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In this thesis, following the work initiated by V. Drinfeld and pursued by B. Enriquez, then by the latter together with D. Calaque and P. Etingof, we study the universal twisted elliptic (ellipsitomic in short) KZB connection, associated to the moduli space of elliptic curves with n marked points and a (M, N )-level structure. The flatness of this connection allows us to study monodromy relations satisfied by this connection, opening the way to a general theory of ellipsitomic associators and Grothendieck-Teichmüller groups corresponding to them, which is released via the use of the formalism of operads (and some of their variants) basing ourselves on the work of B. Fresse. On the one hand, this formalism allows us to study the structure of associators in higher genus. On the other hand, the ellipsitomic KZB associator allows us to derive a theory of elliptic multiple zeta values at torsion points, from which some of their first associator-like properties are distinguished.

We will begin by setting up the operadic machinery necessary to define the ellipsitomic associators starting successively with the genus 0 situation, which is well-known, then the genus 1 situation and their cyclotomic variants. Then, in light of this formalism, we will release a definition of genus g associators.

Next, we will go into the details of the construction of the universal ellipsitomic KZB connection, first over the (M, N )-twisted configuration space of an elliptic curve and then over the moduli space of elliptic curves with a level structure. We will associate this connection to its realized version by means of the use of double affine Hecke algebras and of classical dynamical r-matrices. Finally we will present the applications of this construction, namely : the formality of certain subgroups of the braid group on the torus, the ellipsitomic KZB associator, elliptic multiple zeta values at points of torsion as well as an application in representations of cyclotomic Cherednik algebras.

Résumé

Dans cette thèse, en suivant les travaux initiés par V. Drinfeld, poursuivis par B. Enriquez, puis par ce dernier, D. Calaque et P. Etingof, nous étudions la connexion KZB elliptique cyclotomique (ellipsitomique en plus court) universelle, associée à l'espace de modules des courbes elliptiques avec n points marqués et une structure de (M, N )-niveau. La platitude de cette connexion nous permet d'étudier des relations de monodromie, ouvrant la voie à une théorie générale des associateurs ellipsitomiques et des groupes de Grothendieck-Teichmüller qui lui correspondent, que l'on dégage via l'utilisation du formalisme des opérades (et certaines de leurs variantes) en nous basant sur les travaux de B. Fresse à ce sujet. D'une part, ce formalisme nous permet par ailleurs d'étudier la structure des associateurs en genre supérieur. D'autre part, l'associateur KZB ellipsitomique nous permet de dégager une théorie des valeurs multizêta elliptiques en des points de torsion, dont on démarque quelques unes de leurs premières propriétés du type associateurs.

On commencera par mettre en place la machinerie opéradique nécessaire pour définir les associateurs ellipsitomiques en partant tour à tour de la situation déjà connue en genre 0, puis de celle en genre 1 et ensuite de leurs variantes cyclotomiques. Enfin, grâce à ce formalisme, nous dégagerons une définition des associateurs en tout genre.

Ensuite, nous entrerons dans le détail de la construction de la connexion KZB ellipsitomique universelle, en premier temps sur l'espace de configurations (M, N )-décorées d'une courbe elliptique puis sur les espaces de modules des courbes à niveau, nous la lieront à sa version réalisée via l'utilisation des algèbres de Hecke doublement affines et des r-matrices classiques dynamiques. Pour finir nous présenterons les applications de cette construction, à savoir : formalité de certains sous-groupes de tresses sur le tore, l'associateur KZB ellipsitomique, valeurs multizêta elliptiques en des points de torsion ainsi qu'une application en représentations d'algèbres de Cherednik cyclotomiques.
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Associators

The theory of Drinfeld associators was introduced by the ukrainian mathematician Vladimir Drinfeld in his famous article [START_REF] Drinfeld | On quasitriangular quasi-Hopf algebras and a group closely connected with Gal( Q/Q)[END_REF]. It is an example of an object that mathematics borrow from physics and whose mathematical significance ends up being independent of its physical importance. In particular the following ideas 1 • Quantum groups (Drinfeld) : associators produce quantizations of Lie bialgebras.

• Conformal Field theory and Wess-Zumino-Witten models (Witten 2 ) : the KZ connection appears naturally in the geometric quantization of 3-dimensional Chern-Simmons theory 3 .

• Algebraic topology of varieties and 3-dimensional topological invariants (Witten, Kontsevich 4 ) : the universal enveloping algebra of the holonomy Lie C-algebra of the configuration space of the complex plane, which is where the KZ connection is defined, is precisely the algebra of horizontal string diagrams.

served to answer deep problems in

• Number theory (Drinfeld, see [START_REF] Drinfeld | On quasitriangular quasi-Hopf algebras and a group closely connected with Gal( Q/Q)[END_REF]) : the KZ Associator is a generating series of all multizeta values, which satisfy associator-like relations.

• Geometric Galois theory (Grothendieck 5 -Drinfeld, see [START_REF] Drinfeld | On quasitriangular quasi-Hopf algebras and a group closely connected with Gal( Q/Q)[END_REF] and [START_REF] Grothendieck | Esquisse d'un programme[END_REF]) : the set of associators is a torsor under the action of a group whose profinite version contains the absolute Galois group Gal( Q/Q).

1 Non-exhaustive list, as well as cited authors with significant contributions in the theory of associators.

2 see for example his article [START_REF] Witten | Quantum field theory and the Jones polynomial[END_REF]. 3 The reader can also discover some parts this wide field in the excellent introduction [START_REF] Gawedzki | Conformal field theory: a case study[END_REF] on the subject. 4 see in particular his article [START_REF] Kontsevich | Operads and motives in deformation quantization[END_REF]. 5 see in particular his manusscript «Esquisse d'un Program» [START_REF] Grothendieck | Esquisse d'un programme[END_REF].

CHAPTER 1. INTRODUCTION

• Deformation quantization and formality (Kontsevich, Tamarkin, see [START_REF] Kontsevich | Operads and motives in deformation quantization[END_REF] and [START_REF] Tamarkin | Another proof of M. Kontsevich formality theorem[END_REF]) : each Drinfeld associator provides a universal deformation quantization (i.e. of a universal « star product ») in the space of « observables » of a Poisson variety. Each associator produces a formality morphism of the little disks operad.

Initially, in his seminal work [START_REF] Drinfeld | On quasitriangular quasi-Hopf algebras and a group closely connected with Gal( Q/Q)[END_REF] and motivated by the construction of quasi-Hopf algebras, V. Drinfeld was looking to « universalize » the construction associated with the monodromy of a system of differential equations with non-commutative variables coming from high energy physics and showed that, not only associators over C and over Q exist, but their existence mobilizes the theory of a mysterious group, the Grothendieck-Teichmüller group (in particular its k-pro-unipotent version), whose existence has been foreseen by Alexander Grothendieck in [START_REF] Grothendieck | Esquisse d'un programme[END_REF] (see also [START_REF] Deligne | Le groupe fondamental de la droite projective moins trois points[END_REF]). This group (and its different completed versions) is very important because it intervenes in several sectors of mathematics (see for example [START_REF] Deligne | The irreducibility of the space of curves of given genus[END_REF] and [START_REF] Buff | Eléments de géométrie des espaces de modules des courbes[END_REF]). The construction of this connection goes as follows. First observe that the holonomy Lie algebra of the configuration space

Conf(C, n) := {z = (z 1 , . . . , z n ) ∈ C n |z i = z j if i = j}
of n points on the complex line is isomorphic to the graded Lie C-algebra t n generated by t ij , 1 ≤ i = j ≤ n, with relations (S) t ij = t ji , (L) [t ij , t kl ] = 0 if #{i, j, k, l} = 4, (4T) [t ij , t ik + t jk ] = 0 if #{i, j, k} = 3.

On the one hand, denote by PB n the fundamental group of Conf(C, n), also known as the pure braid group with n strands, and by pb n its Malcev Lie algebra (which is filtered by its lower central series, and complete). Then, one can easily check that PB n is generated by elementary pure braids P ij , 1 ≤ i < j ≤ n, which satisfy (at least) the following relations:

(PB1) (P ij , P kl ) = 1 if {i, j} and {k, l} are non crossing, (PB2) (P kj P ij P -1 kj , P kl ) = 1 if i < k < j < l, (PB3) (P ij , P ik P jk ) = (P jk , P ij P ik ) = (P ik , P jk P ij ) = 1 if i < j < k.

We can depict the generator P i,j in the following two equivalent ways: Therefore one has a surjective morphism of graded Lie algebras p n : t n ։ gr(pb n ) sending t ij to σ(log(P ij )), i < j where σ : pb n -→ gr(pb n ) is the symbol map.

On the other hand, denote exp( tn ) the exponential group associated to the degree completion tn of t n . The universal KZ connection on the trivial exp( tn )-principal bundle over Conf(C, n) is then given by the holomorphic 1-form

w KZ n := 1 i<j n dz i -dz j z i -z j t ij ∈ Ω 1 (Conf(C, n), t n ),
which takes its values in t n . It is a fact that the connection associated to this 1-form is flat and descends to a flat connection over the moduli space M 0,n+1 ≃ Conf(C, n)/ Aff(C) of rational curves with n + 1 marked points. First, the regularized holonomy of this connection along the real straight path from 0 to 1 in M 0,4 ≃ P 1 -{0, 1, ∞} gives an element Φ KZ ∈ C x 0 , x 1 called the KZ associator that is a generating series for values at 0 and 1 of multiple polylogarithms, the latter being precisely multiple zeta values ( [START_REF] Le | Kontsevich's integral for the Kauffman polynomial[END_REF], [START_REF] Furusho | Pentagon and hexagon equations[END_REF]). Next, using the monodromy representation of the universal KZ connection, one obtains :

1. A morphism of filtered Lie algebras µ n : pb n -→ tn such that gr(µ n ) • p n = id. Hence one concludes that p n and µ n are bijective. This proves that pb n is isomorphic to the degree completion of its associated graded, which is actually t n . We then say that the pure braid group is formal.

2.

A system of relations (called Pentagon (P ) and two Hexagons (H ± )) satisfied by the KZ associator.

Then, V. Drinfeld showed that the set Ass(k) is a torsor under the action of an important and somewhat mysterious group : the prounipotent Grothendieck-Teichmüller group, denoted GT(k).

Ass(k) is also a torsor under the action of its graded version, denoted by GRT. The starting point into the consideration of this group is that it arises in Grothendieck's program of studying the absolute Galois group Gal( Q/Q) through its outer action on the algebraic fundamental group(oid) of the moduli spaces of curves M g,n . The group GT(k) has at least a profinite and a pro-ℓ version, but it is the easiest of the three to work with. It is then a fact that Gal( Q/Q) injects into the profinite Grothendieck-Teichmüller group and it has been famously conjectured to be isomorphic to this group. Since then, the KZ equations became popular among mathematicians and they were quickly noticed to have relations to several other mathematical fields such as number theory, quantum group theory and deformation quantization.

Finally, on the "iterated integral" point of view, one is brought to characterise MZVs as being periods of M 0,n . In fact, if we denote MT(Z) for the Tannakian category of mixed Tate motives over Z, then MZVs are periods of MT(Z) which bring us to consider their motivic versions. Motivic MZVs (mMZVs) proved to be very important as they permit to work with a crucially useful formula due to A. Goncharov ([58]) and F. Brown ([21]) for the coaction of the graded ring of affine functions on the prounipotent part of the Galois group of MT(Z) over Q. As an application of these tools, F. Brown has shown that all periods of MT(Z) are Q [ 1 2πi ]-linear combinations of MZVs, that every MZV of weight N is a Q-linear combination of elements of the set {ζ(k 1 , ..., k r ), where k i = 2 or 3, and k 1 + • • • k r = N } ( [START_REF] Brown | Mixed Tate motives over Z[END_REF]). Other striking results of the use of mMZVs can be found in perturbative Quantum Field Theory ( [START_REF] Brown | A K3 in φ 4[END_REF]) and, more recently, in perturbative Superstring Theory ([90]).

Generalisations I : The cyclotomic case

Similarly, one can consider the configuration space Conf(C × , n) := {z = (z 1 , . . . , z n ) ∈ (C × ) n |z i = z j if i = j} of n points on C × . Then Conf(C × , n) = Conf(C, n + 1)/C and thus its fundamental group PB 1 n is isomorphic to PB n+1 . More generally, for any M ∈ Z -{0} one can consider an M -twisted configuration space Conf(C × , n, M ) := {z = (z 1 , . . . , z n ) ∈ (C × ) n |z M i = z M j for some i = j}.

In [START_REF] Enriquez | Quasi-reflection algebras and cyclotomic associators[END_REF], B. Enriquez used the so-called universal trigonometric KZ connection, to prove that one has an isomorphism pb M n -→ exp( tM n ), where pb M n is the Malcev Lie algebra of the fundamental group PB M n ⊂ PB 1 n of Conf(C × , n, M ), and t M n is the holonomy Lie algebra of Conf(C × , n, M ). The holonomy of this connection along a suitable (non closed) path gives a universal pseudotwist Ψ M KZ ∈ exp(t M 2 ) that is a generating series for values of multiple polylogarithms at M th roots of unity i.e. cyclotomic MZVs (which will be denoted µ M -MZVs), satisfies relations with Φ KZ and whose monodromy will give us cyclotomic associator relations.

Finally, the set Ass(M, k) of so-called cyclotomic associators is a torsor under the action of the cyclotomic analog GT M (k) of the group GT(k), which maps to GT(k) and whose associated Lie algebra is isomorphic to its associated graded grt M .

As iterated integrals, µ M -MZVs are shown to be periods of P 1 -{0, µ M , ∞}. In fact, by relying on Deligne's theory of the motivic fundamental group of G mµ M and on F. Brown and A. Goncharov's explicit coaction formula, C. Glanois used in [START_REF] Glanois | Periods of the motivic fundamental groupoid of P 1 -{0, µ N , ∞}[END_REF] motivic µ M -MZVs to show analog results on generating families for µ M -MZVs and studied how the periods in P 1 -{0, µ M , ∞} relate to each other when taking different choices for M . Now, the main difference with the classical case is that the upper bound for the dimension of µ M -MZVs of a given weight is reached in the cases 6 M = 1, 2, 3, 4, 8 but it is known to be not reached, for instance, if M = p s for a prime p ≥ 5. This means that µ M -MZVs are not enough to describe all periods of P 1 -{0, µ M , ∞} in this case. Now, if we return to consider the set of cyclotomic associators one can show that if M ′ divides M , then Ψ M KZ and Ψ M ′ KZ satisfy distribution relations, analogously to C. Glanois distribution study. By imposing these relations one obtains a subset of cyclotomic associators which is a torsor under a certain subgroup of GT M . This subgroup can be seen as an explicit approximation of the motivic fundamental group of G mµ M .

Generalisations II : The elliptic case

The genus one universal Knizhnik-Zamolodchikov-Bernard (KZB) connection ∇ KZB 1,n was introduced in [START_REF] Calaque | Universal KZB equations: the elliptic case, Algebra, Arithmetic and Geometry Vol I: in honor of Yu. I. Manin[END_REF]. This is a flat connection over the moduli space of elliptic curves with n marked points M 1,n , which was independently discovered by Levin-Racinet [START_REF] Levin | Towards multiple elliptic polylogarithms[END_REF] in the specific cases n = 1, 2. It restricts to a flat connection over the configuration space Conf(T, n) := {z = (z 1 , . . . , z n ) ∈ C n |z i = z j if i = j}/(Z + τ Z) n 6 The case M = 6 being also known but treated differently.

of n points on an (uniformized) elliptic curve E τ := C/(Z + τ Z), for τ ∈ h. More precisely, this connection is defined on a G-principal bundle over M 1,n where the Lie algebra associated to G has as components:

1. the holonomy Lie algebra t 1,n of Conf(T, n) controlling the variations of the marked points: it has generators x i , y i , for i = 1, ..., n, corresponding to moving z i along the topological cycles generating H 1 (E τ );

2. a Lie algebra d composed by the Lie algebra sl 2 with standard generators e, f, h and a Lie algebra d + := Lie({δ 2m |m ≥ 1}) such that each δ 2m acts as a highest weight element for sl 2 . The Lie algebra d controls the variation of the curve in M 1,n . Now, the connection ∇ KZB 1,n can be locally expressed as ∇ KZB 1,n := d -∆(z|τ )dτi K i (z|τ )dz i where 1. the term K i (-|τ ) : C n -→ t1,n is holomorphic on

C n -Diag n,τ = {z = (z 1 , . . . , z n ) ∈ C n |z i -z j ∈ Λ τ if i = j},
where Λ τ = Z ⊕ τ Z, with only poles at the diagonal in C n and the Λ n τ -translates of this diagonal. It is constructed out of a function

k(x, z|τ ) := θ(z + x|τ ) θ(z|τ )θ(x|τ ) , - 1 x . 
This relates directly the connection ∇ KZB 1,n with Zagier's work [START_REF] Zagier | Values of zeta functions and their application[END_REF] on Jacobi forms and to Brown and Levin's work [START_REF] Brown | Multiple elliptic polylogarithms[END_REF].

2. the term ∆(z|τ ) is a meromorphic function C n × h -→ Lie(G) with only poles at the diagonal in C n × h and the (Λ n τ -translates of this diagonal. In particular, the coefficients of δ 2m in ∆(z|τ ) are Eisenstein series.

We also refer to Hain's survey [START_REF] Hain | Notes on the Universal Elliptic KZB Equation[END_REF] and references therein for the Hodge theoretic and motivic aspects of the story.

Then, one can construct an holomorphic map sending each τ ∈ h to a couple e(τ ) := (A(τ ), B(τ )) where A(τ ) (resp. B(τ )) is the regularized holonomy of the universal elliptic KZB connection along the the straight paths from 0 to 1 (resp. from 0 to τ ) in the once punctured elliptic curve (C -Λ τ )/(Λ τ ) ≃ Conf(E τ , 2)/E τ . Then, B. Enriquez described and studied in [START_REF] Enriquez | Elliptic associators[END_REF] the general theory of elliptic kassociators, whose set is denoted Ell(k) and for which the couple e(τ ) is an example of a C-point. Some of the main features of the so-called elliptic KZB associators e(τ ) are the following:

• They satisfy algebraic and modularity relations.

• They satisfy a differential equation in the variable τ expressed only in terms of iterated integrals of Eisenstein series, which will be called iterated Eisenstein integrals.

• When taking τ to i∞ (which consists on computing the constant term of the q-expansion of the series A(τ ) and B(τ )), they can be expresed in terms of the KZ associator Φ KZ .

• The set Ell(k) is a torsor under the actions of the elliptic analog GT eℓℓ (k) of the (prounipotent) group GT(k) and of its graded version GRT eℓℓ .

Next, in [START_REF] Enriquez | Analogues elliptiques des nombres multizétas[END_REF], B. Enriquez studied the coefficients of the series A(τ ) and B(τ ) and showed they are the elliptic analogs of MZVs. These coefficients were called elliptic multiple zeta values (eMZVs) in analogy to the genus 0 story. They are functions denoted I(τ ) and J(τ ), depending on the elliptic parameter τ , which satisfy the following:

• when taking τ -→ ∞, eMZVs can be expressed only in terms of MZVs;

• they satisfy a differential equation expressed in terms of iterated Eisenstein integrals which, analogously to the motivic coaction formula in the genus 0 cases, can be used to get results on generating families for eMZVs and their decomposition. In particular, in ( [START_REF] Lochak | Elliptic multiple zeta values and the elliptic double shuffle relations[END_REF]) there is a complete description of the algebras of the elliptic multiple zeta values I(τ ) and J(τ ) (modulo 2πi) in terms of multiple zeta values and special linear combinations of iterated Eisenstein integrals.

An important feature of these decompositions is that they are controlled by a special derivation algebra, first studied by H. Tsunogai ([98]) and by A. Pollack ([88]) which is deeply connected with both the Lie algebra of the (graded) elliptic Grothendieck-Teichmüller group and with the bi-graded Lie algebra of the prounipotent radical of π geom (MEM), where MEM denotes the Tannakian category of universal mixed elliptic motives constructed by R. Hain and M. Matsumoto in [START_REF] Hain | Universal Mixed Elliptic Motives[END_REF].

Contents

The purpose of this thesis is to define a twisted version of the genus one KZB associator introduced in [START_REF] Calaque | Universal KZB equations: the elliptic case, Algebra, Arithmetic and Geometry Vol I: in honor of Yu. I. Manin[END_REF] and [START_REF] Enriquez | Elliptic associators[END_REF]. The first part concerns foundational grounds which we will use to define ellipsitomic associators. We will redefine by means of our operadic approach elliptic, cyclotomic associators. Then we define ellipsitomic associators. Finally we concentrate in the framed case and give a definition of genus g associators based in our operadic approach.

The second part concerns the proof of the fact that the set of ellipsitomic C-associators is not empty, by providing an ellipsitomic KZB associator. We start by focusing on the universal ellipsitomic KZB connection. This is a flat connection on a principal bundle over the moduli space of elliptic curves with a Γ-structure, where Γ = Z/M Z × Z/N Z, and n marked points. It restricts to a flat connection on the so-called Γ-twisted configuration space of points on an elliptic curve, which can be used for proving the formality of some interesting subgroups of the pure braid group on the torus. Then, we define twisted elliptic associators as renormalized holonomies along certain paths on a once punctured elliptic curve with a Γ-structure. We study the monodromy of this connection and show that it gives rise to a relation between twisted elliptic associators, the KZ associator [START_REF] Drinfeld | On quasitriangular quasi-Hopf algebras and a group closely connected with Gal( Q/Q)[END_REF] and the cyclotomic KZ associator [START_REF] Enriquez | Quasi-reflection algebras and cyclotomic associators[END_REF]. Moreover, twisted elliptic associators can be regarded as a generating series for iterated Eisenstein integrals whose coefficients are elliptic multiple zeta values at torsion points. In the case M = N , these coefficients are related to Goncharov's work [START_REF] Goncharov | Multiple ζ-values, Galois groups, and geometry of modular varieties[END_REF] and also to the recent work [START_REF] Broedel | Twisted elliptic multiple zeta values and non-planar one-loop open-string amplitudes[END_REF] of Broedel-Matthes-Richter-Schlotterer. We finally conjecture that the universal KZB connection realizes as the usual KZB connection associated to elliptic dynamical r-matrices with spectral parameter [START_REF] Etingof | Twisted traces of intertwiners for Kac-Moody algebras and classical dynamical r-matrices corresponding to generalized Belavin-Drinfeld triples[END_REF][START_REF] Felder | Conformal field theory and integrable systems associated to elliptic curves[END_REF].

It is worth mentioning the recent work [START_REF] Toledano-Laredo | Universal KZB equations for arbitrary root systems[END_REF], where Toledano-Laredo and Yang define a similar KZB connection. More precisely, they construct a flat KZB connection on moduli spaces of elliptic curves associated with crystallographic root systems. The type A case coincides with the universal elliptic KZB connection defined in [START_REF] Calaque | Universal KZB equations: the elliptic case, Algebra, Arithmetic and Geometry Vol I: in honor of Yu. I. Manin[END_REF], and we suspect that the type B case coincides with the connection of the present paper for M = N = 2. It is interesting to point out that a common generalization of their work and ours (for M = N ) could be obtained by constructing a universal KZB connection associated with arbitrary complex reflection groups, which shall be related to the (genus 0) universal KZ connection associated with finite subroups of PSL 2 (C) ( [START_REF] Maassarani | Sur certains espaces de configurations associés aux sous-groupes finis de PSL 2 (C)[END_REF]).

The structure of this thesis goes as follows:

• Chapter 2 : This chapter sets the basics for the understanding of the rest of the thesis.

-In Section 2.1 we introduce the formal definition of Drinfeld associators. We set up a lot of terminology involving the exponential group associated to a degree completed Lie algebra.

-In Section 2.2 we introduce the KZ associator, first by using the universal KZ equations and then by using the universal KZ connection (it is the same construction under two slightly different languages). By doing so, we elucidate the implicit operadic nature of the associator relations and we explain the word "universal" in a comprehensive manner. Then we use the flatness of the universal KZ connection to reprove the formality of the braid groups and we analyse the anatomy of the KZ associator involving multizeta values.

-In Section 2.3 we explain how all the genus 0 theory translates to its cyclotomic counterpart.

-In Section 2.4 we do the same for the elliptic counterpart.

-In Section 2.5 we give a quick reminder of the general notions of operads, operadic modules, and moperads, in Section 2.1.

-Finally, in Section 2.6, we associate these structures to the Fulton-MacPherson compactified configuration spaces in genus 0 and to the collections of their fundamental groupoids and of their holonomy Lie algebras. We also recall the operadic definitions of associators and Grothendieck-Teichmüller groups and enhance these notions into a torsor isomorphism between these and their non-operadic (classical) versions.

• Chapter 3 : In this chapter we present the main results of this thesis. We then enumerate some perspectives and future directions that can be undertaken after the work done here.

• Chapter 4 : This chapter is devoted to the definition of twisted elliptic associators and twisted elliptic Grothendieck-Teichmüller groups by means of operads in groupoids and their variants.

-Section 4.1 is devoted to the corresponding -and equivalent -operadic definitions in the genus 1 case by using operad modules instead of operads, mainly following [START_REF] Enriquez | Elliptic associators[END_REF].

-Next, in Section 4.2 we turn to the cyclotomic situation and proceed in the same way by using moperads this time.

-Finally, in Section 4.3, we concentrate on the twisted elliptic (or ellipsitomic) situation and proceed by combining the use of operad modules and the lifting techniques we used in Sections 4.1 and 4.2. In particular we give a definition of ellipsitomic associators in terms of elements satisfying some explicit equations as well as ellipsitomic Grothendieck-Teichmüller groups in their k-prounipotent and graded versions.

• Chapter 5 : In this chapter we begin the study of genus g associators, for g > 1.

CHAPTER 1. INTRODUCTION -In Section 5.1 we remind the operadic module structures that are associated to framed Fulton-MacPherson compactified configuration spaces on a genus g oriented surface.

-In Section 5.2 we concentrate in the genus 0 framed case and we associate operad structures to the collection of the corresponding framed configuration spaces an to the collection of their fundamental groupoids. We also associate an operadic structure to the collection of their holonomy Lie algebras. Then we give definitions of framed associators, show that they do not form an empty set for k = C and show that they are the same as non-framed associators.

-In Section 5.3 we give operadic definitions of genus g associators and Grothendieck-Teichmüller groups, which we relate to their classical point of view in terms of some elements satisfying relations. Then, we conjecture that the set of framed genus g associators is not empty and we give a start on the study of the framed genus g universal KZB connection over the framed configuration space of points on a genus g surface, with the hope of showing that the the set of genus g associators over the complex numbers is not empty.

• Chapter 6 : In this chapter we define and study the universal twisted elliptic KZB connection.

-In Section 6.1, we introduce Γ-twisted configuration spaces on an elliptic curve and define the universal Γ-KZB connection on them.

-As in [START_REF] Calaque | Universal KZB equations: the elliptic case, Algebra, Arithmetic and Geometry Vol I: in honor of Yu. I. Manin[END_REF] the connection extends from the configuration space to the moduli space MΓ

1,[n]

of elliptic curves with a Γ-level structure and marked points. This is proved in Section 6.3 using some technical definitions introduced in Section 6.2 related to the derivations of the holonomy Lie algebra t Γ 1,n of the twisted configuration space in genus 1. As in the untwisted case, the results of this section also apply to the "unordered marked points" situation.

-In Section 6.4, we provide a notion of realizations for the Lie algebras previously introduced, and show that the universal KZB connection realizes to a flat connection intimately related to elliptic dynamical r-matrices with spectral parameter.

• Chapter 7 : In this chapter we sketch several applications of twisted elliptic associators and the twisted elliptic KZB connection.

-In Section 7.1, we derive from the monodromy representation the formality of the fundamental group of the twisted configuration space of the torus, which is a subgroup of PB 1,n . As in the cyclotomic case, this formality result extends to a relative formality result for the map B 1,n -→ Γ n ⋊ S n .

-Then, in Section 7.2, we show that this connection gives rise to a monodromy morphism

γ n : B Γ 1,[n] -→ G Γ n ⋊ S n .
The relations between the generators give rise to twisted elliptic associator relations, providing an example of such an object.

-In Section 7.3 we study the A s,γ (τ ) coefficients that were implicitely used in the definition of the universal twisted elliptic KZB connection by relating them to the so-called Eisenstein-Hurwitz series. We show that these are modular forms for the congruence subgroup of SL 2 (Z) defining MΓ 1,[n] and compute the constant terms in their q N -expansion, where q N = e 2πi N τ .

CONTENTS

-Finally, in Section 7.4, we construct a homomorphism from the Lie algebra tΓ 1,n ⋊ d Γ to the twisted Cherednik algebra H Γ n (k). This allows us to consider the twisted elliptic KZB connection with values in representations of the twisted Cherednik algebra.

• Chapter 8 : In this chapter we give a quick definition of elliptic multiple zeta values at torsion points in terms of iterated integrals of Eisenstein-Hurwitz series.

-In Section 8.1 we give a definition of the twisted version of Pollack's Lie algebra of special derivations.

-In Section 8.2 we use the action of the k-prounipotent ellipsitomic Grothendieck-Teichmüller group on the ellipsitomic KZB associator to establish a differential equation in the variable τ ∈ h which is satisfied by this associator and which involves exclusively Eisenstein-Hurwitz series.

-In Section 8.3 we use the machinery of iterated integrals developped by B. Enriquez in [START_REF] Enriquez | Analogues elliptiques des nombres multizétas[END_REF] to give a definition of ellipsitomic multizeta values in terms of iterated integrals of Eisenstein-Hurwitz series strongly related to multiple Hurwitz values.

Note: A part of the results figuring in this thesis consist on an ongoing collaboration by the author and by Damien Calaque and appear in chapters 4, 6 and 7 in this thesis for sake of convenience.

Consistency

Chapters 4, 5 and 6 are essentially independent. Section 4.1 can be very iluminating for the understanding of chapter 5. Next, Section 4.3 and all sections of chapter 6 are related to each other in chapter 7, Section 7.2, where we use the universal twisted elliptic KZB connection (constructed in chapter 6) to prove that twisted elliptic associators (defined in chapter 3) do exist over the complex numbers. Finally, chapter 8 uses the results in chapter 7, Sections 7.1, 7.2 and 7.3.

Chapter 2

Background

In the first part we will make a reminder on the most basic tools in the theory of associative and Lie k-algebras which will be used, taking as an example the Kohno-Drinfeld Lie algebra t n that will be used extensively throughout this thesis. The objective of this first section is to fix all the notations that will be used throughout this thesis in a comprehensive manner, to give a formal definition of Drinfeld k-associators and enunciate the fact that, when k = C, this set is not empty.

In the second part we will study the KZ equation and we will give a definition of the KZ associator from an analytic viewpoint. Then, we will make a small reminder on the basics of connections on a G-principal bundle. We will then introduce the universal KZ connection defined in a trivial exp( tn )-principal bundle over the configuration space of the complex plane. Then we will give a geometrical definition of the KZ associator and we will prove that it provides a Drinfeld C-associator.

In the third and fourth part we sketch the theory of the universal KZ associator in the cyclotomic and elliptic contexts.

In the fifth and sixth sections we give in a clear manner the definitions of Grothendieck-Teichmüller groups and associators by means of operad theory and Fulton-MacPherson compactifications.

Note.

The material of this chapter is standard, the author does not claim originality of almost any result that figures in here. Bibliographical references will appear at the end of each section where the reader can extend the work presented in here and of which the author has been inspired to build this introduction.

Notation

• In this thesis k designates a field of characteristic zero.

• Unless otherwise stated, composition of morphisms are read from left to right.

Drinfeld associators

Associative and Lie k-algebras

Associative algebras

We recall the definition of an associative k-algebra. Definition 2.1.1. An associative k-algebra is a pair (A, •) where A is a k-vector space along with a bilinear map, called multiplication

• : A × A -→ A (x, y) -→ x • y that satisfies (x • y) • z = x • (y • z)
for each x, y, z ∈ A. It is said that the algebra A is unitary if there is a neutral element for the multiplication (that is, an element denoted 1 that satisfies 1. The set of square matrices n × n with values in k forms a unitary associative algebra on k, which is not commutative in general.

1 • x = 1 = x • 1 for all x ∈ A).
2. The set of complex numbers C forms an associative, commutative and unitary C-algebra of real dimension 2.

3. Polynomials with coefficients in k form an infinite dimensional associative k-algebra which is commutative and unitary.

4. In particular, the tensor space T V can be provided with the structure of an associative k-algebra with multiplication

T V × T V -→ T V
(x, y) = ((x 0 , x 1 , . . . , x n ), (y 0 , y 1,... , y m )) -→ x • y := (x 0 , . . . , x n , y 0 , . . . , y m ),

where x i ∈ V ⊗i , y j ∈ V ⊗j , ∀1 i n, ∀1 j m.
5. Let k X 0 , X 1 be the associative k-algebra of formal series of powers in two non commutative variables X 0 , X 1 . Elements of this k-algebra are of the form

f (X 0 , X 1 ) = ω word in X0, X1 c ω • ω
where X 0 and X 1 are formal symbols that do not commute, c ω ∈ k, and where ω is a word consisting only on powers of letters X 0 and X 1 ,

ω = X n0 j0 X n1 j1 X n2 j2 • • • X np jp ,
where j 0 , . . . , j p ∈ {0, 1}, p, n 0 , . . . , n p ∈ N. For example, ω = X 3 1 X 0 X 2 1 X 9 0 X 1 is a word.

Let's move on to the definition of a Lie algebra.

Lie algebras

Definition 2.1.3. A Lie algebra over a field k is a k-vector space g provided with a k-bilinear antisymmetric map called Lie bracket:

[-, -] : g × g -→ g (X, Y ) -→ [X, Y ]
that satisfies the Jacobi identity:

[[X, Y ], Z] + [[Y, Z], X] + [[Z, X], Y ] = 0,
for each X, Y, Z ∈ g. A map of Lie k-algebras is a map between k-vector spaces

f : g -→ h
compatible with the Lie brackets of g and h, that is:

f ([x, y] g ) = [f (x), f (y)] h
for all x, y ∈ g. A Lie ideal i (resp. a Lie subalgebra h) of g is a vector subspace of g such that:

[g, i] ⊆ i(resp. [h, h] ⊆ h).
Given an ideal i of g one can form the Lie quotient g/i: it is the vector space g/i provided with the bracket for all a, b ∈ k and all x, y, z ∈ g.

[g + i, g ′ + i] := [g, g ′ ] + i.
Example 2.1.5.

1. Any vector space E can be provided with the structure of a Lie algebra by establishing

∀x, y ∈ E : [x, y] = 0.
Such Lie k-algebra, where the Lie bracket is zero, is called abelian Lie algebra.

2. From an associative algebra (A, •) over k, one can always build an Lie k-algebra <ith underlying set A by setting, for all x, y ∈ A:

[x, y] := x • y -y • x.
This is called the commutator of the two elements x and y. It is easy to verify that this defines a Lie algebra structure on A.

3. As a concrete example of the previous situation, consider the space M n (k) of matrices n × n with coefficients in k. This is an associative algebra provided usual matrix product, not abelian in general. We can also give it a structure of an associative k-algebra, with the bracket

[A, B] = AB -BA.
We denote gl n (k) this Lie algebra.

Remark 2.1.6. The Ado theorem shows that any Lie k-algebra of finite dimension can be seen as a subalgebra of gl n (k). Unfortunately, the majority of Lie k-algebras which we will work with are infinite dimensional, as in the case of a free associative k-algebra in two generators that we define next.

Proposition 2.1.7. Let S be a set. There is a unique (up to unique isomorphism) Lie kalgebra f S (k) provided with a map of sets π : S -→ f S (k) such that, for each Lie algebra g and each map of sets f : S -→ g, there is a unique morphism of Lie algebras f : f S (k) -→ g so that the following diagram commutes:

S g f S (k) f π ∃!f that is, so that f = f • π. f S (k) is called the free Lie k-algebra over S.
If S = {X, Y }, we will denote from now on f S (k) = f(X, Y ).

Remark 2.1.8. Let's take a closer look at this definition. A Lie word in symbols X 1 , . . . , X n is a formal bracket of these symbols. For example

[[X 1 , X 4 ], [[X 7 , [X 9 , X 2 ]], X 1 ]].
The Lie algebra f S (k) must be understood as the k-vector space generated by all (linear combinations of ) Lie words modulo the subspace obtained by applying antisymmetry and the Jacobi identity. Concretely, if we take S = {A, B}, then an element of f S (k) is a finite sum

f (A, B) = ωLie word inA,B c w • ω where c w ∈ k.
Remark 2.1.9. A Lie algebra can be presented by generators and relations: it is simply the quotient Lie k-algebra of the free Lie k-algebra in such generators and the ideal generated by such relations. One has to verify that the vector subspace generated by the relations is indeed an ideal.

Every Lie algebra g is contained in an associative algebra U(g) -usually (much) larger than g -called the universal enveloping algebra of g and where [-, -] g matches the bracket given by the two-element commutator [x, y] := x • yy • x.

Definition 2.1.10. The universal enveloping k-algebra of g, denoted U(g), is the unique (up to unique isomorphism) associative k-algebra provided with a morphism of k-Lie algebras

π : g -→ U(g)
such that for each associative algebra A and each map f : g -→ A of vector spaces, there is a unique associative algebra morphism f : U(g) -→ A such that the following diagram commutes:

g A U (g) f π ∃!f that is, so that f = f • π.
Remark 2.1.11. Specifically, U(g) is the quotient T (g)/I of tensor algebra modulo the twosided ideal generated by the relation

x ⊗ y -y ⊗ x = [x, y].
Example 2.1.12. If g = f S (k) and S = {x 1 , . . . , x m } then U(g) = k S is the free associative algebra in symbols in S whose basis is given by the words ω = x j1 • • • x jn where j i ∈ {1, . . . , m} for all i = 1, . . . , n.

Example: The Kohno-Drinfeld Lie algebra Definition 2.1.13. The Kohno-Drinfeld Lie k-algebra, denoted t n (k), is the Lie algebra freely generated by symbols t ij , 1 i = j n, modulo the ideal generated by the following relations:

t ij = t ji (2.1) [t ij , t kl ] = 0 (2.2) [t ij , t ik + t jk ] = 0 (2.3)
where card{i, j, k, l} = 4. These relations are usually called infinitesimal braids relations. In the next chapter we will justify this denomination. In the case k = C, we will use the notation

t n (C) := t n .
As an exercice one can explore the structure of this Lie algebra for low values of n.

Structure of t n (k) for n 3. The following facts are easy to prove :

1. The element c n :=

1 i<j t ij is central in t n (k) (ie it commutes with every element of t n (k))
. One deduces that we can define the quotient tn (k) := t n (k)/ c n .

2. The Lie k-algebras t 2 (k) is the free Lie algebra on one generator and t2 (k) is the trivial Lie k-algebra.

3. t3 (k) is nothing but the free associative k-algebra in two generators.

4. The Lie subalgebra of t n (k) generated by t ij , where i, j ∈ [1, n], identifies with t n-1 (k).

5. The Lie subalgebra of t n (k) generated by t 1n , t 2n ..., t (n-1)n identifies with the free Lie k-algebra f n (k).

6.

There is an isomorphism of Lie k-algebras

t n (k) ≃ t n-1 (k) ⊕ f n (k).
7. Let kc 3 be the abelian Lie k-algebra generated by c 3 = t 12 + t 13 + t 23 . There is an isomorphism of Lie k-algebras

t 3 (k) ≃ kc 3 ⊕ f 2 (k)
where f 2 (k) is the free Lie k-algebra generated by t 13 and t 23 (or, equivalently, by t 12 and t 23 ).

The exponential group

Completed filtered associative k-algebras Definition 2.1.14. A topological ring is a ring with the structure of a topological space so that the multiplication A × A -→ A is a homomorphism of topological spaces. A topological vector space over a topological ring k is a k-vector space such that the addition and the multiplication by scalars of the vector space are topological homomorphisms.

In this chapter, we will mainly use the standard and the discrete topologies.

We have notions of a topological associative algebra and a Lie topological algebra that will not be recalled here.

Definition 2.1.15. An associative k-algebra A is filtered if it is equipped with a descending sequence of ideals

A = m 0 ⊃ m 1 ⊃ m 2 • • • Remark 2.1.16. A k-filtered associative algebra (A, {m i } i∈I ) induces a direct system of quo- tient rings • • • -→ A/m i+1 -→ A/m i -→ • • • -→ A/m 2 -→ A/m 1 -→ 0.
Definition 2.1.17. The filtered completion of the filtered associative algebra (A, {m i } i∈I ) is the k-filtered associative algebra ( Â, { mi } i∈I ) where

 := lim ←i A/m i = a = (a 0 , a 1 , . . .) ∈ ∞ i=1 A/m i a j ≡ a i [mod m i ], ∀j > i
and where, for all i ∈ I:

mi := {a = (a 0 , a 1 , . . .) ∈ Â|a j = 0, ∀j i}. Proof. Let {a i } i 1 be a Cauchy sequence in A: for each open set U of A, there is an integer N U such that, for all i, j > N U , we have a ia j ∈ U . This is verified if, and only if, for every integer n, there exists an integer N n such that, for all i, j > N n , we have

a i -a j ∈ m i .
Now, such a sequence always converges in  towards point a = (a 0 , a 1 , . . .) ∈ n 1

A/m n , where, for all n, we have

a n ≡ a Nn [mod m n ].
Conversely, every point of  defines a Cauchy sequence in A.

Example 2.1.22. If A = k[X 1 , . . . , X n ] is the polynomial k-algebra on X 1 , . . . , X n and I is its maximal ideal, then the I-adic completion of A is the k-algebra

 = k[[X 1 , . . . , X n ]]
of formal series over k in n commutative variables.

Degree completion

The Baker-Cambell-Hausdorff (BCH) formula is essentially useful to associate a group to any completed Lie k-algebra (where the exponential application is not necessarily a group morphism).

Definition 2.1.23. A graded Lie k-algebra is a Lie algebra g provided with a graduation of vector spaces:

g = +∞ n=-∞
g n so that the Lie bracket is compatible with the graduation, that is to say:

[g i , g j ] ⊆ g i+j .
Remark 2.1.24. If g is graded, then g induces the same graduation at the level of its associated universal enveloping algebra U(g).

Let g = ∞ n=1
g n be a positively graded Lie k-algebra so that each g n is of finite dimension.

We can equip it with a decreasing filtering of Lie ideals m n := ⊕ n i g i so we get a decreasing sequence:

g = m 0 ⊃ m 1 ⊃ m 2 ⊃ • • • Proposition 2.1.25.
The degree completion of g is the completion of g with respect to filtering {m i } i 1 , and is identified with the following product:

ĝ := ∞ n=1 g n .
Remark 2.1.26. The difference between g and ĝ lies in that the elements in ĝ can be written as eventually infinite sums, unlike the elements of g.

Example 2.1.27. Let f S (k) n ⊂ f S (k) be the vector subspace spanned by Lie words with 

(n -1) brackets. For example f(X, Y ) 1 = k X, Y , f(X, Y ) 2 = k [X, Y ] y f(X, Y ) 3 = k [X, [X, Y ]], [Y, [Y, X]] . We can notice that [f S (k) n , f S (k) m ] ⊂ f S (k) n+m , so we can build a grading f S (k) = ∞ n=1 f S (k) n . Then, the degree completion of f S (k) is fS (k) = ∞ n=1 f S (k) n .
t n (k) = ∞ m=1 t n (k) m , where, for example, t n (k) 1 = i<j kt ij and t n (k) 2 = i<j<k k[t ij , t ik ]
. This allows us to define its degree completion tn (k).

The Baker-Cambell-Hausdorff formula

Let X, Y two elements of an associative k-algebra A. Recall the expressions of the exponential and the logarithm in terms of series

e X := ∞ n=0 X n n! and log(1 + X) := ∞ n=1 (-1) n X n n .
These are well defined if A is a completed associative k-algebra. In particular, in the algebra k[[X, Y ]] of formal series in commutative variables, we have the relation

e X e Y = e X+Y .
However, in the algebra k X, Y this relation is not true in general. The goal of the Baker-Cambell-Hausdorff formula is to fix this problem.

Definition 2.1.29. The Baker-Cambell-Hausdorff element is the formal series BCH of k X, Y defined, for every X, Y ∈ k X, Y , by

BCH(X, Y ) := log(e X e Y ) = - ∞ n=1 1 n   1 - ∞ k,l=0 X k Y l k!l!   n = X + Y + 1 2 [X, Y ] + 1 12 [X, [X, Y ]] + 1 12 [Y, [Y, X]] + • • • One can prove that BCH(X, Y ) ∈ f(X, Y ).
Proposition 2.1.30. Let g be a completed Lie k-algebra. The exponential group exp(g) associated to g is the group whose underlying set is the set of formal elements of the form {e X , X ∈ g} (which is isomorphic to the underlying set of g) provided with the multiplication law defined by the Baker-Cambell-Hausdorff formula:

exp(g) × exp(g) -→ exp(g) (e X , e Y ) -→ e BCH(X,Y ) .
We have two morphisms, inverse from each other e : g ←→ exp(g) : log

X ←→ e X Proof. We need to show that BCH(X, Y ) converges, which is satisfied autotically because ĝ = lim ←n (g/m n ). Exercise: Set the following equations:

BCH(X, 0) = BCH(0, X) = 0 BCH(X, -X) = 1 BCH(BCH(X, Y ), Z) = BCH(X, BCH(Y, Z)) = log(e X e Y e Z ),
the last equation taking place in f(X, Y, Z).

Remark 2.1.31. The definition of exp(g) makes sense only when the characteristic of k is zero and when g is complete, otherwise the BCH(X, Y ) element does not make sense.

Example 2.1.32. The injection of Lie algebras

f(X, Y ) ֒→ t 3 (k) X -→ t 12 y -→ t 23
induces an injection of groups exp( fk (X, Y )) ֒→ exp t3 (k) .

Finally, if g is a pronilpotent Lie k-algebra, we denote gr(g) its associated graded Lie algebra.

We are ready to define CHAPTER 2. BACKGROUND

Drinfeld associators

The first goal of this chapter will be to give a geometrical understanding of the following definition that was introduced by Drinfeld in [START_REF] Drinfeld | On quasitriangular quasi-Hopf algebras and a group closely connected with Gal( Q/Q)[END_REF].

Definition 2.1.33. A Drinfeld k-associator is a pair (λ, Φ) where λ ∈ k × and Φ(X, Y ) := e φ(X,Y ) ∈ exp( f(X, Y )) ⊂ k X, Y
which satisfies the following equations: While we have taken the time to define each mathematical object involved in this definition, we ignore -for the moment -the particular interest of this mathematical concept, which the reason of being of those equations -at first sight arbitrary -and, above all, wether such a pair does indeed exist.

Φ(X, Y ) = Φ -1 (Y, X) in exp( f(X, Y )) (2.
The second objective of the following section will be then to prove the following theorem, due to Drinfeld:

Theorem A. The set of C-associators is not empty.

In particular, the proof lies in the existence of a particular C-associator coming from the regularized holonomy of a differential equation in two noncommutative variables called the Knizhnik-Zamolodchikov equation, well-known in physics. The connection associated to these equations will induce an isomorphism between the pure braid group, that is the fundamental group of the configuration space of the complex plane, and the Kohno-Drinfeld algebra, which is the holonomy Lie algebra of these spaces. These concepts will be introduced in the next section.

The KZ associator

In the previous section we took some time to present a formal definition of the Drinfeld associators by means of the Kohno-Drinfeld Lie algebra and the exponential group of its associated degree completion. At the moment we do not know what is the reason to be of these equations but we will dedicate some time into proving that such a set is not empty when taking k = C.

In particular, we are going to explicit an example of such an associator through the resolution of a certain system of differential equations in two non-commutative variables, whose geometric version will allow us to understand the the architecture of the definition of Drinfeld associators. We will mainly follow [START_REF] Drinfeld | On quasitriangular quasi-Hopf algebras and a group closely connected with Gal( Q/Q)[END_REF].

Solutions of the universal Knizhnik-Zamolodchikov equation

In this section, we will introduce the Knizhnik 1 -Zamolodchikov 2 (KZ) equations in its universal version. Initially, these equations, which form a system of partial differential equations in the complex plane with regular singular points, were born in quantum field theory (especially in condensed matter and high-energy physics) as equations that satisfy a set of additional restrictions for the correlation functions in the Wess-Zumino-Witten model in two dimensional field theory and which are associated to an associative k-algebra of a fixed level. The reader interested in learning about the KZ equations in the context of quantum field theory may consult the introduction [START_REF] Gawedzki | Conformal field theory: a case study[END_REF] on the subject.

The universal KZ equation

The universal version of these equations was established by Drinfeld in [START_REF] Drinfeld | On quasitriangular quasi-Hopf algebras and a group closely connected with Gal( Q/Q)[END_REF] and are defined for any type of associative k-algebra that satisfies the infinitesimal braid relations -that is, defined in the Kohno-Drinfeld Lie algebra. Remember that the configuration space of n points on the complex plane is the following open subspace of C n :

Conf(C, n) := {z = (z 1 , . . . , z n ) ∈ C n |z i = z j , if i = j} .
Definition 2.2.1. For each n 2, the Knizhnik-Zamolodchikov differential system over (any open subset within) the configuration space Conf(C, n) is

(KZ) n : dW = 1 2iπ 1 i<j n t ij z i -z j (dz i -dz j )W,
that is, for i = 1, . . . , n:

(KZ) n : ∂W ∂z i = 1 2iπ 1 i<j n t ij z i -z j W,
where W is a function defined in any open U ⊂ Conf(C, n) and taking values in Û( tn ). When n = 3, the differential system's solutions (KZ) 3 define an element of C X, Y and the asymptotic behaviour of these equations when n = 3, 4 determines the relations that this element satisfies. It is important to emphasize that this « two stages principle » is enough to fully define a Drinfeld associator. The importance of this remark is developed in the next section when we integrate the geometry of Conf(C, n) into this story. For now let's restrain ourselves on the study of this differential system.

Definition of the KZ associator

Recall that a function f of a complex variable is analytic at a point x 0 if it is developable in entire series in any open neighborhood of x 0 inside its domain set. This means that, for any open neighborhood D x0 of x 0 in the domain set of f , there is a sequence (a n ) n 0 such that, for all x ∈ D x0 , the function f is written in the form of a convergent series

f (x) = ∞ n=0 a n (x -x 0 ) n .
We can easily observe that the system (KZ) 3 is written in terms of the total differential

dW = 1 2iπ [t 12 d log(z 2 -z 1 ) + t 13 d log(z 3 -z 1 ) + t 23 d log(z 3 -z 2 )]W.
Proposition 2.2.2. The solutions of the system (KZ) 3 are of the form

(z 3 -z 1 ) c 3 2iπ G z 2 -z 1 z 3 -z 1 ,
where c 3 := t 12 +t 13 +t 23 and G is a formal series in the non commutative variables t 12 , t 23 , with as coefficients analitical functions in the complex variable z ∈ C -{0, 1} which are solutions of the linear differential equation

G ′ (z) = 1 2iπ t 12 z + t 23 z -1 G(z). (2.7) 
Proof. The proof consists in the following stages:

1. First notice that

(z 3 -z 1 ) u 2iπ = exp log(z 3 -z 1 )u 2iπ = ∞ k=0 log(k(z 3 -z 1 ))u k (2iπ) k ∈ t 3
belongs to the center of t 3 .

In (KZ)

3 do the variable change W = (z 3 -z 1 ) u 2iπ × I. 3. Write z = (z2-z1) (z3-z1) and conclude. Let U = C -(] -∞, 0] [1, ∞[) where ] -∞, 0] and [1, ∞[ are straight half-lines in R ⊂ C.
Notice that U is simply connected. (2.8)

G 1 (z) ∼ 1 (1 -z) t 23 
2iπ .

(2.9)

In particular, G 0 and G 1 are not zero and therefore differ from each other by an invertible element. The KZ associator is the quotient

Φ KZ := G -1 1 G 0 ∈ C X, Y .
Remark 2.2.5. The equations (2.8) and (2.9) mean that

G 0 (z)z -t12 2iπ (resp. G 1 (z)(1-z) -t 23 2iπ
) have analogous continuations in a neighborhood of 0 (resp 1) taking at 0 (resp. at 1) the value 1. We observe in the same way that z Proof. The reader can consult the proof of Proposition 2.2.4 in [START_REF] Kassel | Quantum groups[END_REF].

One can show that Φ KZ is independent of z calculating the derivative Φ ′ KZ (z).

Remark 2.2.6. This definition is valid for all non-commutative symbols A and B. For each pair (A, B), we have two functions G 0 (z; A, B) and G 1 (z; A, B). We can then define

φ KZ (A, B) := G 1 (-; A, B) -1 G 0 (-; A, B).
In particular, φ KZ (t 12 , t 23 ) = Φ KZ .

Let us reformulate Theorem A in the following way:

Theorem A. The pair (1, Φ KZ ) is a Drinfeld C-associator.

Analytic proof of Theorem A

Below we reproduce Drinfeld's original proof of Theorem A.

1) Φ KZ belongs to exp( t3 ):

Let us give the big steps of this part of the proof: first the universal enveloping algebra Û t3 (k) has a structure of a filtered and completed Hopf k-algebra. In particular, the coproduct ∆ is given by the completed tensor product ⊗. The elements of exp( t3 ) are identified with the group-like elements (i.e. elements that verify ∆(g) = g ⊗g) of Û ( t3 ). Therefore, it suffices to show that ∆(Φ KZ ) = Φ KZ ⊗Φ KZ . This is obtained by using remark 2.2.6: notice that if G 0 and G 1 are group-like, then we can (in the case of G 0 ) use function

G + (z) = G 0 (z; t 12 ⊗ 1, t 23 ⊗ 1)G 0 (z; 1 ⊗ t 12 , 1 ⊗ t 23 ) to conclude.
2) Antisymmetry relation:

If we replace z by 1z in equation (2.7), Φ KZ is replaced by its inverse which is equivalent to swap t 12 with t 23 ie apply the permutation (123).

3) Pentagon relation:

Let's start by describing the asymptotic behaviors of the solutions of the system (KZ) 4 . Let

U := {(z 1 , . . . , z 4 ) ∈ R 4 |z 1 < z 2 < z 3 < z 4 } ⊂ Re(Conf(C, 4))
be an open subset in the real part of the 4 point configuration space of the complex plane. Consider the following 5 zones in U :

(Z 1 ) z 2 -z 1 ≪ z 3 -z 1 ≪ z 4 -z 1 ; (Z 2 ) z 3 -z 2 ≪ z 3 -z 1 ≪ z 4 -z 1 ; (Z 3 ) z 3 -z 2 ≪ z 4 -z 2 ≪ z 4 -z 1 ; (Z 4 ) z 4 -z 3 ≪ z 4 -z 2 ≪ z 4 -z 1 ; (Z 5 ) z 4 -z 3 ≪ z 4 -z 1 and z 2 -z 1 ≪ z 4 -z 1 .
How to represent these areas and how to relate them to each other? It's here where one of Drinfeld's brilliant ideas intervenes: they correspond to a pentagon where each edge corresponds to parenthesis arrangement: V i and V j are in the same parenthesis and

V k out of it if |z i -z j | ≪ |z i -z k |. This way, z 2 -z 1 ≪ z 3 -z 1 ≪ z 4 -z 1 corresponds to the pair ((••)•).
We can also say that it corresponds to a trivalent tree with four leafs as summarized in the following image:

•((••) • ) ((••) • ) • Z 1 Z 2 Z 3 Z 4 Z 5 (•(••)) • (••)(••) •(•(••))
Lemma 2.2.7. There are five unique solutions W 1 , . . . , W 5 to the system (KZ) 4 having the following asymptotic behaviors in the corresponding zones:

W 1 ∼ (z 2 -z 1 ) t 12 2iπ (z 3 -z 1 )
t 13 +t 23 2iπ

(z 4z 1 ) t 14 +t 24 +t 34 2iπ

;

W 2 ∼ (z 3 -z 2 ) t 23 2iπ (z 3 -z 1 )
t 12 +t 13 2iπ

(z 4z 1 ) t 14 +t 24 +t 34 2iπ

;

W 3 ∼ (z 3 -z 2 ) t 23 2iπ (z 4 -z 2 )
t 24 +t 34 2iπ

(z 4z 1 )

t 12 +t 13 +t 14 2iπ

;

W 4 ∼ (z 4 -z 3 ) t 34 2iπ (z 4 -z 2 ) t 23 +t 34 2iπ (z 4 -z 1 )
t 12 +t 13 +t 14 2iπ

;

W 5 ∼ (z 2 -z 1 ) t 12 2iπ (z 4 -z 3 ) t 34 2iπ (z 4 -z 1 )
t 13 +t 14 +t 23 +t 24 2iπ

.

That is, we have for example ,

W 2 = f (u, v)(z 3 -z 2 ) t 23 2iπ (z 3 -z 1 )
where u = (z3-z2) (z4-z1) , v = (z3-z1) (z4-z1
) and f is an analytic function on a neighborhood of (0, 0) with f (0, 0) = 1.

Proof. Let us give the steps to perform the calculation for W 5 :

1. Demonstrate that, in this case, one can reduce the system (KZ) 4 to a three-variable system.

2. Make the substitution W = g • (z 4z 1 ) T /2iπ and reduce our system to a system with two variables. Deduce that g is a function in u and v.

3. Deduce that the system (KZ) 4 is now written

dg = 1 2iπ [t 12 d log(u) + t 34 d log(v) + dR(u, v)] • g
where R is an analytic function on a neighborhood of (0, 0). Conclude.

4. Use the technique of successive approximations to show that there is one, and only one solution to this equation of the form

φ(u, v)u t 12 2iπ v t 34 2iπ ,
where φ is an analytic function on a neighborhood of (0, 0) such that φ(0, 0) = 1 5. Use the principle of analytic continuation to show that the W i functions are extended analytically to U .

Lemma 2.2.8. The asymptotic expansions W 1 , . . . , W 5 satisfy the following relations: 

W 1 = W 2 • Φ KZ (t
W 5 = W 1 • Φ KZ (t 12 , t 23 + t 34 ).
Proof. Let's prove the first identity. Let

V 1 = W 1 • (z 4 -z 1 ) -1 2iπ (t14+t24+t34)
. We have

V 2 = W 2 • Φ KZ (t 12 , t 23 ) • (z 4 -z 1 ) -1 2iπ (t14+t24+t34) = W 2 • (z 4 -z 1 ) -1 2iπ (t14+t24+t34) • d 4 Φ KZ .
Indeed, t 14 + t 24 + t 34 commutes with all t ij for i, j < 4 and therefore with Φ KZ (t 12 , t 23 ). We have

(z 4 -z 1 ) -1 2iπ (t14+t24+t34) = e -1 2iπ (t14+t24+t34) log(z4-z1)
which has a series expansion and we obtain the required commutation.

On the other hand, we have

V 1 = V 2 . Indeed, if z 1 < z 2 < z 3 < z 4 , then V 1
and V 2 are analytic (and z 4 can be eventually infinite). Additionally, V 1 and V 2 verify

∂V ∂z i =            1 2iπ j =1 tij z1-zj 1 2iπ j =i tij zi-zj • V -1 2iπ • t14+t24+t34 z1-z4 if i = 2, 3 1 2iπ j =4 [t14,V ] z4-zj
The first two equations and the asymptotic developments of V 1 and V 2 show that the two functions match for z 4 = ∞. As a consequence, from the above equation one gets

V 1 = V 2 .
The rest of the equations are found in the same way.

Finally, in light of these relations, we obtain We conclude that Φ KZ satisfies the pentagon relation.

4) Two Hexagons relations:

Applying the permutation (123), we find that the relations of the two hexagons are satisfied by Φ KZ if, and only if, only one of them is satisfied by Φ KZ . To demonstrate that Φ KZ satisfies one of the two hexagons one proceeds in an analogous way to that we used to demonstrate the pentagon relation: find six solutions of (KZ) 3 in different regions with standard asymptotic behaviors corresponding to the edges of an hexagon and show that these solutions have relations that imply the required hexagon relation.

We leave the detail of this proof to the reader's care.

Reminders on flat connections

We recall very quickly some definitions of the theory of vector bundles. The reader interested in a detailed introduction illustrated on the subject may consult [START_REF] Kobayashi | Foundations of Differential Geometry[END_REF].

Flat connections

Let X be a complex manifold and E -→ X a vector C-bundle X. Recall that Ω 0 (X, E) = Γ(X, E) and that Ω 1 (X, E) = Γ(T * X ⊗ E).

Definition 2.2.9. A holomorphic connection ∇ on E -→ X is a linear map

∇ : Γ(X, E) -→ Ω 1 (X, E)
verifying, for all f ∈ O(X), s ∈ Γ(X, E), the Leibniz relation :

∇(f • s) = (df ) ⊗ s + f • ∇(s).
Remark 2.2.10.

• Be ∇ 1 and ∇ 2 two connections over E -→ X. The difference ∇ 1 -∇ 2 is O(X)-linear.
• Locally, a section s is written in the form

s = f 1 e 1 + • • • + f d e d
where f 1 , . . . , f d are complex analytic functions on X and {e 1 , . . . , e d } is a basis of the fiber.

• All connections ∇ over E -→ X can be written locally under the form ∇s = d dR s -Γs, where d dR is the de Rham differential and Γ is a differential 1-form on X taking values in the ring End(E) of endomorphisms of E.

• A section s of E -→ X is horizontal with respect to a connection ∇ if ∇s = 0 that is, if locally s is solution of the differential system ds = Γs.

Let's move on to present the notion of parallel transport for a connection on a vector bundle

E -→ X. Let γ : [0, 1] -→ X t -→ γ(t)
be a continuous path in X. One can perform the pullback of the matrix Γ of differential forms over X along γ into a matrix

A(t)dt = γ * Γ
of differential forms over the interval [0, 1]. In light of the theory of ordinary differential equations, there is a unique smooth map A γ : [0, 1] -→ Aut lin (E, X), where Aut lin (E, X) is the group of linear automorphisms of the bundle E -→ X, such that A γ (0) = id and

w(t) = A γ (t)w(0) is a solution of the differential equation dw(t) dt = A(t)w(t).
Definition 2.2.11. The parallel transport of the connection ∇ along γ is the linear isomorphism A γ (1) between the fiber at the initial point γ and the end point of γ. We will denote it by

T γ : F γ(0) ≃F γ(1)
.

In particular, we have a map

(γ : [0, 1] → X) -→ T γ : F γ(0) ≃ -→ F γ(1)
so that if γ ′ : [0, 1] → X is such that γ(1) = γ ′ (0) (in which case we say that the continuous paths γ and γ ′ are juxtaposable and the path γ • γ ′ is then continuous) Then

T γ•γ ′ = T γ • T γ ′ .
Definition 2.2.12. The holonomy group of ∇ based at a point x 0 ∈ X is the subgroup of Aut(F γ(0) ) generated by T γ for all loops γ based at x 0 ∈ X.

Let ∇ be a connection over a vector bundle E -→ X. We can extend ∇ into a covariant derivative

Γ(E) ∇ -→ Ω 1 (X, E) ∇ -→ Ω 2 (X, E) -→ • • • by means of the formula ∇(ω ∧ ω ′ ) = dω ∧ ω ′ + (-1) |ω| ω ∧ ∇ω ′ Definition 2.2.
13. The curvature of the connection ∇ is the map

∇ 2 := ∇ • ∇ : Γ(E) -→ Ω 2 (X, E).
Remark 2.2.14.

• The curvature is a map which is O(X)-linear.

• Locally, the curvature is expressed in terms of Γ by

∇ 2 = -d dR ω + ω ∧ ω.
Before constructing explicitely the parallel transport application, let's modify the proposed framework a little bit by extending it to the case of the G-principal bundles, where G is a Lie group.

G-principal bundles and associated connections

Let G be a topological group.

Definition 2.2.15. A G-principal bundle is a fiber bundle π : P -→ M together with a continuous free and transitive right action of G on P , denoted

R : G -→ End(P ) g -→ (R g : p → g • p)
such that G preserves the fibers of P (i.e. if y ∈ π -1 ({x}) then y • g ∈ π -1 ({x}) for all g ∈ G).

Remark 2.2.16.

1. This implies that each fiber is homeomorphic to the G group.

2. A principal bundle is trivial if, and only if, it admits a global section.

We can extend this definition to the case where G is a Lie group, with associated Lie k-algebra g, and M is a differientable manifold by demanding that π to be differentiable and that the action G on P is also differentiable. In this way, we will demand that the notion of connection in this setting to be « compatible » with the action of G as follows:

Definition 2.2.17. Let P -→ M a G-principal bundle. A G-principal connection is defined by a differential 1-form ω ∈ Ω 1 (P, g) taking values in the Lie k-algebra g associated to G such that 1. ω is G -equivariant i.e. ad g (R * g ω) = ω, where ad g is the adjoint representation; 2. if γ ∈ g and Xγ is the fundamental vector field associated with γ by differentiation of the action of G on P , then ω(X γ ) = γ (identically over P ).

Remark 2.2.18. Let G be a Lie group with associated Lie k-algebra g, let P -→ M be a trivial G-principal bundle and let ω ∈ Ω 1 (M, g) be a differential 1-form that defines a connection on P . In this case the curvature is given by the differential 2-form with values in g defined by

Ω = dω + 1 2 [ω ∧ ω] ∈ Ω 2 (M, g),
where d is the external differential, [-∧ -] is the operation Ω 1 (M, g) × Ω 1 (M, g) -→ Ω 2 (M, g) defined, for all pairs of tangent vectors v 1 and v 2 a M , by

[ω ∧ η](v 1 , v 2 ) = [ω(v 1 ), η(v 2 )] -[ω(v 2 ), η(v 1 )]
so that we get

Ω(v 1 , v 2 ) = dω(v 1 , v 2 ) + 1 2 [ω ∧ ω](v 1 , v 2 ) = dω(v 1 , v 2 ) + [ω(v 1 ), ω(v 2 )].
We will denote in the future [ω, ω] for the 1-form bracket.

regularized holonomy and regularized iterated integrals

Let us quickly explain the formulation of parallel transport in terms of path ordered exponentials.

Remark 2.2.19. Let G be a Lie group with associated Lie k-algebra g. Consider the following general Cauchy problem:

dϕ = αϕ ϕ(0) = 1 G , (2.10) 
where ϕ : [0, 1] -→ G is a function and α ∈ Ω 1 ([0, 1], g) is a differential 1-form taking values in g. Then there is a unique solution φ of (2.10) and we can define the path ordered exponential

P exp 1 0 α := φ(1) ∈ G.
As a consequence of Picard succesive iterations method, we can explicitely develop this element into the so-called Dyson series:

P exp 1 0 f (t)dt = 1+ 1 0 f (t 1 )dt 1 +• • •+ 0 tn ••• t1 1 dt 1 . . . dt n f (t 1 ) . . . f (t n ) +• • •
We can similarly extend this definition for every differientable manifld M considering, for α ∈ Ω 1 (M, g) and γ : [0, 1] → M , the path ordered exponential

P exp γ α = P exp [0,1] γ * α .
In this case, considering the trivial G-principal bundle over M , the parallel transport of the connection ∇ = dα along the path γ is precisely

P exp γ α .
If γ is a piece-wise smooth path on M , then the iterated integral of the differential 1-forms

ω 1 , . . . , ω n ∈ Ω 1 (M, G) is γ ω 1 • • • ω n := 0 tn ••• t1 1 dt 1 . . . dt n f (t 1 ) . . . f (t n )
Proposition 2.2.20. Let P -→ M be the trivial G-principal over M and let ∇ be a connection on this bundle. It is said that a connection ∇ is flat if, equivalently:

1. The curvature ∇ • ∇ of the connection is zero;

2. the 1-form ω associated to ∇ satisfies the Maurer-Cartan equation :

dω + 1 2 [ω, ω] = 0;
3. For each pair (γ 1 , γ 2 ) of homotopic paths in X we have T γ1 = T γ2 .

Remark 2.2.21. If this is the case, then the parallel transport of ∇ along a loop based on a point x 0 ∈ X induces a group morphism

ρ : π 1 (X, x 0 ) -→ Aut(E x0 )
called monodromy morphism or a monodromy representation of the fundamental group of X with respect to its action on the fiber of x 0 .

Proof. We will only show the first equivalence:

• Step 1 =⇒ 2: A horizontal section of this connection satisfies df = -ωf . If the connection is flat, then

0 = -d 2 f = d(ωf ) = (dω)f -ω ∧ df = (dω + w ∧ w)f = dω + 1 2 [ω, ω] f
for any horizontal section. As locally there is a flat frame of the bundle, this implies that dω + w ∧ w = 0.

• The step 2 =⇒ 1: this follows from the Frobenius theorem.

We will assume the following:

Proposition 2.2.22. Let ω a differential 1-form over a Riemann surface M with logarithmic singularities over a finite subset S of M . Then, for all z 1 , z 2 in M -S, the following limits exist:

lim t-→0 t ∇(ω)s T ω (γ z1 t ) lim t-→0
T ω (γ z2 t )t -∇(ω)s .

In the next section we will give a particular example of a flat connection that is naturally associated to the (KZ) n system. We will dicover how to retrieve multizeta values from the parallel transport of this connection and find new relations for these numbers

The universal KZ connection

The objective of this section is to convince the reader of the fact that, using basic results on the geometry of the configuration spaces, the proof of the fact that the KZ associator is a Drinfeld associator is a consequence of the flatness of a certain connection defined on this space and therefore, in a certain way, the manipulations of the KZ differential equations becomes visible. This allows to have a better understanding of the architecture of the Drinfeld associators.

The differential system (KZ) n leads to an associated connection, the universal KZ connection, which is flat in the configuration space of n points in the complex plane. Regardless of its application to the understanding of Drinfeld associators and multizeta values, this connection has several fields of application: for example, it provides a monodromy representation of the fundamental group of its basis space, that is to say of the pure braid group on the plane. This implies, in particular, the formality of this group, as we will explain below.

Let P := Conf(C, n) × exp( tn ) be the trivial exp( tn )-bundle over Conf(C, n). 

ω KZ n := 1 i<j n d log(z i -z j )t ij .
Remark 2.2.24. A function σ : Conf(C, n) -→ t n is a horizontal section of ∇ KZ n if, and only if, σ is a solution of the system (KZ) n . Indeed, as ∇ KZ n is a connection defined on a trivial exp(t n )-bundle, its horizontal sections are functions Conf(C, n) -→ t n so that σ is well defined as a section.

Why is it universal? The explanation of the exact meaning of the word « universal » goes through several points. Let us begin by defining the holonomy Lie algebra of a smooth variety and its de Rham fundamental group following [START_REF] Deligne | Équations différentielles à points singuliers réguliers[END_REF] and [START_REF] Enriquez | A Tannakian interpretation of the elliptic infinitesimal braid Lie algebras[END_REF].

Reminders on the Riemann-Hilbert correspondence

Let X be a complex smooth variety. Let H • dR (X) be the de Rham cohomology complex of X, let

µ : ∧ 2 H 1 dR (X) -→ H 2 dR (X)
be the multiplication map, let us denote H 1 (X) for the dual of H 1 dR (X) and let K ⊥ ⊂ ∧ 2 H 1 (X) be the dual subspace of K := ker(µ) ⊂ ∧ 2 H 1 dR (X). Let X be the smooth compactification of X with D = X -X a normal crossings divisor. For simplicity we suppose that

H 1 dR (X) is pure of weight 2, implying that H 1 (X) is isomorphic to H 0 ( X, Ω 1 X (log(D)).
Deligne established in [START_REF] Deligne | Équations différentielles à points singuliers réguliers[END_REF] an equivalence of tensor categories between:

• the category VBFC(X) of vector bundles with a flat connection on X with regular singularities,

• the category LS(X) of topological local systems on X.

This is known as the Riemann-Hilbert corrrespondence.

Notice that here, for a vector space E, ∧ 2 E identifies with the degree 2 component of the free Lie algebra generated by E.

Now, one can attach to these tensor categories its unipotent part (see [START_REF] Enriquez | A Tannakian interpretation of the elliptic infinitesimal braid Lie algebras[END_REF] for details). The R-H correspondence then induces an equivalence between the unipotent parts of these categories: .11) This map associates to each object of VBFC(X) the local system of its horizontal sections.

RH uni : VBFC(X) uni ∼ -→ LS(X) uni . ( 2 
Any point x ∈ X gives rise to two fiber functors F ls x : LS(X) -→ Vect C and F vb x : VBFC(X) -→ Vect C and to a canonical isomorphism

F ls x • RH ≃ F vb x .
Definition 2.2.25. Let X be a complex smooth variety.

• The holonomy Lie C-algebra hol(X) of X is the free Lie C-algebra over H dR 1 (X) modulo relations in K ⊥ .

• The de Rham fundamental group of X is the unipotent Tannakian fundamental group of the category of vector bundles with flat unipotent connections on X with regular singularities at infinity :

π dR 1 (X, x) uni := Aut ⊗ (F vb x ),
for the choice of a base point x ∈ X.

• The Betti fundamental group of X with base point x is the Tannakian group corresponding to F ls x :

π B 1 (X, x) := Aut ⊗ (F ls x ).
Remark 2.2.26.

• The relations in K ⊥ are all in degree 2, so hol(X) is provided with a natural graduation.

• The R-H correspondence then provides us with a map π dR 1 (X, x) uni -→ π B 1 (X, x).

Deligne then proved the following result.

Theorem 2.2.27. The Lie algebra of π dR 1 (X) coincides with the degree completion ĥol(X) of the holonomy Lie algebra of X.

In practice it can be convenient to characterise hol(X) the following way. Let us finish this reminder on some comments on Gauss-Manin connections in the complex analytic context.

Let f : X -→ S be a smooth family of complex manifolds. We have a local system R n f * C of complex vector spaces on S, defining a holomorphic vector bundle V := R n f * C ⊗ O S on S with an integrable connection ∇ : V -→ V ⊗ Ω 1 S of the family, so we get a connection on the latter. We have a map

DR : D b hr (D X ) -→ D b c (C X ),
so that M -→ DR(M) := ω X ⊗ L DX M is the analytic de Rham complex. By the R-H correspondence the map DR is an equivalence. DR sends a O-coherent D-module (i.e. a vector bundle with an integrable connexion) to a local system (i.e. a locally constant sheaf). The inverse functor sends a locally constant V to the vector bundle O X ⊗ C V together with the only connexion such that V is the local system of horizontal sections in (O X ⊗ C V, ∇).

The Gauss-Manin connection is then defined as DR -1 (Rf * C X ).

Universality of the KZ connection

Let us compute the holonomy Lie algebra of the configuration spaces Conf(C, n).

1. Suppose that X = Conf(C, 2). As Conf(C, 2) ∼ = C 2 -{z 1 = z 2 }, we can take the following coordinates:

x = z 1 + z 2 y = z 1 -z 2 .
In these coordinates, the only differential 1-form with logarithmic singularities on X is d log(y). In this way, we find

hol(X) = f 1 (C) ∼ = t 2 (C)
where f 1 is the free Lie k-algebra on 1 generator (which is of dimension equal to 1).

2. Suppose that X = Conf(C, n). Then we have

• H 1 dR (X) is generated by the 1-forms

ω ij = d log(z i -z j ),
where 1 i < j n.

• (Arnold) K is generated by

ω ij ∧ ω jk + ω jk ∧ ω ik + ω ik ∧ ω ij ,
where 1 i < j < k n.

• If {t ij } i<j ∈ H dR 1 (X)
is the dual basis to the basis {ω ij } i<j of H 1 dR (X), then K ⊥ is generated by elements

t ij ∧ t kl , t ij ∧ (t ik + t jk ),
where card(i, j, k, l) = 4.

In conclusion, the holonomy Lie C-algebra of Conf(C, n) is the Kohno-Drinfeld Lie Calgebra t n .

In this way, we see that the system dϕ =

1 i<j n t ij d log(z i -z j ) is defined in a natural way in the exp( hol(X))-trivial bundle over X = Conf(C, n).
In addition, this system contains the smallest amount of information necessary to be well defined:

• Let W be a vector space and consider the trivial vector bundle Conf(C, n) × W -→ Conf(C, n). Let's consider the connection

∇ = d - 1 i<j n d log(z i -z j )A ij .
defined over the above bundle, where A ij are endomorphisms of W . In this case, a sufficient condition for ∇ to be flat is that A ij satisfy the three infinitesimal braid relations. In this sense, the Kohno-Drinfeld Lie algebra is the « simplest » possible so that the connection satisfies these relations.

• Consider the connection

∇ = d - 1 i =j n A ij (z i -z j )d(z i -z j ),
where the matrices A ij (z iz j ) act in the i-th and the j-th entries of

V = V 1 ⊗ • • • ⊗ V n .
In this case, the connection is flat if, and only if, the family {A ij (z iz j )} satisfies the Yang-Baxter equation

[A ik (z i -z k ), A kj (z k -z j )] + [A ik (z i -z k ), A ij (z i -z j )] + [A ij (z i -z j ), A kj (z k -z j )] = 0.
In particular, if we consider the simplest possible choice of r-matrix, that is, if we consider

A ij (z i -z j ) := t ij z i -z j ,
where t ij are formal symbols, then we have ∇ is flat ⇐⇒ {A ij } satisfies the Yang-Baxter equation ⇐⇒ {t ij } satisfies the infinitesimal braid relations.

Reminders on semi-simple Lie algebras.

Let g be a Lie k-algebra. Its adjoint representation is the k-vector space map given by g -→ End(g).

x -→ (ad x : y → [x, y])

If g is finite dimensional, then :

• There is a well defined bilinear symmetric form B(x, y) := Tr(ad(x) • ad(y))

called Killing form, which is g-invariant under the action of Aut(g) and such that

B([x, y], z) = B(x, [y, z]),
for all x, y, z ∈ g.

• If {X i } i n is a basis of g and {X i } i n is its dual basis with respect to B, the Casimir element is

Ω = n i=1 X i X i ∈ Z(U(g))
i.e. commutes with all elements in g and is independent of the choice of the basis.

• If char(k) = 0 then:

g is semi-simple ⇐⇒ B is non-degenerate.
Now let g be a finite dimensional Lie C-algebra, let

S 2 (g) := T 2 (g)/(x ⊗ y -y ⊗ x)
be the symmetric algebra associated to g. Then, for an orthonormal basis of g with respect to B, we have that

T (v 1 , v 2 ) = Σ u a u ⊗ b u ∈ S 2 (g) satisfies T (v 1 , v 2 ) = T (v σ -1 (1) , v σ -1 (2)
). We have O g * = S(g).

An element y in S 2 (g) is said to be g invariant if [x ⊗ x, y] = 0, for all x ∈ g. The set of such elements will be denoted S 2 (g) g . Then t g = Σ u e u ⊗ f u ∈ S 2 (g) g . By choosing a basis we get

[X i , X j ] = n k=1 c k ij X k
where c k ij = -c k ji are the structure constants. In particular

(a ⊙ b)(c ⊙ d) = ac ⊗ bd; [a ⊗ b, c ⊗ d] = ac ⊗ bd -ca ⊗ db = [a, c] ⊙ [b, d].
Let G be a connected Lie group with associated Lie algebra g. If G acts on a differientable manifold M , then x ∈ g is represented by a first order differential operator over M and this representation ρ is in C ∞ (M ). If G and G ′ are n dimensional and have the same structure constants, then they are locally isomorphic. This means that the structure constants are related to the second order partial derivatives in a neighborhood of the identity but give local properties over the whole group : for instance, they tell if locally the multiplication is contractible.

Realizations of the universal KZ connection

The universal KZ connection « has realizations »: consider

• a (semi-)simple Lie C-algebra g;

• a symmetric g-invariant 2-tensor Ω = r x r ⊗ y r ∈ g ⊗ g (which is constructed from the Casimir, coming from the Killing form associated with g),

• a non-zero integer n ∈ N 1 ,

• a finite dimensional g-module V ,

• a formal parameter = h 2iπ ∈ C.
Let's define

t ij := r α (1) r ⊗ • • • ⊗ α (n) r ∈ (U(g)) ⊗n ,
where α

(i) r = x r , α (j) 
r = y r and α

(k) r = 1,
where k = i, j. Then 1. Every t ij induces an endomorphism of V ⊗n that satisfies the infinitesimal braid relations.

• This fact is a consequence of the construction of t ij and the g-invariance of Ω ∈ g ⊗ g.

2. We have t ij = t ji .

• This fact is a consequence of the symmetry of the 2-tensor t ij .

We conclude that we have a morphism

exp( tn (C)) -→ End(V ⊗n )[[ ]]
e tij -→ t ij

and the system

(KZ ′ ) n dw = 1 i<j n d log(z i -z j )t ij w
is called realization of the universal system (KZ) n associated to (g, V ).

Holonomy of the connection

∇ KZ 3
and geometric definition of the KZ associator Let ε > 0. Denote X 0 = t 12 and X 1 = t 23 . Let Φ ε (X 0 , X 1 ) be the parallel transport of the universal KZ connection with respect to the path ϕ : [0, 1] -→ C -{0, 1} such that γ(0) = ε, γ(1) = 1ε and γ(t) ∈ R, that is, given by the path ordered exponential

Φ ε (X 0 , X 1 ) := P exp γ(1) γ(0) X 0 z + X 1 z -1 dz = ωword inX0,X1 c ω (ε) • ω
where, for j 0 , . . . , j n ∈ {0, 1}, ω = x j0 • • • x jn ∈ Q X 0 , X 1 , and

c ω (ε) = γ(1) γ(0) dt 1 t 1 -z j1 t1 γ(0) dt 2 t 2 -z j2 • • • t-n-1 γ(0)
dt n t nz jn .

(2.12)

Recall that the polylogarithm function is given, for s, z ∈ C, by

Li s (z) := ∞ k=1 z k k s
and that multizeta values are the real numbers

ζ(k 1 , . . . , k r ) := n1>n2>...>nr>0 1 n k1 1 . . . n kr r = n1>n2>...>nr>0 r i=1 1 n ki i where k 1 , . . . , k r-1 ∈ N 1 , k r ≥ 2.
We are going to admit the following proposition, which we will explain in the next subsection.

Proposition 2.2.29. For each word ω in X 0 and X 1 , the scalar c ω (ε) is a polynomial in polylogarithm functions of the form Li n (ε) and in the function log(ε). In particular, if the word ω ends in X 1 (in particular ω can be written in the form ω = X n1-1

0 X 1 X n2-1 0 X 1 . . . X n k -1 0 X 1
, where n i 2, for all k 1), then the function c ω (ε) converges when ε tends to 0 and we have

lim ε→0 c ω (ε) = (-1) k ζ(n 1 , . . . , n k ).
Corollary 2.2.30. Φ ε (X 0 , X 1 ) has an asymptotic expansion into a homogenous polynomial

Φ(log(ε)), that is, Φ ε (X 0 , X 1 ) -Φ(log(ε)) -→ ε→0 0.
Proposition 2.2.31. The Drinfeld KZ associator is, equivalently, defined by:

1. the quotient

Φ KZ := G -1 1 G 0 ∈ C X 0 , X 1 of Proposition 2.
2.4 of the first section; 2. the regularized holonomy of the connection ∇ KZ 3 between 0 and 1 (following the real part of P 1 (C) -{0, 1, ∞}) i.e. the limit

Φ KZ (X 0 , X 1 ) := lim ε→0 ε X1 Φε(X 0 , X 1 )ε -X0 ;
3. the regularization Φ KZ := Φ(0) of the polynomial Φ(log(ε)) by formally setting log(ε) = 0.

Proof. First, the three definitions make sense in light of the above paragraphs. Let's prove that these definitions are equivalent. We have the expression

Φ ε (X 0 , X 1 ) = G 1 (1 -ε)G -1
1 G 0 G -1 0 (ε) so that the following limit exists

lim ε→0 ε X1 Φ ε (X 0 , X 1 )ε -X0 = lim ε→0 (ε X1 G 1 (1 -ε))G -1 1 G 0 (G -1 0 (ε)ε -X0 ) = G -1 1 G 0 Therefore, the asymptotic expansion of Φ ε (X 0 , X 1 ) is ε X1 G -1 1 G 0 ε -X0 .
Monodromy of the KZ connection and geometric proof of Theorem A.

Let's start with a crucial result that will allow us to work with the connection.

Proposition 2.2.32. The universal KZ connection is flat, that is:

(∇ KZ ) 2 = 0.
Proof. We compute:

∇ 2 = i<j k<l [t ij , t kl ]d(z i -z j )d(z k -z l ) (z i -z j )(z k -z l ) = i =j dz i dz j     i =k j =l [t ij , t kl ] (z i -z j )(z k -z l )     = i =j dz i dz j   j =l [t ij , t kl ] (z i -z j )(z j -z l ) + i =k [t ik , t ji ] (z i -z k )(z j -z i )   = i =j dz i dz j   k =i,j -[t ik , t jk ] (z i -z j )(z j -z k ) + k =i,j [t ik , t jk ] (z i -z k )(z j -z i )   = - i =j dz i dz j k =i,j [t ik , t jk ] (z i -z j )(z j -z k ) = 0.
We conclude that the connection is flat.

In this way, we can talk about monodromy of the connection and we will see how the Drinfeld associator relations arise, in the case of the KZ associator, precisely from this monodromy. We reproduce the proof of Theorem A. The element

Φ KZ (t 12 , t 23 ) := lim ε→0 ε t23 P exp 1-ε ε t 12 z + t 23 z -1 dz ε -t12
is the regularized holonomy between 0 and 1 of the universal KZ connection, seen in the complex projective line minus three points. Let's prove that the pair (2iπ, Φ KZ ) is a Drinfeld associator.

The case n = 2. First of all, we have

Conf(C, n) ∼ = C × C -{0} (z 1 , z 2 ) -→ (t, w) := (z 2 , z 1 -z 2 )
In this way, the KZ connection is written

∇ KZ 2 = d - t 12 w dw.
The associated KZ equation is the system

∂ ∂w F = t12 w F ∂ ∂t F = 0 .
Therefore, the solutions are given by

F (z 1 , z 2 ) = C(z 1 -z 2 ) 12 , for a certain constant C. Let γ : [0, 1] -→ C -{0} t -→ εe iπt
be the continuous path that draws a closed semi-circle from ε to -ε in C -{0}:

0 ε -ε
We immediately find that the regularized holonomy of the connection

∇ KZ 2 is e iπt12 = e λ 2 t12
for λ = 2iπ.

The case n = 3: First, we have an isomorphism

Conf(C, 3) ∼ = C × C × × (P 1 (C) -{0, 1, ∞}) (z 1 , z 2 , z 3 ) -→ (t, w, z) := z 3 , z 1 -z 3 , z 1 -z 2 z 1 -z 3
By a change of coordinates, the equations (KZ) 3 become: [START_REF] Enriquez | Elliptic associators[END_REF]. Notice that we are rephrasing the results of previous section. Indeed, the solution in this case is

     ∂ ∂w F = t12+t13+t23 w F ∂ ∂t F = 0 ∂ ∂z F = t12 z F + t23 z-1 F Remark 2.2.
F (z 1 , z 2 , z 3 ) = (z 1 -z 3 ) t + t 13 + t 23 G z 1 -z 2 z 1 -z 3 ,
where G(z) solves the equation

∂ ∂z G = t 12 z G + t 23 z -1 G.
We are ready to start the proof: -→ Antisymmetry: Taking the change of variables z = 1y, the connection is written

-→ Φ KZ (
d - t 12 y -1 + t 23 y dy,
whose holonomy between ε and 1ε is Φ ε (t 23 , t 12 ). By symmetry, this is also the holonomy from 1ε to ε of the original connection i.e. the inverse of the holonomy from ε and 1ε of the same connection. In this way, Φ ε (t 23 , t 12 ) = Φ ε (t 12 , t 23 ) -1 . Automatically, we verify that the same equation is preserved after asymptotic expansion and regularization.

-→ Two hexagons: Using the monodromy calculation in the case n = 2, we easily see that the regularized holonomy of ∇ KZ 3 around the singularity z = 0 (in the counterclockwise direction) in P 1 (C) -{0, 1, ∞} is e iπt12 . One can easily prove the following facts 1. If we take the path γ in the clockwise direction, we get a holonomy equal to e -iπt12 .

2. The regularized holonomy of ∇ KZ 3 around the singularity z = 1 (counterclockwise direction) in P 1 (C) -{0, 1, ∞} is e 2iπt23 .

3. Making a change of variables to be determined, the regularized holonomy of ∇ KZ 3 around the singularity z = ∞ (counterclockwise direction) in P 1 (C) -{0, 1, ∞} is e 2iπt13 .

In this way, we can consider the paths

γ + := γ + 1 γ + 2 γ + 3 γ + 4 γ + 5 γ + 6 and γ -:= γ - 1 γ - 2 γ - 3 γ - 4 γ - 5 γ - 6 ,
formed by the juxtaposition of the following 6 paths: We have calculated the holonomy for each of these paths. Notice that the path γ + is contractible and the connection is flat so the parallel transport along γ + is T γ + = 1. Also, as γ + is composed of 6 terms we get an equation

∞ γ 1 + γ 2 + γ 6 + γ 1 - 0 γ 6 - 1 γ 2 - γ 3 + γ 3 - γ 4 - γ 4 + γ 5 + γ 5 - Re(P 1 -{0, 1, ∞})
R 12 Φ ε (t 13 , t 12 )R 13 Φ ε (t 23 , t 13 )R 23 Φ ε (t 12 , t 23 ) = 1.
Using the asymptotic expansion of Φ ε , we can see that R 12 Φ ε (t 13 , t 12 )R 13 Φ ε (t 23 , t 13 )R 23 Φ ε (t 12 , t 23 ) has an asymptotic expansion which is a polynomial in ε in each degree. In this way, this equation must be preserved for the part in the constant term of the expansion, that is, when we formally establish log(ε) = 0.

On the other hand, by using exercise ??? of the first section, we know that t 3 (C) ≃ Cc ). The composition of holonomies is read from the right to the left as for the composition of functions.

One can easily show the following facts 1. The holonomy of the path γ -gives the relation of the remaining hexagon.

2. Let h ∈ C × . If we consider the connection

∇ KZ n,h = d - h 2iπ 1 i<j n t ij d log(z i -z j ),
and we denote Φ h KZ the regularized holonomy between 0 and 1 of

∇ KZ 3,h , find λ = h is such that (λ, Φ h KZ ) is a C-associator.
The case n = 4: We will present the main steps of the proof of the pentagon relation, leaving the detail to the care of the reader.

-→ The pentagon: After identifying Conf(C, 4) with a product of spaces involving the space (P 1 -{0, 1, ∞}) 2 -{(z, z)}, one can interpret the KZ associator as the regularized holonomy from 0 to 1 of the KZ connection over the space (P 1 -{0, 1, ∞}) 2 -{(z, z)}. The path corresponding to the pentagon in

Re((P 1 -{0, 1, ∞}) 2 -{(z, z)}),
presented in the last subsection corresponding to the regions Z 1 , . . . , Z 5 of Re(Conf(C, 4)), is precisely the path below.

As for the two hexagons, this path is contractible so that its holonomy is equal to 1. By noticing that we can indeed take regularized holonomy, we obtain the required pentagon relation.

Application I : Associator relations for multizeta values

Integral formulation of multizeta values

Recall that the multizeta values are the real numbers

ζ(k 1 , . . . , k r ) := n1>n2>...>nr>0 1 n k1 1 . . . n kr r
where (k 1 , . . . , k r ) ∈ (N 2 ) r . These numbers have been studied since Euler (1775). The nature (transcendence/irrationality) of these numbers is a field of much mystery and of which we do not know much.

Proposition 2.2.35 (Kontsevich-Zagier). The multizeta values can be written as the integrals:

ζ(k 1 , . . . , k r ) = (-1) r 1 0 t1 0 • • • tn-1 0 dt n t n -ǫ n • dt n-1 t n-1 -ǫ n-1 • • • dt 1 t 1 -ǫ 1
where (ǫ 1 , . . . , ǫ n ) = 0, . . . , 0 k1-1 times , 1, 0, . . . , 0 k2-1 times , 1, . . . , 0, . . . , 0 kr -1 times , 1 .

Re(z)

{z = 1} {w = 1} {z = w} {z = 0} {w = 0} Re(w) Figure 2.2: Paths in Re((P 1 -{0, 1, ∞}) 2 -{(z, z)}).
Example 2.2.36. We have

ζ(2) = 1 0 t1 0 dt 2 1 -t 2 dt 1 t 1 = 1 0 t1 0 dt 1 t 1 n 1 t n-1 2 dt 2 = 1 0 n 1 t n 1 n dt 1 t 1 = n 1 1 n 1 0 t n-1 1 dt 1 = n 1 1 n 2
so we find the original definition of ζ(2).

Proposition 2.2.37. The Knizhnik-Zamolodchikov associator is a generating series of all (regularized) multizeta values i.e. we have:

Φ KZ (X, Y ) = wword inX,Y ζ w • w.
where ζ w is the (regularized) multizeta value associated with the word w.

Example 2.2.38. In particular, we have a computation in low degree of this series:

Φ KZ (A, B) = 1 + ζ(2)[A, B] + ζ(3)[A, [A, B]] + ζ(1, 2)[[A, B], B] +ζ(4)[A, [A, [A, B]]] + ζ(1, 3)[A, [[A, B], B]] + ζ(1, 1, 2)[[[A, B], B], B] +1ζ(2) 2 [A, B] 2 + . . .

MZVs and admissible words

How are the MZVs distributed in the series of Proposition 2.2.37? To answer this question we need to introduce the notion of admissible words. Let's start by calculating the iterated integrals involved in the KZ associator for two different kinds of words.

Remark 2.2.39. To calculate the integrals (2.12), we can use the relations

1 t -1 = - ∞ j=0 t j log n (t)dt t = 1 n + 1 log n+1 (t) log n (t)t m dt = n j=0 (-1) j m + 1 n! (N -j)! log n-j (t)t m+1
Example 2.2.40. Suppose that ω = X 0 X 0 X 1 . We are going to simplify the computations by omitting the terms that tend toward 0 when ε tends to 0. In that case, the triple integral in c ω is

c ω (ε) = γ(1) γ(0) dt 1 t 1 t1 γ(0) dt 2 t 2 t2 γ(0)
dt 3 t 3 -1 = 1-ε ε dt 1 t 1 t1 ε dt 2 t 2   - j 0 t j+1 2 j + 1   = - 1-ε ε dt 1 t 1   j 0 t j+1 1 (j + 1) 2   = - j 0 (1 -ε) j+1 (j + 1) 3 ε→0 ---→ -ζ(3).
Notice that, in this case, c ω converges when c w equals 0.

Example 2.2.41. Suppose this time that ω = X 0 X 1 X 0 . We calculate in this case:

c ω (ε) = γ(1) γ(0) dt 1 t 1 t1 γ(0) dt 2 t 2 -1 t2 γ(0)
dt 3 t 3 = 1-ε ε dt 1 t 1 t1 ε dt 2 t 2 -1 (log(t 2 ) -log(ε)) = 1-ε ε dt 1 t 1   j 0 t j+1 1 j + 1 log t 1 ε - j 0 t j+1 1 (j + 1) 2 - j 0 ε j+1 j + 1 log(ε) - j 0 ε j+1 (j + 1) 2   .
Omitting the terms that tend towards 0 we obtain a term in

- j 0 (1 -ε) j+1 (j + 1) 3 - j 0 (1 -ε) j+1 (j + 1) 3 - j 0 (1 -ε) j+1 (j + 1) 2 log(ε) ∼ -2ζ(3) -ζ(2) log(ε).
This expression diverges logarithmically with ε. This is one of the reasons why we are forced to renormalize the holonomy: to be able to eliminate these divergent terms.

What are the words ω for which c ω (ε) converges? To answer this question we have to talk about admissible words.

Definition 2.2.42. An admissible (or convergent) word in letters X, Y is a word ω ∈ Q X, Y starting with X and ending for Y of the form ω = XvY where v is any word in X and Y .

We are ready to characterize multizeta values with respect to convergent words.

Proposition 2.2.43. We have a bijective map

(N 2 ) r ←→ {admissible words in x, y} (k 1 , . . . , k r ) ←→ x k1-1 yx k2-1 y • • • x kr -1 y
and the value c ω (ε) converges towards

ζ(k 1 , . . . , k r ) := ζ x k 1 -1 yx k 2 -1 y•••x kr -1 y .
precisely when the word w is admissible.

Remark 2.2.44.

• This explains Proposition 2.2.29.

• There is a way to associate to the rest of the words (those that are not admissible) a slightly more general notion of multizeta values called regularized multizeta values which we will not present in here.

Calculation of the KZ Associator in low degree

Let's calculate the terms in degree up to 2 of the associator Φ KZ . We have

Φ ε (t 12 , t 23 ) = P exp 1-ε ε t 12 z + t 23 1 -z dz = 1 + 1-ε ε t 12 t 1 + t 23 1 -t 1 dt 1 + 1-ε ε t1 ε t 2 12 t 1 t 2 + t 12 t 23 t 1 (1 -t 2 ) + t 23 t 12 t 2 (1 -t 1 ) + t 2 23 (1 -t 2 )(1 -t 1 ) dt 2 dt 1 + . . .
The degree 1 term is

t 12 log 1 -ε ε + t 23 log ε 1 -ε .
The degree 2 terms are:

1-ε ε t1 ε t 2 12 t 1 t 2 dt 2 dt 1 = 1-ε ε t 2 12 log(t 1 ) -log(ε) t 1 dt 1 = t 2 12 2 (log(1 -ε) 2 -log(ε) 2 ) -t 2 12 log(ε)(log(1 -ε) -log(ε)) = t 2 12 log(1 -ε) 2 2 + log(ε) 2 2 -log(ε) log(1 -ε) , and 
1-ε ε t1 ε t 12 t 23 t 1 (1 -t 2 ) dt 2 dt 1 = 1-ε ε t 12 t 23 log(1 -t 1 ) -log(1 -ε) t 1 dt 1 = t 12 t 23 (Li 2 (ε) -Li 2 (1 -ε) log(1 -ε)(log(1 -ε) -log(ε))).
One can show that

1-ε ε t1 ε t 23 t 12 t 2 (1 -t 1 ) dt 2 dt 1 = t 23 t 12 (Li 2 (1 -ε) -Li 2 (ε) -log(ε)(log(ε) -log(1 -ε)))
and

1-ε ε t1 ε t 2 23 (1 -t 2 )(1 -t 1 ) dt 2 dt 1 = t 2 23 log(ε) 2 2 + log(1 -ε) 2 2 -log(ε) log(1 -ε) .
Using the Taylor expansions

ε -t23 = 1 -t 23 log(ε) + t 2 23 log(ε) 2 2 + • • • , and 
ε t 12 = 1 + t 12 log(ε) + t 2 12 log(ε) 2 2 + • • • ,
and noticing that Li 2 (0) = 0 and Li 2 (1) = ζ(2), we can simplify:

Φ KZ (t 12 , t 23 ) = lim ε→0 ε -t23 P exp 1-ε ε t 12 z + t 23 1 -z dz t t12 = lim ε→0 1 -t 23 log(ε) -t 12 log(ε) + t 23 log(ε) + t 12 log(ε) + t 2 23 log(ε) 2 2 + t 2 12 log(ε) 2 2 +[t 12 , t 23 ](Li 2 (ε) -Li 2 (1 -ε)) -t 23 t 12 log(ε) 2 + t 2 23 log(ε) 2 2 + t 2 12 log(ε) 2 2 --t 23 log(t) 2 (t 23 -t 12 ) + log(t) 2 (t 23 -t 12 )t 12 -t 23 t 12 log(ε) 2 + • • • = lim ε→0 (1 + [t 12 , t 23 ](Li 2 (ε) -Li 2 (1 -ε)) + • • • ) = 1-ζ(2)[t 12 , t 23 ] + • • • In conclusion, Φ KZ (t 12 , t 23
) is a generating series of all multizeta values. As a corollary, we obtain new relations between the different multizeta values coming from the pentagon and hewagons relations of the associators: Not only that, but thanks to the geometric definition of the associator KZ, we can find old relations that go back to Euler's works, as illustrated by the following theorem shown by Pierre Deligne:

Theorem 2.2.46 (Deligne, section 18 of [START_REF] Deligne | Le groupe fondamental de la droite projective moins trois points[END_REF]). The relation

ζ(2n) = (-1) n-1 B2n 2 × (2n)! (2π)2n
comes from the relations of antisymmetry and pentagon of the contractible path in P One can then retrieve from the flatness of the universal KZ connection such an isomorphism for G = PB n . Namely, the monodromy representation morphism is an isomorphism of C-prounipotent groups.

Remark 2.2.49. Returning to the consideration of the holonomy Lie algebra and the de Rham fundamental group of Conf(C, n), this result establishes an isomorphism

π Top 1 (Conf(C, n)) where π B 1 (Conf(C, n)) is the Betti fundamental group of Conf(C, n), which identifies to the C-prounipotent completion of the topological fundamental group π Top 1 (Conf(C, n)). This pro- vides an inverse morphism to the map π dR 1 (Conf(C, n)) -→ π B 1 (Conf(C, n))
given by the R-H correspondence.

This conceptual interpretation of the formality of PB n will be translated to the cyclotomic (easily) and genus 1 (with a lot more of work) cases.

The cyclotomic KZ associator

The universal cyclotomic KZ connection

Let Γ = Z/N Z and let t Γ n (k) be the Lie k-algebra with generators t 0i , (1 ≤ i ≤ n), and t α ij , (1 ≤ i = j ≤ n, α ∈ Z/N Z), and relations:

(NS) t α ij = t -α ji , (NL) [t 0i , t α jk ] = 0 and [t α ij , t β kl ] = 0, (N4T) [t α ij , t α+β ik + t β jk ] = 0, (NT1) [t 0i , t 0j + α∈Γ t α ij ] = 0, (NT2) [t 0i + t 0j + β∈Γ t β ij , t α ij ] = 0,
where 1 ≤ i, j, k, l ≤ n are pairwise distinct and α, β ∈ Γ. We will call it the k-Lie algebra of infinitesimal cyclotomic braids.

The universal cyclotomic KZ connection on the trivial exp( tn,N (C))-bundle over

Conf(C × , n, Γ) := (C × ) n -{z = (z 1 , . . . , z n )|z N i = z N j for some i = j} is defined by the differential 1-form ω KZ n,N := n i=1   t 0i z i + α∈Z/N Z,1≤i =j≤n t α ij z i -ζ α z j   d z i , (2.13) 
where ζ is a primitive Nth root of unity. It is a fact that this connection is flat.

Reminders on partial prounipotent completions

Let us recall the Enriquez' notion of partial prounipotent completion that we will use later in Chapter 7.

Let ϕ : G -→ H be a surjective group morphism such that G G := Ker ϕ is finitely generated.

Definition 2.3.1. There is a non-connected pro-algebraic group G(ϕ, k), fitting in an exact sequence 1 -→ G 0 (k) -→ G(ϕ, k) -→ H -→ 1, and a group morphism G -→ G(ϕ, k), such that the diagram 1 / / G 0 / / G / / H / / 1 1 / / G 0 (k) / / G(ϕ, k) / / H / / 1 commutes. The group G(ϕ, k) is called relative k-prounipotent completion of G with respect to ϕ.
We direct the reader to the article [START_REF] Enriquez | Quasi-reflection algebras and cyclotomic associators[END_REF] for more details on this definition as well as for the following one.

Definition 2.3.2. We say that the group morphism ϕ : G -→ H is formal if there exists a group isomorphism G(k, ϕ) ≃ exp(gr Lie G 0 (k)) ⋊ H, restricting to a formality isomorphism for G 0 , and such that the diagram

1 / / G 0 (k) / / G(k, ϕ) / / H / / 1 1 / / exp( ĝr Lie G 0 (k)) / / exp( ĝr Lie G 0 (k)) ⋊ H / / H / / 1 commutes. Example 2.3.3. • The morphism B n -→ S n is formal, where B n is the fundamental group of Conf(C, n)/S n .
It is interesting to say that this result follows from [START_REF] Kohno | On the holonomy Lie algebra and the nilpotent completion of the fundamental group of the complement of hypersurfaces[END_REF] when k = C, and from [START_REF] Drinfeld | On quasitriangular quasi-Hopf algebras and a group closely connected with Gal( Q/Q)[END_REF] for k = Q.

• Denote

-G 0 = PB Γ n := π 1 (Conf(C × , n, Γ)), -G = B 1 n = π 1 (Conf(C × , n)/S n ) and -ϕ n,N : B 1 n -→ Γ n ⋊ S n .
One can show that the monodromy of the universal cyclotomic KZ connection gives us vertical isomorphisms

1 / / PB Γ n (C) / / Bn (ϕ n , C) / / Γ n ⋊ S n / / 1 1 / / exp( tΓ n (C)) / / exp( tΓ n ) ⋊ (Γ n ⋊ S n ) / / Γ n ⋊ S n / / 1 .

Realisations

Let g be a Lie k-algebra and let t g = Σ u e u ⊗ f u ∈ S 2 (g) g . Suppose that we have a morphism

Γ -→ Aut(g, t g ); α → α i.e. α N = id. Then we have a decomposition g = l ⊕ u where l = g Γ and u = χ∈ Γ-{0} g χ .
Take a decomposition t g = t l + t u where t l ∈ S 2 (l) l and t u ∈ S 2 (u) l . Let σ be a generator of

Γ ⊂ U(g) ⋊ Γ. Theorem 2.3.4.
There is a unique Lie algebra morphism

U( tn,N ) ⋊ Γ n -→ U(l) ⊗ (U(g) ⋊ Γ) ⊗n t 0i -→ N t (0i) l + 1 2 t (ii) l ⊗ 1 t α ij -→ 1 ⊗ (σ α ⊗ id)(t (ij) g ) s i -→ σ(i) .

The elliptic KZB associator

In this section we introduce the basic tools that were used on constructing the universal elliptic KZB connection and which will be used in the second part of this thesis. We will profit this occasion to rely all conventions for theta functions that different authors (at our knowledge) that work on the KZB connection use at present.

Quick reminder on Eisenstein series and theta functions

In what follows G k (τ ) are the Eisenstein series defined for all k ≥ 2, by

G k (τ ) := ∞ n=-∞    ∞ m=-∞ m =0 if n=0 1 (m + nτ ) k    = 2ζ(k) + 2 • (2πi) k (k -1)! ∞ m=1 σ k-1 (m)q m , where σ α (k) = d|k d α .
Enriquez Approach: Let H := {τ ∈ C|ℑ(τ ) > 0} be the Poincaré half-plane. The theta function we will use is denoted

(z, τ ) → θ τ (z), for (z, τ ) ∈ C × H, where θ(z, τ ) := θ τ (z) := e πiz -e -πiz 2iπ n 1 (1 -e 2πi(z+nτ ) )(1 -e 2πi(-z+nτ ) ) (1 -e 2πinτ ) 2 .
and it is the unique holomorphic function

C × H -→ C such that θ τ (z + 1) = -θ τ (z) = θ τ (-z), θ τ (z + τ ) = -e -iπτ e -2π iz θ τ (z), ∂ ∂z θ τ (z) |z=0 = 1
, and (θ τ (-)) -1 (0) = Λ τ = Z + τ Z. Furthermore, we have θ(z|τ + 1) = θ(z|τ ) and θ(z/τ |1/τ ) = (1/τ )e (πi/τ )z 2 θ(z|τ ). Recall that the Dedekind η-function is given by η(τ ) = q 1 24 n>0 (1q n ) where q = e 2πiτ . The classical odd Jacobi theta function is, for q = e 2iπτ ,

ϑ 1 (z, τ ) := - n∈Z+ 1 2 e iπτ n 2 +2iπn(z+ 1 2 ) = - n∈Z e iπτ (n+ 1 2 ) 2 +2iπ(n+ 1 2 )(z+ 1 
2 )

and we have

ϑ 1 (z, τ ) = 2πη 3 (τ )θ τ (z). Set θ(z, τ ) = ϑ1(z,τ ) 2π
. This also gives a heat equation for ϑ:

∂ τ θ = (1/4πi)∂ 2 z θ
Brown-Levin-Racinet-Zagier approach: The standard odd elliptic theta functions are

ϑ Std 1 (u, τ ) := n∈Z (-1) n-1 2 e 2iπu(n+ 1 2 )+iπτ(n+ 1 2 ) 2 ϑ Std 11 (u, τ ) := i n∈Z (-1) n e 2iπu(n+ 1 2 )+iπτ(n+ 1 2 ) 2 ϑ Zag (u, τ ) := n∈Z (-1) n q 1 2 (n+ 1 2 ) 2 e (n+ 1 2 )u = n∈Z (-1) n e u(n+ 1 2 )+iπτ (n+ 1 2 ) 2 = 1 i ϑ 11 ( u 2iπ , τ ),
and we can express ϑ Zag (u, τ ) as a product via the Jacobi triple product formula (in Zagier's paper):

ϑ Zag (u, τ ) = q 1 8 e u 2 -e -u 2 ∞ n=1 (1 -q n )(1 -q n e u )(1 -q n e -u ).
Finally, the theta function used by Brown-Levin is

θ BL (ξ, τ ) = ϑ 11 (ξ, τ ) η(τ ) = q 1/12 (z 1/2 -z 1/2 ) j 1 (1zq j )(1z 1 q j ),
and the one used by Levin-Racinet is

θ LR (ξ, τ ) = iq 1/8 (z 1/2 z 1/2 ) j 0 (1zq j )(1z 1 q j )(1q j ).
We have

ϑ 1 (z, τ ) = - n∈Z+ 1 2 e iπτ n 2 +2iπn(z+ 1 2 ) = - n∈Z q 1 2 (u+ 1 2 ) 2 e z(n+ 1 2 ) e πin+ πi 2 = -iϑ Zag (z, τ ).
Kronecker series. The Kronecker series used by Zagier is the meromorphic function

C × C × H -→ C defined by F Zag (u, v, τ ) := ϑ Zag ′ (0, τ )ϑ Zag (u + v, τ ) ϑ Zag (u, τ )ϑ Zag (v, τ ) ,
and the Kronecker series used by Enriquez is

F En (x, z, τ ) = θ ′ (0, τ )θ(z + x, τ ) θ(z, τ )θ(x, τ ) = θ(z + x, τ ) θ(z, τ )θ(x, τ ) .
Thus, as ϑ Zag (z) = 2πiη(τ ) 3 θ(z, τ ), we get

F Zag (z, x, τ ) = F En (z, x, τ ).
Next, the one used by Brown-Levin is

F BL (u, v, τ ) := θ BL ′ (0, τ )θ BL (u + v, τ ) θ BL (u, τ )θ BL (v, τ ) ,
and is related to the one used by Levin-Racinet, denoted

F LR (ξ, η, τ ) := θ LR ′ (0, τ )θ LR (ξ + η, τ ) θ LR (ξ, τ )θ LR (η, τ ) ,
by the formula

F LR (ξ, η, τ ) = 2iπF Zag (2iπξ, 2iπη, τ ).
Finally, we have

ϑ 1 (z, τ ) = 2πη 3 (τ )θ(z, τ ) and ϑ 11 (z, τ ) = η(τ )θ BL (z, τ ) and ϑ 11 (z, τ ) = iϑ Zag (2iπz, τ ). We have η(τ )θ BL (z, τ ) = iϑ Zag (2iπz, τ )
In conclusion we get

• F BL (ξ, η, τ ) = F LR (ξ, η, τ ),
• F Zag (ξ, η, τ ) = F En (ξ, η, τ ), and

• F LR (ξ, η, τ ) = 2iπF Zag (2iπξ, 2iπη, τ ).
In what follows we take Enriquez' convention for the theta function.

The universal elliptic KZB connection

For τ ∈ h, denote Λ τ := Z + τ Z and denote, for n ≥ 1, Diag 1,n := {(z, τ ) ∈ C n × H|z ij ∈ Λ τ , for some i = j}. The semidirect product ((Z n ) 2 × C) ⋊ SL 2 (Z) acts on (C n × H) -Diag 1,n by • (n, m, u) * (z, τ ) := (z + n + τ m + u( i δ i ), τ ) for (n, m, u) ∈ (Z n ) 2 × C, • α β γ δ * (z, τ ) := ( z γτ +δ , ατ +β γτ +δ ) for α β γ δ ∈ SL 2 (Z).
The moduli space M 1,n of elliptic curves with n marked points is defined as the quotient

M 1,n := (C n × H) -Diag 1,n /((Z n ) 2 ⋊ SL 2 (Z)),
and its reduced version is

M1,n := (C n × H) -Diag 1,n /(((Z n ) 2 × C) ⋊ SL 2 (Z)).
Remark 2.4.1.

• In [START_REF] Calaque | Universal KZB equations: the elliptic case, Algebra, Arithmetic and Geometry Vol I: in honor of Yu. I. Manin[END_REF], M 1,n is denoted M1,n and M1,n is denoted M 1,n . We shifted the notations of [START_REF] Calaque | Universal KZB equations: the elliptic case, Algebra, Arithmetic and Geometry Vol I: in honor of Yu. I. Manin[END_REF] for compatibility with our conventions for Chapter 6.

• The space M 1,1 is the universal curve over M1,1 = h/ SL 2 (Z) and for n = 2 the moduli space M1,2 is the punctured universal elliptic curve over M1,1 . This is a fibration with, as fibers at (equivalence classes of ) τ , (equivalence classes of ) the punctured elliptic curves

E × τ := E τ -{0}. • Remark that if C(E τ , n) := Conf(E τ , n)/E τ are the reduced configuration spaces of E τ , then C(E τ , 2) = E × τ .
• More generally, the fibers of the fibration M1,n+1 -→ M1,1 are (the equivalence classes of ) the spaces Conf(E × τ , n).

For any n ≥ 0, recall that t 1,n (k) is defined as the bigraded Lie k-algebra freely generated by

x 1 , . . . , x n in degree (1, 0), y 1 , . . . , y n in degree (0, 1) (for i = 1, ..., n), and t ij in degree (1, 1) (for 1 ≤ i = j ≤ n), together with the relations (S), (L), (4T), and the following additional elliptic relations as well:

(S eℓℓ ) [x i , y j ] = t ij for i = j, (N eℓℓ ) [x i , x j ] = [y i , y j ] = 0 for i = j, (T eℓℓ ) [x i , y i ] = -j|j =i t ij , (L eℓℓ ) [x i , t jk ] = [y i , t jk ] = 0 if #{i, j, k} = 3, (4T eℓℓ ) [x i + x j , t ij ] = [y i + y j , t ij ] = 0 for i = j.
The i x i and i y i are central in t 1,n (k), and we also consider the quotient

t1,n (k) := t 1,n (k)/( i x i , i y i ) . Example 2.4.2. t1,2 (k) is equal to the free Lie k-algebra f 2 (k) on two generators x = x 1 and y = y 2 .
Let d + be the free Lie algebra with generators δ 2m (m ≥ 1). Denote the standard generatons e, f, h of sl 2 by d := h, X := e and ∆ 0 := f . Denote d := d + ⋊ sl 2 their semi-direct product, the δ 2m acting as highest weight elements (see [START_REF] Calaque | Universal KZB equations: the elliptic case, Algebra, Arithmetic and Geometry Vol I: in honor of Yu. I. Manin[END_REF] for details).

Proposition 2.4.3 ([24]

). There is a Lie algebra morphism d -→ Der(t 1,n ) inducing a Lie algebra morphism d -→ Der( t1,n ).

An easy consequence is that we can then form the semi-direct products

G n := exp((t 1,n ⋊ d + ) ∧ ) ⋊ SL 2 (C) Ḡn := exp(( t1,n ⋊ d + ) ∧ ) ⋊ SL 2 (C) Theorem 2.

([24]

). There is a unique G n -bundle P n over M 1,n with a flat universal KZB connection, locally defined by

∇ KZB 1,n := d -∆(z|τ )dτ - n i=1 K i (z|τ )dz i , where z = (z 1 , . . . , z n ) ∈ C n , for 1 ≤ i ≤ n, we have K i (z|τ ) := -y i + j:j =i k(adx i , z i -z j |τ )(t ij ), with k(x, z|τ ) := θ(z+x|τ ) θ(z|τ )θ(x|τ ) -1
x , and

∆(z|τ ) := - 1 2πi ∆ 0 + n≥1 (2n + 1)G 2n+2 (τ )δ 2n - i<j ∂ x k(adx i , z i -z j |τ )(t ij ) .
This induces a unique Ḡn -bundle Pn over M1,n with a flat connection denoted ∇KZB 1,n .

Remark 2.4.5.

• When we say the connection is locally defined as so, we mean that there is a unique such connection such that the pull-back to

X := (C n × H) -Diag 1,n is the connection ∇ KZB 1,n on the trivial G n -bundle over X.
• There is also an unordered marked points version of this connection that will not be recalled in here.

• By fixing τ and choosing a section Conf(E τ , n) of a representative in the equivalence class

[(E τ , z 1 , . . . , z n )] ∈ M 1,n , this connection restricts to a flat connection ∇ KZB 1,n,τ := d - n i=1 K i (z|τ )dz i , on the (unique) principal exp( t1,n )-bundle over Conf(E τ , n).
Let us fix τ ∈ h. Recall that the Lie algebra t1,2 (C) is isomorphic to the free Lie algebra f 2 (C) generated by two elements x := x 1 and y := y 1 . We define the elliptic KZB associators A(τ ), B(τ ) as the regularized holonomies from 0 to 1 and 0 to τ of the differential equation

G ′ (z) = - θ τ (z + ad x) ad x θ τ (z)θ τ (ad x) (y) • G(z), (2.14) 
with values in the group exp( t1,2 (C)) More precisely, this equation has a unique solution G(z)

defined over {a + bτ, for a, b ∈]0, 1[} such that G(z) ≃ (-2π i z) -[x,y] at z -→ 0. In this case, A(τ ) := G(z) -1 G(z + 1), B(τ ) := G(z) -1 e 2π i x G(z + τ ).
These are elements of the group exp( t1,2 (C)). A recollection of the main features of elliptic associators is done in the first part of [START_REF] Enriquez | Analogues elliptiques des nombres multizétas[END_REF] and will not be reproduced here.

Universality

As in the genus 0 case, one can ask in what manner this connection is universal and now it will be of great importance to distinguish the case where the connection is defined over the moduli space to the one that is defined only in the configuration space. Indeed, in the genus 0 case, the moduli space M 0,n+1 of rational curves with n + 1 marked points is isomorphic to the quotient of the configuration space of n points in the plane modulo the action of Aut(C) by homographies:

M 0,n+1 ≃ Conf(C, n)/(C * ⋊ C).
In the genus 1 case, however, such a relation is not true. Another issue here is that the de Rham complex in this setup (either for the configuration space setting or the moduli space setting) is not generated by the first cohomology group so we will not be able to apply Proposition 2.2.28.

Towards the Gauss-Manin connection ∇ KZB 1,n over M 1,n

In this section we give an insight on the fact that the connection ∇ KZB 1,n is the universal by explaining that it is (conjecturally) the Gauss-Manin connection over M 1,n . Let us start with the restriction of this connection to that over Conf(E τ , n), following [START_REF] Enriquez | A Tannakian interpretation of the elliptic infinitesimal braid Lie algebras[END_REF].

Set X := Conf(E τ , n) and x ∈ Conf(E τ , n). Then (ommiting to explicit the basis point for simplicity as X is arc-wise connected) we have π T op

1 (X) = PB 1,n and π B 1 (X) = PB 1,n (C). Theorem 2.

([36]

).

• There is an explicit tensor functor

F : VBFC(Conf(E τ , n)) uni -→ Vect C -a natural isomorphism VBFC(Conf(E τ , n)) uni -→ Iso Vec C (F (E, ∇), F vb x (E, ∇)) (E, ∇) -→ i (E,∇) between the functors F and F vb x , -a canonical isomorphism Aut ⊗ (F ) ≃ exp( tC 1,n ). • The composed isomorphim exp( t1,n ) ∼ / / Aut ⊗ (F ) ∼ / / Aut ⊗ (F vb x ) ∼ RH / / Aut ⊗ (F ls x ) ∼ / / PB 1,n (C)
coincides with the inverse of the completed monodromy representation map

PB 1,n (C) -→ exp( t1,n ) induced by the universal KZB connection ∇ KZB 1,n,τ over Conf(E τ , n).
Now, following [START_REF] Hain | Notes on the Universal Elliptic KZB Equation[END_REF], let us show that the bundle P n with the KZB connection is the de Rham realization of a topological local system P Top n . Denote by Y the universal covering space of M1,n+1 . This is also the universal covering space of Mh

1,n+1 = C n+1 × h) -∆ n+1 . Choose a base point [E τ , 0, z] of M1,n+1
, where z = (z 1 , . . . , z n ), and

z i = 0 for all 1 ≤ i ≤ n. Choose a lift y of it to Y . This determines an isomorphism of Aut(Y / M1,n+1 ) with π 1 ( M1,n+1 , [E τ , 0, z]). Denote the unipotent completion of π 1 (Conf(E × τ , n), z) over C by P o . The natural action π 1 ( M1,n+1 , [E τ , 0, z]) × π 1 (Conf(E × τ , n), z) -→ π 1 (Conf(E × τ , n), z), (g, γ) -→ gγg -1
determines a left action of π 1 ( M1,n+1 , [E τ , 0, z]) on P o . We can therefore form the quotient

P o × Y /π 1 ( M1,n+1 , [E τ , 0, z])
by the diagonal π 1 ( M1,n+1 , [E τ , 0, z])-action. This is a flat right principal P o -bundle which we shall denote by P Top n -→ M1,n+1 . Its fiber over [E τ , 0, z] is naturally isomorphic to the unipotent completion of π 1 (Conf(E × τ , n)). Since the Lie algebra p o of P o can be viewed as a group with multiplication defined by the Baker-Campbell-Hausdorff formula, we can (and will) view P Top n as a local system of Lie algebras.

Choose a base point [E τ , 0, z] of M1,n+1 , where z = (z 1 , . . . , z n ), and

z i = 0 for all 1 ≤ i ≤ n.
There is a natural isomorphism

π 1 ( M1,n+1 , [E τ , 0, z]) ≃ Γ 1,n+1 ,
where Γ 1,n is the mapping class group of a genus 1 curve with n marked points (see [START_REF] Birman | Mapping class groups and their relationship to braid groups[END_REF]).

The restriction of the universal elliptic KZB connection to

Conf(E × τ , n) defines a homomor- phism π 1 (Conf(E × τ , n), z) -→ Aut( t1,n+1
) whose image lies in the subgroup exp( t1,n+1 ) which acts on t1,n+1 via the adjoint action. From the formality morphism [24, Proposition2.2], we conclude that it induces an isomorphism π1 (Conf

(E × τ , n), z)(C) -→ exp( t1,n+1 ). Identify exp( t1,n+1 ) with π1 (Conf(E × τ , n), z)(C) via this isomorphism.
Then one has the monodromy representations

ρ KZB : Γ 1,n+1 -→ Aut(exp( t1,n+1 )) and ρ Top : Γ 1,n+1 -→ Aut(exp( t1,n+1 ))
of P n and P Top n . To prove that P Top n and P n are isomorphic (seen here as principal bundles), we have to prove that ρ KZB = ρ Top . Observe that if γ ∈ π 1 (Conf(E × τ , n), z), then ρ Top (γ) and ρ KZB (γ) are both conjugation by the image of γ in P n as the restriction of P n and P Top n to Conf(E × τ , n) are isomorphic. As explained below, rigidity explains that if the restriction to each fiber (that is, to each configuration space) is the correct local system, then it is the correct local system over the whole moduli space M1,n+1 . More precisely, the marked points version of [START_REF] Hain | Notes on the Universal Elliptic KZB Equation[END_REF], Theorem 14.2 is then Theorem 2.4.7. The exponential map induces an isomorphism of the local system over M1,n+1 of flat sections of the universal elliptic KZB connection on P with the locally con-

stant sheaf P Top n over M1,n+1 . Equivalently, the diagram π 1 (Conf(E × τ , n), z) ρ KZB / / Aut( t1,n+1 ) ≃ π 1 (Conf(E × τ , n), z) ρ Top / / Aut(exp( t1,n+1 ))
commutes.

Proof. One can apply [START_REF] Hain | Notes on the Universal Elliptic KZB Equation[END_REF]Lemma 14.1] to

• Γ = Γ 1,n+1 = π Top 1 ( M1,n+1 ), • N = π Top 1 (Conf(E × τ , n), z) ≃ PB 1,n+1
, which has trivial center, • N = exp( t1,n+1 ),

• φ = ρ Top to establish the equality of ρ KZB and ρ Top .

Remark 2.4.8. By combining Hain's and Enriquez-Etingof 's results one should be able to conclude that the universal elliptic KZB connection ∇KZB 1,n+1 is the Gauss-Manin connection on M1,n+1 .

Reminders on Hecke algebras

Differential operators. The algebra of differential operators Diff(g) on g is generated by linear forms over g denoted x * ∈ g * and differential operators denoted ∂ x , for x ∈ g. By choosing a basis we a family (x α , ∂ α ) where x α := x * α is a degree 1 polynomial and ∂ α is the derivative in the direction x α . These elements have relations

• [x * , y * ] = 0, • [∂ v , ∂ w ] = 0, • [∂ w , v * ] = v * (w).
Remark 2.4.9. Diff(g * ) is a quantization of T * g * = g × g * and, by identifying g with its dual, we denote x := x * ∈ g and Diff(g) = Diff(g * ).

In conclusion,

Diff(g) = x a , ∂ a ; a ∈ g /    a → x a , a → ∂ a are linear [x a , x b ] = [∂ a , ∂ b ] = 0 [∂ a , x b ] = a, b g    .

Quantum Hamiltonian reduction. Let us briefly recall what

Hamiltonian reduction is about. Let X be a symplectic variety and let G be a Lie group acting on X with associated Lie algebra g. The moment map is a G-equivariant map µ :

X -→ g * such that µ * : g ⊂ C ∞ (g * ) -→ C ∞ (X) satisfies that for all x ∈ g, f ∈ C ∞ (X), {µ * x, f } = X(f ) =⇒ {µ * x, µ * y} = X(µ * y) = µ * X(y) = µ * [X, Y ]. Then µ -1 (0)/G is Poisson. Thus, C ∞ ((µ * ) -1 (0)) = C ∞ (X)/(C ∞ (X)µ * (g)) g .
In conclusion, let A 0 be a Poisson algebra and µ * 0 : g -→ A 0 be a Lie algebra morphism. If g acts on A 0 by means of {µ * 0 X, -}, then the Hamiltonian reduction of A 0 is the Poisson algebra

A g 0 /(A g 0 µ * 0 (g)) g .

Now let

A be an associative algebra which is a quantization of A 0 , that is, A ≃ A 0 h . Let µ * : g -→ A be a Lie algebra morphism which is a quantization of µ * 0 i.e. we have

• µ * = µ * 0 + •(h), • a * b = a.b + h{a, b} + •(h).
Then g acts on A by the commutator [µ * X, -] and it can be shown that (Aµ * g) g is a two-sided ideal of A g so

A g /(A g µ * (g)) g
is an associative algebra called quantum Hamiltonian reduction, as it is a quantization of the above Hamiltonian reduction.

Hecke algebras. Let n 1 be a natural number. As we saw earlier, Diff(g) is a quantization of T * g * and U(g) is a quantization of g * . Thus, the moment map is just the coadjoint action

Diff(g) -→ g * i.e. induces a Lie algebra morphism g -→ Diff(g) a -→ X a
called quantum moment map, or infinitesimal adjoint action. We also have a Lie algebra map g -→ U(g) ⊗n so we get a map

ϕ : g -→ Diff(g) ⊗ U(g) ⊗n := A n a -→ Y a := X a ⊗ 1 + 1 ⊗ n i=1 a (i)
where a

(i) = 1 ⊗ • • • ⊗ a ⊗ • • • ⊗ 1 and X a = α x [a,eα] ∂ α .
Proposition 2.4.10. Denote g diag := im(ϕ). Then the vector subspace A n g diag is two-sided ideal.

Proof. If x, y ∈ H := {x ∈ A n ; g diag x ⊂ A n g diag } ⊃ A n g diag , then • g diag (x + y) ⊂ A n g diag ; • g diag (xy) ⊂ A n g diag ;
• it is stable by left and right multiplication (A n g diag x ⊂ A n g diag ).

We conclude that the quotient H/A n g diag is an associative algebra. Definition 2.4.11. The Hecke algebra of (A n , g diag ) is (the quantum Hamiltonian reduction):

H n (g) = {x ∈ A n ; ∀a ∈ g, Y a x ∈ A n g diag }/A n g diag .
Remark 2.4.12. The name " Hecke algebra " here is justified because this situation is in perfect analogy to that where usual Hecke algebras appear. If H ⊂ G are simple groups, one can ask about the representations, which are modules over

C[H] and C[G] respectively. One then constructs H(G, H) = C[hG/h]]. If V is a C[G]-module, then Hecke showed that V H is a H(G, H)-module.
In other words, H n (g) is the Hecke algebra associated to the quantum moment map g -→ A.

Classical dynamical Yang-Baxter equations. The classical dynamical Yang-Baxter equation was introduced in [START_REF] Felder | Conformal field theory and integrable systems associated to elliptic curves[END_REF] by Felder whose construction we now recall. Suppose we have a Lie subalgebra h of g together with an element Z ∈ (∧ 2 g) g . A (non-modified) classical dynamical r-matrix for the pair (g, h) is a regular h-equivariant map ρ : h ∨ -→ ∧ 2 g which satisfies the (non-modified) classical dynamical Yang-Baxter equation (CDYBE)

CYB(ρ) -Alt(dρ) = 0 where • CYB(ρ) := [ρ 1,2 , ρ 1,3 ] + [ρ 1,2 , ρ 2,3 ] + [ρ 1,3 , ρ 2,3 ] = 1 2 [ρ, ρ], • Alt(dρ) := i h 1 i ∂ρ 2,3 ∂λ i -h 2 i ∂ρ 1,3 ∂λ i + h 3 i ∂ρ 1,2 ∂λ i .
and where (h i ) and (λ i ) are basis dual to each other in h and h ∧ respectively. Remark 2.4.13. Here regular means C ∞ , meromorphic, formal etc. depending on the context. Assume that g is finite dimensional and that we have a reductive decomposition g = h ⊕ n, i.e., h ⊂ g is a Lie subalgebra and n ⊂ g is a vector subspace such that [h, n] ⊂ n; assume also that

t g = t h + t n , where t h ∈ S 2 (h) h and t n ∈ S 2 (n) h .
We assume that for a generic h ∈ h, ad(h) |n ∈ End(n) is invertible (i.e. that the decomposition is non-degenerate). This condition is equivalent to the nonvanishing of P (λ

) := det(ad(λ ∨ ) |n ) ∈ S dim n (h), where λ → λ ∨ is the map h * -→ h, with λ ∨ := (λ ⊗ id)(t h ).
If G is a Lie group with Lie algebra g, an equivalent condition is that a generic element of g * is conjugate to some element in h * (see [START_REF] Enriquez | Quantization of classical dynamical r-matrices with nonabelian base[END_REF]).

Let us set, for

λ ∈ h * , r(λ) := (id ⊗(ad λ ∨ ) -1 |n )(t n ) and denote h * reg = {λ ∈ h * |P (λ) = 0}. Then r : h * reg -→ ∧ 2 (n)
is a classical dynamical r-matrix for the pair (g, h) (see [START_REF] Enriquez | Quantization of classical dynamical r-matrices with nonabelian base[END_REF]).

Realizations of the universal elliptic KZB connection

As in the genus 0 case, the universal KZB connection has realizations.

Let g be a semi-simple Lie algebra over a field k of characteristic equal to 0 and let H n (g) be its associated Hecke algebra.

Proposition 2.4.14. There is a unique Lie algebra morphism t1,n ⋊ d -→ H n (g), defined by

• xi -→ α x α ⊗e (i) α , • ȳi -→ -α ∂ α ⊗ e (i) α , • tij -→ 1 ⊗ t (ij) g . • ∆ 0 -→ -1 2 ( α ∂ 2 α ) ⊗ 1, • X -→ 1 2 ( α x 2 α ) ⊗ 1, • d -→ 1 2 ( α x α ∂ α + ∂ α x α ) ⊗ 1, • δ 2m -→ 1 2 α1,...,α2m,α x α1 • • • x α2m ⊗( n i=1 (ad(e α1 ) • • • ad(e α2m )(e α ) • e α ) (i) ) for m ≥ 1.
This morphism also extends to a morphism

U ( t1,n ⋊ d) ⋊ S n -→ H n (g) ⋊ S n by the assignment σ -→ σ.
Under the assumptions of the above subsection, one can show that the universal KZB connection induces a classical dynamical r-matrix which is the realization of the universal KZB connection associated to the pair (g, h).

If moreover we assume that g is simple and h is Cartan, then it can be shown that the universal KZB connection realizes to the former KZB connection constructed by Bernard in [START_REF] Bernard | On the Wess-Zumino-Witten model on the torus[END_REF] in the context of Wess-Zumino-Witten models.

Reminders on operads, operadic modules and moperads

In this section we fix a symmetric monoidal category (C, ⊗, 1) having small colimits and such that ⊗ commutes with these.

S-modules

An S-module (in C) is a functor S : Bij -→ C, where Bij denotes the category of finite sets with bijections as morphisms. It can also be defined as a collection (S(n)) n≥0 of objects of C such that S(n) is endowed with a right action of the symmetric group S n for every n; one has

S(n) := S({1, . . . , n}). A morphism of S-modules ϕ : S -→ T is a natural transformation. It is determined by the data of a collection ϕ(n) : S(n) -→ T (n) of S n -equivariant morphisms in C.
The category S-mod of S-modules is naturally endowed with a symmetric monoidal product ⊗ defined as follows:

(S ⊗ T )(n) := p+q=n (S(p) ⊗ T (q)) Sn Sp×Sq .
Here, if H ⊂ G is a group inclusion, then (-) G H is left adjoint to the restriction functor from the category of objects carrying a G-action to the category of objects carrying an H-action.

We let the reader check that the symmetric sequence 1 ⊗ defined by

1 ⊗ (n) :=    1 if n = 0 ∅ else is a monoidal unit.
There is another (non-symmetric) monoidal product • on S-mod, defined as follows:

(S • T )(n) := k≥0 T (k) ⊗ S k S ⊗k (n) .
Here, if H is a group and X, Y are objects carrying an H-action, then

X ⊗ H Y := coeq   h∈H X ⊗ Y h⊗id -→ -→ id⊗h X ⊗ Y   .
We let the reader check that the symmetric sequence 1 S defined by

1 • (n) :=    1 if n = 1 ∅ else is a monoidal unit for •.

Operads

An operad (in C) is a unital monoid in (S-mod, •, 1 • ). The category of operads in C will be denoted Op C.

More explicitly, an operad structure on a S-module O is the data:

• of a unit map e : 1 -→ O({1}).

• for every sets I, J and any element i ∈ I, of a partial composition

• i : O(I) ⊗ O(J) -→ O (J ⊔ I -{i})
satisfying the following constraints:

• if we have sets I, J, K, and elements i ∈ I, j ∈ J, then the following diagram commutes:

O(I) ⊗ O(J) ⊗ O(K) id⊗•j •i⊗id / / O (J ⊔ I -{i}) ⊗ O(K) •j O(I) ⊗ O (K ⊔ J -{j}) •i / / O (K ⊔ J ⊔ I -{i, j})
• if we have sets I, J 1 , J 2 and elements i 1 , i 2 ∈ I, then the following diagram commutes:

O(I) ⊗ O(J 1 ) ⊗ O(J 2 ) (•i 2 ⊗id)(23) •i 1 ⊗id / / O (J 1 ⊔ I -{i 1 }) ⊗ O(J 2 ) •i 2 O (J 2 ⊔ I -{i 2 }) ⊗ O(J 1 ) •i 1 / / O (J 2 ⊔ J 1 ⊔ I -{i 1 , i 2 })
• if we have sets I, I ′ , J, i ∈ I and a bijection σ : I -→ I ′ , then the following diagram commutes:

O(I) ⊗ O(J) •i O(σ) / / O(I ′ ) ⊗ O(J) • σ(i) O (J ⊔ I -{i}) O(id⊔σ |I-{i} ) / / O (J ⊔ I ′ -{σ(i)})
• if we have a set I and i ∈ I, then the following diagrams commute:

1 ⊗ O(I) ≃ ' ' ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ e⊗id / / O({1}) ⊗ O(I) •1 O(I) O(I) ⊗ 1 ≃ id⊗e / / O(I) ⊗ O({1}) •i O(I) i →1 ≃ / / O (I ⊔ {1} -{i})
Example 2.5.1. Let X be an object of C. Then we define, for any finite set I, the set End(X)(I) := Hom C (X ⊗I , X). Composition of tensor products of maps provide End(X) with the structure of an operad in sets.

Given an operad in sets O, an O-algebra in C is an object X of C together with a morphism of operads O -→ End(X).

Example of an operad: Stasheff polytopes

To any finite set I we associate the configuration space Conf(R,

I) = {x = (x i ) i∈I ∈ R I |x i = x j if i = j} and its reduced version C(R, I) := Conf(R, I)/R ⋊ R >0 .
The Fulton-MacPherson compactification C(R, I) of C(R, I) (see [START_REF] Fulton | A compactification of configuration spaces[END_REF]) is a disjoint union of |I|-th Stasheff polytopes [START_REF] Stasheff | Homotopy associative H-spaces I, II[END_REF], indexed by S I . The boundary ∂C(R, I)

:= C(R, I) -C(R, I) is the union, over all partitions I = J 1 • • • J k , of ∂ J1,••• ,J k C(R, I) := k i=1 C(R, J i ) × C(R, k) .
The inclusion of boundary components provides C(R, -) with the structure of an operad in topological spaces (where the monoidal structure is given by the cartesian product).

One can see that C(R, I) is actually a manifold with corners, and that, considering only zerodimensional strata of our configuration spaces, we get a suboperad Pa ⊂ C(R, -) that can be shortly described as follows:

• Pa(I) is the set of pairs (σ, p) with σ is a linear order on I and p a maximal parenthesization of

• • • • • |I| times ,
• the operad structure is given by substitution.

Notice that Pa is actually an operad in sets, and that Pa-algebras are nothing else than magmas.

Modules over an operad: Bott-Taubes polytopes

A module over an operad O (in C) is a left O-module in (S-mod, •, 1 • ).
Notice that any operad is a module over itself. We let the reader find the very explicit description of a module in terms of partial compositions, as for operads.

To any finite set I we associate the configuration space Conf(S 1 , I) 

= {x = (x i ) i∈I ∈ (S 1 ) I |x i = x j if i =
I = J 1 • • • J k , of ∂ J1,••• ,J k C(S 1 , I) := k i=1 C(R, J i ) × C(S 1 , k) .
The inclusion of boundary components provides C(S 1 , -) with the structure of a module over the operad C(R, -) in topological spaces.

One can see that C(S 1 , I) is actually a manifold with corners, and that, considering only zerodimensional strata of our configuration spaces, we get Pa ⊂ C(S 1 , -), which is a module over Pa ⊂ C(R, -).

Moperads over an operad

Let O be an operad. A moperad over an operad O is an S-module P carrying

• a unital monoid structure for the monoidal product ⊗,

• and a left O-module structure for the monoidal product •, that are compatible in the following sense:

-One first observes that there is a natural map

(O • P) ⊗ Q -→ O • (P ⊗ Q).
-Then the compatibility means that the following diagram commutes:

(O • P) ⊗ P / / P ⊗ P " " ❉ ❉ ❉ ❉ ❉ ❉ ❉ ❉ ❉ O • (P ⊗ P) / / O • P / / P
The map (O • P) ⊗ P -→ P one obtains decomposes into maps

P(k) ⊗ P(m 0 ) ⊗ O(m 1 ) ⊗ • • • ⊗ O(m k ) -→ P(m 0 + • • • + m k )
satisfying certain associativity, unit and S-equivariance relations. We leave it as an exercise to check that, within the symmetric monoidal category of differential graded vector spaces, this definition coincides with Willwacher's one from [START_REF] Willwacher | The Homotopy Braces Formality Morphism[END_REF] (from which we borrowed the name "moperad"). Note that the monoid structure for the monoidal product ⊗ encodes precisely the partial composition with respect to the second colour. We will denote this partial composition by • 0 .

Example of a moperad over an operad: coloured Stasheff polytopes

To any finite set I we associate the configuration space Conf(R >0 , I) 

= {x = (x i ) i∈I ∈ (R >0 ) I |x i = x j if i =
I = J 0 J 1 • • • J k , of ∂ J0,••• ,J k C(R >0 , I) := C(R >0 , k) × C(R >0 , J 0 ) × k i=1 C(R, J i ) .
The inclusion of boundary components provides C(R >0 , -) with the structure of a C(R, -)moperad in topological spaces.

One can see that C(R >0 , I) is a manifold with corners, and that considering only zero-dimensional strata of our configuration spaces we get a sub-moperad Pa 0 ⊂ C(R >0 , -) that can be shortly described as follows:

• Pa 0 (I) is the set of pairs (σ, p) with σ is a linear order on I and p a maximal parenthesization of

  0 • • • • • |I| times 
 such that there is no action of S n on 0, but this element can be inside a parenthesis. This means that we allow points to be near the origin.

• The C(R, -)-moperad structure is given by substitution as above.

Forgetting the C(R, -)-moperad structure on C(R >0 , -) and considering a C(R, -)-module structure on it amounts to forbidding points to be close to the origin (i.e. the 0-strand cannot be inside a parenthesis in this case).

Prounipotent completion and fake pull-back of operads in groupoids

Let k be a Q-ring. We denote by CoAlg k the symmetric monoidal category of complete filtered topological coassociative cocommutative counital k-coalgebras, where the monoidal product is given by the completed tensor product ⊗k over k.

Let Cat(CoAlg k ) be the category of small CoAlg k -enriched categories. It is symmetric monoidal as well, with monoidal product ⊗ defined as follows:

• Ob(C ⊗ C ′ ) := Ob(C) × Ob(C ′ ). • Hom C⊗C ′ (c, c ′ ), (d, d ′ ) := Hom C (c, d) ⊗k Hom C ′ (c ′ , d ′ ).
Let us now consider the symmetric monoidal category Grpd of groupoids, with symmetric monoidal structure given by the cartesian product. We have a symmetric monoidal functor

Grpd -→ Cat(CoAlg k ) G -→ G(k)
defined as follows:

• Objects of G(k) are objects of G. • For a, b ∈ Ob(G), Hom G(k) (a, b) = k • Hom G (a, b) .
Here k•Hom G (a, b) is equipped with the unique coalgebra structure such that the elements of Hom G (a, b) are grouplike (meaning that they are diagonal for the coproduct and that their counit is 1), and the " " refers to the completion with respect to the topology defined by the sequence (Hom I k (a, b) k≥0 , where:

-I k is the category having the same objects as G and morphisms lying in the k-th power (for the composition of morphisms) of kernels of the counits of k • Hom G (a, b)'s.

• For a functor

F : G -→ H, F (k) : G(k) -→ H(k)
is the functor given by F on objects and by k-linearly extending F on morphisms.

Being symmetric monoidal, this functor sends operads in groupoids to operads in Cat(CoAlg k ).

Example 2.5.2. For instance, viewing Pa as an operad in groupoid (with only identities as morphisms), then Pa(k) is the operad in Cat(CoAlg k ) with same objects as Pa, and whose morphisms are

Hom Pa(k)(n) (a, b) =    k if a = b 0 else
with k being equipped with the obvious coproduct ∆(1) = 1 ⊗ 1 and counit ǫ(1) = 1.

The functor we have just defined has a right adjoint

G : Cat(CoAlg k ) -→ Grpd ,
that we can describe as follows:

• For C in Cat(CoAlg k ), objects of G(C) are objects of C. • For a, b ∈ Ob(G), Hom G(C) (a, b) is the subset of grouplike elements in Hom C (a, b).
Being right adjoint to a symmetric monoidal functor, it is lax symmetric monoidal, and thus it sends operads (resp. modules, resp. moperad) to operads (resp. modules, resp. moperad).

We thus get a k-prounipotent completion functor G → Ĝ(k) := G G(k) for operads (resp. modules, resp. moperad) in groupoids.

Finally, let P, Q be two operads (resp. modules, resp. moperad) in groupoids. If we are given a morphism f : Ob(P) -→ Ob(Q) between the operads (resp. operad modules, resp. moperads) of objects of P and Q, then (following [START_REF] Fresse | Homotopy of Operads and Grothendieck-Teichmüller Groups: Part 1: The Algebraic Theory and its Topological Background, Mathematical Surveys and Monographs[END_REF]) we can define an operad (resp. operad module, resp. moperad) f ⋆ Q in the following way:

• Ob(f ⋆ Q) := Ob(P), • Hom (f ⋆ Q)(n) (p, q) := Hom Q(n) (f (p), f (q)).
In particular, f ⋆ Q inherits the operad structure of P for its operad of objects and that of Q for the morphisms.

Remark 2.5.3. Notice that this is not a pull-back in the category of operads in groupoids.

Pointed versions

Observe that there is an obvious operad U nit defined by

U nit(n) =    1 if n = 0, 1 ∅ else
By convention, all our operads O will be pointed in the sense that they will come equipped with a specific operad morphism U nit -→ O. Morphisms of operads are required to be compatible with this pointing. Actually, all operads appearing in this paper are such that

O(n) ≃ 1 if n = 0, 1.
Now, if P is an O-module, then it naturally becomes a U nit-module as well, by restriction. By convention, all our modules will be pointed as well, in the sense that they will come equipped with a specific U nit-module morphism U nit -→ P. Morphisms of modules are required to be compatible with the pointing. Again, all modules appearing in this paper are such that

P(n) ≃ 1 if n = 0, 1.
Finally, there is a nice moperad M inut over U nit, which is such that M inut(n) = 1 for all n ≥ 0. By convention, all our moperads will be pointed, in the sense that they will come equipped with a specific unit-moperad morphism M inut -→ Q. Morphisms of moperads are required to be compatible with the pointing.

Remark 2.5.4. In the category of sets, M inut is the sub-U nit-moperad of Pa 0 that consists only of the left-most maximal parenthesization.

The main reason for these rather strange conventions is that we need the following features, that we have in the case of compactified configuration spaces:

• For operads, modules and moperads, we want to have "deleting operations" O(n) -→ O(n -1) that decrease arity.

• For modules and moperads, we want to be able to see the operad "inside" them, i.e. we want to have distinguished morphism O -→ P of S-modules.

Example 2.5.5. For instance, being a Pa-moperad, Pa 0 comes together with a morphism of S-modules Pa -→ Pa 0 . We let the reader check that it sends a parenthesized permutation p to 0(p).

Group actions

Let G be a group and O be an operad. We say an O-module P carry a G-action if

• for every n ≥ 0, G n acts S n -equivariantly on P(n), from the left.

• for every m ≥ 0, n ≥ 0, and 1 ≤ i ≤ n, the partial composition

• i : P(n) ⊗ O(m) -→ P(n + m -1)
is equivariant along the group morphism

G n -→ G n+m-1 (g 1 , . . . , g n ) -→ (g 1 , . . . , g i-1 , g i , . . . , g i m times
, g i+1 , . . . , g n )

If P is a moperad, we additionally require that the partial composition

• 0 : P(n) ⊗ P(m) -→ P(n + m) is G n+m -equivariant. A morphism P -→ Q of O-modules (or O-moperads) with G-action is said G-equivariant if, for every n ≥ 0, the map P(n) -→ Q(n) is G n -equivariant.

Grothendieck-Teichmüller groups

Initially, Grothendieck-Teichmüller groups and associators were, in the genus 0, cyclotomic and genus 1 cases, constructed by using braided monoidal categories, braided modules categories and elliptic structures over braided monoidal categories respectively. Already in V. Drinfeld's work, associators had an implicit operadic nature (made explicit in [START_REF] Bar-Natan | On Associators and the Grothendieck-Teichmüller Group I[END_REF]) which permits to define associators as formality isomorphisms between operads closely related to the little disks operad. More specifically, there is an operad in groupoids PaB encapsulating the combinatorics of parenthesized braidings and an operad in groupoids GPaCD encapsulating the combinatorics of parenthesized chord diagrams. The former is obtained (roughly) by considering a parenthesized version of the (pure) braid group on the torus. The latter is obtained from the collection t(k) of Lie (k)-algebras t n (k), for n ≥ 1, which has a natural operad structure. In this scope, the (naive) Grothendieck-Teichmüller group consists on the group of automorphisms of PaB which are the identity on objects, the graded Grothendieck-Teichmüller group is the group of automorphisms of GPaCD which are the identity on objects, and, by denoting PaB(k) the k-prounipotent completion of PaB, then the set of k-associators consists on the set of isomorphisms PaB(k) -→ GPaCD of operads in k-prounipotent groupoids which are the identity on objects. It can be shown that these operadic point of view is compatible with the classic one, namely that there is a one-to-one correspondence between the operadic definition of these objects and the objects defined in the literature in terms of elements satisfying certain equations.

Let us mention that in [START_REF] Fresse | Homotopy of Operads and Grothendieck-Teichmüller Groups: Part 1: The Algebraic Theory and its Topological Background, Mathematical Surveys and Monographs[END_REF], B. Fresse developped a very general rational homotopy theory for operads in order to understand from a homotopical viewpoint, a deep relationship between operads and Grothendieck-Teichmüller groups which was first foreseen by M. Kontsevich in his work on deformation quantization process in mathematical physics.

More specifically, after developing a general theory permitting to endow the category of operads in simplicial sets (and, further, of Hopf cooperads) with a (nice enough) model category structure, the author uses an application of homotopy spectral sequences to show that the Grothendieck-Teichmüller group has a topological interpretation as a group of homotopy automorphisms associated to the little 2-disc operad. A similar characterisation of the set of associators is also done in the author's work.

Compactified configuration space of the plane

To any finite set I we associate a configuration space

Conf(C, I) = {z = (z i ) i∈I ∈ C I |z i = z j if i = j} .
We also consider its reduced version

C(C, I) := Conf(C, I)/C ⋊ R >0 .
We 

I = J 1 • • • J k there is a component ∂ J1,••• ,J k C(C, I) ∼ = C(C, k) × k i=1 C(C, J i ) .
The inclusion of boundary components provides C(C, -) with the structure of an operad in topological spaces.

The operad of parenthesized braids

We have inclusions of topological operads

Pa ⊂ C(R, -) ⊂ C(C, -) .
Then it makes sense to define

PaB := π 1 C(C, -), Pa ,
which is an operad in groupoids. (1 12)

(2 3 
3)

1 2 3 Two incarnations of Φ 1,2,3
The following result is borrowed from [46, Theorem 6.2.4], even though it perhaps already appeared in [START_REF] Bar-Natan | On Associators and the Grothendieck-Teichmüller Group I[END_REF] in a different form.

Theorem 2.6.3. As an operad in groupoids having Pa as operad of objects, PaB is freely generated by R := R 1,2 and Φ := Φ 1,2,3 together with the following relations:

(H1) R 1,2 Φ 2,1,3 R 1,3 = Φ 1,2,3 R 1,23 Φ 2,3,1 , as arrows from (12)3 to 2(31) in PaB(3), (H2) (R 2,1 ) -1 Φ 2,1,3 (R 3,1 ) -1 = Φ 1,2,3 (R 23,1
) -1 Φ 2,3,1 , as arrows from (12)3 to 2 [START_REF] Dupont | Brown's moduli spaces of curves and the gravity operad[END_REF] in PaB(3), 3,4 , as arrows from ((12)3)4 to 1(2(34)) in PaB(4).

(P) Φ 12,3,4 Φ 1,2,34 = Φ 1,2,3 Φ 1,23,4 Φ 2,
We now briefly explain the notation we have been using in the above statement, which is quite standard. In this article, we write the composition of paths from left to right (and we draw the braids from top to bottom). If X is an arrow from p to q in PaB(n), then

• for any r ∈ Pa(k), the identity of r in PaB(k) is also denoted r.

• for any r ∈ Pa(k), we write X 1,...,n for r • 1 X ∈ PaB(n + k -1).

• for any σ ∈ S n+k-1 we define X σ1,...,σn := (X 1,...,n ) • σ.

• for any r ∈ Pa(k), X r,k+1,...,k+n-1 := X • 1 r ∈ PaB(n + k -1).

• we allow ourselves to combine these in an obvious way.

We let the reader figuring out that this notation is unambiguous as soon as we specify the starting object of our arrows. For example, the pentagon (P) and the first hexagon (H1) relations can be respectively depicted as

((1 2) 3) 4 1 (2 (3 4)) = ((1 2) 3) 4 1 (2 (3 4)) (P)
and

(1 2 2) (3 3 1) = (1 2 2) (3 3 1) 
(H1)

or, as commuting diagrams (giving the name of the relations) (12)(34)

Φ 12,3,4 $ $ ❏ ❏ ❏ ❏ ❏ ❏ ❏ ❏ (12)3 Φ 1,2,3 / / R 1,2
z z t t t t t t t t 

1(23) R 1,23 $ $ ❏ ❏ ❏ ❏ ❏ ❏ ❏ ❏ 1(2(34)) Φ 1,
Φ 2,1,3 $ $ ❏ ❏ ❏ ❏ ❏ ❏ ❏ ❏ (23)1 Φ 2,3,1 z z t t t t t t t t 1((23)4) Φ 1,23,4 / / (1(23))4 Φ 1,2,3 O O 2(13) R 1,3 / / 2(31)

The operad of chord diagrams

In [START_REF] Bar-Natan | On Associators and the Grothendieck-Teichmüller Group I[END_REF][START_REF] Fresse | Homotopy of Operads and Grothendieck-Teichmüller Groups: Part 1: The Algebraic Theory and its Topological Background, Mathematical Surveys and Monographs[END_REF] it is shown4 that the collection of Kohno-Drinfeld Lie k-algebras t n (k) defined in the introduction is provided with the structure of an operad in the category grLie k of positively graded finite dimensional Lie algebras over k, with symmetric monoidal strucure is given by the direct sum ⊕. Partial compositions are described as follows:

• k : t I (k) ⊕ t J (k) -→ t J⊔I-{i} (k) (0, t αβ ) -→ t αβ (t ij , 0) -→            t ij if k / ∈ {i, j} p∈J t pj if k = i p∈J t ip if j = k
Observe that we have a lax symmetric monoidal functor

Û : grLie k -→ Cat(CoAlg k )
sending a positively graded Lie algebra to the degree completion of its universal envelopping algebra, which is a complete filtered cocommutative Hopf algebra, viewed as a CoAlg k -enriched category with only one object.

We then consider the operad of chord diagrams CD(k

) := Û(t(k)) in Cat(CoAlg k ).
Remark 2.6.4. This denomination comes from the fact that morphisms in CD(k)(n) can be represented as linear combinations of diagrams of chords on n vertical strands, where the chord diagram corresponding to t ij can be represented as

i j 1 n 1 n i j
and the composition is given by vertical concatenation of diagrams. Partial compositions can easily be understood as "cabling and removal operations" on strands (see [START_REF] Bar-Natan | On Associators and the Grothendieck-Teichmüller Group I[END_REF][START_REF] Fresse | Homotopy of Operads and Grothendieck-Teichmüller Groups: Part 1: The Algebraic Theory and its Topological Background, Mathematical Surveys and Monographs[END_REF]). Relations (L) and (4T) defining each t n (k) can be represented as follows:

j k i l i l j k = j k i l i l j k (L) i j k i j k + i j k i j k = i j k i j k + i j k i j k (4T)

The operad of parenthesized chord diagrams

Recall that the operad CD(k) has only one object in each arity. Hence we have an obvious terminal morphism of operads ω 1 : Pa = Ob(Pa(k)) -→ Ob(CD(k)), and thus we can consider the operad

PaCD(k) := ω ⋆ 1 CD(k) of parenthesized chord diagrams.
Here is a self-explanatory example of how to depict a morphism in PaCD(k)(3):

f • (i j) k i (k j)
where f ∈ CD(k)(3).

Example 2.6.5 (Notable arrows of PaCD(k)). We have the following arrows in PaCD(k)(2):

H 1,2 := t 12 • 1 1 2 2 =: 1 1 2 2 X 1,2 = 1• 1 2 2 1
We also have the following arrow in PaCD(k)(3):

a 1,2,3 = 1• (1 1 
2)

(2 3 
3)

Remark 2.6.6. The elements H 1,2 , X 1,2 and a 1,2,3 are generators of the operad PaCD(k) and satisfy the following relations:

(P) a 12,3,4 a 1,2,34 = a 1,2,3 a 1,23,4 a 2,3,4 , (H)

X 12,3 = a 1,2,3 X 2,3 (a 1,3,2 ) -1 X 1,3 a 3,1,2 , (Inv) H 2,1 = X 1,2 H 1,2 (X 1,2 ) -1 , (SH) H 12,3 = (a 1,2,3 ) -1 H 2,3 a 1,2,3 + (X 2,1 ) -1 (a 2,1,3 ) -1 H 1,3 a 2,1,3 X 2,1 .
In particular, even if PaCD(k) does not have a presentation in terms of generators and relations (as is the case fot PaB), one can shown that PaCD(k) has a universal property with respect to the generators H 1,2 , X 1,2 and a 1,2,3 and the above relations (see [START_REF] Fresse | Homotopy of Operads and Grothendieck-Teichmüller Groups: Part 1: The Algebraic Theory and its Topological Background, Mathematical Surveys and Monographs[END_REF]Theorem 10.3.4] for details).

Drinfeld associators

Let us first introduce some terminology that we use in this paragraph, as well as later in the paper:

• Grpd k denote the (symmetric monoidal) category of k-prounipotent groupoids (which is the image of the completion functor G → Ĝ(k)).

• for C being Grpd, Grpd k , or Cat(CoAlg k ), the notation

Aut + Op C (resp. Iso + Op C )
refers to those automorphisms (resp. isomorphisms) which are the identity on objects.

In the remainder if this section we recall some well known results on the operadic point of view on associators and Grothendieck-Teichmüller groups, which will be useful later on. Even though the statements and proofs of all the results in this subsection can be found in [START_REF] Fresse | Homotopy of Operads and Grothendieck-Teichmüller Groups: Part 1: The Algebraic Theory and its Topological Background, Mathematical Surveys and Monographs[END_REF], it is worth mentionning that a "pre-operadic" approach was initiated by Bar-Natan in [START_REF] Bar-Natan | On Associators and the Grothendieck-Teichmüller Group I[END_REF].

Definition 2.6.7. A Drinfeld k-associator is an isomorphism between the operads PaB(k) and GPaCD(k) in Grpd k , which is the identity on objects. We denote by

Ass(k) := Iso + Grpd k ( PaB(k), GPaCD(k))
the set of k-associators.

Theorem 2.6.8. There is a one-to-one correspondence between the set of Drinfeld k-associators and the set Ass(k

) of couples (µ, ϕ) ∈ k × × exp( f2 (k)), such that (S) ϕ 3,2,1 = (ϕ 1,2,3 ) -1 ,
(H) ϕ 1,2,3 e µt23/2 ϕ 2,3,1 e µt31/2 ϕ 3,1,2 e µt12/2 = e µ(t12+t13+t23)/2 , (P) ϕ 1,2,3 ϕ 1,23,4 ϕ 2,3,4 = ϕ 12,3,4 ϕ 1,2,34 , where ϕ 1,2,3 = ϕ(t 12 , t 23 ) is viewed as an element of exp( t3 (k)) via the inclusion f2 (k) ⊂ t3 (k) sending x to t 12 and y to t 23 .

Two observations are in order:

• the free Lie k-algebra f 2 (k) in two generators x, y is graded, with generators having degree 1, and its degree completion is denoted by f2 (k).

• the k-prounipotent group exp( f2 (k)) is thus isomorphic to the k-prounipotent completion F 2 (k) of the free group F 2 on two generators.

This Theorem was first implicitely shown by Drinfeld in [START_REF] Drinfeld | On quasitriangular quasi-Hopf algebras and a group closely connected with Gal( Q/Q)[END_REF]. An explicit proof can be found in [46, Theorem 10.2.9], and relies on the universal property of PaB from Theorem 2.6.3.

In particular, a morphism F : PaB(k) -→ GPaCD(k) is uniquely determined by a scalar parameter µ ∈ k and ϕ ∈ exp( f2 (k)) such that we have the following assignment in the morphism sets of the parenthesized chord diagram operad PaCD:

• F (R) = e µt12/2 , • F (Φ) = ϕ(t 12 , t 23 ) ,
where R and Φ are the ones from Examples 2.6.1 and 2.6.2.

Example 2.6.9 (The KZ Associator). The first associator was constructed by Drinfeld with the help of the monodromy of the KZ connection and is known as the KZ associator Φ KZ .

It is defined as the the renormalized holonomy from 0 to

1 of G ′ (z) = ( t12 z + t12 z-1 )G(z), i.e., Φ KZ := G -1 0 + G 1 -∈ exp( t3 (C)), where G 0 + , G 1 -are the solutions such that G 0 + (z) ∼ z t12 when z -→ 0 + and G 1 -(z) ∼ (1 -z) t23 when z -→ 1 -. We have Φ KZ (V, U ) = Φ KZ (U, V ) -1 , Φ KZ (U, V )e πiV Φ KZ (V, W )e πiW Φ KZ (W, U )e πiU = 1, where U = t 12 ∈ f 2 (C) ≃ t3 (C) := t 3 (C)/(t 12 + t 13 + t 23 ), V = t 23 ∈ t3 (C) and U + V + W = 0, and 
Φ 12,3,4 KZ Φ 1,2,34 KZ = Φ 1,2,3 KZ Φ 1,23,4 KZ Φ 2,3,4 KZ (relation in exp( t4 (C))) so (2πi, Φ KZ ) is an element of Ass(C).

Grothendieck-Teichmuller group

Definition 2.6.10. The Grothendieck-Teichmüller group is defined as the group

GT := Aut + Op Grpd (PaB)
of automorphisms of the operad in groupoids PaB which are the identity of objects. One defines similarly the k-pro-unipotent version

GT(k) := Aut + Op Grpd k PaB(k)
There are also pro-ℓ and profinite versions, denoted GT ℓ and GT, that we will not consider in this paper.

We can also characterize elements of GT and GT(k) as solutions of certain explicit algebraic equations. This characterization proves that the above operadic definition of GT coincides with the one given by Drinfeld in his original paper [START_REF] Drinfeld | On quasitriangular quasi-Hopf algebras and a group closely connected with Gal( Q/Q)[END_REF]. In this article we will focus on the k-pro-unipotent version of this group in genus 0 and 1, and twisted situations.

Definition 2.6.11. Drinfeld's Grothendieck-Teichmüller group GT(k) consists of pairs

(λ, f ) ∈ k × × F 2 (k)
which satisfy the following equations:

(BS) f (x, y) = f (y, x) -1 , (BH) x ν 1 f (x 1 , x 2 )x ν 2 f (x 2 , x 3 )x ν 3 f (x 3 , x 1 ) = 1, (BP) f (x 13 x 23 , x 34 )f (x 12 , x 23 x 24 ) = f (x 12 , x 23 )f (x 12 x 13 , x 23 x 34 )f (x 23 , x 34 ) in PB 4 (k),
where x 1 , x 2 , x 3 are 3 variables subject only to x 1 x 2 x 3 = 1, ν = λ-1 2 , and x ij is the elementary pure braid P ij from the introduction. The multiplication law is given by

(λ 1 , f 1 )(λ 2 , f 2 ) = (λ 1 λ 2 , f 2 (f 1 (x, y)x λ1 f 1 (x, y) -1 , y λ1 )f 1 (x, y)).
Theorem 2.6.12. There is an isomorphism between the groups GT(k) and GT(k).

This was first implicitely shown by Drinfeld in [START_REF] Drinfeld | On quasitriangular quasi-Hopf algebras and a group closely connected with Gal( Q/Q)[END_REF]. An explicit proof of this theorem can be found for example in [START_REF] Fresse | Homotopy of Operads and Grothendieck-Teichmüller Groups: Part 1: The Algebraic Theory and its Topological Background, Mathematical Surveys and Monographs[END_REF]Theorem 11.1.7]. In particular, one obtains the couple (λ, f ) from an automorphism F ∈ GT(k) as follows. We have

F         1 2 2 1         =         1 1 2 2         ν • 1 2 2 1 =         1 2 2 1         2ν+1 (2.15) F          (1 1 2) (2 3 3)          = f          (1 ( 1 2) 2) 3 3 , (1 (1 2) 
2)

3 3          • (1 1 2) (2 3 3) (2.16)
In other words, if we set λ = 2ν + 1, we get the assignment

• F (R 1,2 ) = (R 1,2 ) λ , • F (Φ 1,2,3 ) = f (x 12 , x 23 ) • Φ 1,2,3 .
Remark 2.6.13. It is important to notice that the profinite, pro-ℓ, k-pro-unipotent versions of the Grothendieck-Teichmüller group do not coincide with the profinite, pro-ℓ, k-pro-unipotent completions of the"thin" Grothendieck-Teichmüller group GT which only consists of the pairs (1, 1) and (-1, 1). We have morphisms

GT -→ GT ։ GT ℓ ֒→ GT(Q ℓ ) and GT -→ GT(k) .

Graded Grothendieck-Teichmuller group

Definition 2.6.14. The graded Grothendieck-Teichmüller group is the group

GRT(k) := Aut + Op Grpd k (GPaCD(k))
of automorphisms of GPaCD(k) that are the identity on objects. ) and Grpd k . Hence there is an isomorphism

GRT(k) ≃ Aut + Op Cat(CoAlg k ) (PaCD(k)) .
Again, the operadic definition of GRT(k) happens to coincide with the one originaly given by Drinfeld.

Definition 2.6.16. Let GRT 1 be the set of elements in g ∈ exp( f2 (k)) ⊂ exp( t3 (k)) such that

• g 3,2,1 = g -1 and g 1,2,3 g 2,3,1 g 3,1,2 = 1, in exp( t3 (k))),

• t 12 + Ad(g 1,2,3 ) -1 (t 23 ) + Ad(g 2,1,3 ) -1 (t 13 ) = t 12 + t 13 + t 23 , in t3 (k)),

• g 1,2,3 g 1,23,4 g 2,3,4 = g 12,3,4 g 1,2,34 , in exp( t4 (k))),

One has the following multiplication law on GRT 1 :

(g 1 * g 2 )(A, B) := g 1 (Ad(g 2 (A, B))(A), B)g 2 (A, B) .
Drinfeld showed in [START_REF] Drinfeld | On quasitriangular quasi-Hopf algebras and a group closely connected with Gal( Q/Q)[END_REF] that the above GRT 1 is stable under * , that it defines a group structure on it, and that rescaling transformations g(x, y) → λ • g(x, y) = g(λx, λy) define an action of k × of GRT 1 by automorphisms.

Theorem 2.6.17. There is a group isomorphism GRT(k

) ∼ = k × ⋊ GRT 1 .
This was first implicitely shown by Drinfeld in [START_REF] Drinfeld | On quasitriangular quasi-Hopf algebras and a group closely connected with Gal( Q/Q)[END_REF]. An explicit proof of this theorem can be found for example in [START_REF] Fresse | Homotopy of Operads and Grothendieck-Teichmüller Groups: Part 1: The Algebraic Theory and its Topological Background, Mathematical Surveys and Monographs[END_REF]Theorem 10.3.10]. In particular, we obtain the couple (λ, g) from an automorphism G ∈ GRT(k) by the assignment

• G(X 1,2 ) = X 1,2 , • G(H 1,2 ) = λH 1,2 , • G(a 1,2,3 ) = g(t 12 , t 23 ) • a 1,2,3 .

Torsors

Recall first that there is a left free and transitive group action of GT(k) on Ass(k), defined by

(λ, f ) * (µ, Φ) := (λµ, Φ(A, B)f (e µA , Φ(A, B) -1 e µB Φ(A, B))) = (µ ′ , Φ ′ ).
Recal also that there is a right free and transitive group action of GRT(k) on Ass(k) defined as follows: for g ∈ GRT 1 (k) and (µ, Φ) ∈ M (k), (µ, Φ) * g := (µ, Φ), where

Φ(t 12 , t 23 ) = Φ((t 12 , Ad(g)t 23 ))g,
and for c ∈ k × ,(µ, Φ) * c := (cµ, c * Φ), where (c * Φ)(A, B) = Φ(cA, cB). This makes ( GT(k), Ass(k), GRT(k)) into a torsor.
Proposition 2.6.18. There is a torsor isomorphism

( GT(k), Ass(k), GRT(k)) -→ ( GT(k), Ass(k), GRT(k)) (2.17)
Proof. On the one hand, in [START_REF] Fresse | Homotopy of Operads and Grothendieck-Teichmüller Groups: Part 1: The Algebraic Theory and its Topological Background, Mathematical Surveys and Monographs[END_REF]Theorem 10.3.13] it is shown that the natural left free and transitive action of GT(k) over Ass(k) coincides with the action of GT(k) over Ass(k) via the correspondence of Theorem 2.6.12. Thus, both actions are compatible. On the other hand, in [START_REF] Fresse | Homotopy of Operads and Grothendieck-Teichmüller Groups: Part 1: The Algebraic Theory and its Topological Background, Mathematical Surveys and Monographs[END_REF]Theorem 11.2.1], it is shown that the natural right free and transitive action of GRT(k) over Ass(k) coincides with the action of GRT(k) over Ass(k) via the correspondence of Theorem 2.6.17. Thus, both actions are also compatible.

Chapter 3

Results

The contributions below focus on questions related to the higher genus and the twisted elliptic avatars of the V. Drinfeld's story of KZ equations, associators and the group GT.

One the one hand, in Part I we make use of the theory of the Fulton-MacPherson compactification, combined with operads, moperads ( [START_REF] Willwacher | The Homotopy Braces Formality Morphism[END_REF]) and operadic modules ( [START_REF] Fresse | Modules over operads and functors[END_REF]) to describe in a conceptual manner twisted and higher genus versions of associators, Grothendieck-Teichmüller groups and their graded versions.

On the other hand, in part II we focus on the twisted elliptic case to show the existence of a so-called twisted elliptic C-associator arising from a flat universal KZB connection defined on a principal bundle over the moduli space of elliptic curves with a level structure. The theory of such a connection has immediate applications as to establishing the formality of some subgroups of the pure braid group on the torus and producing representations of Cherednik algebras. Analogously to the elliptic case, the coefficients of the generating series of the twisted elliptic KZB associator will then be called twisted elliptic multiple zeta values (teMZVs for short).

Operadic structures on associators and Grothendieck-Teichmüller groups

As said, the set of k-associators is in a one-to-one correspondence with the set of isomorphisms PaB(k) -→ GPaCD of operads in k-prounipotent groupoids which are the identity on objects. More generally, to any orientable compact surface Σ g of genus g ≥ 2, one can associate a (framed) configuration space of n points on Σ g from which to obtain arbitrary genus definitions of Grothendieck-Teichmüller groups and associators. More specifically, one can consider the operad PaB g of genus g parenthesized braidings associated to the fundamental groupoids of the Fulton-MacPherson compactified (framed) configuration spaces Conf(Σ g , n) of Σ g , based on the collection of sets of parenthesized permutations. Next, the "holonomy" Lie algebra t g,n of Conf(Σ g , n) became available ( [START_REF] Enriquez | Quasi-reflection algebras and cyclotomic associators[END_REF]) and can be naturally endowed with the structure of a t-module. Then, a version of this Lie algebra (taking into account the framing of the configuration spaces) will permit us to define a GPaCD-module GPaCD g of genus g parenthesized chord diagrams. The genus g Grothendieck-Teichmüller group GT g will consist of group of automorphisms of the PaB-module PaB g , the genus g graded Grothedieck-Teichmüller group GRT g will consist of group of automorphisms of the GPaCD-module GPaCD g and the set Ass g of genus g associators will consist of the isomorphisms of modules PaB g (k) -→ GPaCD g which are the identity on objects. The main result of these constructions is that, seen as a PaB-module, PaB g has a nice presentation and we extract from it a characterisation of the set Ass g of genus g associators in terms of elements satisfying some equations in Theorem 5.3.13.

Further results are obtained in the elliptic, cyclotomic and twisted elliptic cases. In [START_REF] Calaque | On the universal twisted elliptic KZB connection[END_REF], we give yet a new version of these operadic point of view on associators by taking a purely topological point of view. Starting with the (reduced) twisted configuration spaces of the complex cylinder and the torus, denoted respectively Conf(C × , n, N ) and Conf(T, n, Γ), for M, N ≥ 1 and Γ = Z/M Z × Z/N Z, one can construct the Fulton-MacPherson compactification of these spaces. Then by considering, for all n ≥ 1, the collection of their fundamental groupoids based on well chosen versions of collections of parenthesized permutations, they will be endowed with a PaB-moperad (see [START_REF] Willwacher | The Homotopy Braces Formality Morphism[END_REF] for the definition of a moperad over an operad) and a PaB-operadic module structure respectively, denoted PaB N and PaB Γ eℓℓ . Both PaB N and PaB Γ eℓℓ have nice presentations by generators and relations. Similarly to the genus 1 case, one can construct from the Lie algebras t n,N and t Γ 1,n , a GPaCD-moperad and a GPaCD-module denoted GPaCD N and GPaCD Γ eℓℓ respectively. Then Grothendieck-Teichmüller groups and associators in this scope will be constructed as above 1 . We eventually get the following theorem. 

( GT eℓℓ (k), Ell(k), GRT eℓℓ (k)) -→ ( GT eℓℓ (k), Ell(k), GRT eℓℓ (k)) (3.1) 
( GT Γ (k), Ass Γ (k), GRT Γ (k)) -→ ( GT Γ (k), Ass Γ (k), GRT Γ (k)). (3.2)
Moreover, there is a torsor ( GT

Γ eℓℓ (k), Ell Γ (k), GRT Γ eℓℓ (k)
) which allows us to define twisted elliptic counterparts GT Γ eℓℓ (k), Ell Γ (k), and GRT Γ eℓℓ (k) of Grothendieck-Teichmüller groups and associators in their non-operadic characterization.

The twisted elliptic KZB associator

We define a twisted version of the genus one KZB connection introduced in [START_REF] Calaque | Universal KZB equations: the elliptic case, Algebra, Arithmetic and Geometry Vol I: in honor of Yu. I. Manin[END_REF]. This is a flat connection on a principal bundle over the moduli space of elliptic curves with a level structure and n marked points.

Consider the group Γ := Z/M Z × Z/N Z. and consider the following (finite index) subgroup of SL 2 (Z):

SL Γ 2 (Z) := a b c d ∈ SL 2 (Z)|a ≡ 1 mod M , d ≡ 1 mod N , b ≡ 0 mod N , c ≡ 0 mod M .
The quotient Y (Γ) := H/ SL Γ 2 (Z) is a complex orbifold whose points classify isomorphism classes of pairs (E, φ) where E is an elliptic curve and φ : Γ -→ E is an injective group morphism that is orientation preserving. Such an elliptic curve with additional structure will be called Γ-structured elliptic curve. More generally, one can construct the moduli space M Γ 1,n of Γ-structured elliptic curves with n ordered marked points.

Let E be an elliptic curve over C and consider the connected unramified Γ-covering p : Ẽ -→ E corresponding to the canonical surjective group morphism ρ : π 1 (E) = Z 2 -→ Γ sending the generators of Z 2 to their respective classes in Γ. By choosing an uniformization of E, we define the Γ-twisted configuration space associated to Ẽ as

Conf(E, n, Γ) = (C n -Diag τ,n,Γ )/(Z + τ Z) n where Diag τ,n,Γ := {(z 1 , . . . , z n ) ∈ C n |z ij := z i -z j ∈ (1/M )Z + (τ /N )Z for some i = j}.
Then, the spaces Conf(E, n, Γ) are (roughly) fibers at τ of fibrations M Γ 1,n -→ Y (Γ). The holonomy Lie algebra of Conf(E τ,Γ , n, Γ) will be denoted t Γ 1,n and has generators x 1 , . . . , x n , y 1 , . . . , y n and t α ij (α ∈ Γ, 1 ≤ i = j ≤ n). As in the elliptic case, one can define a Lie algebra d Γ , which has two components: the first is sl 2 and the second is a free (bigraded) Lie algebra d Γ + generated by δ s,γ 's (s ≥ 0, γ ∈ Γ) with relations δ s,γ = (-1) s δ s,-γ . The δ s,γ also act as highest weight elements for sl 2 . Proposition 3.2.1. We have a bigraded Lie algebra morphism ρ :

d Γ -→ Der(t Γ 1,n ).
We can then construct a group G Γ n whose Lie algebra has as components the holonomy Lie algebra t Γ 1,n and the so called twisted derivation algebra d Γ . Let e, h and f form the standard basis of sl 2 and write ξ s,γ := ρ(δ s,γ ) and ∆ 0 := ρ(f ). Let γ = (c 0 , c) ∈ (1/M )Z + (τ /N )Z be any lift of γ ∈ Γ and consider an element [(z, τ )] ∈ M Γ 1,n . Theorem 3.2.2. There is a unique G Γ n -bundle P n,Γ over M Γ 1,n (given locally by sections) with a flat universal KZB connection, locally defined by

∇ KZB n,Γ := d -∆(z|τ )dτ - n i=1 K i (z|τ )dz i
where, for 1 ≤ i ≤ n, we have

K i (z|τ ) := -y i + j:j =i γ∈Γ k γ (adx i , z|τ )(t γ ij ) with k γ (x, z|τ ) := e -2πicx θ(z-γ+x|τ ) θ(z-γ|τ )θ(x|τ ) -1
x , and

∆(z|τ ) := - 1 2πi ∆ 0 + s≥0,γ∈Γ 1 2 A s,γ (τ )ξ s,γ - i<j ∂ x k γ (adx i , z|τ )(t γ ij ) , with ∂ x k -γ (x, 0|τ ) := s≥0 A s,γ (τ )x s .
Some facts about the construction of the connection in the above theorem:

1. The connection ∇ KZB n,Γ restricts to a flat connection ∇ KZB n,τ,Γ := di K i (z|τ )dz i locally defined on a principal exp( tΓ 1,n )-bundle P τ,n,Γ over Conf(E, n, Γ). This will allow us to establish the formality of the fundamental group of Conf(E, n, Γ).

2. One can see that the term ∂ x k 0 (x, 0|τ ) = (θ ′ /θ) ′ (x) + 1/x 2 permits to retrieve classical Eisenstein series and that for any γ ∈ Γ -{0}, the expansion of the term ∂ x k -γ (x, 0|τ ) will also be given in terms of (a slightly different version of) Eisenstein series.

3. The universal twisted elliptic KZB connection realizes as the usual KZB connection associated to elliptic dynamical r-matrices with spectral parameter [START_REF] Etingof | Twisted traces of intertwiners for Kac-Moody algebras and classical dynamical r-matrices corresponding to generalized Belavin-Drinfeld triples[END_REF][START_REF] Felder | Conformal field theory and integrable systems associated to elliptic curves[END_REF] and produces representations of Cherednik algebras related with cyclotomic double affine Hecke algebras ( [START_REF] Braverman | Cyclotomic double affine Hecke algebras[END_REF]).

Let tΓ 1,2 be the Lie C-algebra generated by x, y and t α , for α ∈ Γ, such that [x, y] = α∈Γ t α . We define the twisted elliptic KZB associator as the couple e Γ (τ

) := (A Γ (τ ), B Γ (τ )) ∈ exp( tΓ 1,2 )× exp( tΓ 1,2
) consisting in the renormalized holonomies from 0 to 1/M and 0 to τ /N respectively as paths in E -{torsion points}, of the differential equation

J ′ (z) = F Γ (z) • J(z) for F Γ (z) := - α∈Γ e -2πiax θ(z -α + ad(x)|τ ) θ(z -α|τ )θ(ad(x)|τ ) (t α ). (3.3) 
with values in the group exp( tΓ 1,2 ), where α = (a 0 , a) ∈ (1/M )Z + (τ /N )Z is a lift of α ∈ Γ. In [START_REF] Calaque | On the universal twisted elliptic KZB connection[END_REF], after giving a general definition of the set Ell Γ (k) of twisted elliptic k-associators (with the use of the theory of operads, see below), we show the following result:

Theorem 3.2.3. Let Ell Γ KZB := Ell Γ (C) × Ass(C) {2πi, Φ KZ }.
There is an analytic map

h -→ Ell Γ KZB . τ -→ e Γ (τ )
This means that, for each τ ∈ h, the element (2πi, Φ KZ , A Γ (τ ), B Γ (τ )) is a twisted elliptic C-associator.

As a consequence, the set Ell Γ (C) is non-empty and there is an action of the twisted version GT Γ eℓℓ (k) of the elliptic prounipotent Grothendieck-Teichmüller group on it. Finally, we establish a differential equation in the direction of τ for the ellipsitomic KZB associators. Namely, if we denote ξ(2) s,γ for the derivation given by

• ξ(2) s,γ (x) = -(ad x) s+1 (t -γ ) + (-ad x) s+1 (t γ ), • ξ(2) s,γ (t α ) = [-((ad x) s t α-γ + (-ad x) s t α+γ ) + (ad x) s t -γ + (-ad x) s t γ , t α ],
then we have the following result.

Theorem 3.2.4. We have

2πi ∂ ∂τ A Γ (τ ) =   -∆ 0 - 1 2 γ∈Γ s 0 A s,γ (τ ) ξ(2) s,γ   A Γ (τ ), 2πi ∂ ∂τ B Γ (τ ) =   -∆ 0 - 1 2 γ∈Γ s 0 A s,γ (τ ) ξ(2) s,γ   B Γ (τ ).
Notice that this differential equation only involves the Eisenstein-Hurwitz series that we defined in Section 8.3.

Perspectives

This section presents an overview of the possible continuations of the results of this thesis.

The first goal is to pursue the study of the general theory of twisted elliptic associators and elliptic multiple zeta values at torsion points. Two complementary directions of this goal are detailed in a separate manner. The first one involves a complete study of the (prounipotent) twisted elliptic Grothendieck-Teichmüller group, its graded version and their actions on the set of twisted elliptic associators. The second consists of a full study of the coefficients arising from the twisted elliptic KZB associator, namely what we call twisted elliptic MZVs (teMZVs in short).

The second goal is to study the rational homotopy of operadic PaB-modules and elliptic Grothendieck-Teichmüller groups.

Twisted elliptic (graded) Grothendieck-Teichmüller groups

In [START_REF] Calaque | On the universal twisted elliptic KZB connection[END_REF] we mainly expressed twisted (graded) Grothendieck-Teichmüller groups and associators in their operadic versions (we also gave definitions of these objects in terms of elements satisfying some equations). Nevertheless, one needs to understand the intrinsic nature of these two groups and this set in order to study for example the decomposition of twisted elliptic MZVs. Indeed, as we will see in chapter 8 where we establish the differential equation satisfied by the twisted elliptic KZB associator, one needs to isolate some components of the twisted elliptic Grothendieck-Teichmüller group and have an explicit formula for the action of this group on the set of twisted elliptic k-associators.

The action of the twisted elliptic Grothendieck-Teichmüller group GT Γ eℓℓ and its graded version on Ell Γ (k). Based on the definition of GT Γ eℓℓ and its profinite, pro-ℓ and proalgebraic variants, defined by considering different versions of the PaB-module PaB Γ eℓℓ , we study the relations between these groups and their corresponding versions in the genus 0, cyclotomic and elliptic cases. In the proalgebraic case, we aim to obtain a semidirect product structure for GT Γ eℓℓ (k), analog to that obtained in the elliptic case. We will then fully describe the action of this group on twisted elliptic k-associators. We hope to construct a morphism of torsors from the scheme of (cyclotomic) associators to its twisted elliptic analogue, which will permit us to establish the existence of twisted elliptic associators at extensions of Q by roots of unity. Next, we concentrate on the graded version GRT Γ eℓℓ (k) of the twisted elliptic Grothendieck-Teichmüller group. In particular, we will aim to establish the existence of the prounipotent radical R Γ eℓℓ (k) of GRT Γ eℓℓ (k) whose associated Lie algebra should be isomorphic to the twisted version of the special derivation algebra which will be constructed in chapter 8 from the definition of the twisted derivation algebra d Γ constructed in chapter 6. Special attention will be taken on the relation between this Lie algebra and the Lie algebra of the prounipotent radical of π geom 1 (MEM).

Further investigations on the twisted elliptic KZB associator.

Once we haveexplicitely constructed the action of GT Γ eℓℓ (k) and GRT Γ eℓℓ (k) on Ell Γ (k), we will be able to fully establish the differential equation for the twisted elliptic KZB associator in terms of the Eisenstein-Hurwitz series found in chapter 7. Next, combined with a full study of the genus, cusps (by using the Riemann-Hurwitz theorem) and mapping class group of the moduli space of once punctured Γ-structured elliptic curves for different choices of finite abelian groups Γ, we should be able to study the modular properties and asymptotic behaviour of the twisted elliptic KZB associator at all cusps of this moduli space. This will be of great importance when attacking the study of teMZVs as we will explain below.

Zariski closures, distribution relations and Galois groups actions for Ell Γ (k). With a good understanding of the twisted elliptic mapping class group π 1 (M Γ 1,n ) at hand, we will aim to compute its Zariski closure in the automorphism groups of the prounipotent completions of some subgroups of the (pure) braid groups on the torus by studying the relation between the action of the group GT Γ eℓℓ (k) on these prounipotent completions and the action of its graded counterpart. Next, if we take Γ ′ = Z/M ′ Z × Z/N ′ Z such that M ′ divides M and N ′ divides N , one should be able to study distribution relations satisfied by Ell Γ ′ (k) and Ell Γ (k) and show that, when imposing these distribution relations, one obtains a subset of twisted elliptic associators which will be a torsor under the action of some subgroups of GT Γ eℓℓ (k) and GRT Γ eℓℓ (k). Special importance will be given to study the relation between these subgroups and the (geometric) fundamental group of the once punctured Γ-structured elliptic curve. Finally, we sketch some relations between the twisted versions of Teichmüller groupoids in genus one, the arithmetic fundamental group π 1 ((M Γ 1,1 ) L ) (for different kinds of congruence subgroups and for L an extension of Q by roots of unity) and the profinite twisted elliptic Grothendieck-Teichmüller group GT Γ eℓℓ .

Further investigations on elliptic MZVs at torsion points

The twisted elliptic KZB associator e Γ (τ ) has an expression in terms of iterated integrals. The twisted elliptic MZVs I Γ n 1 n 2 , . . . , n r α 1 α 2 , . . . , α r ; τ and J Γ n 1 n 2 , . . . , n r α 1 α 2 , . . . , α r ; τ , for n 1 , . . . , n r 0 and α 1 , ..., α r ∈ Γ, are defined equivalently as the coefficients of the (modified) ellipsitomic KZB associators and as regularized iterated integrals of the function F Γ defined above.

A first remark is that our approach to teMZVs is somewhat different to that in the recent work [START_REF] Broedel | Twisted elliptic multiple zeta values and non-planar one-loop open-string amplitudes[END_REF], where the authors use iterated integrals and the functions F Γ (z) to construct teMZVs and generalises to the case of any surjective morphism Z 2 -→ Γ sending the generators of Z 2 to their respective classes modulo M and N .

Relations of teMZVs with the twisted special derivation algebra. In a joint effort with N. Matthes, we aim to investigate the relation of our teMZVs with those defined in ( [START_REF] Broedel | Twisted elliptic multiple zeta values and non-planar one-loop open-string amplitudes[END_REF]) related to the non-planar part of the four-point one-loop open-string amplitude. In particular, by using the twisted version of H. Tsunogai's special derivation algebra, by relating it to the untwisted special derivation algbra, and by representing teMZVs as iterated integrals over well adapted Eisenstein series, we aim to derive the number of indecomposable elements of given weight and length for teMZVs. We also hope to get new interesting relations in the twisted special derivation algebra. Then, together with J. Broedel and O. Schlotterer, we will provide relations for teMZVs over a wide range of weights and lengths by computational methods.

Modularity properties and asymptotic behaviour of teMZVs.

By combining the results on the asymtotic behaviour at cusps and the differential equation for the twisted elliptic KZB associator done in Project 1, we will deduce the asymptotic behaviour of teMZVs. We will aim to retrieve µ N -MZVs and multiple Hurwitz values when degenerating teMZVs to the cusp i∞ and all other cusps of our modular curve. By the results in [START_REF] Broedel | Twisted elliptic multiple zeta values and non-planar one-loop open-string amplitudes[END_REF], we know this will be the case. We hope that by taking special cases of the group Γ, for instance M = 5 and different choices of N , we will retrieve some of the remaining periods of P 1 -{0, µ 5 , ∞} which are known not to be µ 5 -MZVs.

Motivic aspects of the twisted elliptic KZB connection and teMZVs. In a broader sense, we aim to study some of the Hodge-de Rham theoretic aspects of M Γ 1,1 . One can see M Γ 1,2 is the Γ-punctured universal curve over M Γ 1,1 . The Lie algebra t Γ 1,n should be closely related to the local system over the moduli space of Γ-structured elliptic curves with a nonzero tangent vector at the origin. With this in mind, an interesting task to do is to explicit the Q-de-Rham structure of this local system as was done in R. Hain's notes [START_REF] Hain | Notes on the Universal Elliptic KZB Equation[END_REF]. We aim to compute the restriction of the twisted elliptic KZB connection to various loci, such as the punctured first order neighbourhood of the Tate curve and a punctured formal neighbourhood of the identity section. We then explore Hodge theoretic aspects of this connection such as computing limit mixed Hodge structures relevant regions of M Γ 1,1 . We hope to relate in the mid-term these constructions to motivic aspects of teMZVs and to universal mixed elliptic (and modular) motives.

Rational homotopy of operadic PaB-modules and elliptic Grothendieck-Teichmüller groups

Following the operadic point of view on elliptic associators and Grothendieck-Teichmüller groups, it is natural enough to study the homotopy aspects of these objets. The motivation to do this comes from the fact that, by Bezrukavnikov's results in [START_REF] Bezrukavnikov | Koszul DG-algebras arising from configuration spaces[END_REF], the configuration spaces Conf(Σ g , n) of a genus g orientable surface Σ g are 1-formal but not formal in general. In other words, they have non trivial higher homotopies. Now, for some years now, a way of studying higher homotopies on spaces has come with the introduction of higher categorical structures. The link between these two realms of mathematics has been straightened in particular by P. Safronov, who has studied in [START_REF] Safronov | Poisson-Lie structures as shifted Poisson structures[END_REF] the relation between shifted Poisson structures and classical (dynamical) r-matrixes. A natural quesiton to ask is then if a homotopical characterisation of GT eℓℓ will shed some light on the study of higher homotopies of the operadic module (over the little disks operad D 2 ) of little disks on the torus, denoted D 1,2 .

A rationalization of the module of little disks on the torus.

The first goal for achieving this study will consist on constructing a good rationalization of the module of little disks on the torus. First of all, as Conf(T, n) is not formal (see [Bezr]), we have to work with the de Rham algebra Ω * (Conf(T, n)) instead of H * (Conf(T, n)). We hope to be able to overcome this issue by stuying the de Rham algebra Ω * (Conf(T, n)) given in [START_REF] Brown | Multiple elliptic polylogarithms[END_REF] and relating it with that contained in Kriz work [START_REF] Kriz | On the rational homotopy type of con guration spaces[END_REF] together with recent work by C. Sibilia in his PhD thesis. Let C * CE (t 1,n ) be the Chevalley-Eilenberg cochain complex of t 1,n . The first step is to obtain a quasi-isomorphism

C * CE (t 1,n ) -→ Ω * (Conf(T, n))
which would be enhanced into a Hopf dg-comodule quasi-isomorphism C * CE (t 1 ) -→ Ω * (Conf(T, -)). This will lead to a rationalization of the module of little disks on the torus.

Homotopy theory of Hopf comodules.

Next, it will be necessary to build a general homotopy theory for Hopf cooperadic comodules. Operadic modules are easier to work with than operads by their intrinsic linear nature (oposed as to that of operads). By this reason, the construction of model category structures on operadic modules in simplicial sets and their Λ-operadic versions should be within reach in the mid-term. The next step would be to use homotopy spectral sequences techniques in this scope to get a homotopical interpretation of GT eℓℓ in terms of the fundamental group (so in terms of the 1-truncation of the full homotopy theory) of Conf(T, n). The final outcome of this study will then be constructing injective mappings

Ell(τ ) Q -→ Iso Ho(ModD 2 ) ((D 1,2 ) ∧ Q , LG • Ω * (D 1,2 ))
and

(GT ell ) Q -→ Aut Ho(ModD 2 ) ((D 1,2 ) ∧ Q ).
where Ho(Mod D2 ) is the homotopy category of D 2 -modules, (D 1,2 ) ∧ Q is a rationalization of the D 2 -module D 1,2 related with Sullivan's models and LG • Ω * (D 1,2 ) is a module obtained from the de Rham complex of the D 2 -module D 1,2 .

Chapter 4

Operad structures on associators and Grothendieck-Teichmüller groups 

I = J 1 • • • J k there is a component ∂ J1,••• ,J k C(T, I) ∼ = C(T, k) × k i=1 C(C, J i ).
The inclusion of boundary components provide C(T, -) with the structure of a module over the operad C(C, -) in topological spaces. [START_REF] Brown | Mixed Tate motives over Z[END_REF]. Additionnally, we also have two automorphisms of (12), denoted A1,2 and B 1,2 , corresponding to the following loops on C(T, 2):

A 1,2 1 2 1 2 B 1,2 2 1 1 2
By global translation of the torus, these are the same loops as the following

2 1 A 1,2 2 1 2 1 2 1 B 1,2
In particular, A 1,2 R 1,2 and B 1,2 (R 2,1 ) -1 , which are morphisms from (12) to (21), correspond to the following paths C(T, 2):

A 1,2 R 1,2 1 2 1 2 1 1 2 2 B 1,2 (R 2,1 ) -1
Remark 4.1.2. The arrows A 1,2 and B 1,2 correspond to A ± 1,2 in [33, §1.3]. Thus as A 1,2 can be depicted with the point indexed by 1 going to the left we will also formally depict A 1,2 and B 1,2 as follows: 

(N1) Φ 1,2,3 A 1,23 R 1,23 Φ 2,3,1 A 2,31 R 2,31 Φ 3,1,2 A 3,12 R 3,12 = Id (12)3 , (N2) Φ 1,2,3 B 1,23 (R 23,1 ) -1 Φ 2,3,1 B 2,31 (R 31,2 ) -1 Φ 3,1,2 B 3,12 (R 12,3 ) -1 = Id (12)3 , (E) R 1,2 R 2,1 = Φ 1,2,3 B 1,23 (Φ 1,2,3 ) -1 , (R 2,1 ) -1 Φ 2,1,3 (A 2,13 ) -1 (Φ 2,1,3 ) -1 (R 1,2 ) -1 ,
as automorphisms of (12)3 in PaB eℓℓ (3).

Proof. Let Q be the PaB-module with the above presentation. We first show that there is a morphism of PaB-modules Q -→ PaB eℓℓ . We have already seen that there are two automorphisms A, B of (12) in PaB eℓℓ (2) (see Example 4.1.1). We have to prove that they indeed satisfy the relations (N1), (N2) and (E).

Relations (N1) and (N2) are satistfied: the first nonagon relation (N1) can be depicted as follows:

(1 (1 2) 2) 3 3 = (1 (1 2) 2) 3 3 A + A + A + (N1)
It is satisfied in PaB eℓℓ , expressing the fact that when all (here, three) points move in the same direction on the torus, this corresponds to a constant path in the reduced configuration space of points on the torus. The same is true with the second nonagon relation (N2).

Relation (E) is satisfied: below one sees the path that is obtained from the right-hand-side of the mixed relation (E):

• Φ 1,2,3 B 1,23 (Φ 1,2,3 ) -1 is the path 1 1 3 3 B 1,23 2 2 • (R 2,1 ) -1 Φ 2,1,3 (A 2,13 ) -1 (Φ 2,1,3 ) -1 (R 1,2 ) -1 is the path 3 1 2 13 2
One easily sees on the picture that the path is homotopic to the pure braiding of the first two points, that is R 1,2 R 2,1 , by means of the following picture

3 2 1
Thus, by the universal property of Q, there is a morphism of PaB-modules Q -→ PaB eℓℓ , which is the identity on objects. To show that this map is in fact an isomorphism, it suffices to show that it is an isomorphism at the level of automorphism groups of objects arity-wise, as all groupoids are connected. Let n ≥ 0, and p be the object

(• • • ((12)3) • • • • • • )n of Q(n)
and PaB eℓℓ (n). We want to show that the induced morphism

Aut Q(n) (p) -→ Aut PaB eℓℓ (n) (p) = π 1 C(T, n), p is an isomorphism.
On the one hand, as C(T, n) is a manifold with corners, we are allowed to move the basepoint p to a point p reg which is included in the simply connected subset obtained as the image of2 

D n,τ := {z ∈ C n |z j = a j +b j τ, a j , b j ∈ R, 0 < a 1 < a 2 < ... < a n < a 1 +1, 0 < b 1 < b 2 < ... < b n < b 1 +1}
in C(T, n), where T = C/Z + τ Z. We then have an isomorphism of fundamental groups

π 1 ( C(T, n), p) ≃ π 1 (C(T, n), p reg ).
On the other hand, in [33, Proposition 1.4], Enriquez constructs a universal elliptic structure PaB En eℓℓ , that by definition carries an action of the (algebraic version of the) reduced braid group on the torus B 1,n in the following sense:

• PaB En eℓℓ is a category.

• for every object p of Pa(n), there is a corresponding object [p] in PaB En eℓℓ , and [p] = [q] if p and q only differ by a permutation (but have the same underlying parenthesization).

• there are group morphisms

B 1,n -→ Aut PaB En eℓℓ (p) -→ S n .
Moreover, one has by constuction of PaB En eℓℓ that Aut Q(n) (p) is the kernel of the map Aut PaB En eℓℓ ([p]) -→ S n . One can actually show that we have a commuting diagram

PB 1,n ≃ / / Aut Q(n) (p) / / π 1 C(T, n), p π 1 (C(T, n), p reg ) ≃ o o B 1,n ≃ / / Aut PaB En eℓℓ (p) / / π 1 C(T, n)/S n , [p] π 1 (C(T, n)/S n , [p reg ]) ≃ o o S n S n S n S n
where all vertical sequences are short exact sequences. Thus, in order to show that the map

Aut Q(n) (p) -→ π 1 C(T, n), p is an isomorphism, we are left to show that B 1,n -→ π 1 (C(T, n), p reg )
is indeed an isomorphism. But this map is nothing else than the map constructed in [12, Theorem 5], identifying the algebraic and topological versions of the braid group on the torus. ), which is equivalent to (N1), and that expresses a kind of ribbon description for A 12,3 :

(

A 12,3 = (1 ( 1 (1 2) 2) 3 3 
2)

3 3 A 1,23 A 2,13 (N1bis) 

The CD(k)-module of elliptic chord diagrams

For any n ≥ 0, recall that t 1,n (k) is defined as the bigraded Lie k-algebra freely generated by

x 1 , . . . , x n in degree (1, 0), y 1 , . . . , y n in degree (0, 1) (for i = 1, ..., n), and t ij in degree (1, 1) (for 1 ≤ i = j ≤ n), together with the relations (S), (L), (4T), and the following additional elliptic relations as well:

(S eℓℓ ) [x i , y j ] = t ij for i = j.

(N eℓℓ ) [x i , x j ] = [y i , y j ] = 0 for i = j.

(T eℓℓ ) [x i , y i ] = -j|j =i t ij . (L eℓℓ ) [x i , t jk ] = [y i , t jk ] = 0 if #{i, j, k} = 3. (4T eℓℓ ) [x i + x j , t ij ] = [y i + y j , t ij ] = 0 for i = j.
The i x i and i y i are central in t 1,n (k), and we also consider the quotient actually are t(k)-modules in grLie k . Partial compositions are defined as follows:

t1,n (k) := t 1,n (k)/( i x i , i y i ) .
• k : t 1,I (k) ⊕ t J (k) -→ t 1,J⊔I-{i} (k) (0, t αβ ) -→ t αβ (t ij , 0) -→            t ij if k / ∈ {i, j} p∈J t pj if k = i p∈J t ip if j = k (x i , 0) -→      x i if k = i p∈J x p if k = i (y i , 0) -→      y i if k = i p∈J y p if k = i
We call t eℓℓ (k), resp. teℓℓ (k), the module of infinitesimal elliptic braids, resp. of infinitesimal reduced elliptic braids.

We finally define the CD(k)-module CD eℓℓ (k) := Û( teℓℓ (k)) of elliptic chord diagrams. As in the genus 0 situation, morphisms in CD eℓℓ (k)(n) can be represented as chords on n vertical strands with extra chords correponding to the generators x i and y i as in the following picture:

A + and A -
The relations elliptic relations introduced above can be represented as follows, analogously as for the genus 0 case: 

A - A + - A + A - = A + A - - A - A + = (S eℓℓ ) A ± A ± = A ± A ± (N eℓℓ ) A + A - i -A - A + i = - j;j =i i j (T eℓℓ ) A ± = A ± (L eℓℓ ) A ± + A ± = A ± + A ± (4T eℓℓ )
(N1) a 1,2,3 X 1,23 eℓℓ X 1,23 a 2,3,1 X 2,31 eℓℓ X 2,31 a 3,1,2 X 3,12 eℓℓ X 3,12 = Id 12,3 , (N2) a 1,2,3 Y 1,23 eℓℓ X 1,23 a 2,3,1 Y 2,31 eℓℓ X 2,31 a 3,1,2 Y 3,12 eℓℓ X 3,12 = Id 12,3 , (E) X 1,2 X 2,1 = a 1,2,3 Y 1,23 eℓℓ (a 1,2,3 ) -1 , X 2,1 a 2,1,3 (X 2,13 eℓℓ ) -1 (a 2,1,3 ) -1 X 1,2 . (Inv) X 2,1 eℓℓ = (X 1,2 ) -1 X 1,2 eℓℓ X 1,2 , Y 2,1 eℓℓ = (X 1,2 ) -1 Y 1,2 eℓℓ X 1,2 , (Red) X 1,∅ eℓℓ = Y 1,∅ eℓℓ = 0, (IN1) X 12,3 eℓℓ + a 1,2,3 X 1,23 X 23,1 eℓℓ (a 1,2,3 X 1,23 ) -1 + X 12,3 (a 3,1,2 ) -1 X 31,2 eℓℓ (X 12,3 (a 3,1,2 ) -1 ) -1 = 0, (IN2) Y 12,3 eℓℓ + a 1,2,3 X 1,23 Y 23,1 eℓℓ (a 1,2,3 X 1,23 ) -1 + X 12,3 (a 3,1,2 ) -1 Y 31,2 eℓℓ (X 12,3 (a 3,1,2 ) -1 ) -1 = 0, (IE) H 1,2 = [a 1,2,3 X 1,23 eℓℓ (a 1,2,3 ) -1 , X 1,2 a 2,1,3 Y 2,13 eℓℓ (a 2,1,3 ) -1 (X 1,2 ) -1 ].

Elliptic associators

Let us introduce some terminology, complementing the one of §2.6.5. If P -→ Q is a morphism between operads in C, M is a module over P, and N is a module over Q, then we will consider operadic module mophisms M -→ N in the category of P-modules (via the restriction functor), and will simply refer to them as module morphisms if the context is clear.

For an operad O in C, we denote Mod(O) the category of O-modules.

Given the choice of an automorphism g of O, we will denote by Aut + (Mod(O),g) (M) the group of automorphisms of the O-module M with respect to the automorphism g and Iso (Mod(P,Q),Φ) (M, N ), for the set of isomorphisms beween modules M and N with respect to an operad isomorphism Φ between P and Q.

The superscript "+" still indicates that we consider morphisms that are the identity on objects. Definition 4.1.9. An elliptic associator over k is a couple (F, G) where F is a k-associator and G is an isomorphism between the PaB(k)-module PaB eℓℓ (k) and the GPaCD(k)-module GPaCD eℓℓ (k) which is the identity on objects and which is compatible with F :

Ell(k) := Iso + ( PaB(k),GPaCD(k)) ( PaB eℓℓ (k), GPaCD eℓℓ (k)).
Let us denote by {-} the Lie algebra morphism t n (k) -→ t1,n (k) sending t ij ∈ t n (k) to t ij ∈ t1,n (k). Its induced group morphism exp( tn (k)) -→ exp( t1,n (k)) will be denoted the same way.

The following theorem identifies our definition of elliptic associators to the original one defined by Enriquez in [START_REF] Enriquez | Elliptic associators[END_REF].

Theorem 4.1.10. There is a one-to-one correspondence between the set Ell(k) and the set Ell(k) of quadruples (µ, Φ, A + , A -), where (µ, Φ) ∈ Ass(k) and A ± ∈ exp( t1,2 (k)), such that:

α 1,2,3 ± α 2,3,1 ± α 3,1,2 ± = 1, where α ± = {Φ 1,2,3 }A 1,23 ± {e ±µ(t12+t13)/2 }, (4.1) 
{e µt12 } = {Φ}A 1,23 -{Φ} -1 , {e -µt12/2 Φ 2,1,3 }(A 2,13 + ) -1 {(Φ 2,1,3 ) -1 e -µt12/2 } . (4.2) 
Proof. An associator F corresponds uniquely to a couple (µ, Φ) ∈ Ass(k) and an isomorphism G between PaB eℓℓ (k) and GPaCD eℓℓ (k) sends the arrows A 1,2 and B 1,2 of End PaB eℓℓ (k)(2) (12) to A + •X 1,2 eℓℓ and A -•Y 1,2 eℓℓ with A ± ∈ exp( t1,2 ) (recall that t1,2 is the completed free Lie algebra in two generators). The image of relations (N1), (N2) and (E) are precisely the relations (4.1) and (4.2).

Example 4.1.11 (Elliptic KZB Associators). Let us fix τ ∈ h. Recall that the Lie algebra t1,2 (C) is isomorphic to the free Lie algebra f 2 (C) generated by two elements x := x 1 and y := y 1 . We define the elliptic KZB associators A(τ ), B(τ ) as the renormalized holonomies from 0 to 1 and 0 to τ of the differential equation

G ′ (z) = - θ τ (z + ad x) ad x θ τ (z)θ τ (ad x) (y) • G(z), (4.3) 
with values in the group exp( t1,2 (C)) More precisely, this equation has a unique solution G(z) defined over {a + bτ, for a, b ∈]0, 1[} such that G(z) ≃ (-2π i z) -[x,y] at z -→ 0. In this case,

A(τ ) := G(z) -1 G(z + 1), B(τ ) := G(z) -1 e 2π i x G(z + τ ).
These are elements of the group exp( t1,2 (C)). More precisely, Enriquez showed in [START_REF] Enriquez | Elliptic associators[END_REF] that the element (2πi, Φ KZ , A(τ ), B(τ )) is in Ell(C). Again, we now show that our definition coincides with the original one defined by Enriquez in [START_REF] Enriquez | Elliptic associators[END_REF]. Recall that the set GT eℓℓ (k) is the set of tuples (λ, f, g ± ), where (λ, f ) ∈ GT(k),

Elliptic Grothendieck-Teichmüller group

g ± ∈ F 2 (k) such that (f (σ 2 1 , σ 2 2 )g ± (X, Y )(σ 1 σ 2 2 σ 1 ) ± λ-1 2 σ ±1 1 σ ±1 2 ) 3 = 1, (4.4) 
u 2 = (g -, u -1 g -1 + u -1 ) (4.5) (identities in B1,3 (k)) where u = f (σ 2 1 , σ 2 2 ) -1 σ λ 1 f (σ 2 1 , σ 2 
2 ), and g ± = g ± (X, Y ). For (λ, f, g ± ), (λ ′ , f ′ , g ′ ± ) ∈ GT eℓℓ (k), we set

(λ, f, g ± )(λ ′ , f ′ , g ′ ± ) := (λ ′′ , f ′′ , g ′′ ± ), where g ′′ ± (X, Y ) = g ± (g ′ + (X, Y ), g ′ -(X, Y ))
. This gives GT eℓℓ (k) a group structure. Moreover, for (λ, f, g + , g -) ∈ GT ell (k) and (µ, Φ, A + , A -) ∈ Ell(k), we set

(λ, f, g + , g -) * (µ, Φ, A + , A -) := (µ ′ , Φ ′ , A ′ + , A ′ -)
where A ′ ± := g ± (A + , A -). In [START_REF] Enriquez | Elliptic associators[END_REF], it is shown that this defines a left free and transitive group action of GT eℓℓ (k) on Ell(k). Proposition 4.1.13. There is a group isomorphism between GT eℓℓ (k) and GT eℓℓ (k).

Proof. Suppose that we have an automorphism G of PaB eℓℓ (k) which is the identity on objects. Then, by Theorem 4.1.3, such an automorphism is given by the data of an automorphism of the operad PaB(k), given by the pair (λ, f ) ∈ GT(k), and the images of the two generators

A, B ∈ Aut PaB eℓℓ (k)(2) (12). Let us denote G(A) = g + (X, Y )A and G(B) = g -(X, Y )B,
where g ± ∈ PB 1,2 (k) ≃ F 2 (k). Then the obtained tuple (λ, f, g ± ) satisfies relations (4.4) and (4.5). Next, we show that this map is a group morphism. For this we show that the composition of automorphisms in Aut + Mod( PaB(k)) ( PaB eℓℓ (k)) corresponds to the composition law of the group GT eℓℓ (k). We already know that the composition of automorphisms F 1 and

F 2 in Aut + Op Ĝ ( PaB(k)) corresponds to the composition law in GT(k), that is, the associated couples (λ, f 1 ) and (µ, f 2 ) in k × × F2 (k) satisfy (F 1 • F 2 )(R 1,2 ) = (R 1,2 ) λµ (F 1 • F 2 )(Φ 1,2,3 ) = F 1 (F 2 (Φ 1,2,3 )) = F 1 (f 2 (x, y) • Φ 1,2,3 ) = F 1 (f 2 (x, y))F 1 (Φ 1,2,3 ) = (f 2 (x λ , f 1 (x, y)y λ f 1 (x, y) -1 )f 1 (x, y)) • Φ 1,2,3 ,
(here F 2 is generated by x := σ 2 1 and y := σ 2 2 ). We also already showed that any two automorphisms G and H in the group Aut + Mod( PaB(k))

( PaB eℓℓ (k)), depending on F 1 and F 2 respectively, are associated to couples (g + (X, Y ), g -(X, Y )) and (h + (X, Y ), h -(X, Y )) which represent automorphisms of the parenthesized word (12) in the groupoid PaB eℓℓ (k)(2) i.e. in F2 (k)) (recall that F2 (k) ≃ PB 1,2 (k) is nothing but the k-prounipotent completion of the free group with generators X and Y ). We then have

(H • G)(A) = H(g + (X, Y )) = g + (H(X), H(Y )) = g + (h + (X, Y ), h -(X, Y )). Likewise, we find (G • H)(B) = g -(h + (X, Y ), h -(X, Y ))
which concludes the proof, as the composite of operadic module morphisms F • G is compatible with the composition of operad morphisms F 1 • F 2 . The fact that that the underlying sets of GT eℓℓ (k) and GT eℓℓ (k) are isomorphic is a consequence of the fact that the set of elliptic associators is non empty, that there are free and transitive left actions of GT eℓℓ (k) on Ell(k) and of GT eℓℓ (k) on Ell(k) and the fact that there is a one-to-one correspondence between Ell(k) and Ell(k) so we get a composite of bijections

GT eℓℓ (k) -→ Ell(k) -→ Ell(k) -→ GT eℓℓ (k).
This finishes the proof. Notice that there is an isomorphism

Graded elliptic (graded) Grothendieck-Teichmüller group

Aut + (Mod(PaCD(k)) (PaCD eℓℓ (k)) ≃ Aut + (Mod(GPaCD(k)) (GPaCD eℓℓ (k)).
Define GRT ell 1 (k) to be the set of tuples (g, u + , u -), such that g ∈ GRT 1 (k), u ± ∈ t1,2 (k), satisfying Ad(g 1,2,3 )(u 1,23 ± ) + Ad(g 2,1,3 )(u 2,13 ± ) + u 3,12

± = 0, (4.6) 
[Ad(g 1,2,3 )(u 1,23 ± ), u 3,12 ± ] = 0, (

[Ad(g 1,2,3 )(u 1,23 + ), Ad(g 2,1,3 )(u 2,13

-)] = t 12 , (4.8) 
as relations in t1,3 (k). Set (g 1 , u 1 + , u 1 -) * (g 2 , u 2 + , u 2 -) := (g, u + , u -), where

u ± (x 1 , y 1 ) := u 1 ± (u 2 + (x 1 , y 1 ), u 2 -(x 1 , y 1 )) (4.9)
The group k × acts on GRT ell 1 (k) by rescaling

c • (g, u ± ) := (c • g, c • u ± ),
where c • g is as above and

• (c • u + )(x 1 , y 1 ) := u + (x 1 , c -1 y 1 ), • (c • u -)(x 1 , y 1 ) := cu -(x 1 , c -1 y 1 ).
We then set GRT ell (k) := GRT ell 1 (k) ⋊ k × . This defines a group structure on GRT ell (k). Moreover, there is an right group action of GRT ell 1 (k) on Ell(k) given as follows : for (g, u ± ) ∈ GRT ell 1 (k) and (µ, Φ, A ± ) Ell(k), we set (µ, Φ, A ± ) * (g, u ± ) := (µ, Φ, ñ ), where

ñ (x 1 , y 1 ) := A ± (u + (x 1 , y 1 ), u -(x 1 , y 1 ))
and, for c ∈ k × , we set (µ, Φ, A ± ) * c := (µ, c * Φ, c♯A ± ), where (c♯A ± )(x 1 , y 1 ) := A ± (x 1 , y 1 ). In [START_REF] Enriquez | Elliptic associators[END_REF] this action is shown to be free and transitive. Notice that ñ = θ(A ± ), where θ ∈ Aut( tk 1,2 ) is x 1 → u + (x 1 , y 1 ) and y 1 → u -(x 1 , y 1 ). Proposition 4.1.15. There is a group isomorphism between GRT eℓℓ (k) and GRT eℓℓ (k).

Proof. The map GRT eℓℓ (k) -→ GRT eℓℓ (k) is constructed as follows. Let F be an automorphism in Aut + Mod(PaCD(k)) (PaCD eℓℓ (k)) depending on an operad automorphism Ψ in GRT(k). We have

• Ψ(X 1,2 ) = X 1,2 , • Ψ(H 1,2 ) = λH 1,2 , • Ψ(a 1,2,3 ) = g(t 12 , t 23 )a 1,2,3 , • F (X 1,2 eℓℓ ) = u + (x, y) • Id 1,2 , • F (Y 1,2 eℓℓ ) = u -(x, y) • Id 1,2 .
where (λ, g) ∈ GRT(k), u ± ∈ t1,2 (k). In light of relations of Remark 4.1.8, we obtain that the tuple (λ, g(t 12 , t 23 ), u + (x, y), u -(x, y)) satisfies relations (4.6), (4.7) and (4.8). The assignment (Ψ, F ) → (λ, g(t 12 , t 23 ), u + (x, y), u -(x, y)) defines a map GRT eℓℓ (k) -→ GRT eℓℓ (k). First we show that this map is a group morphism. For this we show that the composition of automorphisms in Aut + Mod(GPaCD(k)) (GPaCD eℓℓ (k)) corresponds to the composition law of the group GRT eℓℓ (k). We already know that the composition of automorphisms Φ and Ψ in Aut + Op Ĝ (GPaCD(k)) corresponds to the composition law in GRT(k), that is, the associated couples (λ, f 1 ) and (µ, f 2 ) in k × × exp( t3 (k)) satisfy

(Φ • Ψ)(H 1,2 ) = λµH 1,2 (Φ • Ψ)(a 1,2,3 ) = f 2 (λt 12 , f 1 (t 12 , t 23 ) • λt 23 • f 1 (t 12 , t 23 ) -1 )f 1 (t 12 , t 23 ) • a 1,2,3 .
We also already showed that any two automorphisms G and H in the group

Aut + Mod(GPaCD(k)) (GPaCD eℓℓ (k))
, depending on Φ and Ψ respectively, are associated to couples (g + (x, y), g -(x, y)) and (h + (x, y), h -(x, y)) which represent automorphisms of the parenthesized word (12) in the groupoid GPaCD eℓℓ (k)(2) i.e. in exp( t1,2 (k)) where x = x 1 and y = y 1 (recall that t1,2 (k) is nothing but the free Lie algebra over k with generators x and y). We then have

(H • G)(X 1,2 eℓℓ ) = H(g + (x, y) • Id 1,2 ) = g + (H(x), H(y)) • Id 1,2 = g + (h + (x, y), h -(x, y)) • Id 1,2 .
Likewise, we find

(G • H)(Y 1,2 eℓℓ ) = g -(h + (x, y), h -(x, y)) • Id 1,2
which concludes the proof, as the composite of operadic module morphisms F • G is compatible with the composition of operad morphisms Φ • Ψ.

Next, this morphism is a bijection. This is a consequence of the fact that there exists a composite of bijections

GRT eℓℓ (k) -→ Ell(k) -→ Ell(k) -→ GRT eℓℓ (k).

Torsors

Finally, we enhance the above bijections into a torsor result. Theorem 4.1.16. There is a torsor isomorphism

( GT eℓℓ (k), Ell(k), GRT eℓℓ (k)) -→ ( GT eℓℓ (k), Ell(k), GRT eℓℓ (k)) (4.10)
Proof. This is a summary of most of the above results. First of all, we know that

( GT eℓℓ (k), Ell(k), GRT eℓℓ (k)
) has a natural torsor structure and that ( GT eℓℓ (k), Ell(k), GRT eℓℓ (k)) is a torsor by [START_REF] Enriquez | Elliptic associators[END_REF]. Next, we proved in Proposition 4.1.13 that there are group isomorphisms between GT eℓℓ (k) and GT eℓℓ (k) and in Proposition 4.1.15 that there are group isomorphisms between GRT eℓℓ (k) and GRT eℓℓ (k). Thus, it is sufficient to show that the actions of GT eℓℓ (k) on Ell(k) and of GT eℓℓ (k) on Ell(k) are compatible and that the actions of GRT eℓℓ (k) on 4.2 Moperads associated with twisted configuration spaces (cyclotomic associators)

Compactified configuration space of the annulus

For each finite set I, let us consider the configuration space of C × :

Conf(C × , I) := z = (z i ) i∈I ∈ (C × ) I |z i = z j , ∀i = j .

Now consider its reduced version

C(C × , I) := Conf(C × , I)/R >0 .
We clearly have an isomorphism between C(C × , n) and C(C, n + 1). We then consider the Fulton-MacPherson compactification

C(C × , n) of C(C × , n). The boundary ∂C(C × , n) = C(C × , n) -C(C × , n
) is made of the following irreducible components: for any partition

[[0, n]] = J 0 • • • J k such that 0 ∈ J m , for some 0 ≤ m ≤ k, there is a component ∂ J1,••• ,J k C(C × , n) ∼ = C(C × , k) × C(C × , J m ) × k i=1;i =m C(C, J i ) .
The inclusion of boundary components for which m = 0 provides C(C × , -) with the structure of a moperad over the operad C(C, -) in topological spaces.

The PaB-moperad of parenthesized braids with a frozen strand

We have inclusions of topological moperads

Pa 0 ⊂ C(R >0 , -) ⊂ C(C × , -) . over Pa ⊂ C(R, -) ⊂ C(C, -) .
We then define

PaB 1 := π 1 C(C × , -), Pa 0 ,
which is a moperad over the operad in groupoids PaB. (MP) Ψ 01,2,3 Ψ 0,1,23 = Ψ 0,1,2 Ψ 0,12,3 Φ 1,2,3 , as arrows from ((01)2)3 to 0(1 [START_REF] Buff | Eléments de géométrie des espaces de modules des courbes[END_REF]) in PaB 1 (3),

(O) E 01,2 = Ψ 0,1,2 R 1,2 (Ψ 0,2,1 ) -1 E 0,2 Ψ 0,2,1 R 2,1 (Ψ 0,1,2 ) -1 , as arrows from (01)2 to (01)2 in PaB 1 (2).
Proof. We proceed in a similar way as in the elliptic case, using this time the results of [32, §4.4]. Let Q 1 be the PaB-moperad with the above presentation. From Examples 4.2.1 and 4.2.2 we deduce that, as a PaB-moperad in groupoid, PaB 1 contains two morphisms E = E 0,1 (in PaB 1 (1)) and Ψ = Ψ 0,1,2 (in PaB 1 (2)). One easily shows, using the following pictures, that they satisfy mixed pentagon and octogon relations, (MP) and (O):

((0 1) 2) 3 0 (1 (2 3)) = ((0 1) 2) 3 0 (1 (2 3)) (MP) and (0 (0 1) 1) 2 2 = (0 (0 1) 1) 2 2 
(O) Therefore, by the universal property of Q 1 , there is a morphism of PaB-moperads Q 1 -→ PaB 1 , which is the identity on objects. In order to show that this is an isomorphism, it suffices to show that it is an isomorphism at the level of automorphism groups of an object arity-wise because all groupoids involved are connected. Let n ≥ 0, let p be the object

(• • • (01)2 • • • • • • )n of Q 1 (n) and PaB 1 (n).
We want to show that the induced group morphism

Aut Q 1 (n) (p) -→ Aut PaB 1 (n) (p) = π 1 C(C × , n), p
is an isomorphism.

On the one hand, we can replace the base-point p with p reg = (1, 2, . . . , n) ∈ C(C × , n), as they are in the same path-connected component. Moreover, since the Fulton-MacPherson compactification does not change the homotopy type of our configuration spaces, we get an isomorphism

π 1 ( C(C × , n), p) ≃ π 1 (C(C × , n), p reg ) .
On the other hand, in [32, §4.4], Enriquez proves several useful facts:

• Given a braided module category M over a braided monoidal category C, an object X of C, and an object M of M, there is a group morphism

B 1 n -→ Aut M (M ⊗ X ⊗n ) ,
where, by convention, M ⊗ X ⊗n comes equipped with the left-most parenthesization • the morphism B 1 n -→ Aut PaB 1,Enr (p) is an isomorphism.

((M ⊗ X) ⊗ ...) ⊗ X,
One can moreover see that, by construction,

Aut Q 1 (n) (p) is exactly the kernel subgroup ker Aut PaB 1,Enr (n) (p) -→ S n ≃ PB n+1 .
Hence we have a commuting diagram

PB 1 n ≃ / / Aut Q 1 (n) (p) / / π 1 C(C × , n), p π 1 (C(C × , n), p reg ) ≃ o o B 1 n ≃ / / Aut PaB 1,Enr (p) / / π 1 C(C × , n)/S n , [p] π 1 (C(C × , n)/S n , [p reg ]) ≃ o o S n S n S n S n
where all vertical sequences are short exact sequences. Thus, in order to get that the map

Aut Q 1 (n) (p) -→ π 1 C(C × , n),
p is an isomorphism, we are left to prove that the composite map B 1 n -→ π 1 (C(C × , n), p reg ) is indeed an isomorphism. But this map is, by its very construction, the isomorphism (from [START_REF] Sossinsky | Preparation theorems for isotopy invariants of links in 3-manifolds[END_REF][START_REF] Vershinin | On braid groups in handlebodies[END_REF]) exhibiting a presentation by generators and relations of the braid group of a handlebody.

Compactified twisted configuration space of the annulus

Consider, for N ≥ 1, the additive group Γ = Z/N Z. To every finite set I let us associate the so-called Γ-twisted configuration space

Conf(C × , I, Γ) = {z = (z i ) i∈I ∈ (C × ) I |z i = ζz j , ∀i = j, ∀ζ ∈ µ N }
(µ N is the set of complex N th roots of unity) and its reduced version

C(C × , I, Γ) := Conf(C × , I, Γ)/R >0 .
Remark 4.2.5. Observe that Conf(C × , I, Γ), resp. C(C × , I, Γ), is an Γ I -covering space of Conf(C × , I), resp. C(C × , I), the covering map being given by (z i ) i∈I → (z N i ) i∈I .

There are also inclusions

Conf(C × , I, Γ) ֒→ Conf(C × , I × µ N ) and C(C × , I, Γ) ֒→ C(C × , I × µ N )
given by 

(z i ) i∈I → (ζz i ) (i,
J 0 • • • J k of {0} ⊔ I there is a component ∂ J1,••• ,J k C(C × , I, Γ) ∼ = C(C × , k, Γ) × C(C × , J m , Γ) × k i=1;i =m C(C, J i ) ,
where m ∈ {0, . . . , k} is the index such that 0 ∈ J m . The inclusion of boundary components such that m = 0 provides C(C × , -, Γ) with the structure of a moperad over the operad C(C, -) in topological spaces.

We let the reader check that the covering map C(C × , I, Γ) -→ C(C × , I) from Remark 4.2.5 extends to a continuous map φ n : C(C × , I, Γ) -→ C(C × , I) between their compactifications, and thus leads to a morphism of moperads.

Finally, one observes that the natural action of Γ I on each C(C × , I × µ N ), given by

(α • z) (j,ζ) := z j,e 2iπα j N
ζ induces an action of Γ on the moperad C(C × , -, Γ), in the sense of §2.5.9.

The Pa-moperad of labelled parenthesized permutations

Borrowing the notation from the previous subsection, we define Pa Γ 0 (n) := φ -1 n Pa 0 (n) . Explicitly, Pa Γ 0 (n) is the set of parenthesized permutations of {0, 1, . . . , n} that fix 0 and that are equipped with a label {1, . . . , n} -→ Γ.

Notation. As a matter of notation, we will write the label as an index attached to each 1, . . . , n. For instance, (02 α )1 0 belongs to Pa Γ 0 (2) for every α ∈ Γ. Observe that the S-module (in sets) Pa Γ 0 carries the structure of a Pa-moperad. Indeed, it is a fiber product

Pa Γ 0 = Pa 0 × C(C × ,-) C(C × , -, Γ)
in the category of Pa-moperads (in topological spaces). Here are two self-explanatory examples of partial compositions:

(02 α )1 β • 2 (12)3 = (0((2 α 3 α )4 α ))1 β and (02 α )1 β • 0 (02 α )1 0 = (((02 α )1 0 )4 α )3 β .
Remark 4.2.6. As we have seen in §2.5.8 of the previous Section, our conventions are such that the Pa-moperad structure on Pa Γ 0 gives in particular a morphism of Pa-modules Pa -→ Pa Γ 0 . One can see that it is the map that sends a parenthezised permutation p to 0(p) together with the trivial label function i → 0.

Finally, Pa Γ 0 is acted on by Γ in the following way: for n ≥ 0, Γ n only acts on the labellings, via the group law of Γ. For instance, if f : {1, . . . , n} -→ Γ and α ∈ Γ n , then

(α • f )(i) = f (i) + α i .

The PaB-moperad of twisted parenthesized braids

We define

PaB Γ := π 1 C(C × , -, Γ), Pa Γ 0 .
It is a PaB-moperad (in groupoids), that carries an action of the group Γ. The maps φ n :

C(C × , n, Γ) -→ C(C × , n) induce a PaB-moperad morphism PaB Γ -→ PaB 1 . Example 4.2.7 (Description of PaB Γ (1)). First observe that Pa Γ 0 (1) -→ Pa 0 (1) is the terminal map µ N ≃ {01 α |α ∈ Γ} -→ {01} = * . Then observe that the map C(C × , 1, Γ) -→ C(C × , 1
) is nothing but the path-connected Γ-cover S 1 -→ S 1 . Hence we in particular have morphisms E 0,1 α , α ∈ Γ from 01 α to 01 α+1 in PaB Γ (1), being the unique lift of E 0,1 that starts at 01 α ∈ Pa Γ 0 (1). Pictorially:

0 1 0 0 1 1 0 z 1 e 2iπ/N z 1 0 z N 1 z z N
Two incarnations of E 0,1 0

In the above picture, on the right we have pictured a path in the twisted configuration space, together with its image under the covering map, which is a loop. Diagrammatically (see the left of the above picture), we depict it as a pure braid (a loop in the base configuration space) together with appropriate base points (which uniquely determines the lift in the covering twisted configuration space).

Example 4.2.8 (Notable arrow in PaB Γ (2)). Let Ψ 0,1,2 0 be the unique lift of Ψ 0,1,2 (a morphism in PaB 1 (2)) starting at (01 0 )2 0 . It can be depicted as follows:

(0 0 1 0 ) (1 0 2 0 2 0 )
Remark 4.2.9. As in Remark 4.2.3, one sees from §2.5.8 there is a morphism of S-modules PaB -→ PaB Γ . In pictorial terms, it sends a parentesized braid with n strands to a labelled parenthesized braid with n + 1 strands by adding a frozen stand labelled by 0 on the left and choosing the trivial label. For instance, the images R 1,2 0 of R 1,2 and Φ 1,2,3 0 of Φ 1,2,3 can be respectively depicted as follows:

0 0 (1 0 (2 0 2 0 ) 1 0 ) 0 0 ((1 0 (1 0 2 0 ) (2 0 3 0 ) 3 0 ))
We are now ready to provide an explicit presentation for the PaB-moperad PaB Γ : Theorem 4.2.10. As a PaB-moperad in groupoids with a Γ-action having Pa Γ 0 as Pa Γ 0moperad of objects, PaB Γ is freely generated by E 0 := E 0,1 0 and Ψ 0 := Ψ 0,1,2 0 together with the following relations:

(MP) Ψ 01,2,3 0 Ψ 0,1,23 0 = Ψ 0,1,2 0 Ψ 0,12,3 0 Φ 1,2,3 , as arrows from ((01 0 )2 0 )3 0 to 0(1 0 (2 0 3 0 ))) in PaB Γ (3), (tO) E 01,2 0 = Ψ 0,1,2 0 R 1,2 (Ψ 0,2,1 0 ) -1 E 0,2 0 α • (Ψ 0,2,1 0 R 2,1 (Ψ 0,1,2 0
) -1 ), as arrows from (01 0 )2 0 to (01 0 )2 1 in PaB Γ (2), and where α = (0, 1) ∈ Γ 2 .

Proof. Let Q Γ be the PaB-moperad with the above presentation, and recall that Q 1 is the PaB-moperad with the presentation of Theorem 4.2.4. Our first goal is to show that there is a morphism Q Γ -→ PaB Γ of PaB-moperads, commuting with the Γ-action. We have already seen in the Examples above that there are morphisms E 0 := E 0,1 0 and Ψ 0 := Ψ 0,1,2 0 , in PaB Γ (1) and PaB Γ (2), respectively. We have to prove that they satisfy the mixed pentagon and twisted octogon relation, (MP) and (tO).

These relations are the unique lifts of the similar relations (MP) and (O) in PaB 1 from Theorem 4.2.4, starting at ((01 0 )2 0 )3 0 and (01 0 )2 0 , respectively. They can be depicted as follows:

((0 1 0 ) 2 0 ) 3 0 0 (1 0 (2 0 3 0 )) = ((0 1 0 ) 2 0 ) 3 0 0 (1 0 (2 0 3 0 )) (MP)
and

(0 (0 1 0 ) 1 0 ) 2 0 2 1 = (0 (0 1 0 ) 1 0 ) 2 0 2 1 (tO) By universal property of Q Γ there is a Γ-equivariant morphism of PaB-moperads Q Γ -→
PaB Γ , which is the identity on objects. As before, in order to show that this is an isomorphism, it suffices to show that it is an isomorphism at the level of automorphism groups of an object arity-wise (because all groupoids involved are connected). Let n ≥ 0, let p be the object

(• • • (01 0 )2 0 • • • • • • )n 0 of Q Γ (n) and PaB Γ (n), which lifts the object p = (• • • (01)2 • • • • • • )n of Q 1 (n) ≃ PaB 1 (n).
We want to show that the induced group morphism

Aut Q Γ (n) (p) -→ Aut PaB Γ (n) (p 0 ) = π 1 C(C × , n), p is an isomorphism.
We claim that it fits into a commuting diagram

Aut Q Γ (n) (p) / / π 1 C(C × , n, Γ), p π 1 (C(C × , n), preg ) ≃ o o Aut Q 1 (n) (p) ≃ / / π 1 C(C × , n), p π 1 (C(C × , n)), f (p reg )) ≃ o o Γ n Γ n Γ n
where only the left-most vertical arrows remain to be described. The morphism

Aut Q 1 (n) (p) -→ Γ n .
Let * be the terminal operad in groupoids. We have a * -moperad structure on the following S-module in groupoids: Γ = {Γ n } n≥0 , where we view a group as a groupoid with only one object, and where the action of the symmetric group is by permutation. The moperad structure is described as follows:

• • 0 : Γ n × Γ m -→ Γ n+m is the concatenation of sequences.
• for every i = 0,

• i : Γ n -→ Γ n+m-1 is the partial diagonal (α 1 , . . . , α n ) -→ (α 1 , . . . , α i-1 , α i , . . . , α i m times , α i+1 , . . . , α n ) .
We let the reader check that sending E to 1 ∈ Γ and Ψ to (0, 0) ∈ Γ 2 defines a moperad morphism PaB 1 -→ Γ along the terminal operad morphism PaB -→ * . This in particular induces a group morphism

Aut Q 1 (n) (p) -→ Γ n
for every n ≥ 0. Heuristically, this morphism counts, for every i, and modulo N , the number of times that E 0,i appears in an element of Aut Q 1 (n) (p). It is obviously surjective, and we let the reader check that the following triangle commutes:

Aut Q 1 (n) (p) ≃ / / ( ( ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ π 1 C(C × , n), p Γ n The morphism Aut Q Γ (n) (p) -→ Aut Q 1 (n) (p).
We have a Γ-equivariant morphism of PaB-moperads

Q Γ -→ Q 1
, where Γ acts trivially on Q 1 , which forgets the label on objects, and sends the generators E 0 and Ψ 0 to E and Ψ, respectively. It obviously fits into a commmuting square

Q Γ / / PaB Γ Q 1 / / PaB 1
of PaB-moperads. This induces in particular a group morphism

Aut Q Γ (n) (p) -→ Aut Q 1 (n) (p)
for every n ≥ 0, that fits into a commuting square

Aut Q Γ (n) (p) / / π 1 C(C × , n, Γ), p Aut Q 1 (n) (p) ≃ / / π 1 C(C × , n), p
We now turn to the proof of the fact that the left-most vertical sequence is a short exact sequence, which shows that

Aut Q Γ (n) (p) -→ Aut PaB Γ (n) (p 0 ) = π 1 C(C × , n), p
is an isomorphism. This morphism is injective. Indeed, an automorphism of p in Q Γ (n) can be represented by a finite sequence S of R's, Φ's, E 0 's, Ψ 0 's, and their images under the action of Γ n . The image of such an automorphism under Q Γ -→ Q 1 is represented by the corresponding finite sequence S of R's, Φ's, E's and Ψ's. Every modification of S using the relations (MP) and (O) can be lifted (uniquely) to a modification of S using (MP), (tO), or their images under the action of Γ n . Hence, if an automorphism has trivial image, then it must be trivial. The sequence is exact. We already know from the commuting diagram that the image of

Aut Q Γ (n) (p) in Aut Q 1 (n) (p) lies in the kernel of Aut Q 1 (n) (p) -→ Γ n .
We finally can show that the image is exactly the kernel. Indeed:

• Using (O), every element g in Aut Q 1 (n) (p) can be written represented by a product of Φ's, R's, Ψ's and E's, where the only E's appearing are of the form E 0,i .

• Such an element admits a unique lift to a morphism g in Q Γ (n), with source being p (one just replace Φ's, R's, Ψ's and E's in the expression for g by Φ's, R's, Ψ 0 's and E 0 's, maybe acted on by Γ n in order to get the correct starting objects).

• An element g as above lies in

ker Aut Q 1 (n) (p) -→ Γ n
if and only if for every i, the number of occurence of E 0,i (counted in an algebraic way) is a multiple of N . This tells us in particular that the target of the lifted morphism shall be the same as its source, so that g lies in the kernel. This ends the proof of the Proposition.

Infinitesimal cyclotomic braids

Let Γ = Z/N Z, I a finte set, and let t Γ I (k) be the Lie k-algebra with generators t 0i , (i ∈ I), and t α ij , (i = j ∈ I, α ∈ Z/N Z), and relations:

(NS) t α ij = t -α ji , (NL) [t 0i , t α jk ] = 0 and [t α ij , t β kl ] = 0, (N4T) [t α ij , t α+β ik + t β jk ] = 0, (NT1) [t 0i , t 0j + α∈Z/N Z t α ij ] = 0, (NT2) [t 0i + t 0j + β∈Z/N Z t β ij , t α ij ] = 0,
where i, j, k, l ∈ I are pairwise distinct and α, β ∈ Z/N Z. We will call it the k-Lie algebra of infinitesimal cyclotomic braids.

The above definition is obviously functorial with respect to bijections, exhibiting t Γ (k) as an S-module. It moreover also has the structure of a t(k)-moperad, where partial compositions are defined as follows: for i ∈ I,

• k : t Γ I (k) ⊕ t J (k) -→ t Γ J⊔I-{i} (k) (0, t pq ) -→ t 0 pq (t α jk , 0) -→            t α jk if i / ∈ {j, k} r∈J t α rk if j = i r∈J t α jr if k = i (t 0i , 0) -→      t 0j if j = i p∈J t 0p if j = i and • 0 : t Γ I (k) ⊕ t Γ J (k) -→ t Γ J⊔I (k) (0, t 0p ) -→ t 0p (0, t α pq ) -→ t α pq (t α jk , 0) -→ t α jk (t 0i , 0) -→ t 0i + j∈J t 0 ji
We will call t Γ (k) the moperad of infinitesimal cyclotomic braidings.

We then consider the

CD(k)-moperad of cyclotomic chord diagrams CD Γ (k) := Û(t Γ (k)) in Cat(CoAlg k ).
Remark 4.2.11. Morphisms in CD Γ (k)(n) can be represented as linear combinations of diagrams of chords on n + 1 vertical strands, together with a labelling of the last n strands by elements of Γ. Thus, borrowing the representation of such chord diagrams from [START_REF] Brochier | Cyclotomic associators and finite type invariants for tangles in the solid torus[END_REF] (where the relation to Vassiliev invariants has been explored), the infinitesimal cyclotomic braid relations can be depicted as follows:

a a = a a a = a (NS) a b -a -b + a -a b -b = -a a + b -b + a -a b -b (N4T) + a a -a = + a a -a (NT1) a -a + b a b -a -b = a -a + b b a -b -a (NT2)
Since CD Γ (k) has only one object in each arity, then we have an obvious terminal morphism of moperads ω 3 : Pa Γ 0 -→ Ob(CD Γ (k)), over the operad morphism ω 1 : Pa -→ Ob(CD(k)) from §2.6.4. Hence we can consider the moperad

PaCD Γ (k) := ω ⋆ 3 CD Γ (k)
of parenthesized cyclotomic chord diagrams, over the operad

PaCD(k) = ω ⋆ 1 CD(k) in Cat(CoAss k ).
Example 4.2.12 (Notable arrows of PaCD Γ (k)). We have the following arrows in PaCD Γ (k) [START_REF] Aguirre | Gaudin subalgebras and stable rational curves[END_REF] and PaCD Γ (k)(2), respectively:

K 0,1 = t 01 • 0 0 1 0 1 0 = 0 0 1 0 1 0 b 0,1,2 = 1• (0 0 1 0 ) (1 0 2 0 2 0 )
Remark 4.2.13. Again, there is an action of Γ on PaCD Γ (k) and the elements K 0,1 and b 0,1,2 are generators of the PaCD(k)-moperad PaCD Γ (k) and satisfy the following relations

• b 01,2,3 b 0,1,23 = b 0,1,2 b 0,12,3 a 1,2,3 , • K 01,2 = b 0,1,2 X 1,2 (b 0,2,1 ) -1 K 0,2 α • b 0,2,1 X 2,1 (b 0,1,2 ) -1 , for α = (0, 1) ∈ Γ 2 , • b 0,1,2 X 1,2 (b 0,2,1 ) -1 α • (b 0,2,1 X 2,1 (b 0,1,2 ) -1 ) = 1, • K 0,1 + N α=1 α • (Ad(b 0,1,2 )(H 1,2 0 )) + Ad b 0,1,2 X 1,2 (b 0,2,1 ) -1 (K 0,2 ) = 0.

Cyclotomic associators

We borrow an expand the terminology from §2.6.5 and §4.1.5.

If P -→ Q is a morphism between operads in C, M is a P-moperad, and N a Q-moperad, then we will consider moperad mophisms M -→ N in the category of P-moperads (via the restriction functor), and will simply refer to them as moperad morphisms if the context is clear.

For an operad O in C, we denote Mop(O) the category of O-moperads. Given the choice of an automorphism g of O, we will denote by Aut + (Mop(O),g) (M) the group of automorphisms of the O-moperad M with respect to the automorphism g and Iso + (Mop(P,Q),Φ) (M, N ), for the set of isomorphisms beween moperads M and N with respect to an operad isomorphism Φ between P and Q.

In addition to the superscript "+", we may also add a superscript "Γ" when only considering morphisms that are Γ-equivariant.

The rest of this section can be seen as an operadic reformulation of (some parts of) [START_REF] Enriquez | Quasi-reflection algebras and cyclotomic associators[END_REF]. ). Denote t 0 2,N (k) for the free Lie algebra f(k)(t 0 01 , t 0 12 , ..., t N -1 12 ). We have the following theorem:

Theorem 4.2.15. There is a one-to-one correspondence between elements of Ass Γ (k) and those of the set Ass Γ 1 (k) consisting on triples (λ, Φ, Ψ) ∈ ×k × × exp( t0

3 (k)) × exp( t0 2,N (k)), such that (λ, Φ) ∈ Ass(k) and Ψ satisfies (MP) Ψ 01,2,3 Ψ 0,1,23 = Ψ 0,1,2 Ψ 0,12,3 {Φ 1,2,3 }, (O) {e λ N t01 }Ψ 0,1,2 0 {e λ 2 t 0 12 }(Ψ 0,2,1 0 ) -1 {e λ N t02 }Ψ 0,2,1 a {e λ 2 t a 12 }Ψ 0,1,2 a = 1, where a = 1 ∈ Z/N Z.
Proof. Let F be a k-associator PaB(k) -→ GPaCD(k) and let G be an isomorphism

PaB Γ (k) -→ GPaCD Γ (k)
of ( PaB(k), GPaCD(k))-moperads which is the identity on objects and which is compatible with F . It corresponds to a unique morphism G : PaB Γ -→ GPaCD Γ (k). From the presentation of PaB Γ , we know that G is uniquely determined by the images of E 0,1 0 ∈ Hom PaB Γ (k)(1) (01 0 , 01 1 ) and Ψ 0,1,2 0 ∈ Hom PaB Γ (k)(2) ((01 0 )2 0 , 0(1 0 2 0 )) at the morphisms level.

(O) x µ g(x, y)y λ+1 2 g(x -1 y -1 ) -1 (x -1 y -1 ) µ g(x -1 y -1 , y)y λ-1 2 g(x, y) -1 = 1 in F 2 (φ N , k), (MP) g(x 02 x 12 , x 23 )g(x 01 , x 12 x 13 ) = g(x 01 , x 12 )g(x 01 x 02 , x 13 x 23 )f (x 12 , x 23 ) in P 4 (φ 3,N , k).

The set GT Γ (k) has a internal composition law defined by

(λ 1 , µ 1 , f 1 , g 1 ) * (λ 2 , µ 2 , f 2 , g 2 ) = (λ, µ, f, g),
given as follows. Write y(α) = x α yx -α and identify (λ, µ, f, g) with (a, k, f, g)

where µ = (a, k) ∈ k(N ) so λ = ã + N k. Then (a 1 , k 1 , f 1 , g 1 )(a 2 , k 2 , f 2 , g 2 ) = (a, k, f, g), where a = a 1 a 2 , k is such that ã + N k = (ã 1 + N k 1 )(ã 2 + N k 2 ), f (x, y) is given by f (x, y) = f 2 (x λ1 , f 1 (x, y)y λ1 f 1 (x, y) -1 ) • f 1 (x, y),
and g(X|y(0), . . . , y(N -1)) = g 1 (X|y(0), . . . , y(N -1))• g 2 X ã1+N k1 | Ad(g 1 (X|y(0), . . . , y(N -1)))(y(0) ã1+N k1 ), Ad X k1 g 1 (X|y(ã 1 ), . . . , y(ã 1 + N -1)) (y(ã 1 ) ã1+N k1 ), . . . , Ad X (N -1)k1 g 1 (X|y((N -1)ã 1 ), . . . , y((N -1)ã 1 + N -1)) ((y(N -1)ã 1 ) ã1+N k1 ) .

The group GT Γ (k) acts on Ass Γ (k) on the left as follows:

(λ, µ, f, g) * (a ′ , λ ′ , Φ ′ , Ψ ′ ) = (μa ′ , [µ]λ ′ , Φ ′′ , Ψ ′′ ), (4.12) 
where

) (recall that λ = [µ], so if µ = (a, k), then λ = ã + N k; also μ = a)
. It was shown in [START_REF] Enriquez | Quasi-reflection algebras and cyclotomic associators[END_REF] that this action is free and transitive. Proof. The map GT Γ (k) -→ GT Γ (k) is constructed as follows. Suppose that we have an automorphism G of PaB Γ (k) which is the identity on objects and which is compatible with an automorphism F of the operad PaB(k). F is given by the pair (λ, f ) ∈ GT(k), and G is determined by the images of the two generators E 0 and Ψ 0 , in PaB Γ (1) and PaB Γ (2), respectively. Thus, an automorphism (F, G) in GT Γ (k) is uniquely determined by elements

(λ, µ, f, g) ∈ k × × k(N ) × × F 2 (k) × F 2 (φ N , k) such that • F (R 1,2 ) = (R 1,2 ) λ , • F (Φ 1,2,3 ) = f (x 12 , x 23 ) • Φ 1,2,3 , • G(Ψ 0,1,2 0 ) = g(x N |y(0), . . . , y(N -1)) • Ψ 0,1,2 0 •, • G(E 0,1 0 ) = µ • E 0,1 0 .
The relation between a and λ was explained in the proof of Theorem 4.2.15. Then, the defining relations in the presentation of PaB Γ (k) imply that the tuple (λ, µ, f, g) satisfies relations (O) and (MP). The assignment (Ψ, F ) → (λ, µ, f, g) then defines a map GT Γ (k) -→ GT Γ (k).

Let's now prove that this map is a group morphism. We will show that the composition of automorphisms in Aut + Mop( PaB(k)) ( PaB Γ (k)) corresponds to the composition law of the group GT Γ (k). As before, the composition of automorphisms F 1 and F 2 in Aut + Op Ĝ ( PaB(k)) corresponds to the composition law in GT(k), that is, the associated couples (λ, f 1 ) and (µ,

f 2 ) in k × × F2 (k) satisfy (F 1 • F 2 )(R 1,2 ) = (R 1,2 ) λµ (F 1 • F 2 )(Φ 1,2,3 ) = Φ 1,2,3 • (f 2 (x λ , f 1 (x, y)y λ f 1 (x, y) -1 ) • f 1 (x, y)),
(here F 2 is generated by x := σ 2 1 and y := σ 2 2 ). We also already showed that any two automorphisms G and H in the group Aut + Mop( PaB(k)) ( PaB Γ (k)), depending on Ψ 1 and Ψ 2 respectively, are associated to couples (µ 1 , g 1 (x N |y(0), . . . , y(N -1))) and (µ 2 , g 2 (x N |y(0), . . . , y(N -1))) where g 1 and g 2 are elements of in F 2 (φ N , k). Analogously to relation (2.15), as E 0,1 0 is an arrow from (01 0 )2 0 to (01 α )2 0 for some primitive element α ∈ Γ, then E 0,1 0 is sent via G to

(E 0,1 0 ) kN • E 0,1 0 for some k ∈ Z.
Let us now place ourselves in the group A = Aut PaB Γ (k)(2) ((01 0 )2 0 , (01 0 )2 0 ). In A, we have

x N 01 = ((E 0,1 0 ) N )2 = µ((E 0,1 0 ) N , 2) = µ • 0 (E 0,1 0 ) N
We then have F (x N 01 ) = (x N 01 ) λ for some invertible λ ∈ k × . Next, let us compute F (x 0 12 ). Again, analogously to relation (2.16), in A, the element (x 0 12 ) 2 can be decomposed as

(01 0 )2 0 Φ 0,1,2 / / 0(1 0 2 0 ) µ(0,(R 1,2 0 ) 2 ) / / 0(1 0 2 0 ) (Φ 0,1,2 ) -1

Torsors

Finally, we promote this correspondence into a torsor isomorphism.

Theorem 4.2.22. There is a torsor isomorphism

( GT Γ (k), Ass Γ (k), GRT Γ (k)) -→ ( GT Γ (k), Ass Γ (k), GRT Γ (k)). (4.18)
Proof. This is a summary of most of the above results. First of all, we know that

( GT Γ (k), Ass Γ (k), GRT Γ (k)
) has a natural torsor structure and that ( GT

Γ (k), Ass Γ (k), GRT Γ (k)
) is a torsor by [START_REF] Enriquez | Quasi-reflection algebras and cyclotomic associators[END_REF]. Next, we proved in Proposition 4.2.18 that there are group isomorphisms between GT Γ (k) and GT Γ (k) and in Proposition 4.2.21 that there are group isomorphisms between GRT Γ (k) and GRT Γ (k). Thus, it is sufficient to show that the actions of GT The boundary ∂C(T, n, Γ) = C(T, n, Γ) -C(T, n, Γ) is made of the following irreducible components: for any partition

J 1 • • • J k of {1, ..., n} there is a component ∂ J1,••• ,J k C(T, n, Γ) ∼ = k i=1 (C(C, J i )) × C(T, k, Γ) .
The inclusion of boundary components provides C(T, -, Γ) with the structure of a module over the operad C(C, -) in topological spaces. ). Write 0 := ( 0, 0). Let R 1,2 0 and Φ 1,2,3 0 be the unique lifts of R 1,2 and Φ 1,2,3 ∈ PaB starting at 1 0 2 0 and (1 0 2 0 )3 0 respectively. These paths can be depicted as follows:

R 1,2 0 = 1 0 2 0 2 0 1 0 and Φ 1,2,3 0 = (1 0 1 0 2 0 ) (2 0 3 0 3 0 ) Next, for 1 ≤ i = j = k ≤ n and α ∈ Γ, let θ(α i ) • R i,j 0 and θ(α i ) • Φ i,j,k 0
be the unique lifts of R i,j and Φ i,j,k ∈ PaB starting at i α j 0 and (i α j 0 )k 0 respectively. Additionnally, we also have two morphisms, A 1,2 0 and B 1,2 0 from (1 0 2 0 ) to (1 ( 1, 0) 2 0 ) and from (1 0 2 0 ) to (1 ( 0, 1) 2 0 ) respectively which are the following paths

A 0 1,2 B 0 1,2
They can be alternatively depicted as follows:

1 0 1 ( 1, 0) 2 0 2 0 A 1,2 0 1 0 1 ( 0, 1) 2 0 2 0 B 1,2 0
Now let p, q ≥ 1. We introduce the following notation:

(A 1,2 0 ) (p,0)1 := → k=0,...,p-1 (θ(( k, 0) 1 )•A 1,2 0 ) = A 1,2 0 (θ(( 1, 0) 1 )•A 1,2 0 )(θ(( 2, 0) 1 )•A 1,2 0 ) • • • (θ((p -1, 0) 1 )•A 1,2 0 ),
which is an element in Hom PaB Γ eℓℓ (2) ((1 0 , 2 0 ), (1 ( p, 0) , 2 0 )) and

(B 1,2 0 ) (0,q)1 := → k=0,...,q-1 (θ(( 0, k) 1 )•B 1,2 0 ) = B i (θ(( 0, 1) 1 )•B 1,2 0 )(θ(( 0, 2) 1 )•B 1,2 0 ) • • • (θ(( 0, q -1) 1 )•B 1,2 0 )
which is an element in Hom PaB Γ eℓℓ (2) ((1 0 , 2 0 ), (1 ( 0,q) , 2 0 )). (tN1) (A) (M,0) = Id 1020,30 , where [START_REF] Deligne | Le groupe fondamental de la droite projective moins trois points[END_REF] , where

A := Φ 1,2,3 0 A 1,23 0 θ(( 1, 0) 1 )(R 1,23 0 Φ 2,3,1 0 A 2,31 0 θ(( 1, 0) 2 )(R 2,31 0 Φ 3,1,2 A 3,12 0 θ(( 1, 0) 3 R 3,12 0 )), (tN2) (B) (0,N ) = Id 1020,
B := Φ 1,2,3 0 B 1,23 0 θ(( 0, 1) 1 )(R 1,23 0 Φ 2,3,1 B 2,31 0 θ(( 0, 1) 2 )(R 2,31 0 Φ 3,1,2 B 3,12 0 θ(( 0, 1) 3 R 3,12 0 )), (tE) R 1,2 ( 1, 1) R 2,1 ( 1, 1) = Φ 1,2,3 B 1,23 0 θ(( 0, 1) 1 )((Φ 1,2,3 0 ) -1 (R 1,2 0 ) -1 Φ 2,1,3 0 (A 2,13 0 ) -1 θ((-1, 0) 2 )X) where X = (Φ 2,1,3 0 ) -1 (R 2,1 0 ) -1 Φ 1,2,3 0 (B 1,23 0 
) -1 θ(( 0, -1) 1 )((Φ 1,2,3 0 ) -1 R 1,2 0 Φ 2,1,3 0 A 2,13 0 Y ) and Y = θ(( 1, 0) 2 )((Φ 2,1,3 0 ) -1 R 2,1 0 ) as arrows from (1 0 2 0 )3 0 to (1 0 2 0 )3 0 in PaB Γ eℓℓ (3).
Proof. Let Q Γ be the PaB-module with the above presentation, Q be the PaB-module with the presentation in Theorem 4.1.3, let n ≥ 1 and let p ∈ Q Γ (n). By universal property of Q Γ , there is a morphism of PaB-modules Q Γ -→ PaB Γ eℓℓ which is the identity on objects. Indeed, relations (tN1), (tN2), (tE) are satisfied by PaB Γ eℓℓ . For instance, A can be depicted as follows

(1 0 (1 α 2 0 ) 2 α ) 3 0 3 α A 1,23 α A 2,31 α A 3,12 α
and the right hand side of relation (tE) can be pictured as follows in the open twisted configuration space:

As before, we are left to prove that the morphism

Aut Q Γ (n) (p) -→ Aut PaB Γ eℓℓ (n) (p) is a group isomorphism.
On the one hand, by definition of PaB Γ eℓℓ , we know that Aut PaB Γ eℓℓ (n) (p) is exactly the fundamental group π 1 ( C(T, n, Γ), p), where p is in the boundary of C(T, n, Γ). By the same argument as before, we have isomorphisms

π 1 ( C(T, n, Γ), p) ≃ π 1 (C(T, n, Γ), p reg ) and π 1 ( C(T, [n], Γ), [p]) ≃ π 1 (C(T, [n], Γ), [p reg ]). Consider the Γ n-1 -cover map f : C(T, n, Γ) -→ C(T, n). Now, one can identify Aut PaB Γ eℓℓ (n) (p) with the kernel of the surjective map Aut PaB eℓℓ (n) (f (p)) -→ Γ n /Γ and the isomorphism Aut Q(n) (f (p)) -→ Aut PaB eℓℓ (n) (f (p)) commutes with the projections to Γ n /Γ. We obtain a commutative diagram Aut Q Γ (n) (p) / / π 1 C(T, n, Γ), p π 1 (C(T, n, Γ), p reg ) o o Aut Q(n) (f (p)) / / π 1 C(T, n), f (p) π 1 (C(T, n), f (p reg )) o o Γ n /Γ Γ n /Γ Γ n /Γ Thus, in order to show that Aut Q Γ (n) (p) -→ Aut PaB Γ eℓℓ (n) (p) is an isomorphism, it suffices to show that Aut Q Γ (n) (p) is isomorphic to the kernel of the projection Aut Q(n) (f (p)) -→ Γ n /Γ.
Let us first show that the map φ :

Aut Q Γ (n) (p) -→ Aut Q(n) (f (p)) is injective. By definition, Q Γ is generated in the morphisms level by A 1,2
0 and B 1,2 0 . The map φ sends A 1,2 0 and B 1,2 0 to the generators A and B in PaB eℓℓ [START_REF] Aguirre | Gaudin subalgebras and wonderful models[END_REF].

An element of Aut Q Γ (n) (p) will be given by some string, which we will denote g, in the generators A ± of PaB Γ eℓℓ and the liftings of R, Φ ∈ PaB. Let g be the image by φ of some string h in Aut Q Γ (n) (p). Now, to ask g to be trivial means that there is a finite number of operations involving only relations (N1), (N2),and (E) in PaB eℓℓ taking the string g to the identity map. But these relations in PaB eℓℓ are the images of the corresponding relations, seen as relations in PaB Γ eℓℓ . Thus, we conclude that the procedure that takes f to the identity map is in fact the image of a procedure taking h to the identity map in Aut Q Γ (n) (p). This shows the injectivity of φ.

Finally, the map φ is surjective in the kernel of the projection

φ 1 : Aut Q(n) (f (p)) -→ Γ n /Γ.
Recall the presentation of B1,n : its generators are σ i (i = 1, ..., n -1), A i , B i (i = 1, ..., n), C jk (1 ≤ j < k ≤ n) and its relations are:

• σ i σ i+1 σ i = σ i+1 σ i σ i+1 , for i = 1, ..., n -2, • σ i σ j = σ j σ i , for 1 ≤ i < j ≤ n, • σ -1 i X i σ -1 i = X i+1 , σ i Y i σ i = Y i+1 , for i = 1, ..., n -1, • (σ i , X j ) = (σ i , Y j ) = 1, for i ∈ {1, ..., n -1}, j ∈ {1, ..., n}, j = i, i + 1, • σ 2 i = C i,i+1 C i+1,i+2 C -1 i,i+2 , for i = 1, ..., n -1, • (A i , A j ) = (B i , B j ) = 1, for any i, j, A 1 = B 1 = 1, • (B k , A k A -1 j ) = (B k B -1 j , A k ) = C jk , for 1 ≤ j < k ≤ n, • (A i , C jk ) = (B i , C jk ) = 1, for 1 ≤ i ≤ j < k ≤ n, with X i = A i A -1 i+1 , Y i = B i B -1 i+1 for i = 1, ..., n (we set A n+1 = B n+1 = C i,n+1 = 1)
. In particular, these relations imply

• C jk = σ j,j+1...k ...σ j+n-k,j+n-k+1...n σ j,j+1...n-k+j+1 ...σ k-1,k...n ,
where σ i,i+1...j = σ j-1 ...σ i . Recall that Aut Q(n) (f (p)) is nothing but the kernel of B 1,n -→ Γ sending X i to the class of (1, 0), Y i to the class of (0, 1) and σ i to the class of (0, 0). Thus, the kernel kerφ 1 is generated by elements A M i , B N i and R 1,2 α . If we denote z 0 i for the marked points of the form

z i = a i + τ b i , where 0 < a n < • • • < a 1 < 1/M and 0 < b n < • • • < b 1 < 1/N and z α i for z 0 i + α with α ∈ Γ, then the orbit of z 0 i is Γ • z 0 i = {z 0 i + α; α ∈ Γ}.
Then, we can represent the elements A M := A M 1 and B N = B N 1 in the open twisted configuration space as follows

z 2 0 z 1 0 z 1 (0,1) B N z 1 (1,0) A M
These elements A M and B N are precisely the images of the generators A 1,2 0 and B 1,2

0 in Q Γ . Thus, any string in Aut Q(n) (f (p)) contained in the kernel of φ 1 is the image of some string in Aut Q Γ (n) (p). In conclusion, the map φ : Aut Q Γ (n) (p) -→ Aut Q(n) (f (p)
) is a bijection in the kernel of φ 1 . So, by commutativity of the above diagram, we obtain an isomorphism 

Aut Q Γ (n) (p) -→ Aut PaB Γ eℓℓ (n) (p)
(PaB Γ eℓℓ ) (m) k := PaB Γ eℓℓ (k)/(I m (k) • PaB Γ eℓℓ (k)).
By taking the inverse limit over m of these inverse system, we get a PaB(k)-module in

Cat(CoAss k ) PaB Γ eℓℓ (k) := lim ←- ((PaB Γ eℓℓ ) (m) k ).

The Lie algebras t Γ 1,n (k) and tΓ 1,n (k) of infinitesimal twisted elliptic braidings

In this paragraph, Γ can be replaced by any finite abelian group (with the additive notation). Definition 4.3.3. For any integer n ≥ 1 we define t Γ 1,n (k) to be the bigraded k-Lie algebra with generators x 1 , . . . , x n in degree (1, 0), y 1 , . . . , y n in degree (0, 1), t α ij (α ∈ Γ, 1 ≤ i = j ≤ n) in degree (1, 1), and relations

(NS) t α ij = t -α ji , for i = j , (NL) [t α ij , t β kl ] = 0, for card{i, j, k, l} = 4, (N4T) [t α ij , t α+β ik + t β jk ] = 0, for card{i, j, k} = 3, (Ell1) [x i , y j ] = [x j , y i ] = α∈Γ t α ij , for i = j (Ell2) [x i , x j ] = [y i , y j ] = 0 (NEll1) [x i , y i ] = -j:j =i α∈Γ t α ij , (NEll2) [x i , t α jk ] = [y i , t α jk ] = 0, for card{i, j, k} = 3, (NEll3) [x i + x j , t α ij ] = [y i + y j , t α ij ] = 0, for i = j,
for all α, β ∈ Γ. We will call t Γ 1,n (k) the k-Lie algebra of infinitesimal twisted elliptic braidings.

Observe that i x i and i y i are central in t Γ 1,n . Then we denote by tΓ 

t α ij -→ 1 # ker(ρ) β∈coker(ρ) t ρ(α)+β ij . Proof. Let us prove that relation [x i , y j ] = α∈Γ t α ij
, where i = j, is preserved by φ. On the one hand [φ(x i ), φ(y j )] = α∈Γ2 t α ij . On the other hand

φ([x i , y j ]) = α∈Γ1 φ(t α ij ) = α∈Γ1 1 # ker(ρ) β∈coker(ρ) t ρ(α)+β ij = α∈Γ2 t α ij .
The last equality holds because ρ(α) is in the image of ρ and β is not. The fact that remaining relations are preserved is immediate.

When ρ is not surjective it depends on the choice of a section coker(ρ) -→ Γ 2 . Comparison morphisms commute with insertion-corpoduct morphisms. Moreover, both are bigraded and pass to the quotient by i x i , i y i . When k = C we write t Γ 1,n := t Γ 1,n (C) and tΓ 1,n := tΓ 1,n (C).

Lemma 4.3.5. t Γ 1,n (k) admits the following presentation : generators are x i , y i (i = 1, . . . , n) t α ij (α ∈ Γ) and relations are

• t α ij = t -α ji (i = j) ;, • [t α ij , t β kl ] = 0 (card{i, j, k, l} = 4), • [t α ij , t α+β ik + t β jk ] = 0 (card{i, j, k} = 3), • [x i , y j ] = [x j , y i ] = α∈Γ t α ij (i = j) • [x i , x j ] = [y i , y j ] = 0 ; • [ j x j , y i ] = [ j y j , x i ] = 0 (for any i) • [x i , t α jk ] = [y i , t α jk ] = 0 (card{i, j, k} = 3),
Proof. If x i , y i and t α ij satisfy the initial relations, then

[ j x j , y i ] = [x i , y i ] + [ j =i x j , y i ] = - j:j =i α∈Γ t α ij + j:j =i α∈Γ t α ij = 0.
Now, if x i , y i and t α ij satisfy the above relations, then relations

[ j x j , y i ] = 0 and [x j , y i ] = α∈Γ t α ij , for i = j, imply that [x i , y i ] = -j:j =i α∈Γ t α ij . Now, relations [ k x k , y j ] = 0 and [ k x k , x i ] = 0 imply that [ k x k , α∈Γ t α ij ] = 0. Thus, as [x i , t α jk ] = 0 if card{i, j, k} = 3, we obtain relation [x i + x j , t α ij ] = 0, for i = j.
In the same way we obtain [y i + y j , t α ij ] = 0, for i = j.

The t(k)-module t Γ 1 (k) of infinitesimal twisted elliptic braidings

The collection t Γ 1 (k) of the Lie algebras t Γ 1,n , for n ≥ 1 is provided with the structure of a t(k)-module in Lie k when endowed with the partial operadic module composition structures given as follows.

• k : t Γ 1,I (k) ⊕ t J (k) -→ t Γ 1,J⊔I-{i} (k) (0, t αβ ) -→ t αβ (t α ij , 0) -→            t α ij if k / ∈ {i, j} p∈J t α pj if k = i p∈J t α ip if j = k (x i , 0) -→      x i if k = i p∈J x p if k = i (y i , 0) -→      y i if k = i p∈J y p if k = i
These operadic compositions also induce an operad module structure on the collection of the Lie algebras tΓ 1,n (k). We will call tΓ 1 (k) the module of infinitesimal twisted elliptic braidings and, for CD Γ eℓℓ (n) := Û( tΓ 1,n (k)), the corresponding module in associative algebras CD Γ eℓℓ := {CD Γ eℓℓ (n)} n≥1 will be called the module of Γ-labelled elliptic chord diagrams. The elements of the module CD Γ eℓℓ can be depicted as Γ-labelled elliptic chords on n vertical strands. Thus, by combining the different representations we used in the cyclotomic and elliptic cases, we can depict the labelled elliptic chord relations as follows (we denote A + = x and A -= y): 

A - A + - A + A - = A + A - - A - A + (Ell1b) = a∈Γ a -a A ± A ± = A ± A ± (Ell2b) A + A - i -A - A + i = - j;j =i a∈Γ a -a i j (NEll1) A ± a -a = A ± a -a (NEll2) A ± a -a + A ± a -a = A ± a -a + A ± a -a ( 
Mor PaCD Γ eℓℓ (k)(n) (p, q) := Mor CD Γ eℓℓ (k)(n) (pt, pt) = Û( tΓ 1 (k)).
(k)(3) X 1,2 0 = 1• 1 0 2 0 2 0 1 0 H 1,2 0 = t 0 12 • 1 0 1 0 2 0 2 0 a 1,2,3 0 = (1 0 1 0 2 0 ) (2 0 3 0 3 0 ) X 1,2 0,eℓℓ = x 1 • 1 0 1 ( 1, 0) 2 0 2 0 Y 1,2 0,eℓℓ = y 1 • 1 0 1 ( 0, 1)
à = a 1,2,3 0 X 1,23 eℓℓ θ(( 1, 0) 1 )(X 1,23 0 a 2,3,1 0 X 2,31 eℓℓ θ(( 1, 0) 2 )(X 2,31 0 Z 1 ))
and

Z 1 = a 3,1,2 0 X 3,12 eℓℓ θ(( 1, 0) 3 )X 3,12 0 (tN2) B(0,N) = 1, where B = a 1,2,3 0 Y 1,23 eℓℓ θ(( 1, 0) 1 )(X 1,23 0 a 2,3,1 0 Y 2,31 eℓℓ θ(( 1, 0) 2 )(X 2,31 0 Z 2 )),
and 

Z 2 = a 3,1,2 0 Y 3,12 eℓℓ θ(( 1, 0) 3 )X 3,12 0 (tM) X 1,2 0 X 2,1 0 = a 1,2,3 0 Y 1,23 0,eℓℓ θ(( 0, 1) 1 )((a 1,2,3 0 ) -1 X 1,2 0 a 2,1,3 0 (X 2,13 0,eℓℓ ) -1 θ((-1, 0) 2 )X), where X = (a 2,1,3 0 ) -1 X 1,2 0 a 1,2,3 0 (Y 1,23 0,eℓℓ ) -1 θ(( 0, -1) 1 )((a 1,2,3 0 ) -1 X 1,2 0 a 2,1,3 0 X 2,13 0,eℓℓ Y ), and 
Y = θ(( 1, 0) 2 )((a 2,1,3 0 ) -1 X 1,2 0 ) as arrows from (1 0 2 0 )3 0 to (1 0 2 0 )3 0 in PaB Γ eℓℓ (3).

Twisted elliptic associators

( PaB Γ eℓℓ (k), GPaCD Γ eℓℓ (k)) Γ .
Theorem 4.3.10. There is a one-to-one correspondence between elements of Ell Γ (k) and those the set Ell Γ (k) consisting on quadruples (µ, Φ, A + , A -), where (µ, Φ) ∈ Ass(k) and A ± ∈ exp( tΓ 1,2 (k)), such that:

(tN1) ( Ã+ ) (M,0) = 1 where

Ã+ = {Φ 1,2,3 }A 1,23 + θ(( 1, 0) 1 )({e µ(t 0 12 +t 0 13 )/2 }{Φ 2,3,1 }A 2,31 + θ(( 1, 0) 2 )({e µ(t 0 23 +t 0 12 )/2 }Z))
and

Z = {Φ 3,1,2 }A 3,12 + θ(( 1, 0) 3 {e µ(t 0 31 +t 0 32 )/2 }) (tN2) ( Ã-) (0,N ) = 1
where

Ã-= {Φ 1,2,3 }A 1,23 -θ(( 0, 1) 1 )({e -µ(t 0 12 +t 0 13 )/2 }{Φ 2,3,1 }A 2,31 -θ(( 0, 1) 2 )({e -µ(t 0 23 +t 0 12 )/2 }Z))
and

Z = {Φ 3,1,2 }A 3,12 -θ(( 0, 1) 3 {e -µ(t 0 31 +t 0 32 )/2 }) (tM) {e µt 0 12 } = {Φ}A 1,23 -θ(( 0, 1) 1 )({Φ} -1 {e -µt 0 12 /2 }{Φ 2,1,3 }(A 2,13 + ) -1 θ((-1, 0) 2 X))
, where

X = {(Φ 2,1,3 ) -1 }{e -µt 0 12 /2 }{Φ}(B 1,23 -) -1 θ(( 0, -1) 1 )({Φ} -1 {e µt12/2 (Φ 2,1,3 )}(A 2,13 + Y ))
and

Y = θ(( 1, 0) 2 )({(Φ 2,1,3 ) -1 e µt12/2 })
Proof. This fact is a consequence of Theorem 4.3.2. Indeed, any morphism from PaB Γ eℓℓ (k) to an operad Q is determined completely by the images of the generators of PaB Γ eℓℓ (k) satisfying the images in Q of relations (tN1), (tN2) and (tE), which, for the case Q = GPaCD Γ eℓℓ (k), are precisely the relations in the above theorem. In Section 7.2 we will give an example of such mathematical object. The image of the categorical composition of GT Γ eℓℓ (k) and endows GT Γ eℓℓ (k) with a group structure which can explicitely be described as follows.

For (λ, f, g ± ), (λ ′ , f ′ , g ′ ± ) ∈ GT Γ eℓℓ (k), we set (λ, f, g ± )(λ ′ , f ′ , g ′ ± ) := (λ ′′ , f ′′ , g ′′ ± )
where (λ ′′ , f ′′ ) is as in (2.6.11) and Proof. This is a consequence of Theorem 4.3.2. Indeed, from the presentation of PaB Recall that the image of the action of GT(k) on Ass(k) under correspondences 2.6.8 and 2.6.12 yields an action of GT(k) on Ass(k), defined as in 2.6.8. For (λ, f, g

g ′′ ± (X, Y, P α ; α ∈ Γ) = g ± (g ′ + (X, Y, P α ; α ∈ Γ), g ′ -(X, Y, P α ; α ∈ Γ), (P α ) λ ; α ∈ Γ).
+ , g -) ∈ GT Γ ell (k) and (µ, Φ, A + , A -) ∈ Ell Γ (k), we set (λ, f, g + , g -) * (µ, Φ, A + , A -) := (µ ′ , Φ ′ , A ′ + , A ′ -)
where A ′ ± := g ± (A + , A -, (P α ) λ ; α ∈ Γ). This is precisely the image of the action of GT Γ eℓℓ (k) on Ell Γ (k) under the above correspondence.

The image of the group law in GRT Γ eℓℓ (k) is described as follows. Define (GRT Γ ell ) 1 (k) as the set of all (g, u + , u -), such that g ∈ GRT 1 (k), u ± ∈ tΓ 1,2 (k), satisfying the following relations:

M-1 i=0 (θ(( ī, 0) 123 ) • g 1,2,3 u 1,23 + θ(( 1, 0) 1 )(g 1,2,3 ) -1 + g 2,1,3 u 2,13 + θ(( 1, 0) 2 )(g 2,1,3 ) -1 + u 3,12 + = 0, (tN1) N -1 i=0 (θ(( 0, ī 
) 123 ) • g 1,2,3 u 1,23 -θ(( 0, 1) 1 )(g 1,2,3 ) -1 + g 2,1,3 u 2,13 -θ(( 0, 1) 2 )(g 2,1,3 ) -1 + u 3,12 - = 0, (tN2) 
g 1,2,3 u 1,23 + θ(( 1, 0) 1 )(g 1,2,3 ) -1 u 3,12 + -u 3,12 + θ(( 1, 0) 3 ) • g 1,2,3 u 1,23 + θ(( 1, 0) 1 )(g 1,2,3 ) -1 = 0, (tL1) 
g 1,2,3 u 1,23 -θ(( 0, 1) 1 )(g 1,2,3 ) -1 u 3,12 -u 3,12 -θ(( 0, 1) 3 ) • g 1,2,3 u 1,23 -θ(( 0, 1) 1 )(g 1,2,3 ) -1 = 0, (tL2)

t 0 12 =g 1,2,3 u 1,23 + θ(( 1, 0) 1 ) • (g 1,2,3 ) -1 g 2,1,3 u 2,13 -θ(( 0, 1) 2 )(g 2,1,3 ) -1 (tE) -g 2,1,3 u 2,13 -θ(( 0, 1) 2 ) • g 2,1,3 ) -1 g 1,2,3 u 1,23 + θ(( 1, 0) 1 )(g 1,2,3 ) -1 (relations in tΓ 1,3 (k)). Set (g 1 , u 1 + , u 1 -) * (g 2 , u 2 + , u 2 -) := (g, u + , u -), where u ± (x, y, t α ; α ∈ Γ) := u 1 ± (u 2 + (x, y, t α ; α ∈ Γ), u 2 -(x, y, t α ; α ∈ Γ), t α ; α ∈ Γ), (4.19) 
where tΓ 1,2 (k) is viewed as the Lie algebra generated by x, y, t α , for α ∈ Γ, with relation

[x, y] = α∈Γ t α . The group k × acts on (GRT Γ ell ) 1 (k) by u ± (x, y, t α ; α ∈ Γ) := u 1 ± (u 2 + (x, y, t α ; α ∈ Γ), u 2 -(x, y, t α ; α ∈ Γ), t α ; α ∈ Γ), (4.20) 
where

• c • g is as above,

• (c • u + )(x, y, t α ; α ∈ Γ) := u + (x, c -1 y, ct α ; α ∈ Γ), • (c • u -)(x, y, t α ; α ∈ Γ) := cu -(x, c -1 y, ct α ; α ∈ Γ).
We then set

GRT Γ ell (k) := (GRT Γ ell ) 1 (k) ⋊ k × . The image in GRT Γ ell (k) of the group law in GRT Γ
eℓℓ (k) is exactly the group law defined by (4. [START_REF] Broedel | Twisted elliptic multiple zeta values and non-planar one-loop open-string amplitudes[END_REF]) and (4.20). One can establish then the following torsor conjecture. 

Γ eℓℓ (k), Ell Γ (k), GRT Γ eℓℓ (k)) is a torsor.
If the above conjecture is true, then a consequence is that there is torsor isomorphism

( GT Γ eℓℓ (k), Ell Γ (k), GRT Γ eℓℓ (k)) -→ ( GT Γ eℓℓ (k), Ell Γ (k), GRT Γ eℓℓ (k)). (4.21) 
Chapter 5

Operads and higher genus associators

This chapter consists of the first part of a study devoted to the rational homotopy theory of modules over (framed) E 2 -operads associated to genus g oriented surfaces. On the one hand, we aim to study the characterization of the elliptic Grothendieck-Teichmüller group as the group of homotopy automorphisms in the homotopy category of D 2 -modules of some rationalization of the module D 1,2 of little 2-disks on a torus. On the other hand, we aim to study the characterization of higher genus Grothendieck-Teichmüller groups as groups of homotopy automorphisms in the homotopy category of D 2 -modules of some rationalization of the module D f g,2 of framed little 2-disks on a compact orientable genus g topological surface Σ g .

In this chapter we will concentrate on the higher genus story. After briefly recalling framed Fulton-MacPherson compactifications and their associated operadic structures, we introduce a full suboperad PaB f ⊂ π 1 (D f 2 ) of framed parenthesized braidings by restricting the object sets of the groupoid so that B(PaB

f ) ∼ -→ B(π 1 (D f 2 )
). We then construct the corresponding operad PaCD f of parenthesized framed chord diagrams, framed associators and framed Grothendieck-Teichmüller groups in terms of PaB f and PaCD f . We then turn to the genus g situation and we introduce a full submodule PaB f g ⊂ π 1 (D f g,2 ) of genus g framed parenthesized braidings by restricting the object sets of the groupoid so that

B(PaB f g ) ∼ -→ B(π 1 (D f g,2 )
). Next, we define the PaCD f -module PaCD f g of genus g parenthesized framed chord diagrams. Finally, we give operadic definitions of genus g associators and (graded) Grothendieck-Teichmüller groups, extract from them explicit equations for this objects and conjecture the existence of such an associator by means of the framed genus g universal KZB connection yet to be defined.

It should be interesting to relate the Lie algebra of our genus g graded Grothendieck-Teichmüller group to the higher genus Kashiwara-Vergne Lie algebra krv (g,n+1) which is being studied in the recent work [START_REF] Alekseev | The Goldman-Turaev Lie bialgebra and the Kashiwara-Vergne problem in higher genera[END_REF].

Operad structures on framed FM compactifications

Let n 1 and consider the Fulton-MacPherson compactification FM k (n) of Conf(R k , n). These spaces assemble into an operad FM k := FM(Conf(R k , -)), which is known to be weakly equivalent to the little k-disks operad D k . The interior of FM k (n) is the reduced configuration space C(R k , n). Now, let M be a closed smooth manifold of dimension k. Consider the configuration space of

M Conf(M, n) = {(x 1 , . . . , x n ) ∈ M n ; x i = x j if i = j}.
The spaces Conf(M, n) are weakly equivalent to their Fulton-MacPherson compactification

FM M (n) := FM(Conf(M, n)). When M is parallelizable, the spaces FM M (n) form a right FM k -module FM M .
Otherwise, we need to introduce the framed versions of all the above geometric objects. This consists on seting a choice of trivialization of the tangent bundle of M in order to specify in which direction we will insert the disks on M constructed by the Fulton-MacPherson compactification.

Let M be a Riemannian closed oriented 1 compact k-manifold and consider the bundle projection π M : SO(M ) → M , where SO(M ) is the principal GL k -bundle of special orthogonal linear frames on M . The framed configuration space

Conf f (M, n) of n distinct points in M is Conf f (M, n) := {(x, f 1 , . . . , f n ) ∈ Conf(M, n) × SO(M ) ×n |f i ∈ π -1 M (x i )}.
This is the same to define Conf f (M, n) as the pullback of the diagram

SO(M ) ×n Conf(M, n) / / M ×n so Conf f (M, n) -→ Conf(M, n) is a principal SO(k) ×n -bundle. If M is parallelizable, Conf f (M, n) is isomorphic to Conf(M, n) × SO(k) ×n .
For instance, this is the case when M = R k or M = T. The symmetric group S n acts on Conf f (C, [n]) by relabelling the indexes of the marked points. The map

Conf f (C, [n]) := Conf f (C, n)/S n -→ Conf(C, [n]
) is a locally trivial bundle with fiber SO(2) ×n .

We have framed versions of the little k-disks spaces which are S n -equivariant homotopy equivalent to framed configuration spaces of R k :

D f k (n) ∼ -→ Conf f (R k , n).
There is a S n -equivariant homotopy equivalence similar to the one above in the case for manifolds but with very restrictive assumptions (see [START_REF] Stasheff | Homotopy associative H-spaces I, II[END_REF] for more details).

Let G be a topological group and (O, {• m,n i } m,n ) be an operad in left G-spaces and suppose that the partial operadic compositions • m,n i in O are G-equivariant. The semidirect-product 1 In the case of non-oriented manifolds one can only consider the bundle projection O(M ) → M . operad G ⋉ O is the topological operad defined by (G ⋉ O)(n) := G n × O(n) and with partial operadic compositions denoted •m,n i and given, for g = (g 1 , . . . , g m ), g ′ = (g ′ 1 , . . . , g ′ n ) and 1 i m by

(g, x 1 )• m,n i (g ′ , x 2 ) := (g ′′ , x 1 • m,n i (g i • x 2 )) ∈ G n+m-1 × O(n + m -1),
where g ′′ = (g 1 , . . . , g i-1 , g i g ′ 1 , . . . , g i g ′ m , g i+1 , . . . , g n ). Consider the framed Fulton-MacPherson compactified configuration spaces

FM f k (n) := SO(k) × FM k (n). The interior of FM f k (n) is Conf f (R k , n).
The SO(k)-action is compatible with the operad structure of FM k (n). Thus, these spaces form an operad FM f k := SO(2) ⋉ FM k called framed Fulton-MacPherson operad, which turns out to be weakly equivalent to the framed little k-disks operad. The partial composition morphisms can be pictured as follows:

• 2 3,2 2 α β α + β 1 2 2 3 1 1 4 3
Summarizing the above results, we get

D f k (n) ≃ / / Conf f (R k , n) FM f k (n) ≃ o o D k (n) ≃ / / Conf(R k , n) FM k (n) ≃ o o
where the horizontal arrows are S n -equivariant homotopy equivalences and the vertical arrows are SO(k) ×n -principal bundles. This diagram does not enhance into an operad map.

Nevertheless, in [START_REF] Hoefel | Explicit Homotopy Equivalences Between Some Operads[END_REF], an operad morphism φ : FM k -→ D k was constructed and it is easy to verify that φ is ewuivariant for the action of SO(k) on these two operads and by construction, the data of the framings are compatible with this map (since the rotation of a disk will preserve that disk). Thus, we can construct a square

D f k FM f k ≃ o o D k FM k ≃ o o (5.1)
where the horizontal arrows are weak equivalences of operads in topological spaces (see [START_REF] Hoefel | Explicit Homotopy Equivalences Between Some Operads[END_REF] for details).

Now, if M is an oriented k-manifold, then the collection of its framed Fulton-MacPherson compactifications forms a right FM f k -module denoted FM f M where each space FM f M (n) is a principal SO(k) ×n -bundle over FM M (n). Then we also have

D f M (n) ≃ / / Conf f (M, n) FM f M (n) ≃ o o D M (n) ≃ / / Conf(M, n) FM M (n) ≃ o o (5.2)
where again the horizontal maps are S n -equivariant homotopy equivalences. If M is parallelizable, then the semi-direct product in the below spaces becomes an usual product and we get a square

D f M FM f M ≃ o o D M FM M ≃ o o (5.3) 
If M is not parallelizable the first line of this square does not hold but we still have a weak equivalence

FM f M ≃ -→ D f M of modules over FM f k ≃ -→ D f k .

The case of genus g orientable surfaces

We now concentrate in the case k = 2 (i.e. compact oriented topological surfaces). Let g ≥ 0 and n > 0 be integers. For a compact topological oriented surface Σ g of genus g without boundary, we consider the space Conf(Σ g , n) of configurations of n points in Σ g . It is homotopy equivalent to the space D 2,g (n) of n little 2-disks with disjoint interiors on Σ g

D 2,g (n) ∼ -→ Conf(Σ g , n).
This map can be represented as follows (in the case g = 2)

× ×

×

The surfaces Σ g are not parallelizable for g > 1 so we consider the framed versions of the above spaces. Namely, the collection D f 2,g of spaces of framed little 2-disks on Σ g has the structure
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of an operadic module over the framed little 2-disks operad D f 2 . We can represent the action of D f 2 on D f 2,g as follows (in the case g = 2):

• 2 3,2 2 α β α + β 1 2 2 3 1 1 4 3
In particular, if g = 1, as T is pararellizable so the space 2) ×n . Now let Σ g be a genus g closed connected oriented surface with a smooth and semi-algebraic manifold structure and consider its framed Fulton-MacPherson compactification FM f 2,g (n). The space FM f 2,g (n) is a manifold with corners whose interior is Conf f (Σ g , n) and the insertion of boundary components of FM f 2,g with respect to the direction of the frame endows the collection FM f 2,g of these spaces with the structure of a FM f 2 -module. More explicitely, f FM 2,g (n) is obtained from the pullback

D f 2,1 (n) is isomorphic to D 2,1 (n) × SO(
SO(2) ×n FM Σg (n) / / Σ ×n g
where SO(2) -→ Σ g is the frame bundle over Σ g for some specified Riemannian metric.

5.2 Operads associated to framed configuration spaces (framed associators)

Framed configuration spaces on C

The fundamental group of the unordered framed configuration space Conf f (C, [n]) was studied in [START_REF] Knizhnik | Current algebras and the Wess-Zumino model in two dimensions[END_REF] and is isomorphic to the framed braid group B f n generated by elements σ 1 , σ 2 , . . . , σ n-1 , f 1 , f 2 , . . . , f n together with relations

(B1) σ i σ i+1 σ i = σ i+1 σ i σ i+1 if i ∈ [n -2], (B2) (σ i , σ j ) = 1 if |i -j| > 1, (FB1) f i f j = f j f i for all i, j, (FB2) σ i f j = f σi(j) σ i for all i, j.
The space Conf f (C, [n]) is an Eilenberg-Maclane space of type K(B f n , 1)and the group B f n is a semidirect product Z n ⋉ B n where the action of B n on Z n is given by a(r i , ....,

r n ) = (r σ(1) , r σ(2) , ..., r σ(n) ). If f r1 1 , f r2 2 , • • • , f rn n , α ∈ B f
n with α ∈ B n then the r i 's are called framings. The product in this notation is given by

(f r1 1 f r2 2 • • • f rn n α)(f s1 1 f s2 2 • • • f sn n β) = f r1+s α(1) 1 f r2+s α(2) 2 • • • f rn+s α(n) n αβ The fundamental group PB f n of Conf f (C, n) at any basepoint is the direct product PB f n = Z n × PB n .
One can represent such braids as ribbon braids as we will see in the following subsection.

The operad PaB f of framed parenthesized braidings

The boundary

∂ FM f 2 (n) = FM f 2 (n) -Conf f (R 2 , n) of FM f 2 (n) is made of the following irre- ducible components: for any decomposition n = n 1 + • • • + n k there is a component ∂ n1,••• ,n k FM f 2 (n) ∼ = k i=1 FM f 2 (n i ) × FM f 2 (n) .
The inclusion of boundary components provide FM f 2 with the structure of an operad FM f 2 in topological spaces and we have inclusions inclusions of topological operads

Pa ⊂ Conf f (R, -) ⊂ FM f 2 .
The operad in groupoids of framed parenthesized braidings is defined as

PaB f := π 1 (FM f 2 , Pa).
Notable arrows in PaB f (1), PaB f (2) and PaB f (3). We have an arrow R 1,2 ∈ Hom PaB f (2) (12,[START_REF] Brown | Mixed Tate motives over Z[END_REF] and an arrow Φ 1,2,3 ∈ Hom PaB f (3) ((12)3, 1 [START_REF] Buff | Eléments de géométrie des espaces de modules des courbes[END_REF]) which correspond to the very same paths as in the unframed case. In particular, R 1,2 can be represented as follows

There is also a braid F 1 ∈ End PaB f (1) (1) corresponding to the framing. In PaB f (3) it can be represented as follows This should be considered as a single ribbon braid being twisted 360 degrees and the blue strand is the transport of a point lying in the surface of this ribbon braid.

Recall the definition of the operad CoB of coloured braids from [46, Subsection 5.2.8] As in the case of the operad PaB, the operad PaB f can be defined as the fake pullback of the framed version CoB f of CoB and we have a presentation of PaB f in terms of generators and relations. Namely, as an operad in groupoids having Pa as operad of objects, PaB f is generated by

F := F 1 ∈ PaB f (1), R := R 1,2 ∈ PaB f (2) and Φ =: Φ 1,2,3 ∈ PaB f (3) 
together with relations (H1), (H2), (P) and the following relation:

(F) R 1,2 R 2,1 F 1 F 2 = F 12 as arrows from (12) to (12) in PaB f (2).
The proof of this result can be found in [14, Lemma 7.4]. In particular, one can represent relation (F) by means of the following picture:

= • • F 1 F 2 R 12 R 21 F 12

The non-symmetric operad PB f of framed braidings

Let us now introduce two non-symmetric operads that will be of use later.

The collection PB f := {PB f n } n≥1 can be endowed with the structure of a non-symmetric operad given by partial compositions

• i : PB f n × PB f m -→ PB f n+m-1 (5.4) (b, b ′ ) -→ b • i b ′ (5.5)
where b • i b ′ is defined by replacing the i-labelled strand in b by the braid b ′ made very thin. Via the homotopy equivalence between framed little disks and framed configuration spaces we presented in the last section, one checks that the above operadic composition for PB f is induced by that on D f 2 . In the same way, one can construct an non-symmetric operad in groupoids B f in the following way :

• The objects of B f (n) are unnumbered maximal parenthesizations of lenght n. In particular, this means that for every object p of Pa(n), there is a corresponding object [p] in B f (n), and [p] = [q] if p and q only differ by a permutation (but have the same underlying parenthesization).

• B f is freely generated by

F := F 1 ∈ B f (1), R := R 1,2 ∈ B f (2) and Φ := Φ 1,2,3 ∈ B f (3)
together with relations (H1), (H2), (P) and the following relation:

(F) R 1,2 R 2,1 F 1 F 2 = F 12 as arrows from (••) to (••) in B f (2).
• B f is the image of PaB f via the forgetful map Op -→ NsOp sending an operad to a non-symmetric operad.

• It follows that there are group morphisms

B f n -→ Aut B f (n) (p) -→ S n
, the left one being an isomorphism.

For example, arrows in Aut B f (3) ((••)•) can be depicted as follows:

(• (• •) •) • • ; (• (• •) •) • • (5.6)
We let the reader depict the generators F ∈ B f (1), R ∈ B f (2) and Φ ∈ B f (3) accordingly.

The operad PaCD

f (k) of parenthesized framed chord diagrams Let t f n (k) denote the graded Lie algebra over k generated by t ij , 1 ≤ i, j ≤ n with relations (FT1) t ij = t ji , (FT2) [t ij , t kl ] = 0 if {i, j} ∩ {k, l} = ∅, (FT3) [t ij , t ik + t jk ] = 0 if {i, j} ∩ {k} = ∅.
This means we have a decomposition

t f n (k) = n i=1 kt ii ⊕ t n (k).
In other words, this translates into insertion-coproduct morphisms as for each map φ : {1, ..., m} -→ {1, ..., n}, there exists a Lie algebra morphism

t f n -→ t f m , defined by (t ij ) φ := i ′ ∈φ -1 (i),j ′ ∈φ -1 (j) t i ′ j ′ .
Remark 5.2.1. The above definition coincides with that appearing in [START_REF] Bellingeri | Surface framed braids Geometricae[END_REF], indeed it is isomorphic to the graded Lie algebra over k generated by t ij , 1 ≤ i = j ≤ n and t k , 1 ≤ k ≤ n, with relations (T1,T2,T3)

t ij = t ji ; [t ij , t kl ] = 0 if #{i, j, k, l} = 4; [t ij , t ik + t jk ] = 0 if #{i, j, k} = 3, (FT2') [t i , t j ] = 0 for 1 ≤ i, j ≤ n, (FT3') [t i , t jk ] = 0 for all i, j, k.
The collection of the framed Lie algebras t f n (k), for n ≥ 1 is provided with the structure of an operad in (positively graded finite dimensional) Lie algebras over k, denoted t f (k) and given by the following operadic partial compositions:

• k : t f I (k) ⊕ t f J (k) -→ t f J⊔I-{i} (k) (0, t αβ ) -→ t αβ (t ij , 0) -→            t ij if k / ∈ {i, j} p∈J t pj if k = i p∈J t ip if j = k
In other words, under the correspondence of Remark 5.2.1, this is the same as the following composition:

• k : t f m (k) ⊕ t f n (k) -→ t f n+m-1 (k) (0, t αβ ) -→ t α+k-1β+k-1 (0, t α ) -→ t α+k-1 (t ij , 0) -→                          t i+n-1j+n-1 if k < i < j i+n-1 p=i t pj+n-1 if k = i < j t ij+n-1 if i < k < j j+n-1 p=j t ip if i < j = k t ij if i < j < k (t i , 0) -→            t i+n-1 if k < i i+n-1 p=i t p if k = i t i if i < k for 1 ≤ i, j, k ≤ m with i < j and 1 ≤ α, β ≤ n.
We can then construct the operad

CD f (k) := Û( tf (k)) in Cat(CoAlg k ) called the operad of framed chord diagrams.
Remark 5.2.2. This denomination comes from the fact that morphisms in CD f (k)(n) can be represented as linear combinations of diagrams of chords on n vertical strands, where the chord diagram corresponding to t ij can be represented as in the unframed case, the chord corresponding to t i as

i n 1 1 i n
and the composition is given by vertical concatenation of diagrams. Partial compositions can easily be understood as "cabling and removal operations" on strands (see [START_REF] Bar-Natan | On Associators and the Grothendieck-Teichmüller Group I[END_REF][START_REF] Fresse | Homotopy of Operads and Grothendieck-Teichmüller Groups: Part 1: The Algebraic Theory and its Topological Background, Mathematical Surveys and Monographs[END_REF]). Relations (T1,T2,T3) can be described as in the in the unframed case and the remaining relations defining each t n (k) can be represented as follows: in Cat(CoAss k ) of parenthesized framed chord diagrams. We have

j i i j = j i i j (FT1) j i i j = j i i j ; j k i i j k = j k i i j k (FT2) Let CD f (n) be the I-adic completion of CD f (n) with
• Ob(PaCD f (k)) := Pa, • Mor PaCD f (k)(n) (p, q) := Mor CD f (k)(n) (pt, pt) = Û( tf n (k)). Example 5.2.3 (Notable arrows in PaCD f (k)(1), PaCD f (k)(2) and PaCD f (k)(3)).
We have the following arrow P 1 , in PaCD f (k)(1)

P 1 = t 11 • 1 1
as well as the following arrows in PaCD f (k)(2)

P 1,2 := t 11 • 1 1 2 2 H 1,2 := t 12 • 1 1 2 2 = 1 1 2 2 X 1,2 = 1• 1 2 2 1
We also have the following arrow in PaCD(k)(3):

a 1,2,3 = 1• (1 1 2) (2 3 3) 
Remark 5.2.4. The elements a 1,2,3 , X 1,2 , H 1,2 and P i are generators of PaCD(k), satisfy the pentagon and the two hexagons relations and the following relation:

(iF) P 1,2 H 1,2 X 1,2 P 2,1 (X 1,2 ) -1 H 1,2 = P 12 as arrows from (12) to (12) in PaB f (2).

Framed associators

Definition 5.2.5. We define the set of framed k-associators to be the set

Ass f (k) := Iso + Op Grpd k ( PaB f (k), GPaCD f (k))
if isomorphisms between PaB f (k) and GPaCD f (k) which are the identity on objects.

An immediate consequence of [14, Lemma 7.4] is then Proposition 5.2.6. There is a one-to-one correspondence between the set of framed k-associators Ass f (k) and the set Ass f (k) of triples (λ, µ, ϕ) where (µ, ϕ) ∈ Ass(k) and λ ∈ k × such that (F) e λ(t1+t2+2t12) = e λ(t1+t2)+µt12 .

Corollary 5.2.7. By taking µ = 2λ, on can establish a bijection between the set of framed associators and the set of associators.

Moreover, by [14, Lemma 7.7], the there is a group isomorphism

GT(k) ≃ GT f (k) := Aut + Op Grpd k ( PaB f (k))
and the fact that

t f n (k) = n i=1 kt i ⊕ t n (k) gives us a further isomorphism GRT(k) ≃ GRT f (k) := Aut + Op Grpd k (PaCD f (k)).
Proposition 5.2.8. The set Ass f (C) is non empty.

We will prove this statement in the following subsection.

The framed universal KZ connection

Define the framed universal KZ connection on the trivial exp( t f n )-principal bundle over Conf f (C, n) as the connection given by the holomorphic 1-form

w f KZ n := 1 i n t ii d log(λ i ) + 1 i<j n dz i -dz j z i -z j t ij ∈ Ω 1 (Conf f (C, n), t f n ),
which takes its values in t f n and where λ i ∈ C × is a fiber coordinate, for all 1 ≤ i ≤ n.

Theorem 5.2.9. The connection

∇ f KZ n := d -w f KZ n is flat. Proof. Let w 1 := 1 i n t i d log(λ i ) and w 2 := 1 i<j n dzi-dzj zi-zj t ij . We want to show that [w 1 + w 2 , w 1 + w 2 ] = 0. We have [w 1 + w 2 , w 1 + w 2 ] = [w 1 , w 1 ] + [w 2 , w 2 ] + [w 1 , w 2 ] + [w 2 , w 1 ] = 2[w 1 , w 2 ] since [w 1 , w 1 ] = 0 because the relation (FT1), [w 2 , w 2 ] = 0 because of flatness of the unframed KZ connection, and [w 2 , w 1 ] + [w 2 , w 1 ] = 2[w 1 , w 2 ]. Next, because of relation (FT2), we have [w 1 , w 2 ] = [t i d log(λ), dz i -dz j z i -z j t ij ] + 1 i<j n [t j d log(λ), dz i -dz j z i -z j t ij ].
And finally,

1 i<j n [t i d log(λ), dz i -dz j z i -z j t ij ] + 1 i<j n [t j d log(λ), dz i -dz j z i -z j t ij ] = 0
In particular, by sending f k to t kk , we get morphism of splitting short exact sequences

1 / / k n / / PB f n (k) / / PB n (k) / / 1 1 / / k n / / exp( t f n (k)) / / exp( tn (k)) / / 1 (5.7) 
showing that PB

f n (k) -→ exp( tf n (k)) is a k-pro-unipotent group isomorphism. Similarly we get an isomorphism B f n (k) -→ exp( t f n (k)) ⋊ S n . Proof of Proposition 5.2.8. Let x ∈ Conf f (C, n) and let T f,KZ
x be the parallel transport morphism associated to ω KZ f,n . Then

T f,KZ x (f i ) = e 2iπλi ∈ exp( tf n ).
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5.3 Modules associated to framed configuration spaces (genus g associators)

Configuration spaces of surfaces

Define the pure braid group with n strands in genus g as the fundamental group of Conf(Σ g , n),

PB g,n := π 1 (Conf(Σ g , n)). The corresponding braid group is then B g,n = π 1 (Conf(Σ g , [n])), where Conf(Σ g , [n]) = Conf(Σ g , n)/S n . Algebraically, according to [7], B g,n is presented by generators X a , Y a , σ i (1 ≤ a ≤ g, 1 ≤ i ≤ n -1) and relations (B1),(B2) σ i σ i+1 σ i = σ i+1 σ i σ i+1 if i ∈ [n -2], (σ i , σ j ) = 1 if |i -j| > 1, (BG1) (X a , σ i ) = (Y a , σ i ) = 1 if i > 1, 1 ≤ a ≤ g, (BG2) (σ -1 1 X a σ -1 1 , X a ) = (σ -1 1 Y a σ -1 1 , Y a ) = 1 if 1 ≤ a ≤ g, (BG3) (σ -1 1 X a σ -1 1 , X b ) = (σ -1 1 X a σ -1 1 , Y b ) = (σ -1 1 Y a σ -1 1 , X b ) = (σ -1 1 Y a σ -1 1 , Y b ) = 1 if a < b, (BG4) (σ 1 (X a ) -1 σ 1 , (Y a ) -1 ) = σ 2 1 if 1 ≤ a ≤ g, (BG5) 1≤a≤g (X a , (Y a ) -1 ) = σ 1 • • • σ 2 n-1 • • • σ 1 .
The morphism B g,n -→ S n is given by X a , Y a → 1, σ i → s i := (i, i + 1). It is proved in [START_REF] Bellingeri | On presentations of surface braid groups[END_REF] that PB g,n is the kernel of this map and is generated by

X i a , Y i a (1 ≤ i ≤ n, 1 ≤ a ≤ g), where Z i a = σ -1 i-1 • • • σ -1 1 Z a σ -1 1 • • • σ -1 i-1
for Z any of the letters X, Y . The geometric interpretation of the presentation of B g,n for g ≥ 1 is constructed as follows2 

• Generators : We represent Σ g as a polygon L of 4g sides with the standard identification of edges. We can consider braids as paths on L, which we draw with the usual "over and under" information at the crossing points. and we represent the generators of B g,n realized as braids on L.

P i P i+1 a α α α β β i i i i i i i β b i a b σ i i i P n P 1 P n P 1
Notice that in the braid a i (respectively b i ) the only non trivial string is the first one, which goes through the the wall α i (the wall β i ). Remark also that σ 1 . . . , σ n-1 are the classical braid generators on the disk so relations (B1), (B2) hold.

• Relations (BG1-BG3) : The fact that these relations hold is trivial and is explained in [START_REF] Bellingeri | On presentations of surface braid groups[END_REF].

• Relation (BG4) : Indeed, there is a homotopy between σ -1 1 a r σ -1 1 b r and b r σ -1 1 a r σ 1 represented in the following picture: We can obtain a new fundamental domain, denoted L 1 with vertex P 1 , by cutting L along the paths s 1 , t 1 , . . . , s g , t g and by glueing the pieces along the edges of L as we can see in the following picture, for g = 2:

P 1 P 1 P 1 P 1 P 1 P 1 P 1 P 1 P 1 1 t 1 t 1 t s 2 s 2 s 2 2 t 2 t 2 t 1 α β 1 α 2 β 2 1 α β 1 α 2 β 2 α 1 s s s 1 1 α 2 β β 1 2 1 On L 1 it is clear that [a 1 , b -1 1 ] • • • [a g , b -1 g
] is equivalent to the braid represented as follows

P 1 P 1 g n P 1 P t t s 1 1
This braid is equivalent to the braid σ 1 σ 2 . . . σ 2 n-1 . . . σ 2 σ 1 so (BG5) in PB g,n .

5.3.3

The PaB f -module of parenthesized framed genus g braids

Consider the framed Fulton-MacPherson compactification FM f 2,g (n) of Conf f (Σ g , n). The boundary ∂ FM f 2,g (n) = FM f 2,g (n) -Conf f (Σ g , n) is made of the following irreducible components: for any decomposition n = n 1 + • • • + n k there is a component ∂ n1,••• ,n k FM f 2,g (n) ∼ = k i=1 FM f 2 (n i ) × FM f 2,g (n) .
The inclusion of boundary components provide FM f 2,g with the structure of a module over the operad FM f 2 in topological spaces. Given a choice of an embedding S 1 ֒→ Σ g , we have inclusions

Pa(n) ⊂ C f (S 1 , n) ⊂ FM f 2,g (n). We then define PaB f g := π 1 (FM f 2,g , Pa) , which is a PaB f -module in groupoids. Example 5.3.1. Structure of PaB f g (1) 
. As opposed to the unframed reduced genus 1 case, we have non trivial arrows in arity 1. More precisely, we have 2g automorphisms, A i and

B i ∈ End PaB f g (1) (1) 
, for all 1 i g, that can be depicted as follows:

1 1 A i 1 1 B i (5.10)
and correspond to the following paths in Σ g . We fix the marked points in the first A-cycle, thus A 1 and B 1 correspond to the paths:

P 1 P 1 P 1 B 1 A 1
All other A i and B i are depicted in the same way.

Example 5.3.2. Notable arrows in PaB f g [START_REF] Aguirre | Gaudin subalgebras and wonderful models[END_REF].

We have 2g automorphisms, (12), for all 1 i g, that can be depicted as follows:

A 1,2 i and B 1,2 i ∈ End PaB f g (2)
1 1 2 2 A i 1 1 2 2 B i (5.11) 
and correspond to the following paths in Conf f (Σ g , 2) Again, we fix the marked points in the first A-cycle, thus A 1,2 1 correspond to the path:

A 1 1,2 P 2 P 1 P 1
Next, the map B 1,2 1 corresponds to the path:

P 1 P 1 P 2 P 2 P 1 B 1 1,2 P 1 P 1 All other A 1,2 i and B 1,2 i
are depicted along the same representation as that for B 1,2

1 . Moreover, we also have arrows

1 1 2 2 A i 1 1 2 2 B i
We let the reader draw the corresponding paths in Conf f (Σ g , 2). Remark 5.3.3. By doubling the only braid in A i ∈ PaB f g [START_REF] Aguirre | Gaudin subalgebras and stable rational curves[END_REF], which amounts to taking

• 1 (A i , id 12 ) ∈ PaB f g (2)
, we get an arrow A 12 i depicted as follows:

1 1 2 2 A i
It is then a fact that

A 12 i (A 1,2 i ) -1 = 1 1 2 2 A i •       1 1 2 2 A i       -1 = 1 1 2 2 A i (5.12)
This means that even if, contrary to the reduced genus 1 case, A ) α together with a colouring bijection i → α i between the index set i ∈ {1, . . . , n} which leaves the last strand uncoloured and the strands α i ∈ {α 1 , . . . , α n } of our braid α and the data of a special braid corresponding to the framing.

The following theorem can be undestood as a rephrasing of the MacLane-Joyal-Street coherence theorem for framed genus g D 2 -modules. i , for all 1 i g, in PaB f g [START_REF] Aguirre | Gaudin subalgebras and wonderful models[END_REF], together with relations

(Red) A 1,∅ i := A i , B 1,∅ i := B i , A ∅,2 i := Id 1 , B ∅,2 i := Id 1 in PaB f g (1), (D1) Φ 1,2,3 A 1,23 i R 1,23 Φ 2,3,1 A 2,31 i R 2,31 Φ 3,1,2 A 3,12 i R 3,12 = A (12)3 i , (D2) Φ 1,2,3 B 1,23 i (R 23,1 ) -1 Φ 2,3,1 B 2,31 i (R 31,2 ) -1 Φ 3,1,2 B 3,12 i (R 12,3 ) -1 = B (12)3 i ,
for all 1 ≤ i ≤ g, and the following relation:

(gE) R 1,2 R 2,1 (F 1 ) 2(g-1) = g i=1 Φ 1,2,3 B 1,23 i (Φ 1,2,3 ) -1 , (R 2,1 ) -1 Φ 2,1,3 (A 2,13 i ) -1 (Φ 2,1,3 ) -1 (R 1,2 ) -1
as arrows from (12)3 to (12)3 in PaB f g (3).

Remark 5.3.6. An easy consequence of the above theorem is that PaB f g identifies with the fake pullback ω ⋆ CoB f g of the CoB f -module CoB f g along the forgetful functor ω : Pa -→ S,

Proof. Let Q be the PaB f -module with the above presentation. We first show that there is a morphism of PaB f -modules Q -→ PaB f g . We have already seen that there are 2g automorphisms A i , B i of (1) in PaB f g [START_REF] Aguirre | Gaudin subalgebras and stable rational curves[END_REF] (see Example 5.3.1) and 2g automorphisms A 1,2 i , B 1,2 i of (12) in PaB f g [START_REF] Aguirre | Gaudin subalgebras and wonderful models[END_REF] (see Example 5.3.2). We have to prove that they indeed satisfy the relations (D1), (D2) and (gE).

Relations (D1) and (D2) are satistfied: the first decagon relation (D1) can be depicted as follows:

(1

(1 2) 2) 3 3 A (12)3 i = (1 (1 2) 2) 3 3 A 12,3 i A i 23, 1 A 3,12 i (D1)
It is satisfied in PaB f g , expressing the fact that when all (here, three) points move along a generating generating loop on Σ g , this corresponds to the path in the framed configuration space of points on Σ g twisting the three points. The same is true with the second decagon relation (D2).

Relation (gE) is satisfied: Relation (gE) is more difficult to draw so we sketch the way to think of the right-hand-side. Align the points in a generating cycle of the genus g surface (this means that they are in the boundary of the compactified framed configuration space). Then if a point travels through a cycle, its corresponding framing will naturally start to spin as one can see in the following picture, for g = 2 -π /2 and for g = 4 π /8 -3π /4

If we consider a polygon with 4g sides corresponding to a genus g surface, then for each marked point travelling through the generating cycles, the framing attached to that point will be twisted by an angle of π -π g . Next, one can interpret the path on the right hand side of (gE) as the following path. As we already took care of the behaviour of the framing we will neglect this information in the picture. ) -1 (Φ 2,1,3 ) -1 (R 1,2 ) -1 corresponds to the following picture

Φ 1,2,3 B 1,23 1 (Φ 1,2,3 ) -1 , (R 2,1 ) -1 Φ 2,1,3 (A 2,
P 1 P 2 P 3 P 3 P 2 P 1
One can see that, if i = j, then the paths corresponding to a A i cycle and a B j cycle do not intersect.

Another possible way to interpret this goes as follows: if we suppose that the marked points were chosen to be in the A 1 -cycle of Σ g , the right hand side of (gE) can be drawn as follows:

P 1 P 1 P 1 P 1 P 1
In conclusion, one can then easily see that if we take a point and make it travel around all the generating cycles concerned in the right-hand-side of relation (gE), the corresponding framing will make 2g × (g-1) g = 2(g -1) complete spins and the first point P 1 will have done a complete loop around the second point P 2 . This is exactly the left-hand-side of equation (gE). Thus, by the universal property of Q, there is a morphism of PaB f -modules Q -→ PaB f g , which is the identity on objects. To show that this map is in fact an isomorphism, it suffices to show that it is an isomorphism at the level of automorphism groups of objects arity-wise, as all groupoids are connected. Let n ≥ 0, and p be the object

(• • • ((12)3) • • • • • • )n of Q(n)
and PaB f g (n). We want to show that the induced morphism

Aut Q(n) (p) -→ Aut PaB f g (n) (p) = π 1 Conf f (Σ g , n), p
is an isomorphism.

On the one hand, as Conf f (Σ g , n) is a manifold with corners, we are allowed to move the basepoint p to a point p reg which is included in the fundamental domain L 1 described in subsection 5.3.1. We then have an isomorphism of fundamental groups π 1 (Conf

f (Σ g , n), p) ≃ π 1 (Conf f (Σ g , n), p reg ).
On the other hand, one can construct a non-symetric module Q in groupoids over B f carrying an action of the (algebraic version of the) framed braid group B f g,n on Σ g in the following sense:

• for each n ≥ 1, Q(n) is a groupoid with maximal parenthesizations of unnumbered elements as objects.

• Q is freely generated by A 1,2 i

:= A •,• i and B 1,2 i := B •,• i in Q(2)
, for all 1 i g, satisfying relations (Red), (D1), (D2) and (gE).

• in Lemma 5.3.7 we show that there are group morphisms B f g,n -→ Aut Q(n) (p) -→ S n , the left one being an isomorphism.

In the same way the collection {PB f g,n } n≥1 of pure genus g braids owns a non-symmetric PB f -module structure denoted PB f g . Moreover, one the forgetful map Op -→ NsOp between the category of operads and the category of non-symmetric operads induces a map Q -→ Q. Then, one has by constuction of

Q that Aut Q(n) (p) is the kernel of the map Aut Q(n) ([p]) -→ S n . One can actually show that we have a commuting diagram PB f g,n ≃ / / Aut Q(n) (p) / / π 1 Conf f (Σ g , n), p π 1 Conf f (Σ g , n), p reg ≃ o o B f g,n ≃ / / Aut Q(n) ([p]) / / π 1 Conf f (Σ g , n)/S n , [p] π 1 Conf f (Σ g , n)/S n , [p reg ] ≃ o o S n S n S n S n
where all vertical sequences are short exact sequences. Thus, in order to show that the map

Aut Q(n) (p) -→ π 1 Conf f (Σ g , n)
, p is an isomorphism, we are left to show that

B f g,n -→ π 1 Conf f (Σ g , n)/S n , [p reg ]
is indeed an isomorphism. But this map is nothing else than the map constructed in [8, Theorem 13], identifying the algebraic and topological versions of the framed braid group on Σ g . Let p be the object in Q(n) given by right parenthesization p := (•(•(•(. . . ((••)) . . .). Then there is a unique group isomorphism

φ n : B f g,n -→ Aut Q(n) (p),
such that

• A i → A 1,2...n i
, for all 1 i g ;

• B i → B 1,2...n i
, for all 1 i g ;

• σ i → R i,i+1
; for all 1 i n -1 ;

• f i → F i , for all 1 i n ; where A 1,2...n ∈ Aut Q(n) (p) is obtained from A 1,2 , F i is obtained from F 1 and R i,i+1 ∈ Aut Q(n) (p) is obtained from R 1,2
by some finite sequences of arrows involving the associator and the operadic module morphisms since the parenthesizations are unmarked.

In particular, by applying a finite sequence of associators one can show that the above lemma remains true for all possible choices of base points p ∈ Q(n).

Let us sketch the proof of this Lemma (a complete proof will be done un subsequent works).

Proof. For simplicity, we omit the associativity constraints. One can show by induction that the image of

A k i := σ k-1 A k-1 i σ k-1 is R 12...(k-1),k A 1,2...(n-1) i R k,12...(k-1)
therefore the image of

A 1 i • • • A k i is A ± X ⊗k ,X ⊗n-k .
We will thus reduce to the cases n=2,3 in the rest of the proof.

φ n is a well-defined group morphism: Let us first show that there is indeed such a group morphism. First of all, the braid relations are preserved as there are morphisms from B 3 to both groups (the first one is classic, the second one is induced by the fact that Q is a B f -module.

Notice that, by removing the third braid in relation (D1), we obtain relation

A 1,2 i R 1,2 A 2,1 i R 2,1 = A 12 i
which can be depicted as follows:

1 1 2 2 A 12 = 1 1 2 2 A 1,2 A 2,1 (D1bis) 
Then, one shows that relations (FBG1-4) are satisfied by the same reasoning that [33, Proposition 1.3] in the following way: for each 1 i g, take X + 1 := A i and X - 1 := (B i ) -1 . Then relations (FBG1-3) are equivalent to

(σ ±1 1 X ± 1 ) 2 = (X ± 1 σ ±1 1 ) 2 , (X ± 1 , σ i ) = 1 for i = 2, . . . , n -1, (X - 1 , (X + 2 ) -1 ) = σ 2 1 ,
and are thus preserved by φ n . Relation (FBG4) is preserved by naturality in Aut Q(n) (p).

Thus, we have a group morphism φ n is surjective: The fact that the map φ n is surjective is a consequence of the fact that all the defining relations in Q(n) come from the defining relations of B f g,n and the oepradic module partial compositions.

φ n is injective: Let us now show the injectivity of this map. Let Q be the oeprad module with same objects as Q and; for every object p of Q(n), we define

Aut Q(n) (p) := B f g,n . Next we have a map Q -→ Q sending the generations A 1,2 i to A i and B 1,2 i to B i in B f g,2 .
Indeed, if we denote X + 1 := A i and X - 1 := (B i ) -1 , then we have relations

(σ ±1 2 σ ±1 1 X ± 1 ) 3 = X ± 123 , (X - 1 , (σ 1 X + 1 σ 1 ) -1 ) = σ 2 1 and g i=1 (B i , (σ 1 A i σ 1 ) -1 ) = σ 2 1 f 2(g-1) 1
show that relations (Red), (D1), (D2) and (gE) are preserved.

Then, as PaB f acts on both of these operadic modules we conclude that there is a map

Aut Q(n) (p) -→ Aut Q(n) (p).
In order to prove the injectivity of φ, we are left to prove that the composite

B f g,n -→ Aut Q(n) (p) -→ Aut Q(n) (p)
is the identity morphism, which is true as, by construction of both maps.

This means that any f D 2 -module morphism φ : PaB f g -→ P , is determined (up to isomorphism) by A i , B i and the above three relations. As in the framed genus 0 situation, we have a PaB f (k)-module in Cat(CoAss k ) denoted PaB f g (k) := ∆ k (PaB f g ). Now consider its associated inverse system of (PaB f ) (m) (k)-modules given, for all m ∈ N, by

(PaB f g ) (m) (k) := PaB f g (k)/(I m (k) • PaB f g (k)).
By taking the inverse limit over m of these inverse system, we get a PaB 

The PaCD(k)-module of parenthesized genus g chord diagrams

Let us consider g > 0 and n ≥ 0 and define t g,n (k) as the k-Lie algebra with generators x i a , y i a , t ij for i = j ∈ [n], 1 ≤ a ≤ g satisfying relations (T1), (T2), (T3) and

(G1,G2) [x i a , x j b ] = 0 and [y i a , y j b ] = 0 if i = j (G3) [x i a , y j b ] = δ ab t ij if i = j; (G4) [x i a + x j a , t ij ] = [x k a , t ij ] = 0 if {i, j} ∩ {k} = ∅; (G5) [y i a + y j a , t ij ] = [y k a , t ij ] = 0 if {i, j} ∩ {k} = ∅; (G6) g a=1 [x i a , y i a ] + j:j =i t ij = 0;
The Lie algebra t g,n (k) is equipped with a grading given by deg(x a i ) = (1, 0), deg(y a i ) = (0, 1). The total degree defines a positive grading on t g,n (k); we denote by tg,n (k) the corresponding completion. If k = C, we will denote t g,n (k) := t g,n .

Theorem 5.3.8. (Bezrukavnikov, Enriquez) There is a monodromy morphism PB g,n -→ exp( tg,n ) inducing an isomorphism of Lie algebras Lie(PB g,n ) C ∼ -→ tg,n .

The collection t g (k) := {t g,n (k)} n≥1 is provided by the structure of a t g (k)-module in Lie k as follows. The S-module t g (k) inherits the structure of a module over the operad t in Lie k with respect to the collection of maps given on the generators as follows: Example 5.3.9 (Notable arrows in PaCD g (k)(2)). We have the following arrows X i , Y i in PaCD g (k)(1) 

• k : t g,I (k) ⊕ t J (k) -→ t g,J⊔I-{i} (k) (0, t αβ ) -→ t αβ (t ij , 0) -→            t ij if k / ∈ {i, j} p∈J t pj if k = i p∈J t ip if j = k (x a i , 0) -→      x a i if k = i p∈J x a p if k = i (y a i , 0) -→      y a i if k = i
X i = x 1 i • 1 1 Y i = y 1 i • 1 1 and X 1,2 i , Y 1,2 i in PaCD g (k)(2) X 1,2 i = x 1 i • 1 1 2 2 Y 1,2 i = y 1 i • 1 
(Red) X ∅,2 i = Y ∅,2 i = 0, X 1,∅ i := X i , Y 1,∅ i := Y i , (D1) a 1,2,3 X 1,23 i X 1,23 a 2,3,1 X 2,31 i X 2,31 a 3,1,2 X 3,12 i X 3,12 = X (12)3 i , (D2) a 1,2,3 Y 1,23 i X 1,23 a 2,3,1 Y 2,31 i X 2,31 a 3,1,2 Y 3,12 i X 3,12 = Y (12)3 i , (gE) X 1,2 X 2,1 P 2(g-1) 1 = a 1,2,3 Y 1,23 i (a 1,2,3 ) -1 , X 2,1 a 2,1,3 (X 2,13 i ) -1 (a 2,1,3 ) -1 X 1,2 .
5.3.5 The PaCD f (k)-module of parenthesized genus g framed chord diagrams

Let t f g,n (k) denote the graded Lie algebra over k generated by t ij , 1 ≤ i, j ≤ n, x i a , y i a for 1 ≤ i ≤ n, 1 ≤ a ≤ g with relations (FT1), (FT2), (FT3), (G1), (G2), (G3) and the following relation

(FG4) [x i a + x j a , t ij ] = [x k a , t ij ] = 0 if {i, j} ∩ {k} = ∅, for 1 ≤ i ≤ n, 1 ≤ a ≤ g; (FG5) [y i a + y j a , t ij ] = [y k a , t ij ] = 0 if {i, j} ∩ {k} = ∅, for 1 ≤ i ≤ n, 1 ≤ a ≤ g ; (FG6) g a=1 [x i a , y i a ] + j:j =i t ij + 2(g -1)t ii = 0, for 1 ≤ i ≤ n, 1 ≤ a ≤ g;
The map PB f g,n -→ exp( tf g,n (k)) sends the f k to t kk and all other generators as in the unframed case. It induces a morphism of short exact sequences

1 / / k n / / PB f g,n (k) 
/ / PB g,n (k)

/ / 1 1 / / k n / / exp( tf g,n (k)) / / exp( tg,n (k)) / / 1 (5.13) 
This shows that the map PB f g,n (k) -→ exp( tf g,n (k)) is a k-pro-unipotent group isomorphism. Later on we will derive this result from the flatness of a connection defined over Conf f (Σ g , n).

The S-module t f g (k) := {t f g,n (k)} n≥1 inherits the structure of a module over the operad t f in Lie k with respect to the collection of maps given on the generators as follows:

• k : t f g,I (k) ⊕ t f J (k) -→ t f g,J⊔I-{i} (k) (0, t αβ ) -→ t αβ (t ij , 0) -→            t ij if k / ∈ {i, j} p∈J t pj if k = i p∈J t ip if j = k (x a i , 0) -→      x a i if k = i p∈J x a p if k = i (y a i , 0) -→      y a i if k = i p∈J y a p if k = i Let 1 ≤ i, j, k ≤ m with i < j, then t f g (k) • m,n k : t f g,n (k) ⊕ t f m (k) -→ t f g,m-1+n (k) (0, t αβ )) -→ t α+k-1β+k-1 (0, t α )) -→ t α+k-1 (x a i , 0) -→      x a i+n-1 if k < i i+n-1 p=i x a p if i = k x a i if i < k (y a i , 0) -→      y a i+n-1 if k < i i+n-1 p=i y a p if i = k y a i if i < k (t ij , 0) -→                t i+n-1j+n-1 if k < i < j i+n-1 p=i t pj+n-1 if k = i < j t ij+n-1 if i < k < j j+n-1 p=j t ip if i < j = k t ij if i < j < k (t i , 0) -→            t i+n-1 if k < i i+n-1 p=i t p if k = i t i if i < k
We can then construct the CD f (k)-module CD f g (k) := Û( tf g (k)) of genus g framed chord diagrams. 

Let CD

(k)(n) (p, q) := Mor CD f g (k)(n) (pt, pt) = Û ( tf g (k)).
Example 5.3.11 (Notable arrows in PaCD f g (k)(1) and PaCD f g (k)(2)). We have the following arrows X i , Y i in PaCD f g (k)(1)

X i = x i • 1 1 Y i = y i • 1 1 and X 1,2 i , Y 1,2 i in PaCD f g (k)(2) X 1,2 i = x i • 1 1 2 2 Y 1,2 i = y i • 1 1 2 2
We leave the reader the care of drawing the chord diagrams corresponding to the relations (FG4-6) accordingly. 

Genus g associators

f (k)-module GPaCD f g (k)
which is the identity on objects and which is compatible with F . We denote its set by

Ass g (k) := Iso + ( PaB f (k),GPaCD f (k)) ( PaB f g (k), GPaCD f g (k)).
Theorem 5.3.13. There is a one-to-one correspondence between elements of Ass g (k) and elements of the set Ass g (k) consisting on tuples (µ, Φ, A 1 , . . . , A g , B 1 , . . . , B g ) where (µ, Φ) ∈ Ass(k) and A i , B i ∈ exp( tf g,2 ), for i = 1, ..., g, such that, for 1 ≤ i ≤ g we have

α 1,2,3 i α 2,3,1 i α 3,1,2 i = A (12)3 i
, where , α i = {Φ 1,2,3 }A 1,23 i {e µ(t12+t13)/2 }, (5.14)

β 1,2,3 i β 2,3,1 i β 3,1,2 i = B (12)3 i 
, where

β i = {Φ 1,2,3 }B 1,23 i {e -µ(t12+t13)/2 }, (5.15 
) We will give some comments on this conjecture in the following subsection

{e µt12+2(g-1)µt1 } = g i=1 {Φ}B 1,23 i {Φ} -1 , {e -µt12/2 Φ 2,1,3 }(A 2,13 i ) -1 {(Φ 2,1,3 ) -1 e -µt12/2 } .

Towards the genus g KZB associator

Let us recall the construction from [START_REF] Enriquez | Flat connections on configuration spaces and formality of braid groups of surfaces[END_REF] of the universal genus g KZB connection (defined over the configuration spaces). Endow the surface Σ g with a complex structure and denote C the resulting smooth closed complex curve. We have an isomorphism

π 1 (C, x) ∼ -→ π g := A a , B a , 1 ≤ a ≤ g| g a=1 (A a , B a ) = 1 .
and each path from x to y in C induces an isomorphism π 1 (C, x) -→ π 1 (C, y) We have

PB g,n = π 1 (Conf(C, n), x)
where

x := (x 1 , . . . , x n ) ∈ Conf(C, n).
Define the map ρ 0 : PB g,n -→ exp( f⊕n g ) by means of the following composite

PB g,n = π 1 (Conf(C, n), x) -→ π 1 (C n , x) = i∈[n] π 1 (C, x i ) -→ π n g -→ F n g -→ exp( fg ) n ,
where F g is the free group with generators γ a , 1 ≤ a ≤ g, π g -→ F g is the composite

π g -→ π g /N -→ F g
where π g -→ π g /N is the quotient morphism, where N is the normal subgroup generated by the A a , 1 ≤ a ≤ g and π g /N -→ F g , Ba → γ a is the isomorphism induced from the presentation of π g /N , where F g -→ exp( fg ) is the assignment γ a → exp(x a ).

According to [START_REF] Enriquez | Flat connections on configuration spaces and formality of braid groups of surfaces[END_REF], the principal G-bundle with flat connection on X = Cf n (C) corresponding to ρ 0 is then i * (P n ), where i : X -→ C n is the inclusion and

(P n -→ C n ) = (P 0 1 -→ C) n × exp( fg ) n exp( tg,n ),
where (P 0 1 -→ C) is the principal exp( fg )-bundle with flat connection corresponding to the above morphism π g -→ F g -→ exp( fg ).

Denote the set of flat connections of degree 1 by

F 1 = {α ∈ Ω 1 (C n -(diagonals), P n × ad tg,n [1])|dα = α ∧ α = 0}
and denote its subset of holomorphic flat connections by

F hol 1 = {α ∈ H 0 (C n , Ω 1,0 C n ⊗ (P n × ad tg,n [1])( * Diag))|dα = α ∧ α = 0}
with Diag = i<j Diag ij and Diag ij ⊂ C n is the diagonal corresponding to z i = z j . Then Enriquez showed the following: where α i ∈ H 0 (C, K

C ⊗ (P n × ad tg,n [START_REF] Aguirre | Gaudin subalgebras and stable rational curves[END_REF])( j:j =i ∆ ij )) expands as

α i ≡ 1≤a≤g ω (i) a y i a modulo ⊕q≥2 t g,n [1, q].
As in [START_REF] Enriquez | Flat connections on configuration spaces and formality of braid groups of surfaces[END_REF],

K (i) C = O ⊠i-1 C ⊠ K C ⊠ O ⊠n-i C , ω (i) a = 1 ⊗i-1 ⊗ ω a ⊗ 1 ⊗n-i
, where (ω a ) 1≤i≤g are the holomorphic differentials such that Aa ω b = δ ab and A a , B a are the images of A a , B a under π g -→ π ab g ≃ H 1 (C, Z). Recall the universal g-KZB connection over the configuration space Conf(Σ g , n) is a particular explicit element α KZ ∈ F hol 1 can be constructed as a sum

α KZB g,n = n i=1 α i , (5.18) 
where

α i ∈ H 0 (C, K (i) C ⊗ (P n × ad tg,n [1])( j:j =i ∆ ij )) expands as α i ≡ 1≤a≤g ω (i) a y i a modulo ⊕q≥2 t g,n [1, q].
Consider integers (g, n) in hyperbolic position (i.e. 2 -2gn < 0) and let S be a genus g topological compact oriented surface, x 1 , ..., x n n marked points on it. Now let X be a Riemann surface modeled on S with genus g and n marked points. As X is hyperbolic, the Uniformisation Theorem says that X is isomorphic to a quotient h/Γ of the Poincaré half-plane h by a discrete subgroup Γ of PSL(2, R). Fix τ ∈ h and consider a uniformization Σ g of X. This corresponds to a point κ in the moduli space M g,n . Such a point can be described by 3g + n -3 parameters. Enriquez chowed that, under this uniformization, the one form α KZ induces a flat connection

∇ KZB g,n,κ := d -α KZB g,n,κ
over Conf(Σ g,κ , n). Now, the fundamental group π 1 (Σ × g,κ , z 0 ) of Σ × g,κ := Σ g,κ -0 is the nothing but the free group F (x 1 , y 1 , x 2 , y 2 , ..., x g , y g ) on 2g generators. Now choose a non-zero tangent vector -→ v 0 of Σ g,κ at 0. Then, flatness of ∇ KZB g,n,κ implies the existence of a Q-algebra map

T g,KZB -- → v 0, - → v 0 : Q[π 1 (Σ × g,τ , --→ v 0 , -→ v 0 )] -→ Q x 1 , y 1 , x 2 , y 2 , ..., x g , y g γ -→ T g,KZB -- → v 0, - → v 0 (γ) := ∞ k=0 Reg γ α KZB g,n,κ
Definition 5.3.16. The non-framed genus g KZB associator is the tuple

e g (κ) := (A 1 (κ), B 1 (κ), . . . , A g (κ), B g (κ))
where

A i (κ) := T g,KZB -- → v 0, - → v 0 (γ a i ) B i (κ) := T g,KZB -- → v 0, - → v 0 (γ b i )
where γ a i and γ b i are the generating loops in π B 1 (Σ g,κ ).

We do not know what kind of monodromy relations these associators may have. In particular, if we want to relate them to our operadic definition of genus g associators we need to extend the universal KZB connection to its framed version.

We then have Conjecture 5.3.17. There is a flat universal framed KZB connection ∇ f KZB g,n,κ defined on the principal exp( tf g,n )-bundle over Conf f (C, n) constructed as above such that

• its pullback of ∇ f KZB g,n,κ to the associated exp( tf g,n )-bundle over C n is

∇ f KZB g,n,κ := d -α f KZB g,n
where

α f KZB g,n := α KZB g,n + 1 i n t i d log(λ i ); • the 1-form α f KZB g,n
is (C × ) n -basic and the induced connection on the exp( tg,n )-bundle over Conf(C, n) given above coincides with the universal genus g KZB connection in theorem 5.3.15.

Let κ represent a point in the moduli space M g,n . In the case g = 2 i.e. the hyperelliptic case, we can write κ = (τ 1 , τ 2 ). Let (2iπ, Φ f KZ ) be the framed KZ associator coming from the framed universal KZ connection defined above.

If this conjecture holds, then a consequence should be that (2iπ, Φ f KZ , e f g (κ)), where e f g (κ) =

(A f 1 (κ), B f 1 (κ), . . . , A f g (κ), B f g (κ)
) is the framed version of the above genus g KZB associator, is a genus g framed C-associator.

Genus g Grothendieck-Teichmüller groups

Let us finish this chapter by quickly giving definitions of Grothendieck-Teichmüller groups in genus g by means of the operadic point of view of these objects. The presentation of PaB f g then implies the following: each automorphism F of PaB f g compatible with an automorphism G of PaB f is uniquely defined by

• G(R 1,2 ) = (R 1,2 ) λ , • G(Φ 1,2,3 ) = Φ 1,2,3 • f (x, y), • F (A 1,2 i ) = g + i (x 1 , y 1 , . . . , x g , y g ), • F (B 1,2 i ) = g - i (x 1 , y 1 , . . . , x g , y g ),
where (λ, f ) ∈ GT f (k) and g i ± ∈ PB g,2 (k). These elements satisfy relations induced by (Red), (D1), (D2) and (gE) which will be left to be studied in a subsequent work. Notice that there is an isomorphism

Aut + (Mod(PaCD f (k)) (PaCD f g (k)) ≃ Aut + (Mod(GPaCD f (k)) (GPaCD f g (k)).
Chapter 6

On the universal twisted elliptic KZB connection Let us fix a uniformization Ẽ ≃ E τ , where τ ∈ H:

E τ = C/Λ τ , with Λ τ = Z + τ Z. Then E ≃ E τ,Γ , where E τ,Γ = C/Λ τ,Γ and Λ τ,Γ := (1/M )Z × (τ /N )Z. Therefore Conf(E, n, Γ) ≃ (C n -Diag τ,n,Γ )/Λ n τ ,
where

Diag τ,n,Γ := {(z 1 , . . . , z n ) ∈ C n |z ij := z i -z j ∈ Λ τ,Γ for some i = j} .
We now define a principal exp( tΓ 1,n )-bundle P τ,n,Γ over Conf(E, n, Γ) as the quotient

(C n -Diag τ,n,Γ ) × exp( tΓ 1,n ) /Λ n τ .
In other words, it is the restriction on Conf(E, n, Γ) of the bundle over C n /Λ n τ for which a section on U ⊂ C n /Λ n τ is a regular map f :

π -1 (U ) -→ exp( tΓ 1,n ) such that • f (z + δ i ) = f (z), • f (z + τ δ i ) = e -2πixi f (z).
Here π : C n -→ C n /Λ n τ is the canonical projection and δ i is the ith vector of the canonical basis of C n .

Since the e -2πixi 's in exp( tΓ 1,n ) pairwise commute and their product is 1, then the image of P τ,n,Γ under the natural morphism exp( tΓ 1,n ) -→ exp( tΓ 1,n ) is the pull-back of a principal exp( tΓ 1,n )-bundle Pτ,n,Γ over C(E, n, Γ).

Variations

The first variation we are interested in concerns unordered configuration spaces.

The symmetric group S n acts freely by automorphisms of Conf(E, n, Γ) by σ * (z 1 , . . . , z n ) := (z σ -1 (1) , . . . , z σ -1 (n) ). This descends to a free action of S n on C(E, n, Γ). We then defined the unordered twisted configuration spaces

Conf(E, [n], Γ) := Conf(E, n, Γ)/S n and C(E, [n], Γ) := C(E, n, Γ)/S n .
The symmetric group S n also obviously acts on the Lie algebra t Γ 1,n . One can then define, keeping the notation of the previous paragraph, a principal exp( tΓ

1,n ) ⋊ S n -bundle P τ,[n],Γ over Conf(E, [n], Γ): it is the restriction on Conf(E, [n], Γ) of the bundle over C n /Λ n τ ⋊ S n for which a section on U ⊂ C n /Λ n τ ⋊ S n is a regular map f : π -1 (U ) -→ exp( tΓ 1,n ) ⋊ S n such that • f (z + δ i ) = f (z),
• f (z + τ δ i ) = e -2πixi f (z),

• f (σ * z) = σf (z).

In more compact form: The second variation concerns ordinary configuration spaces of the base E = E τ,Γ of the covering map E τ -→ E τ,Γ .

P τ,[n],Γ = (C n -Diag τ,n,Γ ) × exp( tΓ 1,n ) ⋊ S n /(Λ n τ ⋊ S n ) .
Recall from §4.3.3 that the group Γ n acts on tΓ 1,n via θ. Hence one has a principal exp( tΓ 1,n )⋊Γ nbundle

P (τ,Γ),n := (C n -Diag τ,n,Γ ) × exp( tΓ 1,n ) ⋊ Γ n /Λ n τ,Γ over Conf(E, n) ≃ C n -Diag τ,n,Γ /Λ n τ,Γ .
Here the action of Λ n τ on tΓ 1,n is given by the morphism

Λ τ -→ Γ , a + bτ → (ā, b) .
Remark 6.1.2. In a similar way as before, the above bundle obviously descends to a principal exp( tΓ 1,n ) ⋊ (Γ n /Γ)-bundle P(τ,Γ),n over the reduced ordinary configuration space C(E, n).

In concrete terms, a section over U ⊂ C n /Λ τ,Γ of P (τ,Γ),n is a regular map f : π

-1 (U ) -→ exp( tΓ 1,n ) ⋊ Γ n such that • f (z + δ i /M ) = ( 1, 0) i f (z), • f (z + τ δ i /N ) = ( 0, 1) i e -2πix i N f (z).
Remark 6.1.3. We leave to the reader the task of combining the two variations.

Flat connections on P τ,n,Γ and its variants

A flat connection ∇ τ,n,Γ on P τ,n,Γ is the same as an equivariant flat connection on the trivial exp( tΓ 1,n )-bundle over C n -Diag τ,n,Γ , i.e., a connection of the form

∇ τ,n,Γ := d - n i=1 K i (z|τ )dz i ,
where K i (-|τ ) : C n -→ tΓ 1,n are meromorphic with only poles at Diag τ,n,Γ , and such that for any i, j:

(a) K i (z + δ j |τ ) = K i (z|τ ), (b) K i (z + τ δ j |τ ) = e -2πiad(xj ) K i (z|τ ), (c) [∂ i -K i (z|τ ), ∂ j -K j (z|τ )] = 0.
Moreover, the image of ∇ τ,n,Γ under tΓ 1,n -→ tΓ 1,n is the pull-back of a (necessarily flat) connection ∇τ,n,Γ on Pτ,n,Γ if and only if: (d) Ki (z|τ ) = Ki (z + u i δ i |τ ) for any u ∈ C and i Ki (z|τ ) = 0.

Similarly, the image of ∇ τ,n,Γ under tΓ 1,n -→ tΓ 1,n ⋊ Γ n is the pull-back of a (necessarily flat) connection ∇ (τ,Γ),n on P (τ,Γ),n if and only if:

(e) K i (z + δj M |τ ) = θ(( 1, 0) j )K i (z|τ ), (f) K i (z + τ δj N |τ ) = θ(( 0, 1) j )e -2πi
N ad(xj) K i (z|τ ), Remark 6.1.4. Observe that (e) implies (a), and that (f ) implies (b).

Finally, the image of ∇ τ,n,Γ under tΓ 1,n -→ tΓ 1,n ⋊ S n is the pull-back of a (necessarily flat) connection ∇ τ,[n],Γ on Pτ,[n],Γ if and only if:

(g) K i ((ij) * z) = (ij) • K i (z).

Constructing the connection

We now construct a connection satisfying properties (d) to (g). Let us take the same conventions for theta functions as in [START_REF] Calaque | Universal KZB equations: the elliptic case, Algebra, Arithmetic and Geometry Vol I: in honor of Yu. I. Manin[END_REF]. Observe that for any α = (a 0 , a) ∈ Λ τ,Γ , the term e -2πiax (θ(zα) + x)/ (θ(zα)θ(x)) only depends on the class α = (ā 0 , ā) ∈ Γ of α mod Λ τ . The we set

k α (x, z|τ ) := e -2πiax θ(z -α + x|τ ) θ(z -α|τ )θ(x|τ ) - 1 x = e -2πiax k(x, z -α|τ ) + e -2πiax -1 x ,
where k(x, z|τ ) := θ(x+z) θ(x)θ(z) -1 x (as in [START_REF] Calaque | Universal KZB equations: the elliptic case, Algebra, Arithmetic and Geometry Vol I: in honor of Yu. I. Manin[END_REF]), and

K ij (z|τ ) := α∈Γ k α (adx i , z|τ )(t α ij ) , K i (z|τ ) := -y i + j:j =i K ij (z ij |τ ) .
In the rest of the section we fix τ ∈ H and drop it from the notation. Recall from [START_REF] Calaque | Universal KZB equations: the elliptic case, Algebra, Arithmetic and Geometry Vol I: in honor of Yu. I. Manin[END_REF] that

k(x, z ± 1) = k(x, z) and k(x, z ± τ ) = e ∓2πix k(x, z) + e ∓2πix -1
x .

Proposition 6.1.5. The K ij (z)'s have the following equivariance properties:

K ij (z + 1/M ) =θ(( 1, 0) i )(K ij (z)), (6.1) 
K ij (z -τ /N ) =e -2πi N ad(xi) θ(( 0, -1) i )(K ij (z)) + θ(( 0, -1) i )( α∈Γ e -2πiadxi -1 adx i (t α ij )). (6.2) 
Proof. The first equation comes from a straightforward verification. Let us show the second relation. On the one hand, we have

K ij z - τ N = α∈Γ k α ad(x i ), z - τ N (t α ij ) = α∈Γ e -2iπa N ad(xi) k ad(x i ), z - τ N -α + e -2iπa N ad(xi) -1 ad(x i ) (t α ij ) = α∈Γ e -2iπ(a-1) N ad(xi) k(ad(x i ), z -α) + e -2iπ(a-1) N ad(xi) -1 ad(x i ) (t α-(0, 1) ij ) = θ(0, -1) α∈Γ e -2iπ(a-1) N ad(xi) k(ad(x i ), z -α) + e -2iπ(a-1) N ad(xi) -1 ad(x i ) (t α ij )
On the other hand,

e -2iπ N ad(xj ) K ij (z) = e -2iπ N ad(xj ) α∈Γ k α (ad(x i ), z) (t α ij ) = e 2iπ N ad(xi) α∈Γ e -2iπa N ad(xi) k(ad(x i ), z -α) + e -2iπa N ad(xi) -1 ad(x i ) (t α ij ) = α∈Γ e -2iπ(a-1) N ad(xi) k(ad(x i ), z -α) + e -2iπ(a-1) N ad(xi) -e 2iπ N ad(xi) ad(x i ) (t α ij ) so α∈Γ e -2iπ(a-1) N ad(xi) k(ad(x i ), z -α) = e -2iπ N ad(xj ) K ij (z) - α∈Γ e -2iπ(a-1) N ad(xi) -e 2iπ N ad(xi) ad(x i ) (t α ij ) [y j , f (adx k )(t α ki )] = β∈Γ f (-adx i -adx j ) -f (-adx i ) -adx j [-t β jk , t α ki ].
It follows that the l.h.s. of (CDYBE) is now

α,β∈Γ k α (-adx j , z ij )k β (-adx k , z ik ) -k α (adx i , z ij )k β-α (-adx k , z jk ) +k β (adx i , z ik )k β-α (adx j , z jk ) + k β-α (adx j , z jk ) -k β-α (adx i + adx j , z jk ) adx i + k β (adx i , z ik ) -k β (adx i + adx j , z ik ) adx j - k α (adx i , z ij ) -k α (-adx j , z ij ) adx i + adx j [t α ij , t β ik ] ,
and thus (CDYBE) follows from the identity

k α (-v, z)k β (u + v, z ′ ) -k α (u, z)k β-α (u + v, z ′ -z) + k β (u, z ′ )k β-α (v, z ′ -z) + k β-α (v, z ′ -z) -k β-α (u + v, z ′ -z) u + k β (u, z ′ ) -k β (u + v, z ′ ) v - k α (u, z) -k α (-v, z) u + v = 0 .
This last identity can be written as

k α (-v, z) - 1 v k β (u + v, z ′ ) + 1 u + v -k α (u, z) + 1 u k β-α (u + v, z ′ -z) + 1 u + v + k β (u, z ′ ) + 1 u k β-α (v, z ′ -z) + 1 v = 0 , (6.3) 
which (taking into account that k α (x, z) + (1/x) = e -2πiax (k(x, zα) + (1/x))) is a consequence of equation (3) of [START_REF] Calaque | Universal KZB equations: the elliptic case, Algebra, Arithmetic and Geometry Vol I: in honor of Yu. I. Manin[END_REF].

We have therefore proved: Theorem 6.1.7. ∇ τ,n,Γ is a flat connection on P τ,n,Γ , and its image under tΓ 1,n -→ tΓ 1,n is the pull-back of a flat connection ∇τ,n,Γ on Pτ,n,Γ .

6.2 Lie algebras of derivations and associated groups 6.2.1 The Lie algebras dΓ 0 and dΓ Let f Γ be the free Lie algebra with generators x, t α (α ∈ Γ). Let p, q > 0. We define dp,q 0 to be the subspace of f Γ ⊕ (f Γ ) ⊕|Γ| consisting of elements

(D, C), where C = (C α ) α∈γ , such that deg x (D) + deg t (D) = deg x (C α ) + deg t (C α ) = p and deg t (D) -1 = deg t (C α ) =
q for every α ∈ Γ, and that satisfy the following of linear equations: Remark that (i) and (ii) imply another relation

(i) C α (x, t β ) = C -α (-x, t -β ) in f Γ , (ii) [x, D(x, t β )] + α [t α , C α (x, t β )] = 0 in f Γ , (iii) [D(x 1 , t β 13 ), y 2 ] + c.p.(1, 2, 3) = 0 in t Γ 1,3 , (iv) [D(x 1 , t β 12 ) + D(x 1 , t β 13 ) -[C α (x 2 , t β 23 ), y 1 ], t α 23 ] = 0 in t Γ 1,3 , (v) [C α (x 1 ,
(vi) D(x, t β ) = -D(-x, t -β ) ,
which is very useful for computations. Then dΓ 0 := ⊕ p,q ( dΓ 0 ) p,q . We then define a Lie bracket , on f Γ ⊕ (f Γ ) ⊕|Γ| as follows:

(D, C), (D ′ , C ′ ) := (δ C (D ′ ) -δ C ′ (D), [C, C ′ ] + δ C (C ′ ) -δ C ′ (C)) , where δ C ∈ Der(f Γ ) is the derivation • x → 0, t α → [t α , C α ], • δ C acts on (f Γ ) ⊕|Γ| componentwise on a direct sum : δ C (C ′ ) α = δ C (C ′ α ), • the bracket is understood componentwise as well: [C, C ′ ] α = [C α , C ′ α ].
We let the reader check that dΓ 0 is stable under , , and becomes a bigraded Lie algebra1 . We now define dΓ as the quotient of the free product dΓ 0 * sl 2 by the relations [ẽ, (D, C)] = 0, [ h, (D, C)] = (pq)(D, C), and (ad p f )(D, C) = 0 if (D, C) ∈ dΓ 0 is homogeneous of bidegree (p, q). Here ẽ = 0 1 0 0 , h = 1 0 0 -1 and f = 0 0 1 0 form the standard basis of sl 2 . If we respectively give degree (1, -1), (0, 0) and (-1, 1) to ẽ, h and f then dΓ becomes Z 2 -graded.

We then define dΓ + := ker( dΓ -→ sl 2 ), which is (Z >0 ) 2 -graded. One observes that it is positively graded and finite dimensional in each degree. Thus, it is a direct sum of finite dimensional sl 2 -modules.

The Lie algebras d Γ 0 and d Γ

We write d Γ 0 for the free bigraded Lie algebra generated by δ s,γ 's (s ≥ 0, γ ∈ Γ) in degree (s + 1, s) with relations δ s,γ = (-1) s δ s,-γ , for all s ≥ 0 and γ ∈ Γ.

We then define d Γ as the quotient of the free product d Γ 0 * sl 2 by the relations [ẽ, δ s,γ ] = 0, [ h, δ s,γ ] = sδ s,γ and ad s+1 ( f )(δ s,γ ) = 0; and d Γ + as the kernel of d Γ -→ sl 2 . As above, we have d Γ = d Γ + ⋊ sl 2 , and d Γ + is positively graded (actually (Z >0 ) 2 -graded).

We now give examples of elements in dΓ 0 that are of some use below. For any s ∈ N and γ ∈ Γ, we set D s,γ := p+q=s-1 β∈Γ [(adx) p t β-γ , (-adx) q t β ] and (C s,γ ) α := (adx) s t α-γ + (-adx) s t α+γ .

Observe that (D s,γ , C s,γ ) = (-1) s (D s,-γ , C s,-γ ).

The following result tells us that δ s,γ → (D s,γ , C s,γ ) defines a bigraded Lie algebra morphism

d Γ 0 -→ dΓ 0 , that obviously extends to d Γ -→ dΓ . Proposition 6.2.1. (D s,γ , C s,γ ) ∈ ( dΓ 0 ) s+1,1 .
Proof. First observe that relations (i) and (vi) are obviously satisfied.

To prove (ii) it suffices to notice that in the free Lie algebra with three generators x, t 1 , t 2 we have

[t 1 , (ad x) s t 2 ] + [t 2 , (-ad x) s t 1 ] = p+q=s-1 [x, [(-ad x) q t 1 , (ad x) p t 2 ]] .
Let us prove (iii). In t Γ 1,n we compute for #{i, j, k} = 3,

[y k , (ad x i ) p t α ij ] = - k+l=p-1 β (ad x i ) k [t β ik , (ad x i ) l t α ij ] = k+l=p-1 β (ad x i ) k (-ad x j ) l [t β ik , t α-β kj ] = k+l=p-1 β [(ad x i ) k t β ik , (-ad x j ) l t α-β kj ] .
Therefore, in t Γ 1,3 , we have

[y 1 , D(x 2 , t β 23 )] = k+l+m=s-2 α,β [[(ad x 2 ) k t β 21 , (-ad x 3 ) l t α-β-γ 13 ], (-ad x 2 ) m t α 23 ] + k+l+m=s-2 α,β = [t α 23 , p+q=s-1 β∈Γ (adx 2 ) p (-adx 3 ) q [t α+β-γ 13 + (-1) s t α+β+γ 13 , t β 12 ]] .
On the other hand, we have

[C α (x 2 , t β 23 ), y 1 ] = [(adx 2 ) s t α-γ 23 + (-adx 2 ) s t α+γ 23 , y 1 ] = - p+q=s-1 β∈Γ (ad x 2 ) p (-ad x 3 ) q [t β 12 , t α+β-γ 31 + (-1) s t α+β+γ 31 
] .

Therefore (iv) is satisfied.

Let us prove (v). We have x i -→ 0,

[C α (x 1 , t γ 
y i -→ j:j =i D(x i , t β ij ), t α ij -→ [t α ij , C α (x i , t β ij )].
This induces a bigraded Lie algebra morphism dΓ 0 -→ Der( tΓ 1,n ).

Proof. We have to prove that defining relations of t Γ 1,n are preserved by ξ := ξ (D,C) . First observe that relations

[x i , x j ] = [x i + x j , t α ij ] = [x i , t α jk ] = [t α ij , t α 
kl ] = 0 are obviously preserved. Then conditions (i) and (ii) respectively imply that t α ij = t -α ji and [x i , y j ] = α t α ij are preserved. Condition (vi) implies that [x i , y j ] = [x j , y i ] is preserved, and (vi) together with (iii) imply that [y i , y j ] = 0 is preserved. Therefore it follows from the centrality of i x i and ξ

( i x i ) = 0 that ξ([x i , y i ]) = ξ(- j:j =i [x j , y i ]) = ξ( j;j =i α t α ij ).
Condition (iv) ensures that [y i , t α jk ] = 0 is preserved, and together with (vi) it implies that [y i + y j , t α ij ] = 0 is preserved. Finally condition (v) implies that the twisted infinitesimal braid relations are preserved, and the first part of the statement follows.

For the second part of the statement it remains to prove that the centrality of i y i is preserved. This follows directly from the identity ξ( i y i ) = 0 that we now prove. Relation (vi) implies that for any i = j one has D(x i , t

β ij ) = -D(-x i , t -β ij ) = -D(x j , t β ji ) in t Γ 1,n (the last equality happens since deg t (D) = deg t (C α ) + 1 > 0), and hence ξ( i y i ) = i =j D(x i , t β ij ) = i<j D(x i , t β ij ) - j<i D(x j , t β ji ) = 0 .
We are done (the compatibility with bracket and grading are easy to check).

The last part of the statementis a consequence of the fact that ξ( i y i ) = ξ( i x i ) = 0, that we have already proved.

We now prove that this morphism extends to a Lie algebra morphism dΓ -→ Der(t Γ 1,n ): 

ξ g : t α ij → 0, x i y i → x i y i a b c d .
This induces a bigraded Lie algebra morphism dΓ -→ Der( tΓ

1,n ).
In what follows we write d := h, X := ẽ and ∆ 0 := f and d := ξ h, X := ξ ẽ and ∆0 := ξ f .

Proof. It is obvious that for any g, g ′ ∈ sl 2 , ξ g defines a derivation of the same degree of t Γ 1,n , and that ξ [g,g ′ ] = [ξ g , ξ g ′ ]. Hence we have a bigraded Lie algebra morphism sl 2 * dΓ 0 -→ Der(t Γ 1,n ). Let us prove that it factorizes through the quotient dΓ .

It is relatively clear that

[ X, ξ (D,C) ] = 0 and [ d, ξ (D,C) ] = (p -q)(D, C) if (D, C) ∈ ( dΓ 0 ) p,q
. Thus it remains to prove that (ad ∆0 ) p (ξ (D,C) ) = 0 if (D, C) ∈ ( dΓ 0 ) p,q . We do this now. Let us write ξ := ξ (D,C) and A := (ad ∆0 ) p (ξ). Then after an easy computation one obtains on

Comparison morphisms

Let ρ : Γ 1 -→ Γ 2 a group morphism. We have a comparison morphism dΓ1 0 -→ dΓ2 0 , (D, C) → (D ρ , C ρ ) defined by

D ρ := D   x, γ∈coker(ρ) t ρ(β)+γ # ker(ρ)   , (C ρ ) α := C α   x, γ∈coker(ρ) t ρ(β)+γ # ker(ρ)   .
When ρ is not surjective it depends on the choice of a section coker(ρ) -→ Γ 2 . It extends to dΓ1 -→ dΓ2 by sending the generators of sl 2 to themselves. These comparison morphisms are compatible with the morphisms dΓi -→ Der(t We write Y (Γ) for the set of equivalences classes of pairs (E, φ) where E is an elliptic curve and φ : Z/M Z × Z/N Z -→ E is an injective group morphism that is orientation preserving i.e. such that the basis ( d dt |t=0 (tφ( 1, 0)), d dt |t=0 (tφ( 0, 1)) of T 0 E is direct. Then, one can see that Y (Γ) = H/ SL Γ 2 (Z) and therefore inherits the structure of a complex orbifold. Recall the following standard group actions:

• The group SL 2 (Z) acts on C n × H: a b c d * (z|τ ) := z cτ + d aτ + b cτ + d .
This obviously descends to an action of SL 2 (Z) on C n × H/C, where C acts diagonally on

C n : u • (z|τ ) := (z + u i δ i |τ ). • The group (Z n ) 2 acts on C n × H: (m, n) * (z|τ ) := (z + m + τ n|τ ) .
It obvioulsy descends to an action of

(Z n ) 2 /Z 2 on C n × H/C, where Z 2 is the diagonal subgroup in (Z n ) 2 = (Z 2 ) n .
• Finally, there is a right action of SL 2 (Z) on (m, n) ∈ Z 2 by automorphisms:

a b c d : n m -→ n m a b c d .
We can thus form the semi-direct products

(Z n ) 2 ⋊ SL 2 (Z) and ((Z n ) 2 /Z 2 ) ⋊ SL 2 (Z)
A few observations are then in order:

• The above actions are compatible in the sense that we have a left action of (

Z n ) 2 ⋊ SL 2 (Z) on C n × H, which descends to an action of (Z n ) 2 /Z 2 ⋊ SL 2 (Z) on (C n × H)/C
, where Z 2 is embedded in (Z n ) 2 via the diagonal map. One can think of translation by C as a left or right action as it commutes with the G-action.

• The action of (Z n ) 2 preserves the subset

Diag n,Γ := {(z|τ ) ∈ C n × H|z ∈ Diag τ,n,Γ } .
• The action of the subgroup SL Γ 2 (Z) ⊂ SL 2 (Z) also preserves Diag n,Γ .

We are thus ready to define several variants of Y (Γ) "with marked points":

• We define the quotient

MΓ 1,n := (Z n ) 2 ⋊ SL Γ 2 (Z) \ (C n × H) -Diag n,Γ /C
and call it the moduli space of Γ-structured elliptic curves with n ordered marked points.

• It has a non-reduced variant

p : M Γ 1,n := (C n × H) -Diag n,Γ /(Z n ) 2 ⋊ SL Γ 2 (Z) ։ MΓ 1,n .
• One can also define the moduli space of Γ-structured elliptic curves with n unordered marked points MΓ 1,[n] := MΓ 1,n /S n and its non-reduced variant 

M Γ 1,[n] := M Γ 1,n /S n . Remark 6.3.2. We have MΓ 1,1 = MΓ 1,[1] = Y (Γ), and M Γ 1,1 = M Γ 1,[1] is the universal curve over it. The fiber of M Γ 1,n -→ Y (Γ) (resp. MΓ 1,n -→ Y (Γ)) at (the
u d := u 0 0 u -1 , e vX := 1 v 0 1
.

Since [X,

x i ] = 0 then it makes sense to define e vX+ i wixi := e vX e i wixi . In particular, we have Ad(u 

d )(x i ) = ux i and Ad(u d )(y i ) = y i /u (∀i), Ad(u d )(X) = u 2 X and Ad(u d )(∆ 0 ) = ∆ 0 /u 2 . Let π : C n × H -→ M
⊂ M Γ 1,n is a function f : π -1 (U ) -→ G Γ n such that f (z + δ i |τ ) = f (z|τ ), f (z + τ δ i |τ ) = e -2πix i N f (z|τ ), f (z, τ + 1) = f (z|τ ), f ( z τ | - 1 τ ) = τ d e 2πi τ (X+ i zixi) f (z|τ ).
Moreover, the image of P n,Γ under G Γ n -→ ḠΓ n is the pull-back of a unique principal ḠΓ n -bundle Pn,Γ over MΓ 1,n for which a section on

U ⊂ MΓ 1,n is a function f : (p • π) -1 (U ) -→ MΓ 1,n
satisfying the above conditions (with x i 's replaced by xi 's) and such that f (z

+ v i δ i |τ ) = f (z|τ ) for any v ∈ C.
Proof. First recall that for Γ = 0 this is precisely [START_REF] Calaque | Universal KZB equations: the elliptic case, Algebra, Arithmetic and Geometry Vol I: in honor of Yu. I. Manin[END_REF]Proposition 3.4]. Then observe that we have an obvious map ι : M Γ 1,n -→ M 0 1,n . Therefore we define P n,Γ (resp. Pn,Γ ) to be the image under the natural inclusion G

0 n -→ G Γ n (resp. Ḡ0 n -→ ḠΓ n ) of ι * P n,0 (resp. ι * Pn,0 ).
We thus proved existence. Unicity is obvious.

In other words, there exists a unique non-abelian 1-cocycle

(c g ) g∈(Z n ) 2 ⋊SL2(Z) on C n × H with values in G Γ n such that c (δi,0) = 1, c (0,δi) = e -2πixi , c S = 1 and c T (z|τ ) = τ d e (2πi/τ )(X+ j zj xj) = e 2πi(τ X+ j zj xj ) τ d ,
where S = 1 1 0 1 and T = 0 -1 1 0 are the generators of SL 2 (Z). Here cocycle means (as in [START_REF] Calaque | Universal KZB equations: the elliptic case, Algebra, Arithmetic and Geometry Vol I: in honor of Yu. I. Manin[END_REF]) that c g 's are holomorphic functions

C n × H -→ G Γ n satisfying the cocycle condition c gg ′ (z|τ ) = c g (g ′ * (z, τ ))c g ′ (z|τ ).
Remark 6.3.4. Notice that we do have a (Z n ) 2 ⋊ SL 2 (Z)-cocycle (since our bundle is define as the pull-back of a bundle on M 0 1,1 ) but the cocycle defining P n,Γ is its restriction to (Z n ) 2 ⋊ SL Γ 2 (Z).

Connections on P n,Γ and Pn,Γ

A connection on P n,Γ is the same as an equivariant connection on the trivial G Γ n -bundle over C n × H -Diag n,Γ . Namely, it is of the form ∇ n,Γ := dη(z|τ ), where η is a t Γ 1,n ⋊ d Γ -valued meromorphic one-form on C n × H with only poles on Diag n,Γ , and the equivariance condition reads: for any g ∈ (Z n ) 2 ⋊ SL Γ 2 (Z), g * η = (dc g (z|τ ))c g (z|τ ) -1 + Ad(c g (z|τ ))(η(z|τ )) . (6.7)

We now construct such a connection. For any γ ∈ Γ we define g γ (x, z|τ

) := ∂ x k γ (x, z|τ ), ϕ γ (x|τ ) = s≥0 A s,γ (τ )x s := g -γ (x, 0|τ ) .
Then we set

∆(z|τ ) := - 1 2πi   ∆ 0 + 1 2 s≥0,γ∈Γ A s,γ (τ )δ s,γ - i<j g ij (z ij |τ )   ,
where g ij (z|τ ) := α∈Γ g α (adx i , z|τ )(t α ij ). And finally, with K i (z|τ )'s as in §6.1.3, we define η(z|τ ) := ∆(z|τ )dτ + i K i (z|τ )dz i .

Remark 6.3.5. One can see that ϕ 0 (x) = (θ ′ /θ) ′ (x) + 1/x 2 and that for any γ ∈ Γ -{0}

ϕ γ (x) = ∂ x e 2πicx θ(γ + x) θ(γ)θ(x) - 1 x ,
where γ = (c 0 , c) ∈ Λ τ,Γ -Λ τ is any lift of γ. Proposition 6.3.6. The equivariance identity (6.7) is satisfied for any g ∈ (Z n ) 2 ⋊ SL 2 (Z).

Before proving this statement, let us notice that the SL 2 (Z)-equivariance is stronger than what we need (the SL Γ 2 (Z)-equivariance), but easier to prove. The action of SL 2 (Z) moves the poles while SL Γ 2 (Z) fixes them. In both cases, it makes sense to prove this proposition for meromorphic forms on C n × h.

Proof. For g = (δ j , 0), the identity translates into K i (z + δ j |τ ) = K i (z|τ ) (i = 1, . . . , n) and ∆(z + δ j |τ ) = ∆(z|τ ), which are immediate.

For g = (0, δ j ), the identity translates into K i (z + τ δ j |τ ) = e -2πiad(xj) K i (z|τ ) (∀i) and

∆(z + τ δ j |τ ) + K j (z + τ δ j |τ ) = e -2πiad(xj ) ∆(z|τ ). (6.8)
The first equality is proved in §6.1.3, and we prove the second one now. First remember that for any τ ∈ H, z ∈ C -

( 1 M Z + τ N Z)) and α ∈ Γ, we have the following identity in C[[x]]: e -2πix (g α (x, z) -1/x 2 ) + 1/x 2 -2πi(k α (x, z + τ ) + 1/x) = g α (x, z + τ ) . (6.9) 
Then we can compute 2πi

K j (z + τ δ j |τ ) -e -2πiad(xj ) ∆(z|τ ) : it is equal to 2πi   k:k =j k α (adx j , z jk + τ ) -y j   +∆ 0 + 1 -e -2πiadxj adx j (y j )+ 1 2 s≥0, γ∈Γ A s,γ δ s,γ -e -2πiadxj
k<l g kl (z kl ) , and therefore using

1 -e -2πiadxj adx j (y j ) -2πiy j = e -2πiadxj -1 (adx j ) 2 + 2πi adx j   α∈Γ k:k =j t α jk  
together with (6.9) we obtain

∆ 0 + 1 2 s≥0,γ∈Γ A s,γ δ s,γ - k<l k,l =j g kl (z kl ) - k:k =j α∈Γ g α (adx j , z jk + τ )(t α jk ) ,
which is precisely equal to -2πi∆(z + τ δ j ).

For g = S, the identity translates into K i (z|τ + 1) = K i (z) (∀i) and ∆(z|τ + 1) = ∆(z). Both equalities obviously follow from θ(z|τ + 1) = θ(z|τ ).

For g = T , the identity translates into

1 τ K i ( z τ | - 1 τ ) = Ad (c T (z|τ )) (K i (z|τ )) + 2πix i (6.10)
for all i ∈ {1, . . . , n} and

1 τ 2 ∆( z τ | - 1 τ ) - i z i K i ( z τ | - 1 τ ) = Ad (c T (z|τ )) (∆(z|τ )) + d τ -2πiX . ( 6 
.11)

Variations

Let us first consider the unordered variants

M Γ 1,[n] := M Γ 1,n /S n and MΓ 1,[n] := MΓ 1,n /S n ,
where, as before, the action of S n is again by permutation on C n . Proposition 6.3.13. 1. There exists a unique principal

G Γ n ⋊ S n -bundle P [n],Γ over M Γ 1,[n] , such that a section over U ⊂ M Γ 1,[n] is a function f : π-1 (U ) -→ G Γ n ⋊ S n
satisfying the conditions of Proposition 6.3.3 as well as f (σz|τ ) = σf (z|τ ) for σ ∈ S n (here

π : (C n × H) -Diag n,Γ -→ M Γ 1,[n]
is the canonical projection). 2. There exists a unique flat connection ∇

[n],Γ on P [n],Γ , whose pull-back to (C n × H) -Diag n,Γ is the connection d -∆(z|τ ) d τ - i K i (z|τ ) d z i on the trivial G Γ n ⋊ S n -bundle. 3. The image of (P [n],Γ , ∇ [n],Γ ) under G Γ n ⋊ S n -→ ḠΓ n ⋊ S n is the pull-back of a flat principal ḠΓ n ⋊ S n -bundle ( P[n],Γ , ∇[n],Γ ) on MΓ 1,[n] .
Proof. For the proof of the first point, one easily checks that σc g (z|τ )σ -1 = c σgσ -1 (σ -1 z), where g ∈ (Z n ) 2 ⋊ SL Γ 2 (Z), σ ∈ S n . It follows that there is a unique cocycle c (g,σ) : C n × H -→ ḠΓ n ⋊ S n such that c (g,1) = c g and c (1,σ) (z|τ ) = σ. For the proof of the second point, taking into account Theorem 6.3.11, one only has to show that this connection is S n -equivariant. We have already mentioned that i Ki (z|τ ) d z i is equivariant, and ∆(z|τ ) is also checked to be so.

The third point is obvious.

For every (class of) τ in Y (Γ), one has an action of Γ n on the fiber Conf(E τ,Γ , n, Γ) at τ of

M Γ 1,n ։ Y (Γ), resp. an action of Γ n /Γ on the fiber C(E τ,Γ , n, Γ) at τ of MΓ 1,n ։ Y (Γ). Recall that Conf(E τ,Γ , n, Γ)/Γ n = Conf(E τ,Γ , n) and C(E τ,Γ , n, Γ)/(Γ n /Γ) = C(E τ,Γ , n) .
This action depends holomorphically of τ , so that we have an action of Γ n on M Γ 1,n , resp. an action of Γ n /Γ on MΓ 1,n . Proposition 6.3.14. 1. There exists a unique principal

G Γ n ⋊ Γ n -bundle over M Γ 1,n /Γ n , such that a section over U ⊂ M Γ 1,n /Γ n is a function f : π-1 (U ) -→ G Γ n ⋊ Γ n
satisfying the following conditions:

f (z + δ i M |τ ) = ( 1, 0) i f (z|τ ), f (z + τ δ i N |τ ) = e -2πix i N ( 0, 1) i f (z|τ ), f (z, τ + 1) = f (z|τ ), f ( z τ | - 1 τ ) = τ d e 2πi τ (X+ i zixi) f (z|τ ).
Here, π : (C n × H) -Diag n,Γ -→ M Γ 1,n /Γ n is the canonical projection. 2. There exists a unique flat connection on this bundle whose pull-back to

(C n × H) -Diag n,Γ is the connection d -∆(z|τ ) d τ - i K i (z|τ ) d z i on the trivial G Γ n ⋊ Γ n -bundle. 3. The image of the above flat bundle under G Γ n ⋊ Γ n -→ ḠΓ n ⋊ (Γ n /Γ) is the pull-back of a flat principal ḠΓ n ⋊ (Γ n /Γ)-bundle on MΓ 1,n /(Γ n /Γ).
Proof. The first assertion is left to the reader. Assertion 3 is evident. Let us prove assertion 2. By Proposition 6.1.5, we know that the K i satisfy

(e) K i (z + δj M |τ ) = θ(( 1, 0) j )K i (z|τ ), (f) K i (z + τ δj N |τ ) = θ(( 0, 1) j )e -2πi
N ad(xj) K i (z|τ ).

The fact that ∆(z+ δj M |τ ) = θ(( 1, 0) j )∆(z|τ ) is immediate. Thus, it remains to show that ∆(z+ τ δj N |τ ) = e -2πiad(x j ) N θ(( 0, 1) j )(∆(z|τ ) -K j (z|τ )) which is proved in Lemma 6.3.15 below. Lemma 6.3.15. We have

∆(z + τ δ j N |τ ) = e -2πiad(x j ) N θ(( 0, 1) j )(∆(z|τ ) -K j (z|τ )). (6.18) 
Proof. On the one hand, we have

-2πi∆(z + τ δ j N ) = ∆ 0 + 1 2 s≥0,γ∈Γ A s,γ δ s,γ - k<l k,l =j g kl (z kl ) - k:k =j α∈Γ g α (adx j , z jk + τ N )(t α jk ).
On the other hand, as

e -2πiad(x j ) N (∆ 0 ) = (1 -(1 -e -2πiad(x j ) N )(∆ 0 ) = (∆ 0 ) + 1 -e -2πiadx j N adx j (y j ) = e -2πiadx j N -1 (adx j ) 2   α∈Γ k:k =j t α jk  
and the δ s,γ commute with the x j , we compute

2πi K j (z + τ N δ j |τ ) -e -2πiad(x j ) N θ(( 0, 1) j )∆(z|τ ) = 2πi θ(( 0, -1) j )K j (z + τ N δ j |τ ) -e -2πiad(x j ) N ∆(z|τ ) = 2πiθ(( 0, -1) j )   k:k =j k α (adx j , z jk + τ N ) -y j   + ∆ 0 + 1 -e -2πiadx j N adx j (y j ) + 1 2 s≥0, γ∈Γ A s,γ δ s,γ -e -2πiadx j N k<l g kl (z kl ).
Next, by combining

K ij (z - τ N ) = e -2πi N ad(xi) θ(( 0, -1) i )(K ij (z)) + θ(( 0, -1) i )( α∈Γ e -2πiadxi -1 adx i (t α ij )),
and equations

g α (x, z) -1/x 2 = e -2iπax g(x, z -α) -1/x 2 -2iπb (k α (x, z) + 1/x) .
We can follow the same lines as in the proof of relation (6.8) to obtain the wanted equation.

We also leave to the reader the task of combining several variants. Let g be a Lie algebra and t g ∈ S 2 (g) g be nongenerate. Assume that we have a group morphism θ : Γ -→ Aut(g, t g ) and set l := g Γ and u := ⊕ χ∈ Γ-{0} g χ , where g χ is the eigenspace of g corresponding to the character χ : Γ -→ C * . Then we have g = l ⊕ u with [l, u] ⊂ u, and t = t l + t u with t l ∈ S 2 (l) l and t u ∈ S 2 (u) l . We denote by (a, b) → a, b the invariant pairing on l corresponding to t l and write t l = ν e ν ⊗ e ν .

Realizations

Let Diff(l * ) be the algebra of algebraic differential operators on l * . It has generators x l , ∂ l (l ∈ l) and relations

x tl+l ′ = t x l + x l ′ , ∂ tl+l ′ = t∂ l + ∂ l ′ , [x l , x l ′ ] = 0 = [∂ l , ∂ l ′ ] and [∂ l , x l ′ ] = l, l ′ .
Moreover, one has a Lie algebra morphism l -→ Diff(l * ); l → X l := ν x [l,eν ] ∂ eν . We denote by l diag the image of the induced morphism

l ∋ l → Y l := X l ⊗ 1 + 1 ⊗ n i=1 l (i) ∈ Diff(l * ) ⊗ U (g) ⊗n ,
and define H n (g, l * ) as the Hecke algebra of A n := Diff(l * ) ⊗ U (g) ⊗n with respect to l diag . Namely, H n (g, l * ) := (A n ) l /(A n l diag ) l . It acts in an obvious way on

(O l * ⊗ (⊗ n i=1 V i )) l if (V i ) 1≤i≤n is a collection of g-modules.
Let us set x ν := x eν and ∂ ν := ∂ eν , and write α (i) • for the action of α ∈ Γ on the i-th component in U (g) ⊗n .

Finally, recall that the twisted elliptic Kohno-Drinfeld Lie algebra t Γ 1,n is defined in Definition 4.3.3. Proposition 6.4.1. There is a unique Lie algebra morphism ρ g : t Γ 1,n -→ H n (g, l * ) defined by

x i -→ M ν x ν ⊗e (i) ν , y i -→ -N ν ∂ ν ⊗ e (i) ν , t α ij -→ 1 ⊗ (α (1) • t g ) (ij) .
It induces a Lie algebra morphism ρg : tΓ 1,n -→ H n (g, l * ).

Proof. Let us use the presentation of t Γ 1,n coming from Lemma 4.3.5. The only non trivial check is that the relation [ j x j , y i ] = 0 is preserved. We have

ρ g n i=1 x i = M ν x ν ⊗ n i=1 e (i) ν = M ν (x ν ⊗ 1) 1 ⊗ n i=1 e (i) ν ≡ M ν (x ν ⊗ 1) (Y ν -X ν ⊗ 1) ≡ M - ν x ν X ν ⊗ 1 = M ν1,ν2 x eν 1 x [eν 1 ,eν 2 ] ∂ ν2 ⊗ 1 = 0 as x eν 1 commutes with x [eν 1 ,eν 2 ]
and t l is invariant. Here the sign ≡ means that both terms define the same equivalence class in H n (g, l). Thus,

[ρ g   j x j   , ρ g (y i )] ≡ [0, ρ g (y i )] = 0.
The proof that [ j y j , x i ] = 0 is preserved is a consequence of the fact that ρ j y j = 0, which was proven in [START_REF] Calaque | Universal KZB equations: the elliptic case, Algebra, Arithmetic and Geometry Vol I: in honor of Yu. I. Manin[END_REF]Proposition 6.1]. The fact that this induces a Lie algebra morphism ρg : tΓ Let us write t g = u a u ⊗ a u . +ad(x) p ad(e ν )ad(x) q ad([e ν , x])ad(x) r (a u ) ⊙ (γ • a u ) (i) , which is zero from the l-invariance of t l = ν e ν ⊗ e ν . The term corresponding to j = i is the linear map S s-1 (l) -→ U (g) ⊗n such that for x ∈ l

x s-1 -→ 1 |Γ| p+q=s-1 ν,u

(ad(x) p ad(e ν )ad(x) q (a u ) ⊙ (γ • a u )) (j) e (i) ν -(i ↔ j)

= 1 |Γ| p+q=s-1 ν,u
(ad(x) p ([e ν , a u ]) ⊙ (-ad(x)) q (γ • a u )) (j) e (i) ν -(i ↔ j)

= 1 |Γ| p+q=s-1 ν,u
(-1) q (ad(x) p ([e ν , a u ]) ⊙ (ad(x)) q (γ • a u )) (j) e (i) ν -(i ↔ j)

= 1 |Γ| p+q=s-1 ν,u
(-1) q (ad(x) p ([e ν , a u ]) ⊙ (ad(x)) q (γ • a u ))

(j) e (i) ν -(i ↔ j) = 1 |Γ| 2 β∈Γ p+q=s-1 v,u
(-1) q (ad(x) p ([a v , a u ]) ⊙ (ad(x)) q (γ • a u ))

(j) (β • a v ) (i) -(i ↔ j) = 1 |Γ| 2 β∈Γ p+q=s-1 (-1) q ν,u (ad(x) p (a v ) ⊙ ad(x) q (γ • a u )) (i) (β • [a u , a v ]) (j) -(i ↔ j) = 1 |Γ| 2
β∈Γ p+q=s-1 (-1) q ν,u (ad(x) p (β • a v ) ⊙ ad(x) q ((β + γ) • a u )) (i) [a u , a v ] (j) -(i ↔ j) = 1 |Γ| 2 β∈Γ p+q=s-1 (-1) q ν,u (ad(x) p ((βγ) • a v ) ⊙ ad(x) q ((β) • a u )) (i) [a u , a v ] (j) -(i ↔ j) A direct computation shows that the commutation relations of [X, ξ s,γ ] = 0, [d, ξ s,γ ] = sξ s,γ and ad s+1 (∆ 0 )(ξ s,γ ) = 0 are preserved, which finishes the proof.

which

Reductions

Assume that l is finite dimensional and we have a reductive decomposition l = h ⊕ m, i.e. h ⊂ l is a subalgebra and m ⊂ l is a vector subspace such that [h, m] ⊂ m. We also assume that t l = t h + t m with t h = ν e ν ⊗ e ν ∈ S 2 (h) h and t m ∈ S 2 (m) h , and that for a generic h ∈ h, ad(h) |m ∈ End(m) is invertible. This last condition means that P (λ) := det(ad(λ ∨ )) |m ) ∈ S dim(m) (h)

On the one hand, it follows from §6.4.1 that the image r(x, z) := ρ g (K(z)) of K(z) under ρ g : t Γ 2,+ -→ ( Ôl * ⊗ g ⊗2 ) l is a dynamical r-matrix 2 with spectral parameter, i.e. a solution of the CDYBE with a spectral parameter for the pair (l, g) ν e (1) ν ∂ ν r(x, z 23 ) (23) + [r(x, z 12 ) (12) , r(x, z 13 ) (13) ] + c.p.(1, 2, 3) = 0 , which satisfies r(x, -z) = -r(x, z) (21) . On the other hand, the image of K(z) under ρ g,h :

t Γ 2,+ -→ ( Ôh * reg ⊗ g ⊗2 ) h is precisely equal to the restriction ρ g (K(z))| h * ∈ ( Ôh * reg ⊗ g ⊗2 ) h of ρ g (K(z)) to h * . Then applying [37, Proposition 0.1], we conclude that r(x, z) := ρ g,h (K(z)) + r(λ) is a solution of the CDYBE with spectral parameter for (h, g):

ν e (1)
ν ∂ ν r(x, z 23 ) (23) + [r(x, z 12 ) (12) , r(x, z 13 ) (13) ] + c.p.(1, 2, 3) = 0 .

Then for any n-tuple V = (V 1 , . . . , V n ) of g-modules one has a flat connection ∇ (V ) τ,n,Γ on the trivial vector bundle over C n -Diag τ,nΓ with fiber (O h * reg ⊗ (⊗ i V i )) h , defined by the following compatible system of first order differential equations: Here z → F (x, z) is a function with values in (O h * reg ⊗ (⊗ i V i )) h .

∂ zi F (x, z) = ν e ( 
Starting from K(z) = K 12 (z) as in §6.1.3, it would be interesting to know if one can recover (up to gauge equivalence), using the above realization morphisms, the generalization of Felder's elliptic dynamical r-matrices [START_REF] Felder | Conformal field theory and integrable systems associated to elliptic curves[END_REF] constructed in [START_REF] Etingof | Twisted traces of intertwiners for Kac-Moody algebras and classical dynamical r-matrices corresponding to generalized Belavin-Drinfeld triples[END_REF][START_REF] Feher | Generalizations of Felder's elliptic dynamical r-matrices associated with twisted loop algebras of self-dual Lie algebras[END_REF].

Letu develop a bit more this idea. Set K(z) = K 12 (z) like in §6.1.3 and focus on the case when g is a simple Lie algebra. Let us introduce some standard notation: ∆ + is the set of positive roots, (h i ) i is an orthonomal basis of h = g 0 , and for any positive root α one has g α = Ce α and g -α = Cf α with e α , f α = 1. Then one has

t g = 1 2 i h i ⊗ h i + α∈∆ + (e α ⊗ f α + f α ⊗ e α ) .
Assume that θ( 1, 0) = Ad(e 2πiρ/κ ), where ρ is the half-sum of positive roots and κ the dual Coxeter number of g. Observe that this automorphisms can be defined alternatively by h i → h i , e α → e 2πi|α|/κ e α and f α → e -2πi|α|/κ f α (here |α| is the lenght of the root α). Therefore l ⊂ h, 2 Remember that O l * := S(l) and Ôl * := Ŝ(l).

and thus we can compute, writing β := θ( 0, 1), r(x, z) = 1 κN γ∈Γ k γ (ad(x ∨ ) (1) , z)(γ (1) • t g ) = 1 κN k=0,...,κ-1 l=0,...,N -1 α∈∆ + e -2πil x,α θ(z -k κ -lτ N + x, α ) θ(z -k κ -lτ N )θ( x, α ) e 2πik|α|/κ β l (e α ) ⊗ f α +e 2πil x,α θ(z

-k κ -lτ N -x, α ) θ(z -k κ -lτ N )θ(-x, α ) e -2πik|α|/κ β l (f α ) ⊗ e α + i θ ′ θ (z - k κ - lτ N )β l (h i ) ⊗ h i .
This should correspond to the generalization of Felder's elliptic dynamical r-matrices.

Example 6.4.5. If g = sl n and θ( 0, 1) is the conjugation by the cyclic permutation (1 • • • n) (hence we have M = N = n) then h = {0} and r(z) is Belavin's elliptic solution of the classical (non dynamical) Yang-Baxter equation [START_REF] Belavin | Triangle equations for simple Lie algebras[END_REF]. In this case the Γ-KZB system realizes as the elliptic KZ system [START_REF] Etingof | Representations of affine Lie algebras, elliptic r-matrix system, and special functions[END_REF] (see also [START_REF] Kohno | Elliptic KZ system, braid group of the torus and Vassiliev invariants[END_REF][START_REF] Kuroki | Twisted Wess-Zumino-Witten models on elliptic curves[END_REF]). is a a covering map with structure group Γ n ⋊ S n . Hence we get a short exact sequence

1 -→ PB Γ 1,n -→ B 1,n ϕn -→ Γ n ⋊ S n -→ 1 ,
where PB Γ 1,n := π 1 (Conf(E τ,Γ , n, Γ), z 0 ) and B 1,n = π 1 Conf(E τ,Γ , [n]), z 0 . We will also consider PB 1,n = π 1 Conf(E τ,Γ , n), z 0 , and the short exact sequence 1 -→ PB Γ 1,n -→ PB 1,n -→ Γ n -→ 1 associated with the Γ n -covering map

Conf(E τ,Γ , n, Γ) ։ Conf(E τ,Γ , n) .

Our main aim in this Section is to prove that the surjective morphism

B 1,n ։ Γ n ⋊ S n
is relatively formal, which in turns implies the relative formality of PB 1,n -→ Γ n , and the formality of PB Γ 1,n . Moreover, we will have an explicit description of the relative completion in terms of the Lie algebra t Γ 1,n . Our aim now is to prove that Theorem 7.1.6, namely that the completed monodromy morphism μz0,τ,n,Γ (C) : PB Let us start with a few algebraic facts about PB 1,n and PB Γ 1,n . The group PB 1,n is generated by the X i 's and Y i 's (i = 1, . . . , n), where X i (resp. Y i ) is the class of the path given by [0, 1] ∋ t → z 0tδ i /M (resp. [0, 1] ∋ t → z 0tτ δ i /N ). One sees very easily that X M i (resp. Y N i ) is the class of the path given by [0, 1] ∋ t → z 0tδ i (resp. [0, 1] ∋ t → z 0tτ δ i ), so that X M i and Y N i are elements of PB Γ 1,n . One has an obvious inclusion PB n ֒→ PB Γ 1,n coming from the identification of C with the fundamental domain

{z = a + bτ ∈ C|0 < a < 1 M , 0 < b < 1 N } of E τ,Γ .
Then one can check (by simply drawing) that the following relations are satisfied in PB 1,n : (T1) (X i , X j ) = 1 = (Y i , Y j ) (i < j), (T2) (X j , Y -1 i ) = P ij = (X i , Y -1 j ) (i < j), (T3) (X n , Y n ) = P n-1,n • • • P 1n , (T4) (X i , P jk ) = 1 = (Y i , P jk ) (∀i, j < k), (T5) (X i X j , P ij ) = 1 = (Y i Y j , P ij ) (i < j).

In particular PB n identifies with the subgroup of commutators in PB 1,n . Moreover, one observes that X 1 • • • X n and Y 1 • • • Y n are central in PB 1,n . Now it follows from the geometric description of PB Γ 1,n that it is generated by X M i , Y N i (i = 1, . . . , n) and P α ij := X -p j Y -q j P ij Y q j X p j (i < j, 1 ≤ p ≤ M , 1 ≤ q ≤ N and α = (p, q)). One can for instance represent lifts of X 3 , Y 3 and P Observe that the standard descending filtration on tΓ 1,n coincides with the descending filtration coming from the grading of t Γ 1,n defined in §4.3.3.

Proposition 7.1.7. There is a surjective graded Lie algebra morphism p n : t Γ 1,n -→ gr(pb Γ 1,n ), sending • x i -→ σ log(X M i ) for i = 1, . . . , n, • y i -→ σ log(Y N i ) for i = 1, . . . , n, • t α ij -→ σ log(P α ij ) for i < j, • t α ij -→ σ log(P -α ji ) for j < i, where σ denotes the symbol map pb Γ 1,n -→ gr(pb Γ 1,n ).

Proof. It is sufficient to check that the defining relations of t Γ 1,n are preserved by the above assignment.

The relation [x i , x j ] = 0 = [y i , y j ] is obviously preserved. Now using (T2) and the relation

(X M , Y N ) = M-1 i=0 X M-i+1 ( N -1 j=0 Y j (X, Y )Y -j )X i-M-1
(which is true in the free group F 2 , and thus in any group) with X = X i and Y = Y j (i = j), one obtains that [x i , y j ] = [x j , y i ] = α t α ij is preserved. Using (T3) one also obtains that [x 1 , y 1 ] =α j:1 =j t α 1j is preserved. Now it is obvious that the centrality of i x i and i y i is preserved, and thus it follows that [x i , y i ] =α j:j =i t α ij is also preserved for any i ∈ {1, . . . , n}. For any α = (p, q) we compute

(X M i , P α jk ) = X M i X -p k Y -q k P jk Y q k X p k X -M i X -p k Y -q k P -1 jk Y q k X p k = X -p k (X M i , Y -q k )Y -q k X M i P jk X -M i Y q k (X M i , Y -q k ) -1 Y -q k P -1 jk Y q k X p k = X -p k (X M i , Y -q k )Y -q k P jk Y q k (X M i , Y -q k ) -1 Y -q k P -1 jk Y q k X p k .
One sees that the log of the l.h.s. lies in (pb Γ 1,n ) 3 and its symbol is equal to [σ(log(X M i )), σ(log(P α jk ))], and that the log of the r.h.s. lies in (pb Γ 1,n ) 4 . Hence one obtains that [x i , t α jk ] = 0 is preserved. The proof that [y i , t α jk ] = 0 is preserved is identical, and the proof that [x i + x j , t α ij ] = 0 = [y i + y j , t α ij ], [t α ij , t β kl ] = 0 and [t α ij , t α+β ik + t β jk ] = 0 are preserved is very similar. To prove that Lie(µ z0,τ,n,Γ ) is an isomorphism, it is sufficient to prove that it is an isomorphism on associated graded. According to Proposition 7.1.7, we simply have to prove that φ := grLie(µ z0,τ,n,Γ ) • p n is an isomorphism of graded Lie algebras.

We will actually be more specific on prove the following:

Lemma 7.1.8. We have φ(x i ) = -y i , φ(y i ) = 2πix iτ y i and φ(t α ij ) = 2πit α ij . In particular, φ is an automorphism.

Then D Γ n ⊂ (C n × H) -∆ n,Γ is simply connected and invariant under C( i δ i ). A solution of the ellipsitomic KZB system on this domain is then unique, up to right multiplication by a constant. We now determine a particular solution F for z ij ≪ 1 and any τ ∈ H.

In section 13 we will relate A s,γ (τ ) to Eisenstein-Hurwitz series which have a q N -expansion and we define the normalized version Ãs,γ (τ ) of the twisted Eisenstein series A s,γ (τ ) such that A s,γ (τ ) = a s,γ Ãs,γ (τ ),

and such that we have an expansion Ãs,γ (τ ) = 1 + l>0 a kl,γ e 2πilτ /N as τ -→ i∞. Then, by applying Proposition 3 in Appendix A of [START_REF] Calaque | Universal KZB equations: the elliptic case, Algebra, Arithmetic and Geometry Vol I: in honor of Yu. I. Manin[END_REF] with u n = z n1 , u n-1 = z n-1,1 /z n1 ,..., u 2 = z 21 /z 31 , u 1 = q(τ ) = e 2πiτ /N , we obtain a unique solution F The sign ≃ means here that any of the ratios of both sides is of the form 1 + k>0 i,a1,...,an r i,a1,...,an k (u 1 , ..., u n ), and γ n (σ α i ) = g 2 (p, 0) i+1 ( 0, q) i+1 e πit 0 i,i+1 ( 0, -q) i ( -p, 0) i g -1

2
where i = 1, ..., n -1, and α = (p, q).

Proof. Let G Γ i (z|τ ) be the solution of the elliptic Γ-KZB system, such that iz 0 j as before). Then

G Γ i (
G Γ i (z + n j=i δ i |τ ) = n j=i
( 1, 0) j G Γ i (z|τ )γ 2 (A M 2 ) 1...i-1,i...n , because in the domain considered K i (z|τ ) is close to K 2 (z 1 , z n |τ ) 1...i-1,i...n (where K 2 (...) corresponds to the 2-point system); on the other hand, F Γ (z|τ ) = G Γ i (z|τ ){Φ i }, which implies the formula for γ n (A i ). The formula for γ n (B i ) is proved in the same way. Finally, the behavior of F (n) Γ (z|τ ) for z 0 21 ≪ ... ≪ z 0 n1 ≪ 1 is similar to that of a solution of the KZ equations and we know that the twisted elliptic KZB connection is Γ-equivariant. This implies the formula for γ n (σ α i ).

Let us now finish the proof of Theorem 7.2.1. We set, for α ∈ Γ, θ((α) i ) • A 10,20,...,i0,...,n0 = A 10,20,...,iα,...,n0 .

changer a partir d'ici

Set à := γ 2 (A 2 ), B := γ 2 (B 2 ). The image of the relation This relation can be depicted as follows: One can simply draw the l.h.s. of these double equation as follows: we simplify the paths by just neglecting the associators and we suppose that the central portion of the torus corresponds to the ( 0, 0)-labelled region with respect to the sublattice Λ τ,Γ . Then we enumerate the different movements (read from left to right in the l.h.s of the equation) of the marked points in the It is even, periodic with respect to the latice (Z ⊕ τ Z) and meromorphic with poles of order exactly 2 in (Z ⊕ τ Z).

We 

G k (τ ) := ∞ n=-∞    ∞ m=-∞ m =0 if n=0 1 (m + nτ ) k    = 2ζ(k) + 2 • (2πi) k (k -1)! ∞ m=1 σ k-1 (m)q m ,
where σ α (k) = d|k d α . We have G k (τ ) = 0 if k is odd. We will also use the normalized

Eisenstein series E k (τ ), defined for k ≥ 4 even, by E k := G k (τ ) 2ζ(k) so that, for n ≥ 1, we have where B n are the Bernoulli numbers given by x/(e x -1) = r≥0 (B r /r!)x r . In particular, the constant term in the q-expansion of the series E 2n is equal to 1.

Finally, also recall the expansion θ(x, τ ) = x + 2πi∂ τ log η(τ )x 3 + O(x 5 ).

Twisted Eisenstein series

First of all, set γ = 0. We get, as in [24, Section 4.1],

g 0 (0, x|τ ) = (θ ′ /θ) ′ (x) + 1/x 2 = -k≥0 ã2k E 2k+2 (τ )x 2k , where ã0 = π 2 /3, E 2 (τ ) = 24 2πi ∂ τ log η(τ ), and for n ≥ 1, . We now concentrate to the case where γ ∈ Γ-0. Let γ ∈ Γ-{0} and let γ = (c 0 , c) ∈ Λ τ,Γ -Λ τ be any lift of γ. Notice that G s,γ (τ ) is not pair for the variable x but is pair for the variable x + γ i.e. it is invariant under the transformation x + γ → -xγ. Thus, we obtain G s,γ = (-1) s G s,-γ , which implies that Ās,γ = (-1) s Ās,-γ .

In conclusion, we obtain Proof. We will proceed as follows. First, we will show the modular quasi-invariance. Then we will show holomorphy at the cusps by characterising holomorphy in terms of a q N -expansion, where q N = e 2πiτ /N (see [26, 

D i = ∂ zi + j:j =i α∈Γ k α 1 -s α ij (-α)(z i ) -α(z j ) .
One can then prove that there is a unique isomorphism of algebras H Γ n (k) -→ H 1,k,0 (X, G) defined by 

x i -→z i , y i -→D i - 1 n j D j , G ∋ g -→g.

Monodromy representations of Hecke algebras

Let E be an elliptic curve and Ẽ -→ E the Γ-covering as in §6.1.1. Define X = Ẽn / Ẽ and G = (Γ ≀ S n )/Γ diag . Then the set X ′ ⊂ X of points with trivial stabilizer is such that

X ′ /G = C(E, [n], Γ).
Let us recall from [START_REF] Etingof | Cherednik and Hecke algebras of varieties with a finite group action[END_REF] the construction of the Hecke algebra H Γ n (q, t) of X/G. It is the quotient of the group algebra of the orbifold fundamental group BΓ 1,n of C(E, [n], Γ) by the additional relations (T αq -1 t α )(T α + q -1 t -1 α ) = 0, where T α is an element of BΓ 1,n homotopic as a free loop to a small loop around the divisor Y α := ∪ i =j {z i = α • z j } in X/G, in the counterclokwise direction. 1 Let us consider the flat connection ∇ (V ) a,b and set q = e -2πiab/n , t α = e -2πikαab .

Then the monodromy representation BΓ

1,n -→ GL(V ) of ∇ (V )
a,b obviously gives a representation of H Γ n (q, t) either if V is finite dimensional or if a, b are formal parameters. In particular, taking a = b a formal parameter and V = H Γ n (k), one obtains an algebra morphism

H Γ n (q, t) -→ H Γ n (k)[[a]] .
We do not know if this morphism is an isomorphism upon inverting a. [(ad x) p t β-γ , (-ad x) q t β ], and (C s,γ ) α := (ad x) s t α-γ + (-ad x) s t α+γ . Observe that (D s,γ , C s,γ ) = (-1) s (D s,-γ , C s,-γ ).

One has shown (e.g. Proposition 6.2.4 and the fact that D s,γ (x, t β ) = D s,γ (-x, t -β )) that the bidegree of (D s,γ , C s,γ ) is (s + 1, 1 • ε 2s (y) := 0≤j≤s (-1) j [ad j (x)(y), ad 2s-1-j (x)(y)].

• ε 2s+1 (x) = ε 2s+1 (y) = 0.

Remark 8.1.6. We have ξ(2) s,γ (y i ) = -ξ (2) s,γ (y) + [(ad x) s t -γ + (-ad x) s t γ , y] Proposition 8.1.7. There is a surjective Lie algebra morphism

u Γ -→ u ε(2) s,γ -→ ε s .
Proof. This is consequence of the definition of the commutativity of the comparison morphism diagram dΓ1 ⋉ t Γ1 -(-2π i z) -t 0 e 2π i x N (( 0, 1)x Γ (τ )e -2π i x N (-2π i z) t 0 • X z (τ ).

Then, as we showed that ∆(z + τ δ j N |τ ) = e -2πiad(x j ) N θ(( 0, 1) j )(∆(z|τ ) -K j (z|τ )).

then the parenthesis in the last three lines is equal to Ad((-2π i z) -t 0 )(g(z|τ )).

We conclude that, in the limit z -→ 0, 2π i ∂ ∂τ B Γ (τ ) = -(∆ 0 + 1 2 s≥0,γ∈Γ A s,γ (τ ) ξ(2) s,γ )B Γ (τ ).

Remark 8.2.2. If we suppose that the group GRT Γ ell (C) has a semi-direct product decomposition into some group R Γ ell (C) and GRT(C), there is an action of R Γ ell (C) on Ell Γ KZB . In this case, the above theorem can be rewritten in a more compact way by where * is here a Lie algebra action.

Let us fix τ ∈ H, γ ∈ Γ and x ∈ C. Define σ τ x,γ (z) := θ(z + γ + x) θ(z + γ)θ(x) .

Consider x as a formal variable close to 0 and σ τ x,γ as an element of x -1 M(C) [[x]], where M(C) = {meromorphic functions defined over C}.

• elliptic multiple zeta values at (real) torsion points should degenerate to multiple Hurwitz values at the cusps of Y (Γ).

• elliptic multiple zeta values at torsion points should be linear combinations of iterated integrals of Eisenstein-Hurwitz series whose coefficients are controlled by the Lie algebra

u Γ .
This gives hope of finding new periods of P 1 -{0, µ M , ∞} besides cyclotomic multiple-zeta values for special values of M .

Example 2 . 1 . 2 .

 212 Let us enumerate some examples of associative algebras.

Remark 2 . 1 . 4 .

 214 Antisymmetry means [x, y] = -[y, x]. Bilinearity means [ax + by, z] = a[x, z] + b[y, z] and [z, ax + by] = a[z, x] + b[z, y],

  It is easy to prove that fS (k) ⊂ k S . If S = {X, Y }, we will denote from now on fS (k) = f(X, Y ). Example 2.1.28. The Kohno-Drinfeld Lie k-algebra t n (k) has a positive grading by setting deg(t ij ) := 1 and we have

23 2iπ

 23 are well defined in U.

Definition 2 . 2 . 23 .

 2223 The universal KZ connection is ∇ KZ n := dω KZ n , where ω KZ n is the differential 1-form over Conf(C, n) with values in the Kohno-Drinfeld Lie C-algebra t n given by the following formula:

Figure 2 . 1 :

 21 Figure 2.1: Paths in M 0,4 = P 1 -{0, 1, ∞}.

Corollary 2 . 2 . 45 .

 2245 Multizeta values satisfy the Drinfeld associator relations.

ρ

  KZ : PB n -→ exp( tn ) factors through the C-prounipotent completion PB n (C) of PB n and one can show the following Proposition 2.2.48. The map ρ : PB n (C) -→ exp( tn )

  j} and its reduced version C(S 1 , I) := Conf(S 1 , I)/S 1 . The Fulton-MacPherson compactification C(S 1 , I) of C(S 1 , I) is a disjoint union of |I|-th Bott-Taubes polytopes [15], indexed by S I . The boundary ∂C(S 1 , I) := C(S 1 , I) -C(S 1 , I) is the union, over all partitions

  j} and its reduced version C(R >0 , I) := Conf(R >0 , I)/R >0 . The Fulton-MacPherson compactification C(R >0 , I) of C(R >0 , I) is a disjoint union of |I|-th Stasheff polytopes with two kinds of colours, indexed by S I . The boundary ∂C(R >0 , I) := C(R >0 , I) -C(R >0 , I) is the union, over all partitions

  then consider the Fulton-MacPherson compactification C(C, I) of C(C, I). The boundary ∂C(C, I) = C(C, I)-C(C, I) is made of the following irreducible components: for any partition

Example 2 . 6 . 1 (2 2 Example 2 . 6 . 2 (

 2612262 Description of PaB(2)). Let us first recall that Pa(2) = S 2 , and that C(C, 2) ≃ S 1 . Besides the identity morphism in PaB(2) going from (12) to (12), we have an arrow R 1,2 in PaB(2) going from (12) to (21) which can be depicted as follows 3 : Two incarnations of R 1,Notable arrows in PaB(3)). Let us first recall that Pa(3) = S 3 ×{(••)•, •(••)} and that C(R, 3) ∼ = S 3 × [0, 1]. Therefore, we have an arrow Φ 1,2,3 (the identity path in [0, 1]) from (12)3 to 1(23) in PaB(3). It can be depicted as follows:

Remark 2 . 6 . 15 .

 2615 When restricted to the full subcategory Cat(CoAlg conn k ) of CoAlg k -enriched categories for which the hom-coalgebras are connected, the functor G leads to an equivalence between Cat(CoAlg conn k

Theorem 3 . 1 . 1 .

 311 The following maps are bitorsor isomorphisms

4. 1

 1 Modules associated with configuration spaces (elliptic associators)4.1.1 Compactified configuration space of the torusLet T be the topological torus. To any finite set I we associate a configuration space Conf(T,I) = {z = (z i ) i∈I ∈ T I |z i = z j if i = j} .We also consider its reduced version C(T, I) := Conf(T, I)/T . We then consider the Fulton-MacPherson compactification C(T, I) of C(T, I). The boundary ∂C(T, I) = C(T, I)-C(T, I) is made of the following irreducible components: for any partition

4. 1 . 2

 12 The PaB-module PaB eℓℓ of parenthesized elliptic (or beak) braids In a similar manner as in §2.6.2, we have inclusions of topological modules 1 Pa ⊂ C(S 1 , -) ⊂ C(T, -) . Then it makes sense to define PaB eℓℓ := π 1 C(T, -), Pa , which is a PaB-module in groupoids.Example 4.1.1 (Structure of PaB eℓℓ (2)). As in Example 2.6.1 we have an arrow R 1,2 going from (12) to

  One can rephrase[START_REF] Enriquez | Elliptic associators[END_REF] Proposition 1.3] in the following way: Theorem 4.1.3. As a PaB-module in groupoids having Pa as Pa-module of objects, PaB eℓℓ is freely generated by A := A 1,2 and B := B 1,2 , together with the following relations:

Remark 4 . 1 . 4 .

 414 It is probably best to picture the nonagon relation by means of the following relation (this is relation 25 in[START_REF] Calaque | Universal KZB equations: the elliptic case, Algebra, Arithmetic and Geometry Vol I: in honor of Yu. I. Manin[END_REF]

Example 4 . 1 . 5 .= y 2 .

 4152 t1,2 (k) is equal to the free Lie k-algebra f 2 (k) on two generators x = x 1 and y Both t 1,n and t1,n are acted on by the symmetric group S n , and one can show that the S-modules in grLie k t eℓℓ (k) := {t 1,n (k)} n≥0 and teℓℓ (k) := { t1,n (k)} n≥0

Remark 4 . 1 . 6 .Example 4 . 1 . 7 ( 2 eℓℓinRemark 4 . 1 . 8 .

 4164172418 The relation between (a closely related version of ) CD eℓℓ (k) and the elliptic Kontsevich integral was studied in Philippe Humbert's thesis[START_REF] Ph | Intégrale de Kontsevich elliptique et enchevêtrements en genre supérieur[END_REF].4.1.4 The PaCD(k)-module of parenthesized elliptic chord diagrams As in the genus zero case, the module of objects Ob(CD eℓℓ (k)) of CD eℓℓ (k) is terminal. Hence we have a morphism of modules ω 2 : Pa = Ob(Pa(k) -→ Ob(CD eℓℓ (k)) over the morphism of operads ω 1 from §2.6.4, and thus we can define the PaCD(k)-module 3 PaCD eℓℓ (k) := ω ⋆ 2 CD eℓℓ (k) , in Cat(CoAss k ), of so-called parenthesized elliptic chord diagrams. Notable arrows in PaCD eℓℓ (k)(2)). We have the following arrows X 1,2 eℓℓ , Y 1,PaCD eℓℓ (k)(2) The elements X 1,2 eℓℓ , Y 1,2 eℓℓ are generators of the PaCD(k)-module PaCD eℓℓ (k) and satisfy the following relations in End PaCD eℓℓ (k)(3) ((12)3):

Definition 4 . 1 . 12 .

 4112 The (k-prounipotent version of the) elliptic Grothendieck-Teichmüller group is defined as the groupGT eℓℓ (k) := Aut + (Mod( PaB(k))) ( PaB eℓℓ (k))of automorphisms of the PaB(k)-module PaB eℓℓ (k) which are the identity on objects.

Definition 4 . 1 . 14 .

 4114 The graded elliptic Grothendieck-Teichmüller group is the groupGRT eℓℓ (k) := Aut + (Mod(PaCD(k)) (PaCD eℓℓ (k))of automorphism group of the PaCD(k)-module PaCD eℓℓ (k) which are the identity on objects.

  Ell(k) and of GRT eℓℓ (k) on Ell(k) are compatible. Under the correspondence of Theorem 4.1.13, the image of the natural action of GT eℓℓ (k) on Ell(k) is exactly the action of GT eℓℓ (k) on Ell(k). Both actions are then compatible. Under the correspondence of Theorem 4.1.15, the image of the natural action of GRT eℓℓ (k) on Ell(k) is exactly the action of GRT eℓℓ (k) on Ell(k). Both actions are then compatible.

Example 4 . 2 . 1 ( 1 Example 4 . 2 . 2 ( 2 Remark 4 . 2 . 3 .

 42114222423 Description of PaB 1 (1)). First observe that C(C × , 1) ≃ C(C, 2) ≃ S 1 . Moreover, Pa 0 = {(01)}. Hence PaB 1 (1) ≃ Z: it has only one object (01) and is freely generated by an automorphism E 0,1 of (01), and can be depicted as an elementary pure braid:Two incarnations of E 0,Notable arrow in PaB 1 (2)). Let us first recall that Pa 0 (2) = S 2 ×{(••)•, •(••)} and that C(R >0 , 2) ∼ = S 2 × [0, 1].Hence we have an arrow Ψ 0,1,2 (the identity path in [0, 1]) from (01)2 to 0(12) in PaB 1 (2), which can be depicted as follows:Two incarnations of Ψ 0,1,Recall from §2.5.8 that, being a PaB-moperad, PaB 1 comes together with a morphism of S-modules PaB -→ PaB 1 . In pictorial terms, this morphism sends a parentesized braid with n strands to a parenthesized braid with n + 1 strands by adding a frozen stand labelled by 0 on the left. For instance, the images of R 1,2 (a morphism in PaB(2)) and of Φ 1,2,3 (a morphism in PaB(3)) can be respectively depicted as follows:

) Theorem 4 . 2 . 4 .

 424 As a PaB-moperad having Pa 0 as Pa-moperad of objects, PaB 1 is freely generated by E := E 0,1 ∈ PaB 1 (1) and Ψ := Ψ 0,1,2 ∈ PaB 1 (2) together with the following relations:

and B 1 n

 1 = B n+1 × Sn+1 S n .• There is a universal braided module category PaB 1,Enr generated by a single object 0, over the universal braided monoidal category PaB Enr generated by a single object •. Hence objects of PaB 1,Enr are parenthesizations of 0 • • • • •, and thus p determines an object (which we abusively still denote p).

  ζ)∈I×µN . This allows us to define the compactification C(C × , I, Γ) of C(C × , I, Γ), as the closure of C(C × , I, Γ) inside C(C × , I × µ N ). The irreducible components of its boundary ∂C(C × , I, Γ) = C(C × , I, Γ) -C(C × , I, Γ) can be described as follows. For an arbitrary partition

Definition 4 . 2 . 14 .

 4214 A cyclotomic associator is a couple (F, G) where F is in Ass(k) and G is a Γ-equivariant isomorphism between the PaB(k)-moperad PaB Γ (k) and the GPaCD(k)moperad GPaCD Γ (k) which is the identity on objects and which is compatible with F . Denote by Ass Γ (k) := Iso +

Proposition 4 . 2 . 18 .

 4218 There is a group isomorphism between GT Γ (k) and GT Γ (k).

Γ

  (k) on Ass Γ (k) and of GT Γ (k) on Ass Γ (k) are compatible and that the actions of GRT Γ (k) on Ass Γ (k) and of GRT Γ (k) on Ass Γ (k) are compatible. Under the correspondence of Theorem 4.2.18, the image of the natural action of GT Γ (k) on Ass Γ (k) is exactly the action of GT Γ (k) on Ass Γ (k). Both actions are then compatible. Under the correspondence of Theorem 4.2.21, the image of the natural action of GRT Γ (k) on Ass Γ (k) is exactly the action of GRT Γ (k) on Ass Γ (k). Both actions are then compatible.

4. 3

 3 Modules associated with twisted configuration spaces (ellipsitomic associators) 4.3.1 Compactified twisted configuration space of the torus Consider the group Γ = Z/M Z × Z/N Z, let T be the topological torus and consider the connected Γ-covering p : T -→ T corresponding to the canonical surjective group morphism ρ : π 1 (T) = Z 2 -→ Γ senging the generators of Z 2 to their corresponding reduction in Γ. To any finite set I with cardinality n we associate the Γ-twisted configuration space Conf(T, I, Γ) := {z = (z 1 , . . . , z n ) ∈ TI |p(z i ) = p(z j ) if i = j} , and let C(T, I, Γ) := Conf(T, I, Γ)/ T be its reduced version. We then consider the Fulton-MacPherson compactification C(T, n, Γ) of C(T, n, Γ) in the same way as before by means of the well-defined map C(T, n, Γ) ֒→ C(T, (M N ) n ).

4. 3 . 2

 32 The PaB-module parenthesized twisted elliptic braids We have inclusions of topological modules Pa ⊂ C(S 1 , -) ⊂ C(T, -) over Pa ⊂ C(R, -) ⊂ C(C, -) . Denote by i : Pa -→ C(S 1 , -) the inclusion morphism. Let Γ = Z/M Z × Z/N Z and for every set I n of cardinality n, consider the collection of all (N × M ) n -fold maps φ n : C(T, Γ, n) -→ C(T, n). We get a collection of diagrams Pa Γ n / / C(T, Γ, n) φn Pa n in / / C(T, n) where we define Pa Γ n := i ⋆ n φ n i.e. as the pull-back of the fold map along the inclusion map. For example, elements of Pa Γ n are Γ-labelled parenthesized permutations of length n and Pa Γ is an operad module over Pa. Then it makes sense to define PaB Γ eℓℓ := π 1 C(T, Γ, -), Pa Γ , which is a PaB-module.Example 4.3.1 (Notable arrows in PaB Γ eℓℓ (2)

Theorem 4 . 3 . 2 .

 432 As a PaB-module (in groupoid) having Pa Γ as Pa-module of objects, PaB Γ eℓℓ is freely generated by A 0 := A 1,2 0 and B 0 := B 1,2 0 together with the following relations:

  which lead us to the fact that the morphism Q Γ -→ PaB Γ eℓℓ of PaB-modules is an isomorphism. We obtain a PaB(k)-module in Cat(CoAss k ) denoted PaB Γ eℓℓ (k) := ∆ k (PaB Γ eℓℓ ). Now consider its associated inverse system of PaB (m) (k)-modules given, for all m ∈ N, by

NEll3) Remark 4 . 3 . 6 .

 436 We expect to study the relation between CD Γ eℓℓ and Vassiliev invariants in the near future. Let CD Γ eℓℓ (n) be the I-adic completion of CD Γ eℓℓ (n) with respect to the augmentation ideal I. Since we are in possession of a Pa(k)-module Pa Γ (k), a CD(k)-module CD Γ eℓℓ (k) in Cat(CoAss k ) and of an operad module morphism ω 4 : Pa Γ -→ Ob( CD Γ eℓℓ (k)), we are ready to define the PaCD(k)-module PaCD Γ eℓℓ (k) := ω ⋆ 4 CD Γ eℓℓ (k) in Cat(CoAss k ) of parenthesized Γ-labelled elliptic chord diagrams. We have Ob(PaCD Γ eℓℓ (k)) := Pa Γ and

Example 4 . 3 . 7 (

 437 Notable arrows in PaCD Γ eℓℓ (k)(2) and PaCD Γ eℓℓ (k)(3)). We have the following arrows in PaCD Γ eℓℓ (k)(2) and PaCD Γ eℓℓ

2 0 2 0

 2 Remark 4.3.8. The elements X eℓℓ 1,2 , Y eℓℓ 1,2 are generators of the PaCD(k)-module PaCD Γ eℓℓ (k) and satisfy the following relations (tN1) Ã(M,0) = 1, where

Fix

  Γ := Z/M Z × Z/N Z. Definition 4.3.9. A twisted elliptic k-associator is a couple (F, G) where F is in Ass(k) and G is a Γ-equivariant isomorphism between the PaB(k)-module PaB Γ eℓℓ (k) and the GPaCD(k)module GPaCD Γ eℓℓ (k) which is the identity on objects and which is compatible with F . We denote the set of twisted elliptic k-associators by Ell Γ (k) := Iso + ( PaB(k),GPaCD(k))

Definition 4 . 3 . 11 .

 4311 The (k-pro-unipotent version of the) twisted elliptic Grothendieck-Teichmüller group is defined as the groupGT Γ eℓℓ (k) := Aut + Mod( PaB(k)) ( PaB Γ eℓℓ (k)) Γof automorphisms of the PaB(k)-module PaB Γ eℓℓ (k) which are Γ-equivariant and which are the identity on objects. Definition 4.3.12. The graded twisted elliptic Grothendieck-Teichmüller group is the group GRT Γ eℓℓ (k) := Aut + Mod(PaCD(k)) (PaCD Γ eℓℓ (k)) Γ of automorphisms the PaCD(k)-module PaCD Γ eℓℓ (k) which are Γ-equivariant and which are the identity on objects.Theorem 4.3.13. The set Ell Γ (C) is non empty.

Proposition 4 . 3 . 14 .

 4314 There is a group isomorphism GT Γ eℓℓ (k) and GT Γ eℓℓ (k).

  the presentation of PaB Γ eℓℓ via the morphism PaB Γ eℓℓ -→ PaB Γ eℓℓ ) we know that an automorphism F of PaB Γ eℓℓ which is the identity on objects is completely determined by the images of its generators satisfying relations (tN1), (tN2) and (tE), which are precisely the defining relations of GT Γ eℓℓ (k).

Conjecture 4 . 3 . 15 .

 4315 The triple ( GT

  respect to the augmentation ideal I. Since we are in possession of operads Pa(k) and CD f (k) in Cat(CoAss k ) and of an operad morphism ω : Pa -→ Ob( CD f (k)), we are ready to define the operad PaCD f (k) := ω ⋆ CD f (k)

•

  Alternative fundamental domain and relation (BG5) : Let s r and t r be the first string of a r and b r respectively, where 1 ≤ r ≤ 2g.

Theorem 5 . 3 . 5 .

 535 As a PaB f -module in groupoids having Pa as Pa-module of objects, PaB f g is isomorphic freely generated by A 1,2 i and B 1,2

13

 13 

1

 1 

Lemma 5 . 3 . 7 .

 537 Let Q be the operadic B f -module with unnumbered maximal paranthesizations as objects and with generators A 1,2 i:= A •,• i and B 1,2 i := B •,• i , for all 1 i g, in Q(2)satisfying relations (Red), (D1), (D2) and (gE).

  f g ) (m) (k)).

  Since we are in possession of operad modules Pa(k) and CD g (k) in Cat(CoAss k ) and of an operad module morphism f : Pa -→ Ob( CD g (k)), we are ready to define the PaCD(k)module PaCD g (k) := f ⋆ CD g (k) in Cat(CoAss k ) of parenthesized genus g chord diagrams. We have Ob(PaCD g (k)) := Pa and Mor PaCD g (k)(n) (p, q) := Mor CD g (k)(n) (pt, pt) = Û ( tg,n (k)).

1 2 2 5 . 3 . 10 . 2 i

 1253102 Remark The elements X 1,2 i , Y 1,are generators of the PaCD(k)-module PaCD g (k) and satisfy the following relations

fg

  (n) be the I-adic completion of CD f g (n) with respect to the augmentation ideal I. Since we are in possession of operad modules Pa(k) and CD f g (k) in Cat(CoAss k ) and of an operad module morphism ω : Pa -→ Ob( CD f (k)), we are ready to define the PaCD f (k)module PaCD f g (k) := ω ⋆ CD f g (k) in Cat(CoAss k ) of parenthesized framed genus g chord diagrams. We have Ob(PaCD f g (k)) := Pa and Mor PaCD f g

Definition 5 . 3 .

 53 12. A genus g associator over k is couple (F, G) where F ∈ Ass f (k) is a k-associator and G is an isomorphism between the PaB f (k)-module PaB f g (k) and the GPaCD

(5. 16 ) 2 iand B 1 , 2 i

 16212 Proof. Let (F, G) ∈ Ass g (k). An automorphism F of PaB f corresponds uniquely to a couple (µ, Φ) ∈ Ass(k) as, by setting µ = 2λ, one can neglect the term λ intervening in Ass f (k). An automorphism G of PaB f g is uniquely given as follows. The generators A 1,in Aut PaBg (k)(2)(12) are sent via G to A i + and A i -respectively, with A ± ∈ exp( tg,2 ). The image of relations (D1), (D2) and (gE) are precisely the relations (5.14, (5.15)) and(5.16) under this correspondence.Conjecture 5.3.14. The set of genus g C-associators Ass f g (C) is not empty.

Theorem 5 . 3 . 15 .

 5315 There is an element α KZ ∈ F hol

Definition 5 . 3 . 18 .

 5318 The (k-prounipotent version of the) genus g Grothendieck-Teichmüller group is defined as the groupGT f g (k) := Aut + (Mod( PaB { (k))) which are the identity on objects.

Definition 5 . 3 . 19 .

 5319 The graded genus g Grothendieck-Teichmüller group is the groupGRT g (k) := Aut + (Mod(PaCD(k)) (PaCD g (k))of automorphisms of the PaCD f (k)-module PaCD f g (k) which are the identity on objects.

6. 1 6 . 1 . 1

 1611 Bundles with flat connections on Γ-twisted configuration spaces Principal bundles over Γ-twisted configuration spaces Let Γ := Z/M Z × Z/N Z and let E be an elliptic curve over C and consider the connected unramified Γ-covering p : Ẽ -→ E corresponding to the canonical surjective group morphism ρ : π 1 (E) ∼ = Z 2 -→ Γ where π 1 (E) ∼ = Z 2 is the natural choice of such an isomorphism. Let us then define the twisted configuration space Conf(E, n, Γ) := {z = (z 1 , . . . , z n ) ∈ Ẽn |p(z i ) = p(z j ) if i = j} , and C(E, n, Γ) := Conf(E, n, Γ)/ Ẽ its reduced version. Notice that C(E, n, Γ) is just the inverse image of C(E, n) under the surjection p n : Ẽn -→ E n .

Remark 6 . 1 . 1 .

 611 As before, P τ,[n],Γ descends to a principal exp( tΓ 1,n ) ⋊ S n -bundle Pτ,[n],Γ over the reduced unordered twisted configuration space C(E, [n], Γ).

Proposition 6 . 2 . 4 .

 624 We have a bigraded Lie algebra morphism dΓ -→ Der(t Γ 1,n ) taking (D, C) ∈ dΓ 0 to ξ (D,C) and g = a b c d ∈ sl 2 to the derivation

6. 3 SL 2 (∈

 32 Bundles with flat connections on moduli spaces 6.3.1 On some subgroups of SL 2 (Z) and moduli spaces Consider the group Γ := Z/M Z × Z/N Z and consider the following (finite index) subgroup of SL 2 (Z) a ≡ 1 mod M, d ≡ 1 mod N, b ≡ 0 mod N and c ≡ 0 mod M .

Remark 6 . 3 . 1 .

 631 The biggest congruence subgroup on which the connection we will construct in this section is well defined and flat is the subgroup SL Γ 2 (Z) of SL 2 (Z) consisting of matrices a b c d ∈ SL 2 (Z) such that M b ≡ 0 mod N and N c ≡ 0 mod M . Nevertheless, in order to retrieve the twisted elliptic KZB connection defined at the level of configuration spaces, it suffices to consider the usual congruence subgroup SL Γ 2 (Z) ⊂ SL Γ 2 (Z).

  i) ν • ∂ν F (x, z) + j:j =i r(ij) (x, z ij ) • F (x, z) . (6.19) 

b n < 1 /

 1 N . If z 0 ∈ U τ,n,Γ then it both defines a point in the Γ-twisted configuration space Conf(E τ,Γ , n, Γ) and in the (non twisted) unordered configuration space Conf(E τ,Γ , [n]):Recall that the map Conf(E τ,Γ , n, Γ) ։ Conf(E τ,Γ , [n])

7. 1 . 4

 14 The monodromy morphism B 1,n -→ exp( tΓ1,n ) ⋊ (Γ n ⋊ S n )The monodromy of the flat exp( tΓ1,n )⋊(Γ n ⋊S n )-bundle (P (τ,Γ),[n] , ∇ (τ,Γ),[n] ) on Conf(E τ,Γ , [n]) provides us with a group morphism µ z0,(τ,Γ),[n] : B 1,n -→ exp( tΓ 1,n ) ⋊ (Γ n ⋊ S n ) .

Γ 1 ,

 1 n (C) -→ exp( tΓ 1,n ) is an isomorphism. For this we will prove that the induced morphism on Malcev Lie algebrasLie(µ z0,τ,n,Γ ) : pb Γ 1,n -→ tΓ 1,nis an isomorphism of filtered Lie algebras.7.1.5 A morphism t Γ 1,n -→ gr(pb Γ 1,n )

in 12 ( 1

 121 Conf(E τ,Γ , n, Γ) as follows P

7. 1 . 6

 16 The formality of PB Γ 1,n (end of the proof of Theorem 7.1.6) 

Γ+ O( 1 )

 1 (z|τ ) of the ellipsitomic KZB system. Let us denote z ij = z 0 iz 0 j and let us compute the expansions of Ki (z|τ ) and ∆(z|τ ) in the region z ij ≪ 1, τ → i∞. We haveKi (z|τ ) = -ȳ i + j;j =i α∈Γ e -2πia ad(xi) θ(z iz jα + ad(x i ); τ ) θ(z iz jα; τ )θ(ad(x i ); τ ) =i α∈Γ tα ij z iz jα + O(1) = j;j =i α∈Γ tα ij z iz j -a0 MNotice the resemblance with the function which defines the universal cyclotomic KZ connection defined in[START_REF] Enriquez | Quasi-reflection algebras and cyclotomic associators[END_REF] Section 1.4].For the expansion of ∆, recall that if γ ∈ Γ and γ = (c 0 , c) ∈ Λ τ,Γ is any lift of γ, we haveg γ (z, x|τ ) := ∂ x k γ (z, x|τ) and g -γ (0, x|τ ) = s≥0 A s,γ (τ )x s .

  z 21 ≪ z 31 ≪ ... ≪ z n1 ≪ 1, τ -→ i∞, (z, τ ) ∈ D Γ n .

A 2 ( 1 2 (σ α 1 ) - 1 ) by γ 3 yieldsÃ12, 3 =

 211133 θ(( 1, 0) 1 ) • A -1 3 ) = (σ α 1 ) -1 θ((-α) 1 ) • (A -{Φ} 1,2,3 Ã1,23 θ(( 1, 0) 1 ) • ({Φ} 1,2,3 ) -1 Cα 1 θ((α) 2 ) {Φ} 2,1,3 Ã2,13 θ (( 1, 0) 2 ) • (({Φ} 2,1,3 ) -1 Cα 1 ) .

  γ = ( 1, 0) and α ∈ Γ. In the same way, we obtainB12,3 = {Φ} 1,2,3 B1,23 θ(( 0, 1) 1 ) • ({Φ} 1,2,3 ) -1 ( Cα 1 ) -1 θ((α) 2 ) {Φ} 2,1,3 B2,13 θ (( 0, 1) 2 ) • (({Φ} 2,1,3 ) -1 ( Cα 1 ) -1 )Accordingly, the image by γ 3 of the lift of the relation(B 3 , A 3 A -1 2 ) = (B 3 B -1 2 , A 3 ) = C 23 to BΓ 1,n then gives B12,3 θ(( 0, 1) 1,2 ) Φ( Ã1,23 ) -1 θ((-1, 0) 1 ) Φ -1 Ã12,3 θ(( 1, 0) 1,2 ) ( B12,3 ) -1 θ 0, -1 1,2 • X = Φ( B1,23 ) -1 θ(( 0, -1) 1 ) Φ -1 B12,3 θ(( 0, 1) 1,2 ) Ã12,3 θ(( 1, 0) 1,2 ) ( B12,3 ) -1 θ ( 0, -1) 1,2 • Y = Φ -1 e 2πi t1 23 Φ,where 1 = ( 1, 1),X = (( Ã12,3 ) -1 Φ -1 θ((-1, 0) 1,2 )(Φ Ã1,23 θ(( 1, 0) 1 )Φ -1)), and Y = (Φ B1,23 θ(( 0, 1) 1 )((Φ) -1 ( Ã12,3 ) -1 )).

  have the following identities for z ∈ C -(Z ⊕ τ Z):℘(z, τ ) = -θ ′ θ ′ (z, τ ) + c = -∂ 2 z (log(θ(z, τ ))) + c,for a constant c ∈ C. Next, for z in a suitable punctured neighborhood of z 0 = 0 (i.e. in the maximal punctured open disk centered at 0 which does not contain any non-zero lattice point), we have a Laurent expansion℘(z, τ ) 1)G 2k+2 (τ )z 2k , where b 2n = f (2n) (0) (2n)! with f (z) = ℘(z) -1 z 2 .Here G k (τ ) are the Eisenstein series defined for all k ≥ 1, by

(2n + 1 )

 1 G 2n+2 (τ ) = ã2n E 2n+2 (τ ) where ã2n = -(2n + 1)B 2n+2 (2iπ) 2n+2 /(2n + 2)!,

2 x 1 ( 2 = 1 (- 1 ) 1 (- 1 )

 2121111 (γ) -2πic θ ′ θ (γ)πic + o(x).Set F γ (x) := e 2πicx θ(γ+x) θ(γ)θ(x) so thatlog(F γ (x)) = log(θ(γ + x))log(θ(x)) + 2πicxlog(θ(γ)). (log(F γ (x))) = ∂ 2 x (log(θ(γ + x))) -∂ 2 x (log(θ(x))) = ℘(x) -℘(γ + x) γ) 2 + (m,n)∈Z 2 -{(0,0)} 1 (x + m + nτ ) 2 -1 (x + γ + m + nτ ) 2 .Now let s 0. Recall the expansionOn the one hand, for y = m + nτ , we haveH(x, τ ) := (m,n)∈Z 2 -{(0,0)} 1 (x + m + nτ ) 2 -1 (m + nτ ) 2 = s 2s + 1)G 2s+2 (τ )x 2s .On the other hand, for y = m + nτ + γ, we obtainH γ (x, τ ) := (m,n)∈Z 2 -{(0,0)} 1 (x + γ + m + nτ ) 2 -1 (γ + m + nτ ) (m,n)∈Z 2 -{(0,0)} s 1 1 (m + nτ + γ) 2 a s x s (γ + m + nτ ) s = s 1 (m,n)∈Z 2 -{(0,0)} a s x s (γ + m + nτ ) s+2 = s s (s + 1)G s+2,γ (τ )x s ,where, for s ≥ 3, we defineG s,γ (τ ) = (m,n)∈Z 2 -{(0,0)} 1 (m + nτ + γ) s .Then, for s ≥ 3, we write B s,γ (τ ) = G s (τ ) -G s,γ (τ ) and we haveH(x, τ ) -H γ (x, τ ) = s s (s + 1)B s+2,γ (τ )x s .and we write Ās,γ (τ ) = G s (τ ) + G s,γ (τ ) = -B s,γ (τ ), as H(x, τ ) and G s (τ ) are even. If Γ is the trivial group, Ās,γ (τ ) reduces to twice the classical Eisenstein series G s (τ ).

1 (- 1 ) 1 (- 1 )s 1 (- 1 )

 111111 s+1 (s + 1) Ās+2,γ (τ )x s , which giveslog(F γ (x)) = log(x)log(x + γ) + s s+1 Ās+2,γ (τ ) s + 2 x s+2 + lx + m,Thus,F γ (x) = -x(x + γ) exp   s+1 Ās+2,γ (τ ) s + 2 x s+2 + 2πicxlog(θ(γ)) term +2πicxlog(θ(γ))comes from the identification of the above formula with equation (7.2).We conclude thatg -γ (0, x|τ ) = ∂ x (F γ (x)define G 2,γ (τ ) by G 2,γ (τ ) =

7. 3 . 2

 32 Modularity of the Eisenstein-Hurwitz series A s,γ Consider for s ≥ 2, the function G s,γ (τ ) := denote as above Ās,γ (τ ) = G s (τ ) + G s,γ (τ ). Proposition 7.3.1. Let s ≥ 3. The function Ās,γ is a modular form of weight s for SL Γ 2 (Z).

Remark 7 . 4 . 1 .

 741 Definition 1.2.3]). For s ≥ 3, the series Ās,γ (τ ) converge normally.Let us first show that, if α = a b c d ∈ SL Γ 2 (Z), then Ās,γ (α • τ ) = (cτ + d) sĀs,γ (τ ). We already know that the Eisenstein series G s (τ ) are modular forms of weight s, for s ≥ 4 andG 3 (τ ) = 0. We have G s,γ (τ ) = (m,n)∈Z 2 -{(0,0)} 1 (m + u M + (n + v N )τ ) s .Thus, As Γ ⊂ Aut(C), H Γ n (k) admits a geometric construction. Define X := {z ∈ C n | i z i = 0} and consider the following action of G on it: S n acts in an obvious way andα i (z) = (α (i) -1 n j α (j) )(z),where α (k) is the action of α ∈ Γ on the k-th factor of C n . Following[START_REF] Etingof | Cherednik and Hecke algebras of varieties with a finite group action[END_REF] one can construct a Cherednik algebra H 1,k,0 (X, G) on X/G. It can be defined as the subalgebra of Diff(X) ⋊ C[G] generated by the function algebra O X , the group G and the Dunkl-Opdam operators D i -D j , where

7. 4 . 2 Proposition 7 . 4 . 2 .

 42742 Morphisms from tΓ 1,n to the Cherednik algebra For any a, b ∈ C there is a morphism of Lie algebras φ a,b : tΓ1,n -→ H Γ n (k) defined by xi -→ a x i ȳi -→ b y i , tα ij -→ ab 1 n k α s α ij .Proof. Straightforward from the alternative presentation of tΓ 1,n in Lemma 4.3.5.Hence any representationV of H Γ n (k) yields a family of flat connections ∇ (V )a,b over the configuration space C(E, [n], Γ).

7. 4 . 4 Proposition 7 . 4 . 3 . 2 i

 447432 The modular extension of φ a,b . Now assume that a, b = 0. The Lie algebra morphism φ a,b can be extended to the algebra U ( tΓ1,n ⋊ d Γ ) ⋊ G by the formulas φ a,b (s α ij ) = s α ij , φ a,b (d) = 1 2 i (x i y i + y i x i ), φ a,b (X) = -, φ a,b (ξ s,γ ) = -a s-1 b -1 i<j (γ • (x ix j )) s .Thus, the flat connections ∇ Γ a,b extend to flat connections on M Γ 1,[n] . For any s ∈ N and γ ∈ Γ we set D s,γ := p+q=s-1 β∈Γ

  Let u be the Pollack's Lie subalgebra of Der 0 (f 2 (a, b)) generated by the ε s ∈ Der(f 2 (x, y)), for s 1, given by • ε 2s (x) := ad 2s (x)(y),

Now, seen in Der( tΓ 1 , 2 )

 12 , the (reduced) ellipsitomic KZB system for n = 2 is∂ ∂z F Γ (z; τ ) = -α∈Γ e -2πia ad(x) θ(zα + ad(x)|τ ) θ(z -α|τ )θ(ad(x)|τ ) (t α ) F Γ (z; τ ) 2iπ ∂ ∂τ F Γ (z; τ ) = -  ∆ 0 + 1 2 s≥0,γ∈Γ A s,γ (τ ) ξs,γ -α∈Γ g α (adx, z|τ )(t α )   F Γ (z; τ ) γ∈Γ A s,γ (τ ) ξ(2) s,γ -α∈Γ g α (z|τ )(t α )   F Γ (z; τ ),where g α (z|τ ) := g α (z, ad x|τ )(t α )-g α (0, ad x|τ )(t α ) and whereF Γ (z; τ ) is defined on {(z, τ ) ∈ C×H|z = a+bτ, (a, b) ∈]0, 1/M [×R∪R×]0, 1/N [}, valued in exp( tΓ 1,2 )⋊Γ n-1 ⋊Aut( tΓ 1,2 )⋊Γ n-1and is determined by the behaviourF Γ (z; τ ) ≃ z t 0 exp → 0 + , τ -→ i∞. We have F H Γ (z + 1 M |τ ) =( 1, 0)F H Γ (z|τ ) Ã(τ ), e 2πi x N F V Γ (z + τ N |τ ) =( 0, 1)F V Γ (z|τ ) B(τ ). θ(z + τ Nα + ad x|τ ) θ(z + τ N -α|τ )θ(ad x|τ ) (t α ) (A Γ )Set X z (τ ) := (-2π i z) -t 0 ( 0, 1)e (-2π i z) t 0 . If we fix z, we get2π i ∂ ∂τ X z (τ ) = -x Γ (τ )(X z (τ )) -X z (τ ) • (-2π i z) -t 0 g(z|τ )(-2π i z) t 0 + Ad((-2π i z) -t 0 ( 0,1)e 2π i x N g(z + τ N |τ ) -2π i α∈Γ e -2πiax θ(z + τ Nα + ad x|τ ) θ(z + τ N -α|τ )θ(ad x|τ ) (t α )

  Remark 2.1.18. One can identify the quotient k-algebras A/m i and Â/ mi . Proposition 2.1.19. If (A, {m i } i∈I ) is a filtered associative k-algebra, then we can endow it with a topology, called Krull topology, defined, for each point a ∈ A, by the basis of neighborhoods {a + m i } i∈N .Remark 2.1.20. In case the ideals m i are equal to powers m i := I i for the same ideal I of A, the associated completion  of A is usually called I-adic completion of A and its associated Krull topology is called I-adic topology.

Proposition 2.1.21. Viewed as a filtered topological Lie k-algebra with respect to the Krull topology, the completion ( Â, { mi } i∈I ) of an associative filtered k-algebra (A, {m i } i∈I ) is precisely its topological completion.

  Remark 2.2.3. As a consequence of the fundamental theorem of linear differential equations, the equation (2.7) has analytic solutions in U which are unique once a value has been specified at any point of U. These three singularities are regular.Let's analyze the asymptotic behavior of the equation (2.7) as we approach our two unique singularities in C which are z = 0 and z = 1.

	t 12 2iπ

Equation (2.7) has two unique singularities in C which are z = 0 and z = 1. By setting w = 1/z, we observe that this equation also has a singularity at ∞. Proposition 2.2.4. Equation (2.7) has two unique solutions G 0 and G 1 such that G 0 (z) ∼ 0 z

  t 12 , t 23 ) ∈ exp( f(t 12 , t 23 )): For now, we only know that Φ KZ (t 12 , t 23 ) ∈ C t 12 , t 23 . To show that Φ KZ (t 12 , t 23 ) ∈ exp( f(t 12 , t 23 ) we have to prove that Φ KZ (t 12 , t 23 ) is group-like, meaning ∆Φ KZ (t 12 , t 23 ) = Φ KZ (t 12 , t 23 ) ⊗Φ KZ (t 12 , t 23 ). On the one hand, ∆Φ KZ (t 12 , t 23 ) = Φ KZ (∆t 12 , ∆t 23 ) = Φ KZ (t 12 ⊗ 1 + 1 ⊗ t 12 , t 23 ⊗ 1 + 1 ⊗ t 23 ). On the other hand, Φ KZ (t 12 ⊗ 1 + 1 ⊗ t 12 , t 23 ⊗ 1 + 1 ⊗ t 23 ) is the holonomy of the connection ∆Φ KZ (t 12 , t 23 ) = Φ KZ (t 12 ⊗ 1 + 1 ⊗ t 12 , t 23 ⊗ 1 + 1 ⊗ t 23 ) = Φ KZ (t 12 , t 23 ) ⊗Φ KZ (t 12 , t 23 ).

	∇ = d -	t 12 ⊗ 1 + 1 ⊗ t 12 z	+	t 23 ⊗ 1 + 1 ⊗ t 23 z -1	dz
	= d -	t 12 ⊗ 1 + 1 ⊗ t 12 z	dz -	t 23 ⊗ 1 + 1 ⊗ t 23 z -1	dz,
	which can also be seen as the sum of two connections in two different bundles. In this way, the
	holonomy can be calculated separately. Finally, we get

  [START_REF] Aguirre | Gaudin subalgebras and stable rational curves[END_REF],n (k) the quotient of t Γ 1,n (k) by i x i and i y i , and the natural morphismt Γ 1,n (k) -→ tΓ 1,n (k) ; u → ū. There is an action θ : Γ n -→ Aut(t Γ 1,n (k)) given by θ(α i ) : t β ij → t β+α ij, and with t β kl , for k, l = i), x k and y k invariant for arbitrary k arbitrary. It restricts to an action on tΓ 1,n (k).

Proposition 4.3.4. For any group morphism ρ : Γ 1 -→ Γ 2 we have a comparison morphism φ : t Γ1 1,n (k) -→ t Γ2 1,n (k) defined by x i → x i , y i → y i , and

  Definition 5.3.4. Let CoB f g the CoB f -module in groupoids with S-module of objects S and where, for n 1, the morphisms of CoB f g (n) consists of isotopy classes of genus g framed braids (i.e. elements of the braid group B f g,n

		1,2 i	is not equal to
	1	2
	A i	
	1	2
	one can retrieve the latter arrow from the composite A 12 i (A 1,2 i ) -1 .

  class of ) τ is precisely the twisted (resp. reduced twisted) configuration space Conf(E τ,Γ , n, Γ) (resp. C(E τ,Γ , n, Γ)).

	Moreover, the map
	h : MΓ 1,2 -→ MΓ 1,1
	factors through (and is open in) M Γ 1,1 . We can interpret MΓ 1,2 as the Γ-punctured universal
	curve over Y (Γ).
	6.3.2 Principal bundles over M Γ 1,n and MΓ

1,n

In this §, G Γ n is defined as in (6.4) and we define a principal G Γ n -bundle P n,Γ over M Γ 1,n whose image under the natural morphism G Γ n -→ ḠΓ n is the pull-back of a principal ḠΓ n -bundle Pn,Γ over MΓ 1,n . Let us fix the notation first: for u ∈ C × and v, w i ∈ C (i = 1, . . . , n),

  1,n be the canonical projection.

	Proposition 6.3.3. There exists a unique principal G Γ n -bundle P n,Γ over M Γ 1,n for which a
	section on U

  be the Lie subalgebra generated by x i 's and t α jk 's. Then the restriction of ρ g to t Γ n,+ lifts to a Lie algebra morphismt Γ n,+ -→ (O l * ⊗ U (g) ⊗n ) l . Moreover, (O l * ⊗ U (g) ⊗n ) l is a subalgebra of H n (g, l *) that is a Lie ideal for the commutator and one has a commutative diagram H n (g, l * ) × (O l * ⊗ U (g) ⊗n ) l / / (O l * ⊗ U (g) ⊗n ) l .

	Let t Γ n,+ ⊂ t Γ 1,n t Γ 1,n × t Γ n,+	(u,v) →[u,v]	/ / t Γ n,+

1,n -→ H n (g, l) is then clear. 6.4.2 Realizations of t Γ 1,n ⋊ d Γ and tΓ 1,n ⋊ d Γ

  coincides with the image of

	D s,γ	x i M	,	t β ij |Γ|	=	p+q=s-1 β∈Γ	ad	x i M	p	t β ij |Γ|	, -ad	x i M	q	t β ij |Γ|
	under ρ g . In conclusion we get the relation							
					ρ g ξ s,γ ,	y i N	= ρ g (ξ s,γ ), ρ g	y i N	.	

  z|τ ) =z when z 21 ≪ ... ≪ z i-1,1 ≪ 1, z n,n-1 ≪ ... ≪ z n,i ≪ 1, τ -→ i∞ and (z, τ ) ∈ D Γ n (we set z ij = z 0

	t 0 12 21 ...z	t 0 12 +...+t 0 1,i-1 i-1,1  	z	t 0 i,n +...+t 0 n-1,n n,i	...z	t 0 n-1,n n,n-1 		 
	× exp	 -	τ 2πi	 ∆ 0 +	1 2 s≥0,γ∈Γ	a s,γ	 δ s,γ -2	i<j	ad s (x i )(t -γ ij ) 	  ,

  (y) = D s,γ (x, t β ), • ξ(2) s,γ (t α ) = [t α , C α s,γ (x, t β )].The image of δ s,γ + (ad x) s t -γ + (-ad x) s t γ under the Lie algebra morphism d Γ ⋊ Der( tΓ1,2 ) → (x) = -(ad x) s+1 (t -γ ) + (-ad x) s+1 (t γ ), • ξ(2) s,γ (t α ) = [-((ad x) s t α-γ + (-ad x) s t α+γ ) + (ad x) s t -γ + (-ad x) s t γ , t α ] .

			). The derivation	ξ(2) s,γ is then given by
	•	ξ(2) s,γ (x) = 0,
	• s,γ Der(p(E × ξ(2) τ,Γ )) yields the derivation	ξ(2) s,γ given by
	•	ξ(2) s,γ

Let u Γ be the Lie subalgebra of Der(p(E × τ,Γ )) generated by the derivations ε(2) s,γ for s 1 and γ ∈ Γ, defined by

• ε(2) s,γ (x) = (ad x) s (t -γ ) + (-ad x) s (t γ ), • ε(2) s,γ (t α ) = [-((ad x) s t α-γ + (-ad x) s t α+γ ) + (ad x) s t -γ + (-ad x) s t γ , t α ] .

  applied to the case where Γ 2 is trivial and of the definition of ε(2)In this section we prove a differential equation in τ for the ellipsitomic KZB associator. Namely we haveProof. Let z = z 21 x = x1 , t α = tα 12 . Recall that in Remark 8.1.2 we established 1 2 γ∈Γ A s,γ ((ad x i ) s (t -γ ij ) + (-ad x i ) s (t γ ij )) =

							s,γ , as	ε(2) 2s,0 (x) = ε 2s (x) and
	ε(2) s,0 (t 0 ) = 0.						
	8.2 Differential equations in τ		
	Theorem 8.2.1. We have				
							
	2πi	∂ ∂τ	A Γ (τ ) =	 -∆ 0 -	1 2 γ∈Γ s 0	A s,γ (τ ) ξ(2) s,γ	 A Γ (τ ),
							
	2πi	∂ ∂τ	B Γ (τ ) =	 -∆ 0 -	1 2 γ∈Γ s 0	A s,γ (τ ) ξ(2) s,γ	 B Γ (τ ),
				1,n	/ / t Γ1 1,n		
			dΓ2 ⋉ t Γ2 1,n	/ / t Γ2 1,n		

γ∈Γ A s,γ (ad x i ) s (t -γ ij ).

We actually have another arrow, that can be obtained from the first one as (R 2,1 ) -1 according to the notation that is explained after Theorem 2.6.3, and which can be depicted as an undercrossing braid.

Even though the author of[START_REF] Bar-Natan | On Associators and the Grothendieck-Teichmüller Group I[END_REF] does not use the concept of an operad.

Let us remark that a very interesting continuation of the exploration of these operadic structures should be to adapt Fresse's model category structures to operadic modules to give a homotopical characterisation of GT eℓℓ (Q) in terms of homotopy automorphisms associated to little disks on the torus.

The second one depends on the choice of an embedding S 1 ֒→ T: we choose by convention the "horinzontal" one.

We have already done so for theproof of relation (E).

Recall that PaCD(k) is defined as ω ⋆ 1 CD(k).

, σ

2 ) -1 σ λ 1 f (σ 2 1 , σ22 ), g ± = g ± (X, Y, P α ; α ∈ Γ).Let us define GTΓ eℓℓ (k) as the set of all (λ, µ, g+ , g -) ∈ k × × F 2 (k) × PB Γ 1,2 (k) × PB Γ 1,2(k) satisfying relations (btN1), (btN2) and (btE).

We borrow the drawings from[START_REF] Bellingeri | On presentations of surface braid groups[END_REF].

The proof is straightforward but quite long. We do not give it since we do use another simpler Lie algebra below.

Here the sugroup of G acting trivially on Yα is the order

cyclic subgroup generated by s α ij .

Thus, there are elements u ∈ exp( tΓ 1 (k)) and v ∈ exp( tΓ 2 (k)) such that G(E 0,1 0 ) = u • E 0,1 0 and G(Φ 0,1,2 0

. Now, we have a Lie algebra isomorphism t Γ 2 (k) ≃ k(c) ⊕ f(k)(t 01 , t 0 12 , ..., t N -1 12 ) where c = t 0 01 + t 0 02 + a∈Γ t a 12 . Thus, u is of the form e λ1c and v is of the form e λ2c f (t 01 , t 0 12 , ..., t N -1 12 ). Now, we know that the image of E 0,1 0 in PaB 1 induced by the projection z -→ z N is E 0,1 . Thus, we can identify λ 1 = λ N and then u = e λ N t01 . Finally, the fact that Φ 0,1,2 0 is Γ-invariant ensures that v is of the form f (t 01 , t 0 12 , ..., t N -1 12 ). Once we simplified this way u and v, the images of the Octogon and Mixed Pentagon relation in GPaCD Γ (k) imply relations (MP) and (O) in the above theorem.

Example 4.2.16 (Cyclotomic KZ Associator). Consider the differential equation

where ζ is a primitive Nth root of unity, and let H 0 + , H 1 -be the solutions such that H 0 + (z) ∼ z t01 when z -→ 0 + and H 1 -(z) ∼ z t 1 12 when z -→ 1 -. Then the renormalized holonomy

1 -H 0 + ∈ exp( t0 2,N ) from 0 to 1 of the above differential equation is the cyclotomic KZ associator constructed by Enriquez in [START_REF] Enriquez | Quasi-reflection algebras and cyclotomic associators[END_REF]. More precisely, Enriquez showed that the quadruple Notice that such an automorphism depends on an automorphism of PaB(k) i.e. on an element Φ of GT(k). Let F 2 (φ N , k) be the partial k-pro-unipotent completion of the free group F 2 with respect to the surjective group morphism φ N : F 2 -→ Z/N Z sending x to 1 and y to 0 and P 4 (φ 3,N , k) the partial k-pro-unipotent completion of P 4 with respect to the map φ 3,N : B 4 × S4 S 3 -→ Z/N Z × S 3 induced by the (Z/N Z × S 3 )-fold map Conf(C × , 3, Γ) -→ Conf(C, 3)/S 3 where S 3 is interpreted as the subgroup of the group S 4 of permutations of 0, ..., 3 which fix 0. Denote k(N ) × = (Z/N Z) × × k × . See [START_REF] Enriquez | Quasi-reflection algebras and cyclotomic associators[END_REF] for more details on the subject of partial pro-unipotent completions. Finally, recall that PB n,N has generators x N 0,i and x α ij := x -α 0,i x ij x α 0,i . In particular, the generators of PB 2,N will be denoted by X := x N and y(α) := x -α yx α for 0 ≤ α ≤ N -1.

Cyclotomic Grothendieck-Teichmüller groups

In [START_REF] Enriquez | Quasi-reflection algebras and cyclotomic associators[END_REF], the author constructed a cyclotomic version of the Grothendieck-Teichmüller group which we now recall. Define GT Γ (k) to be the set of elements (λ, µ, f, g)

Next, as x α 12 = α • x 0 12 for α ∈ Γ, by Γ-equivariance we wave ))(x α 12 ) λ ).

Finally we obtain

))

)))

which is nothing but the composition law in the group GT Γ (k). This concludes the proof, as the composite of moperad morphisms F • G is compatible with the composition of operad morphisms Φ • Ψ. Now, the fact that the defining sets in GT Γ (k) and GT Γ (k) are isomorphic is a straightforward consequence of the composite of bijections

This finishes the proof. ))(t α 12 ) + Ad Ψ 0,1,2 Ψ -1 0,2,1 (t 02 ) = 0, (4. [START_REF] Boavida De Brito | Robertson Operads of genus zero curves and the Grothendieck-Teichmüller group[END_REF] as equalities in tΓ 2 (k), where t 01 + n α=0 t α 12 + t 02 = 0, and Ψ 01,2,3 Ψ 0,1,23 = Ψ 0,1,2 Ψ 0,12,3 Φ 1,2,3 , (4. [START_REF] Bott | On the self-linking knots[END_REF] as an equality in exp( tΓ 3 (k)). GRT Γ ( 1,1) (k) is a group when equipped with the product 

))(t 0 12 ), . . . , Ad(Ψ 2 (t 01 |t N -1 12 , . . . , t 2N -2 12))(t N -1 12 ) • Ψ 0,1,2 2

• .

The action of (Z/N Z) × ×k × by automorphisms of t Γ 3 (resp. t 3 ) given by (c, γ)•t 0i = γt 0i , (c, γ)• t α ij = γt cα ij (resp. (c, γ) • t ij = γt ij ) induces its action by automorphisms of GRT Γ ( 1,1) (k). We denote by GRT Γ (k) the corresponding semidirect product.

GRT Γ

( 1,1) (k) acts on Ass Γ (k) from the right by (Φ, Ψ) * (h, k) = (Φ ′ , Ψ ′ ), where 

This action preserves each Ass Γ (a,λ) (k), and it extends to an action of GRT Γ (k) on Ass Γ (k), which is compatible with the action of (Z/N Z) × × k × on (Z/N Z) × k and commutes with the left action of GT Γ (k) on Ass Γ (k).

Proposition 4.2.21.

There is a group isomorphism between GRT Γ (k) and GRT Γ (k).

Proof. The map GRT Γ (k) -→ GRT Γ (k) is constructed as follows. Let F be an automorphism in Aut + Mop(GPaCD(k)) (GPaCD Γ (k)) depending on an operad automorphism Ψ in GRT(k). We have

In light of relations of Remark 4.2.13, the tuple (λ, f, g) satisfies relations (4.13), (4.14) and (4.15). The assignment

Let's now prove that the composition of automorphisms in Aut + Mop(GPaCD(k)) (GPaCD Γ (k)) corresponds to the composition law of the group GRT Γ (k). We already know that the composition of automorphisms Φ and Ψ in Aut + Op Ĝ (GPaCD(k)) corresponds to the composition law in GRT(k), that is, the associated couples (λ, f 1 ) and (µ,

We also already showed that any two automorphisms F and G in the group ) which represent automorphisms of the parenthesized word (01 0 )2 0 in the groupoid GPaCD Γ (k)(2) i.e. in exp( tΓ 2 (k)). Let us now place ourselves in the group A = Aut GPaCD Γ (k)(3) ((01 0 )2 0 ). In A, we have

We then have F (t 01 ) = λt 01 for some invertible λ ∈ k × . Next, let us compute F (t 0 12 ). Again in the group A, the element t 0 12 can be decomposed as

Then, as

) and

Finally we obtain

))

)))

which is nothing but the composition law in the group GRT Γ (k). This concludes the proof, as the composite of moperad morphisms F • G is compatible with the composition of operad morphisms Φ • Ψ. Now, the fact that the defining sets in GRT Γ (k) and GRT Γ (k) are isomorphic is a straightforward consequence of the composite of bijections

This finishes the proof.

Proof. In Section 9 we will construct an element in this set. Now, any automorphism (F, G) in GT Γ eℓℓ (k) is defined as follows

where (λ, µ, g

k) satisfy the following relations:

as identities in BΓ 1,3 (k), where u = f (σ 2

Framed configuration spaces on surfaces

In this section we assume g > 1.

In [START_REF] Bellingeri | Surface framed braids Geometricae[END_REF], the authors showed that the fundamental group PB f g,n of Conf f (Σ g , n) can be exhibed as a non-splitting central extension

where β n is the morphism induced by the projection map

β n consists in forgetting the framing). Conf f (Σ g , n) is an Eilenberg-Maclane space of type (PB f g,n , 1). This short exact sequence extends to the following non-split short exact sequence

where β n consists in forgetting the framing.

) is an Eilenberg-Maclane space of type (B f g,n , 1). The framed pure braid group PB f g,n is generated by A i,j and f k where

where 1 ≤ k ≤ n, and where we set A 2g+1,2g+1 = A 2g+n,2g+n = 1.

The group B f g,n is generated by A 1 , B 1 , . . . , A g , B g , σ 1 , . . . , σ n-1 , f 1 , . . . , f n together with the following relations (B1), (B2), (FB1), (FB2) and (FBG1) c i σ j = σ j c i for all j ≥ 2, c i = A i or B i and i = 1, . . . , g

Part II

On the twisted elliptic KZB associator

By putting these two equations together we finally get

and 1-e

ad(xj ) (y i ). We thus have

and therefore we get the announced relation

Consequently the K i (z)'s satisfy conditions (e) and (f) above (and thus also (a) and (b)).

Moreover, the K i (z)'s also satisfy conditions (d). Indeed, the first part of (d) is immediate and

Finally, from their very definition, the K i (z)'s also satisfy condition (g).

In the next paragraph we show that the flatness condition (c) is satisfied.

6.1.5 Flatness of the connection Proposition 6.1.6. [∂ i -K i (z), ∂ j -K j (z)] = 0, i.e., condition (c) is satisfied.

Proof. First we have

Therefore we have to prove that [K i (z), K j (z)] = 0. As in [START_REF] Calaque | Universal KZB equations: the elliptic case, Algebra, Arithmetic and Geometry Vol I: in honor of Yu. I. Manin[END_REF] it follows from the universal classical dynamical Yang-Baxter equation:

which we now prove (here

generators:

Finally remark that we have an increasing filtration on t Γ 1,n defined by deg(x i ) = 1 and deg(t α ij ) = deg(y i ) = 0. ∆ 0 decreases the degree by 1 and vanishes on degree zero elements. The result then follows from the fact that deg x (C α ) = p-q < p and deg x (D) = p-q-1 < p-1.

Now composing with d

. We write ξ s,γ := ξ (Ds,γ ,Cs,γ ) for the image of δ s,γ . We then 

where

Notice that one can also define semi-direct product groups GΓ n := exp(t Γ 1,n ⋊ dΓ + ) ∧ ⋊ SL 2 (C) and GΓ n := exp( tΓ 1,n ⋊ dΓ + ) ∧ ⋊ SL 2 (C). We therefore have the following commutative diagram:

(6.5) Lemma 6.2.5. The kernel of dΓ 0 -→ Der(t Γ 1,n ) (n ≥ 2) is the space of elements (0, C) for which C α is proportional to t α , and ker(d

Proof. Let us first prove it for n = 2. Recall that tΓ 1,2 = t Γ 1,2 /(x 1 + x 2 , y 1 + y 2 ), so it is the Lie algebra generated by x (the class of x 1 ), y (the class of y 1 ) and t α 's (classes of t α 12 's) with the relation [x, y] = α∈Γ t α . Then the derivation ξ (D,C) associated to (D, C) ∈ dΓ 0 is given by

This derivation vanishes if and only if D = 0 and C α is proportional to t α . Finally, the result for n ≥ 2 follows from the fact that

where ξ

(n) (D,C) denotes the derivation of t Γ 1,n associated to (D, C).

Let us check (6.10) first. Ad(e 2πi( j zj xj +τ X) τ d )(-y i ) + 2πix i equals -Ad(e 2πi j zj xj )(y i /τ ) = -y i τ -e 2πiad( j zj xj) -1 ad( j z j x j ) ([

Therefore we have

) . (6.12)

Now substituting (x, z) = (adx j , z j ) in

then applying to t α ij , summing over j = i and α ∈ Γ, and adding up (6.12) we obtain (6.10) by using that

We now check (6.11). Differentiating (6.13) w.r.t. x and dividing by τ , we get

Now substituting (x, z) = (adx i , z ij ), applying to t α ij , and summing over α ∈ Γ we obtain

Then taking the sum over i < j one gets

where

Proof of the lemma. We first compute

It remains to show that Ad(e

The proof of this fact goes along the same lines of computation as in [24, pp.16-17].

Using the above lemma and equation (6.14), one sees that equation (6.11) follows from

This last equality is proved using

We therefore have:

is the pull-back of a connection ∇n,Γ on Pn,Γ .

Proof. The first part follows from Proposition 6.3.6 above. For the second part, we need to prove the three following identities:

The first two equalities have already been proven, and the last one is obvious.

Flatness

In this paragraph we prove the flatness of ∇ n,Γ (and thus of ∇n,Γ ). Proposition 6.3.9. For any i ∈ {1, . . . , n} we have

In what follows, we often drop τ from the notation when it does not lead to any confusion.

Proof. Let us first prove that

Let us first prove it in the case n = 2. Namely, we will prove that

One the one hand,

where

On the other hand, we have

where the series p,q b α,β p,q (z)u p v q is given by

Therefore the l.h.s. of (6.15) equals

where p,q c α,β p,q u p v q (z) is given by

which can be rewritten as

with z = z ′ . Thus to end the proof of equation (6.15) the following lemma is sufficient: Lemma 6.3.10. Expression (6.16) equals zero.

Proof of the lemma. The case α = β = 0 follows from an explicit computation. Then we chose lifts α = (a 0 , a) and β = (b 0 , b) of α and β, respectively. One has

Therefore (6.16) equals

which vanishes because of (6.3).

Let us now assume that n > 2.

which decomposes as e ij (z) + k =i,j e ijk (z), where e ij (z) takes its values in

and e ijk (z) takes its values in

where b α,β p,q (z) is as before, and

On the other hand, we have

(remember that g α (u, z) = g -α (-u, -z)). We have

1i (6.17)

It is easy to see that the line (6.17) equals i>1 ([∆(z 1i ), K 1 (z 1i )]) 1i which is zero as we have seen before (case n = 2).

, which is zero because of Lemma 6.3.10.

We have therefore proved (Proposition 6.1.6 and Proposition 6.3.9 above): Theorem 6.3.11. The connection ∇ n,Γ is flat, and thus so is ∇n,Γ .

Let us now show how the universal KZB connexion over moduli spaces coincides with the one defined over configuration spaces. Remark 6.3.12. The connection ∇ n,Γ defined above is an extension to the twisted moduli space M Γ 1,n of the connection ∇ n,τ,Γ defined over the twisted configuration space Conf(E τ,Γ , n, Γ) from Section 6.1.3. Indeed, the pull-back of the principal G Γ n -bundle with flat connection (P n,Γ , ∇ n,Γ ) along the inclusion

of the fiber at (the class of ) τ in Y (Γ) admits a reduction of structure group to

as we will now explain.

Let us first pull-back the principal G Γ n -bundle with flat connection (P n,Γ , ∇ n,Γ ) along the projection

The resulting flat bundle admits a reduction of structure group to

Let us then further pull-back this principal N Γ n -bundle to the fiber

The resulting flat bundle admits a further restriction of structure group to exp(t Γ 1,n ) ⊂ N Γ n . One easily sees from our explicit formulaethat it coincides with (P τ,n,Γ , ∇ τ,n,Γ ) constructed in Section 6.1.3.

Similarly, the connection ∇n,Γ is an extension to the twisted moduli space MΓ 1,n of the connection ∇n,τ,Γ defined over the reduced twisted configuration space C(E τ,Γ , n, Γ). Proposition 6.4.2. The Lie algebra morphism ρ g (resp. ρg ) of Proposition 6.4.1 extends to a Lie algebra morphism t

Here ⊙ denotes the symmetric product: A ⊙ B := AB + BA.

Proof. Since t g is invariant under the commuting actions of Γ and l then the relation ξ s,γ = (-1) s ξ s,-γ is also preserved. This invariance argument also implies that [ρ g (ξ s,γ ), ρ g (x i )] equals

which is zero since the first and second factor are respectively symmetric and antisymmetric in (ν, ν t ). Let us now prove that the relation

where ∆ is the standard coproduct of U g and B ν1, 

The term corresponding to j = i is the linear map S s-1 (l) -→ U (g) ⊗n such that for x ∈ l

Using l-invariance of u a u ⊙ (γ • a u ) one obtains that this last expression equals

is nonzero, where λ ∨ := (λ ⊗ id)(t h ) for any λ ∈ h * .

We now define H n (g, h * reg ). As in the previous paragraph, Diff(h * ) has generators xh , ∂h (h ∈ h) and relations

One has a Lie algebra morphism

We denote by h diag the image of the map

and define H n (g, h * reg ) as the Hecke algebra of B n with respect to h diag :

It acts in an obvious way on

Then, following [START_REF] Enriquez | Quantization of classical dynamical r-matrices with nonabelian base[END_REF], r :

ν ∂ ν r (23) + [r (12) , r (13) ] + c.p.(1, 2, 3) = 0 , and we write r

given by

Proof. First of all, the images of the above elements are all h-invariant. As in [START_REF] Calaque | Universal KZB equations: the elliptic case, Algebra, Arithmetic and Geometry Vol I: in honor of Yu. I. Manin[END_REF], we will imply summation over repeated indices, and adopt the following conventions: ∂eν = ∂ν , xeν = xν , and 1 ⊗ -'s and -⊗ 1's may be dropped from the notation.

In particular, ρ g,h

We will use the same presentation of tΓ 

by the same argument as in Proposition 6.4.1.

Let us check that i xi = i ȳi = 0 are preserved. We have i ρ g,h (x i ) = 0 and i ρ g,h

ν ∂ ν (by the antisymmetry of r), which equals zero as in as in Proposition 6.4.1. The fact that the relation [ȳ i , ȳj ] = 0 is satisfied for i = j is a consequence of the dynamical Yang-Baxter equation (this follows from the exact same argument as in the proof of [START_REF] Calaque | Universal KZB equations: the elliptic case, Algebra, Arithmetic and Geometry Vol I: in honor of Yu. I. Manin[END_REF]Proposition 63]).

Next, [x i , tα jk ] = 0 is preserved (i, j, k distinct). Indeed, we have

Finally [ȳ i , tα jk ] = 0 is preserved (i, j, k distinct): we have

where the last equality follows the the g-invariance of t g . Remark 6.4.4. We expect that there is Lie algebra morphism red l,h :

6.4.4 Elliptic dynamical r-matrix systems as realizations of the universal Γ-KZB system on twisted configuration spaces

Let K(z) be a meromorphic function on C with values in the subalgebra t Γ 2,+ ⊂ t Γ 1,2 generated by x 1 , x 2 , t α 12 (α ∈ Γ), such that K(-z) = -K(z) 2,1 and satisfying the universal CDYBE with a spectral parameter Observe that this coincides with the partial completion defined [32, §1.1], and with the relative completion defined in [START_REF] Hain | The Hodge de Rham theory of relative Malcev completion[END_REF] (which is somehow slightly more general). Lemma 7.1.1. If S is finite then the extension

Proof. We consider the filtration (F i ) i given by the lower central series of Ker ϕ(k), and prove by induction by induction that

Initial step (i = 2): Recall that F 1 = Ker ϕ(k), and that F 1 /F 2 is abelian and finitely generated, so that

splits as every extension of a finite group by a finite dimensional representation splits (this is because the cohomology of a finite group with coefficients in a divisible module vanishes). Induction step: We have a (surjective) morphism of extensions

Assuming (by induction) that the bottom extension splits, we have that the corresponding obstruction class in the first non-abelian cohomology H 1 S, Ker ϕ(k)/F i is trivial. Hence, by exactness of

we get that the obstruction class for the splitting of the top extension lies in the image of

We conclude by using the vanishing of group cohomology of a finite group in a finite dimensional representation.

The 

It is interesting to say that this relative formality result follows from [START_REF] Kohno | Monodromy representations of braid groups and Yang-Baxter equations[END_REF] when k = C, and from [START_REF] Drinfeld | On quasitriangular quasi-Hopf algebras and a group closely connected with Gal( Q/Q)[END_REF] for k = Q.

We also refer to [START_REF] Hain | The Hodge de Rham theory of relative Malcev completion[END_REF]Example 1.5] for interesting considerations about this example. More precisely, one has an S n -equivariant isomorphism PB n (k) -→ exp( tn ). 

It follows from [32, §1.3-1.6] that the surjective morphism

Relation between relative completion and completion of groupoids

In this paragraph we briefly compare the notion of relative k-prounipotent completion with the k-prounipotent completion for groupoids defined in §2.5.7.

There is a functor that goes

• from the category of surjective morphisms G -→ S with finitely generated kernel and with S a finite group.

• to the category of groupoids.

This functor sends ϕ : G -→ S to the groupoid G(ϕ) defined as follows:

• the set of objects of of G(ϕ) is S.

• for s, s ′ ∈ S,

which is an unparenthesized variant of PaB(n). Similarly:

• the groupoid

is an unparenthezised variant of the twisted parenthesized braid groupoid PaB N (n) from §4.2.5.

• the groupoid

is an unparenthezised variant of the parenthezised elliptic braid groupoid PaB eℓℓ (n) from §4.1.2.

• the groupoid

is an unparenthezised variant of the twisted parenthezised elliptic braid groupoid PaB Γ eℓℓ (n) from §4.3.2.

We let the reader prove that the following is true:

Subgroups of B 1,n

For τ ∈ H and

This actually fits into a morphism of short exact sequences

, where the first vertical morphism is the monodromy morphism

of associated with the flat exp( tΓ 1,n )-bundle (P τ,n,Γ , ∇ τ,n,Γ ) on Conf(E τ,Γ , n, Γ). Indeed, this comes from the fact that ∇ (τ,Γ),[n] is obtained by descent, from ∇ τ,n,Γ and using its equivariance properties (see §6.1.2). More precisely, the monodromy of ∇ (τ,Γ),[n] along a loop γ based at z 0 in Conf(E τ,Γ , [n]) can be computed along the following steps:

• First consider the unique lift γ of γ departing from z 0 ∈ Conf(E τ,Γ , n, Γ). Note that it ends at g • z 0 , g ∈ Γ n ⋊ S n .

• Then compute the holonomy of ∇ τ,n,Γ along γ: this is an element in exp( tΓ 1,n ), as ∇ τ,n,Γ is defined on a principal exp( tΓ 1,n )-bundle obtained as a quotient of the trivial one on C n -Diag τ,n,Γ (see §6.1.1), that we abusively denote µ z0,τ,n,Γ (γ).

• Finally, µ z0,(τ,Γ),[n] (γ) = gµ z0,τ,n,Γ (γ).

Having such a morphism of exact sequences guaranties that it factors through a morphism

, where B1,n (ϕ n , C) is is the relative prounipotent completion of the morphism B 1,n -→ Γ n ⋊S n , and PB Γ 1,n (C) is the prounipotent completion of PB Γ 1,n . We will call the vertical maps the completed monodromy morphisms.

In the remainder of this Section we will prove that these completed monodromy morphisms are isomorphisms, which implies in particular the relative formality of B 1,n -→ Γ n ⋊ S n . Theorem 7.1.6. The completed monodromy morphism

is an isomorphism. Equivalently, the completed monodromy morphism

Proof. Recall that µ z0,τ,n,Γ can be computed as follows. Let

Then consider

Knowing that log F

This gives us that φ(x i ) = -y i and φ(y i ) = 2πix iτ y i .

In order to compute log µ z0,τ,n,Γ (P α ij ), which is also equal to log µ z0,(τ,Γ),n (P α ij ), we will need to compute µ z0,(τ,Γ),n (X i ), µ z0,(τ,Γ),n (Y i ) and µ z0,(τ,Γ),n (P ij ):

• As usual, we have µ z0,(τ,Γ),n (P ij ) = exp(2πit 0 ij + terms of degree ≥ 3) , where 0 = ( 0, 0).

• We also have

• We finally have

which implies that

Hence, if α = (p, q) ∈ Γ, then µ z0,(τ,Γ),n (X -p i Y -q j ) = g(p, 0) i ( 0, q) j , with g ∈ exp(t Γ 1,n ), and µ z0,(τ,Γ),n (Y q j X p i ) = ( 0, -q) j ( -p, 0) i g -1 .

Therefore

This shows that log µ z0,(τ,Γ),n (P α ij ) = t α ij + terms of degree ≥ 3, so that φ(t α ij ) = 2πit α ij . This ends the proof of the Lemma.

The KZB ellipsitomic associator

First of all, recall that tΓ 1,2 is the Lie C-algebra generated by x := x 1 , y := y 2 and t α := t α 12 , for α ∈ Γ, such that [x, y] = α∈Γ t α . We define the KZB ellipsitomic associator as the couple e Γ (τ

) consisting in the renormalized holonomies from the straight paths from 0 to 1/M and from 0 to τ /N respectively of the differential equation

with values in the group exp( tΓ 1,2 )⋊Γ n /Γ. More precisely, for all α ∈ Γ and α = (a 0 , a) ∈ Λ τ,Γ a lift of α, this equation has a unique solution J α (z) defined over { α+ s1 M + s2 N τ, for s 1 , s 2 ∈]0, 1[} such that we have J α (z) ≃ (-2πi(zα)) e -2πia ad(x) t α at zα -→ 0. By denoting J(z) := J 0 (z) we define

In the same way, we define

and the B-associator is then

We have A p ∈ exp( tΓ 1,2 )(p, 0). Indeed, one checks for example that

Now, let p, q ≥ 1. Define A (p) and B (q) such that A p = A (p) (p, 0) and B q = A (q) ( 0, q). These are elements of exp( tΓ 1,2 ) and we have

and

Recall from Theorem 4.3.10 that the set of ellipsitomic associators Ell Γ (k) can be regarded either as the set of Γ-equivariant PaB(k)-module isomorphisms PaB Γ eℓℓ (k) -→ GPaCD Γ eℓℓ (k) which are the identity on objects or either as tuples (λ, Φ, A Γ , B Γ ), where (λ, Φ) ∈ Ass(k) and A Γ , B Γ ∈ exp( tΓ 1,2 (k)), satisfying relations (tN1), (tN2) and (tE). We are ready to show that the set Ell Γ (C) is not empty. Write Ell Γ KZB := Ell Γ (C) × Ass(C) {2πi, Φ KZ }.

Theorem 7.2.1.

There is an analytic map

In particular, for each τ ∈ h, the element (2πi, Φ KZ , A Γ (τ ), B Γ (τ )) is an ellipsitomic Cassociator (i.e. it belongs to Ell Γ (C)).

The rest of this section is devoted to the proof of the above theorem.

The solution

The ellipsitomic KZB system is

where

where the second sum is finite with a i ≥ 0, i ∈ {1, ..., n}, r i,a1,...,an k (u 1 , ..., u n ) has degree k, and is O(u i (log u 1 ) a1 ...(log u n ) an ). We denote F

We use the same presentation of B1,n coming from [START_REF] Calaque | Universal KZB equations: the elliptic case, Algebra, Arithmetic and Geometry Vol I: in honor of Yu. I. Manin[END_REF] that we used in the proof of Theorem

and α = (p, q)) are generators of B Γ 1,n . We denote again A M i and B N i (i = 1, ..., n) for the projections of these elements to BΓ 1,n .

The monodromy morphism γ

The monodromy of the flat

provides us with a group morphism

where π 1 (M Γ 1,n /(Γ n ⋊ S n )) is the mapping class group (i.e. the orbifold fundamental group) associated to M Γ 1,n /(Γ n ⋊ S n ). This actually fits into a morphism of short exact sequences

) is the mapping class group associated to M Γ 1,n , the top vertical arrows are injections and the bottom first vertical morphism is the monodromy morphism

of associated with the flat G Γ n -bundle (P n,Γ , ∇ n,Γ ) on M Γ 1,n . Indeed, this comes from the fact that ∇ Γ,[n] is obtained by descent, from ∇ n,Γ and using its equivariance properties of Proposition 6.3.14. We denote

Let F Γ (z|τ ) be a solution of the ellipsitomic KZB system defined on D Γ n with values in G Γ n ⋊Γ n . Let us consider the domains

Both of these domains are simply connected and invariant. We denote F H Γ (z|τ ) and F V Γ (z|τ ) the prolongations of F Γ (z|τ ) to these domains.

are solutions of the ellipsitomic KZB system on H Γ n and V Γ n respectively. Let us define

We also define σ F i ∈ S n by means of

where, on the left hand side, F Γ is extended to the universal cover of (C n ×h)-Diag n,Γ . Notice that σ i exchanges z 0 i and z 0 i+1 , z 0 i+1 passing to the right of z 0 i . Its monodromy is given by e πit 0 i(i+1) .

Let us denote

for all α = (p, q) ∈ Γ and denote Xp i := γn (X p i ) and Ỹ q i := γn (X q i ). Then R α ij is sent via γn to Rα ij = g 1 (p, 0) j ( 0, q) j e 2πit 0 ij ( 0, -q) j ( -p, 0) j g -1

and σ α i is sent via γn to

Proof. This follows from the geometric description of the generators of

as paths in H Γ

n , A M and A (M) are homotopic. Likewise, as paths in V Γ n , B N and B (N ) are homotopic.

Thus, following the same conventions as before, we set the following elements in

and

We will denote by γn : PB Γ 1,n -→ G Γ n the morphism induced by the solution F

Γ (z|τ ) and

Expression of γ

Proof.

We let the reader check that the above lemma remains true in the reduced case.

Algebraic relations for the ellipsitomic KZB associator

Let us set

and denote by x → {x} the morphism exp( tn ) -→ exp( tΓ

twisted configuration space:

(1,0) We can see that the z 0 2 is only braided with z 0 3 since z 0 1 moved to z ( 0, 1) 1

in the first movement.

By applying x → x ∅,1,2 , this identity implies

Since the universal twited elliptic KZB connection is Γ-equivariant, then this equations are also Γ-equivariant. Now, let us denote

We then have

).

Now denoting by T the r.h.s of this equation we get

).

By taking the log of this last equation we retrieve relation [x 1 , y 2 ] = α∈Γ tα 12 . In the same way, one can show that A (M) satisfy the elliptic first nonagon equation. The same will be satisfied by B (N ) . The elliptic mixed equation for n = 2 will be then written as

Finally, one can see that if we take Γ to be trivial, we retrieve equations ( 22), ( 23), ( 24), ( 25) and ( 26) in [START_REF] Calaque | Universal KZB equations: the elliptic case, Algebra, Arithmetic and Geometry Vol I: in honor of Yu. I. Manin[END_REF].

In order to finish the proof of Theorem 7.2.1, one has to take different boundary conditions for our KZB solutions. The couple e Γ (τ

where J(z) is the unique solution defined over

where J(z) is the unique solution defined over

 .

Thus, we have J(z) = (-2πi) t 0 J(z)ϕ(τ ) -1 and J(z) = (-2πi) -t 0 J(z)ϕ(τ ). We compute

This means that A Γ (τ ) = Ad((-2πi) t 0 )(( 1, 0) ÃΓ ). The same argument for B Γ (τ ) and BΓ

shows that B Γ (τ ) = Ad((-2πi) t 0 )(( 0, 1) BΓ ). We conclude that e Γ (τ ) = (A Γ + (τ ), A Γ -(τ )) satisfy (tN1) and (tN2). Next, (tE) is obtained in the same way as in the untwisted case (see [START_REF] Enriquez | Elliptic associators[END_REF] Proposition 3.8) and this concludes the proof of Theorem 7.2.1.

Remark 7.2.5. The modularity relations of e Γ (τ ), depending on the chosen congruence subgroup of SL 2 (Z), will be investigated in forthcoming works by the second author.

The Eisenstein-Hurwitz series

For any γ ∈ Γ, recall that g γ (z, x|τ ) := ∂ x k γ (z, x|τ ). Until now, the terms A s,γ (τ ) were determined as the coefficients of the expansion

In this section we give an explicit definition of these functions, show that they are modular forms for the group SL Γ 2 (Z) and relate them to cyclotomic zeta values. We also determine their normalized variant Ãs,γ (τ ) with constant term 1 on their q N -expansion that we used to apply [START_REF] Calaque | Universal KZB equations: the elliptic case, Algebra, Arithmetic and Geometry Vol I: in honor of Yu. I. Manin[END_REF]Proposition A.3] at the end of Section 11.1.

Recall that the Weierstrass function is the function ℘ : C -→ C given by

for some lift γ′ of γ ∈ Γ. The last line holds by the fact that, since a ≡ 1 mod M , d ≡ 1 mod

Then we can rewrite the term md + nb + (mc + na)τ as m + nτ by applying

and we can rewrite the term u

where a b c d is invertible. Finally, as we already know that Ās,γ does not depend on the choice of the lift γ of γ, we obtain G s,γ (α • τ ) = (cτ + d) s G s,γ (τ ). The function Ās,γ being holomorphic on h, it remains to show that it is also holomorphic at all cusps of the compactified modular curve X(Γ).

Recall that the Hurwitz zeta function is defined by

where s, q ∈ C are such that Re(s) > 1 and Re(q) > 0.

Lemma 7.3.2. The function G s,γ (τ ) admits a q N -expansion, where q N = e 2πiτ /N . Proof. We have

, where ζ(s, γ) is the Hurwitz zeta function evaluated at (s, γ).

This shows that G s,γ (τ ) is N -periodic and is holomorphic at i∞ and we define, for γ = u/M ,

to be the constant term in this expansion (it also depends on τ but logarithmically). In other words, G s,γ (τ ) has constant term equal to a s,γ if γ = u/M and 0 else.

The term a s,γ tends to 0 when τ -→ i∞.

We now show that this function is also holomorphic at the remaining cusps of the modular curve X(Γ).

Lemma 7.3.3. For all α ∈ SL 2 (Z), the function

has a q N -expansion.

Proof. We have

)τ , we have

, which concludes the proof.

We conclude that, for all α ∈ SL Γ 2 (Z), the function

is holomorphic at i∞, which concludes the proof.

Remark 7.3.4. From the expression of the function (cτ + d) -s Ās,γ (α • τ ), we can notice that our functions Ās,γ will degenerate at all cusps of X(Γ) to functions closely related to cyclotomic zeta values. More precisely, the function γ∈Γ-{0} Ās,γ (τ ) has a q N -expansion whose constant term (in the sense that if τ -→ i∞, its remaining non zero component) is

7.4 Representations of Cherednik algebras

The Cherednik algebra of a wreath product

In this paragraph Γ is any finite group such that

We define the Cherednik algebra H Γ n (k) as the quotient of the algebra C x 1 , . . . , x n , y 1 , . . . , y n ⋊ C[G] by the relations

where s α ij = (α iα j )s ij , and s ij is the permutation of i and j.

Chapter 8

Multiple-zeta values at torsion points

We propose in this chapter a twisted version u Γ of Pollack's stable derivation algebra contructed in [START_REF] Pollack | Relations between derivations arising from modular forms[END_REF] by relating it to the twisted derivation algebra d Γ constructed in subsection 6.2. Next, we state and prove a differential equation in τ for the ellipsitomic KZB associator and use the iterated integral machinery developped in [START_REF] Enriquez | Analogues elliptiques des nombres multizétas[END_REF] to give a well-defined notion of elliptic multiple zeta values at torsion points, closely related to that which appeared in the physics paper [START_REF] Broedel | Twisted elliptic multiple zeta values and non-planar one-loop open-string amplitudes[END_REF].

The Lie algebra u Γ of special twisted derivations

We give a definition of the twisted version of Pollack's Lie algebra u of special derivations. 

This induces a group morphism G Γ 1 -→ G Γ n that will be denoted h → h.

CHAPTER 8. MULTIPLE-ZETA VALUES AT TORSION POINTS

Proof. Let us first show that the relation δ s,γ = (-1) s δ s,-γ is preserved by ρ:

Next, we show that the highest weight relations are preserved for δ (n) s,γ i.e. that we have relations

This finishes the proof.

Recall that there is a bigraded Lie algebra morphism

f , ξ

h := ξ h are the usual derivations given by the sl 2 -basis {e, f, h} and

• ξ

This morphism induces a morphism d Γ -→ Der( tΓ 

Proof. We have

This finishes the proof.

Remark 8.1.4. In particular, there is a Lie algebra morphism

f , ξ

and the equality

implies that it is sufficient to determine the image of the x i 's and all the t α ij 's to fully determine ξ(n) s,γ . We conclude that A Γ (τ ) = J(z|τ ) -1 ( 1, 0)(A Γ )

The Lie algebra of twisted stable derivations

(τ )J(z|τ ). Now, taking z -→ 0, this implies A Γ (τ ) = lim z-→0 (-2π i z) -ad(t 0 ) ( 1, 0)(A Γ )

As z is fixed, (-2π i z) -ad(t 0 ) ( 1, 0)(A Γ )

(τ ) satisfies the same differential equation in τ as (A Γ ) z1 z0 (τ ), with g(z 0 |τ ) replaced by (-2π i z) -ad(t 0 ) (g(z|τ )) and g(z 1 |τ ) replaced by (-2π i z) -ad(t 0 ) (( 1, 0)g(z + 1 M |τ )), which both tend to 0 when z -→ 0. It follows that these terms disappear from the differential equation satisfied by A Γ (τ ), so

Let us now show the differential equation for B Γ (τ ).

We have, B Γ (τ ) = F (z|τ ) -1 ( 0, 1)e where k τ γ,0 (z) = (θ ′ τ /θ τ )(z), k τ γ,0 (z) = (θ ′ τ /θ τ )(z + γ) and k τ γ,n is regular at 0 and 1 if n > 0.

Proof. In light of [34, Proposition 2.5], the only left thing to prove is that, for γ = 0, we have k τ γ,0 (z) = (θ ′ τ /θ τ )(z + γ) which is true by the very same computation (using that θ is an odd function) and the fact that for γ = 0, the term k τ γ,0 (z) is regular when z, x -→ 0. where the superscript op denotes the opposite multiplication on the algebra C x, t α ; α ∈ Γ , defined by (f • g) op = g • f . Here we choose the principal branch of the logarithm so that log(±i) = ±πi/2. 

Elliptic multiple zeta values at torsion points

Our approach to multiple zeta values at torsion points is somewhat different to that in the recent work of Broedel-Matthes-Richter-Schlotterer [START_REF] Broedel | Twisted elliptic multiple zeta values and non-planar one-loop open-string amplitudes[END_REF], and generalizes to the case of any surjective morphism Z 2 -→ Γ sending the generators of Z 2 to their class modulo M and N , respectively. More general surjective morphisms could be considered. The relation between the twisted elliptic multiple zeta values obtained in this paper and that in [START_REF] Broedel | Twisted elliptic multiple zeta values and non-planar one-loop open-string amplitudes[END_REF] will be investigated by the second author and N. Matthes in a forthcoming collaboration. Now, multiple Hurwitz values are defined, for n 2 , ..., n r-1 ≥ 1, n r ≥ 2, as the real numbers ζ(n 1 , . . . , n r , a 1 , . . . , a r ) = 0≤k1<•••<kr ;mi∈Z

where a 1 , . . . , a r are rational numbers with a 1 > 0 and such that ζ(n 1 , . . . , n r , 1, . . . , 1) = ζ(n 1 , . . . , n r ).

Then, the differential equation of Theorem 8.2.1 combined with the fact that, for real values of γ ∈ Λ τ,Γ , the Eisenstein-Hurwitz series have Hurwitz zeta values as constant coefficients in their q N -expansion, permits us to expect the following:

• elliptic multiple zeta values at torsion points should have a q N -expansion whose coefficients are special linear combinations of multiple Hurwitz values,