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Abstract

This Thesis is divided into two independent parts.

In the first part, we study the early time dynamics of some 2d kinetic Ising models sub-
ject to istantaneous quench from the disordered to the ordered, low temperature, phase.
The post-quench relaxation dynamics is realised by means of stochastic spin update rules,
of various types, which are simulated numerically through Monte Carlo methods. Measure-
ments of different observables related to the statistical and geometrical properties of ordered
domains suggest that the relaxation dynamics approaches a dynamical scaling regime with
features ascribed to 2d critical percolation. We study the scaling properties of the evolution
towards this regime and we identify an associated growing length, different from the usual
one that is responsible for coarsening. We find that this characteristic length depends on
the particular microscopic dynamics and the lattice geometry. In particular, we treat three
different cases: ferromagnetic Ising Model evolving with Glauber single spin-flip dynamics,
ferromagnetic Ising Model evolving with Kawasaki spin-exchange dynamics and the special
stochastic dynamics represented by the voter model spin update rules. In all the cases in
which the stochastic dynamics satisfies detailed balance, the critical percolation state persists
over a very long period of time before usual coarsening of domains takes over and leads the
system to equilibrium. After having attained this critical-percolation-like state, the system
continues to evolve by means of the usual curvature-driven motion of domain walls, or by
more complicated microscopic dynamics. In the case of the voter model, we observe that
the system briefly passes through a critical percolation state, to later approach a dynamical
regime in which the scaling behaviour of the domain pattern can be ascribed to a different
criticality.

In the second part, we study the Hamiltonian dynamics of the 2-spin spherical spin glass
model, following a uniform quench of the strength of the disorder. The dynamics is studied
both in N →∞ limit, through the Schwinger-Dyson equations describing the time-evolution
of the two-time autocorrelation and linear response functions, and in the case of N finite, with
N the number of spin degrees of freedom, by directly integrating their equations of motion.
In each case, we consider initial conditions from Gibbs-Boltzmann equilibrium at a given
temperature, and subsequently evolve the configurations with Newton dynamics dictated by
a new Hamiltonian, obtained from the initial one by a uniform quench of the interaction
couplings. From the numerical solutions, we can identify three dynamical phases (in the
limit N →∞) depending on the parameters that characterise the initial state and the post-
quench Hamiltonian. We argue that, in the N →∞ limit, the modes decouple at long times.
We evaluate the mode temperatures and we relate them to the frequency-dependent effective
temperatures measured with the fluctuation-dissipation relation in the frequency domain,
similarly to what was recently proposed for quantum integrable cases. Finally, we notice
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that the post-quench dynamics of this model is equivalent to that of the Neumann integrable
model, and thus we analyse the integrals of motion, notably, their scaling with N , and we
use them to show that the system is out of equilibrium in all phases, even for parameters
that show an apparent Gibbs-Boltzmann behaviour of the global observables.
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Résumé

Cette thèse est divisée en deux parties indépendantes.

Dans la première partie, on étudie la dynamique aux temps très courts d’un modèle ciné-
tique d’Ising en 2d qui est soumis à une trempe instantanée de la température (quench).
Cette trempe pousse le système d’un état initial désordonné à un état final ordonné fer-
romagnétiquement qui est atteint grâce à la croissance des domaines de spin ordonnés. La
dynamique de relaxation post-trempe du système est modélisée par un processus stochastique,
qui est realisé numériquement à travers des simulations de type Monte Carlo sur des réseaux
de taille finie. Les mesures des différentes observables reliées aux propriétés statistiques et
géométriques des domaines ordonnés suggèrent que la dynamique de relaxation approche un
régime de “scaling” dynamique dans lequel les domaines présentent les caractéristiques du
modèle de la percolation critique en 2d. À travers l’étude des propriétés de scaling pendant
l’évolution du système, on peut identifier une longueur critique `p(t) liée à la percolation
qui est différente de la longueur usuelle associée au processus de croissance. Cette longueur
sépare deux échelles différentes: à chaque instant de temps t après la trempe, les propriétés
typiques de la percolation critique peuvent être observées sur des distances R < `p(t), tandis
que sur des distances plus grandes, le système ressemble encore à l’état desordonné initial.
Au contraire, sur des distances très petites, R < `d(t), les domaines sont equilibrés à la
température finale du refroidissement. Par conséquence, pour un système de taille finie L,
on observe qu’au temps tp tel que `p(tp) = L, la percolation critique s’étend sur tout les
longueurs, avec une taille effective `d(t). Ce phénomène a été observé pour des différents
types de dynamique microscopique stochastique. En particulier, pour des modèles d’Ising en
2d évoluant avec une dynamique de Glauber (single spin-flip dynamics) et une dynamique
de Kawasaki ou “spin-exchange dynamics”. Dans ces cas, des gros domaines ordonnés qui
percolent s’établissent au temps tp et deviennent stable, par leur topologies, par rapport à la
dynamique microscopique jusqu’au moment à lequel tout le système est equilibré, c’est-à-dire
jusqu’au temps teq ∼ Lzd approximativement. Un phénomène similaire est aussi observé dans
le cas du “voter model” sur un réseau de taille finie. Mais dans ce dernier modèle, le système
évolue vers un état qui est caractérisé par une criticalité différente de celle de la percolation.

Dans la deuxième partie, on étudie la dynamique hamiltonienne du modèle de Sherrington-
Kirkpatrick (SK) spherique dans le cas p = 2 (2-spin spherical spin glass model), suivant une
trempe uniforme de l’intensité du désordre. Plus précisément, on considère un état initial
prélevé dans la distribution d’équilibre à la Gibbs-Boltzmann, à une certaine température
et avec une certaine intensité du désordre (qui est Gaussien), et puis on fait évoluer cet
état sous une dynamique hamiltonienne par rapport à un nouveau Hamiltonien, obtenu de
l’Hamiltonien initial par une dilatation uniforme de la matrice des couplages. La dynamique
a été etudiée tant dans le cas d’un système infini, à travers les équations de type Schwinger-
Dyson qui relient la fonction d’autocorrelation avec la réponse linéaire, que dans le cas d’un
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système avec un nombre N fini de degrés de liberté. À partir des solutions numériques, on
peut identifier trois phases dynamiques différentes (dans la limite thermodynamique) selon
la température initiale du système et le paramètre qui quantifie l’intensité du désordre dans
l’Hamiltonien post-trempe. On observe que le système ne réussit pas à thermaliser dans
aucune de ces phases. En fait on peut vérifier que le modèle SK sphérique avec p = 2, avec
une dynamique hamiltonienne, est équivalent au modèle de Neumann, un modèle intégrable
de la mécanique classique. C’est la raison pour laquelle la distribution d’équilibre canonique
(à la Gibbs-Boltzmann) n’est pas correcte pour décrire le régime stationnaire qui va finalement
s’établir aux temps très longs après la trempe. Finalement, on analyse aussi les intégrales
premières des équations du mouvement associées au modèle de Neumann et on peut vérifier
qu’il n’y a pas aucune condition particulière pour laquelle les modes normaux du système
peuvent thermaliser à la même température.
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Motivations

In the following I present briefly the main motivations and interests that guided the work
I have done during my PhD.

First of all, my work with Marco Picco and Leticia Cugliandolo started with my master’s
internship. The subject of this internship was the study of the coarsening phenomena appear-
ing in the 2d voter model, a purely dynamical stochastic system that is commonly used as a
prototype of opinion dynamics and as a toy model to describe many issues in population ge-
netics. We were interested in this model because it displays the same kind of nonequilibrium
dynamics, and in particular the same kind of ordering process, as in the most common cases
of kinetic spin models where, usually, the domain growth is prompted by a quench from the
high-temperature phase to the low-temperature one. In particular, the focus of the project
was put on the characterization of the geometrical and statistical properties of the domain
pattern produced by the coarsening dynamics, with the aim of relating these properties with
known results of 2d critical percolation.

In fact, M. P. and L. C. and other researchers, at that time, had already observed that
percolation has an important role in the coarsening dynamics of magnetic systems. The
initial interest was sparked by the observation of the so-called “striped” states in the late
stages of the evolution of the spin configuration of a 2d ferromagnetic Ising model, following
an istantaneous quench from infinite temperature to zero or very small finite temperature, for
systems of finite size. Surprisingly, the probabilities of occurence of such metastable states
(that effectively prevent the system from reaching the full equilibration) were found to be
coincident with the probabilities of having percolating clusters with the same topology in
2d critical percolation. Moreover, analytical and numerical results already showed that the
probability distribution of the size of the spin clusters in an Ising model quenched to the low-
temperature phase, after a sufficiently long time, acquired a power-law decay, with the same
exponent as in 2d critical percolation, that persisted throughout the rest of the evolution of
the system. These observations motivated us to search the same kind of phenomenology in
the 2d voter model. The stochastic spin update rules defining the voter model are, in fact,
very similar to those that define the Glauber dynamics, which is the standard stochastic
process used to simulate a quench for the Ising model. And indeed, by means of numerical
simulations, we found that a spin configuration, initiated in a fully disordered state and then
let evolve under voter model dynamics, was approaching, at late times, a state in which the
domains had geometrical and statistical properties similar to those of 2d critical percolation.
The results of this work became the subject of a publication in Physical Review [1].

During my PhD, we continued to investigate the percolation phenomena emerging in
the coarsening dynamics of various kinetic Ising models, considering also the influence of the
particular lattice geometry and finite-temperature effects. A study of the typical time required
for a finite system to reach the so-called critical percolation state, tp, had already been
developed by M. P. and L. C., but many aspects still needed to be clarified. In particular, how
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to characterize the transient between the initial disordered state and the critical percolation
regime, and the scaling behaviour of many observables related to the geometrical properties
of the ordered domains like, for example, the size of the largest cluster, the length of the
percolating domain walls, the pair-connectivity function and so on, once the system has
fully entered in the critical percolation regime. The analysis was pursued mainly by means
of numerical simulations, since to our knowledge there were no analytical methods, and
still there is any, apart from some approximate scaling arguments, that could be used to
predict the existence of such critical percolation state in a dynamical model. We came to
the conclusion that a better description of the transient between the initial state and the
critical percolation regime could be achieved by considering not the typical time tp, that was
supposed to scale as tp ∼ Lzp with the system size L (and zp an exponent to be determined
by finite-size scaling), but a dynamical characteristic length `p(t) that separates two scales.
At time t, the properties of the domain pattern are those of critical percolation over lengths
shorter than `p(t), while over lengths longer than `p(t) the system still looks as in the initial
fully disordered state. The assumption here is that the dynamical characteristic length `p(t)
grows faster than the usual dynamical length `d(t) associated to coarsening, so that a state in
which the critical percolation features have “extended” over the entire system can be observed
before equilibrium is reached. Results of this work were published in [2].

After refining our study of the percolation phenomena appearing in the Ising model evolv-
ing with Glauber dynamics, we were interested in other type of stochastic spin update rules.
We decided to focus on kinetic Ising models evolving under conserved order parameter (COP)
dynamics, and in particular, the Kawasaki spin-exchange dynamics. This was motivated by
looking at some experimental and numerical observations on the phase separation process
occuring in 2d Bose-Einstein condensates, in which evidence of the existence of states with
domain walls having the fractal behaviour of critical percolation was found. It was clear, at
that point, that the presence of a dynamical regime in which the domain pattern properties
have critical percolation scaling behaviour, in the coarsening dynamics of KIMs, was indepen-
dent of the particular microscopic stochastic update rules. Indeed, we found that also in the
case of Kawasaki dynamics the system reaches a critical-percolation-like dynamical scaling
regime. In general the approach to this dynamical regime is controlled by the characteristic
length `p(t), whose form depends on the microscopic dynamics and the lattice geometry. Ac-
counts of these results have been published in [3, 4]. Along this line, we also revisited the 2d
voter model in order to include it in this general framework. However, through a more accu-
rate analysis than the one done in the early stages of my PhD, we determined that the voter
model dynamics brings the system to a different kind of criticality. By performing longer
numerical simulations on very large systems, we were able to find that, in the case of the
voter model, the system indeed passes through a 2d critical percolation state, but very soon
it departs from it and approaches a dynamical scaling regime in which the fractal properties
of the ordered domains belongs to a different universality class, which unfortunately we were
unable to fully characterize.

A second part of my PhD was dedicated instead to the study of the quench dynam-
ics of classical isolated systems with (quenched) disorder. In particular, we considered the
(classical) p-spin spherical spin glass model and analysed the evolution of the system under
Hamiltonian dynamics after the strength of the couplings is quenched. The interest was orig-
inally sparked by an analogy with quantum many-body models that are subject to a quench,
a problem for which many aspects have been already thouroghly explored both thoretically
and experimentally. In this context, the most natural question that one may ask is wether the
(isolated) system is able to provide a bath for itself, allowing it to reach an equilibrium state
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thanks to the interactions between the different degrees of freedom. In other words, the main
issue is to determine wheter the system is able to attain, in the long time limit, a station-
ary state which is characterized by a Gibbs-Boltzmann probability measure. In the case of
quantum systems, one finds that at least two classes of models, integrable models and models
that display the so-called many-body localization, fail to reach equilibrium in the quench
dynamics. The p-spin spherical spin model is a classical model whose Hamiltonian quench
dynamics poses similar questions. At the time that I started approaching this problem, the
case p > 3 was already under study by Leticia Cugliandolo and collaborators Gustavo Lozano
and Nicolás Nessi from University of Buenos Aires. They found that, under certain quenching
conditions, the isolated dynamics of these non-integrable interacting systems approached a
non-stationary ageing regime, which was reminding of the glassy behaviour observed in the
case of purely dissipative relaxation dynamics. The lack of relaxation to thermal equilibrium
was explained in terms of a complex free-energy landscape that include fully trapping re-
gions. Motivated by these results, we decided to see if the same kind of phenomena could
be observed in the p = 2 spherical spin glass model, a case which is particularly interesting
since the energy conserving dynamics is almost equivalent to that of the Neuman integrable
model. We investigated the isolated quench dynamics of this model both numerically and
analytically and found that indeed, given the similarity with an integrable model, the system
fails to relax to an equilibrium state for almost every choice of the quenching conditions. We
published the results of this study in [5].

In the following sections of this Dissertation, I am going to expose in full detail each one
of the topics that have been briefly described here.
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Part I

Coarsening and percolation in 2d
kinetic Ising models

1





Chapter 1

Percolation in the 2d KIM evolving
under Glauber dynamics.

1.1 Introduction

In this Chapter, we are going to discuss the existence of a critical-percolation-like scaling
regime in the coarsening process arising in a 2d Kinetic Ising Model (KIM) evolving with
single spin-flip dynamics. Observations made from numerical simulations suggest that the
relaxation dynamics of the IM ensued by such nonconserved order parameter dynamics (which
mimics an instantaneous quench from infinite temperature to a subcritical temperature) is
characterized by at least two different stages. In particular, in the early stage of the dynamics,
we observe the system evolving from the initial disordered state to a state in which growing
ordered domains have the statistical and geometrical properties of clusters of connected sites
in critical percolation, after proper rescaling. After having attained this “percolation” state,
the system continues to evolve by means of the usual curvature-driven motion of domain
walls.

In the context of coarsening phenomena in the KIM, most of the analyses were based on
investigations of the space-time correlation function or, equivalently, the dynamic structure
factor. The time-evolving domain structure, that has not been as much studied so far,
should contain additional information and be of interest from both practical and theoretical
viewpoints. From the existence of a single growing length `d implied by the dynamic scaling
hypothesis one may conclude that, on the one side, the instantaneous distribution of domain
sizes is peaked at the value `dd(t) with the power d being the space dimension and, on the
other side, the systems attain equilibrium when this growing length `d reaches the systems
size L, i.e., after times of the order of teq(L) ' Lzd . None of these conclusions are totally
valid, as was recently shown in a series of works [6, 7, 8, 9].

As an example, the dynamical number density of domain areas in the 2d Ising model
evolving with nonconserved order parameter dynamics and quenched from infinite to a sub-
critical temperature was studied in [10, 11]. It was shown in these papers that after a short
time scale the number density takes a form with two distinct regimes separated by `2d(t): at
short length scales the behaviour is determined purely by the coarsening mechanism while at
long length scales the number density decays algebraically, with a power law that is numer-
ically equal to that of 2d random critical percolation. The geometric properties of clusters
of aligned spins and their interfaces of various kinds also show this crossover. Similar results
were found under weak quenched disorder [12] and for conserved order parameter dynam-
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ics [13]. Very generally and quite surprisingly, the systems first approach the morphology of
critical percolation, with one (or more) percolating cluster(s), to later evolve following usual
coarsening. The number density of domain areas (also interfaces) satisfies dynamic scaling
and the “typical” area `2d(t) appears as a shoulder in the number density for curvature-driven
coarsening [10, 11, 12] and as a maximum for phase separation dynamics [13].

The determination of the typical time scale, tp, over which the critical-percolation-like
scaling regime for spin clusters establishes during the coarsening process, is the main subject
that is going to be discussed in this Chapter. In particular, since we are always dealing with
finite systems, we are interested in the way this time scale depends on L, the linear size of
the system. Numerically, an algebraic dependence was already found [14]

tp ∼ Lzp (1.1)

with an exponent zp that depends on the coordination number of the lattice, nc, and the
microscopic dynamics.

More precisely, in [14] it was conjectured that, for the Kinetic Ising Model evolving with
the zero-temperature Glauber dynamics, the exponent zp is given by

zp = zd/nc (1.2)

where zd = 2 is the conventional dynamical exponent for nonconserved order parameter
dynamics. This dependence was verified with relatively good numerical accuracy for the
KIM on the triangular (nc = 6), bow-tie (on average nc = 5), square (nc = 4), and Kagomé
(nc = 4) lattices.

However, the method used in [14] to determine the L-dependence of the time scale tp might
not be the best one and, in fact, we are here proposing a different approach which produces
slightly different results. At this stage the definition of tp itself, based on the appearance of
the so-called critical-percolation-like regime, might no be very clear. Indeed, one must be very
careful to not confuse the first appearance of a percolating spin cluster in the course of the
relaxation dynamics, with the onset of a scaling regime characterised by critical percolation
features. Depending on the particular lattice on which the model is defined and on the way
one chooses the initial condition, clusters of aligned spins can percolate through the system
at very early times, or they can even be present right at the beginning. For example, a
spin configuration in which each lattice site takes either spin +1 or −1 with probability 1/2,
independently of all other sites (that is to say, Ising model at equilibrium at T → +∞) is
right at the critical point of random site percolation for the triangular lattice, but not for
other types of 2d lattices, like the square or honeycomb lattices.

Nevertheless, percolating cluster are subject to the spin-flip stochastic dynamics and thus
they often break in smaller pieces and can reform later with a different topology. Roughly
speaking, tp corresponds to the typical time at which the large percolating structures become
“stable” with respect to the spin microscopic dynamics, in the sense that their number and
topology remain fixed and, from a macroscopic point of view, the only effect of coarsening is
the motion of their walls.

In practice, however, this definition is still pretty vague, so that the estimation of the
L-dependence of the time scale tp is done by looking at the scaling of properties of other
observables. More details about the methods and observables used are given in the next
Sections. If a time scale tp related to the emergence of percolation features exists, different
from the usual time scale associated to the coarsening process, teq ∼ Lzd , it must be evident
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in the time evolution of observables that capture the statistical and geometrical properties
of spin clusters, such as the domain area number density, or the largest cluster size.

One can associate a time-dependent characteristic length `p with this time scale, in the
same way as the dynamical length `d(t) ∼ t1/zd , describing the law of growth of ordered
domains due to the usual coarsening process, is associateed to the time scale teq ∼ Lzd .
We demonstrate that the dynamical regime in which the system approaches the “stable”
percolation pattern is controlled by the dynamical length `p(t), for which we propose the
following form

`p(t) ' `d(t) t1/ζ , (1.3)

with the exponent ζ to be determined. In order to give strong support to this claim we show
a thorough analysis of the size distribution of spin clusters for the model on 2d finite lattices.
We observe the presence of two different dynamical scaling regimes: on length scales shorter
than `d(t), domains (spin clusters) display the typical properties of thermal equilibrium at
the target temperature of the quench dynamics; on the other hand, on length scales longer
than `d(t) and up to the “new” characteristic length `p(t), domain statistical and geometrical
properties are the ones of critical percolation (after proper rescaling of all lengths by `d(t)).
An additional large-size regime is present, for length scales longer than `p(t), and we show
how the size distribution of domains in this regime (whose main contribution comes from
large percolating domains) satisfy a similar dynamical scaling but with `p(t) as the correct
dynamical length.

The analysis of the statistical and geometrical properties of the percolating structures
that emerge in the zero-temperature nonconserved ordered parameter dynamics of the 2d
Ising model (but also for IM in more dimensions) is also very useful for understanding the
problem of metastability. Indeed, the existence of metastable states in the KIM evolving
with single spin-flip dynamics at T = 0 was first signalled in [6, 7] and the passage through
a critical percolation state was exploited in [8, 9] to predict their probability of occurrence.
These states are, typically, configurations with stripes and flat interfaces that are stable with
respect to the zero-temperature dynamics. At finite though sub-critical temperature, these
states trap the dynamics for very long time scales, indeed longer than the naively expected
equilibration time scale teq ∼ Lzd . A brief analysis of the effects of these long-lived states on
the equilibration of the KIM will be given in App. A.1.

1.2 Definition of the KIM equipped with Glauber dynamics
The model we consider is a classical spin system on a regular lattice with finite size. To

each lattice site i we associate a spin, si = ±1, and the Hamiltonian of the system is that of
the nearest-neighbour ferromagnetic Ising Model,

HJ [{si}] = −J
∑
〈ij〉

sisj (1.4)

with J > 0 and the sum running over the pairs of nearest-neighbour lattice sites (each
pair counted once).

The equilibrium properties of this model are well-known. In particular, it is known that
this model undergoes a second order phase transition, in the thermodynamic limit, at a
positive critical temperature Tc in dimensions d ≥ 2. For example, in the case of the IM on a
square lattice, a second order phase transition occurs at a critical temperature T sq

c satisfying
the relation J/(kBT sq

c ) = 1
2 ln (1 +

√
2).
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The kinetic part of the model comes from considering a continuous-time Markov chain on
the space of spin configurations, {s(t) : t ∈ [0,+∞)} with s(t) ∈ {−1, 1}Λ (where Λ denotes
the lattice), with given transition rates W (s′, s). W (s, s′) is defined as the probability per
unit time for the stochastic process to make a transition from configuration s to configuration
s′. If the system is in configuration s0 at time t = 0, one can associate a probability P (s, t|s0)
with the stochastic process {s(t)}, that is the probability that the configuration of the system
is s at time t given that the initial configuration is s0.

In order to let the time-dependent probability measure for the spin configuration, P (s, t|s0),
converge towards the canonical equilibrium probability distribution at a given temperature
T , Peq(s;T ) = 1

Z(T ) exp
[
−HJ ({si})

kBT

]
, as t → +∞, the transition rates W (s′, s) are chosen so

that they satisfy the detailed balance condition

W (s, s′)Peq(s;T ) = W (s′, s)Peq(s′;T ) . (1.5)

The above condition ensures that the stochastic dynamics enforced by the transition rates
W (s, s′) bring the system towards a stationary state with the desired probability distribution
Peq of canonical equilibrium at a given temperature T , for any given initial configuration s0,
provided that the Markov process ruled by the transition rates W is ergodic.

Eq. (2.2) gives a lot of freedom on the choice of the transitions that can be allowed in
the stochastic process. In principle, one can decide to have a nonzero transition rate for
any two spin configurations s and s′, but since the goal is to study in detail the relaxation
dynamics towards an equilibrium state in the low-temperature phase or exactly at T = 0,
and, for T � Tc, the spatial extent of correlations between lattice sites is much smaller than
the typical size of the system, one must allow only those transitions that produce a change
in the spin configuration which is localized in space. A procedure that allows the system
to make a “jump” from a given spin configuration to an other one by changing the spin of
large clusters of sites, in one move (or, in an infinitesimal time window), would not mimic
the coarsening dynamics observed experimentally in magnetic systems when quenching the
temperature below the critical one.

The standard choice, and the simplest one, is to allow only transitions that change at
most the value of the spin on one lattice site. In this case, the resulting stochastic dynamics
is called single spin-flip dynamics. In practice, the only transitions that are allowed are those
that do not change the spin configuration and those of the following form

s → s(i), with s
(i)
j =

{
sj , for j 6= i
−si , for j = i (1.6)

for any given lattice site i ∈ Λ, with transition rates wi(s) ≡ W (s, s(i)) and wi(s(i)) ≡
W (s(i), s) satisfying the relation

wi(s;β)
wi(s(i);β)

= Peq(s(i);β)
Peq(s;β) = exp

−2βJ si
∑

k∈N (i)
sk

 (1.7)

where the quantity ∆Ei(s) = HJ [{s(i)
j }]−HJ [{sj}] = 2J si

(∑
k∈N (i) sk

)
is the cost in energy

for the system to flip the spin at site i, the summation running over N (i), the set of lattice
sites that are nearest neighbours to site i, and β = 1

kBT
being the inverse temperature.

Notice that the single spin-flip transition rate wi(s;β) depends on the spin configuration
s only through the value of the spin on a very small number of lattice sites, precisely the
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spin a the site i to be flipped and at its nearest neighbours. In particular, the quantity
hi =

∑
k∈N (i) sk can be seen as an effective magnetic field produced by neighboring sites and

acting on the site i. If the majority of the sites that are nearest neighbours to site i have
antiparallel spin (in the configuration s), that is, sihi < 0, than Eq. (1.7) states that, for
β < +∞ (T > 0), wi(s) > wi(s(i)), which means that the transition s→ s(i) is favoured with
respect to the inverse one. On the other hand, if sihi > 0, that is, the majority of the nearest
neighbour sites have parallel spin (in the configuration s), then wi(s) < wi(s(i)), which means
that the transition s→ s(i) is less favoured than the inverse one. Thus, the net result is that
the stochastic dynamic ruled by the transition rates satisfying Eq. (1.7), on average, makes
the spin at each lattice site align with the effective spin produced by the neighbouring sites.

Eq. (1.7) still leaves a lot of freedom on the choice of the particular form of the single
spin-flip rates wi(s). A pretty common choice is given by

wi(s;β) = C

2 ( 1− tanh [β∆Ei(s)] ) (1.8)

where again ∆Ei(s) = 2J si
(∑

k∈N (i) sk
)
, while C is a constant which has the dimension

of an inverse time. The stochastic dynamics that is produced by the above rates is called
Glauber dynamics in literature [15]. Note that, in this form, the function wi(s) = W (s, s(i))
depends on the “depart” spin configuration, s = {sj}, and on the “arrival” one, s(i) = {s(i)

j },
only through the energy cost ∆Ei(s) for the system to go from s to s(i). An other common
choice is given by

wi(s;β) = C min
(

1, Peq(s(i);β)
Peq(s;β)

)
= C min

1, exp

−2βJ si
∑

k∈N (i)
sk


 (1.9)

which is just the Monte Carlo Metropolis-Hastings rule [16, 17] applied to single spin-flip
transitions. In the case of T = 0 (β → +∞), the rates given by Eq. (1.8) reduce to

wi(s) = C ×

 1 , if ∆Ei(s) < 0
1
2 , if ∆Ei(s) = 0
0 , if ∆Ei(s) > 0

. (1.10)

In Fig. 1.1 we show a schematic representation of the possible single spin-flip transitions
that can occur in the case of an Ising model on a square lattice. Notice that, because of
the simmetries of the model and the geometry of the lattice, and since the transition rates
W depend on the particular spin configuration s only through the change in the energy ∆E
due to the flip of one spin, there are only five different cases. In general, for a lattice of
coordination number nc there are nc + 1 different “classes” of spin-flip transition.

In order to complete the construction of the stochastic process {s(t) : t ∈ [0,+∞)}
resulting from the transition rates W (s, s′), it is necessary to specify the way in which the
time t is increased between two consecutive transitions. One must take into account that, in
the context of single spin flip dynamics, a possible transition could be either one in which
the spin configuration remains unchanged or one in which the spin at one single lattice site is
flipped. Then, one possibility is to increase the time by a fixed amount τ every time that an
attempt at changing the spin configuration is made, independently of the outcome. In this
case, the time evolution of the spin configuration can be seen as a sequence of spin flip events
that are separated by a time which is a multiple of τ . This is the approach adopted in the
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Figure 1.1: The possible spin-flip transitions on a square lattice. In each case, the central site (gray
circle) represents the lattice site whose spin is chosen to be flipped. The spins on the four
nearest-neighbours are shown as well. W is the transition rate from the configuration on
the left to that on the right, while W is the rate associated with the inverse transition.
They satisfy the detailed balance condition with respect to the canonical equilibrium
distribution, that is to say, W/W = exp (−β∆E), with ∆E the change in energy due to
the transition, and β the inverse temperature.

discrete time Monte Carlo method. In our case we used a slightly different procedure, called
continuous time Monte Carlo method [16]. This method is rejection-free, which means that,
at each step of the algorithm, a spin is always flipped, independently of the change in energy
∆E. However, the time between two consecutive spin flip events is not constant, but drawn
at random from an exponential distribution. One can easily show that the two versions of the
method, discrete and continuous, are equivalent if one chooses the average time increment
(for the continuous time method) of the form

∆t =
(∑

i

wi(s)
)−1

. (1.11)

Note that ∆t depends on the configuration of the system s at the time at which the spin flip
is made.

The initial state is always taken to be a random spin configuration with no correlations,
obtained by choosing si = +1 or si = −1 with probability 1/2 on each lattice site (long-range
correlated initial conditions, as the ones of the critical Ising point, fall in a different class [10,
18, 19, 20]). This initial condition corresponds to equilibrium at infinite temperature. Thus,
with this choice, the stochastic dynamics that ensues from the spin flip rates wi(s;β) described
above, simulates the relaxation of the spin system with Hamiltonian given by Eq. (1.4),
from an initial state equilibrated at infinite temperature towards a state in equilibrium at a
finite temperature T ∝ 1/β. In other words, the evolution in time of the spin configuration
produced by these transitions rates is a realization of a (classical) quench in temperature:
the system is initially prepared in equilibrium at T0 → +∞, and then the temperature is
instantaneously changed to a finite value T .

Every case of numerical simulations of the KIM that is presented in this Chapter is relative
to a sub-critical quench, that is, the “arrival” temperature T entering in the transition rates
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is below the critical one, Tc. In fact, as stated in the introductory section of this Chapter,
the goal is to study the domain growth that emerges in the 2d Kinetic Ising Model when it is
relaxing towards the low-temperature ordered phase. In particular, coarsening is especially
studied in the case of T = 0 Glauber dynamics, since the absence of thermal fluctuations
allows the domain growth to be driven purely by a domain-wall-curvature mechanism [10,
21] after a sufficiently long time. Since the KIM equipped with Glauber dynamics at a
temperature T < Tc is an example of nonconserved order parameter dynamics [22], in the
thermodynamic limit the typical relaxation time τrel scales with the equilibrium correlation
length at the “arrival” temperature T , ξeq(T ), as

τrel(T ) ∼ ξeq(T )zd (1.12)

with zd = 2 being the dynamical critical exponent. In the case of a finite system of linear
size L, a simple finite-size scaling argument tells us that equilibration is reached in a typical
time

τ
(f)
rel ∼ L

zd . (1.13)

In dimensions d = 2, then, the relaxation time scales as the volume of the system, N = L2.
When dealing with the zero-temperature Glauber dynamics, defined by the spin flip rates

given by Eq. (1.10), one observes that, for a finite system, depending on the geometry of
the lattice and on the boundary conditions, there are certain spin configurations that act as
absorbing states. Once the system gets into one of these configurations it can not escape
and thus the dynamics is over. The completely magnetized states, that is, the two spin
configurations in which all sites have the same spin, are trivial examples of these absorbing
states. Other less trivial absorbing states exist and correspond to local minima of the free
energy of the Ising Model on the finite lattice.

Consider, for example, the zero-temperature Glauber dynamics, defined by the spin flip
rates in Eq. (1.10), on the square lattice with periodic boundary conditions. Non-trival
examples of absorbing states are spin configurations in which spin clusters of opposite phase
are separated by straight walls: each one of the spins that are in the bulk of a domain are
clearly frozen, but also the ones sitting on lattice sites at the border of a domain, since they are
surrounded by three nearest neighbours with the same spins and just one with the opposite
spin. In both cases the cost in energy for flipping the spin is positive and, by Eq. (1.10),
w = 0. More complex absorbing spin configurations are possible in the case of a lattice with
odd coordination number, as the honeycomb lattice, see App. A.2. Often they will be called
frozen states in the rest of this work.

In summary, in the case of the Glauber dynamics at exactly T = 0, the system will
eventually get trapped in one of these absorbing states and thus, the resulting stochastic
process is not ergodic. Moreover, in the case of sub-critical Glauber dynamics at a positive
but very small temperature (T � Tc), the absorbing states of the T = 0 dynamics have an
important effect on the time required for equilibration. The system can spend a lot of time
wandering in the basin of attraction of these local minima, and, effectively, for very large
system sizes, numerical simulations could not be able to reach the final equilibrium state in
the time scale predicted by the finite-size scaling in Eq. (1.13), but a longer time would be
needed.

Since the main interest of this work is to study the appearance and influence of percolation
phenomena in the coarsening dynamics of the kinetic Ising model, the choice of the particular
lattice on which the KIM is placed represents an important specification of the model. In
fact, the value of the threshold probability for percolation depends on the particular lattice
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geometry, and, because of the finiteness of the system, having a cluster of connected aligned
spins that percolates already in the initial state can have a great effect on the evolution of
the system under the stochastic dynamics. As an example, consider a completely random
spin configuration with no spatial correlation, where the probability for a site to have spin
+1 or −1 is equivalently 1/2. In other words, a state taken from equilibrium at T → +∞.
For the triangular lattice, this state is critical in the context of percolation, that is, there
is a nonvanishing probability (in the thermodynamic limit) of having a cluster of connected
aligned spins that percolates through the system. This is not the case for the square lattice,
since its threshold probability for percolation is larger than 1

2 .
Throughout this Chapter, we consider the KIM with Glauber dynamics on the square and

triangular lattices. App. A.2 is dedicated to the analysis of the dynamics on the honeycomb
lattice, a case which deserves a particular attention. The differences caused by the particular
lattice geometry on the behaviour of the coarsening dynamics will be highlighted as much as
possible.

1.3 Observables

In this Section we give an exhaustive list of the observables that we are going to study
in order to characterize the coarsening process that the system is subjected to, and the
geometrical and statistical properties of ordered domains that help us identify the onset of
the critical-percolation-like scaling regime we have been mentioning before.

A crucial observable in our analysis is the characteristic dynamical length, denoted by `d.
According to the dynamical scaling hypothesis, at sufficiently late times, a coarsening system
develops a domain mosaic whose morphology is (statistically) scale-invariant with respect to
a spatial characteristic scale given by `d. This means that the typical domain structure is
statistically independent of time if all lengths are rescaled by `d. In this sense, `d(t) can be
seen as the typical domain size at time t since the relaxation dynamics has begun, or as the
average separation between ordered domains of the same phase.

The way by which the scaling hypothesis is usually probed is by means of the two-point
dynamical correlation function, C(r, t) = 〈s(x + r, t) s(x, t)〉, which should have the scaling
form

C(r, t) ∼ f
(

r

`d(t)

)
(1.14)

at late times t and for distances r much longer than the lattice spacing. Here we have denoted
the value of the spin on the site x of the lattice, at time t, by s(x, t) and the brackets 〈 · 〉
denote the average over the initial conditions and the stochastic dynamics.

In the context of numerical simulations, the characteristic length `d(t) is usually estimated
as the distance r over which the correlation C falls to a selected portion of its maximum value,
or as the square root of the quantity

R2(t) =
∫+∞

0 dr r2C(r, t)∫+∞
0 drC(r, t)

. (1.15)

A more practical way of measuring it is by means of the excess-energy associated to the
domain walls, which is given by

ε(t) = Eeq − E(t)
Eeq

, (1.16)
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with E(t) = 〈H({si(t)})〉 the average energy of the system at time t (where H is given by
Eq. (1.4) and 〈 · 〉 again represents the average over many independent realizations of the
stochastic dynamics and the initial spin configuration) and Eeq the energy of the equilibrium
state or stationary state that the system is approaching to (eventually in the limit t→ +∞).
The excess-energy ε is proportional to the density of defects which, in our case, are the
domain walls. In the case of the ferromagnetic Ising model, one can easily see that ε(t)
coincides with the average fraction of unsatisfied lattice bonds in excess with respect to the
reference equilibrium state, where an unsatisfied lattice bond, for a given spin configuration,
is a bond between two sites having opposite spin values. The typical domain radius, which
is proportional to `d, is roughly given by the inverse of this quantity [23]. In particular
we introduce an excess-energy growing length, `G(t), which is given by `G(t) = 1/ε(t) =
Eeq/(Eeq − E(t)).

In the paramagnetic initial state, E(0) ' 0 and `G(0) ' 1. As the system approaches
thermal equilibrium at temperature T below the critical temperature Tc, the growing length
increases, reflecting the fact that the density of defects (domain walls) decreases. As t→ +∞
one expects that `G(t)→ +∞, since the time-dependent energy of the system, E(t), reaches
the equilibrium value and thus ε(t)→ 0. In the case of the Glauber dynamics at T < Tc, this
essentially amounts to the disappearance of large scale defects that can not be produced by
thermal fluctuations alone, that is, most of the system is covered by a large cluster of aligned
spins of a given sign and there can not exist ordered domains of the minority phase with size
larger than the equilibrium correlation length at the target temperature T .

However, for the dynamics at T = 0 (and on a finite lattice), the system does not always
reach full equilibration since it can get trapped forever in one of the frozen configuration we
have mentioned in the previous Section. For this reason, `G(t) saturates at a finite value.
Moreover, even in the case of Glauber dynamics at nonvanishing, but very low, temperature,
the system can wander a lot of time around these metastable states before reaching true
equilibrium. Thus, the characteristic length `G(t) first grows up to the saturation value for
the zero-temperature dynamics and remains blocked approximately around it for a given
period of time, after which it begins to increase again and eventually diverges. The duration
of the plateau increases as the “arrival” temperature decreases, diverging to +∞ as T → 0.
The presence of this intermediate regime slows down the relaxation dynamics and as a result,
for finite systems, the typical equilibration time can be much larger than the one predicted
theoretically for the nonconserved order parameter universality class, that is teq ∼ L2.

Since, for times t such that r0 � `G(t)� L, with r0 the lattice spacing and L the lattice
linear size, we expect `G(t) to be a measure of the typical domain radius (or to be proportional
to it), then in the thermodynamic limit we should have `G(t) ∼ `d(t) ∼ t1/zd , with zd = 2.
However, in the case of the KIM evolving with Glauber dynamics on a finite lattice, `G(t)
can have a much richer structure. Therefore, throughout this dissertation we will use the
numerically estimated `G(t) as an effective measure of `d(t) and we will not care much about
its particular time dependence. Whenever the theroetical `d(t) ∼ t1/zd is involved in the
scaling of some measured length, `G(t) will be used instead.

Throughout this dissertation we are going to discuss about the geometrical and statistical
properties of the spin clusters and relate them to those of clusters of occupied sites in the
context of 2d random percolation. It is then necessary to provide the reader with a clear
definition of spin cluster and features associated with it in the context of the Kinetic Ising
Model. A spin cluster or domain is a set of connected lattice sites that have all the same
spin. We call the area (or volume) A of a spin cluster the number of sites that belong to
it. An important geometric feature of a spin cluster is its interface. The interface of a spin
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cluster is essentially the boundary that separates it from neighboring spin clusters (which
have obviously opposite spin). In order to give a clear representation of what this boundary
consists of, we must first define what a domain wall is, also sometimes called “hull” in the
following. A domain wall or hull is a non-self-intersecting path on the dual lattice (graphically,
the dual lattice is constructed from the original one by connecting the centers of the original
lattice plaquettes) which is constructed by joining bonds (on the dual lattice) that intersect
unsatisfied bonds on the original lattice. If one imposes periodic boundary conditions on the
system, such paths on the dual lattice are always closed (in d = 2 dimensions this can be easily
depicted by imagining that the finite lattice folds onto itself to form a torus). The interface
between a certain spin cluster and the neighbouring sites can be composed of many hulls. In
particular, one can make a distinction between the different domain walls (or hulls) making
up the whole interface: there is always one which encloses all the sites belonging to the spin
cluster, which will be often referred to as external hull, and then there are, eventually, other
hulls that are embedded inside the cluster itself, which we call internal hulls. Actually, in the
case in which a spin cluster is percolating across the system, there can be a third possibility,
namely hulls that can be considered neither external nor internal to any spin cluster.

In fact, we must now give a proper definition of percolating spin cluster on a finite-size
system and distinguish different possibilities. Let us first focus on the case of a 2d system
with PBC, i.e., a model defined on a torus, with toroidal and poloidal directions represented
as horizontal and vertical directions when picturing the torus as a 2d sheet, see Fig. 1.2. A
closed curve on a torus can be homotopic to a point or it can wind around the torus so that
it can not be shrinked down to a point by a continuous deformation of the torus itself. In the
second case, we call it a wrapping hull. A spin cluster is said to percolate if it wraps around
the system, that is to say, if there exists a path composed of connected sites belonging to the
cluster that winds around at least one of the two directions of the torus. A wrapping cluster
is separated by one or more hulls from one or more clusters of the opposite phase. Schematic
examples of the different topologies of a wrapping cluster are depicted in Fig. 1.2.

We can have four distinct situations:

• a spin configuration with no wrapping cluster;

• a spin configuration that contains at least one cluster wrapping only along one direction
(that is to say, horizontal or vertical stripes), see Fig. 1.2-(a) and 1.2-(b);

• a spin configuration that contains at least one cluster wrapping in both directions, with
wrapping cluster walls (also called diagonal stripe configuration), see Fig. 1.2-(d);

• a spin configuration that contains a unique cluster wrapping in both directions, but
without any wrapping walls (we refer to this case as a “cross” topology configuration),
see Fig. 1.2-(c).

These are the only possible cases in two dimensions and are mutually exclusive.
To each one of the wrapping configurations described above we can associate a probability:

the probability of having a cluster wrapping in both directions with a cross topology, πhv,
the probabilities of having a cluster wrapping only horizontally or only vertically, πh and πv
respectively, and the probability of having a cluster wrapping in both directions in what we
call a diagonal stripe configuration, πdiag. The probability that the spin configuration has no
wrapping cluster is then given by π0 = 1− πhv − πh − πv − πdiag.

We expect that, at a sufficiently long time after the quench, the system spends a very long
period of time in a regime in which geometrical and statistical properties of spin clusters have
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(a) (b) (c) (d)

Figure 1.2: Sketches of wrapping clusters on a lattice with unit aspect ratio and PBC (i.e., on a
torus). The panels show in red clusters spanning the system horizontally (a), vertically
(b), both horizontally and vertically (c), and diagonally (d). In the first, second and
fourth cases, the topology of the red clusters implies the existence of a white percolating
cluster next to them. On the contrary, in the third case the red cluster percolating in
both directions forbids the existence of other spanning clusters.

the same scaling behaviour of clusters of occupied sites in critical site percolation on the same
lattice. As the system approaches this regime, the time-dependent wrapping probabilities
should become equal to corresponding ones in 2d critical percolation. Actually, one must take
care of the fact that in a percolation problem one considers just the cluster of occupied sites,
while in the spin models that we study here we have to consider clusters of both spin signs
at an equal footing. With this consideration in mind, one can compare the values that the
probabilities πhv, πh, πv and πdiag reach in the late stages of the coarsening dynamics with the
corresponding ones of 2d critical percolation, π(p)

hv , π
(p)
h , π(p)

v and π(p)
diag. In the case of a lattice

of unit aspect ratio with periodic boundary conditions π(p)
hv ' 0.6190, π(p)

h = π
(p)
v ' 0.1694

and π(p)
diag ' 0.0418 [24].

One can introduce similar probabilities in the case of a system with free boundary con-
ditions (FBC). In this case, a spin cluster is said to percolate if there is a path of con-
nected sites, belonging to the cluster, that crosses the system from one border to the op-
posite one. The distinction between the different percolating cluster geometries still ap-
plies. The “crossing“ probabilities have been computed by Cardy [25] and Watts [26]. In
particular, in the case of critical percolation on a square lattice with unit aspect ratio:
πFBC

hv = 1/2 +
√

3/(2π) ln (27/16) ' 0.6442.
An other interesting geometrical object whose time evolution we are going to study is

the largest spin cluster. In fact, in the problem of percolation, the fraction of occupied sites
belonging to the largest cluster represents, in the thermodynamical limit, the order parameter
of the system. In the limit L → +∞ and as p → p−c (with pc the threshold site occupation
probability) the largest cluster becomes the incipient infinite cluster present at the critical
point, and thus a fractal object. In particular, its size (or area), that we denote by Ac, and
the length of its interface, denoted by lc, are related to its linear size l by

Ac ∼ lDA , lc ∼ lD` , (1.17)

as l→ +∞, with DA the area fractal dimension and D` the interface fractal dimension. These
dimensions can be exactly computed for the critical points of the q-state Potts model in two
dimensions for 0 < q ≤ 4 (where q = 2 for the Ising model and q → 1 for percolation) through
a Coulomb gas formulation [27]. The parameter κ, related to q through √q = −2 cos (4π/κ),
determines the universality class of the model near criticality. The above-mentioned fractal
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dimensions are then expressed in the following form

DA = 2− β

ν
= 1 + 3κ

32 + 2
κ
, D` = 1 + κ

8 , (1.18)

where β is the critical exponent of the order parameter and ν that of the equilibrium corre-
lation length. For 2d critical percolation κ = 6 [28] and thus

DA = 91
48 ' 1.8958 , D` = 14

8 = 1.75 . (1.19)

We will show the time evolution of the observables Ac and lc for the KIM evolving with
Glauber dynamics and study their finite-size scaling properties. However, a clarification on
the definition of lc as the length of the interface of the largest spin cluster is in order. As
we have explained above the interface of a spin cluster can be composed of many mutually
disjoint hulls. For the calculation of lc we are going to consider only the contribution deriving
from the external hull, in the case in which the largest cluster is not percolating, or the one
from the two wrapping hulls, in the case the largest cluster is percolating, since they are the
longest ones and thus their scaling properties are expected to suffer less from the effects of
the discreteness of the lattice.

A quantity which plays a central role in percolation problems is the number density of
domain areas, N(A), which is defined as the number of clusters of occupied sites of size A
per unit area of the system. At the critical percolation point, N(A) is given by a power law

N(A) ∼ A−τA , (1.20)

with τA a characteristic exponent (also called Fisher exponent) related to DA, the fractal
dimension of the incipient percolating cluster at the percolation critical point, by [29]

τA = 1 + d

DA
= 187

91 ≈ 2.0549 , (1.21)

where d is the dimensionality of the lattice, d = 2 in our case.
In order to study the statistics of domains in the coarsening process appearing in the

kinetic spin models (on finite systems), we introduce a dynamical number density of spin
cluster areas, tha we denote by N (A, t, L). In the KIM scenario, N (A, t, L) is the number of
spin clusters of area A being present at time t in the dynamics after the quench, for a system
of linear size L, per unit area of the system. In general, N (A, t, L) is given by the sum of two
contributions

N (A, t, L) ' N(A, t) +Np(A, t, L) , (1.22)

with the first term being the contribution to the number density due to domains with linear
size much smaller than that of the system, and the second one being instead the contribution
from domains with size that is comparable to that of the whole system, including percolating
spin clusters. The first contribution, N(A, t), is, in fact, the one that would be present alone
in the case of L → +∞, while the contribution Np(A, t, L) is explicitly included in order
to take into account finite-size effects (hence the dependence on L). Np weighs mostly spin
clusters that are percolating, but also spin clusters that, although not percolating, have a
linear size which is comparable to L and thus are highly subjected to boundary effects.

Our conjecture is that, as the system approaches the critical-percolation-like scaling
regime, which would occur in a typical time tp, the term Np becomes dependent on A and
L only through A/LDA reflecting the scaling behavior of the incipient percolating cluster at
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critical percolation, while the contribution N(A, t) given by non-percolating clusters gets an
algebraic decay similar to the one at critical percolation, namely N(A, t) ∼ C(t)A−τA , with
C(t) a particular time-dependent prefactor to be determined, and τA the Fisher exponent of
2d critical percolation, namely τA = 187/91.

An approximate expression for the time-dependence of the number density of non-percolating
domains, N(A, t), was derived in [10, 11] for the 2d NCOP dynamics by assuming that, after
a sufficiently long time, the domain growth can be reduced to the motion of independent
domain walls governed by a curvature-driven mechanism. Essentially this argument leads to

N(A, t) ' 2cd [λd(t− tp + t0)]τA−2

[A+ λd(t− tp + t0)]τA t ≥ tp , (1.23)

where τA = 187/91 is the Fisher exponent of 2d critical percolation, cd ' (τA−2)(τA−1)/2 ≈
0.0289 [11], λd is a parameter related to the diffusion coefficient of the domain walls, and t0
is a characteristic cutoff time such that λdt0 = 1. In order to obtain this expression it was
assumed that, at a certain time tp, the system has reached a critical percolation state and
that, for t ≥ tp, the curvature-driven motion of domain walls is the only mechanism governing
the domain growth.

Similar arguments were used in [13] to derive an approximate expression for N(A, t) in
the case of locally conserved order parameter (LCOP) coarsening, yielding

N(A, t) ' `d(t)−4
2cd

(
A

`d(t)2

) 1
2

[
1 +

(
A

`d(t)2

) 3
2
] 2τA+1

3
, (1.24)

where `d(t) is the characteristic length associated to coarsening (or typical domain radius),
which, for LCOP dynamics, should behave asymptotically as `d(t) ∼ t

1
3 . Again this result is

supposed to hold for times t after the system has already reached a critical percolation state.
Note that both Eq. (1.24) and Eq. (1.23) can be rewritten as

N(A, t) ' `−4
d (t) f

(
A

`d(t)2

)
, (1.25)

with the scaling function

f(x) =

 2cd (1 + x)−τA for NCOP dynamics

2cd x
1
2 (1 + x

3
2 )−

2τA+1
3 for LCOP dynamics

(1.26)

assuming also that `d(t) ' [λd(t− tp + t0)]1/zd and t − tp � t0. Note that, in the limit
x → ∞, both versions behave as f(x) ∼ 2cd x−τA , and thus we can use the approximation
N(A, t) ' 2cd [`d(t)]2(τA−2) A−τA for A� `2d(t).

The scaling behaviour, in the continuum limit, of many 2d stochastic processes, as critical
percolation, the critical Ising model, self-avoiding random walks, etc., can be described by the
Schramm-Loewner evolution (known also as stochastic Loewner evolution or SLE). An SLE
with parameter κ, or SLEκ, is essentially a family of conformally invariant random planar
curves [30, 31, 32], with the parameter κ controlling how much the curve “turns”. It has
been shown [28, 33, 34] that the parameter κ is the same as the one in the aforementioned
Coulomb gas formulation of the q-state Potts model, and it is linked to the central charge c

15



of the associated conformal field theory: for example, SLE3 reproduces the domain walls in
2d critical Ising model, SLE6 those of 2d critical percolation, etc.

The fractal dimension of the random curves in SLEκ is given by D`(κ) = 1 + κ/8. Thus,
by measuring D` it is possible to obtain κ and, consequently, the type of criticality of the
model. Our approach will be then to study the fractality of the percolating hulls (or domain
walls) by analysing their scaling with L. This is done, for example, by studying the scaling
behaviour of the interface of the largest spin cluster.

Another method that we will use is the analysis of the winding angle of the cluster hulls.
The winding angle θ(x) between two points P and P ′ on a planar curve, such that the arc
with extremes P and P ′ has length x, is defined as the incremental angle that the tangent
to the curve is rotated by when moving from one point to the other one. For conformally
invariant stochastic planar curves belonging to SLEκ, θ(x) as a function of the arc length x
behaves as [35, 27]

〈θ2(x)〉 = cst + 4κ
8 + κ

ln x , (1.27)

with the brackets 〈 · 〉 denoting the average over all possible realisations of the stochastic
process. In the dynamic problem we will deal with the time-dependent winding angle θ(x, t)
measured for the hulls of the spin clusters. If the system were to attain a critical-percolation-
like state or another type of 2d criticality (in general, any Potts model criticality) during the
relaxation dynamics, we would then be able to observe 〈θ2(x, t)〉 satisfying the law expressed
by Eq. (1.27) after having rescaled the curvilinear distance x by a proper dynamical length.
In this way it is possible to distinguish between different types of criticalities.

However, Eq. (1.27) is satisfied in the continuum space limit, while the models are defined
on a lattice. In Fig. 1.3 we show a schematic representation of the definition of θ on a lattice.
To compute the winding angle for an arc of domain wall of length n (with n a positive
integer), we start from one of the two extrema and we walk along the interface of the spin
cluster (defined on the dual lattice) incrementing the tangent angle θ by a quantity ∆θ each
time the curve turns. Notice that on the square lattice ∆θ can only take the values 0, π/2
or −π/2. The winding angle is then given by

θ(n) =
n∑
k=1

∆θk (1.28)

with ∆θk the increment corresponding to the k-th step of the walk. We always use the
convention that the domain wall is travelled in the direction such that the interior of the
domain is on the right side of the walker, and that right turns corresponds to ∆θ > 0, while
left turns to ∆θ < 0. With these convention, one clearly sees that the external hull of a
domain has total winding angle (that is to say, the winding angle from one point to itself)
equal to 2π, while hulls that are in the interior have total winding angle equal to −2π. There
might also be hulls that have zero total winding angle. These are hulls that wrap around the
system. For this reason, the total winding angle can also be used to determine whether a
domain wall wraps or not. Notice also that the quantity in Eq. (1.27) must not depend on
the starting point P on the arc. Hence, for a given domain wall, we average θ2(n) over all
possible arcs of length n that are part of it.

In the framework of percolation theory, a useful tool to study the geometrical properties
of clusters of occupied sites is the pair connectedness function, g(r). This quantity is defined
as the probability that two lattice sites separated by a distance r belong to the same cluster.
At critical percolation in two dimensions, the behaviour of g(r) for large r (r � r0, with r0
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A
B

Figure 1.3: A schematic representation of the way we measure the winding angle for domain walls of
spin clusters on a square lattice. The figure presents a 10×10 square lattice mesh, where
circles represent lattice sites. Gray circles correspond to +1 spins, while white ones to
−1 spins. We highlight two domain walls forming the interface of a “gray” spin cluster:
the blue one is the external hull, i.e. the hull that encloses the spin cluster; the green
one is an internal hull. The arrows drawn on the hulls indicate the direction along which
they are travelled in order to compute the winding angle, clockwise for external hulls,
anti-clockwise for internal ones. As an example, the winding angle corresponding to the
arc ÃB of length 13 (number of unsatisfied lattice bonds traversed by the wall) on the
blue domain wall is ∆θ

ĀB
= +π. The total winding angle for the external domain wall

is 2π, while it is −2π for the internal one.

the lattice spacing) is known [29, 36, 37]

g(r) ∼ r−2∆ , (1.29)

where ∆ = 2−DA, DA being the fractal dimension of critical percolation clusters.
In order to assess the presence of a critical-percolation-like regime in the coarsening pro-

cess occurrying in the quench dynamics of the Ising model, we introduce an analogous quantity
for a spin system. On a square lattice:

g(r, t) = 1
4L2

∑
i

∑
ir

〈γi,ir(t)〉 (1.30)

where the first summation is taken over all the lattice sites, the second over the four sites
ir that are located at distance r from site i along the horizontal and vertical directions, and
γi,j(t) = 1 if the sites i and j belong to the same spin cluster at time t, and equals 0 otherwise.

1.4 Percolation phenomena
In this Section we illustrate the argument that supports our claim of the presence of

a critical-percolation-like scaling regime in the 2d KIM evolving with Glauber dynamics at
a subcritical temperature. First, we show some snapshots of of an Ising model initially
prepared in a fully disordered configuration (T0 = ∞), evolving under zero-temperature
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Glauber dynamics, and we highlight the fact that, at a sufficiently long time after the quench,
the spin configuration consists essentially of one or more large spin clusters, percolating along
a certain direction, that are ”stable“ with respect to the microscopic stochastic dynamics.
Second, we show the time evolution of the size of the largest spin cluster and propose a
scaling argument that we use to explain how the system approaches a critical-percolation-
like scaling regime. In particular we introduce the new time-dependent characteristic length
`p(t) that grows faster than `d(t) and represents the length scale up to which the geometrical
and statistical properties of the spin clusters resemble those of critical percolation. Finally,
we give evidence of the presence of critical percolation features by showing the time evolution
and scaling behaviour of the pair connectedness function defined by Eq. (1.30).

The overall conclusion is that there exists a separation of length scales: on lengths smaller
than `d(t), that is, the usual dynamical length associated to coarsening, the system behaves
as it were already relaxed to the target equilibrium state; on length scales larger than `d(t)
and up to `p(t), the system instead has the characteristic features of critical percolation (by
looking at the fractal properties of large spin clusters and connectedness). For a system of
linear size L, the typical time tp(L) corresponds approximately to the point at which the
percolation criticality extends over the entire length L, that is `p(tp) ∼ L.

1.4.1 Snapshots

The istantaneous domain pattern of a kinetic Ising model undergoing stochastic dynamics,
be it the Glauber dynamics described in Sec. 1.2 or any other type of dynamics defined by
some spin update rules, can help understand what are the mechanisms controlling the domain
growth and the type of coarsening phenomena arising.

In Fig. 1.4 we show a series of snapshots of the spin configuration of an Ising model
on a square lattice with periodic boundary conditions (PBC) and size L = 128, evolving
under Glauber dynamics at T = 0. The initial spin configuration is drawn at random from
equilibrium at infinite temperature, that is to say, by choosing the value of the spin at each
site to be +1 or −1, independently site by site, with equal probability 1/2.

Let us denote the time of first appearance of a percolating spin cluster by τp, for a given
realisation of the stochastic dynamics: τp naturally depends on the initial condition and on
the sequence of spin-flip events occurring up to the point when one of the spin cluster is
percolating. For example, in the case of the Ising model on a triangular lattice, the initial
condition corresponding to equilibrium at infinite temperature coincides with the critical
percolation point, in the thermodynamic limit. For large system size, one would observe that
a percolating spin cluster is almost always present in the initial spin configuration, hence one
would have τp ' 0. Instead, in the case of the square lattice, the initial condition is not
critical, and indeed we observe that typically τp > 0 for a finite system. In the particular
case shown in Fig. 1.4, a spin cluster wrapping horizontally first appears at a time τp ≤ 0.59
(panel (b)).

One may be interested in the time evolution of this first percolating cluster appearing
at the time t = τp. In particular, one interesting question one may ask is whether this spin
cluster is able to ”survive“ for all t > τp while preserving its topology, that is to say, whether
the domain walls that enclose this cluster continue to percolate in the same direction for the
rest of the evolution of the system, or if instead, at some point, they collide and break in
smaller non-wrapping pieces. As demonstrated by the series of snapshots, the first wrapping
cluster does not survive for long. In fact, it disappears after a relatively short time (panel (c))
and later is replaced by a new spin cluster that is wrapping in both directions (panel (d)).
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(a) t = 0 (b) t = 0.59 (c) t = 0.77 (d) t = 1.18

(e) t = 2.00 (f) t = 3.67 (g) t = 4.76 (h) t = 6.72

(i) t = 16 (j) t = 32 (k) t = 64 (l) t = 128

Figure 1.4: Some snapshots of an Ising model evolving under Glauber dynamics at temperature
T = 0, on a square lattice with PBC and linear size L = 128. The initial state is a
completely random spin configuration in which each site takes spin either +1 or −1 with
equal probability (equilibrium at T → +∞). Red cells and white cells represent +1
and −1 spins, respectively. Spin clusters that wrap around the system are highlighted
in different colours, green for spin +1 wrapping clusters, blue for −1 wrapping clusters.
The time at which each snapshot has been taken is also indicated.

More precisely, the number of domain walls percolating across the sample, and the direction
along which they are percolating, can change many times before reaching a “stable” state.
The time tp is roughly speaking the typical time at which the domain pattern reaches such
stable state. Nonetheless, keep in mind that we use here the term “stable” not with the usual
meaning. Indeed, percolating domain walls are not really energetically stable with respect
to the relaxation dynamics. Eventually, the system is led, in a typical time teq ∼ L2, to the
equilibrium state at the target temperature T of the quench. For T < Tc this corresponds to a
state in which no long domain walls are present, but only small and very rare non-percolating
ones caused by thermal fluctuations. The T = 0 Glauber dynamics represents an exception
since, depending on the particular lattice geometry, flat percolating domain walls can be truly
energetically stable.
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For the particular case shown in Fig. 1.4, the time tp corresponds approximately to t = 16
(panel (i)) or, more precisely, tp ≤ 16. At this time there are two large spin clusters of
opposite spin orientation, both wrapping in the so-called “diagonal” topology (see Fig. 1.2),
which survive at all subsequent times or, at least, until a time of order teq ∼ L2. Indeed, we
checked that the further evolution of the system set by the stochastic microscopic dynamics
does not modify the way these large clusters percolate. The only effect of coarsening is to
smoothen their walls, that continue to fluctuate independently one from each other. In this
sense we say that the system has reached a topologically “stable” percolating pattern. In
most cases, this is the situation realised by the dynamics at long times.

1.4.2 Largest cluster

In ordinary percolation, the area of the largest cluster of occupied sites (divided by the
size of the system, L2) is the order parameter of the transition. As we mentioned in Sec 1.3,
right at the critical percolation point, the size of the largest cluster, Ac, scales as LDA with
DA = 91/48, where L is the linear size of the system.

In the case of the Ising model evolving under Glauber dynamics at T < Tc and starting
from a random initial condition, we know that at a short time τp a percolating spin cluster
appears for the first time. We know that the percolating spin clusters become “stable”, in
the sense that was described in the previous Section, after a typical time tp that scales with
the system size as tp ' Lzp , with zp < zd as observed in Refs. [14, 3, 38]. At this time the
system is still far from the equilibrium state. In particular, the average magnetisation density
m is very small due to the fact that there are usually two large spin clusters of opposite spin
orientation, both with a radius comparable with the system linear size L.

In order to provide a better qualitative understanding of what is happening during the
dynamics following a quench to zero temperature, we show in Fig. 1.5-(a) and (b) the time
evolution of the largest spin cluster (LC) and second largest (SLC) densities (Ac/L2) for
single and independent realisations of the T = 0 Glauber dynamics, on a square lattice with
PBC and linear size L = 4096. In the case shown in Fig. 1.5-(c), for an other independent
realisation of the dynamics, we also show the fraction of sites belonging to the third largest
cluster (TLC) and the fourth largest one (FLC). Finally in Fig. 1.5-(d), for yet an other
realisation of the stochastic dynamics, we show the time evolution of the fraction of sites
belonging to the largest cluster of spin +1, and the one for the largest cluster of spin −1.
These data have been obtained through Monte Carlo simulations. Note that, for all the cases
shown in those panels, we consider at any time t the largest spin cluster, second largest, etc.
regardless of their history, that is to say, the spin cluster that is the largest at a given time
t has not necessarily evolved from that on a previous time, even though one can argue that,
at sufficiently long times, one can keep track of them.

As one can see, the sizes of the LC and SLC grow rapidly in all cases. After a time t1 ' 10
they have a size that is comparable to that of a typical percolating cluster in random site
percolation on a square lattice of same linear size (indicated as an horizontal dashed line),
and, most importantly, they have opposite spin orientation, as it is shown in panel (d). On
the contrary, the TLC and the FLC remain very small and are not percolating. The LC and
SLC sometimes exchange, with these “exchanges” happening until a time t2 ' 50. After this
time they evolve separately, in the sense that the largest spin cluster at any subsequent time
will be the one evolved from the largest at the time t2, and analogously for the second largest
one.

Approximately, t1 can be identified with the time of first appearance of a percolating
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Figure 1.5: The time evolution of the size of the largest spin clusters for the T = 0 Glauber dynamics
on a square lattice with linear size L = 4096, obtained by the numerical simulations. Each
panel corresponds to a single realisation of the dynamics. In panels (a) and (b) we show
the size of the largest (LC) and second largest (SLC) spin clusters. In panel (c), we
also show the third largest (TLC) and fourth one (FLC). Finally, in panel (d) we show
the fraction of sites belonging to the largest cluster of spin +1 (LC +1), indicated with
red circles, and the one of the largest cluster of spin −1 (LC −1), indicated with green
triangles, for another numerical run. The horizontal dashed line in all plots indicates the
fraction of sites belonging to the largest cluster in critical site percolation on a square
lattice, A(perc)

c /L2.

spin cluster, that is, τp ' 10 on average for the particular realisations shown in Fig. 1.5.
At this time, however, the domain walls of the largest clusters are still subject to large
fluctuations: they can sometimes “collide“ thus making one cluster percolate and an other one
stop percolating or breaking into two pieces. It is only after a longer time, e.g. t2 ' 50 > τp
for the cases shown, that the two largest clusters stop exchanging themselves and become
“stable”: in this situation the distance between the domain walls become large enough so
that they can evolve independently one from each other.

These features are quantified in Fig. 1.6, that shows the time evolution of the size of the
two largest spin clusters averaged over many realisations of the dynamics. We observe that
after a short time t ' 10 the largest cluster (LC) occupies already a large fraction of the
system, namely Ac/L2 ' 0.32. The second largest cluster (SLC) also occupies a sizeable part
of the system at this time, say 25%. In the same figure we display the sum of the two (LC +
SLC) and their difference (LC − SLC), still normalised by L2.

Next, we observe that as time elapses, and due to the coarsening process, the areas of
both largest spin clusters increase as a power of time. More precisely, a fit of the function
f(t) = C tα to the data Ac(t)/L2 gives as a result the exponent α ' 0.0502 (the fit is shown
in the plot with a dashed line). As one can see, the second largest cluster grows in the same

21



10−2

10−1

1

1 10 102 103 104 105 106

t

LC
SLC

LC + SLC
LC − SLC

m(t)
x0.0502

Figure 1.6: Evolution of the (averaged) area of the largest (LC) and second largest (SLC) clusters,
their sum (LC + SLC) and their difference (LC − SLC) all normalised by the system
area, L2, and the magnetisation density m(t), for the T = 0 Glauber dynamics on a
square lattice with linear size L = 4096 and PBC. The dashed line is a power law fit to
the data for the largest cluster.

way. This power law growth is observed up to a time t′ ' 105.
The value of the exponent α can be easily understood using the following arguments. At

the static percolation transition, the size of the largest cluster should scale with the system
linear size L as Ac ∼ LDA , with DA = 91/48 the fractal dimension of the largest cluster of
occupied sites in 2d critical percolation, see Sec. 1.3. Thus, the fraction of sites belonging to
the largest cluster, should scale with the linear size of the system as

χc ≡
Ac
L2 ∼ L

DA−2 = L−
β
ν , (1.31)

where we introduced the exponents β and ν, which are the percolation critical exponents
associated to the order-parameter (fraction of sites belonging to the incipient percolating
cluster) and the correlation length, respectively.

Because of coarsening, the area of the largest (and second largest) cluster continues to grow
at the expense of the smaller clusters that disappear. Therefore, one can think of extending
the expression given by Eq. (1.31) to the dynamical case by introducing an effective dynamical
lattice size, L̃(t) = L/`d(t) or, equivalently, an effective dynamical lattice spacing

r0 → r̃0(t) = `d(t) , (1.32)
where `d(t) is the characteristic length describing the domain growth (that is to say, the
typical domain radius, or the typical interwall distance, etc.), which is supposed to behave
as `d(t) ∼ t1/zd , with zd = 2, for NCOP coarsening. In other words, one can think about
the coarsening process set up by the stochastic spin dynamics as a “dynamic” percolation
problem, in which all lengths are measured with respect to `d(t). Hence, the natural extension
of Eq. (1.31) is given by

χdyn
c (t, L) ≡ Ac(t, L)

L2 ∼ L̃(t)DA−2 =
(

L

`d(t)

)DA−2
, (1.33)
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where we denote by Ac(t, L) the average size of the largest spin cluster for the Ising model,
on a finite 2d lattice with linear size L, evolving under the stochastic dynamics. Assuming
`d(t) ∼ t1/zd with zd = 2, one then gets Ac(t, L) ∼ LDA t(2−DA)/zd ∝ t

5
96 , in excellent

agreement with the exponent measured from the data obtained through the simulations. The
regime of time where this scaling behaviour occurs will be referred to as critical-percolation-
like dynamical scaling regime, and the time at which this regime establishes is tp.

As one can see from Fig. 1.6, for the specific case L = 4096, the size of the largest
cluster starts to grow faster than that of the second largest, on average, at times t > t′ '
105. However, the latter remains finite until very late times, since, in the case of the zero-
temperature Glauber dynamics, there is a nonvanishing probability that the final state of the
system is composed of two spin clusters percolating in a so-called stripe configuration, that
is to say, there is a possibility that the system does not reach the fully magnetised state, but
instead a spin configuration with flat interfaces (which are stable against the single-spin flip
dynamics at T = 0). This situation indeed happens approximately with probability 1/3 [6, 7].
In any case, at this stage of the relaxation dynamics, the scaling behaviour given by Eq. (1.33)
is no more satisfied. We also find that the two largest spin clusters, which have opposite spin
orientation, are, most of the times, the only ones surviving. As a consequence, for t > t′ the
magnetisation density is approximately equal to the difference (indicated by LC − SLC in
the plot) between the largest and the second largest spin cluster densities. This last regime of
the dynamics corresponds to the final equilibration and we expect that the time t′, at which
the growth of the largest spin clusters changes behaviour, scales with L as teq(L) ∼ L2.

Summarising, what we observe is that, for a large period of time, namely for t such
that tp ≤ t < teq with tp � teq ∼ L2, the two largest spin clusters grow with the same
power law and satisfy dynamical scaling with respect to the coarsening length `d(t). More
precisely, Ac(t) ∝ `d(t)2−DA , with DA the fractal dimension of the largest cluster in 2d
critical percolation. For times t > teq, the system enters in the final equilibration regime,
where instead the fractal behaviour ascribed to critical percolation is lost.

We now focus on the scaling properties associated with the approach to critical percolation.
As we have already stated, a time tp > 0 is needed to reach the “stable” critical percolation
state. In Ref. [14] it was conjectured that tp(L) ∼ Lzp with zp < 2. We recall that tp is not
the time at which a percolating cluster first appears in the system. In fact, a percolating
cluster first appears at an earlier time, τp, that does not necessarily scale with the system
size L as tp does. On the triangular lattice, for example, the critical value of the occupation
probability is pc = 1/2 and thus τp = 0, since there is already one percolating spin cluster in
the initial fully-disordered spin configuration.

With this fact in mind, the most natural finite-size scaling would be given by

Ac(t, L)
`d(t)2 ∼ L̃(t)DA fc

(
t

tp(L)

)
, (1.34)

with tp(L) ∼ Lzp , and fc some unknown scaling function that satisfies fc(x) ∼ const. as
x→ +∞. The meaning of this scaling is that, for times t� tp, the system is in the so-called
critical-percolation-like dynamical scaling regime, and thus the largest cluster must have the
same fractal dimension as in critical percolation when all lengths are rescaled by `d(t). This
is shown in the left panel of Fig. 1.7 where we show the quantity Ac/LDA`d(t)2−DA with DA

the fractal dimension of the percolating cluster in 2d critical percolation and `d(t) = `G(t) the
dynamical length obtained as the inverse of the excess-energy (see Eq. (1.16)), plotted against
the rescaled time t/Lzp , for various system sizes. We took zp = 1/2, the value estimated in
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Ref. [14] for the zero-temperature Glauber dynamics on a square lattice. The data roughly
collapse on a master curve as expected, but there are still some finite-size corrections for
t/Lzp < 1 to be accounted for.

In the plot we have also included the value of the ratio A(perc)
c /LDA measured for critical

(random) site percolation on a square lattice: A(perc)
c /LDA ' 0.6683. Notice that for t �

tp ∼ Lzp , the rescaled Ac matches this constant almost perfectly. However, at sufficiently
long times this scaling is broken: Ac starts to grow from the plateau and eventually will
approach the equilibrium value (not reached by the numerical simulations).

In order to obtain a better finite-size scaling, the new proposal is to scale the data as
a function of `p(t)/L, with the “percolation” dynamical length `p(t) having the following
meaning. The fractal behaviour that is ascribed to 2d critical percolation can be observed
over distances r such that `d(t)� r ≤ `p(t), while for r > `p(t) the geometrical properties of
the domain pattern would still be those of the initial state. The time tp at which the critical
percolation properties are extended to the entire system would then be given by `p(tp) = L.
Next, we assume the following form for `p(t),

`p(t) ' `d(t) t1/ζ , (1.35)

with the exponent ζ to be determined. Notice that, if one assumes `d(t) ∼ t1/zd in the range
of times close to tp, then one gets the following relation between the exponents zd, ζ and the
exponent zp introduced in Ref. [14],

1
zp

= 1
ζ

+ 1
zd
. (1.36)

However, in the early stages of the coarsening dynamics the dynamical characteristic length
`d(t) can be very far from the asymptotic power law `d(t) ' t1/zd , while it is exactly at these
times that the approach to the critical percolation state occurs. For this reason, we are always
going to use the numerical estimate of `d(t) from the simulations, namely, the estimate given
by the excess-energy, `G(t) = ε(t)−1 with ε(t) defined by Eq. (1.16). In Sec. 1.5.1 we will give
an insight on `G(t).

The scaling argument in Eq. (1.34) is then modified to

Ac(t, L)
`d(t)2 ∼ L̃(t)DA fc

(
`p(t)
L

)
, (1.37)

where again the scaling function fc is satisfying fc(x) ∼ const. as x → +∞. This finite-size
scaling is done in Fig. 1.7 − right panel, where we plot the rescaled largest cluster size,
(Ac/LDA) `d(t)2−DA , against the rescaled time t/ (L/`d(t))ζ , taking `d(t) = `G(t). Note
that rescaling time as t/ (L/`d(t))ζ is equivalent to using the rescaled length `p(t)/L, once
one assumes `p(t) ' `d(t)t1/ζ . The value of the exponent ζ is found by looking at the best
collapse of the rescaled data. In the specific case shown in Fig. 1.7, zero-temperature Glauber
dynamics on a square lattice, the value which yields the optimal result is approximately
ζ = 0.50.

If one uses Eq. (1.36), ζ = 1/2 implies zp = 2/5 = 0.4, a value which is slightly different
from that estimated with other methods in Ref. [14], namely zp = 0.5. We find, however, that
in all cases our scaling argument produces a better result and thus we stick to this way of
reasoning in the remainder of this Chapter and for all other types of stochastic spin dynamics
studied in the rest of this Thesis.
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Figure 1.7: Measurement of the (average) size Ac of the largest cluster for the T = 0 Glauber
dynamics on a square lattice with PBC, for various values of L, the linear size of the
system. Ac is scaled as `G(t)−(2−DA)Ac/L

DA , where `G(t) is the characteristic length
obtained from the excess energy, taken as a measure of `d(t), and DA = 91/48 is the
fractal dimension of largest cluster in 2d critical percolation. On the left, the data is
plotted against the rescaled time t/Lzp , with zp = 0.5, while against t/(L/`G(t))ζ , with
ζ = 0.5, in the right panel. In both panels, the dashed horizontal line corresponds to
the value of the ratio Ac/LDA for critical 2d random site percolation on a square lattice,
namely Ac/LDA ' 0.6683.

Let us stress the fact that the assumption in Eq. (2.1) is purely based on empirical
evidence. It is indeed the simplest form that agrees with the scaling analysis. Unfortunately,
we were not able to find a rigourous justification from the microscopic dynamics. In general
one can think of more complicated forms, while `p(t) retaining the same meaning from a
physical point of view.

1.4.3 Pair connectedness function

The correlation function used to characterise percolation is the so-called pair connected-
ness g(r) which measures the probability that two sites at a distance r belong to the same
cluster. In the context of percolation clusters are made of connected occupied lattice sites,
while, in our problem, we need to consider clusters of connected sites that have same spin.
In Sec. 1.3 we introduced the definition of the time-dependent g(r, t) for a spin system un-
dergoing quench dynamics, which is the one that we used for its practical computation in the
Monte Carlo simulations.

In Fig. 1.8 we show this “two-point” function at several times, measured for the zero-
temperature Glauber dynamics on a square lattice with PBC. This data is compared to the
analogous one of critical percolation on a finite square lattice with PBC and same linear size.
As one can see, the large distance behaviour, at sufficiently long times, is very close to that
of critical percolation. More precisely, for the particular case shown in Fig. 1.8, the large-
distance behavior is the same as that of critical percolation, apart from some time-dependent
scaling factor, for times t ≥ 8 approximately. Notice also that as r approaches the maximum
distance L/2 (the maximum distance that one can probe in the case of a finite lattice with
periodic boundary conditions) g, for both the dynamical problem and the static one, tends to
become flat. This is due to the boundary conditions that we have chosen, PBC specifically,
and it is the reason why one needs to simulate very large systems in order to appreciate the
algebraic decay ascribed to critical percolation on a wide range of distances.
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Figure 1.8: Pair connectedness function g(r, t) vs. r for the T = 0 Glauber dynamics on a square
lattice with L = 2048 and PBC, at the times shown in the key. We also indicate with a
continuous black line the pair connectedness for critical percolation on a square lattice
with same size and boundary conditions.

In Ref. [38] the scaling properties of the pair connectedness function were studied for
disordered and clean Ising models evolving with kinetic Monte Carlo dynamics with NCOP
spin update rules. It was shown in this article that the data for g(r, t) can be collapsed onto
the same master curve by rescaling the distance r by the characteristic length `G(t) obtained
from the excess energy. This fact was explained in terms of a random site percolation problem
at criticality with an effective lattice spacing `d(t), evaluated with `G(t), similarly to what
we explained in the previous Section. Specifically, for a finite system the pair connectedness
function is supposed to have the following scaling behaviour,

g(r, t, L) ∼ g̃
(

r

`d(t)
,
L

`p(t)

)
, (1.38)

before equilibration effects become important, that is to say, for `d(t) � L. For times t
beyond the characteristic time tp at which stable percolating clusters appear, or equivalently
for t such that `p(t) � L, the second argument vanishes. In this limit, the short and long
distance behaviour with respect to `d(t) can be distinguished. The expectation is then that

g(r, t) ∼
(

r

`d(t)

)−2∆
r � `d(t) , (1.39)

with ∆ = 2 − DA = 5/48 (DA = 91/48), i.e. the same scaling behaviour as in 2d critical
percolation.

This scaling is shown in Fig. 1.9 − left panel, where we display the quantity (r/`G(t))2∆ ·
g(r, t) plotted against r. Again, as explained in the previous section, we take `G(t) as the
numerical estimate of `d(t), the usual coarsening length. We also needed to multiply the pair
connectedness g(r, t) for the dynamical problem by a factor α ' 0.67 so that it could be
collapsed exactly onto the data relative to critical percolation for large distances. In fact, the
two have different normalization, because of the way they are defined. Moreover, `G(t) can
also contain a pre-factor, i.e. `d(t) ∝ `G(t), which is not included in its definition. Notice also
that gperc(r = 1) = p2

c where pc ' 0.5927 is the critical occupation probability for percolation
on a square lattice.
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The behaviour of g(r, t) is very different from that of critical percolation at small dis-
tances. Indeed, for distances r < `d(t) the domain pattern has already the properties of the
equilibrium state at the target temperature of the relaxation dynamics. This is shown in the
right panel of Fig. 1.9, where we plot the quantity g(r, t) · (r/`G(t))2∆ against the rescaled
distance r/`G(t). With this scaling, the short-distance behaviour is correctly collapsed.

Overall, the results presented in this Section confirm that, at sufficiently long times,
critical percolation properties can be measured once one rescales all lengths by `d(t), the
usual growing length associated with coarsening, or, equivalently, if one considers an effective
dynamical lattice spacing r̃0(t) = `d(t).
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Figure 1.9: Left panel: rescaled pair connectedness (r/`G(t))2∆ · g(r, t) against r for the T = 0
Glauber dynamics on a square lattice with L = 2048 and PBC, at the times shown in the
key. `G(t) is the characteristic length obtained as the inverse of the excess energy and
∆ = 2−DA, with DA = 91/48 the fractal dimension of the incipient percolating cluster
in 2d percolation. We also show the analogous data for critical percolation on a square
lattice of same size and boundary condition, r2∆ ·gperc(r) (black solid line). The data for
the dynamical problem has also been multiplied by a factor α ' 0.67 in order to make it
collapse onto that of critical percolation, for long distances. Right panel: rescaled pair
connectedness (r/`G(t))2∆ · g(r, t) plotted against the rescaled distance r/`G(t), at the
same times as in the left panel. The horizontal dashed line is at p2

c , with pc ' 0.5927 the
critical occupation probability for percolation on a square lattice.

1.5 Detailed numerical analysis

Now that we have provided an analysis on some of the main aspects of the coarsening
dynamics that support our claim of the presence of a critical-percolation-like scaling regime,
we delve further in the study of all the other observables listed in Sec.1.3. The order of
presentation in this Section is the following:

• In Subsec. 1.5.1 we show the measurement of the excess energy growing length. This
measurement provides the estimate for the usual dynamic growing length `d(t).

• In Subsec. 1.5.2 we analyse the time evolution of the the wrapping probabilities for the
dynamics on finite systems, showing that as t → tp(L), they approach the values of
critical percolation.
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• In Subsec. 1.5.3 we show the measurements of the variance of the winding angle along
domain walls, which allow us to determine precisely the type of criticality that the
fractal behaviour of these wall can be ascribed to.

• In Subsec. 1.5.4 we provide a thorough study of the dynamical scaling behaviour of the
size of the largest cluster and the length of its walls, expanding the analysis given in
Sec. 1.4.2.

• In Subsec. 1.5.5 we consider the time evolution of the size distribution of the spin
clusters highlighting the presence of different scaling regimes. We also show that the
size distribution of the largest cluster (or that of the percolating spin clusters) for the
KIM can be matched to that of the incipient percolating cluster in 2d percolation on a
finite lattice, after proper rescaling.

1.5.1 Growing length

The Ising model on a square lattice evolving with single spin flip stochastic dynamics
is one of the simplest coarsening systems in dimensions d = 2 complying with the dynamic
scaling hypothesis. At sufficiently long times, the curvature driven mechanism for scalar
NCOP coarsening [39] yields the growing length

`d(t) ∼ t1/zd with zd = 2 . (1.40)

This growing length is easily recovered in numerical measurements of different observables.
For example, the characteristic length `G(t) evaluated as the inverse of the excess energy (see
Eq. (1.16)), as explained in Sec. 1.3, represents a good estimate of `d(t), at least in the early
stages of the dynamics, when finite size effects do not have great influence over the domain
growth. In Fig. 1.10 we show the time evolution of `G for the zero-temperature Glauber
dynamics on a square lattice with PBC with linear size L = 1280. The exponent zd = 2
establishes early after the quench, say at t ' 10, and is found over a wide time-interval,
before finite-size effects force saturation. However, the early time dependence of the growing
length is especially important for our study of the approach to the critical-percolation-like
scaling regime. This is shown in a zoom included as an inset in the figure. In the following,
in all the scaling analysis we will use the numerical evaluation of the growing length `G(t) as
an estimate of the characteristic length `d(t).

1.5.2 Wrapping probabilities

In Fig. 1.11 (upper panel) we show the wrapping probabilities for the zero-temperature
Glauber dynamics on a square lattice (with PBC), for different values of L, the lattice linear
size, obtained through numerical simulations. We remind the reader that these probabilities
are: πh, the probability that the spin configuration has at least one spin cluster wrapping
in the horizontal direction only, πv, the probability for at least one spin cluster wrapping in
the vertical direction only, πdiag, the probability of having at least one spin cluster wrapping
in so-called “diagonal” topology, and finally πhv, the probability of having a unique spin
cluster wrapping along both directions in the so-called “cross” topology (see Sec. 1.3 for a
detailed explanation). The first two, πh and πv, are supposed to be identical because of the
symmetry of the square lattice and the fact that the system has the same length along both
directions, so we only show their sum. Following the scaling argument adopted in Sec. 1.4.2
for the analysis of the time evolution of the size of the largest cluster, data are shown as a
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Figure 1.10: Zero temperature Glauber dynamics on a square lattice with linear size L = 1280 and
PBC. The plot shows the time evolution of the characteristic length `G (indicated with
a red solid line) obtained as the inverse of the excess energy. The black dashed line
represents the best fit of the function f(t) = a tb to the data in the interval [10, 104],
yielding a ' 1.54(1) and b ' 0.4974(9). In the inset we show (in double linear scale)
the same quantity in the time interval [0, 10].

function of the rescaled time t / (L/`G(t))ζ , where `G(t), the characteristic length obtained
as the inverse of the excess energy, is taken as a measure of `d(t) the usual dynamic length
scale associated to coarsening, and ζ ' 0.50. The value of the exponent ζ which was chosen
is the one that yields the best collapse of the data corresponding to different L. The curves
for different system sizes scale relatively well at small values of the scaling variable and until
104 for the largest system size.

At a very short time (in terms of the scaling variable t/(L/`d(t))ζ ' 1) after the quench,
we observe that there exists always at least one percolating spin cluter, so that πhv(t) +
πh(t) + πv(t) + πdiag(t) = 1 for the later dynamics. In particular, at the time t such that
t/(L/`d(t))ζ ' 1 the wrapping probabilities get fixed around constant values that are very
close to the corresponding critical percolation probabilities (shown with horizontal dotted
lines in Fig. 1.11). The period of time during which the πs remain fixed on these plateaus
increases with the size of the system. As an example, in the case of the dynamics for L = 640
(the largest size simulated) the plateaus corresponding to the critical percolation values last
for almost eight decades of the scaling variable t/(L/`d(t))ζ .

We can use the data shown in Fig. 1.11 to compute an estimate of the time tp. As an
approximate criterion, we assume that tp corresponds to the time at which the probabilities
πs reach the plateaus set by the values of ordinary critical percolation, that is to say, we
assume tp satisfies t/(L/`d(tp))ζ ' 1. If we use this relation (and using `G(t) as a numerical
estimate for `d(t)) we get the following estimates: tp ' 3.7(1), 4.9(1), 6.4(1), 8.5(1), 11.3(1)
for L = 40, 80, 160, 320, 640, respectively. These are relatively short times compared to
the typical equilibration time for NCOP dynamics, teq ∼ L2, implying that most, if not all,
numerical data in the literature lie in a regime in which the percolation structure has already
established by a long time and thus is already under the effect of the late stages of coarsening.

If one assumes that `d(t) has already aquired the asymptotic form `d(t) ∼ t1/zd with
zd = 2 at the times t of the same order of magnitude of tp, then the relation t/(L/`d(t))ζ ' 1
implies tp ∼ Lζzd/(ζ+zd), so that we can express the explicit dependence of tp on the system
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Figure 1.11: Ising model on a square lattice with PBC evolving under Glauber dynamics at T = 0,
for various system sizes L. In the upper panel we show the probability πhv that there
exists a (unique) spin cluster wrapping in both directions of the lattice in the so-called
“cross” topology (data above); the probability πh + πv that there exists at least one
cluster wrapping either horizontally or vertically (data in the middle); the probability
πdiag that there exists a cluster wrapping diagonally (data below). Data are shown
as a function of the rescaled time t (L/`G(t))ζ , where `G(t), the characteristic length
obtained as the inverse of the excess energy, is taken as a measure of `d(t), and ζ = 0.5.
In the lower panels, the probabilities πdiag (left) and πhv (right) as a function of time
scaled as t/L3. The horizontal dashed lines represent the corresponding probabilities in
critical percolation.

size, namely tp(L) ∼ Lzp , with the exponent zp related to ζ and zd through zp = ζzd/(ζ+zd).
By using this argument and the fact that our estimate for ζ is ζ ' 0.50, we get zp ' 0.40.

At very late times, a crossover between the plateau corresponding to the critical-percolation-
like scaling regime and the final equilibrium state appears. It corresponds to the disap-
pearance of configurations with spin clusters percolating along a diagonal direction and the
consequent increase in probability of clusters that percolate along both lattice principal di-
rections (with the so-called “cross” topology). In fact, hulls winding in a diagonal direction
are not stable under zero-temperature Glauber dynamics on the square lattice with PBC,
even though they can appear very early and last for very long. This is due to the fact that,
once they have established a ladder shape (see, for example, [6, 9]), they can move in the
perpendicular direction by means of spin flips with no energy cost, and they can thus wander
for a very long time before disappearing by annihilating with another “diagonal” hull. On
the contrary, hulls that wind only in one direction remain topologically stable with respect to
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the late time coarsening. Because of the curvature-driven mechanism, the horizontal (or ver-
tical) wrapping hulls become increasingly smoother as the dynamics progresses until they are
completely flat. At that point, they become “blocked“ with respect to the zero-temperature
Glauber dynamics. This is the reason why the probability πh(t) + πv(t) remains fixed on the
critical percolation value after the time tp.

For the T = 0 Glauber dynamics, there is thus a difference between the late time behaviour
of domains wrapping in only one direction and that of domains wrapping in both directions
(either in the ”cross“ topology or the ”diagonal“ one): domains of the first kind eventually
get freezed and lead the system to a so-called ”striped“ configuration; domains of the second
kind, instead, can grow until covering the entire lattice leading to the true ground states.
This observation was used in Refs. [8, 9] to compute the probability that a realization of
the T = 0 Glauber dynamics on a square lattice, starting from an infinite temperature spin
configuration, gets freezed in a striped state (or alternatively reaches the full magnetised
state). It coincides with the probability π(p)

h + π
(p)
v (or π(p)

hv + π
(p)
diag for the full magnetised

state) for critical percolation hulls. This fact suggests that around the time tp the ultimate
fate of the system is sealed and can be predicted by simply looking at the presence or not of
domain walls wrapping in one direction of the lattice only.

The last regime scales with a different power of L, as shown in the lower panels in the
same figure, where we display the probabilities πdiag (on the left) and πhv (on the right). In
fact, we can collapse approximately the curves πdiag and πhv corresponding to the two largest
L simulated, by plotting them against the rescaled time t/L3. This result is in contrast with
the expectation that the system should equilibrate with a typical time teq ∼ L2 as predicted
for NCOP coarsening dynamics.

1.5.3 Averaged squared winding angle

We now consider the time evolution of the variance of the winding angle related to spin
cluster hulls, the observable 〈θ2(x, t)〉 defined in Sec. 1.3, for a KIM evolving with zero-
temperature Glauber dynamics on a lattice with PBC. The goal of this analysis is to see
whether, in a certain period of time and over a certain range of curvilinear lengths, 〈θ2(x, t)〉
reaches the form satisfied by the winding angle for 2d hulls in some type of criticality, that
is 〈θ2〉 ' cst + 4κ

8+κ ln x, with κ the parameter that identifies the associated SLE family of
conformally invariant planar curves. We expect that, as the relaxation dynamics enters in
the so-called critical-percolation-like scaling regime, that is, as t → tp, the dependence of
〈θ2(x, t)〉 on the curvilinear distance x takes the above mentioned form with κ = 6, the value
that corresponds to percolation criticality.

In all the cases that are shown here, the winding angle θ has been computed for the hulls
that make up the interface of the largest spin cluster. More precisely, θ has been measured
for the external hull of the largest spin cluster, or the two wrapping hulls forming its interface
in the case in which it is percolating (in only one direction of the lattice or in the so-called
“diagonal” topology). The reason behind this choice is that we would like the hulls which we
use to measure θ(x, t) to be as long as possible compared to the lattice unit spacing r0, in
order to probe large curvilinear lengths x over which θ (and in general any other geometrical
property of the domain walls) is less affected by the discreteness of the lattice. This is
desirable since the relation expressed by Eq. (1.27) is ideally valid in the continuum limit.
This requirement is fulfilled by cosidering the external hull of the largest spin cluster, when it
does not percolate, or the hulls that wrap around the system, that most of the time are part
of the interface of the largest cluster. Note that, at a sufficiently long time after the quench,
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even if the largest spin cluster is not percolating it can extend over a distance of order L.
In Fig. A.7, we show 〈θ2(x, t)〉, measured on the wrapping hulls that are part of the

interface of the largest spin cluster, plotted against ln x with x the curvilinear distance along
the hull, in the case of the T = 0 Glauber dynamics on a square lattice with PBC and linear
size L = 1280. We observe that, for sufficiently large values of x, 〈θ2〉 as a function of ln x
has a constant slope. There is, in fact, a crossover length xc(t) such that, for x > xc(t)
we observe 〈θ2〉 ' a + b ln x, while for x < xc(t) the curve 〈θ2〉 approaches a constant.
Moreover, a fit of the function f(x) = a + 4κ

(8+κ) ln x to the data at t ' 14.84 for x > 2
yields κ ' 5.90(1), that is rather close to κ = 6 expected for critical percolation cluster
hulls. This means that the domain growth process imposed by the stochastic single spin-flip
dynamics is characterised by a separation of length scales (at least at an early stage of the
dynamics itself), as already discussed before: on length scales x < xc(t), wrapping domain
walls have already the geometrical properties that are typical of the late stages of NCOP
coarsening, that is to say, they are mostly smooth and, in the long time limit, they become
eventually flat (think about the ”striped” frozen states); instead, on length scales x > xc(t)
these domain walls have the geometrical properties of cluster hulls at critical percolation. We
expect xc(t) ∼ `d(t) ∼ t1/zd with zd = 2 since `d(t) is the dynamical length that controls the
growth of ordered domains equilibrated at the target temperature of the quench (in this case
T = 0).

To test this argument, we plotted 〈θ2(x, t)〉 against ln (x/`G(t)), taking again the charac-
teristic length `G(t), obtained as the inverse of the excess energy, as a measure of `d(t). The
plot is shown in an inset in Fig. A.7 and, as one can see, the measurements corresponding to
different times collapse one onto the other when performing this scaling.

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8

0

4

8

12

−4 −2 0 2 4 6 8

〈θ
2
〉

ln x

t = 1.2
14.8

180.8
2202.7

κ = 5.90

ln(x/`G(t))

Figure 1.12: KIM evolving with zero-temperature Glauber dynamics on a square lattice. We show
the average squared winding angle, 〈θ2(x, t)〉, against ln x with x being the curvilinear
distance along a hull. The data are relative to the dynamics on a square lattice with
PBC and L = 1280, and 〈θ2〉 was measured on the wrapping hulls that are part of
the interface of the largest spin cluster (when it is wrapping). The straight dashed line
represents a fit of the function f(x) = a + 4κ/(8 + κ) ln x to the data in the “linear”
region, for which we found κ = 5.90. The inset contains the same observable plotted
against ln[x/`G(t)] with `G(t) the characteristic length obtained as the inverse of the
excess energy.
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1.5.4 Largest cluster scaling

In Sec. 1.4 we exposed the main features of the approach to the critical-percolation-like
dynamical scaling regime showing the time evolution of the size of the largest spin cluster and
its scaling properties. Here we complete the analysis of this observable by taking into account
also the same dynamics on the triangular lattice. We also analyse the scaling behaviour of
the length of the hulls forming the interface of the largest cluster.

According to the claim expressed in Sec. 1.4.2, at a certain point of the relaxation dynam-
ics, the system should reach a dynamical scaling regime with critical percolation properties.
In particular, all the geometrical objects, like the area of the largest spin cluster and the
length of the domain walls belonging to its interface, should obey, during this regime, scal-
ing relations with the fractal dimensions of critical percolation, with respect to the effective
dynamical system size L̃(t) = L/`d(t), that is

Ac(t, L)
`d(t)2 ∼ const.× L̃(t)DA ,

lc(t, L)
`d(t)

∼ const.× L̃(t)D` , (1.41)

where Ac is the average size of the largest spin cluster, lc the average length of the walls (or
hulls) forming the largest cluster interface, and DA and D` the fractal dimensions relative to
the area of the incipient percolating cluster and to the length of its external wall, respectively,
in 2d critical percolation. Notice that the length lc and the area Ac must be rescaled by the
unit of length `d(t) and the unit of area `d(t)2, respectively.

Let us consider the measurements for the case of a KIM evolving with zero-temperature
Glauber dynamics on a finite triangular lattice with PBC and linear size L (with initial spin
configuration drawn from equilibrium at infinite temperature, as usual). In Fig. 1.13, we
show Ac/L

DA (left panel) and lc/LDl (right panel) both plotted against time t. We present
the data obtained from numerical simulations for different values of L. In both cases, we also
show a convenient power of the growing length lG(t), which is taken as an estimate of `d(t).
Concerning Ac, in the right panel we plot `G(t)2−DA (multiplied by an arbitrary constant
0.6) and we observe that, up to a constant, it behaves similarly to Ac/LDA , apart from finite
size corrections. The numerical value obtained at the earliest time (it corresponds to t = 0
but we show it at t = 0.1 in order to remain on a logarithmic scale) is in good agreement
with the corresponding value for site percolation on a triangular lattice at the critical point,
A/LDA ' 0.655, that is shown as a horizontal dashed line.

In regards to the domain wall length, lc, it is important to clarify that the interface of a
spin cluster can be made of multiple hulls (see Sec. 1.3 for the definition of domain wall on
a lattice). In the case shown here we are considering separately the two main contributions
to the (average) total length of the interface of the largest spin cluster: the contribution
coming from the two wrapping hulls (having zero total winding angle), if the largest spin
cluster is wrapping across the system, and the one coming from the external hull (having
nonzero total winding angle), if the largest spin cluster is not wrapping across the system.
We do not take into consideration the so-called internal hulls, that is to say, those ones that
separate the spin cluster from the smaller clusters that are embedded inside it. Notice that
these two contributions to the total interface may behave very differently. In fact, because of
the curvature-driven domain wall motion that characterises the NCOP coarsening in the late
stages, non-wrapping hulls are destined to disappear, while wrapping hulls can survive for the
whole evolution of the system (since they eventually become flat). In the plot, we also show
`G(t)1−Dl which, apart from a proportionality constant and finite size corrections for large
times, seems to reproduce very well the behaviour of lc/LD` (expecially the contribution
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coming from wrapping hulls). The data for non-wrapping hulls is similar but with much
stronger finite size corrections appearing in the late times.
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Figure 1.13: Analysis of the geometric properties of the largest cluster in the case of the T = 0
Glauber dynamics on a triangular lattice with PBC, for different values of L. On the
left Ac/LDA vs. t, and on the right lc/LDl vs. t, with Ac the size of the largest cluster
and lc the average length of its walls. DA and D` are the fractal dimensions of the size
and the interface of the percolating cluster in 2d critical percolation. The interface of
the largest cluster has two contributions: one from the wrapping hulls (shown in blue)
and the other from non-wrapping hulls (shown in red). The horizontal dashed line in the
left panel corresponds to the ratio Ac/LDA for site percolation on a triangular lattice
at the critical occupation probability, that is approximately 0.655.

From the plots in Fig. 1.13 we can conclude that a better analysis of data is achieved
by plotting (Ac/LDA) `G(t)−(2−DA) vs. t and (lc/LD`) `G(t)D`−1 vs. t. The two cases
are shown in Fig. 1.14. If Ac and lc obeyed the scaling relations expressed by Eq. (1.41)
(assuming that `G(t) ∝ `d(t)), then we should observe the data corresponding to different
values of L collapse on the same master curve, and, precisely, on a constant. We note that,
for t ' 1 and for very large L, the rescaled largest cluster size, (Ac/LDA) `G(t)−(2−DA),
develops a plateau around the constant 0.675, approximately. This plateau corresponds to
the critical-percolation-like scaling regime. However, we also notice strong finite-size effects:
after a certain time, which is longer for larger sizes, the curve (Ac/LDA) `G(t)−(2−DA) starts
to deviate from this plateau. For example, in the case of L = 1280, which is the largest
system size simulated in this particular context, this plateau lasts for a period of time of
order 102. In order to observe more clearly the establishment of the critical-percolation-like
scaling regime we should have simulated system with much larger size, but even the data
shown in Fig. 1.14 suggests the presence of such a regime. In the same plot we also show
the expected value of the ratio Ac/LDA at the critical point of 2d site percolation on the
triangular lattice (∼ 0.655), indicated by a dashed horizontal line, and on the square lattice
(∼ 0.668), indicated by a dotted horizontal line. Similar results are obtained for the hull
length, see the right panel in Fig. 1.14.: (lc/LD`) `G(t)(D`−1) also develops a plateau after
t ' 5 (notice, however, that the y-range of the plot is larger than that on the left panel).
Again, the two contributions to lc coming from wrapping hulls and non-wrapping ones have
been separated, with the former ones being represented by continuous lines, the latter by
dashed lines.

We have already shown the time evolution of the largest cluster size and its scaling
properties in the case of the zero-temperature Glauber dynamics on the square lattice in
Sec. 1.4.2. Here we complete the analysis by showing the scaling properties of the length
of its interface, lc. In the left panel of Fig. 1.15, we show lc/L

Dl vs. t, for systems with
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Figure 1.14: Analysis of the geometric properties of the largest cluster in the case of the T = 0
Glauber dynamics on a triangular lattice with PBC, for different values of L. On the
left (Ac/LDA) `G(t)−(2−DA) vs. t, and on the right (lc/LD`) `G(t)(D`−1) vs. t, where
`G(t) is the characteristic length obtained as the inverse of the excess energy. As done
in Fig. 1.13, the contributions to the largest cluster interface coming from wrapping
(continuous lines) and non-wrapping hulls (dashed lines) have been separated. The
colour code is the same in both panels.

different linear size. Again, we separate the contribution coming from wrapping domain
walls, indicated by continuous lines, from the one coming from non-wrapping ones, indicated
by dashed lines. We also show `G(t)1−D` to make a comparison, as was already done in
the case of the dynamics on the triangular lattice. After a crossover time that is system size
dependent, both types of hulls have a similar behaviour and they seem to be just proportional
to `G(t)1−D` up to a second characteristic time (also dependent on L) where deviations caused
by finite-size effects occur. As it was done for Ac/LDA in Sec. 1.4.2, it is possible to collapse
the datasets corresponding to different L one onto the other in the small-t region by plotting
(lc/LDl) `G(t)−(1−D`) against the rescaled time t/(L/`G(t))ζ . As it was already explained,
this rescaling of time is done to take into account the coarsening process occuring during the
early-time regime, in which the system is approaching the critical-percolation-like state, with
the introduction of the new characteristic length `p(t) ∼ `d(t)tζ , something that is not present
instead in the case of the dynamics on the triangular lattice since the system is already at
critical percolation at t = 0. The value of the exponent ζ that gives us the best collapse is
ζ ' 0.50 as in the case of the scaling of the largest cluster size, see Fig. 1.7.

1.5.5 Number density of domain areas

In this Section we present the analysis on the number density of domain areas, the observ-
able N (A, t, L) defined in Sec. 1.3, obtained by numerical simulations of the KIM evolving
with zero-temperature Glauber dynamics on a 2d finite lattice. Let us first recall some re-
sults, obtained both from numerical simulations and approximate analytical argument, that
are known so far.

The time-dependent distribution of domain areas was already measured numerically in [10,
11], for the Glauber dynamics on a square lattice, at target temperature T < Tc, starting
from an infinite temperature initial condition. Three distinct “regions” were identified in the
functional form of N . A first region corresponding to small domains or, more precisely, to
those domains whose linear size is shorter than `d(t), in which N (A, t) is almost constant
in A , just as in thermal equilibrium at T < Tc. A second region corresponding to domains
with linear size larger than `d(t), in which N (A, t) has an algebraic decay in A, namely
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Figure 1.15: Scaling analysis of the length of the largest cluster interface in the case of the T = 0
Glauber dynamics on the square lattice, for different values of L, the lattice linear size.
On the left we show lc/L

Dl vs. t, while on the right we show (lc/LD`) `d(t)(D`−1) against
the rescaled time t/(L/`G(t))ζ , where `G(t) is the characteristic time obtained as the
inverse of the excess energy, and ζ = 0.5. As in Figs. 1.13 and 1.14, the contributions
from the wrapping and non-wrapping hulls have been separated, with the former indi-
cated by continuous lines and the latter by dashed lines. In the left panel we also show
`G(t)1−D` (black solid line). The colour code is the same in both panels.

N (A, t) ∼ C(t)A−τA , with τA = 187/91 the 2d critical percolation Fisher exponent, and C(t)
some time-dependent prefactor. Finally, a third region corresponding to very large domains,
whose properties are greatly affected by finite-size effects. This last region is, essentially, the
size distribution of percolating domains, the contribution tha we denoted by Np(A, t, L) in
Eq. (1.22).

After a sufficiently long time, the fate of the finite size clusters is dictated by curvature-
driven coarsening mechanism [39] and an approximate expression for the time-dependence of
the finite cluster size distribution was derived [10, 11]

N(A, t) ' 2cd [`d(t)]2(τA−2)

[A+ `d(t)2]τA , (1.42)

where `d is the usual coarsening length. Note that this expression is the same as the one
given in Eq. (1.23) by assuming `d(t) ' (λd(t− tp)

1
2 ) and t� tp. However, we leave the time

dependence of `d(t) unspecified as we have already done for the scaling of other observables,
since we are going to use instead the numerical estimate `G(t) given by the inverse of the
excess energy. The following two limits can be read from Eq. (1.42)

N(A, t) '


2cd `d(t)−4 A� `d(t)2

2ceff
d (t)
AτA

A� `d(t)2
(1.43)

where we define
ceff
d (t) = cd [ `d(t) ]2(τA−2) . (1.44)

A direct fit of the algebraic decay of N in the regions of areas A � `d(t)2 provides a
value of τA that is close to the expected one for critical percolation, τA ' 2.0549, but it is
also close to the one for the 2d critical Ising model, τA ' 2.0267. It is therefore difficult to
distinguish between these two cases from just the analysis of the algebraic piece. A detailed
investigation of N (A, t, L), expecially its short-time behaviour and the way it approaches the
critical-percolation-like scaling regime, is thus in order.
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We first present the analysis of the scaling behaviour ofN (A, t, L) for the zero-temperature
Glauber dynamics on the triangular lattice, a case which is particularly interesting because
the system is already at the critical point of percolation at t = 0. We then move to the study
of the so-called pre-percolation regime for the Glauber dynamics on the square lattice, show-
ing that for domains larger than `p(t)DA , with `p(t) = `G(t) t1/ζ and DA the fractal dimension
of 2d critical percolation incipient percolating cluster, we need to introduce a corrective factor
to the expression given Eq. (1.42) for N(A, t) in order to obtain a correct scaling. Finally,
we present our measurements and scaling analysis for the size distribution of the percolating
spin clusters, Np(A, t, L).

1.5.5.1 The triangular lattice.
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Figure 1.16: Ising model on a triangular lattice with PBC and L = 2560 evolving under T = 0
Glauber dynamics. We show the scaling of the number density of domain areas N (A, t)
implied by Eq. (1.25). The quantity N (A, t) `G(t)4 is plotted against the rescaled area
A/`G(t)2 where `G(t) is the characteristic length scale obtained as the inverse of the
excess energy. The datasets corresponding to different times (indicated in the key)
collapse on the master curve f(x) = 2 cd (1 + x)−τA (dashed line), which is the expected
analytic expression for the scaling function.

In the case in which the model is defined on a triangular lattice, the initial condition
is right at the critical percolation point, thus N(A, 0) ' 2cdA−τA , with τA = 187/91 and
2cd ' 0.0579, if one neglects effects due to the discreteness of the lattice at very small values
of A. Added to this there is also the contribution coming from the percolating clusters
at very large values of A, Np(A, t, L). The analytic form expressed by Eq. (1.42) should
hold for the time evolution of N (A, t, L) in the region of areas A where the aforementioned
contribution is negligible. In order to highlight this last fact, in Fig. 1.16 we present the
rescaled domain area distribution for the T = 0 Glauber dynamics on a triangular lattice
of linear size L = 2560: we plot N (A, t) `G(t)4 against the rescaled area A/`G(t)2. As done
before for the scaling of other observables, `G(t) is taken as a measure of `d(t). By so doing,
the datasets corresponding to different times should collapse onto the same master curve,
which is represented by f(x) = 2 cd (1 + x)−τA , see Eq. (1.25). The result of the scaling
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Figure 1.17: Time evolution of the number density of domain areas for the zero-temperature Glauber
dynamics on a triangular lattice with linear size L = 2560. In the left panel we show
the bare domain area distribution N (A, t) vs. A at various times given in the key. In
the right panel we present N (A, t) `G(t)2(2−τA) against the rescaled area A/`G(t)2−DA ,
with the exponents of critical percolation, DA = 91/48 and τA = 187/91, and `G(t) the
characteristic length scale obtained as the inverse of the excess energy. In both panels,
the insets show a “zoomed” view of the bump, to better highlight the difference between
the unscaled data and the scaled ones. The colour code is the same in both panels.
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Figure 1.18: Time evolution of the number density of domain areas for the zero-temperature dynam-
ics on a triangular lattice of linear size L = 2560. In order to highlight the presence
of the algebraic decay N (A) ∼ N(A) ∼ A−τA for non-percolating clusters, we show
N (A, t)AτA [`G(t)]2(2−τA) against the rescaled area A/`G(t)2−DA , where `G(t) is the
characteristic length scale obtained as the inverse of the excess energy, DA = 91/48 and
τA = 187/91 as in Fig. 1.17. The scaling of the area as A/`G(t)2−DA has been done
to collapse the so-called bump, as in the right panel of Fig. 1.17. The rescaled data
presents a plateau in the interval [104, 5×105] of the rescaled area, falling approximately
onto the expected value for critical percolation, 2cd ' 0.0579, indicated by the black
horizontal line.

is very good. Deviations from the master curve occur for very small values of the variable
A/`2G(t), where the scaling is supposed to break due to the discreteness of the lattice, and
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for very large values corresponding to the appearance of the so-called “bump”, which is the
contribution Np given by the percolating spin clusters, as expected.

Let us now turn to the properties of the “bump”. Most of the contribution to Np comes
from clusters that are either the largest or the second largest ones in the sample (for A > L2/2,
only the largest cluster contributes, and Np is truly the size distribution of the largest cluster).
In Sec. 1.4.2 we argued that the fraction of sites belonging to the largest cluster (or to the
second largest one), Ac/L2, should scale dynamically as `d(t)2−DA , and the results shown in
Fig. 1.7 strongly suggests the validity of this argument. Accordingly, in order to collapse the
“bumps” at different times t and fixed L, the area A should be rescaled by `d(t)2−DA . At the
same time, N (A, t) must be multiplied by `d(t)2(2−τA) to remove the time-dependence of the
pre-factor 2ceff

d (t). We present the result of this scaling in the right panel of Fig. 1.17, where
we plot N `G(t)2(2−τA) against A/`G(t)2−DA , using the same data as the ones in Fig. 1.16.
Again, `G(t) is taken as a measure of the dynamical characteristic length scale `d(t). In the
left panel of the same figure we show the unscaled distribution against A to let the reader
make a comparison. By looking at the whole distribution one is not able to notice a significant
difference between the unscaled and the scaled versions of the data since both DA and τA
are close to 2. However, if one focuses only on the region of areas A corresponding to the
“bump”, as done in the insets, it becomes clear that the scaling makes the data collapse in
that specific region.

In order to prove that the contribution to N (A, t) due to non-percolating spin clus-
ters (with linear size smaller than L) decays as A−τA , in Fig. 1.18 we show the quantity
N AτA `G(t)2(2−τA) against the rescaled area A/`G(t)2−DA . For A � `G(t)2, the data corre-
sponding to different times should all collapse onto a plateau at the constant 2cd (up to the
point where the contribution due to percolating clusters, Np, starts to be significant). In fact,
the rescaled data present a plateau in the interval [104, 5 × 105] of the rescaled area, falling
approximately onto the expected value for critical percolation, 2 cd ' 0.0579 (indicated by a
dashed line). As one can see, the point at which the plateau sets in, that is the point around
where there is the crossover between the two different regions described by Eq. (1.43), in-
creases with time. In fact it should grow as `d(t)2 ∝ `G(t)2. At the same time, by scaling
the area as A/`G(t)2−DA , as done in the right panel of Fig. 1.17, it is possible to collapse the
data in the region corresponding to the “bump”.

1.5.5.2 Pre-percolation scaling.

In order to describe the dynamical regime that occurs before the critical percolation
properties extend over all length scales (up to the system linear size L) we introduced the
characteristic length `p(t) with the following meaning: on length scales shorter than `p(t),
the statistical and geometrical features of the spin clusters are those of 2d critical percolation
(after having rescaled all lengths by `d(t)), while on longer scales, the system still retain the
features of the initial condition (equilibrium at infinite temperature). Of course, this is true
for all cases in which the initial condition is not already critical in the sense of percolation. In
the case of the model on the triangular lattice this “pre-percolation” regime is not observed.
We have also conjectured that `p(t) ∼ `d(t)t1/ζ , with ζ an exponent to be determined and, so
far, the scaling analysis on the wrapping probabilities and the largest cluster gives us ζ ' 0.5
for the zero-temperature Glauber dynamics on the square lattice.

This separation of scales due to `p(t) is also visible in the time evolution of the number
density of domain areas. The argument is the same as the one used in Sec. 1.4. We stated that
the largest cluster size should satisfy the scaling relation Ac(t, L)/`d(t)2 ∼ const.×[L/`d(t)]DA
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for times t > tp, with tp the typical time at which the system enters in the so-called critical-
percolation-like scaling regime, or `p(tp) = L. But at time t < tp, the percolation criticality
is present already on length scales shorter than `p(t). In terms of the statistics of the (non-
percolating) domains, this means that the algebraic decay N(A, t) ∼ 2ceff

d (t)A−τA is already
present for t < tp and A/`d(t)2 < [`p(t)/`d(t)]DA . We suggest then to add a corrective factor
to the expression given in Eq. (1.43),

N(A, t) ∼ 2ceff
d (t) A−τA Φ

(
A/`d(t)2

[`p(t)/`d(t)]DA

)
(1.45)

where Φ is a function such that Φ(x) ' const. for x� 1. In the following we show some data
that support this claim.

In Fig. 1.19 we present our numerical measurements of the number density of domain
areas in the early stages of a KIM evolving with zero-temperature Glauber dynamics on a
square lattice with PBC and L = 2560. In the left panel of Fig. 1.19 we show the quantity
AτA `G(t)2(2−τA)N (A, t, L) plotted against the rescaled area A/`G(t)2−DA . Notice that, apart
from the behaviour at very small areas and the very steep increase at late times (due to the
appearance of percolating spin clusters), the rescaled data tend to collapse on a plateau as
the time increases, as in Fig. 1.18. This plateau corresponds approximately to the constant
2cd ' 0.0579 (indicated by a horizontal dashed line).
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Figure 1.19: Ising model on a square lattice with PBC and L = 2560 evolving under T = 0 Glauber
dynamics. We show the pre-percolation scaling of the number density of domain areas.
The quantity AτA `G(t)2(2−τA)N (A, t, L), with `G(t) the characteristic length obtained
as the inverse of the excess energy, is plotted against A/`G(t)2−DA in the left panel
and against

(
A/`G(t)2−DA

)
/`DA
p (t) in the right panel, where `p(t) = `G(t) t1/ζ , with

τA = 187/91, DA = 91/48 and ζ = 0.5. The dotted straight line in the right panel
corresponds to the power law Φ(x) ' C xa, with a = 0.321(1), which is the best fit to
the data at time t = 1 in the interval [10, 103] of the scaling variable. The black dashed
horizontal line corresponds to 2cd = 0.0579.

In order to highlight the existence of the extra growing length `p(t) through the corrective
factor Φ, we plot the same quantity against the rescaled area (A/`G(t)2−DA)/`DAp (t) where
we assume `p(t) ' `G(t) t1/ζ with ζ = 0.5. With this choice, we obtain a fairly good collapse,
as seen in the right panel in Fig. 1.19. This type of scaling highlights the presence of the
two regimes discussed above: the asymptotic one for A/[`2−DAG (t)`DAp (t)] ≤ 1, where the
rescaled distribution has a flat region corresponding to the algebraic decay characterising
critical percolation, and the “pre-percolation” one for A/[`2−DAG (t)`DAp (t)] ≥ 1. We observe
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that the scaling function Φ(x) is close to a power-law for x � 1, that is, Φ(x) ∼ xa for
x � 1 with a > 0. By fitting the rescaled data with the function Φ(x) = Cxa in the region
x = (A/`G(t)2−DA)/`DAp (t) > 1 and for times t ∼ 1, we obtain a = 0.321(1). (The fitting
curve is shown as an inclined dotted line in the same figure.)

We can conclude that, for A � `d(t)2, the number density of non-percolating domain
areas has the following behaviour,

N(A, t) '

 2ceff
d (t) A−τA for x� 1

2ceff
d (t) A−τA

[
A

`d(t)2 ·
(
`d(t)
`p(t)

)DA]a for x >∼ 1 , (1.46)

where x = A/[`2−DAd (t)`p(t)DA ], `p(t) = `d(t)t1/ζ with ζ ' 0.5 and a ' 0.321. The second
region is only visible for t < tp, that is to say, `p(t) < L.

1.5.5.3 Size distribution of the percolating clusters.

As explained in Sec. 1.4, the very few large spin clusters that survive the coarsening pro-
cess after a sufficiently long time are those that signal the onset of the critical-percolation-like
scaling regime. At the time tp, these clusters usually span most of the lattice and their ge-
ometrical and statistical properties resemble those of the clusters at critical site percolation
on the same lattice. Usually, at this time, the two largest spin clusters of opposite spin orien-
tation are both percolating and become “stable” with respect to the coarsening dynamics in
the sense explained in Sec. 1.4.2. This is the reason why Np that constitutes the contribution
given by the percolating clusters to N , is mainly due to the two largest clusters. For all
practical purposes, we will take Np as just the size distribution of the two largest clusters in
the system.

Let us discuss the scaling of Np in general. The distribution Np(A, t, L) satisfies∫
dANp(A, t, L) = 1

L2 . (1.47)

The result 1/L2 is due to the definition of N (A, t, L) which counts the number of clusters
with area A per spin, and to the fact that we have rescaled the distribution by a factor 2 to
compare it to the one of percolation for which there is only a single percolating cluster. In
site percolation, finite-size scaling implies that, at the critical point, the size distribution of
the largest cluster NLC(Ac, L), for a system of linear size L, depends on Ac and L through the
ratio Ac/LDA , with DA = 91/48. The same should be true for Np(A, t, L) in the dynamical
problem for t ≥ tp. If we rescale A as A → A/LDA , we need also to rescale the measure
accordingly, i.e. dA → LDAdA. However, in the dynamical problem we need to take into
account the effects of coarsening, and we have seen that the largest cluster size (but also
the one of the second largest) scale as `d(t)2−DA . Thus, the correct quantity to consider is
LDA `d(t)2−DANp(A, t, L) as a function of A/LDA `d(t)2−DA .

We show the data corresponding to the rescaled distribution Np(A, t, L) in Fig. 1.20 in the
case of the zero-temperature Glauber dynamics on the square lattice, for sizes L = 160 (a), 320
(b) and 640 (c). Notice that Np(A, t, L) is multiplied also by a factor L2 to get rid of the 1/L2

present in its definition and make the data fall on a range of values of orderO(1). For each size,
we also show the static size distribution of the largest cluster for site percolation at threshold
occupation probability on the square lattice of same size, rescaled as Np(A,L)L2+DA and
plotted against the rescaled size A/LDA . Our goal is to prove that, with this rescaling,
the distribution Np(A, t, L) for the dynamical problem matches the static one for critical
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Figure 1.20: The size distribution of the two largest clusters, Np(A, t, L), for the zero-temperature
Glauber dynamics on the square lattice, at different times indicated in the key and for
different values of L, L = 160 (a), 320 (b) and 640 (c). The distribution is rescaled by the
factor L2+DA `G(t)2−DA/c0 and plotted against the rescaled area c0 (A/LDA) `G(t)2−DA ,
where DA is the fractal dimension of the percolating cluster in 2d critical percolation,
`G(t) the characteristic length obtained by the excess energy, and c0 ' 1.165. In panel
(d), instead, we show the contributions to Np coming from the largest (LC) and the
second largest (SLC) clusters, separately, as well as the whole Np (LC + SLC), at t = 8,
for the dynamics on a square lattice with L = 320. In each panel, the size distribution
of the largest cluster for site percolation, at the threshold occupation probability on the
square lattice of corresponding size, is also shown with a black dashed line, multiplied
by L2+DA and plotted against A/LDA . The value of the constant c0 was chosen so that
the rescaled distributions for the dynamical problem coincided with the static one of
critical percolation.

percolation. To do so, we need to include an additional scaling factor c0 for the dynamical
problem, that is, we plot L2+DA `d(t)2−DA Np(A, t, L)/c0 against c0A/L

DA `d(t)2−DA . The
value which gives the best collapse is c0 ' 1.165, independently of the lattice linear size
L. Note that the agreement between the data for the quenched system and the critical
percolation one becomes much better as we increase the system size.

In panel (d) of Fig. 1.20, we show the contribution to the size distribution Np coming
from the largest cluster (LC) and that from the second largest (SLC) separately, as well as
the whole Np (LC + SLC), at t = 8, for the dynamics on a square lattice with L = 320. The
data is scaled as in the other panels and we have also included the size distribution of the
largest cluster at critical percolation (dashed line) on the same lattice (properly rescaled as
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in the other panels). The whole distribution Np is given by Np = 1
2(NLC +NSLC).

1.6 Conclusions
In this Chapter we presented a thorough analysis of the critical percolation phenomena

emerging in the sub-critical quenches of the 2d ferromagnetic Ising model with non-conserved
order parameter dynamics, specifically the Glauber dynamics. The measurements obtained
through numerical simulations of a KIM evolving with zero-temperature Glauber dynamics
on various 2d lattices show that, at a particular time τp, soon after or right at the quench
(depending on the lattice geometry), the system develops typically two large spin clusters of
opposite phase that almost always are percolating (or at least have linear size comparable with
that of the system). These two large structures are accompanied by smaller non-percolating
ones. At τp none of these two large domains are stable against the microscopic dynamics:
they can break, reconnect and grow by incorporating some smaller domains until a time tp at
which at least one of them percolates and remains percolating (and growing) at all subsequent
times. In fact, at a sufficiently long time after the quench, the main mechanism producing the
domain growth in the zero-temperature Glauber dynamics is the curvature-driven motion of
domain walls, and thus, in the late stages of the dynamics, domain walls that are percolating
are “topologically” stable, in the sense that they can not be broken into non-percolating ones
or change the direction along which they are percolating.

We observed that, at the typical time tp, not only the domain pattern acquires features of
2d critical percolation, but the system enters in a critical-percolation-like dynamical scaling
regime that lasts for a very long period of time, and ideally for the rest of the evolution in
the thermodynamic limit. In this regime the geometrical and statistical properties of the spin
clusters are those present in 2d critical percolation, after having rescaled all lengths by `d, the
usual dynamical length associated to coarsening. More precisely, at time t, on length scales
shorter than `d(t), the system behaves as in thermal equilibrium at the target temperature,
while on larger length scales critical percolation scaling relations appear. As an example, for
the dynamics on a finite lattice of linear size L, the size of the largest spin cluster behaves as

Ac(t, L)
`d(t)2 ∼

(
L

`d(t)

)DA
, (1.48)

in this regime, with DA the fractal dimension of the incipient percolating cluster in 2d per-
colation. We can interpret this dynamic scaling relation as if the system had an effective
dynamical lattice spacing r̃0(t) = `d(t) and an effective dynamical linear size L̃(t) = L/`d(t).

In the case in which the initial state of the system, which is always drawn from the equi-
librium at infinite temperature, is not already at the percolation critical point, we observed
that the time tp to reach the critical-percolation-like scaling regime scales approximately as

tp(L) ∼ Lzp (1.49)

with the system linear size L, where zp < zd, with zd = 2 being the dynamical exponent
associated to NCOP coarsening. However, we found more useful to introduce a characteristic
length `p(t) of the form

`p(t) = `d(t)t1/ζ , (1.50)

with an exponent ζ to be determined. This length describes the transient between the initial
state and the critical percolation scaling regime, in the same way as `d(t) represents the
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typical radius up to which one can observe equilibrium properties at the target temperature,
at time t. Then tp is the time at which critical percolation properties extends to the whole
system, that is to say,

`p(tp(L)) ∼ L . (1.51)

By measuring various observables through numerical simulations and by studying their finite-
size scaling behavior, we were able to estimate the exponent ζ. For the zero-temperature
Glauber dynamics on the square lattice we found ζ ' 0.5. From the knowledge of the
exponent ζ it is then possible to extract the L-dependence of tp. If one assumes that `d(t)
has the expected power law behaviour `d(t) ∼ t1/zd in the transient between the initial state
and the onset of the critical-percolation-like scaling regime, then one can relate the exponent
zd, ζ and zp through

1
zp

= 1
zd

+ 1
ζ

. (1.52)

However, we found that the growth law `d(t) ∼ t1/zd is always established a long time after
the system has already reached the critical percolation scaling regime. Moreover, we expect
the exponent ζ to depend on the particular lattice geometry. In App. A.2 we briefly present
an analysis of the percolation phenomena appearing in the Ising model evolving with zero-
temperature Glauber dynamics on a finite honeycomb lattice and we show that, in this case,
`p(t) does not have the simple functional form expressed by Eq. (1.50).

In the analysis we mainly treated the zero-temperature Glauber dynamics, but we expect
to find similar results in the early stages of the coarsening process in the case of finite
temperature quenches, as long as the target temperature is not too close to the critical one.
See for example the data shown in App. A.1.

Globally, we showed that after a subcritical quench the spin system evolves in three
regimes that are well separated and can be identified numerically. These are the following.

• A transient between the initial fully disordered state and the critical-percolation-like dy-
namical scaling regime (0 < t < tp), controlled by the growing length `p(t) ∼ `d(t)t1/ζ .

• The critical-percolation-like scaling regime (tp < t < teq ∼ Lzd), in which 2d critical
percolation features are observed on length scales longer than `d(t). In this regime the
system is still very far away from the thermal equilibrium at the target temperature of
the quench.

• The final relaxation regime, starting approximately at the time teq ∼ Lzd , in which the
system evolves towards the final state being either the fully magnetised state or one of
the so-called “stripe” states, that is to say, states with flat domain walls.

Some issues regarding the metastability of the states characterised by “topologically”
stable percolating domain walls, and their possible evolution into equilibrium states, in the
case of the Glauber dynamics at temperature T < Tc, are briefly addressed in App. A.1.
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Chapter 2

Coarsening and percolation in the
2d KIM evolving with COP
dynamics.

2.1 Introduction

In this Chapter we analyse the main features of the coarsening process occurring in
the Kinetic Ising Model evolving with stochastic spin update rules that preserve the value
of the total magnetisation of the system, or, in short, conserved order parameter (COP)
dynamics. We also refer to this type of dynamics as a spin-exchange dynamics, since the
allowed transitions are only those ones between two spin configurations in which the value of
the spins at two given lattice sites is exchanged, in contrast with the single spin-flip dynamics
that was studied in the previous Chapter. We are going to consider two different versions
of the spin-exchange dynamics. The first one is determined by the so-called Kawasaki spin
update rule, which essentially consists in allowing the exchange of the spin only for a pair of
nearest neighbour lattice sites, and thus it is an example of locally conserved order parameter
(LCOP) domain growth. The second version is just the more general definition of the spin-
exchange dynamics, that is to say, it allows the exchange of the spins between any two sites
of the lattice. If one adopts this spin update rule, the dynamics preserves the magnetisation
only globally, then we refer to the corresponding coarsening process as globally conserved
order parameter (GCOP) coarsening.

As in the case of the KIM evolving with Glauber dynamics, we want the stochastic process
that is ensued by the transition rates between different spin configurations to simulate the
domain growth that the system, initially prepared at equilibrium at infinite temperature,
is subjected to when the temperature is quenched below Tc. In particular, we want the
stochastic dynamics to make the system relax asymptotically in time to a stationary state
characterised by the Gibbs-Boltzmann statistics at the target temperature T < Tc. Then,
naturally, the spin-exchange rates need to satisfy the detailed balance condition expressed by
Eq. (2.2). However, the constraint imposed by the conservation of the total magnetisation
(and by the conservation of the local magnetisation in the case of the Kawasaki update rule)
limits drastically the ensemble of spin configurations that can be explored by the dynamics in
the equilibrium regime, in comparison to what happens for the single spin-flip dynamics. In
particular, since the dynamics starts with an equal concentration of the two spin alignments,
at late times there are almost always long domain walls that percolate across the lattice.
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An approach to a critical-percolation-like scaling regime, before the system reaches the
ultimate stationary regime, was already observed and partially studied for the Kawasaki
dynamics [3, 40] on 2d lattices. In this dissertation we expand the analysis of this intermediate
regime and we try to determine the time-dependence of the associated characteristic length
`p, as done for the KIM evolving with Glauber dynamics in Chap. 1. The analysis of the
various observable measured through the numerical simulations confirm the existence of this
characteristic length scale, in addition to the usual dynamical length `d characterising the
growth of domains with equilibrium properties, which has the following form

`p(t) ∼ `d(t) t1/ζ , (2.1)

where the exponent ζ depends on the particular lattice geometry. We find that the value of
the exponent ζ is different from that obtained in the case of the Glauber dynamics (given
the same lattice).

The analysis developed below further suggests that percolation plays an important role
in the early stages of the coarsening process in a KIM relaxing to the ordered phase, inde-
pendently of the particular spin update rule.

2.2 Definition of the model

We consider again a Kinetic Ising Model (KIM) on a 2d lattice of finite size. The Hamilto-
nian of the system is that of an Ising model with homogeneous and isotropic nearest-neighbour
ferromagnetic interactions, as given by Eq. (1.4).

In order to mimic an instantaneous quench in the temperature and the following relaxation
towards an equilibrium state, we adopt the usual Monte Carlo method, with transition rates
W (s, s′) satisfying the well-known detailed balance condition,

W (s, s′)Peq(s) = W (s′, s)Peq(s′) (2.2)

where Peq(s) = exp [−HJ ({si}) /(kBT )]/Z(T ) is the canonical equilibrium probability den-
sity for a given spin configuration s = {si}, with T being the target temperature, kB the
Boltzmann constant and Z(T ) the canonical partition function at the temperature T . We
then focus on a spin update rule that conserves the total magnetization of the system. The
allowed transitions consist simply in letting the starting spin configuration s pass to a new
one s′ that differs from it only by having two lattice sites exchange their spins. Given the
two lattice sites i and j, an example is the transition s → s(i,j), with the “arrival“ spin con-
figuration denoted by s(i,j), satisfying s(i,j)

k = sk if k 6= i, j, while s(i,j)
i = sj and s(i,j)

j = si,
for any lattice site k. The transition rates W (s → s(i,j)) and W (s(i,j) → s) for the dynamics
relaxing to equilibrium at the inverse temperature β need then to satisfy

W (s → s(i,j))
W (s(i,j) → s)

= Peq(s(i,j);β)
Peq(s;β) = exp {−β∆Ei,j(s)} , (2.3)

with

∆Ei,j(s) = J (si − sj)

 ∑
k∈N (i)\{j}

sk −
∑

h∈N (j)\{i}
sh

 (2.4)

where again, for a given lattice site k, N (k) is the set of its nearest-neihgbour sites. In our
numerical simulations we used the Metropolis rule, that is to say, the spin-exchange rate
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wi,j(s) = W (s → s(i,j)) has the following form

wi,j(s) = min { 1, exp [−β∆Ei,j(s)]} . (2.5)

If the two sites i and j whose spins one wants to exchange are chosen anywhere in
the lattice, then the resulting stochastic dynamics preserves only the total magnetisation,
M =

∑
k sk. However, usually kinetic Ising models evolving with COP dynamics are used to

simulate the process of phase separation in binary alloys [41, 42] (that is, a mixture of two
different chemical compounds that is initially prepared in a homogeneous state), so that a
rule that limits the distance at which the two lattice sites i and j can be picked gives rise to
a coarsening dynamics that resembles more closely such physical systems. In particular, the
most natural choice is to impose that i and j have to be nearest-neighbour lattice sites. In this
case the spin-exchange rates given in Eq. (2.5) define the so-called Kawasaki dynamics [43, 44].
The more general case is also called nonlocal Kawasaki dynamics.

As in the case of the KIM evolving with Glauber dynamics (see Sec. 1.2), we adopt a
continous-time Monte Carlo method. A numerical simulation of the stochastic dynamics
practically works as follows: given that the system is in the spin configuration s at time t, we
choose at random (with probability proportional to the corresponding spin-exchange rate)
two lattice sites i and j that have spin of opposite alignment (and, in the case of the local
Kawasaki dynamics, sites i and j are required to be nearest neighbours); we then always
exchange the spin at the two sites (the method is rejection-free) and increase the time t by
δt with δt drawn from an exponential distribution with mean

E(δt) =

 ∑
{k,l: sk=−sl}

wk,l(s)

−1

(2.6)

where the summation runs over all the pairs k, l of distinct lattice sites such that sk = −sl
(and eventually with the restriction that k and l have to be nearest neighbours in the case
of the local version of the dynamics). Note that the quantity

∑
{k,l: sk=−sl}wk,l(s) represents

the probability per unit time that a transition that exchanges two antiparallel spins may
occur, given that the system is in the configuration s.

The initial condition is always taken to be a random spin configuration with a fixed
concentration p of one of the two spin alignments. In most cases, the results that we are
going to show are relative to p = 0.5. The reason behind this choice is that even a small
imbalance in the concentration of the two species of spin can affect greatly the possibility
for the system to reach a critical-percolation-like state, as it will be explained in Sec. 2.4.2.
Notice, however, that this way of choosing the initial spin configuration does not coincide
exactly with drawing it from the equilibrium distribution of the IM at infinite temperature,
even if such distribution is sharply peaked at the concentration p = 0.5 (and the peak becomes
sharper as the size of the system increases).

In the rest of this Chapter we are going to analyse the coarsening process, and related
percolation phenomena, characterising a KIM evolving with nearest-neighbour spin-exchange
stochastic dynamics, i.e., Kawasaki dynamics. We also performed a similar analysis for the
nonlocal version of the spin-exchange dynamics. The results for this case are shown in
App. B.1.
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2.3 Kawasaki dynamics
Local spin-exchange dynamics, or Kawasaki dynamics, is a type of stochastic spin dy-

namics [43, 44] often used to mimic phase separation in systems in which hydrodynamic
effects can be neglected [45]. In short, it describes the process whereby a binary mixture
of components A and B, initially in a homogeneous phase, demix leading to the coexistence
of two phases: one rich in A and the other in B. The system, initially in an unstable spa-
tially uniform state, performs a coarsening process to approach its thermodynamically stable
phase-separated state.

The behaviour of such physical systems at late times is well understood. In the long
time limit they approach a dynamic scaling regime described by an extension of the Lifshitz-
Slyozov-Wagner (LSW) theory [46, 47], in which the typical domain radius grows as [48]

`d(t) ' t1/zd with zd = 3 . (2.7)

Numerical results in favour of this law were published in [48, 49, 50, 51, 52] for the Kinetic
Ising Model evolving with spin-exchange stochastic dynamics, although the time-dependence
of the growth-law can be more complex in particle or polymer phase separating systems, see
e.g. [42] and references therein.

It was noticed in [13] that the low-temperature evolution of a 50:50 mixture after a quench
from infinite temperature shares many points in common with the one of NCOP dynamics.
On the one hand, an initial approach to critical percolation was noticed, although the time-
scale needed to reach this state was not studied in detail. On the other hand, the number
density of domains was studied numerically and it was found to satisfy dynamic scaling with
respect to the dynamic growing length `d(t) ' t1/zd with zd = 3, the one that characterises
the scaling properties of the space-time correlation functions.

We are interested in studying the early stages of the dynamical process (in contrast to
the asymptotic LSW regime) and, in particular, the way in which the system approaches a
state with a stable pattern of percolating domains. We confirm that this occurs for balanced
mixtures whereas different behaviour is found for asymmetric ones [53].

Before delving into the analysis of the observables measured through the numerical simu-
lations, let us describe in more detail the main aspects of the microscopic dynamics. One can
reconsider the KIM evolving with nearest-neighbour spin-exchange transitions as a system of
interacting particles occupying the sites of a lattice and jumping from site to site according
to certain rules. Each site can be occupied by at most one particle and particles can not
be created nor destroyed (thus their number is fixed). The configuration of the system can
be then described by the occupation numbers {ni}, with ni ∈ {0, 1} for each lattice site i.
The correspondence between spins and particles is as follows: if a site i has spin si = +1,
then it is occupied by a particle, otherwise it is empty. In terms of occupation numbers,
ni = 2si−1. The dynamics consists in particles performing random jumps to empty nearest-
neighbour sites. More precisely, the allowed transitions are of the form n → n(i,j), with
ni = 1, nj = 0, n(i,j)

i = 0 and n
(i,j)
j = 1, consisting in a particle hopping from site i to an

empty nearest-neighbour site j, with rate Whop(i→ j) = min { 1, exp [−β∆Ei,j ]}, where

∆Ei,j = 4J

 ∑
k∈N (i)\{j}

nk −
∑

h∈N (j)\{i}
nh

 . (2.8)

In Fig. 2.1 we show graphically some of the possible situations that can happen for
a particle “hopping”, together with the corresponding transition rates, in the case of the
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Figure 2.1: Some examples of (nearest-neighbour) spin-exchange transitions on a square lattice. Gray
circles indicate sites with spin +1 (or occupied by a particle), while white circles indicate
sites with spin −1 (or a vacancy). The two sites at the center are those involved in the
exchange (or particle hopping), which is represented by an arrow. W is the transition rate
from the configuration on the left to that on the right, whileW is the rate associated with
the inverse transition. They satisfy the detailed balance condition with respect to the
canonical equilibrium distribution, W/W = exp (−β∆E) with ∆E the change in energy
due to the transition, and β the inverse temperature. Note that the “neighbourhood”
that determines the transition rates consists of six lattice sites.

Kawasaki dynamics on a square lattice. Note that, since the transition rates depend on the
spin configuration {si} (or {ni} ) only through the energy change ∆E caused by the spin-
exchange, and since this one has the form given by Eq. (2.8), there are only seven different
types of transition, corresponding to the different values that ∆E can take.

One can notice some special cases. First, particles that are attached to large clusters by
only one bond (see Fig. 2.2-(a)) can freely (without energy cost) “slide” across a flat domain
wall, that is to say, they can perform a random walk by just moving in the direction parallel
to the wall (always maintaining a single link to the cluster itself) until they get trapped by
a “corner”, as shown in Fig. 2.2-(b). Once a particle gets trapped in this situation, one
needs to wait a typical time of order tdetach ∼ e4βJ to observe the particle detach and start
wandering again freely along the domain wall. On the other hand, hoppings in the direction
perpendicular to the cluster wall are, on average, much less likely to occur. For example, the
formation of a “dent” in a flat domain wall (see the case indicated by Fig. 2.2-(c)) happens
with a probability per unit time W = e−12βJ . In the limit T → 0 this process becomes
impossible.

An other interesting case is that of isolated particles, see Fig. 2.2-(d). Particles in this
situation can also hop freely into any of the nearest-neighbour empty sites. They can perform
a 2d random walk in the bulk of large empty regions of the lattice, until they get captured
by nearby particle clusters.

These observations give an useful insight into the mechanism through which the micro-
scopic dynamics generate the domain growth. In the early stages of the process, most of the
transitions consist in the formation of small aggregates by means of energy-lowering hoppings
and the reshaping of such aggregates by the energy-free motion of particles along their walls.
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(a)

∆E = 0 , W/W = 1

(b)

∆E = −4J , W/W = e4βJ

(c)

∆E = 12J , W/W = e−12βJ

(d)

∆E = 0 , W/W = 1

Figure 2.2: Some particular examples of transitions for the Kawasaki dynamics, seen in the “particle-
vacancy” picture. Gray circles indicate sites with spin +1 (or occupied by a particle),
while white circles indicate sites with spin −1 (or a vacancy). The arrows indicate the
sites that are involved in the particle hopping. The blue dashed line represents the
interface separating +1 spin regions from −1 spin regions. For each case, we indicate
the change in energy ∆E that would be caused by the transition and the ratio W/W
between the rates of the direct and inverse transitions.

Eventually, some of these aggregates that are very close to each other can fuse together to
form large clusters. Some of these large clusters can even percolate across the lattice. At suffi-
ciently late times, most of the cluster have smooth walls and the main mechanism accounting
for the growth of the clusters is the recombination of “lone” particles that are diffusing in the
empty regions. Small clusters that are not percolating slowly evaporate because of particles
that detach from their external wall (with a positive cost in energy). These particles then
diffuse freely in the empty regions, and are later likely to be captured by the large percolating
clusters.

This difference in the main growth mechanism between short and long times causes a
difference in the behaviour of the dynamical length `d(t). In fact, at short times, it was
observed [54, 55, 56] that `d(t) ∼ t1/4. This behaviour is attributed to the fact that, at
early times, the diffusion of particles along cluster walls plays the dominant role. Only after
the system has reached a situation in which ordered domains have smooth walls and are well
separated between each other, the usual growth law `d(t) ∼ t1/3, that characterises the LCOP
coarsening, is recovered.

An analysis of the characteristic length `G(t), obtained as the inverse of the excess-energy
will be presented in Sec. 2.4.1. This length is expected to be proportional to `d(t) (for not
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too long times) and thus it has essentially the same dependence on time. As the reader will
see, the expected law `G(t) ∼ t1/zd with zd = 3 is not at all observed in the time window that
our simulations are able to explore.

2.3.1 Snapshots

(a) t = 0 (b) t = 2 (c) t = 4 (d) t = 8

(e) t = 128 (f) t = 256 (g) t = 512 (h) t = 1024

Figure 2.3: Some snapshots of a KIM evolving under local Kawasaki dynamics, at target temperature
T = Tc/2, on a square lattice with PBC and linear size L = 128. The initial state is a
fully random spin configuration with equal concentration of the two species. Red sites
and white sites represent +1 and −1 spins, respectively. Clusters that wrap around the
system are highlighted in different colours, green for spin +1 wrapping clusters, blue for
−1 wrapping clusters. The times selected are, from left to right, t = 0, 2, 4, 8 in the
upper row, and t = 128, 256, 512, 1024 in the lower row.

In Fig. 2.3 we show some snapshots of the spin configuration evolving under the local
Kawasaki update rule, at the target temperature T = Tc/2, for a fully disordered initial state
with concentration p = 0.5 of either species of spin. The spin system is placed on a square
lattice with PBC and linear size L = 128. Lattice sites with spin +1 and −1 are represented
by red and white dots, respectively. In addition, clusters of +1 (−1) spins that are percolating
in at least one direction are highlighted in green (blue).

Interestingly enough, already at t = 2, a spin cluster wrapping in the vertical direction
appears. However, one must not confuse this time with the characteristic time tp at which
the system has reached the so-called critical-percolation-like scaling regime, as we defined it
in Sec. 1.4. In fact, even if percolating spin clusters can emerge very early in the dynamics,
they often do not survive for very long time or they can change their topology, as it can be
observed, for example, in Fig. 2.3-(c) where the spin cluster that was previously wrapping
only in the vertical direction is now wrapping in both directions of the lattice, and then in
Fig. 2.3-(d) where it has broken. Only at a time t ' 512 we observe the formation of two
large percolating clusters of opposite spin alignment that have become topologically stable,
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in the sense that they survive with the same topology (in this case wrapping only across
the vertical direction) for the rest of the dynamics. We expect these two large spin clusters
to further grow by absorbing “particles” diffusing in the bulk of clusters of the opposite
phase and to smoothen their walls by motion of spins in the direction parallel to the walls
themselves, as explained in the previous Section. Eventually, at very long times, the spin
configuration would consist of just two large spin clusters of opposite phase. Note that
thermal fluctuations can still allow isolated spins or very small spin clusters to diffuse in the
bulk of a large cluster of the opposite phase. However, for the range of temperatures that we
have explored, T < Tc/2, these effects are negligible, and the typical features of the domain
growth (in particular the geometrical and statistical properties of domains) are almost the
same as in the zero-temperature dynamics, at least for not too long times.

The T = 0 Kawasaki dynamics has the same peculiarity of the T = 0 Glauber dynamics,
that is to say, it gets trapped in the so-called frozen states and thus a (single) realization of
the process is not ergodic. The situation, however, is more complex than what we have in
the case of NCOP dynamics because of the constraint imposed by the conservation of the
number of spins of either species and the limitation on nearest-neighbour exchanges. Spin
configurations with flat interfaces are not the only ones to get blocked. Many more blocked
spin configurations exist, with a richer structure. Since the zero-temperature LCOP domain
growth is greatly affected by the presence of these blocked spin configurations, we preferred
to simulate the Kawasaki dynamics at a small but positive temperature.

In particular, most of the results that we are going to show in the next Sections are
relative to the Kawasaki dynamics at T = Tc/2. This value of the temperature is low enough
to observe the same type of behaviour as that of the T = 0 dynamics in the early stages
of the growth process (in particular, we observe the same behaviour in the time evolution
of the characteristic length `d(t)), but does not suffer significantly from the slowing down of
the relaxation dynamics for T → 0 when the system gets very close to one of the blocked
configurations. This allows us to observe the type of phenomenology associated to critical
percolation in the typical time window which is accessible by the numerical simulations.

2.4 Numerical analysis

In the following, we present the numerical results for the Ising model evolving under
(local) Kawasaki dynamics at subcritical target temperature, on various 2d lattices, obtained
through simulations using the continous-time Monte Carlo method. We follow the same lines
of analysis as those in Chap. 1.

By measuring observables related to the geometry and statistics of the spin clusters (e.g.
the winding angle for domain walls, the size of the largest cluster, the wrapping probabilities,
etc.) we are able to show that a finite system attains the so-called critical-percolation-like
dynamical scaling regime in which all properties of the domain pattern, after having rescaled
all lengths by `d(t) (the usual coarsening length), are those of 2d critical percolation. The
transient between the initial state and this regime is described in terms of the new growing
length `p(t), so that critical percolation properties can be observed over distances r such that
`d(t)� r ≤ `p(t). As done in the case of the single spin-flip dynamics in Chap. 1, we suppose
`p(t) ∼ `d(t)tζ and use finite-size scaling analysis to determine the exponent ζ.
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2.4.1 The excess-energy growing length

We present here the measurements of the growing length `G(t) defined as the inverse
of the the excess-energy, Eq. (1.16). As mentioned previously, we take this quantity as an
estimate of the characteristic length `d(t) that, in the usual context of coarsening systems,
represents the typical domain radius or typical distance between domain walls (or a length
proportional to them). In Fig. 2.4 we show `G(t) for the local Kawasaki dynamics on square,
honeycomb and triangular lattices, at temperatures Tc/2 and Tc/4 for the square lattice and
Tc/2 in the other two cases.
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Figure 2.4: 2d Ising model evolving under local Kawasaki dynamics, with balanced densities of the
two species, at a subcritical temperature. We show the excess-energy growing length
`G(t) = 1/ε(t) against time t. Left panel: model defined on a square lattice with PBC
and with linear size L = 640, quenched to T = Tc/2 (red curve) and T = Tc/4 (blue
curve) and, for comparison, data for the Glauber dynamics at Tc/2 (purple curve) on
the same lattice. Right panel: growing length for Kawasaki dynamics on honeycomb and
triangular lattices, in both cases with PBC, linear size L = 320 and target temperature
Tc/2. In the insets, we show the effective growth exponent, 1/zeff(t), computed as the
logarithmic derivative of the function `G(t), with the same colour code. In the inset of
the left panel, we also include the effective growth exponent estimated from the scaling
of 〈θ2〉 (circles), see Sec. 2.4.3.

First, we note that the values reached by `G are notably smaller than the ones obtained
with NCOP dynamics also shown in the left panel (labeled Glauber). Second, the data are
temperature independent before t ' 10. At around this time, the data at Tc/4 slow down
and deviate from the ones at higher temperature. Nowhere in the time span shown in the
figure a stable algebraic increase of `G establishes. The evolution of the effective exponent
1/zeff(t), computed as the logarithmic derivative of `G(t), is followed in the inset. In the
time-window used, at Tc/2, 1/zeff(t) varies between 0.1 and 0.25, approximately, implying
that zeff(t) goes from 10 to 4. Therefore, the measurement slowly approaches the expected
value for the dynamic exponent zd = 3 [48] but it is still far from it. The deviation is even
worse at Tc/4 and the time-dependence of the effective exponent zeff is non-monotonic. We
stress here that the relatively short times at which we measured `G(t) are going to be the
relevant ones for the study of the approach to the critical-percolation-like state. Contrary to
what happens in the case of the IM evolving under Glauber dynamics, an asymptotic growth
law `d(t) ∼ t1/zd is not clearly observed and time scales of at least two orders of magnitude
longer are needed to see zeff converge to the expected zd = 3 [49, 50]. Another interesting
issue is that the local Kawasaki dynamics on the honeycomb lattice does not block as do the
NCOP rules (see App. A.2), and the values of zeff are similar to those for the square lattice.
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The fact that the effective exponent varies so much in time and depends on temperature
suggests to use the characteristic growing length `G(t) itself as a representative of `d(t) in all
scaling relations, to analyse the pre-asymptotic regime with the eventual approach to critical
percolation. The difficulties involved in using the exponent zd and its effective evaluation are
confirmed by the analysis of other observables.

2.4.2 Wrapping probabilities

The wrapping probabilities πh, πv, πhv, πdiag defined in Sec. 1.3 can be useful to determine
the typical time required for the onset of the critical-percolation-like regime. In the left panel
of Fig. 2.5, we show the wrapping probabilities for the Kawasaki dynamics on a square lattice,
for different values of the lattice linear size L. The exact values of these probabilities for
critical percolation on a torus with unit aspect ratio [24] are shown with dotted horizontal
lines. As done in Sec. 1.5.2, the presence of the pre-percolation regime is exhibited by
scaling time t as t/ (L/`d(t))ζ , with the value of the exponent ζ chosen to make the datasets
corresponding to different L collapse on a master curve. The value that gives the best collapse
is, in this case, ζ ' 2.00. Again, for t/ (L/`d(t))ζ ≥ 1 (or equivalently, for t ≥ tp with tp

such that `p(tp) = `d(tp) t
1/ζ
p ∼ L ) we should observe the time-dependent πs approach the

constant values corresponding to 2d critical percolation wrapping probabilities.
In our case, we could not perform simulations long enough to observe a clear convergence,

even though the data shown suggest that, for sufficiently large system sizes, the critical
percolation wrapping probabilities should be the asymptotic values. Nevertheless, the scaling
is very good for t/ (L/`d(t))ζ up to 10−1, while, for larger values of the rescaled time, finite size
effects are pronounced. These results can be compared to those for NCOP dynamics, shown
in Sec. 1.5.2. The time tp needed to approach the critical percolation wrapping probability
values (and thus the time of the onset of the critical-percolation-like regime) can be computed
approximately from these data. Concretely, from Fig. 2.5 we can use tp/ (L/`d(tp))ζ = 1 as
a criterium to measure tp. In this way we find tp ' 233, 684, 1924, 5212, 13763 for L = 40,
80, 160, 320, 640, respectively.

In Fig. 2.6 we show the same type of scaling on the honeycomb lattice. In this case,
the value of ζ that gives the best collapse is ζ ' 1.15. Notice also that we plotted the
probabilities πh and πv separately, since the lattice that we implement in our numerical
simulations has aspect ratio different from unity, see App. A.2 for more details on this issue.
More precisely, the lattice mesh used in the simulations has aspect ratio

√
3, and we took the

vertical side longer than the horizontal one, hence why πh > πv. Then, our measurements
must be compared to the wrapping probabilities for 2d critical percolation on a lattice of
aspect ratio

√
3. In general, one can compute the wrapping probabilities π for 2d critical

percolation for any aspect ratio r [8, 57, 58]. For an aspect ratio r =
√

3 their values are
given by π(p)

hv ' 0.5120, π
(p)
h ' 0.4221, π

(p)
v ' 0.0408 and π(p)

diag ' 0.0250.
It is also interesting to check the influence of an unbalance between the densities of the

two species and, in particular, to investigate whether clusters retain the critical percolation
properties during a certain time regime when the initial concentration of one of the two
species is close to the percolation threshold, pc.

In the right panel of Fig. 2.5 we display the time evolution of the various cluster wrapping
probabilities for different concentrations of up spins, p = 0.4, 0.42, 0.45, 0.47, 0.5, in the case
of the Kawasaki dynamics on a square lattice. We remind here that the site percolation
threshold for the square lattice is pc ' 0.5927. As one can see, when the concentration
of one of the two species is larger than pc (for the minority phase, this corresponds to the
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Figure 2.5: Probability that a spin cluster wraps in a certain direction, for the Ising model on a finite
square lattice with PBC evolving under local Kawasaki dynamics at target temperature
Tc/2. Red curves: clusters wrapping in both principal directions of the lattice in the
so-called “cross” topology (πhv). Green curves: clusters wrapping in only one principal
direction, either horizontally or vertically (πh + πv). Blue curves: clusters wrapping
in a diagonal direction (πdiag). The horizontal dotted lines are the exact values of the
wrapping probabilities for critical percolation in 2d. In the left panel, data for equal
concentration of up and down spins, and different values of L, are plotted against the
scaling variable t/ (L/`d(t))ζ , with `d(t) = `G(t) the characteristic length obtained from
the inverse of the excess-energy. The value of the exponent ζ ' 2.00 is chosen to make
the datasets corresponding to different L collapse on the same master curve. In the
right panel, a system with linear size L = 160 is prepared initially at t = 0 with a fixed
concentration p of +1 spin, for p = 0.5, 0.47, 0.45, 0.42 and 0.4, and it is then let evolve.
We show the same quantities as in the left panel with the same colour code.

condition p < 1− pc), the system has a cluster of the majority phase that percolates in both
Cartesian directions already in the initial configuration, see the data for p = 0.4. Instead, for
1 − pc < p < 1/2, the curve πhv(t) starts off from zero and slowly increases in a monotonic
way, approaching 1 asymptotically.

For p = 0.4 < 1−pc, the probability of having a cluster wrapping along only one principal
direction of the lattice, πh + πv (green curves), starts off close to the corresponding critical
percolation value and then decreases rapidly to zero. A similar behaviour is observed for
πdiag. In the cases in which 1− pc < p < 1/2, the curves πh + πv and πdiag, start from values
below the corresponding critical percolation probabilities, increase and approach them at a
certain instant t? that depends on p, but then rapidly detach from it and decrease to zero.

The curves for p = 1/2 (crosses) are the only ones that approach the non-trivial asymp-
totes shown with horizontal dotted lines in the late time regime. This result is consistent with
the observation made in [53], where the segregating dynamics of a mixture of Bose-Einstein
condensates was studied.

2.4.3 Average squared winding angle

In Sec. 1.5.3 we showed that the average squared winding angle, 〈θ2〉, for the hulls of spin
clusters produced by NCOP dynamics, approaches the form given by Eq. (1.27) at around
time tp, and the time-dependence scales with the dynamic growing length `d(t). We can
therefore use this observable to evaluate the approach to critical percolation and the effective
dynamic exponent of phase separation, zeff .

In Fig. 2.7 we show the average squared winding angle for the hulls that form the interface
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Figure 2.6: Ising model on a finite honeycomb lattice with PBC, evolving with local Kawasaki dy-
namics at target temperature Tc/2, for different values of L given in the key. The
concentration of the two species is always p = 1/2. We show the probability that a clus-
ter wraps in a certain direction at time t, against the rescaled time t/ (L/`d(t))ζ , where
`d(t) = `G(t) is the characteristic length obtained from the inverse excess-energy and the
value of the exponent ζ is chosen to make the data for different L collapse one onto the
other. Red data points correspond to πhv, green ones to πh, blue ones to πv and purple
ones to πdiag. The value ζ ' 1.15 yields approximately the best collapse. The horizontal
dashed lines correspond to the expected values at critical percolation for a rectangular
sheet of aspect ratio

√
3.

of the largest spin cluster against the logarithm of the curvilinear coordinate x (left panel)
in the case of the Kawasaki dynamics on a square lattice with linear size L = 640, at target
temperature Tc/2. The interface of a cluster can be made of many components, as explained
in Sec. 1.3, each one being a closed path on the dual lattice constructed by joining sites
(of the dual lattice) with bonds that intersect “broken” bonds between nearest-neighbour
antiparallel spins on the original lattice. To compute the quantity 〈θ2〉 shown in Fig. 2.7 we
considered only the hulls of the largest cluster that are wrapping across the system, or said
in another way, only those hulls that have zero total winding angle. Of course, these hulls
exist only if the largest cluster is wrapping and they come always in pairs.

We observe that the curves shown in the left panel of Fig. 2.7 are very similar to the
ones for NCOP dynamics (see Fig. A.7). The dotted straight line is a fit to the logarithmic
dependence of the data at t = 8192 and yields an estimate of the SLE parameter κ ' 6.8310,
relatively close to the one of critical percolation, κ = 6.

In the right panel we show the same data plotted against ln [x/`d(t)]. As already ex-
plained in Sec. 1.5.3, the idea behind this scaling is that there is a separation of length scales
characterised by different fractal properties of the cluster hulls, with a crossover occurring
at `d(t). If we measure the properties of the hulls over a curvilinear distance x smaller than
`d(t) we are going to obtain the properties of the equilibrium at the target temperature of
the relaxation dynamics, that is to say, domains with smooth walls. Indeed, for x/`d(t)� 1
we observe that 〈θ2〉 converges to a plateau. Instead, for x > `d(t) the geometrical properties
of the spin clusters should be those of critical percolation with 〈θ2〉 given by Eq. (1.27). This
argument implies that, by rescaling the curvilinear distance x by `d(t), data for different t
should collapse on the same master curve.

It was not possible to collapse the data over the whole range of times available from the
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Figure 2.7: Ising model on a square lattice with PBC and L = 640, evolving under local Kawasaki
dynamics at temperature Tc/2. Equal concentration of up and down spins. Left panel:
the average squared winding angle 〈θ2(x, t)〉 for the wrapping hulls that form the largest
cluster interface against the logarithm of the curvilinear coordinate x, at different times
given in the key. A linear fit to the data obtained for the latest time simulated (t = 8192)
is also shown in the left panel, yielding an SLE parameter κ ' 6.8310. Right panel:
〈θ2(x, t)〉 against the logarithm of x/`d(t) with `d(t) = `G(t) the growing length measured
from the inverse of the excess energy.

simulations by using the theoretical asymptotic power law behaviour of `d(t), `d(t) ∝ t1/zd ,
with a unique choice of the dynamical exponent zd = 3. As already explained, in the range
of times when the critical-percolation-like state is observed, the characteristic length scale
`d(t) has not yet acquired the asymptotic behaviour of the LSW theory for LCOP dynamics.
Thus, as done previously, `d(t) is taken to be the full time-dependent growing length obtained
as the inverse of the excess-energy, `G(t) = ε(t)−1. As one can see from the right panel in
Fig. 2.7 the scaling thus achieved is very good.

On the other hand, we could estimate an effective growth exponent, or more precisely
its inverse z−1

eff (t), by attempting pairwise collapse of curves {〈θ2(x, ti)〉}i corresponding to
consecutive measuring times ti and ti+1. We rescaled the distance x by the factor (ti+1/ti)α
and we looked for the value of the exponent α that made the curve 〈θ2(x, ti+1)〉 collapse onto
the curve 〈θ2(x, ti)〉, when the former is plotted against the rescaled distance. By performing
this procedure for all i, we obtained an estimate αi of the effective growth exponent for each
time interval [ti, ti+1]. This estimate of z−1

eff (t) is included in the inset to Fig. 2.4 (as green
circles) and it is very close to the value of z−1

eff (t) extracted from `G(t).

2.4.4 Largest cluster scaling

In this Section we report some results on the scaling properties of the largest cluster in the
early time regime. The data shown correspond to local Kawasaki dynamics at temperature
Tc/2 on the square lattice (Fig. 2.8) and on the honeycomb lattice (Fig. 2.9). We recall that
the quantity Ac is the (average) size of the largest cluster, while lc is the (average) length of
the external hull of the largest cluster.

As already explained in Sec. 1.5.4, we need to distinguish two types of hulls. The “ex-
ternal” interface of a cluster that is wrapping across the system along only one direction
(horizontal, vertical or in a diagonal direction) is always made of two wrapping hulls, while
a cluster that is not wrapping or that wraps simultaneously in both principal directions of
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Figure 2.8: Ising model on a square lattice with PBC, evolving under local Kawasaki dynamics at
target temperature Tc/2, with balanced concentration of the two species of spin. In the
left panel we show

(
Ac/L

DA
)
`d(t)−(2−DA), with Ac the largest cluster size, while in the

right panel
(
lc/L

D`
)
`d(t)−(1−D`), with lc the length of the largest cluster interface, for

various values of L. The interface length lc is computed separately for the non-wrapping
hulls (indicated by dashed lines) and the wrapping hulls (indicated by continuous lines),
if they exist. `d(t) = `G(t) is the growing length extracted from the inverse of the
excess-energy. All quantities are plotted against the rescaled time t/ (L/`d(t))ζ , where
the exponent ζ ' 2.00 was chosen to make the datasets corresponding to different L
collapse onto each other.

the lattice does not possess any of these. On the other hand, the external interface of spin
clusters that are not percolating is composed of just one (non-wrapping) hull. For all the
cases that we show in this Section, we present the two contributions to the total length of
the largest cluster interface, lc, the one coming from wrapping hulls and the one coming from
non-wrapping hulls, as two separate quantities. In general, they may have different scaling
properties.

Following the same scaling arguments used in Chap. 1 for the ferromagnetic 2dIM evolving
under single spin-flip dynamics, the correct way of scaling the size of the largest cluster,
Ac(t, L), in order to take into account the effects of coarsening and percolation, is

Ac(t, L)
LDA

∼ `d(t)2−DA xA

(
`p(t)
L

)
, (2.9)

with DA = 91/48 the fractal dimension of the largest cluster in 2d critical percolation, `d(t)
the characteristic length scale associated to the growth of domains, `p(t) the one associ-
ated to the approach to the critical percolation state and xA an unknown scaling function.
Analogously, the scaling for the largest cluster hulls is given by

lc(t, L)
LD`

∼ `d(t)1−D` x`

(
`p(t)
L

)
(2.10)

with D` = 7/4 the fractal dimension of percolating domain hulls in 2d critical percolation
and x` an unknown scaling function. As stated in Sec. 1.4.2 we suppose that `p(t) is given
by `p(t) ' `d(t) t1/ζ , with ζ an exponent to be determined.

The above relations are supposed to hold for sufficiently large system size (ideally in
the limit L � r0), for t � t0, with t0 a microscopic time scale, and t � teq, with teq the
time needed by the system to reach the equilibrium state imposed by the bath tempera-
ture. Moreover, we expect that as `p(t) → L the system reaches a critical-percolation-like
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Figure 2.9: Ising model on a honeycomb lattice with PBC, evolving under local Kawasaki dy-
namics at target temperature Tc/2, with balanced concentration of the two species
of spin. In the left panel we show

(
Ac/L

DA
)
`d(t)−(2−DA), while in the right panel(

lc/L
D`
)
`d(t)−(1−D`), for various values of L. As in Fig. 2.8, the interface length lc

is separated into two parts, one being the contribution coming from non-wrapping hulls
(indicated by dashed lines), while the other one being the contribution due to wrapping
hulls (indicated by continous lines), if they exist. Here `d(t) = `G(t) is the characteristic
length obtained by the inverse of the excess-energy. All the quantities are plotted against
the rescaled time t/ (L/`d(t))ζ , where the exponent ζ was chosen to make the datasets
corresponding to different L collapse one onto the other. The best collapse is obtained
with ζ ' 1.15, shown in the plots.

state on the scale of L, and for larger times both xA and x` converge to constants so that
Ac(t, L)/LDA ' CA `d(t)2−DA and lc(t, L)/LD` ' C` `d(t)1−D` , with CA and C` some con-
stants, as seen for the scaling behaviour of the largest cluster in the case of the Ising model
evolving under zero-temperature Glauber dynamics.

We find acceptable scaling of the quantities (Ac(t, L)/LDA) `d(t)−(2−DA) and
(lc(t, L)/LD`) `d(t)−(1−D`) as functions of the rescaled time t/ (L/`d(t))ζ (equivalently, as
functions of `p(t)/L) where the value of the exponent ζ is again determined by looking for
the best data collapse. For the Kawasaki dynamics on the square lattice, at temperature
Tc/2, the best collapse is found by taking ζ ' 2.00 for both Ac and lc, see Fig. 2.8, the same
value obtained for the scaling of the wrapping probabilities, see Sec. 2.4.2.

In Fig. 2.9 we show the same type of scaling plots for the dynamics on the honeycomb
lattice and again, consistently with the scaling of the wrapping probabilities, we find ζ ' 1.15.
Notice, however, that the quality of the collapse is not as good as for the case relative to the
square lattice. More precisely, finite size effects are more pronounced.

2.4.5 Pair connectedness function

We show here some results regarding the time evolution of the pair connectedness function
for the Kawasaki dynamics following a quench to Tc/2. The definition of the time-dependent
pair connectedness g(r, t) for a kinetic spin system is given in Sec. 1.3.

As in the case of the Glauber dynamics, we expect that the time-dependent pair connect-
edness g(r, t) takes the same form as in 2d critical percolation (on the same lattice and with
same boundary conditions) for times t ≥ tp upon rescaling distances as r → r/`d(t), that is
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Figure 2.10: The pair connectedness function g(r, t) for an Ising model evolving under Kawasaki
dynamics at temperature Tc/2, on a square lattice with linear size L = 640 and PBC, for
equal concentration of the two spin species. In the left panel, we show the comparison
between the time evolving g(r, t) and the pair connectedness for critical percolation,
gperc, on the same lattice (same size L and same boundary conditions). In the right
panel, we display the quantity g(r, t) · ( r/`G(t))2∆, where `G(t) is the characteristic
length obtained as the inverse of the excess-energy and ∆ = 2−DA, with DA = 91/48.
The data for the dynamical problem has also been multiplied by a constant factor
α ' 0.68 in order to make it collapse onto that of critical percolation, for long distances.
The color code for the different times is the same in both panels.

to say,
g(r, t) ∼ gperc

(
r

`d(t)

)
, (2.11)

for t ≥ tp and r � `d(t). Moreover, in the limit L→ +∞, gperc(r) ∼ r−2∆, with ∆ = 2−DA

and DA = 91/48 the fractal dimension of the incipient percolating cluster in 2d percolation.
This is shown in Fig. 2.10. In the left panel, we plot g(r, t) against the distance r at

different times t, for the dynamics on a square lattice with L = 640 and PBC. We compare
it to that of random site percolation, gperc(r), on a square lattice with the same linear size
and boundary conditions, at the site occupation probability p = 0.5927 that is approximately
the threshold value pc (red dashed curve). Notice that, because of the PBC, the maximum
allowed value of r is L/2. In the right panel, we show g(r, t)·(r/`G(t))2∆ against r, where `G(t)
is the characteristic length obtained as the inverse of the excess-energy, taken as a measure
of the usual coarsening length `d(t). The collapse is good for large values of r, specifically for
r & 40. Moreover, over the large-distance tail the rescaled data for the dynamical problem
match almost perfectly the data corresponding to 2d critical percolation, for times t > 64.

We reckon that both gperc(r) r2∆ and the dynamical counterpart do not approach a con-
stant for large values of the distance r, as one would expect, because of the periodic boundary
conditions. On the other hand, the behaviour of g(r, t) for small values of r is a characteristic
of the coarsening process induced by the microscopic dynamics (in this case, the Kawasaki
spin-exchange dynamics) and signals the fact that at small length scales the structure of
clusters is very different from that of critical percolation. The same separation of length
scales that was observed for the scaling behaviour of the average squared winding angle, 〈θ2〉,
is also playing a role in the case of the pair connectedness. To make it more evident, in
Fig. 2.11 we plot the rescaled pair connectedness, g(r, t) · (r/`G(t))2∆, against the rescaled
distance r/`G(t). As one can see, the data is correctly rescaled in the short-distance region
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(r/`G(t) . 1) by using this scaling.
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Figure 2.11: The pair connectedness function g(r, t) for an Ising model evolving under Kawasaki
dynamics at temperature Tc/2, on a square lattice with linear size L = 640 and PBC,
for equal concentration of the two spin species. We plot the rescaled pair connect-
edness g(r, t) · ( r/`G(t))2∆ against the rescaled distance r/`G(t), where `G(t) is the
characteristic length derived from the inverse of the excess-energy and ∆ = 2 − DA

with DA = 91/48. The horizontal dashed line is at p2
c , with pc ' 0.5927 the critical

occupation probability for percolation on a square lattice.

2.4.6 Number density of domain areas

Following the same arguments exposed in the previous Chapter for the NCOP dynamics,
we assume that the number density N of non-percolating spin clusters depends on the area
A and time t as

N(A, t) ' 2ceff
d (t) A1/2[

A3/2 + `3d(t)
] (2τA+1)

3

Φ
(
A/`2−DAd (t)
`DAp (t)

)
(2.12)

where we defined an effective normalisation constant

ceff
d (t) ≡ 2cd [ `d(t) ]2(τA−2) . (2.13)

This is the same form given by Eq. (1.24) with the addition of a pre-percolation scaling factor
Φ that depends on A and t through

A/`2d(t)
(`p(t)/`d(t))DA

(2.14)

with `p(t) the characteristic length which governs the regime of approach to the critical-
percolation-like state.

As explained in Sec. 1.5.5.2, the idea behind this scaling is that, at time t, on linear
scales larger than `p(t), the system has not fully reached the critical percolation state yet,
that is, domains with size A much larger than `DAp (t) have still some features of the initial
fully disordered state. In this sense, `p(t) serves as a crossover scale between the percolation
criticality and the high temperature disorder. Note that, in terms of areas, the corresponding
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crossover scale is `DAp (t). Moreover, both A and `p(t) must be rescaled by `d(t) with the
corresponding scaling dimensions to take into account the effects of usual coarsening.

Finally, we expect the pre-percolation scaling function Φ to satisfy Φ(x) → 1 for x � 1
so that we recover the expression given by Eq. (1.24) when A/`2d(t) � (`p(t)/`d(t))DA , i.e.
for scales A such that the criticality of percolation has already established at time t.

2.4.6.1 Domain area distribution for Kawasaki dynamics on a triangular lattice.

On the triangular lattice the pre-percolating regime is absent since the initial spin config-
uration is already a realisation of critical percolation, hence Eq. (2.12) should hold without
the pre-percolation factor Φ. To check the scaling with `d(t), in Fig. 2.12 we plotted the
rescaled cluster size distribution N (A, t) `4d(t) against the rescaled area A/`2d(t) for a system
of linear size L = 640 evolving at T = Tc/2. We take `d(t) to be proportional to the inverse
of the excess-energy, `d(t) = α`G(t), with the proportionality constant α = 2.78. This value
is approximately the one that gives us the best data collapse.

The master curve f(x) = 2 cd x1/2
(
1 + x3/2

)−(2 τA+1)/3
, the scaling function for the

LCOP domain growth (see Eq. (1.26)), is shown with blue discontinuous line. Deviations
from the master curve are expected at very large values of the scaling variable A/`2d(t), that
is to say, for domains with linear size comparable to L. Deviations are also expected at small
values of A/`2d(t) because of the discreteness of the lattice. The master curve from the data
collapse slightly differs from the analytic form around the “shoulder”, the point at which
there is the crossover between the

√
A behaviour for small domains and the power law decay

A−(2 τA+1)/3 for large domains.
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Figure 2.12: Ising model on a triangular lattice with PBC and L = 640, with balanced concentration
of up and down spins, evolving under local Kawasaki dynamics at target temperature
Tc/2. We show N (A, t) `4d(t) against the rescaled area A/`2d(t), with `d(t) = α`G(t)
the characteristic length associated to the coarsening process, and α = 2.78. The
value of α was chosen so that the datasets collapse onto the master curve f(x) =
2 cd x1/2 (1 + x3/2)−(2 τA+1)/3, represented by the blue dashed line.
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2.4.6.2 Pre-percolation scaling.

As we did for the scaling of the largest cluster size and interface length and for the
wrapping probabilities, we assume that in the regime of approach to critical percolation the
relevant length scale is `p(t) = `d(t) t1/ζ .

Neglecting for the moment the contribution of the large percolating clusters, the number
density of domain areas has the following scaling behaviour,

AτA N (A, t, L)
2ceff
d (t)

'



(
A

`2d(t)

) 2τA+1
2

A� `2d(t)

1 `2d(t)� A� `DAp (t)

Φ
(
A/`2−DAd (t)
`DAp (t)

)
A & `DAp (t)

(2.15)

The data for the (local) Kawasaki dynamics at temperature Tc/2, on a square lattice with
linear size L = 640, are presented in Fig. 2.13, where AτA `d(t)2(2−τA) N (A, t, L) is plotted
against A in the left panel and against the rescaled area (A/`2−DAd (t))/`DAp (t) in the right
panel. In both panels the critical percolation Fisher exponent, τA = 187/91, and the fractal
dimension of the percolating clusters at critical percolation, DA = 91/48, were used.
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Figure 2.13: Ising model on a square lattice with PBC and L = 640, with balanced concentra-
tion of up and down spins, evolving under local Kawasaki dynamics at target tem-
perature Tc/2. We show the data relative to the number density of domain areas,
N (A, t, L), at different times given in the key. In the left panel we show the quantity
AτA `d(t)2(2−τA)N (A, t, L), with τA = 187/91 the Fisher exponent for critical percola-
tion and `d(t) = α`G(t), plotted against the area A. The proportionality constant α was
tuned so that the plateau appearing in the data for the last time matched approximately
the constant 2cd ≈ 0.0580, indicated by the black horizontal line. In the right panel,
the same quantity is plotted against the rescaled area

(
A/`d(t)2−DA

)
/`p(t)DA , with

`p(t) = `d(t) t1/ζ , where the exponent ζ was chosen to make the datasets corresponding
to different times collapse in the scaling region represented by the “shoulder”. The best
result is achieved by using ζ ' 2.00. The function Φ(x) = C xa has been fitted to the
data at t = 1 in the interval [1, 50] yielding a ' 0.310.

The coarsening characteristic length `d(t) has been taken to be proportional to `G(t),
namely `d(t) = α`G(t). The value of the constant α was adjusted so that the plateau ap-
pearing in the data corresponding to the last time shown (t = 8192) matched approximately
the constant 2cd; we found α ' 3.64. The value of the exponent ζ was chosen to make
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the datasets corresponding to different times collapse in the scaling region represented by
the “shoulder”. Consistently, the best result is achieved by using ζ ' 2.00, the same value
obtained from the finite-size scaling of the largest cluster size and the wrapping probabilities.

The pre-percolation regime scaling function Φ takes approximately the form Φ(x) = C xa,
with a > 0. By fitting this function to the data at t = 1, in the region [1, 50] of the scaling
variable

(
A/`d(t)2−DA

)
/`p(t)DA , we found a value of a compatible with the one obtained for

the NCOP dynamics, namely a ' 0.310 (the fit is indicated by a black dashed line in the left
panel of Fig. 2.13).

An analogous scaling for the dynamics on the honeycomb lattice is presented in Fig. 2.14.
In the left panel, at large values of t, the plateau corresponds to a range of areas obeying
the critical percolation statistics. In the right panel, AτA [`d(t)]2(2−τA) N (A, t, L) against
the rescaled area (A/`2−DAd (t))/`DAp (t) highlights the pre-percolating regime. Here again
we set `p(t) = `G(t) t1/ζ , with the exponent ζ taking the same value as the one used for
the finite-size scaling of the wrapping probabilities, namely ζ ' 1.15. As one can see, the
collapse is not as good as in the case of the Kawasaki dynamics on the square lattice, but the
qualitative behaviour of the rescaled distribution is the same. Moreover, a fit of the function
Φ(x) = C xa to the data relative to t = 1024, in the interval [5 × 10−5, 10−4] of the scaling
variable x = (A/`d(t)2−DA)/`p(t)DA , yields a ' 0.290.
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Figure 2.14: Ising model on a honeycomb lattice with PBC and L = 160, with balanced concentration
of up and down spins, evolving under local Kawasaki dynamics at target temperature
Tc/2. Same scaling plots as in Fig. 2.13. Here again `d(t) = α`G(t), with the value of α
tuned so that the plateau appearing in the data for the latest time shown, t ' 1.31 ·105,
matched approximately the constant 2cd ≈ 0.0580, indicated by the black horizontal
line. The characteristic length `p(t) is given by `p(t) = `d(t) t1/ζ , where the value of
the exponent ζ was chosen to be the same as that used for the scaling of the wrapping
probabilities, that is ζ = 1.15. In the right panel, the black dashed line represents a fit of
the function f(x) = C xa to the data realtive to t = 1024 in the interval [5×10−5, 10−4]
of the scaling variable, yielding a ' 0.290.

2.4.6.3 Size distribution of percolating clusters.

We present here an analysis of the size distribution of the spin clusters that are percolating
(wrapping spin clusters, in the case of a finite lattice with PBC), the quantity Np introduced
in Sec. 1.3. Looking at this observable can be very useful, since the very few large clusters
that survive the coarsening process in the late stages of the dynamics and that contribute to
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Figure 2.15: The size distribution of the two largest spin clusters, Np(A, t, L), for an Ising model
on a square lattice with PBC, with balanced concentration of the two species, evolving
under Kawasaki dynamics at temperature Tc/2. On the left the data for L = 160,
while on the right that for L = 320. The color code for the measuring times (see
the key in the left panel) is the same in the two plots. The distribution is multiplied
by LDA `d(t)2−DA/c0 and plotted against the rescaled area c0 (A/LDA) `d(t)−(2−DA),
where DA is the fractal dimension of the percolating cluster in 2d critical percolation,
`d(t) = `G(t) is the characteristic length obtained as the inverse of the excess energy,
and c0 = 1.18. The size distribution of the largest cluster for random site percolation,
at the threshold occupation probability on a square lattice of corresponding size, is also
shown with a black solid line, multiplied by LDA and plotted against A/LDA . The
value of the constant c0 was chosen so that the rescaled distributions for the dynamical
problem collapsed onto the static one of critical percolation.

Np, are those that signal the onset of the critical-percolation-like scaling regime. Around the
time tp, these clusters span most of the lattice and their geometrical and statistical properties
coincide with those of the incipient percolating cluster occurring at critical site percolation
(on the same lattice). Usually, at this time, only two large clusters, with opposite spin
orientation, are percolating and become “stable” with respect to the microscopic dynamics.
This is the reason why Np can be effectively considered, for all practical purposes, as the size
distribution of the two largest spin clusters in the system.

As already explained in Sec. 1.5.5.3 for the case of the Glauber dynamics, one has to
take into account the effects of coarsening, and thus the size A needs to be rescaled by the
factor `d(t)2−DA . Given these considerations and the fact that Np is a probability density,
Np should have the following finite-size scaling behaviour

Np(A, t, L) ∼ L−DA`d(t)−(2−DA) np
(
A/LDA `d(t)−(2−DA)

)
(2.16)

in the limit L→∞ and for t approaching the characteristic time tp. This scaling behaviour
was already confirmed by numerical results in the case of the single spin-flip dynamics. It
implies that if one plots the quantity LDA `d(t)2−DANp(A, t, L) (for the dynamical problem)
against the rescaled size (A/LDA) `d(t)−(2−DA), curves corresponding to different times t and
lattice linear size L should approach the same master curve as t → tp(L). Furthemore, this
master curve should coincide with the scaling function np of critical percolation on the same
lattice.

In Fig. 2.15 we show this scaling behaviour for the Kawasaki dynamics on a square lattice
at target temperature Tc/2. Together with these data we also show the size distribution of
the largest cluster, multiplied by LDA , for random site percolation on a square lattice of the
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same size, at the threshold occupation probability (pc ' 0.5927), against A/LDA . As one
can see, for L = 160 (left panel), the data relative to times t = 2048 and t = 4096 collapse
approximately on the master curve represented by the critical percolation size distribution
(indicated by a black solid line). We then can say that the critical-percolation-like domain
structure is attained at time tp ∈ [2048, 4096]. Similarly for L = 320 (right panel) we
obtain that the data for t = 8192 is the closest to match the critical percolation distribution.
However, in order to get the collapse of the data relative to the quench dynamics onto the
critical percolation ones we needed to include an additional scaling factor c0 ' 1.18, which
seems to be independent of L.

2.5 Conclusions

Let us summarise the main aspects studied in this Chapter.
We studied the early stages of the coarsening process emerging in the 2d KIM evolving

with spin-exchange dynamics at a finite subcritical temperature and with equal concentration
of the two species of spin. We considered the case of spin configuration transitions limited to
nearest-neighbour spin-exchange (or Kawasaki dynamics), which in the long time limit can
be described by the locally conserved order parameter (LCOP) coarsening theory.

First of all, we proved that extremely long time scales are needed to reach the algebraic
growth law `d(t) ∼ t1/3 for the typical domain radius predicted by LSW theory. Accordingly,
we argued that in the scaling analysis the excess-energy growing length `G(t) should be used
as a representation of `d(t).

By studying the dynamical scaling behaviour of several observables related to the geo-
metrical properties of the spin clusters, in the case of the dynamics at a subcritical finite
temperature and on different lattices, we observe that the domain growth process approaches
a critical-percolation-like scaling regime at a time much smaller than the typical time scale teq
associated with complete thermalization. In this dynamical regime, the domain pattern geo-
metrical and statistical properties are the same as in critical percolation after having rescaled
all the lengths by `d(t). In particular, the size of the largest spin cluster and the length of
the percolating domain walls scale with the effective dynamical system size L/`d(t) with the
fractal dimensions of 2d critical percolation. The approach to this critical percolation scaling
regime is described by a characteristic length `p(t) that behaves as

`p(t) ' `G(t) t1/ζ

with `G(t) the growing length extracted from the excess-energy, and the exponent ζ which
depends on the particular lattice geometry. In particular, we find ζ ' 2.00 for the dynamics
on the square lattice, while ζ ' 1.15 for the dynamics on the honeycomb lattice. Essentially,
the percolation critical features can be observed at time t on length scales R such that
`d(t) < R < `p(t), and the entire system enters in the critical percolation scaling regime at
the time tp such that `p(tp) = L. The model on the triangular lattice behaves differently
since it is at the critical percolation point already at t = 0 and no additional length scale
other than `d is needed.

In regards to the statistical distribution of the domain area, we found a number of common
features with the results of NCOP coarsening. For example, the so-called pre-percolation
scaling function Φ, describing the crossover between the algebraic tail in the number density
of non-percolating spin clusters and the contribution toN that comes instead from percolating
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ones, is within numerical accuracy of the same form, namely Φ(x) ∝ xa with a ' 0.3 in both
NCOP and LCOP coarsening dynamics.

After the time tp such that `p(tp) = L, the percolating cluster(s) become fatter and fatter
and a second ordering regime characterised by the expected growing length `d(t) ' t1/zd

with zd = 3 should eventually establish. However, very long times are needed to reach this
algebraic behaviour and these go beyond the accessible simulation time-window.
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Chapter 3

Coarsening in the 2d Voter Model:
hints of a new criticality.

3.1 Introduction

The voter model (VM) [59, 60, 61] is a purely dynamical stochastic system, used to
describe the kinetics of catalytic reactions [62, 63, 64] and as a prototype model of opinion
and population dynamics [65, 66, 67]. In its simplest realisation, a bi-valued opinion variable,
si = ±1, is assigned to each site i of a given lattice or graph, with a probability 1/2 of being
+1 or −1, independently of all other sites. At each subsequent microscopic time step, a
site is chosen at random and adopts the “opinion” of a randomly chosen nearest-neighbour.
Therefore, the probability for the chosen site to change its opinion (or in the language of the
kinetic Ising model, to flip) in a unit time step is simply given by the fraction of neighbours
with opposite opinion. These moves mimic, in a very simple fashion, the influence of the
neighbourhood on the individual opinion.

The model is parameter free and invariant under global inversion of the spin. Since a
site surrounded by others sharing the same opinion can not change its own opinion, there is
no bulk noise and the dynamics is uniquely driven by interfacial fluctuations. If the opinion
values, +1 and −1, are seen as the two state of a spin variable, then the stochastic process
can be legitimately thought as a particular version of kinetic Ising model, but evolving with a
stochastic spin update rule that does not satisfy a detailed balance condition based on some
canonical equilibrium distribution, Peq(s). Instead, the dynamics is completely irreversible
since it drives the system towards one of the two absorbing states, that is to say, the spin
configurations in which all the sites have same opinion/spin. Nevertheless, the time evolution
of the system is characterised by a coarsening process that is similar to the one appearing
in the conventional KIM evolving at a target temperature T < Tc. In this sense, the VM
dynamics can be classified in the nonconserved order parameter (NCOP) coarsening family.

Actually, it is possible to show that the voter model and the ferromagnetic KIM evolving
with Glauber dynamics are two particular instances of a family of stochastic kinetic Ising
models with up-down symmetry and equipped with isotropic and short-ranged single spin-flip
transition rates, see App. C.1. This class of models is defined by a two-parameter dependent
spin-flip transition rate, the two parameters basically controlling bulk and interfacial noise.

A thorough numerical investigation [1] of numerous macroscopic observables (interface
density, space-time correlation, persistence, etc.) of VM on the square lattice corroborated
the analytic predictions of the papers cited in the first paragraph. In [1] some features of
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critical percolation were also observed in the late stages of the coarsening dynamics, even
though it was not clear wether a truly long-lasting dynamical scaling regime in which the
domain pattern have the scaling properties of critical percolation could exist. In that paper
we claimed that the appearance of critical percolation properties in the VM dynamics on
a finite square lattice with PBC occurs at a typical time tp ' Lzp , where L is the system
linear size, with zp ' 1.67. We must admit, however, that this result was suggested by an
approximate analysis.

In this Chapter, we reformulate our statements on the approach to critical percolation
making them much more detailed and precise. This is achieved by following the same methods
used in the case of the Glauber dynamics (Chap. 1) and Kawasaki spin-exchange dynamics
(Chap. 2). In particular, the measurement of the average squared winding angle for domain
walls, 〈θ2〉, will show that two type of criticalities occur during the evolution of the system:
a first one, that corresponds to percolation, appears after a very short time span, and a
second one, with different scaling properties, that establishes later. Furthermore, the finite-
size scaling of various observables and the analysis of the domain area distribution will prove
that there is no long-lasting lapse over which critical percolation is established, contrary to
what happens for the 2dIM evolving with NCOP and COP dynamics. Instead, at sufficiently
long times the geometrical and statistical properties of the domain pattern grown by the VM
stochastic dynamics are those of the second criticality.

Hence, we need to reformulate slightly the problem studied in Chap. 1 and Chap. 2. We
introduce a typical time scale

tc ∼ Lz , (3.1)
with z ' 1.67, to which one can associate a length scale

`V(t) ∼ t1/z , (3.2)
that has the same meaning of the length `p(t) seen in the previous Chapters: the critical
behaviour (in terms of the geometry and statistics of domains) can be observed over distances
r such that `d(t) � r < `V(t), while for larger distances the system still looks like in the
initial state.

3.2 Definition of the Model
We consider the simplest version of the voter model, which is sometimes called the sym-

metric voter model. Given a finite graph (or lattice) Λ = (V,E), with set of vertices (sites)
V = {v1, v2 . . . , vN} and edges (bonds) E = {e1, e2 . . . , eM}, we assign to each vertex i ∈ V a
bi-valued opinion variable si ∈ {−1, 1}. We will always use the language of spin models and
thus, for us, the specification of the values of the opinion/spin at each vertex of the graph
(or lattice site), that is s = {si}i∈V , is considered as the spin configuration of the system. A
realisation of the VM stochastic process in the space of spin configurations is then determined
by single spin flip transitions, that is to say, transitions of the type s→ s(i) for a given i ∈ V ,
with the “arrival” spin configuration s(i) obtained from the “starting” one s by flipping the
spin at vertex i, and with transition rate given by

W (s→ s(i)) = C

2

1− 1
nc(i)

si
∑

j∈N (i)
sj

 = C
na(i|s)
nc(i)

, (3.3)

where N (i) is the set of vertices connected to vertex i (set of nearest-neighbour lattice sites),
nc(i) = |N (i)| is the number of vertices connected to vertex i (coordination number of the
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lattice) and na(i|s) = (nc(i)− si
∑
j∈N (i) sj))/2 is the number of vertices amongst N (i) that

have spin antiparallel to that of vertex i, given the configuration s. The constant C is
arbitrary and just sets the order of magnitude of the typical time step in which, on average,
one spin flip occurs (we will set it to 1).

Notice that W (s → s(i)) depends on the spin configuration s = {sk}k∈V only through
the quantity hi = si

∑
j∈N (i) sj (the “local field” acting on site i), as in the case of the

Glauber update rule, see Sec. 1.2, Eq. 1.8. But, in the case of the VM, the dependence is
linear in hi, thus sometimes the VM is called linear Glauber model in the literature [68].
However, it is possible to define other voter-like models in which the spin-flip rate is not
simply a linear function of the local field, but still satisfy the Z2 symmetry and have similar
properties [69, 70], see App. C.1. It is important to notice also that, since the spin-flip rate
is linear in the local field hi, the model can be solved exactly, in arbitray dimension [68, 71]
(that is to say, the equations describing the time evolution of correlation functions of any
order can be solved exactly). In App. C.2 we sketch the analytic calculations that allow us
to obtain the average site magnetisation and the two-point correlation function.

Looking at the spin-flip rate given by Eq. (3.3), we see that if a lattice site is surrounded
by neighbours that have the same opinion/spin, then its spin can not flip, meaning that
those sites that are inside the bulk of spin clusters are inert. The growth of domains is
driven purely by the fluctuations occuring at their interfaces. Moreover, the fully magnetized
states, that is to say, the (two) spin configurations where all vertices have the same value
of the spin, are absorbing states for the VM dynamics. Once the stochastic process falls in
one of these states it can not escape from it. For this reason, the time-dependent probability
distribution P (s, t) for the spin configuration s converges towards a trivial 2-mass distribution,
P∞(s) = p+ δs,1 + (1 − p+) δs,−1, where we denote by 1 the spin configuration in which all
vertices have spin +1, and by −1 the one in which all vertices have spin −1, and p+ is the
probability for the system to be trapped in the state 1. This implies also that the spin-flip
transition ratesW (s→ s(i)) do not satisfy a detailed balance condition with some Boltzmann-
like equilibrium distribution density Peq(s) ∼ exp {−U(s)}, for some energy function U(s).

In the rest of this Chapter, we are going to consider the VM on a 2d lattice with finite
linear size L and periodic boundary conditions (PBC). The spin-flip rate for site i reduces to

wi(s) = 1
2

1− 1
nc

si
∑

j∈N (i)
sj

 , (3.4)

with nc the coordination number of the lattice (by setting also C = 1), so that wi(s) =
na(i|s)/nc with na(i|s) ∈ {0, 1, . . . , nc}. The possible spin-flip transitions for the voter model
on a square lattice are depicted schematically in Fig. 3.4. The initial spin configuration is
always taken to be one with equal concentration of the two “opinions”, randomly distributed
over the lattice. In fact, the probability p+ ( p−) for the system to end up in a configuration
in which all sites have spin +1 (−1) is equal to the initial concentration of +1 (−1) spins (see
App. C.2). An equal concentration of the two species at t = 0 makes sure that stochastic
dynamics leads the system to the configuration 1 half of the times, and the other half to −1.

To set the stage, in Fig. 3.2 we show some snapshots of the evolution of a spin configuration
under VM dynamics on a triangular lattice with linear size L = 128 and PBC. The absence
of bulk noise and the roughness of the interfaces are clear in all images. They look very
different from those that we exhibited for the Ising model evolving with zero-temperature
Glauber dynamics. The initial state has a wrapping (blue, −1) cluster which is later broken,
see the snapshot at t = 64. In the last image at t = 1024 two spanning clusters having
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Figure 3.1: The possible spin-flip transitions for the voter model on a square lattice. In each case,
the central site (gray circle) represents the lattice site whose spin is chosen to be flipped.
The spins on the four nearest-neighbours are shown as well. W is the transition rate
from the configuration on the left to that on the right, while W is the rate associated
with the inverse transition. If q is the number of nearest-neighbours with antiparallel
spin, then the spin-flip rate is given by W = q/4.

opposite phases are present. It is clear from the figures that a coarsening process takes place
although there is no energy function to minimise in this model. At much later times one of
the two phases will predominate and “conquer” the sample.

3.3 Numerical analysis

3.3.1 Average squared winding angle

As seen in Secs. 1.5.3 and 2.4.3, the measurements of the average squared winding angle,
〈θ2〉, can be used to determine the type of criticality that the system is approaching during
its evolution.

Fig. 3.3 presents the data relative to 〈θ2〉 for the hulls of the largest cluster, in the case
of the VM dynamics on a square lattice with L = 640, plotted against the logarithm of the
curvilinear distance x. The data shown refer to just the wrapping hulls. A spanning cluster
appears at a very early time, t ' 5 for L = 640. The “critical” function c + 4κ/(8 + κ) ln x
is fitted to the data corresponding to t = 5.5, yielding κ ' 5.96, a value which is very close
to the κ = 6 of critical percolation. At later times, the long distance behaviour remains the
same: the slope of the curves is approximately the same as that at t = 5.5 for distances
x > xc(t), with xc a crossover of the curvilinear distance. Meanwhile, for x < xc(t), the slope
has changed but the behaviour is still critical in the sense that 〈θ2(x)〉 ' const. + C ln x.
After a sufficiently late time, 〈θ2〉 acquires this second criticality over the whole range of x.
By fitting the function c + 4κ/(8 + κ) ln x to the data corresponding to the latest time we
obtain κ ' 3.82. This result, associated to the interfaces, is very different from the one found
for the 2dIM with NCOP and COP dynamics, cases in which the interfaces at equilibrium
are smooth and κ = 0 at short length scales. It is thus evident that there exists a transition
between critical percolation at large distances and a new type of criticality (associated with
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(a) t = 0 (b) t = 4 (c) t = 16

(d) t = 64 (e) t = 256 (f) t = 1024

Figure 3.2: Some snapshots of the evolution of a spin configuration under voter model dynamics on
a triangular lattice with linear size L = 128 and PBC. Red cells and white cells represent
+1 and −1 spins, respectively. Sites belonging to a cluster that wrap around the system
are highlighted in green for a +1 wrapping cluster and in blue for a −1 wrapping cluster.

a SLE parameter κ ' 3.82) at small ones.
In order to highlight the crossover between these two regimes, in the inset of Fig. 3.3

we show the quantity 〈θ2〉 − b ln t against the logarithm of the rescaled curvilinear distance
x/tα with α = 0.74 and b = 0.97. The justification for this scaling is the following. The
unscaled data show a crossover from the early critical percolation behaviour to a new kind
of criticality at a time-dependent curvilinear distance xc(t) ∝ tα. Visually, xc(t) corresponds
to the point where 〈θ2〉 (when plotted against ln x) changes from one slope to another. This
length scale is related to `d(t) by xc(t) ∼ `D`d (t) ∝ tD`/zd with D` the fractal dimension of
the cluster hulls and zd the dynamical exponent. Thus, α should be related to κ and zd
by α = D`(κ)/zd = (1 + κ/8) /zd. In the case indicated in Fig. 3.3, as t increases, 〈θ2〉
approaches a functional form with κ = 3.82 (see the fitting function). Using now zd = 2
we deduce D` ' 1.48 and α ' 1.48/2 = 0.74, which is the value used to scale x in the
inset. The coefficient b can be related to κ and zd too. In fact, in order to obtain data
collapse for different times we also need to subtract from 〈θ2〉 the winding angle variance
corresponding to a length xc(t) ∝ tα, that is a quantity 4κ/(8 + κ) ln tα. Then we have
b = 4ακ/(8 + κ) = κ/(2 zd) ' 0.97.

For the other geometries, triangular and honeycomb lattices, similar fits yield 3 ≤ κ ≤ 4
at short length scales, see the caption of Fig. 3.4 for the precise values found in each case.
On the triangular lattice, as expected, critical percolation properties are already present at
the moment of the quench, t = 0. The insets in Fig. 3.4 display the time scaling and confirm
the arguments exposed in the previous paragraph.

The same scaling method was adopted by Blanchard et al. in [72] in the study of quenches
between critical points; more precisely, in the analysis of the 2dIM on the triangular lattice
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Figure 3.3: Voter dynamics on the square lattice. Average squared winding angle 〈θ2(x, t)〉 for the
wrapping hulls that form the largest cluster interface, against the logarithm of the curvi-
linear coordinate x, at different times given in the key. The lattice has linear size L = 640.
A fit of c + 4κ/(8 + κ) ln x to the data at t = 5.5 yields κ ' 5.96 (black dashed line),
while a fit to the data at late times, t = 9.37 · 104, gives κ = 3.82 (red dashed line). We
also show, for comparison, the slope associated to κ = 3 with dashed-dotted blue line.
In the inset, we collapse the dynamic data by plotting 〈θ2〉 − b ln t against the rescaled
curvilinear distance x/tα, with α = 0.74 and b = 0.97. See the text for an explanation of
these parameters.

evolving with NCOP dynamics at T = Tc after a sudden quench from T → ∞. These
dynamics show a crossover from the initial critical percolation point to the Ising critical
point controlled by the growing length `c(t) ' t1/zc with zc the critical dynamic exponent at
Tc. In this case, the cluster hulls have the equilibrium geometrical features of the critical Ising
point for x < xc(t), while they obey the properties of critical percolation for x > xc(t). This
double criticality is similar to what we observe for the interfaces of the VM on the triangular
lattice.

On the square lattice, the behaviour is also close to that found in the NCOP relaxation
dynamics to the critical Ising point [73]. In this case, a short time is needed to see the
wrapping hulls with κ ' 6, since the system is not already in a critical percolation state
at t = 0 (in fact, it is always initiated in a completely random configuration, with equal
probability of having either spin +1 or −1, at each site). But after this transient, it does not
remain in a critical-percolation-like regime as it happens for the 2dIM evolving with Glauber
or Kawasaki dynamics at a subcritical temperature. Instead, it approaches a new type of
criticality (in terms of the geometry of the domains).

Obtaining a result that is similar to that of a critical quench of the Ising model should
not come as a surprise. Indeed, the VM and IM belong to the same class of 2d stochastic spin
systems. In particular, if the model is defined on a square lattice, the spin-flip transition rate
for VM (Eq. (3.4)) and that for IM (Eq. (1.8)) can be shown to be special cases of a general
two-parameter spin-flip rate function, with the two parameters essentially being a “bulk”
noise and an “interfacial” noise. VM is specifically obtained when only interfacial noise is
switched-on. Moreover, the VM as well as the critical Ising model lie on a line of critical
points separating a paramagnetic phase from a ferromagnetic phase, in the space spanned by
these two noise parameters [69, 74]. While it is believed that the low temperature phase has
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Figure 3.4: Voter dynamics on the triangular (left) and honeycomb (right) lattice with L = 320 and
L = 160, respectively. Average squared winding angle 〈θ2(x, t)〉 for the wrapping hulls
of the largest clusters against the logarithm of the curvilinear coordinate x, at different
times given in the keys. We show fits of the function c + 4κ/(8 + κ) ln x with dashed
lines. In the left panel, a fit to the data at t = 0 yields κ ' 5.96 (black dashed line),
while at t = 4115, the estimated value is κ = 3.86 (red dashed line). In the right panel,
κ ' 5.21 at t = 14.8 and κ = 3.79 at t = 2.68 · 104. In the insets 〈θ2〉 − b ln t against
x/tα, with α = 0.74 and b = 0.97 on the triangular lattice, and α = 0.74 and b = 0.95 on
the honeycomb lattice, yielding the best data collapse. See the text for an explanation
of the meaning of the fitting parameters.

a universal behaviour (the one of the Ising model at zero temperature), the situation is less
clear on this critical line. Our present results seem to indicate that a new universality class,
at least for the behaviour of the domain walls, would exist for the VM.

Summarising, with the analysis of the winding angle we have shown the following.

• On the triangular lattice, the VM evolves in time leaving the initial random percolation
criticality. The domain walls approach another kind of criticality, close to that of the
equilibrium critical 2dIM, namely κ ' 3.86, while κIM = 3.

• On the other lattices, the domain walls approach a critical percolation state in a rela-
tively short span compared to the time required to reach the absorbing state. But then
they soon depart from this kind of geometry to enter a different type of criticality in
the late stages of the coarsening process, with an associated SLE parameter κ ' 3.80.

In both cases, the fractal dimension of the short length scales is approximately D`(κ = 3.8) =
1.48 and the temporal scaling is controlled by the usual coarsening length `d(t) ' t1/zd with
zd = 2.

3.3.1.1 Initial configuration with a flat interface

The results shown up to now were obtained using a paramagnetic initial state in equi-
librium at infinite temperature. We are now going to consider a “slab” initial state, which
consists in a spin configuration where half of the sites take spin +1 and the other half take
spin −1, and they are arranged into two “stripes”. For example, a spin configuration where
all sites with x-coordinate in [1, L/2] have spin +1, while those with x ∈ [L/2 + 1, L] have
spin −1 (for L even). Due to PBC, the +1 domain and the −1 domain are separated by
two straight (and wrapping) domain walls. Note that this is a frozen state for the zero-
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temperature Glauber dynamics but it is not for the voter model spin update rule. Under the
voter model dynamics, a flat interface can fluctuate.

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8

〈θ
2
〉

ln x

t = 5.5

51.8

181

631

7688

9.37 · 104

−6

−4

−2

0

2

4

−6 −4 −2 0 2 4 6

〈θ
2
〉
−

c
ln
(t

α
)

ln (x/tα)

t = 5.5
51.8
181

631

7688

9.37 · 104

Figure 3.5: Voter model dynamics on a square lattice with L = 640 and PBC. We show the average
squared winding angle 〈θ2(x, t)〉 measured for the wrapping hulls that form the largest
cluster interface, against the logarithm of the curvilinear coordinate x, at different times
given in the key. Left: Raw data. The data above the black line were produced in the case
of a completely random and homogeneous initial condition (same data as in Fig. 3.3).
The black line and the curves below are instead relative to the measurements obtained in
the case of slab initial state. The color code is the same for the two sets of data. Right:
scaling of the data for the slab initial condition. We plot the quantity 〈θ2〉 − c ln (tα)
against ln (x/tα), where c = 4κ/(8 + κ) with κ fixed to 3.85 , and the exponent α = 0.67
chosen to yield the best data collapse.

In Fig. 3.5, left panel, we show the average squared winding angle, 〈θ2〉, measured along
the walls of the largest spin cluster for the VM dynamics on a square lattice with L =
640, starting from the slab configuration defined above. 〈θ2〉 is shown as function of the
logarithm of the curvilinear distance x along the domain wall. The figure also displays the
data from Fig. 3.3, that is, the case corresponding to completely random and homogeneous
initial condition. The times at which the data are collected are the same in the two cases.
Concerning the latter set of data, at early times, t = 5.5, the domain walls separating the
two large spin clusters in which the system is divided are fluctuating only up to some short
distance, while over longer distances, they remain flat as in the initial state (κ = 0). As we let
time pass, the distance up to which the domain wall “roughness” (and thus fractality) can be
observed increases, and moreover the value of the SLE parameter κ associated with the slope
of curve 〈θ2(x)〉 (considered as function of ln x) tends to the same one that establishes at long
times in the case of homogeneous initial condition. For the latest time shown, t = 9.37 · 104,
the data for the two kinds of initial conditions coincide, within numerical accuracy. This
shows that the “second criticality” is not related to critical percolation, nor to the particular
initial configuration of the system, but it is inherent to the long term behaviour of the domain
walls under the voter model dynamics.

We identify a time-dependent crossover length, that we denote by xc(t). At curvilinear
length scales larger than xc(t) the domain walls still retain the properties of the initial con-
dition, that is, they are flat on average, while for smaller length scales the domain walls have
fractal properties associated to κ ' 3.85. As done in the previous cases, we suppose that
xc(t) ∼ tα with an exponent α to be determined from the scaling. We show this scaling in the
right panel of Fig. 3.5, where 〈θ2〉 − c ln (tα) is plotted against ln (x/tα), with c = 4κ/(8 + κ)
and κ fixed to 3.85. The best collapse is achieved with α ' 0.67. Notice that this value
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is close to the one obtained for the scaling of 〈θ2〉 in the case of infinite temperature initial
condition.

3.3.2 Wrapping probabilities

We can now ask what are the implications that this new type of criticality, that emerges
from the analysis of 〈θ2〉 in the late stages of the dynamics, has on the so-called wrapping
probabilities, i.e. the probability that a spin cluster wraps around the system along a certain
direction, at a given time. In the case of the 2dIM evolving with either Glauber or Kawasaki
spin update rules at zero or very low temperature, we have seen that, at a certain point
of the coarsening process, wrapping domain walls become topologically stable against the
microscopic stochastic dynamics: they can still fluctuate, but their number and the direction
along which they percolate remain fixed, at least until the very late equilibration regime takes
over (for T > 0). Moreover, they approach the values of 2d critical percolation. In the case
of the voter model dynamics, we do not find the same behaviour, as it is shown in Figs. 3.6
and 3.7

Nevertheless, we are interested in the finite-size scaling of the πs. In the late stages of
coarsening, we should expect

πα(t, L) ∼ π̃α
(
t

L2

)
(3.5)

with π̃α a scaling function, where the subscript α stands for the specific direction of the
wrapping (only horizontally, only vertically, diagonally, etc.). The scaling of time t as t/L2

is justified by the fact that, at very long time, the domain growth is described by the usual
characteristic length `d(t) ∼ t1/2 associated to NCOP dynamics, which also coincides with the
dynamical scaling law found by studying the two-point correlation function (see App. C.2).
However, we are interested in the possibility of the existence of a short-time regime in which
finite-size scaling is realised with a dynamic exponent z different from zd = 2 associated to
NCOP coarsening.

In other words, we would like to determine if there exist a time scale tc ∼ Lz, with z < 2,
corresponding to the typical time required by the system to grow domain walls with the frac-
tal behaviour evidenced by 〈θ2〉, spanning the whole system. For t . tc ∼ Lz, the wrapping
probabilities πα should satisfy the scaling relation πα(t, L) ' π̃(c)

α (t/Lz), with a scaling func-
tion π(c)

α (x) different from πα(x), the one associated with the late coarsening regime leading
to the absorbing state. This is the same argument used for the other types of dynamics, where
we showed that indeed there exists an early-time regime in which the coarsening process build
critical percolation structures up to a distance `p(t), growing much faster than `d(t) ∼ t1/zd ,
so that a dynamical scaling regime, with critical percolation properties extending over the
entire system, is attained at time tp such that `p(t) ∼ L. In the case of the VM, we are
not sure that the percolation criticality is what the system is approaching, and if it can last
for very long period of time before the system enters in the final regime that leads to the
absorbing state.

By looking at the finite-size scaling of the data we find that a good scaling at short times
is achieved by using z ' 1.67. For large times instead, we recover the usual t/L2 scaling,
as expected. This is shown in Fig. 3.6 for the wrapping probabilities in the case of VM
dynamics on a square lattice, and in Fig. 3.7 for the VM dynamics on a honeycomb lattice.
Notice that, for the honeycomb lattice case, we need to show πh and πv (the probability for a
spin cluster to wrap only horizontally and only vertically, respectively) separately, since the
aspect ratio of the lattice implemented in the simulations is not 1, as explained in more detail
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Figure 3.6: The wrapping probabilities for the VM dynamics on a finite square lattice for different
values of L, indicated in the keys. We show πhv (red points), πh + πv (green points),
and πdiag (blue points). The horizontal dashed lines correspond to the exact values of 2d
critical percolation wrapping probabilities π(p)

hv , π(p)
h + π

(p)
v and π(p)

diag, for a lattice with
unit aspect ratio, see Sec. 1.3. In the main plots, the wrapping probabilities are plotted
against t/L2. In the inset, the same data are plotted against the rescaled time t/Lz, with
z ' 1.67.

in App. A.2. The curves do not show a long-lasting metastable state with the properties of
critical percolation, contrary to what happens for the Ising model evolving under Glauber
dynamics or Kawasaki dynamics. The πs approach the critical percolation values (πhv from
below, while πh, πv and πdiag from above after a short transient in which they reach their
maximum value) around a time t? ' 0.1Lzd (on the square lattice) and t? ' 0.5Lzd (on the
honeycomb lattice), but later they continue to evolve towards the asymptotic values dictated
by the absorbing states (πhv = 1 and πh = πv = πdiag = 0). This is very different from what
is shown, e.g., in Fig. 1.11 for Glauber dynamics.

These measurements suggest that, in the cases in which the process does not start from a
critical percolation state (as it happens instead for the model on a triangular lattice), there
is a crossover between two different scaling regimes. In the first one, the relevant length scale
is given by

`V(t) ∼ t1/z , (3.6)

with z ' 1.67, which describes the approach to the new criticality. We use the subscript
“V” to explicitly mean that this criticality is observed so far only for the voter model and to
distinguish it from the characteristic length scale `p(t) controlling the pre-percolation regime
for the other types of stochastic spin dynamics studied before. The second and usual NCOP
coarsening regime, in which one observes the characteristic length scale `d(t) ∼ t1/2, sets in
roughly after πh and πv have reached their maximum value. At that point, in most realisations
of the VM dynamics, one of the spin clusters that are wrapping only in one direction of the
lattice (in a so called “stripe” configuration or “diagonal” one, see Fig. 1.2) starts percolating
in both directions (i.e. with the so-called “cross” topology) at the expense of all the others.
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Figure 3.7: The wrapping probabilities for the VM dynamics on a finite honeycomb lattice, for dif-
ferent values of L. We show πhv (red points), πh (green points), πv (blue points), and
πdiag (purple points). The two probabilities πh and πv are shown separately, since the
simulations are done on a lattice with aspect ratio

√
3. The horizontal dashed lines cor-

respond to the exact values of 2d critical percolation wrapping probabilities for a lattice
with aspect ratio

√
3, see Sec. 1.3. In the main plots, the data are plotted against t/L2.

In the inset, instead, they are plotted against the rescaled time t/Lz, with z ' 1.67.

3.3.3 Largest cluster scaling

In this Section we analyse the scaling properties of the size of the largest cluster, Ac, and
the length of the hulls forming its interface, lc, by using the same finite-size scaling argument
adopted for the wrapping probabilities. We assume that Ac and lc have the scaling behaviour

Ac(t, L) ∼ LD
?
A Ãc

(
t

Lz

)
, lc(t, L) ∼ LD

?
` l̃c

(
t

Lz

)
, (3.7)

with Ãc and l̃c some scaling functions, D?
A and D?

` the fractal dimensions of the largest cluster
size and hull length, respectively. We use D?

A, D?
` and z as free parameters to be adjusted

together by looking at the best collapse of the datasets corresponding to different values of L.
The aim is to prove that a finite-size scaling is achieved with z ' 1.67, as obtained from the
analysis of the wrapping probabilities, and with D?

A, D?
` taking values that are compatible

with the SLE parameter κ estimated from the measurements of 〈θ2〉.
In Fig. 3.8 we display the scaling for the VM dynamics on a square lattice. The best

collapse is achieved by using D?
A ' 1.93 and D?

` ' 1.53 for the largest cluster size and the
length of its hull, respectively, and z ' 1.67. We confirm what is found for the scaling of the
wrapping probabilities, that is to say, the existence of a time scale tc(L) ∼ Lz that marks the
end of a first scaling regime and the entrance into the last coarsening one. We find similar
results for the dynamics on a honeycomb lattice, see Fig. 3.9, with D?

A ' 1.90, D?
` ' 1.52

and z ' 1.67. We note that the fractal dimension of the largest cluster hull, D?
` , estimated

through this finite-size scaling method, is compatible, within numerical accuracy, with the
value of κ obtained from the analysis of 〈θ2〉. For example, in the case of the data relative to
the dynamics on the square lattice, D?

` = 1.53 would correspond to κ = 4.24. However, this
is not the case for D?

A, since D?
A ' 1.93 would imply κ ' 3.15, a value which is much farther.
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Figure 3.8: The scaling of the geometric properties of the largest cluster for the VM dynamics on a
square lattice. The size of the largest cluster Ac divided by LD?

A , with D?
A = 1.93 (left),

and the length of its external hull lc divided by LD?
` , with D?

` = 1.53 (right), for various
L. Regarding lc, the contribution due to wrapping hulls is shown with continuous lines
while the one due to non-wrapping hulls is shown with dashed lines. All the quantities
are plotted against the rescaled time t/Lz, with z = 1.67. The values of D?

A, D?
` and z

were found by looking for the best collapse of the data corresponding to different L.

In Fig. 3.10 we display the same kind of scaling for the voter model dynamics on a
triangular lattice. Again we find that the scaling relations in Eq. (3.7) are satisfied if we
plot both Ac/LD

?
A and lc/LD

?
` against t/Lz with z ' 1.67, and we use the fractal dimensions

D?
A ' 1.96 and D?

` ' 1.49. Concerning the fractal dimensions, D?
A is quite far from the

one that would correspond to criticality at κ = 3.85, the value obtained from the analysis of
〈θ2〉 (for the VM dynamics on the triangular lattice) while D?

` is very close. In the insets of
Fig. 3.10 we present the same data but without rescaling time and using the fractal dimensions
of critical percolation, DA = 91/48 and D` = 7/4. As one can see, the data collapse is
perfect at very short times, since the system is initially in a critical percolation state (for
the triangular lattice) which survives for a while over long distances after the beginning of
the stochastic dynamics. Indeed, we recall that we are dealing here with the largest cluster,
which is supposed to percolate already at t = 0 in the case of the VM dynamics on the
triangular lattice. At longer times, the scaling breaks down, as expected, since the system
evolves towards the second criticality.

To conclude, we found that the largest cluster size Ac and the length of its walls, lc, satisfy
finite-size scaling with respect to a typical time scale tc ∼ Lz with z ' 1.67 at relatively short
times, before entering the long-term coarsening process. During the transient regime the
dynamics seem to approach a state with fractal scaling properties, different from those of
critical percolation, but not associated to any well-known criticality. The SLE parameter κ
estimated from the hull fractal dimension, D?

` , seems to be compatible with the one obtained
from 〈θ2〉, even though we observe some variation due to the particular lattice geometry. On
the other hand, the value ofD?

A is quite different. We suspect that this apparent disagreement
is due to the fact that the only mechanism which is responsible for domain growth in the voter
model dynamics is the interfacial noise. Thus, we expect that the fractal properties measured
for the domain walls and those measured for the bulk are associated with two different types
of critical behaviour.
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Figure 3.9: The scaling of the geometric properties of the largest cluster for the VM on a honeycomb
lattice. The size of the largest cluster Ac divided by LD?

A , with D?
A = 1.90 (left), and the

length of its external hull lc divided by LD?
` , with D?

` = 1.52 (right), for various L. As
in Fig. 3.8, the contribution to lc due to wrapping hulls is shown with continuous lines
while that from non-wrapping hulls is shown with dashed lines. All the quantities are
plotted against the rescaled time t/Lz, with z = 1.67. The values of D?

A, D?
` and z were

found by looking for the best collapse of the data corresponding to different L.

3.3.4 Number density of domain areas

Let us now consider the full size distribution of the spin clusters that are grown by the
VM dynamics, which is probed by the so-called number density of domain areas, N (A, t, L),
defined in Sec. 1.3. We repeat the same type of analysis performed for the other types of
stochastic spin dynamics seen in Chaps. 1 and 2.

First, we checked that N satisfies the dynamical scaling relation given by Eq. (1.25).
This is shown in Fig. 3.11, where we display the data for the VM dynamics on a triangular
lattice. The rescaled data seem to collapse on the master curve f(x) = 2 cd (1 + x)−τA , with
τA = 187/91 ≈ 2.0550 the 2d critical percolation Fisher exponent and 2 cd ' 0.0580, that is,
the scaling function for NCOP coarsening (see Eq. (1.26)). This form of the scaling function
is valid only under the hypothesis that the system is able to reach a critical percolation state
very soon in the course of the dynamics and that the spin clusters retain this criticality at
any time t, over distances r > `d(t), if one rescale all lengths by `d(t) [10, 11]. For the VM
dynamics, we have seen that the domain pattern is characterised, at sufficiently long times,
by a different type of criticality. Indeed, if we fit the function f(A) = C A−τ to the data
collected at the latest time available, t = 7688, for areas A in the interval [102, 104], we find
C ' 0.024 and τ ' 2.016. However, it is very difficult to distinguish this numerical estimate
from the critical percolation value τA ' 2.0550, because of the numerical error involved,
therefore the scaling presented in Fig. 3.11 may be misleading.

As a side note, the “bump” that appears at the tail of the size distribution is due to
boundary effects, i.e. the contribution coming from spin clusters whose radii are comparable
with the linear size of the system, L, or even percolating spin clusters.

A better way to visualize the number density N is given in Fig. 3.12 (left panel), where
we plot the quantity Aτ N against A, with τ = 2.016, the value obtained by the fit. The data
at t = 0 complies with the critical percolation scenario, with an algebraic decay, N (A, t =
0) ' 2 cdA−τA , with τA = 187/91 (see the inset), since the initial spin configuration is always
right at the critical percolation point in the case in which the model is defined on a triangular
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Figure 3.10: The scaling of the geometric properties of the largest cluster for the VM dynamics on
a triangular lattice. In the left panel, the size of the largest cluster Ac divided by LD?

A ,
with D?

A = 1.96, while in the right panel, the length of its external hull lc divided by
LD

?
` , with D?

` = 1.49, for various L. Regarding lc, we have separated the contribution
coming from wrapping hulls (continuous lines) from that coming from non-wrapping
ones (dashed lines). All the quantities are plotted against the rescaled time t/Lz, with
z = 1.67. The values of D?

A, D?
` and z were found by looking for the best collapse of

the data corresponding to different L. In the insets we scale the data using the fractal
dimensions of 2d critical percolation, DA = 91/48 and D` = 7/4, and plot them against
time t.

lattice. As the system evolves, N approaches the new criticality corresponding to an exponent
slightly different from that of critical percolation, which corresponds to the lower plateau in
the plot shown in Fig. 3.12 - left panel. The transition between the two regimes is very clear.

Indeed, at any intermediate time, there is a “smooth” crossover between the behaviour
of the initial cluster size distribution, satisfying the statistics of critical percolation, and the
“final” distribution that conforms to the new type of criticality. The point of crossover, at
a given time t, can be collapsed by properly rescaling the area A by tD/z, with z ' 1.67
and D = 2/(τ − 1) ' 1.97, the domain fractal dimension associated with a Fisher exponent
τ ' 2.016, see Sec. 1.3 and Eq. (1.21). This scaling is shown in the right panel of Fig. 3.12.
Moreover, we fitted the function c xa to Aτ N (A), taken as function of the rescaled domain
area A/tD/z, obtaining a ' 0.228. We recall that a similar behaviour is found for the size
distribution of the domains in the so-called pre-percolation regime in the case of a KIM
evolving under Glauber dynamics (see Fig. 1.19) and Kawasaki dynamics (see Fig. 2.13).

A similar analysis is performed for the VM dynamics on the square and honeycomb
lattices, see Fig. 3.13. The situation is a bit different from that observed in the case of the
triangular lattice, since the initial state is not critical in terms of percolation. Moreover, we
observe strong finite-size effects on the value of the exponent τ dictating the algebraic decay
of N (A, t, L) at late times. In fact, for the VM on the square lattice, a fit of the data for
L = 640 at t = 16384 to the function C A−τ , taking A ∈ [102, 104], yields τ ' 1.983 and
C ' 0.022. In the case of VM dynamics on a honeycomb lattice with L = 640, a similar fit
of the data at t = 72942 taking A ∈ [102, 2× 103] yields τ ' 1.984 and C ' 0.024. However,
in the limit L→ +∞ we should recover τ > 2 in order to have a correct normalisation of N .

The scaling behaviour of N is similar to what is observed in the case of the NCOP
dynamics in Chap. 1. In fact, as one can see from Fig. 3.13, there is a clear crossover between
the behaviour for large domains, that still satisfy the statistics of the initial state, and that
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Figure 3.11: The cluster size number density, N (A, t, L), for the VM on a triangular lattice with
linear size L = 640, at different times indicated in the key. The number density N
is multiplied by `4d(t) and plotted against the rescaled size A/`2d(t), where we took
`d(t) of the form `d(t) = (1 + t)1/2. The black dashed curve is the function f(x) =
2 cd (1 + x)−τA , with τA = 187/91 the Fisher exponent for 2d critical percolation and
2 cd ' 0.058.

for small ones that have already the statistics associated with the criticality that the system
is approaching in the long-time regime, which corresponds to the plateau in the rescaled
distribution AτN (A) shown in the plot. The large-domain region is the equivalent of the
pre-percolation regime observed for the other types of dynamics. The difference in this case
is that the criticality that the system is reaching at long times (in terms of the geometry and
statistics of spin clusters) is not that of percolation.

The point of crossover, at a given time t, occurs approximately at a characteristic domain
size A(t) ∼ tξ. The exponent ξ is determined by looking at that value that produces the
best collapse of the data. We found ξ ' 1.18 for the VM dynamics on the square lattice, and
ξ ' 1.17 for that on the honeycomb lattice. The scaling is very good, apart from the deviations
caused by finite-size effects that are occuring at very small A (due to the discreteness of the
lattice) and in correspondence of very large domain areas, with the so-called “bump”. If
we assume that the characteristic size A(t) ∼ tξ is given by A(t) = `V(t)D ∼ tD/z, with
`V(t) the length introduced in Sec. 3.3.2, and assume z = 1.67, the dynamical exponent
obtained from analysing the scaling of the other observables, we can get an estimate of the
fractal dimension D. For the VM dynamics on the square lattice we get D ' 1.97, while
for the VM dynamics on the honeycomb lattice, D ' 1.96. These estimates are compatible,
within numerical accuracy, with the values of D?

A found by scaling the largest cluster size
in Sec. 3.3.3. These results again imply that, at a given time t, the new criticality observed
from the fractal properties of the domain walls extends up to a distance `V(t) ∼ t1/z.

We also fitted the power law Φ(x) = c xa to the rescaled distribution, N (A, t)Aτ , in the
ramp-like region as shown in Fig. 3.13. We obtain a ' 0.260 for the VM dynamics on the
square lattice, while a ' 0.366 for the honeycomb lattice case. Note that the exponent a
estimated in this way is in the same range of values observed for the other types of stochastic
spin dynamics, see Sec. 1.5.5.2 and Sec. 2.4.6.2.
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Figure 3.12: VM dynamics on a triangular lattice with linear size L = 640. In the left panel we
show Aτ N (A, t) against A, with τ ' 2.016, at different times indicated in the key. The
value of τ was found by fitting the function C A−τ to the data relative to t = 7688,
in the interval [102, 104]. The constant C ' 0.024 is shown with a black dashed line.
In the inset, AτA N (A, t = 0), with τA = 187/91 the Fisher exponent for 2d critical
percolation, plotted against A. In the right panel, Aτ N (A, t) is plotted against the
rescaled size A/tD/z, using the same value of τ as in the left panel, z = 1.67 and
D = 2/(τ − 1) ' 1.97. The function c xa, fitted at t = 14.8 and in the interval [2.5, 10]
of the rescaled area x = A/tD/z, yields a ' 0.228 and is shown by an inclined dashed
line.

3.4 Conclusions

Let us summarise the main results shown in this Chapter.
We studied the early stages of the coarsening process occurring in a 2d kinetic Ising

model evolving with voter model (VM) dynamics. We found a transient between the initial
disordered state and a state in which spin clusters display long-distance fractal properties as
the ones at critical percolation. This critical-percolation-like state, however, is not as stable
and long-lived as the one observed for the other microscopic dynamics, the Glauber dynamics
and the spin-exchange dynamics, which satisfy a detailed balance condition with respect to
the Gibbs-Boltzmann probability distribution.

More precisely, the VM either starts from critical percolation (on the triangular lattice) or
gets very close to such criticality in a very short time span (for the other lattices). However,
differently to what happens with the other types of stochastic spin dynamics, the percolation
state is not stable over a long period of time. The further evolution from the percolating
state takes the system to a regime in which domain walls are still critical, but with fractal
properties that are closer to those of the critical Ising point, though still different from them.
We see from our simulations, for example, that the SLE κ parameter that we extract from
the analysis of the winding angle measured on domain walls, moves from a value that is very
close to 6, corresponding to critical percolation, to a value κ ∈ [3.8, 4.2], approximately, at
long times. Unfortunately, we were not able to associate this type of critical behaviour to
any known model.

Having said this, from the finite-size scaling of the wrapping probabilities and other
observables, a time scale tc ' Lz with z = 1.67 can be extracted, corresponding to the
typical time needed to reach a state in which the “new” criticality extends over the entire
system, in analogy with the time tp required to reach the critical-percolation-like dynamical
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Figure 3.13: Scaling of the domain area number density, N (A, t), for the VM on a square lattice
(left) and on a honeycomb lattice (right), both with L = 640. The quantity Aτ N (A, t)
is plotted against the rescaled size A/tξ, at different times indicated in the keys. As
explained in the main text, the value of the exponent τ is not the one of critical per-
colation, but it has been estimated numerically by fitting the function C A−τ to the
unscaled distribution N (A, t, L) at the latest time t reached by our simulations. For the
case of the dynamics on the square lattice, we found τ ' 1.983, while for the honeycomb
lattice case, τ ' 1.984. The horizontal dashed lines correspond to C ' 0.022 in the
left panel, and C ' 0.024 in the right panel. In both cases, the value of the exponent
ξ was chosen to obtain collapse in the “ramp” region, finding ξ ' 1.18 for the square
lattice and ξ ' 1.17 for the honeycomb one. The function Φ(x) = c xa has been fitted
to the rescaled distribution at t = 64 and in the interval [1, 102] of the rescaled area
x = A/tξ in the square lattice case, while it has been fitted to the rescaled distribution
at t = 109.7 and in the interval [1, 10] of the rescaled area in the honeycomb lattice
case, yielding a ' 0.260 and a ' 0.366, respectively. The fitting curve is shown by an
inclined dashed line.

scaling regime in the other types of stochastic dynamics. This is also confirmed by the
analysis of the size distribution of the spin clusters, from which we obtained the evidence for
the existence of a new characteristic length

`V(t) ∼ t1/z , (3.8)
which controls the crossover between the initial state and the critical behaviour at long
times. Essentially, the critical properties associated with a SLE parameter κ ∈ [3.8, 4.2] can
be observed over distances r such that `d(t) � r < `V(t), while for larger distances the
system still looks like in the initial state. In other words, `V(t) is the analogous of the length
`p(t) describing the pre-percolation regime in the Ising model evolving with either Glauber
dynamics or spin-exchange dynamics, at subcritical temperatures.

The separation between the critical state reached at tc ' Lz and the late-time coarsening
regime that brings the system to one of the absorbing state is not sharp. Indeed, the latter
occurs in a typical time scale tabs ∼ L2, while we find z ' 1.67. This makes the distinction
between the processes linked to the first and second regime difficult to disentangle.
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Quench dynamics of the isolated
p = 2 spherical spin glass model
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Chapter 4

Quench dynamics of the isolated
p = 2 spherical spin glass model.

4.1 Introduction

In recent years, the dynamics of isolated many-body quantum systems, and especially
the search for a statistical description of their asymptotic evolution [75], have received great
attention. One of the main motivations to study these issues from a theoretical point of
view is the practical realisation of quenches of isolated ultra-cold atoms that are confined in
optical lattices [76]. In this context, it is the possibility of tuning the strength of the effective
interaction between the atoms, or even modify the dimensionality of the lattice, while keeping
the system isolated, that allowed physicists to study experimentally the dynamics of quantum
quenches. Another reason for the interest in these issues, is the recently proposed mechanism
of many-body localisation that is used to describe the metal-insulator transition in materials
with quenched disorder [77].

A quantum quench consists in the process where a system, which is initially prepared in the
ground state of a certain HamiltonianH0 (or, more generally, a mixed state ofH0) is let evolve
unitarily with a different Hamiltonian H, usually obtained from H0 by just changing one of
its parameters (for example, the strength of the coupling between the degrees of freedom).
One can think of realising a similar procedure also for a classical system. In the classical
setting, a quench would consist in preparing a system in an equilibrium state in the canonical
Gibbs-Boltzmann ensemble with respect to a given Hamiltonian H0, and then let it evolve
under Hamiltonian dynamics (i.e. removing the contact with the thermal bath) with respect
to a new Hamiltonian H, with the same form, but with different parameters. This problem
has not received as much attention as the quantum version, although we will show that it
raises very similar questions. Usually, one is interested in determining whether the system is
able to provide a bath for itself, allowing it to reach asymptotically a new equilibrium state
à la Gibbs-Boltzmann, thanks to the interactions between the many degrees of freedom.

It is known that two classes of systems fail to reach an equilibrium state of Gibbs-
Boltzmann kind in the late stages of the dynamics after a quench. These are the integrable
systems, that is, systems with a macroscopic number of conserved quasi-local quantities [78],
and many-body localized quantum systems, whose trajectories remain confined in localised
states that are close to their initial conditions because of the presence of “frozen” randomness.
Indeed, some of the ultra-cold atoms instances realised in the laboratory are low-dimensional
and considered to be integrable. This implies that they are not able to act as a bath on
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themselves, even though they clearly reach a stationary regime asymptotically in time. A
natural question is then how to characterise this stationary regime. A possibility is repre-
sented by the Generalised Gibbs Ensemble (GGE) [79, 80], an extension of the canonical
Gibbs-Boltzmann ensemble that aims to include the effect of all relevant conserved charges
(see, for example, the review articles [75, 81, 82]).

Similar equilibration problems can arise in classical isolated systems. A first study of the
dynamics of isolated interacting (classical) disordered models appeared in [83]. More precisely,
the model considered was the p-spin interaction spherical spin glass model (or in short, p-
spin spherical model), which represents a paradigm in the mean-field description of glassy
physics. It is a solvable model (in the thermodynamic limit) whose relaxation dynamics, for
p ≥ 3, successfully reproduces some properties of fragile glasses. The literature on the static,
metastable and stochastic dynamics of the p-spin spherical model is vast. Numerous aspects
of their behaviour are very well characterised, even analytically (see Refs. [84, 85, 86]). The
corresponding Hamiltonian dynamics, following a quench in the strength of the disorder, is
realised by adding a kinetic term to the standard p-spin spherical model potential energy. The
resulting model is thus equivalent to the motion of a particle on an (N − 1)-sphere under the
effect of a complex quenched random potential [87, 88, 89]. For the case p ≥ 3, it was found
that, for all quenches starting from an equilibrium paramagnetic state, the system reaches
an asymptotic stationary regime in which either FDT with a single temperature is satisfied,
or an ageing behaviour arises, characterised by a two-step non-equilibrium relaxation. In a
certain sense, the dynamics of the isolated system resembles the purely dissipative relaxation
dynamics of the same model in contact with a heat bath.

In the present Dissertation, we study the post-quench Hamiltonian dynamics of the p = 2
case, in a similar fashion to what was done in Ref. [83] in the case p = 3. This model, both in
its classical and quantum formulations, has a connection with coarsening phenomena, made
via its relation to the O(N)-λφ4 model, in the infinite N limit. Furthermore, the model has
recently appeared in a semiclassical study of the Sachdev-Ye-Kitaev model [90]. The interest
towards the Hamiltonian dynamics of the p = 2 model was sparked by its resemblence to the
Neumann integrable system of classical mechanics [91], the constrained motion of a classical
particle on SN−1 under a harmonic potential, for a special choice of the spring constants. The
only difference is that in the p = 2 model one imposes the spherical constraint on average
while in Neumann’s model one does strictly, on each trajectory. This difference, however,
should not be important in the N → ∞ limit. We will exploit results found in literature,
notably the exact expressions of the N − 1 conserved charges in involution [92, 93, 94].

The quench protocol amounts to a uniform change of the (random) interaction matrix,
that is to say, J0

ij 7→ Jij = (J/J0)J0
ij , and the initial conditions are sampled from canonical

equilibrium at a given temperature, choosing in this way initial configurations typical of
a paramagnetic state at high temperature, or a condensed, ferromagnetic-like, state at low
temperature. The dynamics was studied both in N →∞ limit, through the Schwinger-Dyson
equations describing the time-evolution of the two-time autocorrelation and linear response
functions, and in the case of N finite, with N the number of spin degrees of freedom, by
directly integrating their equations of motion. Most of the results that we are going to show
have been obtained by integrating numerically these equations.

The change in the potential energy landscape induces finite injection or extraction of
energy density in the sample, thus one would expect that, for sufficient energy injection a
system initially prepared in an equilibrium condensed state can reach a paramagnetic state in
the post-quench dynamics, while for sufficient energy extraction a system initially prepared in
an equilibrium paramagnetic state can be brought to a condensed state. A naive asymptotic
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analysis of the Schwinger-Dyson equations for the two-time correlation and linear response
functions also suggests that a stationary state in which FDT is satisfied can be reached, with
a “final” temperature Tf tha can be computed. However, the scenario that we discover by
studying the numerical solutions is not so simple. Depending on the asymptotic behaviour
of the two-time autocorrelation function and static susceptibility, in the limit N → ∞, we
can identify three different phases in the space of the parameters that control the quench
dynamics. In particular, for a condensed initial state, we observe that, for certain choices
of the quench parameters, the system remains confined in a condensed state (close to the
original one) in the post-quench dynamics, while, for other choices, it aquires a paramagnetic
behaviour. However, in none of these dynamical phases a Gibbs-Boltzmann equilibrium
measure is reached, contrary to what happens in the strongly interacting p = 3 case. This is
due to the fact that, asymptotically in time, the system reduces effectively to a collection of
decoupled harmonic oscillators. The role played by the N − 1 Neumann integrals of motion
on the lack of equilibration of the system will be then discussed.

4.2 Background
This Section presents the definition of the spherical spin glass model with 2-spin inter-

actions, and a summary of the main analytical results that are available for the equilibrium
behaviour and the relaxation dynamics.

4.2.1 Definition of the model

The spherical spin glass model with 2-spin interactions was first introduced and studied
by Kosterlitz, Thouless and Jones [95] as one of the simplest possible magnetic models with
quenched random interactions.

The model consists of N degrees of freedom, denoted by s1, s2, . . . , sN , that interact
amongst themselves through 2-body interactions. The potential energy of the system is
given by

Hpot({si}, {Jij}) = −1
2

N∑
i 6=j

Jijsisj . (4.1)

where the couplings Jij are independent identically distributed random variables drawn from
a Gaussian distribution with average and variance

µJ = [Jij ] = 0 , σ2
J = [J2

ij ] = J2

N
, (4.2)

respectively, with the brackets [ · ] denoting the expectation with respect to the probability
distribution of the Jij . The couplings are symmetric under the exchange of indices, Jij = Jji,
and we set Jii = 0 for any i. The parameter J characterises the width of the Gaussian
distribution. Notice that σ2

J ∝ N−1 in order to have Hpot of order N .
In the standard spin-glass setting the variables {si} are Ising spins, that is to say, si ∈

{−1, 1} for any i, and the model given by the Hamiltonian in Eq. (4.1) is known as the
Sherrington-Kirkpatrick (SK) spin-glass model [96]. We will, instead, consider the spherical
limit (or soft-spin version), which consists in taking the si as real variables, si ∈ R for
i = 1, . . . , N , subject to the constraint

N∑
i=1

s2
i = N . (4.3)
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Such spherical constraint is imposed by adding a term of the following form

Hconstr({si}, z) = z

2

(
N∑
i=1

s2
i −N

)
(4.4)

to the Hamiltonian, with z a Lagrange multiplier.
This quadratic model is a particular case of the family of p-spin interaction spin glass

models, defined by the Hamiltonian

Hpot({si}, {Jij}) = −
N∑

i1<i2<...<ip

Ji1...ipsi1 . . . sip . (4.5)

where p is an integer (p ≥ 2), and Ji1...ip are i.i.d. random variables with mean [Ji1...ip ] = 0
and variance [J2

i1...ip ] = J2p!
2Np−1 . As observed in Ref. [97], from an equilibrium point of view,

the p = 2 model belongs to a different universality class from the one corresponding to the
models with p ≥ 3. For example, its free-energy landscape and relaxation dynamics are much
simpler. It is, indeed, a model that, in the limit of large N , resembles strongly the O(N)
model for ferromagnetism. More generally, the form given by Eq. (4.5) is one instance of a
generic random potential V ({si}) with zero mean and correlations given by [87, 88, 89]

[V ({si})V ({s′i})] = −NV
(
|s− s′|2

N

)
, (4.6)

with V(x) = −1
2
(
1− x

2
)p in the case of the p-spin spherical model.

The model thus defined does not have an intrinsic dynamics. Usually, in the context of
statistical physics applications, one is interested in the time evolution of the system when
it is coupled to a thermal bath at a given temperature, which can be described either by
a Monte Carlo Markov chain, whose transition rates satisfy detailed balance condition with
respect to the canonical equilibrium distribution, or by the Langevin equations [98]

dsi(t)
dt = − ∂

∂si
Hpot({sk})− z(t)si(t) + 2Tξi(t) (4.7)

where the Lagrange multiplier z needs to be time-dependent to enforce the spherical con-
straint in the course of time, ξi with i = 1, . . . , N are istances of Gaussian white noise with
zero mean and correlations 〈ξi(t)ξj(t′)〉 = δij δ(t − t′), and T is the temperature of the
bath. However, in this Dissertation, we are going to study the evolution of the system under
Hamiltonian dynamics. To do so, we introduce a kinetic energy

Hkin({ṡi}) = m

2

N∑
i=1

(ṡi)2 , (4.8)

where ṡi = dsi
dt and m > 0 is a parameter of the model, the “mass” of a particle who is forced

to move on the (N − 1)-sphere with radius
√
N , and whose coordinates in RN are given by

s = (s1, . . . , sN ). The total energy of the Hamiltonian spherical 2-spin model is then given
by

H = Hkin +Hpot +Hconstr , (4.9)
and the equations of motions by

ms̈i(t) = − ∂

∂si
H({sk}) =

∑
j(6=i)

Jijsj(t)− z(t)si(t) , (4.10)
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for i = 1, . . . , N . The choice of the initial condition {si(0), ṡi(0)} is very important in this
setting. Essentially, what we are going to do is to draw the initial configuration of the system
randomly from the canonical equilibrium ensemble at a given temperature T and with respect
to a given potential energy Hpot({sk}, {J

(0)
ij }), and then evolve this initial configuration with

the Hamiltonian dynamics described above (thus decoupling the system from the bath), but
with a new potential Hpot({sk}, {Jij}). More details on this procedure will be given in a
following Section.

4.2.2 The potential energy landscape

The simplicity of the 2-spin spherical spin model comes from the fact that the potential
energy is quadratic in the degrees of freedom and the interaction matrix {Jij} is real sym-
metric. Let us denote by J the N ×N real symmetric matrix whose (i, j)-element is Jij . As
already stated, the elements of this matrix are i.i.d. random variables with Gaussian distri-
bution, thus the matrix belongs to the so called Gaussian Orthogonal Ensemble (GOE), of
which many properties are known in the thermodynamic limit [99, 100, 101]. In particular,
we are interested in the distribution of the eigenvalues of J,

ρN (λ) = 1
N

〈
N∑
µ=1

δ(λ− λµ)
〉
{Jij}

(4.11)

where {λµ}µ=1,...,N denote the eigenvalues of J. In the limit N → +∞, it is known [99]
that the eigenvalues of a random symmetric matrix are distributed according to the so-called
Wigner semi-circle law,

lim
N→+∞

ρN (λ) = ρGOE(λ) = 1
πJ

√
1−

(
λ

2J

)2
Θ(2J − |λ|) , (4.12)

assuming 〈Jij〉 = 0 and 〈J2
ij〉 = J2/N , and Θ(x) being the Heaviside step function. The

largest possible eigenvalue is λmax = 2J .
Let us label the eigenvalues of J in such a way that they are ordered: λ1 ≤ λ2 ≤ · · · ≤ λN .

We denote their associated eigenvectors by vµ with µ = 1, . . . , N and we take them to be
orthonormal, v2

µ = 1. We now consider the energy landscape given by

HJ({si}, z) = Hpot({si}, {Jij}) +Hconstr({si}, z) (4.13)

with z taken as a degree of freedom itself. The stationary points (s∗, z∗) of the potential
energy hyper-surface satisfy the equations

∂HJ
∂s

∣∣∣∣
s∗,z∗

= (z∗1− J) s∗ = 0 ,
N∑
i=1

(s∗i )2 = N .

Now, supposing the eigenvalues {λµ} are all distinct, there are 2N stationary points given
by z∗µ = λµ and s∗µ,± = ±

√
Nvµ, for µ = 1, . . . , N . The points s∗µ,± on the (N − 1)-sphere of

radius
√
N simply lie in the direction corresponding to the eigenvector vµ of the interaction

matrix J. All of these stationary points are associated to metastable states for the system
at zero temperature, apart from two of them that are marginally stable ground states. To
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see this we need to compute the Hessian of the potential energy surface on each stationary
point. The Hessian at the stationary points (s∗µ,±, z∗µ) is given by

H(µ)
ij = ∂HJ

∂si∂sj

∣∣∣∣∣
s∗µ,±,z

∗
µ

= −Jij + z∗µδij = −Jij + λµδij (4.14)

which can be easily diagonalised to get eigenvalues h(µ)
ν = λµ − λν . Thus, on the station-

ary points (s∗µ,±, z∗µ), the Hessian has one vanishing eigenvalue (for ν = µ), µ − 1 positive
eigenvalues (for ν < µ), and N − µ negative eigenvalues (for ν > µ). This implies that each
saddle point labeled by µ is characterised by one marginally stable direction, µ − 1 stable
directions and N−µ unstable directions. The number of stable directions plus the marginally
stable one is given by the index µ labelling the eigenvalue associated to the stationary state.
In conclusion, the energy landscape has two maxima, corresponding to s∗ = ±

√
Nv1 and

z∗ = λ1, that are associated to the smallest eigenvalue λmin = λ1 of the interaction matrix J,
2N − 4 saddle points and two (marginally stable) minima, corresponding to s∗ = ±

√
NvN

and z∗ = λN , that are associated to the largest eigenvalue λmax = λN .
At each stationary point (s∗, z∗), the energy of the system (at zero temperature) is given

by
E∗µ ≡ HJ

(
s∗ = ±

√
Nvµ , z

∗ = λµ
)

= −1
2λµN . (4.15)

In the thermodynamic limit, the eigenvalues λµ of the (random) interaction matrix J are
well-separated between each other (because of an effective level “repulsion” characterising
the eigenvalue distribution of Gaussian matrix ensembles), so that the energy levels E∗µ cor-
responding to the stationary points of the energy landscape are also well-separated.

The analysis of large dimensional random potential energy landscapes [102, 103, 100, 104]
is a research topic in itself with implications in condensed matter physics, notably in glass
theory [105, 106], but also claimed to play a role in string theory [107, 108], evolution [109]
or other fields. The p = 2 spherical model provides a particularly simple case in which the
potential energy landscape can be completely elucidated.

4.2.3 The equilibrium behaviour

It is known [84, 110] that the general p-spin interaction spherical spin glass model is
characterised by an equilibrium phase transition between a high-temperature paramagnetic
phase and a low-temperature spin glass phase. In the following, we outline the main steps of
the standard calculations used to derive the equilibrium behaviour in the case p = 2.

Traditionally, the derivation of the disorder averaged free-energy density, in the case of
general p, is done by using the famous replica method [110, 111] (with a replica symmetry
breaking Ansatz required to find the stable solutions in the low-temperature phase). In the
following, instead, we recall a simpler method [95] which is based on the fact that the special
case p = 2 is (almost) a quadratic model and also exploits the fact that the probability
distribution of the eigenvalues of the interaction matrix is known, in the thermodynamic
limit.

The partition function reads

ZJ(β) =
N∏
k=1

∫ ∞
−∞

dsk e
β
2
∑

j 6=l Jjlsjsl
1

2πi

∫ c+i∞

c−i∞
dz e

−βz2

(∑N

j=1 s
2
j−N

)
(4.16)
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where β is the inverse temperature and c is a real constant to be fixed below. Since J is
a real symmetric matrix, as usual, it is convenient to perform the change of variables that
diagonalises the matrix itself, namely, s 7→ x with new coordinates xµ = s · vµ being the
projections of s on the direction of the eigenvectors vµ. In this way the partition function
can be recast in the following form

ZJ(β) = 1
2πi

∫ c+i∞

c−i∞
dz

 N∏
µ=1

∫ ∞
−∞

dxµ eN
[
βz
2 + β

2N
∑N

ν=1(λν−z)x2
ν

] , (4.17)

where we have interchanged the order of integration over the variables xµ and z, and we
choose the constant c in a way such that the integral over the variable z is done on a contour
located on the right of the largest eigenvalue of the interaction matrix. The only problem
which could arise from this last procedure comes from the fact that the eigenvalue spectrum
of J is bounded only in the limit N → +∞. However, for sufficiently large N , the probability
for J to have an eigenvalue larger than 2J (the maximum in the thermodynamic limit) is
so small that the error made by choosing incorrectly the contour of the integral over z is
negligible. Thus, assuming z > max({λµ}) and carrying out the integration over the xµ, one
obtains

ZJ(β) = πN/2

2πi

∫ c+i∞

c−i∞
dz e−Nf(z,β,{λµ}) , (4.18)

where f(z, β, {λµ}) = −β
2 z + 1

2N
∑N
µ=1 ln

[
β
2 (z − λµ)

]
. The saddle-point equation for the

Lagrange multiplier z is then given by

1
Nβ

N∑
µ=1

1
(zsp − λµ) = 1 . (4.19)

In the thermodynamic limit, we can replace the sum 1
N

∑N
µ=1 g(λµ), for any given function

g(λ), with the integral
∫
dλ ρ(λ)g(λ), where ρ is the density of the distribution of eigenvalues

given in Eq. (4.12). This means that Eq. (4.19), in the limit N → +∞, becomes the following

1
πJ

∫ 2J

−2J
dλ

√
1−

(
λ

2J

)2
(zsp − λ)−1 = T−1 . (4.20)

For T ≥ J , this equation has solution zsp = T + J2

T , while for T < J it has no solution and
the saddle-point value of z sticks at 2J , the largest possible eigenvalue. Then we can identify
Tc = J as the critical temperature. Hence, the equilibrium value of the Lagrange multiplier
is given by

zeq(T ) =
{
T + J2

T for T > Tc
2J for T < Tc

. (4.21)

The free-energy per spin, averaged over the distribution of the eigenvalues of the interaction
matrix, has then the following form

[f(β)]J ≡ lim
N→+∞

[
− 1
N

lnZJ(β)
]

J
' −βzeq

2 + 1
2

∫
dλ ρ(λ) ln [β(zeq − λ)/2]

=

 −βzeq
2 + 1

2 ln (βJ) + 1
2
( zeq

2J
)2 − ln

[
zeq
2J +

√( zeq
2J
)2 − 1

]
, β < βc ,

−βJ + 1
2 ln (βJ) , β > βc

,(4.22)
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with βc = 1/Tc = 1/J (and zeq = β−1 + βJ for the paramagnetic case).
If one now checks whether the spherical constraint is satisfied by using the saddle-point

approximation for the Lagrange multiplier, one verifies that it is in the high temperature
phase, but it is not in the low temperature phase, where

N∑
i=1
〈s2
i 〉 =

N∑
µ=1
〈x2
µ〉 = T

Tc
N , (4.23)

(with 〈 · 〉 denoting the thermal average). The way to solve this problem is to give a macro-
scopic “weight” to the projection of the spin in the direction of the eigenvector that corre-
sponds to the largest eigenvalue of the interaction matrix:

s · vN = xN ∼ ±
√(

1− T

Tc

)
N + δxN (4.24)

with 〈δxN 〉 → 0 and 〈δx2
N 〉 → 0 as N → +∞, so that

N∑
µ=1
〈x2
µ〉 = 〈x2

N 〉+
N−1∑
ν=1
〈x2
ν〉 ∼

(
1− T

Tc

)
N + T

Tc
N = N . (4.25)

The thermal average of the projection of the spin on any direction corresponding to one of
the eigenvectors vanishes for T > Tc, while for T < Tc one has

|〈xµ〉| =
{

[N(1− T/Tc)]
1
2 if λµ = λmax ,

0 if λµ < λmax ,
(4.26)

(the sign of 〈xN 〉, the projection along the direction of the largest eigenvalue, is picked
once one breaks the symmetry s → −s). The quantity 〈xµ〉2 can be thought as the order
parameter. Essentially, for T < Tc, the configuration of the system (represented by the vector
s) condenses onto the direction of the eigenvector associated to the largest eigenvalue, with
the projection carrying a weight proportional to

√
N . Going back to the original spin basis,

(s1, . . . , sN ), the average magnetisation per degree of freedom vanishes at all temperatures,
but the average of the square of the local magnetisation, that defines the Edwards-Anderson
parameter, is not when T < Tc:

qEA ≡
[
〈s2
i 〉
]

J
=
{

0 if T > Tc ,

1− T
Tc

if T < Tc ,
(4.27)

for all i = 1, . . . , N , with Tc = J . The order parameter qEA vanishes at Tc and the static
transition is of second order.

The disorder averaged free-energy density can also be computed using the replica trick [112]
and a replica symmetric Ansatz. This Ansatz corresponds to an overlap matrix between repli-
cas Qab = δab+qEAεab, with εab = 1 for a 6= b and εab = 0 for a = b. When N →∞ the saddle
point equations fixing the parameter qEA yield 0 above Tc and a marginally stable solution
with qEA = 1− T/Tc for T < Tc, with the same physical properties as those discussed above.
The equilibrium energy is given by

epot
eq =

 − J2

2T

[
1−

(
1− T

J

)2
]

= 1
2(T − λmax) T < Tc ,

− J2

2T T > Tc .
(4.28)

We added here a superscript “pot” since, in the modified model that we will study in this
paper, the total energy will also have a kinetic energy contribution.
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4.2.4 Relaxation dynamics

So far we have considered just the static properties of the p = 2 spherical model. Since we
are going to present a study of the Hamiltonian dynamics of the model following a quench in
the interaction matrix, it is useful to first recall the main aspects of the relaxation dynamics.

By relaxation dynamics we refer to the following setting: the system is prepared in an
equilibrium state at a certain temperature T0 and then is let evolve through a stochastic
dynamics which mimics the coupling to a Markovian bath at a given temperature T < +∞,
different from T0. Essentially, this procedure corresponds to an instantaneous quench in the
temperature of the bath, and its aim is to relax the system to an equilibrium state at the
“target” temperature T [113, 114, 115, 116, 117]. In terms of the degrees of freedom of the
system, the relaxation dynamics is described by the set of Langevin equations

ṡi(t) = −z(t)si(t)−
∂Hpot({sk})

∂si
+ 2Tξi(t) + hi(t) (4.29)

for i = 1, . . . , N , with ξi(t) a Gaussian white noise with zero mean, i.e. 〈ξi(t)〉 = 0 and
〈ξi(t)ξj(t′)〉 = δijδ(t − t′). Notice that we have also added an external field hi, which is
coupled linearly to si in the potential energy associated with the Langevin equation, and is
used to compute the linear response function through

R(t1, t2) ≡ 1
N

N∑
i=1

[
δ〈si(t1)〉h
δhi(t2)

∣∣∣∣
h→0

]
J

, (4.30)

where the brackets 〈 · 〉h denotes the thermal average in the presence of a nonzero external
field, while [ · ]J again indicates the average over the (quenched) random couplings {Jij}.
Let us also introduce the two-time autocorrelation function, which is given by the following

C(t1, t2) ≡ 1
N

[
N∑
i=1
〈si(t1)si(t2)〉h

∣∣∣∣∣
h→0

]
J

. (4.31)

It is convenient to diagonalise the (random) interaction matrix {Jij} in order to work with
the projections of the spin variable onto the direction of the eigenvectors {vµ}. In terms of
the projections, xµ = s · vµ, the Langevin equations become

ẋµ(t) = (λµ − z(t))xµ(t) + 2T ξ̃µ(t) + h̃µ(t) , (4.32)

for µ = 1, . . . , N , with λ1 < λ2 < . . . < λN the eigenvalues of the interaction matrix, and
h̃µ and ξ̃µ the projection of the external field h = (h1, . . . , hN ) and that of the thermal noise
ξ = (ξ1, . . . , ξN ) onto the eigenvector vµ, respectively. The general solution to this equation,
for a given realisation of the quenched disorder Jij and of the the noise ξi(t), is given by

xµ(t) = xµ(0)eλµt−
∫ t

0 dτ z(τ) +
∫ t

0
dt′ eλµ(t−t′)−

∫ t
t′ dτ z(τ)

[
ξ̃µ(t′) + h̃µ(t′)

]
, (4.33)

and the Lagrange multiplier z(t) can be fixed by imposing the spherical constraint
∑
µ x

2
µ(t) =

N , for any t. This yields a self-consistent equation for z(t). However, it is easier to work
directly with the two-time autocorrelation function. In absence of an external field, and in
the thermodynamic limit, using Eq. (4.33) one obtains [115, 116]

C(t, t′) = 1√
Γ(t)Γ(t′)

[
Γ
(
t+ t′

2

)
− 2

∫ (t+t′)/2

t′
dτ T Γ(τ)〈〈 eλ(t+t′−2τ) 〉〉λ

]
, (4.34)
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for t ≥ t′, where 〈〈 g(λ) 〉〉λ stands for
∫+∞
−∞ dλ ρ(λ)g(λ), with ρ(λ) the density of the dis-

tribution of the eigenvalues of the interaction matrix in the thermodynamic limit (given by
Eq. (4.12)), and

Γ(t) ≡ exp
(

2
∫ t

0
dτ z(τ)

)
. (4.35)

By imposing the constraint C(t, t) = 1, for any t, one can compute self-consistently the
function Γ(t) as the solution of the following Volterra equation of the second type:

Γ(t) = 〈〈 [xλ(0)]2e2λt 〉〉λ + 2
∫ t

0
dτ T Γ(τ)〈〈 e2λ(t−τ) 〉〉λ , (4.36)

with xλ(0) being the projection of the spin vector onto the eigenvector associated with the
eigenvalue λ (in the limit N → +∞) at t = 0. Analogously, by using Eq. (4.33), one can
derive [115] the following expression for the linear response function,

R(t, t′) =
√

Γ(t′)
Γ(t) 〈〈 eλ(t−t′) 〉〉λ . (4.37)

Notice that, so far, the results that have been presented correspond to a given choice of
the initial configuration {si(0)} (or equivalently, {xµ(0)}). Moreover, in the N → +∞ limit,
the initial condition needs to be translated in a prescription for the function η(λ) = xλ(0).
The asymptotic behaviour of the system depends on this particular initial condition, as shown
in Ref. [115]. Let us limit ourselves to the case of an initial condition drawn randomly from
equilibrium at T0 → +∞.

In the case of quenches from T0 → +∞ to T > Tc = J (with J2 the variance of the
couplings Jij), the system reaches very quickly an equilibrium state at the target temperature
T . The Lagrange multiplier rapidly converges to zeq = T + J2/T , that is to say, the value
given by the saddle-point approximation for T > Tc. After a short transient, the two-time
autocorrelation and the linear response function become invariant under time translation and
related by the fluctuation dissipation theorem (FDT),{

limt′�1C(t, t′) = Cst(t− t′)
limt′�1R(t, t′) = Rst(t− t′)

, Rst(τ) = − 1
T

d

dτ
Cst(τ) . (4.38)

Instead, in the case in which an initial configuration taken from equilibrium at T0 →
+∞ is let evolve in contact with a bath at a temperature T < Tc, the autocorrelation
and response function display a behaviour that is similar to that observed in coarsening
systems [23, 118, 119, 120]. Precisely, a two-stage relaxation consisting of a short time-delay
regime, (t − t′)/t′ � 1, in which they show a stationary behaviour, and a long time-delay
regime, (t−t′)/t′ � 1, in which they are characterised by strong non-stationary behaviour. In
particular, the scaling of the correlation in the non-stationary regime presents similarities with
the ageing phenomenon that is observed in structural spin glasses [106, 121]. Approximately,
C(t, t′) and R(t, t′) are given by the sum of two contributions, representing these two regimes,

C(t, t′) ' Cst(t− t′) + Cag(t, t′) , (4.39a)
R(t, t′) ' Rst(t− t′) +Rag(t, t′) , (4.39b)

where Cst(τ) and Rst(τ) satisfy the FDT relation expressed in Eq. (4.38), while the ageing
terms, Cag and Rag, satisfy a similar relation, but with a time-dependent (non-equilibrium)
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effective temperature [122, 123],

Rag(t, t′) = 1
Teff(t, t′)

∂

∂t′
Cag(t, t′) , (4.40)

for t > t′. In the asymptotic limit, the two terms evolve in different regimes in the sense that
when one changes the other one is constant and vice versa. The limiting values of the two
contributions to the correlation function are

Cst(0) = 1− q , limt−t′→∞Cst(t− t′) = 0 , (4.41a)
lim
t′→t−

Cag(t, t′) = q , limt�t′ Cag(t, t′) = 0 , (4.41b)

with the parameter q given by
q = 1− T

J
, (4.42)

for T < Tc = J . This expression coincides with the Edwards-Anderson parameter for the
equilibrium low-temperature phase, see Eq. (4.27).

The complete solution of the Langevin equations allows one to deduce the exact scaling
forms of the stationary and ageing contributions to the correlation and linear response. In
particular, the latter are given by [115]

Cag(t, t′) ∼ fC
(
t′

t

)
, Rag(t, t′) ∼ t−3/2 fR

(
t′

t

)
, (4.43)

for t� t′, with fC(x) = x3/4 and fR(x) = x−3/4

(1−x)3/2 . This implies that Teff(t, t′) ∼ t1/2fT (t′/t),
with fT (x) = x(1− x)3/2, for t� t′. The behaviour of the effective temperature is special in
the p = 2 spherical model since, contrary to what happens in the p ≥ 3 cases [98], it is not
constant but grows with time. This implies, that the ageing regime does not contribute to the
asymptotic potential energy. In fact, the average potential energy (per degree of freedom),
that can be shown to be given by

epot(t) ≡ lim
N→+∞

1
N

[〈Hpot(t)〉]J = lim
N→+∞

1
N

 N∑
µ=1

λµ〈x2
µ(t)〉


J

= 1
2 (T − z(t)) , (4.44)

has the following behaviour for large times,

epot(t) ∼ T

2 − J
(

1 + 3
8t

)
, (4.45)

and thus it converges to the value

epot
asympt = T

2 − J = − J
2

2T (1− q2) , (4.46)

which is identical to the equilibrium one, see Eq. (4.28), once q = qEA = 1 − T/J is used.
This means that, for T < Tc, the Lagrange multiplier approaches the value zasympt = 2J ,
corresponding to the largest possible eigenvalue of the interaction matrix (in the limit N →
+∞), with the power law z(t) − zasympt ∼ t−1. The slow approach to the asymptotic value
is determinant to allow for the non-stationary slow relaxation.
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In terms of the projections of the spin onto the directions corresponding to the eigenvectors
of the interaction matrix, one can show that, in the large t limit,

mµ(t) ≡ [〈xµ(t)〉]J ∼ (4π)1/4 q3/4 e(λµ−2J)t (4.47)

for λµ < 2J , where again q = 1 − T
J . Thus, for all µ that do not correspond to the largest

eigenvalue of the interaction matrix (in the thermodynamic limit), λmax = 2J , mµ decays
to zero exponentially, with a decay rate that increases with the distance of the associated
eigenvalue λµ from λmax. Instead, for the projection onto the eigenvector associated with
the largest eigenvalue, one can show that the magnetisation grows with time as a power law:
mmax(t) ≡ [〈xmax(t)〉]J ∼ t3/4. The behaviour is similar to that observed in the O(N) model
of ferromagnetism studied in the large N limit [124]. The progressive condensation of the
spin “vector” on the direction of the eigenvector corresponding to the largest eigenvalue of
the interaction matrix is the equivalent of the ordering process in the O(N) model, that is
to say, the condensation on the zero wave-vector mode.

In conclusion, in the case of quenches from T0 → +∞ to T < Tc, the system does not reach
an equilibrium state, in the sense that time translation invariance (TTI) and the fluctuation
dissipation theorem (FDT) are violated, even though the asymptotic value of the energy
coincides with the equilibrium value at the target temperature.

The same technique, based on the projection of the spin vector on the eigenvectors of Jij ,
can also be implemented in the case in which there is inertia and the differential equation has
a second order time derivative. The dynamics is recast into that of a collection of harmonic
oscillators coupled by a self-consistent time-dependent Lagrange multiplier. We will use this
formulation in Sec. 4.4.

4.3 Dynamics of the isolated system after a quench of the
disorder strength

In this Section we formulate the problem under study: the Hamiltonian dynamics of
the isolated 2-spin spherical spin glass model, subject to an instantaneous quench of the
“strength” of the (quenched) disorder. We start by giving a brief description of the main
steps that allow us to obtain the mean-field equations that couple the correlation function
and the linear response function, and completely characterise the evolution of the model in
the N →∞ limit. The equations ruling their evolution are easily derived using the Martin-
Siggia-Rose (MSR) functional formalism [98, 111, 125].

The generic set of equations of motion that describe the time evolution of the degrees of
freedom of the system, the spin variables {si}, coupled to a bath at a temperature T , is given
by

ms̈i + γṡi(t) + z(t)si(t) =
∑
j 6=i

Jijsj(t) + ξi(t) , (4.48)

where the random forces ξi have a Gaussian distribution with zero mean and correlations
given by 〈ξi(t)ξj(t′)〉 = 2γTδijδ(t− t′). In the following, the brackets 〈 · 〉 will be indicating
the average over the thermal noise {ξi(t)}, unless otherwise specified. For the moment we will
keep the friction term γṡi(t) and the thermal noise ξi(t) (that is to say, the terms that are
used to model the coupling to the bath) in these equations of motion for completeness and
to make contact with the stochastic setting that is usually used in the study of this model.
The Hamiltonian dynamics, or said in other words, the dynamics of the isolated system, is
obtained by setting γ = 0.
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In order to fully formulate the problem, one has to specify the initial conditions {si(0)}
and {ṡi(0)} for the Eqs. (4.48). In our case, we want to study the time evolution of the
system when it is initially prepared in an equilibrium state at a given temperature T ′ = 1/β′.
Thus, the initial conditions must be distributed according to the Gibbs-Boltzmann measure,

P0({si(0), ṡi(0)}) = Z(β′)−1 exp
[
−β′H0 ({si(0), ṡi(0)})

]
, (4.49)

where we denote by H0 ({si(0), ṡi(0)}) the pre-quench Hamiltonian of the system, namely

H0 ({si, ṡi}) = m

2

N∑
i=1

ṡ2
i −

∑
i<j

J0
ij sisj , (4.50)

with J0
ij the pre-quench random couplings. The J0

ij are i.i.d. Gaussian random variables
with mean [J0

ij ] = 0 and variance [(J0
ij)2] = J2

0/N . For t > 0, the system evolves with the
equations of motion given above where

Jij = J

J0
J0
ij (4.51)

with J, J0 > 0. Hence, the post-quench couplings are also independent Gaussian random
variables with zero mean and variance J2/N , and the eigenvalues of the post-quench inter-
action matrix {Jij} are simply given by the pre-quench values rescaled by a factor J/J0,
λµ = J

J0
λ0
µ. Notice that the kinetic term is left unchanged, but one can easily adapt the

following derivation in the case in which also the mass parameter m is quenched.
The dynamical equations for the correlation function and linear response function, for

purely dissipative dynamics, in the case of a completely random initial state (T0 → +∞), are
well-known and can be found in Refs. [126, 98, 127, 111]. The method has been modified to
take into account the effect of equilibrium initial conditions at T < ∞ in [125] and it was
applied to the relaxation dynamics of the p-spin model in [128, 129]. It can be adapted to the
Hamiltonian dynamics of the isolated model with just minor modifications. In the following,
we present the outcome without giving many details on the derivation. In order to facilitate
the comparison with the expressions that are obtained for the purely dissipative case, we
keep the coupling to the heat bath. Later on, we will focus on the isolated case.

The Martin-Siggia-Rose (MSR) generating functional for our problem is given by

Z [{si(t), ṡi(t), ŝi(t)}, {Jij}] =
∫

Ds(t) Dŝ(t) eS[{si(t),ṡi(t),ŝi(t)},{Jij}] (4.52)

with the action S given by

S =
N∑
i=1

∫ +∞

0
dt ŝi(t)

(
γ T ŝi(t) + γṡi(t) +ms̈i(t) + ∂Hpot

∂si
+ z(t)si(t)

)
, (4.53)

where Hpot({si}) = −
∑
i<j Jijsisj is the post-quench potential energy.

While dealing with the generating functional Z, we also need to take into account the
average over the quenched disorder represented by the random couplings Jij . In order to
do so, one can use the famous replica trick, as explained in [125]. This means that the spin
variables evaluated at the initial time have to be replicated, that is to say, we need to introduce
the set of replicas {sai (0)} with a = 1, . . . , n, in order to perform the average over the Jij .
The subsequent evolution of each of these replicas has to be followed in time, and it turns
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out that the replica structure of the initial condition is conserved. The replicated dynamical
action that also includes the contribution from the distribution of the initial conditions reads

S(n) =
n∑
a=1

{
N∑
i=1

∫ +∞

0
dt ŝai (t)

(
γ T ŝai (t) + γṡai (t) +ms̈ai (t) + ∂Hpot

∂sai
+ z(t)sai (t)

)
+

− 1
T ′
H0 ({sai (0), ṡai (0)})

}
. (4.54)

Let us now carry out the average of the quantity eS(n) over the distribution of the quenched
disorder. Notice that, in the action defined above, only two terms depend on the random
couplings Jij , or equivalently, on the couplings J (0)

ij (since Jij and J (0)
ij are not independent,

but just proportional). These are the term corresponding to the forces −∂Hpot
∂sai

({sai (t)}),
and the term corresponding to the initial contribution H0 ({sai (0), ṡai (0)}). In theory, z(t)
should depend on the particular realisation of the random couplings Jij through the spherical
constraint. However, for the moment, we assume that z(t) does not depend on the Jij (in a
certain sense, we will impose the spherical constraint only after having performed the average
over the Jij , and after taking the limit N → +∞).

We collect the disorder-dependent terms in the “disordered” part of the action,

S(n)
dis = −

∑
i<j

Jij

[
β′
J0
J

n∑
a=1

sai (0)saj (0) +
n∑
a=1

∫ +∞

0
dt
(
ŝai (t)saj (t) + sai (t)ŝaj (t)

)]
. (4.55)

Notice that we have symmetrized the term originating from ŝai (t)
∂Hpot
∂sai

. The average of the
exponential of this quantity over the disorder is then given by[

eS
(n)
dis

]
Jij

∝
∏
i<j

∫
dJij exp

[
− N

2J2J
2
ij − Jij

n∑
a=1

(
β′
J0
J
sai (0)saj (0)

+
∫ +∞

0
dt
(
ŝai (t)saj (t) + sai (t)ŝaj (t)

))]
,

(4.56)

where we have chosen to integrate over the post-quench couplings Jij . By performing the
Gaussian integrations we obtain[

eS
(n)
dis

]
Jij

∝
∏
a,b

exp
{
J2

2N

[(
β′J0
J

)2 1
2
[
sa(0) · sb(0)

]2
+2 β′J0

J

∫ +∞

0
dt
(
sa(0) · ŝb(t)

) (
sa(0) · sb(t)

)
+
∫ +∞

0
dt
∫ +∞

0
dt′
((
ŝa(t) · ŝb(t′)

) (
sa(t) · sb(t′)

)
+
(
sa(t) · ŝb(t′)

) (
ŝa(t) · sb(t′)

))]}
,(4.57)

where we used the following notation

sa(t) · sb(t′) =
N∑
i=1

sai (t)sbi(t′) (4.58)

and equivalent ones for all other products between replicas appearing in the exponential,
ŝa(t) ·sb(t′), ŝa(t) · ŝb(t′), etc. Let us now decouple the four-spin coupling terms by using the
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so-called dynamical overlap functions,

[
eS

(n)
dis

]
Jij

∝
∫ ∏

a,b

(
DQab1 DQab2 · · ·DQab6

)
×

δ
(
NQab1 (t, t′)− ŝa(t) · ŝb(t′)

)
δ
(
NQab2 (t, t′)− sa(t) · sb(t′)

)
×

δ
(
NQab3 (t, t′)− ŝa(t) · sb(t′)

)
δ
(
NQab4 (t, t′)− sa(t) · ŝb(t′)

)
×

δ
(
NQab5 (t)− ŝa(t) · sb(0)

)
δ
(
NQab6 (t)− sa(t) · sb(0)

)
×

δ
(
NQab7 − sa(0) · sb(0)

)
exp

(
Sdis

[{
Qabk

}])
, (4.59)

where

Sdis
[{
Qabk

}]
= NJ2

2
∑
a,b

[1
2α

2
[
Qab7

]2
+ 2α

∫
dt Qab5 (t) Qab6 (t) +

+
∫

dt dt′
(
Qab1 (t, t′) Qab2 (t, t′) +Qab3 (t, t′) Qab4 (t, t′)

)]
, (4.60)

where we use the notation α = β′J/J0. Notice that the matrix Qab7 coincides with the
static overlap matrix Qab = 1

N

∑
k s

a
ks
b
k, while the function Qab2 (t, t′) = 1

N

∑
k s

a
k(t)sbk(t′) is

the dynamical equivalent. Moreover, Qab3 (t, t′) and Qab4 (t, t′) are both response functions, i.e.
functions of the form 〈s(t) · ŝ(t′)〉, but with their time arguments exchanged.

In order to rewrite the integral in Eq. (4.59) in a more convenient way, we give the
exponential representation of the δ-functions. For example,

δ
(
NQab1 (t, t′)− ŝa(t) · ŝb(t′)

)
=
∫

Dlab1 exp
[
iN

∫
dt dt′ lab1

(
Qab1 (t, t′)−N−1ŝa(t) · ŝb(t′)

)]
(4.61)

and analogous expressions for the δ-functions involving the other Q’s, with the introduction
of the variables labk . The new action in terms of the variables Qabk and labk then takes the
following form,

S̃dis
[{
Qabk , l

ab
k

}]
= Sdis

[{
Qabk

}]
+ iN

∑
a,b

∫
dt dt′

[
+lab1

(
Qab1 (t, t′)−N−1ŝa(t) · ŝb(t′)

)
+lab2

(
Qab2 (t, t′)−N−1sa(t) · sb(t′)

)
+ lab3

(
Qab3 (t, t′)−N−1ŝa(t) · sb(t′)

)
+lab4

(
Qab4 (t, t′)−N−1sa(t) · ŝb(t′)

)]
+iN

∑
a,b

∫
dt
[
+lab5

(
Qab5 (t)−N−1ŝa(t) · sb(0)

)
+lab6

(
Qab6 (t)−N−1sa(t) · sb(0)

)]
+iN

∑
a,b

lab7

(
Qab7 −N−1sa(0) · sb(0)

)
. (4.62)

Since we are considering the limit N → +∞ of the dynamical equations, we can use a saddle-
point approximation to compute the integral. By setting to zero the derivatives with respect
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to all the Q’s, we get a set of equations for the stationary points

i lab1 = −J2

2 Q
ab
2 , i lab2 = −J2

2 Q
ab
1 ,

i lab3 = −J2

2 Q
ab
4 , i lab4 = −J2

2 Q
ab
3 ,

i lab5 = −αJ2Qab6 , i lab6 = −αJ2Qab5 ,

i lab5 = −α2J2

2 Qab7 .

(4.63)

By substituting these stationary points in the action S̃dis
[{
Qabk , l

ab
k

}]
and computing the

averages of the form 〈sa(t) · ŝb(t′)〉 with respect to the generating functional evaluated at the
saddle, one finds the following self-consistent equations for the dynamical overlap functions,

Qab1 (t, t′) = 1
N

∑
k

〈ŝak(t)ŝbk(t′)〉 , (4.64a)

Qab2 (t, t′) = 1
N

∑
k

〈sak(t)sbk(t′)〉 , (4.64b)

Qab3 (t, t′) = 1
N

∑
k

〈ŝak(t)sbk(t′)〉 = Qba4 (t′, t) , (4.64c)

Qab5 (t) = 1
N

∑
k

〈ŝak(t)sbk(0)〉 , (4.64d)

Qab6 (t) = 1
N

∑
k

〈sak(t)sbk(0)〉 = Qab2 (t, 0) , (4.64e)

Qab7 = 1
N

∑
k

〈sak(0)sbk(0)〉 , (4.64f)

where the average 〈 · 〉 is taken both over the thermal noise and over the initial conditions, after
having averaged the disordered part of the dynamical generating function. At first glance it
may appear very difficult to self-consistently solve the system for these seven functions which
depend on both time and replicas. However, one can make many simplifications thanks to
physical arguments, in particular, causality. In fact, it turns out that [125, 130] Qab1 (t, t′) and
Qab5 (t) are identically zero for all a, b, and

Qab3 (t, t′) = Qab4 (t, t′) = Qab6 (t) = 0 , (4.65)
for all a 6= b. Moreover, Qab2 (t, t′) is simply the correlation between the state of the replica a
at time t and the state of the replica b at time t′, while Qaa3 (t, t′) = Qaa4 (t′, t) represents the
response of the system at time t′ due to a small field applied at time t (for the replica a).
Hence, we use the following notation

Cab(t, t′) ≡ Qab2 (t, t′) , R(t, t′) ≡ Qaa3 (t, t′) = Qaa4 (t′, t) . (4.66)
As already stated above, Qab7 coincides with the static overlap matrix Qab in the equilibrium
initial condition. If one takes into account these simplifications, the part of the action that
depends on the disorder reduces to

Sdis =
∑
a

∫ +∞

−∞
dt ŝa(t) ·

[
J2

2

∫ +∞

−∞
dt′
∑
b

Cab(t, t′) ŝb(t′)

+J2
∫ +∞

−∞
dt′Raa(t, t′)sa(t′) + αJ2∑

b

Cab(t, 0)sb(0)
]

+α2J2

2
∑
ab

Qab s
a(0) · sb(0) , (4.67)
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(note that the variables s are meant to be vectors (s1, . . . , sN )). Then we can combine this
back together with the rest of the original replicated action S(n), to obtain

S(n) =
∑
a

∫ +∞

−∞
dt ŝa(t) ·

[
Dtsa(t) + γT ŝa(t) + J2

2

∫ +∞

−∞
dt′
∑
b

Cab(t, t′)ŝb(t′)

+J2
∫ +∞

−∞
dt′Raa(t, t′)sa(t′) + αJ2∑

b

Cab(t, 0)sb(0)
]

+α2J2

2
∑
ab

Qab s
a(0) · sb(0) + const. , (4.68)

where we denoted by Dt the differential operator m∂2
t + γ∂t + z(t), and we neglected terms

that do not depend on the spin variables. Notice that, at this point, the spin variables sk are
all decoupled in the action of the generating functional. Therefore we can write an effective
Langevin equation for a (replicated) scalar degree of freedom sa(t) based on S(n),

Dtsa(t) = J2
∫ +∞

−∞
dt′Raa(t, t′)sa(t′) + αJ2∑

b

Cab(t, 0)sb(0) + ηa(t) , (4.69)

where the effective noise ηa is not δ-correlated anymore, but instead satisfies

〈ηa(t)ηb(t′)〉 = 2γT δab δ(t− t′) + J2Cab(t, t′) . (4.70)

By averaging over the disorder we have thus introduced an explicit memory term in the
effective Langevin equation, that is to say, a non-local kernel which couples the time t with
all times t′ < t (whereas the original Langevin equation was describing a Markovian stochastic
process).

We can now write the self-consistent equations for the two-time correlations and the
response functions by using the effective Langevin equation given above. In the case of the
response function, by using the relation R(t1, t2) =

〈
δs(t1)
δη(t2)

〉
we get

Dt1Raa(t1, t2) = Dt1
〈
δsa(t1)
δηa(t2)

〉
=
〈

δ

δηa(t2)Dt1s
a(t1)

〉
=

= J2
∫ +∞

−∞
dt′Raa(t1, t′)Raa(t′, t2) + δ(t1 − t2) . (4.71)

The equation for the correlation function Caa(t1, t2) is obtained by multiplying the effective
Langevin equation by s(t2) and then averaging over the thermal noise,

Dt1Caa(t1, t2) = Dt1 〈sa(t1)sa(t2)〉 = 〈Dt1sa(t1)sa(t2)〉 =

= J2
∫ +∞

−∞
dt′Raa(t1, t′)Caa(t′, t2)

+αJ2∑
b

Cab(t1, 0)Cab(t2, 0) + 〈ηa(t1)sa(t2)〉 , (4.72)

where

〈ηa(t1)sa(t2)〉 =
∫ +∞

−∞
dt′Raa(t2, t′)〈ηa(t1)ηa(t′)〉

= 2γTRaa(t1, t2) + J2
∫ +∞

−∞
dt′Raa(t2, t′)Caa(t1, t′) . (4.73)
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Analogously, for the “off-diagonal” correlations Cab one has

Dt1Cab(t1, t2) =
〈
Dt1sa(t1)sb(t2)

〉
= J2

∫ +∞

−∞
dt′Raa(t1, t′)Cab(t′, t2)

+αJ2∑
c

Cac(t1, 0)Cbc(t2, 0) . (4.74)

Finally, by using the relation ∂t1〈s(t1)s(t2)〉|t2→t−1 = 0, which comes from the fact that the
velocity vector (ṡ1(t), . . . , ṡN (t)) is perpendicular to the spin vector (s1(t), . . . , sN (t)) (due to
the spherical constraint), one can obtain an equation for the Lagrange multiplier z(t),

z(t1) =
[
Dt1Caa(t1, t2)−m∂2

t1Caa(t1, t2)
]∣∣∣
t2→t−1

=

= 2J2
∫ +∞

−∞
dt′Raa(t1, t′)Caa(t1, t′) + αJ2∑

b

Cab(t1, 0)2

−m ∂2
t1Caa(t1, t2)

∣∣∣
t2→t−1

. (4.75)

Since the initial conditions are taken from equilibrium, the replica structure at t = 0 is
symmetric (see Ref. [95]), thus we have

Caa(0, 0) = 1 ∀a and Cab(0, 0) = qin ∀b 6= a (4.76)

with qin the Edwards-Anderson parameter in the initial equilibrium state, that is qin = 0 for
T ′ > T0,c, while qin = 1 − T ′

J0
for T ′ < T0,c, where T0,c = J0 is the critical temperature for

the pre-quench Hamiltonian. This initial replica structure has an effect on the equation for
the time-dependent correlation functions. Indeed, because of the symmetry between replicas,
there are just two kinds of independent correlations

C(t1, t2) ≡ Caa(t1, t2) for any a , (4.77a)
Q(t1, t2) ≡ Cab(t1, t2) for any a, b distinct. (4.77b)

The first one is the correlation between the configuration of one replica of the system at
time t1 and the configuration of the same replica at time t2. The second one, instead, is
the correlation between the configuration of one replica of the system at time t1 and the
configuration of a different replica at time t2. Notice that C is symmetric in its arguments,
C(t1, t2) = C(t2, t1). Concerning the linear response function, we have already argued that
Rab(t, t′) ≡ 0 for all a, b distinct, while Raa(t, t′) is the same for all replicas a, thus we denote
it by R(t, t′) in the following.

Although we could write the evolution equation for the two-time correlation between
different replicas, Q(t1, t2), for all t1, t2 ≥ 0, actually we do not need it for t2 > 0 since we
are interested only in the self-correlation C(t1, t2), the response R(t1, t2) and the Lagrange
multiplier z(t), and only Q(t1, 0) intervenes in the integro-differential equations for these
functions. This is the only correlation between different replicas that will appear in the
calculations.

In absence of dissipation, that is, in the limit γ → 0, Eqs. (4.71), (4.72), (4.74) and (4.75)
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reduce to(
m∂2

t1 + z(t1)
)
R(t1, t2) = J2

∫ t1

t2
dt′R(t1, t′)R(t′, t2) + δ(t1 − t2) , (4.78a)(

m∂2
t1 + z(t1)

)
C(t1, t2) = J2

∫ t1

0
dt′R(t1, t′)C(t′, t2) + J2

∫ t2

0
dt′R(t2, t′)C(t1, t′)

+JJ0
T ′

[C(t1, 0)C(t2, 0) + (n− 1)Q(t1, 0)Q(t2, 0)] , (4.78b)(
m∂2

t1 + z(t1)
)
Q(t1, 0) = J2

∫ t1

0
dt′ R(t1, t′)Q(t′, 0)

+JJ0
T ′

[C(t1, 0)qin +Q(t1, 0) + (n− 2)Q(t1, 0)qin] , (4.78c)

z(t1) = −m∂2
t1C(t1, t2)|t2→t−1 + 2J2

∫ t1

0
dt′R(t1, t′)C(t1, t′)

+JJ0
T ′

[
C(t1, 0)2 + (n− 1)Q(t1, 0)2

]
. (4.78d)

(where we have used causality of R(t, t′) to restrict the limits of the integrals). One can check
that these equations coincide with the ones in [128, 129] when inertia is neglected, p = 2 and
J = J0, and a coupling to a bath is introduced. With respect to the equations studied in [83],
they correspond to p = 2 and they have the extra ingredient of the influence of equilibrium
initial conditions with a non-trivial replica structure, allowing for condensed initial states
in proper thermal equilibrium. Eqs. (4.78a)-(4.78d) must also be complemented with the
following equal-time conditions

C(t1, t1) = 1 , (4.79a)
R(t1, t1) = 0 , (4.79b)

∂t1C(t1, t2)|t2→t−1 = ∂t1C(t1, t2)|t2→t+1 = 0 , (4.79c)
∂t1Q(t1, t2)|t2→t−1 = ∂t1Q(t1, t2)|t2→t+1 = 0 , (4.79d)

∂t1R(t1, t2)|t2→t−1 = 1
m
, (4.79e)

for all t1, t2 ≥ 0+. In the limit n→ 0, Eqs. (4.78a)-(4.78d) finally become

(
m∂2

t1 + z(t1)
)
R(t1, t2) = J2

∫ t1

t2
dt′R(t1, t′)R(t′, t2) + δ(t1 − t2) , (4.80a)(

m∂2
t1 + z(t1)

)
C(t1, t2) = J2

∫ t1

0
dt′R(t1, t′)C(t′, t2) + J2

∫ t2

0
dt′R(t2, t′)C(t1, t′)

+JJ0
T ′

[C(t1, 0)C(t2, 0)−Q(t1, 0)Q(t2, 0)] , (4.80b)(
m∂2

t1 + z(t1)
)
Q(t1, 0) = J2

∫ t1

0
dt′ R(t1, t′)Q(t′, 0)

+JJ0
T ′

[qinC(t1, 0) + (1− 2qin)Q(t1, 0)] , (4.80c)

z(t1) = −m∂2
t1C(t1, t2)|t2→t−1 + 2J2

∫ t1

0
dt′R(t1, t′)C(t1, t′)

+JJ0
T ′

[
C(t1, 0)2 −Q(t1, 0)2

]
. (4.80d)
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Eqs. (4.80a)-(4.80d) represent the (classical) Schwinger-Dyson equations [131] associated with
the Langevin process described by Eq. (4.48) (in the limit γ → 0).

We found convenient to numerically integrate these integro-differential equations using an
expression of the Lagrange multiplier that trades the second-time derivative of the correlation
function into the total conserved energy after the quench. More precisely, we proceed as
explained below.

Let us first introduce the kinetic energy density and the potential energy density,

ekin(t) ≡
〈

1
N

N∑
i=1

(ṡi(t))2
〉
, (4.81a)

epot(t) ≡ −
〈

1
N

∑
i<j

Jijsi(t)sj(t)
〉
, (4.81b)

with 〈 · 〉 the average over the initial conditions (eventually one can consider also an average
over the disorder on top) By using the spherical constraint

N∑
i=1
〈si(t)2〉 = N , (4.82)

one can easily derive the following expression for ∂2
t1C(t1, t2)|t2→t−1 ,

lim
t2→t−1

∂2
t1C(t1, t2) = lim

t2→t−1

1
N

N∑
i

∂2
t1〈si(t1)si(t2)〉 = 1

N

N∑
i

〈s̈i(t1)si(t1)〉 =

= − 1
N

N∑
i

〈ṡi(t1)2〉 = − 2
m
ekin(t1) , (4.83)

where we used the relation 〈
∑
i si(t)ṡi〉 = 0 coming from the spherical constraint. On the

other hand, if we take the equation of motion for si (Eqs. (4.10)) evaluated at time t1, multiply
it by si(t2) and take the average over the initial conditions, we obtain

m〈s̈i(t1)si(t2)〉 = −
∑
i 6=j

Jij〈sj(t1)si(t2)〉 − z(t1)〈si(t1)si(t2)〉 , (4.84)

where we have considered z(t) as independent from the initial conditions. If we now sum over
the index i, normalising by N , and take the limit t2 → t−1 , we get the following

m

N
lim
t2→t−1

N∑
i=1
〈s̈i(t1)si(t2)〉 = m lim

t2→t−1
∂2
t1C(t1, t2) = − 2

N

∑
i<j

Jij〈si(t1)sj(t2)〉 − z(t1) =

= −2epot(t1)− z(t1) . (4.85)

Thus
epot(t) = −1

2

(
m lim

t′→t−
∂2
tC(t, t′) + z(t)

)
(4.86)

and combining this expression with Eq. (4.83) we find a relation between epot(t), ekin(t) and
z(t)

ekin(t)− epot(t) = 1
2z(t) . (4.87)
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This relation corresponds to the imposition of the spherical constraint on average over the
initial conditions. The problem described by the dynamical equations given in (4.80a)-(4.80d),
together with this relation (or, equivalently, the constraint given by Eq. (4.82)) is slightly
different from the one that one would obtain by using the equation of motions in (4.10) and
imposing the spherical constraint for each trajectory, that is to say,

∑
i si(t)2 = N for all t.

However, in the limit N →∞, we expect the difference to be negligible.
The sum of ekin(t) and epot(t) is equal to the total energy of the system (per degree of

freedom). Since for t > 0 the system evolves under Hamiltonian dynamics, its total energy
is conserved post-quench, and then we can write

ekin(t) = ef
2 + 1

4z(t) , (4.88a)

epot(t) = ef
2 −

1
4z(t) , (4.88b)

for t > 0, with ef the post-quench total energy per degree of freedom. By using these relations
we can rewrite Eq. (4.80d) in the following form

z(t) = 2ef + 4J2
∫ t

0
dt′R(t, t′)C(t, t′) + 2JJ0

T ′

[
C(t, 0)2 −Q(t, 0)2

]
. (4.89)

4.3.1 Energy change

We now determine the change in the total energy that is induced at t = 0 by the istan-
taneous quench of the strength of the disorder. As already mentioned above, the quench
protocol consists in a uniform rescaling of the interaction matrix {Jij}, namely

J0
ij 7→ Jij = J

J0
J0
ij , for all i, j . (4.90)

The post-quench interaction matrix is just proportional to the pre-quench one, hence the
eigenvalues λ0

1, . . . , λ
0
N of the pre-quench interaction matrix are transformed in λ1, . . . , λN ,

with λµ = J
J0
λ0
µ.

The kinetic energy density before the quench is given by

ekin(0−) = m

2
1
N

N∑
i=1
〈(ṡi(0−))2〉 = T ′

2 , (4.91)

the last equality being due to the fact that we consider equilibrium initial conditions at
temperature T ′. The pre-quench potential energy density is given (in the thermodynamic
limit) by

ekin(0−) = − 1
N

∑
i<j

Jij
〈
si(0−)sj(0−)

〉
=

N→∞
epot

eq (T ′) = − J
2
0

2T
(
1− q2

in

)
, (4.92)

with epot
eq the expression given in Eq. (4.28), and qin = 0 in the paramagnetic phase (T ′ ≥

T0,c = J0) while qin = 1− T ′

J0
in the condensed phase (T ′ < T0,c = J0). The kinetic energy is

left unchanged by the quench, since we are assuming that the mass m does not change and
the velocities ṡi do not change in the infinitesimal interval taking from 0− to 0+, hence

ekin(0+) = m

2
1
N

N∑
i=1
〈(ṡi(0+))2〉 = T ′

2 . (4.93)
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The post-quench potential energy density can be estimated from the relation between the
Lagrange multiplier and the energy densities given by Eqs. (4.87),

epot(0+) = ekin(0+)− 1
2 z(0+) (4.94)

and the dynamical equation for z(t) (Eq. (4.89)) evaluated at t = 0+,

z(0+) = 2epot(0+) + 2ekin(0+) + 2JJ0
T ′

[
C(0, 0)2 −Q(0, 0)2

]
=

= 2epot(0+) + 2ekin(0+) + 2JJ0
T ′

(1− q2
in) . (4.95)

Thus
epot(0+) = −JJ0

2T ′ (1− q
2
in) . (4.96)

As one would have expected, the potential energy is just rescaled by a factor J/J0 after the
quench. The change in energy caused by the quench is then given by

∆etot = etot(0+)− etot(0−) =
(

1− J

J0

)
J2

0
2T ′

(
1− q2

in

)
. (4.97)

One can clearly see that the energy variation is controlled by the parameter x = J
J0
. Quenches

with x > 1 correspond to extraction of energy from the system, while quenches with x < 1
correspond to injection of energy into the system. It is not difficult to imagine what happens
in the case in which also the mass parameter m is quenched. For a simultaneous quench of
the mass and disorder strength, the change in energy is given by

∆etot =
(
m

m0
− 1

)
T ′

2 +
(

1− J

J0

)
J2

0
2T ′

(
1− q2

in

)
, (4.98)

wherem0 andm are the pre-quench value and the post-quench value of the mass, respectively.
However, in this Dissertation, we will consider only quenches of the potential energy, and we
will trace a dynamical phase diagram using the parameters

y = T ′

J0
x = J

J0
. (4.99)

We will show that the parameter space is split in at least three sectors displaying fundamen-
tally different dynamical behaviours.

4.3.2 Asymptotic analysis

As already mentioned in the introduction of this Chapter, the goal of our study is to
determine whether the system, initially prepared in an equilibrium state and evolving under
Hamiltonian dynamics after a quench of the disorder strength, can reach a late-time stationary
regime in which one can observe the typical properties of Gibbs-Boltzmann equilibrium, for
certain choices of the quench parameters. This is possible by just looking at the behaviour
of the two-time auto-correlation and linear response function, in the limit N →∞. However,
a method to obtain a fully analytical solution for C(t1, t2) and R(t1, t2) from Eqs. (4.80a)-
(4.80d), for every choice of the parameters y = T ′/J0 and x = J/J0, is not known (at least
to us). Thus, in order to grasp the main aspects of the dynamics in the long-time regime one
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needs to make some hypotheses that simplify them. All the results that we obtain with this
approximate analysis are going to be tested against the solutions that we gain by numerically
integrating Eqs. (4.80a)-(4.80d) and that we are going to show in Sec. 4.5.

In this Section we are going to study the asymptotic behaviour of the system, in the limit
N →∞, under the following assumptions

• for sufficiently large t2, time-translational invariance (TTI) holds, that is to say,

lim
t2�1

C(t1, t2) = Cst(t1 − t2) , (4.100a)

lim
t2�1

R(t1, t2) = Rst(t1 − t2) , (4.100b)

for t1 > t2, with Cst and Rst the “stationary” version of the two-time autocorrelation
and linear response, respectively ;

• the Lagrange multiplier converges to a certain constant, limt→+∞t z(t) = zf ;

• the fluctuation-dissipation theorem (FDT) holds for Cst and Rst,

Rst(τ) = − 1
Tf

∂Cst(τ)
∂τ

(4.101)

for τ > 0, with Tf the “final” temperature of the system ;

• the kinetic energy density approaches limt→+∞ ekin(t) = Tf/2, with Tf the same tem-
perature appearing in the FDT relation.

These assumptions correspond to saying that the system is able to reach an equilibrium state
at the temperature Tf in the long-time limit. We also define the following asymptotic values

q ≡ lim
t2�1

lim
(t1−t2)→+∞

C(t1, t2) = lim
τ→+∞

Cst(τ) , (4.102a)

q0 ≡ lim
t→+∞

C(t, 0) , (4.102b)

q1 ≡ lim
t→+∞

Q(t, 0) . (4.102c)

We expect q to be zero if the system reaches an equilibrium state in the paramagnetic
phase, that is, if Tf > Tc, while q = 1 − Tf/J if the system reaches equilibrium in the
condensed phase, that is, if Tf < Tc, with Tc = J the critical temperature associated with
the post-quench potential energy. Moreover we should obtain

zf =
{
Tf + J2

Tf
for Tf ≥ J

2J for Tf < J
, (4.103)

according to the equilibrium values of the Lagrange multiplier for the p = 2 spherical spin
glass model, as seen in Sec. 4.2.3. The above assumptions are not obvious and, as we will
show analytically in some cases and numerically in the next Section, they do not apply to all
quenches. Still, we find useful to explore their consequences and derive from them a set of
relations between the control parameters for which special behaviours arise.

Let us consider what we can obtain from Eqs. (4.80a)-(4.80d) when we make the simpli-
fications implied above, without assuming anything on the constants Tf , zf , q, q0 and q1.
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We start by considering the dynamical equation for the response function. Notice that this
equation does not contain an explicit dependence on C(t1, t2) and the initial condition of
the system (these dependences are, in fact, hidden in the Lagrange multiplier z(t)). If one
assumes TTI, than Eq. (4.80a) reduces to

m ∂2
τRst(τ) + z(t2 + τ) Rst(τ) = J2

∫ t2+τ

t2
dt′ Rst(t2 + τ − t′)Rst(t′ − t2) + δ(τ) . (4.104)

By exploiting the causality of Rst, i.e. Rst(τ) = 0 for τ < 0, and then taking the limit
t2 → +∞, this equation becomes

m ∂2
τRst(τ) + zf Rst(τ) = J2

∫ +∞

−∞
ds Rst(τ − s)Rst(s) + δ(τ) , (4.105)

where we have introduced the asymptotic value of the Lagrange multiplier. The Fourier
transform of Rst, which we denote by R̂st, satisfies then the following equation,

J2R̂st(ω)2 − (zf −mω2)R̂st(ω) + 1 = 0 , (4.106)

with general solution given by

R̂st(ω) = 1
J2

[
zf −mω2 ±m

√
(ω2 − ω2

+)(ω2 − ω2
−)
]

(4.107)

where we define ω2
± = (zf ±2J)/m. Let us assume, for the moment, that these two quantities

are non-negative (intuitively, zf must be larger than or at most equal to the largest eigenvalue
of the post-quench interaction matrix, if the system reaches equilibrium, thus zf ≥ 2J). By
using the fact that Rst(ω) ∼ −(mω2)−1 as ω → +∞, one obtains

ImR̂st(ω) = 1
2J2

{
±m

√
(ω2 − ω2

−)(ω2
+ − ω2) for ω− ≤ ω ≤ ω+

0 otherwise
(4.108a)

ReR̂st(ω) = 1
2J2


zf −mω2 ±m

√
(ω2
− − ω2)(ω2

+ − ω2) for ω ≤ ω−
zf −mω2 for ω− ≤ ω ≤ ω+

zf −mω2 +m
√

(ω2 − ω2
−)(ω2 − ω2

+) for ω+ ≤ ω
(4.108b)

The sign of the imaginary part of R̂st(ω) in the interval [ω−, ω+] and that appearing in the
real part, ReR̂st(ω), for ω < ω−, in front of the square root, are decided a posteriori by
looking at the behaviour of the Fourier transform of the correlation, which should be related
to R̂st through the FDT relation, as we will see below. Notice also that |R̂st(ω)|2 = 1/J2 in
the interval [ω−, ω+]. The zero-frequency linear response, also called static susceptibility, is
given by

χst ≡ R̂st(0) =
∫ +∞

0
dτ Rst(τ) = 1

2J2

(
zf −

√
z2
f − 4J2

)
. (4.109)

Let us now turn to the dynamical equation for C(t1, t2) and consider the long-time regime
t2 � 1, with the assumption that time-translational invariance (TTI) is satisfied. We also
allow for the two-time correlation function not to decay to zero, but to a finite value q, and
separate explicitly this contribution from the stationary term Cst, i.e. C(t1, t2) ∼ q+Cst(t1−
t2) in the limit t2 → +∞ with t1 − t2 fixed, and we assume limτ→∞Cst(τ) = 0. We expect
q > 0 if the system is able to reach asymptotically an equilibrium state in the condensed
phase, otherwise q = 0.

112



With these assumptions and using the definitions of the asymptotic values of C(t, 0) and
Q(t, 0) given in Eqs. (4.102), for t2 � 1 and τ = t1 − t2 fixed, Eq. (4.80b) reduces to(
m∂2

τ + zf
)

(q + Cst(τ)) = JJ0
T ′

(q2
0 − q2

1) + J2q

∫ +∞

−t2
ds Rst(τ − s) + J2q

∫ t2

−∞
ds Rst(s)

+J2
∫ +∞

−t2
ds Rst(τ − s)Cst(s)

+J2
∫ t2

−∞
ds Rst(s)Cst(τ + s) . (4.110)

(where we also used the causal property of Rst to extend the limits of the integrals to +∞ or
−∞). Taking now the limit t2 → +∞ and computing the Fourier transform in the variable
τ , one obtains(

−mω2 + zf − J2R̂st(ω)
)
Ĉst(ω) =

(
−zfq + JJ0

T ′
(q2

0 − q2
2) + 2J2 q χst

)
δ(ω)

+J2 Ĉst(ω)R̂∗st(ω) , (4.111)

with R̂∗st(ω) the complex conjugate of R̂st(ω). In order to obtain a solution for Ĉst that is
continous at ω = 0 we need to impose the following condition,

−zfq + JJ0
T ′

(q2
0 − q2

1) + 2J2 q χst = 0 . (4.112)

Eq. (4.111) is then recast as(
−mω2 + zf − J2R̂st(ω)

)
Ĉst(ω) = J2 Ĉst(ω)R∗st(ω) , (4.113)

and by using Eq. (4.106), we obtain

Ĉst(ω) = J2
∣∣∣R̂st(ω)

∣∣∣2 Ĉst(ω) (4.114)

Unfortunately, this equation does not give much information about Ĉst(ω). From it we can
only conclude that for ω such that Ĉst(ω) 6= 0, R̂st has constant modulus, |R̂st(ω)|2 = 1/J2. If
one supposes that the FDT relation between Cst and Rst holds true, that is to say, ω Ĉst(ω) =
−Tf ImR̂st(ω) for some Tf , then one can also conclude that Ĉst(ω) is nonzero only in the
interval [ω−, ω+] (since ImR̂st(ω) is nonzero only in this interval, as seen above). Moreover,
FDT also implies

χst =
∫ +∞

0
dt Rst(t) = − 1

Tf

(
1− lim

t→+∞
Cst(t)

)
= 1− q

Tf
. (4.115)

Next we consider the asymptotic behaviour of z(t), the Lagrange multiplier. Starting
from Eq. (4.89) and considering the limit t→∞, we can write

zf = 2ef + 4J2 lim
t→+∞

∫ t

0
dt′ R(t, t′)C(t, t′) + 2JJ0

T ′

(
q2

0 − q2
1

)
. (4.116)

To proceed in the calculation we assume that we can substitute the integrand R(t, t′)C(t, t′)
with Rst(t− t′)Cst(t− t′) and we use the FDT property Rst(τ) = − 1

Tf
∂τCst(τ), obtaining

zf = 2ef −
4J2

Tf
lim

t→+∞

∫ t

0
dt′ ∂τ

[
Cst(τ)2

]∣∣∣
t−t′

+ 2JJ0
T ′

(
q2

0 − q2
1

)
. (4.117)
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By doing so we assume that the contribution to the integral of any possible transient between
the time 0 and t occuring before TTI and FDT establish can be neglected. In other words,
we assume that the time ttr, at which the transient ends and the true stationary regime
begins, is very small compared to t (which is true in the limit t→ +∞), and the contribution
to the integral coming from the interval [0, ttr] has a negligible effect. If one believes this
approximation, Eq. (4.117) then reduces to

zf = Tf + J2

Tf
(1− q2) + JJ0

T ′

(
q2

0 − q2
1

)
. (4.118)

where we have used the relation ef = ekin(t) + epot(t) = 2ekin(t) − z(t)/2 and assumed that
limt→∞ ekin(t) = Tf/2, i.e. “equipartition” at the final temperature Tf , as mentioned above.

By performing a similar approximation for Eq. (4.80b) evaluated at t2 = 0, we obtain the
following relation

zfq0 = JJ0
T ′

(q0 − qinq1) + J2q0 lim
t→+∞

∫ t

0
dt′ Rst(t− t′) . (4.119)

Again we assume that the initial transient before the onset of the TTI regime is very short
and that C(t, 0) converges very rapidly to the asymptotic value q0. By using the FDT relation
we then obtain

zfq0 = JJ0
T ′

(q0 − qinq1) + J2

Tf
q0(1− q) . (4.120)

Finally, let us consider the asymptotic behaviour of the dynamical equation for the cor-
relation Q(t, 0) (Eq. (4.80c)). By repeating the same approximations as above one gets the
following relation,

zfq1 = JJ0
T ′

(qinq0 − (1− 2qin)q1) + J2

Tf
q1(1− q) . (4.121)

By using together Eqs. (4.112), (4.118), (4.120) and (4.121), (together with the FDT
assumption χst = (1− q)/Tf ) one can determine the values of the constants zf , q, q0 and q1.
If one assumes that q = 0, then one obtains

q0 = q1 = 0 and zf = T + J2/Tf ,

that is to say, the “final” state is an equilibrium state in the paramagnetic phase. On the
other hand, if q > 0 and under the assumption q0 = q1 > 0 one finds that

q = 1− Tf
J

and zf = 2J ,

as in an equilibrium condensed state at temperature Tf .

4.3.2.1 Final temperature under the equilibrium assumption

It is actually very easy to derive a relation between Tf and the parameters that control
the quench dynamics, x = J/J0 and y = T ′/J0, under the only assumption that the system
is asymptotically approaching Gibbs-Boltzmann equilibrium. In fact, if one assumes that

efpot = lim
t→+∞

epot(t) = epot
eq (Tf ) = − J2

2Tf
(1− q2) , (4.122a)

efkin = lim
t→+∞

ekin(t) = ekin
eq (Tf ) = Tf

2 , (4.122b)

114



then, because of the conservation of energy in the post-quench dynamics, the following relation
holds

T ′

2 −
J0J

2T ′
(
1− q2

in

)
= Tf

2 −
J2

0
2Tf

(
1− q2

)
. (4.123)

If the final state is paramagnetic (Tf/J ≥ 1), then we should impose q = 0 and from the
above equation one obtains then

Tf
J

= 1
2y

y2

x
− 1 + q2

in +

√(
y2

x
− 1 + q2

in

)2
+ 4y2

 , (4.124)

where qin(y) = 0 if y ≥ 1, while qin(y) = 1 − y if y < 1. Instead, if the system reaches an
equilibrium state in the condensed phase (Tf/J < 1), we should have q = 1− Tf/J and thus

Tf
J

= 1 + y

2x −
1
2y
(
1− q2

in

)
. (4.125)

In particular, if the initial state is paramagnetic, that is to say, qin = 0, then we have

Tf
J

= 1 + y

2x −
1
2y , (4.126)

while, if the initial state is in the condensed phase, which means qin = 1− y, then we have

Tf
J

= y

2

(
1 + 1

x

)
. (4.127)

In order for this derivation to be consistent, we need to complement Eq. (4.124) with the
condition Tf/J > 1, and Eq. (4.125) with the condition Tf/J < 1. Moreover, we also need to
require that Tf/J > 0 in both cases. By imposing all of these conditions we find a particular
line in the x-y parameter space, given by the following two-piece function

gc(x) =


√
x for x ≥ 1 ,
2x
x+ 1 for x ≤ 1 ,

(4.128)

for x > 0. For quenches such that y > gc(x), Eq. (4.124) is satisfied (and not Eq. (4.125))
and thus, assuming the system reaches asymptotically an equilibrium state, this state should
be paramagnetic. On the contrary, for quenches such that y < gc(x), Eq. (4.125) is satisfied
(and not Eq. (4.124)) and thus the system should reach an equilibrium state in the condensed
phase. In terms of the energy change induced by the quench, the interpretation of these
bounds is the following. Consider, as an example, a case in which the system starts from
an equilibrium state in the condensed phase, that is to say, y = T ′/J0 < 1. Quenches such
that 1 > x > y/(2− y) inject an amount of energy into the system which is not sufficient to
make it approach a paramagnetic state in the long-time post-quench regime, thus it remains
confined in the condensed phase. On the other hand, in the case of a paramagnetic initial
condition (y > 1), quenches such that 1 < x < y2 do not extract enough energy for the
system to reach an equilibrium state in the condensed phase.

From this simple analysis, it seems that the x-y parameter space is divided in just two
regions. However, we are going to show by using the results obtained by numerically inte-
grating the Schwinger-Dyson equations for the correlation, response function and Lagrange
multiplier, that, apart from some exceptional cases, the system never reaches a stationary
state with the properties of Gibbs-Boltzmann equilibrium, as stated above.
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4.4 Dynamics of the finite-size system
In this Section we describe how the dynamics of a finite-size system can be solved by

using the basis in which the interaction matrix is diagonalised, so that the system becomes
effectively a collection of harmonic oscillators coupled only through the Lagrange multiplier.
We show that these oscillators decouple under the assumption z(t) → zf allowing for a
simple approximate solution of the problem that can, however, be relevant for N →∞ only
(otherwise, for finite N , z(t) does not reach a constant).

Given a particular realization of the interaction matrix {Jij}, for finite N , let λ1, . . . , λN
be its eigenvalues, in increasing order, and v1, . . . ,vN the corresponding eigenvectors. If we
denote by sµ(t) = s(t) · vµ the projection of the spin vector in the direction of the µ-th
eigenvector of the interaction matrix, the N “rotated” equations of motion read

ms̈µ(t) + (z(t)− λµ)sµ(t) = 0 . (4.129)

This set of equations has to be complemented with the initial conditions sµ(0) and ṡµ(0).
They are very similar to the equations for a parametric oscillator, the difference being that, in
our case, the time-dependent frequency depends on the variables themselves via the Lagrange
multiplier.

Once the equations of motion for the sµ are solved, we can recover the trajectories for s
using s(t) =

∑
µ sµ(t)vµ. In particular, the two-time autocorrelation function is given by

CJ(t1, t2) = 1
N

∑
µ

〈sµ(t1)sµ(t2)〉 , (4.130)

where the subscript J means that the result depends, in principle, on the particular realisation
of the random interaction matrix {Jij}, and the angular brackets represent an average over
initial conditions. One could then perform the disorder average or analyse the self-averageness
properties of the correlation in different time regimes. The dependence on the Jij should
disappear in the N →∞ limit.

At variance with the N → ∞ approach, the finite size study allows one to access the
details of the dynamics of each mode. In the following, we define some mode-observables
that will provide valuable information. Of particular interest are the mode energies, given by

εkin
µ (t) = m

2 〈ṡ
2
µ(t)〉 , (4.131a)

εpot
µ (t) = 1

2(z(t)− λµ)〈s2
µ(t)〉 , (4.131b)

εtot
µ (t) = ekin

µ (t) + epot
µ (t) . (4.131c)

Notice that in the analysis of the N → ∞ model, we defined a potential energy density as
epot = −1/(2N)

∑
µ λµ〈 s2

µ 〉 (see Eq. (4.81b)), without the term proportional to z(t). The
values of these energies at t = 0− are given by the fact that all modes are in equilibrium at
the same temperature:

εtot
µ (0−) = 2εkin

µ (0−) = 2εpot
µ (0−) = T ′ . (4.132)

Immediately after the quench, they are given by

εkin
µ (0+) = m

2 〈ṡ
2
µ(0+)〉 = T ′

2 , εpot
µ (0+) = T ′

2
z(0+)− λµ
z(0−)− λ0

µ

. (4.133)
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where λ0
1, . . . , λ

0
N are the eigenvalues of the pre-quench interaction matrix.

In order to study the eventual thermalisation of the system, we can define an effective
time-dependent mode temperature through the total mode energy

Tµ(t) ≡ εtot
µ (t) (4.134)

based on the fact that the modes are (quasi) decoupled. Whenever the system enters a
stationary regime in which z(t) is constant, see Sec. 4.4.3, the mode temperatures Tµ are
independent of time, since the system behaves as a collection of non-coupled harmonic oscil-
lators. We can also define mode temperatures by taking the time-average of the kinetic and
potential mode energies over a certain interval,

T
kin,pot
µ ≡ 1

2 lim
τ�1

1
τ

∫ tst+τ

tst
dt′ ekin,pot

µ (t′) . (4.135)

where tst is the time required for the system to reach the stationary regime.
Other useful observables are the time-delayed mode correlation functions

Cµ(t1, t2) = 〈sµ(t1)sµ(t2)〉 (4.136)

and the mode linear response functions

Rµ(t1, t2) = δ〈sµ(t1)〉h
δhµ(t2)

∣∣∣∣∣
hµ→0

(4.137)

which are computed by adding an external field hµ linearly coupled to the mode sµ, for each µ
(the brackets 〈 · 〉h indicate the average over the initial conditions in presence of the external
field).

4.4.1 Formal solution of the mode dynamics

One possible approach to solve the dynamics of each mode starting from canonical equi-
librium initial conditions is to take a large ensemble of initial configurations drawn from the
Gibbs-Boltzmann distribution, numerically integrate the Newton equations Eq. (4.129) for
each initial condition, and then calculate the observables averaging over the trajectories cor-
responding to the different initial states. Such approach is feasible but computationally very
demanding. In this Section we describe a more convenient method to solve the dynamics for
each mode that heavily uses the tools developed to treat a paradigmatic problem in classical
mechanics, the one of parametric oscillators [132, 133].

In order to solve Eq. (4.129) we propose an amplitude-phase Ansatz [132, 133, 134]

sµ(t) = A√
Ωµ(t)

exp
[
−i
∫ t

0
dt′ Ωµ(t′)

]
. (4.138)

Inserting this Ansatz in the µth mode Newton equation, we obtain an equation for the mode
and time dependent auxiliary function Ωµ(t),

1
2

Ω̈µ(t)
Ωµ(t) −

3
4

(
Ω̇µ(t)
Ωµ(t)

)2

+ Ω2
µ(t) = ω2

µ(t) , (4.139)
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where ω2
µ(t) ≡ (z(t)−λµ)/m. The last equation has to be complemented by the initial values

Ωµ(0) and Ω̇µ(0). If we choose
Ω̇µ(0) = 0 , (4.140)

we find that the projection of the spin configuration is

sµ(t) = sµ(0)
√

Ωµ(0)
Ωµ(t) cos

(∫ t

0
dt′ Ωµ(t′)

)
+ ṡµ(0)√

Ωµ(t)Ωµ(0)
sin
(∫ t

0
dt′ Ωµ(t′)

)
, (4.141)

which is reminiscent of the general solution of the harmonic oscillator problem, here with a
time-dependent “frequency” Ωµ(t).

We still have to specify the initial condition for Ωµ(0). A possible choice is given by

m Ω2
µ(0) = z(0)− λµ (4.142)

that enforces Ω̈µ(0) = 0 [134]. However, this choice is consistent with real Ωµ(t) only if
z(0) − λµ ≥ 0, which is verified uniquely for J ≤ J0, i.e. uniquely for energy injection. An
initial condition ensuring real and positive Ωµ(t) for all µ for any quench is

Ω2
µ(0) = λN − λµ . (4.143)

We choose this initial condition for the numerical calculations.
In order to solve for Ωµ(t) we consider the equal-times mode correlation function

Cµ(t, t) ≡ 〈s2
µ(t)〉 = 〈s2

µ(0)〉 Ωµ(0)
Ωµ(t) cos2

(∫ t

0
dt′Ωµ(t′)

)
+

〈ṡ2
µ(0)〉

Ωµ(0)Ωµ(t) sin2
(∫ t

0
dt′Ωµ(t′)

)
+〈sµ(0)ṡµ(0)〉

Ωµ(t) sin
(∫ t

0
dt′Ωµ(t′)

)
cos

(∫ t

0
dt′Ωµ(t′)

)
, (4.144)

in terms of which we write the potential energy as

epot(t) = − 1
2N

∑
µ

λµCµ(t, t) . (4.145)

Replacing this equation in z(t) = 2ef − 4epot(t), we find an expression for the Lagrange
multiplier as a function of the mode correlations at equal times

z(t) = 2ef + 2
N

∑
µ

λµCµ(t, t) . (4.146)

Finally, we note that the system conformed by Eqs. (4.139), (4.144) and (4.146) is closed
and allows one to find the time evolution of the Lagrange multiplier and the auxiliary functions
Ωµ(t). This set of equations is amenable to numerical integration. Once we obtain Ωµ(t), the
most interesting observables can be calculated using the general solution in the form given
in Eq. (4.138). The advantage of this method is that we do not need to draw initial states
{sµ(0), ṡµ(0)} but we only have to specify the initial averages 〈s2

µ(0)〉 and 〈ṡ2
µ(0)〉.
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4.4.2 Initial conditions: equilibrium averages for finite N

In this Section we address the calculation of equilibrium averages at finite N in order
to provide suitable initial conditions for the numerical integration of the mode dynamics
explained in the previous Section.

If we were to naively integrate the mode equations, we would need to draw initial vectors,
s(0) = (s1(0), . . . , sN (0)) and ṡ(0) = (ṡ1(0), . . . , ṡN (0)), mimicking an initial thermal state at
finite temperature, be it T ′ > T0,c = J0 or T ′ < T0,c = J0, for a given realisation of the N×N
interaction matrix. Averages over these initial states of the interesting observables should
then be computed. This method is computationally expensive as a large number of samples
of the initial condition should be drawn to get smooth and reliable results. Instead, the
numerical method that was explained in the previous Section is such that only the averages
〈 s2

µ(0) 〉eq and 〈 ṡ2
µ(0) 〉eq are needed as input for the initial conditions. We then focus on

determining these averages in a finite size system in equilibrium.
The canonical equilibrium probability density of the configuration {pµ = mṡµ, sµ} at

temperature T ′, for a given realization of disorder, is

PGB({pµ, sµ}) = 1
Z

exp
[
− 1
T ′

∑
µ

p2
µ

2m −
1
T ′

∑
µ

(z(N)
eq − λ0

µ)s2
µ

]
, (4.147)

with Z the partition function. The quadratic averages of the velocities are thus simply given
by

〈 ṡ2
µ 〉eq = T ′

m
∀µ, N , (4.148)

just as for the infinite N case, and the initial conditions will be 〈 ṡ2
µ(0+) 〉 = 〈 ṡ2

µ 〉eq.
As long as the equilibrium value of the Lagrange multiplier be strictly larger than the

largest eigenvalue, z(N)
eq > λ0

max = λ0
N , the weight of the coordinates sµ are well-defined

independent Gaussians. We will see that the self-consistent solution complies with this bound.
Relying on the spherical constraint being imposed by the Lagrange multiplier, we obtain

〈 s2
µ 〉eq = T ′

z
(N)
eq − λ0

µ

∀µ,N . (4.149)

The difference between the two equilibrium phases will be codified in the value of z(N)
eq , which

can be obtained as the solution of the spherical constraint equation

N∑
µ=1
〈s2
µ〉eq =

N∑
µ=1

T ′

z
(N)
eq − λ0

µ

= N . (4.150)

We solved this equation numerically to determine z(N)
eq and we found that the solution turns

out to be always greater than λ0
max, for any value of the temperature and finite N , and for

typical realisations of the interaction matrix. In Fig. 4.1-(a) we show z
(N)
eq as a function of

temperature for three values of N , and a single realisation of the random interaction matrix
in each case. At high temperatures all the curves collapse (on the scale of the figure) on
the paramagnetic curve zeq = T ′ + J2

0/T
′, irrespective of the system size. At low tempera-

tures (inset), z(N)
eq is always larger than λ0

max and, as expected, the difference between them
decreases with the system size.
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Figure 4.1: Equilibrium properties of the finite-N system. (a) Equilibrium Lagrange multi-
plier at finite N . We show the numerical solution to Eq. (4.150), as a function of the
temperature T ′, using one particular realisation of the disorder, for different values of
N . The non-monotonic N -dependence of the plateau is of the order of magnitude of
the variation with N of the largest eigenvalue. Inset: difference between the Lagrange
multiplier and the largest eigenvalue of the interaction matrix in the condensed region
as a function of temperature. The trend is now monotonic in N . (b) System size scal-
ing of the Lagrange multiplier in the condensed phase. We show the difference between
the Lagrange multiplier, as obtained from the solution to Eq. (4.150), and the largest
eigenvalue of the interaction matrix as a function of 1/N for different system sizes, using
one particular realization of disorder for each size. The dashed lines are T ′/(Nqin), with
qin = 1− T ′/J0 the value of the self-overlap in the N →∞ limit.

Once the finite size Lagrange multiplier is obtained, we replace it in Eq. (4.149) to obtain
the initial conditions 〈 s2

µ(0+) 〉 for the mode dynamics. To gain insight into the scaling of
z

(N)
eq with the system size N , in Fig. 4.1-(b) we plot the difference between z(N)

eq and λ0
max for

temperatures in the condensed phase as a function of 1/N . The straight dashed lines have
slope T ′/qin, where qin = 1−T ′/J0 is the N →∞ value of the self-overlap. For temperatures
sufficiently below the transition, the finite-size data, obtained for one particular realisation
of the random matrix Jij , match pretty accurately the infinite-size results. For temperatures
close to the transition, there appear deviations for the smallest system sizes (largest 1/N). In
conclusion, we find that for large system sizes or temperatures not too close to the transition,
the solution to Eq. (4.150) behaves as

z(N)
eq ' λ0

max + T ′

Nqin
, T ′ < J0 . (4.151)

Based on this, we define a finite size version of the equilibrium self-overlap

q
(N)
in ≡ T ′

N(z(N)
eq − λ0

N )
, (4.152)

which is non-zero if the highest mode is macroscopically populated. In Fig. 4.2-(a) we show
q

(N)
in as a function of temperature, for a single realisation of the interaction matrix. We can
observe the convergence of the finite size results towards the N → ∞ predictions as the
system size is increased.
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Figure 4.2: Equilibrium properties of the finite-N system. (a) Equilibrium qin at finite N , as a
function of the temperature T ′, using one particular realization of the disorder. Finite-N
corrections are more significant near the transition (T ′ = J0 = 1). (b) System size scaling
of the Lagrange multiplier in the paramagnetic phase. Difference between the Lagrange
multiplier, as obtained from the solution of Eq. (4.150), and the largest eigenvalue of the
interaction matrix as a function of 1/N for different system sizes, using one particular
realisation of disorder for each size. The non-vanishing value at 1/N � 1 corresponds to
z

(N→∞)
eq − 2J0.

We have also investigated the finite N corrections to z(N)
eq in the paramagnetic phase,

T ′ > J0. We find that a linear scaling in 1/N also applies here, but the value of z(N)
eq − λ0

max
at N →∞ does not vanish and it is given instead by T ′+ J2

0/T
′− 2J0, as expected. We find

approximately,
z(N)

eq − λ0
max ' z(N→∞)

eq − 2J0 + c

N
, (4.153)

with c some constant, see Fig. 4.2-(b).
Let us now compute the finite-N equilibrium values of the kinetic and potential energy

densities before and after the quench, using the finite size averages for 〈 s2
µ 〉eq and 〈 ṡ2

µ 〉eq pro-
posed above, and compare them with the equilibrium N →∞ results obtained in Sec. 4.3.1.
The kinetic energy right before the quench is given by

e
(N)
kin (0−) = m

2N

N∑
µ=1
〈 ṡ2

µ 〉eq = T ′

2 , (4.154)

which coincides with the infinite-N result. The pre-quench potential energy instead reads

e
(N)
pot (0−) = − 1

2N

N∑
µ=1

λ0
µ〈 s2

µ 〉eq = − T ′

2N

 N∑
µ=1

λ0
µ − z

(N)
eq

z
(N)
eq − λ0

µ

+ z(N)
eq

N∑
µ=1

1
z

(N)
eq − λ0

µ

 = T ′

2 −
z

(N)
eq
2 ,(4.155)

where we used Eq. (4.150). In the equilibrium condensed phase we can rely on z
(N)
eq =

λ0
max + T ′/(Nq(N)

in ) to obtain

e
(N)
pot (0−) = −λ

0
max
2 + T ′

2 −
T ′

2Nq(N)
in

. (4.156)
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TheN →∞ result is epot(0−) = −J0+T ′/2, consistent with Eq. (4.156), since limN→∞ λ
0
max =

2J0. In the paramagnetic phase q(N)
in � 1 and the third term in Eq. (4.156) induces important

corrections. In this case, using Eq. (4.153) we can write

e
(N)
pot (0−) ' − J2

0
2T ′ −

(
λ0

max
2 − J0

)
− c

2N (4.157)

and one readily recovers the N →∞ limit epot(0−) = −J2
0/(2T ′).

In order to compute the values of the kinetic and potential energy densities immediately
after the quench, we just need to consider the transformation λ0

µ 7→ λµ = (J/J0)λ0
µ for all µ,

since we are dealing with a uniform quench of the random couplings. The kinetic energy is
not affected by the quench in the interaction and, just as in the N →∞ limit (see Sec. 4.3.1),
we have that

e
(N)
kin (0+) = e

(N)
kin (0−) = T ′

2 . (4.158)

For the potential energy it is enough to note that

e
(N)
pot (0+) = − 1

2N

N∑
µ=1

λµ〈 s2
µ 〉eq = − 1

2N
J

J0

N∑
µ=1

λ0
µ〈 s2

µ 〉eq = J

J0
e

(N)
pot (0−) . (4.159)

Using that z(N)(0+) = 2(e(N)
kin (0+) − e(N)

pot (0+)) = T ′ − 2J/J0 e
(N)
pot (0−) it is now easy to

find the initial value of the Lagrange multiplier. When the initial conditions are taken from
the condensed phase, we can write

z(N)(0+) = λmax + T ′
(

1− J

J0

)
+ JT ′

NJ0q
(N)
in

. (4.160)

For initial states in the paramagnetic phase, instead we have

z(N)(0+) ' JJ0
T ′

+ T ′ + (λmax − 2J) + J

J0

c

N
. (4.161)

4.4.3 Behaviour under stationary conditions

Let us assume that the system reaches stationarity and that the Lagrange multiplier
approaches a constant

lim
t→∞

z(t) = zf . (4.162)

Moreover, we suppose that most of the evolution of z(t) occurs in a finite time tst, that is
to say, we assume we can make the approaximation z(t) ' zf for t > tst. The equation of
motion of each mode, for t� tst, then becomes

ms̈µ(t) + (zf − λµ)sµ(t) = 0 (4.163)

and can be thought of as Newton’s equation for the mode Hamiltonian

Hµ = 1
2mṡ

2
µ + 1

2mω
2
µs

2
µ (4.164)
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with ω2
µ ≡ (zf − λµ)/m, i.e. a simple harmonic oscillator. This equation has three types of

solutions depending on the sign of ω2
µ:

ω2
µ > 0 , sµ(t) = sµ(tst) cos [ωµ(t− tst)] + ṡµ(tst)

ωµ
sin [ωµ(t− tst)] , (4.165a)

ω2
µ = 0 , sµ(t) = sµ(tst) + ṡµ(tst)(t− tst) , (4.165b)

ω2
µ < 0 , sµ(t) = sµ(tst) cosh (|ωµ|(t− tst))−

ṡµ(tst)
|ωµ|

sinh (|ωµ|(t− tst)) , (4.165c)

that is to say, oscillatory solutions with constant amplitude in the first case, diffusive be-
haviour in the intermediate case, and exponentially diverging solutions in the last case. We
insist upon the fact that the reference time is taken to be tst, the time needed to reach the
stationary state.

If the Lagrange multiplier approaches, then, a value that is larger than λN , all modes
oscillate indefinitely. In Gibbs-Boltzmann equilibrium in the PM phase, zeq > λN and such
a fully oscillating behaviour is expected. In equilibrium in the low-temperature (condensed)
phase zeq = λmax = λN for N →∞ and the µ = N mode should grow linearly in time while
all other modes should oscillate with frequency ωµ =

√
(zf − λµ)/m. The amplitude of each

mode is determined by the initial conditions, that are actually matching conditions at time tst,
the time at which stationarity is reached. For finite N , one finds a more complicated scenario.
In fact, we recall that the spacing between the largest eigenvalue and the second largest one
of a Gaussian symmetric matrix, λN − λN−1, scales as N−2/3 [99]. This means that, under
the assumption zf → λN , zf − λN−1 ∼ N−2/3 and one should expect the existence of almost
diffusive modes close to the largest one, in the large N limit. However, the simulations at
finite N show that for finite N , zf is almost always greater than λN and thus all modes are
oscillatory. Even for “condensed-type” dynamics, zf is greater than λN , although very close
to it.

As expected from Birkhoff’s theorem [135], the long-time averages, say taken after tst,
should be constant and one can expect them to be equal to half the total energy,

εkin
µ = εpot

µ = 1
2ε

tot
µ = 1

4mω
2
µsµ(tst)2 + 1

4m[ṡµ(tst)]2 . (4.166)

If one now associates a temperature to these values, arguing equipartition of quadratic degrees
of freedom, one has Tµ = 2εkin

µ = 2εpot
µ = εtot

µ . Thus, the mode temperatures depend on the
averages at the end of the transient, and on the mode frequencies given by ω2

µ = (zf −λµ)/m,
which depend on the asymptotic limit of the Lagrange multiplier zf and the eigenvalues λµ.

In the argument above we implicitly assumed that ω2
µ does not vanish. The case µ = N

is tricky. If one naively sets ω2
µ to zero from the outset, then 2εpot

N = ω2
µ〈s2

N 〉 apparently
vanishes as N → +∞. The correct way of treating the largest mode is to remember that
the projection on it condenses and that 〈s2

N 〉 is proportional to N . This will ensure that
limN�1〈s2

N 〉 ∝ N , in such a way that limN→∞ ω
2
µ〈s2

N 〉 = 2εkin
µ , similarly to what happens

in equilibrium at a temperature T , where 〈s2
N 〉 = qEAN and the Lagrange multiplier is such

that (zeq − λN )qEAN = T .
Let us now make a brutal approximation in which we assume that the asymptotic value

zf is reached instantaneously after the quench, that is z(0+) ' zf (or in other words, tst ' 0),
so that we can use

〈ṡ2
µ(0+)〉 ≈ ω2

µ〈s2
µ(0+)〉 ≈ T ′

m
(4.167)
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instead of the unknown values at the end of the transient regime, 〈ṡ2
µ(tst)〉 and ω2

µ〈s2
µ(tst)〉.

Under this assumption the “final” (i.e. post-quench) mode temperatures are given by

T fµ ≡ 2epot
µ = 2ekin

µ = T ′

2

(
ω2
µ

ω2
0µ

+ 1
)

= T ′

2

(
zf − λµ

zeq(T ′, J0)− λ0
µ

+ 1
)
. (4.168)

with ekin
µ and epot

µ the time-averaged values of kinetic and potential mode energies, respec-
tively, defined in Eq. (4.135). This relation can be easily obtained for a potential energy
quench of the simple harmonic oscillator, see App. D.1 for details.

We would like to know which is the condition satisfied by zf under this approximation.
We note that the time-dependent spherical constraint imposes that

N∑
µ=1
〈s2
µ(t)〉 = N . (4.169)

which implies that
N∑
µ=1
〈s2
µ(t)〉 = N , (4.170)

where 〈s2
µ(t)〉 denotes the average over time of 〈s2

µ(t)〉 in the stationary regime (t > tst).
Inserting the independent harmonic oscillator approximation in the above equation, we find
an equation for zf

T ′

2m

N∑
µ=1

(ωµ)−2

(ωµ
ω0
µ

)2

+ 1

 = T ′

2

N∑
µ=1

[
1

zeq(T ′, J0)− λ0
µ

+ 1
zf − λµ

]
= N . (4.171)

Since zeq(T ′, J0) satisfies the constraint
N∑
µ=1

T ′

zeq − λ0
µ

= N , (4.172)

we find the following equation for zf ,
N∑
µ=1

T ′

zf − λµ
= N . (4.173)

In other words, under this approximation, zf is equal to the equilibrium Lagrange multiplier
for a system in equilibrium at temperature T ′ with respect to a disorder strength J . In the
N →∞ limit, we thus have zf = 2J if T ′ < J and zf = T ′ + J2/T ′ if T ′ > J .

We will put these predictions to the test in Sec. 4.5 using the numerical solution to
the finite-N equations of motion for the spin degrees of freedom. We will find that, in
various regions of the parameter space, this a priori brutal approximation is in strikingly
good agreement with the numerical data.

4.5 Numerical results
This Section summarises what we found numerically by solving the N → ∞ Schwinger-

Dyson equations that couple the two-time autocorrelation and linear response function (Eqs. (4.80a)-
(4.80d)), and the equation of motions for the mode projections sµ, in the finite N case
(Eqs. (4.139), (4.144) and (4.146) together).
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The finite N results are consistent with the infinite N ones and help us understanding the
mechanism whereby the dynamics takes place. We first present a description of the dynamical
phase diagram and a summary of the behaviour of the various observables in each sector of
this diagram. Later, we give further details on the dynamics at constant energy (no quench)
and in each of the dynamical phases identified after a quench.

We will make a special effort to show, in each case considered, that an asymptotic state
characterised by the single temperature Tf , obtained from the naive asymptotic analysis pre-
sented in Sec. 4.3.2, is almost never attained. The investigations that lead to this conclusion
are very instructive not only because they prove the lack of Gibbs-Boltzmann equilibrium but
also because they lead to the evaluation of the mode temperatures. We will see that a state
with a single Tf characterising the fluctuation-dissipation relation is reached numerically in
the following two cases only:

• the no quench-dynamics, i.e. x = J/J0 = 1 ;

• quenches for which the special relation y =
√
x holds, for y = T ′/J0 > 1.

In all other cases no equilibrium results à la Gibbs-Boltzmann are found for the global
observables (correlation function, linear response function, kinetic and potential energies)
but a different statistical description, of a generalised kind, should be adopted. We recall
that in the case of the p-spin spherical model with p ≥ 3 the behaviour is very different [83].
On the one hand, equilibrium towards a proper paramagnetic state, and within confining
metastable states, were reached in two sectors of its dynamic phase diagram. On the other
hand, an ageing asymptotic state in a tuned regime of parameters was also found. In the
p = 2 model instead, we do not find any choice of parameters that yields an ageing asymptotic
state.

In all the cases that we are going to show, we have set J0 = 1 and m = 1, unless otherwise
stated. The Schwinger-Dyson equations for the two-time correlations, linear response function
and the Lagrange multiplier were integrated by using a Runge-Kutta method. A time step
of order δt ' 0.001 was sufficient to assure numerical convergence of our results. In the
integration of the finite N problem we used a similar method but found a weak dependence
on δt. Nevertheless, a time step δt = 0.001 gave acceptable results.

4.5.1 The phase diagram

In the following we show the phase diagram determined by the value of the static suscep-
tibility, χst, and by the value of the asymptotic value of the Lagrange multiplier, zf , both
obtained by solving numerically either the Schwinger-Dyson equations for the correlation and
response functions (for the N → +∞ case) or the equations of motion for the spin variables
in the finite N case. We determine their values through the variation of the parameter J/J0,
for fixed T ′/J0. In the phase diagram presented in Fig. 4.5 and the ensuing discussion we
call y = T ′/J0 the vertical axis and x = J/J0 the horizontal one. The former determines the
initial state and the latter the kind of quench performed with injection of energy for x < 1,
and extraction of energy for x > 1.

In Fig. 4.3 we show the value of the zero-frequency linear response, or static susceptibility,
χst = limt2�1

∫+∞
0 dτR(t2 + τ, t2), with R(t1, t2) obtained from the numerical integration of

the N → ∞ Schwinger-Dyson equations. We plot T ′ χst against J/T ′, and we observe
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approximately the following behaviour,

T ′ χst '
{

1 for T ′

J ≥ 1
T ′/J for T ′

J < 1
. (4.174)
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Figure 4.3: The zero-frequency linear response, χst = limt2�1
∫ +∞

0 dτR(t2 + τ, t2) computed
from R(t1, t2) obtained by numerically integrating the Schwinger-Dyson dynamical equa-
tions, for several choices of initial conditions given in the key, with both y < 1 (condensed)
and y > 1 (paramagnetic) cases, together with the curve given in Eq. (4.174), plotted
with a dashed line.

The change in the behaviour of χst at the point J/T ′ = 1 is accompanied by a change in
the asymptotic value of z. This fact is shown in Fig. 4.4, where we present the data relative
to zf , estimated numerically both in the N → ∞ case and the finite N case (panels (a)
and (b), respectively), as a function of the quench parameter x = J/J0. For x < y, the
numerically estimated zf (x) in the case N →∞, for fixed y, were fitted with the polynomial
f(x) = a x2 + b x + c. We obtained very good results with a ' 1/y, b ' 0 and c ' y (the
precision of the fit is very high in terms of reduced χ2). These results strongly suggest the
following dependence of zf on the parameters x and y,

zf (x, y) = J0


x2

y
+ y for x ≤ y ,

2x for x ≥ y .
(4.175)

The analysis of the finite N data was done along the same lines, see Fig. 4.4-(b), with the
difference that the data for x < y were fitted by T ′ + λ2

max/(4T ′) and those for x > y with
Jλmax, with λmax = λN the largest eigenvalue of the post-quench interaction matrix, finding
again very good agreement. (We found an appreciable deviation in the fit for x > y had we
used 2J instead of Jλmax. Regarding the results for x < y we could have used T ′ + J2/T ′

with a similar quality for the fit.)
It seems thus that there exists a “critical” line in the x-y parameter space, corresponding

to the points x = y. This result somehow contradicts the asymptotic analysis performed in
Sec. 4.3.2, where we found that a transition from a paramagnetic equilibrium final state to a
condensed equilibrium final state occurs on the line

gc(x) =


√
x for x ≥ 1 ,
2x
x+ 1 for x ≤ 1 .

(4.176)
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Figure 4.4: Estimated asymptotic value of z(t) as function of J/J0, for different values of T ′/J0,
as indicated in the keys. (a) N →∞ results. The dashed curved lines are the functions
f(x, y) = y + x2/y for x < y where x = J/J0 and y = T ′/J0. We also show the diagonal
2x to let the reader see the crossover between the two regimes. (b) Results for the
quench dynamics at T ′/J0 = 1, for different finite size systems. The straight dashed line
is Jλmax, the other curve is T ′ + λ2

max/(4T ′), the finite size version of the infinite N fits.
We have taken the value of λmax corresponding to the N = 1024 instance.

One could object that the above critical line was obtained under the assumption that the
system is able to reach asymptotically an equilibrium state, while here we are just considering
χst and the asymptotic value of the Lagrange multiplier, zf , without taking into account the
eventual stationarity of the correlation and linear response functions. However, for quenches
corresponding to x < y (that is, J < T ′) we can already see, just by looking at the values of
χst and zf , that the equilibrium picture is not realised. Nevertheless, the numerical estimates
of χst and zf are consistent with the relation given by Eq. (4.109), for every choice of the
parameters x and y.

Concerning the long-time behaviour of C(t1, t2), we observe the following trends:

• For x < xc(y) = y, C(t1, t2) tends to be stationary, though it does not fully reach this
limit within the time scales explored by the numerics when y is too small. In most
instances, C(t1, t2) oscillates around 0, exceptions being the quenches corresponding
to the choice of parameters x = y, or very close to this curve, in which cases zero is
approached asymptotically from below. The time average of C computed on intervals
far from the initial transitory regime vanishes in all cases suggesting an effective q = 0.

• For x > xc(y) = y, C(t1, t2) is rapidly stationary and one can clearly identify the
asymptotic value q = lim

t2�1
t1−t2�1

C(t1, t2). For y < 1 one has q > 0, while for y > 1 q = 0.

The asymptotic value q0 = limt2�t0 C(t1, 0) is different from q in the cases in which
both are non-vanishing.

By using the above observations, we are able to construct an approximate dynamic phase
diagram for the Hamiltonian dynamics of the p = 2 spherical spin glass model following
a uniform quench of the interaction matrix. This is shown in Fig. 4.5. So far we have
indentified three large regions corresponding to three different dynamical behaviour in the
long-time limit, namely

• x < xc(y) = y, where χst = 1/T ′, zf = T ′ + J2/T ′ and q = 0 ;
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• y > 1 and x > xc(y) = y, where χst = 1/J , zf = 2J and q = 0 ;

• y < 1 and x > xc(y) = y, where χst = 1/J , zf = 2J and q > 0 .
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Figure 4.5: The dynamic phase diagram. The parameter x = J/J0 controls the energy injec-
tion/extraction, with x < 1 corresponding to energy injection (∆e > 0), while x > 1 to
energy extraction (∆e < 0). The parameter y = T ′/J0 represents the pre-quench equilib-
rium temperature. The dotted line corresponds to the function gc(x), with gc(x) =

√
x

for x > 1 and gc(x) = 2x/(1 + x) for x ≤ 1, the “critical” line separating a phase with
paramagnetic final state and one with condensed final state, under the Gibbs-Boltzmann
equilibrium assumption, see Sec. 4.3.2. The red data points equipped with error bars
indicate the numerical estimate of xc, the value of x at which the transition in the be-
haviour of χst (or zf ) actually occurs, for several values of y = T ′/J0. The Roman
numerals indicate the four sectors in which we divide the paramater space: y > 1 and
y > x (Sector I), x > y > 1 (Sector II), y < 1 and y < x (Sector III), x < y < 1 (Sector
IV). The three regions that are characterised by different behaviour of zf , χst and the
long-time limit of C(t1, t2) are highlighted with different colors: white for Sectors I+IV,
red for Sector II, green for Sector III.

In the following Sections we are going to treat in detail examples of quenches in each
region of the phase diagram, confirming the preliminary analysis presented above. Based on
the quench parameters y = T ′/J0 and x = J/J0, we will consider separately quenches in the
following four sectors,

• Sector I: y > 1 and y > x,

• Sector II: y > 1 and y < x,

• Sector III: y < 1 and y < x,

• Sector IV: y < 1 and y > x .
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4.5.2 Constant energy dynamics

4.5.2.1 No-quench dynamics in the paramagnetic phase

Let us start with the analysis of the dynamics in the case in which there is no quench,
i.e. x = J/J0 = 1. Since the Hamiltonian of the system remains unchanged, going from
the equilibrium state at t = 0− to the proper dynamics at t > 0+, we should expect time
translation invariance to hold for all t ≥ 0. Moreover, given that the system is initially
prepared in a Gibbs-Boltzmann equilibrium state at a temperature T ′, we expect that it
remains in this state for t ≥ 0, when it evolves isolated from the thermal bath, and thus
we should recover the FDT relation between the two-time autocorrelation and the linear
response function, at all times t ≥ 0, with respect to the temperature T ′.

We consider first the situation in which y = T ′/J0 > 1, that is to say, an initial state in
the paramagnetic phase. In Fig. 4.6 we analyse the results of the numerical integration of the
N → ∞ Schwinger-Dyson equations for the particular case T ′ = 1.25 J0 (and J = J0). The
figure shows the time evolution of the two-time autocorrelation function (Fig. 4.6-(a)), the
deviation of the Lagrange multiplier from its equilibrium value (Fig. 4.6-(b)), the fluctuation-
dissipation parametric plot (Fig. 4.6-(c)), and the relation between C(t1, t2) and R(t1, t2) in
the frequency domain (Fig. 4.6-(d) and Fig. 4.6-(e)).

As one can see from Fig. 4.6-(a), C(t1, t2) depends on t1 and t2 only through the difference
t1− t2, meaning that time translation invariance is indeed satisfied. All the correlations relax
to zero, as expected from a paramagnetic state, that is to say, q = q0 = 0. The fluctuation-
dissipation relation (FDR) is also satisfied with the temperature of the initial condition. This
fact can be proven in general for Newtonian evolution of initial configurations drawn from
Gibbs-Boltzmann equilibrium [136]. This is confirmed by the parametric plot in Fig. 4.6-(c).
In this figure we display the integrated linear response, χ(t1, t2) =

∫ t1
t2
dt′R(t1, t′), also some-

times referred to as dynamical susceptibility, plotted against the two-time autocorrelation,
C(t1, t2), for two different waiting times t2. Together we also show the expected behaviour of
this parametric curve (parametric in t1), that is to say, χ = (1−C)/T ′. In fact, if the system
were to reach a stationary state in which FDT is satisfied with respect to a certain tempera-
ture T , then we should observe χ(t1, t2) = (1−C(t1, t2))/T for all times t2 in the stationary
regime. In the case of no-quench dynamics, we observe that this relation is satisfied at all
times t2 ≥ 0.

The Lagrange multiplier remains constant throughout the evolution of the system and
equal to the predicted value, zeq = T ′ + J2

0/T
′, apart from small deviations due to the

numerical errors introduced by the numerical integration scheme, see Fig. 4.6-(b). The plot
showing z(t) proves that the relative error in this quantity is at most of order 10−7. All these
results are compatible with Gibbs-Boltzmann equilibrium in the paramagnetic phase. We do
not show the time evolution of the replica correlation with respect to the initial configuration,
Q(t, 0), since it is identically zero at all times. In fact, for a paramagnetic initial state, we have
Q(0, 0) = qin = 0, and it is easy to see from the Schwinger-Dyson equations (Eqs. (4.80a)-
(4.80d)) that this initial condition for the function Q(t, 0) implies the solution Q(t, 0) = 0 for
all t > 0. In general, this is true for all quenches starting from a paramagnetic initial state,
i.e. for T ′/J0 > 1.

In Fig. 4.6-(d) we show the Fourier transforms of the correlation and response functions,
Ĉ(ω, t2) and R̂(ω, t2) respectively: the transform is performed on the variable τ = t1 − t2
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Figure 4.6: Constant energy dynamics of the N →∞ system in the PM phase. We show the
no-quench dynamics (J = J0) for the case T ′/J0 = 1.25, which represents a paramagnetic
initial condition. (a) The two-time autocorrelation function, C(t1, t2), plotted against
t1 − t2 for various choices of the waiting time t2, given in the key. (b) The difference
between the numerical Lagrange multiplier, z(t), and the expected value at equilibrium,
zeq = T ′+J2

0/T
′. (c) The parametric plot of the integrated linear response, χ(t1, t2), vs.

the correlation C(t1, t2), for fixed t2, for two different values of t2. The dashed line shows
the expected behaviour from FDT, that is to say, χ = (1−C)/T ′. (d) Fourier transforms
of the autocorrelation and the linear response, Ĉ(ω, t2) and R̂(ω, t2) respectively, for
two values of t2. The black solid lines represent the theoretical prediction for R̂(ω) in
the stationary regime, given by Eq. (4.108b). We chose to use a convention such that
the imaginary part of R̂ is negative. (g) The ratio −ImR̂(ω)/(ωĈ(ω)) in the interval
[ω−, ω+], together with 1/T ′ indicated by a dashed horizontal line.

with t2 fixed. More precisely, they are defined as

Ĉ(ω, t2) =
∫ +∞

−∞
dτ (C(t2 + τ, t2)− q) e−iωτ , (4.177a)

R̂(ω, t2) =
∫ +∞

−∞
dτ R(t2 + τ, t2) e−iωτ , (4.177b)

where q = limτ→+∞C(t2 + τ, t2), and with the implicit assumptions that C(t2 + τ, t2) =
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Figure 4.7: Constant energy dynamics of a finite N = 1024 system in the PM phase.
The initial condition is paramagnetic, with T ′/J0 = 1.25. (a) The correlation function
between a configuration at time t and the initial condition for different system sizes (grey
curves) and the one for N →∞ (red curve). (b) The kinetic, potential and total energy
densities as a function of time. (c) The difference between the time-dependent Lagrange
multiplier z(t) obtained from the numerics and the expected asymptotic equilibrium
value z(N)

eq , for finite N , for different choices of the discretisation step δ. (d)-(e) Mode
correlations for different system sizes, for µ = 1 and µ = N , respectively. (f) Mode
temperatures at different times. In panels (a), (b), (d)-(f) we use δ = 0.001.

C(t2 − τ, t2) (thus Ĉ(ω, t2) has only real part), and R(t2 + τ, t2) = 0 for τ < 0, for all t2.
Notice that, since we are computing the transforms from the solutions C(t1, t2) and R(t1, t2)
given by numerically integrating Eqs. (4.80a)-(4.80d), we need to truncate the integral at the
upper limit, and thus we introduce an error at small frequencies. Moreover, in some cases it
is difficult to determine q with great precision. However, in most cases the maximum time
difference t1 − t2, that we are able to explore through the numerical integration, is large
enough for these two sources of error to be negligible.

In Fig. 4.6-(d), the black solid lines represent the theoretical prediction for the real and
imaginary parts of the Fourier transform of the response function in the stationary regime,
R̂st(ω), given by Eq. (4.108b). As one can see the agreement with the numerical data is
almost perfect. As expected, ImR̂(ω), the imaginary part of R̂(ω), is non-vanishing only
in the interval [ω−, ω+] (with ω2

± = (zeq ± 2J0)/m), and since ImR̂(ω) and Ĉ(ω) must be
proportional because of the FDT relation, Ĉ(ω) must be non-vanishing only in this interval
too. In Fig. 4.6-(e), the ratio −ImR̂(ω)/(ωĈ(ω)), together with the prediction 1/T ′ from
FDT, is shown. The agreement with the prediction is very good over all the interval [ω−, ω+],
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for all times t2 shown, apart from noticeable deviations near the edges of the frequency
spectrum. This is due to the fact that, for frequencies close to ω− or ω+, the ratio approaches
0/0 and the numerical error is amplified.

In Fig. 4.7 we show results obtained by solving the dynamics of each mode for a finite-N
system with the method explained in Sec. 4.4.1. In Fig. 4.7-(a) we see that the correlation
with the initial condition quickly relaxes to 0, as expected in the PM phase, with a weak
N -dependence for long times. We only show the correlation with the initial configuration
since we have checked that the time-delayed one is stationary. Also included in this panel
is the same correlation function obtained from solving the Schwinger-Dyson equations (the
same as in Fig. 4.6-(a)). We see perfect agreement with the finite N results at short times and
small deviations at longer times. In Fig. 4.7-(b) we observe that the kinetic, potential and
total energy densities are constant, as expected. The Lagrange multiplier is shown in panel
(c) of the same figure, where we plot its deviation from z

(N)
eq , calculated as the solution to

Eq. (4.150), that in the N →∞ limit yields z(N)
eq → T ′ + J2/T ′. The very weak (oscillatory)

deviation from z
(N)
eq decreases with the size of the time-step used in the numerical integration.

In Fig. 4.7-(d) and (e) we show the single mode autocorrelation for modes µ = 1 and
µ = N , respectively. Notice that finite-size effects are almost absent in the case µ = 1,
while they are particularly significant for µ = N , the mode associated with the largest
eigenvalue, in the range of sizes that have been used. In Fig. 4.7-(f) we display the mode
temperatures Tµ(t) at the initial time and after a long time evolution. The mode temperatures
coincide with the expected equilibrium value T ′, except for the largest modes, where there
is a very small deviation. These variations represent small numerical errors due to the finite
time-step discretisation used in the numerical integration scheme, and are hard to improve
algorithmically. We have also checked (not shown) that the mode correlations Cµ(t1, t2)
and the mode response function Rµ(t1, t2) satisfy the fluctuation-dissipation relation with a
temperature given by T ′, for all µ.

4.5.2.2 No-quench dynamics in the condensed phase

We now turn to the constant energy dynamics for a system that is initially prepared in
an equilibrium state in the condensed phase, i.e. y = T ′/J0 < 1. The behaviour that we
observe is the same as shown above for the paramagnetic initial condition: stationarity is
present at all times t ≥ 0 and the FDT relation between the autocorrelation and the linear
response function is satisfied with respect to the initial temperature T ′. The only differences
are given by the fact that the correlation does not vanish asymptotically, that is to say,
limτ→+∞C(t2 + τ, t2) = q = 1 − T ′/J0 > 0 for all t2 ≥ 0, and the Lagrange multiplier z(t)
converges to zeq = 2J0, corresponding to the largest eigenvalue of the interaction matrix
in the limit N → +∞, which implies that the zero-frequency mode has a non-vanishing
amplitude (reflected in the fact that Ĉ(ω) 6= 0 ). This just means that the system remains
confined in the initial condensed state, as expected.

This is shown in Fig. 4.8 with the solution obtained by integrating numerically the
Schwinger-Dyson equations for the autocorrelation and linear response function, for the par-
ticular case T ′ = 0.5 J0 (and J = J0). Stationarity is satisfied as well as the FDT in the time
domain, with respect to the initial temperature T ′, see panels (a) and (c). As already stated,
we observe that C(t2 + τ, t2) relaxes to the non-vanishing constant q = qin = 1 − T ′/J0 as
τ → +∞, for all t2 ≥ 0. As seen from Fig. 4.8-(b), the Lagrange multiplier z(t) oscillates
around the initial value z(0) = zeq = 2J0, with the amplitude of these oscillations rapidly
decaying in time. This behaviour is just an artefact of the error intrinsic in the numerical
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integration and we checked that, as the time step of the integration decreases, the amplitude
of this oscillations decreases. Contrary to what happens for a paramagnetic initial state, the
correlation between the system at time t and a replica in the initial equilibrium state, i.e. the
function Q(t, 0), is nonzero and we observe that it remains approximately constant in time,
with the constant value being qin, as shown in the inset of Fig. 4.8-(a) (the small deviation,
due to numerical error, decreases with the time step of the integration).

Stationarity and FDT are also confirmed by the Fourier transforms of C(t1, t2) and
R(t1, t2) in the variable τ = t1 − t2, with t2 fixed, computed numerically from the solu-
tions of the Schwinger-Dyson equations. These are shown in Fig. 4.8-(d), for two different
values of t2. The black solid lines represent the theoretical prediction for the real and imagi-
nary parts of the Fourier transform of the response function in the stationary regime, R̂st(ω),
given by Eq. (4.108b). Notice that, since z(t) = zeq = 2J0, ω− = 0 and thus Ĉ(ω = 0, t2) is
non-vanishing, while χst = R̂(ω = 0, t2) = 1/J0, for all t2 ≥ 0 (we recall that we always set
J0 = 1). In panel (e) we display the ratio −ImR̂(ω)/(ωĈ(ω)) together with the prediction
1/T ′ from FDT indicated by a dashed horizontal line. We find very good agreement with the
FDT prediction, i.e. −ImR̂(ω)/(ωĈ(ω)) = 1/T ′, with the proviso that the behaviour close
to edges of the interval [0, ω+] is contaminated by the numerical error.

In Fig. 4.9 we show the finite-N mode dynamics for initial conditions in equilibrium at
T ′/J0 = 0.5. From Fig. 4.9-(b) we notice that the total energy is conserved and that the
kinetic and potential contributions are also constant, consistent with thermal equilibrium
in the isolated system. In Fig. 4.9-(c) we show the Lagrange multiplier, which should be
constant in the no-quench dynamics. However, in the numerical solution, the Lagrange mul-
tiplier exhibits oscillations around the initial value z(N)

eq (obtained from Eq. (4.150)) whose
amplitude decreases consistently with the integration step δ. The two-time (global) autocor-
relation, C(t1, t2) = 1

N

∑
µ〈sµ(t1)sµ(t2)〉, is stationary for all N used, so we only show the

autocorrelation with t2 = 0. As one can see from Fig. 4.9-(a), at variance with the paramag-
netic case, the dynamics of the correlation function C(t, 0) has a strong dependence on the
system size. After a fast decay from the initial value, the correlation shows a slow-decaying
region around the value q = qin = 1 − T ′/J0 (the asymptotic value in the N → +∞ limit).
After this region, C(t, 0) decays eventually to zero asymptotically. However, as N increases,
we observe that this slow-decaying region becomes more and more close to a plateau at the
constant q = qin. The source of this size dependence is the behaviour of the largest mode,
the one which has a vanishing frequency in the thermodynamic limit. In Fig. 4.9-(f) we
show the time dependence of the largest mode autocorrelation function CN (t, 0) for different
system sizes. A similar finite-size effect is seen in the dynamics of the next-to-largest mode
in panel (e). Since the largest modes dominate the long-time dynamics, this effect causes the
emergence of a plateau with increasing lifetime as N increases. For N → ∞ the oscillation
frequency of the N -th mode goes to zero, allowing for the presence of an infinite plateau. On
the contrary, the modes lying far from the upper edge of the spectrum (λµ � λN = λmax)
have almost no N -dependence, as shown in panel (d) for the case µ = 1. We do not show the
mode temperatures obtained by time-averaging the mode kinetic (or potential) energies (see
Eq. (4.135)), since the result is analogous to what is displayed in Fig. 4.7-(f). The Tµ are
constant in time and equal for all modes µ, apart from deviations close to the edge µ = N
due to numerical errors.
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Ĉ, t2 = 7.5

ReR̂

ImR̂

1.5

2

2.5

0 0.5 1 1.5 2

(e)

−
Im

R̂
/(
ω
Ĉ
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Figure 4.8: Constant energy dynamics of the N →∞ system in the condensed phase. We
show the no-quench dynamics (J = J0) for the case T ′/J0 = 0.5, which corresponds to
an initial condition in the condensed phase. (a) The two-time autocorrelation function,
C(t1, t2), plotted against t1 − t2 for various choices of the waiting time t2, given in
the key. (b) The difference between the numerical Lagrange multiplier, z(t), and the
expected value at equilibrium, zeq = 2J0. (c) The integrated linear response, χ(t1, t2),
plotted against the correlation C(t1, t2), for fixed t2 and parametrized by t1. The dashed
line shows the expected behaviour from FDT, that is to say, χ = (1 − C)/T ′. (d) The
time-delayed Fourier transforms of the correlation and linear response functions, Ĉ(ω, t2)
and R̂(ω, t2) respectively, for two different values of t2 indicated in the key. The black
solid lines represent the theoretical prediction for the real and imaginary parts of the
Fourier transform of the response function in the stationary regime, R̂st(ω), given by
Eq. (4.108b). In panel (e), the ratio −ImR̂(ω)/(ωĈ(ω)) together with the prediction
1/T ′ from FDT plotted with a dashed horizontal line.

4.5.3 Quench dynamics

4.5.3.1 Sector I: paramagnetic initial condition

Let us now turn to the study of the quench dynamics. In this Subsection we give a brief
summary of the main results obtained for the dynamics of a system prepared in equilibrium
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Figure 4.9: Constant energy dynamics in the condensed phase. Results from the integration
of the Newton equations for the finite-N system, for initial condition T ′/J0 = 0.5 and a
single disorder realisation. (a) Dynamics of the global correlation function with respect
to the initial condition for different system sizes. (b) Time-evolution of the kinetic,
potential and total energy densities. (c) Difference between the time-dependent Lagrange
multiplier z(t) obtained from the numerics and the expected asymptotic equilibrium value
z

(N)
eq , for finite N , for various choices of the time-step δ used in the integration scheme.
(d)-(f) Mode correlation functions Cµ(t1, t2), normalised by their values at equal times,
for µ = 1, N−1, N and different system sizes indicated in the key. The mode correlations
are stationary, so we only show results for t2 = 0.

in the paramagnetic state, y > 1, and then quenched to a value of x = J/J0 such that y > x.
This choice of the parameters x and y corresponds to what we called Sector I in the phase
diagram, in Fig. 4.5. Two cases need to be further distinguished within this Sector. For
x < 1, energy is injected in the quench, while for y > x > 1, a small amount of energy is
extracted from the system.

As already stated in Sec. 4.5.1, the common behaviour observed from the numerical
solutions, for all quenches, is given by

χst '
{

1
T ′ for y ≥ x
1
J for y < x

, zf '
{
T ′ + J2

T ′ for y ≥ x
2J for y < x

, (4.178)

which is consistent with the relation χst =
(
zf −

√
z2
f − 4J2

)
/(2J2), see Eq. (4.109), obtained

by only assuming that R(t1, t2) satisfies stationarity and z(t) converges to zf . In Fig. 4.10,
we show the numerical solutions from the Schwinger-Dyson equations, for the particular case
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Figure 4.10: Sector I. Energy injection on a paramagnetic initial state. We show the solution
obtained by integrating numerically the Schwinger-Dyson equations for the parameter
choice T ′ = 1.25 J0, J = 0.50 J0. (a) The two-time autocorrelation function, C(t1, t2),
plotted as a function of t1 − t2. The horizontal dashed line is at q = 0. In the inset
we show a “zoom” over the time interval [40, 100]. (b) Time evolution of the Lagrange
multiplier, z(t), along with the constant Tf + J2/Tf , with Tf given by Eq. (4.124),
and the “true” asymptotic value zf = T ′ + J2/T ′ (above), both represented by dashed
horizontal lines. (b) The parametric plot of the integrated linear response function, χ,
against the correlation, C, for two waiting times t2. The black dashed line shows the
FDT relation with respect to temperature Tf , expected under the assumption of final
Gibbs-Boltzmann equilibrium state. (d) The Fourier transforms of C(t2 + τ, t2) and
R(t2 +τ, t2) with respect to the time delay τ , shown for different values of t2. The black
solid lines represent the real and imaginary parts of R̂st(ω), given by Eq. (4.108b). In
panel (f), the ratio −ImR̂(ω)/(ωĈ(ω)) together with 1/Tf .

y = T ′/J0 = and x = J/J0 = 0.5, that complies with the behaviour described above. As one
can see from panel (b), z(t) goes from the initial value z(0+) = T ′+JJ0/T

′ (see Eq. (4.94)) to
the constant zf ' T ′+J2/T ′, and it does not converges instead to zf = Tf +J2/Tf , the value
which is expected by assuming Gibbs-Boltzmann equilibrium at the temperature Tf given
by Eq. (4.124) (indicated by a dotted line in the plot). In parallel, the static susceptibility,
χst = R̂(ω = 0), consistently takes the value χst = 1/T ′, as seen from Fig. 4.10-(d).
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We see that C(t1, t2) and R(t1, t2) reach a stationary regime at a sufficiently large t2,
as shown in Fig. 4.10-(a) for C(t1, t2). However, stationarity is not accompanied by a FDT
relation between the two, as one can see from Fig. 4.10-(c), where we plot the dynamical
susceptibility, χ(t1, t2) =

∫ t1
t2

dt′R(t1, t′), against C(t1, t2), for fixed t2 and varying t1. The
parametric curve χ vs. C is very far from being the expected form χ = (1− C)/Tf . This is
confirmed by the behaviour of the ratio−ImR̂(ω, t2)/(ωĈ(ω, t2)), as displayed in Fig. 4.10-(e).
The effective frequency-dependent inverse temperature βeff(ω) = −ImR̂(ω, t2)/(ωĈ(ω, t2))
has a non-trivial behaviour. Nevertheless, the numerically computed Fourier transform of the
linear response function is consistent with the analytic prediction given by Eq. (4.108b). In
particular, the imaginary part is non-vanishing only in the interval [ω−, ω+] (save some small
oscillations around zero outside this interval, due to numerical error ), with mω2

± = zf ± 2J ,
when we take zf = T ′+ J2/T ′. We also observe that Ĉ(ω, t2)) vanishes outside this interval,
a behaviour which is expected since, in the long-time limit, the system can be approximated
by a collection of decoupled simple harmonic oscillators with frequency spectrum given by
mω2

λ = zf − λ, where λ is confined in the interval [−2J, 2J ] (being an eigenvalue of the
interaction matrix in the N → +∞ limit), as discussed in Sec. 4.4.3.

In Fig. 4.11 we show the numerical solution for a finite-N system for the same choice of
quench parameters and a particular realisation of the disorder. In the first four panels in
Fig. 4.11 we display the time dependence of the mode kinetic and potential energies, εkin

µ (t)
and εpot

µ (t), for some choices of µ. These functions oscillate in time in opposition of phase,
with an amplitude that increases with µ, the eigenvalue index. If one assumes z(N)(t) →
z

(N)
f = const., then one can approximate the system by a collection of N independent simple
harmonic oscillators, and consequently the mode total energies εtot

µ (t) = εkin
µ (t) + εpot

µ (t) also
approach constant values, as observed in the plots. In fact, as shown in Fig. 4.11-(e), the
Lagrange multiplier asymptotically approaches a value which is very close to the finite-N
prediction z(N)

f = T ′ + λ2
max/(4T ′), according to the approximation given in Sec. 4.4.3 (with

λmax = λN the largest eigenvalue of the finite-N interaction matrix). We also observe that
all modes are in equilibrium with themselves, in the sense that, for each µ = 1, . . . , N ,
the time-averaged potential, kinetic and total mode temperatures (defined in Eq. (4.135))
coincide, except for small deviations close to the largest modes (see Fig. 4.11-(f)). Tf , the
temperature obtained assuming an equilibrium paramagnetic final state, see Eq. (4.124), is
clearly different from the mode temperatures and is not obtained by averaging over the modes
either, confirming that under these quenches the system does not thermalize asymptotically
in time.

Finally, panel (g) displays the comparison between the mode inverse temperatures, T−1
µ

and the frequency-dependent effective inverse temperature βeff(ω) in the limit N → +∞
(the same shown in Fig. 4.10-(e)). The correspondence between the eigenvalue index µ

and the frequency ω is given by mω2
µ = z

(N)
f − λµ. The agreement is very good over the

whole spectrum, except for small deviations at the edges due to the numerical error. In the
same plot we have also included the analytical prediction given by Eq. (4.168) (when taking
zf = T ′ + J2/T ′), that seems to capture the numerical behaviour rather accurately. We
recall that it was derived assuming that the Lagrange multiplier takes its asymptotic value
immediately after the quench, at time t = 0+, and that the ensuing dynamics is the one of
independent harmonic oscillators with mode-dependent frequencies.

In sector I of the x-y parameter space we can also have quenches with energy extraction,
which are realised for x = J/J0 > 1. We performed the same kind of analysis as in the
case of energy injection for several choices of the quench parameters in this region, but we
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Figure 4.11: Sector I. Energy injection on a paramagnetic initial state. We show the anal-
ysis for the finite-N system in the case T ′ = 1.25 J0 and J = 0.5 J0. (a)-(d) The
time-dependent energy densities of four selected modes. (e) The Lagrange multiplier
compared to the analytic prediction zf = T ′ + λ2

max/(4T ′), from Sec. 4.4.3, indicated
by the horizontal line. (f) Mode temperatures extracted from the use of equipartition,
T kin,pot
µ = 2ekin,pot

µ , with ekin,pot
µ the time-averaged kinetic and potential mode ener-

gies. Inset: detail of the behaviour of the largest modes. (g) Comparison between the
modes inverse temperatures and the inverse effective temperature given by the ratio
−ImR̂(ω, t2)/(ωĈ(ω, t2)), with R̂(ω, t2) and Ĉ(ω, t2) the Fourier transforms of the lin-
ear response and autocorrelation, respectively, in the thermodynamic limit, for t2 � 1.
In (f) and (g) the yellow curves represent the analytical prediction for Tµ given by
Eq. (4.168), when taking zf = T ′ + J2/T ′.

choose to not show all the data since there are no fundamental variations. Having said so,
the mode temperatures do present an interesting difference, that is shown in Fig. 4.12 for the
particular case T ′ = 1.2 J0 and J = 1.1 J0. In this case, the (time-averaged) temperatures
of the modes are approximately all the same for the low-lying modes, while a clear mode
dependence appears close to the right edge of the spectrum, i.e. for modes corresponding to
eigeinvalues λµ near the maximum value. However, the temperatures of the largest modes
are lower than the temperatures of the lower modes (see also the inset of panel (a)), contrary
to what happens for the energy-injection case (see Fig. 4.11-(f)). In Fig. 4.12-(b), we confront
these mode inverse temperatures to those given by βeff(ω) = −ImR̂(ω, t2)/(ωĈ(ω, t2)) for the
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N → +∞ limit, and, once again, the agreement is very good. Moreover, the data are also in
good agreement with the analytical prediction given by Eq. (4.168).
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Figure 4.12: Sector I. Energy extraction from a paramagnetic initial state. The data shown
is relative to the quench dynamics with extraction of energy for a system initially pre-
pared in an equilibrium state in the paramagnetic phase. The particular case considered
corresponds to the choice y = T ′/J0 = 1.25 and J/J0 = 1.1, that satisfies the condi-
tion y > x. (a) Mode temperature profile (for finite N) obtained from time-averaging
the kinetic and potential mode energies (at sufficiently long time after the initial tran-
sient). Inset: zoom over the behaviour of the largest modes. (b) Comparison of the
inverse mode temperatures with the frequency-dependent effective inverse temperature
−ImR̂(ω)/(ωĈ(ω)) for the N → +∞ limit. Also shown with a yellow solid line is the
analytical prediction given by Eq. (4.168).

4.5.3.2 Sector II: large energy extraction from a paramagnetic initial state

For y = T ′/J0 and x = J/J0 in Sector II of the phase diagram, that is, 1 < y < x, the
quench extracts an amount of energy from the system that is sufficient to make it aquire a
condensed-like behaviour in terms of the Lagrange multiplier and linear response, specifically
zf → 2J and χst = R̂(ω = 0) = 1/J . In other words, the zero-frequency mode gets a
non-vanishing amplitude and, within the independent harmonic oscillators approximation, it
aquires a diffusive behaviour, as discussed in Sec. 4.4.3. Thus we should expect the system
to condense around one of the minima of the potential energy. However, the behaviour of the
autocorrelation is still paramagnetic-like. This is due to the fact that the system is prepared
initially in a paramagnetic equilibrium state and, as a consequence, when it is quenched it
can fall in one of the two “valleys” corresponding to the minima of the potential energy
hypersurface with a priori equal probability. Averaging over all possible initial conditions
results in the autocorrelation C(t1, t2) vanishing as t1 − t2 → +∞.

We can distinguish two different regions in this Sector, separated by the curve y =
√
x.

We recall that this curve, for y = T ′/J0 > 1, corresponds to the “limiting” curve separating
paramagnetic-like behaviour from condensed-like one, under the assumption that the system
reaches, in the long-time limit, an equilibrium state with Gibbs-Boltzmann measure, with
respect to the post-quench Hamiltonian (see Sec. 4.3.2.1). In the following we give a brief
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summary of the main properties observed in these different regions.
For y >

√
x (and y < x), the two-time autocorrelation function becomes stationary after

a very short transient, and, once it enters in the stationary regime, it rapidly approaches zero
with progressively decaying oscillations. However, the linear response and the autocorrelation
functions are not related by an FDT with a single temperature, and in this respect there are
no important differences with respect to what we have just shown for energy extraction
processes in Sector I. For this reason we choose not to show data relative to such quenches.

For y <
√
x (and y > 1), we chose to show data for the case T ′ = 1.25 J0 and J = 2 J0.

As one can see from Fig. 4.13-(a), the two-time autocorrelation C(t1, t2), considered as a
function of the time delay t1 − t2, shows a rapid decay towards a value close to 0.05, around
which it oscillates once, and next decays towards zero with damped oscillations. In the initial
fast transient, C(t1, t2) and R(t1, t2) actually satisfy the FDT relation with respect to the
temperature Tf , obtained under the assumption of equilibrium à la Gibbs-Boltzmann, as
shown by the parametric plot of the integrated linear response, χ, against C (panel (c)).
FDT holds approximately until the point at which C reaches the first minimum, then the
dependence between χ and C becomes non-trivial. In particular, χ oscillates around the
static value χst = 1/J , but not in phase with the autocorrelation C. This behaviour is
reminiscent of the ageing phenomenon observed for the Hamiltonian dynamics of the p = 3
spherical model, for equivalent quenches (see Ref. [83]), or in the case of the purely dissipative
relaxation dynamics [115].

If an actual ageing behaviour were to manifest, we would observe a two-step relaxation
in the evolution of C(t2 + τ, t2) in the time delay τ : a first stationary fast relaxation from
C = 1 to a plateau at Cag > 0, with the “lifetime” of the plateau increasing with t2; then a
second, very slow, non-stationary relaxation from the plateau to zero. In terms of the relation
between autocorrelation and linear response, we would observe that FDT is satisfied in the
first stationary regime, C > Cag, while not in the subsequent relaxation, or at least, not with
the same temperature. In particular, in the case of the Hamiltonian dynamics of the p = 3
spherical model, an ageing regime was found with a constant effective temperature [83], so
that in the parametric plot χ vs. C one sees two distinct regions: for C > Cag, χ ∼ (1−C)/Teq
with Teq the temperature obtained under the thermal equilibrium assumption, while for
C < Cag, χ ∼ (1 − C)/Teff , with Teff an effective non-equilibrium temperature. We do not
find this behaviour in our case. However, the fact that χ seems to saturate when C falls
under a certain threshold suggests that Teff → +∞, if a true ageing regime exists.

In Fig. 4.13-(d) and (e) we show the mode temperatures given by time-averaging the
mode energies obtained from the numerical solution of the equation of motions for a finite-N
system, under the same quench parameters. These finite-N results support the scenario that
we pictured above. In fact, we can see that almost all the low-lying modes have the same
temperature, which is approximately equal to Tf , the temperature predicted by assuming
Gibbs-Boltzmann equilibrium for a system starting in a paramagnetic state and falling in
a condensed state in the post-quench dynamics, see Eq. (4.126). This is consistent with
the fact that the dynamics satisfies FDT for very short time delays, which are dominated
by the highest frequencies or “fast modes”, corresponding to the smallest eigenvalues (since
mω2

µ = zf−λµ). On the other hand, we observe significant deviations for the largest modes (or
as ω → 0). These modes dominate the dynamics in the long-time limit and are responsible
for the violation of the FDT. Nevertheless, the behaviour close to the upper edge of the
eigenvalue spectrum seems to be captured pretty well by the analytical prediction for the T fµ
given by Eq. (4.168), when one takes zf = 2J .

Something very interesting happens in the case in which the quench parameters x = J/J0
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Figure 4.13: Sector II. Energy extraction from a paramagnetic initial state. We show
data relative to the quench dynamics corresponding to parameters T ′/J0 = 1.25 and
J/J0 = 2. (a) The two-time autocorrelation function, C(t1, t2) against the time delay
t1 − t2, for various t2. In the inset, a zoom over the time interval [10, 50] is shown.
(b) The time evolution of the Lagrange multiplier, z(t). The horizontal dashed line
corresponds to the asymptotic value zf = 2J . (c) The parametric plot χ(t2 + τ, t2)
against C(t2 + τ, t2), for two different values of the waiting time t2. The black dashed
line is the result expected from FDT, with respect to the temperature Tf obtained from
Eq. (4.126). (d) The mode temperatures obtained from the time-average of the mode
kinetic (or potential) energies, for a finite-N system under the same quench conditions.
Inset: Detail of the largest modes. (e) The inverse mode temperatures (red points),
compared to the temperature Tf (dashed horizontal line) expected in case of equilibrium.
In both panels (d) and (e), the yellow curve represents the outcome of the independent
harmonic oscillator approximation given in Eq. (4.168), when one takes zf = 2J .

and y = T ′/J0 lie on the curve x = y2, for y > 1. Along this curve, we find that FDT with
respect to the temperature Tf = J is satisfied for sufficiently large waiting times t2. This is
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shown in Fig. 4.16 where the quantity Tf χ(t2 + τ, t2) is plotted against the autocorrelation
C(t2 + τ, t2), for fixed t2 � 1 and varying τ , with Tf = J , for four different cases of quench
along the curve x = y2. Each case matches perfectly the FDT relation χ = (1 − C)/Tf .
Thus, we can say that the line x = y2 corresponds to quenches that bring the system to a
final state in equilibrium at the critical (static) point, Tf = Tc(J) = J . Additional support
on the fact that the dynamics after the quench occurs as in equilibrium at the critical point
is given in panel (b) in the same figure, where we show that the two-time autocorrelation
(obtained from the numerical solution of the Schwinger-Dyson equations) for a particular
case of quench such that J/J0 = (T ′/J0)2 coincides with the one of “no-quench” dynamics
for a system initially prepared at equilibrium with quenched disorder having strength J , at
temperature T ′ = J (thus at the critical point).
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Figure 4.14: Sector II. Energy extraction from a paramagnetic initial state, for parameters
y = T ′/J0 and x = J/J0 lying on the special curve y =

√
x. (a) Check of FDT through

the parametric plot Tf · χ(t2 + τ, t2) vs. C(t2 + τ, t2), where Tf = J , for four cases
of quench on the curve y =

√
x, indicated by the key. For each case we choosed t2

sufficiently long for C(t2 + τ, t2) and χ(t2 + τ, t2) to be stationary. (b) Comparison
between the time-delayed correlation in the post-quench dynamics for a quench with
T ′ = 1.75J0 and J = 3.065J0, for two values of the waiting time t2 (red and green
lines), and the time-delayed correlation for the no-quench dynamics in the case of a
system initially prepared in an equilibrium state with quenched disorder having strength
J = 3.065J0, at temperature T ′ = J (black dashed line).

4.5.3.3 Sector III: initial and final condensed states

In the following we present some data relative to quenches in Sector III of the parameter
space, that is to say, for y = T ′/J0 and x = J/J0 such that y < 1 and y < x. The
system is initially prepared in a condensed equilibrium state, thus the function Q(t, 0), the
correlation between the system at time t (after the quench) and a replica at equilibrium
at the initial temperature, can be non-zero and plays a role in the dynamical equations
for the two-time autocorrelation, linear response and Lagrange multiplier. We recall that
Q(0, 0) = qin = 1− T ′/J0, with qin the Edwards-Anderson order parameter at equilibrium.

In general, what we observe from the solutions obtained by integrating numerically either
the Schwinger-Dyson equations or the equations for a finite-N system is the following. After
waiting a sufficiently long time, the system is able to reach a stationary state with the global
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Figure 4.15: Sector III. Energy injection, shallow quench from condensed to condensed.
The data shown is relative to a quench of the disorder strength corresponding to
J = 0.80 J0, for a system initially prepared in a condensed state at temperature
T ′ = 0.5 J0. The small energy injection is not sufficient to drive the system out of
a condensed state. (a) The two-time autocorrelation, C(t1, t2), plotted against the
time-delay t1− t2, for various t2. The horizontal dashed line is at q = 1−Tf/J , with Tf
from Eq. (4.127). In the inset we show C(t, 0) and Q(t, 0), the latter being the correla-
tion between the state of the system at time t and a replica at t = 0. (b) Time evolution
of the Lagrange multiplier, z(t), and the constant zf = 2J shown with a dashed line.
(c) The integrated linear response, χ(t1, t2), against C(t1, t2) for fixed t2 and using
t1 − t2 as a parameter. The black dashed line shows the FDT curve with respect to
the temperature Tf . (d) The Fourier transforms of the (time-delayed) autocorrelation
and linear response, Ĉ(ω, t2) and R̂(ω, t2), for two values of t2. The black dashed lines
represent the real and imaginary parts of R̂st(ω) given by Eq. (4.108b). (e) The ratio
−ImR̂(ω, t2)/(ωĈ(ω, t2)), for various t2.

properties of a condensed state, that is to say, q = limt2�1 limτ→+∞C(t2, t2 + τ) > 0, z(t)→
zf = 2J and χst = 1/J . However, FDT is not satisfied with a single temperature Tf , the one
obtained under the assumption of Gibbs-Boltzmann equilibrium (specifically Eq. (4.127)).
This is clearly seen from the effective inverse temperature βeff(ω) = −ImR̂(ω)/(ωĈ(ω)) and
from the mode temperatures obtained by solving the finite-N system. Moreover, the asymp-
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totic value of the time-delayed autocorrelation, q, does not coincide with the one expected
from equilibrium in the post-quench dynamics, qeq = 1− Tf/J .

In Fig. 4.15 we show the numerical solutions obtained from the Schwinger-Dyson equa-
tions for the particular case T ′ = 0.5 J0 and J = 0.8 J0, that corresponds to a quench that
injects a small amount of energy into the system. Panel (a) proves that the two-time auto-
correlation approaches a non-vanishing value asymptotically. The horizontal dashed line is at
q = 1− Tf/J , the theoretical value derived from the assumption of equilibration à la Gibbs-
Boltzmann. We notice that, indeed, the asymptotic value of the autocorrelation is pretty close
to it. Although, this is just a consequence of the fact that the particular case of quench we are
considering is close to the no-quench line, x = 1. For deep quenches, x� 1 or 0 < x� 1, we
observe clearly a difference between the asymptotic value q = limt2�1 limτ→+∞C(t2, t2 + τ)
and the expected qeq = 1− Tf/J , In the inset of Fig. 4.15-(a) we show the time evolution of
C(t, 0) and Q(t, 0). Q(t, 0) starts at the value qin and decreases monotonically approaching
very quickly a constant value. C(t, 0) approaches the same constant, although it does it with
superimposed oscillations. We observed a similar behaviour in all the cases of quench in
Sector III of the parameter space (but also in Sector IV, as we will show later). This confirms
our claim stated in Sec. 4.3.2 that

lim
t→+∞

C(t, 0) = q0 = q1 = lim
t→+∞

Q(t, 0) . (4.179)

In Fig. 4.15-(c) we show the parametric plot of the dynamical susceptibility χ against the
autocorrelation C. The data for long t2 suggest that FDT has established at temperature
Tf given by the equilibrium assumption (Eq. (4.127)). However, a better analysis is done
by looking at the ratio −ImR̂(ω, t2)/(ωĈ(ω, t2)), with R̂(ω, t2) and Ĉ(ω, t2)) the Fourier
transform of the time-delayed linear response and autocorrelation functions, respectively,
shown in Fig. 4.15-(e). Indeed, in this case, the parametric plot does not provide an accurate
information since most part of the time evolution of C (and χ) consist in very small oscillations
around zero, where usually effects of numerical errors are large. The behaviour of C and R
in the frequency domain can help determine if truly FDT is satisfied. As one can see, the
FDT relation with respect to the temperature Tf holds only for fast modes, while for ω → 0
deviations are significant and not due to numerical error (on the contrary the behaviour at
ω → ω+ is due to numerical error because of a 0/0 division). This explains also why the
the asymptotic value of the autocorrelation, q, is not given by the equilibrium expectation
qeq = 1− Tf/J . At long times, the modes with vanishing frequency are dominant and these
are not equilibrated at the temperature Tf .

Fig. 4.16-(a) shows q against J/J0 for three values of T ′/J0, together with the naive single
temperature prediction q = 1−Tf/J , with 2Tf = 2Tkin = T ′(1+J/J0) (see Eq. (4.127)). The
agreement is good only close to x = 1, while deviations are noticeable close to the critical line
xc(y) = y (separating Sector III from Sector IV), and for large energy extraction processes
(x� 1). Note that the prediction of equilibration à la Gibbs-Boltzmann implies that q > 0
at xc(y), but this fact is not very clear from the data due to the limitations of the numerical
integration. Also shown in this plot is q0 = limt→+∞C(t, 0). We find that q0 > q for x < 1
(energy injection) and q0 < q for x > 1 (energy extraction).

The companion data for the finite-N system are shown in Fig. 4.17. First of all, panels (a)-
(d) display the time dependence of the mode energies, for modes µ = 1, N/2, N−1 and N , for
a system with N = 1024 in the case of a quench with parameters T ′/J0 = 0.5 and J/J0 = 0.8.
While the modes µ = 1, N/2 show the usual oscillatory behaviour of a harmonic oscillator, the
largest modes µ = N − 1 and µ = N are clearly out of equilibrium. The Lagrange multiplier
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Figure 4.16: Sector III, quenches from condensed to condensed. The numerically estimated
asymptotic value of the autocorrelation function, q = lim(t1−t2)→+∞,t2�1 C(t1, t2) (filled
circles), and q0 = limt→+∞ C(t, 0) (diamonds), against J/J0 for the three values of
T ′/J0 < 1: T ′/J0 = 0.25 (red), 0.5 (green), 0.75 (blue), from top to bottom. The solid
lines are the equilibrium predictions for q, q = 1− Tf/J , with Tf given by Eq. (4.127).

converges very rapidly to the largest eigenvalue of the post-quench interaction matrix, λmax =
λN , within numerical accuracy. The mode temperatures, obtained from either the mode
kinetic energies or mode potential energies, are plotted in Fig. 4.17-(f), with a zoom over the
largest modes in the inset. The profile is very close to an equilibrium one, i.e. Tµ independent
of µ, apart from the large deviations at the edge µ/N → 1. Finally, panel (g) shows the
comparison between the inverse mode temperatures, computed numerically for the finite N
system, and the inverse temperature obtained from the assumption of independent harmonic
oscillators (given by Eq. (4.168)), as functions of the mode frequency ωµ =

√
(zf − λµ)/m.

Notice that if ones uses zf = 2J (which is true in the limit N → +∞), T fµ in Eq. (4.168)
becomes independent of µ (for quenches starting from a condensed equilibrium state). Higher
modes (low frequency) have temperatures slightly above the predicted temperature while
lower modes (high frequencies) have temperatures slightly below it. This fact is another
warning concerning the claim of complete equilibration to a Gibbs-Boltzmann measure.

4.5.3.4 Sector IV: large energy injection on a condensed state

Finally, we consider what happens for quenches in Sector IV, that is to say, for y = T ′/J0
and x = J/J0 such that 1 > y > x. As already stated in Sec. 4.5.1, with the condition y > x
we observe that q = limt2�1 limτ→+∞C(t2 + τ, t2) = 0, z(t) → T ′ + J2/T ′ and χst = 1/T ′,
that correspond to a paramagnetic-like behaviour at temperature T ′. FDT is not satisfied at
all and, furthemore, the autocorrelation C(t2 + τ, t2) requires a very long time t2 to reach a
stationary regime.

In Fig. 4.18 we show the results obtained by integrating the Schwinger-Dyson equations
in the particular case T ′ = 0.5 J0 and J = 0.25 J0. This quench injects a large amount of
energy into the system which, according to the asymptotic analysis done in Sec. 4.3.2 under
the assumption of post-quench Gibbs-Boltzmann equilibrium, should be sufficient to drive
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Figure 4.17: Sector III, condensed initial conditions and small energy change. The data
shown has been obtained form the numerical solution of a finite system with N = 1024,
for the quench corresponding to parameters T ′/J0 = 0.5 and J/J0 = 0.8. (a)-(d)
Time evolution of the mode energies for the modes µ = 1, N/2, N − 1 and N . (e) The
Lagrange multiplier, z(t). The horizontal solid line corresponds to the largest eigenvalue
of the post-quench interaction matrix, λmax. (f) Mode temperatures, with a zoom over
the largest modes in the inset. (g) The inverse mode temperatures together with the
temperature predicted by independent harmonic oscillators approximation (horizontal
line), see Eq. (4.168).

the system out of the initial condensed state and bring it to a paramagnetic equilibrium state.
Had the system reached an equilibrium paramagnetic state asymptotically, its temperature
would be given by Eq. (4.124). However, this is not the case. First, as one can see from
Fig. 4.18-(a), the autocorrelation C(t1, t2) has a very slow relaxation and a non-trivial t2-
dependence, that we did not observe in any of the other sectors of the parameter space. Up
to the maximum time that our numerical solver was able to reach (t2 ∼ 100 and t1−t2 ∼ 300,
in this particular case), we observe that the oscillations of C around zero remain quite large,
with both their amplitude and frequency depending on t2 in a non-monotonic way. Only
after waiting a very long time t2, we find that C(t2 + τ, t2) seems to aquire a stationary
behaviour, C(t2 +τ, t2) ' Cst(τ), but even then we can not make a precise statement. This is
reflected in the behaviour of the correlation function Q(t, 0) (shown in Fig. 4.18-(b)). Q(t, 0),
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which represents the correlation between the state of the system at time t and a replica in
the initial equilibrium state, has very wide oscillations whose amplitude decrease very slowly
in time. On the contrary, in the case of a quench in Sector III, as we have seen in the
previous Subsection, Q(t, 0) was relaxing monotonically and very quickly to its asymptotic
value. Moreover, C(t, 0) and Q(t, 0) seem to approach asymptotically the same oscillating
form. The different behaviour we observe in this case, compared to all other sectors of the
phase diagram, suggests that the sytem retains memory of its initial condition for a very long
period of time, possibly for the entire post-quench evolution.

The parametric plot of the dynamical susceptibility χ against the correlation C, as one
can see from Fig. 4.18-(d), has a rather complex behaviour which is very far from the FDT
prediction χ = (1 − C)/Tf , with Tf the putative target temperature given by Eq. (4.124).
Panel (c) demonstrates that z(t) is far from the value expected from the equilibrium assump-
tion, zf = Tf + J2/Tf , for an equilibrium paramagnetic state, and relaxes instead to the
value T ′ + J2/T ′, which is consistent with the approximation given in Sec. 4.4.3.
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Figure 4.18: Sector IV. Large energy injection on a condensed state. The data shown is for
the quench dynamics corresponding to the choice T ′/J0 = 0.50 and J/J0 = 0.25. (a)
The two-time autocorrelation C(t1, t2) plotted against t1 − t2, for various t2. (b) The
correlation between the state at time t and the initial state, C(t, 0), and the correlation
between the state at time t and a replica at t = 0, Q(t, 0). (c) The Lagrange multiplier
z(t), together with the expected asymptotic value from the equilibrium assumption,
zf = Tf + J2/Tf (dotted line, below), and the observed asymptotic value, T ′ + J2/T ′

(dashed line). (d) The dynamical susceptibility, χ(t2 + τ, t2), against C(t2 + τ, t2), with
τ taken as a parameter, for four values of t2 specified in the key. The black dashed line
is the FDT curve with respect to the temperature Tf given by Eq. (4.124).

The lack of FDT relation between the autocorrelation and the linear response is confirmed
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Figure 4.19: Sector IV. Large energy injection on a condensed state. The data shown is for
the quench dynamics corresponding to the choice T ′/J0 = 0.50 and J/J0 = 0.25. (a)
Fourier transforms of the time-delayed autocorrelation and linear response functions, for
two t2 indicated in the key. The black dashed lines are the analytical predictions for the
real and imaginary part of the Fourier transform of the linear response function, given
by Eq. (4.108b) when taking zf = T ′ + J2/T ′. (b) The ratio −ImR̂(ω, t2)/(ωĈ(ω, t2)),
for two values of t2. The dashed line is at 1/Tf , with the temperature Tf given by
Eq. (4.124). We recall that ImR̂ is non-vanishing only in the interval [ω−, ω+], with
mω2
± = zf ± 2J , zf being the asymptotic value of z(t).

by the behaviour of the ratio βeff(ω, t2) = −ImR̂(ω, t2)/(ωĈ(ω, t2)), shown in Fig. 4.19-
(b). The behaviour is non-trivial and we observe that βeff(ω, t2) → 0 as ω → ω− =√

(zf − 2J)/m , meaning that the modes associated with the largest eigenvalues of the post-
quench interaction matrix aquire a diverging effective temperature. However, we must admit
that our numerical estimate of the Fourier transform of the time-delayed autocorrelation,
Ĉ(ω, t2), is affected significantly by the truncation error, in the time-window that our numer-
ical solver is able to explore, for all quenches in Sector IV. Since C(t2 + τ, t2) does not have
a fast relaxation to zero, we have a very poor accuracy of the result for small frequencies.
In particular, we are not entirely sure whether the value of Ĉ(ω) is supposed to diverge as
ω → ω−, or remain finite. Nevertheless, the effective inverse temperature obtained for the
N → +∞ agrees pretty well with the result of the finite-N calculation for large N , as shown
in Fig. 4.20. In this figure, we compare βeff(ω) (averaged over different values of t2 to get
rid of the undesired noise due to numerical errors) to the mode temperatures of the finite N
system, for N = 1024, obtained by time-averaging the kinetic mode energies. We see that
both these estimates are different from the prediction given in Eq. (4.168) stemming from
the independent harmonic oscillators approximation.

4.6 Integrals of motion

As we have seen in the previous Section, the post-quench Hamiltonian dynamics of the
2-spin interaction spherical spin glass model, with initial condition taken from equilibrium,
almost never leads, in the long-time limit, to an equilibrium state with Gibbs-Boltzmann
measure. This was somehow expected since the finite-N model is equivalent to a classical
integrable model, namely, the Neumann model. In App. D.2 we recall the definition of the
Neumann model and its main properties, and we establish the relation with the p = 2 spherical
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Figure 4.20: Sector IV. Large energy injection on a condensed state. Same choice of
parameters as in Fig. 4.18 and 4.19. Comparison between the mode inverse tem-
peratures for a finite-size system (red), the effective inverse temperature βeff =
−ImR̂(ω, t2)/(ωĈ(ω, t2)), for the N → +∞ limit, averaged over a few values of t2
(black curve) , and the analytical expression for the mode inverse temperatures ob-
tained in the case of independent harmonic oscillators (yellow curve), i.e. Eq. (4.168)
evaluated with zf = T ′ + J2/T ′.

spin glass model. In this Section we will present some results concerning the behaviour of
the integrals of motion. A key issue we address here is how these influence the statistical
properties in the post-quench steady state.

The integrals of motion, derived from the equivalence with the Neumann model, are given
by

Iµ({sk, pk}) = s2
µ + 1

mN

∑
ν(6=µ)

s2
µp

2
ν + s2

νp
2
µ − 2sµpνsνpµ

λν − λµ
, (4.180)

where sµ is the projection of the spin vector onto the direction of the eigenvector vµ, cor-
responding to the eigenvalue λµ of the interaction matrix, while pµ = mṡµ is its associated
canonical momentum. They satisfy the following properties

N∑
µ=1

Iµ = N ,
N∑
µ=1

λµIµ = H = 1
2m

N∑
µ=1

p2
µ −

N∑
µ=1

λµs
2
µ (4.181)

(see Ref. [94]). These Iµs are conserved quantities for the single trajectories of the dynamics.
However, in our case, we considered the dynamics of the p = 2 spherical model under a more
complicated setting: the initial condition is taken at random from the Gibbs-Boltzmann equi-
librium distribution with respect to the pre-quench potential energy, H0

pot({sµ}) = −
∑
µ λ

0
µs

2
µ

(with λ0
µ the eigeinvalues of the pre-quench interaction matrix, having variance J2

0/N), and
the system is let evolve with Hamiltonian dynamics with the modified potential Hpot({sµ}) =
−
∑
µ λµs

2
µ, obtained by the uniform quench J0

ij 7→ Jij = (J/J0) J0
ij . The results that we

have shown so far corresponds to an average over the initial conditions. Therefore, we need
to consider the average of the integrals of motion Iµ over the initial conditions {sµ(0), pµ(0)},
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that is

〈Iµ(t)〉 = 〈sµ(t)2〉+ 1
mN

∑
ν( 6=µ)

〈sµ(t)2pν(t)2〉+ 〈sν(t)2pµ(t)2〉 − 2〈sµ(t)pν(t)sν(t)pµ(t)〉
λν − λµ

,

(4.182)
with the brackets 〈 · 〉 indicating the average. These average quantities are conserved during
the time evolution, that is, 〈Iµ(t)〉 = 〈Iµ(0)〉 for all t > 0. They can be used to determine
what are the conditions under which the system reaches asymptotically a Gibbs-Boltzmann
equilibrium state. Indeed, one can compute 〈Iµ(+∞)〉 under the assumption that all modes
have equilibrated at the same temperature Tf , and then impose 〈Iµ(+∞)〉 = 〈Iµ(0)〉.

Let us first compute the averages right after the instantaneous quench. We notice
that the post-quench averages 〈s2

µ(0+)〉 and 〈p2
µ(0+)〉 coincide with those right before the

quench, 〈s2
µ(0−)〉 and 〈p2

µ(0−)〉, respectively. Owing to the fact that the initial conditions
are drawn from an equilibrium probability density with quadratic Hamiltonian, we have
〈s2
µ(0+)p2

ν(0+)〉 = 〈s2
µ(0+)〉 · 〈p2

ν(0+)〉 and 〈sµ(0+)sν(0+)pµ(0+)pν(0+)〉 = 〈sµ(0+)sν(0+)〉 ·
〈pµ(0+)pν(0+)〉, for all µ, ν = 1, . . . , N . Moreover, 〈pµ(0+)pν(0+)〉 = 〈sµ(0+)sν(0+)〉 = 0 for
µ 6= ν. The average of the integrals of motion at t = 0+ are then given by

〈Iµ(0+)〉 = 〈s2
µ(0+)〉+ 1

mN

∑
ν(6=µ)

〈s2
µ(0+)〉〈p2

ν(0+)〉+ 〈s2
ν(0+)〉〈p2

µ(0+)〉
λν − λµ

. (4.183)

In the cases in which y = T ′/J0 < 1, the initial state is condensed and the integrals of
motion of the modes µ 6= N and µ = N scale very differently with N . For the modes in the
bulk (µ < N) we get

〈Iµ(0+)〉 = T ′

z0 − λ0
µ

+ T ′

N

〈sN (0−)2〉
λN − λµ

+ T ′2

N

∑
ν( 6=µ,N)

1
(z0 − λ0

ν) (λν − λµ) +

+ T ′2

N

1
z0 − λ0

µ

∑
ν( 6=µ)

1
λν − λµ

. (4.184)

where we used 〈sν(0−)2〉 = T ′

z(0−)−λ0
ν

for ν < N , 〈pν(0−)2〉 = m T ′ for all ν, we used
the notation z0 = z(0−), and we have isolated the contribution proportional to 〈sN (0−)2〉
from the rest of the sum. In fact, in the condensed state, the spin vector has a macroscopic
projection onto the direction of the eigenvector associated with the largest eigenvalue, i.e.
〈sN (0−)2〉 ∝ N . Notice that, since we are dealing, for the moment, with N finite, z0 is
dependent on the particular disorder realization through Eq. (4.150). The above expression
can be rewritten in the following form,

〈Iµ(0+)〉 = T ′

z0 − λ0
µ

+ T ′

N

〈sN (0−)2〉
λ0
N − λ0

µ

J

J0
+

+ T ′2

z0 − λ0
µ

J0
J

 1
N

∑
ν(6=µ,N)

1
z0 − λ0

ν

+ 2
J0

Sµ −
1
N

(λ0
N − λ0

µ)−1

 ,(4.185)

where we define
Sµ ≡

J0
N

∑
ν(6=µ)

1
λ0
ν − λ0

µ

. (4.186)
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The term 1
N (λ0

N − λ0
µ)−1 can be neglected in the limit N → +∞. In fact, the distance

between the largest eigenvalue and the second largest one, λN − λN−1, scale as N−2/3 as
N → +∞ [99], thus the quantity 1

N (λ0
N − λ0

µ)−1 can be at most N−1/3 for all µ < N , and
vanishes as N → +∞. For N large we can approximate the sums of the form 1

N

∑
µ g(λµ) with

the integral
∫

dλ ρ(λ)g(λ), where ρ(λ) is the density of the distribution of the eigenvalues
in the thermodynamic limit, that is to say, the Wigner semi-circle law (see Eq. (4.12)).
Moreover, z0 → 2J0 as N → +∞ for equilibrium in the condensed phase, thus we can make
the replacement

1
N

∑
ν( 6=µ,N)

1
z0 − λ0

ν

→
∫

dλ ρ(λ)(2J0 − λ)−1 (4.187)

(assuming that the contributions from the terms (z0−λµ)−1 and (z0−λN )−1 are negligible).
Taking ρ(λ) = 1

2πJ2
0

√
(2J0)2 − λ2 Θ(2J0 − |λ|), with J0 the pre-quench disorder strength,

one easily finds that the above integral equals 1/J0. In the limit N → +∞, we also have
λ0
N → 2J0 and 〈sN (0−)2〉 → qinN = N(1− T ′/J0). Then, the large N behaviour of 〈Iµ(0+)〉

for µ 6= N is given by

〈Iµ(0+)〉 ' T ′

2J0 − λ0
µ

[
1 + J0

J
+ 2T ′

J
Sµ

]
. (4.188)

Instead, in the case of the largest mode (µ = N) one obtains, in the large N limit,

〈IN (0+)〉 = qinN

(
1 + T ′

J
SN

)
+ 1
J

T ′2

z0 − λ0
N

(1 + SN ) . (4.189)

Notice that SN ' −J0
N

∑
ν(2J0 − λ0

ν)−1 → −1 as N → +∞, since λ0
N → 2J0 in the same

limit, which means that the term 1 + SN vanishes. However, we need to consider also that
z0 → 2J0 as N → +∞, thus the denominator of the second term in Eq. (4.189) vanishes
too. The result of numerical calculation of 〈IN (0+)〉 directly through the expression given by
Eq. (4.183) (with finite-N initial conditions), for given realisations of the random interaction
matrix and for large N , suggests that the second term is negligible with respect to the first
one, see Fig. 4.21-(a). Thus, approximately we have

〈IN (0+)〉 ' qinN

(
1 + T ′

J
SN

)
'
(

1− T ′

J0

)(
1− T ′

J

)
N . (4.190)

In the case in which the system is initially prepared in a paramagnetic equilibrium state
(y = T ′/J0 > 1), we do not have to worry about any mode aquiring a macroscopic weight.
However, we need to consider the fact that z0 = z(0+)→ T ′ + J2

0/T
′ and N−1 ∑

ν( 6=µ)(z0 −
λ0
ν)−1 → 1/T ′ (see Eq. (4.20)), in the limit N → +∞. The expression for the 〈Iµ(0+)〉 is

thus given by

〈Iµ(0+)〉 ' T ′

z0 − λ0
µ

(
1 + J0

J
+ 2T ′

J
Sµ

)
, (4.191)

for large N , for all µ. Notice that this expression is the same as that in Eq. (4.188), with
the only difference being in the value of z0. Despite not being able to compute the limit
N → +∞ of Sµ for µ 6= N , we checked numerically that the expressions of both Eq. (4.188)
and Eq. (4.191) are of order O(1) with respect to N , for all µ < N . For the case µ = N ,
the numerical estimate for T ′/J0 > 1 is displayed in Fig. 4.21-(b). The weak N -dependence
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Figure 4.21: Neumann integrals of motion We show 〈IN (0+)〉, the average, over the initial equi-
librium state, of the integral of motion associated with the largest eigenvalue of the inter-
action matrix. In (a) 〈IN (0+)〉 is plotted against N for three quenches with T ′/J0 < 1,
while in (b) for three quenches with T ′/J0 > 1. In panel (a), the dashed lines correspond
to constants (1− T ′/J0)(1− T ′/J).

is most likely due to the fluctuations in the realisation of the eigenvalues, which the above
expressions do not take into account because we have evaluated all the summations on the
discrete spectrum {λµ} by using the N → +∞ continous distribution ρ(λ).

Concerning the time-evolution of the 〈Iµ(t)〉, we have verified by integrating numerically
the finite-N equations of motion that each of them are conserved (not shown), i.e. 〈Iµ(0+)〉 =
〈Iµ(t)〉 for all µ, and that they satisfy the two constraints

∑
µ〈Iµ(t)〉 = N and

∑
µ λµ〈Iµ(t)〉 =

−2etotN for all t > 0, with etot the total energy density.

Fig. 4.22 shows the µ-dependence of the 〈Iµ〉 together with the mode kinetic temperatures
T kin
µ = 2ekin

µ (with ekin
µ the time-averaged mode kinetic energies) obtained via the numerical

solution of the finite-N system, for examples of quenches in the four sectors of the phase
diagram. Note that the data shown correspond to a single realisation of the disorder. As one
can see, in the case of the quenches in Sector III and IV, the values of J〈Iµ〉 are distributed
very tightly around the corresponding mode temperatures T kin

µ for µ � N : these are the
so-called “fast” modes. The behaviour J〈Iµ〉 ' T kin

µ suggests that these modes are very close
to relaxing to a thermal equilibrium state. For µ close to the right edge of the spectrum,
instead, the 〈Iµ〉 diverge with N , as found in the calculations above. These are the modes
that are dominant in the long-time regime and most responsible for the out-of-equilibrium
behaviour. However, one must not confuse the fluctuations seen in the profile of the 〈Iµ〉 with
an evidence of the lack of thermalization, as for example in the case of the data relative to
the quenches in Sectors I and II in Fig. 4.22. In fact, in order for the system to reach thermal
equilibrium à la Gibbs-Boltzmann it is necessary that all modes have the same temperature
T kin
µ = T pot

µ , but it is not required that all the 〈Iµ〉 have the same value. In general, there
is no simple relation between the 〈Iµ〉s and the average mode energies ekin

µ in the stationary
regime.
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Figure 4.22: Comparison between the average integrals of motion J〈Iµ〉 (red data points) and the
mode temperatures T kin

µ = 2ekin
µ (blue data points) for each mode, in the four sectors

of the phase diagram (we have checked that 2εpot
µ yield equivalent results). We used

the same vertical scale in all plots, leaving aside the values of 〈Iµ〉 close to the edge
in (c) for which, in particular, 〈IN 〉 ' 180. There is no such divergence at the edge
of the spectrum in the other panels. The black horizontal lines represent the global
temperature Tkin predicted by assuming Gibbs-Boltzmann equilibrium.

4.6.1 Gibbs-Boltzmann equilibrium assumption

The analysis of the constants of motion should shed light on the “distance” from complete
equilibration to a Gibbs-Boltzmann probability density. In particular, we are interested to
quenches in Sector III of the parameter space (y < 1 and y < x), where the solutions
obtained from integrating the Schwinger-Dyson equations suggest proximity to an equilibrium
behaviour.

Thus, let us suppose that the system is able to reach an equilibrium state à la Gibbs-
Boltzmann at the temperature Tf in the post-quench dynamics, and that z(t) → zf = 2J
as t → +∞, in the large N limit. We recall that this last condition is actually realised for
quenches with parameters y < x. Moreover, let us assume that the final equilibrium state
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is of condensed type, that is to say, 〈sN (+∞)2〉 ∝ N , with sN the projection of the spin
vector over the eigenvector associated with the largest eigenvalue, while 〈sµ(+∞)2〉 = Tf

zf−λµ
for µ < N . In this state, the average 〈Iµ〉 for µ < N is given by

〈Iµ〉Tf = Tf
zf − λµ

1 + 2Tf
J
Sµ + Tf

N

∑
ν( 6=µ,N)

(zf − λν)−1

+ Tf
λN − λµ

〈s2
N 〉
N

. (4.192)

In the limit N → +∞, we have zf → 2J , λN → 2J , 〈s2
N 〉 → qN with q = 1 − Tf/J (the

Edwards-Anderson order paramater at equilibrium) and we use

1
N

∑
ν(6=µ,N)

(zf − λν)−1 ' 1/J (4.193)

(by exploiting again the N → +∞ limit of the eigenvalue distribution) and thus Eq. (4.192)
reduces to

〈Iµ〉Tf = 2Tf
2J − λµ

(
1 + Tf

J
Sµ

)
. (4.194)

We wish to compare this expression to that in Eq. (4.188), that corresponds to the system
being initially in equilibrium in a condensed state. After some rearrangements, one finds that
the difference ∆Iµ = 〈Iµ〉Tf − 〈Iµ(0+)〉 is given by

∆Iµ = 1
2J − λµ

[
T ′
(

1 + J

J0

)
− 2Tf − 2

(
T ′2

J0
−
T 2
f

J

)
Sµ

]
. (4.195)

Since we supposed that the “final” equilibrium state is also a condensed state, then the tem-
perature Tf is given by Tf = T ′ (1 + J/J0) /2, according to the analysis done in Sec. 4.3.2.1
(see Eq. (4.127)). Substituting it into the above equation, we finally get

∆Iµ = − T ′2

2J (2J − λµ)

(
J

J0
− 1

)2
Sµ . (4.196)

For the N -th mode we have instead

〈IN 〉Tf ' q

(
1 + Tf

J
SN

)
N +

T 2
f

J(zf − λN ) (1 + SN ) , (4.197)

and thus the difference from the average in the initial state is given by

∆IN = 〈IN 〉Tf − 〈IN (0+〉 =
(

1 + SN
zf − λN

)
T ′2

4J2

(
J

J0
− 1

)2
+

+N
{
T ′

2J0

(
1− J0

J

)
+ SN

[
T ′

2J0

(
1− J0

J

)
+ T ′2

4J2

(
J

J0
− 1

)2
]}

=

'
(

1 + SN
zf − λN

−N
)
T ′2

4J2

(
J

J0
− 1

)2
. (4.198)

where we used the explicit expression of Tf given above and, in the last passage, we used the
N → +∞ limit SN → −1 to simplify the term proportional to N . Notice that the first term
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Figure 4.23: Scaling of ∆IN in sector III. We show theN dependence of ∆IN = 〈IN 〉Tf
−〈IN (0+)〉,

with 〈IN 〉Tf
− 〈IN (0+)〉 estimated numerically, for three different choices of the quench

parameters with T ′/J0 < 1. The dashed black lines correspond to the large N limit
given by Eq. (4.198).

contains the factor (1 +SN )/(zf −λN ), which is of the form 0/0 in the N → +∞, since both
zf and λN converge to 2J . However, as explained above in the case of the average at the
initial condition, we checked numerically that this term is of order at most O(1) with respect
to N , see Fig. 4.23.

Quite clearly, ∆Iµ, for any µ, does not vanish for any choice of the quench parameters
T ′/J0 and J/J0, apart from the trivial one J = J0, that corresponds to having no quench.
This fact confirms, then, the lack of equilibration to a Gibbs-Boltzmann measure with a single
Tf in Sector III of the parameter space.

We have seen that, on the curve y =
√
x, for y > 1, the asymptotic analysis for N →∞

predicts thermalization at temperature Tf = J . The numerical analysis of the Schwinger-
Dyson equations confirms this prediction as the correlation and linear response are linked by
FDT with respect to the temperature Tf = J . Let us check if this fact is confirmed by the
conservation of the averages 〈Iµ〉. In the case of these particular quenches, the initial state
is paramagnetic, while the one reached in the long-time regime after the quench is also of
paramagnetic kind but right at the (static) critical point, Tf = J , thus z(t) → zf = 2J as
t→ +∞. For all µ, the difference ∆Iµ is given by

∆Iµ = J

2J − λµ

(
1 + J

T ′
+ 2Sµ

)
− J0
z0 − λ0

µ

(
J0
T ′

+ J

T ′
+ 2Sµ

)
, (4.199)

and imposing the condition ∆Iµ = 0 leads to the equation

λµ
J

(1− y) + 2Sµ y
(
y(1 + y2)− 2

)
+ (y2(1 + y)− 2)(1 + y2) = 0 , (4.200)

in terms of the parameter y = T ′/J0, which is satisfied independently of the λµ only in the
case y = 1, i.e. in the “no-quench” case (J = J0).

We observe, however, that ∆Iµ ' 0 if J is close to J0. Numerically, we find that, in the
special case T ′ = 1.25 J0 and J = 1.5625 J0, the ∆Iµ is approximately of order 10−2, for
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all µ. We conclude that even in this case, in which the asymptotic analysis predicts that
the global, mode-averaged quantities, behave as in equilibrium, a prediction that seems to be
confirmed by the numerics, the constants of motion are not exactly the same in the initial state
and in the thermal state the system would reach under the assumption of Gibbs-Boltzmann
equilibrium.

In order to properly interpret these results, it is important to keep in mind that, strictly
speaking, the conserved energy dynamics of an isolated (finite size) system should keep mem-
ory of the initial conditions, even if the system is non-integrable. In our problem, we see this
information encoded in the Iµs. More so, not even in the N →∞ limit this memory is erased
as the ∆Iµs do not vanish.

4.6.2 Fluctuations of the integrals of motion in the equal energy hyper-
surface

The fact that the system reaches a state that is very close to thermal equilibrium in
Sector III, the sector with the lowest total energy in the phase diagram, allows us to infer
some properties of the phase space structure of the model. In order for the system to reach
a thermal equilibrium state, it needs to visit all configurations with the same energy in the
course of its dynamical evolution. An integrable model can not achieve this goal since it is
bound to wander in a region of the phase space compatible with the values that the integrals
of motion (IOM) take on the initial configuration. The dynamics is constrained inside the
phase space region composed by configurations which have the same values of the Iµs for
each µ. Such regions can be labeled with the values of the Iµs (which also define the energy
of the group of configurations since −

∑
λµIµ = 2H), and we shall call them iso-IOM-regions

in the following.
A close-to-thermalised dynamics in an integrable system should be indicative of a sub-

stantial overlap between the constant energy manifold and the equal IOMs region in phase
space. This claim is, however, highly non-trivial since the iso-energy manifold is 2N − 1
dimensional while the iso-IOM-region has only 2N − N = N dimensions. In the large N
limit, the iso-energy manifold is huge with respect to the equal IOMs one.

Our hypothesis is that, for quenches in Sector III of the phase diagram with x = J/J0
close to 1, the constant energy manifolds have a substantial overlap with any iso-IOMs-region
that include a configuration with the given energy. In order to test this guess, we studied the
following quantity:

σ2
µ(e) =

∫ N∏
i=1

dsi dpi δ(H[si, pi]/N − e)(Iµ[si, pi]− 〈Iµ[si, pi]〉)2 , (4.201)

where the average is a microcanonical one given by

〈Iµ[si, pi]〉 =
∫ N∏

i=1
dsi dpi δ(H[si, pi]/N − e)Iµ[si, pi] . (4.202)

The quantity σ2
µ(e) measures how large are the fluctuations in the value of a given IOM

Iµ in the set of configurations with the same energy e. According to the discussion at the
beginning of this Section, if, for a given energy, we observe a small value in σµ(e), this
indicates a tendency of the integrable system to thermalise. In order to perform the averages
over equal energy configurations, we replace the microcanonical average by a canonical one,
introducing a Lagrange multiplier β and a measure exp(−βH)/Z, fixing the average energy
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Figure 4.24: Variance σ2
µ(e) for different system sizes. (a) Behaviour of the average of σ2

µ(e)
over the first three-fourths of the spectrum, see definition in Eq. (4.203). In (b) and
(c) we show σ2

µ/N for modes near the edge of the spectrum, specifically µ = N − 2
and µ = N − 1, respectively. In (d) we show σ2

N/N . Note the logarithmic scale in the
vertical axis in panels (a) and (d).

density of the ensemble. For large N , the fluctuations of the energy average are small and
we get a good approximation to the microcanonical mean. The advantage of the canonical
measure is that the 〈Iµ〉s are expressed in terms of canonical averages of the same kind as those
which we were using in the previous Sections to describe the initial state of the dynamics.
Moreover, once z is fixed, the Hamiltonian is quadratic, and this allows one to express the
higher order average 〈I2

µ〉, which includes products of 4, 6 and 8 phase space variables, in
terms of quadratic averages 〈s2

i 〉 and 〈p2
i 〉. A straightforward numerical calculation of σ2

µ(e)
is then possible. We show numerical results in Fig. 4.24. In panel (a) we plot σ2

µ, the average
of σ2

µ(e) in the first three-fourths of the spectrum, namely

σ2
µ = 4

3N

3N/4∑
µ=1

σ2
µ(e) . (4.203)

We can clearly observe that it is very small for low energies and that it increases by several
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orders of magnitude as we increase the energy density of the system. Such is the behaviour
of σ2

µ(e) for the great majority of the modes. In panels (b) and (c) we show the behaviour
of σ2

µ(e) for µ close to N , the edge of the spectrum. We observe that σ2
µ(e) exhibits a

maximum at low energies. Finally, in Fig. 4.24-(d) we plot σ2
N (e), the variance associated

with the largest mode. For e < 0, σ2
N (e) is very large and it seems to diverge with N .

Instead, for e > 0 we observe that σ2
N (e) approaches a plateau, and in particular we find that

lim(e/J)→1 σ
2
N (e) ∝ N−1.

Summarising, we observe that, far from the right edge of the spectrum (λµ � λN ), the
fluctuations in the IOMs are very small for sufficiently low energies. This means that the
low-energy configurations of the model have very similar values of the Iµs, at least for µ� N .
For modes close or at the edge of the spectrum fluctuations instead can be very large.

4.7 Conclusions

In this Chapter, we studied the two-spin interaction spherical spin glass model subject to
Hamiltonian dynamics after an istantaneous (uniform) quench of the strength of the disorder,
represented by the random couplings {Jij}. The model is, at first look, quadratic in its degrees
of freedom, but an effective interaction between the normal modes of the (random) interaction
matrix is introduced dynamically by the spherical constraint.

The dynamics was studied both in N →∞ limit, through the Schwinger-Dyson equations
describing the time-evolution of the two-time autocorrelation and linear response functions,
and in the case of N finite, with N the number of spin degrees of freedom, by directly
integrating their equations of motion. In each case, we consider a situation in which the
system is initially prepared in an equilibrium state, at a given temperature, be it in the
paramagnetic phase or in the condensed phase. The quench consists in a uniform rescaling of
the random couplings, that is to say, J0

ij → J0
ij = (J/J0)Jij , and the system is let evolve with

the quenched potential energy through Hamiltonian dynamics. The goal was to determine
whether the system is able to approach asymptotically in time a new equilibrium state à la
Gibbs-Boltzmann, marked by the usual fluctuation dissipation relation between correlations
and associated response functions.

We were motivated by a similar study performed on the p-spin spherical model with
p ≥ 3 [83]. In particular, in the p = 3 strongly interacting case, it was found that all quenches
reach an asymptotic stationary regime in which either FDT with a single temperature is
satisfied or a two-step non-equilibrium relaxation behaviour arises. For certain choices of the
parameters controlling the quench, and for initial conditions in the PM phase, the system
is able to equilibrate to a paramagnetic state with a proper temperature. For other choices
instead it remains confined in a metastable state with restricted Gibbs-Boltzmann equilibrium
at a single temperature, or a third possibility can happen. It consists in the system ageing
indefinitely, i.e. the dynamics is characterised by two distinct regimes: a first one, occuring
at short time delays, in which stationarity and FDT are satisfied, and a second one, occuring
at long time delays, in which instead stationarity is violated, similarly to what happens in the
purely dissipative case [98, 127, 126, 111, 84]. In the ageing scenario, the two temperatures
Tf and Teff depend on the pre and post-quench parameters in ways that were determined
in [83].

The p = 2 model is in a certain way much easier to treat, thanks to the fact that
the interaction term appearing in the potential energy is quadratic in the spin degrees of
freedom. Indeed, one can argue that, in the long-time limit, the system enters in a stationary
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regime where the Lagrange multiplier that is used to impose the spherical constraint becomes
constant and, at that point, the problem can be reduced to that of a collection of decoupled
harmonic oscillators. For some choices of the parameters controlling the quench, indeed
we observe the system aquire this behaviour. More generally, the post-quench Hamiltonian
dynamics is quite different both from the purely dissipative one [113, 114, 115, 116, 117] and
the correspective in the case p = 3. This is due to its quasi-integrability, made explicit by its
relation to the Neumann integrable model.

We outlined the dynamic phase diagram according to the asymptotic behaviour of the
static susceptibility, the Lagrange multiplier, and the long time-delay limit of the two-time
correlation function. In the analysis of the Schwinger-Dyson equations, we distinguished four
sectors in the phase diagram depending on the initial state (being condensed or not) and
the final value of the static susceptibility. We reduced these four sectors to three distinct
dynamical phases. Basically, they are distinguished by two “order parameters”, χst and q,
the static susceptibility and the asymptotic value of the two-time correlation.

In none of the phases the system equilibrates to a Gibbs-Boltzmann measure. Accordingly,
there is no single temperature characterising the values taken by different observables in the
long time limits, not even after being averaged over long time intervals. However, for cases
in which the system is initially prepared in a condensed equilibrium state, and subject to
quenches in which energy is extracted or injected in small amounts, the asymptotic values
of the global observables, those averaged over all normal modes, are close to those predicted
by assuming equilibrium at a given temperature Tf . Nevertheless, a closer look into the
particular mode dynamics reveals that the modes are, in fact, not equilibrated amongst
themselves, as expected. This is clearly seen for deep quenches in sector III of the parameter
space. Another special case is provided by quenches with T ′ > J0 and T ′2 = JJ0. On this
special curve, surprisingly, the global observables satisfy thermal equilibrium properties at
Tf = J .

As already mentioned, the p = 2 spherical model turns out to be equivalent to the
Neumann integrable model of classical mechanics. We stress the fact that in the field of
classical integrable systems, the model of Neumann was usually defined and studied having
only a few degrees of freedom. Here, as we are interested in searching for a statistical
description of the post-quench dynamics, we dealt with the limit of large, and even diverging,
number of degrees of freedom. Moreover, in the case of the Neumann model, the spherical
constraint is imposed on the single trajectory, while, in our case, we relaxed this prescription
by requiring that the spherical constraint is enforced on average over the initial conditions.

The N − 1 integrals motion of the Neumann model have been identified by K. Uhlen-
beck [92, 94]. After a trivial extension that allows us to deal with the large N limit, we studied
their scaling properties with system size. In cases in which the initial state is condensed, the
integrals of motion associated to the edge of the spectrum also scale with N . The distance
between their values and the ones they would have taken in equilibrium at a single tempera-
ture Tf gave us a rough measure of distance from Gibbs-Boltzmann equilibrium. Importantly
enough, in the particular case in which the global correlation and linear response behave as
in thermal equilibrium at Tf = J , that is to say, parameters on the curve T ′2 = JJ0 in sector
II, the integrals of motion are not identical to the ones expected in equilibrium. This proves
that not even in this case the system is able to fully thermalize.
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Appendix A

A.1 Finite-temperature effects for KIM evolving with Glauber
dynamics

It is interesting to study what are the effects of a (subcritical) finite-temperature quench
on the percolation phenomena that have been discussed in Chap. 1.

Intuitively, one can expect that the coarsening process occuring in the case of a quench
to T > 0, in terms of the geometrical and statistical properties of the spin clusters, is
similar to that produced by the T = 0 quench in the early stages of the dynamics, as long
as T is not too close to the Ising critical temperature, Tc. Indeed, thermal fluctuations
are essentially responsible for two effects. On one hand they generate domains with the
equilibrium properties (at the target temperature of the quench) on length scales shorter than
`d. On the other hand, they cause the roughening of the domain walls thus opposing and
slowing down their curvature-driven motion which constitutes the main mechanism producing
the domain growth in the late stages of the NCOP dynamics. These effects do not undermine,
in principle, the existence of a critical-percolation-like dynamical scaling regime since this one
manifests only on length scales longer than `d(t).

Moreover, renormalization group treatments of domain growth dynamics [137, 18, 138,
139] suggest that the T = 0 equilibrium fixed point controls the domain growth for all T < Tc,
i.e., that thermal fluctuations are irrelevant to the asymptotic relaxation dynamics, with
their contribution being limited primarily to the renormalization of temperature-dependent
prefactors. In particular, for all T < Tc the asymptotic behaviour of the dynamical length `d
is given by

`d(t; T ) ' [λd(T ) t]1/zd (A.1)

with zd = 2 and the factor λd(T ) encoding all the temperature dependence. In particular, it
is known that, in the case of the IM evolving with Glauber dynamics, λd(T )→ const. ' 2.1
as T → 0, while λd(T ) ∼ (Tc − T )a as T → Tc, with a ' 0.15 [11].

Nevertheless, thermal fluctuations start to play a major role in the evolution of the domain
pattern in the late stages of the coarsening dynamics, for times of the order of magnitude
of the equilibration time teq ∼ Lzd . In the case of the zero-temperature Glauber dynamics,
we have seen that percolating domain walls become topologically stable at a sufficiently long
time, due to the curvature-driven motion mechanism. These walls eventually become flat,
blocking the system in a metastable state. However, when spin-flip events that increase the
energy of the system are allowed, the coarsening dynamics always leads to an equilibrium
state, even though the typical time that is required to do so might not scale with the system
size as expected. The reason why this happens is that, although percolating domain walls
are not anymore topologically protected from the microscopic dynamics, they are still very
long-lived.
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As an example, let us consider a very simple situation: a spin configuration with just two
domain walls (separating two large domains of opposite spin alignment) that are percolating
along a certain direction of the lattice (think about a spin system on a finite lattice with
PBC) and are nearly flat. Most of the spin-flip events that involve sites on the domain walls
are energy-conserving and thus fully reversible, while very few spin flips increase the energy
of the system thus going against the curvature-driven mechanism. The result is that these
two domain walls fluctuate around a metastable position for a very long time. Only when
they collide, and break into one or more non-percolating domain walls, the system can rapidly
achieve the equilibrium state consisting in just one large spin cluster percolating along both
directions of the lattice with small domains of opposite phase embedded in it. However, this
process of domain wall collision requires that many energy increasing spin flip events occur in
a sequence. In other words, in terms of free energy, the stochastic dynamics has to overcome
a very high energy barrier.

Thus, states with two or more spin clusters percolating in the same direction, the so-called
“stripe” states, are metastable and very long-lived for the subcritical Glauber dynamics. For
finite systems, the presence of these metastable states make the late stages of the relaxation
dynamics more complicated. In fact, it is observed that, for the Glauber dynamics at a finite
but very small working temperature (0 < T � Tc), the typical time which the system takes
to reach full equilibration is not the expected one teq ∼ L2, but teq ∼ Lzeq with zeq > 2 [9].

Note that, in general, the types of spin configurations that can act as metastable states
depend on the particular lattice geometry and on the boundary conditions. For example, for
the zero-temperature Glauber dynamics on the square lattice with PBC, spin configurations
with any number of flat domain walls separated by at least two lattice spacings between each
other, represent the only type of frozen states. Wrapping domain walls with the so-called
“diagonal” topology (also called staircase domain walls [8]) have very long life, but eventually
they annihilate each other. Instead, in the case of the zero-temperature Glauber dynamics on
the honeycomb lattice, frozen spin configurations with non-percolating domains are possible,
see App. A.2.

In the following we present some measurements from numerical simulations that support
the fact that critical percolation phenomena are still emerging in the Glauber dynamics
at finite temperature, and highlight some of the effects produced by the existence of these
metastable states.

In Fig. A.1 we show the average magnetisation density, m(t, L), for the Glauber dynamics
on a square lattice with FBC and linear size L, plotted against the rescaled time t/L2, for
different values of L. The initial configuration is always taken from equilibrium at infinite
temperature, and the working temperatures are T = 0, Tc/4, Tc/2, Tc on the different panels.
In the case of the T = 0 quench (panel (a)), the magnetisation density converges approxi-
mately to 0.7332 (dotted line) asymptotically in time. This value can be understood by the
following simple argument. As shown by Barros et al. [8], the probability that the system,
at a certain point in the dynamics, develops a spin configuration with a cluster percolating
in both directions, and that will evolve to a state with magnetisation density 1, is given
by the corresponding probability in 2d critical percolation, πFBC

hv |cp ' 0.6442 [25, 26]. The
complementary probability πstripe = 1 − πFBC

hv |cp is the probability that the system ends up
frozen in a stripe state, that is to say, a spin configuration with flat domain walls that are
percolating vertically or horizontally. These stripe states have magnetisation mstripe ' 1/4
on average. Then the magnetisation density in the final state is expected to be given by
mFBC
∞ ' πFBC

hv |cp + 1
4(1 − πFBC

hv |cp) ' 0.7332. We also notice that for t/L2 < 1, the data
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Figure A.1: Ising model on a finite square lattice with FBC, evolving with Glauber dynamics. We
show the average magnetisation density,m, against rescaled time t/L2, for various system
sizes L given in the key of the first panel and various “target” temperatures T . The
dotted horizontal line is the infinite time limit of the magnetisation density after a
T = 0 quench, m∞ ' 0.7332. We notice that at T = 0 and for t/L2 < 1, the master
curve can be roughly approximated by the power law x1/2, indicated with a dotted line.

collapse approximately on the same master curve that is roughly given by the power law x1/2

(indicated with a dotted line in Fig. A.1-(a)).
For 0 < T < Tc we see that the behaviour of m(t) is similar to that of the case T = 0

up to times t such that t/L2 ' 1. In particular, we observe that, for t/L2 > 1, m tends to
collapse on the constant value mFBC

∞ ' 0.7332 as L increases. This plateau corresponds to
the fact that the system, during this stage of the coarsening dynamics, is getting “attracted”
by the metastable states that have been described above and whose probability of occurence
can be determined by using the corresponding critical percolation probabilities. It requires
a certain amount of time, which increases with L, for the system to escape these metastable
states and finally reach equilibrium. Notice that the transient between the metastable state
reached at times t ∼ L2 and the final equilibrium state becomes shorter as the temperature
increases, reflecting the fact that thermal fluctuations becomes more effective at destroying
long percolating domain walls. For the relaxation dynamics corresponding to a quench to
the critical point (panel (d)), we clearly see that the magnetisation reaches a plateau in the
characteristic time teq(L) ∼ L2, but its value is decreasing with L, as expected, since at
T = Tc the equilibrium magnetisation density vanishes in the thermodynamic limit.

In Fig. A.2 we show the time evolution of πhv, the probability that the spin configuration
has just one percolating spin cluster that has the “cross” topology, i.e., percolating along
both lattice principal directions, for the Glauber dynamics on a square lattice with FBC, at
various target temperatures T ≤ Tc and various L, as in Fig. A.1. In all cases, πhv is plotted
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Figure A.2: Ising model on a finite square lattice with FBC, evolving with Glauber dynamics at
various temperatures T ≤ Tc. We show the probability πhv that a spin cluster perco-
lates across the lattice along both directions (in the so-called “cross” topology), against
the rescaled time t/L2, for different values of L. The colour code for the different sizes
L is the same as in Fig A.1. The dotted horizontal lines are at πFBC

hv |cp ' 0.6442 and
πFBC

hv |Tc ' 0.8113 the probabilities of having a cluster that percolates along both horizon-
tal and vertical directions at critical percolation, and at the Ising critical temperature,
respectively.

against the rescaled time t/L2. Two horizontal dotted lines are also shown, corresponding
to πFBC

hv |cp = 0.6442 and πFBC
hv |Tc = 0.8113, the latter being the probability of having a spin

cluster percolating in both directions at the Ising critical point [140] (this state can be reached
asymptotically by the dynamics following a quench to Tc).

There is a clear correspondence with the evolution of the magnetisation density. In fact,
we observe that, for 0 < T < Tc, πhv develops a plateau that coincides approximately with
πFBC

hv |cp whose duration increases as the system size L increases, while it becomes shorter as
T increases. For t/L2 � 1, πhv “escapes” from this plateau and converges asymptotically to 1
(even though, for the larger values of L, we are not able to observe it due to the limited time
accessible by the numerical simulations). This happens because, for T < Tc, the coarsening
dynamics always leads the system to an equilibrium state, and such state is one with a unique
percolating spin cluster. At T = Tc there is no plateau at πFBC

hv |cp = 0.6442. Instead, the
probability πhv saturates at the value πFBC

hv |Tc , as expected.
In all the cases corresponding to T < Tc the time that the probability πhv takes to reach

the critical percolation value, that is to say, the typical time tp, scales as tp ∼ Lzp with an
exponent zp smaller than zd = 2. In order to obtain the L-dependence of tp, we use the
finite-size scaling argument adopted in Sec. 1.5.2, i.e., we assume that πhv depend on t and L
only through the ratio `p(t)/L, with the characteristic length `p(t) ∼ `d(t)t1/ζ . The exponent
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ζ is then determined by looking at the value that gives the best collapse of the data in the
prepercolation regime, which corresponds to t such that `p(t)/L < 1. In the case of the
zero-temperature Glauber dynamics on the square lattice, we found ζ ' 0.5, see Sec. 1.5.2. It
turns out that the exponent ζ is not greatly affected by the working temperature, as long as
it is not too close to Tc. In Fig. A.3 one can see the result of this scaling, for the same cases
displayed in Fig. A.2. In these figures, πhv is plotted against the rescaled time t/[L/`G(t)]ζ
(which is equivalent to [t1/ζ`G(t)/L]ζ = [`p(t)/L]ζ) with ζ = 0.5 for all T , where again the
excess-energy growing length `G(t) has been taken as a measure of `d(t).

As one can see, the collapse of the data corresponding to different L works in the limit
L→∞ (in the region t/[L/`G(t)]ζ < 1), for T < Tc. Instead, it completely fails for T = Tc.
Notice also that the plateau corresponding to the critical percolation value is reached for tp
such that tp/[L/`G(t)]ζ ' 1, for all T < Tc, as it was already observed for the T = 0 case.
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Figure A.3: Ising model on a finite square lattice with FBC, evolving with Glauber dynamics at
various temperatures T ≤ Tc. We show the probability πhv that a spin cluster percolates
across the lattice along both directions (in the so-called “cross” topology), against the
rescaled time t/ (L/`G(t))ζ , with ζ = 0.5. The characteristic length scale `G(t) is the
numerical value obtained as the inverse of the excess energy, in all cases. The colour code
for the different sizes L is the same as in Fig. A.2. As in Fig. A.2, the dotted horizontal
lines are at πFBC

hv |cp ' 0.6442 and πFBC
hv |Tc

' 0.8113, the probabilities of having a cluster
that percolates on both horizontal and vertical directions at critical percolation, and at
the Ising critical temperature, respectively.

In conclusion, the data shown here suggest that a critical-percolation-like scaling regime
appears also in the KIM evolving with Glauber dynamics at a finite subcritical temperature.
In a certain sense, the T = 0 equilibrium fixed point acts as an attractive fixed point also for
the relaxation dynamics at T < Tc. On the other hand, we clearly see that the phenomena
associated to critical percolation disappear as T → Tc.
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A.2 Ising model evolving with Glauber dynamics on a honey-
comb lattice

In what follows, we outline the main aspects of the percolation phenomena that emerge
in the domain growth for a KIM evolving with Glauber dynamics (at a subcritical target
temperature) on a honeycomb lattice. We show how the choice of the particular lattice
geometry can affect greatly the typical times scales associated to the approach to the critical-
percolation-like scaling regime studied in Chap. 1.

Before discussing these results, we need to clarify an important technical aspect, namely,
the way we implemented the honeycomb lattice in our numerical simulations. Essentially,
we implemented a mesh of honeycomb lattice with size L × L by taking a mesh of square
lattice with the same linear size and then removing some of the lattice bonds. More precisely,
we always represented the system by means of a L × L square grid. The particular lattice
geometry is given by the rules that define the nearest-neighbours of each grid vertex. For the
square lattice, each site (i, j), (with 1 ≤ i, j ≤ L, i and j representing the row and column
indices on the square grid, respectively) has links with the sites (i, j + 1), (i+ 1, j), (i, j − 1)
and (i−1, j) (with additional constraints to take into account boundary conditions). For the
honeycomb lattice, each site (i, j) such that i + j is an even integer has only links with the
sites (i, j + 1), (i + 1, j) and (i, j − 1), while each site (i, j) such that i + j is odd has only
links with the sites (i, j + 1), (i, j − 1) and (i− 1, j), which amounts essentially to removing
some of the vertical links from the square lattice. The consequence of this construction is
that the honeycomb lattice mesh used in our simulations has an aspect ratio different from
1. Precisely, the ratio between the longer side and the shorter one is

√
3.

We have seen that, in the case of the zero-temperature Glauber dynamics on a square
lattice with PBC, the system can get blocked in a spin configuration in which only flat
domain walls are present, and that these so-called “striped” spin configurations are the only
possible absorbing states. In general, on most regular lattices, non-percolating spin clusters
are unstable with respect to the single spin-flip zero-temperature dynamics. In the case of the
T = 0 Glauber dynamics on the honeycomb lattice, however, there are many more possible
ways of constructing spin clusters that are frozen, that is to say, spin clusters that can not
be broken unless energy-increasing spin flips are allowed. In Fig. A.4 we give an example of
a frozen spin configuration.

Figure A.4: Example of a frozen configuration for the zero-temperature Glauber dynamics on a
honeycomb lattice of size 20×20 with PBC. Each lattice site is represented by a triangular
cell, with the color (red or white) indicating the spin orientation.

Notice that non-percolating domain walls can be stable with respect to the zero-temperature
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Glauber dynamics and, in general, stable domain walls can have a very complicated geom-
etry compared to those generated in the case of the dynamics on the square lattice (or the
triangular lattice) which, instead, can only be flat. The number of such metastable states is
exponentially large in N = L2 [141], the number of lattice sites, and each one corresponds to
a valley in the energy landscape of the model, in a certain way, very similar to that of spin
glass models [142]. It is no surprise, then, that the zero-temperature relaxation dynamics,
starting from an infinite temperature condition, gets easily trapped in one of these metastable
states and very rarely the system is actually led to one of the two ground states.

These aspects are reflected in the time evolution of the typical domain radius. In the left
panel of Fig. A.5 we show the excess-energy growing length, `G, plotted against time t, for
the zero-temperature Glauber dynamics on a honeycomb lattice with PBC, for various values
of L. As already stated before, this observable measures approximately (or it is proportional
to) the average radius of spin clusters, or equivalently, the average distance between two
neighbouring domain walls. As one can see, `G saturates to the value `sat ' 4 very soon in
the dynamics, precisely around tsat ' 10, independently of the system size.
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Figure A.5: In the left panel, the excess-energy growing length, `G, for the zero-temperature Glauber
dynamics on a finite honeycomb lattice with PBC, as a function of time, for lattice sizes
L = 320, 640 and 1280. `G saturates at `sat ' 4 at a time ' 10 independently of L. In
the right panel, the average freezing time, tfreeze, as a function of size L (red data points)
and the best fit, tfreeze ' 4.95 lnL− 6.47 (keeping only data with L > 40), indicated by
the dashed blue line.

The behaviour of `G(t) is totally different from what it is observed in the case of the zero-
temperature Glauber dynamics on a finite square lattice, see Sec. 1.5.1 and Fig. 1.10. In fact,
for the latter, `G takes the form `G(t) ∼ t

1
2 for very large times, thus agreeing with the NCOP

coarsening theory according to which the typical domain radius should grow, asymptotically
in time, as `d(t) ∼ t1/zd with zd = 2. Instead, in the case of the dynamics on the honeycomb
lattice, after an initial fast transient, the growing length `G seems to saturate to `sat ' 4. To
be more precise, if one zooms at the data at times t ∼ tsat ∼ 10, one can see that `G actually
does not get immediately fixated at the saturation value, but it continues to grow very slowly,
approaching this value from below only asymptotically in time (not shown in the plot). This
fact suggests that, around time tsat ' 10, a realization of the dynamics has typically already
reached a spin configuration which is very close to be frozen, that is to say, one in which the
location of each domain wall in the future frozen configuration has already been established,
apart from a few spin flips that are not going to alter significantly the morphology of the
domain pattern. In particular, if in the frozen configuration there are percolating domain
walls, they have been already established at the time tsat, and the further evolution is not
going to change their topology.
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To help the reader understand this qualitative description, we show some snapshots of a
KIM evolving under zero-temperature Glauber dynamics, on a finite honeycomb lattice with
PBC, in Fig. A.6.

(a) t = 1 (b) t = 2 (c) t = 4

(d) t = 6 (e) t = 8 (f) t = 10

Figure A.6: Some snapshots of the evolution of a spin configuration under zero-temperature Glauber
dynamics on a honeycomb lattice with linear size L = 80 and PBC. Each site of the
lattice is represented by a triangular cell, as in Fig. A.4. The spins that are frozen at a
given time, (i.e. those that can not be flipped without an energy cost) are represented
with light colours, red for +1 spins and blue for −1 spins. The black cells represent
spins belonging to the two phases that can still be flipped.

From these snapshots we see that, at late times, the sites whose spin can still be flipped
are not very numerous and are far apart in the system. When one of these sites has its spin
flipped the local effective field associated with each one of the remaining “flippable” spins,
which determines their probability of flipping, is not changed. By using this observation we
can attempt to estimate tfreeze, the average time at which the system freezes.

Let us assume that, at a sufficiently long time t, there is a population of Nf (t) spins that
can be flipped and that the act of flipping each one of these spins is independent from the
others, as supported by the statement above. If λ is the probability of flipping a spin per
unit time (or equivalently, τ = 1/λ the average time between two consecutive spin flips), then
Nf (t) decays with a “radioactive” law, Nf (t) = Nf (t0) e−λ(t−t0), with Nf (t0) the number of
flippable spins at a reference time t0 < t. We can fix t0 to be tsat, the time at which
`G reaches saturation and thus the time at which the very few spins that can be flipped
are located at a very large distance between each other, so that they can be considered
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independent. Suppose Nf (t0) = ρN with N = L2 the number of lattice sites and ρ ∈ (0, 1).
The average time at which the system freezes can be associated with the time at which
Nf = 1, implying λ (tfreeze− t0) ' ln (ρN). Then, assuming t0 does not depend on the system
size, for tfreeze � t0 we obtain tfreeze ' (2/λ) lnL+ C, with C some constant.

This approximate law is actually confirmed by the measurements of tfreeze by means of
numerical simulations. In the right panel of Fig. A.5 we show the average freezing time,
tfreeze, for the zero-temperature Glauber dynamics on a finite honeycomb lattice, plotted
against the system linear size L. By fitting the function a lnL + b to the data we find
tfreeze ' 4.95 lnL− 6.47.

A.2.1 Percolation phenomena

In the case of the zero-temperature Glauber dynamics on the honeycomb lattice, as we
have already explained above, the system gets blocked in a spin configuration with a highly
complex domain pattern at a relatively short time. The domain pattern of these so-called
frozen configurations is richer in structure than that of the long-lived stripe states occurring
in the late stages of the same coarsening dynamics on the square lattice. Nevertheless we
can still observe a transition from the initial fully disordered spin configuration to a critical-
percolation-like scaling regime. However, since the time required by the system to freeze
depends logarithmically on the system linear size L, tfreeze(L) ∼ lnL, the typical time tp
needed to reach the critical-percolation-like scaling regime can not be a power law Lzp , as
conjectured in the case of the dynamics on the square lattice. Instead, we expect tp(L) ∼ lnL.

First of all, a clear evidence of the existence of a dynamical scaling regime in which the
spin clusters have the geometrical properties associated with 2d critical percolation is given
by the measurements of the variance of the winding angle relative to the domain walls, the
observable denoted by 〈θ2〉 that we defined in Sec. 1.3.

In Fig. A.7, we show measurements of 〈θ2〉 obtained from numerical simulations in the case
of the zero-temperature Glauber dynamics on a honeycomb lattice with PBC and L = 1280.
In this case 〈θ2〉 was measured on the external hull of the largest spin cluster. As one
can see, 〈θ2〉, as a function of the curvilinear distance x, develops the expected behaviour
〈θ2〉 ' a + b ln x very soon in the course of the dynamics, and contrary to what happens in
the case of the same dynamics on the square lattice, a short length scale region corresponding
to equilibration, that is to say, smooth domain walls, is not present. This is due to the fact
that, most of the times, the system is getting blocked in a spin configuration with domain
walls that retain their fractal nature even at short length scales.

The behaviour of 〈θ2〉 as function of ln x still conforms to that expected from critical
percolation hulls. A fit of the function f(x) = a + 4κ

(8+κ) ln x (also shown in the plot) to the
data at t ' 2.5, in the whole range of x over which 〈θ2〉 was measured, yields κ ' 6.02(1).
Even if a crossover between different length scales is not present, we can still collapse the
data corresponding to different times t by rescaling the curvilinear coordinate x by `d(t), as
it is shown in the inset in the same panel.

In Fig. A.8 we show the time evolution of the wrapping probabilities. Notice that, because
of the way we implemented the honeycomb lattice in the numerical simulations, as explained
above, the probabilities πh and πv are not equal. Precisely, the lattice mesh has aspect
ratio

√
3, thus we need to compare our measurements to the values of the corresponding

wrapping probabilities for 2d critical percolation on a lattice of aspect ratio
√

3. These can
be computed [8, 57, 58] and are given by π(p)

hv ' 0.5120, π
(p)
h ' 0.4221, π

(p)
v ' 0.0408 and
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Figure A.7: KIM evolving with zero-temperature Glauber dynamics on a honeycomb lattice. We
show the average squared winding angle, 〈θ2(x, t)〉, against ln x with x being the curvi-
linear distance along a hull. The data are relative to the dynamics on a honeycomb
lattice with PBC and L = 1280, and 〈θ2〉 was measured on the external hull of the
largest spin cluster (which exists only if the cluster is not wrapping). The straight
dashed line represents a fit of the function f(x) = a+ 4κ/(8 + κ) ln x to the data in the
“linear” region. The fit yields κ = 6.02. The inset contains the same observable plotted
against ln[x/`G(t)] with `G(t) the characteristic length obtained as the inverse of the
excess energy.

π
(p)
diag ' 0.0250 (for us the vertical side will be the longer one). As already done in the case

of the zero-temperature Glauber dynamics on the square lattice, we try to rescale time by a
L-dependent characteristic time tp(L) in order to make the data corresponding to different
values of L collapse in the so-called pre-percolation region. We expect tp ∼ lnL since this
characteristic time scale can not increase faster than the average freezing time tfreeze with
the system size. However, we find that a better collapse of the data is achieved by using the
rescaled time t/ ln [L/`G(t)], with `G(t) the excess-energy growing length.

As one can see from Fig. A.8, the wrapping probabilities approach the corresponding
values for 2d critical percolation around a time t such that t/ ln [L/`G(t)] ∼ 1, and then
remain fixated at these values for the rest of the evolution of the system. An estimate of tp is
then given by the relation tp/ ln [L/`G(tp)] ' 1, which entails tp+ln (`G(tp)) ' lnL. This last
relation is not explicit in tp and, in particular, it does not coincide with the scaling behaviour
tp ∼ lnL. However, as seen previously, the growing length `G(t) reaches almost saturation
very early in the course of the dynamics, thus we can assume that, for times t close to tp,
ln (`G(t)) grows much slower than t. Then we can use the approximation tp ' lnL+C, with
C some constant.

The same characteristic time scale is extracted from the analysis of the time evolution
of the largest spin cluster. We have seen in Sec. 1.5.4 that, when the system enters in
the so-called critical-percolation-like dynamical scaling regime, (that is, for t > tp), the
size of the largest cluster, Ac, satisfies the scaling relation Ac/`d(t)2 ∼ (L/`d(t))DA with
DA = 91/48 the fractal dimension of the incipient percolating cluster in 2d critical percolation.
Analogously, the length of the domain walls that belong to its interface have the scaling
behaviour lc/`d(t) ∼ (L/`d(t))D` with D` = 7/4 the fractal dimension of infinite domain
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Figure A.8: Ising model on a finite honeycomb lattice with PBC, evolving under T = 0 Glauber
dynamics. We show the probabilities πhv (red), πh (green), πv (blue), πdiag (purple), for
different lattice sizes L. The horizontal dashed lines correspond to the expected values at
critical percolation for a rectangular sheet with aspect ratio

√
3: 0.5120, 0.4221, 0.0408

and 0.0250, respectively. Data are plotted against the scaling variable t/ ln [L/`G(t)],
with `G(t) the excess energy growing length, taken as a measure of `d(t).

walls in 2d critical percolation. The presence of such scaling regime is confirmed by our
measurements, as one can see in Fig. A.9. Again, we consider two different contributions to
the measurement of lc: on one hand, the length of the external hull of the largest spin cluster,
which is present only when the cluster is not percolating; on the other hand, the length of
one of the two wrapping hulls, which are present when the cluster is percolating.

The data corresponding to different values of L, the system linear size, can be collapsed
by rescaling time as t/ ln [L/`G(t)]. The onset of the critical percolation scaling regime
(corresponding to the point where the rescaled data become constant) again occurs at a time
t such that t/ ln [L/`G(t)] ∼ 1, approximately.

From the analysis of the wrapping probabilities and the scaling behaviour of the geometric
properties of the largest spin cluster, we can conclude that, in the case of zero-temperature
Glauber dynamics on a finite honeycomb lattice, the typical time scale tp that the system
needs to reach the critical-percolation-like scaling regime satisfies the relation tp+ln (`G(tp)) '
lnL, with L the system linear size. In analogy with what was done in the case of the same
dynamics on the square lattice, we introduce a characteristic length scale `p(t) that, for t < tp,
represents the length scale up to which it is possible to observe critical percolation features
in the geometry and statistics of the spin clusters, with tp satisfying `p(tp) = L. We assume
that `p has the following form

`p(t) ' `G(t) eαt , (A.2)

with α an exponent to be determined. This form of `p implies tp ' 1
α(lnL− ln (`G(tp))).

In order to test the validity of this assumption, we studied the time evolution of the
number density of domain areas. In Fig. A.10 we report the measurements of N (A, t) for
the zero-temperature Glauber dynamics on a finite honeycomb lattice with PBC and size
L = 1280, as function of the domain area A, for several times t. We observe that the
approach to a critical-percolation-like distribution, namely, an algebraic decay of the form
N (A, t) ' C(t)A−τA with τA = 187/91, occurs very early in the coarsening process. In
particular, if we fit the function f(A) = 2cA−τ to the data corresponding to time t ' 10
(which corresponds approximately to the time at which `G(t) has reached almost saturation),
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Figure A.9: Analysis of the geometric properties of the largest spin cluster in the case of the IM
on a finite honeycomb lattice with PBC, evolving under T = 0 Glauber dynamics, for
different values of L. On the left we show Ac/L

DA `G(t)−(2−DA), while on the right
(lc/LD`) `G(t)D`−1 both plotted against the rescaled time t/ ln [L/`G(t)] where `G(t) is
the characteristic length obtained as the inverse of the excess energy. In the right panel,
the continuous lines represent the contribution to lc due to wrapping domain walls, while
the dashed ones the contribution from the external hull (when the largest cluster is not
wrapping). The colour code is the same in both panels.

we obtain c = 0.028(1) and τ = 2.035(5), values that are very close to the expected cd '
0.0289 and τA = 187/91 ' 2.0549 for 2d critical percolation.
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t = 0
0.63
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2c · A−τ

Figure A.10: Time evolution of the number density of domain areas for the zero-temperature Glauber
dynamics on a honeycomb lattice with PBC and linear size L = 1280. We show the
domain area distribution N (A, t) vs. A at various times t given in the key. The
function f(A) = 2cA−τ has been fitted to the data corresponding to time t = 10.08 in
the range [103, 5 × 104] (the curve is represented by a dashed line). The fit yields the
estimates c = 0.028(1) and τ = 2.035(5) that are close to the expected cd ' 0.0289 and
τA = 187/91 ' 2.0549.

In the left panel of Fig. A.11 we show the rescaled number density, AτA `G(t)2(2−τA) N (A, t),
plotted against A/`G(t)2−DA (with τA and DA the Fisher exponent and fractal dimension of
domains, respectively, in 2d critical percolation). As explained in Sec. 1.5.5, the reason why
we rescale the domain area A as A/`G(t)2−DA is that this allows us to collapse the “bump”
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appearing for very large A. From the plot we can see that a region where N (A, t) behaves
as in 2d critical percolation is already established at t ' 4, corresponding to a plateau in the
rescaled number density.

To highlight the existence of the additional length scale `p(t) we perform the same type
of scaling analysis as in Sec. 1.5.5.2 in the case of the zero-temperature Glauber dynamics on
the square lattice. We assume that

N (A, t) ∼ 2ceff
d (t) A−τA Φ

(
A/`d(t)2

[`p(t)/`d(t)]DA

)
, (A.3)

where Φ is the corrective factor that takes into account the fact that, at a given time t, on
scales A such that A

`d(t)2 >
[
`p(t)
`d(t)

]DA the critical-percolation-like behaviour is not observed.
In the right panel of Fig. A.11 we show the result of this scaling: we plot the rescaled num-
ber density AτA `G(t)2(2−τA) N (A, t) against the rescaled area (A/`G(t)2−DA)/`DAp (t), where
again `G(t) is taken as a measure of `d(t) and we used `p(t) = `G(t) eαt. The constant α was
estimated by looking at the value which yields the best collapse of the data after rescaling.
Apart from deviations at small areas and in the region where the contribution from percolat-
ing clusters becomes significant (the steep peaks appearing for t ≥ 2.3), the data for different
t can be collapsed optimally if α ' 2.65. As in the case of the data relative to the dynamics
on the square lattice, in the region corresponding to the pre-percolation regime, that is for
A/[`2−DAG (t)`DAp (t)] ≥ 1 and before finite-size effects take over, the rescaled cluster size distri-
bution can be described by a power law C ·xa in the scaling variable x = A/[`2−DAG (t)`DAp (t)].
The best fit of the function f(x) = C · xa to the rescaled data AτA `G(t)2(2−τA) N at time
t = 1 in the interval [0.1, 10] of x = A/[`2−DAG (t)`DAp (t)] gives a = 0.332(1), a value which is
close to that found in the case of the dynamics on the square lattice.
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Figure A.11: Ising model on a honeycomb lattice with PBC and L = 1280, evolving under T = 0
Glauber dynamics. We show the pre-percolation scaling of the number density of do-
main areas. The quantity AτA `G(t)2(2−τA) N (A, t, L) is plotted against A/`G(t)2−DA

in the left panel and against
(
A/`G(t)2−DA

)
/`DA
p (t) in the right panel, with `G(t) the

characteristic length obtained as the inverse of the excess energy, and `p(t) = `G(t) eα t
with α ' 2.6 yielding the best collapse. The constant 2cd ' 0.0579 is represented by
a horizontal dashed line. In the right panel, the function Φ(x) = C xa has been fitted
to the data at time t = 1 in the region of the scaling variable corresponding to the
pre-percolating regime (approximately, the interval [0.1, 1]), yielding a = 0.332(1), and
it is represented by the dotted line.

Finally, in Fig. A.12, we show the time evolution of the size distribution of the largest
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spin cluster, denoted by Np. In this figure the quantity L2+DANp(A, t, L) is plotted against
the rescaled area A/LDA , for different values of the linear size L and at different times. At
short t, the overall shape of the distribution depends strongly on the size of the lattice and
time, while at sufficiently long t it seems to approach a stationary form that depends only
on A and L through A/LDA . As expected, for t > tp the system is in the so-called critical
percolation dynamical scaling regime, and thus Np should obey the finite-size scaling ansatz
Np(A, t, L) ∼ np

(
A

LDA
, t
)
, where np is a proper scaling function (with the t-dependence left

unspecified), since we know that the average size of the largest cluster, Ac, scales with the
system linear size as Ac ∼ LDA . We also note a very particular scaling behaviour as both t
and L vary, in the pre-percolating regime: the curves for L = 40 and L = 160 at t = 1 are
replaced by the curves for L = 160 and L = 640, respectively, at t = 1.5. The same is true
when passing from t = 1.5 to t = 2: the curves for L = 160, 640 and 2560 replace the ones
for L = 40, 160 and 640, in this order, and so on. From this observation we can deduce that
the typical time scale associated to the approach to percolation, tp, roughly satisfies the rule
tp(4L) = tp(L) + C with C ' 0.5, which implies tp(L) ' (0.5/ ln 4) lnL ' 0.36 lnL. This
result supports our claim that tp(L) ∼ lnL.

176



0

2

4

6

8

0.2 0.6 1

t = 1

0

2

4

6

8

0.2 0.6 1

t = 1.5

0

2

4

6

8

0.2 0.6 1

t = 2

0

2

4

6

8

0.2 0.6 1

t = 2.5

0

2

4

6

8

0.2 0.6 1

t = 3

0

2

4

6

8

0.2 0.6 1

t = 3.5

L
2
+
D

A
N

p

L = 40
160
640
2560

L
2
+
D

A
N

p
L
2
+
D

A
N

p

A/LDA A/LDA

Figure A.12: Time evolution of the size distribution of the largest spin cluster, Np, for the zero-
temperature Glauber dynamics on a honeycomb lattice, for various values of L, the
system linear size, as indicated in the key. The quantity L2+DA Np is plotted against
A/LDA with A the cluster area and DA = 91/48 the fractal dimension of the largest
cluster in 2d critical percolation. Each panel corresponds to a different time t in the
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Appendix B

B.1 Ising model evolving with nonlocal Kawasaki dynamics
We consider here the nonlocal version of the spin-exchange dynamics studied in Chap. 2.

The spin-exchange transition rates are the same as those of Kawasaki rule (Eq. (2.5)), but
without the restriction that the lattice sites involved must be nearest-neighbours, that is

wi,j(s) = min { 1, exp [−β∆Ei,j(s)]} , (B.1)

with

∆Ei,j(s) = J (si − sj)

 ∑
k∈N (i)\{j}

sk −
∑

h∈N (j)\{i}
sh

 (B.2)

where the lattice sites i and j can be chosen anywhere in the lattice. We refer to this
(stochastic) spin update rule as nonlocal Kawasaki spin-exchange dynamics. We checked that
this a priori artificial globally conserved order parameter (GCOP) relaxation dynamics, can
be used to sample correctly the equilibrium distribution of the 2d Ising model asymptotically
in time through Monte Carlo method, and is able to capture the thermodynamic instability
at the critical temperature Tc, in the limit L→ +∞.

For our purposes, the initial spin configuration is always chosen in the following way: half
of the lattice sites, chosen at random, takes spin +1, while the other half takes spin −1. As in
the case of the local version of the dynamics, we observed that an unbalanced concentration
of the two species do not produce the same percolation phenomena, and, in particular, do
not yield a critical percolation domain pattern in the limit of large system size.

The total magnetisation of the system is conserved by the dynamics but, on small scales,
the coarsening process looks very similar to that produced by the single spin-flip dynamics.
This similariy is somehow expected since, on average, the frequency of spin-exchange events
that involve two distant lattice sites is larger than the frequency of spin exchanges between
nearest-neighbour sites. Thus, most of the times, a transition of the spin configuration can
be thought as made by two almost independent spin flips happening simultaneously at two
distant points in the system.

The renormalisation group arguments exposed in [143, 137] suggest that, asymptotically,
the global conservation law should become irrelevant and the dynamics be controlled by the
`d(t) ' t1/2 growth law, as for NCOP dynamics. Studies of the phase ordering kinetics of
coarse-grained field theories with the total magnetisation imposed (on average) through a
time-dependent external magnetic field also suggest `d(t) ' t1/2 at finite temperature [144].
A simple argument exposed by Rutenberg in [145] signals a difference between the dynamics
at T = 0, where he claimed that the locally conserved order parameter (LCOP) results should
be found, `d(t) ' t1/3, and the dynamics at T > 0, where instead `d(t) ' t1/2. Numerical
simulations [146, 147, 143, 148, 149, 144, 145] have only explored relatively short time scales,
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t < 104, and, for this reason, they were not decisive for the determination of the precise value
of the dynamical exponent zd for this type of coarsening dynamics. An experiment using a
2d chiral liquid crystal, whose relaxation dynamics can be shown to belong to the GCOP
universality class, was consistent with `d(t) ' t1/2 [150].

In the following we show that also in the more general case of nonlocal spin-exchange
dynamics the domain growth process reaches a critical-percolation-like dynamical scaling
regime in which several observables, in particular those related to the geometrical features
of the spin clusters, satisfy dynamical scaling relations with scaling functions and scaling
dimensions from 2d critical percolation universality class. Again, the approach to the critical-
percolation-like scaling regime is described by a characteristic length `p(t) which we find to
have the time dependence `p(t) ∼ `d(t)t1/ζ , with the exponent ζ estimated numerically.

(a) t = 0 (b) t = 4107 (c) t = 8202 (d) t = 131450

(e) t = 4.2× 106 (f) t = 1.3× 108 (g) t = 4.3× 109 (h) t = 1.4× 1011

Figure B.1: Snapshots of a spin configuration on a square lattice with PBC and size 128 × 128,
evolving with nonlocal Kawasaki dynamics at target temperature T = Tc/4, starting
from an infinite temperature initial condition. The concentration of the two species of
spins is the same. Spins si = −1 are shown as red points while spins si = +1 are
shown as white points. Percolating clusters of spins si = −1 are shown in green and
percolating clusters of spins si = +1 in blue. The times at which the snapshots are taken
are indicated below each panel.

Before delving into the analysis of the results obtained through the numerical simulations,
let us show an example of spin configuration evolving under nonlocal Kawasaki dynamics. In
Fig. B.1 we present a series of snapshots of the Ising model, on a finite square lattice with
PBC, evolving under nonlocal Kawasaki dynamics at temperature Tc/4. Also in this case
we observe the presence of percolating structures. Apart from the absolute time values, that
are definitely much longer than those explored using local Kawasaki spin-exchange updates
for the same lattice size (see Fig. 2.3), we do not see much of a difference in the overall
morphology of the spin clusters. In particular, when the system is still far from reaching
equilibrium, the domain walls display a fractal structure. As one can see, at a certain point,
there are two large percolating spin clusters, of opposite spin, that are occupying most of the
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system. As the coarsening process goes on, these two large clusters “absorb” all the remaining
non-percolating domains, until the system is left in the situation of panel (h): only two long
percolating domain walls survive, apart from some small ones produced by very rare thermal
fluctuations. At this stage of the dynamics, the system is practically equilibrated (under the
constraint of conserved total magnetisation).

B.1.1 The growing length
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Figure B.2: Left: the excess-energy growing length `G as a function of time t for the nonlocal
Kawasaki dynamics on a square lattice with PBC at temperatures T = Tc/2 (data
on the left), T = Tc/4 (data in the middle) and T = Tc/8 (data on the right). For
each temperature, we show the data for three different values of L, the lattice linear
size. A power law a tb has been fitted to the data corresponding to L = 5120 in the
intermediate region (between the initial transient region and the final saturation one)
and is represented by the straight dashed lines (see the key for the fitted exponents).
Right panel: corresponding effective growth exponents. They increase weakly with the
linear size L of the lattice. The dotted horizontal line corresponds to 1/3.

In the left part of Fig. B.2 we show `G(t) for the nonlocal Kawasaki dynamics on a square
lattice with PBC, with linear sizes L = 320, 1280, 5120. The leftmost curves correspond to
the dynamics at temperature T = Tc/2, the ones in the middle to T = Tc/4, and the ones
on the right to T = Tc/8. Note that `G(t) can be at most L/2 because of the global conser-
vation of the number of spins of each species which makes sure that the spin configuration
corresponding to minimal energy is the one with just two domains separated by a straight
interface. In each case, we observe the presence of an initial transient regime and a final
saturation (which is clearly visible only for the smaller L) and in both regimes the behaviour
of `G(t) cannot be described by a simple power law. Between these two regimes, `G(t) can be
approximated by a power law. Moreover, we notice the presence of a plateau in the transient
regime which becomes longer as T decreases with the effect of delaying the point at which
the power law behaviour sets in.

In the left panel we display a fit of the function f(t) = C t1/z to the data relative to
L = 5120 in the intermediate region, for each temperature. For the dynamics at T = Tc/2
we obtain 1/z ' 0.442, a value which is close to the expected asymptotic result for GCOP
dynamics, 1/zd = 1/2; for the dynamics at T = Tc/4 we obtain 1/z ' 0.367; and, for the one
at T = Tc/8 we find 1/z ' 0.322, close to the value 1/zd = 1/3 expected for the dynamics at
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T = 0, according to Rutenberg [145].
In the right panel in Fig. B.2 we show the effective growth exponent z−1

eff , defined as the
logarithmic derivative of `G(t), for each one of the cases present in the left panel. At Tc/2, the
effective exponent z−1

eff seems to converge towards 1/2 as L increases, as expected. At Tc/8 it
spends approximately three time decades around 1/3. At Tc/4, we observe an intermediate
result. At each temperature, the effective exponent reaches a maximum and then starts to
fall off due to the final saturation of `G(t). Note that, for fixed T , the larger is L the larger
is the maximum value reached by z−1

eff and longer is the period of time that z−1
eff stays at

this value. These observations confirm that the expected value zeff = 2 at finite temperature
is reached for not too low temperature (for example, T = Tc/2), as L → ∞. Instead, for
sufficiently low temperature (e.g. T = Tc/8), the zero-temperature predicted result zeff = 3,
corresponding to COP coarsening universality class, is instead observed in the large L limit.

B.1.2 Critical percolation phenomena

B.1.2.1 Average squared winding angle
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Figure B.3: Average squared winding angle, 〈θ2〉, against ln x with x the curvilinear distance along a
hull, for closed hulls (nonzero total winding angle). The data is for the Ising model on a
square lattice with PBC and L = 1280, evolving under nonlocal Kawasaki dynamics at
temperatures T = Tc/2 (left panel) and T = Tc/4 (right panel). In the insets, the length
x is rescaled by `G(t), the characteristic length obtained as the inverse of the excess
energy. The black dashed lines are fits of the function f(x) = cst. + 4κ/(8 + κ) ln x
to the numerical data in the “linear” region. The fits yield κ ' 5.895 and κ ' 5.888 for
the quench to Tc/2 and that to Tc/4, respectively. The times shown are the same in the
main plots and the insets and are indicated in the keys.

A signature of the presence of the critical-percolation-like scaling regime in the coarsening
process can be seen in the time evolution of the variance of the winding angle relative to the
domain walls, the observable that we denoted by 〈θ2〉. As explained in Sec. 1.3, this observable
allows us to easily determine the type of criticality, or SLE family, that the domain walls
generated by the particular microscopic dynamics belong to. We remind the reader that, for
conformally invariant planar curves generated by SLE, 〈θ2〉, as a function of the curvilinear
distance x along a domain wall, takes the form 〈θ2(x)〉 ' const. + 4κ/(8 + κ) ln x, with the
parameter κ indicating the universality class that the critical model belongs to. For the
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domain walls in 2d critical percolation, κ = 6.
In Fig. B.3 we show 〈θ2(x, t)〉 as a function of the logarithm of the curvilinear distance

x, measured for closed hulls (i.e., hulls that have nonzero total winding angle) for a KIM
evolving with nonlocal Kawasaki dynamics at a finite working temperature, on a square lattice
with PBC. A very similar behavior is obtained for the measurements of 〈θ2〉 on the wrapping
hulls (i.e., hulls that have zero total winding angle), so we do not show these results. The left
panel displays data for the dynamics at working temperature Tc/2, while the right panel for
Tc/4. A fit of the function f(x) = const.+ 4κ/(8 +κ) ln x to the data in the region where the
dependence of 〈θ2〉 on ln x is linear, gives us an estimate of the SLE parameter: κ ' 5.895 for
the dynamics at T = Tc/2 and κ ' 5.888 for the dynamics at T = Tc/4, results that are close
to the expected value κ = 6 for critical percolation hulls. A similar analysis for the nonlocal
Kawasaki dynamics on the honeycomb and triangular lattices at Tc/2 is shown in Fig. B.4.

As in the case of the local Kawasaki dynamics, we observe that the fractal properties
ascribed to critical percolation can be observed only on length scales x > `d(t), with `d(t) the
usual dynamical length. On smaller length scales, spin clusters display instead the properties
of equilibrium at the target temperature, that is to say, their walls appear smooth. To
highlight this behaviour, we also included in each figure an inset where we present the same
data but plotted against ln (x/`G(t)), with `G(t) being the excess-energy growing length taken
as a measured of `d(t). As one can see, a crossover between the critical-percolation-like region
and the “equilibrium” region occurs for x/`G(t) ∼ 1.
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Figure B.4: Ising model evolving under nonlocal Kawasaki dynamics at target temperature Tc/2, on
a honeycomb lattice (left panel) and on a triangular lattice (right panel), in both cases
with PBC and L = 640. We show the average squared winding angle, 〈θ2〉, against
ln x with x the curvilinear distance along a cluster hull, for wrapping hulls (zero total
winding angle). As in Fig. B.3, the black dashed lines represent a fit of the function
f(x) = cst. + 4κ/(8 + κ) ln x to the data in the “linear” region, yielding κ ' 6.036
(honeycomb lattice) and κ ' 5.978 (triangular lattice). In the insets we report 〈θ2〉
against ln (x/`G(t)), with `G(t) the excess-energy growing length. The times shown are
the same in the main plots and the corresponding insets.

B.1.2.2 Wrapping probabilities

In Fig. B.5 we display the wrapping probabilities for the nonlocal Kawasaki dynamics on a
square lattice (in the left panel) and on a honeycomb lattice (in the right panel), for different
values of L, and at temperature Tc/4 in both cases. Notice that for the honeycomb lattice
the probabilities πh and πv are shown separately, since our construction of this lattice does
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not have unit aspect ratio, as explained before. As for the local version of the dynamics, the
πs are plotted against the rescaled time t/(L/`d(t))ζ , with `d(t) taken to be the excess-energy
growing length `G(t), and the exponent ζ determined numerically by data collapse. This is
achieved with ζ ' 1.15 for the dynamics on both the square and honeycomb lattices.
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Figure B.5: Ising model evolving under nonlocal Kawasaki dynamics at target temperature T = Tc/4.
In the left panel we show the probability of having a cluster wrapping in both directions
(red curves), πhv, either horizontally or vertically (green curves), (πh+πv), and diagonally
(blue curves), πdiag, in the case of the dynamics on a square lattice with PBC, for different
values of L. The data are plotted against the rescaled time t/(L/`d(t))ζ , where `d(t)
is taken to be the inverse of the excess energy, `G(t), and the value of the exponent ζ
is chosen to obtain the best data collapse, ζ ' 1.15. The horizontal dashed lines are
the wrapping probabilities in critical percolation on a torus with unit aspect ratio. In
the right panel, the same wrapping probabilities but for the model defined on a finite
honeycomb lattice with PBC, with aspect ratio

√
3. We show πhv in red, πh in green,

πv in blue and πdiag in purple. The best data collapse is achieved with ζ ' 1.15 also in
this case. The dashed horizontal lines are the exact values of πhv, πh, πv and πdiag at
critical percolation on a lattice with aspect ratio

√
3.

As the system size increases, the data approach asymptotic values that are very close to
those of 2d critical percolation on the corresponding lattice, shown with dashed horizontal
lines. Note that very large system sizes are needed to see the approach to these values
(the curves for L = 1280 are still a bit away from them). Another feature is that, at
sufficiently long times, πhv tends to decrease while πh + πv increases. This behaviour is
expected since the system evolves under the constraint of conserved total magnetisation,
hence configurations consisting of two large spin clusters of opposite phase both percolating
along the same direction of the lattice become more and more likely (this should be true
independently of the lattice geometry), while spin configurations that are characterised by
the presence of just one spin cluster percolating along both directions in the so-called “cross”
topology become less and less likely. On the other hand, we do not observe, in the time
window explored by our simulations, the disappearance of the “diagonally” percolating spin
clusters, as it happens instead in the case of the single spin-flip dynamics.

By using the criterium tp/(L/`d(tp))ζ ' 104 for the nonlocal Kawasaki dynamics at T =
Tc/4 on the square lattice, and tp/(L/`d(tp))ζ ' 103 for the same dynamics on the honeycomb
lattice (that corresponds, approximately, to the value of the scaling variable t/(L/`d(t))ζ at
which the wrapping probabilities get close to the critical percolation ones) we are able to find
estimates of tp, namely tp ' 4.91 ·105, 2.11 ·106, 8.46 ·106 for L = 80, 320, 1280, respectively,
for the case of the square lattice, and tp ' 3.32 · 104, 6.36 · 104, 1.20 · 105, 2.23 · 105 for
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L = 80, 160, 320, 640, respectively, for the case of the honeycomb lattice.

B.1.2.3 Largest cluster scaling
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Figure B.6: Ising model on a finite square lattice with PBC, evolving with nonlocal Kawasaki
dynamics at target temperature Tc/2. In the left panel we show the quantity(
Ac/L

DA
)
`d(t)−(2−DA), with Ac the largest cluster size, while in the right panel the

quantity
(
lc/L

D`
)
`d(t)−(1−D`), with lc the length of the largest cluster interface, for dif-

ferent values of L. We took `d(t) = `G(t), with `G(t) the excess-energy growing length.
Regarding lc, we have separated the contribution of the wrapping hulls shown with con-
tinuous lines, from that of the enclosing (non-wrapping) hull shown with dashed lines.
All the quantities are plotted against the rescaled time t/(L/`d(t))ζ with ζ ' 1.16 giving
the best collapse for both Ac and lc.

We now discuss the scaling properties of the size of the largest spin cluster, Ac, and the
length of its interface, lc. The data shown correspond to nonlocal Kawasaki dynamics at
temperature Tc/2 on a square lattice (Fig. B.6) and on a honeycomb lattice (Fig. B.7). We
present the two main contributions to the average length of the largest cluster interface, lc,
the one coming from wrapping hulls (that exist only if the cluster is wrapping) and the one
coming from the enclosing hull (which exists only if the cluster is not wrapping), as two
separate quantities.

We rescale Ac as (Ac(t, L)/LDA) `d(t)−(2−DA), while lc as (lc(t, L)/LD`) `d(t)−(1−D`), with
`d(t) taken to be the excess-energy growing length `G(t) and DA = 91/48 and D` = 7/4 the
fractal dimensions of the largest cluster and the percolating hulls in 2d critical percolation,
respectively. Both quantities are plotted against the rescaled time t/ (L/`d(t))ζ . Again,
the value of the exponent ζ is determined by looking for the best collapse of the datasets
corresponding to different L. For the dynamics on the square lattice we find ζ ' 1.16, while
on the honeycomb lattice ζ ' 1.17, both values being compatible, within numerical accuracy,
with the ones obtained studying the scaling of the wrapping probabilities.

B.1.2.4 Number density of domain areas

We now focus on the analysis of the number density of domain areas.
First of all, we expect that for t > tp, that is to say, when the system is in the so-called

critical-percolation-like dynamical scaling regime, N (A, t) satisfies the dynamical scaling re-
lation given by Eq. (1.25) This behaviour is confirmed by our measurements of N (A, t) from
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Figure B.7: Ising model on a finite honeycomb lattice with PBC, evolving under nonlocal Kawasaki
dynamics at target temperature Tc/2. In the left panel we show the quantity(
Ac/L

DA
)
`d(t)−(2−DA), with Ac the largest cluster size, while in the right panel(

lc/L
D`
)
`d(t)−(1−D`), with lc the length of the largest cluster interface, separating

the contribution due to wrapping hulls from that due to the external hull (when the
cluster is not wrapping). The former is indicated with continuous lines, while the latter
with dashed lines. We took `d(t) = `G(t), with `G(t) the characteristic length from the
inverse of the excess-energy. All the quantities are plotted against t/(L/`d(t))ζ , where
ζ ' 1.17 gives the best collapse for all cases.

numerical simulations, as one can see from Fig. B.8. In this figure we show the rescaled
number density, N (A, t) `d(t)4 against the rescaled domain area A/`d(t)2, for the nonlocal
Kawasaki dynamics on a triangular lattice with PBC and L = 640, at working temper-
ature T = Tc/2. Here the estimate of the characteristic length `d(t) is given, as usual,
by `G(t), the excess-energy growing length. In the plot we also included the two curves
f(x) = 2 cd (1 + x)−τA and g(x) = 2 cd x1/2

(
1 + x3/2

)−(2 τA+1)/3
, with τA = 187/91 and

cd ' 0.0289, corresponding to the scaling functions for the number density of domain areas
in the case of NCOP dynamics and LCOP dynamics, respectively (see Eq. (1.26)). Notice
that these functions differ significantly only at small values of the scaling variable x, yielding
f(x) ∼ 2cd and g(x) ∼ 2cd x1/2, respectively. Both represent very well the rescaled data
for sufficiently large values of A/`d(t)2, in particular, for A/`d(t)2 >∼ 1. However, one clearly
sees that, in the small-area region, the NCOP scaling function is the one that matches the
data better. A similar result was found in the experiments in [150]. These observations con-
firm the fact that, for sufficiently high temperature (but way below Tc), the domain growth
process caused by nonlocal spin-exchange dynamics falls in the universality class of NCOP
coarsening.

From the time evolution of the number density of domain areas we can also extract
informations about the characteristic length `p(t), that is associated to the so-called pre-
percolation regime. We remind the reader that `p(t) is defined as the length up to which one
can observe critical percolation properties in the domain pattern, at time t, and we conjecture
that `p(t) ∼ `d(t)t1/ζ , with the exponent ζ to be determined. In the case in which the initial
state of the system is not already at the percolation critical point, the scaling form of N
must be corrected with a term that takes into account areas A such that A

`d(t)2 >
[
`p(t)
`d(t)

]DA ,
as discussed in Sec. 1.5.5.2.

The presence of this pre-percolation regime is observed in our measurements of N for the
nonlocal Kawasaki dynamics on the square and honeycomb lattices. In Fig. B.9 we display
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Figure B.8: Scaling of the time-dependent number density of spin cluster areas for the Ising model
on a triangular lattice with PBC and L = 640, evolving with nonlocal Kawasaki dy-
namics at temperature Tc/2, starting from a fully disordered configuration with equal
concentration of up and down spins. Here `G(t), the excess-energy growing length, is
taken as the estimate of the dynamical length `d(t). The curves f(x) = 2 cd (1 + x)−τA

and g(x) = 2 cd x1/2 (1 + x3/2)−(2 τA+1)/3 are represented by dashed lines. The NCOP
scaling function f(x) matches accurately the data for t = 2.10 · 106 in the small-area
region, A/`d(t)2 < 1.

the number density of domain areas, N (A, t, L), rescaled as AτA `d(t)2(2−τA) N (A, t), plotted
against A in the left panel, and against the rescaled area (A/`d(t)2−DA) /`p(t)DA in the right
panel, for the nonlocal Kawasaki dynamics on a square lattice with L = 1280, at T = Tc/2.
Here again `G(t), the excess-energy growing length, is taken as the estimate of the dynamical
length `d(t), and `p(t) = `d(t)t1/ζ . We see that the onset of the critical-percolation-like
scaling regime occurs for t ' 5 · 104, that corresponds approximately to the time at which
the rescaled number density develops a plateau corresponding to the constant 2cd ≈ 0.0580
for sufficiently large areas.

For shorter times, the data can be collapsed in the region corresponding to large domain
areas that have not aquired yet the critical percolation statistical behaviour, by rescaling A
as (A/`d(t)2−DA) /`p(t)DA with `p(t) = `d(t)t1/ζ and ζ ' 1.20, as seen in the right panel of
Fig. B.9. The value of exponent ζ was fixed by looking for the value that produces the best
collapse. Although this value is not coincident with the one obtained through the scaling of
the other observables, it is not very far from it, taking into account that the method that we
used is very rough. Moreover, in the pre-percolation scaling regime the rescaled distribution
can be fitted to Φ(x) = C xa with a ≈ 0.333 (indicated by a black dashed line in the right
panel of Fig. B.9), a value that is very close to the one found for the other types of spin
dynamics already studied.

A similar behaviour is observed on the honeycomb lattice. In Fig. B.10 we show the
rescaled number density, AτA `d(t)2(2−τA) N (A, t), for the nonlocal Kawasaki dynamics on a
honeycomb lattice with linear size L = 640, at T = Tc/2. As in Fig. B.9, in the left panel the
rescaled distribution is plotted against A, while in the right one, against the rescaled area
(A/`d(t)2−DA) /`p(t)DA . Here again `p(t) = `d(t) t1/ζ . The best collapse of the data in the
pre-percolation region is achieved by using ζ ' 1.18. The function Φ(x) = C xa was also
fitted to the data at t = 1024 in an interval inside the pre-percolating scaling region yielding
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Figure B.9: Ising model on a square lattice with PBC and L = 1280, evolving under nonlocal
Kawasaki dynamics at target temperature Tc/2, starting from a fully disordered con-
figuration with equal concentration of up and down spins. In the left panel we plot the
quantity N (A, t, L)AτA `d(t)2(2−τA) against A, where the estimate of `d(t) is given by
`G(t). The constant 2cd ≈ 0.0580 is indicated by the black horizontal line. In the right
panel, the same quantity is plotted against the rescaled area

(
A/`d(t)2−DA

)
/`p(t)DA ,

with `p(t) = `d(t) t1/ζ and ζ ' 1.20 giving the best collapse. The function Φ(x) = C xa

has been fitted to the rescaled data at t = 100 in the interval [0.01, 1] yielding a ' 0.333,
see the dashed straight line in the right panel.

a ' 0.332.

B.1.3 Summary

We conclude by stating that the results obtained for the nonlocal version of the spin-
exchange dynamics do not change significantly the global picture that we are building. As in
the case of the local Kawasaki dynamics, we observe that a critical-percolation-like dynamical
scaling regime sets in at a certain time tp. When the system is in this regime the statistical
and geometrical properties of the spin clusters are the same as in 2d critical percolation
(after a proper rescaling of all lengths by `d(t)) over length scales R > `d(t), with `d(t) the
dynamical length describing the growth of domains equilibrated at the target temperature of
the relaxation dynamics. The main evidence for the existence of this regime is given by the
variance of the winding angle measured on the domain walls, which let us identify with great
precision the type of criticality (or universality class) that generates the fractal properties of
the same domain walls. We observe that the critical behaviour of the domain walls, again
over length scales R > `d(t), is exactly the one of 2d percolation.

The transient between the initial completely disordered state and this critical-percolation-
like scaling regime is governed by a characteristic length scale `p(t), which grows faster than
`d(t), as already observed for NCOP and LCOP dynamics. The scaling analysis of the
wrapping probabilities, of the geometrical properties of the largest spin cluster and of the
number density of domain areas, indicates that

`p(t) ∼ `d(t) t1/ζ , with ζ ∈ [1.15, 1.20] (B.3)

in the case of the dynamics on the square and honeycomb lattices.
The fact that the exponent ζ takes approximately the same value for these two cases

suggests that the nonlocality of the spin update rule is such that the characteristic length
`p(t) is not affected much (apart from the factor `d(t) in the early time regime) by the
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Figure B.10: Ising model on a square lattice with PBC and L = 1280, evolving under nonlocal
Kawasaki dynamics at target temperature Tc/2, starting from a fully disordered con-
figuration with equal concentration of up and down spins. In the left panel we show
N (A, t, L)AτA `d(t)2(2−τA) against A, where the estimate of `d(t) is given by `G(t). The
constant 2cd ≈ 0.058 is indicated by the black horizontal line. In the right panel, the
same quantity against the rescaled area

(
A/`d(t)2−DA

)
/`p(t)DA , with `p(t) = `d(t) t1/ζ

and ζ ' 1.18 giving the best collapse. The function Φ(x) = C xa has been fitted to the
data at t = 1024 in the interval [10−3, 10−2] yielding a ' 0.332, see the dashed straight
line in the right panel.

particular geometry of the lattice, in contrast to what happens for the local version of the
dynamics and the NCOP dynamics, where different values of ζ are found.
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Appendix C

C.1 Generalized 2d KIM
In the following we define a class of 2d kinetic Ising models evolving with single spin-flip

stochastic dynamics whose transition rates are dependent on two temperature-like param-
eters. We show how the Glauber dynamics and the voter model can be recovered as two
particular instances in this general class.

First, we consider a stochastic Ising spin system defined on a square lattice, represented
by Z2, with single spin-flip transitions. We assume that the spin-flip rate for site i, given
that the system is in the configuration s = {sk}k∈Z2 , denoted by wi(s), depends on s only
through the quantity hi(s) = si

∑
j∈N (i) sj , where again N (i) is the set of nearest-neighbours

to site i. We also assume that wi(s) has the following form [69, 74]

wi(s) = 1
2 [1 + f(hi(s))] (C.1)

with the function f satisfying f(−h) = −f(h) and |f(h)| ≤ 1. With this choice, the spin-flip
rate wi(s) respects the up-down spin symmetry and is a local and spatially symmetric function
of the spin configuration s. The quantity hi(s) = si

∑
j∈N (i) sj can only take integer values in

a discrete set, namely hi ∈ {0,±2,±4} (since the Ising spin system is defined on the square
lattice). Thus, in order to define completely the stochastic process which is determined by
the spin-flip rates wi(s) in Eq. (C.1), it is sufficient to know the value of the function f on this
discrete set. Notice that, because of the properties imposed on f , f(0) = 1

2 , f(−2) = −f(2)
and f(−4) = −f(4), so that we only require the knowledge of the two parameters

p1 = 1
2(1 + f(2)), p2 = 1

2(1 + f(4)) . (C.2)

We can rewrite these two parameters in the following form

p1 = 1
2 [1− tanh (2β1)] , p2 = 1

2 [1− tanh (4β2)] , (C.3)

and introduce the two effective temperatures T1 = β−1
1 and T2 = β−1

2 , thus establishing a
formal connection with the spin-flip rates that define the Glauber dynamics.

T1 and T2 can be interpreted as the two temperatures associated to interfacial noise and
bulk noise, respectively. A very simple way of understanding this association is given in the
following. Consider, for example, an initial spin configuration where the system is divided in
half by a flat interface: all the lattice sites that are located on one side of the interface have
spin +1, while all the sites on the other side have spin −1. All the sites that are in the bulk
of the half-planes have local field h = 4, while those ones that are located along the interface
have local field h = 2. Then, if T1 = T2 = 0 (meaning β1, β2 → +∞), i.e. p1 = p2 = 0, the
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spin configuration is frozen in time, since no spin flip is allowed, neither in the bulk of two
half-planes, nor on the interface. However, if T2 = 0 (that is p2 = 0) but T1 > 0, then sites
on the interface can flip their spin, while those in the bulk can not. On the other hand, if
T1 = 0 (that is p1 = 0) but T2 > 0, sites that are in the bulk can flip their spin, while those
ones on the interface can not (even though they may become “flippable” in the subsequent
steps of the process when the bulk fluctuations reach the flat interface). Notice that for a
site with local field h = 0, that is to say, a site surrounded by equal numbers of spins up and
spins down, the spin-flip probability (per unit time) is always p0 = 1/2. This means that a
spin configuration consisting of just two infinite domains separated by a curved interface is
always going to evolve, even if T1 = T2 = 0.

In order to better analyse this class of models it is useful to introduce the coordinate
system

t1 = tanh (2β1), t2 = tanh (2β2) , (C.4)

with 0 ≤ t1, t2 ≤ 1, in terms of which the parameters p1 and p2 can be expressed as

p1 = 1
2(1− t1), p2 = 1

2

(
1− 2t2

1 + t22

)
(C.5)

with 0 ≤ p1, p2 ≤ 1/2. Notice that we have implicitly assumed that β1, β2 ≥ 0.
Each point in the parameter plane (p1, p2), or alternatively in the “temperature” plane

(t1, t2), corresponds to a particular model. As an example, the ferromagnetic IM on a
square lattice, evolving with Glauber dynamics, is obtained by setting β1 = β2 = β, i.e. it
corresponds to the choice p1 = (1 + tanh (2β))/2 and p2 = (1 + tanh (4β))/2 or t1 = t2 =
tanh (2β), with β the usual inverse temperature associated to Gibbs-Boltzmann equilibrium.
In the (p1, p2) plane this model corresponds to the line defined by p2 = p2

1
1−2p1+2p2

1
when β

varies. In particular, the zero-temperature Glauber dynamics corresponds to p1 = p2 = 0
(t1 = t2 = 1), while the dynamics at the critical Ising point is obtained for β = βc =
ln (1 +

√
2)/2, or alternatively t1 = t2 = 1/

√
2 (corresponding to p1 = (2 −

√
2)/4 ≈ 0.1464

and p2 = (3− 2
√

2)/6) ≈ 0.0286).
The spin-flip rate that defines the voter model is given by wi(s) = 1

2 [1− hi(s)/4], for
given site i and spin configuration s, that is to say, f(h) = −h/4. This choice corresponds
to p1 = 1/4 and p2 = 0, or alternatively to t1 = 1/2 and t2 = 1. It is then clear that, for
this model, the bulk noise is zero while the interfacial one is not, i.e. T1 > 0 and T2 = 0. A
slight generalization of the voter model dynamics is given by the so-called noisy voter model.
In this model, every time that a spin needs to be updated, it is aligned with a probability
γ with one of its nearest-neighbours, chosen at random. The spin-flip probability (per unit
time step) for such a process is given by

wi(s) = 1
2

[
1− γ hi(s)4

]
(C.6)

for given lattice site i ans spin configuration s. Hence f(h) = −γh/4 with γ ∈ [0, 1]. In terms
of the parameters p1, p2 the noisy voter model corresponds to the line p2 = 2p1 − 1

2 with p1
varying in the interval [1/4, 1/2], or the line t1 = t2

1+t22
in the (t1, t2) plane, with t2 ∈ [0, 1].

Finally, let us introduce an other interesting family of models belonging to this class of
generalized KIM on the square lattice, the so-called majority voter models [151]. The spin-
flip rule for a majority voter model consists in the following: at each time step, a lattice
site is chosen at random and its spin is aligned with the local field produced by the nearest-
neighbour sites (i.e. with the spin of the majority of neighbours) with a given probability.
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The spin-flip rate for site i, given that the system is in the spin configuration s, is given by

wi(s) = 1
2 [1− γ sign(hi(s))] , (0 ≤ γ ≤ 1) . (C.7)

meaning that f(h) = −γ sign(h) (for hi = 0 we assume wi = 1/2, so the function sign(h)
is supported with the value at h = 0 as sign(0) = 0). If the majority of the sites that are
neighbours to site i have antiparallel spin to that of i, then si flips with probability (per unit
time) wi = (1 + γ)/2; on the other hand, if the majority of the neighbouring sites “agree”
with site i, si can flip with probability (per unit time) wi = (1−γ)/2. The noise-free majority
voter model is obtained for γ = 1 and coincides with the T = 0 Glauber dynamics. In terms
of the parameters p1 and p2, the majority voter model corresponds to p1 = p2 = (1 − γ)/2.
Alternatively, it corresponds to the line defined by t1 = 2t2

1+t22
in the (t1, t2) plane, when

t1 = γ varies from 0 to 1.
In Fig. C.1 we present a depiction of the generalized KIM on the square lattice on the

plane (t1, t2), with lines corresponding to the Ising model evolving with Glauber dynamics,
the noisy (linear) voter model and the majority voter model. We also highlight some special
points in the diagram: the noise-free (linear) voter model, the T = 0 Glauber dynamics and
the critical Glauber dynamics. The line t2 = 1 (that is β2 → ∞, or p2 = 0) corresponds to
models without bulk noise. On the other hand, the line t1 = 1 (that is β1 → ∞, or p1 = 0)
corresponds to models without interfacial noise. Notice that, in both these cases, curved
domain walls can still evolve since the spin-flip rate for h = 0 is always 1/2. Amongst all
these models, the family of KIMs evolving with Glauber dynamics is the only one whose
spin-flip rates satisfy the detailed balance condition with the Gibbs-Boltzmann equilibrium
distribution. In fact, if we impose the detailed balance condition (see Eq. (2.2)) based on the
equilibrium distribution of the IM, Peq(s) ∝ exp [−βH(s)] with H(s) = −1

2
∑
i si
∑
j∈N (i) sj

(setting the coupling J = 1), we get the following equation for the function f(h),

1 + f(h) = (1− f(h))e−2βh (C.8)

which solves to f(h) = − tanh (βh).
It is also observed, based on numerical simulations and mean-field approximations [74],

that the diagram presented in Fig. C.1 is divided in two regions: a “high-temperature” region
where spin clusters grow up to a maximum length scale (corresponding to the equilibrium
correlation length), and a “low-temperature” region where, instead, spin clusters grow indef-
initely (i.e. the system display coarsening phenomena). These two phases, that we denote as
paramagnetic phase and ferromagnetic phase as for a usual magnetic system in equilibrium,
are separated by a critical line. The exact location of this line is not known, but it is known
that it passes by the critical Glauber dynamics point (t1 = 1/

√
2 , t2 = 1/

√
2) and the noise-

free (linear) voter model point (t1 = 1/2 , t2 = 1). The qualitative behaviour of this critical
line is traced in Fig. C.1.

C.2 Some analytic results for the voter model

In the present Section, we show some known analytical results in regards to the voter
model. We consider the (linear and noise-free) voter model on the d-dimensional hypercubic
lattice, that is to say, Zd. We assign to each site x ∈ Zd a spin variable sx = ±1 and, as
usual, the spin configuration of the system is indicated by s = {sx}x∈Zd . The spin-flip rate
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Figure C.1: The phase diagram of the generalized KIM on the square lattice, in terms of the param-
eters t1, t2, with 0 ≤ t1, t2 ≤ 1. Dashed lines correspond to the (linear) voter model (V),
Ising model evolving with Glauber dynamics (I) and majority voter model (M). Three
special points are highlighted: the noise-free (linear) voter model (l), the Ising model
evolving with zero-temperature Glauber dynamics (n), and the Ising model evolving
with Glauber dynamics at the critical temperature (u). The continous blue line repre-
sents approximately the critical line separating the high-temperature phase (PM) from
the low-temperature one (FM).

for the site x, given that the system is in configuration s, is

wx(s) = 1
2

1− 1
2d sx

∑
y∈N (x)

sy

 , (C.9)

where N (x) is the set of nearest-neighbours to site x, d the number of dimensions.
We have already stated that this spin model has no bulk noise, i.e., if a site ‘agrees’ with

all its nearest-neighbours, its spin-flip rate vanishes. The consequence is that the ‘consensus’
states, i.e., the states in which all sites have the same opinion-spin, are absorbing states.
However, this does not mean that, for the infinite system, the asymptotic steady state must
be one of full consensus. In fact, it turns out that the coarsening process is not always effective
in bringing the system towards a single-domain state, and whether it does or not depends
on the dimensionality of the lattice. For d ≤ 2 the system coarsens until ultimately reaching
a single domain state, while for d > 2 there is an infinite family of non-completely-ordered
steady states [71, 152]. The discrepancy in the asymptotic regime reached above and below
d = 2 will be further discussed in this section.

The time-dependent probability distribution of the stochastic process in the spin config-
uration space {−1,+1}Zd satisfies the master equation

d
dtP (s, t) =

∑
x

(
wx(sx)P (sx, t)− wx(s)P (s, t)

)
, (C.10)

where P (s, t) denotes the probability for the system to be in the spin configuration s at the
time t and sx denotes the spin configuration obtained from s by flipping the spin at site x.
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Since the spin-flip rates wx(s) have a linear dependence on s, the differential equations for
the general n-point correlation function are closed, that is to say, correlation functions of
different orders are completely independent. This fact allows, in principle, for the solution in
closed form of any n-point correlation function. As an example, the single-point correlation
function (or average site magnetisation) satisfies [64, 153]

d
dt〈sx〉t = −2〈sxwx(s)〉t = 1

2d∆x〈sx〉t , (C.11)

where ∆x denotes the discrete Laplace operator, defined by

∆xfx ≡ −2d fx +
d∑
i=1

(
fx+ei + fx−ei

)
, (C.12)

for a generic function f of Zd and with {ei}i=1,...,d the canonical orthonormal basis of Zd.
The brackets 〈·〉t denote the average over the probability distribution at time t. For a given
observable O(s), 〈O〉t =

∑
s∈{−1,+1}Z2 O(s)P (s, t).

By summing both sides of Eq. (C.11) over all lattice sites, one finds that d
dt
∑
x〈sx〉t = 0,

that is to say, the average total magnetisation of the system, 〈
∑
x sx〉t, is a constant. Notice

however that, while the total magnetisation averaged over all possible trajectories of the
dynamics is a conserved quantity (if one fixes the total magnetisation at t = 0),

∑
x sx is

not a conserved quantity for a single realization of the VM dynamics. In this sense, the
VM belongs to the family of NCOP coarsening systems. We can also define a magnetisation
density, m(t), as

m(t) = lim
L→+∞

L−d
〈 ∑
x∈ΛL

sx

〉
t

(C.13)

where we denote by ΛL the finite box of linear size L centered at the origin of the lattice. Then
m(t) is a constant and equal to the initial magnetisation density of the system,m0 = m(t = 0).
Suppose now that the initial spin configuration is chosen by fixing the fraction ρ of sites with
spin +1, i.e., for each x, sx = +1 at t = 0 with probability ρ (independently from the value
of the spin on all other sites), so that the initial magnetisation density is m0 = 2ρ− 1. Then
let p+(ρ) be the probability for the system to reach the absorbing state with all spins +1,
given that the dynamics gets blocked in one of the two absorbing states. Since m(t) = m0
for all t ≥ 0, one has 2ρ− 1 = 2p+(ρ)− 1, hence p+(ρ) = ρ.

Concerning again Eq. (C.11), by using the discrete Fourier transform of 〈sx〉, one can
prove that the general solution has the following form [64, 153]

〈sx〉t = e−t
∑
y∈Zd

σy Jx−y
(
t

d

)
(C.14)

where we denote by σx = 〈sx〉t=0 the average magnetisation of site x in the initial configu-
ration and Jx is a shorthand notation for the multi-index modified Bessel functions, namely

Jx(u) =
d∏
i=1
Ixi(u) (C.15)

for given x = (x1, x2, . . . , xd) ∈ Zd, with Iα the modified Bessel function of the first kind, of
order α [154]. If the initial configuration is such that a single +1 “voter” sits at the origin
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and is surrounded by a “sea” of undecided voters, i.e. sx(t = 0) = ±1 with probability 1/2
for all x 6= 0 and s0(t = 0) = 1 (meaning σx = δx,0), then the solution to Eq. (C.14) reduces
to

mx(t) ≡ 〈sx〉t = e−tJx(t/d) . (C.16)

By using now the asymptotic relation Iα(z) ∼ ez/
√

2πz as z → +∞, valid for any real α, one
finds that the asymptotic behaviour of the average site magnetisation is mx(t) ∼ [2πt/d]−d/2
for all x. Thus, as expected, a single voter relaxes to the average undecided opinion of the
rest of the population.

The last result is exact, but does not provide meaningful information on how the steady
state of the system is reached. In this sense, a more interesting quantity is the two-point cor-
relation function, 〈sxsy〉t. The two-point correlation function satisfies the following equation
[64, 153]

d
dt〈sxsy〉t = −2

〈
sxsy

(
wx(s) + wy(s)

)〉
t

= 1
2d
(
∆x + ∆y

)
〈sxsy〉t . (C.17)

In order to solve this equation [64] one makes the assumption that the initial configuration of
the system is translationally invariant (on average over the initial ensemble), and thus that it is
translationally invariant also at each time t > 0, so that 〈sxsy〉t depends on the lattice vectors
x and y only through their difference n = x − y. Then, by denoting Gn(t) = 〈sxsx+n〉t,
Eq. (C.17) simplifies to

d
dtGn(t) = 1

d
∆nGn(t) (C.18)

which should be solved with the boundary condition G0(t) = 〈s2
x〉t = 1, for any t. In

addition, it is natural to choose the initial condition Gn(0) = δn,0, that corresponds to
a completely uncorrelated initial state. Since Eq (C.18) is basically identical to Eq. (C.11)
apart from numerical factors, one would be tempted to consider a solution of the form G̃n(t) =
e−2tJn (2t/d). However, with this solution, G̃0(t) does not satisfy the boundary condition.
In order to maintain G0(t) = 1 throughout the evolution, one can reformulate the problem
posed by Eq. (C.18) as the equivalent lattice diffusion problem with a constant localised
source at the origin, and look for a solution of the form

Gn(t) = e−2t Jn
(2t
d

)
+
∫ t

0
dt′ Sd(t− t′) e−2t′ Jn

(2t′

d

)
(C.19)

with Sd(t) the “strength” of the source. From a physical point of view, this solution cor-
responds to placing a particle source G0 = 1 at t = 0 in the origin and supplement it
by an amount Sd(t)dt during the time interval (t, t+ dt) in order to keep the overall value
unchanged. Equation (C.19) evaluated at the origin (n = 0) becomes

1 =
[
e−

2t
d I0

(2t
d

)]d
+
∫ t

0
dt′ Sd(t− t′)

[
e−

2t′
d I0

(2t′

d

)]d
. (C.20)

If we denote by Ŝd(λ) the Laplace transform of the function Sd(t), Ŝd(λ) =
∫+∞

0 dt Sd(t)e−λt,
and by T̂d(λ) the Laplace transform of the function Td(t) =

[
I0(t)e−t

]d, one obtains from
Eq. (C.20) the following relation between the two

Ŝd(λ) = −1 + 2
d

[
λ T̂d

(
d

2λ
) ]−1

. (C.21)
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Using now the integral representation of the modified Bessel function I0, namely I0(x) =
1

2π
∫ 2π

0 dq ex cos(q), it is possible to express T̂d in terms of the so-called Watson integrals,

T̂d(λ) = 1
(2π)d

∫ 2π

0
· · ·
∫ 2π

0
dq1 · · · dqd

1
λ+ d−

∑d
i=1 cos qi

, (C.22)

and find an expression for Ŝd(λ). For example, in the case d = 1, Ŝ1(λ) =
√

(λ+ 2)/λ. More
complicated expressions arise when d is larger and ultimately there is no closed-form for them.
Nevertheless, we are just interested in the asymptotic behaviour of the source strength Sd,
which in turn is given by the low-λ limit of its Laplace transform [64],

Ŝd(λ) ∼


(λ/2)−

1
2 if d = 1

−λ−1/ lnλ if d = 2 , as λ→ 0
(dλ/2)−1 if d > 2

(C.23)

and thus

Sd(t) ∼


1/
√

2t if d = 1
1/ ln t if d = 2 , as t→ +∞ .
const. if d > 2

(C.24)

We are particularly interested in the case d = 2 since it seems to sit at the border
between two very different behaviours. Using the asymptotic relations for Iα, and calling
n = (n1, n2) ∈ Z2, for d = 2 Eq. (C.19) implies

Gn(t) ' 1
2πt + c

ln t

∫ t

0
dt′ e−2t′ In1

(
t′
)
In2

(
t′
)

(C.25)

as t→ +∞ dropping corrections O(t−2), with c a numerical factor to be determined. Using
the integral representation of the modified Bessel function In for integer values of n, that is
In(t) = (2π)−1 ∫ π

−π dk exp [t cos k − i n k], Eq. (C.25) reduces to

Gn(t) ' c

ln t
1

(2π)2

∫ π

−π
dk1

∫ π

−π
dk2 e−in·k ĝ (k, t) +O

(1
t

)
(C.26)

where k = (k1, k2) and the function ĝ (k, t) is given by

ĝ (k, t) = 1− e−t(2−cos k1−cos k2)

2− cos k1 − cos k2
. (C.27)

Apart from a time-dependent prefactor 1/ ln t, one can recognise in ĝ the dynamical structure
factor of the system, which is defined as the lattice Fourier Transform of the two-point
correlation function,

S(k, t) ≡
∑
n∈Z2

Gn(t) ein·k ∼ 1
ln t ĝ (k, t) . (C.28)

In the limit |k| → 0, ĝ can be approximated as ĝ (k, t) ' 2 k−2(1 − e−
1
2 tk

2), where k = |k|,
i.e. it becomes isotropic in k-space. Then the large-distance behaviour of the correlation
function is characterized by the scaling form

Gn(t) ∼ 1
ln t G

( |n|√
t

)
(C.29)
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where the scaling function G is obtained by taking the inverse Fourier Transform of ĝ.
Eq. (C.29) clearly displays the emergence of a dynamical characteristic length `d(t) which
scales as

√
t, but also a logarithmic violation of the usual dynamic scaling law.

An interesting quantity that can be extracted from the two-point correlation function
is the density of interfaces ρint, defined as the average value of the fraction of unsatisfied
bonds or, equivalently, the fraction of pairs of neighbouring sites with antiparallel spin. This
quantity is linked to the correlation function through the relation

ρint(t) = − 1
4d∆0G0(t) = 1

2

(
1− 1

2d

d∑
i=1

[Gei(t) + G−ei(t)]
)

, (C.30)

where ei are the lattice unit vectors. Note that the sum over the nearest-neighbours can be
lifted since the dynamics is isotropic along the d principal directions of the lattice. From
Eq. (C.19) evaluated at n = (1, 0, ..., 0) and the fact that G0 ≡ 1, one obtains

ρint(t) = 1
2 e−2t Id−1

0

(2t
d

)[
I0

(2t
d

)
− I1

(2t
d

)]
+ 1

2

∫ t

0
duSd(t− u) e−2u Id−1

0

(2u
d

)[
I0

(2u
d

)
− I1

(2u
d

)]
. (C.31)

Combining the latter equation with Eq. (C.24) and the asymptotic relations I0(z) ' I1(z) '
ez
[
1/
√

2πz +O(z−3/2)
]
and I0(z) − I1(z) ' ez

[
1/
√

8πz3 +O(z−5/2)
]
, the asymptotic be-

haviour of the density of interfaces is found to be [64, 68]

ρint(t) ∼


t−

1
2 if d = 1

1/ ln t if d = 2 , as t→ +∞
a− bt−d/2 if d > 2

(C.32)

These results allow us to establish some conclusions on the coarsening process in the
voter model: in d ≤ 2 the probability that two lattice sites at a given separation had opposite
spin vanishes asymptotically in time, no matter how much distant they are, and coarsening
eventually leads to a single-domain final state. In d > 2, an infinite system reaches a dynamic
frustrated state, where opposite-spin domains can coexist and continually evolve in such a way
that the average concentration of each species remains fixed. Dimension d = 2 is particular
since it lies at the border between the two cases. There is a coarsening process which brings
the system towards the single-domain state, but it is very slow since the density of interfaces
vanishes only as 1/ ln t.

As a last effort, we derive the two-time autocorrelation function, defined as

Ax(t, t0) = 〈sx mx(t|s, t0)〉t0 (C.33)

where mx(t|s, t0) is the average magnetisation of site x at time t given that the system is in
the spin configuration s at the time t0 < t, and the brackets 〈·〉t0 denotes the average over
the ensemble of configurations at time t0. Notice that, for any x ∈ Zd and for fixed spin
configuration s and time t0, the quantity Mx(τ) = mx(t0 + τ |s, t0) (seen as just a function of
the time delay τ) satisfies Eq. (C.11) with an initial condition Mx(0) = sx. Then one obtains

Ax(t, t0) =
〈
sxe−(t−t0) ∑

y∈Zd
sy Jx−y

(
t− t0
d

)〉
t0

= e−(t−t0) ∑
y∈Zd
〈sxsy〉t0 Jx−y ((t− t0)/d)

(C.34)
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Then, assuming that at each time the state of the system is (statistically) translationally
invariant (in space) one gets

A(t, t0) = e−(t−t0) ∑
n∈Zd

Gn(t0) Jn
(
t− t0
d

)
, (C.35)

where Gn is the two-point correlation function (notice that we have dropped the x-dependence
in the notation for A(t, t0)). As a simple check we verify that setting t = t0 in Eq. (C.35)
we find A(t0, t0) = G0(t0) = 1. Indeed, using Jn(0) =

∏d
i=1 Ixi(0) = 0 for all n 6= 0 and

J0(0) =
∏d
i=1 Ixi=0(0) = 1 this fact is verified.

In the particular case t0 = 0, if the initial configuration is completely uncorrelated, i.e.
Gn(0) = δn,0, the solution reduces to

A0(t) ≡ A(t, t0 = 0) = e−t
[
I0

(
t

d

)]d
(C.36)

with asymptotic behaviour A0(t) ∼ [2πt/d]−d/2. In the limit t � t0 one can use the asymp-
totic expansion Jn(u) =

∏d
i=1 Ixi(u) ' [eu/

√
2πu]d for u� 1 and, therefore,

lim
t�t0

A(t, t0) = [2π(t− t0)/d]−d/2
∑
n∈Zd

Gn(t0) . (C.37)

Let us derive the asymptotic behaviour of A(t, t0) for large t−t0 and t0, in the particular case
d = 2. The t0-dependent factor S(0, t0) =

∑
n Gn(t0) can be estimated for large t0 by using

the expression of Eq. (C.29) and using a continuum space approximation for the evaluation
of the sum,

S(d=2)(0, t0) ≡
∑

n1,n2∈Z
G(n1,n2)(t0) ∼ 1

ln t0

∫
d2x G

( |x|√
t0

)
= (C.38)

= 2πt0
ln t0

∫ +∞

0
dr rG(r) , (C.39)

assuming that the quantity
∫+∞

0 dr rG(r) is finite. Going back to Eq. (C.37) this implies

lim
t�t0, t0�1

A(t, t0) ∝ t0
ln t0

(t− t0)−1 . (C.40)

Further details on how to obtain the analytical results sketched in this section can be found
in [64, 68, 153, 155].
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Appendix D

D.1 Equilibrium measure for the simple harmonic oscillator
after a quench

Consider, as an example, a simple harmonic oscillator. The dynamics of the system is
given by the familiar Newton equation

mẍ+mω2x = 0 , (D.1)

given certain initial conditions x(0) = x0 and p(0) = mṡ(0) = p0.
Let us take the initial conditions in canonical equilibrium with respect to the Hamiltonian

H0 = p2
0

2m + V0(x0), with V0(x0) the initial potential energy given by V0(x0) = 1
2ω

2
0 x

2
0. The

probability distribution of (x0, p0) is given by

P0(x0, p0) = Z−1
0 e−β

′H0 = Z−1
0 e−β

′[
p2

0
2m+V0(x0)] (D.2)

with β′ = 1/T ′ the inverse temperature (using the same notation adopted in Chap. 4 for the
initial temperature). The average kinetic energy of the ensemble of initial states sampled
with this probability distribution is

1
2m〈p

2
0〉 = T ′

2 , (D.3)

which corresponds to the so-called equipartition of energy. Here the angular brackets indicate
average over the initial conditions sampled with the equilibrium distribution P0.

Let us now consider an istantaneous quench in the potential energy term of the form

V0(x) 7→ V (x) , with V (x) = 1
2 ω2x2 , (D.4)

where ω 6= ω0, and then let the system evolve with the new Hamiltonian H = p2

2m + V (x).
By performing this abrupt change one injects or extracts a finite amount of energy,

∆E = H(x0, p0)−H0(x0, p0) = V (x0)− V0(x0) . (D.5)

The iso-energy surface on which the dynamics takes place for t > 0 is the one corresponding
to the post-quench energy E(0+) = p2

0/(2m) + V (x0). The time evolution of the initial
configuration (x0, p0) is given by

x(t) = x0 cosωt+ p0
mω

sinωt ,
p(t) = −mωx0 sinωt+ p0 cosωt .

(D.6)
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For ease of notation, let us call y = x(t) and z = p(t) the position and momentum at a
time t. The probability density of (y, z) is given by

P (y, z, t) =
∫
dx0

∫
dp0 P0(x0, p0) δ

(
y − x0 cosωt− p0

mω
sinωt

)
×

× δ (z +mωx0 sinωt− p0 cosωt) .

We use the second δ function to integrate over p0, obtaining

P (y, z, t) =
∫
dx0 P0

(
x0,

z

cosωt +mωx0 tanωt
) 1

cosωt ×

× δ
(
y − x0 cosωt− z +mx0ω sinωt

mω cosωt sinωt
)
.

The remaining δ function implies

y − z

mω
tanωt− x0 (cosωt+ tanωt sinωt) = y − z

mω
tanωt− x0

1
cosωt = 0 , (D.7)

and we use it to integrate over x0. Indeed, replacing x0 = y cosωt − z
mω sinωt and taking

care of the Jacobian one easily finds

P (y, z, t) = P0

(
y cosωt− z

mω
sinωt, z cosωt+mωy sinωt

)
. (D.8)

The above implies

lnZ0 + lnP (y, z, t) = − β′

2m (z cosωt+mωy sinωt)2 − β′

2 mω
2
0

(
y cosωt− z

mω
sinωt

)2
,

and after some rearrangements, one gets

lnZ0 + lnP (y, z, t) = −β
′

2

[(
cos2 ωt+ ω2

0
ω2 sin2 ωt

)
z2

m
+mω2

(
sin2 ωt+ ω2

0
ω2 cos2 ωt

)
y2

+2mω
(

1 + ω2
0
ω2

)
cosωt sinωt yz

]
.

Although the measure P is still Gaussian, it does not have the same covariance as the initial
P0. The mean values and the variances of the position and momentum can be computed
directly from the solutions to the equations of motion. The mean values vanish, while for the
variances one finds

σ2
x(t) = 〈x2(t)〉 = 〈x2

0〉 cos2 ωt+ 〈p2
0〉

1
m2ω2 sin2 ωt ,

σ2
p(t) = 〈p2(t)〉 = 〈x2

0〉 m2ω2 sin2 ωt+ 〈p2
0〉 cos2 ωt .

(D.9)

Replacing now the averages of the initial values 〈p2
0〉/m = mω2

0〈x2
0〉 = T ′, one gets

mω2σ2
x(t) = mω2〈x2(t)〉 = T ′

(
ω2

ω2
0

cos2 ωt+ sin2 ωt

)
,

1
mσ

2
p(t) = 1

m
〈p2(t)〉 = T ′

(
cos2 ωt+ ω2

ω2
0

sin2 ωt

)
.

(D.10)
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One readily verifies that, as expected, the average total energy is conserved

〈E(t)〉 = mω2σ2
x(t) + 1

m
σ2
p(t) = T ′

(
1 + ω2

ω2
0

)
= 〈E(0+)〉 , for t > 0 (D.11)

since each single trajectory does conserve its initial energy.
The time-average of an observable A(x(t), p(t)) is defined as

A = lim
τ→+∞

1
τ

∫ t0+τ

t0
dt A(x(t), p(t)) (D.12)

for any t0 > 0. Ultimately A should not depend on the reference time t0 if the system is able
to reach a stationary state in the post-quench dynamics. In the case of the simple harmonic
oscillator, the trajectory of the system is periodic and thus one can compute a time average
over an interval which is a multiple of the period. If computed in this way, the time-averaged
values of the variances are given by:

mω2σ2
x(t) = T ′

2

(
ω2

ω2
0

+ 1
)
, (D.13)

1
m
σ2
p(t) = T ′

2

(
ω2

ω2
0

+ 1
)
, (D.14)

x(t)p(t) = 0 (D.15)

and from these one can identify the “final” temperature as

Tf ≡ 2Epot = mω2σ2
x(t) = T ′

2

(
ω2

ω2
0

+ 1
)
. (D.16)

D.2 Neumann’s model, integrability and equilibration
In this Appendix we explain the relation between the Hamiltonian dynamics of the p = 2

spherical spin glass model and the integrable model of Neumann [91]. We start by recalling
some basic properties of classical integrable systems in the sense of Liouville [156, 157]. We
then recall the definition of Neumann’s model and we introduce the corresponding integrals
of motion in the p = 2 spherical model. We also provide a brief description of the Generalised
Gibbs Ensemble.

Integrable systems

In classical mechanics, systems are said to be Liouville integrable if there exist sufficiently
many well-behaved first integrals or constant of motions in involution such that the problem
can be solved by quadratures [156, 157], in other words, the solution can be reduced to a
finite number of algebraic operations and integrations. In more concrete terms, an integrable
dynamical system with 2N degrees of freedom (N coordinates andN canonical momenta) con-
sists of a 2N -dimensional phase space Γ together with N independent functions1 O1, . . . , ON :
Γ→ R, such that the mutual Poisson brackets vanish,

{Oj , Ol} = 0 for all j, l . (D.17)
1In the sense that the gradients ~∇Oi are linearly independent vectors on the tangent space to any point in

Γ
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We will assume henceforth that the Oi do not depend explicitly on time and that dOi/dt = 0
is equivalent to {H,Oi} = 0, with H the Hamiltonian of the system. The Hamiltonian H is
itself an integral of motion and the energy is the first constant of motion one can think of.

The dynamics can be seen as the motion in a manifold of dimension 2N−N = N in which
all the trajectories share the initial values of all the conserved quantities Oi(t) = Oi(0). Under
these conditions the Hamilton equations of motion are solvable by performing a canonical
transformation into so-called action-angle variables (Ii, φi) with i = 1, . . . , N such that the
Hamiltonian is rewritten as H̃({Ii}) and

Ik(t) = Ik(0) , φk(t) = φk(0) + t
∂H̃({Ii})
∂Ik

= φk(0) + t ωk({Ii}) , (D.18)

for all k = 1, . . . , N and t ≥ 0, where we define ωk({Ii}) = ∂H̃({Ii})
∂Ik

. The remaining evo-
lution is given by N circular motions with constant angular velocities, that is to say, the
N -dimensional manifold Γ(O1, . . . , ON ) corresponding to the trajectories that have same val-
ues for the constant of motions Oi, is transformed into a N -dimensional torus under the
canonical transformation to the action-angle variables. Both deciding whether a system is
integrable and finding the canonical transformation that leads to the pairs (Ii, φi) are in prac-
tice very difficult tasks. Whenever the system is integrable, and one knows the action-angle
pairs, the statement in Eq. (D.18) is part of the Liouville-Arnold theorem [158].

Neumann’s model and its integrals of motion

The model proposed by Neumann in 1850 describes the dynamics of a particle constrained
to move on the (N − 1)-dimensional sphere under the effect of harmonic forces [91]. The
Hamiltonian is given by

H = 1
4N

∑
k 6=l

L2
kl + 1

2
∑
k

akx
2
k (D.19)

where the Lkl are the elements of an angular momentum anti-symmetric matrix
√
mLkl = xkpl − pkxl , (D.20)

and pk and xk are phase space variables with canonical Poisson brackets {xk, pl} = δkl. The
global spherical constraint

N∑
k=1

x2
k = N (D.21)

ensures that the motion takes place on SN−1, the (N−1)-sphere. Using the fact that Lkk = 0
to rewrite the double sum in the first term in H as an unconstrained sum, and replacing Lkl
by its explicit form in terms of xk and pk, one derives

m
∑
k 6=l

L2
kl = m

∑
k,l

L2
kl = 2

∑
k

x2
k

∑
l

p2
l − 2

∑
k

xkpk
∑
l

xlpl . (D.22)

Imposing next the spherical constraint, that also implies
∑
k xkpk = 0, the above sum reduces

to
m
∑
k 6=l

L2
kl = 2N

∑
k

p2
k . (D.23)

Note that we added a factor 1/N in front of the kinetic energy in Eq. (D.19) in order to
ensure that the two terms are extensive and the thermodynamic limit is non-trivial.
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It is quite clear that Neumann’s model is therefore identical to the Hamiltonian p = 2
spherical spin glass model (with a strict spherical constraint) once the latter is written in the
basis of eigenvectors of the interaction matrix Jij , with the correspondence ak 7→ −λk, where
λk are the eigenvalues of Jij .

The N − 1 integrals of motion were constructed by K. Uhlenbeck [92] and more recently
rederived by Babelon & Talon [94] with a separation of variables method. In a notation that
is convenient for our application they read

Ik = x2
k + 1

N

∑
l(6=k)

L2
kl

ak − al
= x2

k + 1
mN

∑
l( 6=k)

x2
kp

2
l + x2

l p
2
k − 2xkplxlpk

ak − al
(D.24)

and satisfy
∑
k Ik = N and 1

2
∑
k akIk = H. After a trivial translation to the variables of the

p = 2 spherical model we have

Iµ({sk, pk}) = s2
µ + 1

mN

∑
ν(6=µ)

s2
µp

2
ν + s2

νp
2
µ − 2sµpνsνpµ

λν − λµ
, (D.25)

where sµ represents the projection of the spin vector onto the direction of the eigenvector of
the interaction matrix associated with the eigenvalue λµ, and pµ = mṡµ its momentum.

Statistical measures for integrable systems

Let ~X = (x1, p1, . . . , xN , pN ) be a generic point in phase space. One readily constructs a
microcanonical measure

ρGME( ~X) = Z−1
GME

N∏
j=1

δ(Ij( ~X)− cj) (D.26)

with the normalisation ZGME({ci}) =
∫
d ~X

∏N
j=1 δ(Ij( ~X) − cj), where ck is the constant

value taken by the integral of motion Ik, for k = 1, . . . , N . The Liouville-Arnold theorem [158]
ensures that this measure is sampled asymptotically if the frequencies ωk = ∂H

∂Ik
of the periodic

motion on the torus are independent, that is to say, if the equation
∑
k zkωk = 0, with zk

integer numbers, has the unique solution zk = 0 for all k. One can call this ensemble the
Generalized Microcanonical Ensemble (GME).

In principle, the Generalized Canonical Ensemble, commonly called Generalized Gibbs
Ensemble (GGE), can now be constructed from the Generalized Microcanonical Ensemble fol-
lowing the usual steps. The idea is to look for the joint probability measure P (c1, . . . , cN )dc1 . . . dcN
of N extensive (as for the Hamiltonian, in the usual case) constants of motion of a subsystem.
As in cases with just one conserved quantity, it is convenient to interpret P as a probability
over position and momenta variables, and write

PGGE( ~X) = Z−1
GGE(ζ1, . . . , ζN ) exp

−∑
j

ζjIj( ~X)

 , (D.27)

where the parameter ζk is the equivalent of an inverse temperature for the k-th integral of
motion Ik, and ZGGE is the normalisation factor. This form can be derived under the same
kind of assumptions used in the derivation of the canonical measure from the microcanonical
one. Let the system be divided into two disjoint parts, subsystem A and subsystem B, with
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A much smaller than B, and denote by I(A)
1 , . . . , I

(A)
N the conserved quantities for subsystem

A, while by I(B)
1 , . . . , I

(B)
N those for subsystem B. One can constructs a GGE measure for

subsystem A under the following assumptions:

(i) additivity of the conserved quantities, that is to say, Ik = I
(A)
k + I

(B)
k , for all k;

(ii) independence of the chosen subsystem with respect to the rest of the system, in
other words, the factorisation of the density of states,

g (I1, . . . , IN ) = gA
(
I

(A)
1 , . . . , I

(A)
N

)
gB
(
I

(B)
1 , . . . , I

(B)
N

)
;

(iii) constant inverse “temperatures” given by

ζk ≡
∂

∂I
(B)
k

SB
(
I

(B)
1 , . . . , I

(B)
N

)
= ∂

∂I
(B)
k

ln gB
(
I

(B)
1 , . . . , I

(B)
N

)
,

with SB = ln gB the microcanonical entropy of subsystem B.

An inspiring discussion along these lines appeared in [159]. The conditions just listed im-
ply a locality requirement on the Iks. This is similar to the requirement of having short-range
interactions to derive the equivalence between the canonical and microcanonical ensembles
in standard statistical mechanics.

In the case of the Neumann model, or the p = 2 spherical spin glass model, the set of
conserved quantities are the Iµ defined in Eq. (D.25). We note that if, under some special
conditions, the Lagrange multipliers ζk became equal to −λkβ/2, with {λµ} the eigenvalues
of the interaction matrix and β some constant, then the GGE measure would be

PGGE( ~X) = Z−1
GGE e

−β
(
− 1

2
∑

µ
λµIµ( ~X)

)
= Z−1

GGE e−βH( ~X) = PGB( ~X, β) , (D.28)

with PGB( ~X, β) the Gibbs-Boltzmann measure at inverse temperature β, having used H =
−1

2
∑
µ λµIµ.
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