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Alone this summer morning on the deserted wharf,

I look toward the bar, I look toward the Indefinite,

I look and am glad to see

The tiny black figure of an incoming steamer.

[...]

Fernando Pessoa, Maritime Ode,

A Little Larger Than The Entire Universe: Selected Poems.



4



Résumé

Dans cette thèse, en suivant les travaux initiés par V. Drinfeld, poursuivis par B. Enriquez, puis par

ce dernier, D. Calaque et P. Etingof, nous étudions la connexion KZB elliptique cyclotomique (ellipsit-

omique en plus court) universelle, associée à l’espace de modules des courbes elliptiques avec n points

marqués et une structure de (M,N)-niveau. La platitude de cette connexion nous permet d’étudier

des relations de monodromie, ouvrant la voie à une théorie générale des associateurs ellipsitomiques

et des groupes de Grothendieck-Teichmüller qui lui correspondent, que l’on dégage via l’utilisation du

formalisme des opérades (et certaines de leurs variantes) en nous basant sur les travaux de B. Fresse à

ce sujet. D’une part, ce formalisme nous permet par ailleurs d’étudier la structure des associateurs en

genre supérieur. D’autre part, l’associateur KZB ellipsitomique nous permet de dégager une théorie

des valeurs multizêta elliptiques en des points de torsion, dont on démarque quelques unes de leurs

premières propriétés du type associateurs.

On commencera par mettre en place la machinerie opéradique nécessaire pour définir les associa-

teurs ellipsitomiques en partant tour à tour de la situation déjà connue en genre 0, puis de celle en

genre 1 et ensuite de leurs variantes cyclotomiques. Enfin, grâce à ce formalisme, nous dégagerons

une définition des associateurs en tout genre.

Ensuite, nous entrerons dans le détail de la construction de la connexion KZB ellipsitomique

universelle, en premier temps sur l’espace de configurations (M,N)-décorées d’une courbe elliptique

puis sur les espaces de modules des courbes à niveau, nous la lieront à sa version réalisée via l’utilisation

des algèbres de Hecke doublement affines et des r-matrices classiques dynamiques. Pour finir nous

présenterons les applications de cette construction, à savoir : formalité de certains sous-groupes de

tresses sur le tore, l’associateur KZB ellipsitomique, valeurs multizêta elliptiques en des points de

torsion ainsi qu’une application en représentations d’algèbres de Cherednik cyclotomiques.

Mots-clés

Connexions KZB universelles, associateurs de Drinfeld, groupes de Grothendieck-Teichmüller, valeurs

multizêta elliptiques en des points de torsion.
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Contributions to the theory of KZB associators

Abstract

In this thesis, following the work initiated by V. Drinfeld and pursued by B. Enriquez, then by the

latter together with D. Calaque and P. Etingof, we study the universal twisted elliptic (ellipsitomic in

short) KZB connection, associated to the moduli space of elliptic curves with n marked points and a

(M,N)-level structure. The flatness of this connection allows us to study monodromy relations satisfied

by this connection, opening the way to a general theory of ellipsitomic associators and Grothendieck-

Teichmüller groups corresponding to them, which is released via the use of the formalism of operads

(and some of their variants) basing ourselves on the work of B. Fresse. On the one hand, this formalism

allows us to study the structure of associators in higher genus. On the other hand, the ellipsitomic

KZB associator allows us to derive a theory of elliptic multiple zeta values at torsion points, from

which some of their first associator-like properties are distinguished.

We will begin by setting up the operadic machinery necessary to define the ellipsitomic associators

starting successively with the genus 0 situation, which is well-known, then the genus 1 situation and

their cyclotomic variants. Then, in light of this formalism, we will release a definition of genus g

associators.

Next, we will go into the details of the construction of the universal ellipsitomic KZB connection,

first over the (M,N)-twisted configuration space of an elliptic curve and then over the moduli space

of elliptic curves with a level structure. We will associate this connection to its realized version by

means of the use of double affine Hecke algebras and of classical dynamical r-matrices. Finally we will

present the applications of this construction, namely : the formality of certain subgroups of the braid

group on the torus, the ellipsitomic KZB associator, elliptic multiple zeta values at points of torsion

as well as an application in representations of cyclotomic Cherednik algebras.

Keywords

Universal KZB connections, Drinfeld associators, Grothendieck-Teichmüller groups, elliptic multiple

zeta values at torsion points.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Associators

The theory of Drinfeld associators was introduced by the ukrainian mathematician Vladimir Drinfeld

in his famous article [27]. It is an example of an object that mathematics borrow from physics and

whose mathematical significance ends up being independent of its physical importance. In particular

the following ideas1

• Quantum groups (Drinfeld) : associators produce quantizations of Lie bialgebras.

• Conformal Field theory and Wess-Zumino-Witten models (Witten2) : the KZ connection appears

naturally in the geometric quantization of 3-dimensional Chern-Simmons theory3.

• Algebraic topology of varieties and 3-dimensional topological invariants (Witten, Kontsevich4) :

the universal enveloping algebra of the holonomy Lie C-algebra of the configuration space of the

complex plane, which is where the KZ connection is defined, is precisely the algebra of horizontal

string diagrams.

served to answer deep problems in

• Number theory (Drinfeld, see [27]) : the KZ Associator is a generating series of all multizeta

values, which satisfy associator-like relations.

• Geometric Galois theory (Grothendieck5-Drinfeld, see [27] and [60]) : the set of associators is

a torsor under the action of a group whose profinite version contains the absolute Galois group

Gal(Q̄/Q).

1Non-exhaustive list, as well as cited authors with significant contributions in the theory of associators.
2see for example his article [103].
3The reader can also discover some parts this wide field in the excellent introduction [51] on the subject.
4see in particular his article [76].
5see in particular his manusscript «Esquisse d’un Program» [60].

9
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• Deformation quantization and formality (Kontsevich, Tamarkin, see [76] and [95]) : each Drinfeld

associator provides a universal deformation quantization (i.e. of a universal « star product ») in

the space of « observables » of a Poisson variety. Each associator produces a formality morphism

of the little disks operad.

Initially, in his seminal work [27] and motivated by the construction of quasi-Hopf algebras, V. Drinfeld

was looking to « universalize » the construction associated with the monodromy of a system of

differential equations with non-commutative variables coming from high energy physics and showed

that, not only associators over C and over Q exist, but their existence mobilizes the theory of a

mysterious group, the Grothendieck-Teichmüller group (in particular its k-pro-unipotent version),

whose existence has been foreseen by Alexander Grothendieck in [60] (see also [30]). This group

(and its different completed versions) is very important because it intervenes in several sectors of

mathematics (see for example [29] and [23]).

The construction of this connection goes as follows. First observe that the holonomy Lie algebra

of the configuration space

Conf(C, n) := {z = (z1, . . . , zn) ∈ Cn|zi 6= zj if i 6= j}

of n points on the complex line is isomorphic to the graded Lie C-algebra tn generated by tij ,

1 ≤ i 6= j ≤ n, with relations

(S) tij = tji,

(L) [tij , tkl] = 0 if #{i, j, k, l} = 4,

(4T) [tij , tik + tjk] = 0 if #{i, j, k} = 3.

On the one hand, denote by PBn the fundamental group of Conf(C, n), also known as the pure braid

group with n strands, and by pbn its Malcev Lie algebra (which is filtered by its lower central series,

and complete). Then, one can easily check that PBn is generated by elementary pure braids Pij ,

1 ≤ i < j ≤ n, which satisfy (at least) the following relations:

(PB1) (Pij , Pkl) = 1 if {i, j} and {k, l} are non crossing,

(PB2) (PkjPijP
−1
kj , Pkl) = 1 if i < k < j < l,

(PB3) (Pij , PikPjk) = (Pjk, PijPik) = (Pik, PjkPij) = 1 if i < j < k.

We can depict the generator Pi,j in the following two equivalent ways:

1

1

i

i

...

...

j

j

n

n

←→

1
i

j

n



1.1. MOTIVATION 11

Therefore one has a surjective morphism of graded Lie algebras pn : tn ։ gr(pbn) sending tij to

σ(log(Pij)), i < j where σ : pbn −→ gr(pbn) is the symbol map.

On the other hand, denote exp(̂tn) the exponential group associated to the degree completion t̂n

of tn. The universal KZ connection on the trivial exp(̂tn)-principal bundle over Conf(C, n) is then

given by the holomorphic 1-form

wKZ
n :=

∑

16i<j6n

dzi − dzj
zi − zj

tij ∈ Ω1(Conf(C, n), tn),

which takes its values in tn. It is a fact that the connection associated to this 1-form is flat and

descends to a flat connection over the moduli space M0,n+1 ≃ Conf(C, n)/Aff(C) of rational curves

with n+ 1 marked points.

First, the regularized holonomy of this connection along the real straight path from 0 to 1 in

M0,4 ≃ P1−{0, 1,∞} gives an element ΦKZ ∈ C〈〈x0, x1〉〉 called the KZ associator that is a generating

series for values at 0 and 1 of multiple polylogarithms, the latter being precisely multiple zeta values

([79],[48]). Next, using the monodromy representation of the universal KZ connection, one obtains :

1. A morphism of filtered Lie algebras µn : pbn −→ t̂n such that gr(µn) ◦ pn = id. Hence one con-

cludes that pn and µn are bijective. This proves that pbn is isomorphic to the degree completion

of its associated graded, which is actually tn. We then say that the pure braid group is formal.

2. A system of relations (called Pentagon (P ) and two Hexagons (H±)) satisfied by the KZ associ-

ator.

Then, V. Drinfeld showed that the set Ass(k) is a torsor under the action of an important and

somewhat mysterious group : the prounipotent Grothendieck-Teichmüller group, denoted GT(k).

Ass(k) is also a torsor under the action of its graded version, denoted by GRT. The starting point

into the consideration of this group is that it arises in Grothendieck’s program of studying the absolute

Galois group Gal(Q̄/Q) through its outer action on the algebraic fundamental group(oid) of the moduli

spaces of curves Mg,n. The group GT(k) has at least a profinite and a pro-ℓ version, but it is the

easiest of the three to work with. It is then a fact that Gal(Q̄/Q) injects into the profinite Grothendieck-

Teichmüller group and it has been famously conjectured to be isomorphic to this group. Since then, the

KZ equations became popular among mathematicians and they were quickly noticed to have relations

to several other mathematical fields such as number theory, quantum group theory and deformation

quantization.

Finally, on the "iterated integral" point of view, one is brought to characterise MZVs as being

periods ofM0,n. In fact, if we denote MT(Z) for the Tannakian category of mixed Tate motives over

Z, then MZVs are periods of MT(Z) which bring us to consider their motivic versions. Motivic MZVs

(mMZVs) proved to be very important as they permit to work with a crucially useful formula due to

A. Goncharov ([58]) and F. Brown ([21]) for the coaction of the graded ring of affine functions on the

prounipotent part of the Galois group of MT(Z) over Q. As an application of these tools, F. Brown has

shown that all periods of MT(Z) are Q[ 1
2πi ]-linear combinations of MZVs, that every MZV of weight N

is a Q-linear combination of elements of the set {ζ(k1, ..., kr), where ki = 2 or 3, and k1+ · · · kr = N}

([21]). Other striking results of the use of mMZVs can be found in perturbative Quantum Field Theory

([22]) and, more recently, in perturbative Superstring Theory ([90]).
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1.1.2 Generalisations I : The cyclotomic case

Similarly, one can consider the configuration space

Conf(C×, n) := {z = (z1, . . . , zn) ∈ (C×)n|zi 6= zj if i 6= j}

of n points on C×. Then Conf(C×, n) = Conf(C, n + 1)/C and thus its fundamental group PB1
n

is isomorphic to PBn+1. More generally, for any M ∈ Z − {0} one can consider an M -twisted

configuration space

Conf(C×, n,M) := {z = (z1, . . . , zn) ∈ (C×)n|zMi 6= zMj for some i 6= j}.

In [32], B. Enriquez used the so-called universal trigonometric KZ connection, to prove that one has an

isomorphism pbMn −→ exp(̂tMn ), where pbMn is the Malcev Lie algebra of the fundamental group PBM
n ⊂

PB1
n of Conf(C×, n,M), and tMn is the holonomy Lie algebra of Conf(C×, n,M). The holonomy of

this connection along a suitable (non closed) path gives a universal pseudotwist ΨM
KZ ∈ exp(tM2 ) that

is a generating series for values of multiple polylogarithms at Mth roots of unity i.e. cyclotomic MZVs

(which will be denoted µM -MZVs), satisfies relations with ΦKZ and whose monodromy will give us

cyclotomic associator relations.

Finally, the set Ass(M,k) of so-called cyclotomic associators is a torsor under the action of the

cyclotomic analog ĜTM (k) of the group ĜT(k), which maps to ĜT(k) and whose associated Lie

algebra is isomorphic to its associated graded grtM .

As iterated integrals, µM -MZVs are shown to be periods of P1−{0, µM ,∞}. In fact, by relying on

Deligne’s theory of the motivic fundamental group of Gm−µM and on F. Brown and A. Goncharov’s

explicit coaction formula, C. Glanois used in [56] motivic µM -MZVs to show analog results on gen-

erating families for µM -MZVs and studied how the periods in P1 − {0, µM ,∞} relate to each other

when taking different choices for M . Now, the main difference with the classical case is that the upper

bound for the dimension of µM -MZVs of a given weight is reached in the cases6 M = 1, 2, 3, 4, 8 but

it is known to be not reached, for instance, if M = ps for a prime p ≥ 5. This means that µM -MZVs

are not enough to describe all periods of P1 − {0, µM ,∞} in this case.

Now, if we return to consider the set of cyclotomic associators one can show that if M ′ divides

M , then ΨM
KZ and ΨM ′

KZ satisfy distribution relations, analogously to C. Glanois distribution study.

By imposing these relations one obtains a subset of cyclotomic associators which is a torsor under a

certain subgroup of GTM . This subgroup can be seen as an explicit approximation of the motivic

fundamental group of Gm − µM .

1.1.3 Generalisations II : The elliptic case

The genus one universal Knizhnik–Zamolodchikov–Bernard (KZB) connection ∇KZB
1,n was introduced

in [24]. This is a flat connection over the moduli space of elliptic curves with n marked points M1,n,

which was independently discovered by Levin–Racinet [80] in the specific cases n = 1, 2. It restricts

to a flat connection over the configuration space

Conf(T, n) := {z = (z1, . . . , zn) ∈ Cn|zi 6= zj if i 6= j}/(Z+ τZ)n

6The case M = 6 being also known but treated differently.
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of n points on an (uniformized) elliptic curve Eτ := C/(Z + τZ), for τ ∈ h. More precisely, this

connection is defined on a G-principal bundle over M1,n where the Lie algebra associated to G has

as components:

1. the holonomy Lie algebra t1,n of Conf(T, n) controlling the variations of the marked points: it

has generators xi, yi, for i = 1, ..., n, corresponding to moving zi along the topological cycles

generating H1(Eτ );

2. a Lie algebra d composed by the Lie algebra sl2 with standard generators e, f, h and a Lie algebra

d+ := Lie({δ2m|m ≥ 1}) such that each δ2m acts as a highest weight element for sl2. The Lie

algebra d controls the variation of the curve in M1,n.

Now, the connection ∇KZB
1,n can be locally expressed as ∇KZB

1,n := d−∆(z|τ)dτ −
∑

iKi(z|τ)dzi where

1. the term Ki(−|τ) : Cn −→ t̂1,n is holomorphic on

Cn −Diagn,τ = {z = (z1, . . . , zn) ∈ Cn|zi − zj ∈ Λτ if i 6= j},

where Λτ = Z⊕ τZ, with only poles at the diagonal in Cn and the Λn
τ -translates of this diagonal.

It is constructed out of a function

k(x, z|τ) :=
θ(z + x|τ)

θ(z|τ)θ(x|τ)
,−

1

x
.

This relates directly the connection ∇KZB
1,n with Zagier’s work [104] on Jacobi forms and to Brown

and Levin’s work [20].

2. the term ∆(z|τ) is a meromorphic function Cn × h −→ Lie(G) with only poles at the diagonal

in Cn× h and the (Λn
τ -translates of this diagonal. In particular, the coefficients of δ2m in ∆(z|τ)

are Eisenstein series.

We also refer to Hain’s survey [62] and references therein for the Hodge theoretic and motivic aspects

of the story.

Then, one can construct an holomorphic map sending each τ ∈ h to a couple e(τ) := (A(τ), B(τ))

where A(τ) (resp. B(τ)) is the regularized holonomy of the universal elliptic KZB connection along the

the straight paths from 0 to 1 (resp. from 0 to τ) in the once punctured elliptic curve (C−Λτ )/(Λτ ) ≃

Conf(Eτ , 2)/Eτ . Then, B. Enriquez described and studied in [33] the general theory of elliptic k-

associators, whose set is denoted Ell(k) and for which the couple e(τ) is an example of a C-point.

Some of the main features of the so-called elliptic KZB associators e(τ) are the following:

• They satisfy algebraic and modularity relations.

• They satisfy a differential equation in the variable τ expressed only in terms of iterated integrals

of Eisenstein series, which will be called iterated Eisenstein integrals.

• When taking τ to i∞ (which consists on computing the constant term of the q-expansion of the

series A(τ) and B(τ)), they can be expresed in terms of the KZ associator ΦKZ.

• The set Ell(k) is a torsor under the actions of the elliptic analog GTeℓℓ(k) of the (prounipotent)

group GT(k) and of its graded version GRTeℓℓ.
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Next, in [34], B. Enriquez studied the coefficients of the series A(τ) and B(τ) and showed they are

the elliptic analogs of MZVs. These coefficients were called elliptic multiple zeta values (eMZVs) in

analogy to the genus 0 story. They are functions denoted I(τ) and J(τ), depending on the elliptic

parameter τ , which satisfy the following:

• when taking τ −→∞, eMZVs can be expressed only in terms of MZVs;

• they satisfy a differential equation expressed in terms of iterated Eisenstein integrals which,

analogously to the motivic coaction formula in the genus 0 cases, can be used to get results on

generating families for eMZVs and their decomposition. In particular, in ([81]) there is a complete

description of the algebras of the elliptic multiple zeta values I(τ) and J(τ) (modulo 2πi) in

terms of multiple zeta values and special linear combinations of iterated Eisenstein integrals.

An important feature of these decompositions is that they are controlled by a special derivation algebra,

first studied by H. Tsunogai ([98]) and by A. Pollack ([88]) which is deeply connected with both the Lie

algebra of the (graded) elliptic Grothendieck-Teichmüller group and with the bi-graded Lie algebra of

the prounipotent radical of πgeom(MEM), where MEM denotes the Tannakian category of universal

mixed elliptic motives constructed by R. Hain and M. Matsumoto in [63].

1.2 Contents

The purpose of this thesis is to define a twisted version of the genus one KZB associator introduced

in [24] and [33]. The first part concerns foundational grounds which we will use to define ellipsitomic

associators. We will redefine by means of our operadic approach elliptic, cyclotomic associators. Then

we define ellipsitomic associators. Finally we concentrate in the framed case and give a definition of

genus g associators based in our operadic approach.

The second part concerns the proof of the fact that the set of ellipsitomic C-associators is not empty,

by providing an ellipsitomic KZB associator. We start by focusing on the universal ellipsitomic KZB

connection. This is a flat connection on a principal bundle over the moduli space of elliptic curves with

a Γ-structure, where Γ = Z/MZ×Z/NZ, and n marked points. It restricts to a flat connection on the

so-called Γ-twisted configuration space of points on an elliptic curve, which can be used for proving

the formality of some interesting subgroups of the pure braid group on the torus. Then, we define

twisted elliptic associators as renormalized holonomies along certain paths on a once punctured elliptic

curve with a Γ-structure. We study the monodromy of this connection and show that it gives rise to a

relation between twisted elliptic associators, the KZ associator [27] and the cyclotomic KZ associator

[32]. Moreover, twisted elliptic associators can be regarded as a generating series for iterated Eisenstein

integrals whose coefficients are elliptic multiple zeta values at torsion points. In the case M = N ,

these coefficients are related to Goncharov’s work [57] and also to the recent work [19] of Broedel–

Matthes–Richter–Schlotterer. We finally conjecture that the universal KZB connection realizes as the

usual KZB connection associated to elliptic dynamical r-matrices with spectral parameter [41, 43].

It is worth mentioning the recent work [96], where Toledano-Laredo and Yang define a similar KZB

connection. More precisely, they construct a flat KZB connection on moduli spaces of elliptic curves

associated with crystallographic root systems. The type A case coincides with the universal elliptic

KZB connection defined in [24], and we suspect that the type B case coincides with the connection
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of the present paper for M = N = 2. It is interesting to point out that a common generalization

of their work and ours (for M = N) could be obtained by constructing a universal KZB connection

associated with arbitrary complex reflection groups, which shall be related to the (genus 0) universal

KZ connection associated with finite subroups of PSL2(C) ([84]).

The structure of this thesis goes as follows:

• Chapter 2 : This chapter sets the basics for the understanding of the rest of the thesis.

– In Section 2.1 we introduce the formal definition of Drinfeld associators. We set up a lot of

terminology involving the exponential group associated to a degree completed Lie algebra.

– In Section 2.2 we introduce the KZ associator, first by using the universal KZ equations

and then by using the universal KZ connection (it is the same construction under two

slightly different languages). By doing so, we elucidate the implicit operadic nature of the

associator relations and we explain the word "universal" in a comprehensive manner. Then

we use the flatness of the universal KZ connection to reprove the formality of the braid

groups and we analyse the anatomy of the KZ associator involving multizeta values.

– In Section 2.3 we explain how all the genus 0 theory translates to its cyclotomic counterpart.

– In Section 2.4 we do the same for the elliptic counterpart.

– In Section 2.5 we give a quick reminder of the general notions of operads, operadic modules,

and moperads, in Section 2.1.

– Finally, in Section 2.6, we associate these structures to the Fulton-MacPherson compactified

configuration spaces in genus 0 and to the collections of their fundamental groupoids and

of their holonomy Lie algebras. We also recall the operadic definitions of associators and

Grothendieck-Teichmüller groups and enhance these notions into a torsor isomorphism

between these and their non-operadic (classical) versions.

• Chapter 3 : In this chapter we present the main results of this thesis. We then enumerate

some perspectives and future directions that can be undertaken after the work done here.

• Chapter 4 : This chapter is devoted to the definition of twisted elliptic associators and twisted

elliptic Grothendieck-Teichmüller groups by means of operads in groupoids and their variants.

– Section 4.1 is devoted to the corresponding - and equivalent - operadic definitions in the

genus 1 case by using operad modules instead of operads, mainly following [33].

– Next, in Section 4.2 we turn to the cyclotomic situation and proceed in the same way by

using moperads this time.

– Finally, in Section 4.3, we concentrate on the twisted elliptic (or ellipsitomic) situation

and proceed by combining the use of operad modules and the lifting techniques we used in

Sections 4.1 and 4.2. In particular we give a definition of ellipsitomic associators in terms of

elements satisfying some explicit equations as well as ellipsitomic Grothendieck-Teichmüller

groups in their k-prounipotent and graded versions.

• Chapter 5 : In this chapter we begin the study of genus g associators, for g > 1.
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– In Section 5.1 we remind the operadic module structures that are associated to framed

Fulton-MacPherson compactified configuration spaces on a genus g oriented surface.

– In Section 5.2 we concentrate in the genus 0 framed case and we associate operad structures

to the collection of the corresponding framed configuration spaces an to the collection of

their fundamental groupoids. We also associate an operadic structure to the collection of

their holonomy Lie algebras. Then we give definitions of framed associators, show that

they do not form an empty set for k = C and show that they are the same as non-framed

associators.

– In Section 5.3 we give operadic definitions of genus g associators and Grothendieck-Teichmüller

groups, which we relate to their classical point of view in terms of some elements satisfying

relations. Then, we conjecture that the set of framed genus g associators is not empty

and we give a start on the study of the framed genus g universal KZB connection over the

framed configuration space of points on a genus g surface, with the hope of showing that

the the set of genus g associators over the complex numbers is not empty.

• Chapter 6 : In this chapter we define and study the universal twisted elliptic KZB connection.

– In Section 6.1, we introduce Γ-twisted configuration spaces on an elliptic curve and define

the universal Γ-KZB connection on them.

– As in [24] the connection extends from the configuration space to the moduli space M̄Γ
1,[n]

of elliptic curves with a Γ-level structure and marked points. This is proved in Section 6.3

using some technical definitions introduced in Section 6.2 related to the derivations of the

holonomy Lie algebra tΓ1,n of the twisted configuration space in genus 1. As in the untwisted

case, the results of this section also apply to the “unordered marked points” situation.

– In Section 6.4, we provide a notion of realizations for the Lie algebras previously introduced,

and show that the universal KZB connection realizes to a flat connection intimately related

to elliptic dynamical r-matrices with spectral parameter.

• Chapter 7 : In this chapter we sketch several applications of twisted elliptic associators and

the twisted elliptic KZB connection.

– In Section 7.1, we derive from the monodromy representation the formality of the funda-

mental group of the twisted configuration space of the torus, which is a subgroup of PB1,n.

As in the cyclotomic case, this formality result extends to a relative formality result for the

map B1,n −→ Γn ⋊Sn.

– Then, in Section 7.2, we show that this connection gives rise to a monodromy morphism

γn : BΓ
1,[n] −→ GΓ

n ⋊Sn. The relations between the generators give rise to twisted elliptic

associator relations, providing an example of such an object.

– In Section 7.3 we study the As,γ(τ) coefficients that were implicitely used in the definition of

the universal twisted elliptic KZB connection by relating them to the so-called Eisenstein-

Hurwitz series. We show that these are modular forms for the congruence subgroup of

SL2(Z) defining M̄Γ
1,[n] and compute the constant terms in their qN -expansion, where qN =

e
2πi
N

τ .
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– Finally, in Section 7.4, we construct a homomorphism from the Lie algebra t̄Γ1,n ⋊ dΓ to

the twisted Cherednik algebra HΓ
n (k). This allows us to consider the twisted elliptic KZB

connection with values in representations of the twisted Cherednik algebra.

• Chapter 8 : In this chapter we give a quick definition of elliptic multiple zeta values at torsion

points in terms of iterated integrals of Eisenstein-Hurwitz series.

– In Section 8.1 we give a definition of the twisted version of Pollack’s Lie algebra of special

derivations.

– In Section 8.2 we use the action of the k-prounipotent ellipsitomic Grothendieck-Teichmüller

group on the ellipsitomic KZB associator to establish a differential equation in the variable

τ ∈ h which is satisfied by this associator and which involves exclusively Eisenstein-Hurwitz

series.

– In Section 8.3 we use the machinery of iterated integrals developped by B. Enriquez in

[34] to give a definition of ellipsitomic multizeta values in terms of iterated integrals of

Eisenstein-Hurwitz series strongly related to multiple Hurwitz values.

Note: A part of the results figuring in this thesis consist on an ongoing collaboration by the author

and by Damien Calaque and appear in chapters 4, 6 and 7 in this thesis for sake of convenience.

Consistency

Chapters 4, 5 and 6 are essentially independent. Section 4.1 can be very iluminating for the

understanding of chapter 5. Next, Section 4.3 and all sections of chapter 6 are related to each

other in chapter 7, Section 7.2, where we use the universal twisted elliptic KZB connection

(constructed in chapter 6) to prove that twisted elliptic associators (defined in chapter 3) do

exist over the complex numbers. Finally, chapter 8 uses the results in chapter 7, Sections 7.1,

7.2 and 7.3.
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Chapter 2

Background

In the first part we will make a reminder on the most basic tools in the theory of associative

and Lie k-algebras which will be used, taking as an example the Kohno-Drinfeld Lie algebra

tn that will be used extensively throughout this thesis. The objective of this first section is

to fix all the notations that will be used throughout this thesis in a comprehensive manner,

to give a formal definition of Drinfeld k-associators and enunciate the fact that, when k = C,

this set is not empty.

In the second part we will study the KZ equation and we will give a definition of the KZ

associator from an analytic viewpoint. Then, we will make a small reminder on the basics

of connections on a G-principal bundle. We will then introduce the universal KZ connection

defined in a trivial exp(̂tn)-principal bundle over the configuration space of the complex plane.

Then we will give a geometrical definition of the KZ associator and we will prove that it

provides a Drinfeld C-associator.

In the third and fourth part we sketch the theory of the universal KZ associator in the cyclo-

tomic and elliptic contexts.

In the fifth and sixth sections we give in a clear manner the definitions of Grothendieck-

Teichmüller groups and associators by means of operad theory and Fulton-MacPherson com-

pactifications.

Note. The material of this chapter is standard, the author does not claim originality of

almost any result that figures in here. Bibliographical references will appear at the end of each

section where the reader can extend the work presented in here and of which the author has

been inspired to build this introduction.

Notation

• In this thesis k designates a field of characteristic zero.

• Unless otherwise stated, composition of morphisms are read from left to right.

19
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2.1 Drinfeld associators

2.1.1 Associative and Lie k-algebras

Associative algebras

We recall the definition of an associative k-algebra.

Definition 2.1.1. An associative k-algebra is a pair (A, ·) where A is a k-vector space along

with a bilinear map, called multiplication

· : A×A −→ A

(x, y) 7−→ x · y

that satisfies (x · y) · z = x · (y · z) for each x, y, z ∈ A. It is said that the algebra A is unitary

if there is a neutral element for the multiplication (that is, an element denoted 1 that satisfies

1 · x = 1 = x · 1 for all x ∈ A).

Example 2.1.2. Let us enumerate some examples of associative algebras.

1. The set of square matrices n× n with values in k forms a unitary associative algebra on

k, which is not commutative in general.

2. The set of complex numbers C forms an associative, commutative and unitary C-algebra

of real dimension 2.

3. Polynomials with coefficients in k form an infinite dimensional associative k-algebra

which is commutative and unitary.

4. In particular, the tensor space TV can be provided with the structure of an associative

k-algebra with multiplication

TV × TV −→ TV

(x, y) = ((x0, x1, . . . , xn), (y0, y1,..., ym)) 7−→ x · y := (x0, . . . , xn, y0, . . . , ym),

where xi ∈ V ⊗i, yj ∈ V ⊗j , ∀1 6 i 6 n, ∀1 6 j 6 m.

5. Let k〈〈X0, X1〉〉 be the associative k-algebra of formal series of powers in two non com-

mutative variables X0, X1. Elements of this k-algebra are of the form

f(X0, X1) =
∑

ω word in X0, X1

cω · ω

where X0 and X1 are formal symbols that do not commute, cω ∈ k, and where ω is a

word consisting only on powers of letters X0 and X1,

ω = Xn0

j0
Xn1

j1
Xn2

j2
· · ·X

np

jp
,

where j0, . . . , jp ∈ {0, 1}, p, n0, . . . , np ∈ N. For example, ω = X3
1X0X

2
1X

9
0X1 is a word.

Let’s move on to the definition of a Lie algebra.
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Lie algebras

Definition 2.1.3. A Lie algebra over a field k is a k-vector space g provided with a k-bilinear

antisymmetric map called Lie bracket:

[−,−] : g× g −→ g

(X,Y ) 7−→ [X,Y ]

that satisfies the Jacobi identity:

[[X,Y ], Z] + [[Y, Z], X ] + [[Z,X ], Y ] = 0,

for each X,Y, Z ∈ g. A map of Lie k-algebras is a map between k-vector spaces

f : g −→ h

compatible with the Lie brackets of g and h, that is:

f([x, y]g) = [f(x), f(y)]h

for all x, y ∈ g. A Lie ideal i (resp. a Lie subalgebra h) of g is a vector subspace of g such

that:

[g, i] ⊆ i(resp. [h, h] ⊆ h).

Given an ideal i of g one can form the Lie quotient g/i: it is the vector space g/i provided with

the bracket

[g + i, g′ + i] := [g, g′] + i.

Remark 2.1.4. Antisymmetry means [x, y] = −[y, x]. Bilinearity means

[ax+ by, z] = a[x, z] + b[y, z] and [z, ax+ by] = a[z, x] + b[z, y],

for all a, b ∈ k and all x, y, z ∈ g.

Example 2.1.5.

1. Any vector space E can be provided with the structure of a Lie algebra by establishing

∀x, y ∈ E : [x, y] = 0.

Such Lie k-algebra, where the Lie bracket is zero, is called abelian Lie algebra.

2. From an associative algebra (A, ·) over k, one can always build an Lie k-algebra <ith

underlying set A by setting, for all x, y ∈ A:

[x, y] := x · y − y · x.

This is called the commutator of the two elements x and y. It is easy to verify that this

defines a Lie algebra structure on A.
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3. As a concrete example of the previous situation, consider the space Mn (k) of matrices

n×n with coefficients in k. This is an associative algebra provided usual matrix product,

not abelian in general. We can also give it a structure of an associative k-algebra, with

the bracket

[A,B] = AB −BA.

We denote gln (k) this Lie algebra.

Remark 2.1.6. The Ado theorem shows that any Lie k-algebra of finite dimension can be seen

as a subalgebra of gln (k). Unfortunately, the majority of Lie k-algebras which we will work

with are infinite dimensional, as in the case of a free associative k-algebra in two generators

that we define next.

Proposition 2.1.7. Let S be a set. There is a unique (up to unique isomorphism) Lie k-

algebra fS (k) provided with a map of sets π : S −→ fS (k) such that, for each Lie algebra g

and each map of sets f : S −→ g, there is a unique morphism of Lie algebras f̃ : fS (k) −→ g

so that the following diagram commutes:

S g

fS(k)

f

π
∃!f̃

that is, so that f = f̃ ◦ π. fS (k) is called the free Lie k-algebra over S.

If S = {X,Y }, we will denote from now on fS (k) = f(X,Y ).

Remark 2.1.8. Let’s take a closer look at this definition. A Lie word in symbols X1, . . . , Xn

is a formal bracket of these symbols. For example

[[X1, X4], [[X7, [X9, X2]], X1]].

The Lie algebra fS (k) must be understood as the k-vector space generated by all (linear combi-

nations of) Lie words modulo the subspace obtained by applying antisymmetry and the Jacobi

identity. Concretely, if we take S = {A,B}, then an element of fS (k) is a finite sum

f(A,B) =
∑

ωLie word inA,B

cw · ω

where cw ∈ k.

Remark 2.1.9. A Lie algebra can be presented by generators and relations: it is simply the

quotient Lie k-algebra of the free Lie k-algebra in such generators and the ideal generated by

such relations. One has to verify that the vector subspace generated by the relations is indeed

an ideal.

Every Lie algebra g is contained in an associative algebra U(g) - usually (much) larger than g

- called the universal enveloping algebra of g and where [−,−]g matches the bracket given by

the two-element commutator [x, y] := x · y − y · x.



2.1. DRINFELD ASSOCIATORS 23

Definition 2.1.10. The universal enveloping k-algebra of g, denoted U(g), is the unique (up

to unique isomorphism) associative k-algebra provided with a morphism of k-Lie algebras

π : g −→ U(g)

such that for each associative algebra A and each map f : g −→ A of vector spaces, there is a

unique associative algebra morphism f̃ : U(g) −→ A such that the following diagram commutes:

g A

U(g)

f

π
∃!f̃

that is, so that f = f̃ ◦ π.

Remark 2.1.11. Specifically, U(g) is the quotient T (g)/I of tensor algebra modulo the two-

sided ideal generated by the relation

x⊗ y − y ⊗ x = [x, y].

Example 2.1.12. If g = fS (k) and S = {x1, . . . , xm} then U(g) = k〈S〉 is the free associative

algebra in symbols in S whose basis is given by the words ω = xj1 · · ·xjn where ji ∈ {1, . . . ,m}

for all i = 1, . . . , n.

Example: The Kohno-Drinfeld Lie algebra

Definition 2.1.13. The Kohno-Drinfeld Lie k-algebra, denoted tn(k), is the Lie algebra freely

generated by symbols tij, 1 6 i 6= j 6 n, modulo the ideal generated by the following relations:

tij = tji (2.1)

[tij , tkl] = 0 (2.2)

[tij , tik + tjk] = 0 (2.3)

where card{i, j, k, l} = 4. These relations are usually called infinitesimal braids relations. In

the next chapter we will justify this denomination. In the case k = C, we will use the notation

tn(C) := tn.

As an exercice one can explore the structure of this Lie algebra for low values of n.

Structure of tn(k) for n 6 3. The following facts are easy to prove :

1. The element cn :=
∑

16i<j6

tij is central in tn(k) (ie it commutes with every element of

tn(k)). One deduces that we can define the quotient t̄n(k) := tn(k)/〈cn〉.

2. The Lie k-algebras t2 (k) is the free Lie algebra on one generator and t̄2 (k) is the trivial

Lie k-algebra.
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3. t̄3(k) is nothing but the free associative k-algebra in two generators.

4. The Lie subalgebra of tn(k) generated by tij , where i, j ∈ [1, n], identifies with tn−1(k).

5. The Lie subalgebra of tn(k) generated by t1n, t2n..., t(n−1)n identifies with the free Lie

k-algebra fn(k).

6. There is an isomorphism of Lie k-algebras

tn(k) ≃ tn−1(k)⊕ fn(k).

7. Let kc3 be the abelian Lie k-algebra generated by c3 = t12 + t13 + t23. There is an

isomorphism of Lie k-algebras

t3(k) ≃ kc3 ⊕ f2(k)

where f2(k) is the free Lie k-algebra generated by t13 and t23 (or, equivalently, by t12 and

t23).

2.1.2 The exponential group

Completed filtered associative k-algebras

Definition 2.1.14. A topological ring is a ring with the structure of a topological space so that

the multiplication A×A −→ A is a homomorphism of topological spaces. A topological vector

space over a topological ring k is a k-vector space such that the addition and the multiplication

by scalars of the vector space are topological homomorphisms.

In this chapter, we will mainly use the standard and the discrete topologies.

We have notions of a topological associative algebra and a Lie topological algebra that will not

be recalled here.

Definition 2.1.15. An associative k-algebra A is filtered if it is equipped with a descending

sequence of ideals

A = m0 ⊃ m1 ⊃ m2 · · ·

Remark 2.1.16. A k-filtered associative algebra (A, {mi}i∈I) induces a direct system of quo-

tient rings

· · · −→ A/mi+1 −→ A/mi −→ · · · −→ A/m2 −→ A/m1 −→ 0.

Definition 2.1.17. The filtered completion of the filtered associative algebra (A, {mi}i∈I) is

the k-filtered associative algebra (Â, {m̂i}i∈I) where

Â := lim
←i
A/mi

=

{
a = (a0, a1, . . .) ∈

∞∏

i=1

A/mi

∣∣∣∣∣aj ≡ ai[modmi], ∀j > i

}

and where, for all i ∈ I:

m̂i := {a = (a0, a1, . . .) ∈ Â|aj = 0, ∀j 6 i}.
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Remark 2.1.18. One can identify the quotient k-algebras A/mi and Â/m̂i.

Proposition 2.1.19. If (A, {mi}i∈I) is a filtered associative k-algebra, then we can endow it

with a topology, called Krull topology, defined, for each point a ∈ A, by the basis of neighbor-

hoods

{a+mi}i∈N.

Remark 2.1.20. In case the ideals mi are equal to powers mi := Ii for the same ideal I of A,

the associated completion Â of A is usually called I-adic completion of A and its associated

Krull topology is called I-adic topology.

Proposition 2.1.21. Viewed as a filtered topological Lie k-algebra with respect to the Krull

topology, the completion (Â, {m̂i}i∈I) of an associative filtered k-algebra (A, {mi}i∈I) is pre-

cisely its topological completion.

Proof. Let {ai}i>1 be a Cauchy sequence in A: for each open set U of A, there is an integer

NU such that, for all i, j > NU , we have ai − aj ∈ U . This is verified if, and only if, for every

integer n, there exists an integer Nn such that, for all i, j > Nn, we have

ai − aj ∈ mi.

Now, such a sequence always converges in Â towards point a = (a0, a1, . . .) ∈
∏
n>1

A/mn, where,

for all n, we have an ≡ aNn
[modmn].

Conversely, every point of Â defines a Cauchy sequence in A.

Example 2.1.22. If A = k[X1, . . . , Xn] is the polynomial k-algebra on X1, . . . , Xn and I is

its maximal ideal, then the I-adic completion of A is the k-algebra

Â = k[[X1, . . . , Xn]]

of formal series over k in n commutative variables.

Degree completion

The Baker-Cambell-Hausdorff (BCH) formula is essentially useful to associate a group to any

completed Lie k-algebra (where the exponential application is not necessarily a group mor-

phism).

Definition 2.1.23. A graded Lie k-algebra is a Lie algebra g provided with a graduation of

vector spaces:

g =
+∞⊕

n=−∞

gn

so that the Lie bracket is compatible with the graduation, that is to say:

[gi, gj ] ⊆ gi+j .
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Remark 2.1.24. If g is graded, then g induces the same graduation at the level of its associated

universal enveloping algebra U(g).

Let g =
∞⊕
n=1

gn be a positively graded Lie k-algebra so that each gn is of finite dimension.

We can equip it with a decreasing filtering of Lie ideals mn := ⊕
n6i

gi so we get a decreasing

sequence:

g = m0 ⊃ m1 ⊃ m2 ⊃ · · ·

Proposition 2.1.25. The degree completion of g is the completion of g with respect to filtering

{mi}i>1, and is identified with the following product:

ĝ :=

∞∏

n=1

gn.

Remark 2.1.26. The difference between g and ĝ lies in that the elements in ĝ can be written

as eventually infinite sums, unlike the elements of g.

Example 2.1.27. Let fS (k)n ⊂ fS (k) be the vector subspace spanned by Lie words with

(n − 1) brackets. For example f(X,Y )1 = k〈X,Y 〉, f(X,Y )2 = k〈[X,Y ]〉 y f(X,Y )3 =

k〈[X, [X,Y ]], [Y, [Y,X ]]〉. We can notice that

[fS (k)n , fS (k)m] ⊂ fS (k)n+m ,

so we can build a grading fS (k) =
∞⊕

n=1
fS (k)n. Then, the degree completion of fS (k) is f̂S (k) =

∞∏
n=1

fS (k)n. It is easy to prove that f̂S (k) ⊂ k〈〈S〉〉. If S = {X,Y }, we will denote from now

on f̂S (k) = f̂(X,Y ).

Example 2.1.28. The Kohno-Drinfeld Lie k-algebra tn(k) has a positive grading by setting

deg(tij) := 1 and we have

tn(k) =
∞⊕

m=1

tn(k)m,

where, for example, tn(k)1 =
⊕
i<j

ktij and tn(k)2 =
⊕

i<j<k

k[tij , tik]. This allows us to define its

degree completion t̂n(k).

The Baker-Cambell-Hausdorff formula

Let X,Y two elements of an associative k-algebra A. Recall the expressions of the exponential

and the logarithm in terms of series

eX :=

∞∑

n=0

Xn

n!
and log(1 +X) :=

∞∑

n=1

(−1)nXn

n
.

These are well defined if A is a completed associative k-algebra. In particular, in the algebra

k[[X,Y ]] of formal series in commutative variables, we have the relation

eXeY = eX+Y .
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However, in the algebra k〈〈X,Y 〉〉 this relation is not true in general. The goal of the Baker-

Cambell-Hausdorff formula is to fix this problem.

Definition 2.1.29. The Baker-Cambell-Hausdorff element is the formal series BCH of k〈〈X,Y 〉〉

defined, for every X,Y ∈ k〈〈X,Y 〉〉, by

BCH(X,Y ) := log(eXeY ) = −
∞∑

n=1

1

n


1−

∞∑

k,l=0

XkY l

k!l!




n

= X + Y +
1

2
[X,Y ] +

1

12
[X, [X,Y ]] +

1

12
[Y, [Y,X ]] + · · ·

One can prove that BCH(X,Y ) ∈ f̂(X,Y ).

Proposition 2.1.30. Let g be a completed Lie k-algebra. The exponential group exp(g)

associated to g is the group whose underlying set is the set of formal elements of the form

{eX , X ∈ g} (which is isomorphic to the underlying set of g) provided with the multiplication

law defined by the Baker-Cambell-Hausdorff formula:

exp(g)× exp(g) −→ exp(g)

(eX , eY ) 7−→ eBCH(X,Y ).

We have two morphisms, inverse from each other

e : g ←→ exp(g) : log

X ←→ eX

Proof. We need to show that BCH(X,Y ) converges, which is satisfied autotically because

ĝ = lim
←n

(g/mn). Exercise: Set the following equations:

BCH(X, 0) = BCH(0, X) = 0

BCH(X,−X) = 1

BCH(BCH(X,Y ), Z) = BCH(X,BCH(Y, Z)) = log(eXeY eZ),

the last equation taking place in f̂(X,Y, Z).

Remark 2.1.31. The definition of exp(g) makes sense only when the characteristic of k is

zero and when g is complete, otherwise the BCH(X,Y ) element does not make sense.

Example 2.1.32. The injection of Lie algebras

f(X,Y ) →֒ t3 (k)

X 7−→ t12

y 7−→ t23

induces an injection of groups exp(̂fk(X,Y )) →֒ exp
(̂
t3 (k)

)
.

Finally, if g is a pronilpotent Lie k-algebra, we denote gr(g) its associated graded Lie algebra.

We are ready to define
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2.1.3 Drinfeld associators

The first goal of this chapter will be to give a geometrical understanding of the following defi-

nition that was introduced by Drinfeld in [27].

Definition 2.1.33. A Drinfeld k-associator is a pair (λ,Φ) where λ ∈ k× and

Φ(X,Y ) := eφ(X,Y ) ∈ exp(̂f(X,Y )) ⊂ k〈〈X,Y 〉〉

which satisfies the following equations:

Φ(X,Y ) = Φ−1(Y,X) in exp(̂f(X,Y )) (2.4)

e
±λ
2 t12Φ(t13, t12)e

±λ
2 t13Φ(t23, t13)e

±λ
2 t23Φ(t12, t23) = 1 in exp

(̂
t3 (k)

)
(2.5)

and

Φ(t13+t23, t34)Φ(t12, t23+t24) = Φ(t12, t23)Φ(t12+t13, t24+t34)Φ(t23, t34) in exp
(̂
t4 (k)

)
(2.6)

The set of Drinfeld k-associators will be denoted Ass(k).

Remark 2.1.34. The equation (2.4) is called antisymmetry relation. The two relations (2.5)

are called two hexagons relation and the relation (2.6) is called pentagon relation.

While we have taken the time to define each mathematical object involved in this definition,

we ignore - for the moment - the particular interest of this mathematical concept, which the

reason of being of those equations - at first sight arbitrary - and, above all, wether such a pair

does indeed exist.

The second objective of the following section will be then to prove the following theorem, due

to Drinfeld:

Theorem A. The set of C-associators is not empty.

In particular, the proof lies in the existence of a particular C-associator coming from the

regularized holonomy of a differential equation in two noncommutative variables called the

Knizhnik-Zamolodchikov equation, well-known in physics. The connection associated to these

equations will induce an isomorphism between the pure braid group, that is the fundamental

group of the configuration space of the complex plane, and the Kohno-Drinfeld algebra, which

is the holonomy Lie algebra of these spaces. These concepts will be introduced in the next

section.
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2.2 The KZ associator

In the previous section we took some time to present a formal definition of the Drinfeld

associators by means of the Kohno-Drinfeld Lie algebra and the exponential group of its

associated degree completion. At the moment we do not know what is the reason to be of

these equations but we will dedicate some time into proving that such a set is not empty when

taking k = C.

In particular, we are going to explicit an example of such an associator through the resolution

of a certain system of differential equations in two non-commutative variables, whose geometric

version will allow us to understand the the architecture of the definition of Drinfeld associators.

We will mainly follow [27].

2.2.1 Solutions of the universal Knizhnik-Zamolodchikov equation

In this section, we will introduce the Knizhnik1-Zamolodchikov2 (KZ) equations in its universal

version. Initially, these equations, which form a system of partial differential equations in the

complex plane with regular singular points, were born in quantum field theory (especially

in condensed matter and high-energy physics) as equations that satisfy a set of additional

restrictions for the correlation functions in the Wess-Zumino-Witten model in two dimensional

field theory and which are associated to an associative k-algebra of a fixed level. The reader

interested in learning about the KZ equations in the context of quantum field theory may

consult the introduction [51] on the subject.

The universal KZ equation

The universal version of these equations was established by Drinfeld in [27] and are defined

for any type of associative k-algebra that satisfies the infinitesimal braid relations - that is,

defined in the Kohno-Drinfeld Lie algebra. Remember that the configuration space of n points

on the complex plane is the following open subspace of Cn:

Conf(C, n) := {z = (z1, . . . , zn) ∈ Cn|zi 6= zj, if i 6= j} .

Definition 2.2.1. For each n > 2, the Knizhnik-Zamolodchikov differential system over (any

open subset within) the configuration space Conf(C, n) is

(KZ)n : dW =
1

2iπ

∑

16i<j6n

tij
zi − zj

(dzi − dzj)W,

that is, for i = 1, . . . , n:

(KZ)n :
∂W

∂zi
=

1

2iπ

∑

16i<j6n

tij
zi − zj

W,

where W is a function defined in any open U ⊂ Conf(C, n) and taking values in Û (̂tn).

1(1962-1987) Vadim Knizhnik.
2(1952-) Alexander Zamolodchikov.
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When n = 3, the differential system’s solutions (KZ)3 define an element of C〈〈X,Y 〉〉 and

the asymptotic behaviour of these equations when n = 3, 4 determines the relations that this

element satisfies. It is important to emphasize that this « two stages principle » is enough

to fully define a Drinfeld associator. The importance of this remark is developed in the next

section when we integrate the geometry of Conf(C, n) into this story. For now let’s restrain

ourselves on the study of this differential system.

Definition of the KZ associator

Recall that a function f of a complex variable is analytic at a point x0 if it is developable in

entire series in any open neighborhood of x0 inside its domain set. This means that, for any

open neighborhood Dx0 of x0 in the domain set of f , there is a sequence (an)n>0 such that,

for all x ∈ Dx0 , the function f is written in the form of a convergent series

f(x) =

∞∑

n=0

an(x− x0)
n.

We can easily observe that the system (KZ)3 is written in terms of the total differential

dW =
1

2iπ
[t12d log(z2 − z1) + t13d log(z3 − z1) + t23d log(z3 − z2)]W.

Proposition 2.2.2. The solutions of the system (KZ)3 are of the form

(z3 − z1)
c3
2iπG

(
z2 − z1
z3 − z1

)
,

where c3 := t12+t13+t23 and G is a formal series in the non commutative variables t12, t23, with

as coefficients analitical functions in the complex variable z ∈ C − {0, 1} which are solutions

of the linear differential equation

G′(z) =
1

2iπ

(
t12
z

+
t23

z − 1

)
G(z). (2.7)

Proof. The proof consists in the following stages:

1. First notice that

(z3 − z1)
u

2iπ = exp

(
log(z3 − z1)u

2iπ

)
=

∞∑

k=0

log(k(z3 − z1))u
k

(2iπ)k
∈ t3

belongs to the center of t3.

2. In (KZ)3 do the variable change W = (z3 − z1)
u

2iπ × I.

3. Write z = (z2−z1)
(z3−z1)

and conclude.

Let U = C − (]−∞, 0]
⋃
[1,∞[) where ] − ∞, 0] and [1,∞[ are straight half-lines in R ⊂ C.

Notice that U is simply connected.
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Remark 2.2.3. As a consequence of the fundamental theorem of linear differential equations,

the equation (2.7) has analytic solutions in U which are unique once a value has been specified

at any point of U .

Equation (2.7) has two unique singularities in C which are z = 0 and z = 1. By setting

w = 1/z, we observe that this equation also has a singularity at ∞. These three singularities

are regular.

Let’s analyze the asymptotic behavior of the equation (2.7) as we approach our two unique

singularities in C which are z = 0 and z = 1.

Proposition 2.2.4. Equation (2.7) has two unique solutions G0 and G1 such that

G0(z) ∼0 z
t12
2iπ (2.8)

G1(z) ∼1 (1− z)
t23
2iπ . (2.9)

In particular, G0 and G1 are not zero and therefore differ from each other by an invertible

element. The KZ associator is the quotient ΦKZ := G−11 G0 ∈ C〈〈X,Y 〉〉.

Remark 2.2.5. The equations (2.8) and (2.9) mean that G0(z)z
− t12

2iπ (resp. G1(z)(1−z)−
t23
2iπ )

have analogous continuations in a neighborhood of 0 (resp 1) taking at 0 (resp. at 1) the value

1. We observe in the same way that z
t12
2iπ and (1− z)

t23
2iπ are well defined in U .

Proof. The reader can consult the proof of Proposition 2.2.4 in [66].

One can show that ΦKZ is independent of z calculating the derivative Φ′KZ(z).

Remark 2.2.6. This definition is valid for all non-commutative symbols A and B. For each

pair (A,B), we have two functions G0(z;A,B) and G1(z;A,B). We can then define

φKZ(A,B) := G1(−;A,B)−1G0(−;A,B).

In particular, φKZ(t12, t23) = ΦKZ.

Let us reformulate Theorem A in the following way:

Theorem A. The pair (1,ΦKZ) is a Drinfeld C-associator.

Analytic proof of Theorem A

Below we reproduce Drinfeld’s original proof of Theorem A.

1) ΦKZ belongs to exp(̂t3):
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Let us give the big steps of this part of the proof: first the universal enveloping algebra

Û
(̂
t3 (k)

)
has a structure of a filtered and completed Hopf k-algebra. In particular, the

coproduct ∆ is given by the completed tensor product ⊗̂. The elements of exp(̂t3) are

identified with the group-like elements (i.e. elements that verify ∆(g) = g⊗̂g) of Û (̂t3).

Therefore, it suffices to show that ∆(ΦKZ) = ΦKZ⊗̂ΦKZ. This is obtained by using remark

2.2.6: notice that if G0 and G1 are group-like, then we can (in the case of G0) use function

G+(z) = G0(z; t12 ⊗ 1, t23 ⊗ 1)G0(z; 1⊗ t12, 1⊗ t23) to conclude.

2) Antisymmetry relation:

If we replace z by 1− z in equation (2.7), ΦKZ is replaced by its inverse which is equivalent to

swap t12 with t23 ie apply the permutation (123).

3) Pentagon relation:

Let’s start by describing the asymptotic behaviors of the solutions of the system (KZ)4. Let

U := {(z1, . . . , z4) ∈ R4|z1 < z2 < z3 < z4} ⊂ Re(Conf(C, 4))

be an open subset in the real part of the 4 point configuration space of the complex plane.

Consider the following 5 zones in U :

(Z1) z2 − z1 ≪ z3 − z1 ≪ z4 − z1;

(Z2) z3 − z2 ≪ z3 − z1 ≪ z4 − z1;

(Z3) z3 − z2 ≪ z4 − z2 ≪ z4 − z1;

(Z4) z4 − z3 ≪ z4 − z2 ≪ z4 − z1;

(Z5) z4 − z3 ≪ z4 − z1 and z2 − z1 ≪ z4 − z1.

How to represent these areas and how to relate them to each other? It’s here where one of

Drinfeld’s brilliant ideas intervenes: they correspond to a pentagon where each edge corre-

sponds to parenthesis arrangement: Vi and Vj are in the same parenthesis and Vk out of it

if |zi − zj | ≪ |zi − zk|. This way, z2 − z1 ≪ z3 − z1 ≪ z4 − z1 corresponds to the pair

((••)•). We can also say that it corresponds to a trivalent tree with four leafs as summarized

in the following image:

•((••) • )

((••) • ) •

Z1

Z2

Z3

Z4Z5

(•(••)) •
(••)(••)

•(•(••))
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Lemma 2.2.7. There are five unique solutions W1, . . . ,W5 to the system (KZ)4 having the

following asymptotic behaviors in the corresponding zones:

W1 ∼ (z2 − z1)
t12
2iπ (z3 − z1)

t13+t23
2iπ (z4 − z1)

t14+t24+t34
2iπ ;

W2 ∼ (z3 − z2)
t23
2iπ (z3 − z1)

t12+t13
2iπ (z4 − z1)

t14+t24+t34
2iπ ;

W3 ∼ (z3 − z2)
t23
2iπ (z4 − z2)

t24+t34
2iπ (z4 − z1)

t12+t13+t14
2iπ ;

W4 ∼ (z4 − z3)
t34
2iπ (z4 − z2)

t23+t34
2iπ (z4 − z1)

t12+t13+t14
2iπ ;

W5 ∼ (z2 − z1)
t12
2iπ (z4 − z3)

t34
2iπ (z4 − z1)

t13+t14+t23+t24
2iπ .

That is, we have for example

W2 = f(u, v)(z3 − z2)
t23
2iπ (z3 − z1)

t12+t13
2iπ (z4 − z1)

t14+t24+t34
2iπ ,

where u = (z3−z2)
(z4−z1)

, v = (z3−z1)
(z4−z1)

and f is an analytic function on a neighborhood of (0, 0) with

f(0, 0) = 1.

Proof. Let us give the steps to perform the calculation for W5:

1. Demonstrate that, in this case, one can reduce the system (KZ)4 to a three-variable

system.

2. Make the substitution W = g · (z4− z1)
T/2iπ and reduce our system to a system with two

variables. Deduce that g is a function in u and v.

3. Deduce that the system (KZ)4 is now written

dg =
1

2iπ
[t12d log(u) + t34d log(v) + dR(u, v)] · g

where R is an analytic function on a neighborhood of (0, 0). Conclude.

4. Use the technique of successive approximations to show that there is one, and only one

solution to this equation of the form

φ(u, v)u
t12
2iπ v

t34
2iπ ,

where φ is an analytic function on a neighborhood of (0, 0) such that φ(0, 0) = 1

5. Use the principle of analytic continuation to show that the Wi functions are extended

analytically to U .

Lemma 2.2.8. The asymptotic expansions W1, . . . ,W5 satisfy the following relations:

W1 = W2 · ΦKZ(t12, t23);

W2 = W3 · ΦKZ(t12 + t13, t24 + t34);

W3 = W4 · ΦKZ(t23, t34);

W4 = W5 · ΦKZ(t13 + t23, t34);

W5 = W1 · ΦKZ(t12, t23 + t34).
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Proof. Let’s prove the first identity. Let V1 = W1 · (z4 − z1)
− 1

2iπ (t14+t24+t34). We have

V2 = W2 · ΦKZ(t12, t23) · (z4 − z1)
− 1

2iπ (t14+t24+t34)

= W2 · (z4 − z1)
− 1

2iπ (t14+t24+t34) · d4ΦKZ.

Indeed, t14 + t24 + t34 commutes with all tij for i, j < 4 and therefore with ΦKZ(t12, t23). We

have

(z4 − z1)
− 1

2iπ (t14+t24+t34) = e−
1

2iπ (t14+t24+t34) log(z4−z1)

which has a series expansion and we obtain the required commutation.

On the other hand, we have V1 = V2. Indeed, if z1 < z2 < z3 < z4, then V1 and V2 are analytic

(and z4 can be eventually infinite). Additionally, V1 and V2 verify

∂V

∂zi
=





1
2iπ

∑
j 6=1

tij
z1−zj

1
2iπ

∑
j 6=i

tij
zi−zj

· V − 1
2iπ ·

t14+t24+t34
z1−z4

if i = 2, 3

1
2iπ

∑
j 6=4

[t14,V ]
z4−zj

The first two equations and the asymptotic developments of V1 and V2 show that the two

functions match for z4 =∞. As a consequence, from the above equation one gets V1 = V2.

The rest of the equations are found in the same way.

Finally, in light of these relations, we obtain

ΦKZ(t13 + t23, t34)ΦKZ(t12, t23 + t24) = ΦKZ(t12, t23)ΦKZ(t12 + t13, t24 + t34)ΦKZ(t23, t34).

We conclude that ΦKZ satisfies the pentagon relation.

4) Two Hexagons relations:

Applying the permutation (123), we find that the relations of the two hexagons are satisfied

by ΦKZ if, and only if, only one of them is satisfied by ΦKZ. To demonstrate that ΦKZ satisfies

one of the two hexagons one proceeds in an analogous way to that we used to demonstrate the

pentagon relation: find six solutions of (KZ)3 in different regions with standard asymptotic

behaviors corresponding to the edges of an hexagon and show that these solutions have relations

that imply the required hexagon relation.

We leave the detail of this proof to the reader’s care.

2.2.2 Reminders on flat connections

We recall very quickly some definitions of the theory of vector bundles. The reader interested

in a detailed introduction illustrated on the subject may consult [71].
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Flat connections

Let X be a complex manifold and E −→ X a vector C-bundle X . Recall that Ω0(X,E) =

Γ(X,E) and that Ω1(X,E) = Γ(T ∗X ⊗ E).

Definition 2.2.9. A holomorphic connection ∇ on E −→ X is a linear map

∇ : Γ(X,E) −→ Ω1(X,E)

verifying, for all f ∈ O(X), s ∈ Γ(X,E), the Leibniz relation :

∇(f · s) = (df)⊗ s+ f · ∇(s).

Remark 2.2.10. • Be ∇1 and ∇2 two connections over E −→ X. The difference ∇1−∇2

is O(X)-linear.

• Locally, a section s is written in the form

s = f1e1 + · · ·+ fded

where f1, . . . , fd are complex analytic functions on X and {e1, . . . , ed} is a basis of the

fiber.

• All connections ∇ over E −→ X can be written locally under the form

∇s = ddR s− Γs,

where ddR is the de Rham differential and Γ is a differential 1-form on X taking values

in the ring End(E) of endomorphisms of E.

• A section s of E −→ X is horizontal with respect to a connection ∇ if ∇s = 0 that is, if

locally s is solution of the differential system

ds = Γs.

Let’s move on to present the notion of parallel transport for a connection on a vector bundle

E −→ X . Let

γ : [0, 1] −→ X

t 7−→ γ(t)

be a continuous path in X . One can perform the pullback of the matrix Γ of differential forms

over X along γ into a matrix

A(t)dt = γ∗Γ

of differential forms over the interval [0, 1]. In light of the theory of ordinary differential

equations, there is a unique smooth map Aγ : [0, 1] −→ Autlin(E,X), where Autlin(E,X)

is the group of linear automorphisms of the bundle E −→ X , such that Aγ(0) = id and

w(t) = Aγ(t)w(0) is a solution of the differential equation

dw(t)

dt
= A(t)w(t).
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Definition 2.2.11. The parallel transport of the connection ∇ along γ is the linear isomor-

phism Aγ(1) between the fiber at the initial point γ and the end point of γ. We will denote it

by

Tγ : Fγ(0)≃Fγ(1).

In particular, we have a map

(γ : [0, 1]→ X) 7−→
(
Tγ : Fγ(0)

≃
−→ Fγ(1)

)

so that if γ′ : [0, 1] → X is such that γ(1) = γ′(0) (in which case we say that the continuous

paths γ and γ′ are juxtaposable and the path γ · γ′ is then continuous) Then

Tγ·γ′ = Tγ ◦ Tγ′.

Definition 2.2.12. The holonomy group of ∇ based at a point x0 ∈ X is the subgroup of

Aut(Fγ(0)) generated by Tγ for all loops γ based at x0 ∈ X.

Let ∇ be a connection over a vector bundle E −→ X . We can extend ∇ into a covariant

derivative

Γ(E)
∇
−→ Ω1(X,E)

∇
−→ Ω2(X,E) −→ · · ·

by means of the formula

∇(ω ∧ ω′) = dω ∧ ω′ + (−1)|ω|ω ∧∇ω′

Definition 2.2.13. The curvature of the connection ∇ is the map

∇2 := ∇ ◦∇ : Γ(E) −→ Ω2(X,E).

Remark 2.2.14.

• The curvature is a map which is O(X)-linear.

• Locally, the curvature is expressed in terms of Γ by

∇2 = −ddRω + ω ∧ ω.

Before constructing explicitely the parallel transport application, let’s modify the proposed

framework a little bit by extending it to the case of the G-principal bundles, where G is a Lie

group.

G-principal bundles and associated connections

Let G be a topological group.

Definition 2.2.15. A G-principal bundle is a fiber bundle π : P −→ M together with a

continuous free and transitive right action of G on P , denoted

R : G −→ End(P )

g 7−→ (Rg : p 7→ g · p)

such that G preserves the fibers of P (i.e. if y ∈ π−1({x}) then y · g ∈ π−1({x}) for all g ∈ G).
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Remark 2.2.16.

1. This implies that each fiber is homeomorphic to the G group.

2. A principal bundle is trivial if, and only if, it admits a global section.

We can extend this definition to the case where G is a Lie group, with associated Lie k-algebra

g, and M is a differientable manifold by demanding that π to be differentiable and that the

action

G on P is also differentiable. In this way, we will demand that the notion of connection in this

setting to be « compatible » with the action of G as follows:

Definition 2.2.17. Let P −→ M a G-principal bundle. A G-principal connection is defined

by a differential 1-form ω ∈ Ω1(P, g) taking values in the Lie k-algebra g associated to G such

that

1. ω is G -equivariant i.e. adg(R
∗
gω) = ω, where adg is the adjoint representation;

2. if γ ∈ g and Xγ is the fundamental vector field associated with γ by differentiation of the

action of G on P , then ω(Xγ) = γ (identically over P ).

Remark 2.2.18. Let G be a Lie group with associated Lie k-algebra g, let P −→M be a trivial

G-principal bundle and let ω ∈ Ω1(M, g) be a differential 1-form that defines a connection on

P . In this case the curvature is given by the differential 2-form with values in g defined by

Ω = dω +
1

2
[ω ∧ ω] ∈ Ω2(M, g),

where d is the external differential, [−∧−] is the operation Ω1(M, g)×Ω1(M, g) −→ Ω2(M, g)

defined, for all pairs of tangent vectors v1 and v2 a M , by

[ω ∧ η](v1, v2) = [ω(v1), η(v2)]− [ω(v2), η(v1)]

so that we get

Ω(v1, v2) = dω(v1, v2) +
1

2
[ω ∧ ω](v1, v2) = dω(v1, v2) + [ω(v1), ω(v2)].

We will denote in the future [ω, ω] for the 1-form bracket.

regularized holonomy and regularized iterated integrals

Let us quickly explain the formulation of parallel transport in terms of path ordered exponen-

tials.

Remark 2.2.19. Let G be a Lie group with associated Lie k-algebra g. Consider the following

general Cauchy problem: {
dϕ = αϕ

ϕ(0) = 1G
, (2.10)
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where ϕ : [0, 1] −→ G is a function and α ∈ Ω1([0, 1], g) is a differential 1-form taking values in

g. Then there is a unique solution φ of (2.10) and we can define the path ordered exponential

P exp

(∫ 1

0

α

)
:= φ(1) ∈ G.

As a consequence of Picard succesive iterations method, we can explicitely develop this element

into the so-called Dyson series:

P exp

(∫ 1

0

f(t)dt

)
= 1+

(∫ 1

0

f(t1)dt1

)
+ · · ·+

(∫

06tn6···6t161

dt1 . . . dtnf(t1) . . . f(tn)

)
+ · · ·

We can similarly extend this definition for every differientable manifld M considering, for

α ∈ Ω1(M, g) and γ : [0, 1]→M , the path ordered exponential

P exp

(∫

γ

α

)
= P exp

(∫

[0,1]

γ∗α

)
.

In this case, considering the trivial G-principal bundle over M , the parallel transport of the

connection ∇ = d− α along the path γ is precisely

P exp

(∫

γ

α

)
.

If γ is a piece-wise smooth path on M , then the iterated integral of the differential 1-forms

ω1, . . . , ωn ∈ Ω1(M,G) is
∫

γ

ω1 · · ·ωn :=

∫

06tn6···6t161

dt1 . . . dtnf(t1) . . . f(tn)

Proposition 2.2.20. Let P −→M be the trivial G-principal over M and let ∇ be a connection

on this bundle. It is said that a connection ∇ is flat if, equivalently:

1. The curvature ∇ ◦∇ of the connection is zero;

2. the 1-form ω associated to ∇ satisfies the Maurer-Cartan equation :

dω +
1

2
[ω, ω] = 0;

3. For each pair (γ1, γ2) of homotopic paths in X we have Tγ1 = Tγ2 .

Remark 2.2.21. If this is the case, then the parallel transport of ∇ along a loop based on a

point x0 ∈ X induces a group morphism

ρ : π1(X, x0) −→ Aut(Ex0)

called monodromy morphism or a monodromy representation of the fundamental group of X

with respect to its action on the fiber of x0.

Proof. We will only show the first equivalence:
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• Step 1 =⇒ 2: A horizontal section of this connection satisfies df = −ωf . If the connection

is flat, then

0 = −d2f = d(ωf) = (dω)f − ω ∧ df = (dω + w ∧ w)f =

(
dω +

1

2
[ω, ω]

)
f

for any horizontal section. As locally there is a flat frame of the bundle, this implies that

dω + w ∧ w = 0.

• The step 2 =⇒ 1: this follows from the Frobenius theorem.

We will assume the following:

Proposition 2.2.22. Let ω a differential 1-form over a Riemann surface M with logarithmic

singularities over a finite subset S of M . Then, for all z1, z2 in M − S, the following limits

exist:

lim
t−→0

t∇(ω)sTω(γ
z1
t ) lim

t−→0
Tω(γ

z2
t )t−∇(ω)s .

In the next section we will give a particular example of a flat connection that is naturally

associated to the (KZ)n system. We will dicover how to retrieve multizeta values from the

parallel transport of this connection and find new relations for these numbers

2.2.3 The universal KZ connection

The objective of this section is to convince the reader of the fact that, using basic results on the

geometry of the configuration spaces, the proof of the fact that the KZ associator is a Drinfeld

associator is a consequence of the flatness of a certain connection defined on this space and

therefore, in a certain way, the manipulations of the KZ differential equations becomes visible.

This allows to have a better understanding of the architecture of the Drinfeld associators.

The differential system (KZ)n leads to an associated connection, the universal KZ connection,

which is flat in the configuration space of n points in the complex plane. Regardless of its

application to the understanding of Drinfeld associators and multizeta values, this connection

has several fields of application: for example, it provides a monodromy representation of the

fundamental group of its basis space, that is to say of the pure braid group on the plane. This

implies, in particular, the formality of this group, as we will explain below.

Let P := Conf(C, n)× exp(̂tn) be the trivial exp(̂tn)-bundle over Conf(C, n).

Definition 2.2.23. The universal KZ connection is ∇KZ
n := d − ωKZ

n , where ωKZ
n is the

differential 1-form over Conf(C, n) with values in the Kohno-Drinfeld Lie C-algebra tn given

by the following formula:

ωKZ
n :=

∑

16i<j6n

d log(zi − zj)tij .
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Remark 2.2.24. A function σ : Conf(C, n) −→ tn is a horizontal section of ∇KZ
n if, and only

if, σ is a solution of the system (KZ)n. Indeed, as ∇KZ
n is a connection defined on a trivial

exp(tn)-bundle, its horizontal sections are functions Conf(C, n) −→ tn so that σ is well defined

as a section.

Why is it universal? The explanation of the exact meaning of the word « universal » goes

through several points. Let us begin by defining the holonomy Lie algebra of a smooth variety

and its de Rham fundamental group following [28] and [36].

2.2.4 Reminders on the Riemann-Hilbert correspondence

Let X be a complex smooth variety. Let H•dR(X) be the de Rham cohomology complex of X ,

let

µ : ∧2H1
dR(X) −→ H2

dR(X)

be the multiplication map, let us denote H1(X) for the dual of H1
dR(X) and let K⊥ ⊂ ∧2H1(X)

be the dual subspace of K := ker(µ) ⊂ ∧2H1
dR(X).

Let X̄ be the smooth compactification of X with D = X̄ −X a normal crossings divisor. For

simplicity we suppose that H1
dR(X) is pure of weight 2, implying that H1(X) is isomorphic to

H0(X̄,Ω1
X̄
(log(D)).

Deligne established in [28] an equivalence of tensor categories between:

• the category VBFC(X) of vector bundles with a flat connection on X with regular singu-

larities,

• the category LS(X) of topological local systems on X .

This is known as the Riemann-Hilbert corrrespondence.

Notice that here, for a vector space E, ∧2E identifies with the degree 2 component of the free

Lie algebra generated by E.

Now, one can attach to these tensor categories its unipotent part (see [36] for details). The R-H

correspondence then induces an equivalence between the unipotent parts of these categories:

RHuni : VBFC(X)uni
∼
−→ LS(X)uni. (2.11)

This map associates to each object of VBFC(X) the local system of its horizontal sections.

Any point x ∈ X gives rise to two fiber functors F ls
x : LS(X) −→ VectC and F vb

x : VBFC(X) −→

VectC and to a canonical isomorphism F ls
x ◦ RH ≃ F vb

x .

Definition 2.2.25. Let X be a complex smooth variety.

• The holonomy Lie C-algebra hol(X) of X is the free Lie C-algebra over HdR
1 (X) modulo

relations in K⊥.
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• The de Rham fundamental group of X is the unipotent Tannakian fundamental group of

the category of vector bundles with flat unipotent connections on X with regular singular-

ities at infinity :

πdR
1 (X, x)uni := Aut⊗(F vb

x ),

for the choice of a base point x ∈ X.

• The Betti fundamental group of X with base point x is the Tannakian group corresponding

to F ls
x :

πB
1 (X, x) := Aut⊗(F ls

x ).

Remark 2.2.26. • The relations in K⊥ are all in degree 2, so hol(X) is provided with a

natural graduation.

• The R-H correspondence then provides us with a map πdR
1 (X, x)uni −→ πB

1 (X, x).

Deligne then proved the following result.

Theorem 2.2.27. The Lie algebra of πdR
1 (X) coincides with the degree completion ĥol(X) of

the holonomy Lie algebra of X.

In practice it can be convenient to characterise hol(X) the following way.

Proposition 2.2.28. If H∗dR(X) is generated by H1
dR(X), then hol(X) is Koszul dual to

H∗dR(X) as commutative algebras.

Let us finish this reminder on some comments on Gauss-Manin connections in the complex

analytic context.

Let f : X −→ S be a smooth family of complex manifolds. We have a local system Rn f∗C

of complex vector spaces on S, defining a holomorphic vector bundle V := Rn f∗C⊗OS on S

with an integrable connection ∇ : V −→ V ⊗ Ω1
S of the family, so we get a connection on the

latter. We have a map

DR : Db
hr(DX) −→ Db

c(CX),

so that M 7−→ DR(M) := ωX ⊗L
DX
M is the analytic de Rham complex. By the R-H

correspondence the map DR is an equivalence. DR sends a O-coherent D-module (i.e. a

vector bundle with an integrable connexion) to a local system (i.e. a locally constant sheaf).

The inverse functor sends a locally constant V to the vector bundle OX ⊗C V together with

the only connexion such that V is the local system of horizontal sections in (OX ⊗C V,∇).

The Gauss-Manin connection is then defined as DR−1(Rf∗CX).

2.2.5 Universality of the KZ connection

Let us compute the holonomy Lie algebra of the configuration spaces Conf(C, n).



42 CHAPTER 2. BACKGROUND

1. Suppose that X = Conf(C, 2). As Conf(C, 2) ∼= C2−{z1 = z2}, we can take the following

coordinates:
x = z1 + z2

y = z1 − z2
.

In these coordinates, the only differential 1-form with logarithmic singularities on X is

d log(y). In this way, we find

hol(X) = f1(C) ∼= t2(C)

where f1 is the free Lie k-algebra on 1 generator (which is of dimension equal to 1).

2. Suppose that X = Conf(C, n). Then we have

• H1
dR(X) is generated by the 1-forms

ωij = d log(zi − zj),

where 1 6 i < j 6 n.

• (Arnold) K is generated by

ωij ∧ ωjk + ωjk ∧ ωik + ωik ∧ ωij ,

where 1 6 i < j < k 6 n.

• If {tij}i<j ∈ HdR
1 (X) is the dual basis to the basis {ωij}i<j of H1

dR(X), then K⊥ is

generated by elements

tij ∧ tkl, tij ∧ (tik + tjk),

where card(i, j, k, l) = 4.

In conclusion, the holonomy Lie C-algebra of Conf(C, n) is the Kohno-Drinfeld Lie C-

algebra tn.

In this way, we see that the system dϕ =
∑

16i<j6n

tijd log(zi − zj) is defined in a natural way

in the exp(ĥol(X))-trivial bundle over X = Conf(C, n).

In addition, this system contains the smallest amount of information necessary to be well

defined:

• Let W be a vector space and consider the trivial vector bundle Conf(C, n) × W −→

Conf(C, n). Let’s consider the connection

∇̃ = d−
∑

16i<j6n

d log(zi − zj)Aij .

defined over the above bundle, where Aij are endomorphisms of W . In this case, a

sufficient condition for ∇̃ to be flat is that Aij satisfy the three infinitesimal braid relations.

In this sense, the Kohno-Drinfeld Lie algebra is the « simplest » possible so that the

connection satisfies these relations.
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• Consider the connection

∇ = d−
∑

16i6=j6n

Aij(zi − zj)d(zi − zj),

where the matrices Aij(zi − zj) act in the i-th and the j-th entries of V = V1 ⊗ · · · ⊗ Vn.

In this case, the connection is flat if, and only if, the family {Aij(zi − zj)} satisfies the

Yang-Baxter equation

[Aik(zi − zk), Akj(zk − zj)] + [Aik(zi − zk), Aij(zi− zj)] + [Aij(zi− zj), Akj(zk − zj)] = 0.

In particular, if we consider the simplest possible choice of r-matrix, that is, if we consider

Aij(zi − zj) :=
tij

zi − zj
,

where tij are formal symbols, then we have

∇ is flat ⇐⇒ {Aij} satisfies the Yang-Baxter equation

⇐⇒ {tij} satisfies the infinitesimal braid relations.

2.2.6 Reminders on semi-simple Lie algebras.

Let g be a Lie k-algebra. Its adjoint representation is the k-vector space map given by

g −→ End(g).

x 7−→ (adx : y 7→ [x, y])

If g is finite dimensional, then :

• There is a well defined bilinear symmetric form

B(x, y) := Tr(ad(x) ◦ ad(y))

called Killing form, which is g-invariant under the action of Aut(g) and such that

B([x, y], z) = B(x, [y, z]),

for all x, y, z ∈ g.

• If {Xi}i6n is a basis of g and {X i}i6n is its dual basis with respect to B, the Casimir

element is

Ω =

n∑

i=1

XiX
i ∈ Z(U(g))

i.e. commutes with all elements in g and is independent of the choice of the basis.

• If char(k) = 0 then:

g is semi-simple⇐⇒ B is non-degenerate.
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Now let g be a finite dimensional Lie C-algebra, let

S2(g) := T 2(g)/(x⊗ y − y ⊗ x)

be the symmetric algebra associated to g. Then, for an orthonormal basis of g with respect

to B, we have that T (v1, v2) = Σuau ⊗ bu ∈ S2(g) satisfies T (v1, v2) = T (vσ−1(1), vσ−1(2)). We

have Og∗ = S(g).

An element y in S2(g) is said to be g invariant if [x ⊗ x, y] = 0, for all x ∈ g. The set of such

elements will be denoted S2(g)g. Then tg = Σueu ⊗ fu ∈ S2(g)g. By choosing a basis we get

[Xi, Xj ] =

n∑

k=1

ckijXk

where ckij = −c
k
ji are the structure constants. In particular

(a⊙ b)(c⊙ d) = ac⊗ bd;

[a⊗ b, c⊗ d] = ac⊗ bd− ca⊗ db 6= [a, c]⊙ [b, d].

Let G be a connected Lie group with associated Lie algebra g. If G acts on a differientable

manifold M , then x ∈ g is represented by a first order differential operator over M and this

representation ρ is in C∞(M). If G and G′ are n dimensional and have the same structure

constants, then they are locally isomorphic. This means that the structure constants are

related to the second order partial derivatives in a neighborhood of the identity but give

local properties over the whole group : for instance, they tell if locally the multiplication is

contractible.

2.2.7 Realizations of the universal KZ connection

The universal KZ connection « has realizations »: consider

• a (semi-)simple Lie C-algebra g;

• a symmetric g-invariant 2-tensor Ω =
∑
r
xr ⊗ yr ∈ g ⊗ g (which is constructed from the

Casimir, coming from the Killing form associated with g),

• a non-zero integer n ∈ N>1,

• a finite dimensional g-module V ,

• a formal parameter ~ = h
2iπ ∈ C.

Let’s define

tij :=
∑

r

α(1)
r ⊗ · · · ⊗ α(n)

r ∈ (U(g))⊗n,

where α
(i)
r = xr, α

(j)
r = yr and α

(k)
r = 1, where k 6= i, j. Then

1. Every tij induces an endomorphism of V ⊗n that satisfies the infinitesimal braid relations.

• This fact is a consequence of the construction of tij and the g-invariance of Ω ∈ g⊗g.
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2. We have tij = tji.

• This fact is a consequence of the symmetry of the 2-tensor tij .

We conclude that we have a morphism

exp(̂tn(C)) −→ End(V ⊗n)[[~]]

etij 7−→ ~tij

and the system

(KZ′)n dw = ~
∑

16i<j6n

d log(zi − zj)t
ijw

is called realization of the universal system (KZ)n associated to (g, V ).

2.2.8 Holonomy of the connection ∇KZ
3 and geometric definition of

the KZ associator

Let ε > 0. Denote X0 = t12 and X1 = t23. Let Φε(X0, X1) be the parallel transport of

the universal KZ connection with respect to the path ϕ : [0, 1] −→ C− {0, 1} such that

γ(0) = ε, γ(1) = 1− ε and γ(t) ∈ R, that is, given by the path ordered exponential

Φε(X0, X1) := P exp

(∫ γ(1)

γ(0)

(
X0

z
+

X1

z − 1

)
dz

)

=
∑

ωword inX0,X1

cω(ε) · ω

where, for j0, . . . , jn ∈ {0, 1}, ω = xj0 · · ·xjn ∈ Q〈X0, X1〉, and

cω(ε) =

∫ γ(1)

γ(0)

dt1
t1 − zj1

∫ t1

γ(0)

dt2
t2 − zj2

· · ·

∫ t−n−1

γ(0)

dtn
tn − zjn

. (2.12)

Recall that the polylogarithm function is given, for s, z ∈ C, by

Lis(z) :=

∞∑

k=1

zk

ks

and that multizeta values are the real numbers

ζ(k1, . . . , kr) :=
∑

n1>n2>...>nr>0

1

nk1

1 . . . nkr
r

=
∑

n1>n2>...>nr>0

(
r∏

i=1

1

nki

i

)

where k1, . . . , kr−1 ∈ N>1, kr ≥ 2.

We are going to admit the following proposition, which we will explain in the next subsection.

Proposition 2.2.29. For each word ω in X0 and X1, the scalar cω(ε) is a polynomial in

polylogarithm functions of the form Lin(ε) and in the function log(ε). In particular, if the word

ω ends in X1 (in particular ω can be written in the form ω = Xn1−1
0 X1X

n2−1
0 X1 . . .X

nk−1
0 X1,

where ni > 2, for all k > 1), then the function cω(ε) converges when ε tends to 0 and we have

lim
ε→0

cω(ε) = (−1)kζ(n1, . . . , nk).
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Corollary 2.2.30. Φε(X0, X1) has an asymptotic expansion into a homogenous polynomial

Φ(log(ε)), that is,

Φε(X0, X1)− Φ(log(ε)) −→
ε→0

0.

Proposition 2.2.31. The Drinfeld KZ associator is, equivalently, defined by:

1. the quotient ΦKZ := G−11 G0 ∈ C〈〈X0, X1〉〉 of Proposition 2.2.4 of the first section;

2. the regularized holonomy of the connection ∇KZ
3 between 0 and 1 (following the real part

of P1(C)− {0, 1,∞}) i.e. the limit

ΦKZ(X0, X1) := lim
ε→0

εX1Φε(X0, X1)ε
−X0 ;

3. the regularization ΦKZ := Φ(0) of the polynomial Φ(log(ε)) by formally setting log(ε) = 0.

Proof. First, the three definitions make sense in light of the above paragraphs. Let’s prove

that these definitions are equivalent. We have the expression

Φε(X0, X1) = G1(1− ε)G−11 G0G
−1
0 (ε)

so that the following limit exists

lim
ε→0

εX1Φε(X0, X1)ε
−X0 = lim

ε→0
(εX1G1(1− ε))G−11 G0(G

−1
0 (ε)ε−X0) = G−11 G0

Therefore, the asymptotic expansion of Φε(X0, X1) is εX1G−11 G0ε
−X0 .

Monodromy of the KZ connection and geometric proof of Theorem A.

Let’s start with a crucial result that will allow us to work with the connection.

Proposition 2.2.32. The universal KZ connection is flat, that is: (∇KZ)
2 = 0.

Proof. We compute:

∇2 =
∑

i<j

k<l

[tij , tkl]d(zi − zj)d(zk − zl)

(zi − zj)(zk − zl)

=
∑

i6=j

dzidzj



∑

i6=k

j 6=l

[tij , tkl]

(zi − zj)(zk − zl)




=
∑

i6=j

dzidzj


∑

j 6=l

[tij , tkl]

(zi − zj)(zj − zl)
+
∑

i6=k

[tik, tji]

(zi − zk)(zj − zi)




=
∑

i6=j

dzidzj


∑

k 6=i,j

−[tik, tjk]

(zi − zj)(zj − zk)
+
∑

k 6=i,j

[tik, tjk]

(zi − zk)(zj − zi)




= −
∑

i6=j

dzidzj
∑

k 6=i,j

[tik, tjk]

(zi − zj)(zj − zk)
= 0.

We conclude that the connection is flat.
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In this way, we can talk about monodromy of the connection and we will see how the Drinfeld

associator relations arise, in the case of the KZ associator, precisely from this monodromy. We

reproduce the proof of Theorem A. The element

ΦKZ(t12, t23) := lim
ε→0

εt23P exp

(∫ 1−ε

ε

(
t12
z

+
t23

z − 1

)
dz

)
ε−t12

is the regularized holonomy between 0 and 1 of the universal KZ connection, seen in the

complex projective line minus three points. Let’s prove that the pair (2iπ,ΦKZ) is a Drinfeld

associator.

The case n = 2. First of all, we have

Conf(C, n) ∼= C× C− {0}

(z1, z2) 7−→ (t, w) := (z2, z1 − z2)

In this way, the KZ connection is written

∇KZ
2 = d−

t12
w

dw.

The associated KZ equation is the system
{

∂
∂wF = t12

w F
∂
∂tF = 0

.

Therefore, the solutions are given by

F (z1, z2) = C(z1 − z2)
12,

for a certain constant C. Let

γ : [0, 1] −→ C− {0}

t 7−→ εeiπt

be the continuous path that draws a closed semi-circle from ε to −ε in C− {0}:

0 ε−ε

We immediately find that the regularized holonomy of the connection ∇KZ
2 is eiπt12 = e

λ
2 t12

for λ = 2iπ.

The case n = 3: First, we have an isomorphism

Conf(C, 3) ∼= C× C× × (P1(C)− {0, 1,∞})

(z1, z2, z3) 7−→ (t, w, z) :=

(
z3, z1 − z3,

z1 − z2
z1 − z3

)



48 CHAPTER 2. BACKGROUND

By a change of coordinates, the equations (KZ)3 become:




∂
∂wF = t12+t13+t23

w F
∂
∂tF = 0
∂
∂zF = t12

z F + t23
z−1F

Remark 2.2.33. Notice that we are rephrasing the results of previous section. Indeed, the

solution in this case is

F (z1, z2, z3) = (z1 − z3)
t + t13 + t23G

(
z1 − z2
z1 − z3

)
,

where G(z) solves the equation

∂

∂z
G =

t12
z
G+

t23
z − 1

G.

We are ready to start the proof:

−→ ΦKZ(t12, t23) ∈ exp(̂f(t12, t23)): For now, we only know that ΦKZ(t12, t23) ∈ C〈〈t12, t23〉〉.

To show that ΦKZ(t12, t23) ∈ exp(̂f(t12, t23) we have to prove that ΦKZ(t12, t23) is group-like,

meaning ∆ΦKZ(t12, t23) = ΦKZ(t12, t23)⊗̂ΦKZ(t12, t23). On the one hand,

∆ΦKZ(t12, t23) = ΦKZ(∆t12,∆t23) = ΦKZ(t12 ⊗ 1 + 1⊗ t12, t23 ⊗ 1 + 1⊗ t23).

On the other hand, ΦKZ(t12 ⊗ 1 + 1⊗ t12, t23 ⊗ 1 + 1⊗ t23) is the holonomy of the connection

∇ = d−

(
t12 ⊗ 1 + 1⊗ t12

z
+

t23 ⊗ 1 + 1⊗ t23
z − 1

)
dz

= d−
t12 ⊗ 1 + 1⊗ t12

z
dz −

t23 ⊗ 1 + 1⊗ t23
z − 1

dz,

which can also be seen as the sum of two connections in two different bundles. In this way, the

holonomy can be calculated separately. Finally, we get

∆ΦKZ(t12, t23) = ΦKZ(t12 ⊗ 1 + 1⊗ t12, t23 ⊗ 1 + 1⊗ t23) = ΦKZ(t12, t23)⊗̂Φ
KZ(t12, t23).

−→ Antisymmetry: Taking the change of variables z = 1− y, the connection is written

d−

(
t12

y − 1
+

t23
y

)
dy,

whose holonomy between ε and 1 − ε is Φε(t23, t12). By symmetry, this is also the holonomy

from 1− ε to ε of the original connection i.e. the inverse of the holonomy from ε and 1− ε of

the same connection. In this way, Φε(t23, t12) = Φε(t12, t23)
−1. Automatically, we verify that

the same equation is preserved after asymptotic expansion and regularization.

−→ Two hexagons: Using the monodromy calculation in the case n = 2, we easily see

that the regularized holonomy of ∇KZ
3 around the singularity z = 0 (in the counterclockwise

direction) in P1(C)− {0, 1,∞} is eiπt12 .

One can easily prove the following facts
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1. If we take the path γ in the clockwise direction, we get a holonomy equal to e−iπt12 .

2. The regularized holonomy of ∇KZ
3 around the singularity z = 1 (counterclockwise direc-

tion) in P1(C)− {0, 1,∞} is e2iπt23 .

3. Making a change of variables to be determined, the regularized holonomy of ∇KZ
3 around

the singularity z =∞ (counterclockwise direction) in P1(C)− {0, 1,∞} is e2iπt13 .

In this way, we can consider the paths

γ+ := γ+
1 γ+

2 γ+
3 γ+

4 γ
+
5 γ+

6 and γ− := γ−1 γ−2 γ−3 γ−4 γ−5 γ−6 ,

formed by the juxtaposition of the following 6 paths:

∞

γ1
+

γ2
+γ6

+

γ1
−

0γ6
− 1 γ2

−

γ3
+

γ3
−

γ4
−

γ4
+

γ5
+

γ5
−

Re(P1−{0, 1,∞})

Figure 2.1: Paths in M0,4 = P1 − {0, 1,∞}.

We have calculated the holonomy for each of these paths. Notice that the path γ+ is con-

tractible and the connection is flat so the parallel transport along γ+ is Tγ+ = 1. Also, as γ+

is composed of 6 terms we get an equation

R12Φε(t13, t12)R13Φε(t23, t13)R23Φε(t12, t23) = 1.

Using the asymptotic expansion of Φε, we can see that R12Φε(t13, t12)R13Φε(t23, t13)R23Φε(t12, t23)

has an asymptotic expansion which is a polynomial in ε in each degree. In this way, this equa-

tion must be preserved for the part in the constant term of the expansion, that is, when we

formally establish log(ε) = 0.

On the other hand, by using exercise ??? of the first section, we know that t3(C) ≃ Cc3 ⊕

f(t12, t23)(C). This way, we obtain

e
−λ
2 t12Φ(t13, t12)e

−λ
2 t13Φ(t23, t13)e

−λ
2 t23Φ(t12, t23) = 1 en exp(̂t3(C)),

for λ = 2iπ.
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Remark 2.2.34. One has to read the juxtaposition of paths from the left to the right (i.e. in

the path γ+
1 γ+

2 we first travel γ+
1 and then γ+

2 ). The composition of holonomies is read from

the right to the left as for the composition of functions.

One can easily show the following facts

1. The holonomy of the path γ− gives the relation of the remaining hexagon.

2. Let h ∈ C×. If we consider the connection

∇KZ
n,h = d−

h

2iπ

∑

16i<j6n

tijd log(zi − zj),

and we denote Φh
KZ the regularized holonomy between 0 and 1 of ∇KZ

3,h, find λ = h is such

that (λ,Φh
KZ) is a C-associator.

The case n = 4: We will present the main steps of the proof of the pentagon relation, leaving

the detail to the care of the reader.

−→ The pentagon: After identifying Conf(C, 4) with a product of spaces involving the space

(P1 − {0, 1,∞})2 − {(z, z)}, one can interpret the KZ associator as the regularized holonomy

from 0 to 1 of the KZ connection over the space (P1 − {0, 1,∞})2 − {(z, z)}. The path

corresponding to the pentagon in

Re((P1 − {0, 1,∞})2 − {(z, z)}),

presented in the last subsection corresponding to the regions Z1, . . . , Z5 of Re(Conf(C, 4)), is

precisely the path below.

As for the two hexagons, this path is contractible so that its holonomy is equal to 1. By noticing

that we can indeed take regularized holonomy, we obtain the required pentagon relation.

2.2.9 Application I : Associator relations for multizeta values

Integral formulation of multizeta values

Recall that the multizeta values are the real numbers

ζ(k1, . . . , kr) :=
∑

n1>n2>...>nr>0

1

nk1
1 . . . nkr

r

where (k1, . . . , kr) ∈ (N>2)r. These numbers have been studied since Euler (1775). The nature

(transcendence/irrationality) of these numbers is a field of much mystery and of which we do

not know much.

Proposition 2.2.35 (Kontsevich-Zagier). The multizeta values can be written as the integrals:

ζ(k1, . . . , kr) = (−1)r
∫ 1

0

∫ t1

0

· · ·

∫ tn−1

0

dtn
tn − ǫn

·
dtn−1

tn−1 − ǫn−1
· · ·

dt1
t1 − ǫ1

where

(ǫ1, . . . , ǫn) =

(
0, . . . , 0

˘k1−1 times

, 1, 0, . . . , 0
˘k2−1 times

, 1, . . . , 0, . . . , 0
˘kr−1 times

, 1

)
.
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Re(z)

{z =1}

{w = 1}{z = w}

{z =0}

{w = 0}

Re(w)

Figure 2.2: Paths in Re((P1 − {0, 1,∞})2 − {(z, z)}).

Example 2.2.36. We have

ζ(2) =

∫ 1

0

∫ t1

0

dt2
1− t2

dt1
t1

=

∫ 1

0

∫ t1

0

dt1
t1

∑

n>1

tn−12 dt2 =

∫ 1

0

∑

n>1

tn1
n

dt1
t1

=
∑

n>1

1

n

∫ 1

0

tn−11 dt1 =
∑

n>1

1

n2

so we find the original definition of ζ(2).

Proposition 2.2.37. The Knizhnik-Zamolodchikov associator is a generating series of all

(regularized) multizeta values i.e. we have:

ΦKZ(X,Y ) =
∑

wword inX,Y

ζw · w.

where ζw is the (regularized) multizeta value associated with the word w.

Example 2.2.38. In particular, we have a computation in low degree of this series:

ΦKZ(A,B) = 1 + ζ(2)[A,B] + ζ(3)[A, [A,B]] + ζ(1, 2)[[A,B], B]

+ζ(4)[A, [A, [A,B]]] + ζ(1, 3)[A, [[A,B], B]] + ζ(1, 1, 2)[[[A,B], B], B]

+1ζ(2)2[A,B]2 + . . .

MZVs and admissible words

How are the MZVs distributed in the series of Proposition 2.2.37? To answer this question

we need to introduce the notion of admissible words. Let’s start by calculating the iterated
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integrals involved in the KZ associator for two different kinds of words.

Remark 2.2.39. To calculate the integrals (2.12), we can use the relations

1

t− 1
= −

∞∑

j=0

tj

∫
logn(t)dt

t
=

1

n+ 1
logn+1(t)

∫
logn(t)tmdt =

n∑

j=0

(−1)j

m+ 1

n!

(N − j)!
logn−j(t)tm+1

Example 2.2.40. Suppose that ω = X0X0X1. We are going to simplify the computations by

omitting the terms that tend toward 0 when ε tends to 0. In that case, the triple integral in cω

is

cω(ε) =

∫ γ(1)

γ(0)

dt1
t1

∫ t1

γ(0)

dt2
t2

∫ t2

γ(0)

dt3
t3 − 1

=

∫ 1−ε

ε

dt1
t1

∫ t1

ε

dt2
t2


−

∑

j>0

tj+1
2

j + 1




= −

∫ 1−ε

ε

dt1
t1


∑

j>0

tj+1
1

(j + 1)2




= −
∑

j>0

(1 − ε)j+1

(j + 1)3
ε→0
−−−→ −ζ(3).

Notice that, in this case, cω converges when cw equals 0.

Example 2.2.41. Suppose this time that ω = X0X1X0. We calculate in this case:

cω(ε) =

∫ γ(1)

γ(0)

dt1
t1

∫ t1

γ(0)

dt2
t2 − 1

∫ t2

γ(0)

dt3
t3

=

∫ 1−ε

ε

dt1
t1

∫ t1

ε

dt2
t2 − 1

(log(t2)− log(ε))

=

∫ 1−ε

ε

dt1
t1


∑

j>0

tj+1
1

j + 1
log

(
t1
ε

)
−
∑

j>0

tj+1
1

(j + 1)2
−
∑

j>0

εj+1

j + 1
log(ε)−

∑

j>0

εj+1

(j + 1)2


 .

Omitting the terms that tend towards 0 we obtain a term in

−
∑

j>0

(1 − ε)j+1

(j + 1)3
−
∑

j>0

(1− ε)j+1

(j + 1)3
−
∑

j>0

(1− ε)j+1

(j + 1)2
log(ε) ∼ −2ζ(3)− ζ(2) log(ε).

This expression diverges logarithmically with ε. This is one of the reasons why we are forced

to renormalize the holonomy: to be able to eliminate these divergent terms.

What are the words ω for which cω(ε) converges? To answer this question we have to talk

about admissible words.
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Definition 2.2.42. An admissible (or convergent) word in letters X,Y is a word ω ∈ Q〈X,Y 〉

starting with X and ending for Y of the form ω = XvY where v is any word in X and Y .

We are ready to characterize multizeta values with respect to convergent words.

Proposition 2.2.43. We have a bijective map

(N>2)r ←→ {admissible words in x, y}

(k1, . . . , kr) ←→ xk1−1yxk2−1y · · ·xkr−1y

and the value cω(ε) converges towards

ζ(k1, . . . , kr) := ζxk1−1yxk2−1y···xkr−1y.

precisely when the word w is admissible.

Remark 2.2.44. • This explains Proposition 2.2.29.

• There is a way to associate to the rest of the words (those that are not admissible) a

slightly more general notion of multizeta values called regularized multizeta values which

we will not present in here.

Calculation of the KZ Associator in low degree

Let’s calculate the terms in degree up to 2 of the associator ΦKZ. We have

Φε(t12, t23) = P exp

(∫ 1−ε

ε

(
t12
z

+
t23

1− z

)
dz

)

= 1 +

∫ 1−ε

ε

(
t12
t1

+
t23

1− t1

)
dt1

+

∫ 1−ε

ε

(∫ t1

ε

(
t212
t1t2

+
t12t23

t1(1− t2)
+

t23t12
t2(1 − t1)

+
t223

(1− t2)(1 − t1)

)
dt2

)
dt1

+ . . .

The degree 1 term is

t12 log

(
1− ε

ε

)
+ t23 log

(
ε

1− ε

)
.

The degree 2 terms are:

∫ 1−ε

ε

(∫ t1

ε

(
t212
t1t2

)
dt2

)
dt1 =

∫ 1−ε

ε

(
t212

log(t1)− log(ε)

t1

)
dt1

=
t212
2
(log(1− ε)2 − log(ε)2)− t212 log(ε)(log(1− ε)− log(ε))

= t212

(
log(1− ε)2

2
+

log(ε)2

2
− log(ε) log(1− ε)

)
,
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and

∫ 1−ε

ε

(∫ t1

ε

(
t12t23

t1(1− t2)

)
dt2

)
dt1 =

∫ 1−ε

ε

(
t12t23

log(1− t1)− log(1− ε)

t1

)
dt1

= t12t23(Li2(ε)− Li2(1 − ε) log(1− ε)(log(1 − ε)− log(ε))).

One can show that

∫ 1−ε

ε

(∫ t1

ε

(
t23t12

t2(1− t1)

)
dt2

)
dt1 = t23t12(Li2(1 − ε)− Li2(ε)− log(ε)(log(ε)− log(1− ε)))

and

∫ 1−ε

ε

(∫ t1

ε

(
t223

(1− t2)(1 − t1)

)
dt2

)
dt1 = t223

(
log(ε)2

2
+

log(1 − ε)2

2
− log(ε) log(1− ε)

)
.

Using the Taylor expansions

ε−t23 = 1− t23 log(ε) + t223
log(ε)2

2
+ · · · ,

and

εt
12

= 1 + t12 log(ε) + t212
log(ε)2

2
+ · · · ,

and noticing that Li2(0) = 0 and Li2(1) = ζ(2), we can simplify:

ΦKZ(t12, t23) = lim
ε→0

ε−t23P exp

(∫ 1−ε

ε

(
t12
z

+
t23

1− z

)
dz

)
tt12

= lim
ε→0

1− t23 log(ε)− t12 log(ε) + t23 log(ε) + t12 log(ε) + t223
log(ε)2

2
+ t212

log(ε)2

2

+[t12, t23](Li2(ε)− Li2(1− ε))− t23t12 log(ε)
2 + t223

log(ε)2

2
+ t212

log(ε)2

2

−− t23 log(t)
2(t23 − t12) + log(t)2(t23 − t12)t12 − t23t12 log(ε)

2 + · · ·

= lim
ε→0

(1 + [t12, t23](Li2(ε)− Li2(1− ε)) + · · · )

= 1− ζ(2)[t12, t23] + · · ·

In conclusion, ΦKZ(t12, t23) is a generating series of all multizeta values. As a corollary, we

obtain new relations between the different multizeta values coming from the pentagon and

hewagons relations of the associators:

Corollary 2.2.45. Multizeta values satisfy the Drinfeld associator relations.

Not only that, but thanks to the geometric definition of the associator KZ, we can find old

relations that go back to Euler’s works, as illustrated by the following theorem shown by Pierre

Deligne:
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Theorem 2.2.46 (Deligne, section 18 of [30]). The relation

ζ(2n) = (−1)n−1
B2n

2× (2n)!
(2π)2n

comes from the relations of antisymmetry and pentagon of the contractible path in P1(C) −

{0, 1,∞} given by

0 1 ∞

2.2.10 Application II : Formality of the pure braid group

Definition 2.2.47. Let G be a finitely generated group. It is called formal if there is a Lie

algebra isomorphism Lie(Ĝ(k)) −→ ĝr Lie(Ĝ(k)), whose associated graded morphism is the

identity.

One can then retrieve from the flatness of the universal KZ connection such an isomorphism

for G = PBn. Namely, the monodromy representation morphism

ρKZ : PBn −→ exp(̂tn)

factors through the C-prounipotent completion P̂Bn(C) of PBn and one can show the following

Proposition 2.2.48. The map

ρ̃ : P̂Bn(C) −→ exp(̂tn)

is an isomorphism of C-prounipotent groups.

Remark 2.2.49. Returning to the consideration of the holonomy Lie algebra and the de Rham

fundamental group of Conf(C, n), this result establishes an isomorphism

πTop
1 (Conf(C, n))

))❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘

��
πB
1 (Conf(C, n))

≃ // πdR
1 (Conf(C, n))

where πB
1 (Conf(C, n)) is the Betti fundamental group of Conf(C, n), which identifies to the

C-prounipotent completion of the topological fundamental group πTop
1 (Conf(C, n)). This pro-

vides an inverse morphism to the map πdR
1 (Conf(C, n)) −→ πB

1 (Conf(C, n)) given by the R-H

correspondence.

This conceptual interpretation of the formality of PBn will be translated to the cyclotomic

(easily) and genus 1 (with a lot more of work) cases.
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2.3 The cyclotomic KZ associator

2.3.1 The universal cyclotomic KZ connection

Let Γ = Z/NZ and let tΓn(k) be the Lie k-algebra with generators t0i, (1 ≤ i ≤ n), and tαij ,

(1 ≤ i 6= j ≤ n, α ∈ Z/NZ), and relations:

(NS) tαij = t−αji ,

(NL) [t0i, t
α
jk] = 0 and [tαij , t

β
kl] = 0,

(N4T) [tαij , t
α+β
ik + tβjk] = 0,

(NT1) [t0i, t0j +
∑

α∈Γ t
α
ij ] = 0,

(NT2) [t0i + t0j +
∑

β∈Γ t
β
ij , t

α
ij ] = 0,

where 1 ≤ i, j, k, l ≤ n are pairwise distinct and α, β ∈ Γ. We will call it the k-Lie algebra of

infinitesimal cyclotomic braids.

The universal cyclotomic KZ connection on the trivial exp(̂tn,N (C))-bundle over

Conf(C×, n,Γ) := (C×)n − {z = (z1, . . . , zn)|z
N
i = zNj for some i 6= j}

is defined by the differential 1-form

ωKZ
n,N :=

n∑

i=1


 t0i

zi
+

∑

α∈Z/NZ,1≤i6=j≤n

tαij
zi − ζαzj


 d zi, (2.13)

where ζ is a primitive Nth root of unity. It is a fact that this connection is flat.

2.3.2 Reminders on partial prounipotent completions

Let us recall the Enriquez’ notion of partial prounipotent completion that we will use later in

Chapter 7.

Let ϕ : G −→ H be a surjective group morphism such that GG := Kerϕ is finitely generated.

Definition 2.3.1. There is a non-connected pro-algebraic group G(ϕ,k), fitting in an exact

sequence 1 −→ G0(k) −→ G(ϕ,k) −→ H −→ 1, and a group morphism G −→ G(ϕ,k), such

that the diagram

1 // G0
//

��

G //

��

H //

��

1

1 // G0(k) // G(ϕ,k) // H // 1

commutes. The group G(ϕ,k) is called relative k-prounipotent completion of G with respect to

ϕ.

We direct the reader to the article [32] for more details on this definition as well as for the

following one.
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Definition 2.3.2. We say that the group morphism ϕ : G −→ H is formal if there exists a

group isomorphism G(k, ϕ) ≃ exp(gr LieG0(k)) ⋊ H, restricting to a formality isomorphism

for G0, and such that the diagram

1 // G0(k) //

��

G(k, ϕ) //

��

H //

��

1

1 // exp(ĝr LieG0(k)) // exp(ĝr LieG0(k))⋊H // H // 1

commutes.

Example 2.3.3. • The morphism Bn −→ Sn is formal, where Bn is the fundamental

group of Conf(C, n)/Sn. It is interesting to say that this result follows from [73] when

k = C, and from [27] for k = Q.

• Denote

– G0 = PBΓ
n := π1(Conf(C×, n,Γ)),

– G = B1
n = π1(Conf(C×, n)/Sn) and

– ϕn,N : B1
n −→ Γn ⋊Sn.

One can show that the monodromy of the universal cyclotomic KZ connection gives us

vertical isomorphisms

1 // P̂B
Γ

n(C) //

��

B̂n(ϕn,C) //

��

Γn ⋊Sn
//

��

1

1 // exp(̂tΓn(C)) // exp(̂tΓn)⋊ (Γn ⋊Sn) // Γn ⋊Sn
// 1

.

2.3.3 Realisations

Let g be a Lie k-algebra and let tg = Σueu ⊗ fu ∈ S2(g)g. Suppose that we have a morphism

Γ −→ Aut(g, tg);α 7→ α

i.e. αN = id. Then we have a decomposition g = l ⊕ u where l = gΓ and u =
⊕

χ∈Γ̂−{0}

gχ.

Take a decomposition tg = tl + tu where tl ∈ S2(l)l and tu ∈ S2(u)l. Let σ̄ be a generator of

Γ ⊂ U(g)⋊ Γ.

Theorem 2.3.4. There is a unique Lie algebra morphism

U (̂tn,N )⋊ Γn −→ U(l)⊗ (U(g)⋊ Γ)⊗n

t0i 7−→ N

(
t
(0i)
l +

1

2
t
(ii)
l

)
⊗ 1

tαij 7−→ 1⊗ (σα ⊗ id)(t
(ij)
g )

si 7−→ σ̄(i).
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2.4 The elliptic KZB associator

In this section we introduce the basic tools that were used on constructing the universal elliptic

KZB connection and which will be used in the second part of this thesis. We will profit this

occasion to rely all conventions for theta functions that different authors (at our knowledge)

that work on the KZB connection use at present.

2.4.1 Quick reminder on Eisenstein series and theta functions

In what follows Gk(τ) are the Eisenstein series defined for all k ≥ 2, by

Gk(τ) :=

∞∑

n=−∞




∞∑

m=−∞
m 6=0 if n=0

1

(m+ nτ)k


 = 2ζ(k) +

2 · (2πi)k

(k − 1)!

∞∑

m=1

σk−1(m)qm,

where σα(k) =
∑

d|k d
α.

Enriquez Approach: Let H := {τ ∈ C|ℑ(τ) > 0} be the Poincaré half-plane. The theta function

we will use is denoted (z, τ) 7→ θτ (z), for (z, τ) ∈ C× H, where

θ(z, τ) := θτ (z) :=
eπiz − e−πiz

2iπ

∏

n>1

(1− e2πi(z+nτ))(1− e2πi(−z+nτ))

(1− e2πinτ )2
.

and it is the unique holomorphic function C × H −→ C such that θτ (z + 1) = −θτ (z) =

θτ (−z), θτ (z + τ) = −e−iπτe−2π izθτ (z), ∂
∂z θτ (z)|z=0 = 1, and (θτ (−))−1(0) = Λτ = Z + τZ.

Furthermore, we have θ(z|τ + 1) = θ(z|τ) and θ(z/τ |1/τ) = (1/τ)e(πi/τ)z
2

θ(z|τ). Recall that

the Dedekind η-function is given by η(τ) = q
1
24

∏
n>0(1 − qn) where q = e2πiτ .

The classical odd Jacobi theta function is, for q = e2iπτ ,

ϑ1(z, τ) := −
∑

n∈Z+ 1
2

eiπτn
2+2iπn(z+ 1

2 )

= −
∑

n∈Z

eiπτ(n+
1
2 )

2
+2iπ(n+ 1

2 )(z+
1
2 )

and we have ϑ1(z, τ) = 2πη3(τ)θτ (z). Set ϑ̂(z, τ) = ϑ1(z,τ)
2π . This also gives a heat equation

for ϑ:

∂τ ϑ̂ = (1/4πi)∂2
z ϑ̂

Brown-Levin-Racinet-Zagier approach: The standard odd elliptic theta functions are

ϑStd
1 (u, τ) :=

∑

n∈Z

(−1)n−
1
2 e2iπu(n+

1
2 )+iπτ(n+ 1

2 )
2

ϑStd
11 (u, τ) := i

∑

n∈Z

(−1)ne2iπu(n+
1
2 )+iπτ(n+ 1

2 )
2
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ϑZag(u, τ) :=
∑

n∈Z

(−1)nq
1
2 (n+

1
2 )

2

e(n+
1
2 )u

=
∑

n∈Z

(−1)neu(n+
1
2 )+iπτ(n+ 1

2 )
2

=
1

i
ϑ11(

u

2iπ
, τ),

and we can express ϑZag(u, τ) as a product via the Jacobi triple product formula (in Zagier’s

paper):

ϑZag(u, τ) = q
1
8

(
e

u
2 − e−

u
2

) ∞∏

n=1

(1 − qn)(1− qneu)(1− qne−u).

Finally, the theta function used by Brown-Levin is

θBL(ξ, τ) =
ϑ11(ξ, τ)

η(τ)
= q1/12(z1/2 − z1/2)

∏

j>1

(1zqj)(1z1qj),

and the one used by Levin-Racinet is

θLR(ξ, τ) = iq1/8(z1/2z1/2)
∏

j>0

(1zqj)(1z1qj)(1qj).

We have

ϑ1(z, τ) = −
∑

n∈Z+ 1
2

eiπτn
2+2iπn(z+ 1

2 )

= −
∑

n∈Z

q
1
2 (u+

1
2 )

2

ez(n+
1
2 )eπin+

πi
2

= −iϑZag(z, τ).

Kronecker series. The Kronecker series used by Zagier is the meromorphic function C×C×

H −→ C defined by

FZag(u, v, τ) :=
ϑZag ′(0, τ)ϑZag(u + v, τ)

ϑZag(u, τ)ϑZag(v, τ)
,

and the Kronecker series used by Enriquez is

FEn(x, z, τ) =
θ′(0, τ)θ(z + x, τ)

θ(z, τ)θ(x, τ)
=

θ(z + x, τ)

θ(z, τ)θ(x, τ)
.

Thus, as ϑZag(z) = 2πiη(τ)3θ(z, τ), we get

FZag(z, x, τ) = FEn(z, x, τ).

Next, the one used by Brown-Levin is

FBL(u, v, τ) :=
θBL ′(0, τ)θBL(u+ v, τ)

θBL(u, τ)θBL(v, τ)
,
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and is related to the one used by Levin-Racinet, denoted

FLR(ξ, η, τ) :=
θLR ′(0, τ)θLR(ξ + η, τ)

θLR(ξ, τ)θLR(η, τ)
,

by the formula

FLR(ξ, η, τ) = 2iπFZag(2iπξ, 2iπη, τ).

Finally, we have ϑ1(z, τ) = 2πη3(τ)θ(z, τ) and ϑ11(z, τ) = η(τ)θBL(z, τ) and ϑ11(z, τ) =

iϑZag(2iπz, τ). We have

η(τ)θBL(z, τ) = iϑZag(2iπz, τ)

In conclusion we get

• FBL(ξ, η, τ) = FLR(ξ, η, τ),

• FZag(ξ, η, τ) = FEn(ξ, η, τ), and

• FLR(ξ, η, τ) = 2iπFZag(2iπξ, 2iπη, τ).

In what follows we take Enriquez’ convention for the theta function.

2.4.2 The universal elliptic KZB connection

For τ ∈ h, denote Λτ := Z+ τZ and denote, for n ≥ 1,

Diag1,n := {(z, τ) ∈ Cn × H|zij ∈ Λτ , for some i 6= j}.

The semidirect product ((Zn)2 × C)⋊ SL2(Z) acts on (Cn × H)−Diag1,n by

• (n,m, u) ∗ (z, τ) := (z+ n+ τm + u(
∑

i δi), τ) for (n,m, u) ∈ (Zn)2 × C,

•
( α β
γ δ

)
∗(z, τ) := ( z

γτ+δ ,
ατ+β
γτ+δ ) for

( α β
γ δ

)
∈ SL2(Z).

The moduli spaceM1,n of elliptic curves with n marked points is defined as the quotient

M1,n := (Cn × H)−Diag1,n /((Z
n)2 ⋊ SL2(Z)),

and its reduced version is

M̄1,n := (Cn × H)−Diag1,n /(((Z
n)2 × C)⋊ SL2(Z)).

Remark 2.4.1. • In [24], M1,n is denoted M̃1,n and M̄1,n is denoted M1,n. We shifted

the notations of [24] for compatibility with our conventions for Chapter 6.

• The space M1,1 is the universal curve over M̄1,1 = h/ SL2(Z) and for n = 2 the moduli

space M̄1,2 is the punctured universal elliptic curve over M̄1,1. This is a fibration with, as

fibers at (equivalence classes of) τ , (equivalence classes of) the punctured elliptic curves

E×τ := Eτ − {0}.

• Remark that if

C(Eτ , n) := Conf(Eτ , n)/Eτ

are the reduced configuration spaces of Eτ , then C(Eτ , 2) = E×τ .
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• More generally, the fibers of the fibration M̄1,n+1 −→ M̄1,1 are (the equivalence classes

of) the spaces Conf(E×τ , n).

For any n ≥ 0, recall that t1,n(k) is defined as the bigraded Lie k-algebra freely generated by

x1, . . . , xn in degree (1, 0), y1, . . . , yn in degree (0, 1) (for i = 1, ..., n), and tij in degree (1, 1)

(for 1 ≤ i 6= j ≤ n), together with the relations (S), (L), (4T), and the following additional

elliptic relations as well:

(Seℓℓ) [xi, yj] = tij for i 6= j,

(Neℓℓ) [xi, xj ] = [yi, yj ] = 0 for i 6= j,

(Teℓℓ) [xi, yi] = −
∑

j|j 6=i tij ,

(Leℓℓ) [xi, tjk] = [yi, tjk] = 0 if #{i, j, k} = 3,

(4Teℓℓ) [xi + xj , tij ] = [yi + yj, tij ] = 0 for i 6= j.

The
∑

i xi and
∑

i yi are central in t1,n(k), and we also consider the quotient

t̄1,n(k) := t1,n(k)/(
∑

i

xi,
∑

i

yi) .

Example 2.4.2. t̄1,2(k) is equal to the free Lie k-algebra f2(k) on two generators x = x1 and

y = y2.

Let d+ be the free Lie algebra with generators δ2m (m ≥ 1). Denote the standard generatons

e, f, h of sl2 by d := h, X := e and ∆0 := f . Denote d := d+ ⋊ sl2 their semi-direct product,

the δ2m acting as highest weight elements (see [24] for details).

Proposition 2.4.3 ([24]). There is a Lie algebra morphism d −→ Der(t1,n) inducing a Lie

algebra morphism d −→ Der(̄t1,n).

An easy consequence is that we can then form the semi-direct products

Gn := exp((t1,n ⋊ d+)
∧)⋊ SL2(C) Ḡn := exp((̄t1,n ⋊ d+)

∧)⋊ SL2(C)

Theorem 2.4.4 ([24]). There is a unique Gn-bundle Pn overM1,n with a flat universal KZB

connection, locally defined by

∇KZB
1,n := d−∆(z|τ)dτ −

n∑

i=1

Ki(z|τ)dzi,

where z = (z1, . . . , zn) ∈ Cn, for 1 ≤ i ≤ n, we have

Ki(z|τ) := −yi +
∑

j:j 6=i

k(adxi, zi − zj|τ)(tij),

with k(x, z|τ) := θ(z+x|τ)
θ(z|τ)θ(x|τ) −

1
x , and

∆(z|τ) := −
1

2πi

(
∆0 +

∑

n≥1

(2n+ 1)G2n+2(τ)δ2n −
∑

i<j

∂xk(adxi, zi − zj |τ)(tij)
)
.

This induces a unique Ḡn-bundle P̄n over M̄1,n with a flat connection denoted ∇̄KZB
1,n .
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Remark 2.4.5. • When we say the connection is locally defined as so, we mean that there

is a unique such connection such that the pull-back to X := (Cn × H) − Diag1,n is the

connection ∇KZB
1,n on the trivial Gn-bundle over X.

• There is also an unordered marked points version of this connection that will not be

recalled in here.

• By fixing τ and choosing a section Conf(Eτ , n) of a representative in the equivalence class

[(Eτ , z1, . . . , zn)] ∈ M1,n, this connection restricts to a flat connection

∇KZB
1,n,τ := d−

n∑

i=1

Ki(z|τ)dzi,

on the (unique) principal exp(̂t1,n)-bundle over Conf(Eτ , n).

Let us fix τ ∈ h. Recall that the Lie algebra t̄1,2(C) is isomorphic to the free Lie algebra

f2(C) generated by two elements x := x1 and y := y1. We define the elliptic KZB associators

A(τ), B(τ) as the regularized holonomies from 0 to 1 and 0 to τ of the differential equation

G′(z) = −
θτ (z + adx) adx

θτ (z)θτ (adx)
(y) ·G(z), (2.14)

with values in the group exp(̂̄t1,2(C)) More precisely, this equation has a unique solution G(z)

defined over {a+ bτ, for a, b ∈]0, 1[} such that G(z) ≃ (−2π i z)−[x,y] at z −→ 0. In this case,

A(τ) := G(z)−1G(z + 1), B(τ) := G(z)−1e2π ixG(z + τ).

These are elements of the group exp(̂̄t1,2(C)). A recollection of the main features of elliptic

associators is done in the first part of [34] and will not be reproduced here.

2.4.3 Universality

As in the genus 0 case, one can ask in what manner this connection is universal and now it

will be of great importance to distinguish the case where the connection is defined over the

moduli space to the one that is defined only in the configuration space. Indeed, in the genus

0 case, the moduli spaceM0,n+1 of rational curves with n+ 1 marked points is isomorphic to

the quotient of the configuration space of n points in the plane modulo the action of Aut(C)

by homographies:

M0,n+1 ≃ Conf(C, n)/(C∗ ⋊C).

In the genus 1 case, however, such a relation is not true. Another issue here is that the de Rham

complex in this setup (either for the configuration space setting or the moduli space setting)

is not generated by the first cohomology group so we will not be able to apply Proposition

2.2.28.
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Towards the Gauss-Manin connection ∇KZB
1,n over M1,n

In this section we give an insight on the fact that the connection ∇KZB
1,n is the universal by

explaining that it is (conjecturally) the Gauss-Manin connection overM1,n. Let us start with

the restriction of this connection to that over Conf(Eτ , n), following [36].

Set X := Conf(Eτ , n) and x ∈ Conf(Eτ , n). Then (ommiting to explicit the basis point for

simplicity as X is arc-wise connected) we have πTop
1 (X) = PB1,n and πB

1 (X) = P̂B1,n(C).

Theorem 2.4.6 ([36]). • There is

– an explicit tensor functor

F : VBFC(Conf(Eτ , n))
uni −→ VectC

– a natural isomorphism

VBFC(Conf(Eτ , n))
uni −→ IsoVecC(F (E ,∇), F vb

x (E ,∇))

(E ,∇) 7−→ i(E,∇)

between the functors F and F vb
x ,

– a canonical isomorphism Aut⊗(F ) ≃ exp(̂tC1,n).

• The composed isomorphim

exp(̂t1,n)
∼ // Aut⊗(F )

∼ // Aut⊗(F vb
x )

∼

RH
// Aut⊗(F ls

x )
∼ // P̂B1,n(C)

coincides with the inverse of the completed monodromy representation map

P̂B1,n(C) −→ exp(̂t1,n)

induced by the universal KZB connection ∇KZB
1,n,τ over Conf(Eτ , n).

Now, following [62], let us show that the bundle Pn with the KZB connection is the de Rham

realization of a topological local system PTop
n .

Denote by Y the universal covering space of M̄1,n+1. This is also the universal covering

space of M̄h
1,n+1 =

(
Cn+1 × h) − ∆n+1. Choose a base point [Eτ , 0, z] of M̄1,n+1, where

z = (z1, . . . , zn), and zi 6= 0 for all 1 ≤ i ≤ n. Choose a lift y of it to Y . This determines an

isomorphism of Aut(Y/M̄1,n+1) with π1(M̄1,n+1, [Eτ , 0, z]).

Denote the unipotent completion of π1(Conf(E
×
τ , n), z) over C by Po. The natural action

π1(M̄1,n+1, [Eτ , 0, z])× π1(Conf(E
×
τ , n), z) −→ π1(Conf(E

×
τ , n), z),

(g, γ) 7−→ gγg−1

determines a left action of π1(M̄1,n+1, [Eτ , 0, z]) on Po. We can therefore form the quotient

(
Po × Y

)
/π1(M̄1,n+1, [Eτ , 0, z])
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by the diagonal π1(M̄1,n+1, [Eτ , 0, z])-action. This is a flat right principal Po-bundle which

we shall denote by PTop
n −→ M̄1,n+1. Its fiber over [Eτ , 0, z] is naturally isomorphic to the

unipotent completion of π1(Conf(E
×
τ , n)).

Since the Lie algebra po of Po can be viewed as a group with multiplication defined by the

Baker-Campbell-Hausdorff formula, we can (and will) view PTop
n as a local system of Lie

algebras.

Choose a base point [Eτ , 0, z] of M̄1,n+1, where z = (z1, . . . , zn), and zi 6= 0 for all 1 ≤ i ≤ n.

There is a natural isomorphism

π1(M̄1,n+1, [Eτ , 0, z]) ≃ Γ1,n+1,

where Γ1,n is the mapping class group of a genus 1 curve with n marked points (see [13]).

The restriction of the universal elliptic KZB connection to Conf(E×τ , n) defines a homomor-

phism π1(Conf(E
×
τ , n), z) −→ Aut(̂̄t1,n+1) whose image lies in the subgroup exp(̂̄t1,n+1) which

acts on ˆ̄t1,n+1 via the adjoint action. From the formality morphism [24, Proposition2.2], we

conclude that it induces an isomorphism π̂1(Conf(E
×
τ , n), z)(C) −→ exp(̂̄t1,n+1).

Identify exp(̂̄t1,n+1) with π̂1(Conf(E
×
τ , n), z)(C) via this isomorphism. Then one has the mon-

odromy representations

ρKZB : Γ1,n+1 −→ Aut(exp(̂̄t1,n+1)) and ρTop : Γ1,n+1 −→ Aut(exp(̂̄t1,n+1))

of Pn and PTop
n . To prove that PTop

n and Pn are isomorphic (seen here as principal bundles),

we have to prove that ρKZB = ρTop. Observe that if γ ∈ π1(Conf(E
×
τ , n), z), then ρTop(γ) and

ρKZB(γ) are both conjugation by the image of γ in Pn as the restriction of Pn and PTop
n to

Conf(E×τ , n) are isomorphic.

As explained below, rigidity explains that if the restriction to each fiber (that is, to each

configuration space) is the correct local system, then it is the correct local system over the

whole moduli space M̄1,n+1. More precisely, the marked points version of [62], Theorem 14.2

is then

Theorem 2.4.7. The exponential map induces an isomorphism of the local system over

M̄1,n+1 of flat sections of the universal elliptic KZB connection on P with the locally con-

stant sheaf PTop
n over M̄1,n+1. Equivalently, the diagram

π1(Conf(E
×
τ , n), z)

ρKZB

// Aut(̂̄t1,n+1)

≃

��

π1(Conf(E
×
τ , n), z)

ρTop

// Aut(exp(̂̄t1,n+1))

commutes.

Proof. One can apply [62, Lemma 14.1] to

• Γ = Γ1,n+1 = πTop
1 (M̄1,n+1),
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• N = πTop
1 (Conf(E×τ , n), z) ≃ P̄B1,n+1, which has trivial center,

• N = exp(̂̄t1,n+1),

• φ = ρTop

to establish the equality of ρKZB and ρTop.

Remark 2.4.8. By combining Hain’s and Enriquez-Etingof’s results one should be able to

conclude that the universal elliptic KZB connection ∇̄KZB
1,n+1 is the Gauss-Manin connection on

M̄1,n+1.

2.4.4 Reminders on Hecke algebras

Differential operators. The algebra of differential operators Diff(g) on g is generated by

linear forms over g denoted x∗ ∈ g∗ and differential operators denoted ∂x, for x ∈ g. By

choosing a basis we a family (xα, ∂α) where xα := x∗α is a degree 1 polynomial and ∂α is the

derivative in the direction xα. These elements have relations

• [x∗, y∗] = 0,

• [∂v, ∂w] = 0,

• [∂w, v
∗] = v∗(w).

Remark 2.4.9. Diff(g∗) is a quantization of T ∗g∗ = g×g∗ and, by identifying g with its dual,

we denote x := x∗ ∈ g and Diff(g) = Diff(g∗).

In conclusion,

Diff(g) = 〈xa, ∂a; a ∈ g〉/




a 7→ xa, a 7→ ∂a are linear

[xa, xb] = [∂a, ∂b] = 0

[∂a, xb] = 〈a, b〉g


 .

Quantum Hamiltonian reduction. Let us briefly recall what Hamiltonian reduction is

about. Let X be a symplectic variety and let G be a Lie group acting on X with associated

Lie algebra g. The moment map is a G-equivariant map µ : X −→ g∗ such that µ∗ : g ⊂

C∞(g∗) −→ C∞(X) satisfies that for all x ∈ g, f ∈ C∞(X),

{µ∗x, f} = ~X(f) =⇒ {µ∗x, µ∗y} = ~X(µ∗y) = µ∗ ~X(y) = µ∗[X,Y ].

Then µ−1(0)/G is Poisson. Thus,

C∞((µ∗)−1(0)) = C∞(X)/(C∞(X)µ∗(g))g.

In conclusion, let A0 be a Poisson algebra and µ∗0 : g −→ A0 be a Lie algebra morphism. If g

acts on A0 by means of {µ∗0X,−}, then the Hamiltonian reduction of A0 is the Poisson algebra

Ag
0/(A

g
0µ
∗
0(g))

g.

Now let A be an associative algebra which is a quantization of A0, that is, A ≃ A0JhK. Let

µ∗ : g −→ A be a Lie algebra morphism which is a quantization of µ∗0 i.e. we have
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• µ∗ = µ∗0 + ◦(h),

• a ∗ b = a.b+ h{a, b}+ ◦(h).

Then g acts on A by the commutator [µ∗X,−] and it can be shown that (Aµ∗g)g is a two-sided

ideal of Ag so

Ag/(Agµ∗(g))g

is an associative algebra called quantum Hamiltonian reduction, as it is a quantization of the

above Hamiltonian reduction.

Hecke algebras. Let n > 1 be a natural number. As we saw earlier, Diff(g) is a quantization

of T ∗g∗ and U(g) is a quantization of g∗. Thus, the moment map is just the coadjoint action

Diff(g) −→ g∗

i.e. induces a Lie algebra morphism

g −→ Diff(g)

a 7−→ Xa

called quantum moment map, or infinitesimal adjoint action. We also have a Lie algebra map

g −→ U(g)⊗n so we get a map

ϕ : g −→ Diff(g)⊗ U(g)⊗n := An

a 7−→ Ya := Xa ⊗ 1 + 1⊗
n∑

i=1

a(i)

where a(i) = 1⊗ · · · ⊗ a⊗ · · · ⊗ 1 and Xa =
∑
α
x[a,eα]∂α.

Proposition 2.4.10. Denote gdiag := im(ϕ). Then the vector subspace Ang
diag is two-sided

ideal.

Proof. If x, y ∈ H := {x ∈ An; g
diagx ⊂ Ang

diag} ⊃ Ang
diag, then

• gdiag(x+ y) ⊂ Ang
diag;

• gdiag(xy) ⊂ Ang
diag;

• it is stable by left and right multiplication (Ang
diagx ⊂ Ang

diag).

We conclude that the quotient H/Ang
diag is an associative algebra.

Definition 2.4.11. The Hecke algebra of (An, g
diag) is (the quantum Hamiltonian reduction):

Hn(g) = {x ∈ An; ∀a ∈ g, Yax ∈ Ang
diag}/Ang

diag.
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Remark 2.4.12. The name " Hecke algebra " here is justified because this situation is in

perfect analogy to that where usual Hecke algebras appear. If H ⊂ G are simple groups, one

can ask about the representations, which are modules over C[H ] and C[G] respectively. One

then constructs H(G,H) = C[hG/h]]. If V is a C[G]-module, then Hecke showed that V H

is a H(G,H)-module. In other words, Hn(g) is the Hecke algebra associated to the quantum

moment map g −→ A.

Classical dynamical Yang-Baxter equations. The classical dynamical Yang-Baxter equa-

tion was introduced in [43] by Felder whose construction we now recall. Suppose we have a Lie

subalgebra h of g together with an element Z ∈ (∧2g)g. A (non-modified) classical dynamical

r-matrix for the pair (g, h) is a regular h-equivariant map ρ : h∨ −→ ∧2g which satisfies the

(non-modified) classical dynamical Yang-Baxter equation (CDYBE)

CYB(ρ)−Alt(dρ) = 0

where

• CYB(ρ) := [ρ1,2, ρ1,3] + [ρ1,2, ρ2,3] + [ρ1,3, ρ2,3] = 1
2 [ρ, ρ],

• Alt(dρ) :=
∑

i h
1
i
∂ρ2,3

∂λi − h2
i
∂ρ1,3

∂λi + h3
i
∂ρ1,2

∂λi .

and where (hi) and (λi) are basis dual to each other in h and h∧ respectively.

Remark 2.4.13. Here regular means C∞, meromorphic, formal etc. depending on the context.

Assume that g is finite dimensional and that we have a reductive decomposition g = h⊕n, i.e.,

h ⊂ g is a Lie subalgebra and n ⊂ g is a vector subspace such that [h, n] ⊂ n; assume also that

tg = th + tn, where th ∈ S2(h)h and tn ∈ S2(n)h.

We assume that for a generic h ∈ h, ad(h)|n ∈ End(n) is invertible (i.e. that the decomposition

is non-degenerate). This condition is equivalent to the nonvanishing of P (λ) := det(ad(λ∨)|n) ∈

Sdimn(h), where λ 7→ λ∨ is the map h∗ −→ h, with λ∨ := (λ ⊗ id)(th). If G is a Lie group

with Lie algebra g, an equivalent condition is that a generic element of g∗ is conjugate to some

element in h∗ (see [37]).

Let us set, for λ ∈ h∗,

r(λ) := (id⊗(adλ∨)−1|n )(tn)

and denote h∗reg = {λ ∈ h∗|P (λ) 6= 0}. Then r : h∗reg −→ ∧
2(n) is a classical dynamical

r-matrix for the pair (g, h) (see [37]).

2.4.5 Realizations of the universal elliptic KZB connection

As in the genus 0 case, the universal KZB connection has realizations.

Let g be a semi-simple Lie algebra over a field k of characteristic equal to 0 and let Hn(g) be

its associated Hecke algebra.

Proposition 2.4.14. There is a unique Lie algebra morphism t̄1,n ⋊ d −→ Hn(g), defined by
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• x̄i 7−→
∑

α xα⊗e
(i)
α ,

• ȳi 7−→ −
∑

α ∂α ⊗ e
(i)
α ,

• t̄ij 7−→ 1⊗ t
(ij)
g .

• ∆0 7−→ −
1
2 (
∑

α ∂2
α)⊗ 1,

• X 7−→ 1
2 (
∑

α x2α)⊗ 1,

• d 7−→ 1
2 (
∑

α xα ∂α + ∂α xα)⊗ 1,

• δ2m 7−→
1
2

∑
α1,...,α2m,α xα1 · · · xα2m ⊗(

∑n
i=1(ad(eα1) · · · ad(eα2m)(eα) · eα)(i))

for m ≥ 1.

This morphism also extends to a morphism U (̄t1,n⋊ d)⋊Sn −→ Hn(g)⋊Sn by the assignment

σ 7−→ σ.

Under the assumptions of the above subsection, one can show that the universal KZB con-

nection induces a classical dynamical r-matrix which is the realization of the universal KZB

connection associated to the pair (g, h).

If moreover we assume that g is simple and h is Cartan, then it can be shown that the universal

KZB connection realizes to the former KZB connection constructed by Bernard in [9] in the

context of Wess-Zumino-Witten models.

2.5 Reminders on operads, operadic modules and moper-

ads

In this section we fix a symmetric monoidal category (C,⊗,1) having small colimits and such

that ⊗ commutes with these.

2.5.1 S-modules

An S-module (in C) is a functor S : Bij −→ C, where Bij denotes the category of finite sets

with bijections as morphisms. It can also be defined as a collection (S(n))n≥0 of objects of C

such that S(n) is endowed with a right action of the symmetric group Sn for every n; one has

S(n) := S({1, . . . , n}). A morphism of S-modules ϕ : S −→ T is a natural transformation. It

is determined by the data of a collection ϕ(n) : S(n) −→ T (n) of Sn-equivariant morphisms

in C.

The category S-mod of S-modules is naturally endowed with a symmetric monoidal product

⊗ defined as follows:

(S ⊗ T )(n) :=
∐

p+q=n

(S(p)⊗ T (q))
Sn

Sp×Sq
.

Here, if H ⊂ G is a group inclusion, then (−)GH is left adjoint to the restriction functor from

the category of objects carrying a G-action to the category of objects carrying an H-action.



2.5. REMINDERS ON OPERAD STRUCTURES 69

We let the reader check that the symmetric sequence 1⊗ defined by

1⊗(n) :=




1 if n = 0

∅ else

is a monoidal unit.

There is another (non-symmetric) monoidal product ◦ on S-mod, defined as follows:

(S ◦ T )(n) :=
∐

k≥0

T (k) ⊗
Sk

(
S⊗k(n)

)
.

Here, if H is a group and X,Y are objects carrying an H-action, then

X ⊗
H
Y := coeq


∐

h∈H

X ⊗ Y

h⊗id
−→

−→
id⊗h

X ⊗ Y


 .

We let the reader check that the symmetric sequence 1S defined by

1◦(n) :=




1 if n = 1

∅ else

is a monoidal unit for ◦.

2.5.2 Operads

An operad (in C) is a unital monoid in (S-mod, ◦,1◦). The category of operads in C will be

denoted OpC.

More explicitly, an operad structure on a S-module O is the data:

• of a unit map e : 1 −→ O({1}).

• for every sets I, J and any element i ∈ I, of a partial composition

◦i : O(I)⊗O(J) −→ O (J ⊔ I − {i})

satisfying the following constraints:

• if we have sets I, J,K, and elements i ∈ I, j ∈ J , then the following diagram commutes:

O(I)⊗O(J) ⊗O(K)

id⊗◦j

��

◦i⊗id // O (J ⊔ I − {i})⊗O(K)

◦j

��
O(I) ⊗O (K ⊔ J − {j})

◦i // O (K ⊔ J ⊔ I − {i, j})

• if we have sets I, J1, J2 and elements i1, i2 ∈ I, then the following diagram commutes:

O(I)⊗O(J1)⊗O(J2)

(◦i2⊗id)(23)

��

◦i1⊗id // O (J1 ⊔ I − {i1})⊗O(J2)

◦i2

��
O (J2 ⊔ I − {i2})⊗O(J1)

◦i1 // O (J2 ⊔ J1 ⊔ I − {i1, i2})
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• if we have sets I, I ′, J , i ∈ I and a bijection σ : I −→ I ′, then the following diagram

commutes:

O(I) ⊗O(J)

◦i

��

O(σ) // O(I ′)⊗O(J)

◦σ(i)

��
O (J ⊔ I − {i})

O(id⊔σ|I−{i})// O (J ⊔ I ′ − {σ(i)})

• if we have a set I and i ∈ I, then the following diagrams commute:

1⊗O(I)

≃
''❖❖

❖❖
❖❖

❖❖
❖❖

❖❖

e⊗id// O({1})⊗O(I)

◦1

��
O(I)

O(I) ⊗ 1

≃

��

id⊗e// O(I)⊗O({1})

◦i

��
O(I)

i7→1

≃ // O (I ⊔ {1} − {i})

Example 2.5.1. Let X be an object of C. Then we define, for any finite set I, the set

End(X)(I) := HomC(X
⊗I , X). Composition of tensor products of maps provide End(X) with

the structure of an operad in sets.

Given an operad in sets O, an O-algebra in C is an object X of C together with a morphism

of operads O −→ End(X).

2.5.3 Example of an operad: Stasheff polytopes

To any finite set I we associate the configuration space Conf(R, I) = {x = (xi)i∈I ∈ RI |xi 6=

xj if i 6= j} and its reduced version

C(R, I) := Conf(R, I)/R⋊ R>0 .

The Fulton-MacPherson compactification C(R, I) of C(R, I) (see [47]) is a disjoint union of

|I|-th Stasheff polytopes [94], indexed by SI . The boundary ∂C(R, I) := C(R, I) − C(R, I) is

the union, over all partitions I = J1
∐
· · ·
∐

Jk, of

∂J1,··· ,Jk
C(R, I) :=

k∏

i=1

C(R, Ji)× C(R, k) .

The inclusion of boundary components provides C(R,−) with the structure of an operad in

topological spaces (where the monoidal structure is given by the cartesian product).

One can see that C(R, I) is actually a manifold with corners, and that, considering only zero-

dimensional strata of our configuration spaces, we get a suboperad Pa ⊂ C(R,−) that can be

shortly described as follows:

• Pa(I) is the set of pairs (σ, p) with σ is a linear order on I and p a maximal parenthe-

sization of • · · · •︸ ︷︷ ︸
|I| times

,

• the operad structure is given by substitution.

Notice that Pa is actually an operad in sets, and that Pa-algebras are nothing else than

magmas.
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2.5.4 Modules over an operad: Bott-Taubes polytopes

A module over an operad O (in C) is a left O-module in (S-mod, ◦,1◦). Notice that any operad

is a module over itself. We let the reader find the very explicit description of a module in terms

of partial compositions, as for operads.

To any finite set I we associate the configuration space Conf(S1, I) = {x = (xi)i∈I ∈ (S1)I |xi 6=

xj if i 6= j} and its reduced version

C(S1, I) := Conf(S1, I)/S1 .

The Fulton–MacPherson compactification C(S1, I) of C(S1, I) is a disjoint union of |I|-th Bott–

Taubes polytopes [15], indexed by SI . The boundary ∂C(S1, I) := C(S1, I) − C(S1, I) is the

union, over all partitions I = J1
∐
· · ·
∐

Jk, of

∂J1,··· ,Jk
C(S1, I) :=

k∏

i=1

C(R, Ji)× C(S1, k) .

The inclusion of boundary components provides C(S1,−) with the structure of a module over

the operad C(R,−) in topological spaces.

One can see that C(S1, I) is actually a manifold with corners, and that, considering only zero-

dimensional strata of our configuration spaces, we get Pa ⊂ C(S1,−), which is a module over

Pa ⊂ C(R,−).

2.5.5 Moperads over an operad

Let O be an operad. A moperad over an operad O is an S-module P carrying

• a unital monoid structure for the monoidal product ⊗,

• and a left O-module structure for the monoidal product ◦, that are compatible in the

following sense:

– One first observes that there is a natural map (O ◦ P)⊗Q −→ O ◦ (P ⊗Q).

– Then the compatibility means that the following diagram commutes:

(O ◦ P)⊗ P //

��

P ⊗ P

""❉
❉
❉
❉
❉
❉
❉
❉
❉

O ◦ (P ⊗ P) // O ◦ P // P

The map (O ◦ P)⊗ P −→ P one obtains decomposes into maps

P(k)⊗ P(m0)⊗O(m1)⊗ · · · ⊗ O(mk) −→ P(m0 + · · ·+mk)

satisfying certain associativity, unit and S-equivariance relations. We leave it as an exercise

to check that, within the symmetric monoidal category of differential graded vector spaces,

this definition coincides with Willwacher’s one from [101] (from which we borrowed the name

“moperad”). Note that the monoid structure for the monoidal product ⊗ encodes precisely the

partial composition with respect to the second colour. We will denote this partial composition

by ◦0.
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2.5.6 Example of a moperad over an operad: coloured Stasheff poly-

topes

To any finite set I we associate the configuration space Conf(R>0, I) = {x = (xi)i∈I ∈

(R>0)
I |xi 6= xj if i 6= j} and its reduced version

C(R>0, I) := Conf(R>0, I)/R>0 .

The Fulton–MacPherson compactification C(R>0, I) of C(R>0, I) is a disjoint union of |I|-th

Stasheff polytopes with two kinds of colours, indexed by SI . The boundary ∂C(R>0, I) :=

C(R>0, I)− C(R>0, I) is the union, over all partitions I = J0
∐

J1
∐
· · ·
∐

Jk, of

∂J0,··· ,Jk
C(R>0, I) := C(R>0, k)× C(R>0, J0)×

k∏

i=1

C(R, Ji) .

The inclusion of boundary components provides C(R>0,−) with the structure of a C(R,−)-

moperad in topological spaces.

One can see that C(R>0, I) is a manifold with corners, and that considering only zero-dimensional

strata of our configuration spaces we get a sub-moperad Pa0 ⊂ C(R>0,−) that can be shortly

described as follows:

• Pa0(I) is the set of pairs (σ, p) with σ is a linear order on I and p a maximal parenthe-

sization of


0• · · · •︸ ︷︷ ︸
|I| times


 such that there is no action of Sn on 0, but this element can be

inside a parenthesis. This means that we allow points to be near the origin.

• The C(R,−)-moperad structure is given by substitution as above.

Forgetting the C(R,−)-moperad structure on C(R>0,−) and considering a C(R,−)-module

structure on it amounts to forbidding points to be close to the origin (i.e. the 0-strand cannot

be inside a parenthesis in this case).

2.5.7 Prounipotent completion and fake pull-back of operads in groupoids

Let k be a Q-ring. We denote by CoAlgk the symmetric monoidal category of complete

filtered topological coassociative cocommutative counital k-coalgebras, where the monoidal

product is given by the completed tensor product ⊗̂k over k.

Let Cat(CoAlgk) be the category of small CoAlgk-enriched categories. It is symmetric

monoidal as well, with monoidal product ⊗ defined as follows:

• Ob(C ⊗ C′) := Ob(C)×Ob(C′).

• HomC⊗C′

(
(c, c′), (d, d′)

)
:= HomC(c, d)⊗̂kHomC′(c′, d′).

Let us now consider the symmetric monoidal category Grpd of groupoids, with symmetric

monoidal structure given by the cartesian product. We have a symmetric monoidal functor

Grpd −→ Cat(CoAlgk)

G 7−→ G(k)
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defined as follows:

• Objects of G(k) are objects of G.

• For a, b ∈ Ob(G),

HomG(k)(a, b) = ̂k ·HomG(a, b) .

Here k·HomG(a, b) is equipped with the unique coalgebra structure such that the elements

of HomG(a, b) are grouplike (meaning that they are diagonal for the coproduct and that

their counit is 1), and the “ ̂ ” refers to the completion with respect to the topology

defined by the sequence (HomIk(a, b)
)
k≥0

, where:

– Ik is the category having the same objects as G and morphisms lying in the k-th power

(for the composition of morphisms) of kernels of the counits of k · HomG(a, b)’s.

• For a functor F : G −→ H, F (k) : G(k) −→ H(k) is the functor given by F on objects

and by k-linearly extending F on morphisms.

Being symmetric monoidal, this functor sends operads in groupoids to operads in Cat(CoAlgk).

Example 2.5.2. For instance, viewing Pa as an operad in groupoid (with only identities as

morphisms), then Pa(k) is the operad in Cat(CoAlgk) with same objects as Pa, and whose

morphisms are

HomPa(k)(n)(a, b) =




k if a = b

0 else

with k being equipped with the obvious coproduct ∆(1) = 1⊗ 1 and counit ǫ(1) = 1.

The functor we have just defined has a right adjoint

G : Cat(CoAlgk) −→ Grpd ,

that we can describe as follows:

• For C in Cat(CoAlgk), objects of G(C) are objects of C.

• For a, b ∈ Ob(G), HomG(C)(a, b) is the subset of grouplike elements in HomC(a, b).

Being right adjoint to a symmetric monoidal functor, it is lax symmetric monoidal, and thus

it sends operads (resp. modules, resp. moperad) to operads (resp. modules, resp. moperad).

We thus get a k-prounipotent completion functor G 7→ Ĝ(k) := G
(
G(k)

)
for operads (resp. mod-

ules, resp. moperad) in groupoids.

Finally, let P ,Q be two operads (resp. modules, resp. moperad) in groupoids. If we are given a

morphism f : Ob(P) −→ Ob(Q) between the operads (resp. operad modules, resp. moperads)

of objects of P and Q, then (following [46]) we can define an operad (resp. operad module,

resp. moperad) f⋆Q in the following way:

• Ob(f⋆Q) := Ob(P),
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• Hom(f⋆Q)(n)(p, q) := HomQ(n)(f(p), f(q)).

In particular, f⋆Q inherits the operad structure of P for its operad of objects and that of Q

for the morphisms.

Remark 2.5.3. Notice that this is not a pull-back in the category of operads in groupoids.

2.5.8 Pointed versions

Observe that there is an obvious operad Unit defined by

Unit(n) =




1 if n = 0, 1

∅ else

By convention, all our operads O will be pointed in the sense that they will come equipped with

a specific operad morphism Unit −→ O. Morphisms of operads are required to be compatible

with this pointing. Actually, all operads appearing in this paper are such that O(n) ≃ 1 if

n = 0, 1.

Now, if P is an O-module, then it naturally becomes a Unit-module as well, by restriction. By

convention, all our modules will be pointed as well, in the sense that they will come equipped

with a specific Unit-module morphism Unit −→ P . Morphisms of modules are required to

be compatible with the pointing. Again, all modules appearing in this paper are such that

P(n) ≃ 1 if n = 0, 1.

Finally, there is a nice moperad Minut over Unit, which is such that Minut(n) = 1 for all

n ≥ 0. By convention, all our moperads will be pointed, in the sense that they will come

equipped with a specific unit-moperad morphism Minut −→ Q. Morphisms of moperads are

required to be compatible with the pointing.

Remark 2.5.4. In the category of sets, Minut is the sub-Unit-moperad of Pa0 that consists

only of the left-most maximal parenthesization.

The main reason for these rather strange conventions is that we need the following features,

that we have in the case of compactified configuration spaces:

• For operads, modules and moperads, we want to have “deleting operations” O(n) −→

O(n− 1) that decrease arity.

• For modules and moperads, we want to be able to see the operad “inside” them, i.e. we

want to have distinguished morphism O −→ P of S-modules.

Example 2.5.5. For instance, being a Pa-moperad, Pa0 comes together with a morphism of

S-modules Pa −→ Pa0. We let the reader check that it sends a parenthesized permutation p

to 0(p).
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2.5.9 Group actions

Let G be a group and O be an operad. We say an O-module P carry a G-action if

• for every n ≥ 0, Gn acts Sn-equivariantly on P(n), from the left.

• for every m ≥ 0, n ≥ 0, and 1 ≤ i ≤ n, the partial composition

◦i : P(n)⊗O(m) −→ P(n+m− 1)

is equivariant along the group morphism

Gn −→ Gn+m−1

(g1, . . . , gn) 7−→ (g1, . . . , gi−1, gi, . . . , gi︸ ︷︷ ︸
m times

, gi+1, . . . , gn)

If P is a moperad, we additionally require that the partial composition

◦0 : P(n)⊗ P(m) −→ P(n+m)

is Gn+m-equivariant.

A morphism P −→ Q of O-modules (or O-moperads) with G-action is said G-equivariant if,

for every n ≥ 0, the map P(n) −→ Q(n) is Gn-equivariant.

2.6 Grothendieck-Teichmüller groups

Initially, Grothendieck-Teichmüller groups and associators were, in the genus 0, cyclotomic and

genus 1 cases, constructed by using braided monoidal categories, braided modules categories

and elliptic structures over braided monoidal categories respectively. Already in V. Drinfeld’s

work, associators had an implicit operadic nature (made explicit in [5]) which permits to define

associators as formality isomorphisms between operads closely related to the little disks op-

erad. More specifically, there is an operad in groupoids PaB encapsulating the combinatorics

of parenthesized braidings and an operad in groupoids GPaCD encapsulating the combina-

torics of parenthesized chord diagrams. The former is obtained (roughly) by considering a

parenthesized version of the (pure) braid group on the torus. The latter is obtained from

the collection t(k) of Lie (k)-algebras tn(k), for n ≥ 1, which has a natural operad structure.

In this scope, the (naive) Grothendieck-Teichmüller group consists on the group of automor-

phisms of PaB which are the identity on objects, the graded Grothendieck-Teichmüller group

is the group of automorphisms of GPaCD which are the identity on objects, and, by denoting

P̂aB(k) the k-prounipotent completion of PaB, then the set of k-associators consists on the

set of isomorphisms P̂aB(k) −→ GPaCD of operads in k-prounipotent groupoids which are

the identity on objects. It can be shown that these operadic point of view is compatible with

the classic one, namely that there is a one-to-one correspondence between the operadic defini-

tion of these objects and the objects defined in the literature in terms of elements satisfying

certain equations.
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Let us mention that in [46], B. Fresse developped a very general rational homotopy theory for

operads in order to understand from a homotopical viewpoint, a deep relationship between

operads and Grothendieck-Teichmüller groups which was first foreseen by M. Kontsevich in

his work on deformation quantization process in mathematical physics.

More specifically, after developing a general theory permitting to endow the category of oper-

ads in simplicial sets (and, further, of Hopf cooperads) with a (nice enough) model category

structure, the author uses an application of homotopy spectral sequences to show that the

Grothendieck-Teichmüller group has a topological interpretation as a group of homotopy au-

tomorphisms associated to the little 2-disc operad. A similar characterisation of the set of

associators is also done in the author’s work.

2.6.1 Compactified configuration space of the plane

To any finite set I we associate a configuration space

Conf(C, I) = {z = (zi)i∈I ∈ CI |zi 6= zj if i 6= j} .

We also consider its reduced version

C(C, I) := Conf(C, I)/C⋊ R>0.

We then consider the Fulton–MacPherson compactification C(C, I) of C(C, I). The boundary

∂C(C, I) = C(C, I)−C(C, I) is made of the following irreducible components: for any partition

I = J1
∐
· · ·
∐

Jk there is a component

∂J1,··· ,Jk
C(C, I) ∼= C(C, k)×

k∏

i=1

C(C, Ji) .

The inclusion of boundary components provides C(C,−) with the structure of an operad in

topological spaces.

2.6.2 The operad of parenthesized braids

We have inclusions of topological operads

Pa ⊂ C(R,−) ⊂ C(C,−) .

Then it makes sense to define

PaB := π1

(
C(C,−),Pa

)
,

which is an operad in groupoids.

Example 2.6.1 (Description of PaB(2)). Let us first recall that Pa(2) = S2, and that

C(C, 2) ≃ S1. Besides the identity morphism in PaB(2) going from (12) to (12), we have

an arrow R1,2 in PaB(2) going from (12) to (21) which can be depicted as follows3:

3We actually have another arrow, that can be obtained from the first one as (R2,1)−1 according to the notation that

is explained after Theorem 2.6.3, and which can be depicted as an undercrossing braid.
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1

2

2

1
1

2

Two incarnations of R1,2

Example 2.6.2 (Notable arrows in PaB(3)). Let us first recall that Pa(3) = S3×{(••)•, •(••)}

and that C(R, 3) ∼= S3 × [0, 1]. Therefore, we have an arrow Φ1,2,3 (the identity path in [0, 1])

from (12)3 to 1(23) in PaB(3). It can be depicted as follows:

(1

1

2)

(2

3

3)

1 2 3

Two incarnations of Φ1,2,3

The following result is borrowed from [46, Theorem 6.2.4], even though it perhaps already

appeared in [5] in a different form.

Theorem 2.6.3. As an operad in groupoids having Pa as operad of objects, PaB is freely

generated by R := R1,2 and Φ := Φ1,2,3 together with the following relations:

(H1) R1,2Φ2,1,3R1,3 = Φ1,2,3R1,23Φ2,3,1, as arrows from (12)3 to 2(31) in PaB(3),

(H2) (R2,1)−1Φ2,1,3(R3,1)−1 = Φ1,2,3(R23,1)−1Φ2,3,1, as arrows from (12)3 to 2(31) in PaB(3),

(P) Φ12,3,4Φ1,2,34 = Φ1,2,3Φ1,23,4Φ2,3,4, as arrows from ((12)3)4 to 1(2(34)) in PaB(4).

We now briefly explain the notation we have been using in the above statement, which is quite

standard. In this article, we write the composition of paths from left to right (and we draw

the braids from top to bottom). If X is an arrow from p to q in PaB(n), then

• for any r ∈ Pa(k), the identity of r in PaB(k) is also denoted r.

• for any r ∈ Pa(k), we write X1,...,n for r ◦1 X ∈ PaB(n+ k − 1).

• for any σ ∈ Sn+k−1 we define Xσ1,...,σn := (X1,...,n) · σ.

• for any r ∈ Pa(k), Xr,k+1,...,k+n−1 := X ◦1 r ∈ PaB(n+ k − 1).

• we allow ourselves to combine these in an obvious way.

We let the reader figuring out that this notation is unambiguous as soon as we specify the

starting object of our arrows. For example, the pentagon (P) and the first hexagon (H1)

relations can be respectively depicted as
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((1 2) 3) 4

1 (2 (3 4))

=

((1 2) 3) 4

1 (2 (3 4))

(P)

and

(1

2

2)

(3

3

1)

=

(1

2

2)

(3

3

1)

(H1)

or, as commuting diagrams (giving the name of the relations)

(12)(34)

Φ12,3,4

$$❏
❏❏

❏❏
❏❏

❏
(12)3

Φ1,2,3
//

R1,2

zzttt
tt
tt
t

1(23)

R1,23

$$❏
❏❏

❏❏
❏❏

❏

1(2(34))

Φ1,2,34
::tttttttt

Φ2,3,4

��

((12)3)4 and (21)3

Φ2,1,3

$$❏
❏❏

❏❏
❏❏

❏
(23)1

Φ2,3,1

zzttt
tt
tt
t

1((23)4)
Φ1,23,4

// (1(23))4

Φ1,2,3

OO

2(13)
R1,3

// 2(31)

2.6.3 The operad of chord diagrams

In [5, 46] it is shown4 that the collection of Kohno-Drinfeld Lie k-algebras tn(k) defined in the

introduction is provided with the structure of an operad in the category grLiek of positively

graded finite dimensional Lie algebras over k, with symmetric monoidal strucure is given by

the direct sum ⊕. Partial compositions are described as follows:

◦k : tI(k) ⊕ tJ(k) −→ tJ⊔I−{i}(k)

(0, tαβ) 7−→ tαβ

(tij , 0) 7−→





tij if k /∈ {i, j}
∑
p∈J

tpj if k = i

∑
p∈J

tip if j = k

4Even though the author of [5] does not use the concept of an operad.
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Observe that we have a lax symmetric monoidal functor

Û : grLiek −→ Cat(CoAlgk)

sending a positively graded Lie algebra to the degree completion of its universal envelopping al-

gebra, which is a complete filtered cocommutative Hopf algebra, viewed as a CoAlgk-enriched

category with only one object.

We then consider the operad of chord diagrams CD(k) := Û(t(k)) in Cat(CoAlgk).

Remark 2.6.4. This denomination comes from the fact that morphisms in CD(k)(n) can be

represented as linear combinations of diagrams of chords on n vertical strands, where the chord

diagram corresponding to tij can be represented as

i j1 n

1 ni j

and the composition is given by vertical concatenation of diagrams. Partial compositions can

easily be understood as “cabling and removal operations” on strands (see [5, 46]). Relations (L)

and (4T) defining each tn(k) can be represented as follows:

j ki l

i lj k

=

j ki l

i lj k

(L)

i j k

i j k

+

i j k

i j k

=

i j k

i j k

+

i j k

i j k

(4T)

2.6.4 The operad of parenthesized chord diagrams

Recall that the operad CD(k) has only one object in each arity. Hence we have an obvious

terminal morphism of operads ω1 : Pa = Ob(Pa(k)) −→ Ob(CD(k)), and thus we can

consider the operad

PaCD(k) := ω⋆
1CD(k)
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of parenthesized chord diagrams. Here is a self-explanatory example of how to depict a mor-

phism in PaCD(k)(3):

f ·

(i j) k

i (k j)

where f ∈ CD(k)(3).

Example 2.6.5 (Notable arrows of PaCD(k)). We have the following arrows in PaCD(k)(2):

H1,2 := t12·

1

1

2

2

=:

1

1

2

2

X1,2 = 1·

1

2

2

1

We also have the following arrow in PaCD(k)(3):

a1,2,3 = 1·

(1

1

2)

(2

3

3)

Remark 2.6.6. The elements H1,2, X1,2 and a1,2,3 are generators of the operad PaCD(k)

and satisfy the following relations:

(P) a12,3,4a1,2,34 = a1,2,3a1,23,4a2,3,4,

(H) X12,3 = a1,2,3X2,3(a1,3,2)−1X1,3a3,1,2,

(Inv) H2,1 = X1,2H1,2(X1,2)−1,

(SH) H12,3 = (a1,2,3)−1H2,3a1,2,3 + (X2,1)−1(a2,1,3)−1H1,3a2,1,3X2,1.

In particular, even if PaCD(k) does not have a presentation in terms of generators and

relations (as is the case fot PaB), one can shown that PaCD(k) has a universal property

with respect to the generators H1,2, X1,2 and a1,2,3 and the above relations (see [46, Theorem

10.3.4] for details).

2.6.5 Drinfeld associators

Let us first introduce some terminology that we use in this paragraph, as well as later in the

paper:
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• Grpdk denote the (symmetric monoidal) category of k-prounipotent groupoids (which

is the image of the completion functor G 7→ Ĝ(k)).

• for C being Grpd, Grpdk, or Cat(CoAlgk), the notation

Aut+Op C (resp. Iso+Op C)

refers to those automorphisms (resp. isomorphisms) which are the identity on objects.

In the remainder if this section we recall some well known results on the operadic point of

view on associators and Grothendieck-Teichmüller groups, which will be useful later on. Even

though the statements and proofs of all the results in this subsection can be found in [46], it

is worth mentionning that a "pre-operadic" approach was initiated by Bar-Natan in [5].

Definition 2.6.7. A Drinfeld k-associator is an isomorphism between the operads P̂aB(k)

and GPaCD(k) in Grpdk, which is the identity on objects. We denote by

Ass(k) := Iso+Grpd
k

(P̂aB(k), GPaCD(k))

the set of k-associators.

Theorem 2.6.8. There is a one-to-one correspondence between the set of Drinfeld k-associators

and the set Ass(k) of couples (µ, ϕ) ∈ k× × exp(̂f2(k)), such that

(S) ϕ3,2,1 = (ϕ1,2,3)−1,

(H) ϕ1,2,3eµt23/2ϕ2,3,1eµt31/2ϕ3,1,2eµt12/2 = eµ(t12+t13+t23)/2,

(P) ϕ1,2,3ϕ1,23,4ϕ2,3,4 = ϕ12,3,4ϕ1,2,34,

where ϕ1,2,3 = ϕ(t12, t23) is viewed as an element of exp(̂t3(k)) via the inclusion f̂2(k) ⊂ t̂3(k)

sending x to t12 and y to t23.

Two observations are in order:

• the free Lie k-algebra f2(k) in two generators x, y is graded, with generators having degree

1, and its degree completion is denoted by f̂2(k).

• the k-prounipotent group exp(̂f2(k)) is thus isomorphic to the k-prounipotent completion

F̂2(k) of the free group F2 on two generators.

This Theorem was first implicitely shown by Drinfeld in [27]. An explicit proof can be found

in [46, Theorem 10.2.9], and relies on the universal property of PaB from Theorem 2.6.3.

In particular, a morphism F : P̂aB(k) −→ GPaCD(k) is uniquely determined by a scalar

parameter µ ∈ k and ϕ ∈ exp(̂f2(k)) such that we have the following assignment in the

morphism sets of the parenthesized chord diagram operad PaCD:

• F (R) = eµt12/2,

• F (Φ) = ϕ(t12, t23) ,

where R and Φ are the ones from Examples 2.6.1 and 2.6.2.
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Example 2.6.9 (The KZ Associator). The first associator was constructed by Drinfeld with

the help of the monodromy of the KZ connection and is known as the KZ associator ΦKZ.

It is defined as the the renormalized holonomy from 0 to 1 of G′(z) = ( t12z + t12
z−1 )G(z), i.e.,

ΦKZ := G−10+G1− ∈ exp(̂t3(C)), where G0+ , G1− are the solutions such that G0+(z) ∼ zt12 when

z −→ 0+ and G1−(z) ∼ (1− z)t23 when z −→ 1−. We have

ΦKZ(V, U) = ΦKZ(U, V )−1, ΦKZ(U, V )eπiV ΦKZ(V,W )eπiWΦKZ(W,U)eπiU = 1,

where U = t12 ∈ f2(C) ≃ t̄3(C) := t3(C)/(t12 + t13+ t23), V = t23 ∈ t̄3(C) and U +V +W = 0,

and

Φ12,3,4
KZ Φ1,2,34

KZ = Φ1,2,3
KZ Φ1,23,4

KZ Φ2,3,4
KZ

(relation in exp(̂t4(C))) so (2πi,ΦKZ) is an element of Ass(C).

2.6.6 Grothendieck–Teichmuller group

Definition 2.6.10. The Grothendieck–Teichmüller group is defined as the group

GT := Aut+OpGrpd(PaB)

of automorphisms of the operad in groupoids PaB which are the identity of objects. One defines

similarly the k-pro-unipotent version

ĜT(k) := Aut+OpGrpd
k

(
P̂aB(k)

)

There are also pro-ℓ and profinite versions, denoted GTℓ and ĜT, that we will not consider

in this paper.

We can also characterize elements of GT and ĜT(k) as solutions of certain explicit algebraic

equations. This characterization proves that the above operadic definition of GT coincides

with the one given by Drinfeld in his original paper [27]. In this article we will focus on the

k-pro-unipotent version of this group in genus 0 and 1, and twisted situations.

Definition 2.6.11. Drinfeld’s Grothendieck–Teichmüller group ĜT(k) consists of pairs

(λ, f) ∈ k× × F̂2(k)

which satisfy the following equations:

(BS) f(x, y) = f(y, x)−1,

(BH) xν
1f(x1, x2)x

ν
2f(x2, x3)x

ν
3f(x3, x1) = 1,

(BP) f(x13x23, x34)f(x12, x23x24) = f(x12, x23)f(x12x13, x23x34)f(x23, x34) in P̂B4(k),

where x1, x2, x3 are 3 variables subject only to x1x2x3 = 1, ν = λ−1
2 , and xij is the elementary

pure braid Pij from the introduction. The multiplication law is given by

(λ1, f1)(λ2, f2) = (λ1λ2, f2(f1(x, y)x
λ1f1(x, y)

−1, yλ1)f1(x, y)).
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Theorem 2.6.12. There is an isomorphism between the groups ĜT(k) and ĜT(k).

This was first implicitely shown by Drinfeld in [27]. An explicit proof of this theorem can be

found for example in [46, Theorem 11.1.7]. In particular, one obtains the couple (λ, f) from

an automorphism F ∈ ĜT(k) as follows. We have

F




1

2

2

1




=




1

1

2

2




ν

·

1

2

2

1

=




1

2

2

1




2ν+1

(2.15)

F




(1

1

2)

(2

3

3)




= f




(1

(1

2)

2)

3

3

,

(1

(1

2)

2)

3

3



·

(1

1

2)

(2

3

3)

(2.16)

In other words, if we set λ = 2ν + 1, we get the assignment

• F (R1,2) = (R1,2)λ,

• F (Φ1,2,3) = f(x12, x23) · Φ1,2,3.

Remark 2.6.13. It is important to notice that the profinite, pro-ℓ, k-pro-unipotent versions of

the Grothendieck–Teichmüller group do not coincide with the profinite, pro-ℓ, k-pro-unipotent

completions of the“thin” Grothendieck–Teichmüller group GT which only consists of the pairs

(1, 1) and (−1, 1). We have morphisms

GT −→ ĜT ։ GTℓ →֒ ĜT(Qℓ) and GT −→ ĜT(k) .

2.6.7 Graded Grothendieck–Teichmuller group

Definition 2.6.14. The graded Grothendieck–Teichmüller group is the group

GRT(k) := Aut+OpGrpd
k

(GPaCD(k))

of automorphisms of GPaCD(k) that are the identity on objects.

Remark 2.6.15. When restricted to the full subcategory Cat(CoAlgconn
k ) of CoAlgk-enriched

categories for which the hom-coalgebras are connected, the functor G leads to an equivalence

between Cat(CoAlgconn
k ) and Grpdk. Hence there is an isomorphism

GRT(k) ≃ Aut+OpCat(CoAlgk)
(PaCD(k)) .

Again, the operadic definition of GRT(k) happens to coincide with the one originaly given by

Drinfeld.
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Definition 2.6.16. Let GRT1 be the set of elements in g ∈ exp(̂f2(k)) ⊂ exp(̂t3(k)) such that

• g3,2,1 = g−1 and g1,2,3g2,3,1g3,1,2 = 1, in exp(̂t3(k))),

• t12 +Ad(g1,2,3)−1(t23) + Ad(g2,1,3)−1(t13) = t12 + t13 + t23, in t̂3(k)),

• g1,2,3g1,23,4g2,3,4 = g12,3,4g1,2,34, in exp(̂t4(k))),

One has the following multiplication law on GRT1:

(g1 ∗ g2)(A,B) := g1(Ad(g2(A,B))(A), B)g2(A,B) .

Drinfeld showed in [27] that the above GRT1 is stable under ∗, that it defines a group structure

on it, and that rescaling transformations g(x, y) 7→ λ · g(x, y) = g(λx, λy) define an action of

k× of GRT1 by automorphisms.

Theorem 2.6.17. There is a group isomorphism GRT(k) ∼= k× ⋊GRT1.

This was first implicitely shown by Drinfeld in [27]. An explicit proof of this theorem can be

found for example in [46, Theorem 10.3.10]. In particular, we obtain the couple (λ, g) from an

automorphism G ∈ GRT(k) by the assignment

• G(X1,2) = X1,2,

• G(H1,2) = λH1,2,

• G(a1,2,3) = g(t12, t23) · a1,2,3.

2.6.8 Torsors

Recall first that there is a left free and transitive group action of ĜT(k) on Ass(k), defined by

(λ, f) ∗ (µ,Φ) := (λµ,Φ(A,B)f(eµA,Φ(A,B)−1eµBΦ(A,B))) = (µ′,Φ′).

Recal also that there is a right free and transitive group action of GRT(k) on Ass(k) defined

as follows: for g ∈ GRT1(k) and (µ,Φ) ∈M(k), (µ,Φ) ∗ g := (µ, Φ̃), where

Φ̃(t12, t23) = Φ((t12,Ad(g)t23))g,

and for c ∈ k×,(µ,Φ) ∗ c := (cµ, c ∗ Φ), where (c ∗ Φ)(A,B) = Φ(cA, cB). This makes

(ĜT(k),Ass(k),GRT(k)) into a torsor.

Proposition 2.6.18. There is a torsor isomorphism

(ĜT(k),Ass(k),GRT(k)) −→ (ĜT(k),Ass(k),GRT(k)) (2.17)

Proof. On the one hand, in [46, Theorem 10.3.13] it is shown that the natural left free and

transitive action of ĜT(k) over Ass(k) coincides with the action of GT(k) over Ass(k) via

the correspondence of Theorem 2.6.12. Thus, both actions are compatible. On the other

hand, in [46, Theorem 11.2.1], it is shown that the natural right free and transitive action of

GRT(k) over Ass(k) coincides with the action of GRT(k) over Ass(k) via the correspondence

of Theorem 2.6.17. Thus, both actions are also compatible.



Chapter 3

Results

The contributions below focus on questions related to the higher genus and the twisted elliptic

avatars of the V. Drinfeld’s story of KZ equations, associators and the group GT.

One the one hand, in Part I we make use of the theory of the Fulton-MacPherson compactifi-

cation, combined with operads, moperads ([101]) and operadic modules ([45]) to describe in a

conceptual manner twisted and higher genus versions of associators, Grothendieck-Teichmüller

groups and their graded versions.

On the other hand, in part II we focus on the twisted elliptic case to show the existence of a

so-called twisted elliptic C-associator arising from a flat universal KZB connection defined on

a principal bundle over the moduli space of elliptic curves with a level structure. The theory

of such a connection has immediate applications as to establishing the formality of some

subgroups of the pure braid group on the torus and producing representations of Cherednik

algebras. Analogously to the elliptic case, the coefficients of the generating series of the twisted

elliptic KZB associator will then be called twisted elliptic multiple zeta values (teMZVs for

short).

3.1 Operadic structures on associators and Grothendieck-

Teichmüller groups

As said, the set of k-associators is in a one-to-one correspondence with the set of isomorphisms

P̂aB(k) −→ GPaCD of operads in k-prounipotent groupoids which are the identity on ob-

jects. More generally, to any orientable compact surface Σg of genus g ≥ 2, one can associate a

(framed) configuration space of n points on Σg from which to obtain arbitrary genus definitions

of Grothendieck-Teichmüller groups and associators. More specifically, one can consider the

operad PaBg of genus g parenthesized braidings associated to the fundamental groupoids of

the Fulton-MacPherson compactified (framed) configuration spaces Conf(Σg, n) of Σg, based

on the collection of sets of parenthesized permutations. Next, the “holonomy" Lie algebra tg,n

of Conf(Σg, n) became available ([32]) and can be naturally endowed with the structure of a

85
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t-module. Then, a version of this Lie algebra (taking into account the framing of the configu-

ration spaces) will permit us to define a GPaCD-module GPaCDg of genus g parenthesized

chord diagrams. The genus g Grothendieck-Teichmüller group GTg will consist of group of

automorphisms of the PaB-module PaBg, the genus g graded Grothedieck-Teichmüller group

GRTg will consist of group of automorphisms of the GPaCD-module GPaCDg and the set

Assg of genus g associators will consist of the isomorphisms of modules P̂aBg(k) −→ GPaCDg

which are the identity on objects. The main result of these constructions is that, seen as a

PaB-module, PaBg has a nice presentation and we extract from it a characterisation of the

set Assg of genus g associators in terms of elements satisfying some equations in Theorem

5.3.13.

Further results are obtained in the elliptic, cyclotomic and twisted elliptic cases. In [25], we give

yet a new version of these operadic point of view on associators by taking a purely topological

point of view. Starting with the (reduced) twisted configuration spaces of the complex cylinder

and the torus, denoted respectively Conf(C×, n,N) and Conf(T, n,Γ), for M,N ≥ 1 and

Γ = Z/MZ × Z/NZ, one can construct the Fulton-MacPherson compactification of these

spaces. Then by considering, for all n ≥ 1, the collection of their fundamental groupoids based

on well chosen versions of collections of parenthesized permutations, they will be endowed with

a PaB-moperad (see [101] for the definition of a moperad over an operad) and a PaB-operadic

module structure respectively, denoted PaBN and PaBΓ
eℓℓ. Both PaBN and PaBΓ

eℓℓ have nice

presentations by generators and relations. Similarly to the genus 1 case, one can construct from

the Lie algebras tn,N and tΓ1,n, a GPaCD-moperad and a GPaCD-module denoted GPaCDN

and GPaCDΓ
eℓℓ respectively. Then Grothendieck-Teichmüller groups and associators in this

scope will be constructed as above1. We eventually get the following theorem.

Theorem 3.1.1. The following maps are bitorsor isomorphisms

(ĜTeℓℓ(k),Ell(k),GRTeℓℓ(k)) −→ (ĜTeℓℓ(k),Ell(k),GRTeℓℓ(k)) (3.1)

(ĜT
Γ
(k),AssΓ(k),GRTΓ(k)) −→ (ĜT

Γ
(k),AssΓ(k),GRTΓ(k)). (3.2)

Moreover, there is a torsor (ĜT
Γ

eℓℓ(k),Ell
Γ(k),GRTΓ

eℓℓ(k)) which allows us to define twisted

elliptic counterparts ĜT
Γ

eℓℓ(k), EllΓ(k), and GRTΓ
eℓℓ(k) of Grothendieck-Teichmüller groups

and associators in their non-operadic characterization.

3.2 The twisted elliptic KZB associator

We define a twisted version of the genus one KZB connection introduced in [24]. This is a flat

connection on a principal bundle over the moduli space of elliptic curves with a level structure

and n marked points.

1Let us remark that a very interesting continuation of the exploration of these operadic structures should be to adapt

Fresse’s model category structures to operadic modules to give a homotopical characterisation of GTeℓℓ(Q) in terms of

homotopy automorphisms associated to little disks on the torus.
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Consider the group Γ := Z/MZ × Z/NZ. and consider the following (finite index) subgroup

of SL2(Z):

SLΓ
2 (Z) :=

{(a b

c d

)
∈ SL2(Z)|a ≡ 1 mod M , d ≡ 1 mod N , b ≡ 0 mod N , c ≡ 0 mod M

}
.

The quotient Y (Γ) := H/ SLΓ
2 (Z) is a complex orbifold whose points classify isomorphism

classes of pairs (E, φ) where E is an elliptic curve and φ : Γ −→ E is an injective group

morphism that is orientation preserving. Such an elliptic curve with additional structure will

be called Γ-structured elliptic curve. More generally, one can construct the moduli spaceMΓ
1,n

of Γ-structured elliptic curves with n ordered marked points.

Let E be an elliptic curve over C and consider the connected unramified Γ-covering p : Ẽ −→ E

corresponding to the canonical surjective group morphism ρ : π1(E) = Z2 −→ Γ sending the

generators of Z2 to their respective classes in Γ. By choosing an uniformization of E, we define

the Γ-twisted configuration space associated to Ẽ as

Conf(E, n,Γ) = (Cn −Diagτ,n,Γ)/(Z+ τZ)n

where Diagτ,n,Γ := {(z1, . . . , zn) ∈ Cn|zij := zi − zj ∈ (1/M)Z + (τ/N)Z for some i 6= j}.

Then, the spaces Conf(E, n,Γ) are (roughly) fibers at τ of fibrations MΓ
1,n −→ Y (Γ). The

holonomy Lie algebra of Conf(Eτ,Γ, n,Γ) will be denoted tΓ1,n and has generators x1, . . . , xn,

y1, . . . , yn and tαij (α ∈ Γ, 1 ≤ i 6= j ≤ n).

As in the elliptic case, one can define a Lie algebra dΓ, which has two components: the first is

sl2 and the second is a free (bigraded) Lie algebra dΓ+ generated by δs,γ ’s (s ≥ 0, γ ∈ Γ) with

relations δs,γ = (−1)sδs,−γ . The δs,γ also act as highest weight elements for sl2.

Proposition 3.2.1. We have a bigraded Lie algebra morphism ρ : dΓ −→ Der(tΓ1,n).

We can then construct a group GΓ
n whose Lie algebra has as components the holonomy Lie

algebra tΓ1,n and the so called twisted derivation algebra dΓ.

Let e, h and f form the standard basis of sl2 and write ξs,γ := ρ(δs,γ) and ∆0 := ρ(f). Let

γ̃ = (c0, c) ∈ (1/M)Z+ (τ/N)Z be any lift of γ ∈ Γ and consider an element [(z, τ)] ∈MΓ
1,n.

Theorem 3.2.2. There is a unique GΓ
n-bundle Pn,Γ overMΓ

1,n (given locally by sections) with

a flat universal KZB connection, locally defined by

∇KZB
n,Γ := d−∆(z|τ)dτ −

n∑

i=1

Ki(z|τ)dzi

where, for 1 ≤ i ≤ n, we have

Ki(z|τ) := −yi +
∑

j:j 6=i

∑

γ∈Γ

kγ(adxi, z|τ)(t
γ
ij)

with kγ(x, z|τ) := e−2πicx θ(z−γ̃+x|τ)
θ(z−γ̃|τ)θ(x|τ) −

1
x , and

∆(z|τ) := −
1

2πi

(
∆0 +

∑

s≥0,γ∈Γ

1

2
As,γ(τ)ξs,γ −

∑

i<j

∂xkγ(adxi, z|τ)(t
γ
ij)
)
,

with ∂xk−γ(x, 0|τ) :=
∑

s≥0 As,γ(τ)x
s.
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Some facts about the construction of the connection in the above theorem:

1. The connection ∇KZB
n,Γ restricts to a flat connection ∇KZB

n,τ,Γ := d −
∑

iKi(z|τ)dzi locally

defined on a principal exp(̂tΓ1,n)-bundle Pτ,n,Γ over Conf(E, n,Γ). This will allow us to

establish the formality of the fundamental group of Conf(E, n,Γ).

2. One can see that the term ∂xk0(x, 0|τ) = (θ′/θ)′(x) + 1/x2 permits to retrieve classical

Eisenstein series and that for any γ ∈ Γ − {0}, the expansion of the term ∂xk−γ(x, 0|τ)

will also be given in terms of (a slightly different version of) Eisenstein series.

3. The universal twisted elliptic KZB connection realizes as the usual KZB connection as-

sociated to elliptic dynamical r-matrices with spectral parameter [41, 43] and produces

representations of Cherednik algebras related with cyclotomic double affine Hecke alge-

bras ([16]).

Let t̄Γ1,2 be the Lie C-algebra generated by x, y and tα, for α ∈ Γ, such that [x, y] =
∑

α∈Γ t
α.

We define the twisted elliptic KZB associator as the couple eΓ(τ) := (AΓ(τ), BΓ(τ)) ∈ exp(̂̄tΓ1,2)×

exp(̂̄tΓ1,2) consisting in the renormalized holonomies from 0 to 1/M and 0 to τ/N respectively

as paths in E − {torsion points}, of the differential equation

J ′(z) = FΓ(z) · J(z) for FΓ(z) := −
∑

α∈Γ

e−2πiax
θ(z − α̃+ ad(x)|τ)

θ(z − α̃|τ)θ(ad(x)|τ)
(tα). (3.3)

with values in the group exp(̂̄tΓ1,2), where α̃ = (a0, a) ∈ (1/M)Z+ (τ/N)Z is a lift of α ∈ Γ. In

[25], after giving a general definition of the set EllΓ(k) of twisted elliptic k-associators (with

the use of the theory of operads, see below), we show the following result:

Theorem 3.2.3. Let EllΓKZB := EllΓ(C)×Ass(C) {2πi,ΦKZ}. There is an analytic map

h −→ EllΓKZB .

τ 7−→ eΓ(τ)

This means that, for each τ ∈ h, the element (2πi,ΦKZ, A
Γ(τ), BΓ(τ)) is a twisted elliptic

C-associator.

As a consequence, the set EllΓ(C) is non-empty and there is an action of the twisted version

ĜT
Γ

eℓℓ(k) of the elliptic prounipotent Grothendieck-Teichmüller group on it. Finally, we estab-

lish a differential equation in the direction of τ for the ellipsitomic KZB associators. Namely,

if we denote ¯̃
ξ
(2)
s,γ for the derivation given by

• ¯̃ξ
(2)
s,γ(x) = −(adx)s+1(t−γ) + (− adx)s+1(tγ),

• ¯̃ξ
(2)
s,γ(tα) = [−((adx)stα−γ + (− adx)stα+γ) + (adx)st−γ + (− adx)stγ , tα],

then we have the following result.

Theorem 3.2.4. We have

2πi
∂

∂τ
AΓ(τ) =


−∆0 −

1

2

∑

γ∈Γ

∑

s>0

As,γ(τ)
¯̃
ξ(2)s,γ


AΓ(τ),



3.3. PERSPECTIVES 89

2πi
∂

∂τ
BΓ(τ) =


−∆0 −

1

2

∑

γ∈Γ

∑

s>0

As,γ(τ)
¯̃
ξ(2)s,γ


BΓ(τ).

Notice that this differential equation only involves the Eisenstein-Hurwitz series that we defined

in Section 8.3.

3.3 Perspectives

This section presents an overview of the possible continuations of the results of this thesis.

The first goal is to pursue the study of the general theory of twisted elliptic associators and

elliptic multiple zeta values at torsion points. Two complementary directions of this goal are

detailed in a separate manner. The first one involves a complete study of the (prounipotent)

twisted elliptic Grothendieck-Teichmüller group, its graded version and their actions on the

set of twisted elliptic associators. The second consists of a full study of the coefficients arising

from the twisted elliptic KZB associator, namely what we call twisted elliptic MZVs (teMZVs

in short).

The second goal is to study the rational homotopy of operadic PaB-modules and elliptic

Grothendieck-Teichmüller groups.

3.3.1 Twisted elliptic (graded) Grothendieck-Teichmüller groups

In [25] we mainly expressed twisted (graded) Grothendieck-Teichmüller groups and associators

in their operadic versions (we also gave definitions of these objects in terms of elements satis-

fying some equations). Nevertheless, one needs to understand the intrinsic nature of these two

groups and this set in order to study for example the decomposition of twisted elliptic MZVs.

Indeed, as we will see in chapter 8 where we establish the differential equation satisfied by the

twisted elliptic KZB associator, one needs to isolate some components of the twisted elliptic

Grothendieck-Teichmüller group and have an explicit formula for the action of this group on

the set of twisted elliptic k-associators.

The action of the twisted elliptic Grothendieck-Teichmüller group GTΓ
eℓℓ and its

graded version on EllΓ(k). Based on the definition of GTΓ
eℓℓ and its profinite, pro-ℓ and

proalgebraic variants, defined by considering different versions of the PaB-module PaBΓ
eℓℓ,

we study the relations between these groups and their corresponding versions in the genus 0,

cyclotomic and elliptic cases. In the proalgebraic case, we aim to obtain a semidirect product

structure for ĜT
Γ

eℓℓ(k), analog to that obtained in the elliptic case. We will then fully describe

the action of this group on twisted elliptic k-associators. We hope to construct a morphism

of torsors from the scheme of (cyclotomic) associators to its twisted elliptic analogue, which

will permit us to establish the existence of twisted elliptic associators at extensions of Q by

roots of unity. Next, we concentrate on the graded version GRTΓ
eℓℓ(k) of the twisted elliptic

Grothendieck-Teichmüller group. In particular, we will aim to establish the existence of the
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prounipotent radical RΓ
eℓℓ(k) of GRTΓ

eℓℓ(k) whose associated Lie algebra should be isomorphic

to the twisted version of the special derivation algebra which will be constructed in chapter

8 from the definition of the twisted derivation algebra dΓ constructed in chapter 6. Special

attention will be taken on the relation between this Lie algebra and the Lie algebra of the

prounipotent radical of πgeom
1 (MEM).

Further investigations on the twisted elliptic KZB associator. Once we haveex-

plicitely constructed the action of ĜT
Γ

eℓℓ(k) and GRTΓ
eℓℓ(k) on EllΓ(k), we will be able to

fully establish the differential equation for the twisted elliptic KZB associator in terms of the

Eisenstein-Hurwitz series found in chapter 7. Next, combined with a full study of the genus,

cusps (by using the Riemann-Hurwitz theorem) and mapping class group of the moduli space

of once punctured Γ-structured elliptic curves for different choices of finite abelian groups Γ,

we should be able to study the modular properties and asymptotic behaviour of the twisted

elliptic KZB associator at all cusps of this moduli space. This will be of great importance

when attacking the study of teMZVs as we will explain below.

Zariski closures, distribution relations and Galois groups actions for EllΓ(k). With

a good understanding of the twisted elliptic mapping class group π1(MΓ
1,n) at hand, we will

aim to compute its Zariski closure in the automorphism groups of the prounipotent completions

of some subgroups of the (pure) braid groups on the torus by studying the relation between

the action of the group ĜT
Γ

eℓℓ(k) on these prounipotent completions and the action of its

graded counterpart. Next, if we take Γ′ = Z/M ′Z × Z/N ′Z such that M ′ divides M and N ′

divides N , one should be able to study distribution relations satisfied by EllΓ
′

(k) and EllΓ(k)

and show that, when imposing these distribution relations, one obtains a subset of twisted

elliptic associators which will be a torsor under the action of some subgroups of ĜT
Γ

eℓℓ(k) and

GRTΓ
eℓℓ(k). Special importance will be given to study the relation between these subgroups

and the (geometric) fundamental group of the once punctured Γ-structured elliptic curve.

Finally, we sketch some relations between the twisted versions of Teichmüller groupoids in

genus one, the arithmetic fundamental group π1((MΓ
1,1)

L) (for different kinds of congruence

subgroups and for L an extension of Q by roots of unity) and the profinite twisted elliptic

Grothendieck-Teichmüller group ĜT
Γ

eℓℓ.

3.3.2 Further investigations on elliptic MZVs at torsion points

The twisted elliptic KZB associator eΓ(τ) has an expression in terms of iterated integrals. The

twisted elliptic MZVs IΓ

(
n1 n2 , . . . , nr

α1 α2 , . . . , αr

; τ

)
and JΓ

(
n1 n2 , . . . , nr

α1 α2 , . . . , αr

; τ

)
, for

n1, . . . , nr > 0 and α1, ..., αr ∈ Γ, are defined equivalently as the coefficients of the (modified)

ellipsitomic KZB associators and as regularized iterated integrals of the function FΓ defined

above.

A first remark is that our approach to teMZVs is somewhat different to that in the recent work

[19], where the authors use iterated integrals and the functions FΓ(z) to construct teMZVs
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and generalises to the case of any surjective morphism Z2 −→ Γ sending the generators of Z2

to their respective classes modulo M and N .

Relations of teMZVs with the twisted special derivation algebra. In a joint effort

with N. Matthes, we aim to investigate the relation of our teMZVs with those defined in ([19])

related to the non-planar part of the four-point one-loop open-string amplitude. In particular,

by using the twisted version of H. Tsunogai’s special derivation algebra, by relating it to the

untwisted special derivation algbra, and by representing teMZVs as iterated integrals over well

adapted Eisenstein series, we aim to derive the number of indecomposable elements of given

weight and length for teMZVs. We also hope to get new interesting relations in the twisted

special derivation algebra. Then, together with J. Broedel and O. Schlotterer, we will provide

relations for teMZVs over a wide range of weights and lengths by computational methods.

Modularity properties and asymptotic behaviour of teMZVs. By combining the

results on the asymtotic behaviour at cusps and the differential equation for the twisted elliptic

KZB associator done in Project 1, we will deduce the asymptotic behaviour of teMZVs. We

will aim to retrieve µN -MZVs and multiple Hurwitz values when degenerating teMZVs to the

cusp i∞ and all other cusps of our modular curve. By the results in [19], we know this will

be the case. We hope that by taking special cases of the group Γ, for instance M = 5 and

different choices of N , we will retrieve some of the remaining periods of P1−{0, µ5,∞} which

are known not to be µ5-MZVs.

Motivic aspects of the twisted elliptic KZB connection and teMZVs. In a broader

sense, we aim to study some of the Hodge-de Rham theoretic aspects of MΓ
1,1. One can see

MΓ
1,2 is the Γ-punctured universal curve over MΓ

1,1. The Lie algebra tΓ1,n should be closely

related to the local system over the moduli space of Γ-structured elliptic curves with a non-

zero tangent vector at the origin. With this in mind, an interesting task to do is to explicit

the Q-de-Rham structure of this local system as was done in R. Hain’s notes [62]. We aim

to compute the restriction of the twisted elliptic KZB connection to various loci, such as the

punctured first order neighbourhood of the Tate curve and a punctured formal neighbourhood

of the identity section. We then explore Hodge theoretic aspects of this connection such as

computing limit mixed Hodge structures relevant regions of MΓ
1,1. We hope to relate in the

mid-term these constructions to motivic aspects of teMZVs and to universal mixed elliptic

(and modular) motives.

3.3.3 Rational homotopy of operadic PaB-modules and elliptic Grothendieck-

Teichmüller groups

Following the operadic point of view on elliptic associators and Grothendieck-Teichmüller

groups, it is natural enough to study the homotopy aspects of these objets. The motivation to

do this comes from the fact that, by Bezrukavnikov’s results in [11], the configuration spaces

Conf(Σg, n) of a genus g orientable surface Σg are 1-formal but not formal in general. In other

words, they have non trivial higher homotopies. Now, for some years now, a way of studying
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higher homotopies on spaces has come with the introduction of higher categorical structures.

The link between these two realms of mathematics has been straightened in particular by P.

Safronov, who has studied in [89] the relation between shifted Poisson structures and classical

(dynamical) r-matrixes. A natural quesiton to ask is then if a homotopical characterisation of

GTeℓℓ will shed some light on the study of higher homotopies of the operadic module (over

the little disks operad D2) of little disks on the torus, denoted D1,2.

A rationalization of the module of little disks on the torus. The first goal for

achieving this study will consist on constructing a good rationalization of the module of little

disks on the torus. First of all, as Conf(T, n) is not formal (see [Bezr]), we have to work

with the de Rham algebra Ω∗(Conf(T, n)) instead of H∗(Conf(T, n)). We hope to be able to

overcome this issue by stuying the de Rham algebra Ω∗(Conf(T, n)) given in [20] and relating

it with that contained in Kriz work [77] together with recent work by C. Sibilia in his PhD

thesis. Let C∗CE(t1,n) be the Chevalley-Eilenberg cochain complex of t1,n. The first step is to

obtain a quasi-isomorphism

C∗CE(t1,n) −→ Ω∗(Conf(T, n))

which would be enhanced into a Hopf dg-comodule quasi-isomorphismC∗CE(t1) −→ Ω∗(Conf(T,−)).

This will lead to a rationalization of the module of little disks on the torus.

Homotopy theory of Hopf comodules. Next, it will be necessary to build a general

homotopy theory for Hopf cooperadic comodules. Operadic modules are easier to work with

than operads by their intrinsic linear nature (oposed as to that of operads). By this reason,

the construction of model category structures on operadic modules in simplicial sets and their

Λ-operadic versions should be within reach in the mid-term. The next step would be to use

homotopy spectral sequences techniques in this scope to get a homotopical interpretation of

GTeℓℓ in terms of the fundamental group (so in terms of the 1-truncation of the full homotopy

theory) of Conf(T, n). The final outcome of this study will then be constructing injective

mappings

Ell(τ)Q −→ IsoHo(ModD2)
((D1,2)

∧
Q, LG•Ω

∗(D1,2))

and

(GTell)Q −→ AutHo(ModD2 )
((D1,2)

∧
Q).

where Ho(ModD2) is the homotopy category of D2-modules, (D1,2)
∧
Q is a rationalization of the

D2-module D1,2 related with Sullivan’s models and LG•Ω
∗(D1,2) is a module obtained from

the de Rham complex of the D2-module D1,2.
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Chapter 4

Operad structures on associators

and Grothendieck-Teichmüller

groups

4.1 Modules associated with configuration spaces (elliptic

associators)

4.1.1 Compactified configuration space of the torus

Let T be the topological torus. To any finite set I we associate a configuration space

Conf(T, I) = {z = (zi)i∈I ∈ TI |zi 6= zj if i 6= j} .

We also consider its reduced version

C(T, I) := Conf(T, I)/T .

We then consider the Fulton–MacPherson compactification C(T, I) of C(T, I). The boundary

∂C(T, I) = C(T, I)−C(T, I) is made of the following irreducible components: for any partition

I = J1
∐
· · ·
∐

Jk there is a component

∂J1,··· ,Jk
C(T, I) ∼= C(T, k)×

k∏

i=1

C(C, Ji).

The inclusion of boundary components provide C(T,−) with the structure of a module over

the operad C(C,−) in topological spaces.

95
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4.1.2 The PaB-module PaBeℓℓ of parenthesized elliptic (or beak) braids

In a similar manner as in §2.6.2, we have inclusions of topological modules1

Pa ⊂ C(S1,−) ⊂ C(T,−) .

Then it makes sense to define

PaBeℓℓ := π1

(
C(T,−),Pa

)
,

which is a PaB-module in groupoids.

Example 4.1.1 (Structure of PaBeℓℓ(2)). As in Example 2.6.1 we have an arrow R1,2 going

from (12) to (21). Additionnally, we also have two automorphisms of (12), denoted A1,2 and

B1,2, corresponding to the following loops on C(T, 2):

A1,2

1 2 1 2

B1,2

21

1 2

By global translation of the torus, these are the same loops as the following

2

1 A1,2

21

21

21

B1,2

In particular, A1,2R1,2 and B1,2(R2,1)−1, which are morphisms from (12) to (21), correspond

to the following paths C(T, 2):

A1,2R1,2

1 2 12 1

1

2

2

B1,2(R2,1)−1

Remark 4.1.2. The arrows A1,2 and B1,2 correspond to A±1,2 in [33, §1.3].

Thus as A1,2 can be depicted with the point indexed by 1 going to the left we will also formally

depict A1,2 and B1,2 as follows:

1The second one depends on the choice of an embedding S1 →֒ T: we choose by convention the “horinzontal” one.
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1

1

2

2

A+

1

1

2

2

A−

One can rephrase [33, Proposition 1.3] in the following way:

Theorem 4.1.3. As a PaB-module in groupoids having Pa as Pa-module of objects, PaBeℓℓ

is freely generated by A := A1,2 and B := B1,2, together with the following relations:

(N1) Φ1,2,3A1,23R1,23Φ2,3,1A2,31R2,31Φ3,1,2A3,12R3,12 = Id(12)3,

(N2) Φ1,2,3B1,23(R23,1)−1Φ2,3,1B2,31(R31,2)−1Φ3,1,2B3,12(R12,3)−1 = Id(12)3,

(E) R1,2R2,1 =
(
Φ1,2,3B1,23(Φ1,2,3)−1, (R2,1)−1Φ2,1,3(A2,13)−1(Φ2,1,3)−1(R1,2)−1

)
,

as automorphisms of (12)3 in PaBeℓℓ(3).

Proof. Let Q be the PaB-module with the above presentation. We first show that there

is a morphism of PaB-modules Q −→ PaBeℓℓ. We have already seen that there are two

automorphisms A,B of (12) in PaBeℓℓ(2) (see Example 4.1.1). We have to prove that they

indeed satisfy the relations (N1), (N2) and (E).

Relations (N1) and (N2) are satistfied: the first nonagon relation (N1) can be depicted as fol-

lows:

(1

(1

2)

2)

3

3

=

(1

(1

2)

2)

3

3

A+

A+

A+

(N1)

It is satisfied in PaBeℓℓ, expressing the fact that when all (here, three) points move in the

same direction on the torus, this corresponds to a constant path in the reduced configuration

space of points on the torus. The same is true with the second nonagon relation (N2).
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Relation (E) is satisfied: below one sees the path that is obtained from the right-hand-side of

the mixed relation (E):

• Φ1,2,3B1,23(Φ1,2,3)−1 is the path

1

1

3

3

B1,23

2

2

• (R2,1)−1Φ2,1,3(A2,13)−1(Φ2,1,3)−1(R1,2)−1 is the path

31 2132

One easily sees on the picture that the path is homotopic to the pure braiding of the first two

points, that is R1,2R2,1, by means of the following picture

321

Thus, by the universal property of Q, there is a morphism of PaB-modules Q −→ PaBeℓℓ,

which is the identity on objects. To show that this map is in fact an isomorphism, it suffices

to show that it is an isomorphism at the level of automorphism groups of objects arity-wise,

as all groupoids are connected. Let n ≥ 0, and p be the object (· · · ((12)3) · · · · · · )n of Q(n)

and PaBeℓℓ(n). We want to show that the induced morphism

AutQ(n)(p) −→ AutPaBeℓℓ(n)(p) = π1

(
C(T, n), p

)

is an isomorphism.
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On the one hand, as C̄(T, n) is a manifold with corners, we are allowed to move the basepoint

p to a point preg which is included in the simply connected subset obtained as the image of2

Dn,τ := {z ∈ Cn|zj = aj+bjτ, aj , bj ∈ R, 0 < a1 < a2 < ... < an < a1+1, 0 < b1 < b2 < ... < bn < b1+1}

in C(T, n), where T = C/Z + τZ. We then have an isomorphism of fundamental groups

π1(C̄(T, n), p) ≃ π1(C(T, n), preg).

On the other hand, in [33, Proposition 1.4], Enriquez constructs a universal elliptic structure

PaBEn
eℓℓ , that by definition carries an action of the (algebraic version of the) reduced braid

group on the torus B1,n in the following sense:

• PaBEn
eℓℓ is a category.

• for every object p of Pa(n), there is a corresponding object [p] in PaBEn
eℓℓ , and [p] = [q]

if p and q only differ by a permutation (but have the same underlying parenthesization).

• there are group morphisms B1,n−̃→AutPaBEn
eℓℓ

(p) −→ Sn.

Moreover, one has by constuction of PaBEn
eℓℓ that AutQ(n)(p) is the kernel of the map AutPaBEn

eℓℓ
([p]) −→

Sn. One can actually show that we have a commuting diagram

PB1,n
≃ //

��

AutQ(n)(p) //

��

π1

(
C(T, n), p

)

��

π1 (C(T, n), preg)
≃oo

��
B1,n

≃ //

��

AutPaBEn
eℓℓ

(p) //

��

π1

(
C(T, n)/Sn, [p]

)

��

π1 (C(T, n)/Sn, [preg])
≃oo

��
Sn Sn Sn Sn

where all vertical sequences are short exact sequences. Thus, in order to show that the map

AutQ(n)(p) −→ π1

(
C(T, n), p

)
is an isomorphism, we are left to show that

B1,n −→ π1(C(T, n), preg)

is indeed an isomorphism. But this map is nothing else than the map constructed in [12,

Theorem 5], identifying the algebraic and topological versions of the braid group on the torus.

Remark 4.1.4. It is probably best to picture the nonagon relation by means of the following

relation (this is relation 25 in [24]), which is equivalent to (N1), and that expresses a kind of

ribbon description for A12,3:

2We have already done so for theproof of relation (E).
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(1

(1

2)

2)

3

3

A12,3 =

(1

(1

2)

2)

3

3

A1,23

A2,13

(N1bis)

4.1.3 The CD(k)-module of elliptic chord diagrams

For any n ≥ 0, recall that t1,n(k) is defined as the bigraded Lie k-algebra freely generated by

x1, . . . , xn in degree (1, 0), y1, . . . , yn in degree (0, 1) (for i = 1, ..., n), and tij in degree (1, 1)

(for 1 ≤ i 6= j ≤ n), together with the relations (S), (L), (4T), and the following additional

elliptic relations as well:

(Seℓℓ) [xi, yj] = tij for i 6= j.

(Neℓℓ) [xi, xj ] = [yi, yj ] = 0 for i 6= j.

(Teℓℓ) [xi, yi] = −
∑

j|j 6=i tij .

(Leℓℓ) [xi, tjk] = [yi, tjk] = 0 if #{i, j, k} = 3.

(4Teℓℓ) [xi + xj , tij ] = [yi + yj, tij ] = 0 for i 6= j.

The
∑

i xi and
∑

i yi are central in t1,n(k), and we also consider the quotient

t̄1,n(k) := t1,n(k)/(
∑

i

xi,
∑

i

yi) .

Example 4.1.5. t̄1,2(k) is equal to the free Lie k-algebra f2(k) on two generators x = x1 and

y = y2.

Both t1,n and t̄1,n are acted on by the symmetric group Sn, and one can show that the

S-modules in grLiek

teℓℓ(k) := {t1,n(k)}n≥0 and t̄eℓℓ(k) := {̄t1,n(k)}n≥0
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actually are t(k)-modules in grLiek. Partial compositions are defined as follows:

◦k : t1,I(k)⊕ tJ(k) −→ t1,J⊔I−{i}(k)

(0, tαβ) 7−→ tαβ

(tij , 0) 7−→





tij if k /∈ {i, j}
∑
p∈J

tpj if k = i

∑
p∈J

tip if j = k

(xi, 0) 7−→





xi if k 6= i
∑
p∈J

xp if k = i

(yi, 0) 7−→





yi if k 6= i
∑
p∈J

yp if k = i

We call teℓℓ(k), resp. t̄eℓℓ(k), the module of infinitesimal elliptic braids, resp. of infinitesimal

reduced elliptic braids.

We finally define the CD(k)-module CDeℓℓ(k) := Û (̄teℓℓ(k)) of elliptic chord diagrams. As in

the genus 0 situation, morphisms in CDeℓℓ(k)(n) can be represented as chords on n vertical

strands with extra chords correponding to the generators xi and yi as in the following picture:

A+ and A−

The relations elliptic relations introduced above can be represented as follows, analogously as

for the genus 0 case:

A−

A+

−
A+

A−

=
A+

A−

−
A−

A+

=

(Seℓℓ)

A±

A±

=
A±

A±

(Neℓℓ)

A+

A−

i

− A−

A+

i

= −
∑

j;j 6=i

i j

(Teℓℓ)
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A±

=

A±

(Leℓℓ)

A±

+
A±

=

A±

+

A±

(4Teℓℓ)

Remark 4.1.6. The relation between (a closely related version of) CDeℓℓ(k) and the elliptic

Kontsevich integral was studied in Philippe Humbert’s thesis [65].

4.1.4 The PaCD(k)-module of parenthesized elliptic chord diagrams

As in the genus zero case, the module of objects Ob(CDeℓℓ(k)) of CDeℓℓ(k) is terminal. Hence

we have a morphism of modules ω2 : Pa = Ob(Pa(k) −→ Ob(CDeℓℓ(k)) over the morphism

of operads ω1 from §2.6.4, and thus we can define the PaCD(k)-module3

PaCDeℓℓ(k) := ω⋆
2CDeℓℓ(k) ,

in Cat(CoAssk), of so-called parenthesized elliptic chord diagrams.

Example 4.1.7 (Notable arrows in PaCDeℓℓ(k)(2)). We have the following arrows X1,2
eℓℓ , Y

1,2
eℓℓ

in PaCDeℓℓ(k)(2)

X1,2
eℓℓ = x1·

1

1

2

2

Y 1,2
eℓℓ = y1·

1

1

2

2

Remark 4.1.8. The elements X1,2
eℓℓ , Y

1,2
eℓℓ are generators of the PaCD(k)-module PaCDeℓℓ(k)

and satisfy the following relations in EndPaCDeℓℓ(k)(3)((12)3):

(N1) a1,2,3X1,23
eℓℓ X1,23a2,3,1X2,31

eℓℓ X2,31a3,1,2X3,12
eℓℓ X3,12 = Id12,3,

(N2) a1,2,3Y 1,23
eℓℓ X1,23a2,3,1Y 2,31

eℓℓ X2,31a3,1,2Y 3,12
eℓℓ X3,12 = Id12,3,

(E) X1,2X2,1 =
(
a1,2,3Y 1,23

eℓℓ (a1,2,3)−1, X2,1a2,1,3(X2,13
eℓℓ )−1(a2,1,3)−1X1,2

)
.

(Inv) X2,1
eℓℓ = (X1,2)−1X1,2

eℓℓX
1,2, Y 2,1

eℓℓ = (X1,2)−1Y 1,2
eℓℓ X

1,2,

(Red) X1,∅
eℓℓ = Y 1,∅

eℓℓ = 0,

(IN1) X12,3
eℓℓ + a1,2,3X1,23X23,1

eℓℓ (a1,2,3X1,23)−1 +X12,3(a3,1,2)−1X31,2
eℓℓ (X12,3(a3,1,2)−1)−1 = 0,

(IN2) Y 12,3
eℓℓ + a1,2,3X1,23Y 23,1

eℓℓ (a1,2,3X1,23)−1 +X12,3(a3,1,2)−1Y 31,2
eℓℓ (X12,3(a3,1,2)−1)−1 = 0,

(IE) H1,2 = [a1,2,3X1,23
eℓℓ (a1,2,3)−1, X1,2a2,1,3Y 2,13

eℓℓ (a2,1,3)−1(X1,2)−1].
3Recall that PaCD(k) is defined as ω⋆

1
CD(k).
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4.1.5 Elliptic associators

Let us introduce some terminology, complementing the one of §2.6.5. If P −→ Q is a morphism

between operads in C, M is a module over P , and N is a module over Q, then we will

consider operadic module mophismsM−→ N in the category of P-modules (via the restriction

functor), and will simply refer to them as module morphisms if the context is clear.

For an operad O in C, we denote Mod(O) the category of O-modules.

Given the choice of an automorphism g of O, we will denote by Aut+(Mod(O),g)(M) the group of

automorphisms of theO-moduleM with respect to the automorphism g and Iso(Mod(P,Q),Φ)(M,N ),

for the set of isomorphisms beween modulesM and N with respect to an operad isomorphism

Φ between P and Q.

The superscript “+” still indicates that we consider morphisms that are the identity on objects.

Definition 4.1.9. An elliptic associator over k is a couple (F,G) where F is a k-associator

and G is an isomorphism between the P̂aB(k)-module P̂aBeℓℓ(k) and the GPaCD(k)-module

GPaCDeℓℓ(k) which is the identity on objects and which is compatible with F :

Ell(k) := Iso+
(P̂aB(k),GPaCD(k))

(P̂aBeℓℓ(k), GPaCDeℓℓ(k)).

Let us denote by {−} the Lie algebra morphism tn(k) −→ t̄1,n(k) sending tij ∈ tn(k) to

tij ∈ t̄1,n(k). Its induced group morphism exp(̄tn(k)) −→ exp(̂̄t1,n(k)) will be denoted the

same way.

The following theorem identifies our definition of elliptic associators to the original one defined

by Enriquez in [33].

Theorem 4.1.10. There is a one-to-one correspondence between the set Ell(k) and the set

Ell(k) of quadruples (µ,Φ, A+, A−), where (µ,Φ) ∈ Ass(k) and A± ∈ exp(̂̄t1,2(k)), such that:

α1,2,3
± α2,3,1

± α3,1,2
± = 1, where α± = {Φ1,2,3}A1,23

± {e±µ(t12+t13)/2}, (4.1)

{eµt12} =
(
{Φ}A1,23

− {Φ}−1, {e−µt12/2Φ2,1,3}(A2,13
+ )−1{(Φ2,1,3)−1e−µt12/2}

)
. (4.2)

Proof. An associator F corresponds uniquely to a couple (µ,Φ) ∈ Ass(k) and an isomorphism

G between P̂aBeℓℓ(k) and GPaCDeℓℓ(k) sends the arrows A1,2 and B1,2 of End
P̂aBeℓℓ(k)(2)

(12)

to A+ ·X
1,2
eℓℓ and A− ·Y

1,2
eℓℓ with A± ∈ exp(̂̄t1,2) (recall that ˆ̄t1,2 is the completed free Lie algebra

in two generators). The image of relations (N1), (N2) and (E) are precisely the relations (4.1)

and (4.2).

Example 4.1.11 (Elliptic KZB Associators). Let us fix τ ∈ h. Recall that the Lie algebra

t̄1,2(C) is isomorphic to the free Lie algebra f2(C) generated by two elements x := x1 and

y := y1. We define the elliptic KZB associators A(τ), B(τ) as the renormalized holonomies

from 0 to 1 and 0 to τ of the differential equation

G′(z) = −
θτ (z + adx) adx

θτ (z)θτ (adx)
(y) ·G(z), (4.3)
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with values in the group exp(̂̄t1,2(C)) More precisely, this equation has a unique solution G(z)

defined over {a+ bτ, for a, b ∈]0, 1[} such that G(z) ≃ (−2π i z)−[x,y] at z −→ 0. In this case,

A(τ) := G(z)−1G(z + 1), B(τ) := G(z)−1e2π ixG(z + τ).

These are elements of the group exp(̂̄t1,2(C)). More precisely, Enriquez showed in [33] that the

element (2πi,ΦKZ, A(τ), B(τ)) is in Ell(C).

4.1.6 Elliptic Grothendieck–Teichmüller group

Definition 4.1.12. The (k-prounipotent version of the) elliptic Grothendieck–Teichmüller

group is defined as the group

ĜTeℓℓ(k) := Aut+
(Mod(P̂aB(k)))

(P̂aBeℓℓ(k))

of automorphisms of the P̂aB(k)-module P̂aBeℓℓ(k) which are the identity on objects.

Again, we now show that our definition coincides with the original one defined by Enriquez

in [33]. Recall that the set ĜTeℓℓ(k) is the set of tuples (λ, f, g±), where (λ, f) ∈ ĜT(k),

g± ∈ F̂2(k) such that

(f(σ2
1 , σ

2
2)g±(X,Y )(σ1σ

2
2σ1)

±λ−1
2 σ±11 σ±12 )3 = 1, (4.4)

u2 = (g−, u
−1g−1+ u−1) (4.5)

(identities in ̂̄B1,3(k)) where u = f(σ2
1 , σ

2
2)
−1σλ

1 f(σ
2
1 , σ

2
2), and g± = g±(X,Y ).

For (λ, f, g±), (λ
′, f ′, g′±) ∈ ĜTeℓℓ(k), we set

(λ, f, g±)(λ
′, f ′, g′±) := (λ′′, f ′′, g′′±),

where g′′±(X,Y ) = g±(g
′
+(X,Y ), g′−(X,Y )). This gives ĜTeℓℓ(k) a group structure. Moreover,

for (λ, f, g+, g−) ∈ ĜTell(k) and (µ,Φ, A+, A−) ∈ Ell(k), we set

(λ, f, g+, g−) ∗ (µ,Φ, A+, A−) := (µ′,Φ′, A′+, A
′
−)

where A′± := g±(A+, A−). In [33], it is shown that this defines a left free and transitive group

action of ĜTeℓℓ(k) on Ell(k).

Proposition 4.1.13. There is a group isomorphism between ĜTeℓℓ(k) and ĜTeℓℓ(k).

Proof. Suppose that we have an automorphism G of P̂aBeℓℓ(k) which is the identity on objects.

Then, by Theorem 4.1.3, such an automorphism is given by the data of an automorphism of

the operad P̂aB(k), given by the pair (λ, f) ∈ ĜT(k), and the images of the two generators

A,B ∈ Aut
P̂aBeℓℓ(k)(2)

(12). Let us denote G(A) = g+(X,Y )A and G(B) = g−(X,Y )B,

where g± ∈
̂̄PB1,2(k) ≃ F̂2(k). Then the obtained tuple (λ, f, g±) satisfies relations (4.4)

and (4.5). Next, we show that this map is a group morphism. For this we show that the
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composition of automorphisms in Aut+
Mod(P̂aB(k))

(P̂aBeℓℓ(k)) corresponds to the composition

law of the group GTeℓℓ(k). We already know that the composition of automorphisms F1 and

F2 in Aut+
Op Ĝ

(P̂aB(k)) corresponds to the composition law in GT(k), that is, the associated

couples (λ, f1) and (µ, f2) in k× × F̂2(k) satisfy

(F1 ◦ F2)(R
1,2) = (R1,2)λµ

(F1 ◦ F2)(Φ
1,2,3) = F1(F2(Φ

1,2,3)) = F1(f2(x, y) · Φ
1,2,3)

= F1(f2(x, y))F1(Φ
1,2,3)

= (f2(x
λ, f1(x, y)y

λf1(x, y)
−1)f1(x, y)) · Φ

1,2,3,

(here F2 is generated by x := σ2
1 and y := σ2

2). We also already showed that any two au-

tomorphisms G and H in the group Aut+
Mod(P̂aB(k))

(P̂aBeℓℓ(k)), depending on F1 and F2

respectively, are associated to couples (g+(X,Y ), g−(X,Y )) and (h+(X,Y ), h−(X,Y )) which

represent automorphisms of the parenthesized word (12) in the groupoid P̂aBeℓℓ(k)(2) i.e. in

F̂2(k)) (recall that F̂2(k) ≃
̂̄PB1,2(k) is nothing but the k-prounipotent completion of the free

group with generators X and Y ). We then have

(H ◦G)(A) = H(g+(X,Y )) = g+(H(X), H(Y )) = g+(h+(X,Y ), h−(X,Y )).

Likewise, we find (G ◦ H)(B) = g−(h+(X,Y ), h−(X,Y )) which concludes the proof, as the

composite of operadic module morphisms F ◦G is compatible with the composition of operad

morphisms F1 ◦ F2. The fact that that the underlying sets of ĜTeℓℓ(k) and ĜTeℓℓ(k) are

isomorphic is a consequence of the fact that the set of elliptic associators is non empty, that

there are free and transitive left actions of ĜTeℓℓ(k) on Ell(k) and of ĜTeℓℓ(k) on Ell(k)

and the fact that there is a one-to-one correspondence between Ell(k) and Ell(k) so we get a

composite of bijections

GTeℓℓ(k) −→ Ell(k) −→ Ell(k) −→ ĜTeℓℓ(k).

This finishes the proof.

4.1.7 Graded elliptic (graded) Grothendieck–Teichmüller group

Definition 4.1.14. The graded elliptic Grothendieck-Teichmüller group is the group

GRTeℓℓ(k) := Aut+(Mod(PaCD(k))(PaCDeℓℓ(k))

of automorphism group of the PaCD(k)-module PaCDeℓℓ(k) which are the identity on objects.

Notice that there is an isomorphism

Aut+(Mod(PaCD(k))(PaCDeℓℓ(k)) ≃ Aut+(Mod(GPaCD(k))(GPaCDeℓℓ(k)).

Define GRTell
1 (k) to be the set of tuples (g, u+, u−), such that g ∈ GRT1(k), u± ∈ ˆ̄t1,2(k),

satisfying

Ad(g1,2,3)(u1,23
± ) + Ad(g2,1,3)(u2,13

± ) + u3,12
± = 0, (4.6)
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[Ad(g1,2,3)(u1,23
± ), u3,12

± ] = 0, (4.7)

[Ad(g1,2,3)(u1,23
+ ),Ad(g2,1,3)(u2,13

− )] = t12, (4.8)

as relations in ˆ̄t1,3(k). Set (g1, u
1
+, u

1
−) ∗ (g2, u

2
+, u

2
−) := (g, u+, u−), where

u±(x1, y1) := u1
±(u

2
+(x1, y1), u

2
−(x1, y1)) (4.9)

The group k× acts on GRTell
1 (k) by rescaling

c · (g, u±) := (c · g, c · u±),

where c · g is as above and

• (c · u+)(x1, y1) := u+(x1, c
−1y1),

• (c · u−)(x1, y1) := cu−(x1, c
−1y1).

We then set GRTell(k) := GRTell
1 (k) ⋊ k×. This defines a group structure on GRTell(k).

Moreover, there is an right group action of GRTell
1 (k) on Ell(k) given as follows : for (g, u±) ∈

GRTell
1 (k) and (µ,Φ, A±) Ell(k), we set (µ,Φ, A±) ∗ (g, u±) := (µ, Φ̃, Ã±), where

Ã±(x1, y1) := A±(u+(x1, y1), u−(x1, y1))

and, for c ∈ k×, we set (µ,Φ, A±)∗c := (µ, c∗Φ, c♯A±), where (c♯A±)(x1, y1) := A±(x1, y1). In

[33] this action is shown to be free and transitive. Notice that Ã± = θ(A±), where θ ∈ Aut(̂̄tk1,2)

is x1 7→ u+(x1, y1) and y1 7→ u−(x1, y1).

Proposition 4.1.15. There is a group isomorphism between GRTeℓℓ(k) and GRTeℓℓ(k).

Proof. The map GRTeℓℓ(k) −→ GRTeℓℓ(k) is constructed as follows. Let F be an automor-

phism in Aut+Mod(PaCD(k))(PaCDeℓℓ(k)) depending on an operad automorphism Ψ in GRT(k).

We have

• Ψ(X1,2) = X1,2,

• Ψ(H1,2) = λH1,2,

• Ψ(a1,2,3) = g(t12, t23)a
1,2,3,

• F (X1,2
eℓℓ) = u+(x, y) · Id1,2,

• F (Y 1,2
eℓℓ ) = u−(x, y) · Id1,2.

where (λ, g) ∈ GRT(k), u± ∈ ˆ̄t1,2(k). In light of relations of Remark 4.1.8, we obtain that the

tuple (λ, g(t12, t23), u+(x, y), u−(x, y)) satisfies relations (4.6), (4.7) and (4.8). The assignment

(Ψ, F ) 7→ (λ, g(t12, t23), u+(x, y), u−(x, y)) defines a map GRTeℓℓ(k) −→ GRTeℓℓ(k). First

we show that this map is a group morphism. For this we show that the composition of

automorphisms in Aut+Mod(GPaCD(k))(GPaCDeℓℓ(k)) corresponds to the composition law of

the group GRTeℓℓ(k). We already know that the composition of automorphisms Φ and Ψ in
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Aut+
Op Ĝ

(GPaCD(k)) corresponds to the composition law in GRT(k), that is, the associated

couples (λ, f1) and (µ, f2) in k× × exp(̂̄t3(k)) satisfy

(Φ ◦Ψ)(H1,2) = λµH1,2

(Φ ◦Ψ)(a1,2,3) = f2(λt12, f1(t12, t23) · λt23 · f1(t12, t23)
−1)f1(t12, t23) · a

1,2,3.

We also already showed that any two automorphisms G and H in the group

Aut+Mod(GPaCD(k))(GPaCDeℓℓ(k)), depending on Φ and Ψ respectively, are associated to cou-

ples (g+(x, y), g−(x, y)) and (h+(x, y), h−(x, y)) which represent automorphisms of the paren-

thesized word (12) in the groupoid GPaCDeℓℓ(k)(2) i.e. in exp(̂̄t1,2(k)) where x = x1 and

y = y1 (recall that t̄1,2(k) is nothing but the free Lie algebra over k with generators x and y).

We then have

(H ◦G)(X1,2
eℓℓ ) = H(g+(x, y) · Id1,2) = g+(H(x), H(y)) · Id1,2 = g+(h+(x, y), h−(x, y)) · Id1,2 .

Likewise, we find (G ◦H)(Y 1,2
eℓℓ ) = g−(h+(x, y), h−(x, y)) · Id1,2 which concludes the proof, as

the composite of operadic module morphisms F ◦ G is compatible with the composition of

operad morphisms Φ ◦Ψ.

Next, this morphism is a bijection. This is a consequence of the fact that there exists a

composite of bijections

GRTeℓℓ(k) −→ Ell(k) −→ Ell(k) −→ GRTeℓℓ(k).

4.1.8 Torsors

Finally, we enhance the above bijections into a torsor result.

Theorem 4.1.16. There is a torsor isomorphism

(ĜTeℓℓ(k),Ell(k),GRTeℓℓ(k)) −→ (ĜTeℓℓ(k),Ell(k),GRTeℓℓ(k)) (4.10)

Proof. This is a summary of most of the above results. First of all, we know that

(ĜTeℓℓ(k),Ell(k),GRTeℓℓ(k)) has a natural torsor structure and that (ĜTeℓℓ(k),Ell(k),GRTeℓℓ(k))

is a torsor by [33]. Next, we proved in Proposition 4.1.13 that there are group isomorphisms

between ĜTeℓℓ(k) and ĜTeℓℓ(k) and in Proposition 4.1.15 that there are group isomorphisms

between GRTeℓℓ(k) and GRTeℓℓ(k). Thus, it is sufficient to show that the actions of ĜTeℓℓ(k)

on Ell(k) and of ĜTeℓℓ(k) on Ell(k) are compatible and that the actions of ĜRTeℓℓ(k) on

Ell(k) and of GRTeℓℓ(k) on Ell(k) are compatible. Under the correspondence of Theorem

4.1.13, the image of the natural action of ĜTeℓℓ(k) on Ell(k) is exactly the action of ĜTeℓℓ(k)

on Ell(k). Both actions are then compatible. Under the correspondence of Theorem 4.1.15,

the image of the natural action of GRTeℓℓ(k) on Ell(k) is exactly the action of GRTeℓℓ(k) on

Ell(k). Both actions are then compatible.
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4.2 Moperads associated with twisted configuration spaces

(cyclotomic associators)

4.2.1 Compactified configuration space of the annulus

For each finite set I, let us consider the configuration space of C×:

Conf(C×, I) :=
{
z = (zi)i∈I ∈ (C×)I |zi 6= zj , ∀i 6= j

}
.

Now consider its reduced version

C(C×, I) := Conf(C×, I)/R>0 .

We clearly have an isomorphism between C(C×, n) and C(C, n + 1). We then consider the

Fulton-MacPherson compactification C(C×, n) of C(C×, n). The boundary ∂C(C×, n) =

C(C×, n) − C(C×, n) is made of the following irreducible components: for any partition

[[0, n]] = J0
∐
· · ·
∐

Jk such that 0 ∈ Jm, for some 0 ≤ m ≤ k, there is a component

∂J1,··· ,Jk
C(C×, n) ∼= C(C×, k)× C(C×, Jm)×

k∏

i=1;i6=m

C(C, Ji) .

The inclusion of boundary components for which m = 0 provides C(C×,−) with the structure

of a moperad over the operad C(C,−) in topological spaces.

4.2.2 The PaB-moperad of parenthesized braids with a frozen strand

We have inclusions of topological moperads

Pa0 ⊂ C(R>0,−) ⊂ C(C×,−) .

over

Pa ⊂ C(R,−) ⊂ C(C,−) .

We then define

PaB1 := π1

(
C(C×,−),Pa0

)
,

which is a moperad over the operad in groupoids PaB.

Example 4.2.1 (Description of PaB1(1)). First observe that C(C×, 1) ≃ C(C, 2) ≃ S1. More-

over, Pa0 = {(01)}. Hence PaB1(1) ≃ Z: it has only one object (01) and is freely generated

by an automorphism E0,1 of (01), and can be depicted as an elementary pure braid:

0 1

0 1

0 1

Two incarnations of E0,1
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Example 4.2.2 (Notable arrow in PaB1(2)). Let us first recall that Pa0(2) = S2×{(••)•, •(••)}

and that C(R>0, 2) ∼= S2 × [0, 1]. Hence we have an arrow Ψ0,1,2 (the identity path in [0, 1])

from (01)2 to 0(12) in PaB1(2), which can be depicted as follows:

(0

0

1)

(1

2

2)

0 1 2

Two incarnations of Ψ0,1,2

Remark 4.2.3. Recall from §2.5.8 that, being a PaB-moperad, PaB1 comes together with a

morphism of S-modules PaB −→ PaB1. In pictorial terms, this morphism sends a parente-

sized braid with n strands to a parenthesized braid with n+1 strands by adding a frozen stand

labelled by 0 on the left. For instance, the images of R1,2 (a morphism in PaB(2)) and of

Φ1,2,3 (a morphism in PaB(3)) can be respectively depicted as follows:

0

0

(1

(2

2)

1)

0

0

((1

(1

2)

(2

3)

3))

Theorem 4.2.4. As a PaB-moperad having Pa0 as Pa-moperad of objects, PaB1 is freely

generated by E := E0,1 ∈ PaB1(1) and Ψ := Ψ0,1,2 ∈ PaB1(2) together with the following

relations:

(MP) Ψ01,2,3Ψ0,1,23 = Ψ0,1,2Ψ0,12,3Φ1,2,3, as arrows from ((01)2)3 to 0(1(23)) in PaB1(3),

(O) E01,2 = Ψ0,1,2R1,2(Ψ0,2,1)−1E0,2Ψ0,2,1R2,1(Ψ0,1,2)−1, as arrows from (01)2 to (01)2 in

PaB1(2).

Proof. We proceed in a similar way as in the elliptic case, using this time the results of [32,

§4.4]. Let Q1 be the PaB-moperad with the above presentation. From Examples 4.2.1 and

4.2.2 we deduce that, as a PaB-moperad in groupoid, PaB1 contains two morphisms E = E0,1

(in PaB1(1)) and Ψ = Ψ0,1,2 (in PaB1(2)). One easily shows, using the following pictures,

that they satisfy mixed pentagon and octogon relations, (MP) and (O):

((0 1) 2) 3

0 (1 (2 3))

=

((0 1) 2) 3

0 (1 (2 3))

(MP)
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and

(0

(0

1)

1)

2

2

=

(0

(0

1)

1)

2

2

(O)

Therefore, by the universal property of Q1, there is a morphism of PaB-moperads Q1 −→

PaB1, which is the identity on objects. In order to show that this is an isomorphism, it suffices

to show that it is an isomorphism at the level of automorphism groups of an object arity-wise

because all groupoids involved are connected. Let n ≥ 0, let p be the object (· · · (01)2 · · · · · · )n

of Q1(n) and PaB1(n). We want to show that the induced group morphism

AutQ1(n)(p) −→ AutPaB1(n)(p) = π1

(
C̄(C×, n), p

)

is an isomorphism.

On the one hand, we can replace the base-point p with preg = (1, 2, . . . , n) ∈ C(C×, n), as

they are in the same path-connected component. Moreover, since the Fulton–MacPherson

compactification does not change the homotopy type of our configuration spaces, we get an

isomorphism

π1(C̄(C×, n), p) ≃ π1(C(C×, n), preg) .

On the other hand, in [32, §4.4], Enriquez proves several useful facts:

• Given a braided module categoryM over a braided monoidal category C, an object X of

C, and an object M of M, there is a group morphism

B1
n −→ AutM(M ⊗X⊗n) ,

where, by convention, M ⊗ X⊗n comes equipped with the left-most parenthesization

((M ⊗X)⊗ ...)⊗X , and B1
n = Bn+1×Sn+1Sn.

• There is a universal braided module category PaB1,Enr generated by a single object 0,

over the universal braided monoidal category PaBEnr generated by a single object •.

Hence objects of PaB1,Enr are parenthesizations of 0 • · · · •, and thus p determines an

object (which we abusively still denote p).

• the morphism B1
n −→ AutPaB1,Enr(p) is an isomorphism.
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One can moreover see that, by construction, AutQ1(n)(p) is exactly the kernel subgroup

ker
(
AutPaB1,Enr(n)(p) −→ Sn

)
≃ PBn+1 .

Hence we have a commuting diagram

PB1
n

≃ //

��

AutQ1(n)(p) //

��

π1

(
C(C×, n), p

)

��

π1 (C(C×, n), preg)
≃oo

��
B1

n
≃ //

��

AutPaB1,Enr(p) //

��

π1

(
C(C×, n)/Sn, [p]

)

��

π1 (C(C×, n)/Sn, [preg])
≃oo

��
Sn Sn Sn Sn

where all vertical sequences are short exact sequences. Thus, in order to get that the map

AutQ1(n)(p) −→ π1

(
C(C×, n), p

)
is an isomorphism, we are left to prove that the compos-

ite map B1
n −→ π1(C(C×, n), preg) is indeed an isomorphism. But this map is, by its very

construction, the isomorphism (from [93, 100]) exhibiting a presentation by generators and

relations of the braid group of a handlebody.

4.2.3 Compactified twisted configuration space of the annulus

Consider, for N ≥ 1, the additive group Γ = Z/NZ. To every finite set I let us associate the

so-called Γ-twisted configuration space

Conf(C×, I,Γ) = {z = (zi)i∈I ∈ (C×)I |zi 6= ζzj , ∀i 6= j, ∀ζ ∈ µN}

(µN is the set of complex Nth roots of unity) and its reduced version

C(C×, I,Γ) := Conf(C×, I,Γ)/R>0 .

Remark 4.2.5. Observe that Conf(C×, I,Γ), resp. C(C×, I,Γ), is an ΓI-covering space of

Conf(C×, I), resp. C(C×, I), the covering map being given by (zi)i∈I 7→ (zNi )i∈I .

There are also inclusions

Conf(C×, I,Γ) →֒ Conf(C×, I × µN ) and C(C×, I,Γ) →֒ C(C×, I × µN )

given by (zi)i∈I 7→ (ζzi)(i,ζ)∈I×µN
. This allows us to define the compactification C(C×, I,Γ)

of C(C×, I,Γ), as the closure of C(C×, I,Γ) inside C(C×, I×µN ). The irreducible components

of its boundary ∂C(C×, I,Γ) = C(C×, I,Γ)− C(C×, I,Γ) can be described as follows. For an

arbitrary partition J0
∐
· · ·
∐

Jk of {0} ⊔ I there is a component

∂J1,··· ,Jk
C(C×, I,Γ) ∼= C(C×, k,Γ)× C(C×, Jm,Γ)×

k∏

i=1;i6=m

C(C, Ji) ,

where m ∈ {0, . . . , k} is the index such that 0 ∈ Jm. The inclusion of boundary components

such that m = 0 provides C(C×,−,Γ) with the structure of a moperad over the operad C(C,−)

in topological spaces.
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We let the reader check that the covering map C(C×, I,Γ) −→ C(C×, I) from Remark 4.2.5

extends to a continuous map φn : C(C×, I,Γ) −→ C(C×, I) between their compactifications,

and thus leads to a morphism of moperads.

Finally, one observes that the natural action of ΓI on each C(C×, I × µN ), given by

(α · z)(j,ζ) := z(
j,e

2iπαj
N ζ

)

induces an action of Γ on the moperad C(C×,−,Γ), in the sense of §2.5.9.

4.2.4 The Pa-moperad of labelled parenthesized permutations

Borrowing the notation from the previous subsection, we define PaΓ0 (n) := φ−1n

(
Pa0(n)

)
.

Explicitly, PaΓ0 (n) is the set of parenthesized permutations of {0, 1, . . . , n} that fix 0 and that

are equipped with a label {1, . . . , n} −→ Γ.

Notation. As a matter of notation, we will write the label as an index attached to each

1, . . . , n. For instance, (02α)10 belongs to PaΓ0 (2) for every α ∈ Γ.

Observe that the S-module (in sets) PaΓ0 carries the structure of a Pa-moperad. Indeed, it is

a fiber product

PaΓ0 = Pa0 ×
C(C×,−)

C(C×,−,Γ)

in the category of Pa-moperads (in topological spaces). Here are two self-explanatory examples

of partial compositions:

(02α)1β ◦2 (12)3 = (0((2α3α)4α))1β and (02α)1β ◦0 (02α)10 = (((02α)10)4α)3β .

Remark 4.2.6. As we have seen in §2.5.8 of the previous Section, our conventions are such

that the Pa-moperad structure on PaΓ0 gives in particular a morphism of Pa-modules Pa −→

PaΓ0 . One can see that it is the map that sends a parenthezised permutation p to 0(p) together

with the trivial label function i 7→ 0.

Finally, PaΓ0 is acted on by Γ in the following way: for n ≥ 0, Γn only acts on the labellings, via

the group law of Γ. For instance, if f : {1, . . . , n} −→ Γ and α ∈ Γn, then (α ·f)(i) = f(i)+αi.

4.2.5 The PaB-moperad of twisted parenthesized braids

We define

PaBΓ := π1

(
C(C×,−,Γ),PaΓ0

)
.

It is a PaB-moperad (in groupoids), that carries an action of the group Γ. The maps φn :

C(C×, n,Γ) −→ C(C×, n) induce a PaB-moperad morphism PaBΓ −→ PaB1.

Example 4.2.7 (Description of PaBΓ(1)). First observe that PaΓ0 (1) −→ Pa0(1) is the

terminal map µN ≃ {01α|α ∈ Γ} −→ {01} = ∗. Then observe that the map C(C×, 1,Γ) −→

C(C×, 1) is nothing but the path-connected Γ-cover S1 −→ S1. Hence we in particular have

morphisms E0,1
α , α ∈ Γ from 01α to 01α+1 in PaBΓ(1), being the unique lift of E0,1 that starts

at 01α ∈ PaΓ0 (1). Pictorially:
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0 10

0 11

0
z1

e2iπ/Nz1

0 zN1

z zN

Two incarnations of E0,1
0

In the above picture, on the right we have pictured a path in the twisted configuration space,

together with its image under the covering map, which is a loop. Diagrammatically (see the

left of the above picture), we depict it as a pure braid (a loop in the base configuration space)

together with appropriate base points (which uniquely determines the lift in the covering

twisted configuration space).

Example 4.2.8 (Notable arrow in PaBΓ(2)). Let Ψ0,1,2
0 be the unique lift of Ψ0,1,2 (a mor-

phism in PaB1(2)) starting at (010)20. It can be depicted as follows:

(0

0

10)

(10

20

20)

Remark 4.2.9. As in Remark 4.2.3, one sees from §2.5.8 there is a morphism of S-modules

PaB −→ PaBΓ. In pictorial terms, it sends a parentesized braid with n strands to a labelled

parenthesized braid with n + 1 strands by adding a frozen stand labelled by 0 on the left and

choosing the trivial label. For instance, the images R1,2
0 of R1,2 and Φ1,2,3

0 of Φ1,2,3 can be

respectively depicted as follows:

0

0

(10

(20

20)

10)

0

0

((10

(10

20)

(20

30)

30))

We are now ready to provide an explicit presentation for the PaB-moperad PaBΓ:

Theorem 4.2.10. As a PaB-moperad in groupoids with a Γ-action having PaΓ
0 as PaΓ0 -

moperad of objects, PaBΓ is freely generated by E0 := E0,1
0 and Ψ0 := Ψ0,1,2

0 together with the

following relations:

(MP) Ψ01,2,3
0 Ψ0,1,23

0 = Ψ0,1,2
0 Ψ0,12,3

0 Φ1,2,3, as arrows from ((010)20)30 to 0(10(2030))) in PaBΓ(3),

(tO) E01,2
0 = Ψ0,1,2

0 R1,2(Ψ0,2,1
0 )−1E0,2

0 α · (Ψ0,2,1
0 R2,1(Ψ0,1,2

0 )−1), as arrows from (010)20 to

(010)21 in PaBΓ(2), and where α = (0, 1) ∈ Γ2.
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Proof. Let QΓ be the PaB-moperad with the above presentation, and recall that Q1 is the

PaB-moperad with the presentation of Theorem 4.2.4. Our first goal is to show that there is

a morphism QΓ −→ PaBΓ of PaB-moperads, commuting with the Γ-action. We have already

seen in the Examples above that there are morphisms E0 := E0,1
0 and Ψ0 := Ψ0,1,2

0 , in PaBΓ(1)

and PaBΓ(2), respectively. We have to prove that they satisfy the mixed pentagon and twisted

octogon relation, (MP) and (tO).

These relations are the unique lifts of the similar relations (MP) and (O) in PaB1 from

Theorem 4.2.4, starting at ((010)20)30 and (010)20, respectively. They can be depicted as

follows:

((010) 20) 30

0 (10 (2030))

=

((010) 20) 30

0 (10 (2030))

(MP)

and

(0

(0

10)

10)

20

21

=

(0

(0

10)

10)

20

21

(tO)

By universal property of QΓ there is a Γ-equivariant morphism of PaB-moperads QΓ −→

PaBΓ, which is the identity on objects. As before, in order to show that this is an isomorphism,

it suffices to show that it is an isomorphism at the level of automorphism groups of an object

arity-wise (because all groupoids involved are connected). Let n ≥ 0, let p̃ be the object

(· · · (010)20 · · · · · · )n0 of QΓ(n) and PaBΓ(n), which lifts the object p = (· · · (01)2 · · · · · · )n of

Q1(n) ≃ PaB1(n). We want to show that the induced group morphism

AutQΓ(n)(p̃) −→ AutPaBΓ(n)(p0) = π1

(
C̄(C×, n), p̃

)

is an isomorphism.
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We claim that it fits into a commuting diagram

AutQΓ(n)(p̃) //

��

π1

(
C(C×, n,Γ), p̃

)

��

π1 (C(C×, n), p̃reg)
≃oo

��
AutQ1(n)(p)

≃ //

��

π1

(
C(C×, n), p

)

��

π1 (C(C×, n)), f(preg))
≃oo

��
Γn Γn Γn

where only the left-most vertical arrows remain to be described.

The morphism AutQ1(n)(p) −→ Γn. Let ∗ be the terminal operad in groupoids. We have a

∗-moperad structure on the following S-module in groupoids: Γ = {Γn}n≥0, where we view a

group as a groupoid with only one object, and where the action of the symmetric group is by

permutation. The moperad structure is described as follows:

• ◦0 : Γn × Γm −→ Γn+m is the concatenation of sequences.

• for every i 6= 0, ◦i : Γn −→ Γn+m−1 is the partial diagonal

(α1, . . . , αn) 7−→ (α1, . . . , αi−1, αi, . . . , αi︸ ︷︷ ︸
m times

, αi+1, . . . , αn) .

We let the reader check that sending E to 1 ∈ Γ and Ψ to (0, 0) ∈ Γ2 defines a moperad

morphism PaB1 −→ Γ along the terminal operad morphism PaB −→ ∗. This in particular

induces a group morphism

AutQ1(n)(p) −→ Γn

for every n ≥ 0. Heuristically, this morphism counts, for every i, and modulo N , the number

of times that E0,i appears in an element of AutQ1(n)(p). It is obviously surjective, and we let

the reader check that the following triangle commutes:

AutQ1(n)(p)
≃ //

((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
π1

(
C(C×, n), p

)

��
Γn

The morphism AutQΓ(n)(p̃) −→ AutQ1(n)(p). We have a Γ-equivariant morphism of PaB-moperads

QΓ −→ Q1, where Γ acts trivially on Q1, which forgets the label on objects, and sends the

generators E0 and Ψ0 to E and Ψ, respectively. It obviously fits into a commmuting square

QΓ //

��

PaBΓ

��
Q1 // PaB1

of PaB-moperads. This induces in particular a group morphism

AutQΓ(n)(p̃) −→ AutQ1(n)(p)
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for every n ≥ 0, that fits into a commuting square

AutQΓ(n)(p̃) //

��

π1

(
C(C×, n,Γ), p̃

)

��
AutQ1(n)(p)

≃ // π1

(
C(C×, n), p

)

We now turn to the proof of the fact that the left-most vertical sequence is a short exact

sequence, which shows that

AutQΓ(n)(p̃) −→ AutPaBΓ(n)(p0) = π1

(
C̄(C×, n), p̃

)

is an isomorphism.

This morphism is injective. Indeed, an automorphism of p̃ in QΓ(n) can be represented by a

finite sequence S̃ of R’s, Φ’s, E0’s, Ψ0’s, and their images under the action of Γn. The image of

such an automorphism under QΓ −→ Q1 is represented by the corresponding finite sequence

S of R’s, Φ’s, E’s and Ψ’s. Every modification of S using the relations (MP) and (O) can be

lifted (uniquely) to a modification of S̃ using (MP), (tO), or their images under the action of

Γn. Hence, if an automorphism has trivial image, then it must be trivial.

The sequence is exact. We already know from the commuting diagram that the image of

AutQΓ(n)(p̃) in AutQ1(n)(p) lies in the kernel of AutQ1(n)(p) −→ Γn. We finally can show

that the image is exactly the kernel. Indeed:

• Using (O), every element g in AutQ1(n)(p) can be written represented by a product of

Φ’s, R’s, Ψ’s and E’s, where the only E’s appearing are of the form E0,i.

• Such an element admits a unique lift to a morphism g̃ in QΓ(n), with source being p̃

(one just replace Φ’s, R’s, Ψ’s and E’s in the expression for g by Φ’s, R’s, Ψ0’s and E0’s,

maybe acted on by Γn in order to get the correct starting objects).

• An element g as above lies in

ker
(
AutQ1(n)(p) −→ Γn

)

if and only if for every i, the number of occurence of E0,i (counted in an algebraic way)

is a multiple of N . This tells us in particular that the target of the lifted morphism shall

be the same as its source, so that g̃ lies in the kernel.

This ends the proof of the Proposition.

4.2.6 Infinitesimal cyclotomic braids

Let Γ = Z/NZ, I a finte set, and let tΓI (k) be the Lie k-algebra with generators t0i, (i ∈ I),

and tαij , (i 6= j ∈ I, α ∈ Z/NZ), and relations:

(NS) tαij = t−αji ,

(NL) [t0i, t
α
jk] = 0 and [tαij , t

β
kl] = 0,
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(N4T) [tαij , t
α+β
ik + tβjk] = 0,

(NT1) [t0i, t0j +
∑

α∈Z/NZ t
α
ij ] = 0,

(NT2) [t0i + t0j +
∑

β∈Z/NZ t
β
ij , t

α
ij ] = 0,

where i, j, k, l ∈ I are pairwise distinct and α, β ∈ Z/NZ. We will call it the k-Lie algebra of

infinitesimal cyclotomic braids.

The above definition is obviously functorial with respect to bijections, exhibiting tΓ(k) as an

S-module. It moreover also has the structure of a t(k)-moperad, where partial compositions

are defined as follows: for i ∈ I,

◦k : tΓI (k)⊕ tJ(k) −→ tΓJ⊔I−{i}(k)

(0, tpq) 7−→ t0pq

(tαjk, 0) 7−→





tαjk if i /∈ {j, k}
∑
r∈J

tαrk if j = i

∑
r∈J

tαjr if k = i

(t0i, 0) 7−→





t0j if j 6= i
∑
p∈J

t0p if j = i

and

◦0 : tΓI (k)⊕ tΓJ(k) −→ tΓJ⊔I(k)

(0, t0p) 7−→ t0p

(0, tαpq) 7−→ tαpq
(tαjk, 0) 7−→ tαjk
(t0i, 0) 7−→ t0i +

∑
j∈J

t0ji

We will call tΓ(k) the moperad of infinitesimal cyclotomic braidings.

We then consider the CD(k)-moperad of cyclotomic chord diagrams CDΓ(k) := Û(tΓ(k)) in

Cat(CoAlgk).

Remark 4.2.11. Morphisms in CDΓ(k)(n) can be represented as linear combinations of

diagrams of chords on n+ 1 vertical strands, together with a labelling of the last n strands by

elements of Γ. Thus, borrowing the representation of such chord diagrams from [17] (where the

relation to Vassiliev invariants has been explored), the infinitesimal cyclotomic braid relations

can be depicted as follows:

aa
=

aa

a
=

a

(NS)
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a

b

−a− b

+

a

−a b

−b

=

−a

a+ b

−b + a

−a

b

−b

(N4T)

+
∑

a

a

−a

= +
∑

a

a

−a (NT1)

a

−a +
∑

b

a

b− a

−b

= a

−a

+
∑

b

b

a− b

−a

(NT2)

Since CDΓ(k) has only one object in each arity, then we have an obvious terminal morphism

of moperads ω3 : PaΓ
0 −→ Ob(CDΓ(k)), over the operad morphism ω1 : Pa −→ Ob(CD(k))

from §2.6.4. Hence we can consider the moperad

PaCDΓ(k) := ω⋆
3CDΓ(k)

of parenthesized cyclotomic chord diagrams, over the operadPaCD(k) = ω⋆
1CD(k) in Cat(CoAssk).

Example 4.2.12 (Notable arrows of PaCDΓ(k)). We have the following arrows in PaCDΓ(k)(1)

and PaCDΓ(k)(2), respectively:

K0,1 = t01·

0

0

10

10

=

0

0

10

10

b0,1,2 = 1·

(0

0

10)

(10

20

20)

Remark 4.2.13. Again, there is an action of Γ on PaCDΓ(k) and the elements K0,1 and

b0,1,2 are generators of the PaCD(k)-moperad PaCDΓ(k) and satisfy the following relations

• b01,2,3b0,1,23 = b0,1,2b0,12,3a1,2,3,

• K01,2 = b0,1,2X1,2(b0,2,1)−1K0,2α ·
(
b0,2,1X2,1(b0,1,2)−1

)
, for α = (0, 1) ∈ Γ2,

• b0,1,2X1,2(b0,2,1)−1α · (b0,2,1X2,1(b0,1,2)−1) = 1,

• K0,1 +
∑N

α=1 α · (Ad(b
0,1,2)(H1,2

0 )) + Ad
(
b0,1,2X1,2(b0,2,1)−1

)
(K0,2) = 0.
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4.2.7 Cyclotomic associators

We borrow an expand the terminology from §2.6.5 and §4.1.5.

If P −→ Q is a morphism between operads in C, M is a P-moperad, and N a Q-moperad,

then we will consider moperad mophisms M −→ N in the category of P-moperads (via the

restriction functor), and will simply refer to them as moperad morphisms if the context is

clear.

For an operad O in C, we denote Mop(O) the category of O-moperads. Given the choice of an

automorphism g of O, we will denote by Aut+(Mop(O),g)(M) the group of automorphisms of the

O-moperadM with respect to the automorphism g and Iso+(Mop(P,Q),Φ)(M,N ), for the set of

isomorphisms beween moperadsM and N with respect to an operad isomorphism Φ between

P and Q.

In addition to the superscript “+”, we may also add a superscript “Γ” when only considering

morphisms that are Γ-equivariant.

The rest of this section can be seen as an operadic reformulation of (some parts of) [32].

Definition 4.2.14. A cyclotomic associator is a couple (F,G) where F is in Ass(k) and G

is a Γ-equivariant isomorphism between the P̂aB(k)-moperad P̂aB
Γ
(k) and the GPaCD(k)-

moperad GPaCDΓ(k) which is the identity on objects and which is compatible with F . Denote

by

AssΓ(k) := Iso+
(P̂aB(k),GPaCD(k))

(P̂aB
Γ
(k), GPaCDΓ(k))Γ

the set of cyclotomic associators.

Denote Ψ0,1,2 := Ψ(t01, t
0
12, ..., t

N−1
12 ), Ψ0,1,2

a := θ(a) · Ψ0,1,2 = Ψ(t01, t
a
12, ..., t

a+N−1
12 ) and

Ψ0,2,1
a := (12) · Ψ0,1,2

a = Ψ(t02, t
a
21, ..., t

a+N−1
21 ) = Ψ(t02, t

a
12, ..., t

a+1−N
12 ). Denote t02,N(k) for

the free Lie algebra f(k)(t001, t
0
12, ..., t

N−1
12 ). We have the following theorem:

Theorem 4.2.15. There is a one-to-one correspondence between elements of AssΓ(k) and

those of the set AssΓ1 (k) consisting on triples (λ,Φ,Ψ) ∈ ×k× × exp(̂t03(k)) × exp(̂t02,N (k)),

such that (λ,Φ) ∈ Ass(k) and Ψ satisfies

(MP) Ψ01,2,3Ψ0,1,23 = Ψ0,1,2Ψ0,12,3{Φ1,2,3},

(O) {e
λ
N

t01}Ψ0,1,2
0 {e

λ
2 t012}(Ψ0,2,1

0 )−1{e
λ
N

t02}Ψ0,2,1
a {e

λ
2 ta12}Ψ0,1,2

a = 1,

where a = 1̄ ∈ Z/NZ.

Proof. Let F̃ be a k-associator P̂aB(k) −→ GPaCD(k) and let G̃ be an isomorphism

P̂aB
Γ
(k) −→ GPaCDΓ(k)

of (P̂aB(k), GPaCD(k))-moperads which is the identity on objects and which is compat-

ible with F̃ . It corresponds to a unique morphism G : PaBΓ −→ GPaCDΓ(k). From

the presentation of PaBΓ, we know that G̃ is uniquely determined by the images of E0,1
0 ∈

Hom
P̂aB

Γ
(k)(1)

(010, 011) and Ψ0,1,2
0 ∈ Hom

P̂aB
Γ
(k)(2)

((010)20, 0(1020)) at the morphisms level.
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Thus, there are elements u ∈ exp(̂tΓ1 (k)) and v ∈ exp(̂tΓ2 (k)) such that G(E0,1
0 ) = u ·

E0,1
0 and G(Φ0,1,2

0 ) = v · Φ0,1,2
0 . Now, we have a Lie algebra isomorphism tΓ2 (k) ≃ k(c) ⊕

f(k)(t01, t
0
12, ..., t

N−1
12 ) where c = t001 + t002 +

∑
a∈Γ t

a
12. Thus, u is of the form eλ1c and v is

of the form eλ2cf(t01, t
0
12, ..., t

N−1
12 ). Now, we know that the image of E0,1

0 in PaB1 induced

by the projection z −→ zN is E0,1. Thus, we can identify λ1 = λ
N and then u = e

λ
N

t01 . Fi-

nally, the fact that Φ0,1,2
0 is Γ-invariant ensures that v is of the form f(t01, t

0
12, ..., t

N−1
12 ). Once

we simplified this way u and v, the images of the Octogon and Mixed Pentagon relation in

GPaCDΓ(k) imply relations (MP) and (O) in the above theorem.

Example 4.2.16 (Cyclotomic KZ Associator). Consider the differential equation

d

d z
H(z) =


 t01

z
+

∑

α∈Z/NZ

tα12
z − ζα


H(z), (4.11)

where ζ is a primitive Nth root of unity, and let H0+ , H1− be the solutions such that H0+(z) ∼

zt01 when z −→ 0+ and H1−(z) ∼ zt
1
12 when z −→ 1−. Then the renormalized holonomy

ΨKZ = H−11− H0+ ∈ exp(̂t02,N ) from 0 to 1 of the above differential equation is the cyclotomic KZ

associator constructed by Enriquez in [32]. More precisely, Enriquez showed that the quadruple

(−1, 2iπ,ΦKZ,ΨKZ) is in AssΓ(C).

4.2.8 Cyclotomic Grothendieck-Teichmüller groups

Definition 4.2.17. The (k-pro-unipotent version of the) cyclotomic Grothendieck-Teichmüller

group is defined as the group

ĜT
Γ
(k) := Aut+

(Mop(P̂aB(k))
(P̂aB

Γ
(k))Γ

of automorphisms of the P̂aB(k)-moperad P̂aB
Γ
(k) which are Γ-equivariant and which are

the identity on objects.

Notice that such an automorphism depends on an automorphism of P̂aB(k) i.e. on an element

Φ of ĜT(k). Let F̂2(φN ,k) be the partial k-pro-unipotent completion of the free group F2

with respect to the surjective group morphism φN : F2 −→ Z/NZ sending x to 1 and y

to 0 and P̂4(φ3,N ,k) the partial k-pro-unipotent completion of P4 with respect to the map

φ3,N : B4 ×S4 S3 −→ Z/NZ×S3 induced by the (Z/NZ×S3)-fold map Conf(C×, 3,Γ) −→

Conf(C, 3)/S3 where S3 is interpreted as the subgroup of the group S4 of permutations

of 0, ..., 3 which fix 0. Denote k(N)× = (Z/NZ)× × k×. See [32] for more details on the

subject of partial pro-unipotent completions. Finally, recall that PBn,N has generators xN
0,i

and xα
ij := x−α0,i xijx

α
0,i. In particular, the generators of PB2,N will be denoted by X := xN and

y(α) := x−αyxα for 0 ≤ α ≤ N − 1.

In [32], the author constructed a cyclotomic version of the Grothendieck-Teichmüller group

which we now recall. Define ĜT
Γ
(k) to be the set of elements (λ, µ, f, g) ∈ k× × k(N)× ×

F̂2(k)× F̂2(φN ,k), satisfying (λ, f) ∈ ĜT(k) and
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(O) xµg(x, y)y
λ+1
2 g(x−1y−1)−1(x−1y−1)µg(x−1y−1, y)y

λ−1
2 g(x, y)−1 = 1 in F̂2(φN ,k),

(MP) g(x02x12, x23)g(x01, x12x13) = g(x01, x12)g(x01x02, x13x23)f(x12, x23) in P̂4(φ3,N ,k).

The set ĜT
Γ
(k) has a internal composition law defined by

(λ1, µ1, f1, g1) ∗ (λ2, µ2, f2, g2) = (λ, µ, f, g),

given as follows. Write y(α) = xαyx−α and identify (λ, µ, f, g) with (a, k, f, g) where µ =

(a, k) ∈ k(N) so λ = ã+Nk. Then (a1, k1, f1, g1)(a2, k2, f2, g2) = (a, k, f, g), where a = a1a2,

k is such that ã+Nk = (ã1 +Nk1)(ã2 +Nk2), f(x, y) is given by

f(x, y) = f2(x
λ1 , f1(x, y)y

λ1f1(x, y)
−1) · f1(x, y),

and

g(X |y(0), . . . , y(N − 1)) = g1(X |y(0), . . . , y(N − 1))·

g2

(
X ã1+Nk1 |Ad(g1(X |y(0), . . . , y(N − 1)))(y(0)ã1+Nk1),

Ad
(
Xk1g1(X |y(ã1), . . . , y(ã1 +N − 1))

)
(y(ã1)

ã1+Nk1), . . . ,

Ad
(
X(N−1)k1g1(X |y((N − 1)ã1), . . . , y((N − 1)ã1 +N − 1))

)
((y(N − 1)ã1)

ã1+Nk1)
)
.

The group ĜT
Γ
(k) acts on AssΓ(k) on the left as follows:

(λ, µ, f, g) ∗ (a′, λ′,Φ′,Ψ′) = (µ̄a′, [µ]λ′,Φ′′,Ψ′′), (4.12)

where

Φ′′(t12, t23) := Φ′(t12, t23)f(e
λ′t12 ,Ad(Φ′(t12, t23))(e

λ′t23)),

Ψ′′(t012|t
0
23, . . . , t

N−1
23 ) := Ψ′(t012|t

0
23, . . . , t

N−1
23 )

g
(
λ′t012|Ad

(
Ψ′(t012|t

0
23, . . . , t

N−1
23 )

)
(λ′t023),

Ad
(
(λ′/N)t012Ψ

′(t012|t
a′

23, . . . , t
a′+N−1
23 )

)
(λ′ta

′

23), . . . ,

Ad
(
(N − 1)(λ′/N)t012Ψ

′(t012|t
(N−1)a′

23 , . . . , t
(N−1)a′+N−1
23 )

)
(λ′t

(N−1)a′

23 )
)

(recall that λ = [µ], so if µ = (a, k), then λ = ã+Nk; also µ̄ = a). It was shown in [32] that

this action is free and transitive.

Proposition 4.2.18. There is a group isomorphism between ĜT
Γ
(k) and ĜT

Γ
(k).

Proof. The map GTΓ(k) −→ GTΓ(k) is constructed as follows. Suppose that we have an

automorphism G of P̂aB
Γ
(k) which is the identity on objects and which is compatible with

an automorphism F of the operad P̂aB(k). F is given by the pair (λ, f) ∈ ĜT(k), and G

is determined by the images of the two generators E0 and Ψ0, in PaBΓ(1) and PaBΓ(2),

respectively. Thus, an automorphism (F,G) in GTΓ(k) is uniquely determined by elements

(λ, µ, f, g) ∈ k× × k(N)× × F̂2(k)× F̂2(φN ,k) such that
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• F (R1,2) = (R1,2)λ,

• F (Φ1,2,3) = f(x12, x23) · Φ1,2,3,

• G(Ψ0,1,2
0 ) = g(xN |y(0), . . . , y(N − 1)) ·Ψ0,1,2

0 ·,

• G(E0,1
0 ) = µ ·E0,1

0 .

The relation between a and λ was explained in the proof of Theorem 4.2.15. Then, the defining

relations in the presentation of P̂aB
Γ
(k) imply that the tuple (λ, µ, f, g) satisfies relations (O)

and (MP). The assignment (Ψ, F ) 7→ (λ, µ, f, g) then defines a map GTΓ(k) −→ GTΓ(k).

Let’s now prove that this map is a group morphism. We will show that the composition

of automorphisms in Aut+
Mop(P̂aB(k))

(P̂aB
Γ
(k)) corresponds to the composition law of the

group GTΓ(k). As before, the composition of automorphisms F1 and F2 in Aut+
Op Ĝ

(P̂aB(k))

corresponds to the composition law in GT(k), that is, the associated couples (λ, f1) and (µ, f2)

in k× × F̂2(k) satisfy

(F1 ◦ F2)(R
1,2) = (R1,2)λµ

(F1 ◦ F2)(Φ
1,2,3) = Φ1,2,3 · (f2(x

λ, f1(x, y)y
λf1(x, y)

−1) · f1(x, y)),

(here F2 is generated by x := σ2
1 and y := σ2

2). We also already showed that any two automor-

phisms G and H in the group Aut+
Mop(P̂aB(k))

(P̂aB
Γ
(k)), depending on Ψ1 and Ψ2 respectively,

are associated to couples (µ1, g1(x
N |y(0), . . . , y(N − 1))) and (µ2, g2(x

N |y(0), . . . , y(N − 1)))

where g1 and g2 are elements of in F̂2(φN ,k). Analogously to relation (2.15), as E0,1
0 is an

arrow from (010)20 to (01α)20 for some primitive element α ∈ Γ, then E0,1
0 is sent via G to

(E0,1
0 )kN ·E0,1

0 for some k ∈ Z.

Let us now place ourselves in the group A = Aut
P̂aB

Γ
(k)(2)

((010)20, (010)20). In A, we have

xN
01 = ((E0,1

0 )N )2 = µ((E0,1
0 )N , 2) = µ ◦0 (E

0,1
0 )N

We then have F (xN
01) = (xN

01)
λ for some invertible λ ∈ k×. Next, let us compute F (x0

12).

Again, analogously to relation (2.16), in A, the element (x0
12)

2 can be decomposed as

(010)20
Φ0,1,2

// 0(1020)
µ(0,(R1,2

0 )2) // 0(1020)
(Φ0,1,2)−1

// (010)20.

Then, as

F (Φ0,1,2) = Φ0,1,2 · g1(x01|x
0
12, . . . , x

N−1
12 )

and

F (0(R0
12)

2) = F (µ(0, (R0
12)

2) = µ(0, F ((R0
12)

2)) = (x0
12)

2λ′

,

we obtain, for λ = 2λ′ + 1

F (x0
12) = g1(x01|x

0
12, . . . , x

N−1
12 ) · (x0

12)
λ · g−11 (x01|x

0
12, . . . , x

N−1
12 )
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Next, as xα
12 = α · x0

12 for α ∈ Γ, by Γ-equivariance we wave

F (xα
12) = α · F (x0

12)

= α · (g1(x
N
01|x

0
12, . . . , x

N−1
12 ) · (x0

12)
λ · g−11 (xN

01|x
0
12, . . . , x

N−1
12 ))

= g1(α · x
N
01|α · x

0
12, . . . , α · x

N−1
12 ) · α · (x0

12)
λ · g−11 (α · xN

01|α · x
0
12, . . . , α · x

N−1
12 )

= g1(x
αN
01 |x

α
12, . . . , x

α+N−1
12 ) · (xα

12)
λ · g−11 (xN

01|x
α
12, . . . , x

α+N−1
12 )

= Ad(g1(x
αN
01 |x

α
12, . . . , x

α+N−1
12 ))(xα

12)
λ).

Finally we obtain

(F ◦G)(Ψ0,1,2) = F (Ψ0,1,2 · g2(x
N
01|x

0
12, . . . , x

N−1
12 ))

= Ψ0,1,2 · g1(x
N
01|x

0
12, . . . , x

N−1
12 ) · g2(F (xN

01)|F (x0
12), . . . , F (xN−1

12 ))

= Ψ0,1,2 · g1(x
N
01|x

0
12, . . . , x

N−1
12 )

· g2(λ · x
N
01|λ · g1(x01|x

0
12, . . . , x

N−1
12 ) · (x0

12)
λ · λ · g−11 (xN

01|x
0
12, . . . , x

N−1
12 ),

. . . , λ · g1(x
N
01|x

N−1
12 , . . . , x2N−2

12 ) · x
(N−1)λ
12 · λ · g−11 (xN

01|x
N−1
12 , . . . , x2N−2

12 ))

= Ψ0,1,2 · λ · g1(x
N
01|x

0
12, . . . , x

N−1
12 )

· g2(x
N
01|g1(x01|x

0
12, . . . , x

N−1
12 ) · x0

12 · g
−1
1 (xN

01|x
0
12, . . . , x

N−1
12 ),

. . . , g1(x
N
01|x

N−1
12 , . . . , x2N−2

12 ) · xN−1
12 · g−11 (xN

01|x
N−1
12 , . . . , x2N−2

12 )))

which is nothing but the composition law in the group GTΓ(k). This concludes the proof,

as the composite of moperad morphisms F ◦G is compatible with the composition of operad

morphisms Φ ◦Ψ. Now, the fact that the defining sets in GTΓ(k) and GTΓ(k) are isomorphic

is a straightforward consequence of the composite of bijections

GTΓ(k) −→ AssΓ(k) −→ AssΓ(k) −→ GTΓ(k).

This finishes the proof.

Definition 4.2.19. The graded cyclotomic Grothendieck–Teichmüller group is the group

GRTΓ(k) := Aut+(Mop(PaCD(k),Φ)(PaCDΓ(k))Γ

of Γ-equivariant automorphisms of the PaCD(k)-moperad PaCDΓ(k) which are the indentity

on objects.

Definition 4.2.20. Define GRTΓ
(1̄,1)(k) as the set of pairs (Φ,Ψ) with Φ ∈ GRT1(k) and

Ψ ∈ exp(̂tΓ3 (k)), such that

Ψ0,1,2(Ψ0,2,1)−1Ψ(t02|t
1
12, t

0
12, . . . , t

2−N
12 )Ψ(t01|t

1
12, . . . , t

N
12)
−1 = 1, (4.13)

t01 +

N∑

α=1

Ad(Ψ(t01|t
α
12, . . . , t

α+N−1
12 ))(tα12) + Ad

(
Ψ0,1,2Ψ

−1
0,2,1

)
(t02) = 0, (4.14)

as equalities in t̂Γ2 (k), where t01 +
∑n

α=0 t
α
12 + t02 = 0, and

Ψ01,2,3Ψ0,1,23 = Ψ0,1,2Ψ0,12,3Φ1,2,3, (4.15)
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as an equality in exp(̂tΓ3 (k)). GRTΓ
(1̄,1)(k) is a group when equipped with the product

(Φ1,Ψ1) ∗ (Φ2,Ψ2) = (Φ,Ψ),

where

• Φ(t12, t23) = Φ2(t12, t23)Φ1(t12,AdΦ2(t12, t23)(t23)),

• Ψ0,1,2 = Ψ1

(
t01|Ad((Ψ

0,1,2
2 ))(t012), . . . ,Ad(Ψ2(t01|t

N−1
12 , . . . , t2N−212 ))(tN−112 )

)
·Ψ0,1,2

2 · .

The action of (Z/NZ)××k× by automorphisms of tΓ3 (resp. t3) given by (c, γ)·t0i = γt0i, (c, γ)·

tαij = γtcαij (resp. (c, γ) · tij = γtij) induces its action by automorphisms of GRTΓ
(1̄,1)(k). We

denote by GRTΓ(k) the corresponding semidirect product.

GRTΓ
(1̄,1)(k) acts on AssΓ(k) from the right by (Φ,Ψ) ∗ (h, k) = (Φ′,Ψ′), where

Φ′(t12, t23) = h(t12, t23)Φ(t12,Ad(h(t12, t23))(t23)), (4.16)

Ψ′(t01|t
0
12, . . . , t

N1
12 ) = k(t01|t

0
12, . . . , t

N1
12 ) (4.17)

Ψ
(
t01|Ad

(
k(t01|t

0
12, . . . , t

N−1
12 )

)
(t012), . . . ,Ad

(
k(t01|t

N−1
12 , . . . , t

2(N−1)
12 )

)
(tN−112 )

)
.

This action preserves each AssΓ(a,λ)(k), and it extends to an action of GRTΓ(k) on AssΓ(k),

which is compatible with the action of (Z/NZ)××k× on (Z/NZ)×k and commutes with the

left action of GTΓ(k) on AssΓ(k).

Proposition 4.2.21. There is a group isomorphism between GRTΓ(k) and GRTΓ(k).

Proof. The map GRTΓ(k) −→ GRTΓ(k) is constructed as follows. Let F be an automorphism

in Aut+Mop(GPaCD(k))(GPaCDΓ(k)) depending on an operad automorphism Ψ in GRT(k). We

have

• Ψ(X1,2) = X1,2,

• Ψ(H1,2) = λH1,2,

• Ψ(a1,2,3) = f(t12, t23) · a1,2,3,

• F (b0,1,2) = g(t01|t012, . . . , t
N−1
12 ) · b0,1,2,

• F (K0,1) = µK0,1.

where (λ, f) ∈ GRT(k) and (µ, g) ∈ k(N)× × exp(̂t3(k)). In light of relations of Remark

4.2.13, the tuple (λ, f, g) satisfies relations (4.13), (4.14) and (4.15). The assignment (Ψ, F ) 7→

(λ, g(t12, t23), u+(x, y), u−(x, y)) then defines a map GRTΓ(k) −→ GRTΓ(k).

Let’s now prove that the composition of automorphisms in Aut+Mop(GPaCD(k))(GPaCDΓ(k))

corresponds to the composition law of the group GRTΓ(k). We already know that the com-

position of automorphisms Φ and Ψ in Aut+
Op Ĝ

(GPaCD(k)) corresponds to the composition

law in GRT(k), that is, the associated couples (λ, f1) and (µ, f2) in k× × exp(̂̄t3(k)) satisfy

(Φ ◦Ψ)(H1,2) = λµH1,2
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(Φ ◦Ψ)(11,2,3) = 11,2,3 · f1(t12, t23) · f2(λt12, f1(t12, t23) · λt23 · f1(t12, t23)
−1).

We also already showed that any two automorphisms F and G in the group

Aut+Mop(GPaCD(k))(GPaCDΓ(k)), depending on Φ and Ψ respectively, are associated to el-

ements φ1(t01|t012, . . . , t
N−1
12 ) and φ2(t01|t012, . . . , t

N−1
12 ) which represent automorphisms of the

parenthesized word (010)20 in the groupoid GPaCDΓ(k)(2) i.e. in exp(̂̄tΓ2 (k)). Let us now

place ourselves in the group A = AutGPaCDΓ(k)(3)((010)20). In A, we have

t01 = (K0,1)2 = µ(K0,1, 2) = µ ◦0 K
0,1

We then have F (t01) = λt01 for some invertible λ ∈ k×. Next, let us compute F (t012). Again

in the group A, the element t012 can be decomposed as

(010)20
10,1,2 // 0(1020)

µ(0,H0
12) // 0(1020)

1
−1
0,1,2 // (010)20.

Then, as

F (10,1,2) = 10,1,2 · φ1(t01|t
0
12, . . . , t

N−1
12 )

and

F (0, H0
12) = F (µ(0, H0

12) = µ(0, F (H0
12)) = λt012,

we obtain

F (t012) = φ1(t01|t
0
12, . . . , t

N−1
12 ) · λt012 · φ

−1
1 (t01|t

0
12, . . . , t

N−1
12 )

Next, as tα12 = α · t012 for α ∈ Γ, by Γ-equivariance we wave

F (tα12) = α · F (t012)

= α · (φ1(t01|t
0
12, . . . , t

N−1
12 ) · λt012 · φ

−1
1 (t01|t

0
12, . . . , t

N−1
12 ))

= φ1(α · t01|α · t
0
12, . . . , α · t

N−1
12 ) · λα · t012 · φ

−1
1 (α · t01|α · t

0
12, . . . , α · t

N−1
12 )

= φ1(t01|t
α
12, . . . , t

α+N−1
12 ) · λtα12 · φ

−1
1 (t01|t

α
12, . . . , t

α+N−1
12 )

Finally we obtain

(F ◦G)(b0,1,2) = F (b0,1,2 · φ2(t01|t
0
12, . . . , t

N−1
12 ))

= b0,1,2 · φ2(F (t01)|F (t012), . . . , F (tN−112 ))

= b0,1,2 · φ2(λ · t01|λ · φ1(t01|t
0
12, . . . , t

N−1
12 ) · λt012 · λ · φ

−1
1 (t01|t

0
12, . . . , t

N−1
12 ),

. . . , λ · φ1(t01|t
N−1
12 , . . . , t2N−212 ) · λtN−112 · λ · φ−11 (t01|t

N−1
12 , . . . , t2N−212 ))

= b0,1,2 · λ · φ2(t01|φ1(t01|t
0
12, . . . , t

N−1
12 ) · t012 · φ

−1
1 (t01|t

0
12, . . . , t

N−1
12 ),

. . . , φ1(t01|t
N−1
12 , . . . , t2N−212 ) · tN−112 · φ−11 (t01|t

N−1
12 , . . . , t2N−212 )))

which is nothing but the composition law in the group GRTΓ(k). This concludes the proof, as

the composite of moperad morphisms F ◦G is compatible with the composition of operad mor-

phisms Φ ◦Ψ. Now, the fact that the defining sets in GRTΓ(k) and GRTΓ(k) are isomorphic

is a straightforward consequence of the composite of bijections

GRTΓ(k) −→ AssΓ(k) −→ AssΓ(k) −→ GRTΓ(k).

This finishes the proof.
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4.2.9 Torsors

Finally, we promote this correspondence into a torsor isomorphism.

Theorem 4.2.22. There is a torsor isomorphism

(ĜT
Γ
(k),AssΓ(k),GRTΓ(k)) −→ (ĜT

Γ
(k),AssΓ(k),GRTΓ(k)). (4.18)

Proof. This is a summary of most of the above results. First of all, we know that

(ĜT
Γ
(k),AssΓ(k),GRTΓ(k)) has a natural torsor structure and that (ĜT

Γ
(k),AssΓ(k),GRTΓ(k))

is a torsor by [32]. Next, we proved in Proposition 4.2.18 that there are group isomorphisms

between ĜT
Γ
(k) and ĜT

Γ
(k) and in Proposition 4.2.21 that there are group isomorphisms

between GRTΓ(k) and GRTΓ(k). Thus, it is sufficient to show that the actions of ĜT
Γ
(k)

on AssΓ(k) and of ĜT
Γ
(k) on AssΓ(k) are compatible and that the actions of ĜRT

Γ
(k) on

AssΓ(k) and of GRTΓ(k) on AssΓ(k) are compatible. Under the correspondence of Theorem

4.2.18, the image of the natural action of ĜT
Γ
(k) on AssΓ(k) is exactly the action of ĜT

Γ
(k)

on AssΓ(k). Both actions are then compatible. Under the correspondence of Theorem 4.2.21,

the image of the natural action of GRTΓ(k) on AssΓ(k) is exactly the action of GRTΓ(k) on

AssΓ(k). Both actions are then compatible.

4.3 Modules associated with twisted configuration spaces

(ellipsitomic associators)

4.3.1 Compactified twisted configuration space of the torus

Consider the group Γ = Z/MZ × Z/NZ, let T be the topological torus and consider the

connected Γ-covering p : T̃ −→ T corresponding to the canonical surjective group morphism

ρ : π1(T) = Z2 −→ Γ senging the generators of Z2 to their corresponding reduction in Γ. To

any finite set I with cardinality n we associate the Γ-twisted configuration space

Conf(T, I,Γ) := {z = (z1, . . . , zn) ∈ T̃I |p(zi) 6= p(zj) if i 6= j} ,

and let C(T, I,Γ) := Conf(T, I,Γ)/T̃ be its reduced version. We then consider the Fulton-

MacPherson compactification C(T, n,Γ) of C(T, n,Γ) in the same way as before by means of

the well-defined map

C(T, n,Γ) →֒ C(T, (MN)n).

The boundary ∂C(T, n,Γ) = C(T, n,Γ) − C(T, n,Γ) is made of the following irreducible com-

ponents: for any partition J1
∐
· · ·
∐

Jk of {1, ..., n} there is a component

∂J1,··· ,Jk
C(T, n,Γ) ∼=

k∏

i=1

(C(C, Ji))× C(T, k,Γ) .

The inclusion of boundary components provides C(T,−,Γ) with the structure of a module over

the operad C(C,−) in topological spaces.
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4.3.2 The PaB-module parenthesized twisted elliptic braids

We have inclusions of topological modules

Pa ⊂ C(S1,−) ⊂ C(T,−)

over

Pa ⊂ C(R,−) ⊂ C(C,−) .

Denote by i : Pa −→ C(S1,−) the inclusion morphism. Let Γ = Z/MZ×Z/NZ and for every

set In of cardinality n, consider the collection of all (N ×M)n-fold maps φn : C(T,Γ, n) −→

C(T, n). We get a collection of diagrams

PaΓ
n

//

��

C(T,Γ, n)

φn

��
Pan

in // C(T, n)

where we define PaΓ
n := i⋆nφn i.e. as the pull-back of the fold map along the inclusion map.

For example, elements of PaΓ
n are Γ-labelled parenthesized permutations of length n and PaΓ

is an operad module over Pa. Then it makes sense to define

PaBΓ
eℓℓ := π1

(
C(T,Γ,−),PaΓ

)
,

which is a PaB-module.

Example 4.3.1 (Notable arrows in PaBΓ
eℓℓ(2)). Write 0 := (0̄, 0̄). Let R1,2

0 and Φ1,2,3
0 be the

unique lifts of R1,2 and Φ1,2,3 ∈ PaB starting at 1020 and (1020)30 respectively. These paths

can be depicted as follows:

R1,2
0 =

10

20

20

10

and Φ1,2,3
0 =

(10

10

20)

(20

30

30)

Next, for 1 ≤ i 6= j 6= k ≤ n and α ∈ Γ, let θ(αi) · R
i,j
0 and θ(αi) · Φ

i,j,k
0 be the unique lifts

of Ri,j and Φi,j,k ∈ PaB starting at iαj0 and (iαj0)k0 respectively. Additionnally, we also

have two morphisms, A1,2
0 and B1,2

0 from (1020) to (1(1̄,0̄)20) and from (1020) to (1(0̄,1̄)20)

respectively which are the following paths

A
0

1,2

B
0

1,2
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They can be alternatively depicted as follows:

10

1(1̄,0̄)

20

20

A1,2
0

10

1(0̄,1̄)

20

20

B1,2
0

Now let p, q ≥ 1. We introduce the following notation:

(A1,2
0 )(p,0)1 :=

→∏

k=0,...,p−1

(θ((k̄, 0̄)1)·A
1,2
0 ) = A1,2

0 (θ((1̄, 0̄)1)·A
1,2
0 )(θ((2̄, 0̄)1)·A

1,2
0 ) · · · (θ((p− 1, 0̄)1)·A

1,2
0 ),

which is an element in HomPaBΓ
eℓℓ

(2)((10, 20), (1(p̄,0̄), 20)) and

(B1,2
0 )(0,q)1 :=

→∏

k=0,...,q−1

(θ((0̄, k̄)1)·B
1,2
0 ) = Bi(θ((0̄, 1̄)1)·B

1,2
0 )(θ((0̄, 2̄)1)·B

1,2
0 ) · · · (θ((0̄, q − 1)1)·B

1,2
0 )

which is an element in HomPaBΓ
eℓℓ

(2)((10, 20), (1(0̄,q̄), 20)).

Theorem 4.3.2. As a PaB-module (in groupoid) having PaΓ as Pa-module of objects, PaBΓ
eℓℓ

is freely generated by A0 := A1,2
0 and B0 := B1,2

0 together with the following relations:

(tN1) (A)(M,0) = Id1020,30 , where

A := Φ1,2,3
0 A1,23

0 θ((1̄, 0̄)1)(R
1,23
0 Φ2,3,1

0 A2,31
0 θ((1̄, 0̄)2)(R

2,31
0 Φ3,1,2A3,12

0 θ((1̄, 0̄)3R
3,12
0 )),

(tN2) (B)(0,N) = Id1020,30 , where

B := Φ1,2,3
0 B1,23

0 θ((0̄, 1̄)1)(R
1,23
0 Φ2,3,1B2,31

0 θ((0̄, 1̄)2)(R
2,31
0 Φ3,1,2B3,12

0 θ((0̄, 1̄)3R
3,12
0 )),

(tE) R1,2
(1̄,1̄)

R2,1
(1̄,1̄)

= Φ1,2,3B1,23
0 θ((0̄, 1̄)1)((Φ

1,2,3
0 )−1(R1,2

0 )−1Φ2,1,3
0 (A2,13

0 )−1θ((−1, 0̄)2)X) where

X = (Φ2,1,3
0 )−1(R2,1

0 )−1Φ1,2,3
0 (B1,23

0 )−1θ((0̄,−1)1)((Φ
1,2,3
0 )−1R1,2

0 Φ2,1,3
0 A2,13

0 Y )

and

Y = θ((1̄, 0̄)2)((Φ
2,1,3
0 )−1R2,1

0 )

as arrows from (1020)30 to (1020)30 in PaBΓ
eℓℓ(3).

Proof. Let QΓ be the PaB-module with the above presentation, Q be the PaB-module with

the presentation in Theorem 4.1.3, let n ≥ 1 and let p ∈ QΓ(n). By universal property of QΓ,

there is a morphism of PaB-modules QΓ −→ PaBΓ
eℓℓ which is the identity on objects. Indeed,

relations (tN1), (tN2), (tE) are satisfied by PaBΓ
eℓℓ.

For instance, A can be depicted as follows
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(10

(1α

20)

2α)

30

3α

A1,23

α

A2,31

α

A3,12

α

and the right hand side of relation (tE) can be pictured as follows in the open twisted config-

uration space:

As before, we are left to prove that the morphism AutQΓ(n)(p) −→ AutPaBΓ
eℓℓ

(n)(p) is a group

isomorphism.

On the one hand, by definition of PaBΓ
eℓℓ, we know that AutPaBΓ

eℓℓ
(n)(p) is exactly the funda-

mental group π1(C̄(T, n,Γ), p), where p is in the boundary of C̄(T, n,Γ). By the same argument

as before, we have isomorphisms π1(C̄(T, n,Γ), p) ≃ π1(C(T, n,Γ), preg) and π1(C̄(T, [n],Γ), [p]) ≃

π1(C(T, [n],Γ), [preg]). Consider the Γn−1-cover map f : C(T, n,Γ) −→ C(T, n). Now, one can

identify AutPaBΓ
eℓℓ

(n)(p) with the kernel of the surjective map AutPaBeℓℓ(n)(f(p)) −→ Γn/Γ

and the isomorphism AutQ(n)(f(p)) −→ AutPaBeℓℓ(n)(f(p)) commutes with the projections to
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Γn/Γ. We obtain a commutative diagram

AutQΓ(n)(p) //

��

π1

(
C(T, n,Γ), p

)

��

π1 (C(T, n,Γ), preg)oo

��
AutQ(n)(f(p)) //

��

π1

(
C(T, n), f(p)

)

��

π1 (C(T, n), f(preg))

��

oo

Γn/Γ Γn/Γ Γn/Γ

Thus, in order to show that AutQΓ(n)(p) −→ AutPaBΓ
eℓℓ

(n)(p) is an isomorphism, it suffices to

show that AutQΓ(n)(p) is isomorphic to the kernel of the projection AutQ(n)(f(p)) −→ Γn/Γ.

Let us first show that the map φ : AutQΓ(n)(p) −→ AutQ(n)(f(p)) is injective. By definition,

QΓ is generated in the morphisms level by A1,2
0 and B1,2

0 . The map φ sends A1,2
0 and B1,2

0 to

the generators A and B in PaBeℓℓ(2).

An element of AutQΓ(n)(p) will be given by some string, which we will denote g, in the gener-

ators A± of PaBΓ
eℓℓ and the liftings of R,Φ ∈ PaB. Let g be the image by φ of some string h

in AutQΓ(n)(p). Now, to ask g to be trivial means that there is a finite number of operations

involving only relations (N1), (N2),and (E) in PaBeℓℓ taking the string g to the identity map.

But these relations in PaBeℓℓ are the images of the corresponding relations, seen as relations

in PaBΓ
eℓℓ. Thus, we conclude that the procedure that takes f to the identity map is in fact the

image of a procedure taking h to the identity map in AutQΓ(n)(p). This shows the injectivity

of φ.

Finally, the map φ is surjective in the kernel of the projection φ1 : AutQ(n)(f(p)) −→ Γn/Γ.

Recall the presentation of B̄1,n : its generators are σi (i = 1, ..., n − 1), Ai, Bi (i = 1, ..., n),

Cjk (1 ≤ j < k ≤ n) and its relations are:

• σiσi+1σi = σi+1σiσi+1 , for i = 1, ..., n− 2,

• σiσj = σjσi, for 1 ≤ i < j ≤ n,

• σ−1i Xiσ
−1
i = Xi+1, σiYiσi = Yi+1, for i = 1, ..., n− 1,

• (σi, Xj) = (σi, Yj) = 1, for i ∈ {1, ..., n− 1}, j ∈ {1, ..., n}, j 6= i, i+ 1,

• σ2
i = Ci,i+1Ci+1,i+2C

−1
i,i+2, for i = 1, ..., n− 1,

• (Ai, Aj) = (Bi, Bj) = 1, for any i, j, A1 = B1 = 1,

• (Bk, AkA
−1
j ) = (BkB

−1
j , Ak) = Cjk, for 1 ≤ j < k ≤ n,

• (Ai, Cjk) = (Bi, Cjk) = 1, for 1 ≤ i ≤ j < k ≤ n,

with Xi = AiA
−1
i+1, Yi = BiB

−1
i+1 for i = 1, ..., n (we set An+1 = Bn+1 = Ci,n+1 = 1). In

particular, these relations imply

• Cjk = σj,j+1...k...σj+n−k,j+n−k+1...nσj,j+1...n−k+j+1...σk−1,k...n,

where σi,i+1...j = σj−1...σi. Recall that AutQ(n)(f(p)) is nothing but the kernel of B1,n −→ Γ

sending Xi to the class of (1, 0), Yi to the class of (0, 1) and σi to the class of (0, 0). Thus,
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the kernel kerφ1 is generated by elements AM
i , BN

i and R1,2
α . If we denote z0i for the marked

points of the form zi = ai+ τbi, where 0 < an < · · · < a1 < 1/M and 0 < bn < · · · < b1 < 1/N

and zαi for z0i + α̃ with α ∈ Γ, then the orbit of z0i is Γ · z0i = {z0i + α;α ∈ Γ}. Then, we can

represent the elements AM := AM
1 and BN = BN

1 in the open twisted configuration space as

follows

z2
0

z1
0

z1
(0,1)

BN

z1
(1,0)

AM

These elements AM and BN are precisely the images of the generators A1,2
0 and B1,2

0 in QΓ.

Thus, any string in AutQ(n)(f(p)) contained in the kernel of φ1 is the image of some string

in AutQΓ(n)(p). In conclusion, the map φ : AutQΓ(n)(p) −→ AutQ(n)(f(p)) is a bijection in

the kernel of φ1. So, by commutativity of the above diagram, we obtain an isomorphism

AutQΓ(n)(p) −→ AutPaBΓ
eℓℓ

(n)(p) which lead us to the fact that the morphism QΓ −→ PaBΓ
eℓℓ

of PaB-modules is an isomorphism.

We obtain a PaB(k)-module in Cat(CoAssk) denoted PaBΓ
eℓℓ(k) := ∆k(PaB

Γ
eℓℓ). Now

consider its associated inverse system of PaB(m)(k)-modules given, for all m ∈ N, by

(PaBΓ
eℓℓ)

(m)
k := PaBΓ

eℓℓ(k)/(I
m(k) ·PaBΓ

eℓℓ(k)).

By taking the inverse limit over m of these inverse system, we get a P̂aB(k)-module in

Cat(CoAssk)

P̂aB
Γ

eℓℓ(k) := lim
←−

((PaBΓ
eℓℓ)

(m)
k ).

4.3.3 The Lie algebras tΓ1,n(k) and t̄Γ1,n(k) of infinitesimal twisted ellip-

tic braidings

In this paragraph, Γ can be replaced by any finite abelian group (with the additive notation).

Definition 4.3.3. For any integer n ≥ 1 we define tΓ1,n(k) to be the bigraded k-Lie algebra with

generators x1, . . . , xn in degree (1, 0), y1, . . . , yn in degree (0, 1), tαij (α ∈ Γ, 1 ≤ i 6= j ≤ n) in

degree (1, 1), and relations

(NS) tαij = t−αji , for i 6= j ,

(NL) [tαij , t
β
kl] = 0, for card{i, j, k, l} = 4,

(N4T) [tαij , t
α+β
ik + tβjk] = 0, for card{i, j, k} = 3,
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(Ell1) [xi, yj] = [xj , yi] =
∑

α∈Γ t
α
ij , for i 6= j

(Ell2) [xi, xj ] = [yi, yj ] = 0

(NEll1) [xi, yi] = −
∑

j:j 6=i

∑
α∈Γ t

α
ij ,

(NEll2) [xi, t
α
jk] = [yi, t

α
jk] = 0, for card{i, j, k} = 3,

(NEll3) [xi + xj , t
α
ij ] = [yi + yj, t

α
ij ] = 0, for i 6= j,

for all α, β ∈ Γ. We will call tΓ1,n(k) the k-Lie algebra of infinitesimal twisted elliptic braidings.

Observe that
∑

i xi and
∑

i yi are central in tΓ1,n. Then we denote by t̄Γ1,n(k) the quotient of

tΓ1,n(k) by
∑

i xi and
∑

i yi, and the natural morphism tΓ1,n(k) −→ t̄Γ1,n(k) ; u 7→ ū. There is

an action θ : Γn −→ Aut(tΓ1,n(k)) given by θ(αi) : t
β
ij 7→ tβ+α

ij , and with tβkl, for k, l 6= i), xk

and yk invariant for arbitrary k arbitrary. It restricts to an action on t̄Γ1,n(k).

Proposition 4.3.4. For any group morphism ρ : Γ1 −→ Γ2 we have a comparison morphism

φ : tΓ1
1,n(k) −→ tΓ2

1,n(k) defined by xi 7→ xi, yi 7→ yi, and

tαij 7−→
1

#ker(ρ)

∑

β∈coker(ρ)

t
ρ(α)+β
ij .

Proof. Let us prove that relation [xi, yj ] =
∑

α∈Γ t
α
ij , where i 6= j, is preserved by φ. On the

one hand [φ(xi), φ(yj)] =
∑

α∈Γ2
tαij . On the other hand

φ([xi, yj]) =
∑

α∈Γ1

φ(tαij) =
∑

α∈Γ1

1

#ker(ρ)

∑

β∈coker(ρ)

t
ρ(α)+β
ij =

∑

α∈Γ2

tαij .

The last equality holds because ρ(α) is in the image of ρ and β is not. The fact that remaining

relations are preserved is immediate.

When ρ is not surjective it depends on the choice of a section coker(ρ) −→ Γ2. Comparison

morphisms commute with insertion-corpoduct morphisms. Moreover, both are bigraded and

pass to the quotient by
∑

i xi,
∑

i yi. When k = C we write tΓ1,n := tΓ1,n(C) and t̄Γ1,n := t̄Γ1,n(C).

Lemma 4.3.5. tΓ1,n(k) admits the following presentation : generators are xi, yi (i = 1, . . . , n)

tαij (α ∈ Γ) and relations are

• tαij = t−αji (i 6= j) ;,

• [tαij , t
β
kl] = 0 (card{i, j, k, l} = 4),

• [tαij , t
α+β
ik + tβjk] = 0 (card{i, j, k} = 3),

• [xi, yj] = [xj , yi] =
∑

α∈Γ t
α
ij (i 6= j)

• [xi, xj ] = [yi, yj ] = 0 ;

• [
∑
j

xj , yi] = [
∑
j

yj , xi] = 0 (for any i)

• [xi, t
α
jk] = [yi, t

α
jk] = 0 (card{i, j, k} = 3),
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Proof. If xi, yi and tαij satisfy the initial relations, then

[
∑

j

xj , yi] = [xi, yi] + [
∑

j 6=i

xj , yi] = −
∑

j:j 6=i

∑

α∈Γ

tαij +
∑

j:j 6=i

∑

α∈Γ

tαij = 0.

Now, if xi, yi and tαij satisfy the above relations, then relations [
∑
j

xj , yi] = 0 and [xj , yi] =
∑

α∈Γ t
α
ij , for i 6= j, imply that [xi, yi] = −

∑
j:j 6=i

∑
α∈Γ t

α
ij . Now, relations [

∑
k

xk, yj ] = 0 and

[
∑
k

xk, xi] = 0 imply that [
∑
k

xk,
∑

α∈Γ t
α
ij ] = 0. Thus, as [xi, t

α
jk] = 0 if card{i, j, k} = 3, we

obtain relation [xi + xj , t
α
ij ] = 0, for i 6= j. In the same way we obtain [yi + yj , t

α
ij ] = 0, for

i 6= j.

The t(k)-module tΓ1 (k) of infinitesimal twisted elliptic braidings

The collection tΓ1 (k) of the Lie algebras tΓ1,n, for n ≥ 1 is provided with the structure of a

t(k)-module in Liek when endowed with the partial operadic module composition structures

given as follows.

◦k : tΓ1,I(k)⊕ tJ(k) −→ tΓ1,J⊔I−{i}(k)

(0, tαβ) 7−→ tαβ

(tαij , 0) 7−→





tαij if k /∈ {i, j}
∑
p∈J

tαpj if k = i

∑
p∈J

tαip if j = k

(xi, 0) 7−→





xi if k 6= i
∑
p∈J

xp if k = i

(yi, 0) 7−→





yi if k 6= i
∑
p∈J

yp if k = i

These operadic compositions also induce an operad module structure on the collection of the

Lie algebras t̄Γ1,n(k). We will call t̄Γ1 (k) the module of infinitesimal twisted elliptic braidings

and, for CDΓ
eℓℓ(n) := Û (̂̄t

Γ
1,n(k)), the corresponding module in associative algebras CDΓ

eℓℓ :=

{CDΓ
eℓℓ(n)}n≥1 will be called the module of Γ-labelled elliptic chord diagrams. The elements

of the module CDΓ
eℓℓ can be depicted as Γ-labelled elliptic chords on n vertical strands. Thus,

by combining the different representations we used in the cyclotomic and elliptic cases, we can

depict the labelled elliptic chord relations as follows (we denote A+ = x and A− = y):

A−

A+

−
A+

A−

=
A+

A−

−
A−

A+

(Ell1b)
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=
∑

a∈Γ

a

−a

A±

A±

=
A±

A±

(Ell2b)

A+

A−

i

− A−

A+

i

= −
∑

j;j 6=i

∑

a∈Γ

a

−a

i j

(NEll1)

A±

a

−a

=

A±

a

−a (NEll2)

A±

a

−a

+

A±

a

−a

=

A±

a

−a +

A±

a

−a (NEll3)

Remark 4.3.6. We expect to study the relation between CDΓ
eℓℓ and Vassiliev invariants in

the near future.

Let ĈD
Γ

eℓℓ(n) be the I-adic completion of CDΓ
eℓℓ(n) with respect to the augmentation ideal

I. Since we are in possession of a Pa(k)-module PaΓ(k), a ĈD(k)-module ĈD
Γ

eℓℓ(k) in

Cat(CoAssk) and of an operad module morphism ω4 : PaΓ −→ Ob(ĈD
Γ

eℓℓ(k)), we are ready

to define the PaCD(k)-module

PaCDΓ
eℓℓ(k) := ω⋆

4ĈD
Γ

eℓℓ(k)

in Cat(CoAssk) of parenthesized Γ-labelled elliptic chord diagrams.

We have Ob(PaCDΓ
eℓℓ(k)) := PaΓ and

MorPaCDΓ
eℓℓ

(k)(n)(p, q) := Mor
ĈD

Γ

eℓℓ(k)(n)
(pt, pt) = Û (̂tΓ1 (k)).

Example 4.3.7 (Notable arrows in PaCDΓ
eℓℓ(k)(2) and PaCDΓ

eℓℓ(k)(3)). We have the fol-

lowing arrows in PaCDΓ
eℓℓ(k)(2) and PaCDΓ

eℓℓ(k)(3)
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X1,2
0 = 1·

10

20

20

10

H1,2
0 = t012·

10

10

20

20

a1,2,30 =

(10

10

20)

(20

30

30)

X1,2
0,eℓℓ = x1·

10

1(1̄,0̄)

20

20

Y 1,2
0,eℓℓ = y1·

10

1(0̄,1̄)

20

20

Remark 4.3.8. The elements Xeℓℓ
1,2 , Y

eℓℓ
1,2 are generators of the PaCD(k)-module PaCDΓ

eℓℓ(k)

and satisfy the following relations

(tN1) Ã(M,0) = 1, where

Ã = a1,2,30 X1,23
eℓℓ θ((1̄, 0̄)1)(X

1,23
0 a2,3,10 X2,31

eℓℓ θ((1̄, 0̄)2)(X
2,31
0 Z1))

and

Z1 = a3,1,20 X3,12
eℓℓ θ((1̄, 0̄)3)X

3,12
0

(tN2) B̃(0,N) = 1, where

B̃ = a1,2,30 Y 1,23
eℓℓ θ((1̄, 0̄)1)(X

1,23
0 a2,3,10 Y 2,31

eℓℓ θ((1̄, 0̄)2)(X
2,31
0 Z2)),

and

Z2 = a3,1,20 Y 3,12
eℓℓ θ((1̄, 0̄)3)X

3,12
0

(tM) X1,2
0 X2,1

0 = a1,2,30 Y 1,23
0,eℓℓθ((0̄, 1̄)1)((a

1,2,3
0 )−1X1,2

0 a2,1,30 (X2,13
0,eℓℓ)

−1θ((−1, 0̄)2)X), where

X = (a2,1,30 )−1X1,2
0 a1,2,30 (Y 1,23

0,eℓℓ)
−1θ((0̄,−1)1)((a

1,2,3
0 )−1X1,2

0 a2,1,30 X2,13
0,eℓℓY ),

and

Y = θ((1̄, 0̄)2)((a
2,1,3
0 )−1X1,2

0 )

as arrows from (1020)30 to (1020)30 in PaBΓ
eℓℓ(3).

4.3.4 Twisted elliptic associators

Fix Γ := Z/MZ× Z/NZ.

Definition 4.3.9. A twisted elliptic k-associator is a couple (F,G) where F is in Ass(k) and

G is a Γ-equivariant isomorphism between the P̂aB(k)-module P̂aB
Γ

eℓℓ(k) and the GPaCD(k)-

module GPaCDΓ
eℓℓ(k) which is the identity on objects and which is compatible with F . We

denote the set of twisted elliptic k-associators by

EllΓ(k) := Iso+
(P̂aB(k),GPaCD(k))

(P̂aB
Γ

eℓℓ(k), GPaCDΓ
eℓℓ(k))

Γ.



136 CHAPTER 4. ASSOCIATORS AND GROTHENDIECK-TEICHMÜLLER GROUPS

Theorem 4.3.10. There is a one-to-one correspondence between elements of EllΓ(k) and

those the set EllΓ(k) consisting on quadruples (µ,Φ, A+, A−), where (µ,Φ) ∈ Ass(k) and A± ∈

exp(̂̄tΓ1,2(k)), such that:

(tN1) (Ã+)
(M,0) = 1 where

Ã+ = {Φ1,2,3}A1,23
+ θ((1̄, 0̄)1)({e

µ(t012+t013)/2}{Φ2,3,1}A2,31
+ θ((1̄, 0̄)2)({e

µ(t023+t012)/2}Z))

and

Z = {Φ3,1,2}A3,12
+ θ((1̄, 0̄)3{e

µ(t031+t032)/2})

(tN2) (Ã−)(0,N) = 1 where

Ã− = {Φ1,2,3}A1,23
− θ((0̄, 1̄)1)({e

−µ(t012+t013)/2}{Φ2,3,1}A2,31
− θ((0̄, 1̄)2)({e

−µ(t023+t012)/2}Z))

and

Z = {Φ3,1,2}A3,12
− θ((0̄, 1̄)3{e

−µ(t031+t032)/2})

(tM) {eµt
0

12} = {Φ}A1,23
− θ((0̄, 1̄)1)({Φ}

−1{e−µt
0

12/2}{Φ2,1,3}(A2,13
+ )−1θ((−1, 0̄)2X)), where

X = {(Φ2,1,3)−1}{e−µt
0

12/2}{Φ}(B1,23
− )−1θ((0̄,−1)1)({Φ}

−1{eµt12/2(Φ2,1,3)}(A2,13
+ Y ))

and

Y = θ((1̄, 0̄)2)({(Φ
2,1,3)−1eµt12/2})

Proof. This fact is a consequence of Theorem 4.3.2. Indeed, any morphism from P̂aB
Γ

eℓℓ(k) to

an operad Q is determined completely by the images of the generators of P̂aB
Γ

eℓℓ(k) satisfying

the images in Q of relations (tN1), (tN2) and (tE), which, for the case Q = GPaCDΓ
eℓℓ(k),

are precisely the relations in the above theorem.

In Section 7.2 we will give an example of such mathematical object.

Definition 4.3.11. The (k-pro-unipotent version of the) twisted elliptic Grothendieck–Teichmüller

group is defined as the group

ĜT
Γ

eℓℓ(k) := Aut+
Mod(P̂aB(k))

(P̂aB
Γ

eℓℓ(k))
Γ

of automorphisms of the P̂aB(k)-module P̂aB
Γ

eℓℓ(k) which are Γ-equivariant and which are

the identity on objects.

Definition 4.3.12. The graded twisted elliptic Grothendieck-Teichmüller group is the group

GRTΓ
eℓℓ(k) := Aut+Mod(PaCD(k))(PaCDΓ

eℓℓ(k))
Γ

of automorphisms the PaCD(k)-module PaCDΓ
eℓℓ(k) which are Γ-equivariant and which are

the identity on objects.

Theorem 4.3.13. The set EllΓ(C) is non empty.
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Proof. In Section 9 we will construct an element in this set.

Now, any automorphism (F,G) in GTΓ
eℓℓ(k) is defined as follows

• F (R1,2
0 ) = (R1,2

0 )λ,

• F (Φ1,2,3
0 ) = f(x12, x23) · Φ

1,2,3
0 ,

• G(A0) = g+(X,Y, Pα;α ∈ Γ),

• G(B0) = g−(X,Y, Pα;α ∈ Γ).

where (λ, µ, g+, g−) ∈ k×× F̂2(k)×
̂̄PB

Γ

1,2(k)×
̂̄PB

Γ

1,2(k). The fact that (λ, f) ∈ ĜT(k) is clear

and g± ∈
̂̄PB

Γ

1,2(k) satisfy the following relations:

(
f(σ2

1 , σ
2
2)g+(X,Y, Pα;α ∈ Γ)θ((1̄, 0̄)1) · (σ1σ2(σ1σ

2
2σ1)

λ−1
2 )
)(3M,0)

= 1, (btN1)

(
f(σ2

1 , σ
2
2)g−(X,Y, Pα;α ∈ Γ)θ((0̄, 1̄)1) · (σ

−1
1 σ−12 (σ1σ

2
2σ1)

−λ−1
2 )
)(0,3N)

= 1, (btN2)

u2 = g−θ((0̄, 1̄)1)(u
−1g−1+ θ((−̄1, 0̄)1)(u

−1g−1− θ((0̄, −̄1)1)((ug+θ((1̄, 0̄)1)u))), (btE)

as identities in ̂̄B
Γ

1,3(k), where u = f(σ2
1 , σ

2
2)
−1σλ

1 f(σ
2
1 , σ

2
2), g± = g±(X,Y, Pα;α ∈ Γ).

Let us define ĜT
Γ

eℓℓ(k) as the set of all (λ, µ, g+, g−) ∈ k× × F̂2(k) ×
̂̄PB

Γ

1,2(k) ×
̂̄PB

Γ

1,2(k)

satisfying relations (btN1), (btN2) and (btE).

The image of the categorical composition of ĜT
Γ

eℓℓ(k) and endows ĜT
Γ

eℓℓ(k) with a group

structure which can explicitely be described as follows.

For (λ, f, g±), (λ
′, f ′, g′±) ∈ ĜT

Γ

eℓℓ(k), we set

(λ, f, g±)(λ
′, f ′, g′±) := (λ′′, f ′′, g′′±)

where (λ′′, f ′′) is as in (2.6.11) and

g′′±(X,Y, Pα;α ∈ Γ) = g±(g
′
+(X,Y, Pα;α ∈ Γ), g′−(X,Y, Pα;α ∈ Γ), (Pα)λ;α ∈ Γ).

Proposition 4.3.14. There is a group isomorphism ĜT
Γ

eℓℓ(k) and ĜT
Γ

eℓℓ(k).

Proof. This is a consequence of Theorem 4.3.2. Indeed, from the presentation of P̂aB
Γ

eℓℓ

(induced by the presentation of PaBΓ
eℓℓ via the morphism PaBΓ

eℓℓ −→ P̂aB
Γ

eℓℓ) we know that

an automorphism F of P̂aB
Γ

eℓℓ which is the identity on objects is completely determined by

the images of its generators satisfying relations (tN1), (tN2) and (tE), which are precisely the

defining relations of ĜT
Γ

eℓℓ(k).
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Recall that the image of the action of ĜT(k) on Ass(k) under correspondences 2.6.8 and

2.6.12 yields an action of ĜT(k) on Ass(k), defined as in 2.6.8. For (λ, f, g+, g−) ∈ ĜT
Γ

ell(k)

and (µ,Φ, A+, A−) ∈ EllΓ(k), we set

(λ, f, g+, g−) ∗ (µ,Φ, A+, A−) := (µ′,Φ′, A′+, A
′
−)

where A′± := g±(A+, A−, (P
α)λ;α ∈ Γ). This is precisely the image of the action of ĜT

Γ

eℓℓ(k)

on Ell
Γ(k) under the above correspondence.

The image of the group law in GRTΓ
eℓℓ(k) is described as follows.

Define (GRTΓ
ell)1(k) as the set of all (g, u+, u−), such that g ∈ GRT1(k), u± ∈ ˆ̄tΓ1,2(k), satisfy-

ing the following relations:

M−1∑

i=0

(θ((̄i, 0̄)123) ·
(
g1,2,3u1,23

+ θ((1̄, 0̄)1)(g
1,2,3)−1 + g2,1,3u2,13

+ θ((1̄, 0̄)2)(g
2,1,3)−1 + u3,12

+

)
= 0,

(tN1)

N−1∑

i=0

(θ((0̄, ī)123) ·
(
g1,2,3u1,23

− θ((0̄, 1̄)1)(g
1,2,3)−1 + g2,1,3u2,13

− θ((0̄, 1̄)2)(g
2,1,3)−1 + u3,12

−

)
= 0,

(tN2)

g1,2,3u1,23
+ θ((1̄, 0̄)1)(g

1,2,3)−1u3,12
+ −u3,12

+ θ((1̄, 0̄)3) ·
(
g1,2,3u1,23

+ θ((1̄, 0̄)1)(g
1,2,3)−1

)
= 0, (tL1)

g1,2,3u1,23
− θ((0̄, 1̄)1)(g

1,2,3)−1u3,12
− −u3,12

− θ((0̄, 1̄)3) ·
(
g1,2,3u1,23

− θ((0̄, 1̄)1)(g
1,2,3)−1

)
= 0, (tL2)

t012 =g1,2,3u1,23
+ θ((1̄, 0̄)1) ·

(
(g1,2,3)−1g2,1,3u2,13

− θ((0̄, 1̄)2)(g
2,1,3)−1

)
(tE)

− g2,1,3u2,13
− θ((0̄, 1̄)2) ·

(
g2,1,3)−1g1,2,3u1,23

+ θ((1̄, 0̄)1)(g
1,2,3)−1

)

(relations in ˆ̄tΓ1,3(k)). Set (g1, u
1
+, u

1
−) ∗ (g2, u

2
+, u

2
−) := (g, u+, u−), where

u±(x, y, t
α;α ∈ Γ) := u1

±(u
2
+(x, y, t

α;α ∈ Γ), u2
−(x, y, t

α;α ∈ Γ), tα;α ∈ Γ), (4.19)

where t̄Γ1,2(k) is viewed as the Lie algebra generated by x, y, tα, for α ∈ Γ, with relation

[x, y] =
∑

α∈Γ t
α.

The group k× acts on (GRTΓ
ell)1(k) by

u±(x, y, t
α;α ∈ Γ) := u1

±(u
2
+(x, y, t

α;α ∈ Γ), u2
−(x, y, t

α;α ∈ Γ), tα;α ∈ Γ), (4.20)

where

• c · g is as above,

• (c · u+)(x, y, t
α;α ∈ Γ) := u+(x, c

−1y, ctα;α ∈ Γ),

• (c · u−)(x, y, tα;α ∈ Γ) := cu−(x, c
−1y, ctα;α ∈ Γ).
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We then set GRTΓ
ell(k) := (GRTΓ

ell)1(k) ⋊ k×. The image in GRTΓ
ell(k) of the group law in

GRTΓ
eℓℓ(k) is exactly the group law defined by (4.19) and (4.20).

One can establish then the following torsor conjecture.

Conjecture 4.3.15. The triple (ĜT
Γ

eℓℓ(k),Ell
Γ(k),GRTΓ

eℓℓ(k)) is a torsor.

If the above conjecture is true, then a consequence is that there is torsor isomorphism

(ĜT
Γ

eℓℓ(k),EllΓ(k),GRTΓ
eℓℓ(k)) −→ (ĜT

Γ

eℓℓ(k),Ell
Γ(k),GRTΓ

eℓℓ(k)). (4.21)
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Chapter 5

Operads and higher genus

associators

This chapter consists of the first part of a study devoted to the rational homotopy theory

of modules over (framed) E2-operads associated to genus g oriented surfaces. On the one

hand, we aim to study the characterization of the elliptic Grothendieck-Teichmüller group

as the group of homotopy automorphisms in the homotopy category of D2-modules of some

rationalization of the module D1,2 of little 2-disks on a torus. On the other hand, we aim

to study the characterization of higher genus Grothendieck-Teichmüller groups as groups of

homotopy automorphisms in the homotopy category of D2-modules of some rationalization of

the module Df
g,2 of framed little 2-disks on a compact orientable genus g topological surface

Σg.

In this chapter we will concentrate on the higher genus story. After briefly recalling framed

Fulton-MacPherson compactifications and their associated operadic structures, we introduce a

full suboperad PaBf ⊂ π1(D
f
2 ) of framed parenthesized braidings by restricting the object sets

of the groupoid so that B(PaBf )
∼
−→ B(π1(D

f
2 )). We then construct the corresponding operad

PaCDf of parenthesized framed chord diagrams, framed associators and framed Grothendieck-

Teichmüller groups in terms of PaBf and PaCDf .

We then turn to the genus g situation and we introduce a full submodule PaBf
g ⊂ π1(D

f
g,2) of

genus g framed parenthesized braidings by restricting the object sets of the groupoid so that

B(PaBf
g )

∼
−→ B(π1(D

f
g,2)).

Next, we define the PaCDf -module PaCDf
g of genus g parenthesized framed chord diagrams.

Finally, we give operadic definitions of genus g associators and (graded) Grothendieck-Teichmüller

groups, extract from them explicit equations for this objects and conjecture the existence of

such an associator by means of the framed genus g universal KZB connection yet to be defined.

It should be interesting to relate the Lie algebra of our genus g graded Grothendieck-Teichmüller

group to the higher genus Kashiwara-Vergne Lie algebra krv(g,n+1) which is being studied in

the recent work [4].

141
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5.1 Operad structures on framed FM compactifications

Let n > 1 and consider the Fulton-MacPherson compactification FMk(n) of Conf(Rk, n).

These spaces assemble into an operad FMk := FM(Conf(Rk,−)), which is known to be weakly

equivalent to the little k-disks operad Dk. The interior of FMk(n) is the reduced configuration

space C(Rk, n).

Now, let M be a closed smooth manifold of dimension k. Consider the configuration space of

M

Conf(M,n) = {(x1, . . . , xn) ∈Mn;xi 6= xj if i 6= j}.

The spaces Conf(M,n) are weakly equivalent to their Fulton-MacPherson compactification

FMM (n) := FM(Conf(M,n)). When M is parallelizable, the spaces FMM (n) form a right

FMk-module FMM . Otherwise, we need to introduce the framed versions of all the above

geometric objects. This consists on seting a choice of trivialization of the tangent bundle of

M in order to specify in which direction we will insert the disks on M constructed by the

Fulton-MacPherson compactification.

Let M be a Riemannian closed oriented1 compact k-manifold and consider the bundle projec-

tion πM : SO(M)→M , where SO(M) is the principal GLk-bundle of special orthogonal linear

frames on M . The framed configuration space Conff (M,n) of n distinct points in M is

Conff (M,n) := {(x, f1, . . . , fn) ∈ Conf(M,n)× SO(M)×n|fi ∈ π−1M (xi)}.

This is the same to define Conff (M,n) as the pullback of the diagram

SO(M)×n

��
Conf(M,n) // M×n

so Conff (M,n) −→ Conf(M,n) is a principal SO(k)×n-bundle. If M is parallelizable, Conff (M,n)

is isomorphic to Conf(M,n)×SO(k)×n. For instance, this is the case when M = Rk or M = T.

The symmetric group Sn acts on Conff (C, [n]) by relabelling the indexes of the marked points.

The map Conff (C, [n]) := Conff (C, n)/Sn −→ Conf(C, [n]) is a locally trivial bundle with

fiber SO(2)×n.

We have framed versions of the little k-disks spaces which are Sn-equivariant homotopy equiv-

alent to framed configuration spaces of Rk:

Df
k(n)

∼
−→ Conff (Rk, n).

There is a Sn-equivariant homotopy equivalence similar to the one above in the case for

manifolds but with very restrictive assumptions (see [94] for more details).

Let G be a topological group and (O, {◦m,n
i }m,n) be an operad in left G-spaces and suppose

that the partial operadic compositions ◦m,n
i in O are G-equivariant. The semidirect-product

1In the case of non-oriented manifolds one can only consider the bundle projection O(M) → M .
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operad G⋉O is the topological operad defined by (G⋉O)(n) := Gn ×O(n) and with partial

operadic compositions denoted ◦̃m,n
i and given, for g = (g1, . . . , gm), g′ = (g′1, . . . , g

′
n) and

1 6 i 6 m by

(g, x1)◦̃
m,n
i (g′, x2) := (g′′, x1 ◦

m,n
i (gi · x2)) ∈ Gn+m−1 ×O(n+m− 1),

where g′′ = (g1, . . . , gi−1, gig
′
1, . . . , gig

′
m, gi+1, . . . , gn). Consider the framed Fulton-MacPherson

compactified configuration spaces

FMf
k(n) := SO(k)× FMk(n).

The interior of FMf
k(n) is Conff (Rk, n). The SO(k)-action is compatible with the operad

structure of FMk(n). Thus, these spaces form an operad FMf
k := SO(2)⋉ FMk called framed

Fulton-MacPherson operad, which turns out to be weakly equivalent to the framed little k-disks

operad. The partial composition morphisms can be pictured as follows:

◦
2

3,2

2
α

β α + β1

2
2

311

43

Summarizing the above results, we get

Df
k(n)

≃ //

��

Conff (Rk, n)

��

FMf
k(n)

≃oo

��
Dk(n)

≃ // Conf(Rk, n) FMk(n)
≃oo

where the horizontal arrows are Sn-equivariant homotopy equivalences and the vertical arrows

are SO(k)×n-principal bundles. This diagram does not enhance into an operad map.

Nevertheless, in [38], an operad morphism φ : FMk −→ Dk was constructed and it is easy to

verify that φ is ewuivariant for the action of SO(k) on these two operads and by construction,

the data of the framings are compatible with this map (since the rotation of a disk will preserve

that disk). Thus, we can construct a square

Df
k

��

FMf
k

≃oo

��
Dk FMk

≃oo

(5.1)
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where the horizontal arrows are weak equivalences of operads in topological spaces (see [38]

for details).

Now, if M is an oriented k-manifold, then the collection of its framed Fulton-MacPherson

compactifications forms a right FMf
k-module denoted FMf

M where each space FMf
M (n) is a

principal SO(k)×n-bundle over FMM (n). Then we also have

Df
M (n)

≃ //

��

Conff (M,n) FMf
M (n)

≃oo

��
DM (n)

≃ // Conf(M,n) FMM (n)
≃oo

(5.2)

where again the horizontal maps are Sn-equivariant homotopy equivalences. If M is paralleliz-

able, then the semi-direct product in the below spaces becomes an usual product and we get

a square

Df
M

��

FMf
M

≃oo

��
DM FMM

≃oo

(5.3)

If M is not parallelizable the first line of this square does not hold but we still have a weak

equivalence FMf
M

≃
−→ Df

M of modules over FMf
k
≃
−→ Df

k .

The case of genus g orientable surfaces

We now concentrate in the case k = 2 (i.e. compact oriented topological surfaces). Let

g ≥ 0 and n > 0 be integers. For a compact topological oriented surface Σg of genus g without

boundary, we consider the space Conf(Σg, n) of configurations of n points in Σg. It is homotopy

equivalent to the space D2,g(n) of n little 2-disks with disjoint interiors on Σg

D2,g(n)
∼
−→ Conf(Σg, n).

This map can be represented as follows (in the case g = 2)

× ×

×

The surfaces Σg are not parallelizable for g > 1 so we consider the framed versions of the above

spaces. Namely, the collection Df
2,g of spaces of framed little 2-disks on Σg has the structure
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of an operadic module over the framed little 2-disks operad Df
2 . We can represent the action

of Df
2 on Df

2,g as follows (in the case g = 2):

◦2

3,2

2
α

β α + β1

2
2

311

43

In particular, if g = 1, as T is pararellizable so the space Df
2,1(n) is isomorphic to D2,1(n) ×

SO(2)×n. Now let Σg be a genus g closed connected oriented surface with a smooth and

semi-algebraic manifold structure and consider its framed Fulton-MacPherson compactifica-

tion FMf
2,g(n). The space FMf

2,g(n) is a manifold with corners whose interior is Conff (Σg, n)

and the insertion of boundary components of FMf
2,g with respect to the direction of the frame

endows the collection FMf
2,g of these spaces with the structure of a FMf

2 -module. More ex-

plicitely, fFM2,g(n) is obtained from the pullback

SO(2)×n

��
FMΣg

(n) // Σ×ng

where SO(2) −→ Σg is the frame bundle over Σg for some specified Riemannian metric.

5.2 Operads associated to framed configuration spaces (framed

associators)

5.2.1 Framed configuration spaces on C

The fundamental group of the unordered framed configuration space Conff (C, [n]) was studied

in [70] and is isomorphic to the framed braid group Bf
n generated by elements σ1, σ2, . . . , σn−1, f1, f2, . . . , fn

together with relations

(B1) σiσi+1σi = σi+1σiσi+1 if i ∈ [n− 2],

(B2) (σi, σj) = 1 if |i− j| > 1,

(FB1) fifj = fjfi for all i, j,

(FB2) σifj = fσi(j)σi for all i, j.
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The space Conff (C, [n]) is an Eilenberg-Maclane space of type K(Bf
n, 1)and the group Bf

n

is a semidirect product Zn ⋉ Bn where the action of Bn on Zn is given by a(ri, ...., rn) =

(rσ(1), rσ(2), ..., rσ(n)). If f r1
1 , f r2

2 , · · · , f rn
n , α ∈ Bf

n with α ∈ Bn then the ri’s are called framings.

The product in this notation is given by

(f r1
1 f r2

2 · · · f
rn
n α)(f s1

1 f s2
2 · · · f

sn
n β) = f

r1+sα(1)

1 f
r2+sα(2)

2 · · · f
rn+sα(n)
n αβ

The fundamental group PBf
n of Conff (C, n) at any basepoint is the direct product PBf

n =

Zn × PBn. One can represent such braids as ribbon braids as we will see in the following

subsection.

5.2.2 The operad PaB
f of framed parenthesized braidings

The boundary ∂ FMf
2 (n) = FMf

2 (n) − Conff (R2, n) of FMf
2 (n) is made of the following irre-

ducible components: for any decomposition n = n1 + · · ·+ nk there is a component

∂n1,··· ,nk
FMf

2 (n)
∼=

k∏

i=1

FMf
2 (ni)× FMf

2 (n) .

The inclusion of boundary components provide FMf
2 with the structure of an operad FMf

2 in

topological spaces and we have inclusions inclusions of topological operads

Pa ⊂ Conff (R,−) ⊂ FMf
2 .

The operad in groupoids of framed parenthesized braidings is defined as

PaBf := π1(FM
f
2 ,Pa).

Notable arrows in PaBf (1), PaBf (2) and PaBf (3). We have an arrowR1,2 ∈ HomPaBf (2)(12, 21)

and an arrow Φ1,2,3 ∈ HomPaBf (3)((12)3, 1(23)) which correspond to the very same paths as

in the unframed case. In particular, R1,2 can be represented as follows

There is also a braid F 1 ∈ EndPaBf (1)(1) corresponding to the framing. In PaBf (3) it can be

represented as follows
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This should be considered as a single ribbon braid being twisted 360 degrees and the blue

strand is the transport of a point lying in the surface of this ribbon braid.

Recall the definition of the operad CoB of coloured braids from [46, Subsection 5.2.8] As in

the case of the operad PaB, the operad PaBf can be defined as the fake pullback of the

framed version CoBf of CoB and we have a presentation of PaBf in terms of generators

and relations. Namely, as an operad in groupoids having Pa as operad of objects, PaBf is

generated by F := F 1 ∈ PaBf (1), R := R1,2 ∈ PaBf (2) and Φ =: Φ1,2,3 ∈ PaBf (3) together

with relations (H1), (H2), (P) and the following relation:

(F) R1,2R2,1F 1F 2 = F 12 as arrows from (12) to (12) in PaBf (2).

The proof of this result can be found in [14, Lemma 7.4]. In particular, one can represent

relation (F) by means of the following picture:

= ◦ ◦

F 1 F 2 R12R21F 12

5.2.3 The non-symmetric operad PBf of framed braidings

Let us now introduce two non-symmetric operads that will be of use later.

The collection PBf := {PBf
n}n≥1 can be endowed with the structure of a non-symmetric

operad given by partial compositions

◦i : PB
f
n×PBf

m −→ PBf
n+m−1 (5.4)

(b, b′) 7−→ b ◦i b
′ (5.5)
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where b ◦i b′ is defined by replacing the i-labelled strand in b by the braid b′ made very thin.

Via the homotopy equivalence between framed little disks and framed configuration spaces

we presented in the last section, one checks that the above operadic composition for PBf is

induced by that on Df
2 . In the same way, one can construct an non-symmetric operad in

groupoids Bf in the following way :

• The objects of Bf (n) are unnumbered maximal parenthesizations of lenght n. In partic-

ular, this means that for every object p of Pa(n), there is a corresponding object [p] in

Bf (n), and [p] = [q] if p and q only differ by a permutation (but have the same underlying

parenthesization).

• Bf is freely generated by F := F 1 ∈ Bf (1), R := R1,2 ∈ Bf (2) and Φ := Φ1,2,3 ∈ Bf (3)

together with relations (H1), (H2), (P) and the following relation:

(F) R1,2R2,1F 1F 2 = F 12 as arrows from (••) to (••) in Bf (2).

• Bf is the image of PaBf via the forgetful map Op −→ NsOp sending an operad to a

non-symmetric operad.

• It follows that there are group morphisms Bf
n −̃→AutBf (n)(p) −→ Sn, the left one being

an isomorphism.

For example, arrows in AutBf (3)((••)•) can be depicted as follows:

(•

(•

•)

•)

•

•

;

(•

(•

•)

•)

•

•

(5.6)

We let the reader depict the generators F ∈ Bf (1), R ∈ Bf (2) and Φ ∈ Bf (3) accordingly.

5.2.4 The operad PaCD
f(k) of parenthesized framed chord diagrams

Let tfn(k) denote the graded Lie algebra over k generated by tij , 1 ≤ i, j ≤ n with relations

(FT1) tij = tji,

(FT2) [tij , tkl] = 0 if {i, j} ∩ {k, l} = ∅,

(FT3) [tij , tik + tjk] = 0 if {i, j} ∩ {k} = ∅.

This means we have a decomposition tfn(k) =
⊕n

i=1 ktii⊕ tn(k). In other words, this translates

into insertion-coproduct morphisms as for each map φ : {1, ...,m} −→ {1, ..., n}, there exists a

Lie algebra morphism tfn −→ tfm, defined by (tij)
φ :=

∑
i′∈φ−1(i),j′∈φ−1(j) ti′j′ .

Remark 5.2.1. The above definition coincides with that appearing in [8], indeed it is isomor-

phic to the graded Lie algebra over k generated by tij , 1 ≤ i 6= j ≤ n and tk, 1 ≤ k ≤ n, with

relations

(T1,T2,T3) tij = tji; [tij , tkl] = 0 if #{i, j, k, l} = 4; [tij , tik + tjk] = 0 if #{i, j, k} = 3,
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(FT2’) [ti, tj ] = 0 for 1 ≤ i, j ≤ n,

(FT3’) [ti, tjk] = 0 for all i, j, k.

The collection of the framed Lie algebras tfn(k), for n ≥ 1 is provided with the structure of an

operad in (positively graded finite dimensional) Lie algebras over k, denoted tf (k) and given

by the following operadic partial compositions:

◦k : t
f
I (k)⊕ t

f
J(k) −→ t

f
J⊔I−{i}(k)

(0, tαβ) 7−→ tαβ

(tij , 0) 7−→





tij if k /∈ {i, j}
∑
p∈J

tpj if k = i

∑
p∈J

tip if j = k

In other words, under the correspondence of Remark 5.2.1, this is the same as the following

composition:

◦k : tfm(k) ⊕ tfn(k) −→ t
f
n+m−1(k)

(0, tαβ) 7−→ tα+k−1β+k−1

(0, tα) 7−→ tα+k−1

(tij , 0) 7−→





ti+n−1j+n−1 if k < i < j
i+n−1∑
p=i

tpj+n−1 if k = i < j

tij+n−1 if i < k < j
j+n−1∑
p=j

tip if i < j = k

tij if i < j < k

(ti, 0) 7−→





ti+n−1 if k < i
i+n−1∑
p=i

tp if k = i

ti if i < k

for 1 ≤ i, j, k ≤ m with i < j and 1 ≤ α, β ≤ n. We can then construct the operad

CDf (k) := Û (̂tf (k)) in Cat(CoAlgk) called the operad of framed chord diagrams.

Remark 5.2.2. This denomination comes from the fact that morphisms in CDf (k)(n) can

be represented as linear combinations of diagrams of chords on n vertical strands, where the

chord diagram corresponding to tij can be represented as in the unframed case, the chord

corresponding to ti as

i n1

1 i n
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and the composition is given by vertical concatenation of diagrams. Partial compositions can

easily be understood as “cabling and removal operations” on strands (see [5, 46]). Relations

(T1,T2,T3) can be described as in the in the unframed case and the remaining relations defining

each tn(k) can be represented as follows:

ji

i j

=

ji

i j

(FT1)

ji

i j

=

ji

i j

;

j ki

i j k

=

j ki

i j k

(FT2)

Let ĈD
f
(n) be the I-adic completion of CDf (n) with respect to the augmentation ideal I.

Since we are in possession of operads Pa(k) and ĈD
f
(k) in Cat(CoAssk) and of an operad

morphism ω : Pa −→ Ob(ĈD
f
(k)), we are ready to define the operad

PaCDf (k) := ω⋆ĈD
f
(k)

in Cat(CoAssk) of parenthesized framed chord diagrams. We have

• Ob(PaCDf (k)) := Pa,

• MorPaCDf (k)(n)(p, q) := Mor
ĈD

f
(k)(n)

(pt, pt) = Û (̂tfn(k)).

Example 5.2.3 (Notable arrows in PaCDf (k)(1), PaCDf (k)(2) and PaCDf (k)(3)). We

have the following arrow P 1, in PaCDf (k)(1)

P 1 = t11·

1

1

as well as the following arrows in PaCDf (k)(2)

P 1,2 := t11·

1

1

2

2

H1,2 := t12·

1

1

2

2

=

1

1

2

2

X1,2 = 1·

1

2

2

1
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We also have the following arrow in PaCD(k)(3):

a1,2,3 = 1·

(1

1

2)

(2

3

3)

Remark 5.2.4. The elements a1,2,3, X1,2, H1,2 and Pi are generators of PaCD(k), satisfy

the pentagon and the two hexagons relations and the following relation:

(iF) P 1,2H1,2X1,2P 2,1(X1,2)−1H1,2 = P 12 as arrows from (12) to (12) in PaBf (2).

5.2.5 Framed associators

Definition 5.2.5. We define the set of framed k-associators to be the set

Assf (k) := Iso+OpGrpd
k

(P̂aB
f
(k), GPaCDf (k))

if isomorphisms between P̂aB
f
(k) and GPaCDf (k) which are the identity on objects.

An immediate consequence of [14, Lemma 7.4] is then

Proposition 5.2.6. There is a one-to-one correspondence between the set of framed k-associators

Assf (k) and the set Assf (k) of triples (λ, µ, ϕ) where (µ, ϕ) ∈ Ass(k) and λ ∈ k× such that

(F) eλ(t1+t2+2t12) = eλ(t1+t2)+µt12 .

Corollary 5.2.7. By taking µ = 2λ, on can establish a bijection between the set of framed

associators and the set of associators.

Moreover, by [14, Lemma 7.7], the there is a group isomorphism

ĜT(k) ≃ ĜT
f
(k) := Aut+OpGrpd

k

(P̂aB
f
(k))

and the fact that tfn(k) =
⊕n

i=1 kti ⊕ tn(k) gives us a further isomorphism

GRT(k) ≃GRTf (k) := Aut+OpGrpd
k

(PaCDf (k)).

Proposition 5.2.8. The set Assf (C) is non empty.

We will prove this statement in the following subsection.
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5.2.6 The framed universal KZ connection

Define the framed universal KZ connection on the trivial exp(̂tfn)-principal bundle overConff (C, n)

as the connection given by the holomorphic 1-form

wf KZ
n :=

∑

16i6n

tii d log(λi) +
∑

16i<j6n

dzi − dzj
zi − zj

tij ∈ Ω1(Conff (C, n), tfn),

which takes its values in tfn and where λi ∈ C× is a fiber coordinate, for all 1 ≤ i ≤ n.

Theorem 5.2.9. The connection ∇f KZ
n := d−wf KZ

n is flat.

Proof. Let w1 :=
∑

16i6n

ti d log(λi) and w2 :=
∑

16i<j6n

dzi−dzj
zi−zj

tij . We want to show that [w1 +

w2, w1 + w2] = 0. We have

[w1 + w2, w1 + w2] = [w1, w1] + [w2, w2] + [w1, w2] + [w2, w1]

= 2[w1, w2]

since [w1, w1] = 0 because the relation (FT1), [w2, w2] = 0 because of flatness of the unframed

KZ connection, and [w2, w1] + [w2, w1] = 2[w1, w2]. Next, because of relation (FT2), we have

[w1, w2] = [ti d log(λ),
dzi − dzj
zi − zj

tij ] +
∑

16i<j6n

[tj d log(λ),
dzi − dzj
zi − zj

tij ].

And finally,

∑

16i<j6n

[ti d log(λ),
dzi − dzj
zi − zj

tij ] +
∑

16i<j6n

[tj d log(λ),
dzi − dzj
zi − zj

tij ] = 0

In particular, by sending fk to tkk, we get morphism of splitting short exact sequences

1 // kn //

��

P̂B
f

n(k)

��

// P̂Bn(k)

��

// 1

1 // kn // exp(̂tfn(k)) // exp(̂tn(k)) // 1

(5.7)

showing that P̂B
f

n(k) −→ exp(̂tfn(k)) is a k-pro-unipotent group isomorphism. Similarly we

get an isomorphism

B̂
f

n(k) −→ exp(̂tfn(k)) ⋊Sn.

Proof of Proposition 5.2.8. Let x ∈ Conff (C, n) and let T f,KZ
x be the parallel transport mor-

phism associated to ωKZ
f,n. Then

T f,KZ
x (fi) = e2iπλi ∈ exp(̂tfn).
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5.3 Modules associated to framed configuration spaces (genus

g associators)

5.3.1 Configuration spaces of surfaces

Define the pure braid group with n strands in genus g as the fundamental group of Conf(Σg, n),

PBg,n := π1(Conf(Σg, n)). The corresponding braid group is then Bg,n = π1(Conf(Σg, [n])),

where Conf(Σg, [n]) = Conf(Σg, n)/Sn. Algebraically, according to [7], Bg,n is presented by

generators Xa, Ya, σi (1 ≤ a ≤ g, 1 ≤ i ≤ n− 1) and relations

(B1),(B2) σiσi+1σi = σi+1σiσi+1 if i ∈ [n− 2], (σi, σj) = 1 if |i− j| > 1,

(BG1) (Xa, σi) = (Ya, σi) = 1 if i > 1, 1 ≤ a ≤ g,

(BG2) (σ−11 Xaσ
−1
1 , Xa) = (σ−11 Yaσ

−1
1 , Ya) = 1 if 1 ≤ a ≤ g,

(BG3) (σ−11 Xaσ
−1
1 , Xb) = (σ−11 Xaσ

−1
1 , Yb) = (σ−11 Yaσ

−1
1 , Xb) = (σ−11 Yaσ

−1
1 , Yb) = 1 if a < b,

(BG4) (σ1(Xa)
−1σ1, (Ya)

−1) = σ2
1 if 1 ≤ a ≤ g,

(BG5)
∏

1≤a≤g(Xa, (Ya)
−1) = σ1 · · ·σ2

n−1 · · ·σ1.

The morphism Bg,n −→ Sn is given by Xa, Ya 7→ 1, σi 7→ si := (i, i + 1). It is proved in [7]

that PBg,n is the kernel of this map and is generated by X i
a, Y

i
a (1 ≤ i ≤ n, 1 ≤ a ≤ g), where

Zi
a = σ−1i−1 · · ·σ

−1
1 Zaσ

−1
1 · · ·σ

−1
i−1 for Z any of the letters X,Y .

The geometric interpretation of the presentation of Bg,n for g ≥ 1 is constructed as follows2

• Generators : We represent Σg as a polygon L of 4g sides with the standard identification

of edges. We can consider braids as paths on L, which we draw with the usual “over and

under” information at the crossing points. and we represent the generators of Bg,n realized

as braids on L.

Pi Pi+1

a

αα
α

ββi i

i

i

i

i

iβ

bi

a b σ
i i i

PnP1 PnP1

Notice that in the braid ai (respectively bi) the only non trivial string is the first one,

which goes through the the wall αi (the wall βi). Remark also that σ1 . . . , σn−1 are the

classical braid generators on the disk so relations (B1), (B2) hold.

2We borrow the drawings from [7].
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• Relations (BG1-BG3) : The fact that these relations hold is trivial and is explained

in [7].

• Relation (BG4) : Indeed, there is a homotopy between σ−11 arσ
−1
1 br and brσ

−1
1 arσ1

represented in the following picture:

βr
α r

βr

βr

βr

α r

α rα r

���� ����
��
��
��

�
�
�
�

• Alternative fundamental domain and relation (BG5) : Let sr and tr be the first

string of ar and br respectively, where 1 ≤ r ≤ 2g.

We can obtain a new fundamental domain, denoted L1 with vertex P1, by cutting L along

the paths s1, t1, . . . , sg, tg and by glueing the pieces along the edges of L as we can see in

the following picture, for g = 2:

P1 P1

P1

P1

P1

P1

P1

P1

P1

1t

1t

1t

s2

s2

s2

2
t

2
t

2
t

1α

β 1

α
2

β
2

1α

β 1

α
2

β
2

α

1s s

s
1

1

α
2

β

β

1

2

1

On L1 it is clear that [a1, b
−1
1 ] · · · [ag, b

−1
g ] is equivalent to the braid represented as follows

P1

P1

g

n
P1 P

t

t

s1

1

This braid is equivalent to the braid σ1σ2 . . . σ
2
n−1 . . . σ2σ1 so (BG5) in PBg,n.
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5.3.2 Framed configuration spaces on surfaces

In this section we assume g > 1. In [8], the authors showed that the fundamental group PBf
g,n

of Conff (Σg, n) can be exhibed as a non-splitting central extension

1 −→ Zn −→ PBf
g,n

βn
−→ PBg,n −→ 1 (5.8)

where βn is the morphism induced by the projection map Conff (Σg, n) −→ Conf(Σg, n) (i.e.

βn consists in forgetting the framing). Conff (Σg, n) is an Eilenberg-Maclane space of type

(PBf
g,n, 1). This short exact sequence extends to the following non-split short exact sequence

1 −→ Zn −→ Bf
g,n

β̂n
−→ Bg,n −→ 1 , (5.9)

where β̂n consists in forgetting the framing. Conff (Σg, [n]) is an Eilenberg-Maclane space of

type (Bf
g,n, 1).

The framed pure braid group PBf
g,n is generated by Ai,j and fk where 1 ≤ i ≤ 2g+n− 1, 2g+

1 ≤ j ≤ 2g + n, i < j, 1 ≤ k ≤ n together with the following relations

(PR1) A−1i,j Ar,sAi,j = Ar,s if (i < j < r < s) or (r + 1 < i < j < s) or (i = r + 1 < j < s for

even r < 2g or r > 2g),

(PR2) A−1i,j Aj,sAi,j = Ai,sAj,sA
−1
i,s if (i < j < s) ;

(PR3) A−1i,j Ai,sAi,j = Ai,sAj,sAi,sA
−1
j,sA

−1
i,s if (i < j < s) ;

(PR4) A−1i,j Ar,sAi,j = Ai,sAj,sA
−1
i,sA

−1
j,sAr,sAj,sAi,sA

−1
j,sA

−1
i,s if (i+1 < r < j < s) or (i+1 = r <

j < s for odd r < 2g or r > 2g)

(ER1) A−1r+1,jAr,sAr+1,j = Ar,sAr+1,sA
−1
j,sA

−1
r+1,s if r odd and r < 2g ;

(ER2) A−1r−1,jAr,sAr−1,j = Ar−1,sAj,sA
−1
r−1,sAr,sAj,sAr−1,sA

−1
j,sA

−1
r−1,s if r even and r < 2g,

(C) the fk are central

(FTR) [A−12g,2g+k, A2g−1,2g+k] · · · [A
−1
2,2g+k, A1,2g+k] =

A2g+1,2g+k · · ·A2g+k−1,2g+kA2g+k,2g+k+1 · · ·A2g+k,2g+n f
2(g−1)
k

where 1 ≤ k ≤ n, and where we set A2g+1,2g+1 = A2g+n,2g+n = 1.

The group Bf
g,n is generated by A1, B1, . . . , Ag, Bg, σ1, . . . , σn−1, f1, . . . , fn together with the

following relations (B1), (B2), (FB1), (FB2) and

(FBG1) ciσj = σjci for all j ≥ 2, ci = Ai or Bi and i = 1, . . . , g

(FBG2) ciσ1ciσ1 = σ1ciσ1ci for ci = Ai or Bi and i = 1, . . . , g

(FBG3) Aiσ1Bi = σ1Biσ1Aiσ1 for i = 1, . . . , g

(FBG4) ciσ
−1
1 cjσ1 = σ−11 cjσ1ci for ci = Ai or Bi, cj = Aj or Bj and 1 ≤ j < i ≤ g

(FBG5)
∏g

i=1[A
−1
i , Bi] = σ1 · · ·σn−2σ

2
n−1σn−2 · · ·σ1f

2(g−1)
1
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5.3.3 The PaB
f-module of parenthesized framed genus g braids

Consider the framed Fulton-MacPherson compactification FMf
2,g(n) of Conff (Σg, n).

The boundary ∂ FMf
2,g(n) = FMf

2,g(n) − Conff (Σg, n) is made of the following irreducible

components: for any decomposition n = n1 + · · ·+ nk there is a component

∂n1,··· ,nk
FMf

2,g(n)
∼=

k∏

i=1

FMf
2 (ni)× FMf

2,g(n) .

The inclusion of boundary components provide FMf
2,g with the structure of a module over

the operad FMf
2 in topological spaces. Given a choice of an embedding S1 →֒ Σg, we have

inclusions

Pa(n) ⊂ C
f
(S1, n) ⊂ FMf

2,g(n).

We then define

PaBf
g := π1(FM

f
2,g,Pa) ,

which is a PaBf -module in groupoids.

Example 5.3.1. Structure of PaBf
g (1). As opposed to the unframed reduced genus 1 case,

we have non trivial arrows in arity 1. More precisely, we have 2g automorphisms, Ai and

Bi ∈ End
PaB

f
g (1)

(1), for all 1 6 i 6 g, that can be depicted as follows:

1

1

Ai

1

1

Bi
(5.10)

and correspond to the following paths in Σg. We fix the marked points in the first A-cycle, thus

A1 and B1 correspond to the paths:

P1 P1

P1

B1

A1
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All other Ai and Bi are depicted in the same way.

Example 5.3.2. Notable arrows in PaBf
g (2).

We have 2g automorphisms, A1,2
i and B1,2

i ∈ End
PaB

f
g (2)

(12), for all 1 6 i 6 g, that can be

depicted as follows:

1

1

2

2

Ai

1

1

2

2

Bi
(5.11)

and correspond to the following paths in Conff (Σg, 2) Again, we fix the marked points in the

first A-cycle, thus A1,2
1 correspond to the path:

A
1

1,2

P2P1 P1
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Next, the map B1,2
1 corresponds to the path:

P1

P1

P2

P2P1

B
1

1,2

P1

P1

All other A1,2
i and B1,2

i are depicted along the same representation as that for B1,2
1 .

Moreover, we also have arrows

1

1

2

2

Ai

1

1

2

2

Bi

We let the reader draw the corresponding paths in Conff (Σg, 2).

Remark 5.3.3. By doubling the only braid in Ai ∈ PaBf
g (1), which amounts to taking

◦1(Ai, id12) ∈ PaBf
g (2), we get an arrow A12

i depicted as follows:

1

1

2

2

Ai

It is then a fact that

A12
i (A1,2

i )−1 =

1

1

2

2

Ai
·




1

1

2

2

Ai




−1

=

1

1

2

2

Ai
(5.12)
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This means that even if, contrary to the reduced genus 1 case, A1,2
i is not equal to

1

1

2

2

Ai

one can retrieve the latter arrow from the composite A12
i (A1,2

i )−1.

Definition 5.3.4. Let CoBf
g the CoBf -module in groupoids with S-module of objects S and

where, for n > 1, the morphisms of CoBf
g (n) consists of isotopy classes of genus g framed

braids (i.e. elements of the braid group Bf
g,n) α together with a colouring bijection i 7→ αi

between the index set i ∈ {1, . . . , n} which leaves the last strand uncoloured and the strands

αi ∈ {α1, . . . , αn} of our braid α and the data of a special braid corresponding to the framing.

The following theorem can be undestood as a rephrasing of the MacLane-Joyal-Street coherence

theorem for framed genus g D2-modules.

Theorem 5.3.5. As a PaBf -module in groupoids having Pa as Pa-module of objects, PaBf
g

is isomorphic freely generated by A1,2
i and B1,2

i , for all 1 6 i 6 g, in PaBf
g (2), together with

relations

(Red) A1,∅
i := Ai, B

1,∅
i := Bi, A

∅,2
i := Id1, B∅,2i := Id1 in PaBf

g (1),

(D1) Φ1,2,3A1,23
i R1,23Φ2,3,1A2,31

i R2,31Φ3,1,2A3,12
i R3,12 = A

(12)3
i ,

(D2) Φ1,2,3B1,23
i (R23,1)−1Φ2,3,1B2,31

i (R31,2)−1Φ3,1,2B3,12
i (R12,3)−1 = B

(12)3
i ,

for all 1 ≤ i ≤ g, and the following relation:

(gE) R1,2R2,1(F 1)2(g−1) =
∏g

i=1

(
Φ1,2,3B1,23

i (Φ1,2,3)−1, (R2,1)−1Φ2,1,3(A2,13
i )−1(Φ2,1,3)−1(R1,2)−1

)

as arrows from (12)3 to (12)3 in PaBf
g (3).

Remark 5.3.6. An easy consequence of the above theorem is that PaBf
g identifies with the

fake pullback ω⋆CoBf
g of the CoBf -module CoBf

g along the forgetful functor ω : Pa −→ S,

Proof. Let Q be the PaBf -module with the above presentation. We first show that there

is a morphism of PaBf -modules Q −→ PaBf
g . We have already seen that there are 2g

automorphisms Ai, Bi of (1) in PaBf
g (1) (see Example 5.3.1) and 2g automorphisms A1,2

i , B1,2
i

of (12) in PaBf
g (2) (see Example 5.3.2). We have to prove that they indeed satisfy the relations

(D1), (D2) and (gE).

Relations (D1) and (D2) are satistfied: the first decagon relation (D1) can be depicted as fol-

lows:
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(1

(1

2)

2)

3

3

A
(12)3
i

=

(1

(1

2)

2)

3

3

A12,3
i

Ai23, 1

A3,12
i

(D1)

It is satisfied in PaBf
g , expressing the fact that when all (here, three) points move along a

generating generating loop on Σg, this corresponds to the path in the framed configuration

space of points on Σg twisting the three points. The same is true with the second decagon

relation (D2).

Relation (gE) is satisfied: Relation (gE) is more difficult to draw so we sketch the way to think

of the right-hand-side. Align the points in a generating cycle of the genus g surface (this means

that they are in the boundary of the compactified framed configuration space). Then if a point

travels through a cycle, its corresponding framing will naturally start to spin as one can see

in the following picture, for g = 2

−π/2
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and for g = 4

π/8

−3π/4

If we consider a polygon with 4g sides corresponding to a genus g surface, then for each marked

point travelling through the generating cycles, the framing attached to that point will be

twisted by an angle of π− π
g . Next, one can interpret the path on the right hand side of (gE) as

the following path. As we already took care of the behaviour of the framing we will neglect this

information in the picture.
(
Φ1,2,3B1,23

1 (Φ1,2,3)−1, (R2,1)−1Φ2,1,3(A2,13
1 )−1(Φ2,1,3)−1(R1,2)−1

)

corresponds to the following picture

P1

P2

P3

P3P2 P1

One can see that, if i 6= j, then the paths corresponding to a Ai cycle and a Bj cycle do not

intersect.

Another possible way to interpret this goes as follows: if we suppose that the marked points

were chosen to be in the A1-cycle of Σg, the right hand side of (gE) can be drawn as follows:
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P1

P1

P1

P1P1

In conclusion, one can then easily see that if we take a point and make it travel around all the

generating cycles concerned in the right-hand-side of relation (gE), the corresponding framing

will make 2g× (g−1)
g = 2(g−1) complete spins and the first point P1 will have done a complete

loop around the second point P2. This is exactly the left-hand-side of equation (gE).

Thus, by the universal property of Q, there is a morphism of PaBf -modules Q −→ PaBf
g ,

which is the identity on objects. To show that this map is in fact an isomorphism, it suffices

to show that it is an isomorphism at the level of automorphism groups of objects arity-wise,

as all groupoids are connected. Let n ≥ 0, and p be the object (· · · ((12)3) · · · · · · )n of Q(n)

and PaBf
g (n). We want to show that the induced morphism

AutQ(n)(p) −→ Aut
PaB

f
g (n)

(p) = π1

(
Conf

f
(Σg, n), p

)

is an isomorphism.

On the one hand, as Conf
f
(Σg, n) is a manifold with corners, we are allowed to move the

basepoint p to a point preg which is included in the fundamental domain L1 described in

subsection 5.3.1. We then have an isomorphism of fundamental groups π1(Conf
f
(Σg, n), p) ≃

π1(Conff (Σg, n), preg).

On the other hand, one can construct a non-symetric module Q̃ in groupoids over Bf carrying

an action of the (algebraic version of the) framed braid group Bf
g,n on Σg in the following

sense:

• for each n ≥ 1, Q̃(n) is a groupoid with maximal parenthesizations of unnumbered ele-

ments as objects.

• Q̃ is freely generated by A1,2
i := A•,•i and B1,2

i := B•,•i in Q̃(2), for all 1 6 i 6 g, satisfying

relations (Red), (D1), (D2) and (gE).
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• in Lemma 5.3.7 we show that there are group morphisms Bf
g,n −̃→AutQ̃(n)(p) −→ Sn,

the left one being an isomorphism.

In the same way the collection {PBf
g,n}n≥1 of pure genus g braids owns a non-symmetric

PBf -module structure denoted PBf
g .

Moreover, one the forgetful map Op −→ NsOp between the category of operads and the

category of non-symmetric operads induces a map Q −→ Q̃. Then, one has by constuction of

Q̃ that AutQ(n)(p) is the kernel of the map AutQ̃(n)([p]) −→ Sn. One can actually show that

we have a commuting diagram

PBf
g,n

≃ //

��

AutQ(n)(p) //

��

π1

(
Conf

f
(Σg, n), p

)

��

π1

(
Conff (Σg, n), preg

)
≃oo

��

Bf
g,n

≃ //

��

AutQ̃(n)([p])
//

��

π1

(
Conf

f
(Σg, n)/Sn, [p]

)

��

π1

(
Conff (Σg, n)/Sn, [preg]

)
≃oo

��
Sn Sn Sn Sn

where all vertical sequences are short exact sequences. Thus, in order to show that the map

AutQ(n)(p) −→ π1

(
Conf

f
(Σg, n), p

)
is an isomorphism, we are left to show that

Bf
g,n −→ π1

(
Conff (Σg, n)/Sn, [preg]

)

is indeed an isomorphism. But this map is nothing else than the map constructed in [8,

Theorem 13], identifying the algebraic and topological versions of the framed braid group on

Σg.

Lemma 5.3.7. Let Q̃ be the operadic Bf -module with unnumbered maximal paranthesizations

as objects and with generators A1,2
i := A•,•i and B1,2

i := B•,•i , for all 1 6 i 6 g, in Q̃(2)

satisfying relations (Red), (D1), (D2) and (gE).

Let p be the object in Q̃(n) given by right parenthesization p := (•(•(•(. . . ((••)) . . .). Then

there is a unique group isomorphism

φn : Bf
g,n −→ AutQ̃(n)(p),

such that

• Ai 7→ A1,2...n
i , for all 1 6 i 6 g ;

• Bi 7→ B1,2...n
i , for all 1 6 i 6 g ;

• σi 7→ Ri,i+1 ; for all 1 6 i 6 n− 1 ;

• fi 7→ F i, for all 1 6 i 6 n ;

where A1,2...n ∈ AutQ̃(n)(p) is obtained from A1,2, F i is obtained from F 1 and Ri,i+1 ∈

AutQ̃(n)(p) is obtained from R1,2 by some finite sequences of arrows involving the associator

and the operadic module morphisms since the parenthesizations are unmarked.
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In particular, by applying a finite sequence of associators one can show that the above lemma

remains true for all possible choices of base points p ∈ Q̃(n).

Let us sketch the proof of this Lemma (a complete proof will be done un subsequent works).

Proof. For simplicity, we omit the associativity constraints. One can show by induction that

the image of Ak
i := σk−1A

k−1
i σk−1 is

R12...(k−1),kA
1,2...(n−1)
i Rk,12...(k−1)

therefore the image of A1
i · · ·A

k
i is A±

X⊗k,X⊗n−k . We will thus reduce to the cases n=2,3 in the

rest of the proof.

φn is a well-defined group morphism: Let us first show that there is indeed such a group mor-

phism. First of all, the braid relations are preserved as there are morphisms from B3 to both

groups (the first one is classic, the second one is induced by the fact that Q̃ is a Bf -module.

Notice that, by removing the third braid in relation (D1), we obtain relation

A1,2
i R1,2A2,1

i R2,1 = A12
i

which can be depicted as follows:

1

1

2

2

A12 =

1

1

2

2

A1,2

A2,1

(D1bis)

Then, one shows that relations (FBG1-4) are satisfied by the same reasoning that [33, Propo-

sition 1.3] in the following way: for each 1 6 i 6 g, take X+
1 := Ai and X−1 := (Bi)

−1. Then

relations (FBG1-3) are equivalent to

(σ±11 X±1 )2 = (X±1 σ±11 )2, (X±1 , σi) = 1 for i = 2, . . . , n− 1, (X−1 , (X+
2 )−1) = σ2

1 ,

and are thus preserved by φn. Relation (FBG4) is preserved by naturality in AutQ̃(n)(p).

Thus, we have a group morphism

φn is surjective: The fact that the map φn is surjective is a consequence of the fact that all the

defining relations in Q̃(n) come from the defining relations of Bf
g,n and the oepradic module

partial compositions.
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φn is injective: Let us now show the injectivity of this map. Let Q̄ be the oeprad module

with same objects as Q̃ and; for every object p of Q̄(n), we define AutQ̄(n)(p) := Bf
g,n. Next

we have a map Q̃ −→ Q̄ sending the generations A1,2
i to Ai and B1,2

i to Bi in Bf
g,2. Indeed,

if we denote X+
1 := Ai and X−1 := (Bi)

−1, then we have relations (σ±12 σ±11 X±1 )3 = X±123,

(X−1 , (σ1X
+
1 σ1)

−1) = σ2
1 and

∏g
i=1(Bi, (σ1Aiσ1)

−1) = σ2
1f

2(g−1)
1 show that relations (Red),

(D1), (D2) and (gE) are preserved.

Then, as PaBf acts on both of these operadic modules we conclude that there is a map

AutQ̃(n)(p) −→ AutQ̄(n)(p). In order to prove the injectivity of φ, we are left to prove that the

composite

Bf
g,n −→ AutQ̃(n)(p) −→ AutQ̄(n)(p)

is the identity morphism, which is true as, by construction of both maps.

This means that any fD2-module morphism φ : PaBf
g −→ P , is determined (up to isomor-

phism) by Ai, Bi and the above three relations. As in the framed genus 0 situation, we

have a PaBf (k)-module in Cat(CoAssk) denoted PaBf
g (k) := ∆k(PaB

f
g ). Now consider its

associated inverse system of (PaBf )(m)(k)-modules given, for all m ∈ N, by

(PaBf
g )

(m)(k) := PaBf
g (k)/(I

m(k) ·PaBf
g (k)).

By taking the inverse limit over m of these inverse system, we get a P̂aB
f
(k)-module in

Cat(CoAssk)

P̂aB
f

g (k) := lim
←−

((PaBf
g )

(m)(k)).

5.3.4 The PaCD(k)-module of parenthesized genus g chord diagrams

Let us consider g > 0 and n ≥ 0 and define tg,n(k) as the k-Lie algebra with generators

xi
a, y

i
a, tij for i 6= j ∈ [n], 1 ≤ a ≤ g satisfying relations (T1), (T2), (T3) and

(G1,G2) [xi
a, x

j
b] = 0 and [yia, y

j
b ] = 0 if i 6= j

(G3) [xi
a, y

j
b ] = δabtij if i 6= j;

(G4) [xi
a + xj

a, tij ] = [xk
a, tij ] = 0 if {i, j} ∩ {k} = ∅;

(G5) [yia + yja, tij ] = [yka , tij ] = 0 if {i, j} ∩ {k} = ∅;

(G6)
g∑

a=1
[xi

a, y
i
a] +

∑
j:j 6=i tij = 0;

The Lie algebra tg,n(k) is equipped with a grading given by deg(xa
i ) = (1, 0), deg(yai ) = (0, 1).

The total degree defines a positive grading on tg,n(k); we denote by t̂g,n(k) the corresponding

completion. If k = C, we will denote tg,n(k) := tg,n.

Theorem 5.3.8. (Bezrukavnikov, Enriquez) There is a monodromy morphism PBg,n −→

exp(̂tg,n) inducing an isomorphism of Lie algebras Lie(PBg,n)
C ∼
−→ t̂g,n.
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The collection tg(k) := {tg,n(k)}n≥1 is provided by the structure of a tg(k)-module in Liek as

follows. The S-module tg(k) inherits the structure of a module over the operad t in Liek with

respect to the collection of maps given on the generators as follows:

◦k : tg,I(k)⊕ tJ(k) −→ tg,J⊔I−{i}(k)

(0, tαβ) 7−→ tαβ

(tij , 0) 7−→





tij if k /∈ {i, j}
∑
p∈J

tpj if k = i

∑
p∈J

tip if j = k

(xa
i , 0) 7−→





xa
i if k 6= i

∑
p∈J

xa
p if k = i

(yai , 0) 7−→





yai if k 6= i
∑
p∈J

yap if k = i

Since we are in possession of operad modules Pa(k) and ĈDg(k) in Cat(CoAssk) and of

an operad module morphism f : Pa −→ Ob(ĈDg(k)), we are ready to define the PaCD(k)-

module

PaCDg(k) := f⋆ĈDg(k)

in Cat(CoAssk) of parenthesized genus g chord diagrams. We have Ob(PaCDg(k)) := Pa

and MorPaCDg(k)(n)(p, q) := Mor
ĈDg(k)(n)

(pt, pt) = Û (̂tg,n(k)).

Example 5.3.9 (Notable arrows in PaCDg(k)(2)). We have the following arrows Xi, Yi in

PaCDg(k)(1)

Xi = x1
i ·

1

1

Yi = y1i ·

1

1

and X1,2
i , Y 1,2

i in PaCDg(k)(2)

X1,2
i = x1

i ·

1

1

2

2

Y 1,2
i = y1i ·

1

1

2

2

Remark 5.3.10. The elements X1,2
i , Y 1,2

i are generators of the PaCD(k)-module PaCDg(k)

and satisfy the following relations

(Red) X∅,2i = Y ∅,2i = 0, X1,∅
i := Xi, Y

1,∅
i := Yi,
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(D1) a1,2,3X1,23
i X1,23a2,3,1X2,31

i X2,31a3,1,2X3,12
i X3,12 = X

(12)3
i ,

(D2) a1,2,3Y 1,23
i X1,23a2,3,1Y 2,31

i X2,31a3,1,2Y 3,12
i X3,12 = Y

(12)3
i ,

(gE) X1,2X2,1P
2(g−1)
1 =

(
a1,2,3Y 1,23

i (a1,2,3)−1, X2,1a2,1,3(X2,13
i )−1(a2,1,3)−1X1,2

)
.

5.3.5 The PaCD
f(k)-module of parenthesized genus g framed chord

diagrams

Let tfg,n(k) denote the graded Lie algebra over k generated by tij , 1 ≤ i, j ≤ n, xi
a, y

i
a for

1 ≤ i ≤ n, 1 ≤ a ≤ g with relations (FT1), (FT2), (FT3), (G1), (G2), (G3) and the following

relation

(FG4) [xi
a + xj

a, tij ] = [xk
a, tij ] = 0 if {i, j} ∩ {k} = ∅, for 1 ≤ i ≤ n, 1 ≤ a ≤ g;

(FG5) [yia + yja, tij ] = [yka , tij ] = 0 if {i, j} ∩ {k} = ∅, for 1 ≤ i ≤ n, 1 ≤ a ≤ g ;

(FG6)
g∑

a=1
[xi

a, y
i
a] +

∑
j:j 6=i tij + 2(g − 1)tii = 0, for 1 ≤ i ≤ n, 1 ≤ a ≤ g;

The map PBf
g,n −→ exp(̂tfg,n(k)) sends the fk to tkk and all other generators as in the unframed

case. It induces a morphism of short exact sequences

1 // kn //

��

P̂B
f

g,n(k)

��

// P̂Bg,n(k)

��

// 1

1 // kn // exp(̂tfg,n(k)) // exp(̂tg,n(k)) // 1

(5.13)

This shows that the map P̂B
f

g,n(k) −→ exp(̂tfg,n(k)) is a k-pro-unipotent group isomorphism.

Later on we will derive this result from the flatness of a connection defined over Conff (Σg, n).

The S-module tfg (k) := {t
f
g,n(k)}n≥1 inherits the structure of a module over the operad tf in

Liek with respect to the collection of maps given on the generators as follows:

◦k : t
f
g,I(k)⊕ t

f
J(k) −→ t

f
g,J⊔I−{i}(k)

(0, tαβ) 7−→ tαβ

(tij , 0) 7−→





tij if k /∈ {i, j}
∑
p∈J

tpj if k = i

∑
p∈J

tip if j = k

(xa
i , 0) 7−→





xa
i if k 6= i

∑
p∈J

xa
p if k = i

(yai , 0) 7−→





yai if k 6= i
∑
p∈J

yap if k = i



168 CHAPTER 5. OPERADS AND HIGHER GENUS ASSOCIATORS

Let 1 ≤ i, j, k ≤ m with i < j, then

tfg(k)◦m,n
k : tfg,n(k)⊕ tfm(k) −→ t

f
g,m−1+n(k)

(0, tαβ)) 7−→ tα+k−1β+k−1

(0, tα)) 7−→ tα+k−1

(xa
i , 0) 7−→





xa
i+n−1 if k < i∑i+n−1

p=i xa
p if i = k

xa
i if i < k

(yai , 0) 7−→





yai+n−1 if k < i∑i+n−1
p=i yap if i = k

yai if i < k

(tij , 0) 7−→





ti+n−1j+n−1 if k < i < j∑i+n−1
p=i tpj+n−1 if k = i < j

tij+n−1 if i < k < j∑j+n−1
p=j tip if i < j = k

tij if i < j < k

(ti, 0) 7−→





ti+n−1 if k < i
i+n−1∑
p=i

tp if k = i

ti if i < k

We can then construct the CDf (k)-module CDf
g (k) := Û (̂tfg (k)) of genus g framed chord

diagrams.

Let ĈD
f

g (n) be the I-adic completion of CDf
g (n) with respect to the augmentation ideal I.

Since we are in possession of operad modules Pa(k) and ĈD
f

g (k) in Cat(CoAssk) and of an

operad module morphism ω : Pa −→ Ob(ĈD
f
(k)), we are ready to define the PaCDf (k)-

module

PaCDf
g (k) := ω⋆ĈD

f

g (k)

in Cat(CoAssk) of parenthesized framed genus g chord diagrams. We haveOb(PaCDf
g (k)) :=

Pa and Mor
PaCD

f
g (k)(n)

(p, q) := Mor
ĈD

f

g (k)(n)
(pt, pt) = Û (̂tfg (k)).

Example 5.3.11 (Notable arrows in PaCDf
g (k)(1) and PaCDf

g (k)(2)). We have the follow-

ing arrows Xi, Yi in PaCDf
g (k)(1)

Xi = xi·

1

1

Yi = yi·

1

1

and X1,2
i , Y 1,2

i in PaCDf
g (k)(2)
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X1,2
i = xi·

1

1

2

2

Y 1,2
i = yi·

1

1

2

2

We leave the reader the care of drawing the chord diagrams corresponding to the relations

(FG4-6) accordingly.

5.3.6 Genus g associators

Definition 5.3.12. A genus g associator over k is couple (F,G) where F ∈ Assf (k) is

a k-associator and G is an isomorphism between the P̂aB
f
(k)-module P̂aB

f

g (k) and the

GPaCDf (k)-module GPaCDf
g (k) which is the identity on objects and which is compatible

with F . We denote its set by

Assg(k) := Iso+
(P̂aB

f
(k),GPaCDf(k))

(P̂aB
f

g (k), GPaCDf
g (k)).

Theorem 5.3.13. There is a one-to-one correspondence between elements of Assg(k) and

elements of the set Assg(k) consisting on tuples (µ,Φ, A1, . . . , Ag, B1, . . . , Bg) where (µ,Φ) ∈

Ass(k) and Ai, Bi ∈ exp(̂tfg,2), for i = 1, ..., g, such that, for 1 ≤ i ≤ g we have

α1,2,3
i α2,3,1

i α3,1,2
i = A

(12)3
i , where , αi = {Φ

1,2,3}A1,23
i {eµ(t12+t13)/2}, (5.14)

β1,2,3
i β2,3,1

i β3,1,2
i = B

(12)3
i , where βi = {Φ

1,2,3}B1,23
i {e−µ(t12+t13)/2}, (5.15)

{eµt12+2(g−1)µt1} =

g∏

i=1

(
{Φ}B1,23

i {Φ}−1, {e−µt12/2Φ2,1,3}(A2,13
i )−1{(Φ2,1,3)−1e−µt12/2}

)
.

(5.16)

Proof. Let (F,G) ∈ Assg(k). An automorphism F of PaBf corresponds uniquely to a couple

(µ,Φ) ∈ Ass(k) as, by setting µ = 2λ, one can neglect the term λ intervening in Assf (k).

An automorphism G of PaBf
g is uniquely given as follows. The generators A1,2

i and B1,2
i in

Aut
P̂aBg(k)(2)

(12) are sent via G to Ai
+ and Ai

− respectively, with A± ∈ exp(̂tg,2). The image

of relations (D1), (D2) and (gE) are precisely the relations (5.14, (5.15)) and (5.16) under this

correspondence.

Conjecture 5.3.14. The set of genus g C-associators Assfg (C) is not empty.

We will give some comments on this conjecture in the following subsection
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5.3.7 Towards the genus g KZB associator

Let us recall the construction from [35] of the universal genus g KZB connection (defined over

the configuration spaces). Endow the surface Σg with a complex structure and denote C the

resulting smooth closed complex curve. We have an isomorphism

π1(C, x)
∼
−→ πg := 〈Aa, Ba, 1 ≤ a ≤ g|

g∏

a=1

(Aa, Ba) = 1〉.

and each path from x to y in C induces an isomorphism π1(C, x) −→ π1(C, y) We have

PBg,n = π1(Conf(C, n), x)

where x := (x1, . . . , xn) ∈ Conf(C, n).

Define the map ρ0 : PBg,n −→ exp(̂f⊕ng ) by means of the following composite

PBg,n = π1(Conf(C, n), x) −→ π1(C
n, x) =

∏

i∈[n]

π1(C, xi) −→ πn
g −→ Fn

g −→ exp(̂fg)
n,

where Fg is the free group with generators γa, 1 ≤ a ≤ g, πg −→ Fg is the composite

πg −→ πg/N −→ Fg

where πg −→ πg/N is the quotient morphism, where N is the normal subgroup generated

by the Aa, 1 ≤ a ≤ g and πg/N −→ Fg, B̄a 7→ γa is the isomorphism induced from the

presentation of πg/N , where Fg −→ exp(̂fg) is the assignment γa 7→ exp(xa).

According to [35], the principal G-bundle with flat connection on X = Cfn(C) corresponding

to ρ0 is then i∗(Pn), where i : X −→ Cn is the inclusion and

(Pn −→ Cn) = (P0
1 −→ C)n ×exp(̂fg)n

exp(̂tg,n),

where (P0
1 −→ C) is the principal exp(̂fg)-bundle with flat connection corresponding to the

above morphism πg −→ Fg −→ exp(̂fg).

Denote the set of flat connections of degree 1 by

F1 = {α ∈ Ω1(Cn − (diagonals),Pn ×ad t̂g,n[1])|dα = α ∧ α = 0}

and denote its subset of holomorphic flat connections by

Fhol
1 = {α ∈ H0(Cn,Ω1,0

Cn ⊗ (Pn ×ad t̂g,n[1])(∗Diag))|dα = α ∧ α = 0}

with Diag =
∑

i<j Diagij and Diagij ⊂ Cn is the diagonal corresponding to zi = zj. Then

Enriquez showed the following:

Theorem 5.3.15. There is an element αKZ ∈ Fhol
1 given by

αKZB
g,n =

n∑

i=1

αi, (5.17)

where αi ∈ H0(C,K
(i)
C ⊗ (Pn ×ad t̂g,n[1])(

∑
j:j 6=i ∆ij)) expands as αi ≡

∑
1≤a≤g ω

(i)
a yia modulo

⊕̂q≥2tg,n[1, q].
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As in [35], K(i)
C = O⊠i−1

C ⊠KC ⊠O⊠n−i
C , ω(i)

a = 1⊗i−1 ⊗ ωa ⊗ 1⊗n−i, where (ωa)1≤i≤g are the

holomorphic differentials such that
∫
Aa

ωb = δab and Aa, Ba are the images of Aa, Ba under

πg −→ πab
g ≃ H1(C,Z).

Recall the universal g-KZB connection over the configuration space Conf(Σg, n) is a particular

explicit element αKZ ∈ Fhol
1 can be constructed as a sum

αKZB
g,n =

n∑

i=1

αi, (5.18)

where αi ∈ H0(C,K
(i)
C ⊗ (Pn×ad t̂g,n[1])(

∑
j:j 6=i ∆ij)) expands as αi ≡

∑
1≤a≤g ω

(i)
a yia modulo

⊕̂q≥2tg,n[1, q].

Consider integers (g, n) in hyperbolic position (i.e. 2 − 2g − n < 0) and let S be a genus

g topological compact oriented surface, x1, ..., xn n marked points on it. Now let X be a

Riemann surface modeled on S with genus g and n marked points. As X is hyperbolic, the

Uniformisation Theorem says that X is isomorphic to a quotient h/Γ of the Poincaré half-plane

h by a discrete subgroup Γ of PSL(2,R). Fix τ ∈ h and consider a uniformization Σg of X .

This corresponds to a point κ in the moduli space Mg,n. Such a point can be described by

3g + n − 3 parameters. Enriquez chowed that, under this uniformization, the one form αKZ

induces a flat connection

∇KZB
g,n,κ := d−αKZB

g,n,κ

over Conf(Σg,κ, n). Now, the fundamental group π1(Σ
×
g,κ, z0) of Σ×g,κ := Σg,κ−0 is the nothing

but the free group F (x1, y1, x2, y2, ..., xg, yg) on 2g generators. Now choose a non-zero tangent

vector −→v 0 of Σg,κ at 0. Then, flatness of ∇KZB
g,n,κ implies the existence of a Q-algebra map

T g,KZB
−−→v 0,

−→v 0
: Q[π1(Σ

×
g,τ ,−

−→v 0,
−→v 0)] −→ Q〈〈x1, y1, x2, y2, ..., xg, yg〉〉

γ 7−→ T g,KZB
−−→v 0,

−→v 0
(γ) :=

∞∑

k=0

Reg

∫

γ

αKZB
g,n,κ

Definition 5.3.16. The non-framed genus g KZB associator is the tuple

eg(κ) := (A1(κ), B1(κ), . . . , Ag(κ), Bg(κ))

where

Ai(κ) := T g,KZB
−−→v 0,

−→v 0
(γa

i )

Bi(κ) := T g,KZB
−−→v 0,

−→v 0
(γb

i )

where γa
i and γb

i are the generating loops in πB
1 (Σg,κ).

We do not know what kind of monodromy relations these associators may have. In particular,

if we want to relate them to our operadic definition of genus g associators we need to extend

the universal KZB connection to its framed version.

We then have
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Conjecture 5.3.17. There is a flat universal framed KZB connection ∇f KZB
g,n,κ defined on the

principal exp(̄tfg,n)-bundle over Conff (C, n) constructed as above such that

• its pullback of ∇f KZB
g,n,κ to the associated exp(̄tfg,n)-bundle over Cn is

∇f KZB
g,n,κ := d−αfKZB

g,n

where

αfKZB
g,n := αKZB

g,n +
∑

16i6n

ti d log(λi);

• the 1-form αfKZB
g,n is (C×)n-basic and the induced connection on the exp(̄tg,n)-bundle over

Conf(C, n) given above coincides with the universal genus g KZB connection in theorem

5.3.15.

Let κ represent a point in the moduli space Mg,n. In the case g = 2 i.e. the hyperelliptic

case, we can write κ = (τ1, τ2). Let (2iπ,Φf
KZ) be the framed KZ associator coming from the

framed universal KZ connection defined above.

If this conjecture holds, then a consequence should be that (2iπ,Φf
KZ, e

f
g (κ)), where efg (κ) =

(Af
1 (κ), B

f
1 (κ), . . . , A

f
g (κ), B

f
g (κ)) is the framed version of the above genus g KZB associator,

is a genus g framed C-associator.

5.3.8 Genus g Grothendieck-Teichmüller groups

Let us finish this chapter by quickly giving definitions of Grothendieck-Teichmüller groups in

genus g by means of the operadic point of view of these objects.

Definition 5.3.18. The (k-prounipotent version of the) genus g Grothendieck–Teichmüller

group is defined as the group

ĜT
f

g (k) := Aut+
(Mod(P̂aB

{
(k)))

(P̂aB
f

g (k))

of automorphisms of the P̂aB
f
(k)-module P̂aB

f

g (k) which are the identity on objects.

The presentation of PaBf
g then implies the following: each automorphism F of PaBf

g compat-

ible with an automorphism G of PaBf is uniquely defined by

• G(R1,2) = (R1,2)λ,

• G(Φ1,2,3) = Φ1,2,3 · f(x, y),

• F (A1,2
i ) = g+i (x1, y1, . . . , xg, yg),

• F (B1,2
i ) = g−i (x1, y1, . . . , xg, yg),

where (λ, f) ∈ ĜT
f
(k) and gi± ∈ P̂Bg,2(k). These elements satisfy relations induced by (Red),

(D1), (D2) and (gE) which will be left to be studied in a subsequent work.
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Definition 5.3.19. The graded genus g Grothendieck-Teichmüller group is the group

GRTg(k) := Aut+(Mod(PaCD(k))(PaCDg(k))

of automorphisms of the PaCDf (k)-module PaCDf
g (k) which are the identity on objects.

Notice that there is an isomorphism

Aut+
(Mod(PaCDf (k))

(PaCDf
g (k)) ≃ Aut+

(Mod(GPaCDf (k))
(GPaCDf

g (k)).
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Chapter 6

On the universal twisted elliptic

KZB connection

6.1 Bundles with flat connections on Γ-twisted configura-

tion spaces

6.1.1 Principal bundles over Γ-twisted configuration spaces

Let Γ := Z/MZ × Z/NZ and let E be an elliptic curve over C and consider the connected

unramified Γ-covering p : Ẽ −→ E corresponding to the canonical surjective group morphism

ρ : π1(E) ∼= Z2 −→ Γ where π1(E) ∼= Z2 is the natural choice of such an isomorphism. Let us

then define the twisted configuration space

Conf(E, n,Γ) := {z = (z1, . . . , zn) ∈ Ẽn|p(zi) 6= p(zj) if i 6= j} ,

and C(E, n,Γ) := Conf(E, n,Γ)/Ẽ its reduced version. Notice that C(E, n,Γ) is just the

inverse image of C(E, n) under the surjection pn : Ẽn −→ En.

Let us fix a uniformization Ẽ ≃ Eτ , where τ ∈ H: Eτ = C/Λτ , with Λτ = Z + τZ. Then

E ≃ Eτ,Γ, where Eτ,Γ = C/Λτ,Γ and Λτ,Γ := (1/M)Z× (τ/N)Z. Therefore

Conf(E, n,Γ) ≃ (Cn −Diagτ,n,Γ)/Λ
n
τ ,

where

Diagτ,n,Γ := {(z1, . . . , zn) ∈ Cn|zij := zi − zj ∈ Λτ,Γ for some i 6= j} .

We now define a principal exp(̂tΓ1,n)-bundle Pτ,n,Γ over Conf(E, n,Γ) as the quotient

(
(Cn −Diagτ,n,Γ)× exp(̂tΓ1,n)

)
/Λn

τ .

In other words, it is the restriction on Conf(E, n,Γ) of the bundle over Cn/Λn
τ for which a

section on U ⊂ Cn/Λn
τ is a regular map f : π−1(U) −→ exp(̂tΓ1,n) such that

177
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• f(z+ δi) = f(z),

• f(z+ τδi) = e−2πixif(z).

Here π : Cn −→ Cn/Λn
τ is the canonical projection and δi is the ith vector of the canonical

basis of Cn.

Since the e−2πix̄i ’s in exp(̂̄tΓ1,n) pairwise commute and their product is 1, then the image

of Pτ,n,Γ under the natural morphism exp(̂tΓ1,n) −→ exp(̂̄tΓ1,n) is the pull-back of a principal

exp(̂̄tΓ1,n)-bundle P̄τ,n,Γ over C(E, n,Γ).

6.1.2 Variations

The first variation we are interested in concerns unordered configuration spaces.

The symmetric group Sn acts freely by automorphisms of Conf(E, n,Γ) by σ ∗ (z1, . . . , zn) :=

(zσ−1(1), . . . , zσ−1(n)). This descends to a free action of Sn on C(E, n,Γ). We then defined the

unordered twisted configuration spaces

Conf(E, [n],Γ) := Conf(E, n,Γ)/Sn and C(E, [n],Γ) := C(E, n,Γ)/Sn .

The symmetric group Sn also obviously acts on the Lie algebra tΓ1,n. One can then define,

keeping the notation of the previous paragraph, a principal exp(̂tΓ1,n)⋊Sn-bundle Pτ,[n],Γ over

Conf(E, [n],Γ): it is the restriction on Conf(E, [n],Γ) of the bundle over Cn/Λn
τ ⋊Sn for which

a section on U ⊂ Cn/Λn
τ ⋊Sn is a regular map f : π−1(U) −→ exp(̂tΓ1,n)⋊Sn such that

• f(z+ δi) = f(z),

• f(z+ τδi) = e−2πixif(z),

• f(σ ∗ z) = σf(z).

In more compact form:

Pτ,[n],Γ =
(
(Cn −Diagτ,n,Γ)× exp(̂tΓ1,n)⋊Sn

)
/(Λn

τ ⋊Sn) .

Remark 6.1.1. As before, Pτ,[n],Γ descends to a principal exp(̂̄tΓ1,n)⋊Sn-bundle P̄τ,[n],Γ over

the reduced unordered twisted configuration space C(E, [n],Γ).

The second variation concerns ordinary configuration spaces of the base E = Eτ,Γ of the

covering map Eτ −→ Eτ,Γ.

Recall from §4.3.3 that the group Γn acts on t̂Γ1,n via θ. Hence one has a principal exp(̂tΓ1,n)⋊Γn-

bundle

P(τ,Γ),n :=
(
(Cn −Diagτ,n,Γ)× exp(̂tΓ1,n)⋊ Γn

)
/Λn

τ,Γ

over Conf(E, n) ≃ Cn−Diagτ,n,Γ/Λ
n
τ,Γ. Here the action of Λn

τ on t̂Γ1,n is given by the morphism

Λτ −→ Γ , a+ bτ 7→ (ā, b̄) .

Remark 6.1.2. In a similar way as before, the above bundle obviously descends to a principal

exp(̂̄tΓ1,n)⋊ (Γn/Γ)-bundle P̄(τ,Γ),n over the reduced ordinary configuration space C(E, n).
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In concrete terms, a section over U ⊂ Cn/Λτ,Γ of P(τ,Γ),n is a regular map f : π−1(U) −→

exp(̂tΓ1,n)⋊ Γn such that

• f(z+ δi/M) = (1̄, 0̄)if(z),

• f(z+ τδi/N) = (0̄, 1̄)ie
−2πixi

N f(z).

Remark 6.1.3. We leave to the reader the task of combining the two variations.

6.1.3 Flat connections on Pτ,n,Γ and its variants

A flat connection ∇τ,n,Γ on Pτ,n,Γ is the same as an equivariant flat connection on the trivial

exp(̂tΓ1,n)-bundle over Cn −Diagτ,n,Γ, i.e., a connection of the form

∇τ,n,Γ := d−
n∑

i=1

Ki(z|τ)dzi ,

where Ki(−|τ) : Cn −→ t̂Γ1,n are meromorphic with only poles at Diagτ,n,Γ, and such that for

any i, j:

(a) Ki(z+ δj |τ) = Ki(z|τ),

(b) Ki(z+ τδj |τ) = e−2πiad(xj)Ki(z|τ),

(c) [∂i −Ki(z|τ), ∂j −Kj(z|τ)] = 0.

Moreover, the image of ∇τ,n,Γ under t̂Γ1,n −→
ˆ̄tΓ1,n is the pull-back of a (necessarily flat) con-

nection ∇̄τ,n,Γ on P̄τ,n,Γ if and only if:

(d) K̄i(z|τ) = K̄i(z + u
∑

i δi|τ) for any u ∈ C and
∑

i K̄i(z|τ) = 0.

Similarly, the image of ∇τ,n,Γ under t̂Γ1,n −→ t̂Γ1,n ⋊ Γn is the pull-back of a (necessarily flat)

connection ∇(τ,Γ),n on P(τ,Γ),n if and only if:

(e) Ki(z+
δj
M |τ) = θ((1̄, 0̄)j)Ki(z|τ),

(f) Ki(z+
τδj
N |τ) = θ((0̄, 1̄)j)e

−2πi
N

ad(xj)Ki(z|τ),

Remark 6.1.4. Observe that (e) implies (a), and that (f) implies (b).

Finally, the image of ∇τ,n,Γ under t̂Γ1,n −→ t̂Γ1,n ⋊ Sn is the pull-back of a (necessarily flat)

connection ∇τ,[n],Γ on P̄τ,[n],Γ if and only if:

(g) Ki((ij) ∗ z) = (ij) ·Ki(z).

6.1.4 Constructing the connection

We now construct a connection satisfying properties (d) to (g). Let us take the same con-

ventions for theta functions as in [24]. Observe that for any α̃ = (a0, a) ∈ Λτ,Γ, the term
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e−2πiax(θ(z − α̃) + x)/ (θ(z − α̃)θ(x)) only depends on the class α = (ā0, ā) ∈ Γ of α̃ mod Λτ .

The we set

kα(x, z|τ) := e−2πiax
θ(z − α̃+ x|τ)

θ(z − α̃|τ)θ(x|τ)
−

1

x
= e−2πiaxk(x, z − α̃|τ) +

e−2πiax − 1

x
,

where k(x, z|τ) := θ(x+z)
θ(x)θ(z) −

1
x (as in [24]), and

Kij(z|τ) :=
∑

α∈Γ

kα(adxi, z|τ)(t
α
ij) , Ki(z|τ) := −yi +

∑

j:j 6=i

Kij(zij |τ) .

In the rest of the section we fix τ ∈ H and drop it from the notation. Recall from [24] that

k(x, z ± 1) = k(x, z) and

k(x, z ± τ) = e∓2πixk(x, z) +
e∓2πix − 1

x
.

Proposition 6.1.5. The Kij(z)’s have the following equivariance properties:

Kij(z + 1/M) =θ((1̄, 0̄)i)(Kij(z)), (6.1)

Kij(z − τ/N) =e−
2πi
N

ad(xi)θ((0̄, −̄1)i)(Kij(z)) + θ((0̄, −̄1)i)(
∑

α∈Γ

e−2πiadxi − 1

adxi
(tαij)). (6.2)

Proof. The first equation comes from a straightforward verification. Let us show the second

relation. On the one hand, we have

Kij

(
z −

τ

N

)
=

∑

α∈Γ

kα

(
ad(xi), z −

τ

N

)
(tαij)

=

(∑

α∈Γ

e
−2iπa

N
ad(xi)k

(
ad(xi), z −

τ

N
− α̃

)
+

e
−2iπa

N
ad(xi) − 1

ad(xi)

)
(tαij)

=

(∑

α∈Γ

e
−2iπ(a−1)

N
ad(xi)k(ad(xi), z − α̃) +

e
−2iπ(a−1)

N
ad(xi) − 1

ad(xi)

)
(t

α−(0,1̄)
ij )

= θ(0,−1)

(∑

α∈Γ

e
−2iπ(a−1)

N
ad(xi)k(ad(xi), z − α̃) +

e
−2iπ(a−1)

N
ad(xi) − 1

ad(xi)

)
(tαij)

On the other hand,

e
−2iπ
N

ad(xj)Kij(z) = e
−2iπ
N

ad(xj)

(∑

α∈Γ

kα(ad(xi), z)

)
(tαij)

= e
2iπ
N

ad(xi)

(∑

α∈Γ

e
−2iπa

N
ad(xi)k(ad(xi), z − α̃) +

e
−2iπa

N
ad(xi) − 1

ad(xi)

)
(tαij)

=

(∑

α∈Γ

e
−2iπ(a−1)

N
ad(xi)k(ad(xi), z − α̃) +

e
−2iπ(a−1)

N
ad(xi) − e

2iπ
N

ad(xi)

ad(xi)

)
(tαij)

so

∑

α∈Γ

e
−2iπ(a−1)

N
ad(xi)k(ad(xi), z − α̃) = e

−2iπ
N

ad(xj)Kij(z)−
∑

α∈Γ

e
−2iπ(a−1)

N
ad(xi) − e

2iπ
N

ad(xi)

ad(xi)
(tαij)
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By putting these two equations together we finally get

Kij

(
z −

τ

N

)
= θ(0,−1)e

−2iπ
N

ad(xj)KΓ
ij(z)

+
∑

α∈Γ

−e
−2iπ(a−1)

N
ad(xi) + e

2iπ
N

ad(xi) + e
−2iπ(a−1)

N
ad(xi) − 1

ad(xi)
(tαij)

= θ(0,−1)e
−2iπ
N

ad(xj)Kij(z) + θ(0,−1)

(∑

α∈Γ

e
2iπ
N

ad(xi) − 1

ad(xi)
(tαij)

)
.

Now recall that e
2iπ
N

ad(xi)−1
ad(xi)

= 1−e
−2iπ
N

ad(xj)

ad(xj)
and 1−e

−2iπ
N

ad(xj )

ad(xj)
(tij) =

(
1 − e

−2iπ
N

ad(xj)
)
(yi).

We thus have

Ki

(
z+

τ

N
δj

)
= −yi +

∑

j′ 6=i,j

Kij′ (zij′) +Kij

(
zij −

τ

N

)

and therefore we get the announced relation

Ki

(
z+

τ

N
δj

)
= θ((0, 1̄)j)e

−2iπ
N

ad(xj)Ki(z).

Consequently the Ki(z)’s satisfy conditions (e) and (f) above (and thus also (a) and (b)).

Moreover, the Ki(z)’s also satisfy conditions (d). Indeed, the first part of (d) is immediate and

kα(x, z) + k−α(−x,−z) = 0, therefore Kij(z) +Kji(−z) = 0, and thus
∑

iKi(z) = −
∑

i yi.

Finally, from their very definition, the Ki(z)’s also satisfy condition (g).

In the next paragraph we show that the flatness condition (c) is satisfied.

6.1.5 Flatness of the connection

Proposition 6.1.6. [∂i −Ki(z), ∂j −Kj(z)] = 0, i.e., condition (c) is satisfied.

Proof. First we have

∂i(Kj(z)) − ∂j(Ki(z)) = ∂iKji(zji)− ∂jKij(zij) = ∂i(Kij(zij) +Kji(zji)) = 0

since Kij(z) +Kji(−z) = 0. Therefore we have to prove that [Ki(z),Kj(z)] = 0. As in [24] it

follows from the universal classical dynamical Yang-Baxter equation:

−[yi,Kjk] + [Kji,Kki] + c.p.(i, j, k) = 0 , (CDYBE)

which we now prove (here Kij := Kij(zij)). For any f(x) ∈ C[[x]] we have

[yk, f(adxi)(t
α
ij)] =

∑

β∈Γ

f(adxi)− f(−adxj)

adxi + adxj
[−tβki, t

α
ij ],

[yi, f(adxj)(t
α
jk)] =

∑

β∈Γ

f(adxj)− f(adxi + adxj)

−adxi
[−tβij , t

α
jk],
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[yj , f(adxk)(t
α
ki)] =

∑

β∈Γ

f(−adxi − adxj)− f(−adxi)

−adxj
[−tβjk, t

α
ki].

It follows that the l.h.s. of (CDYBE) is now

∑

α,β∈Γ

(
kα(−adxj , zij)kβ(−adxk, zik)− kα(adxi, zij)kβ−α(−adxk, zjk)

+kβ(adxi, zik)kβ−α(adxj , zjk) +
kβ−α(adxj , zjk)− kβ−α(adxi + adxj , zjk)

adxi

+
kβ(adxi, zik)− kβ(adxi + adxj , zik)

adxj
−

kα(adxi, zij)− kα(−adxj , zij)

adxi + adxj

)
[tαij , t

β
ik] ,

and thus (CDYBE) follows from the identity

kα(−v, z)kβ(u+ v, z′)− kα(u, z)kβ−α(u+ v, z′ − z) + kβ(u, z
′)kβ−α(v, z

′ − z)

+
kβ−α(v, z

′ − z)− kβ−α(u+ v, z′ − z)

u
+

kβ(u, z
′)− kβ(u+ v, z′)

v

−
kα(u, z)− kα(−v, z)

u+ v
= 0 .

This last identity can be written as
(
kα(−v, z)−

1

v

)(
kβ(u+ v, z′) +

1

u+ v

)
−

(
kα(u, z) +

1

u

)(
kβ−α(u+ v, z′ − z) +

1

u+ v

)

+

(
kβ(u, z

′) +
1

u

)(
kβ−α(v, z

′ − z) +
1

v

)
= 0 ,(6.3)

which (taking into account that kα(x, z) + (1/x) = e−2πiax (k(x, z − α̃) + (1/x))) is a conse-

quence of equation (3) of [24].

We have therefore proved:

Theorem 6.1.7. ∇τ,n,Γ is a flat connection on Pτ,n,Γ, and its image under t̂Γ1,n −→
ˆ̄tΓ1,n is

the pull-back of a flat connection ∇̄τ,n,Γ on P̄τ,n,Γ.

6.2 Lie algebras of derivations and associated groups

6.2.1 The Lie algebras d̃Γ0 and d̃Γ

Let fΓ be the free Lie algebra with generators x, tα (α ∈ Γ). Let p, q > 0. We define d̃
p,q
0 to

be the subspace of fΓ ⊕ (fΓ)
⊕|Γ| consisting of elements

(D,C), where C = (Cα)α∈γ ,

such that degx(D) +degt(D) = degx(Cα)+ degt(Cα) = p and degt(D)− 1 = degt(Cα) = q for

every α ∈ Γ, and that satisfy the following of linear equations:

(i) Cα(x, t
β) = C−α(−x, t−β) in fΓ,

(ii) [x,D(x, tβ)] +
∑

α[t
α, Cα(x, t

β)] = 0 in fΓ,
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(iii) [D(x1, t
β
13), y2] + c.p.(1, 2, 3) = 0 in tΓ1,3,

(iv) [D(x1, t
β
12) +D(x1, t

β
13)− [Cα(x2, t

β
23), y1], t

α
23] = 0 in tΓ1,3,

(v) [Cα(x1, t
γ
12), t

α+β
13 + tβ23] + [tα+β

13 , Cα+β(x1, t
γ
13)] + [tβ23, Cβ(x2, t

γ
23)] commutes with tα12 in

tΓ1,3.

Remark that (i) and (ii) imply another relation

(vi) D(x, tβ) = −D(−x, t−β) ,

which is very useful for computations. Then d̃Γ0 := ⊕p,q(d̃
Γ
0 )

p,q.

We then define a Lie bracket 〈, 〉 on fΓ ⊕ (fΓ)
⊕|Γ| as follows:

〈(D,C), (D′, C′)〉 := (δC(D
′)− δC′(D), [C,C′] + δC(C

′)− δC′(C)) ,

where δC ∈ Der(fΓ) is the derivation

• x 7→ 0, tα 7→ [tα, Cα],

• δC acts on (fΓ)
⊕|Γ| componentwise on a direct sum : δC(C

′)α = δC(C
′
α),

• the bracket is understood componentwise as well: [C,C′]α = [Cα, C
′
α].

We let the reader check that d̃Γ0 is stable under 〈, 〉, and becomes a bigraded Lie algebra1.

We now define d̃Γ as the quotient of the free product d̃Γ0 ∗ sl2 by the relations [ẽ, (D,C)] = 0,

[h̃, (D,C)] = (p− q)(D,C), and (adp f̃)(D,C) = 0 if (D,C) ∈ d̃Γ0 is homogeneous of bidegree

(p, q). Here

ẽ =

(
0 1

0 0

)
, h̃ =

(
1 0

0 −1

)
and f̃ =

(
0 0

1 0

)

form the standard basis of sl2. If we respectively give degree (1,−1), (0, 0) and (−1, 1) to ẽ, h̃

and f̃ then d̃Γ becomes Z2-graded.

We then define d̃Γ+ := ker(d̃Γ −→ sl2), which is (Z>0)
2-graded. One observes that it is positively

graded and finite dimensional in each degree. Thus, it is a direct sum of finite dimensional

sl2-modules.

6.2.2 The Lie algebras dΓ0 and dΓ

We write dΓ0 for the free bigraded Lie algebra generated by δs,γ ’s (s ≥ 0, γ ∈ Γ) in degree

(s+ 1, s) with relations

δs,γ = (−1)sδs,−γ ,

for all s ≥ 0 and γ ∈ Γ.

We then define dΓ as the quotient of the free product dΓ0 ∗ sl2 by the relations [ẽ, δs,γ ] = 0,

[h̃, δs,γ ] = sδs,γ and ads+1(f̃)(δs,γ) = 0; and dΓ+ as the kernel of dΓ −→ sl2. As above, we have

dΓ = dΓ+ ⋊ sl2, and dΓ+ is positively graded (actually (Z>0)
2-graded).

1The proof is straightforward but quite long. We do not give it since we do use another simpler Lie algebra below.
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We now give examples of elements in d̃Γ0 that are of some use below. For any s ∈ N and γ ∈ Γ,

we set

Ds,γ :=
∑

p+q=s−1

∑

β∈Γ

[(adx)ptβ−γ , (−adx)qtβ]

and

(Cs,γ)α := (adx)stα−γ + (−adx)stα+γ .

Observe that (Ds,γ , Cs,γ) = (−1)s(Ds,−γ , Cs,−γ).

The following result tells us that δs,γ 7→ (Ds,γ , Cs,γ) defines a bigraded Lie algebra morphism

dΓ0 −→ d̃Γ0 , that obviously extends to dΓ −→ d̃Γ.

Proposition 6.2.1. (Ds,γ , Cs,γ) ∈ (d̃Γ0 )
s+1,1.

Proof. First observe that relations (i) and (vi) are obviously satisfied.

To prove (ii) it suffices to notice that in the free Lie algebra with three generators x, t1, t2 we

have

[t1, (adx)
st2] + [t2, (− adx)st1] =

∑

p+q=s−1

[x, [(− adx)qt1, (adx)
pt2]] .

Let us prove (iii). In tΓ1,n we compute for #{i, j, k} = 3,

[yk, (adxi)
ptαij ] = −

∑

k+l=p−1

∑

β

(adxi)
k[tβik, (adxi)

ltαij ]

=
∑

k+l=p−1

∑

β

(adxi)
k(− adxj)

l[tβik, t
α−β
kj ] =

∑

k+l=p−1

∑

β

[(adxi)
ktβik, (− adxj)

ltα−βkj ] .

Therefore, in tΓ1,3, we have

[y1, D(x2, t
β
23)] =

∑

k+l+m=s−2

∑

α,β

[[(adx2)
ktβ21, (− adx3)

ltα−β−γ13 ], (− adx2)
mtα23]

+
∑

k+l+m=s−2

∑

α,β

(−1)l+m+1[(adx2)
ktα−γ23 , [(adx2)

ltβ21, (− adx3)
mtα−β13 ]] .

Then [y1, D(x2, t
β
23)] + c.p.(1, 2, 3) = 0 follows from the Jacobi identity.

Let us prove (iv). On the one hand we have

[D(x1, t
β
12) +D(x1, t

β
13), t

α
23] =

=
∑

p+q=s−1

∑

β∈Γ

[[(adx1)
ptβ−γ12 , (−adx1)

qtβ12] + [(adx1)
ptβ−γ13 , (−adx1)

qtβ13], t
α
23]

= −
∑

p+q=s−1

∑

β∈Γ

(
[(adx1)

p[tα+β−γ
13 , tα23], (−adx1)

qtβ12] + [(adx1)
ptβ−γ12 , (−adx1)

q[tα+β
13 , tα23]]

+[(adx1)
p[tβ−γ12 , tα23], (−adx1)

qtα+β
13 ] + [(adx1)

ptα+β−γ
13 , (−adx1)

q[tβ12, t
α
23]]
)

= [tα23,
∑

p+q=s−1

∑

β∈Γ

(adx1)
p[tα+β−γ

13 , (−adx1)
qtβ12] + (adx1)

p[tβ12, (−adx1)
qtα+β+γ

13 ]]
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= [tα23,
∑

p+q=s−1

∑

β∈Γ

(adx2)
p(−adx3)

q[tα+β−γ
13 + (−1)stα+β+γ

13 , tβ12]] .

On the other hand, we have

[Cα(x2, t
β
23), y1] = [(adx2)

stα−γ23 + (−adx2)
stα+γ

23 , y1]

= −
∑

p+q=s−1

∑

β∈Γ

(adx2)
p(− adx3)

q[tβ12, t
α+β−γ
31 + (−1)stα+β+γ

31 ] .

Therefore (iv) is satisfied.

Let us prove (v). We have

[Cα(x1, t
γ
12), t

α+β
13 + tβ23] = [(adx1)

stα−γ12 + (− adx1)
stα+γ

12 , tα+β
13 + tβ23]

= (adx2)
s[tα+γ

12 + (−1)stα−γ12 , tα+β
13 ] + (adx1)

s[tα−γ12 + (−1)stα+γ
12 , tβ23]

= (adx2)
s[tα+β

13 , tβ−γ23 + (−1)stβ+γ
23 ] + (adx1)

s[tβ23, t
α+β−γ
13 + (−1)stα+β+γ

13 ] .

Therefore, by defining A = tβ−γ23 + (−1)stβ+γ
23 and B = tα+β−γ

13 + (−1)stα+β+γ
13 we have

[tα12, [Cα(x1, t
γ
12), t

α+β
13 + tβ23]] = [tα12, [t

α+β
13 , (adx2)

sA] + [tβ23, (adx1)
sB]]

= [[tα12, t
α+β
13 ], (− adx3)

sA] + [tα+β
13 , (− adx3)

s[tα12, A]]

+[[tα12, t
β
23], (− adx3)

sB] + [tβ23, (− adx3)
s[tα12, B]]

= [[tβ23, t
α
12], (− adx3)

sA] + [tα+β
13 , (− adx3)

s[B, tα12]]

+[[tα+β
13 , tα12], (− adx3)

sB] + [tβ23, (− adx3)
s[A, tα12]]

= [[tβ23, (adx2)
sA] + [tα+β

13 , (adx1)
sB], tα12] .

This finishes the proof.

Remark 6.2.2. We do not know if dΓ0 −→ d̃Γ0 is injective or not.

6.2.3 Derivations of tΓ1,n and t̄Γ1,n

Lemma 6.2.3. We have a bigraded Lie algebra morphism d̃Γ0 −→ Der(tΓ1,n), taking (D,C) ∈ d̃Γ0

to the derivation ξ(D,C) :

xi 7−→ 0,

yi 7−→
∑

j:j 6=i

D(xi, t
β
ij),

tαij 7−→ [tαij , Cα(xi, t
β
ij)].

This induces a bigraded Lie algebra morphism d̃Γ0 −→ Der(̄tΓ1,n).
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Proof. We have to prove that defining relations of tΓ1,n are preserved by ξ := ξ(D,C). First

observe that relations [xi, xj ] = [xi + xj , t
α
ij ] = [xi, t

α
jk] = [tαij , t

α
kl] = 0 are obviously preserved.

Then conditions (i) and (ii) respectively imply that tαij = t−αji and [xi, yj ] =
∑

α tαij are pre-

served. Condition (vi) implies that [xi, yj ] = [xj , yi] is preserved, and (vi) together with (iii)

imply that [yi, yj] = 0 is preserved. Therefore it follows from the centrality of
∑

i xi and

ξ(
∑

i xi) = 0 that

ξ([xi, yi]) = ξ(−
∑

j:j 6=i

[xj , yi]) = ξ(
∑

j;j 6=i

∑

α

tαij).

Condition (iv) ensures that [yi, t
α
jk] = 0 is preserved, and together with (vi) it implies that

[yi + yj , t
α
ij ] = 0 is preserved. Finally condition (v) implies that the twisted infinitesimal braid

relations are preserved, and the first part of the statement follows.

For the second part of the statement it remains to prove that the centrality of
∑

i yi is preserved.

This follows directly from the identity ξ(
∑

i yi) = 0 that we now prove. Relation (vi) implies

that for any i 6= j one has D(xi, t
β
ij) = −D(−xi, t

−β
ij ) = −D(xj , t

β
ji) in tΓ1,n (the last equality

happens since degt(D) = degt(Cα) + 1 > 0), and hence

ξ(
∑

i

yi) =
∑

i6=j

D(xi, t
β
ij) =

∑

i<j

D(xi, t
β
ij)−

∑

j<i

D(xj , t
β
ji) = 0 .

We are done (the compatibility with bracket and grading are easy to check).

The last part of the statementis a consequence of the fact that ξ(
∑

i yi) = ξ(
∑

i xi) = 0, that

we have already proved.

We now prove that this morphism extends to a Lie algebra morphism d̃Γ −→ Der(tΓ1,n):

Proposition 6.2.4. We have a bigraded Lie algebra morphism d̃Γ −→ Der(tΓ1,n) taking (D,C) ∈

d̃Γ0 to ξ(D,C) and g =

(
a b

c d

)
∈ sl2 to the derivation

ξg : tαij 7→ 0,
(
xi yi

)
7→
(
xi yi

)(a b

c d

)
.

This induces a bigraded Lie algebra morphism d̃Γ −→ Der(̄tΓ1,n).

In what follows we write d := h̃, X := ẽ and ∆0 := f̃ and d̃ := ξh̃, X̃ := ξẽ and ∆̃0 := ξf̃ .

Proof. It is obvious that for any g, g′ ∈ sl2, ξg defines a derivation of the same degree of tΓ1,n, and

that ξ[g,g′ ] = [ξg, ξg′ ]. Hence we have a bigraded Lie algebra morphism sl2 ∗ d̃Γ0 −→ Der(tΓ1,n).

Let us prove that it factorizes through the quotient d̃Γ.

It is relatively clear that [X̃, ξ(D,C)] = 0 and [d̃, ξ(D,C)] = (p − q)(D,C) if (D,C) ∈ (d̃Γ0 )
p,q.

Thus it remains to prove that (ad ∆̃0)
p(ξ(D,C)) = 0 if (D,C) ∈ (d̃Γ0 )

p,q. We do this now. Let

us write ξ := ξ(D,C) and A := (ad ∆̃0)
p(ξ). Then after an easy computation one obtains on
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generators:

A(xi) = − p∆̃p−1
0 ξ(yi) = −p∆̃

p−1
0 (

∑

j:j 6=i

D(xi, t
β
ij)),

A(yi) =∆̃p
0ξ(yi) = ∆̃p

0(
∑

j:j 6=i

D(xi, t
β
ij)),

A(tαij) =∆̃p
0ξ(t

α
ij) = ∆̃p

0([t
α
ij , Cα(xi, t

β
ij)]).

Finally remark that we have an increasing filtration on tΓ1,n defined by deg(xi) = 1 and

deg(tαij) = deg(yi) = 0. ∆0 decreases the degree by 1 and vanishes on degree zero elements. The

result then follows from the fact that degx(Cα) = p−q < p and degx(D) = p−q−1 < p−1.

Now composing with dΓ0 −→ d̃Γ0 (resp. dΓ −→ d̃Γ) one obtains a Lie algebra morphism dΓ0 −→

Der(tΓ1,n) (resp. dΓ −→ Der(tΓ1,n)). We write ξs,γ := ξ(Ds,γ ,Cs,γ) for the image of δs,γ . We then

have tΓ1,n ⋊ dΓ = (tΓ1,n ⋊ dΓ+)⋊ sl2, with tΓ1,n ⋊ dΓ+ positively graded (since both tΓ1,n and dΓ+ are

(Z≥0)2-graded) and a sum of finite dimensional sl2-modules. Therefore we can construct the

semi-direct product group

GΓ
n := exp(tΓ1,n ⋊ dΓ+)

∧ ⋊ SL2(C), (6.4)

where exp(tΓ1,n⋊dΓ+)
∧ is the exponential group associated to the degree completion of tΓ1,n⋊dΓ+.

Similarly, we define ḠΓ
n := exp(̄tΓ1,n ⋊ dΓ+)

∧ ⋊ SL2(C).

Notice that one can also define semi-direct product groups G̃Γ
n := exp(tΓ1,n ⋊ d̃Γ+)

∧ ⋊ SL2(C)

and ˜̄GΓ
n := exp(̄tΓ1,n ⋊ d̃Γ+)

∧ ⋊ SL2(C). We therefore have the following commutative diagram:

GΓ
n

��

// G̃Γ
n

��

ḠΓ
n

// ˜̄GΓ
n.

(6.5)

Lemma 6.2.5. The kernel of d̃Γ0 −→ Der(tΓ1,n) (n ≥ 2) is the space of elements (0, C) for

which Cα is proportional to tα, and ker(dΓ0 −→ Der(tΓ1,n)) = Cδ0,0.

Proof. Let us first prove it for n = 2. Recall that t̄Γ1,2 = tΓ1,2/(x1 + x2, y1 + y2), so it is the Lie

algebra generated by x (the class of x1), y (the class of y1) and tα’s (classes of tα12’s) with the

relation [x, y] =
∑

α∈Γ t
α. Then the derivation ξ(D,C) associated to (D,C) ∈ d̃Γ0 is given by

x 7→ 0, y 7→ D(x, tβ), tα 7→ [tα, Cα(x, t
β)].

This derivation vanishes if and only if D = 0 and Cα is proportional to tα. Finally, the result

for n ≥ 2 follows from the fact that

ξ
(2)
(D,C) = (u 7→ u1,2,∅,...,∅) ◦ ξ

(n)
(D,C) ◦ (u 7→ u1,...,n),

where ξ
(n)
(D,C) denotes the derivation of tΓ1,n associated to (D,C).
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6.2.4 Comparison morphisms

Let ρ : Γ1 −→ Γ2 a group morphism. We have a comparison morphism d̃Γ1
0 −→ d̃Γ2

0 , (D,C) 7→

(Dρ, Cρ) defined by

Dρ := D


x,

∑

γ∈coker(ρ)

tρ(β)+γ

#ker(ρ)


 , (Cρ)α := Cα


x,

∑

γ∈coker(ρ)

tρ(β)+γ

#ker(ρ)


 .

When ρ is not surjective it depends on the choice of a section coker(ρ) −→ Γ2. It extends to

d̃Γ1 −→ d̃Γ2 by sending the generators of sl2 to themselves. These comparison morphisms are

compatible with the morphisms d̃Γi −→ Der(tΓi

1,n), for i = 1, 2. Namely, there is a commutative

diagram

d̃Γ1 ⋉ tΓ1
1,n

��

// tΓ1
1,n

��
d̃Γ2 ⋉ tΓ2

1,n
// tΓ2
1,n

Finally, we have comparison morphisms for the corresponding groups that fit into a commuta-

tive diagram

G̃Γ1
n

��

// G̃Γ2
n

��
˜̄GΓ1
n

// ˜̄GΓ2
n .

(6.6)

Notice that the image of (Ds,γ , Cs,γ) under a comparison morphism is no longer of this form

except if ρ is injective. In this case (and in this case only) we have a comparison morphism tΓ1
1,n⋊

dΓ1 −→ tΓ2
1,n⋊dΓ2 taking xi’s, yi’s, d, X and ∆0 to themselves, and tαij to

∑
β∈coker(ρ) t

ρ(α)+β
ij and

δs,γ to
∑

β∈coker(ρ) δs,ρ(γ)+β . In particular we have a canonical natural inclusion G0
n −→ GΓ

n

(which descends to an inclusion Ḡ0
n −→ ḠΓ

n).

6.3 Bundles with flat connections on moduli spaces

6.3.1 On some subgroups of SL2(Z) and moduli spaces

Consider the group Γ := Z/MZ×Z/NZ and consider the following (finite index) subgroup of

SL2(Z):

SLΓ
2 (Z) :=

{(
a b

c d

)
∈ SL2(Z)

∣∣ a ≡ 1 mod M,d ≡ 1 mod N, b ≡ 0 mod N and c ≡ 0 mod M

}
.

We write Y (Γ) for the set of equivalences classes of pairs (E, φ) where E is an elliptic curve

and φ : Z/MZ × Z/NZ −→ E is an injective group morphism that is orientation preserving

i.e. such that the basis ( d
dt |t=0

(tφ(1̄, 0̄)), d
dt |t=0

(tφ(0̄, 1̄)) of T0E is direct. Then, one can see

that Y (Γ) = H/ SLΓ
2 (Z) and therefore inherits the structure of a complex orbifold.
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Remark 6.3.1. The biggest congruence subgroup on which the connection we will construct

in this section is well defined and flat is the subgroup S̃L
Γ

2 (Z) of SL2(Z) consisting of matrices(
a b

c d

)
∈ SL2(Z) such that Mb ≡ 0 mod N and Nc ≡ 0 mod M . Nevertheless, in order

to retrieve the twisted elliptic KZB connection defined at the level of configuration spaces, it

suffices to consider the usual congruence subgroup SLΓ
2 (Z) ⊂ S̃L

Γ

2 (Z).

Recall the following standard group actions:

• The group SL2(Z) acts on Cn × H:
(
a b

c d

)
∗ (z|τ) :=

(
z

cτ + d

∣∣aτ + b

cτ + d

)
.

This obviously descends to an action of SL2(Z) on Cn×H/C, where C acts diagonally on

Cn: u · (z|τ) := (z+ u
∑

i δi|τ).

• The group (Zn)2 acts on Cn × H:

(m, n) ∗ (z|τ) := (z +m+ τn|τ) .

It obvioulsy descends to an action of (Zn)2/Z2 on Cn × H/C, where Z2 is the diagonal

subgroup in (Zn)2 = (Z2)n.

• Finally, there is a right action of SL2(Z) on (m,n) ∈ Z2 by automorphisms:
(
a b

c d

)
:
(
n m

)
−→

(
n m

)(a b

c d

)
.

We can thus form the semi-direct products (Zn)2 ⋊ SL2(Z) and ((Zn)2/Z2)⋊ SL2(Z)

A few observations are then in order:

• The above actions are compatible in the sense that we have a left action of (Zn)2⋊SL2(Z)

on Cn × H, which descends to an action of
(
(Zn)2/Z2

)
⋊ SL2(Z) on (Cn × H)/C, where

Z2 is embedded in (Zn)2 via the diagonal map. One can think of translation by C as a

left or right action as it commutes with the G-action.

• The action of (Zn)2 preserves the subset

Diagn,Γ := {(z|τ) ∈ Cn × H|z ∈ Diagτ,n,Γ} .

• The action of the subgroup SLΓ
2 (Z) ⊂ SL2(Z) also preserves Diagn,Γ.

We are thus ready to define several variants of Y (Γ) “with marked points”:

• We define the quotient

M̄Γ
1,n := (Zn)2 ⋊ SLΓ

2 (Z) \
(
(Cn × H)−Diagn,Γ

)
/C

and call it the moduli space of Γ-structured elliptic curves with n ordered marked points.
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• It has a non-reduced variant

p :MΓ
1,n :=

(
(Cn × H)−Diagn,Γ

)
/(Zn)2 ⋊ SLΓ

2 (Z) ։ M̄
Γ
1,n .

• One can also define the moduli space of Γ-structured elliptic curves with n unordered

marked points

M̄Γ
1,[n] := M̄

Γ
1,n/Sn

and its non-reduced variant

MΓ
1,[n] :=M

Γ
1,n/Sn .

Remark 6.3.2. We have M̄Γ
1,1 = M̄Γ

1,[1] = Y (Γ), and MΓ
1,1 =MΓ

1,[1] is the universal curve

over it. The fiber of MΓ
1,n −→ Y (Γ) (resp. M̄Γ

1,n −→ Y (Γ)) at (the class of) τ is precisely

the twisted (resp. reduced twisted) configuration space Conf(Eτ,Γ, n,Γ) (resp. C(Eτ,Γ, n,Γ)).

Moreover, the map

h : M̄Γ
1,2 −→ M̄

Γ
1,1

factors through (and is open in) MΓ
1,1. We can interpret M̄Γ

1,2 as the Γ-punctured universal

curve over Y (Γ).

6.3.2 Principal bundles over MΓ
1,n and M̄Γ

1,n

In this §, GΓ
n is defined as in (6.4) and we define a principal GΓ

n-bundle Pn,Γ overMΓ
1,n whose

image under the natural morphism GΓ
n −→ ḠΓ

n is the pull-back of a principal ḠΓ
n-bundle P̄n,Γ

over M̄Γ
1,n. Let us fix the notation first: for u ∈ C× and v, wi ∈ C (i = 1, . . . , n),

ud :=

(
u 0

0 u−1

)
, evX :=

(
1 v

0 1

)
.

Since [X, xi] = 0 then it makes sense to define evX+
∑

i wixi := evXe
∑

i wixi . In particular, we

have Ad(ud)(xi) = uxi and Ad(ud)(yi) = yi/u (∀i), Ad(ud)(X) = u2X and Ad(ud)(∆0) =

∆0/u
2. Let π : Cn × H −→M1,n be the canonical projection.

Proposition 6.3.3. There exists a unique principal GΓ
n-bundle Pn,Γ over MΓ

1,n for which a

section on U ⊂MΓ
1,n is a function f : π−1(U) −→ GΓ

n such that

f(z+ δi|τ) = f(z|τ),

f(z+ τδi|τ) = e
−2πixi

N f(z|τ),

f(z, τ + 1) = f(z|τ),

f(
z

τ
| −

1

τ
) = τde

2πi
τ

(X+
∑

i zixi)f(z|τ).

Moreover, the image of Pn,Γ under GΓ
n −→ ḠΓ

n is the pull-back of a unique principal ḠΓ
n-bundle

P̄n,Γ over M̄Γ
1,n for which a section on U ⊂ M̄Γ

1,n is a function f : (p ◦ π)−1(U) −→ M̄Γ
1,n

satisfying the above conditions (with xi’s replaced by x̄i’s) and such that f(z + v
∑

i δi|τ) =

f(z|τ) for any v ∈ C.
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Proof. First recall that for Γ = 0 this is precisely [24, Proposition 3.4]. Then observe that

we have an obvious map ι :MΓ
1,n −→M

0
1,n. Therefore we define Pn,Γ (resp. P̄n,Γ) to be the

image under the natural inclusion G0
n −→ GΓ

n (resp. Ḡ0
n −→ ḠΓ

n) of ι∗Pn,0 (resp. ι∗P̄n,0).

We thus proved existence. Unicity is obvious.

In other words, there exists a unique non-abelian 1-cocycle (cg)g∈(Zn)2⋊SL2(Z) on Cn ×H with

values in GΓ
n such that c(δi,0) = 1, c(0,δi) = e−2πixi , cS = 1 and

cT (z|τ) = τde(2πi/τ)(X+
∑

j zjxj) = e2πi(τX+
∑

j zjxj)τd ,

where S =

(
1 1

0 1

)
and T =

(
0 −1

1 0

)
are the generators of SL2(Z). Here cocycle means (as

in [24]) that cg’s are holomorphic functions Cn × H −→ GΓ
n satisfying the cocycle condition

cgg′(z|τ) = cg(g
′ ∗ (z, τ))cg′ (z|τ).

Remark 6.3.4. Notice that we do have a (Zn)2 ⋊ SL2(Z)-cocycle (since our bundle is define

as the pull-back of a bundle onM0
1,1) but the cocycle defining Pn,Γ is its restriction to (Zn)2 ⋊

SLΓ
2 (Z).

6.3.3 Connections on Pn,Γ and P̄n,Γ

A connection on Pn,Γ is the same as an equivariant connection on the trivial GΓ
n-bundle over

Cn × H−Diagn,Γ. Namely, it is of the form ∇n,Γ := d− η(z|τ), where η is a tΓ1,n ⋊ dΓ-valued

meromorphic one-form on Cn ×H with only poles on Diagn,Γ, and the equivariance condition

reads: for any g ∈ (Zn)2 ⋊ SLΓ
2 (Z),

g∗η = (dcg(z|τ))cg(z|τ)
−1 +Ad(cg(z|τ))(η(z|τ)) . (6.7)

We now construct such a connection. For any γ ∈ Γ we define gγ(x, z|τ) := ∂xkγ(x, z|τ),

ϕγ(x|τ) =
∑

s≥0

As,γ(τ)x
s := g−γ(x, 0|τ) .

Then we set

∆(z|τ) := −
1

2πi


∆0 +

1

2

∑

s≥0,γ∈Γ

As,γ(τ)δs,γ −
∑

i<j

gij(zij |τ)


 ,

where gij(z|τ) :=
∑

α∈Γ gα(adxi, z|τ)(tαij). And finally, with Ki(z|τ)’s as in §6.1.3, we define

η(z|τ) := ∆(z|τ)dτ +
∑

i

Ki(z|τ)dzi.

Remark 6.3.5. One can see that ϕ0(x) = (θ′/θ)′(x) + 1/x2 and that for any γ ∈ Γ− {0}

ϕγ(x) = ∂x

(
e2πicx

θ(γ̃ + x)

θ(γ̃)θ(x)
−

1

x

)
,

where γ̃ = (c0, c) ∈ Λτ,Γ − Λτ is any lift of γ.
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Proposition 6.3.6. The equivariance identity (6.7) is satisfied for any g ∈ (Zn)2 ⋊ SL2(Z).

Before proving this statement, let us notice that the SL2(Z)-equivariance is stronger than

what we need (the SLΓ
2 (Z)-equivariance), but easier to prove. The action of SL2(Z) moves

the poles while SLΓ
2 (Z) fixes them. In both cases, it makes sense to prove this proposition for

meromorphic forms on Cn × h.

Proof. For g = (δj , 0), the identity translates into Ki(z + δj |τ) = Ki(z|τ) (i = 1, . . . , n) and

∆(z+ δj |τ) = ∆(z|τ), which are immediate.

For g = (0, δj), the identity translates into Ki(z+ τδj |τ) = e−2πiad(xj)Ki(z|τ) (∀i) and

∆(z+ τδj |τ) +Kj(z+ τδj |τ) = e−2πiad(xj)∆(z|τ). (6.8)

The first equality is proved in §6.1.3, and we prove the second one now. First remember that

for any τ ∈ H, z ∈ C− ( 1
MZ+ τ

NZ)) and α ∈ Γ, we have the following identity in C[[x]]:

e−2πix(gα(x, z)− 1/x2) + 1/x2 − 2πi(kα(x, z + τ) + 1/x) = gα(x, z + τ) . (6.9)

Then we can compute 2πi
(
Kj(z+ τδj |τ)− e−2πiad(xj)∆(z|τ)

)
: it is equal to

2πi


∑

k:k 6=j

kα(adxj , zjk + τ)− yj


+∆0+

1− e−2πiadxj

adxj
(yj)+

1

2

∑

s≥0,
γ∈Γ

As,γδs,γ−e
−2πiadxj

∑

k<l

gkl(zkl) ,

and therefore using

1− e−2πiadxj

adxj
(yj)− 2πiyj =

(
e−2πiadxj − 1

(adxj)2
+

2πi

adxj

)
∑

α∈Γ

∑

k:k 6=j

tαjk




together with (6.9) we obtain

∆0 +
1

2

∑

s≥0,γ∈Γ

As,γδs,γ −
∑

k<l
k,l 6=j

gkl(zkl)−
∑

k:k 6=j
α∈Γ

gα(adxj , zjk + τ)(tαjk) ,

which is precisely equal to −2πi∆(z + τδj).

For g = S, the identity translates into Ki(z|τ + 1) = Ki(z) (∀i) and ∆(z|τ + 1) = ∆(z). Both

equalities obviously follow from θ(z|τ + 1) = θ(z|τ).

For g = T , the identity translates into

1

τ
Ki(

z

τ
| −

1

τ
) = Ad (cT (z|τ)) (Ki(z|τ)) + 2πixi (6.10)

for all i ∈ {1, . . . , n} and

1

τ2

(
∆(

z

τ
| −

1

τ
)−

∑

i

ziKi(
z

τ
| −

1

τ
)

)
= Ad (cT (z|τ)) (∆(z|τ)) +

d

τ
− 2πiX . (6.11)
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Let us check (6.10) first. Ad(e2πi(
∑

j zjxj+τX)τd)(−yi) + 2πixi equals

−Ad(e2πi
∑

j zjxj)(yi/τ) = −
yi
τ
−

e2πiad(
∑

j zjxj) − 1

ad(
∑

j zjxj)
([
∑

j

zjxj ,
yi
τ
])

= −
yi
τ
−

e2πi
∑

j zjadxj − 1∑
j zjadxj

(
∑

j:j 6=i
α∈Γ

zji
τ
tαij) = −

yi
τ
−
∑

j:j 6=i

e2πizijadxi

zijadxi
(
∑

α∈Γ

zji
τ
tαij) .

Therefore we have

−
yi
τ

= Ad(cT (z|τ))(−yi) + 2πixi −
∑

j:j 6=i

e2πizijadxi

adxi
(
∑

α∈Γ

tαij
τ
) . (6.12)

Now substituting (x, z) = (adxj , zj) in

1

τ
(kα(x,

z

τ
| −

1

τ
) = e2πizxkα(τx, z|τ) +

e2πizx − 1

τx
, (6.13)

then applying to tαij , summing over j 6= i and α ∈ Γ, and adding up (6.12) we obtain (6.10) by

using that

e2πizijadxikα(τadxi, zij |τ)(t
α
ij) = Ad(e2πi(τX+

∑
j zjxj)τd)(kα(adxi, zij |τ)(t

α
ij)).

We now check (6.11). Differentiating (6.13) w.r.t. x and dividing by τ , we get

1

τ2
gα(x,

z

τ
| −

1

τ
) = e2πizxgα(τx, z|τ) +

2πiz

τ2
kα(x,

z

τ
| −

1

τ
) +

1 + 2πizx− e2πizx

τ2x2
.

Now substituting (x, z) = (adxi, zij), applying to tαij , and summing over α ∈ Γ we obtain

1

τ2
gij(

z

τ
| −

1

τ
) = Ad(cT (z|τ)) (gij(z|τ)) +

2πizij
τ2

Kij(
zij
τ
| −

1

τ
)

+

(
1 + 2πizijadxi − e2πizijadxi

τ2(adxi)2

)
(
∑

α∈Γ

tαij) .

Then taking the sum over i < j one gets

1

τ2

∑

i<j

gij(
z

τ
| −

1

τ
) = Ad(cT (z|τ))


∑

i<j

gij(z|τ)


 +

2πi

τ2

∑

i

ziKi(
z

τ
| −

1

τ
) +B(z) , (6.14)

where

B(z) :=
∑

i

2πiziyi
τ2

+
∑

i<j

(
1 + 2πizijadxi − e2πizijadxi

τ2(adxi)2

)
(
∑

α

tαij).

Lemma 6.3.7. Ad (cT (z|τ)) (∆0) =
∆0

τ2 + 2πid
τ − (2πi)2( 1τ

∑
i zixi +X) +B(z).

Proof of the lemma. We first compute

Ad (cT (z|τ)) (∆0) = Ad(e2πi(τX+
∑

i zixi))(
∆0

τ2
) = Ad(e2πi

∑
i zixi)(

∆0

τ2
+

2πid

τ
− (2πi)2X)

= Ad(e2πi
∑

i zixi)(
∆0

τ2
) +

2πid

τ
− (2πi)2(

1

τ

∑

i

zixi +X) .

It remains to show that Ad(e2πi
∑

i zixi)(∆0

τ2 ) =
∆0

τ2 + B(z). The proof of this fact goes along

the same lines of computation as in [24, pp.16-17].
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Using the above lemma and equation (6.14), one sees that equation (6.11) follows from

Ad(cT (z|τ)(
∑

s,γ

As,γ(τ)δs,γ) =
∑

s,γ

As,γ(−
1

τ
)δs,γ .

This last equality is proved using [xi, δs,γ ] = 0 = [X, δs,γ ], [d, δs,γ ] = sδs,γ , and, since ϕγ(x| −
1
τ ) = τ2ϕγ(τx|τ), we get As,γ(−

1
τ ) = τs+2As,γ(τ).

We therefore have:

Theorem 6.3.8. ∇n,Γ defines a connection on Pn,Γ. Moreover, its image under GΓ
n −→ ḠΓ

n

is the pull-back of a connection ∇̄n,Γ on P̄n,Γ.

Proof. The first part follows from Proposition 6.3.6 above. For the second part, we need to

prove the three following identities:

•
∑

i K̄i(z|τ) = 0;

• K̄i(z+ u
∑

j δj |τ) = K̄i(z|τ), for all i;

• ∆̄(z+ u
∑

j δj |τ) = ∆̄(z|τ).

The first two equalities have already been proven, and the last one is obvious.

6.3.4 Flatness

In this paragraph we prove the flatness of ∇n,Γ (and thus of ∇̄n,Γ).

Proposition 6.3.9. For any i ∈ {1, . . . , n} we have [∂τ −∆(z|τ), ∂i −Ki(z|τ)] = 0.

In what follows, we often drop τ from the notation when it does not lead to any confusion.

Proof. Let us first prove that ∂τKi(z) = ∂i∆(z). This follows from the identity ∂zgα(x, z) =

2πi∂τkα(x, z), which is proved as follows (here α̃ = (a0, a) is any lift of α):

∂zgα(x, z) = ∂z∂xkα(x, z) = ∂z∂x

(
e−2πiaxk(x, z − α̃) +

e−2πiax − 1

x

)

= e−2πiax∂z∂xk(x, z − α̃)− 2πiae−2πiax∂zk(x, z − α̃)

= 2πie−2πiax∂τk(x, z − α̃)− 2πiae−2πiax∂zk(x, z − α̃)

= 2πi∂τ
(
e−2πiaxk(x, z − α̃)

)
= 2πi∂τkα(x, z).

It remains to prove that [∆(z),Ki(z)] = 0.

Let us first prove it in the case n = 2. Namely, we will prove that

[∆0 +
1

2

∑

s≥0,γ∈Γ

As,γδs,γ −
∑

α∈Γ

gα(adx1, z)(t
α
12) , y2 +

∑

β∈Γ

kβ(adx1, z)(t
β
12)] = 0. (6.15)
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One the one hand,

[∆0 +
1

2

∑

s≥0,γ∈Γ

As,γδs,γ −
∑

α∈Γ

gα(adx1, z)(t
α
12) , y2]

= [y1,
∑

α∈Γ

gα(adx1, z)(t
α
12)]−

1

2

∑

α,γ∈Γ

∑

p,q

aγp,q[ad
p x1(t

α−γ
12 ), adq x1(t

α
12)] ,

where
ϕγ(u)− ϕ−γ(v)

u+ v
=
∑

p,q

aγp,qu
pvq .

On the other hand, we have

[∆0,
∑

β

kβ(adx1, z)(t
β
12)] = [y1,

∑

β

gβ(adx1, z)(t
β
12)]+

∑

p,q

∑

α,β∈Γ

bα,βp,q (z)[ad
p x1(t

α
12), ad

q x1(t
β
12)] ,

where the series
∑

p,q b
α,β
p,q (z)u

pvq is given by

1

2

(
1

v2
(kβ(u + v, z)− kβ(u, z)− v∂ukβ(u, z))−

1

u2
(kα(u+ v, z)− kα(v, z)− u∂vkα(v, z))

)
.

Therefore the l.h.s. of (6.15) equals

1

2


∑

p,q

∑

α,β∈Γ

cα,βp,q (z)[ad
p x1(t

α
12), ad

q x1(t
β
12)]


 ,

where
∑

p,q c
α,β
p,q u

pvq(z) is given by

1

v2
(kβ(u+ v, z)− kβ(u, z)− vgβ(u, z))−

1

u2
(kα(u + v, z)− kα(v, z)− ugα(v, z))

+
ϕβ−α(u)− ϕα−β(v)

u+ v
+ kα(u+ v, z)ϕα−β(v)− kβ(u+ v, z)ϕβ−α(u)

+kβ(u, z)gα(v, z)− gβ(u, z)kα(v, z) ,

which can be rewritten as
(
gβ−α(u, z − z′)−

1

u2

)(
kα(u+ v, z′) +

1

u+ v

)
−

(
gα−β(v, z

′ − z)−
1

v2

)(
kβ(u + v, z) +

1

u+ v

)

+

(
gα(v, z

′)−
1

v2

)(
kβ(u, z) +

1

u

)
−

(
gβ(u, z)−

1

u2

)(
kα(v, z

′) +
1

v

)
(6.16)

with z = z′. Thus to end the proof of equation (6.15) the following lemma is sufficient:

Lemma 6.3.10. Expression (6.16) equals zero.

Proof of the lemma. The case α = β = 0 follows from an explicit computation. Then we chose

lifts α̃ = (a0, a) and β̃ = (b0, b) of α and β, respectively. One has

kα(x, z) + 1/x = e−2iπax (k(x, z − α̃) + 1/x) and

gα(x, z)− 1/x2 = e−2iπax
(
g(x, z − α̃)− 1/x2

)
− 2iπb (kα(x, z) + 1/x) .
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Therefore (6.16) equals

−2iπ(a− b)
((

kα(v, z
′) +

1

v

)(
kβ(u, z) +

1

u

)
+

(
kβ−α(u, z − z′) +

1

u

)(
kα(u+ v, z′) +

1

u+ v

)

+

(
kα−β(v, z

′ − z)−
1

v

)(
kβ(u+ v, z) +

1

u+ v

))
,

which vanishes because of (6.3).

Let us now assume that n > 2.

Let tΓn,+ ⊂ tΓ1,n be the subalgebra generated by xi, t
α
jk (i, j, k = 1, . . . , n, j 6= k, α ∈ Γ).

We have functions Eij(z) with values in tΓn,+ defined by Eij(z) = [∆0, kij ] − [yi, gij ], which

decomposes as eij(z) +
∑

k 6=i,j eijk(z), where eij(z) takes its values in

Spanp,q,α,β [(adxi)
p(tαij), (adxj)

q(tβij)]

and eijk(z) takes its values in Spanα,β C[adxi, adxj ][t
α
ij , t

β
jk]. Explicitly,

eij(z) =
∑

α,β

∑

p,q

bα,βp,q (zij)[ad
pxi(t

α
ij), ad

qxi(t
β
ij)] ,

where bα,βp,q (z) is as before, and

eijk(z) =
∑

α,β

(
kα(adxi, zij)− kα(−adxj , zij)

(adxi + adxj)2
−

gα(−adxj , zij)

adxi + adxj

)
[tαij , t

β
ik].

On the other hand, we have Yijk(z) ∈ tΓn,+ defined by Yijk(z) = [yi, gjk]. It takes its values in

Spanα,β C[adxi, adxj ][t
α
ij , t

β
jk]. Explicitly,

Yijk(z) = −
∑

α,β

gβ(adxj , zjk)− g−β(adxk,−zjk)

adxj + adxk
[tαij , t

β
jk]

(remember that gα(u, z) = g−α(−u,−z)). We have

[∆(z),K1(z)] =
∑

i>1

(
[∆0, k1i]− [y1, g1i] + [

1

2

∑

α

δϕα
, k1i]− [g1i, k1i]

)
− [

1

2

∑

α

δϕα
, y1]

−
∑

1<i<j

([g1i, k1j ] + [g1j, k1i] + [gij , k1i + k1j ])

=
∑

i>1

(
e12 + [

1

2

∑

α

δϕα
, k12]− [g12, k12]− [

1

2

∑

α

δϕα
, y1]

)

1i

(6.17)

+
∑

1<i<j

(e1ij + e1ji − Y1ij − [gij , k1i + k1j ]− [g1i, k1j ]− [g1j, k1i])

where {−}1i is the natural morphism tΓ1,2 −→ tΓ1,n, u1 7→ u1, u2 7→ ui (u = x, y), tα12 7→ tα1i. It

is easy to see that the line (6.17) equals
∑

i>1 ([∆(z1i),K1(z1i)])1i which is zero as we have

seen before (case n = 2).
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Therefore [∆(z),K1(z)] equals

∑

1<i<j

∑

α,β

(kα(adx1, z1i)− kα(−adxi, z1i)− gα(−adxi, z1i)(adx1 + adxi)

(adx1 + adxi)2
[tα1i, t

β
1j ]

−
kβ(adx1, z1j)− kβ(−adxj , z1j)− gβ(−adxj , z1j)(adx1 + adxj)

(adx1 + adxj)2
[tα1i, t

β
1j ]

−
gβ−α(adxi, zij)− gα−β(adxj ,−zij)

adxi + adxj
[tα1i, t

β
1j ]

− (kα(adx1, z1i)gβ−α(−adxj , zij)− kβ(adx1, z1j)gβ−α(adxi, zij)) [t
α
1i, t

β
1j ]

− (kβ(−adxj , z1j)gα(−adxi, z1i)− kα(−adxi, z1i)gβ(−adxj , z1j)) [t
α
1i, t

β
1j ]
)
,

which is zero because of Lemma 6.3.10.

We have therefore proved (Proposition 6.1.6 and Proposition 6.3.9 above):

Theorem 6.3.11. The connection ∇n,Γ is flat, and thus so is ∇̄n,Γ.

Let us now show how the universal KZB connexion over moduli spaces coincides with the one

defined over configuration spaces.

Remark 6.3.12. The connection ∇n,Γ defined above is an extension to the twisted moduli

spaceMΓ
1,n of the connection ∇n,τ,Γ defined over the twisted configuration space Conf(Eτ,Γ, n,Γ)

from Section 6.1.3.

Indeed, the pull-back of the principal GΓ
n-bundle with flat connection (Pn,Γ,∇n,Γ) along the

inclusion

Conf(Eτ,Γ, n,Γ) →֒ M
Γ
1,n

of the fiber at (the class of) τ in Y (Γ) admits a reduction of structure group to

exp(tΓ1,n) ⊂ GΓ
n

as we will now explain.

Let us first pull-back the principal GΓ
n-bundle with flat connection (Pn,Γ,∇n,Γ) along the pro-

jection

CΓ(n) :=
(
(Cn × H)−Diagn,Γ

)
/(Zn)2 ։MΓ

1,n .

The resulting flat bundle admits a reduction of structure group to

NΓ
n := exp(tΓ1,n ⋊ dΓ+)

∧ ⋊N+ ⊂GΓ
n ,

where N+ ⊂ SL2(C) is the connected subgroup with Lie algebra C∆0.

Let us then further pull-back this principal NΓ
n-bundle to the fiber

Conf(Eτ,Γ, n,Γ) →֒ CΓ(n)

at τ ∈ H of the projection CΓ(n) −→ H. The resulting flat bundle admits a further restriction

of structure group to exp(tΓ1,n) ⊂ NΓ
n. One easily sees from our explicit formulæthat it coincides

with (Pτ,n,Γ,∇τ,n,Γ) constructed in Section 6.1.3.

Similarly, the connection ∇̄n,Γ is an extension to the twisted moduli space M̄Γ
1,n of the connec-

tion ∇̄n,τ,Γ defined over the reduced twisted configuration space C(Eτ,Γ, n,Γ).
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6.3.5 Variations

Let us first consider the unordered variants

MΓ
1,[n] :=M

Γ
1,n/Sn and M̄Γ

1,[n] := M̄
Γ
1,n/Sn ,

where, as before, the action of Sn is again by permutation on Cn.

Proposition 6.3.13. 1. There exists a unique principal GΓ
n ⋊Sn-bundle P[n],Γ over MΓ

1,[n],

such that a section over U ⊂MΓ
1,[n] is a function

f : π̃−1(U) −→ GΓ
n ⋊Sn

satisfying the conditions of Proposition 6.3.3 as well as f(σz|τ) = σf(z|τ) for σ ∈ Sn (here

π̃ : (Cn × H)−Diagn,Γ −→M
Γ
1,[n] is the canonical projection).

2. There exists a unique flat connection ∇[n],Γ on P[n],Γ, whose pull-back to (Cn×H)−Diagn,Γ
is the connection

d−∆(z|τ) d τ −
∑

i

Ki(z|τ) d zi

on the trivial GΓ
n ⋊Sn-bundle.

3. The image of (P[n],Γ,∇[n],Γ) under GΓ
n⋊Sn −→ ḠΓ

n⋊Sn is the pull-back of a flat principal

ḠΓ
n ⋊Sn-bundle (P̄[n],Γ, ∇̄[n],Γ) on M̄Γ

1,[n].

Proof. For the proof of the first point, one easily checks that σcg̃(z|τ)σ−1 = cσg̃σ−1(σ−1z),

where g̃ ∈ (Zn)2⋊SLΓ
2 (Z), σ ∈ Sn. It follows that there is a unique cocycle c(g̃,σ) : C

n×H −→

ḠΓ
n ⋊Sn such that c(g̃,1) = cg̃ and c(1,σ)(z|τ) = σ.

For the proof of the second point, taking into account Theorem 6.3.11, one only has to show

that this connection is Sn-equivariant. We have already mentioned that
∑

i K̄i(z|τ) d zi is

equivariant, and ∆̄(z|τ) is also checked to be so.

The third point is obvious.

For every (class of) τ in Y (Γ), one has an action of Γn on the fiber Conf(Eτ,Γ, n,Γ) at τ of

MΓ
1,n ։ Y (Γ), resp. an action of Γn/Γ on the fiber C(Eτ,Γ, n,Γ) at τ of M̄Γ

1,n ։ Y (Γ). Recall

that

Conf(Eτ,Γ, n,Γ)/Γ
n = Conf(Eτ,Γ, n) and C(Eτ,Γ, n,Γ)/(Γ

n/Γ) = C(Eτ,Γ, n) .

This action depends holomorphically of τ , so that we have an action of Γn on MΓ
1,n, resp. an

action of Γn/Γ on M̄Γ
1,n.

Proposition 6.3.14. 1. There exists a unique principal GΓ
n ⋊Γn-bundle overMΓ

1,n/Γ
n, such

that a section over U ⊂MΓ
1,n/Γ

n is a function

f : π̃−1(U) −→ GΓ
n ⋊ Γn
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satisfying the following conditions:

f(z+
δi
M
|τ) = (1̄, 0̄)if(z|τ),

f(z+ τ
δi
N
|τ) = e

−2πixi
N (0̄, 1̄)if(z|τ),

f(z, τ + 1) = f(z|τ),

f(
z

τ
| −

1

τ
) = τde

2πi
τ

(X+
∑

i zixi)f(z|τ).

Here, π̃ : (Cn × H)−Diagn,Γ −→M
Γ
1,n/Γ

n is the canonical projection.

2. There exists a unique flat connection on this bundle whose pull-back to (Cn × H)−Diagn,Γ
is the connection

d−∆(z|τ) d τ −
∑

i

Ki(z|τ) d zi

on the trivial GΓ
n ⋊ Γn-bundle.

3. The image of the above flat bundle under GΓ
n ⋊ Γn −→ ḠΓ

n ⋊ (Γn/Γ) is the pull-back of a

flat principal ḠΓ
n ⋊ (Γn/Γ)-bundle on M̄Γ

1,n/(Γ
n/Γ).

Proof. The first assertion is left to the reader. Assertion 3 is evident. Let us prove assertion

2. By Proposition 6.1.5, we know that the Ki satisfy

(e) Ki(z+
δj
M |τ) = θ((1̄, 0̄)j)Ki(z|τ),

(f) Ki(z+
τδj
N |τ) = θ((0̄, 1̄)j)e

−2πi
N

ad(xj)Ki(z|τ).

The fact that ∆(z+
δj
M |τ) = θ((1̄, 0̄)j)∆(z|τ) is immediate. Thus, it remains to show that ∆(z+

τδj
N |τ) = e

−2πiad(xj)

N θ((0̄, 1̄)j)(∆(z|τ) −Kj(z|τ)) which is proved in Lemma 6.3.15 below.

Lemma 6.3.15. We have

∆(z+
τδj
N
|τ) = e

−2πiad(xj)

N θ((0̄, 1̄)j)(∆(z|τ) −Kj(z|τ)). (6.18)

Proof. On the one hand, we have

−2πi∆(z+
τδj
N

) = ∆0 +
1

2

∑

s≥0,γ∈Γ

As,γδs,γ −
∑

k<l
k,l 6=j

gkl(zkl)−
∑

k:k 6=j
α∈Γ

gα(adxj , zjk +
τ

N
)(tαjk).

On the other hand, as

e
−2πiad(xj )

N (∆0) = (1− (1− e
−2πiad(xj )

N )(∆0) = (∆0) +
1− e

−2πiadxj
N

adxj
(yj)

=
e

−2πiadxj

N − 1

(adxj)2


∑

α∈Γ

∑

k:k 6=j

tαjk




and the δs,γ commute with the xj , we compute

2πi

(
Kj(z +

τ

N
δj |τ) − e

−2πiad(xj)

N θ((0̄, 1̄)j)∆(z|τ)

)
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= 2πi

(
θ((0̄,−1)j)Kj(z+

τ

N
δj|τ) − e

−2πiad(xj)

N ∆(z|τ)

)

= 2πiθ((0̄,−1)j)


∑

k:k 6=j

kα(adxj , zjk +
τ

N
)− yj


+∆0 +

1− e
−2πiadxj

N

adxj
(yj)

+
1

2

∑

s≥0,
γ∈Γ

As,γδs,γ − e
−2πiadxj

N

∑

k<l

gkl(zkl).

Next, by combining

Kij(z −
τ

N
) = e−

2πi
N

ad(xi)θ((0̄, −̄1)i)(Kij(z)) + θ((0̄, −̄1)i)(
∑

α∈Γ

e−2πiadxi − 1

adxi
(tαij)),

and equations

gα(x, z)− 1/x2 = e−2iπax
(
g(x, z − α̃)− 1/x2

)
− 2iπb (kα(x, z) + 1/x) .

We can follow the same lines as in the proof of relation (6.8) to obtain the wanted equation.

We also leave to the reader the task of combining several variants.

6.4 Realizations

6.4.1 Realizations of tΓ1,n, t̄
Γ
1,n and tΓn,+

Let g be a Lie algebra and tg ∈ S2(g)g be nongenerate. Assume that we have a group morphism

θ : Γ −→ Aut(g, tg) and set l := gΓ and u := ⊕χ∈Γ̂−{0}gχ, where gχ is the eigenspace of g

corresponding to the character χ : Γ −→ C∗. Then we have g = l ⊕ u with [l, u] ⊂ u, and

t = tl + tu with tl ∈ S2(l)l and tu ∈ S2(u)l. We denote by (a, b) 7→ 〈a, b〉 the invariant pairing

on l corresponding to tl and write tl =
∑

ν eν ⊗ eν.

Let Diff(l∗) be the algebra of algebraic differential operators on l∗. It has generators xl, ∂l (l ∈ l)

and relations xtl+l′ = t xl +xl′ , ∂tl+l′ = t∂l + ∂l′ , [xl, xl′ ] = 0 = [∂l, ∂l′ ] and [∂l, xl′ ] = 〈l, l′〉.

Moreover, one has a Lie algebra morphism l −→ Diff(l∗); l 7→ Xl :=
∑

ν x[l,eν ] ∂eν . We denote

by ldiag the image of the induced morphism

l ∋ l 7→ Yl := Xl ⊗ 1 + 1⊗
n∑

i=1

l(i) ∈ Diff(l∗)⊗ U(g)⊗n ,

and define Hn(g, l
∗) as the Hecke algebra of An := Diff(l∗) ⊗ U(g)⊗n with respect to ldiag.

Namely, Hn(g, l
∗) := (An)

l/(Anl
diag)l. It acts in an obvious way on (Ol∗ ⊗ (⊗n

i=1Vi))
l if

(Vi)1≤i≤n is a collection of g-modules.

Let us set xν := xeν and ∂ν := ∂eν , and write α(i)· for the action of α ∈ Γ on the i-th component

in U(g)⊗n.

Finally, recall that the twisted elliptic Kohno-Drinfeld Lie algebra tΓ1,n is defined in Definition

4.3.3.
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Proposition 6.4.1. There is a unique Lie algebra morphism ρg : tΓ1,n −→ Hn(g, l
∗) defined by

xi 7−→M
∑

ν

xν ⊗e
(i)
ν ,

yi 7−→ −N
∑

ν

∂ν ⊗ e(i)ν ,

tαij 7−→ 1⊗ (α(1) · tg)
(ij).

It induces a Lie algebra morphism ρ̄g : t̄Γ1,n −→ Hn(g, l
∗).

Proof. Let us use the presentation of tΓ1,n coming from Lemma 4.3.5. The only non trivial

check is that the relation [
∑

j xj , yi] = 0 is preserved. We have

ρg

(
n∑

i=1

xi

)
= M

∑

ν

xν ⊗
n∑

i=1

e(i)ν = M
∑

ν

(xν ⊗ 1)

(
1⊗

n∑

i=1

e(i)ν

)

≡ M
∑

ν

(xν ⊗ 1) (Yν −Xν ⊗ 1)

≡ M −
∑

ν

xνXν ⊗ 1 = M
∑

ν1,ν2

xeν1x[eν1 ,eν2 ]∂ν2 ⊗ 1 = 0

as xeν1 commutes with x[eν1 ,eν2 ] and tl is invariant. Here the sign ≡ means that both terms

define the same equivalence class in Hn(g, l). Thus,

[ρg


∑

j

xj


 , ρg(yi)] ≡ [0, ρg(yi)] = 0.

The proof that [
∑

j yj , xi] = 0 is preserved is a consequence of the fact that ρ
(∑

j yj

)
= 0,

which was proven in [24, Proposition 6.1]. The fact that this induces a Lie algebra morphism

ρ̄g : t̄Γ1,n −→ Hn(g, l) is then clear.

Let tΓn,+ ⊂ tΓ1,n be the Lie subalgebra generated by xi’s and tαjk’s. Then the restriction of ρg
to tΓn,+ lifts to a Lie algebra morphism tΓn,+ −→ (Ol∗ ⊗ U(g)⊗n)l. Moreover, (Ol∗ ⊗ U(g)⊗n)l

is a subalgebra of Hn(g, l
∗) that is a Lie ideal for the commutator and one has a commutative

diagram

tΓ1,n × tΓn,+

��

(u,v) 7→[u,v] // tΓn,+

��
Hn(g, l

∗)× (Ol∗ ⊗ U(g)⊗n)l // (Ol∗ ⊗ U(g)⊗n)l .

6.4.2 Realizations of tΓ1,n ⋊ dΓ and t̄Γ1,n ⋊ dΓ

Let us write tg =
∑

u au ⊗ au.
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Proposition 6.4.2. The Lie algebra morphism ρg (resp. ρ̄g) of Proposition 6.4.1 extends to

a Lie algebra morphism tΓ1,n ⋊ dΓ −→ Hn(g, l
∗) (resp. t̄Γ1,n ⋊ dΓ −→ Hn(g, l

∗)) defined by

d 7−→ −
1

2
(
∑

ν

xν ∂ν + ∂ν xν)⊗ 1,

X 7−→
1

2
(
∑

ν

x2ν)⊗ 1,

∆0 7−→ −
1

2
(
∑

ν

∂2
ν)⊗ 1,

ξs,γ 7−→
1

|Γ|

∑

ν1,··· ,νs,u

xν1 · · · xνs ⊗
n∑

i=1

(ad(eν1) · · · ad(eνs)(au)⊙ (γ · au))
(i)

.

Here ⊙ denotes the symmetric product: A⊙B := AB +BA.

Proof. Since tg is invariant under the commuting actions of Γ and l then the relation ξs,γ =

(−1)sξs,−γ is also preserved. This invariance argument also implies that [ρg(ξs,γ), ρg(xi)] equals

1

|Γ|

∑

ν1,··· ,νs,ν,u

xν1 · · ·xνs xν ⊗
s∑

t=1

(ad(eν1) · · · ad([eν , eνt ]) · · · ad(eνs)(au)⊙ (γ · au))
(i)

which is zero since the first and second factor are respectively symmetric and antisymmetric

in (ν, νt). Let us now prove that the relation [ξs,γ , t
α
ij ] = [tαij , (adxi)

s(tα−γij ) + (adxj)
s(tα+γ

ij )] is

preserved. It is sufficient to do it for n = 2:

ρg(ξs,γ + (adx1)
s(tα−γ12 ) + (adx2)

s(tα+γ
12 )) =

∑

ν1,··· ,νs

xν1 · · · xνs ⊗(α
(1) ·∆(Bν1,··· ,νs)) ,

where ∆ is the standard coproduct of Ug and Bν1,··· ,νs :=
∑

u ad(eν1) · · · ad(eνs)(au)⊙ (γ · au);

therefore ρg(ξs,γ + (adx1)
s(tα−γ12 ) + (adx2)

s(tα+γ
12 )) commutes with ρg(t

α
12). Hence it remains

to prove that the relation [ξs,γ ,
yi

N ] =
∑

j:j 6=i Ds,γ(
xi

M ,
tβij
|Γ|) is preserved. For this we compute

[ρg(ξs,γ), ρg(
yi

N )]: it equals

1

|Γ|

∑

ν1,··· ,νs
ν,u

( n∑

j=1

[∂ν , xν1 · · · xνs ]⊗ e(i)ν

(
ad(eν1) · · · ad(eνs)(au)⊙ (γ · au)

)(j)

+ xν1 · · · xνs ∂ν ⊗ [eν , ad(eν1) · · · ad(eνs)(au)⊙ (γ · au)]
(i)
)

=
1

|Γ|

s∑

l=1

∑

ν1,...,νs,ν

xν1 · · · x̌νl · · ·xνs ⊗
n∑

j=1

(
e(i)ν

(
ad(eν1) · · · ad(eνs)(au)⊙ (γ · au)

)(j)
− (i↔ j)

)
.

The term corresponding to j = i is the linear map Ss−1(l) −→ U(g)⊗n such that for x ∈ l

xs−1 7−→
1

|Γ|

∑

p+q=s−1
ν,u

[eν , ad(x)
pad(eν)ad(x)

q(au)⊙ (γ · au)]
(i) .

Using l-invariance of
∑

u au ⊙ (γ · au) one obtains that this last expression equals

=
1

|Γ|

∑

p+q+r=s−1
ν,u

(
ad(x)pad([eν , x])ad(x)

qad(eν)(adx)
r(au)⊙ (γ · au)



6.4. REALIZATIONS 203

+ad(x)pad(eν)ad(x)
qad([eν , x])ad(x)

r(au)⊙ (γ · au)
)(i)

,

which is zero from the l-invariance of tl =
∑

ν eν ⊗ eν . The term corresponding to j 6= i is the

linear map Ss−1(l) −→ U(g)⊗n such that for x ∈ l

xs−1 7−→
1

|Γ|

∑

p+q=s−1
ν,u

(ad(x)pad(eν)ad(x)
q(au)⊙ (γ · au))

(j)
e(i)ν − (i↔ j)

=
1

|Γ|

∑

p+q=s−1
ν,u

(ad(x)p([eν , au])⊙ (−ad(x))q(γ · au))
(j)

e(i)ν − (i↔ j)

=
1

|Γ|

∑

p+q=s−1
ν,u

(−1)q (ad(x)p([eν , au])⊙ (ad(x))q(γ · au))
(j) e(i)ν − (i↔ j)

=
1

|Γ|

∑

p+q=s−1
ν,u

(−1)q (ad(x)p([eν , au])⊙ (ad(x))q(γ · au))
(j)

e(i)ν − (i↔ j)

=
1

|Γ|2

∑

β∈Γ

∑

p+q=s−1
v,u

(−1)q (ad(x)p([av, au])⊙ (ad(x))q(γ · au))
(j)

(β · av)
(i) − (i↔ j)

=
1

|Γ|2

∑

β∈Γ

∑

p+q=s−1

(−1)q
∑

ν,u

(ad(x)p(av)⊙ ad(x)q(γ · au))
(i)

(β · [au, av])
(j) − (i↔ j)

=
1

|Γ|2

∑

β∈Γ

∑

p+q=s−1

(−1)q
∑

ν,u

(ad(x)p(β · av)⊙ ad(x)q((β + γ) · au))
(i)

[au, av]
(j) − (i↔ j)

=
1

|Γ|2

∑

β∈Γ

∑

p+q=s−1

(−1)q
∑

ν,u

(ad(x)p((β − γ) · av)⊙ ad(x)q((β) · au))
(i)

[au, av]
(j) − (i↔ j)

which coincides with the image of

Ds,γ

(
xi

M
,
tβij
|Γ|

)
=

∑

p+q=s−1

∑

β∈Γ

[(
ad

xi

M

)p
(
tβij
|Γ|

)
,
(
−ad

xi

M

)q
(
tβij
|Γ|

)]

under ρg. In conclusion we get the relation

ρg

([
ξs,γ ,

yi
N

])
=
[
ρg(ξs,γ), ρg

( yi
N

)]
.

A direct computation shows that the commutation relations of [X, ξs,γ ] = 0, [d, ξs,γ ] = sξs,γ

and ads+1(∆0)(ξs,γ) = 0 are preserved, which finishes the proof.

6.4.3 Reductions

Assume that l is finite dimensional and we have a reductive decomposition l = h⊕m, i.e. h ⊂ l

is a subalgebra and m ⊂ l is a vector subspace such that [h,m] ⊂ m. We also assume that

tl = th + tm with th =
∑

ν̄ eν̄ ⊗ eν̄ ∈ S2(h)h and tm ∈ S2(m)h, and that for a generic h ∈ h,

ad(h)|m ∈ End(m) is invertible. This last condition means that

P (λ) := det(ad(λ∨))|m) ∈ Sdim(m)(h)
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is nonzero, where λ∨ := (λ⊗ id)(th) for any λ ∈ h∗.

We now define Hn(g, h
∗
reg). As in the previous paragraph, Diff(h∗) has generators x̄h, ∂̄h

(h ∈ h) and relations

x̄th+h′ = tx̄h + x̄h′ ,

∂̄th+h′ = t∂̄h + ∂̄h′ ,

[x̄h, x̄h′ ] = 0 = [∂̄h, ∂̄h′ ],

[∂̄h, x̄h′ ] = 〈h, h′〉,

and Diff(h∗reg) = Diff(h∗)[ 1P ] with [∂̄l,
1
P ] = − [∂̄l,P ]

P 2 . One has a Lie algebra morphism

h −→ Diff(h∗);h 7−→ X̄h :=
∑

ν̄

x[h,eν̄ ] ∂eν̄ .

We denote by hdiag the image of the map

h ∋ h 7−→ Ȳh := X̄h +
n∑

i=1

l(i) ∈ Diff(h∗reg)⊗ U(g)⊗n =: Bn,

and define Hn(g, h
∗
reg) as the Hecke algebra of Bn with respect to hdiag:

Hn(g, h
∗
reg) := (Bn)

h/(Bnh
diag)h.

It acts in an obvious way on (Oh∗
reg
⊗ (⊗n

i=1Vi))
h if (Vi)1≤i≤n is a collection of g-modules.

Finally, let us set, for λ ∈ h∗,

r(λ) := (id⊗(adλ∨)−1|m )(tm).

Then, following [37], r : h∗reg −→ ∧
2(m) is an h-equivariant map satisfying the classical dynam-

ical Yang-Baxter equation (CDYBE)

∑

ν̄

e
(1)
ν̄ ∂ν̄r

(23) + [r(12), r(13)] + c.p.(1, 2, 3) = 0 ,

and we write r =
∑

δ aδ ⊗ bδ ⊗ ℓδ ∈ (m⊗2 ⊗ S(h)[1/P ])h.

Proposition 6.4.3. There is a unique Lie algebra morphism ρg,h : tΓ1,n −→ Hn(g, h
∗
reg) given

by

xi 7−→M
∑

ν̄

x̄ν̄ ⊗ h
(i)
ν̄ ,

yi 7−→ −N
∑

ν̄

∂̄ν̄ ⊗ h
(i)
ν̄ +

∑

j

∑

δ

ℓδ ⊗ a
(i)
δ b

(j)
δ ,

tαij 7−→ 1⊗ (α(1) · tg)
(ij).

Proof. First of all, the images of the above elements are all h-invariant. As in [24], we will imply

summation over repeated indices, and adopt the following conventions: ∂̄eν̄ = ∂̄ν̄ , x̄eν̄ = x̄ν̄ ,

and 1⊗−’s and −⊗ 1’s may be dropped from the notation.
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In particular, ρg,h(x̄i) = h
(i)
ν̄ x̄ν̄ , ρg,h(ȳi) = −h

(i)
ν ∂̄ν +

∑n
j=1 r(λ)

(ij) (here, for x ⊗ y ∈ g⊗2,

(x⊗ y)(ii) := x(i)y(i)).

We will use the same presentation of t̄Γ1,n as in Lemma 4.3.5. The relations [x̄i, x̄j ] = 0 and

t̄αij = t̄−αji are obviously preserved.

Let us check that [x̄i, ȳj] =
∑

t̄αij is preserved. We have for i 6= j,

1

MN
[ρg,h(x̄i), ρg,h(ȳj)] = −

∑

ν̄1,ν̄2

[x̄ν̄1 , ∂ν̄2 ]h
(i)
ν̄1 h

(j)
ν̄2 +

∑
ν̄, δ, kx̄ν̄ [h

(i)
ν̄ , ℓδ ⊗ a

(j)
δ b

(k)
δ ]

= t
(ij)
h + t

(ij)
m = t

(ij)
l =

1

MN

∑

α∈Γ

α(i) · t
(ij)
g

by the same argument as in Proposition 6.4.1.

Let us check that
∑

i x̄i =
∑

i ȳi = 0 are preserved. We have
∑

i ρg,h(x̄i) = 0 and
∑

i ρg,h(ȳi) =∑
ν̄,i h

(i)
ν̄ ∂ν̄ (by the antisymmetry of r), which equals zero as in as in Proposition 6.4.1.

The fact that the relation [ȳi, ȳj] = 0 is satisfied for i 6= j is a consequence of the dynamical

Yang-Baxter equation (this follows from the exact same argument as in the proof of [24,

Proposition 63]).

Next, [x̄i, t̄
α
jk] = 0 is preserved (i, j, k distinct). Indeed, we have

[ρg,h(x̄i), ρg,h(t̄
α
jk)] =

∑

ν̄

x̄ν̄ [h
(i)
ν̄ , α(i) · t

(jk)
g ] = 0 .

Finally [ȳi, t̄
α
jk] = 0 is preserved (i, j, k distinct): we have

[ρg,h(ȳi), ρg,h(t̄
α
jk)] =[−

∑

ν̄

h
(i)
ν̄ ∂̄ν̄ +

∑

l

r(il), α(j) · t
(jk)
g )]

=[r(λ)(ij) + r(λ)(ik) , α(j) · t
(jk)
g )] = 0 ,

where the last equality follows the the g-invariance of tg.

Remark 6.4.4. We expect that there is Lie algebra morphism redl,h : Hn(g, l
∗) −→ Hn(g, h

∗
reg)

such that the following diagram commutes

tΓ1,n
ρg //

ρg,h
$$■

■■
■■

■■
■■

■
Hn(g, l

∗)

redl,h

��
Hn(g, h

∗
reg)

6.4.4 Elliptic dynamical r-matrix systems as realizations of the uni-

versal Γ-KZB system on twisted configuration spaces

Let K(z) be a meromorphic function on C with values in the subalgebra t̂Γ2,+ ⊂ t̂Γ1,2 generated

by x1, x2, tα12 (α ∈ Γ), such that K(−z) = −K(z)2,1 and satisfying the universal CDYBE with

a spectral parameter

−[y1,K(z23)
2,3] + [K(z12)

1,2,K(z13)
1,3] + c.p.(1, 2, 3) = 0 .
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On the one hand, it follows from §6.4.1 that the image r(x, z) := ρg(K(z)) of K(z) under

ρg : t̂Γ2,+ −→ (Ôl∗ ⊗ g⊗2)l is a dynamical r-matrix2 with spectral parameter, i.e. a solution of

the CDYBE with a spectral parameter for the pair (l, g)

∑

ν

e(1)ν ∂νr(x, z23)
(23) + [r(x, z12)

(12), r(x, z13)
(13)] + c.p.(1, 2, 3) = 0 ,

which satisfies r(x,−z) = −r(x, z)(21). On the other hand, the image of K(z) under ρg,h :

t̂Γ2,+ −→ (Ôh∗
reg
⊗ g⊗2)h is precisely equal to the restriction ρg(K(z))|h∗ ∈ (Ôh∗

reg
⊗ g⊗2)h of

ρg(K(z)) to h∗. Then applying [37, Proposition 0.1], we conclude that

r̃(x̄, z) := ρg,h(K(z)) + r(λ)

is a solution of the CDYBE with spectral parameter for (h, g):

∑

ν̄

e
(1)
ν̄ ∂ν̄ r̃(x̄, z23)

(23) + [r̃(x̄, z12)
(12), r̃(x̄, z13)

(13)] + c.p.(1, 2, 3) = 0 .

Then for any n-tuple V = (V1, . . . , Vn) of g-modules one has a flat connection ∇(V )
τ,n,Γ on the

trivial vector bundle over Cn−Diagτ,nΓ with fiber (Oh∗
reg
⊗ (⊗iVi))

h, defined by the following

compatible system of first order differential equations:

∂ziF (x̄, z) =
∑

ν̄

e
(i)
ν̄ · ∂̄ν̄F (x̄, z) +

∑

j:j 6=i

r̃(ij)(x̄, zij) · F (x̄, z) . (6.19)

Here z 7→ F (x̄, z) is a function with values in (Oh∗
reg
⊗ (⊗iVi))

h.

Starting from K(z) = K12(z) as in §6.1.3, it would be interesting to know if one can recover

(up to gauge equivalence), using the above realization morphisms, the generalization of Felder’s

elliptic dynamical r-matrices [43] constructed in [41, 42].

Letu develop a bit more this idea. Set K(z) = K12(z) like in §6.1.3 and focus on the case when

g is a simple Lie algebra. Let us introduce some standard notation: ∆+ is the set of positive

roots, (hi)i is an orthonomal basis of h = g0, and for any positive root α one has gα = Ceα

and g−α
= Cfα with 〈eα, fα〉 = 1. Then one has

tg =
1

2

∑

i

hi ⊗ hi +
∑

α∈∆+

(eα ⊗ fα + fα ⊗ eα) .

Assume that θ(1̄, 0̄) = Ad(e2πiρ/κ), where ρ is the half-sum of positive roots and κ the dual

Coxeter number of g. Observe that this automorphisms can be defined alternatively by hi 7→ hi,

eα 7→ e2πi|α|/κeα and fα 7→ e−2πi|α|/κfα (here |α| is the lenght of the root α). Therefore l ⊂ h,

2Remember that Ol∗ := S(l) and Ôl∗ := Ŝ(l).
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and thus we can compute, writing β := θ(0̄, 1̄),

r(x, z) =
1

κN

∑

γ∈Γ

kγ(ad(x
∨)(1), z)(γ(1) · tg)

=
1

κN

∑

k=0,...,κ−1
l=0,...,N−1

( ∑

α∈∆+

(
e−2πil〈x,α〉

θ(z − k
κ −

lτ
N + 〈x, α〉)

θ(z − k
κ −

lτ
N )θ(〈x, α〉)

e2πik|α|/κβl(eα)⊗ fα

+e2πil〈x,α〉
θ(z − k

κ −
lτ
N − 〈x, α〉)

θ(z − k
κ −

lτ
N )θ(−〈x, α〉)

e−2πik|α|/κβl(fα)⊗ eα
)

+
∑

i

θ′

θ
(z −

k

κ
−

lτ

N
)βl(hi)⊗ hi

)
.

This should correspond to the generalization of Felder’s elliptic dynamical r-matrices.

Example 6.4.5. If g = sln and θ(0̄, 1̄) is the conjugation by the cyclic permutation (1 · · ·n)

(hence we have M = N = n) then h = {0} and r(z) is Belavin’s elliptic solution of the

classical (non dynamical) Yang-Baxter equation [6]. In this case the Γ-KZB system realizes as

the elliptic KZ system [39] (see also [75, 78]).
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Chapter 7

Applications

7.1 Formality of subgroups of the pure braid group on the

torus

7.1.1 Relative formality

Let G and S be two affine groups over k and let ϕ : G −→ S be a surjective group morphism

with finitely generated kernel Kerϕ. We then consider the category of pro-algebraic groups

G′ under G, together with a surjective morphism ϕ′ : G′ −→ S with k-prounipotent kernel.

This category has an initial object, denoted ϕ(k) : G −→ G(ϕ,k), which we call the relative

(k-prounipotent) completion of G with respect to ϕ. One can easily check that the kernel

Ker
(
ϕ(k)

)
of ϕ(k) is the usual k-prounipotent completion

(
Kerϕ

)
(k) of the kernel of ϕ,

which we can therefore unambiguously denote Kerϕ(k).

Observe that this coincides with the partial completion defined [32, §1.1], and with the relative

completion defined in [61] (which is somehow slightly more general).

Lemma 7.1.1. If S is finite then the extension

1 −→ Kerϕ(k) −→ G(ϕ,k) −→ S −→ 1

splits.

Proof. We consider the filtration (Fi)i given by the lower central series of Kerϕ(k), and prove

by induction by induction that

1 −→ Kerϕ(k)/Fi −→ G(ϕ,k)/Fi −→ S −→ 1

splits.

Initial step (i = 2): Recall that F1 = Kerϕ(k), and that F1/F2 is abelian and finitely generated,

so that

1 −→ Kerϕ(k)/F2 −→ G(ϕ,k)/F2 −→ S −→ 1

209
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splits as every extension of a finite group by a finite dimensional representation splits (this is

because the cohomology of a finite group with coefficients in a divisible module vanishes).

Induction step: We have a (surjective) morphism of extensions

1 // Kerϕ(k)/Fi+1
//

��

G(ϕ,k)/Fi+1
//

��

S //

��

1

1 // Kerϕ(k)/Fi
// G(ϕ,k)/Fi

// S // 1

Assuming (by induction) that the bottom extension splits, we have that the corresponding

obstruction class in the first non-abelian cohomology H1
(
S,Kerϕ(k)/Fi

)
is trivial. Hence, by

exactness of

H1
(
S, Fi/Fi+1

)
−→ H1

(
S,Kerϕ(k)/Fi+1

)
−→ H1

(
S,Kerϕ(k)/Fi

)

we get that the obstruction class for the splitting of the top extension lies in the image of

H1
(
S, Fi/Fi+1

)
−→ H1

(
S,Kerϕ(k)/Fi+1

)
.

We conclude by using the vanishing of group cohomology of a finite group in a finite dimensional

representation.

The above Lemma tells us in particular that G(ϕ,k) ≃ Ker(ϕ)(k)⋊S, and justifies the following

definition from [32, §1.2].

Definition 7.1.2. If S is finite, we say that the surjective group morphism ϕ : G −→ S with

finitely generated kernel is relatively formal if there exists a group isomorphism

G(k, ϕ)−̃→ exp
(
ĝr LieKerϕ(k)

)
⋊ S

over S. This is equivalent to having an S-equivariant formality isomorphism

Kerϕ(k)−̃→ĝr LieKerϕ(k) .

Example 7.1.3. The surjective morphism Bn ։ Sn is formal, where Bn is the standard n

strands braid group. This morphism, or rather the exact sequence

1 −→ PBn −→ Bn −→ Sn −→ 1 ,

can be deduced from the covering map Conf(C, n) −→ Conf(C, n)/Sn. It is interesting to say

that this relative formality result follows from [74] when k = C, and from [27] for k = Q.

We also refer to [61, Example 1.5] for interesting considerations about this example. More

precisely, one has an Sn-equivariant isomorphism PBn(k)−̃→ exp(̂tn).

Example 7.1.4. Let G = Z/NZ. From the covering map Conf(C×, n,G) −→ Conf(C×, n)/Sn

one also gets an exact sequence

1 −→ PBG
n −→ B1

n −→ Gn ⋊Sn −→ 1 .

It follows from [32, §1.3–1.6] that the surjective morphism B1
n ։ Gn⋊Sn is formal. More pre-

cisely, Enriquez proves the existence of a Gn⋊Sn-equivariant isomorphism PBG
n (k)−̃→ exp(̂tΓn).
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7.1.2 Relation between relative completion and completion of groupoids

In this paragraph we briefly compare the notion of relative k-prounipotent completion with

the k-prounipotent completion for groupoids defined in §2.5.7.

There is a functor that goes

• from the category of surjective morphisms G −→ S with finitely generated kernel and

with S a finite group.

• to the category of groupoids.

This functor sends ϕ : G −→ S to the groupoid G(ϕ) defined as follows:

• the set of objects of of G(ϕ) is S.

• for s, s′ ∈ S,

HomG(ϕ)(s, s
′) := {g ∈ G|ϕg = s−1s′}

• the multiplication of arrows in G(ϕ) is the multiplication in G.

Example 7.1.5. It is easy to check that G(Bn −→ Sn) is the colored braid groupoid CoB(n)

from [46, §5.2.8], which is an unparenthesized variant of PaB(n). Similarly:

• the groupoid

CoBN (n) := G
(
B1

n −→ (Z/NZ)n ⋊Sn

)

is an unparenthezised variant of the twisted parenthesized braid groupoid PaBN (n) from

§4.2.5.

• the groupoid

CoBeℓℓ(n) := G
(
B1,n −→ Sn

)

is an unparenthezised variant of the parenthezised elliptic braid groupoid PaBeℓℓ(n) from

§4.1.2.

• the groupoid

CoBΓ
eℓℓ(n) := G

(
B1,n −→ (Γn/Γ)⋊Sn

)

is an unparenthezised variant of the twisted parenthezised elliptic braid groupoid PaBΓ
eℓℓ(n)

from §4.3.2.

We let the reader prove that the following is true:

ˆG(ϕ)(k) ≃ G
(
ϕ(k)

)
.

7.1.3 Subgroups of B1,n

For τ ∈ H and Γ = Z/MZ × Z/NZ, let Uτ,n,Γ ⊂ Cn − Diagτ,n,Γ be the open subset of all

z = (z1, . . . , zn) of the form zi = ai + τbi, where 0 < a1 < · · · < an < 1/M and 0 < b1 < · · · <
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bn < 1/N . If z0 ∈ Uτ,n,Γ then it both defines a point in the Γ-twisted configuration space

Conf(Eτ,Γ, n,Γ) and in the (non twisted) unordered configuration space Conf(Eτ,Γ, [n]):

z1
0

z2
0

z1
(1,0)

z1
(0,1)

BN

AM

Recall that the map

Conf(Eτ,Γ, n,Γ) ։ Conf(Eτ,Γ, [n])

is a a covering map with structure group Γn ⋊Sn. Hence we get a short exact sequence

1 −→ PBΓ
1,n −→ B1,n

ϕn−→ Γn ⋊Sn −→ 1 ,

where PBΓ
1,n := π1(Conf(Eτ,Γ, n,Γ), z0) and B1,n = π1

(
Conf(Eτ,Γ, [n]), z0

)
.

We will also consider PB1,n = π1

(
Conf(Eτ,Γ, n), z0

)
, and the short exact sequence

1 −→ PBΓ
1,n −→ PB1,n −→ Γn −→ 1

associated with the Γn-covering map

Conf(Eτ,Γ, n,Γ) ։ Conf(Eτ,Γ, n) .

Our main aim in this Section is to prove that the surjective morphism

B1,n ։ Γn ⋊Sn

is relatively formal, which in turns implies the relative formality of PB1,n −→ Γn, and the

formality of PBΓ
1,n.

Moreover, we will have an explicit description of the relative completion in terms of the Lie

algebra tΓ1,n.

7.1.4 The monodromy morphism B1,n −→ exp(̂tΓ1,n)⋊ (Γn ⋊Sn)

The monodromy of the flat exp(̂tΓ1,n)⋊(Γn⋊Sn)-bundle (P(τ,Γ),[n],∇(τ,Γ),[n]) on Conf(Eτ,Γ, [n])

provides us with a group morphism

µz0,(τ,Γ),[n] : B1,n −→ exp(̂tΓ1,n)⋊ (Γn ⋊Sn) .
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This actually fits into a morphism of short exact sequences

1 // PBΓ
1,n

//

��

B1,n
//

��

Γn ⋊Sn
// 1

1 // exp(̂tΓ1,n) // exp(̂tΓ1,n)⋊ (Γn ⋊Sn) // Γn ⋊Sn
// 1

,

where the first vertical morphism is the monodromy morphism

µz0,τ,n,Γ : PBΓ
1,n −→ exp(̂tΓ1,n)

of associated with the flat exp(̂tΓ1,n)-bundle (Pτ,n,Γ,∇τ,n,Γ) on Conf(Eτ,Γ, n,Γ).

Indeed, this comes from the fact that ∇(τ,Γ),[n] is obtained by descent, from ∇τ,n,Γ and using

its equivariance properties (see §6.1.2). More precisely, the monodromy of ∇(τ,Γ),[n] along a

loop γ based at z0 in Conf(Eτ,Γ, [n]) can be computed along the following steps:

• First consider the unique lift γ̃ of γ departing from z0 ∈ Conf(Eτ,Γ, n,Γ). Note that it

ends at g · z0, g ∈ Γn ⋊Sn.

• Then compute the holonomy of ∇τ,n,Γ along γ̃: this is an element in exp(̂tΓ1,n), as ∇τ,n,Γ

is defined on a principal exp(̂tΓ1,n)-bundle obtained as a quotient of the trivial one on

Cn −Diagτ,n,Γ (see §6.1.1), that we abusively denote µz0,τ,n,Γ(γ̃).

• Finally, µz0,(τ,Γ),[n](γ) = gµz0,τ,n,Γ(γ̃).

Having such a morphism of exact sequences guaranties that it factors through a morphism

1 // P̂B
Γ

1,n(C) //

��

B̂1,n(ϕn,C) //

��

Γn ⋊Sn
// 1

1 // exp(̂tΓ1,n) // exp(̂tΓ1,n)⋊ (Γn ⋊Sn) // Γn ⋊Sn
// 1

,

where B̂1,n(ϕn,C) is is the relative prounipotent completion of the morphism B1,n −→ Γn⋊Sn,

and P̂B
Γ

1,n(C) is the prounipotent completion of PBΓ
1,n.

We will call the vertical maps the completed monodromy morphisms.

In the remainder of this Section we will prove that these completed monodromy morphisms

are isomorphisms, which implies in particular the relative formality of B1,n −→ Γn ⋊Sn.

Theorem 7.1.6. The completed monodromy morphism

B̂1,n(ϕn,C) −→ exp(̂tΓ1,n)⋊ (Γn ⋊Sn)

is an isomorphism. Equivalently, the completed monodromy morphism

P̂B
Γ

1,n(C) −→ exp(̂tΓ1,n)

is an isomorphism.
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Our aim now is to prove that Theorem 7.1.6, namely that the completed monodromy morphism

µ̂z0,τ,n,Γ(C) : P̂B
Γ

1,n(C) −→ exp(̂tΓ1,n)

is an isomorphism. For this we will prove that the induced morphism on Malcev Lie algebras

Lie(µz0,τ,n,Γ) : pbΓ1,n −→ t̂Γ1,n

is an isomorphism of filtered Lie algebras.

7.1.5 A morphism tΓ1,n −→ gr(pbΓ1,n)

Let us start with a few algebraic facts about PB1,n and PBΓ
1,n.

The group PB1,n is generated by the Xi’s and Yi’s (i = 1, . . . , n), where Xi (resp. Yi) is the

class of the path given by [0, 1] ∋ t 7→ z0 − tδi/M (resp. [0, 1] ∋ t 7→ z0 − tτδi/N). One

sees very easily that XM
i (resp. Y N

i ) is the class of the path given by [0, 1] ∋ t 7→ z0 − tδi

(resp. [0, 1] ∋ t 7→ z0 − tτδi), so that XM
i and Y N

i are elements of PBΓ
1,n. One has an obvious

inclusion PBn →֒ PBΓ
1,n coming from the identification of C with the fundamental domain

{z = a+ bτ ∈ C|0 < a <
1

M
, 0 < b <

1

N
}

of Eτ,Γ.

Then one can check (by simply drawing) that the following relations are satisfied in PB1,n:

(T1) (Xi, Xj) = 1 = (Yi, Yj) (i < j),

(T2) (Xj , Y
−1
i ) = Pij = (Xi, Y

−1
j ) (i < j),

(T3) (Xn, Yn) = Pn−1,n · · ·P1n,

(T4) (Xi, Pjk) = 1 = (Yi, Pjk) (∀i, j < k),

(T5) (XiXj , Pij) = 1 = (YiYj , Pij) (i < j).

In particular PBn identifies with the subgroup of commutators in PB1,n. Moreover, one

observes that X1 · · ·Xn and Y1 · · ·Yn are central in PB1,n.

Now it follows from the geometric description of PBΓ
1,n that it is generated by XM

i , Y N
i

(i = 1, . . . , n) and Pα
ij := X−pj Y −qj PijY

q
j X

p
j (i < j, 1 ≤ p ≤ M , 1 ≤ q ≤ N and α = (p̄, q̄)).

One can for instance represent lifts of X3, Y3 and P
(1̄,1̄)
12 in Conf(Eτ,Γ, n,Γ) as follows

P
12

(1̄,1̄)

X3

z1

z2

z3

Y3
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Observe that the standard descending filtration on t̂Γ1,n coincides with the descending filtration

coming from the grading of tΓ1,n defined in §4.3.3.

Proposition 7.1.7. There is a surjective graded Lie algebra morphism pn : tΓ1,n −→ gr(pbΓ1,n),

sending

• xi 7−→ σ
(
log(XM

i )
)

for i = 1, . . . , n,

• yi 7−→ σ
(
log(Y N

i )
)

for i = 1, . . . , n,

• tαij 7−→ σ
(
log(Pα

ij)
)

for i < j,

• tαij 7−→ σ
(
log(P−αji )

)
for j < i,

where σ denotes the symbol map pbΓ1,n −→ gr(pbΓ1,n).

Proof. It is sufficient to check that the defining relations of tΓ1,n are preserved by the above

assignment.

The relation [xi, xj ] = 0 = [yi, yj ] is obviously preserved. Now using (T2) and the relation

(XM , Y N ) =

M−1∏

i=0

XM−i+1(

N−1∏

j=0

Y j(X,Y )Y −j)X i−M−1

(which is true in the free group F2, and thus in any group) with X = Xi and Y = Yj (i 6= j),

one obtains that [xi, yj] = [xj , yi] =
∑

α tαij is preserved. Using (T3) one also obtains that

[x1, y1] = −
∑

α

∑
j:16=j t

α
1j is preserved. Now it is obvious that the centrality of

∑
i xi and∑

i yi is preserved, and thus it follows that [xi, yi] = −
∑

α

∑
j:j 6=i t

α
ij is also preserved for any

i ∈ {1, . . . , n}. For any α = (p̄, q̄) we compute

(XM
i , Pα

jk) = XM
i X−pk Y −qk PjkY

q
k X

p
kX
−M
i X−pk Y −qk P−1jk Y q

k X
p
k

= X−pk (XM
i , Y −qk )Y −qk XM

i PjkX
−M
i Y q

k (X
M
i , Y −qk )−1Y −qk P−1jk Y q

k X
p
k

= X−pk (XM
i , Y −qk )Y −qk PjkY

q
k (X

M
i , Y −qk )−1Y −qk P−1jk Y q

k X
p
k .

One sees that the log of the l.h.s. lies in (pbΓ1,n)3 and its symbol is equal to [σ(log(XM
i )), σ(log(Pα

jk))],

and that the log of the r.h.s. lies in (pbΓ1,n)4. Hence one obtains that [xi, t
α
jk] = 0 is preserved.

The proof that [yi, t
α
jk] = 0 is preserved is identical, and the proof that [xi + xj , t

α
ij ] = 0 =

[yi + yj , t
α
ij ], [t

α
ij , t

β
kl] = 0 and [tαij , t

α+β
ik + tβjk] = 0 are preserved is very similar.

7.1.6 The formality of PBΓ
1,n (end of the proof of Theorem 7.1.6)

To prove that Lie(µz0,τ,n,Γ) is an isomorphism, it is sufficient to prove that it is an isomorphism

on associated graded. According to Proposition 7.1.7, we simply have to prove that φ :=

grLie(µz0,τ,n,Γ) ◦ pn is an isomorphism of graded Lie algebras.

We will actually be more specific on prove the following:

Lemma 7.1.8. We have φ(xi) = −yi, φ(yi) = 2πixi − τyi and φ(tαij) = 2πitαij. In particular,

φ is an automorphism.
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Proof. Recall that µz0,τ,n,Γ can be computed as follows. Let Fz0 : Uτ −→ exp(̂tΓ1,n) be such

that 


(∂/∂zi)Fz0 (z) = KΓ

i (z|τ)Fz0 (z) ,

Fz0(z0) = 1 .

Then consider

HΓ
τ,n :=

{
z = (z1, ..., zn)|zi = ai + τbi, 0 < an < ... < a1 <

1

M

}

and

V Γ
τ,n :=

{
z = (z1, ..., zn)|zi = ai + τbi, 0 < bn < ... < b1 <

1

N

}
.

Let FHΓ

z0
(resp. FV Γ

z0
) be the analytic prolongations of Fz0 to HΓ

τ,n (resp. V Γ
τ,n). Then

F
HΓ

τ
z0 (z− δi) = F

HΓ
τ

z0 (z)µz0,τ,n,Γ(X
M
i ) and e2πixiF

V Γ
τ

z0 (z − τδi) = F
V Γ
τ

z0 (z)µz0,τ,n,Γ(Y
N
i ) .

Knowing that logF
HΓ

τ
z0 (z) = −

∑
i(zi − z0i )yi + terms of degree ≥ 2, we get

logµz0,τ,n,Γ(X
M
i ) = −yi + terms of degree ≥ 2

and

logµz0,τ,n,Γ(Y
N
i ) = 2πixi − τyi + terms of degree ≥ 2 .

This gives us that φ(xi) = −yi and φ(yi) = 2πixi − τyi.

In order to compute log µz0,τ,n,Γ(P
α
ij), which is also equal to logµz0,(τ,Γ),n(P

α
ij), we will need

to compute µz0,(τ,Γ),n(Xi), µz0,(τ,Γ),n(Yi) and µz0,(τ,Γ),n(Pij):

• As usual, we have

µz0,(τ,Γ),n(Pij) = exp(2πit0ij + terms of degree ≥ 3) ,

where 0 = (0̄, 0̄).

• We also have

FHΓ

z0
(z+

δi
M

) = (1̄, 0̄)iF
HΓ

z0
(z)µz0,(τ,Γ),n(Xi) ,

which implies that

µz0,(τ,Γ),n(Xi) ∈ (−1̄, 0̄)i exp(t
Γ
1,n) .

• We finally have

e2πi
xi
N FV Γ

z0
(z+

τδi
N

) = (0̄, 1̄)iF
V Γ

z0
(z)µz0,(τ,Γ),n(Yi) ,

which implies that

µz0,(τ,Γ),n(Yi) ∈ (0̄, −̄1)i exp(t
Γ
1,n) .
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Hence, if α = (p̄, q̄) ∈ Γ, then

µz0,(τ,Γ),n(X
−p
i Y −qj ) = g(p̄, 0̄)i(0̄, q̄)j ,

with g ∈ exp(tΓ1,n), and

µz0,(τ,Γ),n(Y
q
j X

p
i ) = (0̄, −̄q)j(−̄p, 0̄)ig

−1 .

Therefore

µz0,(τ,Γ),n(P
α
ij) = g(p̄, 0̄)i(0̄, q̄)j exp(t

0
ij)(0̄, −̄q)j(−̄p, 0̄)ig

−1

= g exp(tαij + terms of degree ≥ 3)g−1 .

This shows that logµz0,(τ,Γ),n(P
α
ij) = tαij + terms of degree ≥ 3, so that φ(tαij) = 2πitαij . This

ends the proof of the Lemma.

7.2 The KZB ellipsitomic associator

First of all, recall that t̄Γ1,2 is the Lie C-algebra generated by x := x1, y := y2 and tα := tα12, for

α ∈ Γ, such that [x, y] =
∑

α∈Γ t
α. We define the KZB ellipsitomic associator as the couple

eΓ(τ) := (AΓ(τ), BΓ(τ)) ∈ exp(̂̄tΓ1,2)×exp(̂̄tΓ1,2) consisting in the renormalized holonomies from

the straight paths from 0 to 1/M and from 0 to τ/N respectively of the differential equation

J ′(z) = −
∑

α∈Γ

e−2πiax
θ(z − α̃+ ad(x)|τ)

θ(z − α̃|τ)θ(ad(x)|τ)
(tα) · J(z), (7.1)

with values in the group exp(̂̄tΓ1,2)⋊Γn/Γ. More precisely, for all α ∈ Γ and α̃ = (a0, a) ∈ Λτ,Γ a

lift of α, this equation has a unique solution Jα(z) defined over {α̃+ s1
M + s2

N τ, for s1, s2 ∈]0, 1[}

such that we have

Jα(z) ≃ (−2πi(z − α̃))e
−2πia ad(x)tα

at z − α̃ −→ 0. By denoting J(z) := J0(z) we define

AΓ(τ) := J(z)−1(1̄, 0̄)J(z +
1

M
) = J(z)−1θ(1̄, 0̄) · (J(z +

1

M
))(1̄, 0̄) ∈ exp(̂̄tΓ1,2)⋊ Γn/Γ.

Then the A-associator AΓ is

AΓ(τ) := J(z)−1θ(1̄, 0̄) · J(z +
1

M
) ∈ exp(̂̄tΓ1,2).

In the same way, we define

BΓ(τ) := J(z)−1(0̄, 1̄)e
2π i
N

xJ(z +
τ

N
) = J(z)−1θ((0̄, 1̄)) · (e

2π i
N

xJ(z +
τ

N
))(0̄, 1̄),

and the B-associator is then

BΓ(τ) := J(z)−1θ((0̄, 1̄)) · (e
2π i
N

xJ(z +
τ

N
)) ∈ exp(̂̄tΓ1,2).
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We have Ap ∈ exp(̂tΓ1,2)(p̄, 0̄). Indeed, one checks for example that

A3 = A ·A ·A ·

= A(1̄, 0̄)A(1̄, 0̄)A(1̄, 0̄)

= A(θ((1̄, 0̄)) · A)(θ((2̄, 0̄)) · A(3̄, 0̄))

= A(θ((1̄, 0̄)) · A)(θ((2̄, 0̄)) · A)(3̄, 0̄).

Now, let p, q ≥ 1. Define A(p) and B(q) such that Ap = A(p)(p̄, 0̄) and Bq = A(q)(0̄, q̄). These

are elements of exp(̂tΓ1,2) and we have

A(p) =

→∏

k=0,...,p−1

(θ((k̄, 0̄)) · A) = A(θ((1̄, 0̄)) ·A)(θ((2̄, 0̄)) ·A) · · · (θ((p − 1, 0̄)) ·A)

and

B(q) =
→∏

k=0,...,q−1

(θ((0̄, k̄)) · B) = B(θ((0̄, 1̄)) · B)(θ((0̄, 2̄)) · B) · · · (θ((0̄, q − 1)) · B).

Recall from Theorem 4.3.10 that the set of ellipsitomic associators EllΓ(k) can be regarded

either as the set of Γ-equivariant P̂aB(k)-module isomorphisms P̂aB
Γ

eℓℓ(k) −→ GPaCDΓ
eℓℓ(k)

which are the identity on objects or either as tuples (λ,Φ, AΓ, BΓ), where (λ,Φ) ∈ Ass(k) and

AΓ, BΓ ∈ exp(̂̄tΓ1,2(k)), satisfying relations (tN1), (tN2) and (tE). We are ready to show that

the set EllΓ(C) is not empty. Write EllΓKZB := EllΓ(C)×Ass(C) {2πi,ΦKZ}.

Theorem 7.2.1. There is an analytic map

h −→ EllΓKZB

τ 7−→ eΓ(τ) = (AΓ(τ), BΓ(τ)).

In particular, for each τ ∈ h, the element (2πi,ΦKZ, A
Γ(τ), BΓ(τ)) is an ellipsitomic C-

associator (i.e. it belongs to EllΓ(C)).

The rest of this section is devoted to the proof of the above theorem.

7.2.1 The solution F
(n)
Γ (z|τ)

The ellipsitomic KZB system is

(∂/∂zi)F
Γ(z|τ) = K̄Γ

i (z|τ)F
Γ(z|τ), (∂/∂τ)FΓ(z|τ) = ∆̄Γ(z|τ)FΓ(z|τ),

where FΓ(z|τ) is a function (Cn × H) −∆n,Γ ⊃ U −→ Gn ⋊ Sn invariant under translation

by C(
∑

i δi). Let

DΓ
n :=

{
(z, τ) ∈ Cn × H|zi = ai + biτ, ai, bi ∈ R, a1 < a2 < ... < an < a1 +

1

M
, b1 < b2 < ... < bn < b1 +

1

N

}
.



7.2. THE KZB ELLIPSITOMIC ASSOCIATOR 219

Then DΓ
n ⊂ (Cn × H) − ∆n,Γ is simply connected and invariant under C(

∑
i δi). A solution

of the ellipsitomic KZB system on this domain is then unique, up to right multiplication by a

constant. We now determine a particular solution F
(n)
Γ (z|τ) of the ellipsitomic KZB system.

Let us denote zij = z0i − z0j and let us compute the expansions of K̄i(z|τ) and ∆̄(z|τ) in the

region zij ≪ 1, τ → i∞. We have

K̄i(z|τ) = −ȳi +
∑

j;j 6=i

∑

α∈Γ

(
e−2πia ad(x̄i)

θ(zi − zj − α̃+ ad(x̄i); τ)

θ(zi − zj − α̃; τ)θ(ad(x̄i); τ)
−

1

ad(x̄i)

)
(t̄αij)

=
∑

j;j 6=i

∑

α∈Γ

(
1

ad(x̄i)
+

t̄αij
zi − zj − α̃

−
1

ad(x̄i)

)
(t̄αij) +O(1)

=
∑

j;j 6=i

∑

α∈Γ

t̄αij
zi − zj − α̃

+O(1) =
∑

j;j 6=i

∑

α∈Γ

t̄αij
zi − zj −

a0

M

+O(1)

Notice the resemblance with the function which defines the universal cyclotomic KZ connection

defined in [32, Section 1.4].

For the expansion of ∆̄, recall that if γ ∈ Γ and γ̃ = (c0, c) ∈ Λτ,Γ is any lift of γ, we have

gγ(z, x|τ) := ∂xkγ(z, x|τ) and

g−γ(0, x|τ) =
∑

s≥0

As,γ(τ)x
s.

We then have

∆̄Γ(z|τ) =
−1

2iπ


∆0 +

1

2

∑

s>0

∑

γ∈Γ

As,γ(τ)


δs,γ + 2

∑

i,j:i<j

ad(x̄i)
s(t̄−γij )




+ o(1),

for zij ≪ 1 and any τ ∈ H.

In section 13 we will relate As,γ(τ) to Eisenstein-Hurwitz series which have a qN -expansion

and we define the normalized version Ãs,γ(τ) of the twisted Eisenstein series As,γ(τ) such that

As,γ(τ) = as,γÃs,γ(τ),

and such that we have an expansion Ãs,γ(τ) = 1 +
∑

l>0 akl,γe
2πilτ/N as τ −→ i∞. Then,

by applying Proposition 3 in Appendix A of [24] with un = zn1, un−1 = zn−1,1/zn1,..., u2 =

z21/z31, u1 = q(τ) = e2πiτ/N , we obtain a unique solution F
(n)
Γ (z|τ) with the expansion

F
(n)
Γ (z|τ) ≃z

t̄012
21 z

t̄013+t̄023
31 ...z

t̄01n+...+t̄0n−1,n

n1

exp


− τ

2πi


∆0 +

1

2

∑

s≥0,γ∈Γ

as,γ


δs,γ − 2

∑

i<j

ads(x̄i)(t̄
−γ
ij )








in the region z21 ≪ z31 ≪ ...≪ zn1 ≪ 1, τ −→ i∞, (z, τ) ∈ DΓ
n. The sign ≃ means here that

any of the ratios of both sides is of the form

1 +
∑

k>0

∑

i,a1,...,an

ri,a1,...,an

k (u1, ..., un),
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where the second sum is finite with ai ≥ 0, i ∈ {1, ..., n}, ri,a1,...,an

k (u1, ..., un) has degree k,

and is O(ui(log u1)
a1 ...(log un)

an). We denote F
([n])
Γ the solution with values on Gn ⋊ (ΓnSn)

induced by F
(n)
Γ

7.2.2 A presentation of B̄
Γ
1,n

We use the same presentation of B̄1,n coming from [24] that we used in the proof of Theorem

4.3.2. Let us define BΓ
1,n := π1(Conf(Eτ,Γ, [n],Γ), [z0]) and recall that B1,n = π1(Conf(Eτ,Γ, [n]), [z0]).

Now, since the canonical surjective map Conf(Eτ,Γ, [n],Γ) ։ Conf(Eτ,Γ, [n]) defines a Γ-

covering, then BΓ
1,n = ker(ρ), where ρ : B1,n −→ Γ sends σi to 0 = (0̄, 0̄), Ai to (1̄, 0̄)

and Bi to (0̄, 1̄). If AM
i (resp. BN

i ) is the class of the path given by [0, 1] ∋ t 7→ z0 + t
∑n

j=i δi

(resp. [0, 1] ∋ t 7→ z0 + tτ
∑n

j=i δi), then it follows from the geometric description of BΓ
1,n that

AM
i , BN

i (i = 1, . . . , n) and

Rα
ij := X−pj Y −qj CijY

q
j X

p
j

(for i < j, 1 ≤ p ≤M , 1 ≤ q ≤ N and α = (p̄, q̄)) are generators of BΓ
1,n.

We denote again AM
i and BN

i (i = 1, ..., n) for the projections of these elements to B̄
Γ
1,n.

7.2.3 The monodromy morphism γn : B1,n −→ G
Γ
n ⋊ (Γn ⋊Sn)

The monodromy of the flat GΓ
n ⋊ (Γn ⋊Sn)-bundle (PΓ,[n],∇Γ,[n]) onM1,[n] provides us with

a group morphism

µz0,Γ,[n] : π1(M
Γ
1,n/(Γ

n ⋊Sn)) −→ GΓ
n ⋊ (Γn ⋊Sn),

where π1(MΓ
1,n/(Γ

n ⋊Sn)) is the mapping class group (i.e. the orbifold fundamental group)

associated to MΓ
1,n/(Γ

n ⋊Sn). This actually fits into a morphism of short exact sequences

1 // PBΓ
1,n

//

��

B1,n
//

��

Γn ⋊Sn
// 1

1 // MCGΓ
1,n

//

��

π1(M
Γ
1,n/(Γ

n ⋊Sn)) //

��

Γn ⋊Sn
// 1

1 // GΓ
n

// GΓ
n ⋊ (Γn ⋊Sn) // Γn ⋊Sn

// 1

,

where MCGΓ
1,n := π1(MΓ

1,n) is the mapping class group associated to MΓ
1,n, the top vertical

arrows are injections and the bottom first vertical morphism is the monodromy morphism

µz0,n,Γ : MCGΓ
1,n −→ GΓ

n

of associated with the flat GΓ
n-bundle (Pn,Γ,∇n,Γ) onMΓ

1,n.

Indeed, this comes from the fact that ∇Γ,[n] is obtained by descent, from ∇n,Γ and using its

equivariance properties of Proposition 6.3.14. We denote

γ̃Γ
n : PBΓ

1,n −→ GΓ
n
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and

γΓ
n : B1,n −→ GΓ

n ⋊ (Γn ⋊Sn)

the corresponding vertical composites.

Let FΓ(z|τ) be a solution of the ellipsitomic KZB system defined on DΓ
n with values in GΓ

n⋊Γn.

Let us consider the domains

HΓ
n :=

{
(z, τ) ∈ Cn × H|zi = ai + biτ, ai, bi ∈ R, a1 < a2 < ... < an < a1 +

1

M

}

and

V Γ
n :=

{
(z, τ) ∈ Cn × H|zi = ai + biτ, ai, b1 < b2 < ... < bn < b1 +

1

N

}
.

Both of these domains are simply connected and invariant. We denote FH
Γ (z|τ) and FV

Γ (z|τ)

the prolongations of FΓ(z|τ) to these domains.

Then

(z, τ) 7−→ FH
Γ


z+

n∑

j=i

δi
M
|τ




(z, τ) 7−→ e2πi
(x̄i+...+x̄n)

N FV
Γ


z+ τ(

n∑

j=i

δi
N

)|τ




are solutions of the ellipsitomic KZB system on HΓ
n and V Γ

n respectively. Let us define

AF
i , B

F
i ∈ GΓ

n ⋊ Γn by

FH
Γ


z+

n∑

j=i

δi
M
|τ


 =

n∏

j=i

(1̄, 0̄)jF
H
Γ (z|τ)AF

i ,

e2πi
(x̄i+...+x̄n)

N FV
Γ


z+ τ(

n∑

j=i

δi
N

)|τ


 =

n∏

j=i

(0̄, 1̄)jF
V
Γ (z|τ)BF

i .

We also define σF
i ∈ Sn by means of

σiFΓ(σ
−1
i z|τ) = FΓ(z|τ)σ

F
i ,

where, on the left hand side, FΓ is extended to the universal cover of (Cn×h)−Diagn,Γ. Notice

that σi exchanges z0i and z0i+1, z
0
i+1 passing to the right of z0i . Its monodromy is given by

eπit
0

i(i+1) .

Let us denote Xp
i := Ap

i (A
p
i+1)

−1 and Y q
i := Bq

i (B
q
i+1)

−1, X(p)
i := A

(p)
i (A

(p)
i+1)

−1 and Y
(q)
i :=

B
(q)
i (B

(q)
i+1)

−1 and recall that θ((−α)j) · t̄0ij = t̄αij .

Lemma 7.2.2. The morphism γ̃n : PBΓ
1,n −→ GΓ

n induced by the solution FΓ takes AM
i to

(AF
i )

M , BN
i to (BF

i )N . Let us denote Rα
ij := X−pj Y −qj CijY

q
j X

p
j for all α = (p̄, q̄) ∈ Γ and

denote X̃
p

i := γ̃n(X
p
i ) and Ỹ

q

i := γ̃n(X
q
i ). Then Rα

ij is sent via γ̃n to

R̃
α

ij = g1(p̄, 0̄)j(0̄, q̄)je
2πit0ij (0̄, −̄q)j(−̄p, 0̄)jg

−1
1



222 CHAPTER 7. APPLICATIONS

and σα
i is sent via γ̃n to

C̃
α

i = g2(p̄, 0̄)i+1(0̄, q̄)i+1e
πit0i,i+1(0̄, −̄q)i(−̄p, 0̄)ig

−1
2

Proof. This follows from the geometric description of the generators of B1,[n]: if (z0, τ0) ∈ DΓ
n,

then Ai is the class of the projection of the path [0, 1] ∋ t 7→ (z0 + t
∑n

j=i(δj/M), τ0) and Bi

is the class of the projection of [0, 1] ∋ t 7→ (z0 + tτ
∑n

j=i(δj/N), τ0). Finally, as paths in HΓ
n ,

AM and A(M) are homotopic. Likewise, as paths in V Γ
n , BN and B(N) are homotopic.

Thus, following the same conventions as before, we set the following elements in GΓ
n

R̃α
ij := g1 =

p−1∏

l=0

(θ((p− l, q̄))·X−1j )

q−1∏

l=0

(θ((0̄, q − l))·Y −1j )e2πit
0

ij

q−1∏

l=0

(θ((0̄, l̄))·Yj)

p−1∏

l=0

(θ((l̄, q̄))·Xj),

and

C̃α
i := g2 =

p−1∏

l=0

(θ((p− l, q̄))·X−1i+1)

q−1∏

l=0

(θ((0̄, q − l))·Y −1i+1)e
πit0i,i+1

q−1∏

l=0

(θ((0̄, l̄))·Yi)

p−1∏

l=0

(θ((l̄, q̄))·Xi).

We will denote by γ̃n : PBΓ
1,n −→ GΓ

n the morphism induced by the solution F
(n)
Γ (z|τ) and

γn : B1,n −→ GΓ
n ⋊ (Γn ⋊Sn) the one induced by F

([n])
Γ .

7.2.4 Expression of γn : B1,n −→ G
Γ
n ⋊ (Γn ⋊Sn) using γ1 and γ2

Lemma 7.2.3. γ̃2(A
M
2 ) and γ̃2(B

N
2 ) belong to exp(̂̄tΓ1,2) ⊂ GΓ

2 .

Proof. If FΓ(z|τ) : HΓ
2 −→ GΓ

2 is a solution of the ellipsitomic KZB equation for n = 2, then

AF
2 = FH

Γ (z−δ2|τ)FH
Γ (z|τ)−1 is the iterated integral, from z0 ∈ DΓ

n to z0−δ2, of K2(z|τ) ∈ t̂Γ1,2.

Thus, AF
2 ∈ exp(̂tΓ1,2). Then, as γ2(A

M
2 ) is a conjugate of (AF

2 )
M , it belongs to exp(̂tΓ1,2) as

exp(̂tΓ1,2) ⊂ GΓ
2 ⋊S2 is normal. One proves in the same way that γ2(B

N
2 ) ∈ exp(̂tΓ1,2).

We let the reader check that the above lemma remains true in the reduced case.

7.2.5 Algebraic relations for the ellipsitomic KZB associator

Let us set

Φi := Φ1...i−1,i,i+1...n...Φ1...n−2,n−1,n ∈ exp(̂tn),

and denote by x 7→ {x} the morphism exp(̂tn) −→ exp(̂tΓ1,n) induced by tij 7→ t0ij .

Proposition 7.2.4. If n ≥ 3, then

γn(Ai) = {Φi}γ2(A2)
1...i−1,i...n(1̄, 0̄)i{Φi}

−1,

γn(Bi) = {Φi}γ2(B2)
1...i−1,i...n(0̄, 1̄)i{Φi}

−1, (i = 1, ..., n),
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and

γn(σ
α
i ) = g2(p̄, 0̄)i+1(0̄, q̄)i+1e

πit0i,i+1(0̄, −̄q)i(−̄p, 0̄)ig
−1
2

where i = 1, ..., n− 1, and α = (p̄, q̄).

Proof. Let GΓ
i (z|τ) be the solution of the elliptic Γ-KZB system, such that

GΓ
i (z|τ) =z

t012
21 ...z

t012+...+t01,i−1

i−1,1 z
t0i,n+...+t0n−1,n

n,i ...z
t0n−1,n

n,n−1

× exp


− τ

2πi


∆0 +

1

2

∑

s≥0,γ∈Γ

as,γ


δs,γ − 2

∑

i<j

ads(xi)(t
−γ
ij )






 ,

when z21 ≪ ... ≪ zi−1,1 ≪ 1, zn,n−1 ≪ ... ≪ zn,i ≪ 1, τ −→ i∞ and (z, τ) ∈ DΓ
n (we set

zij = z0i − z0j as before). Then

GΓ
i (z+

n∑

j=i

δi|τ) =
n∏

j=i

(1̄, 0̄)jG
Γ
i (z|τ)γ2(A

M
2 )1...i−1,i...n,

because in the domain considered Ki(z|τ) is close to K2(z1, zn|τ)1...i−1,i...n (where K2(...)

corresponds to the 2-point system); on the other hand, FΓ(z|τ) = GΓ
i (z|τ){Φi}, which implies

the formula for γn(Ai). The formula for γn(Bi) is proved in the same way. Finally, the behavior

of F (n)
Γ (z|τ) for z021 ≪ ... ≪ z0n1 ≪ 1 is similar to that of a solution of the KZ equations and

we know that the twisted elliptic KZB connection is Γ-equivariant. This implies the formula

for γn(σ
α
i ).

Let us now finish the proof of Theorem 7.2.1. We set, for α ∈ Γ,

θ((α)i) ·A
10,20,...,i0,...,n0 = A10,20,...,iα,...,n0 .

changer a partir d’ici

Set Ã := γ2(A2), B̃ := γ2(B2). The image of the relation

A2(θ((1̄, 0̄)1) ·A
−1
3 ) = (σα

1 )
−1θ((−α)1) · (A

−1
2 (σα

1 )
−1)

by γ3 yields

Ã12,3 = {Φ}1,2,3Ã1,23θ((1̄, 0̄)1) ·(
({Φ}1,2,3)−1C̃α

1 θ((α)2)
(
{Φ}2,1,3Ã2,13θ ((1̄, 0̄)2) · (({Φ}

2,1,3)−1C̃α
1 )
))

.

This relation can be depicted as follows:
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(10

(1γ

20)

2γ)

30

30

A12,3

γ =

(10

(1γ

20)

2γ)

30

30

A1,23

γ

α

A2,13

γ

α

(TNAbis)

where γ = (1̄, 0̄) and α ∈ Γ. In the same way, we obtain

B̃12,3 = {Φ}1,2,3B̃1,23θ((0̄, 1̄)1) ·(
({Φ}1,2,3)−1(C̃α

1 )
−1θ((α)2)

(
{Φ}2,1,3B̃2,13θ ((0̄, 1̄)2) · (({Φ}

2,1,3)−1(C̃α
1 )
−1)
))

Accordingly, the image by γ3 of the lift of the relation (B3, A3A
−1
2 ) = (B3B

−1
2 , A3) = C23 to

B̄
Γ
1,n then gives

B̃12,3θ((0̄, 1̄)1,2)
(
Φ(Ã1,23)−1θ((−1, 0̄)1)

(
Φ−1Ã12,3θ((1̄, 0̄)1,2)

(
(B̃12,3)−1θ

((
0̄,−1

)
1,2

)
·X
)))

= Φ(B̃1,23)−1θ((0̄,−1)1)
(
Φ−1B̃12,3θ((0̄, 1̄)1,2)

(
Ã12,3θ((1̄, 0̄)1,2)

(
(B̃12,3)−1θ

(
(0̄,−1)1,2

)
· Y
)))

= Φ−1e2πit̄
1

23Φ,

where 1 = (1̄, 1̄),

X = ((Ã12,3)−1Φ−1θ((−1, 0̄)1,2)(ΦÃ
1,23θ((1̄, 0̄)1)Φ

−1)),

and

Y = (ΦB̃1,23θ((0̄, 1̄)1)((Φ)
−1(Ã12,3)−1)).

One can simply draw the l.h.s. of these double equation as follows: we simplify the paths by just

neglecting the associators and we suppose that the central portion of the torus corresponds to

the (0̄, 0̄)-labelled region with respect to the sublattice Λτ,Γ. Then we enumerate the different

movements (read from left to right in the l.h.s of the equation) of the marked points in the
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twisted configuration space:

z3
0

z2
0

z1
0

z3
(1,1)

z2
(1,0)

3
2

5

1
14

3

5

46

We can see that the z02 is only braided with z03 since z01 moved to z
(0̄,1̄)
1 in the first movement.

By applying x 7→ x∅,1,2, this identity implies

Ã(θ((1̄, 0̄)) · B̃)(θ((1̄, 1̄)) · Ã−1)(θ((0̄, 1̄)) · B̃
−1

) = e−2πit̄
0

12 .

Since the universal twited elliptic KZB connection is Γ-equivariant, then this equations are

also Γ-equivariant. Now, let us denote

S = B̃12,3θ((0̄, 1̄)1,2)
(
Φ(Ã1,23)−1θ((−1, 0̄)1)

(
Φ−1Ã12,3θ((1̄, 0̄)1,2)

(
(B̃12,3)−1θ

((
0̄,−1

)
1,2

)
·X
)))

.

We then have

e−2πi
∑M−1

i=0 t̄
(̄i,0̄)
12 =

SA1θ((1, 0̄)1,2,3) · (SA
−1
1 )A

(2)
1 θ((2, 0̄)1,2,3) · (SA

−2
1 ) · · ·A

(M−1)
1 θ((M − 1, 0̄)1,2,3) · (SA

−(M−1)
1 ).

Now denoting by T the r.h.s of this equation we get

e−2πi
∑

α∈Γ t̄α12 =

TB1θ((0, 1̄)1,2,3) · (TB
−1
1 )B

(2)
1 θ((0, 2̄)1,2,3) · (TB

−2
1 ) · · ·B

(N−1)
1 θ((0̄, N − 1)1,2,3) · (TB

−(N−1)
1 ).

By taking the log of this last equation we retrieve relation [x1, y2] =
∑

α∈Γ t̄
α
12. In the same

way, one can show that A(M) satisfy the elliptic first nonagon equation. The same will be

satisfied by B(N). The elliptic mixed equation for n = 2 will be then written as

(Ã(M), B̃(N)) = e
−2πi

∑
β∈Γ

t̄β12
.

Finally, one can see that if we take Γ to be trivial, we retrieve equations (22), (23), (24), (25)

and (26) in [24].
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In order to finish the proof of Theorem 7.2.1, one has to take different boundary conditions for

our KZB solutions. The couple eΓ(τ) := (AΓ(τ), BΓ(τ)) ∈ exp(̂t
Γ

1,2)× exp(̂t
Γ

1,2) is defined by

AΓ(τ) := J(z)−1θ(1̄, 0̄)J(z +
1

M
), BΓ(τ) := J(z)−1θ(0̄, 1̄)e

2πi
N

xJ(z +
τ

N
),

where J(z) is the unique solution defined over { a
M + b

N τ, for a, b ∈]0, 1[} such that we have

J(z) ≃ (−2πiz)t
0

at z −→ 0. The couple (ÃΓ, B̃Γ) ∈ exp(̂t
Γ

1,2)× exp(̂t
Γ

1,2) is defined by

ÃΓ := J̃(z)−1θ(1̄, 0̄)J̃(z +
1

M
), B̃Γ := J̃(z)−1θ(0̄, 1̄)e

2πi
N

xJ̃(z +
τ

N
),

where J̃(z) is the unique solution defined over { a
M + b

N τ, for a, b ∈]0, 1[} such that we have

J̃(z) ≃ zt
0

ϕ(τ) at z −→ 0, where

ϕ(τ) := exp


− τ

2πi


∆0 +

1

2

∑

s≥0,γ∈Γ

as,γ ξ̄
(2)
s,γ




 .

Thus, we have J(z) = (−2πi)t
0

J̃(z)ϕ(τ)−1 and J̃(z) = (−2πi)−t
0

J(z)ϕ(τ). We compute

(1̄, 0̄)J(z +
1

M
)J(z)−1 = (−2πi)t

0

(1̄, 0̄)J̃(z +
1

M
)ϕ(τ)−1ϕ(τ)J̃ (z)−1(−2πi)−t

0

(1̄, 0̄)J(z +
1

M
)J(z)−1 = Ad((−2πi)t

0

)((1̄, 0̄)J̃(z +
1

M
)J̃(z)−1)

This means that AΓ(τ) = Ad((−2πi)t
0

)((1̄, 0̄)Ã
Γ
). The same argument for BΓ(τ) and B̃

Γ

shows that BΓ(τ) = Ad((−2πi)t
0

)((0̄, 1̄)B̃
Γ
). We conclude that eΓ(τ) = (AΓ

+(τ), A
Γ
−(τ)) satisfy

(tN1) and (tN2). Next, (tE) is obtained in the same way as in the untwisted case (see [33]

Proposition 3.8) and this concludes the proof of Theorem 7.2.1.

Remark 7.2.5. The modularity relations of eΓ(τ), depending on the chosen congruence sub-

group of SL2(Z), will be investigated in forthcoming works by the second author.

7.3 The Eisenstein-Hurwitz series

For any γ ∈ Γ, recall that gγ(z, x|τ) := ∂xkγ(z, x|τ). Until now, the terms As,γ(τ) were

determined as the coefficients of the expansion

g−γ(0, x|τ) =
∑

s≥0

As,γ(τ)x
s.

In this section we give an explicit definition of these functions, show that they are modular

forms for the group SLΓ
2 (Z) and relate them to cyclotomic zeta values. We also determine their

normalized variant Ãs,γ(τ) with constant term 1 on their qN -expansion that we used to apply

[24, Proposition A.3] at the end of Section 11.1.

Recall that the Weierstrass function is the function ℘ : C −→ C given by

℘(z) =
1

z2
+

∑

(m,n)∈Z2−{(0,0)}

(
1

(z +m+ nτ)2
−

1

(m+ nτ)2

)
.
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It is even, periodic with respect to the latice (Z ⊕ τZ) and meromorphic with poles of order

exactly 2 in (Z⊕ τZ).

We have the following identities for z ∈ C− (Z ⊕ τZ):

℘(z, τ) = −

(
θ′

θ

)′
(z, τ) + c = −∂2

z (log(θ(z, τ))) + c,

for a constant c ∈ C. Next, for z in a suitable punctured neighborhood of z0 = 0 (i.e. in the

maximal punctured open disk centered at 0 which does not contain any non-zero lattice point),

we have a Laurent expansion

℘(z, τ) =
1

z2
+
∞∑

k=0

b2kz
2k =

1

z2
+
∞∑

k=1

(2k + 1)G2k+2(τ)z
2k,

where b2n = f(2n)(0)
(2n)! with f(z) = ℘(z) − 1

z2 . Here Gk(τ) are the Eisenstein series defined for

all k ≥ 1, by

Gk(τ) :=

∞∑

n=−∞




∞∑

m=−∞
m 6=0 if n=0

1

(m+ nτ)k


 = 2ζ(k) +

2 · (2πi)k

(k − 1)!

∞∑

m=1

σk−1(m)qm,

where σα(k) =
∑

d|k d
α. We have Gk(τ) = 0 if k is odd. We will also use the normalized

Eisenstein series Ek(τ), defined for k ≥ 4 even, by Ek := Gk(τ)
2ζ(k) so that, for n ≥ 1, we have

(2n+ 1)G2n+2(τ) = ã2nE2n+2(τ)

where

ã2n = −(2n+ 1)B2n+2(2iπ)
2n+2/(2n+ 2)!,

where Bn are the Bernoulli numbers given by x/(ex − 1) =
∑

r≥0(Br/r!)x
r . In particular, the

constant term in the q-expansion of the series E2n is equal to 1.

Finally, also recall the expansion θ(x, τ) = x+ 2πi∂τ log η(τ)x
3 +O(x5).

7.3.1 Twisted Eisenstein series

First of all, set γ = 0. We get, as in [24, Section 4.1],

g0(0, x|τ) = (θ′/θ)′(x) + 1/x2 = −
∑

k≥0

ã2kE2k+2(τ)x
2k ,

where ã0 = π2/3, E2(τ) =
24
2πi∂τ log η(τ), and for n ≥ 1, .

We now concentrate to the case where γ ∈ Γ−0. Let γ ∈ Γ−{0} and let γ̃ = (c0, c) ∈ Λτ,Γ−Λτ

be any lift of γ.
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By using the identity ∂xf(x) = ∂x(log(f(x))) × f(x), we get

gγ(z, x|τ) = ∂xkγ(z, x|τ)

=

(
2πic+

(
θ′

θ

)
(z + x− γ̃)−

(
θ′

θ

)
(x)

)
e2πicx

θ(z − γ̃ + x)

θ(z − γ̃)θ(x)
+

1

x2

=

∞∑

n=0

g
(n)
γ (0, x|τ)

n!
zn.

Let us determine g−γ(0, x|τ) =
∑

s≥0 As,γ(τ)x
s =

∑
s≥0

g
(s)
−γ (0,0|τ)

s! xs. We have

g−γ(0, x|τ) = lim
z→0

((
2πic+

(
θ′

θ

)
(z + x+ γ̃)−

(
θ′

θ

)
(x)

)
e2πicx

θ(z + γ̃ + x)

θ(z + γ̃)θ(x)

)
+

1

x2

=

(
2πic+

(
θ′

θ

)
(x + γ̃)−

(
θ′

θ

)
(x)

)
e2πicx

θ(γ̃ + x)

θ(γ̃)θ(x)
+

1

x2

= (2πic+

(
θ′

θ

)
(γ̃)−

1

x
)(1 + 2πicx+ 2πicx2)(

1

x
+

(
θ′

θ

)
(γ̃)) +

1

x2
+ o(x)

= (2πic)2 −

(
θ′

θ

)2

(γ̃)− 2πic

(
θ′

θ

)
(γ̃)− πic+ o(x).

Set Fγ(x) := e2πicx θ(γ̃+x)
θ(γ̃)θ(x) so that

log(Fγ(x)) = log(θ(γ̃ + x)) − log(θ(x)) + 2πicx− log(θ(γ̃)). (7.2)

We have

∂2
x(log(Fγ(x))) = ∂2

x(log(θ(γ̃ + x))) − ∂2
x(log(θ(x)))

= ℘(x)− ℘(γ̃ + x)

=
1

x2
−

1

(x+ γ̃)2
+

∑

(m,n)∈Z2−{(0,0)}

(
1

(x+m+ nτ)2
−

1

(x+ γ̃ +m+ nτ)2

)
.

Now let s > 0. Recall the expansion

1

(x+ y)2
=
∑

s>0

as
xs

ys+2
,

where as is the generalized binomial coefficient
(
−2

s

)
= (−1)s

(
2 + s− 1

s

)
= (−1)s(s+ 1).

On the one hand, for y = m+ nτ , we have

H(x, τ) :=
∑

(m,n)∈Z2−{(0,0)}

(
1

(x+m+ nτ)2
−

1

(m+ nτ)2

)

=
∑

s>1

(2s+ 1)G2s+2(τ)x
2s.
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On the other hand, for y = m+ nτ + γ̃, we obtain

Hγ(x, τ) :=
∑

(m,n)∈Z2−{(0,0)}

(
1

(x+ γ̃ +m+ nτ)2
−

1

(γ̃ +m+ nτ)2

)

=
∑

(m,n)∈Z2−{(0,0)}

∑

s>1

1

(m+ nτ + γ̃)2
as

xs

(γ̃ +m+ nτ)s

=
∑

s>1

∑

(m,n)∈Z2−{(0,0)}

as
xs

(γ̃ +m+ nτ)s+2

=
∑

s>1

(−1)s(s+ 1)Gs+2,γ(τ)x
s,

where, for s ≥ 3, we define

Gs,γ(τ) =
∑

(m,n)∈Z2−{(0,0)}

1

(m+ nτ + γ̃)s
.

Then, for s ≥ 3, we write Bs,γ(τ) = Gs(τ)−Gs,γ(τ) and we have

H(x, τ) −Hγ(x, τ) =
∑

s>1

(−1)s(s+ 1)Bs+2,γ(τ)x
s.

and we write Ās,γ(τ) = Gs(τ) +Gs,γ(τ) = −Bs,γ(τ), as H(x, τ) and Gs(τ) are even. If Γ is

the trivial group, Ās,γ(τ) reduces to twice the classical Eisenstein series Gs(τ).

Notice that Gs,γ(τ) is not pair for the variable x but is pair for the variable x + γ i.e. it is

invariant under the transformation x + γ̃ 7→ −x − γ̃. Thus, we obtain Gs,γ = (−1)sGs,−γ ,

which implies that Ās,γ = (−1)sĀs,−γ .

In conclusion, we obtain

∂2
x(log(Fγ(x))) =

1

x2
−

1

(x+ γ̃)2
+
∑

s>1

(−1)s+1(s+ 1)Ās+2,γ(τ)x
s,

which gives

log(Fγ(x)) = log(x) − log(x+ γ̃) +
∑

s>1

(−1)s+1 Ās+2,γ(τ)

s+ 2
xs+2 + lx+m,

Thus,

Fγ(x) = −x(x+ γ̃) exp


∑

s>1

(−1)s+1 Ās+2,γ(τ)

s+ 2
xs+2 + 2πicx− log(θ(γ̃))




=
−x(x+ γ̃)

θ(γ̃)
e2πicx exp


∑

s>1

(−1)s+1 Ās+2,γ(τ)

s+ 2
xs+2




where the term +2πicx − log(θ(γ̃)) comes from the identification of the above formula with

equation (7.2).
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We conclude that

g−γ(0, x|τ) = ∂x(Fγ(x)) +
1

x2

=
1

x2
+
−2x− γ̃

θ(γ̃)
e2πicx exp


∑

s>1

(−1)s+1 Ās+2,γ(τ)

s+ 2
xs+2




−2πic
x(x + γ̃)

θ(γ̃)
e2πicx exp


∑

s>1

(−1)s+1 Ās+2,γ(τ)

s+ 2
xs+2




−
−x(x+ γ̃)

θ(γ̃)
e2πicx


∑

s>1

(−1)s+1Ās+2,γ(τ)x
s+1


 exp


∑

s>1

(−1)s+1 Ās+2,γ(τ)

s+ 2
xs+2


 .

Now, we define G2,γ(τ) by

G2,γ(τ) =

∞∑

n=−∞




∞∑

m=−∞
m 6=0 if n=0

1

(γ̃ +m+ nτ)2


 .

and Ā2,γ(τ) := G2(τ) +G2,γ(τ). We also define

A2,γ(τ) := (2πic)2 −

(
θ′

θ

)2

(γ̃)− 2πic

(
θ′

θ

)
(γ̃)− πic.

7.3.2 Modularity of the Eisenstein-Hurwitz series As,γ

Consider for s ≥ 2, the function

Gs,γ(τ) :=
∞∑

n=−∞




∞∑

m=−∞
m 6=0 if n=0

1

(m+ nτ + γ̃)k


 .

and denote as above Ās,γ(τ) = Gs(τ) +Gs,γ(τ).

Proposition 7.3.1. Let s ≥ 3. The function Ās,γ is a modular form of weight s for SLΓ
2 (Z).

Proof. We will proceed as follows. First, we will show the modular quasi-invariance. Then we

will show holomorphy at the cusps by characterising holomorphy in terms of a qN -expansion,

where qN = e2πiτ/N (see [26, Definition 1.2.3]). For s ≥ 3, the series Ās,γ(τ) converge normally.

Let us first show that, if α =

(
a b

c d

)
∈ SLΓ

2 (Z), then Ās,γ(α · τ) = (cτ + d)sĀs,γ(τ). We

already know that the Eisenstein series Gs(τ) are modular forms of weight s, for s ≥ 4 and

G3(τ) = 0. We have

Gs,γ(τ) =
∑

(m,n)∈Z2−{(0,0)}

1

(m+ u
M + (n+ v

N )τ)s
.

Thus,
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Gs,γ(α · τ) =
∑

(m,n)∈Z2−{(0,0)}

1

(m+ u
M + (n+ v

N )aτ+b
cτ+d)

s

= (cτ + d)s
∑

(m,n)∈Z2−{(0,0)}

1

(md+ nb+ (mc+ na)τ + u
M d+ v

N b+ ( u
M c+ v

N a)τ)s

= (cτ + d)s
∑

(m,n)∈Z2−{(0,0)}

1

(m+ nτ + γ̃′)s

for some lift γ̃′ of γ ∈ Γ. The last line holds by the fact that, since a ≡ 1 mod M , d ≡ 1 mod

N , b ≡ 0 mod N and c ≡ 0 mod M , we have u
M d ∈ Z

M , v
N b ∈ Z, u

M c ∈ Z and v
N a ∈ Z

N . Then

we can rewrite the term md+ nb+ (mc+ na)τ as m+ nτ by applying

(
n m

)
7−→

(
n m

)(a b

c d

)
,

and we can rewrite the term u
M d+ v

N b+ ( u
M c+ v

N a)τ as m+ nτ + γ̃′ by applying

(
v
N

u
M

)
7−→

(
v
N

u
M

)(a b

c d

)
,

where

(
a b

c d

)
is invertible. Finally, as we already know that Ās,γ does not depend on the

choice of the lift γ̃ of γ, we obtain Gs,γ(α · τ) = (cτ + d)sGs,γ(τ). The function Ās,γ being

holomorphic on h, it remains to show that it is also holomorphic at all cusps of the compactified

modular curve X(Γ).

Recall that the Hurwitz zeta function is defined by

ζ(s, z) :=
∑

m≥0

1

(m+ z)s
,

where s, q ∈ C are such that Re(s) > 1 and Re(q) > 0.

Lemma 7.3.2. The function Gs,γ(τ) admits a qN -expansion, where qN = e2πiτ/N .

Proof. We have

Gs,γ(τ) =
∑

m∈Z

1

(m+ γ̃)s
+
∑

n∈Z−0

∑

m∈Z

1

(m+ nτ + γ̃)s

=
∑

m∈Z

1

(m+ γ̃)s
+
∑

n∈Z−0

∑

m∈Z

1

(m+ u
M + (n+ v

N )τ)s

=
∑

m∈Z

1

(m+ γ̃)s
+

(−2iπ)s

(s− 1)!

∑

n−∈Z−0

∑

r≥1

rs−1e2πir(
u
M

+τ(n+ v
N

))

=
∑

m∈Z

1

(m+ γ̃)s
+

(−2πi)s

(s− 1)!

∑

n∈Z−0

∑

r≥1

rs−1e
2πiru

M q
(Nn+v)r
N

=
∑

m≥0

1

(m+ γ̃)s
+ (−1)s

∑

m≥1

1

(m− γ̃)s
+

(−2πi)s

(s− 1)!

∑

n≥1

∑

r≥1

rs−1e
2πiru

M q
(Nn+v)r
N
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+
(2πi)s

(s− 1)!

∑

n≥1

∑

r≥1

rs−1e
−2πiru

M q
(Nn−v)r
N

= −
1

γ̃s
+ ζ(s, γ) + (−1)sζ(s,−γ)

+
(−2πi)s

(s− 1)!

∑

n≥1

∑

r≥1

rs−1e
2πiru

M q
(Nn+v)r
N +

(2πi)s

(s− 1)!

∑

n≥1

∑

r≥1

rs−1e
−2πiru

M q
(Nn−v)r
N ,

where ζ(s, γ) is the Hurwitz zeta function evaluated at (s, γ).

This shows that Gs,γ(τ) is N -periodic and is holomorphic at i∞ and we define, for γ = u/M ,

as,γ = −
1

γ̃s
+ ζ(s, γ) + (−1)sζ(s,−γ)

to be the constant term in this expansion (it also depends on τ but logarithmically). In other

words, Gs,γ(τ) has constant term equal to as,γ if γ = u/M and 0 else.

The term as,γ tends to 0 when τ −→ i∞.

We now show that this function is also holomorphic at the remaining cusps of the modular

curve X(Γ).

Lemma 7.3.3. For all α ∈ SL2(Z), the function

τ 7→ (cτ + d)−sGs,γ(α · τ)

has a qN -expansion.

Proof. We have

(cτ + d)−sGs,γ(α · τ) =
∑

(m,n)∈Z2−{(0,0)}

1

(md+ nb+ (mc+ na)τ + u
M d+ v

N b+ ( u
M c+ v

N a)τ)s

=
∑

(m,n)∈Z2−{(0,0)}

1

((m+ u
M )d+ ( v

N + n)b + (mc+ na+ u
M c+ v

N a)τ)s

=
∑

(m,n)∈Z2−{(0,0)}

1

(md+ u
M d+ ( v

N + n)b+ (mc+ na+ u
M c+ v

N a)τ)s

=
∑

(m,n)∈Z2−{(0,0)}

1(
d
(
m+ 1

d

(
u
M d+ ( v

N + n)b+ (mc+ na+ u
M c+ v

N a)τ
)))s

=
1

ds

∑

(m,n)∈Z2−{(0,0)}

1(
m+ 1

d

(
u
M d+ ( v

N + n)b + (mc+ na+ u
M c+ v

N a)τ
))s ,
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By denoting z = 1
d

(
u
M d+ ( v

N + n)b + (mc+ na+ u
M c+ v

N a)τ
)
, we have

(cτ + d)−sGs,γ(α · τ) =
1

ds

∑

(m,n)∈Z2−{(0,0)}

1

(m+ z)s

=
1

ds
(−2πi)s

(s− 1)!

∑

n∈Z

∑

r≥1

rs−1e2πirz

=
1

ds
(−2πi)s

(s− 1)!

∑

n∈Z

∑

r≥1

rs−1e2πir
1
d (

u
M

d+( v
N

+n)b+(mc+na+ u
M

c+ v
N

a)τ)

=
1

ds
(−2πi)s

(s− 1)!

∑

n∈Z

∑

r≥1

rs−1e2πir(m+nb
d
+ u

M
+ vb

Nd
)e2πirτ(

mc+na
d

+ uc
Md

+ va
Nd

)

=
1

ds
(−2πi)s

(s− 1)!

∑

n∈Z

∑

r≥1

rs−1e2πir(m+nb
d
+ u

M
+ vb

Nd
)e

2πirτ
N

(N(mc+na
d

+ uc
Md

)+ va
d
)

=
1

ds
(−2πi)s

(s− 1)!

∑

n∈Z

∑

r≥1

rs−1e2πir(m+nb
d
+ u

M
+ vb

Nd
)q

(N(mc+na
d

+ uc
Md

)+ va
d
)r

N ,

which concludes the proof.

We conclude that, for all α ∈ SLΓ
2 (Z), the function

τ 7→ (cτ + d)−sĀs,γ(α · τ)

is holomorphic at i∞, which concludes the proof.

Remark 7.3.4. From the expression of the function (cτ + d)−sĀs,γ(α · τ), we can notice that

our functions Ās,γ will degenerate at all cusps of X(Γ) to functions closely related to cyclotomic

zeta values. More precisely, the function
∑

γ∈Γ−{0} Ās,γ(τ) has a qN -expansion whose constant

term (in the sense that if τ −→ i∞, its remaining non zero component) is

∑

1≤u≤M−1

(
−(

M

u
)s + ζ(s,

u

M
) + (−1)sζ(s,−

u

M
)

)
.

7.4 Representations of Cherednik algebras

7.4.1 The Cherednik algebra of a wreath product

In this paragraph Γ is any finite group such that Γ ⊂ Aut(C), k = (kα)α ∈ CΓ is such that

kα = k−α and G := Γ ≀ Sn. We define the Cherednik algebra HΓ
n (k) as the quotient of the

algebra C〈x1, . . . , xn, y1, . . . , yn〉⋊C[G] by the relations

•
∑

i xi =
∑

i yi = 0

• [xi, xj ] = 0 = [yi, yj ],

• [xi, yj ] =
1
n −

∑
α∈Γ kαs

α
ij (i 6= j),

where sαij = (αi − αj)sij , and sij is the permutation of i and j.
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Remark 7.4.1. As Γ ⊂ Aut(C), HΓ
n (k) admits a geometric construction. Define X := {z ∈

Cn|
∑

i zi = 0} and consider the following action of G on it: Sn acts in an obvious way and

αi(z) = (α(i) −
1

n

∑

j

α(j))(z),

where α(k) is the action of α ∈ Γ on the k-th factor of Cn. Following [40] one can construct a

Cherednik algebra H1,k,0(X,G) on X/G. It can be defined as the subalgebra of Diff(X)⋊C[G]

generated by the function algebra OX , the group G and the Dunkl-Opdam operators Di −Dj,

where

Di = ∂zi +
∑

j:j 6=i
α∈Γ

kα
1− sαij

(−α)(zi)− α(zj)
.

One can then prove that there is a unique isomorphism of algebras HΓ
n (k) −→ H1,k,0(X,G)

defined by

xi 7−→zi,

yi 7−→Di −
1

n

∑

j

Dj ,

G ∋ g 7−→g.

7.4.2 Morphisms from t̄Γ1,n to the Cherednik algebra

Proposition 7.4.2. For any a, b ∈ C there is a morphism of Lie algebras φa,b : t̄
Γ
1,n −→ HΓ

n (k)

defined by

x̄i 7−→ a xi

ȳi 7−→ b yi ,

t̄αij 7−→ ab

(
1

n
− kαs

α
ij

)
.

Proof. Straightforward from the alternative presentation of t̄Γ1,n in Lemma 4.3.5.

Hence any representation V of HΓ
n (k) yields a family of flat connections ∇(V )

a,b over the config-

uration space C(E, [n],Γ).

7.4.3 Monodromy representations of Hecke algebras

Let E be an elliptic curve and Ẽ −→ E the Γ-covering as in §6.1.1. Define X = Ẽn/Ẽ

and G = (Γ ≀ Sn)/Γ
diag. Then the set X ′ ⊂ X of points with trivial stabilizer is such that

X ′/G = C(E, [n],Γ).

Let us recall from [40] the construction of the Hecke algebra HΓ
n(q, t) of X/G. It is the quotient

of the group algebra of the orbifold fundamental group B̄Γ
1,n of C(E, [n],Γ) by the additional



7.4. REPRESENTATIONS OF CHEREDNIK ALGEBRAS 235

relations (Tα − q−1tα)(Tα + q−1t−1α ) = 0, where Tα is an element of B̄Γ
1,n homotopic as a free

loop to a small loop around the divisor Yα := ∪i6=j{zi = α · zj} in X/G, in the counterclokwise

direction.1

Let us consider the flat connection ∇(V )
a,b and set

q = e−2πiab/n , tα = e−2πikαab .

Then the monodromy representation B̄Γ
1,n −→ GL(V ) of ∇(V )

a,b obviously gives a representation

ofHΓ
n(q, t) either if V is finite dimensional or if a, b are formal parameters. In particular, taking

a = b a formal parameter and V = HΓ
n (k), one obtains an algebra morphism

HΓ
n(q, t) −→ HΓ

n (k)[[a]] .

We do not know if this morphism is an isomorphism upon inverting a.

7.4.4 The modular extension of φa,b.

Now assume that a, b 6= 0.

Proposition 7.4.3. The Lie algebra morphism φa,b can be extended to the algebra U (̄tΓ1,n ⋊

dΓ)⋊G by the formulas

φa,b(s
α
ij) = sαij ,

φa,b(d) =
1

2

∑

i

(xiyi + yixi), φa,b(X) = −
1

2
ab−1

∑

i

x2i ,

φa,b(∆0) =
1

2
ba−1

∑

i

y2i , φa,b(ξs,γ) = −a
s−1b−1

∑

i<j

(γ · (xi − xj))
s.

Thus, the flat connections ∇Γ
a,b extend to flat connections onMΓ

1,[n].

1Here the sugroup of G acting trivially on Yα is the order 2 cyclic subgroup generated by sαij .
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Chapter 8

Multiple-zeta values at torsion

points

We propose in this chapter a twisted version uΓ of Pollack’s stable derivation algebra contructed

in [88] by relating it to the twisted derivation algebra dΓ constructed in subsection 6.2. Next,

we state and prove a differential equation in τ for the ellipsitomic KZB associator and use the

iterated integral machinery developped in [34] to give a well-defined notion of elliptic multiple

zeta values at torsion points, closely related to that which appeared in the physics paper [19].

8.1 The Lie algebra uΓ of special twisted derivations

We give a definition of the twisted version of Pollack’s Lie algebra u of special derivations.

8.1.1 The case of the twisted configuration space Conf(E, n,Γ)

Proposition 8.1.1. There is a unique bigraded Lie algebra morphism

ρ : dΓ −→ tΓ1,n ⋊ dΓ

ẽ, f̃ , h̃ 7−→ ẽ, f̃ , h̃

δs,γ 7−→ δ(n)s,γ := δs,γ +
∑

16i<j6n

(adxi)
st−γij + (− adxi)

stγij .

This induces a group morphism GΓ
1 −→ GΓ

n that will be denoted h 7→ h̃.

237
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Proof. Let us first show that the relation δs,γ = (−1)sδs,−γ is preserved by ρ:

(−1)sδ
(n)
s,−γ = (−1)sδs,−γ +

∑

16i<j6n

(−1)s((adxi)
stγij + (− adxi)

st−γij )

= δs,γ +
∑

16i<j6n

(−1)s(adxi)
stγij + (−1)s(−1)s(adxi)

st−γij

= δs,γ +
∑

16i<j6n

(adxi)
st−γij + (− adxi)

stγij

= δ(n)s,γ .

Next, we show that the highest weight relations are preserved for δ(n)s,γ i.e. that we have relations

[ẽ, δ
(n)
s,γ ] = 0, [h̃, δ(n)s,γ ] = sδ

(n)
s,γ and ads+1(f̃)(δ

(n)
s,γ ) = 0. The relation [ẽ, δ

(n)
s,γ ] = 0 is obviously

satisfied. Next, we have

[h̃, δ(n)s,γ ] = sδs,−γ + [h̃,
∑

16i<j6n

(adxi)
st−γij + (− adxi)

stγij ]

= sδs,−γ +
∑

16i<j6n

[h̃, (adxi)
st−γij ] + [h̃, (− adxi)

stγij ]

= sδs,−γ +
∑

16i<j6n

s(adxi)
st−γij + s(− adxi)

stγij

= sδ(n)s,γ ,

and

ads+1(f̃)(δ(n)s,γ ) = 0 + ads+1(f̃)


 ∑

16i<j6n

(adxi)
st−γij + (− adxi)

stγij




=
∑

16i<j6n

(f̃) · · ·
n times

(f̃)
(
(adxi)

st−γij + (− adxi)
stγij
)

=
∑

16i<j6n

(f̃) · · ·
n−1 times

(f̃)
(
ad(yi)(adxi)

s−1t−γij + ad(yi)(− adxi)
s−1tγij

)

=
∑

16i<j6n

(f̃)
(
(ad yi)

st−γij + (− ad yi)
stγij
)

= 0.

This finishes the proof.

Remark 8.1.2. Since
∑

γ∈Γ

As,γ(adxi)
s(t−γij ) =

∑

γ∈Γ

(−1)sAs,−γ(adxi)
s(t−γij ) =

∑

γ∈Γ

As,−γ(− adxi)
stγij ,

we obtain
1

2

∑

γ∈Γ

As,γ((adxi)
s(t−γij ) + (− adxi)

s(tγij)) =
∑

γ∈Γ

As,γ(adxi)
s(t−γij ).

Recall that there is a bigraded Lie algebra morphism

dΓ −→ Der(tΓ1,n)

e, f, h 7−→ ξ(n)e , ξ
(n)
f , ξ

(n)
h

δs,γ 7−→ ξ(n)s,γ ,
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where ξ
(n)
e := ξe, ξ

(n)
f := ξf , ξ

(n)
h := ξh are the usual derivations given by the sl2-basis {e, f, h}

and

• ξ
(n)
s,γ (xi) = 0,

• ξ
(n)
s,γ (yi) =

∑
j:j 6=i

∑
p+q=s−1

∑
β∈Γ[(adxi)

ptβ−γij , (− adxi)
qtβij ],

• ξ
(n)
s,γ (tαij) = [tαij , (adxi)

stα−γij + (− adxi)
stα+γ

ij ].

This morphism induces a morphism dΓ −→ Der(̄tΓ1,n) and we denote ξ̄
(n)
e , ξ̄

(n)
f , ξ̄

(n)
h and ξ̄

(n)
s,γ

the images of e, f, h and δs,γ by this map.

Proposition 8.1.3. The derivation ξ̃
(n)
s,γ := ξ

(n)
s,γ +

∑
16i<j6n

[(adxi)
st−γij + (− adxi)

stγij ,−] of

Der(tΓ1,n) is given on generators by

ξ̃(n)s,γ (xi) =
∑

j;i6=j

− (adxi)
s+1(t−γij ) + (− adxi)

s+1(tγij)

and

ξ̃(n)s,γ (t
α
ij) =

∑

k 6=j

[−((adxk)
stα−γkj + (− adxk)

stα+γ
kj ) + (adxk)

st−γkj + (− adxk)
stγkj , t

α
ij ].

Proof. We have

ξ̃(n)s,γ (xi) =
∑

j<k

[(adxj)
st−γjk + (− adxj)

stγjk, xi]

=
∑

j<k

[(adxj)
st−γjk , xi] + [(− adxj)

stγjk, xi]

=
∑

i<k

[(adxi)
st−γik , xi] + [(− adxi)

stγik, xi] +
∑

j<i

[(adxj)
st−γji , xi] + [(− adxj)

stγji, xi]

=
∑

i<j

[(adxi)
st−γij , xi] + [(− adxi)

stγij , xi] +
∑

j<i

[(− adxi)
stγij , xi] + [(adxi)

st−γij , xi]

=
∑

j;i6=j

[(adxi)
s(t−γij ), xi] + [(− adxi)

s(tγij), xi]

=
∑

j 6=i

− (adxi)
s+1(t−γij ) + (− adxi)

s+1(tγij).

Next,

ξ̃(n)s,γ (t
α
ij) = [tαij , (adxi)

stα−γij + (− adxi)
stα+γ

ij ] +
∑

k<l

[(adxk)
st−γkl + (− adxk)

stγkl, t
α
ij ]

= [tαij , (adxi)
stα−γij + (− adxi)

stα+γ
ij ] +

∑

i<j

[(adxi)
st−γij + (− adxi)

stγij , t
α
ij ]

+
∑

k<j,k 6=i

[(adxk)
st−γkj , t

α
ij ] +

∑

j<l

[(adxj)
st−γjl , tαij ] +

∑

i<l,l 6=j

[(adxj)
st−γil , tαij ]

+
∑

k<j,k 6=i

[(− adxk)
stγkj , t

α
ij ] +

∑

j<l

[(− adxj)
stγjl, t

α
ij ] +

∑

i<l,l 6=j

[(− adxj)
stγil, t

α
ij ]
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+
∑

k<i

[(adxk)
st−γki , t

α
ij ] +

∑

k<i

[(− adxk)
stγki, t

α
ij ]

= [tαij , (adxi)
stα−γij + (− adxi)

stα+γ
ij ] +

∑

i<j

[(adxi)
st−γij + (− adxi)

stγij , t
α
ij ]

+
∑

k<j,k 6=i

[(adxk)
st−γkj , t

α
ij ] +

∑

j<l

[(− adxl)
st−γjl , tαij ] +

∑

i<l,l 6=j

[(− adxl)
st−γil , tαij ]

+
∑

k<j,k 6=i

[(− adxk)
stγkj , t

α
ij ] +

∑

j<l

[(adxl)
stγjl, t

α
ij ] +

∑

i<l,l 6=j

[(adxl)
stγil, t

α
ij ]

+
∑

k<i

[(adxk)
st−γki , t

α
ij ] +

∑

k<i

[(− adxk)
stγki, t

α
ij ]

= [tαij , (adxi)
stα−γij + (− adxi)

stα+γ
ij ] +

∑

i<j

[(adxi)
st−γij + (− adxi)

stγij , t
α
ij ]

+
∑

k<j,k 6=i

[(adxk)
st−γkj , t

α
ij ] +

∑

j<k

[(− adxk)
st−γjk , tαij ] +

∑

i<k,k 6=j

[(− adxk)
st−γik , tαij ]

+
∑

k<j,k 6=i

[(− adxk)
stγkj , t

α
ij ] +

∑

j<k

[(adxk)
stγjk, t

α
ij ] +

∑

i<k,k 6=j

[(adxk)
stγik, t

α
ij ]

+
∑

k<i

[(adxk)
st−γki , t

α
ij ] +

∑

k<i

[(− adxk)
stγki, t

α
ij ]

= [tαij , (adxi)
stα−γij + (− adxi)

stα+γ
ij ] +

∑

i<j

[(adxi)
st−γij + (− adxi)

stγij , t
α
ij ]

+
∑

k<j,k 6=i

(adxk)
s[t−γkj , t

α
ij ] +

∑

j<k

(− adxk)
s[t−γjk , tαij ] +

∑

i<k,k 6=j

(− adxk)
s[t−γik , tαij ]

+
∑

k<j,k 6=i

(− adxk)
s[tγkj , t

α
ij ] +

∑

j<k

(adxk)
s[tγjk, t

α
ij ] +

∑

i<k,k 6=j

(adxk)
s[tγik, t

α
ij ]

+
∑

k<i

(adxk)
s[t−γki , t

α
ij ] +

∑

k<i

(− adxk)
s[tγki, t

α
ij ]

= [tαij , (adxi)
stα−γij + (− adxi)

stα+γ
ij ] +

∑

i<j

[(adxi)
st−γij + (− adxi)

stγij , t
α
ij ]

+
∑

k<j,k 6=i

(adxk)
s[t−γkj , t

α
ij ] +

∑

j<k

(− adxk)
s[t−γjk , tαij ]−

∑

i<k,k 6=j

(− adxk)
s[tα+γ

kj , tαij ]

+
∑

j<k

(adxk)
s[tγjk, t

α
ij ]−

∑

i<k,k 6=j

(adxk)
s[tα−γkj , tαij ]−

∑

k<i

(− adxk)
s[tα+γ

kj , tαij ]

+
∑

k<j,k 6=i

(− adxk)
s[tγkj , t

α
ij ]−

∑

k<i

(adxk)
s[tα−γkj , tαij ]

= −[(adxi)
stα−γij , tαij ]− [(− adxi)

stα+γ
ij , tαij ] +

∑

i<j

[(adxi)
st−γij , tαij ] + [(− adxi)

stγij , t
α
ij ]

−
∑

i<k,k 6=j

(adxk)
s[tα−γkj , tαij ] +

∑

k<j,k 6=i

(adxk)
s[t−γkj , t

α
ij ] +

∑

j<k

(adxk)
s[t−γkj , t

α
ij ]

+
∑

k<j,k 6=i

(− adxk)
s[tγkj , t

α
ij ] +

∑

j<k

(− adxk)
s[tγkj , t

α
ij ]−

∑

k<i

(− adxk)
s[tα+γ

kj , tαij ]

−
∑

i<k,k 6=j

(− adxk)
s[tα+γ

kj , tαij ]−
∑

k<i

(adxk)
s[tα−γkj , tαij ]
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= −[(adxi)
stα−γij , tαij ]− [(− adxi)

stα+γ
ij , tαij ] +

∑

i<j

[(adxi)
st−γij , tαij ] + [(− adxi)

stγij , t
α
ij ]

−
∑

k 6=i,j

(adxk)
s[tα−γkj , tαij ] +

∑

k 6=i,j

(adxk)
s[t−γkj , t

α
ij ]−

∑

k 6=i,j

(− adxk)
s[tα+γ

kj , tαij ]

+
∑

k 6=i,j

(− adxk)
s[tγkj , t

α
ij ]

= −[(adxi)
stα−γij , tαij ]− [(− adxi)

stα+γ
ij , tαij ] +

∑

i<j

[(adxi)
st−γij , tαij ] + [(− adxi)

stγij , t
α
ij ]

−
∑

k 6=i,j

(adxk)
s[tα−γkj , tαij ]−

∑

k 6=i,j

(− adxk)
s[tα+γ

kj , tαij ] +
∑

k 6=i,j

(adxk)
s[t−γkj , t

α
ij ]

+
∑

k 6=i,j

(− adxk)
s[tγkj , t

α
ij ]

=
∑

k 6=j

(
[−(adxk)

stα−γkj , tαij ]− [(− adxk)
stα+γ

kj , tαij ] + [(adxk)
st−γkj , t

α
ij ] + [(− adxk)

stγkj , t
α
ij ]
)

=
∑

k 6=j

[−((adxk)
stα−γkj + (− adxk)

stα+γ
kj ) + (adxk)

st−γkj + (− adxk)
stγkj , t

α
ij ].

This finishes the proof.

Remark 8.1.4. In particular, there is a Lie algebra morphism

tΓ1,n ⋊ dΓ −→ Der(tΓ1,n)

e, f, h 7−→ ξ(n)e , ξ
(n)
f , ξ

(n)
h

δ(n)s,γ 7−→ ξ̃(n)s,γ

and the equality

ξ̃(n)s,γ

(∑

α∈Γ

tij

)
= [ξ̃(n)s,γ (xi), yj ] + [xi, ξ̃

(n)
s,γ (yj)] (8.1)

implies that it is sufficient to determine the image of the xi’s and all the tαij’s to fully determine

ξ̃
(n)
s,γ .

8.1.2 The Lie algebra of twisted stable derivations

Recall that the fibers at τ of the punctured universal curve over MΓ
1,1 are the spaces E×τ,Γ

consisting of an elliptic curve minus torsion points indexed by a finite group Γ = Z/MZ×Z/NZ

is defined as the space
(
C−

{(
1
M

)
Z+

(
τ
N

)
Z
})

/Λτ , where Λτ = Z+ τZ.

Lemma 8.1.5. The de-Rham fundamental Lie algebra p(E×τ,Γ) of E×τ,Γ is the C-Lie algebra

generated by symbols x, y and tα, for α ∈ Γ, such that [x, y] =
∑
α∈Γ

tα.

Proof. The space E×τ,Γ can be identified with the reduced twisted configuration space C(Eτ,Γ, 2,Γ)

whose de-Rham fundamental Lie algebra is t̄Γ1,2, which is nothing but the C-Lie algebra gener-

ated by symbols x := x̄1, y := ȳ2 and tα := t̄α12, for α ∈ Γ, such that [x, y] =
∑
α∈Γ

tα.
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For any s ∈ N and γ ∈ Γ we set

Ds,γ :=
∑

p+q=s−1

∑

β∈Γ

[(adx)ptβ−γ , (− adx)qtβ ],

and (Cs,γ)α := (adx)stα−γ + (− adx)stα+γ . Observe that (Ds,γ , Cs,γ) = (−1)s(Ds,−γ , Cs,−γ).

One has shown (e.g. Proposition 6.2.4 and the fact that Ds,γ(x, t
β) = Ds,γ(−x, t−β)) that the

bidegree of (Ds,γ , Cs,γ) is (s+ 1, 1). The derivation ξ̄
(2)
s,γ is then given by

• ξ̄
(2)
s,γ(x) = 0,

• ξ̄
(2)
s,γ(y) = Ds,γ(x, t

β),

• ξ̄
(2)
s,γ(tα) = [tα, Cα

s,γ(x, t
β)].

The image of δs,γ +(adx)st−γ +(− adx)stγ under the Lie algebra morphism dΓ ⋊Der(̂̄tΓ1,2)→

Der(p(E×τ,Γ)) yields the derivation ¯̃ξ
(2)
s,γ given by

• ¯̃
ξ
(2)
s,γ(x) = −(adx)s+1(t−γ) + (− adx)s+1(tγ),

• ¯̃
ξ
(2)
s,γ(tα) = [−((adx)stα−γ + (− adx)stα+γ) + (adx)st−γ + (− adx)stγ , tα] .

Let uΓ be the Lie subalgebra of Der(p(E×τ,Γ)) generated by the derivations ¯̃ε
(2)
s,γ for s > 1 and

γ ∈ Γ, defined by

• ¯̃ε
(2)
s,γ(x) = (adx)s(t−γ) + (− adx)s(tγ),

• ¯̃ε
(2)
s,γ(tα) = [−((adx)stα−γ + (− adx)stα+γ) + (adx)st−γ + (− adx)stγ , tα] .

Let u be the Pollack’s Lie subalgebra of Der0(f2(a, b)) generated by the εs ∈ Der(f2(x, y)), for

s > 1, given by

• ε2s(x) := ad2s(x)(y),

• ε2s(y) :=
∑

0≤j≤s(−1)
j[adj(x)(y), ad2s−1−j(x)(y)].

• ε2s+1(x) = ε2s+1(y) = 0.

Remark 8.1.6. We have

ξ̃(2)s,γ(yi) = −ξ(2)s,γ(y) + [(adx)st−γ + (− adx)stγ , y]

Proposition 8.1.7. There is a surjective Lie algebra morphism

uΓ −→ u

¯̃ε(2)s,γ 7−→ εs.

Proof. This is consequence of the definition of the commutativity of the comparison morphism

diagram

d̃Γ1 ⋉ tΓ1
1,n

��

// tΓ1
1,n

��
d̃Γ2 ⋉ tΓ2

1,n
// tΓ2
1,n
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applied to the case where Γ2 is trivial and of the definition of ε̄(2)s,γ , as ¯̃ε
(2)
2s,0(x) = ε2s(x) and

¯̃ε
(2)
s,0(t

0) = 0.

8.2 Differential equations in τ

In this section we prove a differential equation in τ for the ellipsitomic KZB associator. Namely

we have

Theorem 8.2.1. We have

2πi
∂

∂τ
AΓ(τ) =


−∆0 −

1

2

∑

γ∈Γ

∑

s>0

As,γ(τ)
¯̃
ξ(2)s,γ


AΓ(τ),

2πi
∂

∂τ
BΓ(τ) =


−∆0 −

1

2

∑

γ∈Γ

∑

s>0

As,γ(τ)
¯̃
ξ(2)s,γ


BΓ(τ),

Proof. Let z = z21 x = x̄1, tα = t̄α12. Recall that in Remark 8.1.2 we established

1

2

∑

γ∈Γ

As,γ((adxi)
s(t−γij ) + (− adxi)

s(tγij)) =
∑

γ∈Γ

As,γ(adxi)
s(t−γij ).

Now, seen in Der(̂̄tΓ1,2), the (reduced) ellipsitomic KZB system for n = 2 is

∂

∂z
FΓ(z; τ) =

(
−
∑

α∈Γ

e−2πia ad(x) θ(z − α̃+ ad(x)|τ)

θ(z − α̃|τ)θ(ad(x)|τ)
(tα)

)
FΓ(z; τ)

2iπ
∂

∂τ
FΓ(z; τ) = −


∆0 +

1

2

∑

s≥0,γ∈Γ

As,γ(τ)
¯̃ξs,γ −

∑

α∈Γ

gα(adx, z|τ)(t
α)


FΓ(z; τ)

= −


∆0 +

1

2

∑

s≥0,γ∈Γ

As,γ(τ)
¯̃ξ(2)s,γ −

∑

α∈Γ

gα(z|τ)(t
α)


FΓ(z; τ),

where gα(z|τ) := gα(z, adx|τ)(tα)−gα(0, adx|τ)(tα) and where FΓ(z; τ) is defined on {(z, τ) ∈

C×H|z = a+bτ, (a, b) ∈]0, 1/M [×R∪R×]0, 1/N [}, valued in exp(̂̄tΓ1,2)⋊Γn−1⋊Aut(̂̄tΓ1,2)⋊Γn−1

and is determined by the behaviour

FΓ(z; τ) ≃ zt
0

exp


− τ

2πi


∆0 +

1

2

∑

s≥0,γ∈Γ

as,γ
¯̃
ξ(2)s,γ






when z −→ 0+, τ −→ i∞. We have

FH
Γ (z +

1

M
|τ) =(1̄, 0̄)FH

Γ (z|τ)Ã(τ),

e2πi
x̄
N FV

Γ (z +
τ

N
|τ) =(0̄, 1̄)FV

Γ (z|τ)B̃(τ).
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These conditions imply that the image of FΓ(z|τ) in Aut(̂̄tΓ1,2) is independent of z. Now let us

write

xΓ(τ) :=
(
∆0 +

1

2

∑

s≥0,γ∈Γ

As,γ(τ)
¯̃ξ(2)s,γ

)
.

We define

(AΓ)z1z0(τ) := FΓ(z1|τ)F
Γ(z0|τ)

−1 ∈ exp(̂̄tΓ1,2),

which satisfies

2π i
∂

∂τ
(AΓ)z1z0(τ) = −x

Γ(τ)((AΓ)z1z0(τ)) +
∑

γ∈Γ

gγ(z1|τ) · (A
Γ)z1z0(τ)− (AΓ)z1z0(τ) · gγ(z0|τ).

The function J(z|τ) appearing in the definition of AΓ(τ), BΓ(τ), is related to the function

FΓ(z|τ) by FΓ(z|τ) = F (z|τ)ϕ(τ), where

ϕ(τ) := (−2πi)t
0

exp


− τ

2πi


∆0 +

1

2

∑

s≥0,γ∈Γ

as,γ
¯̃ξ(2)s,γ






takes values in exp(̂̄tΓ1,2)⋊Aut(̂̄tΓ1,2), because both them satisfy the same differential equation

in z. It follows that

(AΓ)z1z0(τ) = J(z1|τ)J(z0|τ)
−1.

We conclude that AΓ(τ) = J(z|τ)−1(1̄, 0̄)(AΓ)
z+ 1

M
z (τ)J(z|τ). Now, taking z −→ 0, this implies

AΓ(τ) = limz−→0(−2π i z)− ad(t0)
(
(1̄, 0̄)(AΓ)

z+ 1
M

z (τ)
)
.

As z is fixed, (−2π i z)− ad(t0)
(
(1̄, 0̄)(AΓ)

z+ 1
M

z (τ)
)

satisfies the same differential equation in τ

as (AΓ)z1z0(τ), with g(z0|τ) replaced by (−2π i z)− ad(t0)(g(z|τ)) and g(z1|τ) replaced by

(−2π i z)− ad(t0)((1̄, 0̄)g(z +
1

M
|τ)),

which both tend to 0 when z −→ 0. It follows that these terms disappear from the differential

equation satisfied by AΓ(τ), so

2π i
∂

∂τ
AΓ(τ) = −(∆0 +

1

2

∑

s≥0,γ∈Γ

As,γ(τ)
¯̃ξ(2)s,γ)A

Γ(τ).

Let us now show the differential equation for BΓ(τ).

We have, BΓ(τ) = F (z|τ)−1(0̄, 1̄)e
2π i x

N (AΓ)
z+ τ

N
z (τ)F (z|τ), thus

BΓ(τ) = limz−→0(−2π i z)−t
0

(0̄, 1̄)e
2π i x

N (AΓ)
z+ τ

N
z (τ)(−2π i z)t

0

.

One computes, for α̃ = a0

M + τ a
N any lift of α ∈ Γ,
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∂

∂τ
(AΓ)

z+ τ
N

z (τ) =
−1

2π i
xΓ(τ)((AΓ)

z+ τ
N

z (τ))

+
( 1

2π i
g(z +

τ

N
|τ)−

∑

α∈Γ

e−2πiax
θ(z + τ

N − α̃+ adx|τ)

θ(z + τ
N − α̃|τ)θ(ad x|τ)

(tα)
)
(AΓ)

z+ τ
N

z (τ)

−(AΓ)
z+ τ

N
z (τ)

1

2π i
g(z|τ).

Set Xz(τ) := (−2π i z)−t
0

(0̄, 1̄)e
2π i x

N (AΓ)
z+ τ

N
z (τ)(−2π i z)t

0

. If we fix z, we get

2π i
∂

∂τ
Xz(τ) = −xΓ(τ)(Xz(τ))

−Xz(τ) ·
(
(−2π i z)−t

0

g(z|τ)(−2π i z)t
0)

+
(
Ad((−2π i z)−t

0

(0̄, 1̄)e
2π i x

N

(
g(z +

τ

N
|τ)

−2π i
∑

α∈Γ

e−2πiax
θ(z + τ

N − α̃+ adx|τ)

θ(z + τ
N − α̃|τ)θ(ad x|τ)

(tα)
)

−(−2π i z)−t
0

e
2π i x

N ((0̄, 1̄)xΓ(τ)e−
2π ix

N (−2π i z)t
0
)
·Xz(τ).

Then, as we showed that

∆(z+
τδj
N
|τ) = e

−2πiad(xj)

N θ((0̄, 1̄)j)(∆(z|τ) −Kj(z|τ)).

then the parenthesis in the last three lines is equal to

Ad((−2π i z)−t
0

)(g(z|τ)).

We conclude that, in the limit z −→ 0,

2π i
∂

∂τ
BΓ(τ) = −(∆0 +

1

2

∑

s≥0,γ∈Γ

As,γ(τ)
¯̃ξ(2)s,γ)B

Γ(τ).

Remark 8.2.2. If we suppose that the group GRTΓ
ell(C) has a semi-direct product decomposi-

tion into some group RΓ
ell(C) and GRT(C), there is an action of RΓ

ell(C) on EllΓKZB. In this

case, the above theorem can be rewritten in a more compact way by

2πi
∂

∂τ
eΓ(τ) = eΓ(τ) ∗


−∆0 −

1

2

∑

γ∈Γ

∑

s>0

As,γ(τ)
¯̃ξ(2)s,γ


 .

where ∗ is here a Lie algebra action.

Let us fix τ ∈ H, γ ∈ Γ and x ∈ C. Define

στ
x,γ(z) :=

θ(z + γ̃ + x)

θ(z + γ̃)θ(x)
.

Consider x as a formal variable close to 0 and στ
x,γ as an element of x−1M(C)[[x]], where

M(C) = {meromorphic functions defined over C}.
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Proposition 8.2.3. στ
x,γ has an expansion

στ
x,γ(z) =

1

x
+
∑

n≥0

kτγ,n(z)x
n,

where kτγ,0(z) = (θ′τ/θτ )(z), k
τ
γ,0(z) = (θ′τ/θτ )(z + γ̃) and kτγ,n is regular at 0 and 1 if n > 0.

Proof. In light of [34, Proposition 2.5], the only left thing to prove is that, for γ 6= 0, we have

kτγ,0(z) = (θ′τ/θτ )(z + γ̃) which is true by the very same computation (using that θ is an odd

function) and the fact that for γ 6= 0, the term kτγ,0(z) is regular when z, x −→ 0.

8.3 Elliptic multiple zeta values at torsion points

The twisted elliptic KZ associator eΓ(τ) := (AΓ(τ), BΓ(τ)) has an expression in terms of

iterated integrals. Let us denote

KΓ(z) := −
∑

α∈Γ

e−2πiax
θ(z − α̃+ ad(x)|τ)

θ(z − α̃|τ)θ(ad(x)|τ)
(tα).

By Picard iteration and well-known properties of iterated integrals, we have

IΓ(τ) =

(
lim
t→0

z−t
0

(
θ(1̄, 0̄) exp

[∫

α
( 1−t

M )
t

KΓ(z)dz

])
zt

0

)op

and

2iπJΓ(τ) =

(
lim
t→0

z−t
0

(
θ(0̄, 1̄) exp

[∫

β
( τ−t

N )
t

KΓ(z)dz

])
zt

0

)op

where the superscript op denotes the opposite multiplication on the algebra C〈〈x, tα;α ∈ Γ〉〉,

defined by (f · g)op = g · f . Here we choose the principal branch of the logarithm so that

log(±i) = ±πi/2.

Definition 8.3.1. Let n1, . . . , nr > 0 and α1, α2, . . . , αr ∈ Γ. The twisted elliptic multizeta

values

IΓA

(
n1 n2 , . . . , nr

α1 α2 , . . . , αr

; τ

)
and IΓB

(
n1 n2 , . . . , nr

α1 α2 , . . . , αr

; τ

)

are defined equivalently

1. as the coefficients of adn1(x)(tα1 ) . . . adnr(x)(tαr ) in the renormalized generating series

of regularized iterated integrals

lim
t→0

z−t
(1̄,0̄)

exp

[∫

α
( 1−t

M )
t

FΓ(z)dz

]
zt

0

and lim
t→0

z−t
(0̄,1̄)

exp

[∫

β
( τ−t

N )
t

FΓ(z)dz

]
zt

0



8.3. ELLIPTIC MULTIPLE ZETA VALUES AT TORSION POINTS 247

2. by means of two functions AΓ(τ) and BΓ(τ), closely related to A(τ) and B(τ), of the form

AΓ(τ) =
∑

n>0

(−1)n
∑

n1,...,nr>0

∑

α1,...,αr∈Γ

IΓA

(
n1 n2 , . . . , nr

α1 α2 , . . . , αr

; τ

)
adn1(x)(tα1 ) . . . adnr (x)(tαr )

and

BΓ(τ) =
∑

n>0

(−1)n
∑

n1,...,nr>0

∑

α1,...,αr∈Γ

IΓB

(
n1 n2 , . . . , nr

α1 α2 , . . . , αr

; τ

)
adn1(x)(tα1 ) . . . adnr (x)(tαr )

One can picturally see the relation between (AΓ(τ,BΓ(τ)) and (A(τ), B(τ)) by means of the

following picture

A
0

1,2
R(1̄,0̄)

1,2

B
0

1,2(R(0̄,1̄)
2,1 )−1

1

M
− εε

τ

N
− ε

Our approach to multiple zeta values at torsion points is somewhat different to that in the

recent work of Broedel–Matthes–Richter–Schlotterer [19], and generalizes to the case of any

surjective morphism Z2 −→ Γ sending the generators of Z2 to their class modulo M and N ,

respectively. More general surjective morphisms could be considered. The relation between the

twisted elliptic multiple zeta values obtained in this paper and that in [19] will be investigated

by the second author and N. Matthes in a forthcoming collaboration.

Now, multiple Hurwitz values are defined, for n2, ..., nr−1 ≥ 1, nr ≥ 2, as the real numbers

ζ(n1, . . . , nr, a1, . . . , ar) =
∑

0≤k1<···<kr ;mi∈Z

1

(k1 − a1)n1(k2 − a2)n2 · · · (kr − ar)nr

where a1, . . . , ar are rational numbers with a1 > 0 and such that ζ(n1, . . . , nr, 1, . . . , 1) =

ζ(n1, . . . , nr).

Then, the differential equation of Theorem 8.2.1 combined with the fact that, for real values

of γ ∈ Λτ,Γ, the Eisenstein-Hurwitz series have Hurwitz zeta values as constant coefficients in

their qN -expansion, permits us to expect the following:

• elliptic multiple zeta values at torsion points should have a qN -expansion whose coeffi-

cients are special linear combinations of multiple Hurwitz values,
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• elliptic multiple zeta values at (real) torsion points should degenerate to multiple Hurwitz

values at the cusps of Y (Γ).

• elliptic multiple zeta values at torsion points should be linear combinations of iterated

integrals of Eisenstein-Hurwitz series whose coefficients are controlled by the Lie algebra

uΓ.

This gives hope of finding new periods of P1 − {0, µM ,∞} besides cyclotomic multiple-zeta

values for special values of M .
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