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Chapter 1

Introduction

We live in an era where increasingly many tasks are being automated, drastically improving
productivity. We can trace back this trend at least to the industrial revolution which
introduced the massive use of machines to boost human productivity. However, until
recently many tasks required human supervision. The progress of new digital technologies
allows the automation of an increasing number of tasks. Nowadays many autonomous
agents interacting with a complex 3D world are being developed. Robots are designed
to automate the production, storage and delivery of goods in various industries and in
agriculture. Self-driving cars and domestic robots might become a reality in the near
future. These agents rely on various sensors to perceive their environment and require
algorithms to process and analyse input signals in order to make decisions.

In recent years considerable progress has been made in the design of such algorithms,
largely thanks to the progress of machine learning and especially of deep learning and
its numerous successes. A particularly successful class of algorithms for image analysis
is convolutional neural networks (CNN) popularized by the now famous AlexNet [64]
algorithm who won the 2012 ImageNet competition [106] by a large margin. Since then,
CNNs have been applied in many different fields such as medical image analysis [70],
facial recognition [92], object classification or detection [64, 48, 101] to name a few,
with new applications coming every year. The success of deep learning algorithms is
due to two main factors: the increase of computational power with the use of modern
GPUs to accelerate computation and the availability of massive data to train algorithms.
In addition to the proliferation of image acquisition devices in recent years many 3D
technologies previously reserved to experts in the industry have made their way to the
consumer market. It is now possible to find relatively affordable depth field cameras
like the Kinect, virtual reality devices like Oculus Rift and even 3D printers. For this
reason it is expected that our digital world will become increasingly 3 dimensional in the
coming years. The emergence and popularisation of new 3D sensor technologies allows
autonomous agents to interact with the 3D environment in a much more complete way
than previously authorized by standard acquisition devices like cameras. This together
with the availability of 3D data with datasets like ShapeNet [23], Modelnet [137] and
ABC [59] motivates the development of new algorithms for processing and analysing 3D
signals.

Recently considerable research effort has been made to replicate the success of methods
from image analysis to 3D shape analysis (see [17] for a survey of the state of the art in
geometric deep learning prior to the work presented in this thesis). Despite the similarities
between the two fields, shape analysis has its own unique challenges. Perhaps the biggest
difference is the object of study. Image analysis studies signals over a fixed domain (an
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image is a signal over a regular grid of pixels) while in shape analysis the object of study
is the domain itself. This is especially challenging for learning since working on a fixed
domain allows to associate statistics of the signal to a certain location and query statistics
across locations in a consistent way, this is key to the success of CNNs. Moreover 3D
shapes can be represented using different modalities such as point clouds, polygon meshes
or even volumetric grids depending on the way they were acquired or generated. What
makes learning on 3D data particularly challenging is that these representations are
highly non canonical, the order of points in a point cloud or a mesh is arbitrary, different
mesh or point cloud structures can represent the same object. Designing algorithms that
can accommodate and are invariant to the shape representation is a challenging task on
its own.

Another major difficulty comes from the fact that shapes might undergo various rigid
transforms such as rotations and articulated motion or complex non rigid deformations.
Algorithms for 3D shape analysis are often required to make predictions which are
invariant to rigid motion of the objects. For instance in classification tasks the predicted
class of an object shouldn’t depend on its pose, similarly the part labels predicted by a
segmentation algorithm should be invariant to rotations and translations. Many existing
datasets of 3D shapes such as [23] and [137] are aligned meaning that the shapes are in a
canonical pose. Classical networks like [76, 100, 73] trained on aligned data usually fail
to generalise to rotated shapes. The classical solution consists in data augmentation in
the form of random rotations at training. This can be computationally inefficient and
the final performance still drops noticeably compared to the aligned case. Designing
algorithms that are either invariant to these transforms or can quantify them such as
equivariant algorithms whose output undergoes a predictable transform given certain
transforms of the input is a challenging task.

In the following dissertation we propose three contributions to these challenges based
on the following three publications forming the main chapters of the dissertation.

List of publications

1. Topological Function Optimization for Continuous Shape Matching, [97], Sympo-
sium on geometry processing (SGP), 2018.

2. Multi-directional Geodesic Neural Networks via Equivariant Convolution, [95],
SIGGRAPH asia, 2018.

3. Effective Rotation-invariant Point CNN with Spherical Harmonics Kernels, [96],
3DV, 2019.

In Chapter 3 we introduce a new method for optimising topological properties of
real valued functions. Our method is based on a descriptor of the topology of level
sets of real valued functions coming from the theory of persistent homology [35] called
persistence diagram [21, 20]. We show that the persistence diagram of a function is
differentiable with respect to the function allowing to modify parametric functions to
remove topological noise or to exhibit prescribed topological features using continuous
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optimisation techniques. We present a method for aligning persistence diagrams of
functions on different domains, without requiring correspondences between them based on
the minimization of a “topological” energy term. We demonstrate the utility of these tools
within the context shape matching with functional maps. Shape matching is a classical
task which consists in finding correspondences between shapes that preserve geometric
or semantic properties. The functional map pipeline [88] for shape matching is based
on the observation that a map between two shapes induces a map between functions
on these shapes in the opposite direction (via the pull-back operation). Given bases of
functions on the two shapes it is possible to represent a map as a matrix and formulate
the shape matching problem as a linear algebra optimization problem. One difficulty is to
convert this matrix to a point-to-point map, since the standard process of conversion often
results in discontinuous maps with matching errors. Existing methods for improving the
continuity of functional maps-based correspondences often rely on a post processing step
on the resulting point-to-point map. In [97] we propose a method to enforce continuity of
the underlying point-to-point map directly during the functional map optimization phase
by aligning the persistence diagrams of functions and their images via the functional
map, effectively resulting in smoother and more accurate correspondences.

In Chapter 4 we consider the problem of learning on triangle meshes. The first
challenge to overcome is to design a learning framework which is invariant to the particular
structure of the mesh (connectivity, shape of triangles). We follow the approach of [75]
who introduced the idea of using local polar coordinates on triangles meshes do define a
convolution operator and use it in a deep learning pipeline. A major difficulty arising
when using local polar coordinates is that they are canonical only up to rotation of each
coordinate frame. The solution considered in [75] is to take the maximal response of the
convolution operator over all choices of polar coordinates thus losing the local direction
information. In [95] we propose a new direction aware convolution operator on triangles
meshes which is equivariant with respect to rotations of the local polar coordinates
and show an overall improvement in training and test accuracy in various experimental
settings.

One limitation of the method we present in Chapter 4 is that it is only applicable
to shapes represented as triangle meshes. On the other hand point clouds provide the
least structured data representation, since any other representation can be converted to a
point cloud via sampling. Thus any algorithm working on point clouds will generalise
to other formats. Also 3D sensors usually produce point cloud data. This motivates
the development of algorithms operating on point cloud data. In Chapter 5 we consider
the problem of learning over point clouds, and specifically focus on rotation invariance.
In [96] we propose a new rotation invariant deep learning framework for point clouds
analysis. We show that our model is indeed robust to rotations and achieves better
performance on classical classification and segmentation tasks, when tested on unaligned
datasets.
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In Chapter 6 we present a method for enforcing orientation preservation of functional
maps [88] in view of resolving symmetry issues in shape matching applications of the
functional map pipeline. Our method contributed to the paper:

4. Continuous and orientation-preserving correspondences via functional maps, [102],
SIGGRAPH Asia, 2018.

This paper introduced a new method for improving bijectivity, continuity and orientation
preservation of point-to-point maps obtained via the functional map pipeline.

Finally we conclude in Chapter 7 where we propose a survey of follow-up works based
on the contributions presented in this thesis and propose directions for future work.



Chapter 2

Introduction en français

Nous vivons à une époque où de plus en plus de tâches sont automatisées, ce qui
améliore considérablement la productivité. On peut retracer cette tendance au moins
jusqu’à la révolution industrielle qui a introduit l’utilisation massive des machines pour
accroître la productivité humaine. Cependant, jusqu’à récemment, de nombreuses tâches
nécessitaient une supervision humaine. Les progrès des nouvelles technologies numériques
permettent l’automatisation d’un nombre croissant de tâches. De nos jours, de nombreux
agents autonomes interagissant avec un environnement 3D complexe sont en cours de
développement. Des robots sont conçus pour automatiser la production, le stockage
et la livraison de marchandises dans diverses industries ainsi que dans l’agriculture.
Les voitures autonomes et les robots domestiques pourraient devenir une réalité dans
un proche avenir. Ces agents s’appuient sur différents capteurs pour percevoir leur
environnement et nécessitent des algorithmes pour analyser et traiter les signaux d’entrée
afin de prendre des décisions.

Ces dernières années, des progrès considérables ont été réalisés dans la conception
de ces algorithmes, en grande partie grâce aux progrès de l’apprentissage machine et
surtout de l’apprentissage profond et à ses nombreux succès. Les réseaux neuronaux
convolutifs (CNN) constituent une classe d’algorithmes particulièrement efficace pour
l’analyse d’images. Popularisé par le désormais célèbre algorithme AlexNet [64] qui a
remporté le concours ImageNet 2012 [106] avec une large marge. Depuis lors, les réseaux
CNN ont été utilisés dans de nombreux domaines tels que l’analyse d’images médicales
[70], la reconnaissance faciale [92], la classification ou détection d’objets [64, 48, 101]
pour ne citer que ceux-là et de nouvelles applications viennent s’ajouter à la liste chaque
année.

Le succès des algorithmes d’apprentissage profond est dû à deux facteurs principaux
: l’augmentation de la puissance de calcul avec l’utilisation des GPU modernes pour
accélérer le calcul et la disponibilité de données massives pour entrainer les algorithmes.

En plus de la prolifération des dispositifs d’acquisition d’images au cours des dernières
années, de nombreuses technologies 3D auparavant réservées à des experts dans l’industrie
ont fait leur chemin vers le marché grand public. Il est maintenant possible de trouver des
caméras 3D relativement abordables comme le Kinect, des appareils de réalité virtuelle
comme l’Oculus Rift et même des imprimantes 3D. C’est pourquoi on s’attend à ce
que notre monde numérique devienne de plus en plus tridimensionnel dans les années
à venir. L’émergence et la popularisation de nouvelles technologies de capteurs 3D
permettent aux agents autonomes d’interagir avec l’environnement 3D d’une manière
beaucoup plus complète qu’auparavant avec les dispositifs d’acquisition standard comme
les caméras traditionnelles. Ceci, combiné à la disponibilité de données 3D avec des
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ensembles d’apprentissage comme ShapeNet [23], Modelnet [137] et ABC [59] motive le
développement de nouveaux algorithmes pour traiter et analyser des signaux 3D.

Récemment, d’importants efforts de recherche ont été faits pour transposer le succès
de méthodes issues de l’analyse d’images à l’analyse de formes 3D (voir [17] pour un
aperçu de l’état de l’art en apprentissage profond géométrique précédant les travaux
présentés dans cette thèse). Malgré les similitudes entre les deux domaines, l’analyse
de formes a ses propres défis. La plus grande différence est sans doute l’objet d’étude.
L’analyse d’image étudie les signaux sur un domaine fixe (une image est un signal sur
une grille régulière de pixels) alors que dans le cas de l’analyse de formes 3D l’objet
d’étude est le domaine lui-même. Cette différence complique grandement l’apprentissage
sur les formes 3D car travailler sur un domaine fixe permet d’associer des statistiques du
signal à des emplacements identifiables et de comparer ces statistiques d’un emplacement
à l’autre de manière cohérente, ce qui est une clé du succès des CNNs. De plus, les
formes 3D peuvent être représentées selon différentes modalités telles que les nuages de
points, les maillages polygonaux ou même les grilles volumétriques en fonction de la façon
dont elles ont été acquises ou produites. Ce qui rend l’apprentissage sur les données 3D
particulièrement difficile. Ces représentations sont hautement non canoniques, l’ordre
des points dans un nuage de points ou un maillage est arbitraire, différentes structures
de maillage ou de nuages de points peuvent représenter le même objet. La conception
d’algorithmes qui peuvent s’adapter à ces différentes modalités et sont invariants à la
représentation de la forme est une tâche difficile en soi.

Une autre difficulté majeure vient du fait que les formes peuvent subir diverses
transformations rigides telles que des rotations et des mouvements articulés ou des
déformations complexes non rigides. Les algorithmes d’analyse de formes 3D doivent
souvent faire des prédictions qui sont invariantes par deplacement des objets. Par exemple,
dans les tâches de classification, la classe prédite d’un objet ne doit pas dépendre de
sa pose. De même le découpage prédit par un algorithme de segmentation devrait être
invariant par rotations et translations. De nombreux ensembles de d’apprentissage de
formes 3D telles que [23] et [137] sont alignés, ce qui signifie que les formes sont dans une
pose canonique. Des réseaux classiques tels que [76, 100, 73] entrainés sur des données
alignées ne parviennent généralement pas à faire des predictions généralisables à de
nouvelles poses. La solution classique consiste à augmenter les données sous forme de
rotations aléatoires lors de l’entraînement. Cela peut s’avérer inefficace en matière de
temps de calcul et la performance finale chute tout de même sensiblement par rapport
au cas aligné. Concevoir des algorithmes qui sont invariants par ces transformations ou
qui peuvent les quantifier, comme des algorithmes équivariants dont la sortie subit une
transformation prévisible compte tenu de certaines transformations de l’entrée, est une
tâche difficile.

Dans le mémoire qui suit, nous proposons trois contributions à ces défis, basées sur
les trois publications suivantes qui constituent les principaux chapitres du mémoire:

Liste des publications

1. Topological Function Optimization for Continuous Shape Matching, [97], Sympo-
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sium on geometry processing (SGP), 2018.

2. Multi-directional Geodesic Neural Networks via Equivariant Convolution, [95],
SIGGRAPH asia, 2018.

3. Effective Rotation-invariant Point CNN with Spherical Harmonics Kernels, [96],
3DV, 2019.

Dans le Chapitre 3 nous introduisons une nouvelle méthode pour optimiser les pro-
priétés topologiques des fonctions à valeurs réelles. Notre méthode est basée sur un
descripteur de la topologie des ensembles de niveaux de fonctions à valeurs réelles issues de
la théorie de l’homologie persistante. [35] appelé diagramme de persistance [21, 20]. Nous
montrons que le diagramme de persistance d’une fonction est différentiable par rapport
à cette dernière permettant de déformer des fonctions paramétriques pour supprimer
le bruit topologique ou pour présenter des caractéristiques topologiques prescrites en
utilisant des techniques d’optimisation continue. Nous présentons une méthode pour
aligner les diagrammes de persistance des fonctions sur différents domaines, sans néces-
siter de correspondances entre ceux-ci basée sur la minimisation d’un terme d’énergie
"topologique". Nous démontrons l’utilité de ces outils dans le contexte de la correspon-
dance de formes utilisant la méthode des applications fonctionnelles (Functional maps
[88]). La correspondance de formes est un problème classique qui consiste à trouver
des correspondances entre des formes qui conservent des propriétés géométriques ou
sémantiques. La méthode des applications fonctionnelles [88] pour la correspondance
de formes est basé sur l’observation qu’une application entre deux formes induit une
application entre des fonctions sur ces formes dans la direction opposée (via l’opération
de "pull-back"). Étant donné des bases de fonctions sur les deux formes, il est possible
de représenter une application sous la forme d’une matrice et de formuler le problème
de correspondance de formes comme un problème d’optimisation d’algèbre linéaire. Une
difficulté est de convertir cette matrice en une application point-à-point, le processus
standard de conversion aboutit souvent à des applications discontinues avec des erreurs
de correspondance. Les méthodes existantes pour améliorer la continuité des correspon-
dances basées sur des applications fonctionnelles utilisent souvent un post-traitement
sur l’application point-à-point résultante. Dans [97] nous proposons une méthode pour
renforcer la continuité de l’application point-à-point sous-jacente directement durant la
phase d’optimisation en alignant les diagrammes de persistance des fonctions et leur
image par l’application fonctionnelle, ce qui permet d’obtenir des correspondances plus
lisses et précises.

Dans le Chapitre 4 nous considérons le problème de l’apprentissage sur les maillages
triangulaires. Le premier défi à relever est de concevoir un cadre d’apprentissage qui ne
dépend pas de la structure particulière du maillage (connectivité, forme des triangles).
Nous nous inspirons de l’approche de [75] qui a introduit l’idée d’utiliser les coordonnées
polaires locales sur les surfaces triangulées pour définir un opérateur de convolution et
l’utiliser dans un contexte d’apprentissage profond. Une difficulté majeure qui se pose
lorsque l’on utilise les coordonnées polaires locales est qu’elles ne sont canoniques qu’a
rotation près. La solution envisagée dans [75] est de considérer la réponse maximale
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de l’opérateur de convolution sur tous les choix de coordonnées polaires perdant ainsi
l’information directionnelle locale. Dans [95] nous proposons un nouvel opérateur de
convolution opérant sur l’espace des directions locales sur les surfaces triangulées qui est
équivariant par rapport aux rotations des coordonnées polaires locales. Nous montrons
une amélioration globale de la précision de test et d’entraînement dans divers contextes
expérimentaux.

Une limitation de la méthode que nous présentons dans le Chapitre 4 est qu’elle
n’est applicable qu’aux formes représentées par des maillages triangulaires. D’autre part,
le nuage de points est la représentation de données la moins structurée, toute autre
représentation peut être convertie en nuage de points par échantillonnage, en particulier
tout algorithme opérant sur des nuages de points se généralisera à d’autres formats. De
plus, les capteurs 3D produisent généralement des données sous forme de nuages de
points. Cela motive le développement d’algorithmes fonctionnant sur des données de ce
type. Dans le Chapitre 4 nous examinons le problème de l’apprentissage sur les nuages
de points, en nous concentrons spécifiquement sur l’invariance par rotation.

Dans [96] nous proposons un nouveau cadre d’apprentissage profond invariant par
rotation pour l’analyse des nuages de points. Nous montrons que notre modèle est robuste
aux rotations et qu’il atteint de meilleures performances comparé à l’état de l’art sur des
tâches classiques de classification et de segmentation sur des ensembles de données non
alignés.

Dans le Chapitre 6 nous présentons une méthode pour contraindre les applications
fonctionnelles [88] à preserver l’orientation en vue de résoudre des problèmes de symétrie
dans les applications de correspondance de forme basées sur la méthode des applications
fonctionnelles. Notre méthode a contribué à la publication suivante:

4. Continuous and orientation-preserving correspondences via functional maps, [102],
SIGGRAPH asia, 2018

qui introduit une nouvelle méthode pour améliorer la bijectivité, la continuité et la
préservation de l’orientation des applications point-à-point obtenues par la méthode des
applications fonctionnelles.

Enfin, nous concluons avec le Chapitre 7 où nous proposons un survol de travaux
inspirés par les contributions présentées dans cette thèse ou presentant des perspectives
interessantes sur ces dernières et nous suggerons des pistes pour de futurs travaux.



Chapter 3

Topological function optimisation
for continuous shape matching

We present a novel approach for optimizing real-valued functions based on a
wide range of topological criteria. In particular, we show how to modify a given
function in order to remove topological noise and to exhibit prescribed topological
features. Our method is based on using the previously-proposed persistence diagrams
associated with real-valued functions, and on the analysis of the derivatives of these
diagrams with respect to changes in the function values. This analysis allows us to
use continuous optimization techniques to modify a given function, while optimizing
an energy based purely on the values in the persistence diagrams. We also present
a procedure for aligning persistence diagrams of functions on different domains,
without requiring a mapping between them. Finally, we demonstrate the utility of
these constructions in the context of the functional map framework, by first giving a
characterization of functional maps that are associated with continuous point-to-
point correspondences, directly in the functional domain, and then by presenting an
optimization scheme that helps to promote the continuity of functional maps, when
expressed in the reduced basis, without imposing any restrictions on metric distortion.
We demonstrate that our approach is efficient and can lead to improvement in the
accuracy of maps computed in practice.

3.1 Introduction

A core problem in geometry processing consists in quantifying similarity between shapes
and their parts, as well as detecting detailed region or point-based correspondences
[125, 122, 11]. A common approach for both shape comparison and correspondence
consists in computing real-valued (for example, descriptor) functions defined on the
shapes and comparing the shapes and their parts by comparing the values of such
functions. This includes both computing correspondences by matching in descriptor
space, and also, more recently, by computing linear transformations between spaces of
real-valued functions using the so-called functional map framework [89, 90].

Many existing techniques for comparison of functions on the shapes directly rely
on comparing function values, without analyzing the global structure of the functions
involved. For example, a descriptor function computed on one shape can have several
prominent maxima, whereas on another shape, it can be uniform or with low variance.
Intuitively, pairs of functions with dissimilar structural properties can lead to large
errors in the correspondence computation. This problem is especially prominent in the
context of functional maps which are linear transformations between spaces of real-valued
functions defined on different shapes. In this case, one is often interested in formulating
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an objective which would promote mapping indicator functions of connected regions to
other such indicator functions without knowing in advance which regions should match.
At a high level, such an objective should promote the preservation of the topological
structure of the functions before and after the mapping.

In this chapter, we show how such problems can be solved by efficiently optimizing the
topological structure of real-valued functions defined on the shapes, either independently
(to promote certain structural properties), or jointly (to enforce similarity between such
properties), without resorting to combinatorial search or point-to-point maps. The key
to our approach is the manipulation of persistence diagrams [21, 20]. These diagrams
have been shown to summarize the properties of very general classes of topological spaces,
including, most relevant to us, real-valued functions defined on the surfaces, and also enjoy
several key properties such as being stable under a broad range of perturbations [30, 24].
Existing methods, however, concentrate on either efficiently constructing persistence
diagrams from a given signal [21, 81, 25] or using them as a tool for, e.g. shape or image
comparison [21, 66] or shape segmentation [114] among many others.

Our main insight is that it is possible to formulate optimization objectives on the
persistence diagrams of real-valued functions, regardless of their underlying spatial domain,
and to optimize a given function to improve such objectives, via continuous non-linear
optimization. For this, we first show, how the derivative of a persistence diagram of a
function can be computed with respect to the change in the function values, and then
how this computation can be used to efficiently optimize various energies defined on
persistence diagrams. Crucially, these computations can be performed in any functional
basis, which can significantly improve stability and computation speed. Moreover, our
approach allows us to jointly optimize the persistence diagrams of multiple functions,
without assuming that they are defined over the same domain.

We apply these insights to first provide a characterization of functional maps associated
with continuous point-to-point maps, based on the preservation of persistence diagrams.
Unlike previous results, this characterization does not assume that the map is isometric
or area-preserving and holds for any continuous point-to-point map. We then propose
an optimization scheme that helps to promote continuity of functional maps, even when
they are expressed in a reduced basis.

3.2 Related Work

Persistent (Co)homology Topology is the study of connectivity and continuity, and
persistent (co)homology is a natural language for describing it in an applied setting.
Persistence has been widely studied [36] and has become a central tool for the rapidly
developing area of topological data analysis. We provide an overview of persistence in
Section 3.4. Most relevant to our work is the numerous applications it has found in
geometry processing e.g. [21, 34, 114].

In this chapter, we are interested in optimizing functions to achieve certain prescribed
topological criteria. Using persistence for modifying functions has been studied as
topological simplification, which also served as one of the motivations of the original work
on persistence [38]. The simplification problem has been primarily stated as a denoising
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problem [5, 9], changing the function so that “persistent features" are preserved. Unlike
these works, we approach this problem via continuous optimization, which allows us to
explicitly modify the function, expressed in an arbitrary basis to optimize topological
criteria. Our approach is inspired by Morse theory, which is deeply tied to persistence [37,
22].

Most related to our work is [44]. The main application of their work was the
continuation of point clouds for dynamical systems and so the authors concentrate on
a different class of complexes. They derive a similar chain rule result to ours, although
both their application and perspective are very different. The key tool in their analysis
is the study of the inverse map from the persistence diagram back to the underlying
topological space. These maps have been studied in other contexts in applied topology,
including persistence vineyards [31] as well as studying generalized minimum spanning
trees on random complexes [115]. Finally, persistence diagrams have recently also been
included in deep network architectures. In [71], the authors use persistence landscapes as
a layer in their network architecture with a similar optimization step, but limited to one
dimensional signals. In other work [136, 19], persistence diagrams are used as features
with learned weights, whereas we optimize the underlying filtration, i.e. the diagrams
themselves change during optimization.

Continuity for Functional Maps Our main application lies in using persistence
diagrams to provide a characterization of functional maps associated with continuous
point-to-point correspondences and then proposing a practical optimization scheme that
helps to improve the accuracy of functional map computations. The functional map
representation and the associated correspodence computation pipeline was first introduced
in [89] and has since then been extended significantly in, e.g., [51, 62, 103, 39] among
many others (see [90] for an overview). The key practical advantage of this representation
is that it allows to encode correspondences between shapes as small-sized matrices that
represent linear transformations between function spaces in some reduced basis. Moreover,
computing functional maps can be done efficiently by leveraging tools from numerical
linear algebra and manifold optimization, as shown in, e.g., [62, 68, 69]. One challenge
with this approach, however, is that the space of linear functional transformations is
much larger than that of point-to-point correspondences, which means that in many
cases regularization is necessary to compute accurate maps. This has prompted work on
characterizing how various properties of pointwise maps are manifested in the functional
domain. For example, the original work showed that area-preserving correspondences lead
to orthonormal functional maps [89] (Theorem 5.1). Other characterizations have been
shown for conformal maps [107, 51], isometries [89, 62] and for partial correspondences
[103, 68]. More recently, some works have exploited the relation of point-to-point maps to
functional maps that preserve pointwise products of functions [86, 85]. One large missing
piece, however, is to characterize continuous point-to-point maps purely in the functional
domain, and without making assumptions on the metric preservation. In this work,
we fill this gap by precisely characterizing functional maps that arise from continuous
point-to-point maps and propose an optimization scheme that allows to promote this
continuity.
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We also note that another commonly used relaxation for matching problems is based
on the formalism of optimal transport, which has recently been used for finding bijective
and continous correspondences [117, 72, 126]. These techniques have benefited from the
computational advances in solving large-scale transport problems, especially using the
Sinkhorn method under entropic regularization [32, 116]. For example, several recent
methods in this category [72, 127, 126] have been proposed to efficiently find bijective
maps, while promoting continuity by iteratively solving optimal transport problems.
While related to our work, in these techniques, continuity is measured using point-to-
point correspondence or via metric distortion, most commonly by minimizing variance
with respect to a previous solution in an iterative scheme. On the other hand, we show
that continuity can be expressed in the functional domain directly. Ultimately, we believe
that the combination of these techniques, in the spatial and functional domains, can be
especially beneficial in tackling difficult problems with strong outliers and discontinuities.

3.3 Overview

The rest of the chapter is organized as follows: in Section 3.4 we give a brief overview of
persistence diagrams and their computation, while concentrating on the specific case of
real-valued functions defined on surfaces. In Section 3.5 we describe a simple algorithm
for computing the derivatives of persistence diagrams with respect to function values and
outline how functions can be optimized for using various energies based on persistence
diagrams. In Section 3.6 we characterize functional maps associated with continuous
point-to-point maps and describe an approach to promote continuity directly in the
functional domain. Finally, Section 3.7 is dedicated to experimental results and practical
validation of our methods, while Section 3.8 concludes the chapter. with a summary, a
description of limitations and future work.

3.4 Persistence Diagrams of Real-Valued Functions

We begin with a brief overview of persistence diagrams and their computation [21, 20].
We omit a formal introduction as much as possible, referring the reader to [36] for a
more complete discussion. In a nutshell, persistent homology takes as input a sequence of
topological spaces and tracks topological features, specifically homology groups, as they
appear and disappear in the sequence. Homology groups, and likewise persistent homology
groups are defined for different dimensions, up to the dimension of the underlying space,
representing topological features of each dimension.

We concentrate on the 0-dimensional homology associated with real-valued functions
defined on surfaces, as this is the setting that is most directly related to our practical
scenarios. Namely, throughout our discussion we assume that the topological space is a
surfaceM, represented as an embedded discrete triangle mesh, consisting of N vertices.
We also assume that we are given a function f :M→ R, which is represented as just a
N -dimensional vector of real values. To each such function, it is possible to associate
a persistence diagram of the super-level (resp. sub-level) sets of f , which intuitively
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captures the number and the relative prominence of all the local maxima (resp. minima)
of f . In practice, we define the function on the vertices and linearly interpolate it to the
rest of the mesh. The resulting super-level set filtration is equivalent (up to homotopy)
to the upper-star filtration (see [36, Chapter VI.3]). Throughout the rest of the chapter,
for simplicity we only consider filtrations of this type, although our constructions are not
restricted to this choice.

More formally, we consider the connected components of f−1[α,∞) at various values
of parameter α. To construct the persistence diagram of a function f , we consider the
evolution of the connected components of f−1[α,∞) as α ranges from ∞ to −∞. The
number of points in the persistence diagram equals the number of local maxima of f ,
i.e., vertices x, such that f(x) ≥ f(y) for all y adjacent (in the triangle mesh) to x. For
each such vertex x, we will construct a point p in the persistence diagram having two
coordinates: its birth and its death. The birth of a local maximum x equals simply to
f(x). To death of x equals the smallest real value β such that f(x) ≥ f(y) for all y in
the same connected component as x in f−1[β,∞). Note that unless f(x) is the global
maximum of f there will always exist some value β such that f−1[β,∞) contains a vertex
in the same connected component as x such that f(y) > f(x). Thus, the largest value
for which this occurs is called the death of x. By convention, we also declare the death of
the global maximum of f on a compact surface, to be the global minimum of f .

The persistence diagram is simply the collection of birth and death times. Each
pair defines a point pi with bi and di coordinates, representing the birth and death time
respectively. The persistence of the point p in the diagram is half of the difference between
its birth and death values which is also the L∞ distance to the diagonal. In this chapter,
it will be convenient to view the persistence diagram as a map which takes a topological
space and a function to a multi-set of points in R2.

Pf : (M, f)→ {(bi, di)}i∈I (3.1)

We use I to denote the index on the points in persistence diagram. In our case, this can
simply be an index up to the number of maxima. We can assume that this number is
finite as we deal with “nice" functions on, especially discrete, surfaces.

Figure 3.1 illustrates the persistence diagrams of two functions defined on a 1-
dimensional interval. A key result in the theory of persistence is the stability of the
diagrams under small perturbations of the function values [30, 24], which holds in
great generality. Intuitively, given two functions f and g, the distance between their
associated persistence diagrams d(Pf , Pg) is bounded by the difference between the
functions themselves. Numerous distances between persistence diagrams have been
proposed. One of the most commonly used distances is the p-Wasserstein distance:

dW p(Pf , Pg) =

 inf
µ:Pf→Pg

µ∈bijections

∑
x∈Pf

‖x− µ(x)‖pp

1/p

(3.2)

This distance is based on the optimal transport between the two diagrams, specifically
between the points in the two diagrams. Taking the limit, p → ∞, we recover the
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bottleneck distance:

dB(Pf , Pg) = inf
µ:Pf→Pg

µ∈bijections

max
x∈Pf

‖x− µ(x)‖∞ (3.3)

This is the smallest cost (length of the longest edge) of the perfect matching between the
points in Pf and Pg, where each point is also allowed to match with the diagonal. The
classical stability theorem [30] states that dB(Pf , Pg) < ‖f − g‖L∞ = maxx |f(x)− g(x)|.
For the diagrams in Fig. 3.1, the smallest cost perfect matching would associate p with
p′, and q with q′ while the remaining two red points would be matched with the nearest
points on the diagonal. The cost (length of the longest edge) of this matching would be
the (relatively small) distance between q and q′, capturing the proximity of these two
functions.
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Figure 3.1 – (a) Two functions (f in blue and f ′ in red) defined on a 1-d interval. (b)
Persistence diagrams of f , f ′. (c) The map from the persistence diagram back to the
underlying space for f .

Both the bottleneck and Wasserstein distances are realized by the matching µ between
diagrams. This matching can be computed using the Hungarian algorithm, or any
algorithm for computing the minimum weight matching of a bipartite graph.

3.4.1 Computation of Diagrams and their Distances

Efficiently computing persistence diagrams has been extensively studied, in e.g. [14] (see
also [87] for a recent review of the state-of-the-art). The scalability and practicality of
persistent homology computation has vastly increased over the last few years. Computing
the 0-dimensional persistence diagram corresponding to the upper-star filtration of a
piecewise-linear, real-valued function on a triangle mesh is particularly straightforward
[38] and we include it here for completeness. The main steps of this computation are
summarized in Algorithm 1. Given a function f , the persistence diagram is computed by
first sorting the values of f and then processing each vertex x of the mesh in descending
value of f . A new point in the persistence diagram is created whenever a new connected
component of f−1[α,∞) appears, which occurs precisely when f(x) is a local maximum.
Otherwise, when two components are merged, the one associated with the smaller value
of f dies, and is absorbed into the one associated with the larger value of f . This
association between connected components and values of f is maintained in the data
structure “parent”, which points, for each vertex of the mesh, to the local maximum of f
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connected to this vertex and having the highest value. Note that line 8. of Algorithm 1
can be implemented efficiently by using a Union-Find data structure, which only requires
considering the immediate neighbors w of x. As a result the complexity of entire algorithm
is O(N logN +Nα(N)), with the former part arising from the sorting of f , while the
latter corresponds to processing the vertices and maintaining the association between
them and the local maxima, and α(N) is the inverse Ackermann function.

Input: Triangle mesh M , real-valued function f .
Output: Persistence diagram Pf of f .

1 Initialization: sort f in descending order.;
2 for each vertex x, in descending order of f(x) do
3 if x is local maximum of f in M then
4 add new point to Pf with birth value f(x);
5 parent[x] = x.
6 else
7 let y be s.t. f(y) is maximal among all parent[w], w adjacent to x and

f(w) > f(x);
8 update parent[w] = y,∀ w in the same connected component as x of

f−1[f(x);∞);
9 if parent[w] changed in the previous step then

10 set death of w in Pf to f(x).
11 end
12 end
13 end
14 set death of global max of f in Pf to global min of f .
Algorithm 1: Computing the persistence diagram of a function f on a triangle
mesh.

A key aspect of this computation is that for a vertex x that is a local maximum of
f , its birth value equals f(x), whereas its death value equals to the value f(w) of some
“paired” vertex w which, when processed, merges the connected component of x with that
of some other vertex y, where f(y) > f(x). Therefore, when all values of f are distinct,
if f is perturbed infinitesimally, the value of the point p in the persistence diagram will
change by the amount related to the change at the local maximum and its paired vertex.
In the following section, we describe this intuition in detail.

Let us also note that the persistence diagrams of two functions can be compared even
if the functions are defined on different domains. In other words, when going from the
function f to its diagram Pf all information about the underlying domain on which f is
defined is removed. This can be useful in our applications, where we will use persistence
diagrams as a way to compare and align functions defined on different domains. Finally,
we note that persistence diagrams are provably stable under perturbations of the function
values [30], which has motivated their use in many settings, including shape analysis, e.g.,
[114, 66].
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3.5 Derivatives and Optimization of Persistence Diagrams

We now derive how the persistence diagram changes as we change the underlying functions.
Our approach is based on the observation that persistence diagrams can be thought of,
in the simplest case, as extensions of the max operator. We follow the general common
approach used to compute derivatives of such operators, for example in the case of
max pooling in convolutional neural networks [46]. These derivatives are most often
discontinuous, but we show that generically, they are locally well defined, and, just like
the max operator, can be successfully optimized for within more complex energies in
practice. Finally, we note that all the results in this section can be applied to persistence
diagrams of any dimension (as well as to any functionals of persistence diagrams).

Our goal is to understand how the diagram changes as we change the function. Let
the filtration function f , depend on a set of parameters which we denote by αj . To
optimize these parameters, we must derive formulas for

∂bi
∂αj

and
∂di
∂αj

,

for all points in the diagram (bi, di). Our key tool is the existence of a map π from the
points in the diagram to pairs of vertices in the space, i.e.

π : (bi, di) 7→ (vb, vd)

We first define a possibly non-unique map from points in the persistence diagram to pairs
of simplices

ζ : (bi, di) 7→ (σ, τ)

A finite simplicial filtration can always be extended to a total order. For example, one
way is to consider lexographical ordering of the vertices to order simplices which share
the same function value. In the total ordering, each birth and death time are distinct,
hence there is precisely one simplex which corresponds to any birth time (and precisely
one simplex which corresponds to a death time respectively). Note that these times
refer to the index in the total order. This correspondence defines ζ, which is simply the
pairing returned by the standard persistence algorithm [21]. In our case, each birth time
corresponds to the value of a specific vertex, whereas the death time is associated with
the edge of the mesh, which merges two connected components when it is added.

Since we are considering a super-level set (upper-star) filtration, edges are added
implicitly in the filtration, once both vertices are included. This allows us to define a map
from each simplex to one of its vertices. In the case of vertices, this is simply the vertex
itself, whereas in the case of edges, it is given by the vertex with the smaller function
value:

η : σ 7→ vσ, where η(σ) = argmin
v∈σ

f(v)

In general this is not unique, but we can always choose an arbitrary fixed vertex. Finally,
we define: 

πb = η ◦ ζ(bi)
πd = η ◦ ζ(di)
π = (πb, πd)
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Algorithm 1 implicitly computes this map (see Section 3.5.2 for details). This map
depends on numerous choices, however as we saw in the previous section, we can assume
that the function values are unique at each vertex. This can be achieved through an
infinitesimal perturbation of the function, either implicitly or explicitly. Finally, while π
is defined for each point in the diagram, by applying it to every point, we can induce a
map from a diagram to a multi-set of vertices. We then obtain the following two results.

Lemma 3.5.1 If the vertex function values are distinct, then π is unique.

Proof As all critical points in a super-level set filtration occur at vertex values, there
must be a unique vertex v corresponding to each homological critical value (i.e. any
function value where the topology changes). Since the coordinates of each point in the
persistence diagram correspond to a critical value the map π(bi, di) = (vb, vd) is unique.
�

Note that this does not imply that there is a one-to-one correspondence between points
in the diagram and pairs of vertices, as multiple points can map to the same vertex.
However, we do have the following result.

Lemma 3.5.2 If the vertex function values are distinct, there exists a neighborhood where
π is constant.

Proof Let ε denote the minimum separation between vertex function values. First note
that by the assumption of distinct function values, there is a total ordering on the vertices.
For any function within a ε/2 ball, i.e.

|f(x)− f ′(x)| < ε/2 ∀x ∈M
this ordering remains the unchanged. This immediately implies that the map η from
each simplex to a vertex is constant in this neighborhood. We first formally define
the δ-neighborhood of a persistence diagram Pf . Recall that by Eq.3.1, a persistence
diagram is a map from a topological space endowed with a real valued function (X, f) to
a multi-set of points. Note that the map is completely determined by the space and the
function. Therefore, we define a δ-neighborhood of Pf as all Pg of the form (X, g) such
that ||f − g||∞.

We next show that ζ is constant in a small enough neighborhood. Although ζ is
defined per point in the diagram, this induces a map from a diagram to some collection of
simplicies in the space. If the map is constant per point, it is constant in the neighborhood
defined above.

In an upper-star filtration, the total ordering on the vertices can also be extended
to the remaining simplices. Each vertex v has a set of simplices for which it determines
the function value when the simplex enters the filtration. This is given by the preimage
η−1(v). Generically, the preimages are disjoint sets of simplices, i.e. no simplex maps to
two vertices. As η is constant in some neighborhood, this implies that the map ζ can also
be chosen so that it is constant in this neighborhood. Each preimage can be extended to
a total order independently. As the sets of preimages do not change, this extension can
be kept constant. Finally, we note that the composition of two constant maps is again
constant completing the proof. �
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To define the neighborhood recall that we can consider the persistence diagram as a map
from a pair (X, f) to a multi-set of points (Eq. 3.1). The neighborhood is defined as
all the diagrams with the domain (X, g) such that ||f − g||∞ is sufficiently small. We
note that stability [30] implies that the corresponding multi-sets of points are close with
respect to the bottleneck distance.

The existence of this neighborhood allows us to derive analytic expressions the
derivatives. First, we observe that

f(πb(bi)) = bi f(πd(di)) = di ∀i (3.4)

Since π is constant, it follows that

∂bi
∂αj

=
∂f(πb(bi))

∂αj
=
∂f(vi)

∂αj
=

∂f

∂αj
(vi) (3.5)

In other words, the derivative is equivalent to the derivative of the function
evaluated at the image of the map πb. The derivation for di is analogous.

3.5.1 Application to optimization

In our application we would like to minimize some functional F of an input diagram.
Using the the chain rule, we obtain

∂F
∂αj

=
∑
i∈I

∂F
∂bi
· ∂bi
∂αj

+
∂F
∂di
· ∂di
∂αj

=
∑
i∈I

∂F
∂bi
· ∂f
∂αj

(πb(bi)) +
∂F
∂di
· ∂f
∂αj

(πd(di))

∂F
∂xi

and ∂F
∂yi

must be derived for each functional separately. We derive the complete
formula for two specific cases. We first consider the bottleneck distance.

Lemma 3.5.3 For almost all persistence diagrams Pf and Pg, the point x ∈ Pf whose
matching achieves the bottleneck distance is unique and constant in some ε-neighborhood
of Pf (in the bottleneck metric).

Proof Assuming generic Pf and Pg all pairwise distances between points in Pf and Pg
are unique. This implies that the maximum of any matching is unique. This proves
the first part of the lemma. As the values are distinct, it follows that there exists a
neighborhood such that the pair of points achieving the maximum is constant. Finally,
the continuity of persistence diagrams implies that any point which is sufficiently close
to to the diagonal cannot achieve the bottleneck distance and so cannot change the
matching. �

The neighborhood here again refers to the space of persistence diagrams (here we do not
need to restrict the space of diagrams as in Lemma 3.5.2). If Pf and Pg are generic, the
matching is unique in a sufficiently small neighborhood of nearby diagrams. Since nearby
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diagrams may have different numbers of points, one needs to be careful to ensure the
lemma holds (see Appendix).

We consider the functional of the bottleneck distance to a fixed diagram, denoted
by FB. Let pmax = (bmax, dmax) be the point in the diagram whose matching realizes
the maximum in the bottleneck matching µ. If pi = pmax and |bmax − µ(bmax)| >
|dmax − µ(dmax)|

∂FB
∂bi

=

{
−1 bi > µ(bi)

1 bi < µ(bi)

and 0 otherwise. A similar expression holds for ∂FB∂di
if |bmax−µ(bmax)| < |dmax−µ(dmax)|.

Note that if both are equal then the distance is 0, where the derivative can be defined as
0 (since the distance cannot be negative). Therefore, the derivative can be written as
two cases: if |bmax − µ(bmax)| > |dmax − µ(dmax)|, then

∂FB
∂αj

= sgn (µ(bmax)− bmax)
∂f

∂αj
(πb(bmax)) (3.6)

and if |bmax − µ(bmax)| < |dmax − µ(dmax)|,
∂FB
∂αj

= sgn (µ(dmax)− dmax)
∂f

∂αj
(πd(dmax)). (3.7)

We also derive an equivalent result for the squared 2-Wasserstein distance. Again,
we assume by genericity that the solution to the matching is unique and constant in a
neighborhood. The squared 2-Wasserstein distance is given by

d2
W 2(Pf , Pg) = inf

µ:Pf→Pg
µ∈bijections

∑
p∈Pf

‖p− µ(p)‖22

= inf
µ:Pf→Pg

µ∈bijections

∑
p∈Pf

(pb − µ(pb))
2 + (pd − µ(pd))

2

Minimizing this distance gives the functional, FW 2 , whose derivative is

∂FW 2

∂bi
=

∂

∂bi

(∑
i∈I

(bi − µ(bi))
2 + (di − µ(di))

2

)
= 2(bi − µ(bi))

Putting this together,

∂FW 2

∂αj
= 2

∑
i∈I

(bi − µ(bi))
∂f(πb(bi))

∂αj
+ (di − µ(di))

∂f(πd(di))

∂αj
(3.8)

where bi and di are functions of αj (see Eq. 3.4). We conclude this section by noting
that most functionals for persistence diagrams map points in R2 to real valued functions.
For most cases, it should be possible to compute a closed form for the derivative, for
example in the case of persistence landscapes or specific choices of kernels on the space
of persistence diagrams.
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3.5.2 Computing Derivatives

The derivatives derived above can be efficiently computed by appropriately modifying
Algorithm 1. We first need to compute π, the map from the persistence diagram to the
vertices. Let p be the point added to Pf in line 4. When the point is created, we also
add the pair (p, x) to π. Likewise in line 10, we again add the pair (p, x) to π. Note that
these are two different vertices, as the x in Line 4 is a local maxima, while the x in line
10. connects two previously disjoint components (i.e. in our case a saddle point).

To compute the derivative, we must be able to evaluate the derivative of the function
at a given vertex in the underlying space, i.e. M. The derivative can be obtained by
evaluating the derivative of the function at the image of π for that point. Therefore, by
using the modified Algorithm 1 and computing the minimum weight matching µ with
respect to the chosen distance, we can evaluate π and µ for every point in the persistence
diagram P . For the bottleneck distance, we can then directly compute the derivative
by evaluating Equations 3.6 or 3.7. The derivative for the 2-Wasserstein distance can
likewise be computed by evaluating Equation 3.8.

In our derivation, we assumed a genericity condition by requiring the vertex function
values be unique. While this is true for any one function (by infinitesemal perturbation),
as we optimize the function, this assumption might be violated. However, in the case of
non-uniqueness, we can make a choice randomly. In our implementation, the continuous
optimization scheme such as L-BFGS explicitly checks that the energy decreases at every
iteration, ensuring that the algorithm converges. Furthermore, in our applications we
optimize over a reduced functional basis consisting of smooth functions, which significantly
improves the robustness with respect to pathological behavior. In practice, the optimiza-
tion schemes we use converge to local minima remarkably consistently. Nevertheless, we
leave the theoretical study of guarantees of convergence as interesting future work.

3.6 Applications: Continuity in Functional Maps

We propose to apply the ideas presented above for improving functional maps. For
this, we first provide a novel characterization of functional maps arising from continuous
point-to-point maps, purely in the functional domain, i.e., without making reference to
point-to-point correspondences. We also prove that our characterization is complete:
i.e., all functional maps (linear transformations across function spaces) that satisfy our
condition exactly must arise from continuous point-to-point maps. We then present
an energy, which can be optimized using standard non-linear continuous optimization
techniques, such as L-BFGS, and which promotes continuity directly in the functional
domain, even when maps are expressed in a reduced basis. In this section, we describe
these constructions in detail, and present the main experimental results in Section 3.7.

Our main observation is that the information encoded in persistence diagrams can be
used to improve the computation of correspondences between shapes using the so-called
functional map framework (see [90] for an recent overview). Works in this domain are
based on the idea that when looking for a point-to-point map T :M→ N between two
shapes M and N, it is often easier to consider the associated pull-back of real-valued
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functions TF : F(N)→ F(M), where F(N) is the space of real-valued functions on shape
N. For a given map T , TF is defined simply via composition TF (f) = f ◦ T , where f
is any real valued function f : N → R. Since TF is a linear operator between function
spaces, whenever both the domain and range can be endowed with a functional basis,
this operator can be written as a change of basis matrix C, also called a functional map
matrix, whose size depends on the size of the chosen basis.

The basic pipeline for computing functional maps introduced in [89], and extended in
follow-up works, aims at recovering the functional map matrix C directly and then using
it to estimate the underlying map T . The general approach follows the following steps
(see Section 2.4.4 in [90]):

1. Construct a set of basis functions, consisting e.g. of the eigenfunctions corresponding
to the kM and kN smallest eigenvalues of the Laplace-Beltrami (LB) operators on
the source and target shapesM and N, stored in matrices ΦM and ΦN respectively.

2. Compute some kd descriptor functions on the source and target shapes, express
them in the corresponding bases and store the coefficients as columns of matrices
A and B, of size kM × kd and kN × kd respectively.

3. Compute the optimal functional map matrix C of size kN × kM, that aligns the
descriptor functions and commutes with the Laplace-Beltrami operators on the two
shapes. That is: C = argminX‖XA−B‖+ ε‖ΛNX−XΛM‖. Alternatively, one
can use several extensions, such as manifold-constrained optimization [62], robust
regularization [69] or requiring the map to commute with multiplicative operators
with respect to descriptor functions [86] among others.

4. Convert the functional map C to a point-to-point map.

A key advantage of the functional map representation is that the optimization step
3. can be solved efficiently using robust numerical linear algebra tools, and in the most
basic case reduces to solving a simple linear system of equations. Unfortunately, without
additional regularization, the computed functional map might not correspond to any
“natural” point-to-point map. Therefore, several approaches have been proposed to enforce
desired properties on functional maps. For example, it was shown in the original article
[89] that functional maps arising from area-preserving point-to-point maps must be
orthonormal.

More recently several works have used the fact that functional maps that correspond
to pointwise maps must also preserve pointwise products between functions [86]. In
practice, however, we are often interested in continuous pointwise correspondences and
translating the continuity of the point-to-point map into a constraint on the functional
map has not been straightforward. To this end, we first establish and then exploit the
following theorem.

Theorem 3.6.1 An invertible linear functional map TF corresponds to a continuous
bijective point-to-point map if and only if both TF and its inverse preserve pointwise
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products of pairs of functions, and moreover both TF and its inverse preserve the persistence
diagrams of all real-valued functions. In other words:

dB(Pf , PTF (f)) = 0, ∀ f. (3.9)

Note that preservation of products ensures that TF corresponds to a point-to-point map,
whereas preservation of persistence diagrams guarantees that the underlying map is
continuous.

Proof Given a continuous bijection between two topological spaces, the induced pull-back
of real-valued functions must clearly preserve products of functions. Similarly it must
preserve persistence diagrams of real-valued functions since both the topological structure
of the space and function values are preserved.

Conversely, consider any invertible linear functional map TF . It is well-known that if
TF preserves pointwise products of functions, then it must correspond to a pull-back by
a point-to-point map (e.g. corollary 2.1.14 in [112]). Moreover, since TF is invertible, its
inverse must also satisfy this property, meaning that the underlying point-to-point map
is a bijection.

Finally, by assumption both TF and its inverse preserve persistence diagrams of
real-valued functions. Now, consider an indicator function of a region. By definition,
its persistence diagram will have a unique local maximum, if and only if the region
is connected. Thus preservation of persistence diagrams implies that the underlying
point-to-point correspondence (and its inverse) maps connected regions to connected
regions. Finally, a bijective map between two topological spaces is continuous if and only
if both it and its inverse map connected sets to connected sets (see e.g. [123]). �

The key observation in the proof of Theorem 3.6.1 is that a functional map associated
with a point-to-point bijection will correspond to a pull-back by a continuous point-to-
point map if it maps indicators of functions of connected regions to indicators functions of
connected regions. Moreover, persistence diagrams provide a very convenient way to test
whether an indicator function corresponds to some connected region, by simply checking
whether it has more than one prominent local maximum. The persistence of local maxima
gives a stable way to test for this criterion for an arbitrary (not necessarily binary, or even
positive) function, since an indicator function of a connected region, perturbed by noise,
will still have a single prominent local maximum, with other points close to the diagonal
on the persistence diagram. This stability directly follows from the stability guarantees of
persistence diagrams, which have been established under very broad conditions [30, 24].
Therefore, we propose to exploit this observation by defining the following (non-linear)
energy on functional maps, expressed in an arbitrary basis:

Econt(C) =
∑
r

dB(PΩr , PC(Ωr)), (3.10)

where r is an index over some set of connected regions defined on the source shapeM, Ωr

is the characteristic (indicator) function of region r, and C(Ωr) is the image of indicator
function onto the target shape N via the functional map C. For simplicity we write C(Ωr)
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instead of the expression in the reduced basis, which should read ΦNC((ΦM)+Ωr), where
+ is the pseudo-inverse.

Of course, a symmetric energy can be optimized for using a map between the target
and source shape.

With this energy at hand, Theorem 3.6.1 can be restated simply to say that a bijective
point-to-point map T is continuous if and only if both the pullback TF by T and its
inverse satisfy Econt(TF ) = 0, assuming the sum in Eq. 3.10 is over all connected regions
r.

Intuitively, Econt measures the uncertainty in converting a functional map to a point-
to-point map. For example, the image of an indicator function of a connected region or
even a delta function via a computed functional map can have multiple prominent local
maxima, which means that during the point-to-point conversion, the correspondence can
oscillate between multiple possible solutions creating a highly discontinuous pointwise
map. This can especially occur when a functional map corresponds to a blending of
multiple pointwise maps, which can arise e.g. due to the symmetry present in the shapes.
On the other hand, when optimizing for functional map using the energy in Eq. 3.10 we
expect that the image of an indicator function of a region corresponds to a function with
exactly one prominent maximum, which eventually should lead to a more continuous
point-to-point map. In practice, we observe that it can be more efficient to replace Econt
with a simplified energy:

Epersist(C) =
∑
r

Pers(PC(Ωr)), (3.11)

where the sum is again over connected regions r on the source shape and Pers(P ) is
defined as the sum of the squares of persistence values (i.e., the distances to the diagonal)
of all points in the diagram P , except for the one with the highest persistence. Intuitively,
Pers(Pf ) penalizes all but the prominent local maxima of the function f , with the strength
equal to the square of the distance to the diagonal.

Our main objective therefore is to use the energy Epersist(C) to optimize a functional
map C and especially to use it to infer functional maps that arise from continuous
point-to-point maps. For this, we observe that the ability to differentiate persistence
diagrams allows us to compute the gradient of Epersist(C) with respect to the entries of
the matrix C. This, in turn, allows us to use quasi-Newton methods such as BFGS, which,
as we show below, provide an efficient way to improve functional maps. Specifically, we
solve the following continuous optimization problem:

min
C

Epersist(C), (3.12)

where the functional map is represented in the reduced LB basis. In general, this is highly
non-convex problem, and we use the re-computed functional map as an initialization
in an iterative quasi-Newton scheme. For robustness, we also add a constraint that the
functional map C should map the indicator (constant = 1) function of the source shape
to the indicator on the target, and use a projected L-BFGS solver to optimize Eq. (3.12).
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The derivative in this case is a special case of the 2-Wasserstein case in Equation 3.8.
If we match to a diagram with only one point corresponding to a global maximum, all
the points map except the global maximum map to the diagonal so

µ(bi) = µ(di) =
bi + di

2

Substituting into Equation 3.8, the derivative can be written as

∂Epersist

∂αj
=
∑
i∈J

(di − bi)
(
∂f

∂αj
(πd(di)−

∂f

∂αj
(πb(bi))

)
where J represents all the points in the diagram except the most persistent one.

3.7 Experimental Results

In this section, we describe some practical aspects of the implementation of our topological
optimization approach and show results in several applications.

Throughout all of our experiments we assume that shapes are represented as triangle
meshes, and functions are defined on their vertices. We also use the standard discretization
of the Laplace-Beltrami operator L = A−1W , where A is the lumped area matrix and
W is the matrix of cotangent weights [94, 80]. We use this operator to define a basis for
real-valued functions by computing the eigenfunctions corresponding to the k smallest
eigenvalues, Lϕi = λiϕi. Then we express any real-valued function as a linear combination
f =

∑k
i=1 aiϕi, where ai are scalar weights. Thus, when optimizing for a function f , we

consider the scalar weights ai as the unknowns.

3.7.1 Topological Function Simplification

To illustrate the effect of our topological optimization, we first use it to “simplify” a
real-valued function on a surface, by removing all but one most prominent local maxima.
Namely, we first construct a real-valued function on one of the shapes from the SCAPE
dataset [4] by computing the Heat Kernel Signature (HKS) [119] for a t = 0.01. This
function and its associated persistence diagram are shown in Figure 3.2a. We then simplify
this function by minimizing an energy, which penalizes the square of the persistence of
all but first most prominent local maxima (which is equivalent to Pers(Pf ) introduced
in Eq. 3.11 above), using k = 40 eigenfunctions of the Laplace-Beltrami operator as
the basis for the function. The result of the optimization is shown in Figure 3.2b. Note
that the resulting function has only one prominent local maximum. Remark also that
our optimization does not impose the location of the final local maximum, but simply
promotes its uniqueness. Finally, we note that our topological optimization does not
assume the manifold structure of triangle meshes, and, once the functional basis is
computed, can be applied to arbitrary graphs. The optimization converges after 81
iterations of L-BFGS in 2.26 seconds on a machine with 2.6 GHz Intel Core i7 CPU
using a MATLAB implementation of L-BFGS with the analytic gradient of persistence
diagrams described in Section 3.5.
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Figure 3.2 – Topological optimization for removing local maxima from a function: (a)
a real-valued function on a surface and its persistence diagram, (b) function and its
diagram after topological optimization, where we penalize the persistence of all, except
the first most prominent maximum.

3.7.2 Topological Function Alignment

Next, we illustrate how our topological function optimization can be used to align
the values of two functions defined on different domains without the knowledge of any
(functional or point-to-point) correspondences. For this, we first compute two functions,
f1, f2 corresponding to the HKS for the same value t = 0.01 on two different shapes,
shown in Figure 3.3 (top, left and middle).

Note that since the shapes is not fully intrinsically symmetric, the function f2

has two prominent local maxima on the hands that have different values, while the
two most prominent maxima of f1 are closer together, since since the undeformed
shape is closer to being symmetric. We then modify f2 so that the bottleneck distance
dB(Pf1 , Pf2) is minimized, while keeping f1 fixed. Let us stress that this energy does not
require a map between the two domains, and we can optimize f2 so that its persistence
diagram aligns with that of f1 by only considering the diagrams themselves. The
result of this optimization, fopt

2 is shown in Figure 3.3 (right), where both the function
becomes symmetric and the persistence diagrams align nearly perfectly. In this case, the
optimization is done again, using k = 40 eigenfunctions of the Laplace-Beltrami operator,
converges after 29 iterations of L-BFGS and takes 0.84 seconds.
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Figure 3.3 – Topological function alignment. Left and middle: initial functions f1, f2

on two shapes (top), and their persistence diagrams (bottom). Right: function fopt
2 on

the second shape after aligning its persistence diagram with that of f1, without any
cross-shape correspondence (top) and the resulting aligned diagrams (bottom). Note the
change in values on the hands.

3.7.3 Functional Map Improvement

In our next experiment, we show how topological function optimization can be used to
improve functional maps and to promote the continuity of the recovered point-to-point
maps directly in the functional space, without enforcing conditions on area preservation
or conformality. For this, we first consider a noisy point-to-point map, which is obtained
by a strong perturbation of the symmetric correspondence (i.e., mapping left to right)
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between a pair of shapes from the FAUST dataset [12]. The initial correspondence is
shown in Figure 3.4a. We then convert this map to a functional map representation
using k = 80 eigenfunctions of the Laplace-Beltrami operator, resulting in a matrix C of
size 80× 80. We then optimize this functional map using L-BFGS on the energy Epersist
described in Eq. 3.11. To construct the connected regions, required in the sum in Eq.
3.11, we randomly sample n points on the source shape and construct their intrinsic
Voronoi diagram. We then use an iterative scheme, where we optimize a functional map
with an increasing number of regions n = 5, 15, ..., 45. Between iterations we project
a functional map to a point-to-point one to remain close to the desired solution space.
This procedure is reminiscent to the ICP refinement approach proposed in the original
functional maps work [89], but instead of promoting area preserving maps, it aims to
promote continuous maps, without enforcing any constraints on the metric distortion.

(a) Initial correspondence (b) Correspondence after optimization

Figure 3.4 – (a) Noisy input functional map converted to a pointwise correspondence (b)
Same map after topological optimization. Note the drastic reduction in discontinuities.
Colors encode the x coordinate function of the target shape and its pull-back on the
source.

The final functional map, converted to a point-to-point map, is shown in Figure
3.4b. Note that the resulting map does not have the large patch discontinuities present
in the original one. We also evaluated the quality of the initial and optimized maps
with respect to the ground truth map. Figure 3.5 shows the percent of point-to-point
correspondences below a certain threshold, following the evaluation protocol introduced
in [56]. We also plot the errors of in the ground truth map, which are caused by its
representation as a reduced-size functional map. Note the significant improvement of
the map after topological optimization, especially with respect to large errors, which are
eliminated by the topological optimization.
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Figure 3.5 – Quantitative evaluation of the functional maps before and after topological
optimization, shown in Fig. 3.4.

Finally, to illustrate the effect of the optimization, we consider the indicator function
of a connected region on the source shape, and its associated persistence diagram, shown
in Figure 3.6a. We then show its image on the target shape via the initial functional
map in Figure 3.6b, which contains multiple significant local maxima. Finally, we show
the image of the same function onto the target but via the functional map after our
optimization in Figure 3.6c. Note the intuitive “connectivity” of this function and its
unique prominent local maximum.
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(b) Image before optimization
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(c) Image after optimization

Figure 3.6 – Topological optimization for improving functional maps: (a) indicator
function of a region on a source shape and its persistence diagram, (b) the image of this
function via the initial functional map onto the target shape and its persistence. Notice
multiple prominent local maxima. (c) Image of the same function after optimizing the
functional map.
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3.7.4 Improvement of Computed Functional Maps

We also use our topological optimization procedure to improve functional maps computed
using descriptor preservation constraints, as described in [86]. For this, we consider 100
pairs of shapes, taken at random from the FAUST dataset [12], and for each shape pair
introduce one landmark point (in the middle of the right leg). We then compute descriptor
functions, which consist of Wave Kernel Signatures [7] and Wave Kernel Map (to enforce
the landmark) sampled at 20 different times. Finally, we compute the functional map
using a linear system of equations based on multipliciative operators described in [86]. We
then optimize the resulting functional maps using our topological optimization approach
by minimizing Eq. 3.11. During topological optimization, we again use an iterative
procedure where we sample 5 points and compute their intrinsic Voronoi diagram. We
then optimize Eq. 3.11 for 12 iterations of L-BFGS and convert the optimized functional
map to a point-to-point one. We found that the last step helps to improve the quality of
the map, as it restricts the optimization from drifting too far from point-wise maps. An
alternative would be, e.g., to enforce preservation of pointwise products of functions, as
suggested in [86]. Figure 3.7 shows the quantitative evaluation of the functional maps
converted to a point-to-point maps (using the basic procedure introduced in [89]) on 100
shape pairs before and after topological optimization. Note the significant improvement
in quality across all categories in the dataset.
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Figure 3.7 – Quantitative evaluation of correspondences computed on 100 random pairs of
shapes from FAUST dataset [12], using the basic functional maps pipeline in [86] before
and after our topological functional map optimization.
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We also illustrate the quality of the computed functional maps converted to point-to-
point maps in Figures 3.8 via texture transfer. Note the improvement in the continuity
in the maps after topological optimization. We stress that unlike previous works, such as
[72, 127], we never enforce continuity of point-to-point maps. Instead, the optimization
is done purely in the “functional domain” by minimizing Eq. 3.11 directly. Moreover,
we do not enforce any prior on the metric distortion, such as requesting the maps to
be isometric, conformal or area-preserving, but instead only promote continuity, while
operating with functional maps in a reduced basis. Since we use a basic approach for
converting functional maps to point-to-point ones, some high-frequency noise can still
be present in the resulting correspondence. Nevertheless, post-processing of these maps
using techniques such as [72] can certainly improve the results further.

Figure 3.8 – Texture transfer from a target shape (left) onto the source using a functional
map converted to a point-to-point one before (middle) and after (right) topological
optimization.
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3.8 Conclusion, Limitations & Future Work

In this chapter we presented an approach for optimizing real-valued functions defined
on shapes, based on a wide variety of topological criteria. Our main observation is
that previously proposed persistence diagrams can be differentiated with respect to the
changes in function values, and as such optimized for using continuous optimization
techniques. We use this procedure for both aligning diagrams of functions defined on
possibly different domains, i.e., reducing their bottleneck or Wasserstein distances, and
also for simplifying a given function to remove undesired topological features. Finally, we
show how this analysis can be used in the context of functional map computations, first
by characterizing continuous point-to-point maps directly in the functional domain and
then presenting an optimization scheme that helps to promote continuity of functional
maps in the reduced basis.

In the future, it would be very interesting to provide rigorous stability guarantees
and bounds on how our characterization behaves for approximately continuous maps,
especially when expressed as functional maps in the reduced basis. It would also be
interesting to explore other functionals on persistence diagrams both in shape analysis
and in the more broad data analysis applications, for example on images or graphs.
Moreover, our functional map improvement procedure is not well-adapted to partial
shapes and it would be interesting to see how it can be used jointly with objectives such
as promoting bijectivity or partiality, or with existing approaches that promote continuity
of pointwise maps, e.g. [72, 127]. In addition, it would be interesting to study questions
of convergence of our optimization problems, depending on the choice and size of the
basis, as well as stability with respect to changes in the shape, taking advantage of the
theoretical stability guarantees available for persistence diagrams.

Finally, we believe that the interaction between topological data analysis techniques,
including persistence diagrams, with function-based approaches, including the functional
maps framework, is a very fruitful and largely unexplored area for future work in general.





Chapter 4

Multi-directional Geodesic Neural
Networks via Equivariant

Convolution

We propose a novel approach for performing convolution of signals on curved
surfaces and show its utility in a variety of geometric deep learning applications.
Key to our construction is the notion of directional functions defined on the surface,
which extend the classic real-valued signals and which can be naturally convolved
with with real-valued template functions. As a result, rather than trying to fix a
canonical orientation or only keeping the maximal response across all alignments
of a 2D template at every point of the surface, as done in previous works, we show
how information across all rotations can be kept across different layers of the neural
network. Our construction, which we call multi-directional geodesic convolution,
or directional convolution for short, allows, in particular, to propagate and relate
directional information across layers and thus different regions on the shape. We first
define directional convolution in the continuous setting, prove its key properties and
then show how it can be implemented in practice, for shapes represented as triangle
meshes. We evaluate directional convolution in a wide variety of learning scenarios
ranging from classification of signals on surfaces, to shape segmentation and shape
matching, where we show a significant improvement over several baselines.

4.1 Introduction

The success of convolutional neural networks (CNNs) for image processing tasks [64] has
brought attention from the geometry processing community. In recent years multiple
techniques have been developed to reproduce the success of CNNs in the context of geom-
etry of curved surfaces with applications including shape recognition [118], segmentation
[53, 73] or shape matching [15], among many others. A key aspect of CNNs is that they
rely on convolution operations. In the Euclidean domain the notion of convolution is
well-defined whereas on non-Euclidean spaces, in general, there is no direct analogue that
satisfies all the same properties.

Different approaches have been proposed to overcome this limitation. Perhaps the
simplest and most common consist in either performing convolution directly on the
surrounding Euclidean 3D space (using so-called volumetric approaches [76], [99]), or
constructing multiple projections (views) of an embedded object from different angles
and applying standard CNNs in 2D [118]. This idea has also been extended to using more
general mappings onto canonical domains, including the plane [113, 40], or e.g. toric
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domains which admit a global parameterization and where convolution can be defined
naturally [73]. Unfortunately, such mappings can induce significant distortion and might
be restricted to only certain topological classes. On the other hand, several intrinsic
approaches have been proposed to define analogues of convolution directly on the manifold
[15, 75, 16]. These techniques aim at learning local template (or kernel) functions, which
can be mapped onto a neighborhood of each point on a surface and convolved with signals
defined on the shape. These methods are general, can be applied regardless of the shape
topology and moreover are not sensitive to the changes in shape embedding, making them
attractive in non-rigid shape matching applications, for example. Unfortunately, general
surfaces lack even local canonical coordinate systems, which means that the mapping of
a template onto the surface is defined only up to the choice of an orthonormal basis of
the tangent plane at every point. To overcome this limitation, previous methods either
only consider the maximal response over a certain number of rotations [15] or aim to
resolve these ambiguities using principal curvature directions [75, 16]. Unfortunately such
approaches can either lead to more instabilities or, in the case of angular max pooling,
lose the relative orientation of the kernels across multiple convolutional layers.

In this chapter, we propose to overcome this key limitation of intrinsic methods by
aligning the convolutional layers of the network. Our idea is to consider directional (or,
equivalently, angular) functions defined on surfaces, and to define a notion of convolution
for them which results, again, in directional functions without loss of information. This
allows us to impose specific canonical relations across the layers of a neural network,
lifting the directional ambiguity to only the last layer. We then need to take the maximal
response over all rotations only on the last layer. This allows us to better capture the
relative response at different points, leading to an overall improvement in training and
test accuracy.

4.2 Related Work

Geometric Deep Learning is an emerging field aimed at applying machine learning
techniques in the context of geometric data analysis and processing. Below we review the
techniques most closely related to ours, and especially concentrate on various ways to
define and use convolution on geometric (3D) shapes and refer the interested reader to
several recent surveys, e.g. [138, 17].

4.2.1 Extrinsic and Volumetric Techniques

Perhaps the most common approach for exploiting the power of Convolutional Neural
Networks (CNNs) on 3D shapes is to transform them into 2D images, for example
by rendering multiple views of the object. Some of the earliest variants of this idea
include methods that represent shapes as unordered collections of views (or range images)
[118, 130, 53] or exploit the panorama image representation [111, 110] among others, as
well as techniques based on Geometry Images [113], which represent the 3D geometry by
mapping the coordinates onto the plane.
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Another common set of methods considers 3D shapes as volumetric objects and
defines convolution simply in the Euclidean 3D space, e.g. [137, 76] among others. Due
to the potential memory complexity of this approach, several efficient extensions have
been proposed, e.g., [128, 58], and a comparison between view-based and volumetric
approaches has been presented in [99].

Other recent techniques analyze 3D shapes simply as collections of points and define
deep neural network architectures on point clouds, including, most prominently PointNet
[98], PointNet++ [100] and several extensions such as PointCNN [67] and Dynamic Graph
CNN [129] for shape classification and segmentation, and PCPNet [47] for normal and
curvature estimation, among others.

Despite their efficiency and accuracy in certain situations, these techniques rely
directly on the embedding of the shapes, and are thus very sensitive to changes in shape
pose, which can limit their use, for example in non-rigid shape matching.

4.2.2 Intrinsic and Graph-based Techniques

To overcome this limitation, several intrinsic methods have been proposed, for defining
and exploiting convolution directly on the surface of the shape. This includes spectral
methods, which exploit the relation between convolution and multiplication in the spectral
domain [15], and which have also been applied on general graphs [33]. A similar technique,
treating shapes as graphs, has been used for analyzing arbitrary shape collections [139],
while synchronizing their laplacian eigenbases with functional maps [88]. Another recent
method [40] consists in optimizing an embedding of the shape onto the planar domain
using intrinsic metric alignment [117]. Finally, a very recent Surface Networks approach
[61] is based on stacking layers consiting of combinations of features and their images by
the Laplace or Dirac operator to exploit intrinsic and extrinsic information.

More closely related to our approach are techniques based on local shape param-
eterization, which define convolution of a signal with a learned kernel on a region of
the shape surface. A seminal work in this direction was done in [75] where the authors
defined Geodesic Convolutional Neural Networks (GCNNs), which locally align a given
kernel with the shape surface at each point, and perform convolution in the tangent
plane. Unfortunately, the absence of canonical coordinate systems on surfaces leads to a
one-directional ambiguity in the alignment. To rectify this, the authors of [75] proposed
to take the maximal response across all possible alignments. Several later extensions
of this approach have used different local patch parameterizations, [16, 82] and also
used prinicipal curvature directions to resolve the directional ambiguity. Unfortunately,
principal curvature directions can be highly unstable, and not uniquely defined even
on basic domains such as the sphere and the torus, which can lead to over-fitting in
the training. Finally, a recent approach has been proposed for defining convolution via
mapping onto a toric domain [73], which admits a global parameterization.

4.2.3 Contribution

In our work, we show that the directional ambiguity that exists when mapping a template
(kernel) onto the surface, as done in [75, 16, 82] can be maintained across the layers of
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the deep neural network without relying on a canonical direction choice or only keeping
the maximal response across all directions. To achieve this, we first extend real-valued
signals to more general directional functions. We then show that a directional function
can be convolved with a template to produce another directional function, and can thus
be stacked in a deep neural network. As a result the directional ambiguity is lifted up
to the last layer, where it can be resolved by taking the maximum response only once.
We demonstrate through extensive experiments that this leads to overall improvement
in accuracy and robustness in a range of applications. Finally, we extend previous
approaches such as [16, 82] by adding spatial pooling layers through mesh simplification
and exploiting residual learning (ResNet) blocks [48] in the architecture.

4.3 Convolution over manifolds

Throughout our work, we assume that we are dealing with 3D shapes, represented as
oriented (manifold) 2D surfaces, embedded in 3D. For simplicity of the discussion, we also
assume that the shapes are without boundary, although our practical implementation
does not have this limitation.

Throughout our discussion, the input signal is assumed to be a tuple of real-valued
functions defined on each shape in the collection. These can either represent some
geometric descriptors, or even simply the 3D coordinates of each point. In this section,
we describe how the convolution operation is applied to a given signal for a fixed template.
Our approach follows the general structure proposed in [75], but we highlight the key
differences, arising from our use of directional convolution. Finally, let us note that for
simplicity we concentrate on oriented two-dimensional manifolds, although most of our
discussion can be adapted easily to more general settings.

Recall that in the standard two-dimensional Euclidean setting, the cross-correlation
or convolution of a real-valued function f by a smooth compactly supported (template)
function k : R2 → R is defined for all x ∈ R2 by:

(f ∗ k)(x) :=

∫
R2

f(t)k(t+ x)dt.

Convolution is a way to compare the function f to a template function k at every point.
We can reinterpret convolution in the following way: first, for every point x we identify
the tangent space to x with a copy of R2 whose origin has been shifted to x. Then,
translation by x can be seen as linear isometry:

τx : TxR2 → R2 ' T0R2, τx(p) = p+ x ∀ p,

where R2 ' T0R2 simply means that the tangent plane at the origin can be identified
with the whole of R2. Moreover, the identity map “centered at x” can be seen as another
isometry:

Idx : TxR2 → R2, Idx(p) = p ∀ p.
Therefore can rewrite the convolution of f by k at x, as:

(f ∗ k)(x) = 〈Id∗xf, τ∗xk〉L2 ,
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where the supperscript ∗ means the pull-back of the function with respect to the map,
and 〈, 〉L2 is the standard L2 inner product. We can now generalize this construction to
two-dimensional manifolds by generalizing the maps Id∗x and τ∗x . At every point x of a
Riemannian manifold X the exponential map:

expXx : TxX → X

generalizes the previous map Idx : TxR2 → R2 in the sense that expR2

x = Idx. Following
[75], we assume that the template function k is defined over a copy of R2, denoted by
T0R2, and generalize the map τx by isometrically aligning this copy with the tangent
plane TxX at x. That is, the map τx : TxX → T0R2 must be a linear isometry. This
map is uniquely-defined given a choice of the correspondence of the coordinate axes of R2

with a coordinate frame of TxX. For oriented surfaces, this reduces to the alignment of
one coordinate axis. If e1 := (1, 0) is the first coordinate axis on R2, this means that the
inverse of the map τ must send e1 to all tangent spaces, and that k can be pulled-back
onto TxX for any x, via τ∗xk.

Since unlike the Euclidean case, there is no global choice of reference direction on a
surface, an arbitrary choice of the pre-image of e1 on every tangent space TxX can lead
to biased results, which furthermore will not generalize across different (e.g., training and
test) shapes.

To resolve this ambiguity, the authors of [75] consider the family of maps τx,v param-
eterized by a choice of a unit vector v in the tangent plane of x, which is mapped to the
first coordinate axis in R2, i.e. τx,v(v) = e1. They then define geodesic convolution by
taking the maximum response of the signal to the template function k mapped via τx,v
across all choices of v.

(f ~ k)(x) = max
v
〈(expXx )∗f, τ∗x,vk〉L2 . (4.1)

The two main advantages of this procedure are that: 1) it does not depend on the choice of
reference direction in the tangent planes, and 2) the output of f ~ k is again a real-valued
function, so that convolutions can be applied successively within a deep network.

Unfortunately, only keeping the maximum response also results in a loss of directional
information, which can make it more difficult to detect certain types of features in
the signal. In particular, since the maximum is applied independently at every point,
directional information of the response of the signal to the template is not shared across
nearby points.

4.3.1 Convolution of Directional Functions

We propose to address these limitations by considering convolution of a template function
with a more general notion of directional functions defined on arbitrary surfaces.

We call a directional function, any function ϕ(x, v) that depends on both the point
x on a surface X, and on the unit direction v in the tangent plane TxX at x. Clearly
any real-valued function f : X → R can be lifted to a directional function f̃ , simply by
ignoring the directional argument and setting f̃(x, v) = f(x) for any v.
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Our key observation is that the convolution of a directional function ϕ with respect to
a template k : T0R2 → R can be defined naturally, so that the result of the convolution
is, once again, a directional function. For this we first complete the exponential map, so
that for any point p ∈ TxX in the tangent plane of x, it produces both a point y on X
and a unit direction in the tangent plane of y. To achieve this we define the completed
exponential map:

expXx (p) = (expXx (p), Γx,p(p/‖p‖)), (4.2)

where Γx,p(p/‖p‖) is the parallel transport of the unit vector p/‖p‖ from the tangent
plane of x to the tangent plane of y = expXx (p) along the geodesic between x and y with
initial velocity p/‖p‖ (see Figure 4.1).

x

X

TxX

�x,p(p/kpk)

p

Figure 4.1 – The completed exponential map at a point x ∈ X sends any non null tangent
vector p ∈ TxX to the couple (y = expXx (p), v = Γx,p(

p
||p||)) where v ∈ TyX is the result

of parallel transport of p
||p|| along the geodesic from x to y, with the initial direction given

by p.

Thus, for any point p in the tangent plane of x, expXx (p) outputs a point y on the
manifold and a vector in the tangent plane of y. Moreover, since parallel transport along
geodesics preserves the norms of vectors, Γx,p(p/‖p‖) must also be a unit vector. This
map is well-defined everywhere, except at the origin p = 0. This does not pose a problem
in our setting, however, since we only use this map inside an integral. We now define
multi-directional geodesic convolution, or directional convolution for short, of a template
k : T0R2 → R with a directional function ϕ by:

(ϕ ? k)(x, v) = 〈(expXx )∗ϕ, τ∗x,vk〉L2 . (4.3)

Note that, ψx = (expXx )∗ϕ is a real-valued function in the tangent plane of x, where
ψx(p) = ϕ(expXx (p)) (see Figure 4.2). Moreover, note that the result of a convolution of a
directional function ϕ and a template k is once again a directional function, as it depends
both on the point x and on the direction v. We also remark that directional convolution
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can be extended to regular-valued functions. Thus, for any f : X → R we simply set:
f ? k := f̃ ? k where f̃ is the lifting of f to a directional function, as described above.
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Figure 4.2 – Overview of our directional convolution: (left) we start with a surface X
and a directional function ϕ, which assigns a real value to every unit direction in the
tangent plane of every point of X, shown here as a cone above some points. (middle)
given a point x ∈ X, we pull back ϕ onto the tangent plane of x by computing for every
point p ∈ TxX, its image y ∈ X via the exponential map, and the transport of the unit
vector p/‖p‖ to the tangent plane of y = expXx (p). We assign to p the value of ϕ at y and
the transported vector. By repeating this for every p we obtain a real-valued function
ψx over the tangent plane of x. (right) Given a unit vector v tangent at x there is a
unique orthogonal orientation-preserving linear map τx,v from TxX to R2 sending v to
e := (1, 0). We pull back a kernel k defined over R2 to TxX and take its L2 product with
ψx giving us a real-number for each unit tangent vector at x. Repeating this procedure
for every x ∈ X we obtain a new directional function which is the directional convolution
of ϕ by the kernel k.

4.3.2 Directional vs. Geodesic Convolution

As suggested in the previous section, geodesic convolution introduced in [75] and our
directional convolution are closely related. Indeed, below we show that directional convo-
lution is strictly more informative than geodesic convolution. The following proposition
shows that geodesic convolution can be factorized by taking the maximal directional
response of directional convolution thus losing the directional information.

Proposition 4.3.1 Let f a function on X and k a template. Denote by f̃ : (x, v) 7→ f(x)
the directional function obtained via f̃(x, v) = f(x) for all unitary v ∈ TxX. Then:

f ~ k(x) = max
v∈TxX

(f̃ ? k)(x, v)

Proof We have:
(expXx )∗f̃(p) = f̃(expXx (p),Γx,p(p/||p||)

= f(expXx (p)) := ((expXx )∗f)(p)

thus:
max
v∈TxX

(f̃ ? k)(x, v) = max
v∈TxX

〈(expXx )∗f̃ , τ∗x,vk〉L2 .

= max
v∈TxX

〈(expXx )∗f, τ∗x,vk〉L2 . =: f ~ k(x)

�
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Intuitively, applying directional convolution allows to keep track of the direction that
the signal comes from. To illustrate this, we consider the directional convolution of the
indicator function 1x of a point x, by a shifted Dirac kernel δ(t,0) for some t > 0. It is
easy to see that the result of 1(x,v) ? δ(t,0) is the indicator function of the set of couples
(y, v) such that y ∈ X is at (geodesic) distance t from x and v ∈ TyX points in the
direction of x (see Figure 4.3 for an illustration). Moreover, as also illustrated in Figure
4.3, applying directional convolution by δ(t,0) multiple times will propagate the signal
along geodesics from the source point x while maintaining the directional information
attached to it. In contrast, after angular max-pooling directional information to the
source point is lost. This means that when applying the basic geodesic convolution
repeatedly (e.g. when stacking multiple convolution layers in a neural network) the signal
does not necessarily travel along geodesic paths. Thus, for example, (1x~ δ(t,0))~ δ(t,0) is
a geodesic ball instead of a circle of radius 2t around x (see Figure 4.4). This might result
in a loss of information and makes stacks of filters based on geodesic convolution less
efficient in estimating the distance between features or their relative position, compared
to directional convolution shown in Figure 4.3b. We also note briefly that directional
geodesic convolution does not admit an identity kernel but identity can be obtained as a
limit of convolutions by shifted Dirac kernels since:

lim
t→0

expXx (tv) = (x, v).
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(b) n dir-conv, (1x + 1y) ? δt ? · · · ? δt

Figure 4.3 – (left) The result of applying n times the directed convolution by the shifted
Dirac kernel δ(t,0) to the indicator function 1x of point x. We obtain a response along
the circle of radius nt in the directions pointing to x. This allows to detect the presence
of a feature at a given distance and to point in the direction of that feature. (right) The
response of the convolution with two isolated signals at x and y is located along two
circles, if they intersect the intersection points store information about the relative angle
and distance between the features at x and y.
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(a) 1 conv + amp,
1~ δ = maxv 1 ? δ(•, v)

x

2t

(b) 2 geod-conv, (1~ δ)~ δ

x

2t

(c) 2 dir-conv + amp,
maxv(1 ? δ) ? δ(•, v)

Figure 4.4 – Comparison between repeated geodesic (geod, middle) and directional
convolution (dir, right) of the indicator of a point 1 by a shifted Dirac kernel δ = δt. (b)
With directional convolution we obtain a response along the circle of radius 2t indicating
the presence of a feature at exactly distance 2t (c) With geodesic convolution, we obtain
a response along the full disc of radius 2t only indicating the presence of a feature at
distance 6 2t.

4.3.3 Directional Convolution in Angular Coordinates

The expression in Eq. (4.3) is coordinate-free, however to implement it we must choose a
particular coordinate system to represent directional functions. In practice, we represent
tangent vectors in polar coordinates in their tangent plane. This representation implies
an arbitrary choice of reference direction ex ∈ TxX in each tangent plane. For any angle
θ ∈ [0, 2π) we denote by ex(θ) = Rθex, the vector obtained by rotating ex by angle θ in
the tangent plane at x. Instead of operating with directional functions, we then work
with angular functions as follows: given a directional function ϕ, and a choice of reference
direction ex for each point x, we define an angular function ϕe by:

ϕe(x, θ) := ϕ(x, ex(θ)).

that is, ϕe is just the function ϕ expressed in polar coordinates in each tangent plane with
respect to the reference direction e. Note also that given reference directions ex ∈ TxX
for all x ∈ X, both the exponential map and the parallel transport can be expressed for
points and vectors described in polar coordinates in each tangent plane (see Appendix).
Finally, given the family of reference directions e = (ex)x∈X and the angular function
ϕe we denote by ϕe ? k its directional convolution with kernel k w.r.t. e. To define this
operation, we first convert ϕe to its directional counterpart, using the reference directions
e and then simply apply the definition given in Eq. (4.3) above and convert it back to an
angular function using the same reference directions:

ϕe ? k := (ϕ ? k)e

The following proposition shows that the result of directional convolution of angular
functions is equivariant with respect to the change of the reference directions. Namely:
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Proposition 4.3.2 Let ex ∈ TxX be a family of unit tangent vectors defined at every
point x ∈ X then for any family of rotations Rx of angle θx at point x we have:

(ϕRe ? k)(x, θ) = (ϕ ? k)Re(x, θ) = (ϕe ? k)(x, θ + θx)

Where (Re)x := Rxex at each point x.

Proof The first equality holds directly by definition. Namely, by applying the definition
of directional convolution of the angular function ϕRe with reference direction Re we
have:

ϕRe ? k := (ϕ ? k)Re.

To prove the second equality observe that Rex is simply the rotation of ex by angle θx
therefore:

(ϕ ? k)Re(x, θ) := (ϕ ? k)(x,Rex(θ))

= (ϕ ? k)(x, ex(θ + θx))

=: (ϕ ? k)e(x, θ + θx)

=: (ϕe ? k)(x, θ + θx)

which proves the proposition using the coordinate free definition of the directional
convolution operator. In the appendix section 4.8 we provide an alternative proof when
the directional convolution operator ? is defined using arbitrary local angular coordinates.
�

This proposition guarantees that even if we pick an arbitrary reference direction in
the tangent plane of every point x, the result of possibly multiple directional convolution
steps is the same up to an angle offset. Moreover, this offset is fixed and is the angle
difference between the two reference directions.

When directional convolution operator ? is defined directly in angular coordinates,
and angles are discretized in angular bins, as they are in our practical implementation,
this implies that changing the reference direction at a given point by applying a circular
permutation to the angular bins’ indices will lead to the same permutation of the result
of directional convolution. Thus, no further ambiguity is introduced between layers of
directional convolution, and the initial rotational ambiguity is lifted to the last layer. We
resolve it by applying angular max pooling. This is crucial to learning since it allows
to learn the same features independently of the reference directions used to define the
angular coordinates.

4.3.4 Multi-Directional Convolutional Neural Networks

Our main motivation for introducing directional convolution is to use it as a layer inside
a deep neural network for shape analysis tasks. We define a directional convolution layer
simply by replacing the standard convolution (resp. geodesic convolution) operator and
regular functions by directional functions in the convolutional layer definition. Crucially,
since directional convolution by a template kernel results in another directional function,
we can stack directional convolutional layers in a neural network.
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In the simplest setting a (multi-directional)-convolutional neural network consists
of N + 1 layers stacked sequentially. The output yi of the i-th layer is a collection of
di > 0 directional functions (yi)p∈J1,diK. The network takes a map f : X → Rd0 as input
where d0 > 0 is the number of input descriptor functions. Then f is converted into a
directional function f̃ defined by f̃(x, v) := f(x) for all x ∈ X and unit vector v ∈ TxX.
The network has stacks of learnable template kernels (kipq)p∈J1,diK,J1,di+1K : R2 → R, a
collection of learnable bias vectors bi ∈ Rdi+1 , and activation functions ξi for i ∈ J1, NK.
The outputs (yi)i∈J0,NK of the network’s layers are defined recursively by:{

y0 := f̃
(yi+1)p := ξi(

∑
q((yi)q ? k

i
pq) + bip)

Our goal during training is to learn the parameters kipq and bi so that the output function
minimizes some error over a set of examples. In practice, we consider more complex
architectures, as described in Section 4.6. In all cases, angular max pooling is applied to
the last layer yN to obtain a regular signal over X. We call networks based on directional
convolution MDGCNN for Multi Directional Geodesic Convolutional Neural Networks.

4.4 directional convolution over Discrete Surfaces

We assume that all shapes are represented as connected manifold triangle meshes, possibly
with boundary. In this section we describe our general approach for implementing
directional convolution in practice. To simplify the presentation, we describe only the
main steps necessary for the implementation, and defer the exact implementation details
to Section 4.8.1 in the Appendix.

To implement directional convolution, we need to decide on the discrete representation
of template functions, angular functions on the surface, the exponential map and parallel
transport. These are described as follows:

4.4.1 Template Functions

To discretize template functions of the form k : R2 → R, we represent them via windows
of discrete polar coordinates in the plane: (ρi, θj), where ρi := (i+1)R

Nρ+1 is a set of radii,
for i varying between 0 and Nρ − 1 bounded by the window radius R and θj := 2jπ

Nθ
is

a uniform discrete sampling of angles [0, 2π). This means that each k associates a real
value to each pair (ρi, θj), and can therefore be stored as a matrix of size Nρ, Nθ. Note
that during training these are the unknowns that need to be trained.

4.4.2 Angular Functions

Angular functions are real-valued functions that depend on the point on a given surface
and on a direction in its tangent plane. For a mesh with Nv vertices, we represent these
as matrices of size (Nv, Nθ), where Nθ is defines a discrete angular sampling, in the
same way as for template functions above, but with respect to some arbitrary reference
direction in the tangent plane of each point.
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4.4.3 Exponential Map

To discretize the exponential map, similarly to previous approaches, we use Geodesic
Polar Coordinates (GPC), which associate a window to every point, and represent other
points in its neighborhood, through the geodesic distance ρ and angle θ to the base point
in its window. We discretize GPC using the same set of discrete polar pairs (ρi, θj) as
for the template functions. This means, in particular, that given a vertex i, the points
in its GPC might not fall on the vertices of the mesh. We therefore use barycentric
coordinates inside triangles to interpolate values at points in the GPC windows, based
on the values at the vertices of the mesh. This procedure is crucial since it helps us gain
resilience against changes in mesh structure. We can model the GPC using a tensor E of
size (Nv, Nρ, Nθ, Nv), such that Evijw stores, the barycentric coordinates with respect to
vertex w of the point having polar coordinates ρi, θj in the GPC of the window of vertex
v. Note that by definition, generically, Evijw will have exactly three non-zero values for
fixed v, i, j.

4.4.4 Parallel Transport

Finally, we need to discretize the parallel transport operation in order to define the
discrete analogue of the (completed) exponential map exp defined in Eq. (4.2). Note that
a key feature of our definition is that parallel transport needs to be defined only for unit
vectors connecting a point p in the tangent plane of v to the origin, which correspond,
in our discretization, to the angular polar coordinate θ of p. This means that we need
to compute the angle difference between θ in the window of v and the corresponding
angle in the GPC of the exponential map of p. However due to angular discretization the
transported angle does not necessarily fall into the angles (θj)j of the window at p. We
therefore interpolate between consecutive discrete angles to compute angular functions.
Similarly to the exponential map above, the parallel transport can be discretized as a
5D tensor Γ of size (Nv, Nρ, Nθ, Nv, Nθ) where Γvijwk stores the interpolating coordinate
with respect to the angle θk at vertex w of the geodesic parallel transport of angle θj
to the point with polar coordinates (ρi, θj) in the GPC of the window of vertex v. The
(completed) angular exponential map exp can then be interpolated in both the spatial
and angular domains as a 5D tensor E of size (Nv, Nρ, Nθ, Nv, Nθ) such that:

Evijwk := EvijwΓvijwk.

With these constructions at hand, discretizing the generalized convolution, defined in
Eq. (4.3) can be done simply by matrix multiplication. Note that aligning the template
function with the tangent plane at x via a map τx simply corresponds to aligning
the angular coordinate of the template with the angular coordinate of the GPC at x.
While aligning a rotated template function via τx,v corresponds to applying a circular
permutation to the angular indexing of k. We define geodesic convolution of a template
K and a function f by:

(f ~ k)v := max
k

∑
ij

fwEvijkKi,(j+k) mod Nθ
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Likewise directional convolution of an angular function ϕ by K is defined by:

(ϕ ? K)vl =
∑
ij

ϕwkEvijwk.Ki,(j+l) mod Nθ .

We also note that the above definitions extend to the case of multidimensional filters
and matrix-valued templates. Remark that only the triangles supporting the window
points will contribute to the result of the convolution, while the value of the signal at
the central point will not be taken into account. To achieve this, we add the result of a
dense layer to the convolution. That is we multiply the signal at the central point (and
direction for dir-conv) by the some fixed (learned) matrix and add the resulting vector to
the result of the convolution at every point.

4.4.5 Spatial Pooling

In traditional CNNs pooling layers refer to a way of sampling the signal. They reduce
the resolution of the image by mapping groups of pixels of the original image to a single
pixel of a reduced image. The advantage is two-fold: first it allows to summarize the
information over a group of pixels and to achieve robustness to local perturbations of
the signal and second it reduces computation time and space. A common option called
max-pooling is to separate the original image into consecutive square blocks of pixels,
where each block is mapped to a single pixel of the reduced image by taking the maximal
response over the block in each channel.

Figure 4.5 – dilated convolution
on images with convolution ker-
nel in blue. Spacing of 0 (left), 1
(middle) and 2 (right).

Another option for reducing the resolution, which
is easily generalizable to meshes is the notion of dilated
convolution (Figure 4.5). It consists of spacing the
pixels of the filter window by D−1 pixels and applying
it every D pixels thus reducing the output resolution
by a factor D. We can see dilated convolution as a
regular convolution applied to the sub-sampled image.
For meshes we define a similar notion by transferring
the signal to a coarser mesh and then applying geodesic

convolution on the new mesh. In practice, we simplify the original mesh using the classic
quadratic edge collapse approach [45], which also produces a mapping between the original
and the simplified meshes. We use this to transfer both a signal from the original to the
simplified mesh (pooling), or from the simplified mesh to the original (un-pooling) by
simply picking the value stored at the closest vertex, among those collapsed to it. To
define pooling for directional (angular) functions we need to also transfer angles from
the original mesh to its simplified counterpart. To transfer local angles from a mesh
M to a mesh N given a map from M to N we first compute the 3D rotation sending
the normal at each vertex to the normal at its image, this allows us to compare the
reference directions on both shapes in the tangent plane to N and to deduce the oriented
angular offset between them. We then simply transfer the angles by adding the offset
to all discretized angles and interpolating the result between consecutive discrete bins,
similarly to our construction of parallel transport.
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4.5 Geodesic polar coordinates and parallel transport

Figure 4.6 – Parallel trans-
port of reference direction
at origin and angular coor-
dinate of the GPC.

Figure 4.7 – GPC window
with 2 radial and 8 angular
bins and its contributing
points (white)

To compute Geodesic polar coordinates (GPC) at each ver-
tex of the mesh we used the algorithm proposed by [78]
which is a variation of the fast marching algorithm [109]
computing the angular coordinate as well as the geodesic
distance. We extended the algorithm of [78] to also compute
parallel transport of angles along geodesics. Fast marching-
like algorithms propagate information along meshes, they
rely on a local transfer subroutine. A vertex is selected
among a set of candidates based on a priority criterion, the
information stored at the vertex is then propagated to some
of its neighbors based on an update criterion using the local
transfer subroutine. The algorithm stops once a stopping
condition is met. In our case a vertex is updated until the
radius exceeds a certain threshold Rmax > 0. In practice, we
follow the basic approach of [78] for propagating information,
but in addition to updating the geodesic distance and polar
angle we also keep track of the difference in angles between
the reference directions at the source and target points. The
original algorithm [78] has a subroutine for updating the
GPC angle at a vertex inside a triangle given estimates at the
two other vertices. We use the same subroutine to update the
transported angle given estimates at the two other vertices.
Since the representation of directions is different at each
vertex, we transport estimates to every new vertex along
edges. To transport an angle from vertex i to a neighbor j
along the edge eij we first apply rotations to the GPCs of
i and j so that eij gives the reference direction at i and eji
gives reference direction at j. The rotated GPCs at i and
j have a relative angular offset of π which allows to deduce

the angular offset between the original GPCs. We transfer the angle at i to j along eij by
adding the angular offset between the GPCs at i and j. We use the same edge transfer
to transfer the reference direction at the source to its neighbors in order to initialize the
algorithm candidates set. This modified version allows us to compute the angle difference
between the initial and final reference directions, which in turn provides the estimate for
the parallel transport of the unit directions along geodesics between points. Figure 4.7
illustrates the angular coordinates of the GPC window via color coding, and the parallel
transport of a particular direction from the center vertex to other vertices in the window
and Figure 4.6 illustrates our discretization of the angular and radial bins. In addition to
this high level description of the algorithm we give a more detailed description in the
appendix Section 4.8.3 which was not included in the original publication [95] to save
space.
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4.6 Evaluation

4.6.1 Architecture
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Figure 4.8 – ResNet
block

We implemented our deep learning pipeline with Keras [26] using
Tensorflow backend [1]. We based our architecture on Residual
networks [48]. For classification tasks we used an architecture
organized in stacks of ResNet blocks (Figure 4.8). Each stack is
the composition of a fixed number of ResNet blocks. After each
stack the mesh is down-sampled by a factor 4 using a pooling
layer. The radius and number of filters is multiplied by two to
preserve time and space complexity across stacks (Figure 4.9).
For classification tasks we apply angular max pooling and average
the signal over the shape we then apply softmax classifier on the
resulting vector. For segmentation tasks we need to produce a

point-wise prediction therefore the signal needs to be up-sampled back to the original
shape. We combined our ResNet architecture with U-net [104]. Our U-ResNet architecture
(Figure 4.10) consists of two blocks an encode and a decode block. The encode block is a
copy of our ResNet architecture, the decode block is similar but pooling is replaced by
un-pooling. After each stack the window radius is divided by 2, the signal dimension is
divided by two and its up-sampled by 4. Shortcut connection are added to help keeping
spatial localization information:
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Figure 4.9 – Our ResNet architecture
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Figure 4.10 – U-ResNet architecture for point-
wise prediction

4.6.2 Experiments

In our experiments we compared MDGCNN to GCNN [75] and PointCNN [67] in image
classification and to GCNN, PointNet++ [100] and Dynamic Graph CNN [128] in shape
segmentation and shape matching tasks using various input features. We trained all
networks using ADAM [57] optimizer with learning rate 0.001. Since MDGCNN and
GCNN are closely related we used the same architectures and window radii for both
to make the comparison as fair as possible. For experiments with varying domains we
first center the shapes and normalize them so that they have unit variance, then we
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use a fixed initial radius for the whole dataset. The memory complexity is linear in
the number of vertices, the number of radial bins and the number of directional bins
of the windows. MDGCNN and GCNN have similar time and memory complexity but
MDGCNN uses more complex tensor indexing to align local windows and performs
directional interpolation of the result of convolution. Therefore our implementation
of MDGCNN is slightly slower in practice. For example in our image classification
experiment on 50000 images mapped to spheres with 3000 vertexes we observed times of
7 min 13s for one epoch with GCNN and 10 min 13 with MDGCNN using a GTX 1080
graphics card. This speed advantage however is compensated by a the significantly faster
convergence of MDGCNN as shown in Figure 4.13.

4.6.3 Image classification

In our first experiment we compare MDGCNN, GCNN and PointCNN on the CIFAR-10
image classification benchmark [63] on different domains. We do not try to achieve
state-of-the-art performance. Our purpose is to demonstrate that MDGCNN is able to
learn complex signals over mesh domains and is superior to GCNN. The CIFAR-10 dataset
consists of 60000 32 by 32 RGB images in 10 classes, (airplane, automobile, bird, cat,
deer, dog, frog, horse, ship, truck) with 6000 images per class. There are 50000 training
images and 10000 test images. We mapped the images to two different meshes, a regular
grid and a sphere. [41] (shown in Figure 4.11) to map the images to both hemispheres.

Figure 4.11 – Elliptical
mapping from a disc to a
square

In the case of the sphere, we parametrized two opposite
hemispheres in polar coordinates and then used elliptical
mapping Once the mapping is computed every mesh vertex
is equipped with 2D coordinates which allows us to pull back
the images using bilinear interpolation inside pixels. The
resulting image on the sphere is then linearly interpolated
inside each triangle as shown on Figure 4.12. Let us note
that in both the grid and the sphere case, using principal
curvature directions to fix the reference orientation, as done
in [16, 82], would not be meaningful as every point is an

umbilic on these domains, so that every direction is a principal one.

Figure 4.12 – Examples of CIFAR-10 images mapped to a sphere using elliptical mapping
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Table 4.1 – Classification accuracy on the
CIFAR-10 dataset using different methods
on different domains.

CIFAR 10 - classification
Method Domain Accuracy
GCNN sphere 0.6712
MDGCNN sphere 0.7706
GCNN grid 0.6767
MDGCNN grid 0.7932
PointCNN grid 0.7669

We trained our ResNet architecture
(Figure 4.9) in batch of 10 images with
3 ResNet stacks, one ResNet block (Fig-
ure 4.8) per stack and 16 filters for the
first stack, we chose an initial radius of
1.8 pixels, that is 1.8 in the grid case and
(32 × 1.8)/π on the sphere. The network
converged after 50 epochs. The results
scores in Table 4.1 show a clear advantage
for MDGCNN over GCNN, we also observe
similar scores for MDGCNN on different
domains despite the important stretching
introduced by the elliptical mapping of images to the sphere and the irregularity of the
sphere meshing compared to a grid mesh. In their recent work [67] Li et al. applied
PointCNN to the CIFAR-10 classification benchmark. The results summarized in Table
4.1 suggest that our method compares favorably to PointCNN in the image classification
context.

4.6.4 Shape segmentation

In our second experiment we compared our MDGCNN against GCNN and several other
state-of-the-art methods: Toric cover CNN [73], PointNet++ [100] and Dynamic graph
CNN [129]. We evaluated all methods on the human segmentation benchmark proposed
by [73]. This dataset consists of 370 models from SCAPE, FAUST, MIT and Adobe
Fuse [2]. All models are manually segmented into eight labels, three for the legs, two for
the arms, one for the body and one for the head. The test set is the 18 models from
the SHREC07 dataset in human category. We used our U-ResNet architecture with
2 × 2 of two blocks, 16 filters on the first layer and an initial radius of 0.1. Since we
did not have access to the same features as used in [73], we used different inputs, SHOT
[108] and WKS [8] descriptors as well as the 3D coordinates of the shape, we denote by
SHOTk the 64-dimensional SHOT descriptor with window radius equal to k percent of
the shape area. For the experiments taking the 3D coordinates of the shape as input
we first apply a random rotation and scaling between 0.85 and 1.15 to learn features
that are robust to global transformations. Table 4.2 summarizes the scores obtained
by different methods. In addition to improving accuracy, we have also observed that
training MDGCNN can be significantly more stable compared to GCNN. In Table 4.3
we report the standard deviation of the validation accuracy of MDGCNN and GCNN
across 5 independent runs with different number of epochs. Here the training data is
fixed and the variance is only due to the stochastic nature of the optimization procedure.
Usual shape descriptors often carry more local information about the points for example
SHOT relies on local histograms counting the mesh vertexes and normals into bins, while
WKS relies on diffusion processes along the surface. We observe close performance in
favor of MDGCNN when using WKS. For SHOT we notice that GCNN performance
considerably degrades when reducing the radius of the SHOT windows while MDGCNN
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is able to maintain its performance much better. PointNet++ and Dynamic Graph CNN
behaved similarly on this benchmark we observed slightly slower convergence compared to
MDGCNN but slightly better final results (see Figure 4.13). We observe similar accuracy
between MDGCNN and the Toric Cover method of [73]. We note, however, that the Toric
Cover method is based on non-canonical mappings from the torus to the surface and
requires considerable data augmentation by examining many such mappings. This results
in long training and prediction computation times. According to [73] it takes about 5
hours for the Toric Cover method to complete one epoch at training using 6 Nvidia K80
GPUs. Using 50 different mappings, it takes 45 minutes to calculate predictions on the
human class of SHREC07 while it takes 1 min 10s to train our MDGCNN network on
one epoch using a single Nvidia TITAN Xp card and 2.2317s to compute predictions on
the test set.

Human body segmentation
Method Input feat. # feat. epochs accuracy
Toric cover WKS, AGD,

curv.
20+2+4 20 0.88

Pointnet++ 3D coords 3 200 0.9077
DynGraphCNN 3D coords 3 200 0.8972
GCNN 3D coords 3 200 0.7649
MDGCNN 3D coords 3 50 0.8861
GCNN WKS, curv. 20+4 50 0.8489
MDGCNN WKS, curv. 20+4 50 0.8612
GCNN SHOT6 64 50 0.3888
MDGCNN SHOT6 64 50 0.8530
GCNN SHOT9 64 50 0.7410
MDGCNN SHOT9 64 50 0.8879
GCNN SHOT12 64 50 0.8640
MDGCNN SHOT12 64 50 0.8947

Table 4.2 – Segmentation accuracy of several methods on the human body dataset
introduced in [73].

Human body segmentation
method Input epochs std
MDGCNN 3D 50 0.01059
GCNN 3D 50 0.11487
MDGCNN 3D 100 0.02831
GCNN 3D 100 0.08007
MDGCNN 3D 200 0.00454
GCNN 3D 200 0.05513

Table 4.3 – Standard deviation (std) of
test accuracy of MDGCNN and GCNN
across 5 independent runs.

Figure 4.13 – Validation accuracy per
epoch on the human body segmenta-
tion benchmark introduced in [73] using
global 3D coordinates as input.
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Figure 4.14 – Human shapes segmentation comparison between standard GCNN and
MDGCNN (ours) using the 3D coordinates of the shapes as input. The data is augmented
by random rotations and scaling at training to ensure rigid motion invariance and improve
robustness of the learning.



58
Chapter 4. Multi-directional Geodesic Neural Networks via Equivariant

Convolution

We observe in Figure 4.14 that MDGCNN is better than GCNN at learning features
that are invariant to rigid motion directly from the 3D coordinates of the shape without
a priori descriptors assumed in the data, simply via data augmentation. Learning global
features from the 3D coordinates of the shape vertices requires aggregating information
between possibly distant points. Since directional convolution allows better communica-
tion between distant points, MDGCNN noticeably outperforms GCNN when using 3D
coordinates as input, producing much smoother results. This is also illustrated in the
qualitative results shown in Figure 4.14.

4.6.5 Shape matching
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Figure 4.15 – Performance of shape corre-
spondence on the FAUST dataset and its
re-meshed version (5k) evaluated by plot-
ting the fraction of correspondences within a
geodesic radius of the ground truth. Higher
curve corresponds to better performance.

Finally, we also applied our pipeline in the
context of non-rigid shape matching on
the FAUST dataset, used in [75]. In this
experiment, goal is to predict the index
corresponding to each vertex in the 0-th
shape of the dataset. The original exper-
iment in [75] used the GCNN architecture
using SHOT descriptors as input. In order
to remove the bias present in the data, due
to all meshes sharing the same connectivity,
we also re-meshed the FAUST shapes from
6890 vertexes to 5000 vertexes to evalu-
ate the robustness of both algorithms. We
used our U-ResNet architecture with 2× 2
stacks of two blocks with 16 filters on the
first layer and an initial radius of 0.1 tak-
ing SHOT12 as input. The network was
trained for 100 epochs for MDGCNN and
200 for GCNN. We measured the geodesic
error between the predicted labels and the
ground truth on the 0-th shape for both
the original FAUST shapes and the re-meshed ones (5k) (Figure 4.15). Contrary to [75] we
do not use post processing on the predictions of the algorithm, and measure the accuracy
directly on the output of the networks. As a baseline we also measured the geodesic
error of correspondences obtained on 100 random pairs of the test set using nearest
neighbors in the space of SHOT descriptors. We see that learning techniques vastly
outperform the baseline. On the original set with shapes having the same connectivity
MDGCNN and GCNN behave similarly. On the re-meshed set GCNN noticeably degrades
while MDGCNN is able to maintain its precision. Figure 4.16 shows several examples of
correspondences between pairs of shapes computed using different methods. Figure 4.15
also shows a comparison with PointNet++ [100] and Dynamic graph CNN [129] using
3D coordinates as input (trained for 200 epochs). Note that these methods are designed
for segmentation tasks and are not suited for shape matching in their current form.
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Figure 4.16 – Shape correspondence on the remeshed (5k) version of the FAUST dataset
using : (left) GCNN [75] (middle) Our method MDGCNN, and (right) using nearest
neighbors in the SHOT descriptors space.

4.6.6 Limitations & Future Work

Our pipeline still has important limitations. The learning process depends on the
construction of local coordinate systems which might not be suited to describe certain
types of patterns possibly introducing a bottleneck to the learning. More specifically
constructions such as geodesic polar coordinates and parallel transport are purely intrinsic
based on the metric of the surface, therefore some areas that are close in the embedding
space might be considered far in this representation. A typical limiting case of purely
intrinsic pipelines such as ours is when some region of the shape is made of multiple parts
that seem to merge in a single object, they might very well fail to recognize it as as a
such. We illustrate this by applying our segmentation pipeline to the bird class of PSB
dataset, shown in Figure 4.17. From a purely topological perspective the bird’s wings
are locally disconnected as they are made of many feathers. As we can see in Figure
4.17 our pipeline most likely recognized each independent feather as a bird tail, failing
to recognize the wing in its entirety. Another limiting case of pipelines based on local
coordinates is the presence of very thin nearly degenerate parts as the bird’s legs and
claws. Two dimensional systems of coordinates might not be appropriate to model near
one dimensional parts.
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(a) MDGCNN 3D (b) Ground truth

Figure 4.17 – Limiting case of purely intrinsic pipelines

On the other hand, Figure 4.18 shows that in the absence of such limiting cases a
bird shape can be properly segmented by MDGCNN.

(a) MDGCNN 3D (b) Ground truth

Figure 4.18 – Successful segmentation with our MDGCNN approach.

Another limitation shared by CNNs for image processing is the choice of scale (size)
of local windows. The same features can have different meaning depending on the scale
at which they are detected. Since our current implementation only uses a single fixed
scale, this may limit the generalization power of our method in situations where relative
proportions of object parts are different from the examples in the training set. In image
processing the scale issue has been addressed e.g. by using the notion of Inception
modules [121]. We leave implementation of inception modules within the MDGCNN
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framework for future work.
Our discretization also has some issues. For example, the parallel transport of a

direction might fall between angular bins attached to the target vertex. For this reason
we used linear interpolation between the two adjacent directions. However this still
introduces a non-negligible error which grows with the number of layers especially for low
number of angular bins. A possible alternative is to use the Fourier basis to represent
directional signals at all points. This would allow exact direction transfer since rotations
act linearly on the basis functions. However activation functions and operations such as
angular max pooling would be harder to perform.

Perhaps the most immediate, and relatively straightforward extension of our work
would be to use our multi directional approach in the context of local parameterizations
via anisotropic diffusion kernels [16], but without assuming a canonical reference direction
at every point. More generally, it would be interesting to use multi-scale approaches with
different ways of computing the coordinate systems and transporting the information
depending on the scale possibly using extrinsic information to help the network learning
different semantic interpretations across different scales in order to improve the overall
robustness. Finally other constructions of directional convolution with potentially stronger
properties are possible, and we give an example in the Appendix Section 4.8.2.

4.7 Conclusion

In the this work we presented a novel approach to define convolution over curved surfaces
that do not admit global or canonical coordinate systems. Namely, we proposed a way to
align local systems of coordinates allowing to build and learn consistent filters that can
then be naturally used across different domains. Our approach is built on the notion of
directional functions, which generalize real-valued signals. We proposed a technique to
convolve such directional functions with learned template (or filter) functions to produce
new directional functions. This allows us to compose these convolution operations,
without any loss of directional information across layers of a neural network.

We showed that our new approach compares favorably to its most direct analogues
producing smoother and more robust results and can compete with more recent techniques,
even when using “weak” input signals such as the 3D coordinates of the points. We
believe that idea of multi-directional convolution can be generalized and can open the
door to addressing many other situations where the data representation is ambiguous by
allowing a neuron to have different ways of interpreting its input and to communicate
with its contributors. For example, in our case a neuron can process its input depending
on the choice of reference direction and propagate this information to its contributors.
However, other types of alignment between layers can be thought of across different types
of ambiguities in the signal as well.
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4.8 Appendix

Alternative Proof of Proposition 4.3.2 Below, we provide an alternative proof
showing that proposition 4.3.2 still holds when the directional convolution operator ? is
defined in the angular coordinate setting, which thus provides a more direct link to the
practical setting. The family of unit vectors ex ∈ TxX defines polar coordinate systems
on each tangent plane TxX. A tangent vector p ∈ TxX is then represented by a tuple
(r, θ) where r is its radius and θ is the angle between ex and p = rex(θ) where ex(θ)
denote the direct rotation of ex by angle θ. We represent unit vectors only by their angle.
Adapting the notations of Eq. (4.3) in the polar coordinate systems defined by e we
denote:

τ ex,θ := τx,ex(θ)

expXx,ex(r, θ) := expXx (r.ex(θ))

and Γex,(r,θ1)(θ2) is the angle between eexpXx,ex (r,θ) and Γx,rex(θ1)(ex(θ2)) i.e.

eexpXx,ex (r,θ)(Γ
e
x,(r,θ1)(θ2)) := Γx,rex(θ1)(ex(θ2))

We first observe that:
ϕR.e(x, θ) = ϕe(x, θ + θx),

τR.ex,θ = τ ex,θ+θx ,

expXx,Rx.ex(r, θ) = expXx,ex(r, θ + θx).

ΓR.ex,θ1(θ2) = Γex,θ1+θx(θ2 + θx)

We have:
(R.e)expXx,R.ex (r,θ1)(Γ

R.e
x,(r,θ1)(θ2)) =

eexpXx,ex (r,θ1+θx)(Γ
e
x,(r,θ1+θx)(θ2 + θx)) =

R.eexpXx,R.ex (r,θ1)(Γ
e
x,(r,θ1+θx)(θ2 + θx)− θexpXx,ex (r,θ+θx))

Thus:
ΓR.ex,(r,θ1)(θ2) = Γex,(r,θ1+θx)(θ2 + θx)− θexpXx,ex (r,θ+θx)

Therefore
(expX,R.ex )∗ϕR.e(x, (r, θ))

:= ϕR.e
(

expXx,Rx.ex(r, θ),ΓR.ex,(r,θ)(θ)
)

= ϕR.e(expXx,ex(r, θ + θx),Γex,(r,θ+θx)(θ + θx)− θexpXx,ex (r,θ+θx))

= ϕe(expXx,ex(r, θ + θx),Γex,(r,θ+θx)(θ + θx))

=: (expX,ex )∗ϕe(x, (r, θ + θx)).

So that:
(ϕR.e ? k)(x, θ)

= 〈(expX,R.ex )∗ϕR.e, (τ
R.e
x,θ )∗k〉.

= 〈(expX,ex )∗ϕe(•, •+ θx), (τ ex,θ+θx)∗k〉
= (ϕe ? k)(x, θ + θx)
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4.8.1 Details on the implementation of multi-directional geodesic con-
volution

Our practical implementation of geodesic convolution relies on dense tensors for efficiency
optimization. We describe it in the following subsection.

Let X be a triangle mesh with Nv vertexes. The exponential map over X is given
by geodesic polar coordinates (GPC) around each vertex. We model it as two Nv by
Nv matrices r and θ where rij and θij represent the radius and angle at vertex j of the
GPC centered at vertex i. The associated Euclidean coordinates (xij , yij)ij , extend inside
triangles by linear interpolation. We use the GPC to construct windows at each vertex
along which we can transfer signals on the mesh. The windows are defined by their
radius R. The window attached to vertex i consists of the points of polar coordinates
are ( j.RNρ ,

2k.π
Nθ

)j∈[|1,Nρ|],k∈[|1,Nθ|] in the GPC at i. Each window vertex lies inside a triangle
we denote by Eijkl the index of the l-th vertex of the triangle containing pijk the jk-th
point of i-th window and by Wijkl the associated barycentric coordinate. That is:

pijk =

3∑
l=1

Wijkl(xi,Eijkl , yi,Eijkl).

A a-dimensional signal f on the mesh consist of a Nv by a matrix, it can be pulled back
to the window system by the following formula:

E∗fijkl :=

3∑
m=1

WijkmfEijkm,l

this can be seen as a discretization of the pull back by exponential map. Template
functions are stacked in ab-polar kernel tensors of shape (Nρ, Nθ, a, b) to be convolved
with a-dimensional signals. In our context we define the geodesic convolution of a a
dimensional signal f by the a ab-polar kernel K as the b-dimensional directional signal:

(f ~K)ijk :=
∑
r,m,l

E∗firmlKr,(m+j) mod Nθ,l,k

We adapt the original definition of geodesic convolutional layer:

Definition 4.8.1 (geodesic convolutional layer) The geodesic convolutional layer of
ab-kernel K, central kernel C and bias vector B and activation function ξ transforms
any a-dimensional signal f into the b-dimensional signal:

gcK,C,B,ξ(f)ij := max
k

ξ(f ~Kikj +
∑
l

Cjlfil +Bj)

We model the parallel transport as a Nv by Nv matrix γ where γij is the angular offset
in the angular coordinates θ of the GPC induced by the parallel transport along the
geodesic joining vertex i to vertex j. We discretize the transport of angles by the 4D
tensor Γ of shape (Nv, Nρ, Nθ, 3) defined by:

Γijkl :=
γi,Eijkl

2π
+

k

Nθ
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is the normalized angle representing the unit radial vector at jk-vertex of i-th window in
its GPC. The tensor Γ stores exact angular values however since discretized directional
functions are defined using Nθ evenly spaced angles we consider the lower and upper
transport tensors bΓc and dΓe. We can interpolate directional signals inside the resulting
angular sectors by using the fractional part {Γ} := Γ− bΓc. We define the discrete pull
back of a directional signal ϕ and by the "completed" exponential map as the tensor:

ϕ(E,Γ)ijkl :=
∑
m

Wijkm

(
(1− {Γ}ijkm)ϕEijkm,bΓcijkm,l

+ {Γ}ijkmϕEijkm,dΓeijkm,l
)

We define the discrete directional geodesic convolution of a a-dimensional directional
signal ϕ by the ab-polar kernel K as the b-dimensional directional signal:

ϕ ? Kijk :=
∑
r,m,l

ϕ(E,Γ)irmlKr,(m+j) mod Nθ,l,k

Definition 4.8.2 (Directional geodesic convolutional layer) The directional geodesic
convolution of ab-polar kernel K, central kernel C and bias vector B ∈ Rb and activa-
tion function ξ transforms any a-dimensional directional signal ϕ to the b-dimensional
directional signal:

dirK,C,B,ξ(ϕ)ijk := ξ(f ? Kijk +
∑
l

Cklfijl +Bk)

4.8.2 A Stronger Notion of Directional Convolution

Several definition of directional convolution are possible we chose to transport tangent
directions along geodesic to produce a local radial vector field on the surface which is
rotation invariant this simplifies implementation. There is another natural choice to
pull-back directional signals to the tangent plane. We can set:

expXx,v(p) = (expXx (p), Γx,p(v)),

and define convolution of a directional function ϕ over X by a template k by:

(ϕ ?X k)(x, v) = 〈(expXx,v)
∗ϕ, τ∗x,vk〉

On the plane (X = R2) the above formula can be simplified, we have:

expR2

x,v(p) = (x+ p, v)

To ease notation we identify R2 with C. The map τ simply rotates the template:

τ∗x,eiθk := k(e−iθ•)
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therefore for any directional function ϕ over R2:

(ϕ ?R2 k)(x, eiθ) = (ϕ(•, eiθ) ∗ k(e−iθ•))(x)

Let f be a function over R2 denote by (x, v) 7→ f̃(x, v) := f(x) the associated directional
function then:

(f̃ ?R2 k)(x, eiθ) = (f ∗ k)(e−iθ•)(x)

The resulting directional function essentially stores the result of the usual convolution with
the rotated kernel in each direction. Thanks to the above observation we can show that
an image based CNN using this notion of directional convolution is equivalent to taking
the maximal response under rotations of the kernels with its standard CNN counterpart
as shown by the following proposition. For simplicity we consider one dimensional signals
although the property still holds in higher dimensions.

Proposition 4.8.1 Let f a function over R2, (Kl)l a sequence of template kernels, (bl)l
a sequence of real numbers (ξl)l a sequence of activation functions. We define the sequence
(ϕl)l of directional functions over R2 and the sequence (fθl )l of function over R2 by:{

ϕ0 = f̃
ϕl+1 = ξl ◦

(
ϕl ?R2 Kl + bl

) {
fθ0 = f
fθl+1 = ξl ◦

(
(fθl ∗Kl(e

−iθ•) + bl
)

Then for all n we have:
ϕn(x, eiθ) = fθn(x).

Proof We proceed by recurrence. The property is true for n = 0 by definition, suppose
it is true for n = k. We have:

ϕk+1(x, eiθ)

= ξk(ϕk ?R2 Kk(x, e
iθ) + bk)

= ξk((ϕk(•, eiθ) ∗Kk)(e
−iθ•)(x) + bk)

= ξk((f
θ
k ∗Kk(e

−iθ•))(x) + bk)

:= fθk+1(x)

which proves the property for n = k + 1 and concludes the proof. �
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4.8.3 Algorithm for computing geodesic polar coordinates (GPC) and
parallel transport on triangle meshes

Below we give a formal description of the algorithm [78] for computing GPC and how we
extended it for computing parallel transport, complementing the high level description
from Section 4.5.

i

i0

i1
i2

i3

i4

α0

α1
α2

α3 α4

Figure 4.19 – One
ring neighborhood of
vertex i

To initialize the algorithm we must specify polar coordinates
and parallel transport on the immediate neighborhood of each
vertex i. Denote by {i0, . . . i|deg(i)|−1} the set of neighbours of
i which is ordered. For each j ∈ [|0, deg(i) − 1|] we denote by
αij the oriented angle between the halfedges eiij and ei,ij+1%deg(i)

(Figure 4.19) and define:

θiij :=
2π∑deg(i)−1

j=0 αij

j∑
k=0

αij

For adjacent vertices i ∼ j we denote by rij the euclidean distance
between i and j and rii = 0. If i and j are not adjacent we set
r̃ij = +∞.

The parallel parallel transport of an angle u at vertex i to the a neighbour vertex j
expressed in their respective polar coordinate systems is given by:

ρij(u) := u+ θji − θij − π

thus the offset ρij := ρij(0) fully characterizes the parallel transport along the halfedge
eij . The parallel transport of γ the angular coordinate is initialized in the neighborhood
of i by setting:

γiij = θiij + ρiij , ∀j ∈ [|0, deg(i)− 1|].

The algorithm of [78] computes an extension (r̃, θ̃) of the polar coordinates (r, θ) beyond
the immediate neighborhood of a source vertex s, we extend it to compute an extension
γ̃ of the parallel transport γ as well. Like other fast marching algorithms it iteratively
updates vertices farther and farther away from the source based on a priority queue on
vertices based on their distance to s (see Algorithm 3). Once a vertex is selected for
update a subroutine is called to update its neighbourhood. Let i be the selected vertex for
any neighbour k ∼ i and any of the two common neighbours j ∼ i, k such that r̃sj < +∞
the subroutine proposes updates for r̃sk, θ̃sk and γ̃sk, call them rsijk, θsijk and γsijk. To
compute these updates, first embed the immediate neighborhood of vertex k into the
plane using the polar coordinates (r, θ) for any l ∼ k this gives a point vl ∈ R2 of polar
coordinates (rkl, θkl). Then a pseudo-source point s′ ∈ R2 is built, uniquely defined by
the conditions: 

l ∈ {i, j}
‖vl − s′‖2 = r̃s,tik
||vk − s′||2 is maximal

The pseudo source s′ is considered as the new origin and the coordinates of the (vl)l’s
are updated accordingly. Two cases may occur as shown on Figure 4.20 below:
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vi

vj
s′

vk
s′

vj

vi
vk

Figure 4.20 – First case (left): vk is in the positive cone spanned by vi and vj . Second
case (right) vk is in not the positive cone spanned by.

In the fist case define (r̃sijk, tsijk) to be the polar coordinates of vk otherwise set:{
r̃sijk := minl∈i,j r̃sl + rkl
tsijk := θ̃sl, for r̃sijk = r̃sl + rkl

Let ti be the angular coordinate of vi and tj be the angular coordinate of vj , we may
assume for simplicity that ti < tj otherwise swap i and j, furthermore we assume
|tj − ti| 6 π otherwise add 2π to ti and swap i and j, finally assume tsijk ∈ [ti, tj ]

otherwise add 2π. Then set α =
tsijk−ti
tj−ti we have:

tsijk = (1− α)ti + αtj .

Algorithm 2 below computes convex combination of angles:

Input: Angles a, b and t ∈ [0, 1]
Output: Calculate ((1− t)a+ tb) mod 2π

1 if a > b then
2 swap(a, b);
3 t← 1− t;
4 end
5 if b− a > π then
6 a+ = 2π;
7 swap(a, b);
8 t← 1− t;
9 end

10 return ((1− t)a+ tb) mod 2π

Algorithm 2: Computing a convex combination of two angles a and b.

The angular coordinate update is given by:

θ̃sijk := (1− α)θ̃si + αθ̃sj mod 2π

We define the parallel transport update similarly by:

γ̃sijk := (1− α)(γ̃si + ρik) + α(γ̃sj + ρjk) mod 2π

where the above expressions are understood according to Algorithm 2.
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The general algorithm for computing the GPC and parallel transport is given by:
Input: GPC and parallel transport on the immediate neighborhoods r, θ, γ

and a starting vertex s.
Output: Extensions r̃, θ̃, γ̃ of r, θ, γ beyond the immediate neighborhood of s

1 Initialization:
2 for each vertices i, j do
3 if i ∼ j or i = j then
4 r̃ij ← rij , θ̃ij ← θij , γ̃ij ← γij ;
5 else
6 r̃ij ← +∞, θ̃ij ← 0, γ̃ij ← 0;
7 end
8 end
9 candidates = [j, j ∼ s]; /* sort s neighbors w.r.t. r̃ */

10 while candidates.notEmpty() do
11 i = candidates.pop(); /* pick smallest vertex w.r.t. r and remove

it from candidates */
12 for k ∼ i do
13 let j ∼ i, k st r̃si, r̃sj < +∞ minimising r̃sijk;

/* precision ε > 0 */
14 if r̃sk > (1 + ε).r̃sijk then

/* update estimates */
15 r̃sk ← r̃sijk;
16 θ̃sk ← θ̃sijk;
17 γsk ← γ̃sijk; /* extend transport */

/* if stopping criterion is not met */
18 if r̃sk 6 Rmax then
19 candidates.push(k); /* add k to candidates */
20 end
21 end
22 end
23 end

Algorithm 3: Compute discrete Geodesic Polar Coordinates (GPC) (r̃s, θ̃s)
and parallel transport γ̃s along geodesics on a mesh starting from vertex s.



Chapter 5

Effective Rotation-invariant Point
CNN with Spherical Harmonics

Kernels

We present a novel rotation invariant architecture operating directly on point
cloud data. We demonstrate how rotation invariance can be injected into a recently
proposed point-based PCNN architecture, on all layers of the network. This leads
to invariance to both global shape transformations, and to local rotations on the
level of patches or parts, useful when dealing with non-rigid objects. We achieve this
by employing a spherical harmonics-based kernel at different layers of the network,
which is guaranteed to be invariant to rigid motions. We also introduce a more
efficient pooling operation for PCNN using space-partitioning data-structures. This
results in a flexible, simple and efficient architecture that achieves accurate results on
challenging shape analysis tasks, including classification and segmentation, without
requiring data-augmentation typically employed by non-invariant approaches1.

5.1 Introduction

Analyzing and processing 3D shapes using deep learning approaches has recently attracted
a lot of attention, inspired in part by the success of such methods in computer vision
and other fields. While early approaches in this area relied on methods developed in the
image domain, e.g. by sampling 2D views around the 3D object [118], or using volumetric
convolutions [137], recent methods have tried to directly exploit the 3D structure of the
data. This notably includes both mesh-based approaches that operate on the surface of
the shapes [74, 83] or the approach we presented in chapter 4, and point-based techniques
that only rely on the 3D coordinates of the shapes without requiring any connectivity
information [98, 100].

Point-based methods are particularly attractive, being both very general and often
more efficient, as they do not require maintaining complex and expensive data-structures,
compared to volumetric or mesh-based methods. As a result, starting from the seminal
works of PointNet [98] and PointNet++ [100], many point-based learning approaches have
been proposed, often achieving remarkable accuracy in tasks such as shape classification
and segmentation among many others. A key challenge when applying these methods in
practice, however, is to ensure invariance to different kinds of transformations, and espe-
cially to rigid motions. Common strategies include either using spatial transformer blocks

1Code and data are provided on the project page https://github.com/adrienPoulenard/SPHnet.

https://github.com/adrienPoulenard/SPHnet
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[52] as done in the original PointNet architecture and its extensions, or applying extensive
data augmentation during training to learn invariance from the data. Unfortunately, when
applied to shape collections that are not pre-aligned, these solutions can be expensive,
requiring unnecessarily long training. Moreover, they can even be incomplete when local
rotation invariance is required, e.g. for non-rigid shapes, undergoing articulated motion,
which is difficult to model through data augmentation alone.

In this chapter, we propose a different approach for dealing with both global and local
rotational invariance for point-based 3D shape deep learning tasks. Instead of learning
invariance from data, we propose to use a different kernel that is theoretically guaranteed
to be invariant to rotations, while remaining informative. To achieve this, we leverage
the recent PCNN by extension operators [6], which provides an efficient framework for
point-based convolutions. We extend this approach by introducing a rotationally invariant
kernel and making several modifications for improved efficiency. We demonstrate on a
range of difficult experiments that our method can achieve high accuracy directly, without
relying on data augmentation.

5.2 Related work

A very wide variety of learning-based techniques have been proposed for 3D shape
analysis and processing. Below we review methods most closely related to ours, focusing
on point-based approaches, and various ways of incorporating rotational invariance and
equivariance in learning. We refer the interested readers to several recent surveys, e.g.
[138, 83], for an in-depth overview of geometric deep learning methods.

Learning in Point Clouds. Learning-based approaches, and especially those based
on deep learning, have recently been proposed specifically to handle point cloud data.
The seminal PointNet architecture [98] has inspired a large number of extensions and
follow-up works, notably including PointNet++ [100] and Dynamic Graph CNNs [129]
for shape classification and segmentation. More recent works include PCPNet [47] for
normal and curvature estimation, PU-Net [141] for point cloud upsampling, and PCN for
shape completion [142] among many others.

While the original PointNet approach is not based on a convolutional architecture,
instead using a series of classic MLP fully connected layers, several methods have
also tried to define and exploit meaningful notions of convolution on point cloud data,
inspired by their effectiveness in computer vision. Such approaches notably include:
basic pointwise convolution through nearest-neighbor binning and a grid kernel [50];
Monte Carlo convolution, aimed at dealing with non-uniformly sampled point sets [49];
learning an X -transformation of the input point cloud, which allows the application
of standard convolution on the transformed representation [67]; and using extension
operators for applying point convolution [6]. These techniques primarily differ by the
notion of neighborhood and the construction of the kernels used to define convolution on
the point clouds. Most of them, however, share with the PointNet architecture a lack
of support for invariance to rigid motions, mainly because their kernels are applied to
point coordinates, and defining invariance at the level of individual points is generally
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not meaningful.

Invariance to transformations. Addressing invariance to various transformation
classes has been considered in many areas of Machine Learning, and Geometric Deep
Learning in particular. Most closely related to ours are approaches based on designing
steerable filters, which can learn representations that are equivariant to the rotation of the
input data [133, 132, 3, 135]. A particularly comprehensive overview of the key ideas and
results in this area is presented in [60]. In closely related works, Cohen and colleagues
have proposed group equivariant networks [27] and rotation-equivariant spherical CNNs
[28]. While the theoretical foundations of these approaches are well-studied in the context
of 3D shapes, they have primarily been applied to either volumetric [132] or spherical
(e.g. by projecting shapes onto an enclosing sphere via ray casting) [28] representations.
Instead, we apply these constructions directly in an efficient and powerful point-based
architecture.

Perhaps most closely related to ours are two very recent unpublished methods,
[140, 124], that also aim to introduce invariance into point-based networks. Our approach
is different from both, since unlike the PRIN method in [140] our convolution operates
directly on the point clouds, thus avoiding the construction of spherical voxel space.
As we show below, this gives our method greater invariance to rotations and higher
accuracy. At the same time while the authors of [124] explore similar general ideas and
describe related constructions, including the use of spherical harmonics kernels, they do
not describe a detailed architecture, and only show results with dozens of points (the
released implementation is also limited to toy examples), rendering both the method and
its exact practical utility unclear. Nevertheless, we stress that both [140] and [124] are
very recent unpublished methods and thus concurrent to our approach.

Contribution: Our key contributions are as follows:

1. We develop an effective rotation invariant point-based network. To the best of our
knowledge, ours is the first such method achieving higher accuracy than PointNet++
[100] with data augmentation on a range of tasks.

2. We significantly improve the efficiency of PCNN by Extension Operators [6] using
space partitioning.

3. We demonstrate the efficiency and accuracy of our method on tasks such as shape
classification, segmentation and matching on standard benchmarks and introduce a
novel dataset for RNA molecule segmentation.

5.3 Background

In this section we first introduce the main notation and give a brief overview of the PCNN
approach [6] that we use as a basis for our architecture.
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5.3.1 Notation

We use the notation from [6]. In particular, we use tensor notation: a ∈ RI×I×J×L×M and
the sum of tensors c =

∑
ijl aii′jlmbijl is defined by the free indices: c = ci′m. C(R3,RK)

represent the collections of volumetric functions ψ : R3 → RK .

5.3.2 The PCNN framework

The PCNN framework consists of three simple steps. First a signal is extended from
a point cloud to R3 using an extension operator EX . Then standard convolution on
volumetric functions O is applied. Finally, the output is restricted to the original point
cloud with a restriction operator RX . The final convolution on point clouds is defined as:

OX = RX ◦O ◦ EX (5.1)

In the original work [6], the extension operators and kernel functions are chosen so
that the composition of the three operations above, using Euclidean convolution in R3

can be computed in closed form.

Extension operator. Given an input signal represented as J real-valued functions
f ∈ RI×J defined on a point cloud, it can be extended to R3 via a set of volumetric basis
functions li ∈ C(R3,R) using the values of f at each point fi. The extension operator
EX : RI×J → C(R3,RJ) is then:

(EX [f ])j(x) =
∑
i

fijli(x) (5.2)

The authors of [6] use Gaussian basis functions centered at the points of the point cloud
so that the number of basis functions equals the number of points.

Convolution operator. Given a kernel κ ∈ C(R3,RJ×M ), the convolution operator
O : C(R3,RJ)→ C(R3,RM ) applied to a volumetric signal ψ ∈ C(R3,RJ) is defined as:

(O[ψ])m(x) = (ψ ∗ κ)m(x) =

∫
R3

∑
j

ψj(y)κjm(x− y)dy (5.3)

The kernel can be represented in an RBF basis:

κjm(z) =
∑
l

kjmlΦ(|z − vl|), (5.4)

where kjml are learnable parameters of the network, Φ is the Gaussian kernel and vLl=1

represent translation vectors in R3. For instance, they can be chosen to cover a standard
3× 3× 3 grid.

Restriction operator. The restriction operator RX : C(R3,RJ)→ RI×J is defined as
simply as the restriction of the volumetric signal to the point cloud:

(RX [ψ])i,j = ψj(xi) (5.5)
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Architecture With these definitions in hand, the authors of [6] propose to stack a
series of convolutions with non-linear activation and pooling steps into a robust and
flexible deep neural network architecture showing high accuracy on a range of tasks.

5.4 Our approach

Overview Our main goal is to extend the PCNN approach to develop a rotation
invariant convolutional neural network on point clouds. We call our network SPHNet
due to the key role that the spherical harmonics kernels play in it. Figure 5.1 gives an
overview. Following PCNN we first extend a function on point clouds to a volumetric
function by the operator EX . Secondly, we apply the convolution operator SPHConv to
the volumetric signal. Finally, the signal is restricted by RX to the original point cloud.

Figure 5.1 – SPHNet framework. A signal on point cloud is first extended to R3 (left).
Our convolution operator is applied to the extended function (center). The signal is
restrained to the original point cloud (right).

5.4.1 Spherical harmonics kernel

In this work, we propose to use spherical harmonics-based kernels to design a point-based
rotation-invariant network. In [132], the authors define spherical harmonics kernels
with emphasis on rotation equivariance, applied to volumetric data. We adopt these
constructions to our setting to define rotation-invariant convolutions.

Spherical harmonics is a family of real-valued functions on the unit sphere which can
be defined, in particular, as the eigenfunctions of the spherical Laplacian. Namely, the
`th spherical harmonic space has dimension 2`+ 1 and is spanned by spherical harmonics
(Y`,m)`>=0,m∈−`...`, where ` is the degree. Thus, each Y`,m is a real-valued function on
the sphere Y`,m : S2 → R.
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Spherical harmonics are rotation equivariant. For any rotation R ∈ SO(3) we have:

Y`,m(Rx) =
∑̀
n=−`

D`
mn(R)Y`,n(x). (5.6)

Where D`(R) is the so-called Wigner matrix of size 2`+ 1× 2`+ 1, [134]. Importantly,
Wigner matrices are orthonormal for all ` making the norm of every spherical harmonic
space invariant to rotation. This classical fact has been exploited, for example in [55]
to define global rotation-invariant shape descriptors. More generally the idea of using
bases of functions having a predictable behaviour under rotation to define invariant or
equivariant filters or descriptors is closely related to the classical concept of steerable
filters [42].

The spherical harmonic kernel basis introduced in [132] is defined as:

κr`m(x) = exp

−
∣∣∣‖x‖2 − ρ r

nR−1

∣∣∣2
2σ2

Y`,m

(
x

‖x‖2

)
, (5.7)

where, ρ is a positive scale parameter, nR is the number of radial samples and σ = ρ
nR−1 .

Note that the kernel depends on a radial component, indexed by r ∈ 0...nR − 1, and
defined by Gaussian shells of radius r ρ

nR−1 , and an angular component indexed by `,m
with ` ∈ 0...nL − 1 and m ∈ −`...`, defined by values of the spherical harmonics.

This kernel inherits the behaviour of spherical harmonics under rotation, that is:

κr`m(Rx) =
∑̀
n=−`

D`
mn(R)κr`n(x) (5.8)

where R ∈ SO(3).

5.4.2 Convolution layer

Below, we describe our SPHNet method. To define it we need to adapt the convolution
and extension operators used in PCNN [6], while the restriction operators are kept exactly
the same.

Extension. PCNN uses Gaussian basis functions to extend functions to R3. However,
convolution of the spherical harmonics kernel with Gaussians does not admit a closed-form
expression. Therefore, we “extend” a signal f defined on a point cloud via a weighted
combination of Dirac measures. Namely EX : RI×J → C(R3,RJ) is:

(EX [f ])j =
∑
i

fijωiδxi , (5.9)

where we use the weights: ωi = 1/(
∑

j exp(− ||xj−xi||
2

2σ2 )). The Dirac measure has the
following property: ∫

X
f(y)δx(y) dy = f(x) (5.10)
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Convolution. We first introduce a non-linear rotation-invariant convolution operator:
SPHConv. Using Eq. (5.10), the convolution between an extended signal and the spherical
harmonic kernel S[f ] : C(R3,RJ)→ C(R3,RJ) is given by:

(S[f ])j(x) = (EX [f ] ∗ κr`m)j(x) =
∑
i

fijωiκr`m(xi − x) (5.11)

Using Eq. (5.8), we can express the convolution operator when a rotation R is applied
to the point cloud X as a function of the kernel functions:

(R(EX [f ] ∗ κr`m))j(x) =
∑
i

fijωiκr`m(R(xi − x))

=
∑̀
n=−`

D`
mn(R)

∑
i

fijωiκr`n(xi − x)

=
∑̀
n=−`

D`
mn(R)(EX [f ] ∗ κr`n)j(x) (5.12)

We observe that a rotation of the point cloud induces a rotation in feature space.
In order to ensure rotation invariance we recall that the Wigner matrices Dl are all
orthonormal. Thus, by taking the norm of the convolution with respect to the degree
of the spherical harmonic kernels, we can gain independence from R. To see this,
note that thanks to Eq. (5.12) only the m-indexed dimension of (EX [f ] ∗ κr`m)j(x) is
affected by the rotation. Therefore, we define our rotation-invariant convolution operator
Irl[X, f ] : C(R3,RJ)→ C(R3,RJ) as:

(Irl[X, f ])j(x) = ‖(EX [f ] ∗ κr`m)j(x)‖m2 , (5.13)

where for a tensor Trlmj we use the notation ‖T‖m2 to denote a tensor T ∗ obtained by
taking the L2 norm along the m dimension: T ∗rlj =

√∑
m T

2
rlmj .

Importantly, unlike the original PCNN approach [6], we cannot apply learnable weights
directly on (EX [f ] ∗ κr`m)j(x) as the result would not be rotation invariant. Instead, we
take a linear combination of (Irl[X, f ]), obtained after taking the reduction along the m
dimension above, using learnable weights W ∈ RG×I×nR×rL , where G is the number of
output channels. This leads to:

(O[f ])g(x) = ξ

∑
jr`

Wgjr`(Irl[X, f ])j(x) + bg

 (5.14)

Finally, we define the convolution operator OX : C(R3,RJ)→ C(R3,RG) by restrict-
ing the result to the point cloud as in Eq. (5.5):

((OX)g[f ])i = ξ

∑
jr`

Wgjr`(Irl[X, f ](xi) + bg

 (5.15)
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5.4.3 Pooling and upsampling

In addition to introducing a rotation-invariant convolution into the PCNN framework,
we also propose several improvements, primarily for computational efficiency.

The original PCNN work [6] used Euclidean farthest point sampling and pooling in
Voronoi cells. Both of these steps can be computationally inefficient, especially when
handling large datasets and with data augmentation. Instead, we propose to use a
space-partitioning data-structure for both steps using constructions similar to those in
[58]. For this, we start by building a kd-tree for each point cloud, which we then use as
follows.

Pooling. For a given point cloud P , our pooling layer of depth k reduces P from size
2n to 2n−k by applying max pooling to the features of each subtree. The coordinates
of the points of the subtree are averaged. The resulting reduced point cloud kd-tree
structure and indexing can be immediately computed from the one computed for P . This
gives us a family Tk∈1...n of kd-trees of varying depths.

Upsampling. The upsampling layer is computed simply by repeating the features of
each point of a point cloud at layer k using the kd-tree of structure Tk. The upsampled
point cloud follows the structure of Tk+1.

Comparison to PCNN. In PCNN pooling is performed through farthest point sam-
pling. The maximum over the corresponding Voronoi cell is then assigned to each point
of the sampled set. This method has a complexity of O(|P |2) while ours has a complexity
of O(|P | log2 |P |), leading to noticeable improvement in practice.

We remark that kd-tree based pooling breaks full rotation invariance of our archi-
tecture, due to the construction of axis-aligned separating hyperplanes. However, as we
show in the results below, this has a very mild effect in practice and our approach has
very similar performance regardless of the rotation of the data-set. A possible way to
circumvent this issue would be to modify the kd-tree construction by splitting the space
along local PCA directions.

5.5 Architecture and implementation details

We adapted the classification and segmentation architectures from [6]. Using these as
generic models we derive three general networks: our main rotation-invariant architecture
SPHnet, which stands for Spherical Harmonic Net and uses the rotation invariant
convolution we described. We also compare it to two baselines: SPHBase is identical to
SPHnet, except that we do not take the norm of each spherical harmonic component and
apply the weights directly instead. We use this as the closest non-invariant baseline. We
also compare to PCNN (mod), which is also non rotation-invariant. It uses the Gaussian
kernels from the original PCNN, but employs the same architecture and pooling as we
use in SPHnet and SPHBase.
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The original architectures in [6] consist of arrangements of convolution blocks, pooling
and up-sampling layers that we replaced by our own. We kept the basic structure described
below. In all cases, we construct the convolutional block using one convolutional layer
followed by a batch normalization layer and a ReLU non linearity. Our convolution layer
depends on the following parameters:

• Number of input and output channels

• Number nL of spherical harmonics spaces in our kernel basis

• Number nR of spherical shells in our kernel basis

• The kernel scale ρ > 0

For the sake of efficiency we also restrict the computation of convolution to a fixed number
of points using k-nearest neighbor patches. Note that unlike other works, e.g. [129] we
do not learn an embedding for the intermediate features, as they are always defined on
the original point cloud. Thus, to ensure full invariance we apply our rotation invariant
convolution at every layer.

The number of input channels is deduced from the number of channels of the preceding
layer. We used 64 points per patch in the classification case and 48 in the segmentation
case. We fixed nL = 4 and nR = 2 throughout all of our experiments. The scale factor ρ
can be defined only for the first layer and deduced for the other ones as will be explained
below.

5.5.1 Classification

The classification architecture is made of 3 convolutional blocks with 64, 256, 1024 output
channels respectively: the first two are followed by a max pooling layer of ratio 4, and the
last one if followed by a global max pooling layer. Finally we have a fully connected block
over channels composed of two layers with 512 and 256 units, each followed by a dropout
layer of rate 0.5 and a final softmax layer for the classification as shown in Figure 5.2.

Figure 5.2 – Our classification architecture. Conv @ k indicates a conv layer with k
output channels, Pool ×k is a pooling of factor k and FC stands for fully connected layer.

We use ρ = 0.1 for the first layer and 2ρ, 4ρ for the second and third layers. We
illustrate the importance of the scale parameter ρ by showing its impact on classification
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accuracy (see Appendix 5.4). The classification architecture we use expects a point cloud
of 1024 points as input and defines the convolution layers on it according to our method.
We use the constant function equal to 1 as the input feature to the first layer. Note that,
since our goal is to ensure rotation invariance, we cannot use coordinate functions as
input.

5.5.2 Segmentation

Our segmentation network takes as input a point cloud with 2048 points and, similarly
to the classification case, we use the constant function equal to 1 as the input feature to
the first layer. Our segmentation architecture is shown in Figure 5.3.

Figure 5.3 – Segmentation architecture. Conv @ k indicates a conv layer with k output
channels, Pool ×k is a pooling of factor k and Up ×k is an upsampling by a factor k.

The architecture is U-shaped consisting of an encoding and a decoding block, each
having 3 convolutional blocks. The encoding convolutional blocks have 64, 128, 256
output channels respectively. The first two are followed by max pooling layers of ratio
4 and the third by a pooling layer of ratio 8. These are followed by a decoding block
where each conv block is preceded by an up-sampling layer to match the corresponding
encoding block, which is then concatenated with it. The final conv-layer with softmax
activation is then applied to predict pointwise labels. The two last conv-blocks of the
decode part are followed by dropout of rate 0.5. We chose a scale factor of ρ = 0.08 for
the first convolutional layer, the two next layers in the encoding block having respective
scale factors 2ρ and 4ρ. The scale factors for the decode block are the same in reverse
order. The scale factor for the final conv layer is ρ.

5.6 Results

5.6.1 Classification

We tested our method on the standard ModelNet40 benchmark [137]. This dataset
consists of 9843 training and 2468 test shapes in 40 different classes, such as guitar, cone,
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laptop etc. We use the same version as in [6] with point clouds consisting of 2048 points
centered and normalized so that the maximal distance of any point to the origin is 1. We
randomly sub-sample the point clouds to 1024 points before sending them to the network.
The dataset is aligned, so that all point clouds are in canonical position.

We compare the classification accuracy of our approach SPHNet with different methods
for learning on point clouds in Table 5.1. In addition to the original PCNN architecture
and our modified versions of it, we compare to PointNet++ [100]. We also include the
results of the recent rotation-invariant framework PRIN [140].

We train all different models in two settings: we first train with the original (denoted
by ‘O’) dataset and also with the dataset augmented by random rotations (denoted by
‘A’). We then test with either the original testset or the testset augmented by rotations,
again denoted by ‘O’ and ‘A’ respectively.

We observe that while other methods have a significant drop in accuracy when trained
with rotation augmentation, our method remains stable, and in particular outperforms
all methods trained and tested with data augmentation (A/A column), implying that
the orientation of different shapes is not an important factor in the learning process.
Moreover, our method achieves the best accuracy in this augmented training set setting.
For PRIN evaluation, we used the architecture for classification described in [140] trained
for 40 epochs as suggested in the paper. In all our experiments we train the PRIN
model with the default parameters except for the bandwidth, which we set to 16 in order
to fit within the 24GB of memory available in Titan RTX. As demonstrated in [140]
this parameter choice produces slightly lower results but they are still comparable. In
our experiments, we observed that PRIN achieves poor performance when trained with
rotation augmented data.

We also remark that even when training with data augmentation, our method converges
significantly faster and to higher accuracies since it does not need to learn invariance to
rotations. We show the evolution of the validation accuracy curves for different methods
in Figure 5.4.

Figure 5.4 – Validation accuracy for
ModelNet40 classification with rotation
augmentation at training.

Method O / O A / O O / A A / A time
PCNN 92.3 85.9 11.9 85.1 264 s

PointNet++ 91.4 84.0 10.7 83.4 78 s
PCNN (mod) 91.1 83.4 9.4 84.5 22.6 s
SPHBaseNet 90.7 82.8 10.1 84.8 25.5 s
SPHNet (ours) 87.7 87.1 86.6 87.6 25.5 s

PRIN 71.5 0.78 43.1 0.78 811 s

Table 5.1 – Classification accuracy on the
modelnet40 dataset. A stands for data aug-
mented by random rotations and O for orig-
inal data. E.g., the model A/O was trained
with augmented and tested on the original
data. Timings per epoch are given when
training on a NVIDIA RTX 2080 Ti card.
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5.6.2 Segmentation

We also applied our approach to tackle the challenging task of segmenting molecular
surfaces into functionally-homologous regions within RNA molecules. We considered
a family of 640 structures of 5s ribosomal RNAs (5s rRNAs), downloaded from the
PDB database [10]. A surface, or molecular envelope, was computed for each RNA
model by sweeping the volume around the atomic positions with a small ball of fixed
radius. This task was performed using the scripting interface of the Chimera structure-
modelling environment [93]. Individual RNA sequences were then globally aligned,
using an implementation of the Needleman-Wunsch algorithm [84], onto the RFAM [54]
reference alignment RF00001 (5s rRNAs). Since columns in multiple sequence alignments
are meant to capture functional homology, we treated each column index as a label, which
we assigned to individual nucleotides, and their corresponding atoms, within each RNA.
Labels were finally projected onto individual vertices of the surface by assigning to a
vertex the label of its closest atom. This results in each shape represented as a triangle
mesh consisting of approximately 10k vertices, and its segmentation into approximately
120 regions, typically represented as connected components. Shapes in this dataset are not
pre-aligned and can have fairly significant geometric variability arising both from different
conformations as well as from the molecule acquisition and reconstruction process (see
Fig. 5.5 for an example).

Figure 5.5 – Labeled RNA molecules.

Given a surface mesh, we first downsample it to 4096 points with farthest point
sampling and then randomly sample to 2048 points before sending the data to the
network. We report the segmentation accuracy in Table 5.2. As in the classification case
we observed that PRIN [140] degrades severely when augmenting the training set by
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random rotations. Overall, we observe that our method achieves the best accuracy in all
settings. Furthermore, similarly to the classification task, the accuracy of our method is
stable in different settings (with and without data augmentation) for this dataset.

Method O/O A/O O/A A/A time
PCNN 76.7 78.0 35.1 77.8 65 s

PointNet++ 72.3 74.4 46.1 74.2 18 s
PCNN (mod) 74.2 74.3 30.9 73.7 9.7 s
SPHBaseNet 74.8 74.7 28.3 74.8 17 s
SPHNet (ours) 80.8 80.1 79.5 80.4 18 s

PRIN 66.9 6.84 53.7 6.57 10 s

Table 5.2 – Segmentation accuracy on the RNA molecules dataset. Timings per epoch
are given for an NVIDIA RTX 2080 Ti card.

We also show a qualitative comparison to PCNN in Figure 5.6. We note that
when trained on the original dataset and tested on an augmented dataset, we achieve
significantly better performance than PCNN. This demonstrates that unlike PCNN, the
performance of our method does not depend on the orientation of the shapes.

Figure 5.6 – RNA segmentation results.

5.6.3 Matching

We also apply our method on the problem of finding correspondences between non-rigid
shapes. This is an especially difficult problem since in addition to global rigid motion,
the shapes can undergo non-rigid deformations, such as articulated motion of humans.
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In this setting, we trained and tested different methods on point clouds sampled from
the D-FAUST dataset [13]. This dataset contains scans of 10 different subjects completing
various sequences of motions given as meshes with the same structure and indexing. We
prepared a test set consisting of 10 subject, motion sequence pairs and the complementary
pairs defining our training set. Furthermore we sampled the motion sequences every 10
time-steps we selected 4068 shapes in total with a 3787/281 train/test split. We sampled
10k points uniformly on the first selected mesh and then subsampled 2048 points from
them using farthest point sampling. We then transferred these points to all other meshes
using their barycentric coordinates in the triangles of the first mesh to have a consistent
point indexing on all point clouds. We produce labels by partitioning the first shape in 256
Voronoi cells associated to 256 farthest point samples. We then associate a label to each
cell. Our goal then is to predict these labels and thus infer correspondences between shape
pairs. Since this experiment is a particular instance of segmentation, we evaluate it with
two metrics, first we measure the standard segmentation accuracy. In addition, to each
cell a we associate a cell f(a) by taking the most represented cell among the predictions
over a and measure the average Euclidean distance between the respective centroids of
f(a) and the ground truth image of a. Table 5.3 shows quantitative performance of
different methods. Note that the accuracy of PointNet++ and PCNN decreases drastically
when trained on the original dataset and tested on rotated (augmented) data sets. Our
SPHNet performs well in all training and test settings. Moreover, SPHNet strongly
outperforms existing methods with data augmentation applied both during training and
testing, which more closely reflects a scenario of non pre-aligned training/test data. In
Figure 5.7, we show that the correspondences computed by SHPNet when trained on
both original and augmented data are highly accurate. For qualitative evaluation we
associate a color to each Voronoi cell using the x coordinate of its barycenter and transfer
this color using computed correspondences. Figure 5.8 shows a qualitative comparison
of different methods. We note that PCNN and PointNet++ correspondences present
visually more artefacts including symmetry issues, while our SPHNet results in more
smooth and accurate maps across all training and test settings.

Figure 5.7 – Fraction of correspondences
on the D-FAUST dataset within a cer-
tain Euclidean error in the A/A case.

Method O/O A/O O/A A/A disterr
PCNN 99.6 79.9 5.7 77.1 7.7e−3

PointNet++ 97.1 85.0 10.4 84.5 1.8e−3
PCNN (mod) 60.4 55.2 2.5 54.7 0.01
SPHNet (ours) 98.0 97.2 91.5 97.1 3.5e−5

PRIN 86.7 3.24 11.3 3.63 0.59

Table 5.3 – Part label prediction accuracy
on our D-FAUST dataset and average Eu-
clidean distance error of the inferred corre-
spondences between Voronoi cell centroids
in the A/A case.
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Figure 5.8 – Qualitative comparison of correspondences on the D-FAUST dataset.



84
Chapter 5. Effective Rotation-invariant Point CNN with Spherical

Harmonics Kernels

5.7 Conclusion

We presented a novel approach for ensuring rotational invariance in a point-based deep
neural network, based on the previously-proposed PCNN architecture. Key to our
approach is the use of spherical harmonics kernels, which are both efficient, theoretically
guaranteed to be rotationally invariant and can be applied at any layer of the network,
providing flexibility between local and global invariance. Unlike previous methods in
this domain, our resulting network outperforms existing approaches on non pre-aligned
datasets even with data augmentation. In the future, we plan to extend our method
to a more general framework combining non-invariant, equivariant and fully invariant
features at different levels of the network, and to devise ways for automatically deciding
the optimal layers at which invariance must be ensured. Another direction would be to
apply rotationally equivariant features across different shape segments independently.
This can be especially relevant for articulated motions where different segments undergo
different but all approximately rigid motions.

Appendix

Table 5.4 shows the effect of the scale parameter on the accuracy of the classification task
on ModelNet40. Performances decrease when ρ gets too low or too high. We choose the
parameter that produces the best accuracy in our experiments.

ρ O / O A / O O / A A / A
0.2 85.7 84.9 85.0 86.3
0.15 86.8 85.6 86.0 86.7
0.1 87.7 87.1 86.6 87.6
0.075 86.1 85.7 85.6 86.5
0.05 85.6 84.5 83.2 85.4

Table 5.4 – Impact of the scale parameter ρ on classification accuracy of SPHNet on
ModelNet40.
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6.1 Enforcing orientation preservation in shape matching

The functional map pipeline for shape matching [88] summarized in Section 3.6 of Chapter
3 often relies on descriptors such as Heat kernel Signatures (HKS) [91] or Wave Kernel
Signatures [8] which are built upon the metric of the shape and are consequently invariant
by intrinsic isometries. This is a major problem for computing correspondences between
shapes with intrinsic symmetries like animals which often exhibit a left-right symmetry
since after conversion of the functional map to a point-to-point map any point on the
source shape can be sent to the image of its corresponding point under any symmetry
of the target shape. To remedy this problem we proposed a novel technique to enforce
orientation preservation of correspondences obtained by the functional map pipeline based
on a new regularization energy term which contributed to the following publication:

• Continuous and orientation-preserving correspondences via functional maps, [102],
SIGGRAPH asia, 2018.

This work has two main contributions: one is the introduction of the orientation
preserving regularization mentioned above. The other, due to its first author, Jing Ren is
the introduction of a new refinement technique for improving bijectivity and continuity
of correspondences obtained by functional maps called Bijective Continuous Iterative
Closest Point method (BCICP). Our regularization term is used during the optimisation
phase computing the initial functional map which is then refined by the BCICP method.
Results shown in Table 6.1 show that this new pipeline achieves improvements compared
to state-of-the-art techniques in shape matching applications and that our orientation
preserving energy term contributes to this improvement.

6.1.1 Orientation preserving energy term for functional maps

Below we provide the construction of our energy term for enforcing orientation preservation
of functional maps. We start by a brief summary of the basic functional map pipeline
(for a more comprehensive description see Section 3.6 or [88]).

Given two shapes M and N and corresponding descriptors BN and BM on both
shapes expressed as matrices in their respective functional bases ϕM and ϕN the basic
functional map pipeline for shape matching consist in finding the functional map Copt

best preserving the descriptors in least square sense:

Copt = argmin
C
‖CBN −BM‖22 (6.1)
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The matrix Copt is interpreted as the matrix of the pull-back map associated to a point-
to-point map betweenM and N expressed in the bases ϕM and ϕN . The point-to-point
map fopt is typically obtained from Copt via the following optimization problem, which
can be solved using a nearest neighbor search:

fopt(i) = argmin
j
‖Copt

(
ΦN
)>
j
−
(
ΦMi

)>‖2.
If the descriptors BM and BN are invariant to isometries like [91] and [8] any affine
combination of the matrices representing the ground truth map and other isometries is a
solution to the convex problem in Eq. (6.1). This makes the conversion of the optimal
functional map to point-to-point map ambiguous and often results in a map defined
up to intrinsic isometries of both the source and target shapes. We propose to address
this problem by adding a regularization term to the functional map pipeline promoting
orientation preserving maps. This does not solve the problem in general but is relevant
in many practical cases. Human or animal shapes often have only a left-right symmetry
which is orientation reversing this motivates the promotion of orientation preserving
maps.

We assume our shapes are oriented as it is the case for most shapes represented by
triangle meshes in practice. We recall that in the continuous case a map F :M→N is
orientation preserving if its differential

dFp : TpM→ TF (p)N

is orientation preserving for all p ∈ M. We denote by nM and nN the unit outward
pointing normal fields ofM and N respectively. Denoting by u× v the cross product
between two vectors u, v ∈ R3 the map dFp : TpM→N is orientation preserving if and
only if it commutes with the cross product with the outward normal:

dFp(n
M
p × v) = nNF (p) × dFp(v), ∀v ∈ TpM

Let f : N → R and f : M → R be smooth functions such that g = f ◦ F then to be
orientation preserving an isometry F :M→N must satisfy:

det(∇g,∇(k ◦ F ), nM) = det(∇f,∇k, nN ) ◦ F

for all k : N → R.
Our main observation is that since the map det(∇f,∇•, nN ) is linear it can be

represented as a matrix ΩNf in the basis ΦN (we build the matrix ΩMg similarly). This
leads to the orientation preserving term:

||CΩNf − ΩMg C||22 (6.2)

and the orientation reversing term:

||CΩNf + ΩMg C||22 (6.3)
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which can be added to the shape matching optimization problem of Eq. (6.1) for promoting
orientation preserving or reversing maps respectively. For practical applications we need
a descriptor h producing functions hM, hN onM and N respectively. Ideally we would
like h to satisfy the conditions: {

hM ' hN ◦ T
‖∇h‖2 = 1

(6.4)

Where T is the point-to-point map we are looking for so that (∇phM, nMp ) and
(∇T (p)h

N , nNT (p)) are direct orthonormal bases of the tangent planes toM (resp. N ) at
p (resp. T (p)) in which the matrix of dT is the identity. In general the conditions 6.4
cannot be satisfied but a good choice nearly satisfying them in the context of human or
animal shapes is given by:

h :=
hks

‖∇hks‖2 + ε

where hks is the heat kernel signature for some fixed time. Thus we set f = hN and
g = hM in the regularising terms in Eq. (6.2) and (6.3).

6.2 Experiments and results

The orientation preserving and reversing terms (6.2, 6.3) where used for shape matching
in conjunction with the BCICP refinement introduced in [102] for improving bijectivity
and continuity of functional map based matching. We report some results presented
in [102] below. Figure 6.1 shows that orientation preserving or reversal terms can be
used to promote the ground truth map or its composition with the left-right symmetry
when using symmetric input descriptors such as WKS [8]. Table 6.1 shows that using the
orientation preserving term in conjunction with the BCICP method consistently produces
correspondences with lower average geodesic error.

Figure 6.1 – An example of non isometric pair from the TOSCA dataset using the
direct/symmetric orientation term with BCICP refinement.
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Table 6.1 – Shape matching on 400 FAUST non-Isometric pairs. Combining our orientation
preservation term (directOp) produces consistently better matching.

Methods Ave geodesic error(×10−3)
per vertex per map direct

BIM 45.49 46.30 79.38
PMF (heat kernel) 55.92 59.95 60.54
WKS + ICP 65.59 166.37 210.11
SEG + ICP 30.94 45.68 45.68
SEG + BCICP 25.21 39.77 39.77
WKS + directOp + BCICP 29.33 46.90 51.31
SEG + directOp + BCICP 23.50 37.29 37.29



Chapter 7

Conclusion, Extensions and Future
Work

In this thesis we have made several contributions to 3D shape analysis which we sum-
marize in this chapter. In Section 7.1 we provide a quick overview of the impact of our
contributions since their publication and of other closely related works. Finally in Section
7.2 we propose possible future extensions of our work.

In Chapter 3 we have shown that the persistence diagram of a function can be
differentiated with respect to the function and we derived a continuous optimization
technique for modifying functions to exhibit prescribed topological features or to make
functions over potentially different domains without known correspondences more alike.
We applied our technique to shape matching within the context of functional maps [88]
and proposed a regularizer improving the quality and continuity of correspondences
obtained with the functional map pipeline.

In Chapters 4 and 5 we investigated the problem of finding representations of 3D
data which are suitable for learning. We have dealt with the problem that 3D data
can be represented in different ways and that learning algorithms have to operate over
a variable representation which is not known in advance, we mostly investigated the
problem of rotational ambiguity. We developed convolutional layers operating on 3D
data for learning applications. In Chapter 4 we presented a convolutional layer operating
on triangle meshes based on local polar coordinates and resolving the local rotational
ambiguity. In Chapter 5 we presented a rotation invariant convolutional layer operating
on point clouds to learn independently of the pose of the shape.

7.1 Follow up works

Since its publication our work has been cited in multiple papers. In this section we list
some recent papers that either reuse or cite the work presented in this thesis or simply
propose new approaches to the problems we considered. For each one we explain how it
relates to our work. We dedicate an independent section to each of our papers:

7.1.1 Topological function optimisation for continuous shape matching

In Chapter 3 we introduced a novel pseudo distance between the topology (persistence
diagrams) of level sets of functions which is fully differentiable with respect to the
functions making it suitable for continuous optimization techniques. We applied it to
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derive a regularising term for improving the continuity of correspondences computed
within the functional map pipeline. Since its publication our work has inspired several
follow-up works listed below:

1. In [43] the authors extend our topological optimization technique (to handle higher
dimensional persistence diagrams) and propose a method for surface reconstruction
from point clouds. They propose a technique to remove topological noise of the
input and in some case recover connectivity between disconnected components from
noisy point clouds.

2. Since our method proposed a differentiable distance between topological features of
functions, it can be used in deep learning applications. Recently a topology layer
for learning based on our approach has been proposed in [18].

3. A general framework for differential calculus on persistence barcodes has been
proposed in [65] extending the theory behind our work.

7.1.2 Multi-directional Geodesic Neural Networks via Equivariant Con-
volution

In Chapter 4 we presented a new CNN architecture on triangle meshes based on a new
convolution operator on surfaces using local polar coordinates. However as mentioned in
Section 4.6.6 of Chapter 4 our concrete implementation is using simple binning of the
angular coordinate this causes stability issues and is computationally inefficient. So far we
have not used more advanced tools from the theory steerable filters and group equivariant
convolutions which could be beneficial to our approach. Recent works detailing such tools
cite our work:

1. In [131] Weiler et al. propose a general theoretical framework for SE(2)-equivariant
CNNs. Though aimed at images primarily the proposed formalism is applicable to
other settings such as MDGCNN.

2. In [120] the authors propose to use the Zernike basis of polynomial functions on
the unit disc to define local convolution operators on surfaces in the fashion of [15].
The Zernike basis is equivariant with respect to rotations and is used to define
steerable kernels, avoiding to compute local convolution for multiple orientations
thus saving computations. This equivariance property can be used to express the
MDGCNN convolution operation as a SO(2)-equivariant convolution using the
formalism developed in [131].

3. In [29] Cohen et al. propose a generalisation of our MDGCNN approach introducing
the notion of Gauge Equivariant Convolution on fiber bundles equipped with parallel
transport. But they use quite restricted cases in their practical experimentation.
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7.1.3 Effective Rotation-invariant Point CNN with Spherical Harmon-
ics Kernels

In Chapter 5 we introduced a new rotation invariant CNN framework based on local
rotation invariant filters. Designing rotation robust deep learning algorithms for analysing
3D shapes and point clouds in particular is an important problem which has brought
attention from the community. Different approaches to this problem have been proposed
since the publication of our paper [96]:

1. In [143] the authors define local rotation invariant features on point clouds based
on local directions in the point cloud and aggregate them at different scales in a
deep learning pipeline.

2. A bottleneck of our SphNet approach presented in Chapter 5 is that it is based only
on local features unlike networks taking global 3D coordinates of points as input.
The recent work [144] introduces a new rotation invariant deep learning pipeline
for learning on point clouds. The algorithm proposes a canonical pose for the point
clouds and learns global features using this pose. In parallel it learns local rotation
invariant features of the point cloud and combines it with the global features to
make its final prediction.

7.1.4 Continuous and orientation-preserving correspondences via func-
tional maps

In Chapter 6 we presented a method for enforcing orientation preservation of functional
maps. Recently a new method for functional maps refinement has been proposed in [79],
in this work our orientation preserving method is used to compute initial functional maps.

7.2 Future work

In this section we provide insights on future work extending the contributions presented
in this thesis. We dedicate a subsection to each contribution we presented.

7.2.1 Topological function optimisation for continuous shape matching

The functional map induced by a matching should preserve the topology of functions. In
Chapter 3 we introduced a technique to optimise a functional map to preserve topological
features of functions. A strength of this approach is that it can be unsupervised in that
it does not require to know correspondences between the two shapes, furthermore it is
based on the minimization of an energy term which is differentiable with respect to the
functions. However a practical limitation is how to choose good test functions to optimise
the functional map. These two observations make our topological energy a natural
candidate for unsupervised adversarial learning. Recently a pipeline for unsupervised
learning of matching with functional maps was introduced in [105]. In future work it
will be interesting to integrate the topology layer for learning [18] we mentioned in
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Subsection 7.1.1 in the pipeline [105] together with an adversarial network producing
the test functions. The test functions generator would produce random functions on the
target shape which will be transferred to the source shape by the functional map learned
by the algorithm of [105]. The generator would be optimised to increase the topological
distance between the generated functions and their image by the functional map and the
functional map would be optimised to decrease the topological distance between these
functions. More generally adversarial training can be considered in conjunction with [105]
for any metric between two functions on a shape or on a couple of shapes this includes in
particular the orientation preserving energy term we presented in Chapter 6.

7.2.2 Multi-directional Geodesic Neural Networks via Equivariant Con-
volution

As we mentioned in Section 4.6.6 of Chapter 4 an important limitation of our MDGCNN
construction is the disretization of the convolution kernels. First we discretize the space
of local directions in a finite number of directions which has two important consequences:

1. It causes numerical instabilities as this discertization is not consistent across points
and in particular under parallel transport which we heavily rely on.

2. A dot product with the kernel and the signal is required for each orientation which
is computationally inefficient.

Another limitation of our discretization is that we evaluate our kernel sparsely at a
discrete set of points which may lie inside triangles and get the values of the input signal
at these points by interpolating the signal on the triangles. This sparse sampling might
cause numerical instabilities and information loss. In the future it would be useful to
improve the discretization to reduce directional instabilities and make better use of finite
elements in the domain of the kernel to define more stable convolution. Though not
directly aimed at improving MDGCNN the paper [120] we presented in Section 7.1.2
offers a solution to these problems in the form of rotation equivariant kernels applicable
locally on triangle meshes.

Another direction for future work is to implement a variant of MDGCNN based on the
notion of multi-directional convolution we presented in 4.8.2 as was our original plan when
developing MDGCNN. The convolution operator described in 4.8.2 has better properties
than the one actually in use in our current implementation as it truly generalise euclidean
convolution and captures more information. However its practical implementation using
our discretization is highly memory intensive as it requires to pull back the whole
directional signal in local patches while the current version of MDGCNN only requires to
pull back a single direction per point. We can take advantage of the equivariant basis
of kernels introduced in [120] and the theory of equivariant CNNs presented in [131] to
implement this version of MDGCNN in an efficient manner.

Finally an important limitation of MDGCNN is that it is currently limited to triangle
meshes. The triangle mesh structure is required to compute the exponential map and the
parallel transport which are at the core of the MDGCNN definition. A future direction
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to explore would be to generalize MDGCNN to unstructured data like point-clouds
by learning a tangent space structure. We can take advantage of SO(3)-equivariant
constructions like [132]. Given local normals such construction can be reduced to locally
SO(2) equivariant ones. Thus it would be interesting to investigate how to reduce the local
ambiguity of the data representation as we acquire knowledge about the geometry of the
domain and define convolution operators taking advantage of these learned representations.

7.2.3 Effective Rotation-invariant Point CNN with Spherical Harmon-
ics Kernels

Our SphNet architecture presented in Chapter 5 is based on local rotation invariant
filters this can result in information loss. A natural question is what level of invariance is
required. In future work it would be interesting to learn the appropriate level of invariance
at each layer of the network. We can take inspiration from the work [144] mentioned in
Section 7.1.3.

An other application of rotation invariant networks is shape encoding and synthesis.
In particular in the context of auto encoders it is relevant to learn rotation invariant
latent codes to encode only geometric information of the shape and get rid of the extra
variability induced by its pose. This idea has been explored in [77] introducing a rotation
invariant auto encoder learning representations in quotient space and tackling the difficult
problem of rotation invariant shape reconstruction/synthesis. However the approach
of [77] relies on quotient losses involving the computation of distances across multiple
rotations. Our rotation invariant design can be useful in this context as it might help
simplify such constructions and save computations. However the question remains of
whether networks based on our rotation invariant filters can universally approximate
signals up to rotation and reflection.

Finally our SphNet architecture is also invariant to reflections however some appli-
cations might require rotation invariant and reflection equivariant networks. Designing
rotation invariant and reflection equivariant filters would be a natural extension of our
work.

In conclusion, during the past few years a substantial research effort has been made
to develop low level representations/structures for learning over 3D data. Though this
research effort is still ongoing an will most likely continue we expect it to follow the same
path as image analysis and gradually shift toward more high level problems like shape
synthesis or finding new, better methods for unsupervised training.





Bibliography

[1] M. Abadi, A. Agarwal, P. Barham, et al., TensorFlow: Large-scale machine
learning on heterogeneous systems, 2015. Software available from tensorflow.org.
(Cited on page 53.)

[2] Adobe, Adobe fuse 3d characters, 2016. (Cited on page 55.)

[3] V. Andrearczyk, J. Fageot, V. Oreiller, X. Montet, and A. De-
peursinge, Exploring local rotation invariance in 3d cnns with steerable filters,
(2018). https://openreview.net/forum?id=H1gXZLzxeE. (Cited on page 71.)

[4] D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers, and
J. Davis, SCAPE: Shape Completion and Animation of People, in ACM Transac-
tions on Graphics (TOG), vol. 24, ACM, 2005, pp. 408–416. (Cited on page 30.)

[5] D. Attali, M. Glisse, S. Hornus, F. Lazarus, and D. Morozov, Persistence-
sensitive simplification of functions on surfaces in linear time, Presented at
TOPOINVIS, 9 (2009), pp. 23–24. (Cited on page 17.)

[6] M. Atzmon, H. Maron, and Y. Lipman, Point convolutional neural networks by
extension operators, arXiv preprint arXiv:1803.10091, (2018). (Cited on pages 70,
71, 72, 73, 74, 75, 76, 77 and 79.)

[7] M. Aubry, U. Schlickewei, and D. Cremers, The Wave Kernel Signature:
A Quantum Mechanical Approach to Shape Analysis, in Proc. ICCV Workshops,
IEEE, 2011, pp. 1626–1633. (Cited on page 35.)

[8] , The wave kernel signature: A quantum mechanical approach to shape analysis,
in ICCV Workshops, IEEE, 2011, pp. 1626–1633. (Cited on pages 55, 85, 86 and 87.)

[9] U. Bauer, C. Lange, and M. Wardetzky, Optimal topological simplification
of discrete functions on surfaces, Discrete & Computational Geometry, 47 (2012),
pp. 347–377. (Cited on page 17.)

[10] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weis-
sig, I. N. Shindyalov, and P. E. Bourne, The protein data bank, Nucleic acids
research, 28 (2000), pp. 235–242. (Cited on page 80.)

[11] S. Biasotti, A. Cerri, A. Bronstein, and M. Bronstein, Recent trends,
applications, and perspectives in 3d shape similarity assessment, in Comp. Graph.
Forum, vol. 35, 2016, pp. 87–119. (Cited on page 15.)

[12] F. Bogo, J. Romero, M. Loper, and M. J. Black, FAUST: Dataset and
Evaluation for 3d Mesh Registration, in Proc. CVPR, 2014, pp. 3794–3801. (Cited
on pages 33 and 35.)



96 Bibliography

[13] F. Bogo, J. Romero, G. Pons-Moll, and M. J. Black, Dynamic FAUST:
Registering human bodies in motion, in Proc. CVPR, July 2017. (Cited on page 82.)

[14] J.-D. Boissonnat, T. K. Dey, and C. Maria, The compressed annotation ma-
trix: An efficient data structure for computing persistent cohomology, Algorithmica,
73 (2015), pp. 607–619. (Cited on page 20.)

[15] D. Boscaini, J. Masci, S. Melzi, M. M. Bronstein, U. Castellani, and
P. Vandergheynst, Learning class-specific descriptors for deformable shapes using
localized spectral convolutional networks, in Computer Graphics Forum, vol. 34,
Wiley Online Library, 2015, pp. 13–23. (Cited on pages 39, 40, 41 and 90.)

[16] D. Boscaini, J. Masci, E. Rodola, and M. M. Bronstein, Learning shape
correspondence with anisotropic convolutional neural networks, in arXiv:1605.06437,
2016. (Cited on pages 40, 41, 42, 54 and 61.)

[17] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
Geometric deep learning: going beyond euclidean data, IEEE Signal Processing
Magazine, 34 (2017), pp. 18–42. (Cited on pages 7, 12 and 40.)

[18] R. Brüel-Gabrielsson, B. J. Nelson, A. Dwaraknath, P. Skraba, L. J.
Guibas, and G. Carlsson, A topology layer for machine learning, arXiv preprint
arXiv:1905.12200, (2019). (Cited on pages 90 and 91.)

[19] Z. Cang and G. Wei, Topologynet: Topology based deep convolutional and multi-
task neural networks for biomolecular property predictions, PLOS Computational
Biology, 13 (2017), p. e1005690. (Cited on page 17.)

[20] G. Carlsson, Topology and data, Bulletin of the AMS, 46 (2009), pp. 255–308.
(Cited on pages 8, 13, 16 and 18.)

[21] G. Carlsson, A. Zomorodian, A. Collins, and L. J. Guibas, Persistence
barcodes for shapes, International Journal of Shape Modeling, 11 (2005), pp. 149–187.
(Cited on pages 8, 13, 16, 18 and 22.)

[22] F. Cazals, F. Chazal, and T. Lewiner, Molecular shape analysis based upon
the morse-smale complex and the connolly function, in Proceedings of the nineteenth
annual symposium on Computational geometry, ACM, 2003, pp. 351–360. (Cited
on page 17.)

[23] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li,
S. Savarese, M. Savva, S. Song, H. Su, et al., Shapenet: An information-rich
3d model repository, arXiv preprint arXiv:1512.03012, (2015). (Cited on pages 7, 8
and 12.)

[24] F. Chazal, D. Cohen-Steiner, M. Glisse, L. J. Guibas, and S. Y. Oudot,
Proximity of persistence modules and their diagrams, in Proceedings of the twenty-
fifth annual symposium on Computational geometry, ACM, 2009, pp. 237–246.
(Cited on pages 16, 19 and 28.)



Bibliography 97

[25] C. Chen and M. Kerber, An output-sensitive algorithm for persistent homology,
Computational Geometry, 46 (2013), pp. 435–447. (Cited on page 16.)

[26] F. Chollet et al., Keras. https://github.com/fchollet/keras, 2015. (Cited
on page 53.)

[27] T. Cohen and M. Welling, Group equivariant convolutional networks, in ICML,
2016, pp. 2990–2999. (Cited on page 71.)

[28] T. S. Cohen, M. Geiger, J. Köhler, and M. Welling, Spherical cnns, arXiv
preprint arXiv:1801.10130, (2018). (Cited on page 71.)

[29] T. S. Cohen, M. Weiler, B. Kicanaoglu, and M. Welling, Gauge equivari-
ant convolutional networks and the icosahedral cnn, arXiv preprint arXiv:1902.04615,
(2019). (Cited on page 90.)

[30] D. Cohen-Steiner, H. Edelsbrunner, and J. Harer, Stability of persistence
diagrams, Discrete & Computational Geometry, 37 (2007), pp. 103–120. (Cited on
pages 16, 19, 20, 21, 24 and 28.)

[31] D. Cohen-Steiner, H. Edelsbrunner, and D. Morozov, Vines and vineyards
by updating persistence in linear time, in Proceedings of the twenty-second annual
symposium on Computational geometry, ACM, 2006, pp. 119–126. (Cited on
page 17.)

[32] M. Cuturi, Sinkhorn distances: Lightspeed computation of optimal transport, in
Advances in neural information processing systems, 2013, pp. 2292–2300. (Cited on
page 18.)

[33] M. Defferrard, X. Bresson, and P. Vandergheynst, Convolutional neural
networks on graphs with fast localized spectral filtering, in Advances in Neural
Information Processing Systems, 2016, pp. 3844–3852. (Cited on page 41.)

[34] T. K. Dey, K. Li, C. Luo, P. Ranjan, I. Safa, and Y. Wang, Persistent heat
signature for pose-oblivious matching of incomplete models, in Computer Graphics
Forum, vol. 29, Wiley Online Library, 2010, pp. 1545–1554. (Cited on page 16.)

[35] H. Edelsbrunner and J. Harer, Persistent homology-a survey, Contemporary
mathematics, 453 (2008), pp. 257–282. (Cited on pages 8 and 13.)

[36] , Computational topology: an introduction, American Mathematical Soc., 2010.
(Cited on pages 16, 18 and 19.)

[37] H. Edelsbrunner, J. Harer, and A. Zomorodian, Hierarchical morse com-
plexes for piecewise linear 2-manifolds, in Proceedings of the seventeenth annual
symposium on Computational geometry, ACM, 2001, pp. 70–79. (Cited on page 17.)

https://github.com/fchollet/keras


98 Bibliography

[38] H. Edelsbrunner, D. Letscher, and A. Zomorodian, Topological persistence
and simplification, in Foundations of Computer Science, 2000. Proceedings. 41st
Annual Symposium on, IEEE, 2000, pp. 454–463. (Cited on pages 16 and 20.)

[39] D. Ezuz and M. Ben-Chen, Deblurring and denoising of maps between shapes,
in Computer Graphics Forum, vol. 36, Wiley Online Library, 2017, pp. 165–174.
(Cited on page 17.)

[40] D. Ezuz, J. Solomon, V. G. Kim, and M. Ben-Chen, Gwcnn: A metric
alignment layer for deep shape analysis, in Computer Graphics Forum, vol. 36,
Wiley Online Library, 2017, pp. 49–57. (Cited on pages 39 and 41.)

[41] C. Fong, Analytical methods for squaring the disc, arXiv preprint arXiv:1509.06344,
(2015). (Cited on page 54.)

[42] W. T. Freeman and E. H. Adelson, The design and use of steerable filters,
IEEE Transactions on Pattern Analysis & Machine Intelligence, (1991), pp. 891–906.
(Cited on page 74.)

[43] R. B. Gabrielsson, V. Ganapathi-Subramanian, P. Skraba, and L. J.
Guibas, Topology-aware surface reconstruction for point clouds, arXiv preprint
arXiv:1811.12543, (2018). (Cited on page 90.)

[44] M. Gameiro, Y. Hiraoka, and I. Obayashi, Continuation of point clouds via
persistence diagrams, Physica D: Nonlinear Phenomena, 334 (2016), pp. 118–132.
(Cited on page 17.)

[45] M. Garland and P. S. Heckbert, Surface simplification using quadric error
metrics, in Proceedings of the 24th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ’97, 1997, pp. 209–216. (Cited on page 51.)

[46] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning,
vol. 1, MIT press Cambridge, 2016. (Cited on page 22.)

[47] P. Guerrero, Y. Kleiman, M. Ovsjanikov, and N. J. Mitra, Pcpnet learning
local shape properties from raw point clouds, in Computer Graphics Forum, vol. 37,
Wiley Online Library, 2018, pp. 75–85. (Cited on pages 41 and 70.)

[48] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image
recognition, in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778. (Cited on pages 7, 11, 42 and 53.)

[49] P. Hermosilla, T. Ritschel, P.-P. Vázquez, À. Vinacua, and T. Ropinski,
Monte carlo convolution for learning on non-uniformly sampled point clouds, in
SIGGRAPH Asia 2018 Technical Papers, ACM, 2018, p. 235. (Cited on page 70.)

[50] B.-S. Hua, M.-K. Tran, and S.-K. Yeung, Pointwise convolutional neural
networks, in Proc. CVPR, 2018, pp. 984–993. (Cited on page 70.)



Bibliography 99

[51] R. Huang and M. Ovsjanikov, Adjoint map representation for shape analysis
and matching, in Computer Graphics Forum, vol. 36, Wiley Online Library, 2017,
pp. 151–163. (Cited on page 17.)

[52] M. Jaderberg, K. Simonyan, A. Zisserman, et al., Spatial transformer
networks, in NIPS, 2015, pp. 2017–2025. (Cited on page 70.)

[53] E. Kalogerakis, M. Averkiou, S. Maji, and S. Chaudhuri, 3D shape
segmentation with projective convolutional networks, in Proc. CVPR, 2017. (Cited
on pages 39 and 40.)

[54] I. Kalvari, E. P. Nawrocki, J. Argasinska, N. Quinones-Olvera, R. D.
Finn, A. Bateman, and A. I. Petrov, Non-coding RNA analysis using the
RFAM database., Current protocols in bioinformatics, 62 (2018), p. e51. (Cited on
page 80.)

[55] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz, Rotation invariant
spherical harmonic representation of 3 d shape descriptors, in Symposium on
geometry processing, vol. 6, 2003, pp. 156–164. (Cited on page 74.)

[56] V. G. Kim, Y. Lipman, and T. Funkhouser, Blended Intrinsic Maps, in ACM
Transactions on Graphics (TOG), vol. 30, ACM, 2011, p. 79. (Cited on page 33.)

[57] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv
preprint arXiv:1412.6980, (2014). (Cited on page 53.)

[58] R. Klokov and V. Lempitsky, Escape from cells: Deep kd-networks for the
recognition of 3d point cloud models, in 2017 IEEE International Conference on
Computer Vision (ICCV), IEEE, 2017, pp. 863–872. (Cited on pages 41 and 76.)

[59] S. Koch, A. Matveev, Z. Jiang, F. Williams, A. Artemov, E. Burnaev,
M. Alexa, D. Zorin, and D. Panozzo, Abc: A big cad model dataset for
geometric deep learning, in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019. (Cited on pages 7 and 12.)

[60] R. Kondor and S. Trivedi, On the generalization of equivariance and convolution
in neural networks to the action of compact groups, arXiv preprint arXiv:1802.03690,
(2018). (Cited on page 71.)

[61] I. Kostrikov, Z. Jiang, D. Panozzo, D. Zorin, and J. Bruna, Surface
Networks, ArXiv e-prints, (2017). (Cited on page 41.)

[62] A. Kovnatsky, M. M. Bronstein, X. Bresson, and P. Vandergheynst,
Functional correspondence by matrix completion, in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 2015, pp. 905–914. (Cited
on pages 17 and 27.)

[63] A. Krizhevsky and G. Hinton, Learning multiple layers of features from tiny
images, (2009). (Cited on page 54.)



100 Bibliography

[64] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with
deep convolutional neural networks, in Advances in neural information processing
systems, 2012, pp. 1097–1105. (Cited on pages 7, 11 and 39.)

[65] J. Leygonie, S. Oudot, and U. Tillmann, A framework for differential calculus
on persistence barcodes, arXiv preprint arXiv:1910.00960, (2019). (Cited on page 90.)

[66] C. Li, M. Ovsjanikov, and F. Chazal, Persistence-based structural recognition,
in Proc. CVPR, 2014, pp. 1995–2002. (Cited on pages 16 and 21.)

[67] Y. Li, R. Bu, M. Sun, and B. Chen, Pointcnn, arXiv preprint arXiv:1801.07791,
(2018). (Cited on pages 41, 53, 55 and 70.)

[68] O. Litany, E. Rodolà, A. M. Bronstein, and M. M. Bronstein, Fully
spectral partial shape matching, Computer Graphics Forum, 36 (2017), pp. 247–258.
(Cited on page 17.)

[69] O. Litany, E. Rodolà, A. M. Bronstein, M. M. Bronstein, and D. Cre-
mers, Non-rigid puzzles, in Computer Graphics Forum, vol. 35, 2016, pp. 135–143.
(Cited on pages 17 and 27.)

[70] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoo-
rian, J. A. Van Der Laak, B. Van Ginneken, and C. I. Sánchez, A survey
on deep learning in medical image analysis, Medical image analysis, 42 (2017),
pp. 60–88. (Cited on pages 7 and 11.)

[71] J.-Y. Liu, S.-K. Jeng, and Y.-H. Yang, Applying topological persistence in con-
volutional neural network for music audio signals, arXiv preprint arXiv:1608.07373,
(2016). (Cited on page 17.)

[72] M. Mandad, D. Cohen-Steiner, L. Kobbelt, P. Alliez, and M. Desbrun,
Variance-minimizing transport plans for inter-surface mapping, ACM Trans. on
Graph., 36 (2017), p. 14. (Cited on pages 18, 36 and 37.)

[73] H. Maron, M. Galun, N. Aigerman, M. Trope, N. Dym, E. Yumer, V. G.
Kim, and Y. Lipman, Convolutional neural networks on surfaces via seamless
toric covers, SIGGRAPH, 2017. (Cited on pages 8, 12, 39, 40, 41, 55 and 56.)

[74] J. Masci, D. Boscaini, M. Bronstein, and P. Vandergheynst, Geodesic
convolutional neural networks on riemannian manifolds, in Proc. ICCV workshops,
2015, pp. 37–45. (Cited on page 69.)

[75] J. Masci, D. Boscaini, M. M. Bronstein, and P. Vandergheynst, Geodesic
convolutional neural networks on riemannian manifolds, in Proc. of the IEEE
International Conference on Computer Vision (ICCV) Workshops, 2015, pp. 37–45.
(Cited on pages 9, 13, 40, 41, 42, 43, 45, 53, 58 and 59.)



Bibliography 101

[76] D. Maturana and S. Scherer, Voxnet: A 3d convolutional neural network
for real-time object recognition, in Intelligent Robots and Systems (IROS), 2015
IEEE/RSJ International Conference on, IEEE, 2015, pp. 922–928. (Cited on pages 8,
12, 39 and 41.)

[77] E. Mehr, A. Lieutier, F. Sanchez Bermudez, V. Guitteny, N. Thome,
and M. Cord, Manifold learning in quotient spaces, in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp. 9165–9174.
(Cited on page 93.)

[78] E. L. Melvær and M. Reimers, Geodesic polar coordinates on polygonal meshes,
in Computer Graphics Forum, vol. 31, Wiley Online Library, 2012, pp. 2423–2435.
(Cited on pages 52 and 66.)

[79] S. Melzi, J. Ren, E. Rodolà, A. Sharma, P. Wonka, and M. Ovsjanikov,
Zoomout: Spectral upsampling for efficient shape correspondence, ACM Transactions
on Graphics (TOG), 38 (2019), p. 155. (Cited on page 91.)

[80] M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr, Discrete Differential-
Geometry Operators for Triangulated 2-Manifolds, in Visualization and mathematics
III, Springer, 2003, pp. 35–57. (Cited on page 30.)

[81] N. Milosavljević, D. Morozov, and P. Skraba, Zigzag persistent homology in
matrix multiplication time, in Proceedings of the twenty-seventh annual symposium
on Computational geometry, ACM, 2011, pp. 216–225. (Cited on page 16.)

[82] F. Monti, D. Boscaini, J. Masci, E. Rodolà, J. Svoboda, and M. M.
Bronstein, Geometric deep learning on graphs and manifolds using mixture model
cnns, in CVPR, IEEE Computer Society, 2017, pp. 5425–5434. (Cited on pages 41,
42 and 54.)

[83] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and M. M.
Bronstein, Geometric deep learning on graphs and manifolds using mixture model
cnns, in Proc. CVPR, 2017, pp. 5115–5124. (Cited on pages 69 and 70.)

[84] S. B. Needleman and C. D. Wunsch, A general method applicable to the search
for similarities in the amino acid sequence of two proteins., Journal of molecular
biology, 48 (1970), pp. 443–453. (Cited on page 80.)

[85] D. Nogneng, S. Melzi, E. Rodolà, U. Castellani, M. Bronstein, and
M. Ovsjanikov, Improved functional mappings via product preservation, in Com-
puter Graphics Forum, vol. 37, 2018. (Cited on page 17.)

[86] D. Nogneng and M. Ovsjanikov, Informative descriptor preservation via
commutativity for shape matching, Computer Graphics Forum, 36 (2017), pp. 259–
267. (Cited on pages 17, 27 and 35.)



102 Bibliography

[87] N. Otter, M. A. Porter, U. Tillmann, P. Grindrod, and H. A. Harring-
ton, A roadmap for the computation of persistent homology, EPJ Data Science, 6
(2017), p. 17. (Cited on page 20.)

[88] M. Ovsjanikov, M. Ben-Chen, J. Solomon, A. Butscher, and L. Guibas,
Functional maps: a flexible representation of maps between shapes, ACM Transac-
tions on Graphics (TOG), 31 (2012), p. 30. (Cited on pages 9, 10, 13, 14, 41, 85
and 89.)

[89] , Functional Maps: A Flexible Representation of Maps Between Shapes, ACM
Transactions on Graphics (TOG), 31 (2012), p. 30. (Cited on pages 15, 17, 27, 33
and 35.)

[90] M. Ovsjanikov, E. Corman, M. Bronstein, E. Rodolà, M. Ben-Chen,
L. Guibas, F. Chazal, and A. Bronstein, Computing and processing correspon-
dences with functional maps, in ACM SIGGRAPH 2017 Courses, 2017, pp. 5:1–5:62.
(Cited on pages 15, 17, 26 and 27.)

[91] M. Ovsjanikov, Q. Mérigot, F. Mémoli, and L. Guibas, One point isometric
matching with the heat kernel, in Computer Graphics Forum, vol. 29, 2010, pp. 1555–
1564. (Cited on pages 85 and 86.)

[92] O. M. Parkhi, A. Vedaldi, A. Zisserman, et al., Deep face recognition., in
bmvc, vol. 1, 2015, p. 6. (Cited on pages 7 and 11.)

[93] E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M.
Greenblatt, E. C. Meng, and T. E. Ferrin, Ucsf chimera–a visualization
system for exploratory research and analysis., Journal of computational chemistry,
25 (2004), pp. 1605–1612. (Cited on page 80.)

[94] U. Pinkall and K. Polthier, Computing Discrete Minimal Surfaces and their
Conjugates, Experimental mathematics, 2 (1993), pp. 15–36. (Cited on page 30.)

[95] A. Poulenard and M. Ovsjanikov, Multi-directional geodesic neural networks
via equivariant convolution, in Proc. SIGGRAPH Asia, ACM, 2018, p. 236. (Cited
on pages 8, 9, 13, 14 and 52.)

[96] A. Poulenard, M.-J. Rakotosaona, Y. Ponty, and M. Ovsjanikov, Effec-
tive rotation-invariant point cnn with spherical harmonics kernels, in 2019 Interna-
tional Conference on 3D Vision (3DV), IEEE, 2019, pp. 47–56. (Cited on pages 8,
9, 13, 14 and 91.)

[97] A. Poulenard, P. Skraba, and M. Ovsjanikov, Topological function opti-
mization for continuous shape matching, in Computer Graphics Forum, vol. 37,
Wiley Online Library, 2018, pp. 13–25. (Cited on pages 8, 9, 12 and 13.)

[98] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, Pointnet: Deep learning on point
sets for 3d classification and segmentation, Proc. Computer Vision and Pattern
Recognition (CVPR), IEEE, 1 (2017), p. 4. (Cited on pages 41, 69 and 70.)



Bibliography 103

[99] C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. J. Guibas, Volumetric
and multi-view cnns for object classification on 3d data, in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp. 5648–5656.
(Cited on pages 39 and 41.)

[100] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, Pointnet++: Deep hierarchical
feature learning on point sets in a metric space, in Advances in Neural Information
Processing Systems, 2017, pp. 5105–5114. (Cited on pages 8, 12, 41, 53, 55, 58, 69,
70, 71 and 79.)

[101] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You only look once:
Unified, real-time object detection, in Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 2016, pp. 779–788. (Cited on pages 7 and 11.)

[102] J. Ren, A. Poulenard, P. Wonka, and M. Ovsjanikov, Continuous and
orientation-preserving correspondences via functional maps, in SIGGRAPH Asia
2018 Technical Papers, ACM, 2018, p. 248. (Cited on pages 10, 14, 85 and 87.)

[103] E. Rodolà, L. Cosmo, M. M. Bronstein, A. Torsello, and D. Cremers,
Partial functional correspondence, in Computer Graphics Forum, vol. 36, 2017,
pp. 222–236. (Cited on page 17.)

[104] O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolutional networks
for biomedical image segmentation, in International Conference on Medical image
computing and computer-assisted intervention, Springer, 2015, pp. 234–241. (Cited
on page 53.)

[105] J.-M. Roufosse, A. Sharma, and M. Ovsjanikov, Unsupervised deep learning
for structured shape matching, in Proceedings of the IEEE International Conference
on Computer Vision, 2019, pp. 1617–1627. (Cited on pages 91 and 92.)

[106] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, Ima-
geNet Large Scale Visual Recognition Challenge, International Journal of Computer
Vision (IJCV), 115 (2015), pp. 211–252. (Cited on pages 7 and 11.)

[107] R. M. Rustamov, M. Ovsjanikov, O. Azencot, M. Ben-Chen, F. Chazal,
and L. Guibas, Map-based exploration of intrinsic shape differences and variability,
ACM Transactions on Graphics (TOG), 32 (2013), p. 72. (Cited on page 17.)

[108] S. Salti, F. Tombari, and L. Di Stefano, Shot: Unique signatures of histograms
for surface and texture description, Computer Vision and Image Understanding,
125 (2014), pp. 251–264. (Cited on page 55.)

[109] J. A. Sethian, Level set methods and fast marching methods: evolving interfaces
in computational geometry, fluid mechanics, computer vision, and materials science,
vol. 3, Cambridge university press, 1999. (Cited on page 52.)



104 Bibliography

[110] K. Sfikas, T. Theoharis, and I. Pratikakis, Exploiting the panorama represen-
tation for convolutional neural network classification and retrieval, in Eurographics
Workshop on 3D Object Retrieval, 2017. (Cited on page 40.)

[111] B. Shi, S. Bai, Z. Zhou, and X. Bai, Deeppano: Deep panoramic representation
for 3-d shape recognition, IEEE Signal Processing Letters, 22 (2015), pp. 2339–2343.
(Cited on page 40.)

[112] R. K. Singh and J. S. Manhas, Composition Operators on Function Spaces,
vol. 179, Elsevier, 1993. (Cited on page 28.)

[113] A. Sinha, J. Bai, and K. Ramani, Deep learning 3d shape surfaces using geometry
images, in European Conference on Computer Vision, Springer, 2016, pp. 223–240.
(Cited on pages 39 and 40.)

[114] P. Skraba, M. Ovsjanikov, F. Chazal, and L. Guibas, Persistence-based
segmentation of deformable shapes, in Computer Vision and Pattern Recognition
Workshops (CVPRW), 2010 IEEE Computer Society Conference on, IEEE, 2010,
pp. 45–52. (Cited on pages 16 and 21.)

[115] P. Skraba, G. Thoppe, and D. Yogeshwaran, Randomly weighted d−
complexes: Minimal spanning acycles and persistence diagrams, arXiv preprint
arXiv:1701.00239, (2017). (Cited on page 17.)

[116] J. Solomon, F. De Goes, G. Peyré, M. Cuturi, A. Butscher, A. Nguyen,
T. Du, and L. Guibas, Convolutional wasserstein distances: Efficient optimal
transportation on geometric domains, ACM Transactions on Graphics (TOG), 34
(2015), p. 66. (Cited on page 18.)

[117] J. Solomon, G. Peyré, V. G. Kim, and S. Sra, Entropic metric alignment for
correspondence problems, ACM Transactions on Graphics (TOG), 35 (2016), p. 72.
(Cited on pages 18 and 41.)

[118] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, Multi-view
convolutional neural networks for 3d shape recognition, in Proceedings of the IEEE
international conference on computer vision, 2015, pp. 945–953. (Cited on pages 39,
40 and 69.)

[119] J. Sun, M. Ovsjanikov, and L. Guibas, A Concise and Provably Informative
Multi-Scale Signature Based on Heat Diffusion, in Computer graphics forum, vol. 28,
2009, pp. 1383–1392. (Cited on page 30.)

[120] Z. Sun, E. Rooke, J. Charton, Y. He, J. Lu, and S. Baek, Zernet: Con-
volutional neural networks on arbitrary surfaces via zernike local tangent space
estimation, arXiv preprint arXiv:1812.01082, (2018). (Cited on pages 90 and 92.)

[121] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Er-
han, V. Vanhoucke, and A. Rabinovich, Going deeper with convolutions, in
Proc. CVPR, 2015, pp. 1–9. (Cited on page 60.)



Bibliography 105

[122] G. K. Tam, Z.-Q. Cheng, Y.-K. Lai, F. C. Langbein, Y. Liu, D. Marshall,
R. R. Martin, X.-F. Sun, and P. L. Rosin, Registration of 3D point clouds and
meshes: a survey from rigid to nonrigid, IEEE TVCG, 19 (2013), pp. 1199–1217.
(Cited on page 15.)

[123] T. Tanaka, On the family of connected subsets and the topology of spaces, Journal
of the Mathematical Society of Japan, 7 (1955), pp. 389–393. (Cited on page 28.)

[124] N. Thomas, T. Smidt, S. Kearnes, L. Yang, L. Li, K. Kohlhoff, and
P. Riley, Tensor field networks: Rotation-and translation-equivariant neural
networks for 3d point clouds, arXiv preprint arXiv:1802.08219, (2018). (Cited on
page 71.)

[125] O. Van Kaick, H. Zhang, G. Hamarneh, and D. Cohen-Or, A survey on
shape correspondence, in Computer Graphics Forum, vol. 30, 2011, pp. 1681–1707.
(Cited on page 15.)

[126] M. Vestner, Z. Lähner, A. Boyarski, O. Litany, R. Slossberg, T. Remez,
E. Rodola, A. Bronstein, M. Bronstein, R. Kimmel, and D. Cremers,
Efficient deformable shape correspondence via kernel matching, in Proc. 3DV, 2017.
(Cited on page 18.)

[127] M. Vestner, R. Litman, E. Rodolà, A. Bronstein, and D. Cremers,
Product manifold filter: Non-rigid shape correspondence via kernel density estimation
in the product space, in Proc. CVPR, 2017, pp. 6681–6690. (Cited on pages 18, 36
and 37.)

[128] P.-S. Wang, Y. Liu, Y.-X. Guo, C.-Y. Sun, and X. Tong, O-cnn: Octree-
based convolutional neural networks for 3d shape analysis, ACM Transactions on
Graphics (TOG), 36 (2017), p. 72. (Cited on pages 41 and 53.)

[129] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, Dynamic graph cnn for learning on point clouds, arXiv preprint
arXiv:1801.07829, (2018). (Cited on pages 41, 55, 58, 70 and 77.)

[130] L. Wei, Q. Huang, D. Ceylan, E. Vouga, and H. Li, Dense human body
correspondences using convolutional networks, in Computer Vision and Pattern
Recognition (CVPR), 2016 IEEE Conference on, IEEE, 2016, pp. 1544–1553. (Cited
on page 40.)

[131] M. Weiler and G. Cesa, General e (2)-equivariant steerable cnns, in Advances in
Neural Information Processing Systems, 2019, pp. 14334–14345. (Cited on pages 90
and 92.)

[132] M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen, 3d
steerable cnns: Learning rotationally equivariant features in volumetric data, in
NIPS, 2018, pp. 10381–10392. (Cited on pages 71, 73, 74 and 93.)



106 Bibliography

[133] M. Weiler, F. A. Hamprecht, and M. Storath, Learning steerable filters for
rotation equivariant cnns, in Proc. CVPR, 2018, pp. 849–858. (Cited on page 71.)

[134] E. P. Wigner, Group theory and its application to the quantum mechanics of
atomic spectra, New York: Academic Press, 1959. (Cited on page 74.)

[135] D. Worrall and G. Brostow, Cubenet: Equivariance to 3d rotation and
translation, in Proc. ECCV, 2018, pp. 567–584. (Cited on page 71.)

[136] K. Wu, Z. Zhao, R. Wang, and G.-W. Wei, Topp-s: Persistent homology based
multi-task deep neural networks for simultaneous predictions of partition coefficient
and aqueous solubility, arXiv preprint arXiv:1801.01558, (2017). (Cited on page 17.)

[137] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, 3d
shapenets: A deep representation for volumetric shapes, in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2015, pp. 1912–1920. (Cited
on pages 7, 8, 12, 41, 69 and 78.)

[138] K. Xu, V. G. Kim, Q. Huang, N. Mitra, and E. Kalogerakis, Data-driven
shape analysis and processing, in SIGGRAPH ASIA 2016 Courses, ACM, 2016, p. 4.
(Cited on pages 40 and 70.)

[139] L. Yi, H. Su, X. Guo, and L. J. Guibas, Syncspeccnn: Synchronized spectral
CNN for 3d shape segmentation, in CVPR, IEEE Computer Society, 2017, pp. 6584–
6592. (Cited on page 41.)

[140] Y. You, Y. Lou, Q. Liu, L. Ma, W. Wang, Y. Tai, and C. Lu, Prin: Pointwise
rotation-invariant network, arXiv preprint arXiv:1811.09361, (2018). (Cited on
pages 71, 79 and 80.)

[141] L. Yu, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng, Pu-net: Point cloud
upsampling network, in Proc. CVPR, 2018. (Cited on page 70.)

[142] W. Yuan, T. Khot, D. Held, C. Mertz, and M. Hebert, Pcn: Point
completion network, in 3DV, IEEE, 2018, pp. 728–737. (Cited on page 70.)

[143] Z. Zhang, B.-S. Hua, D. W. Rosen, and S.-K. Yeung, Rotation invariant
convolutions for 3d point clouds deep learning, in 2019 International Conference on
3D Vision (3DV), IEEE, 2019, pp. 204–213. (Cited on page 91.)

[144] C. Zhao, J. Yang, X. Xiong, A. Zhu, Z. Cao, and X. Li, Rotation invariant
point cloud classification: Where local geometry meets global topology, arXiv preprint
arXiv:1911.00195, (2019). (Cited on pages 91 and 93.)



Titre : Structures pour l’apprentissage profond et l’optimisation de la topologie de fonctions sur les formes 3D

Mots clés : Analyse de formes, Apprentissage profond, convolution, invariance par rotation, topologie

Résumé : Le domaine du traitement de la géométrie
suit un cheminement similaire à celui de l’ana-
lyse d’images avec l’explosion des publications
consacrées à l’apprentissage profond ces dernières
années. Un important effort de recherche est en cours
pour reproduire les succès de l’apprentissage profond
dans le domaine de la vision par ordinateur dans le
contexte de l’analyse de formes 3D. Contrairement
aux images, les formes 3D peuvent être représentées
de différentes manières comme des maillages ou des
nuages de points souvent dépourvus d’une structure
canonique. Les algorithmes d’apprentissage profond
traditionnels tels que les réseaux neuronaux convolu-
tifs (CNN) ne sont donc pas faciles à appliquer aux
formes 3D. Dans cette thèse, nous proposons trois
contributions principales : premièrement, nous intro-
duisons une méthode permettant de comparer des
fonctions sur des domaines différents sans corres-
pondances et de les déformer afin de rendre la to-
pologie de leur ensemble de niveaux similaires. Nous
appliquons notre méthode au problème classique de

la correspondance de formes dans le contexte des
applications fonctionnelles (functional maps) afin de
produire des correspondances plus lisses et plus
précises. Par ailleurs notre méthode reposant sur
l’optimisation continue d’une énergie différentiable
par rapport aux fonctions comparées elle est appli-
cable à l’apprentissage profond. Nous apportons deux
contributions directes à l’apprentissage profond des
données 3D. Nous introduisons un nouvel opérateur
de convolution sur des maillages triangulaires basés
sur des coordonnées polaires locales et l’appliquons
à l’apprentissage profond sur les maillages. Contraire-
ment aux travaux précédents, notre opérateur prend
en compte tous les choix de coordonnées polaires
sans perte d’information directionnelle. Enfin, nous in-
troduisons un nouveau module de convolution inva-
riant par rotation sur les nuages de points et montrons
que les CNN basés sur ce dernier peuvent surpas-
ser l’état de l’art pour des tâches standard sur des
ensembles de données non alignés même avec aug-
mentation des données.

Title : Structures for deep learning and topology optimization of functions on 3D shapes

Keywords : Shape analysis, Deep learning, Convolution, Rotation invariance, Topology

Abstract : The field of geometry processing is fol-
lowing a similar path as image analysis with the ex-
plosion of publications dedicated to deep learning in
recent years. An important research effort is being
made to reproduce the successes of deep learning 2D
computer vision in the context of 3D shape analysis.
Unlike images shapes come in various representa-
tions like meshes or point clouds which often lack ca-
nonical structure. This makes traditional deep learning
algorithms like Convolutional Neural Networks (CNN)
non straightforward to apply to 3D data. In this thesis
we propose three main contributions: first, we intro-
duce a method to compare functions on different do-
mains without correspondences and to deform them
to make the topology of their level sets more alike. We
apply our method to the classical problem of shape

matching in the context of functional maps to produce
smoother and more accurate correspondences. Fur-
thermore, our method is based on the continuous op-
timization of a differentiable energy with respect to the
compared functions and is applicable to deep lear-
ning. We make two direct contributions to deep lear-
ning on 3D data. We introduce a new convolution ope-
rator over triangles meshes based on local polar co-
ordinates and apply it to deep learning on meshes.
Unlike previous works our operator takes all choices
of polar coordinates into account without loss of direc-
tional information. Lastly we introduce a new rotation
invariant convolution layer over point clouds and show
that CNNs based on this layer can outperform state of
the art methods in standard tasks on unaligned data-
sets even with data augmentation.
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