
HAL Id: tel-02865339
https://theses.hal.science/tel-02865339

Submitted on 11 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contributions to energy-efficient wireless
communications exploiting games, online optimization

and learning
Elena Veronica Belmega

To cite this version:
Elena Veronica Belmega. Contributions to energy-efficient wireless communications exploiting games,
online optimization and learning. Information Theory [cs.IT]. Université de Cergy-Pontoise, 2019.
�tel-02865339�

https://theses.hal.science/tel-02865339
https://hal.archives-ouvertes.fr


Contributions to energy-efficient wireless communications
exploiting games, online optimization and learning

Contributions aux communications sans fil efficaces en énergie exploitant la théorie des
jeux, l’optimisation en ligne et l’apprentissage

By

E. VERONICA BELMEGA

Maître de Conférences à l’ENSEA

ETIS UMR 8051, Université Paris Seine, Université de Cergy-Pontoise, ENSEA, CNRS

HABILITATION À DIRIGER DES RECHERCHES
DE L’UNIVERSITÉ DE CERGY-PONTOISE

Section CNU 61, génie informatique, automatique et traitement du signal

Defended on the 29th of March 2019 in front of the jury composed of

Pierre DUHAMEL DR, CNRS President of the jury (Président)

Marilyne HÉLARD PU, INSA-Rennes Reviewer (Rapportrice)
Giuseppe CAIRE Full Professor, TU Berlin Reviewer (Rapporteur)
Jean-Marie GORCE PU, INSA-Lyon Reviewer (Rapporteur)

Geneviève BAUDOIN PU, ESIEE Paris Examiner (Examinatrice)
Sergio BARBAROSSA Full Professor, Sapienza Univ. of Rome Examiner (Examinateur)

Inbar FIJALKOW PU, ENSEA HDR Guarantor (Garante HDR)
Dan VODISLAV PU, Univ. of Cergy-Pontoise HDR Referent (Référent HDR)





ABSTRACT

Energy efficiency has been identified as one of the major desiderata for 5G communications,
and will likely remain a crucial aspect for the information and communication technology
(ICT) industry beyond 5G, owing to the prolific spread of Internet-enabled mobiles coupled

with connectivity- and data-hungry applications. Moreover, the emerging Internet of things (IoT)
paradigm, envisioned to interconnect wireless "things" (wireless sensors, wearables, biochip
transponders, etc.) at a massive scale, also comes with strict limitations in terms of computational
capabilities and energy consumption.

The aim of this HDR thesis is to design efficient resource allocation policies (in terms of
available power, spectrum, space, and/or time) in wireless networks of interconnected devices,
potentially equipped with multiple antennas (MIMO) or operating over multiple orthogonal
frequency subcarriers (OFDM). First, we focus on networks that are relatively static in time and
investigate different energy efficiency metrics based on the tradeoff between power consumption
and Shannon rate. We then propose different energy-efficient policies that exploit promising
technologies to address the spectrum and energy gridlocks (e.g., cognitive radio, small cell
networks, MIMO, energy harvesting) and rely on classic tools and solution concepts from convex
optimization, in centralized networks, and non-cooperative games, in decision-wise distributed
networks.

The second part of this work incorporates the temporal network dynamics. This aspect
is particularly relevant in IoT networks, in which coping with the high temporal variability
(potentially non-stationary) caused by the devices’ heterogeneous characteristics (in terms of
mobility, connectivity patterns, etc.) is a major challenge. Algorithms that target fixed operating
points or network states (e.g., classic optimal solutions or Nash equilibria) are no longer relevant
in such arbitrarily varying and unpredictable networks. Instead, drawing on new tools from
online optimization and learning, we propose efficient and dynamic resource allocation policies
that are able to adapt on-the-fly to the network changes, while relying only on strictly causal and
limited feedback information.

The thesis is concluded by discussing several open and prospective research directions for
future exploration.
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RÉSUMÉ

L’efficacité énergétique a été identifiée comme l’un des objectifs majeurs pour les commu-
nications 5G, et restera probablement un aspect crucial de l’industrie des technologies de
l’information et de la communication (ICT) au-delà de la 5G, en raison de la prolifération

des applications Internet mobile très gourmandes en débit et connectivité. De plus, le nouveau
paradigme de l’Internet des objets (IoT), qui prévoit d’interconnecter des "objets" sans fil (capteurs,
dispositifs prêts-à-porter, biopuces connectées, etc.) de manière massive, a des limitations strictes
en termes de capacités de calcul et de consommation d’énergie.

L’objectif de cette thèse d’HDR est de concevoir des politiques efficaces d’allocation de
ressources (puissance, spectre, espace et/ou temps) dans des réseaux sans fils composés par
des dispositifs équipés de multiples antennes (MIMO) ou communicant dans plusieurs sous-
porteuses orthogonales (OFDM). Premièrement, nous nous concentrons sur les réseaux relative-
ment statiques dans le temps afin d’étudier plusieurs métriques d’efficacité énergétique définies
en fonction du compromis entre la consommation de puissance et le débit de Shannon. Nous
proposons ensuite différentes politiques efficaces en énergie exploitant des technologies promet-
teuses pour combattre les limitations du spectre et d’énergie (par exemple, la radio cognitive, les
réseaux à petites cellules, les réseaux MIMO, la récupération d’énergie sans fils) et reposant sur
des outils et concepts classiques issus de l’optimisation convexe, dans des réseaux centralisés, et
des jeux non-coopératifs, dans des réseaux distribués au sens de la décision.

La deuxième partie de ce manuscrit intègre la dynamique temporelle du réseau. Cet aspect
est particulièrement pertinent dans les réseaux IoT, où la prise en compte de la grande variabilité
temporelle (potentiellement non stationnaire) due aux caractéristiques hétérogènes des objets
(en termes de mobilité, schémas de connection, etc.) constitue un défi majeur. Les algorithmes
qui ciblent des points de fonctionnement ou des états fixes (par exemple, des solutions optimales
classiques ou des équilibres de Nash) ne sont plus pertinents dans des réseaux aussi variables et
imprévisibles. En nous appuyant sur de nouveaux outils d’optimisation et d’apprentissage en
ligne, nous proposons des politiques d’allocation de ressources efficaces et dynamiques, capables de
s’adapter à la volée aux changements du réseau, en se reposant uniquement sur des informations
de retour strictement causales et limitées.

La thèse est conclue par une discussion sur plusieurs axes de recherche ouverts et prospectifs
pour des investigations futures.
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ACTIVITY REVIEW

Following the brief Curriculum Vitae, this chapter is dedicated to a detailed review of the
activities I have been leading as a Maître de Conférences in ENSEA and ETIS lab, Cergy-
Pontoise, France since September 2011. Both the teaching and the research activities will

be overviewed, as well as the relevant administrative and scientific responsibilities.

1.1 Teaching Activities

My teaching activities at ENSEA are pluridisciplinary and lie at the intersection between
two departments: the Computer Science Dept. and the Signal Processing Dept.. The specific
department is automatically defined by the majority of the taught classes (each class being
associated to one Dept.). Given the dynamics of my activities (illustrated in Table 1.3) and
the wish to strengthen the ties between my teaching and my research activities, I have been
associated first with the Computer Science Dept. (between Sep. 2011–Aug. 2015) and then with
the Signal Processing Dept. (since Sep. 2017).

In between Sep. 2015 – Aug. 2017, I have been granted a mobility leave (délégation à temps
complet) from Inria Grenoble Rhône-Alpes. As a result and given my mobility to Grenoble, France,
I have been relieved from all teaching duties from ENSEA for two full years.

Tables 1.1, 1.2, 1.3 below offer a concise summary of my teaching activities in terms of:
amount of hours (équivalent TD); student levels (all levels of the French engineering cycle and the
local M2R); type (CM - cours magistral, TD - travaux dirigés, TP - travaux pratiques et projets);
and taught subjects. The “Other” category represents the equivalent number of hours granted in
exchange of various module and administrative responsibilities, student projects, etc.. A highlight
point to be noted is the high dynamics of my activities in terms of new subjects per year.
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CHAPTER 1. ACTIVITY REVIEW

Year CM TD TP Other Total
2011 - 2012 12 6 194 8 220
2012 - 2013 60 23 132 7 222
2013 - 2014 81 23 130 18 252
2014 - 2015 77 22 56 51 206
2015 - 2016 - - - - -
2016 - 2017 - - - - -
2017 - 2018 45 34 108 37 224
2018 - 2019 36 46 92 24 198
Total 311 154 712 145 1322
Percentage 23.5% 11.6% 53.8% 11.1% -

Table 1.1: Teaching at ENSEA during 2011–2019 in nb. hours (équivalent TD).

Subject Level Type Nb. hours Percentage
Advanced Digital Communications M2 CM, TD, TP 152 11.5%
Introduction to Game Theory M2 CM 14 1%
Communication Systems M2 CM, TD 96 7.2%
Game Theory Applied to Communications M1 CM, TP 90 6.8%
Introduction to Digital Communications M1 CM, TD, TP 114 8.6%
Digital Signal Processing M1 TD, TP 60 4.5%
Algorithms M2 CM, TD, TP 219 16.5%
C++ Object Oriented Programming M1 CM, TP 96 7.3%
JAVA Programming M1 TP 84 6.3%
Data structures L3 TP 72 5.4%
Computer science (C programming) L3 TD, TP 156 11.8%
Microprocessors L3 TP 24 1.8%
Other 145 11.1%

Table 1.2: Subjects taught at ENSEA during 2011–2019 in nb. hours (équivalent TD).

1.1.1 Proposed Modules

The three modules that I have proposed (which did not exist) and prepared from scratch
are the following.

1) Game Theory Applied to Communications – 2013

• Level: M1 ENSEA

• Type: CM (16 hours) and TP (24 hours)

• Tools: lecture slides, MatLab and the CVX package

• Keywords: convex optimization, descent algorithms (gradient descent, Newton) applied
to speech de-noising, classical water-filling algorithm, non-cooperative games, multi-user
iterative water-filling algorithm
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1.1. TEACHING ACTIVITIES

Year New classes Percentage out of 196 hours
2011 - 2012 212 108.2%
2012 - 2013 59 30.1%
2013 - 2014 45 23%
2014 - 2015 0 0%
2015 - 2016 - -
2015 - 2017 - -
2017 - 2018 60 30.6%
2018 - 2019 20 10.2%

Table 1.3: Teaching dynamics: new classes in nb. hours (nombre d’heures équivalent TD). The
percentages are computed w.r.t. the statutory teaching load of 196 hours per year.

2) Introduction to Game Theory – 2012

• Level: M2R SIC at the University of Cergy-Pontoise

• Type: CM (3 hours)

• Tools: lecture slides

• Keywords: discrete non-cooperative games (prisoner’s dilemma, head-tails, etc.), Nash
equilibrium, Pareto optimality, von Neumann indifference principle, continuous non-
cooperative games, power allocation problem in a distributed multi-user channel

3) Introduction to Digital Communications – 2017

• Level: M1 ENSEA

• Type: CM (8 hours), TD (6 hours) et TP (8 hours)

• Tools: lecture slides, notes, MatLab

• Keywords: analog vs. digital communications, base-band and band-pass communication,
basic communication chain, modulation types, inter-symbol interference and Nyquist
conditions, adaptive filter, detection

The three modules that, although existed, I have changed and prepared entirely are
listed below.

4) Advanced Digital Communications – 2012

• Level: M2 ENSEA

• Type: CM (15 hours) et TD (10 hours)

• Tools: lecture notes

• Keywords: high data rate communications, wireless multi-path channel model, equal-
ization, multi-carrier communications OFDM
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5) Communication Systems – 2012

• Level: M2 ENSEA

• Type: CM (18 hours) et TD (10 hours)

• Tools: lecture notes

• Keywords: multi-access schemes, OFDMA, SC-FDMA, multi-antenna systems MIMO,
spatial diversity, space-time coding (Alamouti)

6) Introduction to C++ Object Oriented Programming – 2011

• Level: M1 ENSEA

• Type: CM (3 hours)

• Tools: lecture slides

• Keywords: encapsulation (classes, objects), inheritance, polymorphism, pointers and
references, function and operator overloading, access specifiers

1.1.2 Module Responsibilities

I have been in charge of organising the following modules at ENSEA. This involved: proposing
the exam sheets, grading, updating the contents of the modules (CM, TD, TP), etc..

• Game Theory Applied to Communications

• Introduction to Digital Communication

• Advanced Digital Communications

• Communication Systems

• Algorithms

• C++ Object Oriented Programming

1.1.3 Administrative Responsibilities

• During 2014-2015 and 2018-2019, I have been the co-head of the Networks and Com-
munications Track - Option RT - Réseaux et Télécommunications of the 3rd year of the
engineer cycle at ENSEA jointly with Laura Luzzi (ENSEA);

• Since Jun. 2018, I am a jury member of the Mathematics Admissions Committee of
ENSEA, conducting oral mathematics examinations (Concours ATS);

• Since Dec. 2018, I am an elected member of the Technical Committee of ENSEA;

• Since 2013, I have been the ENSEA referee of several engineer internships (M2, M1, L3
levels), e.g., projet de fin d’études (PFE);
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1.2. RESEARCH ACTIVITIES

• In Nov. 2017, I gave a presentation of ENSEA at the Lycée Chrestien de Troyes (école
préparatoire).

1.2 Research Activities

1.2.1 Summary and Main Research Interests

Since Sep. 2011, my research activities as Associate Professor (Maître de Conférences) have
been performed mainly at ETIS Lab (Équipes Traitement de l’Information et Systémes), UMR
8051, Cergy-Pontoise, France within the communications research group: ICI – Information,
Communication, Imagerie. In between Sep. 2015 and Aug. 2017, I have been a full-time Visiting
Researcher (délégation compléte) at Inria Grenoble Rhône-Alpes, France. During this period, I
have been associated with two research groups: first with MESCAL (Sep. 2015-Dec. 2015) and
then with POLARIS (Jan. 2016-Aug. 2017), which are joint Inria-CNRS project teams and are,
hence, also affiliated to LIG (Laboratoire d’Informatique de Grenoble), UMR 5217, Grenoble,
France.

My research interests are focused on investigating (decision-wise) distributed communication
networks composed of intelligent and autonomous nodes (e.g., IoT networks), which potentially
may vary in a non-stationary and unpredictable way. The necessary tools to study the interactions
between these nodes and the outcomes or network operating points are pluridisciplinary and
range from game theory, convex optimization and online optimization to machine learning. The
applications I have been investigating stem from: resource allocation problems (spectrum, power,
space, time) efficient in terms of rate, power or energy consumption, physical layer security,
service pricing problems, state estimation problems in the smart grid, etc..

During my PhD, which was performed in L2S (Laboratoire des Signaux et Systèmes) UMR
8506, Gif-sur-Yvette, France under the joint supervision of Samson Lasaulce (CNRS) and
Mérouane Debbah (CentraleSupélec, Huawei Paris), my research has been focused on multiple-
antenna (MIMO) wireless networks composed of either a single or multiple transmitters com-
municating to a common receiver (i.e., MAC - multiple access channels). The transmitters were
driven by rate maximization individual objectives, in most of the investigated settings, or by
energy efficiency maximization. Such problems required the use of convex optimization and
non-cooperative games and the developed algorithms leading to the respective (optimal or Nash
equilibrium) solutions were based on iterative best-response (leading to iterative water-filling
type of) algorithms. Since my PhD, both the range of applications and the range of the exploited
theoretical tools have been diversified.

More precisely, since my PhD, I have been interested in the following issues and applications:

• Design of energy-efficient ressource allocation algorithms for wireless communications;
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Publications: 4 journals [J18-J16], [J13], 1 book chapter [BC4], 11 conf. [C36], [C33-29], [C25-22], [C18], 1 national
conf. [CF5]
Collaborators: Panayotis Mertikopoulos (CNRS), Giacomo Bacci (Univ. of Pisa, MBI srl), Luca Sanguinetti (Univ. of
Pisa), Romain Negrel (ESIEE), Inbar Fijalkow (ENSEA), Noura Sellami (Univ. of Sfax)
Students: Raouia Masmoudi (PhD), Alexandre Marcastel (PhD), Vineeth Varma (PhD)
Supported by: Inria, Chair Orange IoT, ANR-JCJC-ORACLESS, PEPS CNRS-INS2I JCJC, NEWCOM#, FUI Sys-
tematic EconHome, ENSEA

• Security issues in wireless networks and the use of energy harvesting for as a means against
jamming attacks;

Publications: 2 journals [J20], [J19] and 2 conf. [C35], [C34]
Collaborator: Arsenia Chorti (Univ. of Essex, ENSEA)
Students: Gada Rezgui (MSc), Miroslav Mitev (PhD)
Supported by: Inria, ENSEA

• Design of rate-efficient ressource allocation algorithms for wireless communications1;

Publications: 3 journals [J18], [J11], [J8] and 5 conf. [C32], [C28], [C21], [C16], [C12]
Collaborators: Panayotis Mertikopoulos (CNRS), Aris Moustakas (Kapodistrian Univ. of Athens), Samson Lasaulce
(CNRS), Luca Sanguinetti (Univ. of Pisa), Romain Negrel (ESIEE)
Students: Chao Zhang (PhD)
Supported by: Inria, NEWCOM#, ENSEA, L’Oréal France

• State estimation with privacy constraints in the smart grid;

Publications: 1 journal [J14] and 2 conf. [C19], [C15]
Collaborators: Lalitha Sankar (Arizona State University) and Vincent H. Poor (Princeton University)
Supported by: Princeton University and Supélec

• Rate adaptation protocols for video transmission conciliating QoS and user quality of expe-
rience (QoE);

Publications: 1 journal [J15], 1 conf. [C26]
Collaborator: Ángeles Vasquez-Castro (Universitat Autonoma de Barcelona)
Student: Smrati Gupta (PhD)
Supported by: Universitat Autonoma de Barcelona

• Subcarrier scheduling in OFDMA systems taking into account the carrier frequency offsets;

Publications: 1 journal [J12], 1 conf. [C20], 1 national conf. [CF4]
Collaborator: Inbar Fijalkow (ETIS)
Student: Antonia M. Masucci (Post-doc)
Supported by: ENSEA

1The journal and conference papers [J18], [C32] appear in both rate- and energy-efficient resource allocation
problems since the related work addresses a generic distributed optimization framework that apply to both types of
policies.
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• Service pricing techniques in multi-tier heterogeneous networks;

Publications: 1 journal [J10] and 2 conf. [C17], [C13]
Collaborators: Walid Saad (VirginiaTech) and Merouane Debbah (CentraleSupélec, Huawei Paris)
Students: Camilla M. G. Gussen (MSc), Luca Rose (PhD)
Supported by: Supélec and Princeton University

• Hawks and Doves game in a dynamic framework;

Publications: 1 journal [J9], 1 conf. [C14]
Collaborators: Eitan Altman (Inria), Yezekayel Hayel (Univ. d’Avignon)
Supported by: L’Oréal France.

Most of these issues require the use mathematical tools going beyond classic convex optimiza-
tion and non-cooperative games (i.e., beyond the tools exploited during my PhD).

• Generalized non-cooperative games and generalized Nash equilibrium allows to take into
account minimum QoS constraints [J13], which implies that not only the objective (or
payoff) function of an agent depends on the choices of the others, but also its set of possible
choices.

• The repeated games framework allows to model repeated interactions as opposed to one-shot
interactions and to enable cooperation among selfish agents [J14], [J15].

• At last, online optimization and exponential learning (inspired from machine learning
algorithms and mirror descent algorithms) are powerful tools to tackle the arbitrary and
unpredictable dynamics of a highly varying network [C31], [C30], [C27], [J16], [J11].

• Moreover, exponential learning algorithms allow to converge to the Nash equilibrium
solution in static multi-user settings in which the iterative water-filling may fail to converge
[J16], [J8].

1.2.2 Advising

My overall student advising activities since Sep. 2011 (including the official advising percentages)
can be summarized as follows:

• 4 PhD students: 2 ongoing (75%, 30%) and 2 defended (40%, 50%)

• 2 M2R students: 150% defended

• 4 M2R research initiation projects: 350%

• 2 Post-docs
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Ongoing PhD Students

1) Irched Chafaa
Title: “Resource allocation problems for mmWave systems”
Period: Nov. 2017-Oct. 2020
Advising: 75% with Mérouane Debbah (CentraleSupélec, Huawei Paris, 25%, official director)
Funding: Algerian state PhD fellowship
Publication: [C38]

2) Kimon Antonalopoulos
Title: “Learning algorithms for online variational inequalities”
Period: Nov. 2017-Oct. 2020
Advising: 30% with Panayotis Mertikopoulos (CNRS, 50%) and Bruno Gaujal (Inria, 20%,
official director)
Funding: Inria PhD fellowship

Defended PhD Students

1) Alexandre Marcastel
Title: “Online optimization and learning for IoT networks”
Period: Oct. 2015-Feb. 2019
Defense date: Feb., 21st 2019
Advising: 40% with Panayotis Mertikopoulos (CNRS, 30%) and Inbar Fijalkow (ENSEA, 30%,
official director)
Funding: Orange IoT Chair at the University of Cergy-Pontoise Foundation 2015-2018, ATER
ENSEA 2018-2019
Publications: [J21], [C33], [C31], [C30] and a submitted conf. [C39sub]

2) Raouia Masmoudi
Title: “Home automation communications systems efficient in terms of energy consumption”
Period: Oct. 2011-Jul. 2015
Defense date: Dec. 1st, 2015
Advising: 50% with Inbar Fijalkow (ENSEA, official director)
Funding: FUI Systematic EconHome 2011-2013, ATER ENSEA 2013-2015
Publications: [J17], [C36], [C29], [C25], [CF5]
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Collaborations involving PhD Students

Throughout my different collaborations, I have worked closely with the PhD students below
without being officially involved in their advising, but which have lead to several publications.

1) M. Mitev (University of Essex, UK)
Collaborators: Arsenia Chorti (University of Essex until 2017, ENSEA since 2017) and Martin
J. Reed (University of Essex, UK)
Publications: [J22sub]

2) Chao Zhang (CentraleSupélec)
Collaborators: Samson Lasaulce (CNRS)
Publications: [C28]

3) Smrati Gupta (UAB, Spain)
Collaborator: Àngeles Vasquez-Castro (UAB, Spain)
Publications: [J15], [C26]

4) Luca Rose (CentraleSupélec)
Collaborators: Walid Saad (VirginiaTech, USA) and Mérouane Debbah (CentraleSupélec,
Huawei, Paris)
Publications: [J10], [C17]

5) Vineeth Varma (CentraleSupélec)
Collaborators: Samson Lasaulce (CNRS) and Mérouane Debbah (CentraleSupélec, Huawei,
Paris)
Publications: [BC1]

M2R Students

1) Gada Rezgui
Title: “Energy harvesting as a means to mitigate jamming attacks; a game theoretic analysis”
Defense date: Sep. 14th, 2017
Master: M2R SIC, University of Cergy-Pontoise
Duration: 6 months, 2017
Advising: 50% with Arsenia Chorti (University of Essex, UK)
Publication: [J20]

2) Alexandre Marcastel
Title: “Energy efficient resource allocation policies in cognitive radio systems”
Defense date: Sep. 24th, 2015
Master: M2R SIC, University of Cergy-Pontoise
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Duration: 6 months, 2015
Advising: 100%

3) Camilla M. G. Gussen
Title: “Pricing and bandwidth allocation problems in wireless multi-tier networks”
Defense date: 2011
Master: MSc, Universidade Federal do Rio de Janeiro, Brazil
Duration: 4 months, 2011
Advising: 70% with Mérouane Debbah (CentraleSupélec, Huawei Paris, 30%)
Publication: [C13]

M2R Research Initiation Projects

1) Gada Rezgui
Title: “Secret key generation systems under jamming atacks via game theoretic tools”
Master: M2R SIC, University of Cergy-Pontoise
Duration: 3 months, 2017
Advising: 50% with Arsenia Chorti (University of Essex, ENSEA)

2) Alexandre Marcastel
Title: “Interior point algorithms vs. iterative water-filling for resource allocation in cognitive
radio systems”
Master: M2R SIC, University of Cergy-Pontoise
Duration: 3 months, 2015
Advising: 100%

3) Arnaud Ngomozogho
Title: “Energy-efficient wireless networks under QoS constaints”
Master: M2R SIC, University of Cergy-Pontoise
Duration: 3 months, 2015
Advising: 100%

4) Dora Boviz
Title: “Comparison of different energy-efficiency measures for wireless communications”
Master: M2R SIC, University of Cergy-Pontoise
Duration: 3 months, 2012
Advising: 100%

Post-docs

1) Olivier Bilenne
Title: “Adaptive optimization algorithms for massive MIMO systems”
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Period: Sep. 2018 - Aug. 2019
Collaboration with Panayotis Mertikopoulos (CNRS)
Funding: Project ANR-ORACLESS

2) Antonia M. Masucci
Title: “Subcarrier allocation policies in SC-FDMA systems”
Period: Sep. 2011 - Aug. 2013
Collaboration with Inbar Fijalkow (ENSEA)
Funding: ATER ENSEA
Publications: [J12], [C20], [CF4]

M1 and Undergraduate Students

1) Wang Yuchen
Title: “Algorithmes d’optimisation de ressources dans les réseaux sans fil distribués”
Level: M1, ENSEA
Duration: one month and a half, 2017
Advising: 100%

2) Gada Rezgui
Title: “Algorithmes de stockage distribué dans les réseaux sans fil”
Level: L3, University of Cergy-Pontoise
Duration: 3 months, 2015
Advising: 50% with Iryna Andriyanova (University of Cergy-Pontoise)

3) Muhammad Abdul Wahab
Title: “Convergence des algorithmes distribués d’allocation de ressources dans les réseaux sans
fils”
Level: M1, ENSEA
Duration: one month and a half, 2014
Advising: 100%

4) François Denquin
Title: “Efficacité énergétique dans les réseaux sans fils”
Level: M1, ENSEA
Duration: one month, 2014
Advising: 100%
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1.2.3 Research Projects

Since 2011, I have participated as Project Member to the following research projects:

• Chair Orange IoT at the University of Cergy-Pontoise Foundation, Oct. 2015 - Sep. 2018,
200k euro
Collaborators: Inbar Fijalkow (head of the Chair, ENSEA), Jean Schwoerer (Orange) and
Alexandre Marcastel (ETIS)
PhD funding of Alexandre Marcastel (ETIS), 105k euro

• COST GAMENET - European Network of Game Theory, CA16228, Oct. 2017 - Sep. 2021
Collaborators: Mathias Staudigl (Action chair, Maastricht University), Panayotis Mer-
tikopoulos (CNRS)

• ANR JCJC ORACLESS - Online resource allocation for unpredictable large-scale wireless
systems, Oct. 2016 - Sep. 2021, 207k euro
Collaborators: Panayotis Mertikopoulos (PI, CNRS), Samson Lasaulce (CNRS)
Post-doc funding of Olivier Bilenne (LIG), 66k euro

• PEPS CNRS-INS2I JCJC - Resource allocation in dynamic network environments via
adaptive learning (REAL.net), Jan. 2016 - Dec. 2016, 12.5k euro
Collaborators: Panayotis Mertikopoulos (PI, CNRS), Alexandre Marcastel (ETIS)

• ICT NEWCOM # - Network of Excellence in Wireless Communications, Nov. 2012 - Oct.
2015, funded by the European Commission FP7-ICT-318306
Participants: CNIT, CNRS, Eurecom, CTTC, Aalborg Universitet, Bilkent Universitesi,
IASA, INON, Technion Tel Aviv, Technische Universitaet Dresden, University of Cambridge,
Université Catholique de Louvain, Oulun Yliopisto, Technische Universitaet Wien
Collaborators: Luca Sanguinetti (University of Pisa), Giacomo Bacci (University of Pisa),
Panayotis Mertikopoulos (CNRS)

• FUI Systematic EconHome - Eco Conception du Home Network, Avr. 2010 - Oct. 2012
Participants: CEA Grenoble, Docea Power, France Telecom, Orange, INRIA Grenoble,
STMicroelectronics
PhD funding of Raouia Masmoudi (ETIS) during 2011-2013, 65k euro

Since 2013, I have lead as Principal Investigator several local projects funded by ENSEA
(an overall amount of 10k). Also, I am the Principal Investigator of the recently accepted ANR
PRCI ELIOT project.

• ANR PRCI ELIOT - Enabling Technologies for IoT, Apr. 2019 - Apr. 2023, 390k euro
Role: Principal Investigator
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International collaboration: ANR-FAPESP (France-Brazil)
Participants: ENSEA, University of São Paulo (USP), and Pontifical Catholic University of
Rio de Janeiro (PUC-Rio)
Collaborators: Vitor Nascimento (PI, USP, Brazil), Rodrigo C. de Lamare (PI, PUC-Rio,
Brazil), Lukas Landau (PUC-Rio, Brazil), Arsenia Chorti (ENSEA), Iryna Andriyanova
(University of Cergy-Pontoise) and Inbar Fijalkow (ENSEA)

• SRV-ENSEA: “Optimisation en TEmps Réel de ressources dans les réseaux mobiles avec
Feedback Limité (OTER-FL)”, Jan. 2017 - Dec. 2017, 1.2k euro

• SRV-ENSEA, Invited Professor: “Exploiting energy harvesting and spectrum to counteract
active jamming attacks”, 2017, 1.2k euro
Invited Professor: Arsenia Chorti (University of Essex, UK)

• SRV-ENSEA, Invited Professor: “Game theoretic analysis of physical layer security secret
key generation schemes”, 2016, 1.2k euro
Invited Professor: Arsenia Chorti (University of Essex, UK)

• SRV-ENSEA: “Optimisation en TEmps Réel de ressources dans les réseaux mobiles qui
varient arbitrairement dans le temps (OTER)”, Jan. 2016 - Dec. 2016, 1.2k euro

• BQR-ENSEA: “Efficacité énergétique dans les communications 5G (EE5G)”, Jan. 2015 -
Dec. 2015, 0.6k euro

• BQR-ENSEA, Keynote Speaker: “Wireless Networks: Communication, Cooperation and
Competition”, Jan. 2014 - Dec. 2014, 1.4k euro
Invited Professor: Zhu Han (University of Houston, USA)

• BQR-ENSEA: “MIMO-MAC Games: MIMO distributed multiple access channel. Game
theory and learning”, Jan. 2013 - Dec. 2013, 3k euro

1.2.4 Scientific Responsibilities

Editorial Activities

• Since July 2016, I serve as Executive Editor for the Transactions on Emerging Telecom-
munications Technologies (ETT)

Among the Top 11 Editors for outstanding contributions to ETT during the period
2016-2017

• During Feb. 2017 - Oct. 2017, I have served as Associate Editor for the IET Signal
Processing journal.
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Conference Organization

• GdR ISIS meeting: “Game Theory, Optimisation and Learning: Interplay and Applications
to Signal Processing”, Paris, France, 2017
Co-organized jointly with Samson Lasaulce (CNRS)
http://www.gdr-isis.fr/index.php?page=reunion&idreunion=346

• WNC3 workshop: “International Workshop on Wireless Networks: Communication, Cooper-
ation and Competition” (in conjunction with WiOpt), Hammamet, Tunisia, 2014
Co-organized and chaired jointly with Samson Lasaulce (CNRS)
http://2014wnc3.ensea.fr

• Invited Session: “Communications and Control in the Smart Grid (CCSG)” at IEEE Black-
SeaComm, Batumi, Georgia, 2013
Co-organized jointly with Lalitha Sankar (Arizona State University, USA) and David
Gregoratti (CTTC, Spain)

• Session Chair: WCNC (Paris, France) 2012, WNC3 (Hammamet, Tunisia) 2014, GRETSI
(Lyon, France) 2015

National Responsibilities

• Jan. 2016 - Dec. 2018, member of the jury of the Best PhD Prize in Signal, Image and
Computer Vision awarded jointly by the French Club EEA, the GdR ISIS and GRETSI

– Vice-president of the jury in 2017

– President of the jury in 2018

• Jan. 2013 - Nov. 2017, Scientific coordinator (Directrice Scientifique Adjointe) of the GdR
ISIS, a research group supported by CNRS and industrial partners

Involved supervising the organization of 4-5 scientific GdR ISIS meetings per year jointly
with Mérouane Debbah (CentraleSupélec, Huawei Paris, 2013-2014) and Mari Kobayashi
(CentraleSupélec, 2015-2017)

Theme D - Telecommunications: compression, protection, transmission, Axis 2 - Information
and communication: from theory to practice

• Examiner of PhD juries

– Dec. 2nd, 2016 - Examiner of the PhD jury of Kenza Hamidouche, CentraleSupélec,
Gif-sur-Yvette

– Jun. 19th, 2017 - Examiner of the PhD jury of Dora Boviz, Nokia, Paris-Saclay
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– Dec. 19th, 2017 - Examiner of the PhD jury of Faton Maliqi, CentraleSupélec, Gif-sur-
Yvette

– Dec. 21st, 2017 - Examiner of the PhD jury of Chao Zhang, CentraleSupélec, Gif-sur-
Yvette

– Jan. 23rd, 2018 - Examiner of the PhD jury of Philippe Ezran, CentraleSupélec,
Gif-sur-Yvette

– Nov. 15th, 2018 - Examiner of the PhD jury of Antony Pottier, IMT Atlantique (previ-
ously Télécom Bretagne), Brest

– Dec. 7th, 2018 - Examiner of the PhD jury of Xavier Leturc, Télécom ParisTech

Local Responsibilities

• May 9th, 2017 - Member of an Associate Professor (Maître de Conférences) hiring committee
at ENSEA

• Sep. 2013 - Mar. 2016 - Elected Member of the Scientific Board of ENSEA

Technical Program Committees (TPC)

• IEEE SPAWC 2019

• IEEE 5G World Forum 2018, 2019

• IEEE PIMRC 2018, 2019

• European Wireless 2018

• IEEE ICC 2012, 2014-2017

• IEEE GLOBECOM 2013-2016

• IEEE WCNC 2012, 2014, 2016-2018

• IEEE ICNC 2013-2019

• IEEE BlackSeaCom 2014-2018

• GameSec 2014

• IEEE INFOCOM 2013

• IEEE SmartGridCom 2013

• ACM ValueTools 2012

• IEEE VTC-Fall 2011
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Reviewing

• International journals: IEEE Trans. on Signal Processing, IEEE Trans. on Inf. Theory,
Trans. on Emerging Telecommun. Technologies (ETT), Eurasip JWCN, IEEE Trans on
Commun., IEEE Trans. on Wireless Commun., IEEE Trans on Vehicular Technology, IEEE
Commun. Lett., IEEE Journal on Sel. Areas in Commun., IEEE Trans. on Smart Grids,
IEEE Wireless Commun. Lett., . . .

• International conferences: GLOBECOM, ICC, VTC, WiOpt, PIMRC, WCNC, ICNC, ICIP,
Gamecomm, Rawnet, WCMC, ISWCS, ValueTools, . . .

• National conference: GRETSI

• Research projects: French ANR (2013, 2017), European ERC (2016)

1.2.5 International Collaborations

• Vincent H. Poor, Princeton University, USA
Supported by Princeton University, USA and Supélec, France
Publications: 1 journal + 2 conf.

• Arsenia Chorti, University of Essex, UK (until Sep. 2017)
Supported by ENSEA, France
Students: Gada Rezgui (M2R) and Miroslav Mitev (PhD)
Publications: 2 journals + 2 conf.

• Luca Sanguinetti and Giacomo Bacci, University of Pisa, Italy
Supported by NEWCOM#
Publications: 2 journals + 4 conf.

• Lalitha Sankar, Arizona State University, USA
Supported by Princeton University, USA and Supélec
Publications: 1 journal + 2 conf.
Conf. organization: Special session at IEEE BlackSeaCom

• Walid Saad, VirginiaTech, USA
Supported by Princeton University and Supélec
Student: Luca Rose (PhD)
Publications: 1 journal + 1 conf.

• Ángeles Vasquez-Castro, Universitat Autonoma de Barcelona (UAB), Spain
Supported by UAB, Spain
Student: Smrati Gupta (PhD)
Publications: 1 journal + 1 conf.
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• Noura Sellami, University of Sfax, Tunisia
Supported by CNRS, France and DGRST, Tunisia
Student: Raouia Masmoudi (PhD)
Publications: 3 conf.

• Aris Moustakas, National and Kapodistrian University of Athens, Greece
Supported by L’Oréal
Publications: 1 journal + 2 conf.

• Martin J. Reed, University of Essex, UK
Student: Miroslav Mitev (PhD)

• Vitor Nascimento (USP), Rodrigo C. De Lamare (PUC-Rio), Lukas Landau (PUC-
Rio), Brazil
Supported by ANR PRCI ELIOT

• David Gregoratti, CTTC, Spain
Conf. organization: Special session at IEEE BlackSeaCom

1.2.6 National Collaborations

• Panayotis Mertikopoulos, LIG, CNRS, Grenoble
Supported by Inria, ANR ORACLESS, PEPS CNRS REAL.net, ENSEA (SRV, BQR), Chair
Orange IoT
Students: Alexandre Marcastel (PhD), Kimon Antonalopoulos (PhD),
Olivier Bilenne (Post-doc)
Publications: 5 journals + 9 conf.

• Mérouane Debbah, Huawei, Paris
Supported by CentraleSupélec, Princeton University, Algerian state
Students: Irched Chafaa (PhD), Luca Rose (PhD), Camilla M. G. Gussen (MSc)
Conf. organization: GdR ISIS scientific coordination 2013-2014
Publications (post-PhD): 1 journal + 4 conf.

• Samson Lasaulce, L2S, CNRS, Gif-sur-Yvette
Supported by Supélec, ANR Oracless, L’Oréal, ENSEA, ESIEE
Conf. organization: WNC3, GdR ISIS meeting
Publications (post-PhD): 1 journal + 2 conf.

• Romain Negrel, ESIEE Paris, Noisy-Champs
Supported by Inria, ANR Oracless, ESIEE
Publications: 1 journal
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• Anne Savard, IMT Douai, Lille
Publications: 1 conf.

• Mari Kobayashi, Supélec, Gif-sur-Yvette
Conf. organization: GdR ISIS scientific coordination 2015-2017

• Eitan Altman, Inria, Avignon
Supported by L’Oréal
Publications: 1 journal + 1 conf.

• Yezekayel Hayel, Université d’Avignon
Supported by L’Oréal
Publications: 1 journal + 1 conf.

1.2.7 Local Collaborations

• Inbar Fijalkow, ENSEA
Supported by EconHome, Chair Orange IoT, ENSEA, CNRS and DGRST, Tunisia, ANR
PRCI ELIOT
Students: Raouia Masmoudi (PhD), Alexandre Marcastel (PhD),
Antonia M. Masucci (Post-doc)
Publications: 3 journals + 8 conf.

• Arsenia Chorti, ENSEA (since Sep. 2017)
Supported by ENSEA, ANR PRCI ELIOT
Students: Gada Rezgui (M2R) and Miroslav Mitev (PhD)
Publications: 2 journals + 2 conf.

• Iryna Andriyanova, Université de Cergy-Pontoise
Supported by ETIS, ANR PRCI ELIOT
Student: Gada Rezgui (L3)

1.2.8 Visiting Appointments

• Inria Grenoble Rhône-Alpes, LIG, France
Duration: two years (délégation) 2015-2017, one week in 2014, one week in 2013
Collaborator: Panayotis Mertikopoulos
Publications: 5 journals + 8 conf.

• Universitat Autonoma de Barcelona, Spain
Duration: one week in 2013
Collaborator: Ángeles Vasquez-Castro
Publications: 1 journal + 1 conf.
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• Princeton University, New Jersey, USA
Duration: one month in 2012, five months post-doc in 2011
Collaborators: Vincent H. Poor, Lalitha Sankar, Walid Saad
Publications: 2 journals + 3 conf.

1.2.9 Invited Talks

• Paris Symposium on Games, Institut Henri Poincaré (IHP), Paris, France, Jun. 2018
“An application of online mirror descent to wireless communications”

• Transversal Problems in Complexity, Maison Internationale de la Recherche, Cergy-
Pontoise, France, May 2018
“Online mirror descent: An application to wireless communications”

• Lycée Chrestien de Troyes, France, Nov. 2017
“Introduction à la théorie des jeux et ses applications en communications”

• GDR ISIS Journée Eco Radio, Télécom ParisTech, Paris, France, May 2015 - and - INRIA
Rhône Alpes, Grenoble, Oct. 2015
“Energy-efficient power allocation in dynamic multi-carrier systems”

• CTTC, Barcelona, Spain, Jul. 2013
“Repeated games for privacy-aware distributed state estimation”

• Workshop on Algorithmic Game Theory: Learning Algorithms and Dynamics in Distributed
Systems (AlgoGT), St. Nizier du Moucherotte, France, Jul. 2013
“Hierarchical games and dynamics in HetNets pricing problems”

• Signal Processing and Optimization for Wireless Communications: In Memory of Are
Hjørungnes Workshop, Trondheim, Norway, May 2013
“On a matrix trace inequality”

• GDR ISIS Journée Smart Grids, Télécom ParisTech, Paris, France, Oct. 2011
“Pricing mechanisms for cooperative state estimation”
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1.3 Awards and Distinctions

Post-PhD

2018- Doctoral Supervision and Research Bonus (PEDR)
2022 from the French National Council of Universities (CNU 61)

2017 Among the top 11 Editors for outstanding contributions to Transactions on Emerging
Telecommunications Technologies (ETT) during the period 2016-2017

2015- Inria Fellowship for Mobility granting two research-dedicated years
2017 from Inria, France

2012 Associate Research Scholar fellowship from Princeton University, USA
funding a one month visit in 2012

Before and during the PhD

2009 L’Oréal France-UNESCO-French Academy of Science national fellowship
“For young women doctoral candidates in science” (one of the ten laureates), France

2007- French Ministry of Research and Education PhD fellowship
2010 awarded based on scientific excellence and academic records

2005 Socrates/Erasmus international exchange scholarship
École Polytechnique, France and Politehnica University of Bucharest, Romania

1.4 Personal Bibliography

The underlined authors (in the publication list) are the names of the PhD and post-doc students
that I have co-advised officially and unofficially.

1.4.1 Bibliometry

• Journals: 21 (14 post-PhD) of which 2 (1 post-PhD) invited

• Conferences: 38 (27 post-PhD) of which 11 (4 post-PhD) invited

• Book chapters: 4 (1 post-PhD)

• National conferences: 5 (2 post-PhD)
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Index Total
Citations 1033
h - index 18
i10 - index 25

Table 1.4: Citation indicators: source Google Scholar, Jan. 7th, 2019.

1.4.2 Publication Indicators

• Google Scholar webpage:
https://scholar.google.fr/citations?user=ODy3eccAAAAJ&hl=fr

• HAL webpage (IdHAL elena-veronica-belmega):
https://cv.archives-ouvertes.fr/elena-veronica-belmega

• ResearchGate webpage:
https://www.researchgate.net/profile/E_Veronica_Belmega

• ORCID: 0000-0003-4336-4704

• DBLP webpage:
https://dblp.uni-trier.de/pers/hd/b/Belmega:Elena_Veronica

1.4.3 Peer-reviewed International Journal Papers (post-PhD): 14 + 1 sub.

[J23prep] E.V. Belmega, P. Mertikopoulos, R. Negrel and L. Sanguinetti, “Online convex opti-
mization and no-regret learning: Algorithms, guarantees and applications”, in preparation
for resubmission to IEEE Signal Processing Magazine, https://arxiv.org/abs/1804.
04529, 2018.

[J22sub] M. Mitev, A. Chorti, E.V. Belmega, and M.J. Reed, “Active Attacks in Wireless Secret
Key Generation”, submitted to IEEE Commun. Lett., Jan. 2019.

[J21] A. Marcastel, E.V. Belmega, P. Mertikopoulos, and I. Fijalkow, “Online power optimization
in feedback-limited, dynamic and unpredictable IoT networks”, accepted paper, IEEE
Trans. on Signal Processing, Mar. 2019.

[J20] G. Rezgui, E.V. Belmega, and A. Chorti, “Mitigating jamming attacks using energy har-
vesting”, IEEE Wireless Commun. Lett., vol. 8, no. 1, pp. 297 – 300, Feb. 2019.

[J19] E.V. Belmega, and A. Chorti, “Protecting secret key generation systems against jamming:
Energy harvesting and channel hopping approaches”, IEEE Trans. on Information Forensics
& Security, vol. 12, no. 11, pp. 2611 – 2626, Nov. 2017.
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[J18] P. Mertikopoulos, E.V. Belmega, R. Negrel, and L. Sanguinetti, "Distributed stochastic
optimization via matrix exponential learning", IEEE Trans. on Signal Processing, vol. 65,
no. 9, pp. 2277 - 2290, May 2017.

[J17] R. Masmoudi, E.V. Belmega, and I. Fijalkow, “Efficient Spectrum Scheduling and Power
Management for Opportunistic Users”, EURASIP Journal on Wireless Communications
and Networking (JWCN), vol. 2016:97, pp. 1 – 19, Apr. 2016.

[J16] P. Mertikopoulos, and E.V. Belmega, “Learning to be green: robust energy efficiency
maximization in dynamic MIMO-OFDM systems”, IEEE Journal on Selected Areas in Com-
munication, Special Issue on Energy-Efficient Techniques for 5G Wireless Communication
Systems, vol. 34, no. 4, pp. 743 – 757, Apr. 2016.

[J15] S. Gupta, E.V. Belmega, and M. A. Vasquez-Castro, “Game theoretical analysis of rate
adaptation protocols conciliating QoS and QoE”, EURASIP Journal on Wireless Communi-
cations and Networking (JWCN), Special Issue on System Level Modeling in Future Wireless
Communications, vol. 2016:75, pp.1 – 18, Mar. 2016.

[J14] E.V. Belmega, L. Sankar and H. V. Poor, “Enabling Data Exchange in Two-Agent Inter-
active State Estimation under Privacy Constraints”, IEEE Journal of Selected Topics in
Signal Processing, Special Issue on Signal and Information Processing for Privacy, vol. 9,
no. 7, pp. 1285 –1297, Oct. 2015.

[J13] G. Bacci, E.V. Belmega, P. Mertikopoulos, and L. Sanguinetti, “Energy-Aware Competitive
Power Allocation for Heterogeneous Networks Under QoS Constraint”, IEEE Trans. on
Wireless Communications, vol. 14, no. 9, pp. 4728 – 4742, Sep. 2015.

[J12] A.M. Masucci, E.V. Belmega, and I. Fijalkow, “Optimal Blockwise Subcarrier Allocation
Policies in Single Carrier FDMA Uplink Systems”, EURASIP Journal on Advanced Signal
Processing (JASP), vol. 2014:176, pp. 1 – 17, Nov. 2014.

[J11] P. Mertikopoulos, and E.V. Belmega, “Transmit without Regrets: Online Optimization in
MIMO-OFDM Cognitive Radio Systems”, IEEE Journal on Selected Areas in Communica-
tions, Cognitive Radio Series, vol. 32, no. 11, pp. 1987–1999, Nov. 2014.

[J10] L. Rose, E.V. Belmega, W. Saad, and M. Debbah, “Pricing in Heterogeneous Wireless
Networks: Hierarchical Games and Dynamics”, IEEE Trans. on Wireless Communications,
vol. 13, no. 9, pp. 4985 – 5001, Sep. 2014.

[J9] Y. Hayel, E.V. Belmega, and E. Altman, “Hawks and Doves in a dynamic framework”,
Dynamic Games and Applications, Springer, invited paper, vol.3, no. 1, pp 24 – 37, Aug.
2012.
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[J8] P. Mertikopoulos, E.V. Belmega, A. Moustakas, and S. Lasaulce, “Distributed learning
policies for power allocation in multiple access channels”, IEEE Journal on Selected Areas
in Communications, vol. 30, no.1, pp. 96 – 106, Jan. 2012.

1.4.4 Peer-reviewed International Journal Papers (PhD): 7

[J7] E.V. Belmega, M. Jungers, and S. Lasaulce, “A generalization of a trace inequality for pos-
itive definite matrices”, The Australian Journal of Mathematical Analysis and Applications
(AJMAA), vol. 7, no. 2, pp. 1-5, May 2011.

[J6] E.V. Belmega and S. Lasaulce, “Energy-efficient precoding for multiple-antenna terminals”,
IEEE. Trans. on Signal Processing, vol. 59, no. 1, pp. 329–340, Jan. 2011.

[J5] E.V. Belmega, B. Djeumou, and S. Lasaulce, “Power allocation games in interference
relay channels: Existence analysis of Nash equilibria”, EURASIP Journal on Wireless
Communications and Networking (JWCN), pp. 120, DOI:10.1155/2010/583462, Nov. 2010.

[J4] E.V. Belmega, S. Lasaulce, M. Debbah, M. Jungers, and J. Dumont, “Power allocation
games in wireless networks of multi-antenna terminals”, Springer Telecommunications
Systems Journal, vol. 47, no. 1, pp. 109–122, DOI: 10.1007/s11235-010-9305-3, invited
paper, May 2010.

[J3] E.V. Belmega, S. Lasaulce, and M. Debbah, “Power allocation games for MIMO multiple
access channels with coordination”, IEEE Trans. on Wireless Communications, vol. 8, no. 6,
pp. 3182–3192, Jun. 2009.

[J2] E.V. Belmega, S. Lasaulce, and M. Debbah, “A trace inequality for positive definite matri-
ces”, Journal of Inequalities in Pure and Applied Mathematics (JIPAM), vol. 10, no. 1, pp.
1-4, Jan. 2009.

[J1] E.V. Belmega, B. Djeumou, and S. Lasaulce, “Gaussian broadcast channels with an orthog-
onal and bidirectionnal cooperation link”, EURASIP J. on Wireless Communications and
Networking (JWCN), pp.1–16, doi:10.1155/2008/341726, Apr. 2008.

1.4.5 Book Chapters: 4

[BC4] V. Varma, E.V. Belmega, S. Lasaulce, and M. Debbah, “Energy Efficient Communica-
tions in MIMO Wireless Channels”, Green Communications: Theoretical Fundamentals,
Algorithms, and Applications, CRC Press, Sep. 2012.

[BC3] E.V. Belmega, S. Lasaulce, H. Tembiné, and M. Debbah, “Rate-efficient power allocation
games”, Game Theory and Learning for Wireless Networks: Fundamentals and Applications,
ISBN 9780123846983, Academic Press, Elsevier, Jul. 2011.
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[BC2] E.V. Belmega, S. Lasaulce, and M. Debbah, “Shannon rate efficient power allocation
games”, Game Theory for Wireless Communications and Networking, Auerbach Publications,
Taylor and Francis Group, CRC Press, Apr. 2010.

[BC1] E.V. Belmega, S. Lasaulce, and M. Debbah, “Capacity of cooperative channels: three
terminals case study”, Cooperative Wireless Communication, ISBN 142006469X, Auerbach
Publications, Taylor and Francis Group, CRC Press, Oct. 2008.

1.4.6 Peer-reviewed International Conference Papers (post-PhD): 27 + 1 sub.

[C39sub] A. Marcastel, E.V. Belmega, P. Mertikopoulos, and I. Fijalkow, “Gradient-free online
resource allocation algorithms for dynamic wireless networks”, submitted paper to IEEE
SPAWC 2019, Feb. 2019.

[C38] I. Chafaa, E.V. Belmega, and M. Debbah, “Adversarial Multi-armed Bandit for mmWave
Beam Alignment with One-Bit Feedback”, ACM ValueTools 2019, Palma de Mallorca, Spain,
Mar. 2019.

[C37] A. Savard, and E.V. Belmega, “Optimal Power Allocation in a Relay-aided Cognitive
Networks”, ACM ValueTools 2019, Palma de Mallorca, Spain, Mar. 2019.

[C36] R. Masmoudi, E.V. Belmega, and I. Fijalkow, “Impact of Imperfect CSI on Resource
Allocation in Cognitive Radio Channels”, International Workshop on Pervasive and Context-
Aware Middleware (PerCAM 17) IEEE WiMOB 2017, Rome, Italy, Oct. 2017.

[C35] E.V. Belmega, and A. Chorti, “Energy Harvesting in Secret Key Generation Systems
under Jamming Attacks”, IEEE International Conference on Communications (IEEE ICC),
Paris, France, May 2017.

[C34] A. Chorti, and E.V. Belmega, “Secret Key Generation in Rayleigh Block Fading AWGN
Channels under Jamming Attacks”, IEEE International Conference on Communications
(IEEE ICC), Paris, France, May 2017.

[C33] A. Marcastel, E.V. Belmega, P. Mertikopoulos, and I. Fijalkow, “Interference Mitigation
via Pricing in Time-Varying Cognitive Radio Systems”, invited paper, NetGCoop 2016,
Avignon, France, Nov. 2016.

[C32] P. Mertikopoulos, E.V. Belmega, and L. Sanguinetti, “Distributed learning for resource
allocation under uncertainty”, IEEE GlobalSIP, Washington DC, USA, 7-9 Dec. 2016.

[C31] A. Marcastel, E.V. Belmega, P. Mertikopoulos, and I. Fijalkow, “Online Interference Miti-
gation via Learning in Dynamic IoT Environments”, IOE worksop in IEEE GLOBECOM
2016, Washington DC, USA, 4-8 Dec. 2016.
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[C30] A. Marcastel, E.V. Belmega, P. Mertikopoulos, and I. Fijalkow, “Online power allocation
for opportunistic radio access in dynamic OFDM networks”, IEEE VTC-Fall 2016, Montreal,
Canada, 18-21 Sep. 2016.

[C29] R. Masmoudi, E.V. Belmega, I. Fijalkow, and N. Sellami, “Joint scheduling and power
allocation in cognitive radio systems”, Advances in Software Defined and Context Aware
Cognitive Networks (SCAN) Workshop, IEEE International Conference on Communications
(IEEE ICC), pp. 399-404, London, UK, 8-12 Jun. 2015.

[C28] C. Zhang, S. Lasaulce, and E.V. Belmega, “Using more bandwidth can be detrimental
to the global performance in distributed wireless channels”, Small Cell and 5G Networks
(SmallNets) Workshop, IEEE International Conference on Communications (IEEE ICC), pp.
142-147, London, UK, 8-12 Jun. 2015.

[C27] E.V. Belmega, and P. Mertikopoulos, “Learning to be Green: Energy-Efficient Power
Allocation in Dynamic Multi-Carrier Systems”, IEEE VTC-Spring, Glasgow, Scotland, May
2015.

[C26] S. Gupta, E.V. Belmega, and M.A. Vasquez-Castro, “Game Theoretical Analysis of the
Tradeoff Between QoE and QoS Over Satellite Channels”, 7th Advanced Satellite Multi-
media Systems Conference 13th Signal Processing for Space Communications Workshop
(ASMS/SPSC), Livorno, Italy, Sep. 2014.

[C25] R. Masmoudi, E.V. Belmega, I. Fijalkow, and N. Sellami, “A unifying view on energy-
efficiency metrics in cognitive radio channels”, European Signal Processing Conference
(EUSIPCO), Lisbon, Portugal, Sep. 2014.

[C24] G. Bacci, E.V. Belmega, P. Mertikopoulos, and L. Sanguinetti, “Energy-aware competitive
link adaptation in small-cell networks”, The 10th International Workshop on Resource
Allocation in Wireless Networks (RAWNET), WiOpt 2014, invited paper, Hammamet,
Tunisia, May 2014.

[C23] G. Bacci, E.V. Belmega, and L. Sanguinetti, “Distributed energy-efficient power and
subcarrier allocation for OFDMA-based small cells”, IEEE International Conf. on Commu-
nications (ICC 2014), Workshop on Small Cell and 5G Networks, Sydney, Australia, Jun.
2014.

[C22] G. Bacci, E.V. Belmega, and L. Sanguinetti, “Distributed energy-efficient power opti-
mization in cellular relay networks with minimum rate constraints”, IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), Florence, Italy, May
2014.
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[C21] P. Mertikopoulos, and E.V. Belmega, “Distributed Spectrum Management in MIMO-
OFDM Cognitive Radio: An Exponential Learning Approach”, ACM International Confer-
ence on Performance Evaluation Methodologies and Tools VALUETOOLS 2013, Torino,
Italy, 10-12 Dec. 2013.

[C20] A.M. Masucci, I. Fijalkow, and E.V. Belmega, “Subcarrier allocation in coded OFDMA
uplink systems: Diversity versus CFO”, IEEE International Symposium on Personal, Indoor
and Mobile Radio Communications (PIMRC), London, United Kingdom, Sep. 2013.

[C19] E.V. Belmega, L. Sankar and H. V. Poor, “Repeated games for privacy-aware distributed
state estimation in interconnected networks”, IEEE International Conf. on NETwork Games,
COntrol and OPtimization (NETGCOOP), Avignon, France, invited paper, Nov. 2012.

[C18] R. Masmoudi, E.V. Belmega, I. Fijalkow, and N. Sellami, “A Closed-Form Solution to
the Power Minimization Problem over Two Orthogonal Frequency Bands under QoS and
Cognitive Radio Interference Constraints”, IEEE Dynamic Spectrum Access Networks
(DySpan), Bellevue, Washington, USA, Oct. 2012.

[C17] L. Rose, E.V. Belmega, W. Saad, and M. Debbah, “Dynamic Service Selection Games
in Heterogeneous Small Cell Networks with Multiple Providers”, IEEE International
Symposium on Wireless Communication Systems (ISWCS), Paris, France, Aug. 2012.

[C16] P. Mertikopoulos, E.V. Belmega, and A. Moustakas, “Matrix Exponential Learning: Dis-
tributed Optimization in MIMO systems”, IEEE International Symposium on Information
Theory (ISIT), Cambridge, MA, USA, Jun. 2012.

[C15] E.V. Belmega, L. Sankar, H. V. Poor, and M. Debbah, “Pricing Mechanisms for Cooperative
State Estimation”, ISCCSP 2012, Roma, Italy, invited paper, May 2012.

[C14] Y. Hayel, E.V. Belmega, and E. Altman, “Hawks and Doves in a Dynamic Framework”,
International Conf. on NETwork Games, COntrol and OPtimization (NETGCOOP), IEEE
International Conf. on NETwork Games, COntrol and OPtimization (NETGCOOP), Paris,
France, Oct. 2011.

[C13] C.M.G. Gussen, E.V. Belmega, and M. Debbah, “Pricing and bandwidth allocation prob-
lems in wireless multi-tier networks”, IEEE Asilomar Conf. on Signals, Systems, and
Computers, Pacific Grove, CA, USA, Nov. 2011.

[C12] P. Mertikopoulos, E.V. Belmega, A. Moustakas and S. Lasaulce, “Power Allocation Games
in Parallel Multiple Access Channels”, ACM International Conference on Performance
Evaluation Methodologies and Tools (VALUETOOLS), ENS Cachan, France, May 2011.
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1.4.7 Peer-reviewed International Conference Papers (PhD): 11

[C11] E.V. Belmega, H. Tembine, and S. Lasaulce, “Learning to precode in outage minimization
games over MIMO interference channels”, IEEE Asilomar Conf. on Signals, Systems, and
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INTRODUCTION TO ENERGY-EFFICIENT COMMUNICATIONS

Energy efficiency has been identified as one of the major desiderata for the 5th generation
communications (5G), and will likely remain a crucial aspect for the information and
communications technology (ICT) industry beyond 5G. Energy-efficient communications

have been motivating an important part of my research activities during the last four years.
In particular, the focus of my work has been on developing resource allocation policies and
algorithms that optimize the resource usage (in terms of power, spectrum, space, and time) for
energy-efficient data transmission in various wireless networks.

2.1 Why Energy-Efficient Communications?

Owing to the prolific spread of Internet-enabled mobile devices and the ever-growing volume of
mobile communication calls, the biggest challenge in the wireless industry today is to meet the
soaring demand for wireless broadband required to ensure consistent quality of service (QoS) in
a network. Rising to this challenge means increasing the network capacity by a thousandfold
over the next few years [1], but the resulting power consumption and energy-related pollution
are expected to give rise to major societal, economic and environmental issues that would render
this growth unsustainable [2], [3]. Therefore, the ICT industry is faced with a formidable mission:
cellular network capacity must be increased significantly in order to accommodate higher data
rates, but this task must be accomplished under an extremely tight energy budget. Thus, to
achieve the seamless integration of a diverse set of mobile users, applications and services, current
design requirements for 5G systems target a dramatic decrease in energy-per-bit consumption of
the order of 1,000£ or more [1], [4].

A first possible and promising way out of this gridlock is the small-cell (SC) network paradigm
which builds on the premise of shrinking wireless cell sizes in order to bring user equipment (UE)
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and their serving stations closer to one another. From an operational standpoint, SC networks
can be integrated seamlessly into existing macro-cellular networks: the latter ensure wide-area
coverage and mobility support, while the former carry most of the generated data traffic [5]. On
the other hand, the users’ aggressive attitude towards interference from other users can lead to a
cascade of power increases at the device level, thereby leading to battery depletion and inefficient
energy use. Consequently, solutions that focus exclusively on spectral efficiency maximization are
not aligned with energy-efficiency requirements [J6], [C10] – which are crucial for the deployment
and operation of heterogeneous networks (HetNets).

A second contending technology to achieve the aforementioned design targets is the emerging
massive MIMO (multiple-input and multiple-output) paradigm. Coupled with the use of multiple
carrier frequencies via orthogonal frequency division multiplexing (OFDM), massive MIMO “goes
large” by employing inexpensive service antennas to focus energy into ever smaller regions of
space [6], [7], [8]. As a result, very large MIMO arrays can greatly enhance the reliability of
wireless connections and increase throughput and energy efficiency (EE) by a factor of 10£ to
100£ without requiring the deployment of expensive new air interfaces [8], [9]. However, due to
the massive complexity and variability of such systems, a crucial challenge that arises is that
wireless users must also be capable of adapting to a dynamic spectrum landscape “on the fly”,
usually with minimal coordination and limited information at the device end.

Going beyond cellular networks, the Internet of things (IoT) is projected to connect billions
of wireless “things” (wireless sensors, wearables, biochip transponders, etc.) in a vast network
with drastically different requirements and characteristics between components (e.g., in terms
of throughput, power, target applications, etc.) [10]. Following Moore’s prediction on silicon
integration, the wireless environments of IoT are expected to exhibit massive device densities with
high interference levels. An orthogonal spectrum allocation is therefore energetically inefficient,
as an unrealistic number of bands or subcarriers would be required to accommodate all devices.
The usage of new access protocols such as non-orthogonal multiple access (NOMA) [11] may be
considered instead, in which interference mitigation becomes critical. For this reason, and also
given that the autonomous wireless devices have stringent battery limitations, optimizing the
power consumption emerges as one of the key ingredients for achieving a “speed of thought” user
experience at the application level [4].

At last, future devices are likely to be enhanced with many new features among which
energy harvesting or scavenging [12] from dedicated RF sources or from the readily available
ambient RF radiation could prove essential in boosting the energy autonomy (potentially leading
to self-powered devices), in mitigating the network interference or even in mitigating malicious
attacks. This has motivated the recent interest surge on RF-based wireless information and
power transfer [13], [14], [15], [16], with a focus on wireless sensor networks relevant to IoT
applications.

34



2.2. PHD EARLIER CONTRIBUTIONS

2.2 PhD Earlier Contributions

My PhD has mostly focused on distributed multiple access MIMO systems in which the multiple
transmitters compete for the common spectrum and spatial resources and are mainly driven by
maximizing their transmission rates at the expense of high power consmumption.

Although energy-efficient communications caught our attention during my PhD [J6], [C10],
[C7], [C6] we had solely considered the information-theoretic measure introduced in [17], i.e.,
the ratio between the Shannon capacity and the power consumption for data transmission, and
extended it to a MIMO point-to-point link (composed of a single multi-antenna transmitter
and a single multi-antenna receiver). Our investigation in static and fast fading Gaussian
channels lead to the extension of the well-known negative result of [17]: in order to maximize the
information-theoretic energy efficiency, the transmitter should remain silent and not transmit
any data.

[J6] E.V. Belmega and S. Lasaulce, “Energy-efficient precoding for multiple-antenna terminals”, IEEE. Trans. on Signal
Processing, vol. 59, no. 1, pp. 329–340, Jan. 2011.

[C10] E.V. Belmega, S. Lasaulce, and M. Debbah, “A survey on energy-efficient communications”, IEEE Intl. Symp. on Personal,
Indoor and Mobile Radio Communications (PIMRC 2010), Istanbul, Turkey, invited paper, Sep. 2010.

[C7] E.V. Belmega, and S. Lasaulce, “How useful are multiple antennas in energy-efficient power control games? An informa-
tion theoretic answer”, International Conference on Performance Evaluation Methodologies and Tools (VALUETOOLS),
Pisa, Italy, Oct. 2009.

[C6] E.V. Belmega, S. Lasaulce, M. Debbah, and A. Hjørungnes “A new energy efficiency function for quasi-static MIMO chan-
nels”, International Wireless Communications and Mobile Computing Conference (IWCMC), Leipzig, Germany, invited
paper, Jun. 2009.

2.3 Post-PhD Contributions

Nevertheless, when accounting for more practical considerations such as including the circuit
power consumption [18], [19] or replacing the Shannon data rate by other throughput metrics
[20], [21], [22], this negative result no longer holds: a non transmit data to be energy-efficient.
My research work post-PhD on this topic goes beyond the point-to-point information-theoretic
framework and incorporates diverse aspects such as: studying multi-user interference networks
[J18], [J17], [J13], comparing different energy-efficiency metrics [C25], taking into account the
dynamics and unpredictability of the networks [J21], [J16], exploiting energy harvesting as a
means to counter jamming attacks [J20], [J19].

[J21] A. Marcastel, E. V. Belmega, P. Mertikopoulos, and I. Fijalkow, “Online power optimization in feedback-limited, dynamic
and unpredictable IoT networks”, accepted paper, IEEE Trans. on Signal Processing, Mar. 2019.
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[J20] G. Rezgui, E.V. Belmega, and A. Chorti, “Mitigating jamming attacks using energy harvesting”, accepted paper, IEEE
Wireless Commun. Lett., Sep. 2018.

[J19] E.V. Belmega, and A. Chorti, “Protecting secret key generation systems against jamming: Energy harvesting and chan-
nel hopping approaches”, IEEE Trans. on Information Forensics & Security, vol. 12, no. 11, pp. 2611 – 2626, Nov. 2017.

[J18] P. Mertikopoulos, E.V. Belmega, R. Negrel, and L. Sanguinetti, "Distributed stochastic optimization via matrix exponen-
tial learning", IEEE Trans. on Signal Processing, vol. 65, no. 9, pp. 2277 - 2290, May 2017.

[J17] R. Masmoudi, E.V. Belmega, and I. Fijalkow, “Efficient Spectrum Scheduling and Power Management for Opportunistic
Users”, EURASIP Journal on Wireless Communications and Networking (JWCN), vol. 2016:97, pp. 1 – 19, Apr. 2016.

[J16] P. Mertikopoulos, and E.V. Belmega, “Learning to be green: robust energy efficiency maximization in dynamic MIMO-
OFDM systems”, IEEE Journal on Selected Areas in Communication, Special Issue on Energy-Efficient Techniques for 5G
Wireless Communication Systems, vol. 34, no. 4, pp. 743 – 757, Apr. 2016.

[J13] G. Bacci, E.V. Belmega, P. Mertikopoulos, and L. Sanguinetti, “Energy-Aware Competitive Power Allocation for Hetero-
geneous Networks Under QoS Constraint”, IEEE Trans. on Wireless Communications, vol. 14, no. 9, pp. 4728 – 4742, Sep.
2015.

[BC4] V. Varma, E.V. Belmega, S. Lasaulce, and M. Debbah, “Energy Efficient Communications in MIMO Wireless Channels”,
Green Communications: Theoretical Fundamentals, Algorithms, and Applications, CRC Press, Sep. 2012.

[C36] R. Masmoudi, E.V. Belmega, and I. Fijalkow, “Impact of Imperfect CSI on Resource Allocation in Cognitive Radio Chan-
nels”, International Workshop on Pervasive and Context-Aware Middleware (PerCAM 17) IEEE WiMOB 2017, Rome, Italy,
Oct. 2017.

[C35] E.V. Belmega, and A. Chorti, “Energy Harvesting in Secret Key Generation Systems under Jamming Attacks”, IEEE
International Conference on Communications (IEEE ICC), Paris, France, May 2017.

[C34] A. Chorti, and E.V. Belmega, “Secret Key Generation in Rayleigh Block Fading AWGN Channels under Jamming At-
tacks”, IEEE International Conference on Communications (IEEE ICC), Paris, France, May 2017.

[C33] A. Marcastel, E.V. Belmega, P. Mertikopoulos, and I. Fijalkow, “Interference Mitigation via Pricing in Time-Varying
Cognitive Radio Systems”, invited paper, NetGCoop 2016, Avignon, France, Nov. 2016.

[C32] P. Mertikopoulos, E.V. Belmega, and L. Sanguinetti, “Distributed learning for resource allocation under uncertainty”,
IEEE GlobalSIP, Washington DC, USA, 7-9 Dec. 2016.

[C31] A. Marcastel, E.V. Belmega, P. Mertikopoulos, and I. Fijalkow, “Online Interference Mitigation via Learning in Dynamic
IoT Environments”, IOE worksop in IEEE GLOBECOM 2016, Washington DC, USA, 4-8 Dec. 2016.

[C30] A. Marcastel, E.V. Belmega, P. Mertikopoulos, and I. Fijalkow, “Online power allocation for opportunistic radio access in
dynamic OFDM networks”, IEEE VTC-Fall 2016, Montreal, Canada, 18-21 Sep. 2016.

[C29] R. Masmoudi, E.V. Belmega, I. Fijalkow, and N. Sellami, “Joint scheduling and power allocation in cognitive radio sys-
tems”, Advances in Software Defined and Context Aware Cognitive Networks (SCAN) Workshop, IEEE International Con-
ference on Communications (IEEE ICC), pp. 399-404, London, UK, 8-12 Jun. 2015.

[C27] E.V. Belmega, and P. Mertikopoulos, “Learning to be Green: Energy-Efficient Power Allocation in Dynamic Multi-Carrier
Systems”, IEEE VTC-Spring, Glasgow, Scotland, May 2015.

[C25] R. Masmoudi, E.V. Belmega, I. Fijalkow, and N. Sellami, “A unifying view on energy-efficiency metrics in cognitive radio
channels”, European Signal Processing Conference (EUSIPCO), Lisbon, Portugal, Sep. 2014.

[C24] G. Bacci, E.V. Belmega, P. Mertikopoulos, and L. Sanguinetti, “Energy-aware competitive link adaptation in small-
cell networks”, The 10th International Workshop on Resource Allocation in Wireless Networks (RAWNET), WiOpt 2014,
invited paper, Hammamet, Tunisia, May 2014.
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[C23] G. Bacci, E.V. Belmega, and L. Sanguinetti, “Distributed energy-efficient power and subcarrier allocation for OFDMA-
based small cells”, IEEE International Conf. on Communications (ICC 2014), Workshop on Small Cell and 5G Networks,
Sydney, Australia, Jun. 2014.

[C22] G. Bacci, E.V. Belmega, and L. Sanguinetti, “Distributed energy-efficient power optimization in cellular relay networks
with minimum rate constraints”, IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
Florence, Italy, May 2014.

[C18] R. Masmoudi, E.V. Belmega, I. Fijalkow, and N. Sellami, “A Closed-Form Solution to the Power Minimization Problem
over Two Orthogonal Frequency Bands under QoS and Cognitive Radio Interference Constraints”, IEEE Dynamic Spec-
trum Access Networks (DySpan), Bellevue, Washington, USA, Oct. 2012.

[CF5] R. Masmoudi, E.V. Belmega, I. Fijalkow, and N. Sellami, “Allocation de spectre et de puissance dans les systèmes Radio
Cognitives”, GRETSI, Lyon, France, Sep. 2015.

My research interests post-PhD have not been exclusively focused on the study of energy-
efficient communications, but include various themes (see Sec. 1.2.1 for more details). Since these
works and the related contributions go beyond the scope of this manuscript, they will not be
presented here.

2.4 Structure of the Remaining Manuscript

The rest of this manuscript is organized as follows. The next chapter is dedicated to the study
of energy-efficiency in slowly varying or static networks in an effort to device optimal resource
allocation algorithms exploiting tools from convex optimization and non-cooperative game theory
(and the different solution concepts: Nash, Debreu, and/or Stackelberg equilibria, depending on
the specific problem at hand).

Chapter 4 will incorporate an important ingredient to the energy-efficiency analysis: the
temporal variability and unpredictability of the network by focusing on a robust worst-case type
of settings, in which there are no assumptions on the underlying network dynamics (and can
potentially be completely arbitrary and non-stationary). In this context, the objective is to develop
adaptive and distributed resource allocation algorithms relying on strictly causal and possibly
imperfect feedback information. Such algorithms will draw on online optimization and machine
learning tools and will no longer aim at the convergence to a fixed state (such as classic optimal or
equilibrium solutions) but meet a different performance criterion in terms of regret minimization.

In Chapter 5, we conclude this HDR thesis by discussing several (short-, mid- and long-term)
perspectives and interesting open issues.

At last, Appendix A contains a selection of five publications relevant to energy-efficient
communications.
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2.5 Notations

Throughout this manuscript we use the following notations: small or large caps x or X for scalar
parameters and variables; x for vectors and X for matrices. We use the game-theoretic notation
(xk, x°k) when we need to focus on the action xk of a given player k against the actions of the
other players and x°k = (x1, . . . , xk°1, xk+1, . . . , xK ), where K is the total number of players. At last,
we will use of the Landau asymptotic notations O (·) and o(·). Given two functions f , g : R! R,
we say that “ f grows no faster than g asymptotically” and write f (t) = O (g(t)) as t ! 1 if
limsupt!1 f (t)/g(t) < 1 or, equivalently, there exists some positive and finite constant c > 0
such that f (t)∑ cg(t) for sufficiently large t. Also, we say that “ f is dominated by g” and write
f (t)= o(g(t)), if limsupt!1 f (t)/g(t)= 0.
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3
CONTRIBUTIONS EXPLOITING CONVEX OPTIMIZATION AND GAMES

In this chapter, we summarize the main contributions to energy-efficient multi-user commu-
nications under the common assumption that the network topology, its characteristics and
its parameters remain static throughout the duration of the block transmission time; this

means that the channel coherence time is sufficiently large to allow for channel estimation to be
performed at the receivers’ end (via pilot transmission) and to be fedback to the transmitters.
Under this assumption, we derive energy-efficient resource allocation algorithms in different
wireless communication settings by exploiting classical tools such as: convex optimization suited
for centralized settings, in which a single central authority controls all communication para-
meters (e.g., the power allocation policies over the available spectrum of the transmitters); and
non-cooperative game theory in decentralized settings, in which the communication parameters
to be controlled are delegated to each transmitting device.

3.1 Centralized Cognitive Radio Networks

In this section, we overview the most relevant contributions of the work performed by the PhD
student Raouia Masmoudi (ETIS), whom I have co-advised (at 50%) jointly with Inbar Fijalkow
(ENSEA, 30%, official director) and in collaboration with Noura Sellami (University of Sfax,
Tunisia), in the context of the EconHome (FUI Systematic) project leading to the following
publications: [J17], [C29], [C25].

More specifically, we study a centralized resource allocation problem in a cognitive radio
network designed to address the spectrum scarcity and its current underuse by allowing the
opportunistic access to it [23]. A hierarchy between users is imposed, in which secondary users
(SUs) are allowed by the spectrum manager to communicate either in the vacant bands left by
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the licensed users, called primary users (PUs), or in the non-vacant bands under the condition
that the induced interference at the primary receivers is kept below some predefined thresholds.

3.1.1 A Unified View on Energy-Efficiency Metrics

By exploiting the framework of multi-criteria convex optimization [24], we begin by providing
a unifying view of three among the most popular energy-efficiency metrics in wireless com-
munications [C25]. Multi-criteria optimization techniques have become popular in wireless
communications [25], [26] as they capture the tradeoff operating points between opposing perfor-
mance criteria. Here, exploiting these tools shows that the different existing energy-efficiency
metrics can be unified under the same umbrella. This allows us to compare them and to give
insights on choosing the most pertinent metric in a specific scenario. It turns out that the optimal
allocation policies maximizing the three energy-efficiency metrics are the Pareto-optimal points
lying on the optimal tradeoff curve between the rate maximization and power minimization
bi-criteria optimization problem.

We focus on a simple setting composed of a single SU whose objective is to find its most energy-
efficient power allocation over the available N frequency sub-carriers while complying with the
the constraints imposed by the K PUs. The SU has two opposing desiderata when choosing
its best power allocation policy: rate maximization and power consumption minimization. This
translates into the following bi-criteria optimization problem:

maximize
p 2P

fo(p) , ( °PT (p); C(p) )
bla

(3.1)

where fo :RN !R°£R+ is the objective function, PT (p) denotes the overall transmit power; C(p)
is the achievable Shannon rate:

PT (p) =
NX

n=1
pn, (3.2)

C(p) =
NX

n=1
log2(1+ sn pn), (3.3)

where sn denotes the quality of the direct link or the effective channel gain incorporating the
pathloss, the channel noise and the interference coming from the PUs.

The set P represents the feasible set shaped by the constraints imposed by the PUs - received
peak and average maximum interference (P(k)

m and P
(k)
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where g(k)
n denotes the channel gain of the interfering link between the k-th PU and the SU in

subcarrier n.
There is an inherent conflict among the two desiderata: a) minimizing the power consumption

implies a minimum rate equal to zero, i.e., the SU is not transmitting; b) maximizing the rate
under the constraints in P implies a maximum overall power consumption PT (the rate is a
non-decreasing function of the transmit powers).
Therefore, there is no power allocation policy which optimizes both objectives simultaneously; a
tradeoff between them has to be made.

The optimal tradeoff points are called Pareto-optimal points that lie on the Pareto-boundary
of the set of all feasible power-rate pairs F , defined as:

F = {( PT (p); C(p) ) 2R+£R+ | p 2P } . (3.5)

Figure 3.1: The feasible set F of power-rate pairs in the case of N = 3, from a mathematical
perspective (from the rate expression in (3.3), we cannot transmit below the Shannon capacity
on the worst subcarrier). From an information-theoretic perspective, the entire convex region
of power-rate pairs below the Pareto-boundary is achievable (e.g., using standard time-sharing
arguments).

We can visualise the set F in Fig. 3.1, for the following toy setting: N = 3 orthogonal frequency
bands, K = 1 only one PU, power channel gain ordered in decreasing order s = [7, 5, 3] and
g = [7, 7, 7], maximum average interference power constraint P = 40 and maximum peak
interference power constraint P peak(k) = 10, 8k. From a purely mathematical perspective, the set
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of feasible power-rate pairs is not convex and the peaks B, C are caused by the peak interference
constraints. This is because the transmitter is not allowed to transmit below the Shannon capacity,
by the definition of C(p). On the contrary, the information-theoretic region is convex and the
entire region below the Pareto-boundary is achievable (the transmit rate can be chosen below
capacity or by simply considering standard time sharing arguments). Nevertheless, our main
interest is the upper-left boundary of F , composed of the tradeoff points ( bPT , bC) called Pareto-
optimal and not the interior points ( ePT , eC). This boundary is known as the Pareto-boundary and
is denoted by Tc(PT ). The upper-bound Ub(PT ) is given by the classical water-filling problem, i.e.,
rate maximization under overall power constraint PT :

Tc(PT ) = max

(

C(p)| p 2P ,
NX

n=1
pn ∑ PT

)

(3.6)

Ub(PT ) = max

(

C(p)| pn ∏ 0, 8n,
NX

n=1
pn ∑ PT

)

(3.7)

When operating at a Pareto-optimal point, it is impossible to find any feasible power allocation
p that reduces the power consumption and increases the achievable rate simultaneously. As
mentioned above, the pair (P̂T , Ĉ) in Fig. 3.1 is a Pareto-optimal point, whereas the pair (P̃T , C̃)
is not. The above problem (3.1) is a convex optimization problem since the objectives are affine
and concave and the feasible set is defined by affine inequality constraints. Scalarization, via
optimizing the weighted sum of objectives, is a standard technique for finding the Pareto-optimal
points in multi-criteria problems [sec.2.6.3 [24]].

Three of the most popular energy-efficiency measures can be unified under the umbrella of
the bi-criteria optimization problem in (3.1).

a. Weighted sum of objectives [27], [28], [J21]

maximize
p 2P

NX

n=1
log2(1+ sn pn)°Æ

NX

n=1
pn

bla
(3.8)

where Æ> 0 can be interpreted as the unitary cost of the power consumption penalizing the
rate maximization objective. This approach corresponds to precisely the scalaization of the
optimization problem in (3.1).

b. Power minimization under QoS constraint [J13], [29], [C18]

minimize
p 2P

NX

n=1
pn

bla

subject to C(p)=
NX

n=1
log2(1+ sn pn)∏ Rmin

(3.9)
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where Rmin denotes the minimum target rate at the SU.

c. Ratio rate vs. power [J16], [18], [19]

maximize
p 2P

EE(p) , C(p)
PT (p)+Pc

bla
(3.10)

where Pc is the fixed circuit power consumption at the SU. This energy-efficiency metric is
measured in bits/Joules.

Notice that the solutions of all these three problems are parametrized by Æ, Rmin and Pc,
respectively and, hence, these parameters have to be very carefully tuned or estimated depending
on the application at hand. It turns out that, in all cases, the solutions lie on the Pareto-boundary
of the set of feasible power-rate pairs F . However, several differences arise between the three
problems.

The first two energy-efficiency problems (3.8) and (3.9) can be solved using classic convex
optimization tools and water-filling type of algorithms. Also, all optimal tradeoff pairs (lying on
the Pareto-boundary of F ) can be easily achieved by tunning either Æ or Rmin. At last, there is a
geometric relationship between them: if Æ is the slope of the Pareto-optimal boundary passing
through Rmin, the two problems are equivalent w.r.t. their solutions.

Such a geometric relationship is more difficult to be established between the first two ap-
proaches and the ratio rate vs. power maximization in (3.10). Indeed, while the circuit power
consumption does not influence the achieved power-rate tradeoff for the first two metrics, this
consumption becomes critical for the third one and imposes a minimum level on both the trans-
mission rate and the power consumption for data transmission to operate at optimum. The main
difference here is that maximizing the rate vs. power ratio leads to a non-convex optimization
problem. Nevertheless, it is a fractional program that can be solved using Dinkelbach itera-
tive method [19], which also explains that the optimal tradeoff point (computed numerically)
depending on Pc cannot be identified geometrically on the Pareto-boundary of F .

3.1.2 Efficient Spectrum Scheduling and Power Management for
Opportunistic Users

Having discussed three of the most popular energy-efficiency metrics based on the tradeoff
between power consumption and Shannon achievable rate, we focus next on the second energy-
efficiency metric, i.e., the power consumption minimization under QoS constraint in a multi-user
cognitive radio setting [J17]. To be specific, we consider a joint discrete scheduling and power
allocation problem at the secondary network from a centralized perspective.

Among the works on resource allocation problems in OFDM systems, without the additional
interference constraints of the cognitive radio context, the closest work to ours is [30], in which
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a dynamic scheduling and power allocation algorithm was proposed to compute the policies of
the multiple non-interfering users that maximize the overall QoS. An algorithm is derived using
a Lagrangian relaxation technique to overcome the discrete scheduling constraints. However,
a rigorous proof of the convergence and optimality of the proposed algorithm was not provided.
Energy-efficiency problems in the cognitive radio context were studied with QoS and spectrum
scheduling constraints in [31], in which the authors minimize the SUs’ overall power consumption.
The framework in [31] is the closest to this work. However, there is no proof of optimality of the
proposed scheduling, which is based on a heuristic method involving some exhaustive search
steps. In our work, we use convex optimization tools to find the optimal joint scheduling and
power allocation under interferences and QoS constraints. Our optimal solution is calculated via
an iterative sub-gradient algorithm that is proven to converge to the optimal solution.

The problem under study exhibits two major challenges. First, the minimum QoS and maxi-
mum interference constraints may not be simultaneously satisfied and, hence, the problem may
not be feasible. To tackle this, we investigate necessary and sufficient conditions for the problem’s
feasibility. Second, the discrete nature of the channel assignments in the scheduling policy makes
the problem non-convex; the centralized authority grants the access to at most one opportunistic
user in each subcarrier, to avoid interference imparments. Inspired by [30], we use a Lagrangian
relaxation and a dual approach to obtain a solvable convex optimization problem.

Problem formulation

The problem under study can be formalized as follows:

(DP1)

minimize
QX

q=1

NX

n=1
pqn

s.t.
X

n2N

g(k)
qn pqn ∑ P

(k)
q , 8q,8k

0∑ g(k)
qn pqn ∑ P peak(k)

qn , 8n,8q,8k

Cq(xq,pq)∏ Rmin
q ,8q

X

q
xqn ∑ 1,8n

xqn 2 {0,1},8n,8q,

where pqn is the power allocated in subcarrier n by SUq; xqn is the spectrum allocation variable
representing whether SUq is allowed to transmit in subcarrier n; Rmin

q represents the target QoS

at SUq; g(k)
qn is the power gain of the interfering link between SUq and PUk; P

(k)
q is the maximum

average interference power that SUq is allowed to inflict on PUk; and P peak(k)
qn is the maximum

peak interference power in subcarrier n that SUq is allowed to inflict on PUk. The achievable
rate of SUq is given by

Cq(xq,pq)=
NX

n=1
xqn log2

°
1+ sqn pqn

¢
, (3.11)
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where sqn is the effective channel gain of the direct link of SUq.
As we have already discussed, the above optimization problem is difficult for two reasons.

First, the target rate constraints and the maximum interference constraints inflicted on the PUs
are opposing ones and, thus, the feasible set may be void depending on the system parameters.
Second, to avoid the interference impairments to the PUs and among SUs, we assume that the
system owner schedules at most one SU to a given band n and that such a band cannot be further
fractioned. This turns the problem into a discrete optimization with respect to the scheduling
policy.

Main Contributions

Our main contributions in [J17] (provided in Appendix A) are summarized here below:

• In order to address the feasibility issue, we derive necessary and sufficient conditions on
the system parameters for the existence of a solution to the joint spectrum scheduling and
power allocation problem in a CR system.

• We formulate a convex optimization problem based on Lagrangian relaxation of the initial
non-convex problem. By investigating the Karush-Kuhn-Tucker (KKT) conditions, it turns
out that the relaxed problem always has discrete solutions w.r.t. the scheduling policy.
These solutions are proved to solve the initial problem (3.11).

• The optimal solution of the relaxed problem, when it exists, is computed via a projected
subgradient method [32]. We prove that, when the problem is feasible, our proposed iterative
algorithm converges to an optimal solution that satisfies the KKT conditions above (and
hence solves the initial problem (3.11)).

Open Issues

Future investigation may include: i) studying the robustness of the proposed algorithm to
imperfections in the channel state information and, in particular, the issue of underestimating
the interfering links to the primary users which may lead to interference constraints violations;
ii) when the problem is unfeasible, investigating the possibility of selecting a subset of SUs
to transmit as opposed to denying the opportunistic access alltogether; iii) including a more
realistic model in the circuit power consumption, which depends on the transmission data rate,
the number of antennas in MIMO systems etc. [33].

3.1.3 Outputs

Regarding the energy-efficiency investigation in centralized cognitive radio networks, the outputs
are listed below.
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3.2 Distributed and Autonomous Wireless Networks

In the previous section, a centralized authority was implicitly assumed that is able to compute
the power allocation policies of all users and the spectrum scheduling policy. This assumption
may be too stringent and unsuitable in various wireless communication settings, such as: a)
heterogeneous networks or small cell networks1, which build on the premise of shrinking wireless
cell sizes in order to bring users and their serving stations closer to one another; b) networks
suffering from malicious jamming attacks that naturally fall outside of the control of a unique
authority; c) underwater acoustic channels, which remain unregulated for the most part [35].

Moreover, distributed resource allocation policies have the important advantage of avoiding
the waste of energy associated with centralized algorithms requiring considerable information
exchange (and, hence, transmissions) between the users and/or the network administrator [34],
[36].

Such settings call for flexible and decentralized resource allocation strategies that rely only on
local channel state information (CSI) and require minimal information exchange between network
users. This framework is commonly referred to as distributed optimization, and it represents a
crucial aspect of scalable and efficient network operation. In this section, we investigate solution
concepts from non-cooperative game theory, an established tool for theoretical tool for problems of
this kind.

1From an operational standpoint, such networks can be integrated seamlessly into existing macro-cellular
networks: the latter ensure wide-area coverage and mobility support, while the former carry most of the generated
data traffic [5], [34].
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3.2.1 Power Allocation for Heterogeneous Networks under QoS Constraints

We begin by an overview of the work in collaboration with Giacomo Bacci (University of Pisa,
Italy), Luca Sanguinetti (University of Pisa, Italy) and Panayotis Mertikopoulos (CNRS) in the
context of NEWCOM # - the European Network of Excellence in Wireless Communications, which
has lead to the publications [J13], [C23]

Our main goal in this work is the analysis and design of energy-efficient power allocation
policies in a heterogeneous network where small cells coexist with macro-tier cellular systems
based on orthogonal frequency-division multiple access (OFDMA) technology. Albeit promising,
the deployment of small cell networks poses several technical challenges mainly because different
small cells are likely to be connected over unreliable infrastructures with widely varying features
– such as error rate, outage, delay, and/or capacity specifications. The inherently heterogeneous
nature of these networks calls for flexible and decentralized resource allocation strategies that
rely only on local CSI and require minimal information exchange between network users and/or
access points/base stations.

In particular, focusing on the uplink case, we propose a game-theoretic framework where
each user adjusts the allocation of its transmit power (over the available subcarriers) so as
to unilaterally maximize its individual link utility subject to a minimum rate requirement.
Specifically, each user’s energy-aware utility function is defined as the achieved throughput per
unit power, accounting for both the power required for data transmission and that required by
the circuit components of each user (such as amplifiers, mixer, oscillator, and filters) [19], [33],
[C22].

Our work builds on the game-theoretic analysis proposed in [37] where a group of players aims
at maximizing their individual energy-efficiency (measured in bits per Watt of transmit power)
subject to each user’s power constraints. Despite this similarity, the analysis of [37] does not
account for minimum rate requirements, thus the resulting game-theoretic model is a standard
Nash game with no QoS guarantees – in particular, the users’ rates at equilibrium could be fairly
low. Incorporating QoS requirements changes the setting drastically and takes us beyond the
standard Nash framework because a user’s admissible power allocation policy depends crucially
on the transmit powers of all other users. The proposed energy-efficient framework represents a
generalization of the power minimization under minimum-rate constraints investigated in [29],
which is a special case that occurs when the minimum rates are achieved with equality.

Game-theoretic Formulation

Mutual interference in the network introduces interactions among the users that aim at optimiz-
ing their energy-efficiency utilities. A natural framework for studying such strategic inter-user
interactions is offered by the theory of non-cooperative games with continuous (and action-
dependent) action sets. Because of each user’s minimum rate constraints, the resulting game
departs from the Nash’s classical framework [38] and gives rise to a Debreu-type game [39] where
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the actions available to each user equipment (UE) depend on the transmit power profile of all
other users in the network. In this setting, the relevant solution concept is that of a DE – also
known as a generalized Nash equilibrium [40]. The problem as a non-cooperative game is denoted
by G ¥G (K ,P ,u) and consists of the following components:

a) The set of players of G is the set K of the network’s user equipments (UEs).

b) Each player k can choose any transmit power vector in P
0
k over the N available subcarriers,

with

P
0
k =

n
pk 2RN

+ : 0∑ pk,n ∑ pk,n,
X

n pk,n ∑ Pk

o
(3.12)

for given maximum per-subcarrier transmit power levels pk,n and total power constraints Pk.
However, given a power profile p°k 2P

0
°k ¥

Q
` 6=k P

0
` of the opponents of player k, the feasible

action set of player k in the presence of the rate requirements is:

Pk(p°k)=
©
pk 2P

0
k : Ck(p)∏ µk

™
. (3.13)

where Ck(p) is the achievable rate (normalized to the subcarrier bandwidth, and thus mea-
sured in b/s/Hz) of the k-th user:

Ck(p)= 1
N

NX

n=1
log2

°
1+∞k,n

¢
(3.14)

with ∞k,n the signal-to-interference-plus-noise ratio (SINR) over the n-th subcarrier that is
achieved by user k at its serving access point (AP):

∞k,n =µk,n(p°k,n) pk,n (3.15)

=

ØØØgH
k,nhkk,n

ØØØ
2

pk,n

kgk,nk2æ2 +PK
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ØØØ
2

p j,n

, (3.16)

where hk j,n hk j,n 2CM√(k)£1 denote the uplink channel vector with entries [hk j,n]m represent-
ing the (frequency) channel gains over subcarrier n from the j-th UE to the m-th receive
antenna of the serving AP of user k denoted by √(k), where √(k) : K 7!S is a generic function
that assigns each user k its serving AP. To keep the complexity at a tolerable level, a simple
linear detection scheme is employed for data detection with gk,n being the vector employed for
recovering the data transmitted by user k over subcarrier n.

c) The utility uk(pk;p°k) of player k is given by the rate vs. power ratio

uk(p)=
N°1 PN

n=1 log2
°
1+µk,n pk,n

¢

pc,k +
PN

n=1 pk,n
. (3.17)
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In this framework, the most widely used solution concept is a generalization of the notion of
Nash equilibrium [41], known as Debreu equilibrium (DE) [39] and sometimes also referred to as
generalized Nash equilibrium (GNE).

Definition 3.1. A power profile p? is a Debreu equilibrium of the energy-efficiency game G if

p?k 2Pk(p?°k), 8k 2K , (3.18a)

and
uk(p?)∏ uk(pk;p?°k), 8pk 2Pk(p?°k), k 2K . (3.18b)

The main difference between Debreu and Nash equilibria2 is that the latter notion considers
any unilateral deviations, irrespective of whether the resulting action satisfies the coupled
constraints imposed by the actions of other players in the game. Put differently, Nash-type
deviations include any action that satisfies a player’s individual uncoupled constraints, even
if so doing violates the player’s coupled constraints. In the case at hand, this means that, at
Nash equilibrium, users would be allowed to transmit at any power level, even if this violates
the system’s transmission rate requirements. On the other hand, these feasibility constraints
are already ingrained in the DE concept: the only unilateral deviations considered are those for
which the rate constraints remain satisfied.

As such, Debreu equilibrium are of particular interest in the context of distributed systems
because they offer a stable solution of the game from which players (in this case, UEs) have no
incentive to deviate and thus destabilize the system, if everyone else maintains their chosen
power allocation profiles.

To visualize the impact of the rate constraints on the energy-efficiency optimization, Fig. 3.2
depicts the graph of the utility function (3.17) of user k (normalized by pc,k) as a function of
the transmit powers pk = {pk,n}N

n=1 for a fixed interference power vector p°k (and hence keeping
{µk,n(p°k)}N

n=1 fixed). We also focus on only one subcarrier, N = 1. The dashed black line depicts
the unconstrained utility (3.17), whereas the solid black line reports uk(p) for the values of pk,1

such that the rate constraint is met, assuming µk = 2b/s/Hz (for convenience, also the rate rk

is reported with red lines): µk,1 = 1/pc,k in Fig. 3.2a, whereas µk,1 = 10/pc,k in Fig. 3.2b. As can
be seen, the power level that maximizes uk(p) (red dot) is on the left boundary of the feasible
power set of Fig. 3.2a: in this case, maximizing uk(p) corresponds to minimizing the power
subject to rate constraints, e.g., as considered in [29]. In general however, the maximization of
energy efficiency produces a different optimal point, as reported in Fig. 3.2b where the focal
user can exploit better channel conditions experienced to increase its utility. This formulation is
particularly appealing for next-generation wireless systems, as it captures the tradeoff between
obtaining a satisfactory spectral efficiency and saving as much energy as possible [C10], [18],
[19].

2Recall that a power profile p? is a Nash equilibrium of the energy-efficiency game if uk(p?)∏ uk(pk;p?°k), for all
pk 2P

0
k and for all k 2K (for more details the reader is referred to [41]).
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(b) µk,1 · pc,k = 10.

Figure 3.2: Normalized utility as a function of the normalized transmit powers (N = 1, µk =
2b/s/Hz).

It is easy to see that a particular set of constraints {µk}K
k=1 may affect the feasibility of the

problem in the sense that there might not exist any power allocation p 2 RK£N
+ that allows all

constraints µk to be met simultaneously – essentially due to mutual interference in the network,
which implies a dependence between the gains µk 8k. Necessary and sufficient conditions that
ensure the feasibility of the problem without any power constraints and in the single-carrier case
N = 1 can be found in [C22].

Another problem is that the resulting system could be even unilaterally infeasible in the sense
that the admissible action set P k(p°k) of player k may be empty for a wide range of transmit
power profiles p°k of the other users in the system. Put differently, in the presence of maximum
power constraints, any given user may not be able to even participate in the game.

Main Contributions

Our main contributions in [J13] (provided in Appendix A), can be summarized below.

• We characterize the system’s Debreu equilibrium as fixed points of a water-filling operator
whose water level is a function of the users’ minimum rate constraints and circuit power
[19] by defining the best-response mapping and using fractional programming techniques
[24].

• This characterization is then used to provide sufficient conditions for DE existence and
uniqueness and to derive a distributed power allocation algorithm that allows the network
to converge to equilibrium under minimal information assumptions. The sufficient condi-
tions ensure that the best-response mapping is a contraction and are somewhat similar in
spirit to the well-known conditions ensuring the uniqueness of a Nash equilibrium, in the
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Figure 3.3: Random realization of a network with S = 5 small cells, KS = 3 SUEs, and K0 = 6
MUEs, sharing N = 12 subcarriers.

non-cooperative rate maximization game studied by [42] in the context of the interference
channel. Intuitively, if the interfering connections for a user are sufficiently far away and
the resulting SINR is high enough, then the DE exists and is unique.

• The performance of the proposed solution is then validated by means of extensive numerical
simulations modeling a HetNet where a macro-tier is augmented with a certain number of
low range small-cell access point (SCA). The distributed algorithm we propose is observed to
converge to a DE in all the numerical simulations performed and for every network scenario
considered, even when the sufficient conditions are not met. As it turns out, the proposed
solution represents a scalable and flexible technique to meet the ambitious goals of 5G
communications [43], such as extremely high area spectral efficiency (ASE) (more than
500b/s/Hz/km2) with a reasonable amount of physical resources (bandwidth and power)
and complexity at the network level (number of SCs, signal processing burden, and number
of transmit and receive antennas).

To illustrate the performance of the proposed algorithm in a practical setting, Fig. 3.3 reports
a random realization of the network with the parameters described in [J13] (see Appendix A).
Using the proposed distributed algorithm, after roughly 20 iterations, the users’ power profile
converges to the DE of G , reported in Fig. 3.4. Here, the first five subplots correspond to the
powers allocated in the small cells (the i-th subplot depicts the powers allocated by the users in
the si-th small cell with colors matching the ones used in Fig. 3.3), whereas the last two subplots
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Figure 3.4: Outcome of the proposed resource allocation policy at the DE for the scenario in Fig.
3.3. The subcarriers are allocated exclusively when the MAI within the small cell is large. All
users achieve their rate requirements. Users with favorable channels increase their powers to
maximize their own utilities.

show the powers selected by the MUEs labeled {16,17,18} (in the sixth subplot) and {19,20,21}
(in the seventh subplot), respectively.

As can be seen in Fig. 3.4, our method tends to allocate the subcarriers in an exclusive manner
whenever the multiple access interference (MAI) across UEs within the same small cell is too
large (e.g., see the 4th small cell, in which only 5 subcarriers are shared by the 3 users), and to
share the same subcarrier when the MAI across users is at a tolerable level (which also includes
the interference generated by SUEs from neighboring cells and the MUEs). On the right hand
side, we report the achieved rates at the DE in b/s/Hz; all users achieve their minimum demands,
while for users with particularly favorable channel conditions (in this case, users no. 1, 11, 19,
and 21), it is convenient to increase their transmit power so as to obtain better performance in
terms of EE.

As we have already mentioned, we assume the channel to be weakly time-varying and that the
convergence of the proposed algorithm is achieved before significant channel variations (common
in closed-loop resource allocation schemes). To support this, assume that the uplink and downlink
slot durations are in the order of few milliseconds (which is reasonable for LTE/LTE-A standards
[44]). In these circumstances, the average convergence time of the proposed solution turns out
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to be in the order of tens of milliseconds (since convergence is achieved after approximately 20
iterations): such interval is sufficiently shorter than typical channel coherence times, especially
when considering usual SC scenarios with pedestrian users.

Open Issues

Challenging open issues for further work include: i) assessing the feasibility of the problem given
a particular network realization for the multicarrier case; ii) evaluating the impact of different
receiver architectures (such as multiuser zero-forcing, and interference cancellation techniques)
on the spectral and energy efficiency of the network; iii) as an alternative to counter the feasibility
issue, investigating the satisfaction equilibrium as a solution concept; iv) accounting for highly
time-varying scenarios in which users move around the network with high speeds.

3.2.2 Mitigating Jamming Attacks Using Energy Harvesting

In this section, we overview our contributions on the study of a jamming-impaired network
composed of a malicious node and a legitimate link with conflicting goals, which naturally falls
outside of the centralized optimization framework. This is a joint work with Arsenia Chorti
(University of Essex, UK until Sep. 2017; ENSEA from Sep. 2017) and our co-advised (50%-50%)
MSc student Gada Rezgui (ETIS), supported locally by ENSEA and ETIS and leading to the
publications: [J20], [J19], [C34], [C35].

Secret key generation (SKG) from shared randomness at two remote locations has been
extensively studied [45], [46], [47], [48] since the initial works [49], [50], and has been extended
to unauthenticated channels [51], [52]. SKG techniques have also been incorporated in protocols
that are resilient to spoofing, tampering and man-in-the-middle active attacks [53], [54]. Still,
such key generation techniques are not entirely robust against active adversaries, particularly
during the advantage distillation phase. Denial of service attacks in the form of jamming are
a known vulnerability of SKG systems; in [55], it was demonstrated that when increasing the
jamming power, the reconciliation rate normalized to the rate of the SKG increases sharply
and the SKG process can in essence be brought to a halt. As SKG techniques are currently
being considered for applications such as the IoT [56], the study of appropriate counter-jamming
approaches is relevant and timely.

Typically, jamming in wireless communication systems has been investigated using game
theoretic tools [57], [58], [59], [60], [61], [62]. Contrary to our work, these earlier studies focus on
performance metrics that are either based on the legitimate nodes’ signal-to-interference-plus-
noise ratio (SINR) [57], [58], [59], [60] and do not incorporate physical-layer security constraints
at all, or are based on the secrecy capacity [61], [62]. The secrecy capacity is inherently different
than the SKG capacity considered in this work; the former measures the maximum rate at
which both confidential and reliable communication is possible, while the latter represents the
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maximum rate at which a common secret key can be extracted from the observation of correlated
sequences at two remote locations [63].

Next generation terminals are likely to be enhanced with many new features that could
prove pivotal in protecting against jamming. For example, greater energy autonomy exploiting
energy harvesting (EH) approaches [13], [15] is being researched for systems such as wireless
sensor networks for IoT applications. Thus, it is interesting to investigate whether EH could be
utilized as a counter-jamming technique by exploiting the harvested jamming power to enhance
the quality of the legitimate communication.

To this aim, we study systems in which the legitimate nodes are equipped with EH capabilities
and examine whether this added functionality is useful in preempting jamming attacks. We
focus on time switching EH protocols [15]: for a fraction of time the legitimate nodes operate
in EH mode and switch to the SKG procedure for the rest. The recent work [60] proposes to
harvest energy from the jamming interference in a multi-user interference channel in which the
jammer is not a strategic decision maker. In terms of formulation, a global optimization problem
is investigated (as opposed to an adversarial game). Furthermore, the global performance metric
in [60] does not incorporate security constraints and the harvested energy is not directly exploited
in the communication phase, appearing only as an additional term in the utility function.

Game-theoretic Formulation

The adversarial interaction between the pair of legitimate nodes and the jammer is formulated as
a two-player zero-sum game defined by the tuple G̃ =

© ˜AL, ˜AJ , ũ
°
p,ø,∞

¢™
in which the players are:

player L representing the legitimate nodes (Alice and Bob act as a single player) on one side, and
player J, the jammer, on the other. The action (p,ø) of player L lies in the set ˜AL = [0,P]£ [0,1],
and the action ∞ of player J lies in the set ˜AJ = [0,°]. The objective of player L is to maximize the
SKG utility ũ(p,ø,∞) given as

ũ(p,ø,∞)= 1°ø
2

log2

0

B@1+
° p

1°ø +∑∞
¢
æ2

H

2(1+æ2∞)+ (1+æ2∞)2

( p
1°ø+∑∞)æ2

H

1

CA , (3.19)

with power constraints p ∑ P, ∞∑°.
The above expression follows from the fact that we focus on a time-switching EH scheme

[15], i.e., we assume that each transmission interval of duration T is divided in two parts. In
the first period of duration øT (0< ø∑ 1 being the fraction of T dedicated to EH), both Alice and
Bob operate in EH mode with efficiency 0< ≥∑ 1; in the second period of duration (1°ø)T, the
legitimate nodes operate in SKG mode using the overall available power (including harvested
power). For simplicity, we assume that the energy harvested can be stored in a battery without any
overflowing issues (unlimited storage) [64]. Furthermore, to ease the mathematical derivation and
by ensuring symmetry in the energy harvested at Alice and Bob we assume that æ2

A =æ2
B =æ2
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(the Eve-Alice and Eve-Bob links have equal variance). Given the above considerations and
assuming that the energy harvested by Alice and Bob is linear in the received RF power [15],
[65]: E = ≥øT∞æ2, the harvested power for each legitimate node per transmission interval can be
expressed as

pEH = E
(1°ø)T

= ∑∞, (3.20)

where ∑= ≥øæ2

1°ø is a convex and increasing function of ø.
The two players are adversaries and the optimal strategy of one player depends on the

choice of their opponent such that it cannot be determined unilaterally. In such interactive
situations, the Nash equilibrium (NE) [41] is the natural solution concept. Intuitively, a profile
(pNE,øNE,∞NE) 2 ˜AL£ ˜AJ is a NE if none of the players can benefit by deviating from this profile
knowing that their opponent plays accordingly. Hence, NEs are system states that are stable to
unilateral deviations.

We also investigate the so-called Stackelberg equilibrium (SE), which assumes that there is a
hierarchy of play (as opposed to the simultaneous play of the NE). The leader of the game, in
our case the legitimate player, choses first its optimal action by anticipating the behavior of the
follower, i.e., the jammer. The jammer simply observes the choice of the leader and best-responds
accordingly [41].

Main Contributions

Our main contributions in [J19] (provided in Appendix A) regarding the game G̃ can be summa-
rized as follows:

• We reveal the existence of a critical power threshold pth for the legitimate nodes and of
an associated threshold harvesting duration øth. When the legitimate nodes employ EH
for longer than øth, the attacker’s optimal strategy is not to jam at all, i.e., the jammer is
effectively neutralized. The resulting system state is called the NJ state.

• The Nash and Stackelberg equilibria of the two-player zero-sum game are characterized
analytically and in closed form in function of the system parameters.

• We show that neutralizing the jammer is not a stable solution to unilateral deviations (if
the strategic decisions are taken simultaneously) and is therefore not a NE of the game. At
the NE, it is found that both the legitimate nodes and the jammer transmit with full power
and that the energy harvesting (EH) duration does not correspond always to the above
threshold. At low signal-to-interference ratio (SIR) (e.g., relatively low transmit power or
high jamming power), the EH optimal duration equals øth. Although the attacker jams
with full power, the power collected from EH cancels out the impact of the attack and the
SKG capacity is equivalent to the case of using EH for the same duration in absence of
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a jammer. At medium to high SIR, the EH optimal duration becomes lower than øth and
decreases until the legitimate nodes do not harvest energy at all.

• Furthermore, when moving to a hierarchical game formulation in which the leader is the
the pair of legitimate users and the follower is the jammer, the SE analysis reveals that
the legitimate nodes should play the NE strategy. Whenever the legitimate nodes’ harvest
energy for a duration øth (at the NE), the jammer neutralization strategy is also a SE
solution. This means that, in a hierarchical game, the jammer can potentially be deterred
from launching the attack.

In order to compare the SKG capacity at the NE and the NJ state, Fig. 3.5 illustrates the
relative gain in utility defined by E , CNE°CNJ

CNE , where CNE = ũ(P,øNE,°) is the utility at the
NE and CNJ = ũ(pNJ ,øNJ ,0)) is the utility at the NJ state, depicted as a function of the SIR:
P/° for different values of æ2 and æ2

H and for a harvesting efficiency ≥= 0.7. In the investigated
settings, the NJ strategy never outperforms the NE in terms of utility, which is consistent with
our analysis. When the SIR is relatively low, both the NE and the NJ provide identical utilities. In
this case, pNJ = P and øNJ = øNE = øth(P), the jammer is indifferent between {0,°} (as jamming
is not harmful when the legitimate user operates at the threshold øth) and both states are SE
solutions. With increasing SIR, it is no longer optimal for the legitimate nodes to harvest energy
for a fraction of time øth(P) to neutralize the jammer. Instead, by limiting the duration of EH
to øNE = ømax < øth(P) the SKG capacity increases in spite of the full power jamming ∞=° and
only the NE is also a SE solution. Moreover, as the SIR increases further, e.g., for P/°¿ 1, the
legitimate nodes should not harvest energy at all as the jammer’s interference becomes relatively
negligible.

Subsequently, we evaluate the impact of the EH capability at the NE. The relative gain in
utility obtained at the NE compared with the case in which there is no EH capability (CNoEH =
ũ(P,0,°)= C(P,°)) is defined as F , CNE°CNoEH

CNE . Fig. 3.6 illustrates F as a function of the SIR: P/°,
for ≥ = 0.7 and various channel parameters. For low SIR, there is a significant gain in utility
when employing EH. This gain becomes significantly large at very low SIR, exceeding 97.5 %
when the legitimate nodes experience poor channel conditions as opposed to the jammer. When
both parties experience similar channel conditions the gain is in the range of 60 % in the medium
SIR regime. Overall, the numerical results demonstrate that using EH as a counter-jamming
measure is of particular interest in the low and medium SIR regimes but, as expected, it does not
increase the utility in the high SIR. The peaks represent here as well the transition from the
øNE = øth(P) regime (at low SIR) to the second regime in which øNE = ømax < øth(P).

In our recent work [J20], we further investigate the impact of energy harvesting against
jamming attacks when the utility of interest is no longer the SKG capacity but the Shannon
achievable rate instead. Similarly, we first demonstrate that the jamming attack can be prevented
entirely by adjusting the EH duration, i.e., the jammer can be neutralized (or forced to remain
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Figure 3.5: Relative utility gain at the NE vs. NJ: E =
°
CNE °CNJ¢

/CNE as a function of P/°∏ 0
for ≥= 0.7.

silent). This is only possible when the quality of the channel in the harvesting link is higher than
in the jamming link. Nevertheless, neutralizing the jammer imposes too stringent restrictions
on the EH duration and on the legitimate transmit power and hence is not optimal. Second,
we formulate a zero-sum game between the legitimate users and the jammer and derive the
NE analytically. At the equilibrium, both players transmit at full power, while, the optimal
EH duration depends on the system parameters. Interestingly, we show that the NE always
outperforms neutralizing the jammer. At the NE, the jamming interference is not fully cancelled
but rather exploited, particularly efficient in the high jamming interference regime.

Aside from harvesting the jamming radiated signals, in [J19] we have also considered an
alternative way to mitigate jamming attacks by exploiting OFDM systems [58], [66] coupled with
channel hopping or power spreading (over the multiple orthogonal subcarriers). Extending the
studies in [58], [66] to SKG systems, counter-jamming policies are investigated for N block fading
additive white Gaussian noise channels, e.g., systems with N orthogonal subcarriers. At the NE,
the jammer always spreads its power over all subcarriers, while for the legitimate nodes the
optimality of channel hopping or power spreading depends on the channel parameters. In the
high SIR regime, the legitimate nodes should use power spreading to exploit the entire available
spectrum given the relatively low jamming interference. On the other hand, at low SIR, the
legitimate nodes should use channel hopping and transmit over a single subcarrier to avoid most
of the jammer’s interference. Furthermore, in characterizing the game’s SE we find that the
optimal SE strategies reduce to the NE ones, demonstrating that there is no extra payoff to be
earned from the advantage of playing first.
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Figure 3.6: Relative utility gain at the NE vs. no EH: F =
°
CNE °CnoEH¢

/CNE as a function of
P/°∏ 0 for ≥= 0.7 and different channel parameters.

Open Issues

Some interesting extensions for future work are: i) investigating the impact of energy harvesting
capabilities also at the jammer side - when it can harvest energy from the legitimate transmission
and exploit this to enhance the attack; ii) studying the secrecy capacity as a utility measure and
comparing the results obtained with the three metrics: SKG capacity, Shannon capacity and
secrecy capacity; iii) replacing the simplified energy harvesting model with a more realistic one
that accounts for the wavelength of the RF harvested signals, the distance between an RF energy
source and the harvesting node [12]; iv) demonstrating the proposed EH policy in a real testbed,
in which the effect of imperfect channel estimation, jamming detection errors, implementation
aspects of EH, etc., will be considered.

3.2.3 Outputs

The combined outputs of the work on distributed and autonomous wireless networks described
in Sec. 3.2.1 (energy-efficient heterogenous networks under QoS constraints) and in Sec. 3.2.2
(mitigating jamming attacks using energy harvesting) are resumed below.

We also mention the joint work with Panayotis Mertikopoulos (CNRS), Romain Negrel (ES-
IEE) and Luca Sanguinetti (Univ. of Pisa, Italy) published in [J18], [C32], which has not been
detailed here. Even though this work falls into the distributed and autonomous networks frame-
work, we address therein a more general problem going beyond energy effciency maximization
(the core topic of this thesis).

58



3.3. CONCLUSIONS

Publications: 4 journals, 6 conf.

[J20] G. Rezgui, E.V. Belmega, and A. Chorti, “Mitigating jamming attacks using energy harvesting”, accepted paper, IEEE Wireless Commun.
Lett., Sep. 2018.

[J19] E.V. Belmega, and A. Chorti, “Protecting secret key generation systems against jamming: Energy harvesting and channel hopping ap-
proaches”, IEEE Trans. on Information Forensics & Security, vol. 12, no. 11, pp. 2611 – 2626, Nov. 2017.

[J18] P. Mertikopoulos, E.V. Belmega, R. Negrel, and L. Sanguinetti, "Distributed stochastic optimization via matrix exponential learning",
IEEE Trans. on Signal Processing, vol. 65, no. 9, pp. 2277 - 2290, May 2017.

[J13] G. Bacci, E.V. Belmega, P. Mertikopoulos, and L. Sanguinetti, “Energy-Aware Competitive Power Allocation for Heterogeneous Networks
Under QoS Constraint”, IEEE Trans. on Wireless Communications, vol. 14, no. 9, pp. 4728 – 4742, Sep. 2015.

[C35] E.V. Belmega, and A. Chorti, “Energy Harvesting in Secret Key Generation Systems under Jamming Attacks”, IEEE International Con-
ference on Communications (IEEE ICC), Paris, France, May 2017.

[C34] A. Chorti, and E.V. Belmega, “Secret Key Generation in Rayleigh Block Fading AWGN Channels under Jamming Attacks”, IEEE Inter-
national Conference on Communications (IEEE ICC), Paris, France, May 2017.

[C32] P. Mertikopoulos, E.V. Belmega, and L. Sanguinetti, “Distributed learning for resource allocation under uncertainty”, IEEE GlobalSIP,
Washington DC, USA, 7-9 Dec. 2016.

[C24] G. Bacci, E.V. Belmega, P. Mertikopoulos, and L. Sanguinetti, “Energy-aware competitive link adaptation in small-cell networks”, The
10th International Workshop on Resource Allocation in Wireless Networks (RAWNET), WiOpt 2014, invited paper, Hammamet, Tunisia,
May 2014.

[C23] G. Bacci, E.V. Belmega, and L. Sanguinetti, “Distributed energy-efficient power and subcarrier allocation for OFDMA-based small cells”,
IEEE International Conf. on Communications (ICC 2014), Workshop on Small Cell and 5G Networks, Sydney, Australia, Jun. 2014.

[C22] G. Bacci, E.V. Belmega, and L. Sanguinetti, “Distributed energy-efficient power optimization in cellular relay networks with minimum
rate constraints”, IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Florence, Italy, May 2014.

Collaborators: Giacomo Bacci (Univ. of Pisa, Italy), Luca Sanguinetti (Univ. of Pisa, Italy), Panayotis Mertikopoulos (CNRS),
Romain Negrel (ESIEE), Arsenia Chorti (Univ. of Essex, UK, ENSEA)
Student: Gada Rezgui (MSc)
Supported by: Inria, NEWCOM#, PEPS CNRS-INS2I JCJC Real.Net, ENSEA, ETIS, ESIEE

3.3 Conclusions

This chapter provided a concise overview of the main contributions on resource (spectrum, power
and time, etc.) allocation policies that optimize the energy efficiency of the communication when
the networks are slowly varying in time and when channel state information can be acquired
at the transmitting devices’ end. The developed algorithms and solutions, either centralized or
distributed, rely on techniques from convex optimization and non-cooperative game theory. For
each contribution, interesting perspectives and open issues have also been identified.

These methods that target the convergence to a fixed and stable state are not suitable
in highly varying networks, which may be unpredictable and possibly non-stationary. Indeed,
if by the time the aforementioned algorithms converge to a fixed solution the network state
has significantly changed, then these solutions become obsolete. Such arbitrarily varying and
unpredictable networks require a new set of tools: online optimization and machine learning,
which will be exploited in the next chapter.
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4
CONTRIBUTIONS EXPLOITING ONLINE OPTIMIZATION AND

LEARNING

In this chapter, we summarize the main contributions to energy-efficient communications
in networks that no longer remain static for the duration of the transmission block. We
consider a robust or worse case point of view, in which no assumptions are made regarding

the underlying dynamics that governs the temporal variability of the network topology. We start
by providing a quick introduction to the online optimization framework, which is a less popular
toolbox in the communications community compared to convex optimization and game theory.
For a detailed treatment of the topic, the reader is referred to [67] and [68].

4.1 Online Convex Optimization: A Quick Introduction

In classic or static optimization problems, the core underlying assumption is that the objective to
be optimized is known by the optimizing agent and remains fixed for the entire runtime of the
algorithm computing a solution. Stochastic optimization provides an extension of this framework
to problems where the objective function may also depend on a stationary stochastic process. Game
theory takes an alternative, multi-agent view of such problems which encourages the optimizing
agents to adapt and anticipate changes caused by the other optimizing agents (potentially with
conflicting objectives). However, these extensions rely on strong assumptions regarding the
variability of the problem’s objective, the agents’ rationality and common knowledge of rationality
(in games), the information at the agents’ disposal, etc. By contrast, online optimization provides
an elegant toolbox which goes beyond the above by allowing for variations in the problem that are
completely arbitrary – typically accounting for exogenous (either stationary or not) parameters
affecting it, see Fig. 4.1.
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Online

minx`(x;!t) for all t
(arbitrary, unknown !t)

Static

minx`(x)

Stochastic

minx E![`(x;!)]
(random !)

Games

minx max!`(x;!)
(adversarial !)

Figure 4.1: A high-level view of the links between online optimization and other frameworks.

The typical setting of online optimization is described as follows. At each stage t = 1,2, . . . , the
optimizing agent selects an action xt from some compact convex set X µRd and incurs a loss of
`t(xt) based on some loss function `t : X $R that is a priori unknown (this loss function could
be determined stochastically, adversarially, or otherwise). Subsequently, the agent selects a new
action xt+1 for the next stage and the process repeats as shown below:

Process 1 : Generic online decision process
Require: action set X , sequence of loss functions `t : X !R

1: for t = 1 to T do
2: play xt 2X # action selection
3: incur `t(xt) # incur loss
4: feedback vt # receive feedback
5: update xt+1 √ function(xt,vt) # update action based on feedback vt
6: end for

In the above description of online decision processes, no assumptions are made about the
structure of the loss functions `t. The most common settings studied in the related literature [69]
are: i) convex online problems, when `t : X !R is convex for all t; and its refinements ii) strongly
convex online problems, when `t : X !R is strongly convex for all t; iii) linear online problems,
when `t is of the form `t(x)=°v>

t x for some vector vt 2Rd, t.
Notice that there is a close connection between online optimization and reinforcement learning,

a branch of machine learning (along with supervised and unsupervised learning) [69], [70], [71],
[72], [73]. In both frameworks, the agent interacts with (or explores) the environment and adapts
its action by exploiting observed losses or rewards. On the one hand, the most common online
optimization settings mentioned above exploit the overall structure and properties of the problem
at hand (w.r.t. the loss functions `t(·) and the feasible action set X ) to derive provably efficient
decision processes but not on its underlying temporal dynamics and state transitions, which
can be completely arbitrary and non-stationary. On the other hand, reinforcement learning (e.g.,
Q-learning, multi-armed bandit (MAB), Markov decision processes) does not rely on a specific
problem model, but may rely on stochastic assumptions on the underlying dynamics and state
transitions.
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4.1.1 Minimizing the Regret

In the absence of a fixed optimal state to be targeted (given the varying objective in time), the
rising questions are: How to evaluate the performance of such an online policy? How to compare
two different online policies? A first idea would be to compare the performance in terms of the
loss function of an online policy xt with the instantaneous optimal solution for all t:

`t(xt)°min
x2X

`t(x), 8t (4.1)

This comparison is generally too ambitious because of the underlying assumption on the network
dynamics, which is varying in a completely arbitrary way and is unknown when the online update
xt is defined. Instead, a less ambitious and within reach target would be to fix a time horizon T
and to compare the overall performance of the online and dynamic policy (xt, 8t ∑ T) to the best
fixed policy in hindsight denoted by x§:

x§ = argmin
x2X

TX

t=1
`t(x), (4.2)

which minimizes the total incurred loss over the given horizon of play.
Although less ambitious, this fixed policy remains an idealized benchmark that minimizes the

total loss incurred over the horizon of play with perfect knowledge of the future. This comparison
defines the seminal notion of regret introduced in [74], which is the figure of merit to evaluate
and compare the performance of online policies.

RegT =
TX

t=1
`t(xt)°

TX

t=1
`t(x§) (4.3)

=
TX

t=1
`t(xt)°min

x2X

TX

t=1
`t(x) (4.4)

= max
x2X

TX

t=1
[`t(xt)°`t(x)], (4.5)

Generally speaking, the regret captures the overall loss incurred by choosing the online dynamic
policy instead of consistently playing the best fixed strategy in hindsight. Since this benchmark
requires full, non-causal knowledge of the dynamics governing the evolution of the problem’s ob-
jective, this is obviously not an implementable policy – it only exists as a theoretical performance
target. As such, the aim of online optimization is to derive causal, online learning algorithms
that get as close as possible to this remarkable target with the fewest possible assumptions.
Consequently, the objective in an online optimization problem is to design a strictly causal, online
policy that achieves no regret1, i.e.,

RegT = o(T), (4.6)

1Otherwise stated, the aim is to obtain an average regret that grows sublinearly over the time horizon T:

limsup
T!+1

RT
T

∑ 0 or, equivalently, RegT = o(T).
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Algorithm 2 Online gradient descent (OGD)
Require: step-size ∞> 0

1: choose x1 2X # initialization
2: for t = 1 to T do
3: incur loss ˆ̀t √ `t(xt) # losses revealed
4: observe vt √°r`t(xt) # gradient feedback
5: play xt+1 √¶(xt +∞vt) # gradient step
6: end for

Online optimization focuses on designing algorithms that attain the best possible regret minimiza-
tion rate in (4.6), not only in terms of the horizon of play T, but also in terms of the multiplicative
constants that come into (4.6), and which depend on the specific problem at hand (i.e., on the
geometry and dimensionality of the optimizer’s feasible set X but also on the properties of the
objective functions `t).

4.1.2 Online Learning Algorithms and Their Guarantees

In addition to its wide-ranging scope, another major advantage of the online framework is that the
derived algorithms – referred here as online policies – come with provable theoretical guarantees
in the face of uncertainty. Here we briefly overview two of the most popular online algorithms,
which will be exploited later on to design efficient resource allocation algorithms, and their
performance in terms of regret.

Online Gradient Descent

The most simple approach for solving classic, offline optimization problems is based on (projected)
gradient descent: at each stage, the algorithm takes a step against the gradient of the objective
and, if necessary, projects back to the problem’s feasible region. Dating back to [75], Online
gradient descent (OGD) is the direct adaptation of this idea to an online context and is described
in Algorithm 2, where ¶ : Rd !X denotes the (Euclidean) projector

¶(x0)= argmin
x2X

kx0 °xk2. (4.7)

By carefully choosing the step-size ∞, the parameter tuning the tradeoff between data explo-
ration and exploitation by controlling the impact of new data and information on the updates,
the regret is RegT =O (

p
T ). More precisely, the regret can be bounded as below.

Theorem 4.1. [75] Against L-Lipschitz convex losses, the OGD algorithm with step-size ∞ =
(diam(X )/L)/

p
T enjoys the regret bound

RegT ∑ diam(X )L
p

T , (4.8)

with diam(X )¥maxx,x02X kx0 °xk the (Euclidean) diameter of X .
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Algorithm 3 Online mirror descent (OMD)
Require: K-strongly convex regularizer h : X !R, step-size ∞> 0

1: choose x1 2X # initialization
2: for t = 1 to T do
3: incur loss ˆ̀t √ `t(xt) # losses revealed
4: observe vt √°r`t(xt) # gradient feedback
5: play xt+1 √ Pxt (∞vt) # mirror step
6: end for

The performance in terms of regret can be improved under more stringent conditions on the
loss functions. In particular, the authors of [76] showed that if the loss functions `t are strongly
convex, the OGD enjoys a logarithmic regret RegT =O (logT).

Online Mirror Descent

This second class of algorithms called Online mirror descent (OMD) generalizes OGD and allows
to take advantage of the problem’s geometry. The main idea is based on the mirror step of [77] for
offline problems. Let us re-write the Euclidean projection step of OGD as

xt+1 =¶(xt +∞vt)

= argmin
x2X

1
2kxt +∞vt °xk2

= argmin
x2X

©1
2kxt °xk2 + 1

2k∞vtk2 +∞v>
t (xt °x)

™

= argmin
x2X

©
∞v>

t (xt °x)+D(xt,x)
™
, (4.9)

where the term 1
2k∞vtk2 is constant w.r.t. x and where we have defined

D(x0,x)= 1
2kx0 °xk2 = 1

2kx0k2 ° 1
2kxk2 °x>(x0 °x). (4.10)

The key novelty of mirror descent is to replace this quadratic term by the so-called Bregman
divergence

Dh(x0,x)= h(x0)°h(x)°rh(x)>(x0 °x), (4.11)

where h : X !R is a smooth K-strongly convex function (usually referred to as a regularizer). In
so doing, we obtain the OMD algorithm described in Algorithm 3, where the mirror-prox operator
P is defined as

Px0(v)= argmin
x2X

©
v>(x0 °x)+Dh(x0,x)

™
. (4.12)

Before discussing the regret guarantees of the OMD algorithm, it is worth discussing two
important special cases.

a) First, as we discussed above, the regularizer h(x)= 1
2kxk2 yields the OGD algorithm. As such,

all results obtained for OMD also carry over to OGD.
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b) The second important instance of OMD is when the problem’s feasible region X is the unit
simplex of Rd and the regularizer is the (negative) Gibbs–Shannon entropy

h(x)=
dX

j=1
xj log xj. (4.13)

A short calculation shows that the resulting mirror-prox operator is given by the exponential
mapping

Px0(v)=
(x0j exp(vj))d

j=1
Pd

k=1 x0k exp(vk)
(4.14)

which in turn leads to the following algorithm:

xj,t+1 =
xj,t exp(∞vj,t)

Pd
k=1 xk,t exp(∞vk,t)

. (4.15)

This algorithm is the well-known exponential weights algorithm for MAB with discrete and
finite set of actions [78], a fundamental sequence prediction (or forecasting) problem, which
permeates many areas of online and machine learning, and which has found a remarkable
breadth of applications – from sparse coding and dictionary learning [79] to filtering [80],
matrix prediction [81], channel selection [82], antenna beam selection in mmWave communi-
cations [83], network association (access point selection) [84] and many others.

The basic worst-case guarantee of OMD is as follows.

Theorem 4.2. [67], [68], [85] Against L-Lipschitz convex losses, the OMD algorithm based on a
K-strongly convex regularizer h enjoys the regret bound

RegT ∑ 2L

s
maxh°minh

2K
T , (4.16)

achieved by taking ∞= L°1p2K(maxh°minh)/T .

OMD vs. OGD

Aside from the fact that OMD generalizes OGD, the former may yield better performance in
terms of complexity and decay rate of the regret by exploiting the geometry of the problem at
hand.

To be more precise, a first important remark regarding the regret bound above is that the
strong convexity and Lipschitz constants K and L need not be taken with respect to the Euclidean
norm. In doing so, the regret bound above can be highly improved with respect to the problem’s
dimensionality (appearing implicitly in the multiplicative constants), which can be a crucial
matter in highly dimensional problems (e.g., massive MIMO or Big Data applications).

A second remark is that, depending on the feasible set of the problem under study and on the
choice of the regularizer h, the proximal operator may have a closed-form expression as opposed
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to the Euclidean projection. This results in a less complex update; as an example consider the
unit-simplex and the entropic regularizer for MAB problems above yielding the simple update
(4.15).

4.1.3 Outputs

We are currently working on providing a comprehensive overview of the online convex op-
timization tools and their applications targeting the signal processing and communications
communities.

Publication: 1 magazine paper in preparation for resubmission

[J23prep] E.V. Belmega, P. Mertikopoulos, R. Negrel and L. Sanguinetti, “Online convex optimization and no-regret learning: Algorithms, guar-
antees and applications”, in preparation for resubmission to IEEE Signal Processing Magazine, https://arxiv.org/abs/1804.04529,
2018.

Collaborators: Panayotis Mertikopoulos (CNRS), Romain Negrel (ESIEE), Luca Sanguinetti (Univ. of Pisa, Italy)
Supported by: ANR-JCJC-ORACLESS, Inria, ENSEA

4.2 Self-optimizing and Dynamic Networks

In this section, we overview some applications of the tools described before to energy-efficient
resource allocation problems in distributed and autonomous networks (such as ad hoc networks
or IoT networks) that vary dynamically over time. Contrary to the static or stationary regime,
the networks considered here can evolve in an arbitrary manner, so devices must adapt to such
changes on the fly without being able to predict the system state in advance.

4.2.1 Energy Efficiency in Arbitrarily Varying MIMO Networks

We start with the joint work with Panayotis Mertikopoulos (CNRS) [C27], [J16] supported by
PEPS CNRS-INS2I JCJC Real.net, ENSEA and Inria, in which we propose a simple and dis-
tributed online optimization policy that leads to no regret, i.e. it allows users to match (and
typically outperform) the best fixed transmit policy in hindsight, irrespective of how the system
varies with time. Moreover, to account for the scarcity of perfect CSI in massive MIMO systems,
we also study the algorithm’s robustness in the presence of measurement errors and observation
noise. Importantly, the proposed policy retains its no-regret properties under very mild assump-
tions on the error statistics and, on average, it enjoys the same performance guarantees as in the
noiseless, deterministic case.

Problem Formulation

Consider a distributed wireless network consisting of several point-to-point connections u 2
U = {1, . . . ,U} (the system’s users) that are established over a set of orthogonal subcarriers
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s 2 S ¥ {1, . . . ,S}. Each connection u 2 U represents a pair of communicating wireless multi-
antenna devices with Mu antennas at the transmitter and Nu antennas at the receiver. Given
the distributed nature of the network, we can focus on a specific connection u 2U and we will
treat the multi-user interference vector ws as an aggregate noise variable whose covariance
depends on the wireless medium and the transmit characteristics of all other users, which will
also simplify notations.

Let us denote the effective channel matrix of the focal user over subcarrier s by

eHs =
°
Ws¢°1/2 Hs (4.17)

The user’s Shannon rate (4.18) can be written more concisely as:

C(Q)=
X

s2S
logdet

≥
I+ eHsQs( eHs)†

¥
= logdet

≥
I+ eHQ eH†

¥
, (4.18)

where

1. Qs = E[xs(xs)†] 2CM£M is the user’s input signal covariance matrix over subcarrier s.2

2. Q= diag(Q1, . . . ,QS) is the power profile of the focal user over all subcarriers.

3. Ws = E[ws(ws)†] 2CN£N is the multi-user interference covariance matrix of the co-channel
interference plus noise affecting the focal connection (obviously, Ws depends on all other
users in the network).

eH= diag( eH1, . . . , eHS) is the block-diagonal sum of the user’s effective channel matrices over all
subcarriers. Thus, following [J13], [19], [37], [86], the user’s energy efficiency function is defined
as his Shannon rate per unit of consumed power, i.e.

EE(Q; t)=
logdet

°
I+ eHtQ eH†

t
¢

Pc + tr(Q)
(4.19)

where tr(Q) = P
s tr(Qs) is the user’s total transmit power while Pc denotes the total power

dissipated in all other circuit components of the transmitting device (mixer, frequency synthesizer,
digital-to-analog converter, etc.).

In the expression above, we highlight that eH collects all sources of noise and interference that
cannot be controlled by the focal transmit/receive pair, so the user’s energy efficiency objective
may vary itself over time in an unpredictable way. On that account, since we wish to focus
on dynamic networks that evolve in an arbitrary fashion, we will not be making any specific
postulates regarding the behavior of other users in the network and/or the evolution of the user’s
actual channel matrix H.

This efficiency function (which, formally, has units of bits/Joule) has been widely studied in
the literature [J13], [21], [87] and it captures the fundamental trade-off between higher spectral

2In the above, expectations are taken over the users’ codebooks (assumed Gaussian).
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efficiency and increased battery life. An important remark is that the efficiency function depends
on the Shannon rate in (4.18). The latter represents the information-theoretic capacity of the focal
user’s link only under quite stringent assumptions: Gaussian noise, fixed and known effective
channel matrix at the receiver side (or Gaussian interference-plus-noise term, and fixed and
known channel matrix of the focal link at the receiver), Gaussian and infinite length codebooks,
etc.

Most of these information-theoretic assumptions cannot hold in our dynamic setting, in
which the connectivity patterns of the users and their channel matrices can vary in an arbitrary
(possibly non-stochastic) manner, not to mention the infinite length codebooks - which does not
hold even in the least problematic static channel settings. Thus, in our case the Shannon rate is
exploited as a utility function and does not represent the capacity in an arbitrarily time-varying
channels - a highly nontrivial and open issue. The main reasons behind our choice, justifying also
the wide use of this rate approximation, are: a) its simplicity, enabling the devise of tractable
and implementable resource allocation policies; b) its relevance to communications, being an
increasing function of the useful signal’s strength (which conveys the transmitted information)
vs. the interference-plus-noise; and c) it allows us to compare our online dynamic policies with
existing resource allocation policies that rely on the Shannon rate (e.g., iterative water-filling).

To sum up, in the context of power-limited and energy-aware users, we aim at solving the
maximization problem:

maximize EE(Q; t),

subject to Q 2Q,
(OEE)

where

Q =
©
diag(Q1, . . . ,QS) : Qs < 0,

P
s tr(Qs)∑ Pmax

™
, (4.20)

and Pmax denotes the user’s maximum transmit power.

Notice the first difficulty is that the online optimization problem (OEE) is an online fractional
program and that the user’s EE function is not concave. This issue can be overcome by employing
the so-called Charnes–Cooper transformation [88] for turning fractional programs into concave
ones.

Main Contributions

Our main contributions [J16] can be summarized as follows.

• We exploit the so-called Charnes–Cooper transformation [88] leading to the following
variable change

X= Pc +Pmax

Pmax

Q
Pc + tr(Q)

, (4.21)
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where we have introduced the normalization constant (Pc +Pmax)/Pmax in order to have
tr(X)∑ 1 for all Q 2Q (with equality if and only if tr(Q)= Pmax). Solving for Q then yields

Q= PcPmax

Pc +Pmax(1° tr(X))
X, (4.22)

so, after substitution, we obtain the maximization objective

u(X)=EE(Q)= Pc +Pmax(1° tr(X))
Pc(Pc +Pmax)

logdet

√

I+ PcPmax eHX eH†

Pc +Pmax(1° tr(X))

!

, (4.23)

while the corresponding feasible region attains the simple form:

X =
©
diag(X1, . . . ,XS) : Xs < 0 and

P
s tr(Xs)∑ 1

™
. (4.24)

Given that C(Q) is concave in Q, the function F(X, x) = Pmax
Pc+Pmax

x ·C(X/x) will be jointly
concave in X and x, so u(X) will also be concave in X as the restriction of F(X, x) to the
convex set PcPmaxx = Pc +Pmax(1° tr(X)) [24]. In this way, (OEE) boils down to the online
concave maximization problem:

maximize u(X; t),

subject to X 2X ,
(4.25)

where, as before, the dependence on t = 1,2. . . , reflects the evolution of the user’s effective
channel matrices over time.

• We then propose a no-regret transmit policy X(t) based on OGD described in Sec. 4.1.2 and
detailed in Algorithm 43 for the online concave problem (4.25) and we will then use the
inverse transformation (4.22) to obtain a no-regret policy for (OEE). At each iteration, the
knowledge of the gradient matrix V = ru required and assumed to be bounded kVk ∑ V
with

V=ru = Pmax

Pc +Pmax

∑
A+ tr(AQ)°C(Q)

Pc
·I

∏
, (4.26)

where Q is calculated in terms of X via (4.22) and

A¥rC(Q)= eH†£I+ eHQ eH†§°1 eH. (4.27)

• The perfect gradient feedback assumption can be relaxed to an unbiased noisy estimation
that meets the following conditions.

(H1) Unbiasedness:
E
£
V̂tQt°1

§
= 0. (H1)

3The operator ¶ denotes the Euclidean matrix projection map: ¶(Y)= argminX2X kX°Yk2.
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Algorithm 4 Onlline Gradient Ascent (OGA)
Require: variable step-size sequence ∞n > 0

1: initialize t √ 0, X0 √ 0 # initialization
2: while trasnsmission do
3: t √ t+1;
4: Q(t)√ PcPmax

Pc+Pmax(1°tr Xt°1) ·Xt°1; # pre-transmission phase
5: transmit;
6: get eHt; # post-transmission phase

At √ eH†
t
£
I+ eHtQt eH†

t
§°1 eHt;

Vt √ Pmax
Pc+Pmax

£
At + tr(AtQt)°C(Qt)

Pc
·I

§
;

Xt √¶
°
Xt°1 +∞tVt

¢
;

7: end while

(H2) Tame error tails:

P
°
kV̂t °Vtk ∏ z

¢
∑ B/zØ for some B > 0 and for some Ø> 2. (H2)

The proposed algorithm is shown to lead to no regret under these conditions.

• Our numerical simulations show that, in realistic network environments, users track their
individually optimum transmit profile even under rapidly changing channel conditions,
achieving gains of up to 600% in energy efficiency over uniform power allocation policies.

To illustrate the performance of our algorithm, we consider in Fig. 4.2 the case of mobile users
whose channels vary with time due to Rayleigh fading, path loss fluctuations, etc. For simulation
purposes, we used the extended typical urban (ETU) model for the users’ environment and the
pedestrian (3–5km/h) and vehicular (30–130km/h) models in [89]; for reference, the focal users’
channel gains (tr(HH†)) have been plotted in Fig. 4.2a. Despite the channels’ variability, Fig. 4.2b
shows that the users attain a no-regret state in a few iterations, even under rapidly changing
channel conditions (cf. the case of Users 2 and 4 with an average speed of 30km/h and 130km/h
respectively). For completeness, we also plot in Figs. 4.2c and 4.2d the achieved energy efficiency
for a pedestrian and a vehicular user, and we compare it to its instantaneous maximum value,
the users’ initial (uniform) power allocation policy, and the “oracle” solution which corresponds to
the best fixed transmit profile in hindsight (i.e. the solution of the offline maximization problem
which posits that users can predict the system’s evolution in advance). Remarkably, even under
rapidly changing channel conditions, the users’ achieved energy efficiency tracks its (evolving)
maximum value remarkably well and consistently outperforms even the oracle solution (a fact
which is consistent with the negative regret observed in Fig. 4.2b).

An intuitive explanation for the adaptability of OGA is provided by Figs. 4.2e and 4.2f where
we plot the transmit power of the optimum policy, the OGA scheme, and the oracle solution for
the same users as in Figs. 4.2c and 4.2d. Even though the optimum covariance matrix Q§

t may
change significantly from one frame to the next, tr(Q§

t ) remains roughly constant (within a few
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(a) Channel gain evolution for different user velocities
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(b) User regret under OGA
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(c) Energy efficiency under OGA (pedestrian)
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(d) Energy efficiency under OGA (vehicular)
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(e) Transmit power evolution under OGA (pedestrian)
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(f) Transmit power evolution under OGA (vehicular)

Figure 4.2: Performance of the OGA algorithm in a dynamic setting with mobile users moving at
v = {3,30,5,130}km/h. The users’ achieved energy efficiency tracks its (evolving) maximum value
remarkably well, even under rapidly changing channel conditions.

dBm) over the entire transmission horizon. The OGA algorithm then learns this power level in a
few iterations and stays close to it throughout the transmission horizon; as a result, the users’
achieved energy efficiency remains itself very close to its maximum value for all time.
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We remark that an OMD-based approach could be exploited instead of OGD to maximize
the energy efficiency. In so doing, by carefully choosing the regularizer h, the matrix Euclidean
projection step could be replaced with a matrix exponential one, which may be easier to compute.
Also, better decay rates in terms of the dimensionality of the problem could be obtained. As exam-
ples of the matrix exponential learning, the reader is referred to the online rate maximization
problem in a cognitive radio network in [J11] or the stochastic optimization framework in [J16].

A nontrivial theoretical question rising in the static (or stochastic) particular case is whether
the system converges to an equilibrium state if all users employ a no-regret policy (our numerical
simulations show that this indeed the case over a wide region of system parameters in the static
case). This question has been investigated in [J16], in which we derive the convergence conditions
of the matrix exponential learning algorithm based on OMD for a general class of problems which
include the energy-efficiency maximization problems.

Open Issues

An interesting problem is to investigate the regret decay rate of the matrix exponential learning
algorithm in [J16] in the general online setting and compare these results with the OGA algorithm.
Also a complexity comparaison of the two algorithms could be highly pertinent in the massive
MIMO setting, in which the number of users and the number of antennas at the base stations
grow large.

Additionally, reducing the matrix-worth of required feedback needed to compute the gradient
of the objective at each step is an interesting issue [90]. At last, different and more practical
throughput-per-power models could be considered as energy-efficency measures [20], [21].

4.2.2 Feedback-limited IoT Networks

In this section, we overview the work of the PhD student Alexandre Marcastel [C31], [J21],
whom I have co-advised (at 40%) jointly with Inbar Fijalkow (ENSEA, 30%, official director)
and Panayotis Mertikopoulos (CNRS,30%), funded by the Chair Orange IoT at the University of
Cergy-Pontoise Foundation and also supported by ENSEA, Inria and the ANR JCJC ORACLESS.

Regarding the emerging IoT paradigm, which is projected to connect billions of wireless
“things” (wireless sensors, wearables, biochip transponders, etc.) in a vast network with dras-
tically different requirements between components (e.g. in terms of throughput and power
characteristics) [10], [91], most existing works on resource allocation problems [92], [93], [94]
assume that the network remains static over time and the devices are required to have perfect
feedback information. In this work, we relax both assumptions by taking into account the inher-
ent dynamics of an IoT network [95], – due itself to the unique mobility attributes of modern
wearable devices, intermittent user activity, application diversity etc. – and the impact of feedback
imperfections and scarcity.
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Rx1

D11
D12

D13

D14

Rx2

D21 D22

Figure 4.3: System composed of six transmit devices (D11, D12, etc.) and two receivers (Rx1,
Rx2). The blue and green arrows represent the direct links while the red (double-lined) ones are
interfering links.

Problem Formulation

We consider a system composed of M transmitters and N receivers communicating over S
orthogonal subcarriers as illustrated in Fig. 4.3: each device transmits to only one intended
receiver, but a given receiver may decode several incoming signals. Since we aim at devising a
distributed policy that needs no central controller, we can focus on one particular transmitting-
receiving pair.

The effective channel gain vector of the focal user wt = (ws
t ), where ws

t represents the effective
gain in subcarrier s and is given by

ws
t =

gs
t

æ2 +P
j gs

j,t ps
j,t

, 8s, (4.28)

where æ2 is the variance of the noise zs
t , ps

j,t is the transmitted power by the user j in subcarrier
s, gs

j,t = |hs
j,t|

2 and gs
t = |hs

t |2, and hs
j,t, hs

t denote the channel gains of the focal direct link and tof
the interfering link from device j to the focal receiver, respectively.

We consider a power-driven device with a QoS constraint, which aims at minimizing the
following loss function:

L(p; t)=
SX

s=1
ps +∏

£
Rmin °C(p; t)

§+ (4.29)

where p= (p1, . . . , pS) represents the power allocation vector of the focal device with components
ps,8s representing the power allocated to the s-th subcarrier. The first term in the objective is
the overall power consumption and the second term is a soft-constraint (or penalty) term, which
is activated whenever the minimum target rate Rmin is not achieved. Finally, C(p; t) denotes the
well-known Shannon rate4:

C(p; t)=
SX

s=1
log(1+ws

t ps) (4.30)

4Regarding the relevance of using this rate measure, which represents the information-theoretic channel capacity
of the focal link only under very stringent conditions, the reader is referred to the discussion in Sec. 4.2.1, the second
and third paragraphs below equation (4.19).
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Algorithm 5 Online exponential learning (OXL)
Require: step-size sequence ∞t > 0

1: initialize t √ 0, y0 √ 0 # initialization
2: while trasnsmission do
3: update pt s.t. # pre-transmission phase

ps
t = Pmax

exp(ys
t )

1+P
i=1S exp(yi

t )
, 8s;

4: transmit at pt;
5: receive gradient feedback vt; # post-transmission phase

yt+1 √ yt °∞tvt;
6: t √ t+1;
7: end while

and [x]+ , max{x,0}, meaning that no penalty is applied when the achieved rate is greater than
the threshold Rt(p) ∏ Rmin. Although we choose a linear penalty function for its relevance to
communications [C25], [96], [97] (and to simplify the presentation), our results carry over the
more general class of concave functions, e.g., logarithmic penalties [98]. The parameter ∏ can be
interpreted as the unit-cost for each bps/Hz under the QoS target Rmin and it also represents
a sensitivity parameter that can be tuned to adjust the flexibility regarding the minimum rate
constraint violations or outages.

To sum up, the online optimization problem under study can be stated as:

minimize L(p; t)
over p= (p1, . . . , pS)
subject to ps ∏ 0, 8s

PS
s=1 ps ∑ Pmax

(4.31)

The above objective function L(p; t) may vary in a non-stationary and unpredictable way
such that the focal device cannot determine a priori (before the transmission takes place) its
instantaneous or dynamic optimal power allocation p§

t that minimizes this objective at each time
t. Nevertheless, we assume that the device receives some feedback after each transmission, such
as the past experienced objective value or its past gradient.

Main Contributions

• We derive an online power allocation policy based on OMD, and which comprises two basic
steps: a) tracking the gradient (or sub-gradient) of the users’ power minimization objective
in a dual, unconstrained space; and b) using a judiciously designed exponential function
to map the output of this step to a feasible power allocation profile and keep going. The
proposed procedure is detailed in Algorithm 5.

• To establish a benchmark, we begin with the full information or the first-order feedback
case, where each wireless device is assumed to have perfect feedback on the gradient of its
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individual power minimization objective. In this case, the proposed power allocation policy
provided by the OXL is shown in to enjoy the regret guarantee: RegT /T =O (T°1/2) regret
guarantee, meaning that the algorithm’s performance over a horizon of T transmission
cycles is no more than O (T°1/2) away from the best fixed policy in hindsight.

• In addition to providing a comparison baseline, the full information case also allows us
to compare the performance of the proposed algorithm to that of classical water-filling
algorithms [29], [99], [100] and highlight the difficulties encountered by the latter when
the network evolves dynamically over time and only a strictly causal (with no look-ahead)
feedback information is available at the transmitter.

• We show that similar regret guarantees can still be attained by OXL even if the feedback
received by each device is imperfect and/or otherwise corrupted by non-systematic mea-
surement errors and observational noise. In this case, the received feedback is a gradient
estimation denoted by ṽ(t), which meets the following constraints

E[ṽt]=rL(pt),

E[kṽtk2]∑ Ṽ ,
(4.32)

where the expectation is taken over the randomness of the estimator. These conditions are
not very restrictive as they require the absence of systematic errors and a bounded variance,
as such, they are satisfied by all common error distributions (Gaussian, log-normal, etc)
[J16]. For example, the common error model: ṽt =rL(pt; t)+z, where zªN (0,æ2

zI) [101]
satisfies the above conditions.

• On the other hand, if the only information received by each device is the observed value
of their past objective function (the so-called zeroth-order feedback setting), these bounds
change significantly. Lacking any sort of vector-valued, gradient-based feedback, we rely
on the simultaneous stochastic approximation technique, which randomly samples the
objective function in a neighbourhood of the power policy pt to obtain a (potentially biased)
estimate of the gradient at this point [67], [102].

The estimator we use in our case is:

ṽt =
S
±

L(p̃t; t)ut, (4.33)

where p̃t = pt + ±ut and ut is uniformly taken over the unit Euclidean sphere: {u 2
RS| kutk2 = 1} [67].

A major problem arises which is that the random sample point p̃t =pt+±ut can fall outside
of the feasible set. In our power allocation problem, using the same procedure would imply
that the transmit power vector p̃t is allowed to go outside P .
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Algorithm 6 Online exponential learning with zeroth-order feedback (OXL0)

Require: step-size ∞> 0; parameter 0< ±∑ Pmax/(S+
p

S ).
1: initialize t √ 0, y0 √ 0 # initialization
2: while trasnsmission do
3: update p±,t s.t. # pre-transmission phase

ps
±,t = ±+Pmax (1°K±) exp(ys

t )
1+PS

i=1 exp(yi
t )

, 8s;
draw a random ut uniformly from the unit-sphere

4: transmit at p̃t √p±,t +±ut;
5: receive scalar feedback L(p̃t; t); # post-transmission phase

compute the gradient estimation ṽt = S
± L(p̃t; t) ut

yt+1 √ yt °∞tṽt;
6: t √ t+1;
7: end while

One of the main contributions of this work is to introduce a novel learning algorithm that
exploits the gradient estimation above, while guaranteeing that the transmit powers always
lie in the feasible set. For this, we define a modified and shrunk feasible set P± such that,
for any p±,t 2P±, we have p±,t +±ut 2P :

P± =
(

p± 2RS

ØØØØØ ps
± ∏ ±,

SX

s=1
ps
± ∑ Pmax °

p
S ±

)

. (4.34)

The modified procedure we propose is detailed in Algorithm 65.

By jointly optimizing the value of this parameter and that of the original algorithm’s
step-size, we then show that the proposed policy still leads to no regret at a slower rate:
RegT

T =O (T°3/4).

• Therefore, we identify an important tradeoff between the amount of feedback available
at the transmitter side and the resulting system performance: if the device has access to
unbiased gradient observations, the algorithm’s regret after T stages is O (T°1/2) (up to
logarithmic factors); on the other hand, if the device only has access to a scalar, utility-based
information, this rate drops to O (T°3/4).

• We validate our theoretical analysis via numerical experiments and highlight highly dy-
namic networks with realistic, unpredictable channel conditions. Classical water-filling
algorithms are very sensitive to unpredictable changes in the network and are outper-
formed by our proposed online algorithms in terms of power consumption and achieved
rate. Concerning the impact of available feedback, our numerical results also illustrate
a compromise between the amount and/or quality of the feedback information and the
algorithms’ performance (measured here in terms of the time needed to attain a no-regret

5The parameter K± in the update is defined by K± = ±
Pmax

(S+
p

S ).
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Figure 4.4: Impact of feedback amount and problem dimensionality. The average regret of OXL0
algorithm, relying only on the scalar value of the objective function, decays slower than the
average regret of OXL algorithm with perfect or imperfect gradient feedback. Having to estimate
the gradient of dimension S using the scalar value of the objective impacts the decay rate of
the average regret of OXL0 algorithm: the higher the problem dimensionality S, the slower the
average regret.

state). The zeroth-order feedback case requires only the knowledge of a scalar at each
iteration (the value of the objective function) as opposed to a vector (the gradient), but the
average time required to reach a no-regret state is higher.

In Fig. 4.4, we illustrate the performance of the OXL0 algorithm in terms of average regret
by investigating the impact of having a scarce or imperfect feedback and the impact of the
problem dimensionality S. Fig. 4.4a confirms that having an imperfect gradient feedback does not
influence significantly the regret decay rate, as anticipated by our theoretical results. However,
this is no longer true when the only information available at the device end is a single scalar. The
average regret of the OXL0 algorithm decays slower compared with OXL algorithm (though the
latter cannot be applied with zeroth-order feedback). Finally, Fig. 4.4b illustrates the average
regret of OXL0 algorithm for different values of the problem’s dimensionality S 2 {1,2,4}. In
all cases, the average regret decays to zero; however, if the number of available subcarriers
increases, the variance of the estimator ṽ(t) increases commensurately. Therefore the quality of
the estimator decreases, which results in a reduced decay rate of the average regret.

Open Issues

Interesting extensions for future work are: i) reducing even further the required feedback to
only one bit of information, which will likely require to adjust the objective functions to be
optimized; ii) extending the work on zeroth-order feedback to networks composed of multi-
antenna devices as mentioned in Sec. 4.2.1, in which the feedback consists of a (potentially large)
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matrix; iii) exploring efficient means to tune the various parameters of the algorithms for a more
practical implementation.

4.2.3 Outputs

We resume below the combined outputs of the work on dynamic and unpredictable wireless
networks described in ‘Sec. 4.2.1 (energy-efficient MIMO networks) and Sec. 4.2.2 (feedback-
limited IoT networks).

Publications: 2 journals, 4 conf.

[J21] A. Marcastel, E. V. Belmega, P. Mertikopoulos, and I. Fijalkow, “Online power optimization in feedback-limited, dynamic and unpre-
dictable IoT networks”, accepted paper, IEEE Trans. on Signal Processing, Mar. 2019.

[J16] P. Mertikopoulos, and E.V. Belmega, “Learning to be green: Robust energy efficiency maximization in dynamic MIMO-OFDM systems”,
IEEE Journal on Selected Areas in Communication, Special Issue on Energy-Efficient Techniques for 5G Wireless Communication Systems,
vol. 34, no. 4, pp. 743 – 757, Apr. 2016.

[C33] A. Marcastel, E.V. Belmega, P. Mertikopoulos, and I. Fijalkow, “Interference Mitigation via Pricing in Time-Varying Cognitive Radio Sys-
tems”, invited paper, NetGCoop 2016, Avignon, France, Nov. 2016.

[C31] A. Marcastel, E.V. Belmega, P. Mertikopoulos, and I. Fijalkow, “Online Interference Mitigation via Learning in Dynamic IoT Environ-
ments”, IOE worksop in IEEE GLOBECOM 2016, Washington DC, USA, 4-8 Dec. 2016.

[C30] A. Marcastel, E.V. Belmega, P. Mertikopoulos, and I. Fijalkow, “Online power allocation for opportunistic radio access in dynamic OFDM
networks”, IEEE VTC-Fall 2016, Montreal, Canada, 18-21 Sep. 2016.

[C27] E.V. Belmega, and P. Mertikopoulos, “Learning to be Green: Energy-Efficient Power Allocation in Dynamic Multi-Carrier Systems”, IEEE
VTC-Spring, Glasgow, Scotland, May 2015.

Collaborators: Panayotis Mertikopoulos (CNRS), Inbar Fijalkow (ENSEA)
Student: Alexandre Marcastel (PhD)
Supported by: Chair Orange IoT, ANR JCJC ORACLESS, Inria, PEPS CNRS-INS2I JCJC Real.net, IoT NEWCOM#, ENSEA

4.3 Conclusions

The online optimization framework coupled with the derived online learning algorithms offers
a powerful toolbox to design efficient resource allocation policies in networks that may vary
in an arbitrary and unpredictable way. Indeed, no assumptions have been made regarding the
underlying dynamics of the network (which can potentially be non-stationary).

The online resource allocation policies we presented here have many desirable properties,
such as: a) distributedness: users rely on local information and all computations are performed
autonomously; b) statlessness: users do not need to know the state of the system (e.g., the number
of users, the network topology); c) reinforcement: users tend to adapt to the network changes and
to become more efficient based on their past observations; d) asynchronicity: there is no need for
a global timer or any signaling between users; e) rely on strictly causal feedback information that
can be imperfect or scarce; f) theoretical guarantees in terms of regret minimization.

The next and final chapter is dedicated to an overall discussion of interesting open issues and
prospective research directions.
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5
OPEN ISSUES AND PERSPECTIVES

This HDR thesis is concluded with the description of several open research directions
starting with the short- to mid-term perspectives and ending with long-term ones.

5.1 Energy Efficiency Beyond 5G

Below, we discuss several perspectives to improve energy efficiency for the IoT and future
generation networks. Indeed, energy efficiency will very likely remain among the top objectives in
communications in the years to come: As 5G made significant progress in terms of user experience,
low-latency and high data-rates, among the key drivers being envisioned for the 6G are energy
harvesting and energy-efficiency technologies in general [103], [104].

5.1.1 Energy-efficient IoT Networks

Our recently funded research project ANR-PRCI ELIOT - Enabling technologies for IoT in
collaboration with FAPESP, Sao Paulo, Brazil is built around four pillars in terms of objectives for
future IoT networks: i) energy efficiency; ii) security; iii) latency; iv) self-optimization capabilities.
My main research interests relate (but are not limited) to the first and fourth objectives of ELIOT.

The context of ELIOT consists of networks of communicating devices such as: distributed
control systems (i.e., autonomous vehicles, delivery drones or other unmanned aerial vehicle
(UAV) systems) and sensor networks (i.e., health monitoring, smart cities, smart homes, etc.).
These applications depend on reliable and low-energy communication systems, as envisaged by
the Internet of Things (IoT) paradigm that will connect billions of wireless “things” (sensors,
wearables, biochip transponders, etc.) in a vast network with drastically different characteristics
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and requirements in terms of: energy efficiency, security, latency and self-optimization capabilities,
and demand for innovative enabling technologies [91], [105], [106], [107], [108].

Because of the unprecedented degree of temporal variability of IoT networks [95] due to
the inherent wireless channel characteristics, device mobility attributes, their intermittent
activity and behavior, the energy efficiency resource optimization calls for tools from online
optimization and regret minimization. This allows us to develop new and improved resource
allocation algorithms that are capable of adapting on-the-fly to the changing environment and
effectively accounting for devices’ mobility [C31], [J16], [J21]. The major advantage of such
online algorithms is that they do not rely on any assumptions on the dynamics of the underlying
network, which, thus, can be completely arbitrary, offering the appropriate flexibility to take into
account the specificities of IoT networks.

Non-orthogonal Multiple Access

With billions of interconnected devices, wireless IoT networks are expected to exhibit massive
node densities and thus inevitably experience high interference levels. An orthogonal spectrum
allocation will likely become unfeasible given the scarcity of RF spectral resources. In most of the
work presented in this manuscript (except for Section 3.1.2, [J17]), we have not assumed that the
multiple users are scheduled over orthogonal frequency bands; rather, the users can access any of
the available frequency bands and suffer from multi-user interference. We have considered single
user-decoding is used at the receiver, which treats the multi-user interference as additive noise.
Although this decoding technique has the merit of being simple and distributed, the performance
of the network is limited by the network interference.

NOMA protocols can be considered instead, which reduce the impact of the multi-user
interference by using more complex decoding techniques compared with single-user decoding [109].
NOMA allows overlapping among the signals from different devices by exploiting power- or code-
domain multiplexing. In power-domain NOMA, signals from multiple users are superimposed and
successive interference cancellation is used at the receiver to decode the messages [110], [111].
Although NOMA can improve the spectrum efficiency, it has several shortcomings that need to
be addressed in the IoT context: the multi-user detection increases the decoding complexity and
energy consumption of the receivers; the channel state information is often assumed to be perfect;
the inherent lack of fairness among the devices.

Energy Harvesting

A possible solution to mitigate the network interference and to prolong the lifetime of IoT devices
is energy harvesting from the ambient RF radiation or from dedicated RF-sources (via wireless
power transfer) [12]. This has motivated the recent interest surge on RF-based joint wireless
information and power transfer [12], [14], [J19], [112], [113], [114] with vast applications to
sensor networks, wireless body networks, RFID, etc.
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However, there is little work on wireless-powered NOMA networks from an energy-efficiency
perspective. Existing works [115], [116], [117], [118] focus on rate maximization objectives with
various fairness considerations and assuming the circuit power consumption (to receive/process
information) is negligible compared to the power for information transmission. The recent
results in [119] question the benefits of NOMA over orthogonal protocols when the circuit power
consumption is taken into account. Moreover, none of the cited works seem to take into account
the temporal dynamics of the network. All this motivates our interest concerning energy-efficient
NOMA transmissions for IoT networks.

One-bit Feedback Information

Aside from having limited processing capabilities, a rising challenge in energy-efficient resource
management is the fact that wireless devices in IoT networks receive limited, outdated and/or
corrupted feedback from their environment. Therefore, an interesting future work is to reduce
even further the amount of information fed back to the devices and to compensate as much as
possible for such feedback scarcity. Ideally, we would like to reduce the feedback to a single bit,
similarly to the ACK/NACK higher-layer mechanisms.

In Sec. 4.2.2, we have seen that it is possible to do a gradient descent without a gradient [102]
by using an estimation (possibly biased) of the gradient obtained by stochastic approximation from
a single sample of the objective function. In [120], the authors propose a distributed algorithm to
maximize the stochastic network utility also based on a zeroth-order feedback and by assuming
(full or partial) feedback exchange among the users. An immediate issue to be investigated
is whether our online learning algorithms are robust to estimation errors in the value of the
objective functions by using the same approach as in the imperfect and unbiased (zero-mean and
bounded variance of the estimation errors) gradient feedback case.

A longer-term investigation is to device low-complexity algorithms relying on one-bit of
feedback information. For instance, the information bit could be equal to one if `t(xt) ∏ Ω the
payoff is above a certain fixed threshold Ω, and zero otherwise. Performing gradient decent based
only on this feedback information seems quite challenging. A possible lead and starting point
would be to change the problem formulation w.r.t. both its objective function and its feasible set
and transform it into a MAB formulation with discrete and finite set of actions [82], [83] with an
outage probability QoS constraint instead of an Shannon-rate one [J6], [C10].

5.1.2 Zeroth-order Feedback in Dynamic MIMO Systems

In the same spirit as above, the feedback information in MIMO systems becomes problematic
when the number of antennas, users and available frequency subcarriers increases. Classic
iterative water-filling algorithms [100] as well as our proposed online learning algorithms in
[J16], [J11] (e.g., Sec. 4.2.1) require at each iteration the information regarding the observed
gradient, which is a matrix-worth of feedback of dimension dictated by the number of transmit
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antennas and the number of available subcarriers per user. This becomes an issue in highly-dense
networks, in which such signaling overhead introduce a huge traffic burden [90], [121].

Recently, the authors of [90], [121] have proposed two ways to reducing the amount of feedback
information of the exponential matrix algorithm in [J16] by focusing on a static network and
investigating the convergence to the Nash equilibrium. The first solution is to receive only
sporadically the gradient matrix as opposed to receiving this information at every iteration, while
the second alternative assumes that only a part of the entries of the gradient matrix is received
at each iteration. In both cases, it is shown the algorithm can still converge to the optimal or
Nash equilibrium solution almost surely.

An interesting extension of the work of the PhD student Alexandre Marcastel (ETIS) [J21]
described in Sec. 4.2.2 is to propose a zeroth-order feedback online learning algorithm for MIMO
systems. The idea is to build an estimator of the gradient matrix relying solely on the scalar
value of the objective function and to develop an algorithm that requires a single scalar worth
of feedback (instead of the matrix-worth feedback). This extension is a short-term perspective
supported by the ANR JCJC ORACLESS project and is ongoing work jointly with the Post-doc
Olivier Bilenne (LIG) and Panayotis Mertikopopulos (CNRS).

As also discussed in Section 5.1.1, a further (mid-term) extension would be to reduce the
feedback to a single bit of information (quite drastic in MIMO systems) and would likely require
to revisit and simplify the problem formulation and to target a less ambitious objective.

5.1.3 More Practical Energy-efficiency and Energy Consumption Models

Investigating more practical energy-efficiency measures and power consumption models is a
mid-term perspective that will involve extending the proposed work to non-convex (online)
optimization leading to nontrivial resource optimization problems.

As argued in Sec. 4.2.1, the main advantage of investigating the energy efficiency as the
tradeoff between the Shannon rate and the power consumption is the simplicity of the resulting
optimization problems enabling the devise of simple and efficient algorithms. Most of these
problems turn out to be either convex or fractional programs, which can be transformed into
equivalent convex problems [3], [19], [122] (see also in Sec. 4.2.1, by exploiting the Charnes-Cooper
transformation).

Such energy-efficiency measures have several drawbacks. First, although the Shannon rate is
a meaningful information-theoretic measure of the data rate at which reliable information can be
transmitted, its simple expression relies often on unrealistic assumptions such as: infinite-length
Gaussian codebooks, static channels, perfect channel state information at the receiver, Gaussian
distribution not only for the channel noise but also for the interference terms. The last assumption
becomes particularly problematic in arbitrarily dynamic wireless networks.

This suggests a mid-term perspective by considering the energy efficiency defined in [20],
[21], [22] which replaces the Shannon rate with a bit error rate goodput allowing to include
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several practical aspects such as: modulation type, access and channel coding techniques, filter
architecture, delay and cross-layer aspects, etc. [122], [123]. A second alternative is to study an
outage-based goodput introduced in [J6], [C10]. Both possibilities will lead to non-convex opti-
mization problems which do not fall into the fractional programming framework as the objective
functions will be ratios of S-shaped functions and linear functions. Nevertheless, the resulting ob-
jective is quasi-concave, which can be efficiently optimized in the classical static framework (based
on iterative methods [24]). A first idea is to explore the quasi-convex optimization framework and
to propose new online learning algorithms suitable to such problems.

A second issue with the considered energy-efficiency measures is the circuit power consump-
tion, which is a critical parameter in the ratio between the Shannon rate (or goodput) and the
overall power consumption ratio. Indeed, as shown in [17] and in [J6] for MIMO channels, when
the circuit power is ignored entirely, maximizing the energy efficiency leads to the trivial result:
the transmitter should remain silent. When the circuit power is a strictly positive constant, the
optimal energy-efficient resource allocation policy is highly sensitive to its specific value and,
hence, it has to be carefully estimated.

Moreover, it has been shown in [33], [124] that the circuit power consumption is not a fixed
constant but depends (either linearly or not) on the number of transmit and receive antennas
and on the data rate via the power consumption of the transceiver chains and of the specific
processing (channel estimation, channel coding, etc.). Taking all this into account may cast the
problem into a non-convex optimization one going beyond the quasi-convex framework above.
This challenging issue will require exploring the recent results for non-convex online optimization
in [125], which is a long-term objective.

5.2 AI-enabled Communications

One of the most promising set of tools to address the numerous and bold requirements for future
communications in terms of: 3D-connectivity, energy efficiency, security, privacy, etc. is artificial
intelligence (AI) combining Big Data and machine learning tools. AI-enabled communications,
which may be seen as the evolution of cognitive radio (intelligent) networks, have been gaining
a lot of momentum [72], [126], [127] and will likely play a predominant role in 6G and future
communications [104].

We start with a classic machine learning framework applied to a specific problem (i.e.,
mmWave beam alignment) and then we move on towards long-term perspectives related to
exploring neural networks and deep learning for resource management.

5.2.1 Multi-armed Bandits for mmWave Beam Alignment

Because of the congestion of the sub-6 GHz spectrum the millimeter wave (mmWave) band,
ranging from 30 GHz to 300 GHz, has been considered as a promising solution for future wireless
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networks [128], [129] to achieve the high data rates required by the data-hungry applications.
However, propagation at mmWave frequencies is characterized by high pathloss caused by
free-space pathloss, penetration loss and absorption by different components of the wireless
environment [130], [131]. This suggests exploiting highly directional beams by using large
antenna arrays jointly with beamforming techniques [132], [133], [134], [135] to compensate
for the high propagation loss. Luckily, the small wavelength of mmWave allows to place a large
number of antenna elements in relatively small size arrays which yields a large beamforming
gain [136] by focusing the signal’s power toward the intended user’s equipment.

Recently, machine learning tools have been proposed to solve the beam alignment problem
[137], [138]. The authors in [137] proposed an online learning algorithm for mmWave vehicular
communications by modeling the beam-alignment problem as a MAB problem with contextual
information (i.e., the vehicle’s direction of arrival). In [138], the unimodal beam-alignment
algorithm exploits the correlation between consecutive beams (as contextual information) and
the unimodality of the received power to reduce the search space and to maximize the received
energy. The main issue with the proposed algorithms in [137], [138] is that they are centralized
policies in that the transmit-beamformer and receive-combiner pair is jointly computed at a
central controller and then sent to both the transmitter and receiver, which potentially leads to
heavy network signaling.

A promising solution is to adopt an adversarial (as opposed to a stochastic) MAB formulation
for the beam-alignment problem that allows us to decouple and split the processing cost between
the transmitter and receiver. Both the transmitter and receiver nodes can exploit their own online
learning policy to choose their own beam direction in a distributed manner without knowing
each others choices. Hence, the learning is carried out independently at both the transmitter and
receiver without relying on a central node as in [138] and [137].

This work is currently ongoing jointly with the PhD student Irched Chafaa (ETIS and L2S)
co-advised with Mérouane Debbah (Huawei Paris, France) [C38].

5.2.2 Deep Learning for Resource Allocation Problems in Wireless
Communications

A long-term perspective is to investigate more advanced machine learning techniques going
beyond the MAB and the online optimization framework by exploiting neural networks and
deep learning [72], [126], [127]. In theory, the promise of such techniques is very ambitious and
lies in their capability of learning a completely generic prediction model (or a complex input-
output blackbox function), which can be domain-agnostic and, thus, they can - in philosophy -
solve any problem! These methods also come with formal and theoretical guarantees via the
agnostic probably approximately correct (PAC) learning framework [71]. However, in order to
achieve such domain-agnostic solutions, these methods require two important ingredients: i)
practically limitless training data sets; coupled with ii) practically limitless computational power.
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Obviously, such agnostic methods are not efficient in real-life problems, more specifically in
wireless communications, and the communications expertise should provide leads on building
problem-specific and optimized neural network architectures relying on reasonable amount of
training data and computational power. This observation opens vast opportunities of exploiting
deep learning for wireless communications, in particular regarding the resolution of resource
allocation problems.

Traditional resource allocation problems so far (e.g., energy-efficiency problems such as
the ones discussed in Chapter 3 and Chapter 4), often rely on simplified network models and
approximations, which have several major advantages: i) they are tractable; ii) they provide
non-trivial allocation policies; and iii) they come with strong and (often) meaningful theoretical
guarantees. However, when including a lot of practical considerations such as: cross-layer HARQ
techniques, channel coding, practical modulations, transceiver architecture, etc., the energy-
efficiency maximization problems (but also, rate maximization or resource optimization in general)
become very challenging, non-convex and require: either approximation techniques and very
specific variable changes and tricks to reduce the initial problem to a tractable proxy; or the
use of iterative methods (e.g., alternating optimization techniques) with no or little theoretical
guarantees. The reader is referred for instance to [139] for a study of such practical energy-
efficient communications. Notice that there is always a non-trivial tradeoff between two extremes:
either studying a simple but unpractical model or incorporating all practical considerations
leading to an untractable problem.

The deep learning framework provides an alternative solution to the above to solve difficult
and non-convex resource allocation problems. In such problems, a first idea would be to start
with a tractable simplified model (as in [140], [141]) and gradually incorporate (in a step-by-
step manner) practical considerations by using neural networks given their powerful generic
modeling properties. This way, each step would correspond to a specific practical aspect that
would provide intuitions on how to build a relevant neural network architecture, which would
require a reasonable amount of data and computational power. At the opposite, a very large
neural network that models all practical considerations at once would be difficult to design, would
contain a lot of parameters to be optimized and, thus, would require a large data set and a high
computational power.

A first possible critic of such deep learning approaches is that they provide little theoretical
guarantees with meaningful insights as opposed to classical approaches and rely mostly on
empirical validation. Indeed, the agnostic PAC learning guarantees above remain quite theoret-
ical, they cannot be exploited to design a neural network architecture that is optimized for a
specific problem and they generally lead to very loose performance bounds, far from the actual
performance of deep learning methods. Nevertheless, when solving practical problems going
beyond the convex optimization framework, there are little or no theoretical guarantees anyway
and only empirical validation can be performed.
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A second critic relates to the size of the available training datasets, which can be a crucial
bottleneck depending on the application. For instance, in medical imaging applications the
available datasets are very limited [142] due to several issues such as: patient privacy and
high cost (as specialized medical doctors have to label the data). In wireless communications as
opposed to multimedia applications in general, simulating the data amounts to simulating the
multi-user communication channel, which is not very challenging. Indeed, a variety of relevant
simulators that have been validated in practical settings are available in the literature, e.g., the
COST-HATA model in [143]. Using actual network data may rise security and privacy issues and
such data is protected by the network operators for the time being.

At last, regarding the computational power, the most common solution is to use parallel
computing techniques (GPGPU or general-purpose processing on graphics processing units),
knowing that the most complex steps in the learning procedure is the training of the neural
network and is performed offline (only once) using cloud computing, which raises the problem of
signaling. Edge-learning at the mobile devices’ end is a more challenging issue [72], [95].

Deep neural networks (DNN) are being increasingly exploited for various applications to
mobile and wireless networking that range from mobile data analysis, mobility analysis and
localization, wireless sensor networks, network control and resource management, security, to
signal processing [72]. Regarding resource allocation problems, several recent works [140], [141],
[144], [145] show the enormous potential of the deep learning toolbox.

A first approach is to learn the behavior of a complex algorithm using supervised learning
and DNN [140], [141]. In [140], the main idea is to treat a given resource optimization algorithm
as a black box, and learn its input-output relation by using a deep neural network. The training
is done by running the original algorithm on simulated data. In so doing, real-time resource
allocation can be performed by simply passing the algorithm input through the network to
produce an output, which can be computationally advantageous. This approach is illustrated in a
specific problem: the sum-rate maximization problem in an interference network, which is known
to be a non-convex problem. Compared with the iterative weighted MMSE algorithm (based on
alternate optimization) [146], the DNN is shown to achieve several orders of magnitude speedup.
A similar approach is used in [141], in which DNN are trained to solve the sub-band and power
allocation problem in a multi-cell network in an aim to maximize the total network throughput
(also, a non-convex problem). The training data is obtained by using a genetic algorithm and the
results show that the proposed approach provides the optimal solution in 86.3% cases.

Reinforcement deep learning is another approach currently being investigated in resource
allocation problems [144], [145]. In [144], the authors exploit DNN to find the Nash equilibrium
of a non-cooperative game modeling the resource allocation problem of small base stations in
licensed assisted access LTE (LTE-LAA, which overcomes the spectrum scarcity by simultaneously
allowing the access to both licensed and unlicensed bands of small base stations). The proposed
approach allows the multiple small base stations to perform dynamic channel selection, carrier
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aggregation, and fractional spectrum access such that their total throughput is maximized while
guaranteeing fairness with existing WiFi networks or other LTE operators in the unlicensed
bands. Also, unlike existing methods based on centralized solutions or on coordination among the
small base stations, the approach is based on exploiting past-observations of the network and
predict the spectrum availability so as to plan ahead the usage of the channels in a distributed
way. The proposed deep reinforcement learning scheme is shown to reach the equilibrium, when
it converges.

In [145], a dynamic spectrum access in multichannel wireless networks is investigated. The
objective is to maximize the expected reward in terms of the achieved rate from both a non-
cooperative dynamic game and a centralized perspective. A distributed learning algorithm based
on deep learning and reinforcement Q-learning is proposed for dynamic spectrum access that can
adapt to real-world network changes while overcoming complexity due to a large state space and
partial observability of the problem. Convergence to the solutions (Nash equilibrium or Pareto
optimal) is observed in 80% of the experiments.

Rising and interesting challenges include: finding efficient offline training methods to generate
optimal or near-optimal sample data, devising efficient (of reduced complexity and possibly
problem specific) architectures and configurations of the DNN, investigating DNN in more
challenging resource allocation problems as discussed above (including energy-efficiency and
other practical considerations), taking into account the dynamics of the wireless networks
(potentially non-stationary and arbitrary) and studying non-equilibrium online solutions.
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Abstract
In this paper, we study the centralized spectrum access and power management for several opportunistic users,
secondary users (SUs), without hurting the primary users (PUs). The radio resource manager’s objective is to minimize
the overall power consumption of the opportunistic system over several orthogonal frequency bands under
constraints on the minimum quality of service (QoS) and maximum peak and average interference to the PUs. Given
the opposing nature of these constraints, we first study the problem of feasibility, and we provide sufficient conditions
and necessary conditions for the existence of a solution. The main challenge lies in the non-convexity of this problem
because of the discrete spectrum scheduling: one band can be allocated to at most one SU to avoid interference
impairments. To overcome this issue, we use a Lagrangian relaxation technique, and we prove that the discrete
solutions of the relaxed problem are the solutions to the initial problem. We propose a projected sub-gradient
algorithm to compute the solution, when it exists. Assuming that the channels are drawn randomly from a
continuous distribution, this algorithm converges to the optimal solution. We also study a specific symmetric system
for which we provide the analytical solution. Our numerical results compare the energy-efficiency of the proposed
algorithm with other spectrum allocation solutions and show the optimality of our approach.

Keywords: Cognitive radio systems, Spectrum scheduling, Power allocation, Lagrangian relaxation, Projected
sub-gradient algorithm

1 Introduction
Most frequency bands in the radio spectrum have already
been licensed, and it is difficult to find vacant bands for
wireless communication systems. At the same time, the
most allocated spectrum is under-utilized [1]. Cognitive
radio (CR) systems, as explained in [2] and references
therein, propose to better utilize the spectrum by allowing
an opportunistic access to it. A hierarchy between users
is imposed, in which secondary users (SUs) are allowed,
by the spectrum manager, to communicate either in the
vacant bands left by the licensed users, called primary
users (PUs), or the non-vacant bands under the condition
that the created interference (at the primary receivers)
is kept below some predefined thresholds [3]. The radio
resource manager uses channel state information (CSI)
to coordinate the access to the wireless radio spectrum.
When performed in a centralized way, this management
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1ETIS/ ENSEA, University Cergy Pontoise, CNRS, F-95000 Cergy Pontoise, France
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is often referred to as coordinated multi-point (CoMP)
radio resource management [4]. In the CR paradigm, CSI
is provided by spectrum sensing at different remote loca-
tions and/or by backhaul information feedback from the
spectrum manager to improve the spectrum usage. Car-
rier aggregation and multi-carrier communications have
been suggested as promising candidates for both the CR
and CoMP systems thanks to their flexible usage of the
spectrum [5].
In ad-hoc and sensor networks or even in future 5G,

a major bottleneck is the power consumption efficiency
caused by limited battery-life device systems and oper-
ating costs [6, 7]. In this work, we investigate a central-
ized power minimization problem with quality of service
(QoS) requirements for the secondary users imposed by
the spectrum manager. In such a centralized setting, the
spectrum manager can be more effective when it oper-
ates opportunistic users scheduling in addition to the
sole power allocation, as mentioned in [8] and [9]. Very
few existing works consider both bandwidth scheduling

© 2016 Masmoudi et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
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and power allocation jointly in the CR context. In par-
ticular, [10] provides a heuristic algorithm for the users
scheduling.
In this paper, we consider a joint discrete scheduling

and power allocation problem that aims at a minimal
power consumption under QoS and interference power
constraints in a centralized CR system. Such a prob-
lem introduces two major challenges. First, the mini-
mum QoS and maximum interference constraints may
not be simultaneously satisfied. Several works in the wire-
less communications literature [11, 12] have proposed a
classical water-filling procedure to solve rate-driven or
power-driven resource allocation problems in classical
interference or multiple access channels. In our study, the
presence of the PUs imposes additional peak and total
interference constraints aside the classical minimum QoS
constraint for the SU communication. These additional
constraints are the main reason why classical numeri-
cal approaches are not suitable. In order to tackle the
problem of feasibility, we study necessary conditions and
sufficient conditions on the CSI for the existence of a
feasible allocation point. The second difficulty raised by
the problem under investigation is the discrete nature of
channel assignments in the scheduling policy. This pol-
icy makes the problem a non-convex optimization one.
Inspired by the approach in [13], we use a Lagrangian
relaxation and a dual approach to obtain a solvable convex
optimization problem. We then study the Karush-Kuhn-
Tucker (KKT) conditions of the relaxed problem and show
that the solutions meeting these conditions are actually
the solutions of the initial non-convex problem. To solve
the relaxed problem numerically, we propose a projected
sub-gradient algorithm [14] when the problem is feasible.

1.1 Related works
Power allocation problems have been the subject of sev-
eral studies in non-CR systems from a rate maximiza-
tion point of view and via centralized [15] or decentral-
ized (using non-cooperative games) [16–18] approaches.
Also, power allocation problems without spectrum allo-
cation in non-CR networks have been studied from an
energy-efficiency point of view in centralized [19, 20] and
decentralized systems [21, 22]. In this paper, we consider
a centralized radio management, to make the spectrum
manager more effective, it operates opportunistic user’s
scheduling in addition to the sole power allocation, as
mentioned in [8] and [9]. Such joint resource allocation
problems have been the subject of several studies in non-
cognitive radio settings such as in code division multiple
access (CDMA) systems [23] and in downlink and uplink
orthogonal frequency division multiplexing (OFDM) sys-
tems [24] and [13], respectively. In [23], the schedul-
ing and resource allocation problem for the downlink
in a CDMA-based wireless network is considered. The

problem is to select a subset of the users for transmission
and, for each of these users, to choose the optimal mod-
ulation, coding scheme and transmit power allocation
policy. In [24], the authors consider the scheduling and
resource allocation for the downlink of a cellular OFDM
system. An optimal algorithm is proposed assuming that
multiple users can time-share each tone and several low
complexity heuristics are that enforce integer tone alloca-
tions. Among the works on OFDM [13, 24], the closest
to our work is [13], in which a dynamic scheduling and
power allocation algorithm was proposed to compute the
policies of the multiple non-interfering users that maxi-
mize the overall QoS. An algorithm is derived (without
the interference constraints of the cognitive radio con-
text) using a Lagrangian relaxation technique to overcome
the discrete scheduling constraints. However, a rigorous
proof of the convergence and optimality of the proposed
algorithm is not provided.
In the cognitive radio context, in which additional inter-

ference constraints to protect the primary users must be
taken into account, the rate maximization problem was
studied in [3, 6, 11]. In these works, the authors con-
sider decentralized solutions in MIMO systems via non-
cooperative game theory without spectrum scheduling
constraints. Themajor disadvantage of such decentralized
approaches is that the Nash equilibrium solution (i.e., the
natural solution concept in non-cooperative games) pro-
vides an operating point that is often outperformed by a
centralized solution. Other works study rate maximiza-
tion problems under different CSI assumptions. In partic-
ular, [25] addresses the scheduling aspect with partial-CSI
at the SU which limits the adaptability to the actual chan-
nel state. For a time-varying system, the authors of [26]
study dynamic cognitive radio settings without explicit
interference temperature constraints imposed by the pri-
mary users’ presence. Online optimization and no-regret
distributed learning algorithms are used in [26] assum-
ing the users do not know the perfect CSI prior to their
transmissions. Such a complex approach is not required
here, as we consider that CSI is available to the centralized
system manager.
Energy efficiency problems in the CR context were stud-

ied with QoS and spectrum scheduling constraints in
[10], in which the authors minimize the SU’s power con-
sumption. The framework in [10] is the closest among
all cited references to our paper. However, there is no
proof of optimality of the proposed scheduling, which is
based on a heuristic method involving some exhaustive
search steps. In our work, we use convex optimization
tools to find the optimal joint scheduling and power
allocation under interferences and QoS constraints. Our
optimal solution is calculated via an iterative sub-gradient
algorithm that is proven to converge to the optimal
solution.
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1.2 Our contributions
Themain contributions of this paper are summarized here
below:
• We derive necessary conditions and sufficient

conditions for the existence of a solution to the joint
spectrum scheduling and power allocation problem
in a CR system.

• We introduce a convex optimization problem based
on Lagrangian relaxation of the initial non-convex
problem. Then, we prove that the discrete solutions
of the relaxed problem are the solutions to the initial
problem.

• The optimal solution of the relaxed problem, when it
exists, is computed via a projected sub-gradient
algorithm. We prove that, when the problem is
feasible, our proposed projected sub-gradient
algorithm converges to an optimal solution that
satisfies the KKT conditions.

• We also study the specific case of a symmetric system
for which our iterative algorithm is not suitable and
we solve it analytically.

• Numerical results illustrate the energy-efficiency of
the proposed allocation strategy compared with other
spectrum allocation policies.

The remainder of this paper is organized as follows. The
system model is presented in Section 2. In Section 3, we
study the joint scheduling and power allocation problem
by discussing its feasibility, the Lagrangian relaxation, and
its optimality, and then provide a sub-gradient algorithm
to solve this problem. Selected numerical results are illus-
trated in Section 4 to show the efficiency of the proposed
solution. Particular cases, for which an analytical solu-
tion is found, are studied in Section 5. Finally, Section 6
concludes the paper.

2 Systemmodel
We focus on the CR model in Fig. 1 composed of
Q ≥ 1 SUs and K ≥ 1 PUs. Each primary/secondary user

consists of a primary/secondary transmitter (PT/ST) and
a primary/secondary receiver (PR/SR), respectively. The
transmission is performed over N orthogonal frequency
bands. The transmit power of STq (of the qth SU) in fre-
quency band n ∈ N ! {1, . . . ,N} is denoted by pqn,
the power allocation of the qth SU is denoted by pq =
(
pq1, pq2, . . . , pqN

)
∈ RN

+ , ∀q ∈ Q ! {1, . . . ,Q}, and the
overall power allocation profile for all SUs is denoted by
p =

(
p1, p2, . . . , pQ

)
∈ RN×Q

+ .
The received signal at SRq in band n can be written as:

yqn =
√
pqnhqnvqn +

∑

k∈K
i(k)qn + wqn, (1)

where hqn is the power gain of the direct link STq − SRq;
vqn " CN (0, 1) is the normalized transmitted signal by
SU q (a zero-mean circularly symmetric complex Gaus-
sian variable of unit variance), wqn " CN

(
0, σ 2

qn
)

is
the noise in band n for SUq of variance σ 2

qn; and i(k)qn "

CN
(
0,

(
τ
(k)
qn

)2)
is the interfering signal from PU k ∈

K ! {1, . . . ,K} of variance
(
τ
(k)
qn

)2
. Since the transmit

power of the PUs cannot be impacted by the secondary
system, the terms i(k)qn are just some fixed parameters in
our model. Only the knowledge of the SINRs are needed
and measured at each SU. All links are assumed to be
stationary and independent of the noise.
The Gaussian input, interference and noise assumptions

are fairly standard in the signal processing for communi-
cations literature [3, 27, 28]. The main scientific reasons
behind this are that the Gaussian noise is known to be the
worst additive noise distribution in terms of the Shannon
achievable rate [29], and that the Gaussian input is optimal
in a Gaussian environment [30].

Fig. 1 Only SUq is active in band n
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In this context, we define the QoS measure for SU q
in band n by the Shannon capacity expression in [31],
assuming that the corresponding bandwidth is unitary:

cqn(xqn, pqn) = xqn log2
(
1+ sqnpqn

)
(2)

where sqn is the signal-to-interference-plus-noise-ratio
(SINR) of the direct link of qth SU (STq − SRq),
sqn = hqn/

(
σ 2
qn +

∑K
k=1

(
τ
(k)
qn

)2)
. The spectrum allo-

cation policy for the qth SU is denoted by xq =
(xq1, xq2, . . . , xqN ), ∀q ∈ Q, and the overall allocation
profile for all SUs is denoted by x = (x1, x2, . . . , xQ).
This work is solely focused on the case in which at most

one SU is allocated in each band n to avoid interference
impairments (to the PUs and among SUs). Thismeans that
only discrete spectrum allocation policies xqn ∈ {0, 1} are
allowed by the spectrum manager. Assuming orthogonal
and unit bandwidth channels, the overall achievable rate
of the qth SU transmission is

Cq
(
xq, pq

)
=

∑

n∈N
cqn(xqn, pqn). (3)

The assumption that only one SU is allowed in each
band is also made for tractability reasons. Indeed, opti-
mizing the system’s achievable sum-rate or some other
objective under SU power or rate constraints is a very
difficult, intractable and non-convex problem in an inter-
ference channel model. The achievable rate of one SU Cq
is a non-convex function with respect to p, because of the
interference terms from the other SUs. To overcome this
issue, one possibility is to decentralize the decision pro-
cess and to consider a distributed cognitive radio system,
in which each SU chooses its own power allocation pol-
icy to optimize its own objective [3, 6, 11]. The underlying
non-cooperative game is a convex game as each SU’s rate
is convex w.r.t. its own controlled variables pq.
However, the major disadvantage of this approach is

that the resulting Nash equilibrium solution provides an
operating point that performs very poorly compared to a
centralized solution. Since we are interested in a central-
ized cognitive radio system, a secondway to overcome this
major difficulty (the non convexity of Cq) is to limit the
access of the SUs to the spectrum; only one SU is allowed
per band.
Although the presence of PUs impacts the rates of the

SUs via the SINR terms sqn, their crucial impact is in
the additional interference constraints imposed by their
presence on the SUs’ transmit powers. Indeed, in our CR
system, the SUs are allowed to transmit only if the cre-
ated interference to the primary receivers is guaranteed to
be kept below some predefined thresholds to protect the
transmissions of the PUs.

3 Joint scheduling and power allocation problem
The main objective of the paper is to study a centralized
resource allocation problem in which the spectrum man-
ager wishes to schedule the SUs in an effort to minimize
the overall power consumption (in coherence with the
green communications sprint [32, 33]) whilemeetingmin-
imum QoS constraints at the SUs and without interfering
with the PUs above the critical limits. Twomain questions
arise:

• Spectrum scheduling: which SU should be scheduled
in each band?

• Power allocation: what is the optimal power
allocation policy for each SU in its allocated bands?

In order to tackle these questions, we formulate the
problem as follows:

(DP1)

minimize
∑

q∈Q

∑

n∈N
pqn

s.t.
∑

n∈N
g(k)qn pqn ≤ P(k)q , ∀q,∀k

0 ≤ g(k)qn pqn ≤ Ppeak(k)qn , ∀n,∀q,∀k

Cq
(
xq, pq

)
≥ Rmin

q ,∀q
∑

q
xqn ≤ 1,∀n

xqn ∈ {0, 1},∀n,∀q,

where Rmin
q represents the target QoS at SUq; g(k)qn is the

power gain of the interfering link STq − PR(k); P(k)q is the
maximum average interference power that SUq is allowed
to inflict on PUk ; and Ppeak(k)qn is the maximum peak inter-
ference power in band n that SUq is allowed to inflict on
PUk .
This optimization problem is difficult for two reasons.

First, the target QoS constraints and the maximum inter-
ference constraints inflicted on the PUs are opposing ones
and, thus, the feasible set may be void depending on
the system parameters. Second, to avoid the interference
impairments to the PUs and among SUs, we assume that
the system owner schedules at most one SU to a given
band n and that such a band cannot be further fractioned.
This turns the problem into a discrete optimization with
respect to the scheduling policy. In the remainder of this
section, we tackle both issues and provide an efficient
algorithm to compute the optimal solution when it exists.

3.1 Feasible set
The spectrummanager has to schedule all SUs to ensure a
non-zero QoS target for each SU. These constraints might
require the SUs to transmit at power levels which inflict
an interference level that is unacceptable by the primary
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system. Thus, the first arising question is under what con-
ditions on the system parameters are the QoS and the
interference constraints met simultaneously?
We denote the feasible set of (DP1) by SF :

SF =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x,p) ∈ {0, 1}N×Q
+ × RN×Q

+ :
∑

n∈N
g(k)qn pqn ≤ P(k)q , ∀q,∀k

0 ≤ g(k)qn pqn ≤ Ppeak(k)qn , ∀n,∀q,∀k

Cq
(
xq, pq

)
≥ Rmin

q ,∀q
∑

q∈Q
xqn ≤ 1,∀n and xqn ∈ {0, 1},∀n,∀q.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4)

We provide next sufficient and necessary conditions on
the system parameters for the existence of at least one
solution to (DP1), i.e., SF ̸= ∅.
We start by assuming, without loss of generality, that

Rmin
q > 0, for all SU q. Given this assumption and the fact

that only one SU is allowed to transmit in a given band, the
problem has no solution when N < Q. Thus, a first trivial
necessary condition for a solution to exist is that N ≥ Q.
In this case, we derive further necessary conditions and
sufficient conditions for the existence of a solution.

Theorem 1. (Necessary conditions) Assuming that
N ≥ Q and Rmin

q > 0, ∀q, if the minimum rate Rmin
ℓ of an

arbitrary SU ℓ is greater than its maximumachievable rate
Rmax

ℓ , then the feasible set SF is void. Here, Rmax
ℓ represents

the optimal value of the following optimization problem:

maximize
∑

n∈N
log2 (1+ pℓnsℓn)

s.t. ∑
n g

(k)
ℓn pℓn ≤ P(k)ℓ

g(k)ℓn pℓn ≤ Ppeak(k)ℓn , ∀n,∀k

(5)

which corresponds to the maximum achievable rate of SU
ℓ if it were the only SU in the network.

This result means that, if there is at least one SU ℓ that
cannot achieve its minimum requirement Rmin

ℓ even if it
were the only SU in the system, the problem (DP1) is infea-
sible. In the particular case in which there is only one SU in
the system, i.e.,Q = 1, these necessary conditions are tight
as they are also the sufficient conditions guaranteeing the
existence of a solution. Although these conditions are not
tight when Q > 1 (at least one band has to be allocated
per SU and, thus, no SU will have access to all bands), they
have the merit of being general, fair from the SUs perspec-
tive, intuitive, and having a low computational complexity.
The proof of this Theorem is detailed in Appendix A1.

Theorem2. (Sufficient conditions)Assuming that N ≥
Q and Rmin

q > 0, ∀q, if for each SU q the minimum
rate Rmin

q is lower than the following threshold: RCS
q =

log2
(
1+min

n

{
sqnmin

k

{
P(k)q
gqn ,

Ppeak(k)qn
gqn

}})
, then the feasi-

ble set is non-void SF ̸= ∅.

Intuitively, if each SUq has a minimum rate Rmin
q

small enough, i.e., smaller than the rate obtained when
using only its worst channel, then the problem (DP1) is
feasible.

Remark 3.1. When Q = 1, N = 1, the sufficient condi-
tions of Theorem 2 are identical to the necessary conditions
of Theorem 1. However, (similarly to the necessary con-
ditions above) these sufficient conditions are not tight in
general. Indeed, when Q = 1 and N > 1 the necessary
conditions in Theorem 1 are the tight sufficient condi-
tions. Nevertheless, in the most general case, it seems very
difficult to find better sufficient conditions that are com-
putationally tractable and fair with respect to all SUs. To
better understand this, consider first the case in which Q ≤
N < 2Q: there are not enough channels to allocate two
channels per SU. Thus, some of the SUs will only be allo-
cated a single channel which may very well be their worst
channel. In this case, finding better and fair sufficient con-
ditions seems very unlikely. Now, if γQ ≤ N < (γ + 1)Q
with γ ≥ 2: at least γ ≥ 2 channels may be allocated
to each SU. In this case, a better sufficient condition could
be found by computing the achievable rate over the worst
γ channels for each SU. However, since we cannot know
in advance which combination of γ channels results in a
worst case achievable rate, one would have to compute all
Cγ
N combinations for each of the Q SUs. The complexity of

such an approach is therefore prohibitive.

The proof of this Theorem is detailed in Appendix A2.
Now, if the feasible set SF is non-void, finding the solu-

tion of (DP1) is not trivial. Indeed, we notice that the
scheduling of SUs is a discrete combinatorial problem
xqn ∈ {0, 1}, ∀n, ∀q. In the following, we will provide
an efficient algorithm that computes the optimal solution
in a very efficient manner using a Lagrangian relaxation
approach [14].

3.2 Lagrangian relaxation
As we have already mentioned, we assume that at most
one SU is allowed to transmit in a given band. The con-
straints on the discrete scheduling policy x make the
problem (DP1) very difficult to solve in this form. In the
following, we will use a Lagrangian relaxation technique
to overcome this issue.
When the feasible setSF is not void, we propose to solve

a continuous problem in which the scheduling parameter
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is continuous xqn ∈ [0, 1]. This relaxed problem (CP2)
holds the advantage of being a convex optimization prob-
lem, much simpler to solve than (DP1):

(CP2)

minimize
∑

q∈Q

∑

n∈N
pqn

s.t.
∑

n∈N
g(k)qn pqn ≤ P(k)q , ∀q,∀k

0 ≤ g(k)qn pqn ≤ xqnPpeak(k)qn , ∀n,∀q,∀k
Rq

(
xq, pq

)
≥ Rmin

q ,∀q
∑

q
xqn ≤ 1,∀n

0 ≤ xqn ≤ 1,∀n,∀q.

Inspired by [13], the continuous problem (CP2) is not
exactly the Lagrangian relaxation of (DP1) but that of
an equivalent discrete problem. Two differences can be
observed in (CP2). First, the peak interference power con-
straints g(k)qn pqn ≤ Ppeak(k)qn are replaced by g(k)qn pqn ≤
xqnPpeak(k)qn . Second, we replace the Shannon achievable
rate of SU q by the function:

Rq(xq, pq) =
∑

n∈N
rqn(xqn, pqn), (6)

where

rqn(xqn, pqn) =
{
xqn log2

(
1+ sqnpqn

xqn

)
, if xqn > 0

0, otherwise.
(7)

Remark 3.2. Our target problem (DP1) focuses only on
discrete spectrum allocation policies xqn ∈ {0, 1}. Under
this assumption, the function in Eq. (7) corresponds exactly
to the achievable Shannon rate in (2). However, in the
continuous case in which xqn ∈ [0, 1] expression (7)
does not correspond to the Shannon achievable rate. The
denominator of the term sqnpqn

xqn is introduced for techni-
cal purposes and plays an important role in proving the
optimality of the Lagrangian relaxation approach when
solving (DP1).

Themajor interest of this approach is that it will allow us
to solve the initial non-convex problem using a very effi-
cient algorithm based on convex optimization techniques.
Not only is the continuous problem (CP2) simpler to solve,
but also, by using these two modifications, the problem
(CP2) will have discrete solutions in x which will turn out
to be the solutions to our initial problem (DP1), as we will
show later on.
In the following, we will give some proprieties of the

problem (CP2) where we denote by (x∗,p∗) the pair of
scheduling and power allocation that satisfies all the con-
straints at the optimum:

Proposition 1. In the continuous problem (CP2), all the
rate constraints are active at the optimal solution, i.e., the
rate constraints are satisfied with equality.

This result means that if the feasible set is non-void, the
optimal rate at each SU achieves the target QoS Rmin.

Proposition 2. In the continuous problem (CP2), all the
scheduling average constraints are all active at the optimal
solution : ∑q x∗

qn = 1, ∀q.

This result means that if the feasible set is non-void, all
bands are fully used by the opportunistic users. The proofs
of these two propositions are detailed in Appendix B.

3.2.1 Dual formulation
The continuous problem (CP2) is a convex optimiza-
tion problem. Indeed, the objective function ∑

q
∑

n pqn
is affine in the overall power allocation profile p =(
p1, p2, . . . , pQ

)
∈ RN×Q

+ and, regarding the constraints,
the interference constraints are both affine in (x, p); the
scheduling constraints are affine in x; and the rate con-
straint is jointly concave in (x, p). From the convex opti-
mization problem definition [34], it follows that (CP2) is
convex and, thus, can be solved via a dual formulation.We
associate dual variables λ = (λq)q∈Q with total interfer-
ence power constraints, β = (βq)q∈Q with rate constraints
and µ = (µ)n∈N with scheduling constraints, resulting in
the following Lagrangian:

L(λ,β ,µ, x,p) =
∑

q

∑

n
pqn −

∑

q
βq

(
Rq

(
xq, pq

)
− Rmin

q
)

+
∑

k

∑

q
λ(k)q

(
∑

n
g(k)qn pqn − P(k)q

)

+
∑

n
µn

⎛

⎝
∑

q
xqn − 1

⎞

⎠.

(8)

To solve (CP2) it suffices to solve:

max
(λ,β ,µ)≥0

min
(x,p)∈SF

L(λ,β ,µ, x,p). (9)

Inspired by [13], in which the authors consider a rate max-
imization joint scheduling and power allocation problem
in OFDM systems without the PU constraints, we pro-
pose to solve here a more complex problem (CP2) via the
following steps.

Step 1: The optimal power p which minimizes
L(λ,β ,µ, x,p) given fixed λ, β and µ1 is a
water-filling type of solution:

p∗
qn = xqn

sqn

[
βqsqn

1+∑
k λ

(k)
q g(k)qn

− 1
]min

k

{
Ppeak(k)qn

}
sqn

0
.(10)
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Step 2: Substituting p∗ into L(λ,β ,µ, x,p) yields to
the following affine function in x:

G(λ,β ,µ, x) = −
∑

q

∑

n
xqn

(
ϕqn − µn

)

+
∑

q
βqRmin

q −
∑

k

∑

q
λ(k)q P(k)q −

∑

n
µn,

(11)

where ϕqn = ϕqn(a, b, c, d) is a function of the system
parameters defined by:

⎧
⎪⎪⎨

⎪⎪⎩

0 if a
c ≥ b

−b+ a
c + b log2

(
bc
a
)
if a

c ≤ b ≤ a(dc+1)
c

−da+ b log2(1+ dc) if (a)(dc+1)
c < b

(12)

for a = 1+∑
k λ

(k)
q g(k)qn , b = βq, c = sqn and

d = min
k

{
Ppeak(k)qn

}
.

Step 3: From Eq. (11), we remark that this function is
affine in x. Optimizing it over x such that xqn ∈ [0, 1]
yields the dual function:

G(λ,β ,µ) = −
∑

q

∑

n

[
ϕqn − µn

]+ +
∑

q
βqRmin

q

−
∑

k

∑

q
λ(k)q P(k)q −

∑

n
µn,

(13)

where the optimal scheduling allocation x∗ is:

x∗
qn(µ) =

{
1 if ϕqn > µn
0 if ϕqn < µn

(14)

and if ϕqn = µn, then the optimal value x∗
qn can be

anything in the interval [0, 1]. In such cases and from
Proposition 2, one must only ensure that all
scheduling constraints are met: ∑q x∗

qn = 1 for all n.
We can now maximize the dual function G(λ,β ,µ)
over µ for given λ and β , by setting µn = µ∗

n(λ,β)
similarly to [13] where µ∗

n is obtained as follows:

µ∗
n(λ,β) = max

q
ϕqn(λ

(k)
q ,βq). (15)

Remark 3.3. From Eqs. (14) and (15), it is clear that
x∗
qn(µ) = 0 if q ̸∈ argmax

q∈Q
ϕqn

(
λ
(k)
q ,βq

)
. Intuitively,

this means that band n is allocated to a specific SU ℓ

if it maximizes a specific channel metric given by
ϕℓn

(
λ
(k)
ℓ ,βℓ

)
. There may be ties when multiple SUs

achieve the value µ∗
n in band n. For example, if there

exist two SUs r, q such that r ̸= q and
ϕqn = ϕrn = µ∗

n. These ties happen with zero
probability if the independent random channel gains
are drawn from continuous distributions. In practice,
this implies that such problematic cases almost never
occur.

From Eq. (14) we also observe that (CP2) allows for
discrete solutions in x∗ when it is feasible. Since we
are interested in solving the discrete problem (DP1),
we make the choice to select a discrete solution such
that

x∗
qn(µ

∗) =
{

1 if ϕqn = µ∗
n

0 if ϕqn < µ∗
n.

(16)

Step 4: Substituting µ∗ into G(λ,β ,µ) and noticing
that µ∗,p∗, x∗ are all functions of (λ,β) we further
have:

G(λ,β) = −
∑

n
max
q

ϕqn
(
λ(k)q ,βq

)
+

∑

q
βqRmin

q

−
∑

k

∑

q
λ(k)q P(k)q .

(17)

The solution to the dual problem (9) can be
computed numerically by maximizing G(λ,β) over
λ ≥ 0 and β ≥ 0. To this aim, we use a sub-gradient
based search [14] to update λ and β .

3.2.2 Projected sub-gradient algorithm
Based on the previous dual formulation, we propose an
iterative sub-gradient algorithm to compute the solu-
tion of (CP2) when it exists. The iterations are detailed
in Algorithm 1. The sub-gradient approach is usually
employed to compute water-filling type of solutions
[3, 10, 13]. The proposed algorithm converges to the
optimal solution whenever it is feasible.
Other efficient algorithms such as interior point

methods, which are based on Newton’s iteration and
on second-order derivatives, can be implemented to
solve (CP2). Both types of algorithms have advantages
and inconveniences, and their convergence performance
depends on the compromise between the number of
iterations and the complexity of each iteration. The
sub-gradient method has the advantage of being sim-
ple as its iterations are of low-complexity and scale as
O(Q × (K + N)).

Proposition 3. If (CP2) is feasible, then Algorithm 1
always converges and the convergence point is an optimal
scheduling and power allocation policy.

The proof of this proposition is based on convex opti-
mization tools and is given in Appendix C. The intuition
is that, at the convergence state, the iteration, which is
discrete with respect to the spectrum allocation policy
by construction, satisfies the KKT conditions which are
both necessary and sufficient for optimality in convex
optimization problems.
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3.3 Optimality of the Lagrange relaxation
Our main objective in the remainder of the paper is to
show that Algorithm 1 not only converges to the solution
of (CP2) but to that of the initial discrete problem (DP1).
Let us define by DP2 the discrete version of (CP2). The

objective of DP2 is to minimize the SU overall power con-
sumption subject to the rate constraints, the interference
power constraints (identical to the ones in (CP2)) and
the discrete scheduling constraints: xqn ∈ {0, 1}, ∀n,∀q,∑

q xqn ≤ 1, ∀n. Because of space limitations, we do not
write the expressions of DP2 explicitly.

Proposition 4. If (CP2) is feasible, then all the discrete
solutions of (CP2) (with respect to the optimal scheduling
allocation x∗) are the only optimal solutions of DP2.

Algorithm 1: Projected Sub-gradient Algorithm for
the Joint Scheduling and Power Allocation Problem
1) Initialization: β[0]

q , λ(k)[0]q , ∀ q, ∀ k
2) t = 1
3) while iteration t do

for each SU q ∈ Q do
for each Band n ∈ N do

Update powers p[t]qn given in (10)
Update channel metrics ϕqn defined in (12)
Update the Lagrange multiplier µ[t]

n using
(15)
Update the scheduling allocation x[t]qn using
(16)

end
for k ∈ K do

Update λ
(k)[t]
q such that2:

λ(k)[t]q =
[

λ(k)[t−1]
q −τ

(

P(k)q −
∑

n
g(k)qn p[t]qn

)]+

end
Update β

[t]
q such that:

β[t]
q =

[
β[t−1]
q + τ

(
Rmin
q − Rq

(
x[t]q , p[t]q

))]+

where Rq is defined in (6)
t = t + 1

end
end
4) Repeat 3) until convergence for all SUs in all the
bands ∀q,∀n,

∣∣∣x[t]qn − x[t−1]
qn

∣∣∣ ≤ ϵx,
∣∣∣p[t]qn − p[t−1]

qn
∣∣∣ ≤ ϵp,∣∣∣β[t]

q − β
[t−1]
q

∣∣∣ ≤ ϵβ and
max
k∈K

{∣∣∣λ(k)[t]q − λ
(k)[t−1]
q

∣∣∣ − ϵλk

}
≤ 0

where ϵx, ϵp, ϵλk and ϵβ are precision parameters.

Proof. The feasible set of DP2 is included in the feasible
set of (CP2). The only difference between both problems
is the scheduling parameter xqn which is discrete in DP2
and continuous in (CP2). On the one hand, we can see that
if there are any discrete solutions to (CP2), then these dis-
crete solutions will also be the optimal solutions of DP2.
On the other hand, if the solutions of (CP2) are continuous
(i.e., the scheduling allocations are between 0 and 1), then
the SUs’ power allocations policies are constants (as they
do not depend on the scheduling allocations), thus, these
continuous solutions have the same efficiency comparing
to the discrete solutions on the borders (i.e., are equal to 0
or 1).

Next, we compare the discrete problems (DP1) and DP2.

Proposition 5. The optimization problems (DP1) and
DP2 are equivalent in the sense that their solution sets are
identical.

Proof. If we fix an arbitrary scheduling policy x̃ ∈ X ,
where the scheduling constraints set is defined as

X =
{

x̃ ∈ {0, 1}Q×N |
∑

l
x̃ln = 1,∀n

}

then, both problems (DP1) and DP2 reduce to the same
power allocation problem (CP3) below in which the only
variable left is the power allocation policy3 at the SU’s

(CP3)

minimize
∑

q∈Q

∑

n∈N
pqn1{̃xqn}

s.t.
∑

n
gqnpqn1{̃xqn} ≤ Pq, ∀q ∈ Q

0 ≤ gqnpqn1{̃xqn} ≤ Ppeakqn 1{̃xqn},∀q, n∑

q
1{̃xqn} log2

(
1+ sqnpqn

x̃qn

)
≥ Rmin

q , ∀n.

On the one hand, if the scheduling parameter equals
zero, x̃qn = 0, then the corresponding optimal power is
also zero p̃qn = 0 (because the optimal power is linear in
x). On the other hand, if the scheduling parameter equals
one, x̃qn = 1, then the optimal powers p̃qn are given by a
water-filling type of solution over the allocated spectrum.
Thus, whenever x̃ is fixed, both problems (DP1) and DP2
reduce to solving the same Q decoupled power allocation
problems.
It remains to prove that both DP2 and (DP1) have the

same set of optimal spectrum allocation policies x∗. The
optimal powers p∗ will follow by solving (CP3). Assuming
that (DP1) is feasible, we can easily check that the optimal
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solutions of (DP1) meet all the constraints of DP2 as well.
Adding the fact that the feasible set of (DP1) contains (and
is larger) than the feasible set of DP2, we conclude that
the optimal solution sets of the two problems are identical.

Theorem 3. If (CP2) is feasible, then all solution of (CP2)
that are discrete w.r.t x∗ are the optimal solutions of (DP1).

This Theorem follows from Propositions 4 and 5. In
Proposition 5, we have shown that both discrete problems
DP2 and (DP1) are equivalent. Moreover, from Proposi-
tion 4, we have shown that the optimal discrete solutions
of DP2 are the discrete solutions of (CP2). Thus, we
can conclude that all discrete solutions of (CP2) are the
optimal discrete solutions of (DP1).

Corollary 1. The feasibility of the relaxed problem
(CP2) implies the feasibility of (DP1).

This is important because the feasibility of (CP2)
problem, which is a convex problem, is much sim-
pler to study than the feasibility of the discrete prob-
lem (DP1). In other words, to decide whether the
initial problem (DP1) is convex, we have simply to
solve the problem of feasibility of (CP2) which is
convex.
In conclusion, our results show that Algorithm 1, ini-

tially built to solve (CP2), selects only the optimal discrete
solutions and actually solves DP2. From Proposition 3,
both discrete problems DP2 and (DP1) are equivalent;
thus, our projected sub-gradient Algorithm 1 solves
the initial problem (DP1) and converges to the optimal
scheduling and power allocation policy whenever the
problem is feasible.
In the following section, we will present some sim-

ulation results which illustrate the performance of our
projected sub-gradient algorithm.

4 Numerical results
All observations in this section have been verified via
extensive simulations with generic system parameters.
We have selected only a few of the most illustrative and
interesting results to be presented next.

4.1 Power consumption efficiency
We start by comparing the overall power consumption
between our optimal scheduling policy and arbitrarily
scheduling techniques such as interleaved and block-wise
spectrum scheduling [35]. Once the spectrum scheduling
is fixed, computing the power allocation policies follows
via water-filling type of sub-gradient methods. We focus
only on the cases in which the problem is feasible and in
which our Algorithm 1 converges to the optimal solution
of (DP1). Thus, for each of 104 random channel realiza-
tions, we choose the minimum target QoS that are equal
to the rates in the sufficient conditions of Theorem 2.
Figure 2 illustrates this comparison as function of N ∈

{Q, 2Q, 4Q, 8Q, 16Q} in the scenario: 4 Q = 4, K = 8,
the channel gains are drawn randomly g(k)qn " N (0, 4),
∀q,∀n,∀k and sqn " N (0, 20), ∀q,∀n, P(k)q = 10 mW,
∀q,∀k, Ppeak(k)qn = 20 mW, ∀q,∀n,∀k.
We remark that the interleaved and block-wise allo-

cations have the same average performance because of
the independent and identically distributed (i.i.d) chan-
nel gains. Our algorithm outperforms these two fixed-
spectrum allocations (interleaved or block-wise alloca-
tion), and the performance gap decreases with N.
The sufficient conditions guaranteeing the existence of

a solution and the convergence of Algorithm 1 are not
tight in general as they rely on the use of Q bands alone
and on the assumption that each SU is allowed to transmit
in its worst channel. Finding tighter sufficient conditions
that are tractable seems a very difficult task. Therefore,
we study the performance of our algorithm in the cases in
which the sufficient conditions are not met.

Fig. 2 Average power consumption vs. number of bands N ∈ {Q, 2Q, 4Q, 8Q, 16Q} for Q = 4 when the sufficient conditions are always met. Our
optimal spectrum scheduling outperforms the two others spectrum scheduling allocations (interleaved and block-wise)



Masmoudi et al. EURASIP Journal onWireless Communications and Networking  (2016) 2016:97 Page 10 of 19

4.2 Problem feasibility
Figure 3 illustrates the empirical probability (over 104 ran-
dom channels realizations) that the problem (DP1) is not
feasible as function of the target QoS Rmin in the following
scenario: N = 4, K = 8, Q = 2, Rmin

q = Rmin, ∀q, P(k)q =

10 mW, ∀q,∀k, s =
(
27.8797 2.0727 0.7779 4.3263
7.6688 7.6722 11.0049 1.7281

)
4,

Ppeak(k)qn = 20 mW, ∀q,∀n,∀k and the interfer-
ing channel gains are drawn randomly such that
g(k)qn " N

(
0, σ 2

g
)
, ∀q,∀n,∀k for an arbitrary chosen

value σ 2
g = 2.

In order to decide whether the problem is feasible or
not, we test if the algorithm converges before the maxi-
mum number of iterations is reached. From Proposition 3
and Theorem 3, if the algorithm converges, then the
convergence point is an optimal solution of (DP1). For
practical reasons, if the algorithm reaches the maximum
number of iterations before convergence, we decide that
the problem is not feasible. This approach is based on an
empirical search for the maximum number of iterations.
In this setting, we fix 105 maximum number of iterations.
In Fig. 3, we remark that there is a threshold, Rmin ≃

6.25 bps, below which a solution exists and above which
the problem is not feasible. The other two plotted thresh-
olds, CS and CN, illustrate the worst case sufficient
conditions and necessary conditions over all random real-
izations and are computed as follows. We denote by
RCS(t)
q the sufficient condition rates of Theorem 2 for

the random channel realization t ∈ {1, . . . , 104}. Simi-
larly, we denote the necessary condition rates by RCN(t)

q
of Theorem 1 which also depend on the random realiza-
tion t. The threshold CS represents the minimum value
of the rates RCS(t)

q over all SUs and over all random chan-
nel realizations: CS = min

q,t

{
RCS(t)
q

}
= 1.44 bps and the

threshold CN represents the maximum value of the rates
Rmax(t)
q over SUs and over the random channel realiza-

tions: max
q,t

{
RCN(t)
q

}
= 12.86 bps.

Although the CS and CN values in Fig. 3 are worst
case conditions (over all random channels and all SUs),
they still show that our sufficient and necessary conditions
are not tight in general, as discussed in Section 3.1. This
means that there are a lot of cases in which we do not
know a priori whether the problem is feasible or not: all
cases in which sufficient conditions are not met but the
necessary conditions are met.

4.3 Necessary conditions are not met
We illustrate now the case in which the necessary condi-
tions are not met, i.e., when there exists at least one SU
q such that the target rate is above the maximum achiev-
able rate in Theorem 1 : Rmin

q ≥ Rmax
q . We consider the

following setting 4: N = 4, K = 8, Q = 2, P(k)q =

10 mW, ∀q,∀k, s =
(
27.8797 2.0727 0.7779 4.3263
7.6688 7.6722 11.0049 1.7281

)
,

g(k) =
(
2.4086 3.2329 1.1983 0.4016
1.8904 0.1510 0.0362 0.3318

)
5. We fix the tar-

get rates Rmin
1 = Rmin

2 = 13 bps which are higher than the
maximum rates that each SU could achieve if they were
alone in the system: Rmax

1 = 8.0803 bps, Rmax
2 = 12.8686

bps.
Figure 4 illustrates the evolution of the Lagrange mul-

tipliers µn and βq corresponding to the average con-
straints over the algorithm’s iterations. We remark, that
Algorithm 1 does not converge before themaximumnum-
ber of iterations is reached. In this case, we decide that the
problem is not feasible. An alternative would be to further
increase the maximum number of iterations, but this pro-
cess has to be finite and a pragmatic decision has to be
made at some point.

4.4 Sufficient conditions are not met although necessary
conditions are met

Here, we illustrate the case in which the necessary condi-
tions are met and at least one of the sufficient conditions
is not met in the same setting as Fig. 4 except for the target

Fig. 3 Empirical probability that the problem is not feasible as function of the minimum target rate Rmin for each SU
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Fig. 4 Algorithm 1 reaches the maximum number of iterations (105) before convergence

rates which are in between the thresholds of the sufficient
conditions and the necessary conditions.

4.4.1 Convergence of Algorithm 1
In Fig. 5, we want to check whether our projected sub-
gradient algorithm converges to an optimal solution or
not.
In Fig. 5a, we plot the Lagrange multipliers µn, βq of the

scheduling and target rate constraints when the minimum
target rates are Rmin

1 = Rmin
2 = 3 bps. We can see that our

algorithm converges in this case and, thus, the problem is
feasible and solved via Algorithm 1. Indeed, the Lagrange
multipliers converge to the optimal values µ∗

n and β∗
q that

are strictly positive, and the scheduling and rate constraint
are satisfied with equality.
In Fig. 5b, we fix the minimum target rates Rmin

1 =
Rmin
2 = 8 bps. In this case, we remark that our algorithm

reaches the maximum number of iterations. Because of
such high target rates, our algorithm does not converge
and, thus, the problem has no solution.

4.5 Water-filling solution
Figure 6 illustrates the optimal scheduling and power
allocation policies in the case in which our algorithm
converges for the same scenario as in Fig. 5a.
We remark that the optimal solution is fair in terms of

bands per SU; two bands are allocated to each SU. Band
1 and 4 are allocated to SU1, since SU1 has higher SNR
than SU2 in these bands. Band 2 and 3 are allocated to SU2
for the same reason. This power and spectrum allocation
policy satisfies all KKT conditions, thus, it is the optimal
solution.
In conclusion, when the sufficient conditions are not

met although the necessary conditions are met, we do not
know a priori if Algorithm 1 converges or not. Neverthe-
less, we can still exploit our algorithm to decide whether
the problem is feasible or not and to compute the optimal

solution when it exists. If the algorithm converges before
reaching the maximum number of iterations, then we
know that the problem is feasible and that the conver-
gence point is an optimal solution to (DP1). Otherwise, we
can increase the maximum number of iterations or decide
that the problem is not feasible and has no solution. In
such cases, instead of not allowing any SU to transmit,
the spectrummanager (instead of not allowing any oppor-
tunistic user to transmit) can decrease the minimum SU
target rates (lower QoS may be better than no QoS in
low data rate applications) or may even decide to sched-
ule only a subset of the SUs and turn the problem into a
feasible one [8].
As we have seen before, there exist other cases in which

the Algorithm 1 does not calculate the solution. This hap-
pens in the indecision cases between several SUs (i.e, to
decide whether the SU is allowed to transmit in a given
band or not). In the following, we will try to solve some of
these specific cases.

5 Particular case: symmetric systems
In this section, we are interested in a specific symmetric
system in which Algorithm 1 is not suitable to compute
the solution. This happens whenever ties arise between
several SUs when deciding on the SU to be allocated a
given band: if several SUs have the same maximum value
for the decision parameter µ∗

n described in Section 3.2.1
(there exist two SUs q ̸= r such that ϕqn = ϕrn = µ∗

n).
Consider the completely symmetric system in which all

SUs experience the same channel gains, the same peak
and total interference constraints, and have the same tar-
get rates: sqn = s, gqn = g, Ppeakqn = Ppeak , Pq = P and
Rmin
q = Rmin, ∀n, ∀q.

Remark 5.1. In this case, the optimal power allocation
is such that every SU uniformly allocates its power over its
allocated bands. For any scheduling policy x, the optimal
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a

b

Fig. 5 Behaviour of Algorithm 1 when sufficient conditions are not met in Scenario 2: (a) Rmin = [ 3 3] the problem is feasible and the algorithm
converges and (b) Rmin = [ 8 8] the algorithm does not converge in this case

power allocation is a water-filling type solution [11, 12]
derived from the KKT conditions:

p∗
qn =

⎧
⎨

⎩
1
s
[

βqs
1+λqg − 1

]Ppeaks
0

if x∗
qn = 1

0 otherwise
(18)

and, thus, we have p∗
qn = p∗

q, for any band n that is used at
the optimal solution.

In the following, themain idea is to simplify the problem
(DP1) in which the unknowns are x and p and reduce it
into a problem in which the only unknown isN∗

q , ∀qwhere
N∗
q denotes the number of bands allocated at the optimum

to the SUq6 :

N∗
q ! Card

{
n ∈ N | x∗

qn = 1
}
.

From Proposition 2, since the scheduling constraint is
satisfied with equality, the overall number of bands allo-
cated to the SUs, at the solution, equals the total number
of bands N.

∑

q
N∗
q = N . (19)

According to Proposition 1 (rate constraint is met with
equality) and Remark 5.1 (uniform power allocation is
optimal), we can write the optimal power as:

p∗
qn =

{
1
s
(
exp

(
Rmin
Nq

)
− 1

)
if x∗

qn = 1
0 otherwise.
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Fig. 6 Optimal scheduling and power allocation when Algorithm 1 converges. The system owner allocates two bands per SU

Using (19), the discrete problem (DP1) simplifies as
follows:

(DPN )

minimize
∑

q∈Q

Nq
s

(
exp

(Rmin

Nq

)
− 1

)

s.t. Nq
s

(
exp

(Rmin

Nq

)
− 1

)
≤ P

g , ∀q (C1)

1
s

(
exp

(Rmin

Nq

)
− 1

)
≤ Ppeak

g , ∀q (C2)
Q∑

q=1
Nq = N (C3)

Nq ∈ N∗, ∀q. (C4)

This problem is interesting as it is no longer a joint
scheduling and power allocation problem (x,p) and
depends only on the number of allocated bands at the
optimum N∗

q , ∀q.
For simplicity reasons, we start by assuming that the

number of available bands is proportional to the num-
ber of SUs. This means that the ratio N/Q is an integer:
N/Q ∈ N.
Now, we will prove that the optimal solution to problem

(DPN ) is to allocate the spectrum in a fair way to the SUs.

Proposition 6. The optimal solution of the problem
(DPN), when feasible, is to uniformly allocate the spectrum
to the SUs:

N∗
q = N

Q , ∀q. (20)

The proof of this Proposition is detailed in Appendix D.
The closed-form solution of the power allocation policy is
given by:

p∗
qn =

{
1
s
(
exp

(
RminQ
N

)
− 1

)
if x∗

qn = 1
0 otherwise

(21)

where
{
x∗
qn

}

qn
is any spectrum allocation policy such that

every band is used and each SU is allocated exactly N
Q

bands.
In conclusion, in order to minimize the power con-

sumption of the CR symmetric system, all the spectrum
has to be used (see Proposition 1). Since all SUs have
the same channel conditions, the spectrum manager does
not privilege any particular SU and the spectrum is
divided equally among them. There are many ways to
allocate the spectrum either by an interleaved or block-
wise allocation [35]. These two types of allocations are
all equivalent given the symmetry of the system. Then,
each SU allocates uniformly its power as in (21) over its
allocated bands.
In the following Table 1, we compare the optimal value

of the objective function ∑
q
∑

n p∗
qn in different particu-

lar cases regarding the scheduling policy to illustrate that
the fair spectrum allocation among the different users is
optimal. We consider the following scenario, which falls
into the hypothesis of Proposition 6: Q = 3 SUs, N = 9
bands, Rmin = 3 bps, T is chosen randomly such that 1 <

T < N − 2, we choose T = 3 and the SINR s = 2. Notice

Table 1 Comparing different spectrum allocations

SU1 SU2 SU3
∑

q,n p
∗
qn (mW)

N
Q

N
Q

N
Q 2.5774

N
Q + 1 N

Q − 1 N
Q 3.1585

N−1
2

N−1
2 1 10.6598

N − 1 − T T 1 10.8130

N − 2 1 1 19.3531
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that all permutations of
{
N
Q , NQ − 1, NQ + 1

}
are equivalent

by symmetry and lead to an identical power consumption;
therefore, we provide only one of these permutations in
the Table. We remind that the sum of the allocated bands
must be equal to N i.e. ∑q Nq = N .
We remark that exactly N

Q bands are allocated to each
SU. This numerical result validates our Proposition 6.
Next, we provide a more general solution, in the case

in which the number of bands is not proportional to the
number of SUs, N/Q ̸∈ N. It turns out that the opti-
mal solution to problem (DPN ) is very similar to the fair
spectrum allocation discussed above.

Proposition 7. The optimal solution of the problem
(DPN) when feasible is given as follows:

N∗
q =

{
⌊N
Q ⌋ + 1 if q ∈

{
1, . . . ,N − ⌊N

Q ⌋Q
}

⌊N
Q ⌋ if q ∈ {N − ⌊N

Q ⌋Q+ 1, . . . ,Q}
(22)

where ⌊y⌋ denotes the integer part of y. The proof of
this Proposition is detailed in Appendix D. The optimal
power allocation is uniform over all bands that are used
by the SUs and is given by (21). The difference with the
previous case lies in the number of bands that each SU
can use.
In conclusion, when solving the (DPN ) problem in this

symmetric system and because of the convex shape of the
objective function in a continuous space, two cases arise:
(1) either the solution to the relaxed convex continuous
problem (i.e., N/Q) is integer and the fair spectrum allo-
cation is optimal N∗

q = N
Q , ∀q; (2) or the solution N

Q
is not an integer and each SU is allocated either ⌊N

Q ⌋ or
⌊N
Q ⌋ + 1 bands such that ∑

q N∗
q = N . This means that

the solution is not perfectly fair (as the previous case) and
a subset of

{
N − ⌊N

Q ⌋Q+ 1, . . . ,Q
}
SUs will be allocated

an additional band.
Aside from this particular case (w.r.t. the system param-

eters), there are other interesting cases but more compli-
cated to solve: (1) the case in which a SUq has the same
channel gains and peak interference thresholds over all the
frequency bands, but two different SUs do not necessary
have the same channel conditions: sqn = sq, gqn = gq,
Ppeakqn = Ppeakq , ∀n; (2) the case in which in a band n
all SUs have the same channel gains and peak interfer-
ence thresholds: sqn = sn, gqn = gn, Ppeakqn = Ppeakn , ∀q.
Although, in the first case (1), we can simplify the prob-
lem using the optimal power uniform allocation for each
SUq, an analytical solution seems difficult or even impos-
sible to find since, as opposed to the perfectly symmetric
case, we can no longer conclude from the KKT condi-
tions that the number of allocated bands is the same for
all SUs. In the second case, we can no longer use the fact

that the optimal power allocation is uniform over the allo-
cated spectrum, so we cannot even simplify the problem
as the symmetric case. Since these cases seem difficult and
arise with probability zero in practice, we will not detail
them here.

6 Conclusions
In this work, we have investigated the usage of full CSI
by a cognitive radio manager to jointly schedule spec-
trum access and power allocation for opportunistic users
in a power-efficient CR network. Two main challenges
emerge in the underlying optimization problem. A first
difficulty lies in the QoS and interference power con-
straints which may not be met simultaneously. To tackle
this issue, we have provided general necessary conditions
and sufficient conditions for the existence of an optimal
solution.
A second challenge lies in the non-convexity of this

problem because of the discrete scheduling policies. This
aspect is overcome by exploiting a specific Lagrangian
relaxation technique. We have proposed an iterative pro-
jected sub-gradient algorithm converging to the optimal
joint power and spectrum policy whenever the problem is
feasible and the channels are asymmetric. It turns out, that
the convergence point is the optimal solution to the ini-
tial discrete problem. We have also studied the particular
case of a symmetric CR network for which a closed-form
solution is found.
Future work may consider further analysis of the cases

in which the problem is unfeasible. Instead of not schedul-
ing any SU, the radio-resource manager may decide to
remove a subset of SUs chosen (similarly to [8]) to make
the optimization problem feasible with a limited outage
probability.

Endnotes
1We denote

[ x]ba=

⎧
⎨

⎩

a if x ≤ a
x if a < x < b
b if x ≥ b

2We denote by [ x]+ = max(x, 0).
3We denote by 1{̃xqn} the quantity that equals one if

x̃qn = 1 and zero otherwise.
4We denote by s =[sqn]q,n the Q × N dimensional

matrix with entries sqn for all SUs and all bands.
5We denote by g(k) =

[
g(k)qn

]

q,n
the Q × N dimensional

matrix with entries g(k)qn for all SUs and all bands., ∀k,
Ppeak(k)qn = 20 mW, ∀q,∀n,∀k, RCS

1 = 1.4421 bps,
RCS
2 = 4.7488 bps.
6We denote by Card(X ) the cardinal value of the set X .
7We denote by ||X||2 the euclidean norm of X.
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Appendix A: Feasibility of the joint scheduling and
power allocation problem
In the following, we will provide both necessary condi-
tions and sufficient conditions for the existence of at least
one solution to (DP1) problem.

A1. Proof of Theorem 1, necessary conditions for the
existence of a solution
i) We start with a particular case in which Q = 1,

N ≥ Q, K ≥ 1. There is only one SU occupying all the
spectrum i.e.,∀n, x∗

1n = 1. In this case, we consider
the constrained rate maximization problem at the SU
level in order to find the maximum achievable rate
under interference constraints to PUs. A necessary
and sufficient condition (CNS) to have a solution is
given by Rmin

1 ≤ Rmax
1 . Otherwise, if the rate of the SU

is too restrictive (i.e., the minimum rate requirement
is above Rmax

1 ), even if this SU owns all the spectrum,
there can be no solution meeting all the constraints
and the feasible set is void. We can summarize this
necessary and sufficient condition as follows:

{
Q = 1,N ≥ Q,K ≥ 1
Rmin
1 ≤ Rmax

1
⇔
CNS

SF ̸= ∅

ii) Now, we assume that Q ≥ 1, N ≥ Q, K ≥ 1. If we
allocate all the spectrum to only one SU, then it must
satisfy its rate requirement otherwise the problem
cannot have a solution and the feasible set is void.
Thus, each SU must have the demand for its
minimum rate lower than the rate that it would have
if it was the only SU in the spectrum Rmax

ℓ defined in
(5). Assume that it exists an arbitrary SU ℓ, such that
it is the only SU in the spectrum i.e., xℓn = 1, ∀n and
if Rmin

ℓ > Rmax
ℓ then there is no solution and SF = ∅.

We summarize this necessary condition as follows:
{
Q ≥ 1,N ≥ Q,K ≥ 1
∃ ℓ : Rmin

ℓ > Rmax
ℓ

⇒
CN

SF = ∅

A2. Proof of Theorem 2, sufficient conditions for the
existence of a solution
Assume thatQ ≥ 1,N ≥ Q, ∀K , we want to find sufficient
conditions (CS) on the system parameters that ensure the
existence of a pair (x, p) that satisfies all the constraints
simultaneously. In order to find these sufficient condi-
tions, we construct x̃ and p̃ that satisfy the scheduling and
power constraints and are defined by:

x̃qn =
{
1 if q=n
0 otherwise (23)

and

p̃qn = min
k

⎧
⎨

⎩
P(k)q
gqn

, P
peak(k)
qn
gqn

⎫
⎬

⎭δq=n. (24)

Such construction of x̃ is possible because we assumed
that N ≥ Q. Now, we want to find the CS such that
the constructed pair (̃x, p̃) (which respects the schedul-
ing and the power constraints) satisfies also the minimum
rate constraint. The achievable rate of the SU q under the
constructed spectrum and power allocation is

Rq(̃xq, p̃q) =
∑

n
x̃qn log2

(
1+ sqnp̃qn

x̃qn

)

= x̃qq log2
(
1+ sqqp̃qq

x̃qq

)

= log2
(
1+ sqqp̃qq

)
.

It turns out that this rate is higher than the rate of the
worst channel gain min

n
{sqn}. Thus, the resulted rate in the

previous equality becomes:

Rq(̃xq, p̃q)≥log2
(
1+min

n

{
sqnmin

k

{
P(k)q
gqq ,

Ppeak(k)qq
gqq

}})
. (25)

This inequality follows from the definition of the con-
structed power in (24). So, the rate constraint is always
satisfied if the minimum target rate Rmin

q is lower than this
threshold in (25) and then the feasible set is non-void. To
summarize, we have the following sufficient conditions:
⎧
⎨

⎩

Q ≥ 1,N ≥ Q,K ≥ 1, ∀ q
Rmin
q ≤ log2

(
1+min

n

{
sqn min

k

{
P(k)q
gqq ,

Ppeak(k)qq
gqq

}}) ⇒
CS

SF ̸= ∅.

Remark that tighter sufficient conditions may be
obtained directly by using the rates built in (25). They
will depend on the system parameters. However, this con-
struction is likely to be unfair from the SUs perspective
and rather arbitrary as it is based on the fact that SU q is
allocated precisely the band of index q. Any other permu-
tation out of the Q! possibilities may be also considered
to obtain better sufficient conditions for some of SUs and
conservative for others.

Appendix B: Properties of the relaxed problem
B1. Proof of Proposition 1
We will show that rate constraint is satisfied with equality
at the optimum:

∑

n
x∗
qn log2

(

1+
p∗
qnsqn
x∗qn

)

= Rmin
q ,∀q.

Assume on the contrary (by Reductio ad absurdum) that
there exists a SU q such that at the optimum (x∗,p∗):
∑

m
x∗
qm log2

(

1+
p∗
qmsqm
x∗qm

)

> Rmin
q . We choose an arbi-

trary band n and we prove that, in this case, SU q can
reduce its overall power consumption while still meeting
the constraints which leads to a contradiction. We have
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∑

m ̸=n
x∗
qm log2

(

1+
sqmp∗

qm
x∗qm

)

+x∗
qn log2

(

1+
sqnp∗

qn
x∗qn

)

> Rmin
q

equivalent to

log2
(
1+ sqnp∗

qn
)
> Rmin

q −
∑

m ̸=n
r∗qm,

where r∗qm = x∗
qm log2

(

1+
p∗
qmsqm
x∗qm

)

.

We build a new allocation (xnew,pnew) as follows: the
scheduling allocation policy is the same as the optimum
one xnew = x∗ and the power allocation policy is the same
as the optimum one pnewqm = p∗

qm except in the n band in
which we decrease power in order to achieve the rate Rmin

q
with equality such that:

pnewqm =

⎧
⎨

⎩

p∗
qm, if m ̸= n

pnewqn , if m = n
,

where pnewqn = 1
sqn

(
exp

(
Rmin
q − ∑

m ̸=n r∗qm
)

− 1
)
and we

have: pnewqn < p∗
qn. Thus, the objective function of power

consumption: ∑n pnewqn <
∑

n p∗
qn. With this new power

allocation, the user q satisfies all the constraints and has a
strictly lower power consumption than the optimal power
p∗ which is a contradiction. So, we conclude that ∀ q,
∑

n x∗
qn log2

(
1+ p∗

qnsqn
x∗qn

)
= Rmin

q .

B2. Proof of Proposition 2
Now, we will show that scheduling constraints are satis-
fied also with equality at the optimal power and spectrum
allocation: ∀ n, ∑q x∗

qn = 1.
Assume on the contrary (by Reductio ad absurdum) that

there exists a band n such that ∑
q x∗

qn < 1. We build
another allocation (xnew,pnew) as follows: the allocation of
the spectrum is the same as the optimum one xnew = x∗

except for the band n which we decide to allocate to an
arbitrary user k as follows:

xnewkm =
{ x∗

km if m ̸= n
1 − ∑

q x∗
qn if m = n. (26)

Therefore, we have that xnewkn > x∗
kn. Since we know, from

Proposition 1, that the rate constraint is met with equality
at the optimal solution, we build the new power alloca-
tion vector pnew such that the allocation of the power
is the same as the optimum one pnew = p∗ except for
the user k for which: ∑m xnewkm log2

(
1+ pnewkm skm

xnewkm

)
= Rmin

k

which is equivalent to: ∑
m ̸=n x∗

km log2
(
1+ p∗

kmskm
x∗
km

)
+

(
1 − ∑

q x∗
qn

)
log2

(
1+ pnewkn skn

1−∑
q x∗qn

)
= Rmin

k .
Then, we obtain:

pnewkn =
1 − ∑

q x∗
qn

skn

(

exp
(
Rmin
k − ∑

m ̸=n r∗km
1 − ∑

q x∗qn

)

− 1
)

.

However, the optimal power allocation is given by

p∗
kn = x∗

kn
skn

(

exp
(
Rmin
k − ∑

m ̸=n r∗km
x∗
kn

)

− 1
)

.

Knowing that x∗
kn < 1 − ∑

q x∗
qn and that the func-

tion f (X) = X
S
(
exp

( R
X
)
− 1

)
is decreasing, we obtain that

p∗
kn > pnewkn . Therefore, user k achieves the rate Rmin

k with
lower consumption than the optimal point (x∗,p∗)

∑

m
pnewkm <

∑

m
p∗
km.

Thus, we have a pair (xnew,pnew) that satisfies all the
constraints and gives us a strictly lower power consump-
tion than the optimum which is a contradiction. Then, all
average scheduling constraints are satisfied with equality.
In conclusion, if a SU uses an extra bandwidth, it

achieves the same rate Rmin
k with less power consumption.

Therefore, at the optimum all bands are entirely used.

Appendix C: Convergence proof
In the following, we will prove that if the feasible set
of problem (CP2) is non-void, then our projected sub-
gradient Algorithm 1 converges always to an optimal
solution.
In order to prove the convergence of our algorithm, we

start by proving that our dual function G(λ,β) in Step 4 is
concave with respect to (λ,β).
Given that the Lagrangian L(λ,β ,µ, x,p) in Step 1
is affine in λ,β and µ for any feasible (x, p) and
according to [14], the point-wise infimum G(λ,β ,µ) =
min
(x,p)

L(λ,β ,µ, x,p) is then jointly concave w.r.t λ,β and
µ. Since the resulting dual function G(λ,β ,µ) is jointly
concave w.r.t (λ,β) and µ and according to the theorem
detailed in [36] (Appendix B.15), we obtain the concavity
of the function G(λ,β) = max

µ
G(λ,β ,µ).

Inspired by [14] and since G(λ,β) = −
∑

nmaxq ϕqn(λ
(k)
q ,βq) + ∑

q βqRmin
q − ∑

k
∑

q λ
(k)
q P(k)q

is jointly concave w.r.t λ and β but not differentiable
because of the piecewise function ϕqn, in order to maxi-
mize G(λ,β), we propose to use a projected sub-gradient
method such that

X(t+1) =
[
X(t) − τD(t)

]+
, (27)

where X(t) is the update of the problem variable X =
(

λ
β

)

at time t. We project this variable because of the positivity
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of λ and β and D(t) is any sub-gradient of G at X(t) and
τ > 0 is a constant step size.
We choose the sub-gradient of the dual function G(λ,β)

at λ,β given by the constraints

D(λ,β) =

⎛

⎝
−

∑

n
g(k)qn pqn + P(k)q

Rq(xq, pq) − Rmin
q

⎞

⎠

The proof of this proposition is based on the fact that
a sub-gradient of the function G at (λ,β) is any vector D
that satisfies the inequality, ∀(λ1,β1) and (λ2,β2):

G(λ1,β1) − G(λ2,β2) ≤ D(λ2,β2)
T
(

λ1 − λ2
β1 − β2

)
. (28)

Since x and p are bounded such that 0 ≤ g(k)qn pqn ≤
Ppeak(k)qn and 0 ≤ xqn ≤ 1, thus, the norm7 of the
sub-gradient is also bounded ||D(λ,β)(t)||2 ≤ Dth such
that

Dth =
√
D2
th1 + D2

th2 with

Dth1 = max
{
min
k

{
P(k)q

}
, min

k

{
P(k)q

}
− N min

k

{
Ppeakqn

}}
,

Dth2 =
∑

n
log2

(

1+ sqnmin
k

{
Ppeakqn
gqn

})

− Rmin
q .

From [14], we have that our sub-gradient algorithm con-
verges, when t → +∞, to a neighborhood of the optimal
solution depending on the step-size:

max
i=1,...,t

||G
(
λ(i),β(i)

)
− G(λ∗,β∗)|| ≤ D2

thτ

2 .

Regarding such sub-gradient methods, there are a
lot of convergence results (such as point-wise conver-
gence) available [37, 38] for different choices of the step-
size other than constant: constant step length; square
summable but not summable (e.g., τ (t) = a/(b+ t), a > 0
and b ≥ 0); and non-summable diminishing (e.g., τ (t) =
a/

√
t, a > 0). The constant step-size and constant step-

length choices guarantee that the sub-gradient method
converges to a certain neighborhood of the optimal solu-
tion set, where the size of that neighborhood depends on
the value of the step-size, in our case τ . But, if we want
to obtain stronger convergence results, we will have to use
variable step-sizes [14, 38].

Appendix D: Extreme case where channel gains are
uniform for each SU and over each band
We are interested in a particular symmetric case which
cannot be solved by our Algorithm 1. In such a case,
there are ties regarding the spectrum allocation as we can
schedule one band to several SUs with no optimality loss.
In this case, we assume that sqn = s, gqn = g, Ppeakqn =

Ppeak , Pq = P, Rmin
q = Rmin, ∀n,∀q. In the following, we

will prove Propositions 5, 6 and 7.

Proof of Proposition 6 and Proposition 7
First, we start by solving a simpler problem than (DPN ) by
ignoring the interference constraints (C1) and (C2) and
taking into account only the scheduling constraint (C3).
We begin by studying a relaxed version of this problem in
which Nq is a positive real:

minimize
∑

q∈Q

Nq
s

(
exp

(Rmin

Nq

)
− 1

)

subject to
Q∑

q=1
Nq = N

Nq > 0, ∀q.

This problem is convex because its the objective function
is jointly convex in (N1,N2, . . . ,NQ) and the constraints
are affine in Nq. The Lagrangian of this problem is given
by:

L(α, δ,Nq) =
∑

q∈Q

Nq
s

(
exp

(Rmin

Nq

)
− 1

)

+α

⎛

⎝
Q∑

q=1
Nq − N

⎞

⎠ −
∑

q
δqNq

The KKT optimality conditions for this continuous prob-
lem are:

1) ∂L(α, δ,Nq)
∂N∗q

= 0, ∀q

⇒ exp
(
Rmin

N∗q

)(
1
s − Rmin

sN∗q

)

− 1
s + α∗ − δ∗

q = 0

2) α∗ ∈ R and
∑

q
N∗
q = N

3) ∀q, δ∗
q = 0 and N∗

q > 0

From all these KKT conditions, we obtain the system of
equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

exp
(
Rmin

N∗q

)(
1
s − Rmin

sN∗q

)

− 1
s + α∗ = 0, ∀q

α∗ ∈ R and
∑

q
N∗
q = N

N∗
q > 0, ∀q.

From the first equation, we can write:

α∗ = − exp
(
Rmin

N∗q

)(
1
s − Rmin

sN∗q

)

+ 1
s , ∀ q (29)
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From Eq. (29) and the fact that the functionU(M) = 1
s −

1
s exp

(
Rmin
M

) (
1 − Rmin

M
)

is strictly increasing and bijec-
tive, we conclude that at the optimum, we have the same
number of allocated bands N∗

q = N∗
r , ∀q ̸= r. Consider-

ing the constraint ∑q N∗
q = N and using the fact that the

objective function ∑
q f (Nq) is convex, we have two cases

for the solution of the discrete problem (DPN )without the
constraints (C1) and (C2):

a) If the minimum of the objective function of the
convex continuous problem N

Q is an integer then N∗
q

is uniform for all the SUs N∗
q = N

Q , for all SUs.
b) If the minimum of the objective function N

Q
is not an integer N

Q ̸∈ N then a SUq is allocated either
⌊N
Q ⌋ or ⌊N

Q ⌋ + 1 bands such that ∑q N∗
q = N . This

means that the solution is not perfectly fair as the
previous case and a subset of

{
N− ⌊N

Q ⌋Q+ 1, . . . ,Q
}

SUs will be allocated one band more:

N∗
q =

{
⌊N
Q ⌋ + 1 if q ∈ {1, . . .N − ⌊N

Q ⌋Q}
⌊N
Q ⌋ if q ∈ {N − ⌊N

Q ⌋Q+ 1, . . . ,Q}(30)

Now, the objective is to prove that if (DPN ) is feasible,
then the optimal solution is either N∗

q = N
Q , for all SUs if

N
Q is an integer or N∗

q in (30) if N
Q is not an integer. From

the feasibility assumption, there exists at least one feasi-
ble (Ñ1, . . . , ÑQ) that satisfies (C1), (C2), (C3), and (C4).
From condition (C3), we have that there exists at least one
index q such that Ñq ≤ ⌊N/Q⌋ (otherwise (C3) is not
met). So, we have N/Q ≥ ⌊N/Q⌋ ≥ Ñq.
First, from condition (C1) we have f (Ñq) ≤ P

g . The fact
that f (M) = M/s∗(exp(Rmin/M)−1) is strictly decreasing
inM implies

f (N/Q) ≤ f (⌊N/Q⌋) ≤ f (Ñq) ≤ P
g .

Also, we have the trivial inequality ⌊N/Q⌋+1 ≥ ⌊N/Q⌋
which leads to

f (⌊N/Q⌋ + 1) ≤ f (⌊N/Q⌋) ≤ P
g .

Second, from condition (C2) we have: T(Ñq) ≤
Ppeak
g , ∀q where T(M) = 1/s ∗ (exp(Rmin/M) − 1) is

the peak power required to reach Rmin with uniform
allocation on M bands. We know that T(M) is strictly
decreasing inM, which implies

T(N/Q) ≤ T (⌊N/Q⌋) ≤ T(Ñq) ≤ Ppeak
g ,

and also T (⌊N/Q⌋ + 1) ≤ T (⌊N/Q⌋) ≤ Ppeak
g .

In conclusion, if (DPN ) is feasible, then the optimal solu-
tion is either N∗

q = N
Q (for all SUs) provided N

Q is an
integer, or N∗

q in (30) otherwise.
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Abstract—This work proposes a distributed power allocation
scheme for maximizing energy efficiency in the uplink of OFDMA-
based HetNets where a macro-tier is augmented with small cell
access points. Each user equipment (UE) in the network is modeled
as a rational agent that engages in a non-cooperative game and
allocates its available transmit power over the set of assigned
subcarriers to maximize its individual utility (defined as the user’s
throughput per Watt of transmit power) subject to a target rate
requirement. In this framework, the relevant solution concept is
that of Debreu equilibrium, a generalization of the concept of Nash
equilibrium. Using techniques from fractional programming, we
provide a characterization of equilibrial power allocation profiles.
In particular, Debreu equilibria are found to be the fixed points
of a water-filling best response operator whose water level is a
function of rate constraints and circuit power. Moreover, we also
describe a set of sufficient conditions for the existence and unique-
ness of Debreu equilibria exploiting the contraction properties of
the best response operator. This analysis provides the necessary
tools to derive a power allocation scheme that steers the network
to equilibrium in an iterative and distributed manner without the
need for any centralized processing. Numerical simulations are
used to validate the analysis and assess the performance of the
proposed algorithm as a function of the system parameters.

Index Terms—Heterogeneous networks, 5G, energy efficiency,
area spectral efficiency, power allocation, distributed algorithms,
game theory, Debreu equilibrium, rate constraints.

I. INTRODUCTION

OWING to the prolific spread of Internet-enabled mobile
devices and the ever-growing volume of mobile commu-
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nication calls, the biggest challenge in the wireless industry
today is to meet the soaring demand for wireless broadband
required to ensure consistent quality of service (QoS) in a
network. Rising to this challenge means increasing the network
capacity by a thousandfold over the next few years [1], but
the resulting power consumption and energy-related pollution
are expected to give rise to major societal, economic and en-
vironmental issues that would render this growth unsustainable
[2]. Therefore, the information and communications technology
(ICT) industry is faced with a formidable mission: cellular
network capacity must be increased significantly in order to
accommodate higher data rates, but this task must be accom-
plished under an extremely tight energy budget.

A promising way out of this gridlock is the small-cell (SC)
network paradigm which builds on the premise of shrinking
wireless cell sizes in order to bring user equipment (UE) and
their serving stations closer to one another. From an operational
standpoint, SC networks can be integrated into existing macro-
cellular networks: the latter ensure wide-area coverage and
mobility support, while the former carry most of the generated
data traffic [3].

Albeit promising, the deployment of this kind of networks,
commonly referred to as heterogeneous networks (HetNets),
poses several technical challenges mainly because different
SCs are likely to be connected over unreliable infrastructures
with widely varying features, such as error rate, outage, de-
lay, and/or capacity specifications. Accordingly, the inherently
heterogeneous nature of these networks calls for flexible and
decentralized resource allocation strategies that rely only on
local channel state information (CSI) and require minimal
information exchange between network users and/or access
points/base stations. This framework is commonly referred to
as distributed optimization, and it represents a crucial aspect of
scalable and efficient network operation.

An established theoretical tool for problems of this kind is
provided by the theory of non-cooperative games [4]. Among
the early contributions in this area, [5], [6] investigated the
rate maximization problem for autonomous digital subscriber
lines based on competitive optimality criteria. In the spirit of
these works, a vast corpus of literature has since focused on
developing power control techniques for unilateral spectral ef-
ficiency maximization subject to individual power constraints.
For instance, [7], [8] proposed a game-theoretic approach to
energy-efficient power control in multi-carrier code division
multiple access (CDMA) systems, [9]–[12] investigated the
problem of distributed power control in multi-user multiple-
input and multiple-output (MIMO) systems, [13], [14] studied
the interference relay channel, while two-tier CDMA networks

1536-1276 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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were examined in [15]. More recently, the authors of [16] used
a variational inequality (VI) framework to model and analyze
the competitive spectral efficiency maximization problem. The
analogy between Nash equilibria and VIs was subsequently
exploited in [17] to design distributed power control algorithms
for spectral efficiency maximization under interference tem-
perature constraints in a cognitive radio context. A possible
application of the VI theory for power control in networks with
heterogenous UEs can be also found in [18].

Distributed power allocation policies as above have the im-
portant advantage of avoiding the waste of energy associated
with centralized algorithms requiring considerable information
exchange (and, hence, transmissions) between the users and/or
the network administrator [16]. On the other hand, the users’
aggressive attitude towards interference from other users can
lead to a cascade of power increases at the UE level, thereby
leading to battery depletion and inefficient energy use. Conse-
quently, solutions that focus exclusively on spectral efficiency
maximization are not aligned with energy-efficiency require-
ments [19], [20], which, as we mentioned above, are crucial for
the deployment and operation of HetNets.

A. Summary of Contributions

Our main goal in this paper is the analysis and design
of energy-efficient power allocation policies in a HetNet set-
ting where SC networks coexist with macro-tier cellular sys-
tems based on orthogonal frequency-division multiple access
(OFDMA) technology. In particular, focusing on the uplink
case, we propose a game-theoretic framework where each UE
adjusts the allocation of its transmit power (over the available
subcarriers) so as to unilaterally maximize its individual link
utility subject to a minimum rate requirement. Specifically, each
user’s energy-aware utility function is defined as the achieved
throughput per unit power, accounting for both the power
required for data transmission and that required by the circuit
components of each UE (such as amplifiers, mixeroscillator,
and filters) [21]–[23].

Due to each user’s rate constraint, the resulting game departs
from the classical framework put forth by Nash [24] and gives
rise to a Debreu-type game [25] where the actions available
to each UE depend on the transmit power profile of all other
users in the network. In this setting, the relevant solution
concept is that of the Debreu equilibrium (DE) [25]—also
known as a generalized Nash equilibrium (GNE) [26]. Drawing
on fractional programming techniques [27], we characterize the
system’s Debreu equilibria as fixed points of a water-filling
operator whose water level is a function of the users’ minimum
rate constraints and circuit power [23]. This characterization is
then used to provide sufficient conditions for DE uniqueness
and to derive a distributed power allocation algorithm that
allows the network to converge to equilibrium under minimal
information assumptions. The performance of the proposed
solution is then validated by means of extensive numerical
simulations modeling a HetNets where a macro-tier is aug-
mented with a certain number of low range small-cell access
points (SCAs). As turns out, the proposed solution represents a
scalable and flexible technique to meet the ambitious goals of

5G communications [28], such as extremely high area spectral
efficiency (ASE) (more than 500 b/s/Hz/km2) with a reasonable
amount of physical resources (bandwidth and power) and com-
plexity at the network level (number of SCs, signal processing
burden, and number of transmit and receive antennas).

Our work builds on the game-theoretic analysis proposed in
[29] where a group of players aims at maximizing their individ-
ual energy efficiency (EE) (measured in bits per Watt of trans-
mit power) subject to each user’s power constraint. Despite this
similarity, the analysis of [29] does not account for minimum
rate requirements, thus the resulting game-theoretic model is a
standard Nash game with no QoS guarantees–in particular, the
users’ rates at equilibrium could be fairly low. Incorporating
QoS requirements changes the setting drastically and takes us
beyond the standard Nash framework because a user’s admis-
sible power allocation policy depends crucially on the trans-
mit powers of all other users. The energy-efficient framework
proposed in this paper represents a generalization of the power
minimization under minimum-rate constraints investigated in
[30], which is a special case that occurs when the minimum
rates are achieved with equality. Preliminary versions of our
results appeared in the conference paper [31]: in contrast to this
earlier paper, we provide here a complete equilibrium analysis
and characterization along with sufficient conditions that guar-
antee the convergenceof the system to a stable equilibrium state.

B. Paper Outline and Notation

The remainder of this paper is organized as follows. In
Section II, we introduce the system model and the EE maxi-
mization problem with minimum rate constraints. In Section III,
we first formulate the non-cooperative game and then study
the existence and uniqueness of Debreu equilibria. Section IV
presents an iterative and distributed algorithm to reach the
equilibrium point, whereas Section V reports numerical results
that are used to assess the performance of the proposed solution
and to make comparisons with alternatives. Conclusions and
perspectives are presented in Section VI.

Matrices and vectors are denoted by bold letters, IL, 0L, and
1L are the L×L identity matrix, the L×1 all-zero column vector,
and the L×1 all-one column vector, respectively, and ∥ · ∥, (·)T

and (·)H denote Euclidean norm of the enclosed vector, trans-
position and Hermitian conjugation respectively. The notation
(x)+ stands for max{0, x} whereas W(·) denotes the Lambert
W function [32], defined as the multiple-branch solution of the
equation z=W(z)eW(z), z∈C. 1lX denotes the indicator function
such that 1lX =1 if X is true, and 0 elsewhere. Finally, if Ak,
k=1, . . . , K, is a finite family of sets, and ak ∈Ak, we will
use the notation (ak; a−k)∈

∏
k Ak as shorthand for the profile

(a1, . . . , ak, . . . , aK), and |Ak| to denote its cardinality.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider the uplink of a slowly-varying HetNet where S
low-range SCA are adjoined to a macro-tier cell operating in an
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OFDMA-based open-access licensed spectrum. For notational
compactness, we will reserve the index s = 0 for the macrocell
base station (MBS), so that S = {0, 1, . . . , S} represents the
set of HetNet receiving stations. The s-th cell uses a set of
orthogonal subcarriers to serve the Ks user equipment (UE)
falling within its coverage radius ρs. For simplicity, we assume
that the same set of subcarriers N = {1, . . . , N} is used by both
tiers. We also assume that N is assigned by the network and
cannot be controlled by the cell operators. Each cell access point
(AP) is further equipped with Ms receiving antennas, whereas a
single antenna is employed at the UE to keep the complexity of
the front-end limited. The framework described in the paper can
be generalized to the case of a multicellular HetNets scenario
(including MIMO configurations) in a straightforward manner.

Let hkj,n ∈ C Mψ(k)×1 denote the uplink channel vector with
entries [hkj,n]m representing the (frequency) channel gains over
subcarrier n from the j-th UE to the m-th receive antenna of
the serving AP ψ(k) of user k, where ψ(k) : K %→ S is a
generic function that assigns each user k its serving AP.1 In
the following, K = {1, . . . , K} and K = ∑S

s=0 Ks denote the
set and the number of UE in the network respectively, with
Ks representing the number of UE in the s-th cell: if s = 0,
the UE will be termed macrocell user equipment (MUE), and
small-cell user equipment (SUE) otherwise, although there is
no substantial distinction among the two classes of users (this
is clarified further in the rest of this paper). We also assume that
the channels remain constant within a reasonable time interval
(for more quantitative details, see Section V).

We let zj,n denote the data symbol of UE j over subcarrier
n and write pj,n for its corresponding power. The vector xk,n ∈
CMψ(k)×1 collecting the samples received over subcarrier n at
the AP serving the k-th UE can thus be written as

xk,n = √
pk,nhkk,nzk,n + Ik,n + wk,n (1)

where wk,n ∼ CN (0M
ψ(k)

, σ 2IMψ(k)) is thermal noise and

Ik,n =
K∑

j=1,j ̸=k

√
pj,nhkj,nzj,n (2)

accounts for the multiple access interference (MAI) experi-
enced by user k over subcarrier n. Note that Ik,n accounts for
both intra-cell interference (generated by other UEs served by
the same AP) and inter-cell interference (from UEs served by
all other APs). To keep the complexity at a tolerable level, a
simple linear detection scheme is employed for data detection,
although a generalization to nonlinear detectors is straightfor-
ward. This means that the entries of xk,n are linearly combined
to form yk,n = gH

k,nxk,n where gk,n is the vector employed for
recovering the data transmitted by user k over subcarrier n.
Then, the signal-to-interference-plus-noise ratio (SINR) over
the n-th subcarrier that is achieved by user k at its serving AP
takes the form:

γk,n = µk,n(p−k,n)pk,n (3)

1For a more detailed description of this assignment mapping, see Section V.

where p−k,n = (p1,n, . . . , pk−1,n, pk+1,n, . . . , pK,n)
T denotes

the power profile of all users except k over subcarrier n, and

µk,n(p−k,n)=

∣∣∣gH
k,nhkk,n

∣∣∣
2

∥gk,n∥2σ 2+∑K
j=1,j ̸=k

∣∣∣gH
k,nhkj,n

∣∣∣
2

pj,n

. (4)

Using (3), the achievable rate (normalized to the subcarrier
bandwidth, and thus measured in b/s/Hz) of the k-th user will be:

rk(p) = 1
N

N∑

n=1

log2(1 + γk,n) (5)

where pk = (pk,1, . . . , pk,N) denotes the power profile of user
k over all subcarriers n = 1, . . . , N, and p = (p1, . . . , pK) ∈
RKN

+ is the corresponding power profile of all users (obviously,
pk,n = 0 if user k is not transmitting over subcarrier n). To sim-
plify notation, the argument of µk,n and rk will be suppressed
in what follows.

B. Problem Formulation

As mentioned in Section I, energy-efficient network design
must take into account the energy consumption incurred by
each UE. To that end, note that, in addition to the radiated
powers pk at the output of the radio-frequency front-end,
each terminal k also incurs circuit power consumption during
transmission, mostly because of power dissipated at the UE
signal amplifier [21], [23], [33]. Therefore, the overall power
consumption PT,k of the k-th UE will be given by

PT,k = pc,k + Pk = pc,k +
N∑

n=1

pk,n (6)

where Pk = ∑N
n=1 pk,n is the transmitted power of user k over

the entire spectrum, while pc,k represents the average power
consumed by the device electronics of the k-th UE (assumed
for simplicity to be independent of the transmission state).
Following [23], [34], the energy efficiency of the link can then
be measured (in b/J/Hz) by the utility function

uk(p) = rk

PT,k
= N−1 ∑N

n=1 log2(1 + µk,npk,n)

pc,k + ∑N
n=1 pk,n

(7)

where the dependence on the transmit power vectors of all other
users is subsumed in the gains µk = {µk,n}N

n=1 of (4). Accord-
ingly, in data-oriented wireless networks, QoS requirements
take the form rk ≥ θk, where θk is the minimum rate threshold
required by user k.

To summarize, the design of an energy-efficient resource
allocation scheme which encompasses both subcarrier alloca-
tion and power control amounts to solving the following multi-
agent, multi-objective optimization problem:

maximize uk(p) (8a)

subject to N−1
∑N

n=1
log2(1 + µk,npk,n) ≥ θk (8b)

where uk(p) is the energy efficiency utility function (7) and
(8b) represents the normalized rate requirement. Thus, unlike
other OFDMA resource allocation problems (such as [35],
[36]), subcarrier selection and power loading are tackled in
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Fig. 1. Normalized utility as a function of the normalized transmit powers
(N = 1, θk = 2 b/s/Hz). (a) µk · pc,k = 1. (b) µk · pc,k = 10.

a joint manner. Furthermore, inter- and intra-cell interference
between UE transforms (8) into a game where each UE k ∈ K

aims at unilaterally maximizing its individual link energy-
efficiency via an optimal choice of power allocation vector
pk—and, in so doing, obviously affects the possible choices of
all other UE in the network.
Remark 1: To visualize the impact of the rate constraints (8b)

on the optimization problem (8), Figs. 1 and 2 depict the graph
of the utility function (7) of user k (normalized by pc,k) as a
function of the transmit powers pk ={pk,n}N

n=1 for a fixed inter-
ference power vector p−k (and hence keeping {µk,n(p−k)}N

n=1
fixed). For the sake of visualization, Fig. 1 depicts only N =1
subcarrier. The dashed black line depicts the unconstrained
utility (7), whereas the solid black line reports uk(p) for the
values of pk,1 such that (8b) holds, assuming θk =2 b/s/Hz
(for convenience, also the rate rk is reported with red lines):
µk,1 =1/pc,k in Fig. 1(a), whereas µk,1 =10/pc,k in Fig. 1(b).
As can be seen, the power level that maximizes uk(p) (red dot)
is on the left boundary of the feasible power set of Fig. 1(a):
in this case, maximizing uk(p) corresponds to minimizing
the power subject to rate constraints, e.g., as considered
in [30]. In general however, the maximization of energy

Fig. 2. Normalized utility as a function of the normalized transmit powers
(N = 2, θk = 2 b/s/Hz). (a) µk · pc,k = (1, 2). (b) µk · pc,k = (10, 20).

efficiency produces a different optimal point, as reported
in Fig. 1(b) where the focal user can exploit better channel
conditions experienced to increase its utility. This formulation
is particularly appealing for next-generation wireless systems
[28], as it captures the tradeoff between obtaining a satisfactory
spectral efficiency and saving as much energy as possible [20],
[23], [34]. This behavior is analogous to what can be observed
in Fig. 2 where N =2 and θk =2 b/s/Hz. When the channel
conditions are not favorable (in Fig. 2(a), µk · pc,k =(1, 2)),
the optimal power allocation pk/pc,k =(1.83, 2.33) lies on
the contour of the (normalized) utility surface that guarantees
rk(p) ≥ θk (when rk(p)<θk, we assume here uk(p)=0 for the
sake of graphical representation)—thus getting rk(p)=θk. On
the contrary, when the channel conditions are more favorable
(in Fig. 2(b), µk · pc,k =(10, 20)), the utility is maximized by
pk/pc,k =(0.37, 0.42), that yields rk(p)=2.74 b/s/Hz > θk.

Remark 2: It is easy to see that a particular set of constraints
{θk}K

k=1 may affect the feasibility of the problem in the sense
that there might not exist any power allocation p ∈ RKN

+ that
allows all constraints θk to be met simultaneously — essentially
due to mutual interference in the network, which implies a
dependence between the gains µk ∀k. Necessary and sufficient
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conditions that ensure the feasibility of the problem (8) in
the single-carrier case N = 1 can be found in [22]. On the
other hand, analogous conditions for the general case of N > 1
subcarriers are very difficult to obtain, and future investigations
will focus on addressing this issue.

III. GAME-THEORETIC RESOURCE ALLOCATION

A. Game-Theoretic Formulation of the Problem

As mentioned earlier, mutual interference in the network
introduces interactions among the users that aim at optimiz-
ing their utilities (8). A natural framework for studying such
strategic inter-user interactions is offered by the theory of
non-cooperative games with continuous (and action-dependent)
action sets. Thus, following Debreu [25] (see also [26]), we
will formulate the problem as a non-cooperative game G ≡
G(K,P, u) consisting of the following components:

a) The set of players of G is the set K of the network’s UE.
b) A priori, each player can choose any transmit power vector

in P
0
k ≡ RN

+. However, given a power profile p−k ∈ P
0
k ≡∏

ℓ ̸=k P
0
ℓ of the opponents of player k, the feasible action

set of player k in the presence of the rate requirements
(8b) is:

Pk(p−k) =
{

pk ∈ P
0
k : rk(p) ≥ θk

}
. (9)

c) The utility uk(pk; p−k) of player k is given by (7).

In this framework, the most widely used solution concept is
a generalization of the notion of Nash equilibrium [4], known
as Debreu equilibrium (DE) [25] and sometimes also referred
to as generalized Nash equilibrium (GNE) [26]. Formally:

Definition 1: A power profile p⋆ is a DE of the energy-
efficiency game G if

p⋆
k ∈ Pk(p⋆

−k) ∀k ∈ K, (10a)

and

uk(p⋆) ≥ uk(pk; p⋆
−k) ∀pk ∈ Pk(p⋆

−k), k ∈ K. (10b)

The main difference between Debreu and Nash equilibria
is that the latter notion posits that players can unilaterally
deviate to any feasible action, irrespective of whether this action
satisfies the (coupled) constraints imposed on a player’s action
set by the actions of other players in the game. Put differently,
Nash-type deviations include any action that satisfies a player’s
individual, uncoupled constraints, even if so doing violates the
player’s coupled constraints. In the case at hand, this means
that, at Nash equilibrium, users would be allowed to transmit
at any power level, even if this violates the system’s trans-
mission rate requirements. On the other hand, these feasibility
constraints are already ingrained in the DE concept: the only
unilateral deviations considered in (10b) are those for which
the rate constraints are satisfied.2

2The difference between Nash and Debreu equilibria is highlighted further if
each player’s transmit power is also constrained by a peak value (see below for
more details): in this case, each user’s individual power constraints would have
to be satisfied by Nash-type deviations (and, of course, Debreu-type deviations
as well), but Nash-type deviations would not necessarily satisfy the users’
coupled QoS constraints.

As such, Debreu equilibria are of particular interest in the
context of distributed systems because they offer a stable solu-
tion of the game from which players (in this case, UEs) have
no incentive to deviate from (and thus destabilize the system) if
everyone else maintains their chosen power allocation profiles.
Accordingly, in what follows, we investigate the existence and
characterization of DE in the energy-efficient power allocation
game G, leaving the question of uniqueness and convergence to
such states to Sections III-C and IV, respectively.

B. Problem Feasibility and Equilibrium Existence

Debreu’s original analysis [25] provides a general equilib-
rium existence result under the following assumptions:

(D1) The players’ feasible action sets Pk(p−k) are nonempty,
closed, convex, and contained in some compact set Ck
for all p−k ∈ P−k ≡ ∏

ℓ ̸=k Pℓ.
(D2) The sets Pk(p−k) vary continuously with p−k (in the

sense that the graph of the set-valued correspondence
p−k %→ Pk(p−k) is closed).

(D3) Each user’s payoff function uk(pk; p−k) is quasi-concave
in pk for all p−k ∈ P−k.

In our setting, rk(pk; p−k) in (5) is concave in pk and un-
bounded from above, so Pk(p−k) is convex and nonempty for
all p−k ∈ P

0
k . Moreover, Pk(p−k) varies continuously with p−k

because the constraints (8b) are themselves continuous in p−k.
Finally, it is easy to show that uk(pk; p−k) is quasi-concave in
pk: since uk(pk; p−k) ≥ a if and only if

rk(pk; p−k) − a
(

pc +
∑N

n=1
pk,n

)
≥ 0 (11)

and the set defined by this inequality is convex for every
p−k ∈ P−k (recall that rk is concave in pk), quasi-concavity of
uk(·, p−k) follows.

However, even though the users’ best response sets

P
⋆
k (p−k) ≡ arg max

pk∈Pk(p−k)

uk(pk; p−k) (12)

are nonempty, convex, closed and bounded for every p−k, they
might (and typically do) run off to infinity—i.e., they are not
uniformly bounded. To understand this, simply consider the
case of two UEs transmitting over a single channel: if one of
the UE transmits at very high power, the other UE is forced
to transmit at a commensurately high power in order to meet
its rate requirement. This leads to a cascade of power increases
that makes each UE’s feasible action set Pk(p−k) (and, hence,
P

⋆
k (p−k) as well) escape to infinity as the other UE increases its

individual power. Formally, this means that the UE’s feasible
action sets Pk(p−k) are not contained in an enveloping bounded
set Ck. Thus, Debreu’s equilibrium existence theorem [25] does
not apply.

From a power control perspective, this is not surprising: as is
well known [37], the problem (8) may fail to be feasible, i.e.,
there may be no power profile p = (p1, . . . , pK) such that pk ∈
Pk(p−k) for all k. Obviously, in this case, the energy-efficiency
game G does not admit an equilibrium either. On the other hand,
at a purely formal level, equilibrium existence and problem
feasibility are restored if we assume that users can transmit
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with infinitely high power, i.e., each UE k ∈ K chooses its total
transmit power from the compactified half-line [0,+∞]. In
this extended setup, there are two points where indeterminacies
may arise: first, the utility of player k is not well-defined if
pk,n = +∞ for some n; second, the rate requirement (8b) of
user k is also ill-defined if pℓ,n = +∞ for some ℓ ̸= k. To
address these problems, note first that the utility function (7)
of player k decreases to 0 when pk,n → +∞ for some channel
n = 1, . . . , N, reflecting the fact that limx→+∞ x−1 log2 x = 0.
Thus, by continuity, the utility of player k for infinite transmit
powers pk,n may be defined as:

uk(p) = 0 whenever pk,n = +∞ for some n. (13)

As for the rate requirements of user k, a simple exponentiation
of (8b) for finite p yields the equivalent expression:

N∏

n=1

(1 + µk,npk,n) ≥ 2Nθk (14)

or, after substituting for µk,n and rearranging:

N∏

n=1

⎛

⎝∥gk,n∥2σ 2 +
K∑

j=1

|gk,nhkj,n|2pj,n

⎞

⎠

≥ 2Nθk

N∏

n=1

⎛

⎝∥gk,n∥2σ 2 +
∑

j ̸=k

∣∣gk,nhkj,n
∣∣2 pj,n

⎞

⎠ . (15)

Since both sides of (15) are well-defined for all pj,n ∈ [0,+∞],
(15) provides a reformulation of (8b) that remains meaningful
even in the extended arithmetic of [0,+∞].

In this infinite-power framework, any power profile p⋆ =
(p⋆

1, . . . , p⋆
K) with

∑N
n=1 p⋆

k,n = +∞ for all k ∈ K is feasible
with respect to (15). Furthermore, if player k deviates unilat-
erally and starts transmitting with finite total power, its rate
requirement (15) will be automatically violated and its utility
equals 0. Consequently, no player can gain a utility greater than
0 by deviating from p⋆. This shows that the resulting infinite-
power game G with utility functions and rate requirements
extended as in (13) and (15) above always admits a DE—and
trivially so. However, any such equilibrium is clearly unreason-
able from a practical standpoint as it represents a cascade of
power increases that escapes to infinity as players try to meet
their power constraints.

In view of the above, we could consider an alternative
formulation of G in which the users’ uncoupled action sets (i.e.,
unadjusted for the actions of other users) are of the form

P
0
k =

{
pk ∈ RN

+ : 0 ≤ pk,n ≤ pk,n,
∑

n
pk,n ≤ Pk

}
(16)

for given maximum per-subcarrier transmit power levels pk,n
and total power constraints Pk. In this case however, a crucial
arising problem is that the resulting system could be even
unilaterally infeasible in the sense that the admissible action
set Pk(p−k) of player k may be empty for a wide range of
transmit power profiles p−k of the other users in the system.
Put differently, in the presence of maximum power constraints
(a case that will be discussed at the end of Section IV), any
given user may not be able to even participate in the game (in

contrast with the formulation (9) of G), thus exacerbating the
equilibrium existence problem.

Of course, given that actual wireless devices cannot transmit
at arbitrarily high levels, it is still crucial to determine under
which conditions the game G admits a realizable DE. Therefore,
in what follows, we will focus on conditions and scenarios,
which guarantee that:

1) The energy-efficiency game G admits a DE with finite
transmit powers (Section III-C).

2) This equilibrium is unique (Section III-C).
3) Users converge to equilibrium by following an adaptive,

distributed algorithm (Section IV).

C. Equilibrium Characterization and Uniqueness

The goal of this section is to characterize the game’s DE by
exploiting the fact that they are the fixed points of a certain
best-response mapping.

Proposition 1: A transmit power profile p⋆ is a DE if and
only if its components p⋆

k,n satisfy:

p⋆
k,n =

(
1
λ⋆

k
− 1

µk,n

)+
(17)

where

λ⋆
k = min

{
λk,λk

}
. (18)

In the above,

λk = W
(
αk · eβk−1)

αk
(19)

is the water level of the WF operator (17) when the problem (8)
is solved without the minimum-rate constraints (8b) (i.e., when
θk = 0 for all k ∈ K), W(·) denotes the Lambert W function
[32], while

αk = |Sk|−1

⎛

⎝pc,k −
∑

n∈Sk

µ−1
k,n

⎞

⎠ (20)

and

βk = S
−1
k

∑

n∈Sk

ln µk,n (21)

where Sk =
{
n ∈ N : µk,n ≥ λk

}
denotes the subset of active

subcarriers when using the uncostrained energy-efficient for-
mulation. Similarly:

λk =
(

2−Nθk
∏

n∈Sk
µk,n

)1/|Sk|
(22)

is the water level of (17) when all minimum-rate constraints
(8b) are met simultaneously with equality (i.e., (8) reduces to
a power minimization problem with equality rate constraints
rk = θk), and, as above, Sk =

{
n ∈ N : µk,n ≥ λk

}
denotes the

subset of active subcarriers.
Proof: The proof is given in Appendix A and relies on

defining the best-response mapping and using fractional pro-
gramming to characterize its fixed points. ⌅
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Remark 3: Proposition 1 does not provide a way to calculate
the water levels λk and λk. For an iterative computational
method, the reader is referred to Section IV.

Despite its convoluted appearance, Proposition 1 is of critical
importance from both a theoretical and practical point of view.
Indeed, it is the basic step to derive sufficient conditions ensur-
ing the existence and uniqueness of the DE and also to develop
a distributed and scalable power allocation algorithm that steers
the network to a stable equilibrium state.

To that end, note that the equilibrium characterization of
Proposition 1 may be vacuous if the game does not admit a
DE to begin with—for instance, if the original power control
problem is not feasible. On that account, we have:

Proposition 2: The energy-efficiency game G admits a unique
DE p⋆ whenever ∀k ∈ K:

K∑

j=1
j ̸=k

N∑

n=1

ω2
kj,n sup

µk∈!k

⎡

⎣ 1
ς⋆

k

∑

n∈S
⋆
k

ω−2
kk,n

(
ξ2

k,n+ς⋆
k − 2ξk,n

)
⎤

⎦ < 1

(23)
where !k = ∏N

n=1 (0, σ−2ωkk,n], ς⋆
k = |S⋆

k |,

ωkj,n =
|gH

k,nhkj,n|2
||gk,n||2

(24)

and

S
⋆
k =

{
Sk ifλk ≥ λk

Sk ifλk < λk
(25)

ξk,n =

⎧
⎪⎨

⎪⎩

µk,nλ
−1
k if λk ≤ λk and n ∈ S

⋆
k

µk,n−λk
λk(1+νk)

if λk > λk and n ∈ S
⋆
k

0 if n /∈ S
⋆
k

(26)

with νk = − ln λk + (βk − 1).
Proof: The main steps for the proof are given in

Appendices B and C; for a more detailed version, the reader
is referred to the online technical report [38]. ⌅

Remark 4: Notice that these sufficient conditions are similar
to the well-known conditions ensuring the uniqueness of a Nash
equilibrium in the non-cooperative rate maximization game
studied by [9] in the context of the interference channel. Intu-
itively, (23) means that if the interfering connections for a user
are sufficiently far away and the resulting SINR is high enough,
then the DE exists and is unique. However, these conditions
include a non-trivial optimization step w.r.t. µk that depends
on the actual opponents’ power p−k. Indeed, the variables of
the problem impact the values of λ⋆

k, S
⋆
k and all functions

ξk,n, making the conditions rather difficult to be exploited. To
tackle this issue, the online technical report [38] provides a set
of sufficient conditions that are simpler. This is achieved by
observing that the upper-bound of the supremum term in (23)
boils down to computing a function of the system parameters
only. The downside is that these simple conditions are more
stringent than (23). Nevertheless, it is worth pointing out that
the users of the network are never required to compute these
conditions: (23) only meant as a safety feature to guard against
catastrophic system instabilities, to be calculated by the net-
work administrator based on expected network usage scenarios.

Remark 5: Since the conditions of Proposition 2 are only
sufficient, DE might exist even in the case where (23) does
not hold for some k ∈ K. As a matter of fact, when (8) is
feasible, the distributed algorithm that we present in Section IV
is observed to converge to a DE in all the numerical simulations
performed and for every network scenario considered.

IV. DISTRIBUTED IMPLEMENTATION

To derive a practical procedure allowing UE to reach the DE
of G in a distributed fashion (without any distinction between
SUE and MUE), we start by focusing on a specific UE k ∈ K

and assume that all other UE j ̸= k have already chosen their
optimal transmit powers p−k = p⋆

−k (in a possibly asynchro-
nous fashion). From (4), we then see that the gains µk,n(p⋆

−k,n)

needed to implement (17) are simply

µk,n(p⋆
−k,n) = γk,n

pk,n
(27)

for all n ∈ N . This means that the only information that is not
locally available at the k-th UE to compute the optimal powers
{p⋆

k,n} is the set of SINR {γk,n} measured at the serving SCA of
the k-th UE, and which can be sent with a modest feedback rate
requirement on the return channel (a discussion on the impact
of a limited feedback can be adapted to this specific scenario
from [39]).

Based on the above considerations, we can derive an iterative
and fully decentralized algorithm to be adopted by each UE k
at each time step t to solve the fixed-point system of equations
(17) with a low-complexity, scalable and adaptive procedure.
The pseudocode for the whole network is summarized in
Algorithm 1. Note that, in practice, each UE k ∈ K only needs
to implement the steps for only one value in the user loop (i.e.,
its own index), so the algorithm is suitable for asynchronous
implementation in dynamic network configurations where each
UE only requires the SINR to be fed back by the serving SCA,
without any further information on the network.

Algorithm 1 Iterative Algorithm to Solve Problem (8).

set t = 0
initialize pk[t] = 0N for all users k ∈ K

repeat
for k = 1 to K do

{loop over the users}
receive {γk,n[t]}N

n=1 from the serving AP
compute λk using Algorithm 2 and λk using inverse
water-filling
set λ⋆

k = min{λk,λk}
for n = 1 to N do

{loop over the carriers}
update pk,n[t + 1] = (1/λ⋆

k − pk,n[t]/γk,n[t])+
end for

end for
update t = t + 1

until pk[t] = pk[t − 1] for all k ∈ K
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For the sake of clarity, the algorithm to compute λk for each
UE k ∈ K as in (19) is reported in Algorithm 2, whereas λk can
easily be computed using standard iterative water-filling (IWF)
methods [27]. Note that, although (19) is derived analytically in
closed form and can be computed directly, it is still appealing to
use the iterative procedure outlined in Algorithm 2, which takes
advantage of the Dinkelbach approach [40] based on Newton’s
method. The latter is known to converge superlinearly for con-
vex nonlinear fractional programming problems [40], and leads
to substantial computational savings compared to evaluating
the Lambert function directly. Interestingly, the Dinkelbach
algorithm can also be properly modified to address the compu-
tation of the IWF-based quantity λk, thus saving the complexity
required for sorting the coefficients {µk,n}N

n=1 in a descending
order [41]. For the sake of brevity, Algorithm 2 makes use of
some functions that are introduced in the proof of Proposition 1
(Appendix A). For future reference, throughout the simulations
reported in Section V, the convergence tolerance is set to
ε = 10−5, and we check whether the end state of the algorithm
is a DE by testing the characterization of Proposition 1.

Algorithm 2 Iterative Algorithm to Compute λk as in (19).

set a tolerance ε ≪ 1
{initialization of the Dinkelbach method:}
repeat

select a random λk ∈ R
for n = 1 to N do

set pk,n = (1/λk − pk,n[t]/γk,n[t])+
end for
compute ϕ(pk) and χ(pk) using (31) (see Appendix A)
set 2(λk) = ϕ(pk) − λkχ(pk)

until 2(λk) ≥ 0
{Dinkelbach method:}
while 2(λk) ≥ ε do

set λk = ϕ(pk)/χ(pk)

for n = 1 to N do
set pk,n = (1/λk − pk,n[t]/γk,n[t])+

end for
update ϕ(pk) and χ(pk) using (31)
set 2(λk) = ϕ(pk) − λkχ(pk)

end while

Proposition 3: The iterates of Algorithm 1 converge to DE
whenever (23) holds.

Proof: The convergence of Algorithm 1 to an equilib-
rium point follows from the contraction properties of the best-
response mapping investigated in Section III-C. ⌅

Remark 6: Although the contraction properties of the best-
response mapping are contingent on the sufficient conditions of
Proposition 2, Algorithm 1 is still seen to converge to a DE of
G, provided that the problem is feasible to begin with (see the
next section for a numerical assessment via extensive numerical
simulations).

Remark 7: In the theoretical analysis of Section III (as well
as in Algorithm 1), we consider neither total maximum power
constraints Pk, such that, Pk ≤ Pk, nor per-subcarrier maxi-

Fig. 3. Random realization of a network with S = 5 small cells, KS = 3 SUE,
and K0 = 6 MUE, sharing N = 12 subcarriers.

mum power constraints pk,n, such that pk,n ≤ pk,n. Although
power masks are usually required by wireless standards to
meet out-of-band emission policies, the power limits {Pk}k∈K

and {pk,n}k∈K,n∈N significantly impact the analytical character-
ization of the DE p⋆. For the sake of theoretical correctness,
they are thus not included in the present work and are left as
a future direction of research. However, it is worth stressing
that: i) Algorithm 1 can easily accommodate {Pk}k∈K and
{pk,n}k∈K,n∈N , by setting λ⋆

k = max {min{λk,λk},λk}, where λk
is computed using direct WF [27] (by maximizing the rate rk(p)

under the constraint
∑N

n=1 pk,n = Pk), and by setting

pk,n[t + 1] = min
{

pk,n,
(
1/λ⋆

k − pk,n[t]/γk,n[t]
)+}

; (28)

ii) reasonable values of {Pk}k∈K and {pk,n}k∈K,n∈N do not
modify the optimal power allocation p⋆ in practice. In the
interest of providing a practical algorithm that can be used in
real-world scenarios, our extensive simulations in Section V
make use of the modified algorithm, in which we observe that
the selected values for the power constraints are never active in
practice, so the theoretical results of Section III remain valid.

V. NUMERICAL RESULTS

Numerical simulations are now used to assess the perfor-
mance of the proposed algorithm under different operating
conditions. To keep the complexity of the simulations tractable
while considering a significantly loaded system, we focus
on the scenario reported in Fig. 3, where a square-shaped
macrocell with an area of 200 × 200 m2 centered around its
MBS accommodates S randomly distributed small cells, each
with a radius of ρs = ρS = 20 m. Throughout the simulations,
unless otherwise specified, we adopt the parameters reported in
Table I (see [21] and references therein), where, for simplicity,
each SC is assumed to have the same number of antennas MS
and to serve the same number of users KS. Moreover, all UE
are assumed to have the same non-radiative power consumption
pc,k = pc, and the same power limits Pk = P and pk,n = p are
imposed for all subcarriers and for all users (see Remark 7).
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TABLE I
GENERAL SYSTEM PARAMETERS

To include the effects of fading and shadowing, we use the
path-loss model introduced in [42], using a 24-tap channel
model to reproduce multipath effects. We also assume perfect
channel estimation at the receiver end and the use of maximum
ratio combining (MRC) techniques, which amounts to setting
gk,n = hkk,n for all k ∈ K and n ∈ N . The UE k ∈ K is then
assigned to APs s ∈ S following the mapping:

ψ(k) =
{

s ∃ s > 0 s.t. dk,s ≤ ρS

0 otherwise
(29)

where dk,s denotes the distance between UE k and SCA s.
Without loss of generality, we measure the performance for
a specific user (say user 1) within either an SC or a macro-
cell, by averaging over all possible positions of the users,
uniformly randomizing their minimum-rate constraints θk in
[0, 2] b/s/Hz for k ̸= 1.

To evaluate the proposed algorithm in a practical setting,
Fig. 3 reports a random realization of the network with the
parameters described above, in which the following quantities
have been reduced for the sake of graphical representation:
KS = 3, K0 = 6, and N = 12, θk = 1.5 b/s/Hz for SUE, and
θk = 0.5 b/s/Hz for the MUE. Using the distributed algorithm
described in Section IV, after roughly 20 iterations we get the
solution to (8), representing the users’ power profile at the
DE of G, and reported in Fig. 4. Here, the first five subplots
correspond to the powers allocated in the small cells (the s-th
subplot depicts the powers allocated by the users in the s-th
small cell, with colors matching the ones used in Fig. 3),
whereas the last two subplots show the powers selected by
the MUE labeled 16, 17, 18 (in the sixth subplot) and 19,
20, 21 (in the seventh subplot), respectively. As can be seen
in Fig. 4, this method tends to allocate the subcarriers in an
exclusive manner whenever the MAI across UE within the same
small cell is too large (e.g., see the 4th small cell, in which
only 5 subcarriers are shared by the 3 users), and to share the
same subcarrier when the MAI across users is at a tolerable
level (which also includes the interference generated by SUE
from neighboring cells and the MUE). On the right hand side,
we report the achieved rates at the DE in b/s/Hz. As can be
verified, all users achieve their minimum demands, while for
users with particularly favorable channel conditions (in this
case, users no. 1, 11, 19, and 21), it is convenient to increase
their transmit power so as to obtain better performance in terms
of EE. As we mentioned in Section II, we assume the channel

Fig. 4. Outcome of the resource allocation for the scenario of Fig. 3. The
subcarriers are allocated exclusively when the MAI within the small cell is
large. All users achieve their rate requirements. Users with favorable channels
increase their powers to maximize their own utilities.

to be weakly time-varying. Otherwise stated, we assume that
the convergence of the proposed algorithm is achieved before
significant channel variations, as is customarily assumed in
all closed-loop resource allocation schemes. To support this,
assume that the uplink and downlink slot durations are in the
order of few milliseconds (which is reasonable for LTE/LTE-A
standards [43]). In these circumstances, the average conver-
gence time of the proposed solution turns out to be in the
order of tens of milliseconds (since convergence is achieved
after approximately 20 iterations): such interval is sufficiently
shorter than typical channel coherence times, especially when
considering usual SC scenarios with pedestrian users.

To assess the robustness of the proposed solution to network
perturbations, we depict in Fig. 5 the total power consumption
as a function of the iteration step for the network setting of
Fig. 3 (lines are identified by UE labels, using the numbering
adopted in Fig. 3). In particular, for the sake of clarity, since all
other users show similar results, we only report the behavior of
SUE in small cells s = 1 and s = 4, and the MUE 19 and 21,
when, at t = 25, two cell-edge users (namely, users 3, 12)
simultaneously change their receiver association: both become
served by the MBS, due to a variation in the received signal
strength (with ensuing reduction of their data rate requirements
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Fig. 5. UE total power consumption as a function of the iteration step. The
power allocation fastly converge even in the presence of sudden changes in the
network configuration, e.g., due to UE mobility or channel fluctuations.

Fig. 6. Average utility at the equilibrium as a function of the minimum rate
θ1. Compared to an IWF-based solution, the Debreu equilibrium may perform
worse in terms of overall network utility. However, the IWF-based solution is
not a stable operating point: user 1 has always an incentive to deviate and highly
increase its own utility.

to 0.5 b/s/Hz, like all other MUE). As can be seen, the algorithm
is very robust to network perturbations, and guarantees fast
convergence for all users in the network to the new equilibrium
point. In this particular example, each UE’s power decrease is
due to a lower interference generated by the “new” MUE—
which, in turn, is a consequence of their lower target rates.

To the best of our knowledge, there are no resource allocation
algorithms that address the energy-efficient formulation (8)
subject to the minimum-rate demands (8b). To evaluate the
improvement in terms of EE of the proposed technique (red),
we thus compare its performance with that achieved by an IWF-
based solution (blue), in which all users aim at meeting θk
with equality [30]. Fig. 6 reports the average utility achieved
by averaging over all possible positions of a particular MUE
(say user 1) as a function of a specific minimum rate θ1, using

Fig. 7. Average transmit power at the equilibrium as a function of the distance
from the receiver. The HetNet configuration (S = 5) significantly reduces the
power consumption of the UE compared to the macro-cell classical scenario
(S = 0) for any rate requirements.

the parameters reported in Table I.3 Interestingly, there exists a
critical θ1 (in this case, 0.28 b/s/Hz), for which the EE of IWF is
higher than that achieved by the proposed formulation, mainly
due to a weaker MAI caused by the IWF users, that transmit
at lower powers than energy-efficient ones (not reported for the
sake of brevity). However, IWF policies are not stable: if the
network’s UE adopt an IWF approach, then a UE that deviates
from this criterion would greatly increase its EE (represented
by the green line in Fig. 6). This situation is reminiscent of the
well-known prisoner’s dilemma [4] where there exist states with
higher average utility, but which are obviously abandoned once
a user deviates in order to maximize his individual benefits—
and, hence, are inherently unstable in a non-cooperative, de-
centralized setting. In addition to this, the proposed approach
shows two interesting properties compared to IWF: i) aver-
aging over all network realizations and all minimum rates,
Algorithm 1 achieves an average utility of 1.76 Mb/J, which
is larger than the IWF-based one, equal to 1.69 Mb/J; and ii) it
introduces fairness among the users, as its performance in terms
of EE is weakly dependent on the QoS requirement θk.

To measure the benefits of a HetNet configuration with
respect to a classical macrocellular architecture (S = 0),
Figs. 7 and 8 depict the average total transmit powers and the
achievable rates at equilibrium in terms of the distance between
the observed user and its receiver, averaged over 2000 indepen-
dent feasible network realizations per marker. The green and
red lines represent the performance in the case of S = 5 small
cells, KS = 4 SUE, and K0 = 20 MUE, achieved by an SUE and
an MUE, respectively, whereas blue lines show the performance
obtained by an MUE in the case S = 0. We consider three dif-
ferent minimum demands for the SUE (0, 0.75, and 1.5 b/s/Hz,

3Throughout all the simulations in the present and subsequent graphs,
the selected parameters yield an occurrence of feasible scenarios, assessed
a posteriori by letting each UE achieve their minimum-rate constraint (8b)
with equality, larger than 99%. Once the scenario is checked to be feasible,
the convergence of Algorithm 1 to a stationary point (a DE) occurs with
probability 1.
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Fig. 8. Average rate at the equilibrium as a function of the distance from
the receiver. The HN configuration (S = 5) significantly increases the rates
of the UE compared to the macro-cell classical scenario (S = 0) for any rate
requirements.

represented by circular, square, and upward-pointing arrow-
heads), and three different demands for the MUE (0, 0.25,
and 0.5 b/s/Hz, represented by circular, downward-pointing
arrowheads, and diamond markers respectively). As can be
seen, the HetNet configuration introduces significant gains in
both the achievable rates and the power consumption com-
pared to the classical scenario: by averaging over all possible
positions of SUE and MUE across the macrocell area, the
MUE get r1(p⋆) u 0.68 b/s/Hz with a power consumption
P⋆

1 u 27.5 dBm (566 mW) when placing θ1 = 0.5 b/s/Hz,4

compared to r1(p⋆) u 0.63 b/s/Hz with P⋆
1 u 29.1 dBm

(813 mW) for the same minimum demand in the case S = 0.
The HetNet configuration is also beneficial in terms of ASE:
using these parameters, we get on average slightly more than
600 b/s/Hz/km2, compared to 500 b/s/Hz/km2 for S = 0.

Introducing small cells has a negative impact in terms of the
algorithm’s convergence rate: here, on average 4.1 iterations
are required for the case S = 5, compared to 3.5 for the case
S = 0. This is due to decentralizing the resource allocation at
each receiving station, thus slightly slowing the convergence
of the algorithm. However, this provides a better MAI man-
agement ensured by SCAs, that allow SUE to obtain higher
rates with lower interfering powers at the MBS. As can be
seen, due to the path-loss model employed, which is roughly
constant for distances within dref > ρS, the SUE performance
is independent of the distance from the SCA. When SUE place
θ1 = 1.5 b/s/Hz, the spectral efficiency is similar to that
achieved by MUE located at comparable distance from the
MBS (see Fig. 8), but at the cost of a larger power consumption
(see Fig. 7): this is due to a better diversity at the receiver
obtained by the MUE, since the MBS employes a larger number
of antennas (16 versus 4). However, this does not hold true as
the MUE distance increases: averaging over all positions, SUE
obtain an average rate r1(p⋆) u 1.51 b/s/Hz (more than twice

4Note that such minimum demand is about one order of magnitude larger
than the one considered for cell-edge users in 4G networks, equal to 0.07 b/s/Hz
[43] for a scarcely populated cell (at most 10 users).

Fig. 9. Average rate at the equilibrium (left axis) and average power consump-
tion (right axis) as functions of the number of small cells. Introducing more
small cells increases the average rate and reduces the average power consump-
tion in the network while guaranteeing the minimum rate requirements.

Fig. 10. Average area spectral efficiency as a function of the number of small
cells. Introducing more small cells increases the average area spectral efficiency
as well.

the MUE’s one) using P⋆
1 ≈ 28.6 dBm (732 mW, slightly higher

than MUE’s one).
To emphasize the impact of small cells on the system perfor-

mance, Figs. 9 and 10 compare the performance, averaged over
105 independent network realizations, achieved by an MUE
using θ1 = 0.25 b/s/Hz in the same network as before, pop-
ulated by K = 40 users, as a function of the number of SCs S,
each having KS = 4 SUE, ranging from S = 0 (classical macro-
cell) to S = 10 (only SCs—in this case, the MUE of interest
becomes an SUE). Fig. 9 depicts the achievable rate (red line,
left axis) and the total power consumption (blue line, right axis),
whereas Fig. 10 shows the ASE. As is apparent, introducing
SCs in the system has a significant benefit in terms of all
performance indicators. Of course, this comparison does not
account for the additional complexity and drawbacks intro-
duced by increasing S (to mention a few, initial cost of network
deployment and maintenance, and complexity of the system).
However, although a suitable tradeoff needs to be sought, our
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Fig. 11. Average rate (left axis) and average ASE (right axis) as functions of
the number user per small cell. The average rate decreases with the number
of users per small cell because of the MAI. However, the ASE is increasing
with the the number of users per small cell. Moreover, increasing the num-
ber of receiving antennas at the SCA improves both, the average rate and
average ASE.

analysis confirms that network densification is one of the key
technologies to meet 5G requirements [28].

To verify the scalability of the proposed solution, we also
investigate the impact of the number of receiving antennas at
the SCA MS. In Fig. 11, we plot the spectral efficiency (red
lines, left axis) and the ASE (blue lines, right axis) as a function
of the number of users per small cell KS. Circular, squared,
and triangular markers represent the cases for MS = {2, 4, 8}
antennas at the SCA. The ASE is averaged over all users
K = K0 + S · KS, whereas the achievable rate is computed for
an SUE of interest using θ1 = 1 b/s/Hz, averaging over 105

independent network realizations. As can be seen, increasing
the number of antennas yields significant performance gains,
thus representing a design parameter that can be exploited to
boost the performance. Not only the spectral efficiency, as
expected, benefits from increasing MS (as an example, we can
move from 500 b/s/Hz/km2, achieved when using 2 antennas,
to 1000 b/s/Hz/km2, by increasing the number of receiving
antennas up to 8, supporting K = 60 users), but also does the
EE, confirming a recent result available in [33]: here, when
KS = 7, moving from MS = 2 to 8 yields more than a 5-fold
increase in the utility.

Finally, to evaluate the impact of the circuit power pc on
the EE of the system, we show in Fig. 12 the performance of
the proposed algorithm as a function of pc, averaged over 105

independent network realizations, where the red line refers to an
SUE using θk = 1 b/s/Hz, and the blue line refers to an MUE
using θk = 0.25 b/s/Hz. For all selected non-radiative powers
pc ∈ [0, 20] dBm, the hypothesis pc ≫ σ 2 holds, which is in
line with the state of the art for radio-frequency and baseband
transceiver modeling [21]. As can be seen, the total power
consumption at the equilibrium P1(p⋆) is directly proportional
to pc. Put differently, the energy-efficient equilibrium point
is highly impacted by the non-radiative power, and the bit-
per-Joule metric suggests the use a radiative power which
is comparable with the non-radiative one. Interestingly, the

Fig. 12. Average power at the equilibrium as a function of the circuit power.
The average power consumption scales linearly with the circuit power in the
EE formulation.

(normalized) achievable rates at equilibrium (not reported for
concision) do not depend on pc (1.1 and 0.6 b/s/Hz for SUE and
MUE, respectively). This confirms a result which is well-known
in the literature (e.g., see [23]): EE increases as the circuit
(non-radiative) power decreases. Hence, reducing pc, which is
one of the main drivers in the device design further boosting
the research in this field, can achieve a two-fold goal: not
only is it expedient to reduce the constant power consumption
(from an electronics point of view), but also it leads energy-
aware terminals to reduce their radiative power when they
aim at maximizing their bit-per-Joule performance (from an
information-theoretic and resource-allocation perspective).

VI. CONCLUSION AND PERSPECTIVES

In this paper, we proposed a distributed power allocation
scheme for energy-aware, non-cooperative wireless users with
minimum-rate constraints in the uplink of a multicarrier het-
erogenous network. The major challenge in this formulation
is represented by the minimum-rate requirements that cast the
problem into a non-cooperative game in the sense of Debreu,
in which the actions sets of the players are coupled (and not
independent as in the case of Nash-type games). We used
fractional programming techniques to characterize the game’s
equilibrium states (when they exist) as the fixed points of a
water-filling operator. To attain this equilibrium in a distributed
fashion, we also proposed an adaptive, distributed algorithm
based on an iterative water-filling best response process and
we provided sufficient conditions for its convergence. The
convergence and performance of the proposed solution were
further assessed by numerical simulations: our results show that
reducing the non-radiative power consumed by the user device
electronics, offloading the macrocell traffic through small cells,
and increasing the number of receive antennas, are critical to
improve the performance of mobile terminals in terms of both
energy efficiency and spectral efficiency. Using a realistic simu-
lation setup, we showed that the proposed framework is able to
achieve significantly high area spectral efficiencies (higher than
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1000 b/s/Hz/km2), peak and cell-edge spectral efficiencies (up
to 6 b/s/Hz and around 0.5 b/s/Hz, respectively), and energy ef-
ficiencies (several Mb/J), while considering dense populations
of users (around 1000 users/km2), low power consumptions
(at most a few Watts), a limited number of antennas (at most
8 for the small-cell access points and 16 for the macrocell
base station), and simplified signal processing at the receiver
(maximal ratio combining).

The system model adopted in this work encompasses a
more general multi-cellular and multi-tier network, and the de-
rived approach can be automatically adapted to such scenarios.
Moreover, distinguishing features of the proposed distributed
algorithm are its scalability and flexibility, which make it suit-
able for emerging 5G technologies [28], such as ultra-dense
networks and massive MIMO.

Challenging open issues for further work include: i) assess-
ing the feasibility of the problem given a particular network
realization for the multicarrier case; ii) evaluating the impact of
different receiver architectures (such as multiuser zero-forcing,
and interference cancellation techniques) on the spectral and
energy efficiency of the network; iii) accounting for highly
time-varying scenarios in which users move around the network
with different speeds.

APPENDIX A
PROOF OF PROPOSITION 1

First, note that (8) can be expressed in the language of
fractional programming as:

p⋆
k = arg max

pk∈Pk(p−k)

ϕ(pk)

χ(pk)
(30)

where Pk(p−k) is defined as in (9), and

ϕ(pk)=
N∑

n=1

ln(1+µk,npk,n) and χ(pk)=pc,k+
N∑

n=1

pk,n. (31)

From [23, Sect. II.A] solving (30) is equivalent to finding the
root of the following nonlinear function:

2(λk) = max
pk∈Pk(p−k)

ϕ(pk) − λkχ(pk) (32)

where λk ∈ R. To compute the solution of (30), let us first use
(31), but without the constraint (8b), so that pk ∈ RN

+ (i.e., only
nonnegative powers are considered). The stationarity condition,
given by ∂ϕ(pk)

∂pk,n
|pk,n=p⋆

k,n
− λk

∂χ(pk)
∂pk,n

|pk,n=p⋆
k,n

= 0 ∀n, using (31)
becomes

µk,n

1 + µk,np⋆
k,n

− λk = 0 ∀n. (33)

Hence, considering p⋆
k,n ≥ 0, the optimal power allocation be-

comes the WF criterion (17), in which the water level λ⋆
k is

replaced by λk. By plugging (33) back into (32) we can finally
compute the optimal power level λk:

− ln λk + (βk − 1) = αkλk. (34)

where the functions αk and βk are defined as in (20) and
(21), respectively. To provide a better insight on (34), let us
define νk = − ln λk + (βk − 1), so that (34) can be rewritten
as νkeνk = αkeβk−1. Using the Lambert function W(·) we can
obtain the expression of λk as in (19).

Introducing back the constraint (8b) simply places a lower
bound on ϕ(pk): ϕ(pk) ≥ θk. Following [23], this is equivalent
to setting an upper bound λk on λk, that comes out of the IWF
criterion that minimizes χ(pk) given ϕ(pk) = θk, and is equal
to (22). Hence, the solution to (8) is given by (17) with λ⋆

k
computed as in (18).

APPENDIX B
PROOF OF PROPOSITION 2

There exists a unique DE p⋆ if the best response
map B(p) = [B1(p−1), . . . ,BK(p−K)] with Bk(p−k) =
arg maxpk∈Pk(p−k) = uk(p) is a contraction, i.e., there exists
some ε ∈ [0, 1) such that

∥B(p1) − B(p2)∥ ≤ ε∥p1 − p2∥ ∀p1, p2 ∈ P, (35)

where P = ∏K
k=1 Pk. The nth component of user k’s best

response is given by Bk,n(p⋆
−k) = [Bk(p⋆

−k)]n = p⋆
k,n as in (17).

We begin by rewriting µk,n(p−k,n) in (4) as follows:

µk,n(p−k,n) = ωkk,n

σ 2 + Ik,n
(36)

where Ik,n = ∑
j ̸=k ωkj,npj,n, and the quantities ωkj,n are defined

in (24) Using [29, Theorem 4] the DE p⋆ is unique if, for any
UE k,

∥∥∥∥
∂Ik

∂p−k

∥∥∥∥ · sup
Ik∈RN

∥∥∥∥
∂Bk(p−k)

∂Ik

∥∥∥∥ < 1 (37)

with Ik = [Ik,1, . . . , Ik,N]T . The first term of (37) is explic-

itly computed in [29, Eq. (19)] and it is equal to
∥∥∥ ∂Ik

∂p−k

∥∥∥ =
√∑K

j=1,j ̸=k
∑N

n=1 ω2
kj,n. As for the second term, we have:

∥∂Bk(p−k)/∂Ik∥ =
√∑N

ℓ=1

∑N

n=1

∣∣∣∂p⋆
k,n/∂Ik,ℓ

∣∣∣
2
, (38)

where the optimal (best-responding) transmit power levels
p⋆

k,n are:

p⋆
k,n = (1/λ⋆

k − 1/µk,n)1l{µk,n>λ⋆
k} (39)

After some derivation steps, we obtain the norm of its partial
derivative w.r.t. Ik,ℓ as follows:
∣∣∣∣
∂p⋆

k,n

∂Ik,ℓ

∣∣∣∣
2

=
1l{µk,n>λ⋆

k}

ω2
kk,ℓ

(
ς⋆

k

)2

[
ξ2

k,ℓ+
((

ς⋆
k
)2−2ς⋆

k ξk,ℓ

)
1l{n=ℓ}

]
(40)

where, for convenience, we denote by ς⋆
k = |S⋆

k | and

ξk,ℓ = −ς⋆
k µ2

k,ℓ
∂

(
1/λ⋆

k

)

∂µk,ℓ
. (41)
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Summing over n = 1, . . . , N then yields:

∥∥∥∥
∂Bk(p−k)

∂Ik

∥∥∥∥ =
√√√√

1
ς⋆

k

∑

ℓ∈S
⋆
k

1

ω2
kk,ℓ

·
(
ξ2

k,ℓ + ς⋆
k − 2ξk,ℓ

)
(42)

so that it remains to show that the terms ξk,ℓ in (41) are
equivalent to (26) in Proposition 2 (see Appendix C). As a
final step in the proof, notice that the function to be optimized
in (23) depends only on µk,n which is an invertible, bijective
function of Ik,n ≥ 0 (since it is a strictly decreasing function
with respect to Ik,n). Therefore, we can take the supremum over
µk,n ∈ (0,ω2

kk,n/σ
2],∀n directly.

APPENDIX C

In this section, we compute ξk,ℓ in two different cases
depending on the relative order between λk and λk. Let us
start from the minimum-rate WF criterion, in which UE k’s
water level is computed using (18). In this case, if µk,ℓ >

λk (i.e., if ℓ ∈ Sk),5 we have λ
−1
k =

(
2Nθk

∏
n∈Sk

µ−1
k,n

)1/ςk =
(

2Nθk
∏

n∈Sk,n ̸=ℓ µ−1
k,n

)1/ςk
µ

−1/ςk
k,ℓ , where ς k = |Sk|. From

this, we get ∂
(
1/λk

)

∂µk,ℓ
= − 1

ςkµk,ℓλk
, and thus, using (41), we finally

obtain ξk,ℓ = µk,ℓ/λk, corresponding to the first subcase of
(26).

Let us now focus on the energy-efficient WF, in which each
UE k’s water level is computed using (19). If µk,ℓ > λk, then:

∂ (1/λk)

∂µk,ℓ
= 1

λk

∂

∂µk,ℓ

[
W

(
αkeβk−1

)
− (βk − 1)

]

= 1
λk

[
∂W

(
αkeβk−1)

∂µk,ℓ
− ∂βk

∂µk,ℓ

]
. (43)

On one hand, using (20) and (21), we can compute the partial
derivatives ∂αk

∂µk,ℓ
= 1

ςkµ
2
k,ℓ

and ∂βk
∂µk,ℓ

= 1
ςkµk,ℓ

, with ςk = |Sk|.
On the other hand, using the properties of the Lambert function,
we get

∂W
(
αkeβk−1)

∂µk,ℓ
=

W
(
αkeβk−1) · ∂

∂µk,ℓ

(
αkeβk−1)

(
αkeβk−1

) [
1 + W

(
αkeβk−1

)] (44)

and hence:

∂ (1/λk)

∂µk,ℓ
= W

(
αkeβk−1) − αkµk,ℓ

ςkµ
2
k,ℓλkαk

[
1 + W

(
αkeβk−1

)] . (45)

Noting that, by inverting (19), W
(
αkeβk−1) = βk − 1 − ln λk,

and using simple mathematical steps, νk = − ln λk + (βk − 1)

can be rewritten as νk = W
(
αkeβk−1) = αkλk. Using (41), ξk,ℓ

corresponds to the second subcase of (26).

5Note that we are interested in computing ξk,ℓ only for ℓ ∈ Sk, as in all other
cases ξk,ℓ = 0.
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Protecting Secret Key Generation Systems Against
Jamming: Energy Harvesting and Channel

Hopping Approaches
E. Veronica Belmega, Member, IEEE, and Arsenia Chorti, Member, IEEE

Abstract— Jamming attacks represent a critical vulnerability
for wireless secret key generation (SKG) systems. In this paper,
two counter-jamming approaches are investigated for SKG sys-
tems: first, the employment of energy harvesting (EH) at the
legitimate nodes to turn part of the jamming power into useful
communication power, and, second, the use of channel hopping or
power spreading in block fading channels to reduce the impact of
jamming. In both cases, the adversarial interaction between the
pair of legitimate nodes and the jammer is formulated as a two-
player zero-sum game and the Nash and Stackelberg equilibria
are characterized analytically and in closed form. In particular,
in the case of EH receivers, the existence of a critical transmission
power for the legitimate nodes allows the full characterization of
the game’s equilibria and also enables the complete neutralization
of the jammer. In the case of channel hopping versus power
spreading techniques, it is shown that the jammer’s optimal
strategy is always power spreading while the legitimate nodes
should only use power spreading in the high signal-to-interference
ratio (SIR) regime. In the low SIR regime, when avoiding
the jammer’s interference becomes critical, channel hopping is
optimal for the legitimate nodes. Numerical results demonstrate
the efficiency of both counter-jamming measures.

Index Terms— Secret key generation, jamming, energy
harvesting, channel hopping, zero-sum game.

I. INTRODUCTION

SECRET key generation (SKG) from shared randomness at
two remote locations has been extensively studied [3]–[10]

and has recently been extended to unauthenticated channels
[11], [12]. SKG techniques have also been incorporated in
protocols that are resilient to spoofing, tampering and man-
in-the-middle active attacks [13]. Still, such key generation
techniques are not entirely robust against active adversaries,
particularly during the advantage distillation phase. Denial
of service attacks in the form of jamming are a known
vulnerability of SKG systems; in [14], it was demonstrated
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that when increasing the jamming power, the reconciliation
rate normalized to the rate of the SKG increases sharply and
the SKG process can in essence be brought to a halt. As SKG
techniques are currently being considered for applications such
as the Internet of things (IoT) [15], the study of appropriate
counter-jamming approaches is timely.

Typically, jamming in wireless communication systems has
been investigated using game theoretic tools [16]–[23]. Con-
trary to our work, these earlier studies focus on performance
metrics that are either based on the legitimate nodes’ signal-
to-interference-plus-noise ratio (SINR) [16]–[21] and do not
incorporate physical-layer security constraints at all, or are
based on the secrecy capacity [22], [23]. The secrecy capacity
is inherently different than the SKG capacity considered in
this work; the former measures the maximum rate at which
both confidential and reliable communication is possible, while
the latter represents the maximum rate at which a common
secret key can be extracted from the observation of correlated
sequences at two remote locations [24].

In the past, two main counter-jamming approaches have
been commonly considered: direct sequence spread spec-
trum (DSSS) and frequency hopping spread spectrum
(FHSS) [25], [26]. In either approach, the impact of power
constrained jammers can be limited because their optimal
strategy has been proved to be the spreading of their available
power over the entire bandwidth (and thus jam with potentially
low power). However, DSSS and FHSS systems require a
pre-shared secret to establish the spreading sequence or the
hopping pattern at Alice and Bob; as such, they are not
directly applicable to SKG systems that on the contrary seek to
establish a secret key. Attempting to resolve this contradiction
and reconcile DSSS and FHSS with SKG, uncoordinated
frequency hopping and spreading techniques have recently
been investigated in [27] and [28]. The main idea behind the
proposed approaches was the randomization of the selection
of the hopping/spreading sequences, at the cost of reducing
the achievable rates for secret key establishment.

However, in uncoordinated hopping/spreading techniques
there are minimum requirements regarding the length of the
pseudorandom sequences employed. As a result, accounting
for the strict bandwidth specifications of fourth and fifth
generation networks, the use of long pseudorandom sequences
can be a limiting factor. Thus, investigating different counter-
jamming approaches based on the use of channel hopping
or power spreading over multiple orthogonal subcarriers,
e.g., orthogonal frequency division multiplexing (OFDM)

1556-6013 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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systems [16], [18], is timely and offers an interesting alter-
native to [27] and [28] as in OFDM systems there is no need
for coordination of the remote nodes. Furthermore, although
in [27] and [28] the numerical investigations focused on the
throughput, a Media Access Control (MAC) layer quantity,
when analyzing physical layer security SKG systems the
standard approach is to utilize the SKG capacity (a physical
layer quantity).

On a different note, next generation terminals are
likely to be enhanced with many new features that could
prove pivotal in protecting against jamming. For example,
greater energy autonomy exploiting energy harvesting (EH)
approaches [29], [30] is being researched for systems such as
wireless sensor networks for IoT applications. Thus, it is inter-
esting to investigate whether EH could be utilized as a counter-
jamming technique by exploiting the harvested jamming power
to enhance the quality of the legitimate communication.

Motivated by the above, in the present work we propose
two novel approaches for alleviating the impact of jamming
in SKG systems. In both approaches, we model the interaction
between the legitimate nodes and the adversarial jammer as
a two-player zero-sum game in which the SKG capacity
plays the role of the utility function. We investigate two non-
cooperative solutions: the Nash equilibria (NE), when both
players make their decision simultaneously and the Stack-
elberg equilibria (SE), when the legitimate nodes have an
advantage and choose their strategy first while anticipating
the jammer’s response.

In the first part of this contribution, we study systems in
which the legitimate nodes are equipped with EH capabilities
and examine whether this added functionality is useful in
preempting jamming attacks. We focus on time switching EH
protocols [30]: for a fraction of time the legitimate nodes
operate in EH mode and switch to the SKG procedure for
the rest. To the best of our knowledge, this is among the first
works to investigate EH as a counter-jamming approach with
the exception of [21].1

Our analysis reveals the existence of a critical power
thres-hold pth for the legitimate nodes and of an associated
threshold harvesting duration �th . When the legitimate nodes
employ EH for longer than �th , the attacker’s optimal strategy
is not to jam at all, i.e., the jammer is effectively neutralized.
However, neutralizing the jammer is not a stable solution
to unilateral deviations (if the strategic decisions are taken
simultaneously) and is therefore not a Nash equilibrium (NE)
of the game. At the NE, it is found that both the legitimate
nodes and the jammer transmit with full power and that the EH
duration does not correspond always to the above threshold.
At low signal to interference ratio (SIR) (e.g., relatively low
transmit power or high jamming power), the EH optimal
duration equals �th . Although the attacker jams with full

1The recent work [21] proposes to harvest energy from the jamming
interference in a multi-user interference channel in which the jammer is not
a strategic decision maker. In terms of formulation, a global optimization
problem is investigated (as opposed to an adversarial game). Furthermore, the
global performance metric in [21] does not incorporate security constraints
and the harvested energy is not directly exploited in the communication phase,
appearing only as an additional term in the utility function.

power, the power collected from EH cancels out the impact
of the attack and the SKG capacity is equivalent to the case
of using EH for the same duration in absence of a jammer.
At medium to high SIR, the EH optimal duration becomes
lower than �th and decreases until the legitimate nodes do not
harvest energy at all.

Furthermore, when moving to a hierarchical game formula-
tion, the SE analysis reveals that the legitimate nodes should
play the NE strategy. Whenever the legitimate nodes’ harvest
energy for a duration �th (at the NE), the jammer neutralization
strategy is also a SE solution. This means that, in a hierarchical
game, the jammer can potentially be deterred from launching
the attack.

In the second part of this investigation, extending the studies
in [19] and [21] to SKG systems, counter-jamming policies are
investigated for N block fading additive white Gaussian noise
(BF AWGN) channels, e.g., systems with N orthogonal sub-
carriers. At the NE, the jammer always spreads its power over
all subcarriers, while for the legitimate nodes the optimality of
channel hopping or power spreading depends on the channel
parameters. In the high SIR regime, the legitimate nodes
should use power spreading to exploit the entire available
spectrum given the relatively low jamming interference. On
the other hand, at low SIR, the legitimate nodes should
use channel hopping and transmit over a single subcarrier
to avoid most of the jammer’s interference. Furthermore, in
characterizing the game’s SE we find that the optimal SE
strategies reduce to the NE ones, demonstrating that there is
no extra payoff to be earned from the advantage of playing
first.

Preliminary results of this work have been presented
in [1] and [2]. The major contributions and improvements
of this journal paper as compared with [1] and [2] consist
in: providing complete proofs of all the results regarding the
NE analysis and the jammer neutralization state; relaxing the
action set of the jammer, in the energy harvesting case, from
the discrete choice between remaining silent and transmitting
at full power into the continuous interval of all possible power
values, which has brought to light the existence of additional
NEs; providing the additional analysis of the Stackelberg
equilibrium; providing a comparative discussion between the
two counter-jamming methods in Sec. V-C.

The paper is organized as follows. In Sec. II, the SKG
baseline system model is introduced. In Sec. III, the adversarial
interaction between the EH legitimate nodes and the jammer
is formulated and analyzed using a zero-sum non-cooperative
game framework, while in Sec. IV this setting is used to
study channel hopping vs. power spreading in BF AWGN
systems. Numerical illustrations and a detailed discussion of
these counter-jamming strategies are provided in Sec. V, while
the conclusions are given in Sec. VI.

II. SKG SYSTEM MODEL IN THE PRESENCE OF A JAMMER

The baseline SKG system model with two legitimate nodes,
denoted by Alice and Bob and a single adversary, denoted
by Eve, is depicted in Fig. 1. Typically, the SKG process
consists of three phases [4], [6]. In the first phase, referred
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Fig. 1. SKG system model with two legitimate nodes and a single adversary.

to as shared randomness distillation, Alice and Bob observe
dependent random variables denoted by YA, YB while an
eavesdropper, referred to as Eve, observes YE . In wireless
channels, a readily available source of shared randomness is
the multipath fading due to the reciprocity of the wireless
medium during the channel’s coherence time [10]. Here,
we focus exclusively on shared randomness extraction from
Rayleigh fading coefficients.

In the next two phases, known as information reconciliation
and privacy amplification, side information V is exchanged
between Alice and Bob, generated by corresponding encoders
fA, fB . At the end of the SKG process, a common key K ∈ K

is extracted at Alice and Bob such that, for any � > 0, the
following statements hold [8]:

Pr (K = fA (YA, V ) = fB (YB, V )) ≥ 1 − �, (1)

I (K ; V ) ≤ �, (2)

H (K ) ≥ log |K| − �, (3)

where H (K ) denotes the entropy of the key K and I (K ; V )
denotes the mutual information between K and V .

The first inequality demonstrates that the SKG process
can be made error free; (2) ensures that the exchange of
side information through public discussion does not leak
any information to eavesdroppers; while (3) establishes that
the generated keys attain maximum entropy (i.e., are uni-
form). Under the three conditions, an upper bound on
the rate for the generation of secret keys is given by
min {I (YA; YB), I (YA; YB |YE )} [3], [4]. Assuming rich multi-
path environments, the decorrelation properties of the wireless
channel over short distances can be exploited to ensure that
Eve’s observation YE is uncorrelated with YA and YB [7], [8],
[10]; in this case, the SKG capacity is given by [3, Sec. II]

C = I (YA; YB). (4)

We assume that this holds true in the rest of this study and
consider the SKG capacity above to be the focal performance
metric.

SKG in Rayleigh fading channels has been extensively
analyzed, e.g., [7], [8]. In these works, it was assumed that
Alice and Bob exchange unit probe signals to excite the fading
channel and obtain respective observations YA and YB with

YA = H0 + Z A, YB = H0 + Z B,

where H0 denotes the fading coefficient in the link between the
legitimate nodes, modeled as a zero mean Gaussian random
variable H0 ∼ N (0, � 2

H ), and, Z A and Z B model the effect

of AWGN and denote independent and identically distributed
(i.i.d.) Gaussian random variables Z A ∼ N (0, NA), Z B ∼
N (0, NB ). Using this notation, the SKG capacity has been
expressed as [8]:

C = I (YA; YB) = 1
2

log2

�

�1 + � 2
H

NA + NB + NA NB
� 2

H

�

�. (5)

In this work, we assume that Eve is no longer a passive
eavesdropper but a malicious jammer. To include jamming
attacks in the above model, we consider the following exten-
sion:

YA = √
pH0 + √

� G A + Z A, (6)

YB = √
pH0 + √

� G B + Z B, (7)

assuming that Alice and Bob exchange constant probe
signals [8] with power p ≤ P and that Eve transmits
constant jamming signals [14] with power � ≤ �. The fading
coefficient in the link between Eve and Alice is denoted by
G A ∼ N

�
0, � 2

A

�
and in the link between Eve and Bob by

G B ∼ N
�
0, � 2

B

�
. For simplicity and without loss of generality,

the noise variables Z A and Z B are assumed to have unit
variance, i.e., are modeled as i.i.d. Gaussian random variables
Z A, Z B ∼ N (0, 1).

Under these assumptions, a simple calculation reveals that
the SKG capacity can be expressed as a function of p and � :

C(p, � ) = 1
2

log2

�

��1+ � 2
H p

2 + (� 2
A + � 2

B)� + (1+� 2
A� )(1+� 2

B� )

� 2
H p

�

��.

(8)

By inspecting the first-order derivatives of (8), we conclude
that C(p, � ) is a strictly increasing function of p for any
fixed � , and a strictly decreasing function of � for any fixed p.
This implies that the legitimate nodes will transmit at full
power P to maximize the SKG capacity, whereas the jammer
will also transmit with full power � to minimize the SKG
capacity. Also, it is a strictly convex function with respect to
(w.r.t.) � for any fixed p > 0 as its second derivative w.r.t. �
is strictly positive.

III. ENERGY HARVESTING AGAINST JAMMING

In order to study EH as a counter-jamming measure,
we focus on a time-switching EH scheme [30], i.e., we assume
that each transmission interval of duration T is divided in two
parts. In the first period of duration �T (0 < � ≤ 1 being the
fraction of T dedicated to EH), both Alice and Bob operate in
EH mode with efficiency 0 < � ≤ 1; in the second period of
duration (1 − � )T , the legitimate nodes operate in SKG mode
using the overall available power (including harvested power).
For simplicity, we assume that the energy harvested can be
stored in a battery without any overflowing issues (unlimited
storage) [31].

Furthermore, to ease the mathematical derivation and by
ensuring symmetry in the energy harvested at Alice and Bob
we assume that � 2

A = � 2
B = � 2 (the Eve-Alice and Eve-Bob

links have equal variance). Given the above considerations and
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assuming that the energy harvested by Alice and Bob is linear
in the received RF power [30]:

E = � �T� � 2, (9)

the harvested power for each legitimate node per transmission
interval can be expressed as

pE H = E
(1 − � )T

= �� , (10)

where � = ��� 2

1−� is a convex increasing function of � . Thus,
the SKG capacity is given by:

ũ(p, �, � ) = 1 − �

2
log2

�

���1 +

�
p

1−� + ��
�

� 2
H

2(1 + � 2� ) + (1+� 2� )2
�

p
1−� +��

�
� 2

H

�

��� ,

(11)

with power constraints p ≤ P , � ≤ �.
A simple inspection of (11) reveals that this scenario is

a generalization of the standard SKG setting. Indeed, if the
legitimate nodes decide not to harvest energy, i.e., � = 0, (8)
is obtained for � 2

A = � 2
B = � 2, NA = NB = 1. In the model

with EH, the legitimate nodes can maximize ũ by tuning the
additional variable � . However, it is no longer straightforward
that the jammer should transmit with the maximum available
power as ũ(p, � , � ) is no longer monotonically decreasing
in � .

Non-cooperative game theory provides the natural
framework to study the adversarial interaction between the
legitimate nodes and the jammer. Although game theory has
already been exploited in physical layer security problems,
e.g. [22], [23], to the best of our knowledge, this work is
among the first to investigate EH as an effective means to
counteract on jamming attacks.

A. Jammer Neutralization

Before introducing the game framework, we make two
important observations regarding the SKG utility in (11) and
discuss their implications.

Remark 1: For any fixed � and � , ũ(p, �, � ) is monotoni-
cally increasing in p and

arg max
p∈[0,P]

ũ(p, �, � ) = P. (12)

Remark 2: For any fixed p and � , ũ(p, �, � ) is monotone
in � . In particular, it is monotonically decreasing in �
if p > pth(� ) , � � , a constant if p = pth(� ), and
monotonically increasing if p < pth(� ). This implies that:

arg min
�∈[0,�]

ũ (p, �, � ) = 0, if p < pth(� ) (13)

arg min
�∈[0,�]

ũ (p, �, � ) ∈ [0,�], if p = pth(� ) (14)

arg min
�∈[0,�]

ũ (p, �, � ) = �, if p > pth(� ). (15)

Remark 1 shows that, to maximize the utility, the legitimate
nodes should transmit at maximum power P . On the contrary,
Remark 2 shows that the jammer should practically switch in
between staying silent, i.e., � = 0, and jamming at full power,

i.e., � = �, depending on the choice (p, � ) of the legitimate
nodes.

Remark 2 reveals that the legitimate nodes can neutralize the
jammer by transmitting at a relatively low power p < pth(� ).
Although this result may seem counter-intuitive at first, this
condition is equivalent to � > �th(p) , p

� , which means
that the legitimate nodes spend a relatively large proportion
of time harvesting the jamming interference before actually
transmitting. In other words, the jammer is forced to stay silent
since the harm it can cause by interfering in the SKG phase
is overcome by the harvested energy in the EH phase. This
novel result shows that the jamming interference, which is
commonly thought as being harmful to the legitimate commu-
nication, can be exploited and transformed into useful power
via EH. If Alice and Bob transmit with exactly pth(� ), the
jammer becomes indifferent between all its choices � ∈ [0,�]
and has no interest in actively jamming the transmission.

The necessary conditions for the jammer neutralization are
formalized below.

Proposition 1: The optimal strategy for the legitimate
nodes that maximizes the SKG utility while ensuring that the
jammer has no interest in actively jamming the transmission
is given by:

pN J = min {P, pth(�
∗)} and � N J = min {�th(P), � ∗},

(16)

where � ∗ ∈ (0, 1) is the unique maximizer of ũ(pth(� ), �, 0)
w.r.t. � .

For the detailed proof the reader is referred to
Appendix VI-A. Notice that, if the jammer stays silent � = 0,
there is no actual energy harvested during the EH phase of
duration � N J . Rather, the legitimate nodes’ choice to use
EH for a fraction of time � N J acts as an effective threat to
ensure the jammer has no interest in actively jamming the
transmission. However, neutralizing the jammer may not be
the overall optimal strategy for the legitimate nodes. A hint for
this is that whenever � N J = � ∗ < �th(P), the transmit power
is pN J < P , which we know is not optimal from Remark 1.

B. Game Formulation and Nash Equilibria

The interaction between the legitimate nodes and the jam-
mer is formalized as a two-player zero-sum game, defined as
the tuple G̃ = {ÃL , ÃJ , ũ (p, �, � )} in which the players are:
player L representing the legitimate nodes (Alice and Bob act
as a single player) on one side, and player J, the jammer,
on the other. The action (p, � ) of player L lies in the set
ÃL = [0, P] × [0, 1], and the action � of player J lies in the
set ÃJ = [0,�]. The objective of player L is to maximize the
SKG utility ũ(p, �, � ) given in (11), whereas player J aims at
minimizing it.

The two players are adversaries and the optimal strategy
of one player depends on the choice of their opponent and
cannot be determined unilaterally. In such interactive situa-
tions, the NE [32] is the natural solution concept. Intuitively,
a profile (pN E , � N E , � N E ) ∈ ÃL × ÃJ is a NE if none of
the players can benefit by deviating from this profile knowing
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that their opponent plays accordingly. Hence, NEs are system
states that are stable to unilateral deviations.

We can easily check that the state (pN J , � N J , 0) is not a NE
since the legitimate nodes gain by deviating from it. Knowing
that the jammer stays silent, player L can increase the SKG
utility by deviating to � = 0. Using the whole duration T in
SKG mode increases the utility when no energy is harvested
in the EH phase. This, in turn, will cause also the jammer to
deviate from � = 0 and actively jam the transmission.

Theorem 1 shows that the game G̃ has at least one NE at
which both players transmit with maximum power. This NE
may be unique or not, depending on the system parameters.

Theorem 1: The game G̃ has at least one NE. Moreover, the
profile (P, � N E ,�) is a NE solution such that the EH strategy
is either � N E = 0 or � N E = min{�th(P), �max } with �th(P) =
P
� and �max ∈ (0, 1) representing the critical maximum point
of ũ(P, �,�) w.r.t. � , depending on the system parameters. If
� N E < �th(P), then the profile (P, � N E ,�) is the unique NE
of the game almost surely.

The proof is detailed in Appendix VI-B. We observe that,
at the NE above (P, � N E ,�) and depending on the system
parameters, player L may harvest energy for a fraction of time
� N E ≤ � N J or not at all � N E = 0. Intuitively, not using the
SKG mode for the entire transmission symbol (for example to
neutralize the jammer) becomes too costly at high SIR when
the jamming interference is relatively low or negligible.

Concerning the uniqueness of the NE, the only case in
which the states (P, 0,�) and (P, min{�max , �th},�) can both
be NEs is when the provided utilities are identical, i.e.,
ũ(P, 0,�) = ũ(P, min{�max , �th(P)},�) in addition to the
constraint on the system parameters 1 + � 2� ≥

√
2� 2

H P (see
Appendix VI-B). However, we argue that such an equality
condition on the system parameters can only happen in very
special cases, otherwise stated, with zero probability (on a
continuous sample space).

Furthermore, whenever player L chooses a strategy of the
form (P, �th(P)) at the NE, the jammer becomes indiffe-
rent between all their possible transmit powers in [0,�]
(as per Remark 2). Hence, in such cases, the strategy profile
(P, �th(P),�) may not be the unique NE.

Theorem 2: If the legitimate nodes’ NE strategy in
Theorem 1 is such that � N E = �th(P), the game G̃ may
have other solutions of the form (P, �th(P), � N E ) with
� N E ∈ (0,�). More precisely, any strategy of the form
(P, �th(P), � N E ) with � N E ∈ (0,�) meeting the additional
condition arg max�∈[0,1] ũ(P, �, � N E ) = �th(P) is also a
NE of the game. All such NEs provide identical utility to
ũ(P, �th(P),�).

The proof and the detailed system conditions under which
the game may have other NEs of the type (P, �th(P), � N E )
with � N E ∈ (0,�) aside from (P, �th(P),�) is provided
in Appendix VI-B. These NEs may exist with non-zero
proba-bility since the additional condition depends on the
variable � N E ∈ (0,�) and not only on the system
para-meters, as opposed to the condition entailing that
(P, 0,�) and (P, min{�max, �th},�) are both NEs. It suffices
that arg max�∈[0,1] ũ(P, �, � N E ) = �th(P) holds for a single
value of � N E ∈ (0,�) to entail the existence of such NEs.

Apart from providing a complete NE analysis, the existence
of the NEs in Theorem 2 is not very relevant in practice. First,
whenever they exist, the utility at such NEs is identical to the
utility of the NE profile: (P, �th(P),�) in Theorem 1. Second,
given Remark 2, the jammer can be assumed to restrict their
strategy space from [0,�] to the discrete choices {0,�} with
no loss of optimality. Assuming ÃJ = {0,�}, the resulting
game G̃ has a unique pure-strategy NE (almost surely) which
is given in Theorem 1.

As a last result, it turns out that neutralizing the jammer (NJ)
in Proposition 1 incurs a non-trivial cost and the obtained
utility is lower or equal to the NE utility.

Proposition 2: The SKG utility obtained when neutralizing
the jammer (NJ) can never be greater that the utility at the
NE. Both utilities are equal, if and only if � N E = �th(P).

Proof: Since (P, � N E ) = arg maxp,� ũ(p, �,�),
from the NE’s best-response property, we have that
ũ(pN J , � N J ,�) ≤ ũ(P, � N E ,�). From Remark 2, we have
that ũ(pN J , � N J ,�) = ũ(pN J , � N J , 0) (the jammer is
indifferent between all its choices) and we obtain that
ũ(P, � N E ,�) ≥ ũ(pN J , � N J , 0). Intuitively, when searching
for the NJ state in Proposition 1 the additional condi-
tion that the jammer has to be neutralized (i.e., p =
pth(� )) restricts the feasible set of all pairs (p, � ) which
results in an optimality loss compared to the NE. Notice
that max� ũ(pth(� ), �, 0) ≡ max� ũ(pth(� ), �,�). This fur-
ther implies that, if � N E = �th(P), the aforementioned
restriction is optimal and (pN J , � N J ) = (P, � N E ) which
proves the direct implication of the second claim. The
hypothesis of the reverse implication: ũ(pN J , � N J , 0) =
ũ(P, � N E ,�) implies that � N E = �th(P) and, thus,
ũ(pN J , � N J , 0) = ũ(P, � N E , 0). From Appendix VI-A, the
function ũ(pth(� ), �, 0) has a unique maximizer w.r.t � ∈
[0, �th(P)] given by � N J which results in that (pN J , � N J ) =
(P, � N E ).

C. Stackelberg Equilibrium

After investigating the NE solution of the strategic inter-
action in which the legitimate nodes and the jammer choose
their optimal strategies simultaneously, a natural rising issue is
whether the solution of the game changes assuming a hierarchy
in the players’ choices [20], [22], [32]. To tackle this issue,
we study the SE and compare it to the NE and the jammer
neutralization (NJ) states in Sec. III-B and III-A, respectively.
We assume that the leader of the game L is playing first
by choosing their best action (pS E, � S E ) while anticipating
the response of player J. The follower, player J, observes the
choice of the leader and reacts optimally (or best-responds)
by choosing � S E .

To be specific, for an arbitrary choice of player L (p, � ),
the best-response of the jammer is defined as:

� B R(p, � ) = arg min
�∈[0,�]

ũ(p, �, � ). (17)

The leader, anticipating the jammer’s reaction described above,
can choose their optimal strategy as follows

(pS E , � S E ) = arg max
p,�

ũ(p, �, � B R(p, � )). (18)
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The optimal strategy of the jammer is the best response
� S E = � B R(pS E , � S E ) given the optimal leader’s strategy
above. The solution is described in the next Theorem.

Theorem 3: Assuming the hierarchy described above,
if � N E < �th(P) where � N E is given in Theorem 1, the SE of
the game G̃ is unique (almost surely) and identical to the NE
(P, � N E ,�). Otherwise, if � N E = �th(P), both the NJ state
in Proposition 1 and the NE (P, � N E ,�) are SE solutions
providing identical SKG utility.

The proof is included in Appendix VI-C. Notice that in
all possible cases � N E ≤ �th(P) (see Theorem 1). The above
result shows that neutralizing the jammer is a rational solution
when the strategic decisions are not taken simultaneously and
the legitimate nodes play first. However, since the NJ state
cannot provide a strictly better utility than the NE state (see
Proposition 2), the hierarchical play does not bring an actual
benefit to player L when compared with the NE.

Finally, we note that as opposed to the NE, the SE requires
the leader to be able to anticipate precisely the response of
the follower. For this reason, the leader cannot actually choose
a strategy such that p = pth(� ) which renders the follower
indifferent between all its actions � ∈ [0,�] (and may choose
any jamming power in an unpredictable way). A simple way
to overcome this issue is for the leader to transmit at p =
pth(� ) − � whenever it wants to silence the jammer (at the
NJ), and to transmit at p = pth(� ) + � whenever it wants
the jammer to transmit at full power (at the NE), with � > 0
and � ≪ 1 chosen arbitrarily small, with little or no practical
impact. Furthermore, this also the excludes other SE solutions
(e.g., the NEs in Theorem 2 cannot be SEs).

IV. CHANNEL HOPPING VS. POWER SPREADING

IN BF AWGN CHANNELS

If the legitimate nodes do not have EH capabilities, we
investigate yet another way to defend against jamming by
assuming that the legitimate nodes can employ channel hop-
ping or power spreading strategies over multiple orthogonal
subcarriers. For this, we generalize the system model (6)
and (7) to an N-BF AWGN channel. Alice’s and Bob’s
observations on the i -th subcarrier – denoted by ŶA,i and ŶB,i
respectively – are expressed as:

ŶA,i = √
pi Hi + √

�i G A,i + Z A,i , (19)

ŶB,i = √
pi Hi + √

�i G B,i + Z B,i , (20)

where the fading coefficient in the link between Alice and Bob
on the i -th subcarrier is denoted by Hi , in the link between
Eve and Alice by G A,i and in the link between Eve and Bob
by G B,i . We assume that the fading coefficients are i.i.d.
Gaussian random variables with Hi ∼ N

�
0, � 2

H

�
, G A,i ∼

N
�
0, � 2

A

�
and G B,i ∼ N

�
0, � 2

B

�
. Notice that the fading

coefficients are assumed to have the same statistics. This
assumption is justified, since, broadly speaking, narrowband
fading depends on the bandwidth (which is the same for all
subcarriers) and not on the central frequency (unlike wideband
fading or large scale fading) [33]. Furthermore, the noise
variables Z A,i and Z B,i are assumed to be i.i.d. Gaussian zero
mean unit variance random variables. Finally, Alice and Bob

exchange constant probe signals [8] with power pi and that
Eve transmits constant jamming signals [14] with power �i
on the i -th subcarrier so that the following average power
constraints are satisfied2 [16], [18]:

1
N

N�

i=1

pi ≤ P,
1
N

N�

i=1

�i ≤ �. (21)

Given the above model, an easy calculation reveals that the
SKG capacity over the i -th subcarrier can be expressed as a
function of pi and �i as:

C(pi , �i ) = I (ŶA,i ; ŶB,i)

= 1
2

log2

�

�1 + � 2
H pi

NA,i + NB,i + NA,i NB,i

� 2
H pi

�

�,

with

NA,i = 1 + � 2
A�i , NB,i = 1 + � 2

B�i . (22)

In order to evaluate the overall SKG capacity, we formalize
the channel hopping vs. power spreading techniques similarly
to [16] and [18]. When channel hopping is employed, all of
the available power is used to transmit on a single randomly
chosen subcarrier i . Therefore, when the legitimate nodes
employ channel hopping on subcarrier i , then pi = N P and
pk = 0 for k ̸= i , while when the jammer hops on subcarrier
i then �i = N� and �k = 0, k ̸= i . On the other hand,
when power spreading is used, the available power is equally
distributed across all subcarriers so that pi = P and �i = �
∀i ≤ N .

When transmitting over the entire spectrum, the choice of
the uniform power allocation is motivated by the fact that the
nodes do not know their actual channel gains and that their
statistics are identical across all frequency carriers. Moreover,
assuming that player L transmits with uniform power allo-
cation and from the convexity of the SKG function in (22)
w.r.t. �i , it turns out that the uniform power allocation for
the jammer is optimal and minimizes the overall SKG utility.
More general power allocation policies can be considered in
future investigations.

From an implementation point of view for the proposed
channel hopping and power spreading strategies, we consider
that an OFDM transmitter with a standard inverse fast Fourier
transform (IFFT) block is employed. In channel hopping
mode, all but a randomly chosen IFFT input are set to
zero. No coordination regarding the chosen channel hopping
or spreading options is required between transmitting and
receiving terminals. This is possible if wideband reception
is employed by all parties, allowing transmitting terminals
to independently choose their strategies without coordination
with the receiving terminals. Such a wideband reception of
the N orthogonal subcarriers can be efficiently implemented
using a standard FFT based OFDM receiver.

Using this framework in the following, for Alice and
Bob the probability of channel hopping on subcarrier i is

2Using constant probe signals preserves the Gaussianity of the inputs√
pi Hi ,

√
�i G A,i and

√
�i G B,i , which is optimal for the legitimate nodes

and the jammer in our AWGN setting.
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denoted by �i ∀i ≤ N , while �N+1 denotes the probability
of spreading the available power uniformly over the whole
spectrum. Similarly, we define �i for the jammer. Since
� = [�1, . . . ,�N+1] and � = [�1, . . . ,�N+1] are discrete
probability distributions, we have the constraints � j ≥ 0,
∀ j ,

�N+1
i=1 �i = 1, � j ≥ 0, ∀ j , and

�N+1
i=1 �i = 1.

Given the above, the SKG capacity over the N orthogonal
subcarriers is given by:

û(�,�) = 1
N

� N�

i=1

{�i (1 − �i − �N+1)C(N P, 0)

+ �i�i C(N P, N�) + �i�N+1C(N P,�)

+ �N+1�i [(N − 1)C(P, 0) + C(P, N�)]}
+ �N+1�N+1 NC(P,�)

�
, (23)

where the normalization 1
N accounts for measuring the SKG

capacity in bits/s/Hz. In (23), the first term corresponds to
the case in which Alice (resp. Bob) hops on subcarrier i and
the jammer hops on a different subcarrier; the second term
to the case in which Alice (resp. Bob) and the jammer both
hop on subcarrier i ; the third term to the case in which Alice
(resp. Bob) hops on subcarrier i and the jammer spreads; the
fourth term to the case in which the Alice (resp. Bob) spreads
and the jammer hops on subcarrier i . Finally, the last term
corresponds to the case in which they both spread their power.

A. Game Formulation and Nash Equilibria

We model the competitive interaction between
player L and J as the following zero-sum game
Ĝ = {ÂL , ÂJ , û(�,�)}, where the payoff û(�,�) is given
in (23). The action sets of the players are the probabilities of
channel hopping and power spreading:

ÂL =
�

� ∈ [0, 1]N+1

�����

N+1�

i=1

�i = 1

�

,

ÂJ =
�

� ∈ [0, 1]N+1

�����

N+1�

i=1

�i = 1

�

.

As we have argued in the previous section, the natural solution
in such a strategic interaction without cooperation among the
opponents is the NE.

To derive the game’s NE, let us introduce a finite discrete
game Ĝ

D = {ÊL, ÊJ , û(�,�)} with action sets defined as
ÊL ≡ ÊJ = {e1, . . . , eN , e(N+1)}, where ei ∈ {0, 1}N+1 is
the canonical vector containing 1 on the i -th position and 0
otherwise. The i -th action ei represents channel hopping on
subcarrier i for all i ≤ N and eN+1 represents spreading
the power across the spectrum. Such finite discrete games
always have at least one NE in mixed strategy (�∗,�∗)
[32, Sec. 1.3.1]. We observe that our game Ĝ represents the
mixed strategy extension of Ĝ

D and thus Ĝ has at least one NE.
Corollary 1 [32, Th. 1.1]: Game Ĝ has at least one NE.
To compute the NEs, one possibility is to use the Minimax

Theorem of von Neumann and Morgenstern [34] which allows
us to compute mixed NEs of any two-player zero-sum game
via linear programming (i.e., by solving two dual linear

optimization problems). In our case, we show that the NEs can
be characterized in an analytical closed-form manner without
the need of solving any optimization problem. To this aim, an
alternative characterization of the NE (see Definition 1.2 in
[32, Sec.1.2.1]) is used:

Definition 1: A strategy profile (�∗,�∗) ∈ ÂL × ÂJ is a
NE of the game Ĝ if the following hold:

i) both players are indifferent among the pure actions that
are played with positive probability at the NE

û(�∗, ei ) = û(�∗, ek), ∀i, k,∈ IJ ,

û(ei ,�
∗) = û(ek,�

∗), ∀i, k,∈ IL,

ii) the pure actions that result in strictly smaller payoffs are
played with zero probability at the NE

if û(�∗, ei ) < û(�∗, ek), i ∈ IJ , then k ∈ NJ ,

if û(ei ,�
∗) > û(ek,�

∗), i ∈ IL , then k ∈ NL ,

where the sets NL ,IL ⊆ {1, . . . , N + 1} denote, respectively,
the indices of the pure actions that are not played at the NE
and those that are played at the NE by player L: NL = {i |�∗

i =
0}, IL = {1, . . . , N + 1} \ NL; similarly, the sets NJ ,IJ ⊆
{1, . . . , N + 1} denote, respectively, the set of indices of the
pure actions that are not used or are used by player J at the
NE: NJ = {i |�∗

i = 0}, and IJ = {1, . . . , N + 1} \ NJ .
At a first glance, Definition 1 provides a simple way to

compute the NEs of the game Ĝ by solving a system of linear
equations and checking some conditions. Still, in order to
use Definition 1, one would have to know in advance the
faces of the simplex ÂL × ÂJ on which the NEs lie, i.e.,
one would have to know IL , IJ for all NEs. An exhaustive
search has an exponential complexity (the N + 1-simplex has
2N+1 − 1 faces). Nevertheless, the NEs of our game Ĝ have a
special structure which allows us to exploit Definition 1 and
fully characterize the set of NEs in a simple manner.

To characterize the set of NEs as a function of the system’s
parameters we begin by examining the matrix structure of the
discrete game Ĝ

D given in Table I. We notice that there is a
symmetry between the channel hopping strategies. In particu-
lar, the payoff does not depend on the particular index of the
chosen subcarrier but only on whether both players hop on the
same subcarrier or not. This symmetry allows us to show that
the NE of the game Ĝ have a particular structure specified in
the following propositions.

Proposition 3: At the NE (�∗,�∗), a player uses either all
channel hopping actions with non-zero probability or none of
them: either �∗

i = 0, ∀i ≤ N or �∗
i ̸= 0, ∀i ≤ N, and

similarly, either �∗
i = 0, ∀i ≤ N or �∗

i ̸= 0, ∀i ≤ N.
Proposition 4: If both players employ channel hopping

with non-zero probability at the NE, i.e., �∗
i > 0 and

�∗
i > 0 ∀i ≤ N, then the players will hop uniformly across

all channels and the NE will have the following structure:
�∗ = (a, . . . , a, (1 − Na)), �∗ = (b, . . . , b, (1 − Nb)) for
some 0 ≤ a ≤ 1/N, 0 ≤ b ≤ 1/N.

Propositions 3 and 4 are proven in
Appendices VI-D and VI-E. These results shape the special
structure of the NEs of Ĝ, which, alongside Definition 1 and
the strict convexity of C(p, � ) w.r.t. � , allows us to fully
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TABLE I

TWO PLAYER ZERO-SUM DESCRIPTION OF Ĝd

characterize the set of NEs in a very simple and explicit
manner as function of the system parameters.

Theorem 4: The set of NEs of the game Ĝ is characterized
as follows:

1. If C(N P,�) < NC(P,�), then the game has a unique
pure-strategy NE: both players spread their powers,
�∗ = �∗ = eN+1 .

2. If C(N P,�) > NC(P,�), then player L hops and
player J spreads at the NE: �∗ = (�1, . . . ,�N , 0) and
�∗ = eN+1. The NE strategies of player L are given by
the (infinite number of) solutions to the following system
of linear inequalities:

�
���

���

0 ≤ �i ≤ 1, ∀i ≤ N,
�N

j=1 � j = 1,

�i <
C(N P, 0) − C(N P,�)

C(N P, 0) − C(N P, N�)
, ∀i ≤ N.

In particular, the uniform probability over the channels
is one of the NE solutions: �∗ = (1/N, . . . , 1/N, 0). All
NEs are equivalent in terms of achieved utility.

3. If C(N P,�) = NC(P,�), player L employs all
their actions and player J spreads at the NE: �∗ =
(�1, . . . ,�N ,�N+1) and �∗ = eN+1 . The NE strategies
of player L are the (infinite number of) solutions to the
following linear system of inequalities:
�
�������

�������

�i ≥ 0, ∀i ≤ N,
�N

j=1 � j = 1,

�i [C(N P, N�) − C(N P, 0)] + �N+1[(N −1)C(P, 0)

+C(P, N�) − C(N P, 0) + C(N P,�) − NC(P,�)]
> C(N P,�) − C(N P, 0), ∀i ≤ N.

In this case, both players spreading (case 1) is an NE.
Also, player J spreading and player L hopping strategies
(case 2) are all NEs. All NEs are equivalent in terms of
achieved utility.

The proof is provided in Appendix VI-F. We remark that
the NE can be unique and in pure strategies if C(N P,�) <
NC(P,�) and the outcome of the game provides a util-
ity equal to û(�∗,�∗) = C(P,�). On the contrary, if
C(N P,�) ≥ NC(P,�), there are an infinite number of
NEs which are generally in mixed strategies. All these NEs
are equivalent in terms of achieved utility, which equals
û(�∗,�∗) = 1

N C(N P,�). Hence, the outcome of the game
can be predicted without the need for implementing iterative
or learning procedures.

Theorem 4 also shows that the optimal strategy for the
jammer is always spreading their power across the entire
spectrum. Intuitively, if the jammer were to use channel

hopping, player L would exploit this fact and would also hop;
this scenario is unfavorable for the jammer as the probability
that both players hop on the same subcarrier equals 1

N2 (due to
Proposition 3, when both players hop at the NE, they use uni-
form probabilities). Thus, the jammer’s payoff from hopping
cannot exceed that gained from spreading, assuming that the
legitimate nodes play their optimal strategy. On the contrary,
for player L the best strategy can be either channel hopping or
power spreading depending on which option provides higher
utility against a spreading jammer.

B. Stackelberg Equilibrium

In Sec. III-C, we have shown that the hierarchy of play
among the adversaries does not bring an advantage to the
legitimate nodes assuming they have EH capabilities. Here, we
investigate whether this remains true in N-BF AWGN systems
in which the players choose between channel hopping and
power spreading strategies. The leader, player L, is assumed
to play first and to choose �S E anticipating the jammer’s
response. The follower, player J, observes �S E and best-
responds by choosing �S E .

More precisely, the best-response of the jammer for an
arbitrary choice of � is defined as: � B R(�) =
arg min� û(�,�). Thus, the leader chooses their optimal
strategy as follows

�S E = arg max
�

û(�,� B R(�)) (24)

and the resulting best-response or SE strategy of the jammer
is �S E = � B R(�S E ).

To characterize the SE in closed-form, we use a similar
approach as for the NE: we show first that the leader’s strategy
at the SE has a special form described below. Then, we exploit
this structure to provide the SE solution.

Proposition 5: At the SE, the legitimate player uses either
all hopping strategies with uniform probability or none of
them, i.e., �S E = (a, . . . , a, 1 − Na) for some a ∈ [0, 1/N].

The proof is provided in Appendix VI-G. The above struc-
ture of �S E allows us to analyze the optimal response of the
jammer �S E and to prove that, in all cases, the jammer’s best
strategy is to spread: �S E = (0, . . . , 0, 1). On the other hand,
depending on the channel parameters, the leader will either
channel hop or spread their power, identically to the NE.

Theorem 5: The set of SEs of the game Ĝ is identical to
the set of NEs.

The proof is provided in Appendix VI-H. Therefore, the
legitimate nodes do not gain in utility by choosing first their
strategy as opposed to the NE where both players choose their
strategies simultaneously.
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Fig. 2. Relative utility gain at the NE vs. NJ E = (C N E − C N J )/C N E as
a function of P/� ≥ 0 for � = 0.7.

V. NUMERICAL ILLUSTRATIONS AND DISCUSSION

In this Section, several representative illustrations are cho-
sen allowing the deduction of generic conclusions that carry
over most setups. The benchmark setting is chosen as follows:
unit jamming power � = 1, unit variance Rayleigh channel
coefficients � 2

A = � 2
B = � 2 = � 2

H = 1.

A. EH at the Legitimate Nodes

We start by evaluating the SKG capacity at the NJ in
Proposition 1 and NE in Theorem 1 as functions of the
system parameters for a harvesting efficiency � = 0.7.
In Fig. 2, the relative gain in utility obtained at the NE
(C N E = ũ(P, � N E ,�)) compared with the NJ (C N J =
ũ(pN J , � N J , 0)) defined by E , C N E −C N J

C N E , is depicted as
a function of the signal to interference ratio (SIR) P/� for
different values of � 2 and � 2

H . In the investigated settings,
the NJ strategy never outperforms the NE in terms of utility,
which is consistent with Proposition 2. When the SIR P/�
is relatively low, both the NE and the NJ provide identical
utilities. In this case, pN J = P and � N J = � N E = �th(P),
the jammer is indifferent between {0,�} and both states are SE
solutions. With increasing SIR P/�, it is no longer optimal
for the legitimate nodes to harvest energy for a fraction of
time �th(P) in order to neutralize the jammer. Instead, by
limiting the duration of EH to � N E = �max < �th(P) the
SKG capacity increases in spite of the full power jamming
� = � and only the NE is also a SE solution. Moreover, as
the SIR increases, e.g., for P/� ≫ 1, the legitimate nodes
should not harvest energy at all as the jammer’s interference
is relatively negligible.

Notice that Fig. 2 also illustrates the SE solution described
in Theorem 3. Indeed, at low SIR, when both NE and NJ
provide equal SKG capacity, they are both SE solutions.
At high SIR, the SE is unique and identical to the NE.

Subsequently, we evaluate the impact of the EH capability
on the SKG capacity at the NE. The relative gain in utility
obtained at the NE compared with the case in which there
is no EH capability C NoE H = ũ(P, 0,�) = C(P,�),
defined as F , C N E −C NoE H

C N E , is depicted as a function of

Fig. 3. Relative utility gain at the NE vs. no EH: F = (C N E −CnoE H )/C N E

as a function of P/� ≥ 0.

P/� in Fig. 3. The benchmark setup is considered and the
different curves correspond to harvesting efficiencies � ∈
{0.1, 0.3, 0.5, 0.7, 0.9}. At low SIR, F decreases with the
harvesting efficiency � . Although counter-intuitive, this is
explained by the fact that, at the NE, the harvesting period
� N E = �th(P) = P/� decreases in � in this regime. The peaks
represent the transition points to the second regime, in which
harvesting energy at the threshold is no longer optimal and
� N E = �max < �th(P). Also, as the SIR increases, the curves
progressively switch ranks and F becomes increasing in � as
expected. For P/� = 1 and � = 0.3 the gain in using EH is
around 30 % while it increases to 40 % for � = 0.7. At low
SIR P/� the gain observed can reach 90 %, while at the
high SIR it is negligible: in the third regime � N E = 0, as
harvesting energy becomes time-consuming and inefficient in
terms of SKG capacity.

Finally, the relative utility F defined above is depicted in
Fig. 4 for � = 0.7 and various channel parameters. For low
SIR P/�, there is a significant gain in utility when employing
EH. This gain becomes significantly large at very low SIR,
exceeding 97.5 % when the legitimate nodes experience poor
channel conditions as opposed to the jammer. When both
parties experience similar channel conditions the gain is in
the range of 60 % in the medium SIR. Overall, the numer-
ical results demonstrate that using EH as a counter-jamming
technique is of particular interest in the low and medium SIR
regimes but, as expected, does not increase the utility in the
high SIR. The peaks represent here as well the transition from
the � N E = �th(P) regime (at low SIR) to the second regime
in which � N E = �max < �th(P).

B. Channel Hopping vs. Power Spreading

First, we analyze the NE as function of N and the ratio P/�
for the benchmark scenario in Fig. 5. There exist two regions
delimited by the curve C(N P,�) = NC(P,�): a region in
which the NE is unique and both players spread their power,
and a region in which the jammer spreads their power and the
legitimate nodes employ channel hopping.

Player L hops at the NE below the curve, when the SIR
P/� is relatively small. This is intuitive since, in the low
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Fig. 4. Relative utility gain at the NE vs. no EH: F = (C N E−CnoE H )/C N E

as a function of P/� ≥ 0 for � = 0.7 and different channel parameters.

Fig. 5. NE regions as a function of P/� ≥ 0 and N ≥ 2 for � = �2
A =

� 2
B = � 2

H = 1.

transmit power regime, the legitimate nodes should avoid as
much jamming interference as possible by transmitting on a
single subcarrier, which also means that their available power
is concentrated on a single channel.

In Fig. 6, the NE regions are illustrated for different channel
parameters. When � 2

H increases, the region in which player L
should employ channel hopping at the NE shrinks down while
when � 2

A, � 2
B increase, this region expands.

In Fig. 7, the relative gain obtained by player L when
employing the NE strategy as opposed to a naive hopping
strategy is depicted. The relative utility gain DH = (uN E −
u Hop,Spread)/uN E , where u Hop,Spread = 1/NC(N P,�) is
relatively large (up to 80%) in the high SIR regime, in which
case the optimal strategy for player L is to use the entire
spectrum in spite of the jammer’s interference.

Finally, in Fig. 8, the relative utility gain when using the NE
strategy over N subcarriers as opposed to a single subcarrier
(usingle = C(P,�)) is investigated for � = � 2

H = � 2
A =

� 2
B = 1 as a function of P/� for N ∈ {2, 4, 8, 16, 32, 64}.

At low SIR, when the channel hopping strategy is optimal for
the legitimate nodes, the higher the number of subcarriers N ,
the lower the jammer’s interference in each subcarrier, and

Fig. 6. NE regions as a function of P/� ≥ 0 and N ≥ 2 for � = 1 and
different channel parameters.

Fig. 7. Relative utility gain between the NE vs. always hopping: DH =
(u N E − u H op,Spread )/u N E as a function of P/� for N = 32, � = 1 and
different channel parameters.

hence, the higher the SKG capacity. At last, in the high SIR
regime, when spreading is optimal the SKG utility becomes
C(P,�), which is identical to transmitting over a single
channel with powers P and �.

Remark that all figures illustrating the NE, in this subsec-
tion, also illustrate the SE solution, since the SE is identical
to the NE as per Theorem 5.

C. Discussion and Perspectives

We discuss here the differences and similarities between
the two approaches: a) EH at the legitimate nodes, and b)
employing channel hopping or power spreading techniques.

EH at the legitimate nodes enables them to completely
neutralize the jammer. By harvesting the jamming power in
a first phase and exploiting it for SKG in a second phase, the
jammer’s attacks may increase the SKG capacity; in this case,
the jammer should not launch the attack, i.e., it is neutralized.
However, it is not always optimal for the legitimate nodes
to neutralize the jammer. Indeed, using EH can reduce the
SKG capacity since, for a non-trivial fraction of time, there is
no secret bits generation; when the jammer is neutralized the
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Fig. 8. Relative utility gain between the NE vs. single channel SKG: D1 =
(u N E − usingle )/u N E as a function of P/� for � = � 2

H = � 2
A = � 2

B = 1
and N ∈ {2, 4, 8, 16, 32, 64}.

penalty in terms of utility might become too high, depending
on the system parameters (e.g., high SIR regime). In such
cases, the obtained utility at the NE is strictly higher than the
one at the NJ state.

On the other hand, in the case of BF AWGN channels
(i.e., in systems with multiple orthogonal subcarriers), the idea
is to use channel hopping in a random fashion and avoid
most of the jammer’s interference as opposed to completely
neutralizing it. Since potential jammers cannot predict the
subcarrier used by the legitimate nodes, they will always
spread their powers over the entire spectrum: the larger the
number of subcarriers, the smaller the jammer’s interference
on each subcarrier. However, channel hopping is not always
optimal since only a fraction of the entire spectrum is used for
SKG. Depending on the system parameters (high SIR), it can
be preferable for the legitimate nodes to spread the available
power across the entire spectrum rather than concentrate it on
a single subcarrier. In this case, the SKG capacity (measured
in bits/s/Hz) is identical to that of single channel with the same
average power constraints.

In the critical cases of low and medium SIR regimes
(P/� < 1), both approaches turn out to be advantageous in
terms of SKG capacity compared to a single channel SKG
system without EH capabilities; the gains in SKG capacity
depend on the harvesting duration or the number of subcarri-
ers N . On the contrary, in the high SIR regime (P/� ≫ 1),
the jammer’s impact and interference become relatively low
or even negligible and the cost of counter-jamming mea-
sures might not be justified compared to simply tolerating it.
However, the interesting cases are indeed the former ones in
which the jamming power is higher or of the same order as
the legitimate nodes’ transmit powers, in which overcoming
the attack becomes critical.

For both approaches it turns out that a hierarchical decision
model that in principle could favor the legitimate nodes
compared to a simultaneous decision model does not bring
an actual benefit. Indeed, the SKG utility obtained at the SE
is identical to the SKG utility at the NE (even though the set

of SEs is not necessarily identical to the set of NEs as in the
EH approach).

Several questions arise for future work. First, an interesting
issue would be to study reactive vs. proactive jamming [35]
as well as the joint use of EH and multi-carrier transmission
against jamming attacks. Second, in the EH case, the study of
more realistic models accounting for finite storage capabilities,
asymmetries in the legitimate nodes’ parameters and EH at the
jammer side, are interesting future extensions. Moreover, the
study of multi-user and multi-jammer interactions as well as
games of incomplete information are challenging open issues.

VI. CONCLUSIONS

In this work, the adversarial interaction between a pair
of legitimate nodes and a malicious jammer in a wireless
secret key generation (SKG) framework was investigated.
Two different counter-jamming approaches were proposed
and studied. First, energy harvesting at the legitimate nodes,
and, second, channel hopping vs. power spreading in block
fading AWGN channels. In either approach, a zero-sum game
was introduced as the objectives of the two parties involved
were opposed. Complete characterizations of the Nash and
Stackelberg equilibria in closed-form were provided in both
cases. It was demonstrated that either approach may offer
significant gains in utility, particularly in the low signal-to-
interference ratio regime, in which counteracting the jamming
interference becomes crucial. As a result, viable and low
complexity alternatives for defending SKG systems may be
developed by exploiting either novel transceiver features or
available spectral resources.

APPENDIX

A. Proof of Proposition 1

Let us assume that the legitimate nodes neutralize the
jammer by transmitting at power p ∈ [0, min{pth(� ), P}].
The jammer observes player L’s choice and from Remark 2,
decides to stay silent. Notice that player L can force the jam-
mer to remain silent by transmitting at p ∈ [0, min{pth(� ) −
�, P}] for an arbitrarily small � > 0. For simplicity, � ≃0 is
assumed in the following.

The remaining question is: how will player L choose
� ∈ [0, 1) and p ∈ [0, min{pth(� ), P}] to maximize the
resulting SKG utility

ũ(p, �, 0) = 1 − �

2
log2

�

�1 + p� 2
H

2(1 − � ) + (1−� )2

p� 2
H

�

�, (25)

while ensuring that the jammer stays silent and cannot
decrease the utility by transmitting with non-zero power?
Since the feasible set of p depends on � , we first have to
find the maximum of ũ(p, �, 0) w.r.t. p for any fixed � . The
function ũ(p, �, 0) is strictly increasing in p and, hence, the
optimal power is given by p̃(� ) = min{P, pth(� )}. Now, we
need to maximize ũ( p̃(� ), �, 0) w.r.t. � ∈ [0, 1]:

ũ(pth(� ), �, 0) = 1 − �

2
log2

�

�1 + � �� 2
H

(2 + 1−�
��� 2

H
)(1 − � )

�

� .
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At the extremes � = 0 and � → 1 the utility goes to zero.
By investigating its second order derivatives w.r.t. � , which
amounts to the following quadratic equation:

(1 − � )2 − 2� 4
H � 2� 2 = 0, (26)

it can be shown that ũ(pth(� ), �, 0) always has an inflexion
point in between (0, 1) and starts as convex and then becomes
concave. Knowing that the the utility is always positive, we can
conclude that ũ(pth(� ), �, 0) has a unique critical point that
is the global maximizer � ∗ ∈ (0, 1) and which is the solution
to dũ(pth (� ),�,0)

d� = 0. This implies that, if pth(� ∗) ≤ P , then
the optimal solution that neutralizes the jammer is � N J = � ∗

and pN J = pth(� ∗). If pth(� ∗) > P (or equivalently � ∗ >
�th(P)), then the optimal solution that neutralizes the jammer
is pN J = P and � N J = �th(P) = P

� .

B. Proof of Theorem 1 and Theorem 2

From Remark 1, we know that transmitting at maximum
power is a strictly dominant strategy for player L and, hence,
pN E = P . We first prove that at the NE, player L will not
operate in EH mode for longer than the threshold �th(P). Let’s
suppose by absurdum that � N E > �th(P), then the jammer’s
best response would be to remain silent � N E = 0 (as the
energy harvested from the jammer in the EH phase is enough
to overcome the interference inflicted by the jammer in the
SKG phase). Then, the optimal � N E maximizing the utility
ũ(P, �, 0) (which is decreasing in � ) would be � N E → �th(P)
obtaining the utility ũN E → ũ(P, �th(P), 0). However, this
state cannot be an NE. Indeed, if the jammer stays silent
� N E = 0, no energy is harvested during � N E and player L
gains in utility by deviating to � = 0. This will also cause the
jammer to deviate to � = �.

The above implies that player L can only choose an EH
strategy such that � N E ≤ �th(P) at the NE. This condition is
equivalent to P ≥ pth(� N E ), which means that the utility is
either decreasing or simply a constant in � (see Remark 2).
This further implies that if the jammer uses maximum power
� N E = �, then it cannot benefit by deviating unilaterally.
Hence, to find the NE of the form (P, � N E ,�), we only need
to find the optimal value or values of � ∈ [0, �th(P)] that
maximizes the function ũ(P, �,�) given by:

ũ(P, �,�) = 1 − �

2
log2

�

���1 +

�
P

1−� + ��
�

� 2
H

2(1 + � 2�) + (1+� 2�)2
�

P
1−� +��

�
� 2

H

�

���,

where � depends on � : �(� ) = ��� 2

1−� . At � = 0, this
function is strictly positive ũ(P, 0,�) > 0 equal to the SKG
capacity without EH and, when � → 1 the function goes
to 0. By investigating the second order derivative of ũ(P, �,�)
w.r.t. � , which amounts to the analysis of the following
quadratic equation

(1 − � )2(1 + � 2�)2 − 2� 4
H (P + � 2��� )2 = 0, (27)

two different cases arise:
- Case A: If 1+� 2� ≥

√
2� 2

H P , this function has a unique
inflexion point that lies in (0, 1) and the function starts as

convex and then becomes concave. Thus, ũ(P, �,�) has a
critical point that is a local maximum �max ∈ (0, 1), which is
a solution of the equation dũ(P,�,�)

d� = 0. Hence, the optimal
strategy is given by either the maximal point �max or by one
(or both) of the borders of the interval [0, �th(P)] depending
on the system parameters:

� N E = arg max
�∈{0,min{�th (P),�max }}

ũ(P, �,�). (28)

- Case B: If 1 + � 2� <
√

2� 2
H P , then the function is

always concave (and it does not have an inflexion point)
in (0, 1). If the function has a critical point in (0, 1), then
this critical point is a maximum point denoted by �max and
� N E = min{�th(P), �max }. Otherwise, the function is concave
decreasing and � N E = 0.

Remark that, at least in theory, Case A can lead to the exis-
tence of two NEs whenever the additional equality condition
is met: ũ(P, 0,�) = ũ(P, min{�th(P), �max },�), i.e., when
both borders of the interval [0, min{�max, �th(P)}] provide
equal maximum utility. However, this can happen only in very
special cases of the system parameters or with zero probability.

Aside from the zero probability case described above, this
profile may not be the unique NE of the game G̃ as there may
exist other NEs such that � N E ∈ [0,�). Such cases can only
happen if the strategy of player L at the NE equals (P, �th(P))
or equivalently if (P, �th(P),�) is the above NE. Otherwise,
whenever � N E < �th(P), the utility is strictly decreasing in
� and the only strategy of the jammer at the NE is � (case
discussed previously).

Now, whenever the legitimate user chooses their strategy
(P, �th(P)), the jammer becomes totally indifferent between
all their strategies and, in particular, all jamming powers in
[0,�) provide the same utility (see Remark 2). Hence, in this
case, there may be other NEs aside from (P, �th(P),�) that
provide identical utilities to ũ(P, �th(P),�). We can disregard
the state (P, �th(P), 0) for the same reasons for which the NJ
state is not a NE.

In order to find all NE of the form (P, �th(P), � N E ),
we need to find all � N E ∈ (0,�) such that the legitimate user
cannot deviate from (P, �th(P)) or it will lose in terms of
utility. Stated otherwise, all � N E ∈ (0,�) such that �th(P) =
arg max� ũ(P, �, � N E ) provide additional NE profiles of the
form (P, �th(P), � N E ).

The analysis of the utility ũ(P, �, � N E ) as a function of �
is very similar to ũ(P, �,�) above. There are two cases in
function of the system parameters.

- Case A: If 1 + � 2� ≥
√

2� 2
H P , for all � N E ∈�√

2� 2
H P−1
� 2 ,�

�
, the function ũ(P, �, � N E ) has a unique

inflexion point that lies in (0, 1) and starts as convex and then
becomes concave. Thus, ũ(P, �, � N E ) has a critical point that
is a local maximum �max(� N E ) ∈ (0, 1), which is a solution
of the equation dũ(P,�,� N E )

d� = 0. The additional conditions for
the strategy (P, �th(P)) to be optimal for player L are:

�th(P) ≤ �max(�
N E )

ũ(P, 0, � N E ) ≤ ũ(P, �th(P), � N E ) (29)
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- Case B: If 1 + � 2� <
√

2� 2
H P , for all � N E ∈�

0,
√

2� 2
H P−1
� 2

�
, the function ũ(P, �, � N E ) is always concave

in � ∈ (0, 1). If the function has a critical point in (0, 1), then
this critical point is a maximum point denoted by �max(� N E ).
The additional condition for the strategy (P, �th(P)) to be
optimal is �th(P) = �max(� N E ). Otherwise, the function is
concave decreasing in � and (P, �th(P)) cannot be optimal
for player L.

C. Proof of Theorem 3

Let us first find the best-response of the jammer defined
in (17). Given the second remark, it is easy to see that:

� B R(p, � ) =

�
��

��

0, if p < pth(� )

∈ [0,�], if p = pth(� )

�, if p > pth(� ),

(30)

where pth(� ) = � � . Notice that whenever p = pth(� ) the
best response of the jammer can be anything and cannot in
fact be predicted by player L. However, the obtained payoff
is anticipated by player L as it does not depend on the actual
choice of the jammer: ũ(pth(� ), �, � ) = ũ(pth(� ), �, 0), for
all � .

The SE action of the leader, anticipating that the jammer
will best respond to their own choice is given by:

(pS E , � S E) = arg max
p,�

ũ(p, �, � B R(p, � )) (31)

From (30), we see that player L can either neutralize the
jammer or allow it to transmit, knowing that the jammer will
transmit with full power �. The situation that proves to be
mostly advantageous to the legitimate player will be chosen.

- Case A: Assume the legitimate player neutralizes the
jammer by choosing a strategy such that p ≤ pth(� ). Player
L has to find the best pair (p, � ) that maximizes ũ(p, �, 0)
knowing that p ∈ [0, min{P, pth(� )}] and that � ∈ [0, 1]; the
solution equals (pN J , � N J ) in Proposition 1.

- Case B: Assume now that the legitimate player does not
neutralize the jammer and p ≥ pth(� ). Player L has to find
the best pair (p, � ) that maximizes ũ(p, �,�) knowing that
p ∈ [0, P] ∩ [pth(� ),∞) and � ∈ (0, 1). By fixing � first
and optimizing with respect to p, we have that u(p, �,�) is
increasing in p and hence, the optimal power equals P and the
value of � will be constrained by P ≥ pth(� ) or equivalently
� ≤ �th(P). This analysis is identical to the analysis of the
NE and one possible SE solution is the NE in Theorem 1.

At the SE, the legitimate user will choose one of the
two possibilities which provides a higher SKG utility. From
Proposition 2, we know that the NJ state cannot provide a
strictly higher utility than the NE state. Hence, whenever
� N E < �th(P), the utility of the unique NE is strictly
higher than that of the NJ state. This implies a unique SE
that is identical to the NE. If � N E = �th(P), this means
that (pN J , � N J ) = (P, � N E ) which implies that the utili-
ties at both states NJ and NE are identical. Both the NE
(in Theorem 1) and NJ (in Proposition 1) states are SE
solutions: (P, �th(P),�) and (P, �th(P), 0).

The remaining question is whether there exist other solu-
tions when player L chooses the strategy (pS E , � S E ) =
(P, �th(P)). In this case, the jammer is rendered indifferent
between all of its actions � ∈ [0,�], which means that it is
also rendered unpredictable. As opposed to the NE, the SE
requires the legitimate user to be able to anticipate precisely
the jammer’s response. To avoid this problem, the leader can
silence the jammer by transmitting with power p = P − �
or ensures that the jammer transmits with full power by
transmitting at power p = P + �, where � could be made
arbitrarily small and, hence, has no practical impact. None of
the other NE in Theorem 2 can be SEs, since the jammer’s
response cannot be predictable.

In conclusion, if � N E < �th(P), then the SE is unique and
identical to the NE in Theorem 2. Otherwise, both the NE and
the NJ states are SE solutions.

D. Proof of Proposition 3

Assume by absurdum and WLOG that player J has an
NE strategy such that the first channel is left unused �∗ =
(0,�2, . . . ,�N+1) while other channels are used �i > 0 for
some 2 ≤ i ≤ N . Exploiting this knowledge, player L
will only employ channel hopping on channel 1 and maybe
spreading with non zero probability at the NE. To see this, we
write the expected payoff of player L assuming �1 = 0

2Nû(�∗,�∗)

=
N�

i=2

{�i (1 − �i − �N+1)C(N P, 0)

+ �i�i C(N P, N�) + �i�N+1C(N P,�)}
+ �N+1(1 − �N+1)[(N − 1)C(P, 0) + C(P, N�)]
+ �N+1�N+1 NC(P,�)�1(1 − �N+1)(N − 1)C(N P, 0).

Since C(N P, 0) > C(N P, N�) and there exists some �i > 0,
we have that:

(1 − �N+1)(N − 1)C(N P, 0)

>
�

i ̸=1

[�i C(N P, N�)+(1 − �i − �N+1)C(N P, 0)].

This means that, if the jammer does not use channel 1,
the legitimate ndes will only employ this channel and none of
the other channel hopping strategies and the NE will be of the
form �∗ = (1 − �N+1, 0, . . . , 0,�N+1). The utility becomes:

2Nû(�∗,�∗)
= (1 − �N+1)(1 − �N+1)(N − 1)C(N P, 0)

+ �N+1(1 − �N+1)[(N − 1)C(P, 0) + C(P, N�)]
+ �N+1�N+1 NC(P,�).

But now, if the jammer uses all channel hopping probabilities
back in channel 1, he can strictly decrease the utility. Assume
that the jammer switches from the initial �∗ to � = (1−�N+1,
0, . . . , 0,�N+1). The payoff becomes:

2Nû(�∗, �)
= (1 − �N+1)(1 − �N+1)(N − 1)C(N P, N�)

+ �N+1(1 − �N+1)[(N − 1)C(P, 0) + C(P, N�)]
+ �N+1�N+1 NC(P,�).
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Since û(�∗,�∗) > û(�∗, �), the jammer has an incentive
to deviate from the NE which is a contradiction. Thus, the
jammer uses either all or none of the channel hopping actions.
For player L, the proof follows similarly.

E. Proof of Proposition 4

Let us write the linear equations obtained when the players
are indifferent among their channel hopping actions. There are
four very similar cases depending on whether the players use
spread with zero probability at the NE or not. We only detail
one case here below. If both players use spread at the NE, the
following conditions must be met:

�i C(N P, N�) + (1 − �i − �N+1)C(N P, 0)

+ �N+1[(N − 1)C(P, 0) + C(P, N�)] = c�,

�i C(N P, N�) + (1 − �i − �N+1)C(N P, 0)

+ �N+1C(N P,�) = c� .

The equations in � illustrate that player J becomes indifferent
among their pure channel hopping actions at the NE. Similarly,
the equations in � make player L indifferent among their pure
channel hopping actions at the NE. We remark that all these
equations are identical in the sense that their coefficients do
not depend on the index i of the � and � variables. This means
that their solutions are of the form: �i = a and �i = b for
any i ≤ N . Therefore – irrespective of whether the players
employ or not spreading at the NE – if both players employ
the channel hopping strategy, then the NE takes on the special
form �∗ = (a, . . . , a, (1 − Na)), �∗ = (b, . . . , b, (1 − Nb))
for some 0 ≤ a ≤ 1/N , 0 ≤ b ≤ 1/N .

F. Proof of Theorem 4

If N = 1, the NE analysis is trivial and both players transmit
at full powers (N P, N�). If N > 1 and given the strict
convexity of C(p, � ) in � , we have the following inequality
for all p, �1 ̸= �2 and � ∈ (0, 1):

C(p,��1 + (1 − �)�2) < �C(p, �1) + (1 − �)C(p, �2).

By taking p = P , �1 = 0, �2 = N�,� = N−1
N , we obtain:

NC(P,�) < (N − 1)C(P, 0) + C(P, N�) (32)

Similarly, by taking p = N P , �1 = 0, �2 = N�,� = N−1
N ,

we obtain:

NC(N P,�) < (N − 1)C(N P, 0) + C(N P, N�). (33)

From Proposition 3 and Proposition 4, the NE can only
take nine forms which are not mutually exclusive. Each case
is studied using Definition 1 and for which necessary and
sufficient conditions are provided. Then, using (32) and (33),
we show that only three of the nine cases can occur. The
proof is rather long and tedious and only a sketch containing
the main ideas is provided below. 1) Both players spread at
the NE (i.e., �∗ = �∗ = eN+1), iff C(N P,�) < NC(P,�)
and (N − 1)C(P, 0) + C(P, N�) > NC(P,�). The second
condition is always true due to (32).

2) Both players use only channel hopping at the NE
(i.e., �∗ = �∗ = (1/N, . . . , 1/N, 0)), iff C(N P, N�) +

(N − 1)C(N P, 0) > N(N − 1)C(P, 0) + NC(P, N�) and
C(N P, N�) + (N − 1)C(N P, 0) < NC(N P,�). This case
is impossible because of (33).

3) The game has a strictly mixed NE, i.e., all actions
are used with non-zero probability, of the form �∗ =
(a, . . . , a, (1 − Na)), �∗ = (b, . . . , b, (1 − Nb)) iff there
exist 0 < a < 1/N and 0 < b < 1/N such that both
players are indifferent among all their pure strategies. Let us
write the condition for (a, . . . , a, 1 − Na) to be a NE and for
which the jammer is indifferent among their pure strategies by
Definition 1. This yields the following linear equation:

a[NC(N P,�) − C(N P, N�) − (N − 1)C(N P, 0)]
= (1 − Na)[(N − 1)C(P, 0)+C(P, N�) − NC(P,�)],

where the term on the LHS is a strictly negative value from
a > 0 and (33) and the RHS is a strictly positive value from
a < 1/N and (32). Thus, this case can never occur.

4) Player L only channel hops and player J
uses both channel hopping and spreading at the NE:
�∗ = (1/N, . . . , 1/N, 0) and �∗ = (b, . . . , b, (1 − Nb)),
iff C(N P, N�) + (N − 1)C(N P, 0) = NC(N P,�),
0 < b < 1/N , and Nb[(N − 1)C(P, 0) + C(P, N�)] +
(1 − Nb)NC(P,�) < bC(N P, N�) + (N − 1)bC(N P, 0) +
(1 − Nb)C(N P,�), where b is chosen such that player L is
indifferent among their pure strategies. Given (33), the above
equality never holds.

5) Player J only channel hops and player L uses both
channel hopping and spreading at the NE (i.e., �∗ =
(a, . . . , a, (1 − Na)) and �∗ = (1/N, . . . , 1/N, 0)), iff
C(N P, N�) + (N − 1)C(N P, 0) = N(N − 1)C(P, 0) +
C(P, N�), 0 < a < 1/N , and MaC(N P,�) + (1 −
Na)NC(P,�) > aC(N P, N�) + (N − 1)aC(N P, 0) + (1 −
Na)[(N − 1)C(P, 0) + C(P, N�)] where a is chosen such
that player J is indifferent among their pure strategies. The
last inequality condition becomes:

a[NC(N P,�) − C(N P, N�) − (N − 1)C(N P, 0)]
> (1 − Na)[(N − 1)C(P, 0) + C(P, N�) − NC(P,�)]

where the term on the LHS is a strictly negative value from
a > 0 and (33) and the RHS is a strictly positive value from
a < 1/N and (32). Thus, this case can never occur.

6) Player L spreads and player J channel hops at the NE
(i.e., �∗ = eN+1 and �∗ = (�1, . . . ,�N , 0)), iff NC(P,�) >
(N−1)C(P, 0)+C(P, N�), NC(N P, 0)−N(N−1)C(P, 0)−
NC(P, N�) < C(N P, 0) − C(N P, N�) and �i meet some
additional constraints. Because of (32) this case never occurs
as the first condition is never satisfied.

7) Player J spreads and player L channel hops at the NE
(i.e., �∗ = eN+1 and �∗ = (�1, . . . ,�N , 0)), iff C(N P,�) >
NC(P,�) and NC(N P, 0) − NC(N P,�) > C(N P, 0) −
C(N P, N�). The NE strategies of player L are given by the
(infinite number) of solutions to the following system of linear
inequalities:

�
0 ≤ �i ≤ 0, ∀i,

�N
j=1� j = 1

�i < C(N P,0)−C(N P,�)
C(N P,0)−C(N P,N�) , ∀i ≤ N.
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The second condition is always true (33). From (33), the above
system of inequality always has the uniform probability over
the channels solution �∗ = (1/N, . . . , 1/N, 0).

8) Player L spreads and player J employs all their actions
at the NE (i.e., �∗ = eN+1, �∗ = (�1, . . . ,�N+1)), iff (N −
1)C(P, 0) + C(P, N�) = NC(P,�) and �i ,∀i meet some
additional constraints that are not detailed here. The reason is
that, given (32), the equality condition never holds and, hence,
this case is impossible.

9) Player J spreads and player L employs all their actions
at the NE (i.e., �∗ = eN+1 and �∗ = (�1, . . . ,�N ,�N+1)),
iff C(N P,�) = NC(P,�) and the solutions to the following
linear system of inequalities are NE strategies for player L:

�
��

��

0 ≤ �i ≤ 1, ∀i,
�N

j=1� j = 1
�i [C(N P, N�) − C(N P, 0)] + �N+1[(N − 1)C(P, 0)
+C(P, N�) − C(N P, 0) + C(N P, �) − NC(P, �)]
> C(N P, �) − C(N P, 0), ∀i ≤ N .

Notice that, by taking �N+1 = 0, the above system of linear
equations is precisely the one in case 7 which has an infinite
number of solutions, and in particular �i = 1/N, ∀i ≤ N .
Similarly, �i = 0 for all i ≤ N and �N+1 = 1 (player L
spreads) is also a solution, which follows directly from (32).

G. Proof of Proposition 5

The best-response for the jammer is defined as � B R(�) =
arg min� û(�,�), where � B R(�) represents the best action the
jammer can take knowing that the legitimate player choses �.
The payoff is affine in � and can be rewritten it as û(�,�) =�N+1

i=1 �i ci (�) + c0(�), with the coefficients:

ci (�) = �i [C(N P, N�) − C(N P, 0)]
+ �N+1[C(P, N�) − C(P, 0)], i ≤ N,

cN+1(�) =
N�

j=1

�i [C(N P,�) − C(N P, 0)]

+ N�N+1 [C(P,�) − C(P, 0)],

c0(�) =
N�

j=1

�i C(N P, 0) + N�N+1C(P, 0). (34)

Thus, we observe that to find the best-response function
� B R(�), the jammer has to solve a linear program under the
constraints: �i ≥ 0, ∀ i and

�N+1
j=1 � j = 1. The SE action of

the leader, anticipating that the jammer will best respond to
their own choice is given by:

�S E = arg max
�

û(�,� B R(�))

= arg max
�

�
min
j>0

c j (�) + c0(�)

�
.

Player L can anticipate the response of the
jammer, who seeks to minimize the coefficients c j (�).
We remark that: cN+1(�) = (1 − �N+1)[C(N P,�) −
C(N P, 0)] + N�N+1[C(P,�) − C(P, 0)] and
c0(�) = (1 − �N+1)C(N P, 0) + N�N+1 do not depend
on the way in which the load 1 − �N+1 is spread over the
channel hopping actions. Therefore we can only focus on
ci (�), 1 ≤ i ≤ N .

If player L uses channel hopping strategies with uniform
probability �(1) = (a, . . . , a, 1 − Na), all coefficients will
be equal ci (�(1)) = a[C(N P, N�) − C(N P, 0)] + (1 −
Na)[C(P, N�) − C(P, 0)]. This means that the jammer is
indifferent between the different channels min1≤ j≤N c j (�) =
a[C(N P, N�)−C(N P, 0)]+(1− Na)[C(P, N�)−C(P, 0)].

Now, if player L has a preference for a certain
channel, say for channel 1: �(2) = (a + �1, a − �2
, . . . , a − �N , 1 − Na), with

�N
j=2 � j = �1 > 0, the

coefficients will be: c1(�(2)) = (a + �)[C(N P, N�) −
C(N P, 0)] + (1 − Na)[C(P, N�) − C(P, 0)], ci (�(2)) =
(a − �i )[C(N P, N�) − C(N P, 0)] + (1 − Na)[C(P, N�) −
C(P, 0)]. In this case, the jammer will profit from this
information and will put all their channel hopping load on
channel 1 alone: � B R

1 (�(2)) = 1 − � B R
N+1(�

(2)), �i (�(2)) =
0,∀2 ≤ N and min1≤ j≤N c j (�(2)) = (a + �)[C(N P, N�) −
C(N P, 0)]+ (1 − Na)[C(P, N�)− C(P, 0)]. But this means
that min1≤ j≤N c j (�(2)) < min1≤ j≤N c j (�(1)), which further
implies that û(�(1),� B R(�(1))) < û(�(2),� B R(�(2))). This
means that player L will lose in utility by not assigning
uniform probability to the channel hopping strategies.

H. Proof of Theorem 5

Proposition 1 tells us that the SE strategy of player L is of
the form: �S E = (a, . . . , a, (1 − Na)) for some a ∈ [0, 1/N],
which is to be determined. The coefficients in (34) become:

ci (�
S E ) = a[C(N P, N�) − C(N P, 0)]

+ (1 − Na)[C(P, N�) − C(P, 0)], i ≤ N

cN+1(�
S E ) = Na[C(N P,�) − C(N P, 0)]

+ N(1 − Na)[C(P,�) − C(P, 0)].
Using the fact that C(p, � ) is convex w.r.t. � for a
fixed p, we have the following inequalities: NC(P,�) <
(N − 1)C(P, 0) + C(P, N�) and NC(N P,�) < (N −
1)C(N P, 0) + C(N P, N�) which imply that ci (�S E ) <
cN+1(�S E ). This means that the jammer’s strategy is
to spread always: �S E = (0, . . . , 0, 1). The SE utility
becomes:

û(�S E ,�S E) = aC(N P,�) + (1 − Na)C(P,�). (35)

This implies that, if C(N P,�) > NC(P,�) player L
will only channel hop with uniform probability a = 1/N .
If C(N P,�) < NC(P,�) player L will only spread a = 0.
If C(N P,�) = NC(P,�) then the legitimate user is
indifferent between spreading and channel hopping and all
a ∈ [0, 1/N] are solutions.
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Maximization in Dynamic MIMO–OFDM Systems
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Abstract—In this paper, we examine the maximization of energy
efficiency (EE) in next-generation multiuser MIMO–OFDM net-
works that vary dynamically over time—e.g., due to user mobility,
fluctuations in the wireless medium, modulations in the users’
load, etc. Contrary to the static/stationary regime, the system may
evolve in an arbitrary manner, so users must adjust “on the fly,”
without being able to predict the state of the system in advance.
To tackle these issues, we propose a simple and distributed online
optimization policy that leads to no regret, i.e., it allows users
to match (and typically outperform) even the best fixed transmit
policy in hindsight, irrespective of how the system varies with
time. Moreover, to account for the scarcity of perfect channel
state information (CSI) in massive MIMO systems, we also study
the algorithm’s robustness in the presence of measurement errors
and observation noise. Importantly, the proposed policy retains
its no-regret properties under very mild assumptions on the error
statistics: on average, it enjoys the same performance guarantees
as in the noiseless deterministic case. Our analysis is supplemented
by extensive numerical simulations, which show that, in realis-
tic network environments, users track their individually optimum
transmit profile even under rapidly changing channel conditions,
achieving gains of up to 600% in energy efficiency over uniform
power allocation policies.

Index Terms—Energy efficiency, imperfect CSI, MIMO,
OFDM, no regret, online optimization.

I. INTRODUCTION

T HE WILDFIRE spread of Internet-enabled mobile
devices and the exponential growth of bandwidth-hungry

applications is putting existing wireless systems under enor-
mous strain and is one of the driving forces behind the transition
to fifth generation (5G) mobile networks [1]. The ICT indus-
try is thus faced with a formidable mission: data rates must be
increased significantly so as to meet the soaring demand for
wireless broadband, but this task must be accomplished under
an extremely tight energy budget. With this in mind, current
design requirements for 5G systems target a dramatic decrease
in energy-per-bit consumption of the order of 1, 000× or more
[2], [3].
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A contending technology to achieve these design targets
is the emerging massive MIMO (multiple-input and multiple-
output) paradigm. Coupled with the use of multiple carrier
frequencies via orthogonal frequency division multiplexing
(OFDM), massive MIMO “goes large” by employing inex-
pensive service antennas to focus energy into ever smaller
regions of space [4]–[6]. As a result, very large MIMO arrays
can greatly enhance the reliability of wireless connections and
increase throughput and energy efficiency (EE) by a factor of
10× to 100× without requiring the deployment of expensive
new air interfaces [1], [6]. However, due to the massive com-
plexity and variability of such systems, a crucial challenge that
arises is that wireless users must also be capable of adapting
to a dynamic spectrum landscape “on the fly”, typically with
minimal coordination and limited information at the device end.

An added challenge in the above considerations is that
wireless users often do not have access to perfect CSI and
co-channel interference (CCI) measurements, especially at the
transmitter end – for instance, due to pilot contamination in
massive MIMO systems [6]. In particular, if the system oper-
ates in the presence of uncertainty (imperfect CSI, observation
noise, etc.), optimization techniques that rely on a greedy, “one-
off” calculation of optimal transmit characteristics (such as
water-filling) are no longer suitable because stochastic fluctu-
ations could lead the system to a suboptimal state [7], [8]. On
that account, our main objective in this paper will be to provide
an adaptive transmit policy for energy efficiency maximization
in dynamic MIMO–OFDM networks that are subject to uncer-
tainty, feedback errors and/or other unpredictable changes in
the wireless medium.

In the general context of MIMO–OFDM systems, the vast
majority of works on energy efficiency maximization and
energy-efficient power allocation have focused on two limit
cases [9]. In the static regime [10]–[15], the attributes of the
wireless system under study (channel gains, user load, etc.) are
assumed effectively static and the system’s analysis revolves
around techniques from the theory of non-cooperative games
and optimization (continuous or discrete). At the other end
of the spectrum, in the ergodic regime [12], [16], the wire-
less medium is assumed to evolve over a very fast time scale,
typically following a sequence of independent and identically
distributed (i.i.d.) random variables; consequently, the figure of
merit in problems of this type is the ratio between the stochas-
tic average of the users’ rate and their power consumption. All
these works study the trade-off between the Shannon achiev-
able rate and power consumption either for a single user (via
fractional programming) or multiple ones (using the theory of
non-cooperative games). Finally, in the static channel regime,
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[17]–[22] consider a throughput model that depends on the con-
nection’s bit error rate (BER) and use tools from game theory
to characterize the system’s equilibrium states.

In this paper, we focus squarely on dynamic MIMO–OFDM
systems that evolve arbitrarily over time (e.g. due to channel
variability, fading, mobility, etc.), and we make no statistical
hypotheses regarding the dynamics that govern the network’s
evolution (such as stationarity or ergodicity). As opposed to
the stationary/ergodic regime discussed above, static solution
concepts are no longer relevant because there is no underly-
ing target state to attain (either static or in the mean); as such,
no conclusions can be drawn from the existing literature on
energy-efficient power allocation. Instead, users have to opti-
mize their transmit characteristics on the fly, based only on
locally available information of the past state of the system,
and hoping to track (or at least emulate the performance of)
the a posteriori optimum transmit policy.

The most widely used optimization criterion in this setting is
that of regret minimization, a seminal notion which was first
introduced by Hannan [23] and which has since given rise
to a vigorous literature at the interface of machine learning,
optimization, statistics, and game theory – for a comprehen-
sive survey, see e.g. [24]–[26]. More precisely, in the language
of game theory, a user’s regret over a given time horizon is
simply the difference between his average payoff (over the
time horizon in question) and the payoff that he would have
obtained if he had employed the best possible fixed action in
hindsight. Accordingly, in our case, regret minimization cor-
responds to dynamic transmit policies that are asymptotically
optimal in hindsight, irrespective of how the users’ effective
wireless medium evolves over time.

A regret-based approach was recently employed by the
authors of [27] who studied the problem of power control in
infrastructureless wireless networks and proposed an algorithm
that minimizes the users’ (internal) regret to attain the sys-
tem’s equilibrium. In a similar vein, [28] studied the transient
phase of the Foschini–Miljanic (FM) power control algorithm
in static environments and used the notion of swap regret [29]
to propose alternative convergent power control schemes; even
more recently, [30] showed that the FM dynamics lead to no
regret, so they retain their optimality properties in dynamic
environments. Finally, [31] and [32] used online optimization
techniques and a methodology based on matrix exponential
learning [7], [8], [33], [34] to derive a no-regret adaptive trans-
mit policy for power control and throughput maximization in
cognitive radio networks respectively. However, the proposed
policies drive wireless users to transmit at either full or mini-
mum power (subject to their rate requirements), so they cannot
be applied to minimize energy-per-bit consumption in dynamic
MIMO–OFDM systems.

Summary of results and paper outline: In this paper, we
formulate the maximization of energy efficiency in dynamic
MIMO–OFDM systems as an online optimization problem,
and we draw on Zinkevich’s seminal online gradient ascent
(OGA) methodology [35] to derive an adaptive transmit policy
that leads to no regret. In particular, we show that the pro-
posed algorithm guarantees an O(T−1/2) regret bound after T
update epochs (transmission frames), and this bound tightens

to O(log T/T ) if the users’ channel gains always remain above
a given level. Furthermore, to address the lack of perfect
measurements and channel state information at the transmit-
ter (CSIT), we show that the proposed algorithm retains these
properties under very mild statistical hypotheses that are satis-
fied by the vast majority of error distributions. Specifically, as
long as a) there is no systematic error in the measurement pro-
cess; and b) the probability of a very high error z is not higher
than O(1/z2), the proposed policy leads to no regret and enjoys
a mean bound of the same order as in the deterministic setting.

The performance of the proposed transmit policy is val-
idated by means of extensive numerical simulations model-
ing a cellular orthogonal frequency-division multiple access
(OFDMA) network with multiple base stations and mobile
MIMO users under realistic wireless propagation, fading and
mobility features. Our results show that the proposed policy
represents a scalable and flexible method that allows users to
attain very high energy efficiency levels, exhibiting gains of up
to 600% over uniform/fixed power allocation policies and with
surprisingly modest feedback requirements.

This paper greatly extends our recent conference paper
[36] where we derived a continuous-time exponential learn-
ing method for energy efficiency maximization in dynamic
single-input and single-output (SISO) systems. Compared to
[36], the current paper provides a bona fide learning algo-
rithm for multiple-antenna systems, with discrete-time updates
and performance guarantees, and with proven robustness in the
presence of uncertainty and observation noise.

The rest of our paper is structured as follows: in Section II,
we present our wireless system model and we formulate the
problem of dynamic energy efficiency maximization as an
online semidefinite program. In Section III, we derive our
online learning policy, and we establish its no-regret properties
and performance guarantees under both perfect and imper-
fect CSI. Finally, our theoretical analysis is supplemented by
extensive numerical simulations in Section IV.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a wireless network consisting of several point-to-
point connections u ∈ U = {1, . . . , U } (the system’s users) that
are established over a set of orthogonal subcarriers k ∈ K ≡
{1, . . . , K }. Each connection u ∈ U comprises a pair of com-
municating wireless multi-antenna devices with Mu antennas
at the transmitter and Nu antennas at the receiver. Thus, if
xu

k ∈ CMu and yu
k ∈ CNu denote the signals transmitted and

received over connection u on subcarrier k, we obtain the
familiar baseband signal model:

yu
k = Huu

k xu
k +

∑
u′ ̸=u

Hu′u
k xu′

k + zu
k , (1)

where Hu′u
k ∈ CNu×Mu′ denotes the transfer matrix between the

u′-th transmitter and the u-th receiver over subcarrier k, while
zu

k is the ambient noise over the channel (including thermal
and atmospheric effects, and modeled as a circularly symmet-
ric Gaussian complex vector). With this in mind, the multi-user
interference-plus-noise (MUI) at the intended receiver of the
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u-th connection will be:

wu
k =

∑
u′ ̸=u

Hu′u
k xu

k + zu
k , (2)

so (1) may be written more simply as:

yu
k = Huu

k xu
k + wu

k . (3)

In the rest of this paper, we will focus on a specific con-
nection u ∈ U and we will treat the MUI vector wk as an
aggregate noise variable whose covariance depends on the
wireless medium and the transmit characteristics of all other
users. Accordingly, if we drop the user index u for notational
convenience, the signal model (3) attains the more compact
form:

yk = Hkxk + wk . (4)

Hence, assuming Gaussian input and single user decoding
(SUD) at the receiver, the Shannon rate at the focal connection
will be given by the well-known expression [37]:1

R(Q) =
∑

k∈K

[
log det

(
Wk + HkQkH†

k

)
− log det Wk

]
,

(5)
where:

1) Qk = E[xkx†
k] ∈ CM×M is the user’s input signal covari-

ance matrix over subcarrier k.2

2) Q = diag(Q1, . . . , QK ) is the power profile of the focal
user over all subcarriers.

3) Wk = E[wkw†
k] ∈ CN×N is the MUI covariance matrix

of the focal connection (obviously, Wk depends on all
other users in the network).

Remark: The Gaussian input and noise assumptions are
fairly standard in the literature: in particular, Gaussian noise is
known to be the worst additive noise distribution with respect
to the Shannon achievable rate [38] while Gaussian input is
optimal against a Gaussian environment [37]. Finally, regard-
ing the decoding technique, SUD has the advantage of being
simple, distributed and scalable because it does not require any
coordination or signaling among the interfering users.

In view of all this, if we let

H̃k = W−1/2
k Hk (6)

denote the effective channel matrix of the focal user over sub-
carrier k, the user’s Shannon rate (7) can be written more
concisely as:

R(Q)=
∑

k∈Klog det
(

I+H̃kQkH̃†
k

)
= log det

(
I+H̃QH̃†

)
,

(7)
where H̃ = diag(H̃1, . . . , H̃K ) is the block-diagonal sum of the
user’s effective channel matrices over all subcarriers. Thus, fol-
lowing [11]–[14], the user’s energy efficiency will be given
by:

EE(Q) = R(Q)

Pc + tr(Q)
= log det

(
I + H̃QH̃†)

Pc + tr(Q)
, (8)

1For the sake of simplicity, constant multiplicative factors such as the band-
width of the connection have been dropped in (5); these factors are reinstated
in the numerical analysis of Section IV.

2In the above, expectations are taken over the users’ codebooks (assumed
Gaussian).

where tr(Q) = ∑
k tr(Qk) is the user’s total transmit power

while Pc denotes the total power dissipated in all other cir-
cuit components of the transmitting device (mixer, frequency
synthesizer, digital-to-analog converter, etc.). This efficiency
function (which, formally, has units of bits/Joule) has been
widely studied in the literature [12], [19], [39] and it captures
the fundamental trade-off between higher spectral efficiency
and increased battery life. Consequently, in the context of
power-limited, energy-aware users, we obtain the maximization
problem:

maximize EE(Q),

subject to Q ∈ Q,
(9)

where

Q =
{
diag(Q1, . . . , QK ) : Qk < 0,

∑
k tr(Qk) ≤ Pmax

}
,

(10)
and Pmax denotes the user’s maximum transmit power.

Of course, the user’s energy efficiency function depends not
only on the transmitter’s signal covariance profile Q, but also
on the transmit characteristics of all other users (via the effec-
tive channel matrices H̃k). In particular, H̃ collects all sources
of noise and interference that cannot be controlled by the focal
transmit/receive pair, so the user’s energy efficiency objective
may vary over time in an unpredictable way. On that account,
since we wish to focus on dynamic networks that evolve in an
arbitrary fashion, we will not be making any specific postu-
lates regarding the behavior of other users in the network or
the evolution of the user’s actual channel matrix H.

The only generic assumptions that we will make regarding
the effective channel matrices H̃ are:
(A1) H̃ remains bounded in norm over the entire transmission

horizon.3

(A2) The variability of H̃ within each transmission frame is
sufficiently slow so that the Shannon mutual informa-
tion (7) remains a relevant measure of the achievable
transmission rate.

With all this at hand, if H̃(t) is the user’s effective chan-
nel matrix at time t , we obtain the online energy efficiency
problem:

maximize EE(Q; t),

subject to Q ∈ Q, (OEE)

where, in obvious notation:

EE(Q; t) = log det
(
I + H̃(t)QH̃†(t)

)

Pc + tr(Q)
(11)

denotes the user’s energy efficiency function at time t . Thus,
given that the user cannot predict the state of the system ahead
of time, we will focus on the following sequence of events:

1) At each update period n = 1, 2, . . . , the user selects a
transmit power profile Q(n) ∈ Q.

3In the standard channel and wireless propagation models used in the liter-
ature (Okumura, Hata [40], COST-Hata [41], etc.), the pathloss is caused by
the non-zero distance between transmitter and receiver; factors such as RF cir-
cuit losses, interference, and shadowing further diminish the user’s effective
channel gains. The boundedness of ∥H̃∥ simply reflects these losses.
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2) The user’s energy efficiency over the current period is
determined by the effective channel matrix H̃(n) at the
time of transmission.

3) At the end of the period, the user selects a new signal
covariance profile Q(n + 1) seeking to maximize his a
priori unknown objective function EE(Q; n + 1), and the
process repeats.

Of course, the key challenge in this dynamic framework is
that the user does not know ahead of time the effective channel
matrix H̃(n + 1) that determines his energy efficiency function
at stage n + 1, so he must try to adapt to the changing network
conditions “on the fly”. To be sure, if the user had perfect fore-
sight and knowledge of the evolution of H̃(n) in advance, the
(fixed) power profile that maximizes the user’s average energy
efficiency over a given transmission horizon T would be the
solution to the (offline) maximization problem:

max
Q∈Q

1
T

∑T

n=1
EE(Q; n). (12)

Obviously however, this “oracle” solution cannot be computed
without precognitive abilities, so we will focus on adaptive
transmit policies Q(n) that approach the maximal value of (12)
asymptotically, irrespective of the system’s evolution over time.

To make this analysis precise, we follow [24], [25] and we
define the user’s (cumulative) regret at time T as the cumulative
difference between the user’s achieved EE and the solution of
the maximization problem (12), i.e. we let:

Reg(T ) = max
Q∈Q

∑T

n=1
[EE(Q; n)− EE(Q(n); n)] . (13)

We then say that a dynamic transmit policy Q(n) leads to no
regret if

Reg(T ) = o(T ), (14)

independently of the evolution of the user’s energy efficiency
function. In this way, a no-regret policy Q(n) is asymptotically
optimal in hindsight in that it provides an asymptotic solution
to the average energy efficiency maximization problem (12),
without requiring any oracle-like capabilities from the user.

The definition of no-regret policies is crucial for the rest of
our paper so some remarks are in order:

Remark 1: The seminal notion of regret was first introduced
by Hannan [23] and it has since given rise to a vast corpus of
research at the interface of optimization, statistics and machine
learning—for a recent survey, see e.g. [24], [25]. In particu-
lar, if the user’s energy efficiency function does not vary with
time (i.e. if the user’s effective channels are static), standard
arguments from the theory of online optimization [24] can
be used to show that no-regret policies converge to the solu-
tion set arg maxQEE(Q) of the energy efficiency maximization
problem (9).

Of course, if the user had perfect foresight and could
predict the future without error, his optimum transmit
policy would be given by the dynamic oracle solution
Q∗(n) = arg maxQEE(Q; n), i.e. the policy that maximizes
his energy efficiency at each instance in time (and not only
on average). Unfortunately, as is well-known in the theory of
online learning, it is not possible to consistently match this

dynamic oracle, so Q∗(n) does not provide an achievable
theoretical target [24], [26]. To better understand why, consider
a simple example where the user’s channel alternates between
two values, Ha and Hb, with corresponding optimal power
profiles Q∗a and Q∗b. In this context, the user first selects Q(n)

at stage n and “Nature” subsequently determines the value
of the channel (Ha or Hb), again at stage n. Hence, at each
iteration, an adversarial Nature (such as a jammer) could cause
the user to underperform with respect to Q∗(n) by at least m =
minQ max{|EE(Q∗a; Ha)− EE(Q; Ha)|, |EE(Q∗b; Hb)− EE(Q;
Hb)|} > 0. As a result, any adaptive learning policy that relies
only on causal information (i.e. no look-ahead into the future)
leads to positive regret against the dynamic oracle solution
Q∗(n).

This question can be analyzed by employing more sophis-
ticated regret notions such as that of adaptive [42] or shifting
[43] regret. However, since this would require the introduction
of significant technical machinery that lies beyond the scope of
the current work, we delegate this analysis to future work. For a
numerical comparison with the dynamic oracle solution Q∗(n)

in realistic network conditions, we refer the reader to Sec. IV.
Remark 2: We should also note here that the no-regret prop-

erty (14) is a “worst-case” guarantee that carries no assumptions
on the evolution of the user’s environment over time: the user’s
channels could evolve adversarially (e.g. if the user is subject
to jamming), or not at all (in the static regime). As such, when
the wireless medium is affected only by the behavior of other
users in the network, a natural question that arises is whether
the use of a no-regret policy by all users leads to an equilibrium
of the underlying game.4 We address this issue in more detail
in Section IV.

Remark 3: Another important special case of the online
energy efficiency maximization problem (11) is the fast-fading
framework where the only variation in the system is due
to the channels following a stationary ergodic process – the
so-called ergodic regime [45], [46]. In this case, assuming full
causal knowledge of the channel statistics (but not the channels’
actual realization at the time of transmission),5 the maximiza-
tion of the user’s ergodic EE ratio leads to a stochastic variant
of the problem (11) where the user’s energy efficiency function
is averaged over the channel statistics. By standard arguments
from the theory of online optimization [24], it can be shown
that a policy that leads to no-regret also solves this averaged
problem, so regret minimization is equivalent to ergodic energy
efficiency maximization with causal knowledge of channel
statistics at the transmitter.

4For instance, it is well-known that internal regret minimization implies
convergence to the set of correlated equilibria [44].

5In the recent paper [12], the authors consider the case where the trans-
mitter has access to instantaneous channel realization information at the
time of transmission (zero-delay feedback in continuous time). In this case,
ergodic EE optimization is not carried over fixed input covariance matri-
ces but over functional distributions of the form Q̃ ≡ Q̃(H); more precisely,
the authors of [12] seek the functional distribution Q̃(H) that maximizes
the ratio EH[R(Q̃(H))]/EH[Pc + tr(Q̃(H))]. This leads to a maximization
problem defined over an infinite-dimensional Banach space of functional distri-
butions and regret minimization is not equivalent to ergodic energy efficiency
maximization in this case; however, since this formulation assumes perfect
zero-delay (non-causal) feedback, we do not address it here.
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III. ONLINE LEARNING

A first idea to achieve no regret in the online energy effi-
ciency maximization problem (OEE) would be to calculate at
each stage the power profile that maximizes energy efficiency
based on the latest available information at the previous stage.
However, as can be seen by a standard argument, this policy
may lead to positive regret: for instance, when the user’s chan-
nel alternates every other period between two values (say, Ha
and Hb, with corresponding optimal power profiles Q∗a and
Q∗b), best-responding to the last observed state performs strictly
worse than the fixed policy (Q∗a + Q∗b)/2 [24]. With this in
mind, we propose in this section an adaptive power allocation
policy based on Zinkevich’s seminal OGA method [35] that
utilizes all past information in a recursive way.

For simplicity, we first consider the case where the transmit-
ter has access to perfect CSI and MUI measurements, and we
derive an anytime O(T 1/2) bound for the user’s regret. We then
show that this bound can be tightened to O(log T ) if the user’s
effective channels always remain above a certain threshold and
the algorithm’s step-size is chosen accordingly. The robustness
of these guarantees in the presence of noise and uncertainty is
then discussed in Section III-C.

A. Energy Efficiency Maximization as a Concave Problem

The first difficulty in designing a no-regret policy for the
online fractional program (OEE) is that the user’s energy effi-
ciency function is not concave. This is perhaps most easily seen
in the SISO case, in which the user’s energy efficiency objective
is:

EE(p) =
∑

k log(1 + g̃k pk)

Pc +∑
k pk

, (15)

with p = (p1, . . . , pK ) denoting the user’s power allocation
vector and g̃k being the effective channel gain of channel
k. Clearly, the fractional objective (15) is not concave with
respect to any pk ; however, EE(p) can be recast as a concave
function by employing the so-called Charnes–Cooper transfor-
mation [47] for turning fractional programs into concave ones.6

Specifically, if we set

x0 = (Pc +∑
k pk)

−1, x = x0 · p, (16)

we readily obtain EE(p) = x0
∑

k log(1 + g̃k xk/x0), and this
last function is concave because the summands x0 log(1 +
g̃k xk/x0) are jointly concave in x0 and xk . We may then drop the
parameter x0 by noticing that x0 = 1

Pc
(1−∑k xk); by rewrit-

ing x as x = p/(Pc +∑
k pk), solving for p and substituting in

EE(p), we obtain a concave reformulation of (15).
In a more general MIMO framework, this procedure amounts

to the change of variables

X = Pc + Pmax

Pmax

Q
Pc + tr(Q)

, (17)

where we have introduced the normalization constant (Pc +
Pmax)/Pmax in order to have tr(X) ≤ 1 for all Q ∈ Q (with

6See also [12] for a similar use of the Charnes–Cooper transformation in the
context of energy efficiency maximization.

equality if and only if tr(Q) = Pmax). Solving for Q yields

Q = Pc Pmax

Pc + Pmax(1− tr(X))
X, (18)

so, after substituting in (8), we obtain the objective

u(X) = Pc + Pmax(1− tr(X))

Pc(Pc + Pmax)

log det

(

I + Pc PmaxH̃XH̃†

Pc + Pmax(1− tr(X))

)

, (19)

while the corresponding feasible region of (9) attains the form

X =
{
diag(X1, . . . , Xk) : Xk < 0 and

∑
k tr(Xk) ≤ 1

}
. (20)

Given that R(Q) is concave in Q, the function F(X, x) =
Pmax

Pc+Pmax
x · R(X/x) is jointly concave in X and x [48], so u(X)

will also be concave in X as the restriction of F(X, x) to
the convex set Pc Pmaxx = Pc + Pmax(1− tr(X)). In this way,
(OEE) boils down to the online concave maximization problem:

maximize u(X; n),

subject to X ∈ X,
(21)

where, as before, the dependence on n = 1, 2 . . . , reflects the
evolution of the user’s effective channel matrices over time. In
view of all this, we will first derive a no-regret transmit policy
X(n) for the online concave problem (21), and we will then use
the inverse transformation (18) to obtain a no-regret policy for
(OEE).

B. Learning With Accurate Causal CSI

Building on Zinkevich’s online gradient ascent method [35],
the core idea of our approach will be to track the gradient
matrix V = ∇u of the user’s (time-varying) utility function
and then project back to the problem’s feasible region when
the user’s power constraints are violated. To that end, some
straightforward matrix calculus yields:

V = ∇u = Pmax

Pc + Pmax

[
A + tr(AQ)− R(Q)

Pc
· I
]

, (22)

where Q is given by (18) and

A ≡ ∇R(Q) = H̃†[I + H̃QH̃†]−1H̃. (23)

The above expression shows that V can be calculated at the
transmitter as a function of the connection’s effective channel
matrix H̃ (which, in turn, can be estimated at the receiver and
then fed back to the transmitter via a dedicated radio channel
or as part of TDD downlink subframe). Moreover, since V is
a bounded function of H̃ and the channel matrices H̃(n) are
assumed bounded, the induced sequence of gradient matrices
V(n) ≡ ∇u(X(n); n) will also be bounded. We will therefore
assume that there exists a constant V0 > 0 such that

∥V(n)∥ ≤ V0 for all n = 1, 2, . . . , (24)

where ∥V∥ = tr(V†V)1/2 denotes the (Frobenius) matrix norm
of V.
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Fig. 1. Schematic representation of the recursive learning scheme (OGA).

In view of the above, and assuming for the moment per-
fect knowledge of V(n) at the transmitter, we will consider the
matrix-valued online gradient ascent scheme

X(n + 1) = !(X(n) + γnV(n)), (OGA)

where γn > 0 is a nonincreasing step-size sequence and !
denotes the matrix projection map:

!(Y) = arg minX∈X ∥X− Y∥2 . (25)

As we show in Appendix A, the matrix projection !(Y) can be
calculated by the simple expression:

!(Y) = U · diag(π(y)) · U†, (26)

where the tuple (y, U) diagonalizes Y (i.e. Y = U · diag(y) ·
U†) and

πi (y) =

⎧
⎪⎨

⎪⎩

0 if yi < 0,

yi if yi ≥ 0 and
∑

j [y j ]+ < 1,[
yi − λ

]
+ if yi ≥ 0 and

∑
j [y j ]+ ≥ 1,

(27)

with λ > 0 chosen so that
∑

i :yi≥0
[
yi − λ

]
+ = 1.7

The iterative process (OGA) will be the main focus of our
paper, so we proceed with some remarks (see also Fig. 1
for a schematic representation and Alg. 1 for a pseudocode
implementation).

a) Properties: From a practical point of view, (OGA) has the
following desirable attributes:
(P1) Distributedness: users require the same information as in

distributed water-filling [49], [50].
(P2) Statelessness: users do not need to know the state of the

system (e.g. the number of users in the network or its
topology).

(P3) Reinforcement: users tend to become more energy-
efficient based on their past observations.

7Recall here that Y(n) is Hermitian (because V(n) is Hermitian for all n), so
its eigenvalues are real. Just as in water-filling methods [49], the Lagrange mul-
tiplier λ > 0 can then be calculated by sorting y and performing a line search
for λ.

Algorithm 1. Online gradient ascent (OGA) for dynamic
energy efficiency maximization

Parameter: variable step-size sequence γn > 0.
Initialize: n← 0; X← 0.
Repeat

–

n← n + 1;
{Pre-transmission phase: set signal covariance matrix}
Q← Pc Pmax/(Pc + Pmax(1− trX)) · X;
transmit;
{Post-transmission phase: receive feedback and update}
get H̃;
A← H̃† [I + H̃QH̃†]−1 H̃;
V← Pmax/(Pc + Pmax)

(
A +

[
tr(AQ)− R(Q)/Pc · I

]
;

X← !(X + γnV);
until transmission ends.

(P4) Asynchronicity: there is no need for a global update timer
or any signaling/coordination between users; in particular,
any subset of users may be updating at any given instance.

Regarding the algorithm’s required feedback, we should note
that each transmitter has the same information requirements as
in distributed water-filling [8], [31], [49], [50]. In particular, as
pointed out in [8], [50], a given transmitter does not need to
know the other users’ channels or covariance matrices, except
via the aggregate MUI covariance matrix W at the receiver. This
matrix is simply the expectation of the aggregate signal W =
E[yy†] reaching the receiver, so it can calculate it and feed it
back to its connected transmitters (e.g. by broadcasting or as
part of the downlink TDD phase). As a result, to calculate H̃
and V, a user only requires this aggregate (and, hence, stateless)
information and the knowledge of his actual channel matrix H
(which is then used to calculate the effective channel matrix H̃).

b) Computational complexity: From a computational stand-
point (which is crucial in massive MIMO systems), each iter-
ation of Algorithm 1 requires a number of elementary binary
operations which is polynomial (with a low degree) on the num-
ber of transmit/receive antennas and the number of subcarriers.
Specifically, letting S = max{M, N } and recalling that H̃ and Q
consist of K diagonal blocks, the required matrix multiplication
and inversion steps for A and V carry a complexity of O(K Sω),
with the complexity exponent ω being as low as 2.373 if fast
Coppersmith–Winograd multiplication methods are employed
[51]. As for the projection step X = !(Y), Eqs. (26) and (27)
show that it can also be carried out in O(K Sω) operations: the
diagonalization in (26) involves O(K Sω) steps while (27) only
requires O(K M) operations for calculating the projection to the
simplex [52].

With all this in mind, our main result for (OGA) is as follows:
Theorem 1: Assume that (OGA) is run with a variable step-

size γn such that γn → 0 and nγn →∞. Then, the induced
transmit policy Q(n) leads to no regret in the online energy
efficiency maximization problem (OEE). Specifically, (OGA)
enjoys the cumulative regret bound

Reg(T ) ≤ 1
γT

+ 1
2

V 2
0

T∑

n=1

γn, (28)



MERTIKOPOULOS AND BELMEGA: LEARNING TO BE GREEN: ROBUST ENERGY EFFICIENCY MAXIMIZATION 749

or, using a step-size sequence of the form γn = γ n−1/2:

Reg(T ) ≤ 1 + γ 2V 2
0

γ

√
T . (29)

Proof: See Appendix B. ⌅
The anytime bound (28) will be our core performance guar-

antee, so some remarks are in order:
a) Fine-tuning γn: Theorem 1 shows that taking γn ∝ n−α

for some α ∈ (0, 1) leads to a regret guarantee that is O(T ω)

with ω = max{α, 1− α}. 8 As such, (29) captures the optimal
asymptotic behavior of the bound (28) for step-size sequences
of the form γn = γ /nα . In fact, if V0 can be estimated by the
transmitter beforehand, the step-size parameter γ can be fine-
tuned further so as to minimize the coefficient of T 1/2 in (29).
Doing just that gives γ = 1/V0, and provides the optimized
bound:

Reg(T ) ≤ 2V0
√

T . (30)

By exploiting equations (22), (23), and (24), we obtain the
following expression for V0 in terms of the system parameters:

V0 = Pmax

Pc + Pmax

(√
K N + Pmax

Pc

(√
K N + 1

)√
K M

)
∥H̃∥2.

(31)
This expression reveals that the guarantee (30) is O(K

√
M N ),

so the algorithm’s overall regret is at most linear in the num-
ber of subcarriers and the number of transmit/receive antennas
(assuming that M and N are of the same order). This guarantee
is key for massive MIMO systems (where the number of trans-
mit/receive antennas can grow fairly large) because it provides
a worst-case estimate for the system’s convergence. That said,
(30) only becomes tight in adversarial environments (e.g. in the
presence of jamming); in typical scenarios, the user’s regret
usually decays much faster and the system attains a stable, no-
regret state within a few iterations, even for large numbers of
antennas per user – cf. the detailed discussion in Sec. IV.

b) The static case: If the user’s effective channels remain
constant over time and Q(n) is a no-regret policy, a straight-
forward concavity argument can be used to show that
maxn EE(Q(n)) converges to the solution of the (static) EE
maximization problem (9), [24], [53]. In this way, (OGA) can
also be seen as a provably convergent low-cost algorithm for
solving (9); furthermore, as we show in what follows, this
convergence result continues to hold even in the presence of
imperfect CSIT and measurement errors.

c) Initialization: The agnostic initialization X(0) = 0 of
Algorithm 1 means that the focal transmitter remains effec-
tively silent during the first transmission frame (recall that
Q ∝ X). As such, the first iteration of (OGA) can be seen as a
“handshake” that allows the transmitter to estimate his effective
wireless medium before starting the actual transmission of data
frames. If the transmitter begins with a given belief regarding
his effective channel conditions, the algorithm can be initialized
more aggressively in a manner consistent with the user’s initial

8To see this, simply note that
∑T

n=1 n−α = O(T 1−α) for large T and α ∈
(0, 1).

expectations (setting for instance X = (K M)−1I for uniform
power allocation across subcarriers and antennas). In so doing,
the regret bound (28) can be tightened further but this only
makes a significant difference if the transmission horizon T
is very short. Indeed, the influence of the initialization step is
overtaken after only a few frames by the other users’ behavior
(which changes the effective channel) and becomes negligible
as T grows large.

d) Logarithmic regret under fair channel conditions: As
stated, Theorem 1 provides a worst-case guarantee which holds
without any further caveats on the evolution of the channels
from one stage to the next (other than basic information-
theoretic hypotheses that allow the receiver to decode the
transmitter’s signal). As such, another important question that
arises is whether we can achieve stronger performance guaran-
tees under the additional hypothesis that channel conditions do
not become too bad.

To quantify this, note first that the Shannon rate function
R(Q) = log det(I + H̃QH̃†) is strongly concave in Q, and its
strong concavity constant is an increasing function of the singu-
lar values of H̃.9 Accordingly, since the user’s energy efficiency
function EE(Q) can be expressed as a perspective transforma-
tion R(Q) 1→ x R(X/x), the same will also hold for the strong
concavity constant of u(X) over X [33], [48]. Thus, following
[54], if we assume that

Hess(u(X; n)) ≤ −a I, (32)

for some a > 0 and for all n = 1, 2, . . ., X ∈ X, we obtain the
following stronger result:

Proposition 1: Assume that (OGA) is run with the step-
size sequence γn = γ /n for some γ ≥ a−1. Then, the induced
transmit policy Q(n) enjoys the logarithmic regret bound:

Reg(T ) ≤ 1
2
γ V 2

0 (1 + log T ). (33)

Proof: See Appendix B. ⌅
Proposition 1 provides us with an important rule of thumb

for choosing the step-size sequence of Algorithm 1. On the one
hand, if the user expects that his effective channel can become
arbitrarily bad (e.g. due to network congestion or deep fading
events), the optimized bound (30) shows that the OGA algo-
rithm should be run with a n−1/2 step-size that allows higher
adaptability to strongly varying channels. Otherwise, if the user
expects reasonable channel quality over the entire transmission
horizon, the “softer” step-size γn ∝ n−1 minimizes the danger
of overcompensating for suboptimal transmit directions and
allows the user to converge to a no-regret state faster.

C. Learning Under Uncertainty

A key assumption in our analysis so far is that the transmitter
has access to perfect CSI and MUI measurements with which to
calculate the gradient matrices V(n) at each stage. In practice
however, factors such as pilot contamination, sparse feedback
and imperfect channel sampling could have a deleterious effect

9Recall here that a function f is strongly concave with constant c > 0 if
Hess( f ) 4 −cI.
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on the algorithm’s performance. Our goal in this section will
thus be to analyze (OGA) in the presence of uncertainty and
feedback imperfections.

To formalize this, we will assume that, at each stage n =
1, 2, . . . of the process, the transmitter observes a noisy estimate
V̂(n) of V(n) satisfying the statistical hypotheses:
(H1) Unbiasedness:

E[V̂(n) | Q(n − 1)] = 0. (H1)

(H2) Tame error tails:

P(∥V̂(n)− V(n)∥ ≥ z) ≤ B/zβ , (H2)

for some B > 0 and for some β > 2.
Both hypotheses are fairly mild from a practical point of

view. First, the unbiasedness hypothesis (H1) simply amounts
to asking that there is no systematic error in the user’s mea-
surements [8], [55]–[60]. Secondly, Hypothesis (H2) is a
bare-bones assumption on the probability of observing very
high errors [8], and it represents a significant relaxation of
the common assumption used in communications and signal
processing whereby errors are assumed to lie in a bounded
uncertainty region [56]–[60]. In particular, Hypothesis (H2) is
met by all common error distributions, including Gaussian/sub-
Gaussian, uniform, exponential, and log-normal distributed
errors [55]–[60].

Remarkably, under these minimal hypotheses, we have:
Theorem 2: Assume that (OGA) is run with noisy measure-

ments V̂(n) satisfying Hypotheses (H1) and (H2), and with a
variable step-size sequence of the form γn = γ /nα for some
α ∈ (2/β, 1). Then, the induced transmit policy Q(n) leads to
no regret (a.s.) and enjoys the mean regret bound

E[Reg(T )] ≤ 1
γT

+ V̂ 2
0

2

T∑

n=1

γn, (34)

where V̂ 2
0 = supn E[∥V̂(n)∥2].

Theorem 2 (proven in Appendix C) will be our main result in
the context of dynamic energy efficiency maximization under
imperfect CSI. A a few remarks are thus in order:

a) Step-sizes vs. large error probabilities: The requirement
αβ > 2 of Theorem 2 indicates a trade-off between the proba-
bility of observing very large errors and achieving low regret
(34). Specifically, if the error distribution of Z(n) = V̂(n)−
V(n) has very heavy tails (i.e. (H2) does not hold for β ≫ 2),
Algorithm 1 must be bootstrapped with a step-size sequence
γn ∝ 1/nα for some α ≈1. In so doing however, the first term
of (34) becomes almost linear, so the user might experience rel-
atively high regret on average (due to the high probability of
observing very large errors). On the other hand, if the tails of
V̂(n) are lighter (for instance, the standard case of Gaussion
errors exhibits, exponentially thin tails, so (H2) holds for all β),
Algorithm 1 can be employed with a more adaptive step-size
sequence that guarantees a lower regret bound.

In particular, if (H2) holds for some β > 4, (OGA) can be
used with a step-size sequence of the form γn = γ n−1/2 which
achieves the optimal behavior of (34), viz.

E[Reg(T )] ≤ 1 + γ 2V̂ 2
0

γ

√
T . (35)

Thus, if the mean square bound V̂ 2
0 = supn E[∥V̂(n)∥2] can be

estimated ahead of time,10 the step-size sequence γn can be
optimized further. More precisely, as in the deterministic case,
the coefficient of T 1/2 in (35) is minimized when γ = 1/V̂0, so
we obtain the optimized bound:

E[Reg(T )] ≤ 2V̂0
√

T . (36)

b) The estimation process: The no-regret properties of
(OGA) under uncertainty rely on the availability of statisti-
cally unbiased measurements V̂ of V. In turn, given that users
have perfect knowledge of their individual transmit covariance
matrices, this requirement boils down to constructing an unbi-
ased estimator of the matrix A = H̃† (I + H̃QH̃†)−1 H̃. In our
context, this can be accomplished via the statistical sampling
process of [7], [8] which provides an unbiased estimator of A
with exponentially decaying error tails (i.e. (H2) holds for all
β > 2). However, due to space limitations we will not address
this question in more detail here.

c) Fair channel conditions and noise: As before, the regret
guarantee (34) can be tightened significantly if the user’s effec-
tive channel conditions satisfy (32). In that case, if (OGA) is
run with a variable step-size sequence of the form γn ∝ 1/n,
we obtain the following stochastic analogue of Proposition 1:

Proposition 2: With notation as in Theorem 2, assume that
(OGA) is run with noisy measurements and a variable step-
size sequence γn = γ /n for some γ ≥ a−1 with a. Then, the
induced transmit policy Q(n) leads to no regret (a.s.) and enjoys
the mean guarantee:

E[Reg(T )] ≤ 1
2
γ V̂ 2

0 (1 + log T ). (37)

Proof: See Appendix C. ⌅
As in the perfect CSI case, Proposition 2 provides a rule of

thumb for achieving lower regret faster when the user’s (effec-
tive) wireless medium is not too bad: as long as (32) holds for
some a > 0, the user can achieve logarithmic regret, even with
very noisy measurements.

IV. NUMERICAL RESULTS

In this section, we assess the performance of the OGA algo-
rithm via numerical simulations. Even though we only present
here a representative subset of these results, our conclusions
apply to a wide range of wireless network parameters and
specifications.

Our setup is as follows: we consider a cellular OFDMA wire-
less network occupying a 10 MHz band divided into 1024 sub-
carriers around a central frequency of fc = 2.5 GHz. Wireless
signal propagation is modeled following the well-known COST
Hata model [40], [41] and the spectral noise density is taken to
be −174 dBm/Hz at 20 ◦C (for a detailed overview of simu-
lation parameters, see Table I). Network coverage is provided
by 19 hexagonal cells (each with a radius of 1 km) that form a
honeycomb pattern spanning an urban area with wireless user
density ρ = 500 users/km2. To minimize complexity, OFDM

10Note here that V̂0 is guaranteed to be finite on account of Hypothesis (H2).
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TABLE I
WIRELESS NETWORK SIMULATION PARAMETERS

subcarriers are allocated to wireless users in each cell follow-
ing a simple randomized access scheme that assigns different
users to disjoint subcarrier sets [61].

We focus on a set of U = 15 transmitting users that are
located in different cells (following a Poisson point process
sampling) and share K = 8 common subcarriers. Each wireless
transmitter is further assumed to have M = 4 transmit antennas,
a maximum transmit power of Pmax = 40 dBm and circuit (non-
radiative) power consumption of Pc = 20 dBm. At the receiver
end, we consider N = 8 receive antennas per connection and
a receiver noise figure of 7 dB. Finally, communication occurs
over a time-division duplexing (TDD) scheme with frame dura-
tion T f = 5 ms: transmission takes place during the uplink
(UL) subframe while the receivers process the received signal
and provide feedback during the downlink (DL) subframe; upon
reception of the feedback, the users update their power profiles
following Alg. 1 and the process repeats.

A. Static Channels

For benchmarking purposes, our first simulation scenario
studied stationary users with static channel conditions (so the
variability of a user’s effective channel matrix is only due to
the modulation of the interfering users’ transmit characteris-
tics). Each user is assumed to run the OGA algorithm with a
variable step-size of the form γn ∝ 1/

√
n and an agnostic ini-

tialization with initial transmit power P0 = Pmax/2 = 26 dBm
spread evenly across antennas and subcarriers. Our simulation
results are presented in Fig. 2 where, to minimize graphical
clutter, we only plot the relevant information for four users with
diverse channel characteristics.

First, in Fig. 2(a), we plot the users’ transmit power under
OGA. As can be seen, even though users change their power
by several dBm, the algorithm quickly converges after an initial
transient phase. Similarly, in Fig. 2(b), we plot the users’ trans-
mit rate over all subcarriers (normalized by the bandwidth and
thus measured in bps/Hz). We see here that users who reduce
power by more than 10 dBm (Users 3 and 4) experience a com-
mensurate drop in spectral efficiency (of the order of a few
bps/Hz). On the other hand, users that decrease power only by
a little achieve higher rates because the OGA algorithm leads to
a more efficient allocation of power over subcarriers and anten-
nas. Nonetheless, in all cases, we observe a dramatic increase
in energy efficiency over the users’ initial (uniform) power
allocation policy, ranging from≈200% to more than 600%.11

11Contrary to Fig. 2(b), we do not normalize the users’ energy efficiency by
the bandwidth, so it is measured in Mb/J.

In fact, as we see in Fig. 2(c), after some slight oscillations
during the first few iterations (the algorithm’s transient phase),
the system rapidly reaches a state where users have no incentive
to change their individual power profiles (a Nash equilibrium
in game-theoretic terms). This equilibration is consistent with
the no-regret properties of the OGA algorithm: as predicted by
Theorem 1 and shown in Fig. 2(d), the users’ regret quickly
decays to zero.

B. Time-Varying Channels and Mobility

To account for dynamic network conditions, we also con-
sider in Fig. 3 the case of mobile users whose channels vary
with time due to Rayleigh fading, path loss fluctuations, etc.
For simulation purposes, we used the extended typical urban
(ETU) model for the users’ environment and the extended
pedestrian A (EPA) and extended vehicular A (EVA) models to
simulate pedestrian (3–5 km/h) and vehicular (30–130 km/h)
movement respectively [62]. For reference, the focal users’
channel gains (tr(HH†)) have been plotted in Fig. 3(a). Despite
the channels’ variability, Fig. 3(b) shows that the users attain
a no-regret state in a few iterations, even under rapidly chang-
ing channel conditions (cf. the case of Users 2 and 4 with an
average speed of 30 km/h and 130 km/h respectively).

For completeness, we also plot in Figs. 3(c) and 3(d) the
achieved energy efficiency for a pedestrian and a vehicular
user, and we compare it to a) the user’s initial (uniform) power
allocation policy; b) the (fixed) oracle solution of the offline
maximization problem (12), calculated with full knowledge
of the future; and c) the (dynamic) optimum policy Q∗(n) =
arg maxQEE(Q; n) which represents the instantaneous opti-
mum policy in terms of energy efficiency (and which is again
calculated with perfect foresight and knowledge of the future).
Remarkably, even under rapidly changing channel conditions,
the users’ achieved energy efficiency tracks its (evolving) max-
imum value remarkably well and consistently outperforms
the fixed oracle solution (a fact which is consistent with the
negative regret observed in Fig. 3(b)).

An intuitive explanation for the adaptability of OGA is pro-
vided by Figs. 3(e) and 3(f) where we plot the transmit power
of the dynamic optimum policy, the OGA scheme and the
fixed oracle solution for the same users as in Figs. 3(c) and
3(d). Even though the dynamic optimum policy Q∗(n) may
change significantly from one frame to the next, tr(Q∗(n))

remains roughly constant (within a few dBm) over the entire
transmission horizon. The OGA algorithm learns this power
level in a few iterations and stays close to it throughout the
transmission horizon. As a result, the users’ achieved energy
efficiency remains itself very close to its maximum value.

C. Robustness to Observation Noise and Scalability for Large
Antenna Numbers

To assess the robustness of the OGA algorithm in the
presence of observation noise and measurement errors, the
simulation cycle above was repeated in Fig. 4 for the case
where users only have access to noisy gradient observations
as in Section III-C. Also, to study the algorithm’s scalability
in the massive MIMO regime (large number of antennas), we
increased the number of transmit antennas to M = 8 and the
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Fig. 2. Performance of the Algorithm 1 under static channel conditions. The system converges within a few iterations to an equilibrium state (Fig. 2(c)) where
users experience no regret (Fig. 2(d)).

number of receive antennas to N = 128; other than that, we
used the same network simulation parameters as in Fig. 2. The
intensity of the measurement noise was quantified via the rela-
tive error level of the estimator V̂, i.e. its standard deviation over
its mean (so a relative error level of η% means that the observed
matrix V̂ lies within η% of its true value). We then plotted
the users’ achieved energy efficiency under the OGA algorithm
for noise levels η = 20% (moderate-to-high uncertainty) and
η = 100% (very high uncertainty). As can be seen in Fig. 4, the
system’s rate of equilibration is adversely affected by the inten-
sity of the noise; however, the system still equilibrates within a
few tens of iterations and the users exhibit a drastic increase in
energy efficiency (of the order of 150% and more), even in the
presence of very high uncertainty.

Furthermore, to study the performance of the proposed algo-
rithm in the massive MIMO regime, we also plotted in Fig. 5 the
number of iterations required for the system to equilibrate for
different numbers of antennas at the transmitter and the receiver
end (M and N respectively). Importantly, as can be seen in
Fig. 5, the OGA algorithm scales very well with the number of
antennas and converges within a few iterations, even in the mas-
sive MIMO regime. Specifically, the algorithm requires around
10 iterations to converge for 8× 92 MIMO systems and around
20 iterations for 16× 128 systems.

D. The Cooperative Framework

As is well known in game theory, there is often a gap between
unilaterally optimal solutions (such as Nash equilibria) and

socially optimal ones (where the players’ aggregate utility is
maximized). As such, an important question that arises is the
following: what is the gap (if any) between the unilateral frame-
work presented above and a cooperative setting where users
can coordinate their actions in order to maximize the system’s
overall energy efficiency?

To formalize this question, we consider below a system con-
sisting of U wireless users that transmit to a common receiver
(for simplicity, we assume that all users have similar circuit and
maximum power characteristics as in the rest of this section).In
this case, the system’s achievable sum rate [37], [49] is given
by:

Rsys(Q1, . . . , QU ) = log det
(

I +∑
u HuQuH†

u

)
, (38)

where, in obvious notation, Qu denotes the covariance matrix of
the u-th user. Accordingly, the system’s energy efficiency will
be given by the ratio

EEsys(Q1, . . . , QU ) = Rsys(Q1, . . . , QU )
∑

u(Pc + tr(Qu))
, (39)

leading to the maximization problem:

maximize EEsys(Q1, . . . , QU ),

subject to Qu ∈ Q, u ∈ U.
(40)

To solve this problem, we can use the analysis of Section III
to derive a cooperative gradient ascent (CGA) scheme that has
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Fig. 3. Performance of the OGA algorithm in a dynamic setting with mobile users moving at v ∈ {3, 30, 5, 130} km/h. The users’ achieved energy efficiency
tracks its (evolving) maximum value remarkably well, even under rapidly changing channel conditions.

the same update structure as the unilateral OGA method but
is instead adapted to the system-oriented problem (40) above.
Because the details of this construction would take us too far
afield, we omit them;12 we only note that the resulting CGA
method is no longer distributed.

Thanks to this cooperative method, we can assess the per-
formance of the unilateral OGA algorithm in a cooperative
framework and examine the gap between the two settings.

12In brief, the CGA algorithm is constructed in three steps. We first use the
Charnes–Cooper transformation to define a new set of variables Z = Z(Q) that
map the problem (40) to an equivalent concave problem with objective function
usys(Z) and feasible region Z. The CGA recursion is then defined by replac-
ing the gradient in (OGA) with ∇Zusys(Z) and then taking the closest point
projection to Z.

Specifically, in Fig. 6, we plot the system’s overall energy effi-
ciency for U = 5 users that employ the CGA and OGA schemes
(in the cooperative and unilateral frameworks respectively). In
the algorithm’s end state, the system’s energy efficiency when
users do not cooperate lies fairly close to that of the cooper-
ative framework (within 5%). On the other hand, cooperative
users achieve substantially higher values of system-wide energy
efficiency in the transient regime – but at the cost of signaling
overhead between the users.

Remark 4: The (Gaussian) multiple access channel
(MAC) model described above is a special case of the inter-
ference channel in which the receivers are colocated and
cooperative. As opposed to the general interference channel
(where the centralized sum-capacity and capacity region are
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Fig. 4. Performance of Algorithm 1 with imperfect measurements and observation errors. Remarkably, even under very high uncertainty, the system converges
within a few tens of iterations to a stable state (dashed lines) where users experience no regret.

Fig. 5. The convergence speed of Algorithm 1 for different numbers of
antennas at the transmitter and the receiver.

Fig. 6. Energy efficiency comparison between the unilateral and cooperative
frameworks.

not known), the capacity region of the MAC is well understood
and its sum-capacity is a concave function of the users’ input
signal covariance matrices. On the other hand, due to non-
convexity issues that arise in the full interference channel, even
the maximization of the users’ achievable sum-rate under SUD
is a very hard nonlinear problem in the general case. Therefore,
when the figure of merit is the system’s energy efficiency, the
Charnes–Cooper transform (or other fractional programming
methods) cannot be applied to compute the system’s globally
optimum transmit profile. In the recent paper [63], the authors
attempt to circumvent this difficulty by taking a convexified
relaxation (i.e. a lower bound estimate) of this problem and
propose an algorithm to achieve a solution thereof. However,

because it is hard to quantify the performance gap between
this relaxed solution and the problem’s global optimum, the
methodology of [63] does not readily yield an accurate com-
parison between the cooperative and non-cooperative regime
for the full interference channel (especially beyond the case
of static channels). A comprehensive analysis of these issues
lies beyond the scope of our paper so we focus on the MAC
case where convexity allows us to derive below a cooperative
learning algorithm with guaranteed convergence/no-regret
properties.

V. CONCLUSIONS AND PERSPECTIVES

In the context of multi-carrier MIMO systems where numer-
ous interfering mobile users co-exist, the temporal variability
of the system cannot be ignored when targeting highly energy-
efficient communications. To tackle this issue, we introduced
an online optimization framework for the study of energy
efficiency maximization in dynamically varying networks, and
we proposed an adaptive transmit policy that allows users to
attain a “no-regret” state. Importantly, the proposed policy
is distributed, asynchronous, computationally simple, and it
only requires minimal, strictly causal and (possibly) noisy
feedback. Specifically, under very mild assumptions on the
statistics of the error process, we showed that the users’ average
regret after T epochs decays as O(T−1/2), a bound which is
further improved to O(log T/T ) if the users do not experience
arbitrarily bad channel conditions. As a result, users are able
to track their most efficient transmit power profile with modest
feedback requirements, even under rapidly changing channel
conditions (corresponding to highly mobile users): indeed,
our simulations show that users could gain up to 600% in
energy efficiency over fixed/uniform power allocation policies
in realistic network environments.

An important theoretical question which arises is whether the
system converges to an equilibrium state if all users employ
a no-regret policy (our numerical simulations show that this
indeed the case over a wide region of system parameters).
Additionally, different throughput-per-power models account-
ing for the probability of outage can also be considered and
would require a modification of the proposed transmit policy.
We intend to explore these directions in future work.
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APPENDIX

TECHNICAL PROOFS

Throughout this appendix (and unless explicitly mentioned
otherwise), all matrices are assumed Hermitian and of dimen-
sion D = K M . Additionally, the stage variable n will be
written as a subscript instead of as an argument – i.e. we will
write Xn and un(X) instead of X(n) and u(X; n) respectively.
We do so in order to reduce the notational clutter caused by an
overflow of parentheses; since we will not require a subcarrier
index, there is no fear of ambiguity.

A. Matrix Projections

We first prove that the projection map !(Y) is given by the
explicit formula (26). To that end, simply note that !(Y) can
be expressed equivalently as the solution to the maximization
problem

maximize tr(YX)− 1
2 ∥X∥2 ,

subject to X ∈ X.
(41)

However, if Y = U)U† is a diagonalization of Y, the objective
of (41) can be written as:

tr(YX)− 1
2 ∥X∥2 = tr()U†XU)− 1

2 tr(U†XUU†XU). (42)

Thus, given that X ∈ X if and only if UXU† ∈ X, we readily
get !(Y) = U!())U†, so it suffices to solve (41) for diagonal
Y.

We first show that !(Y) is itself diagonal if Y = diag(y) for
some y ∈ RD . Indeed, we have:

tr(YX)− 1
2∥X∥2=

∑
i yi X2

i i− 1
2
∑

i, j |Xi j |2≤
∑

i (yi X2
ii− 1

2 X2
ii),

(43)

with equality if and only if X is diagonal. As a result, if X is a
solution of (41), the diagonal matrix X′ which coincides with
X on the diagonal and has zero entries otherwise will also be a
solution of (41); since (41) admits a unique solution, we con-
clude that !(Y) must also be diagonal, as claimed. We are thus
left to solve the maximization problem

maximize
∑

j y j x j − 1
2
∑

j x2
j ,

subject to x j ≥ 0,
∑

j x j ≤ 1.
(44)

Writing λ j ≥ 0 and λ ≥ 0 for the Lagrange multipliers of the
constraints x j ≥ 0 and

∑
j x j ≤ 1 respectively, the first-order

Karush–Kuhn–Tucker (KKT) conditions for (44) become:

y j = x j + λ− λ j , (45a)

λ j x j = 0, λ(1−∑ j x j ) = 0. (45b)

Thus, to obtain the first branch of (27), simply note that if
y j ≤ 0 but x j > 0, we will also have λ j = 0, so (45a) gives
y j = x j + λ > 0, a contradiction. Likewise, if

∑
j :y j≥0 y j ≤ 1,

setting λ j = λ = 0 and x j = y j for all j such that y j ≥ 0 is
obviously a solution of (45), so we obtain the second branch
of (27). Finally, to obtain the third branch of (27), note first
that

∑
j :y j≥0 x j = 1 if

∑
j :y j≥0 y j ≥ 1; otherwise, we would

have λ = 0 and (45a) would give y j = x j − λ j ≤ x j whenever
y j ≥ 0, implying in turn that

∑
j :y j≥0 y j ≤

∑
j :y j≥0 x j < 1,

a contradiction. Accordingly, we are left to project the vec-
tor with components y+

i =
[
yi
]
+ to the unit simplex ) = {x ∈

RD : x j ≥ 0 and
∑

j x j = 1}; this projection simply gives
xi = [y+

i − λ]+ with λ ≥ 0 such that
∑

i [y+
i − λ]+ = 1 [52],

so (26) follows.

B. No Regret With Perfect Feedback

The key step in bounding the user’s regret is the inequality:

EE(Q∗)− EE(Q) = u(X∗)− u(X) ≤ tr[V · (X∗ − X)], (46)

itself a simple consequence of the fact that u(X) is concave
in X. Our proof follows the methodology of [35] where OGA
methods where used in a vector (as opposed to matrix) setting
with the special step-size sequence γn ∝ n−1/2 (as opposed to
general γn). To be precise, we will establish the no-regret prop-
erties of (OGA) by showing that

∑T
n=1 tr[Vn · (X∗ − Xn)] =

o(T ) for all X∗ ∈ X and for every matrix sequence Vn .
Proof of Theorem 1: Letting Dn = 1

2 ∥X∗ − Xn∥2, we
get:

Dn+1 = 1
2

∥∥X∗−!(Xn +γnVn)
∥∥2 ≤ 1

2

∥∥X∗−Xn−γnVn
∥∥2

,

(47)
on account of the definition of !(Y) as the closest point to Y
on X. In this way, (47) yields:

Dn+1 ≤ Dn − γn tr
[
Vn · (X∗ − Xn)

]
+ 1

2
γ 2

n ∥Vn∥2 , (48)

and hence, after rearranging and summing over n, we obtain:
T∑

n=1

tr
[
Vn · (X∗−Xn)

]
≤

T∑

n=1

γ−1
n (Dn−Dn+1)+

1
2

T∑

n=1

γn ∥Vn∥2

≤ γ−1
1 D1 +

T∑

n=2

(
γ−1

n − γ−1
n−1

)
Dn + 1

2

T∑

n=1

γn ∥Vn∥2

≤ γ−1
1 * +

T∑

n=2

(
γ−1

n −γ−1
n−1

)
* + V 2

0

2

T∑

n=1

γn = 1
γT

+ V 2
0

2

T∑

n=1

γn,

(49)

where * ≡ 1
2 maxX,X′∈X ∥X− X′∥2 = 1. The fact that Xn

leads to no regret then follows by noting that 1/(T γT )→ 0 (by
assumption) and that T−1∑T

n=1 γn → 0 (since γn → 0). ⌅
Proof of Proposition 1: Reasoning as in [33], [54], the

strong concavity assumption (32) gives:

un(X∗)− un(Xn) ≤ tr
[
Vn(X∗−Xn)

]
− 1

2γ
∥X∗−Xn∥2, (50)

where we have used the fact that a ≥ γ−1. Thus, by summing
over n and using (49), we obtain:

Reg(T ) ≤ 1
2

T∑

n=2

(
γ−1

n −γ−1
n−1−γ−1

)
∥X∗−Xn∥2+ 1

2

T∑

n=1

γn∥Vn∥2

≤ 1
2
γ V 2

0

T∑

n=1

n−1 ≤ 1
2
γ V 2

0 (1 + log T ) , (51)

where, in the second line, we used the fact that γ−1
n − γ−1

n−1 =
nγ−1 − (n − 1)γ−1 = γ−1. ⌅
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C. The Case of Imperfect Feedback

Proof of Theorem 2: As before, we begin with the basic
inequality:

Reg(T ) ≤ max
X∗∈X

∑T

n=1
tr
[
Vn · (X∗ − Xn)

]
, (52)

with Xn defined via the (stochastic) recursion:

Xn+1 = !(Xn + γnV̂n). (53)

Thus, for the first part of the theorem, we need to show that:
T∑

n=1

tr[V̂n ·(X∗−Xn)]+
T∑

n=1

tr
[
Zn ·(Xn−X∗)

]
= o(T ) (a.s.),

(54)
where Zn = V̂n − Vn . The first term of (54) then becomes:

T∑

n=1

tr[V̂n ·(X∗ − Xn)] ≤ *

γ1
+

T∑

n=2

(
γ−1

n − γ−1
n−1

)
Dn

+
T∑

n=1

γn∥V̂n∥2
2

≤ 1
γT

+ V 2
0

2

T∑

n=1

γn + O

(
T∑

n=1

γn∥Zn∥2
)

, (55)

where, as before, * ≡ 1
2 maxX,X′∈X

∥∥X− X′
∥∥2 = 1. We now

claim that limT→∞ T−1∑T
n=1 γn ∥Zn∥2 → 0 (a.s.). Indeed, let

zn = ∥Zn∥ and choose ε > 0 such that 4ε ≤ αβ − 2 (recall
that αβ > 2); Hypothesis (H2) then implies that P(zn ≥
nα/2−ε/β) ≤ B/nαβ/2−ε ≤ B/n1+ε for all n, so we obtain:

∞∑

n=1

P
(

zn ≥ nα/2−ε/β
)

=
∞∑

n=1

O(1/n1+ε) <∞, (56)

and hence, by the Borel-Cantelli lemma, we conclude that
P(zn ≥ nα/2−ε/β for infinitely many n) = 0. In turn, this
implies that z2

n = O
(
nα−2ε/β

)
almost surely, so we get (a.s.):

T∑

n=1

γn∥Zn∥2 = O

(
T∑

n=1

n−αnα−2ε/β

)

= O

(
T∑

n=1

1/n2ε/β

)

= o(T ).

(57)

For the second term of (54), let ξn = tr
[
Zn · (X∗ − Xn)

]
.

Then, given that Xn is a deterministic function of Xn−1 and
V̂n−1, we will also have E

[
ξn | Xn−1

]
= 0, i.e. ξn is a sequence

of martingale differences. By the strong law of large numbers
for martingale differences [64, Theorem 2.18], it then follows
that limT→∞ T−1∑T

n=1 ξn = 0 (a.s.). As a result, combining

this with (57), we get
∑T

n=1 tr
[
V̂n · (X∗ − Xn)

]
= o(T ), i.e.

(53) leads to no regret (a.s.), as claimed.
Finally, for the mean regret bound (34), taking the expecta-

tion of the first line of (55) yields:

E[Reg(T )] ≤ 1
γT

+ V̂ 2
0

2

T∑

n=1

γn, (58)

where we used the fact that Reg(T ) ≤ E[Vn · (X∗ − Xn)] =
E[V̂n · (X∗ − Xn)] for the LHS, and the assumption that
E[∥V̂n∥2] ≤ V̂ 2

0 for the RHS. ⌅
Proof of Proposition 2: By reasoning as in the proof of

Proposition 1, we readily obtain:
T∑

n=1

tr[V̂n · (X∗ − Xn)] ≤ 1
2

T∑

n=1

γn∥V̂n∥2, (59)

so (37) follows by taking expectations on both sides as in the
proof of Theorem 2. That Xn leads to no regret then follows by
noting that (57) holds even for α = 1. ⌅
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Abstract—One of the key challenges in Internet of Things

(IoT) networks is to connect many di↵erent types of au-

tonomous devices while reducing their individual power con-

sumption. This problem is exacerbated by two main factors:

a) the fact that these devices operate in and give rise to a

highly dynamic and unpredictable environment where existing

solutions (e.g., water-filling algorithms) are no longer relevant;

and b) the lack of su�cient information at the device end. To

address these issues, we propose a regret-based formulation

that accounts for arbitrary network dynamics: this allows us

to derive an online power control scheme which is provably

capable of adapting to such changes, while relying solely on

strictly causal feedback. In so doing, we identify an important

tradeo↵ between the amount of feedback available at the trans-

mitter side and the resulting system performance: if the device

has access to unbiased gradient observations, the algorithm’s

regret after T stages is O(T�1/2) (up to logarithmic factors); on

the other hand, if the device only has access to scalar, utility-

based information, this decay rate drops to O(T�1/4). The above

is validated by an extensive suite of numerical simulations in

realistic channel conditions, which clearly exhibit the gains

of the proposed online approach over traditional water-filling

methods.

Index Terms—IoT networks, online exponential learning,

imperfect and scarce feedback

I. Introduction

T
HE emerging Internet of things (IoT) paradigm is pro-
jected to connect billions of wireless “things” (wireless

sensors, wearables, biochip transponders, etc.) in a vast
network with drastically di↵erent requirements between
components (e.g. in terms of throughput and power char-
acteristics) [3]. Following Moore’s prediction on silicon
integration, the wireless surroundings of IoT networks are
expected to exhibit massive device densities with high
interference levels. An orthogonal spectrum allocation is
therefore energetically ine�cient, as an unrealistic number
of bands or subcarriers would be required to accommodate
all devices. The usage of new access protocols such as
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non-orthogonal multiple access (NOMA) [4] is considered
instead, in which interference mitigation becomes critical.
For this reason, and also given that the autonomous wireless
devices have stringent battery limitations, optimizing the
power consumption emerges as one of the key ingredients
for achieving a “speed of thought” user experience at the
application level [5].

A major challenge that arises here is that IoT networks
are characterized by an unprecedented degree of temporal
variability – due itself to the unique mobility attributes
of modern wearable devices, intermittent user activity, ap-
plication diversity etc. As such, IoT networks cannot be
treated as static (or stationary) systems, implying in turn
that conventional optimization techniques that target a fixed
state, for instance via water-filling type of algorithms, are no
longer relevant. The main limitation of classical approaches
is their lack of robustness to strictly causal – no look-ahead
– channel state information, which is inevitable in dynamic,
unpredictable environments. Therefore, power optimization
in dynamic IoT networks calls for a di↵erent toolbox that
is provably capable of adapting to unpredictable changes in
the network.

Motivated by its prolific success in the fields of machine
learning and artificial intelligence [6, 7], we propose in
this paper a regret-based formulation of power optimiza-
tion which allows us to consider arbitrary variations in
the network. The core component of this approach is that,
instead of targeting a specific network state, it aims to derive
an online power allocation policy whose performance over
time is as close as possible to that of the best fixed policy
in hindsight (even though computing the latter requires
non-causal knowledge of the system parameters and their
evolution ahead of time). Owing to this straightforward
and flexible definition, regret minimization has become the
leading paradigm for online decision making in uncertain,
dynamic environments, ranging from online ad auctions
[8, 9] and recommender systems [10] to throughput and
energy e�ciency optimization problems in wireless com-
munications [11, 12].

A critical performance limitation in the above is the
fact that wireless devices in IoT networks typically receive
limited and/or corrupted feedback from their environment
[13]. To name but an example, channel state information
(CSI) is usually acquired by the access point (AP) using
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pilot transmissions that are subsequently fed back to each
device. Since IoT networks bring together massive numbers
of devices, the signaling overhead increases to the point
where it cannot be distributed over multiple frequency bands
in an e�cient manner (due to spectrum scarcity) [14, 15].
Therefore, to reduce the impact of this overhead, the amount
of information fed back to wireless devices must be reduced
as much as possible, and the resulting estimation errors
must be likewise taken into account. The same kind of
problem has been underlined in cooperative multi-user net-
works [16], in which the global network optimum objective
leads to massive signaling; and in massive multiple-input
and multiple-output (MIMO) systems [17–20], in which the
increase in the number of antennas leads to a prohibitive
amount of required CSI. Instead, in IoT networks, it is not
the number of antennas but the large number of connected
devices that create this bottleneck.

A. Summary of contributions and paper outline
In the field of online learning, the challenges that re-

sult from incomplete and/or imperfect feedback have been
studied extensively in the context of the so-called multi-
armed bandit problems [6]. These problems are inherently
discrete in nature, so the lessons learned from this literature
do not apply to the power allocation framework studied here
(a continuous, multi-dimensional problem in itself). Never-
theless, by leveraging ideas originating in the well-known
exponential weights algorithm for multi-armed bandits [6],
we derive an online power allocation policty based on ex-
ponentiated gradient descent (EGD), and which comprises
two basic steps: a) tracking the gradient of the users’ power
minimization objective in a dual, unconstrained space; and
b) using a judiciously designed exponential function to
map the output of this step to a feasible power allocation
profile and keep going. Thanks to this two-step, primal-
dual approach, we are then able to derive concrete regret
minimization guarantees for the online power minimization
problem, irrespective of the network’s dynamics.

To establish a benchmark, we begin with the full infor-
mation or the first-order feedback case, where each wireless
device is assumed to have perfect feedback on the gradient
of its individual power minimization objective. In this case,
the proposed power allocation policy is shown in Section III
to enjoy a O(T�1/2) regret guarantee, meaning that the algo-
rithm’s performance over a horizon of T transmission cycles
is no more than O(T�1/2) away from the best fixed policy in
hindsight. Importantly, unless rigid statistical hypotheses are
made for the underlying IoT network (such as assuming that
it evolves following a stationary ergodic process), this guar-
antee cannot be improved; however, we show in Section IV
that it can still be attained even if the feedback received by
each device is imperfect and/or otherwise corrupted by non-
systematic measurement errors and observational noise.

In addition to providing a comparison baseline, the full
information case also allows us to compare the performance

of the proposed algorithm to that of classical water-filling
algorithms [21–23] and highlight the di�culties encoun-
tered by the latter when the network evolves dynamically
over time and only a strictly causal (with no look-ahead)
feedback information is available at the transmitter.

On the other hand, if the only information received by
each device is the observed value of their power minimiza-
tion objective (the so-called zeroth-order feedback setting),
these bounds change significantly. Lacking any sort of
vector-valued, gradient-based feedback, we rely on simul-
taneous stochastic approximation techniques [6, 7], to build
an estimator for the gradient: importantly, this estimator is
potentially biased, but its bias can be controlled by tuning a
certain sampling parameter. By jointly optimizing the value
of this parameter and that of the original algorithm’s step-
size, we then show that the proposed policy still leads to no
regret, but now at a slower rate of O(T�1/4).

In Section VI, we validate our theoretical analysis via nu-
merical experiments and highlight highly dynamic networks
with realistic, unpredictable channel conditions. Classical
water-filling algorithms are very sensitive to unpredictable
changes in the network and are outperformed by our pro-
posed online algorithms in terms of power consumption and
achieved rate. Concerning the impact of available feedback,
our numerical results also illustrate a compromise between
the amount and/or quality of the feedback information and
the algorithms’ performance (measured here in terms of
the time needed to attain a no-regret state). The zeroth-
order feedback case requires only the knowledge of a scalar
at each iteration (the value of the objective function) as
opposed to a vector (the gradient), but the average time
required to reach a no-regret state is higher.

B. Related works
Regarding resource allocation in static IoT environments,

several problems have been studied [24–26]. In [24] the au-
thors study the resource allocation for machine to machine
(M2M) communications using cooperative game theoretic
tools in which the machines want to maximize their own
rate. In [25], the authors study the problem of clustering and
power allocation for both uplink and downlink in NOMA
systems. Similar to [24], each device aims at maximizing its
own rate. To solve this problem, the authors used classical
optimization tools. In [26], the problem of power control
for mutual interference avoidance is studied by using also
classical optimization tools. In all these works, the network
is assumed to remain static over time and the devices are
required to have perfect feedback information. Here, we
relax both assumptions by taking into account the inherent
dynamics of an IoT network and the impact of feedback
imperfections and scarcity.

In (non-IoT) wireless networks, there exists a wide re-
source allocation literature essentially concerned with either
static [21–23, 27, 28] or stochastic [16, 20, 29–35] opti-
mization problems, to cite but a few. In these works, the
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underlying network is assumed to remain static or to evolve
following a stationary random process. Their main aim is to
derive e�cient algorithms, based on classical optimization,
stochastic optimization, or on machine learning tools, that
converge to an optimal fixed or steady state. These works
are inherently di↵erent from the present paper, in which
we squarely focus on arbitrarily dynamic networks (the
network can even evolve in a non-stationary way). In such
unpredictable networks, there is no fixed solution state to
converge to, so the very notion of convergence as a perfor-
mance metric needs to be rethought from the ground up.

Adaptive allocation policies based on online optimiza-
tion tools have been recently proposed but in quite di↵erent
settings and problems [11, 12, 36–38]. In [36], the authors
proposed a multi-armed bandit formulation of the channel
selection problem and derived an online channel selec-
tion algorithm using upper confidence bound techniques;
a similar approach has also been used in the context of
beam-alignment for millimeterWave communications [37].
In [38], an adversarial multi-armed bandit formulation is
proposed to tackle an access point association problem in
hybrid indoor LiFi-WiFi communication systems exploiting
the exponential weights algorithm. For IoT networks, the
recent work [39] acknowledges the high potential of the
online learning framework and then focuses on multi-armed
bandits for mobile computation o✏oading problems at the
edge layer. However, in our setting, the agents’ decisions
are not taken within a stochastic environment (so upper
confidence bounds are not applicable) and all variables are
continuous as opposed to discrete (so multi-armed bandits
are not suitable).

Regarding physical-layer resource allocation problems,
the authors of [11, 12] studied dynamic MIMO systems
from the point of view of online throughput and energy
e�ciency maximization. By contrast, our focus here is the
power minimization problem in IoT networks, which is
inherently di↵erent. Specifically, in the online throughput
maximization problem in [11], the opportunistic devices
have to always transmit at full available power, which is not
power-e�cient and the proposed learning algorithm does
not apply to the problem at hand. The energy e�ciency (de-
fined as the ratio between the achieved rate and the overall
power consumption) maximization problem in [12] is non-
convex and is cast into a convex problem by performing
a suitable variable change, which results into a specific
exponential learning algorithm that also does not apply here.
However, the learning algorithms in these works rely on
the availability of gradient information which amounts to
a (typically large) matrix worth of feedback; by contrast,
the algorithm provided in this paper only requires a single
readily available scalar as feedback at the device end.

To the best of our knowledge, our paper is the first in the
IoT literature to take into account the network’s inherent
dynamics and its unpredictable temporal variability when
designing power-e�cient allocation policies. Furthermore,

Rx1

D11
D12

D13

D14

Rx2

D21 D22

Figure 1: System composed of six transmit devices (D11, D12, etc.) and
two receivers (Rx1, Rx2). The blue and green arrows represent the direct
links while the red (double-lined) ones are interfering links.

it is among the first works in the resource allocation litera-
ture in multi-user wireless networks, proposing an adaptive
algorithm relying only on a single scalar feedback informa-
tion (the sole past experienced objective value).

II. Model and Problem Formulation
We consider a system composed of M transmitters and N

receivers communicating over S orthogonal subcarriers or
sub-bands as illustrated in Fig. 1: each device transmits to
only one intended receiver, but a given receiver may decode
several incoming signals.

Since we aim at devising a distributed policy that needs
no central controller, we can focus on one particular
transmitting-receiving pair. The received signal for the (ar-
bitrarily chosen) focal device becomes:

ys(t) = hs(t)xs(t) +
X

j
hs

j(t)xs
j(t) + zs(t), (1)

where s 2 {1, . . . , S } is the subcarrier index; xs(t) is the
transmitted signal; hs(t) is the channel gain between the
focal transmitter and its intended receiver; xs

j is the trans-
mitted signal of device j; hs

j(t) is the interfering channel gain
between transmitter j and the focal receiver; and zs(t) is the
received noise of the focal device.

We also define the e↵ective channel gain vector w(t) =
(ws(t)), where ws(t) represents the e↵ective gain in subcar-
rier s and is given by

ws(t) =
gs(t)

�2 +
P

j gs
j(t)ps

j(t)
, 8s, (2)

where �2 is the variance of the noise zs(t), ps
j(t) is the trans-

mitted power by the user j in subcarrier s, gs
j(t) = |hs

j(t)|2
and gs(t) = |hs(t)|2.

The above expression implies that the receiver employs
single-user decoding (SUD), meaning that, when decoding
a transmitted signal, the other incoming signals are treated
as noise. This consideration is relevant in distributed and
energy-limited networks, such as IoT networks, in which the
receivers may not be able to decode the interfering signals
(e.g., may not know the codebooks of the interferers). Also,
the receivers may not a↵ord to sequentially process and
decode their incoming signals (via successive interference
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cancellation) and the transmitting devices may not be coor-
dinated (and may not know their decoding order).

The aim of IoT networks is to interconnect many di↵erent
types of devices in a distributed or self-optimizing way.
Since most of them are likely to be small devices like
sensors, phones, or isolated devices that operate solely on
limited batteries, reducing the power consumption is a key
challenge in IoT networks [40, 41]. In this work, the main
objective is to minimize the power consumption of the
focal device taking into account its quality of service (QoS)
requirements. These requirements are performance targets,
which depend on the specific application, for example: a)
minimum rate per device (i.e., the rate of the focal device
has to be higher than a given threshold Rmin); b) minimum
SINR per device; c) minimum network sum-rate. Such QoS
requirements di↵er from physical hard constraints (e.g., the
transmit power positivity constraints) in that they cannot
be ideally guaranteed - always at 100% - in practical com-
munication systems and some outage has to be generally
tolerated.

In view of the above, the trade-o↵ between power mini-
mization and QoS requirements will be modeled via the loss
function:

Lt(p) =
SX

s=1

ps + �
⇥
Rmin � Rt(p)

⇤+ (3)

where p = (p1, . . . , pS ) represents the power allocation vec-
tor of the focal device with components ps,8s representing
the power allocated to the s-th subcarrier. The first term
in the objective is the overall power consumption and the
second term is a soft-constraint (or penalty) term, which
is activated whenever the minimum target rate Rmin is not
achieved. Finally, Rt(p) denotes the well-known Shannon
rate:

Rt(p) =
SX

s=1

log(1 + ws(t)ps) (4)

and [x]+ , max{x, 0}, meaning that no penalty is applied
when the achieved rate is greater than the threshold Rt(p) �
Rmin. Although we choose a linear penalty function for its
relevance to communications [28, 42, 43] (and to simplify
the presentation), our results carry over the more general
class of concave functions, e.g., logarithmic penalties [44].
The parameter � can also be interpreted as the unit-cost for
each bps/Hz under the QoS target Rmin and, as we will see
in Section VI, it also represents a sensitivity parameter that
has to be carefully tuned to adjust the flexibility regarding
the minimum rate constraint violations or outages. Indeed,
higher values of � lead to less QoS outages, but at the cost
of incurring a higher power consumption.

To sum up, the online optimization problem under study

can be stated as:
minimize Lt(p(t))
over p(t) = (p1(t), . . . , pS (t))
subject to p j(t) � 0, 8 j 2 {1, . . . , S }PS

s=1 ps(t)  Pmax .

(5)

The minimization variable is the power allocation vector
of the focal device across the available frequency subcarri-
ers, p(t), and both constraints are physical ones. The first
constraint guarantees that the transmit power of the focal
device, in each subcarrier j, is always positive. The second
constraint comes from the power supply limitation and
implies that the total power of the focal device that is spread
over the subcarriers is bounded from above by the maximum
transmit power of the device.

Concerning the above objective function Lt(p), notice
that it may vary in a non-stationary and unpredictable way
such that the focal device cannot determine a priori (before
the transmission takes place) its instantaneous or dynamic
optimal power allocation p

⇤(t) that minimizes this objective
at each time t. Nevertheless, we assume that the device
receives some feedback after each transmission, such as the
past experienced objective value or its past gradient. The
idea in online optimization is to exploit this strictly causal
feedback information to build a dynamic and adaptive power
allocation policy p(t) that minimizes as much as possible the
time-varying objective function Lt(p(t))1.

The major novelty in the above formulation relative to
more classical power allocation problems lies in its dynamic
nature and the fact that we make no assumptions on the
network dynamics. Notice that, the objective function in (3)
depends on the network dynamics via the second penalty
term. Indeed, the achieved rate Rt(p(t)) depends on the
varying wireless channels and also on the power allocation
policies of the other devices via the e↵ective channel gains
in (2). Classical approaches leading to water-filling type of
algorithms [21–23] rely both on static (or stationary) chan-
nel models and on strong assumptions on the information
available at the transmitter before the transmission takes
place (e.g., perfect channel state information in the form
of the SINR in each subcarrier). In highly dynamic and
distributed IoT networks, such assumptions are too stringent
and no longer hold.

On that account, the aim of this work is twofold: to ex-
plicitly take into account the device mobility, their network
connectivity patterns and behaviour, which may be com-
pletely arbitrary and unpredictable; and to greatly reduce the
information required at the transmitter.

In order to evaluate the performance of a given online

1Going back to our model of the QoS requirement, another motivation
for including it into the objective function in (3), as opposed to imposing a
hard constraint, is that the latter would result in an arbitrarily time-varying
and unpredictable feasible set at the decision instant. This issue is highly
non-trivial and open in online optimization, which would require going
well beyond the standard regret minimization framework and, hence, falls
out of the scope of this work.
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policy p(t), the most commonly used notion is that of the
regret [6, 7, 11, 12], which compares its performance in
terms of loss with a benchmark policy. Now, comparing
any policy p(t), built using outdated feedback information,
with the instantaneous or dynamic optimal solution p

⇤(t)
is obviously too ambitious. Instead, the notion of regret
compares the policy p(t) to a less ambitious benchmark:
the fixed strategy that minimizes the overall objective over a
given transmission horizon T :

Reg(T ) ,
TX

t=1

Lt(p(t)) �min
q2P

TX

t=1

Lt(q), (6)

where P ,
n
p 2 íS

��� ps � 0,8s,
PS

s=1 ps  Pmax
o

denotes
the feasible set. Otherwise stated, the regret measures the
performance gap between a power allocation policy p(t) and
the best mean optimal solution over a fixed horizon T . If the
regret is negative, then the dynamic policy p(t) outperforms
the best mean optimal solution overall. To quantify this, the
policy p(t) is said to lead to no-regret if

lim sup
T!1

1
T

Reg(T )  0. (7)

A no-regret policy p(t) is asymptotically optimal and per-
forms at least as good as the best fixed strategy on average
(when T grows large).

Notice that although the best mean optimal solution is
less ambitious than p

⇤(t) (minimizing the objective function
at each t) its computation requires the same non-causal
knowledge of the system parameters and the evolution of
the objective throughout the time horizon T before the trans-
mission takes place, or in hindsight. Therefore, the design
of dynamic policies that reach no-regret while relying on
strictly causal and local information is a remarkable and
desirable goal. Moreover, in the particular case of a static
network composed of a single transmit device, the online
optimization problem in (5) reduces to a classic convex
optimization problem. A no-regret online policy p(t) in
this case implies the convergence of the average policy:
p(t) , 1

T
PT

t=1 p(t) to the solution set of the relevant opti-
mization problem [45]. In conclusion, given the IoT network
dynamics and unpredictability, our focus in the following is
precisely to develop no-regret online policies for the online
optimization problem defined in (5).

III. First-Order feedback
In the resource allocation problem under study, the focal

device has to choose in which of the available subcarriers to
transmit, how much of the available power to consume and
how to split this amount over the chosen subcarriers, all this
based on the strictly causal feedback information. This is
reminiscent of the well-known multi-armed bandit problem
in sequential online learning [7]: there, at each instant, the
player chooses an action (or an arm) out of several possibil-
ities and receives a reward as a result. Outside the so-called
“stochastic” case (where each arm’s payo↵ is determined

OXL algoritm: Online Exponential Learning Algorithm
Initialization: y(0) 0; t  0.
Repeat
. Pre-transmission phase: update transmit powers
p(t) Q(y(t)) defined in (OXL)
. Transmit at p(t)
. Post-transmission phase: receive gradient feedback v(t)
Update scores y(t + 1) y(t) � µ(t) v(t)
t  t + 1
until transmission ends

by a fixed probability distribution), the most widely used
algorithmic scheme is the exponential (or multiplicative)
weights algorithm [7], where payo↵s are aggregated over
time and the optimizer selects an arm with a probability
proportional to the exponential of these scores. In what
follows, we derive the necessary machinery to extend this
idea to the continuous optimization problem at hand and de-
rive an exponentiated gradient descent algorithm for power
minimization in this context.

In our setup, we begin by assuming that each device has
access to some feedback mechanism that provides the first-
order gradient information v(t) = rLt(p(t)) at the end of
each transmission. Our proposed algorithm can be summa-
rized in two steps. First, the device tracks the past gradient of
its objective without taking account the power constraints.
Second, the device maps the first step into the feasible set P

using a well chosen exponential map as follows:

y(t) = y(t � 1) � µ v(t),
ps(t) = Qs(y(t)) , Pmax

exp (ys(t))

1 +
PS

i=1 exp (yi(t))
, (OXL)

where µ is the step-size parameter. We denote by Q(y(t)) =
(Q1(t), . . . ,QS (t)) the exponential vector field that maps the
updated score y(t) into the feasible set.

Essentially, the online exponential learning algorithm de-
tailed above, tracks the cumulative negative gradient of the
convex loss function and then maps the result to the feasible
set. The exponential mapping step could be replaced by
an Euclidean projection and the resulting algorithm would
be an online gradient descent [46] algorithm. We chose
the exponential mapping because of its reduced complexity
relative to a projected gradient descent algorithm that would
require an additional (possibly costly) projection step. In-
deed, from (OXL) it is easy to see that the updates are easy to
compute and that they meet the contraints. More precisely,
the complexity of each iteration t is linear in the problem
dimensionality S , the number of subcarriers over which the
focal device transmits. Hence, given that S is not expected
to grow large for a specific IoT device (transmitting on a
small subset of the total number of subcarriers available to
the entire IoT network), the OXL algorithm is particularly
appealing for distributed, device-centric IoT networks.

We will now study the evolution of the regret of the
dynamic power allocation policy (OXL) to show that it
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holds the no-regret property. To that end, let V denote an
upper bound on the gradient feedback v(t) in the sense that
||v(t)||2  V . We then have the following result (for a proof,
see Appendix A):

Theorem 1. If the OXL algorithm is run with a constant
step-size µ then, it enjoys the regret bound:

Reg(T )  Pmax log(1 + S )
µ

+
µPmaxTV

2
. (8)

Tuning the step-size µ: The step-size µ plays an im-
portant role in the exploration vs. exploitation tradeo↵ and,
hence, in the ability of OXL algorithm to reach the no
regret state, as we will see in the following. Intuitively,
small values of µ imply that the subcarriers are almost
equally explored and the gradient information is not ex-
ploited enough. High values of µ imply that only the best
performing carriers w.r.t. past gradients are exploited and
highly potential carriers, which have not performed well in
the past, are rooted out too soon.

Notice that the above upper bound grows linearly with T ,
which may lead to a non-zero average regret. Nevertheless,
this bound is a convex function of the step-size µ and, hence,
can be minimized w.r.t. µ by setting the first-order derivative
to zero. The resulting optimal step-size is

µ⇤ =
p

2 log(1 + S )/(TV), (9)

which then yields the sub-linear optimal bound

Reg(T )  Pmax
p

2TV log(1 + S ). (10)

Therefore, by carefully choosing the step-size µ, OXL algo-
rithm leads to no regret:
lim supT!1

1
T Reg(T ) = 0.

Corollary 1. If the OXL algorithm is run for a known
horizon T using the optimal step-size µ⇤ in (9), then it leads
to no regret and the average regret Reg(T )/T decays as
O(T�1/2).

The resulting regret bound in (10) depends on the system
parameters: the total power Pmax, the number of subcarriers
S , an upper bound on the gradient norm V , but also on the
transmission horizon T , which the device does not neces-
sarily know in advance. To avoid this limitation, we use the
doubling trick [47]: the algorithm is run repeatedly starting
with a unit-size window (number of iterations) and then
doubling the window size at each new run until transmission
ends. Hence, each widow size is known and the device can
compute the corresponding optimal step µ⇤ (by replacing
T with the window size in (9)). The bound in Corollary 1
applies in each window and the following result is proven in
Appendix B.

Proposition 1. If the OXL algorithm is run when the trans-
mission time T is unknown by using the doubling trick with
an optimal step-size for each window until the transmission

Size

Window
|
1

0
|

2

1
|

4

2
| | |

T Tm = 2m

m = dlog2 T e
|

Figure 2: Illustration of the windows in the doubling trick.

ends (as in Figure 2), the regret enjoys the following bound:

Reg(T )  2p
2 � 1

Pmax
p

2TV log(1 + S ). (11)

Hence, OXL algorithm leads to no-regret and the average
regret Reg(T )/T decays as O(T�1/2).

We observe that not knowing the horizon T in advance
results only in a small loss in the regret bound (in the
multiplying constant).

IV. Imperfect gradient feedback

In this section, we relax the assumption of perfect gra-
dient feedback and we consider that the focal device has
access only to an imperfect gradient estimate, denoted by
ṽ(t), which meets the following conditions

Ö[ṽ(t)] = rLt(p(t)),
Ö[||ṽ(t)||2]  Ṽ ,

(12)

where the expectation is taken over the randomness of the
estimator. These conditions are not very restrictive as they
require the absence of systematic errors and a bounded
variance, as such, they are satisfied by all common error
distributions (Gaussian, log-normal, etc) [12]. For example,
the common error model: ṽ(t) = rLt(p(t)) + z, where
z ⇠ N (0,�2

z I) [48] satisfies the above conditions.
Under these assumptions, the transmit powers in OXL

algorithm are updated in function of ṽ instead of the actual
gradient v (via the internal score y(t)). Thus, the online
policy p(t) depends on the randomness of the estimator,
which implies that the regret in (6) will also depend on this
randomness. To take this into account, we study the average
regret Ö[Reg(T )], where the expectation is taken over the
randomness of the estimator. The no-regret property can be
easily extended to the average regret as follows: a power
allocation policy p(t) leads to no regret (on average) if

lim sup
T!1

1
T
Ö[Reg(T )]  0. (13)

A di↵erent possibility would be to study the probability that
the regret in (6) falls bellow zero, but we leave this as a non-
trivial open issue for future investigation.

Our first result, proved in Appendix C, concerns the case
in which the transmission horizon T is known.

Theorem 2. If the OXL algorithm is run for T iterations
with a constant step-size µ and an imperfect gradient esti-
mation defined in (12), the average regret is bounded by:

Ö[Reg(T )]  Pmax log(1 + S )
µ

+
µ

2
PmaxTṼ . (14)
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We observe that the upper bound above is somewhat
similar to the one in Theorem 1 and can also be minimized
with respect to the step-size µ for the same reasons. The
optimal step-size is

µ⇤ =
q

2 log(1 + S )/(TṼ), (15)

which provides the optimal bound

Ö[Reg(T )]  Pmax

q
2TṼ log(1 + S ). (16)

Therefore, using this optimal step-size leads to no regret
even if the device only has access to imperfect gradient
observations.

Corollary 2. If the OXL algorithm is run for a known
transmission time T with an imperfect gradient feedback
and the optimal step-size µ⇤ in (15), then the no-regret prop-
erty holds and the average regret Ö[Reg(T )]/T decreases in
O(T�1/2).

The above result implies that unbiased errors in the
gradient estimation do not impact greatly the evolution of
the regret in expectation. This result should be contrasted
to the corresponding one in the perfect gradient case. First,
in the perfect gradient case, there is no randomness and the
regret results are deterministic. Here, because of the random
errors in the estimated gradient the above results hold only
in expectation. Second, the obtained upper bounds depend
on Ṽ , which is an upper bound on the second order statistics
of the estimation over the entire time horizon (as opposed
to the Lipschitz constant V). This means that the variance
of the errors negatively impact the expected regret; higher
variance errors result in higher expected regret.

Finally, if the device does not know in advance the
transmission horizon T , the doubling trick described in Sec.
III requires the knowledge of Ṽ (to compute the optimal
step-size). This may not be realistic in an unpredictable,
time-varying and possibly non-stationary environment. To
avoid this additional requirement, we take a variable step-
size approach as in [6, 7, 49] and focus on the schedule

µ(t) = ↵/
p

t, (17)

with parameter ↵ > 0. Using this variable step-size, we
obtain the following result (for a proof, see Appendix D):

Theorem 3. If the OXL algorithm is run with imperfect
gradient feedback for an unknown horizon T and using the
variable step-size µ(t) = ↵t�1/2, then the average regret is
bounded by

Ö[Reg(T )]
T

 Pmax log(1 + S )
↵
p

T
+

PmaxṼ↵(1 + log T )
2
p

T
. (18)

Consequently, the device’s average regret Ö[Reg(T )]/T
vanishes as O(log(T )T�1/2), i.e. OXL algorithm leads to no
regret.

We remark the loss in the decay rate of the regret resulting

from the lack of knowledge of Ṽ . This means that, with
scarcer available knowledge, the device will reach the no
regret state at a slower rate. Nevertheless, this loss is only
logarithmic and even without the knowledge of T and re-
lying on an imperfect and unbiased gradient feedback, the
OXL algorithm is able to reach no regret.

V. Zeroth-order Feedback

In this section, our objective is to reduce even further the
amount of required information to be fed back to the trans-
mitting device. Instead of receiving a vector as feedback
- the gradient or its unbiased estimation - the devices are
now assumed to know only the value of the experienced
objective function. This means that only a single scalar
worth of information is needed at the transmitting device – a
major advantage in feedback-limited and dynamic networks,
where the acquisition of non-causal and complete channel
state information (not to mention other network parameters)
is a tall order. To the best of our knowledge, the proposed
algorithm is the first adaptive power allocation algorithm
for multiple-carrier, multiple-user networks requiring scalar
feedback. Classic resource allocation algorithms such as
water-filling policies require at least one quality indicator
per subcarrier (e.g., the SINR value in each subcarrier), and,
hence a (possibly large) vector worth of feedback.

To develop an online policy p(t) that leads to no regret, we
modify the exponential mapping step in Sec. III and propose
a novel learning algorithm that only requires zeroth-order
feedback. To this aim, the first obstacle is to estimate the
gradient of the objective based only on its value – in other
words to do “gradient descent without a gradient” [50]. The
main idea that we exploit here is the simultaneous stochas-
tic approximation technique, which randomly samples the
objective function in a neighbourhood of the power policy
p(t) to obtain a (potentially biased) estimate of the gradient
at this point [6, 7, 50].

For simplicity, we illustrate this technique on a particular
directional derivative of Lt(p) along the unit vector x (recall
that the gradient is a collection of directional derivatives),
denoted by rxLt(p):

rxLt(p) = lim
�!0

Lt(p + �x) � Lt(p � �x)
2�

, (19)

which we want to estimate based on the single function
value Lt(p). To do so, we randomly sample the objective
function around the point p in the direction x by drawing
a Bernoulli distributed random variable u 2 {�1,+1} with
equal probability. We can compute the expectation of these
samples w.r.t. the randomness of u:

Ö
⇥
Lt(p + �ux)u

⇤
=

Lt(p + �x) � Lt(p � �x)
2

. (20)

From (19) and (20), we observe that

Ö

"
Lt(p + �ux)u

�

#
⇡ rxLt(p). (21)
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Since the above is satisfied with equality only in the limit
when � ! 0, the quantity Lt(p + �ux)u/� represents an
approximation (possibly biased) of the directional derivative
of Lt(p) with respect to x.

Now, in order to build a gradient estimate, the idea is
to uniformly sample the objective function along a vector
u(t) drawn from the S-dimensional Euclidean sphere of of
radius �. Extending the above to the space of dimension S ,
the estimator becomes:

ṽ(t) =
S
�

Lt(p̃(t))u(t), (22)

where p̃(t) = p(t) + �u(t) and u(t) is uniformly taken over
the unit Euclidean sphere: {u 2 íS | ||u(t)||2 = 1} [6]. More
details are provided in Appendix E.

In [6, 7, 50], this estimator is proposed without account-
ing for the fact that the random sample point p̃(t) = p(t) +
�u(t) can fall outside of the feasible set. In our power allo-
cation problem, using the same procedure would imply that
the transmit power vector p̃(t) is allowed to go outside P .
However, our power constraints are physical ones: transmit
power positivity, maximum available power budget, which
means that any violations are prohibited.

One of the major contributions of this work is to introduce
a novel learning algorithm that exploits the gradient esti-
mation above, while guaranteeing that the transmit powers
always lie in the feasible set. For this, we define a modified
and shrunk feasible set P� such that, for any p�(t) 2 P�, we
have p�(t) + �u(t) 2 P:

P� =

8>><
>>:p� 2 í

S

�������
ps
� � �,

SX

s=1

ps
�  Pmax �

p
S �

9>>=
>>; . (23)

Having defined this new feasible set, the suitable exponen-
tial map that guarantees that p�(t) + �u(t) always lies in this
set is

ps
�(t) , � + Pmax (1 �C�)

exp(ys(t))
1 +
PS

i=1 exp(yi(t))
, (EXP�)

where C� = �
Pmax

(S +
p

S ). Using (EXP�), we introduce a
novel exponential mapping: Q�(y(t)) , (p1

�(t), . . . , p
S
� (t)).

From the definition of P� and (EXP�), we can deduce the
following conditions restricting the choice of the � parame-
ter

0 < �  Pmax

S +
p

S
 Pmaxp

S
. (24)

Summing up all ingredients, our novel algorithm can be
summarized by the following three steps:

ṽ(t) =
S
�

Lt(p̃(t))u(t),

y(t + 1) = y(t) � µ ṽ(t)
p�(t) = Q�(y(t)),

(OXL0)

where ṽ(t) represents the biased estimate of the gradient.
For implementation details, see OXL0 algorithm below. Al-
though OXL0 requires an additional step (i.e., the computa-

OXL0 algorithm: Online Exponential Learning Algorithm
with zeroth-order Feedback
Parameters: µ > 0; 0 < �  Pmax/(S +

p
S ).

Initialization: y(0) 0; t  0.
Repeat
. Pre-transmission phase:
Update p�(t) Q�(y(t)) defined in (EXP�)
Draw a random u(t) uniformly from the unit-sphere
. Transmit at p̃(t) p�(t) + �u(t)
. Post-transmission phase: receive scalar feedback Lt(p̃(t))
Compute the gradient estimation ṽ(t) = S

� Lt(p̃(t)) u(t)
Update scores y(t + 1) y(t) � µ(t) ṽ(t)
t  t + 1
until transmission ends

tion of the gradient estimation ṽ(t)) compared with OXL, the
complexity of each iteration remains linear in the problem
dimensionality S .

In Appendix E, we prove that the regret can be bounded
as follows:

Theorem 4. If the OXL0 algorithm is run with constant
parameters � and µ then the average regret is bounded by:

Ö[Reg(T )]  Pmax log(1 + S )
2µ

+ µTS 2
✓B
�
+ K
◆2

+ KT�
⇣
3 + Pmax

⇣
S + 2

p
S
⌘⌘
. (25)

where K is the Lipschitz constant and B the maximum value
of the objective function Lt(·).

Tuning the parameters µ and �: The step-size µ im-
pacts the sensitivity of the algorithm to variations in the
power policy. When µ is large, a small variation in the
score y(t) results in a large variation in the power allocation.
These large variations, can create oscillations in the power
allocation policy p�(t) and the time required to reach no
regret increases as a result. At the opposite, a small µ leads to
smaller variations in the power allocation, which also imply
a long time for the regret to reach zero. Hence, there is a
compromise and µ has to be carefully tuned to minimize the
time to reach the no regret state.

The parameter � represents the sampling radius of the
device around the power policy p�(t). When tuning �, there
is also a trade-o↵ to be made between the precision of the
gradient estimate and its variance. By reducing �, the device
reduces the distance to p�(t) and the estimator gains in
precision. But since the device only has access to one value
of this estimate, reducing � also increases the variability of
the estimator (21).

The bound (25) can be further optimized, but because of
the additional constraint �  Pmax/S +

p
S , the resulting

optimal bound will not be in closed-form. Having a slightly
sub-optimal but closed-form expression will prove to be
very useful in the sequel (when the time horizon T is
unknown). For this, we choose �⇤ = Pmax

(S+
p

S )T 1/4 that always
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meets the constraint and that decays optimally with respect
to T . Then, we optimize the resulting bound in (25) only
w.r.t to µ. The optimal µ⇤ is obtained by setting to zero the
first-order derivative of the bound with respect to µ:

µ⇤ =

r
Pmax log(1 + S )

2T


S
✓ B
�⇤
+ K
◆��1
. (26)

Then, introducing �⇤ and µ⇤ in (25) yields the bound

Ö[Reg(T )]  U1 T 3/4 + U2 T 1/2, (27)

where

U1 = S B
⇣
S +
p

S
⌘
s

2 log(1 + S )
Pmax

(28)

+ K
⇣
3 + Pmax

⇣
S + 2

p
S
⌘⌘ Pmax

S +
p

S
,

U2 =
p

2Pmax log(1 + S ) S K. (29)

Notice that the optimal bound w.r.t. � and µ is also a function
O(T 3/4) and, hence, our particular choice of �⇤(T ) above
does not incur a large loss in terms of regret minimization
rate and has the advantage of providing a closed-form ex-
pression of the upper bound.

Corollary 3. If the OXL0 algorithm is run for a known
transmission horizon T and with the parameters �⇤ and µ⇤
in (26), then it leads to no regret and the average regret
Ö[Reg(T )]/T vanishes as O(T�1/4).

As in the previous sections, this result relies on the
fact that the devices know their transmission horizon T in
advance. To remove this requirement, the device can use
the doubling trick or a time varying step-size. Since the
time varying step-size generally involves a loss in the decay
rate of the regret (see Sec. IV), we next investigate whether
the information required by the doubling trick is readily
available or not.

To do so, we have to determine specific values for the
constants B and K in (26). A short calculation shows that
they depend only on readily available system parameters:

B = S Pmax + �Rmin,

K = 1 + 2�Rmin.
(30)

From (30) and (26) we conclude that the device is able to
compute the parameters µ⇤ and �⇤. This implies that, if the
time horizon T is not known in advance, the device can use
the doubling trick described in Sec. III.

Proposition 2. Assuming that the OXL0 algorithm is run
when T is unknown by using the doubling trick with the
parameters µ⇤m and �⇤m chosen as above in each window of
size Tm, then the expected regret is bounded by

Ö[Reg(T )]  2
p

2
23/4 � 1

U1 T 3/4 +
2p

2 � 1
U2 T 1/2, (31)

with U1 and U2 defined in (27). This means that the
OXL0 algorithm leads to no regret and the average regret

Ö[Reg(T )]/T decreases at O(T�1/4).

The proof follows similarly to the proof of Proposition 1
and is omitted. Importantly, reducing the available feedback
results in a slower decay rate of the regret; the average regret
vanishes as O(T�1/4) with zeroth-order feedback, whereas
it vanishes as O(log(T )T�1/2) with imperfect gradient feed-
back and as O(T�1/2) with perfect gradient feedback. Never-
theless, even under extremely limited feedback information
- requiring a single sample of the objective function instead
of its gradient - our proposed learning procedure (OXL0
algorithm) achieves no-regret, irrespective of the evolution
the network over time and despite the fact that its governing
dynamics are unknown at the device end.

VI. Numerical experiments

Our goal in this section is to illustrate the performance
guarantees of our learning algorithms in highly dynamic
networks with realistic fading channel conditions, and with
various degrees of (strictly causal, no look-ahead) feedback
available at the device end, ranging from perfect gradient
information to the bare-bones observation of the achieved
loss. We start by comparing the OXL algorithm (full infor-
mation) to classical approaches based on water-filling [21–
23], suitably adapted to the setting at hand.

At each device, the benchmark water-filling is imple-
mented so that the overall power consumption is minimized
under the minimum rate constraint Rmin. If the obtained
solution does not meet the maximum power constraint, two
possibilities are considered: a) the device remains silent - the
energy-driven solution labeled WF0; b) the device transmits
anyway by splitting the overall power budget uniformly over
the S subcarriers - the rate-driven solution labeled WFPmax.

We consider at first a simple setting composed of a pair
of transmit-receive devices N = M = 1 communicating
over four subcarriers (S = 4). The system parameters are:
�2 = 0.1, Pmax = 1.5 W, Rmin = 3 bps/Hz and � = 1; the
channel gains are generated randomly as follows: hs(t+1) =
↵hs(t) + (1 � ↵)"s(t) with i.i.d. variables "s(t) ⇠ N (0,�2

")
and �2

" = 10. This particular model allows us to control
the temporal correlation of the channels via the parameter
↵ 2 [0, 1] in between the extremes: the static channel case
for ↵ = 1 (completely predictable); and the i.i.d. Rayleigh-
fading case for ↵ = 0 (unpredictable).

For a fair comparison, we assume that the transmitting
device only has access to a strictly causal feedback at each
time instant. Fig. 3 illustrates the performance in terms of
the relative outage defined as:

Out = [1 � R(p)/Rmin]+, (32)

of WF0 (Fig. 3(a)) and OXL algorithm (Fig. 3(b)). The
performance is averaged over 100 realizations of the channel
gains and for three di↵erent values of the time-correlation
factor ↵ 2 {0.2, 0.5, 0.8}. We remark that WF0 exhibits a
high sensitivity to the temporal correlation of the channels:
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Number of users M = 10
Number of subcarriers S = 4

Central frequency fc = 2 GHz
Bandwidth 10 MHz

Maximum power [0.5, 2] W
Minimum rate [0.5, 3] bps/Hz

� [0.5, 10]

Table I: Network parameters.

lower ↵ (less predictable channel conditions), the worse the
performance of WF-based algorithms. This is explained by
the fact that water-filling algorithms perform well assuming
that the SINR in each carrier is perfectly known ahead of the
transmission (in the static channel case). Hence, the absence
of look-ahead (non-causal) information negatively impacts
the performance of classical water-filling algorithms. By
contrast, the OXL algorithm consistently outperforms WF0
in terms of relative outage and is significantly more robust
w.r.t. the channel dynamics. We find this feature of OXL to
be particularly promising and appealing for applications to
IoT networks, where the system changes constantly (and un-
predictably), rendering conventional WF-based techniques
obsolete.

The simple channel model above allowed us to highlight
the impact of the channel dynamics and of having strictly
causal feedback information on the system parameters. To
validate the performance of OXL in more realistic environ-
ments, we consider in what follows a network composed
of multiple interfering devices, in which the di↵erent chan-
nels are generated according to the commonly used COST-
HATA model [51] that includes pathloss, fast fading and
shadowing e↵ects [47]. The speed of the devices is chosen
arbitrarily between 0 km/h and 130 km/h so as to account for
a wide spectrum of wireless mobile devices (smartphones,
wearable, pedestrian, vehicle etc.). The minimum rate re-
quirement Rmin, the available power budget Pmax, and the
rate vs. power tradeo↵ parameter � also di↵er from one
device to another.

Fig. 4 illustrates the comparison in terms of the rate
vs. power consumption between OXL algorithm and both
water-filling algorithms (Fig. 4(b) in the multiple device
setting composed of M = 10 interfering devices over S = 4
subcarriers and communicating to the same receiver N = 1.
The plotted curves are averaged over 100 realizations of
the COST-HATA channel gains. We assume that all devices
employ the same algorithms but with di↵erent parameters
(for the OXL algorithm case).

We first note that classical water-filling is more rigid
in terms of the rate vs. power tradeo↵: either the device
remains silent (WF0) or transmits with full power whenever
its minimum rate constraint is incompatible with its power
budget (WFPmax). The parameter � allows the device using
OXL algorithm to smoothly tune its rate vs. power operating
point depending on the target application. By increasing �,
the power consumption increases but the relative outage de-
creases. When all devices employ a rate-driven water-filling
WFPmax a cascading e↵ect emerges due to the fact that all

devices are forced to transmit at full power (ps = Pmax/S ),
which generates high network interference and, hence, has a
deleterious e↵ect on the algorithm’s performance. We then
see that both water-filling algorithms perform equally poorly
in terms of relative outage when compared with the OXL
algorithm (caused by their lack of robustness to strictly
causal feedback information).

The next two goals of this section are: a) to validate
our theoretical results in terms of regret, which evaluates
both how close and how fast the proposed online algorithms
reach the optimal fixed target state; and b) to investigate the
e↵ects of reducing the feedback information on the regret
decay rate of the proposed methods.

Fig. 5 illustrates the vanishing regret of both our pro-
posed algorithms, OXL (with perfect and imperfect gradient
feedback) and OXL0 (with a scalar feedback). Moreover, it
also illustrates the impact of having a scarce or imperfect
feedback and the impact of the problem dimensionality S .
Fig. 5(a) confirms that having an imperfect gradient feed-
back does not influence significantly the regret decay rate,
as anticipated by our theoretical results. However, this is no
longer true when the only information available at the device
end is a single scalar. The average regret of the OXL0 algo-
rithm decays slower compared with OXL algorithm (though
the latter cannot be applied with zeroth-order feedback).
Finally, Fig. 5(b) illustrates the average regret of OXL0 al-
gorithm for di↵erent values of the problem’s dimensionality
S 2 {1, 2, 4}. In all cases, the average regret decays to zero;
however if the number of available subcarriers increases,
the variance of the estimator ṽ(t) increases commensurately.
Therefore the quality of the estimator decreases, which
results in a reduced decay rate of the average regret.

VII. Conclusions

In this paper, we derived two adaptive algorithms (namely
OXL and OXL0) for solving power allocation problems
in highly dynamic and unpredictable IoT networks based
on online optimization tools and exponential learning. A
key contribution lies in the fact that the proposed OXL0
algorithm only requires the observation of a loss value at
the device end. This algorithm is the first power allocation
policy over multiple subcarriers which relies on a single
scalar, as opposed to a vector worth of information con-
taining the SINR values in all subcarrier required by classic
water-filling algorithms.

Our simulations validate our theoretical expectations by
showing that water-filling algorithms are highly sensitive to
outdated feedback information and, hence, are not robust
to rapid and unpredictable changes in the network. The
proposed OXL algorithm outperforms classic water-filling
algorithms in all investigated settings in which the network
dynamics is not known at the device end. The impact of
feedback scarcity is then assessed: the zeroth-order feed-
back algorithm is the slowest to reach no regret, followed
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Figure 3: Performance comparison between WF0 and OXL algorithm in a time-varying setting, in which the transmitting device has access to strictly
causal information. OXL algorithm outperforms WF0 in terms of relative outage irrespective from the channel dynamics. WF0 is negatively impacted by
the outdated feedback information: the more unpredictable the channel gains, the higher the outage.
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Figure 4: Performance comparison between OXL algorithm and water-filling for an arbitrary device. Water-filling algorithms are rigid in terms of the
rate vs. power tradeo↵, while OXL algorithm allows for a more smooth tuning via the parameter � and for better performance both in terms of relative
outage and power consumption. The rate-driven WFPmax exhibits a cascading e↵ect in the network and forces all devices to transmit at full power resulting
in poor performance. The energy-driven WF0 results in poor performance in terms of relative outage.

by the first algorithm in the imperfect gradient feedback case
and then by the same algorithm in the perfect gradient case.

Appendix

A. First order feedback: known horizon T

For simplicity of presentation in the remaining appen-
dices, we focus on the regret w.r.t. an arbitrary fixed policy
q 2 P defined as Regq(T ) ,

PT
t=1 Lt(p(t)) �PT

t=1 Lt(q), and
derive upper-bounds that are independent from q and, hence,
also hold for the regret in (6) (or for its expectation).

The first step to prove Theorem 1 is to bound the regret
based on the convexity of Lt(q) as follows

Regq(T ) 
TX

t=1

hv(t)|p(t) � qi , (33)

where q 2 P is an arbitrarily chosen power allocation.

Using the fact that y(t+1) = y(t)�µv(t) and y(1) = 0, we
obtain

Regq(T ) 
TX

t=1

hv(t)|p(t)i + 1
µ
hy(T + 1)|qi . (34)

Then, we define a potential function f ⇤(y(t)) = Pmax log(1+PS
s=1 exp(ys(t))), which is used to show that the exponenti-

ation step in (OXL) is equivalent to p(t) = r f ⇤(y(t)). Also,
the second order Taylor approximation of f ⇤(y(t)) yields

f ⇤(y(t + 1))  f ⇤(y(t)) � µ hv(t)|r f ⇤(y(t))i + µ
2

2
Pmaxkv(t)k22.

(35)
Combining the above inequality with equation (34) and
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Figure 5: Impact of feedback amount and problem dimensionality. Both proposed algorithms, OXL and OXL0, exhibit a vanishing regret, as anticipated
by our theoretical results. The average regret of OXL0 algorithm, relying only on the scalar value of the objective function, decays slower than the average
regret of OXL algorithm with perfect or imperfect gradient feedback. Having to estimate the gradient of dimension S using the scalar value of the objective
impacts the decay rate of the average regret of OXL0 algorithm: the higher the problem dimensionality S , the slower the average regret.

given that p(t) = r f ⇤(y(t)), we obtain:

Regq(T )  1
µ

⇥
f ⇤(0) � f ⇤(y(T + 1))

⇤
+
µ

2
Pmax

TX

t=1

kv(t)k22

+
1
µ
hy(T + 1)|qi . (36)

By using Fenchel’s inequality [52] we get

f ⇤(y) + f (q) � hy|qi , 8 y,q (37)

where f (q) is the convex conjugate of f ⇤(y) defined as
f (q) = sup

y2í hy|qi � f ⇤(y). We can then substitute
hy(T + 1)|qi � f ⇤(y(T + 1)) by f (q) in (36) and obtain

Regq(T )  1
µ

⇥
f (q) + Pmax log(1 + S )

⇤
+
µ

2
PmaxVT. (38)

We can show that f (q)  0 for all q 2 P by using a variable
change (x = q/Pmax) combined with Jensen’s inequality for
convex functions and the regret bound reduces to

Reg(T )  Pmax log(1 + S )
µ

+
µ

2
PmaxTV (39)

The optimal step-size is then obtained by minimizing the
above bound.

B. First order feedback: unknown horizon T

OXL algorithm is run with the optimal step µ⇤(Tm) de-
fined in (9) in each window. Then, the regret in window m
of size Tm = 2m, denoted by gReg(Tm), can be bounded as in
(10):

gReg(Tm)  Pmax
p

2TmV log(1 + S ). (40)

For a time horizon T , the number of widows equals
dlog2(T )e, where dxe is the ceiling function. The overall

regret can be bounded by the sum of all windows’ regrets:

Reg(T ) 
dlog2(T )eX

m=0

Pmax
p

2TmV log(1 + S ). (41)

The result then follows by a geometric series argument.

C. Imperfect gradient feedback: known horizon T

From the convexity of the objective function, we can write

Ö[Regq(T )]  Ö
2
666664

TX

t=1

hrLt(p(t))|p(t) � qi
3
777775 . (42)

The idea is to link the above bound to the estimate ṽ(t). By
definition, we have that rLt(p(t)) = Ö[ṽ(t)|ṽ(t� 1), ..., ṽ(1)].
By the law of total expectation, the following equality holds

Ö

2
666664

TX

t=1

hrLt(p(t))|p(t) � qi
3
777775 = Ö

2
666664

TX

t=1

hṽ(t)|p(t) � qi
3
777775 . (43)

The term inside the expectation on the RHS can be bounded
as in (34) and, similarly to the proof of Therorem 1, we
obtain

Ö[Reg(T )]  Ö
2
666664

Pmax log(1 + S )
µ

+
µ

2
Pmax

TX

t=1

kṽ(t)k22
3
777775 .

(44)
Given that Ö

h
kṽ(t)k22

i
 Ṽ , the result follows.

D. Imperfect gradient feedback: unknown horizon T

To bound the regret assuming a variable step-size µ(t), we
will consider the following weighted regret

WRegq(T ) , Ö
2
666664

TX

t=1

µ(t) (Lt(p(t) � Lt(q))
3
777775 , (45)
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where µ(t) is the variable step-size in (17). Using a similar
approach as in the proof of Theorem 3, we obtain

WRegq(T )  Pmax log(1 + S ) +
Pmax

2
Ṽ

TX

t=1

µ2(t). (46)

To bound the regret, we use the summability criterion
of Hardy [53], which allows us to compare weighted sums
– here, Ö[Regq(T )] and WRegq(T ). In particular, note that
the step-size sequence µ(t) = ↵t�1/2 satisfies the conditions
µ(t) � µ(t + 1); and

PT
t=1 µ(t)/µ(T ) = O(T ). Therefore, by

Theorem 14 in [53], we obtain
Ö[Regq(T )]

T
⇠ WRegq(T )
PT

t=1 µ(t)

 Pmaxp
T

"
log(1 + S )
↵

+
↵Ṽ(1 + log T )

2

#
. (47)

E. Zeroth-order feedback: known horizon T

To prove Theorem 4, we introduce first some properties.
Consider the following expectation of the objective function
[7]

L̃t(p) �= Öu2B
⇥
Lt(p + �u)

⇤
, (48)

where u is a random vector drawn uniformly on the unit
Euclidean ball B =

n
u 2 ís| ||u||2  1

o
and the expectation

is taken over the randomness of u. We can show that L̃t(·) is
a biased estimator of Lt(·) and

|Lt(p) � L̃t(p)|  K�, 8p, (49)

where K is the Lipschitz constant of the objective function.
An important property of L̃t(p) is that its gradient relies on
the values of the objective function as follows

rL̃t(p) = Öu2S
S
�

Lt(p + u�)u
�
, (50)

where u is drawn for the unit Euclidean sphere S =n
u 2 íS | ||u||2 = 1

o
.

Another useful property is that the new exponential map-
ping step in (EXP�), which is adapted to the modified set
P�, can be written equivalently as:

p�(t) = arg max
q2P�

{hy(t)|qi � h(q)} ,

h(q) ,
SX

s=1

(qs � �) log(qs � �) +
0
BBBBB@C �

SX

s=1

qs

1
CCCCCA log

0
BBBBB@C �

SX

s=1

qs

1
CCCCCA ,

(51)
with C = Pmax � �

p
S .

The first step to prove Theorem 4 is to compare Lt(p�(t)+
�u), the incurred loss at time t, to Lt(p�(t)) by using that Lt(·)
is a K-Lipschitz function:

Ö[Regq(T )]  Ö
2
666664

TX

t=1

Lt(p�(t)) � Lt(q)
3
777775+ KT�

⇣
1 + PmaxS̃

⌘
,

with S̃ = S + 2
p

S . The second step is to compare Lt(p�(t))
and Lt(q) to L̃t(p�(t)) and L̃t(q) respectively.

Ö[Regq(T )]  Ö
2
666664

TX

t=1

L̃t(p�(t)) � L̃t(q)
3
777775 + KT�

⇣
3 + PmaxS̃

⌘
.

Since L̃t(p) is convex w.r.t. p we have:

Ö

2
666664

TX

t=1

L̃t(p�(t)) � L̃t(q)
3
777775  Ö

2
666664

TX

t=1

hrL̃t(p�(t))|p�(t) � qi
3
777775 .

We can write rL̃t(p�(t)) = Ö[ṽ(t)|u(1), ...,u(t � 1)], where
ṽ(t) is the estimation defined in (22) and where the expecta-
tion is taken over the randomness of u. Using this property
and the law of total expectation, the bound on the expected
regret becomes:

Ö

2
666664

TX

t=1

hrL̃t(p�(t))|p�(t) � qi
3
777775  Ö

2
666664

TX

t=1

hṽ(t)|p�(t) � qi
3
777775 .

By using (51), we can bound the sum
PT

t=1 hṽ(t)|qi and
obtain

Ö

2
666664

TX

t=1

hṽ(t)|p�(t) � qi
3
777775  Ö

2
666664

TX

t=1

hv(t)|p�(t + 1) � p�(t)i
3
777775 +

H
2µ
,

where H = minp2P� h(p). We use again (51) and the Cauchy-
Schwartz inequality to bound the sum of
hv(t)|p�(t + 1) � p�(t)i and, by combining all the above, we
find

Ö[Reg(T )]  H
2µ
+µTS 2

✓B
�
+ K
◆2
+KT�

⇣
3 + Pmax

⇣
S + 2

p
S
⌘⌘
.

where B = maxt,p Lt(p). Finally, Theorem 4 follows by
finding that H = Pmax log(1 + S ).
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