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"By seeking and blundering we learn."
—Johann Wolfgang von Goethe
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I N T R O D U C T I O N

An interesting thought experiment is to visualize yourself spending
a normal day without having access to information from our eyes.
Only one day of being blind. It is quite staggering to see that the
list of activities that one would be able to achieve in normal times
drastically decreases and that a large number of activities that would
be intuitive and inexpensive in time literally become complicated or
even impossible to overcome. Unfortunately, despite the handicap that
it generates, blindness, even partial, is a disease that we still do not
know how to treat because the functioning of the retina is still poorly
understood. During my thesis, I had the opportunity to understand
the functioning of the retina better and to collaborate within projects
proposing solutions to the major problem of blindness.
Computer science and biology were the driving force behind most
of my work and this chapter is presenting the context and the links
between each part of this work. This introduction is giving a global
overview to this Ph.D. For a detailed presentation of the scientific
context, reader should referred to the introduction section of each
chapter. Each chapter is providing a comprehensive state-of-the-art in
which my work is related to its field of application. The last chapter
is dedicated to a discussion around the developed tools and the con-
clusions that this Ph.D. brings to event-based computation and to our
understanding of biology.

The retina is a hierarchical arrangement of neurons that convert
incoming light information into understandable electrical information
for the brain, which it receives via the optic nerve. This conversion
chain is particularly complex but could be seen as a three layers
system. Photoreceptors compose the first layer and for catching the
light, cones are sensitive to color spectrum distributions while rodes
allow achromatic vision in low light conditions. The second layer is
responsible for the distribution of the information to the third layer
and involves two types of cell. Horizontal cells regulate the light
information by inhibiting groups of photoreceptors while bipolar cells
measure the increase (“on” cells) or decrease (“off” cells) of the light
caught by groups of photoreceptors and propagate the information
using threshold crossing. There are roughly two distinct forms of hori-
zontal cells and ten, for the bipolar cells. The third layer is responsible
for sending the information to the brain and involves two types of cell,
the amacrine and the ganglion cells. Amacrine cells are connected
to groups of bipolar cells and are similar to horizontal cells as they
regulate the signal of their input while ganglion cells are connected to
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Borrowed from https://www.bsse.ethz.ch/bel/research/electrophysiology-and-neuroscience/retinal-investigations.
html

optical nerve and are the output of the retina. There are roughly thirty
distinct forms of amacrine cells and ten for ganglion cells. This chain
is especially interesting with regards to its output signal, because the
retina does not send images to the brain. The retina outputs action
potentials, also called spikes, which are short burst of electrical signals
in the order of µs.
Spikes are not triggered at fixed time intervals, but asynchronously,
each cell being independent of each other.By generating information
only when a change occurs locally in the light signal coming from the
scene, the retina is able to effectively compress the visual information,
leading to low latency in the feedback loop to a visual stimulus. We
can however observe a remaining activity in cells even though no light
is perceived. This phenomenon, called spontaneous activity, related to
how cells are producing action potentials and shows that information
should be driven by homogeneous groups instead of isolated cells.
Silicon retina sensors were developed initially designed to replicate
how the biological retina converts light into an understandable electri-
cal signal for the brain. We operate on these sensors and associated
platforms to find methods able to mimic and explain how the brain’s
process is working and reach the brain’s cost-efficiency to solve daily
tasks. However algorithms build to be biologically plausible have to
be biologically compatible by being used on real-world data. Using an
algorithmic approach taking into account the asynchronous nature of
the information and based on an event-based visual flow developed
in the lab, I spent the first months of my thesis estimating how it
was possible to reconstruct the orientation of an object in the scene
by only relying on spikes and to estimate how far this method was
efficient and less expensive in computation time compared to inte-
grative approaches based on traditional vision algorithms. During
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this study we sought to highlight that the use of specific cell types is
able to increase the accuracy of the result, which led us to set up a
spikesorting solution. Although several algorithms exist with relative
efficiency to differentiate the information coming from each of the cells,
no method was able to solve this problem on the fly with reasonable
reliability. These methods use post-processing algorithms requiring
heavy and long computation and often require the intervention of
human operator. This process prevents us from designing close loop
experiments capable of adapting stimulation in real time during the
experiment. I worked for more than a year on an approach closer
to the raw information of the retina in order to answer this problem.
The stated objective of this work is to lead to the implementation of
a chip that can start from basic information and provide real-time,
latency-free interpretation of the scene.
In collaboration with the Sight Again project to use retinal implants to
substitute the damaged photoreceptor layer due to Retinis Pigmentosa
(the loss of peripheral vision) or Dry Age-Related Macular Degeneration
(the loss of vision in the center of the visual field), I treat data to
measure the capabilities of the implants: number of cells activated,
type of cells, axons’ propagation speed and cells’ firing rate. Thanks
to the treatment of the ex-vivo tests this study was able to show the
relevance of its approach and thus to set up an in-vivo experiment
on non-human primates which reinforced those preliminary results.
Despite the complexity of obtaining a large number of non-human
primates for experiments, those results have contributed to substantial
progress, allowing the study to currently undergo first clinical trials
on humans.
During the third year of my thesis, an interaction with specialists in
psychophysics lead to the discovery of a problem previously unknown
to me: the characterization of color blindness among individuals. Ap-
proximately 8% of men and 0.5% of women of Northern European
descent are color blind, however this disease contains a large number
of different malformations in the distribution of cells responsible for
color detection that does not require the same correction. Although
there are already methods to characterize color blindness, they are
highly subjective and depend solely on the patient’s estimation. In
order to provide a robust solution, our study implemented a light
spectrum scanning that provided a relevant measurement of the pupil
response. The pupil is able to perform dilation and contraction to
regulate incoming light using two different nerve marks, the varia-
tions of which characterized the capability of the photoreceptors to
perceive light. Looking at the subjects’ pupil response, our study aims
to highlighting a fast, accurate and fully automated characterization
of the perception of the visual spectrum of the subject to provide an
appropriate correction. Taking into account the current progress of the
project, this document will focus on the progress of data processing

ix

[ December 11, 2018 at 19:30 – classicthesis v4.6 ]



for the first part of the healthy population that was recruited for the
study because of the colorblind population has not yet been recruited
for testing. Those results aim to validate the relevance of stimulation
via the characterization it brings from a healthy subject, regards the
information resulting from each part of the stimulus. Preliminary
results of this study have highlighted the biometric aspect of the infor-
mation extracted from the subjects’ pupil response due to the intrinsic
distribution of photoreceptors for each individual. Although related
to the initial field of study by methodology, this new aspect opens
up a second field of study for this project and this document will
introduce in detail the major challenges of biometrics as well as the
part that such a device can play in biometric state of the art.
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V I S UA L F L O W O N B I O L O G I C A L R E T I N A
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1
E V E N T- B A S E D A P P R O A C H T O E X T R A C T M O T I O N
I N R E T I N A

Event based sensors are used in computer science to perform neuro-
morphic computation, algorithms inspired by the way nature works
to solve a problem. We propose in this study to demonstrate the
relevance of event based silicon retina sensors to develop algorithms
able to directly be applied on real biological retina data, by using a key
algorithm of computer science as the optical flow. From an algorithm
developed on the model we achieve robust and accurate results on
real data with an average error of 3.5◦ of angular reconstruction.

1.1 introduction

The characterization of motion is essential to understand the visual
scene through the interaction between the objects present in the scene.
Motions represent an important part of the dynamic of the scene and
allow a mechanism of prediction to safely move. Motion is fairly a low
level information, allowing to build a more complex representation
of what is taking place in the visual scene. Tasks that appear to us
as elementary, such as objects segmentation, comparisons and links
between them, are always preceded by motion extraction. In 1986,
Georgopoulos, Schwartz, and Kettner, 1986 experimented the relation
between a visual stimuli and the processing chain that leads to a
reaction. This study shows that the activity in the primates’ motor
cortex could be locally correlated to the needed direction to reach the
target. Meaning the brain is able to select an adequate population of
cells according to a visual target. Beyond the fact that this conclusion
seems natural, it appears that the brain is so dependent on motion
that several parts are dedicated to perform different motion tasks. In
consequence, motion information that come from the retina needs
to be as efficient as possible. Several studies proposed methods to
reconstruct information from moving light stimuli, using the output
signal of the retina. Berry et al., 1999 showed variations of delay in
"off" cells when responding to moving stimuli. These variations lead
to a start of prediction of the information and switching the role of the
cell, from spatial gradient extraction to expectation. They also lead to
an error of position, while allowing to prevent a delay of reaction in
the rest of the chain.This effect seems to only be visible on repeated
stimuli, as a mechanism of adaptation, according to the study of Marre
et al., 2015 which succeeded to reconstruct position information of
random moving bar according to the activity. According to the studies

3
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4 event-based approach to extract motion in retina

of Butts et al., 2007 and Akolkar et al., 2015, the time precision in the
retinal code contains an important amount of information and this
time precision allows the extraction of robust features from the input
stimulus. Following the work of Chichilnisky and Kalmar, 2003, the
study of Frechette et al., 2005 proposed a method to reconstruct the
velocity of the input stimulus, using correlation between spikes trains
(Reichardt, 1961).
However this method required prior knowledge of the size of a trial
and used a fixed time-window that limits the range of speeds that can
be detected.
In this study, we proposed a solution to extract the orientation and
the speed of an object, by using only the most recent local retinas’
activity. The method is based on an event-based visual flow algorithm
introduced by Benosman et al., 2014 and led to an implementation
on a neuromorphic hardware (Giulioni et al., 2016). We show with
this approach, a robust on-line algorithm, which does not need to be
trained or fed with knowledge from input stimuli, but only constrained
by the receptive field mapping.

1.2 methods and materials

Figure 1.1 – The plane fitting elicits the plane that minimizes the distance
between each event of the cloud. For each event projected on
this plane, if the ratio between the distance of the nearest event
and the error of time is greater than the estimated speed of the
plane, the event is rejected. The estimated speed is given by the
projection of normal, 1√

α2+β2
.

1.2.1 Recording

Data come from ex-vivo adult Long-Evans 8 weeks male rat retina.
The recording is performed using multi-electrodes array (MEA) com-
posed by 252 electrodes (16 by 16 without corner electrodes). The size
of each electrode is 10µm in diameter and 60µm center-to-center. The
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1.2 methods and materials 5

Figure 1.2 – The visual flow algorithm explicit as a graph of subprocesses
levels (See 1.2 for details). Level 1 represents for each node
the input information coming from cells. The level 1 is fully
connected to the level 2. Level 2 represents each combination
of scalar product of information coming from level 1. Level 3

represents operations as x1−
x2x3
x4

. Level 4 represents operations
as x1x2−x3x4x1x5−x6x4

.

output signal is analog converted to digital with a sampling rate of
20kHz and 16 unsigned bits precision.

After sorting, 93 cells were found and 62 seemed to react to the
considered light stimulus. All the cells are divided into 7 cell types
and the reacting pool is composed by four of them. Each cell is
considered as an independent event-based sensor that fired action
potentials when an event occurred around it.

The light stimulus consists in a moving black and white grating
at constant speed (1000µm.s−1) with 8 different orientations which
covers all the retina. A bar is 333µm width on the retina. The stimulus
is displayed at 60Hz for an elementary displacement of 16.65µm.

1.2.2 Algorithm

Let’s assume an event as a triplet as presented in 4.1:

evk = {tk, xk, yk} (1.1)

Where for each evk, tk represents the timestamp of the event and
(xk, yk) its spatial coordinates. These three elementary data allow an
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6 event-based approach to extract motion in retina

efficient characterization of the local and global dynamic of an event
stream and allow the study of its evolution.

z1 = αx1 +βy1 + γ

z2 = αx2 +βy2 + γ
...

zn = αxn +βyn + γ

(1.2)


∑
iwix

2
i

∑
iwixiyi

∑
iwixi∑

iwixiyi
∑
iwiy

2
i

∑
iwiyi∑

iwixi
∑
iwiyi

∑
iwi


 α

β

γ

 =


∑
iwizixi∑
iwiziyi∑
iwizi


(1.3)

Movement is a variation of the position across time of an object in
the scene. When an event stream is describing a movement, the close
neighborhood of each event could be seen as a noisy measurement
of the local motion. Thus, computing the plane of each local cloud
of event allows the extraction of the local motion’s features 1.1. By
describing The problem as the following 1.2, it becomes possible
to extract the optimum coefficients of each plan by minimizing 1.3.
Where α, β and γ are the coordinates of the plan and wi a weight
factor on the reliability of each event. This problem is solved by
inverting a 3x3 matrix and the figure ?? shows the connection between
the cells to achieve this inversion. To decrease the impact of noisy
events on the reconstruction, two approaches have been considered.
The first one was to build the average plane by iteratively remove the
most distant events and rebuild the plane on the rest. The second one
was to use the weight factor wi of 1.3 to add a constraint function to
the cloud of events. To constrain the space, a squared invert function
is applied, meaning that the further the events are the less they impact
the reconstruction, while a delay function is applied to the time (1.4).


Woi =

(tref−ti)x
2
refi

x2i

Wri =
x2refi

(tref−ti)x
2
i

(1.4)

Where Wo increases the weight on old events and Wr on recent
events. tref is the timestamp of the last event and xrefi a weight that
represent the minimum confident radius of neighborhood according
to the size of the receptive field for each cell i.

1.2.3 Rejection

To establish if a generated plane is reliable or not, a threshold
method is proposed. Using the coefficients of the plane, we are able to
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1.3 results 7

project the expected timestamps according to the used neighborhood
and compare it to the original timestamp. According to the computed
speed, if the delay between the original and projected timestamp is big-
ger than the delay to cross the nearest point in the neighborhood, the
timestamp is rejected (See 1.1). A plan is accepted under a threshold
condition based on the delay. Presented results use a threshold value
at fifty percent, meaning that at least half of the used timestamp needs
to be accepted. We choose this flexible threshold as a compromise
between reliability and responsiveness.

Booli = |αxi +βyi + γ− ti| <= ∆xi
√
α2 +β2 (1.5)

1.3 results

Figure 1.3 – The reconstruction of the eight orientations projected on the
retina. On all these figures the dark arrows represent the real
orientation and the red arrow the estimated one.

The visual flow results presented in this study come from an adapta-
tion of the method proposed in Benosman et al., 2014. Eight computing
rules are compared aiming to find the most robust ones, but also the
most trustable biologically speaking. Events are selected according to
a fixed region of interest and a time window. The first column of 1.1,
shows the reconstruction results using the output of the retina. The
method performs well to reconstruct half of the angles. Due to the
complex geometry of the grid and small temporal window the error
of reconstruction is quite important.
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8 event-based approach to extract motion in retina

Table 1.1 – This table presented the reconstruction results of the orientations
according to all conditions tested in this study. The position
projected in a matrix combined with an event temporal window
(SpTn), the real positions according an elliptic neighborhood
combined with an event temporal window (SfTn), then combined
with only the last event at each position (SfTf), and two different
weights, increased on old events (SfTwo) and increased on recent
events (SfTwr). A weight condition is also tested on the positions
with a 1

x2
function (SwTf, SwTwo, SwTwr). The event temporal

window is a complex solution to implement with retinal signal
due to spike burst. The size of the window depends of the signal.
The increasing of weight on recent event showed instabilities. On
SfTwr, the error was twice bigger and more on several angles and
the significant deviation. On SwTwr, the deviation is low but 10

times less planes were elicited. This shows that these solutions are
not sustainable. The same problem could be seen on SwTf, with
a low deviation leads to few planes elicited. This one shows that
applying a constraint on the space is not enough if no constraints
are applied on delays.

Error SpTn SfTn SfTf SwTf SfTwo SwTwo SfTwr SwTwr

0
◦

5.89
◦

7.21
◦

3.73
◦

3.30
◦

4.23
◦

3.05
◦

3.61
◦

2.94
◦

45
◦

12.11
◦

7.41
◦

5.35
◦

2.72
◦

5.10
◦

3.27
◦

6.31
◦

4.18
◦

90
◦

11.55
◦

10.49
◦

3.10
◦

5.10
◦

4.61
◦

2.23
◦

2.24
◦

1.64
◦

135
◦

8.83
◦

7.19
◦

5.85
◦

3.70
◦

6.88
◦

5.17
◦

4.23
◦

2.64
◦

180
◦

20.10
◦

6.89
◦

4.33
◦

3.91
◦

5.42
◦

3.75
◦

3.92
◦

5.12
◦

225
◦

10.50
◦

6.40
◦

5.60
◦

3.81
◦

4.56
◦

3.94
◦

4.06
◦

4.03
◦

270
◦

7.76
◦

6.13
◦

5.62
◦

5.15
◦

5.50
◦

3.94
◦

4.61
◦

2.98
◦

315
◦

9.27
◦

8.24
◦

4.81
◦

2.28
◦

4.92
◦

3.42
◦

15.65
◦

10.52
◦

X̄ 10.75
◦

7.56
◦

4.51
◦

3.54
◦

5.11
◦

3.49
◦

4.43
◦

3.38
◦

X̃ 9.89
◦

6.48
◦

3.93
◦

3.32
◦

4.46
◦

3.03
◦

3.43
◦

2.92
◦

σX 4.01
◦

7.52
◦

4.10
◦

1.66
◦

5.22
◦

2.78
◦

7.55
◦

1.73
◦

Evout 9.4% 5.0% 1.6% 8.0% 7.3% 4.4% 0.5%

To improve the results, the method switched to a space invariant
version and the use of events’ window. Instead of extracting the N
closest neighbors in a circle range, neighbors are elicited in an ellipse
according the covariance of the space. The event window uses a decay
to elicit events that are recent enough and select in these events the
N most recent. As showed on the second column of 1.1, using this
method decreased the error and made it more homogeneous. But
the size of the event window remains a problem that highly depends
on the signal. This motivated the restriction of the use of only the
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1.4 discussion 9

last event for each position (column three, 1.1). Despite good results,
this method leads to an increase of rejected planes, due to an equal
weight on each point to perform the reconstruction. Unstable recent
events or too old events are able to unbalance the computation of the
plane. In 1.3, the weight factor wi is able to increase or decrease the
influence of each selected event in the reconstruction. We compared
five weighting conditions. The column four of 1.1 used a weight based
on neighbor’s distance and no weight on time. Results are as stable as
using equal contributions with a low variance, but generated output
events decrease significantly. Both column five and six of 1.1 show
the impact of adding a weight on time, increased on old events while
column seven and eight show the impact of increasing the weight on
recent events. Columns six and eight combined the time weighting
with the neighborhood based weighting presented on column four,
while columns five and seven presented results using only the time
weighting. As expected, the weight on distance decreases the variance,
however old events seem to be more stable than recent ones to build
planes regarding to the number of generated output events that drop
significantly. The error for the angle 315

◦increases significantly while
using a weight based on recent events, however this could be specific
to the data regarding to the results of others methods.

1.4 discussion

In this study we built a robust and accurate angular estimation
algorithm using biological data with an average error of 3.5◦. We
show the relevance of using an event based silicone retina sensor as
a reliable model to develop vision algorithm able to be applied on
real biological retina data. From the biological retina data that we
had, the accuracy of the angular reconstruction was the only part
able to be analyzed due to the objects are moving at single-speed.
The presented method shows that the time inclination of a cloud of
events carries the movement information. However, in order to obtain
a unique solution estimating this inclination, we apply a constraint
on the normal norm to this event cloud. Although the computed
orientation remains not impacted, the speed distribution is fixed. The
algorithm is able to estimate the speed ratio between two speeds,
however a speed reference value is needed to re-scale the speed and
compute an accurate absolute value.
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Part II

S P I K E S O RT I N G F R O M B E N C H M A R K T O
B I O L O G I C A L R E T I N A
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2
S P I K E S D E C O D I N G S P I K E S : A N E V E N T- B A S E D
F R A M E W O R K F O R R E A L - T I M E U N S U P E RV I S E D
S P I K E S O RT I N G

With the increase of multi-electrode array size, spike sorting al-
gorithm are often overwhelmed by the quantity of data to process.
It is then impossible to have meaningful results in real-time for ap-
plications such as closed-looped experiments. Furthermore, there is
almost always the need of an external human operation to control
and validate results. Here, we show that neuromorphic computation
can yield to very good results in real-time unsupervised spike-sorting
tasks. Our results demonstrate that considering the time as the most
valuable information in signals helps extracting coherent information
from noisy data. Comparison between the proposed method and state-
of-the-art algorithms shows that event-driven computation allows
to significantly reduce computation time while increasing efficiency,
reaching up to 90% of recognition rate on real data. We anticipate
this work to open new horizons for embeddable real-time devices
for closed-loops applications and low-cost performance analysis of
in-vivo data.

2.1 introduction

The use of conventional sampling methods implies a stroboscopic
acquisition of information (unknown to biological systems) at a low
sampling frequency. Thus, this method is unable to describe the full
dynamics of a given signal. Recent neuroscience findings show that
this temporal precision is found in subcortical areas, like the lateral
geniculate nucleus (LGN) (Liu et al., 2001; Reinagel and Reid, 2000)
and the visual cortex (Mainen and Sejnowski, 1995). The last decade
has seen a paradigm shift in neural coding. It is now widely accepted
that precise timing of spikes open new profound implications on
the nature of neural computation (Rieke et al., 1999; Maass, 1999).
The information encoded in the precise timing of spikes allows neu-
rons to perform computation with a single spike per neuron (Thorpe,
1990). Initially supported by theoretical studies (Thorpe, Delorme,
and VanRullen, 2001), this hypothesis has been later confirmed by
experimental investigations (Johansson and I. Birznieks, 2004; R.S.,
Panzeri, and Diamond, 2001).

Here, we present a novel approach to spike sorting, which is com-
patible with ultra low latency and low power neuromorphic hardware

13
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14 spikes decoding spikes

technologies (Chicca et al., 2014). In particular, we exploit advances
made in both mixed signal Analog/Digital VLSI technology and com-
putational neuroscience with brain-inspired spiking neural process-
ing devices to build sophisticated real-time event-based processing
systems (Neftci, 2013; Indiveri, Corradi, and Qiao, 2015; Serrano-
Gotarredona, 2009). We show how precise timing of spikes allows the
introduction of a novel, fast and reliable biologically plausible solu-
tion to the problem of spike sorting directly from the high temporal
properties of spikes.

The developed architecture is particularly adapted on a variety of
existing neuromorphic spiking chips such as the SpiNNaker (Furber
et al., 2014), TrueNorth (Merolla et al., 2014) or LOIHI (Davies et al.,
2018) neural chips. More specific neuromorphic hardware, such as the
256 neurons ROLLS chip (Qiao et al., 2015), can also be used.

State of the art spike sorting methods relies on prior knowledge of
the dynamic of the signal for discriminant features extraction. Spike
sorting algorithms mainly rely on three steps : spike detection, fea-
ture extraction and classification. The first step often employs an
automatic spike detection method (threshold detection in most of
the case (Rossant et al., 2015)). In the second step, a set of features
is computed, for example using mixture of Gaussian kernels (Khadir
et Al.Kadir, Goodman, and Harris, 2014), wavelets transformation
(Quiroga, Nadasdy, and Ben-Shaul, 2004) or PCAs (Rossant et al.,
2015). Then, the extracted features are assigned to cell types by learn-
ing algorithms, such as (un)supervised clustering.

This work aims to show that it is possible to extract and classify, in
real time, the dynamic of the signal. Previous work on event-based
vision algorithm (Lagorce et al., 2016) shown that the event-based
paradigm shift yield to a better conceptualization of each new piece of
information, with respect to past activity, both in spatial an temporal
neighborhood. In this paper, we will first show a neuromorphic,
event-driven approach for features extraction and spike sorting tasks,
allowing a real-time pipeline.
The performances of the algorithm were tested both with a benchmark
introduced by Wild et al., 2012, in-vivo (Henze et al., 2009) and ex-vivo
recordings and compared to state-of-the-art algorithms (Rossant et al.,
2015; Kadir, Goodman, and Harris, 2014; Quiroga, Nadasdy, and
Ben-Shaul, 2004).

2.2 methods and materials

Here we detail how, from an analog signal, the proposed algorithm
generates events, extracts features, clusters them in a hierarchical
model (2.2) and then classifies unknown examples.
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2.2.1 Event generation

The sampled signal (48 kHz for the benchmark, 20 kHz for ex-vivo
recordings) is first sent into a spike generator to (artificially) convert
it in a event-based signal. Then, the sampled signal if filtered by a
high-pass, 3rd order, Infinite Impulse Response (IIR) filter for DC
filtering and low frequencies noise rejection. Then, the filtered signal
is compared to a bench of levels. Each time the signal crosses a level,
a spike is triggered, both positive if the signal is increasing while
crossing the level, or negative if the signal is decreasing. A linear
interpolation between two samples is used for better time precision.
Each event ev(i) can be seen as the following triplet :

ev(i) = {ti, ci, pi} , i ∈N (2.1)

where ti is the timestamp of the event, ci its channel (the crossed
level) and pi its polarity, pi ∈ {−1, 1} (i.e. positive or negative).

2.2.2 Feature extraction and clustering

A spatio-temporal point cloud is formed with these events, repre-
senting the spike spatial distribution and dynamic behavior. Because
this point cloud contains information about the spikes dynamic and
amplitude, we introduced the event context Si of the event ev(i) to
convey information about surrounding activity just before time ti.
Let N(ci) be a windowing neighborhood with length 2R+ 1 (in chan-
nels) around the event’s channel ci :

N(ci) = {ci + c | abs(c) 6 R} (2.2)

Then, this event’s context Si is defined as :

Si = exp

(
ti − t

N(ci)
ref

τ

)
(2.3)

where tcref is the last spike time at the cth channel.
When a context has been computed, it is compared to a bank of

context, or centers. The most-closely matching center will then gen-
erate an output event. First, we do have a set of N initial contexts
mk, k ∈ [[1,N]] where mk takes the same form as Si in 2.3. These
contexts are initialized with the first N incoming contexts. More
formally,

mk = Sk k ∈ [[1,N]]

Then, they are clustered using an online Iterative Inverted Weight
Kmeans (IIWKmeans, Barbakh and Fyfe, 2008). This clustering method
was preferred to KNNs (Cover and Hart, 1967) or KMeans (MacQueen,
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1967) because of its independence towards the initial conditions and
its ability to work online. For each incoming context S, we define its
nearest center mk∗ :

mk∗ = argmin
k

(||S−mk||) (2.4)

where mk is the kth center. The update rule is then shown by:

mk∗(ts + 1) = mk∗ − ζaik∗(S−mk∗) (2.5)

with:

aik∗ = −(n+1)||xi−mk∗ ||
n−1−n||xi−mk∗ ||

n−2
∑
j6=k∗

||S−mk∗ || (2.6)

ζ and n are two learning parameters able to constrain the update
rule. This process is summarized in algorithm 1.

Once the learning is over (i.e. all the centers converged), each context
can be associated to a particular center mk. So, the input stream of
events is transformed into an output stream of centers activation :

evout = [ci, ti, ki] (2.7)

where ki is the index of the matching center mk∗ .
At this point, for noise (isolated context) rejection, it is possible to

implement context rejection based on some thresholding among the
distances and so prevent emitting a new event if the match between
the context and the center was not strong enough.

2.2.3 Classification

The recognition by itself is done by comparing online signatures to
the trained ones. The distance between two histograms used here is
the Bhattacharyya (Bhattacharyya, 1946) distance :

db (H1, H2) = − log
∑
i

√
H1(i)

card(H1)

H2(i)

card(H2

2.3 results

2.3.1 Model description

We will here give an overview of the proposed algorithm (see 2.2).
Detailed explanations and equations can be found in the Method
section.

When the input signal changes, our algorithm asynchronously gen-
erates events forming a spatio-temporal point cloud representing the
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2.3 results 17

Algorithm 1 Hots online update rule for one layer

Ensure: {ti ; pi ; li} as the timestamp, polarity and level crossed of each
new incoming event
procedure hots(ti, pi, li) . Receive a new incoming event
Compute current context Si
tpast(pi, li)← ti . update past
Si ← exp −(ti−tpast)

tau . compute around li
Compute distances

for each centers Mk do
dk ← −log

(∑
k

√
Mk . Si

card(Mk).card(Si)

)
end for
Update nearest center

k∗ ←argmin
k

(dk)

Mk∗ ← update following eq (2.5)
end procedure

signals’ dynamical behavior. The sampled signal is first sent into a
spike generator to (artificially) convert it in a event-based signal. As in
silicon retinas (Posch, Matolin, and Wohlgenannt, 2011), the variation
of the signal triggers an event generation. In a more detailed approach,
the sampled signal if first filtered by a high-pass, 3rd order, Infinite
Impulse Response (IIR) filter for DC filtering and low frequencies
noise rejection. Then, the filtered signal is compared to a bank of
levels. Each time the signal crosses a level, a spike is triggered, both
positive if the signal is increasing while crossing the level, or negative
if the signal is decreasing (2.1a). A linear interpolation between two
samples is used for better time precision.
Each event ev(i) can be seen as the following triplet :

ev(i) = {ti, ci, pi} , i ∈N (2.8)

where ti is the timestamp of the event, ci its channel (the crossed
level) and pi its polarity, pi ∈ {−1, 1} (i.e. positive or negative).

Considering a stream of events, we can associate for each event a
description of its spatio-temporal neighborhood. This description will
be referred as context, generated by convolving an exponential kernel
(2.1b) to the most recent activity on the surrounding of the incoming
event (2.1c). These contexts are then clustered using an online iterative
clustering method (Barbakh and Fyfe, 2008). Once this learning phase
done (i.e. the centers are determined and represent the dynamics of
the learned signal), we extract the response of the network for different
spikes. Then, events from unknown spikes are fed in the network, and
their signatures compared to the learned ones for classification.

Input data is presented to the network. Contexts are built with
the convolution with an exponential kernel of time constant τ1 and
considering a spatial neighborhood of sidelength (2R1 + 1). Then,
these contexts are clustered intoN1 centers. When a cluster is matched,
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Figure 2.1 – Generation of a context. (a) Level crossing for spike generation.
The sampled signal (red dots) is interpolated. Each time the
linearly interpolated signal (dashed red line) crosses a level
(horizontal dark dashed-dotted lines), a spike is generated, either
positive or negative depending of the raising or falling behavior
of the signal. (b) Generation of a context. When a spike occurs
at channel ci, all the values of the exponential decays among
a spatial neighborhood are taken (i ∈ [[i− r, i+ r]],r being the
current radius value) and are our base features. (c) Exponential
time decay among a spike. The value of the exponential kernel is
color-coded : brighter pixels represent higher values than darker
ones.

an output event is produced, constituting the output of Layer 1. This
output is of the same type as its input, as shown in 2.8 and 2.7. Thus,
the same process applied to Layer 1 can be applied to layer 2 using
different parameters for space-time integration (τ2, R2, N2).

As stated before, each layer l is only characterized by 3 parameters :
— τl, the time constant of the exponential kernel,
— Rl, the size of the neighborhood,
— Nl, the number of centers to be learned by the clustering algo-

rithm.
The output of the last layer can be used as features for shape

classification. The training of the recognition algorithm consists in
two distinct steps. In the first one, learning data is presented in order
to learn the centers computed as described in the previous section.
Then, the same inputs are provided to the network and an histogram
of centers activation (signatures) is built for each different class, using
rather TSNE projection or offline KMeans clustering. These histograms
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represent the number of centers activated during the presentation of
the example, independently of its spatial position, and are discriminant
enough to allows proper classification.

2.3.2 Benchmarking

The proposed algorithm was tested with a database of artificially
generated data from simulating extracellular signals recorded with
a single electrode. Nine real spikes where manually picked from
extracellular tungsten micro-electrode recorded during Deep Brain
Stimulation operation from the sub-thalamus nuclei. They are then
corrupted with noise coming from a superimposition of activity of
many distant neurons in the brain (Wild et al., 2012).

2.3.2.1 Noise level

The noise level nl was defined as the reciprocal value to the signal-
to-noise ratio (SNR) (Wild et al., 2012) :

nl = SNR
−1 =

(
Asignal

Anoise

)−1

where Asignal is the root mean square value from all the extracted
spikes, and Anoise the one for the rest of the signal.

2.3.2.2 Performance rating

To compare our method to state of the art spike sorting algorithms,
we used the Adjusted Mutual Information. This measure provides
information about how good the clustering is. Unlike the recognition
rate (trace of the confusion matrix divided by the sum of all the
elements within the confusion matrix), this measure is adjusted by
luck, meaning that a zero value stands for luck and a 1 value for a
perfect classification. Details and properties can be found in (Vinh,
Epps, and Bailey, 2010).

2.3.2.3 Results

In this section, we will present results of the proposed algorithm
on the benchmarking database (Wild et al., 2012). This database
contains 32 sets of 9 artificially generated spikes, corrupted with
noise. The training of the algorithm was done with one full set of
the intermediate noise-level. The learned centers where then used for
building signatures and recognition for all the 31 remaining sets. The
parameters used for this benchmark are summarized in table 2.1.

2.4a shows the response among the centers of the fifth and last layer.
The dynamic of the signal is well captured and clusters respond to
local patterns of the input signal. Using high dimensionality reduction

[ December 11, 2018 at 19:30 – classicthesis v4.6 ]



20 spikes decoding spikes

t

L
a
yer 1

e
−
t

τ
1

t

L
a
yer 2

e
−
t

τ
2

(c
)

(d
)

(e
)

N
1 fe

a
tu

re
s

N
2 fe

a
tu

re
s

t

L
a
yer 3

e
−
t

τ
3

N
3 fe

a
tu

re
s

(2
R

1+
1
) le

v
e
ls

(2
R

2+
1
) le

v
e
ls

(2
R

3+
1
) le

v
e
ls

(b
)

(a)
(f)

(g)
(h

)

C
la

s
s
ifie

r

(i)

Figure
2.

2
–

T
his

figure
show

s
the

structure
of

the
proposed

hierarchicalalgorithm
.(a)

T
he

input
signalis

labeled
by

its
polarity

and
sent

to
the

first
layer

of
the

algorithm
.

(b)
T

he
rad

ius
of

the
consid

ered
neighborhood

and
(c)

the
exponentiald

ecay,build
ing

the
context

com
puted

for
each

incom
ing

event.(d)
This

incom
ing

context
is

com
pared

to
a

set
of

centers
representing

the
N
1

features
and

fiting
gradually

the
local

behavior
of

the
input

signal.(e)
These

features
are

used
to

labeleach
incom

ing
event

to
build

(f)
the

output
signalfor

the
layer

1.(f,g)
By

changing
the

size
of

the
consid

ered
sp

atiotem
p

oral
context,the

ou
tp

u
t

of
a

layer
cou

ld
be

u
sed

to
feed

the
next

layer
and

extract
new

features,thatare
com

binations
ofthe

previous
ones.By

adapting,step
by

step,the
size

ofthe
contextofeach

incom
ing

event,the
algorithm

com
bines,layers

after
layers,localfeatures

to
extract

globalfeatures.(i)
T

hen
a

classifier
is

able
to

use
the

selectivity
of

these
features

to
distinguish

a
signalfrom

an
other.Inspired

from
Lagorce

etal.,2016

[ December 11, 2018 at 19:30 – classicthesis v4.6 ]



2.3 results 21

0.00-0.15 0.15-0.30 0.30-0.45 0.45-0.60
noise level

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
M
I

HotsNotRealTime
HotsRealTime
WaveClus
KlustaKwik
OSort

Figure 2.3 – Recognition rate (AMI) with median and standard deviation
versus noise level and comparison to others methods. Blue bars
report classification rates after layer 5, green ones after layer 3.
Our method (blue and green bars) performs better than others
: standard deviation is lower (median is represented in black
middle line). For low noise conditions, our median is higher. For
noise level between 0.15− 0.3, we are a bit under WaveClus, but
over all the other ones. We can also see that in noisy conditions
(noise level > 0.45) our algorithm is significantly better than all
the others. 3 Layers run real-time.

(TSNE, Maaten and Hinton, 2008) for data visualization, the projection
of the signatures for some testing examples in two dimensions shows
the ability of the algorithm to distinguish different types of spikes
(2.4b). 2.3 presents the AMI score for the presented algorithm com-
pared to state-of-the art methods. It has to be taken in consideration
that the only previous method working in real time is the OSort algo-
rithm. The HotsL3 and HotsL5 presented here are for the output of the
third and fifth layer of the hierarchical model. The classification score
after layer 5 overcomes all the other methods. After layer 3, only for
intermediate noise level (0.15− 0.30) are we slightly below Waveclus.
For noisy dataset (0.45 and more), the proposed method overcomes
drastically all the others. This shows the very good immunity of
the proposed method toward noise. Regarding the required time to
process all these data, our algorithm performs real time for 1-3 layers
on a standard desktop computer (Intel Core i7-4790 CPU @ 3.60GHz,
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Table 2.1 – Model parameters for the artificial benchmarking

L1 L2 L3 L4 L5

τ(µs) 25 50 75 100 125

R(px) 2 4 8 16 32

Nc 4 11 39 147 562

ζ 5.10−5 5.10−5 5.10−5 5.10−5 5.10−5
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Figure 2.4 – Classification for the benchmarking data. (a) Voronoi diagramm
for the projected signatures in two dimensions and correspond-
ing ground truth in color. Mostly, the signatures contain enough
information to ensure good discriminant classification. (b) The
associated temporal shapes. We can notice that our algorithm
extracts signatures that are distinguishable one from each other
all thereby allows good classification.

16GB of RAM, running Debian 8.5 Jessie). Figure 5 represents the
required time for 1-5 layers.

2.3.2.4 Extension to in-vivo and ex-vivo data

Good results on semi-artificial dataset leads us to benchmark the
proposed method on real data. Buzaki’s lab developed new techniques
for simultaneous recordings of in-vivo (patch clamp) and ex-vivo
(multi electrode array) data (Henze et al., 2000; Harris et al., 2000).
Data from the CA1 hippocampal region of anesthetizided rats (Henze
et al., 2009), containing both intra and extracellular recordings, was
used. The extracellular tetrodes (Recce and O’keefe, 1989) are made of
four 13-um polyimide-coated nichrome wires. The intracellular glass
micropipette filed mainly with potassium solution. The extracellular
data contains responses from two different cells (type A and type B),
whereas the in-vivo data target only one (type A). So, the intracellular
data can be used as a ground truth to validate the sorting on extracel-
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Figure 2.5 – Results with data from ex-vivo rat retina. (a) TSNE projection
with output of the last layer. It is possible to distinguish two
major types of cells (c) Clustering is able to find several possible
new cells, which can be merged together. (c) A simple cross
Euclidian distance able of merging each shape to estimate the
best number of classes (the darked the closer). (b) The two found
classes with mean shape (dark line) and some examples on top
(color)

lular data. Without fine tuning of the parameters, the use of the same
parameters as in previous section leads up to 90% recognition rate.

The dataset was split into 10 subsets, randomly picked, with around
30 % of type 1 cell. One subset is used for learning the clusters, and the
9 others to test the algorithm. The experience was run for 100 times.
Table 2.2 shows the results of these runs. Our algorithm outperforms
state-of-the art real-time spike, and is slightly lower than the best
method reported on this dataset, which is not real-time. Computation
time (on a Intel Core i7-4790 CPU @ 3.60GHz, 16GB of RAM, running
Debian 8.5 Jessie) is about 25 seconds for one set of 80 seconds of data,
which is more than 3 times faster than the real-time

Finally, we used the proposed algorithm to process data from ex-
vivo primate and rat retinas recorded with a Multi-Electrode Ar-
ray (MEA). This grid of electrodes records neuronal activity, feed it
through an analogical to numerical converter (ADC), filtered by an
high-pass filter to remove noise and offset. During the learning, the
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Table 2.2 – Recognition rate on in-vivo data. The bolted algorithm are the
only one working in real-time. Our algorithm performs better
than state of the art online spike-sorting, and is slightly below
the known best algorithm reported on this dataset, which is not
real-time.

Method minimum maximum average

Shahid, Walker, and Smith, 2010 N/A N/A 66%

Werner et al., 2016 N/A N/A 82.1%

Gasthaus, 2008 N/A N/A Fscore 0.91%

Haessig et. Al (proposed method) 84.75% 90.22% 87.33% - Fscore 0.89%

noise level of each electrode is evaluated to put a dynamic threshold
(generally three times the standard deviation) able to separate spikes
from noise. When a spike is detected, it is processed by the algorithm
as an new unknown example.
The sorting method uses two main steps: separating shapes and eval-
uating the propagation speed of the spikes. Our algorithm is able to
deal with the first issue. The second one is tackled with a method
introduced by Li et al., 2015 that uses an axon on the grid to infer the
timing between two electrodes and then the distance between them.
2D projection of recordings from a rat retina, after traveling through
the proposed method with 3 layers, are shown in 2.5a. The clusters
are different enough to be linearly separable and so authorize good
classification. No ground truth was available for these recordings.

2.4 discussion

We presented a method being able to extract and decode in real
time spiking activity, outperforming state of the art algorithms on
standard benchmarks. In the framework of this article, the input
signal is first sampled and then converted into events. Intrinsically,
this approach cannot reflect the signal’s exact dynamic. The linear
interpolation was a first step toward time precision, but we are still
limited by the sampling period. Further work will implement a spike
generation directly from the analog signal, and then removing the
drawbacks induced by the Analog-to-Digital converters. All this work
was targeted for mono-electrode recordings and settles fundamentals
of such data processing. A generalization to multi-electrode setups
need to be developed.

We expect the most significant impact of our model to be in the
field of brain-machine interfaces. Today’s interfaces face severe lim-
itations imposed both by the conventional sensors front-end (which
produce large amounts of data with fixed sample rate), and the clas-
sical Von Neumann computing architectures (which are limited by

[ December 11, 2018 at 19:30 – classicthesis v4.6 ]



2.4 discussion 25

the memory bottleneck and require high power and high bandwidth
to process continuous stream of data). The merging field of neu-
romorphic engineering has produced efficient event-based sensors,
that produce low-bandwidth data in continuous time, and powerful
parallel computing architectures, that have co-localized memory and
computation and can carry out low-latency event-based processing.
This technology promises to solve many of the problems associated
with conventional sampling. However, the progress so far has been
chiefly technological (Corradi and Indiveri, 2015), whereas related
development of event-based models and signal processing algorithms
has been comparatively lacking (with few notable exceptions). This
work elaborates on an innovative model that can fully exploit the
features of event-based sensors.
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3
V I S UA L P E R C E P T I O N O F S I N G L E P I X E L
S T I M U L AT I O N S W I T H A P H O T O V O LTA I C
S U B R E T I N A L P R O S T H E S I S I N N O N - H U M A N
P R I M AT E S

Blindness occurs following photoreceptor degeneration in retinal
dystrophies and age-related macular degeneration. Electrical activa-
tion of the residual retinal circuit has provided useful artificial visual
perception to blind patients. Unfortunately, the resolutions of the
current retinal prostheses have not yet enabled face recognition, text
reading or independent locomotion due to low electrode numbers
or lack of distinct percepts upon neighboring electrode stimulations.
Here, we provide evidence for single electrode resolution (100 µm
pitch) by the near-infrared-sensitive photovoltaic retinal prosthesis
Prima in the non-human primate degenerated retina ex vivo and in
vivo. This visual perception obtained below radiation safety limits
with this prosthesis containing hundreds of electrodes has paved the
way towards its clinical evaluation starting on dry atrophic age-related
macular degeneration.

3.1 introduction

Recent clinical trials have shown that retinal prostheses can restore
some visual perception through electrical stimulation of the remain-
ing inner neurons in the degenerated retina (Brandli et al., 2016).
Psychophysics studies in sighted subjects had shown that 600 pixels
or distinct percepts are required to restore autonomous locomotion,
face recognition and text reading even in a slightly eccentric position
(Cha, Horch, and Normann, 1992; Cha et al., 1992; Fornos et al., 2008;
Sommerhalder et al., 2003; Sommerhalder et al., 2004). Accordingly,
retinal prostheses were designed to progressively reach such spatial
resolution by increasing the number of pixels: starting from few to
more than a thousand electrodes (Stingl et al., 2017; Da Cruz et al.,
2013). However, visual perception has not yet reached the expected
visual acuities, suggesting an absence of distinct individual percepts
for neighboring pixels. Indeed, in all these retinal prostheses, electri-
cal currents generated at stimulating electrodes have to return to a
distant ground. Modeling studies suggested that this configuration
with a distant ground produces a poor confinement of the electrical
field whereas a ground grid surrounding individually all stimulating
electrodes would greatly improve the resolution and contrast of pat-
tern stimulations (Joucla and Yvert, 2009; Bendali et al., 2015). Using

27
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such an architecture, a photovoltaic near-infrared (NIR) sensitive de-
vice, demonstrated a high spatial resolution in rodents (Lorach et al.,
2015). Each pixel is independently powered by two NIR sensitive
photodiodes connected in series between the central electrode and the
surrounding hexagonal ground grid (3.1a). NIR light can be delivered
through the pupil to stimulate this completely wireless and modular
implant, allowing a less invasive surgical procedure while leveraging
eye movement object scanning.

3.2 methods and materials

3.2.1 Animal models

All non-human primates in this study were Macaca fascicularis and
originated from Mauritius. Experiments were performed at the Institut
du Cerveau et de la Moelle Epiniere (ICM, Paris) and the Molecular
Imaging Research Center (MIRCen- CEA, Fontenay aux Roses) or do-
nated for the ex vivo study by Sanofi (Chilly-Mazarin). All experiments
were ethically approved by the French “Ministère de l’Education, de
l’Enseignement Supérieur et de la Recherche” under the project refer-
ences APAFIS#6795-201609201505827 v2 and APAFIS#5929.

3.2.2 Animal preparation

Three non-human primates (NHP, Macaca fascicularis) were used
in this study, all male (7-8 years old, 6.5-7.5 kg). They were chair-
trained and familiarized with the laboratory and trainers prior to
studies. A titanium head post was surgically implanted on top of
the NHP skulls with titanium screws. This implantation was realized
in sterile conditions. The surgery for the prosthesis implantation
was performed under general anesthesia. After a complete 23-gauge
vitrectomy, a retinal bleb was created via subretinal injection of BSS
around 4 mm away from the fovea. An endodiathermy of 3 mm
close to or between the upper retina vessels was realized before the
2.5 mm retinotomy so that the delivery system with the implant
could be presented perpendicular to the retinotomy. This tool was
inserted into a 2 mm sclerotomy, 3 mm from limbus, to insert the
implant subretinally. Perfluorocarbon liquid (PFC) was injected to
flatten the detached retinal tissue and stabilize the implant under
the retina. The laser coagulation was performed at the border of
the retinotomy (OPHTHALAS 532 EYELITE, Alcon, VITRA-LASER
532 nm GREEN, Quantel Medical). PFC was then removed within
the fluid-air exchange. Finally, silicone oil was injected in the eye to
ensure retinal reattachment and removed 4 weeks after implantation
because it is known to alter the eye refractivity (Smith, Smith, and
Wong, 1990).
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3.2.3 Retinal imaging

Optical coherence tomography (OCT), infrared, blue reflectance
imaging were performed using SPECTRALIS (HRA+OCT, Heidelberg
Engineering, Heidelberg). Fundus color photographs were captured
with the Smartscope camera (Optomed, Oy, Oulu, Finland).

3.2.4 Multifocal ERG

Multifocal electroretinography (mfERG) was performed using the
RETImap system coupled with the scanning laser ophthalmoscope
(SLO) with a binary m-sequence technique (Roland Consult, Germany).
The test pattern was in a 30 deg diameter field for 37 hexagons without
distortion. Recording was performed at a 59.8 Hz frame rate with
1 kHz (983.5 µs) sampling rate. Evaluation was for the first-order
kernel.

3.2.5 Stimulation system

Our stimulation system, derived from (Lorach et al., 2015), included
a single-mode NIR laser (880 nm, 2.5 W, Laser 2000) and a visible
light source (590 nm), which beams were merged together thanks
to a dichroic mirror onto a Digital Micro-mirror Device (DMD, DLi
innovations) to generate visual patterns. We mounted the optical
system on a slit lamp (Zeiss SL-130). Three NIR non-reflective lenses
were placed after the DMD to create a collimated image of the DMD
pattern.

3.2.6 Behavior

The NHPs were trained daily and were rewarded for making sac-
cadic eye movements from a central square fixation point to a pe-
ripheral and circular spot. Once central fixation was achieved for
300 ms on a square spot (300 µm), a peripheral stimulation was pre-
sented within less than 9 ms while removing the central target. The
peripheral stimulation consisted in a circle (300 µm by default or less
depending on the near infrared stimulation size) presented for 210 ms.
Due to the optical constraints, the left eye was used for eye-tracking
while stimulating the implanted right eye. Daily training involved
immediate rewards for proper center-out saccades in the adequate
peripheral direction in the visual field. The entire visual field was
divided in 72 angles. Trials (100-200) presented in a pseudorandom
order with visible targets were interleaved with 20% NIR-stimulation
trials and control trials (10% no DMD patterns or 10% no light). De-
fault NIR stimulations consisted of 6 flashes lasting 10 ms every 40 ms
such that this stimulation ended (210 ms) before the average latency
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required for saccade initiation by visible stimuli. Nine implant stim-
ulation locations were used in a 3x3 array with a distance between
the most distant stimulations generating a 5◦ of visual angle. Control
trials consisted in the disappearance of the fixation target without the
presentation of the peripheral stimulation. In half of the controls, the
DMD was set to the complete OFF position, whereas in the other half
the light source was switched off but the DMD was set for presenting
a pattern in the tested visual field to investigate potential uncontrolled
reflections. The reward was delivered either immediately after the
saccade at a proper location or, for controls, upon maintained fixation
at the centre for 300 ms after the central target disappearance. The
same applied for visible or NIR stimulations. To calculate the distance
for the peripheral target presentation, we used the reported correspon-
dence 200 µm.deg−1 in non-human primates (Lapuerta and Schein,
1995).

3.2.7 Retinal tissues

NHPs received a lethal dose of pentobarbital. Eyeballs were re-
moved and placed in sealed containers for transport with CO2 inde-
pendent medium (ThermoFisher scientific), after transcorneal punc-
ture of the eye with a sterile 20-gauge needle. Retinas were then
isolated and dissected either for histology or for retinal explant cul-
ture.

3.2.8 Retinal explant culture

Retinal tissues were preserved in CO2 independent medium (Ther-
moFisher scientific). To produce a blind NHP retinal model, the retina
was transversely sectioned to remove the photoreceptor layer as previ-
ously reported for transplantation of photoreceptor layers (Silverman
and Hughes, 1989). A square piece of retinal tissue (2x2 mm2) was
cut at its four corners to flatten it down photoreceptor side on a flat
pork skin based gel block. A razor blade cut 100 − 110 µm deep from
the vitreal surface was performed to isolate the inner retina. These
inner retinal tissues were maintained in culture for 12 to 36 hours on
polycarbonate transwell (Corning) in Neurobasal + B27 medium.

3.2.9 Multi electrode array recordings

Retinal explants were transferred onto a cellulose membrane prein-
cubated with polylysine (0.1%, Sigma) overnight. A NIR-sensitive
photovoltaic implant was inserted on the cellulose membrane with
implant electrodes facing the photoreceptor side of the retinal ex-
plant. Once on a micromanipulator, the retinal explant was gently
pressed against a Multi electrode array (MEA256 100/30 iR-ITO; Multi-
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Channel Systems, Reutlingen, Germany), the retinal ganglion cells
facing the MEA recording electrodes. The retinal tissue was contin-
uously perfused with Ames medium (Sigma-Aldrich, St Louis, MO)
bubbled with 95% O2 and 5% CO2 at 35 ◦C at a rate of 8 mL.min−1.
Spontaneous spiking activities from retinal ganglion cells (RGCs) were
recorded after filtering the signals from each electrode below 300 Hz
(Butterworth filter, 2nd order). Spikes were attributed to individual
cells using an in-house spike sorting algorithm. Spike velocity were
then calculated according to the protocol previously reported (Li et al.,
2015). The implant was stimulated through the MEA using an NIR
laser (2.5 W, 880 nm Laser 2000). This laser was identical to the ones
used by Pixium Vision during dry electro-optical characterizations.
Output light intensities were calibrated to range from 0.1 mW.mm−2

to 5 mW.mm−2 while NIR patterns were created using a Digital
Micro Mirror Device (DMD, DLi innovations). To define whether
NIR-elicited spikes were resulting from bipolar cells or direct RGC
activation; the glutamate receptor blockers, LAP-4 (50 µM) and CNQX
(100 µM), were added to the AMES medium. RGC activity was de-
fined as the average number of action potentials in a 40 ms window
following the stimulation artifact. The latter lasted during the stim-
ulation pulse and prevented spike detection within that period. The
cell response threshold was set at level exceeding the cell spontaneous
activity by three-fold.

3.2.10 Histology

Retinal tissues were fixed overnight at 4 ◦C in 4% (wt/vol) paraformalde-
hyde in phosphate buffered saline (PBS; 0.01M, pH 7.4). The tissue
was cryoprotected in successive solutions of PBS containing 10%, 20%
and 30% sucrose at 4 ◦C and embedded in OCT (Labonord, Villeneuve
d’Ascq, France). Retinal sections were permeabilised for five minutes
in PBS containing 0.1% Triton X-100 (Sigma, St. Louis, MO) and rinsed.
For immunolabelling, retinal fragments were incubated in a blocking
solution in PBS (1% bovine serum albumin (Eurobio, Les-Ulis, France),
0.1% Tween 20 (Sigma)) for 1 h at room temperature. They were then
incubated for one night at 4 ◦C with primary antibodies in a blocking
solution. The antibodies used were a monoclonal antibody directed
against mouse G0α (1:200, Chemicon, Darmstadt, Germany) and a
polyclonal rabbit cone arrestin (Luminaire junior, LUMIj, 1:20,000).
The fragments were rinsed and then incubated with secondary anti-
bodies: donkey anti-mouse IgG and donkey anti-rabbit IgG antibodies
conjugated to AlexaTM

488 and AlexaTM
594, respectively (1:500, Molec-

ular Probes, Invitrogen, Eugene, Oregon) for 1 h at room temperature.
Cell nuclei were stained with 4’,6-diamidino-2-phenylindole (DAPI),
which was added during the final incubation period. Sections were
rinsed then mounted with Fluorsave reagent (Permafluor) on a mi-
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croscope slide. Confocal microscopy was performed on an Olympus
FV1000 laser-scanning confocal microscope.

3.2.11 Human retina ex vivo recordings

To further control the ability of photovoltaic implants to activate
human retinal neurons, we tested their efficacy on a post-mortem hu-
man retina. The eye was dissected 8 hours after the time of death and
retinal explants were cultured for 48 h without photoreceptor ablation.
Despite holes in the inner nuclear layer, the tissue structure appeared
well preserved (3.3a,b). Full field measurements were performed using
an implant with 100− µm-wide pixels. 3.2c,d, show a raster plot and
post-stimulus time histogram (PSTH) of 120 stimulations at 1 ms and
5 mW.mm−2 and 3.3f,g, show the evolution of the number of action
potentials with pulse duration and stimulation intensity for 2 cells
from this human retina. Less action potentials were observed using
the human retina compared to the NHP retinas’ recordings. This
is likely explained by the lack of oxygen and nutrients during the
postmortem interval before dissection and culture.

3.3 results

3.3.1 Ex-vivo

After adapting the fabrication process of these photovoltaic implants
to obtain a clinical-grade device (1 mm or 1.5 mm wide, 30 µm thick,
140 or 100 µm electrode pitch), we here investigated their efficacy
and spatiotemporal resolution in the degenerated non-human primate
(NHP) retina. The implant efficacy was first assessed ex vivo on a
NHP retinal model of photoreceptor degeneration. We generated
this blind model by slicing off the retina in its thickness using a
vibratome to eliminate the photoreceptor layers (3.1b, 3.1c). Pieces
of such blind NHP retina were kept in cultures for few days and
recorded on a multielectrode array (MEA, 3.1a). Retinal ganglion
cells (RGCs), the retinal output, were recorded while stimulating the
photovoltaic implant located on the bipolar cell side in place of the
removed photoreceptors, bipolar cells are presynaptic to RGCs. RGCs
generated spikes in response to full-field pulses of NIR light (880 nm)
at a low NIR irradiance (0.48 mW.mm−2, 2 retinas, 166 cells) for
4 ms flashes. When varying the flash duration (1 to 10 ms), peak
responses were reached at 1.9 ms duration for full field stimulations
with 1 mW.mm−2 (2 retinas, 166 cells). With the shortest stimuli,
responses were observed with latencies of around 20 ms after the
stimulation artefact (3.5 mW.mm−2, 4 retinas, 99 cells). Application
of synaptic blockers (LAP-4, CNQX) led to the disappearance of these
RGC responses, indicating that this spiking activity was due to bipolar
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cell activation rather than direct RGC stimulation (3.1h) in agreement
with a previous report in rodents (Mathieson et al., 2012). However,
direct RGC activation cannot be completely excluded because the
stimulation artefact could dissimulate rapid spike initiation. Full field
stimulations also elicited RGC spikes in a postmortem human retina
(3.3).

Because vision requires pattern recognition with high spatial res-
olution, we characterized the response to single electrode activa-
tions (3.1d,e,f). RGC activation was obtained upon higher intensities
(4mW.mm−2) and longer stimulation durations (5.4 ms) (3 retinas, 236

cells, 3.1g), parameters which remain below the radiation safety limits
for chronic use (Lorach et al., 2016). To further assess spatial resolution
of the retinal stimulation by the implants, we mapped the electrical re-
ceptive fields (eRFs) of RGCs using single electrode stimulations (4 ms,
10 Hz, 5 mW.mm−2) in a pseudo-random manner. 3.1g,h illustrate
the eRF of a RGC with a single stimulating electrode (100 µm pitch)
while its neighbors generate no response. Out of the 22 recorded cells,
9 cells responded to only one single electrode (100 µm pitch), 2 cells
responded to 2 electrodes when stimulated independently and no
cells responded to 3 or more electrodes. Similarly, with a larger pixel
size (140 µm), on 77 recorded cells from 3 retinas, 41 cells responded
to a single pixel, 8 cells to 2 separate units and 0 cells to 3 or more
units. To define RGC types activated by these NIR stimulations, we
measured their spike propagation velocity as previously described
and found velocities (0.56 ± 0.1 m.s−1, N=99) consistent with that of
midget RGCs (Li et al., 2015). Their single electrode receptive fields
are in agreement with the small dendritic field of midget cells in the
recorded perifoveal area. This selective single electrode activation of
midget RGCs provided the first evidence for high resolution in the
blind non-human primate retina.

3.3.2 In-vivo

To further translate these photovoltaic implants to clinical trials, we
developed the surgery to introduce them in the subretinal space on
living NHPs (Macaca fascicularis, P1-3, 3.2a). The consecutive reti-
nal detachment from the underlying retinal pigment epithelium and
choroid induced photoreceptor degradation in the retinal area facing
the implant as indicated by the disappearance of photoreceptor layers
(ONL) on in vivo OCT scans (3.2b and 3.4). Further histological exami-
nations and multifocal electroretinograms confirmed photoreceptor
degeneration (3.5, 3.6) in agreement with a previous study in normal
rats (Lorach et al., 2015). This local degeneration of photoreceptors
in the implant area produces a blind spot modeling retinal diseases
with photoreceptor degeneration. It enabled us to assess if NIR ac-
tivation of the photovoltaic implant can activate the corresponding
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Figure 3.1 – RGC responses to full field and single electrode activations
on an ex vivo blind NHP retina. (A) RGC recording configura-
tion on a multielectrode array (MEA) with the implant (yellow)
above bipolar cells. Inset: the wiring diagram for a single im-
plant unit, consisting of two photodiodes connected in series
between the active central electrode (1) and the surrounding
ground grid (2). (B,C) Histological sections of a control NHP
retina (ONL outer nuclear layer, INL inner nuclear layer, GCL
ganglion cell layer) (B) and a retina after vibratome sectioning
the photoreceptor layers (C). The removal of photoreceptors is
illustrated by labeling cone photoreceptors (Cone arrestin in
red) and ON bipolar cells (G0α protein in white), with DAPI
nuclear staining of the cell layers (white), scale bar 20 µm. (D)
RGC responses to full-field stimulations (black) and single im-
plant electrode stimulations (red) while varying near-infrared
illumination power with 4 ms pulses (error bars are standard
deviations) (E) Thresholds measurements after full-field stimu-
lations (black) and single pixel stimulations (red) with varying
near-infrared stimulation pulse widths at 1 and 4 mW.mm−2

respectively (error bars are standard deviations). (F) Spiking
frequency during a pharmacological test showing the suppres-
sion of the implant-elicited activity by synaptic blockers. "SA"
stands for spontaneous activity and "stim" stands for tests in-
volving 120 stimulations at 2 Hz, 4 mW.mm−2 using an implant
with 100 µm pixels. (G) Spike histogram of a RGC showing an
increase in its spiking frequency only for pixel 60 (10 ms and
4 mW.mm−2). (H) Electrical receptive field of the RGC recorded
in (G) after stimulation of individual implant electrodes (100 µm
pitch).

blind retinal area in vivo. Three NHPs underwent the surgery with
an implant positioned parafoveally with an electrode pitch, 140 µm
for P1 and 100 µm for P2-P3. These animals were trained to perform
a saccade detection task to demonstrate perception (3.2c). After a
maintained central fixation for 300 ms on a square spot, a peripheral
stimulation was presented within less than 9 ms while removing the
central target. After an initial training period on a computer screen,
the test was conducted on a modified slit-lamp allowing visible and
NIR pattern stimulations using a Digital Micro-mirror Device (DMD)
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(3.7). Due to optical constraints, the left eye was used for eye-tracking
while stimulating the implanted right eye. Daily training involved
immediate rewards for proper center-out saccades in the correct pe-
ripheral direction of the visual field, divided in 36 or 72 angles (3.2c).
Experiments consisted of 100 to 200 pseudo-random trials including
controls (10%: DMD in OFF position; 10%: light sources OFF). For
controls, the reward was supplied for maintained fixation at the center
for 300 ms after the disappearance of the central fixation target. Out of
345 control tests, only 6 failed; 4 of them corresponding to eye blinks.
The remaining 2 saccades had neither the latency, nor the spatial accu-
racy towards the peripheral control position set on the DMD. Under
visible stimulations, the three animals performed successful saccades
at a rate higher than 90% except at the implant location (3.2c and 3.8).
The locations of these blind spots finely defined with 2◦ test pitch
(3.8) were consistent with the implant position defined on the fundus
and OCT images (cf 3.2a,b). The visual field covered by the implant
ranged from 9 to 18◦ for P1 in the lower part of his visual field and 5

to 14◦ for P2 and P3 in the upper left part of their vision.
The high rate of correct trials under visible light enabled us to

interleave occasional (< 10%) stimulation trials of NIR light pulses
(880 nm) without generating animal frustration. NIR stimulations
were targeted either on the implant or away from the implant for
controls. One animal, P2, responded to NIR stimulation in the direc-
tion of the implant with repeated successful saccades whereas NIR
control stimulations away from the implant induced no saccade (3.2c).
Modulating NIR intensities indicated that the maximum responses
to implant stimulation were reached at 300− 400 µW.mm−2 with a
threshold at 200 µW.mm−2 (3.2d). The NIR sensitivity of the implant
in vivo was therefore well below radiation safety limits for chronic
use (Lorach et al., 2016). At the maximum response, the saccade
reproducibility and response latencies were comparable to those of
natural visible light perception (3.2f and 3.9). We then modified the
other parameters of the NIR spot stimulation: size, number of flashes
and flash duration. To further reduce the possibility for an eventual
natural perception of the NIR light in these experiments, the ambient
light was turned on during the tests and the NIR intensity kept at
800 µW.mm−2 (3.8right). Decreasing the spot size showed that the
response maximum and smallest latencies were reached for a 175 µm
spot size on the implant (3.2e). This spot size correspond to the spot
required to fully cover one implant unit (100 µm) regardless of the
respective implant position. This single electrode visual perception
is well in agreement with our single electrode RGC responses ex vivo
(3.1). Three flashes (10 ms) were sufficient to generate systematic
perceptions whereas the reproducibility of the responses decreased
with stimulations below 4 ms (3.9) in agreement with our ex vivo mea-
surements during single electrode activation. These behavioral results

[ December 11, 2018 at 19:30 – classicthesis v4.6 ]



36 visual perception with a photovoltaic subretinal prosthesis

indicate that the photovoltaic subretinal implant can stimulate the
NHP degenerated retina to elicit a reliable behavioral motor response
indicative of a phosphene perception with stimulation parameters as
low as 200 µW.mm−2 NIR intensity, a single electrode spot size or
three 10 ms flashes.

Figure 3.2 – Single electrode activation in a behaving monkey. (A) Eye
fundus of P2 showing the photovoltaic implant. (B) In vivo OCT
image illustrating the loss of photoreceptor layers above the
implant of P2. (C) Each row represents the different types of
stimulation: visible, near-infrared and controls. After central
fixation (red dot, 300ms), a peripheral stimulation (half a degree)
is presented every 2◦ in the periphery (orange and red discs).
The NHP generates saccades in all directions except in the upper
left part of the visual field corresponding to the implant position
while with NIR stimulation (red circles), the NHP generates
saccades only in this area. For controls (no light or DMD off),
no saccade was observed. (D-G) Spot size and intensity depen-
dences of the NIR stimulations. Percentages and latencies of
successful saccades towards the implant when varying either
the NIR power (spot size: 300 µm) or the stimulation spot size
(illumination power: 800 µW.mm−2). Grey and purple dots
represent two different days of experiment. The horizontal linex
represents the averaged latency following visible stimulations.

3.4 discussion

One NHP, P1, was not responding to the NIR stimulations and we
were not able to measure artefacts upon NIR stimulations suggesting
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that we were not able to activate this implant (140 µm pitch) in vivo
(3.10b) while P2 showed clear artefacts upon NIR stimulations (3.10c).
In P3, the 100 µm unit implant was properly activated as indicated by
the large NIR-induced artefacts (3.10d). The lack of saccades for P3

may result from the perceptual differences between electrical stimu-
lations and natural stimuli. With other retinal prostheses, implanted
patients often acknowledged having difficulties to identify electri-
cally elicited phosphenes as visual stimulations. Another explanation
could lie in the rapid plasticity affecting the visual cortex in response
to a lesion. Indeed, cortical areas corresponding to a blind retinal
lesion were found to be rapidly reprogrammed to respond to other re-
gions surrounding the scotoma (Gilbert and Wiesel, 1992; Heinen and
Skavenski, 1991; Calford et al., 2003; Giannikopoulos and Eysel, 2006).
This plasticity, which aims at producing a perceptual filling-in of the
blind spot, can occur in days (Murakami, Komatsu, and Kinoshita,
1997). However, it remains unclear why one NHP would have had
such a fast filling-in while the other had not. Cortical plasticity was
similarly reported in patients with active retinal implants (Castaldi
et al., 2016), and it likely enhanced their implant-visual perception by
recruiting larger cortical circuits for their restored visual field.

These experiments have demonstrated that the NIR-sensitive, fully
wireless photovoltaic implant can activate the blind non-human pri-
mate retina ex vivo and in vivo at intensities below radiation safety
limits with a single 100 µm electrode resolution. This high resolution
relies on the ground grid configuration confining electrical stimula-
tions, which could have major implications for the development of
other brain/machine interfaces. The Prima wireless design allows
rapid and simplified surgery while providing gaze compatibility. This
study has contributed to the acceptance for human clinical trials in
dry age-related macular degeneration by the French and American
agencies. Simulations indicate that thanks to its single electrode res-
olution, these implants could enable patients to reach a theoretical
visual acuity 3/60, which is the threshold for blindness as defined
by the World Health Organization (Mariotti, 2010). This therapeutic
strategy could therefore provide the first treatment for geographic
atrophy, the advanced form of dry age-related macular degeneration.
The clinical implant with its 378 electrodes or a combination of several
implants could thus provide blind patients autonomous locomotion,
face recognition and text reading.
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3.5 supplementary figures

Figure 3.3 – Human retina stimulation. Cross sections of a non-human
primate retina (A) and human retina (B). Cones were marked
using cone arrestin (red), bipolar cells with G0α (green), and
cellular bodies with DAPI (blue). (C,D) Raster plot and PSTH
of 120 full-field stimulations at 1 ms and 5 mW.mm−2. Full-
field measurements were performed using an implant with
100 µm pixels. (E) Shape of the action potentials recorded. (F,G)
Evolution of the number of action potential in a 40 ms window
post full-field stimulus following with varying near-infrared
power at 4 ms and stimulation pulse width at 5 mW.mm−2

respectively (error bars are standard deviations).
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Figure 3.4 – Non human primates imagery. (A-C) Fundus images two
weeks post implantation for P1-3 (implants are 1.5 mm in size).
(D-F) OCT images of the implant below P1-3 retinas.

Figure 3.5 – Photoreceptor degeneration above the implant. (A-C) Confo-
cal images of a NHP retina at different depth from the implant.
The implant is located on the bottom part of the pictures. Cones
were marked using cone arrestin (green), bipolar cells with G0α
(magenta), and cellular bodies with DAPI (blue). There were 5

weeks between implantation and implant/retina retrieval.

Figure 3.6 – Photoreceptor degeneration. (A) Multifocal electroretinogram
of a non-human primate retina before implantation (B) elec-
troretinogram of at the same location three weeks after implan-
tation
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Figure 3.7 – Stimulation apparatus. (A) Picture and (B) schematic of the
stimulation apparatus. The stimulation system included a single-
mode NIR laser (880 nm) and a visible light source (590 nm).
The two illuminations were merged together thanks to a dichroïc
mirror to illuminate a Digital Micro-mirror Device (DMD, DLi
innovations, example of picture shown in inset) to form the
patterns. We mounted the optical system on a slit lamp (Zeiss SL-
130). Three near-infrared non reflective lenses were placed after
the DMD to create a collimated image of the DMD pattern. HWP:
Half wave plate, QWP: Quarter wave plate, PBS: Polarizing beam
splitter, C,L: Collimators.
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Figure 3.8 – Visual fields and natural NIR vision. (A,C,E) Visual fields
of P1-3 respectively. The different blind spots correspond to
the implant, the surgery and the optic nerve. The latencies
of the saccades are depicted through the colors. (B,D,F) Near-
infrared natural vision for P1-3 respectively, with and without
ambient red light. The ambient red light was aimed at creating
a red background for the near-infrared stimulation, lowering the
contrast.

[ December 11, 2018 at 19:30 – classicthesis v4.6 ]



42 visual perception with a photovoltaic subretinal prosthesis

Figure 3.9 – Implant saccades analysis. Percentage of successful saccades
towards the implant (A,B) and latencies (C,D) when studying
stimulation pulse widths and number of flashes. Nine implant
stimulation locations were used in a 3x3 array. Stimulations were
separated by 5 degrees of visual angle. Grey and purple dots
represent two different days of experiment, the horizontal line
represent average response time following visible stimulations
(error bars are standard deviations).
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Figure 3.10 – Implant electro optical characterization. (A) Voltage measure-
ment above a single pixel stimulation at 5 mW.mm−2 (B, C,
D) electroretinograms of P1, P2 and P3 respectively showing
retinal responses following six flashes of visible illumination
(595 nm - orange curve) and NIR illumination (2.4 mW.mm−2,
red curve) in the implanted eye. NIR flashes did not induce
any response in the control eye (2.4 mW.mm−2, black curve).
All flashes are represented by black rectangles.
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4
D I L AT I O N A N D C O N T R A C T I O N O F T H E P U P I L A S A
R E L I A B L E B I O M E T R I C

The problem of pirating data is more present in daily life than ever
and biometric technology seems to be an effective answer. State of
the art shows however that even this technology has weaknesses to
take into account, especially face recognition which has been very
popular in these recent years. The liveness detection seems to be the
more effective countermeasure against most of the threats, however
for face recognition several spoofing techniques stay available. Based
on recent studies that show the biometric potential of the pupil, our
work proposes a robust biometric solution able to be paired with
face recognition. Our method relies on a live response to an active
light stimulus which is able to provide an effective liveness detection
and achieve 0.94 adjusted mutual information in recognition using a
hidden markov model of the pupil behavior.

4.1 introduction

Nowadays, it is easier than ever to steal and spoof personal data
due to technological progress and the variety of available attacks.
Biometric technology is now critical for personal, national and global
security, making the search for hacks all the more desirable (Evans et
al., 2015). Progress in synthetic or transformed voices can show certain
limits of common recognition systems (Jin et al., 2008, Faundez-Zanuy,
2004), highlighting the need for effective countermeasures.
Despite the iris and fingerprint being the most robust biometrics
(Bednarik et al., 2005), they require dedicated and accurate sensors,
in addition to being unpopular with the general public (Prabhakar,
Pankanti, and Jain, 2003). Facial and speech recognition algorithms
are able to work with regular sensors and could easily be used in daily
life, they are however less robust (Bednarik et al., 2005). State of the
art biometric technology shows several weaknesses, mainly, liveness
detection (Smith, Wiliem, and Lovell, 2015, Wen, Han, and Jain, 2015,
Tirunagari et al., 2015, Garcia and Queiroz, 2015, Sanchez et al., 2015,
Sizov et al., 2015). Facial recognition algorithms are frequently spoofed
by images, video sequences or 3-D models that circumvent liveness
detection. Algorithms that only take into account 2-D textures or
projection of a regular camera sensor can be fooled by a simple picture
of the subject (Wen, Han, and Jain, 2015). Algorithms that are using a
grid projection or a stereo-camera to evaluate depth as a way to avoid
picture spoofing, can also be fooled using 3-D models (Erdogmus and

47

[ December 11, 2018 at 19:30 – classicthesis v4.6 ]



48 dilation and contraction of the pupil as a reliable biometric

Marcel, 2013, Erdogmus and Marcel, 2014). A strategy to improve
the accuracy of less robust methods is to combine multiple biometrics
(Gragnaniello et al., 2015).
(Villalobos-Castaldi and Suaste-Gómez, 2013) shows that the pupil
light reflex could be used as a countermeasure to liveness fooling and
that pupil dynamics could be a reliable biometric. Using a model of
natural eye movements (Komogortsev, Karpov, and Holland, 2015)
is a good countermeasure for static representation or artificial 3-D
models, however video sequences or masks could bypass it. A live
pupil’s response to light stimulus (Czajka, 2015) provides a further
safety countermeasure to artificial models by triggering spontaneous
pupils oscillations.
In this study, we present a framework that uses a light stimulation
of the subject’s eye eliciting a pupil’s response to provide a reliable
biometric based on dilation/contraction of the pupil that could be
easily paired with other biometrics via widely accessible eye-tracker
technologies (Cheng and Vertegaal, 2004). We measure the variations
of the subject’s pupil area using a scan of the visible spectrum from
red to the purple at controlled luminance. Dilation and contraction are
controlled by the sympathetic and the parasympathetic circuits that
are directly relying on the retina (Wang and Munoz, 2015) therefore
the distribution of the photoreceptors’ types and their connections
with the ganglion cells. The distribution of photoreceptors is highly
specific (Williams, 2011) and sustainable (Weinrich et al., 2017) for each
individual, providing specific behaviors in the light reflex mechanism
of the pupil. These variations make use of the subject’s sensitivity to
the visible spectrum as a specific footprint.

4.2 methods and materials

4.2.1 Light stimuli

As presented on figure 4.1, a light stimulus is sent to the subject’s
eye and the pupil’s area variation is recorded by an eye-tracker (eyelink
2 sr research). The stimulus is a scan of the visible spectrum across
time as described in figure 4.1. The wavelength of the light source
switches from purple to red and from red to purple using the variation
of only one primary RGB component at a time (see figure 4.2).

While the wavelength of the light source is changing, its luminance
is controlled by the function represented by the curve L on figure 4.2.
To study the influence of the luminance itself, the same stimulus is
displayed colorless, by scanning from black to white. The eye tracker
records the signal at 60Hz and we perform a z-score normalization
and a level crossing to extract each significant change. A level is
chosen as a variation of 0.01 on a z-scored signal.

[ December 11, 2018 at 19:30 – classicthesis v4.6 ]



4.2 methods and materials 49

Eye-tracker

Analysis

Generator L
u

m
in

a
n

c
e
 (

c
d
/m

2
)

Time (sec)

Figure 4.1 – This figure describes the experimental setup and the performed
scan of the visible spectrum. The light source 20 represented
by a screen shows the stimuli to the subject’s eye. Its dilation/-
contraction is recorded by the eye-tracker 10 and sent to the
algorithm 40 using a processing tool 30. We describe a scan of
the visible spectrum as follow: the light source smoothly shifts
its wavelength from purple, to blue, to green, to yellow, to red
and by the same way from red to purple. The luminance is
controlled to stay constant according to the calibration of the
display screen.

4.2.2 Database

The database of 6 subjects was recorded over a month. Each subject’s
pupil was recorded three days per week with one day break between
each day and between 2 and 4 trials of 45 seconds were recorded each
day. A trial is the record of the subject’s pupil when the complete
stimulation presented in figure 4.2 is performed. The eye tracker
calibration was performed before each trial.

4.2.3 Algorithm

The subject’s pupil dilation/contraction is processed as a mono-
dimensional signal that varies across the time, according to the wave-
length and the luminance of the visible spectrum. The wavelength,
or the color, of a light source and its luminance are used as a way
to characterize and contextualize those variations (See 4.2.4). The
Red, Green, Blue code (RGB) is used to describe each color and the
luminance is measured in cd.m−2.
We choose in this study to work using the event based paradigm
to analyze the signal as it allows an effective representation of the
changes in the signal. Lets assume an event in a signal as a triplet as
presented in equation 4.1:

evk = {tk, xk, pk} (4.1)

Where for each k, tk represents the timestamp of change in the dila-
tion/contraction of the subject’s pupil, xk the value and pk the type
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Left eye

Right eye

Time (sec)

(a)

(b) (c)

Figure 4.2 – (a) Those six curves represent the course of a recording. The
top two curves represent the value of the subject’s pupils area
across the time. Curves labeled R, G and B represent how the
wavelength of the light source is controlled across time while the
curve labeled L represents its luminance. Dotted dashed lines
mark the half of a trial while dashed lines mark the beginning
and the ending of the trials. For two subjects (b) and (c), the left
curves represent the variations of the subject’s left pupil across 1

cycle in function of the luminance, while the right, the subject’s
right pupil. We can see that a same subject’s pupil can vary for
each cycle, while staying stable enough to be differentiated from
another subject’s pupil.

of behavior of this change, called polarity. We based our descriptor
on the concept of time surface introduced by Lagorce et al., 2016 and
adapted to mono-dimensional signal by Haessig et al., 2019 that de-
scribes local spatio-temporal patterns around an event. A time surface,
generated for each incoming event, is a matrix that contains the delay
between the current event and its neighborhood stored using their
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positions and polarities. An exponential kernel is applied to those
delays according the equation 4.2:

TSi = e
−(tk−ti)

τ (4.2)

Where tk represents the timestamp of the current event and ti, the
timestamp of the neighborhood. While using the same online learning
rule presented in Haessig et al., 2019, we introduce a sparse propa-
gation criteria to improve both feature extraction and speed of the
algorithm. This criterium is explained in the algorithm 2 and could be
summarized as: each time a time surface is generated and attributed
to a cluster, if the current event is not part of the region of the previous
propagated event, or the current event is associated to a different
cluster of the previous propagated event, then the current event is
propagated.

Algorithm 2 Sparse propagation criteria in the Hots online routine for
one layer from Haessig et al., 2019

Ensure: {ti ; pi ; xi} as the timestamp, polarity and position of each new
incoming event
lastp← −1

lastNeighborhood← ∅
procedure Sparse propagation(ti, pi, xi) . Receive a new incoming
event
Compute current context Si
tpast(pi, xi)← ti . update past
Si ← exp −(ti−tpast)

tau . compute around xi
Compute distances

for each centers Mk do
dk ← −log

(∑
k

√
Mk . Si

card(Mk).card(Si)

)
end for
Propagation

k∗ ←argmin
k

(dk)

if xi 3 lastNeighborhood OR k∗ 6= lastp then
lastNeighborhood← around xi
lastp← k∗

Propagate(ti, k
∗, xi)

end if
end procedure

The algorithm is using two layers and achieves real-time analysis of
the signal by needing less than half a second to process a one minute
trial. This computation time was performed with a single thread
Matlab code on a regular desktop computer (Intel Core i7-6700 CPU @
3.40GHz, 32GB of RAM, running Debian 9.3 Stretch). The algorithm’s
parameters are registered on table 4.1.
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Table 4.1 – This table contains the parameters for the HOTS algorithm to
perform the presented results.

\ τ radius input polarities output polarities

Layer 1 250 ms 15 2 14

Layer 2 500 ms 60 14 13

4.2.4 Classification

In their work, Lagorce et al., 2016 introduced the signature of
an example as an histogram of polarities. In the case of the pupil,
we decided to focus the signatures on the transition between each
polarity and build a transition matrix per color displayed that brings
a signature close to an Hidden Markov Model (HMM) of the subject’s
pupil behavior. These complex signatures allow a full description
of the subject’s pupil behavior by describing stable states as well as
unstable states.
The signature of each suject’s pupil is a succession of polarities across
time. To sort and link these polarities to the projected colors, a 3-D
transition matrix is built for each trial of each subject, where the third
dimension represents a displayed color and the two first dimensions
represent the occurence of a polarity to follow another, normalized
by the amount of polarities while this color is displayed. Figure 4.3
shows that some polarities seem to be color specifics, have a role
of color transition or even be a stable state for some colors. This
representation leads to an effective characterization of the subject’s
pupil and distinction of a subject from another.

4.3 results

Details of the methods introduced here can be found in sections
4.2.3 and 4.2.4. We recorded a database of 6 subjects to perform our
proof of concept, with twenty examples per subject, and trained a two
layers HOTS (Haessig et al., 2019) to achieve our results. The database
was randomly divided in a learning group and recognition group,
respectively 80%, 20% and we performed a cross-validation. Results
are summarized in table 4.2 using the Adjusted Mutual Information
(AMI) for reliability and the variance of the cross-validation: Unlike the
recognition rate (trace of the confusion matrix divided by the sum of
all the elements within the confusion matrix), this measure is adjusted
by luck, meaning that a zero value stands for luck and a 1 value
for a perfect classification. Vinh, Epps, and Bailey, 2010 highlighted
the importance of correcting the recognition rate, especially for small

[ December 11, 2018 at 19:30 – classicthesis v4.6 ]



4.3 results 53

(a)

(b)

(c)

Figure 4.3 – We use a transition matrix to represent the variations of the
subject’s pupil dilation/contraction across the presented colors.
Here are 3 examples of this matrix, each graph representing the
model of a trial for a different subject. Each color in this Hidden
Markov Model (HMM) represents the transition between the
polarities when this color is sent to the subject’s eye. We can
see that some polarities never occur when specific colors are
displayed as P9 and P8 for red and some polarities have a role of
color transition as P7 for magenta. Some colors seem to induce
stable behaviors which are represented by internal loop with
high transition value as P7 for cyan and yellow and P6 for blue.
In each subjects’ graph we can see that some polarities have a
common role as P6, P3 and P5 but with different weights and
some others are very different as P10. By computing the distance
between these graphs, we are able to recognize a subject from
the others.
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Table 4.2 – This table contains the classification results of the database. The
first two columns present the results for the hidden markov model
as a signature, while the two last, for the histogram representation.
We show that despite good results on layer 1, the histogram
representation does not improve the AMI on layer 2 and maintains
a high variance, while the hmm representation leads to a better
representation of the information by both increasing the AMI and
decreasing the variance.

\ hmm AMI hmm Variance hist AMI hist Variance

Layer 1 0.55 0.057 0.77 0.058

Layer 2 0.94 0.015 0.79 0.045

databases, and provide this measure to fully use the interval of [0, 1]
and the values of the confusion matrix as the false positives. As it is
showed in table 4.2 the histogram representation performed less than
the hmm representation regarding both the AMI and the variance.

4.4 discussion

We presented in this work the analysis of a new light stimulation as a
pupil’s behavior based biometric and its proof of concept by achieving
a 0.94 AMI on a database of 6 subjects. This preliminary result looks
promising and encourages us to recruit more subjects in order to
improve the light stimulation protocol. The size of the database
does not yet allow us to draw conclusions about the distribution
of information during the stimulation, including the highlighting
of less significant parts. Moreover, the observed hysteresis in the
relation between the projected luminance and the variation of the
pupil dynamics suggests that it is difficult to guide an experimental
change via the analysis of an isolated segment. The presentation of
a condition in a long process and the presentation of this condition
isolated could lead to very different experimental results and bring
new conclusions. Under its present structure, a light stimulation of 45

seconds as a biometric is too long to be used in daily life while face
recognition could be achieved in less than a second. Even though the
pupil is a slow organ, by achieving a recognition in the order of the
second, this method could be easily paired with a face recognition
algorithm when a high security rate is required. By using the transition
of the subject’s pupil behavior according to the displayed color, the
analysis is highly sensitive to blinks that lead to a reset of the light
stimulation and increasing the delay to achieve recognition. The light
stimulation could be improved by the isolation of the most reliable
color transitions to reduce the period of the scan oscillation and reduce
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the impact of a blink in the middle of a sequence. A lock-and-key
approach could also be considered. The subject would choose a light
sequence as key and its pupil would be the lock. In this configuration,
the subject’s pupil dynamics should aim to verify whether the expected
behavior is matching. The HMM representation that we present in this
work explore new possibilities to encode complex behaviors from local
behaviors and characterize finely the impact of each part of the signal
that could make this light stimulation useful in medicine, especially
in ophthalmology, to diagnose dyschromatopsia and color deficits.
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Computer science and biology were the driving force behind most
of my work. The recurrent question of my Ph.D. being: “how would
the brain compute a specific task if neurons and in a broader way
precise timing are to be used?”

Following this line of thought and using such hypothesis has shown
to be a fruitful path. It is the scope of the research group I belong
to, and the main topic of my supervisors’ work since more than two
decades. In this Ph.D., we initiated a new line of research by going
beyond what the team is used to do, that is to infer from pure thought
using the hypothesis of precise timing how to compute observed or
“thought to be” behavior of the brain.
In my Ph.D., we have decided to introduce a shift in our methodology
by allowing ourselves to operate also on biological recorded spikes
and not only using artificial spikes from silicon retinas or other sensors.
The scope being to be able also to follow the methodology of more
traditional fundamental sciences that collect data, derive models and
infer the presence of a possible general scheme behind the observed
phenomenon.
In my case the natural phenomenon were recorded behaviors possibly
with associated neural activities. The scope being to transpose them
into an understandable representation by a computer. In this case the
“life line” of our thought was to always be able to reliably ensure the
validity of our algorithms by matching results with recorded data and
the initial hypothesis.
Silicon retinas and other neuromorphic sensors were initially devel-
oped to replicate some limited but core functionalities of the brain in
a simplified manner and to some extent to match a certain level bio-
logical retinas. Operating directly on artificial data output from these
sensors allows grasping the general problem to be solved, and explore
new possibilities. The hope of the field of neuromorphic engineering
is that this “silicon copy” of biology contains sufficient information to
unveil some “truth” about the brain that we would be able to scale up
in a second stage on more realistic data.
The work presented in section i aimed to demonstrate such a process.
We considered a neuromorphic algorithm computing optical flow that
has been initially developed for silicon retinas. We showed that the
algorithm efficiently operates on the activity of ganglion cells. The
method was able to provide low reconstruction errors despite the fact
that silicon retinas do not fully reproduce all the information encoded
by the biological retina and the complexity of its cells. Although
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designed from a reduced space of information that assumes that every
pixel of the retina is performing the same type of acquisition (change
detection), results show that considering only a single channel of
information that uses time for its encoding sheds light on a general
principle that can be robustly transposed to any type of temporal in-
formation. We expect all precise timing event-based visual algorithms
developed by the lab since its creation to be successfully operating on
biological retina data. The real question becomes then, is the brain
really computing in the same way? This is a hard question to answer,
because it involves being able to record simultaneously from all visual
brain areas if one wants to be certain.
This is of course doable, but this is far beyond the capabilities of our
lab currently centered on recording the retina. I believe that in the
near future once the team will acquire more physiology competence,
we will be able to design the exact experiments required to go beyond
this initial step. As for now, we can only refer to existing findings in
the brain.
It is general knowledge that brains are highly recurrent, and we are
deep believers that the type of work that should be pursued must be
able to tackle dynamic and adaptive stimulation. We currently use
multi electrode arrays that allow us to record the electrical activity
of the retina while being stimulated by a video stream. These arrays
allow us a global overview of the cells’ activity. Whether it is at the
retina or brain level, spike sorting is useful as it allows to cluster
incoming information and assign activity to classes of cells. However
currently this operation is costly and prevents us from setting up
adaptive stimuli experiments. Existing efficient algorithms are slow
and far from operating in real time. In section ii, we introduced a
different approach from what is being developed and used by the
field.
Instead of relying on conventional sampled signals, we used an am-
plitude sampling methodology to map incoming data into the time
domain. It allows an adaptive sampling of signals. If something
changes fast or slow it will always be possible to extract sufficient
samples to describe the incoming signal. It also allows naturally
compressing data and removing at the lowest level the signal redun-
dancies while increasing the signal-to-noise ratio. We used in this
work a method developed by the lab called Hierarchy of temporal
surfaces. The method has been developed to operate on any type of
temporal information and it proved to be efficient in spike sorting.
The same method combined with a probabilistic methodology has also
been used in chapter iii where we introduced another application of
event based classification tackling a study of a pupil tracking behavior
to several light pattern stimuli. We used an event-based approach
to study the variations in the expansion and the contraction of the
subject’s pupil across a scan of the visual light spectrum at a dedicated
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luminance. The subject’s unique signature relies on the presence of
pupil dynamics under specific conditions. Time surfaces seem to be
robust descriptors of event based spaces and a valuable multipurpose
front end of any type of event based computation.
In the presented experiment we combined time surfaces to describe
the dynamics of the pupil to lead in a second stage to a probabilis-
tic graph, each recording the dynamic behavior of subjects. Among
the important information, we have shown that each subject had his
own duration and transitions, encoding that remain stable across ex-
periments and stimulus. It is reasonable to wonder if this type of
signatures can be used in other applications, and to a general extent if
they are a reliable solution to this form of dynamic problems. The idea
behind event based computation is that time is the most important
information, more precisely the time separating two events. It seems
that preserving time between events is the main information needed
to solve several computational problems in signal processing. The
notion of time surface used all along the document provides perhaps
a good hint that it is a key representation when solving this type of
problems.

As a last observation, although imperfect in many aspects, I believe
my Ph.D shows that neuromorphic engineering might be correct in
stating that it has the possibility to explain part of the brain. I believe
that the general stream of research initiated by our lab that introduced
the use of time as a computation feature in several fields such as com-
puter vision, robotics and prosthesis could not have happened without
the silicon retinas. However, it seems that the field of engineering
is facing the constant temptation of staying on the zone of comfort
of what is known. Many papers tend to ignore time and use these
sensors to generate frames by summing events, or using crude binary
activity images. The scope is to avoid thinking in the time domain
and recycle what their fields has been developing for the last decades.
Although disappointing, this behavior can be explained by the fact
that there is currently no easily programmable and available hardware
able to make full use of the temporal properties of event based sensors.
I am convinced that in the near future, the power of operating in
the time domain, and writing algorithms that deal with every spike
separately and locally will prevail as soon as such a hardware will
exist. Promising work is ongoing, to cite a few, Intel’s Loihi, Ibm’s
Truenorth, GML’s Amsterdam, and many others. . .

I worked with biologists, neuroscientists, psychophysicists and
computer scientists to understand problems linked to the eye and
especially the retina to explore methods and solutions able to answer
them. During my Ph.D, I was also taught biology and physiology
that allowed me to perform dissections and recordings on rat’s retinas.
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I understand now, how difficult and time consuming it is to record
useful data, and the endless amount of external parameters that can
disrupt an experiment. As a final comment, it feels important to me
to emphasize that this type of research will necessitate a new kind
of engineers and not necessarily only bioengineers but most likely a
more hybrid version of what is being trained currently.
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A
E V E N T- B A S E D WAT E R M A R K I N G

During my thesis, I work on a side project to find a method able
to apply a robust watermark on event based data. Due to the asyn-
chronous time of events, frequency analysis usually performed in this
field is not possible and I aimed to evaluate a personal method able
to achieve good invariant properties compatible with a asynchronous
time based cloud of points. This work is on the appendix section
to show what the method is able to achieve at the present moment,
even through it is not finished yet. I demonstrated that the method
is robust to time shift, to linearly time dilation and to the addition
of a stationary blank noise on the timestamp values according some
properties of the used key. At the end of this work, I exposed some
possible attacks able to break the method and when it is possible some
ideas to countermeasure them.

a.1 introduction

Figure A.1 – Example of a visible
watermark. An image
is added to the origi-
nal image, that make
it unusable.

Figure A.2 – Example of an invis-
ible watermark. The
blue channel is modi-
fied but it is not visi-
ble on the RGB image.

A watermark is a print on a signal that allows its identification. It
can be “visible” (fig A.1) and therefore destroy a small or big part
of the signal, hence preventing its copy or fraudulent use. It can be
“invisible” (fig A.2) and allows a proper use of the signal, but as it is
marked one can still determine its origin. For instance, let us consider
that A sells a product M to B and C. M is differently marked for
B and C. Two months later, a third party D is found using product
M. A proper watermarking makes it possible to find the source of
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that leak and trace it back whether to A, B or C. The purpose of an
effective watermarking is to be difficult to erase or get around. The
ideal is a method which is difficult to crack for a third party but easy
to control for a certified user. Robust methods to create invisible
watermarking for audio and images use wavelet transforms to get a
scalable frequency coding. No methods seem to exist to watermark a
cloud of points without a sampling rate.

a.2 hypothesis

An event has a unique signature composed of a timestamp, a spatial
position, a polarity and other additional information such as triggers,
measurements, etc. An efficient watermarking must be robust to
the different use of the signal and more importantly accessible no
matter what the user is using the signal for. The events’ additional
information are too often discarded in many algorithms and can not
make suitable candidates for watermarking. Nor can the polarity
of an event as current event-base methods, for instance in optical
flow computation, manage not to take it into account. The spatial
position of an event is a suitable candidate for watermarking. However
this would imply that the encryption is robust to any morphological
transformations. The only remaining and best feature is the timestamp
of an event which stands out to be the easier to control and yet the
harder to corrupt.

In this study, the choice is to focus on a set of random pixels, which
are not a part of the key, and use a key of delays on their timestamp
signatures.

a.3 method

The aim of the method is to add a local shift in the timestamps of a
signal. This corruption leads to build a unique sequence of delays in
the signal and use this uniqueness as a reliable authentication key.
Let assume T, a vector of timestamps as:

T := (ti)06i6n−1 (A.1)

where n ∈N, and the transformation E as:

E := {(Ii); (Mi); r} (A.2)

E : T → T̃ (A.3)

where I is a set of index starting from the reference r and M a set of
time shifts, called the message, that modify the signal for each I (See
figure A.4). E leads to define the key as the duet K:

K = {(Ii)16i6k; (∆ti)16i6k} (A.4)
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Figure A.3 – The key (Eq A.4) is a sequence of paired information as delays
at expected indexations. In order to detect it, let see the vector t
of size n (Eq A.1) as the matrix described in (a). A matrix with
Ik + 1 lines and m column as m = n− (Ik + 1). The first line,
called l0, represents the beginning of each sequence that could
contain the key. By beginning with this line, lines Ii + j are
extracted to become the submatrix (b) of size (k+ 1) ∗m. Line
by line are subtracted and for each subtraction, the expected
delay divided each element that compose it, as show in (c). The
matrix becomes k ∗m. The position of the key is detected using
the covariance on each column of (c), with a confident threshold
as showed by (d) and (e).
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Figure A.4

where k ∈ N is the size of the message M and r+ Ik ∈ T̃ . The dif-
ference ∆ti represents the delay between tr+Ii and tr+Ii−1 with I0 = 0.

This methods is invariant to the following transformation:

bi = tik∗ + kc + λ
′′
i (A.5)

Where kc = k1k2 + k3 represents a constant time shift, k∗ = k2 a
constant acceleration/deceleration of the signal and λ ′′i = λik2 + λ

′
i an

added random noise centered in µ, with a variance of σ2.
If ∀ i ∈ Z, λ ′′i = 0, then the following transformation guarantees

the invariance to kc and k∗:

φ1j = bi+Ij+1 − bi+Ij = k∗(ti+Ij+1 − ti+Ij) = k∗∆tjφ ′1j =
φ1j
∆tj

= k∗

(A.6)

By applying φ ′1 for each key members the variance of φ ′1 goes to
zero (not strictly zero because of numerical encoding).

By considering the noise we get:φ2j = k∗∆tj + λ ′′i+Ij+1 − λ ′′i+Ij
φ ′2j = k∗ +

λ ′′i+Ij+1
−λ ′′i+Ij

∆tj

(A.7)

By choosing ∀j ∈ Z, ∆tj >> λ
′′
i+Ij+1

− λ ′′i+Ij , φ
′
2j
→ k∗. By increas-

ing the size of the message, the variance of φ ′2 decreases, however it
still be linked to the variance of λ ′′. Moreover, it increases the sensitiv-
ity of the key against corruption (See A.4).

To reduce this impact of the variance of λ ′′, it is more reliable to
look at the variance of the local average along the φ ′2j .

∀j ∈ Z,
∏
L =

1
L if 0 6 j < L

0 otherwise

φ3j =
∑N−1
k=0 φ

′
2k

∏
Lj−k

= k∗ + εj

(A.8)

Let assume
∏
L an average filter of size L, φ3j is the local average

of bj over the key. By applying a threshold on the variance of φ3, we
are able to distinguish the key from the rest of the signal (See fig A.3).
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a.4 known weaknesses

— If the added noise is not stationary on the key, the reconstruction
fails. (Answers: Add several keys at different positions helps)

— Truncate the signal to an other precision (ms for example) erases
the key. (Answers: unsolved, use delays larger than the ms
increase a lot the consuming time of the algorithm and make the
uniqueness the key harder to ensure)

— Add/Remove events in the tracked sequence breaks it. (Answers:
indexation could be relative at ±k but more than that we need to
classify the level of degradation that the signal is able to ensure
before the watermark falls)

— Add a second watermark to the signal could damage the previ-
ous one. (Answers: unsolved)
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