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1
INTRODUCTION

A common saying in many cultures is that a pot of gold awaits at the end
of the rainbow. For a researcher in the field of optics and photonics, the
treasure is instead for everyone to see, the rainbow unveiling the majesty of
the intangible phenomenon that is light. If we define light as the domain
of optics at wavelengths from the ultraviolet to the mid-infrared, then light
counts as the most versatile frequency band of the electromagnetic spectrum.
First, it is primordial in the emergence of life on earth and is essential to
the whole ecosystem of our planet as the primary source of energy received
from the sun, driving the process of photosynthesis to convert sunlight to
chemical energy. Also, light is a primary carrier of information that reveals to
mankind the make up of matter, through virtue of spectroscopic fingerprints
- absorption and emission of light specific to the atomic, molecular or solid-
state structure of matter, and through the possibility of imaging objects. Thus,
the telescope placed us in the universe. Conversely, the optical microscope
gave us a deeper understanding of our biology [1–3]. The laser [4] has pro-
vided us with the tools to, among many other great achievements, probe the
quantum properties of matter [5], settle the Einstein-Podolsky-Rosen paradox
surrounding entanglement and nonlocality in quantum mechanics [6], and get
a first glimpse of black holes [7]. Together with light-emitting diodes and fibre
optics, they also revolutionized telecommunication [8], are instrumental for
realizing the ultimate quantum secured network [9], and are among the main
tools required for a paradigm shift from digital to analog [10] or quantum
computing [11].

The advantage that light has over electromagnetic waves in other
frequency bands, and more fundamentally, the reason why this region of
the spectrum is so vital for living beings, is to be found in its relatively strong
interaction with matter. The matter degree of freedom that is of relevance for
any electromagnetic phenomenon, is that of charge separation (coupling to
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the electric field), and of charge circulation and spin (entering magnetism).
The optical spectrum is of high relevance because electronic transitions of the
most common atoms, molecules and materials are located in the visible to
ultraviolet range. Thereby, optical frequencies are associated with absorption
of light by excitation of electronic states, and conversely also the emission of
light by fluorescence of electronic transitions in matter. This imbues optics
with the ability to perform spectroscopy, to realize efficient light sources,
and to address single quantum systems with single grains of light, also
called photons. Moreover, light can directly provide the energy for chemical
reactions that are intrinsically not possible at room temperature, but that can
be activated by the few electron volts of energy carried by a visible photon.
When matter is not directly resonantly absorbing photons, it is at least
polarizable enough to allow for refraction with refractive indices significantly
different from that of vacuum n � 1). This gives the ability to control light by
refractive components such as lenses and prisms, and enables confinement of
light in fibres and waveguides. This should be contrasted to the X-ray regime,
where all materials are essentially only very mildly different from vacuum in
refractive index, or conversely to the MHz to THz regime, where the photon
energy is much less then that required to interact with electrons in matter, and
is even less than the thermal energy kBT .

While optics is unique for the light-matter interaction with electronic tran-
sitions, this strength is nonetheless considered weak for many envisioned
applications. The field of nanophotonics deals with the miniaturisation of pho-
tonic devices to nanoscale dimensions, the scale that is naturally suited for
interfacing single quantum systems with light [12]. In a standard optical
microscope, one can easily observe a single quantum system driven by light,
by monitoring the stream of single photons emitted by a single molecule upon
laser excitation. This detection relies on the quality of optical filters to separate
fluorescent photons from pump laser light by colour. However, the probability
for absorption of a single pump photon is only about 10−5 for a molecule at
room temperature in the diffraction limited focus of a microscope (spot size
λ/2). The low probability of a single photon to interact with a single atom
or molecule usually implies that many atoms or molecules are necessary to
obtain a sizeable effect on this photon. Conversely, the mission of quantum
optics (cavity quantum electrodynamics) to control single photons by single
quantum systems and vice versa, requires additional strategies to enhance
light-matter interaction. Nanophotonics can provide such strategies by ma-
nipulating the light field in its spatial and temporal properties. First, photons
can be made to interact repeatedly with the atom or molecule, by ensuring
that the same photon has opportunity to pass an atom or molecule not once,
but multiple times. To this end, one uses optical cavities of high quality factor
Q placed around the matter, so that the residence time of light in the cavity
is extended to Q/ω (with ω the optical frequency). Record quality factors are
of order 108 for optical cavities with a footprint no larger then a few 10s of
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microns [13]. Second, light can be focused tightly to remain in an interaction
volume much smaller than the diffraction limit through plasmonic structures.
These are metallic nanostructures in which part of the energy of a photon is
transferred to an oscillation of free electrons, which gives rise to very tight
confinement of the electric field at a metallic interface. Thus, the energy of a
photon can be squeezed into a volume reportedly as small as λ3/106 (where
λ is the resonance wavelength) [14], albeit for just a few tens of optical cycles.
Over the last few decades, both plasmonic structures and optical cavities have
demonstrated their large relevance in the context of the enhanced light-matter
interaction. They are considered to be essential building blocks for quantum
optics, miniaturized lasers, and optical sensors that can even detect single
protein molecules, or that give access to the vibrational Raman fingerprint of
single molecules. This thesis is largely devoted to hybrid plasmonic-dielectric
resonators that combine some of the complementary advantages of optical
cavities and plasmonic nanoresonators.

In this introductory chapter, we first introduce the relevant figures of merit
for the quantification of the interaction between photons and matter taking the
example of the enhancement spontaneous emission of light by a single atom
or molecule. Next, we briefly give an overview of currently available optical
cavities, plasmonic nanoresonators, and hybrid structures, and present a few
milestones they reached. Then, we introduce the quasinormal mode (QNM)
formalism, our framework of choice to get a better understanding of the lossy
nature of micro- and nanoresonators in electromagnetism. We conclude by
detailing the motivation of our work and the outline of this thesis.

1.1. Light-matter interaction
One of the most fundamental examples of interaction between light and mat-
ter is the resonant absorption and spontaneous emission of a photon by an
atom or a molecule [15, 16]. Let us consider such a quantum system initially
placed in an eigenstate |i〉 of a Hamiltonian Ĥ0 describing the atom and the
light field, transitioning (or decaying), to a set of final states |f 〉. We assume
a two-state model for the atom or molecule, with a ground state of energy Eg
and an excited state of energy Ee. The state |i〉 = |e,0〉 therefore corresponds
to the atom in an excited state and 0 photon, and has an energy Ei = Ee. The
states |f 〉 = |g ,1ω,f 〉 corresponds to the atom in the ground state with a single
photon of energy h̄ω in a photonic mode f , and has an energy of Ef = Eg+ h̄ω.
The interaction with the light field can be treated as a perturbation Ĥ′ = −p̂ · Ê
to the Hamiltonian Ĥ0. Here Ê is the electric field operator1, whereas p̂ is the
dipole operator. Fermi’s golden rule states that the rate of transition from |i〉 to
the collection of |f 〉, which is always accompanied by the emission of a photon
1In the context of stimulated emission, this describes the field of the laser. For spontaneous
emission, Ê describes the vacuum fluctuation of the light field. A proper description is given
in the context of second quantization in quantum optics [15]
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of energy h̄ω, is given by [15]

Γ =
∑

f

2π
h̄
|〈f |p̂|i〉|2 δ(Ei −Ef ) (1.1)

where the sum runs over all the final states f .
By noticing that 〈f |p̂|i〉 = 〈e|p̂|g〉 and introducing the local density of optical

states (LDOS) ρ(r,ω) ≡
∑

f δ(Ei − Ef ), we recognize that the rate Γ can be de-
composed as a term 〈e|p̂|g〉, which described the electronic part of the system
and ρ(r,ω), that quantifies the number of states available for the photon to be
emitted into, given the position r of the emitter and the transition frequency
ω. The electronic wavefunction overlap integral is equivalent to the transi-
tion dipole moment, a quantum mechanical matrix element to quantify the
strength of transitions. Writing this as a dipole moment p, the transition rate,
or equivalently spontaneous emission rate, simplifies to [16]

Γ =
πω
3h̄ε0

|p|2ρ(r,ω) (1.2)

While the transition dipole matrix element quantifies quantum mechanical
properties of the wave functions of electrons, the LDOS is a purely classical
property of the electromagnetic environment surrounding the quantum sys-
tem. In particular, in a homogeneous medium, such as vacuum, the LDOS
is given by Larmor’s formula ρ0(ω,r) = ω2n/(π2c3) [16] (cf. Fig. 1.1 (c),
dashed black line). An inspection of the units [s/m3] teaches that the LDOS
can really be read as the number of states that vacuum offers per Hz of spectral
bandwidth, and per unit of volume. Instead, if one were able to offer a cavity
resonance of resonance frequency ωm, this would provide a contribution to
the LDOS that is a single mode, distributed over the cavity linewidth γm and
a volume that is not 1 m3, but the volume Vm to which the cavity confines a
photon. Thus, a cavity leads to a Lorentzian LDOS (cf. Fig. 1.1(a) and (c), red
line)

Γ

Γ0
= Fm

ω2
m

ω2

γ2
m/4

(ω −ωm)2 + γ2
m/4

with Fm ≡
3

4π2

(λm

n

)3 (Qm

Vm

)
, (1.3)

This equation is due to Purcell who quoted it in a brief abstract in 1946 [17],
and the enhancement on resonance Fm has since been called Purcell factor. It
suggests that an increase in light matter interaction is possible in resonators
with high quality factors Qm ≡

ωm
γm

, yet strong field confinement through small
mode volumes Vm. It is worthwhile to note that resonances are not the only
way to modify the LDOS. As it was shown by Drexhage in 1960, also a sim-
ple metallic mirror can modify the rate of emission of an emitter due to the
interaction with the dipole mirror image [18]. More complex structures can
lead to even more exotic LDOS, such as photonic bandgaps in photonic crys-
tals, where all modes can be suppressed in a frequency band known as the
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photonic band gap [19] (cf. Fig. 1.1 (b) and (c), blue line). The treatment
of the modification of a decay rate by a photonic structure also applies to
classical current sources in antenna physics, where it is not the decay rate,
but the radiated power per unit of current run through the dipole source that
is affected by LDOS. This is known as radiative impedance engineering in
electrical engineering and acoustics [20].

Frequency ω

LD
O

S

Vacuum
Cavity
PhC

(a) (b)

(c)

Figure 1.1: Quantum emitter places inside a resonant optical cavity (a), or a photonic
crystal (b). (c) Local density of state (LDOS). In a homogeneous medium, the LDOS
scales as ω2 (dashed black). For an emitter placed inside a photonic cavity (red) the
LDOS will show a Lorentzian lineshape (red). More complex photonic environment,
such as photonic crystals (blue) can exhibit peculiar features such as photonic bandgaps
where the LDOS is almost null.

The Purcell factor is one of the most famous metrics in optics for the degree
to which a resonator enhances light-matter interaction strength. The under-
lying quantity, i.e., the LDOS is exploited to enhance spontaneous emission
for the purpose of producing bright and fast single-photon sources for quan-
tum applications [21], but also for increasing signals from fluorescent markers
in biology [22]. Conversely, reciprocity implies that photodetectors or solar
cells could also benefit from LDOS control to boost absorption [23]. Surface-
enhanced Raman spectroscopy (SERS), i.e., vibrational spectroscopy on basis
of scattering of light that undergoes a frequency-shift due to interactions with
molecular vibrations, also relies on the increased LDOS at plasmonic hotspots
on rough metallic surfaces, sharp metallic tips and plasmonic nanoresonators
[24, 25]. Also, there is a lively effort in photonics to develop optical sensors
that can detect the presence of even single proteins by virtue of minute fre-
quency shifts in the resonance of a sensing structure. This topic is the remit of
perturbation theory for optical cavities [26, 27] which holds that the frequency
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perturbation theory for optical cavities [26, 27] which holds that the frequency
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shift of a cavity resonance upon perturbation by a tiny object of polarizability
α reads

∆ωm

ωm
= − α

2Vm
. (1.4)

Therefore, in the context of detection of tiny particles or molecules, the sensi-
tivity ∆ωm

γm
= −αQm

2Vm
upon perturbation by an analyte is directly proportional to

the Purcell factor Fm. The Purcell factor and LDOS thus naturally occur in a
variety of phenomena that go beyond just spontaneous emission.

1.2. Photonic resonators
Any photonic environment that modifies the LDOS modifies light-matter in-
teraction, as demonstrated in systems as diverse as mirrors and dielectric
interfaces [18, 28], 1D and 2D waveguides [29–31], photonic crystals [19, 32],
and disordered media [33, 34]. While LDOS control does not necessarily imply
a resonator, localized resonances are the most common strategy for enhancing
the LDOS. According to textbook optics, understanding the relevant prop-
erties of resonators only requires knowledge of the two parameters entering
the Purcell factor, i.e., the quality factor Q and the mode volume V . In this
section, we give a brief overview of the available photonic and plasmonic
resonators that have been developed over the last decades to control light-
matter interaction.

1.2.1. Dielectric cavities
Traditional optical cavities make use of mirrors and other photonic structures
made out of lossless dielectric materials to confine light with a very high
quality factor Q (102 − 109). The most famous example is the Fabry-Perot
cavity, in which light bounces back and forth between two highly reflective
mirrors. These cavities, originally developed for spectroscopy, accompanied
most of the pioneering experiments involving light-matter interaction. In par-
ticular, they were a key component of the first lasers [4], enabled the first direct
observation of the Purcell effect [35] and strong coupling at optical frequen-
cies [36], and more recently, Bose-Einstein condensation of exciton-polaritons
[37]. Progress in nano- and microfabrication has lead to the development of
miniaturized versions of Fabry-Perot cavities with mode volumes V reaching
the fundamental limit imposed by diffraction [38], i.e. V ∼ (λ/2)3, where λ
is the wavelength of light in the high-index medium of the cavity. Micropil-
lars with integrated Bragg reflectors fabricated from epitaxially grown III-V
semiconductors have provided us with very efficient single photons sources
[39, 40], and the first single-emitter strong coupling in solid-state [41]. In the
same material platform, 2D membrane photonic crystals (PhC) cavities have
been realized as a natural evolution from Fabry-Perot cavities into integrated
devices [42, 43] that interface well with on-chip waveguides. Light confine-

18

1

1.2. PHOTONIC RESONATORS

ment in this type of cavities relies on defects in a carefully designed periodic
arrangement of dielectric materials (photonic crystal), which leads to the ex-
istence of a photonic bandgap, i.e. conditions under which light cannot prop-
agate [44, 45]. The small mode volume of PhC cavities (≈ (λ/n)3) combined
with very high Q-factors (up to 107, achieved in silicon, [13]), has not only
enabled a refinement of previous achievements in light-matter interactions
[46–49], but also opened up the road to new exciting physics, in particular
in cavity optomechanics, where experiments such as cooling of a mechanical
resonance into its quantum ground state (cf. Fig. 1.2 (a)) have been carried out
using photonic crystal nanobeams [50, 51]. Finally, despite modes volumes
limited to a few tens of cubic wavelength, whispering-gallery-mode (WGM)
cavities present the interest of reaching extremely high-Q, with much higher
fabrication tolerance than photonic crystals and Fabry-Perot cavities [52–54].
In WGM cavities, realized in microdisks, microspheres and microtoroids, light
is trapped at the rim of a rotationally invariant resonator by total internal
reflection. Performance in Q is fundamentally solely limited by the resonator
curvature, while loss from scattering by roughness can be extremely small due
to the ability to smoothen glass microtoroids and microspheres by heating.
Due to their versatility, WGM cavities are commonly used for single-particle
biosensing [55] or detection of chemical traces [56, 57], and low-threshold
lasers [58]. The existence of a discrete set of modes separated by a fixed free
spectral range has lead to the development of integrated frequency combs [59,
60], which are in high demand for metrology purposes [61–63]. WGM cavities
have historically also been studied for cavity QED experiments [64, 65], while
it has recently been realized that the intrinsic existence of degenerate pairs
of resonant modes also provides opportunities to study exotic, yet classical,
physics such as exceptional points [66–69], and non-reciprocity [70–72].

1.2.2. Plasmonic nanoresonators

Light can interact with free electron excitations of metals. In particular, the
strong interaction between light and the electron gas at an interface between
a metal and a dielectric gives rise to a hybridization of charge oscillations and
photons, also called surface plasmon-polaritons (SPP). These SPP are evanescent
both into the metal and into the dielectric above it, and have an in-plane wave-
length which can be much smaller than the wavelength of the free photon in
the dielectric. A resonant response of free electrons in metals also gives rise
to strong scattering resonances of nanoparticles, an effect known as localized
surface plasmon resonances. The quality factor of these resonances is limited
to approximately Q = 40 due to the intrinsic Ohmic damping rate of noble
metals, and is usually lower since scatterers also present radiative loss. At the
same time, the resonances are associated with very strongly confined fields.
While the attribution of mode volumes to such resonances is contentious,
claimed values reach as low as λ3/106 [21, 74, 75]. Simple shape plasmonic
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Figure 1.2: A few examples illustrating the diversity of micro- and nanoresonators. (a)
Scanning electron micrograph of a silicon sliced nanobeam. Reproduced with permission
from [51]. (b) Chiral core-shell (glass-gold) nanohelices. Reproduced with permission
from [73]. (c) Hybrid resonators composed of Si3N4 microdisk cavity dressed by two
aluminium antenna, cf. Chapter 4.

antennas have been demonstrated to enable enhancement of the emission rate
of single molecules up to a factor of 9 for gold nanorods [76]. The most
successful structures to enhance light-matter interaction actually make use of
a dielectric nanogap in between two metals. In particular, antenna dimers
have been reported to provide a >700-fold LDOS enhancement [77, 78], while
nanopatch antennas, composed of a silver cubes on a gold mirror, easily reach
a factor of ∼ 1000 [79]. This is to compare to the record enhancement of 75
enabled by photonic crystal cavities [48]. Outside the domain of fluorescence
control, also so-called picocavities with even smaller mode volumes have been
claimed [14] in the context of nonlinear single molecule Raman spectroscopy.
Such nano/pico-gap structures push electromagnetic field confinement to the
length scale of atomic lattice spacings in solids, and to the length scales asso-
ciated with electron tunneling, and electron wave function spill-out in solids.
Thereby they push nano-optics beyond the classical Maxwell equations with a
local dielectric constant, and a proper description requires non-local material
descriptions with quantum mechanical corrections [80, 81].

Plasmonic structures also offer interesting tools to tailor the spatial di-
rectionality of emission and scattering, for instance by transposing the con-
cept of phased array antennas [82–85]. In this concept, one uses an array
of plasmonic scatterers around a fluorophore, with their scattering response
tailored in amplitude and phase such that, collectively, they scatter emitted
photons in preferred directions. The existence of multiple resonant modes
in such oligomers of plasmon antennas, and the interference between them
in the far field and near field, is being actively investigated as a mean to
provide sensitive detectors exploiting sharp Fano-like spectral features [86,
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87]. Finally, recent developments in fabrication techniques, such as multi-step
electron lithography and 3D growth of materials, have enabled the possibility
to fabricate 3D structures presenting chiral behaviour [73, 88], with applica-
tions in enantiomer detection and manipulation on the single-molecule level
[89], and circular dichroism of metasurfaces [90].

1.2.3. Antenna - cavity hybrids

Both dielectric cavities and plasmonic nanoresonators have been the corner-
stone to many great achievements in the context of light-matter interaction,
with both allowing to reach high values of Q/V . However, since micro-
cavities are optimized for Q, while plasmon antennas instead sacrifice Q for
confinement, they have very complementary merits for applications. Indeed,
in the case of dielectric cavities, the diffraction limit imposes a lower bound
to achievable mode volumes, meaning that high quality factors are needed
for high Purcell factors. This leads to narrow bandwidths, and slow tem-
poral responses. Hence microcavities are generally associated with narrow-
band emitters at cryogenic temperatures, and with picosecond to nanosecond
dynamics, not femtosecond temporal control. On the other hand, the field
confinement in plasmonic resonators is in practice only limited by quantum
effects, and the large bandwidth allows for fast responses (fs time scale). A
large part of this large bandwidth is, however, due to Ohmic losses, intrinsic
to even the best metals. These losses are detrimental for applications requir-
ing, e.g., high-fidelity single-photon sources [91]. Also, plasmonic resonators
are naturally subwavelength scatterers, meaning that they do not naturally
interface to integrated optics waveguides. A solution was suggested in be-
tween these two worlds [92, 93] and consist of a dielectric cavity dressed by
one or many plasmonic nanoresonators. In the limit of weak antenna-cavity
coupling, the system exhibits an antenna-like and a cavity-like mode [94]. This
second mode is the one of choice for light-matter interaction, as it can reach
similar values for Q as its bare cavity component, while it does benefit from
nanoscale confinement at its plasmonic component. With a proper design
[95], this means that a hybrid resonator can exceed the performance of its
bare constituents in term of Purcell factor [94], and can present quality factors
in the range of Q ∼ 103 − 104 at mode volumes of order λ3/102. Hybrid
resonators have been reported in several contexts, such as particle detection
in biosensing [96–100], Raman spectroscopy [92, 101–103], and trapping [99,
104–106]. As for light emission, even though theoretical works recognize
the pertinence of such resonators as a way towards efficient single photon
sources [94, 107–109], few experimental works have been carried out so far
[93, 110]. Doeleman recently realized hybrids composed of microdisks and
single aluminium plasmon antennas coupled to single quantum dots, with
estimated LDOS enhancement of 39 (cf. Chapter 7 of the PhD thesis [111]).
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1.3. Resonances and modes
1.3.1. Hermitian (closed) systems
This thesis deals with the physics of hybridized resonators. The most basic
framework in physics to deal with hybridized resonators, is to understand
resonators in terms of normal modes. The most illustrative example for the
concept of normal modes comes from acoustics. Indeed, each musical note
produced by any musical instrument is related to the modes of the structures,
which can be the vibration of a string for guitars, a membrane for drums, or
the vibration of air constrained by the size of an acoustic cavity for a flute.
Essentially, these objects support so-called eigenmodes that correspond to a
specific spatial pattern, and that are each associated with a natural frequency
at which the field varies harmonically in time. The response of a system to
an arbitrary excitation can be decomposed as a superposition of its normal
modes, making the knowledge of this basis of modes a valuable tool. Normal
modes, by definition, do not exchange energy, and are therefore said to be
orthogonal. The textbook explanation of quantum mechanics [112] follows
exactly this route. Here one considers the Schrödinger equation

Ĥ |ψ(t)〉= i h̄
∂
∂t
|ψ(t)〉 , (1.5)

and for a time-independent potential energy term, first seeks eigenstates |ψm〉
of energy Em of the Hamiltonian Ĥ as

Ĥ |ψm〉= Em |ψm〉 . (1.6)

In the case where the quantum system is closed, there exists an inner product,
defined on the space of wave functions, which guarantees states orthogonality
and is expressed as

〈ψm|ψn〉 ≡
∫

Ω
ψ∗m(ξ)ψn(ξ)dξ = δm,n (1.7)

where Ω is a space spanned by the parameter ξ (for instance the position
ξ = r in the 3-dimensional space Ω = R3). The Hamiltonian Ĥ is then said to
be Hermitian and it is guaranteed to be diagonalizable in a basis of eigenstates
(normal modes) with real eigenvalues (energy/resonance frequency). General
solutions of the time-dependent Schrodinger equation with any initial condi-
tion can then be constructed by linear superposition of eigenstates, where one
needs to solve for the superposition coefficients.

The mathematical framework outlined above in fact applies also to
many realms of classical physics, such as acoustics and electromagnetism
[43]. Indeed, mathematically it only rests on the requirements that the
underlying equation of motion (differential operator) is Hermitian (relative
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Figure 1.3: When on resonance with a cavity mode, light is localized inside the cavity
(blue mirrors). In the Hermitian hypothesis, the system is bound by lossless boundaries
(perfect mirrors).

to an appropriately defined inner product, and given imposed boundary
conditions). In electromagnetics, the frequency domain wave-equation
derived from Maxwell equations without sources can be seen as an eigenvalue
problem similar to Eq.(1.6), for H, the magnetic field2

∇× [ε−1(r)∇×H(r)] =
(ω
c

)2
H(r). (1.8)

If one considers nondispersive lossless materials and a finite volume of space
at the boundary of which solutions vanish (block of space enclosed by per-
fectly conducting walls as sketched in Fig. 1.3), the linear operator acting on
H on the left hand side of this equation is Hermitian. Indeed, an inner product
between two vectors |ψ〉= [H;E] and |ψ′〉= [H′ ;E′ ] can be defined

〈ψ|ψ′〉 ≡ 1
2

�

V
εE∗ ·E′ + µ0H

∗ ·H′dr. (1.9)

Note that this inner product corresponds to electromagnetic energy when cal-
culating the norm of a field. The Hermitian nature of the wave equation oper-
ator under these assumptions implies the existence of normal modes |ψm〉 =
[Hm;Em] is guaranteed with real positive eigenvalues

(
ωm
c

)2
(corresponding to

infinite lifetime). The modes are orthogonal

〈ψm|ψn〉= δm,n (1.10)

and can be normalized through the condition

〈ψm|ψm〉=
1
2

�

V
ε|Em|2 + µ0|Hm|2dr= 1 (1.11)

The total electromagnetic field [H,E], upon excitation of the system by an
arbitrary incident field [Hinc;Einc], can then be expanded over the normal

2H can be directly deduced from E via Maxwell-Faraday equation
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modes as [
H
E

]
=

[
Hinc
Einc

]
+
∑
m

βm

[
Hm
Em

]
, (1.12)

where the excitation coefficients βm(ω), or amplitudes, of normal modes m are
resonant for ω = ωm. Note that with the normalization defined by Eq.(1.11),
the unit of the normalized electric and magnetic fields are not V·m−1 and
A·m−1 anymore, but V·m−1·J−1/2 and A·m−1·J−1/2, while the electromagnetic
energy of a normal mode is Um = 1. Therefore, in the normal mode expansion
(Eq.(1.12)), the intensity |βm(ω)|2 quantifies the amount of energy stored in the
normal mode m at the frequency ωm.

The mode volume as it appears in the famous Purcell factor formula first
stated by Purcell in 1946 [17] (cf. Eq 1.3) is defined as the ratio between the
total energy in the normal mode (Um ≡ 1) and the maximum value of the
density of electric energy max(ε|Em|2/2)

Vm =

�

V
ε|Em|2 + µ0|Hm|2dr

maxr{ε(r)|Em|2(r)}
=

2Um

maxr{ε(r)|Em|2(r)}
. (1.13)

In this thesis, we also use a practically convenient definition of an effective
mode volume

Vm,eff(r) ≡
2Um

ε(r)|Em|2(r)
≥ Vm. (1.14)

This effective mode volume accounts for the spatial dependence of the density
of energy, and is relevant in the common case where the emitter is not placed
at the maximum of the cavity field.

1.3.2. Non-Hermitian systems and quasinormal modes (QNM)
Although the normal mode formalism is a cornerstone of the classical and
quantum theory of light, real electromagnetic system systems are all dissi-
pative and dispersive. Indeed, a refractive index n � 1 always involves dis-
persion and absorption by Kramers-Kronig relations [113]. Also, for 3D lo-
calized resonances, radiation is unavoidable. While weak absorption and
radiation loss is often treated perturbatively with the Hermitian formalism
[114, 115], the fundamental tenets underlying normal mode theory evidently
fail. In some specifically symmetric geometries, the symmetry of the system
itself suggests an orthogonal set of basis functions on which to expand so-
lutions (e.g., plane waves in free space, vector spherical harmonics for Mie
spheres [116]). For arbitrary geometries, however, a generalization of the nor-
mal mode concept to describe dissipative resonances is highly desirable. To
this end, several groups are presently developing the formalism of so-called
quasinormal modes (QNMs) [117–123]. Here we provide a brief introduction to
the QNM formulation pioneered by Sauvan and coworkers [124], following
the review in Ref. [125].
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Similar to normal modes in the Hermitian formulation, quasinormal
modes are solutions of Maxwell equations in the absence of sources, but now
accounting for material dispersion and an outgoing wave condition (such
as Sommerfeld radiation condition, or perfectly matched (absorbing) layers
(PMLs)) [

0 iµ−10 ∇×
−iε−1(ω̃m)∇× 0

][
H̃m
Ẽm

]
= ω̃m

[
H̃m
Ẽm

]
. (1.15)

This eigenproblem yields a complete basis of QNMs at least when the res-
onator is immersed in a uniform background and when we consider the field
inside the resonator [126–128], with complex eigenfrequencies ω̃m = ωm +
iγm/2, where ωm is the resonance frequency as defined in the Hermitian for-
malism (Eq.(1.8)), and γm is the decay-rate of the resonance. The complete
basis, or more practically, a truncation of it, can then be used to describe the
response of complex environment to any excitation.

Figure 1.4: Quasinormal modes of real electromagnetic systems satisfy the outgoing-
wave boundary condition, and therefore always have at least radiation losses and a
complex resonance frequency ω̃m ≡ ωm + iγm/2. An important feature of this leaky
QNM is the exponential divergence of the field distribution for |r | → ∞ (roughly as

e+
γm
2c |r |).

A key feature of QNM is the fact that the electromagnetic field diverges
away from the resonators as |r| → ∞ (Fig.1.4) and therefore completness is
not guaranteed everywhere. Mathematically, this comes from the fact that the
wave-vector km = nω̃m/c is also complex in the far-field. If the propagation
term ei(ω̃mt−km |r|) converges in time for a decaying resonance, then it must
diverge in space. [124, 129, 130] This property intrinsically ensures that the
total power of the outgoing wave-front is conserved during propagation in a
lossless medium instead of decaying in time with a rate γm. Paradoxically, it
also implies that the density of electromagnetic energy diverges in space, and
that it is therefore nonsensical to normalize a QNM with Eq.(1.11). Instead,
a new normalization relationship based on reciprocity arguments has been
introduced by Sauvan et al. [124] that reads

�

Ω

∂ωε(ω)

∂ω

∣∣∣∣∣
ω̃m

Ẽm · Ẽm −µ0H̃m · H̃mdr ≡ 1. (1.16)
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The derivative now accounts for dispersion and, importantly, unconjugated
products Ẽm · Ẽm and H̃m · H̃m appear. It can be demonstrated that this nor-
malization leads to finite values when integrating over the whole space, while
for true normal modes of closed systems, the new normalization is equivalent
to Eq.(1.11) (modulo an inconsequential factor3 1/2). Another consequence of
the diverging electromagnetic energy density is the need to redefine the mode
volume since Eq.(1.14), and more generally the concept of energy stored in a
QNM, is not valid anymore [130, 131]. Sauvan et al. [124] therefore introduced
a complex-valued mode volume

Ṽm(r) ≡

�

Ω

∂ωε(ω)

∂ω

∣∣∣∣∣
ω̃m

Ẽ2
m −µ0H̃2

mdr

2ε(r)Ẽ2
m(r)

. (1.17)

It can be shown that the spontaneous emission factor in a cavity, i.e. the Purcell
factor, reads as in this formalism

Fm ≡
3

4π2

(λm

n

)3
Re

(
Qm

Ṽm

)
. (1.18)

Beyond the mere replacement of V −1m by ReṼ −1m in Fm, the complex nature of
the mode volume has also a more fundamental implication on the frequency
dependence of the emission rate enhancement

Γ

Γ0
= Fm

ω2
m

ω2

γ2
m/4

(ω −ωm)2 + γ2
m/4

[
1+ 2Qm

ω −ωm

ωm

Im Ṽm

Re Ṽm

]
. (1.19)

The response is no longer Lorentzian in the general case, and can even be
negative. However, in the case where the contribution of one QNM is indeed
negative, it simply means that at least one other QNM has a positive LDOS
that balances the negative one. Surprisingly for those trained by the Hermitian
theory of subsection 1.3.1, the enhancement is generally not maximum at the
resonance frequency, i.e. when the emitter and the resonance are matched in
frequency (see Eq.(1.19)).

The benefit of expressing properties in just a few dominant QNM contribu-
tions is not only conceptual, but also computational. QNMs can be computed
with frequency-domain full wave solvers quickly, and can then be used to
construct any observable over a wide spectral range (set by the spectrum of the
object). This should be constrasted to usual full-wave solving, in which each
incidence condition and frequency requires a new simulation. Importantly,
this benefit extends to dispersive permittivities. The QNM eigenproblem for-
mulated in Eq.(1.15) is not only non-Hermitian, but also non-linear in case of

3Note that if we assume a closed, lossless system, the electric field is real, while the magnetic field
is imaginary. This leads to a negative H̃m · H̃m.
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frequency dependence of the permitivity ε(ω). For arbitrary dispersion, this
means that solving for QNM either requires cumbersome iterative algorithm
[132], or a local linearization of ε(ω) to make use of efficient linear solvers,
at the expense of the exactness of the solution. Over the last few years, ef-
forts have been made to tackle this issue in different numerical frameworks
(FEM, FDFD, RCWA,...) [133], and an elegant solution has been found in
the important case of materials which can be described by a N -pole Lorentz-
Drude model ε(ω) = ε∞ − ε∞

∑N
i=1ω

2
p,i/(ω

2 −ω2
0,i − iωγi), with plasma fre-

quencies ωp,i , damping coefficients γi , resonant frequencies ω0,i and offset ε∞.
It was proposed [125] that the addition of auxiliary fields Pi = −ε∞ω2

p,i/(ω
2 −

ω2
0,i − iωγi)E and Ji = iωPi , allows one to derive a linear eigenproblem from

Eq.(1.15). This expanded formulation then yields higher dimensional fields
|ψ〉= [H;E;P;J], and on this new space, and an inner product can be defined.

〈ψ|D̂|ψ′〉 ≡ 1
2

�

V
ε∞E·E′−µ0H·H′+ω2

0/(ε∞ω
2
p)P·P′−1/(ε∞ω

2
p)J·J′dr, (1.20)

with D̂ = diag{−µ0,ε∞,ω2
0/(ε∞ω2

p),−1/(ε∞ω2
p)}. This leads to the existence

of the orthogonality relationship between eigenvectors [134]

〈ψ̃∗m|D̂|ψ̃n〉= δm,n, (1.21)

where |ψ̃i〉 = [H̃i ; Ẽi ; P̃i ; J̃i ] with i = m,n are the eigenvectors, still formally
associated to the same complex eigenfrequencies ω̃i solved for in Eq.(1.15). It
can then easily be shown that one obtains the same normalization condition
as in Eq.(1.16) for the eigenvectors. Furthermore, the inner product applied
between a source and QNMs leads to semi-analytical expressions for the exci-
tation coefficients βm used in the field decomposition presented in Eq.(1.12)

βm(ω,ED) =

�

res
Ẽm(r) ·

(
−ω̃m

ω − ω̃m
[ε(ω̃m)− εb] + [εb − ε∞]

)
ED(ω,r)dr,

(1.22)
where the overlap integral between the QNM electric field Ẽm and the driving
field ED runs over the volume of the resonator. The analyticity of the decom-
position can be exploited outside of the frequency domain, and can be used
to predict the (linear) temporal response of resonators excited by short pulses
[135].

A very common treatment of Maxwell equations involves the use of Green
functions [16]. A Green function is defined for a system as a bi-linear mapping
of space with coordinate r and r′ , G(r,r′ ,ω) such that the electric field E(r,ω)
emitted by a dipole p(r′) placed at a position r′ writes

E(r,ω) = µ0ω
2G(r,r′ ,ω)p. (1.23)

The Green function of a system basically contains all the information required
to understand the response to any excitation, at any frequency and for any
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where the overlap integral between the QNM electric field Ẽm and the driving
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A very common treatment of Maxwell equations involves the use of Green
functions [16]. A Green function is defined for a system as a bi-linear mapping
of space with coordinate r and r′ , G(r,r′ ,ω) such that the electric field E(r,ω)
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point in space. However, if there exists analytical expressions for simple sys-
tems, for instance homogeneous media [16], more complicated geometries
such as cavities can, on some conditions, rely on QNM expansions [117, 136].
In Chapters 2, 4 and 5, in the case of a cavity in a homogeneous background,
we use the following expansion for the Green function [137]

G(r,r′ ,ω) =G0(r,r
′ ,ω) +

∑
m

−ω̃m

ω − ω̃m
Ẽm(r)⊗ Ẽm(r

′), (1.24)

where G0(r,r′ ,ω) the Green function of an homogeneous background (vac-
uum). For practical applications, we truncate the QNM basis to one or two
QNMs of interest to restore some analyticity, however at the expanse of exact-
ness.

The quasinormal mode formalism has been shown to be a powerful
formalism for quantitatively predicting the scattering properties and LDOS
enhancement characteristics of both plasmonic and dielectric photonic
resonators. A select body of work has considered the coupling of several
photonic objects, from on one hand, the viewpoint of hybridization of
resonances viewed as a problem of coupled QNMs [138], and on the other
hand, the viewpoint of perturbation of a QNM by a small scattering object
[139, 140]. When a resonator is perturbed by a small object, one expects a
shift in its resonance frequency and a change in its linewidth. The theory of
perturbation of an optical resonator has a long standing history, with original
contributions due to Bethe and Schwinger in optics [27] and Waldron in
the radio-frequency domain [26, 141]. The perturbation theory for optical
resonators has also been demonstrated to benefit immensely from a proper
QNM treatment of losses [139, 140, 142]. With a QNM treatment, Eq.(1.4)
becomes

∆ω̃m

ω̃m
= − α

2Ṽm
, (1.25)

and now predicts complex-valued frequency shifts, i.e. resonance frequency
shifts, but also the change in decay rate, in particular the one due to changes
in radiation losses. Indeed, the complex mode volume Ṽm(r) contains phase
information needed to describe the interference between the field radiated by
the QNM, and the one scattered by a perturbation placed at r.

1.4. Motivation and outline
This thesis studies the hybridization of eigenmodes of nano- and micro-
resonators, and in particular the properties of hybrid resonators composed
of a dielectric cavity and plasmonic nanoantennas. The motivation of this
work can be summarized as three main questions: Can we control the
scattering of a hybrid resonator into far-field and/or guided modes using
not only one, but an array of plasmonic antennas phased through their
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electromagnetic interaction with a photonic resonator? Do we then still
benefit from the superior Purcell factor allowed by photonic-plasmonic
hybridization as reported for single antenna-cavity systems? Can we define
versatile theoretical and numerical tools pertinent to the design of assemblies
of micro- and nanoresonators, with tailored properties? This thesis addresses
these questions through theoretical studies within the quasinormal mode
formalism, as well as experimental studies of hybrid resonators composed of
Si3N4 microdisk cavities and aluminium antennas.

Chapter 2, discusses the relevance of the quasinormal modes (QNM) for-
malism, originally introduced for lossy plasmonic resonators, in the context of
the perturbation of high quality factor cavities by small objects. We show that
the complex mode volume of a photonic cavity can be directly revealed by
measurements of the changes in the quality factor Q of the cavity perturbed
by a tiny probing object. We present an extension of the QNM formulation of
perturbation theory and discuss its range of validity.

In Chapter 3, we present a semi-analytical formalism, based on a
generalized linear eigenproblem, to construct the QNMs of ensembles
of 3-dimensional resonators from the knowledge of the QNMs of the
individual constituents of the ensemble. In essence, this is a proposition
for the quasinormal mode equivalent of hybridization theory or coupled QNM
theory, a commonly used language to describe the coupling of normal modes.
Our proposition enables one to estimate resonance frequencies and decay
rates, but also to quantify observables such as extinction and scattering
cross-sections, and near-field field distribution.

In Chapter 4, we study a hybrid structure composed of a microdisk cavity
supporting a pair of degenerate whispering gallery modes, dressed by two
plasmonic antennas placed at the circumference of the microdisk. We first
theoretically predict interesting directionality and enhanced LDOS proper-
ties. Next, we relate the directionality to the spectral properties of the two
perturbed cavity modes, and explain the importance of the relative position
of the two antennas. We then present spectroscopic evidence for the predicted
mode structure collected on an experimental realization of the system in a
platform composed of silicon nitride disks and aluminium antennas. The
measurements demonstrate the tunability of the spectral properties of the
modes as a function of the relative distance between the antennas.

In Chapter 5, we demonstrate the interest of hybrid platforms composed
of a microdisk cavity dressed by an azimuthally distributed array of antennas
in the context of generation beams carrying orbital angular momentum (OAM).
In particular, after carefully studying the scattering and resonant properties of
such structures, we propose a design which enables the emission of pure OAM
associated with a single state of polarization. An experimental realization
validates our concept.

Finally, Chapter 6 investigates theoretically the relevance of hybrid res-
onators composed of a single antenna and a single cavity in the context of
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point in space. However, if there exists analytical expressions for simple sys-
tems, for instance homogeneous media [16], more complicated geometries
such as cavities can, on some conditions, rely on QNM expansions [117, 136].
In Chapters 2, 4 and 5, in the case of a cavity in a homogeneous background,
we use the following expansion for the Green function [137]
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resonators, and in particular the properties of hybrid resonators composed
of a dielectric cavity and plasmonic nanoantennas. The motivation of this
work can be summarized as three main questions: Can we control the
scattering of a hybrid resonator into far-field and/or guided modes using
not only one, but an array of plasmonic antennas phased through their
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electromagnetic interaction with a photonic resonator? Do we then still
benefit from the superior Purcell factor allowed by photonic-plasmonic
hybridization as reported for single antenna-cavity systems? Can we define
versatile theoretical and numerical tools pertinent to the design of assemblies
of micro- and nanoresonators, with tailored properties? This thesis addresses
these questions through theoretical studies within the quasinormal mode
formalism, as well as experimental studies of hybrid resonators composed of
Si3N4 microdisk cavities and aluminium antennas.

Chapter 2, discusses the relevance of the quasinormal modes (QNM) for-
malism, originally introduced for lossy plasmonic resonators, in the context of
the perturbation of high quality factor cavities by small objects. We show that
the complex mode volume of a photonic cavity can be directly revealed by
measurements of the changes in the quality factor Q of the cavity perturbed
by a tiny probing object. We present an extension of the QNM formulation of
perturbation theory and discuss its range of validity.

In Chapter 3, we present a semi-analytical formalism, based on a
generalized linear eigenproblem, to construct the QNMs of ensembles
of 3-dimensional resonators from the knowledge of the QNMs of the
individual constituents of the ensemble. In essence, this is a proposition
for the quasinormal mode equivalent of hybridization theory or coupled QNM
theory, a commonly used language to describe the coupling of normal modes.
Our proposition enables one to estimate resonance frequencies and decay
rates, but also to quantify observables such as extinction and scattering
cross-sections, and near-field field distribution.

In Chapter 4, we study a hybrid structure composed of a microdisk cavity
supporting a pair of degenerate whispering gallery modes, dressed by two
plasmonic antennas placed at the circumference of the microdisk. We first
theoretically predict interesting directionality and enhanced LDOS proper-
ties. Next, we relate the directionality to the spectral properties of the two
perturbed cavity modes, and explain the importance of the relative position
of the two antennas. We then present spectroscopic evidence for the predicted
mode structure collected on an experimental realization of the system in a
platform composed of silicon nitride disks and aluminium antennas. The
measurements demonstrate the tunability of the spectral properties of the
modes as a function of the relative distance between the antennas.

In Chapter 5, we demonstrate the interest of hybrid platforms composed
of a microdisk cavity dressed by an azimuthally distributed array of antennas
in the context of generation beams carrying orbital angular momentum (OAM).
In particular, after carefully studying the scattering and resonant properties of
such structures, we propose a design which enables the emission of pure OAM
associated with a single state of polarization. An experimental realization
validates our concept.

Finally, Chapter 6 investigates theoretically the relevance of hybrid res-
onators composed of a single antenna and a single cavity in the context of
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molecular optomechanics. We show that hybrid resonators respect the com-
monly accepted factorization of the enhancement of Raman scattering as a
pump and an LDOS effect. This factorization consequently ensures a spectral
selectivity of the collected Raman signal in the output channels of the cavity,
and provides simple design rules for molecular optomechanics.
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MAPPING COMPLEX MODE

VOLUMES WITH CAVITY
PERTURBATION THEORY

2.1. Introduction
Predicting how the presence of a tiny foreign object near a resonant optical
cavity perturbs the optical response is a classical problem in electromagnetics,
with important implications spanning from the radio-frequency domain to
present-day nano-optics. The perturbation results in a modification ∆ω̃ of
the initial complex resonance frequency ω̃ ≡ ω0 + iγ0/2 of the unperturbed
cavity mode, Re∆ω̃ and Im∆ω̃ respectively representing the frequency shift
and linewidth change. For a tiny perturbation quantified by a dipolar polar-
izability α (assumed small and isotropic) and placed at r0, ∆ω̃ usually reads
as

∆ω̃
ω̃
≈
−αε(r0)|Ẽ(r0)|

2

�
ε|Ẽ|2 + µ0|H̃|

2
d3r
≡ −α
2V (r0)

, (2.1)

where ε is the permittivity of the unperturbed cavity, ε0 and µ0 are vacuum
permittivity and permeability, and Ẽ and H̃ are the unperturbed-cavity-mode
electric and magnetic fields. The seminal Eq.(2.1) has been initially proposed
by Bethe and Schwinger in optics [27], and Waldron in the radio frequency
domain [26, 141], and has been used in similar variants until recently [143–
146]. For convenience, we have introduced the mode volume V . The concept
of cavity V was initially proposed by Purcell [17] and then promoted as a
real-valued positive quantity in the field of cavity quantum electrodynamics.
This energy-based expression, which suggests positioning the quantum object
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at the field-intensity maximum, can be theoretically derived for Hermitian
systems [43]. It can be useful for monomode photonic crystal cavities, but
becomes unfounded for systems involving coupled-modes (even high Qs) and
for the important case of low-Q plasmonic cavities. The mode volume V is
usually defined for an assumed dipole placed exactly at the field-intensity
maximum, where the coupling is also maximum. For convenience, we rather
consider a spatially-dependent mode volume to directly take into account the
dependence of ∆ω̃ on the perturber position.

Equation (2.1) has the merit of being intuitive and easy to evaluate, since
∆ω̃ solely depends on the unperturbed mode. It has been widely used for
determining the dielectric and magnetic parameters of materials or testing
the functionalities of microwave circuit components [141], and in the optical
domain, to detect [55, 147] or trap [146] nanoparticles, tune the resonance of
photonic-crystal (PhC) cavities [143, 148–153], analyse the impact of fabrica-
tion imperfections on these cavities [144], or study magnetic-like light-matter
interactions [145, 154]. Remarkably, Equation (2.1) cannot accurately predict
perturbation-induced changes of the quality factor, Q= − Re ω̃

2Im ω̃ . In particular,
it predicts that changes in cavity loss rate follow the exact same spatial de-
pendence as changes in the real frequency, with the sign of the polarizability
setting the sign of the change in loss rate. This issue is known since the
very beginning of perturbation theory and is sometimes accounted for by
appending an additional flux-like term to Eq.(2.1) [141], even in recent works
[153]. This term unfortunately requires solving the perturbed problem.

With the recent advent of theoretical results on the normalization of leaky
resonator modes [124, 155, 156], it becomes evident that cavity perturbation
theory cannot rely on modes with a normalization based on energy. Instead
quasinormal-mode (QNM) formalism may account for the non-Hermitian
character of the problem. Thus it has been proposed recently that Eq.(2.1) is
conveniently replaced by

∆ω̃
ω̃
≈

−αε(r0)Ẽ2
�

εẼ2 −µ0H̃2d3r
≡ −α
2Ṽ (r0)

. (2.2)

The sole difference between Eqs.(2.1) and 2.2) is the replacement of the real
modal volume V by a complex one, Ṽ which is calculated from the QNM field
distribution (Ẽ, H̃). So far, only purely computational studies have been used
to test the predictive force of Eq.(2.2) and the studies targeted highly-non-
Hermitian systems, e.g., low-Q plasmonic nanoantennas [139] and metallic
gratings [122, 125, 157].

Important open questions surround the proposed alternative perturba-
tion formula, Eq.(2.2). For instance, even if it is evident that strongly non-
Hermitian systems like low-Q plasmonics require a revised perturbation the-
ory, one may wonder which genuine benefits, if any, can be expected from
Eq.(2.2) for high-Q microcavities since these operate in a manner closely anal-
ogous to Hermitian systems with infinitesimal absorption or leakage [158].
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More fundamentally, the question arises in QNM theory whether the concept
of complex mode volume introduced in [124] is just an abstract mathematical
construct, or carries true physical significance. In particular, the question of
the physics captured by ImṼ in Eq.(2.2) arises, for which simple intuitive
arguments have not yet been presented in earlier works [125, 139]. Finally,
we note that no experiment has validated Eq.(2.2) so far. Even beyond the
question whether this equation correctly captures real perturbation experi-
ments, such an experiment could for the first time test if QNMs, which are
widely regarded as difficult mathematical objects with complex frequencies
and divergent fields, are in fact directly measurable physical quantities that
can be mapped through unique signatures in experiments. This chapter aims
to answer these questions. We show that quasinormal mode formalism is
relevant, if not even stricly necessary, to describes high-Q resonators. In par-
ticular in the context of cavity perturbation, QNM formalism predicts changes
in quality factors arising from modification in radiative losses induced by a
perturbation, inaccessible to conventional Hermitian theories, and we confirm
this fact thanks to confrontation to experimental results obtained with pho-
tonic crystal cavities. Then, as a direct consequence of the relation between
∆ω̃ and Ṽ in Eq.(2.2), we show that perturbation measurements of ∆ω̃ allow
for a direct mapping of the spatial distribution of Ṽ . This is an important
result since Ṽ determines the local density of electromagnetic states (LDOS)
of resonators and thus is deeply involved in important light-matter interaction
phenomena in non-Hermitian open systems [124, 125]. We also conclusively
clarify the physics captured by ImṼ . Finally, we provide the first analysis
of the validity domain of Eq.(2.2), pinpointing the physics that causes the
breakdown even of revised perturbation theory1.

2.2. QNM Perturbation theory
We provide in subsection 2.2.1 a derivation of Eq.(2.2) by using QNM ex-
pansion with the scattering-field formulation. Equation (2.2) was derived in
the same exact form in [139] using straightforward mathematics essentially
based on the divergence theorem. Interestingly, we note that the divergence
theorem leads to an exact expression for ∆ω̃ (see Eq.(4) in [139]) which is
valid for any reciprocal system and naturally leads to the important local field
corrections for the QNM field Ẽ at the position of the perturber. Equation (2.2)
can also be quite straightforwardly derived from early works [159] on the
exact perturbation theory of open systems using QNM expansions. Here we
use the word exact to emphasize that if many (up to an infinity) QNMs of the
unperturbed system are known, the QNMs of the perturbed systems can be
exactly computed as the eigen vector of a generalized eigenvalue problem (see
Eq.(2.14) in [159]), as long as we assume that the QNMs form a complete basis.

1This Chapter is an expanded version of [140], and based on the work [139].
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We also refer to the more recent work in the group of Muljarov [117, 136],
which essentially conveys the same approach in the so-called resonant state
expansion. Similar to the approach they took, we adopt a QNM expansion, but
instead of assuming that the Green tensor (a singular quantity) of the cavity
can be expanded in the QNM basis, we assume that the regular scattered
Green tensor ∆G (see below for a definition) is expandable. This approach,
used for instance for a theoretical study of superradiance assisted by a res-
onance [137], converges much faster and does not require more complicated
mathematics. We simply need to use a scattered field formulation [124, 125].
In subsection 2.2.2, we numerically test the validity of Eq.(2.2) with a L3 pho-
tonic crystal cavity perturbed by a tiny air sphere placed in median symmetry
plane of the photonic crystal slab.

2.2.1. Derivation of QNM perturbation theory
We start our derivation by considering a scattering problem with an external
source that is illuminating a complex medium in which a tiny scatterer is
placed at r0 [137, 160]. Here the isotropic but non-homogeneous permittivity
ε(r,ω) will describe the unperturbed cavity, while the scatterer represented
by ∆ε(r,ω) represents the perturbation. The total field [E,H] satisfies


∇×E = −iωµ0H
∇×H = iωεE+ iω∆εE+ Jb,

(2.3)

where Jb(r,ω) is the driving current distribution. The total field for the unper-
turbed system in absence of the scatterer satisfies


∇×Eb = −iωµ0Hb

∇×Hb = iωεEb + Jb,
(2.4)

while the field scattered by the scatterer [ES ,HS ] = [E,H]− [Eb,Hb] obeys

∇×ES = −iωµ0HS

∇×HS = iωεES + iω∆εE.
(2.5)

We focus on perturbations small enough such that the point dipole ap-
proximation applies, in which case we can identify the perturber as a Dirac
distribution iω∆ε(r,ω)E(r) ≡ iωpδ(r−r0), with p the induced dipole moment
of the perturbation. It immediately follows that ES (r) = µ0ω

2G(r0,r,ω)p,
with G(r′ ,r,ω) the Green tensor of the bare cavity [16].

Without loss of generality, we separate the Green function into a back-
ground Green tensor G0(r0,r,ω) appropriate to a uniform medium of permit-
tivity ε(r0,ω), taken as the medium at the location of the perturbation, plus a
scattered Green tensor ∆G≡G−G0 that is regular. Thus, if the system is driven,
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the dipole causes a scattered field µ0ω
2∆G(r0,r,ω)p. With this definition, the

total incident field driving the dipole is the sum of the driving field Eb(r,ω)
and the field scattered by the resonator µ0ω2∆G(r0,r0,ω)p,

p= αε
{
Eb + µ0ω

2∆Gp
}
, (2.6)

where our definitions imply that α is the polarizability of the perturbation.
We now expand the regular Green tensor over the (assumed) complete

basis of quasinormal modes. We are interested in the perturbation of a single
cavity mode, labelled N . Therefore we further isolate the contribution of the
cavity mode N in ∆G

∆G(r,r′ ,ω) = ∆GN (r,r
′ ,ω) + δG(r,r′ ,ω), (2.7)

where all modes except the cavity mode are gathered in the term δG(r,r′ ,ω)
while the Green function contribution due to the cavity mode reads [117, 125,
136]

µ0ω
2∆GN (r,r

′ ,ω) =
−ω̃N

ω − ω̃N
ẼN (r)⊗ẼN (r

′). (2.8)

We now have all ingredients at hand for the perturbation problem. As we
aim to find the (perturbed) eigenmode, we require a solution of Eq.(2.5) in
absence of driving (Eb = 0), and for a frequency ω̃ close to ω̃N , i.e, close to
the unperturbed quasinormal mode itself. By exploiting Eqs.(2.6 and 2.7), in
absence of driving, Eq.(2.5) becomes a non-linear eigen-problem

p= αε

[
−ω̃N

ω̃ − ω̃N
ẼN⊗ẼN + µ0ω

2δG
]
p. (2.9)

For the typical case of a microcavity (GHz linewidth), we can safely neglect
variations of α on the scale of the frequency shift ∆ω̃ ≡ ω̃ − ω̃N . Multiplying
Eq.(2.8) by ∆ω̃, and performing a 1st order expansion leads to a generalized
linear eigen-problem

∆ω̃
ω̃N

[1−αεµ0ω2δG(ω̃N )]p ≈ −
[
αεẼN ⊗ ẼN

]
p. (2.10)

This system can be reduced to a scalar linear equation

∆ω̃
ω̃N
≈ −ẼN

[
1−µ0ω2αεδG

]−1
αεẼN . (2.11)

Evidently, for weak perturbations
∣∣∣µ0εω2αδG

∣∣∣� 1 and Eq.(2.11) simplifies to

∆ω̃
ω̃N
≈ −ẼN ·αεẼN , (2.12)

which leads to the the result of [139] and Eq.(2.2) for isotropic perturbation
α = α1.
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′). (2.8)

We now have all ingredients at hand for the perturbation problem. As we
aim to find the (perturbed) eigenmode, we require a solution of Eq.(2.5) in
absence of driving (Eb = 0), and for a frequency ω̃ close to ω̃N , i.e, close to
the unperturbed quasinormal mode itself. By exploiting Eqs.(2.6 and 2.7), in
absence of driving, Eq.(2.5) becomes a non-linear eigen-problem

p= αε

[
−ω̃N

ω̃ − ω̃N
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∣∣∣µ0εω2αδG

∣∣∣� 1 and Eq.(2.11) simplifies to

∆ω̃
ω̃N
≈ −ẼN ·αεẼN , (2.12)

which leads to the the result of [139] and Eq.(2.2) for isotropic perturbation
α = α1.
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2.2.2. Predicting changes in quality factor Q
We study the pertinence of Eq.(2.2) for high-Q cavities using as a well known
example, the L3 photonic crystal cavity [42, 161] shown in Fig. 2.1(a). In
this initial theoretical study, the perturber is assumed to be a small air
sphere placed right in the symmetry plane where the mode strength is
maximum. We simulate a finite crystal immersed in air, with 8 rows of holes
surrounding the cavity, and compute the resonance mode of the unperturbed
and perturbed cavity with the QNM-solver QNMEig [134] implemented in
COMSOL Multiphysics. QNMEig provides normalized QNMs

[
Ẽ,H̃

]
, with�

(εẼ2 −µ0H̃2)d3r = 1, and Ṽ (r0) is simply given by (2ε(r0)Ẽ2(r0))
−1. We

compare the complex resonance shift ∆ω̃ of the fundamental mode predicted
with Eq.(2.2) with the exact shift ∆ω̃ computed as the difference of the
complex resonance frequencies of the perturbed and the unperturbed QNMs.
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Figure 2.1: Numerical test of Eq.(2.2) showing its substantial superiority for predicting
Q-change. (a) Simulated L3 photonic crystal cavity, formed by a 2D triangular lattice of
air holes in silicon slab (n = 3.42). Lattice constant a = 0.42 µm, slab thickness 0.6a and
holes radii 0.29a. Following [42, 161], we displace the 2 holes of a distance d = 0.18a. (b)
Mode profile ||Ẽ|| for the fundamental TE mode, Q = 9.2× 104 and λ = 1.575 µm. (c),(d)
Frequency shift and linewidth change of the resonance as a function of the position of a
20 nm-diameter air sphere perturbation in the median plane of the PhC slab, along the
cavity long axis x. Blue squares are FEM calculations made with COMSOL Multiphysics,
green dot-dashed line is obtained with Eq.(2.1), and red solid line with Eq.(2.2).

Figures. 2.1(c) and (d), show the frequency shift and change in quality
factor as the perturbation (diameter 2R = 10 nm) position is varied along
the main cavity centerline. The frequency shift ∆ω0 is normalized by the

36

2

2.2. QNM PERTURBATION THEORY

unperturbed resonance linewidth γ0. To quantify the change in linewidth ∆γ0
we plot the (relative) change in quality factor ∆Q/Q0, where Q0 ≡ ω0/γ0. To
compare full simulations and perturbation formalism, we take the polarizabil-
ity of the perturbation equal to the Rayleigh’s quasi-static expression αstatic =

4πR3 1−εSi/ε0
1+2εSiε0

13, an approximation that is likely to be relatively accurate since
the scatterer is deeply subwavelength. Figure. 2.1(c) shows an excellent agree-
ment between the perturbation formula and the exact frequency shift. This
result does not come as a surprise, as it is well established that Eq.(2.1), which
is based on energy density arguments and therefore its refined version that is
Eq.(2.2), accurately predicts resonance shifts - Re Ẽ · Ẽ almost equals ||Ẽ||2 for
high-Q resonators. The change in linewidth follows a very different variation
as a function of the position of the perturber than the frequency shift (itself
proportional to the mode energy density). Importantly, this dependence is
well captured by Eq.(2.2), showing that the cavity Q can both decrease and
increase due to modifications of the scattering losses. These Q-changes are
encoded in Im Ẽ · Ẽ, and are inaccessible to Hermitian formalisms.

The success of Eq.(2.2) to predict Q-changes resides in the replacement of a
real mode volume by a complex one, and more precisely, of |Ẽ(r0)|

2 by Ẽ2(r0)
in the denominator of Ṽ . This replacement preserves the phase information
φ(r0) of the mode at the perturber location. For an intuitive picture that
explains why the phase is essential, consider a driving field impinging onto a
perturbed cavity. The field does not see the tiny perturber and in first instance
excites the cavity as if it were unperturbed. The cavity then directly scatters
in free space and also excites the perturber, which in turn re-excites the cavity
mode with a round-trip dephasing delay of 2φ(r0). The total radiated field by
the cavity results from the interference of the direct initial radiation and the
delayed one. Depending on whether these interferences are constructive or
destructive, the total cavity radiation can be higher or lower than the intrinsic
cavity radiation, possibly allowing for either an increase or a decrease of Q.
This a posteriori explains why Eq.(2.1), that relies on an Ẽ·Ẽ∗ product and hence
loses the phase information, fails to predict Q-changes.

In order to clarify the impact of the replacement for high-Q microcavities,
we consider perturbations formed by deep-subwavelength isotropic dielec-
tric perturbers (volume Vp , permittivity ∆ε + εb) that are introduced into a
background material of permittivity εb. In the static limit, the perturbers
act as point isotropic electric dipoles, with a polarizability proportional to
their perturber volume α = α′Vp1, α′ being a dimensionless coefficient. For
spherical perturbers at optical frequencies, α′ = 3∆ε

∆ε+3εb
with -1.5 < α′<3 for

perturbers with a positive permeability. Replacing α in Eq.(2.2), and assuming
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Figure 2.1: Numerical test of Eq.(2.2) showing its substantial superiority for predicting
Q-change. (a) Simulated L3 photonic crystal cavity, formed by a 2D triangular lattice of
air holes in silicon slab (n = 3.42). Lattice constant a = 0.42 µm, slab thickness 0.6a and
holes radii 0.29a. Following [42, 161], we displace the 2 holes of a distance d = 0.18a. (b)
Mode profile ||Ẽ|| for the fundamental TE mode, Q = 9.2× 104 and λ = 1.575 µm. (c),(d)
Frequency shift and linewidth change of the resonance as a function of the position of a
20 nm-diameter air sphere perturbation in the median plane of the PhC slab, along the
cavity long axis x. Blue squares are FEM calculations made with COMSOL Multiphysics,
green dot-dashed line is obtained with Eq.(2.1), and red solid line with Eq.(2.2).

Figures. 2.1(c) and (d), show the frequency shift and change in quality
factor as the perturbation (diameter 2R = 10 nm) position is varied along
the main cavity centerline. The frequency shift ∆ω0 is normalized by the
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unperturbed resonance linewidth γ0. To quantify the change in linewidth ∆γ0
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ity of the perturbation equal to the Rayleigh’s quasi-static expression αstatic =

4πR3 1−εSi/ε0
1+2εSiε0

13, an approximation that is likely to be relatively accurate since
the scatterer is deeply subwavelength. Figure. 2.1(c) shows an excellent agree-
ment between the perturbation formula and the exact frequency shift. This
result does not come as a surprise, as it is well established that Eq.(2.1), which
is based on energy density arguments and therefore its refined version that is
Eq.(2.2), accurately predicts resonance shifts - Re Ẽ · Ẽ almost equals ||Ẽ||2 for
high-Q resonators. The change in linewidth follows a very different variation
as a function of the position of the perturber than the frequency shift (itself
proportional to the mode energy density). Importantly, this dependence is
well captured by Eq.(2.2), showing that the cavity Q can both decrease and
increase due to modifications of the scattering losses. These Q-changes are
encoded in Im Ẽ · Ẽ, and are inaccessible to Hermitian formalisms.

The success of Eq.(2.2) to predict Q-changes resides in the replacement of a
real mode volume by a complex one, and more precisely, of |Ẽ(r0)|

2 by Ẽ2(r0)
in the denominator of Ṽ . This replacement preserves the phase information
φ(r0) of the mode at the perturber location. For an intuitive picture that
explains why the phase is essential, consider a driving field impinging onto a
perturbed cavity. The field does not see the tiny perturber and in first instance
excites the cavity as if it were unperturbed. The cavity then directly scatters
in free space and also excites the perturber, which in turn re-excites the cavity
mode with a round-trip dephasing delay of 2φ(r0). The total radiated field by
the cavity results from the interference of the direct initial radiation and the
delayed one. Depending on whether these interferences are constructive or
destructive, the total cavity radiation can be higher or lower than the intrinsic
cavity radiation, possibly allowing for either an increase or a decrease of Q.
This a posteriori explains why Eq.(2.1), that relies on an Ẽ·Ẽ∗ product and hence
loses the phase information, fails to predict Q-changes.

In order to clarify the impact of the replacement for high-Q microcavities,
we consider perturbations formed by deep-subwavelength isotropic dielec-
tric perturbers (volume Vp , permittivity ∆ε + εb) that are introduced into a
background material of permittivity εb. In the static limit, the perturbers
act as point isotropic electric dipoles, with a polarizability proportional to
their perturber volume α = α′Vp1, α′ being a dimensionless coefficient. For
spherical perturbers at optical frequencies, α′ = 3∆ε
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perturbers with a positive permeability. Replacing α in Eq.(2.2), and assuming
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that α′ is a real number, we get

Re∆ω̃
Re ω̃

≈ −α
′

2

[
Re

Vp

Ṽ
− 1
2Q

Im
Vp

Ṽ

]
(2.13a)

Im∆ω̃
Im ω̃

≈ −α
′

2

[
Re

Vp

Ṽ
+ 2Q Im

Vp

Ṽ

]
. (2.13b)

For high-Q photonic cavities, Im Ẽ� Re Ẽ and Re
Vp

Ṽ
≈ Vp

V �
1
2Q Im

Vp

Ṽ
(remem-

ber that V is the approximate (real) mode volume defined in Eq.(2.1)), so that
Eq.(2.13a) reduces to

Re∆ω̃ ≈ −ω0α
′ Vp

V
, (2.14)

which is exactly the shift predicted by Eq.(2.1). Note that this conclusion does
not hold for low-Q plasmonic resonators. Quite the contrary, the imaginary
part Im

Vp

Ṽ
cannot be neglected in general in Eq.(2.13b). Even for our micro-

cavity, Fig. 2.3(a) evidences that the imaginary part dominates over the real
part 1

2QRe
Vp

Ṽ
, i.e.,

Im
Vp

Ṽ
� 1

2Q
Re

Vp

Ṽ
(2.15a)

Im∆ω̃ ≈ −α
′

2
Re ω̃ Im

Vp

Ṽ
. (2.15b)

This mathematically justifies why Eq.(2.1) fails at predicting Im∆ω̃.

2.3. Near-field perturbation experiments
We had the opportunity to confirm our theory with cavity perturbation exper-
imental data gathered by the group of Massimo Gurioli, at LENS (Florence,
Italy) for a PhC cavity formed by four missing holes organized in an hexagonal
array of holes to test our formalism. In subsection 2.3.1 we present the primary
results obtained in the experiment, in particular the observation of decrease
but also increase in quality factor of the cavity when perturbed by a near-field
probe. Next, in subsection 2.3.2 we study the sample used in the experiment
with finite element method (FEM) simulations and confront Eq.(2.2) to the
numerical results, and in subsection 2.3.3, we analyse the domain of validity
of Eq.(2.2). Finally, in subsection 2.3.5, we apply the QNM perturbation theory
of Eq.(2.2) to interpret the experimental results presented in subsection 2.3.1
as the first experimental mapping of a complex cavity mode volume.

2.3.1. Experimental observation of complex frequency shift
The primary experimental results obtained at LENS are summarized in
Fig. 2.2. Electron beam lithography followed by reactive ion etching
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was used to fabricate the perforated air-membrane [151]. InAs quantum
dots emitting at 1300 nm and excited at 780 nm are embedded in the
GaAs membrane. The measurments were carried out using a commercial
Scanning Near-field Optical Microscope (NSOM) from TwinNSOM-Omicron
in illumination/collection configuration. The fibre tip, a chemically etched,
uncoated near-field fibre probe [151], plays the role of the perturber and the
probe. It is raster scanned at a constant height above the membrane surface,
and for each position, the fluorescence spectrum is recorded, see Appendix
(Section 2.5) for details. By fitting the recorded lineshape with a Lorentzian
profile, the resonance wavelength and the Q can be inferred. Three spectra
recorded for three tip positions, labeled A, B and C in Fig. 2.2(a), are plotted
in Fig. 2.2(c). The perturbation is dominantly localized at the tip apex, while
the fluorescence intensity is collected at the apex and along the tip sides
(the intensity only decreases by a factor 2 between z = 0 and z = 300 nm).
Then the perturbation position can be finely tuned, while maintaining nearly
constant the signal-to-noise ratio of the fluorescence measurements.

Figure 2.2: Experimental results obtained at LENS. (a) Sketch of the PhC cavity. (b)
Wavelength-shift map as the tip is scanned over the cavity, with superimposed holes. (c)
Photoluminescence recorded for 3 tip positions, A, B and C shown in (a). Curves are
Lorentzian fits of the data small points. The black and red points are blue-shifted by 0.05
and 0.08 nm to ease the visual comparison for cavity Q’s. (d) Perturbation-induced Q
map. (e) Q as a function of the offseted distance z − dmin between the tip and the PhC
membrane. Conclusively, the same tip may either enhance or decrease the intrinsic Q =
2300±40, depending on its position. The PhC parameters are: lattice period a = 331 nm,
hole diameter ≈ 206 nm, and GaAs-membrane thickness 320 nm.

The results, shown with the resonance-shift map in Fig. 2.2(b), are in quan-
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Ṽ
− 1
2Q

Im
Vp

Ṽ
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titative agreement with previous reports [143, 150, 151, 162] showing reso-
nance red-shifts with tiny dielectric perturbers. The spatial resolution, which
defines the dimension of the tip perturbation, is estimated to be ≈ 70 nm.
More importantly in the present context are the tip-induced variations of Q,
whose map in Fig. 2.2(d) shows both Q-increases and Q-decreases for the first
time2. In order to link all these observations to the intrinsic cavity Q (without
perturber), the NSOM scans are additionally repeated for different tip dis-
tances d with respect to the membrane interface. Note that the minimum sep-
aration distance, dmin ≈ 30 nm, depends on the tip-interface interaction and
cannot be accurately measured. The data recorded for the three tip positions
are given in Fig. 2.2(e). The three series of data all tend to Q = 2300 ± 40,
which is also the intrinsic Q value measured when the tip is 1 µm away from
the sample. An important and simple outcome of Figs. 2.2(c-e) is that the same
perturber may either increase Q (point A), leave Q unchanged (point C) or
decrease Q (point B). Therefore the present hyperspectral mapping of the of
the QNM near field refutes the general validity of Eq.(2.1). Further analysis of
the experimental ∆ω̃ map will be provided afterwards.

2.3.2. Numerical predictions for the studied sample
In this section, we confront Eq.(2.2) to the experimental results of subsec-
tion 2.3.1. We consider the same geometry and material as in the experiment
(the membrane refractive index is assumed to be 3.46), and replace the tip by
a point dipole with a polarizability equivalent to that estimated for the tip in
the experiment.

This presents the advantage to remove errors coming from the 3-
dimensional nature of our perturbation when comparing to our theory
which explicitly assumes perfect 0-dimensional electric dipole. This allows
us, in subsection 2.3.3, to discuss the limits of our formulation due to the
properties of the photonic environment rather than the perturbation itself.
We compute again the resonant mode of the unperturbed cavity with the
QNM-solver QNMEig [134]. However, COMSOL does not explicitly allow for
point perturbation. Therefore, on the same mesh as used with QNMEig, we
drive the system by a dipole source p placed at the position of the perturber
rp , and compute with COMSOL the field scattered back onto the dipole . This
allows us to retrieve the exact Green function ∆G(rp,rp,ω), which we then
use to iteratively look for the complex frequency ω (exact) solution to the
scattering problem of Eq.(2.6), leading to the exact value for the shift of the
cavity induced by a point perturbation.

The computed eigenfrequency is λ̃ = 2πc/ω̃ = 1364 + i0.13 nm, imply-

2Q-increases by modifying cavity geometry have been previously reported using slabs [152] and
scatterer gratings [153] in near fields, but not with a localized perturbation, nor with scanning
through the mode to determine the relation between Q-changes and mode distributions.
Perturbations by extended structures like slabs, have rather been understood as radiation pattern
engineering to control Q.
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ing that the computed Q is twice larger than the experimental one, probably
because of losses induced by layer absorption, surface roughness or other
extrinsic effects. A spatial map of |Ẽ|2 in a plane 30-nm above the cavity
surface is shown in Fig. 2.3(a).

Figure 2.3: Numerical test of Eq.(2.2) for the cavity used in the experiment. (a) Maps of
|Ẽ|2. (b) Comparison between the ∆Q maps predicted with Eq.(2.2) (left) and exact values
(right) for α = 166α0. (c) Validity of Eq.(2.2) for increasing values of the polarizability
and for the three tip positions, A, B and C, used in the experiment. α0 denotes the
static polarizability of a 10-nm-radius silica sphere in air, so that the full horizontal scale
covers silica spheres with radii from 10 to 70 nm. Note that Eq.(2.1) predicts ∆Q = 0 for
all positions and all α. In (b) and (c), the point dipole perturber is assumed to be located
in a plane 30 nm above the semiconductor PhC membrane, and the exact values are
computed by iteratively searching the complex-frequency pole of Eq.(2.6) for Eb = 0 with
the regularized scattering tensor ∆G(r,r′ ,ω) computed with COMSOL Multiphysics.

Figure 2.3(b) compares the ∆Q’s predicted with Eq.(2.2) with exact values
computed by solving the perturbed cavity. The data are obtained for a dipole

polarizability α = 4πR3 εSiO2/ε0−1
εSiO2/ε0+2 corresponding to the static polarizability of

a silica (εSiO2
= 2.25ε0) nanosphere in air of radius R = 55 nm. Since we use

exactly the same mesh for the two computations, numerical dispersion is neg-
ligible and the comparison strictly quantifies the error due to the single mode
approximation. Figure 2.3(c) compares the ∆Q predictions of Eq.(2.2) with
exact numerical values for increasing values of the perturber polarizability α.
Three perturber locations, corresponding to the three tip positions used in the
experiment, are considered. Remarkably, our key experimental observation
that the same perturber may either decrease or increase Q as its position is var-
ied, independently of the wavelength-shift sign, is well captured by Eq.(2.2).
This confirms that QNM formalism indeed accounts for the non-Hermitian
nature of photonic resonators, even in the context of high quality factors Q.
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titative agreement with previous reports [143, 150, 151, 162] showing reso-
nance red-shifts with tiny dielectric perturbers. The spatial resolution, which
defines the dimension of the tip perturbation, is estimated to be ≈ 70 nm.
More importantly in the present context are the tip-induced variations of Q,
whose map in Fig. 2.2(d) shows both Q-increases and Q-decreases for the first
time2. In order to link all these observations to the intrinsic cavity Q (without
perturber), the NSOM scans are additionally repeated for different tip dis-
tances d with respect to the membrane interface. Note that the minimum sep-
aration distance, dmin ≈ 30 nm, depends on the tip-interface interaction and
cannot be accurately measured. The data recorded for the three tip positions
are given in Fig. 2.2(e). The three series of data all tend to Q = 2300 ± 40,
which is also the intrinsic Q value measured when the tip is 1 µm away from
the sample. An important and simple outcome of Figs. 2.2(c-e) is that the same
perturber may either increase Q (point A), leave Q unchanged (point C) or
decrease Q (point B). Therefore the present hyperspectral mapping of the of
the QNM near field refutes the general validity of Eq.(2.1). Further analysis of
the experimental ∆ω̃ map will be provided afterwards.

2.3.2. Numerical predictions for the studied sample
In this section, we confront Eq.(2.2) to the experimental results of subsec-
tion 2.3.1. We consider the same geometry and material as in the experiment
(the membrane refractive index is assumed to be 3.46), and replace the tip by
a point dipole with a polarizability equivalent to that estimated for the tip in
the experiment.

This presents the advantage to remove errors coming from the 3-
dimensional nature of our perturbation when comparing to our theory
which explicitly assumes perfect 0-dimensional electric dipole. This allows
us, in subsection 2.3.3, to discuss the limits of our formulation due to the
properties of the photonic environment rather than the perturbation itself.
We compute again the resonant mode of the unperturbed cavity with the
QNM-solver QNMEig [134]. However, COMSOL does not explicitly allow for
point perturbation. Therefore, on the same mesh as used with QNMEig, we
drive the system by a dipole source p placed at the position of the perturber
rp , and compute with COMSOL the field scattered back onto the dipole . This
allows us to retrieve the exact Green function ∆G(rp,rp,ω), which we then
use to iteratively look for the complex frequency ω (exact) solution to the
scattering problem of Eq.(2.6), leading to the exact value for the shift of the
cavity induced by a point perturbation.

The computed eigenfrequency is λ̃ = 2πc/ω̃ = 1364 + i0.13 nm, imply-

2Q-increases by modifying cavity geometry have been previously reported using slabs [152] and
scatterer gratings [153] in near fields, but not with a localized perturbation, nor with scanning
through the mode to determine the relation between Q-changes and mode distributions.
Perturbations by extended structures like slabs, have rather been understood as radiation pattern
engineering to control Q.
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ing that the computed Q is twice larger than the experimental one, probably
because of losses induced by layer absorption, surface roughness or other
extrinsic effects. A spatial map of |Ẽ|2 in a plane 30-nm above the cavity
surface is shown in Fig. 2.3(a).

Figure 2.3: Numerical test of Eq.(2.2) for the cavity used in the experiment. (a) Maps of
|Ẽ|2. (b) Comparison between the ∆Q maps predicted with Eq.(2.2) (left) and exact values
(right) for α = 166α0. (c) Validity of Eq.(2.2) for increasing values of the polarizability
and for the three tip positions, A, B and C, used in the experiment. α0 denotes the
static polarizability of a 10-nm-radius silica sphere in air, so that the full horizontal scale
covers silica spheres with radii from 10 to 70 nm. Note that Eq.(2.1) predicts ∆Q = 0 for
all positions and all α. In (b) and (c), the point dipole perturber is assumed to be located
in a plane 30 nm above the semiconductor PhC membrane, and the exact values are
computed by iteratively searching the complex-frequency pole of Eq.(2.6) for Eb = 0 with
the regularized scattering tensor ∆G(r,r′ ,ω) computed with COMSOL Multiphysics.

Figure 2.3(b) compares the ∆Q’s predicted with Eq.(2.2) with exact values
computed by solving the perturbed cavity. The data are obtained for a dipole

polarizability α = 4πR3 εSiO2/ε0−1
εSiO2/ε0+2 corresponding to the static polarizability of

a silica (εSiO2
= 2.25ε0) nanosphere in air of radius R = 55 nm. Since we use

exactly the same mesh for the two computations, numerical dispersion is neg-
ligible and the comparison strictly quantifies the error due to the single mode
approximation. Figure 2.3(c) compares the ∆Q predictions of Eq.(2.2) with
exact numerical values for increasing values of the perturber polarizability α.
Three perturber locations, corresponding to the three tip positions used in the
experiment, are considered. Remarkably, our key experimental observation
that the same perturber may either decrease or increase Q as its position is var-
ied, independently of the wavelength-shift sign, is well captured by Eq.(2.2).
This confirms that QNM formalism indeed accounts for the non-Hermitian
nature of photonic resonators, even in the context of high quality factors Q.
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2.3.3. Validity domain of Eq.(2.2)
As expected, Fig. 2.3(c) evidences that for vanishing α’s, Eq.(2.2) is virtually
exact. However, some differences, not observed in previous studies for low-
Q plasmonic structures [125, 139], are observed for α > 150α0. Since we
enforced 0-dimensional point dipole perturbation in our simulation, this begs
the question what the conditions are under which Eq.(2.2) may be used with
confidence and what parameters are impacting its domain of validity. In
this subsection, we therefore quantify under which condition Eq.(2.2) may be
approximately valid and used with confidence to predict both resonance shifts
and ∆Q-changes. We analyse the impact of omitting δG. Since both terms in
the right-hand side of Eq.(2.7) depend on the perturber position differently,
we have to make several approximations.

In Eq.(2.11), the second term inside the bracket, αεµ0ω2δG gathers the con-
tribution of all other modes that contribute to the mode density at the cavity,
except for the cavity mode that is singled out by ẼN . In the limit where this
contribution is negligible, Eq.(2.11) simply reduces to Eq.(2.2). Accordingly,
the validity of Eq.(2.2) requires that

‖αεµ0ω̃2δG‖∞ � 1, (2.16)

where the operation ‖· · ·‖∞ represents the infinite norm of a matrix.
Though Eq.(2.16) formally quantifies the domain of validity of Eq.(2.2), it

is difficult to extract more information, since δG is a 3× 3 symmetric matrix
containing 6 different components. To bypass this difficulty, we make the
approximation δG ≈ δG,I, with δG≡TrδG/3, i.e. neglecting the vectorial
character of δG, where I represents the identity matrix, and further assume
α is real, i.e., neglecting radiation loss and material absorption of the per-
turber. Under these approximations, we compare ∆ω̃ predicted from Eqs.(2.14
and 2.15) and Eq.(2.2), and derive that the dominant conditions for Eq.(2.2) to
accurately predict Re∆ω̃ and Im∆ω̃ are respectively

|α| � αr and |α| � αi , (2.17)

where αr and αi are given by

αr = min
{∣∣∣∣∣∣

1
µ0εRe(ω2δG)

∣∣∣∣∣∣ ,
∣∣∣∣∣∣

1
µ0Imε(ω2δG)

∣∣∣∣∣∣
∣∣∣∣∣∣
Re Ṽ −1

Im Ṽ −1

∣∣∣∣∣∣
}
, (2.18a)

αi = min
{∣∣∣∣∣∣

1
µ0εRe(ω2δG)

∣∣∣∣∣∣ ,
∣∣∣∣∣∣

1
µ0εIm(ω2δG)

∣∣∣∣∣∣
∣∣∣∣∣∣
Im Ṽ −1

Re Ṽ −1

∣∣∣∣∣∣
}
. (2.18b)

Note that, to derive Eqs.(2.17 and 2.18), we have used the relations,
Re Ṽ −1� 1

2Q Im Ṽ −1 and Im Ṽ −1� 1
2QRe Ṽ −1 which are valid for high-Q

cavities.
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(a) (b)

Figure 2.4: Validation of Eq.(2.2) for the resonance wavelength shift ∆λ by comparison
with exact numerical data obtained by solving the perturbed cavity. (a) Comparison
between the ∆λ maps predicted with Eq.(2.2) (left) and exact values (right) for the same
configuration and α = 166α0 as in the Fig. 2.3. (b) Validity of Eq.(2.2) in predicting ∆λ
for increasing values of the polarizability. The perturber polarizability α is normalized
by α0, the static polarizability of a silica sphere with 10-nm radius in air. Three perturber
positions, 30 nm above the semiconductor membrane, are considered; they are labelled
as "A", "B", "C", corresponding to the positions in the experiment, see in Fig. 2.2(e)

The expressions of αr and αi can be further simplified by first noting that∣∣∣∣Re Ṽ −1
Im Ṽ −1

∣∣∣∣�1 for high-Q cavity, and we generally have |Re(ω2δG)|�Im(ω2δG)|
(as confirmed by numerical simulations3) for perturbers placed in the near-
field of the cavity. We finally obtain simplified expressions for αr and αi

αr =

∣∣∣∣∣∣
1

µ0εRe(ω2δG)

∣∣∣∣∣∣ , (2.19a)

αi = min
{
αr ,

∣∣∣∣∣∣
1

µ0εIm(ω2δG)

∣∣∣∣∣∣
∣∣∣∣∣∣
Im Ṽ −1

Re Ṽ −1

∣∣∣∣∣∣
}
, (2.19b)

which imply that Im∆ω̃, i.e. ∆Q, can be predicted, at best, with the same
accuracy as ∆λ, but not better. Moreover, as Q increases,

∣∣∣∣ Im Ṽ −1

Re Ṽ −1

∣∣∣∣ decreases
towards zero, and so does αi . Therefore, it is more difficult to predict ∆Q
accurately for a high-Q cavity than for a low-Q one. This explains why no
visible deviation between the predictions of Eq.(2.2) and exact numerical data
have been detected in earlier works on plasmonic nanoresonators, even for
large shell perturbers [122, 139].

3δG, and then δG, have been computed with COMSOL Multiphysics. A reasonable estimate
for the typical magnitude of δG is that it is essentially the non-resonant contribution to the full
system Green function [scattered part strictly] on top of which the resonant cavity mode adds.
The non-resonant background is of the same order as the Green function of free space for a
perturber placed outside the cavity.
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2.3.3. Validity domain of Eq.(2.2)
As expected, Fig. 2.3(c) evidences that for vanishing α’s, Eq.(2.2) is virtually
exact. However, some differences, not observed in previous studies for low-
Q plasmonic structures [125, 139], are observed for α > 150α0. Since we
enforced 0-dimensional point dipole perturbation in our simulation, this begs
the question what the conditions are under which Eq.(2.2) may be used with
confidence and what parameters are impacting its domain of validity. In
this subsection, we therefore quantify under which condition Eq.(2.2) may be
approximately valid and used with confidence to predict both resonance shifts
and ∆Q-changes. We analyse the impact of omitting δG. Since both terms in
the right-hand side of Eq.(2.7) depend on the perturber position differently,
we have to make several approximations.

In Eq.(2.11), the second term inside the bracket, αεµ0ω2δG gathers the con-
tribution of all other modes that contribute to the mode density at the cavity,
except for the cavity mode that is singled out by ẼN . In the limit where this
contribution is negligible, Eq.(2.11) simply reduces to Eq.(2.2). Accordingly,
the validity of Eq.(2.2) requires that

‖αεµ0ω̃2δG‖∞ � 1, (2.16)

where the operation ‖· · ·‖∞ represents the infinite norm of a matrix.
Though Eq.(2.16) formally quantifies the domain of validity of Eq.(2.2), it

is difficult to extract more information, since δG is a 3× 3 symmetric matrix
containing 6 different components. To bypass this difficulty, we make the
approximation δG ≈ δG,I, with δG≡TrδG/3, i.e. neglecting the vectorial
character of δG, where I represents the identity matrix, and further assume
α is real, i.e., neglecting radiation loss and material absorption of the per-
turber. Under these approximations, we compare ∆ω̃ predicted from Eqs.(2.14
and 2.15) and Eq.(2.2), and derive that the dominant conditions for Eq.(2.2) to
accurately predict Re∆ω̃ and Im∆ω̃ are respectively

|α| � αr and |α| � αi , (2.17)

where αr and αi are given by
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Note that, to derive Eqs.(2.17 and 2.18), we have used the relations,
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2Q Im Ṽ −1 and Im Ṽ −1� 1
2QRe Ṽ −1 which are valid for high-Q
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(a) (b)

Figure 2.4: Validation of Eq.(2.2) for the resonance wavelength shift ∆λ by comparison
with exact numerical data obtained by solving the perturbed cavity. (a) Comparison
between the ∆λ maps predicted with Eq.(2.2) (left) and exact values (right) for the same
configuration and α = 166α0 as in the Fig. 2.3. (b) Validity of Eq.(2.2) in predicting ∆λ
for increasing values of the polarizability. The perturber polarizability α is normalized
by α0, the static polarizability of a silica sphere with 10-nm radius in air. Three perturber
positions, 30 nm above the semiconductor membrane, are considered; they are labelled
as "A", "B", "C", corresponding to the positions in the experiment, see in Fig. 2.2(e)

The expressions of αr and αi can be further simplified by first noting that∣∣∣∣Re Ṽ −1
Im Ṽ −1

∣∣∣∣�1 for high-Q cavity, and we generally have |Re(ω2δG)|�Im(ω2δG)|
(as confirmed by numerical simulations3) for perturbers placed in the near-
field of the cavity. We finally obtain simplified expressions for αr and αi
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which imply that Im∆ω̃, i.e. ∆Q, can be predicted, at best, with the same
accuracy as ∆λ, but not better. Moreover, as Q increases,

∣∣∣∣ Im Ṽ −1

Re Ṽ −1

∣∣∣∣ decreases
towards zero, and so does αi . Therefore, it is more difficult to predict ∆Q
accurately for a high-Q cavity than for a low-Q one. This explains why no
visible deviation between the predictions of Eq.(2.2) and exact numerical data
have been detected in earlier works on plasmonic nanoresonators, even for
large shell perturbers [122, 139].

3δG, and then δG, have been computed with COMSOL Multiphysics. A reasonable estimate
for the typical magnitude of δG is that it is essentially the non-resonant contribution to the full
system Green function [scattered part strictly] on top of which the resonant cavity mode adds.
The non-resonant background is of the same order as the Green function of free space for a
perturber placed outside the cavity.
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Finally, for the sake of completeness, we study in Fig. 2.4 the accuracy in
predicting ∆λ with the same parameters as used in Fig. 2.3. We numerically
find that αr = αi= 665α0 at position A, and αr= 702α0 at position B and
αi= 541α0 at position C. For all cases, αr and αi have similar values, and
this a posteriori explains why Eq.(2.2) is as accurate in predicting wavelength
shifts ∆λ in Fig. 2.4(b), as it is at predicting Q-changes in Fig. 2.3(c).

2.3.4. Influence of the environment on the perturbation

The previous subsection 2.3.3 gives mathematical conditions (Eq.(2.17)) for
the validity of Eq.(2.2). In this subsection, we intend to give a more physical
interpretation of these conditions. To do so, we take the example photonic
crystal cavity studied in subsection 2.2.2, and we fix the position of the air
perturbation in the cavity at x = 360 nm, where the destructive interference
effect is the strongest in Fig. 2.5(d). We increase the polarizability of the per-
turbation by increasing its diameter. However, since the perturbation is now a
physical object and not a perfect point dipole as in subsections 2.3.2 and 2.3.3,
we restrict our study to diameters up to a quarter of the wavelength in silicon
λSi/4 to mitigate the influence of higher order multipoles of our spherical per-
turbation. Figure 2.5 shows that Eq.(2.2) applies only for perturbations smaller
than λSi/10. For bigger perturbations, Eq.(2.2) only predicts an unbounded
increase in quality factor Q, whereas exact calculations indicate that Q reaches
a maximum almost 20% higher than the original cavity Q, and then drops
dramatically. Indeed, for a perturbation strong enough, which corresponds
to a sphere bigger than λSi/10 in Fig. 2.5, one of the conditions in Eq.(2.17)
is not respected anymore. An interpretation is that the polarizability that
enters in Eq.(2.2) is not actually the static polarizability, but a polarizability
that is dressed by its environment through α−1d = α−1 − µ0εω2δG as explicit in
Eq.(2.11).

The concept of a dressed polarizability is commonly used in the theory of
multiple scattering [163]. For instance, it is well known that the electrostatic
polarizability of a small sphere (α0 = 4πa3(ε/ε0 − 1)/(ε/ε0 + 2) for a sphere
of radius a and dielectric constant ε in free space) in itself can not be used to
build an energy conserving scattering theory. It leads to a violation of the
optical theorem. Instead, one can construct a dynamic polarizability, also
known as t-matrix for a dipolar scatterer, from the static polarizability, by
evaluating α−1 = α−10 − µ0εω2iImG0(r,r). Here the added term quantifies
the impact of the environment on the polarizable object, which is to cause
radiation loss. This radiation loss in vacuum is quantified by the LDOS of
free space, or equivalently ImG0(r,r). It is important to note that the impact
of this term is negligible for very small scatterers, and becomes increasingly
important with increasing α0. Various works have noted that if one replaces
the background medium of the scatterer by a complex environment, then if
one chooses to account for that complex environment by incorporating it in a
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Figure 2.5: Broadening and narrowing of the resonance as a function of the size of a
air sphere perturbation in the median plane of the PhC slab, at a fixed position x =
360 nm (indicated by a blue cross in the caption of the mode profile). Blue squares are
calculations from COMSOL, red dashed line is Eq.(2.2) with the static polarizability α,
and green solid line is with the dressed polarizability αd .

Green function, its scattering part enters as a further dressing of polarizability
through α−1d = α−1 − µ0εω2Gs(r,r). The scattering part of the Green function
in this expression accounts for all the multiple scattering interactions between
the point dipole and the environment.

Returning to the perturbation problem at hand, we note that in Eqs.(2.1
and 2.2) it is not a priori clearly specified which polarizability is pertinent
in perturbation theory. Our result Eq.(2.11) indicates that it is in fact the
perturber polarizability dressed by the environment, where the environment
is defined as the photonic system excluding the cavity mode that is singled
out for the perturbation theory. We verify this by comparing the exact result
in Fig. 2.5 with the perturbation result Eq.(2.2) evaluated with an estimated
dressed polarizability. We note that since the static polarizability α is a real
number, the imaginary part of µ0εIm(ω2δG) directly gives the imaginary part
of the dressed polarizability αd . The real part of µ0εω2δG can to first order
be neglected since the first condition of Eq.(2.17), |α| � |µ0εRe(ω2δG)|−1 is
relatively easy to respect. We show in Fig. 2.5 that dressing the static polariz-
ability by only µ0εIm(ω2δG) is indeed enough to restore the accuracy of our
perturbation theory. The correction term µ0εIm(ω2δG) that we use, however,
is not trivial to obtain since it should quantify the local density of optical
states (LDOS) at the location of the scatterer that is due to all the modes except
the cavity QNM at ω̃. We calculate the correction by first using COMSOL
to obtain the total LDOS across a real frequency interval spanning the cavity
resonance Re ω̃, and then a posteriori subtracting the Lorentzian contribution
of the unperturbed cavity QNM. Owing to the 2D photonic band gap, the
LDOS is suppressed by a factor 10 compared to that in free space, but not
identically zero [164]. For sufficiently large perturbations, these radiative loss
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Finally, for the sake of completeness, we study in Fig. 2.4 the accuracy in
predicting ∆λ with the same parameters as used in Fig. 2.3. We numerically
find that αr = αi= 665α0 at position A, and αr= 702α0 at position B and
αi= 541α0 at position C. For all cases, αr and αi have similar values, and
this a posteriori explains why Eq.(2.2) is as accurate in predicting wavelength
shifts ∆λ in Fig. 2.4(b), as it is at predicting Q-changes in Fig. 2.3(c).

2.3.4. Influence of the environment on the perturbation

The previous subsection 2.3.3 gives mathematical conditions (Eq.(2.17)) for
the validity of Eq.(2.2). In this subsection, we intend to give a more physical
interpretation of these conditions. To do so, we take the example photonic
crystal cavity studied in subsection 2.2.2, and we fix the position of the air
perturbation in the cavity at x = 360 nm, where the destructive interference
effect is the strongest in Fig. 2.5(d). We increase the polarizability of the per-
turbation by increasing its diameter. However, since the perturbation is now a
physical object and not a perfect point dipole as in subsections 2.3.2 and 2.3.3,
we restrict our study to diameters up to a quarter of the wavelength in silicon
λSi/4 to mitigate the influence of higher order multipoles of our spherical per-
turbation. Figure 2.5 shows that Eq.(2.2) applies only for perturbations smaller
than λSi/10. For bigger perturbations, Eq.(2.2) only predicts an unbounded
increase in quality factor Q, whereas exact calculations indicate that Q reaches
a maximum almost 20% higher than the original cavity Q, and then drops
dramatically. Indeed, for a perturbation strong enough, which corresponds
to a sphere bigger than λSi/10 in Fig. 2.5, one of the conditions in Eq.(2.17)
is not respected anymore. An interpretation is that the polarizability that
enters in Eq.(2.2) is not actually the static polarizability, but a polarizability
that is dressed by its environment through α−1d = α−1 − µ0εω2δG as explicit in
Eq.(2.11).

The concept of a dressed polarizability is commonly used in the theory of
multiple scattering [163]. For instance, it is well known that the electrostatic
polarizability of a small sphere (α0 = 4πa3(ε/ε0 − 1)/(ε/ε0 + 2) for a sphere
of radius a and dielectric constant ε in free space) in itself can not be used to
build an energy conserving scattering theory. It leads to a violation of the
optical theorem. Instead, one can construct a dynamic polarizability, also
known as t-matrix for a dipolar scatterer, from the static polarizability, by
evaluating α−1 = α−10 − µ0εω2iImG0(r,r). Here the added term quantifies
the impact of the environment on the polarizable object, which is to cause
radiation loss. This radiation loss in vacuum is quantified by the LDOS of
free space, or equivalently ImG0(r,r). It is important to note that the impact
of this term is negligible for very small scatterers, and becomes increasingly
important with increasing α0. Various works have noted that if one replaces
the background medium of the scatterer by a complex environment, then if
one chooses to account for that complex environment by incorporating it in a
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Figure 2.5: Broadening and narrowing of the resonance as a function of the size of a
air sphere perturbation in the median plane of the PhC slab, at a fixed position x =
360 nm (indicated by a blue cross in the caption of the mode profile). Blue squares are
calculations from COMSOL, red dashed line is Eq.(2.2) with the static polarizability α,
and green solid line is with the dressed polarizability αd .

Green function, its scattering part enters as a further dressing of polarizability
through α−1d = α−1 − µ0εω2Gs(r,r). The scattering part of the Green function
in this expression accounts for all the multiple scattering interactions between
the point dipole and the environment.

Returning to the perturbation problem at hand, we note that in Eqs.(2.1
and 2.2) it is not a priori clearly specified which polarizability is pertinent
in perturbation theory. Our result Eq.(2.11) indicates that it is in fact the
perturber polarizability dressed by the environment, where the environment
is defined as the photonic system excluding the cavity mode that is singled
out for the perturbation theory. We verify this by comparing the exact result
in Fig. 2.5 with the perturbation result Eq.(2.2) evaluated with an estimated
dressed polarizability. We note that since the static polarizability α is a real
number, the imaginary part of µ0εIm(ω2δG) directly gives the imaginary part
of the dressed polarizability αd . The real part of µ0εω2δG can to first order
be neglected since the first condition of Eq.(2.17), |α| � |µ0εRe(ω2δG)|−1 is
relatively easy to respect. We show in Fig. 2.5 that dressing the static polariz-
ability by only µ0εIm(ω2δG) is indeed enough to restore the accuracy of our
perturbation theory. The correction term µ0εIm(ω2δG) that we use, however,
is not trivial to obtain since it should quantify the local density of optical
states (LDOS) at the location of the scatterer that is due to all the modes except
the cavity QNM at ω̃. We calculate the correction by first using COMSOL
to obtain the total LDOS across a real frequency interval spanning the cavity
resonance Re ω̃, and then a posteriori subtracting the Lorentzian contribution
of the unperturbed cavity QNM. Owing to the 2D photonic band gap, the
LDOS is suppressed by a factor 10 compared to that in free space, but not
identically zero [164]. For sufficiently large perturbations, these radiative loss
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channels nonetheless limit the polarizability, and hence for larger perturbation
volumes the radiation loss spoils the increase in Q arising from the destructive
interference between the perturbation and the cavity mode. For non-resonant
perturbations as considered in this work, the real part µ0εRe(ω2δG) is ir-
relevant. For resonant perturbations, however, it would be important as it
corresponds to a frequency (Lamb) shift of the perturber. From the practical
viewpoint of perturbation theory, the unfortunate conclusion is that calculat-
ing the correction δG to the polarizability is computationally difficult. An
alternative viewpoint to dressing the polarizability is that perturbation theory
is not complete with just one QNM. Indeed, all other QNMs of the system
enter through δG. A positive outcome of our analysis is that perturbation of
a cavity by an object could give access to measuring the ratio of cavity Purcell
factor and background LDOS. This ratio is instrumental for quantifying the
performance of cavities for single photon sources and lasers, as it establishes
the so-called β-factor [165, 166]. Our claim is that this quantity is in principle
accessible by purely classical near-field measurements.

2.3.5. Mapping complex mode volumes Ṽ

The concept of complex Ṽ ’s is recent [124, 131] and it seems to be connected
with highly relevant phenomena of light-matter interactions in non-Hermitian
open systems [125]. For instance, the ratio Im Ṽ −1/Re Ṽ −1 quantifies the spec-
tral asymmetry of the mode contribution (or LDOS) to the modification of
the spontaneous emission rate of an emitter weakly coupled to a cavity [124].
For strong coupling, it modifies the usual expression of the Rabi frequency
[155] by blurring and moving the boundary between the weak and strong
coupling regimes [125, 167]. Despite these strong roots, complex Ṽ ’s are often
seen as a mathematical abstraction. In fact, Eq.(2.2) and the experiment of
subsection 2.3.1 show that complex Ṽ ’s are not just a mathematical tool, but
in fact are directly measurable.

Figure 2.6 shows the maps of Re Ṽ −1 and Im Ṽ −1, which have been directly
inferred from the ∆ω̃ measurements by injecting a tip polarizability αtip =
166α0 (tip curvature radius of R = 55 nm) in Eq.(2.2). For comparison, we also
plot the theoretical maps computed with the QNM-solver. Note that to allow
for a better comparison, we have multiplied the experimental values of Re Ṽ −1

and Im Ṽ −1 by a ×1/4 rescaling factor. The latter corresponds to a tip radius
only 30% larger (R = 73 nm), and can be understood by considering that a
static sphere dipolar polarizability is a simplistic model for the tip used in our
experiment. There are differences between the experimental maps and the
computed ones. Nevertheless, the experimental and theoretical maps quali-
tatively share the same dominant features, notably a successful agreement on
the locations and amplitudes of the minimum and maximum values, and an
overall 10-fold difference between Re Ṽ −1 and Im Ṽ −1.
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Figure 2.6: Maps of (a) Re Ṽ −1 and (b) Im Ṽ −1 computed with the QNM-solver
30 nm above the semiconductor membrane (bottom) and directly inferred from the ∆ω̃
measurements using Eq.(2.2) with a tip polarizability αtip = 166α0 (top). Note that the
experimental values are all rescaled by a factor 1/4.

2.4. Conclusion and outlook
We have shown that, for high-Q systems, QNM theory allows for a quantita-
tive prediction of both Re∆ω̃ and Im∆ω̃ as a function of the perturber posi-
tion, whereas classical theory based on Hermitian physics only gives access to
Re∆ω̃. Furthermore, we have demonstrated, thanks to hyperspectral-imaging
near-field experiments, that the perturbation theory of high-Q microcavities
should rely on complex modal volumes to fully account for the role of the
perturber at the nanoscale, even in the context of high-Q resonators. This
demonstration extends earlier results on the low-Q plasmonic systems [139]
and is the first and direct evidence of the importance of complex mode vol-
umes, arising from the intrinsic property of all photonic resonators of being
open (i.e. non-Hermitian) systems. Equation (2.2) combines great simplicity
and predictive power, its limitations mostly arising due to multiple scattering
events between the perturbed resonant mode and its photonic background
(other modes and continuum) mediated by strong perturbations. It may find
applications in various problems related to sensing or trapping, as the addi-
tional information provided by dual maps may help lifting the degeneracy of
single ∆λ-maps, for instance allowing not only the detection of binding event
in sensing but also the binding location [147]. Other perspectives concern the
analysis of the impact of fabrication imperfections on Q’s, post-fabrication Q-
control [148], optimization of cavities with large Q’s, or inverse design of cav-
ities with tailored ∆λ and ∆Q-maps. Equation (2.2) also offers the possibility
to perform direct measurement of the complex mode volume of microcavities,
giving greater visibility and operational capacity to an important physical
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quantity of resonant light-matter interactions.

2.5. Appendix
2.5.1. Reliability of the ∆Q-measurements
This appendix reports supplementary information about the experiment. The
contribution of the author of this thesis to the work reported in this chapter
concerns solely the theory and simulations, and not the experiment. The
supplementary information is only provided for completeness, and should
be credited to F. La China, D. Balestri, F. Intonti and M. Gurioli. In the ex-

Figure 2.7: (a) Topography map. (b) Corresponding Q-variation map. The coloured
squares represent several tip locations. (c) Q-variation as a function of the offseted
distance z − dmin between the tip and the photonic-crystal membrane. The black, green
and red curves are obtained for tip locations shown in (c) with the squares of the same
colors.

periment, the near-field tip is used to excite the embedded InAs QD with a
c.w. laser at 780 nm and, for every tip position, the QD photoluminescence
spectrum is measured. At room temperature, the spectrum covers more than
100 nm. It exhibits a Lorentzian peak for each cavity resonance. Due to the
interaction with the tip, Re ω̃ and Im ω̃ are both modified. By fitting the spectra
for every tip position, one obtains the ∆λ and Q maps reported in Fig. 2.2. The
feedback mechanism of the NSOM is able to maintain the tip on the sample
surface at constant height, whenever the sample is flat. In photonic crystal
cavities, it forces the tip to follow the topography and then, when the tip is
on an air pore, the tip height is reduced by few tens of nm. The measure
of the tip-height map, see Fig. 2.7(a), allows one to reconstruct, a posteriori,
the perturbation map with a spatial alignment of a few tens of nanometers,
which is needed for a comparison with theoretical prediction. The z-scan is
then performed by moving the sample vertically with steps of 20 nm. During
the vertical scan, the tip is maintained at a constant height. Then, after each
z-scan, the sample is repositioned thank to the feedback mechanism to keep
the spatial alignment, and then is moved in the (x,y) plane. In order to detect
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Figure 2.8: Three different maps of the Q-variation induced by the NSOM tip measured
for three different days without changing the tip.

possible systematic errors in the z-scan (such as sample/tip drift), the z-scan
is repeated several times for different (x,y) locations. An example is shown in
Figs. 2.7(b-c). Figure 2.7(b) reports the Q map at z= 0 for three A points (red
squares), three B points (black squares) and three C points (green squares), all
located at quite different positions. Figure 2.7(c) reports the Q-variation for
every point. All the data converge to a common value with similar trends,
denoting the reliability of the presented data. Finally, the problem of repeata-
bility of the NSOM measurements to detect possible artefacts is addressed in
Figure 2.8, which shows three different maps of the Q-factor obtained with the
same tip on three different days. The data comparison conclusively evidences
a quantitative agreement between the three sets of data.
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3.1. Introduction
In the last two decades, the nanophotonics community has been very pro-
lific in proposing new designs for a large panel of applications, encouraged
notably by the development of nanoscale lithography techniques and shape-
controlled colloidal synthesis of nanoparticles. A particular class of designs
involves the hybridization of two or more resonators. One of the very first
examples would be colloidal clusters of plasmonic nanoparticles, where the
field is enhanced at plasmonic hotspots due to cooperative effects. These
structures enabled the first single-molecule surface enhanced Raman mea-
surements in the end of the 1990s [168, 169]. For assemblies of nanoparticles
with deterministic arrangements, in particular dimers with narrow gaps such
as bowtie antennas in Fig. 3.1(a-c), the strong field confinement allows to
reach LDOS enhancements > 700 [77, 78]. Radiative properties can also be
engineered to exhibit directionality of the light scattered in the far-field [82,
84], or to exploit Fano resonances, in particular for detection [86, 87, 170].
Indeed, composite structures usually exhibit multiple resonant modes which
can interfere in the near-field as well as the far-field and lead to sharp spectral
features, even for purely plasmonics resonators (cf. Fig. 3.1(d-e)).

Although the previous illustrative examples were all taken from the field
of plasmonic, hybridization of resonances is by no means a topic limited to
plasmonics. In the domain of photonic microcavities, coupled resonances play
an important role in several applications. For instance, photonic molecules are
studied in the context of slow light propagation [172] and parity-time (PT)
symmetric systems [66], and are of large interest in cavity optomechanics as
a mean to achieve quadratic coupling [173, 174]. Dielectric and plasmonic
resonators may be hybridized as well [94–96], an emblematic example being
shown in Fig. 3.1(g). Chapters 4 to 6 deal with this kind of hybridization for
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Figure 3.1: (a) Schematic of bowtie nanoantenna (gold) coated with molecules (black
arrows) in PMMA (light blue) on a transparent substrate. (b) Scanning electron
microscopy (SEM) image of a gold bowtie nanoantenna. (c) FDTD calculation of the field
enhancement. (a-c) reproduced from [77]. (d) Calculated extinction spectrum exhibiting
a Fano feature and charge density plots for a heptamer excited at normal incidence
with a 0◦ linear polarization orientation. The inset and corresponding vertical dashed
line indicate the resonance of bright (left, dashed pink line) and dark modes (right,
dashed black line) (e) Transmission electron microsope (TEM) image, and extinction
spectra of a heptamer measured at three different incident electric-field orientation
angles, all exhibiting a Fano feature predicted in (d). (d-e) reproduced from [170]. (f)
Experimental ∆LCP−RCP spectra calculated as the difference in the transmittance of right
(red) and left-handed (blue) circularly polarized light for a metasurface composed of
3-dimensional chiral plasmonic molecules. The transmittance properties are opposite
for opposite handedness. The achiral structure (black) shows small differences in the
transmittance which can be assigned to fabrication errors. Reproduced from [90]. (g)
Scanning electron microscope (SEM) image of a photonic-plasmonic hybrid resonator
composed of a Si3N4 photonic crystal and a silver tip for near-field optical microscopy
application. Reproduced from [171].

which it may be anticipated that we can combine the best of the two contrasted
properties of plasmonics (low Vs and low Qs) and photonics (high Qs and
large Vs).

Contemporary resonator constructs are complex; they mix different
physics and materials and rely on many degrees of freedom, even in 3-
dimensions [90, 175, 176] (cf. Fig. 3.1(f)). It thus becomes essential to have
access to adequate tools to design their structural ingredients and study their
optical properties. Temporal coupled-mode theory (CMT) of resonators [177]
appears to offer an ideal platform to study resonators composed of several
coupled resonances. However, it relies on phenomenological coupling
coefficients, which are fitted from experimental or numerical data. Therefore,
it does not provide a viable path for designing these structures. Some works
proposed formalisms to describe hybridization of resonances, but they often
rely on strong assumptions. First of all, most of these formalisms are restricted
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to analytically treatable geometries such as spheres [178–180]. Second, the
majority of works study highly symmetric assemblies to make use of the
irreducible representation predicted by group theory [181], as we do in
Chapter 5. More frequently, a quasi-static approximation is made to simplify
the description of the interaction between resonators. In plasmonics this
is known as plasmon hybridization theory, proposed by Prodan et al. [182].
However, only the resonance frequencies (or energies) can be predicted, not
the decay rates which are intrinsically related to dynamical radiation effect.

In recent years, works studying the interaction of light with open electro-
magnetic systems using a description in terms of quasinormal modes (QNM)
have grown in visibility [135, 139, 140, 183]. This trend was seeded by the
gain in physical insight and computational time that QNMs provide while still
relying on semi-analytical treatments [132, 134, 184]. In the QNM framework,
a resonator is described by a set of quasinormal modes [117, 123, 124], which
are strictly the source-free solutions of Maxwell equations, with a normalized
electromagnetic field ẼN ,H̃N and a complex resonance frequency ω̃N (real
part is the resonance frequency, while the imaginary part is the decay rate)
(cf. review paper [125] and Introduction/Chapter 1). To our surprise, despite
the fact that such theories are casually used to describe ensemble of many
plasmonic nanoresonators [134, 185] and even antenna-cavity hybrids [109,
186], there exists, to our knowledge, only one formulation of a QNM theory
allowing to study the hybridization of resonators. In ref. [138], Vial et al.
express the QNMs of the coupled system as a linear combination of the QNMs
of the bare components to obtain a generalized eigenvalue problem. Their
formulation is however restricted to non-dispersive materials and, therefore,
cannot apply for plasmonic resonators. Also, the theory of Vial et al. re-
lies on cumbersome integrals over the whole universe (or simulation domain
in practice). Furthermore, even though the formalism should apply for 3-
dimensional systems and should be generalizable to N coupled resonators,
the validity of the work was only demonstrated for dimers, in 2-dimensional
systems.

In this chapter, we present a general semi-analytical formalism, based on
a generalized linear eigenproblem, to calculate the QNMs of an ensemble
of 3-dimensional resonators solely based on the knowledge of the QNMs of
the individual components, even in the context of dispersive materials. Our
proposition not only enables one to estimate resonance frequencies and de-
cay rates, but also to quantify observables such as extinction and scattering
cross sections, and near-field field distribution. This chapter is structured
as follows. Section 3.2 presents a derivation of a coupled QNM theory as a
generalized linear eigenproblem using multiple scattering formulation as a
starting point, tackles the issue of the normalization of the modes and the
coupling coefficient to an external driving field. Next, after having simpli-
fied the model to treat the case of two coupled plasmonic resonators, each
described by a single QNM, we discuss the analogy with the didactic case
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of the hybridization of two resonant point dipoles. Then, in subsection 3.3.2,
we demonstrate the strength of our formulation to characterize the extinction
properties for different arrangement of a homo- or heterodimer composed of
two gold nanorods. In subsection 3.3.3, we apply the theory to study the case
of an oligomer composed of four resonators as in [87] and demonstrate the
relevance of our formalism in the context of Fano-like resonances. Finally, in
Section 3.4 we explore briefly the potential of our work to converge toward
an exact solution for the QNMs of the coupled system when we increase the
number of QNMs taken to described each resonator of the ensemble.

3.2. Formalism
In this section, we derive a coupled QNM formalism. Using as a starting
point the problem describing multiple scattering between an assembly of res-
onators, we obtain a generalized eigenproblem, whose resolution allows us to
compute the new coupled QNMs of the assembly from the QNMs of its bare
components. We start by considering the particularly didactic example of the
hybridization of two resonant point dipoles coupled via a Green function into
bonding and anti-bonding states [187]. Throughout this chapter, notations
involving a tilde˜represent a quantity intrinsic to a certain QNM n (eigenfre-
quency ω̃n, normalized eigenfield Ẽn).

3.2.1. Coupling two resonant point dipoles
Let us consider two dipoles, which are either aligned (head to tail), or parallel
(side by side). This hypothesis allows us to use scalar notation for the dipole
moments pA/B of dipoles A and B and their polarizability αA/B, as well as the
electric field driving A and B, Edr,A/B and the field scattered by A on B, EB→A
(and conversely EB→A). This scalar notation does not remove any generality
of our treatment. The total field driving each dipole is the sum of the incident
driving field and the field scattered by the other dipole


pA = αA [Edr,A + EB→A]

pB = αB [Edr,B + EA→B] ,
(3.1)

where Ei→j (ω) =
ω2

ε0c2
G0(ri ,rj ,ω)pi (with i, j = A or B), and G0 is the Green

function which can be obtained analytically for a homogeneous background
such as vacuum [16]. We assume resonant dipoles, and the polarizabilities for
a dipole i are assumed to have a Lorentzian form

αi(ω) = −
βi
2ω

1
ω − ω̃i

, (3.2)

with βi the oscillator strength of dipole i, and ω̃i ≡ ωi + iγi/2 the complex
resonance frequency, composed of the resonance ωi , and the total decay rate
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γi . If we introduce the notation

Ki(ω) ≡ βi
ω

2ε0c2
G0(ri ,rj ,ω), (3.3)

we can rewrite Eq.(3.1 in a matrix form

[
ω − ω̃A KA
KB ω − ω̃B

](
pA
pB

)
=

(
− βA
2ωEdr,A

− βB
2ωEdr,B

)
. (3.4)

Since we are interested in the resonant modes of the system, we look for
eigen-solutions of Eq.(3.4), i.e. for complex resonance frequencies (or eigen-
frequencies) ω̃ such that there exists a source-free solution (p̃A; p̃B)n when
Edr,A = Edr,B = 0 [

ω̃A −KA
−KB ω̃B

](
p̃A
p̃B

)
= ω̃

(
p̃A
p̃B

)
. (3.5)

Note that because G0 contains a complex exponential to account for re-
tardation, KA/B contains it as well, and the system is therefore non-linear.
However, the exponential origin of the non-linearity of Eq.(3.4) implies that
there are an infinite but discrete amount of complex frequencies solutions to
this equation. All these modes can be ascribed a physical meaning as Fabry-
Perot-like modes connecting the two dipoles. A simplification is often used
to predict the cooperative effects of large collections of classical or quantum
oscillators, such as Dicke superradiance [188]. It consists in performing a
Taylor expansion of the equation at the original dipole resonances. For small
dipole separations, only the two modes with complex resonance frequencies
ω̃+ and ω̃− closest to the original uncoupled dipoles ω̃A and ω̃B are relevant.
Therefore, if we assume that the two dipoles have the same oscillator strength
βA = βB, and that we can neglect the frequency dependence of K ≡ KA = KB,
the eigenfrequencies of the system are given by


ω̃+ = 1

2 (ω̃A + ω̃B) +
1
2

√
(ω̃A − ω̃B)2 + 4K2

ω̃− =
1
2 (ω̃A + ω̃B)− 1

2

√
(ω̃A − ω̃B)2 + 4K2.

(3.6)

In the general case, ω̃A − ω̃B but also K , are complex numbers. Equa-
tion (3.6) therefore contains a lot of interesting physics about the hybridization
of two resonant dipoles depending on the phase of these two complex num-
bers. We note that the eigenvectors are also complex, and in the general case,
not orthogonal. We give a flavour of the richness contained in this simple
two coupled dipoles model by making a few simplifying hypothesis. We
always assume that the two dipoles have the same decay-rate γ and oscillator
strength β. This leads to ω̃A−ω̃B being a real quantity. Furthermore, we use the
convention ωA > ωB such that we have ω̃A − ω̃B = |ω̃A − ω̃B| > 0. We also note
that according to Ref. [16], in the case when d < λ/2, K is mostly a positive
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of the hybridization of two resonant point dipoles. Then, in subsection 3.3.2,
we demonstrate the strength of our formulation to characterize the extinction
properties for different arrangement of a homo- or heterodimer composed of
two gold nanorods. In subsection 3.3.3, we apply the theory to study the case
of an oligomer composed of four resonators as in [87] and demonstrate the
relevance of our formalism in the context of Fano-like resonances. Finally, in
Section 3.4 we explore briefly the potential of our work to converge toward
an exact solution for the QNMs of the coupled system when we increase the
number of QNMs taken to described each resonator of the ensemble.
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hybridization of two resonant point dipoles coupled via a Green function into
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quency ω̃n, normalized eigenfield Ẽn).

3.2.1. Coupling two resonant point dipoles
Let us consider two dipoles, which are either aligned (head to tail), or parallel
(side by side). This hypothesis allows us to use scalar notation for the dipole
moments pA/B of dipoles A and B and their polarizability αA/B, as well as the
electric field driving A and B, Edr,A/B and the field scattered by A on B, EB→A
(and conversely EB→A). This scalar notation does not remove any generality
of our treatment. The total field driving each dipole is the sum of the incident
driving field and the field scattered by the other dipole


pA = αA [Edr,A + EB→A]

pB = αB [Edr,B + EA→B] ,
(3.1)

where Ei→j (ω) =
ω2

ε0c2
G0(ri ,rj ,ω)pi (with i, j = A or B), and G0 is the Green

function which can be obtained analytically for a homogeneous background
such as vacuum [16]. We assume resonant dipoles, and the polarizabilities for
a dipole i are assumed to have a Lorentzian form

αi(ω) = −
βi
2ω

1
ω − ω̃i

, (3.2)

with βi the oscillator strength of dipole i, and ω̃i ≡ ωi + iγi/2 the complex
resonance frequency, composed of the resonance ωi , and the total decay rate
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γi . If we introduce the notation
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we can rewrite Eq.(3.1 in a matrix form

[
ω − ω̃A KA
KB ω − ω̃B

](
pA
pB

)
=
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. (3.4)

Since we are interested in the resonant modes of the system, we look for
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frequencies) ω̃ such that there exists a source-free solution (p̃A; p̃B)n when
Edr,A = Edr,B = 0 [

ω̃A −KA
−KB ω̃B

](
p̃A
p̃B

)
= ω̃

(
p̃A
p̃B

)
. (3.5)

Note that because G0 contains a complex exponential to account for re-
tardation, KA/B contains it as well, and the system is therefore non-linear.
However, the exponential origin of the non-linearity of Eq.(3.4) implies that
there are an infinite but discrete amount of complex frequencies solutions to
this equation. All these modes can be ascribed a physical meaning as Fabry-
Perot-like modes connecting the two dipoles. A simplification is often used
to predict the cooperative effects of large collections of classical or quantum
oscillators, such as Dicke superradiance [188]. It consists in performing a
Taylor expansion of the equation at the original dipole resonances. For small
dipole separations, only the two modes with complex resonance frequencies
ω̃+ and ω̃− closest to the original uncoupled dipoles ω̃A and ω̃B are relevant.
Therefore, if we assume that the two dipoles have the same oscillator strength
βA = βB, and that we can neglect the frequency dependence of K ≡ KA = KB,
the eigenfrequencies of the system are given by


ω̃+ = 1

2 (ω̃A + ω̃B) +
1
2

√
(ω̃A − ω̃B)2 + 4K2

ω̃− =
1
2 (ω̃A + ω̃B)− 1

2

√
(ω̃A − ω̃B)2 + 4K2.

(3.6)

In the general case, ω̃A − ω̃B but also K , are complex numbers. Equa-
tion (3.6) therefore contains a lot of interesting physics about the hybridization
of two resonant dipoles depending on the phase of these two complex num-
bers. We note that the eigenvectors are also complex, and in the general case,
not orthogonal. We give a flavour of the richness contained in this simple
two coupled dipoles model by making a few simplifying hypothesis. We
always assume that the two dipoles have the same decay-rate γ and oscillator
strength β. This leads to ω̃A−ω̃B being a real quantity. Furthermore, we use the
convention ωA > ωB such that we have ω̃A − ω̃B = |ω̃A − ω̃B| > 0. We also note
that according to Ref. [16], in the case when d < λ/2, K is mostly a positive
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real number, with a small negative imaginary part for aligned dipoles (head
to tail), and is mostly a negative real number, with a small negative imaginary
part for parallel dipoles (side by side).

Homodimer: ω̃A = ω̃B
We first consider the case of a homodimer composed of two identical dipoles,
i.e. ω̃A = ω̃B ≡ ω̃0, Eq.(3.6) simplifes to


ω̃+ = ω̃0 +K

ω̃− = ω̃0 −K .
(3.7)

The eigenvectors are then trivially obtained as

(p̃A ; p̃B)+ = 1√

2
(1; −1)

(p̃A ; p̃B)− =
1√
2
(1;+1).

(3.8)

We understand that for an aligned or parallel arrangement of the dipoles,
the properties of the modes of the coupled system are different. This is sum-
marized in Fig. 3.2. For aligned dipoles (head to tail, 0◦), mode "+" is blue-
shifted (ReK > 0) and has a lower loss rate (Im K<0) than the uncoupled
dipole. Indeed, the two components of the corresponding vector have op-
posite sign (anti-bonding mode), which means that the radiation of the two
dipoles interferes destructively, and therefore the mode radiates less than the
uncoupled dipoles: it is subradiant or dark. Conversely, mode "−" is red-shifted
and has a higher loss rate: it is superradiant or bright. For parallel dipoles
(side by side, 180◦), mode "+" is now red-shifted (ReK < 0) but still has a
lower loss rate (Im K<0) than the uncoupled dipole. Conversely, mode "−"
is now blue-shifted but still superradiant. For orthogonal dipoles (90◦), the
assembly is in an intermediate regime, and both hybridized modes can radiate
light. For a homodimer, mode + and − have orthogonal net dipole moments
and therefore radiate light with orthogonal linear polarizations.

Heterodimer in the weak coupling regime: |ω̃A − ω̃B| � |K |
For weak coupling K → 0 with a heterodimer composed of two different
dipoles, we can perform a Taylor expansion of the eigenfrequencies expressed
in Eq.(3.6) to obtain 

ω̃+ ≈ ω̃A + K2

|ω̃A−ω̃B |
ω̃− ≈ ω̃B − K2

|ω̃A−ω̃B |
.

(3.9)

In this approximation, it is straightforward to show that the associated eigen-
vectors are approximately


(p̃A ; p̃B)+ ≈

(
1; −K
|ω̃A−ω̃B |

)

(p̃A ; p̃B)− ≈
(

+K
|ω̃A−ω̃B |

; 1
)
.

(3.10)
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Figure 3.2: Radiative properties of dipole dimers when changing the angle between
dipole moments. We obtain a super-radiant mode when the dipole moments of both
dipoles are pointing in the same direction because the field radiated by the equivalent
dipoles interfere constructively (collectively) in the far-field. Conversely, we obtain sub-
radiant modes when dipole moments are pointing in opposite direction.

We observe that the mode "+" has an eigenfrequency ω̃+ close to ω̃A , while
its eigenvectors consist of the mode of A plus a small contribution of B. This
can be summarized as mode "+" being A perturbed by B. Conversely, mode
"−" is B perturbed by A. A second peculiar observation is the fact that the shift
of the eigenfrequencies of the coupled system now scales as K2 instead of K
for the homodimer.

We present in Fig. 3.3 calculations for aligned and parallel dipoles, with
ω̃A = (2.1+ 0.12i) × 1015 rad/s and ω̃B = (2.4+ 0.12i) × 1015 rad/s and os-
cillator strength β = 0.12 C/kg. Since we solve exactly Eq.(3.4) by iteratively
looking for the poles of the non-linear eigenproblem, we observe additional
features not captured by the hybridization rules. First, for short distances
d � λ, the frequency shifts and changes in decay rates are increased because
of strong near-field dipole-dipole interactions entering in the coupling K (but
we are still in the weak coupling regime). Then, for d > λ/2, we observe that
the hybridization rule does not hold anymore as the resonance frequency and
decay rates of "+" and "−" start oscillating around the values for A and B. This
comes from the fact that the phase of K contains retardation effects due to
the propagation of light between A and B. As d increases even further, the
asymptotic behaviour of the change in linewidth is slower than the frequency
shift. This is due to the fact that the frequency (energy) shift is mostly due
to near-field, "static" interactions, whereas the change in linewidth is related
to "dynamic" radiation loss. This radiation loss is directly linked to the inter-
ference between the fields radiated by A and B in all direction in space. As
the distance d increases, this interference averaged out over all direction in
space eventually drops to 0. Therefore the total radiated power converges
towards the incoherent sum of the radiation of A and B, causing the decay
rate to converge to the rate of a single dipole. The extent of this mid/far field
effect is on the order of ≈ λ/2, larger than the range of near-field interaction.
The asymptotic behaviour in decay rates also differs between aligned and
parallel dipoles. Indeed, longitudinal electric fields cannot propagate in free

57



3

CHAPTER 3. COUPLED QNM THEORY

real number, with a small negative imaginary part for aligned dipoles (head
to tail), and is mostly a negative real number, with a small negative imaginary
part for parallel dipoles (side by side).

Homodimer: ω̃A = ω̃B
We first consider the case of a homodimer composed of two identical dipoles,
i.e. ω̃A = ω̃B ≡ ω̃0, Eq.(3.6) simplifes to


ω̃+ = ω̃0 +K

ω̃− = ω̃0 −K .
(3.7)

The eigenvectors are then trivially obtained as

(p̃A ; p̃B)+ = 1√

2
(1; −1)

(p̃A ; p̃B)− =
1√
2
(1;+1).

(3.8)

We understand that for an aligned or parallel arrangement of the dipoles,
the properties of the modes of the coupled system are different. This is sum-
marized in Fig. 3.2. For aligned dipoles (head to tail, 0◦), mode "+" is blue-
shifted (ReK > 0) and has a lower loss rate (Im K<0) than the uncoupled
dipole. Indeed, the two components of the corresponding vector have op-
posite sign (anti-bonding mode), which means that the radiation of the two
dipoles interferes destructively, and therefore the mode radiates less than the
uncoupled dipoles: it is subradiant or dark. Conversely, mode "−" is red-shifted
and has a higher loss rate: it is superradiant or bright. For parallel dipoles
(side by side, 180◦), mode "+" is now red-shifted (ReK < 0) but still has a
lower loss rate (Im K<0) than the uncoupled dipole. Conversely, mode "−"
is now blue-shifted but still superradiant. For orthogonal dipoles (90◦), the
assembly is in an intermediate regime, and both hybridized modes can radiate
light. For a homodimer, mode + and − have orthogonal net dipole moments
and therefore radiate light with orthogonal linear polarizations.

Heterodimer in the weak coupling regime: |ω̃A − ω̃B| � |K |
For weak coupling K → 0 with a heterodimer composed of two different
dipoles, we can perform a Taylor expansion of the eigenfrequencies expressed
in Eq.(3.6) to obtain 

ω̃+ ≈ ω̃A + K2

|ω̃A−ω̃B |
ω̃− ≈ ω̃B − K2

|ω̃A−ω̃B |
.

(3.9)

In this approximation, it is straightforward to show that the associated eigen-
vectors are approximately


(p̃A ; p̃B)+ ≈

(
1; −K
|ω̃A−ω̃B |

)

(p̃A ; p̃B)− ≈
(

+K
|ω̃A−ω̃B |

; 1
)
.

(3.10)
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Figure 3.2: Radiative properties of dipole dimers when changing the angle between
dipole moments. We obtain a super-radiant mode when the dipole moments of both
dipoles are pointing in the same direction because the field radiated by the equivalent
dipoles interfere constructively (collectively) in the far-field. Conversely, we obtain sub-
radiant modes when dipole moments are pointing in opposite direction.

We observe that the mode "+" has an eigenfrequency ω̃+ close to ω̃A , while
its eigenvectors consist of the mode of A plus a small contribution of B. This
can be summarized as mode "+" being A perturbed by B. Conversely, mode
"−" is B perturbed by A. A second peculiar observation is the fact that the shift
of the eigenfrequencies of the coupled system now scales as K2 instead of K
for the homodimer.

We present in Fig. 3.3 calculations for aligned and parallel dipoles, with
ω̃A = (2.1+ 0.12i) × 1015 rad/s and ω̃B = (2.4+ 0.12i) × 1015 rad/s and os-
cillator strength β = 0.12 C/kg. Since we solve exactly Eq.(3.4) by iteratively
looking for the poles of the non-linear eigenproblem, we observe additional
features not captured by the hybridization rules. First, for short distances
d � λ, the frequency shifts and changes in decay rates are increased because
of strong near-field dipole-dipole interactions entering in the coupling K (but
we are still in the weak coupling regime). Then, for d > λ/2, we observe that
the hybridization rule does not hold anymore as the resonance frequency and
decay rates of "+" and "−" start oscillating around the values for A and B. This
comes from the fact that the phase of K contains retardation effects due to
the propagation of light between A and B. As d increases even further, the
asymptotic behaviour of the change in linewidth is slower than the frequency
shift. This is due to the fact that the frequency (energy) shift is mostly due
to near-field, "static" interactions, whereas the change in linewidth is related
to "dynamic" radiation loss. This radiation loss is directly linked to the inter-
ference between the fields radiated by A and B in all direction in space. As
the distance d increases, this interference averaged out over all direction in
space eventually drops to 0. Therefore the total radiated power converges
towards the incoherent sum of the radiation of A and B, causing the decay
rate to converge to the rate of a single dipole. The extent of this mid/far field
effect is on the order of ≈ λ/2, larger than the range of near-field interaction.
The asymptotic behaviour in decay rates also differs between aligned and
parallel dipoles. Indeed, longitudinal electric fields cannot propagate in free
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Figure 3.3: Coupling of two point dipoles. (a,d) Hybridization diagram. (b,e) Resonance
frequencies (or energies) and (c,f) decay rates of the bonding (red) and anti-bonding
(blue) modes as a function of the distance between the dipole. Top panels are for aligned
dipoles, bottom ones for parallel dipoles. The numerical data is obtained by solving the
non-linear eigenproblem of Eq.(3.4), for initial energies equal to ω̃A = (2.1+ 0.12i) ×
1015 rad/s, ω̃B = (2.4+0.12i)×1015 rad/s, i.e. resonant at ≈ 890 and ≈ 780 nm, and an
oscillator strength β = 0.12 C/kg. We define λ ≡ πc/ωA +πc/ωB.

space. However, for symmetry reasons, two align dipoles can only interact via
longitudinal fields, and parallel via transverse fields. Therefore, there cannot
be any long range (far-field) interaction for aligned dipoles, whereas these
interactions are maximum for parallel dipoles.

3.2.2. Coupled QNM theory

In the previous subsection, we recalled the classical formalism for studying
the hybridization of two electric-dipole oscillators. We here employ a similar
approach to derive a coupled quasinormal modes (QNM) theory to find the
hybridized modes of an assembly of arbitrary resonators immersed in the
same background material of homogeneous and isotropic permittivity εb.

Figure 3.4 sketches the mathematical formulation of the scattering by two
coupled resonators. The resonators are excited by an arbitrary driving field
Edr,A/B. Additionally to this external driving field, the QNM i of resonator
A is driven by the field scattered by the normalized field ẼB

j of the QNM j

of resonator B with a certain (complex) weight βBj . The total fields driving a
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βBẼB

i i

j j

Figure 3.4: Sketch of the bidirectional interaction between two resonators described
QNM. The resonators are driven by an external source and they scatter onto each other
a field proportional to a superposition normalized QNMs (here we only indicate QNM i
for A and j for B).

QNM i of A, is therefore

E′D =
∑

j∈B
βBj Ẽ

B
j +ED . (3.11)

Similarly, the field driving each mode j of B will be a sum of the contributions
by the QNM i of A and the external driving field.

Most materials can be described by a multi-pole Lorentz-Drude permittiv-
ity [189, 190]. Assuming a single pole, the permittivity can be written

εX(ω) = εX∞ − εX∞
ω2
p

(ω2 −ω2
0 − iωγ0)

≡ εX∞+ εXL (ω), (3.12)

with ωp the plasma frequency, ω0 the resonance frequency and γ0 the damp-
ing rate of the material. Following Ref. [134] where the QNM eigenproblem is
linearized by considering auxiliary fields1, the excitation coefficient of a QNM
i of a resonator X, with normalized field Ẽi and complex resonance frequency
ω̃i , driven by a field ED , is given by

βXi (ω,ED) =

�

X
ẼX
i (r) ·

(
−ω̃i

ω − ω̃i

[
εX(ω̃i)− εb

]
+ [εb − ε∞]

)
ED(ω,r)dr,

(3.13)
where the integral runs over the volume of resonator X. The present formula
implicitly assumes homogeneous resonators made of single material, but can
straightforwardly be extended to more general structures (like core-shell res-
onators).

Equations (3.13 and 3.11) applied to every QNM of each resonators give us

1The linearization has important consequences on the orthogonality and completness of the QNM
basis.
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Figure 3.3: Coupling of two point dipoles. (a,d) Hybridization diagram. (b,e) Resonance
frequencies (or energies) and (c,f) decay rates of the bonding (red) and anti-bonding
(blue) modes as a function of the distance between the dipole. Top panels are for aligned
dipoles, bottom ones for parallel dipoles. The numerical data is obtained by solving the
non-linear eigenproblem of Eq.(3.4), for initial energies equal to ω̃A = (2.1+ 0.12i) ×
1015 rad/s, ω̃B = (2.4+0.12i)×1015 rad/s, i.e. resonant at ≈ 890 and ≈ 780 nm, and an
oscillator strength β = 0.12 C/kg. We define λ ≡ πc/ωA +πc/ωB.

space. However, for symmetry reasons, two align dipoles can only interact via
longitudinal fields, and parallel via transverse fields. Therefore, there cannot
be any long range (far-field) interaction for aligned dipoles, whereas these
interactions are maximum for parallel dipoles.

3.2.2. Coupled QNM theory

In the previous subsection, we recalled the classical formalism for studying
the hybridization of two electric-dipole oscillators. We here employ a similar
approach to derive a coupled quasinormal modes (QNM) theory to find the
hybridized modes of an assembly of arbitrary resonators immersed in the
same background material of homogeneous and isotropic permittivity εb.

Figure 3.4 sketches the mathematical formulation of the scattering by two
coupled resonators. The resonators are excited by an arbitrary driving field
Edr,A/B. Additionally to this external driving field, the QNM i of resonator
A is driven by the field scattered by the normalized field ẼB

j of the QNM j

of resonator B with a certain (complex) weight βBj . The total fields driving a
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Figure 3.4: Sketch of the bidirectional interaction between two resonators described
QNM. The resonators are driven by an external source and they scatter onto each other
a field proportional to a superposition normalized QNMs (here we only indicate QNM i
for A and j for B).

QNM i of A, is therefore

E′D =
∑

j∈B
βBj Ẽ

B
j +ED . (3.11)

Similarly, the field driving each mode j of B will be a sum of the contributions
by the QNM i of A and the external driving field.

Most materials can be described by a multi-pole Lorentz-Drude permittiv-
ity [189, 190]. Assuming a single pole, the permittivity can be written

εX(ω) = εX∞ − εX∞
ω2
p

(ω2 −ω2
0 − iωγ0)

≡ εX∞+ εXL (ω), (3.12)

with ωp the plasma frequency, ω0 the resonance frequency and γ0 the damp-
ing rate of the material. Following Ref. [134] where the QNM eigenproblem is
linearized by considering auxiliary fields1, the excitation coefficient of a QNM
i of a resonator X, with normalized field Ẽi and complex resonance frequency
ω̃i , driven by a field ED , is given by

βXi (ω,ED) =

�

X
ẼX
i (r) ·

(
−ω̃i

ω − ω̃i

[
εX(ω̃i)− εb

]
+ [εb − ε∞]

)
ED(ω,r)dr,

(3.13)
where the integral runs over the volume of resonator X. The present formula
implicitly assumes homogeneous resonators made of single material, but can
straightforwardly be extended to more general structures (like core-shell res-
onators).

Equations (3.13 and 3.11) applied to every QNM of each resonators give us

1The linearization has important consequences on the orthogonality and completness of the QNM
basis.
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the system of equations



βAi =

�

A
ẼA
i ·


−ω̃A

i

ω − ω̃A
i

[
εA(ω̃A

i )− εb
]
+
[
εb − εA∞

]

∑

i∈A
βBj Ẽ

B
j +ED

 dr
...

βBj =

�

B
ẼB
j ·


−ω̃B

j

ω − ω̃B
j

[
εB(ω̃B

j )− εb
]
+
[
εb − εB∞

]


∑

j∈B
βAi Ẽ

A
i +ED

 dr

...

.

(3.14)
For a more compact notation, we isolate the offset term and the dispersive

part εX(ω) = εX∞+εXL (ω) in the Lorentz-Drude model, and use the definitions


∆εX∞ ≡ εX∞ − εb
∆εXL (ω) ≡ εXL (ω)− εb,

(3.15)

and equation 3.14 becomes



(ω − ω̃A
i )β

A
i =

�

A
ẼA
i ·

(
−ω̃A

i ∆ε
A
L (ω̃

A
i )−ω∆εA∞

)

∑

j∈B
βBj Ẽ

B
j +ED

 dr

...

(ω − ω̃B
j )β

B
j =

�

B
ẼB
j ·

(
−ω̃B

j ∆ε
B
L (ω̃

B
j )−ω∆εB∞

)
∑

i∈A
βAi Ẽ

A
i +ED

 dr
...

.

(3.16)
This system is equivalent to Eq.(3.4) in the case of points dipoles.

We are interested in finding the hybridized QNMs of the coupled system,
therefore we look for eigen-solutions, without driving field, of equation 3.16.
We recognize a generalized linear eigenvalue problem for the eigenfrequency
ω̃n and eigenvectors

(
β̃A ; β̃B)

n
of a hybridized QNM n

[
ΩA −ΩA∆εAL 〈A|B〉

−ΩB∆εBL 〈B|A〉 ΩB

]
β̃A

β̃B


n

= ω̃n

[
1 ∆εA∞〈A|B〉

∆εB∞〈B|A〉 1

]
β̃A

β̃B


n

. (3.17)

where we assumed isotropic materials to factorize the overlap integrals, and
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introduced the matrix notations


(β̃X
)n ≡


β̃Xi
...


n

ΩX ≡ diag
{
ω̃X
i

}
i∈X

∆εXL = diag
{
∆εXL (ω̃

X
i )

}
i∈X

〈X|Y〉i,j ≡
�

X
ẼX
i · Ẽ

Y
j dr.

This equation is similar Eq.(3.5), with an additional matrix on the right hand
side of the system. As it was the case for point dipoles, the coefficients of
the matrix of the system are complex, accounting for losses, and retardation
effects in open electromagnetic systems. We however also observe that since
in the general case 〈X|Y〉i,j � 〈Y|X〉j ,i , the system has no particular symmetry
properties.

With such a formulation, we implicitly make the hypothesis that the elec-
tromagnetic field of a new hybridized QNM n at all points in space, outside
of A and B, is a linear combination of the different original QNM i of A and
j of B, weighted by the coefficients βAi→n and βBj→n specific for this hybridized
QNM n [

Ẽn
H̃n

]
=

∑

i∈A
β̃Ai→n

[
ẼA
i

H̃A
i

]
+
∑

j∈B
β̃Bj→n


ẼB
j

H̃B
j

 . (3.18)

We further assume that the field inside A and B is solely described by re-
spectively the QNMs of A and B since the QNM basis is complete inside the
resonators [126–128, 191]. This hypothesis is relevant in subsection 3.2.5.

The problem we derive here is similar to the formulation of Ref. [138]. In
their work, Vial et al. indeed derive directly from Maxwell equations, with an
outgoing wave condition, a generalized eigenproblem by solely assuming that
the hybrid QNMs are linear combinations of uncoupled QNMs. We use the
same assumption in Eq.(3.18), however, in addition, we make an assumption
on the expression of the coupling coefficients between QNMs which enter
Eq.(3.17). Both the work of this chapter and the work of Vial et al. require to
perform overlap integrals between the QNM fields of A and B. However, our
formulation conveniently only requires the perform these integrals over the
volumes of the resonators, whereas in [138] they run over the whole space.
In a practical numerical implementation, this means that the formulation of
Vial et al. requires integration over the full simulation domain including
numerical perfectly matched layers (PMLs), and relies completely on the fact
that the modes of the two resonators are calculated on the exact same mesh.
In this chapter, we also use the same mesh for the two resonators, but only
as a convenience to take advantage of the very efficient numerical integra-
tion methods programmed in the finite element method software COMSOL.
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the system of equations
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This system is equivalent to Eq.(3.4) in the case of points dipoles.

We are interested in finding the hybridized QNMs of the coupled system,
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We recognize a generalized linear eigenvalue problem for the eigenfrequency
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where we assumed isotropic materials to factorize the overlap integrals, and
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introduced the matrix notations
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This equation is similar Eq.(3.5), with an additional matrix on the right hand
side of the system. As it was the case for point dipoles, the coefficients of
the matrix of the system are complex, accounting for losses, and retardation
effects in open electromagnetic systems. We however also observe that since
in the general case 〈X|Y〉i,j � 〈Y|X〉j ,i , the system has no particular symmetry
properties.

With such a formulation, we implicitly make the hypothesis that the elec-
tromagnetic field of a new hybridized QNM n at all points in space, outside
of A and B, is a linear combination of the different original QNM i of A and
j of B, weighted by the coefficients βAi→n and βBj→n specific for this hybridized
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=
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We further assume that the field inside A and B is solely described by re-
spectively the QNMs of A and B since the QNM basis is complete inside the
resonators [126–128, 191]. This hypothesis is relevant in subsection 3.2.5.

The problem we derive here is similar to the formulation of Ref. [138]. In
their work, Vial et al. indeed derive directly from Maxwell equations, with an
outgoing wave condition, a generalized eigenproblem by solely assuming that
the hybrid QNMs are linear combinations of uncoupled QNMs. We use the
same assumption in Eq.(3.18), however, in addition, we make an assumption
on the expression of the coupling coefficients between QNMs which enter
Eq.(3.17). Both the work of this chapter and the work of Vial et al. require to
perform overlap integrals between the QNM fields of A and B. However, our
formulation conveniently only requires the perform these integrals over the
volumes of the resonators, whereas in [138] they run over the whole space.
In a practical numerical implementation, this means that the formulation of
Vial et al. requires integration over the full simulation domain including
numerical perfectly matched layers (PMLs), and relies completely on the fact
that the modes of the two resonators are calculated on the exact same mesh.
In this chapter, we also use the same mesh for the two resonators, but only
as a convenience to take advantage of the very efficient numerical integra-
tion methods programmed in the finite element method software COMSOL.
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Additionally, the formulation of Vial et al. requires the material to be non-
dispersive to define an inner product to project the hybridized QNMs onto
to the original QNMs. Our formulation does not have this restriction, but
requires an assumption presented in the following subsection.

3.2.3. Normalization of the hybrid states
To fully exploit the effectiveness of our approach, one should not only find
the hybridized QNMs of the coupled system, but also normalize these QNMs
in order to predict the response of the hybridized system to a driving field.
Indeed, the QNM field expressed in Eq.(3.18) is not normalized if the coef-
ficients β̃Ai→n and β̃Bj→n are not normalized. We therefore attempt to define
a normalization condition based on algebraic properties of the eigenproblem
that we solve in Eq.(3.17). Generalized eigenproblems can, in practical situa-
tions, always be diagonalized. However, an orthogonality relationship does
not always exist. Instead, a bi-orthogonality relationship can be defined using
left and right eigenvectors for each hybridized QNM n. The right (column)

eigenvectors


β̃A

β̃B


n

are directly obtained by solving Eq.(3.17) :

M


β̃A

β̃B


n

= ω̃nC


β̃A

β̃B


n

, (3.19)

where we introduce matrices M and C for compact notations. The left (line)
eigenvectors (ξ̃A

ξ̃
B)n are however solution of the transposed problem

(ξ̃
A

ξ̃
B)nM= ω̃n(ξ̃

A
ξ̃
B)nC. (3.20)

The bi-orthogonality relationship between hybridized modes n and m can
then be expressed as

(ξ̃
A

ξ̃
B)mC


β̃A

β̃B


n

= δm,n, (3.21)

and serve as a normalization condition for m = n. This normalization does
not explicitly map onto the normalization introduced by Sauvan [124]. For
discretized formulations of Maxwell equations used in any numerical solvers
(FEM, FDFD, RCWA,...), we believe that it can be shown that when one uses
the complete basis of all QNMs of both resonators, the normalization of
Eq.(3.21) converges towards Sauvan’s normalization.

3.2.4. Truncation of the basis: one QNM for A and B
Using the complete basis of QNM to describe each resonator is not only cum-
bersome, but in practice impossible as it requires to calculate as many QNMs
as there are degrees of freedom in the numerical model [134]. Additionally, the
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main purpose of developing a coupled QNM theory is that one expects to gain
physical insight in a coupled system on basis of just the main resonances of
the constituent building blocks. While in this work we were able to perform
computations with the order of a few hundred QNMs (400 in this chapter),
it is of particular use to consider the simplest case of just two objects, each
described with just one QNM. This simple case has an elegant mapping back
onto the case of two resonant coupled dipoles (cf. subsection 3.2.1). In the case
of one QNM per resonator, we obtain a 2× 2 generalized linear eigenproblem

[
ω̃A −ω̃A∆εAL (ω̃

A) 〈A|B〉
−ω̃B∆εBL(ω̃

B) 〈B|A〉 ω̃B

](
βA

βB

)

= ω

[
1 ∆εA∞〈A|B〉

∆εB∞〈B|A〉 1

](
βA

βB

)
. (3.22)

This equation differs from Eq.(3.5) by the matrix on the left side of the
equation. Note however that the anti-diagonal terms of the right matrix
in Eq.(3.22) are usually negligible. Indeed, for frequencies ω far below the
plasma frequency ωp (metallic behaviour), a simple analysis of the Lorentz-
Drude model shows that |∆εX∞〈X |Y 〉 | � |∆εXL (ω) 〈X |Y 〉 | � 1.

To draw the comparison with the case of a two coupled identical dipoles
studied in subsection 3.2.1, we simplify Eq.(3.22) by assuming a symmetric
homodimer. We therefore assume ω̃A = ω̃B ≡ ω̃0, εA = εB ≡ ε and the overlap
integrals in Eq.(3.22) are identical 〈A|B〉= 〈B|A〉 ≡ K , which straight-forwardly
exactly leads to the eigenfrequencies



ω̃+ = ω̃0
1+∆εL(ω̃0)K

1−∆ε∞K
ω̃− = ω̃0

1−∆εLK(ω̃0)

1+∆ε∞K
,

(3.23)

and the associated normalized eigenvectors

(β̃A ; β̃B)+ = 1√

2
(1; −1)

(β̃A ; β̃B)− =
1√
2
(1;+1).

(3.24)

We find very similar expressions as in the case of two identical point dipoles
in Eqs.(3.7 and 3.8). Here again, the sign of the real and imaginary part of
∆εL(ω̃0)K prescribes the hybridization rule between the two resonators. We
note that the presence of a denominator in the hybridized eigenfrequencies ω̃±
in Eq.(3.23) suggests that the new resonance frequencies and decay rates are
not completely symmetric with respect to the uncoupled QNM. However, the
effect of this denominator is negligible in virtue of the discussion on the left
matrix in Eq.(3.22). Furthermore, in Eq.(3.7), taking into account the frequency
dependence of the Green function G0 would also lead to an asymmetric shift
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Additionally, the formulation of Vial et al. requires the material to be non-
dispersive to define an inner product to project the hybridized QNMs onto
to the original QNMs. Our formulation does not have this restriction, but
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the hybridized QNMs of the coupled system, but also normalize these QNMs
in order to predict the response of the hybridized system to a driving field.
Indeed, the QNM field expressed in Eq.(3.18) is not normalized if the coef-
ficients β̃Ai→n and β̃Bj→n are not normalized. We therefore attempt to define
a normalization condition based on algebraic properties of the eigenproblem
that we solve in Eq.(3.17). Generalized eigenproblems can, in practical situa-
tions, always be diagonalized. However, an orthogonality relationship does
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(FEM, FDFD, RCWA,...), we believe that it can be shown that when one uses
the complete basis of all QNMs of both resonators, the normalization of
Eq.(3.21) converges towards Sauvan’s normalization.
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Using the complete basis of QNM to describe each resonator is not only cum-
bersome, but in practice impossible as it requires to calculate as many QNMs
as there are degrees of freedom in the numerical model [134]. Additionally, the
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main purpose of developing a coupled QNM theory is that one expects to gain
physical insight in a coupled system on basis of just the main resonances of
the constituent building blocks. While in this work we were able to perform
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matrix in Eq.(3.22). Furthermore, in Eq.(3.7), taking into account the frequency
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in the complex eigenfrequencies of the hybridized modes, related to a change
in the retardation phase between dipoles as the resonance wavelength shifts.

3.2.5. Excitation coefficients
Once the hybridized QNMs of the coupled systems are known and normal-
ized, they can be used to calculate observables, such as extinction cross sec-
tions and Purcell factors. This endeavour requires to calculate excitation co-
efficients of the hybridized QNM. We assume that these coefficients can still
be calculated using Eq.(3.13), with the overlap integral between driving field
and normalized QNM running over both resonators A and B

bn(ω,ED) =

�

A∪B
Ẽn(r) ·

(
−ω̃n

ω − ω̃n

[
εA∪B(ω̃n)− εb

]
+
[
εb − εA∪B∞

])
ED(ω,r)dr.

(3.25)
To calculate the coupling coefficients, we use the fact that the field for the
coupled QNM n in resonator A (resp. B) is given by the field in resonator A
(resp. B) only. Then we obtain

bn(ω,ED) =
∑

i∈A
β̃Ai→n b

A
i→n(ω,ED) +

∑

j∈B
β̃Bj→n b

B
j→n(ω,ED), (3.26)

with


bAi→n(ω,ED) ≡
�

A
ẼA
i (r) ·

(
−ω̃n

ω − ω̃n

[
εA(ω̃n)− εb

]
+
[
εb − εA∞

])
ED(ω,r)dr

bBj→n(ω,ED) ≡
�

B
ẼB
j (r) ·

(
−ω̃n

ω − ω̃n

[
εB(ω̃n)− εb

]
+
[
εb − εB∞

])
ED(ω,r)dr.

(3.27)

Note that the coefficients β̃Xi→n are describing the eigenmodes of the
hybridized QNM n and therefore do not depend on the frequency ω or
the driving field ED . The coefficients bXi→n, on the other hand, quantify the
coupling of each uncoupled QNMs of A and B with the driving field at a
certain frequency. They are however defined for each hybridized QNM n as
they contain a resonant term at ω̃n and the permittivity is also evaluated at
ω̃n [134].

3.3. Numerical implementation
In this section, we first test the predictive force of the coupled QNM the-
ory to predict complex eigenfrequencies, i.e. energies and decay rates, of
hybridized QNMs in the case of a symmetric homodimer composed of two
identical aligned gold nanorods. We confront the predictions to the intu-
ition on the hybridization of dipoles gathered from subsection 3.2.1. Then we
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demonstrate the capacity of our formalism to predict the usual observables
upon excitation of coupled resonators. We take the example of gold nanorod
hetero- or homodimers in different arrangements, and compare the model
predictions for the extinction of plane-waves with exact calculations. Finally,
we show that the coupled QNM theory is relevant in the context of oligomers,
i.e. assemblies composed of more than two resonators, in the particular case
of a four-nanorods assembly studied in Ref. [87].

3.3.1. Symmetric homodimer
To test the validity of our formalism, we start by considering a homodimer
composed of two identical gold cylindrical nanorods with spherical apex
(90 nm long, 30 nm diameter), aligned along their long axis as sketched in
Fig. 3.5(a). The background medium is water (εb = 1.332) and we take a
Drude model ε(ω) = ε∞ − ε∞ω2

p/ω(ω − iγd) for gold with parameters, with
ε∞ = 1, ωp = 1.26 × 1016 rad/s, γd = 1.41 × 1014 rad/s. Such a system is
described by the simplified formalism presented in subsection 3.2.4.
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Figure 3.5: Test of the coupled QNM theory (Eq.(3.23)) for symmetric gold nanorod
dimer. (a) We couple two identical gold nanorods (90 nm long, 30 nm diameter),
separated by a small gap measured between nanorods’ apices. (b) Real part of the
complex resonance frequency ω̃− and ω̃+ of resp. the bonding (red) and anti-bonding
(blue) modes of the homodimer. Circles are exact values from simulation, solid lines are
predictions by Eq.(3.23). (c) Imaginary part of the complex resonance frequencies (i.e.
decay-rate). We observe for both real and imaginary part of the complex frequencies
a good agreement between prediction and exact values. For smaller gaps however the
agreement is degraded.

We vary the gap separation and for each separation, we study the hy-
bridization of the dipolar modes of the two nanorods by calculating the exact
complex resonance frequency of two hybridized modes. In this section, all
QNMs are calculated and normalized using the finite element method (FEM)
software COMSOL, according to the method described in Ref [132]. We then
compare with the predictions of Eq.(3.23), as shown in Fig. 3.5(b,c). To mitigate
numerical errors when performing overlap integrals, we compute the QNMs
of the two uncoupled nanorods, as well as the two hybridized QNMs on the
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in the complex eigenfrequencies of the hybridized modes, related to a change
in the retardation phase between dipoles as the resonance wavelength shifts.

3.2.5. Excitation coefficients
Once the hybridized QNMs of the coupled systems are known and normal-
ized, they can be used to calculate observables, such as extinction cross sec-
tions and Purcell factors. This endeavour requires to calculate excitation co-
efficients of the hybridized QNM. We assume that these coefficients can still
be calculated using Eq.(3.13), with the overlap integral between driving field
and normalized QNM running over both resonators A and B

bn(ω,ED) =

�

A∪B
Ẽn(r) ·

(
−ω̃n

ω − ω̃n

[
εA∪B(ω̃n)− εb

]
+
[
εb − εA∪B∞

])
ED(ω,r)dr.

(3.25)
To calculate the coupling coefficients, we use the fact that the field for the
coupled QNM n in resonator A (resp. B) is given by the field in resonator A
(resp. B) only. Then we obtain

bn(ω,ED) =
∑

i∈A
β̃Ai→n b

A
i→n(ω,ED) +

∑

j∈B
β̃Bj→n b

B
j→n(ω,ED), (3.26)

with


bAi→n(ω,ED) ≡
�

A
ẼA
i (r) ·

(
−ω̃n

ω − ω̃n

[
εA(ω̃n)− εb

]
+
[
εb − εA∞

])
ED(ω,r)dr

bBj→n(ω,ED) ≡
�

B
ẼB
j (r) ·

(
−ω̃n

ω − ω̃n

[
εB(ω̃n)− εb

]
+
[
εb − εB∞

])
ED(ω,r)dr.

(3.27)

Note that the coefficients β̃Xi→n are describing the eigenmodes of the
hybridized QNM n and therefore do not depend on the frequency ω or
the driving field ED . The coefficients bXi→n, on the other hand, quantify the
coupling of each uncoupled QNMs of A and B with the driving field at a
certain frequency. They are however defined for each hybridized QNM n as
they contain a resonant term at ω̃n and the permittivity is also evaluated at
ω̃n [134].

3.3. Numerical implementation
In this section, we first test the predictive force of the coupled QNM the-
ory to predict complex eigenfrequencies, i.e. energies and decay rates, of
hybridized QNMs in the case of a symmetric homodimer composed of two
identical aligned gold nanorods. We confront the predictions to the intu-
ition on the hybridization of dipoles gathered from subsection 3.2.1. Then we
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demonstrate the capacity of our formalism to predict the usual observables
upon excitation of coupled resonators. We take the example of gold nanorod
hetero- or homodimers in different arrangements, and compare the model
predictions for the extinction of plane-waves with exact calculations. Finally,
we show that the coupled QNM theory is relevant in the context of oligomers,
i.e. assemblies composed of more than two resonators, in the particular case
of a four-nanorods assembly studied in Ref. [87].

3.3.1. Symmetric homodimer
To test the validity of our formalism, we start by considering a homodimer
composed of two identical gold cylindrical nanorods with spherical apex
(90 nm long, 30 nm diameter), aligned along their long axis as sketched in
Fig. 3.5(a). The background medium is water (εb = 1.332) and we take a
Drude model ε(ω) = ε∞ − ε∞ω2

p/ω(ω − iγd) for gold with parameters, with
ε∞ = 1, ωp = 1.26 × 1016 rad/s, γd = 1.41 × 1014 rad/s. Such a system is
described by the simplified formalism presented in subsection 3.2.4.
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Figure 3.5: Test of the coupled QNM theory (Eq.(3.23)) for symmetric gold nanorod
dimer. (a) We couple two identical gold nanorods (90 nm long, 30 nm diameter),
separated by a small gap measured between nanorods’ apices. (b) Real part of the
complex resonance frequency ω̃− and ω̃+ of resp. the bonding (red) and anti-bonding
(blue) modes of the homodimer. Circles are exact values from simulation, solid lines are
predictions by Eq.(3.23). (c) Imaginary part of the complex resonance frequencies (i.e.
decay-rate). We observe for both real and imaginary part of the complex frequencies
a good agreement between prediction and exact values. For smaller gaps however the
agreement is degraded.

We vary the gap separation and for each separation, we study the hy-
bridization of the dipolar modes of the two nanorods by calculating the exact
complex resonance frequency of two hybridized modes. In this section, all
QNMs are calculated and normalized using the finite element method (FEM)
software COMSOL, according to the method described in Ref [132]. We then
compare with the predictions of Eq.(3.23), as shown in Fig. 3.5(b,c). To mitigate
numerical errors when performing overlap integrals, we compute the QNMs
of the two uncoupled nanorods, as well as the two hybridized QNMs on the
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exact same numerical mesh, thereby recalculating all four QNMs for every
gap value. As expected, the dipole modes of nanorods hybridize the same
way as aligned point dipoles, i.e. with a lower energy, superradiant bonding
mode and a higher energy, subradiant anti-bonding mode. Already for the
case of simple point dipoles in Fig. 3.3 we saw that, as the distance between
dipoles is increased, the asymptotic behaviour of the resonance frequency
of the hybridized mode converges faster towards the values for uncoupled
dipoles than the decay rates. We assign this to the fact that the shift in en-
ergy of the modes is related to near-field interactions, whereas the change
in loss rates is related to interference effects with longer range interaction.
This observation is even more stringent in the case of two nanorods as can
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Figure 3.6: Normalized electric field (z-component) for the bonding bright QNM formed
when coupling two nanorods (same parameters as Fig. 3.5) with a gap of 30 nm. Solid
red line is the exact normalized field (Sauvan normalization [124]), dashed lines are
normalized with Eq.(3.21). Green assumes the field is a linear superposition everywhere
in space (Eq.(3.18)), where blue assumes that the field inside each resonator is only
described by the uncoupled QNM.

be seen by comparing Figs. 3.5(b) and (c). Indeed, in the case of a point
dipole, the near-field interaction always scales as the inverse of the separation
to the cube. In the case of a plasmonic resonators on the other hand, this
interaction, mediated by surface plasmons, decreases exponentially with the
distance to the interface metal/glass for small distances. Finally, we observe a
very good agreement between Eq.(3.23) and the exact result for gap separation
larger than 20 nm. Interestingly, as the gap is reduced to values smaller than
40 nm, the decay rate of the bright mode starts decreasing, and conversely
the decay rate of the dark mode increases. This observation is assumed to be
related to retardation effects averaged over the non-negligible length of the
nanorods (90 nm ≈ λ/8), and was not observed in the point dipole model
(cf. subsection 3.2.1). Even-though Eq.(3.23) is not quantitative for such small
gaps, it does predict qualitatively this inflection of the variation of decay-rates
for small gaps. This means that the QNM formalism captures all the physics of
the hybridization of realistic resonators, in particular the prediction of decay
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rates, which is inaccessible to quasi-static theories [182]. Note that, in virtue of
the discussion on the denominators in Eq.(3.23), since ∆εL(ω̃0) = −23.2+0.81i
and ∆ε∞ = 0.77, we do not predict a significant asymmetry between ω̃+ and
ω̃−.

Figure 3.6 compares the exact normalized electric field (z-component) of
the bonding bright mode for a gap of 30 nm. The normalized mode is well
reproduced except in the nanogap, and inside the resonators, in the proximity
of the nanogap. The fact that the predictions are better for larger gaps and
worsen for smaller gaps relates to the fact that we only use two QNMs in
the expansion. Indeed, it is well known from, e.g. generalized Mie calcu-
lations [178] for dimers of spheres, that large field gradients that occur in
small gaps involve higher order multipolar terms. We expect by analogy that
strong field gradients in dimers require inclusion of higher order QNMs. In
Section 3.4 we will return to this issue, as we consider the convergence of the
field in the gap of a dimer as a function of the number of QNMs.

3.3.2. Response of hybridized QNMs to a driving field
In this subsection, we show that the normalized coupled-QNMs estimated
with the coupled QNM theory can also be used to predict extinction properties
of the system upon plane wave illumination.
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Figure 3.7: Geometry of the gold nanorods dimer used for numerical tests. (a)
Parametrization of the dimers. Nanorods are 40 nm thick and wide. Their length is
chosen to be 90 or 120 nm. We use a Drude model for gold (same parameters as in
subsection 3.2.4), the background is homogeneous water (εb = 1.332). The geometry
is parametrized by a gap which is defined as the minimal distance between the two
nanorods, and an angle θ between the long axis of the rods. (b) Typical mesh used,
denser at edges, to improve stability and also accuracy of FEM simulations using
COMSOL.

We test the formalism on homodimers and heterodimers composed of rect-
angular gold nanorods with cylindrical apex. We use the same Drude model
as in subsection 3.2.4, and the nanorods are immersed in water of permittivity
εb = 1.332. The geometry is sketched in Fig. 3.7; the width and height of the
gold nanorods is fixed to 40 nm, and we use two 90 nm long nanorods for
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exact same numerical mesh, thereby recalculating all four QNMs for every
gap value. As expected, the dipole modes of nanorods hybridize the same
way as aligned point dipoles, i.e. with a lower energy, superradiant bonding
mode and a higher energy, subradiant anti-bonding mode. Already for the
case of simple point dipoles in Fig. 3.3 we saw that, as the distance between
dipoles is increased, the asymptotic behaviour of the resonance frequency
of the hybridized mode converges faster towards the values for uncoupled
dipoles than the decay rates. We assign this to the fact that the shift in en-
ergy of the modes is related to near-field interactions, whereas the change
in loss rates is related to interference effects with longer range interaction.
This observation is even more stringent in the case of two nanorods as can
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Figure 3.6: Normalized electric field (z-component) for the bonding bright QNM formed
when coupling two nanorods (same parameters as Fig. 3.5) with a gap of 30 nm. Solid
red line is the exact normalized field (Sauvan normalization [124]), dashed lines are
normalized with Eq.(3.21). Green assumes the field is a linear superposition everywhere
in space (Eq.(3.18)), where blue assumes that the field inside each resonator is only
described by the uncoupled QNM.

be seen by comparing Figs. 3.5(b) and (c). Indeed, in the case of a point
dipole, the near-field interaction always scales as the inverse of the separation
to the cube. In the case of a plasmonic resonators on the other hand, this
interaction, mediated by surface plasmons, decreases exponentially with the
distance to the interface metal/glass for small distances. Finally, we observe a
very good agreement between Eq.(3.23) and the exact result for gap separation
larger than 20 nm. Interestingly, as the gap is reduced to values smaller than
40 nm, the decay rate of the bright mode starts decreasing, and conversely
the decay rate of the dark mode increases. This observation is assumed to be
related to retardation effects averaged over the non-negligible length of the
nanorods (90 nm ≈ λ/8), and was not observed in the point dipole model
(cf. subsection 3.2.1). Even-though Eq.(3.23) is not quantitative for such small
gaps, it does predict qualitatively this inflection of the variation of decay-rates
for small gaps. This means that the QNM formalism captures all the physics of
the hybridization of realistic resonators, in particular the prediction of decay
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rates, which is inaccessible to quasi-static theories [182]. Note that, in virtue of
the discussion on the denominators in Eq.(3.23), since ∆εL(ω̃0) = −23.2+0.81i
and ∆ε∞ = 0.77, we do not predict a significant asymmetry between ω̃+ and
ω̃−.

Figure 3.6 compares the exact normalized electric field (z-component) of
the bonding bright mode for a gap of 30 nm. The normalized mode is well
reproduced except in the nanogap, and inside the resonators, in the proximity
of the nanogap. The fact that the predictions are better for larger gaps and
worsen for smaller gaps relates to the fact that we only use two QNMs in
the expansion. Indeed, it is well known from, e.g. generalized Mie calcu-
lations [178] for dimers of spheres, that large field gradients that occur in
small gaps involve higher order multipolar terms. We expect by analogy that
strong field gradients in dimers require inclusion of higher order QNMs. In
Section 3.4 we will return to this issue, as we consider the convergence of the
field in the gap of a dimer as a function of the number of QNMs.

3.3.2. Response of hybridized QNMs to a driving field
In this subsection, we show that the normalized coupled-QNMs estimated
with the coupled QNM theory can also be used to predict extinction properties
of the system upon plane wave illumination.
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Figure 3.7: Geometry of the gold nanorods dimer used for numerical tests. (a)
Parametrization of the dimers. Nanorods are 40 nm thick and wide. Their length is
chosen to be 90 or 120 nm. We use a Drude model for gold (same parameters as in
subsection 3.2.4), the background is homogeneous water (εb = 1.332). The geometry
is parametrized by a gap which is defined as the minimal distance between the two
nanorods, and an angle θ between the long axis of the rods. (b) Typical mesh used,
denser at edges, to improve stability and also accuracy of FEM simulations using
COMSOL.

We test the formalism on homodimers and heterodimers composed of rect-
angular gold nanorods with cylindrical apex. We use the same Drude model
as in subsection 3.2.4, and the nanorods are immersed in water of permittivity
εb = 1.332. The geometry is sketched in Fig. 3.7; the width and height of the
gold nanorods is fixed to 40 nm, and we use two 90 nm long nanorods for
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homodimers, and a 90 and 120 nm long nanorods for heterodimers. To move
away from the aligned configuration studied in Section 3.2 with point dipoles
and nanorods, we change the geometry by allowing for angle θ of 0, 90 or
180◦ between nanorods, and a gap of 20 or 60 nm.

We study the extinction of a plane wave at normal incidence (z-direction)
with right handed circular polarization. We proceed by first computing
the dipolar QNM of both nanorods as in subsection 3.2.4 as input to solve
Eq.(3.22) for eigenvalue and eigenvectors. Then we normalize the two
hybridized QNMs using the condition Eq.(3.21), and calculate the excitation
coefficients b± of the two new QNMs by the plane wave ED with Eq.(3.26),
and finally calculate the extinction cross section σext via formulas established
in [132]

σext(ω) = −
ω
2S0

�

A∪B
Im

{
∆εA∪B(ω) (ED +ES ) ·E∗D

}
dr, (3.28)

where S0 is the intensity of the incident plane wave. The scattered field ES
decomposed over the two hybridized QNMs obtained from Eq.(3.18)

ES (ω,r) = b+(ω) · Ẽ+(r) + b−(ω) · Ẽ−(r). (3.29)

Case of a heterodimer
We first consider the case of a heterodimer. We choose the sizes of the two
nanorods such that the frequency detuning allows us to be in the weak cou-
pling regime (cf. subsection 3.9). Figure 3.8 summarizes COMSOL simula-
tions and the predictions of the coupled QNM theory for different configura-
tions.

Let us first discuss the general trends. A first point is that since we are in
the weakly coupled regime, the hybridized modes can be thought of as per-
turbation of the uncoupled QNMs. This explains why a gap changed from 20
to 60 nm does not seem to have a strong influence on the spectral position and
intensity of the peaks. A second observation, related to radiative properties
of the hybridized modes, is that for 0◦, the red mode has a much stronger
extinction cross section than the blue mode. This is due to the superradiant
and subradiant properties of, respectively, the red and blue modes. From
a purely mathematical point of view, this difference in extinction properties
comes from the fact that the overlap integral between a homogeneous field,
the plane wave, and the hybridized subradiant mode, with normalized field in
resonators A and B pointing in opposite directions, is smaller than the overlap
with superradiant modes for which the fields inside resonators A and B point
in the same direction.

Case of a homodimer
We now move on to the case of a homodimer composed of two nanorods of
90 nm length. Figure 3.9 summarizes the simulation results obtained for the
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Figure 3.8: Extinction cross section of different heterodimers, illuminated by a plane
wave with right handed circular polarization at normal incidence (z direction). (a-c) Gap
is fixed to 60 nm and the angle θ is respectively 0, 90 and 180◦. (d-f) Gap is fixed to
20 nm. In all plots, circles are exact data, and solid lines are predictions with the coupled
QNM theory. Vertical dashed lines indicate the original resonance frequencies of the
uncoupled nanorods. We observe a qualitative agreement between prediction and exact
calculation.
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Figure 3.9: Same as in the caption of Fig. 3.8, here for the homodimer case.

same configuration and illumination as in subsection 3.3.2. A first observation
is that the resonance frequency of the hybridized modes depends much more
strongly on the gap size than in the case of the heterodimer presented in
Fig. 3.8. This is directly related to an observation we made in subsection 3.2.1,
where the shifts of hybridized modes scale as K for homodimer (or a het-
erodimer in the strong coupling regime), but as K2 for heterodimer in the
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homodimers, and a 90 and 120 nm long nanorods for heterodimers. To move
away from the aligned configuration studied in Section 3.2 with point dipoles
and nanorods, we change the geometry by allowing for angle θ of 0, 90 or
180◦ between nanorods, and a gap of 20 or 60 nm.

We study the extinction of a plane wave at normal incidence (z-direction)
with right handed circular polarization. We proceed by first computing
the dipolar QNM of both nanorods as in subsection 3.2.4 as input to solve
Eq.(3.22) for eigenvalue and eigenvectors. Then we normalize the two
hybridized QNMs using the condition Eq.(3.21), and calculate the excitation
coefficients b± of the two new QNMs by the plane wave ED with Eq.(3.26),
and finally calculate the extinction cross section σext via formulas established
in [132]

σext(ω) = −
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}
dr, (3.28)

where S0 is the intensity of the incident plane wave. The scattered field ES
decomposed over the two hybridized QNMs obtained from Eq.(3.18)

ES (ω,r) = b+(ω) · Ẽ+(r) + b−(ω) · Ẽ−(r). (3.29)

Case of a heterodimer
We first consider the case of a heterodimer. We choose the sizes of the two
nanorods such that the frequency detuning allows us to be in the weak cou-
pling regime (cf. subsection 3.9). Figure 3.8 summarizes COMSOL simula-
tions and the predictions of the coupled QNM theory for different configura-
tions.

Let us first discuss the general trends. A first point is that since we are in
the weakly coupled regime, the hybridized modes can be thought of as per-
turbation of the uncoupled QNMs. This explains why a gap changed from 20
to 60 nm does not seem to have a strong influence on the spectral position and
intensity of the peaks. A second observation, related to radiative properties
of the hybridized modes, is that for 0◦, the red mode has a much stronger
extinction cross section than the blue mode. This is due to the superradiant
and subradiant properties of, respectively, the red and blue modes. From
a purely mathematical point of view, this difference in extinction properties
comes from the fact that the overlap integral between a homogeneous field,
the plane wave, and the hybridized subradiant mode, with normalized field in
resonators A and B pointing in opposite directions, is smaller than the overlap
with superradiant modes for which the fields inside resonators A and B point
in the same direction.

Case of a homodimer
We now move on to the case of a homodimer composed of two nanorods of
90 nm length. Figure 3.9 summarizes the simulation results obtained for the
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Figure 3.8: Extinction cross section of different heterodimers, illuminated by a plane
wave with right handed circular polarization at normal incidence (z direction). (a-c) Gap
is fixed to 60 nm and the angle θ is respectively 0, 90 and 180◦. (d-f) Gap is fixed to
20 nm. In all plots, circles are exact data, and solid lines are predictions with the coupled
QNM theory. Vertical dashed lines indicate the original resonance frequencies of the
uncoupled nanorods. We observe a qualitative agreement between prediction and exact
calculation.
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Figure 3.9: Same as in the caption of Fig. 3.8, here for the homodimer case.

same configuration and illumination as in subsection 3.3.2. A first observation
is that the resonance frequency of the hybridized modes depends much more
strongly on the gap size than in the case of the heterodimer presented in
Fig. 3.8. This is directly related to an observation we made in subsection 3.2.1,
where the shifts of hybridized modes scale as K for homodimer (or a het-
erodimer in the strong coupling regime), but as K2 for heterodimer in the
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weak coupling regime. A second important observation is the fact that for
angles 0 and 180◦, we obtain a single extinction peak. Indeed, because of
incompatible symmetry properties between the QNM field and the excitation,
a plane wave at normal incidence cannot couple to the anti-bonding mode.
For angle 90◦, the red and blue modes can both radiate as they possess a
net dipole, respectively along the y and x axis as can be observed in Fig. 3.2.
Therefore, a circularly polarized plane wave can couple to both modes, and
we obtain two extinction peaks. The theoretical predictions are more accurate
than those obtained for the heterodimer. We assign this to the fact that, in the
case of the heterodimer, the dipolar modes couple less to each other than for
the homodimer. The coupling of the dipolar QNM to higher order QNMs is
however of the same strength as in the heterodimer case, therefore reducing
the relative importance of these higher order modes in the hybridization for
the homodimer, and thereby the error made by neglecting them.

Predictions for different excitations
One of the strengths of quasinormal mode formalism is that the knowledge
of the QNMs of a resonator enables us to analytically recalculate the response
of the system to any excitation without having to rerun any computationally
heavy simulation. We demonstrate this property by changing the angle of the
polarization of the incident plane wave. The treatment is indeed straightfor-
ward once the hybridized QNMs of the system have been found and normal-
ized. We show in Figure 3.10, for a fixed geometry of the homodimer (gap of
20 nm, angle of 135◦), that the coupled QNM theory accurately reproduces
the response of the assembly as we vary the angle of the linear polarization of
the normally incident plane wave. As explained earlier (Fig. 3.2), for angles θ
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Figure 3.10: Extinction cross section of a homodimer for an incident plane wave
polarized along the z-direction. The gap is 20 nm, and the angle is 135◦. (a-c) The
angle of the polarization is respectively 0, 45 and 90◦ with the x-axis. In all plots,
circles are exact calculations, and solid lines are predictions by the coupled QNM theory.
Vertical dashed line indicate the original resonance of uncoupled nanorods. We observe
a qualitative agreement between prediction and exact calculation.

that are different than 0 and 180◦, the bonding mode has a net dipole moment
aligned with the x-axis, and the anti-bonding mode has a net dipole moment
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aligned with the y-axis. Therefore, for a plane wave illumination linearly
polarized along the x-axis, we only observe a single peak for the red mode,
and for y-polarized illumination, we only observe the blue mode. We also note
that, since the blue anti-bonding mode is subradiant, the related extinction
peak under optimum polarization (x direction) has a smaller magnitude, but
is also narrower than the superradiant red mode (which is optimum for y-
polarized light). A 45◦ polarized plane wave excites both blue and red modes.
The coupled QNM theory predicts all these observations.

3.3.3. Application to oligomers
Apart from a notable gain in computation time, an operational coupled QNM
theory could be a powerful tool for the design of complex ensembles of
nanoresonators also known as oligomers. The formulation of coupled QNM
theory in Eq.(3.17) can easily be extended to account for several resonators
by adding a new diagonal block ΩX for each additional resonator X, and
off-diagonal blocks ∆εX∞〈X|Y〉 and −ΩX∆εXL 〈X|Y〉 containing the cross-terms
(coupling) between all the QNMs of all the resonators of the assembly.
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Figure 3.11: (a) The oligomer is composed of two pairs of identical nanoresonators [87].
The first pair is composed of two aligned gold nanoantennas. The second pair is
composed of two parallel gold nanorods. Dimensions are indicated in nm, thickness
is 40 nm for nanorods and antennas. We use a Drude model for gold (same parameters
as subsection 3.2.4 and subsection 3.3.2). (b) Hybridization of superradiant modes (DA)
and (DN) into the subradiant bonding (AD) and superradiant anti-bonding (AB) modes
of the oligomer.

We test our formulation by analysing the oligomer structure studied by
Lovera and his coworkers in Ref. [87]. This oligomer is composed of four
gold nanorods immersed in water (εb = 1.332) as sketched in 3.11(a). For
convenience, the authors of [87] called the shorter nanorods, nanoantennas,
while keeping the name nanorods for the longer ones. In this subsection we
use the same designation. The main conclusion in [87] was that the proposed
structure exhibits a strong Fano-like resonance in extinction when illuminated
under normal incidence. This property is assigned to the interference between
the field scattered by two dipole-like modes, one superradiant AB (for "adia-
batic bright") and the other subradiant (for "adiabatic dark"). These modes
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weak coupling regime. A second important observation is the fact that for
angles 0 and 180◦, we obtain a single extinction peak. Indeed, because of
incompatible symmetry properties between the QNM field and the excitation,
a plane wave at normal incidence cannot couple to the anti-bonding mode.
For angle 90◦, the red and blue modes can both radiate as they possess a
net dipole, respectively along the y and x axis as can be observed in Fig. 3.2.
Therefore, a circularly polarized plane wave can couple to both modes, and
we obtain two extinction peaks. The theoretical predictions are more accurate
than those obtained for the heterodimer. We assign this to the fact that, in the
case of the heterodimer, the dipolar modes couple less to each other than for
the homodimer. The coupling of the dipolar QNM to higher order QNMs is
however of the same strength as in the heterodimer case, therefore reducing
the relative importance of these higher order modes in the hybridization for
the homodimer, and thereby the error made by neglecting them.

Predictions for different excitations
One of the strengths of quasinormal mode formalism is that the knowledge
of the QNMs of a resonator enables us to analytically recalculate the response
of the system to any excitation without having to rerun any computationally
heavy simulation. We demonstrate this property by changing the angle of the
polarization of the incident plane wave. The treatment is indeed straightfor-
ward once the hybridized QNMs of the system have been found and normal-
ized. We show in Figure 3.10, for a fixed geometry of the homodimer (gap of
20 nm, angle of 135◦), that the coupled QNM theory accurately reproduces
the response of the assembly as we vary the angle of the linear polarization of
the normally incident plane wave. As explained earlier (Fig. 3.2), for angles θ
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Figure 3.10: Extinction cross section of a homodimer for an incident plane wave
polarized along the z-direction. The gap is 20 nm, and the angle is 135◦. (a-c) The
angle of the polarization is respectively 0, 45 and 90◦ with the x-axis. In all plots,
circles are exact calculations, and solid lines are predictions by the coupled QNM theory.
Vertical dashed line indicate the original resonance of uncoupled nanorods. We observe
a qualitative agreement between prediction and exact calculation.

that are different than 0 and 180◦, the bonding mode has a net dipole moment
aligned with the x-axis, and the anti-bonding mode has a net dipole moment
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aligned with the y-axis. Therefore, for a plane wave illumination linearly
polarized along the x-axis, we only observe a single peak for the red mode,
and for y-polarized illumination, we only observe the blue mode. We also note
that, since the blue anti-bonding mode is subradiant, the related extinction
peak under optimum polarization (x direction) has a smaller magnitude, but
is also narrower than the superradiant red mode (which is optimum for y-
polarized light). A 45◦ polarized plane wave excites both blue and red modes.
The coupled QNM theory predicts all these observations.

3.3.3. Application to oligomers
Apart from a notable gain in computation time, an operational coupled QNM
theory could be a powerful tool for the design of complex ensembles of
nanoresonators also known as oligomers. The formulation of coupled QNM
theory in Eq.(3.17) can easily be extended to account for several resonators
by adding a new diagonal block ΩX for each additional resonator X, and
off-diagonal blocks ∆εX∞〈X|Y〉 and −ΩX∆εXL 〈X|Y〉 containing the cross-terms
(coupling) between all the QNMs of all the resonators of the assembly.
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Figure 3.11: (a) The oligomer is composed of two pairs of identical nanoresonators [87].
The first pair is composed of two aligned gold nanoantennas. The second pair is
composed of two parallel gold nanorods. Dimensions are indicated in nm, thickness
is 40 nm for nanorods and antennas. We use a Drude model for gold (same parameters
as subsection 3.2.4 and subsection 3.3.2). (b) Hybridization of superradiant modes (DA)
and (DN) into the subradiant bonding (AD) and superradiant anti-bonding (AB) modes
of the oligomer.

We test our formulation by analysing the oligomer structure studied by
Lovera and his coworkers in Ref. [87]. This oligomer is composed of four
gold nanorods immersed in water (εb = 1.332) as sketched in 3.11(a). For
convenience, the authors of [87] called the shorter nanorods, nanoantennas,
while keeping the name nanorods for the longer ones. In this subsection we
use the same designation. The main conclusion in [87] was that the proposed
structure exhibits a strong Fano-like resonance in extinction when illuminated
under normal incidence. This property is assigned to the interference between
the field scattered by two dipole-like modes, one superradiant AB (for "adia-
batic bright") and the other subradiant (for "adiabatic dark"). These modes
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originate from the hybridization of a superradiant bonding mode DA that
would be formed by the two nanoantennas taken as a dimer (DA for "diabatic
antenna"), and a superradiant anti-bonding mode DN that would be formed
by the two nanorods taken as a dimer (DN for "diabatic nanoantenna"). Fig-
ure. 3.11(b) summarizes this hybridization scheme. The approach taken by
Lovera et al. to describe the system is however limited to symmetric structures
and with normal incidence illumination. This ensures that the equivalent
dipoles of DA, DN, AB and AD can be assumed to be located at the same posi-
tion in space, and it guarantees a real valued coupling parameter g in Lovera’s
model (no retardation effect). We note that in Ref. [87], the parameters of said
model, in particular the oscillator strength of DA and DN, and the coupling
parameter g need to be extracted by a phenomenological oscillator-model fit
to full wave simulations.

In the simulation, we illuminate the assembly with a x-polarized plane
wave at normal incidence (z direction). Figures 3.12 (b) and (c), respectively
show the exact extinction and absorption cross sections with solid circles.
First, a simple QNM decomposition [124], i.e. without applying coupled
QNM theory (dashed black line in Fig. 3.12), shows an excellent agreement
of the prediction with exact calculations. This confirms the interpretation
of Lovera et al. [87] that a Fano-dip occurs in the extinction spectrum and
originates from the interference of two resonances (or QNMs).
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Figure 3.12: Extinction and absorption of a plane wave under normal incidence and y
linear polarization by an oligomer composed of a pair of nanoantennas and a pair of
nanorods. (a) Extinction cross section. (b) Absorption cross section. For (a),(b), black
circles are exact values obtained with COMSOL fullwave simulation, solid blue lines
are obtained using coupled QNM theory on the DA and DN modes, solid red lines are
obtained using the long axis dipole modes of each of the four nanoantennas/nanorods,
and black dashed lines are the exact QNM predictions using the exact AD and AB QNM
of the oligomer.

Since the system is composed of four resonators, we can study the hy-
bridization of modes from different perspectives. We choose to apply the
coupled QNM theory to predict the AD and AB modes with two different
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formulations. On the one hand, we built a 2× 2 coupled QNM eigenproblem
from the DA and DN modes, and predict the two hybridized QNMs AD
and AB as in Ref. [87]. On the other hand, we built a 4 × 4 coupled QNM
eigenproblem from the dipolar modes of each of the two nanoantennas and
nanorods. In this situation, we predict four QNMs; AB and AD, but also two
dark modes which do not couple to the plane wave used in the calculation
and are therefore irrelevant. We observe that the coupled QNM theory gives a
good qualitative agreement with exact calculations for extinction. In particu-
lar the relative heights and spectral positions of the Fano peaks are accurately
predicted. For the absorption cross section, the accuracy is even comparable
to the exact 2-QNMs decomposition (black dashed line), which is the most
accurate two mode approximation that can be made for this system. Surpris-
ingly, the Fano dip is better reproduced when using the coupled QNM theory
on a more "primitive" level, i.e. using the 4 × 4 formulation instead of using
DA and DN, and almost as good as the exact 2-QNM decomposition. This is
encouraging for the study of broken symmetry Lovera-like structures, which
would exhibit multiple Fano-resonance in extinction due to the interference
with the additional two modes predicted by the 4× 4 model.

3.4. Going towards a complete description of each res-
onators

The accuracy of the coupled QNM theory is limited by the number of QNMs
used to described each resonator. Recent developments in QNM solvers, in
particular QNMeig developped by Yan et al. [134], have made it possible to
calculate reliably all these QNMs in discretized numerical implementations.
However, since it is unrealistic to calculate and store all these modes (at least
a few hundreds of thousand for a typical numerical mesh), one needs to trun-
cate the basis and use only a much smaller subset of modes. Therefore, in
this section, we discuss qualitative improvement of the predictions by adding
more QNMs to the coupled QNM model, however limiting the treatment to
200 QNMs per resonator.

To test this extension of the theory, we use a gold homodimer. We keep the
xy planar symmetry of the system, and break all the others in a configuration
described in Fig. 3.13 to guaranty that more than simply the long axis dipolar
QNM per rod is needed to reproduce the field of the dimer. Typically, we
expect the short axis dipolar QNM to play a significant role. For the same
reason, the dimensions of the nanorod, 60 nm diameter and 80 nm length, are
chosen such that the long and short axis dipolar resonances are not degener-
ate, but have a frequency detuning smaller than their linewidths. To decouple
the gap size from other degrees of freedom of the geometry, we parametrize
the dimer with an angle θ, a gap size (surface-surface) g , and a parameter p
to describe the position of the point where the gap between rods is minimal
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antenna"), and a superradiant anti-bonding mode DN that would be formed
by the two nanorods taken as a dimer (DN for "diabatic nanoantenna"). Fig-
ure. 3.11(b) summarizes this hybridization scheme. The approach taken by
Lovera et al. to describe the system is however limited to symmetric structures
and with normal incidence illumination. This ensures that the equivalent
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model (no retardation effect). We note that in Ref. [87], the parameters of said
model, in particular the oscillator strength of DA and DN, and the coupling
parameter g need to be extracted by a phenomenological oscillator-model fit
to full wave simulations.

In the simulation, we illuminate the assembly with a x-polarized plane
wave at normal incidence (z direction). Figures 3.12 (b) and (c), respectively
show the exact extinction and absorption cross sections with solid circles.
First, a simple QNM decomposition [124], i.e. without applying coupled
QNM theory (dashed black line in Fig. 3.12), shows an excellent agreement
of the prediction with exact calculations. This confirms the interpretation
of Lovera et al. [87] that a Fano-dip occurs in the extinction spectrum and
originates from the interference of two resonances (or QNMs).
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Figure 3.12: Extinction and absorption of a plane wave under normal incidence and y
linear polarization by an oligomer composed of a pair of nanoantennas and a pair of
nanorods. (a) Extinction cross section. (b) Absorption cross section. For (a),(b), black
circles are exact values obtained with COMSOL fullwave simulation, solid blue lines
are obtained using coupled QNM theory on the DA and DN modes, solid red lines are
obtained using the long axis dipole modes of each of the four nanoantennas/nanorods,
and black dashed lines are the exact QNM predictions using the exact AD and AB QNM
of the oligomer.

Since the system is composed of four resonators, we can study the hy-
bridization of modes from different perspectives. We choose to apply the
coupled QNM theory to predict the AD and AB modes with two different
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formulations. On the one hand, we built a 2× 2 coupled QNM eigenproblem
from the DA and DN modes, and predict the two hybridized QNMs AD
and AB as in Ref. [87]. On the other hand, we built a 4 × 4 coupled QNM
eigenproblem from the dipolar modes of each of the two nanoantennas and
nanorods. In this situation, we predict four QNMs; AB and AD, but also two
dark modes which do not couple to the plane wave used in the calculation
and are therefore irrelevant. We observe that the coupled QNM theory gives a
good qualitative agreement with exact calculations for extinction. In particu-
lar the relative heights and spectral positions of the Fano peaks are accurately
predicted. For the absorption cross section, the accuracy is even comparable
to the exact 2-QNMs decomposition (black dashed line), which is the most
accurate two mode approximation that can be made for this system. Surpris-
ingly, the Fano dip is better reproduced when using the coupled QNM theory
on a more "primitive" level, i.e. using the 4 × 4 formulation instead of using
DA and DN, and almost as good as the exact 2-QNM decomposition. This is
encouraging for the study of broken symmetry Lovera-like structures, which
would exhibit multiple Fano-resonance in extinction due to the interference
with the additional two modes predicted by the 4× 4 model.

3.4. Going towards a complete description of each res-
onators

The accuracy of the coupled QNM theory is limited by the number of QNMs
used to described each resonator. Recent developments in QNM solvers, in
particular QNMeig developped by Yan et al. [134], have made it possible to
calculate reliably all these QNMs in discretized numerical implementations.
However, since it is unrealistic to calculate and store all these modes (at least
a few hundreds of thousand for a typical numerical mesh), one needs to trun-
cate the basis and use only a much smaller subset of modes. Therefore, in
this section, we discuss qualitative improvement of the predictions by adding
more QNMs to the coupled QNM model, however limiting the treatment to
200 QNMs per resonator.

To test this extension of the theory, we use a gold homodimer. We keep the
xy planar symmetry of the system, and break all the others in a configuration
described in Fig. 3.13 to guaranty that more than simply the long axis dipolar
QNM per rod is needed to reproduce the field of the dimer. Typically, we
expect the short axis dipolar QNM to play a significant role. For the same
reason, the dimensions of the nanorod, 60 nm diameter and 80 nm length, are
chosen such that the long and short axis dipolar resonances are not degener-
ate, but have a frequency detuning smaller than their linewidths. To decouple
the gap size from other degrees of freedom of the geometry, we parametrize
the dimer with an angle θ, a gap size (surface-surface) g , and a parameter p
to describe the position of the point where the gap between rods is minimal
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Figure 3.13: The broken symmetry dimer is composed a two identical cylindrical
nanorods with spherical apex, in water. Each nanorod is 60 nm wide and 80 nm long.
The dimer is parametrized by the gap width g defined as the minimal distance between
the two nanorods, by the angle θ of rod 1 with the y axis, and a parameter p describing
the position of the point of rod 2 closest to rod 1. p varies linearly from 0 to 1 on rod 2
apex, and 1 to 2 on the side of rod 2. The dimer studied in the section is obtained for
θ = 45◦, g = 20 nm and p = 0.5.

(cf. Fig. 3.13). We break the symmetry of the dimer with p = 0.5, θ = 45◦ for
a gap g = 20 nm to make sure that at least the long and short axis dipolar
modes are coupling to each other.

We apply the coupled mode theory to predict the electric field magnitude
|Ẽ| in the median plane xy, for 2 QNMs taken in the decomposition (long axis
dipolar mode of both nanorods), for 6 QNMs (3 most important QNMs for
both nanorods, cf Fig3.15(a-b)) and the set of 400 modes that we calculated
(QNMs + numerical). The results are summarized in Fig. 3.14(a-c), where we
compare the reconstructions of the model (Eq.(3.18)) with the exact field of the
dimer shown in (d). We see that the enhancement of the field in the nanogap
of the dimer bright mode requires a few higher order modes to be reproduced
by the coupled QNM theory. Indeed, the higher is the order of a plasmonic
QNM, the more confined its field is at the interface of a nanorod. Therefore,
when the gap between two nanorods is reduced, the dipolar QNM of one rod
can couple to an increasing number of higher order QNMs of the other rod.

We show in Fig. 3.15(a) and (b) the complex frequencies of all the 200
modes we solved for with QNMeig [134], which are formally identical for both
nanorods. We indicate with insets the dipolar QNMs, with a complex frequen-
cies of (3.93+0.44i)×1015 rad/s for the long axis dipole and (4.82+0.69i)×
1015 rad/s for the short axis one. We also display two higher order multi-
polar2 QNMs, here two quadrupoles with differents symmetries. Higher or-

2Higher order QNM are in practice standing wave plasmon with a number of nodes of the
normal electric field (or order) higher than two (two node corresponds to a dipolar mode for
a nanorod). For a sphere, these higher order QNMs strictly correspond to multipolar radiation
modes described in Mie theory [116]. Here, we extend this denomination to the nanorods.
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Figure 3.14: Convergence of electric-field. (a-c) show the magnitude |Ẽ| of the normalized
QNM electric field in the median plane xy predicted by coupled QNM theory for a
reconstruction with two (only long axis dipole of both nanorods), 6 or 400 QNMs. We
compare it with the exact normalized |Ẽ|. We use same colour axis for all figures to ease
up comparison. We observe that the enhancement of the electric field in the nanogap
formed between the nanorods is due to the excitation of higher order QNMs.

der plasmonic QNMs accumulate towards the real frequency ωp/
√
1+ 1.332,

with a low imaginary part. Close to this frequency, dispersion for the sur-
face plasmons polariton (SPP) at a gold/water interface is flat, therefore the
wavelength of the SPP converges towards zero, and the number of nodes of
the plasmon field that can be squeezed in the circumference of the nanorods
(i.e. mode order) diverges. Additionally, the imaginary part of the complex
eigenfrequencies of these QNMs converges towards γd/2. Indeed, higher
order QNMs do not radiate, and their loss rates are fundamentally limited by
the absorption of gold. Finally, all the modes with an imaginary part stronger
than that of the dipolar modes are numerical modes, also known as perfectly
matched layers modes or PML modes [125, 134]. They are strictly eigensolutions
of the discretized Maxwell equations in a numerical implementation. They
are required to guaranty a complete basis in a numerical framework [134], but
their electromagnetic fields are mostly confined inside the PMLs, and not at
the nanorods as it is the case for true QNMs.

We colourcode each QNMs of the two nanorods according to its relative
weight in the reconstruction of the bonding superradiant dimer mode. The
weight |β1,dipole | of the dipolar mode of rod 1 accounts for 30% of the norm
|β| of the normalized eigenvectors containing the weights for all the QNMs of
rods 1 and 2 predicted by the coupled QNM theory, while |β2,dipole | represents
50%. Therefore, as expected, for both nanorods, the most important QNMs
for the hybridization leading to the superradiant dimer mode are the long axis
dipolar modes. Since the symmetries of the system are broken (apart from xy
plane, not relevant in this discussion), there is no fundamental reason why
a mode m of rod 1 should be as important as the same mode m of rod 2 in
the decomposition. This is indeed observed for the long axis dipolar modes,
and we see in (a) and (b) that the short axis dipole is the 2nd most important
mode from rod 1 in the decomposition with a 10% contribution, but it is only
the 3rd most important for rod 2 with a 8.8% contribution. Even more, for
both nanorods, we find one quadrupolar QNM amongst the first three most
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Figure 3.13: The broken symmetry dimer is composed a two identical cylindrical
nanorods with spherical apex, in water. Each nanorod is 60 nm wide and 80 nm long.
The dimer is parametrized by the gap width g defined as the minimal distance between
the two nanorods, by the angle θ of rod 1 with the y axis, and a parameter p describing
the position of the point of rod 2 closest to rod 1. p varies linearly from 0 to 1 on rod 2
apex, and 1 to 2 on the side of rod 2. The dimer studied in the section is obtained for
θ = 45◦, g = 20 nm and p = 0.5.

(cf. Fig. 3.13). We break the symmetry of the dimer with p = 0.5, θ = 45◦ for
a gap g = 20 nm to make sure that at least the long and short axis dipolar
modes are coupling to each other.

We apply the coupled mode theory to predict the electric field magnitude
|Ẽ| in the median plane xy, for 2 QNMs taken in the decomposition (long axis
dipolar mode of both nanorods), for 6 QNMs (3 most important QNMs for
both nanorods, cf Fig3.15(a-b)) and the set of 400 modes that we calculated
(QNMs + numerical). The results are summarized in Fig. 3.14(a-c), where we
compare the reconstructions of the model (Eq.(3.18)) with the exact field of the
dimer shown in (d). We see that the enhancement of the field in the nanogap
of the dimer bright mode requires a few higher order modes to be reproduced
by the coupled QNM theory. Indeed, the higher is the order of a plasmonic
QNM, the more confined its field is at the interface of a nanorod. Therefore,
when the gap between two nanorods is reduced, the dipolar QNM of one rod
can couple to an increasing number of higher order QNMs of the other rod.

We show in Fig. 3.15(a) and (b) the complex frequencies of all the 200
modes we solved for with QNMeig [134], which are formally identical for both
nanorods. We indicate with insets the dipolar QNMs, with a complex frequen-
cies of (3.93+0.44i)×1015 rad/s for the long axis dipole and (4.82+0.69i)×
1015 rad/s for the short axis one. We also display two higher order multi-
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2Higher order QNM are in practice standing wave plasmon with a number of nodes of the
normal electric field (or order) higher than two (two node corresponds to a dipolar mode for
a nanorod). For a sphere, these higher order QNMs strictly correspond to multipolar radiation
modes described in Mie theory [116]. Here, we extend this denomination to the nanorods.
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Figure 3.14: Convergence of electric-field. (a-c) show the magnitude |Ẽ| of the normalized
QNM electric field in the median plane xy predicted by coupled QNM theory for a
reconstruction with two (only long axis dipole of both nanorods), 6 or 400 QNMs. We
compare it with the exact normalized |Ẽ|. We use same colour axis for all figures to ease
up comparison. We observe that the enhancement of the electric field in the nanogap
formed between the nanorods is due to the excitation of higher order QNMs.
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with a low imaginary part. Close to this frequency, dispersion for the sur-
face plasmons polariton (SPP) at a gold/water interface is flat, therefore the
wavelength of the SPP converges towards zero, and the number of nodes of
the plasmon field that can be squeezed in the circumference of the nanorods
(i.e. mode order) diverges. Additionally, the imaginary part of the complex
eigenfrequencies of these QNMs converges towards γd/2. Indeed, higher
order QNMs do not radiate, and their loss rates are fundamentally limited by
the absorption of gold. Finally, all the modes with an imaginary part stronger
than that of the dipolar modes are numerical modes, also known as perfectly
matched layers modes or PML modes [125, 134]. They are strictly eigensolutions
of the discretized Maxwell equations in a numerical implementation. They
are required to guaranty a complete basis in a numerical framework [134], but
their electromagnetic fields are mostly confined inside the PMLs, and not at
the nanorods as it is the case for true QNMs.

We colourcode each QNMs of the two nanorods according to its relative
weight in the reconstruction of the bonding superradiant dimer mode. The
weight |β1,dipole | of the dipolar mode of rod 1 accounts for 30% of the norm
|β| of the normalized eigenvectors containing the weights for all the QNMs of
rods 1 and 2 predicted by the coupled QNM theory, while |β2,dipole | represents
50%. Therefore, as expected, for both nanorods, the most important QNMs
for the hybridization leading to the superradiant dimer mode are the long axis
dipolar modes. Since the symmetries of the system are broken (apart from xy
plane, not relevant in this discussion), there is no fundamental reason why
a mode m of rod 1 should be as important as the same mode m of rod 2 in
the decomposition. This is indeed observed for the long axis dipolar modes,
and we see in (a) and (b) that the short axis dipole is the 2nd most important
mode from rod 1 in the decomposition with a 10% contribution, but it is only
the 3rd most important for rod 2 with a 8.8% contribution. Even more, for
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Figure 3.15: Relative contribution of the QNMs of nanorods 1 and 2 in the reconstruction
of the dimer bright mode. (a) and (b) show the position in the complex frequency plane
of the 200 QNMs used to described nanorod 1 and nanorod 2 in the coupled QNM
theory. The two nanorods should theoretically have exactly the same QNM, and we
indeed observe that the first 200 QNMs of rod 1 and rod 2 have the same complex
resonance frequencies. Each point is colour coded (in logarithmic scale) with respect to
the magnitude of the coefficient βi,m describing the contribution of mode m of nanorod i
in the reconstruction of the bright mode of the dimer. The insets show the mode profiles
of the first three most important modes in the reconstruction. The most important mode
of rod 1 and 2 is, as expected, the long axis dipolar mode.

important modes, but it is not the same quadrupolar mode for rod 1 and for
rod 2. Finally, we cannot justify with a physics argument why PML modes
seem to play a non-negligible role in the reconstruction.

3.5. Conclusion and outlook
In this work, we have introduced a theory to describe the hybridization of
quasinormal modes (QNMs) of a set of resonators. Our formulation does not
rely on any assumption on the symmetries of the assembly, and accounts for
the non-Hermitian nature of electromagnetic resonators. Through a series of
realistic examples, we demonstrated the predictive force of the coupled QNM
theory to not only estimate the resonance frequency and decay-rate of the
hybridized modes, but also to calculate observables such as extinction cross
section of the assembly under various illumination conditions. We foresee that
the approach could become a powerful tool to guide the design of complex
assemblies. Not only does it allow one to gather physical insight about the
structure under investigation thanks to an elegant modal decomposition, but
also could enable a sizeable gain in computation time. For example, with the
geometries studied in subsection 3.3.2, the exact computation using FEM of
an extinction spectrum of 100 wavelength points, for 3 different angles θ, and
3 differents gap values (9 geometries), illuminated by 3 different plane wave
polarizations, would require 45 hours of computation (assuming 1 min per
point for each geometry and illumination). The coupled QNM theory only
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requires slightly more than 2 mins compute the QNMs, and the computation
time of the overlap integrals takes approximately 30 sec per geometry with
a non-optimized algorithm. The computation time with the coupled QNM
theory, therefore, amounts to a total of less than 5 mins. These performances
could even be immensely improved by using an appropriate method to com-
pute the overlap integrals, which should represent a negligible CPU time. One
could then envision to store a complete library of resonator QNMs as building
blocks for complex designs.

The present framework, however, still possesses a few unresolved limita-
tions that will require further investigations. In particular, the normalization
condition in subsection 3.2.2 has not formally been confirmed. Furthermore,
if one wished to use the present theory to design hybrid metallic-dielectric
resonators [95], they would be confronted to to the difficulty of considering
a rapidly-divergent field (the plasmon field) over an extended volume (the
dielectric cavity), implying a large interaction at complex frequency although
the remote interaction is weak at real frequency. There is no theoretical in-
consistency since the QNM and PML-mode basis is complete [134], but this
simply implies that many PML-modes will be needed in the expansion, mak-
ing the practical implementation inefficient. The coupled-QNM theory is thus
effective only for near-field couplings which require taking into account the
non-Hermitian character of the leaky field. Finally, we mention that more tests
remain to be performed to fully quantify the convergence rate of the approach,
in continuation of the work done in Section 3.4 . Further extensions of this
approach may consider non-local effects [80, 192, 193] of particular interest
for ultra-narrow gap resonators [81, 194–196].

77



3

CHAPTER 3. COUPLED QNM THEORY

1st 1st

2nd 2nd

3rd 3rd

4 5 6 4 5 6
0

1

2

im
ag

(ῶ
) (

10
15

 ra
d/

s)

real(ῶ) (1015 rad/s) real(ῶ) (1015 rad/s)

10-1

10-2

10-3

10-4

|β1,2|
(a) (b)

Figure 3.15: Relative contribution of the QNMs of nanorods 1 and 2 in the reconstruction
of the dimer bright mode. (a) and (b) show the position in the complex frequency plane
of the 200 QNMs used to described nanorod 1 and nanorod 2 in the coupled QNM
theory. The two nanorods should theoretically have exactly the same QNM, and we
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in the reconstruction of the bright mode of the dimer. The insets show the mode profiles
of the first three most important modes in the reconstruction. The most important mode
of rod 1 and 2 is, as expected, the long axis dipolar mode.
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4.1. Introduction
Tailoring optical resonators to have any desired quality factor Q and mode
volume V is a major endeavor in nano- and micro-optics, as the basic stepping
stone to controlling light-matter interaction in diverse scenarios that range
from cavity QED, to nonlinear optics, to vibrational spectroscopy, to building
lasers and solid-state lighting devices [75, 197]. Notably, it is desirable to in-
dependently control the field strength per photon (gauged by V ), the resonator
linewidth Q [198], and the channel to which the resonator favourably couples
with far-field radiation. For instance, when controlling the rate of sponta-
neous emission experienced by a quantum emitter placed in a resonator, it
is desirable to control the Purcell factor F = (3λ3/4π2)Q/V , while at the
same time tune the cavity to the emitter frequency, make sure that the cavity
linewidth is matched to the emitter spectrum [21, 94], and ensure that light
extraction occurs through one highly efficient channel. Similar arguments
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hold for strong coupling between light and matter [198–200], SERS and cav-
ity/molecular optomechanics [201], and generally, processes that at the same
time need high field enhancement, yet also matching of linewidths to other
experimental constraints. In the last decade great progress has been made
in realizing extremely confined resonators of V ∼ λ3/104 and low Q ∼ 20
through plasmonics on one hand [21, 200, 202–204], and high-Q microcavity
resonators with V > (λ/2)3 on the other hand [166]. Reaching very large F
at intermediate 50 < Q < 104 factors, however, has remained elusive, despite
the large possible relevance for matching the linewidths of room temperature
emitters.

Recently several groups have explored if so-called hybrid plasmonic-
photonic resonators could access the regime of deep subwavelength con-
finement, owing to their plasmonic consituents [93, 94, 108, 186, 186, 205],
while at the same time inheriting larger quality factors from their dielectric
microcavity character. Efforts in this direction include hybridizing single
plasmonic nano-antennas with photonic resonances like whispering gallery
modes (WGM) supported by Mie spheres, microtoroids or microdisks, or
localized modes in photonic crystal cavities [93, 100, 153, 206, 207]. Recent
computational predictions indicate that hybrid modes offer Purcell factors
exceeding those of the individual constituents, with Q-factors on the same
order as those of the microcavity mode, and therefore with mode volumes V
profiting from the hybridization [94, 108, 186, 208].

In this chapter, we consider the hybridization of microcavities with not
one, but multiple metal nanoparticles. This problem is interesting from three
different perspectives. First, it is an implementation of cooperative scattering
engineered by dipole-dipole coupling in a resonator, mirroring the physics of
sub-radiant and super-radiant collective states in which many dipoles coupled
to one cavity hybridize, thereby providing a classical precursor to the im-
portant quantum optics problem of cooperative emission [137, 209]. Second,
from an antenna viewpoint, it introduces the notion of phased array anten-
nas into hybrid systems, associated with the control not only over Purcell
enhancement, but also over the distribution of light into far-field radiation
channels [21, 85, 210]. The seminal example in free space is the so-called
Yagi-Uda antenna, in which a single quantum emitter drives a single antenna
element surrounded by a set of "director" scatterers to ensure unidirectional
emission [82, 83, 211]. In this chapter we present a minimal phased-array
on whispering gallery mode platform (Figure 4.1), and show that this can
similarly result in unidirectional emission. A third perspective instead focuses
on the physics of the cavity modes in hybrids, rather than the antenna physics.
Indeed, this work is the first step of a plasmonic implementation of a proposi-
tion by Wiersig [212], who proposed that dielectric scatterers on WGM cavities
support chiral eigenmodes, associated with exceptional point physics [69].
This chapter combines all these three perspectives and explores the capabil-
ities of plasmonic dimers to both enhance the hybrid emission and allow for
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Figure 4.1: (a) Scanning electron micrograph (SEM, angled view) showing the geometry,
consisting of two radially oriented aluminium nanorods on the perimeter of a silicon
nitride microdisk. Inset: zoomed-out SEM of a full microdisk cavity. The dark angular
pattern marks the contact with the silicon support pedestal. (b) Sketch of the geometry,
where the antennas are separated by a subtended angle ∆θ. One antenna is driven by a
spontaneous emitter (red dot). (c,d) Sketch of the symmetric and antisymmetric hybrid
modes (mirror plane indicated as black line). Samples are fabricated by H. M. Doeleman,
following a technique he developed.

directivity, here meaning the direction of circulation of light emitted into the
cavity. Our theoretical analysis examines the distinct fingerprints in the mode
lineshift and linewidth that may occur depending on the positioning of anten-
nas in the whispering gallery mode profile. At the same time, in vein of the
proposition of Wiersig that eigenmodes can become chiral [212], we assess if
selective unidirectional emission is possible in the case where a single antenna
out of a pair is driven by an emitter, and study its directionality contrast and
Purcell factor. This proposition can be seen as realizing a two-elements direc-
tive phased array antenna design. We complement theory based on dipole-
dipole interactions mediated by degenerate quasinormal modes (QNMs) with
experiments, studying silicon nitride microdisk resonators coupled to dimers
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of aluminium nanorod antennas. We quantified the dependence of the per-
turbed mode frequencies and quality factors on antenna separation, finding
direct evidence for cooperative antenna effects on the linewidth and lineshift
that extend over large antenna separations.

This chapter is structured as follows. First we sketch an analytical model
for describing M antennas coupled to a set of cavity modes. Next, we focus
on the particular case of a WGM disk coupled to a plasmon dimer, exam-
ining the local density of states as well as the distribution of emission over
clockwise and anticlockwise circulation in the cavity, and in the far-field. We
then explain the spectral structure and the apparent unidirectional power dis-
tribution of emission by finding the quasinormal modes (complex frequency
modes) of the coupled QNM equations. In the second half of this chapter we
report experiments, focusing on narrowband mode spectroscopy of WGM-
antenna dimer hybrids.

4.2. Model
The starting point of our work is to consider M antennas as M polarizable
objects with dipole moments pi (i = 1 . . .M) and to model their mutual inter-
action through the master microring cavity with a quasinormal-mode formal-
ism. Previous related works on one hand include coupled-mode theory and
Green’s function theory for polarizable objects coupled to resonators [94, 181]
and on the other hand QNMs for a semi-analytical model of the optical prop-
erties of a plasmonic resonator interacting with a single quantum object [185]
and ensembles of classical dipolar oscillators [137, 167]. The present model
features two extensions. First it deals with the important case of degeneracy
of the underlying bare resonator modes, and second it considers changes of
the resonator properties induced by the polarizable objects. This aspect relates
to perturbation theory of resonators [139, 140, 153] Both features are essential
for the properties reported hereafter. The induced dipole moments are given
by [137, 213]

pi = ε0αi

[
Edr,i +Ebs,i +Edp,i

]
, (4.1)

where αi(ω) is the dipole polarizability tensor (normalized by vacuum
permittivity ε0), Edr,i(ri ,ω) represents an externally applied driving field,
Ebs,i(ri ,ω) is the field radiated by the dipole i and scattered back onto i
by the environment and the term Edp,i(ri ,ω) quantifies the field exerted
on dipole i due to fields scattered by all dipoles labelled by j � i. In the
hypothesis where all polarizable objects are immerged in the same isotropic
medium of refractive index n, one can decompose the system’s dyadic Green’s
function G(r,r′ ,ω) such that G = G0 + ∆G, where G0(r,r′ ,ω) represents the
homogeneous Green’s function of a medium of index n, and ∆G(r,r′ ,ω) is
referred to as the Green’s function of the scattered field. With these definitions,
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we can formally express

Edp,i =
∑

j�i

µ0ω
2G(ri ,rj ,ω)pj ,

and
Ebs,i = µ0ω

2∆G(ri ,ri ,ω)pi ,

where µ0 is the vacuum permeability. We then use a partial quasinormal mode
(QNM) expansion of the Green’s function [125, 137]

∆G=
1

µ0ω2

N∑

k=1

−ω̃k

ω − ω̃k
Ẽk(r)⊗ Ẽk(r

′) + δGN (4.2)

where Ẽk(r) is the normalized electric field of the QNM indexed by k and ω̃k =
ωk + i γk2 its complex frequency (ωk and γk being respectively the resonance
frequency and linewidth) and δGN (r,r′ ,ω) is the residue of the decomposi-
tion, accounting for all other modes of the system besides the ones explicit
in the sum, and non-resonant terms. This starting point is similar to previ-
ous work [140], where we examined perturbation theory for the interaction
between a single polarizable object and a cavity mode, and adapted it to deal
with multiple perturbers and cavity modes. Here, we will furthermore as-
sume that two, initially degenerate, cavity modes are dominant (N = 2) as ap-
propriate for a whispering gallery mode cavity, and that all other QNMs and
non-resonant interactions, grouped in δGN can simply be neglected. These
non-resonant interactions would be tedious to calculate accurately in a real
geometry [134], however one would expect them to be dominated by an
electrostatic/near-field 1/r3 term interaction that is captured in G0.

We focus on the specific case of antennas interacting with a single degen-
erate pair of whispering gallery modes, as would be the case in a microdisk,
microtoroid or microsphere cavity (as in Figure 4.1). This implies the specific
choice N = 2 and a pair of symmetric (s) and antisymmetric (as) mode func-
tions of the form (in cylindrical coordinates (r,θ,z))

Ẽs · er = cos(mθ)Ẽr(r,z), (4.3a)

Ẽas · er = sin(mθ)Ẽr(r,z). (4.3b)

Note that from these normalized QNMs, clockwise and counterclockwise
combinations can be formed through Ẽcw/ccw = 1√

2
(Ẽs ± iẼas). The following

considers antennas that are only polarizable along their long axis by TE whis-
pering gallery modes (relevant for nanorods near resonance, aligned along the
radial direction of a microdisk), and that are offset in the azimuthal direction
(angle θ), but with a fixed radial position r on the edge of the microring cavity
(see Fig. 4.1). Under these assumptions, the only relevant functional depen-
dence on the antenna position is through θi (angle parametrizing the nanorod
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′) + δGN (4.2)
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location), or equivalently, the antennas angular separation ∆θ = θ2 −θ1. The
QNM strength at the antenna position (ri ,zi) (resp. distance of antenna to
origin, height of the antennas relative to the disk plane) is set by Ẽr(ri ,zi),
which is directly related to the on-resonance local density of states (LDOS)
enhancement at the location of the antenna.

We now consider the emission enhancement of a dipole emitter placed in
the vicinity of one of the nanoantennas. Therefore we calculate the LDOS
enhancement, which is defined as the total work required to maintain a drive
dipole moment pdr located at rdr

P =
ω
2
Im(p∗dr ·Etot(rdr,ω)), (4.4)

normalized to the power required to drive the same dipole in free space as

given by Larmor’s formula P0 = ω4‖pdr‖2
12πεbε0c3

, where ω is the driving frequency,
Etot is the the total field radiated by the dipole evaluated in the presence of the
cavity, and εb is the permittivity of the homogeneous isotropic, non-absorptive
background medium. To obtain the relevant quantities, we substitute as the
drive field Edr,i in Eq.(4.1) the field imposed by a drive dipole

Edr,i = µ0ω
2G(ri ,rdr,ω)pdr,

and solve for the induced (antenna) dipoles pi , and we calculate the total field
returning to the drive dipole as

Etot = µ0ω
2
[
G(rdr,rdr,ω)pdr +

M∑

i=1

G(rdr,ri ,ω)pi

]
. (4.5)

Finally, we also reconstruct the directionality of emission into the cavity, i.e.,
how emission into the cavity modes is distributed over the clockwise and
anticlockwise directions. To this end, we exploit the fact that the excitation
of the symmetric and asymmetric degenerate modes (ω̃1 = ω̃2 ≡ ω̃) is given
in the QNM formalism as [124]

as,as =
−ω̃

ω − ω̃

[
Ẽs,as(rdr) ·pdr +

M∑

i=1

Ẽs,as(ri) ·pi

]
. (4.6)

Since the (counter)clockwise mode amplitudes are then proportional to
acw/ccw(ω) =

1√
2
(as(ω)∓ iaas(ω)), we can introduce the directivity parameter

σ = |acw |2−|accw |2
|acw |2+|accw |2

= |as−iaas |2−|as+iaas |2
|as−iaas |2+|as+iaas |2

which is (−)1 if all light in the cavity is
circulating in the (counter-)clockwise cavity mode, or 0 if light is distributed
equally over both circulation directions.
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4.3. Theory results
4.3.1. LDOS and directionality
We focus on plasmon dimers (M = 2), placed on top of a microdisk cavity
with parameters identical to those in Section 2 of Ref. [94]. They show a
quality factor Q = 104 and deliver a Purcell enhancement of 75 in the plane of
the antennas above the microdisk (the effective mode volume is real valued
and around 10λ3), further taking as azimuthal mode number m = 22, as
typical for silicon nitride microdisks in the near infrared of ∼4 µm diameter.
We take ωc/(2π) = 360 THz as cavity resonance frequency, implying oper-
ation near 800 nm, near the wavelength of the experiments also reported in
this chapter. For the antenna polarizability we take a Lorentzian polarizabil-
ity with resonance frequency ω0/(2π) = 460 THz and Ohmic damping rate
γi/(2π) = 19.9 THz corresponding to gold, which is equivalent to taking the
polarizability of a sphere and assuming a Drude model. We take a scatterer
volume of (80 nm)3 and incorporate radiation damping exactly as in Ref. [94].
This is equivalent to an on-resonance extinction cross section of 0.18 µm2 and
scattering albedo of 85%, as typically achieved by large plasmonic dipolar
antennas, and matches the polarizability retrieved from full-wave simulations
(Ref. [94]). We place the source at 60 nm distance from one of the two antennas
and assume that the dipole is polarized along the disk axis, see Fig. 4.1. In
the absence of the microdisk, the Purcell factor provided by the uncoupled
nanorod is ≈ 200 at antenna resonance.

Figure 4.2 shows the local density of states normalized to that in vacuum
as function of frequency around the bare cavity resonance and the angular
separation between the antennas, calculated using the simple formalism that
we presented. For reference, if just a single antenna is present, the hybrid
antenna-cavity system presents a Fano lineshape in LDOS, with a peak LDOS
enhancement of almost 700, as was also verified independently of the approx-
imations of the model by full wave simulations [94]. This value is almost
an order of magnitude larger than the one provided by just the bare cavity,
and more than three times higher than the maximum LDOS enhancement of
200 provided by just a bare antenna at its resonance. Figure 4.2(a) reveals
that in the dimer case, the LDOS enhancement reaches similar large values,
but with two resonant features that present a distinct oscillatory behaviour
as function of the angular separation between the antennas. In the presence
of two antennas, the hybrid modes can still be classified by symmetry, as
there is mirror symmetry through the line from the cavity center to the mid-
point between antennas (cf. Figure 4.1). Thus, one of the QNMs is symmetric
and displays a node in the radial field between the antennas (Eq.(4.3a)), and
polarizes both antennas in the same radial direction. The other QNM is an-
tisymmetric, with a null between the antennas (Eq.(4.3b)), and polarizes both
antennas in opposite directions. When the antennas are shifted by a multiple
of 1/2 of the cavity spatial period, one QNM is not perturbed by the antennas,
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We take ωc/(2π) = 360 THz as cavity resonance frequency, implying oper-
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γi/(2π) = 19.9 THz corresponding to gold, which is equivalent to taking the
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This is equivalent to an on-resonance extinction cross section of 0.18 µm2 and
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the absence of the microdisk, the Purcell factor provided by the uncoupled
nanorod is ≈ 200 at antenna resonance.

Figure 4.2 shows the local density of states normalized to that in vacuum
as function of frequency around the bare cavity resonance and the angular
separation between the antennas, calculated using the simple formalism that
we presented. For reference, if just a single antenna is present, the hybrid
antenna-cavity system presents a Fano lineshape in LDOS, with a peak LDOS
enhancement of almost 700, as was also verified independently of the approx-
imations of the model by full wave simulations [94]. This value is almost
an order of magnitude larger than the one provided by just the bare cavity,
and more than three times higher than the maximum LDOS enhancement of
200 provided by just a bare antenna at its resonance. Figure 4.2(a) reveals
that in the dimer case, the LDOS enhancement reaches similar large values,
but with two resonant features that present a distinct oscillatory behaviour
as function of the angular separation between the antennas. In the presence
of two antennas, the hybrid modes can still be classified by symmetry, as
there is mirror symmetry through the line from the cavity center to the mid-
point between antennas (cf. Figure 4.1). Thus, one of the QNMs is symmetric
and displays a node in the radial field between the antennas (Eq.(4.3a)), and
polarizes both antennas in the same radial direction. The other QNM is an-
tisymmetric, with a null between the antennas (Eq.(4.3b)), and polarizes both
antennas in opposite directions. When the antennas are shifted by a multiple
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Figure 4.2: (a) Local density of states enhancement for a source at antenna 1, as
function of the antenna separation expressed in cavity mode profile azimuthal period,
and as function of frequency. The bare cavity resonance ωc/(2π) is at 360 THz. (b)
Directionality of the emission into the cavity. (c,d) LDOS enhancement (black dashed)
and directionality (orange solid curves) versus frequency for two antenna-separations,
as indicated by vertical dashed lines in panels (a,b), just off degeneracy (c) at unit
directionality, and exactly on degeneracy (d), with no directionality.

while the other is perturbed by both, giving a large broadening and frequency-
shift. Midway between these conditions, both modes have identical overlap
with the antennas, meaning they are shifted equally in real frequency and in
Q, maintaining degeneracy. In the first scenario, an emitter placed at one of
the antennas couples just to the symmetric mode, that is maximally perturbed.
In the second scenario, both modes contribute to the LDOS, explaining why
the degeneracy point also corresponds to highest LDOS. This LDOS is approx-
imately the same in value as in the single-antenna hybrid: while two hybrid
modes contribute to the LDOS instead of one, each of them contributes only
half as much, owing to the fact that the antennas are more weakly coupled to
the pertinent cavity modes than in the single antenna case, by virtue of not
being at the mode maxima of either the S or AS mode.

The picture sketched above essentially repeats itself with increasing an-
tenna separation, with a repetition period equal to θ = π/m, reflecting the fact
that the antenna interaction is dominated by the cosmθ resp. sinmθ depen-
dence of the cavity modes. At very short distances however, the behaviour
is qualitatively different, with very strong perturbation (frequency shift and
broadening) of the cavity modes. The physical picture is that at close distances
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(below, say λ/2π), the two antennas hybridize forming a symmetric, bright,
strongly polarizable bonding combination that is blue-shifted, and an anti-
symmetric, dark, weakly polarizable anti-bonding mode that is red-shifted
from the bare antenna resonance. This behavior is approximately captured in
our model through G0 in the Green’s function G = G0 +∆G, which contains
near field 1/r3 and mid-field interactions. However, an exact quantitative
treatment of this regime would require to account for the residue δGN of
our QNM expansion which may play a role in near and mid-field regimes.
The hybridization physics with the cavity modes is rich since when the two
antennas hybridize, for a certain antenna-antenna distance, the red-shifting
dark dimer mode tunes through resonance with the cavity, which had its bare
resonance chosen to the red of the single antennas. At this distance, the dark
mode very strongly perturbs the cavity. On the other hand, the coupling
strength of the blue-shifting bonding mode gets weaker with reduced particle
separation, as blueshifting tunes it out of cavity resonance.

For the case of an emitter driving a single nano-antenna, in the absence of a
second antenna, symmetry dictates that emission will be injected only into the
symmetric mode, i.e. with equal contributions of the clockwise and anticlock-
wise directions. The presence of the second antenna, however, implies that
both the symmetric and antisymmetric QNM can contribute to LDOS. Hence,
it is interesting to resolve into which direction the light is emitted into the cav-
ity. We find that the second antenna can make the emission largely unidirec-
tional. Figure 4.2b represents the splitting ratio σ . Essentially unidirectional
emission is achievable, at combinations of frequency and geometry that are
close to, but not at, the mode degeneracy points ∆θ = (n+ 1

2 )π/m and that
bring simultaneously large LDOS enhancement. Figure 4.2(c,d) highlights
the behaviour for two distinct antenna separations, namely ∆θ = 0.81 cavity
periods (i.e., just beyond the degeneracy at 0.75) and right at degeneracy,
∆θ = 1.25 cavity periods. Unidirectional emission σ = 1 can coincide with
large LDOS enhancement, exceeding 300 times. This occurs at angular sepa-
rations close to, but not at a point of maximum LDOS. Conversely, near-equal
power splitting, at near maximum LDOS enhancement (enhancement > 600)
occurs at points of degeneracy. It should be noted that while we report total
LDOS in this chapter (including also nonradiative enhancement), Ref. [94]
shows that up to 95% of radiated power can be extractable through the cavity
loss channels for single antennas. The implication is that for the geometry in
Figure 4.2(c), if the microdisk would be addressed by a tapered waveguide as
main input/output channel, the fluorescence could be efficiently captured into
just one waveguide direction. Conversely, by reciprocity one would expect
the emitter to be addressable from just one waveguide direction. The basic
requirements for this behavior in emission and excitation are (I) the correct
separation between the antennas, and (II) placement of the emitter such that
it dominantly couples to just one of the antennas, instead of coupling to both
antennas equally (emitter in-between the two antennas), dominantly coupling

87



4

CHAPTER 4. COOPERATIVE INTERACTIONS BETWEEN NANOANTENNAS IN A
HIGH Q CAVITY FOR UNIDIRECTIONAL LIGHT SOURCES

-0.5

-0.25

0

0

300

600

0.5 1 1.5
-0.5

-0.25

0

-1

0

1

-0.5 -0.25 0
0

300

600

-0.5 -0.25 0
0

0.5

1

(ω
-ω

c)/
(2

�)
(T

H
z) γ/

γ c

γ/
γ c σ

Δθ (cav. per.)

σ

a

b

c d

(THz)

c d

(ω-ωc)/(2�)

Figure 4.2: (a) Local density of states enhancement for a source at antenna 1, as
function of the antenna separation expressed in cavity mode profile azimuthal period,
and as function of frequency. The bare cavity resonance ωc/(2π) is at 360 THz. (b)
Directionality of the emission into the cavity. (c,d) LDOS enhancement (black dashed)
and directionality (orange solid curves) versus frequency for two antenna-separations,
as indicated by vertical dashed lines in panels (a,b), just off degeneracy (c) at unit
directionality, and exactly on degeneracy (d), with no directionality.

while the other is perturbed by both, giving a large broadening and frequency-
shift. Midway between these conditions, both modes have identical overlap
with the antennas, meaning they are shifted equally in real frequency and in
Q, maintaining degeneracy. In the first scenario, an emitter placed at one of
the antennas couples just to the symmetric mode, that is maximally perturbed.
In the second scenario, both modes contribute to the LDOS, explaining why
the degeneracy point also corresponds to highest LDOS. This LDOS is approx-
imately the same in value as in the single-antenna hybrid: while two hybrid
modes contribute to the LDOS instead of one, each of them contributes only
half as much, owing to the fact that the antennas are more weakly coupled to
the pertinent cavity modes than in the single antenna case, by virtue of not
being at the mode maxima of either the S or AS mode.

The picture sketched above essentially repeats itself with increasing an-
tenna separation, with a repetition period equal to θ = π/m, reflecting the fact
that the antenna interaction is dominated by the cosmθ resp. sinmθ depen-
dence of the cavity modes. At very short distances however, the behaviour
is qualitatively different, with very strong perturbation (frequency shift and
broadening) of the cavity modes. The physical picture is that at close distances
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(below, say λ/2π), the two antennas hybridize forming a symmetric, bright,
strongly polarizable bonding combination that is blue-shifted, and an anti-
symmetric, dark, weakly polarizable anti-bonding mode that is red-shifted
from the bare antenna resonance. This behavior is approximately captured in
our model through G0 in the Green’s function G = G0 +∆G, which contains
near field 1/r3 and mid-field interactions. However, an exact quantitative
treatment of this regime would require to account for the residue δGN of
our QNM expansion which may play a role in near and mid-field regimes.
The hybridization physics with the cavity modes is rich since when the two
antennas hybridize, for a certain antenna-antenna distance, the red-shifting
dark dimer mode tunes through resonance with the cavity, which had its bare
resonance chosen to the red of the single antennas. At this distance, the dark
mode very strongly perturbs the cavity. On the other hand, the coupling
strength of the blue-shifting bonding mode gets weaker with reduced particle
separation, as blueshifting tunes it out of cavity resonance.

For the case of an emitter driving a single nano-antenna, in the absence of a
second antenna, symmetry dictates that emission will be injected only into the
symmetric mode, i.e. with equal contributions of the clockwise and anticlock-
wise directions. The presence of the second antenna, however, implies that
both the symmetric and antisymmetric QNM can contribute to LDOS. Hence,
it is interesting to resolve into which direction the light is emitted into the cav-
ity. We find that the second antenna can make the emission largely unidirec-
tional. Figure 4.2b represents the splitting ratio σ . Essentially unidirectional
emission is achievable, at combinations of frequency and geometry that are
close to, but not at, the mode degeneracy points ∆θ = (n+ 1

2 )π/m and that
bring simultaneously large LDOS enhancement. Figure 4.2(c,d) highlights
the behaviour for two distinct antenna separations, namely ∆θ = 0.81 cavity
periods (i.e., just beyond the degeneracy at 0.75) and right at degeneracy,
∆θ = 1.25 cavity periods. Unidirectional emission σ = 1 can coincide with
large LDOS enhancement, exceeding 300 times. This occurs at angular sepa-
rations close to, but not at a point of maximum LDOS. Conversely, near-equal
power splitting, at near maximum LDOS enhancement (enhancement > 600)
occurs at points of degeneracy. It should be noted that while we report total
LDOS in this chapter (including also nonradiative enhancement), Ref. [94]
shows that up to 95% of radiated power can be extractable through the cavity
loss channels for single antennas. The implication is that for the geometry in
Figure 4.2(c), if the microdisk would be addressed by a tapered waveguide as
main input/output channel, the fluorescence could be efficiently captured into
just one waveguide direction. Conversely, by reciprocity one would expect
the emitter to be addressable from just one waveguide direction. The basic
requirements for this behavior in emission and excitation are (I) the correct
separation between the antennas, and (II) placement of the emitter such that
it dominantly couples to just one of the antennas, instead of coupling to both
antennas equally (emitter in-between the two antennas), dominantly coupling
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to just the (spoiled) cavity (emitter on the disk perimeter, but more than 50 nm
away from the surface of any antenna), or dominantly coupling to free space
(emitter well away from antennas and the whispering gallery mode profile).
This means that our predictions hold as long as the emitter is placed within the
near-field hot spot of the intended feed antenna, i.e., within 20 nm or so of the
distal end for a nanorod antenna realization. On basis of Ref. [95], we expect
the predictions to also hold if the feed-antenna to which the emitting dipole
couples is replaced by a dimer gap antenna of similar dipole polarizability,
where placement of the emitter in the gap could significantly enhance the
LDOS. Finally, we note that while already M = 2 antennas are very successful
in creating unidirectionality, our model is easily extended to more than 2
antennas. For creating unidirectional emission we note that similar perfor-
mance is possible for M = 3 antennas, while generally at larger M there is no
further improvement in unidirectionality but a large penalty in LDOS. This is
a consequence of the reduction of Q with the addition of antennas.
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Figure 4.3: (a,b) Simulated intensity and (c,d) phase of the radial component Er of the
electric field on the top interface of microdisk cavity dressed by two aluminium antennas.
The antenna separation is 0.94 cavity period for panels (a,c) and 1 cavity period for panels
(b,d), and the simulation is driven by a radial dipole placed 10 nm radially outward from
the top antenna. In panels (a) and (c) the intensity is almost perfectly homogenous in the
azimuthal direction with the phase indicating clockwise propagation. On the contrary,
panels (b) and (d) exhibit a standing wave pattern as antennas and dipole only couple
the symmetric cavity mode.

To verify that the semi-analytical predictions from our model are not an
artefact of the approximations, we have performed real-space FEM simula-
tions using COMSOL to verify the occurrence of unidirectional emission (see
Ref.[94] for LDOS benchmarking). We analysed a Si3N4 microdisk (thickness
200 nm, diameter 2.95 µm) decorated with two aluminium nanorod antennas
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(100 nm long, 50 nm high, 40 nm wide). We first evaluated the bare cavity
mode profile (m = 16 mode at 396.675 THz, Q = 4000) and its frequency
shift upon perturbation by a single antenna (at 396.3 THz, Q = 800). From
these, we predicted the operation points (frequency and antenna spacing)
for unidirectional and completely symmetric emission to occur at antenna
separations of 0.94 resp. 1 cavity period, both at a frequency of 396.650 THz.
Next, we performed driven simulations for these operation conditions, with a
single drive dipole next to one antenna. Figure 4.3 shows the cycle-averaged
field intensity |E|2 and the phase for both cases. In the first case we find the
signature of constant field intensity and circulating phase corresponding to
excitation of a travelling wave, while in the second case we find the constant-
phase field intensity nodes and antinodes characteristic of a standing wave.
The slight residual fringe contrast for the unidirectional case indicates that
over 96% of the energy travels in a single direction. Thus the simulation
confirms the predicted phased-array action, as well as the operation points
at which the distinct scenarios occur.

4.3.2. Complex-frequency analysis
The spectral structure, i.e., the Fano lineshapes, and the unidirectionality ev-
ident from Figs. 4.2 and 4.3 clearly involve the interference of several modes.
This structure can be further understood from a complex-frequency eigen-
mode analysis of the coupled antenna-cavity equations. In the absence of
driving terms, taking Eq.(4.1) through Eq.(4.6) together leads to

pi = ε0α(ω)

[
µ0ω

2
M∑

j�i

G0(ri ,rj ,ω)pj

+ µ0ω
2G0(ri ,ri ,ω)pi +

∑

k=s,as

akẼk(ri)
]
, (4.7)

keeping in mind that we neglect the residue δGN of the QNM expansion.
Eq.(4.7) defines a linear system Ax = 0, for x = [pi ,ak ], from which the com-
plex dressed eigenfrequencies ω′ can be determined through the condition
detA(ω̃′) = 0. These represent the complex eigenfrequencies of the hybrid
system QNMs. Figure 4.4(a,b) represents the real and imaginary part of the
eigenfrequencies. This analysis confirms the oscillatory behaviour of both the
real and imaginary part of frequency with the angular antenna separation.
Notably, at points where the antenna separation fits the distance between
cavity mode antinodes, one of the two cavity modes is neither shifted in Q
nor in frequency from the bare mode. In this configuration, the other mode
is maximally shifted in both Q and frequency. At points of degeneracy in
the real part of the frequency, the QNMs also have identical Q, with both
experiencing approximately half the shift that is seen at points of maximum
mode separation.
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to just the (spoiled) cavity (emitter on the disk perimeter, but more than 50 nm
away from the surface of any antenna), or dominantly coupling to free space
(emitter well away from antennas and the whispering gallery mode profile).
This means that our predictions hold as long as the emitter is placed within the
near-field hot spot of the intended feed antenna, i.e., within 20 nm or so of the
distal end for a nanorod antenna realization. On basis of Ref. [95], we expect
the predictions to also hold if the feed-antenna to which the emitting dipole
couples is replaced by a dimer gap antenna of similar dipole polarizability,
where placement of the emitter in the gap could significantly enhance the
LDOS. Finally, we note that while already M = 2 antennas are very successful
in creating unidirectionality, our model is easily extended to more than 2
antennas. For creating unidirectional emission we note that similar perfor-
mance is possible for M = 3 antennas, while generally at larger M there is no
further improvement in unidirectionality but a large penalty in LDOS. This is
a consequence of the reduction of Q with the addition of antennas.

0

2

-2

1

-1

0

2

-2

1

-1

-2 -1 0 1 2 -2 -1 0 1 2

π

-π

0

a b

c d

x (μm) x (μm)

y 
(μ
m
)

y 
(μ
m
)

max

0

Figure 4.3: (a,b) Simulated intensity and (c,d) phase of the radial component Er of the
electric field on the top interface of microdisk cavity dressed by two aluminium antennas.
The antenna separation is 0.94 cavity period for panels (a,c) and 1 cavity period for panels
(b,d), and the simulation is driven by a radial dipole placed 10 nm radially outward from
the top antenna. In panels (a) and (c) the intensity is almost perfectly homogenous in the
azimuthal direction with the phase indicating clockwise propagation. On the contrary,
panels (b) and (d) exhibit a standing wave pattern as antennas and dipole only couple
the symmetric cavity mode.

To verify that the semi-analytical predictions from our model are not an
artefact of the approximations, we have performed real-space FEM simula-
tions using COMSOL to verify the occurrence of unidirectional emission (see
Ref.[94] for LDOS benchmarking). We analysed a Si3N4 microdisk (thickness
200 nm, diameter 2.95 µm) decorated with two aluminium nanorod antennas
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(100 nm long, 50 nm high, 40 nm wide). We first evaluated the bare cavity
mode profile (m = 16 mode at 396.675 THz, Q = 4000) and its frequency
shift upon perturbation by a single antenna (at 396.3 THz, Q = 800). From
these, we predicted the operation points (frequency and antenna spacing)
for unidirectional and completely symmetric emission to occur at antenna
separations of 0.94 resp. 1 cavity period, both at a frequency of 396.650 THz.
Next, we performed driven simulations for these operation conditions, with a
single drive dipole next to one antenna. Figure 4.3 shows the cycle-averaged
field intensity |E|2 and the phase for both cases. In the first case we find the
signature of constant field intensity and circulating phase corresponding to
excitation of a travelling wave, while in the second case we find the constant-
phase field intensity nodes and antinodes characteristic of a standing wave.
The slight residual fringe contrast for the unidirectional case indicates that
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confirms the predicted phased-array action, as well as the operation points
at which the distinct scenarios occur.

4.3.2. Complex-frequency analysis
The spectral structure, i.e., the Fano lineshapes, and the unidirectionality ev-
ident from Figs. 4.2 and 4.3 clearly involve the interference of several modes.
This structure can be further understood from a complex-frequency eigen-
mode analysis of the coupled antenna-cavity equations. In the absence of
driving terms, taking Eq.(4.1) through Eq.(4.6) together leads to

pi = ε0α(ω)

[
µ0ω

2
M∑

j�i

G0(ri ,rj ,ω)pj

+ µ0ω
2G0(ri ,ri ,ω)pi +

∑

k=s,as

akẼk(ri)
]
, (4.7)

keeping in mind that we neglect the residue δGN of the QNM expansion.
Eq.(4.7) defines a linear system Ax = 0, for x = [pi ,ak ], from which the com-
plex dressed eigenfrequencies ω′ can be determined through the condition
detA(ω̃′) = 0. These represent the complex eigenfrequencies of the hybrid
system QNMs. Figure 4.4(a,b) represents the real and imaginary part of the
eigenfrequencies. This analysis confirms the oscillatory behaviour of both the
real and imaginary part of frequency with the angular antenna separation.
Notably, at points where the antenna separation fits the distance between
cavity mode antinodes, one of the two cavity modes is neither shifted in Q
nor in frequency from the bare mode. In this configuration, the other mode
is maximally shifted in both Q and frequency. At points of degeneracy in
the real part of the frequency, the QNMs also have identical Q, with both
experiencing approximately half the shift that is seen at points of maximum
mode separation.
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Considering the symmetry of our system and the fact that we expect two
perturbed solutions of Eq.(4.7) close to the unperturbed cavity (complex) fre-
quency ω̃c, the frequency shift of the two QNMs with respect to ω̃c can be
effectively parametrized through [140]

ω̃′s,as − ω̃c

ω̃c
=
−ε0α(ω̃c)Ẽ

2
r (ri ,zi)[1± cos(m∆θ)]

1±µ0ω̃2
c α(ω̃c)g0(ω̃c)

, (4.8)

where i designates equivalently 1 or 2, g0(ω̃c) = uri ·G0(ri ,rj , ω̃c)urj , i � j is
the Green’s function element between the two dipoles, and the ±cos(m∆θ)
accounts for the coherent addition of the two perturbers, while the denomi-
nator accounts for the hybridization effect on polarizability, that is especially
apparent in the mid-field and near-field (short distances).
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Figure 4.4: Real (a) and imaginary (b) part of the eigenfrequency of the symmetric
(black) and antisymmetric (gray) hybrid QNMs versus the angular separation between
antennas. The amplitude (panels c,d,e) and phase (panels f,g,h) show the physics
underlying directional emission at three salient antenna separations (Dashed verticals in
(a,b)). Since the amplitude of the symmetric mode is null in (c), its phase is not defined,
and therefore not plotted in (f). Dashed line in (e,h) is a guide for the eye. Where one
mode is maximally perturbed and the other is not (c,f), the source only excites one of
the two hybrid WGMs (symmetric, black curves). Where symmetric and antisymmetric
mode are perturbed equally (d, g), both modes are excited equally and in phase, leading
to no directionality. Just away from degeneracy (e,h), one can achieve equal amplitude
and π/2 phase difference, leading to unidirectionality.

For a sufficiently large antenna separation the denominator of Eq.(4.8) is
essentially equal to one, and the complex detuning between the modes S and
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AS traces
∆ω̃
ω̃c

=
ω̃′as − ω̃′s

ω̃c
=

α

Ṽ
cos(m∆θ). (4.9)

where Ṽ (ri ,zi) is the effective complex mode volume [124] of each WGM of
the unperturbed cavity at the position of the antenna without the sinusoidal
dependence present Eq.(4.3) (therefore identical for the S and AS mode). Aside
from the expected inverse dependence of shift on mode volume, this result
also brings out the role of the phase of the polarizability. Since the complex
mode volume is almost real in our example, the phase of the polarizability
directly sets the balance between the real and imaginary part of the frequency
shift. If the antennas are red (blue) detuned compared to the cavity the fre-
quency splitting between the symmetric and antisymmetric mode is (anti-
)correlated with the difference in linewidth. If the antennas are on resonance
with the cavity, there is no frequency splitting, but instead the amplitude
difference in linewidth is maximal. In other words, in that limit the cavity
is near degeneracy but the two modes have very different Q’s. The example
considered in Figs. 4.2, 4.4 corresponds to blue detuning (mainly a frequency
shift).

Unidirectionality and LDOS enhancement can now be understood from
the amplitude and phase with which the two QNMs are driven by a point
emitter and can be calculated from the overlap (inner product) between the
eigenvectors of A defined from Eq.(4.7) and the driving from a single dipole
source. Directionality of emission occurs as a consequence of interference of
the symmetric and asymmetric modes, with strict unidirectionality requiring
destructive interference in one direction. Thus, the first requirement for per-
fect unidirectional emission to occur is that the localized excitation at one of
the antennas must have the same projection on the hybrid basis. The second
condition is that the relative phase is appropriate for destructive interference
in the clockwise (counterclockwise) direction (with simultaneous constructive
interference in the other channel guaranteed by symmetry). Figure 4.4(c,d,e)
and (f,g,h) report the amplitude and phase of excitation of the two modes
for three distinct antenna separations for the example system considered in
Fig. 4.2. In the first (for antenna distance of ∆θ = 0.5, Fig. 4.2(c,f)), the an-
tenna separation fits the distance between mode antinodes, meaning that the
distance is half-integer in units of the cavity period. The dipole emitter only
couples to the strongly perturbed symmetric normal mode of the system, so
there is no directionality. Next, we consider an antenna-separation chosen
right at degeneracy (example chosen ∆θ = 0.75, Fig. 4.2(d,g)). Again, the
emission is equally distributed over both directions. The mechanism is, how-
ever, different from that at work at half-integer antenna distances. Now both
modes of the system are excited instead of just a single one, but since there
is no constructive/destructive interference, the excitation has equal phase for
both. For a separation just away from degeneracy (example chosen: antenna
distance of ∆θ = 0.81 cavity periods, Fig. 4.2(e,h)) the emitter can still couple
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Considering the symmetry of our system and the fact that we expect two
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quency ω̃c, the frequency shift of the two QNMs with respect to ω̃c can be
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where i designates equivalently 1 or 2, g0(ω̃c) = uri ·G0(ri ,rj , ω̃c)urj , i � j is
the Green’s function element between the two dipoles, and the ±cos(m∆θ)
accounts for the coherent addition of the two perturbers, while the denomi-
nator accounts for the hybridization effect on polarizability, that is especially
apparent in the mid-field and near-field (short distances).
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Figure 4.4: Real (a) and imaginary (b) part of the eigenfrequency of the symmetric
(black) and antisymmetric (gray) hybrid QNMs versus the angular separation between
antennas. The amplitude (panels c,d,e) and phase (panels f,g,h) show the physics
underlying directional emission at three salient antenna separations (Dashed verticals in
(a,b)). Since the amplitude of the symmetric mode is null in (c), its phase is not defined,
and therefore not plotted in (f). Dashed line in (e,h) is a guide for the eye. Where one
mode is maximally perturbed and the other is not (c,f), the source only excites one of
the two hybrid WGMs (symmetric, black curves). Where symmetric and antisymmetric
mode are perturbed equally (d, g), both modes are excited equally and in phase, leading
to no directionality. Just away from degeneracy (e,h), one can achieve equal amplitude
and π/2 phase difference, leading to unidirectionality.

For a sufficiently large antenna separation the denominator of Eq.(4.8) is
essentially equal to one, and the complex detuning between the modes S and
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where Ṽ (ri ,zi) is the effective complex mode volume [124] of each WGM of
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dependence present Eq.(4.3) (therefore identical for the S and AS mode). Aside
from the expected inverse dependence of shift on mode volume, this result
also brings out the role of the phase of the polarizability. Since the complex
mode volume is almost real in our example, the phase of the polarizability
directly sets the balance between the real and imaginary part of the frequency
shift. If the antennas are red (blue) detuned compared to the cavity the fre-
quency splitting between the symmetric and antisymmetric mode is (anti-
)correlated with the difference in linewidth. If the antennas are on resonance
with the cavity, there is no frequency splitting, but instead the amplitude
difference in linewidth is maximal. In other words, in that limit the cavity
is near degeneracy but the two modes have very different Q’s. The example
considered in Figs. 4.2, 4.4 corresponds to blue detuning (mainly a frequency
shift).

Unidirectionality and LDOS enhancement can now be understood from
the amplitude and phase with which the two QNMs are driven by a point
emitter and can be calculated from the overlap (inner product) between the
eigenvectors of A defined from Eq.(4.7) and the driving from a single dipole
source. Directionality of emission occurs as a consequence of interference of
the symmetric and asymmetric modes, with strict unidirectionality requiring
destructive interference in one direction. Thus, the first requirement for per-
fect unidirectional emission to occur is that the localized excitation at one of
the antennas must have the same projection on the hybrid basis. The second
condition is that the relative phase is appropriate for destructive interference
in the clockwise (counterclockwise) direction (with simultaneous constructive
interference in the other channel guaranteed by symmetry). Figure 4.4(c,d,e)
and (f,g,h) report the amplitude and phase of excitation of the two modes
for three distinct antenna separations for the example system considered in
Fig. 4.2. In the first (for antenna distance of ∆θ = 0.5, Fig. 4.2(c,f)), the an-
tenna separation fits the distance between mode antinodes, meaning that the
distance is half-integer in units of the cavity period. The dipole emitter only
couples to the strongly perturbed symmetric normal mode of the system, so
there is no directionality. Next, we consider an antenna-separation chosen
right at degeneracy (example chosen ∆θ = 0.75, Fig. 4.2(d,g)). Again, the
emission is equally distributed over both directions. The mechanism is, how-
ever, different from that at work at half-integer antenna distances. Now both
modes of the system are excited instead of just a single one, but since there
is no constructive/destructive interference, the excitation has equal phase for
both. For a separation just away from degeneracy (example chosen: antenna
distance of ∆θ = 0.81 cavity periods, Fig. 4.2(e,h)) the emitter can still couple
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to both modes of the system, but with a phase difference. Indeed, by appro-
priate choice of frequency one can obtain a π/2 phase shift, at equal excitation
amplitude for the two modes, leading to perfect unidirectionality. The sign of
the unidirectionality is controlled by choosing ∆θ on opposing sides of the
degeneracy point.

We finally note that this mechanism for unidirectional emission is dis-
tinct from the interesting exceptional-point studies reported by Peng et al.
in Ref. [69], obtained by perturbing a WGM with two near field probes as
scatterers. In a true exceptional point scenario, unidirectionality is intrinsic to
the eigenmodes, and not due to phase relations in the linear superposition of
modes, as upon coalescence of the eigenfrequencies the remaining eigenmode
is chiral. In contrast, here we exploit the asymmetric location of the emitter
at just one antenna for unidirectionality, while our eigenmode set still retain
even and odd parities. The mechanism relies on tuning the operation point
near, but not on, mode degeneracy. An exceptional point instead requires
the geometry to break parity symmetry by either using different radial posi-
tions, or considering two geometrically different antennas, or adding a third
antenna [214]. While outside the scope of this chapter, our QNM based model
for M antennas at arbitrary cavity locations (Methods sections) does provide
a comprehensive framework for analysing and designing exceptional-point
optical-cavity systems. The model quantitatively accounts for multiple scat-
tering and antenna-antenna interactions and exceptional-point physics is re-
vealed from an optical mode analysis instead of requiring to be postulated by
a non-Hermitian Hamiltonian parametrization, as common in literature [69].

4.4. Spectroscopy of hybrid microdisk devices

We report experiments that interrogate the cavity mode perturbation physics,
i.e., the predicted shift in frequency and change in linewidth of the modes in
Eq.(4.9), which depends on the complex polarizability, the mode volume, and
the azimuthal mode number. To this end, we apply tapered-fibre mode spec-
troscopy to samples based on Si3N4 disks hybridized with aluminium anten-
nas (see Methods section). The experiments are performed on microdisks that
are 15 µm in diameter and 200 nm in thickness. On top of them, we place two
∼130 nm long ∼50 nm wide and ∼40 nm thick, radially oriented aluminium
antennas, 300 nm from the disk edge (Figure 4.1(a)). The disks stand on a ridge
which is 150 µm in width and height, so that they are accessible for optical
fibre taper coupling. A tapered optical fibre setup (Fig. 4.5) provides excitation
by an external-cavity diode laser that is widely tunable, yet narrowband (New
Focus Velocity) around 780 nm. The observables that we can simultaneously
collect are fibre taper transmission, fibre taper reflection as well as out-of-
plane scattering collected with a microscopy set up. The microscope allows
real space and Fourier space imaging of scattered light.
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4.4.1. Sample fabrication
We use two-step lithography to realize Si3N4 disks, hybridized with
aluminium antennas. First, we fabricate Si3N4 disks on pyramidal silicon
pedestals by electron beam lithography and reactive ion etching of silicon
wafers with a 200 nm LPCVD layer of Si3N4 (Lionix BV). After base piranha
cleaning, we perform e-beam lithography in 450 nm of CSAR 62 resist (All
Resist GmbH) at 50 keV (Raith Voyager), using a 0.4 nA current and 160
µC/cm2 dose. Following development in pentyl-acetate followed by an o-
xylene dip, the samples are post-baked at 130 ◦C for one minute to harden the
resist which will act as a plasma etch mask. After plasma-etching through the
nitride (RIE-ICP, SF6/CHF3 chemistry), we remove the resist using acetone
and a base piranha clean, immediately followed by a Si underetch (KOH) to
create free-standing disk edges. To realize the antennas, we then spincoat a
MMA/PMMA bilayer resist stack (120 / 60 nm as measured at the edge of
the cavity) to perform a second e-beam step, aligned to the first. After e-beam
writing (500 µC/cm2 dose) and development in a 1:3 methyl isobutyl ketone
and isopropanol mixture , we perform aluminium evaporation (thermal
evaporator at 0.05 nm/s evaporation rate, targeting 40 nm thickness) and lift-
off in acetone at 40 ◦C. Finally, we make sure that the samples are accessible
to optical fibre taper coupling by using a diamond saw to remove a 150 µm
thick layer from the entire sample, except for a 150 µm wide ridge on which
the structures stand. During this process the sample is covered by a protective
polymer resist that is stripped after sawing (Microposit S1800). Two samples
were made with a slightly different electronic dose for the second lithographic
step. This resulted in a length difference of the antennas between the two
samples sufficient to ensure that for one sample the antennas were almost on
resonance with the cavity, that is, near 780 nm, while for the other sample
they were designed to be resonant at 630 nm.

4.4.2. Optical set up, analysis framework
We interrogate the structures using a tapered optical fibre setup, sketched
in Fig. 4.5(b). The fibre is a Corning HI 780C fibre that is single mode at
our operation wavelength around 780 nm and is pulled to an adiabatic taper
using an automated motorized hydrogen flame setup. The fibre is precisely
positioned to evanescently couple to the cavities using a piezo-stage setup,
and excitation light is coupled in from an external-cavity diode laser that is
widely tunable, yet narrowband (New Focus Velocity). The frequency axis
of our cavity transmission scans is calibrated against a Fabry-Perot reference
cavity (finesse > 150, free spectral range 10 GHz). We simultaneously collect
reflected and transmitted signals on photodiodes, as well as collecting scat-
tered light (Fig. 4.5(b)). The scattered light is collected from the air side using
a microscope objective and directed to a Basler CMOS camera, where we have
access to both real-space, and k-space (angle-resolved) images. We can only

93



4

CHAPTER 4. COOPERATIVE INTERACTIONS BETWEEN NANOANTENNAS IN A
HIGH Q CAVITY FOR UNIDIRECTIONAL LIGHT SOURCES

to both modes of the system, but with a phase difference. Indeed, by appro-
priate choice of frequency one can obtain a π/2 phase shift, at equal excitation
amplitude for the two modes, leading to perfect unidirectionality. The sign of
the unidirectionality is controlled by choosing ∆θ on opposing sides of the
degeneracy point.

We finally note that this mechanism for unidirectional emission is dis-
tinct from the interesting exceptional-point studies reported by Peng et al.
in Ref. [69], obtained by perturbing a WGM with two near field probes as
scatterers. In a true exceptional point scenario, unidirectionality is intrinsic to
the eigenmodes, and not due to phase relations in the linear superposition of
modes, as upon coalescence of the eigenfrequencies the remaining eigenmode
is chiral. In contrast, here we exploit the asymmetric location of the emitter
at just one antenna for unidirectionality, while our eigenmode set still retain
even and odd parities. The mechanism relies on tuning the operation point
near, but not on, mode degeneracy. An exceptional point instead requires
the geometry to break parity symmetry by either using different radial posi-
tions, or considering two geometrically different antennas, or adding a third
antenna [214]. While outside the scope of this chapter, our QNM based model
for M antennas at arbitrary cavity locations (Methods sections) does provide
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antennas, 300 nm from the disk edge (Figure 4.1(a)). The disks stand on a ridge
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interrogate modes of 1st and 2nd radial order because the fundamental mode is
too strongly perturbed and therefore broadened by the antennas to be probed
by tapered-fibre coupling and narrowband laser frequency scanning. The
radial order mainly affects the cavity mode volume, as QNMs of increasing
radial order have lower field amplitudes at the antenna locations.

laser
765-781nm

taper

camera

photodiode
hybrid

Figure 4.5: Setup schematic, indicating tapered-fibre excitation of microdisks with a
narrowband tunable diode laser, while recording simultaneously taper reflection, taper
transmission and out-of-plane scattering collected with an objective onto a camera or
photodiode.

4.4.3. Experimental results
We studied 70 cavities consisting of a duplicated set of 35 different hybrid
configurations where the separation angle between antennas varies, by de-
sign, from 0.8 to 13.5◦ (0.1 to 1.8 µm), corresponding to ∼0.2 to 3.45 cavity
azimuthal periods of the mode profile for our QNMs of interest (azimuthal
mode numbers 80 < m < 86 fall within our scan range).

Figure 4.6 shows a typical raw data set measured on a single device (an-
tenna separation ∆θ = 11.2◦ (1.46 µm) for m = 80, 2nd radial order). The
transmission spectrum through the tapered fibre clearly shows power trans-
fer to the cavity, with the lineshapes of two Lorentzian minima consistent
with a broad and narrow QNMs. Depending on geometry these are not al-
ways clearly separable, particularly since the coupling strength to tapered
fibre channels depends strongly on the modes linewidth, or when modes are
very close to degeneracy. The reflection signal generally shows significant
reflection features coincident with the transmission signature, however with
asymmetric lineshapes that suggest interference with parasitic contributions
(e.g. parasitic reflections at fibre connections). The scattering signal, finally,
shows very clear Fano features, indicative of the coherent addition of the
radiation patterns of the symmetric and antisymmetric QNMs. Qualitatively,
these radiation patterns can be understood both for the symmetric and for the
antisymmetric QNMs as the sum of interfering dipole contributions (sketch in
Fig. 4.6(a, bright QNM only), predictions in Fig. 4.6(b,c)). These predictions
are formed as the coherent sum of the symmetric resp. antisymmetric dipole
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Figure 4.6: (a) Sketch of image dipole analysis explaining the far-field radiation pattern
of the symmetric (S) QNM. (b,c) Predicted approximate angular radiation patterns into
the air side for S and AS QNMs, plotting intensity per solid angle as function of in-
plane momentum in units of ω/c. (d) Taper transmission (red) and reflection (blue)
diode signals for an antenna dimer (separation ∆θ = 11.2◦ (1.46 µm)) on a microdisk,
versus frequency relative to ωc/(2π) = 385.37 THz. (e) Inset: collected radiation pattern
at frequency labelled (e) in panel (d). Purple and green curve marked ◦,× - collected
scattered intensity at chosen (kx ,ky ) indicated in inset, versus driving frequency.

combinations (dipoles located at the antenna centers, radially oriented). This
leads to interference fringes in the far-field radiation pattern of both S and AS
modes. Notably, for small ∆θ, the dipoles are almost parallel and the field ra-
diated by the anti-symmetric AS mode exhibits a dark fringe centered around
kx = 0. For each dipole, one furthermore needs to account for the reflec-
tive air-silicon interface above which it is located as highlighted in the sketch
(Fig. 4.6(a)). The interface-effect gives rise to an additional circular fringing
concentric with kx = ky = 0 (vertical emission). An example measurement of
a radiation pattern is shown in Fig. 4.6(e, inset), which excellently agrees with
the prediction for the asymmetric QNM. Scattering spectra at a select set of
wave vectors chosen at salient features in the radiation pattern directly reveal
the coherent superposition of QNMs through Fano lineshapes, as shown by
the representative curves in Fig. 4.6(e) for the wave vectors marked in the
inset. The advantage of these scattering spectra is that they are essentially
background free, as the cavity excitation is through the taper, not through free
space.
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interrogate modes of 1st and 2nd radial order because the fundamental mode is
too strongly perturbed and therefore broadened by the antennas to be probed
by tapered-fibre coupling and narrowband laser frequency scanning. The
radial order mainly affects the cavity mode volume, as QNMs of increasing
radial order have lower field amplitudes at the antenna locations.

laser
765-781nm

taper

camera

photodiode
hybrid

Figure 4.5: Setup schematic, indicating tapered-fibre excitation of microdisks with a
narrowband tunable diode laser, while recording simultaneously taper reflection, taper
transmission and out-of-plane scattering collected with an objective onto a camera or
photodiode.

4.4.3. Experimental results
We studied 70 cavities consisting of a duplicated set of 35 different hybrid
configurations where the separation angle between antennas varies, by de-
sign, from 0.8 to 13.5◦ (0.1 to 1.8 µm), corresponding to ∼0.2 to 3.45 cavity
azimuthal periods of the mode profile for our QNMs of interest (azimuthal
mode numbers 80 < m < 86 fall within our scan range).

Figure 4.6 shows a typical raw data set measured on a single device (an-
tenna separation ∆θ = 11.2◦ (1.46 µm) for m = 80, 2nd radial order). The
transmission spectrum through the tapered fibre clearly shows power trans-
fer to the cavity, with the lineshapes of two Lorentzian minima consistent
with a broad and narrow QNMs. Depending on geometry these are not al-
ways clearly separable, particularly since the coupling strength to tapered
fibre channels depends strongly on the modes linewidth, or when modes are
very close to degeneracy. The reflection signal generally shows significant
reflection features coincident with the transmission signature, however with
asymmetric lineshapes that suggest interference with parasitic contributions
(e.g. parasitic reflections at fibre connections). The scattering signal, finally,
shows very clear Fano features, indicative of the coherent addition of the
radiation patterns of the symmetric and antisymmetric QNMs. Qualitatively,
these radiation patterns can be understood both for the symmetric and for the
antisymmetric QNMs as the sum of interfering dipole contributions (sketch in
Fig. 4.6(a, bright QNM only), predictions in Fig. 4.6(b,c)). These predictions
are formed as the coherent sum of the symmetric resp. antisymmetric dipole
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Figure 4.6: (a) Sketch of image dipole analysis explaining the far-field radiation pattern
of the symmetric (S) QNM. (b,c) Predicted approximate angular radiation patterns into
the air side for S and AS QNMs, plotting intensity per solid angle as function of in-
plane momentum in units of ω/c. (d) Taper transmission (red) and reflection (blue)
diode signals for an antenna dimer (separation ∆θ = 11.2◦ (1.46 µm)) on a microdisk,
versus frequency relative to ωc/(2π) = 385.37 THz. (e) Inset: collected radiation pattern
at frequency labelled (e) in panel (d). Purple and green curve marked ◦,× - collected
scattered intensity at chosen (kx ,ky ) indicated in inset, versus driving frequency.

combinations (dipoles located at the antenna centers, radially oriented). This
leads to interference fringes in the far-field radiation pattern of both S and AS
modes. Notably, for small ∆θ, the dipoles are almost parallel and the field ra-
diated by the anti-symmetric AS mode exhibits a dark fringe centered around
kx = 0. For each dipole, one furthermore needs to account for the reflec-
tive air-silicon interface above which it is located as highlighted in the sketch
(Fig. 4.6(a)). The interface-effect gives rise to an additional circular fringing
concentric with kx = ky = 0 (vertical emission). An example measurement of
a radiation pattern is shown in Fig. 4.6(e, inset), which excellently agrees with
the prediction for the asymmetric QNM. Scattering spectra at a select set of
wave vectors chosen at salient features in the radiation pattern directly reveal
the coherent superposition of QNMs through Fano lineshapes, as shown by
the representative curves in Fig. 4.6(e) for the wave vectors marked in the
inset. The advantage of these scattering spectra is that they are essentially
background free, as the cavity excitation is through the taper, not through free
space.
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To extract QNM frequencies and Qs from the raw data, we simultaneously
fit reflection, transmission (data as plotted in Fig. 4.6(d)), and scattering spec-
tra taken from the radiation pattern. To this end we perform a simultaneous
fit to the Fano-like reflection, transmission, and scattering data with a sum of
two complex Lorentzians:

T (ω) =
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ω − ω̃as
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S(k,ω) =
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βS ;s(k)
ω − ω̃s

+
βS ;as(k)
ω − ω̃as

∣∣∣∣∣∣
2

, (4.12)

where the complex frequencies ω̃s,as are common to all three fit functions,
while the coefficients β are observable-dependent. For scattering, we found
that for a good fit it is not necessary to determine the full wave-vector de-
pendent, yet frequency independent, amplitude functions βS ;s,as(k) for each
QNM). Instead, for just obtaining the complex frequencies taking just two
wave vectors in the radiation pattern with a distinct Fano spectrum suffices
(data as plotted in Fig. 4.6(e)).
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Figure 4.7: (a) Resonance frequencies and (b) linewidths (in GHz) of the symmetric
(blue) and antisymmetric (red) modes as function of antenna separation for antennas
hybridized with the 1st radial mode at azimuthal mode number m = 86 (TE 86-1). The
largest variation is in the linewidth (panel b). The resonance frequencies show a spread
due to disk fabrication variations. These subtract out when considering differences in
frequency.

Figure 4.7 presents the dependence of frequency and quality factor that
results from fitting data on many hybrid devices for various antenna-antenna
spacing. The cavity mode is assumed to be TE for m = 86, and 1st radial order
antenna (estimated from finite element simulations for a 15 µm diameter
Si3N4 micro-disk) and the antenna size is the same as in Fig. 4.6(d-e).
The oscillatory behaviour of the perturbed frequencies of the symmetric
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and anti-symmetric QNMs with antenna separation is especially clear in
the linewidth, where the symmetric and antisymmetric QNMs show anti-
correlated behaviours. The real frequencies show much smaller variations,
which are furthermore masked by frequency variations between devices, that
arise from small fabrication inaccuracies. Indeed, spectroscopy on devices
without antennas show that the bare cavity frequencies themselves vary by
about 100 GHz, or equivalently about 0.2 nm in wavelength, equating to a
spread in disk diameters around 3.5 nm. While the absolute real frequencies
of the two perturbed QNMs are not useful as information due to the disk
size disorder, their difference is, since the random variations due to disk
diameter disorder cancel out. Fig. 4.8(a-b) reports on the systematic mode
separation (blue) and the difference in linewidth (in red) for the symmetric
and asymmetric QNM, for hybridization of antenna dimers with two different
cavity modes. The mode m = 86 of first radial order (case of Figs. 4.6 and 4.7),
and a mode with a substantially different azimuthal quantum number
m = 80 and mode volume (2nd radial order) are shown. The period of the
oscillation in ∆θ fitted from experimental data is consistent with the anti-node
spacing of the QNMs set by m, while the magnitude of the perturbation is
markedly smaller for QNMs of radial order 2, resulting from the larger mode
volumes. We traced similar results for all the whispering gallery modes
within the bandwidth of our laser, which amounts to four combinations of
azimuthal and radial quantum numbers in total. Panel 4.8(e) summarizes the
match between the azimuthal quantum number extracted from bare cavity
spectroscopy (horizontal-axis) and the value extracted from fitting Eq.(4.9) to
the measured traces of linewidth versus antenna spacing.

Of the striking features predicted by our analysis, the experiments in
Figs. 4.7 and 4.8(a-b) confirm that (I) the magnitude of the mode splittings
varies inversely with cavity mode volume and (II) the periodicity of the
splitting with antenna separation varies with the azimuthal mode number
as cosm∆θ. As this experiment was conducted with a fixed antenna size
(varying the separation d, as well as m and Ṽ in Eq.(4.9), but not α), it did
not give access to two other salient predictions, namely that (III) the tradeoff
between real and imaginary contributions to the mode splitting depends
on the phase of the polarizability α and (IV) that at very small separations,
near-field hybridization should change the detuning behaviour. Regarding
the phase of the polarizability, for Figs. 4.7 and 4.8(a-b), the antenna size was
such that the antennas were close in resonance to the cavities. Since within
less than a linewidth from the plasmon resonance the antenna polarizability is
almost fully imaginary, the cavity perturbation should almost entirely appear
through the cavity damping and not through a real frequency shift. Indeed,
Fig. 4.8(a-b) directly show that for these structures the splitting in frequency
(real part) is much smaller than the maximum difference in linewidth. In
a second experiment (Fig. 4.8 panel (c) for the real and imaginary part of
the difference frequency between symmetric and asymmetric QNMs, panel
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To extract QNM frequencies and Qs from the raw data, we simultaneously
fit reflection, transmission (data as plotted in Fig. 4.6(d)), and scattering spec-
tra taken from the radiation pattern. To this end we perform a simultaneous
fit to the Fano-like reflection, transmission, and scattering data with a sum of
two complex Lorentzians:
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where the complex frequencies ω̃s,as are common to all three fit functions,
while the coefficients β are observable-dependent. For scattering, we found
that for a good fit it is not necessary to determine the full wave-vector de-
pendent, yet frequency independent, amplitude functions βS ;s,as(k) for each
QNM). Instead, for just obtaining the complex frequencies taking just two
wave vectors in the radiation pattern with a distinct Fano spectrum suffices
(data as plotted in Fig. 4.6(e)).
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Figure 4.7: (a) Resonance frequencies and (b) linewidths (in GHz) of the symmetric
(blue) and antisymmetric (red) modes as function of antenna separation for antennas
hybridized with the 1st radial mode at azimuthal mode number m = 86 (TE 86-1). The
largest variation is in the linewidth (panel b). The resonance frequencies show a spread
due to disk fabrication variations. These subtract out when considering differences in
frequency.

Figure 4.7 presents the dependence of frequency and quality factor that
results from fitting data on many hybrid devices for various antenna-antenna
spacing. The cavity mode is assumed to be TE for m = 86, and 1st radial order
antenna (estimated from finite element simulations for a 15 µm diameter
Si3N4 micro-disk) and the antenna size is the same as in Fig. 4.6(d-e).
The oscillatory behaviour of the perturbed frequencies of the symmetric
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and anti-symmetric QNMs with antenna separation is especially clear in
the linewidth, where the symmetric and antisymmetric QNMs show anti-
correlated behaviours. The real frequencies show much smaller variations,
which are furthermore masked by frequency variations between devices, that
arise from small fabrication inaccuracies. Indeed, spectroscopy on devices
without antennas show that the bare cavity frequencies themselves vary by
about 100 GHz, or equivalently about 0.2 nm in wavelength, equating to a
spread in disk diameters around 3.5 nm. While the absolute real frequencies
of the two perturbed QNMs are not useful as information due to the disk
size disorder, their difference is, since the random variations due to disk
diameter disorder cancel out. Fig. 4.8(a-b) reports on the systematic mode
separation (blue) and the difference in linewidth (in red) for the symmetric
and asymmetric QNM, for hybridization of antenna dimers with two different
cavity modes. The mode m = 86 of first radial order (case of Figs. 4.6 and 4.7),
and a mode with a substantially different azimuthal quantum number
m = 80 and mode volume (2nd radial order) are shown. The period of the
oscillation in ∆θ fitted from experimental data is consistent with the anti-node
spacing of the QNMs set by m, while the magnitude of the perturbation is
markedly smaller for QNMs of radial order 2, resulting from the larger mode
volumes. We traced similar results for all the whispering gallery modes
within the bandwidth of our laser, which amounts to four combinations of
azimuthal and radial quantum numbers in total. Panel 4.8(e) summarizes the
match between the azimuthal quantum number extracted from bare cavity
spectroscopy (horizontal-axis) and the value extracted from fitting Eq.(4.9) to
the measured traces of linewidth versus antenna spacing.

Of the striking features predicted by our analysis, the experiments in
Figs. 4.7 and 4.8(a-b) confirm that (I) the magnitude of the mode splittings
varies inversely with cavity mode volume and (II) the periodicity of the
splitting with antenna separation varies with the azimuthal mode number
as cosm∆θ. As this experiment was conducted with a fixed antenna size
(varying the separation d, as well as m and Ṽ in Eq.(4.9), but not α), it did
not give access to two other salient predictions, namely that (III) the tradeoff
between real and imaginary contributions to the mode splitting depends
on the phase of the polarizability α and (IV) that at very small separations,
near-field hybridization should change the detuning behaviour. Regarding
the phase of the polarizability, for Figs. 4.7 and 4.8(a-b), the antenna size was
such that the antennas were close in resonance to the cavities. Since within
less than a linewidth from the plasmon resonance the antenna polarizability is
almost fully imaginary, the cavity perturbation should almost entirely appear
through the cavity damping and not through a real frequency shift. Indeed,
Fig. 4.8(a-b) directly show that for these structures the splitting in frequency
(real part) is much smaller than the maximum difference in linewidth. In
a second experiment (Fig. 4.8 panel (c) for the real and imaginary part of
the difference frequency between symmetric and asymmetric QNMs, panel
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Figure 4.8: (a,b) The difference in resonance frequency (blue, weakly varying) and
linewidth (red, strongly varying) between symmetric and antisymmetric mode as
function of antenna separation for antennas hybridized with (a) the 1st radial mode
at azimuthal mode number m = 86 (TE 86-1), and (b) a mode of larger mode volume
and different azimuthal mode number (2nd order radial mode m = 80, TE 80-2). Panels
(c,d) similar study with strongly blue-detuned antennas, where (c) shows the difference
in resonance frequency (blue), and linewidth (red), while (d) reports the individual
linewidths of symmetric (blue) and antisymmetric (red) modes. (e) Azimuthal mode
numbers m′ extracted from fitting the oscillation in perturbed frequency to Eq.(4.9),
versus simulated mode number m for all WGM modes in the laser bandwidth. (f) Polar
representation of the measured complex-valued α/Ṽ obtained by fitting the amplitude
and phase of oscillation in frequency and linewidth to Eq.(4.9) (�: TE 80-2, �: TE 81-2, +:
TE 85-1, ×: TE 86-1 for on-resonant antenna, and ◦ for strongly blue-detuned antenna).
For reference, the circular curve shows the expected frequency dependence of α/Ṽ for a
Lorentzian polarizability (Choosing Ṽ ≈ 300λ3, and an on resonance extinction cross
section of 0.12 µm2). With frequency detuning ∆ac from antenna resonance (colour
coding of the curve, in units of antenna linewidth) the factor α/Ṽ goes from purely
imaginary to partly real (dashed and dotted lines: ∆ac set to 1/2 resp. 1/8th of the
antenna linewidth).

(d) showing mode linewidths) we have also studied a family of devices
with deliberately smaller, i.e., blue-detuned antennas, focusing on a range of
small antenna separations. The results on these samples highlight the role
of the phase of the polarizability. For the chosen detuning ∆ac = ωc −ωa of
approximately half the antenna linewidth γa = γi + γrad, the polarizability
had about π/4 phase, as opposed to π/2 on resonance. Consistent with the
regime Re(α) ≈ Im(α), the mode splitting in the real and imaginary part
of the frequency (representing respectively resonance frequency and half
damping rate) are now approximately equal in size. Overall, the splittings
are smaller however, owing to the fact that the polarizability of the antennas
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are off-resonance at the cavity frequency. In fact, we argue that one can use
the ratio of the real and imaginary mode splitting to estimate the ratio of
Re(α) to Im(α), through Eq.(4.9), while one can estimate the magnitude of α
by comparing the overall size of the complex frequency shift with the cavity
mode volume. Figure 4.8(f) illustrates this idea. For all data sets, we have
extracted the complex prefactor α/Ṽ in Eq.(4.9). The magnitude is taken from
the amplitude of the cosine behaviour for the absolute value of the complex
frequency shift, while the phase of α/Ṽ is taken from the complex argument
of ∆ω̃ = ∆ω+i ∆γ2 , where we have averaged over all datapoints with ∆θ > 2.5◦

to avoid the regime of near-field hybridization discussed below. The data sets
with the antennas resonant near the interrogation frequency, i.e. near 780 nm,
result in α/Ṽ on the imaginary frequency axis. This is consistent with the
notion that the QNM mode volume Ṽ is essentially real for high-Q cavities,
while the on-resonance polarizability of a plasmon antenna is imaginary. The
data further clearly shows the effect of mode volume (nr = 2 radial order
mode appears at significantly smaller α/Ṽ for the same antenna size, i.e.
fixed α). If one would be able to tune through the resonance of an antenna,
one would expect α/Ṽ to sweep out a circle in the complex plane. The data
sets with smaller antennas (Figure 4.8(f), lower left datapoints) indeed are
distinctly shifted in phase by about ±π/4, equivalent to a detuning by about
half the antenna linewidth (Antenna resonance near 630 nm).

Finally, our theoretical analysis projected that at very small antenna sepa-
rations deviations from the simple oscillatory dependence of mode splitting
on scatterer separation would set in. While only few devices in our sample set
access this regime, Figure 4.8(c,d) indeed reveal that for the smallest antenna
separations, the cavity perturbation does not follow the simple oscillatory de-
pendence of mode splitting with antenna separation. Instead, at the smallest
separations, the system response is dominated by a very strong broadening of
the antisymmetric cavity mode. This observation is a manifestation of near-
field hybridization of the two antennas.

4.5. Conclusion and outlook
We have reported a simple model for the emission enhancement properties of
multimode, multi-antenna hybrid plasmon-photonic resonators, in particular
focusing on whispering gallery mode cavities coupled to plasmon antenna
dimers. The model projects that such hybrids sustain similarly high hybrid
Purcell factors as hybrids with just a single plasmon antenna, but with the
added benefit that one can tailor where emission goes, with freedom to ar-
range for branching ratios anywhere between symmetric and unidirectional
circulation. As an example, if one would make a side-coupled waveguide the
dominant loss channel for the cavity, this means that one could selectively
extract light from emitters located at one of the antennas from just one waveg-
uide port. Conversely, balancing the phase and amplitude of the two waveg-
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Figure 4.8: (a,b) The difference in resonance frequency (blue, weakly varying) and
linewidth (red, strongly varying) between symmetric and antisymmetric mode as
function of antenna separation for antennas hybridized with (a) the 1st radial mode
at azimuthal mode number m = 86 (TE 86-1), and (b) a mode of larger mode volume
and different azimuthal mode number (2nd order radial mode m = 80, TE 80-2). Panels
(c,d) similar study with strongly blue-detuned antennas, where (c) shows the difference
in resonance frequency (blue), and linewidth (red), while (d) reports the individual
linewidths of symmetric (blue) and antisymmetric (red) modes. (e) Azimuthal mode
numbers m′ extracted from fitting the oscillation in perturbed frequency to Eq.(4.9),
versus simulated mode number m for all WGM modes in the laser bandwidth. (f) Polar
representation of the measured complex-valued α/Ṽ obtained by fitting the amplitude
and phase of oscillation in frequency and linewidth to Eq.(4.9) (�: TE 80-2, �: TE 81-2, +:
TE 85-1, ×: TE 86-1 for on-resonant antenna, and ◦ for strongly blue-detuned antenna).
For reference, the circular curve shows the expected frequency dependence of α/Ṽ for a
Lorentzian polarizability (Choosing Ṽ ≈ 300λ3, and an on resonance extinction cross
section of 0.12 µm2). With frequency detuning ∆ac from antenna resonance (colour
coding of the curve, in units of antenna linewidth) the factor α/Ṽ goes from purely
imaginary to partly real (dashed and dotted lines: ∆ac set to 1/2 resp. 1/8th of the
antenna linewidth).

(d) showing mode linewidths) we have also studied a family of devices
with deliberately smaller, i.e., blue-detuned antennas, focusing on a range of
small antenna separations. The results on these samples highlight the role
of the phase of the polarizability. For the chosen detuning ∆ac = ωc −ωa of
approximately half the antenna linewidth γa = γi + γrad, the polarizability
had about π/4 phase, as opposed to π/2 on resonance. Consistent with the
regime Re(α) ≈ Im(α), the mode splitting in the real and imaginary part
of the frequency (representing respectively resonance frequency and half
damping rate) are now approximately equal in size. Overall, the splittings
are smaller however, owing to the fact that the polarizability of the antennas
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are off-resonance at the cavity frequency. In fact, we argue that one can use
the ratio of the real and imaginary mode splitting to estimate the ratio of
Re(α) to Im(α), through Eq.(4.9), while one can estimate the magnitude of α
by comparing the overall size of the complex frequency shift with the cavity
mode volume. Figure 4.8(f) illustrates this idea. For all data sets, we have
extracted the complex prefactor α/Ṽ in Eq.(4.9). The magnitude is taken from
the amplitude of the cosine behaviour for the absolute value of the complex
frequency shift, while the phase of α/Ṽ is taken from the complex argument
of ∆ω̃ = ∆ω+i ∆γ2 , where we have averaged over all datapoints with ∆θ > 2.5◦

to avoid the regime of near-field hybridization discussed below. The data sets
with the antennas resonant near the interrogation frequency, i.e. near 780 nm,
result in α/Ṽ on the imaginary frequency axis. This is consistent with the
notion that the QNM mode volume Ṽ is essentially real for high-Q cavities,
while the on-resonance polarizability of a plasmon antenna is imaginary. The
data further clearly shows the effect of mode volume (nr = 2 radial order
mode appears at significantly smaller α/Ṽ for the same antenna size, i.e.
fixed α). If one would be able to tune through the resonance of an antenna,
one would expect α/Ṽ to sweep out a circle in the complex plane. The data
sets with smaller antennas (Figure 4.8(f), lower left datapoints) indeed are
distinctly shifted in phase by about ±π/4, equivalent to a detuning by about
half the antenna linewidth (Antenna resonance near 630 nm).

Finally, our theoretical analysis projected that at very small antenna sepa-
rations deviations from the simple oscillatory dependence of mode splitting
on scatterer separation would set in. While only few devices in our sample set
access this regime, Figure 4.8(c,d) indeed reveal that for the smallest antenna
separations, the cavity perturbation does not follow the simple oscillatory de-
pendence of mode splitting with antenna separation. Instead, at the smallest
separations, the system response is dominated by a very strong broadening of
the antisymmetric cavity mode. This observation is a manifestation of near-
field hybridization of the two antennas.

4.5. Conclusion and outlook
We have reported a simple model for the emission enhancement properties of
multimode, multi-antenna hybrid plasmon-photonic resonators, in particular
focusing on whispering gallery mode cavities coupled to plasmon antenna
dimers. The model projects that such hybrids sustain similarly high hybrid
Purcell factors as hybrids with just a single plasmon antenna, but with the
added benefit that one can tailor where emission goes, with freedom to ar-
range for branching ratios anywhere between symmetric and unidirectional
circulation. As an example, if one would make a side-coupled waveguide the
dominant loss channel for the cavity, this means that one could selectively
extract light from emitters located at one of the antennas from just one waveg-
uide port. Conversely, balancing the phase and amplitude of the two waveg-
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uide input ports would enable the selective excitation of emitters placed at
just one of the antennas. Our analysis shows that the perturbative effects of
the antennas is tailorable through the phase relation set by antenna place-
ment, which in turn controls the interferences required for unidirectionality
and linewidth/lineshift control. The essential physics of this hybridization
is confirmed by experiments in an experimental platform based on silicon ni-
tride microdisks and aluminium nano-antennas. While most systematic cavity
perturbation experiments to date had to resort to scanning probe microscopy
or scanning in order to avoid having to compare different devices with their
inevitable spread in fabricated dimensions, our experimental platform is suffi-
ciently reproducible to systematically compare plasmon-antenna induced per-
turbations between devices, even for such narrowband cavities having GHz
linewidths. The observations confirm our model for the hybridization physics,
suggesting that indeed high-Q plasmonic hybrid modes offer advantageous
LDOS and unidirectional light-matter coupling. A next step will be to actu-
ally evidence such unidirectional light-matter coupling. This would require a
strictly localized placement of emitters, such as quantum dots or fluorophores,
at one of the antennas. This highly challenging placement may be possible by
extending the multi-step lithography approach to emitter placement, Curto
et al. [82] provided that a functionalization recipe to attach quantum dots
to aluminium is available, or alternatively could be possible with scanning
probe microsopy using a fluorescent tip. A main challenge will lie in the fact
that the unidirectionality occurs over a bandwidth equal to the linewidth of
the hybrid modes (< 0.1 nm, up to 1 nm possible with antenna-disk hybrids)
while room temperature emitters have a far larger linewidth (20 nm for typical
quantum dots) [95]. We furthermore note that multimode antenna-cavity hy-
brids can also be of interest for controlling ensembles of emitters (distributed
or localized), e.g. in the context of directional lasing, as has been already
discussed for WGM cavities in the context of PT-symmetry and exceptional
points [67]. To this end, it would be necessary to enrich the system with a
broken symmetry, by introducing a third antenna, or unequal placement in
the radial mode profile [69, 214].
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5.1. Introduction
It is common knowledge that photons carry energy as well as momentum.
The quantized nature of energy in light has been demonstrated in the seminal
demonstration of the photoelectric effect. The momentum of light, instead, is
responsible for the radiation pressure phenomenon and expresses itself in the
fact that absorption, scattering, or emission of a photon by an object imparts
momentum to the object. This transfer of momentum is the key to optical
trapping, optical tweezers and optomechanics. Less generally known is that
a light beam can also carry angular momentum [215]. First, circular polar-
ization, i.e., the rotation of the electric field along the direction of propaga-
tion, corresponds to spin angular momentum of ±1 (rigorously ±h̄). Second,
light beams can also carry orbital angular momentum (OAM). As first proposed
by Allen et al. [216], the paraxial wave equation allows uniformly polarized
Laguerre-Gauss beams as a solution that have helical wave-fronts, meaning
that constant phasefronts are not perpendicular to the axis of propagation, but
instead form a corkscrew, as sketched in Figure 5.1(a). This directly implies
that such beams carry a phase singularity right on the beam axis, around
which the phase takes the form ei�φ (φ being the azimuthal coordinate in the
transverse plane). In other words, OAM beams carry an optical vortex, of
integer topological charge � equal to the OAM1 (cf. Fig. 5.1(b)), and the ampli-
1Rigorously, the orbital angular momentum is OAM = h̄�. However, in this thesis we omit the
factor h̄ to lighten notations.
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Figure 5.1: Orbital angular momentum (OAM) of light: concept and generation. (a)
Helical wavefront carrying an OAM of +2. (b-c) Resp. transverse phase and intensity
profiles of a Laguerre-Gaussian beam carrying an OAM of +2. (d) Scanning electron
microscopy (SEM) image of a 5 µm diameter spiral phase plate. Reprinted from [217]. (e)
SEM image of a microring resonator with angular grating patterned along the inner wall.
Reprinted from [218]. (f) SEM image of a Q-plate metasurface. Reprinted from [219]. (g-i)
Typical measurements of OAM beams (here carying an OAM −2), showing an intensity
profile transverse to the beam with a null in its center (g), and interferograms obtained
with a tilted plane wave reference beam (pitchfork dislocation, (h) and a spherical
phasefront reference (spirals (i)) [219].

tude of the electromagnetic field vanishes at the phase singularity as depicted
in Fig. 5.1(c). The discrete topological charge is of particular interest in the
context of classical and quantum communication as it enables multiplexing
by superposition of many orthogonal beams with different OAM [220–223]. In
analogy to the momentum of light, also angular momentum can be transferred
from light to matter, for instance leading to optical torque [216]. This has
been studied in depth for its opportunities in optical micro-manipulation, in
particular for particle sorting, and longitudinal trapping [224–227]. So called
spin-orbit coupling for light, where the polarization degree of freedom, or
spin of a paraxial beam is made to interact with the orbital angular momen-
tum [228, 229], can also be exploited for probing at the nanoscale [230, 231].
Importantly, in near-field optics, outside the paraxial approximation where
field and wave vector are transverse to each other, the angular momentum
of a electromagnetic field cannot always be unambiguously defined. Indeed,
there is a large current debate about how to separate spin and orbital con-
tributions to angular momentum in the near field, particularly in the context
of chiral light-matter interactions, and the phenomenon of spin-momentum
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locking [229, 232–234].
The most intuitive way to generate OAM beams is to have a light beam

propagate through (or reflect off) a structure exhibiting an azimuthal phase
gradient. Conceptually simple implementations are spiral phase plates [217,
235, 236] (example shown in Fig. 5.1(d)), where the thickness of a transparent
material is varied azimuthally. The emergence of liquid crystal based spatial
light modulators in the early 2000s has opened the possibility to replace static
phase plates with a versatile reconfigurable device to imprint amplitude and
phase patterns on beams [237–241]. In the recent years, OAM generation has
also become a topic of interest in the field of nano-photonics, pushed by a
growing interest in chiral plasmonic structures [232, 242–246], and compact
and broadband dielectric [219, 247, 248] and metallic metasurfaces [249, 250].
Recently, there has been a number of reports regarding OAM generation by
microresonators [251, 252], and particularly microring laser cavities dressed
by azimuthally periodic scattering corrugation [68, 218, 253]. These structures
could allow for integrated, waveguide-accessible devices [254, 255]. Converse
to the generation of OAM, the readout of orbital angular momentum is also
a research topic in itself. Sorting and (de-)multiplexing techniques based on
the orthogonality of modes supporting different OAM can be implemented,
by properly designed holographic filters [256, 257]. However, the most com-
mon method for qualitative assessment of OAM content remains interferom-
etry. For instance, off-axis mixing with a plane wavefront, or a spherical
wavefront results in interferograms that exhibit, respectively, characteristic
pitchfork (Fig. 5.1(h)) or spiral fringe patterns (Fig. 5.1(i)). For pure OAM
beams, the number of branches, or arms corresponds directly to the OAM.
Quantitative decomposition of a beam into its OAM content is possible with
traditional [258–260] or digital off-axis holography [243, 261], which enable
a full characterization of the electric field phase, amplitude and polarization
which can then be projected onto OAM mode basis functions.

In this chapter, we report on the physics of rings of N evenly spaced an-
tennas placed along the perimeter of a microdisk cavity operated at azimuthal
mode number m, generating radiation patterns that carry OAM values set
by |N − m| ± 1 upon evanescent incoupling using a waveguide. While this
work falls in the class of literature reports on corrugated microcavity and
microring systems that generate OAM, the new aspect is that we consider
resonant antenna designs that allow control over the polarization content of
the outcoupled light. The underlying physics is that, similarly to diffraction
orders of a 1D grating, the OAM orders, which can in principle be generated
by an antenna-cavity system, are directly related to the number N of repeating
scattering units placed along the azimuthal direction and the azimuthal quan-
tum number m (Figure 5.2) of the cavity whispering gallery modes to which
the antenna array couples [218] with the caveat that, due to spin-orbit effects,
the selection rules depend not only on geometry but also on polarization
helicity. As in a grating, even if selection rules are fixed by m and N , the
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amplitude distribution and polarization that goes into the various allowed
OAM channels is not fixed by m and N , but by the unit cell design. We
propose a design allowing for the suppression of either the right or left cir-
cular polarized OAM output, based on replacing N simple linear antennas by
dimers of differently oriented antennas, where the spacing and angle of the
two constituent antennas causes a polarization selectivity into the unit cell.
We experimentally validate the concept with interferometric measurements
on fabricated devices. This is a first step towards the creation of beams for
applications where the purity of the OAM beams is an important parameter,
as for instance the generation of vector vortex beam lying at arbitrary position
on higher-order Poincaré spheres [262].

(a) (b)

Figure 5.2: Scattering of a wave propagating along arrays of point scatterer according
to the Huygens principle. (a) Case of a linear array: each point scatters spherical
wavefronts, which are delayed in time relative to each other due the finite propagation
speed of the incident wave. This scattering is equivalent to diffraction by a grating as
the coherent sum of individual wavefronts in the far-field approximates to a tilted plane
wave. (b) Case of an azimuthal array: the description is similar to the linear case except
that the coherent sum is now a helical wave.

This chapter is structured as follows. First, in Section 5.2 we introduce the
scenario of a WGM cavity decorated with a discrete set of antennas, and anal-
yse the perturbed cavity mode structure. Next, in Section 5.3 we explain the
mechanisms for generating OAM in the far field by inducing localized phased
currents, laying the foundations for understanding OAM selection rules in
relation to polarization. In Section 5.4 we present calculations, highlighting
the OAM distribution expected for different unit cells of antennas placed in
a ring. Finally, we report in Section 5.5 on the design of a structure enabling
the generation of beam carrying pure OAM in a single polarization channel,
leading in Section 5.6 to an experimental realization verifying our predictions.

5.2. Mode structure of a microdisk perturbed by a ring
of N antennas

In this section we discuss the hybridization of N antennas with the whisper-
ing gallery modes of a disk of azimuthal quantum number m, particularly
examining the frequency spectrum. To this end, it is useful to first examine
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the physics of a ring of radially oriented dipoles concentric with the z-axis of
an arbitrary cylindrically symmetric system (be it free space, or a micro disk).
For highly symmetric ensembles in plasmonics, group theory has been shown
to be a powerful tool for identifying irreducible representations [263, 264]. In
a regular ring array of antennas, the analysis is even simpler as the modes
complex eigenfrequencies and eigenstates can be obtained analytically [244,
246, 265].
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Figure 5.3: Sketch of the coupling between regularly spaced antennas arranged on a ring,
with an even (a) or odd (b) number of elements.

5.2.1. Symmetry constraints on ring modes
We consider the geometry of the system described in Figure 5.3, and assume
that dipole i in the chain is solely driven by the interaction with all the other
particles in the chain neighbors pi = ε0α(ω)

∑
j�i Ej→i . Here α(ω) is the polar-

izability of the (identical) antennas (normalized by ε0) and the fields Ej→i =
ω2

c2
G(rj ,ri ,ω)pj are specified by some Green function. The set of dipole mo-

ments is specified by a linear system

M(ω)p= 0, (5.1)

with p= [p1,p2, · · · ]T and the interaction matrix of the form:

M(ω) =



α−1 g1 g2 · · · g2 g1

g1 α−1 g1 g2 · · · g2
...

. . .
. . .

. . .
. . .

...

g2
. . . g2 g1 α−1 g1

g1 g2 · · · g2 g1 α−1



(5.2)

where we defined gn(ω) = −ω2

c2
G(ri ,ri+n,ω). The fact that the right hand side

of Eq.(5.1) is set to zero signifies the fact that we consider the ring in absence
of any external driving field. The matrix M(ω) is circulant, and therefore can
be diagonalized for all (complex) ω

M(ω)vk = λk(ω)vk , (5.3)
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with k an integer constrained to the interval k ∈ [[−�N2 �;�
N
2 �]]. Here we have

introduced the eigenvectors:

vk =
1
√
N



1
ei

2π
N k

ei2
2π
N k

...
ei(N−1)

2π
N k



,

and also the corresponding eigenvalues

λk(ω) = α−1(ω) + g1(ω)e
i 2πN |k|+ g2(ω)e

i2 2π
N |k|+ . . .+ g1(ω)e

i(N−1) 2πN |k|.

The eigenvectors are independent of the specific form of the Green function,
the diagonalization is valid at any frequency, and thus eigenvectors are not
generally to be interpreted as modes (in the sense of quasinormal modes or
states that we considered in previous chapters). Note that the eigenvalues
are identical (degenerate) for −k and +k. Solving for resonances of the ring
Eq.(5.1) is equivalent to looking for the frequencies where null eigenvalues
occur, which according to Eq (5.4), corresponds to

λk(ω) = 0. (5.4)

Each value of complex ω respecting this condition is a resonance frequency
with corresponding antenna eigenstate vk .

Since the eigenvalues λk(ω) come in pairs only depending on the absolute
value |k|, also the resonance frequencies come in pairs, except for the unpaired
k-value k = 0, and if N is even, k = N

2 . For even N , we obtain N
2 − 1 pairs

of twice-degenerate modes and two non-degenerate modes. The two non-
degenerate modes correspond to the extremal k-values k = 0 and N

2 . The
complex resonance frequencies follow from solving the non-linear but scalar
equation

λk(ω) = α−1(ω) + (−1)kgN
2
(ω) + 2

N
2 −1∑

n=1

gn(ω)cos
(
k
2π
N

n
)
= 0, (5.5)

obtained by pairwise grouping of terms. For odd N , we instead find �N2 �
twice-degenerate modes and a single non-degenerate mode. The resonance
frequencies are given by

λk(ω) = α−1(ω) + 2
�N2 �∑

n=1

gn(ω)cos
(
k
2π
N

n
)
= 0. (5.6)
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5.2.2. Whispering gallery mode system
We now focus on the specific case where the ring of antennas is coupled to a
whispering gallery mode cavity, and analyse the system close to a resonance
of a (degenerate) mode of azimuthal order m. As the system is still cylin-
drically symmetric, the eigenvector and eigenvalue analysis of Eqs.(5.5,5.6)
still directly applies. However, near a whispering gallery mode resonance of
order m, the Green function can be expanded over a set of QNMs [125]. If we
consider a single pair of WGMs of azimuthal mode number m, we have

G(ri ,rj ,ω) =
−1

µ0ω2
ω̃m

ω − ω̃m

[
ẼS ,m(ri)ẼS ,m(rj ) + ẼA,m(ri)ẼA,m(rj )

]

=
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where ẼS ,m(r) = ẼS ,m(r,φ,z), and ẼA,m(r) are the normalized electric field
of, respectively, the symmetric and anti-symmetric WGM of interest with az-
imuthal number m (projected onto the direction of antenna dipole moment
for simplicity). Here we introduced Ẽm(r,z) to correspond to the transverse
mode profile such that ẼS ,m(r,φ,z) = Ẽm(r,z)cos(mφ) and ẼA,m(r,φ,z) =
Ẽm(r,z)sin(mφ). With this assumption we obtain an expression for the cou-
pling terms entering Eq.(5.1),

gn(ω) = −
ω2

c2
G(m)(ω)cos(m∆φn), (5.8)

where ∆φn = 2π n
N represents the angular separation between an antenna and

its nth neighbor. For compactness, we have introduced

G(m)(ω) =
−1

µ0ω2
ω̃mẼ

2
m

ω − ω̃m

as an m-dependent amplitude function that describes the frequency spectrum
of mode m. More generally, one would need to describe the cavity not by a
single (degenerate) mode, but by a sum over many quasi-normal modes.

Taking the particular form of terms gn for azimuthal mode number m and
inserting it in Eqs.(5.5,5.6) we obtain for even N ,
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+
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with k an integer constrained to the interval k ∈ [[−�N2 �;�
N
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n
)
= 0, (5.5)
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�N2 �∑
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gn(ω)cos
(
k
2π
N

n
)
= 0. (5.6)
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and for odd N ,

λk(ω) = α(ω)−1 − ω2

c2
G(m)(ω) [1

+

⌊
N
2

⌋
∑

n=1

cos
(
2π

m+ k
N

n

)
+ cos

(
2π

m− k
N

n

)
. (5.10)

By analysing these equations, we identify three scenarios:

a). Generically, neither m+ k nor m− k are divisible by N , leading to

λk(ω) = α(ω)−1.

b). m+ k and m− k can be simultaneously divisible by N in which case

λk(ω) = α−1(ω)−N ω2

c2
G(m)(ω).

c). When only m+ k or m− k is divisible by N , but not both, we have

λk(ω) = α−1(ω)− N
2
ω2

c2
G(m)(ω). (5.11)

Since k must lie in the irreducible range [[−�N2 �;�
N
2 �]], only a single k can

respect either b) or c) for a chosen cavity mode number m and a set N . These
cases can be understood as follows.

• For the collective antenna modes of case a), the effective polarizability
of the antennas is not perturbed at all by the cavity, which implies that
these collective antenna modes are decoupled from the cavity. In this
work we will only consider scenarios that address the antennas through
the cavity. Hence, the uncoupled collective antenna modes are irrelevant
for this work.

• Case b), occurs particularly when the number of antennas N exactly
equals the azimuthal mode order of the cavity modes. In this case the
degeneracy of the two cavity modes is lifted in the standing wave basis.
The cosmφ standing mode is maximally perturbed because all antennas
are located at the maximum of the mode profile, and each mode profile
maximum has an antenna in it. The dipole moment either points in the
same direction as the cavity field (always radial at k = 0), or alternates
from dipole to dipole for k = N

2 . The sinmφ mode is not perturbed by
the antennas, since they are located at the nodes of the mode field.
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• In case c), both cavity modes are perturbed by the antennas, but both
are shifted in equal amounts so that the degeneracy remains. Assuming
(without loss of generality) that m > 0 k > 0, if m − k is divisible by N ,
then the cavity mode of mode number m couples to antenna mode k, and
conversely cavity mode −m coupled to antenna mode −k. This is the
basis for literature reports on OAM generation by microring systems.
For instance, Cai et al. report in [218] on the simplest case where m −
k = N , and they show that their devices emit an OAM of � = k (±1
for right/left circular polarization, cf. Section 5.3.3). If instead m+ k is
divisible by N , the cavity mode m will couple to antenna mode −k (and
−m to k).

To conclude this classification, our analysis shows that even though, in
principle a ring of N antennas has N eigenmodes, most of these are decou-
pled from WGM of order m, with the exception of either one or two modes.
The scenario for the coupled modes depends on the arithmetic relationship
between m and N . The first scenario occurs exactly when N and m are equal or
satisfy a commensurate relationship, the antennas lift the WGM mode degen-
eracy, leaving one unperturbed standing wave mode and one strongly shifted
standing wave mode. The induced distribution of dipole moments carries
no azimuthal phase gradient. The second experimentally relevant scenario
occurs when m and N are not quite equal. Both WGMs are equally shifted and
remain degenerate while coupling to eigenmodes with angular momentum ±k
set by the difference between m and N .

5.2.3. Perturbation formula
In this work we consider generating OAM by operating in the scenario of
coupling WGM modes of mode number m close to but not equal to the number
of antennas N . We analyse the cavity frequency shift induced by the antennas
on both the cavity modes. In other words, we analyse the eigenvalue problem
for coupling WGM modes of mode number m to N antennas, with N not
commensurate with m. Eq.(5.11) then reads

λk(ω) = α(ω)−1 − N
2
ω̃mε0Ẽ

2
m

ω − ω̃m
. (5.12)

We can solve Eq.(5.4) for the eigenfrequency ω̃′m in the perturbative regime by
a Taylor expansion of (ω − ω̃m)λk(ω) close the complex resonance frequency
of the cavity mode of interest ω̃m

ω̃′m = ω̃m − ω̃m
N
2
α(ω̃m)ε0Ẽ

2
m = ω̃m − ω̃m

N
2
α(ω̃m)

2Ṽm
, (5.13)

where we introduce the effective mode volume at the position r, Ṽm(r) ≡
1

2εε0(Ẽm(r))2
[124]. The complex frequency shift of the cavity mode is pro-

portional to the perturbation caused by a single antenna ∆ω̃
ω = − α

2Ṽm
as it is
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given in [139, 140], multiplied by half of the number of antennas (degenerate
modes share equally the perturbation of N antennas). For a cavity dressed by
near-resonant antennas the quality factor Q′m of the perturbed (high-Q) cavity
mode(s) m can be approximated by

Q′m ≈Qm

(
1−QmN

αi(ω̃m)

2Ṽm

)−1
(5.14)

where Qm is the unperturbed quality factor, αi is the imaginary part of the
polarizability of each antenna, and we approximated Ṽm as real. For strong
perturbations the intrinsic quality factor becomes irrelevant and the quality
factor is determined solely by the number of antennas, their polarizabilities
and the cavity mode volume

Q′m ≈ −
2Ṽm

Nαi(ω̃m)
. (5.15)

As an estimate, if we consider the Si3N4 microdisk cavities from Chapter 4, the
original unpertubed Q is 105, and two antennas reduce it to 104. To produce
modest values of OAM with these WGM (m = 80 − 86), one would need in
the order of ∼ 102 antennas. At the coupling strength used in Chapter 4,
with antennas directly on the disk, 102 antennas would lower the Q to values
below Q ∼ 100, so low that the linewidth starts to exceed the free spectral
range. Therefore, if the lowest Q one accepts is 103 to avoid spectral overlap
between different WGM, one would need to reduce the coupling strength of
the antennas to the cavity by a factor 10 compared to the design of Chapter 4,
for instance by spacing antennas further away from the disk surface.

5.3. How currents on a ring generate OAM radiation
In the previous section we have established that if one addresses a discretized
ring of N antennas by a whispering gallery mode of mode number m close to
but not equal to N , this induces a dipole moment distribution with azimuthal
phase dependence ei�φ , where |�| = |m −N |. This section aims to guide the
reader through the mechanisms by which the radiation pattern of a circular
chain of antennas with a phase pattern varying as ei�φ contains orbital angular
momentum. To this end, we first consider the scalar wave equation and focus
on the far-field radiation pattern from a continuous current distribution on
a ring. Next we discuss the impact of discretization of the current distribu-
tion into N segments. Finally, we add polarization to the continuous current
distribution and discuss how it governs the far-field orbital angular selection
rules.
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5.3.1. Continuous scalar current distribution
Let us consider a ring S of radius R on which a current distribution is im-
posed that is constant in strength over the ring, but carries a phase ei�φ that
varies with position on the ring (azimuth φ, radius R and z = 0 in spherical
coordinates) [266]

p(r) ∝ ei�φδ(z = 0,r = R). (5.16)

At this stage we ignore polarization effects and assume that each of the points
on the ring radiates a scalar spherical wave into the far-field. This assumption
means that the field radiated in the direction of wave-vector k by a point on
the ring at position rp (azimuth φp , radius R and z = 0 in spherical coordi-
nates) reads [16]

F(rp ,k) =
eikdobs

4πε0dobs
e−ik·rp ei�φp , (5.17)

where we evaluate the field at an observation point a distance dobs away from
the origin, in a viewing direction specified by the orientation of the wave
vector k that has length equal to the wave number k = nω/c of light in the
medium of index n surrounding the ring. Since, in the following, the overall
spherical wave eikdobs

4πε0dobs
is a common prefactor to all radiation patterns, we

omit it. The field radiated by the full ring of phased current elements is
therefore obtained by superposition

FS (k) ∝
∫

S
eik·rp ei�φpdrp ∝

∫ 2π

0
ei�φp−ikRsin(θ)cos(ψ−φp)dφp

∝ (−i)�ei�ψJ�(kRsin(θ)),

(5.18)

where k = ||k||, θ is the angle of k with normal direction and ψ is the azimuth
far-field coordinate. Mathematically this procedure just states that the radia-
tion pattern of a sum of currents reflects the Fourier transform of the current
distribution. We note that the ensemble radiates light in the far-field according
to a Bessel function of the first kind, with a phase distribution that varies as
ei�ψ , i.e., as the imposed phase on the current distribution. For any integer �,
this means a pure orbital angular momentum of � specifying the azimuthal
distribution of radiation.

5.3.2. Discrete versus continuous current distributions
While in the previous discussion we considered a continuous current distri-
bution, in this chapter we are actually focusing on a scenario where a discrete
set of N scatterers are evenly spaced on a ring are driven by a circulating
whispering gallery mode, and where we assume we can consider each scat-
terer as a driven point source. The purpose of this section is to explain how
discretized current distributions differ from a continuous current distribution.
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Remaining in a scalar picture, recall that the continuous current distribution
of a pure OAM state:

p(r) ∝ ei�φδ(z = 0,r = R) (5.19)

gives as far field output a Bessel beam with a single OAM contribution

FS (k) ∝ (−i)�ei�ψJm(kRsin(θ)). (5.20)

A discrete current distribution of N dipoles

pN (r) ∝
N∑

n=1

ei�φδ
(
z = 0,r = R,φ =

2π
N

n
)

(5.21)

is simply the product of a continous current distribution and a sum of delta-
functions. Evidently, the discretized distribution has higher order Fourier
components p̃N ,q not present in the original:

pN (r) =
∞∑

q=−∞
p̃N ,qe

iqNφ ∝
∞∑

q=−∞
ei(�+qN )φ . (5.22)

These Fourier components occur at all integers equal to � modulo N . This
can be viewed as similar to ‘aliasing’ in discrete Fourier transforms: if one dis-
cretely samples a harmonic signal of order � on N points, its sampling is indis-
tinguishable from that of any harmonic signal with �′ ≡ �modN . Construct-
ing the radiation pattern by superimposing the radiation from all Fourier
components of the current, we conclude that the scattering of N antennas
driven by a field with azimuthal dependence ei�φ (angular momentum �)
will contain a sum of terms J�′ (kRsinθ)ei�

′φ with contributions of all orbital
angular momentum of orders �′ = � + qN , with q ∈ Z. In the following, we
call fundamental OAM (or simply OAM) �0 the smallest (relative) integer to
respect the OAM selection rule, and the sideband separated by integer times
N from �0 are referred to as harmonic orbital angular momentum.

5.3.3. Polarization imposed on the driven current distribution
Since electromagnetic waves are not scalar but vectorial in nature, one gen-
erally has to consider that the source dipole moments have a polarization
direction, while the far-field radiation pattern can be studied in various far-
field polarization channels. To highlight the implications we return to the
case of a continuous current distribution, and first consider the case where
each element of the ring is identically polarized, with for instance, all elements
being a linear dipole moment along x as sketched in Figure 5.4(a). We denote
by |X〉 the radiation pattern of an x oriented dipole at the origin, which for
wave vectors close to the kz-axis (paraxial regime, viewing the ring head on)
is x-polarized. The radiation pattern of an x-dipole displaced to rp from the
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origin simply follows the logic of Eq.(5.17), but multiplied with |X〉. Therefore
the radiated vector far-field of the entire ring, i.e. of a dipole distribution
px(φ) ∝ ei�φex, can be expressed as

FS ,x(k) ∝ (−i)�ei�ψJ�(kRsin(θ) |X〉 . (5.23)

Similarly, a ring of dipoles oriented in y direction (Fig. 5.4(b)), i.e. a dipole
distribution py(φ) ∝ ei�φey would give

FS ,y(k) ∝ (−i)�ei�ψJ�(kRsin(θ)) |Y〉 . (5.24)

In other words, if the current elements on the ring are linearly and identically
polarized, and driven with an azimuthally dependent phase increment ei�φp ,
then the radiated far field simply inherits the orbital angular momentum of �,
and the Bessel-beam type polar distribution from the scalar case, but now in
the polarization channel along the imposed dipole moments.

For currents on a ring, rotational symmetry considerations make it more
intuitive to consider radial and azimuthal linear orientations of the current
elements along the ring

pr = prer and pφ = pφeφ ,

as opposed to Cartesian linear orientation px = pxex and py = pyey . We
now show how the OAM generated by such current distributions with
phased driving can be understood, using a circular polarization basis
as an intermediate step. We first consider circular polarization in the
Cartesian lab frame, i.e., with identical circular polarization for all current
elements in the xy lab frame. By linear superposition of two rings polarized
along x and y one can generate circular left and right handed current
distributions pL/R = 1√

2

(
px(φ)± ipy(φ)

)
that (in the paraxial approximation)

radiate circular left and right-handed polarized light |L/R〉 = 1√
2
(|X〉 ± i |Y〉)

(Figure 5.4(c))

FS ,R/L(k) ∝ (−i)�ei�ψJ�(kRsin(θ)) |R/L〉 . (5.25)

Thus labframe circular left/right handed current distributions with a phase
ei�φ will scatter a lab-frame circular left/right handed polarized beam car-
rying an OAM of �, at least at moderate scattering angles (ignoring that in
a high NA microscope dipole radiation patterns do have crossed polarized
contributions).

A subtle point is that the circularly polarized source distribution in the
lab frame at orbital angular momentum � can be interchangeably written as a
circularly polarized source distribution expressed in the cylindrical coordinate
frame, but at a shifted orbital angular momentum � ± 1. To see this, consider
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A discrete current distribution of N dipoles

pN (r) ∝
N∑

n=1

ei�φδ
(
z = 0,r = R,φ =

2π
N

n
)

(5.21)
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p̃N ,qe
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∞∑

q=−∞
ei(�+qN )φ . (5.22)
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Figure 5.4: Schematic representation of polarized beams carrying OAM (� = +3 here).
(a-b) Show respectively, a x and a y-polarized beams carrying the same OAM of �
(generated by a x and a y-polarized array of antennas). (c) A linear superposition of a x
and a y-polarized array of antenna in phase quadrature ((c) = (a)− i(b)), i.e. a circularly
polarized array of antenna, radiates a circularly polarized beam, here circular right.

the cylindrical linear vectors that are radially outwards resp. azimuthal, i.e.
pr and pφ . They can be expressed in the Cartesian basis vectors px and py
as pr = cosφpx + sinφpy resp. pφ = −sinφpx + cosφpy . Evidently circular

source polarization in the cylindrical basis (pCy
L/R = 1√

2
(pθ ± ipφ) is equivalent

to circular polarization in the Cartesian basis, but with an additional phase
factor due to the redefinition of the basis vectors, that carries a single unit of
OAM. This simply reflects the fact that going around the circle, the cylindrical
basis vector pair rotates by exactly 2π relative to the lab frame basis. This
simple geometry analysis can be directly used to understand the appearance
of helicity in selection rules for OAM generation. For instance, consider a
ring of radially oriented antennas, i.e., a radially oriented source distribution
carrying a phase distribution ei�φ . The radial distribution can be decomposed
as the coherent sum of a right and a left-handed circularly polarized source
distribution in the cylindrical basis that each carry the same phase profile
ei�φ . However, reexpressing this source distribution in lab-frame circular po-
larization, the radially oriented source distribution is equivalent to a coherent
sum of a right and a left-handed circularly polarized source distribution at
a different OAM number (i.e., � ± 1 for the two helicities). Since lab-frame
source polarization translates to lab-frame radiation pattern polarization, the
implication is that a radially oriented source distribution of phase profile ei�φ

generates a pure OAM of �+1 in the left-handed circularly polarized compo-
nent of the radiation pattern, and �−1 in the right-handed circularly polarized
component. Figure 5.5 graphically illustrates this construction, starting with
a radially polarized source distribution of OAM +2, which decomposes in
left resp. right handed polarization carrying an OAM +2 in the cylindrical
coordinate frame, but an OAM +1 resp. +3 in the lab frame. While the argument
is purely geometrical, some authors view this as conservation of total angular
momentum whereby the sum of OAM and spin (+1 for LHCP, −1 for RHCP)
must be the same for both polarization channels [229] for a source distribution
with no intrinsical spin.
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Figure 5.5: Equivalence between polarization decompositions. A latitudinal vector beam
carrying an OAM � = +2 can intuitively be decomposed over a circular polarization
basis in a cylindrical coordinate rotated frame. In this basis, the two polarization
channels still both carry the OAM � = +2. However, since in the global lab frame,
circular polarizations are shifted in angular momentum compared to the rotated frame,
the circular right and left decomposition of our vector beam carry an OAM of �R = �−1=
+3 resp. �L = � − 1= +1.

5.4. Examples of radiation patterns
The purpose of the previous section was to provide qualitative insight in the
radiation patterns expected for N equally spaced antennas on a ring, driven
with an orbital angular momentum �, where we concluded that:

• In a scalar treatment N evenly spaced antennas on a ring, driven with
phase dependence ei�φ will result in a radiation pattern that contains all
orbital angular momentum of orders �′ = �+ qN , with q ∈Z.

• Each OAM contribution has a donut-shaped intensity distribution, de-
scribed by a Bessel function J�′ (kRsinθ), where the order increases with
�′ . Thus the beam opening angle (θ) of the first fringe is directly related
to the diameter of the ring of antennas, and to the OAM order.

• Adding polarization to the analysis, if all antennas are radially oriented,
each of the terms with OAM order equal to �′ will actually appear as
contributions at �′ ±1 when analysed in a lab-frame circular polarization
basis (R resp. L). For tangentially oriented antennas a similar argument
holds.

In this section we will supplement this analysis with calculated radiation pro-
files for various scenarios in which N antennas on a ring are driven by an
assumed whispering gallery mode with azimuthal quantum number m. The
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calculations consist in numerically evaluating the full vectorial radiation dia-
grams of N point dipoles of fixed (complex-valued) dipole moment taking due
account of the phase factor eik·rp related to the placement of the dipole and the
viewing direction specified by k. This means we did not impose the results of
the analysis in the previous section. Also it should be noted that the calcu-
lation does not evaluate near-field / multiple scattering interactions. This is
not a limitation per se, since section 5.2 reports that, even if one rigorously in-
cludes these interactions, while they will renormalize mode eigenfrequencies,
nonetheless the induced antenna moments will simply trace out ei�φ , i.e., pure
single-valued OAM. As radiation pattern of the single antenna we consider
far-field radiation of dipoles in free space, ignoring that (our) experiment will
involve dielectric interfaces due to substrate and cavity. The diagrams report
intensity and phase as a function of viewing direction, specified by parallel
momentum (kx and ky) normalized to the wave number. Equivalently, these
are the amplitude and phase distributions as expected in the back focal plane
(BFP) of a Fourier microscope. Polarization analysis has been performed in
the BFP coordinate system. The BFP image of an objective contains the spher-
ical wave radiated by the object transformed into a cylindrical coordinate
system. Going back to spherical coordinates, BFP lattitudinal polarization
actually corresponds to p-polarized light, while azimuthal polarization equals
s-polarization.

5.4.1. Superposition of OAM terms

As a first example, Figure 5.6 shows the radiation profile of a ring of radius
1 µm, with N = 5 radially oriented antennas, driven by a radially polarized
field with phase distribution eimφ and azimuthal mode number m = 7. Here,
the radiation pattern has been separated in what would be latitudinal (a) and
azimuthal (b) polarization channels in the back focal plane. We obverse that
for both channels the pattern is not simply rotation invariant as one would ex-
pect for a single OAM contribution (e.g., the simple donut shape of Laguerre-
Guaussian beams). Instead, the far-field radiation diagram has 5-fold rotation
symmetry in both polarization channels. Additionally, the azimuthally and
latitudinally polarized intensity distributions are markedly different. In par-
ticular, for grazing angles (|k||/k0| ≈ 1 ) light is only scattered into azimuthal
polarization. This is easy to understand since |k||/k0| ≈ 1 corresponds to wave
vectors in the kx,ky-plane (no z-component) and p-polarization corresponds to
polarization along the z-axis. Since the dipole distribution is radial, i.e. fully
contained in the xy-plane, the electric field can have no z-component in the
kx,ky plane.
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Figure 5.6: Harmonics of orbital angular momentum for an array of N = 5 radially
oriented antennas, placed on a disk of radius 1 µm and mode number m = 7. (a,c)
Radiation pattern for respectively latitudinal and azimuthal polarization. (b,d) Orbital
angular momentum content for respectively latitudinal and azimuthal polarization. We
observe that light is scattered with a multitude of orbital angular momentum harmonics
OAM =m−N + qN = +2+ qN , with q ∈Z.

Decomposing the field in OAM contributions2, we find that the funda-
mental OAM is � = m − N = +2, and harmonics are separated by integer
multiples of N = 5. This exactly follows the reasoning that a discretized
current distribution carries a comb of OAM orders. Each of the OAM con-
tributions taken separately is rotationally invariant in intensity. However, the
interference of the many OAM itself does not respect the rotation invariance
of the intensity of each OAM contribution, and this causes the N = 5-fold
rotation symmetry. Indeed, according to Section 5.3.2, OAM harmonics �a and
�b must obey m − la = aN and m − lb = bN . The interference pattern between
these two harmonics will therefore exhibit a cos(a − b)Nψ dependence. The
slowest spatial variation possible in the interference between two harmonics
is obtained for |a− b|= 1 and has N = 5-fold symmetry. Since all higher order
interference terms also possess this symmetry (and higher multiples), the total
radiation pattern is N = 5-fold symmetric.

As a second example Figure 5.7 considers a case with a far larger set of
N = 23 antennas, driven by a m = 25 whispering gallery mode (ring radius
now assumed 2 µm), so that the difference m − N is identical to that in the
previous example. Since the higher the OAM, the further from the paraxial
direction (k||/k0 ≈ 0) light is emitted, when N is large enough, the higher

2We perform the OAM decomposition of a complex far-field distribution, projected onto an
arbitrary polarization FS (θψ) similarly as it was described in reference [260]. We first calculate

the angular Fourier coefficients cm(ν) = 1
2π

∫ 2π
0 Fs(ν,ψ)e−imψdψ, where ν ≡ ||k|| ||/k0. Then

the intensity of the beam into the m-order OAM state is obtained from the coefficients cm by

integrating their square modulus along the radial coordinate ν, P(m) =
∫ 1
0 |cm(ν)|2dν.
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Figure 5.6: Harmonics of orbital angular momentum for an array of N = 5 radially
oriented antennas, placed on a disk of radius 1 µm and mode number m = 7. (a,c)
Radiation pattern for respectively latitudinal and azimuthal polarization. (b,d) Orbital
angular momentum content for respectively latitudinal and azimuthal polarization. We
observe that light is scattered with a multitude of orbital angular momentum harmonics
OAM =m−N + qN = +2+ qN , with q ∈Z.

Decomposing the field in OAM contributions2, we find that the funda-
mental OAM is � = m − N = +2, and harmonics are separated by integer
multiples of N = 5. This exactly follows the reasoning that a discretized
current distribution carries a comb of OAM orders. Each of the OAM con-
tributions taken separately is rotationally invariant in intensity. However, the
interference of the many OAM itself does not respect the rotation invariance
of the intensity of each OAM contribution, and this causes the N = 5-fold
rotation symmetry. Indeed, according to Section 5.3.2, OAM harmonics �a and
�b must obey m − la = aN and m − lb = bN . The interference pattern between
these two harmonics will therefore exhibit a cos(a − b)Nψ dependence. The
slowest spatial variation possible in the interference between two harmonics
is obtained for |a− b|= 1 and has N = 5-fold symmetry. Since all higher order
interference terms also possess this symmetry (and higher multiples), the total
radiation pattern is N = 5-fold symmetric.

As a second example Figure 5.7 considers a case with a far larger set of
N = 23 antennas, driven by a m = 25 whispering gallery mode (ring radius
now assumed 2 µm), so that the difference m − N is identical to that in the
previous example. Since the higher the OAM, the further from the paraxial
direction (k||/k0 ≈ 0) light is emitted, when N is large enough, the higher

2We perform the OAM decomposition of a complex far-field distribution, projected onto an
arbitrary polarization FS (θψ) similarly as it was described in reference [260]. We first calculate

the angular Fourier coefficients cm(ν) = 1
2π

∫ 2π
0 Fs(ν,ψ)e−imψdψ, where ν ≡ ||k|| ||/k0. Then

the intensity of the beam into the m-order OAM state is obtained from the coefficients cm by

integrating their square modulus along the radial coordinate ν, P(m) =
∫ 1
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Figure 5.7: Radiation diagram for latitudinal and azimuthal polarization radiated by an
array of N = 23 radially oriented antennas, placed on a disk of radius 2 µm and mode
number m = 25. (a,d) Intensity profiles for resp. latitudinal and azimuthal polarization.
(b,e) Phase profiles for resp. latitudinal and azimuthal polarization: both polarizations
carry an OAM =m−N = +2.

harmonics in OAM now do not interfere significantly with the fundamental
term. Consequently, now the radiation pattern is essentially rotation invari-
ant, while the phase of the field varies by 2πl with � = 2 when encircling the
paraxial direction. At very high angles, |k||/k0| ≈ 1 higher harmonics do still
play some role as it can be observed in the phase profile in Fig. 5.7(e). In terms
of distribution of intensity, one should note that a ring of antennas will not
provide a Laguerre-Gaussian beam after collection by an objective lens, but
instead a superposition of Bessel functions. There is also a marked difference
between the latitudinal and azimuthal polarization channel, due to different
symmetries of the two polarizations. Figure 5.8 shows an analysis of the same
physical system, but in circular polarization channels. We note that for this
polarization channels, the amplitude profile follows a pure Bessel function (in
the paraxial approximation), and demonstrates the appearance of spin in the
OAM selection rule, as expected.

5.4.2. Generating pure OAM in a single circular polarization state
We have seen that regular arrays of radially polarized antennas will simulta-
neously scatter light in both left and right circular polarization, with different
OAM. The notion that one can modulate the antenna orientation to further en-
gineer the superposition of OAM makes it in principle possible to selectively
generate a single OAM in a single circular polarization channel. We envi-
sion that a waveguide-driven generator of pure OAM in a single polarization
channel without the need for a posteriori circular polarization selection could
be of use in applications. Recently such a source has been realized in form

118

5

5.4. EXAMPLES OF RADIATION PATTERNS

-1 0 1

-1

0

1

-1 0 1
-1

0

1

kx/k0

k y/k
0

k y/k
0

kx/k0

(a) (b)

(c) (d)

�

-�

-�
2

�
2

0

Figure 5.8: Radiation diagram for circular polarizations, for the configuration as in
Fig. 5.7. (a,c) Intensity profiles for resp. circular right and circular left polarization. (b,d)
Phase profiles for resp. circular right and circular left polarization: right handed light
carries �R =m−N + 1= +3 while left handed light carries �L =m−N − 1= +1.

of an OAM microlaser, not using geometry, but using a rather peculiar spin-
selective gain memory in a quantum well system, whereby chiral pump light
can select a pure circular polarization output and hence OAM [252]. In a las-
ing system, a slight intrinsic chiral preference suffices for high OAM/helicity
purity, but this is not the case in scattering based implementations of WGM
sources. Our idea is that for a target OAM of value of l+1 that is of pure circu-
lar polarization, and using a whispering gallery mode of azimuthal quantum
number m, one should still use a total of N scattering unit cells, but instead
of having a single antenna per unit cell, one needs a more complex unit cell
response for polarization control. This is realizable by having two antennas
per unit cell.
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Figure 5.9: (a) Sketch of a disk dressed with N pairs of antennas. In each pair, antennas
are rotated by +45◦ and −45◦ from the radial direction, and separated by an angle ∆φ
(center to center). (b) We propose three geometries for our experiment; radial orientation,
V-type and Λ-type.

We propose the design sketched in Figure 5.9, where essentially two inter-
spersed arrays of N antennas are placed on a ring, one array with antennas
rotated by +45◦ from the radial direction (and hence from the driving cavity
field for a TE mode, if we envision driving by a WGM), and the second rotated
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selective gain memory in a quantum well system, whereby chiral pump light
can select a pure circular polarization output and hence OAM [252]. In a las-
ing system, a slight intrinsic chiral preference suffices for high OAM/helicity
purity, but this is not the case in scattering based implementations of WGM
sources. Our idea is that for a target OAM of value of l+1 that is of pure circu-
lar polarization, and using a whispering gallery mode of azimuthal quantum
number m, one should still use a total of N scattering unit cells, but instead
of having a single antenna per unit cell, one needs a more complex unit cell
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We propose the design sketched in Figure 5.9, where essentially two inter-
spersed arrays of N antennas are placed on a ring, one array with antennas
rotated by +45◦ from the radial direction (and hence from the driving cavity
field for a TE mode, if we envision driving by a WGM), and the second rotated
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by −45◦. The two arrays are placed at the same radial distance from the center
of the cavity, but are azimuthally shifted by an angle ∆. Once antennas are
polarized by a cavity WGM of mode number m (radial field varying as eimφ),
the distribution of dipole moments is described via
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(5.26)

which can be simplified by considering only the first relevant harmonics �, i.e.
responsible for scattering the fundamental OAM � =m−N as


pr(φ) ∝ e+i�φ cos N∆

2
pφ(φ) ∝ −ie+i�φ sin N∆

2 ,
(5.27)

This (vectorial) distribution can be expressed in the lab frame circular polariza-
tion basis pL/R = 1√

2

(
pr ± ipφ

)
as
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(5.28)

In order to only have right (left) handed light radiated into the far field it
suffices to remove the left (right) handed source component by proper adjust-
ment of the antenna spacing ∆, setting ∆ = (−) π

2N . We call structures with
∆ = + π

2N V -type, and ∆ = + π
2N Λ-type (Fig. 5.9). Intuitively, this choice of ∆

can be understood as a requirement for the two orthogonal dipoles in one unit
cell to radiate with a ±π/2 phase difference, i.e., as a purely circular dipole.
In more microscopic detail, the second dipole is ±m π

2N delayed/advanced
compared to the first inside the cavity mode profile, because the driving is
delayed. Because it is also rotated by ± π

2N , it emits the OAM of � = m −N
with a phase advance of ±l π

2N , and therefore the accumulated phase delay
of the contribution of the second antenna compared to the first one is ±(m −
l) π

2N = ±π
2 . The parasitic higher harmonic OAM contributions due to the

discretization (at �′ =m− kN ) are not strictly circularly polarized.

5.5. Design of an experimental realization
Putting together the results of Sections 5.2 and 5.3, we envision that the plat-
form of Si3N4 microdisk cavities decorated with antennas that was developed
in Chapter 4 may be used for a proof of principle for generating pure OAM
in polarization-pure radiation patterns. Here the envisioned scenario is that
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microdisks are driven with a narrow band laser via a fibre taper, and that
their radiation patterns into the far field may show pure OAM in distinct lab-
frame circular polarization, depending on whether the disks are decorated
with radially oriented antennas, or unit cells containing dimers of antennas in
orthogonal V or Λ configuration. In this section we discuss the requirements
for actual experimental realizations according to full wave simulations, going
beyond the simplifications of our model.

5.5.1. Antennas
The predictions discussed in previous sections all consider antennas to be
point dipole scatterers that are polarizable along just a single axis. Nanorod
antennas will provide an anisotropic polarizability dominantly along their
long axis when used at the long-axis resonance frequency, but with a weak
residual short axis polarizability. We preferably reach a design for a nanorod
antenna where resonances are sufficiently separated such that an appreciable
anisotropy between the short and long axis polarizability arises (contrast of
order |αlong/αshort |2 > 100). Furthermore, these objects need to remain small
compared to the wavelength of the drive field in the microdisk3. This cri-
terion excludes high-index dielectric particles. We therefore turn to metallic
antennas, where the surface plasmon confinement allows for small resonant
objects, with however the downside of optical absorption. Due to the high
plasma frequency of aluminium, aluminium nanorods can be made resonant
along their long axis in our laser range for aspect ratio as large as 3-4, as
compared to an aspect ratio of just two for gold rods with the same long-axis
resonance frequency. Thus, aluminium allows for a 10× higher anisotropy
|αlong/αshort |2 of the polarizability compared to gold antennas. The disadvan-
tages of aluminium are the inter-band absorption at 780 nm, and the grain
size of evaporated metal for nanolithographic fabrication, detrimental for the
optical quality of our nanostructures.

To optimize the shape of our antennas we perform FEM simulations
(COMSOL Multiphysics®) of aluminium antennas (tabulated permittivity
taken from [267]) placed on an air-glass interface4 (nglass = 1.5). For a
fixed thickness of antennas of 30 nm, a width of 30 or 40 nm (to account
for fabrication imprecision) and a wavelength of operation of 773 nm, we
calculate the polarizability of antennas along their long and short axis (both
parallel to the glass interface). Figure 5.10 summarizes our simulations. We
see in Fig. 5.10(a) that wider antennas have a stronger polarizability, even
though they resonate for longer dimensions (change of sign of real part
of αxx). However, Fig. 5.10(b) suggests that the anisotropy between short
and long axis polarizability is most favourable for narrower antennas. To

3The effective wavelength inside the cavity is 550 nm, for spectral range of interest set by our
laser (765− 781 nm)

4The reason to take glass, not silicon nitride, becomes apparent in the next subsection.
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terion excludes high-index dielectric particles. We therefore turn to metallic
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objects, with however the downside of optical absorption. Due to the high
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size of evaporated metal for nanolithographic fabrication, detrimental for the
optical quality of our nanostructures.

To optimize the shape of our antennas we perform FEM simulations
(COMSOL Multiphysics®) of aluminium antennas (tabulated permittivity
taken from [267]) placed on an air-glass interface4 (nglass = 1.5). For a
fixed thickness of antennas of 30 nm, a width of 30 or 40 nm (to account
for fabrication imprecision) and a wavelength of operation of 773 nm, we
calculate the polarizability of antennas along their long and short axis (both
parallel to the glass interface). Figure 5.10 summarizes our simulations. We
see in Fig. 5.10(a) that wider antennas have a stronger polarizability, even
though they resonate for longer dimensions (change of sign of real part
of αxx). However, Fig. 5.10(b) suggests that the anisotropy between short
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laser (765− 781 nm)

4The reason to take glass, not silicon nitride, becomes apparent in the next subsection.

121



5

CHAPTER 5. GENERATION OF PURE OAM BEAMS WITH A SINGLE STATE OF
POLARIZATION

100 125 150 175 200
0

200

400

600

0

0.01

0.02

100 125 150 175 200
Antenna length (nm)

w=30nm
w=40nm

Antenna length (nm)

(a) (b)
α xx

(×
λ3 )

|α
xx
/α

yy
|2

abs
real
imag

Figure 5.10: Polarizability of a 30 nm thick aluminium nanorod antenna on glass at λ =
770 nm for varied length and width. Red lines are for antenna width of 30 nm, blue
are for width of 40 nm (a) Element of diagonal element αx,x along the antenna long
axis, solid lines are |αx,x |, dashed lines are real(αx,x) and dash-dotted are imag(αx,x).
(b) Shows the anisotropy between the long and short axis polarizabilities (parallel to the
glass plane).

have an appreciable anisotropy (> 100) we need to be close to the resonance
of the nanorod. To obtain an anisotropy > 100, with antennas as small as
possible, we chose to design our samples with 140 nm long, 30 nm thick and
between 30 and 40 nm wide antennas (precise width is difficult to control
in fabrication). Such antennas will be somewhat blue-detuned from our
cavities operating at 765− 781 nm, which mitigates the broadening of cavity
resonances (αxx is mostly real according to Fig. 5.10(a)).

5.5.2. Cavity
The cavities we envision for this study are silicon nitride (Si3N4) microdisks.
Our fabrication is limited to a fixed 200 nm thickness, and the disks must be
wider than 3 µm in diameter to allow for the fabrication of a pillar holding
the structure such that the whispering gallery mode decouples from the
underlying silicon substrate. In addition to these fabrication constraints, we
also add the constraint of our experiment. As explicit in Eq.(5.20), the beam
radiated by a ring of antennas will have a Bessel profile with an opening angle
(maximum of first fringe) which is directly related to the radius of the ring
of antennas, and therefore to the radius of the supporting microdisk. This
means that the bigger the disk, the narrower the features in the far-field. A
10 µm wide disk would have an opening angle for the first fringe of only 2.6◦

for OAM of � = ±1, whereas the resolution of our Fourier microscope is only
0.6◦ per pixel. Therefore we choose to use disks of around 4 µm diameter,
which give a fringe diameter of 6.6◦ for OAM of � = ±1. Such disks would
support TE WGM where the fundamental radial mode has an azimuthal
mode number in the range of m = 20−25. This means that we need almost as
many antennas on the disk to create an OAM of � = 0 to + 3.

122

5

5.5. DESIGN OF AN EXPERIMENTAL REALIZATION

775

785

795(a) (b)

tglass (nm) r-rdisk (μm)
-0.6 -0.4 -0.2 0.200 50 100 150 200

20

200

10

100

0

10

5

|E| 2(×10
28)|V

ef
f| i

n 
λ 0

λ
0 (nm

)

~

3

Figure 5.11: Mode volume and normalized electric field at the glass-air interface of
a microdisk cavity (radius 2 µm, tSi3N4 = 200 nm, mode m = 22). (a) Effective
mode volume (in unit of wavelength) at the maximum of the field at glass-air interface
(solid blue), and resonance wavelength (dashed orange) as a function of top glass layer
thickness. The mode volume exponentially increases as we increase the glass layer
thickness (n = 1.5) as the glass-air interface is moving away from the Si3N4 where the
field remains confined. The inset shows in dashed black the normalized field intensity
of the mode for the symmetric Si3N4 cavity (tglass = 0) and in red for tglass = 150 nm.
Since away for the core the mode field is decreasing exponentially, the mode is feeling
less and less the perturbation by additional glass thickness and therefore the resonance
wavelength converges towards ≈ 795 nm. (b) Normalized intensity of the 3 components
of the cavity electric field m = 22 at the glass-air interface for tglass = 150 nm: blue is
|Ẽr |2, red |Ẽphi |2 and green is |Ẽz |2. We note that 230 nm from the edge of the disk, the
field is maximal on its radial component and minimal on the other two.

5.5.3. Antenna-cavity coupling strength
An important design criterion is the linewidth of the cavity resonance once
antennas are placed on top on it. We estimate using Eq.(5.13) from the imagi-
nary part of the polarizability of our antennas (Fig. 5.10(a)) and an effective
mode volume of Veff ≈ 10λ3 that 20 antennas placed directly on the disk
would broaden the linewidth of the cavity by 4 THz, and therefore limit the
quality factor of the system to Q < 100. An antenna-dominated low-Q is not
a problem per se in the sense that for the envisioned experiment it is required
that the losses of our system are dominated by antenna radiation. However,
we do need a clear separation between resonances of different m. This means a
linewidth broadened by the antennas to a level where it becomes on the order
of the free-spectral range of the cavity is undesirable. Inserting a low refractive
index spacer in between the disk and the antennas would allow to raise the
antennas out of the mode profile, and thereby provides control over the cavity
Q. A solution, compatible with our established fabrication used in Chapter 4,
is to evaporate a layer of glass (nglass ≈ 1.5, when nSi3N4

≈ 2.0) on the disks
prior to fabricating the antennas. To reach a Q of at least 1000 for the system
at hand, we need to increase Veff by a factor of at least ∼ 10. Figure 5.11(a)
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Figure 5.10: Polarizability of a 30 nm thick aluminium nanorod antenna on glass at λ =
770 nm for varied length and width. Red lines are for antenna width of 30 nm, blue
are for width of 40 nm (a) Element of diagonal element αx,x along the antenna long
axis, solid lines are |αx,x |, dashed lines are real(αx,x) and dash-dotted are imag(αx,x).
(b) Shows the anisotropy between the long and short axis polarizabilities (parallel to the
glass plane).

have an appreciable anisotropy (> 100) we need to be close to the resonance
of the nanorod. To obtain an anisotropy > 100, with antennas as small as
possible, we chose to design our samples with 140 nm long, 30 nm thick and
between 30 and 40 nm wide antennas (precise width is difficult to control
in fabrication). Such antennas will be somewhat blue-detuned from our
cavities operating at 765− 781 nm, which mitigates the broadening of cavity
resonances (αxx is mostly real according to Fig. 5.10(a)).

5.5.2. Cavity
The cavities we envision for this study are silicon nitride (Si3N4) microdisks.
Our fabrication is limited to a fixed 200 nm thickness, and the disks must be
wider than 3 µm in diameter to allow for the fabrication of a pillar holding
the structure such that the whispering gallery mode decouples from the
underlying silicon substrate. In addition to these fabrication constraints, we
also add the constraint of our experiment. As explicit in Eq.(5.20), the beam
radiated by a ring of antennas will have a Bessel profile with an opening angle
(maximum of first fringe) which is directly related to the radius of the ring
of antennas, and therefore to the radius of the supporting microdisk. This
means that the bigger the disk, the narrower the features in the far-field. A
10 µm wide disk would have an opening angle for the first fringe of only 2.6◦

for OAM of � = ±1, whereas the resolution of our Fourier microscope is only
0.6◦ per pixel. Therefore we choose to use disks of around 4 µm diameter,
which give a fringe diameter of 6.6◦ for OAM of � = ±1. Such disks would
support TE WGM where the fundamental radial mode has an azimuthal
mode number in the range of m = 20−25. This means that we need almost as
many antennas on the disk to create an OAM of � = 0 to + 3.
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Figure 5.11: Mode volume and normalized electric field at the glass-air interface of
a microdisk cavity (radius 2 µm, tSi3N4 = 200 nm, mode m = 22). (a) Effective
mode volume (in unit of wavelength) at the maximum of the field at glass-air interface
(solid blue), and resonance wavelength (dashed orange) as a function of top glass layer
thickness. The mode volume exponentially increases as we increase the glass layer
thickness (n = 1.5) as the glass-air interface is moving away from the Si3N4 where the
field remains confined. The inset shows in dashed black the normalized field intensity
of the mode for the symmetric Si3N4 cavity (tglass = 0) and in red for tglass = 150 nm.
Since away for the core the mode field is decreasing exponentially, the mode is feeling
less and less the perturbation by additional glass thickness and therefore the resonance
wavelength converges towards ≈ 795 nm. (b) Normalized intensity of the 3 components
of the cavity electric field m = 22 at the glass-air interface for tglass = 150 nm: blue is
|Ẽr |2, red |Ẽphi |2 and green is |Ẽz |2. We note that 230 nm from the edge of the disk, the
field is maximal on its radial component and minimal on the other two.

5.5.3. Antenna-cavity coupling strength
An important design criterion is the linewidth of the cavity resonance once
antennas are placed on top on it. We estimate using Eq.(5.13) from the imagi-
nary part of the polarizability of our antennas (Fig. 5.10(a)) and an effective
mode volume of Veff ≈ 10λ3 that 20 antennas placed directly on the disk
would broaden the linewidth of the cavity by 4 THz, and therefore limit the
quality factor of the system to Q < 100. An antenna-dominated low-Q is not
a problem per se in the sense that for the envisioned experiment it is required
that the losses of our system are dominated by antenna radiation. However,
we do need a clear separation between resonances of different m. This means a
linewidth broadened by the antennas to a level where it becomes on the order
of the free-spectral range of the cavity is undesirable. Inserting a low refractive
index spacer in between the disk and the antennas would allow to raise the
antennas out of the mode profile, and thereby provides control over the cavity
Q. A solution, compatible with our established fabrication used in Chapter 4,
is to evaporate a layer of glass (nglass ≈ 1.5, when nSi3N4

≈ 2.0) on the disks
prior to fabricating the antennas. To reach a Q of at least 1000 for the system
at hand, we need to increase Veff by a factor of at least ∼ 10. Figure 5.11(a)
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shows that for the fundamental TE mode for m = 22 of disk of 4 µm diameter,
200 nm of Si3N4, this is possible for a glass layer thickness of > 120 nm. In this
scenario one does need to compensate for a shift in the resonance wavelength
of the cavity due to the glass layer (using different disk radius and/or higher
mode number m). Finally, one needs to place the antennas in terms of their
radial position well within the mode profile of the cavity since, to benefit
optimally from the polarizability anisotropy, a purely radial polarization of
the mode at the antenna ring must be ensured. In Figure 5.11(b), for a disk of
4 µm, with 150 nm of glass we see that if we want the cavity field (at the air-
glass interface) to be only radial at the position of the antennas, the antennas
must be placed 230 nm from the edge of the disk.

5.6. Experiment

5.6.1. Fabrication
We use two-step lithography to realize Si3N4 disks, hybridized with
aluminium antennas. First, we fabricate Si3N4 microdisks on silicon
pedestals. In the following step, we evaporate the glass spacer and finally
antennas are deposited using thermal evaporation. We start from a silicon
wafer with a 200 nm LPCVD layer of Si3N4 (Lionix BV), cleaned using a base
piranha etch. We deposit a 430 nm layer of CSAR 62 resist (All Resist GmbH)
and perform e-beam lithography at 50 keV (Raith Voyager), using a 1 nA
current and 160 µC/cm2 dose. Samples are then developed in pentyl-acetate
(120 s) followed by an o-xylene dip (7 s). We etch the Si3N4 using inductively
coupled plasma (ICP) reactive ion etching (RIE) with a mix of SF6 and CHF3
gasses at flow rates of 16 and 80 standard cubic centimeters per minute
(sccm), respectively, with 50 W RIE forward power and 500 W ICP power at
a gas pressure of 9 mTorr, a temperature of 0 ◦C and an etch time of 100 s.
Afterwards, we remove the resist using acetone and a base piranha clean,
immediately followed by a Si underetch (40 wt% potassium hydroxide (KOH)
at 70 ◦C, 120 seconds) to create free-standing disk edges. Before moving on
to place the antennas, we first deposit a SiO2 layer using e-beam evaporation
(Polyteknik Flextura M508 E) at a rate of 0.1 nm/s. Using a movable shutter,
we deposit 112(5) nm on one half of the sample, and 156(5) nm on the other
half.

To fabricate the antennas, we then spincoat a MMA/PMMA bilayer resist
stack. Measured far away from the structures on a flat substrate, MMA and
PMMA thicknesses were 620 and 80 nm, respectively. This should roughly
correspond to layer thicknesses of 120 and 30 nm, respectively, at the edge of
the disk cavities, as verified through FIB-crosscuts of disks with resist on top.
We then perform a second e-beam step (0.5 nA, 400 µC/cm2 dose), aligned
to the first using alignment markers, and develop the sample (75 seconds) in
a 1:3 methylisobutyl ketone and isopropanol mixture. This is followed by
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Figure 5.12: Electron micrograph of structures fabricated by H. M. Doeleman and
I. Palstra, following a technique developed by Hugo Doeleman. (a) Radial type structure
with 20 antennas. (b) Λ-type structure with 2×20 antennas. We highlight the antennas in
red for better readability. A glass shadow is visible under the disks as we used directional
evaporation for the glass layer.

aluminium evaporation (thermal evaporator at 0.1 nm/s evaporation rate,
targeting 30 nm thickness) and lift-off in acetone at 45 ◦C. Finally, we make
sure that the samples are accessible to optical fibre taper coupling by using a
diamond saw to remove a 150 µm thick layer from the entire sample, except
for a 150 µm wide ridge on which the structures stand. During this process
the sample is covered by a 3 µm protective polymer resist that is stripped
after sawing (Microposit S1800). This results in a series of disks with targeted
diameters 3.88, 3.92, 3.96, 4.00 and 4.04 µm and 200 nm thickness Si3N4 mi-
crodisks, with ≈140 nm long ≈40 nm wide and ≈30 nm thick, radially oriented
Al antennas, placed 230 nm from the disk edge.

We fabricated devices with radial, V-type and Λ-type structures, consisting
N = 19 − 23 units cells (and kept some cavities without any antennas for
calibration purpose). Indeed, for the fabricated samples, assuming a glass
refractive index of 1.5, we expect to observe at least one mode m = 22 or m =
23 in the experiment (COMSOL simulations for all five disk sizes, Fig. 5.13),
and therefore to generate OAM in the range of −2 to +5. The calculated mode
volumes are always within 10% of 52λ3

res for all considered m, and simulated
Qs of bare cavities are within 10% of 1.4·105 (m=22), 2.8·105 (m=23) and 6·105
(m=24).

Figure 5.12 shows scanning electron micrographs of two fabricated dressed
cavities. Because of the directional nature of our glass evaporation, in the
shadow of the microdisks we have a silicon/air interface at the substrate,
but outside the shadow, we have a silicon/glass/air interface. While the
reflectivity of a silicon/glass/air stack is about 10% for near-normal incidence,
it will be about 30% for the silicon/air interface right under the disk. This is
of relevance because our structure by itself (i.e., antenna-disk system with no
silicon substrate) is expected to radiate almost 3 times more downward than
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shows that for the fundamental TE mode for m = 22 of disk of 4 µm diameter,
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of the cavity due to the glass layer (using different disk radius and/or higher
mode number m). Finally, one needs to place the antennas in terms of their
radial position well within the mode profile of the cavity since, to benefit
optimally from the polarizability anisotropy, a purely radial polarization of
the mode at the antenna ring must be ensured. In Figure 5.11(b), for a disk of
4 µm, with 150 nm of glass we see that if we want the cavity field (at the air-
glass interface) to be only radial at the position of the antennas, the antennas
must be placed 230 nm from the edge of the disk.

5.6. Experiment

5.6.1. Fabrication
We use two-step lithography to realize Si3N4 disks, hybridized with
aluminium antennas. First, we fabricate Si3N4 microdisks on silicon
pedestals. In the following step, we evaporate the glass spacer and finally
antennas are deposited using thermal evaporation. We start from a silicon
wafer with a 200 nm LPCVD layer of Si3N4 (Lionix BV), cleaned using a base
piranha etch. We deposit a 430 nm layer of CSAR 62 resist (All Resist GmbH)
and perform e-beam lithography at 50 keV (Raith Voyager), using a 1 nA
current and 160 µC/cm2 dose. Samples are then developed in pentyl-acetate
(120 s) followed by an o-xylene dip (7 s). We etch the Si3N4 using inductively
coupled plasma (ICP) reactive ion etching (RIE) with a mix of SF6 and CHF3
gasses at flow rates of 16 and 80 standard cubic centimeters per minute
(sccm), respectively, with 50 W RIE forward power and 500 W ICP power at
a gas pressure of 9 mTorr, a temperature of 0 ◦C and an etch time of 100 s.
Afterwards, we remove the resist using acetone and a base piranha clean,
immediately followed by a Si underetch (40 wt% potassium hydroxide (KOH)
at 70 ◦C, 120 seconds) to create free-standing disk edges. Before moving on
to place the antennas, we first deposit a SiO2 layer using e-beam evaporation
(Polyteknik Flextura M508 E) at a rate of 0.1 nm/s. Using a movable shutter,
we deposit 112(5) nm on one half of the sample, and 156(5) nm on the other
half.

To fabricate the antennas, we then spincoat a MMA/PMMA bilayer resist
stack. Measured far away from the structures on a flat substrate, MMA and
PMMA thicknesses were 620 and 80 nm, respectively. This should roughly
correspond to layer thicknesses of 120 and 30 nm, respectively, at the edge of
the disk cavities, as verified through FIB-crosscuts of disks with resist on top.
We then perform a second e-beam step (0.5 nA, 400 µC/cm2 dose), aligned
to the first using alignment markers, and develop the sample (75 seconds) in
a 1:3 methylisobutyl ketone and isopropanol mixture. This is followed by
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Figure 5.12: Electron micrograph of structures fabricated by H. M. Doeleman and
I. Palstra, following a technique developed by Hugo Doeleman. (a) Radial type structure
with 20 antennas. (b) Λ-type structure with 2×20 antennas. We highlight the antennas in
red for better readability. A glass shadow is visible under the disks as we used directional
evaporation for the glass layer.

aluminium evaporation (thermal evaporator at 0.1 nm/s evaporation rate,
targeting 30 nm thickness) and lift-off in acetone at 45 ◦C. Finally, we make
sure that the samples are accessible to optical fibre taper coupling by using a
diamond saw to remove a 150 µm thick layer from the entire sample, except
for a 150 µm wide ridge on which the structures stand. During this process
the sample is covered by a 3 µm protective polymer resist that is stripped
after sawing (Microposit S1800). This results in a series of disks with targeted
diameters 3.88, 3.92, 3.96, 4.00 and 4.04 µm and 200 nm thickness Si3N4 mi-
crodisks, with ≈140 nm long ≈40 nm wide and ≈30 nm thick, radially oriented
Al antennas, placed 230 nm from the disk edge.

We fabricated devices with radial, V-type and Λ-type structures, consisting
N = 19 − 23 units cells (and kept some cavities without any antennas for
calibration purpose). Indeed, for the fabricated samples, assuming a glass
refractive index of 1.5, we expect to observe at least one mode m = 22 or m =
23 in the experiment (COMSOL simulations for all five disk sizes, Fig. 5.13),
and therefore to generate OAM in the range of −2 to +5. The calculated mode
volumes are always within 10% of 52λ3

res for all considered m, and simulated
Qs of bare cavities are within 10% of 1.4·105 (m=22), 2.8·105 (m=23) and 6·105
(m=24).

Figure 5.12 shows scanning electron micrographs of two fabricated dressed
cavities. Because of the directional nature of our glass evaporation, in the
shadow of the microdisks we have a silicon/air interface at the substrate,
but outside the shadow, we have a silicon/glass/air interface. While the
reflectivity of a silicon/glass/air stack is about 10% for near-normal incidence,
it will be about 30% for the silicon/air interface right under the disk. This is
of relevance because our structure by itself (i.e., antenna-disk system with no
silicon substrate) is expected to radiate almost 3 times more downward than
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Figure 5.13: Resonance for the fundamental WGM for a disk cavity with tSi3N4 = 200 nm
and tglass = 150 nm as a function of disk radius, for m = 22 (dash-dotted) m = 23
(dashed) and m = 24 (solid). Gray shaded area indicates the range of our scannable
laser (765− 781 nm). Error bars attempt to account for some fabrication uncertainty for
tglass = 150±10 nm, nglass = 1.5±0.05 and up to 10 nm of glass evaporated on the edge
of the disk (ideally, it should be 0).

upward according to FEM simulations. This means that the direct scattering
into our objective will have a similar order of magnitude as the reflection
by the substrate, and therefore the Bessel-like mode profile we estimated for
a microdisk freestanding in vacuum will be modulated by the interference
of two contributions. Figure 5.12 shows that the evaporated glass has non-
negligible roughness, especially on the substrate (which reflects part of the
collected signal). For this reason, we have only been able to perform satis-
factory measurements on the cavities with a 110 nm glass thickness instead of
150 nm as originally envisioned. A somewhat higher cavity-antenna coupling
is required to raise the antenna scattering over the speckle due to scattering
by the glass roughness. Finally, we quantified thanks to scanning electron
micrographs (SEM) an excellent yield of antennas present on the sample after
fabrication above 97.5%.

5.6.2. Experimental setup
To test for the generation of OAM we modified the setup used in Chapter 4.
The principle is to use tapered fibre excitation (Corning HI 780C), and perform
phase-resolved Fourier imaging of the radiation pattern, using interferom-
etry as shown in Figure 5.14. The light collected through our NA 0.95 IR
objective is recombined with a reference beam onto a circular polarization
analyser consisting of a quarter wave plate, followed by a linear polarizer.
The interferogram is then recorded by a CCD camera. The reference beam has
a relatively homogeneous intensity over the camera, but a parabolic phase-
front. We align the center of this parabola to the center of the NA of the
objective, which corresponds also to the center of the emitted helical beam.
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Figure 5.14: Sketch of our experimental setup. The light from a fibre coupled tunable
diode laser (λ = 765 − 781 nm) is coupled into the antenna-dressed microdisk via
evanescent coupling from a tapered fibre. The transmission signal through the taper is
used to measure the linewidth of resonant modes of the cavity. The light scattered by the
sample is collected from the top by a 0.95 NA objective and the far-field (Fourier plane)
electric field is recombine with a reference beam (parabolic phase) on the camera after
projection onto circular polarization with quarter wave plate (QWP) and linear polarizer
(LP). These interferometric measurements allow us to analyse the phase and therefore
the orbital angular momentum of the produced helical wavefront.

For phasefronts with pure OAM, the interferogram should therefore exhibits
spirals with number of arms equal to the OAM of the investigated beam (as
the example shown in Fig. 5.1(i)). While one could extract phase from a single
interferogram by digital off-axis holography [243, 260, 261], we instead use
on-axis interferometry, which allows for higher resolution in phase retrieval.
We measure a set of interferograms with varying phase differences between
reference and analysed beams. In our setup, the easiest way to controllably
change this phase delay is to slightly vary the excitation wavelength (< 1 pm,
much less than the dressed cavity linewidth). Indeed, with an optical path
difference in the order of 50 − 60 nm in our setup, for a wavelength of λ =
780 nm, a change of δλ = 0.5 pm leads to a phase shift of 6π.

5.6.3. Results
We interrogate cavities with N = 19 − 23 unit cells (unit cells of three types:
single radial I-antenna, V-antenna and Λ antenna (I ,∨,∧), and 110 nm of
glass coverage. With the fabricated sample, the only measurable fundamental
radial TE mode in the range of our tunable laser (λ= 765−781 nm) is m = 22.
This mode is always measurable for two different disk sizes in each set of 5
different sizes we fabricated. We measured for a disk without any antenna a
quality factor Q ≈ 2× 104. This Q drops to around 500− 1000 with antennas,
leading to a linewidth of the order of 1 nm. For each measurement sequence,
our protocol is to first find the peak of the resonance of the dressed cavities
in the scattering spectrum. Then we set the circular polarization analyser to
left handed polarization, measure the intensity of the emitted beam and the
reference separately, then recombine the two beams and record 200 interfero-
grams with a phase delay varied from 0 to 6π (3 fringes). We then repeat the
procedure for right handed polarization.
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Figure 5.13: Resonance for the fundamental WGM for a disk cavity with tSi3N4 = 200 nm
and tglass = 150 nm as a function of disk radius, for m = 22 (dash-dotted) m = 23
(dashed) and m = 24 (solid). Gray shaded area indicates the range of our scannable
laser (765− 781 nm). Error bars attempt to account for some fabrication uncertainty for
tglass = 150±10 nm, nglass = 1.5±0.05 and up to 10 nm of glass evaporated on the edge
of the disk (ideally, it should be 0).

upward according to FEM simulations. This means that the direct scattering
into our objective will have a similar order of magnitude as the reflection
by the substrate, and therefore the Bessel-like mode profile we estimated for
a microdisk freestanding in vacuum will be modulated by the interference
of two contributions. Figure 5.12 shows that the evaporated glass has non-
negligible roughness, especially on the substrate (which reflects part of the
collected signal). For this reason, we have only been able to perform satis-
factory measurements on the cavities with a 110 nm glass thickness instead of
150 nm as originally envisioned. A somewhat higher cavity-antenna coupling
is required to raise the antenna scattering over the speckle due to scattering
by the glass roughness. Finally, we quantified thanks to scanning electron
micrographs (SEM) an excellent yield of antennas present on the sample after
fabrication above 97.5%.

5.6.2. Experimental setup
To test for the generation of OAM we modified the setup used in Chapter 4.
The principle is to use tapered fibre excitation (Corning HI 780C), and perform
phase-resolved Fourier imaging of the radiation pattern, using interferom-
etry as shown in Figure 5.14. The light collected through our NA 0.95 IR
objective is recombined with a reference beam onto a circular polarization
analyser consisting of a quarter wave plate, followed by a linear polarizer.
The interferogram is then recorded by a CCD camera. The reference beam has
a relatively homogeneous intensity over the camera, but a parabolic phase-
front. We align the center of this parabola to the center of the NA of the
objective, which corresponds also to the center of the emitted helical beam.
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Figure 5.14: Sketch of our experimental setup. The light from a fibre coupled tunable
diode laser (λ = 765 − 781 nm) is coupled into the antenna-dressed microdisk via
evanescent coupling from a tapered fibre. The transmission signal through the taper is
used to measure the linewidth of resonant modes of the cavity. The light scattered by the
sample is collected from the top by a 0.95 NA objective and the far-field (Fourier plane)
electric field is recombine with a reference beam (parabolic phase) on the camera after
projection onto circular polarization with quarter wave plate (QWP) and linear polarizer
(LP). These interferometric measurements allow us to analyse the phase and therefore
the orbital angular momentum of the produced helical wavefront.

For phasefronts with pure OAM, the interferogram should therefore exhibits
spirals with number of arms equal to the OAM of the investigated beam (as
the example shown in Fig. 5.1(i)). While one could extract phase from a single
interferogram by digital off-axis holography [243, 260, 261], we instead use
on-axis interferometry, which allows for higher resolution in phase retrieval.
We measure a set of interferograms with varying phase differences between
reference and analysed beams. In our setup, the easiest way to controllably
change this phase delay is to slightly vary the excitation wavelength (< 1 pm,
much less than the dressed cavity linewidth). Indeed, with an optical path
difference in the order of 50 − 60 nm in our setup, for a wavelength of λ =
780 nm, a change of δλ = 0.5 pm leads to a phase shift of 6π.

5.6.3. Results
We interrogate cavities with N = 19 − 23 unit cells (unit cells of three types:
single radial I-antenna, V-antenna and Λ antenna (I ,∨,∧), and 110 nm of
glass coverage. With the fabricated sample, the only measurable fundamental
radial TE mode in the range of our tunable laser (λ= 765−781 nm) is m = 22.
This mode is always measurable for two different disk sizes in each set of 5
different sizes we fabricated. We measured for a disk without any antenna a
quality factor Q ≈ 2× 104. This Q drops to around 500− 1000 with antennas,
leading to a linewidth of the order of 1 nm. For each measurement sequence,
our protocol is to first find the peak of the resonance of the dressed cavities
in the scattering spectrum. Then we set the circular polarization analyser to
left handed polarization, measure the intensity of the emitted beam and the
reference separately, then recombine the two beams and record 200 interfero-
grams with a phase delay varied from 0 to 6π (3 fringes). We then repeat the
procedure for right handed polarization.
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Figure 5.15: Raw experimental data. (a) Fourier image of the far field intensity radiated
in left handed circular polarization (LHCP) by a cavity of radius 2 µm, dressed by N =
19 pairs of antennas for the V-type structure, at resonance for a WGM m = 22 at λ =
772.5 nm. (b) Fourier image of the intensity (in LHCP) of the reference beam used for
interferometric phase retrieval. (c-d) Interferograms obtained when combining reference
and analysed beam (for two different phase delays). We see a spiral with two arms which
confirms the generation of a beam of OAM � =m−N − 1 for LHCP.

Figure 5.15 documents this protocol for an example data set. As a first
step, we record the intensity profile of the analysed beam (panel (a)), and the
reference beam (panel (b)). Then we record our set of interferograms (panels
(c-d)), always making sure to not saturate the camera. The interferograms
show a distinct two-arms spiral structure that is characteristic for beams car-
rying OAM of � = ±2. As we change the phase difference between the signal
and the reference beam, the spiral rotates around there center (k||/k0 = 0), as
can be seen by comparing panel (c) and (d), and the direction of rotation tells
us about the sign of the OAM.

We analyse the sets of interferograms using principal component analysis
(PCA) [268] to extract the reconstructed phase and intensity of the analysed
beam, disentangling it from the reference beam. The reconstructed and mea-
sured intensities should match exactly (Fig. 5.15(a)), and we compensate in
post-process for the parabolic phase of the reference beam. The advantage
of this PCA based technique is that it does not require any calibration of the
phase delay, and it, in principle, only requires 5 interferograms (we used 200
interferograms to be conservative and to be able to process the data with other
algorithms if necessary). We present in Figure 5.16 the complete analysis
of a dataset, i.e. phase and intensity profiles of the scattered field in both
circular polarization channels, obtained for m = 22 and N = 20, for the radial-
type (a,b,g,h), V-type (c,d,i,j) and Λ-type structures. We first observe that,
the radial structure scatters as much light in left handed circular polariza-
tion (LHCP) as in right handed circular polarization (RHCP) (panels (a) and
(g)). On the other hand, the V-type structure clearly favours LHCP over
RHCP, and we only observe weak speckle noise in the RHCP channel. The
Λ-type structure dominantly outputs into RHCP over LHCP (panels (e,k)),
however not cancelling out LHCP completely down to a speckle noise level.
Additionally, we note that the opening angle of the radiation pattern in the
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Figure 5.16: Reconstructed phase and intensity of radiated OAM beams for m = 22 and
N = 20. Panels (a,b,g,h) (2 leftmost columns) correspond to a radial I-type structure,
(c,d,i,j) (middle columns) to a V-type structure and (e,f,k,l) (rightmost columns) to a Λ-
type structure. Figures (a-d) (top row) are obtained for left handed circular polarization
(LHCP), (e-h) (bottom row) for right handed circular polarization (RHCP). For each
structure and polarization channels, we plot the intensity (left image) and phase profile
(right image) retrieved from our interferometric measurements. We observe that for
the radial structure (a,g), both polarizations have similar intensity, whereas for the V
and Λ-type structures, resp. left (c,i) or right (e,k) polarization is favoured. For all
structure types, we observe in (a,c,e) that the left polarized channel exhibits a central
phase singularity corresponding to an OAM of �L = m−N − 1 = +1. For the right hand
circular polarized channel, the expected charge of �R = m −N + 1 = +3 is actually split
into 3 charges +1 due to imperfections of our sample and measurements for (g) and (l).
Due to the excellent cancellation of the right hand circular polarization by the V-type
structure, we only observe in (i-j) a speckle noise pattern.

LHCP channel (a,c,e) is smaller than for the RHCP channel (g,i,k). This is
commensurate with the notion that for the considered geometry, the RHCP
channel is expected to carry an OAM of �R =m−N + 1= +3, higher than for
LHCP with �L = m −N − 1 = +1. By analysing the phase profiles, we indeed
confirm that LCHP (b,d,f) exhibits a central phase singularity of charge equal
to the expected OAM of �L = +1. Less evidently, for RCHP, panels (h) and
(l) suggest an OAM of +3. However, closer inspection shows not a single
singularity of charge 3, but rather 3 singularities of charge +1 which stem
from the splitting of the single expected charge �R = +3. This splitting is due
to sample and measurement imperfections, which reduce the OAM purity by
mixing in background fields.

We analyse more quantitatively the content of each of the reconstructed ra-
diation diagrams according to the projection method used in subsection 5.4.1,
taken from [260], and summarize our findings in Figure 5.17 for a range of
devices that (are expected to) produce OAM from −2 to +4. We observe
that for an array composed of radially polarized antennas (Fig. 5.17(a,d)), our
system radiates a similar amount of intensity in both circular polarization
channels (IL/IR = 47/53 on average). As expected, left handed circularly
polarized light is scattered with an OAM of �L = m −N − 1 and right handed
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Figure 5.15: Raw experimental data. (a) Fourier image of the far field intensity radiated
in left handed circular polarization (LHCP) by a cavity of radius 2 µm, dressed by N =
19 pairs of antennas for the V-type structure, at resonance for a WGM m = 22 at λ =
772.5 nm. (b) Fourier image of the intensity (in LHCP) of the reference beam used for
interferometric phase retrieval. (c-d) Interferograms obtained when combining reference
and analysed beam (for two different phase delays). We see a spiral with two arms which
confirms the generation of a beam of OAM � =m−N − 1 for LHCP.

Figure 5.15 documents this protocol for an example data set. As a first
step, we record the intensity profile of the analysed beam (panel (a)), and the
reference beam (panel (b)). Then we record our set of interferograms (panels
(c-d)), always making sure to not saturate the camera. The interferograms
show a distinct two-arms spiral structure that is characteristic for beams car-
rying OAM of � = ±2. As we change the phase difference between the signal
and the reference beam, the spiral rotates around there center (k||/k0 = 0), as
can be seen by comparing panel (c) and (d), and the direction of rotation tells
us about the sign of the OAM.
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Figure 5.16: Reconstructed phase and intensity of radiated OAM beams for m = 22 and
N = 20. Panels (a,b,g,h) (2 leftmost columns) correspond to a radial I-type structure,
(c,d,i,j) (middle columns) to a V-type structure and (e,f,k,l) (rightmost columns) to a Λ-
type structure. Figures (a-d) (top row) are obtained for left handed circular polarization
(LHCP), (e-h) (bottom row) for right handed circular polarization (RHCP). For each
structure and polarization channels, we plot the intensity (left image) and phase profile
(right image) retrieved from our interferometric measurements. We observe that for
the radial structure (a,g), both polarizations have similar intensity, whereas for the V
and Λ-type structures, resp. left (c,i) or right (e,k) polarization is favoured. For all
structure types, we observe in (a,c,e) that the left polarized channel exhibits a central
phase singularity corresponding to an OAM of �L = m−N − 1 = +1. For the right hand
circular polarized channel, the expected charge of �R = m −N + 1 = +3 is actually split
into 3 charges +1 due to imperfections of our sample and measurements for (g) and (l).
Due to the excellent cancellation of the right hand circular polarization by the V-type
structure, we only observe in (i-j) a speckle noise pattern.

LHCP channel (a,c,e) is smaller than for the RHCP channel (g,i,k). This is
commensurate with the notion that for the considered geometry, the RHCP
channel is expected to carry an OAM of �R =m−N + 1= +3, higher than for
LHCP with �L = m −N − 1 = +1. By analysing the phase profiles, we indeed
confirm that LCHP (b,d,f) exhibits a central phase singularity of charge equal
to the expected OAM of �L = +1. Less evidently, for RCHP, panels (h) and
(l) suggest an OAM of +3. However, closer inspection shows not a single
singularity of charge 3, but rather 3 singularities of charge +1 which stem
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to sample and measurement imperfections, which reduce the OAM purity by
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We analyse more quantitatively the content of each of the reconstructed ra-
diation diagrams according to the projection method used in subsection 5.4.1,
taken from [260], and summarize our findings in Figure 5.17 for a range of
devices that (are expected to) produce OAM from −2 to +4. We observe
that for an array composed of radially polarized antennas (Fig. 5.17(a,d)), our
system radiates a similar amount of intensity in both circular polarization
channels (IL/IR = 47/53 on average). As expected, left handed circularly
polarized light is scattered with an OAM of �L = m −N − 1 and right handed
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Figure 5.17: Selection rules for orbital angular momentum and polarization of beam
scattered by the WGM m = 22 of microdisks dressed by regular arrays of nanoantennas
with number of (pairs of) antennas varied from N = 19 to 23. Panels (a,d) regroup
results for radial I-type structure, (b,e) for a V-type structure, and (c,f) for a Λ-type
structure. Panels (a-c) correspond to LHCP, (d-f) to RHCP. The intensity is normalized to
the maximum of each column of each vertical pair of panels so that we can quantitatively
compare RHCP and LHCP contents. The dashed red-lines indicate � =m−N . We confirm
the OAM selection rule for LHCP and RHCP, where the produced OAM is systematically
�L = m −N − 1 and �R = m −N + 1, as well as the polarization cancellation operated by
V and Λ-type structures respectively on RHCP and LHCP.

circular light, with � =m−N+1. We confirm that our V and Λ designs enable
polarization selectivity: (I) V-type antennas always favour left-handed polar-
ization (IL/IR = 94/6 on average, see Fig. 5.17(b-e)), and (II) Λ-type antennas
favour right-handed polarization, however systematically less efficiently than
V-type structures (IL/IR = 20/80 on average, see Fig. 5.17(c-f)).

Finally, we had expected for the case m = N , that there would be no strong
polarization selectivity. In this case the degeneracy of the cavity mode is lifted,
and the WGM modes split into standing waves, only one of which couples
strongly to the antennas. The standing wave character means that the phase
delay between the two antennas in a unit cell is no longer pinned at the value
required for circular polarization. While Figure 5.17(c-f) shows this feature, it
is surprising that the V-antenna case in Fig. 5.17(b-e) does not. We attribute
this to fabrication imperfections in the particular device, which according to
scanning electron microscope inspection happened to miss a few antennas
due to fabrication errors. For the interrogated cavity in (c-f), we verified with
spectroscopic measurements that we indeed have a lifted degeneracy, with
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one high-Q mode (Q ≈ 104) and a lower-Q one (Q ≈ 800), while the case in
(b,e) did not.

5.7. Conclusion and outlook
In conclusion, we have analysed the mode structure of a ring cavity sup-
porting whispering gallery modes interacting with an azimuthal array of N
nanoantennas and have identified two distinct scenarios. Either N is commen-
surate with the mode number m, in which case the antennas lift the degener-
acy between the two standing-wave modes, or when N and m are not com-
mensurate and the hybrid modes remain degenerate, but become associated
with radiating orbital angular momentum (OAM) content into the far field.
Due to the discrete nature of the current distribution of a set of antennas, usu-
ally the system will scatter light at a comb of OAM values, i.e., a fundamental
OAM �0 set by N −m, and its harmonics. However, if the number of antennas
is high enough, these higher harmonics carry phase singularities of charges
which are too high to be observed in the paraxial direction, and therefore the
far-field beam can be assumed to carry a single OAM �0. In this scenario, if one
considers the light scattered by a regular array of radially oriented antennas,
but analysed in lab-frame circular polarization contributions, this light will
not carry identical OAM �0, but instead �0±1 where the sign is set by the spin
(polarization). It is therefore straightforward to understand that a radial array
of antennas cannot produce a pure OAM beam in a single desired circular
polarization. We proposed that more complex scattering units, such as V and
Λ-type structures give a route to engineer polarization selectivity, and thereby
also OAM purity. Finally, we designed samples based on Si3N4 microdisks
platforms dressed by aluminium antennas, and confirmed the expected be-
haviour qualitatively in experiment.

As an outlook, we consider the possibility of pushing our work to the
generation of exotic beams. There is an increasing interest in literature in
higher order beams that exhibit spatially inhomogenous states of polarization.
In particular, several groups have suggested vortex vector beams, also known
as spirally polarized beams, usually encountered in fibre optics [115, 269, 270].
The additional degrees of freedoms in such beams open up many opportuni-
ties for application such as spectroscopy, microscopy and optical trapping and
even communication [227, 271].

Vector vortex beams can be described in the framework of higher-order
Poincaré spheres. Indeed, as for the polarization state of a homogenous beam,
which can be mapped onto a unit sphere through the Stokes parameters of its
Jones vector, vector vortex beams can be projected onto higher-order Poincaré
spheres (HOPS) [262]. In essence, vector vortex beams are constructed as
linear combinations of orthogonal, circularly polarized beams of different
topological charges (OAM). We focus only on the case when the topological
charges of the eigenstate are opposite in sign, since the general case requires
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Figure 5.17: Selection rules for orbital angular momentum and polarization of beam
scattered by the WGM m = 22 of microdisks dressed by regular arrays of nanoantennas
with number of (pairs of) antennas varied from N = 19 to 23. Panels (a,d) regroup
results for radial I-type structure, (b,e) for a V-type structure, and (c,f) for a Λ-type
structure. Panels (a-c) correspond to LHCP, (d-f) to RHCP. The intensity is normalized to
the maximum of each column of each vertical pair of panels so that we can quantitatively
compare RHCP and LHCP contents. The dashed red-lines indicate � =m−N . We confirm
the OAM selection rule for LHCP and RHCP, where the produced OAM is systematically
�L = m −N − 1 and �R = m −N + 1, as well as the polarization cancellation operated by
V and Λ-type structures respectively on RHCP and LHCP.
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Figure 5.18: (a) Representation of the state of polarization of a transverse electromagnetic
field on Poincaré sphere. (b) Representation of vectorial vortex beams on the higher order
Poincaré sphere of order � = +1, σ = +1.

to use hybrid-order Poincaré sphere [272]. Suppose that one has their paraxial
OAM beams in left and right handed polarization (circular basis), and
suppose that we limit the discussion to a pair of beams with opposite OAM
and opposite handedness


|R�(ψ)〉 = e−i�ψ |R〉
|L�(ψ)〉 = e+i�ψ |L〉 .

(5.29)

In the following we do not specify any radial intensity dependence, but note
that it should be equal for the two polarization states, as it would be using our
OAM generation method. Using these two beams as basis vectors, one can
define a vector vortex light beam as

|v�〉= c
(�)
R |R�〉+ c

(�)
L |L�〉 . (5.30)

Generally, for any �, one could define higher-order Stokes parameters by


S
(�)
0 = | 〈R� |v�〉 |2 + | 〈L� |v�〉 |2

S
(�)
1 = 2Re{〈R� |v�〉∗ · 〈L� |v�〉}

S
(�)
2 = 2 Im{〈R� |v�〉∗ · 〈L� |v�〉}

S
(�)
3 = | 〈R� |v�〉 |2 − |〈L� |v�〉 |2.

(5.31)

For � = 0, and taking spatially homogeneous beams as basis vectors, the
space of beams spanned by Eq.(5.30) reduces to standard plane wave states
of arbitrary, but uniform, polarization, with conventional Stokes parameters

given by Eq.(5.31). Generalized to nonzero �, S(�)
0 relates to the total intensity

of the beam, S(�)
1 and S

(�)
2 give information about the orientation the polar-

ization relative to the cylindrical local frame, and S
(�)
3 is the overall degree
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of ellipticity. In this representation, the poles of the HOPS sphere represent
beams of uniform circular polarization of opposite handedness and opposite
OAM, as pictured in Fig. 5.18. As for the classical Poincaré sphere, the equator
regroups all linearly polarized beams with different orientation of polariza-
tion. To describe an arbitrary vector beam one would need more than a single
HOPS, and, the beam would therefore be partially polarized on each sphere, i.e.

(S
(�)
0 )2 � (S

(�)
1 )2 + (S

(�)
2 )2 + (S

(�)
3 )2. Note that for a fixed value of l � 0, two

different higher-order Poincaré spheres can be defined, for sign(�) = sign(σ)
and sign(�) = −sign(σ).

In our work we demonstrated a dimer array design that enables circular
polarization selectivity, meaning that for a certain direction of light circulation
we can generate a pure OAM which furthermore sits at the pole of a higher-
order Poincaré sphere. By linear superposition of two such beams, one could
construct any state of the corresponding HOPS. A first option to realize such
a superposition would be to place two arrays of antenna-dimers, one with
NR = m+ �+ 1 and V-type structures to produce the circular right state, and
another with NR =m−�−1 and Λ-type structures for circular left polarization.
Tuning the coupling strength to the cavity and the relative angle between
the two arrays could then enables the control over the higher-order Stokes
parameters. A second and much simpler option to realize a superposition is to
use simultaneously the two degenerate whispering gallery mode of a cavity,
at +m and −m that can be individually adressed by exciting from opposing
ends of the tapered fibre. Reversing the direction of propagation of light in
our design changes the handedness and sign of the OAM of the scattered
light, meaning that coupling to +m generates one pole of the HOPS, while
−m generates the other. In our current experimental setup addressing both
the +m and −m mode simultaneously is tantamount to injecting excitation
light into both ends of the taper. The two excitation beams should be coherent
with each other, and the relative phase and amplitude would allow to sweep
the full corresponding HOPS. Additionally, as mentioned earlier, for a fixed �,
two HOPS can be defined. One can be addressed by using a V-type, and the
other using a Λ-type structure. We envision that such a schemes could be used
to dynamically tuned vectors beams in sorting applications for tiny particles
or enantiomers.
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MOLECULAR

OPTOMECHANICS WITH
HYBRIDS

6.1. Introduction
As first theoretically described by Smekal in 1923 [273] and experimentally
demonstrated by Raman in 1928 [274], upon illumination by a monochromatic
beam (laser), many molecules (or crystals) scatter a distinct set of spectral
lines that are shifted in frequency from the incident light, and that provide
a unique fingerprint to identify chemical species and crystalline order on the
basis of their vibrational energy structure. The underlying physics is a weak
interaction between photons and molecular mechanical degrees of freedom.
A completely classical viewpoint [275] is that a molecule, when it is illumi-
nated by light that is not resonant with any quantum mechanical transition,
presents an induced electric dipole moment in response to the optical driv-
ing at frequency ωL, quantified through a frequency-dependent polarizability.
This polarizability leads to Rayleigh scattering. If this polarizability varies
in magnitude over time, for instance by a mechanical oscillation within the
molecule at frequency Ωm, scattered light will appear not just as Rayleigh
scattering at frequency ωL but also in sidebands shifted from ωL by ±Ωm. The
common quantum mechanical viewpoint [275] is that the incident photon is
first absorbed by an intermediate virtual state (which can be thought of as
an off-resonant superposition of real states), and is re-emitted as a scattered
photon that is either red-shifted from the original photon of energy h̄ωL due
to transferring a vibrational quantum of energy h̄Ωm to a molecular bond,
or is instead blue-shifted upon taking a vibrational quantum from the ther-
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mal occupation of vibrations in the matter. These processes are sketched in
Figure 6.1, and are respectively known as Stokes and anti-Stokes Raman scat-
tering. Raman spectroscopy and Raman microscopy are nowadays common
spectroscopic techniques to identify molecular bonds, molecular species, and
crystalline solids. As a technique, it should be distinguished from, and is
complementary to, for instance infrared absorption that corresponds to direct
excitation of vibrations by absorption of light at the vibrational resonance
frequency Ωm, and that is generally subject to different quantum mechanical
selection rules [275].

ћωLћωL ћωSћωL ћωASћωL

ћΩmGround state

1st excited 
vibrationnal state

Virtual energy 
level

Energy

Rayleigh
scattering

Stokes
scattering

anti-Stokes
scattering

Figure 6.1: Three different type of scattering of light. In Rayleigh scattering, no net
energy is exchanged between matter and light field, incident and scattered photons have
the same energy h̄ωL. In Raman scattering, an energy corresponding to the difference
between the 1st excited vibrational state and the ground state can be exchanged; for the
Stokes process, the incident photon gives energy and the scattered photon is therefore
red-shifted (ωS = ωL −Ωm), whereas for the anti-Stokes process, the incident photon
takes energy leading to a blue-shifted scattering (ωAS = ωL +Ωm).

While the assignment of Raman transitions to chemical structure is pri-
marily a discipline that is concerned with electronic and vibrational wave
functions and selection rules [275], it also has a rich, though controversial,
history in plasmonics and nano-optics which started in 1973 with the obser-
vation of enhanced Raman scattering of pyridine adsorbed on electrochem-
ically roughened silver [276, 277]. The cross-section of Raman scattering is
extremely small (around 10−30 − 10−25 cm2, as compared to 10−15 cm2 for the
fluorescence cross-section of typical organic fluorophores), but, according to
literature reports, can be enhanced by factors up to 1014 by exploiting local-
ized plasmonic resonances in the near field of metallic nanoparticles or rough
surfaces (SERS) [24, 25, 168, 169, 278, 279], or tips (TERS) [280–283]. The mag-
nitude of the enhancement has been strongly debated for decades in literature
owing to the fact that there are also chemical enhancement mechanisms [284,
285] which can contribute to the enhancement by factors of the order of 103.
Nonetheless there is consensus that the electromagnetic enhancement follows
an ’|E/E0|4 law’ [286–288]. This means that the enhancement of the Raman
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cross-section is proportional to the fourth power of the field enhancement by
a plasmonic hotspot. According to classical electrodynamic simulations, field
enhancements in nanometric gaps of plasmonic dimer can reach factors up to
|E/E0| ≤ 103 [287]. The Raman enhancement is often viewed as decomposable
in the product of two contributions [286–288]. The first contribution scales as∣∣∣∣ E(ωL)
E0(ωL)

∣∣∣∣
2

and relates to the enhancement of the incident field intensity. The

second factor
∣∣∣∣ E(ωS/AS )
E0(ωS/AS )

∣∣∣∣
2

corresponds to an enhancement of the local density
of states available for the photon to be emitted into (LDOS). Figure 6.2 sketches
the enhancement of Raman scattering by a plasmonic resonance; the main
contribution to the enhancement in this situation is the LDOS boost as the
laser frequency is chosen such that the Stokes emission is resonant with the
plasmonic cavity, when in practice, the laser pump should be slightly detuned
from the plasmon resonance to optimize the enhanced Raman signal by bal-
ancing enhancement of the pump and the emission [289]. Surface enhanced
Raman spectroscopy (SERS) has enabled in the end of the 1990’s the detection
of vibrational fingerprints of single molecules [168, 169]. The current state
of the art is that tip-enhanced Raman spectroscopy allows spatial resolution
such that individual chemical bonds of molecules can be probed [290–292].
Recently self-assembled nano- and picocavities, formed in the gaps in be-
tween a metal film and metal nanospheres, have been investigated as a more
compact way of studying vibrations at the sub-nanometric level, without the
requirement for cumbersome scanning probe apparatus [14, 293]. It has been
suggested that the main fundamental limitation on the enhancement factor
for Raman spectroscopy by plasmonic effects is fundamental in nature, and
is due to electron tunneling [74], which becomes relevant in sub-nanometer
gaps and reduces the field strength. At this length scale, selection rules for
Raman scattering may also break down, and one may not longer be able to
separate the quantum mechanical treatment of the molecular structure from
a classical treatment of the light field. A practical limitation on plasmon en-
hanced Raman scattering is that efficient collection of signal is challenging. By
their localized nature, plasmon antennas are not well matched to collection
optics or to integrated optics [294–297]. A few works have studied dielectric
cavities for Raman scattering, which can give high field enhancement and at
the same time offer a monomode output channel to efficiently collect emitted
light [298, 299]. However, such resonators rely on high quality factors Q to
compensate for drastically smaller field confinement than plasmonics [300–
302]. The consequence is that one typically enhances only the pump intensity,
or only the LDOS term at the Stokes-shifted frequency, but not both.

This work is motivated by recent theoretical developments that recognize
interesting and powerful analogies between plasmon-enhanced Raman scat-
tering and the field of cavity optomechanics [201, 303–305]. In cavity op-
tomechanics, the basic system under study is a high-Q optical cavity that
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the same energy h̄ωL. In Raman scattering, an energy corresponding to the difference
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Figure 6.2: Plasmon enhanced Raman scattering spectrum. When the pump (green)
is blue-detuned by approximately the vibrational frequency, the Stokes process (red) is
selectively enhanced over the anti-Stokes process (blue) from the plasmonic resonance
(grey line).

couples to a resonant macroscopic motional degree of freedom, such as the
resonant movement of one cavity mirror. The coupling of light to motion
is through a shift of the resonance frequency of the optical cavity upon mo-
tion, while conversely radiation pressure exerted by light stored in the mode
pushes against the mirror. The field of cavity optomechanics has promises that
go very far beyond the optical read out of mechanical motion via frequency-
shifted sidebands [306]. These promises include displacement measurements
at and beyond the standard quantum limit [307, 308], parametric amplification
as well as cooling of macroscopic mechanical degrees of freedom [50, 309, 310],
and coherent quantum state transfer and entanglement between photons and
phonons [311–313].

The analogy between plasmon-enhanced Raman scattering and cavity op-
tomechanics that sparks this chapter identifies the optical cavity with the plas-
mon resonator, and the mechanical motion with the molecular vibration [201,
303–305]. This new viewpoint suggests that one may push the analogy beyond
the optical read out of motion, i.e., beyond Raman scattering. It projects that
there may be interesting optomechanical regimes beyond plasmon-enhanced
Raman scattering if one reaches a higher degree of control over the optome-
chanical coupling strength between plasmon and mechanical resonator. This
emerging field has been coined molecular optomechanics. In this chapter we
explore if hybrid structures composed of both a metallic and a dielectric res-
onator [92, 101–103] could be advantageous for molecular optomechanics. On
paper, they combine advantages of both dielectric and plasmonic resonators
[94], namely tight confinement of field, and at the same time control over the
resonance Q-factor. It has even already been suggested that such structures
could reach new interesting quantum regimes for the interaction of molec-
ular vibrations and light [208]. From the viewpoint of molecular optome-
chanics a unique advantage over the usual plasmonic resonators is that the
resonance linewidth of hybrids could be tuned such that it is narrower than
mechanical resonance frequency. In optomechanical terms, standard SERS
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is not resolved-sideband as the plasmon resonance is so broad that it spans
both the pump and Raman-shifted frequencies. Hybrids could instead give
access to resolved-sideband molecular optomechanics. Sideband resolution is
crucial for many achievements in cavity optomechanics. A physics aspect of
molecular optomechanics that is different from cavity optomechanics is that
the molecular potential for vibration can easily be strongly anharmonic. This
might allow to unravel new phenomena [208, 314].

The approach in this chapter is different from that in previous chapters,
where we strived to use the quasinormal mode (QNM) approach to rigorously
deal with cavities interacting with antennas. Instead, this chapter should be
read as the first steps in a feasibility study for possible experiments. It uses the
approximations typical of coupled mode theory. These include fundamentally
problematic, but practically effective, approximations, such as the assignment
of (real-valued) mode volumes to cavities and antennas. It is certainly an
important challenge, but not the purpose of this chapter, to develop a more
rigorous description of molecular optomechanics in QNM terms. This chapter
is structured as follows. Section 6.2 summarizes the formalism for molecu-
lar optomechanics put forward by Roelli et al. [201], in particular focusing
on how to predict SERS spectra in the simplest, i.e., classical approximation
with no backaction. Next, in Section 6.3, we put forward an extension of
the work of Roelli [201], adapted to include the main physics of hybrids of
whispering gallery mode resonators and plasmonic antennas, and to account
for the addressing of such a system through both waveguide and far field
channels. We discuss the relation of this formalism to the coupled mode for-
malism presented for hybrids in Ref. [94]. Section 6.4 presents an evaluation of
the expected Raman spectroscopy accessible in practically realizable hybrids,
and of the design trade offs that are relevant for resolved-sideband molecular
optomechanics.

6.2. Review of molecular optomechanics

The recent theoretical developments in the context of plasmon-enhanced Ra-
man scattering recognizes a formal analogy between the Hamiltonian for Ra-
man scattering by a Raman active molecule coupled to a single mode photonic
resonator, and cavity optomechanics, where the resonant movement of a mir-
ror (or any geometrical feature) couples to a cavity field, cf. Figure 6.3(a).
This analogy was put forward by Roelli et al [201], and further extended by
[303–305]. This section serves to summarize the main aspects of this analogy,
i.e., the Hamiltonian that is used as starting point, the equations of motion
in the classical limit, and the reported procedures to extract predictions for
spectroscopic observables.
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is blue-detuned by approximately the vibrational frequency, the Stokes process (red) is
selectively enhanced over the anti-Stokes process (blue) from the plasmonic resonance
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6.2.1. Hamiltonian and classical equation of motion
We refer to [306] for an in-depth tutorial into cavity optomechanics. Here we
review the basic ingredients as adapted to molecular optomechanics by Roelli
et al. [201]. The Hamiltonian describing the amplitudes of the cavity field and
the mechanical motion is

Ĥ = h̄ωpâ
†â+ h̄Ωmb̂

†b̂+ Ĥdr , (6.1)

where one assumes that the photonic cavity and the mechanical mode can
both be approximated by harmonic oscillators of respective energies ωp and
Ωm, and field operators â and b̂. Here the zero-point energy has been dropped
(constant offset) and Ĥdr accounts for the driving of the system (by a laser).
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Figure 6.3: Cavity optomechanics model of the interaction between a photonic resonator
and molecular vibration. (a) Optical Fabry-Perot cavity coupled to the vibration of one
of its mirrors. (b) Hotspot of a plasmonic resonator hosting a molecule with a Raman-
active vibrational mode. (c) During vibrational motion, the change of the polarizability
of the molecule (thiophenol in the figure) induces a shift of the resonance frequency of
the plasmonic resonator at the origin of the parametric opto-mechanical coupling. d)
Sketch of the molecular energy potential as a function of the vibrational coordinate. The
oscillator can be described as harmonic for small vibration amplitudes (i.e. low excitation
numbers, indicated as dark lines) but anharmonicity must be taken into account under
high amplification (high levels, indicated as blue lines).

In optomechanics, the coupling between cavity and motion is purely para-
metric in the sense that the resonance frequency of the cavity can be expressed,
to first order (considering motion much slower than the optical frequency
Ωm� ωp) as

ω̂p(xm) = ωa −Gmx̂m, (6.2)
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where x̂m = xzpf (b̂
† + b̂) is the position operator in the normal coordinate

frame, with xzpf ≡
√

h̄
2mΩm

the zero-point motion of an oscillator of mass m,

and where we defined the optomechanical coupling rate Gm ≡ −
∂ωp

∂xm
. The

Hamiltonian of the system in the presence of optomechanical coupling is
therefore written

Ĥ = h̄ωaâ
†â+ h̄Ωmb̂

†b̂ − h̄Gmxzpf â
†â(b̂†+ b̂) + Ĥdr . (6.3)

In the field now known as molecular optomechanics, it is not the movement
of a mirror that shifts the cavity frequency, but instead the change in electrody-
namic polarizability αm of the molecule induced by molecular vibration. One
can picture this effect as a change of the effective index, and therefore a change
of the optical path of light in the cavity (Fig. 6.3(a-b)). Conventional first order
perturbation theory (ignoring the important corrections to it that the QNM
formalism provides [139, 140]) therefore gives us the optomechanical coupling
rate

Gm = ωa

(
∂αm

∂xm

)
1

2ε0εVa
=

ωa

2ε0εVa

1
xzpf

√
h̄Rm

2Ωm
, (6.4)

where Va is the mode volume of the cavity at the position of the molecule 1,

and Rm ≡ 1
m

(
∂αm
∂xm

)2
is the so-called Raman activity of the molecular vibration.

The Raman activity is a molecular property that can be quantified from ex-
perimental data and DFT calculations. Thereby Eq.(6.4) is a mapping from
the optomechanical coupling rate onto tabulated molecular Raman activities.
It should be noted that since in the remainder of this chapter, Gm always
appears in products with the position xm, quantitative knowledge of xzpf
(or equivalently the mass m) is not required. We note that the analogy of
cavity optomechanics to Raman scattering assumes that the laser driving is
not exciting any electronic transition of the molecule, and that the molecular
vibration can be described by a harmonic oscillator, which is usually a safe
assumption for small vibration amplitudes (Fig. 6.3(c)). As single molecule
Raman scattering experiments are extremely challenging [14], the authors of
Ref. [201] also studied the case where one instead assumes an ensemble of
N identical molecules coupled to light solely via the optical mode with the
same coupling rate Gm. They concluded that the optomechanical interaction
between this ensemble and the cavity mode boils down to the interaction
between a single collective "superradiant" mechanical mode and the cavity,
with an optomechanical coupling Gm scaled by a factor

√
N .

From the Hamiltonian Eq.(6.3), in the rotating frame at the frequency of the
driving laser ωL, one can derive two coupled quantum-Langevin equation for

1Compared to Roelli et al. [201] there is a factor 1/2 difference in mode volume definition, for
consistency with Ref. [94].
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the evolution of â and b̂ [201, 306] on basis of which they can set up a master-
equation formalism to capture all coupling to photonic and phononic baths
[208, 303, 304]. In this chapter we focus solely on effects that do not require
a quantum treatment, and therefore we focus on the classical equation of
motion obtained by taking the expectation value of cavity field and molecular
position operators a ≡ 〈â〉 and xm ≡ 〈x̂m〉 (we used x̂m = xzpf

(
b̂†+ b̂

)
and the

momentum operator p̂m = ixzpf mΩm

(
b̂† − b̂

)
for an effective mass of m). Fluc-

tuations, i.e. laser noise and molecular fluctuations (thermal), and driving,
can be reintroduced in this equation in a manner that respects the fluctuation-
dissipation theorem [315, 316]. Thus one obtains a set of coupled equations
of motion2 with an external optical driving and associated fluctuations sin,a,
vacuum noise δs0,a and a mechanical driving force Fext

ȧ+ (−i(ωL −ωa) + γa/2)a− iGmxma =

√
ηa,inγa sin,a +

√
(1− ηa,in)γaδs0,a

ẍm +Ω2
mxm + Γmẋm − h̄

mGm|a|2 = Fext/m,
(6.5)

with γa the decay rate of the cavity. We assumed here for simplicity that the
antenna only possesses a single input/output channel sin,a, namely far-field
radiation, and we denote with ηa,in < 1 the coupling rate to this channel nor-
malized by the total decay rate. Γm is the decay rate of the molecular vibration.
The equation of motion (EOM) for x is second order in time and does not con-
tain any complex term as xm must be real valued. The equation for the cavity
field is first order as it only describes the evolution of the envelope of the fast
electric field oscillations (300 − 600 THz in the visible against 10 − 50 THz
for molecular vibration). These two equations are coupled through terms
proportional to the optomechanical coupling rate Gm. In the EOM for the
cavity, this optomechanical coupling term can be read as a position dependent
shift of the cavity resonance frequency. In the EOM for xm, the coupling term
represents a radiation pressure proportional to the intensity of the light field.
Note that re-injecting the EOM for xm into the equation for a gives rise to a
third order Kerr-like non-linear term when the driving of the vibration by the
optics dominates thermal fluctuations Fext .

6.2.2. Raman scattering in a homogeneous medium
The formalism introduced by Roelli et al. [201], and most subsequent works
[208, 304] with notable exception of Dezfouli et al. [303] always approximate
the photonic environment of the molecule to be a single cavity mode. One of
the consequences is that this framework cannot quantify the enhancement of

2The time convention in this chapter differs from all other chapters in this thesis, in order to
be consistent with the molecular optomechanics literature. Indeed, the cavity and molecular
optomechanics community uses e−iωt , where the rest of this thesis uses e+iωt . In practice, this
means that this chapter considers negative imaginary part for complex frequency, i.e. loss terms
in −iγ/2 instead of +iγ/2.
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Raman scattering by the cavity by comparing it to emission in a homogeneous
medium (i.e. without the cavity). To do so, we therefore resort to a classical
description of Raman scattering [275]: in a homogeneous medium of refrac-
tive index n, the power radiated by a dipole pm at a frequency ωD is given by
Larmor’s formula

W0 =
ω4
Dn|pm|

2

12πε0c3
. (6.6)

The Raman scattering by a molecule of polarizability αm (taken at the fre-
quency ωL of the pump laser) can be thought as being the radiation by an
equivalent Raman dipole

pm(ωD = ωL +Ω) =
∂αm

∂xm
xm(Ω)Einc(ωL) (6.7)

due the the molecular motion xm at the frequency Ω. In the considered regime,
the molecular motion is stochastic and driven by thermal fluctuation as op-
posed to the regime where it is driven by radiation pressure. Therefore, the
spectrum of radiation of a Raman dipole in an homogeneous medium of index
n, W0→ S00(ωD) can be calculated by Larmor’s formula by substituting

|pm|2→
∣∣∣∣∣
∂αm

∂xm

∣∣∣∣∣
2

Sxx(Ω)
∣∣∣Einc(ωL)

∣∣∣2 , (6.8)

where Sxx(Ω) is the spectral density of the position fluctuations of the oscil-
lator. For weak damping, and assuming that the Raman "transition" dipole
moment does not depend on the laser frequency (i.e. we do not consider
selection rules [275]), Sxx(Ω) is given by [316]

Sxx(Ω) = x2zpf

[
n̄mΓm

(Ω −Ωm)2 + (Γm/2)2
+

(n̄m + 1)Γm
(Ω+Ωm)2 + (Γm/2)2

]
(6.9)

with n̄m ≡
〈
b̂†b̂

〉
=

(
e
h̄Ωm
kBT − 1

)−1
the thermal occupancy at temperature T of

the first excited vibrational state of the molecule of energy h̄Ωm (kB is the
Boltzmann constant). The Raman spectrum of radiation in a homogeneous
medium of refractive index n results as

S00(ωD) =
ω4
Dn

12πε0c3

∣∣∣∣∣
∂αm

∂xm

∣∣∣∣∣
2

Sxx(Ω)
∣∣∣Einc(ωL)

∣∣∣2 . (6.10)

Figure 6.4 illustrates the Raman spectrum emitted in vacuum (n = 1) as a
function of the laser frequency ωL and the detected frequency ωD = ωL +Ω
for an ensemble of N = 103 Raman active molecules with vibration of
frequency Ωm/(2π) = 30 THz, (∆ν = 1000 cm−1, h̄Ωm = 125 meV) and a
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the evolution of â and b̂ [201, 306] on basis of which they can set up a master-
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b̂†+ b̂

)
and the

momentum operator p̂m = ixzpf mΩm

(
b̂† − b̂

)
for an effective mass of m). Fluc-
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√
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Figure 6.4: Normalized Raman spectrum S00 in vacuum for a Raman vibration energy of
Ωm/(2π) = 30 THz, for a quality factor of Qm = 200 at room temperature, as function
of incident laser frequency (ωL) and detected frequency (ωD ). The green dashed line
indicate the laser frequency, and we observe a red-shifted Stokes line and blue-shifted
anti-Stokes line, indicated by the white arrows.

decay rate Γm = 150 GHz (Qm = 200) at room temperature of T = 300 K
(kBT = 26 meV). We normalize the spectrum to Sref, the Stokes emission at
a frequency ωD/(2π) = ωa/(2π) = 460 THz (defined later as the resonance
of a plasmonic antenna), i.e. for a laser frequency ωL = ωa + Ωm. This
normalization at a somewhat arbitrary fixed frequency serves to quantify
the enhancement of Raman scattering by resonators, yet still allows to
observe the frequency dependence of Raman scattering (scaling as ω4 in
free space, as for Rayleigh scattering). The incident electric field strength
is assumed to be the equivalent field one would obtain by focusing a
power Pinc = π(dL/2)2 ε0εc

2 |Einc |2 over a diffraction limited spot (diameter
dL = 1.22λ0, where λ0 is taken to be the resonant wavelength 2πc

ωa
of the

photonic resonator). The incident power in this example, and all other
examples in this chapter, is 500 µW. For fair comparison with our SERS model
later on, which assumes that the mode volume of the plasmonic hotspot does
not depend on wavelength, we choose a fixed value for λ0 =

2πc
ωa

. We observe
a Stokes line systematically red-shifted by −Ωm for the laser frequency, and
the corresponding blue-shifted anti-Stokes line, IS/IAS = 120 times weaker
than Stokes at room temperature for the considered Raman shift.

6.2.3. Plasmon enhanced Raman scattering spectrum
The classical equations of motion Eq.(6.5) are nonlinear, and hence contain
rich physics well beyond linear Raman spectroscopy. Indeed, in [201], Roelli
et al. describe the effects of dynamical backaction evidenced by a superlinear
enhancement of the Raman scattering signal with enough pump intensity.
This backaction appears in Eq.(6.5) via the non-linear term radiation pressure
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term h̄
mGm|a|2 in the equation for xm. While this physics is interesting, here our

main focus is first to understand the origin of linear Raman spectra from the
equations of motion. To this end, one must assume that if the cavity has an
average strength ā but only small fluctuations around it. The dynamical back-
action term reduces to a constant h̄

mGm|ā|2 so that the molecular coordinate
only experiences a shift in equilibrium position from radiation pressure, but
decouples entirely from the cavity dynamics. The equation of motion for the
cavity then still stipulates that the molecular vibration (motion now defined
to be around the shifted equilibrium position, with concomitant small shift in
cavity resonance absorbed in ωa) imprints on the cavity field

ȧ+ (−i(ωL −ωa) + γa/2)a− iGmxma =
√
ηa,inγa sin,a. (6.11)

We can express Eq.(6.11) in a rotated frame frequency domain, where
a(t)→ a(Ω), xm(t)→ xm(Ω) and sin,a(t)→ sin,a(Ω)

− iΩa+ (−i(ωL −ωa) + γa/2)a− iGm[xm � a] =
√
ηa,inγa sin,a, (6.12)

where [xm � a](Ω) ≡
∫ +∞
−∞ xm(Ω −Ω′)a(Ω′)dΩ′ is the convolution of a(Ω) and

xm(Ω). Note that since Ω is in the frame rotating at the laser frequency ωL,
corresponding optical signals in the laboratory frame actually have frequen-
cies ω ≡ Ω +ωL. Furthermore, the quantity a(Ω = 0) is simply the average
cavity occupation ā, while a(Ω � 0) is the fluctuation in cavity occupation due
to the molecular vibration.

The convolution term means that in principle inserting molecular motion
at one frequency Ωm into Eq.(6.12) will drive the cavity field to fluctuate not
only at the Raman sideband Ωm but also at an infinite sequence of weaker
higher order sidebands. These can be neglected if the cavity field has only
small fluctuations a(Ω � 0) around the average amplitude ā = a(Ω = 0). In
this limit, one finds the average field in the cavity as

ā =
i
√
ηa,inγas̄in,a

ωL −ωa + iγa/2
, (6.13)

while for the fluctuations one applies Eq.(6.12) replaced by xm(Ω)ā. This
results in a fluctuation of the cavity field at frequency Ω, i.e., detection at
physical frequency ωD = ωL +Ω

a(Ω = ωD −ωL) = iχa(ωD)Gmāxm(Ω)

with χa(ω) ≡
i

ω −ωa + iγa/2
. (6.14)

Here we have introduced χa as a cavity susceptibility describing the ampli-
tude of the cavity field at frequencies other than the laser driving, due to xm.
The susceptibility of the cavity is resonant for ωD = ωL − Ωm (i.e. Stokes
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Figure 6.4: Normalized Raman spectrum S00 in vacuum for a Raman vibration energy of
Ωm/(2π) = 30 THz, for a quality factor of Qm = 200 at room temperature, as function
of incident laser frequency (ωL) and detected frequency (ωD ). The green dashed line
indicate the laser frequency, and we observe a red-shifted Stokes line and blue-shifted
anti-Stokes line, indicated by the white arrows.
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a frequency ωD/(2π) = ωa/(2π) = 460 THz (defined later as the resonance
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later on, which assumes that the mode volume of the plasmonic hotspot does
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emission), when the laser is blue-detuned from the cavity such that ωL =
ωa +Ωm, and for ωD = ωL +Ωm (i.e. anti-Stokes emission), when the laser
is red detuned from the cavity such that ωL = ωa −Ωm. As for the case of
vacuum, one can now express the spectral density of the cavity amplitude
(when neglecting noise in the drive laser field) in terms of the spectral density
of the thermal noise Sxx(Ω) in xm as a linear transduction

Saa(ωD) = |χa(ωD)|2|Gmā|2Sxx(Ω). (6.15)

The signal intensity spectrum at the far field output channel through which
one reads out the Raman scattering is simply the intensity of the cavity field
multiplied by the loss rate of this channel

Sout,a(ωD) = ηa,outγaSaa(ωD) = ηa,outγa|χa(ωD)|2|Gmā|2Sxx(Ω). (6.16)

6.2.4. Factorization into pump field and LDOS contributions
The Raman spectrum collectible in the far field that we derived can be factor-
ized into three terms as

Sout,a(ωD) = ηa,outFa︸��︷︷��︸
LDOSC

∣∣∣∣∣∣
āẼa

Einc

∣∣∣∣∣∣
2

︸�︷︷�︸
pump

S00(ωD)︸����︷︷����︸
free space

, (6.17)

i.e., as the product of the free space Raman spectrum, a pump field enhance-
ment term, and a term related to the (collected part) of the LDOS at the (anti)-
Stokes shifted frequency. As evidence for this assertion, note that the LDOS
enhancement factor for a dipole emitter of unit dipole moment, and emitting
at frequency ω generally reads

F = 1+
6πε0c3

ω3n
Im {p∗mE}

where E is the field emitted by the dipole, evaluated at the dipole. Within
the confines of our model that treats the optics as a phenomenological single
mode cavity of real mode volume Va, this expression is equivalent to

F = 1+
3πc3

ω2n3Va
Reχa(ω) ≡ 1+ Fa

where Fa is the Purcell factor set by Va and the cavity damping γa. Since
within this model Reχa(ωD) =

γa
2 |χa(ωD)|2, indeed the leading term

ηa,outγa|χa(ωD)|2 in the Raman spectrum is the product of light extraction
efficiency (ηa,out) and LDOS enhancement at the (anti)-Stokes frequency.
The pump enhancement evidently appears in the Raman spectrum through ā,
while the remaining factors regroup into the Raman spectrum of the molecular
species in free space. We therefore find that the molecular optomechanics
framework of Roelli [201], taken to the limit of linear SERS enhancement, is
consistent with the "E4" law factorized in pump and LDOS terms.
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6.2.5. SERS example calculation
As an example, Figure 6.5 shows predicted Raman spectra for an ensemble of
N = 103 molecules with the same vibrational resonance as used in Fig. 6.4,
coupled to a plasmonic cavity, or antenna. We assumed a Raman activity
Rm = 500Å

4 · amu−1. The parameters of the plasmonic antenna are the same
as used in Section 2 of Ref. [94], i.e. we consider an antenna with a polariz-
ability resonant at ωa/(2π) = 460 THz with an intrinsic Ohmic linewidth of
γa,0/(2π) = 19.9 THz and an oscillator strength of βa = 0.12 C/kg. It should
be noted that here and in the following, the total damping rate that appears in
the polarizability is

γa(ω) = γa,0 + γa,rad(ω) with γa,rad(ω) = βa
nω2

6πε0c3
.

The total damping rate is the sum of intrinsic Ohmic damping, and radia-
tive damping that increases in proportion to the particle oscillator strength
(stronger scatterers have more radiative loss), and in proportion to the free
space LDOS. This is required so that , in absence of absorption, the result-
ing polarizability satisfies the optical theorem (exctinction equals scattering).
Equivalently this can be seen as including non-electrostatic corrections to the
dipolar Mie expansion coefficient for a small scatterer (cf. Chapter 2). For our
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Figure 6.5: Molecular optomechanics with a single plasmonic cavity. (a) Average
intensity of the cavity field, i.e. at the driving laser frequency. (b) Local density of
states for photons collected in the far-field. (c) Transfer function between xm and a of the
antenna Sa,out/Sxx . (d) Raman spectrum Sa,out , normalized by Sref (Stokes emission in
homogeneous medium at ωa) for 103 molecules coupled to a single plasmonic cavity as
a function of driving and detected frequencies. We assume the same Raman parameters
for molecules as for Fig. 6.4. We observe an enhancement of the Raman scattering due
to the plasmonic resonance of almost 5 orders of magnitude. The green dashed lines in
(c) and (d) indicate the laser frequency, while the white dashed lines indicate Stokes and
anti-Stokes emission. (e) Raman spectrum as a function of laser frequency taken at the
Stokes (red) or anti-Stokes peak (blue). These plots are therefore diagonal slices of (d)
for ωD = ωL ±Ωm. We note that the Stokes and anti-Stokes scattering are optimum for a
laser respectively blue and red detuned from the cavity by ∼Ωm/2.

example, we obtain a radiative loss rate of γa,rad(ωa)/(2π) = 35.5 THz and
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emission), when the laser is blue-detuned from the cavity such that ωL =
ωa +Ωm, and for ωD = ωL +Ωm (i.e. anti-Stokes emission), when the laser
is red detuned from the cavity such that ωL = ωa −Ωm. As for the case of
vacuum, one can now express the spectral density of the cavity amplitude
(when neglecting noise in the drive laser field) in terms of the spectral density
of the thermal noise Sxx(Ω) in xm as a linear transduction

Saa(ωD) = |χa(ωD)|2|Gmā|2Sxx(Ω). (6.15)

The signal intensity spectrum at the far field output channel through which
one reads out the Raman scattering is simply the intensity of the cavity field
multiplied by the loss rate of this channel

Sout,a(ωD) = ηa,outγaSaa(ωD) = ηa,outγa|χa(ωD)|2|Gmā|2Sxx(Ω). (6.16)

6.2.4. Factorization into pump field and LDOS contributions
The Raman spectrum collectible in the far field that we derived can be factor-
ized into three terms as
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i.e., as the product of the free space Raman spectrum, a pump field enhance-
ment term, and a term related to the (collected part) of the LDOS at the (anti)-
Stokes shifted frequency. As evidence for this assertion, note that the LDOS
enhancement factor for a dipole emitter of unit dipole moment, and emitting
at frequency ω generally reads

F = 1+
6πε0c3

ω3n
Im {p∗mE}

where E is the field emitted by the dipole, evaluated at the dipole. Within
the confines of our model that treats the optics as a phenomenological single
mode cavity of real mode volume Va, this expression is equivalent to

F = 1+
3πc3

ω2n3Va
Reχa(ω) ≡ 1+ Fa

where Fa is the Purcell factor set by Va and the cavity damping γa. Since
within this model Reχa(ωD) =

γa
2 |χa(ωD)|2, indeed the leading term

ηa,outγa|χa(ωD)|2 in the Raman spectrum is the product of light extraction
efficiency (ηa,out) and LDOS enhancement at the (anti)-Stokes frequency.
The pump enhancement evidently appears in the Raman spectrum through ā,
while the remaining factors regroup into the Raman spectrum of the molecular
species in free space. We therefore find that the molecular optomechanics
framework of Roelli [201], taken to the limit of linear SERS enhancement, is
consistent with the "E4" law factorized in pump and LDOS terms.
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6.2.5. SERS example calculation
As an example, Figure 6.5 shows predicted Raman spectra for an ensemble of
N = 103 molecules with the same vibrational resonance as used in Fig. 6.4,
coupled to a plasmonic cavity, or antenna. We assumed a Raman activity
Rm = 500Å

4 · amu−1. The parameters of the plasmonic antenna are the same
as used in Section 2 of Ref. [94], i.e. we consider an antenna with a polariz-
ability resonant at ωa/(2π) = 460 THz with an intrinsic Ohmic linewidth of
γa,0/(2π) = 19.9 THz and an oscillator strength of βa = 0.12 C/kg. It should
be noted that here and in the following, the total damping rate that appears in
the polarizability is

γa(ω) = γa,0 + γa,rad(ω) with γa,rad(ω) = βa
nω2

6πε0c3
.

The total damping rate is the sum of intrinsic Ohmic damping, and radia-
tive damping that increases in proportion to the particle oscillator strength
(stronger scatterers have more radiative loss), and in proportion to the free
space LDOS. This is required so that , in absence of absorption, the result-
ing polarizability satisfies the optical theorem (exctinction equals scattering).
Equivalently this can be seen as including non-electrostatic corrections to the
dipolar Mie expansion coefficient for a small scatterer (cf. Chapter 2). For our
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Figure 6.5: Molecular optomechanics with a single plasmonic cavity. (a) Average
intensity of the cavity field, i.e. at the driving laser frequency. (b) Local density of
states for photons collected in the far-field. (c) Transfer function between xm and a of the
antenna Sa,out/Sxx . (d) Raman spectrum Sa,out , normalized by Sref (Stokes emission in
homogeneous medium at ωa) for 103 molecules coupled to a single plasmonic cavity as
a function of driving and detected frequencies. We assume the same Raman parameters
for molecules as for Fig. 6.4. We observe an enhancement of the Raman scattering due
to the plasmonic resonance of almost 5 orders of magnitude. The green dashed lines in
(c) and (d) indicate the laser frequency, while the white dashed lines indicate Stokes and
anti-Stokes emission. (e) Raman spectrum as a function of laser frequency taken at the
Stokes (red) or anti-Stokes peak (blue). These plots are therefore diagonal slices of (d)
for ωD = ωL ±Ωm. We note that the Stokes and anti-Stokes scattering are optimum for a
laser respectively blue and red detuned from the cavity by ∼Ωm/2.

example, we obtain a radiative loss rate of γa,rad(ωa)/(2π) = 35.5 THz and
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a resulting albedo of A(ωa) = 0.64, typical of a gold antenna on resonance.
We assume that the molecules are positioned at a small distance from the
antenna edge such that the apparent mode volume that they are subject to is
Va = 0.003λ3. The calculation further assumes perfect matching of excitation
(power again assumed at 500 µW) and collection over a half space (NA = 1 in
vacuum , or ∼ ηa,in/outγa ≈ γa,rad/2).

Figures. 6.5(a-c) graphically illustrates the factorization of the transfer
function from vibrational to optical fluctuations into a pump term, the
intensity of the laser field inside the cavity |ā|2 which depends on the laser
frequency ωL, and a term quantifying the collected local density of states
(LDOSC) in the antenna radiation channel which depends on the frequency
of the photon observed ωD , as shown in Eq.(6.17). Figure 6.5(d) shows the
expected Raman spectrum Sout,a as a function of laser frequency and detected
frequency normalized by the Stokes signal emitted in a homogeneous
medium at ωD = ωa (i.e. ωL = ωa + Ωm), Sref = S00. We observe an
enhancement of the Stokes emission of almost five orders of magnitude.
Also, we can clearly identify that one requires different laser frequencies
to optimize either the Stokes or anti-Stokes emission. For the considered
molecules and plasmonic cavity, the Raman shift is smaller than the cavity
linewidth Ωm/(2π) = 30 THz< γ̄a/(2π) = 55.4 THz, i.e. we are in the non-
resolved-sideband regime. In this situation, the enhancement of the pump (at
ωL − ωa = 0) and LDOS (at ωL − ωa = ±Ωm) give rise to a single "average"
optimum at ωL −ωa = +Ωm/2 for Stokes emission and ωL −ωa = −Ωm/2 for
anti-Stokes emission, as shown in Fig. 6.5(e).

6.3. Molecular optomechanics with antenna-cavity
hybrid resonators

In this section we discuss how to extend the framework of Roelli et al. [201]
to the coupled mode description of antenna-cavity hybrid resonators of the
type studied by Doeleman et al. [94], and studied in this thesis in Chapters 4
and 5. The aim is to account for the structured LDOS that they offer as well as
for the input-output efficiencies for waveguide-based and far-field addressing
that will determine pump field enhancement and extraction efficiency. Hybrid
resonators composed of plasmonic antenna and dielectric cavity have shown
the potential to exceed their individual components in term of emission en-
hancement (LDOS), and can provide sub-diffraction limit mode volumes at
high quality factors. Furthermore, they have recently been proposed to give
access to new interesting physics in the context of nonlinear molecular op-
tomechanics by Dezfouli et al. [208].
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6.3.1. Coupled mode equations for antenna-cavity system
We study the scenario of a hybrid composed of a single plasmonic antenna
resonator and a whispering gallery mode (WGM) dielectric resonator, such as
a microdisk, that is coupled to a waveguide that is placed alongside it. The
dielectric cavity is described by a pair of intrinsically degenerate whispering
gallery modes of resonance frequency ωc, and quality factor Qc (cf. Fig. 6.6(a)).
We assume that the coupling of the antenna to all modes other than the cavity
mode, i.e., to free space, can be lumped into a single loss rate, i.e., a single in-
put/output far-field channel. The cavity possesses two relevant input/output
channels, as appropriate for side coupling in a typical tapered fibre set up to
address microdisks (cf. Fig. 6.6(a)). For simplicity, we assume that losses of
the cavity other than radiation inside these two channels, i.e. absorption and
other far-field radiation can be formally treated as absorption. This implies
that their radiation patterns in the far-field have negligible overlap so that
interference in the far field can be ignored (opposite to the scenario probed in
Chapter 2).

sin,+

sin,-sout,-

sout,+

sin,asout,a
(a) (b)

(c)

Figure 6.6: Considered system for molecular optomechanics with antenna-cavity hybrid.
(a) Sketch of the hybrid; a plasmonic cavity, or antenna, (orange) is coupled to Raman
active molecules (green), and to a microdisk dielectric cavity supporting whispering
gallery modes (blue). The antenna has only a far-field radiation input/output channel,
whereas the cavity is assumed to have two input/output channels, accessible for instance
via evanescent coupling to a nearby waveguide. (b) and (c) sketch the degenerate modes
of the cavity, in the standing wave basis, respectively the anti-symmetric and symmetric
modes (with respect to a plane define by antenna position). In this basis, the antenna is
at a node of the field of the anti-symmetric mode and therefore does not couple to this
mode.

For a cavity supporting whispering gallery modes with two input/output
channels (Fig. 6.6(a)), but fed from just one side, the coupled-mode equations
are usually written as


−i (ωL −ωc + iγc/2) c+ =

√
ηc,inγc s+,in

−i (ωL −ωc + iγc/2) c− = 0
(6.18)
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a resulting albedo of A(ωa) = 0.64, typical of a gold antenna on resonance.
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type studied by Doeleman et al. [94], and studied in this thesis in Chapters 4
and 5. The aim is to account for the structured LDOS that they offer as well as
for the input-output efficiencies for waveguide-based and far-field addressing
that will determine pump field enhancement and extraction efficiency. Hybrid
resonators composed of plasmonic antenna and dielectric cavity have shown
the potential to exceed their individual components in term of emission en-
hancement (LDOS), and can provide sub-diffraction limit mode volumes at
high quality factors. Furthermore, they have recently been proposed to give
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6.3.1. Coupled mode equations for antenna-cavity system
We study the scenario of a hybrid composed of a single plasmonic antenna
resonator and a whispering gallery mode (WGM) dielectric resonator, such as
a microdisk, that is coupled to a waveguide that is placed alongside it. The
dielectric cavity is described by a pair of intrinsically degenerate whispering
gallery modes of resonance frequency ωc, and quality factor Qc (cf. Fig. 6.6(a)).
We assume that the coupling of the antenna to all modes other than the cavity
mode, i.e., to free space, can be lumped into a single loss rate, i.e., a single in-
put/output far-field channel. The cavity possesses two relevant input/output
channels, as appropriate for side coupling in a typical tapered fibre set up to
address microdisks (cf. Fig. 6.6(a)). For simplicity, we assume that losses of
the cavity other than radiation inside these two channels, i.e. absorption and
other far-field radiation can be formally treated as absorption. This implies
that their radiation patterns in the far-field have negligible overlap so that
interference in the far field can be ignored (opposite to the scenario probed in
Chapter 2).
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Figure 6.6: Considered system for molecular optomechanics with antenna-cavity hybrid.
(a) Sketch of the hybrid; a plasmonic cavity, or antenna, (orange) is coupled to Raman
active molecules (green), and to a microdisk dielectric cavity supporting whispering
gallery modes (blue). The antenna has only a far-field radiation input/output channel,
whereas the cavity is assumed to have two input/output channels, accessible for instance
via evanescent coupling to a nearby waveguide. (b) and (c) sketch the degenerate modes
of the cavity, in the standing wave basis, respectively the anti-symmetric and symmetric
modes (with respect to a plane define by antenna position). In this basis, the antenna is
at a node of the field of the anti-symmetric mode and therefore does not couple to this
mode.

For a cavity supporting whispering gallery modes with two input/output
channels (Fig. 6.6(a)), but fed from just one side, the coupled-mode equations
are usually written as


−i (ωL −ωc + iγc/2) c+ =

√
ηc,inγc s+,in

−i (ωL −ωc + iγc/2) c− = 0
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for the clockwise and counterclockwise mode c±. Here the input waveguide
only feeds the counterclockwise mode c+. We define ωL as the laser frequency,
ωc,γc as the cavity frequency and loss rate, and ηc as the fraction of the cavity
loss rate that is due to the adjacent input/output waveguide. The perturbation
of the cavity by a plasmon antenna will lift the mode degeneracy and lead to
split symmetric and antisymmetric modes (symmetry relative to the antenna)
cS ,A = 1√

2
(c+ ± c−). In this basis, the equations of motion (at zero perturbation

strength) are identical and read

χ−1c (ω)cS ,A =
√
ηc,inγc/2s+,in with χc(ω) ≡

i
ω −ωc + iγc/2

. (6.19)

Both the symmetric and anti-symmetric modes are now driven at a coupling
rate that is divided by a factor 1/

√
2. Since the antenna will be at a node of the

anti-symmetric cavity mode, only the symmetric cavity mode will play a role
in the formation of hybrid modes relevant for our Raman scattering problem
(Fig. 6.6(b-c)).

Generically, in optomechanics with whispering gallery mode cavities, both
cavity modes may couple with the same mechanical degree of freedom. Such
multimode coupling has been the key to recent experiments on optomechan-
ically induced transparency, non-reciprocity and optical circulation [71, 72,
317, 318] experiments where one deploys a WGM resonator in two or four
port configurations (one or two tapered fibres), and uses a control beam at
frequency ωL to control probe signals at side band frequencies ωL+Ωm. How-
ever, in this work we explore Raman scattering as the optomechanical inter-
action, where we assume that the molecular matter is only coupled to the
system via the antenna plasmonic mode. This assumption is reasonable as
long as the mode volume of the dielectric cavity modes is more than 2 orders
of magnitude bigger than the antenna, and the matter is placed in the near-
field of the antenna. Further we focus on Raman scattering (molecular motion
weak and only driven by thermal fluctuations), and exclude the possibility
of coherent control and probe beams to address the vibration, as in optome-
chanically induced transparency [317, 318]. Focusing on this scenario avoids
issues in the definition of optomechanical coupling rates, since in this scenario
the motion does not couple the symmetric mode to the antisymmetric mode.
This means that (anti)-Stokes shifted light will only appear in the symmetric
mode, and will distribute equally over both output ports. Only for reflection
and transmission spectra of the pump light one still needs to consider the anti-
symmetric mode to account for the interference in the forward direction with
the direct drive beam [94]. In this Chapter, we only report Raman spectrum,
and hence will not consider the anti-symmetric WGM mode.

Next, we follow the approach of Doeleman et al. [94] to include a plas-
monic antenna coupled to the symmetric cavity mode. An idealized model of
a plasmonic antenna ascribes to it a Lorentzian polarizability α(ω) (resonance
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ωa and damping γa that includes Ohmic and radiation loss), so that the dipole
moment p in the antenna couples to the cavity mode of amplitude c (dropping
the subscript) according to



(
ω2
a −ω2 − iωγa

)
p − βaẼcc = βaEext(

ω2
c −ω2 − iωγc

)
c − ω2

2 Ẽcp = −2iω√ηc,inγc sc,in
(6.20)

with Ẽc ≡ Ẽc · ep the projection of the mode profile of the cavity mode on
the antenna direction. Since here we evaluate a coupled mode formalism,
and not QNM theory, this presupposes that the mode is normalized such
that |c|2 represents the energy stored in the mode. The driving channels in
this model are the waveguide ports into the cavity (|sc,in|), and Eext driving
the antenna. While Doeleman et al. [94] considered a spontaneous emitter
to provide Eext , in this work this term will provide the route through which
molecular motion is introduced in the equation system. Ref [94] verifies that
this equation set accurately predicts waveguide input-output spectra, far field
scattering and LDOS for a spontaneous emitter if one inserts as parameters
resonance frequencies, quality factors, oscillator strengths and mode volumes
that are obtained from full wave simulations of the bare antenna (no cavity,
calculating scattering and extinction cross-section spectra) and bare cavity
(calculating LDOS spectra from which Q and also the effective mode volume,
through Purcell’s formula, are extracted).

Evidently, the formalism proposed by Doeleman et al. to describe hy-
brid plasmonic-photonic systems is second order in time, while the formalism
proposed by Roelli et al. [201] for molecular optomechanics (Section 6.2) is
first order in time. As long as the frequency differences between all optical
frequencies in the problem are small compared to the frequencies themselves,
we can assume ω2

a,c − ω2 ≈ 2ω (ωa,c −ω) to convert the hybrid plasmonic-
photonic system equations to first order. Furthermore, the equation system
can be cast in a symmetric notation


−i (ω −ωa + iγa/2)a− iKc =

√
ηa,inγa sa,in

−i (ω −ωc + iγc/2) c − iKa =
√
ηc,inγc sc,in

(6.21)

by rescaling of quantities to

a ≡ ω√
2β

p, K ≡
√

βa
2
Ẽc

2
=

1
2

√
βa

ε0εVc
and

√
ηa,inγa sa,in ≡

i
2

√
βa
2
Eext ,

(6.22)

where Vc(r0) =
∫
ε(r)||Ẽc(r)||2dr
ε(r0)|Ẽc(r0)|2

= 2
ε0ε|Ẽc(r0)|2

is the mode volume of the cavity
mode at the position of the antenna, projected along the direction of the an-
tenna. We will refer to a as cavity amplitude for the plasmon antenna, and to
K as antenna-cavity coupling strength. Viewing these symmetric equations as
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for the clockwise and counterclockwise mode c±. Here the input waveguide
only feeds the counterclockwise mode c+. We define ωL as the laser frequency,
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a linear system, one can diagonalize to obtain the response in both resonators
to external driving as


χ′−1a a =

√
ηa,inγa sa,in + iKχc

√
ηc,inγc sc,in

χ′−1c c =
√
ηc,inγc sc,in + iKχa

√
ηa,inγa sa,in

(6.23)

where we introduced the hybridized antenna and cavity susceptibilities

χ′−1a ≡ χ−1a +K2χc

χ′−1c ≡ χ−1c +K2χa
. (6.24)

These hybridized susceptibilities can be seen as the original susceptibilities of
the antenna and cavity dressed by an infinite series of cavity-antenna scatter-
ing events.

6.3.2. Molecular optomechanics
Next we include molecular motion in vein of Section 6.2, under the assump-
tion that dynamical backaction mechanisms can be neglected. Thus, we as-
sume a laser frequency ωL driving the system, and determine the average
field ā and c̄ inside the antenna and cavity at the laser frequency. At ωL the
system is driven either via the far-field through the antenna dipole moment,
or via the cavity input channel, thus setting the average amplitudes


−i (ωL −ωa + iγa/2) ā− iKc̄ =

√
ηa,inγa s̄a,in

−i (ωL −ωc + iγc/2) c̄ − iKā =
√
ηc,inγc s̄c,in

(6.25)

Next we find the spectrum of fluctuations in a and c (detection frequency
ωD = ωL+Ω). At ωD � 0, the Raman equivalent dipole pm enters as a driving
of the antenna dipole moment


−i (ωD −ωa + iγa/2)a− iKc = fR
−i (ωD −ωc + iγc/2) c − iKa = 0.

(6.26)

We will now argue why the driving term fR has the form iGmāxm, i.e., the
molecular optomechanics driving term that appears also in the work of Roelli
et al. [201]. We assume that the Raman active vibration only directly couples
to the antenna, and not the cavity mode. As in the earlier derivation of the
effective Raman dipole appearing in plasmon enhanced SERS (Eq.(6.4)), the
coupling between a molecular dipole and the antenna reads

fR = i
ωD

4
Ẽapm, (6.27)

with Ẽa the normalized antenna mode field at the position of the molecule.
In turn, the molecular dipole moment is induced by the antenna field, so that
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the fluctuating part due to the molecular vibration, i.e., the effective Raman
dipole reads

pm(ωD = ωL +Ω) ≡ δαmEa→m. (6.28)

Here δαm =
(
∂αm
∂xm

)
xm is the variation of the molecule polarizability due to the

vibration, and Ea→m = Ẽaā is the electric field polarizing this Raman dipole,
approximated as the average field stored by the antenna. If one defines as
a short hand an antenna mode volume in terms of the antenna normalized
mode field as Va(rm) = 2

ε0ε|Ẽa(r0)|2
, we can express fR in Eq.(6.27) as

fR = i
ωD

4
Ẽapm = i

ωD

4
Ẽa

[(
∂αm

∂x

)
xm

] [
Ẽaā

]
= iωD

(
∂αm

∂x

)
1

2ε0εVa
āxm ≈ iGmāxm.

To summarize, we can now predict SERS spectra in plasmonic hybrids un-
der assumptions similar to the molecular optomechanics approach of Roelli et
al. [201]. To this end one first determines from Eq.(6.25) the average plasmonic
and antenna excitation at the laser frequency ωL, and subsequently uses that
as input for Eq.(6.26) that returns the resulting response at shifted frequencies
ωD generated by the molecular vibration. We verified that in the limit K → 0,
i.e. no antenna-cavity coupling, the equations for ā and a reduce to the case of
a single antenna.

The remaining task is to convert antenna and cavity amplitudes to ob-
servable spectra in the output ports, taking into account that the molecular
motion spectral density is due to thermal fluctuations. As a helpful step,
we abbreviate Eq.(6.26) for the fluctuating amplitudes with the help of the
hybridized cavity and antenna susceptibilities


χ′−1a (ωD)a = iGmāxm
χ′−1c (ωD)c = iKχa(ωD)Gmāxm.

(6.29)

We immediately identify the transfer function between a and xm, and between
c and xm, and can calculate the spectra at the antenna and cavity output from
the spectral density of the molecular motion as


Sout,a(ωD) = ηa,outγa|χ′a(ωD)|2|Gmā|2Sxx(Ω)

Sout,c(ωD) = ηc,outγc |χ′c(ωD)|2K2|χa(ωD)|2|Gmā|2Sxx(Ω).
(6.30)

We have verified by direct comparison to a calculation for LDOS, i.e., for
spontaneous emission enhancement experienced by a drive dipole calculated
in Ref. [94], within the same coupled-mode assumptions, that also in hybrids
the Raman enhancement factorizes as the product of the free space Raman
spectrum, the enhancement of pump field, and an LDOS term at the (anti)-
Stokes shifted frequency. The LDOS term in fact corresponds to the collected
part of the LDOS in a given output channel. This corresponds to the fraction
of the LDOS that feeds into the waveguide output via the cavity mode, resp.
the fraction of LDOS that corresponds to antenna free-space loss.
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a linear system, one can diagonalize to obtain the response in both resonators
to external driving as


χ′−1a a =

√
ηa,inγa sa,in + iKχc

√
ηc,inγc sc,in

χ′−1c c =
√
ηc,inγc sc,in + iKχa

√
ηa,inγa sa,in

(6.23)

where we introduced the hybridized antenna and cavity susceptibilities

χ′−1a ≡ χ−1a +K2χc

χ′−1c ≡ χ−1c +K2χa
. (6.24)
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(6.26)

We will now argue why the driving term fR has the form iGmāxm, i.e., the
molecular optomechanics driving term that appears also in the work of Roelli
et al. [201]. We assume that the Raman active vibration only directly couples
to the antenna, and not the cavity mode. As in the earlier derivation of the
effective Raman dipole appearing in plasmon enhanced SERS (Eq.(6.4)), the
coupling between a molecular dipole and the antenna reads
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with Ẽa the normalized antenna mode field at the position of the molecule.
In turn, the molecular dipole moment is induced by the antenna field, so that
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xm is the variation of the molecule polarizability due to the
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approximated as the average field stored by the antenna. If one defines as
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To summarize, we can now predict SERS spectra in plasmonic hybrids un-
der assumptions similar to the molecular optomechanics approach of Roelli et
al. [201]. To this end one first determines from Eq.(6.25) the average plasmonic
and antenna excitation at the laser frequency ωL, and subsequently uses that
as input for Eq.(6.26) that returns the resulting response at shifted frequencies
ωD generated by the molecular vibration. We verified that in the limit K → 0,
i.e. no antenna-cavity coupling, the equations for ā and a reduce to the case of
a single antenna.

The remaining task is to convert antenna and cavity amplitudes to ob-
servable spectra in the output ports, taking into account that the molecular
motion spectral density is due to thermal fluctuations. As a helpful step,
we abbreviate Eq.(6.26) for the fluctuating amplitudes with the help of the
hybridized cavity and antenna susceptibilities


χ′−1a (ωD)a = iGmāxm
χ′−1c (ωD)c = iKχa(ωD)Gmāxm.

(6.29)

We immediately identify the transfer function between a and xm, and between
c and xm, and can calculate the spectra at the antenna and cavity output from
the spectral density of the molecular motion as


Sout,a(ωD) = ηa,outγa|χ′a(ωD)|2|Gmā|2Sxx(Ω)

Sout,c(ωD) = ηc,outγc |χ′c(ωD)|2K2|χa(ωD)|2|Gmā|2Sxx(Ω).
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We have verified by direct comparison to a calculation for LDOS, i.e., for
spontaneous emission enhancement experienced by a drive dipole calculated
in Ref. [94], within the same coupled-mode assumptions, that also in hybrids
the Raman enhancement factorizes as the product of the free space Raman
spectrum, the enhancement of pump field, and an LDOS term at the (anti)-
Stokes shifted frequency. The LDOS term in fact corresponds to the collected
part of the LDOS in a given output channel. This corresponds to the fraction
of the LDOS that feeds into the waveguide output via the cavity mode, resp.
the fraction of LDOS that corresponds to antenna free-space loss.
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6.4. Results
6.4.1. Enhancement spectra
We study the enhancement of Raman scattering for a ensemble of N = 103

molecules with the same vibrational parameters as used in Figs. 6.4 and 6.5,
by a hybrid resonator composed of the same antenna as in Fig. 6.4, and a
cavity resonant at ωc/(2π) = 400 THz, with a quality factor Qc = 104, and
a mode volume at the position of the antenna of Vc = 10λ3. We assume
critical coupling to the taper. Figure 6.7 reports the spectrum obtained in
the (antenna) far-field channel, for 500 µW input coupled in from the same
channel.
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Figure 6.7: Molecular optomechanics with a cavity-antenna hybrid observed through
antenna radiation channel (same parameters as 6.5, with a cavity resonant at ωc/(2π) =
400 THz, Qc = 104, and Vc = 10λ3). (a) Average intensity of the cavity field, i.e. at the
driving laser frequency. (b) Local density of states for photons collected in the far-field.
(c) Transfer function between xm and a of the antenna Sa,out/Sxx . The green dashed line
indicates the laser frequency, and the white dashed lines indicate Stokes and anti-Stokes
emission. (d) Raman spectrum as a function of laser frequency taken at the Stokes (red)
or anti-Stokes peak (blue). We observe the same broad features as in 6.5(e), due to the
"hybrid antenna" mode. Additionally, both Stokes and anti-Stokes spectra exhibit 2 new
peaks, due to the "hybrid cavity" mode. Stokes and anti-Stokes exhibit one peak at the
same laser frequency; this peak is due to enhancement of the number of pump photon
inside the cavity. The other peak, red shifted for Stokes and blue shifted for anti-Stokes
by ±Ω, is due to an hybrid increase in LDOS favouring the emission of Raman photons.

As in Fig. 6.5(a-c), we observe in Fig. 6.7 the joint effect of a pump en-
hancement and LDOS enhancement in the plasmonic cavity susceptibility, and
therefore the Raman signal scattered in the far-field. However, both these
contributions now exhibit, additionally to the antenna (hybrid) peak, a cavity-
like hybrid peak. Since this new hybrid feature is a high-Q resonance, it
falls in the resolved-sideband regime for the considered Raman shift. As a
result, Fig. 6.7(e) reveals two high-Q Fano peaks separated by Ωm, for both
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Stokes and anti-Stokes spectra. The first peak, common for Stokes and anti-
Stokes, corresponds to tuning of the pump laser to the cavity-like hybrid
mode, leading to pump field enhancement. At this frequency, free space light
can couple into the cavity mode via the antenna, subsequently boosting an-
tenna excitation. At the same time, the LDOS at the Raman-shifted frequency
is only moderately enhanced by the broader hybrid mode, i.e. by the antenna-
like mode. Conversely, for the second peak, Stokes (or anti-Stokes) emission is
enhanced due to the hybrid boost of the LDOS at the Raman shifted frequency
due to the cavity-like hybrid mode (when ωL ≈ ω′c +Ωm (ωL ≈ ω′c −Ωm)). In
this case the pump is not enhanced by the presence of the cavity mode, but
only by the broad antenna hybrid mode. In both scenarios, the enhancement
of Raman scattering does not exceed the enhancement that can be obtained
near the antenna resonance, i.e. far detuned from the cavity mode. This might
appear surprising since the cavity hybrid mode actually provides a higher
LDOS than the antenna alone, and the maximum pump enhancement at the
hybrid cavity mode is comparable to that provided by the bare antenna on its
resonance. However, maximum Raman enhancement requires the product of
pump enhancement and LDOS enhancement to be optimum. A bare antenna
exploits simultaneously an enhancement of the pump and the LDOS, whereas
a non-optimized hybrid only enhances either the pump or the emission pro-
cess, but not both simultaneously.

6.4.2. Combinations of input and output channels

Since Raman enhancement needs to exploit both pump field enhancement
and enhancement of the (extracted) LDOS, it is not sufficient to choose an
optimum set of drive and resonator frequencies, but one also needs to exploit
the appropriate channels for injecting and extracting light. To illustate this.
we present in Figure 6.8 the Raman spectrum Sout,+ extracted at one of the
cavity output channels for the exact same parameters as in Fig. 6.7, while again
assuming that the pump light addresses the antenna from free space. Since
we still consider pumping from the far field, the pump field enhancement
factor is the same as in Fig. 6.7(a). However, the extracted LDOS contribu-
tion is now different (panel (b)) compared to Fig. 6.7(b). Since only photons
resonant with the cavity hybrid mode can efficiently make their way to the
cavity output channels, the enhancement contribution at the Raman-shifted
frequency is now highly peaked (Fig. 6.8(b)) and the Raman transfer function
is now markedly asymmetric in the 2D representation (Fig. 6.8(c)) as function
of laser and detection frequency. This spectral selectivity of the cavity output
channel implies in Fig. 6.8(d) that the only relevant peaks in Raman spectra
are the ones where the Stokes (or anti-Stokes) emission is resonant with the
cavity hybrid mode (ωL = ω′c ±Ωm). Such a spectral filtering property may
be useful for compact and highly selective chip-integrated Raman devices to
detect specific chemical traces, without the use of a bulky spectrometer. In this
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cavity resonant at ωc/(2π) = 400 THz, with a quality factor Qc = 104, and
a mode volume at the position of the antenna of Vc = 10λ3. We assume
critical coupling to the taper. Figure 6.7 reports the spectrum obtained in
the (antenna) far-field channel, for 500 µW input coupled in from the same
channel.
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Figure 6.7: Molecular optomechanics with a cavity-antenna hybrid observed through
antenna radiation channel (same parameters as 6.5, with a cavity resonant at ωc/(2π) =
400 THz, Qc = 104, and Vc = 10λ3). (a) Average intensity of the cavity field, i.e. at the
driving laser frequency. (b) Local density of states for photons collected in the far-field.
(c) Transfer function between xm and a of the antenna Sa,out/Sxx . The green dashed line
indicates the laser frequency, and the white dashed lines indicate Stokes and anti-Stokes
emission. (d) Raman spectrum as a function of laser frequency taken at the Stokes (red)
or anti-Stokes peak (blue). We observe the same broad features as in 6.5(e), due to the
"hybrid antenna" mode. Additionally, both Stokes and anti-Stokes spectra exhibit 2 new
peaks, due to the "hybrid cavity" mode. Stokes and anti-Stokes exhibit one peak at the
same laser frequency; this peak is due to enhancement of the number of pump photon
inside the cavity. The other peak, red shifted for Stokes and blue shifted for anti-Stokes
by ±Ω, is due to an hybrid increase in LDOS favouring the emission of Raman photons.

As in Fig. 6.5(a-c), we observe in Fig. 6.7 the joint effect of a pump en-
hancement and LDOS enhancement in the plasmonic cavity susceptibility, and
therefore the Raman signal scattered in the far-field. However, both these
contributions now exhibit, additionally to the antenna (hybrid) peak, a cavity-
like hybrid peak. Since this new hybrid feature is a high-Q resonance, it
falls in the resolved-sideband regime for the considered Raman shift. As a
result, Fig. 6.7(e) reveals two high-Q Fano peaks separated by Ωm, for both
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Stokes and anti-Stokes spectra. The first peak, common for Stokes and anti-
Stokes, corresponds to tuning of the pump laser to the cavity-like hybrid
mode, leading to pump field enhancement. At this frequency, free space light
can couple into the cavity mode via the antenna, subsequently boosting an-
tenna excitation. At the same time, the LDOS at the Raman-shifted frequency
is only moderately enhanced by the broader hybrid mode, i.e. by the antenna-
like mode. Conversely, for the second peak, Stokes (or anti-Stokes) emission is
enhanced due to the hybrid boost of the LDOS at the Raman shifted frequency
due to the cavity-like hybrid mode (when ωL ≈ ω′c +Ωm (ωL ≈ ω′c −Ωm)). In
this case the pump is not enhanced by the presence of the cavity mode, but
only by the broad antenna hybrid mode. In both scenarios, the enhancement
of Raman scattering does not exceed the enhancement that can be obtained
near the antenna resonance, i.e. far detuned from the cavity mode. This might
appear surprising since the cavity hybrid mode actually provides a higher
LDOS than the antenna alone, and the maximum pump enhancement at the
hybrid cavity mode is comparable to that provided by the bare antenna on its
resonance. However, maximum Raman enhancement requires the product of
pump enhancement and LDOS enhancement to be optimum. A bare antenna
exploits simultaneously an enhancement of the pump and the LDOS, whereas
a non-optimized hybrid only enhances either the pump or the emission pro-
cess, but not both simultaneously.

6.4.2. Combinations of input and output channels

Since Raman enhancement needs to exploit both pump field enhancement
and enhancement of the (extracted) LDOS, it is not sufficient to choose an
optimum set of drive and resonator frequencies, but one also needs to exploit
the appropriate channels for injecting and extracting light. To illustate this.
we present in Figure 6.8 the Raman spectrum Sout,+ extracted at one of the
cavity output channels for the exact same parameters as in Fig. 6.7, while again
assuming that the pump light addresses the antenna from free space. Since
we still consider pumping from the far field, the pump field enhancement
factor is the same as in Fig. 6.7(a). However, the extracted LDOS contribu-
tion is now different (panel (b)) compared to Fig. 6.7(b). Since only photons
resonant with the cavity hybrid mode can efficiently make their way to the
cavity output channels, the enhancement contribution at the Raman-shifted
frequency is now highly peaked (Fig. 6.8(b)) and the Raman transfer function
is now markedly asymmetric in the 2D representation (Fig. 6.8(c)) as function
of laser and detection frequency. This spectral selectivity of the cavity output
channel implies in Fig. 6.8(d) that the only relevant peaks in Raman spectra
are the ones where the Stokes (or anti-Stokes) emission is resonant with the
cavity hybrid mode (ωL = ω′c ±Ωm). Such a spectral filtering property may
be useful for compact and highly selective chip-integrated Raman devices to
detect specific chemical traces, without the use of a bulky spectrometer. In this
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example, the signal that would be extracted through the waveguide is still one
order of magnitude weaker than the signal that is radiated into the far-field.
However, it should be noted that the far field channel optimistically assumes
that all photons can be collected in a full half space of 2π sr, whereas usual
microscope objective even at high NA capture only 10 to 50% of that.
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Figure 6.8: Molecular optomechanics with a cavity-antenna hybrid (same parameters
as Fig. 6.7), observed through cavity output channel. (a) Average intensity of the cavity
field (b) Local density of states for photons collected in cavity output channel. (c) Transfer
function between xm and c of the cavity Sc,out/Sxx . The green dashed line indicates the
laser frequency, and the white dashed lines indicate Stokes and anti-Stokes emission.
(d) Raman spectrum as a function of laser frequency taken at the Stokes (red) or anti-
Stokes peak (blue). Since photons need to be resonant with the cavity hybrid mode to be
scattered efficiently through the cavity output channel, Stokes and anti-Stokes emission
is only significant when the laser is respectively blue or red shifted of ±Ωm from the
cavity.

A systematic comparison of all combinations of input and output channels
for Raman spectroscopy schemes is shown in Fig. 6.9, focusing on Stokes
scattering only. We find that generally, pumping via the waveguide is dis-
advantageous, since it only allows pump light to actually reach the antenna
and molecular matter when it is resonant with the cavity hybrid mode (ωL =
ω′c). At this condition, there is no strong LDOS enhancement at the shifted
frequency. Conversely, if the cavity resonance is overlapped with the Stokes-
shifted line, the pump field is actually suppressed at the antenna compared to
free space excitation. Therefore the collected signal in any channel is always
at least two orders of magnitude lower than for far-field driving. This is
particularly true for the cavity output channel (panel (a)) as both the pump
and the Raman signal need to go through the cavity for one to detect any
signal in the cavity output channel. The optimum usage scenario is hence to
use free space at a laser frequency that is shifted by exactly the Raman shift
from the hybrid resonance, combined with waveguide collection. In [94], the
authors suggested that it is even possible to extract from the cavity loss chan-
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nels almost all the light emitted by a dipole source at the antenna. However,
this would require very strong antenna-cavity detuning, detrimental in our
Raman scheme for field enhancement.
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Figure 6.9: Stokes emission spectrum as a function of laser frequency for different input-
output configurations. Solid lines indicate antenna far-field input, while dashed lines
indicate input through the waveguide into the cavity. All considered cases assume an
input power of 500 µW. Gray lines represent the scattering into the antenna radiation
(far-field) output channel, and black lines, the cavity output channel. We note that
pumping the system from the cavity input channel leads to weaker scattering in either
channel by at least 2 orders of magnitude than via the antenna because the pump needs
to be resonant with the narrow cavity hybrid mode.

6.4.3. Optimal cavity-antenna detuning
In [94], a main result is that there exists an optimum cavity-antenna detun-
ing to obtain the highest emission enhancement of an emitter, and even beat
the limit on LDOS enhancement by any dipolar antenna that is imposed by
radiation damping. However, by definition, this LDOS enhancement is only
relevant for the emission process, and not for pump field enhancement which
in Raman scattering is equally important as LDOS control. Additionally, we
understand from previous sections that exploiting both the antenna and cavity
hybrid modes simultaneously could be beneficial in molecular optomechan-
ics, whereas for the LDOS boost only the cavity hybrid mode is relevant.
Therefore, it is important to assess also for Raman scattering what the optimal
tuning choice is for cavity and antenna relative to each other and to the laser
wavelength.

We study qualitatively in Figure 6.10 the optimum cavity antenna detun-
ing, where we keep all parameters of our calculation the same as in Figs. 6.7
and 6.8, except for the resonance frequency of the cavity, for which we step
from red detuned to blue detuned relative to the antenna. We report the Stokes
(panels (a,b)) and anti-Stokes (d,e) intensity as function of laser wavelength,

157



6

CHAPTER 6. MOLECULAR OPTOMECHANICS WITH HYBRIDS

example, the signal that would be extracted through the waveguide is still one
order of magnitude weaker than the signal that is radiated into the far-field.
However, it should be noted that the far field channel optimistically assumes
that all photons can be collected in a full half space of 2π sr, whereas usual
microscope objective even at high NA capture only 10 to 50% of that.
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Figure 6.8: Molecular optomechanics with a cavity-antenna hybrid (same parameters
as Fig. 6.7), observed through cavity output channel. (a) Average intensity of the cavity
field (b) Local density of states for photons collected in cavity output channel. (c) Transfer
function between xm and c of the cavity Sc,out/Sxx . The green dashed line indicates the
laser frequency, and the white dashed lines indicate Stokes and anti-Stokes emission.
(d) Raman spectrum as a function of laser frequency taken at the Stokes (red) or anti-
Stokes peak (blue). Since photons need to be resonant with the cavity hybrid mode to be
scattered efficiently through the cavity output channel, Stokes and anti-Stokes emission
is only significant when the laser is respectively blue or red shifted of ±Ωm from the
cavity.

A systematic comparison of all combinations of input and output channels
for Raman spectroscopy schemes is shown in Fig. 6.9, focusing on Stokes
scattering only. We find that generally, pumping via the waveguide is dis-
advantageous, since it only allows pump light to actually reach the antenna
and molecular matter when it is resonant with the cavity hybrid mode (ωL =
ω′c). At this condition, there is no strong LDOS enhancement at the shifted
frequency. Conversely, if the cavity resonance is overlapped with the Stokes-
shifted line, the pump field is actually suppressed at the antenna compared to
free space excitation. Therefore the collected signal in any channel is always
at least two orders of magnitude lower than for far-field driving. This is
particularly true for the cavity output channel (panel (a)) as both the pump
and the Raman signal need to go through the cavity for one to detect any
signal in the cavity output channel. The optimum usage scenario is hence to
use free space at a laser frequency that is shifted by exactly the Raman shift
from the hybrid resonance, combined with waveguide collection. In [94], the
authors suggested that it is even possible to extract from the cavity loss chan-
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nels almost all the light emitted by a dipole source at the antenna. However,
this would require very strong antenna-cavity detuning, detrimental in our
Raman scheme for field enhancement.
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Figure 6.9: Stokes emission spectrum as a function of laser frequency for different input-
output configurations. Solid lines indicate antenna far-field input, while dashed lines
indicate input through the waveguide into the cavity. All considered cases assume an
input power of 500 µW. Gray lines represent the scattering into the antenna radiation
(far-field) output channel, and black lines, the cavity output channel. We note that
pumping the system from the cavity input channel leads to weaker scattering in either
channel by at least 2 orders of magnitude than via the antenna because the pump needs
to be resonant with the narrow cavity hybrid mode.

6.4.3. Optimal cavity-antenna detuning
In [94], a main result is that there exists an optimum cavity-antenna detun-
ing to obtain the highest emission enhancement of an emitter, and even beat
the limit on LDOS enhancement by any dipolar antenna that is imposed by
radiation damping. However, by definition, this LDOS enhancement is only
relevant for the emission process, and not for pump field enhancement which
in Raman scattering is equally important as LDOS control. Additionally, we
understand from previous sections that exploiting both the antenna and cavity
hybrid modes simultaneously could be beneficial in molecular optomechan-
ics, whereas for the LDOS boost only the cavity hybrid mode is relevant.
Therefore, it is important to assess also for Raman scattering what the optimal
tuning choice is for cavity and antenna relative to each other and to the laser
wavelength.

We study qualitatively in Figure 6.10 the optimum cavity antenna detun-
ing, where we keep all parameters of our calculation the same as in Figs. 6.7
and 6.8, except for the resonance frequency of the cavity, for which we step
from red detuned to blue detuned relative to the antenna. We report the Stokes
(panels (a,b)) and anti-Stokes (d,e) intensity as function of laser wavelength,
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Figure 6.10: Cavity-antenna detuning dependence. Stokes (panel (a,b)) and anti-Stokes
(panel (d,e)) intensity as function of laser frequency for different choices of hybrid. Each
colour curve corresponds to a different hybrid, where all hybrids assume the same
antenna (fixed antenna resonance ωa), but a different cavity mode frequency. To obtain a
representative sampling of cavity-antenna detunings, we sample a ladder of 14 different
resonance frequencies. The cavities all have identical Q, and identical mode volume
(in units of cubic wavelength). For all panels we assumed pumping from free space
driving of the antenna, while we consider collection through free space (panels (a,d))
and waveguide (panels (b,e)). For reference, (c) and (f) represent the total LDOS at the
detected frequency ωD , which is ωD = ωL −Ωm for Stokes and ωD = ωL +Ωm for anti-
Stokes. Note that (c) and (f) are the same plot shifted by 2Ωm. In all panels, we indicate
with a vertical dashed line the resonance frequency of the antenna ωa.

where the antenna is kept constant for all curves, and each curve represents
a distinct resonator frequency choice. Results are shown for both free space
detection (panels (a,d)) and extraction through the waveguide ports (pan-
els (b,e)). Our first observation is that for Stokes and anti-Stokes emission
(Figs. 6.10(a,d)), a hybrid offers a modest benefit compared to a bare antenna
in terms of signal scattered into the far-field. If one wants to benefit from
the maximum hybrid LDOS boost mentioned by Doeleman et al. in [94], the
cavity must be detuned from the antenna by more than the antenna linewidth
γa. For most Raman scenarios, typically Ωm < γa so that a compromise must
be sought between a good benefit from LDOS and a good pump field enhance-
ment.

Panels (b,e) consider the scenario where one extracts the Raman signal
from a waveguide via the cavity output channel, which is not possible for
standard SERS with a simple antenna. We observe in panel (b) that Stokes
emission is favoured when the cavity is red-detuned from the antenna by
∼ −Ωm, corresponding to the previously identified regime where the pump
is enhanced by the antenna mode, while the Raman emission is boosted by
the high hybrid LDOS. For anti-Stokes detection, the argument for an optimal
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cavity-antenna detuning is less clear. With a cavity-blue detuned from the
antenna one can simultaneously benefit from the antenna resonance for pump
field enhancement, and from the cavity hybrid LDOS. However, due to the
intrinsic frequency dependence of the antenna radiation loss, the LDOS boost
is not as good for blue, as for red-detuned cavities (cf. Ref. [94]).

6.5. Conclusion and outlook
In conclusion, we have adapted the molecular optomechanics model
proposed by Roelli et al. [201] in the classical and linear regime to account
for the main physics of hybrid resonators composed of whispering gallery
mode cavity and a plasmonic antenna. With this theory, we have shown
that the hybrid enhanced Raman scattering collected at an output channel
is determined by a resonant enhancement of the pump intensity, and the
fraction of the LDOS collected at this particular output channel. While in
conventional plasmonics system this factorization is usually close to a |E/E0|4
law for scaling of Raman signal with field enhancement, in hybrids it is a
crucial realization that the pump and the LDOS enhancement contributions
are distinct. We have identified a regime of particular interest, where the
pump is enhanced by the plasmonic confinement of the antenna-like hybrid
mode and the Raman signal benefit from the LDOS boost enabled by high-Q
cavity like hybrid mode. In this scenario, the signal collected in the cavity
output channel exhibits a strong spectral selectivity related to the narrow
bandwidth of the cavity hybrid mode.

6.5.1. Outlook on experiments
We foresee that experimental realization of hybrid resonators in the context of
SERS is possible using purely top-down, bottom-up, and mixed fabrication
approaches. A promising route is to coat colloidal plasmonic particles on
dielectric cavities [101, 102]. Also, one can envision lithographically prepared
antennas on cavities, as we realized for Chapters 4 and 5. Finally, one could
envision using a plasmonic near-field tip coupled to a cavity as in Ref. [171]. In
any of these strategies, a main challenge is selective adsorption of molecules
in the proximity of the hotspots of the antenna. Another challenge will be to
go beyond large but linear SERS enhancement effects, pushing towards the
regime of dynamical backaction. This dynamical backaction (DBA) regime,
also called vibrational pumping, is attained when the optomechanically in-
duced damping rate Γdba, which scales as Q2/V 2 (but also involves Rm/Ωm
and the laser intensity as parameters), is of the same order of magnitude
as the intrinsic damping rate of the molecular vibration Γm [201]. First re-
ports [14, 297] are appearing that claim observed signatures of dynamical
backaction for ensembles of molecules (N = 750) and single molecules in
nanoscale and picoscale gap antenna systems, with claimed Q’s around Q =
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10 and mode volume V = 2×10−6λ3 (gold dimers, molecular ensemble), resp.
V = 3 × 10−7λ3 and quality factor Q = 15 which corresponds to Q2/V 2 ≈
1015λ−6 (picocavity [14]). Hybrids trade Q for V , while having the abilitry
to preserve the Q/V value of the antenna one starts with. Even though the
design studied in this chapter (Vhyb = 10−1, Qhyb = 104) is far from adequate
with only Q2/V 2 ≈ 108λ−6, the best realistic hybrid design discussed in [95]
(Vhyb < 10−4, Qhyb > 103) could potentially reach the required conditions for
DBA with Q2/V 2 ≈ 1014λ−6. This assumes a photonic crystal nanobeam
cavity (with V = λ3/8, effectively 2λ3 at the surface where an antenna could
be placed) and a dimer gap antenna with a 1 nm gap. Raising that to a 5
nm gap, reduces the performance in terms of Q/V by one order of mag-
nitude. It is unknown if better hybrid resonators exist outside the design
space of dipolar gap antennas coupled perturbatively to a cavity. Evidently,
hybrids do give access to a different SERS regime then plasmon antennas,
through sideband resolution, but do not intrinsically relax the constraints on
antenna gap dimension. The requirements would be relaxed for the study of
dynamical backaction or vibrational pumping in the case of collective molec-
ular oscillation. In this situation, one could imagine exploiting the waveguide
channel of the hybrid to send a probe beam shifted by Ωm from the laser
and observe optomechanically induced transparency [317, 318] induced by
coherent vibrational response of the molecular ensemble by a pump beam.
Also, hybrid resonators could help fill the gap existing in the availability of
solutions for efficient detection of IR and THz electromagnetic waves. Since
incident IR/THz absorption in a molecular species can cause vibrational ex-
citation above the thermal equilibrium occupation, once can envision read
out of IR/THz light by monitoring anti-Stokes shifted scattering, on the pro-
viso that the molecular species is both IR and Raman active. Using a hybrid
resonator to selectively enhance Stokes and anti-Stokes lines of the vibration
of interest and to collect the signal through waveguides towards detectors,
with the potential of using a distinct channel for Stokes an anti-Stokes, would
eliminate the need to use spectrometers to analyse the Raman scattered light
and could allow for integrated devices.

6.5.2. Challenges for theory
If hybrid plasmonic-dielectric resonators do become a major device in molec-
ular optomechanics and applications, one would need to significantly expand
the work presented in this chapter. Indeed, the first and most obvious limita-
tion of our work is the fact that we assumed a regime where dynamical back-
action does not play a role, and therefore that the vibration of the molecule
is purely driven by thermal fluctuation as expressed in Eqs.(6.16 and 6.30).
However, this can easily be fixed by including the equation of motion for xm
as it is originally present in Eq.(6.5), but neglected in subsequent part of the
chapter. A second limitation comes from the fact that our theory precludes
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quantum phenomena, such as the anharmonic cavity-QED regime described
in [208] or phonon-stimulated Raman scattering treated in [304]. An option
to solve this issue would be to integrate the second photonic mode (cavity)
in the Hamiltonian of the system in Eq.(6.3), and from there choose either a
classical, semi-classical or quantum treatment depending on the phenomenon
of interest [305]. Finally, in this work, we assumed that the molecules only
couple to the hybrid through the plasmonic field, and do not directly scatter
into the cavity. This does not hold generally for a hybrid, as it requires that
the effective mode volumes of both resonators have a more than ∼ 2 orders of
magnitude difference. For spontaneous emission, Doeleman et al. [94] already
noted important corrections to the Purcell factor due to direct coupling of
the assumed emitter to both modes. For optomechanics this leads to a fun-
damental challenge. Not only does one need to define an optomechanical
coupling rate Gm,a and Gm,c for both antenna and cavity mode separately
(Eq.(6.4)), but also one can imagine that the mechanical motion of the molec-
ular matter causes optomechanical cross-terms Gm,ac and Gm,ca [306]. Such
cross-terms should be expected not just in molecular optomechanics, but are
a challenge for any multimode perturbation theory. We anticipate that these
terms would scale as 1/

√
VaVc, and would contribute to the Hamiltonian as an

additional interaction Hcross = −h̄
[
Gm,acâ

†ĉ+Gm,caĉ
†â
]
xzpf (b̂

†+ b̂), which im-
plies that the antenna and cavity hybridize not only via direct interaction, but
also through the molecular vibrations. In this case, the hybrid properties, such
as LDOS, should dynamically depend on the molecular motion xm, leading to
new unexplored properties. Ref. [303] suggests that a quantum mechanical
approach based on a quasinormal mode formalism is a fruitful approach to
tackling these challenges.
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SUMMARY

Light is essential in our lives. Not only is it a crucial element of our ecosystem
and our interactions with it, but also it is involved in more and more aspects of
our modern civilization. Indeed, the study of light, also known as photonics,
is said by many to be for the 21st century what electronics has been for the
20th as it might lead to a paradigm shift in the way we treat and secure
information. This revolution is already happening through the massive usage
of fibre optics for telecommunication over long distances, the implementa-
tion of fast optical interconnects between nodes in data centers, and a lot
of research aiming to directly exploit light for digital, analog or quantum
computation and information processing. Furthermore, photovoltaics and
solar light are one of the leading options to solve the current global energy
crisis. All the promises made by light are entangled with our ability to make it
interact with physical objects through refraction, reflection, diffraction, emis-
sion, and absorption. The interaction between a grain of light called a photon,
and matter is relatively low. Even though this low interaction is essential for
propagation of light via fibre optics (negligible absorption in glass at 1550
nm), it is problematic for the processing of the data carried by this light.
In Chapter 1 of this thesis, after briefly introducing the figure of merit rele-
vant in the context of light-matter interaction, we present the two strategies
which have been employed historically to enhance light-matter interaction.
On the one hand, light can be forced to interact multiple times with matter
by trapping it inside a dielectric cavity with a high quality factor Q, i.e., for
many optical cycles. On the other hand, light is squeezed in tiny volumes
smaller than what is allowed by the fundamental diffraction limit for dielectric
materials, to enhance the electric field strength of the photon right at the
location of the matter. This can be done by coupling light to the collective
oscillations of free electrons, also called plasmons, at the interface of a metal
with a dielectric (usually air). Both cavity-based and plasmonic approaches
have been successfully used in the last few decades to enable strong non-linear
interaction between a light-field and matter, but also to observe and exploit
quantum phenomena on the single photon level. In this thesis, we focus on
an emerging alternative route; hybrid resonators composed of both a dielectric
cavity and a plasmonic resonator, where the benefits of these bare constituents
are largely preserved. No matter what type of photonic resonator one uses,
the performances are always limited by losses, either optical absorption or
radiation into the far-field. This poses important fundamental challenges for
the description of resonators, their hybridization, and light-matter interac-
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SUMMARY

tion. This thesis is motivated by the question of how to understand light-
matter interaction in hybrid photonic resonator systems, fully accounting for
the open and lossy nature of photonics. To this end, we make use of the
so-called quasinormal mode (QNM) theory. Chapter 1 provides a review of
QNM formalism that was developed over the last 6 years as an efficient way
to describe lossy dielectric and plasmonic cavity. Indeed, this framework is
particularly well suited to account for the radiation properties of photonic
resonators. This is demonstrated in Chapter 2 for the case of perturbation of
a high Q cavity by a non-resonant scatterer. We show that QNM perturbation
theory proposes a very elegant way to quantify the increase, but also the
decrease of the radiative losses of a high-Q cavity due to the interference
with the field scattered by a tiny object perturbing the cavity. The prediction
relies on the concept of complex-valued mode volumes of resonators, where
the real part accounts for the strength of the confinement of the light-field,
and the imaginary part contains a phase information necessary to account for
radiation and interference effects. With the help of experimental results on
the perturbation of a photonic crystal cavity by a near-field probe, we show
that this complex mode volume can even be measured. In Chapter 3, we
develop an eigenproblem formulation of a QNM theory which can be used
to predict the hybridized properties emerging when coupling two or more
photonic resonators. Once the obtained QNMs are normalized, observables
such as extinction cross-section or Purcell enhancement can be obtained semi-
analytically for any source at any frequency. To discuss the similarity with
the hybridization rules between two resonant point dipoles, we simplify our
model and describe each resonator in an assembly by a single QNM. We show
that our model can not only predict the bonding and antibonding nature of
hybridized modes and the corresponding energies (resonance frequencies),
but also the sub- or superradiant characteristics of these modes. By extension,
we demonstrate that the theory is suited to predict Fano lineshapes related
to the interference between a sub- and superradiant mode, in the extinction
spectrum of oligomers upon plane wave illumination. We briefly discuss the
convergence of this theory when more QNMs are included in the description
of each resonator. In Chapter 4, we study a hybrid structure composed of a
microdisk cavity supporting a pair of degenerate whispering gallery modes,
dressed by two plasmonic antennas placed at the edge of the microdisk. In the
context of enhancement of the emission by a quantum emitter placed in the
vicinity of one of the antennas, this structure presents interesting properties.
Indeed, we show that not only it allows for Purcell enhancements comparable
to what is achievable with a single antenna hybrid, but with the added benefit
of providing control over the direction into which light is emitted inside the
cavity, depending on the relative position of the antennas within the cavity
mode profile. This directionality property stems from the interference be-
tween the light emission in the two perturbed cavity whispering gallery mode
(WGM). The phase difference relevant in this interference depends completely
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on the spectral properties of these two modes as a function of the position
of the antennas in the cavity mode profile. We present spectroscopic evi-
dence for the predicted mode structure collected on an experimental realiza-
tion of the system in a platform composed of silicon nitride microdisks and
two aluminium antennas. The measurements demonstrate the tunability of
the spectral properties of the cavity modes as a function of the relative distance
between the antennas. While the work of Chapter 4 sets the first stone towards
the study of phased array of antennas, Chapter 5 builds on it by investigating
azimuthally distributed arrays of antennas which scatter beams with orbital
angular momentum (OAM) from the cavity whispering gallery mode it is cou-
pled to. In particular, after carefully studying the scattering and resonant
properties of such structures, we propose a design which enables the emission
of pure OAM associated with a single state of polarization. The principle of
operation relies on the superposition of two concentric arrays of antennas,
one with antennas oriented +45◦ from the radial direction, the other with
antennas at −45◦. These two arrays scatter light with a different OAM for
the left and right-handed circular polarization channels. The interference of
the two arrays can lead to a suppression of one of these two polarization
channels. We confirm this property with an experimental realization and
speculate on the relevance of such a structure for the generation of arbitrary
vector vortex beams. Finally, Chapter 6 investigates the relevance of hybrid
resonators composed of a single antenna and a single cavity in the context
of molecular optomechanics, where Raman active molecules are coupled to the
antenna part of the hybrid resonators. Preliminary theoretical results, which
do not yet involve a QNM treatment, show that the enhancement of Raman
scattering respects the commonly accepted factorization into a pump and an
emission enhancement effect, for both Stokes and anti-Stokes scattering. This
factorization involves the cavity hybrid resonance but also the antenna one.
Consequently, this ensures a strong enhancement of Raman scattering, com-
parable with SERS on single antennas, while enabling spectral selectivity of
the collected Raman signal in the output channels of the cavity.

187



SUMMARY

tion. This thesis is motivated by the question of how to understand light-
matter interaction in hybrid photonic resonator systems, fully accounting for
the open and lossy nature of photonics. To this end, we make use of the
so-called quasinormal mode (QNM) theory. Chapter 1 provides a review of
QNM formalism that was developed over the last 6 years as an efficient way
to describe lossy dielectric and plasmonic cavity. Indeed, this framework is
particularly well suited to account for the radiation properties of photonic
resonators. This is demonstrated in Chapter 2 for the case of perturbation of
a high Q cavity by a non-resonant scatterer. We show that QNM perturbation
theory proposes a very elegant way to quantify the increase, but also the
decrease of the radiative losses of a high-Q cavity due to the interference
with the field scattered by a tiny object perturbing the cavity. The prediction
relies on the concept of complex-valued mode volumes of resonators, where
the real part accounts for the strength of the confinement of the light-field,
and the imaginary part contains a phase information necessary to account for
radiation and interference effects. With the help of experimental results on
the perturbation of a photonic crystal cavity by a near-field probe, we show
that this complex mode volume can even be measured. In Chapter 3, we
develop an eigenproblem formulation of a QNM theory which can be used
to predict the hybridized properties emerging when coupling two or more
photonic resonators. Once the obtained QNMs are normalized, observables
such as extinction cross-section or Purcell enhancement can be obtained semi-
analytically for any source at any frequency. To discuss the similarity with
the hybridization rules between two resonant point dipoles, we simplify our
model and describe each resonator in an assembly by a single QNM. We show
that our model can not only predict the bonding and antibonding nature of
hybridized modes and the corresponding energies (resonance frequencies),
but also the sub- or superradiant characteristics of these modes. By extension,
we demonstrate that the theory is suited to predict Fano lineshapes related
to the interference between a sub- and superradiant mode, in the extinction
spectrum of oligomers upon plane wave illumination. We briefly discuss the
convergence of this theory when more QNMs are included in the description
of each resonator. In Chapter 4, we study a hybrid structure composed of a
microdisk cavity supporting a pair of degenerate whispering gallery modes,
dressed by two plasmonic antennas placed at the edge of the microdisk. In the
context of enhancement of the emission by a quantum emitter placed in the
vicinity of one of the antennas, this structure presents interesting properties.
Indeed, we show that not only it allows for Purcell enhancements comparable
to what is achievable with a single antenna hybrid, but with the added benefit
of providing control over the direction into which light is emitted inside the
cavity, depending on the relative position of the antennas within the cavity
mode profile. This directionality property stems from the interference be-
tween the light emission in the two perturbed cavity whispering gallery mode
(WGM). The phase difference relevant in this interference depends completely

186

SUMMARY

on the spectral properties of these two modes as a function of the position
of the antennas in the cavity mode profile. We present spectroscopic evi-
dence for the predicted mode structure collected on an experimental realiza-
tion of the system in a platform composed of silicon nitride microdisks and
two aluminium antennas. The measurements demonstrate the tunability of
the spectral properties of the cavity modes as a function of the relative distance
between the antennas. While the work of Chapter 4 sets the first stone towards
the study of phased array of antennas, Chapter 5 builds on it by investigating
azimuthally distributed arrays of antennas which scatter beams with orbital
angular momentum (OAM) from the cavity whispering gallery mode it is cou-
pled to. In particular, after carefully studying the scattering and resonant
properties of such structures, we propose a design which enables the emission
of pure OAM associated with a single state of polarization. The principle of
operation relies on the superposition of two concentric arrays of antennas,
one with antennas oriented +45◦ from the radial direction, the other with
antennas at −45◦. These two arrays scatter light with a different OAM for
the left and right-handed circular polarization channels. The interference of
the two arrays can lead to a suppression of one of these two polarization
channels. We confirm this property with an experimental realization and
speculate on the relevance of such a structure for the generation of arbitrary
vector vortex beams. Finally, Chapter 6 investigates the relevance of hybrid
resonators composed of a single antenna and a single cavity in the context
of molecular optomechanics, where Raman active molecules are coupled to the
antenna part of the hybrid resonators. Preliminary theoretical results, which
do not yet involve a QNM treatment, show that the enhancement of Raman
scattering respects the commonly accepted factorization into a pump and an
emission enhancement effect, for both Stokes and anti-Stokes scattering. This
factorization involves the cavity hybrid resonance but also the antenna one.
Consequently, this ensures a strong enhancement of Raman scattering, com-
parable with SERS on single antennas, while enabling spectral selectivity of
the collected Raman signal in the output channels of the cavity.

187



SAMENVATTING

Licht is essentieel in ons leven. Het vormt een cruciaal onderdeel van ons
ecosysteem, en van onze interactie met onze omgeving. Bovendien is licht in
toenemende mate onmisbaar in de technologie van onze moderne samenlev-
ing. Het vakgebied dat licht bestudeert wordt ook wel fotonica genoemd. Er
wordt wel gezegd dat waar de 20e eeuw de eeuw was van het elektron, op
basis van de kennis van elektriciteit en micro-elektronica, de 21e eeuw het ti-
jdperk zal worden waarin licht en fotonica een vergelijkbare revolutie teweeg
zal brengen in hoe wij digitale informatie verwerken en beveiligen. Voor een
deel is deze revolutie al gaande door massaal gebruik van glasvezel optiek
voor telecommunicatie en breedband internet, de implementatie van snelle,
optische verbindingen tussen en binnen datacentra, en het intensieve weten-
schappelijke en toegepaste onderzoek naar het direct gebruiken van licht voor
digitale, analoge, of kwantum berekeningen en informatieverwerking. Daar-
naast is kennis over licht-materie interactie essentieel voor het ontwikkelen
van hoogstaande zonne-energie technologie, en voor het ontwikkelen van
energiezuinige technologieën zoals LED-verlichting. Daarmee is fotonica een
belangrijk vakgebied voor het oplossen van de energiecrisis. De belangrijk-
ste fysische mechanismen om licht te beheersen zijn refractie, diffractie, ver-
strooiing, emissie en absorptie, allen fenomenen die de interactie van ma-
terie met licht gebruiken. De interactie tussen een lichtdeeltje (een foton) en
een enkel microscopisch bouwblok van materie, zoals een atoom of mole-
cuul, is desondanks in de meeste gevallen vrij laag. Deze lage interactie is
in sommige toepassingen van groot nut, bijvoorbeeld voor het versturen van
lichtsignalen over lange afstanden in glasvezelkabels, waarbij het feit dat er
nagenoeg geen absorptie in glas is bij 1550 nm cruciaal is. Anderzijds is
de lage interactie tussen licht en materie problematisch voor het verwerken
van de data die door dit licht gedragen wordt. Na kort de relevante context
van licht-materie interactie toe te lichten, presenteren wij in Hoofdstuk 1 van
dit werk de twee strategieën die typisch gebruikt worden om licht-materie
interactie te vergroten. De eerste strategie is om de interactie-tijd tussen licht
en materie zo lang mogelijk te maken, door licht op te sluiten in een tril-
holte met hoge kwaliteitsfactor Q, waarin het licht lang rond zingt, en er dus
vele malen gelegenheid tot interactie is tussen het licht en de materie. De
tweede aanpak richt zich niet op tijd, maar op ruimte als vrijheidsgraad, door
licht op te sluiten in extreem kleine volumes, kleiner dan de fundamentele
diffractie limiet. Dit verhoogt de elektrische veldsterkte op de plek waar de
interactie gewenst is. De benodigde veldversterking wordt verkregen door

189



SAMENVATTING

Licht is essentieel in ons leven. Het vormt een cruciaal onderdeel van ons
ecosysteem, en van onze interactie met onze omgeving. Bovendien is licht in
toenemende mate onmisbaar in de technologie van onze moderne samenlev-
ing. Het vakgebied dat licht bestudeert wordt ook wel fotonica genoemd. Er
wordt wel gezegd dat waar de 20e eeuw de eeuw was van het elektron, op
basis van de kennis van elektriciteit en micro-elektronica, de 21e eeuw het ti-
jdperk zal worden waarin licht en fotonica een vergelijkbare revolutie teweeg
zal brengen in hoe wij digitale informatie verwerken en beveiligen. Voor een
deel is deze revolutie al gaande door massaal gebruik van glasvezel optiek
voor telecommunicatie en breedband internet, de implementatie van snelle,
optische verbindingen tussen en binnen datacentra, en het intensieve weten-
schappelijke en toegepaste onderzoek naar het direct gebruiken van licht voor
digitale, analoge, of kwantum berekeningen en informatieverwerking. Daar-
naast is kennis over licht-materie interactie essentieel voor het ontwikkelen
van hoogstaande zonne-energie technologie, en voor het ontwikkelen van
energiezuinige technologieën zoals LED-verlichting. Daarmee is fotonica een
belangrijk vakgebied voor het oplossen van de energiecrisis. De belangrijk-
ste fysische mechanismen om licht te beheersen zijn refractie, diffractie, ver-
strooiing, emissie en absorptie, allen fenomenen die de interactie van ma-
terie met licht gebruiken. De interactie tussen een lichtdeeltje (een foton) en
een enkel microscopisch bouwblok van materie, zoals een atoom of mole-
cuul, is desondanks in de meeste gevallen vrij laag. Deze lage interactie is
in sommige toepassingen van groot nut, bijvoorbeeld voor het versturen van
lichtsignalen over lange afstanden in glasvezelkabels, waarbij het feit dat er
nagenoeg geen absorptie in glas is bij 1550 nm cruciaal is. Anderzijds is
de lage interactie tussen licht en materie problematisch voor het verwerken
van de data die door dit licht gedragen wordt. Na kort de relevante context
van licht-materie interactie toe te lichten, presenteren wij in Hoofdstuk 1 van
dit werk de twee strategieën die typisch gebruikt worden om licht-materie
interactie te vergroten. De eerste strategie is om de interactie-tijd tussen licht
en materie zo lang mogelijk te maken, door licht op te sluiten in een tril-
holte met hoge kwaliteitsfactor Q, waarin het licht lang rond zingt, en er dus
vele malen gelegenheid tot interactie is tussen het licht en de materie. De
tweede aanpak richt zich niet op tijd, maar op ruimte als vrijheidsgraad, door
licht op te sluiten in extreem kleine volumes, kleiner dan de fundamentele
diffractie limiet. Dit verhoogt de elektrische veldsterkte op de plek waar de
interactie gewenst is. De benodigde veldversterking wordt verkregen door

189



SAMENVATTING

licht te koppelen aan collectieve oscillaties van vrije elektronen aan de op-
pervlakte van een metaal. Deze oscillaties worden ook wel plasmonen ge-
noemd. Zowel de aanpak met trilholtes met hoge Q en met plasmonen voor
extreme opsluiting zijn over de laatste tientallen jaren succesvol toegepast
om sterke, niet-lineaire interactie tussen licht en materie mogelijk te maken,
maar ook om kwantum fenomenen op het niveau van enkele fotonen aan te
sturen en te benutten. In dit proefschrift richten wij ons op een alternatieve
strategie: hybride resonatoren die gemaakt zijn uit zowel een trilholte als
een plasmonische resonator, waar de voordelen van deze beide componenten
behouden blijven. Ongeacht welk type fotonische resonator men gebruikt, de
prestaties ervan zullen altijd worden beperkt door verliezen in de vorm van
optische absorptie en afstraling naar het verre veld. Deze verliezen maken
het beschrijven van resonatoren, hun hybridisatie, en de interactie tussen licht
en materie een belangrijke fundamentele uitdaging. Deze uitdaging vormt
de basis van dit proefschrift: hoe kunnen we de interactie tussen licht en
materie begrijpen in systemen opgebouwd uit hybride fotonische resonatoren,
waarbij volledig rekening wordt gehouden met de onvermijdelijk open en
verliesgevende aard? Om deze vraag te beantwoorden maken wij gebruik
van de quasi-eigentoestand (QNM – quasinormal mode) theorie. Hoofdstuk 1
geeft een overzicht van het QNM formalisme dat over de afgelopen zes jaar is
ontwikkeld tot een efficiënt beschrijving van verliesgevende diëlektrische en
plasmonische trilholtes. Dit formalisme is bijzonder geschikt om de straling-
seigenschappen van fotonische resonatoren mee te nemen. Dit wordt aange-
toond in Hoofdstuk 2 voor het specifieke geval van een niet-resonante ver-
strooier die een trilholte met een hoge kwaliteitsfactor verstoort. We laten
zien dat QNM storingsrekening een heel elegante manier is om de toename,
maar ook de afname van stralingsverliezen te kwantificeren voor trilholtes
met een hoge kwaliteitsfactor die worden verstoord door een klein object. Uit
de QNM storingsrekening volgt dat de verandering van stralingsverliezen
kan worden verklaard door de interferentie van het elektrisch veld van de
quasi-eigentoestand van de trilholte met het verstrooide veld van het kleine
object. Deze voorspelling is gebaseerd op het concept van complexe waarden
voor het mode volume van resonatoren, waarbij het reële deel informatie geeft
over de mate waarop het lichtveld wordt opgesloten en het imaginaire deel
fase informatie bevat die relevant is voor stralings- en interferentie-effecten.
Aan de hand van experimenten waarin de verstoring van fotonische kristal
trilholtes door een nabije veld sonde gemeten is laten we zien dat dit complexe
eigentoestandsvolume zelfs gemeten kan worden.

In Hoofdstuk 3 ontwikkelen we een uitbreiding van QNM theorie die
gebruikt kan worden om de eigenschappen te verklaren die ontstaan wanneer
twee of meer fotonische resonatoren aan elkaar koppelen, op basis van de
eigenschappen van de enkele resonatoren. Wanneer de QNMs eenmaal
zijn genormeerd kunnen uit de eigentoestanden en eigenfrequenties ook
meetbare grootheden zoals de werkzame doosneden voor verstrooiing
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en uitdoving op semi-analytische wijze worden bepaald, en de Purcell
versterkingsfactor voor elk type lichtbron, voor elke frequentie, plaatsing
en polarisatie. We laten zien dat de hybridisatieregels voor dimeren van
plasmon antennes gelijkenis hebben met bekende hybridisatieregels voor
resonante puntdipolen, als we ons model beperken tot het beschrijven van
elke resonator met een enkele QNM. Ons model voorspelt niet alleen de
symmetrische en antisymmetrische gehybridiseerde eigentoestanden met de
daarbij behorende energieën (resonantiefrequenties), maar ook de sub- of
superstralende eigenschappen van deze eigentoestanden. Als uitbreiding op
dit model laten we zien dat de theorie ook geschikt is voor het voorspellen
van Fano lijnvormen die ontstaan door de interferentie tussen een sub- en
superstralende eigentoestand. Tot slot bespreken we kort de convergentie
van deze theorie als functie van het aantal QNMs dat wordt meegenomen
in de beschrijving. In Hoofdstuk 4 bestuderen we een hybride structuur
die bestaat uit een trilholte in de vorm van een microschijf gebaseerd op
het fluistergalerijprincipe, met twee plasmonische antennes op de rand. Dit
type structuur biedt interessante mogelijkheden voor het verhogen van de
emissie van een kwantumemitter in de buurt van de antennes. We tonen aan
dat met deze structuur een Purcellversterking mogelijk is die vergelijkbaar
is met die van een hybride met slechts een enkele antenne, ondank de
verstrooiing en absorptie verliezen die de tweede antenne in principe met
zich mee brengt. Het voordeel van de structuur is dat deze controle biedt
over de richting waarin het licht uitgezonden wordt in de trilholte, door
middel van de relatieve positie van de antennes ten opzichte van elkaar
in het mode profiel van de trilholte. Deze directionaliteit komt voort uit
interferentie van licht dat uitgezonden wordt via twee verschillende paden
in de trilholte. Het faseverschil dat van belang is in deze interferentie wordt
bepaald door de spectrale eigenschappen van de twee paden en hangt af van
de positie van de antennes in de trilholte. Voor dit voorspelde gedrag laten we
experimenteel spectroscopisch bewijs zien. Hiervoor hebben we een hybride
system geconstrueerd dat bestaat uit een microschijf van siliciumnitride
met twee aluminium antennes. De metingen tonen aan dat de spectrale
eigenschappen van het systeem te beïnvloeden zijn door de relatieve afstand
tussen de antennes te veranderen. Voortbordurend op Hoofdstuk 4 waarin
de eerste stappen naar het bestuderen van antenne-kettingen zijn gezet
onderzoeken we in Hoofdstuk 5 azimuthaal regelmatig verdeelde kettingen
van antennes die lichtbundels met baanimpulsmoment verstrooien vanuit de
trilholte. Na een nauwkeurige studie van de verstrooiings- en resonantie-
eigenschappen van zulke structuren presenteren we een ontwerp dat emissie
van licht met een puur baanimpulsmoment in een enkele polarisatietoestand
mogelijk maakt. De werking is gebaseerd op de superpositie van twee
concentrische kettingen van antennes: één met antennes onder een hoek
van +45◦ met de radiale richting en de ander met antennes onder een hoek
van −45◦. Deze twee arrays verstrooien links- en rechtshandig circulair
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gepolariseerd licht met een ander baanimpulsmoment. Interferentie tussen
de twee arrays maakt het mogelijk een van deze twee polarisaties te
onderdrukken. We hebben deze eigenschap experimenteel bevestigd en
we bediscussiëren de mogelijke toepassing van zulke structuren voor het
genereren van willekeurige vectoriële vortexbundels van licht. Ten slotte
onderzoeken we in Hoofdstuk 6 het belang voor moleculaire optomechanica van
hybride resonatoren bestaand uit een enkele antenne en trilholte. Hiervoor
ontwikkelen we een eenvoudige klassieke beschrijving voor inelastische
lichtverstrooiing die plaats vindt omdat moleculen die het Ramaneffect
vertonen worden gekoppeld aan de antenne van de hybride resonator. Dit
hoofdstuk is een haalbaarheidsstudie met eerste theoretische resultaten die
nog niet gebruik maken van QNM storingsrekening. De studie laat zien dat
de versterking van Ramanstrooiing de algemeen aanvaarde ontbinding in
effecten van pompversterking en emissieverhoging volgt voor zowel Stokes-
als anti-Stokesverstrooiing. Aangezien deze ontbinding betrekking heeft
op de resonanties van zowel de trilholte als de antenne zorgt dit voor een
hoge versterking van Ramanverstrooiing, vergelijkbaar met SERS op enkele
antennes, en biedt het daarnaast spectrale selectiviteit van het Ramansignaal
in de uitgaande kanalen van de trilholte.
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RÉSUMÉ

La lumière est essentielle dans nos vies. Elle est non seulement un élément
crucial de notre écosystème et de nos interactions avec lui, mais elle est
également impliquée dans de plus en plus d’aspects revêtant un caractère
important dans notre civilisation moderne. En effet, il est dit que l’étude
de la lumière, également connue sous le nom de photonique, est au XXIe
siècle ce que l’électronique a été pour le XXe car elle pourrait conduire à des
bouleversements majeurs dans la manière dont nous traitons et sécurisons
l’information. Cette révolution est déjà en cours, de par l’utilisation massive
de fibres optiques pour les télécommunications sur de longues distances, la
mise en place d’interconnexions optiques rapides entre les nœuds dans les
centres de données, et de nombreuses études visant à exploiter directement la
lumière pour le calcul numérique, analogique ou quantique et le traitement
de l’information. De plus, le photovoltaïque, exploitant la lumière solaire, est
l’une des options privilégiées pour résoudre la crise énergétique actuelle à
l’échelle mondiale. Toutes les promesses faites par la lumière sont intimement
liées à notre capacité à la faire interagir avec des objets physiques par
réfraction, réflexion, diffraction, émission et absorption. L’interaction entre
un grain de lumière, appelé photon, et la matière est relativement faible.
Même si cette faible interaction est essentielle pour la propagation de la
lumière via des fibres optiques (absorption négligeable dans le verre à 1550
nm), c’est un inconvénient majeur pour le traitement de données encodées
par cette lumière. Dans le Chapitre 1 de cette thèse, après avoir brièvement
introduit la figure de mérite pertinente dans le contexte de l’interaction
lumière-matière, nous présentons les deux stratégies qui ont été utilisées
historiquement pour augmenter/accroître cette interaction. D’une part, la
lumière peut être contrainte à interagir plusieurs fois avec la matière en
la piégeant dans une cavité diélectrique avec un facteur de qualité élevé
pendant de nombreux cycles optiques, augmentant ainsi le champs électrique
du photon par un effet temporel. D’autre part, la lumière peut être comprimée
dans des volumes minuscules très inférieurs à ceux autorisés par la limite
de diffraction, augmentant ainsi le champs électrique du photon par un
effet d’espace. Cela peut être réalisé en couplant la lumière aux oscillations
collectives d’électrons libres, également appelés plasmons, à l’interface d’un
métal et d’un diélectrique. Les approches basées sur l’utilisation de cavités et
d’éléments plasmoniques ont été utilisées avec succès au cours des dernières
décennies pour permettre une forte interaction non-linéaire entre un champ
lumineux et la matière, mais également pour observer et exploiter des
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phénomènes quantiques à l’échelle de photons uniques. Dans cette thèse,
nous portons notre attention sur une voie alternative qui émerge actuellement;
les résonateurs hybrides composés à la fois d’une cavité diélectrique et
d’un résonateur plasmonique, où les avantages de ces constituants pris
individuellement seraient largement préservés. Quel que soit le type de
résonateur photonique utilisé, les performances sont toujours limitées par
les pertes, soit par absorption optique, soit par couplage au champ lointain
rayonné. Cela pose d’importants défis fondamentaux pour la description des
résonateurs, leur hybridation ainsi que l’interaction lumière-matière. Une
seconde motivation de ce travail est de comprendre l’interaction lumière-
matière dans les systèmes photoniques hybrides, tout en tenant compte de la
nature ouverte et à pertes des résonateurs photoniques. Pour ce faire, nous
utilisons la théorie dite des modes quasinormaux (QNM - quasinormal modes).
Le Chapitre 1 passe en revue les progrès récents importants enregistrés ces
dix dernières années pour faciliter la modélisation des cavités diélectriques
et plasmoniques à pertes. Le Chapitre 2 revisite la théorie de perturbation
des cavités à facteur de qualité élevé par un petit objet diffusant. Nous
montrons, pour la première fois, que la théorie de perturbation QNM propose
un moyen très puissant pour quantifier l’augmentation et la diminution
du facteur de qualité engendrées par la présence de la perturbation. Les
prédictions du modèle reposent sur le concept de volume modal à valeurs
complexes des QNMs, où la partie réelle détermine l’intensité du confinement
du champ lumineux, et la partie imaginaire contient l’information de phase
primordiale pour rendre compte des effets de rayonnement et d’interférence.
Grâce à des mesures faites sur une cavité à cristaux photoniques par une
sonde de champ proche, nous montrons que ce volume modal complexe
peut même être mesuré. Dans le Chapitre 4, nous développons une théorie
QNM pour prédire les propriétés hybrides émergeants lors du couplage
de plusieurs résonateurs photoniques à partir de la seule connaissance
des QNMs individuels des résonateurs non couplés. Une fois les QNMs
obtenus normalisés, les observables tels que la section efficace d’extinction
ou le facteur de Purcell peuvent être obtenus de manière analytique pour
n’importe quelle source, à n’importe quelle fréquence. Dans le cas ou chaque
résonateur peut être modélisé par un seul QNM, nous montrons que notre
théorie peut non seulement expliquer la nature liante et antiliante des modes
hybrides et les énergies correspondantes (fréquences de résonance), mais
également les caractéristiques sous- ou super-radiantes de ces modes. Par
extension, la théorie est adaptée pour prédire les résonances Fano liées à
l’interférence entre un mode sous-radiant et un mode super-radiant dans
le spectre d’extinction d’oligomères. Nous présentons également une étude
de convergence de cette théorie avec le nombre de QNMs considérés dans
la description de chaque résonateur. Au Chapitre 4, nous étudions une
structure hybride composée d’une cavité microdisque supportant une paire
de modes dégénérés de galerie, habillée de deux antennes plasmoniques
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placées en périphérie du microdisque. Dans le contexte de l’augmentation
du rayonnement d’un émetteur quantique placé au voisinage de l’une
des antennes, cette structure présente des propriétés intéressantes. Nous
montrons qu’elle permet d’obtenir une augmentation du facteur de Purcell,
de contrôler la direction dans laquelle la lumière est émise à l’intérieur de la
cavité en fonction de la position relative des antennes dans le profil modal
des modes de galerie. Cette propriété de directivité découle de l’interférence
entre l’émission de lumière dans les deux modes galeries de la cavité (WGM)
perturbées par les antennes. La différence de phase pertinente dans cette
interférence dépend entièrement des propriétés spectrales de ces deux modes
et de la position des antennes dans le profil modal de la cavité. Par le
biais d’une réalisation expérimentale du système, basée sur l’utilisation de
microdisques en nitrure de silicium et de deux antennes en aluminium, nous
présentons des résultats expérimentaux qui mettent en lumière les propriétés
modales prédites par notre analyse. Alors que les travaux du Chapitre 4
jettent les bases de l’étude d’un réseau d’antennes à commande de phase,
le Chapitre 5 s’appuie sur un réseau d’antennes à répartition azimutale
qui diffuse un champ lumineux présentant un moment angulaire orbital en
découplant les modes de galerie de la cavité. En particulier, après avoir étudié
les propriétés de diffusion résonante de telles structures, nous proposons un
prototype qui permet l’émission d’un moment angulaire orbital pur associé
à un seul état de polarisation. Le principe de fonctionnement repose sur
la superposition de deux réseaux d’antennes concentriques, l’un avec des
antennes orientées à +45◦, de la direction radiale, l’autre avec les antennes
à −45◦. Ces deux réseaux diffusent la lumière avec un moment angulaire
orbital différent selon le mode de polarisation circulaire, gauche ou droit,
et l’interférence qui en résulte peut alors entraîner la suppression de l’un
des deux modes de polarisation. Nous confirmons cette propriété avec une
réalisation expérimentale et analysons la pertinence d’une telle structure
pour la génération à la demande de faisceaux de vortex vectoriels. Enfin,
le Chapitre 6 étudie la pertinence des résonateurs hybrides composés d’une
seule antenne et d’une seule cavité pour l’optomécanique moléculaire, où des
molécules présentant une activité Raman sont couplées à la composante
antenne de résonateurs hybrides. Les résultats théoriques préliminaires, qui
n’impliquent pas encore de traitement QNM, montrent que l’augmentation
de la diffusion Raman respecte la factorisation communément admise en un
effet d’amplification du faisceau pompe, et un effet d’exaltation (amplification
va) du rayonnement, et ce à la fois pour les diffusions Stokes et anti-Stokes.
Cette factorisation fait intervenir les résonances du système hybride, dont
l’une est de type ’cavité’ et l’autre de type ’antenne’. Nous montrons alors que
le système garantit, à la fois, une forte amplification de la diffusion Raman,
comparable au signal SERS obtenu avec/sur une antenne unique, et une
sélectivité spectrale du signal Raman collecté dans les canaux de sortie de la
cavité.
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