathematics of Black-Hole Mechanics[END_REF]]. The result is

HG [ϕ G , π G ] = 1 2κ ˆΣ e √ h λ • ζ + 2D • 1 √ h N • π . (2.4.15)
Notice that, in the bulk (int(Σ)), we only have a linear combination of (all) constraints, λ • ζ = λ j ζ j . In particular, these are formed by linear contributions from the primary constraints ζG and ζG (added, respectively, with multipliers λ and λ to obtain HG from H G ) and secondary constraints C (2.4.13) and C (2.4.14) (added with multipliers obtained from the computation of the Legendre transform):

λ • ζ = -λ √ h π (N ) -λ √ h • π (N ) + N C -2N • C . (2.4.16)
The canonical equations of motion, again following a lengthy but straightforward computation, can now be obtained from what we have established. The result is:

ḣab = h ab , HG = 2 N √ h π ab - 1 2 πh ab + D (a N b) , (2.4.17) πab = π ab , HG = N √ h -R ab + 1 2 h ab R + π : π - 1 2 π 2 -2π ac π c b + ππ ab + √ h D a D b N -h ab D 2 N + D • N π ab √ h -2π c(a D c N b) , (2.4.18)
where

D 2 = D • D.
2.4.4. Symplectic structure and gauge freedom. Typically what is referred to as the symplectic form of GR is the symplectic form on the primary constraint surface C = {(N, N , h, π)}, denoted (with the correspondent slight abuse of notation) by ω.

(A symplectic form on the full GR phase space P = N, N , h, π (N ) , π (N ) , π may of course easily be de ned by the simple addition of lapse and shift momentum terms, but for analyzing the symplectic structure one can assume these automatically to be zero without loss of generality.). In this case, ω is also the volume form Ω = C , and is given by ω = Ω = ˆΣ e δπ ab ∧ δh ab .

(2.4.19)

We will see more on this in our work on entropy in Chapter 4. For now, let us use everything we have established to prove that the momentum con-

straint 0 = C = D • (π/ √ h) (2.4.12
) is related to spatial di eomorphism degrees of freedom in the theory. The idea of this proof appears in Appendix E of [START_REF] Wald | General Relativity[END_REF]], and we formalize it here by relating it to the symplectic structure (2.4.19). Let G ξ : C → C be an in nitesimal spatial gauge transformation determined by any vector eld ξ ∈ T Σ. In particular, we know that under this map, the metric h must transform as h → h + L ξ h where, using the de nition of the Lie derivative, L ξ h ab = D (a ξ b) . Under such a map, the symplectic form transforms as:

ω = ˆΣ e δπ ab ∧ δh ab → ˆΣ e δπ ab ∧ δ h ab + D (a ξ b) = ˆΣ e δπ ab ∧ δh ab + ˆΣ e δπ ab ∧ δD (a ξ b) = ω + ˆΣ e δπ ab ∧ D (a δξ b) .
(2.4.20)

As G ξ is a gauge transformation, it must preserve the symplectic structure, i.e. it must act as the identity on the symplectic form: (G ξ ) * ω = ω. Thus, ω → ω in (2.4.20) if and only if the integral term in the last equality vanishes. A simple integration by parts with the appropriate handling of the volume form and the assumption of vanishing ξ on ∂Σ turns this into the requirement that

0 = ˆΣ Σ D (a 1 √ h δπ ab ∧ δξ b) . (2.4.21)
Since this is true for any vector eld ξ, we nd that this is equivalent to demanding that, everywhere on Σ, (2.4.22) precisely the momentum constraint! This proves that those con gurations of h and π in the primary constraint surface C ⊂ P which enjoy spatial gauge freedom, i.e. which are di eomorphism invariant, must be those satisfying the momentum constraint.

0 = D • 1 √ h π ,

Applications

In this section, we elaborate a bit further on and o er some speci c examples of applications of the canonical formulation of GR. We structure the discussion into four broad topics: mathematical relativity, numerical relativity, quantum gravity, and gravitational energy-momentum de nitions.

2.5.1. Mathematical relativity. From a mathematical point of view, the vacuum Einstein equation G = 0 on a spacetime (M , g, ∇) constitutes a system of ten coupled second-order quasi-linear PDEs for the ten components g αβ of g in some local coordinates {x α }. Formulated as a canonical problem, the four secondary constraints (the Hamiltonian and momentum constraints) form an elliptic system of PDEs on Σ, which determines the permissible initial data for h and π. The canonical equations (i.e. the time evolution problem) for h and π, together with a gauge xing condition (equivalently, a choice of t, or N and N ), then form a hyperbolic system of PDEs.

Many important mathematical issues, of intimate concern also for the physical meaning of GR, can be studied from this perspective. In particular, while we have devoted much discussion to the formulation of the equations of motion themselves, we have said little about the general character of the class of solutions that these equations may admit. We should of course expect this class to be not only wide enough to include con gurations of the gravitational eld actually observed in nature, but also to avoid "pathological" developments of any given (permissible) initial con gurations. Broadly speaking, the aim of mathematical relativity is to rigorously address these sorts of problems via mathematical analysis and PDE theory.

A classic problem of in this area, which we outline now brie y, is that of the wellposedness of GR-or generally, that of a given eld theory. In any theory, if the time evolution of a (complete) set of canonical elds ϕ A and their conjugate momenta π A is uniquely determined, i.e. if solutions to all canonical equations φ = δH/δπ and π = -δH/δϕ (supplemented with constraints if applicable) exist and are unique, then the theory is said to possess an initial value formulation.

In addition to this, theories in physics are usually also expected to satisfy the following two properties:

(1) In a suitable sense, "small" changes in initial data (ϕ| Σ 0 , π| Σ 0 ) on some Σ 0 should only produce correspondingly "small" changes in the solution (ϕ| Σt , π| Σt ), t > 0, over any xed compact region of M . (2) Changes in the initial data (ϕ| Σ 0 , π| Σ 0 ) in a given subset of Σ 0 should not produce changes in the solution outside the causal future of that subset.

Physically, the rst condition is understood to mean that the theory has basic predictive power, since initial conditions can always be measured only to nite accuracy. The second condition is essentially an expression of the relativity principle that information cannot propagate faster than light.

If a theory possesses an initial value formulation satisfying (1) and ( 2), then it is said that the theory is well-posed7 .

Local well-posedness of GR was rst proved by Choquet-Bruhat in [Fourès-Bruhat 1952]. The idea of the proof is to work in the harmonic (H) gauge, i.e. a gauge where locally coordinates {x α H }, called harmonic coordinates, satisfy the harmonic equation ∇ 2 x α H = 0, where ∇ 2 = ∇ • ∇. In such a gauge, as shown, e.g., in Chapter 10 of [START_REF] Wald | General Relativity[END_REF]], the vacuum Einstein equation is

0 = R H αβ = - 1 2 g γδ H ∂ γ ∂ δ g H αβ + l αβ (g H , ∂g H ) , (2.5.1)
with the nal term representing all lower ( rst and zeroth) order terms in the PDE, in this case in all (time and space) coordinates. There is then a theorem [START_REF] Leray | Hyperbolic Di erential Equations[END_REF]], similar in style to the famous Cauchy-Kovalevskaya theorem for linear hyperbolic PDEs (see, e.g., Chapter 4 of [START_REF] Evans | Partial Di erential Equations[END_REF]]) but applicable to a certain pertinent class of quasilinear hyperbolic PDEs, including the harmonic gauge Einstein equation (2.5.1), from which wellposedness of the latter can be shown. Since the 1950s, mathematical relativity has developed into a eld in its own right. See, e.g., the extensive textbook [START_REF] Choquet-Bruhat | General Relativity and the Einstein Equations[END_REF]. Aside from issues of well-posedness, which are of current concern to modi ed theories of gravity (where this issue generally complexi es), another direction of investigation is that of global properties of solutions-e.g., global uniqueness of solutions to the Einstein vacuum equation, rst proved in [START_REF] Choquet-Bruhat | Global aspects of the Cauchy problem in general relativity[END_REF]. Additionally, there is also the problem of the perturbative stability of known exact solutions to the Einstein equation. For example, the (global nonlinear) stability of Minkowski spacetime was famously proved in [START_REF] Christodoulou | The Global Nonlinear Stability of the Minkowski Space[END_REF], while the stability of the Kerr spacetime remains an open problem. See [START_REF] Coley | Mathematical General Relativity[END_REF][START_REF] Coley | Open problems in mathematical physics[END_REF] for recent comprehensive statements of current open problems in this area.

2.5.2. Numerical relativity. The relevance of obtaining numerical solutions of GR hardly requires ampli cation: from investigating the general behaviour and mathematical character of the Einstein equation and/or (usually quantum/holographic gravity motivated) modi cations thereof (see, e.g., the review [START_REF] Cardoso | NR/HEP: roadmap for the future[END_REF]), to direct application in gravitational wave astronomy (see, e.g., the review [START_REF] Duez | Numerical relativity of compact binaries in the 21st century[END_REF]); numerical solutions can give clues not only to the validity of mathematical conjectures, but also to the sorts of astrophysical observations that may be achievable and interesting to study. For general recent reviews of the eld, see e.g. [START_REF] Lehner | Numerical Relativity and Astrophysics[END_REF][START_REF] Sarbach | Continuum and Discrete Initial-Boundary Value Problems and Einstein's Field Equations[END_REF].

Canonical methods are generally the most preferred approach for numerically obtaining (especially in the very strong eld regime) dynamical solutions of GR. Another formalism commonly used in numerical relativity aside from the canonical decomposition is the null (or characteristic) decomposition, involving the choice of one or two of the coordinates to be null.

Carrying out a numerical evolution in GR in the canonical picture then essentially begins with a speci cation of initial data (Σ 0 , h 0 , π 0 ) for the dynamical elds, along with a lapse N 0 and shift N 0 , chosen in such a way that the four secondary constraints

C[ϕ G 0 , π G 0 ] = 0 = C[ϕ G 0 , π G 0 ]
, which are four elliptic PDEs on the initial value surface, hold. Then, one evolves this initial data via the twelve hyperbolic canonical equations of motion, which can be shown to guarantee the preservation in time of the secondary constraints. As for the freedom implied by the primary constraints, this must somehow be taken into account in the numerical evolution also (recall that this means the freedom to "re-identify" spatial points via a transformation of the time ow vector eld from one Cauchy slice to another). In practice this is typically achieved by some explicit speci cation either of (N, N ), or directly of coordinate ("gauge") conditions. In this way, ensuring the satisfaction of the primary constraints for numerical solutions is typically not so problematic.

Instead, what is problematic and what has sti ed the progress of numerical relativity for a long time is dealing with the numerical propagation of the secondary constraints.

While the PDEs ensure these should remain identically zero, numerically of course one will always have the accumulation of some non-zero error in time (starting from initial data exactly satisfying the secondary constraints). A direct numerical implementation of the standard canonical GR equations in the exact form developed here, for example, leads to exponentially growing modes in this error. (These equations are said to be weakly hyperbolic.) To overcome this issue, (so-called strongly hyperbolic) reformulations of the initial value problem, friendlier to computational stability, are required.

Today, two main such methods are generally in use, which have been found to keep the secondary constraints under adequate numerical control: the so-called generalized harmonic formulation and the BSSN [START_REF] Baumgarte | Numerical integration of Einstein's eld equations[END_REF][START_REF] Shibata | Evolution of three-dimensional gravitational waves: Harmonic slicing case[END_REF] (or sometimes BSSNOK, including the additional authors of [START_REF] Nakamura | General Relativistic Collapse to Black Holes and Gravitational Waves from Black Holes[END_REF]) formulation.

In generalized harmonic formulations, the idea is to work in gauges similar to the harmonic gauge mentioned in the previous subsection, generalizing the harmonic equation on the coordinates to include a source. The rst successful simulation of a binary black hole merger was achieved via a harmonic gauge approach in [START_REF] Pretorius | Evolution of Binary Black-Hole Spacetimes[END_REF]].

The BSSN formulation begins with a conformal rescaling of the spatial metric h: in particular, one takes h = ψ -4 h to be the dynamical con guration variable, where ψ is a conformal factor chosen such that det( h) = 1. One proceeds from this to de ne additional phase space variables via similar rescalings, and then to obtain the canonical equations of motion for these variables via the procedures we have outlined in the general canonical (ADM) case. The equations obtained at this point are still generally numerically unstable, but what turns out to solve the issue is a clever addition of the secondary constraints to the dynamical evolution equations. As the former are identically zero analytically, their addition to the latter does not a ect the solution in theory. Yet it does seem to a ect, in a desirable way, numerical stability in practice. This has been shown "empirically" by its widespread success in strongly dynamical simulations, and rigorously for perturbations of Minkowski space [START_REF] Alcubierre | Towards an understanding of the stability properties of the 3+1 evolution equations in general relativity[END_REF].

For more on this topic, see the textbooks [Baumgarte and Shapiro 2010; Alcubierre 2012; Shibata 2015].

2.5.3. Quantum gravity. The mathematical formalism of quantum physics has, from its roots up to modern particle theories, largely taken shape in the basic language of canonical formulations. Thus modest approaches towards investigating the question of quantizing gravity have often begun with canonical formulations of GR. (Indeed, recall that the very rst canonical formulation of GR was developed for this purpose [START_REF] Pirani | On the Quantization of Einstein's Gravitational Field Equations[END_REF].)

It turns out that the typical canonical formulation of GR we have developed in this chapter is not itself easily amenable to standard (canonical) quantization procedures. That is, an immediately suggestible idea for quantizing GR would be to turn the set of dynamical classical phase space variables (h, π)| C -i.e., those in the constraint surface (where all the constraints ζ = 0 have been solved, and which therefore may be regarded as containing all observable information without gauge arbitrariness)-into quantum Hilbert space operators, with their Poisson bracket relations becoming commutators (Dirac brackets, with the appropriate factor of i ). This turns out to be very di cult to carry out in practice, as a complete set of observables to characterize the constraint surface C of GR seems too di cult to construct explicitly. Furthermore, even if this is possible, quantizing only variables in C by construction leaves out "o -shell" information about the solutions (in P\C ), which may in fact be necessary from a quantum point of view (as, e.g., possible additional contributions in a path integral formulation).

This being the case, one may next contemplate the possibility of working instead with quantization on the full classical phase space P (or perhaps just the primary constraint surface C ). Thus, in addition to the dynamical variables, one also promotes the constraint functions ζ j to Hilbert space operators satisfying the condition that they annihilate any quantum state |ψ that is a solution of the theory, ζ j |ψ = 0. This type of procedure, known as Dirac quantization, also su ers from a number of technical problems (e.g., ambiguities in the choice of the order of the factors in the constraint operator, anomalies etc.).

Much greater progress towards the quantization of GR has instead been made by pursuing rst-order formulations of the theory, i.e. formulations that produce rst-order equations of motion directly at the Lagrangian level. While of course the Einstein-Hilbert action S EH [g] = 1 2κ ´e √ -gR[g] yields as we have seen second-order equations of motion for the eld g, a simple example of a rst-order Lagrangian formulation of GR is the Palatini action:

S P [g, Γ] = 1 2κ ´e √ -gR[Γ],
where both the metric g and the connection Γ are regarded as physical elds and which, by the vanishing of the variation with respect to g, yields rst-order equations of motion for Γ (which turn out to be Christo el symbols by the vanishing of the variation with respect to Γ).

First-order formulations of GR that have proved most useful to quantization programs have been in the framework of tetrads. These can be very roughly de ned as a set of vector elds e a I ∈ T M , labeled by an "internal" index I = 0, 1, 2, 3, which provides an orthonormal basis of the tangent space at each point, i.e. {e a I } 3 I=0 are such that

g ab e a I e b J = η IJ = diag(-1, 1, 1, 1) (2.5.2)
is the Minkowski metric in the internal coordinates. The dual to a tetrad, to which we associate the index-free notation e I , e I = e I a = η IJ e b J g ab , (2.5.3) is a one-form on spacetime called a co-tetrad; it may be regarded as encoding the same geometrical/physical information as the metric-and thus, one may consider a second order action S[e] for GR.

Let us see brie y how one can devise a tetrad formulation of GR which is rst order. See Chapter 3 of [START_REF] Wald | General Relativity[END_REF]] and Chapter 6 of [START_REF] Bojowald | Canonical Gravity and Applications: Cosmology, Black Holes, and Quantum Gravity[END_REF]] for more details. First, one can show that the exterior derivative of the co-tetrad (2.5.3) takes the form

de I = e J ∧ ω IJ , (2.5.4)
where the ω IJ are all one-forms (on M ) known as connection one-forms8 . Thanks to antisymmetry, all ω IJ can be determined completely from (2.5.4) in terms of derivatives of the co-tetrads e I . Now consider the spacetime Riemann tensor twice contracted into internal indices, R abIJ = R abcd e a I e b J . It is possible to show that this is in fact a collection of spacetime two-forms R IJ , labelled by two internal indices. These can be expressed as a functions of only the connection one-forms ω:

R IJ [ω] = dω IJ + ω IK ∧ ω K J .
(2.5.5)

The vacuum Einstein equation can in this case be obtained from the following action, taken to be a functional of the co-tetrads e and the connection one-forms ω (and written with respect to the at space volume element e):

S [e, ω] = 1 2κ ˆeIJKL e I ∧ e J ∧ R KL [ω] .
(2.5.6)

In loop quantum gravity, for example, one carries out the quantization in a canonical formulation derived from an action very similar to (2.5.6) above, called the Holst action [S. [START_REF] Holst | Barbero's Hamiltonian derived from a generalized Hilbert-Palatini action[END_REF]. Essentially, it simply adds an additional topological term which does not a ect the classical equations of motion, but the inclusion of which turns out to provide crucial space for development of the theory at the quantum level. The coupling constant of this term, generally denoted by γ, is known as the Barbero-Immirzi parameter and, while freely speci able at the mathematical level, is thought to play the role of a physical constant in loop quantum gravity [START_REF] Barbero | Real Ashtekar variables for Lorentzian signature space-times[END_REF][START_REF] Immirzi | Real and complex connections for canonical gravity[END_REF].

With the addition of this term, a canonical analysis can be carried out following similar methods as those we have seen in this chapter. The most useful such formulation for loop quantum gravity was developed using Ashtekar variables, originally introduced in [START_REF] Ashtekar | New Hamiltonian formulation of general relativity[END_REF]]. These are closely related to (ω, e), and have proven to be very useful to work with for the purposes of attempting to quantize the theory.

While much progress has been made in the last few decades following these lines, a full theory of quantum gravity remains an open problem in physics today. For more, see the textbook [START_REF] Rovelli | Quantum Gravity[END_REF]] and the recent review [START_REF] Ashtekar | From General Relativity to Quantum Gravity[END_REF]].

2.5.4. Gravitational energy-momentum. The issue of de ning gravitational energy-momentum, and conservation principles in GR more generally, is a notoriously subtle one for a multitude of reasons. While this will be treated in far greater detail in Chapter 5, the key point of this problem has a simple physical explanation in the equivalence principle [START_REF] Misner | Gravitation[END_REF]: in brief, it is impossible to de ne a sensible notion of local gravitational energy-momentum (in a similar style as one typically does for matter), i.e. as a volume density, simply because it is always possible to "transform away" any local gravitational eld (at any given spacetime point). Thus a total gravitational energymomentum as a volume integral of any local density cannot be meaningfully de ned in GR.

The solution generally accepted to circumvent this problem is instead to de ne and work with what are called quasilocal de nitions of gravitational energy-momentum: namely, surface densities (rather than volume densities) which, when integrated over the boundary (rather than the interior) of some spatial volume, yield meaningful de nitions of the total energy-momentum of that volume.

Today, there exist a number of proposals for energy-momentum formulas in this style, often intended to be valid for arbitrary (closed) spatial regions within a Cauchy surface Σ and in agreement with each other in various limits. See the reviews [START_REF] Jaramillo | Mass and Angular Momentum in General Relativity[END_REF][START_REF] Szabados | Quasi-Local Energy-Momentum and Angular Momentum in GR: A Review Article[END_REF]] for comprehensive summaries. Nevertheless, it is generally expected that such de nitions should agree when applied to the entire Cauchy surface Σ, and in particular, that they should recover the de nitions motivated by canonical formulations.

Indeed, as we have seen, canonical methods of the sort developed in this chapter treat the entire Cauchy surface as the dynamical "system" of interest, and are therefore restricted to (possibly) providing elucidation on the meaning of energy-momentum only for this entire system, i.e. the entire space. For asking questions about "sub-systems" of Σ (i.e. nite spatial regions), further geometrical constructions are necessary, and often take the form of worldtube boundary splittings or similar strategies. More on this in Chapter 5.

For now, let us consider the most classic result for an energy de nition within canonical GR, the ADM energy, applicable to a vacuum spacetime which is asymptotically at. This means that the spacetime is a development of an initial data set (Σ, h, π) such that, outside some compact subset of Σ, there exist coordinates {x i } in which the components Chapter 2. Canonical General Relativity of h and π satisfy the following "fall-o " conditions in terms of r = (x i x i ) 1/2 :

h ij -δ ij = O r -1 , π ij = O r -2 ,
(2.5.7) n+2) , ∀n ≥ 1 .

∂ n h ij = O r -(n+1) , ∂ n π ij = O r -(
(2.5.8)

This formalizes the idea that, for "su ciently large" r, the spacetime is "su ciently close" to Minkowski. Therefore such spacetimes can be physically interpreted to describe "isolated systems". Now consider again the gravitational Hamiltonian

H G = 1 2κ ´Σ e √ h[N C -2N • C + 2D • ( 1 √ h N • π)].
On the constraint surface C , only the divergence in the integrand is in general non-zero. Using Stokes' theorem, one may write it as a (closed) boundary integral:

H G = - 1 κ ˛S S N k - N a r b π ab N √ σ ,
(2.5.9)

where S = ∂Σ S 2 is the Cauchy surface boundary (topologically a two-sphere), with unit normal r a and induced metric σ = h| ∂Σ , and where k = tr(k) is the trace of the extrinsic curvature k of S in Σ. This H G | C (2.5.9) is sometimes called the "solutionvalued" Hamiltonian.

For an asymptotically at (Σ, h, π), i.e. satisfying (2.5.7)-(2.5.8), choose a time ow vector eld t such that as r → ∞ we have t → n, or equivalently N → 1 and N → 0 . This means that asymptotically, spatial points on one time slice of the spacetime are identi ed directly along the normal with those on a future time slice. Such a t is said to generate an asymptotic time translation, and so the evaluation of the gravitational Hamiltonian H G | C for this type of t can be interpreted physically as the total gravitational energy of Σ. It is referred to as the ADM energy [START_REF] Arnowitt | The dynamics of general relativity[END_REF]], and we see by inspection from Eq. (2.5.9) that it is given by:

E ADM = - 1 κ lim r→∞ ˛S S k , (2.5.10)
the integral of a surface energy density given by k. This can be shown to recover, for example, the mass parameter in exact black hole spacetimes.

A notion of gravitational momentum can also be de ned in this setting. Yet, the asymptotic atness conditions (2.5.7)-(2.5.8) alone do not su ce, as was rst analyzed in detail in [START_REF] Regge | Role of surface integrals in the Hamiltonian formulation of general relativity[END_REF]. In particular, a momentum de nition also requires the Regge-Teitelboim parity conditions: (2.5.11) where

∂ n h odd ij = O r -(n+2) , ∂ n π even ij = O r -(n+3) ,
f odd (x) = f (x)-f (-x)
is the odd part of a function and f even (x) = f (x)+f (-x) the even part.

If these parity conditions are satis ed, then it is possible to de ne an ADM linear momentum, for example, by an application of Noether's theorem to asymptotic space translations. (See Chapter 3 of [START_REF] Bojowald | Canonical Gravity and Applications: Cosmology, Black Holes, and Quantum Gravity[END_REF].) The result is:

P a ADM = - 1 κ lim r→∞ ˛S d 2 x r b π ab .
(2.5.12)

A similar formula for an ADM angular momentum may be de ned from asymptotic rotations 9 .

It has been proven that data (Σ, h, π) which satisfy the Regge-Teitleboim parity conditions (2.5.11) are dense among asymptotically at data (satisfying (2.5.7)-(2.5.8)) in a suitable weighted Sobolev space [START_REF] Corvino | On the Asymptotics for the Vacuum Einstein Constraint Equations[END_REF].

CHAPTER 3

General Relativistic Perturbation Theory

Chapter summary. This chapter o ers a rigorous presentation of perturbation methods in general relativity. Many problems of interest, in gravitational physics generally, often involve phenomena that are "very close", in some suitable sense, to a known exact solution of the theory. This permits the expression of quantities of interest in the form of in nite Taylor series about the known, "background" value, and simpli es the problem to that of computing the terms in these series up to the desired order of accuracy. Such tactics form the basis of computing corrections to the motion of a moving object in general relativity, speci cally as caused by self-force e ects-a topic that we treat in extensive detail in Chapter 5.

We begin in Section 3.1 with a brief introduction, outlining the basic idea behind the general philosophy of perturbation theory in general relativity. Essentially, the view is that one is trying to solve analytically intractable equations de ned on an abstract ("perturbed") spacetime that one cannot construct explicitly, but one that is nonetheless "close enough" to a known exact solution of the theory (the "background"). What must be done, in this case, is to transport these equations to the background manifold under a map-in particular, a di eomorphism-identifying the di erent spacetimes, thus turning them into solvable Taylor series on an explicitly known mathematical space. This basic picture, from both a physical and mathematical point of view, lends sensible meaning to the heuristic idea of "adding a perturbation on top of a background".

Section 3.2 is dedicated to formalizing these ideas mathematically. Special attention is paid to the issue of perturbative gauge freedom. In particular, the choice of the map relating the "perturbed" and "background" spacetimes is not unique, and a change to a di erent map is shown to correspond to a perturbative gauge transformation.

Then in Sections 3.3 and 3.4, we summarize the main ideas and results that have been obtained from the application of perturbation methods to black hole spacetimes. Respectively, these sections consider perturbations to the Schwarzschild-Droste and Kerr spacetimes. The perturbative equations in the former case (the Regge-Wheeler and Zerilli equations) are presented in the context of a canonical analysis, and that in the latter case (the Teukolsky equation) from the point of view of the Newman-Penrose formalism.
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Chapter 3. General Relativistic Perturbation Theory Teoria general relativista de les pertorbacions (chapter summary translation in Catalan). Aquest capítol ofereix una presentació rigorosa dels mètodes de pertorbació en la relativitat general. Molts problemes d'interès, en la física gravitacional generalment, solen implicar fenòmens "molt propers", en algun sentit adequat, a una solució exacta coneguda de la teoria. Això permet l'expressió de quantitats d'interès en forma de sèries in nites de Taylor al voltant del valor conegut, de "fons", i simpli ca el problema per computar els termes d'aquestes sèries ns a l'ordre de precisió desitjat. Aquestes tàctiques constitueixen la base del càlcul de correccions al moviment d'un objecte en la relativitat general, concretament causada per efectes d'auto-força, un tema que tractem detalladament al capítol 5.

Comencem a la secció 3.1 amb una breu introducció, que descriu la idea bàsica de la loso a general de la teoria de les pertorbacions en la relativitat general. Essencialment, es tracta de resoldre equacions analíticament intractables de nides en un espai abstracte ("pertorbat") que no es pot construir explícitament, però que és "prou proper" a una solució exacta coneguda de la teoria (el "fons"). El que s'ha de fer, en aquest cas, és transportar aquestes equacions al fons sota un mapa -en concret, un difomor sme -identi cant els diferents espais-temps, convertint-les així en sèries de Taylor solucionables en un espai matemàtic explícitament conegut. Aquesta imatge bàsica, tant des del punt de vista físic com matemàtic, dóna un sentit raonable a la idea heurística "d'afegir una pertorbació en un fons".

La secció 3.2 es dedica a formalitzar matemàticament aquestes idees. Es presta una atenció especial al problema de la llibertat de mesura pertorbativa. En particular, l'elecció del mapa relacionant els espais-temps "pertorbats" i de "fons" no és única, i es mostra que un canvi a un mapa diferent correspon a una transformació de mesura pertorbativa.

A continuació, a les Seccions 3.3 i 3.4, resumim les idees i resultats principals que s'han obtingut a partir de l'aplicació de mètodes de pertorbació als espais-temps de forats negres. Respectivament, aquestes seccions consideren pertorbacions als espais-temps de Schwarzschild-Droste i Kerr. Les equacions pertorbatives en el primer cas (les equacions Regge-Wheeler i Zerilli) es presenten en el context d'una anàlisi canònica, i en el segon cas (l'equació de Teukolsky) des del punt de vista del formalisme de Newman-Penrose.

Théorie générale relativiste des perturbations (chapter summary translation in French). Ce chapitre propose une présentation rigoureuse des méthodes de perturbation dans la relativité générale. De nombreux problèmes d'intérêt, dans la physique gravitationnelle en général, impliquent souvent des phénomènes « très proches », dans un sens approprié, d'une solution exacte connue de la théorie. Cela permet d'exprimer des quantités d'intérêt sous la forme d'une série in nie de Taylor autour de la valeur « de fond » connue et simpli e le problème en se limitant au calcul des termes de ces séries jusqu'à l'ordre de précision souhaité. De telles tactiques constituent la base du calcul des corrections apportées au mouvement d'un objet en mouvement dans la relativité générale, en particulier à cause des e ets de la force propre -un sujet que nous traitons en détail au chapitre 5.

Nous commençons à la section 3.1 par une brève introduction, décrivant l'idée de base de la philosophie générale de la théorie des perturbations dans la relativité générale. L'essentiel, c'est que l'on essaie de résoudre des équations analytiquement insolubles dé nies sur un espace-temps abstrait (« perturbé ») qu'on ne peut pas construire explicitement, mais qu'est néanmoins « su samment proche » d'une solution exacte connue de la théorie (« le fond »). Ce qui doit être fait, dans ce cas, est de transporter ces équations vers le fond usant une application -en particulier, un di éomorphisme -identi ant les différents espaces-temps, les transformant ainsi en séries de Taylor résolubles sur un espace mathématique explicitement connu. Cette image de base, d'un point de vue physique et mathématique, donne un sens raisonnable à l'idée heuristique « d'ajouter une perturbation au-dessus d'un fond ».

La section 3.2 est consacrée à la formalisation mathématique de ces idées. Une attention particulière est accordée à la question de la liberté de jauge perturbative. En particulier, le choix de l'application reliant les espaces-temps « perturbé » et « de fond » n'est pas unique et une modi cation apportée à une carte di érente correspond à une transformation perturbative de jauge perturbative.

Ensuite, dans les sections 3.3 et 3.4, nous résumons les idées principales et les résultats qui ont été obtenus à partir de l'application de méthodes de perturbation aux espacestemps de trous noirs. Respectivement, ces sections traitent des perturbations des espacestemps de Schwarzschild-Droste et de Kerr. Les équations perturbatives dans le premier cas (les équations de Regge-Wheeler et Zerilli) sont présentées dans le contexte d'une analyse canonique et cela dans le second cas (l'équation de Teukolsky) du point de vue du formalisme de Newman-Penrose.

Introduction

Many problems in GR, when exact or fully numerical solutions cannot be obtained or are impracticable, may be amenable instead to treatment via perturbation theory. That is, one often encounters situations where the desired solution to the Einstein equation, though infeasible to obtain explicitly, is nonetheless "su ciently close", in some suitable sense, to a known exact solution of the theory. This allows one then to obtain approximate solutions in the form of Taylor series about the known exact solution. Undoubtedly the most famous example of such solutions is that of plane gravitational waves (in the simplest case, on a at spacetime background).

The heuristic notion that one often starts with in thinking about perturbations is the following. Suppose a background quantity Q (such as the metric), in a background manifold M , is known explicitly as the solution to an equation of interest E[ Q] = 0 (in M ). One then imagines adding a "small" perturbation δQ to this known background quantity, and then assuming that the approximate solution which one seeks is Q ≈ Q+δQ, or more generally

Q = Q + λδQ + O(λ 2 )
where λ is a "small" expansion parameter. Then, one inserts this form of Q into the equation of interest E[Q] = 0 which is thereby expanded and solved, order by order (up to the desired order), in λ.

This point of view of perturbations is in many cases su cient for simple calculations, e.g. plane gravitational waves can usefully and simply be thought of as wave-like perturbations "on top of" Minkowski for practical purposes. However, often this perspective is too limiting, and in particular a careful treatment of the self-force problem-the main topic of Chapter 5-requires us to be a bit more precise about exactly what we mean by "a perturbation on top of a background".

Let us begin with a simple question: formally speaking, where (i.e. in what space) does Q live as a mathematical quantity? Clearly it must live on M , as this is the (exact) manifold that we know, and in which we know how to carry out calculations. Nonetheless, Q is the solution to a ("perturbed") equation

E[Q] = 0 which is, obviously, not the exact equation E[ Q] = 0 for the background solution Q on M . So where does the equation E[Q] = 0 really come from?
The answer, of course, is that it is an equation we do not know how to solve exactly, in a manifold which we also do not know exactly (and precisely due to which one designs a perturbation procedure to deal with the problem in the rst place). Let M (λ) denote this "true", (analytically) unsolvable manifold. The "true" quantity Q (λ) lives here, and satis es the equation E (λ) [Q (λ) ] = 0 on M (λ) exactly. In fact, what we shall ultimately need to work with is a one-parameter family of such objects (manifolds and related equations) in λ; we develop this in detail in the next section, but for the moment, to continue setting out the general idea, it is enough to think of M and M (λ) as just two manifolds. Now, the "true" manifold M (λ) is assumed to be di eomorphic to the background M , so that there exists a di eomorphism ϕ : M → M (λ) which identi es spacetime points in the background with points in the "perturbed" spacetime. The "perturbed" equation E[Q] = 0 to be solved on M is then nothing more than the transport (under ϕ) of the "true" equation

E (λ) [Q (λ) ] = 0 from M (λ) to M , and so Q is understood as the transport of Q (λ) to the background, i.e. Q = ϕ * Q (λ) . In other words, what one is really solving is ϕ * (E (λ) [Q (λ) ]) = E[Q] = 0 on M . If λ is "
small" in some suitable sense (to be de ned more precisely in the next section), then this produces Taylor series on M in λ, which one then solves order by order.

While this may sound a bit abstract, there is very a sensible physical meaning to this perspective. The "background", strictly speaking, does not exist as an object of study in the "real" world, one "on top of" which one "adds" perturbations. Rather, the background is a mathematical idealization-a crucial one, as it provides the stage upon which we know how to do calculations-which is "close enough" to the "true" world as to permit the representation of quantities of interest in the form of in nite Taylor series thereabout. The latter are just transports to the background of equations that we do not know how to deal with directly in the "real" spacetime, and permit one to arrive at approximations by truncating the Taylor series at the desired order in the perturbation parameter.

This geometrical view of perturbation theory not only renders the technical construction conceptually well-motivated, as we shall see, it thereby also avoids running into any dangerous ambiguities in the interpretation of the perturbation quantities, especially visà-vis the delicate issue of perturbative gauge transformations. Indeed, it is worth remembering that in the history of GR much confusion has been created by insu ciently careful treatments of general relativistic perturbations and their related gauge issues, which have often taken a long time to clarify1 .

Given the complexity of the self-force problem, and the fact that gauge issues have proven notoriously di cult therein also, we choose in this chapter to develop perturbation theory from the geometrical perspective just outlined. It will prove indispensable for our work on the self-force in Chapter 5.

General formulation of perturbation theory

3.2.1. Setup. Our exposition of perturbation theory in this subsection follows closely the treatment of [START_REF] Bruni | Perturbations of spacetime: gauge transformations and gauge invariance at second order and beyond[END_REF]]. See also Chapter 7 of [START_REF] Wald | General Relativity[END_REF]] for a simpler treatment of this topic but following the same philosophy.

Let λ ≥ 0 represent our perturbation parameter. It is a purely formal parameter, in the sense that it should be set equal to unity at the end of any computation and serves only to indicate the order of the perturbation. To formalize the ideas outlined in this chapter introduction, we begin by de ning a one-parameter family of spacetimes

{(M (λ) , g (λ) , ∇ (λ) )} λ≥0 , where ∇ (λ) is the connection compatible with the metric g (λ) in M (λ) , ∀λ ≥ 0, such that (M (0) , g (0) , ∇ (0) ) = ( M , g, ∇)
is a known, exact spacetime-the background. See Fig. 3.1 for a visual depiction. For notational convenience, any object with a sub-scripted "(0)" (from a one-parameter perturbative family) is equivalently written with an overset "•" instead. For the GSF problem, g is usually the Schwarzschild-Droste2 or Kerr metric. Then, one should establish a way of smoothly relating the elements of this one-parameter family (between each other) such that calculations on any M (λ) for λ > 0-which may be, in principle, intractable analytically-can be mapped to calculations on M in the form of in nite (Taylor) series in λ-which, provided M is chosen to be a known, exact spacetime, become tractable, order-by-order, in λ.

Thus, it is convenient to de ne a ( ve-dimensional, Lorentzian) product manifold

N = M (λ) × R ≥ , (3.2.1)
the natural di erentiable structure of which is given simply by the direct product of those on M (λ) and the non-negative real numbers (labeling the perturbation parameter), R ≥ = {λ ∈ R|λ ≥ 0}. For any one-parameter family of (k, l)-tensors {A (λ) } λ≥0 such that

A (λ) ∈ T k l (M (λ)
), ∀λ ≥ 0, we de ne A ∈ T k l (N ) by the relation

A α 1 •••α k β 1 •••β l (p, λ) = A α 1 •••α k (λ) β 1 •••β l (p) , ∀p ∈ M (λ) and ∀λ ≥ 0 . (3.2.2)
Henceforth any such tensor living on the product manifold will be denoted in serif font-instead of Roman font, which remains reserved for tensors living on (3 + 1)dimensional spacetimes. Furthermore, any spacetime tensor (except for volume forms) or operator written without a sub-or super-scripted (λ) lives on M . Conversely, any tensor (except for volume forms) or operator living on M (λ) , ∀λ > 0, is indicated via a sub-or (equivalently, if notationally more convenient) super-scripted (λ), e.g.

A (λ) = A (λ) ∈ T k l (M (λ)
) is always tensor in M (λ) . The volume form of any (sub-)manifold U is always simply denoted by the standard notation U (and is always understood to live on U ).

Let Φ X (λ) : N → N be a one-parameter group of di eomorphisms generated by a vector eld X ∈ T N . (That is to say, the integral curves of X de ne a ow on N which connects any two leaves of the product manifold.) For notational convenience, we denote its restriction to maps from the background to a particular perturbed spacetime (identi ed by a particular value of λ > 0) as

ϕ X (λ) = Φ X (λ) | M : M → M (λ) (3.2.3) p → ϕ X (λ) (p) . (3.2.4) F 3.1.
Representation of a one-parameter family of spacetimes {M (λ) } λ≥0 used for perturbation theory. Each of the M (λ) are depicted visually in (1 + 1) dimensions, as leaves of a ( ve-dimensional) product manifold N = M (λ) × R, with the coordinate λ ≥ 0 representing the perturbative expansion parameter. A choice of a map (or gauge) ϕ (λ) : M → M (λ) , the ow of which is de ned by the integral curves of a vector eld X ∈ T N , gives us a way of identifying any point p ∈ M = M (0) on the background to one on some perturbed (λ > 0) spacetime, i.e. p → ϕ (λ) (p).

The choice of X-equivalently, the choice of ϕ X (λ) -is not unique; there exists freedom in choosing it, and for this reason, X-equivalently, ϕ X (λ) -is referred to as the perturbative gauge. We may work with any di erent gauge choice Y generating a di erent map ϕ Y (λ) : M → M (λ) . If we do not need to render the issue of gauge speci cation explicit, we may drop the superscript and, instead of ϕ X (λ) , we simply write ϕ (λ) . Consider now the transport under ϕ X (λ) of any tensor A (λ) ∈ T k l (M (λ) ) from a perturbed spacetime to the background manifold. We always denote the transport of any such tensor by simply dropping the (λ) sub-or super-script and optionally including a superscript to indicate the gauge-that is,

∀A (λ) ∈ T k l (M (λ) ), (ϕ X (λ) ) * A (λ) = A X = A ∈ T k l ( M ) , (3.2.5)
and similarly the transport of ∇ (λ) to M is ∇. We know, moreover, that we can express any such A as a Taylor series around its background value, A (0) = Å in M . This follows from the Taylor expansion of Φ * (λ) A in N along with the de nition of the Lie derivative L and the group properties of Φ (λ) [START_REF] Bruni | Perturbations of spacetime: gauge transformations and gauge invariance at second order and beyond[END_REF]]:

A = Å + ∞ n=1 λ n n! L n X A| M (3.2.6) = Å + ∞ n=1 λ n δ n A , (3.2.7)
where, in the last equality, we have de ned

δ n A = (1/n!)(∂ n λ A)| λ=0
and so the (gaugedependent) rst-order perturbation is δ 1 A = δA = δA X . Note that the symbol δ n , ∀n, can be thought of as an operator δ n = (1/n!)∂ n λ | λ=0 that acts upon and extracts the O(λ n ) part of any tensor in M . We refer to

∆A = A -Å = ∞ n=1 λ n δ n A (3.2.8)
as the (full) perturbation (in the background) of A.

In particular, we have that the background value of the perturbed metric g = (ϕ X (λ) ) * g (λ) is g and we denote its rst-order perturbation for convenience and according to convention as h = δg. (It is unfortunate that the convention for denoting the spatial three-metric on a Cauchy slice, as in the previous chapter, is usually the same; we henceforth clarify which of these two we are talking about if the context does not make it su ciently apparent.) Thus we have

g = g + λh + O(λ 2 ) , (3.2.9)
where we have omitted explicitly specifying the gauge (X) dependence for now.

Let us de ne one further piece of notation that we shall later need to use: let Γ and Γ = (ϕ X (λ) ) * Γ (λ) denote the Christo el symbols (living on M ) associated respectively with g and g, de ned in the usual way (as the connection coe cients between their respective compatible covariant derivatives and the partial derivative). Then their di erence,

C = (ϕ X (λ) ) * Γ (λ) -Γ = Γ -Γ , (3.2.10)
is the connection coe cient relating ∇ and ∇ on M , which is in fact a tensor. Note that C = 0, i.e. C = λδC + O(λ 2 ). In particular, it is given by

C a bc = λ 2 gad ∇b h cd + ∇c h bd -∇d h bc + O λ 2 . (3.2.11)
3.2.2. Perturbed Einstein equations. In this setting, then, what one is often interested in is computing the metric perturbation ∆g for a known background metric g. This means transporting the vacuum Einstein equation R (λ) [g (λ) ] = 0 on M (λ) to M (0) . In this way, an approximate solution can be expediently obtained for the metric of the spacetime of interest up to the desired order in λ. In principle, a number of technical subtleties must also be kept in mind whenever a procedure of this sort is implemented [START_REF] Wald | General Relativity[END_REF]]: (i) For an n-th order approximation (in λ), it is in general di cult to estimate the (n + 1)-th order error. Thus, it may be problematic to determine just how "small" λ needs to be in order for this perturbative scheme to be valid to su cient accuracy. (ii) The existence of a one-parameter family {g (λ) } implies the existence of a solution h to the linearized eld equation. However, the converse is not true. Thus, merely solving for h does not guarantee that one will have linearization stability, i.e. a corresponding exact solution g (λ) in M (λ) . Now, to transform the vacuum Einstein equation R (λ) [g (λ) ] = 0 on M (λ) into an equation on M (0) , let us begin by considering the de nition of the Riemann tensor: for any (0, 1)-tensor ω (λ) on M (λ) , we have

∇ (λ) a ∇ (λ) b ω (λ) c -∇ (λ) b ∇ (λ) a ω c = R (λ) abc d ω (λ)
d . The transport of this equation to M (0) , using the fact that the tensor transport commutes with contractions and denoting ω = ϕ * (λ) ω (λ) , is simply:

∇ a ∇ b ω c -∇ b ∇ a ω c = R abc d ω d , (3.2.12)
where ∇ is the transport to to M (0) of the derivative operator ∇ (λ) on M (λ) (compatible with g (λ) ). Inserting ∇ a ω b = ∇a ω b -C c ab ω c where C is the connection coe cient [Eq. (3.2.11)] into the LHS of the transported Riemann formula [Eq. (3.2.12)], a straightforward computation turns this into a relation (in M ) between the perturbed and background values of the Riemann tensor:

R abc d = Rabc d -2 ∇[a C d b]c + 2C e c[a C d b]e . (3.2.13)
Using the fact that the background metric g satis es the vacuum Einstein equation, Rac = 0, we contract the above to get:

R ac = -2 ∇[a C b b]c + 2C e c[a C b b]e . (3.2.14)
Inserting the metric expansion [Eq. (3.2.9)] into the de nition of C [Eq. (3.2.11)], and then this into Eq. (3.2.14), the perturbed vacuum equation R = 0 on M (0) becomes an in nite set of equations at each order in λ. Carrying out the calculation to second order yields:

O(1) : 0 = Rac [g] (3.2.15) O(λ) : 0 = δR ac [h] = -1 2 ∇a ∇c h -1 2 ˚ h ac + ∇ b ∇ (c h a)b (3.2.16) O(λ 2 ) : 0 = δR ac [δ 2 g] + δ 2 R ac [h], (3.2.17)
where δ n R ac is the n-th order part of the expansion of R ac (in powers of λ), and ˚ = ∇b ∇b is the background wave operator.

Chapter 3. General Relativistic Perturbation Theory 3.2.3. Gauge transformations. We now turn to the subtle problem of gauge transformations in perturbation theory. Thus far, we have been working with a one-parameter group of di eomorphisms Φ X (λ) : N → N generated by the vector eld X ∈ T N . What this does, in essence, is to prescribe an identi cation between points on the di erent leaves M (λ) of N along the integral curves of X (and in particular, between points on the background and any given perturbed spacetime via ϕ X (λ) = Φ X (λ) | M ). However, this identi cation is not unique; there is freedom in choosing the vector eld X (equivalently, the map Φ X (λ) ), referred to as the gauge choice, and a change of this vector eld (equivalently, the associated map) is called a gauge transformation.

To understand the e ect of performing a gauge transformation, let Φ X (λ) : N → N and Φ Y (λ) : N → N be two di erent (one-parameter groups of) di eomorphisms, de ned by the integral curves of two di erent vector elds, X and Y respectively, on N (such that

X 4 = λ = Y 4 ). See Fig. 3.2.
According to the discussion above, we will obtain two di erent values of the perturbation in any (k, l)-tensor, ∆A X = A X -Å and ∆A Y = A Y -Å respectively, depending on which map (or vector eld) we use. This is sometimes referred to as "gauge ambiguity" in the calculation of the perturbation, and it is said that A is (totally) gauge invariant if ∆A X = ∆A Y for any X = Y. The Stewart-Walker lemma [J. M. [START_REF] Stewart | Perturbations of space-times in general relativity[END_REF] (see also Chapter 1 of [J. [START_REF] Stewart | Advanced General Relativity[END_REF]) tells us that this happens if and only if Å vanishes, is a constant scalar eld, or is a linear combination of products of Kronecker deltas with constant coe cients. In general, however, this is not necessarily the case, and so it is important to understand how perturbations change under a gauge transformation.

Let us now de ne a one-parameter family of di eomorphisms Ψ (λ) : M → M on the background by:

Ψ (λ) = ϕ X (-λ) • ϕ Y (λ) . (3.2.18)
What this does is to move points in the background along the integral curves of Y into the perturbed spacetimes, and then along the integral curves of X "in reverse", back onto the background. (Note that this does not, in general, form a group.) Then observe that A X and A Y are related by

A Y =[(Φ Y (λ) ) * A] M (3.2.19) =[(Φ Y (λ) ) * • [(Φ X (λ) ) * ] -1 • (Φ X (λ) ) * A] M (3.2.20) =[(Φ Y (λ) ) * • (Φ X (-λ) ) * • (Φ X (λ) ) * A] M (3.2.21) =[Ψ * (λ) • (Φ X (λ) ) * A] M (3.2.22) =Ψ * (λ) A X , (3.2.23)
where in the second line we have introduced the identity, and in the following lines we have applied the de nitions established so far. Now, according to theorems the proofs of F 3.2. A gauge transformation consists in choosing a di erent vector eld in T N , or equivalently a di erent associated di eomorphism, for identifying points between the background and the perturbed spacetimes. In this illustration, the point p ∈ M is mapped under the ow of X to the same point in M (λ) as is q ∈ M under the ow of Y (for p = q and X = Y). One thus has a gauge transformation on the background q → Ψ (λ) (q) = p.

which can be found in [START_REF] Bruni | Perturbations of spacetime: gauge transformations and gauge invariance at second order and beyond[END_REF]], for any one-parameter family of di eomorphisms Ψ (λ) : M → M [Eq. (3.2.18)], there exists an in nite sequence of one-parameter groups of di eomorphisms {ψ

(n) (λ) : M → M } ∞ n=1 such that Ψ (λ) = • • • • ψ (n) (λ n /n!) • • • • • ψ (2) (λ 2 /2!) • ψ (1) (λ)
. Moreover, the transport under Ψ (λ) of any tensor eld A on M has the following series expansion in λ:

Ψ * (λ) A = ∞ l 1 ,l 2 ,l 3 ,...=0 λ ( ∞ j=1 jl j ) ∞ k=1 (k!) l k l k ! L l 1 ξ (1) L l 2 ξ (2) L l 3 ξ (3) • • • A , (3.2.24)
where ξ (n) ∈ T M is the vector eld in the background generating the ow of each ψ

(n) (λ) .
Applying the above theorem [Eq. (3.2.24)] to the relation between A X and A Y [Eq. (3.2.23)], one obtains:

A Y = A X + λL ξ (1) A X + λ 2 2 L 2 ξ (1) + L ξ (2) A X + O(λ 3 ) . (3.2.25)
Substituting series expansions [Eq. (3.2.8)] for A X and A Y into the above and demanding that the resulting expression holds order by order yields:

∆A Y =∆A X + λ L ξ (1) Å + λ 2 1 2 L 2 ξ (1) + L ξ (2) Å + L ξ (1) (L X A) M + O(λ 3 ), (3.2.26)
where

ξ (1) = Y -X, and ξ (2) = [X, Y ].
To see the relation between a perturbative gauge transformation and a "change of coordinates", let us apply the above to the situation where A is simply a coordinate function x α . Then, one can easily check that

Ψ * (λ) x α = x α + λξ α (1) + λ 2 2 ξ β (1) ∂ β ξ α (1) + ξ α (2) + O(λ 3 ) . (3.2.27)
3.2.4. The Lorenz and transverse-traceless gauges. It is convenient to introduce the trace-reversed metric perturbation,

h = h - 1 2 hg . (3.2.28)
Then, under a gauge transformation generated by some vector eld ξ (1) = ξ (to rst order), we have h X → h Y = h X + L ξ g and so,

hY ab = hX ab + ∇ a ξ b + ∇ b ξ a -( ∇ • ξ)g ab , (3.2.29) ⇒ ∇b hY ab = ∇b hX ab + ˚ ξ a + Rab ξ b = ∇b hX ab + ˚ ξ a , (3.2.30)
where in the last line we have used the contraction of the Riemann formula on M and nally the fact that R = 0. If we choose ξ to be a solution of the equation ˚ ξ a = -∇b hX ab , then the gauge de ned by Y is known as the Lorenz gauge. 

˚ h T ac + 2 Ra b c d h T bd = 0 . (3.2.33)
If the background is Minkowski space, the above simpli es to the elementary wave equation ˚ h T = 0. This readily admits plane wave solutions; for example, choosing a coordinate system such that the direction of propagation of the plane wave is aligned with the Cartesian z-direction, one nds the solution:

h T αβ =          0 0 0 0 0 h + h × 0 0 h × -h + 0 0 0 0 0          exp (ik • x) . (3.2.34)
See Chapter 7 of [START_REF] Carroll | Spacetime and Geometry: An Introduction to General Relativity[END_REF]] for more discussion on this solution and related elementary aspects of gravitational waves. See also the textbook [START_REF] Maggiore | Gravitational Waves: Volume 1: Theory and Experiments[END_REF]] for a more involved development of this topic.

3.3. Perturbations of the Schwarzschild-Droste spacetime 3.3.1. The Schwarzschild-Droste spacetime. In this section we will consider the problem of perturbations to the Schwarzschild-Droste spacetime ( M , g, ∇) the metric of which is given, in Schwarzschild coordinatres, by:

g = -f (r) dt 2 + 1 f (r) dr 2 + r 2 g S 2 , (3.3.1)
where f (r) = 1 -2M/r is the Schwarzschild function and g S 2 is the metric on the unit two-sphere. We furthermore denote the derivative operator compatible with g S 2 , for ease of readability, simply as ∇ S 2 for the remainder of this section.

It will be instructive to cast this into canonical language, using the notation and tools established in the previous chapter. Thus, we reserve here the notation h to refer to the spatial three-metric, and all metric perturbations will be denoted strictly using the δ notation in order to avoid confusion.

Cauchy surfaces Σ for this spacetime can most easily be de ned by the constancy of the Schwarzschild time coordinate, i.e. t = const. in (3.3.1). In this case the (background) Chapter 3. General Relativistic Perturbation Theory canonical variables can be read o the metric directly by inspection:

N = f (r) , (3.3.2) N = 0 , (3.3.3) h = 1 f (r) dr 2 + r 2 g S 2 , (3.3.4) π = 0 . (3.3.5)
Of course, the (background) canonical equations of motion are in this case trivial. Now, observe that it is possible to perform a further foliation of the Schwarzschild Cauchy surfaces Σ themselves each into a set of two-spheres, Σ R × S 2 . This is in fact a general consequence of the spherical symmetry of the Schwarzschild-Droste spacetime, and is true irrespective of the (background) coordinate choice. In particular, let us de ne

S r = p ∈ Σ : x i x i 1/2 p = r S 2 r (3.3.6)
to be r-radius two-spheres embedded in Σ, topologically equivalent to r-radius two spheres S 2 r embedded in R 3 . Then we may write

Σ = r>2M S r r>2M S 2 r . (3.3.7)
Furthermore let r a denote the outward-pointing unit vector normal to S r .

Historical development of perturbation approaches.

In principle, the perturbation problem for δg in a given background spacetime involves solving for ten degrees of freedom (determined by the ten linearized Einstein equations [Eq. (3.2.16)]). Yet, just as the symmetries of the exact Schwarzschild-Droste spacetime-i.e., the fact that it is static and spherically-symmetric-tremendously reduce the number of degrees of freedom and simplify the obtention of the explicit background solution, they do so too for its perturbations.

Historically, the starting point for this problem has been to pro t from these symmetries from the outset by expanding all expressions of interest in spherical harmonics, thus reducing the problem to studying the evolution of spherical harmonic modes. We proceed to de ne these following [START_REF] Martel | Gravitational perturbations of the Schwarzschild spacetime: A practical covariant and gauge-invariant formalism[END_REF].

Concretely, any function on M can be expanded in the form of a series in the standard scalar spherical harmonic functions Y lm : S 2 → R, which are de ned by the eigenvalue

PDE 0 = [ S 2 + l (l + 1)] Y lm . (3.3.8)
This can be used to account for all coordinate components of the metric perturbation δg in the time-time, radial-radial, and time-radial directions, which thanks to our (2 + 1 + 1) splitting may be viewed as well-de ned functions on M . Hence the set of functions {Y lm } forms a complete basis for these. However, we will also have vector and tensor degrees of freedom induced by δg on each S r , for which tensorial generalizations of the scalar spherical harmonics Y lm are needed. One de nes even-parity vector harmonics as the derivatives of the scalars, ∇ S 2 Y lm , and odd-parity vector harmonics by contracting the Levi-Civita symbol ij with the derivatives, j i ∇ j S 2 Y lm . (We remind the reader that Fraktur indices i, j, k,... are used throughout for indicating components of tensors living on topological two-spheres.) The set

B VH = ∇ i S 2 Y lm , j i ∇ j S 2 Y lm (3.3.9)
then forms a complete basis for expanding vectors on two-spheres. Similarly, one de nes even-parity ((0, 2)-) tensor harmonics as the quantities g S 2 ij Y lm and ∇ S 2 i ∇ S 2 j Y lm (or any two independent linear combinations of these), and odd-parity ((0, 2)-) tensor harmonics as k

(i ∇ S 2 j) ∇ S 2 k Y lm . The set B TH = g S 2 ij Y lm , ∇ S 2 i ∇ S 2 j Y lm , k (i ∇ S 2 j) ∇ S 2 k Y lm (3.3.10)
then forms a complete basis for expanding ((0, 2)-) tensors on two-spheres. The basis {Y lm } of scalar harmonics is itself also referred to as even-parity. The procedure for generating higher tensorial harmonics can be continued onward in this fashion, and orthogonality properties generalize from the classic ones known for the scalar harmonics. See [START_REF] Martel | Gravitational perturbations of the Schwarzschild spacetime: A practical covariant and gauge-invariant formalism[END_REF][START_REF] Nagar | Gauge-invariant non-spherical metric perturbations of Schwarzschild black-hole spacetimes[END_REF][START_REF] Price | Developments in the perturbation theory of algebraically special spacetimes[END_REF]] for more technical details on this. Then, the basic idea of the spherical harmonic approach to Schwarzschild-Droste perturbations is to expand the components of the time-radial sector of δg in {Y lm } (as we have argued that we can), the two-sphere projection of δg-in this case, as a full (0, 2)tensor-on the two-spheres in the tensor harmonic basis B TH (3.3.10), and nally the timeangular and radial-angular components of δg ("lost" in the full two-sphere projection, and reminiscent of the shift vector in the canonical spacetime splitting), as vectors on the two spheres in the vector harmonic basis B VH (3.3.9). Initial investigations in this direction were pioneered by [START_REF] Regge | Stability of a Schwarzschild Singularity[END_REF], who began by considering only the odd-parity modes. Supposing we write δg = δg even + δg odd to indicate the total splitting of the metric perturbation into even and odd parity spherical harmonic series expansions, the idea was thus to consider rst δg odd since clearly its general form is simpler (completely lacking any contributions from the time-radial sector) compared with that of δg even .

Regge and Wheeler actually found a perturbative gauge transformation-now eponymously named-that reduces the number of odd-parity degrees of freedom even further, showing that all of the information about δg odd ab can be reconstructed from a single, gaugeinvariant master function, also known eponymously as the Regge-Wheeler function, which we denote as Φ (-) (t, r, θ, φ). To state the exact relationship in this language requires a few further de nitions which we prefer to omit here. Nevertheless, we shall see explicitly in the following subsection an approach to this problem from a canonical point of view, where the de nition of this master function is possible to state quite simply in canonical language.

In fact, the exact choice of de nition of this master function is not completely unique. There is freedom in its normalization, and often it is more convenient to work with what e ectively amounts to the time integral of the Regge-Wheeler function Φ (-) , called the Cunningham-Price-Moncrief function [START_REF] Cunningham | Radiation from collapsing relativistic stars. I -Linearized odd-parity radiation[END_REF]]. The variety of master functions and normalization conventions which are today often worked with is detailed, e.g., in [START_REF] Nagar | Gauge-invariant non-spherical metric perturbations of Schwarzschild black-hole spacetimes[END_REF].

In any case, the harmonic modes Ψ lm (-) (t, r) of the Regge-Wheeler master function Φ (-) (t, r, θ, φ) (or of the Cunningham-Price-Moncrief function) completely decouple and satisfy a (1 + 1)-dimensional wave equation with a radially-dependent potential. It has since been known as the Regge-Wheeler equation. (We shall see it explicitly in the next subsection.) Remarkably, some years later when the analysis of the even-parity part of the metric perturbation δg even was also fully carried out in this style by [START_REF] Vishveshwara | Stability of the Schwarzschild Metric[END_REF]] and [START_REF] Zerilli | Gravitational Field of a Particle Falling in a Schwarzschild Geometry Analyzed in Tensor Harmonics[END_REF]], it was similarly found that all the components thereof can also be reconstructed from a gauge-invariant master function, in this case called the Zerilli-Moncrief function, and denoted here as Φ (+) (t, r, θ, φ). Moreover, the equation satis ed by the modes Ψ lm (+) (t, r) of this function, known as the Zerilli equation, is the same as the one for the odd-parity modes Ψ lm (-) (t, r), just with a di erent (slightly more complicated) radial potential. We now develop this in detail, following a canonical approach, in the next subsection.

3.3.3. The Regge-Wheeler and Zerilli equations via canonical methods. Here we summarize a derivation of the Schwarzschild-Droste perturbation equations-the Regge-Wheeler and Zerilli equations-put forward by [START_REF] Jezierski | Energy and Angular Momentum ofthe Weak Gravitational Waves on the Schwarzschild Background -Quasilocal Gauge-invariant Formulation[END_REF]]. In particular, this approach is based on canonical methods, and will thus reveal a useful synthesis of many of the main ideas we have developed in this thesis so far. Furthermore, it will also prove very helpful in our work on entropy in Chapter 4.

First, in order to avoid notational confusion, let δ P denote for this subsection the functional exterior derivative on the phase space P (so as not to confuse it with the use of "δ" in our perturbative notation). In [START_REF] Jezierski | Energy and Angular Momentum ofthe Weak Gravitational Waves on the Schwarzschild Background -Quasilocal Gauge-invariant Formulation[END_REF]], the reduced symplectic form of GR for the perturbed Schwarzschild-Droste spacetime is computed-that is, the pullback of the symplectic form ω = ´Σ e δ P π ab ∧ δ P h ab to the reduced phase space S . (See Chapter 2.)

In this case, both the three-metric and its canonical momentum are perturbation series in λ (themselves transports onto Σ in M from a perturbed Cauchy surface of M (λ) ), i.e. h = h + λδh + O(λ 2 ) (with h given by (3.3.4)) and π = λδπ + O(λ 2 ) (since here π = 0). Then, one can decompose all of these quantities into "radial" and "angular" parts according to the (2 + 1) spatial decomposition. Doing this turns out to naturally isolate the components which are pure gauge degrees of freedom. One then factors these out, and the nal result [START_REF] Jezierski | Energy and Angular Momentum ofthe Weak Gravitational Waves on the Schwarzschild Background -Quasilocal Gauge-invariant Formulation[END_REF]] can be expressed solely in terms of two canonical pairs (Φ (±) (t, r, θ, π), Π (±) (t, r, θ, π)), all simple functions on M , as: (3.3.11) where the operator D = -1 S 2 ( S 2 + 2) -1 is formed from the unit two-sphere Laplacian

ω| S = ς=± ˆΣ e δ P Π (±) ∧ Dδ P Φ (±) ,
S 2 = ∇ S 2 • ∇ S 2 .
The two con guration variables Φ (±) are in fact, as notationally anticipated, precisely the Zerilli and Regge-Wheeler master functions respectively, discussed in the previous subsection. In terms of the (dynamical) perturbations of the canonical variables (δh, δπ), these are given by:

Φ (-) = 2r 2 N h : (∇ S 2 (r • δπ)) , (3.3.12) 
Φ (+) = r 2 ∇ S 2 • (∇ S 2 • δh) -( S 2 + 1) tr S 2 r (δh) + (+) 2 (r + r∇ S 2 ) • (r • δh) -rf (r) ∂ r tr S 2 r (δh) , (3.3.13)
where ij is the Levi-Civita symbol, and the last line is written using the operator (+) = ( S 2 + 2)( S 2 + 2 -6M r ) -1 . Their conjugate momenta are given by

Π (±) = N h Φ(±) , (3.3.14)
with the factor N / h = r 2 sin θ/f (r) in Schwarzschild coordinates.

The full set of O(λ) canonical equations of motion for (δh, δπ) can then be shown to reduce to a set of two simple systems of canonical equations for (Φ (±) , Π (±) ). Combining these into second-order equations, they can be written together compactly as:

˚ + 8M r 3 Q (±) Φ (±) = 0 , (3.3.15)
where ˚ = ∇ • ∇ is the wave operator on M and (3.3.16)

Q (-) = 1 ,
Q (+) = ( S 2 -1) S 2 + 2 - 3M r S 2 + 2 - 6M r -2
.

(3.3.17)

Now to nally simplify (3.3.15) into the classic Regge-Wheeler and Zerilli equations, we can introduce the spherical harmonic decomposition of the master functions (with a Chapter 3. General Relativistic Perturbation Theory conventional 1/r factor), i.e. expand them as series in {Y lm }:

Φ (±) (t, r, θ, φ) = 1 r ∞ l=0 l m=-l Y lm (θ, φ) Ψ lm (±) (t, r) . (3.3.18)
Inserting this into (3.3.15) yields the (1 + 1)-dimensional wave equation with a radiallydependent potential:

∂ 2 t -∂ 2 r * + V l (±) (r) Ψ lm (±) (t, r) = 0 . (3.3.19)
The wave operator is here written in terms of the tortoise coordinate r * = r+2M ln( r 2M -1). The potentials are explicitly

V l (-) (r) = f (r) Λr -6M r 3 , (3.3.20) V l (+) (r) = f (r) (Λ -2) 2 Λr 3 + 6M r 2 + 36 (Λ -2) M 2 r + 72M 3 r 3 ((Λ -2) r + 6M ) 2 , (3.3.21)
where Λ = l (l + 1) is minus the eigenvalue of Y lm .

3.4. Perturbations of the Kerr spacetime 3.4.1. The Kerr spacetime and the Newman-Penrose formalism. The metric of the Kerr spacetime ( M , g, ∇), in Boyer-Lindquist coordinates {t, r, θ, φ}, is given by:

g = - ∆ (r) Σ (r, θ) dt -a sin 2 θdφ 2 + sin 2 θ Σ (r, θ) r 2 + a 2 dϕ -adt 2 + Σ (r, θ) ∆ (r) dr 2 + Σ (r, θ) dθ 2 , (3.4.1)
where

∆ (r) = r 2 -2M r + a 2 , (3.4.2) Σ (r, θ) = r 2 + a 2 cos 2 θ . (3.4.3)
This metric was discovered by [START_REF] Kerr | Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics[END_REF]]. See [START_REF] Teukolsky | The Kerr metric[END_REF]] for more details on the history.

Unlike the Schwarzschild-Droste spacetime, there is no spherical symmetry here to permit tackling the perturbation problem via methods such as the (2+1+1) decomposition and spherical harmonic expansions, as described in the previous section.

Instead, an approach which has proven very useful in this case is the Newman-Penrose formalism [E. [START_REF] Newman | An Approach to Gravitational Radiation by a Method of Spin Coe cients[END_REF]. This is an approach that can be formulated more generally and powerfully from the point of view of spinor methods (see Chapter during our discussion on quantum gravity in Chapter 2 (Section 2.5). See Chapter 1 of [START_REF] Chandrasekhar | The Mathematical Theory of Black Holes[END_REF]] for a detailed exposition from this point of view.

The idea is to introduce what is referred to as a null tetrad, typically denoted as {e a I } 3 I=0 = {l a , n a , m a , ma }, where the vectors l and n are real, while m and m are complex conjugates. Such a tetrad is de ned by replacing the at metric in internal coordinates (the condition g ab e a I e b J = η IJ used earlier to de ne tetrads in Section 2.5) instead with the following:

g ab e a I e b J =          0 -1 0 0 -1 0 0 0 0 0 0 1 0 0 1 0          . (3.4.4)
In other words, l • n = -1 = -m • m, with all other inner products vanishing. The latter means that all vectors are null, and moreover that m and m are orthogonal to l and n.

Locally, the complex vectors m and m can be regarded as complex combinations of two orthonormal spacelike (real) vectors X a and Y a which are both orthogonal to the two real null vectors l and n; in particular, m = 1 √ 2 (X + iY ). Now consider the Weyl tensor C abcd , de ned to be the trace-free part of the Riemann tensor R abcd . (See, e.g., Chapter 13 of [START_REF] Misner | Gravitation[END_REF]). In dimensions lower than four, C abcd is actually zero (so the Ricci tensor completely determines the Riemann tensor). In four dimensions, it is given by:

C ab cd = R ab cd -2δ [a [c R b] d] + 1 3 δ [a [c δ b] d] R . (3.4.5)
The Riemann tensor has twenty independent components, ten of which are accounted for by the Ricci scalar and the other ten by the Weyl tensor. In vacuum spacetimes, the Weyl tensor is thus the same as the Riemann tensor, and is for this reason that it is often said to represent the "purely gravitational degrees of freedom" of GR.

The ten independent components of C abcd can be shown to have a one-to-one correspondence with the following ve complex scalars [START_REF] Chandrasekhar | The Mathematical Theory of Black Holes[END_REF]]: (3.4.8)

ψ 0 = C abcd l a m b l c m d , (3.4.6) ψ 1 = C abcd l a n b l c m d , (3.4.7) ψ 2 = C abcd l a m b mc n d ,
ψ 3 = C abcd l a n b mc n d , ( 3 
.4.9)

ψ 4 = C abcd n a mb n c md . (3.4.10)
As a concrete example before moving on to discussing perturbations in this context, a commonly used null tetrad which is especially useful for calculations involving the Kerr spacetime is the Kinnersley tetrad [START_REF] Kinnersley | Type D Vacuum Metrics[END_REF]]. In Boyer-Lindquist coordinates,

l = 1 ∆ (r) r 2 + a 2 ∂ t + ∆ (r) ∂ r + a∂ φ , (3.4.11) n = 1 2Σ 2 (r, θ) r 2 + a 2 ∂ t -∆ (r) ∂ r + a∂ φ , (3.4.12) m = 1 √ 2 (r + ia cos θ) ia sin θ∂ t + ∂ θ + i sin θ ∂ φ . (3.4.13)
Using this null tetrad in (3.4.6)-(3.4.10), one nds that all complex scalars vanish except for ψ 2 , which is given by:

ψ 2 = M (r -ia cos θ) 3 . (3.4.14)
3.4.2. The Teukolsky equation. Consider an asymptotically at background spacetime (not necessarily Kerr) perturbed by a plane gravitational wave that is outgoing near future null in nity. Then one can show that the perturbation to ψ 4 , also typically denoted ψ 4 (and we concordantly abuse our notation, where it should be called δψ 4 ), is related to the + and × (independent) wave polarization modes h + and h × respectively, according to:

lim r→∞ ψ 4 = 1 2 ḧ+ -i ḧ× . (3.4.15)
See, e.g., the review [START_REF] Sasaki | Analytic Black Hole Perturbation Approach to Gravitational Radiation[END_REF]. In this way, the complex scalar ψ 4 is regarded as describing all pertinent information about outgoing radiation. Hence a general equation for (perturbations of) ψ 4 is of interest for the study of gravitational waveforms.

The idea of the Newman-Penrose approach to Kerr perturbations, then, is to develop evolution equations for the complex scalars ψ 0 , . . . , ψ 4 rather than using the (linearized) Einstein equation [Eq. (3.2.16)] for the metric perturbation δg directly. This issue presents a number of mathematical subtleties vis-à-vis accounting for the correspondence of the various degrees of freedom; we do not wish to enter deeply into this here, but the basic idea is to use the Einstein equation in the de nition of the Weyl tensor (3.4.5), written in terms of the complex scalars, and then to treat the equations for the connection one-forms (see Section 2.5) essentially as the equations of motion.

It turns out that the equation for ψ 4 is non-separable. However, Teukolsky discovered that the equation for a re-scaled perturbation variable,

ψ(t, r, θ, φ) = ψ 4 (t, r, θ, φ) ρ 4 (θ)
where ρ(θ) = -(r -ia cos θ) -1 (3.4.16) led to a separable equation now eponymously named [START_REF] Teukolsky | Perturbations of a Rotating Black Hole. I. Fundamental Equations for Gravitational, Electromagnetic, and Neutrino-Field Perturbations[END_REF][START_REF] Teukolsky | Rotating Black Holes: Separable Wave Equations for Gravitational and Electromagnetic Perturbations[END_REF]. In vacuum, it reads:

0 = r 2 + a 2 2 ∆ (r) -a 2 sin 2 θ ∂ 2 t ψ + 4 M ar ∆ (r) ∂ t ∂ φ ψ + a 2 ∆ (r) - 1 sin 2 θ ∂ 2 φ ψ - 1 ∆ 2 (r) ∂ r ∆ 3 (r) ∂ r ψ - 1 sin θ ∂ θ (sin θ∂ θ ψ) -4 a (r -M ) ∆ (r) + i cos θ sin 2 θ ∂ φ ψ -4 M r 2 -a 2 ∆ (r) -r -ia cos θ ∂ t ψ + 4 cot 2 θ -2 ψ .
(3.4.17) (There is a very similar generalization of this equation for scalar, neutrino, and electromagnetic perturbations). See also [START_REF] Teukolsky | The Kerr metric[END_REF]] for more technical as well as historical details.

Part II Novel Contributions: Entropy, Motion and Self-Force in General Relativity CHAPTER 4

Entropy Theorems and the Two-Body Problem

Chapter summary. This chapter is based on the publication [START_REF] Oltean | Entropy theorems in classical mechanics, general relativity, and the gravitational two-body problem[END_REF].

In general Hamiltonian theories, entropy may be understood either as a statistical property of canonical systems (attributable to epistemic ignorance), or as a mechanical property (that is, as a monotonic function on the phase space along trajectories). In classical mechanics, various theorems have been proposed for proving the nonexistence of entropy in the latter sense. Here we explicate, clarify, and extend the proofs of these theorems to some standard matter (scalar and electromagnetic) eld theories in curved spacetime, and then we show why these proofs fail in general relativity. As a concrete application, we focus on the consequences of these results for the gravitational two-body problem.

In Section 4.1, we provide a historical overview of these issues following the development of statistical mechanics at the end of the 19th century. We formulate more exactly the problem of explaining the second law of thermodynamics for entropy in the twostatistical and mechanical-senses mentioned above. For the remainder of this chapter, we treat the notion of entropy in the latter (mechanical) sense.

In Section 4.2, we carry out a proof for the nonexistence of entropy in classical mechanics following an idea brie y sketched by Poincaré (and previously never developed into a full proof), following a perturbative approach based on Taylor expansions of Poisson brackets about a hypothetical "thermodynamic equilibrium" point. We also discuss an alternative, topological approach developed by Olsen.

The aim of section 4.3 is then to examine to what extent these proofs carry over to general relativity. We show that the perturbative approach can be used to prove the nonexistence of entropy in standard non-gravitational (scalar and electromagnetic) eld theories on curved spacetime, but fails to apply to general relativity itself. We also discuss the topological approach and its failure to prove nonexistence of entropy in general relativity due to the non-compactness of the phase space of the theory.

In Section 4.4, we focus on the gravitational two-body problem in light of these ideas, and in particular, we prove the non-compactness of the phase space of perturbed Schwarzschild-Droste spacetimes. We thus identify the lack of recurring orbits in phase space as a distinct sign of dissipation and hence entropy production.
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Chapter 4. Entropy Theorems and the Two-Body Problem Section 4.5 o ers some concluding remarks.

Teoremes d'entropia i el problema de dos cossos (chapter summary translation in Catalan). Aquest capítol es basa en la publicació [START_REF] Oltean | Entropy theorems in classical mechanics, general relativity, and the gravitational two-body problem[END_REF].

En teories hamiltonianes generals, l'entropia es pot entendre o bé com una propietat estadística dels sistemes canònics (atribuïble a la ignorància epistèmica), o com a propietat mecànica (és a dir, com a funció monotònica en l'espai de fase al llarg de les trajectòries). En la mecànica clàssica, s'han proposat diversos teoremes per demostrar la inexistència d'entropia en aquest darrer sentit. Aquí expliquem, aclarim i estenem les proves d'aquests teoremes a algunes teories de camps de matèria estàndard (escalar i electromagnètica) en l'espai-temps corbat, i després mostrem per què aquestes proves fracassen en la relativitat general. Com a aplicació concreta, ens centrem en les conseqüències d'aquests resultats sobre el problema gravitatori de dos cossos.

A la secció 4.1, proporcionem una panoràmica històrica d'aquestes qüestions després del desenvolupament de la mecànica estadística a nals del segle XIX. Formulem més exactament el problema d'explicar la segona llei de la termodinàmica per a l'entropia en els dos sentits -estadístic i mecànic -mencionats anteriorment. Per a la resta d'aquest capítol, tractem la noció d'entropia en el darrer sentit (mecànic).

A la secció 4.2, realitzem una prova de la inexistència d'entropia en la mecànica clàssica seguint una idea breument esbossada per Poincaré (i mai abans desenvolupada en una prova completa), seguint un mètode pertorbatiu basat en les expansions de Taylor dels claudàtors de Poisson al voltant d'un hipotètic "equilibri termodinàmic". També discutirem un mètode topològic alternatiu desenvolupat per Olsen.

L'objectiu de la secció 4.3 és examinar ns a quin punt aquestes proves es traslladen a la relativitat general. Mostrem que el mètode pertorbatiu es pot utilitzar per demostrar la inexistència d'entropia en teories estàndard de camp no gravitacionals (escalars i electromagnètiques) en l'espai-temps corbat, però no s'aplica a la mateixa relativitat general. També discutirem el mètode topològic i el seu impossibilitat de demostrar la inexistència d'entropia en la relativitat general a causa de la no compactitat de l'espai de fase de la teoria.

A la secció 4.4, ens centrem en el problema gravitatori de dos cossos a la vista d'aquestes idees i, en particular, demostrem la no compactitat de l'espai de fase dels espaistemps de Schwarzschild-Droste pertorbats. Així identi quem la manca d'òrbites recurrents en l'espai de fase com a signe distint de dissipació i per tant de producció d'entropia.

La secció 4.5 ofereix algunes observacions nals.

Théorèmes d'entropie et le problème à deux corps (chapter summary translation in French). Ce chapitre est basé sur la publication [START_REF] Oltean | Entropy theorems in classical mechanics, general relativity, and the gravitational two-body problem[END_REF].

Dans les théories hamiltoniennes générales, l'entropie peut être comprise soit comme une propriété statistique des systèmes canoniques (imputable à l'ignorance épistémique), soit comme une propriété mécanique (c'est-à-dire comme une fonction monotone sur l'espace des phases le long des trajectoires). Dans la mécanique classique, di érents théorèmes ont été proposés pour démontrer l'absence d'entropie dans ce dernier sens. Ici, nous expliquons, clari ons et étendons les démonstrations de ces théorèmes à certaines théories de champ standard (scalaire et électromagnétique) dans l'espace-temps courbé, puis nous montrons pourquoi ces démonstrations échouent en relativité générale. Comme application concrète, nous nous concentrons sur les conséquences de ces résultats sur le problème gravitationnel à deux corps.

Dans la section 4.1, nous fournissons un aperçu historique de ces questions suite au développement de la mécanique statistique à la n du XIXe siècle. Nous formulons plus précisément le problème de l'explication de la deuxième loi de la thermodynamique pour l'entropie dans les deux sens -statistique et mécanique -mentionnés ci-dessus. Pour la suite de ce chapitre, nous traitons la notion d'entropie dans ce dernier sens (mécanique).

Dans la section 4.2, nous e ectuons une démonstration de l'absence d'entropie dans la mécanique classique en suivant une idée brièvement exposée par Poincaré (que n'a jamais été transformée en une démonstration complète), en suivant une méthode perturbative basée sur expansions de Taylor, des crochets de Poisson autour d'une hypothétique « équilibre thermodynamique ». Nous discutons également d'une approche topologique alternative développée par Olsen.

Le but de la section 4.3 est alors d'examiner dans quelle mesure ces démonstrations se reportent à la relativité générale. Nous montrons que l'approche perturbative peut être utilisée pour prouver l'absence d'entropie dans les théories standard des champs non gravitationnels (scalaires et électromagnétiques) sur l'espace-temps courbé, mais elle ne s'applique pas à la relativité générale elle-même. Nous discutons également de l'approche topologique et de son incapacité à démontrer l'absence d'entropie dans la relativité générale à cause de la non compacité de l'espace des phases de la théorie.

Dans la section 4.4, nous nous concentrons sur le problème gravitationnel à deux corps a vu de ces idées et en particulier, nous prouvons la non compacité de l'espace des phases d'espaces-temps de Schwarzschild-Droste perturbés. Nous identi ons ainsi le manque d'orbites récurrentes dans l'espace des phases comme un signe distinct de dissipation et donc de production d'entropie.

La section 4.5 o re quelques remarques de conclusion.

Introduction

The problem of reconciling the second law of thermodynamics1 with classical (deterministic) Hamiltonian evolution is among the oldest in fundamental physics [H. R. [START_REF] Brown | Boltzmann's H-theorem, its discontents, and the birth of statistical mechanics[END_REF][START_REF] Davies | The Physics of Time Asymmetry[END_REF][START_REF] Sklar | Physics and Chance: Philosophical Issues in the Foundations of Statistical Mechanics[END_REF]]. In the context of classical mechanics (CM), this question motivated much of the development of statistical thermodynamics in the second half of the 19th century. In the context of general relativity (GR), thermodynamic ideas have occupied-and, very likely, will continue to occupy-a central role in our understanding of black holes and e orts to develop a theory of quantum gravity. Indeed, much work in recent years has been expended relating GR and thermodynamics [START_REF] Rovelli | General relativistic statistical mechanics[END_REF]], be it in the form of "entropic gravity" proposals [START_REF] Carroll | What is the Entropy in Entropic Gravity?[END_REF][START_REF] Van Putten | Entropic force in black hole binaries and its Newtonian limits[END_REF][START_REF] Verlinde | On the Origin of Gravity and the Laws of Newton[END_REF]] (which derive the Einstein equation from entropy formulas), or gravitythermodynamics correspondences [START_REF] Freidel | Gravitational energy, local holography and non-equilibrium thermodynamics[END_REF][START_REF] Freidel | Non-equilibrium thermodynamics of gravitational screens[END_REF] (wherein entropy production in GR is derived from conservation equations, in analogy with classical uid dynamics). And yet, there is presently little consensus on the general meaning of "the entropy of a gravitational system", and still less on the question of why-purely as a consequence of the dynamical (Hamiltonian) equations of motion-such an entropy should (strictly) monotonically increase in time, i.e. obey the second law of thermodynamics.

However one wishes to approach the issue of de ning it, gravitational entropy should in some sense emerge from suitably de ned (micro-)states associated with the degrees of freedom not of any matter content in spacetime, but of the gravitational eld itselfwhich, in GR, means the spacetime geometry-or statistical properties thereof. Of course, we know of restricted situations in GR where we not only have entropy de nitions which make sense, but which also manifestly obey the second law-that is, in black hole thermodynamics2 . In particular, the black hole entropy is identi ed (up to proportionality) with its area, and hence, we have that the total entropy increases when, say, two initially separated black holes merge-a process resulting, indeed, as a direct consequence of standard evolution of the equations of motion. What is noteworthy about this is that black hole entropy is thus understood not as a statistical idea, but directly as a functional on the phase space of GR (comprising degrees of freedom which are subject to deterministic canonical evolution).

In CM, the question of the statistical nature of entropy dominated many of the early debates on the origin of the second law of thermodynamics during the development of the kinetic theory of gases [START_REF] Sklar | Physics and Chance: Philosophical Issues in the Foundations of Statistical Mechanics[END_REF]. Initial hopes, especially by [START_REF] Boltzmann | Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen[END_REF] were that entropy could in fact be understood as a (strictly monotonic) function on classical phase space. However, many objections soon appeared which rendered this view problematic-the two most famous being the reversibility argument of [START_REF] Loschmidt | Über den Zustand des Wärmegleichgewichtes eines Systems von Körpern mit Rücksicht auf die Schwerkraft[END_REF]] and the recurrence theorem of [START_REF] Poincaré | Sur le problème des trois corps et les équations de la dynamique[END_REF]].

The Loschmidt reversibility argument, in essence, hinges upon the time-reversal symmetry of the canonical equations of motion, and hence, the ostensibly equal expectation of evolution towards or away from equilibrium. Yet, arguably, this is something which may be circumvented via a su ciently convincing proposition for identifying the directionality of (some sort of) arrow of time-and in fact, recent work [START_REF] Barbour | Shape Dynamics. An Introduction[END_REF], 2014] shows how this can actually be done in the Newtonian N -body problem, leading in this context to a clearly de ned "gravitational" arrow of time. For related work in a cosmological context, see [START_REF] Sahni | Arrow of time in dissipationless cosmology[END_REF][START_REF] Sahni | Cosmological hysteresis and the cyclic universe[END_REF].

The Poincaré recurrence argument, on the other hand, relies on a proof that any canonical system in a bounded phase space will always return arbitrarily close to its initial state (and moreover it will do so an unbounded number of times) [START_REF] Arnold | Mathematical Methods of Classical Mechanics[END_REF][START_REF] Barreira | Poincaré recurrence: old and new[END_REF]]. As the only other assumption needed for this proof is Liouville's theorem (which asserts that, in any Hamiltonian theory, the probability measure for a system to be found in an in nitesimal phase space volume is time independent), the only way for it to be potentially countered is by positing an unbounded phase space for all systems-which clearly is not the case for situations such as an ideal gas in a box.

Such objections impelled the creators of kinetic theory, Maxwell and Boltzmann in particular, to abandon the attempt to understand entropy-in what we may accordingly call a mechanical sense-as a phase space function, and instead to conceive of it as a statistical notion the origin of which is epistemic ignorance, i.e. observational uncertainty of the underlying (deterministic) dynamics. The famous H-Theorem of [START_REF] Boltzmann | Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen[END_REF]], which was in fact initially put forth for the purposes of expounding the former, became reinterpreted and propounded in the light of the latter.

Of course, later such a statistical conception of entropy came to be understood in the context of quantum mechanics via the von Neumann entropy (de ned in terms of the density matrix of a quantum system) and also in the context of information theory via the Shannon entropy (de ned in terms of probabilities of a generic random variable) [START_REF] Nielsen | Quantum Computation and Quantum Information[END_REF]. Indeed, the meaning of the word "entropy" is nowadays often taken to re ect an observer's knowledge (or ignorance) about the microstates of a system.

Thus, the question of why the second law of thermodynamics should hold in a Hamiltonian system may be construed within two possible formulations-on the one hand, a mechanical (or ontological), and on the other, a statistical (or epistemic) point of view. Respectively, we can state these as follows.

Chapter 4. Entropy Theorems and the Two-Body Problem Problem I (mechanical/ontological): Does there exist a function (or functional, if we are dealing with a eld theory) on phase space which monotonically increases along the orbits of the Hamiltonian ow?

Problem II (statistical/epistemic): Does there exist a function of time, de ned in a suitable way in terms of a probability density on phase space, which always has a non-negative time derivative in a Hamiltonian system?

In the language and notation that we have established in Chapter 2 for describing general canonical systems, we can state these questions more precisely:

Problem I (mechanical/ontological): Does there exist any function on the (reduced, if there are constraints) phase space S : S → R which monotonically increases along the orbits of (the Hamiltonian ow) Φ t ?

Problem II (statistical/epistemic): Does there exist any function of time S : T → R, on some time interval T ⊆ R, de ned in a suitable way in terms of a probability density ρ : S × T → [0, 1] on the (reduced) phase space, satisfying dS/dt ≥ 0 in a Hamiltonian system? [Traditionally, the de nition taken here for entropy is (a coarse-grained version of) S (t) = -´P Ω ρ ln ρ, or its appropriate reduction to S if there are constraints.]

In CM, it is Problem II that has received the most attention since the end of the 19th century. In fact, there has been signi cant work in recent years by mathematicians [START_REF] Villani | H-Theorem and beyond: Boltzmann's entropy in today's mathematics[END_REF][START_REF] Yau | The work of Cedric Villani[END_REF]] aimed at placing the statistical formulation of the H-Theorem on more rigorous footing, and thus at proving more persuasively that, using appropriate assumptions, the answer to Problem II is in fact yes. In contrast, after the early Loschmidt reversibility and Poincaré recurrence arguments, Problem I has received some less wellknown responses to the e ect of demonstrating (even more convincingly) that the answer to it under certain conditions (to be carefully elaborated) is actually no. In this chapter, we will concern ourselves with two such types of responses to Problem I: rst, what we call the perturbative approach, also proposed by [START_REF] Poincaré | Sur les tentatives d'explication mecanique des principes de la thermodynamique[END_REF]]; and second, what we call the topological approach, due to [START_REF] Olsen | Classical mechanics and entropy[END_REF]] and related to the recurrence theorem.

In the former, one tries to Taylor expand the time derivative of a phase space function, computed via the Poisson bracket, about a hypothetical equilibrium point in phase space, and one obtains contradictions with its strict positivity away from equilibrium. We revisit the original paper of Poincaré, clarify the assumptions of the argument, and carefully carry out the proof which is-excepting a sketch which makes it seem more trivial than it actually turns out to be-omitted therein. We furthermore extend this theorem to matter elds-in particular, a scalar and electromagnetic eld-in curved spacetime. In the topological approach, on the other hand, one uses topological properties of the phase space itself to prove non-existence of monotonic functions. We review the proof of Olsen, and discuss its connections with the recurrence theorem and more recent periodicity theorems in Hamiltonian systems from symplectic geometry.

In GR, one may consider similar lines of reasoning as in CM to attempt to answer Problems I and II. Naively, one might expect the same answer to Problem II, namely yeshowever, as we will argue later in greater detail, there are nontrivial mathematical issues that need to be circumvented here even in formulating it. For Problem I, as discussed, one might con dently expect the answer to also be yes. Therefore, although we do not yet know how to de ne entropy in GR with complete generality, we can at least ask why the proofs that furnish a negative answer to Problem I in CM fail here, and perhaps thereby gain fruitful insight into the essential features we should expect of such a de nition.

Following the perturbative approach, we will show that a Taylor-expanded Poisson bracket does not contain terms which satisfy de nite inequalities (as they do in CM). The reason, as we will see, is that the second functional derivatives of the gravitational Hamiltonian can (unlike in CM) be both positive and negative, and so its curvature in phase space cannot be used to constrain (functionals of) the orbits; no contradiction arises here with the second law of thermodynamics.

Following the topological approach, there are two points of view which may explicate why the proofs in CM do not carry over to GR. Firstly, it is believed that, in general, the phase space of GR is non-compact [Schi rin [START_REF] Schi Rin | Measure and Probability in Cosmology[END_REF]. Of course, this assertion depends on the nature of the degrees of freedom thought to be available in the spacetime under consideration, but even in very simple situations (such as cosmological spacetimes), it has been shown explicitly that the total phase space measure diverges. Physically, what this non-compactness implies is the freedom of a gravitational system to explore phase space unboundedly, without having to return (again and again) to its initial state. This leads us to the second (related) point of view as to why the topological proofs in CM fail in GR: namely, the non-recurrence of phase space orbits. Aside from trivial situations, solutions to the canonical equations of GR are typically non-cyclic (i.e. they do not close in phase space) permitting the existence of functionals which may thus increase along the Hamiltonian ow. In fact, to counter the Poincaré recurrence theorem in CM, there even exists a "no-return" theorem in GR [R. P. A. C. [START_REF] Newman | Compact space-times and the no-return theorem[END_REF][START_REF] Tipler | General Relativity and the Eternal Return[END_REF][START_REF] Tipler | General relativity, thermodynamics, and the Poincaré cycle[END_REF] for spacetimes which admit compact Cauchy surfaces and satisfy suitable energy and genericity conditions; it broadly states that the spacetime cannot return, even arbitrarily close, to a previously occupied state. One might nonetheless expect non-recurrence to be a completely general feature of all (nontrivial) gravitational systems, including spacetimes with non-compact Cauchy surfaces.

A setting of particular interest for this discussion is the gravitational two-body problem. With the recent detections and ongoing e orts towards further observations of gravitational waves from two-body systems, the emission of which ought to be closely related to entropy production, a precise understanding and quanti cation of the latter is becoming more and more salient. In the CM two-body (i.e. Kepler) problem, the consideration of Problem I clearly explains the lack of entropy production due to phase space compactness (for a given nite range of initial conditions). In the Newtonian N -body problem, where (as we will elaborate) neither the perturbative nor the topological proofs are applicable, the answer to Problem I was actually shown to be yes in [START_REF] Barbour | Shape Dynamics. An Introduction[END_REF], 2014]. In GR, the two-body problem may be considered in the context of perturbed Schwarzschild-Droste (SD) spacetimes (as is relevant, for instance, in the context of extreme-mass-ratio inspirals). Here, the phase space volume (symplectic) form has been explicitly computed in [START_REF] Jezierski | Energy and Angular Momentum ofthe Weak Gravitational Waves on the Schwarzschild Background -Quasilocal Gauge-invariant Formulation[END_REF]]. We will use this in this chapter to show that in such spacetimes, the phase space is non-compact; hence there are no contradictions with non-recurrence or entropy production.

Entropy theorems in classical mechanics

4.2.1. Setup. Classical particle mechanics with N degrees of freedom [START_REF] Arnold | Mathematical Methods of Classical Mechanics[END_REF]] can be formulated as a Lagrangian theory with an N -dimensional con guration space Q. This means that we will have a canonical theory3 on a 2N -dimensional phase space P. We can choose canonical coordinates (q 1 , ..., q N ) with conjugate momenta (p 1 , ..., p N ) such that the symplectic form on P is given by

ω = N j=1 dp j ∧ dq j . (4.2.1)
Then, the volume form on P is simply the N -th exterior power of the symplectic form, in particular Ω = [(-1) N (N -1)/2 /N !]ω ∧N , and X H is here given in coordinates by

X H = N j=1 ∂H ∂p j ∂ ∂q j - ∂H ∂q j ∂ ∂p j . (4.2.2) F 4.
1. The idea of the proof for the Poincaré recurrence theorem.

The action of X H on any phase space function F : P → R, called the Poisson bracket, gives its time derivative:

Ḟ = dF dt = X H (F ) = {F, H} . (4.2.3)
We obtain from this qj = {q j , H} = ∂H/∂p j and ṗj = {p j , H} = -∂H/∂q j , which are the canonical equations of motion. Moreover, we have that the symplectic form of P, and hence its volume form, are preserved along Φ t ; in other words, we have L X H ω = 0 = L X H Ω, which is known as Liouville's theorem.

We now turn to addressing Problem I in CM-that is, the question of whether there exists a function S : P → R that behaves like entropy in a classical Hamiltonian system. Possibly the most well-known answer given to this is the Poincaré recurrence theorem. We can easily o er a proof of this, shown pictorially in Figure 4.1 (see section 16 of [START_REF] Arnold | Mathematical Methods of Classical Mechanics[END_REF]): Assume P is compact and Φ t (P) = P. Let U ⊂ P be the neighborhood of any point p ∈ P, and consider the sequence of images {Φ n (U )} ∞ n=0 . Each Φ n (U ) has the same measure ´Φn(U ) Ω (because of Liouville's theorem), so if they never intersected, P would have in nite measure. Therefore there exist k, l with k > l such that

Φ k (U ) ∩ Φ l (U ) = ∅, implying Φ m (U ) ∩ U = ∅ where m = k -l. For any y ∈ Φ m (U ) ∩ U ,
there exists an x ∈ U such that y = Φ m (x). Thus, any point returns arbitrarily close to the initial conditions in a compact and invariant phase space.

Let us now discuss, in turn, the perturbative and topological approaches to this problem.

4.2.2. Perturbative approach. We revisit and carefully explicate, in this subsection, the argument given by [START_REF] Poincaré | Sur les tentatives d'explication mecanique des principes de la thermodynamique[END_REF] to the e ect that an entropy function S : P → R does not exist. First, we will clarify the assumptions that need to go into it, i.e. the conditions we must impose both on the entropy S as well as on the Hamiltonian H, and then we will supply a rigorous proof. 4.2.2.1. Review of Poincaré's idea for a proof. In his original paper [START_REF] Poincaré | Sur les tentatives d'explication mecanique des principes de la thermodynamique[END_REF]] (translated into English in [START_REF] Olsen | Classical mechanics and entropy[END_REF]), the argument given by Poincaré (expressed using the contemporary notation that we employ here) for the non-existence of such a function S : P → R is the following: if S behaves indeed like entropy, it should satisfy

Ṡ = {S, H} = N k=1 ∂H ∂p k ∂S ∂q k - ∂H ∂q k ∂S ∂p k > 0 (4.2.4)
around a hypothetical equilibrium point in P. Taylor expanding each term and assuming all rst partials of S and H vanish at this equilibrium, we obtain a quadratic form (in the distances away from equilibrium) plus higher-order terms. If we are "su ciently close" to equilibrium, we may ignore the higher-order terms and simply consider the quadratic form, which thus needs to be positive de nite for the above inequality [Eq. (4.2.4)] to hold. But here Poincaré, without presenting any further explicit computations, simply asserts that "it is easy to satisfy oneself that this is impossible if one or the other of the two quadratic forms S and H is de nite, which is the case here". (Our modern language modi cation is in italic.) Neither the casual dismissal of the higher-order terms, nor, even more crucially, the fact that "it is easy to satisfy oneself" of the impossibility of this quadratic form to be positive de nite is immediately apparent from this discussion. In fact, all of the points in this line of reasoning require a careful statement of the necessary assumptions as well as some rather non-trivial details of the argumentation required to obtain the conclusion (that Ṡ = 0).

In what follows, we undertake precisely that. First we look at the assumptions needed for this method to yield a useful proof, and then we carry out the proof in full detail and rigor.

4.2.2.2. Entropy conditions. A function S : P → R can be said to behave like entropy insofar as it satis es the laws of thermodynamics. In particular, it should conform to two assumptions: rst, that it should have an equilibrium point, and second, that it should obey the second law of thermodynamics-which heuristically states that it should be increasing in time everywhere except at the equilibrium point, where it should cease to change. We state these explicitly as follows:

S1 (Existence of equilibrium): We assume there exists a point in phase space, x 0 ∈ P, henceforth referred to as the "equilibrium" con guration of the system, which is a stationary point of the entropy S, i.e. all rst partials thereof should vanish when evaluated there: S2 (Second law of thermodynamics): A common formulation of the second law asserts that the entropy S is always increasing in time when the system is away from equilibrium (i.e. Ṡ > 0 everywhere in P\x 0 ), and attains its maximum value at equilibrium, where it ceases to change in time (i.e. Ṡ = 0 at x 0 , as implied by the rst condition). We need to work, however, with a slightly stronger version of the second law: namely, the requirement that the Hessian matrix of Ṡ,

∂S ∂q j 0 = 0 = ∂S ∂p j 0 , ( 4 
Hess( Ṡ) =       ∂ 2 Ṡ ∂q i ∂q j ∂ 2 Ṡ ∂q i ∂p j ∂ 2 Ṡ ∂p i ∂q j ∂ 2 Ṡ ∂p i ∂p j       , (4.2.6)
is positive de nite when evaluated at equilibrium, i.e. (Hess( Ṡ)) 0 0.

We make now a few remarks about these assumptions. Firstly, S2 is a su cientthough not strictly necessary-condition to guarantee Ṡ > 0 in P\x 0 and Ṡ = 0 at x 0 . However, the assumption of positive de niteness of the Hessian of the entropy S itself at equilibrium is often used in statistical mechanics [START_REF] Abad | Principles of classical statistical mechanics: A perspective from the notion of complementarity[END_REF]], and so it may not be objectionable to extend this supposition to Ṡ as well. (In any case, this leaves out only special situations where higher-order derivative tests are needed to certify the global minimization of Ṡ at equilibrium, which arguably are more of mathematical rather than physical interest; we may reasonably expect the entropy as well as its time derivative to be quadratic in the phase space variables as a consequence of its ordinary statistical mechanics de nitions in terms of energy.) Secondly, the above two conditions omit the consideration of functions on P which are everywhere strictly monotonically increasing in time, i.e. the time derivative of which is always positive with no equilibrium point. The topological approaches to Problem I, which we will turn to in the next subsection, do accommodate the possibility such functions.

Thirdly, the equilibrium point x 0 ∈ P, though usually (physically) expected to be unique, need not be for the purposes of what follows, so long as it obeys the two conditions S1 and S2. In other words, it su ces that there exists at least one such point in P.

Fourthly, there is no topological requirement being imposed on the phase space P. It is possible, in other words, for its total measure µ (P) = ´P Ω to diverge. This means that the theorem applies to systems which can, in principle, explore phase space unboundedly, without any limits being imposed (either physically or mathematically) thereon. 4.2.2.3. Hamiltonian conditions. Next, we make a few assumptions about the Hamiltonian H : P → R which we need to impose in order to carry out our proof. The rst two assumptions are reasonable for any typical Hamiltonian in classical mechanics, as we will discuss. The third, however, is stronger than necessary to account for all Hamiltonians in general-and indeed, as we will see, unfortunately leaves out certain classes of Hamiltonians of interest. However, we regard it as a necessary assumption which we cannot relax in order to formulate the proof according to this approach. Our assumptions on H are thus as follows:

H1 (Kinetic terms): With regards to the second partials of H with respect to the momentum variables, we assume the following:

(a) We can make a choice of coordinates so as to diagonalize (i.e. decouple) the kinetic terms. In other words, we can choose to write H in such a form that we have: 

∂ 2 H ∂p i ∂p j = δ ij ∂ 2 H ∂p 2 j . ( 4 
N i=1 ∂ 2 H ∂q i ∂q j 0 ≥ 0. (4.2.10)
We can make a few remarks about these assumptions. Firstly, H1 and H2 are manifestly satis ed for the most typically-encountered form of the Hamiltonian in CM,

H = N j=1 p 2 j 2m j + V (q 1 , ..., q N ) , (4.2.11)
where m j are the masses associated with each degree of freedom and V is the potential (a function of only the con guration variables, and not the momenta). Indeed, H1(a) is satis ed since we have ∂ 2 H/∂p i ∂p j = 0 unless i = j, regardless of V . For H1(b), we clearly have ∂ 2 H/∂p 2 j = 1/m j > 0 assuming masses are positive. Finally, H2 holds as ∂ 2 H/∂p i ∂q j = 0 is satis ed by construction.

Secondly, For typical Hamiltonians [Eq. (4.2.11)], H3 translates into a condition on the potential V , i.e. the requirement that N i=1 (∂ 2 V /∂q i ∂q j ) 0 ≥ 0. This is not necessarily satis ed in general in CM, though it is for many systems. For example, when we have just one degree of freedom, N = 1, this simply means that the potential V (q) is concave upward at the point of equilibrium (thus regarded as a stable equilibrium), i.e. (d 2 V (q)/dq 2 ) 0 ≥ 0, which is reasonable to assume. As another example, for a system of harmonic oscillators with no interactions, V = 1 2 N j=1 m j ω 2 j q 2 j , we clearly have N i=1 ∂ 2 V /∂q i ∂q j = m j ω 2 j > 0 for positive masses. Indeed, even introducing interactions does not change this so long as the couplings are mostly non-negative. (In other words, if the negative couplings do not dominate in strength over the positive ones.) Higher (positive) powers of the q j variables in V are also admissible under a similar argument. However, we can see that condition H3 [Eq. (4.2.10)] excludes certain classes of inverse-power potentials. Most notably, it excludes the Kepler (gravitational two-body)

Hamiltonian, H = (1/2m) (p 2 1 + p 2 2 ) -GM m/(q 2 1 + q 2 2 ) 1/2
, where q j are the Cartesian coordinates in the orbital plane, and p j the associated momenta. In this case, we have det([∂ 2 H/∂q i ∂q j ]) = -2 (GM m) 2 /(q 2 1 + q 2 2 ) 3 < 0, hence [∂ 2 H/∂q i ∂q j ] is negative de nite everywhere and therefore cannot satisfy H3 [Eq. (4.2.10)].

4.2.2.4. Our proof. We will now show that there cannot exist a function S : P → R satisfying the assumptions S1-S2 of subsubsection 4.2.2.2 in a Hamiltonian system that obeys the assumptions H1-H3 of subsubsection 4.2.2.3 on H : P → R. We do this by simply assuming that such a function exists, and we will show that this implies a contradiction. For a pictorial representation, see Figure 4.2. N = 1: Let us rst carry out the proof for N = 1 degree of freedom so as to make the argument for general N easier to follow. Let S : P → R be any function on the con guration space P satisfying assumptions S1-S2 of subsubsection 4.2.2.2, i.e. it has an equilibrium point and the Hessian of its time derivative is positive de nite there. We know that its time derivative at any point x = (q, p) ∈ P can be evaluated, as discussed in subsection 4.2.1, via the Poisson bracket:

Ṡ = ∂H ∂p ∂S ∂q - ∂H ∂q ∂S ∂p .
(4.2.12)

Let us now insert into this the Taylor series for each term expanded about the equilibrium point x 0 = (q 0 , p 0 ). Denoting ∆q = q -q 0 and ∆p = p -p 0 , and using O(∆ n ) to F 4.2. The idea of the perturbative approach is to evaluate Ṡ along di erent directions in phase space away from equilibrium, and arrive at a contradiction with its strict positivity.

represent n-th order terms in products of ∆q and ∆p, we have: and similarly for the p partial of S, where we have used the condition S1 [Eq. (4.2.5)] which entails that the zero-order term vanishes. Inserting all Taylor series into the Poisson bracket [Eq. (4.2.12)] and collecting terms, we obtain the following result:

∂H ∂q = ∂H ∂q 0 + ∂ 2 H ∂q 2 0 ∆q + ∂ 2 H ∂p∂q 0 ∆p + O ∆ 2 , ( 4 
Ṡ = a b    ∆q ∆p    + ∆q ∆p    A B B C       ∆q ∆p    + O ∆ 3 , (4.2.15)
where:

a = ∂H ∂p 0 ∂ 2 S ∂q 2 0 - ∂H ∂q 0 ∂ 2 S ∂q∂p 0 , (4.2.16) b = ∂H ∂p 0 ∂ 2 S ∂p∂q 0 - ∂H ∂q 0 ∂ 2 S ∂p 2 0 , ( 4 
.2.17)
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109 and: , where x ± n = (q 0 ± δ/n, p 0 ), such that the only deviation away from equilibrium is along the direction ∆q = ±δ/n, with all other ∆p vanishing. Then, for any n, we must have according to our expression for Ṡ [Eq. (4.2.15)]:

A = ∂ 2 H ∂q∂p 0 ∂ 2 S ∂q 2 0 - ∂ 2 H ∂q 2 0 ∂ 2 S ∂q∂p 0 , (4.2.18) B = 1 2 ∂ 2 H ∂p 2 0 ∂ 2 S ∂q 2 0 - ∂ 2 H ∂q 2 0 ∂ 2 S ∂p 2 0 , (4.2.19) C = ∂ 2 H ∂p 2 0 ∂ 2 S ∂p∂q 0 - ∂ 2 H ∂p∂q 0 ∂ 2 S ∂p 2 0 . ( 4 
Ṡ x + n = a δ n + A δ 2 n 2 + O δ 3 n 3 > 0, (4.2.21) Ṡ x - n = -a δ n + A δ 2 n 2 + O δ 3 n 3 > 0.
(4.2.22) Taking the n → ∞ limit of the rst inequality implies a ≥ 0, while doing the same for the second inequality implies a ≤ 0. Hence a = 0. A similar argument (using ∆p = ±δ/n) implies b = 0. Thus, S needs to satisfy the constraints

0 = ∂H ∂p 0 ∂ 2 S ∂q 2 0 - ∂H ∂q 0 ∂ 2 S ∂q∂p 0 , (4.2.23) 0 = ∂H ∂p 0 ∂ 2 S ∂p∂q 0 - ∂H ∂q 0 ∂ 2 S ∂p 2 0 , (4.2.24)
and this leaves us with General N : The extension of the proof to general N follows similar lines, though with a few added subtleties. Let us now proceed with it. As before, suppose S : P → R is any function on P satisfying S1-S2. Its time derivative at any point x = (q 1 , ..., q N , p 1 , ..., p N ) ∈ P can be evaluated via the Poisson bracket:

Ṡ = ∆q ∆p    A B B C       ∆q ∆p    + O ∆ 3 . ( 4 
Ṡ = N k=1 ∂H ∂p k ∂S ∂q k - ∂H ∂q k ∂S ∂p k . (4.2.28)
Let us now insert into this the Taylor series for each term expanded about the equilibrium point x 0 = ((q 0 ) 1 , ..., (q 0 ) N , (p 0 ) 1 , ..., (p 0 ) 1 ). Denoting ∆q i = q i -(q 0 ) i and ∆p i = p i -(p 0 ) i , and using O(∆ n ) to represent n-th order terms in products of ∆q i and ∆p i , we have:

∂H ∂q k = ∂H ∂q k 0 + N i=1 ∂ 2 H ∂q i ∂q k 0 ∆q i + ∂ 2 H ∂p i ∂q k 0 ∆p i + O ∆ 2 , (4.2.29)
and similarly for the p k partial of H, while

∂S ∂q k = N i=1 ∂ 2 S ∂q i ∂q k 0 ∆q i + ∂ 2 S ∂p i ∂q k 0 ∆p i + O ∆ 2 , (4.2.30)
and similarly for the p k partial of S, where we have used the condition S1 [Eq. (4.2.5)] which entails that the zero-order term vanishes. Inserting all Taylor series into the Poisson bracket [Eq. (4.2.28)] and collecting terms, we obtain the following result:

Ṡ = a T b T       ∆q 1 . . . ∆p N       + ∆q 1 • • • ∆p N    A B B T C          ∆q 1 . . . ∆p N       + O ∆ 3 , (4.2.31)
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where we have the following components for the N -dimensional vectors:

a i = N k=1 ∂H ∂p k 0 ∂ 2 S ∂q i ∂q k 0 - ∂H ∂q k 0 ∂ 2 S ∂q i ∂p k 0 , (4.2.32) and b i = N k=1 ∂H ∂p k 0 ∂ 2 S ∂p i ∂q k 0 - ∂H ∂q k 0 ∂ 2 S ∂p i ∂p k 0 , (4.2.33)
and for the N × N matrices:

A ij = 1 2 N k=1 ∂ 2 H ∂q i ∂p k 0 ∂ 2 S ∂q j ∂q k 0 + ∂ 2 H ∂q j ∂p k 0 ∂ 2 S ∂q i ∂q k 0 - ∂ 2 H ∂q i ∂q k 0 ∂ 2 S ∂q j ∂p k 0 - ∂ 2 H ∂q j ∂q k 0 ∂ 2 S ∂q i ∂p k 0 , (4.2.34) B ij = 1 2 N k=1 ∂ 2 H ∂q i ∂p k 0 ∂ 2 S ∂p j ∂q k 0 + ∂ 2 H ∂p j ∂p k 0 ∂ 2 S ∂q i ∂q k 0 - ∂ 2 H ∂q i ∂q k 0 ∂ 2 S ∂p j ∂p k 0 - ∂ 2 H ∂p j ∂q k 0 ∂ 2 S ∂q i ∂p k 0 , (4.2.35) C ij = 1 2 N k=1 ∂ 2 H ∂p i ∂p k 0 ∂ 2 S ∂p j ∂q k 0 + ∂ 2 H ∂p j ∂p k 0 ∂ 2 S ∂p i ∂q k 0 - ∂ 2 H ∂p i ∂q k 0 ∂ 2 S ∂p j ∂p k 0 - ∂ 2 H ∂p j ∂q k 0 ∂ 2 S ∂p i ∂p k 0 . (4.2.36)
By assumption S2, we have that Ṡ as given above [Eq. (4.2.31)] is strictly positive for any x = x 0 in P. In particular, let δ > 0 and let us consider Ṡ [Eq. (4.2.31)] evaluated at the se-

quence of points {x ± n } ∞ n=1
, where x ± n = ((q 0 ) 1 , ..., (q 0 ) l ± δ/n, ..., (q 0 ) N , (p 0 ) 1 , ..., (p 0 ) 1 ), for any l, such that the only deviation away from equilibrium is along the direction ∆q l = ±δ/n, with all other ∆q i and ∆p i vanishing. Then, for any n, we must have according to the above expression for Ṡ [Eq. (4.2.31)]:

Ṡ x + n = a l δ n + A ll δ 2 n 2 + O δ 3 n 3 > 0, (4.2.37) Ṡ x - n = -a l δ n + A ll δ 2 n 2 + O δ 3 n 3 > 0.
(4.2.38) Taking the n → ∞ limit of the rst inequality implies a l ≥ 0, while doing the same for the second inequality implies a l ≤ 0. Hence a l = 0. Since l is arbitrary, this means that a i = 0, ∀i. A similar argument (using ∆p l = ±δ/n) implies b i = 0, ∀i. Thus, S needs to Chapter 4. Entropy Theorems and the Two-Body Problem satisfy the constraints

0 = N k=1 ∂H ∂p k 0 ∂ 2 S ∂q i ∂q k 0 - ∂H ∂q k 0 ∂ 2 S ∂q i ∂p k 0 , (4.2.39) 0 = N k=1 ∂H ∂p k 0 ∂ 2 S ∂p i ∂q k 0 - ∂H ∂q k 0 ∂ 2 S ∂p i ∂p k 0 , (4.2.40)
and this leaves us with 

Ṡ = ∆q 1 • • • ∆p N    A B B T C          ∆q 1 . . . ∆p N       + O ∆ 3 . ( 4 
A ij = - 1 2 N k=1 ∂ 2 H ∂q i ∂q k 0 ∂ 2 S ∂q j ∂p k 0 + ∂ 2 H ∂q j ∂q k 0 ∂ 2 S ∂q i ∂p k 0 , (4.2.42) C ij = 1 2 ∂ 2 H ∂p 2 i 0 ∂ 2 S ∂p j ∂q i 0 + ∂ 2 H ∂p 2 j 0 ∂ 2 S ∂p i ∂q j 0 . (4.2.43)
Positive-de niteness of (Hess( Ṡ)) 0 implies that the quadratic form above [Eq. (4.2.41)] should be positive de nite. This means that we cannot have (∂ 2 H/∂p 2 j ) 0 = 0, ∀j, since then C would not be positive de nite and we would get a contradiction. This, combined with assumption H1(b) [Eq. (4.2.8)], implies that (∂ 2 H/∂p 2 j ) 0 > 0, ∀j. Moreover, we also have:

N i,j=1 C ij = N i,j=1 ∂ 2 H ∂p 2 j 0 ∂ 2 S ∂p i ∂q j 0 > 0. (4.2.44)
The reason for this is easily seen by noting that positive-de niteness of C, by de nition, means that its product with any nonzero vector and its transpose should be positive, i.e. z T Cz > 0 for any nonzero vector z; in particular, z = (1, 1, ..., 1) T achieves the above inequality [Eq. (4.2.44)]. But then, let us consider N i,j=1 A ij . Positive-de niteness of (Hess( Ṡ)) 0 (i.e. of the quadratic form [Eq. (4.2.31)]) implies, just as in the case of C, that

N i,j=1 A ij > 0, or N i,j=1 (-A ij ) < 0.
(4.2.45)
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At the same time, we have:

N i,j=1 (-A ij ) = N i,j,k=1 ∂ 2 H ∂q i ∂q k 0 ∂ 2 S ∂q j ∂p k 0 . (4.2.46)
Taking the minimum over the k index in the term with the H partials,

N i,j=1 (-A ij ) ≥ N i,j,k=1 min 1≤l≤N ∂ 2 H ∂q i ∂q l 0 ∂ 2 S ∂q j ∂p k 0 , (4.2.47)
This means that the sums can be separated, and after relabelling, the above [Eq. (4.2.47)] becomes:

N i,j=1 (-A ij ) ≥ min 1≤l≤N N k=1 ∂ 2 H ∂q k ∂q l 0 N i,j=1 ∂ 2 S ∂p i ∂q j 0 . (4.2.48)
Now, insert the identity 1 = (∂ 2 H/∂p 2 j ) 0 /(∂ 2 H/∂p 2 j ) 0 into the i, j sum, and maximize over the denominator to get:

N i,j=1 (-A ij ) ≥ min 1≤l≤N N k=1 ∂ 2 H ∂q k ∂q l 0 N i,j=1 ∂ 2 H/∂p 2 j 0 ∂ 2 H/∂p 2 j 0 ∂ 2 S ∂p i ∂q j 0 (4.2.49) ≥ min 1≤l≤N N k=1 ∂ 2 H ∂q k ∂q l 0 N i,j=1 max 1≤m≤N ∂ 2 H ∂p 2 m 0 -1 ∂ 2 H ∂p 2 j 0 ∂ 2 S ∂p i ∂q j 0 (4.2.50) = min 1≤l≤N N k=1 ∂ 2 H ∂q k ∂q l 0 max 1≤m≤N ∂ 2 H ∂p 2 m 0 -1 N i,j=1
C ij (4.2.51) ≥ 0, (4.2.52) since the term in curly brackets is non-negative (because of assumption H3 on the Hamiltonian), and we had earlier N i,j=1 C ij > 0. But we also had N i,j=1 (-A ij ) < 0. Hence we get a contradiction. Therefore, no such function S exists. This concludes our proof. 4.2.3. Topological approach. We now turn to the topological approach to answering Problem I in CM. First we review the basic ideas of Olsen's line of argumentation [START_REF] Olsen | Classical mechanics and entropy[END_REF]], then we discuss their connections with the periodicity of phase space orbits. 4.2.3.1. Review of Olsen's proof. The assumptions made on S : P → R are in this case not as strict as in the perturbative approach. See Figure 4.3 for a pictorial representation.

In e ect, we simply need to assume that S is nondecreasing along trajectories, which are con ned to an invariant closed space P. Under these conditions, Olsen furnishes two proofs [START_REF] Olsen | Classical mechanics and entropy[END_REF]] for why S is necessarily a constant. In the rst one, the essential idea F 4.3. The topological approach relies on phase space compactness and Liouville's theorem, i.e. the fact that the Hamiltonian ow is volumepreserving.

is that the volume integral of S in P can be written after a change of variables as

ˆP Ω S = ˆP Ω (S • Φ t ) , (4.2.53)
owing to the fact that P is left invariant by the Hamiltonian ow Φ t generated by the Hamiltonian vector eld X H , and that L X H Ω = 0. Because the above expression [Eq. (4.2.53)] is time-independent, S must be time-independent, hence constant along trajectories. The second proof (based on the same assumptions) is rather more technical, but relies also basically on topological ideas; in fact, it is more related to the Poincaré recurrence property [Luis [START_REF] Barreira | Poincaré recurrence: old and new[END_REF].

We can make a few remarks. Firstly, there is in this case no requirement on the speci c form of the Hamiltonian function H : P → R. In fact, H can even contain explicit dependence on time and the proof still holds.

Secondly, the essential ingredient here is the compactness of the phase space P. Indeed, even in Poincaré's original recurrence theorem [START_REF] Poincaré | Sur le problème des trois corps et les équations de la dynamique[END_REF]], as we saw in Section 4.2, the only necessary assumptions were also phase space compactness and invariance along with Liouville's theorem. 4.2.3.2. Periodicity in phase space. Even more can be said about the connection between phase space compactness and the recurrence of orbits than the Poincaré recurrence theorem. There are recent theorems in symplectic geometry which show that exact periodicity of orbits can exist in compact phase spaces.

For example, let us assume the Hamiltonian is of typical form [Eq. (4.2.11)]. Then, there is a theorem [START_REF] Hofer | Symplectic Invariants and Hamiltonian Dynamics[END_REF] which states that for a compact con guration space Q, we have periodic solutions of X H . In fact, it was even shown [START_REF] Suhr | Linking and closed orbits[END_REF] that we have periodic solutions provided certain conditions on the potential V are satis ed and Q just needs to have bounded geometry (i.e. to be geodesically complete and to have the scalar curvature and derivative thereof bounded).

Thus, under the assumption of compactness or any other condition which entails closed orbits, we cannot have a function which behaves like entropy in this sense for a very simple reason. Assume S : P → R is nondecreasing along trajectories and let us consider an orbit γ : R → P in phase space (satisfying dγ (t) /dt = X H (γ (t))) which is closed. This means that for any x ∈ P on the orbit, there exist t 0 , T ∈ R such that x = γ(t 0 ) = γ(t 0 + T ). Hence, we have S(x) = S(γ(t 0 )) = S(γ(t 0 + T )) = S(x), so S is constant along the orbit and therefore cannot behave like entropy.

Entropy theorems in general relativity

We now turn to addressing the question of why these theorems do not carry over from CM to GR. We follow the notation and general setup presented in Chapter 2. The only notable exception is that we write the general (possibly multi-) index A on the con guration variables ϕ as a subscript (ϕ A ) instead of a superscript (ϕ A , as before), and we indicate summation over such indices explicitly. Moreover, we write integrals over Cauchy surfaces with respect to the at volume form, e = d 3 x = dx 1 ∧ dx 2 ∧ dx 3 . 4.3.1. Perturbative approach. We wish to investigate under what conditions the CM no-entropy proof of subsection 4.2.2 transfers over to eld theories in curved spacetime. To this e ect, we consider the equivalent setup: broadly speaking, we ask whether there exists a phase space functional S : P → R which is increasing in time everywhere except at an "equilibrium" con guration. In particular, we use the following two entropy conditions in analogy with those of subsubsection 4.2.2.3 in CM: S1 (Existence of equilibrium): We assume there exists a point x 0 = (φ,π) ∈ P, where S is stationary, and (to simplify the analysis) H is stationary as well:

δS [φ,π] δφ A (x) = δS [φ,π] δπ A (x) = 0 = δH [φ,π] δφ A (x) = δH [φ,π] δπ A (x) . (4.3.1) This implies Ṡ[φ,π] = 0 = Ḣ[φ,π].

S2 (Second law of thermodynamics):

We assume that the Hessian of Ṡ is positive de nite at equilibrium, i.e. Hess( Ṡ[φ,π]) 0. This is a su cient condition to ensure that Ṡ > 0 in P\x 0 , and Ṡ = 0 at x 0 .

We then follow the same procedure as in subsubsection 4.2.2.4: we insert into the Poisson bracket

Ṡ = ˆΣd 3 x A δH [ϕ, π] δπ A (x) δS [ϕ, π] δϕ A (x) - δH [ϕ, π] δϕ A (x) δS [ϕ, π] δπ A (x) (4.3.2)
the functional Taylor series [START_REF] Dreizler | Density Functional Theory[END_REF] for each term about (φ,π), denoting

∆ϕ A (x) = ϕ A (x) -φ (x) and ∆π A (x) = π A (x) -π (x): δH [ϕ, π] δπ A (x) = δH [φ,π] δπ A (x) + ˆΣ d 3 y B δ 2 H [φ,π] δφ B (y) δπ A (x) ∆φ B (y) + δ 2 H [φ,π] δπ B (y) δπ A (x) ∆π B (y) + O ∆ 2 , (4.3.3)
and similarly for the other terms. Then we apply S1 in this case [Eq. (4.3.1)], which makes all zero-order terms vanish. Finally, the Poisson bracket in this case [Eq. (4.3.2)] becomes:

Ṡ = ˆΣ d 3 x ˆΣ d 3 y ˆΣ d 3 z A,B,C δ 2 H [φ,π] δφ B (y) δπ A (x) δ 2 S [φ,π] δφ C (z) δφ A (x) - δ 2 H [φ,π] δφ B (y) δφ A (x) δ 2 S [φ,π] δφ C (z) δπ A (x) × ∆ϕ B (y) ∆ϕ C (z) + δ 2 H [φ,π] δφ B (y) δπ A (x) δ 2 S [φ,π] δπ C (z) δφ A (x) + δ 2 H [φ,π] δπ C (z) δπ A (x) δ 2 S [φ,π] δφ B (y) δφ A (x) - δ 2 H [φ,π] δφ B (y) δφ A (x) δ 2 S [φ,π] δπ C (z) δπ A (x) - δ 2 H [φ,π] δπ C (z) δφ A (x) δ 2 S [φ,π] δφ B (y) δπ A (x) × ∆ϕ B (y) ∆π C (z) + δ 2 H [φ,π] δπ B (y) δπ A (x) δ 2 S [φ,π] δπ C (z) δφ A (x) - δ 2 H [φ,π] δπ B (y) δφ A (x) δ 2 S [φ,π] δπ C (z) δπ A (x) × ∆π B (y) ∆π C (z) + O ∆ 3 . (4.3.4)
We compute this, in turn, for a scalar eld in curved spacetime, for EM in curved spacetime, and for GR. We will show that no function S obeying the conditions S1-S2 given here exists in the case of the rst two, but that the same cannot be said of the latter. 
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L = √ -g - 1 2 g ab ∇ a φ∇ b φ -V [φ] . (4.3.5)
There are no constraints in this case. For turning the above [Eq. (4.3.5)] into a canonical theory, let us choose a foliation of M such that N = 0. The canonical measure [START_REF] Crnković | Covariant description of canonical formalism in geometrical theories[END_REF]] is then simply given by Ω = ´Σ d 3 x δ φ ∧ δφ, and the Hamiltonian [START_REF] Poisson | A Relativist's Toolkit: The Mathematics of Black-Hole Mechanics[END_REF]] is

H [φ, π] = ˆΣd 3 x N π 2 2 √ h + √ h 2 h ab ∇ a φ∇ b φ + √ hV [φ] , (4.3.6)
where π = (

√ h/N ) φ is the canonical momentum.
Let us compute the second functional derivatives of H. We have:

δ 2 H [φ, π] δφ (y) δφ (x) =N (x) h (x)V [φ (x)] δ (x -y) -∂ a N (x) h (x)h ab (x) ∂ b δ (x -y) , (4.3.7) δ 2 H [φ, π] δπ (y) δπ (x) = N (x) h (x) δ (x -y) , (4.3.8) 
and the mixed derivatives δ 2 H [φ, π] /δπ (y) δφ (x) vanish. We now proceed as outlined above: We assume there exists an entropy function S : P → R obeying S1-S2 with an equilibrium eld con guration ( φ,π), and we will show that there is a contradiction with Ṡ > 0. Additionally, we assume that V [ φ] ≥ 0; in other words, the equilibrium eld con guration is one where the potential is concave upwards, i.e. it is a stable equilibrium.

According to the above expression for Ṡ [Eq. (4.3.4)], we have that entropy production in this case is given by

Ṡ = ˆΣ d 3 x d 3 y d 3 z - δ 2 H[ φ,π] δ φ (y) δ φ (x) δ 2 S[ φ,π] δ φ (z) δπ (x) ∆φ (y) ∆φ (z) + δ 2 H[ φ,π] δπ (z) δπ (x) δ 2 S[ φ,π] δ φ (y) δ φ (x) - δ 2 H[ φ,π] δ φ (y) δ φ (x) δ 2 S[ φ,π] δπ (z) δπ (x) ∆φ (y) ∆π (z) + δ 2 H[ φ,π] δπ (y) δπ (x) δ 2 S[ φ,π] δπ (z) δ φ (x) ∆π (y) ∆π (z) + O ∆ 3 , (4.3.9)
where we have used the fact that the mixed derivatives vanish. Let us now evaluate Ṡ along di erent directions in P away from ( φ,π). Suppose ∆π is nonzero everywhere on Σ, and ∆φ vanishes everywhere on Σ. Then, using the second momentum derivative of Chapter 4. Entropy Theorems and the Two-Body Problem H [Eq. (4.3.8)], Ṡ [Eq. (4.3.9)] becomes:

Ṡ = ˆΣ d 3 x d 3 y d 3 z N (x) h (x) δ (x -y) δ 2 S[ φ,π] δπ (z) δ φ (x) ∆π (y) ∆π (z) + O ∆ 3 (4.3.10) = ˆΣ d 3 y d 3 z N (y) h (y) δ 2 S[ φ,π] δπ (z) δ φ (y) ∆π (y) ∆π (z) + O ∆ 3 (4.3.11) ≤ max x∈Σ N (x) h (x) (∆π (x)) 2 ˆΣ d 3 y d 3 z δ 2 S[ φ,π] δπ (z) δ φ (y) + O ∆ 3 . (4.3.12)
The requirement that the LHS of the rst line above [Eq. (4.3.10)] is strictly positive, combined with the strict positivity of the term in curly brackets in the third line [Eq. (4.3.12)] and the assumption (S2) of the de niteness of the Hessian of Ṡ at ( φ,π), altogether mean that the above [Eqs. (4.3.10)-(4.3.12)] imply:

ˆΣ d 3 y d 3 z δ 2 S[ φ,π] δπ (z) δ φ (y) > 0. (4.3.13)
Now let us evaluate Ṡ in a region of P where ∆φ is nonzero everywhere on Σ, while ∆π vanishes everywhere on Σ. Then, using the second eld derivative of H [Eq. (4.3.7)], the negative of the above expression for Ṡ [Eq. (4.3.9)] becomes:

-Ṡ = ˆΣ d 3 x d 3 y d 3 z N (x) h (x)V [ φ (x)]δ (x -y) -∂ a N (x) h (x)h ab (x) ∂ b δ (x -y) × δ 2 S[ φ,π] δ φ (z) δπ (x) ∆φ (y) ∆φ (z) + O ∆ 3 . (4.3.14) Now, observe that ˆΣ d 3 x d 3 y d 3 z ∂ a N (x) h (x)h ab (x) ∂ b δ (x -y) × δ 2 S[ φ,π] δ φ (z) δπ (x) ∆φ (y) ∆φ (z) (4.3.15)
is simply a boundary term. This can be seen by integrating by parts until the derivative is removed from the delta distribution, the de nition of the latter is applied to remove the x integration, and the result is a total derivative in the integrand. Assuming asymptotic decay properties su cient to make this boundary term vanish, the above -Ṡ [Eq. (4.3.14)]
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119 simply becomes:

-Ṡ = ˆΣ d 3 y d 3 z N (y) h (y)V [ φ (y)] δ 2 S[ φ,π] δ φ (z) δπ (y) ∆φ (y) ∆φ (z) + O ∆ 3 (4.3.16) ≥ min x∈Σ N (x) h (x)V [ φ (x)] (∆φ (x)) 2 ˆΣ d 3 y d 3 z δ 2 S[ φ,π] δ φ (z) δπ (y) + O ∆ 3 .
(4.3.17)

The LHS of the rst line [Eq. (4.3.16)] should be strictly negative, and the term in curly brackets in the second line [Eq. (4.3.17)] is strictly positive. Hence, owing to the deniteness of the Hessian of Ṡ at ( φ,π), and using the symmetry of the arguments in the integrand and equality of mixed derivatives, the above [Eqs. (4.3.16)-(4.3.17)] imply:

ˆΣ d 3 y d 3 z δ 2 S[ φ,π] δπ (z) δ φ (y) < 0. (4.3.18)
This is a contradiction with the inequality obtained previously [Eq. (4.3.13)]. Therefore, we have no function S for a scalar eld theory that behaves like entropy according to assumptions S1-S2.

We remark that in this case, we get the conclusion Ṡ = 0 using the perturbative approach despite the fact that the topological one would not work in the case of a noncompact Cauchy surface. The reason is that:

µ (P) = ˆPΩ = ˆP ˆΣ d 3 x δ φ (x) ∧ δφ (x) (4.3.19) ≥ ˆP ˆΣ d 3 x min y∈Σ δ φ (y) ∧ δφ (y) (4.3.20) = ˆP min y∈Σ δ φ (y) ∧ δφ (y) ˆΣ d 3 x , (4.3.21)
which diverges if Σ is non-compact. (N.B. The reason why the term in curly brackets isnite but non-zero is that the eld and its time derivative cannot be always vanishing at any given point, for if they were it would lead only to the trivial solution.) Thus, only the perturbative approach is useful here for deducing lack of entropy production for spacetimes with non-compact Cauchy surfaces. 4.3.1.2. Electromagnetism. Before we inspect EM in curved spacetime, let us carry out the analysis in at spacetime (N = 1, N = 0, and h = (3) δ = diag(0, 1, 1, 1)), for massive (or de Broglie-Proca) EM [Prescod-Weinstein and Bertschinger 2014], de ned by the Lagrangian

L = - 1 4 F : F - 1 2 m 2 A • A + A • J , (4.3.22)
where

F ab = ∂ a A b -∂ b A a ,
A a is the electromagnetic potential (Faraday tensor), and J a is an external source.

We have a constrained Hamiltonian system in this case. In particular, the momentum canonically conjugate to A 0 = V vanishes identically. This means that instead of A a , we may take (its spatial part) A a = (3) δ ab A b along with its conjugate momentum, π a = Ȧa -∂ a V , to be the phase space variables-while appending to the canonical equations of motion resulting from H [A, π] the constraint 0 = δH/δV . In particular, we have [Prescod-Weinstein and Bertschinger 2014]:

H [A, π] = ˆΣd 3 x 1 4 F : F + m 2 2 A • A -V 2 -A • J + 1 2 π • π -(∂ a π a + ρ) V + ∂ a (V π a ) , (4.3.23)
where

F ab = (3) δ ac (3) δ bd F cd , ρ = J 0 and J a = (3) δ ab J b .
The Poisson bracket [Eq. (4.3.4)] is, in this case:

Ṡ = ˆΣ d 3 x d 3 y d 3 z - δ 2 H[ Å, π] δ Åb (y) δ Åa (x) δ 2 S[ Å, π] δ Åc (z) δπ a (x) ∆A b (y) ∆A c (z) + δ 2 H[ Å, π] δπ c (z) δπ a (x) δ 2 S[ Å, π] δ Åb (y) δ Åa (x) - δ 2 H[ Å, π]
δ Åb (y) δ Åa (x)

δ 2 S[ Å, π] δπ c (z) δπ a (x) ∆A b (y) ∆π c (z) + δ 2 H[ Å, π] δπ b (y) δπ a (x) δ 2 S[ Å, π] δπ c (z) δ Åa (x) ∆π b (y) ∆π c (z) + O ∆ 3 , (4.3.24)
where we have used the fact that the mixed derivatives of the Hamiltonian [Eq. (4.3.23)] vanish by inspection, and we compute the second eld and momentum derivatives thereof to be, respectively:

δ 2 H[ Å, π] δ Åb (y) δ Åa (x) =-(3) δ ab ∂ c ∂ c δ (x -y) -∂ b ∂ a δ (x -y) + m 2 (3) δ ab δ (x -y) , (4.3.25) δ 2 H[ Å, π] δπ b (y) δπ a (x) = (3) δ ab δ (x -y) . (4.3.26)
Analogously with our strategy in the scalar eld case, let us evaluate Ṡ along di erent directions away from equilibrium. In particular, let us suppose ∆π 1 is nonzero everywhere on Σ, and that ∆π 2 , ∆π 3 , and ∆A a all vanish everywhere on Σ. Then, using the second 

Ṡ = ˆΣ d 3 x d 3 y d 3 z δ (x -y) δ 2 S[ Å, π] δπ 1 (z) δ Å1 (x) ∆π 1 (y) ∆π 1 (z) + O ∆ 3 (4.3.27) = ˆΣ d 3 y d 3 z δ 2 S[ Å, π] δπ 1 (z) δ Å1 (y) ∆π 1 (y) ∆π 1 (z) + O ∆ 3 (4.3.28) ≤ max x∈Σ (∆π 1 (x)) 2 ˆΣ d 3 y d 3 z δ 2 S[ Å, π] δπ 1 (z) δ Å1 (y) + O ∆ 3 . (4.3.29)
The argument proceeds as before: the strict positivity of the LHS of the rst line above [Eq. ( 4 

ˆΣ d 3 y d 3 z δ 2 S[ Å, π] δπ 1 (z) δ Å1 (y) > 0. (4.3.30)
Now let us evaluate Ṡ where ∆A 1 is nonzero everywhere on Σ, while ∆A 2 , ∆A 3 and ∆π a all vanish everywhere on Σ. Then, using the second eld derivative of H [Eq. (4.3.25)], the negative of the above expression for Ṡ [Eq. (4.3.24)] becomes:

-Ṡ = ˆΣ d 3 x d 3 y d 3 z - (3) δ ab ∂ c ∂ c δ (x -y) -∂ b ∂ a δ (x -y) + m 2 (3) δ ab δ (x -y) δ 2 S[ Å, π] δ Åc (z) δπ a (x) × ∆A b (y) ∆A c (z) + O ∆ 3 . (4.3.31)
The term in curly brackets simply furnishes a (vanishing) boundary term (up to O(∆ 3 )).

Note that for m = 0 (corresponding to Maxwellian EM in at spacetime) we would thus get an inde nite Hessian of Ṡ at ( Å, π), and hence no function S that behaves like entropy as per S1-S2. So let us assume m 2 > 0. Using the symmetry of the arguments in the integrand and equality of mixed derivatives, we are thus left with: where

-Ṡ = ˆΣ d 3 y d 3 z m 2 δ 2 S[ Å, π] δπ 1 (z) δ Å1 (y) ∆A 1 (y) ∆A 1 (z) + O ∆ 3 (4.3.32) ≥ m 2 min x∈Σ (∆A 1 (x)) 2 ˆΣ d 3 y d 3 z δ 2 S[ Å, π] δπ 1 (z) δ Å1 (y) + O ∆ 3 . ( 4 
F ab = ∇ a A b -∇ b A a and
A a is the electromagnetic potential. As in the scalar eld case, we work with a spacetime foliation such that N = 0.

As with EM in at spacetime, this is a constrained Hamiltonian system: the momentum canonically conjugate to A 0 = V vanishes identically, meaning again that instead of A a , we may take (its spatial part) A a = h ab A b along with its conjugate momentum,

π a = ( √ h/N )h ab ( Ȧb -∂ b V )
, to be the physical phase space variables-appending to the canonical equations of motion resulting from H [A, π] the constraint 0 = δH/δV = ∂ a π a (which is simply Gauss' law). In particular, we have [Prescod-Weinstein and Bertschinger 2014]: (4.3.36) where

H [A, π] = ˆΣd 3 x 1 4 N √ h F : F + N 2 √ h π • π + π a ∂ a V ,
F ab = h ac h bd F cd = D a A b -D b A a ,
where D is the derivative induced on Σ. The Poisson bracket [Eq. (4.3.4)] is here given by the same expression as in at spacetime [Eq. (4.3.9)], owing to the fact that the mixed derivatives of the Hamiltonian [Eq. (4.3.36)] vanish. Let us focus on regions in phase space where ∆π vanishes everywhere on Σ, but ∆A is everywhere nonzero. There,

Ṡ = ˆΣ d 3 x d 3 y d 3 z - δ 2 H[ Å, π] δ Åb (y) δ Åa (x) δ 2 S[ Å, π] δ Åc (z) δπ a (x) × ∆A b (y) ∆A c (z) + O ∆ 3 . (4.3.37)
We compute:

δ 2 H[ Å, π] δ Åb (y) δ Åa (x) =-h (x) D c N (x) h ab (x) D c δ (x -y) -D b [N (x) D a δ (x -y)] .
(4.3.38)
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123 Inserting this into the above expression for Ṡ [Eq. (4.3.37)], we simply get a (vanishing) boundary term (up to O(∆ 3 )). We conclude that we have an inde nite Hessian of Ṡ at ( Å, π), and hence no function S that behaves like entropy as per S1-S2.

4.3.1.3. Gravity. Here we use the basic notation and phase space construction of Section 2.4. We brie y remind the reader that the Hamiltonian of general relativity is given by

H = 1 2κ ˆΣ Σ N C -2N • C + 2D • N • π √ h , (4.3.39)
where N and N are the lapse and shift, C and C are the secondary constraints, and h and π are the induced three-metric on Σ and its canonical momentum respectively. See Chapter 2 for full details. Following the same procedure as before for a hypothetical entropy functional S[h, π] and an equilibrium con guration ( h, π) in phase space, we see that the Poisson bracket [Eq. (4.3.4)] in this case has the following form:

Ṡ = ˆΣ d 3 x d 3 y d 3 z δ 2 H[ h, π] δ hcd (y) δπ ab (x) δ 2 S[ h, π] δ hef (z) δ hab (x) - δ 2 H[ h, π] δ hcd (y) δ hab (x) δ 2 S[ h, π] δ hef (z) δπ ab (x) × ∆h cd (y) ∆h ef (z) + δ 2 H[ h, π]
δ hcd (y) δπ ab (x)

δ 2 S[ h, π] δπ ef (z) δ hab (x) + δ 2 H[ h, π] δπ ef (z) δπ ab (x) δ 2 S[ h, π] δ hcd (y) δ hab (x) - δ 2 H[ h, π] δ hcd (y) δ hab (x) δ 2 S[ h, π] δπ ef (z) δπ ab (x) - δ 2 H[ h, π] δπ ef (z) δ hab (x) δ 2 S[ h, π] δ hcd (y) δπ ab (x) × ∆h cd (y) ∆π ef (z) + δ 2 H[ h, π] δπ cd (y) δπ ab (x) δ 2 S[ h, π] δπ ef (z) δ hab (x) - δ 2 H[ h, π] δπ cd (y) δ hab (x) δ 2 S[ h, π] δπ ef (z) δπ ab (x) × ∆π cd (y) ∆π ef (z) +O ∆ 3 . (4.3.40)
The di erence with the previous cases is that here, in general, none of the second derivatives of the Hamiltonian vanish, and crucially, they do not have a de nite sign. For example, let us compute the second derivative of H with respect to the canonical momentum:

δ 2 H[ h, π] δπ cd (y) δπ ab (x) = 2 N (x) h (x) δ c (a δ d b) - 1 2 hab (x) δ cd δ (x -y) . (4.3.41)
In CM or the examples of eld theories in curved spacetime we have considered, the second derivative of H with respect to the momentum had a de nite sign (by virtue of its association with the positivity of kinetic-type terms). In this case, however, this second derivative [Eq. (4.3.41)] is neither always positive nor always negative. Thus an argument similar to the previous proofs cannot work here: the gravitational Hamiltonian [Eq. (2.4.15)] is of such a nature that its concavity in phase space components (as is, for example, its concavity in the canonical momentum components [Eq. (4.3.41)]) is not independent of the phase space variables themselves, and cannot be ascribed a de nite (positive or negative) sign.

And so, a contradiction cannot arise with the Poisson bracket of a phase space functional (such as the gravitational entropy) being non-zero (and, in particular, positive).

Topological approach.

As discussed in subsection 4.2.3, the topological proofs of Olsen for the non-existence of entropy production in CM rely crucially on the assumption that the phase space P is compact. In such a situation, a system has a nite measure of phase space µ(P) available to explore, and there cannot exist a function which continually increases along orbits.

By contrast, in GR, it is believed that the (reduced) phase space S is generically noncompact [Schi rin [START_REF] Schi Rin | Measure and Probability in Cosmology[END_REF]. That is to say, the measure µ(S ) = ´S Ω| S in general diverges, where Ω| S is (using the notation of Chapter 2) the pullback of the symplectic form of GR, Ω = ˆΣ d 3 x δπ ab ∧ δh ab , (4.3.42) to S . (See Section 2.4 for more details.) This means that the same methods of proof as in CM (subsection 4.2.3) cannot be applied. The connection between a (monotonically increasing) entropy function in GR and the divergence of its (reduced) phase space measure warrants some discussion. The latter, it may be noted, is arguably not completely inevitable. In other words, one may well imagine a space of admissible solutions to the Einstein equations (or equivalently, the canonical gravitational equations) the e ective degrees of freedom of which are such that they form a nite-measure phase space. Dynamically-trivial examples of this might be SD black holes. Thus the assertion that µ(S ) diverges hinges on the nature of the degrees of freedom believed to be available in the spacetimes under consideration. However, it has been explicitly shown [Schi rin [START_REF] Schi Rin | Measure and Probability in Cosmology[END_REF]] that even in very basic dynamically-nontrivial situations, such as simple cosmological spacetimes, µ(S ) does indeed diverge. In fact, the proof found in [Schi rin [START_REF] Schi Rin | Measure and Probability in Cosmology[END_REF]] is carried out for compact Cauchy surfaces, and the conclusion is therefore in concordance with the no-return theorem [START_REF] Tipler | General Relativity and the Eternal Return[END_REF][START_REF] Tipler | General relativity, thermodynamics, and the Poincaré cycle[END_REF] which also assumes compact Cauchy surfaces. In the following section, we will show that this happens for perturbed SD spacetimes as well (where the Cauchy surface is non-compact).

Entropy in the gravitational two-body problem 125

The generic divergence of µ(S ) entails that a gravitational system has an unbounded region of phase space available to explore. In other words, it is not con ned to a nite region where it would have to eventually return to a con guration from which it started (which would make a monotonically increasing entropy function impossible).

It is moreover worth remarking that this situation creates nontrivial problems for a statistical (i.e. probability-based) general-relativistic de nition of entropy, S(t) (as described in Section 4.1)-which, indeed, one may also ultimately desire to work with and relate to the mechanical meaning of entropy mainly discussed in this chapter. Naively, one might think of de ning such a statistical entropy function as something along the lines of S = -X P (X) ln P (X), where X denotes a physical property of interest and P (X) its probability. In turn, the latter might be understood as the relative size of the phase space region S X ⊂ S possessing the property X, i.e. P (X) = µ(S X )/µ(S ). In this case, we either have [Schi rin and Wald 2012]: P (X) = 0 if µ(S X ) is nite, P (X) = 1 if µ(S \S X ) is nite, or P (X) is ill-de ned otherwise. Ostensibly, one would need to invoke a regularization procedure in order to obtain nite probabilities (in general) according to this. However, di erent regularization procedures that have been applied (mainly in the context of cosmology) have proven to yield widely di erent results depending on the method of the procedure being used [Schi rin [START_REF] Schi Rin | Measure and Probability in Cosmology[END_REF]. Alternatively, a statistical general-relativistic de nition of S in terms of a probability density ρ : S × T → [0, 1] (similarly to CM) as S = -´S Ω| S ρ ln ρ would likewise face divergence issues. Therefore, any future attempt to de ne gravitational entropy in such a context will have to either devise an unambiguous and well-de ned regularization procedure (for obtaining nite probabilities), or implement a well-justi ed cuto of the (reduced) phase space measure.

We now turn to discussing these issues in a context where we expect an intuitive illustration of gravitational entropy production-the two-body problem.

Entropy in the gravitational two-body problem

One of the most elementary situations in GR in which we expect the manifestation of a phenomenon such as entropy production is the gravitational two-body problem.

In CM, the two-body (or Kepler) problem manifestly involves no increase in the entropy of a system. The perturbative approach, as discussed in subsubsection 4.2.2.3, involves assumptions on the nature of the Hamiltonian which preclude any conclusions from it in this regard. However, the topological approach, elaborated in subsection 4.2.3, is applicable: assuming that Keplerian orbits are bounded, the con guration space Q can be considered to be compact, and therefore the phase space P obtained from it (involving nite conjugate momenta) is compact as well. Concordant with the topological proofs, then, we will have no entropy production in such a situation. The case of the N -body problem however is, as alluded to earlier, not the same: neither the assumptions of the perturbative approach, not of the topological approach (speci cally, a compact phase space) are applicable, and it has been shown that a monotonically increasing function on phase space does in fact exist [START_REF] Barbour | Shape Dynamics. An Introduction[END_REF], 2014], and hence, a gravitational arrow of time (and entropy production) associated with it.

In GR, we know the two-body problem involves energy loss and therefore should implicate an associated production of entropy. The no-return theorem [START_REF] Tipler | General Relativity and the Eternal Return[END_REF][START_REF] Tipler | General relativity, thermodynamics, and the Poincaré cycle[END_REF] is inapplicable here because this problem does not involve a compact Cauchy surface. The perturbative approach here fails to disprove the second law (as discussed in subsubsection 4.3.1.3), and we will now show that so too does the topological approach.

The two-body problem in GR where one small body orbits a much larger body of mass M can be modeled in the context of perturbations to the SD metric,

g ab dx a dx b = -f (r) dt 2 + dr 2 f (r) + r 2 σ ab dx a dx b , (4.4.1)
where f (r) = 1 -2M/r and σ = diag(0, 0, 1, sin 2 θ) is the metric of the two-sphere S 2 . According to standard black hole perturbation theory (see, for example, [START_REF] Chandrasekhar | The Mathematical Theory of Black Holes[END_REF][START_REF] Frolov | Black Hole Physics: Basic Concepts and New Developments[END_REF][START_REF] Price | Developments in the perturbation theory of algebraically special spacetimes[END_REF]), and as developed at greater length in Section 3.3, it is possible to choose a gauge so that the polar and axial parts of perturbations to this metric are encoded in a single gauge-invariant variable each. In particular, they are given respectively by

Φ (±) = 1 r ∞ l=0 l m=-l Y lm (θ, φ) Ψ lm (±) (t, r) , (4.4.2)
where Y lm are spherical harmonics and Ψ lm (±) are called, respectively, the Zerilli and Regge-Wheeler master functions, which satisfy known wave-like equations and from which the perturbations to g can be reconstructed. In [START_REF] Jezierski | Energy and Angular Momentum ofthe Weak Gravitational Waves on the Schwarzschild Background -Quasilocal Gauge-invariant Formulation[END_REF]], the symplectic form of the reduced phase space S for such spacetimes is computed:

Ω| S = ς=± ˆΣ d 3 x δΥ (ς) ∧ DδΦ (ς) , (4.4.3) where Υ (±) = [r 2 sin θ/f (r)] Φ(±) , and D = ∆ -1 σ (∆ σ + 2) -1
where ∆ σ is the Laplace operator on S 2 . See Section 3.3. for more details.

The work [START_REF] Jezierski | Energy and Angular Momentum ofthe Weak Gravitational Waves on the Schwarzschild Background -Quasilocal Gauge-invariant Formulation[END_REF]] where this symplectic form [Eq. (4.4.3)] was derived simply uses it to de ne and formulate conservation laws for energy and angular momentum in perturbed SD spacetimes. It does not, however, address the question of the total measure of S . We will now show that the (reduced) phase space measure µ (S ) = ´S Ω| S for such spacetimes in fact diverges, preventing any argument based on phase space compactness for the non-existence of entropy production.

Inserting the de nitions of the di erent variables and suppressing for the moment the coordinate dependence of the spherical harmonics and master functions, we have

µ (S ) = ς=± ˆS ˆΣ d 3 x δΥ (ς) ∧ DδΦ (ς) (4.4.4) = ς=± ˆS ˆΣ d 3 x δ r 2 sin θ f (r) Φ(ς) ∧ DδΦ (ς) (4.4.5) = ς=± ˆS ˆΣ d 3 x δ   r sin θ f (r) l,m Y lm Ψlm (ς)   ∧ Dδ   1 r l ,m Y l m Ψ l m (ς)   . (4.4.6)
Now using the fact that the functional exterior derivative acts only on the master functions and the operator D only on the spherical harmonics, we can write this as

µ (S ) = ς=± ˆS ˆΣ d 3 x   r sin θ f (r) l,m Y lm δ Ψlm (ς)   ∧   1 r l ,m DY l m δΨ l m (ς)   (4.4.7) = ς=± l,l ,m,m ˆS ˆΣ d 3 x r sin θ f (r) Y lm 1 r DY l m δ Ψlm (ς) ∧ δΨ l m (ς) . (4.4.8)
Writing the Cauchy surface integral in terms of coordinates and collecting terms, (4.4.11) where A ll mm = ´S2 dθdφ (sin θ)Y lm DY l m is a nite integral involving only the spherical harmonics. Restoring the arguments of the master functions, and recalling that the meaning of δf (t, r) (for any function f ) is simply that of a one-form on the phase space Chapter 4. Entropy Theorems and the Two-Body Problem at (t, r) in spacetime, we can write from the above [Eq. (4.4.11)]:

µ (S ) = ς=± l,l ,m,m ˆS ˆ∞ 2M dr ˆS2 dθdφ 1 f (r) (sin θ) Y lm DY l m δ Ψlm (ς) ∧ δΨ l m (ς) (4.4.9) = ς=± l,l ,m,m ˆS ˆS2 dθdφ (sin θ) Y lm DY l m ˆ∞ 2M dr f (r) δ Ψlm (ς) ∧ δΨ l m (ς) (4.4.10) = ς=± l,l ,m,m A ll mm ˆS ˆ∞ 2M dr f (r) δ Ψlm (ς) ∧ δΨ l m (ς) ,
µ (S ) = ς=± l,l ,m,m A ll mm ˆS ˆ∞ 2M dr f (r) δ Ψlm (ς) (t, r) ∧ δΨ l m (ς) (t, r) (4.4.12) ≥ ς=± l,l ,m,m A ll mm ˆS ˆ∞ 2M dr f (r) min r∈[2M,∞) δ Ψlm (ς) (t, r) ∧ δΨ l m (ς) (t, r) (4.4.13) = ς=± l,l ,m,m A ll mm ˆS min r∈[2M,∞) δ Ψlm (ς) (t, r) ∧ δΨ l m (ς) (t, r) ˆ∞ 2M dr f (r) (4.4.14) =    ς=± l,l ,m,m A ll mm min r∈[2M,∞) ˆS δ Ψlm (ς) (t, r) ∧ δΨ l m (ς) (t, r)    ˆ∞ 2M dr f (r)
.

(4.4.15)

The phase space integral ´S δ Ψlm (ς) (t, r) ∧ δΨ l m (ς) (t, r) is nite but nonzero even when minimised over r, because for any nontrivial solutions of the master functions, there will be no point in spacetime where they will always be vanishing (for all time). Thus (assuming that the l, l , m, m sums are convergent), everything in the curly bracket in the last line above [Eq. (4.4.15)] is nonzero but nite. However, it multiplies ´∞ 2M dr/f (r) which diverges (at both integration limits). Hence, µ(S ) diverges for such spacetimes.

We can make a few remarks. Firstly, one might be concerned in the above argument, speci cally in the last line [Eq. (4.4.15)], about what might happen in the asymptotic limit of the phase space integral: in other words, it maybe the case (i) that min r∈[2M,∞) ´S δ Ψlm (ς) (t, r) ∧ δΨ l m (ς) (t, r) could turn out to be lim r→∞ ´S δ Ψlm (ς) (t, r) ∧ δΨ l m (ς) (t, r); and, if so, one might naively worry (ii) that the latter vanishes due to asymptotic decay properties of the master functions. This will actually not happen. To see why, suppose (i) is true. The master functions must obey outgoing boundary conditions at spatial in nity, i.e. 0 = [∂ t + f (r)∂ r ]Ψ lm (ς) as r → ∞. Hence we have

lim r→∞ ˆS δ Ψlm (ς) ∧ δΨ l m (ς) = lim r→∞ ˆS δ -v∂ r Ψ lm (ς) ∧ δΨ l m (ς) = -ˆS lim r→∞ δ ∂ r Ψ lm (ς) ∧ δΨ l m (ς) , (4.4.16)
which is nonzero, because the vanishing of the master functions and their radial partials at spatial in nity for all time corresponds only to trivial solutions. Therefore, we have that

min r∈[2M,∞) ´S δ Ψlm (ς) (t, r) ∧ δΨ l m (ς) (t, r
) is always nonzero for nontrivial solutions.

Secondly, if the two-body system in this framework is an extreme-mass-ratio inspiral, i.e. the mass of the orbiting body, or "particle", is orders of magnitude smaller than that of the larger one, and the former is modeled using a stress-energy-momentum tensor with support only on its worldline, then it is known that Ψ lm (±) (t, r) has a discontinuity at the particle location, and thus, Ψlm (±) (t, r) has a divergence there. Hence, the integral over S even before our inequality above [Eq. (4.4.12)] is already divergent due to the divergence of Ψlm (±) (t, r) in the integrand. However, given that such an approach to describing these systems (i.e. having a stress-energy-momentum tensor of the particle with a delta distribution) is only an idealization, we regard the conclusion that µ(S ) diverges as more convincing based on our earlier argument, which is valid in general-that is, even for possible descriptions of the smaller body that may be more realistic than that using delta distributions.

Conclusions

We have proven that there does not exist a monotonically increasing function of phase space-which may be identi ed as (what we have referred to as a "mechanical" notion of) entropy-in classical mechanics with N degrees of freedom for certain classes of Hamiltonians, as well as in some (classical) matter eld theories in curved (nondynamical) spacetime, viz. for standard scalar and electromagnetic elds. To do this, we have followed the procedure for the proof sketched by [START_REF] Poincaré | Sur les tentatives d'explication mecanique des principes de la thermodynamique[END_REF]] (what we have dubbed the perturbative approach), and we have here carried it out in full rigour for classical mechanics and extended it via similar techniques to eld theories. What is noteworthy about this perturbative proof-counter (to our knowledge) to all other well-known proofs for the non-existence of entropy (in the "mechanical" sense) in classical canonical theories-is that it assumes nothing about the topology of the phase space; in other words, the phase space can be non-compact. Essentially, it relies only on curvature properties (in phase space) of the Hamiltonian of the canonical theory being considered. We have explicated these properties in the case of classical mechanics, and have assumed standard ones for the particular (curved spacetime) matter eld theories we have investigated. It would be of interest for future work to determine, in the case of the former, whether they can be made less restrictive (than what we have required for our proof, which thus omits some classes of Hamiltonians of interest such as that for the the gravitational two-body problem), and in the case of the latter, whether they can be generalized or extended to broader classes of eld theories. Indeed, it would be in general an interesting question to determine not only the necessary but also-if possible-the su cient conditions that a Hamiltonian of a generic canonical theory needs to satisfy in order for this theorem to be applicable, i.e. in order to preclude "mechanical" entropy production. We have seen that it is precisely the curvature properties of the vacuum Hamiltonian of general relativity that prevent this method of proof from being extended thereto, where in fact one does expect (some version of) the second law of thermodynamics to hold.

Topological properties of the phase space can also entail the non-existence of "mechanical" entropy, as per the more standard and already well-understood proofs in classical mechanics where the phase space is assumed to be compact [START_REF] Olsen | Classical mechanics and entropy[END_REF][START_REF] Poincaré | Sur le problème des trois corps et les équations de la dynamique[END_REF]]. However, even for non-gravitational canonical theories this assumption might be too restrictive, and for general relativity, it is believed that in general it is not the case. This renders any of these topological proofs inapplicable in the case of the latter, and moreover, it also signi cantly complicates any attempt to formulate a sensible "statistical" notion of (gravitational) entropy due to the concordant problems in working with nite probabilities (of phase space properties). These must ultimately be overcome (via some regularization procedure or cuto argument) for establishing a connection between a "statistical" and "mechanical" entropy in general relativity. While we still lack any consensus on how to de ne the latter, it may be hoped that in the future, the generic validity of a (general relativistic) second law may be demonstrated on the basis of (perhaps curvature related) properties of the gravitational Hamiltonian-which in turn may enter into a statistical mechanics type de nition of gravitational entropy in terms of some suitably de ned partition function. In this regard, older work based on eld-theoretic approaches [START_REF] Horwitz | Steepest descent path for the microcanonical ensemble-resolution of an ambiguity[END_REF]] and more recent developments such as proposals to relate entropy with a Noether charge (speci cally, the Noether invariant associated with an in nitesimal time translation) in classical mechanics [START_REF] Sasa | Thermodynamic Entropy as a Noether Invariant[END_REF] may provide fruitful hints.

A clear situation in which we anticipate entropy production in general relativity, unlike in classical mechanics, is the gravitational two-body problem. For the latter, as we have discussed, the N -body problem actually does also exhibit features of entropy production. We have here shown explicitly that the phase space of perturbed Schwarzschild-Droste spacetimes is non-compact (even without the assumption of self-force). This means that the topological proofs are here inapplicable (but also, on the other hand, so is the "noreturn" theorem for compact Cauchy surfaces, which by itself cannot be used in this case to understand the non-recurrence of phase space orbits). It is hoped that once a generally agreed upon de nition of gravitational entropy is established, one would not only be able to use it to compute the entropy of two-body systems, but also to demonstrate that it should obey the second law (i.e. that it should be monotonically increasing in time). In the long run, an interesting problem to investigate is whether an entropy change, once de ned and associated to motion in a Lagrangian formulation, could determine the trajectory of a massive and radiating body, moving in a gravitational eld.

CHAPTER 5

The Motion of Localized Sources in General Relativity: Gravitational Self-Force from Quasilocal Conservation Laws Chapter summary. This chapter is based on the preprint [START_REF] Oltean | The motion of localized sources in general relativity: gravitational self-force from quasilocal conservation laws[END_REF]].

An idealized "test" object in general relativity moves along a geodesic. However, if the object has a nite mass, this will create additional curvature in the spacetime, causing it to deviate from geodesic motion. If the mass is nonetheless su ciently small, such an e ect is usually treated perturbatively and is known as the gravitational self-force due to the object. This issue is still an open problem in gravitational physics today, motivated not only by basic foundational interest, but also by the need for its direct application in gravitationalwave astronomy. In particular, the observation of extreme-mass-ratio inspirals by the future space-based detector LISA will rely crucially on an accurate modeling of the selfforce driving the orbital evolution and gravitational wave emission of such systems.

In this chapter, we present a novel derivation, based on conservation laws, of the basic equations of motion for this problem. They are formulated with the use of a quasilocal (rather than matter) stress-energy-momentum tensor-in particular, the Brown-York tensor-so as to capture gravitational e ects in the momentum ux of the object, including the self-force. Our formulation and resulting equations of motion are independent of the choice of the perturbative gauge. We show that, in addition to the usual gravitational self-force term, they also lead to an additional "self-pressure" force not found in previous analyses, and also that our results correctly recover known formulas under appropriate conditions. Our approach thus o ers a fresh geometrical picture from which to understand the self-force fundamentally, and potentially useful new avenues for computing it practically.

We begin in Section 5.1 with a brief introductory discussion on the idea of using conservation law approaches for the self-force problem generally, that is of understanding and computing the self-force as a momentum change or ux. While this has proven successful in the past for the electromagnetic self-force problem, such an approach has, up to this work, not been attempted in general in the gravitational case. This mainly has to do with the subtleties involved in properly de ning notions of gravitational energy-momentum. These are concepts which do not make sense locally in relativistic physics (i.e. as volume Chapter 5. The Motion of Localized Sources in General Relativity densities), and so the typical solution-as in canonical general relativity-is to de ne them quasilocally (i.e. as boundary densities).

In Section 5.2, we review the general quasilocal energy-momentum conservation laws for general relativity used in this chapter. These laws have been obtained in recent work based on the Brown-York tensor, account for both gravitational as well as matter uxes, and are valid in any arbitrary spacetime. They are constructed with the use of a concept called a quasilocal frame: a topological two-sphere of observers tracing out the worldtube boundary of the history of a nite spatial volume (that is, the nite system the uxes of which we are studying).

In Section 5.3, we prove that the correction to the momentum ux of any small spatial region due to any metric perturbations in any spacetime in general relativity always contains the known form of the gravitational self-force. Our analysis also reveals a new term, not found in previous analyses and in principle equally dominant in general, namely one arising from a "self-pressure" e ect with no analogy in Newtonian gravity. The appearance of these terms as corrections to the motion is independent of what actually sources the metric perturbations upon which they depend; rather than the "mass" of the small moving object itself, what seems to be fundamentally responsible for self-force e ects in our analysis is the mass (or energy) and pressure of the spacetime vacuum.

In Section 5.4 we proceed to apply our analysis to a concrete self-force analysis actually used for computations, that is a speci c choice of a perturbative family of spacetimes designed to describe the correction to the motion of a small object. We work with the rigorous approach of Gralla and Wald, and we show how under appropriate conditions our analysis recovers equations of motion comparable with theirs.

Finally, Section 5.5 o ers some conclusions and outlook to future work.

La moció de les fonts localitzades en la relativitat general (chapter summary translation in Catalan). Aquest capítol es basa en el preprint [START_REF] Oltean | The motion of localized sources in general relativity: gravitational self-force from quasilocal conservation laws[END_REF].

Un objecte de "prova" idealitzat en la relativitat general es mou al llarg d'una geodèsica. Tanmateix, si l'objecte té una massa nita, això crearà una corbatura addicional en l'espai-temps, fent que es desviï del moviment geodèsic. Si la massa és tot i això prou petita, aquest efecte se sol tractar de manera pertorbadora i es coneix com a força pròpia gravitacional a causa de l'objecte. Aquesta qüestió continua sent un problema obert en la física gravitatòria actual, motivada no només per l'interès fonamental bàsic, sinó també per la necessitat de la seva aplicació directa en l'astronomia d'ones gravitacionals. En particular, l'observació de caigudes en espiral amb raó de masses extrema per part del futur detector LISA basat en l'espai es basarà crucialment en un modelat precís de la força pròpia impulsant l'evolució orbital i l'emissió d'ones gravitacionals (crec que aquesta és la forma més correcta, tot in que són sinònimes, juntament amb gravitatòries) d'aquests sistemes.

En aquest capítol, es presenta una nova derivació, basada en lleis de conservació, de les equacions bàsiques de moviment d'aquest problema. Es formulen amb l'ús d'un tensor de tensió-energia quasilocal (en lloc de material), en particular, el tensor de Brown-York, per tal de captar efectes gravitacionals en el ux de moment de l'objecte, inclòs la força pròpia. La nostra formulació i les equacions de moviment resultants són independents de l'elecció de la mesura pertorbativa. Mostrem que, a més del terme de la força pròpia gravitacional habitual, també condueixen a una força de "pressió pròpia" addicional que no es va trobar en anàlisis anteriors, i també que els nostres resultats recuperen correctament les fórmules conegudes en condicions adequades. El nostre treball ofereix així una nova imatge geomètrica a partir de la qual es pot entendre fonamentalment la força pròpia, i possibles noves vies potencialment útils per a computar-la pràcticament.

Comencem a la secció 5.1 amb una breu discussió introductòria sobre la idea d'utilitzar els mètodes de lleis de conservació per al problema de la força pròpia en general, és a dir, comprendre i calcular la força pròpia com a canvi o ux d'impuls. Si bé en el passat això ha tingut èxit pel problema de la força pròpia electromagnètica, un anàlisi d'aquest tipus no s'ha intentat, ns a aquest treball, en general en el cas gravitatori. Això té a veure principalment amb les subtileses relacionades amb la de nició adequada de les nocions d'energia-moment gravitatòria. Es tracta de conceptes que no tenen sentit localment en la física relativista (és a dir, com a densitats de volum), i per tant, la solució típica -com en la relativitat general canònica -és de nir-los de forma quasilocal (és a dir, com a densitats de frontera).

A la secció 5.2, revisem les lleis quasilocals generals de conservació d'energia-moment per a la relativitat general utilitzades en aquest capítol. Aquestes lleis s'han obtingut en treballs recents basats en el tensor de Brown-York, tant per a uxos gravitacionals com per a matèries, i són vàlids en qualsevol espai-temps arbitrari. Es construeixen amb l'ús d'un concepte conegut com a sistema de referència quasilocal: una esfera topològica bidimensional d'observadors que traça la frontera de la història d'un volum espacial nit (és a dir, el sistema nit els uxos del qual estem estudiant).

A la secció 5.3, demostrem que la correcció al ux d'impuls de qualsevol petita regió espacial a causa de pertorbacions mètriques en qualsevol espai-temps en la relativitat general sempre conté la forma coneguda de la força pròpia gravitacional. La nostra anàlisi també revela un nou terme, que no es troba en anàlisis anteriors i, en principi, és igualment dominant en general, és a dir, un efecte de de "pressió pròpia" sense analogia en la gravetat newtoniana. L'aparició d'aquests termes com a correccions al moviment és independent del que realment provoca les pertorbacions mètriques de les quals depenen; més que la "massa" del petit objecte en moviment propi, el que sembla ser fonamentalment responsable dels efectes de la força pròpia en la nostra anàlisi és la massa (o energia) i la pressió del buit de l'espai-temps.

A la secció 5.4 procedim a aplicar la nostra anàlisi a una anàlisi concreta de força pròpia utilitzada realment per a càlculs, és a dir, una elecció especí ca d'una família pertorbadora d'espais-temps dissenyada per descriure la correcció al moviment d'un objecte petit. En particular, treballem amb el formalisme rigorós de Gralla i Wald, i mostrem com en condicions adequades la nostra anàlisi recupera equacions de moviment comparables a les seves.

Finalment, la secció 5.5 ofereix algunes conclusions i perspectives per a futurs treballs.

Le mouvement des sources localisées dans la relativité générale (chapter summary translation in French). Ce chapitre est basé sur le pré-impression [START_REF] Oltean | The motion of localized sources in general relativity: gravitational self-force from quasilocal conservation laws[END_REF].

Un objet de « test » idéalisé dans la relativité générale se déplace le long d'une géodésique. Cependant, si l'objet a une masse nie, cela créera une courbure supplémentaire dans l'espace-temps, le faisant s'écarter du mouvement géodésique. Si la masse est néanmoins su samment petite, un tel e et est généralement traité de manière perturbative et il est connu comme la force propre gravitationnelle à cause de l'objet. Cette question est toujours un problème ouvert dans la physique gravitationnelle aujourd'hui, motivée non seulement par l'intérêt fondamental, mais également par la nécessité de son application directe dans l'astronomie des ondes gravitationnelles. En particulier, l'observation d'inspirals avec quotients extrêmes des masses par le futur détecteur spatial LISA reposera de manière cruciale sur une modélisation précise de la force propre à l'origine de l'évolution orbitale et de l'émission des ondes gravitationnelles de tels systèmes.

Dans ce chapitre, nous présentons une nouvelle dérivation, basée sur des lois de conservation, des équations de base du mouvement pour ce problème. Ils sont formulés avec l'utilisation d'un tenseur énergie-impulsion quasi-local (plutôt que de la matière) -en particulier, le tenseur de Brown-York -a n de capturer les e ets gravitationnels dans le ux d'impulsion de l'objet, y compris la force propre. Notre formulation et les équations de mouvement résultantes sont indépendantes du choix de la jauge perturbative. Nous montrons que, en plus du terme habituel de la force propre gravitationnelle, ils conduisent également à une force de « pression propre » supplémentaire, pas trouvée dans les analyses précédentes et que nos résultats récupèrent correctement les formules connues dans des conditions appropriées. Notre analyse o re donc une nouvelle image géométrique à partir de laquelle on peut comprendre fondamentalement la force propre et de nouvelles voies potentiellement utiles pour la calculer de manière pratique.

Nous commençons à la section 5.1 par une brève discussion introductive sur l'idée d'appliquer les lois de conservation au problème de la force propre en général, c'est-à-dire de la compréhension et du calcul de la force propre comme un changement ou un ux en la quantité de mouvement. Bien que cela eût du succès au passé pour le problème de la force propre électromagnétique, une telle analyse n'a jusqu'à présent pas été tentée de 5.1. Introduction: the self-force problem via conservation laws 135 manière générale dans le cas de la gravitation. Cela concerne principalement les subtilités impliquées dans la dé nition correcte des notions d'énergie-impulsion gravitationnelle. Ce sont des concepts qui n'ont pas de sens local dans la physique relativiste (c'est-à-dire, comme densités de volume) et la solution typique -comme dans la relativité générale canonique -consiste à les dé nir de manière quasilocale (c'est-à-dire, comme densités de frontière).

Dans la section 5.2, nous passons en revue les lois générales quasilocales de conservation d'énergie-impulsion pour la relativité générale utilisées dans ce chapitre. Ces lois ont été obtenues dans des travaux récents basés sur le tenseur de Brown-York, tiennent compte à la fois des ux gravitationnels et des ux de matière, et sont valables dans tout espacetemps arbitraire. Ils sont construits à l'aide d'un concept appelé le référentiel quasilocal (quasilocal frame): une sphère topologique bidimensionelle d'observateurs traçant la frontière de l'histoire d'un volume spatial ni (c'est-à-dire du système ni dont nous étudions les ux).

Dans la section 5.3, nous montrons que la correction du ux de la quantité de mouvement de toute petite région spatiale à cause des perturbations métriques dans quelque espace-temps de la relativité générale contient toujours la forme connue de la force propre gravitationnelle. Notre analyse révèle également un nouveau terme, pas retrouvé dans les analyses précédentes et en principe tout aussi dominant en général, à savoir un e et de « pression propre » sans analogie dans la gravité newtonienne. L'apparition de ces termes en tant que corrections du mouvement est indépendante de la source des perturbations métriques dont ils dépendent. Plutôt que la « masse » du petit objet en mouvement luimême, ce qui semble être fondamentalement responsable pour les e ets de force propre, dans notre analyse est la masse (ou énergie) et la pression du vide de l'espace-temps.

Dans la section 5.4, nous appliquons notre analyse à une formulation concrète de la force propre réellement utilisée pour les calculs, c'est-à-dire un choix spéci que d'une famille des espaces-temps perturbatifs conçue pour décrire la correction du mouvement d'un petit objet. Nous travaillons en particulier avec le formalisme rigoureux de Gralla et Wald et nous montrons comment, dans des conditions appropriées, notre analyse récupère équations de mouvement comparables aux leurs.

En n, la section 5.5 propose quelques conclusions et perspectives pour les travaux futurs.

Introduction: the self-force problem via conservation laws

The idea of using conservation laws for tackling the self-force problem was appreciated and promptly exploited quite early on for the electromagnetic self-force. In the 1930s, [START_REF] Dirac | Classical Theory of Radiating Electrons[END_REF]] was the rst to put forward such an analysis in at spacetime, and later on in 1960, [START_REF] Dewitt | Radiation damping in a gravitational eld[END_REF] extended it to non-dynamically curved spacetimes1 . In such approaches, it can be shown2 that the EoM for the electromagnetic self-force follows from local conservation expressions of the form (5.1.1) where the LHS expresses the ux of matter four-momentum P a (associated with T ab ) between the "caps" of (i.e. closed spatial two-surfaces delimiting) a portion (or "time interval") of a thin worldtube boundary B (topologically R×S 2 ), with natural volume form B and (outward-directed) unit normal n a (see Figure 5.1). In particular, one takes a time derivative of (5.1.1) to obtain an EoM expressing the time rate of change of momentum in the form of a closed spatial two-surface integral (by di erentiating the worldtube boundary integral). For the electromagnetic self-force problem, the introduction of an appropriate matter stress-energy-momentum tensor T ab into Eq. ( 5.1.1) and a bit of subsequent argumentation reduces the integral expression to the famous Lorentz-Dirac equation; on a spatial three-slice in a Lorentz frame and in the absence of external forces, for example, this simply reduces to Ṗ i = 2 3 q 2 ȧi for a charge q. Formulations of the scalar and electromagnetic self-forces using generalized Killing elds have more recently been put forward in [START_REF] Harte | Electromagnetic self-forces and generalized Killing elds[END_REF][START_REF] Harte | Self-forces from generalized Killing elds[END_REF].

∆P a = ∆B B T ab n b ,
The success of conservation law approaches for formulating the electromagnetic selfforce in itself inspires hope that the same may be done in the case of the gravitational self-force (GSF) problem. In particular, Gralla's EoM (1.5.7) strongly hints at the possibility of understanding the RHS not just as a mathematical ("angle averaging") device, but as a true, physical ux of gravitational momentum arising from a consideration of conservation expressions.

Nevertheless, to our knowledge, there has thus far been no proposed general treatment of the GSF following such an approach. This may, in large part, be conceivably attributed to the notorious conceptual di culties surrounding the very question of the basic formulation of conservation laws in GR. Local conservation laws, along the lines of Eq. ( 5.1.1) that can readily be used for electromagnetism, no longer make sense fundamentally once gravity is treated as dynamical. The reason has a simple explanation in the equivalence principle (see, e.g., Section 20.4 of [START_REF] Misner | Gravitation[END_REF]): one can always nd a local frame of reference with a vanishing local "gravitational eld" (metric connection coe cients), F 5.1. A worldtube boundary B (topologically R × S 2 ) in M , with (outward-directed) unit normal n a . The change in matter fourmomentum between two constant time slices of this worldtube is given by the ux of the normal projection (in one index) of the matter stressenergy-momentum tensor T ab through the portion of B bounded thereby. and hence a vanishing local "gravitational energy-momentum", irrespective of how one might feel inclined to de ne the latter 3 .

A wide variety of approaches have been taken over the decades towards formulating sensible notions of gravitational energy-momentum, with still no general consensus among relativists today on which to qualify as "the best" [Jaramillo and Gourgoulhon 2011; 3 It is worth remarking here that, in a perturbative setting, an approach that is sometimes taken is to work with an "e ective" local gravitational stress-energy-momentum tensor, de ned as the RHS of a suitably-rearranged ( rst-order) Einstein equation. This is a common tactic often used for studying, for example, the energy-momentum of gravitational waves, with some applicable caveats (see, e.g., Chapter 35 of [START_REF] Misner | Gravitation[END_REF]). In fact, one of the rst formulations of the gravitational self-force-in particular, the derivation of the MiSaTaQuWa EoM (1.5.4) presented in Section III of [START_REF] Mino | Gravitational radiation reaction to a particle motion[END_REF]]-made use of the local conservation (vanishing of the spacetime divergence) of a suitably-de ned local tensor of such a sort (in analogy with the approach of De-Witt and Brehme 1960 to the electromagnetic self-force). We elaborate in the remainder of this subsection and at greater length in Section 5.2 on why such a notion of gravitational conservation principles, while demonstrably useful for operational computations in some situations, cannot in general be expected to capture the fundamentally quasilocal (boundary density) nature of gravitational energy-momentum. See [START_REF] Epp | Momentum in general relativity: local versus quasilocal conservation laws[END_REF]] for a detailed discussion and comparison between these two (local and quasilocal) views of gravitational energy-momentum.

Chapter 5. The Motion of Localized Sources in General Relativity [START_REF] Szabados | Quasi-Local Energy-Momentum and Angular Momentum in GR: A Review Article[END_REF]]. Often the preference for employing certain de nitions over others may simply come down to context or convenience, but in any case, there exist agreements between the most typical de nitions in various limits. A very common feature among them is the idea of replacing a local notion of gravitational energy-momentum, i.e. energymomentum as a volume density, with what is known as a quasilocal energy-momentum, i.e. energy-momentum as a boundary density. The typical Hamiltonian de nitions of the (total) gravitational energy-momentum for an asymptotically-at spacetime, for example, are of such a form. Among the most commonly used generalizations of these de nitions to arbitrary ( nite) spacetime regions was proposed in the early 1990s by [J. D. [START_REF] Brown | Quasilocal energy and conserved charges derived from the gravitational action[END_REF], and follow from what is now eponymously known as the Brown-York stress-energy-momentum tensor. It is a quasilocal tensor, meaning it is only de ned on the boundary of an arbitrary spacetime region. For example, using this, the total (matter plus gravitational) energy inside a spatial volume is given up to a constant factor by the closed two-surface (boundary) integral of the trace of the boundary extrinsic curvature-precisely in agreement with the Hamiltonian de nition of energy for the entire spacetime in the appropriate limit (where the closed two-surface approaches a two-sphere at asymptoticallyat spatial in nity) but, in principle, applicable to any region in any spacetime.

The formulation of general energy-momentum conservation laws in GR from the Brown-York tensor has been achieved in recent years with the use of a construction called quasilocal frames [START_REF] Epp | Momentum in general relativity: local versus quasilocal conservation laws[END_REF]], a concept rst proposed in [START_REF] Epp | Rigid motion revisited: rigid quasilocal frames[END_REF]]. Essentially, the idea is that it does not su ce to merely specify, as in the local matter conservation laws of the form of Eq. (5.1.1), a worldtube boundary B (as an embedded submanifold of M ) the interior of which contains the system of interest, and through which to measure the ux of gravitational energy-momentum. What is in fact required is the speci cation of a congruence making up this worldtube boundary, i.e. a two-parameter family of timelike worldlines with some chosen four-velocity eld representing the motion of a topological two-sphere's worth of quasilocal observers. We will motivate this construction in greater amplitude shortly, but the reason for needing it is basically to be able to meaningfully de ne "time-time" and "time-space" directions on B for our conservation laws. A congruence of this sort is what is meant by a quasilocal frame.

The enormous advantage in using these quasilocal conservation laws over other approaches lies in the fact that they hold in any arbitrary spacetime. Thus the existence of Killing vector elds-a typical requirement in other conservation law formulations-is in no way needed here.

This idea has been used successfully in a number of applications so far [Epp, Mann, et al. 2012;[START_REF] Epp | Momentum in general relativity: local versus quasilocal conservation laws[END_REF][START_REF] Mcgrath | Rigid Quasilocal Frames[END_REF][START_REF] Mcgrath | Post-Newtonian conservation laws in rigid quasilocal frames[END_REF][START_REF] Mcgrath | Quasilocal conservation laws: why we need them[END_REF][START_REF] Oltean | Geoids in general relativity: Geoid quasilocal frames[END_REF][START_REF] Armano | Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Path nder Results[END_REF]. These include the resolution of a variation of Bell's spaceship paradox4 in which a box accelerates rigidly in a transverse, uniform electric eld [START_REF] Mcgrath | Quasilocal conservation laws: why we need them[END_REF], recovering under appropriate conditions the typical (but more limited) local matter conservation expressions of the form of Eq. ( 5.1.1) from the quasilocal ones [START_REF] Epp | Momentum in general relativity: local versus quasilocal conservation laws[END_REF], application to post-Newtonian theory [P. L. [START_REF] Mcgrath | Post-Newtonian conservation laws in rigid quasilocal frames[END_REF]] and to relativistic geodesy [START_REF] Oltean | Geoids in general relativity: Geoid quasilocal frames[END_REF][START_REF] Armano | Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Path nder Results[END_REF].

A similar idea to quasilocal frames, called gravitational screens, was proposed more recently in [START_REF] Freidel | Gravitational energy, local holography and non-equilibrium thermodynamics[END_REF][START_REF] Freidel | Non-equilibrium thermodynamics of gravitational screens[END_REF]. There, the authors also make use of quasilocal ideas to develop conservation laws very similar in style and form to those obtained via quasilocal frames. A detailed comparison between these two approaches has thus far not been carried out, but it would be very interesting to do so in future work. In particular, the notion of gravitational screens has been motivated more from thermodynamic considerations, and similarly casting quasilocal frames in this language could prove quite fruitful. For example, just as these approaches have given us operational de nitions of concepts like the "energy-momentum in an arbitrary spacetime region" (and not just for special cases such as an entire spacetime), they may help to do the same for concepts like "entropy in an arbitrary spacetime region" (and not just for known special cases such as a black hole).

Setup: quasilocal conservation laws

Let (M , g, ∇) be any (3 + 1)-dimensional spacetime such that, given any matter stress-energy-momentum tensor T ab , the Einstein equation,

G = κ T in M , (5.2.1) holds.
In what follows, we introduce the concept of quasilocal frames [Epp, Mann, et al. 2012, 2009;[START_REF] Epp | Momentum in general relativity: local versus quasilocal conservation laws[END_REF][START_REF] Mcgrath | Rigid Quasilocal Frames[END_REF][START_REF] Mcgrath | Post-Newtonian conservation laws in rigid quasilocal frames[END_REF][START_REF] Mcgrath | Quasilocal conservation laws: why we need them[END_REF][START_REF] Oltean | Geoids in general relativity: Geoid quasilocal frames[END_REF][START_REF] Armano | Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Path nder Results[END_REF] and describe the basic steps for their construction, as well as the energy and momentum conservation laws associated therewith. In Subsection 5.2.1 we o er an heuristic idea of quasilocal frames before proceeding in Subsection 5.2.2 to present the full mathematical construction. Then in Subsection 5.2.3 we motivate and discuss the quasilocal stress-energy-momentum tensor used in this work, that is, the Brown-York tensor. Finally in Subsection 5.2.4 we review the formulation of quasilocal conservation laws using these ingredients.

5.2.1. Quasilocal frames: heuristic idea. Before we enter into the technical details, we would like to o er a heuristic picture and motivation for de ning the concept of quasilocal frames.

We would like to show how the GSF arises from general-relativistic conservation laws. For this, we require rst the embedding into our spacetime M of a worldtube boundary B R × S 2 . The worldtube interior contains the system the dynamics of which we are interested in describing. In principle, such a B can be completely speci ed by choosing an appropriate radial function r(x) on M and setting it equal to a non-negative constant (such that the r(x) = const. > 0 Lorentzian slices of M have topology R × S 2 ). This would be analogous to de ning a (Riemannian, with topology R 3 ) Cauchy surface by the constancy of a time function t(x) on M .

However, this does not quite su ce. As we have brie y argued in the introduction (and will shortly elaborate upon in greater technicality), the conservation laws appropriate to GR ought to be quasilocal in form, that is, involving stress-energy-momentum as boundary (not volume) densities. One may readily assume that the latter are de ned by a quasilocal stress-energy-momentum tensor living on B, which we denote-for the moment, generally-by τ ab . (Later we give an explicit de nition, namely that of the Brown-York tensor, for τ .)

To construct conservation laws, then, one would need to project this τ into directions on B, giving quantities such as energy or momenta, and then to consider their ux through a portion of B (an interval of time along the worldtube boundary). But in this case, we have to make clear what is meant by the energy ("time-time") and momenta ("time-space") components of τ within B, the changes in which we are interested in studying. For this reason, additional constructions are required.

In particular, what we need is a congruence of observers with respect to which projections of τ yield stress-energy-momentum quantities. Since τ is only de ned on B, this therefore needs to be a two-parameter family of (timelike) worldlines the union of which is B itself. This is analogous to how the integral curves of a time ow vector eld (as in canonical GR) altogether constitute (" ll up") the entire spacetime M , except that there we are dealing with a three-(rather than two-) parameter family of timelike worldlines.

We refer to any set of observers, the worldlines of which form a two-parameter family constituting B R × S 2 , as quasilocal observers. A speci cation of such a 2-parameter family, equivalent to specifying the unit four-velocity u a ∈ T B of these observers (the integral curves of which "trace out" B), is what is meant by a quasilocal frame.

With this, we can now meaningfully talk about projections of τ into directions on B as stress-energy-momentum quantities. For example, τ uu may appear immediately suggestible as a de nition for the (boundary) energy density. Indeed, later we take precisely this de nition, and we will furthermore see how momenta (the basis of the GSF problem) can be de ned as well.

5.2.2. Quasilocal frames: mathematical construction. Concordant with our discussion in the previous subsection, a quasilocal frame (see Figure 5.2 for a graphical illustration of the construction) is de ned as a two-parameter family of timelike worldlines constituting the worldtube boundary (topologically R × S 2 ) of the history of anite (closed) spatial three-volume in M . Let u a denote the timelike unit vector eld tangent to these worldlines. Such a congruence constitutes a submanifold of M that we call B R × S 2 . Let n a be the outward-pointing unit vector eld normal to B; note that n is uniquely xed once B is speci ed. There is thus a Lorentzian metric γ (of signature (-, +, +)) induced on B, the components of which are given by

γ ab = g ab -n a n b .
(5.2.2)

We denote the induced derivative operator compatible therewith by D. To indicate that a topologically R × S 2 submanifold (B, γ, D) of M is a quasilocal frame (that is to say, de ned as a particular congruence with four-velocity u as detailed above, and not just as an embedded submanifold) in M , we write (B, γ, D; u) or simply (B; u).

Let H be the two-dimensional subspace of T B consisting of the "spatial" vectors orthogonal to u. Let σ denote the two-dimensional (spatial) Riemannian metric (of signature (+, +)) that projects tensor indices into H , and is induced on B by the choice of u (and thus also n), given by

σ ab = γ ab + u a u b = g ab -n a n b + u a u b .
(5.2.3)

The induced derivative operator compatible with σ is denoted by D. Let {x i } 2 i=1 (written using Fraktur indices from the middle third of the Latin alphabet) be spatial coordinates on B that label the worldlines of the observers, and let t be a time coordinate on B such that surfaces of constant t, to which there exists a unit normal vector that we denote by ũa ∈ T B, foliate B by closed spatial two-surfaces S (with topology S 2 ). Letting N denote the lapse function of g, we have u = N -1 ∂/∂t.

Note that in general, H need not coincide with the constant time slices S . Equivalently, u need not coincide with ũ. In general, there will be a shift between them, such that ũ = γ(u + v) , (5.2.4)

where v a represents the spatial two-velocity of ducial observers that are at rest with respect to S as measured by our congruence of quasilocal observers (the four-velocity of which is u), and γ = 1/

√ 1 -v • v is the Lorentz factor.
The speci cation of a quasilocal frame is thus equivalent to making a particular choice of a two-parameter family of timelike worldlines comprising B. There are, a priori, three degrees of freedom (DoFs) available to us for doing this. Heuristically, these can be regarded as corresponding to the three DoFs in choosing the direction of u-from which n and all induced quantities are then computable. (Note that u has four components, but one 5.2. A portion of a quasilocal frame (B; u) in a spacetime M , bounded by constant t two-surfaces S i and S f . In particular, B R × S 2 is the union of all integral curves (two-parameter family of timelike worldlines), depicted in the gure as dotted red lines, of the vector eld u ∈ T B which represents the unit four-velocity of quasilocal observers making up the congruence. The unit normal to B (in M ) is n and the normal to each constant t slice S of B is ũ (not necessarily coincidental with u). Finally, H (with induced metric σ) is the two-dimensional subspace of T B consisting of the spatial vectors orthogonal to u. Note that unlike S , H need not be integrable (indicated in the gure by the failure of H to make a closed two-surface).

of the four is xed by the normalization requirement u • u = -1, leaving three independent direction DoFs.) Equivalently, we are in principle free to pick any three geometrical conditions (along the congruence) to x a quasilocal frame. In practice, usually it is physically more natural, as well as mathematically easier, to work with geometric quantities other than u itself to achieve this.

Yet, it is worth remarking that simply writing down three desired equations (or conditions) to be satis ed by geometrical quantities on B does not itself guarantee that, in general, a submanifold (B, γ, D) obeying those three particular equations will always exist-and, if it does, that it will be the unique such submanifold-in an arbitrary (M , g, ∇). Nevertheless, one choice of quasilocal frame that is known to always exist (a claim we will qualify more carefully in a moment) is that where the two-metric σ on H is "rigid" (or "time independent")-these are called rigid quasilocal frames.

Most of the past work on quasilocal frames has in fact been done in the rigid case [Epp, Mann, et al. 2012, 2009;[START_REF] Epp | Momentum in general relativity: local versus quasilocal conservation laws[END_REF][START_REF] Mcgrath | Rigid Quasilocal Frames[END_REF]P. L. Mc-Grath, Chanona, et al. 2014;[START_REF] Mcgrath | Quasilocal conservation laws: why we need them[END_REF]. We know however that other quasilocal frame choices are also possible, such as geoids-dubbed geoid quasilocal frames [START_REF] Oltean | Geoids in general relativity: Geoid quasilocal frames[END_REF][START_REF] Armano | Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Path nder Results[END_REF]: these are the general-relativistic generalization of "constant gravitational potential" surfaces in Newtonian gravity. Regardless, the quasilocal frame choice that we will mainly consider in this chapter is the rigid one (and we will be clear when this choice is explicitly enacted).

Intuitively, the reason for this preference is that imposing in this way the condition of "spatial rigidity" on (B; u)-a two-dimensional (boundary) rigidity requirement, which unlike three-dimensional rigidity, is permissible in GR-eliminates from the description of the system any e ects arising simply from the motion of the quasilocal observers relative to each other. Thus, the physics of what is going on inside the system (i.e. the worldtube interior) is essentially all that a ects its dynamics.

Technically, there is a further reason: a proof of the existence of solutions-i.e. the existence of a submanifold B R × S 2 in M that is also a quasilocal frame (B; u)-for any spacetime (M , g, ∇) has up to now only been fully carried out for rigid quasilocal frames5 . While, as we have commented, other quasilocal frame choices may be generally possible in principle (and may be shown to be possible to construct, case-by-case, in speci c spacetimes-as we have done, e.g., with geoid quasilocal frames [START_REF] Oltean | Geoids in general relativity: Geoid quasilocal frames[END_REF][START_REF] Armano | Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Path nder Results[END_REF]), they are as yet not rigorously guaranteed to exist in arbitrary spacetimes.

The quasilocal rigidity conditions can be stated in a number of ways. Most generally, de ning

θ ab = σ ac σ bd ∇ c u d (5.2.5)
to be the strain rate tensor of the congruence, they amount to the requirement of vanishing expansion θ = tr(θ) and shear θ ab = θ (ab) -1 2 θσ ab , i.e. θ = 0 = θ ab ⇔ 0 = θ (ab) .

(5.2.6)

In the adapted coordinates, these three conditions are expressible as the vanishing of the time derivative of the two-metric on H , i.e. 0 = ∂ t σ. Both of these two equivalent mathematical conditions, θ (ab) = 0 = ∂ t σ, capture physically the meaning of the quasilocal Chapter 5. The Motion of Localized Sources in General Relativity observers moving rigidly with respect to each other (i.e. the "radar-ranging" distances between them does not change in time).

5.2.3. The quasilocal stress-energy-momentum tensor. Before we consider the formulation of conservation laws with the use of quasilocal frames (from which our analysis of the GSF will eventually emerge), we wish to address in a bit more detail an even more fundamental question: what are conservation laws in GR actually supposed to be about? At the most basic level, they should express changes (over time) in some appropriately de ned notion of energy-momentum. As we are interested in gravitational systems (and speci cally, those driven by the e ect of the GSF), this energy-momentum must include that of the gravitational eld, in addition to that of any matter elds if present.

Hence, we may assert from the outset that it does not make much sense in GR to seek conservation laws based solely on the matter stress-energy-momentum tensor T , such as Eq. ( 5.1.1). It is evident that these would, by construction, account for matter onlyleaving out gravitational e ects in general (which could exist in the complete absence of matter, e.g. gravitational waves), and thus the GSF in particular. What is more, such conservation laws are logically inconsistent from a general-relativistic point of view: a non-vanishing T implies a non-trivial gravitational eld (through the Einstein equation) and thus a necessity of taking into account that eld along with the matter one(s) for a proper accounting of energy-momentum transfer. A further technical problem is also that the formulation of conservation laws of this sort is typically predicated upon the existence of Killing vector elds or other types of symmetry generators in M , which one does not have in general-and which do not exist in spacetimes pertinent for the GSF problem in particular.

We are therefore led to ask: how can we meaningfully de ne a total-gravity plus matter-stress-energy-momentum tensor in GR? It turns out that the precise answer to this question, while certainly not intractable, is unfortunately also not unique-or at least, it lacks a clear consensus among relativists, even today. See, e.g., [START_REF] Jaramillo | Mass and Angular Momentum in General Relativity[END_REF][START_REF] Szabados | Quasi-Local Energy-Momentum and Angular Momentum in GR: A Review Article[END_REF] for reviews of the variety of proposals that have been put forward towards addressing this question. Nonetheless, for reasons already touched upon and to be elaborated presently, what is clear and generally accepted is that such a tensor cannot be local in nature (as T is), and for this reason is referred to as quasilocal.

Let τ ab denote this quasilocal, total (matter plus gravity) stress-energy-momentum tensor that we eventually seek to use for our conservation laws. It has long been understood (see, e.g., Section 20.4 of [START_REF] Misner | Gravitation[END_REF]) that whatever the notion of "gravitational energy-momentum" (de ned by τ ) might mean, it is not something localizable: in other words, there is no way of meaningfully de ning an "energy-momentum volume density" for gravity. This is, ultimately, due to the equivalence principle: locally, one can always nd a reference frame in which all local "gravitational elds" (the connection coe cients), and thus any notion of "energy-momentum volume density" associated therewith, disappear. The remedy is to make τ quasilocal: meaning that, rather than volume densities, it should de ne surface densities (of energy, momentum etc.)-a type of construction which is mathematically realizable and physically sensible in general.

The speci c choice we make for how to de ne this total (matter plus gravity), quasilocal energy-momentum tensor τ is the so-called Brown-York tensor, rst put forward by [J. D. [START_REF] Brown | Quasilocal energy and conserved charges derived from the gravitational action[END_REF]; see also [START_REF] Brown | Action and Energy of the Gravitational Field[END_REF] for a detailed review. This proposal was based originally upon a Hamilton-Jacobi analysis; here we will o er a simpler argument for its de nition, sketched out initially in [START_REF] Epp | Momentum in general relativity: local versus quasilocal conservation laws[END_REF].

Consider the standard gravitational action S G for a spacetime volume V ⊂ M such that ∂V = B R × S 2 is a worldtube boundary as in the previous subsection (possibly constituting a quasilocal frame, but not necessarily). This action is given by the sum of two terms, a bulk and a boundary term respectively (see Section 2.2):

S G [g] = S EH [g] + S GHY [γ, n] .
(5.2.7)

In particular, the rst is the Einstein-Hilbert bulk term, (5.2.8) and the second is the Gibbons-Hawking-York boundary term [START_REF] Gibbons | Action integrals and partition functions in quantum gravity[END_REF][START_REF] York | Role of Conformal Three-Geometry in the Dynamics of Gravitation[END_REF],

S EH [g] = 1 2κ V M R ,
S GHY [γ, n] = - 1 κ ∂V B Θ .
(5.2.9)

Here, M = d 4 x √ -g is the volume form on M with g = det(g), B = d 3 x √ -γ is the volume form on B with γ = det(γ), and Θ = tr(Θ) is the trace of the extrinsic curvature

Θ ab = γ ac ∇ c n b of B in M .
Additionally, the matter action S M for any set of matter elds Ψ described by a Lagrangian L M is

S M [Ψ] = V M L M [Ψ] .
(5.2.10)

The de nition of the total (quasilocal) stress-energy-momentum tensor τ for gravity plus matter can be obtained e ectively in the same way as that of the (local) stress-energymomentum tensor T for matter alone-from the total action in Eq. (5.2.7) rather than just, respectively, the matter action in Eq. (5.2.10). In particular, T is de ned by computing the as the quasilocal energy, momentum and stress, respectively, with units of energy per unit area, momentum per unit area and force per unit length. Equivalently,

τ ab = u a u b E + 2u (a P b) -S ab .
(5.2.20) 5.2.4. Conservation laws. The construction of general conservation laws from τ was rst achieved in [START_REF] Epp | Momentum in general relativity: local versus quasilocal conservation laws[END_REF][START_REF] Mcgrath | Quasilocal conservation laws: why we need them[END_REF], and proceeds along the following lines. Let ψ ∈ T B be an arbitrary vector eld in B. We begin by considering a projection of Π in the direction of ψ (in one index), i.e. Π ab ψ b , and computing its divergence in B. By using the Leibnitz rule, we simply have

D a Π ab ψ b = D a Π ab ψ b + Π ab (D a ψ b ) .
(5.2.21)

Next, we integrate this equation over a portion ∆B of B bounded by initial and nal constant t surfaces S i and S f , as depicted in Figure 5.2. On the resulting LHS we apply Stokes' theorem, and on the rst term on the RHS we use the Gauss-Codazzi identity: D a Π ab = n a γ b c G ac . Thus, using the notation for tensor projections in certain directions introduced in Section 1.2 (see also the Notation and Conventions) for ease of readability (e.g., G ab n a ψ b = G nψ and similarly for other contractions), we obtain:

Ŝf -S i S Π ũψ = - ∆B B G nψ + Π ab D a ψ b , (5.2.22) 
where S denotes the volume form on the constant time closed two-surfaces S , and we have used the notation: ´Sf -S i (•) = ´Sf (•) -´Si (•). We also remind the reader that ũ represents the unit normal to each constant time closed two-surface, which in general need not coincide with the quasilocal observers' four-velocity u but is related to it by a Lorentz transformation, Eq. (5.2.4); see also Figure 5.2. We stress that so far, Eq. (5.2.22) is a purely geometrical identity, completely general for any Lorentzian manifold M ; in other words, thus far we have said nothing about physics. Now, to give this identity physical meaning, we invoke the de nition of the Brown-York tensor in Eq. (5.2.16) (giving the boundary extrinsic geometry its meaning as stressenergy-momentum) as well as the Einstein equation [Eq. (5.2.1)], giving the spacetime curvature its meaning as the gravitational eld. With these, Eq. (5.2.22) turns into:

Ŝf -S i S γ (τ uψ + τ vψ ) = ∆B B T nψ -τ ab D (a ψ b) .
(5.2.23)

On the LHS we have inserted the relation ũ = γ(u + v), with v a representing the spatial two-velocity of ducial observers that are at rest with respect to S (the hypersurfaceorthogonal four-velocity of which is ũ) as measured by our congruence of quasilocal observers (the four-velocity of which is u), and γ = 1/

√ 1 -v • v is the Lorentz factor.
Observe that Eq. (5.2.23) expresses the change of some component of the quasilocal stress-energy-momentum tensor integrated over two di erent t = const. closed twosurfaces S as a ux through the worldtube boundary ∆B between them. The identication of the di erent components of τ as the various components of the total energymomentum of the system thus leads to the understanding of Eq. (5.2.23) as a general conservation law for the system contained inside of ∆B. Thus, depending on our particular choice of ψ ∈ T B, Eq. (5.2.23) will represent a conservation law for the total energy, momentum, or angular momentum of this system [START_REF] Epp | Momentum in general relativity: local versus quasilocal conservation laws[END_REF].

Let us now assume that (B; u) is a rigid quasilocal frame. If we choose ψ = u, then Eq. (5.2.23) becomes the energy conservation law:

Ŝf

-S i S γ (E -P v ) = ∆B B (T nu -α • P) , (5.2.24)
where α a = σ ab a b is the H projection of the acceleration of the quasilocal observers, de ned by a a = ∇ u u a . Now suppose, on the other hand, that we instead choose ψ = -φ where φ ∈ H is orthogonal to u (with the minus sign introduced for convenience), and represents a stationary conformal Killing vector eld with respect to σ. This means that φ is chosen such that it satis es the conformal Killing equation, L φ σ = (D • φ)σ, with L the Lie derivative and D the derivative on H (compatible with σ). A set of six such conformal Killing vectors always exist: three for translations and three for rotations, respectively generating the action of boosts and rotations of the Lorentz group on the two-sphere [START_REF] Epp | Momentum in general relativity: local versus quasilocal conservation laws[END_REF]]. The idea, then, is that the contraction of these vectors with the quasilocal momentum integrated over a constant-time topological two-sphere boundary expresses, respectively, the total linear and angular momentum (in the three ordinary spatial directions each) at that time instant. Thus, Eq. (5.2.23) becomes the (respectively, linear and angular) momentum conservation law:

Ŝf -S i S γ (P φ + S vφ ) = - ∆B B T nφ + Eα φ + 2ν ab P a φ b + PD • φ , (5.2.25)
where ν = 1 2 ab H D a u b is the twist of the congruence (with H ab = M abcd u c n d the induced volume form on H ), and P = 1 2 σ : S is the quasilocal pressure (force per unit length) between the worldlines of B. We remark that the latter can be shown to satisfy the very useful general identity (which we will expediently invoke in our later calculations):

E -2P = 2 κ a n .
(5.2.26)

An analysis of the gravitational self-force problem should consider the conservation law in Eq. (5.2.25) for linear momentum. Thus, we will use the fact, described in greater 5.3. General derivation of the gravitational self-force from quasilocal conservation laws 149 detail in the appendix of this chapter (Section 5.6), that the conformal Killing vector φ ∈ H for linear momentum admits a multipole decomposition of the following form:

φ i = 1 r D i Φ I r I + Φ IJ r I r J + • • • (5.2.27) = 1 r Φ I B i I + 2Φ IJ B i I r J + • • • , (5.2.28)
with the dots indicating higher harmonics. Here, r is the area radius of the quasilocal frame (such that B is a constant r hypersurface in M ), r I denotes the the standard direction cosines of a radial unit vector in R 3 and B i I = ∂ i r I are the boost generators on the two-sphere. See this chapter's appendix (Section 5.6) for a detailed discussion regarding conformal Killing vectors and the two-sphere. In spherical coordinates {θ, φ}, we have r I = (sin θ cos φ, sin θ sin φ, cos θ). Thus Eq. (5.2.27) gives us a decomposition of φ in terms of multipole moments, with the = 1 coe cients Φ I simply representing vectors in R 3 in the direction of which we are considering the conservation law.

General derivation of the gravitational self-force from quasilocal conservation laws

In this section, we will show how the GSF is a general consequence of the momentum conservation law in Eq. (5.2.25) for any system which is su ciently localized. By that, we mean something very simple: taking the r → 0 limit of a quasilocal frame around the moving object which is treated as "small", i.e. as a formal perturbation about some background. No further assumptions are for the moment needed. In particular, we do not even need to enter into the precise details of how to specify the perturbation family for this problem; that will be left to the following section, where we will carefully de ne and work with the family of perturbed spacetimes typically employed for applications of the GSF. For now, we proceed to show that the rst-order perturbation of the momentum conservation law in Eq. (5.2.25) always contains the GSF, and that it dominates the dynamics for localized systems.

Let {(B (λ) ; u (λ) )} λ≥0 be an arbitrary one-parameter family of quasilocal frames (dened as in Section 5.2) each of which is embedded, respectively, in the corresponding element of the family of perturbed spacetimes {(M (λ) , g (λ) , ∇ (λ) )} λ≥0 described in the previous subsection. Consider the general geometrical identity (5.2.22) in M (λ) , ∀λ ≥ 0:

Ŝ (λ) f -S (λ) i S (λ) Π (λ) ũ(λ) ψ (λ) = - ∆B (λ) B (λ) G (λ) n (λ) ψ (λ) + Π ab (λ) D (λ) a ψ (λ) b .
(5.3.1)

For λ = 0 this gives us our conservation laws in the background, and for any λ > 0, those in the corresponding perturbed spacetime. It is the latter that we are interested in, but since we do not know how to do calculations in M (λ) ∀λ > 0, we have to work with Eq. (5.3.1) transported to M . This is easily achieved by using the fact that for any di eomorphism f : U → V between two (oriented) smooth n-dimensional manifolds U and V and any (compactly supported) n-form ω in V , we have that ´V ω = ´U f * ω.

Applying this to the LHS and RHS of Eq. (5.3.1) respectively, we simply get φ-1

(λ) (S (λ) f )-ϕ -1 (λ) (S (λ) i ) ϕ * (λ) S (λ) ϕ * (λ) Π (λ) ũ(λ) ψ (λ) = φ -1 (λ) (∆B (λ) ) ϕ * (λ) B (λ) ϕ * (λ) G (λ) n (λ) ψ (λ) + Π ab (λ) D (λ) a ψ (λ) b . 
(5.3.2) Denoting S = ϕ -1 (λ) (S (λ) ) ⊂ M as the inverse image of a constant time two-surface and similarly B = ϕ -1 (λ) (B (λ) ) ⊂ M as the inverse image of the worldtube boundary (quasilocal frame) in the background manifold, and using the fact that the tensor transport commutes with contractions, the above can simply be written in the notation we have established as Ŝf

-S i ϕ * (λ) S (λ) Π ũψ = ∆B ϕ * (λ) B (λ) G nψ + Π ab D a ψ b .
(5.3.3) So far we have been completely general. Now, let us restrict our attention to the momentum conservation law (ψ = -φ ∈ H ) given by Eq. (5.3.3), and let us assume that we do not have any matter on ∆B (hence, by the Einstein equation, G nφ | ∆B = κT nφ | ∆B = 5.3. General derivation of the gravitational self-force from quasilocal conservation laws 151 0), or even simply that any matter if present there is subdominant to the linear perturbation, i.e. T | ∆B = O(λ 2 ). The LHS then expresses the change in momentum of the system (inside the worldtube interval in the perturbed spacetime) between some initial and nal time slices; for notational ease, we will simply denote this by ∆p (φ) . (Note that we prefer to use typewriter font for the total quasilocal momentum, so as to avoid any confusion with matter four-momentum de ned in the typical way from T ab and traditionally labelled by P a , as e.g. in Eq. 5.1.1.) Then, inserting also the de nition of the Brown-York tensor [Eq. (5.2.16)] on the RHS and replacing D with ∇ since it does not a ect the contractions, Eq. (5.3.3) becomes:

∆p (φ) = ∆B ϕ * (λ) B (λ) τ ab ∇ a φ b . (5.3.4)
We claim, and will now demonstrate, that the O(λ) part of this always contains the GSF.

Let us consider Eq. (5.3.4) term by term. First we have the transport-in this case, the pullback-under ϕ (λ) of the volume form of B (λ) . Now, we know that the pullback under a di eomorphism of the volume form of a manifold is, in general, not simply the volume form of the inverse image of that manifold under the di eomorphism. However, it is always true (see, e.g., Chapter 7 of [START_REF] Abraham | Manifolds, Tensor Analysis, and Applications[END_REF]) that they are proportional, with the proportionality given by a smooth function called the Jacobian determinant and usually denoted by J. That is, in our case we have ϕ * (λ) B (λ) = J B , with J ∈ C ∞ (B). In particular, this function is given by J(p) = det(T p ϕ (λ) ), ∀p ∈ B, where T p ϕ (λ) = (ϕ (λ) ) * : T p B → T ϕ (λ) B (λ) is the pushforward, and the determinant is computed with respect to the volume forms B (p) on T p B and B (λ) (ϕ (λ) (p)) on T ϕ (λ) (p) B (λ) . Now, it is clear that we have J = 1 + O(λ), as ϕ (0) is simply the identity map. Therefore, we have

ϕ * (λ) B (λ) = (1 + O (λ)) B .
(5.3.5)

As for the other terms in the integrand of Eq. (5.3.4), we simply have

τ ab =τ ab + λδτ ab + O(λ 2 ) , (5.3.6) ∇ a φ b = ∇a φ b + λδ (∇ a φ b ) + O(λ 2 ) .
(5.3.7)

Hence we can see that there will be three contributions to the O(λ) RHS of Eq. (5.3.4). Respectively, from Eqs. (5.3.5)-(5.3.7), these are the O(λ) parts of: the volume form pullback, which may not be easy to compute in practice; the Brown-York tensor τ , which may be computed from its de nition [Eq. (5.2.16)]; and the derivative of the conformal Killing vector φ, which may be readily carried out and, as we will presently show, always contains the GSF. Thus we denote this contribution to the O(λ) part of ∆p (φ) as ∆p

(φ) self , ∆p (φ) self = λ ∆B B τ ab δ (∇ a φ b ) .
(5.3.8)

Now we proceed with the computation of Eq. (5.3.8). In particular, let us consider the series expansion of Eq. (5.3.8) in the areal radius r of B. This can be de ned for any time slice by r = ( 1 4π ´S S ) 1/2 , such that a constant r slice of M de nes B (and n = M ∇r for some positive function M on B). It has been shown [Epp, Mann, et al. 2012] that the Brown-York tensor has, in general, the following expansion in r:

τ ab = ůa ůb E vac -σab P vac + O(r) ,
(5.3.9)

where

E vac = - 2 κr ,
(5.3.10) .3.11) are called the vacuum energy and vacuum pressure respectively. Some remarks regarding these are warranted before we move on. In particular, these are terms which have sometimes been argued to play the role of "subtraction terms" (to be removed from the quasilocal energy-momentum tensor); see e.g. [J. D. [START_REF] Brown | Action and Energy of the Gravitational Field[END_REF]. From this point of view, the de nition of the Brown-York tensor [Eq. (5.2.16)] may be regarded as carrying a certain amount of freedom, inasmuch as any freedom may be assumed to exist to de ne a "reference" action S 0 to be subtracted from the total (gravitational plus matter) action S G+M in the variational principle discussed in Subsection 5.2.3. Such a subtraction of a "reference" action, while common practice in gravitational physics, has the sole function of shifting the numerical value of the action such that, ultimately, the numerical value of the Hamiltonian constructed from the modi ed action S G+M -S 0 may be interpreted as the ADM energy. However, this essentially amounts to a presumption that we are free to pick the zero of the energy-in other words, that the vacuum energy may be freely subtracted away without a ecting the physics. Though we refrain from entering into much further detail here, it has been shown [START_REF] Epp | Momentum in general relativity: local versus quasilocal conservation laws[END_REF]] that these vacuum terms, Eqs. (5.3.10)- (5.3.11), are in fact crucial for our conservation laws to yield physically reasonable answers and to make mathematical sense-evidencing that the vacuum energy/pressure should be taken seriously as having physically real signi cance. We will now lend further credibility to this by showing that they are precisely the energy (and pressure) associated with the momentum ux that are typically interpreted as the GSF. Actually, we argue in this chapter that the term implicating the vacuum energy yields the standard form of the GSF, and the vacuum pressure term is novel in our analysis. Now that we have an expansion [Eq. (5.3.9)] of τ in r, let us consider the δ(∇φ) term. We see that

P vac = - 1 κr , ( 5 
δ (∇ a φ b ) = δ ∇a φ b -C d ab φ d = -δC c ab φ c .
(5.3.12)
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Collecting all of our results so far-inserting Eqs. (5.3.9)-(5.3.12) into Eq. (5.3.8)-we thus get: ∆p

(φ) self = λ 2 κ ∆B B 1 r ůa ůb -2σ ab δC c ab φ c + O (r) .
(5.3.13)

Let us now look at the contractions in the integrand. For the rst (energy) term, inserting the connection coe cient (3.2.11), we have by direct computation: (5.3.15) where the functional F is precisely the GSF four-vector functional de ned in the introduction [Eq. 1.5.5], and to write the nal equality we have used the orthogonality property φ ů = 0. Thus we see that this is indeed the term that yields the GSF. For the second (pressure) term in Eq. (5.3.13), we similarly obtain by direct computation:

ůa ůb δC c ab φ c =g cd ∇a h bd - 1 2 ∇d h ab ůa ůb φ c (5.3.14) = -F c [h; ů]φ c ,
σab δC c ab φ c = 2℘ c [h; σ]φ c , (5.3.16) 
where in expressing the RHS, it is convenient to de ne a general functional of two (0, 2)tensors similar to the GSF functional:

℘ c [H; S] = 1 2 gcd ∇a H bd - 1 2 ∇d H ab S ab .
(5.3.17)

We call this novel term the gravitational self-pressure force. Now we can collect all of the above and insert them into (5.3.13). Before writing down the result, it is convenient to de ne a total functional F as the sum of F and ℘,

F a [h; ů] = F a [h; ů] + ℘ a [h; σ] .
(5.3.18)

We refer to this as the extended GSF functional. Note that for F we write only the functional dependence on h and ů since the two-metric σ is determined uniquely by ů. With this, and setting the perturbation parameter to unity, Eq. (5.3.13) becomes:

∆p (φ) self = - 1 4π ∆B B 1 r φ • F [h; ů] + O (r) . (5.3.19)
This is to be compared with Gralla's formula [START_REF] Gralla | Gauge and averaging in gravitational self-force[END_REF]] discussed in the thesis introduction, Eq. (1.5.7). While the equivalence thereto is immediately suggestive based on the general form of our result, we have to do a bit more work to show that indeed Eqn. (5.3.19), both on the LHS and the RHS, recovers-though in general will, evidently at least from our novel gravitational self-pressure force, also have extra terms added to-Eq. (1.5.7). We leave this task to the following section, the purpose of which is to consider in detail the application of our conservation law formulation to a concrete example of a Chapter 5. The Motion of Localized Sources in General Relativity perturbative family of spacetimes de ned for a self-force analysis, namely the Gralla-Wald family.

Concordantly, we emphasize that the result above [Eq. (5.3.19)] holds for any family of perturbed manifolds {M (λ) } λ≥0 and is completely independent of the internal description of our system, i.e. the worldtube interior. In other words, what we have just demonstrated-provided only that one accepts a quasilocal notion of energy-momentumis that the (generalized) GSF is a completely generic perturbative e ect in GR for localized systems: it arises as a linear order contribution of any spacetime perturbation to the momentum ux of a system in the limit where its areal radius is small. This view of the self-force may cast fresh conceptual light on the old and seemingly arcane problem of deciphering its physical origin and meaning. In particular, recall the common view that the GSF is caused by the backreaction of the "mass" of a small object upon its own motion. Yet what we have seen here is that it is actually the vacuum "mass", or vacuum energy that is responsible for the GSF. We may still regard the effect as a "backreaction", in the sense that it is the boundary metric perturbations of the system-the h on B-which determine its momentum ux, but the point is that this ux is inexorably present and given by Eq. (5.3.19) regardless of where exactly this h is coming from. Presumably, the dominant part of h would arise from the system itself-if we further assume that the system itself is indeed what is being treated perturbatively by the family {M (λ) } λ≥0 , as is the case with typical self-force analyses-but in principle h can comprise absolutely any perturbations, i.e. its physical origin doesn't even have to be from inside the system.

In this way, we may regard the GSF as a completely geometrical, purely generalrelativistic backreaction of the mass (and pressure) of the spacetime vacuum-not of the object inside-upon the motion of a localized system (i.e. its momentum ux). This point of view frees us from having to invoke such potentially ambiguous notions as "mass ratios" (in a two-body system for example), let alone "Coulombian m/r elds", to make basic sense of self-force e ects. They simply-and always-happen from the interaction of the vacuum with any boundary perturbation, and are dominant if that boundary is not too far out.

Application to the Gralla-Wald approach to the gravitational self-force

In this section we will consider in detail the application of our ideas to a particular approach to the self-force: that is to say, a particular speci cation of {(M (λ) , g (λ) )} via a few additional assumptions aimed at encoding the notion of a "small" object being "scaled down" to zero "size" and "mass" as λ → 0. In other words, we now identify the perturbation (which has up to this point been treated completely abstractly) de ned by {(M (λ) , g (λ) )} as actually being that caused by the presence of the "small" object: that could mean regular matter (in particular, a compact object such as a neutron star) or a black hole.

The assumptions (on {g (λ) }) that we choose to work with here are those of the approach of [START_REF] Gralla | A rigorous derivation of gravitational self-force[END_REF]. Certainly, the application of our perturbed quasilocal conservation laws could just as well be carried out in the context of any other self-force analysis-such as, e.g., the self-consistent approximation of [START_REF] Pound | Self-consistent gravitational self-force[END_REF]] (the mathematical correspondence of which to the Gralla-Wald approach has, in any case, been shown in [Pound 2015a]).

Our motivation for starting with the Gralla-Wald approach in particular is two-fold. On the one hand, it furnishes a mathematically rigorous and physically clear picture (which we show in Fig. 5.4)-arguably more so than any other available GSF treatment-of what it means to "scale down" a small object to zero "size" and "mass" (or, equivalently, of perturbing any spacetime by the presence of an object with small "size" and "mass"-we will be more precise momentarily). On the other hand, it is within this approach that the formula for the GSF has been obtained (in [START_REF] Gralla | Gauge and averaging in gravitational self-force[END_REF]]) as a closed two-surface (small two-sphere) integral around the object (in lieu of evaluating the GSF at a spacetime point identi ed as the location of the object), in the form of the Gralla "angle averaging" formula [Eq. (1.5.7)]-with which our extended GSF formula (5.3.19) is to be compared.

In Subsection 5.4.1, we provide an overview of the assumptions and consequences of the Gralla-Wald approach to the GSF. Afterwards, in Subsection 5.4.2, we describe the general embedding of rigid quasilocal frames in the Gralla-Wald family of spacetimes, and then in Subsection 5.4.3 we describe their detailed construction in the background spacetime in this family. Having established this, we then proceed to derive equations of motion in two ways. In particular, we carry out the analysis with two separate choices of rigid quasilocal frames ("frames of reference"): rst, inertially with the point particle approximation of the moving object in the background in Subsection 5.4.4, and second, inertially with the object itself in the perturbed spacetime in Subsection 5.4.5. 5.4.1. The Gralla-Wald approach to the GSF. The basic idea of [START_REF] Gralla | A rigorous derivation of gravitational self-force[END_REF] for de ning a family {(M (λ) , g (λ) )} λ≥0 such that λ > 0 represents the inclusion of perturbations generated by a "small" object is the following one. One begins by imposing certain smoothness conditions on {g (λ) } λ≥0 corresponding to the existence of certain limits of each g (λ) . In particular, two limits are sought corresponding intuitively to two limiting views of the system: rst, a view from "far away" from which the "motion" of the (extended but localized) object reduces to a worldline; second, a view from "close by" the object from which the rest of the universe (and in particular, the MBH it might be orbiting as in an EMRI) looks "pushed away" to in nity. A third requirement must be added to this, namely that both of these limiting pictures nonetheless coexist in the same spacetime, i.e. the two limits are smoothly related (or, in other words, there is no pathological behaviour when taking these limits along di erent directions). While in principle this may sound rather technical, one can actually motivate each of these conditions with very sensible physical arguments as we shall momentarily elaborate further upon. From them, Gralla and Wald have shown [START_REF] Gralla | A rigorous derivation of gravitational self-force[END_REF] that it is possible to derive a number of consequences, including geodesic motion in the background at zeroth order and the MiS-aTaQuWa equation [START_REF] Mino | Gravitational radiation reaction to a particle motion[END_REF][START_REF] Quinn | Axiomatic approach to electromagnetic and gravitational radiation reaction of particles in curved spacetime[END_REF]], Eq. (1.5.4), for the GSF at rst order in λ.

Let us now be more precise. Let {(M (λ) , g (λ) )} λ≥0 be a perturbative one-parameter family of spacetimes as in the previous section. We assume that {g (λ) } λ≥0 satis es the following conditions, depicted visually in Fig. 5.4:

(i) Existence of an "ordinary limit": There exist coordinates {x α } in M (λ) such that g (λ) βγ (x α ) is jointly smooth in (λ, x α ) for r > Cλ where C > 0 is a constant and r = (x i x i ) 1/2 . For all λ ≥ 0 and r > Cλ, g (λ) is a vacuum solution of the Einstein equation. Furthermore, gβγ (x α ) is smooth in x α including at r = 0, and the curve C = {r = 0} ⊂ M is timelike.

(ii) Existence of a "scaled limit": For all t 0 , de ne the "scaled coordinates"

{x α } = { t, xi } by t = (t -t 0 )/λ and xi = x i /λ. Then the "scaled metric" ḡ(λ) βγ (t 0 ; xα ) = λ -2 g (λ) βγ (t 0 ; xα ) is jointly smooth in (λ, t 0 ; xα ) for r = r/λ > C.
(iii) Uniformity condition: De ne A = r, B = λ/r and n i = x i /r. Then each g

(λ) βγ (x α ) is jointly smooth in (A, B, n i , t).
Mathematically, the rst two conditions respectively ensure the existence of an appropriate Taylor expansion (in r and λ) of the metric in a "far zone" (on length scales comparable with the mass of the MBH in an EMRI, r ∼ M ) and a "near zone" (on length scales comparable with the mass of the object, r ∼ m) . Meanwhile, the third is simply a consistency requirement ensuring the existence of a "bu er zone" (m r M ) where both expansions are valid. (This idea is in many ways similar to the method of "matched asymptotic expansions" [START_REF] Mino | Gravitational radiation reaction to a particle motion[END_REF]).

From a physical point of view, what is happening in the rst ("ordinary") limit is that the body is shrinking down to a worldline C with its "mass" (understood as de ning the perturbation) going to zero at least as fast as its radius. (As we increase the perturbative parameter λ from zero, the radius is not allowed to grow faster than linearly with λ; viewed conversely, this condition ensures that the object does not collapse to a black hole if it was not one already before reaching the point particle limit.) In the second ("scaled") limit, the object is shrinking down to zero size in an asymptotically self-similar manner (its mass is proportional to its size, and its "shape" is not changing). Finally, the uniformity condition ensures that there are no "bumps of curvature" in the one-parameter family. (Essentially, F 5.4. Representation of the Gralla-Wald family of spacetimes {M (λ) } λ≥0 . (This is an adaptation of Fig. 1 of [START_REF] Gralla | A rigorous derivation of gravitational self-force[END_REF].) The lined green region that " lls in" M (λ) for r ≤ Cλ is the "small" object which "scales down" to zero "size" and "mass" in the background M . The solid black lines represent taking the "ordinary limit" (the "far away" view where the motion appears reduced to a worldline) and the dashed black lines the "scaled limit" (the "close by" view where the rest of the universe appears "pushed away" to in nity). The worldline C , which can be proven to be a geodesic, is parametrized by za (τ ) and has four-velocity Ů . The deviation vector Z on C is used for formulating the rst-order correction to the motion. this guarantees that there are no inconsistencies in evaluating the limits along di erent directions.)

From these assumptions alone, [START_REF] Gralla | A rigorous derivation of gravitational self-force[END_REF]] are able to derive the following consequences:

(a) Background motion: The worldline C is a geodesic in M ; writing its parametrization in terms of proper time τ as C = {z a (τ )} τ ∈R and denoting its four-velocity by Ů a = dz a (τ )/dτ , this means that ∇Ů Ů = 0 .

(5.4.1) (b) Background "scaled" metric: g is stationary and asymptotically at. where

T PP ab = m Ĉ dτ Ůa (τ ) Ůb (τ ) δ 4 (x c -z c (τ )) . (5.4.3)
Here, m is a constant along C and is interpreted as representing the mass of the objector, more precisely, the mass of the point particle which approximates the object in the background. (This is a subtle point that should be kept in mind, and which will be better elucidated in our analysis further on.)

(d) First-order equation of motion: At O(λ), the correction to the motion in the Lorenz gauge-corresponding to the choice of a certain gauge vector L ∈ T N de ned by the condition ∇b (h L ab - (5.4.4) where h = tr(h)-is given by the MiSaTaQuWa equation [START_REF] Mino | Gravitational radiation reaction to a particle motion[END_REF][START_REF] Quinn | Axiomatic approach to electromagnetic and gravitational radiation reaction of particles in curved spacetime[END_REF],

1 2 h L gab ) = 0 ,
∇Ů ∇Ů Z a = -Eb a Z b + F a [h tail ; Ů ] , (5.4.5) 
where Eb a = Rcbd a Ů c Ů d is the electric part of the Weyl tensor and h tail is a "tail" integral of the retarded Green's functions of h. The above is an equation for a four-vector Z called the "deviation" vector; the LHS is the acceleration associated therewith and the RHS is a geodesic deviation term plus the GSF. This deviation vector is de ned on C and represents the rst-order correction needed to move o C and onto the worldline representing the "center of mass" of the perturbed spacetime, de ned as in the Hamiltonian analysis of [START_REF] Regge | Role of surface integrals in the Hamiltonian formulation of general relativity[END_REF].

Let us make a few comments on these results, speci cally concerning (a) and (c). On the one hand, it is quite remarkable that geodesic motion can be recovered as a consequence6 of this analysis-i.e. without having to posit it as an assumption-just from smoothness properties (existence of appropriate limits) of our family of metrics {g (λ) }; and on the other, this analysis o ers sensible meaning to the usual "delta function cartoon" (ubiquitous in essentially all self-force analyses) of the matter stress-energy-momentum tensor describing the object in the background spacetime. The point is that the description of the object is completely arbitrary inside the region that is not covered by the smoothness conditions of the family {g (λ) }, i.e. for r ≤ Cλ when λ > 0. (Indeed, this region can be " lled in" even with exotic matter, e.g. failing to satisfy the dominant energy condition, or a naked singularity, as long as a well-posed initial value formulation exists.)

Regardless of what this description is, the smoothness conditions essentially ensure that its "reduction" to M (or, more precisely, the transport of any e ect thereof with respect to the family {g (λ) }) simply becomes that of a point particle sourcing the eld equation at O(λ). In this way, the background "point particle cartoon" is justi ed as the simplest possible idealization of a "small" object.

What we are going to do, essentially, is to accept consequences (a)-(c) (in fact, we will not even explicitly need (b)), the proofs of which do not rely upon any further limiting conditions such as a restriction of the perturbative gauge, and to obtain, using our perturbed momentum conservation law, a more general version of the EoM, i.e. consequence (d). For the latter, [START_REF] Gralla | A rigorous derivation of gravitational self-force[END_REF]] instead rely on the typical but laborious Hadamard expansion techniques of [START_REF] Dewitt | Radiation damping in a gravitational eld[END_REF], wherein the "mass dipole moment" of the object is set to zero. It is possible [START_REF] Regge | Role of surface integrals in the Hamiltonian formulation of general relativity[END_REF] to have such a notion in a well-de ned Hamiltonian sense by virtue of (b). While mathematically rigorous and conducive to obtaining the correct known form of the MiSaTaQuWa equation, their derivation and nal result su er not only from the limitation of having to x the perturbative gauge, but also from the (as we shall see, potentially avoidable) technical complexity of arriving at the nal answer-including the evaluation of h tail (or otherwise taking recourse to a regularization procedure).

The link between this approach and our conservation law derivation of the EoM which we are about to carry out is established by the work of [START_REF] Gralla | Gauge and averaging in gravitational self-force[END_REF]], who discovered that Eq. (5.4.5) can be equivalently written as:

∇Ů ∇Ů Z a = -Eb a Z b + 1 4π lim r→0 Ŝ2 r S 2 F a [ Ů , h] .
(5.4.6)

Here, the GSF term F [h tail ; Ů ] in the MiSaTaQuWa equation [Eq. (5.4.5)] is substituted by an integral expression-an average over the angles-of F . In particular (as, strictly speaking, one cannot de ne integrals of vectors as such), this is evaluated by using the exponential map based on C to associate a at metric, in terms of which the integration is performed over a two-sphere of radius r, S 2 r , with S 2 denoting the volume form of S 2 . Observe that, here, the functional dependence of F is on h itself (and not on h tail or any sort of regularized h) and for this reason is referred to as the "bare" GSF. Moreover, this formula is actually valid in a wider class of gauges than just the Lorenz gauge: in particular, it holds in what are referred to as "parity-regular" gauges [START_REF] Gralla | Gauge and averaging in gravitational self-force[END_REF]]. We refrain from entering here into the technical details of exactly how such gauges are dened, except to say that the eponymous "parity condition" that they need to satisfy has its ultimate origin in the Hamiltonian analysis of [START_REF] Regge | Role of surface integrals in the Hamiltonian formulation of general relativity[END_REF] and is imposed so as to make certain Hamiltonian de nitions-and in particular for Gralla's analysis [START_REF] Gralla | Gauge and averaging in gravitational self-force[END_REF]], the Hamiltonian "center of mass"-well de ned. These, however, are not Since 0 = θ (λ) (ab) identically in M (λ) (as we demand that (B (λ) ; u (λ) ) is a rigid quasilocal frame), Eq. (5.4.24) must vanish order by order in λ. That implies, in particular, that the zeroth-order congruence (de ned by ů) is a rigid quasilocal frame, and that the symmetrized strain rate tensor of the background-mapped perturbed congruence (de ned by u) is given by ϑ (5.4.27) This tells us that the deviation from rigidity of (B; u) in M occurs only at O(λ) (and, in particular, is caused by the same perturbed connection coe cient term that is responsible for the GSF). In other words, we can treat (B; u) as a rigid quasilocal frame at zeroth order. This zeroth order congruence actually makes up a di erent worldtube boundary B = B in M , i.e. one de ned by a congruence with four-velocity ů = u in general. Clearly, for a rigid quasilocal frame with a small areal radius r constructed around a worldline G in M with four-velocity U G , we would simply have ů = U G (where the RHS is understood to be transported o G and onto B via the exponential map), and σ = r 2 S, i.e. it is the metric of S 2 r . This is the most trivial possible rigid quasilocal frame: at any instant of time, a two-sphere worth of quasilocal observers moving with the same four-velocity as is the point at its center (parametrizing the given worldline).

(ab) = -λσ c (a σb)d δC d ce ůe + O λ 2 .
At rst order, the equation 0 = δθ (ab) can be regarded as the constraint on the linear perturbations (δu) in the motion of the quasilocal observers in terms of the metric perturbations guaranteeing that the perturbed congruence is rigid in the perturbed spacetime. (So presumably, going to n-th order in λ would yield equations for every term up to the n-th order piece of the motion of the quasilocal observers, δ n u.)

Now recall the momentum conservation law for rigid quasilocal frames, Eq. (5.2.25). This holds for (B (λ) ; u (λ) ) in M (λ) . Just as we did in the previous section with the general conservation law, we can use ϕ (λ) to turn this into an equation in M :

∆p (φ) = - ∆B ϕ * (λ) B (λ) Eα φ + 2ν ab P a φ b + PD • φ .
(5.4.28)

Let us now further assume that we can ignore the Jacobian determinant (discussed in the previous section) as well as the shift v of the quasilocal observers (relative to constant time surfaces). Then, dividing the above equation by ∆t, where t represents the adapted time coordinate on B, and taking the ∆t → 0 limit, we get the time rate of change of the momentum, (5.4.29) where ṗ(φ) = dp (φ) /dt, and we must keep in mind that the derivative is with respect to the adapted time on (the inverse image on the background of) our congruence.

ṗ(φ) = - Ŝ S N γ Eα φ + 2ν ab P a φ b + PD • φ .

Detailed construction of background rigid quasilocal frames.

Let G be any timelike worldline in M . Any background metric g on M in a neighborhood of G admits an expression in Fermi normal coordinates [START_REF] Misner | Gravitation[END_REF][START_REF] Poisson | The Motion of Point Particles in Curved Spacetime[END_REF]], which we label by {X α } = {T = X 0 , X I } 3 I=1 , as a power series in the areal radius. Denoting by A K (T ) and W K (T ) the proper acceleration and proper rate of rotation of the spatial axes (triad) along G (as functions of the proper time T along G ), respectively, this is given by: (5.4.32) where R 2 = δ IJ X I X J is the square of the radius in these coordinates (not the square of the Ricci scalar) and P KL = δ KL -X K X L /R 2 projects vectors perpendicular to the radial direction X I /R. Here we have to remember that the Riemann tensor RIJKL (along with A and W ) are understood to be evaluated on G . For all cases that we will be interested in, we will ignore the possibility of rotation so we set W I = 0 from now on.

g00 = -1 + A K X K 2 + R 2 W K W L P KL -R0K0L X K X L + O R 3 , (5.4.30) g0J = JKL W K X L - 2 3 R0KJL X K X L + O R 3 , (5.4.31) gIJ = δ IJ -1 3 RIKJL X K X L + O R 3 ,
Let us now assume that our background rigid quasilocal frame ( B; ů) is constructed around G : that is to say, into this coordinate system there is embedded a two-parameter family of worldlines representing a topological two-sphere worth of observers, i.e. abrated timelike worldtube B surrounding G . This may be conveniently described, as detailed in Subsection 5.2.2, by de ning a new set of coordinates {x α } = {t, r, x i } 2 i=1 given simply by the adapted coordinates {t, x i } 2 i=1 on B supplemented with a radial coordinate r. Then denoting {x i } = {θ, φ} we introduce, as done in previous calculations with rigid quasilocal frames in Fermi normal coordinates [Epp, Mann, et al. 2012], the following coordinate transformation:

T (t, r, θ, φ) = t + O r 2 , R ,
(5.4.33)

X I (t, r, θ, φ) = rr I (θ, φ) + O r 2 , R , (5.4.34) 
where r I (θ, φ) = (sin θ cos φ, sin θ sin φ, cos θ) (5.4.35) are the standard direction cosines of a radial unit vector in spherical coordinates in R 3 , and R here represents the order of the perturbations of the quasilocal frame away from the round two-sphere due to the background curvature e ects. In particular, for rigid quasilocal frames, we know that this is in fact simply the order of the Riemann tensor on G , i.e. RIJKL = O(R). Thus, one may ultimately desire to take O(R) e ects into account for a full calculation, but for the moment-since, in principle, this R is unrelated to λ and we can assume it to be subdominant thereto-we simply omit them. Thus we can simply take S = S 2 r , and we can assume that there is no shift, so that γ = 1. Applying the coordinate transformation in Eqs. (5.4.33)-(5.4.34) to the background metric given by Eqs. (5.4.30)-(5.4.32) with W = 0, and then using all of the de nitions that we have established so far, it is possible to obtain by direct computation all of the quantities appearing in the integrand of the conservation law [Eq. (5.4.29)] as series in r. We display the results only up to leading order in r, including the possibility of setting A = 0: (5.4.36) are respectively the boost and rotation generators of S 2 . See this chapter's appendix (Section 5.6) for more technical details on this. We remind the reader that E vac and P vac are respectively the vacuum energy and pressure, Eqs. (5.3.10)-(5.3.11) respectively. The way to proceed is now clear: we expand Eq. (5.4.29) as a series in λ, (5.4.42) using the zeroth-order parts of the various terms written above. We need only to specify the worldline G in M about which we are carrying out the Fermi normal coordinate expansion (in r). We will consider two cases: G = C (the geodesic, such that B is inertial with the point particle in M ) and G = C (an accelerated worldline such that B (λ) is inertial with the object in M (λ) , i.e. it is de ned by a constant r > Cλ in M (λ) ). These will give us equivalent descriptions of the dynamics of the system, from two di erent "points of view", or (quasilocal) frames of reference. Before entering into the calculations, we can simplify things further by remarking that the zeroth order expansions in Eqs. (5.4.36)-(5.4.41) will always make the twist (ν) term in the conservation law [Eq. (5.4.29)] appear at O(r) or higher, both in ( ṗ(φ) ) (0) and δ ṗ(φ) , regardless of our choice of G . Hence we can safely ignore it, as we are interested (at least for this work) only in the part of the conservation law which is zeroth-order in r. Thus we simply work with

N = 1 + rA I r I + 1 2 r 2 EIJ r I r J + O r 3 ,
E = E vac + O (r) = - 2 κr + O (r) , (5.4.37) αi = rA I B I i + r 2 EIJ -A I A J B I i r J + O r 3 , (5.4.38) ν = -r BIJ r I r J + O r 2 , (5.4.39) Pi = - 1 κ r 2 BIJ R I i r J + O r 3 , (5.4.40) 
P = P vac - 1 κ A I r I + O (r) = - 1 κr - 1 κ A I r I + O (r) . ( 5 
ṗ(φ) = ( ṗ(φ) ) (0) + λδ ṗ(φ) + O λ 2 ,
ṗ(φ) = - Ŝ2 r S 2 r 2 N (Eα φ + PD • φ) .
(5.4.43)

Into this, we furthermore have to insert the multipole expansion of the conformal Killing vector φ given by Eq. (5.2.27). We correspondingly write (5.4.44) such that for any ∈ N, we have

ṗ(φ) = ∈N ṗ(φ ) ,
ṗ(φ ) = -Φ I 1 •••I Ŝ2 r S 2 rN (Eα i + PD i ) D i n=1 r In .
(5.4.45)

Explicitly, the rst two terms are

ṗ(φ =1 ) = -Φ I Ŝ2 r S 2 rN (Eα i + PD i ) B i I , (5.4.46) 
ṗ(φ =2 ) = -2Φ IJ Ŝ2 r S 2 rN (Eα i + PD i ) B i I r J .
(5.4.47) 5.4.4. Equation of motion inertial with the background point particle. Let G = C . Then A = 0. We will take this to be the case for the rest of this subsectioncorresponding, as discussed, to a rigid quasilocal frame the inverse image in the background of which is inertial with the point particle approximation of the moving object in the background spacetime. This situation is displayed visually in Fig. 5.5.

Let us rst compute the zeroth-order (in λ) part of ṗ(φ) . Inserting (5.4.36)-(5.4.41) into the zeroth-order part of (5.4.46)-(5.4.47), and making use of the various properties in this chapter's appendix (Section 5.6), we nd by direct computation:

ṗ(φ =1 ) (0) = O r 2 ,
(5.4.48)

ṗ(φ =2 ) (0) = O r 2 .
(5.4.49)

We provide the steps of the calculation in Appendix B of [START_REF] Oltean | The motion of localized sources in general relativity: gravitational self-force from quasilocal conservation laws[END_REF]].

Let us now compute the O(λ), = 1 part of ṗ(φ) , i.e. the O(λ) part of Eq. (5.4.46) which as usual we denote by δ ṗ(φ =1 ) . One can see that this will involve contributions F 5.5. A family of rigid quasilocal frames {(B (λ) ; u (λ) )} embedded in the Gralla-Wald family of spacetimes {M (λ) } such that the inverse image of any such perturbed quasilocal frame in the background is inertial with the point particle approximation of the moving object, i.e. is centered on the geodesic C . from ve O(λ) terms, respectively containing δN , δE, δα, δP and δD. For convenience, we will use the notation ( ṗ(φ

) (Q) ) (n) to indicate the term of δ n ( ṗ(φ ) ) that is linear in Q, for any , n. Thus we write δ ṗ(φ =1 ) = Q∈{δN,δE,δα,δP,δD} δ ṗ(φ =1 ) (Q)
.

(5.4.50) F 5.6. An instantaneous rigid quasilocal frame (S 2 r , r 2 S, D) (where S and D respectively are the metric and derivative compatible with the unit two-sphere) inertial with the background "point particle". This means that the latter is located at the center of our Fermi normal coordinate system.

All of the computational steps are again in Appendix B of [START_REF] Oltean | The motion of localized sources in general relativity: gravitational self-force from quasilocal conservation laws[END_REF]. We nd:

δ ṗ(φ =1 ) (δN ) = - 2 κ Φ I Ŝ2 r S 2 δN r I + O r 2 .
(5.4.51)

If δN does not vary signi cantly over S 2 r , the O(r 0 ) part of the above would be negligible owing to the fact that ´S2 r S 2 r I = 0. Next, let us consider the δE and δP terms. For this, we nd it useful to depict the instantaneous quasilocal frame (S 2 r , r 2 S, D) embedded in a constant-time three-slice of M in Fig. 5.6.

The δE term can be easily determined by realizing that in our current choice of quasilocal frame, the only background matter is the point particle which is always at the center of our present coordinate system, i.e. it is always on C (on which we are here centering our Fermi normal coordinates). Interpreting the constant m as in the approach of [START_REF] Gralla | A rigorous derivation of gravitational self-force[END_REF]] to be the "mass" of this point particle, this simply means that δE = m 4πr 2 , (5.4.52) so that when this is integrated (as a surface energy density) over S 2 r , we simply recover the mass: ´S2 r r 2 S 2 δE = m. We remark that, by de nition, it is possible to express the quasilocal energy as E = u a u b τ ab = -1 κ k with k = σ : Θ the trace of the two-dimensional boundary extrinsic curvature. Notice that the integral of this over a closed two-surface in the r → ∞ limit is in fact the same as the usual ADM de nition of the mass/energy; thus δE = -1 κ δk, and so it makes sense to interpret m as the ADM mass of the object. So now, using Eq. (5.4.52), we can nd that the δE contribution to δ ṗ(φ =1 ) is also at most quadratic in r:

δ ṗ(φ =1 ) (δE) = O r 2 .
(5.4.53)

To compute the δP term, we now employ the useful identity in Eq. ( 5.2.26), which tells us that δP = 1 2 δE -1 κ δa n .

(5.4.54)

Using this, into which we insert the δE from Eq. (5.4.52), we nd that the δP contribution to δ ṗ(φ =1 ) is at most quadratic in r as well,

δ ṗ(φ =1 ) (δP) 
= O r 2 .

(5.4.55)

Note that the above results may in fact be higher order in r than quadratic. We have only explicitly checked that they vanish up to linear order inclusive.

Finally we are left with the δα and δD contributions to δ ṗ(φ =1 ) . By direct computation, it is possible to show that their sum is in fact precisely what we have referred to as the extended GSF in our general analysis of the preceding section, i.e. it is the = 1 part of Eq. ( 5

.3.19), δ ṗ(φ =1 ) (δα) + δ ṗ(φ =1 ) (δD) = d dt ∆p (φ =1 ) self .
(5.4.56)

In particular, they respectively contribute the usual GSF (from δα) and the gravitational self-pressure force (from δD). Thus, we have found that the total O(λ), = 1 part of the momentum time rate of change is given at leading (zeroth) order in r by nothing more than the generalized GSF. In other words, (5.4.57) where we have de ned

δ ṗ(φ =1 ) = -Φ I F I + O (r) ,
F I = - 2 κ Ŝ2 r S 2 S ij B I i F j [h; ů] + O (r) .
(5.4.58)

Without loss of generality, let us now pick Φ I = (0, 0, 1) to be the unit vector in the Cartesian X 3 = Z direction, and denote its corresponding conformal Killing vector as φ =1 = φ Z =1 . (Alternately, pick the Z-axis to be oriented along Φ I .) We know S ij B Z j = (-1/ sin θ, 0); moreover, by the coordinate transformation F i = (∂x J /∂x i )F J we have F θ = cos θ(cos φF X + sin φF Y ) -sin θF Z . Inserting these into Eq. (5.4.57) we get

δ ṗ(φ Z =1 ) = - 2 κ Ŝ2 r S 2 F Z [h; ů] + 2 κ Ŝ2 r dθ ∧ dφ cos θ (cos φF X + sin φF Y ) . (5.4.59)
The rst integral on the RHS is precisely in the form of the GSF term from the Gralla formula, Eq. ( 5.4.6) [START_REF] Gralla | Gauge and averaging in gravitational self-force[END_REF]], except here in the integrand we have (the Z-component of) our extended GSF F [Eq. (5.3.18)]: the usual GSF F (the only self-force term in Gralla's formula) plus our self-pressure term, ℘. The second integral contains additional terms involving the extended GSF in the other two (Cartesian) spatial directions. Notice however that ´S2 r dθ ∧ dφ cos θ cos φ = 0 = ´S2 r dθ ∧ dφ cos θ sin φ, so if F X and F Y do not vary signi cantly over S 2 r , their contribution will be subdominant to that of F Z . Thus, we have shown that our EoM (5.4.57) always contains Gralla's "angle average" of the "bare" (usual) GSF. However, the form of (5.4.57) (expressing the perturbative change in the quasilocal momentum) still cannot be directly compared, as such, with Gralla's EoM (5.4.6) (expressing the change in a deviation vector representing the perturbative "correction to the motion"). In the following subsection, we clarify the correspondence by repeating the calculation using a quasilocal frame inertial with the moving extended object in the perturbed spacetime (rather than with the geodesic in the background, as here). Furthermore, we conjecture that a careful imposition of the parity condition on the perturbative gauge-of which we have made no explicit use so far-would make the contribution from our "self-pressure" term vanish, but a detailed proof is required and remains to be carried out.

5.4.5. Equation of motion inertial with the moving object in the perturbed spacetime. Now let G = C = C (so A = 0 in general) such that the quasilocal frame (B; u) centered on C (in M ) is the inverse image of the rigid quasilocal frame (B (λ) ; u (λ) ) de ned by r = Cλ + ε = const., ∀ε > 0, in M (λ) . The meaning of the r coordinate in the latter is as given in the Gralla-Wald assumptions (Subsection 5.4.1). This situation is displayed in Fig. 5.7.

We now proceed to calculate, in the same way as we did for the point-particle-inertial case, the various terms in the expansion of the momentum conservation law, Eqs. (5.4.46)-(5.4.47). At zeroth order we obtain:

ṗ(φ =1 ) (0) = O r 2 ,
(5.4.60)

ṗ(φ =2 ) (0) = O r 2 .
(5.4.61)

The steps of all these computations are again shown in Appendix B of [START_REF] Oltean | The motion of localized sources in general relativity: gravitational self-force from quasilocal conservation laws[END_REF]]. . This means that B (λ) is de ned by the constancy of the Gralla-Wald r coordinate in M (λ) , for any r > Cλ. Thus, the inverse image B of B (λ) in the background M is centered, in general, not on the geodesic C followed by the point particle background approximation of the object, but on some timelike worldline C = C , with four-velocity U = Ů , which may be regarded as an approximation on M of the "true motion" of the object in M (λ) . Between C and C there is a deviation vector Z, which is to be compared with the deviation vector ("correction to the motion") in the Gralla-Wald approach. F 5.8. An instantaneous rigid quasilocal frame (S 2 r , r 2 S, D) (where S and D respectively are the metric and derivative compatible with the unit two-sphere) inertial with the moving object in the perturbed spacetime. This means that the point particle approximation of this object in the background spacetime is not located at the center of our Fermi normal coordinate system. Instead, it is displaced in some direction ρ I , which must be O(λ).

Let us now compute the O(λ), = 1 part of ṗ(φ) . First, we nd that δ ṗ(φ =1 ) (δN ) is the same as in the point-particle-inertial case, so if δN does not vary signi cantly over S 2 r , the O(r 0 ) part thereof is negligible.

Next let us look at the δE and δP parts. Again, it is useful to consider in this case the visual depiction of the instantaneous quasilocal frame, shown in Fig. 5.8.

In this case, the particle (delta function) will not be at the center of our coordinate system but instead displaced in some direction ρ I relative thereto. Nonetheless, we know that this displacement must itself be O(λ) which means that it will only contribute O(λ) corrections to the δE having m exactly at the center, i.e. we have (5.4.62) and as before, δP = 1 2 δE -1 κ δa n . Using these, we nd: (5.4.64) with the steps shown in Appendix B of [START_REF] Oltean | The motion of localized sources in general relativity: gravitational self-force from quasilocal conservation laws[END_REF]]. Thus,

δE = m 4π (X I -λρ I ) (X I -λρ I ) = m 4πr 2 + O (λ) ,
δ ṗ(φ =1 ) (δE) = - 2 3 mΦ I A I + O (r) , (5.4.63) δ ṗ(φ =1 ) (δP) = + 1 3 mΦ I A I + O (r) ,
δ ṗ(φ =1 ) (δE) + δ ṗ(φ =1 ) (δP) = - 1 3 mΦ I A I + O (r) .
(5.4.65)

Meanwhile, we still have, exactly as in the point-particle-inertial case,

δ ṗ(φ =1 ) (δα) + δ ṗ(φ =1 ) (δD) = -Φ I F I + O (r) .
(5.4.66)

Now, by construction, we know that here δ ṗ(φ =1 ) = 0, as we are inertial with the moving object (in the "actual" spacetime M (λ) ). Thus summing the above and equating them to zero, we get 0 = Φ I -mA I -3F I + O (r) .

(5.4.67)

Since Φ I is arbitrary, we thus get the EoM mA I = -3F I (5.4.68) in the r → 0 limit. Finally, to cast this EoM into the same form as do [START_REF] Gralla | A rigorous derivation of gravitational self-force[END_REF], i.e. in terms of a deviation vector Z on C rather than in terms of the proper acceleration A of C , we use the generalized deviation equation (as the name suggests, the deviation equation between arbitrary worldlines, not necessarily geodesics), Eq. ( 37) of [START_REF] Puetzfeld | Generalized deviation equation and determination of the curvature in general relativity[END_REF]. In our case, this reads λ ZI = λA I -λZ J EI J + O(λ 2 ). Combining this with Eq. (5.4.68), we nally recover the O(λ) EoM λm ZI = -3λF I -λ EI J Z J + O λ 2 , r .

(5.4.69)

Note that the factor of 3 multiplying the self-force term is in fact present in the EoM in Gralla's Appendix B, that is Eq. (B3) of [START_REF] Gralla | Gauge and averaging in gravitational self-force[END_REF]]. The latter, in this case, expresses the time evolution not of the deviation vector itself, but of the change in this deviation vector due to a gauge transformation, possibly including extra terms in case that transformation is out of the "parity-regular" class. We conjecture that a detailed analysis of the precise correspondence between our deviation vector de nition and that of Gralla-Wald (which, while encoding the same intuitive notion of a perturbative "correction to the motion", may not be completely identical in general), together with a relation of their gauge transformation properties, would make it possible to relate these EoM's exactly.

Discussion and conclusions

In this chapter, we have used quasilocal conservation laws to develop a novel formulation of self-force e ects in general relativity, one that is independent of the choice of the perturbative gauge and applicable to any perturbative scheme designed to describe the correction to the motion of a localized object. In particular, we have shown that the correction to the motion of any nite spatial region, due to any perturbation of any spacetime metric, is dominated when that region is "small" (i.e. at zero-th order in a series expansion in its areal radius) by an extended gravitational self-force: this is the standard gravitational self-force term known up to now plus a new term, not found in previous analyses and attributable to a gravitational pressure e ect with no analogue in Newtonian gravity, which we have dubbed the gravitational self-pressure force. Mathematically, we have found that the total change in momentum ∆p (φ) 

= p (φ) nal -p (φ)
initial between an initial and nal time of any (gravitational plus matter) system subject to any metric perturbation h is given, in a direction determined by a conformal Killing vector φ (see Subsection 5.2.4), by the following ux through the portion of the quasilocal frame (worldtube boundary) (B; ů) delimited thereby:

∆p (φ) self = - c 4 4πG ∆B B 1 r φ • F [h; ů] + O (r) ,
(5.5.1)

where we have restored units, r is the areal radius, and F is the extended self-force functional. In particular, F = F + ℘ where F is the usual "bare" self-force [determined by the functional in Eq. (1.5.5)] and ℘ is our novel self-pressure force [determined by the functional in Eq. (5.3.17)].

The most relevant practical application of the self-force is in the context of modeling EMRIs. Ideally, one would like to compute the "correction to the motion" at the location of the moving object (SCO). Yet, once a concrete perturbative procedure is established, the latter usually ends up being described by a distribution (Dirac delta function), rendering such a computation ill-de ned unless additional tactics (typically in the form of regularizations or Green's functions methods) are introduced. However, if one takes a step back from the exact point denoting the location of the "particle" (the distributional support), and instead considers a ux around it, any singularities introduced in such a model are avoided by construction.

We have, moreover, shown that our formulation, when applied in the context of one particular and very common approach to the self-force-namely that of [START_REF] Gralla | A rigorous derivation of gravitational self-force[END_REF]]-yields equations of motion of the same form as those known up to now; in particular, they always contain, in the appropriate limit, the "angle average" self-force term of [START_REF] Gralla | Gauge and averaging in gravitational self-force[END_REF]]. We conjecture that a more rigorous study of these equations of motion and their gauge transformation properties would prove their exact correspondence under appropriate conditions.

We would like here to o er a concluding discussion on our results in this chapter in Subsection 5.5.1, as well as outlook towards future work in Subsection 5.5.2. 5.5.1. Discussion of results. From a physical point of view, our approach o ers a fresh and conceptually clear perspective on the basic mechanism responsible for the emergence of self-force e ects in general relativity. In particular, we have demonstrated that Chapter 5. The Motion of Localized Sources in General Relativity the self-force may be regarded as nothing more than the manifestation of a physical ux of gravitational momentum passing through the boundary enclosing the "small" moving object. This gravitational momentum, and gravitational stress-energy-momentum in general, cannot be de ned locally in general relativity. As we have argued at length in this chapter, such notions must instead be de ned quasilocally, i.e. as boundary rather than as a volume densities. This is why the self-force appears mathematically as a boundary integral around the moving object [Eq. (5.3.19)], dominant in the limit where the areal radius is small.

The interpretation of the physical meaning of the self-force as a consequence of conservation principles leads to many interesting implications. As we have seen, the "mass" of the moving object-e.g., the mass m of the SCO in the EMRI problem-seems to have nothing to do fundamentally with the general existence of a self-force e ect. Indeed, according to our analysis, the self-force is in fact generically present as a correction to the motionand dominant when the moving region is "small"-whenever one has any perturbation h to the spacetime metric that is non-vanishing on the boundary of the system.

The usual way to understand the gravitational self-force up to now has been to regard it as a backreaction of m on the metric, i.e. on the gravitational eld, and thus in turn upon its own motion through that eld. Schematically, one thus imagines that the linear correction to the motion is "linear in m" (or more generally, that the full correction is an in nite series in m), i.e. that it has the form δ ṗ ∼ mδa, with a "perturbed acceleration" δa determined by h (according to some perturbative prescription) causing a correction to the momentum δ ṗ by a (linear) coupling to the mass m.

Our analysis, instead, shows that this momentum correction δ ṗ actually arises fundamentally in the schematic form δ ṗ ∼ E vac δa + P vac δD ,

(5.5.2)

where E vac and P vac are the vacuum energy and pressure respectively], and δa and δD are perturbed acceleration and gradient terms determined by h. Thus it is the vacuum energy (or "mass") and vacuum pressure, not the "mass" of the moving object, which are responsible for the backreaction that produces self-force corrections.

Certainly, the metric perturbation h on the system boundary determining the perturbed acceleration and gradient terms in (5.5.2) may in turn be sourced by a "small mass" present in the interior of the system. In fact, if indeed the system is "small", there may well be little physical reason for expecting that (the dominant part of) h would come for anything other than the presence of the "small" system itself. Concordantly, the aim of any concrete self-force analysis is to prescribe exactly how h is sourced thereby. Nevertheless, the correction (5.5.1) is valid regardless of where h comes from, and regardless of the interior description of the system, which may very well be completely empty of matter or even contain "exotic" matter (as long as a well-posed initial value formulation exists). The EMRI problem is just a special case, where h is sourced in the background, according to the approach considered here, by a rudimentary point particle of mass m.

This opens up many interesting conceptual questions, especially with regards to the meaning of the quasilocal vacuum energy and pressure. While traditionally these have often been regarded as unphysical, to be "subtracted away" as reference terms (for the same reason that a "reference action" is often subtracted from the total gravitational action in Lagrangian formulations of GR), our analysis in this chapter reveals instead that they are absolutely indispensable to accounting for self-force e ects. (Indeed, the initial work [START_REF] Epp | Momentum in general relativity: local versus quasilocal conservation laws[END_REF] on the formulation of the quasilocal momentum conservation laws had similarly revealed the necessity of keeping these terms for a proper accounting of gravitational energy-momentum transfer in general.) To put it simply, the vacuum energy is what seems to play the role of the "mass" in the "mass times acceleration" of the selfforce; the pressure term, leading to what we have called the self-pressure force, has no Newtonian analogue. Now let us comment on our results from a more mathematical and technical point of view. When applied to a speci c self-force analysis, namely that of [START_REF] Gralla | A rigorous derivation of gravitational self-force[END_REF], we have been able to recover the "angle average" formula of [START_REF] Gralla | Gauge and averaging in gravitational self-force[END_REF]]. The latter was put forward on the basis of a convenient mathematical argument in a Hamiltonian setting. As the quasilocal stress-energy-momentum de nitions that we have been working with (namely, as given by the Brown-York tensor) recover the usual Hamiltonian de nitions under appropriate conditions (stationary asymptotically-at spacetimes with a parity condition), it is reasonable that our general equation of motion [Eq. (5.3.19)]expressing the physical ux of gravitational momentum-should thereby recover that of Gralla [Eq. (5.4.6)]-expressing an "angle average" in a setting where certain surface integral de nitions of general-relativistic Hamiltonian notions (in particular, a Hamiltonian "center of mass") can be well-de ned. The limitation of Gralla's equation of motion (e.g. in terms of the perturbative gauge restriction attached to it) vis-à-vis our general equation of motion is therefore essentially the re ection of the general limitation of Hamiltonian notions of gravitational stress-energy-momentum (as de ned for a total, asymptotically-at spacetime with parity conditions) vis-à-vis general quasilocal notions of such concepts-of which the Hamiltonian ones arise simply as a special case.

For carrying out practical EMRI computations, there is a manifest advantage in formulating the self-force as a closed two-surface integral around the moving "particle" versus standard approaches. In the latter, one typically attempts to formulate the problem at the "particle location", i.e. the support of the distributional matter stress-energy-momentum tensor modeling the moving object (SCO) in the background spacetime. Of course, due to the distributional source, h actually diverges on its support, and so regularization or Green's function methods are typically employed in order to make progress. However, in principle, no such obstacles are encountered (nor the aforementioned technical solutions Chapter 5. The Motion of Localized Sources in General Relativity needed) if the self-force is evaluated on a boundary around-very close to, but at a nite distance away from-the "particle", where no formal singularity is ever encountered: h remains everywhere nite over the integration, and therefore so does the (extended) selfforce functional [Eq. (5.3.18)] with it directly as its argument.

5.5.2. Outlook to future work. A numerical implementation of a concrete selfforce computation using the approach developed in this chapter would be arguably the most salient next step to take. To our knowledge, no numerical work has been put forth even using Gralla's "angle average" integral formula [START_REF] Gralla | Gauge and averaging in gravitational self-force[END_REF]] (which would further require gauge transformations away from "parity-regular" gauges).

We stress here that our proposed equation of motion involving the gravitational selfforce is entirely formulated and in principle valid in any choice of perturbative gauge. To our knowledge, this is the rst such proposal bearing this feature. This may provide a great advantage for numerical work, as black hole metric perturbations h are often most easily computed (by solving the linearized Einstein equation, usually with a delta-function source motivated as in or similarly to the approach of [START_REF] Gralla | A rigorous derivation of gravitational self-force[END_REF] described in Subection 5.4.1) in gauges that are not in the "parity-regular" class restricting Gralla's formula [START_REF] Gralla | Gauge and averaging in gravitational self-force[END_REF]]. In other words, we claim that one may solve the linearized Einstein equation [Eq. (5.4.2)] for h X in any desired choice of gauge X, insert this h X into our extended GSF functional [Eq. (5.3.18)] to obtain F X [h X ; ůX ] (for some choice of background quasilocal frame with four-velocity ů), and then to integrate this over a "small radius" topological two-sphere surrounding the "particle" (so that ů can be approximated by the background geodesic four-velocity of the particle, Ů ), to obtain the full extended gravitational self-force (or "correction to the motion") directly in that gauge X. It is easy to speculate that this may simplify some numerical issues tremendously vis-à-vis current approaches, where much technical machinery is needed to handle (and to do so in a sufciently e cient way for future waveform applications) the necessary gauge transformations involving distributional source terms.

Nevertheless, further work is needed to bring the relatively abstract analysis developed in this chapter into a form more readily suited for practical numerics. The most apparent technical issue to be tackled involves the fact that h is usually computed (in some kind of harmonics) in angular coordinates centered on the MBH, while the functional F [h; ů] is evaluated in angular coordinates (on a "small" topological two-sphere) centered on the moving "particle", i.e. the SCO. A detailed understanding of the transformation between the two sets of angular coordinates is thus essential to formulate this problem numerically. This issue is discussed a bit further in Gralla's paper [START_REF] Gralla | Gauge and averaging in gravitational self-force[END_REF]], but a detailed implementation of such a computation remains to be attempted.

The abstraction and generality of our approach may, on the other hand, also provide useful ways to address some other technical issues surrounding the self-force problem.

For example, all the calculations in this chapter may be carried on to second order (in the formal expansion parameter λ)-which is conceptually straightforward given our basic perturbative setup, but of course which requires an analysis in its own right. Nonetheless, one may readily see that any higher-order correction to the motion manifestly remains here in the form of a boundary ux-only now involving nonlinear terms in the integrand. Thus any sort of singular behaviour is avoided at the level of the equations of motion in our approach, up to any order.

As another example, if ever desired (e.g. for astrophysical reasons), linear or any higher-order in r (the areal radius of the SCO boundary) e ects on the correction to the motion can also be computed using our approach. Moreover, any matter uxes (described by the usual matter stress-energy-momentum tensor, T ) can also be accommodated thanks to our general (gravity plus matter) conservation laws [Eq. (5.2.25)].

Furthermore, while we have applied our ideas in this chapter to a speci c self-force approach-that of [START_REF] Gralla | A rigorous derivation of gravitational self-force[END_REF]]-our general formulation (Section 5.3) can just as well be used in any other approach to the gravitational self-force, i.e. any other specication of a perturbative procedure (of a family of perturbed spacetimes {(M (λ) , g (λ) }) for this problem. In other words, our approach permits any alternative speci cation of what is meant by a (su ciently) "localized source" in general relativity, as our conservation expressions always involve uxes on their boundaries and are not conditioned in any way by the exact details of their interior modeling. Thus our equation of motion [Eq. (5.5.1)] could be used not only for a "self-consistent" computation (using, e.g., an approach such as that of [START_REF] Ritter | Indirect (source-free) integration method. II. Self-force consistent radial fall[END_REF]A. D. A. M. Spallicci and Ritter 2014] for solving the eld equations in this context) within the Gralla-Wald approach, but also, for example, in the context of the (mathematically equivalent) self-consistent formulation of [START_REF] Pound | Self-consistent gravitational self-force[END_REF].

Beyond the gravitational self-force, another avenue to explore from here-of interest at the very least for conceptual consistency-is how our approach handles the electromagnetic self-force problem. Although undoubtedly some conceptual parallels may be drawn between the gravitational and electromagnetic self-force problems (see e.g. [START_REF] Barack | Self-force and radiation reaction in general relativity[END_REF]), foundationally they are usually treated as separate problems. Indeed, shortly after the paper of [START_REF] Gralla | A rigorous derivation of gravitational self-force[END_REF] detailing the self-force approach used in this work, Gralla, Harte and Wald [START_REF] Gralla | Rigorous derivation of electromagnetic selfforce[END_REF]] put forth a similar analysis, with an analogous approach and level of rigour, of the electromagnetic self-force. It would be of great interest to apply our quasilocal conservation laws in this setting, as they can be used to account not just for gravitational but also (and in a consistent way) matter uxes as well. It may thus prove insightful to study how the transfer of energy-momentum is actually accounted for (between the gravitational and the matter sector), as in our approach we are not restricted to xing a non-dynamical metric in the spacetime. In other words, the conservation laws account completely for uxes due to a dynamical geometry as well as matter. Now we have everything in hand to formulate the general solution to the conformal Killing equation (5.6.3) on S 2 r ; it can be expanded as: (5.6.23) where to write the second equality we have used the fact that Φ I 1 •••I and Ψ I 1 •••I are symmetric in their indices.

φ j = 1 r D j ∈N Φ I 1 •••I n=1 r In + E j k D k ∈N Ψ I 1 •••I n=1 r In , (5.6.22) = 1 r Φ I B j I + Ψ I R j I + ≥2 Φ I 1 •••I B j I 1 + Ψ I 1 •••I R j I 1 n=2 r In ,
We are interested in working with the = 1 and = 2 parts of φ corresponding to linear momentum only (Ψ = 0):

φ i =1 = 1 r Φ I B i I ,
(5.6.24)

φ i =2 = 2 r Φ IJ B i I r J .
(5.6.25) CHAPTER 6

A Frequency-Domain Implementation of the Particle-without-Particle Approach to EMRIs Chapter summary. This chapter is based on the conference proceeding [START_REF] Oltean | A frequency-domain implementation of the particle-without-particle approach to EMRIs[END_REF]] and ongoing work.

We present here a frequency-domain implementation of the Particle-without-Particle (PwP) technique previously developed for the computation of the scalar self-force, a helpful testbed for the gravitational case.

We o er a short introduction in Section 6.1, commenting brie y on the choice between time and frequency domain methods in carrying out numerics for the EMRI problem.

In Section 6.2, we formulate the problem of the scalar self-force in a non-spinning black hole spacetime in full mathematical detail. In particular, the moving particle here possesses a scalar charge due to a scalar eld which does not back-react on the geometry (i.e. the background remains xed). We comment on the widely-used mode-sum regularization procedure for devising a numerical implementation.

Then in Section 6.3, we discuss the Particle-without-Particle (PwP) method, a pseudospectral collocation method previously used for the computation of the scalar self-force in the time domain. The idea is to decompose quantities into linear combinations of Heaviside functions (supported, in this case, at inner and outer radii relative to the particle orbit), turning the distributionally-sourced eld equations into systems of homogeneous equations (away from the particle) supplemented by "jump" (boundary) conditions connecting them (at the particle location).

In Section 6.4, we present the frequency-domain formulation of the scalar self-force problem, including the appropriate boundary and jump conditions.

Finally, in Section 6.5, we discuss in basic outline of our numerical implementation using a hyperbolic compacti cation and multidomain splitting of the computational grids, omitting much of the technical detail. We also present some results on circular orbits, with work on eccentric orbits in progress.

Una implementació en el domini de freqüències del mètode Partícula-sense-Partícula als EMRIs (chapter summary translation in Catalan). Aquest capítol es basa en la acta [START_REF] Oltean | A frequency-domain implementation of the particle-without-particle approach to EMRIs[END_REF] i treball en curs. Chapter 6. A Frequency-Domain Implementation of the PwP Approach to EMRIs Aquí presentem una implementació en el domini de freqüència de la tècnica Partículasense-Partícula (Particle-without-Particle, PwP) desenvolupada anteriorment per a la computació de la força pròpia escalar, una prova útil per al cas gravitatori.

Oferim una breu introducció a la secció 6.1, comentant breument sobre l'elecció entre mètodes de domini de temps i domini de freqüència en la solució numèrica del problema EMRI.

A la secció 6.2, formulem el problema de la força pròpia escalar en un espai-temps de un forat negre que no gira, amb tot el detall matemàtic. En particular, la partícula en moviment aquí té una càrrega escalar a causa d'un camp escalar que no retroacciona sobre la geometria (és a dir, el fons queda xat). Comentem el procediment de regularització de sumes de modes, molt utilitzat per idear implementacions numèriques.

A continuació, a la secció 6.3, es discuteix el mètode Partícula-sense-Partícula (PwP), un mètode de col•locació pseudospectral usat anteriorment per al càlcul de la força pròpia escalar en el domini temporal. La idea és descompondre quantitats en combinacions lineals de funcions Heaviside (suportades, en aquest cas, en els radis interns i externs respecte a l'òrbita de la partícula), convertint les equacions de camp amb fonts distributives en sistemes d'equacions homogènies (allunyades de la partícula) complementades mitjançant les condicions de "salt" (límit) que els connecten (a la ubicació de la partícula).

A la secció 6.4, es presenta la formulació de dominis de freqüència del problema de la força pròpia escalar, incloent-ne els límits i les condicions de salt adequades.

Finalment, a la secció 6.5, es discuteix en l'esquema bàsic de la nostra implementació numèrica mitjançant una compactació hiperbòlica i una divisió multidomànica de les reixes computacionals, ometent gran part del detall tècnic. També presentem alguns resultats sobre òrbites circulars, amb treballs sobre òrbites excèntriques en marxa.

Une implémentation dans le domaine fréquentiel de l'approche Particulesans-Particule aux EMRIs (chapter summary translation in French). Ce chapitre est basé sur l'acte de congrès [START_REF] Oltean | A frequency-domain implementation of the particle-without-particle approach to EMRIs[END_REF]] et travaux en cours.

Nous présentons ici une implémentation dans le domaine fréquentiel de la technique Particule-sans-Particule (Particle-without-Particle, PwP) développée précédemment pour le calcul de la force propre scalaire -un test utile pour le cas gravitationnel.

Nous proposons une brève introduction à la section 6.1, en commentant brièvement sur le choix entre les méthodes de domaine temporel et fréquentiel pour la réalisation des calculs pour le problème des EMRIs.

Dans la section 6.2, nous formulons le problème de la force propre scalaire dans un espace-temps de trou noir que ne tourne pas, avec tous les détails mathématiques. En particulier, la particule en mouvement possède ici une charge scalaire due à un champ scalaire que ne rétroactionne pas sur la géométrie (c'est-à-dire que le fonde reste xe). Nous commentons la procédure de régularisation des sommes des modes largement utilisée pour concevoir une implémentation numérique.

Ensuite, dans la section 6.3, nous discutons de la méthode PwP, une méthode de collocation pseudospectrale précédemment utilisée pour le calcul de la force propre scalaire dans le domaine temporel. L'idée est de décomposer les quantités en combinaisons linéaires de fonctions de Heaviside (supportées, dans ce cas, aux rayons intérieurs et extérieurs par rapport à l'orbite de la particule), en transformant les équations du champ avec sources distributionnelles en systèmes d'équations homogènes (loin de la particule) complétées par des conditions de « saut » (aux limites) que les connecte (à l'emplacement de la particule).

Dans la section 6.4, nous présentons la formulation dans le domaine fréquentiel du problème de la force propre scalaire, y compris les conditions de limite et de saut appropriées.

En n, dans la section 6.5, nous discutons dans les grandes lignes de notre implémentation numérique en utilisant une compacti cation hyperbolique et une division en plusieurs domaines des grilles de calcul, en omettant une grande partie des détails techniques. Nous présentons également quelques résultats sur des orbites circulaires, avec des travaux sur des orbites excentriques en cours.

Introduction

The computation of the self-force and waveforms, and any other physical relevant information related to the inspiral due to radiation reaction constitute the main challenge of the EMRI problem. One possible strategy is to resort to analytic techniques by adding extra approximations to the problem, similar to those from post-Newtonian methods. However, the results may not be applicable to situations of physical relevance involving highly spinning MBHs and very eccentric orbits. To make computations without making further simpli cations of the problem, numerical techniques appear to be a necessary tool.

Broadly speaking, one faces a choice in how to proceed between frequency-domain and time-domain calculations. The frequency domain approach has been used for a long time; it provides accurate results for the computation of quasinormal modes and frequencies [START_REF] Chandrasekhar | The quasi-normal modes of the Schwarzschild black hole[END_REF][START_REF] Vishveshwara | Stability of the Schwarzschild Metric[END_REF]]. However, this approach encounters greater di culties when one is interested in computing the waves originated from highly eccentric orbits since one has to sum over a large number of modes to obtain a good accuracy. In this sense, calculations in the time-domain can be better adapted for obtaining accurate waveforms for the physical situations of relevance. Nevertheless, overall, time-domain methods can be much slower than working in the frequency domain.

Chapter 6. A Frequency-Domain Implementation of the PwP Approach to EMRIs

We consider in this chapter a frequency-domain implementation of a simpli ed EMRI model, corresponding to a charged scalar particle orbiting a non-rotating MBH. There is in this case no (gravitational) backreaction upon the background geometry (which therefore remains xed). This o ers a very useful setting to test di erent numerical implementations, with a view towards using those which prove most successful in the full gravitational self-force problem.

The method that we use here, and which has been developed in the past in the time domain, is called the Particle-without-Particle (PwP) method [START_REF] Canizares | Extreme-Mass-Ratio Inspirals[END_REF]Canizares and Sopuerta 2009a, 2014, 2011a,b;[START_REF] Canizares | Pseudospectral collocation methods for the computation of the self-force on a charged particle: Generic orbits around a Schwarzschild black hole[END_REF][START_REF] Jaramillo | Are time-domain self-force calculations contaminated by Jost solutions?[END_REF]. The basic idea is to split the computational domain into two (or more) disjoint regions whereby any non-singular quantity Q is decomposed as

Q = Q -Θ - p + Q + Θ + p , where Θ ± p = Θ(±(r -r p ))
is the Heaviside step function with the step at the particle's radial location r p . Quantities that are not continuous will have jumps across the SCO trajectory, which we denote by [Q] p = lim r→rp(t) (Q + -Q -). In this setup then, any di erential equation with a singular (distributional) source is e ectively replaced with homogeneous equations to the left and right of the SCO, subject to certain jump conditions across it. See also Appendix B.

The scalar self-force

In our simpli ed EMRI model, the SCO is represented as a scalar particle, i.e. a body the charge distribution of which has support only on its (timelike) worldline C , parametrized by z a (τ ), with a charge q associated to a scalar eld Φ; meanwhile, the MBH is described by a xed Schwarzschind-Droste spacetime ( M , g, ∇), i.e. a background not a ected by the charged particle, with the following metric metric (for more details, see Section 3.3):

gab dx a dx b = -f dt 2 + f -1 dr 2 + r 2 dΩ 2 (6.2.1) = f -dt 2 + dr 2 * + r 2 dΩ 2 , (6.2.2)
where f (r) = 1 -2M/r, dΩ 2 = dθ 2 + sin 2 θdϕ 2 is the two-sphere line element and r * = r + 2M ln(r/2M -1) is the so-called radial tortoise coordinate.

The dynamics are in this case determined by the following action: (6.2.3) where u = ż is the particle four-velocity and m is its (time-dependent) "mass". The rst term is the kinetic term for the scalar eld, the one proportional to m is the standard geodesic action for the particle, and the one proportional to q is a coupling between the eld and the particle motion-leading to nontrivial sources in both the eld equation and equation of motion.

S [Φ, z] = ˆ M ∇Φ • ∇Φ + ˆC dτ δ 4 (x -z(τ )) m 2 u • u + qΦ ,
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The scalar eld satis es the following wave-like equation, obtained by extremizing the action (6.2.3) with respect to Φ (see, e.g. [START_REF] Poisson | The Motion of Point Particles in Curved Spacetime[END_REF]): (6.2.4) where ˚ = ∇a ∇a is the wave operator.

˚ Φ(x) = -4πq ˆC dτ δ 4 (x -z(τ )) ,
The eld equation (6.2.4) has to be complemented with the equation of motion for the scalar charged particle, obtained by extremizing the action (6.2.3) with respect to z:

∇ u (mu a ) = F a = qg ab ∇b Φ C , (6.2.5)
The coupled set of equations formed by the PDE for the scalar eld (6.2.4) and the ODE for the particle trajectory (6.2.5) constitute our testbed model for an EMRI. The SCO generates (sources) a scalar eld according to (6.2.4), which in turn a ects to the SCO motion according to (6.2.5), that is, through the action of a local self-force F a . This mechanism is the (scalar) analogue of the gravitational backreaction mechanism that produces the inspiral via the gravitational self-force. Now, the retarded solution of (6.2.4) is singular at the particle location, while the force in Eq. (6.2.5) involves the gradient of the eld evaluated at the particle location. Therefore, as they stand, Eqs. (6.2.4) and (6.2.5) are formal equations that require an appropriate regularization to become fully meaningful. Following [START_REF] Detweiler | Self-force via a Green's function decomposition[END_REF], the retarded eld can be split into two parts: a singular piece, Φ S , which contains the singular structure of the eld and satis es the same wave equation as the retarded eld, i.e. Eq. (6.2.4), and a regular part, Φ R , that satis es the homogeneous equation associated with Eq. (6.2.4). As it turns out, Φ R is regular and di erentiable at the particle position and is solely responsible for the scalar self-force [START_REF] Detweiler | Self-force via a Green's function decomposition[END_REF]. We can therefore write

F a R = qg ab ∇b Φ R C , (6.2.6)
which gives a de nite sense to the equations of motion of the system. We can solve the eld equation (6.2.4) by expanding the scalar eld in (scalar) spherical harmonics:

Φ = ∞ =0 m=- Φ m (t, r)Y m (θ, ϕ) .
(6.2.7)

The equations for each harmonic mode, Φ m (t, r), are decoupled from the rest and take the form of the following (1 + 1)-dimensional wave equation for ψ m = rΦ m : (6.2.8) where (6.2.9) is the Regge-Wheeler potential for scalar (spin-zero) elds on the Schwarzschild-Droste geometry, and

-∂ 2 t + ∂ 2 r * -V (r) ψ m = S m δ(r -r p (t)) ,
V (r) = f (r) ( + 1) r 2 + 2M r 3 ,
S m = - 4πqf p r p u t Ȳ m π 2 , ϕ p (t) , (6.2.10)
is the coe cient of the singular source term due to the presence of the particle, f p = f (r p ), and the bar denotes complex conjugation. Here we have assumed, without loss of generality, that the particle's orbit takes place in the equatorial plane θ = π/2. Moreover, r p and ϕ p denote the radial and azimuthal coordinates of the particle, and are functions of the coordinate time t.

The expansion in spherical harmonics is also very useful to construct the regular eld, Φ R . Indeed, it turns out that each harmonic mode of the retarded eld, Φ m (t, r), is nite and continuous at the location of the particle; it is the sum over what diverges there.

Here, the mode-sum regularization scheme [START_REF] Barack | Calculating the gravitational self force in Schwarzschild spacetime[END_REF]Barack andOri 2000, 2002] comes into play: it provides analytic expressions for the singular part of each -mode of the retarded eld. These expressions for the singular eld are valid only near the particle location. The regularized self-force is thus obtained by computing numerically each harmonic mode of the self-force and subtracting the singular part provided by the mode-sum scheme.

The regular part of the gradient of the eld, which in coordinates x α we denote simply as .2.11) where (6.2.12) and the structure of the singular eld can can be written as:

∇ α Φ R ≡ Φ R α , is given by Φ R a (z(τ )) = lim x µ →z µ (τ ) ∞ =0 Φ α (x µ ) -Φ S, α (x µ ) . ( 6 
Φ α (x µ ) = m=- ∇ α (Φ m (t, r)Y m (θ, ϕ)) ,
Φ S, α = q + 1 2 A α + B α + C α + 1 2 + D α ( -1 2 )( + 3 2 ) + . . . . (6.2.13)
The expressions for the regularization parameters A α , B α , C α , and D α , can be found in the literature for generic orbits [Barack and Ori 2002;[START_REF] Haas | Mode-sum regularization of the scalar self-force: Formulation in terms of a tetrad decomposition of the singular eld[END_REF][START_REF] Kim | Radiation reaction in curved spacetime[END_REF]Kim , 2004]]. They do not depend on , but on the trajectory of the particle. The three rst coe cients of (6.2.13) are responsible for the divergences, whereas the remaining terms converge to zero once they are summed over . The expressions for the regularization parameters that F 6.1. Schematic representation of the PwP formulation. The eld equations with singular source terms become homogeneous equations at each side of the particle worldline together with a set of jump conditions to communicate their solutions.

we use in this chapter are listed in the Appendix of [START_REF] Canizares | Pseudospectral collocation methods for the computation of the self-force on a charged particle: Generic orbits around a Schwarzschild black hole[END_REF].

The Particle-without-Particle method

The full retarded solution has to be found numerically and hence, it is very convenient to formulate the equations so that we obtain smooth solutions. However, the presence of singularities in Eqs. (6.2.8) makes the task di cult in principle. To overcome these problems, the Particle-without-Particle (PwP) method [START_REF] Canizares | Extreme-Mass-Ratio Inspirals[END_REF]Sopuerta 2009a,b, 2011b;[START_REF] Canizares | Pseudospectral collocation methods for the computation of the self-force on a charged particle: Generic orbits around a Schwarzschild black hole[END_REF] splits the computational domain (in the (t, r) space) into two disjoin regions (see Fig. 6.1): Region R -to the left of the SCO trajectory (r < r p (t)) and region R + to the right (r > r p (t)). Then, any non-singular quantity Q(t, r) admits a decomposition (6.3.1) where Θ - p ≡ Θ(r p -r) and Θ + p ≡ Θ(r -r p ), and Θ is the Heaviside step function. Quantities that are not continuous will have jumps across the SCO trajectory. The jump in a quantity Q is a time-only dependent quantity de ned as:

Q = Q -Θ - p + Q + Θ + p ,
[Q](t) = lim r→rp(t) (Q + (t, r)- Q -(t, r)) ≡ [Q] p .
Chapter 6. A Frequency-Domain Implementation of the PwP Approach to EMRIs Applying the PwP formulation to the scalar equation (6.2.8), i.e. introducing (6.3.2) it transforms into homogeneous equations (with no matter source terms) at each region

ψ m = ψ m -Θ - p + ψ m + Θ + p ,
R ± : -∂ 2 t + ∂ 2 r * -V (r) ψ m ± = 0 , (6.3.3)
plus a set of jump conditions on ψ m ± and ∂ r * ψ m ± , which read: (6.3.5) In summary, at each region we have equations without the singular terms induced by the SCO. Then, since these equations are strongly hyperbolic, we obtain smooth solutions. Finally, the SCO appears in the communication between the two regions by enforcing the jump conditions. The spherical symmetry of the MBH background leads to jumps only in time and radial derivatives. For instance, for rst order derivatives we nd:

ψ m p = 0 , (6.3.4) ∂ r * ψ m ± p = S m (1 -( ṙ2 * ) p )f p ≡ J m .
[∂ t Q m ] p = d[Q m ] p /dt -ṙp [∂ r Q m ] p ;
the same happens for derivatives of higher order. In particular, we get

∂ t ψ m p = - ( ṙ * ) p S m (1 -( ṙ2 * ) p )f p .
(6.3.6)

Frequency domain analysis

We now turn the analysis to the frequency domain. We Fourier decompose our solution:

ψ m ± (ω, r) = 1 √ 2π
ˆR dt e iωt ψ m ± (t, r) , (6.4.1)

ψ m ± (t, r) = 1 √ 2π ˆR dω e -iωt ψ m ± (ω, r) . (6.4.2)
In this work we are interested only on bounded trajectories around the MBH, i.e. trajectories such that the SCO radial coordinate ranges over a nite interval neither crossing the event horizon nor escaping to spatial in nity [START_REF] Wilkins | Bound Geodesics in the Kerr Metric[END_REF]]. In that case, the motion in the radial coordinate is periodic and as a consequence, the jump of Eq. (6.3.5), can be expanded as a discrete Fourier series:

∂ r * ψ m p (t) = n=+∞ n=-∞
c mn e -iω n m t , (6.4.3)

with ω mn = nω r + mω ϕ ≡ ω nm , (6.4.4)

where ω r and ω ϕ are the frequencies associated with the radial motion (going from periapsis to apoapsis and back) and the azimuthal motion (going 2π around the polar axis), respectively. We only need to sum over n because the only dependence of the jump on the ω ϕ frequency comes from the spherical harmonics, in the term exp{-imϕ p (t)} [see Eqs. (6.3.4)-(6.3.5) and (6.2.10)]. Since we have bounded orbits, we can expand the elds ψ m ± in discrete Fourier series as (6.4.5) This leads to ODEs for the components of the series, that is, for the functions R mn (r)1 . These are [from Eq. (6.3.3)]:

ψ m ± (t, r) = e -imωϕt +∞ n=-∞ e -inωrt R ± mn (r) .
d 2 dr 2 * -V (r) + ω 2 nm R ± mn = 0 . (6.4.6)
To complete the problem, we need boundary conditions. In this case the boundary conditions have to be prescribed both at the horizon (r * → -∞) and at spatial in nity (r * → +∞). The condition at spatial in nity is that the eld has to be purely outgoing: (6.4.7) and at the horizon it has also be outgoing (ingoing from the point of view of spatial in nity): (6.4.12) Note that for circular orbits, these reduce to [R mn ] p = 0 and [dR mn /dr * ] p = c mn respectively, where c mn [determined from Eq. (6.3.5)] are just the Fourier components of the jump in the gradient of the scalar eld at the particle location.

(∂ t + ∂ r * ) ψ m + r * →+∞ = 0 ,
(∂ t -∂ r * ) ψ m -r * →-∞ = 0 . ( 6 

Numerical implementation and results

Now, let us discuss the strategy to solve the set of equations (6.4.6), (6.4.9), (6.4.10), and (6.4.11). We o er here only an outline of our procedure and omit entering fully into the technicalities.

The rst ingredient we consider is the type of grid and how many domains would be adequate to use. The tortoise coordinate has an unbounded range, r * ∈ (-∞, +∞), and hence we either truncate the physical domain or we use some di erent coordinate system in which we cover the horizon and spatial in nity with a coordinate with a nite range. The rst option is the most widely used solution in many problems. The drawback of this choice is that if we still use the same boundary conditions, Eqs. (6.4.7) and (6.4.8), we are making an error since these boundary conditions are not exact at a nite value of r * . Of course, the error made will depend on how far from the particle location we truncate the domain. In a time-domain setup we can always choose the truncation locations in such a way that the boundaries remain out of causal contact with the particle, avoiding the contamination of the solution around the particle from the boundaries. But in the frequency domain we are solving elliptic equations, which care about the boundaries. A possible solution is to obtain precise boundary conditions from an expansion of our equation near the horizon and spatial in nity (see [START_REF] Barack | Frequency-domain calculation of the self force: The High-frequency problem and its resolution[END_REF]).

However, here we are going to use the second option, that is, to use a compacti ed coordinate so that both the horizon and spatial in nity are located at nite values of the new coordinate. We are not going to use just a compacti cation of the radial coordinate, as this would solve the problem of the boundary conditions but would create another problem, namely that many cycles of the radiation would accumulate near the boundaries and it would not be possible to resolve them appropriately. A solution to this is to use a hyperboloidal compacti cation [START_REF] Zenginoglu | Hyperboloidal layers for hyperbolic equations on unbounded domains[END_REF]], where we also change the time coordinate (the slicing of the spacetime in t = const. hypersurfaces) so that we avoid the problem just mentioned, since in the new slicing we will only have a few number of cycles in such a way that they can be resolvable numerically with a reasonable amount of computational resources. In particular, we follow essentially the method of [START_REF] Zenginoglu | Hyperboloidal layers for hyperbolic equations on unbounded domains[END_REF]], with a multidomain splitting of our computational grid so that the hyperboloidal compacti cation is applied only to suitable boundary regions (extending from a certain point to the horizon and spatial in nity respectively).

In the frequency-domain, as we have seen, the -harmonics of the SF are found by decomposing the retarded eld in a Fourier series with indices ( , m, ω) (where the frequency ω in the case of bounded orbits can be labeled by m and an integer n, ω ≡ ω mn ). Then, summing over ω and m (i.e., over m and n in the case of bounded orbits) we obtain the di erent -harmonics of the SF. The main advantage, as discussed, is that the computation involves only ODEs. The drawback, however, is that it was found that for the case of eccentric orbits, the sum over ω (n) has bad convergence properties as a consequence of the discontinuities at the particle location. In practice, the problem is analogous to the well-known Gibbs phenomenon that arises in standard Fourier analysis. In [START_REF] Barack | Frequency-domain calculation of the self force: The High-frequency problem and its resolution[END_REF], a solution to this problem was proposed; the key point of the method was to use the homogeneous solutions to construct the modes of the SF instead of the inhomogeneous ones, and hence was named the method of extended homogeneous solutions. The method leads to spectral convergence to the value of the SF modes.

Our implementation of a frequency-domain solver for the SF modes follows very close lines to the method of extended homogeneous solutions of [START_REF] Barack | Frequency-domain calculation of the self force: The High-frequency problem and its resolution[END_REF]. Indeed, the PwP already works with homogeneous solutions since it eliminates the explicit presence of the particle in the equations by moving it to the boundary conditions across the interface between two domains (the method is designed in such a way that the particle is always located at the interface, even for eccentric orbits), i.e. the jump conditions. However, the method we will develop here has some di erences with the method of extended homogeneous solutions. First of all, we use a multidomain splitting with a hyperboloidal compacti cation. But we are going to introduce the following modication from previous implementations of the PwP: Instead of using complementary domains as has always been done until now (including in the time domain Only in the circular case the two setups, the one based on disjoint regions as in Figure 6.1 and the one based on the regions D ± , coincide in the sense that there is no intersection (or just a point, the particle location).

Then, we proceed by solving for the R ± mn with arbitrary Dirichlet boundary conditions at the pericenter and apocenter respectively, (6.5.1) for some free (non-zero) choice of λ ± . Let us call the solutions thus obtained R± mn on D ± . Now the question is how, from these solutions (with the particular boundary conditions that we have used), we can nd the solutions that we are actually interested in (taking into account the presence of the particle). Here we are going to take advantage of the linearity of our problem. Given the solutions R± mn of the problem described above, i.e. for a single Fourier mode, with boundary conditions (6.5.1), the solution for our actual problem (i.e. including the particle) will be:

R ± mn (r peri/apo * ) = λ ± ,
R mn (r) =      C - mn R- mn (r) if r < r p (t) , C + mn R+ mn (r) if r > r p (t) . (6.5.2)
where the coe cients C ± mn are constants to be determined. What allows us to do this is the linearity of the equations, since by multiplying the solutions R± mn of the two problems de ned on D ± by a constant, we obtain again a solution of the same equations, just with di erent boundary conditions than (6.5.1). The coe cients C ± mn are then determined uniquely by enforcing the jump conditions (6.4.11) and (6.4.12) across the particle location.

While our work on eccentric orbits is still in progress, we present some results on circular orbits, where the problem simpli es a bit as discussed (the D ± and R ± regions coincide). The results are obtained from codes developed either in Matlab or in Python, and are shown in Table 1.

T

1. Numerical values of the components of the gradient of the regularized eld (f r ) for circular orbits. Here, N is the number of collocation grid points used and max the highest -harmonic used in the summation. For reference, the values for a circular orbit at the last stable circular orbit (r = 6 M ) obtained, using frequency-domain methods, in Diaz-Rivera et al. 

Conclusions

Conclusion summary. The theory of general relativity has now withstood its rst century of existence, one at the end of which it has decisively opened the door to a new era in astronomy. The electromagnetic waves that once told us nearly everything we knew of the Universe beyond our Earth are now only one-albeit a still largely dominant-voice in the story. Gravitational waves have begun to tell their own story, the rst pages of which are being written as we speak.

In this thesis, we have investigated two-body gravitational systems in the strongeld-that is, fully general relativistic-and extreme-mass-ratio regime, known as extrememass-ratio inspirals. These are expected to be among the main and most interesting sources of the future space-based gravitational-wave detector LISA. Prospective observations of such systems will furnish us with a wealth of opportunities to probe strong gravity, as the complicated orbits of the inspiraling object (stellar-mass black hole or neutron star) will e ectively "map out" the gravitational eld around the more massive one (the massive black hole at a galactic center). The problem of modeling such systems to su cient accuracy-that is, for producing the theoretical waveform templates needed by LISA in its envisioned search for them-has witnessed signi cant progress over the last few decades, yet remains today an open one.

The understanding of this problem is intimately connected with concepts such as gravitational energy-momentum and mathematical techniques such as spacetime decompositions-for example, via canonical or quasilocal approaches-as well as perturbation theory. In the rst half of this thesis, we have developed in detail the basic methods needed for dealing with these. In the second half, we have presented our novel contributions in these areas, notably on the issues of entropy, motion and the self-force in general relativity.

In what follows, we summarize brie y the results obtained in this work. This then leads us into o ering some closing re ections on the broad conceptual issues that have historically been at the basis of the interpretation of general relativity. In view of the intrinsic dichotomy of the theory, as Einstein himself saw it, between "measuring rods and clocks [and] all other things", it is perhaps unsurprising that more subtle notions such as entropy, energy-momentum and the self-force continue to elude a clear consensus 196 Chapter 7. Conclusions among relativists to this day. Our contributions in this thesis have sought to o er some fresh perspectives on these basic issues.

Conclusions (conclusion summary translation in Catalan). La teoria de la relativitat general ha viscut ara el seu primer segle d'existència, un al nal del qual ha obert decisivament la porta a una nova era en l'astronomia. Les ones electromagnètiques que abans ens van dir gairebé tot el que sabíem de l'Univers fora de la nostra Terra són ara només una veu de la història. Les ones gravitacionals han començat a transmetre la seva pròpia història, les primeres pàgines de la qual estan sent escrites en aquests mateixos moments.

En aquesta tesi, hem investigat sistemes gravitacionals de dos cossos en el règim de camps forts -és a dir, en la teoria completa de la relativitat general -i raons de masses extremes (conegudes com a caigudes en espiral amb raó de masses extrema, EMRIs), que s'esperaven gurar entre les principals fonts del futur detector d'ones gravitacionals LISA, situada en l'espai. Les observacions possibles d'aquests sistemes ens proporcionaran una gran varietat d'oportunitats per provar la gravetat en el règim fort, ja que les òrbites complicades de l'objecte caient en espiral (un forat negre de massa estel•lar o una estrella de neutrons) realitzaran un "mapa" del camp gravitatori al voltant del masiu (un forat negre massiu d'un centre galàctic). El problema de modelar aquests sistemes amb una precisió su cient (és a dir, per produir les plantilles teòriques de formas d'onas necessàries per LISA en la seva cerca prevista) ha vist progressos signi catius durant les últimes dècades, encara que avui en dia queda obert.

La comprensió d'aquest problema està íntimament relacionada amb conceptes com ara l'energia i la quantitat de moviment gravitatòria, i tècniques matemàtiques com les descomposicions de l'espai-temps -per exemple, mitjançant enfocaments canònics o quasilocals -i també amb la teoria de pertorbacions. En la primera meitat d'aquesta tesi, hem desenvolupat en detall els mètodes bàsics necessaris per tractar-los. En la segona meitat, hem presentat les nostres contribucions en aquestes àrees, en particular sobre els temes de l'entropia, el moviment i la força pròpia en la relativitat general.

A continuació, resumim breument els resultats obtinguts en aquest treball. Això ens porta a oferir algunes re exions tancades sobre els grans temes conceptuals que històricament han estat a la base de la interpretació de la relativitat general. A la vista de la dicotomia intrínseca de la teoria, tal com ho va veure el mateix Einstein, entre "varetes i rellotges de mesurament [i] totes les altres coses", potser no és sorprenent que nocions més subtils com l'entropia, l'energia i la quantitat de moviment gravitatòria i la força pròpia actualment continuen eludint un consens clar entre els relativistes. Les nostres contribucions en aquesta tesi han buscat oferir algunes perspectives noves sobre aquests temes bàsics.

Conclusions (conclusion summary translation in French). La théorie de la relativité générale a maintenant traversé son premier siècle d'existence, à l'issue duquelle elle a ouvert de manière décisive la porte d'une nouvelle ère dans l'astronomie. Les ondes électromagnétiques qui nous disaient à peu près tout ce que nous savions de l'univers en dehors de notre Terre ne sont plus qu'une voix dans l'histoire, même si les di érents fréquences de la lumière restent le messager principal aujourd'hui. Les ondes gravitationnelles ont commencé à transmettre leur propre histoire, dont les premières pages sont tout de suite en cours d'écriture.

Dans cette thèse, nous avons étudié les systèmes gravitationnels à deux corps dans le régime des champs forts -c'est-à-dire, dans la théorie complète de la relativité générale -et les quotients extrêmes des masses (appelés inspirals avec quotients extrêmes des masses, EMRIs), qui devraient être parmi les principales sources du futur détecteur spatial d'ondes gravitationnelles LISA. Les observations prospectives de tels systèmes nous fourniront une grande variété de posibilités pour tester la gravité forte, car les orbites compliquées de l'objet spirallant (un trou noir à masse stellaire ou une étoile à neutrons) « cartographieront » e ectivement le champ gravitationnel autour du plus massif (un trou noir massif au centre galactique). Le problème de la modélisation de tels systèmes avec une précision su sante -c'est-à-dire pour la production des modèles de formes des ondes théoriques requis par LISA dans sa recherche envisagée -a connu des progrès signi catifs au cours des dernières décennies, mais reste aujourd'hui ouvert.

La compréhension de ce problème est intimement liée aux concepts tels que l'énergie et la quantité de mouvement gravitationnelles et les techniques mathématiques telles que les décompositions de l'espace-temps -par exemple, en usant des approches canoniques ou quasi-locales -ainsi que la théorie des perturbations. Dans la première partie de cette thèse, nous avons développé en détail les méthodes de base nécessaires pour y faire face. Dans la deuxième partie, nous avons présenté nos nouvelles contributions dans ces domaines, en particulier sur les problèmes de l'entropie, du mouvement et de la force propre dans la relativité générale.

Dans ce qui suit, nous résumons brièvement les résultats obtenus dans ce travail. Cela nous amène ensuite à proposer des ré exions nales sur les grandes questions conceptuelles qui ont toujours été à la base de l'interprétation de la relativité générale. Compte tenu de la dichotomie intrinsèque de la théorie, telle que l'a vue Einstein lui-même, entre "bâtonnets de mesure et horloges [et] tout le reste", il n'est peut-être pas surprenant que des notions plus subtiles telles que l'entropie, l'énergie et la quantité de mouvement gravitationnelles et la force propre continuent à éluder un consensus clair parmi les relativistes à ce jour. Nos contributions dans cette thèse ont cherché à o rir de nouvelles perspectives sur ces questions fondamentales.

* Chapter 7. Conclusions

We now o er a brief concluding summary of the novel contributions of this thesis. In Chapter 4, we have studied entropy theorems in classical mechanics and general relativity, with a focus on the gravitational two-body problem. In particular, we have proved that canonical theories of classical particles for certain classes of Hamiltonians, as well as of some typical matter (in particular, scalar and electromagnetic) elds in curved spacetime, do not admit any monotonically increasing function of phase space (along trajectories of the Hamiltonian ow). Thus, such theories preclude the existence of entropy in what we have referred to as a "mechanical" sense, i.e. as a phase space functional. We have then looked at why these proofs do not carry over to general relativity, which we do know to manifest the existence of entropy in such a sense. We have furthermore discussed another method of proof based on a topological argument, in particular, phase space compactness, and have investigated the meaning of these results for the gravitational two-body problem, in particular, by proving the non-compactness of the phase space of perturbed Schwarzschild-Droste spacetimes. In the absence today of a general formula for gravitational entropy, an understanding of why general relativity di ers from, for example, classical mechanics or Maxwellian electromagnetism in this sense can give helpful indications for future progress.

In Chapter 5, we have presented a novel derivation, based on conservation laws, of the basic equations of motion for the EMRI problem. They are formulated with the use of a quasilocal (rather than matter) stress-energy-momentum tensor-in particular, the Brown-York tensor-so as to capture gravitational e ects in the momentum ux of the object, including the gravitational self-force. Our formulation and resulting equations of motion are independent of the choice of the perturbative gauge. We have shown that, in addition to the usual gravitational self-force term, they also lead to an additional "selfpressure" force not found in previous analyses, and the e ects of which warrant further investigation. Our approach thus o ers a fresh geometrical picture from which to understand the self-force fundamentally, and potentially useful new avenues for computing it practically.

In Chapter 6, we have presented some numerical work based on the Particle-without-Particle (PwP) approach, a pseudospectral collocation method previously developed for the computation of the scalar self-force-a helpful testbed for the gravitational case. The basic idea of this method is to discretize the computational domain into two (or more) disjoint grids such that the "particle"-the distributional source in the eld equations of the self-force problem-is always at the interface between them; thus, one only needs to solve homogeneous equations in each domain, with the source e ectively replaced by jump (boundary) conditions thereon. Here we have presented some results on the numerical computation of the scalar self-force, using this method, for circular orbits in the frequency domain. Moreover, in Appendix B, we present a generalization of this method to general partial di erential equations with distributional sources, including also applications to other areas of applied mathematics. We generically obtain improved convergence rates relative to other implementations in these areas, typically relying on delta function approximations on the computational grid.

*

As we have seen, the EMRI problem is intimately connected with conceptual as well as technical questions regarding entropy, energy-momentum and motion in general relativity. It is remarkable that, despite the multiplicity of fruitful insights which have so far been achieved towards their understanding, relativists today continue to lack a clear, general consensus on the conceptual interpretation and, strictly speaking, even the formal mathematical expression of such notions.

These considerations naturally invite us to re ect back upon our discussion in the introduction, speci cally regarding the interpretation of general relativity and more generally the evolution of our ideas about gravitation in physics.

It may be argued that, with regard to the basic content of his theory, Einstein's key physical insight was to realize what sort of object it should be that the gravitational eld equations describe (in particular, the metric tensor of spacetime, or something like it), much more so, in a certain sense, than eventually obtaining the exact nal form of these equations-an e ort which relied essentially on mathematical reasoning and consistency with the Newtonian theory once the spacetime geometry was understood to be the basic object of study.

There is a simple gedankenexperiment that Einstein frequently used to illustrate how the local e ects of special relativity plus the requirement that physical laws be formulated in any coordinate frame of reference together logically imply that our spacetime must be, in general, globally curved. It is worthwhile to recount it here, from his 1921 lecture series [START_REF] Einstein | Four Lectures on the Theory of Relativity[END_REF]] (taken from [START_REF] Einstein | Four Lectures on the Theory of Relativity, Held at Princeton University in May 1921[END_REF]):

[Let K be an inertial coordinate system, with spatial Cartesian coordinates x, y, z.] Imagine a circle drawn about the origin in the [Cartesian] x y plane of [another coordinate system] K [the z axis of which coincides with the z axis of K], and a diameter of this circle. Imagine, further, that we have given a large number of rigid rods, all equal to each other. We suppose these laid in series along the periphery and the diameter of the circle, at rest relatively to K . If U is the number of these rods along the periphery, D the number along the diameter, then, if K does not rotate relatively to K we shall have U D = π .

But if K rotates we get a di erent result. Suppose that at a de nite time t, of K we determine the ends of all the rods. With respect to K all the rods upon the periphery experience the Lorentz contraction, but the rods upon the diameter do not experience this contraction (along their lengths!).* It therefore follows 200
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[...] Space and time, therefore, cannot be de ned with respect to K as they were in the special theory of relativity with respect to inertial systems. But, according to the principle of equivalence, K may also be considered as a system at rest, with respect to which there is a gravitational eld ( eld of centrifugal force, and force of Coriolis). We therefore arrive at the result: the gravitational eld in uences and even determines the metrical laws of the space-time continuum. If the laws of con guration of ideal rigid bodies are to be expressed geometrically, then in the presence of a gravitational eld the geometry is not Euclidean. ____________ * These considerations assume that the behavior of rods and clocks depends only upon velocities, and not upon accelerations, or, at least, that the in uence of acceleration does not counteract that of velocity.

Notwithstanding the elegant simplicity of the above argument in capturing the essence of the motivation for general relativity (that is, for devising a theory of gravitation in terms of spacetime geometry), Einstein was certainly aware that there is greater subtlety here than rst meets the eye. Referring in particular to special relativity, he writes in his Autobiographical Notes [START_REF] Einstein | Autobiographical Notes[END_REF]]:

One is struck [by the fact] that the theory (except for the four-dimensional space) introduces two kinds of physical things, i.e., (1) measuring rods and clocks, (2) all other things, e.g., the electro-magnetic eld, the material point, etc. This, in a certain sense, is inconsistent; strictly speaking measuring rods and clocks would have to be represented as solutions of the basic equations (objects consisting of moving atomic con gurations), not, as it were, as theoretically self-su cient entities. However, the procedure justi es itself because it was clear from the very beginning that the postulates of the theory are not strong enough to deduce from them su ciently complete equations for physical events su ciently free from arbitrariness, in order to base upon such a foundation a theory of measuring rods and clocks.

It would be fair to say that this basic dichotomy in the physical foundations of the theorybetween "measuring rods and clocks" and "all other things"-has never been fully resolved, at least not at the level that Einstein would have regarded as "su ciently complete" within this discussion. Nevertheless, this sort of "inherent contradiction" of general relativity, if one is inclined to regard it as such, is one which he certainly saw, at the very least, as a reasonable exchange for the Newtonian ones it has come to replace. With what Arthur Koestler might have called "sleepwalker's assurance", Einstein writes a few years after the discovery of general relativity [Einstein 1921] (English translation taken from [Goenner et al. 1999]):

The concept of the measuring-rod and the concept of the clock coordinated with it in the theory of relativity do not nd an exactly corresponding object in the real world [there are no perfectly rigid rods]. It is also clear that the solid body and clock do not play the role of irreducible elements in the conceptual edi ce of physics, but that of composite structures, which may not play any independent role in theoretical physics. But it is my conviction that in the present stage of development of theoretical physics these concepts must still be employed as independent concepts; for we are still far from possessing such certain knowledge of the theoretical foundations as to be able to give theoretical constructions of such structures.

Early in our introduction to this thesis, we brie y traced Johannes Kepler's struggle with the idea of the "force" governing planetary motion in his emerging vision of a clockwork universe. At that time, he could do no better than to visualize it as a sort of vortex, "a raging current which tears all the planets, and perhaps all the celestial ether, from West to East" [START_REF] Kepler | seu physica coelestis, tradita commentariis de motibus stellae Martis ex observationibus G.V. Tychonis Brahe[END_REF]] (from [START_REF] Koestler | The Sleepwalkers[END_REF]]); it took the arrival of Newton for this concept to encounter its rst clear formulation. Today, our technically-advanced struggle with the "self-force" and related concepts should not obscure the fact that we are still, to a large extent, following in the inertia of sleepwalking-not least evinced by the manifestly neo-Newtonian nomenclature to which we still stubbornly cling. We may take with a good dose of welcome encouragement Arthur Koestler's remark [START_REF] Koestler | The Sleepwalkers[END_REF]], no less resonant today than half a century ago, that "[t]he contemporary physicist grappling with the paradoxa of relativity and quantum mechanics will nd [in Kepler's own struggle] an echo of his perplexities".

and derivatives supported at an arbitrary number of points. Thus, one can use it on any type of (linear) PDE involving such sources.

Then in Sections B.4-B.7, we illustrate the application of this method, respectively, to rst-order hyperbolic problems (with applications in neuroscience), parabolic problems (with applications in nance), second-order hyperbolic problems (with applications in acoustics), and nally elliptic problems.

Section B.8 o ers some concluding remarks.

Partícula-sense-Partícula (appendix summary translation in Catalan). Aquest apèndix es basa en la publicació [Oltean, Sopuerta, et al. 2019].

Les equacions diferencials parcials amb fonts distributives -en particular, que impliquen (derivats de) distribucions delta -s'han tornat cada vegada més omnipresents en nombroses àrees de la física i les matemàtiques aplicades. Sovint és d'interès considerable obtenir solucions numèriques per a aquestes equacions, però qualsevol model de font singular (de tipus "partícula") introdueix invariablement obstacles computacionals no privats. Un mètode comú per evitar-les és mitjançant una forma d'aproximació de la funció delta a la graella computacional; no obstant això, sovint comporta limitacions importants en l'e ciència de les taxes de convergència numèrica, o, ns i tot, en la possibilitat de resoldre el problema en si mateix.

En aquest apèndix, presentem una tècnica alternativa per abordar aquestes equacions que evita completament el comportament singular: el mètode Partícula-sense-Partícula (Particle-without-Particle). Anteriorment introduïda en el context del problema de la força pròpia en la física gravitatòria, la idea és discretitzar el domini computacional en dues (o més) reixes disjuntes pseudospectrals (Chebyshev-Lobatto) de manera que la "partícula" sempre estigui a la interfície entre elles. Per tant, només cal resoldre equacions homogènies en cada domini, efectivament substituint la font per condicions de salt (de frontera). Aquí demostrem que aquest mètode produeix solucions a qualsevol equació diferencial parcial lineal la font de la qual és qualsevol combinació lineal de distribucions delta i derivats de les mateixes suportades en un subespai unidimensional del domini de la problema. A continuació, l'implementem per resoldre numèricament diverses equacions diferencials parcials rellevants amb aplicacions en neurociència, nances i acústica. Obtenim genèricament taxes de convergència millorades respecte a les implementacions anteriors típiques basades en aproximacions de la funció delta.

Després d'una introducció a la secció B.1 i d'alguns preliminaris matemàtics a la secció B.2, demostrem a la secció B.3 com es pot formular i aplicar el mètode Partícula-sense-Partícula a problemes amb la font de punt més general possible, és a dir, que conté un nombre arbitrari de funcions delta unidimensionals (linealment combinades) i derivades suportades en un nombre arbitrari de punts. Per tant, es pot utilitzar en qualsevol tipus d'equació diferencial parcial (lineal) que impliqui aquestes fonts.

A continuació, a les Seccions B.4-B.7, il•lustrem l'aplicació d'aquest mètode, respectivament, a problemes hiperbòlics de primer ordre (amb aplicacions en neurociència), problemes parabòlics (amb aplicacions en nances), problemes hiperbòlics de segon ordre (amb aplicacions en acústica) i, nalment, problemes el•líptics.

La secció B.8 ofereix algunes observacions nals.

Particule-sans-Particule (appendix summary translation in French). Cette annexe est basée sur la publication [Oltean, Sopuerta, et al. 2019].

Les équations aux dérivées partielles (EDP) avec sources distributionnelles -en particulier, impliquant (dérivées de) distributions delta -sont devenues de plus en plus omniprésentes dans de nombreux domaines de la physique et des mathématiques appliquées. Il est souvent d'un intérêt considérable d'obtenir des solutions numériques pour de telles équations, mais toute modélisation de source singulière (semblable à une « particule ») introduit invariablement des obstacles de calcul non triviaux. Une méthode possible pour les contourner consiste à utiliser une procédure d'approximation de la fonction delta sur la grille de calcul ; cependant, cela limite souvent considérablement l'e cacité des taux de convergence numérique, voire parfois même la posibilité de resoudre le problème.

Dans cette annexe, nous présentons une technique alternative pour traiter de telles équations, qui évite totalement le comportement singulier : la méthode Particule-sans-Particule (Particle-without-Particle, PwP). Auparavant introduite dans le contexte du problème de la force propre dans la physique gravitationnelle, l'idée est de discrétiser le domaine de calcul en deux (ou plus) grilles disjointes pseudospectraux (Chebyshev-Lobatto) de telle sorte que la « particule » soit toujours à l'interface entre eux ; il su t donc de résoudre des équations homogènes dans chaque domaine, la source étant e ectivement remplacée par des conditions de saut (aux limites). Nous montrons ici que cette méthode fournit des solutions à toute EDP linéaire dont la source est quelque combinaison linéaire de distributions delta et de leurs dérivées supportées sur un sous-espace unidimensionnel du domaine du problème. Nous l'implémentons ensuite pour résoudre numériquement divers types des EDP pertinentes dans les domaines des neurosciences, de la nance et de l'acoustique. Nous obtenons de manière générique des taux de convergence meilleurs par rapport aux implémentations passées typiques reposant sur des approximations de fonctions delta.

Après une introduction dans la section B.1 et quelques préliminaires mathématiques dans la section B.2, nous montrons à la section B.3 comment la méthode Particule-sans-Particule peut être formulée et appliquée aux problèmes avec la source « ponctuelle » la plus générale possible, c'est-à-dire contenant un nombre arbitraire de fonctions delta unidimensionnelles (combinées linéairement) et des dérivées avec support à un nombre arbitraire de points. Ainsi, on peut l'utiliser sur n'importe quel type d'EDP (linéaire) impliquant de telles sources.

Ensuite, dans les sections B.4 à B.7, nous illustrons l'application de cette méthode, respectivement, aux problèmes hyperboliques du premier ordre (avec applications dans la neuroscience), aux problèmes paraboliques (avec des applications dans la nance), aux problèmes hyperboliques du second ordre (avec applications dans l'acoustique) et en n des problèmes elliptiques.

La section B.8 propose quelques remarques de conclusion.

B.1. Introduction

Mathematical models often have to resort-be it out of expediency or mere ignoranceto deliberately idealized descriptions of their contents. A common idealization across different elds of applied mathematics is the use of the Dirac delta distribution, often simply referred to as the delta "function", for the purpose of describing highly localized phenomena: that is to say, phenomena the length scale of which is signi cantly smaller, in some suitable sense, than that of the problem into which they gure, and the (possibly complicated) internal structure of which can thus be safely (or safely enough) ignored in favour of a simple "point-like" cartoon. Canonical examples of this from physics are notions such as "point masses" in gravitation or "point charges" in electromagnetism.

Yet, despite their potentially powerful conceptual simpli cations, introducing distributions into any mathematical model is something that must be handled with great technical care. In particular, let us suppose that our problem of interest has the very general form

Lu = S in U ⊆ R n , (B.1.1)
where L is an n-dimensional (partial, if n > 1) di erential operator (of arbitrary order m), u is a quantity to be solved for (a function, a tensor etc.) and we assume that S-the "source"-is distributional in nature, i.e. we have S : D(U ) → R, where we use the common notation D(U ) to refer to the set of smooth compactly-supported functions, i.e. "test functions", on U . It follows, therefore, that u-if it exists-must also be distributional in nature. So strictly speaking, from the point of view of the classic theory of distributions [START_REF] Schwartz | Théorie des distributions[END_REF]], the problem (B.1.1) is only well-de ned-and hence may admit distributional solutions u-provided that L is linear1 . The problem with a nonlinear L is essentially that, classically, products of distributions do not make sense [START_REF] Schwartz | Sur l'impossibilité de la multiplication des distributions[END_REF]]. While there has certainly been work by mathematicians aiming to generalize the theory of distributions so as to accommodate this possibility [START_REF] Bottazzi | Grid functions of nonstandard analysis in the theory of distributions and in partial di erential equations[END_REF][START_REF] Colombeau | Nonlinear Generalized Functions: their origin, some developments and recent advances[END_REF][START_REF] Li | A review on the products of distributions[END_REF], in the standard setting we are only really allowed to talk of linear problems of the form (B.1.1). Opportunely, very many of the typical problems in physics and applied mathematics involving distributions take precisely this form.

The inspiration for considering (B.1.1) in general in this appendix actually comes from a setting where one does, in fact, encounter non-linearities a priori: namely, gravitational physics. (For a general discussion regarding the treatment of distributions therein, see [START_REF] Geroch | Strings and other distributional sources in general relativity[END_REF].) In particular, equations such as (B.1.1) arise when attempting to describe the backreaction of a body with a "small" mass upon the spacetime through which it moves-known as its self-force [Blanchet et al. 2011;[START_REF] Detweiler | Self-force via a Green's function decomposition[END_REF]Gralla andWald 2011, 2008;[START_REF] Mino | Gravitational radiation reaction to a particle motion[END_REF][START_REF] Poisson | The Motion of Point Particles in Curved Spacetime[END_REF]Pound 2015b;[START_REF] Quinn | Axiomatic approach to electromagnetic and gravitational radiation reaction of particles in curved spacetime[END_REF][START_REF] Spallicci | Self-force driven motion in curved spacetime[END_REF][START_REF] Wardell | Self-force: Computational Strategies[END_REF]]. (A similar version of this problem exists in electromagnetism, where a "small" charge backreacts upon the electromagnetic eld that determines its motion [START_REF] Barut | Electrodynamics and Classical Theory of Fields and Particles[END_REF][START_REF] Dewitt | Radiation damping in a gravitational eld[END_REF][START_REF] Dirac | Classical Theory of Radiating Electrons[END_REF][START_REF] Poisson | The Motion of Point Particles in Curved Spacetime[END_REF]].) In the full Einstein equations of general relativity, which can be regarded as having the schematic form (B.1.1) with u describing the gravitational eld (that is, the spacetime geometry, in the form of the metric) and S denoting the matter source (the stress-energy-momentum tensor), L is a nonlinear operator. Nevertheless, for a distributional S (representing the "small" mass as a "point particle" source) one can legitimately seek solutions to a linearized version of (B.1.1) in the context of perturbation theory, i.e. at rst order in an expansion of L in the mass. The detailed problem, in this case, turns out to be highly complex, and in practice, u must be computed numerically. The motivation for this, we may add, is not just out of purely theoretical or foundational concern-the calculation of the self-force is also of signi cant applicational value for gravitational wave astronomy. To wit, it will in fact be indispensable for generating accurate enough waveform templates for future space-based gravitational wave detectors such as LISA [START_REF] Amaro-Seoane | Laser Interferometer Space Antenna[END_REF], 2013] vis-à-vis extreme-mass-ratio binary systems, which are expected to be among the most fruitful sources thereof. For these reasons, having at our disposal a practical and e cient numerical method for handling equations of the form (B.1.1) is of consequential interest.

What is more, these sorts of partial di erential equations (PDEs) arise frequently in other elds as well; indeed, (B.1.1) can adequately characterize quite a wide variety of (linear) mathematical phenomena assumed to be driven by "localized sources". A few examples, which we will consider one by one in di erent sections of this appendix, are the following:

(i) First-order hyperbolic PDEs: in neuroscience, advection-type PDEs with a delta function source can be used in the modeling of neural populations [START_REF] Cáceres | Analysis of nonlinear noisy integrate & re neuron models: blow-up and steady states[END_REF][START_REF] Cáceres | Blow-up, steady states and long time behaviour of excitatory-inhibitory nonlinear neuron models[END_REF][START_REF] Casti | A population study of integrate-and-re-or-burst neurons[END_REF][START_REF] Haskell | Population density methods for large-scale modelling of neuronal networks with realistic synaptic kinetics: cutting the dimension down to size[END_REF] ], which we will brie y comment upon. (iv) Elliptic PDEs: Finally, we will look at a simple Poisson equation with a singular source [START_REF] Tornberg | Numerical approximations of singular source terms in di erential equations[END_REF]; such equations can describe, for example, the potential produced by a very localized charge in electrostatics.

B.1.1. Scope of this work. The purpose of this work is to explicate and generalize a practical method for numerically solving equations like (B.1.1), as well as to illustrate its broad applicability to the various problems listed in (i)-(iv) above. Previously implemented with success only in the speci c context of the self-force problem [START_REF] Canizares | Extreme-Mass-Ratio Inspirals[END_REF]Canizares and Sopuerta 2009a, 2014, 2011a,b;[START_REF] Canizares | Pseudospectral collocation methods for the computation of the self-force on a charged particle: Generic orbits around a Schwarzschild black hole[END_REF][START_REF] Jaramillo | Are time-domain self-force calculations contaminated by Jost solutions?[END_REF][START_REF] Oltean | A frequency-domain implementation of the particle-without-particle approach to EMRIs[END_REF]], we dub it the "Particlewithout-Particle" (PwP) method. (Other methods for the computation of the self-force have also been developed based on matching the properties of the solutions on the sides of the delta distributions-see, e.g., the indirect (source-free) integration method of [START_REF] Aoudia | Source-free integration method for black hole perturbations and self-force computation: Radial fall[END_REF][START_REF] Ritter | Indirect (source-free) integration method. I. Wave-forms from geodesic generic orbits of EMRIs[END_REF][START_REF] Armano | Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Path nder Results[END_REF][START_REF] Ritter | A fourth-order indirect integration method for black hole perturbations: even modes[END_REF]A. D. A. M. Spallicci and Ritter 2014;[START_REF] Spallicci | Towards a Self-consistent Orbital Evolution for EMRIs[END_REF].) The basic idea of the PwP approach is the following: One begins by writing u as a sum of distributions each of which has support outside (plus, if necessary, at the location of) the points where S is supported; one then solves the equations for each of these pieces of u and nally matches them in such a way that their sum satis es the original problem (B.1.1). In fact, as we shall soon elaborate upon, this approach will not work in general for all possible problems of the form (B.1.1). However, we will prove that it will always work if, rather than the source being a distribution de ned on all of U , we have instead S : D(I ) → R with I ⊆ R representing a one-dimensional subspace of U .

To make things more concrete, let us brie y describe this procedure using the simplest possible example: let f : U → R be an arbitrary given function and suppose S = f δ where δ : D(I ) → R is the delta function supported at some point x p ∈ I . Then, to solve (B.1.1), one would assume the decomposition (or "ansatz") u = u -Θ -+ u + Θ + with Θ ± : D(I ) → R denoting appropriately de ned Heaviside distributions (supported to the right/left of x p , respectively), and u ± : U → R being simple functions (not distributions) to be solved for. Inserting such a decomposition for u into (B.1.1), one obtains homogeneous equations Lu ± = 0 on the appropriate domains, supplemented by the necessary boundary conditions (BCs) for these equations at x p ∈ I , explicitly determined by f . Generically, the latter arise in the form of relations between the limits of u -and u + (and/or the derivatives thereof) at x p , and for this reason are called "jump conditions" (JCs). E ectively, the latter completely replace the "point" source S in the original problem, now simply reduced to solving sourceless equations-hence the nomenclature of the method.

While in principle one can certainly contemplate the adaptation of these ideas into a variety of established approaches for the numerical solution of PDEs, we will focus speci cally on their implementation through pseudospectral collocation (PSC) methods on Chebyshev-Lobatto (CL) grids. The principal advantages thereof lie in their typically very e cient (exponential) rates of numerical convergence as well as the ease of incorporating and modifying BCs (JCs) throughout the evolution. Indeed, PSC methods have enjoyed very good success in past work [START_REF] Canizares | Extreme-Mass-Ratio Inspirals[END_REF]Canizares and Sopuerta 2009a, 2014, 2011a,b;[START_REF] Canizares | Pseudospectral collocation methods for the computation of the self-force on a charged particle: Generic orbits around a Schwarzschild black hole[END_REF][START_REF] Jaramillo | Are time-domain self-force calculations contaminated by Jost solutions?[END_REF][START_REF] Oltean | A frequency-domain implementation of the particle-without-particle approach to EMRIs[END_REF]] on the PwP approach for self-force calculations (and in gravitational physics more generally [START_REF] Grandclément | Spectral Methods for Numerical Relativity[END_REF], including arbitrary precision implementations [Santos-Oliván and Sopuerta 2018]), and so we shall not deviate very much from this recipe in the models considered in this appendix. Essentially the main di erence will be that here, instead of the method of lines which featured in most of the past PwP self-force work, we will for the most part carry out the time evolution using the simplest rst-order forward nite di erence scheme; we do this, on the one hand, so that we may illustrate the principle of the method explicitly in a very elementary way without too many technical complications, and on the other, to show how well it can work even with such basic tactics. Depending on the level of accuracy and computational e ciency required for any realistic application, these procedures can naturally be complexi ed (to higher order, more domains, more complicated domain compacti cations etc.) for properly dealing with the sophistication of the problem at hand.

To summarize, past work using the PwP method only solved a speci c form of Eq. (B.1.1) pertinent to the self-force problem: that is, with a particular choice of L and S (upon which we will comment more later). It did not consider the question of the extent to which the idea of the method could be useful in general for solving distributionallysourced PDEs. These appear, as enumerated above, in many other elds of study-and we submit that a method such as this would be of valuable bene t to researchers working therein. The novelty of the present work will thus be to formulate a completely general PwP method for any distributionally-sourced (linear) problem of the form (B.1.1) with the single limiting condition that supp(S) ⊂ I ⊆ U where dim(I ) = 1. We will prove rigorously why and how the method works for such problems, and then we will implement it to obtain numerical solutions to the variety of di erent applications mentioned earlier in order to illustrate its broad practicability. We will see that, in general, this method either matches or improves upon the results of other methods existent in the literature for tackling distributionally-sourced PDEs-and we turn to a more detailed discussion of this topic in the next subsection.

B.1.2. Comparison with other methods in the literature. Across all areas of application, the most commonly encountered-and, perhaps, most naively suggestiblestrategy for numerically solving equations of the form (B.1.1) is to rely upon some sort of delta function approximation procedure on the computational grid [START_REF] Jung | A Note on the Spectral Collocation Approximation of Some Di erential Equations with Singular Source Terms[END_REF][START_REF] Jung | Collocation Methods for Hyperbolic Partial Di erential Equations with Singular Sources[END_REF][START_REF] Petersson | Discretizing singular point sources in hyperbolic wave propagation problems[END_REF][START_REF] Tornberg | Numerical approximations of singular source terms in di erential equations[END_REF]. For instance, the simplest imaginable choice in this vein is just a narrow hat function (centered at the point where the delta function is supported, and having total measure 1) which, for better accuracy, one can upgrade to higher-order polynomials, or even trigonometric functions. Another readily evocable possibility is to use a narrow Gaussian-and indeed, this is one option that has in fact been tried in self-force computations as well (see [START_REF] López-Alemán | Perturbative evolution of particle orbits around Kerr black holes: time-domain calculation[END_REF]], for example). However, this unavoidably introduces into the problem an additional, arti cial length scale: that is, the width of the Gaussian, which a priori need not have anything to do with the actual ("physical") length scale of the source. Moreover, there is the evident drawback that no matter how small this arti cial length scale is chosen, the solutions will never be well-resolved close to the distributional source location: there will always be some sort of Gibbs-type phenomenon2 there.

Methods for solving (B.1.1) which are closer in spirit to our PwP method have been explored in [START_REF] Field | Discontinuous Galerkin method for computing gravitational waveforms from extreme mass ratio binaries[END_REF]] and [START_REF] Shin | Spectral collocation and radial basis function methods for one-dimensional interface problems[END_REF]. In particular, both of these works have used the idea of placing the distributional source at the interface of computational grids-however, they tackle the numerical implementation di erently than we do.

In the case of [START_REF] Field | Discontinuous Galerkin method for computing gravitational waveforms from extreme mass ratio binaries[END_REF]]-which, incidentally, is also concerned with the selfforce problem-the di erence is that the authors use a discontinuous Galerkin method (rather than spectral methods, as in our PwP approach), and the e ect of the distributional source is accounted for via a modi cation of the numerical ux at the "particle" location. This relies essentially upon a weak formulation of the problem, wherein a choice has to be made about how to assign measures to the distributional terms over the relevant computational domains. In contrast, we directly solve only for smooth solutions supported away from the "particle" location, and account for the distributional source simply by imposing adequate boundary-i.e. jump-conditions there.

[ [START_REF] Shin | Spectral collocation and radial basis function methods for one-dimensional interface problems[END_REF]] is closer to our approach in this sense, as the authors there also use spectral methods and also account for the distributional source via jump conditions. However, the di erence with our method is that [START_REF] Shin | Spectral collocation and radial basis function methods for one-dimensional interface problems[END_REF]] treat these jump conditions as additional constraints (rather than built-in boundary conditions) for the smooth solutions away from the distributional source, thus over-determining the problem. That being the case, the authors are led to the need to de ne a functional (expressing how well the di erential equations plus the jump conditions are satis ed) to be minimizedconstituting what they refer to as a "least squares spectral collocation method". There is however no unique way to choose this functional. Moreover, the complication of introducing it is not at all necessary: our approach, in contrast, simply replaces the discretization of (the homogeneous version of) the di erential equations at the "particle" location with the corresponding jump conditions (i.e. it imposes the jump conditions as boundary conditions, by construction-something which PSC methods are precisely designed to be able to handle), leading to completely determined systems in all cases which are solved directly, without further complications.

Finally, neither [START_REF] Field | Discontinuous Galerkin method for computing gravitational waveforms from extreme mass ratio binaries[END_REF]] nor [START_REF] Shin | Spectral collocation and radial basis function methods for one-dimensional interface problems[END_REF] analyzed to any signi cant extent the conditions under which their methods might be applicable to more general distributionally-sourced PDEs. As mentioned, in the present appendix we will devote a careful proof entirely to this issue.

This appendix is structured as follows. Following some mathematical preliminaries in Section B.2, we prove in Section B.3 how the PwP method can be formulated and applied to problems with the most general possible "point" source S : D(I ) → R, that is, one containing an arbitrary number of (linearly combined) delta derivatives and supported at an arbitrary number of points in I . Thus, one can use it on any type of (linear) PDE involving such sources, which we illustrate with the applications listed in (i)-(iv) above in Sections B.4-B.7 respectively. Finally, we give concluding remarks in Section B.8.

B.2. Setup

We wish to begin by establishing some basic notation and then reviewing some pertinent properties of distributions that we will need to make use of later on. While we will certainly strive to maintain a fair level of mathematical rigour here and throughout this appendix (at least, insofar as a certain amount of formal precaution is inevitably necessary when dealing with distributions), our principal aim remains that of presenting practical methodologies; hence the word "distribution" may at times be liberally interchanged for "function" (e.g. we may say "delta function" instead of "delta distribution") and some notation possibly slightly abused, when the context is clear enough to not pose dangers for confusion.

B.2.1. Distributionally-sourced linear PDEs. Consider the problem (B.1.1) with S : D(I ) → R, where I ⊆ R is a one-dimensional subspace of U ⊆ R n , as discussed in the introduction. Then we can view U as a product space, U = I × V with V = U /I ⊆ R n-1 , and write coordinates on U as x = (x, y) with x ∈ I and y = (y 1 , . . . , y n-1 ) ∈ V , such that

f : U = I × V ⊆ R × R n-1 = R n → R
x = (x, y) = (x, y 1 , . . . , y n-1 ) → f (x) (B.2.1) denotes any arbitrary function on U . It is certainly possible, in the setup we are about to describe, to have V = ∅, i.e. problems involving just ODEs (on U = I ) of the form (B.1.1)-and, in fact, our rst elementary example illustrating the PwP method in the following section will be of such a kind. For the more involved numerical examples we will study in later sections, we will most often be dealing with functions of two variables, x ∈ I for "space" (or some other pertinent parameter) and t ∈ V ⊆ R for time.

For any function (B.2.1) involved in these problems, we will sometimes use the notation f = ∂ x f for the "spatial" derivative; also, we may employ ḟ = ∂ t f for the partial derivative with respect to time t when {t} is (a subspace of) V . Now, as in the introduction, let L be any general m-th order linear di erential operator. The sorts of PDEs (B.1.1) that we will be concerned with have the basic form

Lu = S = f δ (p) + gδ (p) + • • • , (B.2.2)
where f (x), g(x) etc. are "source" functions prescribed by the problem at hand, and we employ the convenient notation

δ (p) (x) = δ (x -x p (y)) (B.2.3)
to indicate the Dirac delta distribution on I centered at the "particle location" x p (y)-the functional form of which can be either speci ed a priori, or determined via some given prescription as the solution u itself is evolved. When there is no risk of confusion, we may sometimes omit the y dependence in our notation and simply write x p . In fact, our PwP method can even deal with multiple, say M , "particles". PwP computations of the self-force have actually only required M = 1 (there being only one "particle" involved in the problem), so the general M ≥ 1 case has not been considered up to now. Concordantly, to express our problem of interest (B.2.2) in the most general possible form, let us employ the typical PDE notation for "multi-indices" [START_REF] Evans | Partial Di erential Equations[END_REF]],

At zeroth order in derivatives of the Heaviside functions, i.e. the sum of all |β| = 0 terms in the LHS above, we will always simply obtain-in the absence of any Heaviside functions on the RHS-a set of M + 1 homogeneous equations, which constitute simply the original equation on each disjoint subset of I but with no source:

M i=0 |α|≤m ξ α D α u i Θ i = 0 ⇔ Lu i = 0 in D i × V , ∀i . (B.3.23)
At rst order and higher in the Heaviside derivatives (thus, zeroth order and higher in delta function derivatives), i.e. the sum of all |β| = 0 terms in the LHS of (B.3.22), we have terms of the form where for convenience we have de ned B.3.27) for some y-dependent functions H ij : V → R (related to F ij and G ij , and the precise form of which is also unimportant). At this point, one must be careful: before drawing conclusions regarding the equality of terms (the coe cients of the delta function derivatives) in (B.3.26), one should apply the identity (B.2.10). Doing this, one obtains: with the omitted summation limits as before. Thus, we see that on the LHS, we have terms involving 

D β Θ i = ∂ β 0 x ∂ β 1 y 1 • • • ∂ β n-1 y n-1        Θ - (p 1 ) , i = 0 , Θ + (p i ) -Θ + (p i+1 ) , 1 ≤ i ≤ M -1 , Θ + (p M ) , i = M , (B.3.24) = |β|-1 j=0        F 0j δ (j) (p 1 ) , i = 0 , F ij δ (j) (p i ) + G ij δ (j) (p i+1 ) , 1 ≤ i ≤ M -1 , F M j δ
Φ α,β,ij (x) = α β ξ α (x) F ij (y) D α-β u i (x) + H ij (y) D α-β u i-1 (x) , (
∂ j-k x Φ α,β,ij = ∂ j-k x α β ξ α F ij D α-β u i + H ij D α-β u i-1 (B.3.29) = α β F ij ∂ j-k x ξ α D α-β u i + H ij ∂ j-k x ξ α D α-β u i-1 (B.3.30) = α β j-k l=0 j -k l ∂ j-k-l x ξ α F ij ∂ l x D α-β u i + H ij ∂ l x D α-β u i-1 .
Ψ α,β,ijkl F ij ∂ l x D α-β u i p i + H ij ∂ l x D α-β u i-1 p i δ (k) (p i ) = i,j,k ψ ijk δ (k) (p i ) ,
(B.3.34) where the terms involving u i partials "at the particle" should be understood as the limit evaluated from the appropriate direction, i.e. Let us now extend this method to problems where the maximum order of delta function derivatives in the source equals or exceeds the order of the PDE, i.e. K ≥ m, a case not previously required-and hence not yet considered-in any of the past PwP work on the self-force. To do this, we just add to our ansatz the second term on the RHS of (B.3.1), which for convenience we denote u δ ; that is: (B.3.37) with h ij (y) to be solved for. Inserting (B.3.37) into (B.2.4) we get, on the LHS of the PDE, the homogeneous problems (at zeroth order) as before, then the LHS of (B. 1996] to carry out the implicit di erentiation of the delta function derivatives; writing (n -1) dimensional multi-indices on V (pertaining only to the y variables) with tildes, e.g. β = (β 1 , . . . , β n-1 ), we have the following: (B.3.40) where P s ( β, l) = {(q 1 , . . . , q s ; λ1 , . . . , λs ) : q k > 0, 0 ≺ λ1 ≺ • • • ≺ λs , s k=1 q k = l and s k=1 q k λk = β}. Therefore, with all the summation limits the same as above, we get with which the higher order delta function derivatives on the RHS of (B.2.4) can be matched.

u = M i=0 u i Θ i + u δ , u δ = M i=1 K-m j=0 h ij δ (j) (p i ) ,
D β δ (j) (p i ) = D β δ (j+β 0 ) (p i ) = β! | β| l=1 δ (j+β 0 +l) (p i ) | β| s=1 Ps( β,l) s k=1 -D λk x p i q k q k ! λk ! q k ,
B.3.3. Limitations of the method. Let us now discuss more amply the potential issues one is liable to encounter in any attempt to extend the PwP method further beyond the setup we have described so far.

Firstly, we stress once more that the method is applicable only to linear PDEs. As pointed out in the introduction, this is simply an inherent limitation of the classic theory of distributions. In particular, there it has long been proved [START_REF] Schwartz | Sur l'impossibilité de la multiplication des distributions[END_REF]] (see also the discussion in [START_REF] Bottazzi | Grid functions of nonstandard analysis in the theory of distributions and in partial di erential equations[END_REF]) that there does not exist a di erential algebra (A, +, ⊗, δ) wherein the real distributions can be embedded, and: (i) ⊗ extends the product over C 0 (R); (ii) δ : A → A extends the distributional derivative; (iii) ∀u, v ∈ A, the product rule δ(u ⊗ v) = (δu) ⊗ v + u ⊗ (δv) holds. Attempts have been made to overcome this and create a sensible nonlinear theory of distributions by de ning and working with more general objects dubbed "generalized functions" [START_REF] Colombeau | Nonlinear Generalized Functions: their origin, some developments and recent advances[END_REF]]. Nonetheless, these have their own drawbacks (e.g. they sacri ce coherence between the product over C 0 (R) and that of the di erential algebra), and di erent formulations are actively being investigated by mathematicians [START_REF] Benci | Ultrafunctions and Generalized Solutions[END_REF][START_REF] Bottazzi | Grid functions of nonstandard analysis in the theory of distributions and in partial di erential equations[END_REF]. A PwP method for nonlinear problems in the context of these formulations could be an interesting line of inquiry for future work.

Secondly, as we have seen, the PwP method as developed here is guaranteed to work only for those (linear) PDEs the source S of which is a distribution not on the entire problem domain U , but only on a one-dimensional subspace I of that domain. One may sensibly wonder whether this situation can be improved, i.e. whether a similar procedure could succeed in tackling equations with sources involving (derivatives of) delta functions in multiple variables-yet, one may also immediately realize that such an attempted extension quickly leads to signi cant complications and potentially impassable problems. Let us suppose that the source contains (derivatives of) delta functions in n > 1 variables. We still de ne I such that supp(S) ⊂ I , so now we have I ⊆ R n, and let us adapt the rest of our notation accordingly so that an arbitrary function on U is

f : U = I × V ⊆ R n × R n-n = R n → R
x = (x, y) = (x 1 , ..., xn , y 1 , ..., y n-n ) → f (x) .

( B.3.43) We also adapt the multi-index notation to α = (ᾱ 1 , ᾱ2 , . . . , ᾱn , α 1 , α 2 , . . . , α n-n ). We can still write the most general linear partial di erential operator, just as we did earlier, as L = |α|≤m ξ α (x)D α where now

D α = ∂ |α| /∂ xᾱ 1 1 • • • ∂ xᾱn n ∂y α 1 1 • • • ∂y α n-n
n-n . Moreover, in general, we use the barred boldface notation v for any vector in I , v = (v 1 , . . . , vn ) ∈ I ⊆ R n.

One may rst ask whether a PwP-type method could be used to handle "point" sources in I ⊆ R n. In other words, can we nd a decomposition of u which could be useful for a problem of the form where Π is here the Cartesian product and the entrywise product; but whether or not this will work depends completely upon the detailed form of L. For example, the procedure might work in the case where L contains a nonvanishing D (1,1,...,1,α 1 ,...,α n-n ) term, so as to produce a δ(x -xp ) term upon its action on u (in the form (B.3.45)), needed to match the f (x) term on the RHS of (B.3.44). However, this still does not guarantee that all the distributional terms can in the end be appropriately matched, and so in general, one should not expect that such an approach in these sorts of problems will yield a workable strategy.

To render the above discussion a little less abstract, let us illustrate what we mean by way of a very simple example. Consider a two-dimensional Poisson equation on U = {(x, y)} ⊆ R 2 : (∂ 2

x + ∂ 2 y )u = δ 2 (x, y), where the RHS is the two-dimensional delta function supported at the origin. An attempt to solve this via our method would begin by decomposing the solution into a form u = j u j Θ j , for some suitably-de ned Heaviside functions Θ j -supported, for example, on positive/negative half-planes in each of the two coordinates, or perhaps on each quadrant of R 2 . However, the RHS of this problem is, by de nition, δ 2 (x, y) = δ(x)δ(y) = (∂ x Θ + (x))(∂ y Θ + (y)), and there is no way to get such a term from the operator L = ∂ 2

x + ∂ 2 y acting on any linear combination of Heaviside functions. The unconvinced reader is invited to try a few attempts for themselves, and the di culties with this will quickly become apparent.

That said, one case in which a PwP-type procedure could work is when the source contains (one-dimensional) "string"-like singularities (instead of n-dimensional "point"like ones) in each of the x variables-in other words, when our problem is of the form We now move on to applications of the PwP method, beginning with rst order hyperbolic equations. First we look at the standard advection equation, and then a simple neural population model from neuroscience. Finally, we consider another popular advection-type problem with a distributional source-namely, the shallow water equations with discontinuous bottom topography-and brie y explain why the PwP method cannot be used in that case.

B.4.1. Advection equation. As a rst very elementary illustration of our method, let us consider the (1 + 1)-dimensional advection equation for u(x, t) with a time function B.4.2. Advection-type equations in neuroscience. Advection-type equations with distributional sources arise in practice, for example, in the modeling of neural populations. In particular, among the simplest of these are the so-called "integrate-and-re" models. For some of the earlier work on such models from a neuroscience perspective, see for example [START_REF] Casti | A population study of integrate-and-re-or-burst neurons[END_REF][START_REF] Haskell | Population density methods for large-scale modelling of neuronal networks with realistic synaptic kinetics: cutting the dimension down to size[END_REF]] and references therein; for more recent work focusing on mathematical aspects, see [START_REF] Cáceres | Analysis of nonlinear noisy integrate & re neuron models: blow-up and steady states[END_REF][START_REF] Cáceres | Blow-up, steady states and long time behaviour of excitatory-inhibitory nonlinear neuron models[END_REF]. Their aim is to describe the probability density ρ (v, t) of neurons as a function of certain state variables v and time t. Often the detailed construction of these models can be quite involved and dependent on a large number of parameters, so to simply illustrate the principle of our method we here consider the simple case where the single state variable is the voltage V . Then, generally speaking, the dynamics of ρ(V, t) takes the form of a Fokker-Planck-type equation on V ∈ (-∞, L] with a singular source at some xed V = V * < L,

∂ t ρ + ∂ V (f (V, N (t)) ρ) - σ 2 2 ∂ 2 V ρ = N (t) δ (V -V * ) . (B.4.3)
The source time function N (t) must be such that conservation of probability, i.e. ∂ t ´dV ρ = 0, is guaranteed under homogeneous Dirichlet BCs.

As a simpli cation of this problem, let us suppose, as is sometimes done, that the di usive part (the second derivative term on the LHS) of (B.4.3) is negligible. Moreover, in simple cases, the velocity function f in the advection term has the form f = -V + constant, and we just work with the constant set equal to 1. We restrict ourselves to a bounded domain for V which for illustrative purposes we just choose to be I = [0, L]. Demanding homogeneous Dirichlet BCs at the left boundary in conjunction with conservation of probability xes the source time function to be N (t) = (1 -L)ρ(L, t). Thus, we are going to tackle the following problem: In the latter, we plot-again for the numerical solution ρ at the nal time-the truncation error as well as (in the absence of an exact solution) what we refer to as the conservation error, cons = |1 -´I dV ρ(V, t)|, which simply measures how far we are from exact conservation of probability. Both of these exhibit exponential convergence. The integral in cons is computed as a sum over both domains, ´I dV ρ = ´D-dV ρ+ ´D+ dV ρ, and numerically performed on each using a standard pseudospectral quadrature method (as in, e.g., Chapter 12 of [START_REF] Trefethen | Spectral Methods in MATLAB[END_REF]).

∂ t ρ + ∂ V ((1 -V ) ρ) = (1 -L) ρ (L, t) δ (V -V * ) , V ∈ I = [0, L] , t > 0 , ρ (V, 0) = ρ 0 (V ) , ´I dV ρ 0 (V ) = 1 , ρ ( 
This procedure can readily be complexi ed with the inclusion of a di usion term, and indeed we will shortly turn to purely di usion (heat-type equation) problems in the following section. B.4.3. Advection-type equations in other applications. Another advection-type application in which one may be tempted to try applying some form the PwP method is the shallow water equations. Setting the gravitational acceleration to 1, these read: (B.4.5) where B(x) is the elevation of the bottom topography, h(x, t) is the uid depth above the bottom and u(x, t) is the velocity. If the topography is discontinuous, i.e. if B / ∈ C 0 (R),

∂ t    h hu    + ∂ x    hu hu 2 + 1 2 h 2    =    0 -h∂ x B    ,
then the RHS of (B.4.5) will be distributional; this can happen, e.g., if the bottom is a step (if B = Θ, then the RHS is 0 -hδ ), a wall etc. However, the problem with applying the PwP method here is that (B.4.5) is nonlinear, and so one encounters precisely the sorts of issues detailed at the end of the preceding section. Indeed, explicit numerical solutions that have been obtained for (B.4.5) in the literature [START_REF] Bernstein | Central-upwind scheme for shallow water equations with discontinuous bottom topography[END_REF][START_REF] Zhou | Numerical solutions of the shallow water equations with discontinuous bed topography[END_REF] qualitatively indicate that a PwP-type decomposition as described here would be inadequate (and, anyway, nonsensical mathematically) for such problems.

B.5. Parabolic PDEs

We begin by analyzing the standard heat equation and then move on to an application in nance which includes two (time-dependent) singular source terms. In this case, we do not have the exact solution. This problem is treated in [START_REF] Tornberg | Numerical approximations of singular source terms in di erential equations[END_REF] using a delta function approximation procedure, with the following setup: I = [0, 1], α = 0 = β and λ = 10; constant-valued and sinusoidal point source locations x p (t) are considered. We implement here the same, using our PwP method: we decompose u = u -Θ -+ u + Θ + where Θ ± = Θ(±(x -x p (t))). Inserting this into (B.5.1), we get homogeneous PDEs ∂ t u ± -∂ 2

x u ± = 0 to the left and right of the singularity, x ∈ D -= [0, x p (t)] and x ∈ D + = [x p (t), 1] respectively; additionally, we have the following JCs: B.5.2. Heat-type equations in nance. We consider a model of price formation initially proposed in [START_REF] Lasry | Mean eld games[END_REF]; see also [START_REF] Achdou | Partial di erential equation models in macroeconomics[END_REF][START_REF] Burger | On a Boltzmann-type price formation model[END_REF][START_REF] Ca Arelli | On a price formation free boundary model by Lasry and Lions[END_REF][START_REF] Markowich | On a parabolic free boundary equation modeling price formation[END_REF][START_REF] Pietschmann | On some partial di erential equation models in socio-economic contexts -analysis and numerical simulations[END_REF]. This model describes the density of buyers f B (x, t) and the density of vendors f V (x, t) in a system, as functions of of the bid or, respectively, ask price x ∈ R for a certain good being traded between them, and time t ∈ [0, ∞).

The idea is that when a buyer and vendor agree on a price, the transaction takes place; the buyer then becomes a vendor, and vice-versa. However, it is also assumed that there exists a xed transaction fee a ∈ R. Consequently, the actual buying price is x + a, and so the (former) buyer will try to sell the good at the next trading event not for the price x, but for x + a. Similarly, the pro t for the vendor is actually x -a, and so he/she would not be willing to pay more than x -a for the good at the next trading event. In time, this system should achieve an equilibrium.

Mathematically, the dynamics of the buyer/vendor densities is assumed to be governed by the heat equation with a certain source term. The source term in each case is simply the (time-dependent) transaction rate λ(t), corresponding to the ux of buyers and vendors, at the particular price where the trading event occurs, shifted accordingly by the transaction cost. Thus the system is described by

∂ t -∂ 2
x f B = λ (t) δ (x -(x p (t) -a)) , for x < x p (t) , f B = 0 , for x > x p (t) , The "spatial" (i.e. price) domain can be taken to be bounded, and homogeneous Neumann BCs are assumed at the boundaries. Thus the problem we are interested in is:

∂ t f -∂ 2 x f = λ (t) δ x -x p -(t) -δ x -x p + (t) , x ∈ I = [0, 1] , t > 0 , f (x, 0) = f I (x) , f ≷ 0 for x ≶ x p (t) , ∂ x f (0, t) = ∂ x f (1, t) = 0 .
(B.5.5) where λ(t) = -∂ x f (x p (t), t), and we have de ned x p ± (t) = x p (t) ± a. Moreover, one can show that from this setup, it follows that the free boundary evolves via .5.6) In this case, we have not one but two singular source locations on the RHS of the PDE. Hence, in order to implement the PwP method, we must here divide the spatial domain The same problem (B.6.1) is considered numerically in [START_REF] Petersson | Stable Grid Re nement and Singular Source Discretization for Seismic Wave Simulations[END_REF], but using a di erent (polynomial) source function g(t), and a discretization procedure for the delta function (derivatives) on the computational grid (carried out in such a way that the distributional action thereof yields the expected result on polynomials up to a given degree). With our PwP method here, we obtain the same order of magnitude of the (absolute) error in the numerical solution as that in [START_REF] Petersson | Stable Grid Re nement and Singular Source Discretization for Seismic Wave Simulations[END_REF] for the same (order of magnitude of) number of grid points; however the drawback of the "discretized delta" method of [START_REF] Petersson | Stable Grid Re nement and Singular Source Discretization for Seismic Wave Simulations[END_REF], in contrast to the PwP method, is that the solution in the former is visibly quite poorly resolved close to the singularity.

ẋp (t) = ∂ 2 x f (x p (t) , t) λ (t) . ( B 
We add that we have also carried out the solution to the problem shown in Figure B.9 using higher-order (from second up to eighth order) nite-di erence time evolution schemes. These yield no visible improvement (at any order tried) in either the absolute or the truncation error relative to the rst-order time evolution results. Thus the spacial pseudospectral grid appears to control the total level of the error, with a higher-order scheme for the time evolution producing, at least in this case, no greater bene ts. B.6.2. Wave-type equations in physical applications. As we have mentioned, our numerical studies in this appendix are largely motivated by their applicability to the computation of the self-force in gravitational physics. There one encounters di erent levels of complexity of this problem, the simplest being that of the self-force due to a scalar eld-as a conceptual testbed for the more complicated and realistic problem of the full self-force of the gravitational eld-in a xed (non-dynamical) black hole spacetime. This can refer to a non-spinning (Schwarzschild-Droste) black hole, where the problem is of the form (B.1.1) where L = ∂ 2 t -∂ 2 x + V is just a simple (1 + 1)-dimensional wave operator with some known potential V and a source S = f δ (p) , with dim(I ) = 1. We recognize this now as quite typical for the application of our PwP method, and indeed this has been done with success in the past [START_REF] Canizares | Extreme-Mass-Ratio Inspirals[END_REF]Canizares and Sopuerta 2009a, 2014, 2011a,b;[START_REF] Canizares | Pseudospectral collocation methods for the computation of the self-force on a charged particle: Generic orbits around a Schwarzschild black hole[END_REF][START_REF] Jaramillo | Are time-domain self-force calculations contaminated by Jost solutions?[END_REF]F B.9. Solution and convergence of the numerical scheme for the problem (B.6.1). F B.10. Solution (with N = 80) of the same problem as in Figure B.9 but using ω = 24. [START_REF] Oltean | A frequency-domain implementation of the particle-without-particle approach to EMRIs[END_REF]]. As we brie y remarked in the Introduction, the main di erence between most of these works and our numerical schemes throughout this appendix is that for the time evolution, rather than relying on nite-di erence methods, the former made use of the method of lines. This can be quite well-suited especially for these types of (1 + 1)-dimensional hyperbolic problems, which can be formulated in terms of characteristic elds propagating along the two lightcone directions (t±x = const.). The imposition of the JCs is then achieved quite simply in this setting by just evolving, in the left domain, the characteristic eld propagating towards the right and relating it (via the JC) to the value of the characteristic eld propagating towards the left in the right domain. For the interested reader, this kind of procedure is described in detail in Chapter 3 of [START_REF] Canizares | Extreme-Mass-Ratio Inspirals[END_REF].

We could also consider the scalar self-force problem in a spinning (Kerr) black hole spacetime, however the issue there-owing to the existence of fewer symmetries in the problem than in the non-spinning case-is that dim(I ) = 2 in the time domain (with a more complicated second-order hyperbolic operator L); however, this could be remedied for a possible PwP implementation by passing to the frequency domain, which transforms (B.1.1) to an ODE (with dim(I ) = 1, V = ∅, and again, a simple source S = f δ (p) ). the appropriate "jump" (boundary) conditions e ectively substituting the original singular source. Building upon its successful prior application in the speci c context of the self-force problem in general relativity, we have here generalized this method and have shown it to be viable for any linear partial di erential equation of arbitrary order, with the provision that the distributional source is supported only on a one-dimensional subspace of the total problem domain. Accordingly, we have demonstrated its usefulness by solving rst and second order hyperbolic problems, with applications in neuroscience and acoustics, respectively; parabolic problems, with applications in nance; and nally a simple elliptic problem. In particular, the numerical schemes we have employed for carrying these out have been based on pseudospectral collocation methods on Chebyshev-Lobatto grids. Generally speaking, our results have yielded varying degrees of improvement in the numerical convergence rates relative to other methods in the literature that have been attempted for solving these problems (typically relying on delta function approximation procedures on the computational grid).

We stress once more that the main limitations of the our PwP method as developed here are that it is only applicable to linear problems with one-dimensionally supported distributional sources. Thus, interesting lines of inquiry for future work might be to explorehowever/if at all possible-extensions or adaptations of these ideas (a) to nonlinear PDEs, which would require working with nonlinear theories of distributions (having potential applicability to problems such as, e.g., the shallow-water equations with discontinuous bottom topography); (b) to more complicated sources than the sorts considered in this appendix, perhaps even containing higher-dimensional distributions but possibly also requiring additional assumptions, such as symmetries (which might be useful for problems such as, e.g., seismology models with three-dimensional delta function sources). B.9. Appendix: pseudospectral numerical schemes B.9.1. Pseudospecteal collocation methods. We use this subsection to describe very cursorily the PSC methods used for the numerical schemes in this work and to introduce some notation in relation thereto. For good detailed expositions see, for example, [START_REF] Boyd | Chebyshev and Fourier Spectral Methods[END_REF][START_REF] Peyret | Chebyshev method[END_REF][START_REF] Trefethen | Spectral Methods in MATLAB[END_REF].

We work on Chebyshev-Lobatto (CL) computational grids. On any domain [a, b] = D ⊆ I , these comprise the (non-uniformly spaced) set of N points {X i } N i=0 ⊂ D obtained by projecting onto D those points located at equal angles on a hypothetical semicircle having D as its diameter. That is to say, the CL grid on the "standard" spectral domain D s = [-1, 1] is given by There exists an (N + 1) × (N + 1) matrix D, the so-called CL di erentiation matrix, such that the derivative values of f can be approximated simply by applying it to (B.9.2), i.e. f = Df . For convenience, we also employ the notation M(r i : r f , c i : c f ) to refer to the part of any matrix M from the r i -th to the r f -th row and from the c i -th to the c f -th column. (A simple ":" indicates taking all rows/columns.) B.9.2. First-order hyperbolic PDEs. We apply a rst order in time nite di erence scheme to the homogeneous PDEs; thus, prior to imposing BCs/JCs, the equations become

X s i = -cos πi N , ∀0 
1 ∆t (u ± k+1 -u ± k ) = -D ± u ± k
, where the vectors u ± k contain the values of the solutions on the CL grids at the k-th time step, D ± is the CL di erentiation matrix on the respective domains, and ∆t is our time step. We can rewrite the discretized PDE as u ± k+1 = u ± k -∆tD ± u ± k = s ± k . To impose the BC and JC, we modify the equations as follows:

   u - k+1 u + k+1    =          u + N,k s - k (2 : N + 1) u - N,k + g k s + k (2 : N + 1)          . (B.9.3)
Similarly, for our neuroscience application, we discretize the PDE using a rst order nite di erence scheme:

1 ∆t (ρ ± k+1 -ρ ± k ) = -D ± R ± k where R ± i,k = (1 -V ± i )ρ ± i,k .
Hence, prior to imposing the BC/JC, we have ρ

± k+1 = ρ ± k -∆tD ± R ± k = s ± k .
To impose the BC/JC, we just modify the equations accordingly: where in the second line we have used (B.9.11)-(B.9.12). Now, let us use this to formulate the numerical schemes for our problems-rst, for the heat equation. Let D ± k denote the CL di erentiation matrices on each of the two domains at the k-th time step. Then, using (B.9.14), we have here the following nite di erence formula for the homogeneous PDEs prior to imposing BCs/JCs:

   ρ - k+1 ρ + k+1    =         
1 ∆t (u ± k+1 - u ± k ) = (D ± k ) 2 u ± k -C ± k Du ± k ,
where D is the CL di erentiation matrix on [-1, 1] and 

C - k = diag([2/(x p (t k )) 2 ][(-x - i ) ẋp (t k )]), C + k = diag([2/(1 -x p (t k )) 2 ][(x + i -1) ẋp (t k )]). Thus u ± k+1 = u ± k + ∆t[(D ± k ) 2 -C ± k D]u ± k = s ± k .
0 0 0 • • • 1                                        u - k+1 u + k+1                 =                 0 s - k (2 : N ) u + 0,k D - k (N, :)u - k -λ s + k (2 : N ) 0                
. (B.9.15)

Note that we are actually introducing an error by using (for convenience and ease of adaptability) D + k instead of D + k+1 on the LHS (in the equation for u + 0,k+1 ). However, one can easily convince oneself that D + k+1 -D + k = O(∆t), which is already the order of the error of the nite di erence scheme, so we are not actually introducing any new error in this way. Furthermore, because we use up the last equation for u - k to impose the JC on u (i.e. we do not have an equation for u - N,k ), we must use the derivative at the previous point (i.e., at u - N -1,k ) in order to impose the derivative JC. Hence on the RHS, we use D - k (N, :) instead of D - k (N + 1, :). The scheme for the nance model is analogous. We use again the rst-order nitedi erence method for the homogeneous equations, 

0 0 • • • 1 0 0 0 • • • 0 1                           f - k+1              =              0 s - 1,k . . . s - N,k f 0 0,k             
, (B.9.16)

             D 0 k (1, :) 0 1 • • • 0 0 . . . . . . . . . . . . . . . 0 0 • • • 1 0 0 0 • • • 0 1                           f 0 k+1              =              D - k (N, :)f - k -λ k s 0 1,k . . . s 0 N,k f + 0,k             
, (B.9.17 

D + k (N + 1, :)                           f + k+1              =              D 0 k (N, :)f 0 k + λ k s + 1,k . . . s + N,k 0             
. (B.9.18) B.9.4. Second-order hyperbolic PDEs. We again apply a rst order in time nite di erence scheme to the homogeneous PDEs; prior to imposing BCs/JCs, the equations become B.9.5. Elliptic PDEs. In this case we have no time evolution, and we simply need to solve ((D ± ) 2 + diag(1/X ± i )D ± )u ± = M ± u ± = 0, modi ed appropriately to account for the BCs and JCs. In particular, we rst solve for u + using the BCs, and then for u - 

1 ∆t             u ± k+1 v ± k+1 w ± k+1       -       u ± k v ± k w ± k             = C ±       u ± k v ± k w ± k       , ( B 

B. 1

 1 Solution of the problem (B.4.1) with zero initial data. B.2 Convergence of the numerical scheme for the problem (B.4.1). B.3 Solution of (B.4.4) with (normalized) Gaussian initial data centered at V = 0.3. B.4 Convergence of the numerical scheme for the problem (B.4.4). B.5 Solution of the problem (B.5.1) with zero initial data. B.6 Convergence of the numerical scheme for the problem (B.5.1). B.7 Solution of the problem (B.5.5).

  F 1.1. Detail of Kepler's model of Solar System motion based on Pythagorean solids, taken from [Koestler 1959] (adapted from Mysterium Cosmographicum [Kepler 1596]).

F

  A gure of an ellipse (dotted oval) circumscribed by a circle from Astronomia Nova [Kepler 1609].

  .2.5) where, for convenience, we use the notation (•) 0 = (•)| x 0 to indicate quantities evaluated at equilibrium. Note that by the de nition of the Poisson bracket [Eq. (4.2.3)], this implies ( Ṡ) 0 = 0.

  Scalar eld. Let us consider a theory for a scalar eld φ (x) in a potential V [φ (x)], de ned by the Lagrangian

F

  rius Oltean. Numerical approaches to the self-force problem.

F

  

F 5. 3 .

 3 Representation of a one-parameter family of quasilocal frames {(B (λ) ; u (λ) )} λ≥0 embedded correspondingly in a family of spacetimes {M (λ) } λ≥0 .

  (c) First-order eld equation: At O(λ), the Einstein equation is sourced by the matter energy-momentum tensor of a point particle T PP supported on C , i.e. the eld equation Chapter 5. The Motion of Localized Sources in General Relativity is δG ab [h] = κT PP ab (5.4.2)

  are respectively the electric and magnetic parts of the Weyl tensor evaluated on on G . Also, B I i = ∂ i r I and R I i = S 2 i j B I j

F 5 .

 5 7. A family of rigid quasilocal frames {(B (λ) ; u (λ) )} embedded in the Gralla-Wald family of spacetimes {M (λ) } inertial with the moving object in M (λ)

  .4.8) These boundary conditions, in terms of the radial functions R mn become: Chapter 6. A Frequency-Domain Implementation of the PwP Approach to EMRIs These equations have to be solved simultaneously with the junction conditions for the radial functions R ± nm , which are given [from Eqs. (6.3.4)-(6.3.5) and (6.4.3)] by +∞ n=-∞ e -inωrt [R mn ] p = 0 ,

  ), we are going to solve the homogeneous problems on the domains D -= {r * | -∞ < r * ≤ r apo * } and D + = {r * |r peri * ≤ r * < +∞} that have an overlap. In contrast with the complementary regions R ± (shown in Figure 6.1), the regions D ± have a nonempty intersection in general. Thus D -∩ D + = [r peri * , r apo * ].

  2004 was: 1.6772834 × 10 -4 .

  y-dependent functions F ij : V → R and G ij : V → R which arise from the implicit di erentiation (e.g., Eqns. (B.2.15)-(B.2.16)), and the precise form of which does not concern us for the present purposes. Plugging (B.3.25) into (B.3.22) and manipulating the sums

  ning the y-dependent functions Ψ α,β,ijkl = (-1) j+k j (B.3.31) to write (B.3.28) in the form: α,β,i,j,k,l

D

  γ u i (x) p i = lim x→x + p i D γ u i (x, y) , (B.3.35) D γ u i-1 (x) p i = lim x→x - p i D γ u i (x, y) . (B.3.36)Having obtained (B.3.34), we can nally match the coe cients of each δ(k)(p i ) to obtain the JCs with which the homogeneous equations (B.3.23) must be supplemented.

  3.34) due again to the sum of Heaviside functions term in (B.3.37), plus the following due to the sum of delta function derivatives: rule. Next, we employ the Faà di Bruno formula [Constantine and Savits

  use the distributional identity (B.2.10) to obtain Lu δ ≡α,β,i,j,l,s Ps( β,l) 

Lu

  (x) = f (x) δ (x -xp (y)) + ḡ (x) • ∇δ (x -xp (y)) + • • • , (B.3.44) (assuming for simplicity a single point source at xp ∈ I ) with ∇ = ∂/∂ x and given functions f : U → R, ḡ : U n → R etc.? Intuitively, in order to match the delta function (derivatives) on the RHS, we might expect u to contain the n-dimensional Heaviside function Θ : D(I ) → R. Thus, in the same vein as (B.3.17), a possible attempt (for K < m) might be to try a splitting such as u (x) = σ=Π n(±) u σ (x) Θ ( σ (x -xp (y))) , (B.3.45)

  x) δ (x a -xa,p (y)) + n a=1 g a (x) δ (x a -xa,p (y)) + • • • , (B.3.46) with f a : U → R, g a : U → R etc. Then, a decomposition of u which can be tried in such situations (for K < m) is u (x) = n a=1 σa=± u a,σa (x) Θ (σ a (x a -xa,p (y))) . (B.3.47) B.4. First order hyperbolic PDEs

F B. 1 .

 1 Solution of the problem (B.4.1) with zero initial data. F B.2. Convergence of the numerical scheme for the problem (B.4.1).

  0, t) = 0 . (B.4.4) We now implement the PwP decomposition: ρ= ρ -Θ -+ ρ + Θ + with Θ ± = Θ(±(V -V * )).Inserting this into the PDE (B.4.4), we get the homogeneous problems∂ t ρ ± + ∂ V ((1 -V ) ρ ± ) = 0 on D ± , with D -= [0, V * ] and D + = [V * , L], along with the JC [ρ] * = 1-L 1-V * ρ(L, t). An example solution for Gaussian initial data centered at V = 0.3 is displayed in Figure B.3, and the numerical convergence in Figure B.4.

F B. 3 .

 3 Solution of (B.4.4) with (normalized) Gaussian initial data centered at V = 0.3. F B.4. Convergence of the numerical scheme for the problem (B.4.4).

B

  .5.1. Heat equation. Let us consider now the (1 + 1)-dimensional heat equation for u(x, t) with a constant point source at a time-dependent location x = x p (t), with Dirichlet boundary conditions:∂ t u -∂ 2 x u = λδ (x -x p (t)) , x ∈ I = [a, b] , t > 0 , u (x, 0) = 0 , u (a, t) = α, u (b, t) = β .(B.5.1)

  [u] p = 0 and [∂ x u] p = -λ.The details of the numerical scheme are given in Subsection B.9.3, and results for zero initial data inFigures B.5 and B.6. 

  ∂ 2 x f V = λ (t) δ (x -(x p (t) + a)) , for x > x p (t) , f V = 0 , for x < x p (t) ,(B.5.3) where the free boundary x p (t) represents the agreed price of trading at time t, and the transaction rate isλ(t) = -∂ x f B (x p (t), t) = ∂ x f V (x p (t), t).(NB: The functional form of λ(t) is uniquely xed simply by the requirement that the two densities are conserved, i.e. ∂ t ´dxf B = 0 = ∂ t ´dxf V , under the assumption that we have homogeneous Neumann BCs at the left and right boundaries respectively.) Now, we can actually combine this F B.5. Solution of the problem (B.5.1) with zero initial data. F B.6. Convergence of the numerical scheme for the problem (B.5.1). system into a single problem for the di erence between buyer and vendor densities, f = f B Θ (-(x -x p (t))) -f V Θ (x -x p (t)) . (B.5.4)

  I into three disjoint regions, with the two singularity locations at their interfaces:I = D -∪ D 0 ∪ D + with D -= [0, x p -(t)], D 0 = [x p -(t), x p + (t)] and D + = [x p + (t), 1]. Then, we decompose f = f -Θ -+ f 0 Θ 0 + f + Θ + with Θ -= Θ(-(x -x p -(t))), Θ 0 = Θ(x -x p -(t)) -Θ(x -x p + (t)) and Θ + = Θ(x -x p + (t)).Inserting this into the PDE F B.7. Solution of the problem (B.5.5). F B.8. Price evolution and convergence of the numerical scheme for the problem (B.5.5). 248 Appendix B. Particle-without-Particle: A Practical Pseudospectral Collocation Method with v = ∂ x u and w = ∂ t u, as ∂ t U = is given in Subsection B.9.4, and results in Figures B.9 and B.10. The absolute error is again computed in the in nity norm on the CL grids: abs = ||u -u ex || ∞ .

  ≤ i ≤ N , (B.9.1) 254 Appendix B. Particle-without-Particle: A Practical Pseudospectral Collocation Method which can straightforwardly be transformed (by shifting and stretching) to the desired grid on D. For any function f : D → R we denote via a subscript its value at the i-th CL point, f (X i ) = f i , and in slanted boldface the vector containing all such values,

  PDEs. In these problems, we have moving boundaries for the CL grids (since the location of the singular source is time-dependent). The mapping for transforming the standard ( xed) spectral domain [-1, 1] into an arbitrary (time-dependent) one, say D = [a(t), b(t)], is given byV × [0, 1] → V × D (B.9.5) (T, X) → (t (T ) , x (T, X)) , transforming back, we have V × D → V × [0, 1](B.9.9) (t, x) → (T (t) , X (t, x)) , any function f (t, x) in these problems, we must take care to express the time partial using the chain rule as ∂f a) 2 (b -x) ȧ + (x -a) ḃ ∂f ∂X , (B.9.14)

  We can implement the BCs and JCs, by 256 Appendix B. Particle-without-Particle: A Practical Pseudospectral Collocation Method modifying the rst and last equations on each domain:

  1 ∆t (f σ k+1 -f σ k ) = (D σ k ) 2 f σ k -C σ k Df σ kwith the matrices C σ k de ned similarly to those in the heat equation problem (again using (B.9.14)); thusf σ k+1 = f σ k +∆t[(D σ k ) 2 -C σ k D]f σ k = s σ k .To impose the BCs/JCs, we modify

  

  In this case we denote Y = L, In other words, the rst-order metric perturbation can also be made traceless; combined with the Lorenz gauge condition [Eq. (3.2.31)] (which now is satis ed also by the metric perturbation itself, since it equals its trace-reversed part), this leads to the transverse-traceless gauge, de ned by the gauge vector T,

	whereupon we have This does not, however, completely x all of the available gauge freedom, for we could ∇b hL ab = 0 . (3.2.31) still add to ξ any other vector ζ satisfying ˚ ζ = 0, and the Lorenz gauge condition [Eq. (3.2.31)] would still hold. Performing a further gauge transformation generated by such ab = 0, h T = 0 . (3.2.32) In this gauge, the Einstein equation [Eq. (3.2.16)] reduces to a very simple wave-type a ζ, the trace of h ∇b h T equation:

L transforms as h L → h L + ∇ • ζ. We can now choose ζ to be a solution of ∇ • ζ = -h L . (Note that this is consistent, since the trace of the linearized Einstein equation [Eq. (3.2.16)] assuming the Lorenz gauge condition [Eq. (3.2.31)] is ˚ h L = 0, and so taking the Laplacian of the equation ∇ • ζ = -h L leads to both sides vanishing if ˚ ζ = 0.)

  .2.7) (b) Additionally, the second partials of H with respect to each momentum variable, representing the coe cients of the kinetic terms, should be non-negative: We need to restrict our consideration to Hamiltonians the partial Hessian of which, with respect to the coordinate variables, is positive semide nite at the point of equilibrium (assuming it exists), i.e. [∂ 2 H/∂q i ∂q j ] 0 0. In fact we need to impose a slightly stronger (su cient, though not strictly necessary) condition: that any of the row sums of [∂ 2 H/∂q i ∂q j ] 0 are non-negative. That is to say, we assume:

	∂ 2 H j ∂p 2	≥ 0 .	(4.2.8)
	∂ 2 H ∂p i ∂q j	= 0 .	(4.2.9)
	H3 (Potential terms):		

H2 (Mixed terms):

We assume that we can decouple the terms that mix kinetic and coordinate degrees of freedom (via performing integrations by parts, if necessary, in the action out of which the Hamiltonian is constructed), such that H can be written in a form where:

  (∂ 2 H/∂q 2 ) 0 ≥ 0, implies (∂ 2 S/∂p∂q) 0 < 0. Thus we get a contradiction, and so no such function S exists.

	Chapter 4. Entropy Theorems and the Two-Body Problem
	Positive-de niteness of (Hess( Ṡ)) 0 (assumption S2) implies that the quadratic form above
	[Eq. (4.2.25)] should be positive de nite. This means that we cannot have (∂ 2 H/∂p 2 ) 0 =
	0, since then C would not be strictly positive and we would get a contradiction. This,
	combined with assumption H1(b) [Eq. (4.2.8)], implies that (∂ 2 H/∂p 2 ) 0 > 0. This in
	combination with C > 0 means that (∂ 2 S/∂p∂q) 0 > 0. But A > 0 also, in order to
	have positive-de niteness of the quadratic form [Eq. (4.2.25)], and this combined with
	assumption H3 [Eq. (4.2.10)], i.e.					
							.2.25)
	Now, imposing the Hamiltonian assumptions H1(a) and H2 [eqs. (4.2.7) and (4.2.9)
	respectively] simpli es A and C, from the above [eqs. (4.2.18) and (4.2.19) respectively]
	to:					
	A = -	∂ 2 H ∂q 2	0	∂ 2 S ∂q∂p 0	,	(4.2.26)
	C =	∂ 2 H ∂p 2	0		∂ 2 S ∂p∂q 0	.	(4.2.27)

  .3.27)], combined with that of the term in curly brackets in the third line [Eq. (4.3.29)] and the assumption (S2) of the de niteness of the Hessian of Ṡ at ( Å, π), altogether mean that the above [Eqs. (4.3.27)-(4.3.29)] imply:

The speci c mathematical form of such descriptions-invented by Newton himself and, since then, amply developed but still lying at the basis of all physical laws formulated to this day-is that of the di erential equation.

In fact, Einstein wished to call it the "theory of invariance" (to highlight the invariance of the speed of light and that of physical laws in di erent reference frames), but the term "theory of relativity" coined by Max Planck and Max Abraham in 1906 quickly became, to Einstein's dissatisfaction, the more popular nomenclature, and the one which has persisted to this day[Galison et al. 2001].

Much of the development of di erential geometry had to do with attempts to prove Euclid's famous fth postulate. Ever since the appearance of the Elements, which is based on ve postulates, there had been skepticism regarding the necessity of the last of these. In its original form it is much more complicated to state than the rst four, but it is equivalent to the statement that the sum of the three angles of a triangle is always equal to two right angles. The advent of di erential ("non-Euclidean") geometry is essentially related to the relaxation of this condition, permitting the description of globally curved surfaces. See[START_REF] Aczel | God's Equation: Einstein, Relativity, and the Expanding Universe[END_REF]] for a brief history.

We make this choice as often, at least in physics, the non-boldface g is used to refer to something else, in this case the determinant of the metric tensor; when not involving a metric tensor, but

Note the very usual but notationally unfortunate use of the same symbol for denoting the these two tensors. In the index-free notation, we will reserve R usually to refer to the Ricci tensor (R ac ), and when we are talking about the Riemann tensor (R abc d ) we shall make it clear.

Note that this is reminiscent of some current ideas such as shape dynamics, pioneered by Barbour. See e.g.[START_REF] Barbour | Shape Dynamics. An Introduction[END_REF]] for a review.

Nonlinear theories of distributions are being actively investigated by mathematicians[START_REF] Bottazzi | Grid functions of nonstandard analysis in the theory of distributions and in partial di erential equations[END_REF][START_REF] Colombeau | Nonlinear Generalized Functions: their origin, some developments and recent advances[END_REF][START_REF] Li | A review on the products of distributions[END_REF]. Some work has been done to apply these to the electromagnetic self-force problem[START_REF] Gsponer | The classical point electron in Colombeau's theory of nonlinear generalized functions[END_REF]] and to study their general applicability in GR[START_REF] Steinbauer | The use of generalized functions and distributions in general relativity[END_REF]], however at this point, to our knowledge, their potential usefulness for the gravitational self-force problem has not been contemplated to any signi cant extent.

We consider later in this thesis (Chapter 5) in detail one approach to the gravitational self-force which also proves geodesic motion as the "background" motion of point particles in GR.

This is true provided one does not transform to a perturbative gauge wherein any of the multipole moments of h diverge away from C as a consequence of the gauge de nition. Examples of gauges leading to such divergences are the "half-string" and "full-string" radiation gauges of[START_REF] Pound | Gravitational self-force from radiation-gauge metric perturbations[END_REF], which exhibit string-like singularities in h along a radial direction. Nevertheless, in this work it was also shown that one can de ne a "no-string" radiation gauge which is in the parityregular class, and where the singularities in h remain only on C thus rendering the integral (1.5.5) well-de ned.

In fact, e can be chosen to be any Lorentzian volume form the non-vanishing components of which take the values ±1. See Appendix E of[START_REF] Wald | General Relativity[END_REF]] for a more detailed discussion as to why the present construction is actually independent of the choice of a volume form satisfying this property.

(ϕ, π) are then referred to as Darboux coordinates, symplectic coordinates, or canonical coordinates.

If, on the other hand, one still does not have a complete set of equations by arriving at the secondary constraints, the same process must be repeated until one does: the secondary constraints imply their own consistency conditions, those in turn will yield the tertiary constraints, and so on if necessary.

Our de nition follows that of[START_REF] Wald | General Relativity[END_REF]]. For a more technical overview, see[START_REF] Hilditch | An introduction to well-posedness and free-evolution[END_REF]].

We follow standard notational convention for the connection one-forms in this subsection; these are of course not to be confused with the symplectic form generally denoted by ω.

However, there is arbitrariness in such a formula since it refers, in asymptotic coordinates, to an origin of rotations which may lie outside the asymptotic region[START_REF] Bojowald | Canonical Gravity and Applications: Cosmology, Black Holes, and Quantum Gravity[END_REF]].

This is particularly true in the history of cosmological perturbation theory before the work of[START_REF] Bardeen | Gauge-invariant cosmological perturbations[END_REF], who was the rst to formulate it in terms of gauge-invariant quantities. We will not comment more on this particular topic in this thesis; see e.g.[START_REF] Mukhanov | Theory of cosmological perturbations[END_REF][START_REF] Brandenberger | Lectures on the Theory of Cosmological Perturbations[END_REF] 

2004].

Commonly, this is referred to simply as the "Schwarzschild metric". Yet, it has long gone unrecognized that Johannes Droste, then a doctoral student of Lorentz, discovered this metric independently and announced it only four months after Schwarzschild[Droste 1916b; Droste 1916a;[START_REF] Schwarzschild | Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie[END_REF][START_REF] Rothman | Editor's note: the eld of a single centre in Einstein's theory of gravitation, and the motion of a particle in that eld[END_REF], so for the sake of historical fairness, throughout this work, we use the nomenclature "Schwarzschild-Droste metric" instead.

of[START_REF] Wald | General Relativity[END_REF]], Chapter 2 of [J.[START_REF] Stewart | Advanced General Relativity[END_REF], or the lecture notes[START_REF] Andersson | Geometry of black hole spacetimes[END_REF]), but we describe it here more accessibly as a variant of the tetrad method introduced

"It is the only physical theory of universal content concerning which I am convinced that, within the framework of applicability of its basic concepts, it will never be overthrown. "[START_REF] Einstein | Autobiographical Notes[END_REF] 

This eld was initially pioneered by[START_REF] Bekenstein | Black Holes and Entropy[END_REF]] and[START_REF] Hawking | Particle creation by black holes[END_REF]]. See[START_REF] Wald | The Thermodynamics of Black Holes[END_REF]] for a review.

Note that the formulation here proceeds essentially exactly as in the case of eld theories, elaborated at length in Chapter 2. In fact, the treatment of particle mechanics can be regarded mathematically as just a special case of the general treatment of eld theories, in particular by using a collection of (N ) elds which are all distributional (Dirac delta functions in three-dimensional space) and supported at the respective particle locations.

By this, we mean spacetimes with non-at but xed metrics, which do not evolve dynamically (gravitationally) in response to the matter stress-energy-momentum present therein.

See[START_REF] Poisson | An introduction to the Lorentz-Dirac equation[END_REF]] for a basic and more contemporary presentation.

Proposed initially by[START_REF] Dewan | Note on Stress E ects due to Relativistic Contraction[END_REF] and later made popular by J.S. Bell's version[START_REF] Bell | How to Teach Special Relativity[END_REF]].

The idea of the proof is to explicitly construct the solutions order-by-order in an expansion in the areal radius around an arbitrary worldline in an arbitrary spacetime[Epp, Mann, et al. 2012].

See again footnote 2 and the references mentioned therein for more on this topic.

In the continuum, when the spectrum of ω is not discrete as in this case where we have bounded orbits around a Schwarzschild black hole, the radial functions are denoted by R mω , so the corresponding notation should be R mω mn as in[Barack, Ori, and 

[START_REF] Barack | Frequency-domain calculation of the self force: The High-frequency problem and its resolution[END_REF]. However, for the sake of simplicity we will use R mn .

The study of the implications of this leads to a very useful set of geometrical invariants called de Rham cohomology groups. See Chapter 11 of [Lee

2002].

This has evolved through di erent versions throughout history. See[START_REF] Katz | The History of Stokes' Theorem[END_REF]] for a detailed account. The rst record of its appearance is in an 1850 letter by Lord Kelvin to Stokes, who then used it for several years as a problem in the Smith's Prize exam at Cambridge. (It is unknown if any of the students managed to prove it.) The rst published proof is in[START_REF] Hankel | Zur allgemeinen Theorie der Bewegung der Flüssigkeiten[END_REF]].

Formally, this can be de ned if one of the coordinates in the charts ϕ i of M , say x n , is always non-negative. Then one takes ∂M = {p ∈ M |ϕ i (p) = (x 1 , . . . , x n-1 , 0)}.

Appendix B. Particle-without-Particle: A Practical Pseudospectral Collocation Method

Here the terms "linear"/"nonlinear" have their standard meaning from the theory of partial differential equations.

The Gibbs phenomenon, originally discovered by Henry Wilbraham[START_REF] Wilbraham | On a certain periodic function[END_REF]] and rediscovered by J. Willard Gibbs[START_REF] Gibbs | Letter to the Editor[END_REF]], refers generally to an overshoot in the approximation of a piecewise continuously di erentiable function near a jump discontinuity.
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 (5.2.11)In other words, one de nes the matter stress-energy-momentum tensor as the functional derivative,

(5.2.12)

The de nition of the Brown-York tensor follows completely analogously, except that now gravity is also included. That is, for the total action of gravity (minimally) coupled to matter,

(5.2. [START_REF] Amaro-Seoane | X-MRIs: Extremely Large Mass-Ratio Inspirals[END_REF] we have that the metric variation is:

(5.2.15)

In Eq. (5.2.14), Π is the canonical momentum of (B, γ, D), given by Π = Θ -Θγ. It follows from direct computation using Eqs. (5.2.7), (5.2.10) and (5.2.11); for a review of this derivation carefully accounting for the boundary term see, e.g., Chapter 12 of [Padmanabhan 2010]. In the equality of Eq. (5.2.15), the Einstein equation G = κT has been invoked (in other words, we impose the Einstein equation to be satis ed in the bulk), thus leading to the vanishing of the bulk term; meanwhile in the boundary term, a gravity plus matter stress-energy-momentum tensor τ (the Brown-York tensor) has been de ned in direct analogy with the de nition of the matter energy-momentum tensor T in Eq. (5.2.11).

Hence just as Eq. (5.2.11) implies Eq. (5.2.12), Eq. (5.2.15) implies τ = -1 κ Π .

(5.2.16)

Henceforth, τ refers strictly to this (Brown-York) quasilocal stress-energy-momentum tensor of Eq. (5.2.16), and not to any other de nition.

It is useful to decompose τ in a similar way as is ordinarily done with T , so we de ne: E = u a u b τ ab , (5.2.17) P a = -σ ab u c τ bc , (5.2.18)

S ab = -σ ac σ bd τ cd , (5.2.19)

Chapter 5. The Motion of Localized Sources in General Relativity limitations of our quasilocal formalism, where we know how to de ne energy-momentum notions more generally than any Hamiltonian approach. Thus, in our result, there will be no restriction on the perturbative gauge. This may constitute a great advantage, as the "parity-regular" gauge class-though an improvement from being limited to the Lorenz gauge in formulating the EoM-still excludes entire classes of perturbative gauges convenient for formulating black hole perturbation theory (e.g. the Regge-Wheeler gauge in Schwarzschild-Droste) and hence for carrying out practical EMRI calculations.

We proceed to apply our quasilocal analysis to the Gralla-Wald family of spacetimes, beginning with a general setup in this family of rigid quasilocal frames. 5.4.2. General setup of rigid quasilocal frames in the Gralla-Wald family. Let (B (λ) ; u (λ) ) be a quasilocal frame in (M (λ) , g (λ) , ∇ (λ) ), for any λ > 0, constructed just as described in Section 5.2: with unit four-velocity u (λ) , unit normal n (λ) , induced metric γ (λ) and so on. Using the fact that the tensor transport is linear and commutes with tensor products, we can compute the transport (in the ve-dimensional "stacked" manifold N = M (λ) × R ≥ used in our perturbative setup, as in Subsection 3.2) of any geometrical quantity of interest to the background. For example, (5.4.12)

Similarly, σ ab = σab + λδσ ab + O(λ 2 ) , (5.4. [START_REF] Amaro-Seoane | X-MRIs: Extremely Large Mass-Ratio Inspirals[END_REF] where σab =γ ab + ůa ůb , (5.4.14) δσ ab = δγ ab + 2ů (a δu b) .

(5.4.15)

Now let us assume that (B (λ) ; u (λ) ) is a rigid quasilocal frame, meaning that the congruence de ning it has a vanishing symmetrized strain rate tensor in M (λ) , θ (λ) (ab) = 0 .

(5.4.16)

5.4. Application to the Gralla-Wald approach to the gravitational self-force 161 Let B = ϕ -1 (λ) (B (λ) ) be the inverse image of B (λ) in the background M , with u = ϕ * (λ) u (λ) = ů + λδu + O(λ 2 ) giving the transport of the quasilocal observers' fourvelocity, n = n + λδn + O(λ 2 ) the unit normal and so on. In other words, (B; u) is the background mapping of the perturbed congruence (B (λ) ; u (λ) ), and so will itself constitute a congruence (in the background), i.e. a quasilocal frame de ned by a twoparameter family of worldlines with unit four-velocity u in M .

However, although (B (λ) ; u (λ) ) is a rigid quasilocal frame in M (λ) , (B; u) is not in general a rigid quasilocal frame in M (with respect to the background metric g). One can see this easily as follows. Let ϑ ∈ T 0 2 ( M ) be the strain rate tensor of (B; u), so that it is given by ϑ ab = σ ca σ bd ∇c u d .

(5.4.17)

The RHS is an series in λ, owing to the fact that u (and therefore σ, the two-metric on the space H orthogonal to u in B) are transported from a perturbed congruence in M (λ) . Upon expansion we obtain is the rst-order term in λ. Note that we are abusing our established notation slightly in writing Eq. (5.4.18), as there exists no ϑ (λ) in M (λ) the transport (to M ) of which yields such a series expansion; instead ϑ is de ned directly on M (relative to the metric g) as the strain rate tensor of a conguence with four-velocity u-which itself contains the expansion in λ. Now let us compute the transport of the rigidity condition on (B (λ) ; u (λ) ) [Eq. (5.4.16)] to M : we have

(5.4.21) In this appendix we review some basic properties of conformal Killing vectors (CKVs), and in particular CKVs on the two-sphere.

A vector eld X on any n-dimensional Riemannian manifold (U , g U , ∇ U ) is a CKV if and only if it satis es the conformal Killing equation,

(5.6.1)

where ψ ∈ C ∞ (U ). This function can be determined uniquely by taking the trace of this equation, yielding

(5.6.2)

Let us now specialize to the r-radius two-sphere (S 2 r , r 2 S, D), where we denote our CKV by φ. Moreover for ease of notation in this appendix, the two-sphere volume form S 2 [Eq. (0.0.3)] is equivalently denoted by E, i.e. E ij = S 2 ij . In this case, the conformal Killing equation (5.6.1) is (5.6.3) where •• on two indices indicates taking the STF part. The solution to this equation can be usefully expressed in the form of a spherical harmonic decomposition in terms of the standard direction cosines of a radial unit vector in R 3 , which we denote by r I . In spherical coordinates {x i } = {θ, φ}, it is simply given by r I (θ, φ) = (sin θ cos φ, sin θ sin φ, cos θ) .

(5.6.4)

This satis es the following useful identity: (5.6.5) where ( + 1)!! = ( + 1)( -1) • • • 1 and the curly brackets on the indices denote the smallest set of permutations that make the result symmetric. In particular, the = 2 and = 4 cases (which su ce for the calculations presented in this chapter) are:

(5.6.7)

We can construct from Eq. (5.6.4) two sets of = 1 spherical harmonic forms on S 2 r , namely the boost generators, (5.6.8) and the rotation generators,

(5.6.9) where IJK is the volume form of R 3 . We can obtain from these the vector elds

(5.6.12)

From the above, it is possible to derive a number of useful properties:

(5.6.13)

(5.6.14)

Using these, one can show that the sets of = 1 vector elds B I and R I all satisfy the conformal Killing equation, i.e.

(5.6.15)

Finally, we give a list of useful relations for various contractions involving these vector elds: (5.6.16)

(5.6.17)

(5.6.18) (5.6.19) (5.6.20) (5.6.21) where P IJ = δ IJ -r I r J projects vectors perpendicular to the radial direction.

Topics in Di erential Geometry: Maps on Manifolds, Lie Derivatives, Forms and Integration Appendix summary. In this appendix, (M , g, ∇) is any n-dimensional (oriented, smooth, topological [START_REF] Lee | Introduction to Smooth Manifolds[END_REF]) manifold of any signature, with metric g and compatible derivative ∇.

We de ne and develop here four broad geometrical notions used amply throughout this thesis: maps on manifolds in Section A.1, Lie derivatives in Section A.2, di erential forms in Section A.3, and nally integration on manifolds in Section A.4. At the end of each of these sections we o er a brief example from physics. The exposition is mainly based on Appendices B and C of [START_REF] Wald | General Relativity[END_REF]] and [START_REF] Lee | Introduction to Smooth Manifolds[END_REF]].

Temes en geometria diferencial (appendix summary translation in Catalan). En aquest apèndix, (M , g, ∇) és qualsevol varietat n-dimensional (orientada, suau, topològica [START_REF] Lee | Introduction to Smooth Manifolds[END_REF]]) de qualsevol signatura, amb g el tensor mètric i derivada compatible ∇.

De nim i desenvolupem aquí quatre nocions geomètriques àmplies que s'utilitzen de forma extensiva al llarg de aquesta tesi: fonctions sobre varietats a la secció A.1, derivats de Lie a la secció A.2, formes diferencials de la secció A.3 i, nalment, integració sobre varietats de la secció A.4. Al nal de cadascuna d'aquestes seccions oferim un breu exemple de física. L'exposició es basa principalment en els apèndixs B i C de [START_REF] Wald | General Relativity[END_REF]] i [START_REF] Lee | Introduction to Smooth Manifolds[END_REF]].

Sujets dans la géométrie di érentielle (appendix summary translation in French). Dans cette annexe, (M , g, ∇) nous décrivons n'importe quelle variété n-dimensionnelle (orientée, lisse, topologique [START_REF] Lee | Introduction to Smooth Manifolds[END_REF]]) de n'importe quelle signature, avec g le tenseur métrique et dérivé compatible ∇.

Nous dé nissons et développons ici quatre grandes notions géométriques largement utilisées tout au long de cette thèse : applications sur le variétés dans la section A.1, dérivées de Lie dans la section A.2, formes di érentielles dans la section A.3 et en n intégration sur variétés dans la section A.4. À la n de chacune de ces sections, nous proposons un bref exemple tiré de la physique. L'exposition est principalement basée sur les annexes B et C de [START_REF] Wald | General Relativity[END_REF]] et [START_REF] Lee | Introduction to Smooth Manifolds[END_REF]]. A.1. An illustration of two manifolds (M , g) and ( M , g) with a map φ : M → M between them. This identi es any point p ∈ M with p = φ(p) ∈ M , and can be used, for example, to push-forward the vector v ∈ T p M to φ * v ∈ T p M . If φ is a di eomorphism, a general transport of tensors from one manifold to the other can be de ned. Note that in this notation, the metric g of M is not necessarily the same as the metric transported from M , i.e. φ * g. If indeed φ * g = g, then φ is called an isometry-a symmetry of the metric.

A.1. Maps on manifolds

Let (M , g, ∇) be an n-dimensional manifold and ( M , g, ∇) an ñ-dimensional manifold. They could be of the same dimension, and could even be the same manifold, but not necessarily.

An important question, one that often arises in physics and especially in GR, is how to establish an identi cation of points between manifolds (or between points on the same manifold), i.e. how to relate a point p ∈ M with a point p ∈ M , and more generally, an arbitrary tensor A ∈ T k l (M ) at p ∈ M with another tensor à ∈ T k l ( M ) at p ∈ M . In this section, overset tildes will generally be used to indicate objects living on M .

First, in order to identify the points themselves, we suppose that there exists a smooth map between these manifolds,

such that any point p ∈ M is identi ed with its image under this map, p = φ(p). See Fig.

A.1.

A.1. Maps on manifolds
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Consider now any function f : M → R. The map φ : M → M can be used to de ne a new function f on M , referred to as the pull-back of f , via simple composition. We denote this as f = φ * f : M → R, and it is simply given by: .1.3) This idea can be extended from functions to tensors of higher rank. First, suppose v a ∈ T M is a vector eld in the tangent bundle of M . The map φ can be used to "carry along" this vector eld to another vector eld ṽa = φ * v a ∈ T M in the tangent bundle of M , from point to point, via a map called the push-forward, φ * : T p M → T p M . Its action is de ned by

for any function f : M → R, with its pull-back φ * f = f • φ as given by (A.1.3). See again Fig.

A.1. One can push-forward vector elds from T M to T M in the same way using instead the inverse map φ -1 : M → M if it exists. One can continue in this way to de ne the pull-back of co-vectors ((0, 1)-tensors) from the co-tangent bundle of M to that of M . Let wa ∈ T * M . Then the pull-back

Suppose now that φ : M → M is a di eomorphism, meaning that it is bijective (oneto-one and onto) and has a smooth inverse φ -1 : M → M . Then a generalization of the push-forward and pull-back maps can be de ned to relate an arbitrary tensor A ∈ T k l (M ) at p ∈ M with another tensor à ∈ T k l ( M ) at p ∈ M . In particular, we write à = φ * A and refer to this generally as the transport of A (under φ) from M to M . (Note that in this notation, the metric g of M is not necessarily φ * g. If it is, then φ is called an isometry-a symmetry of the metric.) For any set of k co-vectors { w(j) a } k j=1 in T * M and any set of l vectors {ṽ a (j) } l j=1 in T M , the transport map

where w (j) = φ * w(j) is the pull-back (under φ) of each co-vector and v (j) = (φ -1 ) * ṽ(j) the push-forward (under φ -1 ) of each vector, from M to M . The transport of any tensor from M to M , i.e. the transport under φ -1 , is denoted by super-scripting the star,

We now enumerate some useful properties of the tensor transport (A.1.6). See Theorem 10.6 of [START_REF] Felsager | Geometry, Particles, and Fields[END_REF]]. Let A, B ∈ T k l (M ) and B ∈ T k l (M ) be any tensors in M and c ∈ R a constant. Then we have the following:

(1) φ * is linear, i.e.

(A.1.9)

(2) φ * commutes with the tensor product, i.e.

(3) φ * commutes with contractions, i.e. .1.11) Example: gauge freedom in GR. If the two manifolds (M , g) and ( M , g) are (fourdimensional, Lorentzian) spacetimes, the existence of a di eomorphism φ : M → M is interpreted as signifying that the spacetimes describe the same physical situation. In other words, any solution of the eld equations of a theory for some collection of elds ψ is considered to be physically indistinguishable from the solution φ * ψ. (Thus, we may speak of an equivalence class of solutions with the equivalence relation ψ ∼ φ * ψ.) Conversely, if there exists no di eomorphism φ : M → M , then the two spacetimes (and the correspondent solutions to the eld equations thereon) are seen to represent physically di erent situations.

The existence in GR of the freedom to transform the spacetime metric g by a di eomorphism, (such that g ∼ g), is often referred to as the "active view" of gauge freedom. Equivalently, one may take the "passive view", where gauge freedom can be seen to manifest itself as coordinate transformations. Concretely, suppose {x α } is a coordinate system covering a neighborhood U of a point p ∈ M , and {y α } one covering a neighborhood V of p = φ(p) ∈ M . One can then de ne a new coordinate system {x α } in a neighborhood φ -1 (V ) of p ∈ M by setting x α (q) = y α (φ(q)), for all q ∈ φ -1 (V ). From this point of view, one may thus regard the e ect of φ as leaving p and all tensors at p unchanged, but instead inducing a local coordinate transformation x α → x α . In other words, the components of any φ * A at p = φ(p) in the coordinates {y α } (in the "active" viewpoint) are the same as those of A at p in the coordinates {x α } (in the "passive" viewpoint).

A.2. Lie derivatives

Let (M , g, ∇) be any manifold, and let v a ∈ T M be any vector eld. An important question to address is: how do tensors change "in the direction" of v? Or, more precisely, how do they change (from point to point) along the curves in M to which v is tangent? Firstly, it is necessary to formalize the meaning of the latter concept: the set of curves in M to which v is tangent are referred to as the integral curves of v. These are de ned by A.2. Lie derivatives 207 a one-parameter group of di eomorphisms in M , referred to as the ow of v,

which are solutions to the ODE dφ

In this case, v is referred to as the generator of the ow. Thanks to our discussion in the previous section, we have a precise way of "comparing tensors" at di erent points on a manifold. In particular, we can compare the values of tensors at di erent points along the integral curves of v simply by transporting them under the ow φ

To be more precise, let A be any (k, l)-tensor. We may ask, for example, how its value at a point p 0 ∈ M on the manifold corresponding to t = 0 in the ow parametrization changes relative that at a point φ (v) t (p 0 ) = p t ∈ M at some parameter value t > 0. In this case, one needs to compare A at p 0 with the transport of A from p t to p 0 , i.e. with ((φ

The limit in which t is small gives rise precisely to the notion of the Lie derivative,

To make this more concrete, notice rstly that when applied to a function A = f : M → R, (A.2.3) immediately recovers the usual notion of the "directional derivative",

Moreover, for any A, it is to instructive to consider the result of the formula (A.2.3) in a choice of coordinates {x α } adapted to v. This means that the action of φ t on a point corresponds to a transformation in one coordinate x 1 → x 1 + t with the rest x 2 , . . . , x n being held xed. In such a coordinate system, it is possible to show (see Appendix C of [START_REF] Wald | General Relativity[END_REF]) that (A.2.3) yields:

again recovering the notion of a general "directional derivative", expressed here in the coordinates adapted to the direction of change. From (A.2.5), it is then possible (see Appendix C of [START_REF] Wald | General Relativity[END_REF]) to obtain a completely general, coordinate-independent abstract F A.2. An illustration of the meaning of the Lie derivative along a vector eld v in (M , g) of a tensor A, depicted here for ease of visualization in the case where A is a vector. In particular, one compares A 0 = (A) p 0 at the point p 0 corresponding to t = 0 in the ow φ (v) t with its value A t = (A) pt at the point p t = φ (v) t (p 0 ) for some t > 0 by transporting the latter back to p 0 , i.e. one compares A 0 with (φ

Their di erence divided by t, in the small t limit, is the Lie derivative. index formula for (A.2.3),

Example: perturbative gauge freedom and Killing vectors in GR. As developed in Chapter 3, a perturbative gauge transformation generated by a vector eld ξ ∈ T M changes the linear perturbation h according to h → h + L ξ g, where g is the background metric. Using (A.2.6), we see that
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The Lie derivative is also used to de ne Killing vector elds in any manifold (M , g, ∇) as those vector elds Ξ ∈ T M satisfying the Killing equation, L Ξ g = 0. This is equivalent to the statement that the ow generated by such vector elds, φ (Ξ) t , are isometries of the metric, i.e. (φ

then α is referred to as a (di erential) k-form. The notion of a form is a crucial one in geometry, and was rst developed in the work of [START_REF] Cartan | Sur certaines expressions di érentielles et le problème de Pfa[END_REF]]. As we shall see in the following section, forms serve as the basis for de ning integration over (regions of) manifolds. For the remainder of the current section, we summarize some useful de nitions and properties.

The set of k-forms on M is typically denoted Λ k (M ). As the simplest examples, Λ 0 (M ) = F (M ) is the set of smooth functions on M , and Λ 1 (M ) = T * M is just the cotangent bundle. Any k-form for k > n vanishes identically due to the antisymmetry.

A useful operation between forms is the wedge product, ∧. It can be applied between any k-form α and any l-form β to produce a (k +l)-form α∧β, given by their completely antisymmetrized outer product. That is,

Another useful operation is the exterior derivative d, which takes k-forms to (k + 1)forms, de ned as their completely antisymmetrized derivative. That is,

In fact, due to the antisymmetry of forms and the symmetry of the connection coe cient (between any two derivative operators on M ), one can show that the above de nition is independent of the choice of the derivative operator. (So we simply write it in terms of the partial derivative ∂.)

Appendix A. Topics in Di erential Geometry Thus, given a basis {dx α } of the cotangent space T * p M at any point p ∈ M , any k-form α and its exterior derivative dα can locally always be written, respectively, as

A k-form α is called closed if dα = 0, and exact if there exists a (k -1)-form β such that α = dβ. All exact forms are closed, as the de nition of the exterior derivative implies d 2 = d • d = 0, a result known as the Poincaré lemma. The converse is true, however, only locally: all closed forms are locally exact, but globally they may not be in general 1 .

In the study of integration in the next section, we will work with forms of the same rank as the dimension of the manifold, n. These are sometimes referred to as top forms. (As we shall see, integration in any n-dimensional space is de ned for n-forms.) Let α ∈ Λ n (M ) be any n-form. Its antisymmetry in all n indices implies that, locally, its expansion

where x = (x 1 , . . . , x n ) and α(x) is a function on M . Recall that zero-forms are also functions. Indeed, it is generally true, for any

Moreover, this isomorphism is provided by another famous and very useful operator, the Hodge star : Λ k (M ) → Λ n-k (M ) de ned uniquely, for any two k-forms α and β, by the relation

For more on this, see Chapter 7 of [START_REF] Nakahara | Geometry, Topology and Physics[END_REF]].

Example: electromagnetism. Consider the electromagnetic four-vector potential A a (traditionally written as (φ, A i ), with φ the scalar potential and A i the vector potential).

One can (using the spacetime metric to lower the index) think of this instead as a one-form A = A a dx a . Then, the Faraday tensor The other two Maxwell equations are the dynamical evolution equations: the Gauss law for electrostatics ∇ • E = ρ and the Ampère-Maxwell law ∇ × B = j + ∂ t E, where ρ and j are the charge and current densities. These are obtained from the Maxwell Lagrangian, given by L = -1 4 F : F + A • J , where here we denote J = J a dx a with J a = (ρ, j i ) the four-current written as a one-form. (See Chapter 4.) One obtains from the stationary action principle the dynamical Maxwell equations, d F = J .

(A.3.10)

A.4. Integration on manifolds

In this section we review integration over (regions of) M . First, suppose {(U i , ϕ i )} is an atlas for M , where U i ⊂ M are the open subsets covering M (such that i U i = M ), and the homeomorphisms ϕ i : U i → R n are the associated coordinate maps (or charts).

We begin by de ning the integral of an n-form α over any U i . In particular, this is de ned to be the same as the integral of the transported (pushed-forward) form over the image of U i in Euclidean space under ϕ i , i.e.

where to write the last equality we have used the expansion (A.3.8). This can now be made sense of as a usual integral in R n by identifying the wedge product of basis forms

R n , de ned in the usual way. This nally gives us:

The extension of this de nition to integration over the entire manifold M is not quite so straightforward. In particular, it requires a result which is rather technical, and the proof of which we omit here (see, e.g., Chapter 2 of [START_REF] Lee | Introduction to Smooth Manifolds[END_REF]): namely the existence in any manifold of partitions of unity. These are a set of functions {ψ i : M → [0, 1] ⊂ R}, said to be subordinate to {U i }, satisfying the following conditions: (i) they are supported entirely within each U i (i.e. supp(ψ i ) ⊂ U i ); (ii) at any point p ∈ M , they are nonzero for a nite number of i and add up to unity, i.e.

With this in hand, integration over the entire manifold M of a k-form α can be dened. In particular, one "inserts the identity" (A.4.3) into the integrand of ´M α to transform it into a sum of integrals over each U i (given that each ψ i is only supported therein), which are themselves in turn given by (A.4.2). That is, we de ne:

An important and often used result is Stokes' theorem 2 . The modern geometrical version of this theorem was rst formulated by [START_REF] Cartan | Les systèmes di érentiels extérieurs et leurs applications géométriques[END_REF]]. It states that for any (n -1)form α,

where ∂M is the boundary 3 of M . Now that we know how to make sense of integration of forms, we would also like to give meaning to the integration of a function f : M → R over (regions of) M . In order to do this, one rst requires the de nition of a volume form. This is a nowhere-vanishing n-form, denoted as M ∈ Λ n (M ), such that the total volume or total measure µ(M ) of the manifold is given by its integral thereover,

The volume form is usually de ned by the condition

where s denotes the number of minus signs in the signature of g (so s = 0 if it is Riemannian and s = 1 if it is Lorentzian). It can be shown (see, e.g., Appendix B of [START_REF] Wald | General Relativity[END_REF]) that (A.4.6) implies that M has a local expansion (A.3.6) given by:

where g = det(g).

With this, we can now de ne the integral of a function f :

One nal useful result that we state here concerns the transport under a di eomorphism φ : M → M of the volume form of M to another manifold M . Indeed, this does not simply yield the volume from of M itself; however, they are proportional, with the proportionality factor given by a smooth function on M called the Jacobian determinant, J ∈ F ( M ). To be more precise, let M denote the volume form of M . Then we have (see Chapter 7 of [START_REF] Abraham | Manifolds, Tensor Analysis, and Applications[END_REF]):

where J = det(φ * ), with φ * : T M → T M here indicating the push-forward.

Example: di eomorphism-invariant action functionals. A useful result (see Proposition 10.20 of [START_REF] Lee | Introduction to Smooth Manifolds[END_REF]) is that for any di eomorphism φ : M → M and any compactly supported n-form α on M , we have

is an action functional of a eld theory, as de ned in Chapter 2. The above result can then be regarded as a statement of di eomorphism invariance: we have

In the second line we have used (A.4.10), in the third line the fact that the transport commutes with tensor products as well as (A.1.3), and nally in the last line (A.4.9). The latter may readily be recognized simply as a general version of the "change of coordinates" formula from standard multi-variable calculus in Euclidean space.

APPENDIX B

Particle-without-Particle: A Practical Pseudospectral Collocation Method for Linear Partial Di erential Equations with Distributional Sources Appendix summary. This appendix is based on the publication [Oltean, Sopuerta, et al. 2019].

Partial di erential equations with distributional sources-involving (derivatives of) delta distributions-have become increasingly ubiquitous in numerous areas of physics and applied mathematics. It is often of considerable interest to obtain numerical solutions for such equations, but any singular ("particle"-like) source modeling invariably introduces nontrivial computational obstacles. A common method in the literature used to circumvent these is through some form of delta function approximation procedure on the computational grid; however, this often carries signi cant limitations on the e ciency of the numerical convergence rates, or sometimes even the resolvability of the problem at all.

In this appendix, we present an alternative technique for tackling such equations which avoids the singular behavior entirely: the Particle-without-Particle method. Previously introduced in the context of the self-force problem in gravitational physics, the idea is to discretize the computational domain into two (or more) disjoint pseudospectral (Chebyshev-Lobatto) grids such that the "particle" is always at the interface between them; thus, one only needs to solve homogeneous equations in each domain, with the source e ectively replaced by jump (boundary) conditions thereon. We prove here that this method yields solutions to any linear PDE the source of which is any linear combination of delta distributions and derivatives thereof supported on a one-dimensional subspace of the problem domain. We then implement it to numerically solve a variety of relevant PDEs with applications in neuroscience, nance and acoustics. We generically obtain improved convergence rates relative to typical past implementations relying on delta function approximations.

Following an introduction in Section B.1 and some mathematical preliminaries in Section B.2, we prove in Section B.3 how the Particle-without-Particle method can be formulated and applied to problems with the most general possible "point" source, that is, one containing an arbitrary number of (linearly combined) one-dimensional delta functions α = (α 0 , α 1 , . . . , α n-1 ) with each α I ∈ Z ≥ being a non-negative integer (indexed from I = 0 to I = n -1 so as to make sense vis-à-vis our coordinate notation on U , instead of the more usual practice to label them from 1 to n), and |α| = n-1 I=0 α I . Furthermore, we de ne α! = n-1 I=0 α I !. Thus, the most general m-th order linear partial di erential operator can be written as L = |α|≤m ξ α (x)D α where ξ α : U → R are arbitrary functions and

n-1 . Hence, we are dealing with any problem which can be placed into the form

with f ij : U → R denoting the "source" functions (for the j-th delta derivative of the i-th particle) and K ∈ Z ≥ the highest order of the delta function derivatives in S, appropriately supplemented by initial/boundary conditions (ICs/BCs).

Let us give a few basic examples to render this setup more palpable. One very simple example-that which will serve as our rst illustration of the PwP method in the next section-is the simple harmonic oscillator with a constant delta function forcing (source) term-that is, the ODE (with V = ∅):

where δ (p) (x) = δ(x -x p ) for some xed x p ∈ I , and a ∈ R. Another example is the wave equation with a moving singular source,

with x p (t) speci ed as a function of time.

B.2.2. Properties of distributions. We now wish to remind the reader of a few basic properties of distributions before proceeding to describe the PwP procedure; for a good detailed exposition, see e.g. [START_REF] Stakgold | Green's Functions and Boundary Value Problems[END_REF].

Let f : U → R be, as before, any function involved in the problem (B.2.4). We denote by

the function evaluated at the "particle" position. Furthermore, let φ ∈ D(I ) be any test function on I . Then we de ne the action of the distribution associated with f as:

We say that two functions f and g are equivalent in the sense of distributions if

An identity which will be important for us in discussing the PwP method is the following [START_REF] Cortizo | On Dirac's Delta Calculus[END_REF][START_REF] Li | A review on the products of distributions[END_REF]:

where δ

. For concreteness, let us write down the rst three cases explicitly here:

For the interested reader, we o er in Appendix A of [Oltean, Sopuerta, et al. 2019] a proof by induction of the formula (B.2.10), which is instructive for appreciating the subtleties generally involved in manipulating distributions.

be the Heaviside function which is supported to the right/left (respectively) of x p . Then, we have: B.2.16) and so on for higher order partials.

For notational expediency, we may sometimes omit the (p) subscript on the Heaviside functions (and derivatives thereof) when the context is su ciently clear.

B.3. The Particle-without-Particle method

As discussed heuristically in the introduction, the basic idea of our method for solving (B.2.4) is to e ectively eliminate the "point"-like source or "particle" from the problem by decomposing the solution u into a series of distributions: speci cally, Heaviside functions Θ i : D(I ) → R supported in each of the M + 1 disjoint regions of I \supp(S) (i.e. supp(Θ i ) ∩ supp(S) = ∅, ∀i and supp(Θ i ) ∩ supp(Θ j ) = ∅, ∀i = j) and, if necessary, delta functions (plus delta derivatives) at supp(S): where u i : U → R and we need to include the second sum with

We will prove in this section that one can always obtain solutions of the form (B.3.1) to the problem (B.2.4). In particular, inserting (B.3.1) into (B.2.4) will always yield homogeneous equations

along with JCs on (the derivatives of) u-and possibly (derivatives of) h ij if applicable. In general, we de ne the "jump"

Henceforth, for convenience, we will generally omit the y-dependence and simply write [f ] p .

First we will work through a simple example in order to o er a more concrete sense of the method, and afterwards we will show in general how (B.3.1) solves (B.2.4).

B.3.1. Simple example.

We illustrate here the application of our PwP method to a very simple ODE (and single-particle) example. We will consider the problem

where δ is simply the delta function centered at x p = 0. We begin by decomposing u as

where Θ ± (x) = Θ(±x), and we insert this into (B.3.4). Using (B.2.15), the LHS becomes simply

Now before we can equate this to the distributional terms in the source (RHS), we must apply the identity (B.2.10). In particular, we use f (x)δ(x) ≡ f p δ(x) and f (x)δ (x) ≡ -f p δ(x) + f p δ (x). Thus, the above becomes

Plugging this into the DE (B.3.4), we have

Therefore the original problem is equivalent to the system of equations:

Let us solve (B.3.11), for simplicity, taking L = π/4. The left homogeneous equation in (B.3.11) has the general solution u -= A -cos(x) + B -sin(x), and the BC tells us that

The right homogeneous equation in (B.3.11) similarly has general solution u + = A + cos(x) + B + sin(x), with the BC stating 0

So far we have two equations (B.3.12)-(B.3.13) for four unknowns (the integration constants in the general solutions). It is the JCs in (B.3.11) that provide us with the remaining necessary equations to x the solution. We have u -(0) = A -, (u -) (0) = B -, u + (0) = A + and (u + ) (0) = B + (understood in the appropriate limit approaching x p = 0). Hence the JCs tell us:

(We can think of the JCs as a mixing of the degrees of freedom in the homogeneous solutions in such a way that they "link together" to produce the solution generated by the original distributional source.) Solving (B.3.12)-(B.3.15), we get

We now have the full solution to our original problem (B.3.4): 

(NB: For M ≥ 2, if there exists any subset of V where it should happen that x p i (y) > x p i+1 (y) as a consequence of the y-evolution, we can, without loss of generality, simply swap indices within that subset so as to always have x p i < x p i+1 , ∀i.) Furthermore let us assume for the moment that the maximum order of delta function derivatives in the source is one less than the order of the PDE (or smaller), i.e. K = m -1. In this case, we do not need to consider the second term on the RHS of (B.3.1), i.e. u is just split up into pieces which are supported only in between all the particle locations: u 0 (x) to the left of x p 1 , u 1 (x) between x p 1 and x p 2 , ..., u i (x) between x p i and x p i+1 , ..., and nally u M to the right of x p M . Thus, we take

where we de ne

Another way of stating this is that we assume for u a piecewise decomposition

where the D i 's are disjoint subsets of I between each "particle location", i.e. (B.3.20) where

The general strategy, then, is to insert (B.3.17) into (B.2.4), and to obtain a set of equations by matching (regular function) terms multiplying the same derivative order of the Heaviside distributions. Explicitly, using the Leibniz rule, we get

singular point source at some x = x * :

where we assume that the source time function g(t) is smooth and vanishes at t = 0. On an unbounded spatial domain (i.e. x ∈ R), the exact solution of this problem is This precise problem is treated in [START_REF] Petersson | Discretizing singular point sources in hyperbolic wave propagation problems[END_REF]] using a (polynomial) delta function approximation procedure, with the following: g(t) = e -(t-t 0 ) 2 /2 , t 0 = 8, L = 40 and x * = 10 + π. We numerically implement the exact same setup, but using our PwP method: that is, we decompose u = u -Θ -+ u + Θ + where Θ ± = Θ(±(x -x * )). Inserting this into (B.4.1), we get homogeneous PDEs ∂ t u ± + ∂ x u ± = 0 to the left and right of the singularity, i.e. on x ∈ D -= [0, x * ] and x ∈ D + = [x * , L] respectively, along with a jump in the solution [u] * = g(t) at the point of the source singularity.

The details of all our numerical schemes in this work are described in an appendix, Section B.9. In particular, for the present problem, see Subsection B.9.2. We also o er in Subsection B.9.1 a brief description of the PSC methods and notation used therein.

The solution for zero initial data is displayed in Figure B.1, and the numerical convergence in Figure B.2. For the latter, we plot-for the numerical solution u at t = T /2-both the absolute error (in the l 2 norm on the CL grids, as in [START_REF] Petersson | Discretizing singular point sources in hyperbolic wave propagation problems[END_REF]), abs = ||u -u ex || 2 , as well as the truncation error in the right CL domain D + given simply the absolute value of the last spectral coe cient a N of u + . We see that the truncation error exhibits typical (exponential) spectral convergence; the absolute error converges at the same rate until N ≈ 40, after which it converges more slowly because it becomes dominated by the O(∆t) = O(N -2 ) error in the nite di erence time evolution scheme. Nevertheless, for the same number of grid points, our procedure still yields a lower order of magnitude of the l 2 error as was obtained in [START_REF] Petersson | Discretizing singular point sources in hyperbolic wave propagation problems[END_REF]] with a sixth order nite di erence scheme (relying on a a source discretization with 6 moment conditions and 6 smoothness conditions); we present a simple comparison of these in the following table: Before proceeding to the numerical implementation, we note that it is possible to derive an exact stationary (i.e. t → ∞) solution of the problem (B.5.5). In particular, denoting the (time-conserved) number of buyers and vendors, respectively, by N B = ´xp 0 dx f and N V = -´1 xp dx f , one can show that in the stationary (t → ∞) limit, B.5.8) which we can use to determine the exact stationary solution

The problem (B.5.5) is solved numerically in [START_REF] Markowich | On a parabolic free boundary equation modeling price formation[END_REF]] (see also section 2.5.2 of [START_REF] Pietschmann | On some partial di erential equation models in socio-economic contexts -analysis and numerical simulations[END_REF]) using (Gaussian) delta function approximations for the source on an equispaced computational grid. We implement here using our PwP method the exact same setup: in particular, we take a transaction fee of a = 0.1 and initial data f I (x) = 875 6 x 3 -700 3 x 2 + 175 2 x. (NB: Despite the fact that this does not actually satisfy homogeneous Neumann BCs, the numerical evolution will force it to.) Analytically, we have x p (0) = 3 5 and λ(0) = 35. Also, using (B.5.8), we have λ stat = -8855 162 and x stat p = 731 1012 ≈ 0.7223. As we evolve forward in time, we use Chebyshev polynomial interpolation to determine the transaction rate λ(t) (i.e. the negative of the spatial derivative of the solution at x p (t)) as well as the evolution of x p (t) via (B.5.6).

The numerical scheme is given in Subsection B.9. .8, the price as a function of time as well as the numerical convergence rates. For the latter, we plot not only the truncation error but also the absolute error with the stationary solution (B.5.9), in this case, using the in nity norm: abs = ||f -f stat || ∞ . Of course, since we can only evolve the solution up to a nite time (which we choose to be t = T = 1), we should not expect this to converge to zero; however, its decline with increasing N nevertheless serves to illustrate a good validation of our results. We remark that our numerical implementation here not only requires an order of magnitude fewer grid points than that of [START_REF] Markowich | On a parabolic free boundary equation modeling price formation[END_REF]], but in fact yields convergence to the correct stationary solution while that of [START_REF] Markowich | On a parabolic free boundary equation modeling price formation[END_REF] does not. B.6. Second order hyperbolic PDEs 245 Indeed, in the latter, not only are more points required (essentially due to the necessity of resolving well enough the Gaussian-approximated delta functions) but the scheme actually fails, even so, to approach (B.5.9) as well as ours by the same nite time, t = T = 1. (To wit, [START_REF] Markowich | On a parabolic free boundary equation modeling price formation[END_REF]] obtain x p → 0.71 in the large t limit, instead of the correct value, 0.7223, which we achieve with our PwP method as shown in Figure B.8.)

B.6. Second order hyperbolic PDEs

We move on to consider in this section second order hyperbolic problems. In particular, we rst solve the standard (1 + 1)-dimensional elastic wave equation, taking a delta derivative source. Afterwards, we discuss possible physical applications of this and obstacles thereto-including problems in gravitational physics and seismology. B.6.1. Wave equation. Let us consider the the elastic wave equation, in the form of the following simpli ed (1 + 1)-dimensional problem for u(x, t) with a delta function derivative source at a xed point x * ∈ I = [0, L], and homogeneous Dirichlet boundary conditions:

It is actually possible to derive an exact solution for this problem on an unbounded domain I = R. For the interested reader, the procedure is explained in Appendix D of [Oltean, Sopuerta, et al. 2019]. For concreteness we take a simple sinusoidal source time function g(t) = κ sin(ωt), in which case the exact solution reads:

where sgn(•) is the sign function, with the property d(sgn(x))/dx = 2dΘ(x)/dx = 2δ(x).

To solve (B.6.1) numerically, we implement the now familiar PwP decomposition: u = u -Θ -+ u + Θ + where Θ ± = Θ(±(x -x * )). Inserting this into (B.6.1), we get homogeneous PDEs ∂ 2 t u ± -∂ 2 x u ± = 0 to the left and right of the singularity, x ∈ D -= [0, x * ] and x ∈ D + = [x * , L] respectively, along with the JCs [u] p = -g(t) and [∂ x u] p = 0. We now proceed by recasting (B.6.1) as a rst-order hyperbolic system for U = [u v w] T

The application of the PwP method to the full gravitational self-force is a subject of ongoing work, however (modulo certain technical problems relating to the gauge choice, which we will not elaborate upon here) in the Schwarzschild-Droste case it essentially reduces to solving the same type of problem (B.1.1) with dim(I ) = 1 and S = f δ (p) + gδ (p) . The equivalent problem in the Kerr case once again su ers from the issue that dim(I ) = 2 in the time domain, so the PwP method cannot be applied there except after a transformation to the frequency domain (which produces dim(I ) = 1 and S = f δ (p) + gδ (p) + hδ (p) in this case).

Outside of gravitational physics, another setting where the PwP technique could also possibly prove useful is in seismology. There, however, the modeling of seismic waves [START_REF] Aki | Quantitative Seismology[END_REF][START_REF] Madariaga | Seismic Source Theory[END_REF][START_REF] Petersson | Stable Grid Re nement and Singular Source Discretization for Seismic Wave Simulations[END_REF]Romanowicz and Dziewonski 2007;[START_REF] Shearer | Introduction to Seismology[END_REF] typically involves equations of the form (B.3.44) with 3dimensional delta functions (i.e. dim(I ) = n = 3, usually referring to the 3 dimensions of ordinary space) which, as we have amply discussed in relation thereto, are not directly amenable to a PwP-type approach as such. However, the methods outlined in this appendix might be of some use if symmetries or other simplifying assumptions can, in a situation of interest, reduce the dimension of the distributional source to 1 (as an alternative to delta function approximation procedures, which are common practice in this area as well).

B.7. Elliptic PDEs

Finally, we consider in this section the elliptical problem appearing in section 4.3 of [START_REF] Tornberg | Numerical approximations of singular source terms in di erential equations[END_REF]: namely, the Poisson equation on a square of side length 2 centered on the origin in R 2 , with a simple (negative) one-dimensional delta function source supported on the circle of radius r * = 1 2 ,

In this case, the polar symmetry of the PDE entails that the solution will only depend on the radial coordinate r (which in this case notationally substitutes the x coordinate in antecedent sections). Indeed, (B.7.1) has an exact solution which is simply given by

We can use the fact that in polar coordinates,

, and so numerically all we need to do is solve (∂

where the value of θ will determine {r} = I = [0, L] and hence the BC at u(L) (that is, on ∂U ), and repeat over some set of discrete θ values in case the entire numerical solution on the (r, θ)-plane is desired. Thus, we simply implement the PwP method here by writing u = u -Θ -+ u + Θ + for Θ ± = Θ(r -r * ), whereby we obtain the homogeneous equations (∂ 2 r + 1 r ∂ r )u ± = 0 along with the JCs [u] * = 0 and [∂ r u] * = -1.

The detailed numerical scheme is given in Subsection B.9.5, and results in Figure B.11. In this case, we simply plot the errors along the positive x-axis in R 2 on the CL grids: in addition to the right-domain truncation error, we also show (as is done in [START_REF] Tornberg | Numerical approximations of singular source terms in di erential equations[END_REF]) the absolute error in both the l 1 -norm,

(1) abs = ||u -u ex || 1 , as well as in the in nity norm, (∞) abs = ||u -u ex || ∞ . Up to N ≈ 20, we observe the typical (exponential) spectral convergence of all three errors, with a signi cant (by a few orders of magnitude) improvement over the results of [START_REF] Tornberg | Numerical approximations of singular source terms in di erential equations[END_REF] (using delta function approximations) for the latter two.

B.8. Conclusions

We have expounded in this appendix a practical approach-the "Particle-without-Particle" (PwP) method-for numerically solving di erential equations with distributional sources; to summarize, one does this by breaking up the solution into (regular function) pieces supported between-plus, if necessary, at-singularity ("particle") locations, solving sourceless (homogeneous) problems for these pieces, and then matching them via

Marius OLTEAN

Etude de la dynamique relativistique des inspirals avec quotients extrêmes des masses

Résumé :

Le sujet principal de cette thèse est le problème gravitationnel à deux corps dans le régime des quotients extrêmes des masses -c'est-à-dire où une masse est nettement plus petite que l'autre -dans le contexte complet de notre théorie contemporaine de la gravité, la relativité générale. Nous divisons ce travail en deux grandes parties : la première fournit un aperçu de la théorie de la relativité générale ainsi que des méthodes mathématiques de base qui la sous-tendent, en mettant l'accent sur sa formulation canonique et les techniques de perturbation; la seconde présente notre travail novateur dans ces domaines, en se concentrant sur les problèmes de l'entropie, du mouvement et de la force propre dans la relativité générale. Nous commençons ici par une étude des théorèmes de l'entropie dans les systèmes hamiltoniens, et en particulier par la question de la deuxième loi de la thermodynamique dans la mécanique classique et la relativité générale. Ensuite, nous développons une analyse générale basée sur les lois de conservation pour calculer la correction au mouvement d'un objet suffisamment petit dues aux perturbations gravitationnelles dans la relativité générale. Lorsque les perturbations sont attribuées au petit objet lui-même, cet effet s'appelle la force propre gravitationnelle. C'est ce que détermine l'évolution orbitale des inspirals avec quotients extrêmes des masses : des systèmes binaires compacts dans lesquels une masse est beaucoup plus petite que -effectivement orbitant et finissant en faire des spirales dans -l'autre. On s'attend à ce qu'elles soient l'une des principales sources pour le futur détecteur spatial d'ondes gravitationnelles LISA. Finalement, nous présentons quelques travaux sur le calcul numérique de la force propre scalaire en utilisant une approche appelée la méthode Particule-sans-Particule, ainsi que sa généralisation et son application à d'autres domaines des mathématiques appliquées.
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Study of the Relativistic Dynamics of Extreme-Mass-Ratio Inspirals

Summary :

The principal subject of this thesis is the gravitational two-body problem in the extreme-mass-ratio regime--that is, where one mass is significantly smaller than the other---in the full context of our contemporary theory of gravity, general relativity. We divide this work into two broad parts: the first provides an overview of the theory of general relativity along with the basic mathematical methods underlying it, focusing on its canonical formulation and perturbation techniques; the second presents our novel work in these areas, focusing on the problems of entropy, motion and the self-force in general relativity. We begin here with a study of entropy theorems in classical Hamiltonian systems, and in particular, the issue of the second law of thermodynamics in classical mechanics and general relativity. Then, we develop a general approach based on conservation laws for calculating the correction to the motion of a sufficiently small object due to gravitational perturbations in general relativity. When the perturbations are attributed to the small object itself, this effect is known as the gravitational self-force. It is what drives the orbital evolution of extreme-mass-ratio inspirals: compact binary systems where one mass is much smaller than---thus effectively orbiting and eventually spiralling into---the other, expected to be among the main sources for the future space-based gravitational wave detector LISA. Finally, we present some work on the numerical computation of the scalar self-force using an approach called the Particle-without-Particle method, as well as the generalization of this method to general partial differential equations and applications to other areas of applied mathematics.