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Alone this summer morning on the deserted wharf,
I look toward the bar, I look toward the Indefinite,
I look and am glad to see

The tiny black figure of an incoming steamer.

[

Fernando Pessoa, Maritime Ode,

A Little Larger Than The Entire Universe: Selected Poems.






Résumé

Dans cette thése, en suivant les travaux initiés par V. Drinfeld, poursuivis par B. Enriquez, puis par
ce dernier, D. Calaque et P. Etingof, nous étudions la connexion KZB elliptique cyclotomique (ellipsit-
omique en plus court) universelle, associée a I'espace de modules des courbes elliptiques avec n points
marqués et une structure de (M, N)-niveau. La platitude de cette connexion nous permet d’étudier
des relations de monodromie, ouvrant la voie & une théorie générale des associateurs ellipsitomiques
et des groupes de Grothendieck-Teichmiiller qui lui correspondent, que 'on dégage via 1'utilisation du
formalisme des opérades (et certaines de leurs variantes) en nous basant sur les travaux de B. Fresse a
ce sujet. D’une part, ce formalisme nous permet par ailleurs d’étudier la structure des associateurs en
genre supérieur. D’autre part, ’associateur KZB ellipsitomique nous permet de dégager une théorie
des valeurs multizéta elliptiques en des points de torsion, dont on démarque quelques unes de leurs
premiéres propriétés du type associateurs.

On commencera par mettre en place la machinerie opéradique nécessaire pour définir les associa-
teurs ellipsitomiques en partant tour & tour de la situation déja connue en genre 0, puis de celle en
genre 1 et ensuite de leurs variantes cyclotomiques. Enfin, grace a ce formalisme, nous dégagerons
une définition des associateurs en tout genre.

Ensuite, nous entrerons dans le détail de la construction de la connexion KZB ellipsitomique
universelle, en premier temps sur espace de configurations (M, N)-décorées d’une courbe elliptique
puis sur les espaces de modules des courbes & niveau, nous la lieront a sa version réalisée via I'utilisation
des algébres de Hecke doublement affines et des r-matrices classiques dynamiques. Pour finir nous
présenterons les applications de cette construction, & savoir : formalité de certains sous-groupes de
tresses sur le tore, 'associateur KZB ellipsitomique, valeurs multizéta elliptiques en des points de

torsion ainsi qu'une application en représentations d’algébres de Cherednik cyclotomiques.

Mots-clés

Connexions KZB universelles, associateurs de Drinfeld, groupes de Grothendieck-Teichmiiller, valeurs

multizéta elliptiques en des points de torsion.



Contributions to the theory of KZB associators

Abstract

In this thesis, following the work initiated by V. Drinfeld and pursued by B. Enriquez, then by the
latter together with D. Calaque and P. Etingof, we study the universal twisted elliptic (ellipsitomic in
short) KZB connection, associated to the moduli space of elliptic curves with n marked points and a
(M, N)-level structure. The flatness of this connection allows us to study monodromy relations satisfied
by this connection, opening the way to a general theory of ellipsitomic associators and Grothendieck-
Teichmiiller groups corresponding to them, which is released via the use of the formalism of operads
(and some of their variants) basing ourselves on the work of B. Fresse. On the one hand, this formalism
allows us to study the structure of associators in higher genus. On the other hand, the ellipsitomic
KZB associator allows us to derive a theory of elliptic multiple zeta values at torsion points, from
which some of their first associator-like properties are distinguished.

We will begin by setting up the operadic machinery necessary to define the ellipsitomic associators
starting successively with the genus 0 situation, which is well-known, then the genus 1 situation and
their cyclotomic variants. Then, in light of this formalism, we will release a definition of genus g
associators.

Next, we will go into the details of the construction of the universal ellipsitomic KZB connection,
first over the (M, N)-twisted configuration space of an elliptic curve and then over the moduli space
of elliptic curves with a level structure. We will associate this connection to its realized version by
means of the use of double affine Hecke algebras and of classical dynamical r-matrices. Finally we will
present the applications of this construction, namely : the formality of certain subgroups of the braid
group on the torus, the ellipsitomic KZB associator, elliptic multiple zeta values at points of torsion

as well as an application in representations of cyclotomic Cherednik algebras.

Keywords

Universal KZB connections, Drinfeld associators, Grothendieck-Teichmiiller groups, elliptic multiple

zeta values at torsion points.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Associators

The theory of Drinfeld associators was introduced by the ukrainian mathematician Vladimir Drinfeld
in his famous article [27]. It is an example of an object that mathematics borrow from physics and
whose mathematical significance ends up being independent of its physical importance. In particular

the following ideas’
e Quantum groups (Drinfeld) : associators produce quantizations of Lie bialgebras.

e Conformal Field theory and Wess-Zumino-Witten models (Witten?) : the KZ connection appears

naturally in the geometric quantization of 3-dimensional Chern-Simmons theory?.

e Algebraic topology of varieties and 3-dimensional topological invariants (Witten, Kontsevich?) :
the universal enveloping algebra of the holonomy Lie C-algebra of the configuration space of the
complex plane, which is where the KZ connection is defined, is precisely the algebra of horizontal

string diagrams.
served to answer deep problems in

e Number theory (Drinfeld, see [27]) : the KZ Associator is a generating series of all multizeta

values, which satisfy associator-like relations.

e Geometric Galois theory (Grothendieck®-Drinfeld, see [27] and [60]) : the set of associators is

a torsor under the action of a group whose profinite version contains the absolute Galois group

Gal(Q/Q).

I Non-exhaustive list, as well as cited authors with significant contributions in the theory of associators.
2

see for example his article [103].
3The reader can also discover some parts this wide field in the excellent introduction [51] on the subject.
4see in particular his article [76].

5see in particular his manusscript «Esquisse d’un Program» [60].

9
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e Deformation quantization and formality (Kontsevich, Tamarkin, see [76] and [95]) : each Drinfeld
associator provides a universal deformation quantization (i.e. of a universal « star product ») in
the space of « observables » of a Poisson variety. Each associator produces a formality morphism
of the little disks operad.

Initially, in his seminal work [27] and motivated by the construction of quasi-Hopf algebras, V. Drinfeld
was looking to « universalize » the construction associated with the monodromy of a system of
differential equations with non-commutative variables coming from high energy physics and showed
that, not only associators over C and over Q exist, but their existence mobilizes the theory of a
mysterious group, the Grothendieck-Teichmiiller group (in particular its k-pro-unipotent version),
whose existence has been foreseen by Alexander Grothendieck in [60] (see also [30]). This group
(and its different completed versions) is very important because it intervenes in several sectors of
mathematics (see for example [29] and [23]).

The construction of this connection goes as follows. First observe that the holonomy Lie algebra

of the configuration space
Conf(C,n):={z=(z1,...,2n) € C"|z # z; if i # j}

of n points on the complex line is isomorphic to the graded Lie C-algebra t, generated by t;;,
1 <i# j <n, with relations

(S) tij =tji,
(L) [tij, tr] = O if #{i, 5, k, 1} = 4,
(4T) [tij, tix + t;u] = 0 if #{i, 5, k} = 3.

On the one hand, denote by PB,, the fundamental group of Conf(C,n), also known as the pure braid
group with n strands, and by pb,, its Malcev Lie algebra (which is filtered by its lower central series,
and complete). Then, one can easily check that PB,, is generated by elementary pure braids P,

1 <4 < j <n, which satisfy (at least) the following relations:

(PB1) (P, Pry) =11if {¢,7} and {k,} are non crossing,

(PB2) (ijﬂjp,;jl,Pkl) =lifi<k<j<l,

(PB3) (P, Pix Pjx) = (Pjk, PijPix) = (P, P Pyj) = 1if i < j <k.
We can depict the generator P; ; in the following two equivalent ways:

1 ) n

i H

Se

N

1 i j n °



1.1. MOTIVATION 11

Therefore one has a surjective morphism of graded Lie algebras p,, : t, — gr(pb,) sending t;; to
o(log(Pi;)), @ < j where o : pb,, — gr(pb,,) is the symbol map.

On the other hand, denote eXp(En) the exponential group associated to the degree completion t,,
of t,. The universal KZ connection on the trivial exp(t,)-principal bundle over Conf(C,n) is then
given by the holomorphic 1-form

Wi S BB e 01(Cont(C,n), ),
I<icj<n 0T %I

which takes its values in t,. It is a fact that the connection associated to this 1-form is flat and
descends to a flat connection over the moduli space Mg 41 ~ Conf(C,n)/ Aff(C) of rational curves
with n + 1 marked points.

First, the regularized holonomy of this connection along the real straight path from 0 to 1 in
Mo 4 ~P1—{0,1, 00} gives an element Pz € C((xo, 1)) called the KZ associator that is a generating
series for values at 0 and 1 of multiple polylogarithms, the latter being precisely multiple zeta values

([79],[48]). Next, using the monodromy representation of the universal KZ connection, one obtains :

1. A morphism of filtered Lie algebras p,, : pb,, — &, such that gr(su,) o p,, = id. Hence one con-
cludes that p,, and p,, are bijective. This proves that pb,, is isomorphic to the degree completion

of its associated graded, which is actually t,,. We then say that the pure braid group is formal.

2. A system of relations (called Pentagon (P) and two Hexagons (Hy)) satisfied by the KZ associ-
ator.

Then, V. Drinfeld showed that the set Ass(k) is a torsor under the action of an important and
somewhat mysterious group : the prounipotent Grothendieck-Teichmiiller group, denoted GT(k).
Ass(k) is also a torsor under the action of its graded version, denoted by GRT. The starting point
into the consideration of this group is that it arises in Grothendieck’s program of studying the absolute
Galois group Gal(Q/Q) through its outer action on the algebraic fundamental group(oid) of the moduli
spaces of curves My ,. The group GT(k) has at least a profinite and a pro-¢ version, but it is the
easiest of the three to work with. It is then a fact that Gal(Q/Q) injects into the profinite Grothendieck-
Teichmiiller group and it has been famously conjectured to be isomorphic to this group. Since then, the
KZ equations became popular among mathematicians and they were quickly noticed to have relations
to several other mathematical fields such as number theory, quantum group theory and deformation
quantization.

Finally, on the "iterated integral" point of view, one is brought to characterise MZVs as being
periods of My . In fact, if we denote MT(Z) for the Tannakian category of mixed Tate motives over
Z, then MZVs are periods of MT(Z) which bring us to consider their motivic versions. Motivic MZVs
(mMZVs) proved to be very important as they permit to work with a crucially useful formula due to
A. Goncharov ([58]) and F. Brown ([21]) for the coaction of the graded ring of affine functions on the
prounipotent part of the Galois group of MT(Z) over Q. As an application of these tools, F. Brown has
shown that all periods of MT(Z) are Q[5x:]-linear combinations of MZVs, that every MZV of weight N
is a Q-linear combination of elements of the set {((k1, ..., k), where k; =2 or 3, and k1 +--- k. = N}
([21]). Other striking results of the use of mMZVs can be found in perturbative Quantum Field Theory
([22]) and, more recently, in perturbative Superstring Theory ([90]).
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1.1.2 Generalisations I : The cyclotomic case

Similarly, one can consider the configuration space
Conf(C*,n) :={z=(21,...,2n) € (C)"|z; # z; if i # j}

of n points on C*. Then Conf(C*,n) = Conf(C,n 4+ 1)/C and thus its fundamental group PB;,
is isomorphic to PB,4+1. More generally, for any M € Z — {0} one can consider an M-twisted

configuration space
Conf(C*,n, M) :={z = (21,...,2n) € (C*)"z} # 2} for some i # j}.

In [32], B. Enriquez used the so-called universal trigonometric KZ connection, to prove that one has an
isomorphism pbfy — exp(tM), where pb,llw is the Malcev Lie algebra of the fundamental group PB,ILV[ C
PB;, of Conf(C*,n, M), and t} is the holonomy Lie algebra of Conf(C*,n, M). The holonomy of
this connection along a suitable (non closed) path gives a universal pseudotwist W34, € exp(t}) that
is a generating series for values of multiple polylogarithms at Mth roots of unity i.e. cyclotomic MZVs
(which will be denoted pp-MZVs), satisfies relations with @k, and whose monodromy will give us
cyclotomic associator relations.

Finally, the set Ass(M, k) of so-called cyclotomic associators is a torsor under the action of the
cyclotomic analog @M(k) of the group ﬁ(k), which maps to ﬁ(k) and whose associated Lie
algebra is isomorphic to its associated graded grt,,.

As iterated integrals, pp-MZVs are shown to be periods of P* — {0, 157, 00}. In fact, by relying on
Deligne’s theory of the motivic fundamental group of G,, — ups and on F. Brown and A. Goncharov’s
explicit coaction formula, C. Glanois used in [56] motivic pp-MZVs to show analog results on gen-
erating families for y-MZVs and studied how the periods in P* — {0, uas, 00} relate to each other
when taking different choices for M. Now, the main difference with the classical case is that the upper
bound for the dimension of jp,-MZVs of a given weight is reached in the cases® M = 1,2,3,4,8 but
it is known to be not reached, for instance, if M = p® for a prime p > 5. This means that u/-MZVs
are not enough to describe all periods of P* — {0, jps, 00} in this case.

Now, if we return to consider the set of cyclotomic associators one can show that if M’ divides
M, then W& and \IIIIE[Z, satisfy distribution relations, analogously to C. Glanois distribution study.
By imposing these relations one obtains a subset of cyclotomic associators which is a torsor under a
certain subgroup of GTj;. This subgroup can be seen as an explicit approximation of the motivic

fundamental group of G,, — us.

1.1.3 Generalisations II : The elliptic case

The genus one universal Knizhnik-Zamolodchikov-Bernard (KZB) connection VE,ZLB was introduced
in [24]. This is a flat connection over the moduli space of elliptic curves with n marked points M ,
which was independently discovered by Levin—Racinet [80] in the specific cases n = 1,2. It restricts

to a flat connection over the configuration space

Conf(T,n) :={z=(21,...,2n) € C*|z; #£ z; if i # j}/(Z + 7Z)"

6The case M = 6 being also known but treated differently.
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of n points on an (uniformized) elliptic curve E; := C/(Z + 7Z), for 7 € . More precisely, this
connection is defined on a G-principal bundle over M, ,, where the Lie algebra associated to G has

as components:

1. the holonomy Lie algebra t; , of Conf(T,n) controlling the variations of the marked points: it
has generators x;,y;, for i = 1,...,n, corresponding to moving z; along the topological cycles
generating H (E;);

2. a Lie algebra 0 composed by the Lie algebra sl with standard generators e, f, h and a Lie algebra
04 := Lie({dam|m > 1}) such that each oy, acts as a highest weight element for sly. The Lie
algebra 0 controls the variation of the curve in My .

Now, the connection V%P can be locally expressed as V{ZB := d — A(z|r)dr — Y, Ki(z|r)dz; where
1. the term K;(—|7): C" — %1,71 is holomorphic on
C" —Diag,, , = {z = (21,...,2a) € C"|2; — z; € A, if i # j},

where A, = Z® 17, with only poles at the diagonal in C™ and the A7-translates of this diagonal.
It is constructed out of a function
0(z + z|1) 1
k =
T v b R

This relates directly the connection VE%E with Zagier’s work [104] on Jacobi forms and to Brown

and Levin’s work [20].

2. the term A(z|7) is a meromorphic function C" x h — Lie(G) with only poles at the diagonal
in C™ x h and the (A”-translates of this diagonal. In particular, the coefficients of day, in A(z|7)

are Eisenstein series.

We also refer to Hain’s survey [62] and references therein for the Hodge theoretic and motivic aspects
of the story.

Then, one can construct an holomorphic map sending each 7 €  to a couple e(7) := (A(7), B(7))
where A(7) (resp. B(7)) is the regularized holonomy of the universal elliptic KZB connection along the
the straight paths from 0 to 1 (resp. from 0 to 7) in the once punctured elliptic curve (C—A;)/(A;) ~
Conf(E;,2)/E.. Then, B. Enriquez described and studied in [33] the general theory of elliptic k-
associators, whose set is denoted Ell(k) and for which the couple e(7) is an example of a C-point.
Some of the main features of the so-called elliptic KZB associators e(7) are the following:

e They satisfy algebraic and modularity relations.

e They satisfy a differential equation in the variable 7 expressed only in terms of iterated integrals

of Eisenstein series, which will be called iterated Eisenstein integrals.

e When taking 7 to ioco (which consists on computing the constant term of the g-expansion of the

series A(7) and B(7)), they can be expresed in terms of the KZ associator ®kz.

e The set Ell(k) is a torsor under the actions of the elliptic analog GT ¢/ (k) of the (prounipotent)
group GT(k) and of its graded version GRT ¢s.
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Next, in [34], B. Enriquez studied the coefficients of the series A(7) and B(7) and showed they are
the elliptic analogs of MZVs. These coefficients were called elliptic multiple zeta values (eMZVs) in
analogy to the genus 0 story. They are functions denoted I(7) and J(7), depending on the elliptic
parameter 7, which satisfy the following:

e when taking 7 — 0o, eMZVs can be expressed only in terms of MZVs;

e they satisfy a differential equation expressed in terms of iterated Eisenstein integrals which,
analogously to the motivic coaction formula in the genus 0 cases, can be used to get results on
generating families for eMZVs and their decomposition. In particular, in ([81]) there is a complete
description of the algebras of the elliptic multiple zeta values I(7) and J(7) (modulo 27i) in
terms of multiple zeta values and special linear combinations of iterated Eisenstein integrals.

An important feature of these decompositions is that they are controlled by a special derivation algebra,
first studied by H. Tsunogai ([98]) and by A. Pollack ([88]) which is deeply connected with both the Lie
algebra of the (graded) elliptic Grothendieck-Teichmiiller group and with the bi-graded Lie algebra of
the prounipotent radical of 79¢°™(MEM), where MEM denotes the Tannakian category of universal

mixed elliptic motives constructed by R. Hain and M. Matsumoto in [63].

1.2 Contents

The purpose of this thesis is to define a twisted version of the genus one KZB associator introduced
in [24] and [33]. The first part concerns foundational grounds which we will use to define ellipsitomic
associators. We will redefine by means of our operadic approach elliptic, cyclotomic associators. Then
we define ellipsitomic associators. Finally we concentrate in the framed case and give a definition of
genus g associators based in our operadic approach.

The second part concerns the proof of the fact that the set of ellipsitomic C-associators is not empty,
by providing an ellipsitomic KZB associator. We start by focusing on the universal ellipsitomic KZB
connection. This is a flat connection on a principal bundle over the moduli space of elliptic curves with
a I-structure, where I' = Z/MZ x Z/NZ, and n marked points. It restricts to a flat connection on the
so-called I'-twisted configuration space of points on an elliptic curve, which can be used for proving
the formality of some interesting subgroups of the pure braid group on the torus. Then, we define
twisted elliptic associators as renormalized holonomies along certain paths on a once punctured elliptic
curve with a I'-structure. We study the monodromy of this connection and show that it gives rise to a
relation between twisted elliptic associators, the KZ associator [27] and the cyclotomic KZ associator
[32]. Moreover, twisted elliptic associators can be regarded as a generating series for iterated Eisenstein
integrals whose coefficients are elliptic multiple zeta values at torsion points. In the case M = N,
these coefficients are related to Goncharov’s work [57] and also to the recent work [19] of Broedel-
Matthes—Richter—Schlotterer. We finally conjecture that the universal KZB connection realizes as the
usual KZB connection associated to elliptic dynamical r-matrices with spectral parameter [41, 43].

It is worth mentioning the recent work [96], where Toledano-Laredo and Yang define a similar KZB
connection. More precisely, they construct a flat KZB connection on moduli spaces of elliptic curves
associated with crystallographic root systems. The type A case coincides with the universal elliptic

KZB connection defined in [24], and we suspect that the type B case coincides with the connection
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of the present paper for M = N = 2. It is interesting to point out that a common generalization
of their work and ours (for M = N) could be obtained by constructing a universal KZB connection
associated with arbitrary complex reflection groups, which shall be related to the (genus 0) universal
KZ connection associated with finite subroups of PSLs(C) ([84]).

The structure of this thesis goes as follows:
e Chapter 2 : This chapter sets the basics for the understanding of the rest of the thesis.

— In Section 2.1 we introduce the formal definition of Drinfeld associators. We set up a lot of

terminology involving the exponential group associated to a degree completed Lie algebra.

— In Section 2.2 we introduce the KZ associator, first by using the universal KZ equations
and then by using the universal KZ connection (it is the same construction under two
slightly different languages). By doing so, we elucidate the implicit operadic nature of the
associator relations and we explain the word "universal" in a comprehensive manner. Then
we use the flatness of the universal KZ connection to reprove the formality of the braid

groups and we analyse the anatomy of the KZ associator involving multizeta values.
— In Section 2.3 we explain how all the genus 0 theory translates to its cyclotomic counterpart.
— In Section 2.4 we do the same for the elliptic counterpart.

— In Section 2.5 we give a quick reminder of the general notions of operads, operadic modules,

and moperads, in Section 2.1.

— Finally, in Section 2.6, we associate these structures to the Fulton-MacPherson compactified
configuration spaces in genus 0 and to the collections of their fundamental groupoids and
of their holonomy Lie algebras. We also recall the operadic definitions of associators and
Grothendieck-Teichmiiller groups and enhance these notions into a torsor isomorphism

between these and their non-operadic (classical) versions.

e Chapter 3 : In this chapter we present the main results of this thesis. We then enumerate

some perspectives and future directions that can be undertaken after the work done here.

e Chapter 4 : This chapter is devoted to the definition of twisted elliptic associators and twisted

elliptic Grothendieck-Teichmiiller groups by means of operads in groupoids and their variants.

— Section 4.1 is devoted to the corresponding - and equivalent - operadic definitions in the

genus 1 case by using operad modules instead of operads, mainly following [33].

— Next, in Section 4.2 we turn to the cyclotomic situation and proceed in the same way by
using moperads this time.

— Finally, in Section 4.3, we concentrate on the twisted elliptic (or ellipsitomic) situation
and proceed by combining the use of operad modules and the lifting techniques we used in
Sections 4.1 and 4.2. In particular we give a definition of ellipsitomic associators in terms of
elements satisfying some explicit equations as well as ellipsitomic Grothendieck-Teichmiiller

groups in their k-prounipotent and graded versions.

e Chapter 5 : In this chapter we begin the study of genus g associators, for g > 1.
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— In Section 5.1 we remind the operadic module structures that are associated to framed

Fulton-MacPherson compactified configuration spaces on a genus g oriented surface.

— In Section 5.2 we concentrate in the genus 0 framed case and we associate operad structures
to the collection of the corresponding framed configuration spaces an to the collection of
their fundamental groupoids. We also associate an operadic structure to the collection of
their holonomy Lie algebras. Then we give definitions of framed associators, show that
they do not form an empty set for k = C and show that they are the same as non-framed

associators.

— In Section 5.3 we give operadic definitions of genus g associators and Grothendieck-Teichmiiller
groups, which we relate to their classical point of view in terms of some elements satisfying
relations. Then, we conjecture that the set of framed genus g associators is not empty
and we give a start on the study of the framed genus g universal KZB connection over the
framed configuration space of points on a genus g surface, with the hope of showing that

the the set of genus g associators over the complex numbers is not empty.
e Chapter 6 : In this chapter we define and study the universal twisted elliptic KZB connection.

— In Section 6.1, we introduce I'-twisted configuration spaces on an elliptic curve and define

the universal I'-KZB connection on them.

— As in [24] the connection extends from the configuration space to the moduli space MEM
of elliptic curves with a I'-level structure and marked points. This is proved in Section 6.3
using some technical definitions introduced in Section 6.2 related to the derivations of the
holonomy Lie algebra tlf,n of the twisted configuration space in genus 1. As in the untwisted

case, the results of this section also apply to the “unordered marked points” situation.

— In Section 6.4, we provide a notion of realizations for the Lie algebras previously introduced,
and show that the universal KZB connection realizes to a flat connection intimately related

to elliptic dynamical r-matrices with spectral parameter.

e Chapter 7 : In this chapter we sketch several applications of twisted elliptic associators and

the twisted elliptic KZB connection.

— In Section 7.1, we derive from the monodromy representation the formality of the funda-
mental group of the twisted configuration space of the torus, which is a subgroup of PBy ,,.
As in the cyclotomic case, this formality result extends to a relative formality result for the
map By, — I % G,,.

— Then, in Section 7.2, we show that this connection gives rise to a monodromy morphism
Y - Bli[n] — GL % &,,. The relations between the generators give rise to twisted elliptic

associator relations, providing an example of such an object.

— In Section 7.3 we study the A (7) coefficients that were implicitely used in the definition of
the universal twisted elliptic KZB connection by relating them to the so-called Eisenstein-
Hurwitz series. We show that these are modular forms for the congruence subgroup of
SL2(Z) defining /\;lf [(n] and compute the constant terms in their ¢y-expansion, where qy =

2mi
en’T,
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— Finally, in Section 7.4, we construct a homomorphism from the Lie algebra Elin x o' to

the twisted Cherednik algebra HL (k). This allows us to consider the twisted elliptic KZB

connection with values in representations of the twisted Cherednik algebra.

e Chapter 8 : In this chapter we give a quick definition of elliptic multiple zeta values at torsion

points in terms of iterated integrals of Eisenstein-Hurwitz series.

— In Section 8.1 we give a definition of the twisted version of Pollack’s Lie algebra of special

derivations.

— In Section 8.2 we use the action of the k-prounipotent ellipsitomic Grothendieck-Teichmiiller
group on the ellipsitomic KZB associator to establish a differential equation in the variable
7 € h which is satisfied by this associator and which involves exclusively Eisenstein-Hurwitz

series.

— In Section 8.3 we use the machinery of iterated integrals developped by B. Enriquez in
[34] to give a definition of ellipsitomic multizeta values in terms of iterated integrals of

Eisenstein-Hurwitz series strongly related to multiple Hurwitz values.

Note: A part of the results figuring in this thesis consist on an ongoing collaboration by the author

and by Damien Calaque and appear in chapters 4, 6 and 7 in this thesis for sake of convenience.

Consistency

Chapters 4, 5 and 6 are essentially independent. Section 4.1 can be very iluminating for the
understanding of chapter 5. Next, Section 4.3 and all sections of chapter 6 are related to each
other in chapter 7, Section 7.2, where we use the universal twisted elliptic KZB connection
(constructed in chapter 6) to prove that twisted elliptic associators (defined in chapter 3) do
exist over the complex numbers. Finally, chapter 8 uses the results in chapter 7, Sections 7.1,
7.2 and 7.3.
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Chapter 2

Background

In the first part we will make a reminder on the most basic tools in the theory of associative
and Lie k-algebras which will be used, taking as an example the Kohno-Drinfeld Lie algebra
t, that will be used extensively throughout this thesis. The objective of this first section is
to fix all the notations that will be used throughout this thesis in a comprehensive manner,
to give a formal definition of Drinfeld k-associators and enunciate the fact that, when k = C,

this set is not empty.

In the second part we will study the KZ equation and we will give a definition of the KZ
associator from an analytic viewpoint. Then, we will make a small reminder on the basics
of connections on a G-principal bundle. We will then introduce the universal KZ connection
defined in a trivial exp(fn)-principal bundle over the configuration space of the complex plane.
Then we will give a geometrical definition of the KZ associator and we will prove that it

provides a Drinfeld C-associator.

In the third and fourth part we sketch the theory of the universal KZ associator in the cyclo-

tomic and elliptic contexts.

In the fifth and sixth sections we give in a clear manner the definitions of Grothendieck-
Teichmiiller groups and associators by means of operad theory and Fulton-MacPherson com-

pactifications.

Note. The material of this chapter is standard, the author does not claim originality of
almost any result that figures in here. Bibliographical references will appear at the end of each
section where the reader can extend the work presented in here and of which the author has

been inspired to build this introduction.

Notation

e In this thesis k designates a field of characteristic zero.

e Unless otherwise stated, composition of morphisms are read from left to right.

19
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2.1 Drinfeld associators

2.1.1 Associative and Lie k-algebras
Associative algebras

We recall the definition of an associative k-algebra.

Definition 2.1.1. An associative k-algebra is a pair (A, -) where A is a k-vector space along

with a bilinear map, called multiplication

tAx A — A
(x,y) — x-y
that satisfies (x-y)-z=x-(y-z) for each x,y,z € A. It is said that the algebra A is unitary

if there is a meutral element for the multiplication (that is, an element denoted 1 that satisfies
lrz=1=xz-1foradlzeA).

Example 2.1.2. Let us enumerate some examples of associative algebras.

1. The set of square matrices n X n with values in k forms a unitary associative algebra on

k, which is not commutative in general.

2. The set of complex numbers C forms an associative, commutative and unitary C-algebra

of real dimension 2.

3. Polynomials with coefficients in k form an infinite dimensional associative k-algebra

which is commutative and unitary.

4. In particular, the tensor space TV can be provided with the structure of an associative

k-algebra with multiplication

TV xTV — TV
(,y) = (o, 21, -y 2n), W0, 1,0 Um)) = Ty = (0, s Tn, Y05+ -+ Ym),
where z; € VO y; € VI V1 <i<n,V1 < j<m.

5. Let k{{Xo, X1)) be the associative k-algebra of formal series of powers in two non com-

mutative variables Xo, X1. Flements of this k-algebra are of the form

f(Xo,X1) = Z Cw W
w word in X, X1
where Xog and X1 are formal symbols that do not commute, ¢, € k, and where w is a

word consisting only on powers of letters Xy and X1,

n.
w=Xloxmxn ... x:»
Jo J1 J2

Ip ?

where jo,...,jp € {0,1}, p,no,...,n, € N. For example, w = X$ X0 X?XJ X1 is a word.

Let’s move on to the definition of a Lie algebra.
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Lie algebras

Definition 2.1.3. A Lie algebra over a field k is a k-vector space g provided with a k-bilinear

antisymmetric map called Lie bracket:

[~ —]:gxg — g
(X,Y) — [X,Y]

that satisfies the Jacobi identity :
(X, Y], 21 +[[Y, 2], X] + [[Z, X], Y] = 0,
for each XY, Z € g. A map of Lie k-algebras is a map between k-vector spaces
frg—0
compatible with the Lie brackets of g and b, that is:

flz,ylg) = [f (), f )]y

for all z,y € g. A Lie ideal i (resp. a Lie subalgebra ) of g is a vector subspace of g such
that:

[9,1] Ci(resp. [h,H] € b).

Given an ideal i of g one can form the Lie quotient g/i: it is the vector space g/i provided with
the bracket

lg+ig +i:=[g,9]+1i
Remark 2.1.4. Antisymmetry means [z,y] = —[y, z|. Bilinearity means
[ax 4+ by, 2] = alz, 2] + by, 2] and [z, ax + by] = a[z, z] + bz, 9],
for all a,b € k and all x,y,z € g.
Example 2.1.5.
1. Any vector space E can be provided with the structure of a Lie algebra by establishing
Ve,y € E: [z,y] =0.

Such Lie k-algebra, where the Lie bracket is zero, is called abelian Lie algebra.

2. From an associative algebra (A,-) over k, one can always build an Lie k-algebra <ith

underlying set A by setting, for all x,y € A:
[z,y] =z y—y-=

This is called the commutator of the two elements x and y. It is easy to verify that this

defines a Lie algebra structure on A.
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3. As a concrete example of the previous situation, consider the space M, (k) of matrices
n x n with coefficients in k. This is an associative algebra provided usual matriz product,
not abelian in general. We can also give it a structure of an associative k-algebra, with
the bracket

[A, B] = AB — BA.

We denote gly, (k) this Lie algebra.

Remark 2.1.6. The Ado theorem shows that any Lie k-algebra of finite dimension can be seen
as a subalgebra of gl,, (k). Unfortunately, the majority of Lie k-algebras which we will work
with are infinite dimensional, as in the case of a free associative k-algebra in two generators

that we define next.

Proposition 2.1.7. Let S be a set. There is a unique (up to unique isomorphism) Lie k-
algebra fs (k) provided with a map of sets w : S — fs (k) such that, for each Lie algebra g
and each map of sets f : S — g, there is a unique morphism of Lie algebras f: fs (k) — g

so that the following diagram commutes:

that is, so that f = f om. fs (k) is called the free Lie k-algebra over S.

If S ={X,Y}, we will denote from now on fg (k) = f(X,Y).

Remark 2.1.8. Let’s take a closer look at this definition. A Lie word in symbols Xq,..., X,

is a formal bracket of these symbols. For example
[[Xla X4]) [[X7a [XQ, XQ]]) Xl]]

The Lie algebra §s (k) must be understood as the k-vector space generated by all (linear combi-
nations of ) Lie words modulo the subspace obtained by applying antisymmetry and the Jacobi
identity. Concretely, if we take S = {A, B}, then an element of fs (k) is a finite sum

f(A,B) = Z Cow * W

wLie word inA,B

where ¢, € k.

Remark 2.1.9. A Lie algebra can be presented by generators and relations: it is simply the
quotient Lie k-algebra of the free Lie k-algebra in such generators and the ideal generated by
such relations. One has to verify that the vector subspace generated by the relations is indeed

an ideal.

Every Lie algebra g is contained in an associative algebra U(g) - usually (much) larger than g
- called the universal enveloping algebra of g and where [—, —]; matches the bracket given by

the two-element commutator [z,y] ==z -y —y - x.
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Definition 2.1.10. The universal enveloping k-algebra of g, denoted U(g), is the unique (up

to unique isomorphism) associative k-algebra provided with a morphism of k-Lie algebras
w:g— U(g)

such that for each associative algebra A and each map f: g — A of vector spaces, there is a

unique associative algebra morphism f: U(g) — A such that the following diagram commutes:

that is, so that f = fo.

Remark 2.1.11. Specifically, U(g) is the quotient T(g)/Z of tensor algebra modulo the two-
sided ideal generated by the relation

TRy —yx=|r,y

Example 2.1.12. Ifg = fs (k) and S = {z1,..., 2} thenU(g) = k(S) is the free associative
algebra in symbols in S whose basis is given by the words w = x;, - - - x;, where j; € {1,...,m}

foralli=1,... n.

Example: The Kohno-Drinfeld Lie algebra

Definition 2.1.13. The Kohno-Drinfeld Lie k-algebra, denoted t,,(k), is the Lie algebra freely
generated by symbols t;;, 1 < i # j < n, modulo the ideal generated by the following relations:

tiy = (2.1)
[tij, tkl] = 0 (2.2)

where card{i, j,k,l} = 4. These relations are usually called infinitesimal braids relations. In
the next chapter we will justify this denomination. In the case k = C, we will use the notation
t,(C) :=t,,.

As an exercice one can explore the structure of this Lie algebra for low values of n.

Structure of t,(k) for n < 3. The following facts are easy to prove :

1. The element ¢, := > t;; is central in t,(k) (ie it commutes with every element of
1<i<5<
tn(k)). One deduces that we can define the quotient t,(k) := t,,(k)/{c,).
2. The Lie k-algebras t5 (k) is the free Lie algebra on one generator and ts (k) is the trivial

Lie k-algebra.
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3. tz(k) is nothing but the free associative k-algebra in two generators.
4. The Lie subalgebra of t, (k) generated by t;;, where ¢, j € [1, n], identifies with t,_1 (k).

5. The Lie subalgebra of t,(k) generated by t1,,ton...,t(n—1), identifies with the free Lie
k-algebra f, (k).

6. There is an isomorphism of Lie k-algebras
to(k) = ty_1(k) ® fu(k).

7. Let kes be the abelian Lie k-algebra generated by c3 = t12 + t13 + t23. There is an

isomorphism of Lie k-algebras
t3 (k) ~ kC3 & fg (k)

where f2(k) is the free Lie k-algebra generated by t13 and ta3 (or, equivalently, by ¢12 and
tos).

2.1.2 The exponential group
Completed filtered associative k-algebras

Definition 2.1.14. A topological ring is a ring with the structure of a topological space so that
the multiplication A x A — A is a homomorphism of topological spaces. A topological vector
space over a topological ring k is a k-vector space such that the addition and the multiplication

by scalars of the vector space are topological homomorphisms.

In this chapter, we will mainly use the standard and the discrete topologies.

We have notions of a topological associative algebra and a Lie topological algebra that will not

be recalled here.

Definition 2.1.15. An associative k-algebra A is filtered if it is equipped with a descending
sequence of ideals
A:moDmleg'-'

Remark 2.1.16. A k-filtered associative algebra (A, {m;};cr) induces a direct system of quo-
tient rings
= A/mip — A/my — - — A/my — A/my — 0.

Definition 2.1.17. The filtered completion of the filtered associative algebra (A,{m;}icr) is
the k-filtered associative algebra (A, {W;}icr) where

A = limA/m;

= {a = (ap,a1,...) € HA/mi a; = a;[mod m;],Vj > z}

i=1
and where, for all i € I:

w; = {a = (ao, a1,...) € Ala; =0,Vj <i}.
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Remark 2.1.18. One can identify the quotient k-algebras A/m; and /l/tfli.

Proposition 2.1.19. If (A, {m;}ics) is a filtered associative k-algebra, then we can endow it
with a topology, called Krull topology, defined, for each point a € A, by the basis of neighbor-
hoods

{a+m;}ien.

Remark 2.1.20. In case the ideals m; are equal to powers m; := I° for the same ideal T of A,
the associated completion A of A is usually called T-adic completion of A and its associated

Krull topology is called Z-adic topology.

Proposition 2.1.21. Viewed as a filtered topological Lie k-algebra with respect to the Krull
topology, the completion (A, {;}icr) of an associative filtered k-algebra (A, {m;}icr) is pre-

cisely its topological completion.

Proof. Let {a;};>1 be a Cauchy sequence in A: for each open set U of A, there is an integer
Ny such that, for all 4,7 > Ny, we have a; — a; € U. This is verified if, and only if, for every
integer n, there exists an integer IV,, such that, for all 7, 5 > N,,, we have
a; —aj €m;.
Now, such a sequence always converges in A towards point a = (ag,ai,...) € T[] A/m,, where,
n>1
for all n, we have a,, = an, [modm,,].
Conversely, every point of A defines a Cauchy sequence in A. [l

Example 2.1.22. If A = k[X1,...,X,] is the polynomial k-algebra on X1,...,X,, and T is

its mazimal ideal, then the Z-adic completion of A is the k-algebra
A=X[X1,..., X,

of formal series over k in n commutative variables.

Degree completion

The Baker-Cambell-Hausdorff (BCH) formula is essentially useful to associate a group to any
completed Lie k-algebra (where the exponential application is not necessarily a group mor-

phism).

Definition 2.1.23. A graded Lie k-algebra is a Lie algebra g provided with a graduation of

vector spaces:

+oo
9= @gn

n=—oo

so that the Lie bracket is compatible with the graduation, that is to say:

[9i,95]) € Gitj-
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Remark 2.1.24. If g is graded, then g induces the same graduation at the level of its associated

universal enveloping algebra U(g).

Let g = @ gn be a positively graded Lie k-algebra so that each g, is of finite dimension.

n=1
We can equip it with a decreasing filtering of Lie ideals m, := @ g; so we get a decreasing
n<i

sequence:
g=mpoOom; Omg D ---

Proposition 2.1.25. The degree completion of g is the completion of g with respect to filtering
{m;}i>1, and is identified with the following product:

g = Hgn
n=1

Remark 2.1.26. The difference between g and § lies in that the elements in § can be written

as eventually infinite sums, unlike the elements of g.

Example 2.1.27. Let fs (k),, C fs (k) be the vector subspace spanned by Lie words with
(n — 1) brackets. For example f(X,Y)1 = k(X,Y), f(X,Y), = k(X,Y]) y f(X,Y)s =
k([X,[X,Y]],[Y,[Y, X]]). We can notice that

[fs (k),, fs (k),,] € fs (k) m >

so we can build a grading fs (k) = @ fs (k),,. Then, the degree completion of fs (k) is fs (k) =
n=1

10_0[ fs (k),. It is easy to prove that fs (k) C k({(S). If S = {X,Y}, we will denote from now
n=1
on fs (k) = f(X,Y).

Example 2.1.28. The Kohno-Drinfeld Lie k-algebra t,(k) has a positive grading by setting
deg(ti;) := 1 and we have

= @tn(k)

where, for example, t,(k)1 = @kt;; and t,(k ) @D ktij, tir]. This allows us to define its
i<J i<j<k

degree completion t, (k).

The Baker-Cambell-Hausdorff formula

Let X, Y two elements of an associative k-algebra A. Recall the expressions of the exponential
and the logarithm in terms of series

o0 n

Z and log(1 + X) :iﬂ

These are well defined if A is a completed associative k-algebra. In particular, in the algebra

k[[X,Y]] of formal series in commutative variables, we have the relation

€X€Y = €X+Y.
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However, in the algebra k{(X,Y")) this relation is not true in general. The goal of the Baker-
Cambell-Hausdorff formula is to fix this problem.

Definition 2.1.29. The Baker-Cambell-Hausdorff element is the formal series BCH of k{(X,Y))
defined, for every X, Y € k(X,Y)), by
Xyl
BCH(X,Y) :=log(eXe¥) = 72— 1— Z

k!
k,1=0

X4Y +o[X,V]+—

2 : [Xa[XaY]]+1—12[Y,[KX]]+...

12
One can prove that BCH(X,Y) € §(X,Y).

Proposition 2.1.30. Let g be a completed Lie k-algebra. The exponential group exp(g)
associated to g is the group whose underlying set is the set of formal elements of the form
{eX, X € g} (which is isomorphic to the underlying set of g) provided with the multiplication
law defined by the Baker-Cambell-Hausdorff formula:

exp(g) x exp(g) — exp(g)
(€X,e¥) — oBCH(X,Y)
We have two morphisms, inverse from each other
e:g +— exp(g):log

X +— €~

Proof. We need to show that BCH(X,Y) converges, which is satisfied autotically because
g = lim(g/m,,). Exercise: Set the following equations:
~n

BCH(X,0) = BCH(0,X) = 0
BCH(X,-X) = 1
BCH(BCH(X,Y),Z) = BCH(X,BCH(Y,Z)) = log(e*e¥ e?),
the last equation taking place in f(X Y, 7). O

Remark 2.1.31. The definition of exp(g) makes sense only when the characteristic of k is

zero and when g is complete, otherwise the BCH(X,Y') element does not make sense.
Example 2.1.32. The injection of Lie algebras
fXY) <= ts(k)

X t12

y —> lo3
induces an injection of groups exp(fi(X,Y)) < exp (t5 (k).
Finally, if g is a pronilpotent Lie k-algebra, we denote gr(g) its associated graded Lie algebra.
We are ready to define
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2.1.3 Drinfeld associators

The first goal of this chapter will be to give a geometrical understanding of the following defi-
nition that was introduced by Drinfeld in [27].

Definition 2.1.33. A Drinfeld k-associator is a pair (A, ®) where A € k* and
B(X,Y) =’V € exp(F(X,Y)) C k(X,Y)
which satisfies the following equations:

B(X,Y)=d 1Y, X) in exp(f(X,Y)) (2.4)

+2 E2 VI E2VS . n
eTtu(I)(tlg,t12)67t13¢(t23,t13)6 2 t23¢(t12,t23> = 1 wm exp (tg (k)) (25)

and
D (t13+1t2s, t3a) P (t12, taz+toa) = P(t12,t23) P(t12+t13, taa+t34) P (ta3,t34) in exp (’E4 (k)) (2.6)
The set of Drinfeld k-associators will be denoted Ass(k).

Remark 2.1.34. The equation (2.4) is called antisymmetry relation. The two relations (2.5)

are called two hexagons relation and the relation (2.6) is called pentagon relation.

While we have taken the time to define each mathematical object involved in this definition,
we ignore - for the moment - the particular interest of this mathematical concept, which the
reason of being of those equations - at first sight arbitrary - and, above all, wether such a pair
does indeed exist.

The second objective of the following section will be then to prove the following theorem, due
to Drinfeld:

Theorem A. The set of C-associators is not empty.

In particular, the proof lies in the existence of a particular C-associator coming from the
regularized holonomy of a differential equation in two noncommutative variables called the
Knizhnik-Zamolodchikov equation, well-known in physics. The connection associated to these
equations will induce an isomorphism between the pure braid group, that is the fundamental
group of the configuration space of the complex plane, and the Kohno-Drinfeld algebra, which
is the holonomy Lie algebra of these spaces. These concepts will be introduced in the next

section.
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2.2 The KZ associator

In the previous section we took some time to present a formal definition of the Drinfeld
associators by means of the Kohno-Drinfeld Lie algebra and the exponential group of its
associated degree completion. At the moment we do not know what is the reason to be of
these equations but we will dedicate some time into proving that such a set is not empty when
taking k = C.

In particular, we are going to explicit an example of such an associator through the resolution
of a certain system of differential equations in two non-commutative variables, whose geometric
version will allow us to understand the the architecture of the definition of Drinfeld associators.
We will mainly follow [27].

2.2.1 Solutions of the universal Knizhnik-Zamolodchikov equation

In this section, we will introduce the Knizhnik!-Zamolodchikov? (KZ) equations in its universal
version. Initially, these equations, which form a system of partial differential equations in the
complex plane with regular singular points, were born in quantum field theory (especially
in condensed matter and high-energy physics) as equations that satisfy a set of additional
restrictions for the correlation functions in the Wess-Zumino-Witten model in two dimensional
field theory and which are associated to an associative k-algebra of a fixed level. The reader
interested in learning about the KZ equations in the context of quantum field theory may

consult the introduction [51] on the subject.

The universal KZ equation

The universal version of these equations was established by Drinfeld in [27] and are defined
for any type of associative k-algebra that satisfies the infinitesimal braid relations - that is,
defined in the Kohno-Drinfeld Lie algebra. Remember that the configuration space of n points
on the complex plane is the following open subspace of C™:

Conf(C,n) :={z=(21,...,2n) € C"|z # 25, if i # j}.

Definition 2.2.1. For each n > 2, the Knizhnik-Zamolodchikov differential system over (any

open subset within) the configuration space Conf(C,n) is

1 ti;
(KZ)p :dW = —— Y  —L—(dz —dz)W,

Tz — %
1<i<jsn

that is, fori=1,...,n:

kz), 2L L s gy

8z umw 2 — %;
v 1<i<j<n " J

where W is a function defined in any open U C Conf(C,n) and taking values in L?(fn)

1(1962-1987) Vadim Knizhnik.
2(1952-) Alexander Zamolodchikov.
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When n = 3, the differential system’s solutions (KZ)s; define an element of C{(X,Y")) and
the asymptotic behaviour of these equations when n = 3,4 determines the relations that this
element satisfies. It is important to emphasize that this « two stages principle » is enough
to fully define a Drinfeld associator. The importance of this remark is developed in the next
section when we integrate the geometry of Conf(C,n) into this story. For now let’s restrain

ourselves on the study of this differential system.

Definition of the KZ associator

Recall that a function f of a complex variable is analytic at a point xg if it is developable in
entire series in any open neighborhood of xy inside its domain set. This means that, for any
open neighborhood D, of z¢ in the domain set of f, there is a sequence (ay)n>0 such that,

for all x € Dy,, the function f is written in the form of a convergent series

o0
f(@) =) an(z —zo)".
n=0
We can easily observe that the system (KZ)s is written in terms of the total differential

1
%[tudlog(@ — Zl) + tlgdlog(23 — Zl) 4+ t23d10g(2’3 — ZQ)]W

dW =

Proposition 2.2.2. The solutions of the system (KZ)s are of the form

(23 — 21)263’(; (u) )

Z3 — 21

where c3 := t1a+t13+ta3 and G is a formal series in the non commutative variables t1s, toz, with
as coefficients analitical functions in the complex variable z € C — {0,1} which are solutions

of the linear differential equation

@) = ﬁ (“72 4 ;231) G(2). (2.7)

Proof. The proof consists in the following stages:

1. First notice that

u log(zz — z1)u Zlog(k(zz — 21))u*
(z3—z1)2wr:exp(M):z g(k(z3 1)) iy

24 pre (2im)k

belongs to the center of ts.
2. In (KZ)3 do the variable change W = (23 — 21) %= x I.

3. Write z = Eiiiig and conclude.

O

Let Y = C — (] — 00, 0] U[1, 00[) where | — 00,0] and [1,00[ are straight half-lines in R C C.
Notice that U is simply connected.
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Remark 2.2.3. As a consequence of the fundamental theorem of linear differential equations,
the equation (2.7) has analytic solutions in U which are unique once a value has been specified

at any point of U.

Equation (2.7) has two unique singularities in C which are z = 0 and z = 1. By setting
w = 1/z, we observe that this equation also has a singularity at co. These three singularities

are regular.

Let’s analyze the asymptotic behavior of the equation (2.7) as we approach our two unique

singularities in C which are z =0 and z = 1.

Proposition 2.2.4. Equation (2.7) has two unique solutions Gy and Gy such that

Go(z) ~o 27 (2.8)

t23

Gi(z) ~1 (1-2)% (2.9)

In particular, Gy and Gy are not zero and therefore differ from each other by an invertible
element. The KZ associator is the quotient ®xyz = G1 Gy € C{(X,Y).

Remark 2.2.5. The equations (2.8) and (2.9) mean that Go(z)z~ 42 (resp. G4 (z)(l—z)_;%_fr)

2im
have analogous continuations in a neighborhood of 0 (resp 1) taking at 0 (resp. at 1) the value
1. We observe in the same way that 22% and (1- z)%)'r are well defined in U.

Proof. The reader can consult the proof of Proposition 2.2.4 in [66].

One can show that ®ky is independent of z calculating the derivative @}, ().

Remark 2.2.6. This definition is valid for all non-commutative symbols A and B. For each
pair (A, B), we have two functions Go(z; A, B) and G1(z; A, B). We can then define

¢K2(A, B) = Gl(—; A, B)_lGo(—; A, B)
In particular, ¢xz(t12,t23) = Pxz.

Let us reformulate Theorem A in the following way:
Theorem A. The pair (1, Pxz) is a Drinfeld C-associator.

Analytic proof of Theorem A

Below we reproduce Drinfeld’s original proof of Theorem A.

1) ®kyz belongs to exp(ts):
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Let us give the big steps of this part of the proof: first the universal enveloping algebra
u (’Eg (k)) has a structure of a filtered and completed Hopf k-algebra. In particular, the
coproduct A is given by the completed tensor product ®. The elements of exp(fg) are
identified with the group-like elements (i.e. elements that verify A(g) = g&g) of U(ts).
Therefore, it suffices to show that A(®kyz) = Pxz@®Pkz. This is obtained by using remark
2.2.6: notice that if Gg and Gy are group-like, then we can (in the case of Gy) use function
G4(2) = Go(z;t12 ® 1,123 ® 1)Go(2; 1 @ t12,1 ® ta3) to conclude.

2) Antisymmetry relation:

If we replace z by 1 — z in equation (2.7), ®xyz is replaced by its inverse which is equivalent to

swap t12 with tog ie apply the permutation (123).

3) Pentagon relation:

Let’s start by describing the asymptotic behaviors of the solutions of the system (KZ)4. Let
U:={(21,...,24) € RY 21 < 20 < 23 < 24} C Re(Conf(C,4))

be an open subset in the real part of the 4 point configuration space of the complex plane.

Consider the following 5 zones in U:

20— K z23—21 K 2z4— 215

(Z1)

(Z2) 23— 220K z3—21 K 24— 215
(Z3) z3— 22K 24— 22 K 24— 215
(Z4) 24 — 23K 24— 22 K2y — 21

(Zs) 24— 23K 24— 21 and 20— 21 K 24 — 21.

How to represent these areas and how to relate them to each other? It’s here where one of
Drinfeld’s brilliant ideas intervenes: they correspond to a pentagon where each edge corre-
sponds to parenthesis arrangement: V; and V; are in the same parenthesis and Vj out of it
if |z; — zj| < |z; — zx|. This way, 23— 21 <« 23—21 < 24— 2 corresponds to the pair
((ee)e). We can also say that it corresponds to a trivalent tree with four leafs as summarized

in the following image:

Z
((e0) o) e (e0)(ee0)
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Lemma 2.2.7. There are five unique solutions Wy, ..., Wy to the system (KZ)4 having the

following asymptotic behaviors in the corresponding zones:

Wy ~ (22— zl)éﬁ (23 — Zl)tlszj;zs (24 — 21)%;
Wy ~ (z3 — 22);3;1 (Z3 _ Zl)tuzj,:“ (24 o Zl)%;
Wa ~ (23— 22) 52 (24 — 20) B2 (o — 2p) 2R,
Wi o~ (24— 23) 5% (24 — 20) B (o — 2p) 25,
Wy ~ (22— 21) 7% (24 — 29) 5% (24 — 2g) T80
That is, we have for example
Wa = f(u,0)(23 — 20) B2 (23 — 21) 52 (zy — 27) SR

(23—22) , _ (23—21)
(za—21)" " 7 (24—21)

where u = and f is an analytic function on a neighborhood of (0,0) with

f(oa 0) =
Proof. Let us give the steps to perform the calculation for Ws:
1. Demonstrate that, in this case, one can reduce the system (KZ)4 to a three-variable

system.

2. Make the substitution W = g (z4 — zl)T/ 2™ and reduce our system to a system with two

variables. Deduce that g is a function in u and v.

3. Deduce that the system (KZ)4 is now written

1
dg = %[tlgdlog(u) + t34dlog(v) + dR(u,v)] - g
where R is an analytic function on a neighborhood of (0,0). Conclude.

4. Use the technique of successive approximations to show that there is one, and only one

solution to this equation of the form

¢(u7 'U)U 2im Q) 2im R

where ¢ is an analytic function on a neighborhood of (0, 0) such that ¢(0,0) =1

5. Use the principle of analytic continuation to show that the W, functions are extended

analytically to U.

Lemma 2.2.8. The asymptotic expansions W1, ..., Ws satisfy the following relations:

Wi = Wy ®xz(tia, tes);
Wy = Ws- Z(t12 +t13,t24 + t34);
Wi = Wy- Pxz(tes,taa);
Wy, = Ws- z(t13 + t23,t34);
Kz(

Ws = Wy ti2,taz + t34).
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Proof. Let’s prove the first identity. Let Vi = Wy - (24 — zl)_ﬁ(tl‘”‘t“““). We have

Wy - @xy(t12,tas) - (24 — 21)_ﬁ(t“+t“+t34)

— 5 (t1a+tog+t
Wo - (24 _ Zl) 5im (tra+toa+tsa) | dy Py

Va

Indeed, t14 + tos + t34 commutes with all ¢;; for ¢,j < 4 and therefore with ®xz(t12,t23). We
have

N ; 1 _
(24 _ Zl) 5o (tra+taa+tsq) — ¢ Tim (t1a+t2a+t3s) log(za—21)

which has a series expansion and we obtain the required commutation.

On the other hand, we have V; = V5. Indeed, if 21 < 25 < 23 < 24, then V; and V5 are analytic
(and z4 can be eventually infinite). Additionally, V7 and Va verify

2 E 21—2;
oV J#1
1 tij _ 1 | tiattoatitsza  ip;
= 25 E 2i—2j Vv 25 21—24 ifi= 2’ 3

(’)zi J l[ V]
1 ti4,
Sim O zia;
J7#4
The first two equations and the asymptotic developments of V7 and V5 show that the two

functions match for z4 = co. As a consequence, from the above equation one gets V3 = V5.

The rest of the equations are found in the same way. o

Finally, in light of these relations, we obtain

Dy (t13 + to3, t34) Prz(t12, taz + toa) = Pz (ti2, tas) Pz (12 + t13, toa + t34) Pz (tas, t3a).

We conclude that ®ky satisfies the pentagon relation.

4) Two Hexagons relations:

Applying the permutation (123), we find that the relations of the two hexagons are satisfied
by ®kz if, and only if, only one of them is satisfied by ®kz. To demonstrate that @z satisfies
one of the two hexagons one proceeds in an analogous way to that we used to demonstrate the
pentagon relation: find six solutions of (KZ)s in different regions with standard asymptotic
behaviors corresponding to the edges of an hexagon and show that these solutions have relations

that imply the required hexagon relation.

We leave the detail of this proof to the reader’s care.

2.2.2 Reminders on flat connections

We recall very quickly some definitions of the theory of vector bundles. The reader interested

in a detailed introduction illustrated on the subject may consult [71].
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Flat connections

Let X be a complex manifold and E — X a vector C-bundle X. Recall that Q°(X, E) =
(X, E) and that QY(X,E) =T(T*X ® E).

Definition 2.2.9. A holomorphic connection V on £ — X s a linear map
V:T'(X,E) — QYX,E)
verifying, for all f € O(X),s € I'(X, E), the Leibniz relation :

V(f-s)=(df)@s+f V(s)
Remark 2.2.10. e Be Vy and V4 two connections over E — X. The difference V1 — V3
is O(X)-linear.

e Locally, a section s is written in the form

s= fiex + -+ faea
where f1,..., fa are complex analytic functions on X and {e1,...,eq} is a basis of the
fiber.

o All connections V over E — X can be written locally under the form
Vs =dgr s —Ts,
where dgr is the de Rham differential and T is a differential 1-form on X taking values
in the ring End(FE) of endomorphisms of E.

o A section s of E — X is horizontal with respect to a connection V if Vs = 0 that is, if
locally s is solution of the differential system

ds = T's.

Let’s move on to present the notion of parallel transport for a connection on a vector bundle
FE— X. Let

~v:[0,1] — X
t — ()

be a continuous path in X. One can perform the pullback of the matrix I' of differential forms
over X along v into a matrix

A(t)dt = ~+*T
of differential forms over the interval [0,1]. In light of the theory of ordinary differential
equations, there is a unique smooth map A, : [0,1] — Aut"(E, X), where Aut"™(E, X)
is the group of linear automorphisms of the bundle £ — X, such that A,(0) = id and
w(t) = A,(t)w(0) is a solution of the differential equation
dw(t)

= A,
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Definition 2.2.11. The parallel transport of the connection V along ~y is the linear isomor-
phism A+ (1) between the fiber at the initial point v and the end point of y. We will denote it
by

T’Y : Fw(O)ZFw(l)'

In particular, we have a map
(01— X) — (T o = Py

so that if 4/ : [0,1] — X is such that v(1) = 4/(0) (in which case we say that the continuous
paths v and 4/ are juxtaposable and the path ~ -+’ is then continuous) Then

T’Y"Y/ = T’Y o} T’Y"

Definition 2.2.12. The holonomy group of V based at a point xo € X is the subgroup of
Aut(F, o)) generated by T, for all loops v based at xo € X.

Let V be a connection over a vector bundle £ — X. We can extend V into a covariant

derivative
v

T(E) 5 QNX,E) 5 QX(X,E) — - --
by means of the formula
V(wAw) =dwAw' + (—1)*lw A V'
Definition 2.2.13. The curvature of the connection V is the map
VZ:=VoV:I(E) — Q*X,E).
Remark 2.2.14.

o The curvature is a map which is O(X)-linear.

e Locally, the curvature is expressed in terms of I' by
V2= —dgqrw + w A w.

Before constructing explicitely the parallel transport application, let’s modify the proposed
framework a little bit by extending it to the case of the G-principal bundles, where G is a Lie

group.

G-principal bundles and associated connections

Let G be a topological group.

Definition 2.2.15. A G-principal bundle is a fiber bundle m : P — M together with a

continuous free and transitive right action of G on P, denoted
R:G — End(P)
g — (Rg:p—g-p)

such that G preserves the fibers of P (i.e. ify € n='({z}) theny-g € 7= ({z}) for all g € G).
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Remark 2.2.16.

1. This implies that each fiber is homeomorphic to the G group.

2. A principal bundle is trivial if, and only if, it admits a global section.

We can extend this definition to the case where G is a Lie group, with associated Lie k-algebra
g, and M is a differientable manifold by demanding that 7w to be differentiable and that the
action

G on P is also differentiable. In this way, we will demand that the notion of connection in this
setting to be « compatible » with the action of G as follows:

Definition 2.2.17. Let P — M a G-principal bundle. A G-principal connection is defined
by a differential 1-form w € QY (P, g) taking values in the Lie k-algebra g associated to G such
that

1. w is G -equivariant i.e. adg(R;w) = w, where ady s the adjoint representation;

2. if v € g and X~ is the fundamental vector field associated with vy by differentiation of the
action of G on P, then w(X,) =~ (identically over P).

Remark 2.2.18. Let G be a Lie group with associated Lie k-algebra g, let P — M be a trivial
G-principal bundle and let w € QY (M, g) be a differential 1-form that defines a connection on
P. In this case the curvature is given by the differential 2-form with values in g defined by

1
Q=dw+ 5[&1/\w] € O*(M,g),

where d is the external differential, [— A —] is the operation Q(M,g) x QY(M, g) — Q*(M, g)
defined, for all pairs of tangent vectors v1 and vy a M, by

[w A D] (v1,v2) = [w(v1), 1(v2)] = [w(v2), n(v1)]

so that we get
1
Q(v1,v2) = dw(vy,v2) + §[w A w](v1,v2) = dw(vy,v2) + [w(vy), w(v2)].

We will denote in the future |w,w] for the 1-form bracket.

regularized holonomy and regularized iterated integrals

Let us quickly explain the formulation of parallel transport in terms of path ordered exponen-
tials.

Remark 2.2.19. Let G be a Lie group with associated Lie k-algebra g. Consider the following
general Cauchy problem:

dp = ayp
{ p0) = 1g (2.10)
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where ¢ : [0,1] — G is a function and o € Q1([0,1], g) is a differential 1-form taking values in
g. Then there is a unique solution ¢ of (2.10) and we can define the path ordered exponential

Pexp (/Ola) — o(1) € G.

As a consequence of Picard succesive iterations method, we can explicitely develop this element

into the so-called Dyson series:

Pexp (/01 f(t)dt) — 14 (/01 f(tl)dtl) b (/Ogtng”@lgl dtr . dtnf(th)... f(tn)> T

We can similarly extend this definition for every differientable manifid M considering, for
a € QY(M,g) and v :[0,1] — M, the path ordered exponential

’Pexp(/a)z’Pexp </ 7*a>.
v [0,1]

In this case, considering the trivial G-principal bundle over M, the parallel transport of the

connection V = d — « along the path ~ is precisely

pexp<La>.

If ~ is a piece-wise smooth path on M, then the iterated integral of the differential 1-forms
Wi, wn € QY M, G) is

/wl---wn 2:/ dtl...dﬁnf(tl)...f(tn)
¥ 0Kt <<t <1

Proposition 2.2.20. Let P — M be the trivial G-principal over M and let V be a connection

on this bundle. It is said that a connection V is flat if, equivalently:

1. The curvature V o V of the connection is zero;

2. the 1-form w associated to V satisfies the Maurer-Cartan equation :
1
dw + a[w,w] = 0;
3. For each pair (y1,7v2) of homotopic paths in X we have T, = T,,.

Remark 2.2.21. If this is the case, then the parallel transport of V along a loop based on a

point xo € X induces a group morphism
p: 7T1(X, $Q) — Aut(Emo)

called monodromy morphism or a monodromy representation of the fundamental group of X

with respect to its action on the fiber of xg.

Proof. We will only show the first equivalence:
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e Step 1 = 2: A horizontal section of this connection satisfies df = —wf. If the connection

is flat, then
0=—d*f=dwf) = (dw)f —wAdf = (dw+wAw)f = (dw+%[w,w]) f

for any horizontal section. As locally there is a flat frame of the bundle, this implies that
dw+wAw=0.

e The step 2 = 1: this follows from the Frobenius theorem.

We will assume the following:

Proposition 2.2.22. Let w a differential 1-form over a Riemann surface M with logarithmic
singularities over a finite subset S of M. Then, for all z1,z2 in M — S, the following limits
exist:

li tv(w)ST z1 li T 22 t—V(w)s'

Jim L) lim T ()
In the next section we will give a particular example of a flat connection that is naturally
associated to the (KZ), system. We will dicover how to retrieve multizeta values from the

parallel transport of this connection and find new relations for these numbers

2.2.3 The universal KZ connection

The objective of this section is to convince the reader of the fact that, using basic results on the
geometry of the configuration spaces, the proof of the fact that the KZ associator is a Drinfeld
associator is a consequence of the flatness of a certain connection defined on this space and
therefore, in a certain way, the manipulations of the KZ differential equations becomes visible.

This allows to have a better understanding of the architecture of the Drinfeld associators.

The differential system (KZ),, leads to an associated connection, the universal KZ connection,
which is flat in the configuration space of n points in the complex plane. Regardless of its
application to the understanding of Drinfeld associators and multizeta values, this connection
has several fields of application: for example, it provides a monodromy representation of the
fundamental group of its basis space, that is to say of the pure braid group on the plane. This

implies, in particular, the formality of this group, as we will explain below.

Let P := Conf(C,n) x exp(t,) be the trivial exp(t,)-bundle over Conf(C,n).

Definition 2.2.23. The universal KZ connection is VEZ = d — wE% where w&?% is the

differential 1-form over Conf(C,n) with values in the Kohno-Drinfeld Lie C-algebra t, given
by the following formula:

wTIfZ = Z leg(ZZ — Zj)tij-

1<i<jsn
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Remark 2.2.24. A function o : Conf(C,n) — t,, is a horizontal section of VXZ if, and only
if, o is a solution of the system (KZ),. Indeed, as VEZ is a connection defined on a trivial
exp(t,)-bundle, its horizontal sections are functions Conf(C,n) — t,, so that o is well defined

as a section.

Why is it universal? The explanation of the exact meaning of the word « universal » goes
through several points. Let us begin by defining the holonomy Lie algebra of a smooth variety

and its de Rham fundamental group following [28] and [36].

2.2.4 Reminders on the Riemann-Hilbert correspondence

Let X be a complex smooth variety. Let H3 (X) be the de Rham cohomology complex of X,
let

i N Hig(X) — Hip(X)
be the multiplication map, let us denote Hi (X) for the dual of H} (X) and let K+ C A2H;(X)
be the dual subspace of K := ker(u) C A2H}z (X).

Let X be the smooth compactification of X with D = X — X a normal crossings divisor. For
simplicity we suppose that H}g (X) is pure of weight 2, implying that H*(X) is isomorphic to
HO(X, Q% (log(D)).

Deligne established in [28] an equivalence of tensor categories between:
e the category VBFC(X) of vector bundles with a flat connection on X with regular singu-
larities,

e the category LS(X) of topological local systems on X.

This is known as the Riemann-Hilbert corrrespondence.

Notice that here, for a vector space E, A’E identifies with the degree 2 component of the free

Lie algebra generated by F.

Now, one can attach to these tensor categories its unipotent part (see [36] for details). The R-H

correspondence then induces an equivalence between the unipotent parts of these categories:

~

RH"" : VBFC(X)"" = LS(X)“. (2.11)

This map associates to each object of VBFC(X) the local system of its horizontal sections.

Any point z € X gives rise to two fiber functors F!* : LS(X) — Vectc and F'* : VBFC(X) —

Vectc and to a canonical isomorphism F!¥ o RH ~ F*°.
Definition 2.2.25. Let X be a complexr smooth variety.

e The holonomy Lie C-algebra hol(X) of X is the free Lie C-algebra over H{®(X) modulo

relations in K+.
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e The de Rham fundamental group of X is the unipotent Tannakian fundamental group of
the category of vector bundles with flat unipotent connections on X with regular singular-
ities at infinity :

R (X, x)"" = Aut® (FYP),

for the choice of a base point v € X.

e The Betti fundamental group of X with base point x is the Tannakian group corresponding
to Fl :
m2(X, z) == Aut®(FY).
Remark 2.2.26. e The relations in K+ are all in degree 2, so hol(X) is provided with a
natural graduation.

e The R-H correspondence then provides us with a map m{®(X, )" — 7B(X,z).

Deligne then proved the following result.

Theorem 2.2.27. The Lie algebra of 7{®(X) coincides with the degree completion hol(X) of
the holonomy Lie algebra of X.

In practice it can be convenient to characterise hol(X) the following way.

Proposition 2.2.28. If Hiz(X) is generated by Hlg(X), then hol(X) is Koszul dual to

H}p(X) as commutative algebras.

Let us finish this reminder on some comments on Gauss-Manin connections in the complex

analytic context.

Let f: X — S be a smooth family of complex manifolds. We have a local system R" f,C
of complex vector spaces on S, defining a holomorphic vector bundle V := R" f,C® Og on S
with an integrable connection V:V — V ® le of the family, so we get a connection on the

latter. We have a map

DR: D! (Dx) — D%(Cx),

so that M — DR(M) = wx ®%X M is the analytic de Rham complex. By the R-H
correspondence the map DR is an equivalence. DR sends a O-coherent D-module (i.e. a
vector bundle with an integrable connexion) to a local system (i.e. a locally constant sheaf).
The inverse functor sends a locally constant V' to the vector bundle Ox ®¢c V together with
the only connexion such that V' is the local system of horizontal sections in (Ox ®¢ V, V).

The Gauss-Manin connection is then defined as DR (Rf.Cx).

2.2.5 Universality of the KZ connection

Let us compute the holonomy Lie algebra of the configuration spaces Conf(C,n).
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1. Suppose that X = Conf(C,2). As Conf(C,2) = C? — {z; = 22}, we can take the following

coordinates:
T=2z1+ 2

Yy==z— %2 -
In these coordinates, the only differential 1-form with logarithmic singularities on X is

dlog(y). In this way, we find
hol(X) = f1(C) = t2(C)

where f; is the free Lie k-algebra on 1 generator (which is of dimension equal to 1).
2. Suppose that X = Conf(C, n). Then we have

e Hl.(X) is generated by the 1-forms
wij = dlog(z; — ),

where 1 <7< j < n.
e (Arnold) K is generated by

Wij N Wik + Wik A Wik + Wik A Wij,

where 1 <i<j<k<n.
o If {t;j}ic; € H{R(X) is the dual basis to the basis {w;;}i<; of Hig(X), then Kt is
generated by elements
tij N trr,ti; A (tie + tik),

where card(s, j, k,1) = 4.
In conclusion, the holonomy Lie C-algebra of Conf(C,n) is the Kohno-Drinfeld Lie C-
algebra t,,.

In this way, we see that the system dp = >~  t;;dlog(z; — z;) is defined in a natural way
1<i<j<n

in the exp([)/o\[(X))—trivial bundle over X = Conf(C,n).
In addition, this system contains the smallest amount of information necessary to be well
defined:

e Let W be a vector space and consider the trivial vector bundle Conf(C,n) x W —

Conf(C,n). Let’s consider the connection

6 =d— Z leg(ZZ — Zj)Aij-

1<i<j<n
defined over the above bundle, where A;; are endomorphisms of W. In this case, a
sufficient condition for V to be flat is that A;; satisfy the three infinitesimal braid relations.

In this sense, the Kohno-Drinfeld Lie algebra is the « simplest » possible so that the

connection satisfies these relations.
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e Consider the connection

V=d- Z Aij(zi = zj)d(zi — 25),

1<i#j<n

where the matrices A;;(z; — z;) act in the i-th and the j-th entries of V=V ®---® V.
In this case, the connection is flat if, and only if, the family {A;;(z; — z;)} satisfies the

Yang-Baxter equation
[Air (2 — 2k), Arj (zk — 25)] + [Aar (2 — 21), Ay (20 — 25)] + [Aij (20 — 2), Arj (26 — 25)] = 0.
In particular, if we consider the simplest possible choice of r-matrix, that is, if we consider

t..
Aij(zi = 2;) = — i]z‘,
i 2

where t;; are formal symbols, then we have

Visflat <= {A;;} satisfies the Yang-Baxter equation

<= {t;;} satisfies the infinitesimal braid relations.

2.2.6 Reminders on semi-simple Lie algebras.
Let g be a Lie k-algebra. Its adjoint representation is the k-vector space map given by

g — End(g).

z > (ady 1y = [z,9))
If g is finite dimensional, then :

e There is a well defined bilinear symmetric form
B(z,y) := Tr(ad(x) o ad(y))
called Killing form, which is g-invariant under the action of Aut(g) and such that

B([z,yl, 2) = B(x, [y, 2));

for all z,y,z € g.

o If {X;}i<n is a basis of g and {Xi}ign is its dual basis with respect to B, the Casimir

element is

0= iXiXi € Z(U(g))

i=1
i.e. commutes with all elements in g and is independent of the choice of the basis.

o If char(k) = 0 then:

g is semi-simple <= B is non-degenerate.
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Now let g be a finite dimensional Lie C-algebra, let

S*(g) :==T%(g)/(z®@y —y @ x)

be the symmetric algebra associated to g. Then, for an orthonormal basis of g with respect
to B, we have that T'(v1,v2) = Eya, ® b, € S?(g) satisfies T'(v1,v2) = T(vy-1(1), Vo—1(2))- We
have Og4« = S(g).

An element y in S?%(g) is said to be g invariant if [x ® x,y] = 0, for all x € g. The set of such
elements will be denoted S%(g)?. Then t; = L., ® f, € S?(g)?®. By choosing a basis we get

n

(X0, X5) =Dl X

k=1
where cfj = fcé?i are the structure constants. In particular
(a@b)(co®d) = ac®bd;
[a®bc®d = ac®bd—ca®db#[a,c O [b,d].

Let G be a connected Lie group with associated Lie algebra g. If G' acts on a differientable
manifold M, then = € g is represented by a first order differential operator over M and this
representation p is in C*°(M). If G and G’ are n dimensional and have the same structure
constants, then they are locally isomorphic. This means that the structure constants are
related to the second order partial derivatives in a neighborhood of the identity but give
local properties over the whole group : for instance, they tell if locally the multiplication is
contractible.

2.2.7 Realizations of the universal KZ connection

The universal KZ connection « has realizations »: consider

a (semi-)simple Lie C-algebra g;

e a symmetric g-invariant 2-tensor Q = >z, ® y, € g ® g (which is constructed from the
K

Casimir, coming from the Killing form associated with g),

e a non-zero integer n € N1,

a finite dimensional g-module V,
e a formal parameter i = # eC.
Let’s define
t7:=> oM@ ®al e U(g)®",

where ag) = x,, agj) =y, and aﬁk) =1, where k # ¢,j. Then

1. Every t¥ induces an endomorphism of V®" that satisfies the infinitesimal braid relations.

e This fact is a consequence of the construction of ¥/ and the g-invariance of Q € g®@g.
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2. We have t¥ = ¢J°,
e This fact is a consequence of the symmetry of the 2-tensor t%.
We conclude that we have a morphism
exp(t,(C)) —  End(VE")[[A]]
etii —  htY
and the system
(KZ)., dw=h Z dlog(z; — z;)tYw
1<i<jsn

is called realization of the universal system (KZ),, associated to (g, V).

2.2.8 Holonomy of the connection VX% and geometric definition of

the KZ associator

Let ¢ > 0. Denote Xo = t12 and X7 = ta3. Let ®.(Xp, X1) be the parallel transport of
the universal KZ connection with respect to the path ¢ :[0,1] — C—{0,1} such that
v(0) =€, v(1) =1 — ¢ and ~(t) € R, that is, given by the path ordered exponential

1) s x X
P (Xo,X1) = Pexp / (_O+ : )dz
’Y(O) z Z*l

= Z cw(e) w

wword inXgp, X4

where, for jo,...,jn € {0,1}, w = xj, - - - 2, € Q(Xo, X1), and

YD gt gt tenel gt
cw(zs):/ ! / 2 / . (2.12)
v 1=z Sy te =2 o) I Z
Recall that the polylogarithm function is given, for s,z € C, by
ok
z
Lig = —
is(2) ;kzs

and that multizeta values are the real numbers

1 1
Clk1y ooy hr) = Z TR Z (H_k>

ni>ng>..>n.>0 M1 T ni>ng>...>n,.>0 n

i=1""1
where ki,...,kr—1 € NZ1 k. > 2.

We are going to admit the following proposition, which we will explain in the next subsection.

Proposition 2.2.29. For each word w in Xy and X1, the scalar c,(€) is a polynomial in
polylogarithm functions of the form Li,(e) and in the function log(e). In particular, if the word
w ends in X1 (in particular w can be written in the form w = Xgl_leXg)“_le .. .Xg’“_le,
where n; = 2, for all k > 1), then the function c, () converges when € tends to 0 and we have

lime, (e) = (=1)*¢(n1, ..., nk).

e—0
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Corollary 2.2.30. ®.(X, X1) has an asymptotic expansion into a homogenous polynomial
O (log(e)), that is,
D, (Xo, X1) — P(log(e)) — 0.
e—0

Proposition 2.2.31. The Drinfeld KZ associator is, equivalently, defined by:

1. the quotient ®%% := G7'Go € C{Xo, X1)) of Proposition 2.2.) of the first section;
2. the regularized holonomy of the connection VL% between 0 and 1 (following the real part
of PY(C) — {0,1,00}) i.e. the limit

Pz (Xo, X1) := lime™ ®e(Xo, X1)e ™0,
e—=0
3. the regularization Pkz := ®(0) of the polynomial ®(log(e)) by formally setting log(e) = 0.

Proof. First, the three definitions make sense in light of the above paragraphs. Let’s prove

that these definitions are equivalent. We have the expression
®.(Xo, X1) = G1(1 — €)G1'Go Gy ()
so that the following limit exists

lime®1 @, (X, X1)e ™ = lim (e G1 (1 — €))G ' Go(Gy H(e)e™™) = GGy

e—0 e—0

Therefore, the asymptotic expansion of ®. (X, X;) is eX1 G Goe =X, O

Monodromy of the KZ connection and geometric proof of Theorem A.

Let’s start with a crucial result that will allow us to work with the connection.

Proposition 2.2.32. The universal KZ connection is flat, that is: (Viz)? = 0.

Proof. We compute:

v o= ¥ [tij, ti)d(zi — zj)d(2k — 21)
i<j (zi — zj) (2 — 21)
K<l

_ o [tij, tui]
- Y | Y

i£j ik g Z])(Zk 7Zl)
J#l

_ o [tij, thi] [tir til
2|2 ")

oy Tz — )z —a)

_ - des —[tin: tjx] [tin,t)k]
= 2 dudz | D (2 — 3 (2 — 2) (25 — 2)

i =2z =) o

i#j ki
(tikstjk)
= = dzdz; =0.
; ' ]k;j (2i — 2j)(2zj — 2x)

We conclude that the connection is flat. O
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In this way, we can talk about monodromy of the connection and we will see how the Drinfeld
associator relations arise, in the case of the KZ associator, precisely from this monodromy. We
reproduce the proof of Theorem A. The element

1-e
t t
q)KZ(t127t23) = 61141)%615237) exp (/ <% + ;%1) dZ> €7t12
€

is the regularized holonomy between 0 and 1 of the universal KZ connection, seen in the
complex projective line minus three points. Let’s prove that the pair (2im, ®kz) is a Drinfeld

associator.

The case n = 2. First of all, we have
Conf(C,n) = CxC-{0}
(21,22) +— (t,w):= (22,21 — 22)

In this way, the KZ connection is written

t
VEZ = d— Law.

w

The associated KZ equation is the system

16) _ tiz
{a_wF_TF_

Therefore, the solutions are given by
F(Zl, ZQ) = C(Zl — 22)12,
for a certain constant C. Let

v:[0,1] — C-{0}

Tt

t — ce

be the continuous path that draws a closed semi-circle from & to —e in C — {0}:

We immediately find that the regularized holonomy of the connection VKZ is itz = g2t
for A = 2.

The case n = 3: First, we have an isomorphism
Conf(C,3) = CxC* x (PYC)-{0,1,00})

21 — 22
(21,22,23) — (t,w,z):= (23,21 — 23, )
21 — 23
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By a change of coordinates, the equations (KZ)s become:
B%F _ t12+tvi;3+t23F
2r=0
Lp=tep4 g
Remark 2.2.33. Notice that we are rephrasing the results of previous section. Indeed, the

solution in this case is

21 — R
F(21,20,23) = (21 — 23)" + t13 + t23G ( ! 2) ;
Z1 — 23

where G(z) solves the equation

0, ti lo3
&Gi z GJrz—l

G.

We are ready to start the proof:

— (I)Kz(ﬁlg,tgg) S exp(f(tlg,t23)): For now, we only know that (I)Kz(ﬁlg,tgg) S (C((tlg,t23>>.

To show that ®kyz(t12,t23) € exp(f(t12,t23) we have to prove that ®kyz(t12,t23) is group-like,
meaning Aq)KZ (tlg, t23) = q)KZ (tlg, t23)®q)KZ (tlg, t23). On the one hand,

ADky(t12,t23) = Pz (At12, Ateg) = Prz(t12 @ 1 + 1 @ t12,t23 @ 1 + 1 ® ta3).

On the other hand, Pxz(t12 ® 14+ 1 ® t12,t23 ® 1 + 1 ® ta3) is the holonomy of the connection

t 1+1®t t 1+1®t
v - d<12® + ®12+ 23 Q1+ ®23>dz
z z—1
t 1+1®t t 1+1®t
— 4 121+ ®12d27 23 @ +1® 23dz,
z z—

which can also be seen as the sum of two connections in two different bundles. In this way, the

holonomy can be calculated separately. Finally, we get
ADgy(tio, tas) = Prz(tio @ 1+ 1@ ta, a3 @ 14+ 1 ® toz) = Pry(tia, taz)DPK%(t1a, ta3).

— Antisymmetry: Taking the change of variables z = 1 — g, the connection is written

t t
d<—5L+—§>d%
y—1 'y
whose holonomy between ¢ and 1 — € is ®.(t23,t12). By symmetry, this is also the holonomy
from 1 — € to ¢ of the original connection i.e. the inverse of the holonomy from ¢ and 1 — ¢ of

the same connection. In this way, ®.(te3,t12) = ®P(t12,t23)~ L. Automatically, we verify that
the same equation is preserved after asymptotic expansion and regularization.

— Two hexagons: Using the monodromy calculation in the case n = 2, we easily see
that the regularized holonomy of VK% around the singularity z = 0 (in the counterclockwise
direction) in P1(C) — {0,1, 00} is ™12,

One can easily prove the following facts
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1. If we take the path 7 in the clockwise direction, we get a holonomy equal to e~#"*12,

2. The regularized holonomy of V?Z around the singularity z = 1 (counterclockwise direc-
tion) in P}(C) — {0,1, 00} is e%7t2s,

3. Making a change of variables to be determined, the regularized holonomy of V% around

the singularity z = oo (counterclockwise direction) in P!(C) — {0,1, 00} is ™13,
In this way, we can consider the paths

formed by the juxtaposition of the following 6 paths:

Figure 2.1: Paths in Mg 4 = P* — {0,1, 00}.

We have calculated the holonomy for each of these paths. Notice that the path v is con-
tractible and the connection is flat so the parallel transport along v+ is T,+ = 1. Also, as ~T

is composed of 6 terms we get an equation
R12®.(t13,t12) R13Pc (ta3, t13) Ra3Pc (t12, t23) = 1.

Using the asymptotic expansion of ®., we can see that Rio®.(t13,t12) R13 P (tos, t13) Ros P (t12, tos)
has an asymptotic expansion which is a polynomial in € in each degree. In this way, this equa-
tion must be preserved for the part in the constant term of the expansion, that is, when we
formally establish log(e) = 0.

On the other hand, by using exercise ?7? of the first section, we know that t3(C) ~ Ccs ®
f(t12,t23)(C). This way, we obtain

6%)\“2(1)@13, t12)6%)\t13(1)(t23,tlg)e%tzgq)(tlg,tgg) =1len eXp(%g(C)),

for A = 2im.
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Remark 2.2.34. One has to read the juztaposition of paths from the left to the right (i.e.
the path v v5~ we first travel v{ and then 75 ). The composition of holonomies is read from

the right to the left as for the composition of functions.

One can easily show the following facts

1. The holonomy of the path v~ gives the relation of the remaining hexagon.
2. Let h € C*. If we consider the connection
h
KZ
Vnﬁh =d— i Z tijdlog(zifzj),
1<i<jsn
and we denote ®%, the regularized holonomy between 0 and 1 of Vg,zl, find A = h is such
that (), ®%,) is a C-associator.
The case n = 4: We will present the main steps of the proof of the pentagon relation, leaving
the detail to the care of the reader.

— The pentagon: After identifying Conf(C, 4) with a product of spaces involving the space
(P* —{0,1,00})? — {(z, 2)}, one can interpret the KZ associator as the regularized holonomy
from 0 to 1 of the KZ connection over the space (P! — {0,1,00})? — {(2,2)}. The path

corresponding to the pentagon in

Re((Pl - {Oa 1, OO})2 - {(Z, Z)})’

presented in the last subsection corresponding to the regions Zi, ..., Z5 of Re(Conf(C,4)), is
precisely the path below.

As for the two hexagons, this path is contractible so that its holonomy is equal to 1. By noticing

that we can indeed take regularized holonomy, we obtain the required pentagon relation.
2.2.9 Application I : Associator relations for multizeta values

Integral formulation of multizeta values

Recall that the multizeta values are the real numbers
1
(hroek) = Y
ni>ng>...>n,>0 1 -1

where (kq, ..., k) € (N>2)". These numbers have been studied since Euler (1775). The nature
(transcendence/irrationality) of these numbers is a field of much mystery and of which we do

not know much.
Proposition 2.2.35 (Kontsevich-Zagier). The multizeta values can be written as the integrals:

n=1dt, dt,—1 dtq
Sk / / / th—1— €n—1 1 — e

(€1,...,€n) = (0,...,0,1, 0,...,0,1,..., 0,...,0,1).

k1 —1times ko—1times k,—1times

where
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{z=0}

Re(2)

{z=w} {w=0}  Hw=1}

Figure 2.2: Paths in Re((P' — {0,1,00})? — {(2, 2)}).
Example 2.2.36. We have
1 gt t
U dty diy Vb £ dty
/0/0 1=ty 1 // Zt dtQ_/Zn t1
n>1

Z /t” 1dt1— =

n>1 n>1

¢(2)

so we find the original definition of ((2).

Proposition 2.2.37. The Knizhnik-Zamolodchikov associator is a gemerating series of all

(regularized) multizeta values i.e. we have:

Pz (X, V)= > Cw-w.

wword inX,Y

where (, is the (reqularized) multizeta value associated with the word w.
Example 2.2.38. In particular, we have a computation in low degree of this series:
)

(4[ [ (4, ]]]+C(173)[A7[[A,BLB]]+C(1,1,2)[[[A,BLB],B]
+1¢(2)%[4, B]* +

MZVs and admissible words

How are the MZVs distributed in the series of Proposition 2.2.377 To answer this question
we need to introduce the notion of admissible words. Let’s start by calculating the iterated
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integrals involved in the KZ associator for two different kinds of words.

Remark 2.2.39. To calculate the integrals (2.12), we can use the relations
1 Ny
— = Ny
D
7=0
log™ (t)dt 1
/ 0og () — lo gnJrl(t)

t n+1

n

log" ™~ (t)t™+1

/ log" (t)t™dt =

|
—m J)

Example 2.2.40. Suppose that w = XoXoX1. We are going to simplify the computations by

omitting the terms that tend toward 0 when € tends to 0. In that case, the triple integral in c,,
YD gty (todty [ dty
cole) = S ta S B3 — 1
v(0) 1 Jy(0) 2 Jy(0) Y3 T
B /1 < dt / dty tj“
B j-+1
[ (s
T L \ &G

B U N

= U+

18

Notice that, in this case, ¢, converges when c,, equals 0.

Example 2.2.41. Suppose this time that w = X X1 Xo9. We calculate in this case:
/7“) dty (" dty /tz dts
© t Jyo 2 =1y ts

I=e gty [ dt
- / / 2 (log(t2) ~ los(<))

Cw (5)

to —
l1—¢ J+1 Jj+1 i+1 i+1
dtl Z tl (tl) tl gl gl
T (A (1) -y -y
/8 t j}O]Jrl € jgo(]+1) j20j+1 j}o(]Jrl)
Omitting the terms that tend towards 0 we obtain a term in
(1—¢g)tt (1—¢g)itt (1 —¢g)itt
— — — log(e) ~ —2¢(3) — ¢(2) log(e).
S - S - e s ~ ) - <)ot

=0 j=0

This expression diverges logarithmically with . This is one of the reasons why we are forced

to renormalize the holonomy: to be able to eliminate these divergent terms.

What are the words w for which ¢, (¢) converges? To answer this question we have to talk
about admissible words.
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Definition 2.2.42. An admissible (or convergent) word in letters X,Y is a word w € Q(X,Y)
starting with X and ending for Y of the form w = XvY where v is any word in X and Y.

We are ready to characterize multizeta values with respect to convergent words.

Proposition 2.2.43. We have a bijective map

(N*%)"  «—  {admissible words in x,y}

=ty pha=ly gkl

(k1,..., k) +— =
and the value ¢, (g) converges towards

<(k1; s ky) = gm’“l*lyz’@*ly“w’”*ly'

precisely when the word w is admissible.

Remark 2.2.44. e This explains Proposition 2.2.29.

e There is a way to associate to the rest of the words (those that are not admissible) a

slightly more general notion of multizeta values called reqularized multizeta values which

we will not present in here.

Calculation of the KZ Associator in low degree

Let’s calculate the terms in degree up to 2 of the associator ®xz. We have

1= Mty to3
@€(t12,t23) = Pexp </ <— + ) dZ>
- z 1—-=2
1—¢
12 to3
1 +/ <— + ) dt
. th o 1—t) "

l1—e t1 2 2
4, tiatas tasti2 t23 > )
+ A2 + + dt, ) dt
/a </5 <t1t2 t(l—t) (-t  (I-t)1-t)) )"
+...

The degree 1 term is

1—¢ €
tiolog| —— | +toglog | —— | .
€ 1—e¢
The degree 2 terms are:

1—¢ t1 2 1—¢ o
€ 5 tito € tq

= "2(log(1 — )’ ~ loa(£)*) — 3, log(<)(0g(1 — <) ~ log(c))

i (FE 5 P ogepontn - ).
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and

1—¢ t1 1—e 1 1— —1 1—
/ (/ (7t12t23 ) dtg) dt, = / (t12t23 og(1 — ) — log 5)) dt,
€ € tl(l - t2) € 31

= tyata3(Lia(e) — Liz(1 — &) log(1 — &) (log(1 — ) — log(e))).

One can show that

A RR

and

Using the Taylor expansions

tagti2(Lia(1 — &) — Lig(e) — log(e)(log(e) — log(1 —¢)))

1 2
E_t23 = 1- tos lOg(E) + t%g—oggs) + -,

and

t12

€ = 1+tplog(e) + 3,

log(e)?
2 + SCIEN

and noticing that Liz(0) = 0 and Lis(1) = {(2), we can simplify:

1—¢
t t
Diyz(tia, tag) = &11_13% g~ Pexp </ (% + 1 igz) d2> the
£

log(e)® | , log(e)?
2 2

= lim 1 —ty3log(e) — t1olog() + tazlog(e) + tra log(e) + t35 + 2,

E—r

. ) log(g)? log(g)?
12, t23)(Lin(e) — Lin(1 ) — fastialog(e)? + 35250 4 2, 108(°)

—_ — tgg 1Og(t)2(t23 — t12) =+ 10g(t)2(t23 — tlg)tlg — t23t12 10g(€)2 =+
= lim (1+[f12,t23](L12(€)—ng(l—&"))—f—)

e—0

=1— ((2)[t12,tas] + - -

In conclusion, ®xz(t12,t23) is a generating series of all multizeta values. As a corollary, we
obtain new relations between the different multizeta values coming from the pentagon and

hewagons relations of the associators:

Corollary 2.2.45. Multizeta values satisfy the Drinfeld associator relations.

Not only that, but thanks to the geometric definition of the associator KZ, we can find old
relations that go back to Euler’s works, as illustrated by the following theorem shown by Pierre
Deligne:



2.2. THE KZ ASSOCIATOR 95

Theorem 2.2.46 (Deligne, section 18 of [30]). The relation

B2n

¢(2n) = (*1)n_lm(2ﬁ)2”

comes from the relations of antisymmetry and pentagon of the contractible path in P1(C) —

{0,1,00} given by

0 00

o
1

2.2.10 Application II : Formality of the pure braid group

Definition 2.2.47. Let G be a finitely generated group. It is called formal if there is a Lie

algebra isomorphism Lie(G(k)) — grLie(G(k)), whose associated graded morphism is the
identity.

One can then retrieve from the flatness of the universal KZ connection such an isomorphism

for G = PB,,. Namely, the monodromy representation morphism
pxz : PB,, — eXp(’En)
factors through the C-prounipotent completion lg\Bn((C) of PB,, and one can show the following

Proposition 2.2.48. The map

—~

p: PBL(C) — exp(t,)
s an isomorphism of C-prounipotent groups.

Remark 2.2.49. Returning to the consideration of the holonomy Lie algebra and the de Rham

fundamental group of Conf(C,n), this result establishes an isomorphism

71 °P (Conf(C, n))

-

~

72 (Conf(C,n)) — 7’ (Conf(C, n))
where 72 (Conf(C,n)) is the Betti fundamental group of Conf(C,n), which identifies to the
C-prounipotent completion of the topological fundamental group ﬂlTOP(Conf((C,n)). This pro-

vides an inverse morphism to the map 7% (Conf(C,n)) — 72 (Conf(C,n)) given by the R-H

correspondence.

This conceptual interpretation of the formality of PB,, will be translated to the cyclotomic

(easily) and genus 1 (with a lot more of work) cases.
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2.3 The cyclotomic KZ associator

2.3.1 The universal cyclotomic KZ connection

Let I' = Z/NZ and let t},(k) be the Lie k-algebra with generators to;, (1 < i < n), and ¢,
(1<i#j<n,a€Z/NZ), and relations:

(NS) & =

(NL) [tos, jk] —Oand[”,tﬂ] 0,
(NAT) [, 1557 +15,] =0,

(NT1) [toi,to; +Zaep U] =0,
(NT2) [to: + to; +Z§€F i U] =0,

where 1 < 4,7, k,l < n are pairwise distinct and «, 8 € I'. We will call it the k-Lie algebra of

infinitesimal cyclotomic braids.
The universal cyclotomic KZ connection on the trivial exp(t, x(C))-bundle over
Conf(C*,n,T) := (C*)" = {z = (21,...,2n)|2]' =2, for some i # j}

is defined by the differential 1-form

n + e

0i x
WG =Y zl n 3 ﬁ dzi, (2.13)
i=1 " a€Z/NZ1<i#j<n " J

where ( is a primitive Nth root of unity. It is a fact that this connection is flat.

2.3.2 Reminders on partial prounipotent completions

Let us recall the Enriquez’ notion of partial prounipotent completion that we will use later in
Chapter 7.

Let ¢ : G — H be a surjective group morphism such that Gg := Ker ¢ is finitely generated.

Definition 2.3.1. There is a non-connected pro-algebraic group G(p, k), fitting in an exact
sequence 1 — Go(k) — G(¢, k) — H — 1, and a group morphism G — G(p, k), such
that the diagram

1 Gy G H 1

L]

1——=Gok) —=G(p, k) —=H ——1

commutes. The group G(p, k) is called relative k-prounipotent completion of G with respect to

®.

We direct the reader to the article [32] for more details on this definition as well as for the

following one.
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Definition 2.3.2. We say that the group morphism ¢ : G — H is formal if there exists a
group isomorphism G(k, ) ~ exp(grLie Go(k)) x H, restricting to a formality isomorphism
for Go, and such that the diagram

1 —— Go(k) G(k, ) H !

| | |

1 —— exp(grLie Go(k)) ——exp(grLieGo(k)) x H —= H ——1

commutes.

Example 2.3.3. o The morphism B, — &, is formal, where B, is the fundamental
group of Conf(C,n)/&,,. It is interesting to say that this result follows from [73] when
k =C, and from [27] for k = Q.

e Denote
— G = PB,I; := 1 (Conf(C*,n,T)),
— G = B} = m(Conf(C*,n)/&,) and
2N B}l — I x&,.

One can show that the monodromy of the universal cyclotomic KZ connection gives us

vertical isomorphisms

1 — = PB(C) — > By(¢n, C) " %G, —1.

| |

1 ——exp(th(C)) —=exp(tt) x T" x &,,)) —=T" x &, —=1

2.3.3 Realisations
Let g be a Lie k-algebra and let t; = ¥,e, @ f, € S?*(g)?. Suppose that we have a morphism

I' — Aut(g, tg); 0 —

ie. @ =id. Then we have a decomposition g = [@®u where [ = g8 and u = @ g,.

xel—{o}
Take a decomposition t4 = ¢[ + ¢, where t; € S?(I)' and ¢, € S?(u)". Let  be a generator of
I'clU(g) «T.

Theorem 2.3.4. There is a unique Lie algebra morphism

Uty n) x T — U) @ (U(g) x T)®"

i), LG
to; —> N(t§0>+§t§ >)®1
t 1@ (0® ®id)(te?)
S; 6(i).
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2.4 The elliptic KZB associator

In this section we introduce the basic tools that were used on constructing the universal elliptic
KZB connection and which will be used in the second part of this thesis. We will profit this
occasion to rely all conventions for theta functions that different authors (at our knowledge)

that work on the KZB connection use at present.
2.4.1 Quick reminder on Eisenstein series and theta functions
In what follows G (7) are the Eisenstein series defined for all k£ > 2, by

Gi(7) = Z Z m =2¢(k) + % Z or—1(m)q™,

m#£0 if n=0
where oq (k) = >y, d

Enriquez Approach: Let $) := {7 € C|S(7) > 0} be the Poincaré half-plane. The theta function
we will use is denoted (z,7) — 0,(z), for (z,7) € C x $, where

eMiz _ o= miz (1 _ e27ri(z+n'r))(1 _ e?ﬂi(fern‘r))
0 =0, = .
(277_) (Z) % H (1 _ 62771717')2
n>1
and it is the unique holomorphic function C x $§ — C such that 0.(z + 1) = —0,(z) =

0-(—2), 0-(z +7) = =" 2120, (2), £6,(2),—0 = 1, and (0-(—))"1(0) = A = Z + TZ.
Furthermore, we have 6(z|r + 1) = 0(z|7) and 0(z/7|1/7) = (1/7)e(™/7="g(z|7). Recall that
the Dedekind 7-function is given by 7(r) = ¢2s [T,20(1 — ¢") where g = ™7,

The classical odd Jacobi theta function is, for ¢ = %",

191(2 7') = — Z e’b'7\"l'n2+2i7rn(z+%)
n€Z+3
- — Z oinm(n+d) 42im(n+1) (24+1)
nez
and we have 91 (z,7) = 2m%(7)0,(2). Set ¥(z,7) = ﬁl;ff). This also gives a heat equation

for ¥:
9.0 = (1/47i)0%)

Brown-Levin-Racinet- Zagier approach: The standard odd elliptic theta functions are

ﬂ?td(u, ) = Z(il)nfée%ﬂu(nJr%)+i7rr(n+%)2
nez
) - 112
19??1(11/,7') — ,L-Z(_1)n6217ru(n+5)+17r7'(n+5)

nez
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Z(,l)nq%(n%)ze(w%)u
nez
Z(fl)neu(n%)ﬂﬂ(ﬁ%)z
nez

1
~9y (o

77

and we can express 923 (u, ) as a product via the Jacobi triple product formula (in Zagier’s

paper):

[T -ama—qmeya—gre™).

Finally, the theta function used by Brown-Levin is

ok (&, 7)

~ Y6 7)
n(7)

— q1/12(2’1/2 _ 21/2)H(1qu)(1zlqj),
jz1

and the one used by Levin-Racinet is

0V (¢, 7) = ig"/3 (122 [ (1247 (1200 (17).

We have

(2, 7T)

Jj=20

_ E eiw7n2+2i7rn(z+%)
ne€Z+3

-y g3 (e+3) 2t d) grin- 5
n€E”Z

—iﬂzag(z, 7).

Kronecker series. The Kronecker series used by Zagier is the meromorphic function C x C x

£ — C defined by

ang(u, v, T) =

92287(0, 7)9%%8 (u + v, T)
v2ee(u, 7)9%8 (v, 1)

and the Kronecker series used by Enriquez is

FEn(z,z,T) =

0'(0,7)0(z +x,7)
0(z,7)0(x,7)

_ 0(z+x,7)
0(z,7)0(x,7)"

Thus, as 9228 (z) = 2min(7)30(z,7), we get

ang(z, x,T) = FEH(Z,SC,T).

Next, the one used by Brown-Levin is

FBY(u,v,7) :=

6BL7 (0, 7)0BY (u + v, 7)
OBL (u, T)0BL (v, 7)
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and is related to the one used by Levin-Racinet, denoted

0V (0, 7)0"R(€ + 11, 7)
LR -
F (577757—> T eLR(f,T)eLR(T],T)

by the formula
FYR(¢,n,7) = 2in F28(2in€, 2imn, 7).

Finally, we have 91(z,7) = 2m0*(7)0(z,7) and ¥11(2,7) = n(7)0B%(2,7) and ¥11(z,7) =
197488 (2imz, 7). We have

n(r)0P% (2, 7) = i9%8(2inz,T)
In conclusion we get

o F#8(¢,n,7) = F™(&n,7), and
o FLR(¢ n, 1) = 2inF%e(2in, 2imn, 7).

In what follows we take Enriquez’ convention for the theta function.

2.4.2 The universal elliptic KZB connection

For 7 € b, denote A, :=Z + 77Z and denote, for n > 1,
Diag, ,, := {(z,7) € C" x $H|z;; € A, for some i # j}.
The semidirect product ((Z")? x C) x SLy(Z) acts on (C" x §) — Diag, ,, by
e (n,m,u)*(z,7) == (z+n+mm+u(};d),7) for (n,m,u) € (Z")* x C,

® (: g)*(Z,T) = (77—24_57 i:i’g) for (: g)E SLQ(Z)

The moduli space M, of elliptic curves with n marked points is defined as the quotient
My = (C" x $) — Diag, ,, /((Z")? x SL(Z)),
and its reduced version is
My = (C" x §) — Diag, ,, /(((Z")* x C) x SLy(Z)).
Remark 2.4.1. o In [24], M1, is denoted /\;ll,n and /\;ll,n is denoted My . We shifted

the notations of [24] for compatibility with our conventions for Chapter 6.
o The space M is the universal curve over ./\;11,1 = b/ SL2(Z) and for n = 2 the moduli

space /\711,2 18 the punctured universal elliptic curve over /\;1171. This is a fibration with, as
fibers at (equivalence classes of) T, (equivalence classes of ) the punctured elliptic curves
EX :=E; —{0}.
o Remark that if
C(E:,n) :=Conf(E;,n)/E-

are the reduced configuration spaces of Er, then C(E;,2) = EX.



2.4. THE ELLIPTIC KZB ASSOCIATOR 61

e More generally, the fibers of the fibration My 1 — Ma 1 are (the equivalence classes
of ) the spaces Conf(EX,n).

For any n > 0, recall that ¢; 5, (k) is defined as the bigraded Lie k-algebra freely generated by
Z1,...,Zy in degree (1,0), y1,...,yn in degree (0,1) (for i = 1,...,n), and ¢;; in degree (1,1)
(for 1 < i # j < n), together with the relations (S), (L), (4T), and the following additional

elliptic relations as well:

) [z, y;] = tij for i # j,
(Nege) [i,25) = [yi,y5] = 0 for i # j,
(Teee) [wisyi] = — Zj“‘;ﬁitij;
(Lieee) |
) [

(Seer

ell

Tistin] = [yi tin] = 0 if #{i, 3, k} = 3,
+ x5, ti;] = [yi + yj, ti;] =0 for i # 5.

o
(4T cre

The ), z; and ), y; are central in t; ,,(k), and we also consider the quotient
tn(k) ==t (k)/ Q@i > i)

Example 2.4.2. t; »(k) is equal to the free Lie k-algebra f2(k) on two generators x = z1 and
Yy =1y

Let 04 be the free Lie algebra with generators da,,, (m > 1). Denote the standard generatons
e, f,h of sly by d:=h, X := e and Ay := f. Denote d := d; x sly their semi-direct product,
the da,,, acting as highest weight elements (see [24] for details).

Proposition 2.4.3 ([24]). There is a Lie algebra morphism © — Der(t, ,,) inducing a Lie
algebra morphism @ — Der(ty ).

An easy consequence is that we can then form the semi-direct products
G, :=exp((t1, ¥ 04)") x SLy(C) G, = exp((t1, ¥ 04)") x SLa(C)

Theorem 2.4.4 ([24]). There is a unique G,-bundle P,, over My ,, with a flat universal KZB

connection, locally defined by
VKZB =d— A(z|r)dr — ZKi(z|T)dzi,
i=1

where z = (21,...,2,) € C", for 1 < i <n, we have

Ki(z|r) == —y;: + Z k(adwx;, z; — z;|7)(tis),
Jij#i

with k(z, z|T) := % 1 and

Az]r) == 5 1(A0+ 3 @0+ 1)Ganga(7)d2n — 3 duk(adai, 2z — zj|T)(tij)).

n>1 1<j

This induces a unique G, -bundle P,, over Ml,n with a flat connection denoted @E,ZLB.
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Remark 2.4.5. o When we say the connection is locally defined as so, we mean that there
is a unique such connection such that the pull-back to X := (C" x $)) — Diag, ,, is the

connection V%%B on the trivial G,-bundle over X.

e There is also an unordered marked points version of this connection that will not be

recalled in here.

e By fixzing T and choosing a section Conf(E;,n) of a representative in the equivalence class

[(Er,z1,...,2n)] € My, this connection restricts to a flat connection

VE,ZL]?T =d— ZKi(zh')dzi,

i=1

on the (unique) principal exp(ty ,)-bundle over Conf(E,,n).

Let us fix 7 € h. Recall that the Lie algebra {1,2(((:) is isomorphic to the free Lie algebra
f2(C) generated by two elements z := x; and y := y;. We define the elliptic KZB associators

A(T), B(7) as the regularized holonomies from 0 to 1 and 0 to 7 of the differential equation

0-(z+adz)adx

G'(e) = - 0. (2)0- (ad z)

(y) - G(2), (2.14)

with values in the group eXp(il,g((C)) More precisely, this equation has a unique solution G(z)
defined over {a + br, for a,b €]0, 1[} such that G(z) ~ (—2miz)"®¥ at z — 0. In this case,

A(T) == G(2)7'G(z+ 1), B(7):=G(2)7 1™ *G(z + 7).

These are elements of the group exp(ilﬁg((C)). A recollection of the main features of elliptic

associators is done in the first part of [34] and will not be reproduced here.

2.4.3 Universality

As in the genus 0 case, one can ask in what manner this connection is universal and now it
will be of great importance to distinguish the case where the connection is defined over the
moduli space to the one that is defined only in the configuration space. Indeed, in the genus
0 case, the moduli space Mg 41 of rational curves with n + 1 marked points is isomorphic to
the quotient of the configuration space of n points in the plane modulo the action of Aut(C)

by homographies:
Mo, nt1 =~ Conf(C,n)/(C* x C).

In the genus 1 case, however, such a relation is not true. Another issue here is that the de Rham
complex in this setup (either for the configuration space setting or the moduli space setting)
is not generated by the first cohomology group so we will not be able to apply Proposition
2.2.28.
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Towards the Gauss-Manin connection V2B over M,

In this section we give an insight on the fact that the connection VE%E is the universal by

explaining that it is (conjecturally) the Gauss-Manin connection over My ,,. Let us start with

the restriction of this connection to that over Conf(E,,n), following [36].

Set X := Conf(E,,n) and z € Conf(E,,n). Then (ommiting to explicit the basis point for
simplicity as X is arc-wise connected) we have 7 (X ) = PB;,,, and 78(X) = PB ,,(C).

Theorem 2.4.6 ([36]). o There is
— an explicit tensor functor
F : VBFC(Conf(E,,n))""" — Vectc
— a natural isomorphism
VBFC(Conf(E,,n))"™ — Isovee. (F(E,V), F*(E,V))
(5, V) — ’L'(gﬁv)

between the functors F and F'°,
— a canonical isomorphism Aut®(F) ~ eXp(’Ac(lc,n).

e The composed isomorphim
exp(ty n) — Aut®(F) — > Aut®(F*) % Aut®(Fls) -~ PB, ,(C)
coincides with the inverse of the completed monodromy representation map
lg\Bl,n((C) — eXp(’El,n)

induced by the universal KZB connection V125 over Conf(E;,n).

Now, following [62], let us show that the bundle P,, with the KZB connection is the de Rham
realization of a topological local system P, 1°P.

Denote by Y the universal covering space of M 1. This is also the universal covering
space of M?,n_ﬂ = ((C”‘H x ) — A,41. Choose a base point [E.,0,2z] of Mj 41, where
z=1(z1,...,%n), and z; # 0 for all 1 < ¢ < n. Choose a lift y of it to Y. This determines an
isomorphism of Aut(Y/M; ,41) with 71 (M 11, [Er,0,2]).

Denote the unipotent completion of 71 (Conf(EX,n),z) over C by P,. The natural action

71 (M1 i1, [Er,0,2]) x 1 (Conf(EX,n),z) — m(Conf(EX,n),z),

(9.7) +— gvg "

determines a left action of 71 (M 11, [Er,0,2]) on P,. We can therefore form the quotient

(Po x Y)/m1(Miny1, [Er,0,2])
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by the diagonal (M 11, [Er,0,2])-action. This is a flat right principal P,-bundle which
we shall denote by PI°P —s My ,,41. Its fiber over [E,,0,z] is naturally isomorphic to the
unipotent completion of 7 (Conf(E),n)).

Since the Lie algebra p, of P, can be viewed as a group with multiplication defined by the
Baker-Campbell-Hausdorff formula, we can (and will) view PI°P as a local system of Lie

algebras.

Choose a base point [E;,0,z] of M1 41, where z = (21,...,2,), and z; # 0 for all 1 < i < n.

There is a natural isomorphism
™ (Ml,nJrla [Er,0,2]) =T ny1,

where I'1 ,, is the mapping class group of a genus 1 curve with n marked points (see [13]).

The restriction of the universal elliptic KZB connection to Conf(EX,n) defines a homomor-
phism 7 (Conf(EX, n),z) — Aut(t; ,+1) whose image lies in the subgroup exp(t ,+1) which
acts on t; 11 via the adjoint action. From the formality morphism [24, Proposition2.2|, we

conclude that it induces an isomorphism 71 (Conf(EX,n),z)(C) — exp(ilmﬂ).

Identify eXp(il,n_‘_l) with 71 (Conf(E,n),z)(C) via this isomorphism. Then one has the mon-
odromy representations

pRZB . I'ypp1 — Aut(exp(ilmﬂ)) and pToP : T+ — Aut(exp(il,nﬂ))

of P,, and PI°P. To prove that PI°P and P,, are isomorphic (seen here as principal bundles),

we have to prove that p¥%B = pT°P. Observe that if v € 1 (Conf(EX,n),z), then p™P () and
KZB
P (

Conf(EX,n) are isomorphic.

7) are both conjugation by the image of v in P, as the restriction of P, and PI°P to

As explained below, rigidity explains that if the restriction to each fiber (that is, to each
configuration space) is the correct local system, then it is the correct local system over the
whole moduli space /\711,”+1. More precisely, the marked points version of [62], Theorem 14.2

is then

Theorem 2.4.7. The exponential map induces an isomorphism of the local system over
Ml,n.l,_l of flat sections of the universal elliptic KZB connection on P with the locally con-
stant sheaf P.X°P over /\;117n+1. Equivalently, the diagram

KZB ~
Conf E‘>< , ) p4> Aut(il7n+1)

Top

1 (Conf(EX,n),z) ~—= Aut(exp(tins1))

commutes.

Proof. One can apply [62, Lemma 14.1] to

o I'=T1 041 =7 P(Mins),
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e N =7/°°(Conf(EX,n),2) ~ PBy 11, which has trivial center,
o N =exp(tin),
° ¢=p™P
to establish the equality of pX%B and pToP. O

Remark 2.4.8. By combining Hain’s and Enriquez-Etingof’s results one should be able to

conclude that the universal elliptic KZB connection @?%El 1s the Gauss-Manin connection on

Ml,n-‘,—l .

2.4.4 Reminders on Hecke algebras

Differential operators. The algebra of differential operators Diff(g) on g is generated by
linear forms over g denoted z* € g* and differential operators denoted 0., for z € g. By
choosing a basis we a family (x4, d,) where z,, := ¥ is a degree 1 polynomial and 9, is the

derivative in the direction .. These elements have relations
e [z%,y"] =0,
® [0y, 0u] =0,
o [y, v*] = v*(w).
Remark 2.4.9. Diff(g*) is a quantization of T*g* = g x g* and, by identifying g with its dual,
we denote x := x* € g and Diff(g) = Diff (g*).

In conclusion,

a v Tg,a+— J, are linear
Dlﬂ(g) = <1'a7 aa; ac g>/ [.’L‘a,.’L'b] = [aa; 617] =0
[aaa xb] = <a’ b)g

Quantum Hamiltonian reduction. Let us briefly recall what Hamiltonian reduction is
about. Let X be a symplectic variety and let G be a Lie group acting on X with associated
Lie algebra g. The moment map is a G-equivariant map g : X — g* such that u* : g C
C>(g*) — C°°(X) satisfies that for all z € g, f € C*°(X),

{(we [y = X(f) = {wz,uyy = X(u'y) = wX(y) = w'[X,Y].
Then £~1(0)/G is Poisson. Thus,
C((1*)71(0)) = CX(X)/(C™=(X)nu*(9))°.

In conclusion, let Ay be a Poisson algebra and ug : g — Ao be a Lie algebra morphism. If g

acts on Ag by means of {u§X, —}, then the Hamiltonian reduction of Ay is the Poisson algebra
AG/(Afpi(9))°-

Now let A be an associative algebra which is a quantization of Ay, that is, A ~ Ap[h]. Let

1* 1 g — A be a Lie algebra morphism which is a quantization of uj i.e. we have
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o " =pj+o(h),
e axb=ab+ hia,b} + o(h).

Then g acts on A by the commutator [u*X, —] and it can be shown that (Ap*g)? is a two-sided
ideal of A9 so

AP/ (A% (g))*

is an associative algebra called quantum Hamiltonian reduction, as it is a quantization of the

above Hamiltonian reduction.

Hecke algebras. Letn > 1 be a natural number. As we saw earlier, Diff (g) is a quantization

of T*g* and U(g) is a quantization of g*. Thus, the moment map is just the coadjoint action

Diff(g) — ¢*
i.e. induces a Lie algebra morphism
g — Diff(g)
a — X,

called quantum moment map, or infinitesimal adjoint action. We also have a Lie algebra map
g — U(g)®" so we get a map

¢:9 — Diff(g) @U(g)"" := A,

a — Yoi=X,21+10) a¥
=1

where ¢ =1® - - ®a®---®1 and X, = > Tla,eq]Oa-

Proposition 2.4.10. Denote g4 := im(y). Then the vector subspace A,g%?8 is two-sided
ideal.

Proof. If z,y € H := {x € Ap;g¥*8z C A,g%2e} > A,g%8, then

o g (z +y) C Angte;
° gdiag(zy> CAngdiag;

e it is stable by left and right multiplication (A, g%?ez C A, gdi28).

We conclude that the quotient H/A, g8 is an associative algebra.

Definition 2.4.11. The Hecke algebra of (A, gV8) is (the quantum Hamiltonian reduction):

H,(g) = {z € A,;Va € g,Y,z € A,g188} /A, gl1?e.
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Remark 2.4.12. The name " Hecke algebra " here is justified because this situation is in
perfect analogy to that where usual Hecke algebras appear. If H C G are simple groups, one
can ask about the representations, which are modules over C[H] and C[G] respectively. One
then constructs H(G,H) = C[h®/h]]. If V is a C[G]-module, then Hecke showed that VH
is a H(G, H)-module. In other words, H,(g) is the Hecke algebra associated to the quantum
moment map g — A.

Classical dynamical Yang-Baxter equations. The classical dynamical Yang-Baxter equa-
tion was introduced in [43] by Felder whose construction we now recall. Suppose we have a Lie
subalgebra b of g together with an element Z € (A?g)®. A (non-modified) classical dynamical
r-matrix for the pair (g, b) is a regular h-equivariant map p : ¥ — A%g which satisfies the
(non-modified) classical dynamical Yang-Baxter equation (CDYBE)

CYB(p) — Alt(dp) =0
where

e CYB(p) := [p"2, p"3] + [p2, p3] + [p"3, p>3] = 3 1p, pl,

— 19p* _ 320p% | 1309p"?
o Alt(dp) == 33, hi hs — hi %5 + hd s

and where (h;) and (\?) are basis dual to each other in h and h” respectively.

Remark 2.4.13. Here regular means C*°, meromorphic, formal etc. depending on the context.

Assume that g is finite dimensional and that we have a reductive decomposition g = h@n, i.e.,
h C g is a Lie subalgebra and n C g is a vector subspace such that [h, n] C n; assume also that
tg =ty + tn, where ty € S%(h)" and t, € S?(n)".

We assume that for a generic h € b, ad(h)|, € End(n) is invertible (i.e. that the decomposition
is non-degenerate). This condition is equivalent to the nonvanishing of P()) := det(ad(\Y)},) €
Sdimn gy where A + AV is the map h* — b, with AV := (A ® id)(ty). If G is a Lie group
with Lie algebra g, an equivalent condition is that a generic element of g* is conjugate to some
element in h* (see [37]).
Let us set, for A € b*,

r(\) = (i[d@(ad AY) 1) (tn)

In

and denote b, = {A € b*|P(\) # 0}. Then r :
r-matrix for the pair (g,5) (see [37]).

Yeg bie — A%(n) is a classical dynamical

2.4.5 Realizations of the universal elliptic KZB connection

As in the genus 0 case, the universal KZB connection has realizations.

Let g be a semi-simple Lie algebra over a field k of characteristic equal to 0 and let H,(g) be
its associated Hecke algebra.

Proposition 2.4.14. There is a unique Lie algebra morphism t , x 0 — H,,(g), defined by
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Ty — Yo Xa Belt,

Ui— =2 0 0a ®€g)7

o I — 1@tl?.

Ag— —5(3,02) @1,

X— (X, x2) @1,

d— 2(3 0 %a 0a + 0axa) ®1,

Fam = 5 Doy . sazma Xar * Xa, (72 (ad(ea,) -+~ ad(€as,, ) (€a) - €a) @)

for m > 1.

This morphism also extends to a morphism U (t1 5, x0) X S, — Hn(g) % Sy, by the assignment
o— 0.

Under the assumptions of the above subsection, one can show that the universal KZB con-
nection induces a classical dynamical r-matrix which is the realization of the universal KZB

connection associated to the pair (g, b).

If moreover we assume that g is simple and b is Cartan, then it can be shown that the universal
KZB connection realizes to the former KZB connection constructed by Bernard in [9] in the

context of Wess-Zumino-Witten models.

2.5 Reminders on operads, operadic modules and moper-

ads

In this section we fix a symmetric monoidal category (C, ®, 1) having small colimits and such

that ® commutes with these.

2.5.1 G-modules

An &-module (in C) is a functor S : Bij — C, where Bij denotes the category of finite sets
with bijections as morphisms. It can also be defined as a collection (S(n)),,~, of objects of C
such that S(n) is endowed with a right action of the symmetric group &,, for every n; one has
S(n):=8({1,...,n}). A morphism of G-modules ¢ : S — T is a natural transformation. It
is determined by the data of a collection ¢(n) : S(n) — T'(n) of &,-equivariant morphisms
in C.

The category &-mod of G-modules is naturally endowed with a symmetric monoidal product
® defined as follows:
SeT)mn) = ] (S®)eT)e s, -
ptq=n
Here, if H C G is a group inclusion, then (—)% is left adjoint to the restriction functor from

the category of objects carrying a G-action to the category of objects carrying an H-action.
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We let the reader check that the symmetric sequence 1g, defined by

1 iftn=0
1g(n) = 0 el
else

is a monoidal unit.

There is another (non-symmetric) monoidal product o on &-mod, defined as follows:

(SoT)(m):= [[T(h) ® (S%(n) .

k>0 S

Here, if H is a group and X,Y are objects carrying an H-action, then

h®id
=

X ®Y :=coeq ||X®Y X®Y
H —
heH id®h

We let the reader check that the symmetric sequence 1¢ defined by

1.(n) 1 ifn=1
o(n) =
0 else

is a monoidal unit for o.

2.5.2 Operads

An operad (in C) is a unital monoid in (&-mod, o,1,). The category of operads in C will be
denoted OpC.

More explicitly, an operad structure on a G-module O is the data:
e of a unit map e: 1 — O({1}).
e for every sets I, J and any element i € I, of a partial composition
0, : O()@O(J) — O(JUI —{i})
satisfying the following constraints:

o if we have sets I, J, K, and elements i € I, j € J, then the following diagram commutes:

o) ® 0(J) ® O(K) 58 L 0UT - {i})® OK)

lid@oj loj

o) @O (KuJ—1{j} OEKUJUI —{i,j})

e if we have sets I, J;, Jo and elements 41,75 € I, then the following diagram commutes:

Ol © (1) ® O(h) —— 220~ 0 (Jy UT— {ir}) & OJs)

l(oi2®id)(23) l%
O(LUT—{ixh)®O(J) ——= O (J, Uy UT — {i1,is})
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e if we have sets I,I’,J, i € I and a bijection o : I — I’, then the following diagram

commutes:
o) ® O(J) ot) o) ® 0(J)
: -
. O(idUor—q43y) , .
OJUI—-{i}) ———=0Jul' —{c(®)})

e if we have a set I and ¢ € I, then the following diagrams commute:

10 0() —2'o({1)e0I) o) ®1 o(I) ® O({1})

Sk

o) O1) —=—>O(TU{1} - {i})

id®e
———

Example 2.5.1. Let X be an object of C. Then we define, for any finite set I, the set
End(X)(I) := Home(X®!, X). Composition of tensor products of maps provide End(X) with

the structure of an operad in sets.

Given an operad in sets O, an O-algebra in C is an object X of C together with a morphism
of operads O — End(X).

2.5.3 Example of an operad: Stasheff polytopes

To any finite set I we associate the configuration space Conf(R,I) = {x = (v;);csr € Rf|z; #

x;j if i # j} and its reduced version
C(R,I) := Conf(R,I)/R x Rsg.

The Fulton-MacPherson compactification C(R,I) of C(R,I) (see [47]) is a disjoint union of
|I|-th Stasheff polytopes [94], indexed by &;. The boundary dC(R,I) := C(R, ) — C(R, I) is
the union, over all partitions I = Jy [[--- ][] Jk, of

k
01y, 5, CR, I) := [ C(R, .Ji) x C(R, k).
i=1
The inclusion of boundary components provides C(R, —) with the structure of an operad in

topological spaces (where the monoidal structure is given by the cartesian product).

One can see that C(R,I) is actually a manifold with corners, and that, considering only zero-
dimensional strata of our configuration spaces, we get a suboperad Pa C @(R, —) that can be
shortly described as follows:

e Pa(I) is the set of pairs (o,p) with o is a linear order on I and p a maximal parenthe-
sization of e---e |
——
|I| times

e the operad structure is given by substitution.

Notice that Pa is actually an operad in sets, and that Pa-algebras are nothing else than

magmas.
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2.5.4 Modules over an operad: Bott-Taubes polytopes

A module over an operad O (in C) is a left O-module in (G-mod, o, 1,). Notice that any operad
is a module over itself. We let the reader find the very explicit description of a module in terms

of partial compositions, as for operads.

To any finite set I we associate the configuration space Conf(S!, I) = {x = (z;)ics € (S')!|z; #
xj if ¢ # j} and its reduced version
C(S!, 1) := Conf(S!, I)/S! .

The Fulton-MacPherson compactification C(S*, I') of C(S!, I) is a disjoint union of |I|-th Bott—
Taubes polytopes [15], indexed by &;. The boundary 0C(S!, ) := C(S!,I) — C(S!, ) is the
union, over all partitions I = J; []---[] Jk, of

k
07,5, C(S, 1) == [ CR, Ji) x C(S", k).
=1

The inclusion of boundary components provides C(S!, —) with the structure of a module over
the operad C(R, —) in topological spaces.

One can see that C(S', I) is actually a manifold with corners, and that, considering only zero-
dimensional strata of our configuration spaces, we get Pa C C(S!, —), which is a module over
Pa C C(R, -).

2.5.5 Moperads over an operad

Let O be an operad. A moperad over an operad O is an &-module P carrying

e a unital monoid structure for the monoidal product ®,

e and a left O-module structure for the monoidal product o, that are compatible in the

following sense:
— One first observes that there is a natural map (OoP)® Q — O o (P ® Q).

— Then the compatibility means that the following diagram commutes:

(OoP)@P——=PRP

| N

Oo(P®P) OoP P

The map (O oP) ® P — P one obtains decomposes into maps
Pk) @ P(mo) @ O(m1) @ - @ O(my,) — P(mo + -+ - + myg)

satisfying certain associativity, unit and G-equivariance relations. We leave it as an exercise
to check that, within the symmetric monoidal category of differential graded vector spaces,
this definition coincides with Willwacher’s one from [101] (from which we borrowed the name
“moperad”). Note that the monoid structure for the monoidal product ® encodes precisely the
partial composition with respect to the second colour. We will denote this partial composition
by og.
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2.5.6 Example of a moperad over an operad: coloured Stasheff poly-
topes

To any finite set I we associate the configuration space Conf(Rso,I) = {x = (z;)ics €

(Rso)!|z; # 2 if i # j} and its reduced version

The Fulton-MacPherson compactification C(Rsq, I) of C(Rxg, I) is a disjoint union of |I|-th
Stasheff polytopes with two kinds of colours, indexed by &;. The boundary dC(Rxg,I) :=
C(Rxg, 1) — C(Rxq, ) is the union, over all partitions I = Jo [[J1[[--- [ Jk, of
k
a.]o,--- ,Jké(]R>Oa I) = 6(IR>07 k) X 6(IR>07 JO) X HG(Ra Jz) .
i=1
The inclusion of boundary components provides C(Rsg, —) with the structure of a C(R, —)-

moperad in topological spaces.

One can see that C(R, I) is a manifold with corners, and that considering only zero-dimensional
strata of our configuration spaces we get a sub-moperad Pag C C(R+¢, —) that can be shortly

described as follows:

e Pagy(]) is the set of pairs (o,p) with o is a linear order on I and p a maximal parenthe-

sization of | Oe---e | such that there is no action of &,, on 0, but this element can be
|I] times

inside a parenthesis. This means that we allow points to be near the origin.
e The C(R, —)-moperad structure is given by substitution as above.
Forgetting the C(R, —)-moperad structure on C(Rsg,—) and considering a C(R, —)-module

structure on it amounts to forbidding points to be close to the origin (i.e. the 0-strand cannot

be inside a parenthesis in this case).

2.5.7 Prounipotent completion and fake pull-back of operads in groupoids

Let k be a Q-ring. We denote by CoAlgyk the symmetric monoidal category of complete
filtered topological coassociative cocommutative counital k-coalgebras, where the monoidal

product is given by the completed tensor product @y over k.

Let Cat(CoAlgy) be the category of small CoAlgy-enriched categories. It is symmetric

monoidal as well, with monoidal product ® defined as follows:

e Ob(C ® ') := Ob(C) x Ob(C").

e Homeger ((¢, ), (d,d")) := Home (¢, d)@x Homer (¢, d').
Let us now consider the symmetric monoidal category Grpd of groupoids, with symmetric
monoidal structure given by the cartesian product. We have a symmetric monoidal functor

Grpd — Cat(CoAlgy)
g — Gk
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defined as follows:

e Objects of G(k) are objects of G.
e For a,b € Ob(G),

Homg i) (a, b) = k - Homg(a, b) .
Here k-Homg (a, b) is equipped with the unique coalgebra structure such that the elements
of Homg(a, b) are grouplike (meaning that they are diagonal for the coproduct and that
their counit is 1), and the “ ™ ” refers to the completion with respect to the topology

defined by the sequence (Homgzk (a,b)), ., Where:

— TF is the category having the same objects as G and morphisms lying in the k-th power

(for the composition of morphisms) of kernels of the counits of k - Homg/(a, b)’s.
e For a functor F : G — H, F(k) : G(k) — H(k) is the functor given by F on objects
and by k-linearly extending F' on morphisms.

Being symmetric monoidal, this functor sends operads in groupoids to operads in Cat(CoAlgy).

Example 2.5.2. For instance, viewing Pa as an operad in groupoid (with only identities as
morphisms), then Pa(k) is the operad in Cat(CoAlgy) with same objects as Pa, and whose

morphisms are

k ifa=0b
HomPa(k)(n) (a’a b) =
0 else

with k being equipped with the obvious coproduct A(1) =1® 1 and counit ¢(1) = 1.

The functor we have just defined has a right adjoint
G : Cat(CoAlgy) — Grpd,

that we can describe as follows:

e For C in Cat(CoAlgy), objects of G(C) are objects of C.
e For a,b € Ob(G), Homg(c)(a,b) is the subset of grouplike elements in Homc(a, b).

Being right adjoint to a symmetric monoidal functor, it is lax symmetric monoidal, and thus

it sends operads (resp. modules, resp. moperad) to operads (resp. modules, resp. moperad).

We thus get a k-prounipotent completion functor G +— Q(k) = G(g(k)) for operads (resp. mod-
ules, resp. moperad) in groupoids.

Finally, let P, Q be two operads (resp. modules, resp. moperad) in groupoids. If we are given a
morphism f : Ob(P) — Ob(Q) between the operads (resp. operad modules, resp. moperads)
of objects of P and Q, then (following [46]) we can define an operad (resp. operad module,
resp. moperad) f*Q in the following way:

e Ob(f*Q) := OB(P),
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i Hom(f*Q)(n) (pa q) = HomQ(n) (f(p)a f(q))

In particular, f*Q inherits the operad structure of P for its operad of objects and that of Q
for the morphisms.

Remark 2.5.3. Notice that this is not a pull-back in the category of operads in groupoids.

2.5.8 Pointed versions
Observe that there is an obvious operad Unit defined by

) 1 ifn=0,1
Unit(n) = 0 d
else

By convention, all our operads O will be pointed in the sense that they will come equipped with
a specific operad morphism Unit — . Morphisms of operads are required to be compatible
with this pointing. Actually, all operads appearing in this paper are such that O(n) ~ 1 if
n=20,1.

Now, if P is an O-module, then it naturally becomes a Unit-module as well, by restriction. By
convention, all our modules will be pointed as well, in the sense that they will come equipped
with a specific Unit-module morphism Unit — P. Morphisms of modules are required to

be compatible with the pointing. Again, all modules appearing in this paper are such that
P(n)~1ifn=0,1.

Finally, there is a nice moperad Minut over Unit, which is such that Minut(n) = 1 for all
n > 0. By convention, all our moperads will be pointed, in the sense that they will come
equipped with a specific unit-moperad morphism Minut — Q. Morphisms of moperads are
required to be compatible with the pointing.

Remark 2.5.4. In the category of sets, Minut is the sub-Unit-moperad of Pag that consists

only of the left-most maximal parenthesization.

The main reason for these rather strange conventions is that we need the following features,

that we have in the case of compactified configuration spaces:

e For operads, modules and moperads, we want to have “deleting operations” O(n) —
O(n — 1) that decrease arity.

e For modules and moperads, we want to be able to see the operad “inside” them, i.e. we

want to have distinguished morphism O — P of G-modules.

Example 2.5.5. For instance, being a Pa-moperad, Pag comes together with a morphism of
G&-modules Pa — Pag. We let the reader check that it sends a parenthesized permutation p
to 0(p).
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2.5.9 Group actions

Let G be a group and O be an operad. We say an O-module P carry a G-action if

e for every n > 0, G™ acts G,,-equivariantly on P(n), from the left.

e for every m > 0, n > 0, and 1 < i < n, the partial composition
0, : P(n) @ O(m) — P(n+m —1)
is equivariant along the group morphism

Gn Gnerfl

(91,---,9n) — (glv"'7giflagia'"7g’iagi+1a"'7gn)
——

m times

If P is a moperad, we additionally require that the partial composition
og: P(n) @ P(m) — P(n+m)
is G"t™_equivariant.

A morphism P — Q of O-modules (or O-moperads) with G-action is said G-equivariant if,
for every n > 0, the map P(n) — Q(n) is G™-equivariant.

2.6 Grothendieck-Teichmiiller groups

Initially, Grothendieck-Teichmiiller groups and associators were, in the genus 0, cyclotomic and
genus 1 cases, constructed by using braided monoidal categories, braided modules categories
and elliptic structures over braided monoidal categories respectively. Already in V. Drinfeld’s
work, associators had an implicit operadic nature (made explicit in [5]) which permits to define
associators as formality isomorphisms between operads closely related to the little disks op-
erad. More specifically, there is an operad in groupoids PaB encapsulating the combinatorics
of parenthesized braidings and an operad in groupoids GPaCD encapsulating the combina-
torics of parenthesized chord diagrams. The former is obtained (roughly) by considering a
parenthesized version of the (pure) braid group on the torus. The latter is obtained from
the collection t(k) of Lie (k)-algebras t,(k), for n > 1, which has a natural operad structure.
In this scope, the (naive) Grothendieck-Teichmiiller group consists on the group of automor-
phisms of PaB which are the identity on objects, the graded Grothendieck-Teichmiiller group
is the group of automorphisms of GPaCD which are the identity on objects, and, by denoting
l@(k) the k-prounipotent completion of PaB, then the set of k-associators consists on the
set of isomorphisms liaT3(k) — GPaCD of operads in k-prounipotent groupoids which are
the identity on objects. It can be shown that these operadic point of view is compatible with
the classic one, namely that there is a one-to-one correspondence between the operadic defini-
tion of these objects and the objects defined in the literature in terms of elements satisfying

certain equations.
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Let us mention that in [46], B. Fresse developped a very general rational homotopy theory for
operads in order to understand from a homotopical viewpoint, a deep relationship between
operads and Grothendieck-Teichmiiller groups which was first foreseen by M. Kontsevich in

his work on deformation quantization process in mathematical physics.

More specifically, after developing a general theory permitting to endow the category of oper-
ads in simplicial sets (and, further, of Hopf cooperads) with a (nice enough) model category
structure, the author uses an application of homotopy spectral sequences to show that the
Grothendieck-Teichmiiller group has a topological interpretation as a group of homotopy au-
tomorphisms associated to the little 2-disc operad. A similar characterisation of the set of
associators is also done in the author’s work.

2.6.1 Compactified configuration space of the plane

To any finite set I we associate a configuration space
Conf(C, 1) = {z = (2:)icr € C'|z; # zj if i # 5} .
We also consider its reduced version
C(C,I) := Conf(C,I)/C x Rxyq.

We then consider the Fulton-MacPherson compactification C(C, I) of C(C, I). The boundary
OC(C,I) = C(C,I)—C(C, ) is made of the following irreducible components: for any partition
I'=J,]]- 11 Jk there is a component

k
d1,..2,C(C,T) = C(C, k) x [[C(C, 7).
1=1

The inclusion of boundary components provides C(C, —) with the structure of an operad in

topological spaces.

2.6.2 The operad of parenthesized braids

We have inclusions of topological operads

Pa Cc C(R,—) c C(C,—).
Then it makes sense to define

PaB = (@((C, —),Pa) ,
which is an operad in groupoids.

Example 2.6.1 (Description of PaB(2)). Let us first recall that Pa(2) = &2, and that
C(C,2) ~ S'. Besides the identity morphism in PaB(2) going from (12) to (12), we have
an arrow RY? in PaB(2) going from (12) to (21) which can be depicted as follows®:

1

3We actually have another arrow, that can be obtained from the first one as (R?1)~1 according to the notation that

is explained after Theorem 2.6.3, and which can be depicted as an undercrossing braid.
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<P

Two incarnations of R

Example 2.6.2 (Notable arrows in PaB(3)). Let us first recall that Pa(3) = G3x{(ee)e e(ee)}
and that C(R,3) = &3 x [0,1]. Therefore, we have an arrow ®%23 (the identity path in [0,1])
from (12)3 to 1(23) in PaB(3). It can be depicted as follows:

(12) 3

* o—— o
1 2

—_

(2 3)

Two incarnations of 123

The following result is borrowed from [46, Theorem 6.2.4], even though it perhaps already

appeared in [5] in a different form.

Theorem 2.6.3. As an operad in groupoids having Pa as operad of objects, PaB is freely
generated by R := R%? and ® := 123 together with the following relations:

(H1) R'2®213RL3 = @L23RL239231 45 arrows from (12)3 to 2(31) in PaB(3),

(H2) (RZYH)=1o213 (R33N~ = pL23(R231)=1923:L a5 arrows from (12)3 to 2(31) in PaB(3),

(P) 123491234 = 123912349234 45 arrows from ((12)3)4 to 1(2(34)) in PaB(4).

We now briefly explain the notation we have been using in the above statement, which is quite
standard. In this article, we write the composition of paths from left to right (and we draw
the braids from top to bottom). If X is an arrow from p to q in PaB(n), then

e for any r € Pa(k), the identity of r in PaB(k) is also denoted r.

e for any r € Pa(k), we write X1" forro; X € PaB(n+ k — 1).

e for any o € &, 51 we define Xt ;= (X1-n) . g

e for any r € Pa(k), X©kth-whtn=l.— X o, v c PaB(n+k — 1).

e we allow ourselves to combine these in an obvious way.
We let the reader figuring out that this notation is unambiguous as soon as we specify the

starting object of our arrows. For example, the pentagon (P) and the first hexagon (H1)

relations can be respectively depicted as
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(2 3 4 (2 3) 4
Q\ i \\\\\ (P)
1 2 (34) 1 2 (34)
and
(12) 3 (12 3
/
- (H1)
{ r
2 31 2 (3 1)

or, as commuting diagrams (giving the name of the relations)

(12)(34)
P1:2:34 $12.3.4 R1:2 R1:23
1(2(34)) ((12)3)4 and (21)3 (23)1
l¢2,3,4 s (I>1,2,3T \ g /
1((23)4) 2 (1(23))4 2(13) £ 2(31)

2.6.3 The operad of chord diagrams

In [5, 46] it is shown? that the collection of Kohno-Drinfeld Lie k-algebras t,,(k) defined in the
introduction is provided with the structure of an operad in the category grLiey of positively
graded finite dimensional Lie algebras over k, with symmetric monoidal strucure is given by

the direct sum @. Partial compositions are described as follows:

op: ti(k)®ts(k) — tiur—(iy (k)
(O,t,lg) — tap
(t.0) s {2t A k=i
Sty it j=k
peJ

4Even though the author of [5] does not use the concept of an operad.
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Observe that we have a lax symmetric monoidal functor

U : grLiex — Cat(CoAlgy)

sending a positively graded Lie algebra to the degree completion of its universal envelopping al-
gebra, which is a complete filtered cocommutative Hopf algebra, viewed as a CoAlgy-enriched

category with only one object.

We then consider the operad of chord diagrams CD(k) := U(t(k)) in Cat(CoAlgy).

Remark 2.6.4. This denomination comes from the fact that morphisms in CD(k)(n) can be
represented as linear combinations of diagrams of chords on n vertical strands, where the chord

diagram corresponding to t;; can be represented as

and the composition is given by vertical concatenation of diagrams. Partial compositions can
easily be understood as “cabling and removal operations” on strands (see [5, 46]). Relations (L)
and (4T) defining each t,, (k) can be represented as follows:

l

T

{ ............... (L)
Lo

2.6.4 The operad of parenthesized chord diagrams

Recall that the operad CD(k) has only one object in each arity. Hence we have an obvious
terminal morphism of operads w; : Pa = Ob(Pa(k)) — Ob(CD(k)), and thus we can
consider the operad

PaCD (k) := wjCD(k)
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of parenthesized chord diagrams. Here is a self-explanatory example of how to depict a mor-
phism in PaCD(k)(3):
(i J) k

¢ (k 7)
where f € CD(k)(3).

Example 2.6.5 (Notable arrows of PaCD (k)). We have the following arrows in PaCD(k)(2):

Hl,? = t19- e X1’2 =1-

We also have the following arrow in PaCD(k)(3):

(12)

a1,2,3 =1 l
1

Remark 2.6.6. The elements H2 X12? and a'?3 are generators of the operad PaCD (k)

and satisfy the following relations:

|

(2 3)

(P) a12,374a1,2,34 — a1,2,3a1,23,4a2,374’

(H) X123 = gL23X23(q1:3:2)=1 X 1.343.1,2
(Inv) H>' = X12HL2(X12)~1,
(SH) H'23 = (q123)~1 231,23 4 (X21)~1(q213) L 13213 X 21,

In particular, even if PaCD(k) does not have a presentation in terms of generators and
relations (as is the case fot PaB), one can shown that PaCD(k) has a universal property

1,2,3

with respect to the generators H“?, X12 and a and the above relations (see [46, Theorem

10.3.4] for details).
2.6.5 Drinfeld associators

Let us first introduce some terminology that we use in this paragraph, as well as later in the

paper:
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e Grpd, denote the (symmetric monoidal) category of k-prounipotent groupoids (which

is the image of the completion functor G — G(k)).
e for C being Grpd, Grpd,, or Cat(CoAlgy), the notation

AutgpC (resp. Isogpc)

refers to those automorphisms (resp. isomorphisms) which are the identity on objects.

In the remainder if this section we recall some well known results on the operadic point of
view on associators and Grothendieck-Teichmiiller groups, which will be useful later on. Even
though the statements and proofs of all the results in this subsection can be found in [46], it

is worth mentionning that a "pre-operadic" approach was initiated by Bar-Natan in [5].

Definition 2.6.7. A Drinfeld k-associator is an isomorphism between the operads PTaT?)(k)
and GPaCD (k) in Grpd,, which is the identity on objects. We denote by

Ass(k) = Isoarpdk(PaB(k), GPaCD (k))
the set of k-associators.

Theorem 2.6.8. There is a one-to-one correspondence between the set of Drinfeld k-associators
and the set Ass(k) of couples (u, ) € k* x exp(f2(K)), such that

3,21 _ (,.1,2,3\-1
(S) ¢35 = ("37) 7,
(H) (,01’2’36#1523/2(,02’3’16'ut3l/2@3’1’26#)512/2 — e#(t12+t13+t23)/2,

1,2,3,,1,23,4, 234 _ 12,34 1,234
(P) @l23p123:dp23:4 = p12:34,1,2,34

where @123 = (Lo, ta3) is viewed as an element of exp(t3(k)) via the inclusion fo(k) C t3(k)

sending x to t13 and y to tog.

Two observations are in order:
o the free Lie k-algebra f2(k) in two generators z, y is graded, with generators having degree
1, and its degree completion is denoted by fg(k).
e the k-prounipotent group exp(fg (k)) is thus isomorphic to the k-prounipotent completion

f‘g (k) of the free group F5 on two generators.

This Theorem was first implicitely shown by Drinfeld in [27]. An explicit proof can be found
in [46, Theorem 10.2.9], and relies on the universal property of PaB from Theorem 2.6.3.
In particular, a morphism F' : liaT3(k) — GPaCD(k) is uniquely determined by a scalar
parameter ;1 € k and ¢ € exp(f2(k)) such that we have the following assignment in the
morphism sets of the parenthesized chord diagram operad PaCD:

o F(R)=erh2/2,
o (D) = p(t12,t23),

where R and ® are the ones from Examples 2.6.1 and 2.6.2.
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Example 2.6.9 (The KZ Associator). The first associator was constructed by Drinfeld with
the help of the monodromy of the KZ connection and is known as the KZ associator ®Pxy.
It is defined as the the renormalized holonomy from 0 to 1 of G'(2) = (12 + 12)G(2), i.e.,

z z—1

Py = Gyl Gi- € exp(t3(C)), where Go+, G- are the solutions such that G+ (2) ~ 2112 when
z— 0" and G1-(2) ~ (1 — 2)28 when z — 1~. We have

D7 (V,U) = Oz (U, V)7L, @z (U, V)e™ Oy (V, W)e™W Sy (W, U)e™V = 1,

where U = z12 S fQ(C) ~ {3(((:) = fg((C)/(tu + 113 +t23), V= zzg S {3(((:) and U+ V +W =0,
and
12,3,4 5 1,2,34 1,2,3 21,234 £2,3,4
Qi PRy = PPy PRy

(relation in exp(t4(C))) so (27, Pxz) is an element of Ass(C).

2.6.6 Grothendieck—Teichmuller group
Definition 2.6.10. The Grothendieck—Teichmiiller group is defined as the group
GT := Autgp Grpd(PaB)

of automorphisms of the operad in groupoids PaB which are the identity of objects. One defines

similarly the k-pro-unipotent version
GT(k) := Autép Grpd, (PaB(k))

There are also pro-f and profinite versions, denoted GT; and éi‘, that we will not consider

in this paper.

We can also characterize elements of GT and éi‘(k) as solutions of certain explicit algebraic
equations. This characterization proves that the above operadic definition of GT coincides
with the one given by Drinfeld in his original paper [27]. In this article we will focus on the

k-pro-unipotent version of this group in genus 0 and 1, and twisted situations.

Definition 2.6.11. Drinfeld’s Grothendieck—Teichmdiiller group ﬁ(k) consists of pairs
(A f) € K* x Fo(k)

which satisfy the following equations:

(BS) f(z.y) = fly,2)~",

(BH) ¥ f(x1,x2)xh f (22, x3)xh f(x3,21) =1,

(BP) f(x13%23,%34)f (212, Ta3T24) = (212, T23) [ (12213, To3x34) f (23, X34) in 15\134(1{);

where x1,xs,x3 are 3 variables subject only to x1xoxs =1, v = %, and x;; 1s the elementary

pure braid P;; from the introduction. The multiplication law is given by

()‘17 fl)(>‘2; f2) = ()‘1>‘25 f2(f1(x7y)$A1f1(x7y)*l, yAl)fl(za y))
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Theorem 2.6.12. There is an isomorphism between the groups GT(k) and GT(k).

This was first implicitely shown by Drinfeld in [27]. An explicit proof of this theorem can be
found for example in [46, Theorem 11.1.7]. In particular, one obtains the couple (), f) from
an automorphism F' € éi‘(k) as follows. We have

1 j 1\/2 v 1 j 1 j 2v+1

F = : = (2.15)
e e f\
2 1 1 2 2 1 2 1

(12) 3 @ 2 3 @0 2 3| (12 3
F —f K‘ , .
& r'd
1 (2 3) @ 2 3 @1 2 3 1 (2 3)
(2.16)

In other words, if we set A = 2v + 1, we get the assignment
o F(R'?) = (R')),
) F((I)1’2’3) = f(l’lg,.rgg) . (1)1’2’3.

Remark 2.6.13. [t is important to notice that the profinite, pro-£, k-pro-unipotent versions of
the Grothendieck—Teichmiiller group do mot coincide with the profinite, pro-£, k-pro-unipotent
completions of the“thin” Grothendieck—Teichmdiller group GT which only consists of the pairs
(1,1) and (—1,1). We have morphisms

GT — GT - GT,; < GT(Q;) and GT — GT(k).

2.6.7 Graded Grothendieck—Teichmuller group

Definition 2.6.14. The graded Grothendieck—Teichmiiller group is the group
GRT (k) := Autd, grpa, (GPaCD(k))
of automorphisms of GPaCD (k) that are the identity on objects.

Remark 2.6.15. When restricted to the full subcategory Cat(CoAlgge™) of CoAlgy-enriched
categories for which the hom-coalgebras are connected, the functor G leads to an equivalence
between Cat(CoAlgge™™) and Grpd,. Hence there is an isomorphism

GRT (k) ~ Aut}

Op Cat(CoAlgyk) (PaCD (k)) .

Again, the operadic definition of GRT (k) happens to coincide with the one originaly given by
Drinfeld.
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Definition 2.6.16. Let GRT be the set of elements in g € exp(f2(k)) C exp(s(k)) such that

o g2 =g7" and g"?3g>H1gB2 =1, in exp(ts(k))),
o tio+ Ad(gh2%) L (tas) + Ad(g>1 %) "L (t13) = tiz + tiz + tas, in t3(k)),

o gl23g123:4023.4 _ (12341234 4, exp(ﬂ(k))),

One has the following multiplication law on GRT;:
(91 % 92)(A, B) == g1(Ad(g2(4, B))(A), B)g2(A, B) .

Drinfeld showed in [27] that the above GRT} is stable under *, that it defines a group structure
on it, and that rescaling transformations g(x,y) — X - g(z,y) = g(Ax, \y) define an action of
k* of GRT; by automorphisms.

Theorem 2.6.17. There is a group isomorphism GRT (k) =2 k* x GRT;.

This was first implicitely shown by Drinfeld in [27]. An explicit proof of this theorem can be
found for example in [46, Theorem 10.3.10]. In particular, we obtain the couple (1, g) from an
automorphism G € GRT (k) by the assignment

° G(X1’2) — X1’2,

° G(H1’2) — )\1{1,27

o G(a123) = g(t12,ta3) - 123,

2.6.8 Torsors

Recall first that there is a left free and transitive group action of @(k) on Ass(k), defined by
(A f) * (1, @) = (A, @(A, B) f (e, D(A, B)'e"P@(4, B))) = (', @').

Recal also that there is a right free and transitive group action of GRT(k) on Ass(k) defined

as follows: for g € GRT;(k) and (p, ®) € M (k), (, ®) * g := (p, P), where

D(t12,t23) = P((t12, Ad(g)t23))g,

and for ¢ € k* (u,®) * ¢ := (cu,c x @), where (¢ x ®)(A,B) = ®(cA,cB). This makes
(GT(k), Ass(k), GRT(k)) into a torsor.

Proposition 2.6.18. There is a torsor isomorphism

(GT(k), Ass(k), GRT (k)) — (GT(k), Ass(k), GRT(k)) (2.17)

Proof. On the one hand, in [46, Theorem 10.3.13] it is shown that the natural left free and
transitive action of éi‘(k) over Ass(k) coincides with the action of GT(k) over Ass(k) via
the correspondence of Theorem 2.6.12. Thus, both actions are compatible. On the other
hand, in [46, Theorem 11.2.1], it is shown that the natural right free and transitive action of
GRT (k) over Ass(k) coincides with the action of GRT (k) over Ass(k) via the correspondence
of Theorem 2.6.17. Thus, both actions are also compatible. O



Chapter 3

Results

The contributions below focus on questions related to the higher genus and the twisted elliptic

avatars of the V. Drinfeld’s story of KZ equations, associators and the group GT.

One the one hand, in Part I we make use of the theory of the Fulton-MacPherson compactifi-
cation, combined with operads, moperads ([101]) and operadic modules ([45]) to describe in a
conceptual manner twisted and higher genus versions of associators, Grothendieck-Teichmiiller

groups and their graded versions.

On the other hand, in part II we focus on the twisted elliptic case to show the existence of a
so-called twisted elliptic C-associator arising from a flat universal KZB connection defined on
a principal bundle over the moduli space of elliptic curves with a level structure. The theory
of such a connection has immediate applications as to establishing the formality of some
subgroups of the pure braid group on the torus and producing representations of Cherednik
algebras. Analogously to the elliptic case, the coefficients of the generating series of the twisted
elliptic KZB associator will then be called twisted elliptic multiple zeta values (teMZVs for
short).

3.1 Operadic structures on associators and Grothendieck-

Teichmiiller groups

As said, the set of k-associators is in a one-to-one correspondence with the set of isomorphisms
PTaT?)(k) — GPaCD of operads in k-prounipotent groupoids which are the identity on ob-
jects. More generally, to any orientable compact surface ¥, of genus g > 2, one can associate a
(framed) configuration space of n points on X, from which to obtain arbitrary genus definitions
of Grothendieck-Teichmiiller groups and associators. More specifically, one can consider the
operad PaB, of genus g parenthesized braidings associated to the fundamental groupoids of
the Fulton-MacPherson compactified (framed) configuration spaces Conf(X,,n) of 3,, based
on the collection of sets of parenthesized permutations. Next, the “holonomy" Lie algebra t4

of Conf(X,,n) became available ([32]) and can be naturally endowed with the structure of a

85
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t-module. Then, a version of this Lie algebra (taking into account the framing of the configu-
ration spaces) will permit us to define a GPaCD-module GPaCD,, of genus g parenthesized
chord diagrams. The genus g Grothendieck-Teichmiiller group GT, will consist of group of
automorphisms of the PaB-module PaB, the genus g graded Grothedieck-Teichmiiller group
GRT, will consist of group of automorphisms of the GPaCD-module GPaCD, and the set
Ass, of genus g associators will consist of the isomorphisms of modules P@g(k) — GPaCD,
which are the identity on objects. The main result of these constructions is that, seen as a
PaB-module, PaB, has a nice presentation and we extract from it a characterisation of the
set Ass, of genus g associators in terms of elements satisfying some equations in Theorem
5.3.13.

Further results are obtained in the elliptic, cyclotomic and twisted elliptic cases. In [25], we give
yet a new version of these operadic point of view on associators by taking a purely topological
point of view. Starting with the (reduced) twisted configuration spaces of the complex cylinder
and the torus, denoted respectively Conf(C*,n,N) and Conf(T,n,I'), for M, N > 1 and
I' = Z/MZ x Z/NZ, one can construct the Fulton-MacPherson compactification of these
spaces. Then by considering, for all n > 1, the collection of their fundamental groupoids based
on well chosen versions of collections of parenthesized permutations, they will be endowed with
a PaB-moperad (see [101] for the definition of a moperad over an operad) and a PaB-operadic
module structure respectively, denoted PaB” and PaBEM. Both PaB” and PaBEM have nice
presentations by generators and relations. Similarly to the genus 1 case, one can construct from
the Lie algebras t,, y and tlin, a GPaCD-moperad and a GPaCD-module denoted GPaCD"
and GPaCD!,, respectively. Then Grothendieck-Teichmiiller groups and associators in this

scope will be constructed as above!. We eventually get the following theorem.

Theorem 3.1.1. The following maps are bitorsor isomorphisms

(é'\TeM (k), EI(k), GRTcr¢(k)) — (GTege(k), Ell(k), GRT e (k)) (3.1)
(GT (k), Ass"(k), GRT" (k) — (GT (k), Ass" (k), GRT" (k). (3.2)

T
Moreover, there is a torsor (GT ., (k), EII" (k), GRTL,,(k)) which allows us to define twisted
T
elliptic counterparts GT ;p(k), El" (k), and GRTEM(k) of Grothendieck-Teichmiiller groups

and associators in their non-operadic characterization.

3.2 The twisted elliptic KZB associator

We define a twisted version of the genus one KZB connection introduced in [24]. This is a flat
connection on a principal bundle over the moduli space of elliptic curves with a level structure

and n marked points.

ILet us remark that a very interesting continuation of the exploration of these operadic structures should be to adapt

Fresse’s model category structures to operadic modules to give a homotopical characterisation of GT ¢ (Q) in terms of

homotopy automorphisms associated to little disks on the torus.



3.2. THE TWISTED ELLIPTIC KZB ASSOCIATOR 87

Consider the group I' := Z/MZ x Z/NZ. and consider the following (finite index) subgroup
of SL2 (Z)

b

SLL (Z) := { (“ d) € SLy(Z)|la=1mod M, d=1mod N, b=0 mod N, ¢ =0 mod M}.
c

The quotient Y(I') := §/SL5(Z) is a complex orbifold whose points classify isomorphism

classes of pairs (E,¢) where E is an elliptic curve and ¢ : ' — F is an injective group

morphism that is orientation preserving. Such an elliptic curve with additional structure will

be called I'-structured elliptic curve. More generally, one can construct the moduli space M{n

of I'-structured elliptic curves with n ordered marked points.

Let E be an elliptic curve over C and consider the connected unramified I'-covering p : £ — E
corresponding to the canonical surjective group morphism p : 71 (E) = Z? — T sending the
generators of Z? to their respective classes in I'. By choosing an uniformization of E, we define

the I'-twisted configuration space associated to E as
Conf(E,n,T') = (C" — Diag, ,, r)/(Z+ TZ)"

where Diag, , r := {(21,...,2n) € C" 25 1= 2 — 2z; € (1/M)Z + (7/N)Z for some i # j}.
Then, the spaces Conf(E,n,T') are (roughly) fibers at 7 of fibrations Mj, — Y(I'). The
holonomy Lie algebra of Conf(E, r,n,I") will be denoted tlin and has generators x1, ..., %y,
Yi,-- -y and £ (a €0, 1 <i# j <n).

As in the elliptic case, one can define a Lie algebra o', which has two components: the first is
sl and the second is a free (bigraded) Lie algebra OE generated by ds’s (s > 0, v € I') with

relations d 4 = (—1)°d5,—. The d, , also act as highest weight elements for sls.

Proposition 3.2.1. We have a bigraded Lie algebra morphism p : 98 — Der(t{n).

We can then construct a group G whose Lie algebra has as components the holonomy Lie

algebra tlin and the so called twisted derivation algebra d'.

Let e, h and f form the standard basis of sl and write & , := p(ds,,) and Ag := p(f). Let
¥ = (co,¢) € (1/M)Z+ (1/N)Z be any lift of v € I' and consider an element [(z,7)] € M],,.

Theorem 3.2.2. There is a unique GL-bundle P, r over len (given locally by sections) with
a flat universal KZB connection, locally defined by

VE%B =d— A(z|r)dr — ZKi(zh')dzi
i=1
where, for 1 <i <n, we have
Ki(z|7) := —y; + Z Zkzv(adxi,zh’)(tzj)
jig#iyel

with k.y(:L', z|7’) = e*QWiCIM _ 1 and

0(z—Am)0(z[7) ~ @’

M) = 5 (B0t X0 A1)y — 3 By adi, 21 (1))

2mi —
s>0,vel’ 1<J

with Ogk_~(z,0|T) := Zszo Ay (T)x®.
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Some facts about the construction of the connection in the above theorem:

1. The connection VE%B restricts to a flat connection VL(,ZT]} =d — ), Ki(z|T)dz locally

defined on a principal exp(f{n)—bundle P; . r over Conf(E,n,T"). This will allow us to
establish the formality of the fundamental group of Conf(E,n,T).

2. One can see that the term 0,ko(x,0|7) = (6'/0)(z) + 1/2? permits to retrieve classical
Eisenstein series and that for any v € I' — {0}, the expansion of the term 9,k_,(z,0|7)
will also be given in terms of (a slightly different version of) Eisenstein series.

3. The universal twisted elliptic KZB connection realizes as the usual KZB connection as-
sociated to elliptic dynamical r-matrices with spectral parameter [41, 43] and produces
representations of Cherednik algebras related with cyclotomic double affine Hecke alge-
bras ([16]).

Let {1;72 be the Lie C-algebra generated by x, y and t%, for a € ', such that [z,y] = > .t
We define the twisted elliptic KZB associator as the couple " (1) := (A" (1), B' (7)) € exp(t] 5) %
exp(t] 5) consisting in the renormalized holonomies from 0 to 1/M and 0 to 7/N respectively

as paths in E — {torsion points}, of the differential equation

0(z — &+ ad(x)|7)
0(z — a|7)0(ad(x)|T)

J'(2) = FY(2)- J(z) for F¥(2) := — Z e~ 2miaz (t*). (3.3)

acl

with values in the group exp(ilfz), where & = (ap,a) € (1/M)Z+ (t/N)Z is alift of a € T'. In
[25], after giving a general definition of the set ElI' (k) of twisted elliptic k-associators (with

the use of the theory of operads, see below), we show the following result:
Theorem 3.2.3. Let Ellf,; := ElI' (C) X ass(C) 1271, Pxz}. There is an analytic map
h — Ellgyp.
T — e'(7)
This means that, for each T € b, the element (2, ®xyz, AL (1), BY (7)) is a twisted elliptic

C-associator.

As a consequence, the set EllF((C) is non-empty and there is an action of the twisted version

_—T
GT, (k) of the elliptic prounipotent Grothendieck-Teichmiiller group on it. Finally, we estab-
lish a differential equation in the direction of 7 for the ellipsitomic KZB associators. Namely,

if we denote Eﬁ) for the derivation given by

o 8@ = ~(ada) () + (—ada) (D),

o 3t = [—((ad )*t* 7 + (— ad 2)*t°7) + (ad )t~ + (— ad 2)t7, ],
then we have the following result.

Theorem 3.2.4. We have

0 1 =
2mio_AT(r) = | =Ao— 5 D A4 (nEE | AT(7),

v€l's>0
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0 1 =
2W1EBF(T): —A0—§ZZASW(T)§§,2V) B (7).

YET's>0

Notice that this differential equation only involves the Eisenstein-Hurwitz series that we defined

in Section 8.3.

3.3 Perspectives

This section presents an overview of the possible continuations of the results of this thesis.

The first goal is to pursue the study of the general theory of twisted elliptic associators and
elliptic multiple zeta values at torsion points. Two complementary directions of this goal are
detailed in a separate manner. The first one involves a complete study of the (prounipotent)
twisted elliptic Grothendieck-Teichmiiller group, its graded version and their actions on the
set of twisted elliptic associators. The second consists of a full study of the coefficients arising
from the twisted elliptic KZB associator, namely what we call twisted elliptic MZVs (teMZVs

in short).

The second goal is to study the rational homotopy of operadic PaB-modules and elliptic
Grothendieck-Teichmiiller groups.

3.3.1 Twisted elliptic (graded) Grothendieck-Teichmiiller groups

In [25] we mainly expressed twisted (graded) Grothendieck-Teichmiiller groups and associators
in their operadic versions (we also gave definitions of these objects in terms of elements satis-
fying some equations). Nevertheless, one needs to understand the intrinsic nature of these two
groups and this set in order to study for example the decomposition of twisted elliptic MZVs.
Indeed, as we will see in chapter 8 where we establish the differential equation satisfied by the
twisted elliptic KZB associator, one needs to isolate some components of the twisted elliptic
Grothendieck-Teichmiiller group and have an explicit formula for the action of this group on

the set of twisted elliptic k-associators.

The action of the twisted elliptic Grothendieck-Teichmiiller group GT.,, and its
graded version on Ellr(k). Based on the definition of GTEM and its profinite, pro-£ and
proalgebraic variants, defined by considering different versions of the PaB-module PaBEM,
we study the relations between these groups and their corresponding versions in the genus 0,
cyclotomic ang\ellliptic cases. In the proalgebraic case, we aim to obtain a semidirect product
structure for GT,,,(k), analog to that obtained in the elliptic case. We will then fully describe
the action of this group on twisted elliptic k-associators. We hope to construct a morphism
of torsors from the scheme of (cyclotomic) associators to its twisted elliptic analogue, which
will permit us to establish the existence of twisted elliptic associators at extensions of Q by
roots of unity. Next, we concentrate on the graded version GRTEM(k) of the twisted elliptic

Grothendieck-Teichmiiller group. In particular, we will aim to establish the existence of the
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prounipotent radical RL,, (k) of GRT.,, (k) whose associated Lie algebra should be isomorphic
to the twisted version of the special derivation algebra which will be constructed in chapter
8 from the definition of the twisted derivation algebra d' constructed in chapter 6. Special
attention will be taken on the relation between this Lie algebra and the Lie algebra of the
prounipotent radical of 77" (MEM).

Further investigations on the t/\wi%ted elliptic KZB associator.  Once we haveex-
plicitely constructed the action of GT,,(k) and GRTL,, (k) on Ell' (k), we will be able to
fully establish the differential equation for the twisted elliptic KZB associator in terms of the
Eisenstein-Hurwitz series found in chapter 7. Next, combined with a full study of the genus,
cusps (by using the Riemann-Hurwitz theorem) and mapping class group of the moduli space
of once punctured I'-structured elliptic curves for different choices of finite abelian groups I,
we should be able to study the modular properties and asymptotic behaviour of the twisted
elliptic KZB associator at all cusps of this moduli space. This will be of great importance

when attacking the study of teMZVs as we will explain below.

Zariski closures, distribution relations and Galois groups actions for Ell" (k). With
a good understanding of the twisted elliptic mapping class group m; (/\/llfn) at hand, we will
aim to compute its Zariski closure in the automorphism groups of the prounipotent completions
of some subgroups of the (pure) braid groups on the torus by studying the relation between
the action of the group éi‘:ee(k) on these prounipotent completions and the action of its
graded counterpart. Next, if we take IV = Z/M'Z x 7Z/N'Z such that M’ divides M and N’
divides N, one should be able to study distribution relations satisfied by ElI" (k) and EI* (k)
and show that, when imposing these distribution relations, one obtains a subset of twisted
elliptic associators which will be a torsor under the action of some subgroups of éi‘:ee(k) and
GRTEM(k). Special importance will be given to study the relation between these subgroups
and the (geometric) fundamental group of the once punctured I'-structured elliptic curve.
Finally, we sketch some relations between the twisted versions of Teichmiiller groupoids in
genus one, the arithmetic fundamental group m (M7 ;)*) (for different kinds of congruence
subgroups and for L an extension of Q by roots of unity) and the profinite twisted elliptic
Grothendieck-Teichmiiller group (/;T‘Zee-

3.3.2 Further investigations on elliptic MZVs at torsion points

The twisted elliptic KZB associator e (7) has an expression in terms of iterated integrals. The

ng Mg ,..., N ng Mg ..., N
twisted elliptic MZVs IT ( ! 2 " 7] and JT ( ! 2 "7, for
a1 2 yeeey Oy a1 Q9 N 8 79
ni,...,n. =0 and ay,...,a, €T, are defined equivalently as the coefficients of the (modified)

ellipsitomic KZB associators and as regularized iterated integrals of the function F' defined

above.

A first remark is that our approach to teMZVs is somewhat different to that in the recent work

[19], where the authors use iterated integrals and the functions FT(z) to construct teMZVs
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and generalises to the case of any surjective morphism Z2? — I' sending the generators of Z2

to their respective classes modulo M and N.

Relations of teMZVs with the twisted special derivation algebra. In a joint effort
with N. Matthes, we aim to investigate the relation of our teMZVs with those defined in ([19])
related to the non-planar part of the four-point one-loop open-string amplitude. In particular,
by using the twisted version of H. Tsunogai’s special derivation algebra, by relating it to the
untwisted special derivation algbra, and by representing teMZVs as iterated integrals over well
adapted Eisenstein series, we aim to derive the number of indecomposable elements of given
weight and length for teMZVs. We also hope to get new interesting relations in the twisted
special derivation algebra. Then, together with J. Broedel and O. Schlotterer, we will provide

relations for teMZVs over a wide range of weights and lengths by computational methods.

Modularity properties and asymptotic behaviour of teMZVs. By combining the
results on the asymtotic behaviour at cusps and the differential equation for the twisted elliptic
KZB associator done in Project 1, we will deduce the asymptotic behaviour of teMZVs. We
will aim to retrieve pun-MZVs and multiple Hurwitz values when degenerating teMZVs to the
cusp ico and all other cusps of our modular curve. By the results in [19], we know this will
be the case. We hope that by taking special cases of the group I', for instance M = 5 and
different choices of N, we will retrieve some of the remaining periods of P! — {0, us, 00} which
are known not to be ps-MZVs.

Motivic aspects of the twisted elliptic KZB connection and teMZVs. In a broader
sense, we aim to study some of the Hodge-de Rham theoretic aspects of /\/151. One can see
MEQ is the I'-punctured universal curve over /\/151. The Lie algebra t{_’n should be closely
related to the local system over the moduli space of I'-structured elliptic curves with a non-
zero tangent vector at the origin. With this in mind, an interesting task to do is to explicit
the Q-de-Rham structure of this local system as was done in R. Hain’s notes [62]. We aim
to compute the restriction of the twisted elliptic KZB connection to various loci, such as the
punctured first order neighbourhood of the Tate curve and a punctured formal neighbourhood
of the identity section. We then explore Hodge theoretic aspects of this connection such as
computing limit mixed Hodge structures relevant regions of /\/lil. We hope to relate in the
mid-term these constructions to motivic aspects of teMZVs and to universal mixed elliptic

(and modular) motives.

3.3.3 Rational homotopy of operadic PaB-modules and elliptic Grothendieck-
Teichmiiller groups

Following the operadic point of view on elliptic associators and Grothendieck-Teichmiiller
groups, it is natural enough to study the homotopy aspects of these objets. The motivation to
do this comes from the fact that, by Bezrukavnikov’s results in [11], the configuration spaces
Conf(X,,n) of a genus g orientable surface 3, are 1-formal but not formal in general. In other

words, they have non trivial higher homotopies. Now, for some years now, a way of studying
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higher homotopies on spaces has come with the introduction of higher categorical structures.
The link between these two realms of mathematics has been straightened in particular by P.
Safronov, who has studied in [89] the relation between shifted Poisson structures and classical
(dynamical) r-matrixes. A natural quesiton to ask is then if a homotopical characterisation of
GT.e will shed some light on the study of higher homotopies of the operadic module (over
the little disks operad Ds) of little disks on the torus, denoted Dj ».

A rationalization of the module of little disks on the torus. The first goal for
achieving this study will consist on constructing a good rationalization of the module of little
disks on the torus. First of all, as Conf(T,n) is not formal (see [Bezr|), we have to work
with the de Rham algebra Q*(Conf(T,n)) instead of H*(Conf(T,n)). We hope to be able to
overcome this issue by stuying the de Rham algebra Q*(Conf(T,n)) given in [20] and relating
it with that contained in Kriz work [77] together with recent work by C. Sibilia in his PhD
thesis. Let C¢p(t1,n) be the Chevalley-Eilenberg cochain complex of t; ,,. The first step is to

obtain a quasi-isomorphism

Cigtin) — Q*(Conf(T, n))

which would be enhanced into a Hopf dg-comodule quasi-isomorphism C¢ g (t1) — Q*(Conf(T, —)).

This will lead to a rationalization of the module of little disks on the torus.

Homotopy theory of Hopf comodules. Next, it will be necessary to build a general
homotopy theory for Hopf cooperadic comodules. Operadic modules are easier to work with
than operads by their intrinsic linear nature (oposed as to that of operads). By this reason,
the construction of model category structures on operadic modules in simplicial sets and their
A-operadic versions should be within reach in the mid-term. The next step would be to use
homotopy spectral sequences techniques in this scope to get a homotopical interpretation of
GT. in terms of the fundamental group (so in terms of the 1-truncation of the full homotopy
theory) of Conf(T,n). The final outcome of this study will then be constructing injective

mappings
El(T)g — I8OHo(Modp,)((D1,2)g, LGeQ*(D1,2))
and
(GTe)g —  Autmomodp,)((D1.2)5)-

where Ho(Modp,) is the homotopy category of Do-modules, (D1,2)g is a rationalization of the
Dy-module Dy 5 related with Sullivan’s models and LG4Q2*(D12) is a module obtained from
the de Rham complex of the Dy-module D 5.



Part 1

Associators and

Grothendieck-Teichmuller groups

93






Chapter 4

Operad structures on associators
and Grothendieck-Teichmuller

groups

4.1 Modules associated with configuration spaces (elliptic

associators)

4.1.1 Compactified configuration space of the torus

Let T be the topological torus. To any finite set I we associate a configuration space
Conf(T,I) = {z = (2i)ier € T|2z; # z; if i # j}.
We also consider its reduced version
C(T,I) := Conf(T,I)/T.

We then consider the Fulton-MacPherson compactification C(T, I) of C(T, I). The boundary
OC(T, I) = C(T,I)—C(T,I) is made of the following irreducible components: for any partition
I=J1]] 11 Jk there is a component

k
8J1,,JkC(T7]) = E(Ta k) X HC(C, Jl)
=1

The inclusion of boundary components provide C(T, —) with the structure of a module over

the operad C(C, —) in topological spaces.
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4.1.2 The PaB-module PaB, of parenthesized elliptic (or beak) braids

In a similar manner as in §2.6.2, we have inclusions of topological modules’
Pa c C(S',—) c C(T,-).

Then it makes sense to define
PaB,.y, = m (C(T, -), Pa) ,

which is a PaB-module in groupoids.

Example 4.1.1 (Structure of PaB.(2)). As in Example 2.6.1 we have an arrow RY? going
from (12) to (21). Additionnally, we also have two automorphisms of (12), denoted AV? and
BY2, corresponding to the following loops on C(T, 2):

1 2
LT
31’2
A1,2
1 2 1 2

By global translation of the torus, these are the same loops as the following

1 2
Bl,2
1 Al?
1 2 1 2

2/

In particular, AY2RY? and BY2(R*Y)~1, which are morphisms from (12) to (21), correspond
to the following paths C(T,2):

2 1
Bl,2(R2,l)7l
AL2R12
1 2 2 1 1 2

Remark 4.1.2. The arrows A%? and B%? correspond to AfQ in [33, §1.3].

Thus as A%? can be depicted with the point indexed by 1 going to the left we will also formally
depict AY? and BY? as follows:

IThe second one depends on the choice of an embedding S! — T: we choose by convention the “horinzontal” one.
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A1

One can rephrase [33, Proposition 1.3] in the following way:

Theorem 4.1.3. As a PaB-module in groupoids having Pa as Pa-module of objects, PaB g
is freely generated by A := A2 and B := B2, together with the following relations:
(N1) dL23A123 R1.23D2,3,1 2,31 R2.3153,1,2 43,12 R3,12 — Id(12)3,
(N2) 1,23 B123(R23:1)=192.3,1 G231 (R312)- 19312 B3, 12(R12:3)-1 = 1d(12)s,
(E) R\W2R>! = ((1)1,2,331,23((1)1,2,3)—1, (R2’1)_1<I>2’1’3(A2’13)_1(@2’1’3)_1(1%1’2)_1),

as automorphisms of (12)3 in PaB.s(3).

Proof. Let Q be the PaB-module with the above presentation. We first show that there
is a morphism of PaB-modules Q — PaB.y. We have already seen that there are two
automorphisms A, B of (12) in PaB.y(2) (see Example 4.1.1). We have to prove that they
indeed satisfy the relations (N1), (N2) and (E).

Relations (N1) and (N2) are satistfied: the first nonagon relation (N1) can be depicted as fol-

lows:

—
—_
[\

~

w

A+

—~
—_
[\

~

w

At

OO

A+

(12

~
w

It is satisfied in PaB,y, expressing the fact that when all (here, three) points move in the
same direction on the torus, this corresponds to a constant path in the reduced configuration

space of points on the torus. The same is true with the second nonagon relation (N2).
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Relation (E) is satisfied: below one sees the path that is obtained from the right-hand-side of
the mized relation (E):

o $1:23pL23(p123)~1 is the path

One easily sees on the picture that the path is homotopic to the pure braiding of the first two
points, that is R2R%!, by means of the following picture

Thus, by the universal property of Q, there is a morphism of PaB-modules Q@ — PaBy,
which is the identity on objects. To show that this map is in fact an isomorphism, it suffices
to show that it is an isomorphism at the level of automorphism groups of objects arity-wise,
as all groupoids are connected. Let n > 0, and p be the object (---((12)3)------ )n of Q(n)
and PaB s (n). We want to show that the induced morphism

Ath(n) (p) — AU'tPaBeu(") (p) =m (C(T’ n)’p)

is an isomorphism.
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On the one hand, as C(T,n) is a manifold with corners, we are allowed to move the basepoint

p to a point py., which is included in the simply connected subset obtained as the image of?
Dm.,— = {Z S (Cn|2] = aj+bjT, aj,bj ERO<a1 <as<...<ap,<a1+1,0<b; <by <...< b, < bl+1}

in C(T,n), where T = C/Z + 7Z. We then have an isomorphism of fundamental groups
! (C(Ta n)ap) =~ 7-‘-I(C(Tan)apreg)-

On the other hand, in [33, Proposition 1.4], Enriquez constructs a universal elliptic structure
Pan[g, that by definition carries an action of the (algebraic version of the) reduced braid
group on the torus Elyn in the following sense:

e PaBZ7 is a category.

e for every object p of Pa(n), there is a corresponding object [p] in PaB%}, and [p] = [q]

if p and ¢ only differ by a permutation (but have the same underlying parenthesization).
e there are group morphisms By ,,— Autpapen (p) — Gn.

Moreover, one has by constuction of PaB); that Autg,)(p) is the kernel of the map Autpagen ([p]) —
&,,. One can actually show that we have a commuting diagram

~

ﬁl,n Ath(n) (p) ! (C(Ta n)ap) e ! (C(Ta n),preg)

l i |

Bin — AUtPangL} (p) —=m (G(T, n)/Gn, [P]) ~—m (C(T,n)/Sn, [preg])

l | l l

where all vertical sequences are short exact sequences. Thus, in order to show that the map

Autgmy(p) — m (G(T, n),p) is an isomorphism, we are left to show that
El,n — 7"-I(C(Tan)apreg)

is indeed an isomorphism. But this map is nothing else than the map constructed in [12,
Theorem 5], identifying the algebraic and topological versions of the braid group on the torus.
O

Remark 4.1.4. It is probably best to picture the nonagon relation by means of the following
relation (this is relation 25 in [24]), which is equivalent to (N1), and that expresses a kind of
ribbon description for A%3:

2We have already done so for theproof of relation (E).
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(N1bis)

m
-
N
“«—e

|
N

(12) 3 4213 —<

=«
[\

S~—
w

4.1.3 The CD(k)-module of elliptic chord diagrams

For any n > 0, recall that ¢; (k) is defined as the bigraded Lie k-algebra freely generated by
Z1,...,Zy in degree (1,0), y1,...,yn in degree (0,1) (for i = 1,...,n), and ¢;; in degree (1,1)
(for 1 < i # j < n), together with the relations (S), (L), (4T), and the following additional
elliptic relations as well:

(Seee) [i,y;] = tij for i # j.

(Neee) [zis 2] = [yi,y;] = 0 for i # j.

(Teéé) [xiv yz] = - Z]|J?£1 tij-

(Lece) [zistjn] = [yir tje] = 0 if #{i, j, k} = 3.

(ATcee) [wi + x5 ti5] = [yi + Yy, tij] = 0 for i # j.
The ), z; and >, y; are central in ¢; ,,(k), and we also consider the quotient

fak) = tl,n(k)/@ i, Zyi)-

Example 4.1.5. t; o(k) is equal to the free Lie k-algebra f2(k) on two generators x = x1 and
Yy =12

Both t;, and t;, are acted on by the symmetric group &, and one can show that the

G-modules in grLieyx

teoe (k) := {tl,n(k)}nzo and Ie@é(k) = {{1,n(k)}n20
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actually are t(k)-modules in grLieyk. Partial compositions are defined as follows:

o : tL[(k) ot;k) — j£1,J|_|I—{i}(k>
(O,t,lg> — tap
ty i kg {i g}
t,; if k=1
(t,0) o X
Dot if ji=k
peJ
(@i, 0) — S, if k=i
peJ
(i, 0) — Sy, if k=i
peJ

We call tege(k), resp. teee(k), the module of infinitesimal elliptic braids, resp. of infinitesimal
reduced elliptic braids.

We finally define the CD(k)-module CD.ge(k) := U (teee(k)) of elliptic chord diagrams. As in
the genus 0 situation, morphisms in CD.(k)(n) can be represented as chords on n vertical

strands with extra chords correponding to the generators x; and y; as in the following picture:

The relations elliptic relations introduced above can be represented as follows, analogously as

for the genus 0 case:

A~ A* A* A | l l
A+ A A~ At
| !
(Seee)
A* A* |
= (Neﬂ)
A* l A*
7 7
m A B 7 J
_ - _ Z (Teee)
ol —
A~ At
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Ai | ..............................
= (Lege)

Vv

Remark 4.1.6. The relation between (a closely related version of ) CDege(k) and the elliptic
Kontsevich integral was studied in Philippe Humbert’s thesis [65].

4.1.4 The PaCD(k)-module of parenthesized elliptic chord diagrams

As in the genus zero case, the module of objects Ob(CD,(k)) of CDse(k) is terminal. Hence
we have a morphism of modules wy : Pa = Ob(Pa(k) — Ob(CD¢(k)) over the morphism
of operads w; from §2.6.4, and thus we can define the PaCD (k)-module®

PaCDeM(k) = wgCDeu(k) y
in Cat(CoAssy), of so-called parenthesized elliptic chord diagrams.

Example 4.1.7 (Notable arrows in PaCD (k) (2)). We have the following arrows X2, Y12
in PaCD . (k)(2)

2
1,2 1,2 _
Xeip = @1 '[ Yoo =
2

1 1 2

Remark 4.1.8. The elements Xellzf, Yele’; are generators of the PaCD (k)-module PaCD (k)
and satisfy the following relations in Endpacp,,, 1) (3)((12)3):

(N]) al’2’3Xelé§3X1’23a2’3’1Xe2221X2’31as’l’QXgéfX&m — Id1273,
(N2) a1,2,3Y618,e23X1,23a2,3,1Yfe,e?zlX2,31a3,1,2yfzel2X3,12 — Id1273,
(E) X12X2! = (a1’273§/'6127223(a1’2’3)_1,X2’1a2’1’3(X62é;3)_1(a2’1’3)_1X1’2 ) _
(Inv) X2 = (XWX X2, Yy = (X)) 7Y 0 X0,
1,0 1,0
(Red) X 5 =Y, =0,
12,3 ) 23,1 _ 2y—1 31,2 2\ —1\—
(IN]) Xeu +a1,2,3X1,23X€M (a1,2,3X1,23) 1+X12,3(a3,1,2) 1Xeu (Xu,s(ag,lz) 1) 1 =0,
(IN2) Yeléﬁ + a1’2’3X1’23Y62£’1(a1’2’3X1’23)_1 + X12’3(a3’1’2)_1Ye%’2(X12’3(a3’1’2)_1)_1 =0,
(IE) H12 — [a1’2’3X61l253(a1’2’3)_1,X1’2a2’1’3Yfe’el3(a2’1’3)_1(X1’2)_1].
3Recall that PaCD(k) is defined as w}CD(k).
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4.1.5 Elliptic associators

Let us introduce some terminology, complementing the one of §2.6.5. If P — Q is a morphism
between operads in C, M is a module over P, and N is a module over Q, then we will
consider operadic module mophisms M — A in the category of P-modules (via the restriction

functor), and will simply refer to them as module morphisms if the context is clear.
For an operad O in C, we denote Mod(O) the category of O-modules.

Given the choice of an automorphism g of O, we will denote by AutzrM 0d(0),9) (M) the group of
automorphisms of the O-module M with respect to the automorphism g and Iso(nmoea(p,0),#) (M, N),
for the set of isomorphisms beween modules M and A with respect to an operad isomorphism

® between P and O.

The superscript “+” still indicates that we consider morphisms that are the identity on objects.

Definition 4.1.9. An elliptic associator over k is a couple (F,G) where F is a k-associator
and G is an isomorphism between the PaB(k)-module PaB.y (k) and the GPaCD(k)-module
GPaCD . (k) which is the identity on objects and which is compatible with F':

Bl(k) := Iso/ i o o b oy (PaBere(k), GPaCDey(K)).

Let us denote by {—} the Lie algebra morphism t,(k) — t;,(k) sending t;; € t,(k) to

ti; € t1 (k). Its induced group morphism exp(t,(k)) — exp(ti,(k)) will be denoted the

Same way.

The following theorem identifies our definition of elliptic associators to the original one defined

by Enriquez in [33].

Theorem 4.1.10. There is a one-to-one correspondence between the set Ell(k) and the set
Ell(k) of quadruples (u,®, Ay, A_), where (u, ®) € Ass(k) and Ay € exp(ty 2(k)), such that:

0412’30413’1@11’2 =1, where ay = {@1’2’3}Ai%{ei“(t”“lg)m}, (4.1)

fern} = ({@}AL @} {emrtn Q2L ap (AT (@21 et/ ) L (42)

Proof. An associator F' corresponds uniquely to a couple (u, ®) € Ass(k) and an isomorphism

G between @egg(k) and GPaCD (k) sends the arrows A" and B? of Ends— u(k)(Z)(12)

to Ay - X elé? and A_ 'Yelef with A4 € exp(ilyg) (recall that 1172 is the completed free Lie algebra
in two generators). The image of relations (N1), (N2) and (E) are precisely the relations (4.1)
and (4.2). O

Example 4.1.11 (Elliptic KZB Associators). Let us fix 7 € h. Recall that the Lie algebra
t1.2(C) is isomorphic to the free Lie algebra f2(C) generated by two elements x := x1 and
y := y1. We define the elliptic KZB associators A(T), B(T) as the renormalized holonomies
from 0 to 1 and 0 to 7 of the differential equation

0-(z+adz)adzx

G'z) =~ 0, (2)0-(ad x)

(v)-G(2), (4.3)
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with values in the group eXp(il,g((C)) More precisely, this equation has a unique solution G(z)
defined over {a + br, for a,b €]0,1[} such that G(z) ~ (=2wiz)~[¥ at 2 — 0. In this case,

A(T) = G(2)7'G(z + 1), B(1):=G(2) e*™*GQ(z 4 7).

These are elements of the group exp(ilﬁg((C)). More precisely, Enriquez showed in [33] that the
element (21, ®xz, A(T), B(1)) is in Ell(C).

4.1.6 Elliptic Grothendieck—Teichmiiller group

Definition 4.1.12. The (k-prounipotent version of the) elliptic Grothendieck—Teichmdller
group s defined as the group

—

GT.(k) := Aut™ (PaB.w (k)

(Mod(PaB(k)))

of automorphisms of the liaT?)(k)—module liaT?)egg(k) which are the identity on objects.

Again, we now show that our definition coincides with the original one defined by Enriquez
in [33]. Recall that the set GTere(k) is the set of tuples (), f,g+), where (A, f) € GT(k),
g+ € Fy (k) such that

(F(03,03)92 (X, V) (o10301)* T ot oF")? = 1, (4.4)

u? = (g-,u"tgT u) (4.5)
(identities in Elﬁg(k)) where u = f(0?,02) 1o} f(0?,02), and g+ = g+(X,Y).
For (Av fv g:l:)a (Alv f/vg/i) S é-TeM(k)a we set

A\ frge) (N f gs) = (X 7 64,

where ¢}/ (X,Y) = g+ (¢, (X,Y), ¢ (X,Y)). This gives GTeu(k) a group structure. Moreover,
for (A, f,9+,9-) € GTo(k) and (pu, P, A, A_) € Ell(k), we set

N fogg9-) % (0, @, A A) = (0, @, A AL)

where A, 1= g1 (A4, A_). In [33], it is shown that this defines a left free and transitive group
action of éTegg(k) on Ell(k).

Proposition 4.1.13. There is a group isomorphism between éi‘egg(k) and éTeu(k).

Proof. Suppose that we have an automorphism G of @eu (k) which is the identity on objects.
Then, by Theorem 4.1.3, such an automorphism is given by the data of an automorphism of
the operad liaT?:(k), given by the pair (A, f) € é’\l‘(k), and the images of the two generators
A B € AutPaB “(k)@)(n). Let us denote G(A) = ¢g+(X,Y)A and G(B) = g_(X,Y)B,

where g4+ € PBLQ(k) ~ Fy(k). Then the obtained tuple (X, f,g+) satisfies relations (4.4)
and (4.5). Next, we show that this map is a group morphism. For this we show that the
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+
Mod(ﬁﬁa(k))(
law of the group GT.e (k). We already know that the composition of automorphisms F; and

Fs in Autgpé(lge-l\B(k)) corresponds to the composition law in GT(k), that is, the associated
couples (X, f1) and (u, fo) in k* x Fy(k) satisfy

composition of automorphisms in Aut ]?Ta:\Beu (k)) corresponds to the composition

(Fy o Fy)(RY?) = (RM)M

(Fl o F2)((I)1,2,3) — (FQ(@LZB)) — F1(f2(z,y) . @1,2,3)
(fa(z,y)) F1(@">?)
A

= (fg(.%' ’fl(‘r’y)y)\fl(xay)_l)fl(xay)) ’ @1’2’3,

1
Fy

(here Fh is generated by z := o} and y := 03). We also already showed that any two au-
. . + 55 .
tomorphisms G and H in the group AutMod(@(k))(PaBe“(k))’ depending on F; and F5

respectively, are associated to couples (¢4 (X,Y),g-(X,Y)) and (h(X,Y),h_(X,Y)) which
represent automorphisms of the parenthesized word (12) in the groupoid l@ea(k)@) ie. in
F5(k)) (recall that Fy(k) ~ @1_]2(1{) is nothing but the k-prounipotent completion of the free
group with generators X and Y). We then have

(HoG)(A) = H(g+(X,Y)) = g4+ (H(X), HY)) = g4 (h+ (X, Y),h_(X,Y)).

Likewise, we find (G o H)(B) = g—(h4+(X,Y),h_(X,Y)) which concludes the proof, as the
composite of operadic module morphisms F' o GG is compatible with the composition of operad
morphisms Fj o Fy. The fact that that the underlying sets of éi‘eu(k) and ﬁegg(k) are
isomorphic is a consequence of the fact that the set of elliptic associators is non empty, that
there are free and transitive left actions of (/}’\I‘egg(k) on Ell(k) and of ﬁeu(k) on Ell(k)
and the fact that there is a one-to-one correspondence between Ell(k) and Ell(k) so we get a

composite of bijections
GT.(k) — Ell(k) — Ell(k) — GTer (k).

This finishes the proof. O

4.1.7 Graded elliptic (graded) Grothendieck—Teichmiiller group

Definition 4.1.14. The graded elliptic Grothendieck-Teichmdiller group is the group

GRT., (k) = Auth

(Mod(PacD (k) (PACDer (k)

of automorphism group of the PaCD (k)-module PaCD (k) which are the identity on objects.

Notice that there is an isomorphism

Aut™,

(Mod(PaCD(k))(PaCDEN(k)) = Auterod(GPaCD(k)) (GPaCDc(k)).

Define GRT¢" (k) to be the set of tuples (g,u,u_), such that g € GRT;(k), ux € il,g(k),
satisfying
Ad(g"?) (™) + Ad(g>"*) (i) + ui? =0, (4.6)
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[Ad(g"*?) (ul®), w3 = 0, (4.7)

[Ad(g">%) (uy®), Ad(g™"%) (u2™)] = ta, (4.8)
as relations in ilﬁg(k). Set (g1, ul,ul) x (g2, v, u?) := (g, uy,u_), where
ug (21, 91) = uy (ui (21, 91),u? (21, 91)) (4.9)
The group k* acts on GRT¢" (k) by rescaling
c-(g,ug):=(c-g,c-uy),
where ¢ - g is as above and

o (cruy)(z1,y1) = up (w1, yn),
o (c-ul)(on,9) = cu_(z, )
We then set GRT.;(k) := GRT$"(k) x k*. This defines a group structure on GRT; (k).

Moreover, there is an right group action of GRT¢ (k) on Ell(k) given as follows : for (g,ut) €
GRT (k) and (p, ®, A+) Ell(k), we set (u, @, AL) * (9, ux) := (u, ®, A1), where

A (z1,01) = Az (ug(x1,51),u—(21,91))

and, for ¢ € kX, we set (i, ®, Ay )*c = (u,cx®, cfAy), where (ctA+)(z1,y1) = Ax(z1,91). In
[33] this action is shown to be free and transitive. Notice that Ay = #(AL), where § € Aut (t,)
is w1 = uy(z1, 1) and y1 = u_(21,41).

Proposition 4.1.15. There is a group isomorphism between GRTepo(k) and GRT cp(k).

Proof. The map GRT (k) — GRT.p (k) is constructed as follows. Let F' be an automor-
phism in Aut&od(PaCD(k)) (PaCDy,s(k)) depending on an operad automorphism ¥ in GRT(k).

We have
o U(X12)=X12
o U(HY?) =\ H!2
o U(al?3) = g(t1a,ta3)al?3,
o F(XY)) =ui(z,y) 1di o,
o F(Yy)) =u—(z,y) ldi o

where (), g) € GRT(k), us € i172(k). In light of relations of Remark 4.1.8, we obtain that the
tuple (A, g(t12,t23), us(x,y), u_(x,y)) satisfies relations (4.6), (4.7) and (4.8). The assignment
(U, F) — (A g(ti2,ta3), us(x,y),u_(x,y)) defines a map GRTepo(k) — GRT.pe(k). First
we show that this map is a group morphism. For this we show that the composition of
automorphisms in Autf\r/lod(GPaCD(k))(GPaCDeu(k)) corresponds to the composition law of
the group GRT (k). We already know that the composition of automorphisms ® and ¥ in
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Autgpé(GPaCD(k)) corresponds to the composition law in GRT(k), that is, the associated
couples (A, f1) and (p, f2) in k* x exp(ig(k)) satisfy

(®oW)(HY?) = \uH"?

(® o W)(a'??) = fa(Mia, f1(ti2, t23) - Mag - fi(tia, taz) ™) fi(t12, taz) - a3,

We also already showed that any two automorphisms G and H in the group
Autﬁod(GPaCD(k))(GPaCDeu(k)), depending on ® and W respectively, are associated to cou-
ples (g+(x,y),9-(z,y)) and (hy(x,y), h—(x,y)) which represent automorphisms of the paren-
thesized word (12) in the groupoid GPaCDy(k)(2) i.e. in exp(i172(k)) where z = x; and
y = y1 (recall that t; 2(k) is nothing but the free Lie algebra over k with generators = and y).
We then have

(H © G)(Xelli) = H(ng(SC,y) 'Id1,2) = g+(H(:C), H(y)) 'Idl,Q = g+(h+(x,y), h- (x,y)) ' Id172'

Likewise, we find (G o H)(Y,;7) = g—(h4(z,y), h—(2,y)) - Id; » which concludes the proof, as
the composite of operadic module morphisms F o GG is compatible with the composition of

operad morphisms ® o .

Next, this morphism is a bijection. This is a consequence of the fact that there exists a

composite of bijections

GRT. (k) — Ell(k) — Ell(k) — GRT ey (k).

O
4.1.8 Torsors
Finally, we enhance the above bijections into a torsor result.
Theorem 4.1.16. There is a torsor isomorphism
(GTere(K), EII(K), GRTp¢ (k) —> (GTere(k), Ell(k), GRTre(K)) (4.10)

Proof. This is a summary of most of the above results. First of all, we know that
(GTeu(k), Ell(k), GRT (k) has a natural torsor structure and that (GTege(k), Ell(K), GRT ¢ (k))
is a torsor by [33]. Next, we proved in Proposition 4.1.13 that there are group isomorphisms
between (/}Teu(k) and @e“(k) and in Proposition 4.1.15 that there are group isomorphisms
between GRT c¢(k) and GRT ¢ (k). Thus, it is sufficient to show that the actions of (/S‘E‘eu(k)
on Ell(k) and of éfegg(k) on Ell(k) are compatible and that the actions of 6R\Tegg(k) on
Ell(k) and of GRT.s (k) on Ell(k) are compatible. Under the correspondence of Theorem
4.1.13, the image of the natural action of é'\regg(k) on Ell(k) is exactly the action of éfeu(k)
on Ell(k). Both actions are then compatible. Under the correspondence of Theorem 4.1.15,
the image of the natural action of GRT (k) on Ell(k) is exactly the action of GRT ¢z (k) on
Ell(k). Both actions are then compatible. O
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4.2 Moperads associated with twisted configuration spaces

(cyclotomic associators)

4.2.1 Compactified configuration space of the annulus
For each finite set I, let us consider the configuration space of C*:

Conf(C*, 1) == {z = (2)icr € (C*)'|2; # 2;,Vi # j}.
Now consider its reduced version

C(C*,I) := Conf(C*,I)/Rxg.

We clearly have an isomorphism between C(C*,n) and C(C,n + 1). We then consider the
Fulton-MacPherson compactification C(C*,n) of C(C*,n). The boundary dC(C*,n) =

C(C*,n) — C(C*,n) is made of the following irreducible components: for any partition
[0,n] = Jo ]I --]] Jx such that 0 € J,,, for some 0 < m < k, there is a component

)

k
01,5, C(C*,n) = C(C*, k) x C(C*, Jm) x ] C(C,J).
i=1ji#m

The inclusion of boundary components for which m = 0 provides C(C*, —) with the structure

of a moperad over the operad C(C, —) in topological spaces.

4.2.2 The PaB-moperad of parenthesized braids with a frozen strand

We have inclusions of topological moperads
Pay C C(R>0, —) - C((CX, —).
over
Pa c C(R,—) c C(C,—).

We then define
PaBl =T (C(CX, —), Pao) 5

which is a moperad over the operad in groupoids PaB.

Example 4.2.1 (Description of PaB'(1)). First observe that C(C*,1) ~ C(C,2) ~ S*. More-
over, Pag = {(01)}. Hence PaB'(1) ~ Z: it has only one object (01) and is freely generated

by an automorphism E%1 of (01), and can be depicted as an elementary pure braid:

(0>

Two incarnations of E%!

VAN

o
—
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Example 4.2.2 (Notable arrow in PaB'(2)). Let us first recall that Pag(2) = Gy x {(ee)e, e(ee)}
and that C(Rsg,2) = Gy x [0,1]. Hence we have an arrow W2 (the identity path in [0,1])
from (01)2 to 0(12) in PaB'(2), which can be depicted as follows:

0
0

Remark 4.2.3. Recall from §2.5.8 that, being o PaB-moperad, PaB' comes together with a
morphism of G-modules PaB —s PaB'. In pictorial terms, this morphism sends a parente-
sized braid with n strands to a parenthesized braid with n + 1 strands by adding a frozen stand
labelled by O on the left. For instance, the images of R* (a morphism in PaB(2)) and of
®L2:3 (a morphism in PaB(3)) can be respectively depicted as follows:

—_

) 2

e
—_
[\

(12)

Two incarnations of W12

~

1 0 ((12) 3

2)
4 |

1 0@ (2 3))

o
—

0

BN

Theorem 4.2.4. As a PaB-moperad having Pag as Pa-moperad of objects, PaB' is freely
generated by E := E%' € PaB'(1) and ¥ := U912 ¢ PaB'(2) together with the following

relations:

(MP) WOL2:3g0.1,23 — §O0.1.250.12391.2:3 45 arrows from ((01)2)3 to 0(1(23)) in PaB'(3),
(0) B2 = gO12RL2(g0,21) =1 p0.2g0.21 p2.1(gO.L.2) =1 45 grrows from (01)2 to (01)2 in
PaB'(2).

Proof. We proceed in a similar way as in the elliptic case, using this time the results of [32,
§4.4]. Let Q' be the PaB-moperad with the above presentation. From Examples 4.2.1 and
4.2.2 we deduce that, as a PaB-moperad in groupoid, PaB' contains two morphisms F = E%!
(in PaB'(1)) and ¥ = %12 (in PaB'(2)). One easily shows, using the following pictures,
that they satisfy mized pentagon and octogon relations, (MP) and (O):

(1) 2 3 (0D 2

w
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and

0

\/

—

—~
e}
[y

~

H
[\

o(——o
o(——o

—~
o
—

N—

(01 2

Therefore, by the universal property of Q', there is a morphism of PaB-moperads Q' —
PaB', which is the identity on objects. In order to show that this is an isomorphism, it suffices
to show that it is an isomorphism at the level of automorphism groups of an object arity-wise
because all groupoids involved are connected. Let n > 0, let p be the object (- (01)2------ n
of Q'(n) and PaB'(n). We want to show that the induced group morphism

AUtgl(n) (p) — AutPaBl(n) (p) =m (C(CX ) n),p)

is an isomorphism.

On the one hand, we can replace the base-point p with preq = (1,2,...,n) € C(C*,n), as
they are in the same path-connected component. Moreover, since the Fulton-MacPherson
compactification does not change the homotopy type of our configuration spaces, we get an

isomorphism

m1(C(C*,n),p) = 71 (C(C*,n), Preg) -
On the other hand, in [32, §4.4], Enriquez proves several useful facts:

e Given a braided module category M over a braided monoidal category C, an object X of

C, and an object M of M, there is a group morphism
Bl — Autp(M @ X,

where, by convention, M ® X®" comes equipped with the left-most parenthesization
(M®X)®...)®X, and B}, = B, 11 xe,,,6n.

e There is a universal braided module category PaBY"" generated by a single object 0,
over the universal braided monoidal category PaB¥™" generated by a single object e.

Bl,EnT

Hence objects of Pa are parenthesizations of 0 e ---e, and thus p determines an

object (which we abusively still denote p).

e the morphism B., — Autp,g15.-(p) is an isomorphism.
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One can moreover see that, by construction, Autg: ) (p) is exactly the kernel subgroup
ker (Autpap1 znr(n)(p) — &,) =~ PBpyy .
Hence we have a commuting diagram
PB; —— Autgl(n)(]?) —— (S} (G(van)al’) -— 1 (C(van)apreg)

| | |

B’:Vll — AutPaBl’E”T (p) — T (G(CX ) n)/Gnv [p]) ~— S! (C(CX ) n)/Gna [preg])

| ! |

S, G, S, S,

where all vertical sequences are short exact sequences. Thus, in order to get that the map
Autoi(yy(p) — w1 (C(C*,n),p) is an isomorphism, we are left to prove that the compos-
ite map B, — m (C(C*,n),preg) is indeed an isomorphism. But this map is, by its very
construction, the isomorphism (from [93, 100]) exhibiting a presentation by generators and

relations of the braid group of a handlebody. O

4.2.3 Compactified twisted configuration space of the annulus

Consider, for N > 1, the additive group I' = Z/NZ. To every finite set I let us associate the

so-called T'-twisted configuration space
Conf(C*, I,T) = {z = (2:)ier € (C*)'|2i # (25, ¥i # j,¥¢ € un}
(1 is the set of complex Nth roots of unity) and its reduced version
C(C*,I,T) := Conf(C*,I,T)/Rsq .

Remark 4.2.5. Observe that Conf(C*,I,T), resp. C(C*,I,T), is an I'!-covering space of
Conf(C*, 1), resp. C(C*, 1), the covering map being given by (2i)icr — (2 )icr-

There are also inclusions
Conf(C*,I,T") < Conf(C*, I X un) and  C(C*,I,T) — C(C*,I X un)

given by (zi)ier — (C2i)(i,c)erxpuy- This allows us to define the compactification C(C*,I,T)
of C(CX, I,T), as the closure of C(C*, I,T) inside C(C*, I x un). The irreducible components
of its boundary OC(C*,I,T) = C(C*,I,T)) — C(C*,I,T) can be described as follows. For an
arbitrary partition Jo []--- ][] Jk of {0} U T there is a component

k
07, 5, C(C*, I,T) 2= C(C*,k,T) x C(C*, Jn,0) x  [[ C(C,J),
1=1;1#m
where m € {0,...,k} is the index such that 0 € J,,. The inclusion of boundary components

such that m = 0 provides C(C*, —,T') with the structure of a moperad over the operad C(C, —)

in topological spaces.
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We let the reader check that the covering map C(C*,I,T') — C(C*,I) from Remark 4.2.5
extends to a continuous map ¢, : C(C*,I,T') — C(C*,I) between their compactifications,
and thus leads to a morphism of moperads.

Finally, one observes that the natural action of I'! on each C(C*,I X uy), given by

(- 2)g0) = Z( ElC)

Je N

induces an action of I' on the moperad G(CX, —,T'), in the sense of §2.5.9.

4.2.4 The Pa-moperad of labelled parenthesized permutations

Borrowing the notation from the previous subsection, we define Pag(n) := ¢, ' (Pag(n)).
Explicitly, Paf (n) is the set of parenthesized permutations of {0,1,...,n} that fix 0 and that
are equipped with a label {1,...,n} — T

Notation. As a matter of notation, we will write the label as an index attached to each
1,...,n. For instance, (02,)1¢ belongs to Pag (2) for every o € T

Observe that the G-module (in sets) Paf carries the structure of a Pa-moperad. Indeed, it is
a fiber product

Paj =Pa, x C(C*,—T)
C(Cx,-)

in the category of Pa-moperads (in topological spaces). Here are two self-explanatory examples
of partial compositions:

(022)15 02 (12)3 = (0((2030)4a))1s  and  (024)15 00 (024)10 = (((024)10)4a)3s -

Remark 4.2.6. As we have seen in §2.5.8 of the previous Section, our conventions are such
that the Pa-moperad structure on Paf gives in particular a morphism of Pa-modules Pa —
Pal. One can see that it is the map that sends a parenthezised permutation p to 0(p) together
with the trivial label function ¢+ 0.

Finally, Pa} is acted on by I' in the following way: for n > 0, I'™ only acts on the labellings, via
the group law of I'. For instance, if f: {1,...,n} — T" and a € T'™, then («- f)(i) = f(¢) + .

4.2.5 The PaB-moperad of twisted parenthesized braids

We define

PaB" :=m (C(C*,-,T),Pal) .
It is a PaB-moperad (in groupoids), that carries an action of the group I'. The maps ¢, :
C(C*,n,T) — C(C*,n) induce a PaB-moperad morphism PaB' — PaB'.

Example 4.2.7 (Description of PaB' (1)). First observe that Pab(1) —s Pag(1) is the
terminal map puy ~ {01,]a € T} — {01} = *. Then observe that the map C(C*,1,T) —
C(C*,1) is nothing but the path-connected T'-cover S* — S'. Hence we in particular have
morphisms EXY, o € T from 01, to 01441 in PaBF(l), being the unique lift of E%! that starts

at 01, € Pal (1). Pictorially:
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0/1.0 e2im/N

T ‘o\- 21— 2N
{ 0

0 14

Zh—s N

) . 0,1
Two incarnations of E

In the above picture, on the right we have pictured a path in the twisted configuration space,
together with its image under the covering map, which is a loop. Diagrammatically (see the
left of the above picture), we depict it as a pure braid (a loop in the base configuration space)
together with appropriate base points (which uniquely determines the lift in the covering
twisted configuration space).

Example 4.2.8 (Notable arrow in PaB'(2)). Let \118’1’2 be the unique lift of Y912 (a mor-
phism in PaB'(2)) starting at (010)2. It can be depicted as follows:

(0 1o) 20

0 (1020)

Remark 4.2.9. As in Remark /.2.3, one sees from §2.5.8 there is a morphism of &-modules
PaB —s PaB'. In pictorial terms, it sends a parentesized braid with n strands to a labelled
parenthesized braid with n + 1 strands by adding a frozen stand labelled by O on the left and
choosing the trivial label. For instance, the images R(l)’2 of RY? and @3’2’3 of ®123 can be

respectively depicted as follows:

20) 0 ((1020) 30)

o

—
—_

o

0 (20 1o 0 (1o (2030))

We are now ready to provide an explicit presentation for the PaB-moperad PaB:

Theorem 4.2.10. As a PaB-moperad in groupoids with a I'-action having Pag as Paf -
moperad of objects, PaB' is freely generated by Eq = E’OO’1 and Uy := \118’1’2 together with the
following relations:

(MP) wo">30p b = w2 w230 123 s arrows from ((010)20)30 to 0(10(2030))) in PaB'(3),

(t0) E3"? = W2 RV2 (WP TEN o - (U P R2ZL(WY )Y as arrows from (010)20 to
(019)2; in PaB"(2), and where o = (0,1) € I'2.
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Proof. Let QF be the PaB-moperad with the above presentation, and recall that Q' is the
PaB-moperad with the presentation of Theorem 4.2.4. Our first goal is to show that there is
a morphism QF — PaB! of PaB-moperads, commuting with the I-action. We have already
seen in the Examples above that there are morphisms Fy := Eg"l and ¥y := \118’1"2, in PaB" (1)
and PaBF(Q)7 respectively. We have to prove that they satisfy the mized pentagon and twisted
octogon relation, (MP) and (tO).

These relations are the unique lifts of the similar relations (MP) and (O) in PaB' from
Theorem 4.2.4, starting at ((019)20)3p and (01¢)2¢, respectively. They can be depicted as

follows:
((010)  20) ((010)  20)
K'\\ (MP)
0 2030 1o 2030 )

and

—

0 1
(0 10) 0) 2o

- / (t0)
/

—o

H

(0 1) (0 10)

By universal property of QU there is a I'-equivariant morphism of PaB-moperads Q" —
PaBF, which is the identity on objects. As before, in order to show that this is an isomorphism,
it suffices to show that it is an isomorphism at the level of automorphism groups of an object
arity-wise (because all groupoids involved are connected). Let n > 0, let p be the object
(++-(010)20 -+ - )ng of QF (n) and PaB' (n), which lifts the object p = (---(01)2------ )n of
Q'(n) ~ PaB'(n). We want to show that the induced group morphism

AthF(N)( ) — AU-tPaBF(n) (pO) =T (C((CX ) n)vﬁ)

is an isomorphism.
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We claim that it fits into a commuting diagram

AthF(n) (ﬁ) — T (C(CX , 1, F)vﬁ) ; 1 (C((CX ) n)vﬁreg)

| .

~ —

Autgri(n)(p) —m1 (C(C*,n),p) <—— m1 (C(C*,n)), f(Preg))

l l l

" " re

where only the left-most vertical arrows remain to be described.

The morphism Autgi(,)(p) — I'™. Let * be the terminal operad in groupoids. We have a

s-moperad structure on the following G-module in groupoids: I = {I'""}4>0, where we view a
group as a groupoid with only one object, and where the action of the symmetric group is by

permutation. The moperad structure is described as follows:

e op: I x I — I'"*™ js the concatenation of sequences.

e for every i # 0, o; : I — I'™t™~1 ig the partial diagonal

(01, vy ) > (O ey QU1 Qg ey Qi Qi 1y e ey Qi)
———

m times

We let the reader check that sending £ to 1 € T and ¥ to (0,0) € I'? defines a moperad
morphism PaB! — I along the terminal operad morphism PaB — x. This in particular
induces a group morphism

Autgi(n)(p) — I'™

for every n > 0. Heuristically, this morphism counts, for every 7, and modulo /N, the number
of times that E%? appears in an element of Autoi(y)(p). It is obviously surjective, and we let
the reader check that the following triangle commutes:

Autgi(n) (p) —m (C(C*,n),p)

~_|

I‘n

The morphism Autgr ) (p) — Auto1 () (p). We have a I'-equivariant morphism of PaB-moperads
Q' — Q! where T acts trivially on Q', which forgets the label on objects, and sends the

generators Fy and Vg to F and W, respectively. It obviously fits into a commmuting square

or — - PaB"

|

Q! — > PaB!

of PaB-moperads. This induces in particular a group morphism

Autgr(n) (]N)) — Autgl(n) (p)
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for every n > 0, that fits into a commuting square

Autgr () (p) — m (C(C*,n,T),p)

| |

Athl(n) (p) ; ! (C((CX ) n)ap)

We now turn to the proof of the fact that the left-most vertical sequence is a short exact

sequence, which shows that

Autgr(n)(p) — Autpapr(,)(po) = 71 (C(C*, n),p)

is an isomorphism.

This morphism is injective. Indeed, an automorphism of  in Q''(n) can be represented by a

finite sequence S of R’s, ®’s, Ey’s, Uy’s, and their images under the action of I'". The image of
such an automorphism under QU — Q! is represented by the corresponding finite sequence
S of R’s, ®’s, E’s and U’s. Every modification of S using the relations (MP) and (O) can be
lifted (uniquely) to a modification of S using (MP), (tO), or their images under the action of
I'™. Hence, if an automorphism has trivial image, then it must be trivial.

The sequence is exact. We already know from the commuting diagram that the image of

Autor () (P) in Autgi,(p) lies in the kernel of Autgi(,)(p) — I'. We finally can show
that the image is exactly the kernel. Indeed:

e Using (O), every element g in Autgi(,)(p) can be written represented by a product of
®’s, R’s, U’s and E’s, where the only E’s appearing are of the form E%*.

e Such an element admits a unique lift to a morphism § in Q(n), with source being p
(one just replace ®’s, R’s, U’s and E’s in the expression for g by ®’s, R’s, Uy’s and Ej’s,
maybe acted on by I'™ in order to get the correct starting objects).

e An element g as above lies in
ker (Autgl(n) (p) — Fn)

if and only if for every i, the number of occurence of E%* (counted in an algebraic way)
is a multiple of N. This tells us in particular that the target of the lifted morphism shall

be the same as its source, so that g lies in the kernel.

This ends the proof of the Proposition. O

4.2.6 Infinitesimal cyclotomic braids

Let I' = Z/NZ, I a finte set, and let t} (k) be the Lie k-algebra with generators to;, (i € I),

and t3%, (i # j € I, a € Z/NZ), and relations:

(NS) t8 =t3.%,

Je

(NL) [tOi; tjak] =0 and [t(-l

B
137 tkl] = 0;
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(NAT) [t #5,77 + 15, = 0,

170 Yik
(NT1) [toi,toj + Xaeznztii] =0,
(NT2) [to; +toj + 2 pez/nz tiﬁja te] =0,
where i, j, k, | € I are pairwise distinct and «, 8 € Z/NZ. We will call it the k-Lie algebra of
infinitesimal cyclotomic braids.

The above definition is obviously functorial with respect to bijections, exhibiting t' (k) as an
G-module. It moreover also has the structure of a t(k)-moperad, where partial compositions

are defined as follows: for 7 € I,

op: thkk)ots(k) — tgu]—{i}(k)
(0,tpq) — tgq
% it g {4k}
« [ if j =1
(5%, 0) — TEE:J L !
> t?‘r if k=1
reJ
tO] if .7 7& ¢
(to:,0) — St if j=i
peJ
and
op: thk)athk) — (k)
(0, top) — tOp
(Oa tgq) — tgq
(t?k, 0) — e
(tois0) > toi+ 3 t9
JjeJ

We will call t¥'(k) the moperad of infinitesimal cyclotomic braidings.

We then consider the CD(k)-moperad of cyclotomic chord diagrams CD" (k) := U(t" (k)) in
Cat(CoAlgy).

Remark 4.2.11. Morphisms in CD"(k)(n) can be represented as linear combinations of
diagrams of chords on n + 1 vertical strands, together with a labelling of the last n strands by
elements of T'. Thus, borrowing the representation of such chord diagrams from [17] (where the
relation to Vassiliev invariants has been explored), the infinitesimal cyclotomic braid relations

can be depicted as follows:

] ______________ [=l -------------- l i ______________ [=| -------------- l (NS)
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a+b b
- ‘.’ ............................. R
--------- y y
(N4T)
a
_ . Z e T
| b
:l : +Za_b‘ ................ w2
................ b
| ) b

Since CD" (k) has only one object in each arity, then we have an obvious terminal morphism
of moperads w3 : Paj, — Ob(CD" (k)), over the operad morphism w; : Pa — Ob(CD(k))

from §2.6.4. Hence we can consider the moperad

PaCD' (k) := w;CD" (k)
of parenthesized cyclotomic chord diagrams, over the operad PaCD (k) = wjCD(k) in Cat(CoAssy).
Example 4.2.12 (Notable arrows of PaCD" (k)). We have the following arrows in PaCD" (k)(1)

and PaCD" (k)(2), respectively:

o 0 (0 1)

KOl = ¢, B2 = 1.

0 1o 0 1o 0 (1020)

Remark 4.2.13. Again, there is an action of I' on PaCDF(k) and the elements K%' and
bO12 are generators of the PaCD(k)-moperad PaCD" (k) and satisfy the following relations

o HO1:2:3p0,123 _ 30,1,20,12,3,1,2,3

o K012 — p01.2X12(50.2.1)~1 020 . (b072*1X271(b071*2)*1) , for a = (0,1) € I'2,
b0,1,2X1,2(b0,2,1)—1a . (b0,2,1X2,1(b0,1,2)—1) _

KOl ¢ Zi\’:l a- (Ad(bovu)(Hé’Q)) + Ad (b071*2X172(b072*1)*1) (KO,Q) =0.

1
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4.2.7 Cyclotomic associators

We borrow an expand the terminology from §2.6.5 and §4.1.5.

If P — Q is a morphism between operads in C, M is a P-moperad, and N a Q-moperad,
then we will consider moperad mophisms M — N in the category of P-moperads (via the
restriction functor), and will simply refer to them as moperad morphisms if the context is

clear.

For an operad O in C, we denote Mop(O) the category of O-moperads. Given the choice of an
automorphism g of O, we will denote by Auterop(O) g)(/\/l) the group of automorphisms of the
O-moperad M with respect to the automorphism g and Isoerop(P,Q),q))(M,N), for the set of
isomorphisms beween moperads M and N with respect to an operad isomorphism ® between

P and Q.

In addition to the superscript “+”, we may also add a superscript “I'"” when only considering

morphisms that are I'-equivariant.

The rest of this section can be seen as an operadic reformulation of (some parts of) [32].

Definition 4.2.14. A cyclotomic associator is a couple (F,G) where F is in Ass(k) and G
— ——7T

is a T-equivariant isomorphism between the PaB(k)-moperad PaB (k) and the GPaCD (k)-

moperad GPaCD" (k) which is the identity on objects and which is compatible with F. Denote

by

—7T
Ass' (k) := Iso(+P/a]\3 (10).GPaCD() (PaB (k), GPaCD" (k))"

the set of cyclotomic associators.

Denote WOL2 = W(tgy, 19y, ..., t07 1), WOL2 .= g(a) - U012 = W(tgy, 1Sy, ..., 155 V1) and
VOB = (12) - W2 = W(too, 15y, ...ty V) = Wlton, tgy, ... 155" N). Denote t y (k) for
the free Lie algebra f(k)(t9;,1%5, ...,t25 ). We have the following theorem:

Theorem 4.2.15. There is a one-to-one correspondence between elements of Ass' (k) and
those of the set Assy (k) consisting on triples (A, ®,U) € xk* x exp(t3(k)) x exp(t3 v (k)),
such that (A, ®) € Ass(k) and U satisfies

(MP) WOL2330.1,23 — g0.1.2i0,12,3§1,2.3}
(0) {edion pug 2 {ed ) (02 L {ed i ppdat {3t} 902 = 1,
where a =1 € Z/NZ.
Proof. Let F' be a k-associator l@(k) — GPaCD(k) and let G be an isomorphism

—T
PaB (k) — GPaCD" (k)

of (@(k),GPaCD(k))—moperads which is the identity on objects and which is compat-
ible with F. It corresponds to a unique morphism G : PaB" — GPaCD' (k). From
the presentation of PaB', we know that G is uniquely determined by the images of Eg’l €

H 01p,011) and \118’1’2 € Hom_—. 010)20,0(10p20)) at the morphisms level.

Omﬁﬁar(k)u)( PaBF(k)(2)((
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Thus, there are elements u € exp(t(k)) and v € exp(#(k)) such that G(EY') = wu -
Eg' and G(®9"?) = v - ®Y"?. Now, we have a Lie algebra isomorphism (k) ~ k(c) ®
f(k)(to1, 19y, ... t15 ") where ¢ = t8; + t3y + > cp tdy. Thus, u is of the form eM¢ and v is
of the form e*2¢f(tp1, 105, ..., t{V{l). Now, we know that the image of Eg’l in PaB' induced
by the projection z — 2% is E%!. Thus, we can identify \; = % and then u = e~tor. Fi-
nally, the fact that <I>O’ % is [-invariant ensures that v is of the form f(to1,1%,...,t75 '), Once
we simplified this way u and v, the images of the Octogon and Mixed Pentagon relation in

al im relations an in the above theorem.
GP CDF(k) imply relati (MP) d (O) in the ab h O

Example 4.2.16 (Cyclotomic KZ Associator). Consider the differential equation

iH(,z - t°1+ Z M H(z), (4.11)

dz acz/NZ > S

where ¢ is a primitive Nth root of unity, and let Hy+, Hi- be the solutions such that Hy+ (z) ~
ztor when z — 0% and Hy-(z) ~ 212 when z — 1~. Then the renormalized holonomy
Ugy = Hl_,le € eXp(f%N) from O to 1 of the above differential equation is the cyclotomic KZ
associator constructed by Enriquez in [32]. More precisely, Enriquez showed that the quadruple
(=T, 2im, Pz, icz) is in Ass' (C).

4.2.8 Cyclotomic Grothendieck-Teichmiiller groups

Definition 4.2.17. The (k-pro-unipotent version of the) cyclotomic Grothendieck-Teichmiiller
group s defined as the group
GT (k) := Aut” PaB (k)

— /\F
of automorphisms of the PaB(k)-moperad PaB (k) which are T'-equivariant and which are

the identity on objects.

Notice that such an automorphism depends on an automorphism of I@(k) i.e. on an element
® of (/}T(k) Let ﬁg(qﬁN,k) be the partial k-pro-unipotent completion of the free group F3
with respect to the surjective group morphism ¢y : F» — Z/NZ sending = to 1 and y
to 0 and ]34(42531 N, k) the partial k-pro-unipotent completion of P, with respect to the map
¢3. N By g, 63 — Z/NZ x &3 induced by the (Z/NZ x &3)-fold map Conf(C*,3,T') —
Conf(C,3)/63 where &3 is interpreted as the subgroup of the group &4 of permutations
of 0,...,3 which fix 0. Denote k(N)* = (Z/NZ)* x k*. See [32] for more details on the

subject of partial pro-unipotent completions. Finally, recall that PB,, y has generators xé\fi

and z7; 1= xa?xijx&i. In particular, the generators of PBs_y will be denoted by X := 2" and

yla) =z %z for 0 <a <N —1.
In [32], the author constructed a cyclotomic version of the Grothendieck-Teichmiiller group

T
which we now recall. Define GT (k) to be the set of elements (A, p, f,g) € k* x k(N)*
Fy(k) x Fy(én, k), satistying (A, f) € GT(k) and
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A+1

(0) atg(x,y)y™ > gl ly™) " aly Yriglay L y)y T glz,y) "' =1 in Fa(dn, k),

(MP) 9($02$12,5023)9(%1,5012%3) = g($01,5012)9(5001$02,$13$23)f($12,5023) in 134(¢3,N,k)-

T
The set GT (k) has a internal composition law defined by

(Alvﬂlvflagl) * (A27/’L27f2592) = ()\hu’va g)7

given as follows. Write y(a) = z%yz~ and identify (A, u, f,g) with (a, k, f,g) where p =
(a/5 k) € k(N) soA=a + Nk. Then (al,k/’l, flagl)(a’Q; kQa f2)92) = (a/) kafa g)7 where a = aiaz,
k is such that @ + Nk = (a1 + Nk1)(az + Nk2), f(z,y) is given by

f(xvy) = fQ(:C/\lafl(zay)y/\lfl(zay)il) ' fl(zay)v
and
9(X[y(0),...,y(N = 1)) = g1(X|y(0), ..., y(N — 1))-
92 (XY Ad(g1 (X[ 0), -, y(N — 1) (p(0)+*),

Ad (Xklgl()qy(dl)a s ay(dl +N — 1))) (y(dl)&lJrNkl)’ SRR
Ad (XN =DR g (X |y((N = 1)ar), ..., y((N — Das + N — 1)) ((y(N — 1)@1)61+Nk1))_

/\F
The group GT (k) acts on Ass' (k) on the left as follows:

(A s fr9) % (0, N, @, 0") = (d, [u] N, @7, 07), (4.12)
where
D (t1, tog) 1= ®'(t1a, t23) f(¥ 112, Ad(P (t12, ta5)) () 122)),
W//(t?2|t337'-'7t§g71) = \P/(t?2|t837"'7t§g71)

g(A/t?2| Ad (\P/(t?2|tg37 ey té\‘g_l)) ()‘/tg?))a
Ad (()‘I/N)t?2\yl(t?2|t33’ Tt tg;rNil)) ()‘/th)’ ]

N—-1)a’ N—-1)a’+N— N—-1)a’
Ad (V= D)X /NS (915 ™0, gD N ) vy D))

(recall that A = [u], so if u = (a,k), then A = a + Nk; also i = a). It was shown in [32] that

this action is free and transitive.

T T
Proposition 4.2.18. There is a group isomorphism between GT (k) and GT (k).

Proof. The map GT' (k) — GT' (k) is constructed as follows. Suppose that we have an
automorphism G of liaT?)F(k) which is the identity on objects and which is compatible with
an automorphism F of the operad PTaTB(k). F is given by the pair (A, f) € (/“;‘r’\I‘(k)7 and G
is determined by the images of the two generators Fy and W, in PaBF(l) and PaBF(Q),
respectively. Thus, an automorphism (F,G) in GT' (k) is uniquely determined by elements
A frg) € KX X K(N)X x Fy(k) x Fy(¢n, k) such that
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o F(RY2?) = (R"?)*,
o F(®12?) = f(r1z, w23) - @12,

o GOUGH?) = g(@N]y(0)... ., y(N = 1)) - 52,
o G(Ey") = p- By’

The relation between a and A was explained in the proof of Theorem 4.2.15. Then, the defining

/\F
relations in the presentation of PaB (k) imply that the tuple (A, p, f, g) satisfies relations (O)
and (MP). The assignment (¥, F') — (X, i, f, g) then defines a map GT" (k) — GT" (k).

Let’s now prove that this map is a group morphism. We will show that the composition

T
of automorphisms in Aut’ (PaB (k)) corresponds to the composition law of the
M

op(PaB(k))
group GT' (k). As before, the composition of automorphisms F; and F; in Autng(PaB(k))
corresponds to the composition law in GT(k), that is, the associated couples (A, f1) and (u, f2)
in kX x Fy(k) satisfy

(Fio F2)(R"?) = (RV2)M

(Fyo Bp)(@1%%) = @122 - (fo(a, file,y)y* file,y)™h) - filz,y)),

(here F; is generated by x := 0% and y := 05). We also already showed that any two automor-

phisms G and H in the group Aut&op(@(k))(ﬁF(k)), depending on ¥, and ¥s respectively,
are associated to couples (u1, g1(z™ |y(0),...,y(N — 1)) and (u2, g2(z™|y(0),...,y(N —1)))
where g; and ¢ are elements of in ﬁ2(¢N,k). Analogously to relation (2.15), as Eg’l is an
arrow from (01¢)2¢ to (014)2¢ for some primitive element « € T', then Eg’l is sent via G to

(Eg" )N . B for some k € Z.

Let us now place ourselves in the group A = Aut@r(k)@)((mo)%, (019)20). In A, we have

ar = ((By)™)2 = n((Bg)™,2) = moo (BgH)N

We then have F(z)]) = (x{})* for some invertible A € k*. Next, let us compute F(a,).

Again, analogously to relation (2.16), in A, the element (295)? can be decomposed as

0,1,2 0, RL2)2 $o:1,2)—1
(019)20 — 2" 0(1020) #ORe ) ) 0(1020) — =~ (014)20.
Then, as
F((I)O’l’2) = @0’1’2 . 91(5501'1'?2; R 7.1‘{\]2,1)
and

F(0(R)%) = F(u(0, (RY,)?) = u(0, F((RY2)?)) = (295)**
we obtain, for A = 2\ +1

F(a%y) = gi(zor|2Yy, ..., 215 ) - (a99)* - g7 (o |2, .., 2Ty )
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Next, as 2§, = a - 29, for a € T', by I-equivariance we wave

F(zf) =a- F@?z)

=a- (gi(afi]ady, ..oy D) - (28) - gy H(adilats, - 2 lh )

=gi(a-ada- -2y, . o o (@9)N g e 2%, a2
= gi(@gMafy, .2tV - (@) - g (g a2 YY)

= Ad(g1 (257 [2Ts, ., 23V 1) (2)Y).

Finally we obtain

(FoG)(W"2) = F(I12 - ga(agfaly, ... a1y 1))

= WO gy (ag|ats, - 2ly 1) - ga(F(ag)|F(aYs), ., Flagy )

= W02 gy (agy 2%y, -y aly )

cga(A - 201 A - gi(mor |2y, 2ty ) - (@9 A gy (ot latss - 2y ),

oA gl el ) ey T A g el ad) )
=g%l2. ). gl(xé\“z(l)g, . ,x{V{l)

- g2(x01 91 (w0 |2%s, - 215 Y) - 2y - gy () |2%s, 2y Y,
cogu(agileny 2ty ) ey gy (g lany 21 T2)

which is nothing but the composition law in the group GTF(k). This concludes the proof,
as the composite of moperad morphisms F o G is compatible with the composition of operad
morphisms ® o ¥. Now, the fact that the defining sets in GT" (k) and GT" (k) are isomorphic
is a straightforward consequence of the composite of bijections

GT" (k) — Ass' (k) — Ass" (k) — GT" (k).
This finishes the proof. O
Definition 4.2.19. The graded cyclotomic Grothendieck—Teichmiiller group is the group
GRT' (k) := Aut{;, pacno.e)(PaCD’ (k)"

of T-equivariant automorphisms of the PaCD (k)-moperad PaCD' (k) which are the indentity
on objects.

Definition 4.2.20. Define GRT{M)(k) as the set of pairs (®,¥) with ® € GRT(k) and
U ¢ exp(t5 (k)), such that

WOLZ (WO =g (4o, [ty 10, 25 M) U (Lo |thy, ..., t0D) " =1, (4.13)
N

to1 + Z Ad(U (tor [ty .. 155V ) (t82) + Ad (Wo,1295 3 1) (to2) = 0, (4.14)
a=1

as equalities in t5 (k), where to1 + > n_o % + to2 = 0, and

\1101,2,3\110,1,23 — \110’1’2\110’12’3(1)1’2’37 (415)
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as an equality in exp(t} (k)). GRTl(“Ll)(k) is a group when equipped with the product
(@1, ¥1) * (2, ¥2) = (2, V),
where

o D(t19,t23) = Pa(ti2,t23)P1(t12, Ad Da(ti2, taz)(f23)),
o W02 = 0y (1| (W52 (#:). . Ad(Walton 135 1)) - w5

The action of (Z/NZ)* xk* by automorphisms of t§ (resp. t3) given by (c,7) toi = Ytoi, (¢, )
ty = tist (resp. (c,) - tij = ytiz) induces its action by automorphisms of GRT&l)(k). We
denote by GRTF(k) the corresponding semidirect product.

GRT{iyl)(k) acts on Ass' (k) from the right by (®, ) * (h, k) = (&', ¥’), where

D' (t12, tag) = h(t12,t23)®(t12, Ad(h(t12, t23))(t23)), (4.16)
U (to1[t0y, . .., t2) = E(tor[t0y, ..., t20) (4.17)

o (t01| Ad (k(tor [0, . ) (t%), ., Ad (k(tor |57, .., 25V 71)) (t{é—l)) .

This action preserves each Ass{m »(k), and it extends to an action of GRT T(k) on Ass'(k),
which is compatible with the action of (Z/NZ)* x k* on (Z/NZ) x k and commutes with the
left action of GT" (k) on Ass' (k).

Proposition 4.2.21. There is a group isomorphism between GRT (k) and GRT" (k).

Proof. The map GRT" (k) — GRT" (k) is constructed as follows. Let F' be an automorphism

in AutMop(GPaCD(k)) (GPaCD" (k)) depending on an operad automorphism ¥ in GRT (k). We
have

o U(X12) = X12

° \II(HL2 Hl 2

o U(al?3) = f(t12,ta3) - ab?3,

o F(b12) = g(tor[tdy, ..., t05 ") - b2,

° F(KO 1) — ,LLKO 1

where (), f) € GRT(k) and (u,g) € k(N)* x exp(tz(k)). In light of relations of Remark
4.2.13, the tuple (}, f, g) satisfies relations (4.13), (4.14) and (4.15). The assignment (U, F) —
(A, g(t1a, t23), uy (x, ), u_(x,y)) then defines a map GRT' (k) — GRT" (k).

Let’s now prove that the composition of automorphisms in Aut;\r/[Op(GPaCD(k))(GPaCDF(k))
corresponds to the composition law of the group GRTF(k). We already know that the com-
position of automorphisms ® and ¥ in Autgp G(GPaCD(k)) corresponds to the composition

law in GRT(k), that is, the associated couples (A, f1) and (g, f2) in k* x exp(ig (k)) satisfy

(@ oW)(Hi2) = AuHi 2
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(®oW)(1193) = 1193 fi(ti2,t23) - fo(Mt12, f1(ti2, t23) - Moz - f1(tia, taz)™h).

We also already showed that any two automorphisms F and G in the group
AutK/Iop(GPaCD(k))(GPaCDF(k))7 depending on ® and ¥ respectively, are associated to el-
ements ¢y (to1[td, ..., t25 1) and ¢o(tor|tds, ..., 125 ) which represent automorphisms of the
parenthesized word (019)2¢ in the groupoid GPaCD" (k)(2) i.e. in exp(t(k)). Let us now
place ourselves in the group A = Autgpacprk)s)((010)20). In A, we have

tor = (K%1)2 = p(K®",2) = pog K*'

We then have F(tg1) = Mo; for some invertible A € k*. Next, let us compute F(tJ,). Again
in the group A, the element t{, can be decomposed as

T1o,1,2 H(07H102) 107&,2
(019)20 —————0(102p) ————— 0(1029) ————— (01¢)20.

Then, as
F(lo12) =To12- é1(tor|tls, . 1057 ")
and
F(0, Hyy) = F(u(0, H) = u(0, F(HPp)) = MYy,
we obtain

F(t?2) = ¢1(t01|t?2, s ati\g_l) ’ At?z ) ¢1_1(t01|t?2a e ati\g_l)
Next, as t& = a - t{, for a € ', by I'-equivariance we wave
F(t) = a- F(t1,)
= (¢1(tor[ty, ... 105 1) - Atdy - o7 (tor [, - 1y 1))

= ¢1(a-tor]a -9, ... -t e t% o7 (o tor|a - 0y, - 2T
= d1(tor[tly, .. 155N MY - o7 (o855 YT

Finally we obtain
(F o G)(0°12) = F(bO12 - gy (tor|t0, ..., ¢ 1)
- b01172 . ¢2(F(t01)|F(t(1)2)5 e aF(ti\g_l))
=012 o (A - tor A - dr(ton [ty - o 800 1) - MY - A= b7 (b1, -t ),

oA (o[BS N T N o (ko [ES L 2 R)

= b2 N o (tor|dr (ton [ta, - b5 1) - 105 - 01 (tor[t)y, - t15 ),
N— N— N— - N— N—

--a¢1(t01|t12 17---7t?2 2)'1512 1-¢11(t01|t12 17---7t?2 2)))

which is nothing but the composition law in the group GRTF(k). This concludes the proof, as
the composite of moperad morphisms F o G is compatible with the composition of operad mor-
phisms ® o W. Now, the fact that the defining sets in GRT" (k) and GRT" (k) are isomorphic
is a straightforward consequence of the composite of bijections

GRT' (k) — Ass' (k) — Ass'(k) — GRT" (k).

This finishes the proof. [l
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4.2.9 Torsors

Finally, we promote this correspondence into a torsor isomorphism.

Theorem 4.2.22. There is a torsor isomorphism
(GT (k), Ass (k), GRT' (k) — (GT (k), Ass' (k), GRTT (k). (4.18)

Proof. This is a summary of most of the above results. First of all, we know that
((/}’\I‘ (k), Ass' (k), GRT" (k)) has a natural torsor structure and that (éfr(k)7 Ass' (k), GRT" (k))
is a torsor by [32]. Next, we proved in Proposition 4.2.18 that there are group isomorphisms
between GT (k) and GTF (k) and in Proposition 4.2.21 that there are group isomorphisms
between GRT' (k) and GRT" (k). Thus, it is sufficient to show that the actions of éi‘r(k)
on Ass' (k) and of a1 (k) on Ass' (k) are compatible and that the actions of @F(k) on
Ass' (k) and of GRT" (k) on Ass" (k) are compatible. Under the correspondence of Theorem
4.2.18, the image of the natural action of éi‘r(k) on Ass' (k) is exactly the action of GTF(k)
on Assr(k). Both actions are then compatible. Under the correspondence of Theorem 4.2.21,
the image of the natural action of GRT' (k) on Ass' (k) is exactly the action of GRT' (k) on
Ass" (k). Both actions are then compatible. O

4.3 Modules associated with twisted configuration spaces

(ellipsitomic associators)

4.3.1 Compactified twisted configuration space of the torus

Consider the group I' = Z/MZ x Z/NZ, let T be the topological torus and consider the
connected I'-covering p : T—T corresponding to the canonical surjective group morphism
p:m(T) = Z?* — T senging the generators of Z? to their corresponding reduction in I'. To

any finite set I with cardinality n we associate the I'-twisted configuration space

Conf(T, I,T) := {z = (21,...,2n) € T |p(2;) # p(2;) if i # j},

and let C(T,I,T) := Conf(T,I,T)/T be its reduced version. We then consider the Fulton-
MacPherson compactification C(T,n,T') of C(T,n,T) in the same way as before by means of

the well-defined map

C(T,n,T) — C(T,(MN)™).
The boundary OC(T,n,T) = C(T,n,I') — C(T, n,I') is made of the following irreducible com-
ponents: for any partition Jy []---[] Jk of {1,...,n} there is a component

k
1,1, C(T,n,T) = T[(C(C, J;)) x C(T, k,T).
i=1
The inclusion of boundary components provides C(T, —,T") with the structure of a module over
the operad C(C, —) in topological spaces.
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4.3.2 The PaB-module parenthesized twisted elliptic braids

We have inclusions of topological modules
Pac C(S',-) c C(T,-)
over
Pac C(R,—) C C(C,-).
Denote by i : Pa — C(S!, —) the inclusion morphism. Let I' = Z/MZ x Z/NZ and for every

set I, of cardinality n, consider the collection of all (N x M)"-fold maps ¢, : C(T,I',n) —

C(T, n). We get a collection of diagrams

Pa, —=~ C(T,n)

where we define Pag = 1y ¢y i.e. as the pull-back of the fold map along the inclusion map.
For example, elements of Pag are I'-labelled parenthesized permutations of length n and Pa'

is an operad module over Pa. Then it makes sense to define
PaBl, = m (C(T,F, —),PaF) :
which is a PaB-module.

Example 4.3.1 (Notable arrows in PaBL,,(2)). Write 0 := (0,0). Let Ry* and ®5>° be the
unique lifts of RY2 and ®Y23 € PaB starting at 1920 and (1020)30 respectively. These paths

can be depicted as follows:

10 20 (1020) 3()

2O 1O 1O (2030)

Next, for1 <i#j#k<nand o €T, let 6(«;) - Ré’j and 0(a;) - @g’j’k be the unique lifts
of R and ®"7'* ¢ PaB starting at injo and (injo)ko respectively. Additionnally, we also
have two morphisms, Aé’2 and B(I,’2 from (1020) to (1(1,5)20) and from (1020) to (1(5,1)20)
respectively which are the following paths
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They can be alternatively depicted as follows:

10 20 1O 20
A(1)72 % l 8572 { l
Lio 2o 1o 20

Now let p,q > 1. We introduce the following notation:

(451 =TT (0((k,0)1)-Ag”) = A5 (B((T, 0)1)-Ag™)(8((2,001)-45™) - -~ (6((p — L.0)1)-Ag"™).

which is an element in Hompagr, (2)((1o;20), (1(5,0)20)) and

- —
(Be") 0= T (000, k)1)-By®) = Bi(9((0,1)1)-Bg ™) (8((0, 2)1)-By™) - (6((0,4 — D)1)-By™)
which is an element in HomPaBr“(Q)((lo, 20), (1(0,4) 20))-

Theorem 4.3.2. As a PaB-module (in groupoid) having Pa' as Pa-module of objects, PaBEM
is freely generated by Ag := A(l)’2 and Bg := B(I,’2 together with the following relations:

(tN]) (A)(I\/[’O) = Id1020730, where

A= @ AFPO((T,001) (RY ™5™ 45" 0((1,0)2) (R ™ 851243 20((1,0)0 '),

(tNQ) (B)(OJV) = Id1020,30; where
B = 95> By®0((0,1)1) (Ry ™ @>*! Bg™0((0, 1)2) (Rg ™ &> By 20((0, 1)3 Ry %)),

(tB) R R = @422 By®0((0, 1)1)((25™%) 7! (Rg®) @5 2 (AG™) 710((=T,0)2) X) where

X = (25"%) TN (Rg ) T g (By ™) THO((0, 7 1)1) ((99™%) T Ry "0y P A5 YY)

and

as arrows from (1020)30 to (1020)30 in PaBL,(3).

Proof. Let QT be the PaB-module with the above presentation, ) be the PaB-module with
the presentation in Theorem 4.1.3, let n > 1 and let p € Q' (n). By universal property of Q"
there is a morphism of PaB-modules QF — PaBEM which is the identity on objects. Indeed,
relations (tN1), (tN2), (tE) are satisfied by PaB.,,.

For instance, A can be depicted as follows
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(1020) 30

A1’23

4231

-

A3,12
) d
(K/

1624) 3a

and the right hand side of relation (tE) can be pictured as follows in the open twisted config-

uration space:

As before, we are left to prove that the morphism Autgr(,)(p) — Autpapr, () (p) is a group

isomorphism.

On the one hand, by definition of PaB.,,, we know that Autpapr, (n)(p) is exactly the funda-
mental group 7 (C(T, n,T'), p), where p is in the boundary of C(T, n,T"). By the same argument

as before, we have isomorphisms 71 (C(T, n,I'), p) ~ w1 (C(T, n,T'), prey) and m1 (C(T, [n],T), [p]) ~
71 (C(T, [n],T), [Preg]). Consider the '™~ !-cover map f : C(T,n,T") — C(T,n). Now, one can
identify Autp,pr (n)(p) with the kernel of the surjective map Autpap,,,(n)(f(p)) — I'"/T
and the isomorphism Autg,)(f(p)) — Autpas,,,n)(f(p)) commutes with the projections to
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I'"/T. We obtain a commutative diagram

AthF(n) (p) — =TT (G(Tv n, F)vp) <~ 71 (C(Ta n, F)apreg)

| | |

Autga (f(p)) —m1 (C(T, n), f(p)) < m1 (C(T, n), f (Preg))

| | |

/T N /T

Thus, in order to show that Autgr(,)(p) — Autp,gr

ell

show that Autgr(,)(p) is isomorphic to the kernel of the projection Autg,)(f(p)) — I/

(n)(p) is an isomorphism, it suffices to

Let us first show that the map ¢ : Autgr(,)(p) — Autqen) (f(p)) is injective. By definition,
QT is generated in the morphisms level by A(l)’2 and B(l)’Q. The map ¢ sends A(l)’2 and B(l)’2 to
the generators A and B in PaB.(2).

An element of Autgr(,,(p) will be given by some string, which we will denote g, in the gener-
ators A4 of PaBgu and the liftings of R, ® € PaB. Let g be the image by ¢ of some string h
in Autgr,)(p). Now, to ask g to be trivial means that there is a finite number of operations
involving only relations (N1), (N2),and (E) in PaB.s taking the string ¢ to the identity map.
But these relations in PaB.y are the images of the corresponding relations, seen as relations
in PaBEM. Thus, we conclude that the procedure that takes f to the identity map is in fact the
image of a procedure taking h to the identity map in Autgr(,)(p). This shows the injectivity
of ¢.

Finally, the map ¢ is surjective in the kernel of the projection ¢ : Autge,) (f(p)) — I'™/T.
Recall the presentation of By, : its generators are o; (i = 1,...,n — 1), A;, B; (i = 1,...,n),
Cir (1 <j <k <n) and its relations are:

® 0,0i4+10; = 0;+10;0;41 , fori=1,...,n— 2

® 0,0; =00y for 1 <i<j<mn,

e 0, ' X0, = Xi11,0Yi0; = Yigq, fori=1,..,n—1,

o (05,X;)=(0s,Y;)=1forie{l,..,n—1},je{l,..,n},j#4,i+1,

2 __ -1 S
® 0, = Ci1i+10i+11i+20i1i+2, for ¢ = 1, ey — 1,

o (A“AJ) == (B“BJ) = 1, for any ’L',j, A1 = Bl == 1,
o (Bi, AkAS") = (BeB; ', Ay) = Cjy, for 1 < j < k <,
° (A“C]k)Z(B“C]k):L f0r1§z§j<k:§n,

. 1 1 .
with X; = A;A; L, Y; = BB, fori =1,..,n (we set Apy1 = Byy1 = Cipgr = 1). In
particular, these relations imply

® Uik =04,j4+1..k---Oj4n—k,j4+n—k+1..n0j j+1..n—k+j+1---Ok—1,k...n,

where ;11 = 0j_1...0;. Recall that Autg,)(f(p)) is nothing but the kernel of By ,, — I'
sending X; to the class of (1,0), Y; to the class of (0,1) and o; to the class of (0,0). Thus,
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the kernel ker¢, is generated by elements AM | BN and RL2. If we denote 2? for the marked
points of the form z; = a; + 7b;, where0 < a, <---<a; <1/Mand0<b, <---<b; <1/N
and z¢ for 2Y + & with « € T, then the orbit of 20 is T'- 2 = {2? + a;a € T'}. Then, we can
represent the elements A := AM and BY = B} in the open twisted configuration space as

follows

These elements AM and BY are precisely the images of the generators A(l)’2 and B(l)’2 in Q.
Thus, any string in Autg,)(f(p)) contained in the kernel of ¢; is the image of some string
in Autgr(,)(p). In conclusion, the map ¢ : Autgr(,)(p) — Autg)(f(p)) is a bijection in
the kernel of ¢1. So, by commutativity of the above diagram, we obtain an isomorphism
Autgr(n)(p) — Autpapr,, (n)(p) which lead us to the fact that the morphism Q" — PaB!,
of PaB-modules is an isomorphism.

O

We obtain a PaB(k)-module in Cat(CoAssy) denoted PaBl,, (k) := Ax(PaBl,). Now
consider its associated inverse system of PaB(™ (k)-modules given, for all m € N, by

(PaB{,,)," := PaBy, (k)/(Z™ (k) - PaBly(k).
By taking the inverse limit over m of these inverse system, we get a liaT?)(k)—module in

Cat(CoAssy)
—T m
PaB, (k) = lim((PaBLy){").

4.3.3 The Lie algebras t] (k) and ] (k) of infinitesimal twisted ellip-
tic braidings

In this paragraph, I' can be replaced by any finite abelian group (with the additive notation).

Definition 4.3.3. For any integer n > 1 we define t{n(k) to be the bigraded k-Lie algebra with
generators 1, ..., Ty in degree (1,0), y1,...,yn in degree (0,1), ¢ (e« €I, 1 <i#j<mn)in
degree (1,1), and relations

(NS) t& =1, fori#j,
(NL) [t$5,t2] = 0, for card{i, j, k,1} = 4,

177

(NAT) [t5, 57 + 5] = 0, for card{i, j, k} = 3,
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(EU1) [, y5] = [25,9i] = D aer b3, for i # j
(ENI2) (i, 5] = [yi, y;] = 0
(NEI1) [zi,yi] = = > 5 Daer tiys
(NEU2) [i,t5] = [yi t5:] = 0, for card{i, j, k} = 3,
(NEU3) [z + x5, w] [vi + Y5, ij] =0, fori#j,

forall a, B € T'. We will call tin(k) the k-Lie algebra of infinitesimal twisted elliptic braidings.

Observe that Y, x; and _,y; are central in t] ,,. Then we denote by #],,(k) the quotient of
t] ,(k) by >, z; and Y, y;, and the natural morphism t} , (k) — ¢ (k); uw +— 4. There is
an action 6 : I — Aut(t] ,,(k)) given by (o) : tﬁ — tﬂJra, and w1th tkl, for k,l # i), x

and y invariant for arbitrary k arbitrary. It restricts to an action on trﬁn(k).

Proposition 4.3.4. For any group morphism p: 'y — I's we have a comparison morphism
o: tllﬂln(k) — tlfil(k) defined by x; — x;, y; — y;, and

1
e = E )8
v #ker(p) H

p BEcoker(p)

Proof. Let us prove that relation [x;,y;] = > cpt;, where i # j, is preserved by ¢. On the
one hand [¢(z;), #(y;)] = >, cp, t5;- On the other hand

¢( -Tuyj Z ¢ Z #ker Z tp(a Z o

ael ael ﬁ€coker( ) a€els

The last equality holds because p(«) is in the image of p and g is not. The fact that remaining

relations are preserved is immediate. O

When p is not surjective it depends on the choice of a section coker(p) — I's. Comparison
morphisms commute with insertion-corpoduct morphisms. Moreover, both are bigraded and
pass to the quotient by >, i, >, ¥;. When k = C we write ] ,, :=t] ,(C) and £}, :=#] ,(C).

Lemma 4.3.5. tlin(k) admits the following presentation : generators are x;,y; (i=1,...,n)

t% (a € ') and relations are

ot =1t;" (i#]):
201 =0 (card{i,j, k,1} = 4),

Zj’

te ot ]: 0 (card{i,j k} =3),

[
[
[73,y;] = [%,yz] Daertyy (1#7)
[
>

x5, 5] = [yi,y;] = 0;
[Zy;, z;) =0 (for any i)

= [yi, t5] =0 (card{i, j, k} = 3),

=~
8
§

°
8
N
H.
<.
k‘
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Proof. 1f x;,y; and t; satisfy the initial relations, then

[Z%yi] = [yl + D _zipul ==Y D 4+ > > =0

Ve Jij#i a€el jij#i ael
Now, if z;,y; and tg; satisfy the above relations, then relations [Y x;,vy;] = 0 and [z}, y;] =
J
> aer tiy, for i # j, imply that [z;, yi] = =37, > e t5;. Now, relations [Ek:xk, y;] =0 and
> ak, 2] = 0 imply that [ zg, >, cptf] = 0. Thus, as [2;,t5] = 0 if card{i, j,k} = 3, we
i %
obtain relation [z; + x;,t%] = 0, for i # j. In the same way we obtain [y; + y;,t%;] = 0, for
i # . O

The t(k)-module t} (k) of infinitesimal twisted elliptic braidings

The collection t} (k) of the Lie algebras t} ,,, for n > 1 is provided with the structure of a

t(k)-module in Liex when endowed with the partial operadic module composition structures

given as follows.

op tEI(k)EBfJ(k> — tiJuI—{ﬂ(k>
(0,tap) — tap
i k¢ i)
o Sote if k=1
(tijao) — peJ P
Z t% if j=k
peJ
(2:,0) = Sa, if k=i
peJ
(%:,0) — Sy, if k=i
peJ

These operadic compositions also induce an operad module structure on the collection of the
Lie algebras ] ,,(k). We will call t] (k) the module of infinitesimal twisted elliptic braidings
and, for CDY,,(n) := Z/A{(@;n(k)), the corresponding module in associative algebras CDL,, :=
{CDL,,(n)},>1 will be called the module of I-labelled elliptic chord diagrams. The elements
of the module CD!,, can be depicted as T-labelled elliptic chords on n vertical strands. Thus,
by combining the different representations we used in the cyclotomic and elliptic cases, we can
depict the labelled elliptic chord relations as follows (we denote AT = z and A~ = y):

A+. .............................. Rl S— /Rl S N A+. ................
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Ai S Ai | |
= (ElI2b)
Ai l l Ai
) 1
i J
Bl S — @eerereeeaneend a
4 -4 = -2 > 1 _____________ J (NEILL)
J;j#ia€l
AT #eeeen A+ ................ —a
a
Ai | ..............................
a = u (NEII2)
"""""""" e S—
. |
a a
A:t | ............... A:t | .............................................................
a + a = a + 4 (NEN3)
"""""""""""""""" IE S— [UE I ST P—
—a —a ¥

Remark 4.3.6. We expect to study the relation between CDEM and Vassiliev invariants in

the near future.

_—T

Let CD,_,(n) be the I-adic completion of CDL,,(n) with respect to the augmentation ideal
—_— /\F

I. Since we are in possession of a Pa(k)-module Pa'(k), a CD(k)-module CD_,,(k) in

T
Cat(CoAssy) and of an operad module morphism wy : Pa' — Ob(CD,,,(k)), we are ready
to define the PaCD (k)-module

T
PaCDEM(k) = w;CD, (k)

in Cat(CoAssy) of parenthesized I'-labelled elliptic chord diagrams.
We have Ob(PaCD.,,(k)) := Pa' and

MOI‘PaCDEM(k)(n) (pa q) = Mor(/lf)gu(k)(n) (ptv pt) = Z/Al({{ (k))

Example 4.3.7 (Notable arrows in PaCD!,,(k)(2) and PaCDL,,(k)(3)). We have the fol-
lowing arrows in PaCDY,,(k)(2) and PaCD.,,(k)(3)
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lo 2o lo 2o (1020) 30
X =1 =, o =
20 1o lo 2o lo (2030)
1o 20 1o 20
Xé,’iee =1 ‘[ Yol,fee =Y
1a,) 20 1o,1) 20

Remark 4.3.8. The elements X{', Y are generators of the PaCD (k)-module PaCD!,, (k)

and satisfy the following relations
(tN1) AMO) =1, where
7 1,2,3v1,23,//7 A 1,23 2,31+v2,315//7 A 2,31
A=ag™ X 5 0((1,0)1)(Xg ™ ag™ X7y 0((1,0)2)(Xo™ Z1))

and
7y = ag "X 0((1,0)3) X g

(tN2) BON) =1, where
B = kY 20((1,000) (X3P Y 22 0((1,002) (X2 22)),

and
Zs = ag Y 5, 70((1,0)3) Xo7

(tM) Xo° X = ag™ Yo 2h0((0,1)1) ((ag™®) "' Xo 2ag * (Xgreng) 1 0((=1,0)2)X), where
X = (ag"*) 7 X 2ag P (Yo o) 7000, =1)1) ((ag ) "' Xg2ag P X oot V),

and

Y =6((1,0)2)((ag ") "' Xo)

as arrows from (1020)30 to (1020)30 in PaBL,,(3).

4.3.4 Twisted elliptic associators
FixT':=2Z/MZ x Z/NZ.

Definition 4.3.9. A twisted elliptic k-associator is a couple (F,G) where F is in Ass(k) and
G is a I'-equivariant isomorphism between the liaT?)(k)—module liaT?):M(k) and the GPaCD (k)-
module GPaCD!,, (k) which is the identity on objects and which is compatible with F. We
denote the set of twisted elliptic k-associators by

/‘\F
Ell" (k) := Isoj@(kwpacmk))(PaBeM(k), GPaCD!,, (k)L
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Theorem 4.3.10. There is a one-to-one correspondence between elements of EllF(k) and
those the set EHF(k) consisting on quadruples (p, ®, A1, A_), where (u, ®) € Ass(k) and Ay €
exp(t] 5(k)), such that:

(tN1) (AL )MO) =1 where

Ay = {123} ALP9((1,0),) ({1021 {92311 AZP19((T,0),) (e +112)/2) 7))

and
7 = (@12 AL (1, 0)g{er %) /2))

(tN2) (A_)ON) =1 where

_ = {@" 2P ALPY((0, 1)) ({e MU 2 @28 AZG((0, T)2) ({e 51127 7))

and
Z = {@*12} A 120((0, T)g{e 1 t2)/2})
(tM) {e't2} = {®}AV?0((0,1)1)({@}~ {e #H2/2} {213} (AT)710((=1,0)2X)), where
X = {((1)2,1,3)71}{efﬂtm/Q}{q)}( 1 23) (((_)7Tl)l)({@}71{€#t12/2(¢2’1’3)}(Ai_’lgy))

and
Y = 9((1, ())2)({((1)2’1’3)716:‘”12/2})

—7T
Proof. This fact is a consequence of Theorem 4.3.2. Indeed, any morphism from PaB,,,(k) to

an operad (Q is determined completely by the images of the generators of PTaTBeM (k) satisfying
the images in Q of relations (tN1), (tN2) and (tE), which, for the case Q = GPaCDL,,(k),

are precisely the relations in the above theorem. O

In Section 7.2 we will give an example of such mathematical object.

Definition 4.3.11. The (k-pro-unipotent version of the) twisted elliptic Grothendieck—Teichmiiller
group s defined as the group

—T + ——T r
GT, (k) := Aut Mod(PaB(k))(PaBeu(k))

— /\F
of automorphisms of the PaB(k)-module PaB (k) which are T-equivariant and which are

the identity on objects.

Definition 4.3.12. The graded twisted elliptic Grothendieck-Teichmiiller group is the group
GRT (k) == AUtMod(PaCD(k))(PaCDgﬂ(k))F

of automorphisms the PaCD(k)-module PaCD!,,(k) which are T-equivariant and which are
the identity on objects.

Theorem 4.3.13. The set ElI' (C) is non empty.
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Proof. In Section 9 we will construct an element in this set. O

Now, any automorphism (F,G) in GTL,,(k) is defined as follows

~ — T — T o
where (A, 1, g4, 9-) € k* x Fy(k) x PB4 5(k) x PB 5(k). The fact that (A, f) € GT(k) is clear

—~7T
and g+ € PBy ,(k) satisfy the following relations:

- a—1 .\ (3M,0)
(£(02,03)9+ (XY, PYa € D)O((1,001) - (r1oa(r0300)*T)) T =1, (btN1)
- a—1 .\ (0,3N)
(f(03.08)9- (X, Y, P30 € D)0, 1)) - (07 '3 onodon) 7)) =1, (biN2)
u? = g-0((0,1)1) (w97 10((—1,0)1) (w™ 'g=10((0, —1)1)((ug+8((1,0)1)u))), (btE)

=T
as identities in B, 5(k), where u = f(0f,03) 0} f(07,03), g+ = g+ (X, Y, P*; 0 €T).

—~T —~T

T ~
Let us define GT,,,(k) as the set of all (A, 11,94,9-) € k* x Fy(k) x PB; 5(k) x PB; 5(k)
satisfying relations (btN1), (btN2) and (btE).

—T —TI
The image of the categorical composition of GT,,, (k) and endows GT,, (k) with a group

structure which can explicitely be described as follows.

For (A f,g2), (X, ) € Gy k), we set
A foge) (X fg) = (N f7, glt)
where (A”] f”) is as in (2.6.11) and
gL(X,Y,P%a€T) = gi(¢ (XY, P50 €T), g (XY, P*;a €T),(P*)a €T).
Proposition 4.3.14. There is a group isomorphism éi‘zu(k) and GTZM(k).

T
Proof. This is a consequence of Theorem 4.3.2. Indeed, from the presentation of PaB,,

_—T
induced by the presentation of PaB!,, via the morphism PaB!,, — PaB we know that
ell ell ell

—T
an automorphism F' of PaB,_,, which is the identity on objects is completely determined by
the images of its generators satisfying relations (tN1), (tN2) and (tE), which are precisely the
—7TI
defining relations of GT,,, (k). O
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Recall that the image of the action of (/}T(k) on Ass(k) under correspondences 2.6.8 and

— ——T
2.6.12 yields an action of GT(k) on Ass(k), defined as in 2.6.8. For (), f,¢+,9-) € GT,; (k)
and (u, ®, Ay, A_) € EHF(k), we set

AN frgg,9-) % (@, AL AL) = (p/, @ AL AL)

e
where A, := g1 (A4, A_, (P*)*;a € T). This is precisely the image of the action of GT,,, (k)
on EII" (k) under the above correspondence.

The image of the group law in GRTL,,(k) is described as follows.
Define (GRTL;)1(k) as the set of all (g, u,u_), such that g € GRT; (k), us € @LQ(k), satisfy-

ing the following relations:

M—-1
S (6 0)1zs) - (9" 0((1,000) (9"%) 71 + g3 0((1,0)) (6> ) 4+ u'?) =0,
i=0

(tN1)
N—-1

i=

(0((0,7)123) - (91’2’31&239((6, D)1)(g"?%) 7 + ¢>2u>1%0((0,1)2) (6% ) 7! + uiu) =0,
0

(tN2)

9"l B0((T1,001) ("2%) 2~ 20((1,0)5) - (92 5k P0((T,001)(6"2%) 1) = 0, (L)

g2l B0((0,1)1)(92%) 12 —ub120((0, T)s)- (9% 20((0, D) (o)) = 0, (1L2)

192 =g 24l P0(1,001) - (942712 0((0, T)2) (9 1) ) (tF)
— B0, 1)) - (417) g 2 P0((1,0)1) (62 )
(relations in i{g(k)) Set (g1, uf,ul) * (g2, u3,u?) := (g9,us,u_), where
ut(z,y,t% o €T) i=ul (uf (z,y,t% a € D), v’ (2,y,t% a €T),t* a €T), (4.19)

where {{,Q(k) is viewed as the Lie algebra generated by z,y,t%, for a € I', with relation
[1"5 y] = ZO{EF ta'
The group k* acts on (GRTL;); (k) by

ut(z,y,t% o € 1) i=ul (uf (z,y,t% a € D), v’ (z,y,t% a €T),t" a €T), (4.20)
where

e c- g is as above,
o (cruy)(z,y,t%ael) = uy(r,cly, ct*a €T),

o (c-u)(z,y,t%ael) :=cu_(z,cly,ct%acl).
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We then set GRTL, (k) := (GRTL,)1(k) x k*. The image in GRTL,,(k) of the group law in

GRT.,, (k) is exactly the group law defined by (4.19) and (4.20).

One can establish then the following torsor conjecture.

—T
Conjecture 4.3.15. The triple (GT,,,(k), ElI" (k), GRTL,,(k)) is a torsor.
If the above conjecture is true, then a consequence is that there is torsor isomorphism

(G, (K), BII" (k), GRTY (k) —» (GT,y(k), BT (), GRTD, (k). (4.21)
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Chapter 5

Operads and higher genus

assoclators

This chapter consists of the first part of a study devoted to the rational homotopy theory
of modules over (framed) Es-operads associated to genus g oriented surfaces. On the one
hand, we aim to study the characterization of the elliptic Grothendieck-Teichmiiller group
as the group of homotopy automorphisms in the homotopy category of Dy-modules of some
rationalization of the module D; 5 of little 2-disks on a torus. On the other hand, we aim
to study the characterization of higher genus Grothendieck-Teichmiiller groups as groups of
homotopy automorphisms in the homotopy category of Dy-modules of some rationalization of
the module DgQ of framed little 2-disks on a compact orientable genus g topological surface
b))

g
In this chapter we will concentrate on the higher genus story. After briefly recalling framed
Fulton-MacPherson compactifications and their associated operadic structures, we introduce a
full suboperad PaB’ c m (Dg ) of framed parenthesized braidings by restricting the object sets
of the groupoid so that B(PaB’) = B(m; (Dg )). We then construct the corresponding operad
PaCD/ of parenthesized framed chord diagrams, framed associators and framed Grothendieck-

Teichmiiller groups in terms of PaB’ and PaCD’.

We then turn to the genus g situation and we introduce a full submodule PaBg cm (Dgz) of
genus g framed parenthesized braidings by restricting the object sets of the groupoid so that
B(PaB/) = B(m (D] ,)).

Next, we define the PaCD?-module PaCD]gc of genus g parenthesized framed chord diagrams.
Finally, we give operadic definitions of genus g associators and (graded) Grothendieck-Teichmiiller

groups, extract from them explicit equations for this objects and conjecture the existence of

such an associator by means of the framed genus g universal KZB connection yet to be defined.

It should be interesting to relate the Lie algebra of our genus g graded Grothendieck-Teichmiiller
group to the higher genus Kashiwara-Vergne Lie algebra eeo @+ which is being studied in

the recent work [4].
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5.1 Operad structures on framed FM compactifications

Let n > 1 and consider the Fulton-MacPherson compactification FMy(n) of Conf(R*, n).
These spaces assemble into an operad FMy, := FM(Conf (Rk, —)), which is known to be weakly
equivalent to the little k-disks operad Dy. The interior of FMy(n) is the reduced configuration
space C(R* n).
Now, let M be a closed smooth manifold of dimension k. Consider the configuration space of
M

Conf(M,n) = {(z1,...,2n) € M™;x; # x;if i # j}.

The spaces Conf(M,n) are weakly equivalent to their Fulton-MacPherson compactification
FMyps(n) := FM(Conf(M,n)). When M is parallelizable, the spaces FMs(n) form a right
FMg-module FM),;. Otherwise, we need to introduce the framed versions of all the above
geometric objects. This consists on seting a choice of trivialization of the tangent bundle of
M in order to specify in which direction we will insert the disks on M constructed by the

Fulton-MacPherson compactification.

Let M be a Riemannian closed oriented! compact k-manifold and consider the bundle projec-
tion 7py : SO(M) — M, where SO(M) is the principal GLg-bundle of special orthogonal linear

frames on M. The framed configuration space Conf! (M, n) of n distinct points in M is
Conf (M, n) := {(z, f1,..., fn) € Conf(M,n) x SO(M)*"|f; € 3} (x:)}.
This is the same to define Conf” (M,n) as the pullback of the diagram

SO(M)*™

|

Conf(M,n) ———— M*"

so Conf! (M, n) — Conf(M, n) is a principal SO(k)*"-bundle. If M is parallelizable, Conf’ (M, n)
is isomorphic to Conf(M,n) x SO(k)*™. For instance, this is the case when M = R* or M = T.
The symmetric group &, acts on Conf’ (C, [n]) by relabelling the indexes of the marked points.
The map Conf/ (C, [n]) := Conf!(C,n)/S,, — Conf(C, [n]) is a locally trivial bundle with
fiber SO(2)*™.

We have framed versions of the little k-disks spaces which are G, -equivariant homotopy equiv-
alent to framed configuration spaces of R¥:
D/ (n) =5 Conff (R*, n)
k 1)
There is a S&,-equivariant homotopy equivalence similar to the one above in the case for
manifolds but with very restrictive assumptions (see [94] for more details).

Let G be a topological group and (O, {o;""},, ) be an operad in left G-spaces and suppose

that the partial operadic compositions o;"" in O are G-equivariant. The semidirect-product

'In the case of non-oriented manifolds one can only consider the bundle projection O(M) — M.
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operad G x O is the topological operad defined by (G x O)(n) := G™ x O(n) and with partial
operadic compositions denoted 5;"" and given, for g = (91,...,9m),9’ = (49},-..,4,) and
1<i<mby

(g,xl)azn,n(g/,x2) = (gll,$1 o;n,n (gi $2)) € Gn+m_1 X O(n +m — 1)’

where g = (g1, ---,9i-1,9i91s - > GiTm> Git1s - - - » gn)- Consider the framed Fulton-MacPherson

compactified configuration spaces
FM/ (n) := SO(k) x FM(n).

The interior of FM/ (n) is Conf’(R*,n). The SO(k)-action is compatible with the operad
structure of FMy(n). Thus, these spaces form an operad FM£ :=S0(2) x FM}, called framed
Fulton-MacPherson operad, which turns out to be weakly equivalent to the framed little k-disks

operad. The partial composition morphisms can be pictured as follows:

3,2

Summarizing the above results, we get

D/ (n) —=—= Conf! (R¥, n) <=— FM{ (n)

| | |

Dy (n) —= Conf(R*, n) -~ FMy(n)

where the horizontal arrows are G,-equivariant homotopy equivalences and the vertical arrows

are SO(k)*™-principal bundles. This diagram does not enhance into an operad map.

Nevertheless, in [38], an operad morphism ¢ : FM; — Dy was constructed and it is easy to
verify that ¢ is ewuivariant for the action of SO(k) on these two operads and by construction,
the data of the framings are compatible with this map (since the rotation of a disk will preserve

that disk). Thus, we can construct a square

D/ <= FM] (5.1)

.

Dy <=— FM,,
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where the horizontal arrows are weak equivalences of operads in topological spaces (see [38]
for details).

Now, if M is an oriented k-manifold, then the collection of its framed Fulton-MacPherson
compactifications forms a right FMi—module denoted FM@ where each space FM@ (n) is a
principal SO(k)*™-bundle over FM;(n). Then we also have

DY, (n) —== Conff (M, n) <=—FM!,(n) (5.2)

l !

Dy (n) —— Conf(M,n) =<—— FM(n)

where again the horizontal maps are G,,-equivariant homotopy equivalences. If M is paralleliz-
able, then the semi-direct product in the below spaces becomes an usual product and we get
a square

D!, <=—FMJ, (5.3)

Dy <—— FMyy,

If M is not parallelizable the first line of this square does not hold but we still have a weak
equivalence FM& = wa of modules over FM£ = Di.

The case of genus g orientable surfaces

We now concentrate in the case k¥ = 2 (i.e. compact oriented topological surfaces). Let
g > 0 and n > 0 be integers. For a compact topological oriented surface 3, of genus g without
boundary, we consider the space Conf(X,, n) of configurations of n points in X,. It is homotopy

equivalent to the space D2 4(n) of n little 2-disks with disjoint interiors on X,
Dy 4(n) — Conf(34,n).

This map can be represented as follows (in the case g = 2)

The surfaces X are not parallelizable for g > 1 so we consider the framed versions of the above

spaces. Namely, the collection Dgﬁ , of spaces of framed little 2-disks on ¥4 has the structure
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of an operadic module over the framed little 2-disks operad Dg . We can represent the action

of Dg on D£7g as follows (in the case g = 2):

In particular, if g = 1, as T is pararellizable so the space Dg,l(n) is isomorphic to Dy 1(n) x
SO(2)*™. Now let X, be a genus g closed connected oriented surface with a smooth and
semi-algebraic manifold structure and consider its framed Fulton-MacPherson compactifica-
tion FMg,g(n). The space FMg,g(n) is a manifold with corners whose interior is Conf’ (3, n)
and the insertion of boundary components of FMg , With respect to the direction of the frame
endows the collection FMg o of these spaces with the structure of a FMg—module. More ex-
plicitely, f FMs 4(n) is obtained from the pullback

S0(2)%"

|

FMs, () ——> 52"

where SO(2) — %, is the frame bundle over X, for some specified Riemannian metric.

5.2 Operads associated to framed configuration spaces (framed

associators)

5.2.1 Framed configuration spaces on C

The fundamental group of the unordered framed configuration space Conf’ (C, [n]) was studied

in [70] and is isomorphic to the framed braid group Bfl generated by elements 01,09, ...,0,-1, f1, fo, -, [n
together with relations

(Bl) 0;0;4+10; = 0;4+10i0;41 ifi € [n — 2],

(B2)

(FB1) fifj = f;fi for all i, j,
(FBQ) Uifj = foi(j)gi for all Z,j

(05,05) = 1if [i —j| > 1,
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The space Conf/(C, [n]) is an Eilenberg-Maclane space of type K(BZ, 1)and the group Bf

is a semidirect product Z"™ x B,, where the action of B, on Z" is given by a(r;,....,7,) =
noa € B£ with a € B,, then the r;’s are called framings.

(To'(l)ara(Q)a-'-aTU(n))' Iff{17 ;27"' af:;
The product in this notation is given by
( 11 ;2 . f,:;"a)( isl 52 . f;nﬁ) — f{‘l"‘Sa(l) f;2+8a(2) . f;n-’_sa(n)aﬁ

The fundamental group PB,J; of Conff((C,n) at any basepoint is the direct product PBfL =
Z" x PB,,. One can represent such braids as ribbon braids as we will see in the following

subsection.
5.2.2 The operad PaB’ of framed parenthesized braidings

The boundary d FM(n) = FM (n) — Conf’ (R2,n) of FMZ(n) is made of the following irre-
ducible components: for any decomposition n = ni + - - - + nx there is a component

k
Ony ey FME () 22 T FME (ni) x FM{(n) .

>
i=1

The inclusion of boundary components provide FMg with the structure of an operad FM/ in
topological spaces and we have inclusions inclusions of topological operads

Pa C Conf/ (R, —) c FMJ.

The operad in groupoids of framed parenthesized braidings is defined as
PaB’ := 1, (FMJ, Pa).

Notable arrows in PaB’ (1), PaB/(2) and PaB/(3). We have an arrow R € Homp,ps(2)(12,21)

and an arrow ®123 ¢ Homp,pr(3)((12)3,1(23)) which correspond to the very same paths as

in the unframed case. In particular, R»? can be represented as follows

There is also a braid F' € Endp,py(1)(1) corresponding to the framing. In PaB’ (3) it can be

represented as follows
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I Sz
//
R
. oY o]

This should be considered as a single ribbon braid being twisted 360 degrees and the blue

strand is the transport of a point lying in the surface of this ribbon braid.

Recall the definition of the operad CoB of coloured braids from [46, Subsection 5.2.8] As in
the case of the operad PaB, the operad PaB’ can be defined as the fake pullback of the
framed version CoB/ of CoB and we have a presentation of PaB/ in terms of generators
and relations. Namely, as an operad in groupoids having Pa as operad of objects, PaB’ is
generated by F := F! € PaB/(1), R := R"? € PaB/(2) and ® =: 122 ¢ PaB/(3) together
with relations (H1), (H2), (P) and the following relation:

(F) RVZR2IF'F? = F'2 a5 arrows from (12) to (12) in PaB’(2).

The proof of this result can be found in [14, Lemma 7.4]. In particular, one can represent

relation (F) by means of the following picture:

F12 Fl F2 R12R21

5.2.3 The non-symmetric operad PB/ of framed braidings

Let us now introduce two non-symmetric operads that will be of use later.
The collection PBY := {PB!},>1 can be endowed with the structure of a non-symmetric
operad given by partial compositions
0;:PBL xPBf, — PB! | (5.4)
(b,0") > bo (5.5)
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where b o; b’ is defined by replacing the i-labelled strand in b by the braid & made very thin.
Via the homotopy equivalence between framed little disks and framed configuration spaces
we presented in the last section, one checks that the above operadic composition for PB’ is
induced by that on Dg . In the same way, one can construct an non-symmetric operad in
groupoids B in the following way :

e The objects of Bf(n) are unnumbered maximal parenthesizations of lenght n. In partic-
ular, this means that for every object p of Pa(n), there is a corresponding object [p] in
Bf(n), and [p] = [q] if p and ¢ only differ by a permutation (but have the same underlying

parenthesization).

e B is freely generated by F := F' € Bf(1), R:= R"? € Bf(2) and ® := &2 ¢ Bf(3)
together with relations (H1), (H2), (P) and the following relation:

(F) RY2R?1F1F? = F'2 as arrows from (ee) to (ee) in B/ (2).
e B/ is the image of PaB/ via the forgetful map Op — NsOp sending an operad to a

non-symmetric operad.

e It follows that there are group morphisms Bf; — Autgs(n)(p) — &4, the left one being

an isomorphism.

For example, arrows in Autgy () ((ee)e) can be depicted as follows:

(¢ 9 .
j 5.6
{\:) | (5.6)

We let the reader depict the generators F' € Bf(1), R € Bf(2) and ® € Bf(3) accordingly.

(o o) °

5.2.4 The operad PaCD’ (k) of parenthesized framed chord diagrams

Let tf (k) denote the graded Lie algebra over k generated by t;;, 1 < 4,5 < n with relations
(FT2) [tij, tw] = 0if {i,5} N {k, 1} =0,
(FT3) [tij, tir + tjx] = 0 if {i, 5} N {k} = 0.
This means we have a decomposition tf (k) = @], kt;; ®t, (k). In other words, this translates
into insertion-coproduct morphisms as for each map ¢ : {1,...,m} — {1,...,n}, there exists a
Lie algebra morphism t/, — t/,, defined by (t;;)? := Dires-1(i)jreo-1(5) Lia-
Remark 5.2.1. The above definition coincides with that appearing in [8], indeed it is isomor-

phic to the graded Lie algebra over k generated by t;;, 1 <i# j <n and ty, 1 <k <n, with
relations

(T1,T2,T3) tij = tji; [tij, ta) = O if #{4,5,k, 1} = 4; [tij, tix + tju) = 0 if #{4,4,k} = 3,
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(FT2’) [ti,t;] =0 for1<i,j<n,
(FTSN) [ti,t]‘k] =0 fOT all i,j, k.
The collection of the framed Lie algebras tf (k), for n > 1 is provided with the structure of an

operad in (positively graded finite dimensional) Lie algebras over k, denoted t/ (k) and given

by the following operadic partial compositions:

o) t{(k) @f?;(k) — t?;ulf{z'}(k)
(0,tap) — tap
ty i k¢ {i g}
(ti5,0) — p%?] i =T
peJ

In other words, under the correspondence of Remark 5.2.1, this is the same as the following

composition:
ot thik)@t(k) — (k)
(0,tap) — tathk—18+k—1
(Oa toz) — ta-i—k—l
Livn—1j4n—1 if k<i<j
i+n—1
tijrnfl if k=i< ]
p=t
(tij,0) — tijrn_1 if i<k<j
j+n—1
E tip if 4 <j= k
p=J
tiJrn,l if k<1
i+n—1
(ti,0) — ooty if k=i
p=1
t; if i<k

for 1 < i,5,k < mwith i < jand 1 < a,8 < n. We can then construct the operad
CD/ (k) := U(#/ (k)) in Cat(CoAlgy) called the operad of framed chord diagrams.

Remark 5.2.2. This denomination comes from the fact that morphisms in CDY (k)(n) can
be represented as linear combinations of diagrams of chords on m wvertical strands, where the
chord diagram corresponding to t;; can be represented as in the unframed case, the chord

corresponding to t; as
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and the composition is given by vertical concatenation of diagrams. Partial compositions can
easily be understood as “cabling and removal operations” on strands (see [5, 46]). Relations
(T1,T2,T3) can be described as in the in the unframed case and the remaining relations defining

each t,(k) can be represented as follows:

= (FT1)

............... ) | e (FT2)

Let @f(n) be the I-adic completion of CDY(n) with respect to the augmentation ideal 1.
Since we are in possession of operads Pa(k) and 6]\3f(k) in Cat(CoAssk) and of an operad
morphism w : Pa — Ob(é]\Df(k))7 we are ready to define the operad
PaCD’ (k) := w*CD’ (k)
in Cat(CoAss) of parenthesized framed chord diagrams. We have
e Ob(PaCD/(k)) := Pa,
e Morp,cp/ k)m) (P: q) = Mor@f(k)(n)(pt,pt) = U(H (k).

Example 5.2.3 (Notable arrows in PaCDY (k)(1), PaCD/ (k)(2) and PaCD’ (k)(3)). We
have the following arrow P*, in PaCD/ (k)(1)

1
Pl =ty;-
1
as well as the following arrows in PaCDY (k)(2)
1 2 1 2 1 2 1 2
PL2.—¢,,. HY2 .= ¢, [ - X2 — 1.
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We also have the following arrow in PaCD(k)(3):
(12) 3
a1,2,3 =1 i
1 (2 3)

Remark 5.2.4. The elements a2, X412, H2 and P; are generators of PaCD(k), satisfy

the pentagon and the two hexagons relations and the following relation:

(iF) PY2HV2X1V2P2L (X121 HL2 = P12 g5 arrows from (12) to (12) in PaB7(2).

5.2.5 Framed associators
Definition 5.2.5. We define the set of framed k-associators to be the set
F k) = Tsot PaB’ !
Ass’ (k) :=Isof, gppa, (PaB’ (k), GPaCD’ (k))
—f
if isomorphisms between PaB’ (k) and GPaCD (k) which are the identity on objects.

An immediate consequence of [14, Lemma 7.4] is then

Proposition 5.2.6. There is a one-to-one correspondence between the set of framed k-associators
Ass’ (k) and the set Ass? (k) of triples (\, p, ©) where (11, ¢) € Ass(k) and \ € k* such that

(F) e)\(t1+t2+2t12) — e)‘(t1+t2)+“t12,

Corollary 5.2.7. By taking p = 2\, on can establish a bijection between the set of framed

associators and the set of associators.

Moreover, by [14, Lemma 7.7], the there is a group isomorphism
GT(k) ~ GT' (k) := Auty, grpq, (PaB’ ()

and the fact that t (k) = @, kt; ® t,, (k) gives us a further isomorphism

GRT(k) ~ GRT/ (k) := Aut$, grpa, (PaCD/ (k).

Proposition 5.2.8. The set Assf(C) is mon empty.

We will prove this statement in the following subsection.
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5.2.6 The framed universal KZ connection

Define the framed universal KZ connection on the trivial exp(t/ )-principal bundle over Conf’ (C,n)

as the connection given by the holomorphic 1-form

dzi — dz;
wi¥ = 3" tadlogn) + Y. Tt € 91 (Cont (C,n), ),
D —

, — 2T Zj
1<i<n 1<i<jsn

which takes its values in t£ and where \; € C* is a fiber coordinate, for all 1 <7 < n.

Theorem 5.2.9. The connection VX% := d —w] X% is flat.

Proof. Let wy := Y. t;dlog(N\;) and wy := %tij. We want to show that [w; +
1<i<n 1<i<j<n
wa, w1 + wz] = 0. We have
[wi + w2, w1 + wa] = (w1, wi] + (w2, wa] + [w1, wa] + [wa, w1 ]

= 2[’LU1,’LU2]

since [wy, w1] = 0 because the relation (FT1), [we, ws] = 0 because of flatness of the unframed
KZ connection, and [wa, w1] 4 [we, w1] = 2[w1, wa]. Next, because of relation (FT2), we have

dz; — dz; dz; — dz;
[wl, ’LUQ] = [ti d lOg()\), %tij] + Z [tj d lOg()\), %tij].
Fi T % 1<i<j<n L
And finally,
dz; dz; —dz;
S tdlog), ==Lt + Y [t dlog(h), L] =0
1<ici< zi_] 1<igi< Zl—ZJ
IIRN LIIN
O
In particular, by sending fx to txx, we get morphism of splitting short exact sequences
| k" - PB (k) — = PB, (k) — 1 (5.7)

L

1 —— k" —— exp(F (k) — exp(i (k) — 1

showing that lg\Bi(k) — exp(t/(k)) is a k-pro-unipotent group isomorphism. Similarly we

get an isomorphism

~

B (k) — exp( (k) % &,

Proof of Proposition 5.2.8. Let x € Conff((C,n) and let T/%% be the parallel transport mor-

phism associated to w?% Then

TXKZ(fZ) = 4™ ¢ exp({f;).
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5.3 Modules associated to framed configuration spaces (genus

g associators)

5.3.1 Configuration spaces of surfaces

Define the pure braid group with n strands in genus g as the fundamental group of Conf (3,4, n),
PBy.,, := m(Conf(X,,n)). The corresponding braid group is then B, = m(Conf(Z,, [n])),
where Conf(Xg, [n]) = Conf(X4,n)/&,. Algebraically, according to (7], By, is presented by
generators X,,Y,,0; (1 <a<g,1<i<n-—1) and relations

(B1),(B2) 0i0i410s = 0iq10i0i41 ifi € [n—2], (04,05) =11if |i —j| > 1,
(BG1) (X4,04) = (Ya,04)=1ifi>1,1<a<g,
(BG2) (o7 'Xe01"', Xa) = (07 'Yao1 1 Yo) = 1if 1 <a <y,
(BG3) (07 ' Xaort, Xp) = (07 ' Xuo7 1, V3) = (07 Yooy ', Xp) = (07 Yoo, Ys) = Lifa < b,
(BG4) (01(Xa)7lon, (Yo) ') =0fifl <a<y,
(BGS) licucy(Xa, (Ya) ") =01 0001

The morphism B, ,, — &, is given by X,,Y, — 1, 0; — s; :== (i,i + 1). It is proved in [7]
that PB, ,, is the kernel of this map and is generated by Xé, Yai (1<i<n,1<a<yg), where
Zi =07 o7 ' Zyoyt o7} for Z any of the letters X, Y.

The geometric interpretation of the presentation of B, ,, for g > 1 is constructed as follows?
e Generators : We represent 3, as a polygon L of 4¢g sides with the standard identification
of edges. We can consider braids as paths on L, which we draw with the usual “over and

under” information at the crossing points. and we represent the generators of B ,, realized
as braids on L.

Notice that in the braid a; (respectively b;) the only non trivial string is the first one,
which goes through the the wall «; (the wall 8;). Remark also that oy ...,0,_1 are the
classical braid generators on the disk so relations (B1), (B2) hold.

2We borrow the drawings from [7].
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e Relations (BG1-BG3) : The fact that these relations hold is trivial and is explained
in [7].

e Relation (BG4) : Indeed, there is a homotopy between ol_larol_lbr and broflarol
represented in the following picture:

a
Br o " r ;
r
By
Gr Ur
N — \

e Alternative fundamental domain and relation (BG5) :

Let s, and ¢, be the first
string of a, and b, respectively, where 1 < r < 2g.

We can obtain a new fundamental domain, denoted L; with vertex P;, by cutting L along
the paths s1,%1,...,54,ty and by glueing the pieces along the edges of L as we can see in
the following picture, for g = 2:

o

By

N
=™
N

a
B, 2

On L; it is clear that [a1, b7 '] - [ay, b, '] is equivalent to the braid represented as follows

This braid is equivalent to the braid o102...02_; ...0201 so (BG5) in PBg,,.
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5.3.2 Framed configuration spaces on surfaces

In this section we assume g > 1. In [8], the authors showed that the fundamental group PBg,n

of Conf/ (X4,n) can be exhibed as a non-splitting central extension
1— 72" —PBf, 2% PB,, — 1 (5.8)

where £, is the morphism induced by the projection map Conf’ (24,n) — Conf(X4,n) (i.e
B consists in forgetting the framing). Conff (24,n) is an Eilenberg-Maclane space of type
(PBgm, 1). This short exact sequence extends to the following non-split short exact sequence

1—2"—B, 2B, —1, (5.9)

where (3, consists in forgetting the framing. Conf’ (24, [n]) is an Eilenberg-Maclane space of
type (By . 1).

The framed pure braid group PBch’n is generated by A; ; and f, where 1 <i<2g+n—1,2¢9+
1<j<2g+n,i<j 1<k<n together with the following relations

(PR1) A;lemAiJ =Asif(i<j<r<s)or(r+l<i<j<s)or(i=r+1<j<sfor
even r < 2g or r > 2g),

(PR2) AZJ‘lAj,sAi,j = Ai,sAj,sAi_,sl if (’L <3< S);

(PR?)) A;]-lAi,SAiJ = Ai,sAj,sAi,sA;;A;; if (’L <j< S);

(PR4) AZJ‘lAT,sAi,j = Ai,sAj,sAZ;A;;Ar,sAj,sAi,sA;;Ai_,sl if (Z+1 <r<j< S) or (Z+1 =r<
j < s for odd r < 2¢g or r > 2g)

—1 —1 4—1 .
ATHJ-AT,SATH,]' = AMATH,SAJ-’SAHLS if 7 odd and r < 2g;

AL ArsAr_1j = AT_LSAJ»,SILF1 AT,SAJ»,SAT_LSA;;A;ELS if r even and r < 2g,

r—1,7 r—1,s

)
)

(C) the fi are central
)

(s ag sk A2g—1,204k) - [A3 50 1> AL 2g4k) =

2(g9—1)
Aogi1,2g+k *+ A2grk—1,2g+k Aogk,2g+k+1 " Aotk 2g+4n [,

where 1 < k < n, and where we set Asgr1,29+1 = A2g4n,2g+n = 1.

The group Bg,n is generated by Ay, Bi,...,Ag,Bg,01,...,0n-1, f1,..., fn together with the
following relations (B1), (B2), (FB1), (FB2) and

cioj =0jc; forall j >2,¢,=A4;0or Biandi=1,...,¢

c;o1ci01 = 01¢;01¢; for ¢; = A; or B;andi=1,...,¢g
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g -1 _ 2 2(g9—1)
i:1[Ai 7Bi] =01"""0n-20,_10n—2"" 'Ulf1



156

CHAPTER 5. OPERADS AND HIGHER GENUS ASSOCIATORS

5.3.3 The PaB/-module of parenthesized framed genus ¢ braids

Consider the framed Fulton-MacPherson compactification FMg 4(n) of Conff (2,,n).
The boundary 8FMgﬁg(n) = FMgﬁg(n) — Conff(3,,n) is made of the following irreducible

components: for any decomposition n = nj + - - - + nj there is a component
k
Ony e FMS (n) = [[ FMI (i) x FMS ().
i=1

!
2,9

the operad FMg in topological spaces. Given a choice of an embedding S* < ¥,, we have

The inclusion of boundary components provide FM; . with the structure of a module over

inclusions
Pa(n) C Cf(Sl,n) C Fngg(n).
We then define

PaBg = wl(FMgﬁg,

Pa),
which is a PaBf-module in groupoids.

Example 5.3.1. Structure of PaBg(l). As opposed to the unframed reduced genus 1 case,
we have non trivial arrows in arity 1. More precisely, we have 2g automorphisms, A; and
B; € EndPan(l)(l), for all 1 < i < g, that can be depicted as follows:

g

1 1
A; { B; { (5.10)
1 1

and correspond to the following paths in ¥X,. We fix the marked points in the first A-cycle, thus
Ay and By correspond to the paths:

Py
By

Ay
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All other A; and B; are depicted in the same way.

Example 5.3.2. Notable arrows in PaBg(Q).

We have 2g automorphisms, AE’Q and Bz-l’2 S EndPan(2)(12), for all 1 < i < g, that can be
9
depicted as follows:

2 1 2
e -
2 1 2

and correspond to the following paths in Conf’ (X4,2) Again, we fix the marked points in the
first A-cycle, thus Ai’2 correspond to the path:
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Next, the map B% -2 corresponds to the path:

Py
BL?
1
P,
P,
P
Py P, Py

All other AY? and B}* are depicted along the same representation as that for By,

1 2 1 2
1 2 1 2

We let the reader draw the corresponding paths in Conff(Eg, 2).

Moreover, we also have arrows

Remark 5.3.3. By doubling the only braid in A; € PaBg(l), which amounts to taking
01(4;,id12) € PaBg(Q), we get an arrow AX? depicted as follows:

1 2

4

1 2

It is then a fact that

1 1
A112(A1L2)_1: A; { ’ A; %
1 1

\V]

(5.12)

N e Y
I
*®“——-o=80
=
wo(—Low

(\}
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This means that even if, contrary to the reduced genus 1 case, A3’2 s not equal to

1 2
1 2

one can retrieve the latter arrow from the composite A%Q(A;’Q)fl.

Definition 5.3.4. Let COBJ; the CoBY -module in groupoids with S-module of objects & and
where, for n > 1, the morphisms of CoBg(n) consists of isotopy classes of genus g framed
braids (i.e. elements of the braid group Bg,n) «a together with a colouring bijection i — oy
between the index set i € {1,...,n} which leaves the last strand uncoloured and the strands

a; € {ag,...,an} of our braid o and the data of a special braid corresponding to the framing.

The following theorem can be undestood as a rephrasing of the MacLane-Joyal-Street coherence
theorem for framed genus g Ds-modules.

Theorem 5.3.5. As a PaB’-module in groupoids having Pa as Pa-module of objects, PaBg
s isomorphic freely generated by A3’2 and BZ-1’2, foralll <i<g, in PaBg(Q), together with
relations

(Red) A} = A;, B}? .= B;, AV :=1d", B"* :=1d! in PaB/(1),

(D1) PL2:3 4123 R1,2352,3,1 4231 2,31p3,1,2 43,12 p3,12 _ A(12)3

(D2) c131,2,3Bi1,23(R23,1)71(1)2,3,1Bi2,31(R31,2)71(1)3,1,2BZ?>,12(R12,3)71 _ Bi(12)3’

for all 1 < i< g, and the following relation:

(gE) R1,2R2,1(F1)2(g71) — Hg:1 ((1)1,2,331_1,23(@1,2,3)71, (R2,1)71(I)2,1,3(A12,13)71((1)2,1,3)71(R1,2)71 )
as arrows from (12)3 to (12)3 in PaBg(B).

Remark 5.3.6. An easy consequence of the above theorem is that PaBg identifies with the
fake pullback w*CoBg of the CoBY -module CoBg along the forgetful functor w:Pa — &,

Proof. Let Q be the PaB/-module with the above presentation. We first show that there
is a morphism of PaB’/-modules Q@ —» PaBg . We have already seen that there are 2g
automorphisms A;, B; of (1) in PaBg(l) (see Example 5.3.1) and 2g automorphisms 4,7, B}>

of (12) in PaBg (2) (see Example 5.3.2). We have to prove that they indeed satisfy the relations
(D1), (D2) and (gE).

Relations (D1) and (D2) are satistfied: the first decagon relation (D1) can be depicted as fol-
lows:
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(12) 3
4123
(12) 3
. A;23,1
2023 %{ { = o (D1)
i /
(1 2) 3
4312

=

(1 2) 3

It is satisfied in PaBg ,

generating generating loop on g, this corresponds to the path in the framed configuration

expressing the fact that when all (here, three) points move along a

space of points on X, twisting the three points. The same is true with the second decagon
relation (D2).

Relation (gE) is satisfied: Relation (gE) is more difficult to draw so we sketch the way to think

of the right-hand-side. Align the points in a generating cycle of the genus g surface (this means
that they are in the boundary of the compactified framed configuration space). Then if a point
travels through a cycle, its corresponding framing will naturally start to spin as one can see

in the following picture, for g = 2
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and for g =4

If we consider a polygon with 4¢ sides corresponding to a genus g surface, then for each marked
point travelling through the generating cycles, the framing attached to that point will be
twisted by an angle of 7 — %. Next, one can interpret the path on the right hand side of (gE) as
the following path. As we already took care of the behaviour of the framing we will neglect this
information in the picture. (®1.23B]**(@123)~1 (R21)~1213 (A1) "1 (2L3)~L(RL2)~1 )

corresponds to the following picture

One can see that, if ¢ # j, then the paths corresponding to a A; cycle and a B; cycle do not

intersect.

Another possible way to interpret this goes as follows: if we suppose that the marked points
were chosen to be in the A;-cycle of £, the right hand side of (gE) can be drawn as follows:
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P P

In conclusion, one can then easily see that if we take a point and make it travel around all the
generating cycles concerned in the right-hand-side of relation (gE), the corresponding framing
(g=1)

will make 2g x = 2(g—1) complete spins and the first point P; will have done a complete

loop around the second point P,. This is exactly the left-hand-side of equation (gE).

Thus, by the universal property of Q, there is a morphism of PaB/-modules O —» PaBg,
which is the identity on objects. To show that this map is in fact an isomorphism, it suffices
to show that it is an isomorphism at the level of automorphism groups of objects arity-wise,
as all groupoids are connected. Let n > 0, and p be the object (---((12)3)----- )n of Q(n)
and PaBg (n). We want to show that the induced morphism

Autg(n) (p) — AutPaBg(n) (p) =m (Conff(Zg,n),p)
is an isomorphism.

On the one hand, as mf(Eg,n) is a manifold with corners, we are allowed to move the
basepoint p to a point p,.y which is included in the fundamental domain L; described in
subsection 5.3.1. We then have an isomorphism of fundamental groups m (CTnff (Xq,n),p) =~
71 (Conf! (g, 1), Preg)-

On the other hand, one can construct a non-symetric module @ in groupoids over B/ carrying

f

an action of the (algebraic version of the) framed braid group B

on Y, in the following

sense:

e for each n > 1, Q(n) is a groupoid with maximal parenthesizations of unnumbered ele-
ments as objects.

e Qis freely generated by A® := A®® and B}”® := B>* in Q(2), for all 1 < i < g, satisfying
relations (Red), (D1), (D2) and (gE).
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e in Lemma 5.3.7 we show that there are group morphisms Bg,n %Auté(n)(p) — G,
the left one being an isomorphism.

In the same way the collection {PBgn}nZl of pure genus g braids owns a non-symmetric
PB/-module structure denoted PBZ; .

Moreover, one the forgetful map Op — NsOp between the category of operads and the
category of non-symmetric operads induces a map Q — Q. Then, one has by constuction of
@ that Autg(,)(p) is the kernel of the map Autg,)([p]) — Sn. One can actually show that

we have a commuting diagram

PBf é Ath(ﬂ) (p) — > T (Conff(zga n)vp) <:— Uyt (Conff (2!]7 n)apreg)

| |

BJ, — Autgq, ([p) — m1 (Cont! (S, 0)/6,., [p]) <=— m (Cont’ (Sy,1) /S, [pres])

| |

where all vertical sequences are short exact sequences. Thus, in order to show that the map
Autgmy(p) — m (Conff(Eg, n),p) is an isomorphism, we are left to show that

Bf,, — w1 (Cont! (S, 1) /&0, e

is indeed an isomorphism. But this map is nothing else than the map constructed in [8,
Theorem 13], identifying the algebraic and topological versions of the framed braid group on
b

g

O

Lemma 5.3.7. Let Q be the operadic BT -module with unnumbered mazimal paranthesizations
as objects and with generators AV == AP* and B}? == B, for all 1 < i < g, in Q(2)
satisfying relations (Red), (D1), (D2) and (gE).

Let p be the object in Q(n) given by right parenthesization p = (e(e(e(...((ee))...). Then

there is a unique group isomorphism

such that

where A2+ ¢ Auté(n)(p) is obtained from AY2, F' is obtained from F' and R>*t! ¢
Ath(n) (p) is obtained from RY? by some finite sequences of arrows involving the associator

and the operadic module morphisms since the parenthesizations are unmarked.
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In particular, by applying a finite sequence of associators one can show that the above lemma

remains true for all possible choices of base points p € Q(n)

Let us sketch the proof of this Lemma (a complete proof will be done un subsequent works).

Proof. For simplicity, we omit the associativity constraints. One can show by induction that
the image of Af = ak_lAfflak_l is

R12...(kf1),kAL2~~(n—1)Rk,12...(k71)

therefore the image of A} - AF is A;m von—k- We will thus reduce to the cases n=2,3 in the
rest of the proof.

¢, is a well-defined group morphism: Let us first show that there is indeed such a group mor-

phism. First of all, the braid relations are preserved as there are morphisms from B3 to both

groups (the first one is classic, the second one is induced by the fact that Qis a B/-module.

Notice that, by removing the third braid in relation (D1), we obtain relation
1,2 p1,2 22,1 p2,1 _ 412
A;"RVCPAT RS = A;

which can be depicted as follows:

1 2
[ ]
we
1 2
%
A12 {{ = \/\ (D1bis)
12 AL —
/
P
1 2

Then, one shows that relations (FBG1-4) are satisfied by the same reasoning that [33, Propo-
sition 1.3] in the following way: for each 1 < i < g, take X; := A; and X; := (B;)~!. Then
relations (FBG1-3) are equivalent to

(Uf':lei)Q = (Xliafl)Q, (Xli,ai) =1fori=2,....,n—1, (X;,(X])™!)=0?
and are thus preserved by ¢,,. Relation (FBG4) is preserved by naturality in Auté(n)(p).

Thus, we have a group morphism

¢y, is surjective: The fact that the map ¢,, is surjective is a consequence of the fact that all the
defining relations in Q(n) come from the defining relations of Bgm and the oepradic module

partial compositions.
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¢n is injective: Let us now show the injectivity of this map. Let Q be the oeprad module
with same objects as Q and; for every object p of Q(n), we define Aut gy (p) = B;n. Next
we have a map Q —» Q sending the generations A%’Q to A; and Bil’2 to B; in B;Q. Indeed,
if we denote X, := A; and X := (B;)”!, then we have relations (03 0T X5)? = X,
(X7, (1 X{ 1)t = of and [[2_,(B;, (014;01)71) = a%ff(gfl) show that relations (Red),
(D1), (D2) and (gE) are preserved.

Then, as PaB’ acts on both of these operadic modules we conclude that there is a map
Autg ) (p) — Autgn)(p)- In order to prove the injectivity of ¢, we are left to prove that the
composite

Bg,n — Auté(n)(p) — Aut g (p)

is the identity morphism, which is true as, by construction of both maps. [l

This means that any fDy-module morphism ¢ : PaBg — P, is determined (up to isomor-
phism) by A;, B; and the above three relations. As in the framed genus 0 situation, we
have a PaB/ (k)-module in Cat(CoAssy) denoted PaBg(k) = Ak(PaBg). Now consider its

associated inverse system of (Pan )™ (k)-modules given, for all m € N, by
(PaB/)™) (k) := PaB] (k)/(Z™ (k) - PaB/ (k)).

—f
By taking the inverse limit over m of these inverse system, we get a PaB (k)-module in
Cat(CoAssy)

PaB, (k) := lim((PaB)(™ (k).

5.3.4 The PaCD(k)-module of parenthesized genus g chord diagrams

Let us consider g > 0 and n > 0 and define t,, (k) as the k-Lie algebra with generators
xl, yl ti; for i # j € [n],1 < a < g satisfying relations (T1), (T2), (T3) and
(G1,G2) [2%,2]] =0 and [y}, y]] = 0if i # j
(G3) [2%,y]] = dapts; if i # J;
(G4) [wf, +ad, tyy] = [28, ti5] = 0 if {i, 5} N {k} = 05
(G5) [ya + v tis] = [ya, tiy] = 0if {3, j} N {k} = 0;

g . )
(o) a;[x;,y;] + it = 05

)
)

The Lie algebra ty (k) is equipped with a grading given by deg(z$) = (1,0), deg(y$) = (0, 1).
The total degree defines a positive grading on t, ,,(k); we denote by t,, (k) the corresponding
completion. If k = C, we will denote t4 (k) := tgn.

Theorem 5.3.8. (Bezrukavnikov, Enriquez) There is a monodromy morphism PBgy,, —

exp(fgﬁn) inducing an isomorphism of Lie algebras Lie(PB, )¢ — ’Acgyn.



166 CHAPTER 5. OPERADS AND HIGHER GENUS ASSOCIATORS

The collection t,(k) := {t;,(k)}n>1 is provided by the structure of a t4(k)-module in Liey as
follows. The &-module t,(k) inherits the structure of a module over the operad t in Liex with

respect to the collection of maps given on the generators as follows:

op: tgrk)et;k) — tg,gur—{i} (k)
(O,tag) — taﬁ
tij it k¢ {ij}
t,: if k=1
(ti5,0) — pEe:J i
Sty if j=k
peJ
20 if kA
(@50) = Sat if k=i
peJ
Yo if k#£i
(7,0) — Soye i k=i
peJ

Since we are in possession of operad modules Pa(k) and (/JBg(k) in Cat(CoAssy) and of
an operad module morphism f : Pa — Ob(é]\Dg (k)), we are ready to define the PaCD(k)-
module

PaCD, (k) := f*CD, (k)

in Cat(CoAssk) of parenthesized genus g chord diagrams. We have Ob(PaCD,(k)) := Pa

and Morpacp, (k)(n) (P> @) = Mor(/:f)g(k)(n)(pt,pt) =U(tyn(k)).

Example 5.3.9 (Notable arrows in PaCD(k)(2)). We have the following arrows X;, Y; in

PaCD,(k)(1)
1 1
Xi= le Y, = yzl
1 1
and X%, Y;"* in PaCD,(k)(2)
1 2 1 2
XZ'LQ — wzl Y;1,2 — yzl
1 2 1 2

Remark 5.3.10. The elements X%, ;" are generators of the PaCD(k)-module PaCD 4 (k)

3

and satisfy the following relations

(Red) X!? =Yv»? =0, X" = X;, v;'" =Y,

K2
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1,23 2,31 3,12 12)3
(D l) a1,2,3 Xz s X1’23a2’3’1 Xz )3 X2’31a3’1’2 Xz s X3’12 — Xz( ) ,

1,2 2,31 12 12)3
(DQ) a1,2,3]/i > 3)(1,23@2,3,15/1_ )3 X'2,31a3,1,2]/i3, X3’12 — 5/( )

1 J

(4E) X1,2X2,1P12(g*1) _ (a1’2’3§/;1’23(a1’2’3)_1,X2’1a2’1’3(X-2’13)_1(a2’1’3)_1X1’2 ) _

K2

5.3.5 The PaCD/(k)-module of parenthesized genus g framed chord
diagrams

Let tfgc’n(k) denote the graded Lie algebra over k generated by t;;, 1 < i,j < n, 2%,y for
1<i<n,1<a<gwith relations (FT1), (FT2), (FT3), (G1), (G2), (G3) and the following
relation

(FG4) [z} + 2l ti;] = [zF ti;] = 0if {i,j}n{k} =0, for 1 <i<n,1<a<g;

(FG5) [y + i, tis] = [yh, tis] = 0if {i, 5} N {k} =0, for 1 <i<n,1<a<g;

9 . .
(FG6) > [z, ya] + 205t +2(g = Dti =0, for 1 <i<m,1<a<g;
a=1

The map PBSJ;,” — exp(ig;,n(k)) sends the fi to tx; and all other generators as in the unframed

case. It induces a morphism of short exact sequences

l— k" — > 15\]3;”(1{) — > PB, (k) —> 1 (5.13)

| |

l——=K"'—— exp(’zgm(k)) — exp(fgﬁn(k)) —1

. = f : . . . .
This shows that the map PB, (k) — exp(#/ ,(k)) is a k-pro-unipotent group isomorphism.
Later on we will derive this result from the flatness of a connection defined over Conf’ (X4,m).

The &-module tf (k) := {t/ ,,(k)}n>1 inherits the structure of a module over the operad t/ in

Liey with respect to the collection of maps given on the generators as follows:

ot thik)ethk) — ()
(O,t,lg) — t,lg
ty if k¢ {ij}
(t45,0) . E}tm it k=i
Sty if j=k
peJ
¢ if k#d
@0 = S i k=
ye if k#id
(y5,0) —

Sy if k=i
peJ
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Let 1 <4,j5,k <m with ¢ < 7, then

GO ¢f (k) @t (k) — (k)
(0,ta3)) — Lotk—18+k—1
(Oa ta)) — taJrk:fl
ato,_if k<i
(f,0) — Yot lan if =
e if i<k
Y1 if k<i
(y,0) — Serlye i i=k
yd if i<k
bitntjan_1 i k<i<j
S ey i k=i<j
(tij,0) — tijn—1 if i<k<j
SO, i i<j=k
Lij if i<j<k
tizn—1 if k<i
1+n—1
(:,0) — Sty if k=i
=i
t; if i<k

We can then construct the CD/ (k)-module CD/ (k) := Z](f{;(k)) of genus ¢ framed chord
diagrams.
Let 6]5;(71) be the I-adic completion of CDg (n) with respect to the augmentation ideal I.

Since we are in possession of operad modules Pa(k) and (/JBg(k) in Cat(CoAssy) and of an

operad module morphism w : Pa — Ob((/jﬁf(k))7 we are ready to define the PaCD (k)-

module

F1) — o OD’
PaCD/ (k) := w*CD (k)

in Cat(CoAssy) of parenthesized framed genus g chord diagrams. We have Ob(PaCDg k) ==
Pa and Morp,cp7 1) (n) (p,q) := Morcfﬁg(k)(n) (pt,pt) =U(H (k)).

Example 5.3.11 (Notable arrows in PaCD/ (k)(1) and PaCD/ (k)(2)). We have the follow-
ing arrows X;, Y; in PaCDg(k)(l)

and X;°%, Y% in PaCD/ (k)(2)
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We leave the reader the care of drawing the chord diagrams corresponding to the relations
(FG4-6) accordingly.

5.3.6 Genus g associators

Definition 5.3.12. A genus g associator over k is couple (F,G) where F € Ass’ (k) is

a k-associator and G is an isomorphism between the PaB’ (k)-module PaB (k) and the
GPaCD/ (k)-module GPaCDJ (k) which is the identity on objects and which is compatible
with F'. We denote its set by

/\f
Ass,(k) :==Tso"__ PaB, (k), GPaCD/ (k)).
s5y(k) SO(Pan(k),GPaCDf(k))( aB, (k), GPaCD; (k)
Theorem 5.3.13. There is a one-to-one correspondence between elements of Assy(k) and
elements of the set Assy(k) consisting on tuples (u, ®, As1,..., Ay, B1,...,By) where (u,®) €
Ass(k) and A;, B; € eXp(’EQQ), fori=1,...,g, such that, for 1 <1i < g we have

12802316312 AUD3 pere | = (912 ALB [rlbati)/2y (5.14)
BB B2 = BIPP where B; = {®123) Bl {emnhatho) /2y (5.15)
g
{eyt12+2(gfl)ut1} _ H ({@}B3’23{¢}71, {eﬁutm/Qq)Q,l,S}(A?713)71{((1)2,1,3)7167;Lt12/2})'
=1
(5.16)

Proof. Let (F,G) € Assy(k). An automorphism F' of PaB’ corresponds uniquely to a couple
(1, ®) € Ass(k) as, by setting 1 = 2\, one can neglect the term X intervening in Ass’ (k).
An automorphism G of PaBg is uniquely given as follows. The generators A3’2 and BZ-1 2 in
Aut@g(k)@)(m) are sent via G to A% and A’ respectively, with A1 € exp(ty2). The image
of relations (D1), (D2) and (gE) are precisely the relations (5.14, (5.15)) and (5.16) under this

correspondence. O
Conjecture 5.3.14. The set of genus g C-associators Assjgc((C) is not empty.

We will give some comments on this conjecture in the following subsection
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5.3.7 Towards the genus ¢ KZB associator

Let us recall the construction from [35] of the universal genus g KZB connection (defined over
the configuration spaces). Endow the surface ¥, with a complex structure and denote C' the

resulting smooth closed complex curve. We have an isomorphism

g
m1(Cx) =5 my = (A, Ba,1 < a < g [[(Aa, Ba) = 1).

a=1

and each path from z to y in C induces an isomorphism 71 (C, z) — 71(C,y) We have
PBy., = m1(Conf(C, n), z)

where x := (21,...,2,) € Conf(C,n).

Define the map po : PBy,, — exp(f?") by means of the following composite

PBy., = mi(Conf(C, n),z) — m (C", x) = H m(C,xi) — ) — F) — exp(f,)™,
i€[n]
where Fj is the free group with generators v,,1 < a < g, 7y — F}; is the composite

g — mg/N — F,

where 7y — my/N is the quotient morphism, where N is the normal subgroup generated
by the A,, 1 < a < g and 7y/N — F,, B, + 7, is the isomorphism induced from the

presentation of 7,/N, where F, —s exp(f,) is the assignment ~, — exp(z,).

According to [35], the principal G-bundle with flat connection on X = Cf,,(C) corresponding
to po is then i*(P,), where i : X — C™ is the inclusion and

(Pn — C") = (P} — CO)" X exp(fq)m exp(tg,n),

where (P{ — C) is the principal exp(fg)—bundle with flat connection corresponding to the
above morphism 7, — F, — exp(f,).

Denote the set of flat connections of degree 1 by
Fi = {a € QYC™ — (diagonals), P, Xaq ty.n[l])|da = a Aa =0}
and denote its subset of holomorphic flat connections by
FPol = {a e HY(C™, Q5% @ (P, Xad tgn[1])(* Diag))|da = a Aa = 0}

with Diag = >_,_,

Enriquez showed the following:

Diag,; and Diag,; C C™ is the diagonal corresponding to z; = z;. Then

Theorem 5.3.15. There is an element axz € FJ*°! given by
ozéffB = Zai, (5.17)
i=1

where a; € HO(C, Kg) ® (P, Xad fg,n[l])(Zj;#i Ayj)) expands as a; =3 <<, wPyi modulo
®q22tg,n[1a Q]'
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Asin [35], K9 = OF 'R Ko OB, w) = 181 @ w, © 1971, where (wa)1<i<q are the
holomorphic differentials such that f 4 Wb = 0ap and A, B, are the images of A,, B, under
Ty — wot ~ Hy(C, 7).

Recall the universal g-KZB connection over the configuration space Conf(X4, n) is a particular

explicit element aky € F{wz can be constructed as a sum
n
KZB
Qg = Zai, (5.18)
i=1

where a; € H°(C, Kg) ® (Pr, Xad Eg,n[l])(zj:#i Aj;)) expands as a; = )31 ,<, w,(f)yfl modulo
Dy>2tgnlL,ql.

Consider integers (g,n) in hyperbolic position (i.e. 2 —2g —n < 0) and let S be a genus
g topological compact oriented surface, z1,...,x, n marked points on it. Now let X be a
Riemann surface modeled on S with genus g and n marked points. As X is hyperbolic, the
Uniformisation Theorem says that X is isomorphic to a quotient /T of the Poincaré half-plane
b by a discrete subgroup I' of PSL(2,R). Fix 7 € h and consider a uniformization X, of X.
This corresponds to a point x in the moduli space M, ,,. Such a point can be described by
3g + n — 3 parameters. Enriquez chowed that, under this uniformization, the one form axz
induces a flat connection
VKZB ._ g _KZB

gn,K T agﬂla"i

over Conf(¥, ,;,n). Now, the fundamental group 71 (3}, zo) of X7 := %, , — 0 is the nothing

g,k

but the free group F(zt, yt, 22,92, ...,29,y9) on 2g generators. Now choose a non-zero tangent
vector Uy of Y, at 0. Then, flatness of VEZB implies the existence of a Q-algebra map

g9,k

719,KZB70 . @[ﬂ_l(zx _70,70)] — @«xl,yl,ﬁ,y?,,..,:Eg,yg»

o, 9,7
o0
,KZB — KZB
Yo Tf 0, o(fy) T ZReg/agﬂlaﬁ
k=0 v
Definition 5.3.16. The non-framed genus g KZB associator is the tuple

eg(r) = (A1 (r), Bi(K), .-, Ag(r), By(r))

where
,KZB a
Ai(r) = T25"5 (V)
,KZB
Bi(k) = Tfmjo(%b)

where v& and ~? are the generating loops in 78 (3,..).

We do not know what kind of monodromy relations these associators may have. In particular,
if we want to relate them to our operadic definition of genus g associators we need to extend

the universal KZB connection to its framed version.

We then have
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Conjecture 5.3.17. There is a flat universal framed KZB connection VI XZB defined on the

g,k

principal exp(t) ,,)-bundle over Conf! (C,n) constructed as above such that

e its pullback of VIX%B to the associated exp({t{;n)—bundle over C" is

g,k

fKZB ._ fKZB
vgyn,n '*d*agyn

where
ofKZB ._ (KZB | Z t;dlog(\;);

g,n g,n
1<i<n

o the I-form agf,fZB is (C*)™-basic and the induced connection on the exp(ty,,)-bundle over
Conf(C,n) given above coincides with the universal genus g KZB connection in theorem

5.8.15.

Let & represent a point in the moduli space M, ,. In the case g = 2 i.e. the hyperelliptic
case, we can write k = (11, 72). Let (2im, @{iz) be the framed KZ associator coming from the

framed universal K7 connection defined above.

If this conjecture holds, then a consequence should be that (2, @{iz, eg(n)), where eg(n) =
(A{(n), B{(n), cee Ag(n), Bg(n)) is the framed version of the above genus g KZB associator,

is a genus g framed C-associator.

5.3.8 Genus g Grothendieck-Teichmiiller groups

Let us finish this chapter by quickly giving definitions of Grothendieck-Teichmiiller groups in

genus g by means of the operadic point of view of these objects.

Definition 5.3.18. The (k-prounipotent version of the) genus g Grothendieck—Teichmiiller
group s defined as the group

——f —f
T (k) := Aut™ PaB (k
GT, (k) Ut(Mod(ﬁﬁa{(k)))( aB, (k))

of automorphisms of the PaB (k)-module PaB, (k) which are the identity on objects.

The presentation of PaBg then implies the following: each automorphism F' of PaBg compat-
ible with an automorphism G of PaB’ is uniquely defined by

o (7
o (&

(R12) = (R12),

((1)1,2,3) — (1)1,2,3 . f(ZE, y)7

o F(Azl,2) = g;r(xlayla s axgayg)v
( 1

o I ’2):g;(x1,y1,...,acg,yg),

where (A, f) € éi‘f(k) and g’ € 131\3912(k). These elements satisfy relations induced by (Red),
(D1), (D2) and (gE) which will be left to be studied in a subsequent work.
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Definition 5.3.19. The graded genus g Grothendieck-Teichmiiller group is the group

GRT, (k) := Aut],

(Mod(PaCD(k)) (PaCDy(k))

of automorphisms of the PaCD (k)-module PaCDZ;(k) which are the identity on objects.

Notice that there is an isomorphism

A PaCD/ (k)) ~ Aut,

f
(Mod(GPacD/ (1)) (GPaCDg (K)).

+
“t(Mod(PaCDf(k))(
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Chapter 6

On the universal twisted elliptic

KZB connection

6.1 Bundles with flat connections on I'-twisted configura-

tion spaces

6.1.1 Principal bundles over I'-twisted configuration spaces

Let T’ := Z/MZ x Z/NZ and let E be an elliptic curve over C and consider the connected
unramified I'-covering p : E-—F corresponding to the canonical surjective group morphism
p:m(E) 2 Z? — T where 1 (F) = Z? is the natural choice of such an isomorphism. Let us

then define the twisted configuration space
Conf(E,n,T) :={z = (21,...,20) € E"|p(z) # p(2;) if i # 5},

and C(E,n,T) := Conf(E,n,T')/E its reduced version. Notice that C(F,n,T') is just the

inverse image of C(E,n) under the surjection p" : E™ — E™.

Let us fix a uniformization F ~ E,, where 7 € $: E;, = C/A,, with A, = Z 4+ 7Z. Then
E~FE;p,where E;r =C/A;r and A, 1 := (1/M)Z x (7/N)Z. Therefore

Conf(E,n,T') ~ (C" — Diag, , r)/A7,

where
Diag, , = {(z1,...,2n) € C"|24j := 2z; — 2; € A1 for some i # j}.

We now define a principal exp(flin)—bundle P; ., r over Conf(E,n,T") as the quotient
(((Cn - Dia‘g‘r,n,F) X exp(ill—‘n))/AZ .

In other words, it is the restriction on Conf(E,n,I") of the bundle over C"/A” for which a
section on U C C"/A™ is a regular map f: 7~ (U) — exp({{,n) such that

177
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hd f(z+6l) :f(Z),

o f(z+78;) = e 2% f(z).
Here m : C* — C™/A” is the canonical projection and d; is the ith vector of the canonical
basis of C™.

Since the e~27%i’g in exp(i{n) pairwise commute and their product is 1, then the image
of P, r under the natural morphism exp(flin) — exp(t],,) is the pull-back of a principal
exp(t] ,,)-bundle Pr,, r over C(E,n,T).

6.1.2 Variations

The first variation we are interested in concerns unordered configuration spaces.

The symmetric group &,, acts freely by automorphisms of Conf(E,n,T") by o x (21,...,2,) :=
(Zo-1(1)s -+ +» Zo-1(n))- This descends to a free action of &,, on C(£,n,I'). We then defined the

unordered twisted configuration spaces
Conf(E, [n],T') := Conf(E,n,I")/&,, and C(E, [n],T') := C(E,n,T")/&,,.

The symmetric group &,, also obviously acts on the Lie algebra tlin. One can then define,
keeping the notation of the previous paragraph, a principal exp(ilin) X G,-bundle Py p,,) - over
Conf(E, [n],T'): it is the restriction on Conf(E, [n],T") of the bundle over C" /AT x &,, for which
a section on U C C"/A™ x &,, is a regular map f : 7~ (U) — exp(flin) x &y, such that

o f(z+d;)= f(2),
o flz+76;) = e 2 f(z),
. f(o%2) = of(2).

In more compact form:

PT,[n],F = (((Cn - Diagr,n,F) X eXp&En) A 6”)/(/\:} A 6”) :

Remark 6.1.1. As before, Py |, r descends to a principal exp(@;’n) X &, -bundle pﬂ[ﬂ]f over
the reduced unordered twisted configuration space C(E, [n],T).

The second variation concerns ordinary configuration spaces of the base £ = E,r of the
covering map B, — E,r.
Recall from §4.3.3 that the group I'"* acts on ’Ein via 6. Hence one has a principal eXp(’Aclin) xI"-
bundle

P(T,F),n = ((Cn - Diag‘r,n,F) X eXp(%{,n) A Fn)/AZ,F

over Conf(E,n) ~ C" —Diag, ,, p/A” p. Here the action of A7 on ’E{n is given by the morphism

A —T, a+br—(a,b).

Remark 6.1.2. In a similar way as before, the above bundle obviously descends to a principal

exp(ilin) x (I'™/T)-bundle p(T,F)m over the reduced ordinary configuration space C(E,n).
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In concrete terms, a section over U C C"/A;r of P(.r), is a regular map f : Y U) —
exp(t],,) x I' such that

if(z)7
—27izy;
[

o f(z+76;/N)=(0,1);e~~  f(z).

o f(z+6i/M)=(1,0)
1

Remark 6.1.3. We leave to the reader the task of combining the two variations.

6.1.3 Flat connections on P, ,r and its variants

A flat connection V,, r on P, , r is the same as an equivariant flat connection on the trivial

exp(t] ,,)-bundle over C" — Diag; ur, i.e., a connection of the form

Vienr =d— Z K;(z|T)dz; ,

i=1
where K;(—|7) : C" — ] ,, are meromorphic with only poles at Diag .., 1, and such that for
any i, j:

(a) Ki(z +6;|7) = Ki(z|7),

(b) Ki(z+7d;|7) = e7?™4) Ki(al7),

(¢) [0i — Ki(z|7),0; — Kj(z|7)] = 0.

T

Moreover, the image of V., r under ’E{n — iLn is the pull-back of a (necessarily flat) con-

nection v‘,-’»mp on p‘,-’»mp if and only if:
(d) Ki(z|t) = Ki(z+u)_,; 8|) for any u € C and Y, K;(z|7) = 0.

Similarly, the image of V., , r under ’E{n — ’E{n x I'™ is the pull-back of a (necessarily flat)
connection V() , on P r), if and only if:

() Ki(z+ 3|7) = 0((1,0),) K (al7),
(f) Ki(z + 7)) = 0((0, 1);)e 7 2@ K, (a]7),

Remark 6.1.4. Observe that (e) implies (a), and that (f) implies (b).

Finally, the image of V., r under ’E{n — ’E{n X &, is the pull-back of a (necessarily flat)
connection V. i, on p,,-’[n]yp if and only if:

(8) Ki((ij) xz) = (ij) - Ki(z).

6.1.4 Constructing the connection

We now counstruct a connection satisfying properties (d) to (g). Let us take the same con-

ventions for theta functions as in [24]. Observe that for any & = (ap,a) € A;r, the term
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e~2mMaz(0(z — &)+ x)/ (0(z — @)0(z)) only depends on the class a = (Gg,a) € I' of & mod A.
The we set

Coriae 0z — &+ x|T) 1 o . e~ 2miar
ka = 2miax i Qﬂlazk o
(@,2lr) := e 0(z —alr)b(z|T) = c (2,2 —alr) + T ’

where k(z, z|7) := % — 1 (as in [24]), and

Kij(2lm) =Y kaladz;, 2|7)(t8),  Kilzlr) = —yi + Y Kij(zi;]7).
ael JijFi

In the rest of the section we fix 7 € $ and drop it from the notation. Recall from [24] that
k(z,z+1) = k(z,2) and

. Forixz _ 1
k(z,z47) = T2k (2, 2) + SA——
x

Proposition 6.1.5. The K;;(z)’s have the following equivariance properties:

(t5;)- (6.2)

6727r1adz.; -1

2mi

Kij(z = 7/N) = F24009((0, 71):) (K5(2)) + 0((0, ~1)i) (Y

acl’

adz;

Proof. The first equation comes from a straightforward verification. Let us show the second

relation. On the one hand, we have

T T a
Kij (Z - N) = Z ka (ad(wi)az - N) (tij)
ael
N —iwa,d(mi)_l
_ 2ima dd(mz) X _ l A L Ot

% ad(z:) _ 1)

—2im(a—1) ad(z;) ' . e
<Ze I k(ad(z;),z — &) + ad(z))

acl

_ —2ir(a=1) 40 )
_ —2ir(a—1) e N i) — 1
0(0,—1 — v @) E(ad(x;), 2 — @ s
@ ><a§erje * T (t5)

On the other hand,

e ORI S (Z kra<ad<xi>,z>> ()

acl

2im o4 —2ira g e~ 278 ad(wi) _ 1
= e~ adl@) Z e~ 2@ (ad(z;), 2 — @) + T adlm) (t5)
T

acl’

=t ad(w) _ o %E ad(m)) )
£
J

=2 ad(a:) Voa_ay s
(ge v 2@ (ad(n;), 2 — &) + TE

SO

—2ir(a=1) 4 —2im g 672”15;171) ad(z) —6%'&(1(%)
> EH R b ad(@), - 3) = e FE () - 1) )
adl\T;

acl ael




6.1. BUNDLES WITH FLAT CONNECTIONS ON CONFIGURATION SPACES 181

By putting these two equations together we finally get

Ky (z—%) = 0(0, —T)e ¥ M@ KT (2)

2im

7672”3\(]@ 1) ad(x;) e ad(z;) + ewad(m _1
ad(z;)

acl

- — —217r ad(z;) - 6211'\77 ad(z:) _ 1 o
= 0(0,~T)e DKij(2) +00,=T) | Y ————(t) |

aecl
g
Now recall that &5 7=l — e P and %I:;W(tij) = (1 — TR ad(zf‘)) (y1)-
We thus have
T T
K; (Z+N5j) = —yit Y Kip(aiy) + Ky (Zij - N)
i'#id

and therefore we get the announced relation

T - - =207 (s
Ki<z+ﬁ5j) = 0((0,1);)e " @) g (2).

Consequently the K;(z)’s satisfy conditions (e) and (f) above (and thus also (a) and (b)).

Moreover, the K;(z)’s also satisfy conditions (d). Indeed, the first part of (d) is immediate and
ko(x,2) + k_o(—z,—2) = 0, therefore K;;(z) + K;;(—2z) = 0, and thus ), K;(z) = — >, vs.

Finally, from their very definition, the K;(z)’s also satisfy condition (g).

In the next paragraph we show that the flatness condition (c) is satisfied.

6.1.5 Flatness of the connection
Proposition 6.1.6. [0; — K;(z),0; — K;(z)] =0, i.e., condition (c) is satisfied.
Proof. First we have

0i(K;(z)) — 0;(Ki(z)) = 0;Kji(25i) — 0;K;j(zi5) = 0i(Kij(2i5) + Kji(251)) = 0

since K;;(z) + K;;(—z) = 0. Therefore we have to prove that [K;(z), K;(z)] = 0. Asin [24] it

follows from the universal classical dynamical Yang-Baxter equation:
—lyi, Kji] + [Kji, Kii] + c.p.(i, j, k) =0, (CDYBE)

which we now prove (here K;; := K;;(z;;)). For any f(z) € C[[z]] we have

fladz;) — f(—adx;) 5
(ada; 2 1o
[yk,f a ZE B;‘ ad$1+ad$j [ ki 1]]
f(adz;) — f(adz; + adx; o
i oy (15)] = 3 H2 il

Py —adxl
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— ad:rj) — f(fadxz)
—adz;

[y, fladar) (t7)] = > f(—adw;

Ber
It follows that the Lh.s. of (CDYBE) is now

[7t§ka ?z]

Z (ka(—adzj, 2ij)ks(—adzy, zir) — ka(adz;, i) kp—o(—adzy, 2ji)
a,Bel
kg,a(adzj, ij) — k:g,a(ad:ci + adxj, ij)

Jrkg (adzi, zik)kg,a(adzj, ij) +

adz;
kg(adwi, zix) — kg(adx; + adwj, zix)  ko(adxs, 2i5) — ka(—adxj, 2i5)\ o .8
* adz; B adzx; + adx; )[tija til
b i b

and thus (CDYBE) follows from the identity

ka(—v,2)kg(u+v,2") — ka(u, 2)kg_a(u+v,2" — 2) + kg(u, 2 )kg_a(v, 2’ — 2)

Jrk:g,a‘(v,z’ —2)—kg_o(utv,2 —2) n kg(u,z’) — kg(u+v,2")
u v

ka(u, 2) — ka(—v,2)
U+ v

=0.

This last identity can be written as

(ka(v,z) - %) <kg(u+v,z') + uiv) - <ka(u,z) + %) (kﬁa(quv,z' )+ uiv)
+ (kg(u,z/) + %) <kga(v,z/ a4 %) —0,(6.3)

which (taking into account that ke (x,z) + (1/z) = e~2™9% (k(x, 2z — &) + (1/x))) is a conse-
quence of equation (3) of [24]. O

We have therefore proved:

Theorem 6.1.7. V., 1 is a flat connection on P, , 1, and its image under tlin — flin 18

the pull-back of a flat connection NV, r on Py . O

6.2 Lie algebras of derivations and associated groups

6.2.1 The Lie algebras 0} and 0"

Let fr be the free Lie algebra with generators x, t* (o € T'). Let p,q > 0. We define 257 to
be the subspace of fr @ (fr)®!'! consisting of elements

(D, C), where C = (Cq)acn,

such that deg, (D) +deg,(D) = deg,(Cy) +deg,(Cq) = p and deg, (D) — 1 = deg,(Cy) = ¢ for
every a € I') and that satisfy the following of linear equations:

(i) Co(z,t%) = C_o(—2z,t78) in fr,

(ii) [z, D(z,t7)] + > [t* Colz,t?)] = 0 in fr,
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(i) [D(x1,t13),y2] + .p.(1,2,3) = 0 in t] 5,

(iv) [D(1,t05) + D(w1,1y3) = [Cal2, t53), 1], 185] = 0 in ] 5,

(V) [Calar, 1), 1557 + 155) + [1557, Carp(@1,8]5)] + [t5, Ca(wa, t35)] commutes with £g, in
t] 3.

Remark that (i) and (ii) imply another relation

(vi) D(z,t%) = —D(—z,t=8),

which is very useful for computations. Then 0} := @, , (2§ )P*<.

We then define a Lie bracket (,) on fr @ (fr)®I'l as follows:
((D,C), (D', C") := (6c(D') = 6c/(D), [C,C"] + 6c(C") — 6c:(C))
where d¢ € Der(fr) is the derivation
o x— 0,1t [t¥ Cyl,

e ¢ acts on (fr)®'! componentwise on a direct sum : d¢(C")o = dc(CY),

e the bracket is understood componentwise as well: [C, "], = [Cy, CL].

We let the reader check that 65 is stable under (,), and becomes a bigraded Lie algebra'.

We now define o' as the quotient of the free product d} * sly by the relations [é, (D, C)] = 0,
[h,(D,0)] = (p — q)(D,C), and (ad? f)(D,C) = 0 if (D, C) € d} is homogeneous of bidegree

(p,q). Here
o= -]
0 0 0 -1 1 0

form the standard basis of sly. If we respectively give degree (1,—1), (0,0) and (—1,1) to é, h
and f then 3" becomes Z2-graded.

We then define 9 := ker(d" — sl5), which is (Z)?-graded. One observes that it is positively
graded and finite dimensional in each degree. Thus, it is a direct sum of finite dimensional

slo-modules.

6.2.2 The Lie algebras d{ and "

We write df for the free bigraded Lie algebra generated by d5.’s (s > 0, v € I') in degree
(s + 1, s) with relations

forall s >0 and vy €T.

We then define 9! as the quotient of the free product df * sly by the relations [é,4, ] = 0,
[h,65,4] = 805, and ad®T ! (f)(J,,) = 0; and df as the kernel of o — sl,. As above, we have

ol = DE X slp, and DE is positively graded (actually (Z~¢)?-graded).

IThe proof is straightforward but quite long. We do not give it since we do use another simpler Lie algebra below.
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We now give examples of elements in 0} that are of some use below. For any s € N and v € T,

> l(ada)?t? 7, (—adx) ™)

p+qg=s—1pBel’

we set

and
(Csy)a := (adz)*t*™ 7 + (—adz)*t*7.
Observe that (D, Cs ) = (—1)°(Ds,—v, Cs,—~)-

The following result tells us that 0, +— (Ds,, Cs ) defines a bigraded Lie algebra morphism

o5 — 9§, that obviously extends to o' — .

Proposition 6.2.1. (Ds,Cs ) € (25)5tH1.

Proof. First observe that relations (i) and (vi) are obviously satisfied.

To prove (ii) it suffices to notice that in the free Lie algebra with three generators x,t1,t2 we
have

[t1, (ad x)°ta] + [ta, (—ad x)’t1] = Z [z, [(—ad 2)ty, (ad z)Pts]] .
pg=s—1

Let us prove (iii). In tlin we compute for #{4,j,k} = 3,

[y, (ad )P = — > Y (ad@)F[ty, (ad 2) ']

k+l=p—1 B
S > (ada)f(—ada)) [ty te 1= DY [adx)Fty,, (—ada;) 't ).
k+l=p—1 B k+i=p—-1 B
Therefore, in tlig, we have
v, D(wa,ths)] = Y > [[(adwo)™ty, (— adws)'t35 7777, (— ad 22)™ 5]

k+l+m=s—2 «,3
+D 0 D) (ad wo) My, [(ad @) 'ty (— ad wa) ™55 ).
k+l+m=s—2 «,3
Then [y1, D(x2, tgg)] + ¢.p.(1,2,3) = 0 follows from the Jacobi identity.

Let us prove (iv). On the one hand we have
[D(zh t?2) + D(xlv th)a t%B] =

S llladzy )Pty 7, (—adwy )145] + [(aday )Pt 7, (—adar )], 155]
p+q=s—1 Bl

= 37 N (l(aday P 48], (—ada ) 1H5) + [(ada )Pt 7, (—ada) (155, 1)
pt+q=s—1Bel

+(ada1 )P[t75 7, 5], (—adey)t357) + [(ada )Pe357 77, (—adr) [t 155]])

=0t8s > S (aden)P[t57 7, (—ada)THhy] + (adwy )P[tDy, (—ade) 255 4]
p+qg=s—1BeT
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=[t95, Y > (adws)P(—ades) (155777 + (—1)°6557 7, 4,)].
pt+qg=s—1pBel’

On the other hand, we have
[Ca (w2, t55), y1] = [(ada2)*t557 + (—adws) 1557, ]

== Y S (adwn)P(— ada) [t 1577 4 (—1)15 )
pt+qg=s—1pel’

Therefore (iv) is satisfied.

Let us prove (v). We have
[Cal@1, t]), b5 + 5] = [(ad w1)*t]5 7 + (—ada1)*t557, 757 + t55]
= (adw2) [t557 + (=155 7,557 + (ad 21)°[t55 7 + (—1)°t05 7, th5]
= (ad 22)*[t557 13 7 + (—1)*th3 "] + (ad w1)*[ths, 155777 + (=1)%t55 717,
Therefore, by defining A = thy 7 + (—1)%t55"7 and B = t557°77 + (=1)t55° 17 we have
[t9, [Ca (1, 15), 85577 + th3]] = [t8, 1557, (ad 22)* A] + [t5, (ad 21)* B]]
= [[t55,15577], (— ad w3)* A] + [t5577, (— ad 23)* [t5, A]]
H[[5, th5), (— ad x3)* B] + [ths, (— ad 23)*[tSy, B]
= [[ths, t50], (— ad w3)° A] + [t5577, (— ad 23)°[ B, 13 ]]
[0, 18], (— ad 23)° B + [thy, (— ad 23)°[A, 155)]
= [[ths, (ad @2)*A] + [t55°, (ad 21)° B], 53]
This finishes the proof. O

Remark 6.2.2. We do not know if 0 — df is injective or not.

6.2.3 Derivations of t|, and ],

Lemma 6.2.3. We have a bigraded Lie algebra morphism df — Der(t},,), taking (D, C) € d
to the deriwation {p ¢y :
x; — 0,

Jij#i

£ > [t9, Ca (i, 15,).

This induces a bigraded Lie algebra morphism df — Der(t] ,,).
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Proof. We have to prove that defining relations of tlin are preserved by § := {p ¢). First

observe that relations [z, z;] = [2; + x;, 5] = [2:,15,] = [t7;, t7] = 0 are obviously preserved.

Then conditions (i) and (ii) respectively imply that t§; = ¢;;* and [z;,y;] = >_, t7; are pre-
served. Condition (vi) implies that [z;,y;] = [x;, ys] is preserved, and (vi) together with (iii)
imply that [y;,y;] = 0 is preserved. Therefore it follows from the centrality of », x; and

&>, xi) =0 that
s yi) = - S lorpl) = €32 S8,

jii jiti e
Condition (iv) ensures that [y;, 5] = 0 is preserved, and together with (vi) it implies that

[yi +y;,t;] = 0 is preserved. Finally condition (v) implies that the twisted infinitesimal braid

relations are preserved, and the first part of the statement follows.

For the second part of the statement it remains to prove that the centrality of >, v; is preserved.
This follows directly from the identity £(°, ;) = 0 that we now prove. Relation (vi) implies
that for any ¢ # j one has D(mi,tfj) = —D(—xi,t;jﬂ) = —D(acj,t?i) in ¢}, (the last equality
happens since deg, (D) = deg,(Cy,) + 1 > 0), and hence

€0 wi) =D D) =Y Dl(wit;) =Y D(x;,t];) =0.
i ] i<j j<i
We are done (the compatibility with bracket and grading are easy to check).

The last part of the statementis a consequence of the fact that £(3°,; vi) = £(>°, @) = 0, that

we have already proved. o

We now prove that this morphism extends to a Lie algebra morphism o — Der(t] ,,):

Proposition 6.2.4. We have a bigraded Lie algebra morphism d° — Der(t{n) taking (D, C) €

- b
o to &bp,c) and g = (a d) € sly to the derwation
c

&g t% — 0, (ml yl) — (xi yi) (Z Z) .

This induces a bigraded Lie algebra morphism 9" — Der(t] ,,).

In what follows we write d := i~L, X :=¢and Ag := f and d := &, X = & and Ag = §f.

Proof. It is obvious that for any g, ¢’ € sly, &, defines a derivation of the same degree of tlin, and
that &y o = [€4,&y]. Hence we have a bigraded Lie algebra morphism sly * oy — Der(tlin).
Let us prove that it factorizes through the quotient dT.

It is relatively clear that [X,«E(Dﬁc)] = 0 and [El,f(Dyc)] = (p—q)(D,C) if (D,C) € (df)P1.

Thus it remains to prove that (ad Ao)p(f(ac)) =0 if (D,C) € (3f)P9. We do this now. Let
us write £ := {p ¢y and A := (ad Ay)P(€). Then after an easy computation one obtains on
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generators:
Alz;) = —PAg_lf(yi) = —PAS_I( Z D(%’,tfj)),
G
Alyi) =A8e(y) = AF(D_ Dl(ai.t}))),
jiji
A(ty) =ABE(t) = AB(LS, Calwis t))):
Finally remark that we have an increasing filtration on ], defined by deg(z;) = 1 and

deg(tf;) = deg(y;) = 0. Ag decreases the degree by 1 and vanishes on degree zero elements. The
result then follows from the fact that deg,(C) = p—q¢ < p and deg, (D) = p—q—1 <p—1. O

Now composing with 2} — 9} (resp. ' — ') one obtains a Lie algebra morphism 95 —
Der(t] ,,) (resp. 9" — Der(t] ,,)). We write & :=¢(p
have ], x 07 = (], X d) % sly, with ], X d! positively graded (since both ¢} , and d', are

c,.,) for the image of d5 ,. We then

5,7

(ZEO)Q—graded) and a sum of finite dimensional slp-modules. Therefore we can construct the

semi-direct product group

GL .= exp(tlin x o)™ x SLy(C), (6.4)

where exp(tlin x 0% )" is the exponential group associated to the degree completion of tlin 3ol

Similarly, we define G, := exp(t] ,, @ 9)" x SLy(C).

Notice that one can also define semi-direct product groups G := exp(t] ,, x 95)" x SLy(C)

and ég = exp(t],, % 1) % SLy(C). We therefore have the following commutative diagram:

G ——~GF (6.5)

_—

Gl — G

Lemma 6.2.5. The kernel of 0 — Der(t],,) (n > 2) is the space of elements (0,C) for
which Cy is proportional to t*, and ker(df — Der(t] ,,)) = Cdo,0.

Proof. Let us first prove it for n = 2. Recall that £ 5 =t} 5/(x1 + 22,51 + ¥2), so it is the Lie
algebra generated by z (the class of 1), y (the class of y1) and t*’s (classes of 7,’s) with the

relation [z,y] = Y. t*. Then the derivation & p ¢ associated to (D, C) € 2} is given by

ael’
z— 0,y — D(z,t%), 1% — [t*, Cp(z, t%)].

This derivation vanishes if and only if D = 0 and C,, is proportional to ¢*. Finally, the result

for n > 2 follows from the fact that

5((123)70) = (u— ull 0o E((Z),C) o(uru

where ¢ ((Z) ¢ denotes the derivation of t],, associated to (D, C). O
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6.2.4 Comparison morphisms

Let p: 'y — T’y a group morphism. We have a comparison morphism 651 — 552, (D,C) —
(DP,CP) defined by

tP(B)+v
Df:=D Z, Z #Tr(p) 5 (Cp)a = Ca Z, Z #Tr(p)

yEcoker(p)

When p is not surjective it depends on the choice of a section coker(p) — I's. It extends to
971 — 92 by sending the generators of sly to themselves. These comparison morphisms are
compatible with the morphisms ?"¢ — Der(tliin), for i = 1,2. Namely, there is a commutative
diagram

~ I'y Iy
0l X t1,n — tl,n

L

o2 i tlfzn —t

Finally, we have comparison morphisms for the corresponding groups that fit into a commuta-
tive diagram
Gl — = GI2 (6.6)

Notice that the image of (Ds ., Cs ) under a comparison morphism is no longer of this form

except if p is injective. In this case (and in this case only) we have a comparison morphism tlflrl X
fj(aHﬁ and
G5,y 80 D gecoker(p) Os.p(7)+5- In particular we have a canonical natural inclusion GY — GI

ol — tI;anIDFQ taking z;’s, y;’s, d, X and A to themselves, and t7; to Zﬁecoker(p) t

(which descends to an inclusion G) — GL).

6.3 Bundles with flat connections on moduli spaces

6.3.1 On some subgroups of SL;(Z) and moduli spaces

Consider the group I' := Z/M7Z x Z/NZ and consider the following (finite index) subgroup of
SL2 (Z)

b
SLy (Z) ::{(a d) eSLg(Z)‘azlmodM,dElmodN,bEOmodNandCEOmodM}.
c

We write Y (T') for the set of equivalences classes of pairs (F, ¢) where F is an elliptic curve
and ¢ : Z/M7 x ZLJNZ — FE is an injective group morphism that is orientation preserving
i.e. such that the basis (%u:o(wa’()))’ %n:o(w(ﬁ’ 1)) of ToE is direct. Then, one can see
that Y(I') = $/ SLL (Z) and therefore inherits the structure of a complex orbifold.
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Remark 6.3.1. The biggest congruence subgroup on which the connection we will construct
in this section is well defined and flat is the subgroup S~LE(Z) of SLa(Z) consisting of matrices
a b
c d
to retrieve the twisted elliptic KZB connection defined at the level of configuration spaces, it

€ SLo(Z) such that Mb = 0 mod N and Nc = 0 mod M. Nevertheless, in order

suffices to consider the usual congruence subgroup SLL (Z) C S~L£ (z).

Recall the following standard group actions:

e The group SL3(Z) acts on C™ x $:

a b « (2l7) z ’aTqu
T) = .
c d ct+d'er+d
This obviously descends to an action of SLy(Z) on C™ x £/C, where C acts diagonally on

C" u-(z|7) :=(z+u),dlr).
e The group (Z")? acts on C" x §:

(m,n) * (z|7) := (z4+ m+ 7).

It obvioulsy descends to an action of (Z")?/Z? on C" x §/C, where Z? is the diagonal
subgroup in (Z")? = (Z*)".

e Finally, there is a right action of SLy(Z) on (m,n) € Z? by automorphisms:

(06 m = (00,

We can thus form the semi-direct products (Z")? x SLy(Z) and ((Z™)?/Z?) x SLa(Z)
A few observations are then in order:

e The above actions are compatible in the sense that we have a left action of (Z™)? x SLa(Z)
on C" x $, which descends to an action of ((Z")?/Z?) x SL(Z) on (C" x §)/C, where
Z? is embedded in (Z")? via the diagonal map. One can think of translation by C as a

left or right action as it commutes with the G-action.

e The action of (Z")? preserves the subset
Diag,, r := {(z|7) € C" x §|z € Diag, ,, r} .
e The action of the subgroup SL5(Z) C SLy(Z) also preserves Diag,, p.

We are thus ready to define several variants of Y (T') “with marked points”:

e We define the quotient
MY, = (Z")* x SLy(Z) \ ((C" x H) — Diag,,1)/C

and call it the moduli space of I'-structured elliptic curves with n ordered marked points.
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e It has a non-reduced variant
p: M, = ((C" x §) —Diag, 1) /(Z")* x SLy(Z) - Mj , .

e One can also define the moduli space of I'-structured elliptic curves with n unordered

marked points

and its non-reduced variant

Mi[n] = M{,n/Gn .

Remark 6.3.2. We have M, = ./\;11;7[1] =Y(T), and Mf; = M{,[u is the universal curve
over it. The fiber of MY, — Y(T) (resp. M}, — Y(I')) at (the class of) T is precisely
the twisted (resp. reduced twisted) configuration space Conf(E:p,n,T) (resp. C(E;r,n,T)).
Moreover, the map

h: ./\;11;2 — ./\;11;1

factors through (and is open in) /\/lil. We can interpret le,g as the I'-punctured universal

curve over Y ().

6.3.2 Principal bundles over ./\/l{n and /\;llfn

In this §, G}, is defined as in (6.4) and we define a principal G},-bundle P, 1 over M7, whose
image under the natural morphism GI — GI is the pull-back of a principal GL-bundle P, 1
over Mj .. Let us fix the notation first: for u € C* and v,w; € C (i =1,...,n),

a._ (v O vX 1 v
)

Since [X,z;] = 0 then it makes sense to define VXA wiwi . — ovX i wimi I particular, we
have Ad(u9)(z;) = uz; and Ad(u?)(y;) = yi/u (Vi), Ad(ud)(X) = u>X and Ad(ud)(Ay) =
Ao/u®. Let m: C" x $ — M, be the canonical projection.

Proposition 6.3.3. There exists a unique principal GL-bundle P, r over len for which a
section on U C MY, is a function f: 7= (U) — G, such that

fz+dilr) = [(2|7),

fz+71é;|7) = e N f(z|7),

flar+1) = f(zlr),
FE =Ly = a0

T T

HOAT ) f(g)r),

Moreover, the image of P, r under Gl — Gg 1s the pull-back of a unique principal Gg-bundle
Py over MY, for which a section on U C MY, is a function f: (pom) " (U) — MJ,,
satisfying the above conditions (with x;’s replaced by %;’s) and such that f(z 4+ v)_, 6|1) =
f(z|T) for any v € C.
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Proof. First recall that for I' = 0 this is precisely [24, Proposition 3.4]. Then observe that
we have an obvious map ¢ : M{n — MY .. Therefore we define P, (resp. P,.r) to be the
image under the natural inclusion G0 — GL (resp. GY — GL) of 1* P, o (vesp. t* P, ).

We thus proved existence. Unicity is obvious. O

In other words, there exists a unique non-abelian 1-cocycle (cg)ge(zn)2 xS1,(z) 00 C* X $ with

values in G}, such that ¢(s, 0) = 1, ¢(o,6,) = € 2™, cg = 1 and

CT(ZlT) _ 7_de(271'i/7')(X-i-Zj 2jT5) eQﬂ'i(‘rX—i—Ej ijj)Td’

1
in [24]) that ¢,’s are holomorphic functions C* x § — G satisfying the cocycle condition

Cog'(2]T) = cq(g" * (2,7))cq (2]7).

1 1 0 -1
where S = 0 1 and T = < 0 ) are the generators of SLy(Z). Here cocycle means (as

Remark 6.3.4. Notice that we do have a (Z™)? x SLa(Z)-cocycle (since our bundle is define
as the pull-back of a bundle on M ;) but the cocycle defining P, 1 is its restriction to (Z™)* X
SLY (Z).

6.3.3 Connections on P, and P, r

A connection on P, r is the same as an equivariant connection on the trivial GL-bundle over
C" x $ — Diag,, p. Namely, it is of the form V,, r := d — n(z|7), where n is a t] ,, x 0"-valued
meromorphic one-form on C" X § with only poles on Diag,, 1, and the equivariance condition
reads: for any g € (Z")? x SLS(Z),

g*n = (deg(2|7))eq (2|7) ™" + Ad(cq(2]7)) (n(2]7)) - (6.7)
We now construct such a connection. For any v € I" we define g, (z, 2|7) := 0k, (, 2|7),

oy (@l7) =Y Asy (1) = gos (2, 0[7).

s>0

Then we set

1 1
Afzlr) == —5— | Do+ 5 > Ay (M) =D gii(zi5l7) |

2mi —
s>0,vel’ 1<J

where g;;(2|7) := 3 _ cr ga(adz;, 2|7) (). And finally, with K;(z[7)’s as in §6.1.3, we define
n(zlr) = A(z|r)dr + > Ki(z|7)dz;.

Remark 6.3.5. One can see that po(x) = (0'/0)'(x) + 1/2? and that for any v € T — {0}

Py(z) = 0s <€2mm% a é) ’

where ¥ = (co,c) € Arr — Ar is any lift of .
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Proposition 6.3.6. The equivariance identity (6.7) is satisfied for any g € (Z"™)?* x SLa(Z).

Before proving this statement, let us notice that the SLo(Z)-equivariance is stronger than
what we need (the SLj(Z)-equivariance), but easier to prove. The action of SLy(Z) moves
the poles while SLg(Z) fixes them. In both cases, it makes sense to prove this proposition for

meromorphic forms on C” x h.

Proof. For g = (0;,0), the identity translates into K;(z + J;|7) = K;(z|r) (i = 1,...,n) and
A(z + 6;|1) = A(z|7), which are immediate.

For g = (0,4;), the identity translates into K;(z + 76;|7) = e~ ?™24(3) K;(z|7) (Vi) and
Az +78;|7) + Kj(z + 705|7) = e 224 A7), (6.8)

The first equality is proved in §6.1.3, and we prove the second one now. First remember that
for any 7 € ), 2 € C — (;Z + %Z)) and a € T', we have the following identity in C[[x]]:

e 2™ (g (2, 2) — 1/2%) + 1/2® — 2mi(ka (2, 2+ 7) + 1/2) = ga(z, 2 + 7). (6.9)

Then we can compute 27i (K;(z + 76;|7) — e~ 2™2d@) A(z|7)): it is equal to

) 1 — e~ 2wiadz; 1 Coriade.
2mi Z ko(adz;, zjk +7) — yj +AO+T(%)+§ Z Ay 8, —e2miade; ngl(zkl) ,
k:k#j J §>0, k<l
yel’

and therefore using

1— e—27riadz]~ e—27riadz]~ -1 27i
Y — iy = t<
adz; () = 2y, ( (adx;)? + adzj) Z Z i
a€cl k:k#j

together with (6.9) we obtain

1
Ao + 2 Z As 05,y — Z gri(zk1) — Z 9o (adzj, 2k + 7)(t5;) »
s>0,7€T k<l kikt
k,1#j ael

which is precisely equal to —27wiA(z + 79;).

For g = S, the identity translates into K;(z|t + 1) = K;(z) (Vi) and A(z|7 + 1) = A(z). Both
equalities obviously follow from 6(z|7 + 1) = 0(z|7).

For g =T, the identity translates into

%Ki(% - %) = Ad (cr(z|r)) (K;(2|r)) + 2iz; (6.10)

for alli e {1,...,n} and

Z 1 1

— (A(;| — ;) — ZZZKZ(§| — ;)) = Ad (er(z|7)) (A(z|7)) + g —27iX. (6.11)



6.3. BUNDLES WITH FLAT CONNECTIONS ON MODULI SPACES 193

Let us check (6.10) first. Ad(e*™(5 22 +7X)2dy(_y) 4 97iz; equals

. 2riad(>; zjx;) .
Ty, zjx; Yi € 37 —1 Yi
- Ad(@m ) ) = 2 = e (Y e, B
j Rt 5

2mi Zj zjadz; 27iz; jade;

yi e -1 Zji Yi e Zji o
- DIETIIRETES p O )
T >_; zjade; jti | T gt zigada; o= T

ael’

Therefore we have

eQWizif adz; t%

Yi _ . — e Yig
- = Ad(cr(z|7))(—y:) + 2mix; E ade . ). (6.12)
Jij#i acl
Now substituting (z, z) = (adz;, z;) in
1 2 1 . eQwizz -1
- ka 2= = 27r1zzka , , 613
Mkl 2 - 1) = 2k (ra2fr) + 1 (613)

then applying to t;, summing over j # i and @ € T, and adding up (6.12) we obtain (6.10) by
using that

Pz e (raday, 2i|7) (1) = Ad(2TTXFR 2007 4) (kg (adwy, 235 17) (£5;)).

We now check (6.11). Differentiating (6.13) w.r.t.  and dividing by 7, we get

1 z 1 2miz 1 1+ 2r7ize — e2miz

_ 2mi o
ﬁga(xv ;| - ;) = e go (T, 2|T) + 7’%(% ;| - ;) + 7272

Now substituting (z, 2) = (adw;, z;), applying to t{;, and summing over o € I' we obtain

1 z 1 2miz;; Zii 1
9=l = =) = Adler(zln)) (9i(27)) + —— JKij(T” - )
1+ 2rmiz;ade; — g2mizijadz;
).
+< 72(adw;)? (Z i)

acl

Then taking the sum over ¢ < j one gets

1 z 1 o z 1
=5 302 = o) = Ader(aln) [ Y gistaln) | + 5 K2~ 2) +B@), (6.14)
TG T i<y T & T
where o
) 2mizy; 1 + 2miz;jade; — e2miziade: .
B(Z) = ; 72 + ; < T2(ad$i)2 ) (;tij)'

Lemma 6.3.7. Ad (er(z|7)) (Ag) = % + 2284 _ 271)2(L 30, 22 + X) + B(z).

Proof of the lemma. We first compute

Ad(er(zln)) (Ag) = Ad(e2mTX+Eizm))(=2) = Ad(e™ 20 =m0 ) (=) + 2rd _ (2m)*X)
T T T
; A 2mid 1
271y i ZiTq 0 N2/ o
= Ad(e )(—7_2 )+ — - (27i) (T E zix; + X).

K2

It remains to show that Ad(e?™ 2 ZI)(%) = % + B(z). The proof of this fact goes along
the same lines of computation as in [24, pp.16-17]. O
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Using the above lemma and equation (6.14), one sees that equation (6.11) follows from
1
Ad(er (#7)(3 Ao (1)) = 3 A (=)0
5y 5,77

This last equality is proved using [z;,0s ] = 0 = [X, ds 4], [d, 05 4] = $d5~, and, since @~ (x| —
Ly = 720, (12|7), we get Asﬁ.y(—%) =752 4, (7). O

T

We therefore have:
Theorem 6.3.8. V,, r defines a connection on P, r. Moreover, its image under Gg — (}5

is the pull-back of a connection @n,p on pmp.

Proof. The first part follows from Proposition 6.3.6 above. For the second part, we need to

prove the three following identities:
o >, Ki(z|r) = 0;
o Ki(z+ uy;05T) = K(z|7), for all 4;
[ ] A(Z + UZ] 5]|T) = A(Z|T)

The first two equalities have already been proven, and the last one is obvious. O

6.3.4 Flatness

In this paragraph we prove the flatness of V,, r (and thus of ?mp).

Proposition 6.3.9. For any i € {1,...,n} we have [0, — A(z|7),0; — K;(z|7)] = 0.
In what follows, we often drop 7 from the notation when it does not lead to any confusion.

Proof. Let us first prove that 0, K;(z) = 9;A(z). This follows from the identity 0,94 (z, 2) =

270, ko (z, z), which is proved as follows (here & = (ag,a) is any lift of «):

xT

. —2riax __ 1
0oga(x,2) = 0,05ka(x,2) = 0.0, (e%‘a%(x, Z— @)+ €7>

= e ™Y 9, k(x, 2 — &) — 2miae > k(x, 2 — &)
= 2mie ™2 k(z, 2 — &) — 2miae” MO k(z, 2 — &)

= 2710, (e *"k(z, z — &)) = 270, ka (2, 2).

It remains to prove that [A(z), K;(z)] = 0.

Let us first prove it in the case n = 2. Namely, we will prove that

1
[AO + 5 Z As,'y(ss,’y - Z ga(ad'rla Z)(t(ll2> s Yo + Z kﬁ(ad L1, Z)(t?2)] =0. (615)

s>0,vel ael’ Ber
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One the one hand,

1
[A0+§ Z Ag 05y — Zga adxy, 2)(t7y) , Y2l

s>0,vel acl

= [ylazga(a’dxla (t12)] Z Za [ad” z1 (115 "), ad? 21 (t15)]

acl a, 7€l pq

where

(10'7( ) 0% Pyd
—u+1) ;a U'U

On the other hand, we have

(80, ksladay, 2)(t5)] = 1. 3 gsladar, ) )4 D D b (2)[ad? 2 (155), ad? ay ()],
B

B p,q a,BeT

where the series }° bgf( JuPv? is given by

% (vl2 (kg(u +v,z) — kg(u, 2) — vOukp(u, z)) — % (ka(u+v,2) — ko(v, 2) — udypka (v, z))) .

Therefore the Lh.s. of (6.15) equals

Z 37 @l (@) lad? a1 (1), ad? a1 (15,)] |

p.q a,BET

where > g PuPv?(z) is given by

g (b0, 2) = () — 095 1, 2)) = — (ka4 ,2) — K0, 2) — uga(v,2))

0p—a(u) = Pa—p(v)
u—+v

+

oo+ 0, 2)pap(0) — s+ 0, 2)p5_a (W)
+kp(u, 2)ga(v, 2) — ga(u, 2)ka (v, 2)

which can be rewritten as

(gg_a(u,z - %) (ka(u b, )+ uiv) - (ga_g(v,z' _a)— vi) (kﬂ(u Fu,2) + uiv)
+ (ga(v,z’) - U—12> <kg(u,z) + %) - <gg(u,z) - %) <ka(v,z’) + %)6.16)

with z = z’. Thus to end the proof of equation (6.15) the following lemma is sufficient:

Lemma 6.3.10. Ezpression (6.16) equals zero.

Proof of the lemma. The case a = 8 = 0 follows from an explicit computation. Then we chose
lifts @ = (ap,a) and 8= (bo, b) of o and S, respectively. One has

kol(x,2) 4+ 1)z = e 2™ (k(z,2 — &) + 1/x) and
galx, 2) — 1/2% = ¢~ Hima® (9(z,z — &) — 1/2%) = 2inb (ko (z,2) + 1/) .
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Therefore (6.16) equals

. , 1 1 , 1 ,

—2im(a —b)(  ka(v,2") + = ) ( kp(u,2) + = | + ( kp—a(u,z —2") + = | | kalu+v,2") +
v u u
+(kape e = 2) = 1) (Ratwt0,2) + ——))
a—p(v,2' —2) — = u+ v,z :
? v P u—+v

which vanishes because of (6.3). O

Let us now assume that n > 2.
Let tgHr C tlin be the subalgebra generated by z;, %, (i,5,k=1,...,n, j #k, a € T).
We have functions Ej;(z) with values in t}, , defined by E;j(z) = [Ao, kij] — [ys, 9i5], which

decomposes as €;;(z) + 54, ; €iji(z), where €;;(z) takes its values in

Span,, g o gl(adz:)?(15), (ada;)?(1]))]

and e;;x(z) takes its values in Span, 5 Cladz;, adxj][t%,tjk] Explicitly,

() = 30 30 (e a1, a1

a,B P

where b3/ (z) is as before, and

ka(adwi, 2ij) — ka(—adzj, zi5)  ga(—adwj, zi;5) 8
o (z) = _ ot
eijk(2) azﬂ ( (adz; + adz;)? adz; + adz; 15 ti)-

On the other hand, we have Yije(z) € t, , defined by Yj;x(z) = [yi, gjx). It takes its values in

Span,, 5 Clad;, adw;][tS; ] Explicitly,

zg’

Zgg (adz;, zjk) — g— B(adxk,—zjk)[ta ]

ik (
Yiy adz; + adwy gk

(remember that g, (u,2) = g—a(—u, —2z)). We have

(A@), Ki(2)] = Z([Ao,m[yl,gumézamu][gu,khi)[%Z%yﬂ

1>1 o

- Z ([g1is k1] + 915, k] + [gi5, ki + k)

1<i<j
1
= Z <€12 + Z 6‘Pa’ klg 912, klg] [2 Z 6‘Pa y y1]> (617)
i>1 «a 14
+ Z (e1ij + e1ji — Yiij — [gig, k1i + k1j] — (914, k1j] — (915, k14))
1<i<j
where {—}1; is the natural morphism ] 5 — ] ,,, u1 = w1, ug = u; (u = x,y), tf — t9. It
is easy to see that the line (6.17) equals >, ; ([A(21:), K1(214)]);; which is zero as we have

seen before (case n = 2).

u—+v
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Therefore [A(z), K1(2z)] equals

Z Z (ka(adxl, Zli) — ka(fadxi, Zli) — ga(—adzi, zli)(adxl + ad:cz)

a 4B
195, 1,
(adxl —i—adxi)Q [ 1% 1]]

1<i<j o,
_kg(adzy, 215) — kg(—adw;, z15) — gg(—adw;, z1;)(adwy + adz;)
(adzy + adz;)?
79ﬁ—a(ad$z‘, zij) — ga—p(ada;, —zi;)
adz; + adx;

[ttlliv tfg]

[t?ia tf_]]

— (ka(adzy, 21)gs—a(—adz;, 2i7) — kp(adz, 215)gs—a(adz;, 2;5)) [t5, 1]
— (kg(—adx;, 215)ga(—adw;, 215) — ka(—adzi, 21:)gs(—ada;, 21)) [t55, 11,]) ,

which is zero because of Lemma 6.3.10. O

We have therefore proved (Proposition 6.1.6 and Proposition 6.3.9 above):
Theorem 6.3.11. The connection V, 1 is flat, and thus so is ?nyp. O

Let us now show how the universal KZB connexion over moduli spaces coincides with the one
defined over configuration spaces.

Remark 6.3.12. The connection V, r defined above is an extension to the twisted moduli
space ./\/llin of the connection V, r v defined over the twisted configuration space Conf(E, r,n,T)
from Section 6.1.5.

Indeed, the pull-back of the principal GL-bundle with flat connection (Prn.r, Vi) along the
inclusion
Conf(E, r,n,T) <> M{,,

of the fiber at (the class of) 7 in Y(T') admits a reduction of structure group to
exp(tin) c Gl
as we will now explain.
Let us first pull-back the principal GL-bundle with flat connection (Pnr,Var) along the pro-
jection
Cr(n) = (((C" x §)) — Diag,, 1 )/(Z")2 —» len

The resulting flat bundle admits a reduction of structure group to

NI .= exp(tlin x L) x Ny € G,
where N1 C SLo(C) is the connected subgroup with Lie algebra CAy.
Let us then further pull-back this principal N -bundle to the fiber

Conf(E, r,n,T) = CT(n)

at T € 9 of the projection C''(n) — $. The resulting flat bundle admits a further restriction
of structure group to exp(tlin) C NL. One easily sees from our explicit formulethat it coincides
with (Prnr, Venr) constructed in Section 6.1.3.

Similarly, the connection V,, 1 is an extension to the twisted moduli space ./\;11;7” of the connec-

tion V1 defined over the reduced twisted configuration space C(E, r,n,T).



198

CHAPTER 6. ON THE UNIVERSAL TWISTED ELLIPTIC KZB CONNECTION

6.3.5 Variations
Let us first consider the unordered variants
r r Wik ~ T
Ml,[n] = Ml,n/Gn and Ml,[n] = Ml,n/Gn’
where, as before, the action of &,, is again by permutation on C".

Proposition 6.3.13. 1. There exists a unique principal GL x &,,-bundle Pln),r over le[n],

such that a section over U C MY

1) @5 @ function

f:a Y(U)—GLxe,

satisfying the conditions of Proposition 6.3.3 as well as f(oz|T) = of(z|7) for o € &,, (here
7:(C" x §) — Diag,, p — ./\/l{[n] is the canonical projection).
2. There exists a unique flat connection Vi, r on Ppr, whose pull-back to (C™ x §) — Diag,, 1

is the connection
d=Azlr)dr = > Ki(zlr)d

on the trivial G5 x &,,-bundle.
3. The image of (Pp,r, Vin,r) under Gl x6&,, — GL % &, is the pull-back of a flat principal
Gl % &y, -bundle (Py,,r, Vinr) on ./\;l{,[n].

1 —1

Proof. For the proof of the first point, one easily checks that ocy(z|T)o™" = cy5,-1(07"2),
where § € (Z")? xSL5 (Z), 0 € &,,. Tt follows that there is a unique cocycle Cg,o) : C" X H —
G, x &, such that c(; 1) = ¢ and ¢(1,0(z|7) = 0.

For the proof of the second point, taking into account Theorem 6.3.11, one only has to show
that this connection is &,-equivariant. We have already mentioned that >, K;(z|r)d z; is

equivariant, and A(z|7) is also checked to be so.

The third point is obvious. |

For every (class of) 7 in Y(T'), one has an action of I'™ on the fiber Conf(E, r,n,I') at 7 of
MY, — Y(D), resp. an action of I'* /T on the fiber C(E,p,n,T) at 7 of M, — Y (T'). Recall
that

Conf(E; r,n,I')/T" = Conf(E,r,n) and C(E;p,n,I)/I"/T')=C(E;p,n).

This action depends holomorphically of 7, so that we have an action of I'" on M{n, resp. an
action of I'"/T" on M{ .

Proposition 6.3.14. 1. There exists a unique principal GL x T™-bundle over /\/llin/l"”, such

that a section over U C /\/llfn/l"” is a function

f:a Y(U) — GE x 1"
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satisfying the following conditions:

Flat 351) = (1,0)if (),

flz+ T%m — e (0, 1) f (2l7),
fle.m+1) = fal).
FE = 1) = 3 O 00 ).

Here, 7 : (C" x ) — Diag,, p — M7 ,,/I'™ is the canonical projection.
2. There exists a unique flat connection on this bundle whose pull-back to (C* x §) — Diag,,

is the connection

—A(z|t)dT — Z Ki(z|t)d z;

on the trivial GL x T'™-bundle.
3. The image of the above flat bundle under GL x I' — GL x (I'™/T") is the pull-back of a
flat principal GL, x (I /T)-bundle on MY, /(T"/T).

Proof. The first assertion is left to the reader. Assertion 3 is evident. Let us prove assertion
2. By Proposition 6.1.5, we know that the K; satisfy

(e) Ki(z+ 35|7) = 0((1,0),)K:(2l7),
(f) Ki(z+ T|7) = 0((0,1);)e 24 K, (a]7).

The fact that A(z—i— T
—2miad(z;)

TJ |7) =e—~ 6((0,

=0((1,0
)j)(A(z|T) — K;(z|T)) which is proved in Lemma 6.3.15 below. O

);)A(z|7) is immediate. Thus, it remains to show that A(z+

»—u\-/

Lemma 6.3.15. We have

Az + ) = e 0((0.1),) (Ael) — K (al). (6.18)

Proof. On the one hand, we have

. 785 1 T\
—27miA(z + W]) = Ay + 5 Z Ag 05 — Z gk (zrl) — Z ga(adzj, zjk + N)( )

>0,y€T k<l kik#j
e e it
On the other hand, as
—2miadx
727rlad(a‘) A 1 1 —2miad(z;) A A 1—e ~N ( )
€ (Ao) ( ( € )(Ao) = (Ao) adz; Yj
—Zwiadmj
e
= —— t%
dr)? 2030
a€l kik#j

and the J5, commute with the x;, we compute

—2miad(z )

om (Ko + Zajir) — e % 0(0.1))50600)
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—2miad(z )

= 2mi (9((0,—1)]-)Kj(z + %5”7) - eNA(z|T)>

—Zwiadmj
o — T l—e™ 7
= 2mif((0,=1);) | Y Fa(adzy, 26+ 55) = 95 | + Do+ —————(1)
k:k#j J
1 —2miada;
+3 Z Asqybsy —€ N ngl(zkl)-
>0, k<l
yel
Next, by combining
T 7@&1(”) - - e*?ﬂiadz.; 1 N
Kz = 1) = e g0, 21),) (K (2)) + 000, ~1)) (Y ————(t5));
ael

and equations
galz,2) — 1/2% = 727 (g(z,2 — &) — 1/2°) — 2inb (ka(z,2) + 1/z) .

We can follow the same lines as in the proof of relation (6.8) to obtain the wanted equation. [

We also leave to the reader the task of combining several variants.

6.4 Realizations

6.4.1 Realizations of ¢, t], and t, |

Let g be a Lie algebraand ¢4 € S 2(g)? be nongenerate. Assume that we have a group morphism
0 : T — Aut(g,ty) and set [ := gl and u := @, er_{0} 8y, Where gy is the eigenspace of g
corresponding to the character x : I' — C*. Then we have g = [ @ u with [[Lu] C u, and
t =t + t, with t; € S?(I)" and t, € S?(u)". We denote by (a,b) — (a,b) the invariant pairing
on [ corresponding to ¢( and write t; = ZV e, R e,.

Let Diff (I*) be the algebra of algebraic differential operators on I*. It has generators x;, 9; (I € I)
and relations Xe4r = X+ Xy, 8tl+l/ = t0; + 81/, [Xl,Xl/] =0= [81,81/] and [al,Xl/] = <l,l/>
Moreover, one has a Lie algebra morphism [ — Diff(I"); 1 — X; := > x¢,] Oc,. We denote
by (412 the image of the induced morphism

(5l—Y =X ®1 +1®Zn:z<i> e Diff(I*) ® U(g)®",
i=1

and define H,,(g,[*) as the Hecke algebra of A, := Diff(I*) ® U(g)®" with respect to [412&,
Namely, H,(g,[*) = (A4,)"/(A,19%8)" Tt acts in an obvious way on (O ® (@1, V;))" if
(Vi)1<i<n is a collection of g-modules.
Let us set x,, := %, and 0, := 0, , and write a. for the action of & € T on the i-th component
in U(g)®".
Finally, recall that the twisted elliptic Kohno-Drinfeld Lie algebra tlin is defined in Definition
4.3.3.
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Proposition 6.4.1. There is a unique Lie algebra morphism py : tlin — H,(g,*) defined by
€T — MZXU ®e,(f),

Yi — *Nzav ®€1(/i)a

t& — 1@ (all) - ).
It induces a Lie algebra morphism py : ¥} ,, — Hy(g,[*).

Proof. Let us use the presentation of t{n coming from Lemma 4.3.5. The only non trivial
check is that the relation [, z;,y;] = 0 is preserved. We have

Pa (ixz> = MZXV ® zn:e,(f) = MZ (x, ®1) <1 ® ie,@)
i=1 v i=1 v i=1

MY (xe1)(Y, - X, ®1)

M — ZXUXU ®l=M Zx ey, evy]Ovs @1 =0

vi,V2

as Xe,, commutes with x, .1 and ¢ is invariant. Here the sign = means that both terms

define the same equivalence class in H, (g, ). Thus,
log [ D 2 | palyi)] = [0, pa(yi)] = 0.
J

The proof that [Zj yj,x;] = 0 is preserved is a consequence of the fact that p (Zj yj) =0,
which was proven in [24, Proposition 6.1]. The fact that this induces a Lie algebra morphism
Py i 8, — Hy(g, 1) is then clear. O

Let tg, L C tlin be the Lie subalgebra generated by z;’s and t?‘k’s. Then the restriction of pg
to t}, , lifts to a Lie algebra morphism t, , — (O ® U(g)®™)". Moreover, (O @ U(g)®")"
is a subalgebra of H, (g, [*) that is a Lie ideal for the commutator and one has a commutative
diagram

tll—:n % £7F11+ (u,v)—=>[u,v] t71"11+

| l

H, (g, ") x (O ® U(g)*")' — (O @ U(g)®")".

6.4.2 Realizations of t}, x 0" and ], x 0"

Let us write tg = Y, ay ® Gy.
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Proposition 6.4.2. The Lie algebra morphism pg (resp. pg) of Proposition 6.4.1 extends to
a Lie algebra morphism £} ,, x 0" — Hy (g, [*) (resp. 4 ,, x 0" — H,(g,1*)) defined by

1

d»—>—§(%’ X, 0y +0,x,) @1,
1 Z 2
5(1/ XV)®1

1
Ag— *5(233) ®1

1 i
Sy D E 2 Fmom ®Z (ad(es,) - - ad(es, ) (@) © (7 au)) " .

Vi, Vs,

Here ® denotes the symmetric product: A ® B := AB + BA.

Proof. Since tg is invariant under the commuting actions of I' and [ then the relation &, , =

(—1)%&,— is also preserved. This invariance argument also implies that [pg(&s,4), pg(x:)] equals

% Z Xy, Xy, Xy ®Z (ad(e,,) - --ad([ey, ey,]) - - -ad(ey, )(a,) © (v - au))(i)

Vi, Vs, VU
which is zero since the first and second factor are respectively symmetric and antisymmetric

in (v,14). Let us now prove that the relation [ -, 5] = [t5), (adw;)(t; ") + (adxj)s(tf‘;r'y)] is

preserved. It is sufficient to do it for n = 2:

pa(8sry + (adw1)* (5 7) + (adaa)*(8957)) Z Xy X, @@V - A(Byy )

where A is the standard coproduct of Ug and By, ... ,, =Y, ad(e,, ) ---ad(ey,)(au) ® (7 - au);

therefore pg (&~ 4 (adw1)*(t5 ) + (adwa)* (t1577)) commutes with pg(t$;). Hence it remains
5
to prove that the relation [{s ., %] = Zj:j# D, (55, t—ﬂ) is preserved. For this we compute

T
[pg (55,7)7 Pg (%)] it equals

Vla 7

I, 2 (s, J@ e (ad(ey,) - ad(ey, )(aw) © (v au))

+ Xy, Xy, Oy ® ey, ad(ey,) - -ad(ey, ) (ay) © (7 - ay )](i))
= Ly > 3,0 (6 (d(es,) - ad(en @) © (- 0)) P — (1 )
=1 v1,..., Vs j=1

The term corresponding to j = i is the linear map S*~1() — U(g)®™ such that for z € [
1 .
w3 e ad(@)ad(es)ad(@) @) © (- )]

p+g=s—1
v,u

Using [-invariance of >, a, © (7 - a,) one obtains that this last expression equals

:ﬁ S (ad(@)Pad(le,, o])ad(z)%ad(e, ) (ad2)(an) © (- )

pt+qg+r=s—1
v,
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+ad(z)Pad(e, )ad(z)%ad (e, , 2))ad ()" (au) © (7 - au))

which is zero from the [-invariance of t; = )" e, ® e,. The term corresponding to j # i is the
linear map S*~1(I) — U(g)®" such that for x € [

:L's_l — % Z (ad(ZE)pad(eu)ad(x)q(au) © (7 ! au))(j) ex(zl) - (Z A ])

p+%7:1f_1
= % ST (ad(@)(few, au)) © (—ad(@))? (v - au))? e — (i ¢ 5)
p+g=s—1
— % +gil(—1)q (ad(x)iu([e,/, au]) ® (ad(x))q('y . au))(j) el(/z') _ (z & )
= 1 Z (=1)7 (ad(z)?([ey, au]) © (ad(z))9 (7 - au))(j) el(/i) — (i > §)
|F| p+q:sfl

|2 > > ! )P ([ay, au]) © (ad(@))? (7 - au) (B a,) D — (i  j)

ﬂel“erq s 1

Z S (=17 (ad(@)P (aw) © ad(@)(v - au)? (B [aw, a,)) = (i > j)

BET p+q=s-1 v
Z Z Z d(z)P(B - a,) © ad(x)?((8 + ) -au))(i) [aw, a0] @ — (i & §)
BET p+g=s—1 v
SEEY X (D (A5~ ) -0 ©ad@)(8) - 0)” a0 — (i )
BET p+g=s—1 v

which coincides with the image of

o (Gr) = 2 e () o) ()]

under pg. In conclusion we get the relation

Pg ({g'yyﬁ}) [pg(ﬁs,w) Py (ijv)}

A direct computation shows that the commutation relations of [X,&s ] = 0, [d,&s 1] = $&s.4
and ad**!(Ag)(&s.,) = 0 are preserved, which finishes the proof. O

6.4.3 Reductions

Assume that [ is finite dimensional and we have a reductive decomposition [=hdm, i.e. h C [
is a subalgebra and m C [ is a vector subspace such that [h,m] C m. We also assume that
te =ty +tm With ty = Y. e; ® e; € S2(h)" and ty € S?(m)Y, and that for a generic h € b,
ad(h)m € End(m) is invertible. This last condition means that

P()) = det(ad(X"))jm) € SU(™) (1)
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is nonzero, where Y := (A ® id)(ty) for any X € h*.

We now define H,,(g,bhy.,). As in the previous paragraph, Diff(h*) has generators xj, Oh
(h € b) and relations
Xth+h' = tXp + Xpr,
Othan = tOh + O,
[Xn, %] = 0 = [On, O],
[5}1)5{}1’] = <ha hl)a
and Diff(b;,,) = Diff(h*)[%] with [0, %] =— [5;3’213]. One has a Lie algebra morphism

h — Dlﬁ(h*), h+— Xh = Zx[h,eﬁ] aer/.
We denote by h4128 the image of the map

h>hr— Yy =X+ Y 1% € Diff(b;,,) ® U(g)®" =: By,

reg
i=1

and define H,(g, b as the Hecke algebra of B,, with respect to hdias:

reg)

H (9,07 ) = (Bn)"/(Bah®2%)".

It acts in an obvious way on (Ohieg @ (@, Vi) if (Vi)i<i<n is a collection of g-modules.
Finally, let us set, for A € h*,

r(A) i= (id@(@d X)) (tw)-

Then, following [37], 7 : b}, — A?(m) is an h-equivariant map satisfying the classical dynam-
ical Yang-Baxter equation (CDYBE)

Ze(pl)@;r(%) +[r12 0D 4 ep.(1,2,3) =0,

and we write 7 = Y5 a5 ® bs @ £s € (m®2 ® S(h)[1/P])".

Proposition 6.4.3. There is a unique Lie algebra morphism pgp : tlin — H,(g,b
by

« )

T; — MZX,} 29 hl(;),

yir— =N G @b +3 Y t@alby),
v g )

t — 1@ (V) - 1)),

Proof. First of all, the images of the above elements are all h-invariant. As in [24], we will imply
summation over repeated indices, and adopt the following conventions: 9., = 0y, Xe, = Xz,

and 1 ® —’s and — ® 1’s may be dropped from the notation.
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In particular, pg(Z;) = h(;)f(g, pab(Ui) = ~n8, + Z?:l r(N) @) (here, for z @ y € g®2,
(z® y)(iz‘) = x(i)y(i)),

We will use the same presentation of t] ,, as in Lemma 4.3.5. The relations [z;,Z;] = 0 and
t% =1;," are obviously preserved.

Let us check that [z;, ;] = >_ 17 is preserved. We have for i # j,

1 _ _ _ i), _ G N, (k
T lees @) e )] = = D7 R0y b b + 3 2,6 kol s @ a0
V1,02
tgw) + t,(;']) _ tgw) _ N Z a(z) . th)
acel’

by the same argument as in Proposition 6.4.1.

Let us check that ), z; = >, §; = 0 are preserved. We have Y, pg y(Z;) = 0and >, pgp(¥i) =
Do h(;)ap (by the antisymmetry of ), which equals zero as in as in Proposition 6.4.1.

The fact that the relation [g;, ;] = 0 is satisfied for ¢ # j is a consequence of the dynamical
Yang-Baxter equation (this follows from the exact same argument as in the proof of [24,

Proposition 63]).
Next, [Z;, fjo‘k] =0 is preserved (i, j, k distinct). Indeed, we have

o (0. pan (B = 35 [, a® 1§ = 0.

Finally [7;, fjo‘k] = 0 is preserved (i, j, k distinct): we have
190 @1): Pon ()] =[= D R0+ r .0l 1)
7 1
—[r(N)@ 4 (NP o) Ty =0,
where the last equality follows the the g-invariance of t. O
Remark 6.4.4. We expect that there is Lie algebra morphism redyy : Hu(g,1") — Hu(g, b))

such that the following diagram commutes

&, —" H,(g,1")

red[,h
Pg.b l

Hn(g, b:eg)

6.4.4 Elliptic dynamical r-matrix systems as realizations of the uni-
versal ['-KZB system on twisted configuration spaces

/\

Let K(z) be a meromorphic function on C with values in the subalgebra t} 2+ C t 1,2 generated
by x1, 2, t%5 (o € T), such that K(—z) = —K(z)?! and satisfying the universal CDYBE with

a spectral parameter

—[y1, K (223)°] + [K (212)"%, K (213) %] + ¢.p.(1,2,3) = 0.
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On the one hand, it follows from §6.4.1 that the image r(x,2) := py(K(2)) of K(z) under
Py t£7+ — (O[* ® g®2)" is a dynamical r-matrix? with spectral parameter, i.e. a solution of
the CDYBE with a spectral parameter for the pair (I, g)

Z el(,l)al,r(x, 223)(23) + [r(x, 212)(12), r(x, 213)(13)] +ep.(1,2,3)=0,

v

which satisfies 7(x, —2) = —7(x,2)?Y). On the other hand, the image of K(z) under pgy :

th, — (OAhieg ® g®2)Y is precisely equal to the restriction pg(K(2))|p- € (On-  © g®2)" of

reg

pg(K(z)) to b*. Then applying [37, Proposition 0.1], we conclude that

(X, 2) := pg.p(K(2)) +r(})
is a solution of the CDYBE with spectral parameter for (b, g):

e, 223) %) + (R, 212) 2, F(%, 223) ] + ep.(1,2,8) = 0.

Then for any n-tuple V. = (V4,...,V,,) of g-modules one has a flat connection V F on the
trivial vector bundle over C" — Diag, ,p with fiber (Op:  ® (®;V;i))?, defined by the following

compatible system of first order differential equations:

Z WO F(x2)+ Y F(%,2) - F(x,2). (6.19)

JijFi

Here z — F(X,z) is a function with values in (Op:,  ® (®;Vi))".

Starting from K (z) = K12(z) as in §6.1.3, it would be interesting to know if one can recover
(up to gauge equivalence), using the above realization morphisms, the generalization of Felder’s

elliptic dynamical r-matrices [43] constructed in [41, 42].

Letu develop a bit more this idea. Set K(z) = K12(%) like in §6.1.3 and focus on the case when
g is a simple Lie algebra. Let us introduce some standard notation: A7 is the set of positive
roots, (h;); is an orthonomal basis of h = gg, and for any positive root a one has g, = Ce,
and g__ = Cf, with (e, fo) = 1. Then one has

Zh ©hit Y (ea® fot fo®ea).

aeAt

Assume that 6(1,0) = Ad(e?""#/*), where p is the half-sum of positive roots and « the dual
Coxeter number of g. Observe that this automorphisms can be defined alternatively by h; — h;,
o > 2l /B and f, — e 27milel/5 £ (here |al is the lenght of the root a). Therefore [ C b,

2Remember that O« := S(I) and Oy« := 5(I).



6.4. REALIZATIONS 207

and thus we can compute, writing 3 := 6(0, 1),

1
r(x2) = = ka(adx) @ 2) (v - ty)
ver
1 —2mil( )Q(Z*E*%JF@QO‘» 2rikl|al/x Al
= - e X, K = eﬂ'l @ Hﬁ(@x)@fa
KV k:O;n—l (QEZA+ ( 9('2 - % - %)9(<X,Oz>)
1=0,..,N—1
; 0(z—L2 -0 (xa )
+e2ml<x,a> K N < >) e—2mk\a|/nﬂl(‘fa) ® ea)

0 — £~ T)o(—(x,0)

This should correspond to the generalization of Felder’s elliptic dynamical r-matrices.

Example 6.4.5. If g = sl,, and 6(0,1) is the conjugation by the cyclic permutation (1---n)
(hence we have M = N = n) then b = {0} and r(z) is Belavin’s elliptic solution of the
classical (non dynamical) Yang-Bazter equation [6]. In this case the I'-KZB system realizes as
the elliptic KZ system [39] (see also [75, 78]).
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Chapter 7

Applications

7.1 Formality of subgroups of the pure braid group on the

torus

7.1.1 Relative formality

Let G and S be two affine groups over k and let ¢ : G — S be a surjective group morphism
with finitely generated kernel Ker . We then consider the category of pro-algebraic groups
G’ under G, together with a surjective morphism ¢’ : G’ — S with k-prounipotent kernel.
This category has an initial object, denoted p(k) : G — G(, k), which we call the relative
(k-prounipotent) completion of G with respect to ¢. One can easily check that the kernel
Ker (p(k)) of ¢(k) is the usual k-prounipotent completion (Ker)(k) of the kernel of ¢,

which we can therefore unambiguously denote Ker ¢ (k).

Observe that this coincides with the partial completion defined [32, §1.1], and with the relative
completion defined in [61] (which is somehow slightly more general).

Lemma 7.1.1. If S is finite then the extension
1 — Kerp(k) — G(p, k) — S — 1

splits.

Proof. We consider the filtration (F};); given by the lower central series of Ker ¢(k), and prove
by induction by induction that

1 — Kerp(k)/F;, — G(p,k)/F; — S — 1

splits.
Initial step (¢ = 2): Recall that Fy = Ker ¢(k), and that Fy/F5 is abelian and finitely generated,
so that

1 — Kerp(k)/Fy — G(p,k)/Fr — S — 1

209
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splits as every extension of a finite group by a finite dimensional representation splits (this is
because the cohomology of a finite group with coefficients in a divisible module vanishes).
Induction step: We have a (surjective) morphism of extensions

1 —=Kerop(k)/Fiy1 —= G(p, k) /Fiy1 —= 5 —1
1——=Kerpk)/F, — G(p,k)/F;, ——= S ——=1

Assuming (by induction) that the bottom extension splits, we have that the corresponding
obstruction class in the first non-abelian cohomology H'* (S, Kerp(k)/ E) is trivial. Hence, by

exactness of
H'(S,F;/F;11) — H' (S, Kerp(k)/Fiy1) — H' (S, Kerp(k)/F;)
we get that the obstruction class for the splitting of the top extension lies in the image of
H'(S,F;/Fi41) — H'(S,Ker p(k)/Fi11) -

We conclude by using the vanishing of group cohomology of a finite group in a finite dimensional
representation. O
The above Lemma tells us in particular that G(¢, k) ~ Ker(y)(k)x.S, and justifies the following
definition from [32, §1.2].

Definition 7.1.2. If S is finite, we say that the surjective group morphism ¢ : G — S with

finitely generated kernel is relatively formal if there exists a group isomorphism
G(k,p)— exp (gr LieKer p(k)) x S
over S. This is equivalent to having an S-equivariant formality isomorphism
Ker p(k)—>gr Lie Ker (k) .

Example 7.1.3. The surjective morphism B, — &, is formal, where B, is the standard n

strands braid group. This morphism, or rather the exact sequence
1—PB, —B,—6, —1,

can be deduced from the covering map Conf(C,n) — Conf(C,n)/&,,. It is interesting to say
that this relative formality result follows from [7}] when k = C, and from [27] for k = Q.
We also refer to [61, Example 1.5] for interesting considerations about this example. More

precisely, one has an &, -equivariant isomorphism PB,, (k)—= exp(t,).

Example 7.1.4. Let G = Z/NZ. From the covering map Conf(C*,n,G) — Conf(C*,n)/6&,

one also gets an exract sequence
1—PBY —B., -G"x6, —1.

It follows from [32, §1.3—1.6] that the surjective morphism B,ll — G" X6, is formal. More pre-
cisely, Enriquez proves the ezistence of a G™ XS, -equivariant isomorphism PBg(k)% exp(th).
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7.1.2 Relation between relative completion and completion of groupoids

In this paragraph we briefly compare the notion of relative k-prounipotent completion with

the k-prounipotent completion for groupoids defined in §2.5.7.

There is a functor that goes

e from the category of surjective morphisms G — S with finitely generated kernel and

with S a finite group.

e to the category of groupoids.
This functor sends ¢ : G — S to the groupoid G(¢) defined as follows:

o the set of objects of of G(p) is S.

e for s,s' €9,

HOmg(Lp)(S“Q/) = {g € Glpg = 8_15'}
e the multiplication of arrows in G(¢p) is the multiplication in G.

Example 7.1.5. It is easy to check that G(B, — &,,) is the colored braid groupoid CoB(n)
from [46, §5.2.8], which is an unparenthesized variant of PaB(n). Similarly:

e the groupoid
CoB"(n) := G(B), — (Z/NZ)" x &,,)

is an unparenthezised variant of the twisted parenthesized braid groupoid PaB™ (n) from
§4.2.5.
e the groupoid
COBeu(n) = g(El,n — Gn)

is an unparenthezised variant of the parenthezised elliptic braid groupoid PaB.g(n) from
§4.1.2.

e the groupoid
CoBl,(n) :=G(B1,, — (I"/T) x &,)

is an unparenthezised variant of the twisted parenthezised elliptic braid groupoid PaBL,,(n)
from §4.3.2.

We let the reader prove that the following is true:

G(p) (k) =~ G(p(k)) -

7.1.3 Subgroups of B,

Fort € Hand I’ = Z/MZ x Z/NZ, let Uy v C C* — Diag, ,,  be the open subset of all
z=(z1,...,2p) of the form z; = a; + 7b;, where 0 < a1 < -+ <ap, <1/Mand 0 < b < --- <
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b, < 1/N. If zg € U, r then it both defines a point in the I'-twisted configuration space

Conf(E. r,n,T") and in the (non twisted) unordered configuration space Conf(E- p, [n]):

Recall that the map

Conf(E; p,n,I') - Conf(E; r, [n])

is a a covering map with structure group I'"" x &,,. Hence we get a short exact sequence
1—PB], — B, 25T"x6, —1,

where PB{,n := m1(Conf(E,r,n,T),2z0) and By,,, = m (Conf(E,r,[n]), 20).

We will also consider PB , = m (Conf(ETI, n), zo), and the short exact sequence
1—PB}, —PBy,, —I" —1
associated with the I'-covering map

Conf(E; p,n,T") — Conf(E; r,n).

Our main aim in this Section is to prove that the surjective morphism
Bl,n — " X Gn

is relatively formal, which in turns implies the relative formality of PB;, — I'", and the
formality of PBlin.

Moreover, we will have an explicit description of the relative completion in terms of the Lie
algebra tlin.
7.1.4 The monodromy morphism B,, — exp(%{n) x (I 6&,)

The monodromy of the flat exp(%in) X (I % &,,)-bundle (P ) (n]; V(r,r),[n)) o0 Conf(E; 1, [n])
provides us with a group morphism

Hzo,(7,1),[n] - Bl,n — exp(flin) X (Fn X Gn)
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This actually fits into a morphism of short exact sequences

1 PBY, B, I"x6, —1,

l !

1——exp(t],) —=exp(t],) x ("% &,) —=T"%x &, —=1

where the first vertical morphism is the monodromy morphism
Hzo,7,n,T PBI;,n - exp(%{n)

of associated with the flat exp(%{n)—bundle (Prnr,Venr) on Conf(E,p,n,T).

Indeed, this comes from the fact that V(; 1) [, is obtained by descent, from V. , r and using
its equivariance properties (see §6.1.2). More precisely, the monodromy of V, ry ] along a
loop v based at zg in Conf(E; r,[n]) can be computed along the following steps:

o First consider the unique lift 4 of v departing from zy, € Conf(E, r,n,I'). Note that it
ends at g-2zg, g € '™ x G,,.

e Then compute the holonomy of V. ,, r along 4: this is an element in exp(flin), as Vonr
is defined on a principal exp(flin)—bundle obtained as a quotient of the trivial one on
C" — Diag, ,, r (see §6.1.1), that we abusively denote piz, n (%)

e Finally, (15, (r.1),(n] (V) = GHzo,7,n,0(7)-
Having such a morphism of exact sequences guaranties that it factors through a morphism

~ I
1 ——=PB; ,(C) ——— B ,(¢n,C)

| |

l — eXp(%{,n) - eXp(%{,n) ("% 6,) —=T" %6, —1

I'"x6, —1,

where Blyn(gpn, C) is is the relative prounipotent completion of the morphism By ,, — I'" % &,,,

. T
and PB; ,(C) is the prounipotent completion of PBin.
We will call the vertical maps the completed monodromy morphisms.

In the remainder of this Section we will prove that these completed monodromy morphisms

are isomorphisms, which implies in particular the relative formality of By, — I'™ X &,,.

Theorem 7.1.6. The completed monodromy morphism
Bl,n(@nvc) — exp(ill—‘,n) A (Fn A 6")
is an isomorphism. FEquivalently, the completed monodromy morphism

A~ T o
PBl,n ((C) — eXp(t{,n)

is an isomorphism.
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Our aim now is to prove that Theorem 7.1.6, namely that the completed monodromy morphism
R . T .
IU’ZOaTa’”/7F((C) : PBl,n(C) — eXp(’clin)

is an isomorphism. For this we will prove that the induced morphism on Malcev Lie algebras

Lie(ﬂZo,T,n,F) : pblf,n — El{n

is an isomorphism of filtered Lie algebras.

7.1.5 A morphism t], — gr(pby )

Let us start with a few algebraic facts about PB; ,, and PB{,n

The group PBy, is generated by the X;’s and Y;’s (i = 1,...,n), where X; (resp. Y;) is the
class of the path given by [0,1] 5 ¢t — 2z¢ — t§;/M (resp. [0,1] 3 ¢ — zo — ¢76;/N). One
sees very easily that X (resp. Y;V) is the class of the path given by [0,1] 3 t — 2o — t6;
(resp. [0,1] 3 t + 7o — t73;), so that XM and Y} are elements of PB{,H. One has an obvious

inclusion PB,, — PBin coming from the identification of C with the fundamental domain

{Z—a+bT€C|0<a< 0<b<—}

of ET,F-

Then one can check (by simply drawing) that the following relations are satisfied in PBy ,:
(T2) (X; ) =Py = (Xz-,Yfl) (@ <3),

(T3) (XmY ) - Pnfln"'Plna

(T4) (X, Pjr) = 1= (Y3, Pjr) (Vi, j < k),

(T5) (XiXj, Pij) = 1= (YiY}, Py) (i < j).

In particular PB,, identifies with the subgroup of commutators in PB;,. Moreover, one
observes that X --- X, and Y7 ---Y,, are central in PBy,,.

Now it follows from the geometric description of PBlin that it is generated by XM, V.V
(i=1,...,n) and P := X;PY "P;Y!X? (i < j,1<p<M,1<q<Nanda=(pq).

One can for instance represent lifts of X3, Y3 and PS’D in Conf(E; p,n,I") as follows
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Observe that the standard descending filtration on ’Ein coincides with the descending filtration

coming from the grading of t{n defined in §4.3.3.

Proposition 7.1.7. There is a surjective graded Lie algebra morphism p,, : t{n — gr(pbin),

sending
o z; — o(log(XM)) fori=1,...,n,
o y;— o(log(YN)) fori=1,...,n,
o % +— o (log(PY)) fori<j,

ot — a(log(PJ;a)) for j <1,

where o denotes the symbol map pblljn — gr(pbin).

Proof. Tt is sufficient to check that the defining relations of ¢!~ are preserved by the above

1,n

assignment.

The relation [z;,z,;] = 0 = [y;, y;] is obviously preserved. Now using (T2) and the relation

M-1 N—-1
(XM,YN) — H XM—?,-‘,—l(H Y](X7Y)Y_])XZ_]\/I_1
i=0 =0

(which is true in the free group F5, and thus in any group) with X = X, and Y =Y (i # j),
one obtains that [z;,y;] = [z;,y] = >t is preserved. Using (T3) one also obtains that

a Vg
T1,Y1| = — . - U1, 1s preserved. OwW 1t 1S obvious tha 1€ centrality o - T; an
o Dy 19 d. Now it is obvious that the centrality of 3°, 2; and
: Y; 1S preserved, an us 1t I0llows at |Ti, Yi| = — ... ; U7: 18 alSO preserved I0r any
Ly d, and thus it follows that o D b s al d f

1€{1,...,n}. For any a = (p,q) we compute

(XM PG) = XMXY PR MY Y]
= Xk_p(XiMaYk_q)yk_quMijX'_Mqu(XyaYk_q)_lyk_qpﬁlyqulzc)

2

= XXM YOV P Y (G V) Y TP YT

One sees that the log of the Lh.s. liesin (p bin)g and its symbol is equal to [0 (log(X;Y)), o (log(P5}.))];
and that the log of the r.h.s. lies in (pblin)z;. Hence one obtains that [z;,$] = 0 is preserved.
The proof that [yi,t;?‘k] = 0 is preserved is identical, and the proof that [z; + x;,t3] = 0 =
lyi + 5, 1551, [t tfl] =0 and [t t?,:rﬁ + t]ﬁk] = 0 are preserved is very similar. O

7.1.6 The formality of PB], (end of the proof of Theorem 7.1.6)

To prove that Lie(fiz,,rn,r) is an isomorphism, it is sufficient to prove that it is an isomorphism
on associated graded. According to Proposition 7.1.7, we simply have to prove that ¢ :=

grLie(fizy »n,) © Dr, is an isomorphism of graded Lie algebras.

We will actually be more specific on prove the following:

Lemma 7.1.8. We have ¢(zi) = —yi, ¢(yi) = 2miz; — Ty; and ¢(t7;) = 2mits;. In particular,

¢ is an automorphism.
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Proof. Recall that (i - can be computed as follows. Let F,, : U, — exp(ilin) be such
that

(0/02:) Fay (2) = K (2|7) Fyy (2),
FzU (Zo) =1.

Then consider

1
an = {z = (21, 2n)|zi = a; + 70,0 < ap < ... < a1 < M}

and

1
VTI:n = {Z = (Zl,...,Zn)|Zi = a; +7'bi,0 <b,<..<bh< N} .

Let F ) (resp. F,, F) be the analytic prolongations of Fy, to H},, (resp. V). Then

HE HE rix; Ve \%
Fpy (z—0;) = Fpy” (z)uzn’T’n,p(XiM) and €2 Fo7 (z — 76;) = Fypq (Z)Mzo,r,n,F(YiN) .

T
Knowing that log Fn (z) = — 3,(zi — 2%)yi + terms of degree > 2, we get
10g pizg r.n(XM) = —y; + terms of degree > 2

and

108 fizg w1 (YY) = 27ix; — Ty; + terms of degree > 2.
This gives us that ¢(x;) = —y; and ¢(y;) = 2wix; — TY;.
In order to compute log MzO,r,n,F(Pi?
to compute MzO,(T,F),n(Xi)’ uzo,(r,r),n(Yi) and Hzo,(r,r),n(Pij):

), which is also equal to 10g tiz,, (r,r)n(Ff}), we will need

e As usual, we have
Pz, (r.0)m(Pij) = exp(27rit?j + terms of degree > 3),

where 0 = (0, 0).

e We also have

which implies that

e We finally have

which implies that
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Hence, if « = (p,q) € T, then

IU’ZU,(T,F),’II(Xi_p}/Tj_q) = g(ﬁa 6)1(05 q)] s

with g € exp(t] ,), and

iz, (,0)n (Y] XT) = (0, =¢);(=p,0)ig ™"

Therefore

,U'zo,(T,F),n(Pia]f) = g(ﬁa (_))’L((_)a (j)j exp(t?])((_), JQ)J(;pv (_))1971
= gexp(t; + terms of degree > 3)g~t.

This shows that log tiz, () n(F]) = t; + terms of degree > 3, so that @(t;) = 2mitg;. This
ends the proof of the Lemma. [l

7.2 The KZB ellipsitomic associator

First of all, recall that ?;72 is the Lie C-algebra generated by = := 1, y := y2 and t* := t{,, for
a € T', such that [z,y] = >
el (1) := (A"(7), B' (7)) € exp(t] 5) x exp(t] ,) consisting in the renormalized holonomies from

t*. We define the KZB ellipsitomic associator as the couple

the straight paths from 0 to 1/M and from 0 to 7/N respectively of the differential equation

/ _ 6727riaac 9(’2 —a + ad(x)h_) ay | Py
T(z) = Z 0(z — a|T)0(ad(x)|T) () - J(2), (7.1)

acl

with values in the group exp(ilfz) xI'™/T. More precisely, for alla« € " and & = (ag,a) € Arr a
lift of o, this equation has a unique solution J, (z) defined over {a+ 3=+ 327, for 51,52 €]0,1[}

such that we have

e—27ria ad(m)ta

Jo(2) = (—27i(z — @)

at z — & — 0. By denoting J(z) := Jo(z) we define

AV (1) == J(2)7}(1,0)J (2 + %) =J(2)7'0(1,0) - (J(z + %))(L()) € exp(ilfg) x I /T.

Then the A-associator AL is
_ 1 a
AV (1) == J(2)710(1,0) - J(2 + M) € exp(t] 5).

In the same way, we define

B'(7) = J(2) (0, De ¥ Iz + ) = ()70, 1) - (¢ Iz 4+ )0, D),

and the B-associator is then
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We have A? € exp(t} ,)(p,0). Indeed, one checks for example that

A = A-A-A
= A(1,0)A(1,0)A(1,0)
= A(6((1,0)) - A)(6((2,0)) - A(3,0))
= A(6((1,0)) - 4)(6((2,0)) - 4)(3,0).

Now, let p,¢q > 1. Define A®) and B@ such that A? = AP (p,0) and B? = A9 (0, 7). These

are elements of exp(t] ;) and we have

AP = ] (6((%,0)) - A) = A(6((1,0)) - A)(6((2,0)) - A)--- (8((p = 1,0)) - A)
k=0,...,p—1
and
B@W = T[ (6((0,k))-B) = B(#((0,1)) - B)(6((0,2)) - B)--- (6((0,¢ — 1)) - B)
k=0,..., qg—1

Recall from Theorem 4.3.10 that the set of ellipsitomic associators Ell" (k) can be regarded

either as the set of I'-equivariant @(k)—module isomorphisms liaT?):M (k) — GPaCD.,,(k)
which are the identity on objects or either as tuples (A, ®, AY, BY), where (), ®) € Ass(k) and
AN B € exp(@;z(k)), satisfying relations (tN1), (tN2) and (tE). We are ready to show that
the set ElI" (C) is not empty. Write Elli 5 := EIl' (C) X ps(c) {27, Pz}

Theorem 7.2.1. There is an analytic map

h — Elk,p
T — e (1) = (A"(7), BY(1)).

In particular, for each T € b, the element (27, ®xyz, AL (1), BY (7)) is an ellipsitomic C-
associator (i.e. it belongs to EII' (C)).

The rest of this section is devoted to the proof of the above theorem.

7.2.1 The solution Fr(n)(z\r)
The ellipsitomic KZB system is
(0/02)F" (z|7) = K[ (z|7)F" (2|7), (8/07)F" (2|7) = A (2|7)F" (2|7),

where F'(z|7) is a function (C" x $) — A, r D U — G, x &,, invariant under translation
by C(>~,9;). Let

M

1
D,,I; = {(Z,T) eC" ><53|zi:ai+bi7',ai,bi ERa1 <as<...<ap<a1+—,b1<by<..<b,<b+—=

v
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Then D}, C (C" x §) — A, r is simply connected and invariant under C(}_, d;). A solution

of the ellipsitomic KZB system on this domain is then unique, up to right multiplication by a

(")(

constant. We now determine a particular solution F."(z|7) of the ellipsitomic KZB system.

0

Let us denote z;; = 2 — 2 and let us compute the expansions of K;(z|7) and A(z|7) in the

region z;; < 1, 7 — too. We have

_ _ o -y O(z; —z; — a+ad(z;);7) 1 _
Ki Z 7_) = g+ (6 27ia ad(Z;) J _ L _ _ t;l)
(2] ]%;z% 0(z —z; — &;7)0(ad(z;); 7)  ad(z;) (5
™ 1 B
= t — . 1
Z:z:(ad (Z;) i — 2 — @ ad(fi))(t”)—’—O( )
Jij#ia€el
= 2> = =>. > — = +o
Zi — zj — & Zi
Jij#iael Jij#iael

Notice the resemblance with the function which defines the universal cyclotomic KZ connection
defined in [32, Section 1.4].

For the expansion of A, recall that if v € T' and 7 = (co,¢) € A, r is any lift of v, we have
g~ (2,x|T) 1= Ok~ (2, z|T) and

We then have

Al(z|r) = % Aﬁézzfxw(f) Semy +2 > ad(@)* (") | | +o(1),

s>0vel 1,7:11<7J
for z;; < 1 and any 7 € 6.
In section 13 we will relate A, ,(7) to Eisenstein-Hurwitz series which have a gn-expansion
and we define the normalized version Ay - (7) of the twisted Eisenstein series A; - (1) such that
Asy(1) = as,v“is,v(ﬂv

2rilT /N

and such that we have an expansion A, . (1) = 1 + D 150 Akl y€ as 7 —> ico. Then,

by applying Proposition 3 in Appendix A of [24] with u, = zn1, Un—1 = 2n—1.1/2n1,.., U2 =

291/ 231, 1 = q(7) = €>™7/N we obtain a unique solution Flg") (z|7) with the expansion
70 70
(n) TN A 0 A € T o SPI
Fr(zlT) 251 251 #nl

T Szt
e v 0+— Do sy | sy =2 ad" (@) (E;)

5>O,w€l" i<J

in the region zo; < 231 < ... € 21 < 1, 7 —> i00, (z,7) € DL. The sign ~ means here that
any of the ratios of both sides is of the form

Y S ),
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1,01,...,0n

where the second sum is finite with a; > 0, ¢ € {1,...,n}, r; (U1, ..., upn) has degree k,
and is O(u;(loguy)®...(log uy,)*). We denote FIE["]) the solution with values on G,, x (I'"&,,)
induced by FIE”)

7.2.2 A presentation of Bin

We use the same presentation of ]_31,” coming from [24] that we used in the proof of Theorem
4.3.2. Let us define Blin := m1(Conf(E; 1, [n],T), [z0]) and recall that By ,, = w1 (Conf(E; 1, [n]), [20])-
Now, since the canonical surjective map Conf(E;r,[n],I') - Conf(E; r,[n]) defines a I'-
covering, then B}, = ker(p), where p : By, — I sends o; to 0 = (0,0), 4; to (1,0)
and B; to (0,1). If A} (resp. B}Y) is the class of the path given by [0,1] > = 2o +¢>_7_, &
(vesp. [0,1] > ¢+ 2o +t7 327, 0;), then it follows from the geometric description of Blin that
AM BN (i=1,...,n) and

Riy 1= XY 1Cy VX
(fori<j,1<p<M,1<qg< N and a=(p,q)) are generators of Blin.

We denote again AM and BN (i = 1,...,n) for the projections of these elements to Bin.

7.2.3 The monodromy morphism 7, : B, — GL x (I" x &,,)

The monodromy of the flat GL x (I'™ x &,,)-bundle (Pr,n)» Vr,[m)) on My [, provides us with
a group morphism

IU/ZU-,F,[TI] : 7-‘-1(~/\/lll—"n/(rn A 6”)) — G7Fz A (Fn X 6")’

where 71 (M7 ,,/(I™ x &,,)) is the mapping class group (i.e. the orbifold fundamental group)

associated to /\/llfn /('™ x &,,). This actually fits into a morphism of short exact sequences

1——PBj, B, I"x6, —1,

| |

1——=MCGj,, —>mM}], /" x6,) —=T"x &, —=1

| |

1 Gl GLxI"x6,) ——=I"x6, —=1

where MCGlin = (./\/llfn) is the mapping class group associated to M{n, the top vertical

arrows are injections and the bottom first vertical morphism is the monodromy morphism
r
tzomr : MCGY,, — G

of associated with the flat G}-bundle (P, r, Vyr) on M] .

Indeed, this comes from the fact that Vr p,) is obtained by descent, from V,, r and using its

equivariance properties of Proposition 6.3.14. We denote

3y :PBy, — G
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and
A B, — GL X (I % &,)

the corresponding vertical composites.

Let Fr(z|7) be a solution of the ellipsitomic KZB system defined on DL with values in GL xT™.
Let us consider the domains

1
Hg = {(Z,T) ecC” Xﬁ|zi:ai+bﬂ,ai,bi€R,a1 <ag <..<ap <a1+M}

and

1
V,,{ = {(Z,T) eCcn xﬁ|zi:ai+bi7,ai,b1 <by<..<b, <b1+ﬁ}'

Both of these domains are simply connected and invariant. We denote F(z|) and FY (z|r)

the prolongations of Fr(z|7) to these domains.

Then

are solutions of the ellipsitomic KZB system on H. and V! respectively. Let us define
AF . BF ¢ GE x 1™ by

n 51 n o F
B2+ 471 | = 110055 (alm) AT
Jj=1 J=1
(EFjt+En - 51 AT
Q2 T gy z+7() i [10.1),F (zln)Bf.

We also define of' € &,, by means of
oiFr (o] 2|7) = Fr(z|)of,

where, on the left hand side, Fr is extended to the universal cover of (C" x ) —Diag,, . Notice
th?ut0 o; exchanges z? and z?+1, Z?+1 passing to the right of 2?. Its monodromy is given by
et |

Let us denote X¥ := AP(A?, |)7! and Y := B!(B}, ;). x® .= AP (Agi)l)*l and Y,V :=
B (BY,)~" and recall that §((—a);) - 1% = 2.

Lemma 7.2.2. The morphism v, : PBin — G induced by the solution F* takes AM to

(ANM, BN to (Bf)N. Let us denote Ry := X; 'Y 1Ci;YXY for all @ = (p,q) € T and
denote X := 4, (X?) and Y := 3,(XJ). Then R is sent via Yy, to

~

— — 40 — _
R, = 01(p,0);(0,q);¢*™"3 (0, —q);(=p,0);9;
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o -
and of* is sent via vy, to

~Q — — .

o = = - = —
¢, = 92(1_7,0)i+1(07f?)z‘+1€mti’”1(07*Q)i(*pvo)z‘gz1

Proof. This follows from the geometric description of the generators of By [): if (2o, 70) € DL,
then A; is the class of the projection of the path [0,1] >t = (zo + ¢ >_7_;(;/M),79) and B;
is the class of the projection of [0,1] 2 ¢ +— (zo + t7 Z?:i(éj/N), To). Finally, as paths in H},
AM and AM) are homotopic. Likewise, as paths in VI BN and BW) are homotopic. O

Thus, following the same conventions as before, we set the following elements in GL

R =g = [0 =L)X T[]0, 1)y, e TT 000, 1)-v;) [T 0T )-X5),
1=0 1=0 1=0 1=0

and

Ce=go =[O —1.9)- X34 [[00, ¢ =1)-Y;;)em s T (00(0,))-v:) [ (00, 2))-X2)
1=0 1=0 1=0 1=0

We will denote by 4, : PBlin — GL the morphism induced by the solution Flgn) (z|7) and
Yn i Biy — GL % (I'™ x &,,) the one induced by FIE["]).

7.2.4 Expression of v, : B;,, — Gl x (I" x &,,) using 7, and 7,
Lemma 7.2.3. 52(A37) and 72(BY) belong to exp(i{,Q) C GL.

Proof. If Fr(z|t) : HY — G is a solution of the ellipsitomic KZB equation for n = 2, then
AL = FH (z—6|7) FfI (z|7) 7! is the iterated integral, from zg € DL to zg—d2, of Ka(z|T) € @;2.
Thus, AL € exp(flfz). Then, as y2(A437) is a conjugate of (AL)M it belongs to exp(flfz) as

exp(t] 5) C GL x G is normal. One proves in the same way that 72(B2) € exp(t} ,). O

We let the reader check that the above lemma remains true in the reduced case.

7.2.5 Algebraic relations for the ellipsitomic KZB associator

Let us set
@i = (I)l...i—l,i,i-i-l...n”'q)l...n—2,n—1,n c eXp(%n),

and denote by = + {2} the morphism exp(t,) — exp(flin) induced by t;; — ;.
Proposition 7.2.4. Ifn > 3, then
Tn(Ai) = {®i}ya(Az) 70 (1,0),{ @},

Yn(Bi) = {®i}y2(Bo) =100, 1){ @}, (i =1,...,m),
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and

=0 0~ it n __ N —
Yu(0F) = g2(p,0)i+1(0, @)ix1e™ 41 (0, —q); (—p,0)ig5 "

where i =1,...,n—1, and a = (p,q).

Proof. Let G (z|7) be the solution of the elliptic [-KZB system, such that

o o o o o
GF(ZlT) _Zt(l)g Ztler.“Hl’FI tintottn 1 th_1n
[ 21 r*i—1,1 n,i e fn,n—1

1
xexp [ s Dotz Y any [8n —2 ad*(@)(t57) :

2mi 2 —
s>0,v€l’ 1<J

when 201 € . € 211 < 1, Zppo1 € oo K 2p < 1, 7 —> ico and (z,7) € D (we set
zij = 2 — 2 as before). Then
n

Gi(a+ 3 ailr) = [I00)5G7 (2l (4d)t 710,

Jj=i Jj=t

because in the domain considered K;(z|7) is close to Ka(z1, z,|7)t 71" (where Ka(...)
corresponds to the 2-point system); on the other hand, F' (z|7) = G} (z|7){®;}, which implies
the formula for v, (A4;). The formula for ,,(B;) is proved in the same way. Finally, the behavior
of F{™ (z|7) for 29, < ... < 20, < 1 is similar to that of a solution of the KZ equations and
we know that the twisted elliptic KZB connection is I'-equivariant. This implies the formula
for vy, (af"). O

Let us now finish the proof of Theorem 7.2.1. We set, for a € T,
9((@)1) .A10120 ..... L0 5enes no — A10,20 ..... Tovsenes ’nol
changer a partir d’ici
Set A := 73(Ay), B := v2(By). The image of the relation
Az(0((1,0)1) - A7) = (o) TH0((—a)1) - (A3 (1) 7Y
by 73 yields

1412,3 — {@}1,2,341,239((16)1) .
(@323 C0((a)e) ({@F*142190 ((1,0),) - ({2}1)71CD)) ) -

This relation can be depicted as follows:



224 CHAPTER 7. APPLICATIONS

(1020) 30

®

A1,23
(1020) 30 ¥

4123
(TNADbis)
A2,13

(1524) 30

where v = (1,0) and « € T'. In the same way, we obtain

312,3 — {@}1’2’331’239((671)1) .
(@3 2371 (Cr) 7 0((@)2) ({24510 ((0,T),) - ({24 71(C) ™) )

Accordingly, the image by 73 of the lift of the relation (Bs, A3A2_1) = (3332_1, As) = Ca3 to

Bin then gives

— &(BY2)~19((0, =T),) (@‘1312’39(((), 1)1.) (/112739((1,(‘))172) ((31273)—19 ((0,=T)1.2) Y)))

_ a&—1_2mitl.
= ¢ e 23,

where 1 = (1,1),

X = ((A) 10~ 19((=T,0)1,2) (BA26((1,0),)8 ),

and

Y = (@BY#6((0,1)1)((®) 1 (A*) 7).

One can simply draw the L.h.s. of these double equation as follows: we simplify the paths by just
neglecting the associators and we suppose that the central portion of the torus corresponds to
the (0,0)-labelled region with respect to the sublattice A, . Then we enumerate the different

movements (read from left to right in the Lh.s of the equation) of the marked points in the
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twisted configuration space:

We can see that the 29 is only braided with 29 since 29 moved to zg()’i) in the first movement.

0,1,

By applying x > 2?12, this identity implies

~ - ~ 1

A(0((1,0)) - B)(O((1,1)) - A1) (0((0,1)) - B ) = e 27tk

Since the universal twited elliptic KZB connection is I'-equivariant, then this equations are
also I'-equivariant. Now, let us denote

S = B239((0,1)1.0) (@(Awrlo((j, 0)1) (@*1[112739((1, 0)1.2) ((Bwﬁrlo ((6,7_)1 2) : X))) .

We then have

. M—1 #(3,0)
6727”21':0 tis ' =

SAIO((T.0)1,25) - (SAT AP0, 0)r,28) - (SAT?) - APV O =1,0)1.08) - (54T 7Y).
Now denoting by T the r.h.s of this equation we get

e—27‘ri Eaer‘ f;‘z —
TB0((0,1)1,23) - (TB; B 0((0,2)1,23) - (TBr2) - BN V0((0,N — D123) - (TBy V7).

By taking the log of this last equation we retrieve relation [Z1,7,] = >, cp tf2. In the same
way, one can show that A satisfy the elliptic first nonagon equation. The same will be
satisfied by B®). The elliptic mixed equation for n = 2 will be then written as
—27i £
(A0, By Z TR
Finally, one can see that if we take I" to be trivial, we retrieve equations (22), (23), (24), (25)
and (26) in [24].
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In order to finish the proof of Theorem 7.2.1, one has to take different boundary conditions for
=T AT
our KZB solutions. The couple e" (1) := (A"(7), B' (7)) € exp(t; 5) X exp(t; 5) is defined by
S 1 — o 2mi
AR(r) = ()70 0) Iz + =), BU(7) = J(2)700, D)e (2 + ),

where J(z) is the unique solution defined over {-& + &7, for a,b €]0,1[} such that we have
S~ = =
J(z) ~ (—2miz)" at z —> 0. The couple (AT, BT) € exp(ty o) X exp(ty ) is defined by

)

AT = J(2) 1001, 0)7(= + %), BT = J(2)"10(0, )e F 7 (= + 2,

where J(2) is the unique solution defined over {-% + 27, for a,b €]0,1[} such that we have
J(2) = 21" (1) at z — 0, where

T 1 -
(1) == exp 5 A0+§ Z asﬂﬁga

Tl
s>0,y€l

Thus, we have J(z) = (—2mi)!° J(2)o(r) ! and J(z) = (—271) """ J(2)p(7). We compute

L+ 1)) = (2m) (L0J(= + 3)elr) o) ()7 (~2mi)
LM+ )T = Ad(-2m) (0T + 7))
This means that A" (1) = Ad(( 2mi)t )((i 0)A ). The same argument for B (7) and B

shows that B' (1) = Ad((—2m1)!°)((0,1)B F) We conclude that e’ (1) = (AL (1), AL (7)) satisfy
(tN1) and (tN2). Next, (tE) is obtained in the same way as in the untwisted case (see [33]
Proposition 3.8) and this concludes the proof of Theorem 7.2.1.

Remark 7.2.5. The modularity relations of €' (1), depending on the chosen congruence sub-

group of SLa(Z), will be investigated in forthcoming works by the second author.

7.3 The Eisenstein-Hurwitz series

For any v € T, recall that g,(z,z|7) := Oyk,(z,z|7). Until now, the terms A, ,(7) were
determined as the coefficients of the expansion

~(0,z|7) = ZAW

s>0

In this section we give an explicit definition of these functions, show that they are modular
forms for the group SL} (Z) and relate them to cyclotomic zeta values. We also determine their
normalized variant 1‘1577(7') with constant term 1 on their ¢y-expansion that we used to apply
[24, Proposition A.3] at the end of Section 11.1.

Recall that the Weierstrass function is the function p : C — C given by

1 1
oe) = + ( 2 ;).
z ()T (0.0} (z+m+nT) (m+nt)
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It is even, periodic with respect to the latice (Z & 77Z) and meromorphic with poles of order
exactly 2 in (Z & 7Z).

We have the following identities for z € C — (Z @ 7Z):

oe,) = = () (e7) + 0= =02(1o8(0(z 1) +c.

for a constant ¢ € C. Next, for z in a suitable punctured neighborhood of zp = 0 (i.e. in the
maximal punctured open disk centered at 0 which does not contain any non-zero lattice point),

we have a Laurent expansion

1 oo 1 oo
p(z,T) = z—2 +;b2k22k 2 +; 2]€+1 G2k+2( ) 2k,

where bgy, = L290) with f(2) = p(2) — &. Here Gj(7) are the Eisenstein series defined for

(2n)!
all k > 1, by
) = = 1 271'1
= 3 | X e | S X0 oy ZO’“ ™
T o it o

where oq(k) = > 4, d*. We have Gi(r) = 0 if k is odd. We will also use the normalized

Eisenstein series Ey(7), defined for k > 4 even, by Ej, := GC’“((,:)) so that, for n > 1, we have

(277, + 1)G2n+2 (T) = a2, Eonyo (T)
where
on = —(2n + 1) By 2(2i7)*" 2 /(2n + 2)!,

where B, are the Bernoulli numbers given by x/(e®* —1) = >~ _(B,/r!)a". In particular, the
constant term in the g-expansion of the series Fs, is equal to 1.

Finally, also recall the expansion 0(z,7) = x + 27id; logn(7)z3 + O(a®).

7.3.1 Twisted Eisenstein series

First of all, set v = 0. We get, as in [24, Section 4.1],

90(0,z|T) = (0'/0) (x) + 1/2* = ZazkE2k+2 ;
k>0

where Gg = 72/3, Ea(1) = 220, logn(r), and for n > 1, .

We now concentrate to the case where vy € I'=0. Let v € I'—{0} and let ¥ = (¢o,c) € A;r—A;
be any lift of ~.
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By using the identity 9, f(x) = 9, (log(f(x))) x f(x), we get

g~(z,2|7) = Opky (2, z|T)

— <2ﬁic+ <%/) (z+x—7)— (%) ($)> eQ“icz% + x_12

)
Let us determine g~ (0,2|7) = >_ 5o As(T)2° =3 5 wg@s. We have

+z) 1

= (27ric—|— (%I) (z+7) — (%/) (x)) e?ﬂicwzéi 4

)0(z) 2

= (2mic+ (%) (%) - é)(l + 2micx 4 2mica?)(= + (%/) (3) + —5 +olx)

2 |-N

8|~

= (2mic)? — (%/)2 (%) — 2mic (%/) (3) — wic + o(z).

Set F(z) == 62““% so that

log(F,(z)) = log(6(7 + x)) — log(8(x)) + 2micx — log(6(7)). (7.2)
We have
0; (log(F, (x))) = 92(1og(0(7 + x))) — 92 (log(6()))
= (@) —p(y + )

1 L
22 (z+479)?

1 1 )
2 5 2 )
()T (0.0} ((m—i—m—i—nT) (x+%+m+nt)

Now let s > 0. Recall the expansion
S

1 T
(@+y)? 2 o ys+2’

s=20

where a; is the generalized binomial coefficient

( N ) <1>S<“j‘1 ) = (-1)(s + 1),

On the one hand, for y = m + n7, we have

1 1
H(x,7) := ( 5 — 2>
(T {(0.0)} (x +m+nt) (m+nt)
= 2(23 + 1)Gasra(T)2,

s>1
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On the other hand, for y = m + n7 + 7, we obtain

1 1
(m,n)€Z2—{(0,0)} (x +5+m+nt) (3 +m +nr)

S

1 T
= —~5 ds 7= )
(m n)e;—{(o o)}; (m+n7+3)2 (5 +m+nr)*

X
= Y > Kl Fpr————

s21(m,n)€2?—{(0,0)}

= D (—1)°(s+ 1)Gspay(7)2",

s>1
where, for s > 3, we define
Gor(r) = % m
(m,n)ez*>—{(0,0)}
Then, for s > 3, we write B, (7) = G4(7) — G5, (7) and we have

H(z,7)— Hy(z,7) = Z(—l)s(s + 1)Bsgo,,(1)x°.

and we write A, 'y( T) = G4(T) + G5 4(7) = =B, 4(7), as H(z,7) and G,(7) are even. If ' is
the trivial group, As . (7) reduces to twice the classical Eisenstein series G (7).

Notice that Gs(7) is not pair for the variable z but is pair for the variable x 4+ v i.e. it is
invariant under the transformation z +4% — —z — 4. Thus, we obtain G5, = (—1)*Gs,_,,
which implies that Ay, = (—1)%4, _..

In conclusion, we obtain

02 (log(F, (2))) = 12 T LD e D ()

T
s=>1
which gives

s+1 As+2:v(7)

PRI T2 4 le+m,

log(F, (x)) = log(x) — log(z +7) + Y _(~1)

s>1

Thus,

LA
—a(w+7) exp Z(_l)éﬂ%;) "2 4 2mica — log(6(%))
s>1

i
&
[

€

(T +9) orics o1 Asr24(T) 1o
_ exp E (-1 ——=
(%) =t s+2

where the term +27icz — log(6(5)) comes from the identification of the above formula with

equation (7.2).
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We conclude that

g (0alr) = 0.(F (@) + =

1 —2x — 4 . A
_ € 7627rlcx exp Z(fl)SJrl +2,y (T) 1,5+2

e
x? 0(%) = s+2

—27Ticz(x jL :Y) e?ﬂicz exp Z(_l)erl As+2,’Y(T) .Z‘S+2

0(%) = s+2

7$(1‘ + :Y) 2micx s+1 1 s+1 s+1 A5+2 'Y(T) s+2
i Clule b} S (—1)" A, S (-1t Eza )
9(;?) € S>1( ) +27’Y(T)‘r exp S>1( ) s+ 2 €T

Now, we define G (7) by

1
G =2 | X Grmrar

n=—oo m=—0o0
m#0 if n=0

and Ay (1) := Ga(7) + G2, (7). We also define
A AV
Ay (1) 1= (27ic)® — 7 (7) — 2wic 7 (%) — wie.
7.3.2 Modularity of the Eisenstein-Hurwitz series A, ,

Consider for s > 2, the function

oo o0

1
Gon)= 2 | 2 gy
"I \mio it neo

and denote as above A; (1) = G(7) + G5 (7).

Proposition 7.3.1. Let s > 3. The function As ., is a modular form of weight s for SLL(Z).

Proof. We will proceed as follows. First, we will show the modular quasi-invariance. Then we
will show holomorphy at the cusps by characterising holomorphy in terms of a qy-expansion,

where gy = e?™7/N (see [26, Definition 1.2.3]). For s > 3, the series A, ., () converge normally.

b _ _
Let us first show that, if o = “ J € SLY(Z), then A, (a-7) = (cr + d)* Ay (7). We
c

already know that the Eisenstein series Gs(7) are modular forms of weight s, for s > 4 and
G3(7) = 0. We have

1
GSKY(T) = Z v s’
(m,n)e€Z2—{(0,0)} (m+ 47 + 0+ §)7)

Thus,
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1
Gsﬂ/(a ) T) = u v\ art
<m,n>e;{<o,o>}( + a7 + (n+ %))’
1
= + d s
e (mm)ezzz:{m,o)} (md +nb + (me +na)7 + 7d + gb + (37¢ + §a)7)°
1
— 4)° S
(et +d) Z CESTETOL

(m,n)€2?—{(0,0)}
for some lift 4" of v € I". The last line holds by the fact that, since a = 1 mod M, d = 1 mod
N,b=0mod N and ¢ = 0 mod M, we have ;VL[dE i NV EZ, yzc € Z and Fa € %. Then

we can rewrite the term md + nb + (mc + na)r as m + nr by applying

(o) o) (22)

and we can rewrite the term §%d + %b + ({7¢ + a)7 as m + n7 + 7' by applying
(v u) L ( u) a b
N M N M)\, a4)

b _
where (a d) is invertible. Finally, as we already know that A, ., does not depend on the
c

choice of the lift 5 of v, we obtain G (- 7) = (c7 + d)*Gs,(7). The function A, . being
holomorphic on b, it remains to show that it is also holomorphic at all cusps of the compactified

modular curve X (T').

Recall that the Hurwitz zeta function is defined by

1
((s,2) = Zm,

m>0

where s,q € C are such that Re(s) > 1 and Re(q) > 0.

Lemma 7.3.2. The function G (T) admits a qn-expansion, where gy = e2miT/N
Proof. We have
Gsy(T) = mzejz(er'y ne%OmZeZ m+n¢+7
1
- mze:Z(ﬂHv) +n§0mzejz (m+ 2 +(n+2)r)*
S 2w RS P RIPT
_ mze:z(m J1r o ((S 277;); ne; O;r5 1,257 NnJrv)r
B Z ﬁ = (m i ’NY) )! eré leiig (NnJrU)T

m>1 n>1lr>1
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'ZZ 1 *2’“”‘ (Nn v)r

n>1lr>1

- f%+q&w+vw%@fw

el ) D el g T o
=

n>1lr>1 n>1lr>1

where ((s,7) is the Hurwitz zeta function evaluated at (s,~). O

This shows that G ,(7) is N-periodic and is holomorphic at ico and we define, for v = u/M,

%ﬂz—%+aaw+«w%@—w

to be the constant term in this expansion (it also depends on 7 but logarithmically). In other

words, G (7) has constant term equal to as ~ if v = /M and 0 else.
The term as . tends to 0 when 7 — ioco.

We now show that this function is also holomorphic at the remaining cusps of the modular
curve X (T).

Lemma 7.3.3. For all o € SLo(Z), the function
T (7 +d) °Gs (- 7)

has a qn-expansion.

Proof. We have

1
(et +d)"°Gs (- 7) ” > " > .
R (m,n)ezz;{(0,0)} (md 4 nb + (mc+na)r + $5d + b+ (e + Fa)7)
- ¥ 1
mmerz 0.0y M+ 3p)dF (i T )bt (metnat gre+ ya)r)?
> 1
ez {0y AT ard+ (7 )b+ (me+nat gpet jajr)®
_ 1
(mn)eZ2—{(0.0)} (d (m + é (%d—i— (% +n)b+ (me+na+ §5¢+ %a)T)))
1 1

S

m+ 3 (%d+ (% +n)b+ (mc+na+ e+ %(1)7’))87

=

(m,n)€Z?>—{(0,0)} (
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By denoting z = 4 (#d + (% + n)b+ (mc+ na + ¢+ £a)7), we have

1 1
(et +d)*Gsy(a-T) = — —
(m n)€Z?—{(0,0)} (m+ Z)

_ 27” ZZ s—1 271'17"2
s—1)!

nezZr>1

s
. i( 27” § § s—1 Qﬂlrd(MdJr( +n)b+(me+na+ MchNa)T)
ds (s —1)!

nezZr>1

s
_ i( 27” ZZ s—1 27r1r(m+"b+M+ )627rir'r(mczna+;/‘ﬁi+%)
ds (s —1)!

nezZr>1

s
_ i 27T1 ZZ s—1 27‘r1’l“(m+"b+]w+ ) 27r1r7— (N(mc+na+1v[d)+ za )

ds (s —1)!
nezZr>1

ds (s 1)!

s metna | ue va
_ 1 27” § § s—1 27r1r(m+"b+M+ ) (N( + Md)JFT)T

)
nezZr>1

which concludes the proof. ([l

We conclude that, for all o € SL}(Z), the function
T (er +d) 5 Ag (- T)
is holomorphic at ico, which concludes the proof. [l

Remark 7.3.4. From the expression of the function (c1 +d)~*As(a - T), we can notice that
our functions /71577 will degenerate at all cusps of X (T') to functions closely related to cyclotomic
zeta values. More precisely, the function 27€F7{0} [1877(7) has a gy -expansion whose constant

term (in the sense that if T — ico, its remaining non zero component) is

> (-t + v 1),

1<u<M-—1
7.4 Representations of Cherednik algebras

7.4.1 The Cherednik algebra of a wreath product

In this paragraph T is any finite group such that I' C Aut(C), k = (ko)a € C' is such that
ko = k_o and G := T'1 &,,. We define the Cherednik algebra H! (k) as the quotient of the
algebra C(z1,...,%n,y1,...,Yn) X C[G] by the relations

o > ixi=2,yi=0

b [Xivxj] =0= [Yian]a

° [Xiay]‘] = % - ZQGF kaS% (’L 7& j)’

where s, = (a; — @;)s;j, and s;; is the permutation of ¢ and j.
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Remark 7.4.1. As T C Aut(C), HL (k) admits a geometric construction. Define X := {z €

C"| >, zi = 0} and consider the following action of G on it: &, acts in an obvious way and
ai(z) = (oW — Z a9))(z

where o'®) is the action of o € T on the k-th factor of C™. Following [40] one can construct a
Cherednik algebra Hy ;0(X,G) on X/G. It can be defined as the subalgebra of Diff (X) x C[G]
generated by the function algebra Ox, the group G and the Dunkl-Opdam operators D; — Dj,

where
Oé

=0, + Z ko, 5ij .
gk - 0‘(23)
acl

One can then prove that there is a unique isomorphism of algebras HL (k) — Hi j0(X,G)
defined by

X; /2,
1
Vi ’—)Dz — E ZDj,
J

G > gr—g.

7.4.2 Morphisms from ], to the Cherednik algebra

Proposition 7.4.2. For any a,b € C there is a morphism of Lie algebras ¢ p : flin — HI'(k)
defined by
T; — aX;

Ye% 1 (0%
tiy; — ab (E — kasij> .

Proof. Straightforward from the alternative presentation of {{n in Lemma 4.3.5. O

Hence any representation V of HL (k) yields a family of flat connections VEXJ over the config-

uration space C(E, [n],T").

7.4.3 Monodromy representations of Hecke algebras

Let E be an elliptic curve and E — E the I-covering as in §6.1.1. Define X = E”/E
and G = (I'1 &,,)/T42. Then the set X’ C X of points with trivial stabilizer is such that
X'/G =C(E,[n],T).

Let us recall from [40] the construction of the Hecke algebra HL (¢,t) of X/G. It is the quotient
of the group algebra of the orbifold fundamental group Bl,n of C(E, [n],T) by the additional
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relations (To, — ¢~ o) (Ta + ¢~ 't5") = 0, where T, is an element of B}, homotopic as a free
loop to a small loop around the divisor Y, := U;x;{z; = a-z;} in X/G, in the counterclokwise

direction.!

Let us consider the flat connection Vflvb) and set

q= e—27rlab/n, to = e—27rlkaab )

Then the monodromy representation B{n — GL(V) of V((Xb) obviously gives a representation
of HL(q,t) either if V is finite dimensional or if a, b are formal parameters. In particular, taking

a = b a formal parameter and V = HL (k), one obtains an algebra morphism
H(q:£) — H, ()[[a]] -

We do not know if this morphism is an isomorphism upon inverting a.

7.4.4 The modular extension of ¢, .

Now assume that a, b # 0.

Proposition 7.4.3. The Lie algebra morphism ¢q, can be extended to the algebra U(flin X
o) x G by the formulas

bap(555) = 5555

1 L 2
Pap(d) = 5 Z(XiYi +yixXi), Pap(X) = f§ab in,

Gu(B0) = 207 S32 Guplar) = —a" Y1 (i - x))"

1<J

Thus, the flat connections V;b extend to flat connections on le [n]"

1Here the sugroup of G acting trivially on Y, is the order 2 cyclic subgroup generated by slaj
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Chapter 8

Multiple-zeta values at torsion

points

We propose in this chapter a twisted version u! of Pollack’s stable derivation algebra contructed
in [88] by relating it to the twisted derivation algebra d' constructed in subsection 6.2. Next,
we state and prove a differential equation in 7 for the ellipsitomic KZB associator and use the
iterated integral machinery developped in [34] to give a well-defined notion of elliptic multiple

zeta values at torsion points, closely related to that which appeared in the physics paper [19].

8.1 The Lie algebra u' of special twisted derivations

We give a definition of the twisted version of Pollack’s Lie algebra u of special derivations.

8.1.1 The case of the twisted configuration space Conf(E,n,I)

Proposition 8.1.1. There is a unique bigraded Lie algebra morphism

p:ot t], x0o"
&fih — & fh
Sary W =6+ > (aday)'ty + (—ada)*t],.

1<i<j<n
This induces a group morphism GY — G that will be denoted h h.

237
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Proof. Let us first show that the relation d, , =

()%, = (1%t Y (
1<i<j<n
= bt 3

1<i<j<n

= 05+ E (ad z;)®
1<i<j<n

— s

= Oy

(—1)5

)*(ad2:)°t], + (~1)°(—

ds,—~ is preserved by p:

“((ad@;)*t); + (—adx;)*t;;")

1)%(ad z;)°t;

)

+ (7 ad SCZ)StZ]

Next, we show that the highest weight relations are preserved for 5&"7) i.e. that we have relations
6,6%] = 0, [7, 6] = s6{) and ad®+'(F)(5{%)) = 0. The relation [¢,6{%] = 0 is obviously

satisfied. Next, we have

7, 60] = $6sn+[h, Y (adx;)'t; + (—adz;)*t])]
1<i<j<n
= 805+ Z ,(ada;)® ]—l—[iL,(—ad:Ei)St?j]
1<i<jsn
= 805+ Z s(adx;)’t;;" + s(—adx;)°t];
1<i<jsn
= 55(77’
and
ad* ™ (f)(6)) = 0+ad ()| D (adwi)t;” + (—adw)*t];

1<i<j<n

= 2 (), D (ade)

1<i<jsn

- + (* ad zt)stzj)

= Z (f)n_i 't'imes(f) (ad(ys)(adz;)* ;" + ad(yi)(—ad 2:)°"¢];)

1<i<j<n

= Y (N ((ady)ty + (=
1<i<jsn
= 0.
This finishes the proof.

Remark 8.1.2. Since

> A (adz;)(

veT

t;) =Y (1) Ay

verl

53 A ((ad )

veT

we obtain

ti;) + (—ada;)®

U

Recall that there is a bigraded Lie algebra morphism

o' — Der(t]

e, f,h ém§?>

0sy +—— §

5,7

(ad ;) (¢;;”

adyi)st?j)

=> A 4(—adw)*t]),
verl
ZAS ~(adz;)® )
verl
n)
1Sh
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where 52") =&, f}") =&, 5,(1") := &, are the usual derivations given by the sly-basis {e, f, h}
and

o & (x;) =0,
* £S ( i) = Ej:j?fi Zerq:sfl Eﬁel‘[(ad xi)pt'ﬁ'_’ya (—ad ‘Ti)qtfj]v
o €N (1) = [t (ad ;) 1877 + (—aday) "5,

15 i ]

This morphism induces a morphism 9" — Der(t] ,,) and we denote & ("),5 (n) 5,(1") and ESE,)
the images of e, f,h and d, 4 by this map.

Proposition 8.1.3. The derivation ég’;) = §£n7) + > [(adx)*t;” + (—adx;)®
1<i<j<n

t:jv 7] Of

Der(tlin) is given on generators by

(@) = D — (ada)™™ (t57) + (— ada) T (1)

J3i#]

and

ég",y) () = Z[—((ad zp) 'ty |+ (—adwg)® z;r’y) (adzk)t, + (—adwg)*t);, 7).
k#j

Proof. We have

M) = ) laday)t;) + (—aday)*t),, =i

i<k
= Y laday)*t;) @] + [(— ada;)*t),, xi]
i<k
= D lad@:)ty) el + [(—adw) ), ] + Y _[(ad ;) 5, @) + [(— ad a;)*t];, 2]
i<k Jj<i
= Z[(adxi)sti_j”,xi]—i—[( ad x;) ), x +Z —adw;)t);, x| + [(ad 2;)°t;;7, 2]
i<j 7<i
= > ladw)*(5;7), x] + [(— ad z,)* (1)), i)
J3iF]
= Y —(adz) (") + (—adz;) T (L]).
i
Next,
f(")(to‘) = [t (ad ;)57 + (—adx;)* ZJW +Z[(adxk)st,;l7+(—adxk) tans t55]
k<l
[t (ad z:) 657 + (—ad 2i) 65 ]+ ) [(ad @)ty + (= ad @) t]), )]
1<J
+ Z [(ad ) tk], & +Z (adz;)® J177t% + Z (adx;)*t; ", ti]
k<j,k#i i<l i<l l#j

+ Y [(—adzy)'t, 125+ > [(—aday) ), 2]+ > [(—ada;) e, 1]
k<j,k#i j<l i<ll#]
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+Z[(adxk Tt 5]+ Z —aday) ), t5]

k<i

k<i

[t (ad z;) 67 + (—adzi)*t5 ]+ ) [(ad @)t + (— ad @) t]), )]
1<J

+ Y ladzy) 't 5]+ Y [(—ada) 7 e8]+ Y [(—adw) e, 2]

k<j,k#i j<l i<l,i#j

+ > [(—adap) ), 18] + > [lada) ), e8]+ Y [(ad ) t), 5]

k<j,k#i i<l i<l l#j

+ lad @)t 5] + Y [(—ad @)t 8]

k<i

k<i

[t5;, (ad @)ty + (—ada;)* St +Z [(ad@;)*t;;" + (—adx;)*t];, 7]

I

k<j,k#i

I

k<j,k#i

tij i vij

i<j

(adzx)"t, ", 1] +Z —adxy)’t,), t5] + Z [(—adaxy)t;,” 5]
j<k i<k,k#j

—ada) ] 0]+ Y [(adzy) ), 5]+ Y [(ad k)t 5]
j<k i<k,k#j

+ lad @)t 5] + ) [(—ad @)t 5]

k<i

k<i

[t5s, (ad @) "ty + (= adxi)st?fv] + z:[(audgci)sti_jV + (—adz;)%t)., t5]

2

k<j,k#i

DI

k<j,k#i

ij Vg
i<j

(adzy)* [ty 5 +Z adzy)®[t;, ;] + Z (—aday) [ty 5]

i<k i<k,k#j
—adxg)*[t);, 5] +Z ad x)*[t],, t5;] + Z (ad wx) [t ]y, 53]
i<k i<k, k]

—I—Z ad ) [ty 5] —I—Z ad ) [t);, t5]

k<i

k<i

[t (ad 2:) 67 + (—adzi)*t5 ]+ ) [(ad @)t + (= ad @) t]), 2]

2

k<j,kti

Z] 170 Y]

i<J

(adxk)s ]7 zg Z adzk k 7t%] Z (7 adzk) [tDHr’Y’t%]

j<k i<k, k#j

+Y (adw) [t 15 — Y (ad ) [t 7 ] = > (—adag) [t 1]

i<k

+ > (
k<j,k#i
—[(ad x;)*

i<k, k) k<i
—ad )’ [ty 5] — Z(adxk) [ty s t55]
k<i

ty; ot = [(—aday)® ffw,t% +Z ad x;)*t;;7, t5] + [(— ad @) "), 15
i<j

- Z (adzy)®[ty; 7, t5] + Z (adzr)* [ty 5] —I—Z ad zy)* [t 7]

i<k, k]

DI

k<j,k#i

k<j,k#i <k
—adx) [t 1] + Y (—adag) 1. t0] = > (—ad ) [th 7,15
i<k k<i

- Z (—adaxy)®[ty +V,tf§] Z(adxk) [ty ' t55]

i<k, k]

k<i

ij7 vij
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= —[(adax;)*t& 7 18] — [(— ad ay) 5t 18] +Z ad ;)% 7, 3] + [(—ada;) %t t5]

7] ? 7 z] ? 7 ij 0 Vg AR ]
i<j
— Z ad xy)* [ty 7, ] + Z (adwy)* [t 18] — Z (—adzg)® [tgjw,t%]
k#i,j k#i,j k#i,j
—|—Z —adxy)® k],t%]
k#i,j
= —[(adx;)® %V,t%] [(—adwx;)® %ﬂ,t% +Z ad ;) twv,t%] [(—adz;)® tzj,t%]
i<j
=Y (ad ) [ty 7ot = D (—ada) [t T 5] + > (ad k)t 1)
k#i,j k#i,j k#i,j
—|—Z —adxzy)® k],t%]
k#i,j
- ¥ ([ (ad )t 45] — [(— adzw)*t0 7, 185] + [(ad 2x)*t), £5] + [(— ad 2x)* tg],t;-;])
Py
= Z[—((adxk)stg;7+( ad xy)® g;rv) (adzy)®t ) + (—adwg)*t);, ;).
[y
This finishes the proof.
O

Remark 8.1.4. In particular, there is a Lie algebra morphism

i, 3" — Der(t],)

e, f,h — fén),«f)(cn),«f,(ln)
5 &
and the equality
&y (Zt ) () 5]+ Lo €67 ()] (5.1)

acl

implies that it is sufficient to determine the image of the x;’s and all the t7;’s to fully determine
g(n)
S,y -

8.1.2 The Lie algebra of twisted stable derivations

Recall that the fibers at 7 of the punctured universal curve over Mj | are the spaces EXrn
consisting of an elliptic curve minus torsion points indexed by a finite group I' = Z/MZXZ/NZ
is defined as the space ((C — {(ﬁ) 7+ (%) Z}) /A, where A, =Z + 7Z.

Lemma 8.1.5. The de-Rham fundamental Lie algebra p(E ) of EXp is the C-Lie algebra

generated by symbols z, y and t, for « € T, such that [x,y] = > t°.
acl

Proof. The space E* + can be identified with the reduced twisted configuration space C(Err,2,T)
whose de-Rham fundamental Lie algebra is t172, which is nothing but the C-Lie algebra gener-

ated by symbols x := Ty, y := §o and t* := %, for @ € T, such that [z,y] = > t*. O
acl’
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For any s € N and v € I" we set
Z Z[(ad x)ptﬁi’ya (_ ad ‘T)qtﬁ]a
p+q=s—1pBel’

and (Cs,y)a := (ad 2)%t*™7 4+ (— ad 2)*t*™7. Observe that (Ds ,Cs.) = (=1)%(Ds,—~, Cs —~).
One has shown (e.g. Proposition 6.2.4 and the fact that D; - (x,t%) = Dy, (—z,t~")) that the
bidegree of (Ds ., Cs~) is (s +1,1). The derivation §_§2,3 is then given by

o £7() =0,

o E00) = Don(a,7),

o 70 = [, 2, 17))
The image of 5, + (ad £)*t =7 4 (— ad #)¢” under the Lie algebra morphism 2! x Der(i{g) —
Der(p(E] 1)) yields the derivation é{z given by

(@) = ~(ad2) () + (—ad ) (1),
. 5(2)( “) = [—((adx)*t* 7 + (—ad x)5t*T7) + (ad )%t + (— ad z)5t7, %] .

Let u' be the Lie subalgebra of Der(p(ETX’F)) generated by the derivations aﬁ% for s > 1 and
v €T, defined by

o &3 () = (adw)*(t77) + (—adz)* ("),

o 22 (%) = [—((ad )t~ + (— ad z)*t°) + (ad )t~ + (— ad 2)°t7, ] .
Let u be the Pollack’s Lie subalgebra of Der’(f2(a, b)) generated by the e, € Der(f2(z,y)), for
s > 1, given by

o e25(z) = ad®(z)(y),

o eas(y) = ZO<J<5( 1 [ad’ (2)(y), ad® ™ (2) (y)]-

* c2511(7) = €2541(y) = 0.

Remark 8.1.6. We have

EA() = €Ay +[(adz)*t™ + (—ad)*t",y]

Proposition 8.1.7. There is a surjective Lie algebra morphism

' —
=(2)
£ F— &s

Proof. This is consequence of the definition of the commutativity of the comparison morphism
diagram

~g I'y Iy
0l X t1,n — tl,n

L

oz tlfzn —t
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(2) =(2)

applied to the case where I'y is trivial and of the definition of &5, as €5, (7) = €2s(z) and

(2) (tO) =0.

8.2 Differential equations in 7

In this section we prove a differential equation in 7 for the ellipsitomic KZB associator. Namely

we have

Theorem 8.2.1. We have

.0 1 =
2mio—AT(r) = | =Ao— 5> > A, (nED | AT(7),
yel's>0
e
QWIEBF(T) =|-Ap— —ZZA s,y (2) B (1),
’Y€F5>O

Proof. Let z = 291 © = T, t* = t75. Recall that in Remark 8.1.2 we established

1 o
52/15,7((&%1-)6(@]) (—ada;)*(t];) = > Acy(adz;)*(t;;7).

veT ~er

Now, seen in Der(i{,Q), the (reduced) ellipsitomic KZB system for n = 2 is

E 1N P 7_ — —27r1add(m) 9( d+ad($)|7) @ 1N 2T
5.0 (& ( 2 80z —aln)flad@)) )>F (z7)

6 (1
217ra—FF(z T (AO + - Z Ag A( fs,v Zga (adz, z|7)(tY) | F'(2;7)

5>O,w€l" ael’

=— A0+— Z Ag (T 5(2) Zg 2T (tY) | FY(2;7),

5>O,w€l" ael’

where g (2|7) = ga(2,ad 2|7)(t*) — g0 (0, ad z|7) (t*) and where F* (z; 1) is defined on {(z,7) €
Cx 9|z = a+br, (a,b) €]0,1/M[xRURX]0,1/N [}, valued in exp(t] o) x "~ x Aut(t] 5) xIT"~!

and is determined by the behaviour
Plaep) o ot T 1 (2)
F'(z;7) ~ 2" exp ~5 Ay + 5 Z as~Es
s>0,yel
when z — 07,7 — ico. We have
1 - .
Fr'(z + 371m) =(L0) K (2|7) A(7),

eQTri%FIY(Z + %lfr) :(()’ i)FIy(Zh-)B(T)
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These conditions imply that the image of F''(z|7) in Aut (@;2) is independent of z. Now let us

write

ot (1) = (Ao+— S A(n)ER).

s>0,yel
We define
(AT)21(7) := FT (21| 7) FF (20]7) 7" € exp(EL ),

which satisfies

2mi (AT = —a (D(ADS ) + T g9 (1l - (AN ) = (AT ) - g ).
yer

The function J(z|7) appearing in the definition of AT (7), BY(7), is related to the function
FU(z|7) by FY'(z|7) = F(z|7)¢(7), where

40 T 1
o(1) := (—2mi)" exp 5 Ag + 5 Z a577£(2)
s>0,vell

takes values in exp(@iQ) x Aut (@;2), because both them satisfy the same differential equation
in z. It follows that

(AD)Z () = J(za7)J (20| 7)™

o p L
We conclude that A" (1) = J(z|7)~'(1, 0)(141“);r M(7)J(z|T). Now, taking z — 0, this implies

AT (7) = lim, o (=2 2)~ ) (1,0)(A7) 2 ().

As z is fixed, (—2miz)~2d(%) ((1, f))(AF)iJr%(T)) satisfies the same differential equation in 7
as (A")z1(7), with g(zo|7) replaced by (=2miz)~2(°) (¢(z|7)) and g(z1|7) replaced by

(~2miz) =0 (1, 0)g(= + ~-17)

which both tend to 0 when z — 0. It follows that these terms disappear from the differential
equation satisfied by A" (1), so

0 1 (2) r
2mi - AN(7) = AO+— > A (n)ER) AT (7).
s>07€F
Let us now show the differential equation for BT (7).
We have, B' (1) = F(z|r)~1(0, 1)e*®* (AL) ¥ (r)F(z|7), thus

27r1::

B (1) = lim,—,o(—27mi2) "1 (0, 1)e ¥ (AT):T ¥ (7)(~2riz)

tO

One computes, for & = §5 + 7+ any lift of a € T',
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A= S D)
1 T —27iax 9(’2 +x—a+ adac|7') Iy 2+ 5%
+<5§“Z+Nh)2;e 3+ 2 amEda ) A @)
(AN F ()5 g (elr)

Set X, (7) i= (=2mi2)~t" (0, 1)e* ¥ (AD)ZT¥ (r)(—2ri2)!". If we fix 2, we get

.0 r
QWIEXZ(T) = —r (1)(X:(7))

—X.(1)- ((—27riz)_tog(z|7')(—27riz)t0)
+(Ad((—27riz)’t

>

Then, as we showed that

7'5]' —2miad(z;) AT
Alz+ —Fr)=e ¥ 0((0,1);)(A(zlr) — K(z7)).
then the parenthesis in the last three lines is equal to
o

Ad((=2miz)"")(g(2l7)).

We conclude that, in the limit z — 0,

.0 1
27 gBF(T) =—(Ao + 2 Z As iy (1)EE) B (7).
s>0,~€l

O

Remark 8.2.2. If we suppose that the group GRTL),(C) has a semi-direct product decomposi-
tion into some group RL,(C) and GRT(C), there is an action of RL;(C) on Ellk , 5. In this

case, the above theorem can be rewritten in a more compact way by

.0 1 =
27T1E6F(T) = er(T) # | —Ao — 522‘4877(7)62

yel's>0
where x is here a Lie algebra action.
Let usfix 7 € , vy € I' and = € C. Define
. 0z +7+)
0y (2) 1=
0(z +7)0(x)

Consider z as a formal variable close to 0 and o7,  as an element of 2! M(C)|[x]], where

M(C) = {meromorphic functions defined over C}.
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Proposition 8.2.3. o7 . has an expansion
T 1 T n
0T (2) = —+ YK (),
n>0

where k7 o(z) = (07./0:)(2), k] o(2) = (0;/0-)(2 +7) and kI ,, is regular at 0 and 1 if n > 0.

v,
Proof. In light of [34, Proposition 2.5], the only left thing to prove is that, for v # 0, we have

k7 o(2) = (07/0-)(z +7) which is true by the very same computation (using that 6 is an odd
function) and the fact that for v # 0, the term k7 ((z) is regular when 2,z — 0. O

8.3 Elliptic multiple zeta values at torsion points

The twisted elliptic KZ associator e''(7) := (A'(7), B (7)) has an expression in terms of
iterated integrals. Let us denote

r — 6727riaac 9(2 —a+ ad(x)|7) o
K'(z) == 80z — aln@ad@)n)

ael’
By Picard iteration and well-known properties of iterated integrals, we have

I"(r) = (%i_l)%zto <9(L(_)) exp [/a(lMt) KF(z)dz]> zt0>

t

2irJ" (1) = <}i£rg)z_t0 (9(0, 1) exp l/ﬂ(%) Kr(z)dz}) zt0>

t

and

where the superscript op denotes the opposite multiplication on the algebra C((z,t%; a € T')),
defined by (f - g)°® = g - f. Here we choose the principal branch of the logarithm so that
log(£i) = +mi/2.

Definition 8.3.1. Let nq,...,n, > 0 and ay,as,...,a, € I'. The twisted elliptic multizeta
values

ny n2 N Ny ny N9 . Ny
14 T 7| and I B 0T
a1 2 yeeey Oy (5] a9 geeey QO
are defined equivalently

1. as the coefficients of ad™ (z)(t*')...ad" (z)(t*") in the renormalized generating series

of regularized iterated integrals

t t

e r t© o —t@D r t©
%1_{%2 exp [/a(lMt) F (z)dz‘| z" and }1_1}152 exp [/ﬂ(th) F (z)dz] z
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2. by means of two functions A" (1) and BY (1), closely related to A(T) and B(7), of the form

n ny n2 ..., Ny n o n, a
Al =20 > > I < A " ;T> ad™ (2)(t%1) ... ad™ (2) (1)
n=0 ni,..., ny.20a1,..., arel P r
and
n ni1 no yeeey TNy n o ", .
HRP P U PV TP < o a o ) ad™ (2)(¢) ... ad"™ () (t")
n20 ni,...,np2001,...,0.€T IR T

One can picturally see the relation between (A!' (7, BY (7)) and (A(7), B(7)) by means of the

following picture

Our approach to multiple zeta values at torsion points is somewhat different to that in the
recent work of Broedel-Matthes—Richter—Schlotterer [19], and generalizes to the case of any
surjective morphism Z? — I sending the generators of Z2 to their class modulo M and N,
respectively. More general surjective morphisms could be considered. The relation between the
twisted elliptic multiple zeta values obtained in this paper and that in [19] will be investigated
by the second author and N. Matthes in a forthcoming collaboration.

Now, multiple Hurwitz values are defined, for ns,...,n,._1 > 1, n,, > 2, as the real numbers

1
C(nla"'an y A1y @ ):
r T ngl<.§cr;miez (kl _ al)nl (k;2 _ a2)n2 .. (kr _ a,_)"”
where ay,...,a, are rational numbers with a; > 0 and such that {(n1,...,n.,1,...,1) =

C(niy...,np).
Then, the differential equation of Theorem 8.2.1 combined with the fact that, for real values
of v € A, the Eisenstein-Hurwitz series have Hurwitz zeta values as constant coefficients in

their gy-expansion, permits us to expect the following:

e elliptic multiple zeta values at torsion points should have a ¢n-expansion whose coeffi-

cients are special linear combinations of multiple Hurwitz values,
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e elliptic multiple zeta values at (real) torsion points should degenerate to multiple Hurwitz
values at the cusps of Y/(I').

e elliptic multiple zeta values at torsion points should be linear combinations of iterated
integrals of Eisenstein-Hurwitz series whose coefficients are controlled by the Lie algebra

ul.

This gives hope of finding new periods of P! — {0, jps, 00} besides cyclotomic multiple-zeta

values for special values of M.
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