N
N

N

HAL

open science

Contributions to robotic control design with formal
safety and stability guarantees
Philipp Schlehuber-Caissier

» To cite this version:

Philipp Schlehuber-Caissier. Contributions to robotic control design with formal safety and stability
guarantees. Automatic. Sorbonne Université, 2018. English. NNT: 2018SORUS346 . tel-02865507

HAL Id: tel-02865507
https://theses.hal.science/tel-02865507

Submitted on 11 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-02865507
https://hal.archives-ouvertes.fr

ISIR

INSTITUT

DES SYSTEMES
INTELLIGENTS

ET DE ROBOTIQUE

Q SORBONNE
b UNIVERSITE

Sorbonne Université
Institut des Systeémes Intelligents et de Robotique

PHD DISSERTATION

Contributions to robotic control design
with formal safety and stability guarantees

Philipp SCHLEHUBER-CAISSIER

Reviewers:

Sylvain CALINON

Advisors: Rafael WISNIEWSKI
Vincent PADOIS

Nicolas PERRIN Ezaminers:

Nathalie BERTRAND
Pascal MORIN

November 12, 2018

Contents

List of Figures
List of Tables

1 Introduction
1.1 Control law synthesis via timed automata L.
1.2 Stabilizability of dynamical systems L oL oL
1.3 Learning stable vector fields from demonstration

2 Timed-automata abstraction of controlled systems
2.1 Imtroduction
2.2 Related Work and Backgroundo oo
2.2.1 Timed Automata
2.2.2 Related Work o
2.3 Graphs of Control Funnels oo
2.3.1 Control Funnels.
2.3.2 Formalizing the Reach-Avoid Problem for Controlled Systems
2.3.3 Reach-Avoid Objectives on Graphs of Control Funnels
2.4 Reduction to Timed Automata
2.5 LQR Funnels
2.5.1 Lyapunov Stability and Construction
2.5.2 Computing the Tuples
2.6 Examples of Application
2.6.1 Synchronization of Sine Waves
2.6.2 A 1D Pick-and-Place Problem
2.7 Bounding Funnels with Conjectured Properties
2.7.1 Introducing Bounding Funnels with Conjectured Properties
2.7.2 Reach-Avoid Problem for a Modified Dubins’ car
2.8 Conclusion and Future Work Lo

3 Stability of Dynamical Systems
3.1 Imtroduction e
3.2 Theoretical Background Lo
3.2.1 Convex Optimization and Semidefinite Programming
3.2.2 Lyapunov Stability
3.2.3 Contraction Analysis
3.2.4 Positive Polynomials and Hilbert’s 17th Problem
3.2.5 Application to Linear and Polynomial Systems and Feedback Controller Design . .
3.3 Problem Statement
3.4 Related Work L

13
14
16
18

21
21
22
22
24
28
28
30
31
34
36
36
37
40
40
41
45
45
47
o4

CONTENTS

3.4.1 Approaches Involving Lyapunov Theory on SoS-Techniques 70
3.4.2 Approaches Involving Contraction Analysis and LMIs 72
3.5 State-Space Partitioning Based On Optimal Control Input 73
3.5.1 Stabilizability As Min-Max problem, 73
3.5.2 State-Space Partitioning L. 73
3.5.3 State Space Partitioning for Perturbed Systems L. 76
3.6 Resulting Dynamics and Links to Sliding Mode and QP-Control 78
3.6.1 Sliding Mode Control 78
3.6.2 From Sliding Mode Control to a Continuous Control Law 79
3.6.3 Comparison with Sliding Mode Control 81
3.7 Extension to Time-Varying Case and Implementation 81
3.7.1 Time-Varying Lyapunov Functions and Nonlinear Dynamics 82
3.7.2 Funnel Construction via Retro-Propagation 83
3.8 Certificates for Non-Positiveness o oo 85
3.8.1 Underestimators Based on Reformulation-Linearisation-Techniques 85
3.8.2 Reformulation-Linearisation-Techniques for Polynomial Programming 88
3.8.3 Application 90
3.8.4 Connections to the Theory of Moments 92
3.9 Computing and Propagating Suitable Lyapunov Functions 93
3.9.1 Time-Dependent Linearisation 94
3.9.2 Computing Lyapunov Function Candidates Based on LQR-Techniques 95
3.9.3 Adaption to the Constrained Time-Depending Case 96
3.9.4 Examples and interpolation oL oo 97
3.10 Examples and Numerical Results, 100
3.10.1 Simple Pendulum L 101
3.10.2 Acrobot 104
3.10.3 Controlled Polynomial System 107
3.11 Conclusion and Outlook 108
Learning Globally Asymptotically Stable Vector Fields 111
4.1 Imtroduction 111
4.2 Diffeomorphic Transformations and Smooth Equivalence 113
4.3 Problem Statement and Related Work oL o oL 114
4.4 Onme-Step Learning e 120
4.4.1 Diffeomorphic Locally Weighted Translations 120
4.4.2 Diffeomorphic Matching L oL 123
4.4.3 Learning Globally Asymptotically Stable Nonlinear Dynamical Systems 130
4.4.4 Results and Numerical Evaluation 134
4.5 Two-Step Learning L e 142
4.5.1 Motivation and Problem Statement L 0L 143
4.5.2 Definitions and Curve Matching 144
4.5.3 Locally Weighted Multitranslations 146
4.5.4 Diffeomorphic Curve Matching o oL 154
4.5.5 Learning Globally Asymptotically Stable Nonlinear Dynamical Systems 157
4.5.6 Results e 163
4.5.7 Robot Experiments L e 170
4.6 Conclusion and Future Work oo 176
Conclusion 179
5.1 HIGH-LEVEL PLANNING ittt 180
5.2 TRAJECTORY SERVOING AND OPTIMIZATION BASED CONTROL 182

CONTENTS 5

Bibliography 185

CONTENTS

List of Figures

1.1
1.2
1.3
14

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

Control law synthesis via timed automata - Introduction 16
Stabilizability of dynamical systems - Introduction 17
Diffeomorphic learning - Introduction 1o oo 19
Diffeomorphic learning - Introduction 2o oL 20
Introduction - finite automaton 23
Introduction - timed automaton 25
Control funnel - first exampleo 29
Control funnel - exponentially converging trajectories. 30
Transitions within a funnel timed transition system 32
Example runin a TSS oo 33
Catch and realease example Lo 38
Absorption for fixed size LQRo 39
Inclusion testing for ellipsoids Lo 39
Synchronisation exampleo 41
Example reactive controller synthesis o oL o 41
A 1D pick-and-place problem - Depiction 43
A 1D pick-and-place problem - Solution oo Lo 44
Nonmonotonic convergence o e 46
Conjecturing convergence for LTT-systems 48
Modified Dubins’ car definitions 49
Dubins’ cart - control law verification oL 50
Conjectures Dubins’ car L. L 51
Typical problem instances and funnel system for Dubins’ car 52
Dubins’ car - Solution problem 1 L Lo 53
Dubins’ car - Solution problem 2 54
Lyapunov’s second method L 61
Lyapunov’s second method 62
Stability for Lyapunov criterion and contraction analysis 68
State space partitioning 75
State space partitioning - Perturbed case. oo 7
QP control law 81
Comparison with sliding mode Lo oo 82
Dichotomic volume maximization L L L 85
Simple RLT example o 88
Bounding box for RLT 92
Torque controlled pendulum - static Lo Lo 98
Torque controlled pendulum - dynamic L L Lo 99

3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33

5.1

LIST OF FIGURES

Zone interpolationo Lo 100
Lyapunov candidate computation comparison - Pendulum 102
Comparison with Drake Toolbox - Pendulum 103
Swing up motion- Pendulum oL oL o 104
Difference separation plane and surface L oL oL 105
Comparison with drake toolbox - Acrobot 106
Acrobot SWIng-upo e e 107
Example polynomial dynamics L oL 108
Unconstrained GMM - problems 117
Depiction 7-SEDS L 119
Depiction 7-SEDS - restraints 119
Locally weighted translation oo 122
Problem case - Spiral movements oL L 126
LWT based diffeomorphism - g influence, 127
LWT based diffeomorphism - direction influence 128
Control-space dynamics - X L 132
Demonstration-space Lyapunov function 0oL 134
LASA dataset - Constructing Y and X o 135
LASA dataset - Results 137
LASA dataset - Results velocity profiles 138
Source and target construction - multimodal demonstration set 139
Multimodal demonstrationso 140
Cyclicmotion« . o e 142
Limits of point matching approaches 144
Depiction of compatible and incompatible configurations 145
Locally weighted multitranslation - injectivity 150
Locally weighted multitranslation - injectivity 2 151
Locally weighted multitranslation - surjectivity 153
Approximative curve matching - Iterations Lo Lo 158
Approximative curve matching - Comparison 159
Locally converging directions Lo 161
Locally converging directions around converging trajectories 162
Demonstration-space speed model oL oL 163
Comparison One-Step and Two-Step Learning 165
Two-Step learning LASA - continued o 166
Comparison One-Step and Two-Step learning - Velocity profiles 167
Two-Step learning - Velocity profiles 168
Two-Step learning - 10d demonstrations Lo 170
Robot experiment - Iterative learning Lo Lo 174
Robot experiment - Identified model oo 175
Robot experiment - Identified model 177
Layered control structure L L 179

List of Tables

4.1 Comparison with MATCHINE

10

LIST OF TABLES

Notation

Groups and sets

~ scalars are usually lowercase Greek letters, sometimes Latin letters
v vectors are usually bold lowercase letters, sometimes Greek letters
M matrices are usually uppercase Latin letters

N denotes the natural numbers

Z denotes the integers

@Q denotes the rational numbers

R denotes the real numbers

X~I* with X € {Z,Q,R} denotes the negative | positive integers, rational or real numbers

X, I+ with X ¢ {Z,Q, R} denotes the non-positive | non-negative integers, rational or real numbers

X" with X € {Z,Q,R} and n € N denotes a column-vector of natural, rational or real numbers with
n-elements

X with X € {Z,Q,R} and n,m € N denotes a matrix of n-rows and m-columns over the integers,
rational or real numbers

R denotes the real numbers, scalars are usually lowercase Latin font
8™ denotes a quadratic symmetric matrix, so if A € S" then AT = A

Silf denotes the cone of symmetric semidefinite positive or negative matrices, so symmetric matrices
with only non-negative or non-positive eigenvalues

Si 4—— denotes the cone of symmetric definite positive or negative matrices, so symmetric matrices with
only strictly positive or negative eigenvalues

2% denotes the power set of the set X, so the set of all possible sets that can be formed from the elements
in X. By abuse of notation we note 28" the (infinite) set of closed subset of R™.

0S denotes the boundary of the set S

Algorithms

A(A) denotes the vector of eigenvalues of the square matrix A

Arraz(A) denotes the largest eigenvalue of the square matrix A

Aarin(A) denotes the smallest eigenvalue of the square matrix A

C = chol(A) denotes the cholesky factorization of a matrix A € S7 | such that C*.C = A

11

12

LIST OF TABLES

Chapter 1

Introduction

One of the key issues for robotic applications, or in a larger sense for all cyber-physical systems, is safety.
Safety can have different implications depending on the field of work and the system concerned. However
a very broad definition of safety can be given as ensuring that certain states or events never occur or that
the consequences resulting from such unsafe events are bounded to an acceptable level, no matter the
circumstances. For instance, in an environment shared by robots and humans, one can either demand
that the robot never collides with any human or one could demand that if a collision occurs, the maximal
impact force must be low in order to avoid injuries.

There are different ways to achieve safety, and one of them can be labelled as passive safety. It can either
be directly ensured by the hardware, using for instance compliant actuators or shock absorbing coating, or
by making appropriate changes to the control strategy. Adapting the hardware is not always possible or
reasonable, as the solution has to be explicitly designed to prevent a specific consequence. This approach
therefore provides no generic way to deal with safety concerns. For instance the collaborative robots
Baxter and Sawyer have serial elastic actuators (SEA) to reduce the maximal impact force and absorb
energy on (unexpected) impact. However, if the robotic arm is near a singular configuration during the
impact, the SEA may not be able to reduce the impact force to an acceptable level. Passive safety can also
be obtained in control laws by imposing constraints on the actuation and formally proving that, under an
assumption of faithfulness for some physical model, these constraints do not allow undesirable behaviours
such as excessive velocity (eventually relative to the obstacle) or force (see for instance Meguenani et al.
[2016]). These approaches often lead to conservative solutions as they typically only reason about the
near future. It can even occur that multiple, concurrently active safety constraints are incompatible, for
instance in the case of multi-object avoidance, causing the problem to be infeasible . Such situations can
occur as this approach so to speak misses informations about the context and (future) world state.

In this thesis a more active type of safety is pursued, strengthening the constraints on the control
strategy rather than directly on the control outputs. The goal is to provide means to automatically
generate control strategies that provide formal, model-based guarantees that no undesired states or events
occur, considering all possible circumstances. This is a somewhat more ambitious goal than passive safety,
in the sense that it does not seek to modify the inputs of the system based on additional constraints and
an existing control strategy, but to generate a control strategy that can be safely executed without
additional “run-time” constraints or hardware based safety. It is very important to note that what we
aim to do is to generate controllers that can be considered safe under the hypothesis that the model used
for the dynamics of the robot and its environment is sufficiently correct (assume-guarantee approach).
With model-based approaches, making this assumption is unavoidable, but in real applications it should
never be taken for granted. Making sure that the model is good enough, or refining it via extensive
testing, is necessary, and only then can model-based approaches for safety such as ours be of relevance.
In this thesis we use classical models of the robot dynamics, and suppose that they have been empirically
verified. The approaches presented rely on formal proofs of safety based on a model, and while they give

13

14 CHAPTER 1. INTRODUCTION

absolute certainty for evolutions that happen according to the model, they are no more valid than the
model itself, and therefore their use in practice must always be accompanied with important efforts of
modelling. Even though this implies that the presented approaches do not provide the certainty of safety
when used on a real robot, one of their interesting strengths is precisely that, by having a formal proof of
safety, any failure brings valuable information on the limits of the model (or, as we will see in section 2.7,
approximate abstractions of the model). Therefore, a simultaneous effort on empirical verifications of
the model and on synthesis and tests of formally proven control strategies can be beneficial for the
improvement of both the model and the controller and therefore increase the overall confidence in the
considered system. Here we do not focus on designing and testing models (except for section 4.5.7), even
though we present ways to abstract or approximate conveniently some of their properties. Our main
focus is on the automated synthesis of control strategies that have formal guarantees of safety.

Generating such strategies is a computationally challenging task as synthesis is in general significantly
more complex than verification problems when considering the same system. We are therefore exploring
ways to define model-based computationally efficient abstractions for robotic systems that can be used
to generate control strategies for a priori defined specifications. Such efficient constructions are possible
in the case of controlled linear dynamics and to some extent for nonlinear dynamics. Moreover some of
the proposed methods are also applicable in the context of general cyber-physical systems, considerably
enlarging the possible field of application.

To this end, this thesis presents contributions to three different but interconnected research topics:
(1) Control law synthesis via timed automata abstraction
(2) Stabilizability of dynamical systems
(3) Learning stable vector fields from demonstration

for which the motivation and interconnections are summed up in the remainder of the introduction.

1.1 Control law synthesis via timed automata

The first approach considered in this thesis is to perform controller synthesis with the help of formal
methods. The initial goal of formal methods is verification, which consists of automatically verifying that
a given object (for instance a graph, or a finite automaton) complies with some specification expressed as
a logical formula (e.g. “every state is reachable from any state”). Such methods were initially developed
in the context of “verified software”, where some properties of the discrete steps of an algorithm are
translated into , for instance, a finite state machine, which can then be used for verification.

More advanced formal methods include controller synthesis, a problem in which the interaction be-
tween a controller and the environment is modelled as a two-player game, one player being the controller
and the other the environment, the adversary. The goal is to design algorithms that can generate con-
troller strategies that are proven to respect a given specification no matter which action the adversary
chooses (e.g. whatever happens, the controller can always force the system to eventually go back to
its initial state). These tools are powerful because they can produce strategies that verify potentially
complex specifications.

There is a long and rich history of scientific works concerned with the problem of using formal
methods for controller synthesis, dating back as far as the early 1960’s (Church [1962]). A broad variety
of techniques and more or less restrictive specification languages were henceforth developed, with a major
breakthrough being the works of Rabin (Rabin [1969]) and Biichi (Biichi and Landweber [1969]) that
independently proved the decidability of important synthesis problems using tree automata and infinite
games respectively. Since then many works tackled the problem of synthesizing controller strategies for
specifications given in different types of logics (Kress-Gazit et al. [2009]; Smith et al. [2011]) and for a
multitude of different problems like scheduling or correct multi-agent behaviour. However, even though

1.1. CONTROL LAW SYNTHESIS VIA TIMED AUTOMATA 15

these specification languages do allow for a rich variety of specifications and impressive results have been
obtained, they lack the possibility to express quantitative constraints or dependencies on time. Indeed
the specification languages used in the works cited above can only incorporate qualitative constraints on
time (like linear temporal logic (LTL, see Pnueli [1977])), such as “state B is the successor of state A”, but
no quantitative statement like “state B is the successor of state A and has to be reached before z-time
units have passed”, can be made. This is partly due to the fact that such model checking tools were
originally developed to analyse sequential computer programs or software and therefore the qualitative
notion of time was sufficient. This changed with the occurrence and growing complexity of cyber-physical
and hybrid systems. These systems have both, discrete states which can change instantaneously and
continuous states or variables that often evolve according to dynamics described by differential equations.
In this context it can be crucial to have a quantitative notion of time in order to describe the behaviour
of the system in a correct or sufficiently precise manner. Therefore we pursue a different approach within
this thesis relying on timed automata (TA), which provide an expressive framework to describe timed
events. Also timed automata are a well established research field, providing many theoretical results and
mature tools like UPPAAL (Behrmann et al. [2006]).

Timed automata (TA) have been introduced in the 90’s by Rajeev Alur and David L. Dill (Alur and
Dill [1994b]) and allow for the description and analysis of systems that have quantitative constraints on
time. To be more specific, a timed automaton is a finite automaton equipped with a finite set of clocks
that continuously evolve at a constant rate, but which can be reset during transitions. The verification
of logical constraints on dynamical systems by abstracting them to timed automata (see Maler and
Batt [2008]; Sloth and Wisniewski [2013]) and then checking reachability conditions on the resulting
automata is a field of active research and yielded interesting approaches. These approaches are often
computationally intensive as they rely on some form of discretization of the state-space which tends to
scale badly with the size of the system. The usage of timed automata to represent controlled dynamical
systems in order to generate control laws or strategies has not been explored as much, but nonetheless
attracted a certain amount of attention (see Asarin et al. [1998]; Sloth and Wisniewski [2010b]). These
approaches vary in the types of allowed specifications and the “coarseness” of abstraction, suiting the
targeted application.

We developed a new representation for cyber-physical systems based on Lyapunov stability which is
compatible with the theory of timed automata. In this representation the discrete states correspond to
time-dependent invariant subsets in the state space of the system. Typically we use stabilisable regions
around reference trajectories and derive conditions allowing to safely switch between them. The safety of
these transitions can then be translated into guards on the transitions in the timed automaton, making
the timed automaton a sound abstraction, as shown in Figure 1.1

Once the timed automata is constructed, a control law can be synthesized by specifying the set of
undesired events or states as logical formula or auxiliary automaton and solving the reachability problem
for the TA under these constraints. Therefore in this framework controller synthesis corresponds to the
verification of the TA. As verification is in general less complex than synthesis we reduce the computa-
tional complexity, however at the price of possibly obtaining larger automata.

This approach has been implemented in Python and the verification software UPPAAL. Several nu-
merical examples have been realised concerning, for instance, the control of a mass point in acceleration for
non-trivial planing or the path-planning for the Dubins’ car. Note that the dynamical system describing
the Dubins car is a nonlinear and nonholonomic system, for which formally proven abstractions generated
from Lyapunov theory are difficult to obtain. In order to treat this kind of systems, the definition of the
discrete states is adapted: instead of formally proving their properties using Lyapunov theory, they are
conjectured based on numerical results. Therefore the resulting control strategy is only guaranteed to
be safe if the conjecture holds, but it potentially allows to synthesize control laws for systems for which
proofs based on Lyapunov theory cannot be automatically generated. In this case each failure of the
control strategy directly provides a trace pinpointing the violating conjecture and allowing to improve
the coherence between the model and the abstraction by (repeated) refinement.

16 CHAPTER 1. INTRODUCTION

logical specification

discretized system s 2
target timed automaton
(—-'@ tely te [am, boﬂ telh
L S tE[alf,blf]

t € [a10, b1o]

obstacle

Figure 1.1 — Discretization of the dynamical system into two invariants (left) and the corresponding
automaton (right) using standard syntax (presented in detail in section 2.2.1). The invariants I; and I
associated to the discrete states Fy and JF; guarantee that the system cannot collide with the obstacle.
The dashed line on the left image shows a possible trajectory of the actual system. The initial and final
state is indicated a the dot and the crosses correspond to a change of invariant. The times at which such
a change can occur is constrained by the automaton.

1.2 Stabilizability of dynamical systems

This research topic directly emerged from needs encountered in topic 1) Control law synthesis via timed
automata. To guarantee the specifications imposed onto the control law synthesis formulated as a reach-
ability problem in a timed automaton, one needs correct, or more specifically sound, abstractions of the
real system to construct the timed automaton. In our case the abstractions are sound if the discrete
states correspond to positively invariant subsets of the dynamical system. This property is fairly easy to
obtain for LTI-systems, but there exists no generic way to compute such invariants for arbitrary nonlinear
systems especially when they are subjected to (input) constraints. Unfortunately, most cyber-physical
systems, like robots, fall into this category. To tackle this problem we have developed a new approach
to prove the convergence, or better stabilizability, of a dynamical, or more precisely polynomial, system
with respect to a quadratic Lyapunov function. This approach combines ideas from optimal control and
convex optimization and distinguishes itself from existing methods by the derived state space partitioning
based on the optimal control input for each region as shown in Figure 1.2. We transform the question
of stabilizability on a subset of the state space into an optimization problem. Due to the restriction to
polynomial systems, efficient optimization methods exist to solve these problems, while granting a suf-
ficiently high expressiveness. Specifically the differential equations describing robot movements contain
many trigonometric functions, which can be approximated with a high accuracy using a truncated Taylor
expansion resulting in a polynomial system further validating this choice.

As stability proofs are one of the core topics of control theory, a broad variety of approaches seeking
to answer similar problems exists. Notably the use of Sum-of-Squares (SoS) methods gained a lot of
attention during recent years (such as Tedrake et al. [2010b]; Majumdar et al. [2013a]), partly due to the
appearance of readily available solvers for the associated convex optimization problems (Sturm [1999];
Andersen et al. [2013]). The advantage of the proposed formulation over such approaches is the separation
of the proof of stabilizability from the synthesis of an actual control law. In SoS-approaches the stability
of the system is proven by providing a tuple Lyapunov function, size of the region and control law
and therefore the optimization problems are more complex as the introduced (polynomial) control law
is part of the decision variables. In contrast the approach proposed in this thesis directly reasons on
stabilizability, dissociating the question of proving stability from the synthesis of an actual control law,
by partitioning the state space into input optimal regions. In these regions the control input maximizing

1.2. STABILIZABILITY OF DYNAMICAL SYSTEMS 17

instantaneous convergence is the same, given a quadratic Lyapunov function. Note that, in contrast to
SoS-techniques, we do not seek to modify the Lyapunov function, but only seek an as large as possible
region of stabilizability for the given Lyapunov function. In order for this to work, the Lyapunov function
has to be “suitable” for the considered system. This might seem like a drawback, but it will be shown
that good results can be obtained relying on simple control techniques for linear systems, such as the
Linear Quadratice Regulator (LQR).

The arising optimization problem corresponding to stabilizability on one of these subsets has a signif-
icantly simpler structure. However it can no longer be transposed into a standard semidefinite program,
as the associated polynomial expression is nonconvex. Nonetheless it can be efficiently solved using tech-
niques based on existing Reformulation-Linearization techniques, which solve nonconvex problems by
constructing a convex (or even linear) underapproximation in a higher dimensional space. By construct-
ing additional valid constraints the gap, that is the difference between the optimum of the original problem
and the underapproximation, can be reduced to an acceptable level. In fact the gap often vanishes in
practice and computation times can be reduced due to the simpler structure.

Figure 1.2 — Depiction of the proposed approach to prove stabilizability of a controlled dynamical system.
The approach is based on the idea that the state space can be partitioned into subsets, within which the
control input maximizing convergence is independent of the actual state considered (As long as the state
belongs to the same subset). This partition is shown in the middle for the example of a torque controlled
pendulum (depicted on the left) seeking to stabilize the unstable, upright position. On the right the
streamlines of the system when using optimal control input (the control input is equivalent to the torque
applied onto the pendulum in this example) are shown. In this case the state space is partitioned into
two sets by a hyperplane (green line) passing through the origin and defined by its normal vector (green
arrow), for which either the maximal control input u™ (blue zone) or the minimal control input v~ (red
zone) is optimal. The partitioning of the state space in this approach results from the system dynamics
and a given Lyapunov function. A level-set of Lyapunov function considered here is shown as black
ellipsoid.

This approach performs well in common test cases and often provides significantly larger regions of
stabilizability (compared to the region of attraction derived with Sum-of-Squares methods).

18 CHAPTER 1. INTRODUCTION

1.3 Learning stable vector fields from demonstration

In the third research topic we investigate means to learn globally asymptotically stable nonlinear vector
fields from demonstration. This is an interesting approach for multiple reasons. Firstly such vector fields
provide a formal guarantee that all states are driven to a unique position: the equilibrium point of the
vector field. Such vector fields have therefore a natural correspondence with reaching or grabbing motions,
by interpreting the vector field as a velocity field for the robot in the task or joint space. Therefore learning
nonlinear vector fields from demonstrations can be seen as a type of robot programming by demonstration
and the difficulty is to guarantee stability while also faithfully recreating the demonstrations and to
provide suitable generalization of the movement into neighbouring regions. Secondly, seen from a formal
method point of view, such vector fields naturally translate certain linear temporal logic specifications to a
corresponding velocity for a dynamical system. So given for instance the formula “eventually position A”
and a globally asymptotically stable vector field with its equilibrium point at position A, then it is
possible, independently of the current state of the system, to use the vector field to define the (desired)
velocity of the system and it is guaranteed that position A will be reached and the specification is
verified. Finally such learned vector fields can also be seen as generators of reference trajectories, which
can then be used within the timed automata abstraction (research topic (1)) by constructing funnels
around them. As it is assumed that the given demonstrations correspond to feasible trajectories for the
concerned dynamical system, deducing an underlying vector field with good generalization properties
allows to create reference trajectories between initial points “close” to the demonstrations ending at the
equilibrium point. Due to the generalization of the movement by the vector field, these are likely to be
suitable for the dynamical system. This is an interesting property as obtaining such trajectories is a
generally a difficult task (for motion planning under dynamic constraints see for instance Plaku et al.
[2010]). In this thesis the focus lies on the first point mentioned above, teaching a robot new movements
via learning from demonstration, as it is the most direct application and also a large and very active
research topic which we introduce hereafter.

The learning from demonstration (LfD) paradigm allows non-expert users to conveniently teach the

robot new skills by constructing goal-driven behaviour from demonstration. Teaching a robot by demon-
stration is a very promising route to increase the flexibility and ease of use of robots that frequently
encounter new tasks and for which no specifically trained staff is available, like service robots or manu-
facturing robots in small enterprises. Teaching someone/something by demonstration is very natural for
humans and resolves many frequently encountered problems in motion planning like singular configura-
tions, self collision and redundancy. The paradigm has a long and rich history in the robotics community
with more and more commercial applications appearing (Baxter, Sawyer and others). The learning is
normally based on well-known machine learning techniques training models like Gaussian mixture models
(GMM) or Markov decision process (MDP) on the given data. An interesting way to encode motions
is to represent them as (autonomous) dynamical systems, as this increases the motions inherent robust-
ness to spatial and temporal perturbations. Despite the significant progress made in the last ten years,
guaranteeing (global exponential) stability for the learned dynamical system without deteriorating the
quality of reproduction remains a challenging problem.
To tackle this problem we propose a solution that takes advantage of the conservation of topological prop-
erties, such as convergence, under (smooth) diffeomorphic transformations. We can learn complex, highly
nonlinear vector fields by constructing a diffeomorphic transformation that maps simple curves (mostly
straight lines) which can be easily and faithfully reproduced by a “simple”, globally exponentially stable
vector field onto the given demonstration, see Figure 1.3. In this way, the diffeomorphic transformation
increases the expressiveness of the simple dynamical system, while preserving the stability properties. In
order to contruct the diffeomorphism we present a novel method to perform (approximative) diffeomor-
phic point matching, resulting in smooth transformations, which is advantageous when seeking to control
second order dynamical systems (depicted in Figure 1.3).

Nonetheless this approach has several drawbacks, which are mainly due to the simplicity of the
source curves used to construct the diffeomorphism and the corresponding simplicity of the control space

1.3. LEARNING STABLE VECTOR FIELDS FROM DEMONSTRATION 19

e

Figure 1.3 — This approach takes advantage of two spaces, the “naturally existing” demonstration space
X (right image), the “artificially introduced” control space) (left image), and the diffeomorphism ®
defined between them. We construct a simple, globally exponentially stable vector field in the control
space reproducing the source curves (left image, blue line). Our method then constructs a diffeomorphic
transformation ® such that the image of this trajectory under the transformation (right image, dashed
black line) matches the demonstration (right image, green line). The vector field in the demonstration
space is the result of the control-space vector field and the transformation ®. As one can see the resulting
vector field in the demonstrations space represents well the demonstration while being stable.

N

dynamics, see Figure 1.3. It cannot take advantage of multiple demonstrations to better generalise the
movement to unseen regions in the state space and often causes the high gradients in the diffeomorphism.
To tackle these disadvantages, we developed several major modifications to the proposed approach based
on the main idea of coupling machine learning techniques and diffeomorphic transformations, as shown
Figure 1.4. This allows for learning more complex, but still globally asymptotically stable, control-space
dynamics (described in detail in section 4.5.5) based on the demonstrations. Instead of constructing the
diffeomorphism between a “simple” curve and the demonstration, in this approach we seek to directly
construct the diffeomorphism between forward trajectories of the (learned) control space dynamics and
the given demonstrations.

20 CHAPTER 1. INTRODUCTION

X
Y/
Y/
P v
()
[e,
(7 'l
1
2,
*
'l
2,
~
A\ \

Figure 1.4 — The left image depicts the control space: We allow for more complex control-space dynamics
learned from the given demonstrations while guaranteeing global asymptotic stability. The diffeomor-
phism @ is then constructed between the forward trajectories in the control space (blue lines, left image)
and the given demonstrations (dashed black lines, both images). The images of the control-space trajec-
tories (green lines, right image) and the transposed control-space dynamics, called demonstration-space
dynamics (right image, streamlines) faithfully reproduce the demonstrations and moreover generalise
them to some neighbourhood. As the distance between the source (control-space trajectories) and the
target curves (demonstrations) is reduced compared to the first approach, the diffeomorphism matching
them is less complex and with smaller gradients. This is showcased by the image of a regular grid under
the diffeomorphism shown in the right image (magenta lines).

Chapter 2

TIMED-AUTOMATA ABSTRACTION OF
CONTROLLED SYSTEMS

The development of formal methods for control design is an important challenge
with potential applications in a wide range of safety-critical cyber-physical systems.
Focusing on switched dynamical systems, we propose a new abstraction, based on
time-varying regions of invariance (the control funnels), that models behaviours of
systems as timed automata. The main advantage of this method is that it allows au-
tomated verification of formal specifications and reactive controller synthesis with-
out discretizing the evolution of the state of the system. Efficient constructions are
possible in the case of controlled linear and to some extent for nonlinear dynamics.
We demonstrate the potential of our approach with two examples.

2.1 INTRODUCTION

Verification and synthesis are notoriously difficult for hybrid dynamical systems, i.e. systems that al-
low abrupt changes in continuous dynamics. For instance, reachability is already undecidable for 2-
dimensional piecewise-affine maps (Koiran et al. [1994]), or for 3-dimensional dynamical systems with
piecewise-constant derivatives (Asarin et al. [1995]). For systems governed by state-dependent differen-
tial equations, there also exist many negative results. The case of general nonlinear differential equations
is only treatable using (conservative) approximations as in Asarin et al. [2003] or Althoff et al. [2008].
Even for the case of linear differential equations, exact reachability for the system & = A.x is decidable
only if A has a certain eigenstructure!, affecting its applicability for real-world systems (see Lafferriere
et al. [1998]).

To enlarge the class of systems considered, switched (nonlinear) systems of the form & = f;(x)
with £ € R? denoting a point in the state space, £ € R? being the velocity of the system and f; €
{fo, f1, -+, fn} denoting the current (nonlinear) dynamics, belonging to the finite set {fo, f1, -+, fn}-

To enable automated logical reasoning on switched dynamical systems, most methods tend to entirely
discretize the dynamics, for example by approximating the behaviour of the system with a finite-state
machine. Alternatively, early work pointed out links between hybrid and timed systems (Maler et al.

it has to be either nilpotent, have only real or only imaginary eigenvalues

21

22 CHAPTER 2. TIMED-AUTOMATA ABSTRACTION

[1992]), and several methods have been designed to create formal abstractions of dynamical systems that
do not rely on a discretization of time, such as Frazzoli et al. [2005].

The contribution proposed in this chapter is a novel timed-automata abstraction of switched dynamical
systems based on a particular kind of time-varying regions of invariance: control funnels. Recent results
have shown that these invariants are very useful for robust motion planning and control (see for instance
Tedrake et al. [2010a]; Majumdar and Tedrake [2013]; Majumdar et al. [2013a]), and that funnels or
similar concepts related to the notion of Lyapunov stability or contraction control analysis can be used
for formal verification of hybrid systems (Julius and Pappas [2009]; Duggirala et al. [2013]), and for
reactive controller synthesis as in DeCastro and Kress-Gazit [2014].

The chapter is organized as follows: after a brief introduction to timed automata and an overview of
related approaches in section 2.2, section 2.3 describes how control funnels, in particular for trajectory
tracking controllers, can be used to create timed transition systems that abstract the behaviour of a
given switched dynamical system, and as a result can potentially allow the use of verification tools to
solve Reach-Avoid problems for this kind of systems. In section 2.4, we show how these timed transition
systems can be encoded as timed automata. In section 2.5, we consider the case of linear dynamics and
introduce the notion of fixed size LQR funnel, a convenient form of funnel used within the examples and
present efficient algorithms to construct the funnel system and the corresponding timed automaton. In
section 2.6 we present a variety of problem cases for which we can successfully perform controller synthesis
reformulated as a reachability problem in a timed automaton deduced from a LQR-funnel system. These
cases comprise motion planning for the Dubins’ car, a nonholonomic system, and a Pick-And-Place
scenario under logical constraints. In all cases the model checker UPPAAL (Behrmann et al. [2006]) or
its extension to timed games UPPAAL-TIGA (Behrmann et al. [2007]) are used to solve the resulting TA.
Finally section 2.8 concludes the chapter and presents some avenues for future work.

The contributions presented can be summed up as

Contributions in this chapter
e Presentation of a novel abstraction method for switched dynamical systems
e Reduction of such abstractions to timed automata

e Proof-of-concept by synthesizing control laws and strategies for different systems
and problems

The material presented in this chapter is (partially) published in Bouyer et al. [2015,
2017).

2.2 RELATED WORK AND BACKGROUND

2.2.1 TIMED AUTOMATA

Timed automata were introduced in the early 90’s as an extension to finite automata in Alur and Dill
[1994b] and have gained great popularity within the formal verification community. But let us first
introduce finite automata and build on that.

A finite automaton is described by a tuple A = (L, Lo, Ly, %, E) where L is a finite set of locations
or states, Ly € L is the initial state, Ly C L is a set of final states, meaning that a run terminates when
attaining any of these states, 3 is called the alphabet of the automaton and contains all labels associated
to the edges and finally the set of edges E C L x ¥ x L of the form (¢,0,¢"). Two locations ¢,¢' € L

are said to be connected if there exists an edge (¢,0,¢'), also denoted ¢ LN ¢, in E for some letter § of
the alphabet 3. We also say that there exists a transition between £ and ¢ in the automaton. Here we
are only interested in deterministic finite automata. That is the set L contains only a finite number of
states and it is deterministic in the sense that all outgoing edges from a state have different labels. A

2.2. RELATED WORK AND BACKGROUND 23

configuration of such an automaton is entirely described by the current location and a run corresponds
to the list of labels associated to the edges or transitions that are consecutively taken. As this is a list of
letters from the alphabet ¥, it is called a word over the alphabet ¥ and the word is accepted, or in the
language of the automaton, if it leads from the initial to a final state, as shown in Figure 2.1.

The reachability problem on such an automaton deals precisely with the question of finding such
accepted words or runs. Such automata enjoy many decidable properties and reachability is one of them.
There moreover exist many extensions to finite automata and some of them would be interesting in the
context of this work, such as the extension to infinite words and Biichi acceptance conditions (Biichi and
Landweber [1969]) as they could be used to describe repeated tasks in a robotic scenario, but for the
moment we concentrate on the simplest form of reachability.

Such automata can describe the change of the state given an action to perform (among a finite number
of possible actions represented by labels) and can therefore encode a qualitative notion of time, such as
“first open the door then go through it then close the door”. But such automata fail to express a quantitave
notion of time, which is necessary to express conditions like “go through the door before 5 time units have
passed”. Such questions are however crucial as they naturally arise in many realistic scenario for robotic
or other cyber-physical systems. For instance, consider the growing sector of embedded electronics and
controlled systems. In such systems there exists a continuous evolution of the controlled system and
discrete switches due to a change of the control strategy or a sudden change in the environment.

Figure 2.1 — A simple example of a deterministic finite automaton. The set of locations is given as
L = {1,2,3,4}, the initial location is Ly = 1 (indicated by the arrow without origin), the set of final
locations is Ly = {3}. The alphabet is ¥ = {a,b,c}. Two examples runs are showcased, given by the
words (c,a) (green run) and (a,b,c,a) (blue run).

In order to be able to represent such cases, timed automata (TA) have been introduced in the
early 90’s. They correspond to a timed extension of finite automata and are defined by a tuple A =
(L,Lo,Lp,C,%, E,Inv) where L, Ly, Lr and ¥ are defined as before. C denotes a set of real-valued
variables called clocks, E C L x C(C) x R(C) x ¥ x L is the set of (timed) labelled edges defined by tuples
of the form (¢, gp e, rese e, 9,¢), extending the edges of the finite automaton by the clock guards (ge,¢)
and resets (resg) detailed hereafter.

The (finite) set of clocks will allow for a quantitative notion of time. A clock valuation, equivalent
to determining the current value the clocks, over the set C' is a mapping v: C — Ra“. We write RY
for the set of clock valuations over C. If A € R*, we write v + A for the clock valuation defined by
(v+ A)(e) = v(c) + A for every ¢ € C, this corresponds to letting a certain amount of time pass.
A clock constraint over C is a boolean combination of expressions of the form ¢ ~ «a where a € @,
and ~ € {<,<,=,>,>}. Note that it is only allowed to compare the clocks to constants and not to
another clock, like (¢,’,;a) € C x C x Q: ¢ ~ ¢ + a. This is called a diagonal guard and causes the

24 CHAPTER 2. TIMED-AUTOMATA ABSTRACTION

verification of the automaton to be more involved (see Bouyer et al. [2005]), leading to higher complexity
of the verification process. As we will see, our approach does not depend on this kind of guards and
we therefore only consider so-called diagonal-free TAs. We denote by C(C) the set of clock constraints
over C. We write v = g if v satisfies g. That is if the current values of all clocks satisfy all atomic
constraints, or better propositions, in g. A reset of the clocks is an element res of (Q U {1})¢ (which
we may write R(C)), and if v is a valuation, its image by res, denoted res(v), is the valuation mapping
¢ to v(c) whenever res(c) = L (the clock is unchanged), and to some predefined constant res(c) € Q
otherwise (deterministic reset). In the framework of timed automata such resets can only take place
during a transition.

Finally Inv is called the invariant labelling function, which assigns to each location a clock constraint
that has to be verified while staying in this location. Note that different possibilities to define the tuple
representing the timed automaton exist, including or excluding the explicit labelling of the transitions
and the presence of invariants. These are however only differences in notation and do not restrict or
extent the expressiveness of the automaton. Here the most explicit version is chosen, as in Sloth and
Wisniewski [2010a)].

In contrast to finite automata the configuration in a TA is no longer entirely determined by the current
location ¢, but by the pair specifying the current state and clock valuation, so by the pair (¢,v) € L x RC.
Or informally by the state and the “current time”. The invariant labelling function Inv: L — C(C)
assigns an invariant to each location, that is a set of clock constraints that has to be satisfied when in
this state. Therefore the configuration pair introduced above always has to be such that v = Inv(¥).
Finally the finite set of edges E is a subset off all possible transitions in the TA, defined by the tuples
(LxC(C)x R(C)x X xL). That is, a tuple describing the initial location, the clock constraints (defining
“when” the transition can be taken), the clock reset (defining the clock valuation after the transition) and
the letter or symbol associated to this edge as well as the target location.

The configuration given configuration (¢,v) of the timed automaton A evolves according to the fol-
lowing two rules:

o time-elapsing transition: (¢,v) — (£,v+ A) whenever v + § = Inv(¢) for every 0 < § < A;

o switching transition: (¢,v) — (¢',v’) whenever there exists (¢, g, res, £') € E such that v = gAlnv({),
v = res(v), and v’ = Inv(¢).

A run in such an automaton is, much similar to the one in the case of finite automata, a sequence of
consecutive transitions, or more specifically, a sequence of time-elapsing and switching transitions. This
sequence, due to the labelling and the timing requirements is called a timed word, so a list of actions to
take (element of 3) and times to let pass (A € RT), as shown in Figure 2.2. Equally, a run can also be
identified as a sequence of configurations, that is the run r is defined by ((¢,vo), (¢1,v1),...,(¢N,VN))
and for each run the associated timed word can be found and vice-versa.

Similar to the case of the finite automaton, the reachability problem in a TA asks to find an accepted
timed-word for the given timed automaton with all clocks initialised to zero. This property is shown to
be decidable and PSPACE-complete (Relying on the region constructiong, see Alur and Dill [1994b]),
making timed automata an interesting framework for our use-case.

2.2.2 RELATED WORK

In the literature a number of different approaches exist for the verification of (switched) dynamical systems
and some also seek to perform formally verified controller synthesis, and reflect the growing interest in
such approaches as well as the broad variety of different problems falling into this category.

Firstly the existing approaches for verification can roughly be divided into two groups, direct and
indirect methods. Direct methods are able to reason directly about nonlinear differential equations by
computing (over-)approximations of the reachable set, given the set of possible initial conditions. The
main computational complexity of such approaches lies in the computation of these sets and several

2.2. RELATED WORK AND BACKGROUND 25

letter from X

guards from C(C)

resets R(C)

c > 1 cg > 1.5

Ct = 0

Figure 2.2 — A simple example for a timed automaton. The set of final states, the set of states, the
initial state and the alphabet are the same as for the finite automaton. There are two clocks for this
automaton, so C' = {¢, ¢4}, initialized to zero when entering location 1. Location 2 is the only location
with a non-trivial invariant. For the first run of the finite automaton (green), there exist (infinitely
many) corresponding timed words, for instance ((1.1,c),(.6,a)). This means that we first let 1.1 time
units pass while being in location 1 before taking the transition labelled with ¢ to location 2. Note that
before the transition we have v(¢,) = 1.1 and v(¢y) = 1.1 and after the transition (so after the reset)
we have v'(¢;) = 0. and v’(¢y) = 1.1. Therefore v(C) satisfies the transition guard and v'(C) satisfies
the invariant of location 2. Then we let another 0.6 time units pass by before taking the next transition
labelled with a in order to attain a final state. The second example run in the finite automaton (blue)
has no corresponding timed word. After taking the first two transitions labelled a and b to and from
location 4, we inevitably end up with ¢, > 2.5. As the ¢4 clock is not reset during the transition from 1
to 2, this would violate the invariant of location 2 and therefore the transition cannot be taken.

different methods for doing so have been proposed, see for instance Asarin et al. [2003] for nonlinear
systems, Althoff et al. [2008] for linear hybrid systems or Althoff et al. [2010] for nonlinear hybrid systems.

The second, the indirect approach, is concerned with building a “correct” abstraction of the system,
which then allows to formally reason about its properties. Typically finite state machines (De Jong et al.
[2001]), timed automata (Maler and Batt [2008]) or hybrid automata (Henzinger et al. [1998]) are used as
abstraction. For such abstractions the notions of soundness and completeness are important with respect
to the true system, which will be detailed afterwards. The method proposed here falls into this category.

In general, a trade-off has to be made between three properties: the expressiveness of the specification
to be verified, the difficulty or generality of the considered dynamical system together with the fineness
of the representation and the overall computational complexity. In the following several works setting
different priorities and the connections to the approach presented in this chapter are given. Finally
approaches tackling the synthesis problem for switched dynamical systems are presented.

Before introducing the related works, a short note on soundness and completeness in the context of
dynamical system abstraction is given, as they somewhat differ from the standard definitions in computer
science. Throughout this chapter we say that an abstraction is sound if the non-reachability of a state
in the abstraction implies that there exists no trajectory of the dynamical system reaching this state.
Or, to put it differently, if there exists a trajectory for the dynamical system reaching a state, then the
corresponding abstract state must also be reachable in the automaton. This is closely related to safety,
as it guarantees that if an unsafe state is not reachable in the abstraction, the dynamical system will not
reach it either. Note that this does not imply the inverse implication, so soundness does not guarantee
that if a state is reachable in the abstraction, then there exists a trajectory for the dynamical system
reaching this state. This property in combination with soundness is sometimes called completeness (used
in this sense in Sloth and Wisniewski [2013]), but has different meanings in other works. The notion
of soundness can, depending on the context, also be refined by taking into consideration the time or
duration of the trajectory, which will be detailed when necessary.

26 CHAPTER 2. TIMED-AUTOMATA ABSTRACTION

To study the reachability property of a continuous dynamical system, an abstraction to a timed
automaton is presented in Maler and Batt [2008]. Here the state space is decomposed into a regular grid
and each hypercube of this grid corresponds to a discrete state in the automaton. For each dimension
of the considered system there is an associated clock in the automaton and the guards and invariants
correspond to the maximal and minimal dwell time of the system in the current hypercube. As this work is
principally concerned with reachability objectives, the set of reachable states has to be overapproximated
by the abstraction to be sound. Therefore the minimal dwell time in a hypercube ensured by the guards
is the side-length of the hypercube divided by the maximal velocity in the dimension corresponding to
the clock attained anywhere within the hypercube. Similarly, the maximal dwell time is insured by
the invariants and is set to the side-length of the hypercube divided by the minimal velocity (in the
dimension corresponding to the clock attained anywhere within the hypercube). Transitions only exist
between hypercubes that share a facet, and each time a transition is taken, the corresponding clock is
set to zero. By adding these time-restrictions, the over-approximation of the timed-automata abstraction
is obviously tighter than an abstraction without it, like finite state-machines (De Jong et al. [2001]),
however due to the use of the minimal and maximal occurring velocity within each hypercube, the
“quality” of the timing constraints is directly linked to the size of hypercubes (excepts for systems with
constant derivatives) and the local Lipschitz constant of the system. This causes this approach to be
computationally expensive especially for highly “dynamic” systems. The number of clocks is equal to the
dimension of the system, the number of hypercube grows exponentially with the dimension and finally
small hypercubes are required to obtain expressive timing constraints, making the approach intractable
for medium-sized problems.

A different line of work that has a similar flavour is proposed in Sloth and Wisniewski [2010a, 2013].
Here the state space is also entirely decomposed into cells (bounded, simply connected subsets of the state
space) which serve then as discrete states in the timed automaton, however they are constructed in a more
sophisticated way resulting in tighter bounds. In Sloth and Wisniewski [2010a] so called “slice-families”,
a collection of sublevel-sets of a Lyapunov like function, are generated such that each sublevel-set is an
invariant for the considered dynamical system. Taking one slice of each slice family and forming the
intersection, one gets, in general, several disjoint subsets. Defining a cell as one of the subsets, which is
then simply connected, one obtains a partition of the state-space defined by these cells. By associating a
clock to each slice-family generating the partitioning, guards and invariants for each state can be deduced.
Due to the construction of the slices using invariant sets, better bounds (upper and lower bounds on the
dwell-time in a slice) can be derived. Even though these bounds are tighter than the ones obtained in
Maler and Batt [2008], they remain conservative. In Sloth and Wisniewski [2013], the authors address
this problem by building on this approach while restricting the dynamics to polynomial systems. By
restricting the so-called partitioning functions to be polynomial as well, the demand that all level-sets
of different partitioning functions intersect each other transversally becomes computationally tractable.
Transversally in this context means that the combined tangent space of the intersecting level-sets spans
the entire state space and this is a necessary condition to prevent degenerated cells. This approach is
able to generate sound, as the works cited above, but in certain cases even complete timed automata
abstractions of dynamical systems. This is worth mentioning as completeness is significantly harder to
obtain than soundness. Soundness in this context means that if there is a trajectory for the dynamical
system from some state & in some cell ¢y to another state x; in some other cell ¢; in time T, then there
exists a run in the automaton of total time T from the state corresponding to ¢y to the state corresponding
to ¢;. This is also the case for the approach presented in Maler and Batt [2008]. But the abstraction
is, in certain cases, also complete in the sense that if there exists a run in the automaton of duration T’
from a state corresponding to cell ¢y to a state corresponding to c;, then there exists also a trajectory of
duration T for the dynamical system starting at some point in ¢y and ending somewhere in ¢y, which is
not the case for Maler and Batt [2008]. If an abstraction is not complete, there are more transitions in
the abstraction then actually realisable by the dynamical system. This is also known as false transitivity.
To guarantee completeness one has to prove that the bounds on the minimal and maximal dwell-time are
tight, that is they coincide and therefore all states have to traverse a slice in the same time, independently

2.2. RELATED WORK AND BACKGROUND 27

of their position. This is not achievable in all cases, depending on the given system, and if it is infeasible
to derive such partitioning functions the presented approach seeks to obtain the tightest possible bounds.

Such approaches are interesting as they allow to formally reason about the dynamics of a system and
allow to verify timed specifications on the system, but do not address controlled or switched dynamical
systems. Such synthesis problems ask to generate a control law or switching sequence which formally
verifies a given specification for the model of the dynamical system under all possible realisations of
a given environment, equally given as a specification. Such problems are addressed with a variety of
different approaches and techniques. Most of these approaches are concerned with generating control
laws for linear temporal logic or fragments of it and therefore only provide a qualitative notion of time.
As these are nonetheless interesting approaches and the approach proposed in this chapter draws some
inspiration from them, they are detailed in the following.

In Kloetzer and Belta [2008] an approach to derive a continuous control law for controlled linear
systems under polyhedral input constraints (& = A.x + B.u+b, C.u < g) satisfying a LTL specification
is presented. The approach is constructive in the sense that it will terminate if such a control law exists.
It relies on first partitioning the state space into polyhedrons with respect to the propositions in the
given formula, then these polyhedrons are subdivided with respect to the dynamics of the system, such
that there exists an admissible control input that drives all states in the polyhedron through a specific
facet. This way the polyhedrons form an abstraction for the dynamical system and a corresponding
automaton respecting the possible transitions between the polyhedrons and the specification given can
be constructed. This way, a low-level control law is generated such that the resulting dynamics verify the
specification. In this work too, only qualitative timing constraints can be accounted for.

The approach proposed in Kress-Gazit et al. [2007, 2009] and the method presented in this chapter have
in common that the abstraction rather relies on guarantees provided by some low-level control law instead
of seeking to directly synthesize the low-level control. The problem addressed in these works corresponds
to motion planning under LTL constraints for service robots. In a first step the workspace is decomposed
into polyhedrons and by relying on the control law described in Conner et al. [2003], it can be assured that
all states within a polyhedron can be driven through a prespecified facet into an adjacent polyhedron.?
Then again the polyhedrons in the workspace correspond to the discrete states of an automaton and a
transition between them exists if and only if they are adjacent and there exists a control law that drives
all states in the outgoing polyhedron through the facet shared with the ingoing polyhedron in finite time.
By restricting the specification to a fragment of LTL, known as General Reactivity (1), a reactive control
law can be synthesized in reasonable time for fairly complicated task and environment specifications (see
Piterman et al. [2006]). The drawback of this approach is the simplicity of the admissible dynamics (it
is restricted to so-called kinematic models & = w in the proposed version).

In Sloth and Wisniewski [2010b] the idea of using a state space partitioning induced by the intersection
of partitioning functions is extended to controlled systems. To achieve this, a set of inputs or control laws
is defined under the constraint that the dynamics conditioned by each of these control laws is transversal
to any sublevel-set of any partitioning function, a non-trivial constraint. Once this achieved, the path-
planning problem for dynamical systems can be reformulated as a game on this timed game automaton and
additional specifications in terms of Timed Computation Tree Logic can be defined. This approach allows
for quantitative timing constraints, however, these can not be very precise without the goal becoming
unreachable due to the conservative bounds on the transition times between the cells. Another drawback
of the presented approach is that it is not fully implementable within existing verification tools due to
its specific updates.

Closer to the approach proposed in this thesis are the ones in Tedrake et al. [2010b]; Le Ny and
Pappas [2012]; Majumdar and Tedrake [2017]. They all have in common that they use some sort of
time-dependent positive invariant set (funnel) to abstract the possible system trajectories. In Tedrake
et al. [2010b] pure motion planning without other timing constraints is considered. In order to be able
to guarantee that the all states can be driven to a target zone, first reference trajectories are generated

2The control law used in Kress-Gazit et al. [2007, 2009] shows many similarities to the one presented in Rimon and
Koditschek [1991].

28 CHAPTER 2. TIMED-AUTOMATA ABSTRACTION

ending in the target zone, then “large” funnels are constructed around these trajectories, such that their
final zone is a subset of the target zone. In order to cover the entire state space, new reference trajectories
are generated leading to the initial zone of existing funnels and new funnels are created around them
such that their final zone is in turn a subset of the initial zone of the existing funnels (connectivity
condition) in an iterative process. As all funnels either end in a successor funnel or the target zone,
and due to the positive invariance of the funnels, all states can be driven to the target zone. This gives
the set of so created funnels the structure of a directed graph with the funnels being the vertices and
the existence of an edge between two vertices v and v’ depends on whether or not the final zone of
the funnel associated to v is englobed by the initial zone of the funnel associated to v’. In Le Ny and
Pappas [2012], similar ideas are used, but also take into account partially observability of the system
and (bounded) disturbances and modelling errors. Instead of generating reference trajectories, here a
finite set of predefined controllers (supposed to come with guarantees on convergence) is assumed and
instead of generating a library covering the entire state space, the sequential composition of the funnels is
integrated into a rapidly-exploring random tree (RRT, LaValle [1998]) like approach. Here the addressed
problem is steering a given initial set into a final region.

In the here presented approach we also rely on funnels, however their reduction to timed-automata
does not result in a loss of exact, or quantitative, timing properties. Therefore a richer variety of tasks
can be addressed in theory, such as “pick up object A in position x at the exact time-point 7", however
at the cost of a possibly higher computational complexity.

A different approach to formally verify hybrid systems is based on differential dynamical logic (d£),
an extension to first-order logic. This approach is successfully used in the verification tools KeYmaera
(Platzer and Quesel [2008]; Fulton et al. [2015]) and SpaceEx (Frehse et al. [2011]). Using such frameworks
to directly synthesize control strategies for complex systems and task is (currently) beyond their scope.
The abstraction proposed within this chapter could also be translated into d£ formulas but this is less
natural. It might be interesting to consider connections between d£ formulas and our approach in the
future, but we focus on timed automata in this chapter.

In this chapter the main idea behind the proposed approach to synthesize control strategies verifying
logical constraints is presented before showcasing its application.

2.3 GRAPHS OF CONTROL FUNNELS

2.3.1 COoONTROL FUNNELS

Consider a controlled dynamical system governed by the general nonlinear differential equation:

T = f(w) + g(ma u(m,t)) = f(w7 tvu(wa t)) = fu(wat)v (2'1)

where € R? is the state of the system, t € RS’ is a real (clock) value corresponding to an inter-
nal controller time, f: R? — R? is the system dynamic, g: R x R¥ — R? is the input dynamic and
u(x,t): RY x Rf — RF is the control law. To shorten notations, this can be equally written as f,(x,t),
denoting the dynamics of the system conditioned by the control law w. To ensure uniqueness of the
solution for a given initial condition, we suppose that f, is continuously differentiable from R x]R(T to
R?, meaning that f and ¢ are continuously differentiable from R? to R? and from R? x R* to R? and
u(x,t) is continuously differentiable form R? x RY to R*.

In this work, we mostly consider state spaces that describe the position and velocity of systems con-
trolled in acceleration, such as articulated robots or autonomous vehicles. The continuity of trajectories
in the state space ensures that the position is always a continuously differentiable function of time. More-
over, without loss of generality, we restrict ourselves to nonnegative time values. It is worth noting that,
since ¢ is an internal controller time, it can have a discontinuous evolution with discrete resets to any
value in Rar. However, except for these resets, the controller time is assumed to continuously increase at
the same rate as physical time.

2.3. GRAPHS OF CONTROL FUNNELS 29

Figure 2.3 — An example of a control funnel for a controller tracking a reference trajectory. Here three
different funnels Fy (green), F1 (blue) and F» (red) are defined around their respective reference trajectory
(black lines). The dashed line is a trajectory of the controlled system in the state space. The current
state and the current region is shown for three particular time instances t, ' and " by the cross on the
trajectory and the coloured ellipsoid while tracking the reference trajectory associated with Fy. Therefore
no discrete change in the dynamics occurs between the time instances, and Fy is positively invariant for
the system. On the right side, switching transitions between control funnels, inducing discrete changes
in the dynamics, are depicted.

A control funnel for the above dynamical system with a fixed control law u is a function F: I — R
such that I C R and for any solution x(t) of (2.1) with no discret resets of the control time ¢, the
following property holds:

Vt, € 1. Vi, € 1. (tQ >t and :lt(tl) S .7:(151)) = :E(tQ) S _F(tg). (22)

Equation (2.2) defines a property known as positive invariance, and the funnel F corresponds to a time-
varying region of invariance. That is, once the system has entered the funnel, it cannot leave the funnel
by simply letting time pass by.

Example 1

A typical example of a control funnel based on a trajectory tracking controller is shown in Fig. 2.3.
Such pairs of tracking controller plus reference trajectory lend themselves well for the construction of
control funnels asymptotically converging towards a reference trajectory in the state space.

Example 2

For a concrete example, consider the simple system whose trajectories are of the form exp(—t) - @, or
equally governed by @ = —a, describing a uniform exponential convergence. Then any set W C R¢
defines a control funnel Fy : ¢t — {exp(—t) - w | w € W} as seen in Figure 2.4.

The notion of funnel was popularized by Mason [1985], and it usually specifically refers to operations
that eliminate uncertainty (as is the case in the example of Figure 2.3) by collapsing a larger set of initial
conditions into a smaller set of final conditions (see for instance Tedrake et al. [2010a]). In our case, the
control funnel may or may not reduce uncertainty, and it is important to note that the set F(¢) does not
have to decrease in size, over time.

This more general concept is closer to the definition of wviability tubes (Aubin [1988]) or the so-
called flowpipes used within the verification tool Flow* (see Chen et al. [2013] and Chen [2015]), but
we nevertheless use the term control funnel as some reduction of uncertainty is often essential to the

30 CHAPTER 2. TIMED-AUTOMATA ABSTRACTION

Figure 2.4 — Depiction of control funnels for uniform exponential convergence for two different initial sets
Wy and W7 as well as an example trajectory of one point of each set as function of time wq(¢) and wy(¢).

usefulness of our abstractions. We address the computation of control funnels in section 2.5 for linear
systems and in Chapter 3 for polynomial systems, and leave them as relatively abstract objects for now.
For the moment it is sufficient to keep in mind the property of positive invariance.

2.3.2 FORMALIZING THE REACH-AvVOID PROBLEM FOR CONTROLLED SYS-

TEMS
To be able to generate motions based on funnels, we need to establish the relations between them. So
suppose that we have a finite set U of control laws wug(x,t), ui(x,t), ..., u,(x,t) that respectively set
the dynamics of a given system to & = fy,(@,t), € = fu,(z, 1), ..., & = fu,(x,1).

We say that the system can switch to the control law w;(x,t) at some state ' whenever there is
to € Ry and a solution x(t) of & = f,,(x,t) with initial condition @’ = x(to). Typically, if u;(x,t)
corresponds to a trajectory tracking controller, ¢ identifies the point of the trajectory where the tracking
is triggered.

Informally, the Reach-Avoid problem asks, given a finite set of control laws as above, an initial point
xo, a target zone Ty C R9, and an obstacle Q C R?, whether there exists a sequence of control law switches
that generates a trajectory reaching from x¢ to 7y while avoiding the obstacle Q2. Several variants of
this problem can be considered, that vary on the objective (for instance some tasks can be expressed as
w-regular, so periodically reoccurring objectives, see for instance Rozenberg and Salomaa [2012]) which
could also be solved using the proposed approach, however we focus here on a pure reachability with
avoidance objective. As shown later on, many applications of practical importance can be defined as such
reachability problems.

More formally, the Reach-Avoid problem asks for a finite sequence of time values t§ < t1, 13 < t3, ...,
tf <+, a finite sequence of control laws indices ji, ..., jp, and a finite sequence x1, ..., xp of points
in R, such that:

(a) the goal is reached, zp € T}.

(b) for every 0 < p < P, the trajectory portion «P(t) is the unique solution to & = fu,-p (z,t) with
initial condition @?(t§) = @,_1 and xP(t}) = x).

(c) for every 0 < p < P, for every tg <t < tﬁ’, the trajectory does not intersect with the obstacle
xP(t) ¢ Q.

Intuitively, this means that we can switch conveniently between all the control laws, causing discrete
changes in the system dynamic, and ensure the global (reachability with avoidance) objective. The
continuous trajectory generated by the solution above is the concatenation of the trajectory portions

2.3. GRAPHS OF CONTROL FUNNELS 31

x <t< or 1 < p < P. Therefore the resulting trajectory is almost everywhere differentiable,
P(t) | th <t <]} for 1 < p < P. Therefore th lting trajectory is almost here differentiabl
except at the time points where switching occurs.

Example 3

Consider the case of the two-dimensional controlled kinematic system @& = wu; with the finite set
of control laws up = [1 O]T (“go right”), uy = [-1 O}T (“go left”), ug = [0 1}T (“go up”) and
uz = [O —1]T (“go down”). The problem is further defined by its initial point g = [O I]T, target
zone Ty = {[0 fl]T} and obstacle Q = {x | ||z||, <0.5}. Then one can see that the time values

((0,1),(0,2),(0,1)) together with the control law indices (0,3,1) and the corresponding sequence of
points (E] , [ll] , {%}) is a solution for the Reach-Avoid problem. The trajectory of the system
results from applying control law u; for 1 time unit (internal controller clock going from 0 to 1), resulting
in the trajectory portion z°(t) = xo + [1 0] Tt (with 0 < ¢ < 1). Then a discrete change in the dynamics
occurs when switching from control law u; to uz. At the same time as the switching occurs, the internal
controller clock is reset to zero. The control law ug is then applied for 2 time units resulting in the
trajectory portion p'(t) = [1 O]T +[0 -1] T4 (with 0 < t < 2). Finally, at ¢ = 2, a second discrete
change of the dynamics occurs, when switching to control law w1, which is then applied for 1 time unit.
This results in the third trajectory portion p*(t) = [1 —l]T + [-1 O]Tt (with 0 < ¢t < 1) and the
system safely attains T}, as p*(1) € T¥.

Note that there are often infinitely many solutions to a specific problem and in order to rank them some
sort of optimality is often demanded. The most common condition is to demand the fastest solution, so
the solution necessitating the least amount of time. As we will see later on this problem is decidable for
timed automata.

2.3.3 REACH-AVOID OBJECTIVES ON GRAPHS OF CONTROL FUNNELS

We now explain how the Reach-Avoid problem can be abstracted using timed transition systems based
on control funnels, which can then be translated to a timed automaton.

For each control law u;(x, t), we assume that we have a finite set of control funnels F2, F}, ... ,]-'Z”Fl,
respectively defined over I? C RS‘, Il-l C RS‘, ceey If“*l -]RE)". We assume that for every 0 <i<n—1,
for every 0 < j < m; —1, for every t € I, it holds F} (t)N 2 = §, which means that trajectories contained
in these funnels always avoid the obstacle 2.

Consider a control law switch at position @’ to law w;(x, t) with clock value ty. If there exists a control
funnel F/ such that ty € I/, and &’ € F/(to), then we know that the state of the system will remain
inside F7 (t) for any t > to in I’ (as long as the control law u;(x,) is used). To always keep the system
inside one of the control funnels, we can impose sufficient conditions on the switches. For instance, if
the state is inside JF7(t), and if for some future clock value ¢1, there exists a control funnel F}. and
ty € I} such that]—'ij (t1) C FL(t2), then when the clock value is t; we can safely switch to the control
law uy(x,t) while setting the clock to t2. Indeed, we know that the state of the system at the switch
instant will be inside FJ (¢2), and therefore it will remain inside F.(¢) after the switch. Such transitions
from a funnel to another are illustrated on the right side of Figure 2.3, or in greater detail in Figure 2.5.
It is worth noting that similar transitions could be achieved with, instead of control funnels, controller
specifications as introduced in Le Ny and Pappas [2012], which are more conservative but directly account
for disturbances in the actuation and sensor noise.

For some control funnels]-"ij and FF¥ associated to the same control law, it is the case (see section 2.5)
that when funnel F/ is entered at time ¢, then at any time ¢’ > t + h{ﬁk (where hf “Fis a constant),

I

the state of the system is inside FF(t') (and obviously also inside F7(#') if #' € I’ as the control law

K2

32 CHAPTER 2. TIMED-AUTOMATA ABSTRACTION

does not change). In that case, we say that the funnel FF hf—qk—absorbs the funnel _7:1] . As we will
see, we will typically construct funnels in practice such that ff =it is smaller than .7-";7 . As they are
constructed around the same reference trajectory they also share the same invariant except in the case
that at least one of them intersects with the obstacle. In that case the invariants differ. Therefore Vt € I7,
FIN)y ¢ FI(t) and hi 77t is strictly positive. Note that ™ (£) € F/(t) also implies that A7 77 can
be chosen equal to zero, meaning that one can always switch from the smaller to the larger funnel.

These rules for navigating between control funnels give to the set of control funnels the structure of an
infinite graph, or, more precisely, of a timed transition system with real-valued clocks. One of the clocks
of this timed transition system is c;, the controller clock. We add two other clocks: a global clock ¢4, and
a local clock cy,.

The funnel timed transition system Ty p associated with the family of laws U = (u;(x,t))o<i<n—1
and the family of funnels F = ((.7-"7 "))0<Z<n 1,0<j<m,—1 is defined as follows. The configurations are
pairs (]-"5 ,v) where v assigns a non-negative real value to each of the clocks ¢, ¢4 and ¢y, with v(c;) € I ZJ ,
and its transition set contains three types of elements as depicted in Figure 2.5:

o the time-elapsing transitions: (.7-"1771)) — (]-'ij, v+ A) whenever [v(c;),v(e) + A] C Iij (where v+ A
denotes the valuation that maps each clock ¢ to v(c) + A);

e the swilching transitions: (F/,v) = (FL,v') whenever v/(cy) = v(cy), v'(ch) = 0, v(er) € I7,
v'(ep) € IL, and F (v(er)) C FL(V' (cr));
e the absorbing transitions: (F!,v) — (FF,v') whenever F¥ h{ﬁk—absorbs Flou(e) e 7, v(ey) € IF,

7 7

v(ep) > h{%k, v'(en) =0, v'(eq) = v(eq) and v'(c) = v(cy).

time-elapsing transition switching transition absorbing transition

F/) = v(e) +) FE(o(en) +)
ol | A

—

f
e
e

Figure 2.5 — Depiction of the three different types of transitions within a funnel timed transition system.

A run in this timed transition system is a finite sequence of configurations ((]:f[?7 Vo), (fj 1)y,
(FIr v p)) such that vo(cp) = volcy) = 0, vo(cy) € I7°, and all the transitions (.7:]” p) — (.7-"]’”rl Upt1)

(3 U 3)
for}(D) < p < P are valid transitions that belong to 'TUF o

Such a run is of total duration vp(cg), and it corresponds to a schedule of control law switches that
results from the following rules: initially, the control law is set to u;,(x,t), and the controller clock ¢;
is set to vo(c;). For every time-elapsing transition (F7,v) — (F/,v 4+ A), the same control law u;(z, t)
is kept for a duration of A time units, and for every switching transition (F7,v) — (F}, '), the control
law is switched from w;(x,t) to ug (e, 1‘) with an initialization of the controller clock to v’(¢;). Absorbing
transitions are discarded, as they just correspond to an instantaneous change of funnels for the same
control law.

Let us denote this sequence of switches by 7. Then, it is fundamental to notice that for every
x € F)°(vo(ct)), if we follow the schedule of control law switches just described, then the system remains

inside control funnels and reaches at the end of the run a unique point of R, that we denote (). The

2.3. GRAPHS OF CONTROL FUNNELS 33

uo(, t) ui(x,t) obstacle in the state space

7
16, 8] < IY

Folt) ¢ F(t5) Fi(t;) € F(t5)

0
4 a1 120, u fz 0
[to, t1], [to: t1] C I [to, t7] C I

F3 (1) € F(tg)

Figure 2.6 — On the left: graphical depiction of a funnel system and an obstacle. On the right its
abstraction as funnel timed transition system. A run of this system comprising three control fun-
nels: = ((F0,v0), (FO,vi), (FT,v8), (FT, v1), (F2,vd), (F2, v1), (FG,v5), (FG,vi)), with: V1 < < 4,
vbler) = th, vile) = £, vh(en) = 0, vilcn) = £ — th, vi(cy) = vhley) + vilcs), and vd(cy) = 0, and
V2 <i < 4, v(e,) = vit(e,).

trajectory going from @ to r(x) is also uniquely defined, continuous and almost everywhere continuously
differentiable.
The funnel timed transition system 7y, satisfies the following property:

Theorem 2.1. Let r = ((.7:3;?77)0)7 (F!

), (Fir vp)) be a run in Typ. If © € .Fff(vo(ct)), then
r(z) € Fi (vp(er)).

wp

Proof. This directly follows from the guaranteed positive invariance of the funnel for the considered system
dynamics conditioned by the control law associated to the funnel. The positive invariance guarantees
that any state of the system inside a funnel remains inside of it. Additionally all transitions in the run r
have to be valid transitions of 7y guaranteeing a correct succession of funnels. O

In some sense, the funnel timed transition system 7y r is a correct, or sound, abstraction of trajectories

that can be generated by the set of control laws: if x(€]-"f(? (vo(er)) and ff}f (vp(er)) € Ty, then such a
run witnesses a solution to the Reach-Avoid problem. However, this abstraction is obviously not complete.

Example 4

The example in Figure 2.6 shows a run with three control laws wug(z,t), wui(x,t) and wus(x,t),
three control funnels 7§, Y and F3, and an obstacle in the state space. The domains of definition of
the control funnels I3, I and I9 are such that for all @ € {0,1,2} and all t € I3, F2(¢) does not intersect
the obstacles.

With the previous property, any run in the corresponding funnel timed transition system leads to a tra-
jectory that avoids the obstacles. The example of Figure 2.6, where reaching 7} (t1) from F} (¢}) requires
a series of switches between the different control funnels, shows the potential interest of automated verifi-
cation in timed transition systems, as it can result in the generation of obstacle-free dynamic trajectories
via appropriate control law switches.

34 CHAPTER 2. TIMED-AUTOMATA ABSTRACTION

2.4 REDUCTION TO TIMED AUTOMATA

Timed automata (Alur and Dill [1994a]), as introduced in section 2.2, provide an expressive formalism
for modelling and reasoning about real-time systems, and enjoy decidable reachability properties; much
efforts have been invested over the last 20 years for the development of efficient algorithms and tools for
their automatic verification such as Kronos (Bozga et al. [1998]) and UPPAAL (Behrmann et al. [2006]).
Due to its more recent implementation and sophisticated GUI, UPPAAL is the tool of choice in this
chapter. Its efficient data-structures and implementation allow for the analysis of large scale automata
in reasonable time and allow to obtain the later presented results.

We define a slightly modified variant of timed automata with rational constants, general boolean
combinations of clock constraints and extended clock resets; those timed automata are as expressive as
standard timed automata (see Bouyer et al. [2004]), but they will be useful for expressing funnel timed
transition systems. These extensions are also directly supported by the tool UPPAAL, with the exception
of rational constants. In UPPAAL all constants have to be integers, which can however be easily achieved
with a preprocessing step to almost arbitrary precision.

The timed automaton is defined by the tuple A = (L, Lo, Lr,C, E, %, Inv) where L is a finite set of
locations, Ly C L is a set of initial locations, Ly C L is a set of final locations, C' is a finite set of clocks,
¥ is the alphabet and E C L x C(C) x R(C) x ¥ x L is a finite set of edges, and Inv: L — C(C) is an
invariant labelling function.

A configuration of A is a pair (¢,v) € L x RY such that v |= Inv(£), and the timed transition system
generated by A is given by the following two rules:

o time-elapsing transition: (£,v) — ({,v + A) whenever v + § = Inv(¢) for every 0 < § < A;

e switching or absorbing transition: (£,v) = (¢,v') whenever there exists (¢, g,res, o, ¢') € E such
that v = g AInv(£), v’ = res(v), and v’ = Inv(¢).

Or informally

e time-elapsing transition: the configuration can stay in the current state and let time pass by as
long as the invariant associated to this state is not violated;

o switching or absorbing transition: the configuration can change instantaneously from (¢, v) to (¢, v")
if there exist an edge between these states and the corresponding (transition) guard as well as the
invariant of the new state after the transition is satisfied.

A run in A is a sequence of consecutive transitions. The most fundamental result about timed
automata is the following:

Theorem 2.2 (Alur and Dill [1994a]). Reachability in timed automata is PSPACE-complete.

By comparing the structure of the timed automaton and the funnel timed transition system, the
similarities are numerous. The states of the timed automaton correspond to the different funnels, the edges
correspond to the transitions and the constraints defining the validity of a transition can be translated
into guards. The domain over which the funnel is defined can be interpreted as the associated invariant.

We consider again the family of control laws U = (u;(@,1))o<i<n—1, and the family of funnels F =
((F7, 7)) o<i<n—1.0<j<m,_1, as in the previous section. For every pair 0 < i,k < n — 1, and every
0<j<my—1and 0 <1< my—1, we select finitely many tuples (switch, [, 5], (¢,7),7, (k,1)) with
a, 3,7 € Q such that

(i) [, B] C Iij (o and [satisfies the invariant of the current state)

(ii) v € I} (7 satisfies the invariant of the next state)

(ii) for every t € [a, 8], F} (t) € FL(y) (for every time instant between a and § the current funnel has
to be englobed by the next funnel at time point)

2.4. REDUCTION TO TIMED AUTOMATA 35

This allows us to under-approximate the possible switches between funnels, as there can often be infinitely
many such switches. An empirically justified way to select the switches is detailed in section 2.5. For every
0 <i<n—1, for every pair 0 < j,k < m; — 1 we select at most one tuple (absorb, v, (i, j, k)) such that
v € Q and FF(t) v-absorbs F/ (t). This allows us to under-approximate the possible absorbing transitions.
For every 0 < i < n —1 and every 0 < j < m; — 1, we fix a finite set of tuples (initial, a, (4,7)) such
that « € Q € I and =y € F/(a). This allows us to under-approximate the possible initialization
to a control funnel containing the initial point xg. For every 0 < i < n—1and 0 < j < m; — 1,
we fix finitely many tuples (invariant,S; ;, (i,7)), where S; ; C I} is a finite set of closed intervals with
rational bounds. This allows us to under-approximate the definition set of the funnels. Finally, for every
0<i<n—1and0<j<m;— 1, we fix finitely many tuples (target, [a, 3], (i,7)), where o, 8 € Q and
[, 8] C I} N {t | F/(t) C Ty}. This allows us to under-approximate the target zone. We denote by K
the set of all tuples we just defined.

We can now define a timed automaton that conservatively computes the runs generated by the funnel
timed transition system. It is defined by Ay p x = (L, Lo, Lr,C, E, %, Inv) with:

o L={F/|0<i<n—1, 0<j<m;—1}U{init,stop}; Lo = {init}; Lp = {stop};
o C={c,cq,0n};
e F is composed of the following edges:

(a) for every (initial, o, (i, 7)) € K, we have an edge (init, true,res, F7) in E, with res(c;) = and
res(cq) = res(cp) = 0;

(b) for every (switch, [o, B], (¢,7),7, (k,1)) € K, we have an edge (]—'f,a < ¢; < B,res, Fl) with
res(c;) =, res(cp) = 0 and res(cq) = L;

(c) for every (target,[w,], (i,7)) € K, we have an edge (}"ij,oz < ¢ < B,res,stop) in E, with
res(c;) = res(cy) = res(cp) = L;

(d) for every (absorb, v, (4, j,k)) € K, we have an edge (F/,c, > v, res, FF) with res(c,) = 0 and
res(c;) = res(cq) = L;

e for every (invariant, S; ;, (i,§)) € K, we let Inv(F/) £ Viagles,, (@ < e < B).

Note that the invariant associated to a state is the intersection between the domain of the reference
trajectory and the time intervals for which the funnel constructed around the reference trajectory does
not intersect with the obstacle.

With the so defined automaton we easily get the following result:

Theorem 2.3. Let (init,vg) — (¢1,v1) = -+ — (€p,vp) — (stop,vp) be a run in Ay px such that vo
assigns 0 to every clock. Thenr = (({1,v1), ..., ({p,vp)) is a run of the funnel timed transition system
Tu,r that brings xo to r(xo) € Ty while avoiding the obstacle).

This shows that the reachability of stop in Ay i implies that there exists an appropriate schedule
of control law switches that safely brings the system to the target zone. Of course, the method is not
complete, not all schedules can be obtained using the timed automaton Ay g k. But if Ay p i is precise
enough, it will be possible to use automatic verification techniques for dynamic trajectory generation.

Before continuing with the effective construction of funnels for linear systems, we would like to give
some additional remarks.

Remark 2.1. The absorbing transitions in (d) are defined as (]-'f ,ch > v,res, FF). By adding this tran-

sition only if v > 0, that is if ¥ is smaller than F7 and by ensuring that all transitions that exist for

FF also exist for]-'ij if j > k, we can change the transition to (fg,ch = v,res, FF). This simplifies the
automaton without loosing expressiveness. In UPPAAL we can even enforce this transition by making it
urgent (see Barbuti and Tesei [2004]), further reducing the verification complexity without reducing the

expressiveness.

36 CHAPTER 2. TIMED-AUTOMATA ABSTRACTION

Remark 2.2. We could be more precise in the modelling as a timed automaton, if we could use non-
deterministic clock resets (see Bouyer et al. [2004]); but we should then be careful with decidability
issues. Additionally, non-deterministic resets are not implemented in UPPAAL, which is why we have
chosen timed automata with deterministic resets only.

Remark 2.3. The invariants are constructed such that they represent a finite set of closed intervals with
rational bounds on the controller clock ¢;. This can be loosened into boolean combinations of expressions
of the form ¢, ~ «, with ¢, being either the controller or world clock, « is again a constant Q and
~ € {<,<,=,>,>}. This could be useful to simulate a changing environment, but was not necessary for
the examples presented.

Remark 2.4. As we show with some examples in section 2.6, our timed-automata abstraction can be used
for other types of objectives than just reachability with avoidance. In particular, the approach can be
extended to timed games (Asarin et al. [1998]), where special uncontrollable transitions model uncertainty
in the environment. In that case, the aim is not to synthesize one single run in the system, but rather a
strategy that dictates how the system should be controlled, depending on how the environment evolves.
It is worth knowing that winning strategies can be computed in exponential time in timed games, and
that the tool UPPAAL-TIGA (Behrmann et al. [2007]) computes such winning strategies. In section 2.6.1,
we give an example of application where timed games and UPPAAL-TIGA are used.

2.5 LQR FUNNELS

2.5.1 LYAPUNOV STABILITY AND CONSTRUCTION

In this section we consider the particular case of linear time-invariant stabilizable systems whose dynamics
are described by the following equation:

T = A.x+ B.u, (2:3)

where A € R*™? and B € R%*** are two constant matrices, and © € RF is the control input. We
also consider reference trajectories that can be realized with controlled systems described by (2.3),
ie. trajectories @ ef(t) defined for ¢t € [0,7] for which there exists wyef(x,t) such that @f(t) =
A.rep(t) + B.uyer(t) for all t € [0,T]. We can combine this equation with (2.3) and get &(t) — &yer(t) =
A.(x(t) — Tref(t)) + B.(u(t) — trer(t)), which rewrites

za(t) = Axa(t) + B.aua (t) (2.4)

To track @,0¢, we compute u using the linear quadratic regulator in its infinite horizon version (LQR,see
Sontag [1998]), i.e. a minimization of the quadratic cost: J = [(2aTQza + uaTRun) dt, where
@ and R are respectively positive-semidefinite and positive-definite matrices, see section 3.2 for a more
detailed introduction. The solution is a time-independent feedback control matrix K defined as K =
R~1.BT.P with P being the unique positive-definite matrix solution to the continuous time algebraic
Riccati equation: PA+ ATP — PBR™'BTP + () = 0. By applying the control law ua = —Kxa, the
cost J is minimized and moreover the quadratic function V(za(t)) = @xa(t)'.P.xa(t) is a Lyapunov
function for the closed loop system with some minimal exponential convergence rate, so some v > 0 for
which V(za(t)) < =V (za(t)) or equally V(za(t + 6t)) < V(xa(t)). exp(—76t) holds. This means that
the error term xa tends to 0 exponentially fast and therefore all trajectories converge to the reference
trajectory @yef(t).
This convergence property can be used to define control funnels as follows. For a > 0, we define:

Fao(t) = {@ret(t) +za(t) | V(wa(t)) < a} (2.5)

where F is a control funnel defined over ¢ € [0,7] (the duration of the reference trajectory): if xa(t) =
x(t) — Trer(t) is a solution of equation (2.4) such that x(t1) € Fy(t1), then for any ¢o > t1, since V(xa)
only decreases, V(xa(t2)) < V(za(t1)) < a, and thus x(t2) = @ret(t2) + xa(t2) € Falta).

2.5. LQR FUNNELS 37

The funnel F,(¢) is therefore defined by a fixed d-dimensional ellipsoid, which is a sublevel-set for
the associated Lyapunov function, translated along the reference trajectory as it is at each time point
centred at @ye(t). Due to the guaranteed minimal convergence rate «, for any solution xa (t) of (2.4) we
have:

Vit €[0,T],¥0t €10, T —t], V(xa(t + dt)) < exp(—7dt)V(xa(t)). (2.6)

This proves that if the system is inside the control funnel 7, (¢) at a given instant, then after letting
time elapse for a duration of 6, the system will be inside the control funnel F, exp(—~s¢)(t). This means
that the funnel F, (t) absorbs the funnel F, (t) and the corresponding constant is derived in section 2.5.2.
Thanks to this property, for a given LQR controller and a reference trajectory @,.¢(t), we can define a
finite set of fixed-size control funnels Fy,(t), Fo, (1), ..., Fa,(t), with ag > a3 > --- > a4 > 0, and
absorbing transitions between them in the corresponding timed automaton. For such families of funnels
we will adopt the notation that F; denotes the funnel constructed around the ith reference trajectory as

the sublevel-set {:c;'ef(t) raat) | zat)T.Paalt) < aj}.
Here we have deliberately chosen to consider only disturbance free and fully observable linear systems.

However, the decisive properties of positive and invariance and minimal convergence rate can also be
computed for systems with (bounded) disturbance and partial observability of the form

t=Ax+Bu+Dw (2.7a)
y=Huz (2.7b)

where D determines the channels of the vector of (bounded) disturbances and y is the output, given as a
linear transformation of the system state by the H. This necessitates more involved stability proofs and
induces increased conservativeness in order to deal with the disturbances, but does not fundamentally
change the approach of how the funnels are constructed.

In the remainder of this chapter, we will mainly use this kind of fixed size control funnels, which we
call “LQR funnels”. They are convenient because the larger ones can be used to “catch” other control
funnels, and the smaller ones can easily be caught by other control funnels or used when a “precise”
location of the system (in the state space) has to be defined. Figure 2.7 depicts a typical sequence,
where first a large control funnel F? (in green) catches the system which previously evolved in F{ via
a switching transition. The bounds a and 3 on F are shown as the ellipsoids with dashed line. Then
after some time longer than hJ ™!, an absorbing transition can be triggered and the system switches from
F? to Fi. Finally, a new switching transition brings the system to a larger control funnel F§ (in blue)
defined around another reference trajectory.

Testing for inclusion between fixed-size ellipsoids can be done very efficiently (by introducing some con-
servativeness, see section 2.4), and therefore LQR, funnels allow for efficient algorithms for the computation
of the tuples needed for the timed-automaton reduction ((switch, [e, 5], (4, §),7, (k, 1)), (invariant, S; ;, (¢, 7)), . . .,
also see section 2.4).

It should be noted that the concepts of fixed size control funnels and absorbing transitions, introduced
here for linear systems, are also suitable for nonlinear and in particular polynomial systems. Lyapunov
functions in general, and quadratic ones in particular, can be computed via convex optimization for
polynomial systems, for example with Sum-of-Squares techniques (Majumdar et al. [2013a]), contraction
theory (Lohmiller and Slotine [1998]) or convexification and state-space seperation (chapter 3). In all
these approaches, the minimial exponential convergence necessary for the absorbing transitions can be
imposed within the framework of each of the approaches cited above.

2.5.2 COMPUTING THE TUPLES

In order to reduce the funnel timed transition system we need to compute constants within the tuples
defining the absorbing and switching transitions.

38 CHAPTER 2. TIMED-AUTOMATA ABSTRACTION

Figure 2.7 — An absorbing transition (in green) between two switching transitions.

Computing the time-constant hg_ﬂf for the absorbing transition is straightforward using the guar-

anteed minimal convergence v. As all states in F,(t) = {a: | (& — Tres(t) T P — @yet(t)) < a} are
guaranteed to be in {a: | (@ — Tres(t + 01)) T Po(@ — @yet(t + 6t)) < aexp(fyét} after dt time units, we
can immediately see that the funnel defined as F,/(t) = {:c | (& — Tres(t) T P — @peg(t)) < o/} with

0 < d < a, [%log(%)}—absorbs the control funnel F,(t). So we have ho®" = H log(%)} if the

funnels of different size share the same reference trajectory and Lyapunov function to generate the
sublevel-sets. In the case that o/ > « the constant A~ would be nonpositive. Allowing and adding
such transitions unnecessarily complicates the automaton without gaining expressiveness with respect
to the reach-avoid problem, as it is always “better” to be in a smaller funnel (If a larger funnel avoids
an obstacle/reaches an target, so does the smaller funnel) and are therefore not taken into account.
The more interesting problem is if the two funnels defined on the same reference trajectory are gen-

erated by different Lyapunov functions, that is F,(t) = {:c | (& = @yer(t)) T Po(— rer(t)) < a} and

For(t) = {az | (@ — Tres(t) TP (2 — @pe(t)) < o/} with P, P’ € S, but there exists no a € R™ such
that P = aP’ (P and P’ are truly different and not just scaled versions of each other). In this case the
above definition for hA“7% is not suitable and one needs to solve the following problem:

a—a’ _ : ,
h = m(t?é%r}i(t) min x(t) € Fo(t) = x(t +t) € For(t + 1) (2.8)

with &(t) being the solution to the system dynamic conditioned by the current control law. This problem
is as such not directly tractable and we therefore use the following conservative approximation. Consider

the funnel F3(t) = {:c | (x — mref(t))T.P.(:c — Tref(t)) < B}, where (3 is chosen as the maximal value for

which Fj(t) C Far(t) (largest inscribed ellipsoid problem), then we can define h* " as [% log(%)} and

obtain a correct (but conservative) abstraction of the behaviour as shown in Figure 2.8.

Next the tuples for the switching transitions have to be computed, or more specifically, we seek an
efficient way to compute the constants o and S for a given v in (switch, [, 8], (4, 7),7, (k,1)). As the
reference trajectory has bounded velocity and acceleration, it is sufficient to test finitely many points to
conclude the inclusion of one funnel in another within a (continuous) interval. Therefore computing «
and (8 comes down to (efficiently) test the inclusion of ellipsoids. The inclusion can be tested relying on
convex optimization, or more precisely semidefinite programming (modified Lowner-John ellipsoid, Boyd
and Vandenberghe [2004]), which is however prohibitively expensive as we seek to test many points.
We therefore use, again, a conservative approximation. Consider the funnels F; and F, ,lc defined on the
reference trajectories azﬁcf and wfcf using sublevel-sets of quadratic Lyapunov functions defined by P and

2.5. LQR FUNNELS 39

Figure 2.8 — In this images the convergence of a funnel and the resulting absorption transitions for fixed
size funnels is shown. At ¢y the initial points (coloured dots) are distributed on the boundary of the
larger fixed size funnel (F°, red). In black the conservative convergence of the funnel using the guaranted
minimal convergence rate « is shown. We see that the trajectories starting at the boundary are in the
interior of the converging funnel for ¢t > ty. At ¢; the size of the converging funnel is equal to the smaller
funnel (F!, cyan), and therefore h°7! = ¢; — t,.

l
k Lyof _
Fi(tn) ’ Fi(t) Fi(tn) Lref SFH(t)
zk M e Fi (tm)
k wief mi
ref
Zo

)
T—» Ty T—) T
Figure 2.9 — On the left: checking finitely many time points to obtain o and f3 for a given . The inclusion
of each checked time point (blue dots) implies the inclusion V¢ € [a, 8]. On the right: Overapproximation

of the funnel in the case of non-identical funnel shapes. The shown case induces “much” conservativeness
as the eigenvectors of the largest eigenvalues of P and P’ are orthogonal.

P’ and the positive scalars p and p’. By using the transformation
x = chol(P').x (2.9)

we obtain transformed coordinates in which the funnel F. is a hypersphere translated along the (trans-
formed) reference trajectory :_cfef. By over-approximating the (transformed) funnel 7/ by the smallest
circumscribed hypersphere, denoted ©F7 of radius 7 the inclusion test of Fl(t) in f,i (7) comes down to
checking

\/J 2 r+ ||"ifef(7) - iief(t)||2 (210)

as depicted in Figure 2.9. The conservativeness introduced by this approach depends on the “distance”
between P and P’ and vanishes if they are simply scaled versions of one another. In general the matrices
obtained for LTI-systems using LQR derived controllers are fairly similar further motivating this approach.

Before continuing with the first examples, a special type of switching transition is presented, as it is
useful in some cases where fine timing constraints have to be met: switching from a smaller funnel to
a larger funnel defined on the same reference trajectory while modifying the controller clock ¢;. Such
transitions (switch, [, 5], (i,7),7, (i, k)) are always possible, so for all v in I; there exist an « and § such

40 CHAPTER 2. TIMED-AUTOMATA ABSTRACTION

that o < < § with all three satisfying I if F/(t) C FF(t) for all ¢t € I. Such transitions allow to
“accelerate” or “decelerate” on the reference trajectory.

2.6 EXAMPLES OF APPLICATION

In this section we will show how to apply the proposed reduction of a funnel system constructed with fixed
size LQR funnels for fairly different problem settings. Before showing how to relax certain constraints in
the next section.

2.6.1 SYNCHRONIZATION OF SINE WAVES

In this example, there is a unique reference trajectory: @cf(t) = sin(22t), for ¢ € [0,7] and 7 € Q. The
controlled system corresponds to a linear second order system controlled in acceleration, so

&= (i) — Az+Bu=Az+ <‘1)) ” (2.11)

By computing a unique LQR controller (choosing the matrices @ and R), and introducing the reference
trajectory the system becomes

& = Trer + A[L,:].(x — Trer) — B[L,:]. K.(— @yer) (2.12)

where X[k, :] for some matrix X € R™*" denotes the extraction of the kth row from X, interpreted as a
1 X n matrix.

We define two fixed size LQR funnels 7 (the large one) and F! (the small one) defined over [0, 7] such
that F' y-absorbs F° for some v € Q1. The size of F° is computed such that an upper bound on the
acceleration is always ensured, as long as the state of the system remains inside the control funnel. More
importantly, limiting the size of F° also allows to limit the maximal control input w, 5o wu, < u < uyp
(see section 3.9.3) holds for all states inside the funnel, which is a very important property for real
applications.

The set F°(7/2) englobes the smaller control funnel F!(¢) for a range of time values [, 3] for some
a< g5 €Qand B> 7 € Q. This allows switching transitions from F I to FY with abrupt modifications
of the controller clock ¢;. Together with the absorbing transition and “cyclic transitions” that come from
the equalities F°(0) = F°(7) and F'(0) = F!(7), the timed automaton shown on the left Figure 2.10
corresponds to the reduction of the timed transition system.

The goal is to synchronize the controlled signal to a fixed signal sin(27”t+<,00). The phase ¢q is initially
unknown, which we model using an adversary: we use a new clock ¢}, and an opponent transition as in
the timed automaton on the right of Figure 2.10.

With these two timed automata, we can use the tool UPPAAL-TIGA (see Behrmann et al. [2007])
to synthesize a controller that reacts to the choice of the adversary, and performs adequate switching
transitions until ¢; = ¢}. It is even possible to generate a strategy that guarantees that the synchronization
can always be performed in a bounded amount of time.

We show in Fig. 2.11 a trajectory generated by the synthesized reactive controller. In this example,
the phase chosen by the adversary is such that it is best to “accelerate” the controlled signal. Therefore,
the controller uses twice the switching transition from F! to F° with a reset of the controller clock from
atoT/2 (@ and (2) in Fig. 2.11). Between these switching transitions, an absorbing transition is taken

to go back to the control funnel F*! (@ in Figure 2.11) before taking the “cyclic transition”. After the

first two switching transitions, the remaining gap € = ¢; — ¢; is smaller than § — «, and therefore the

controller waits a bit longer (until 7 — €) to perform the switching transition that exactly synchronizes
the two signals ((3) in Figure 2.11).

This example shows that our abstraction can be used for reactive controller synthesis via timed games.
The main advantage of our approach over methods based on full discretization is that, since a “continuous”

2.6. EXAMPLES OF APPLICATION 41

c >h0~>1
c <71 h =

/
cr =T7/2 A

Figure 2.10 — On the left: the timed automaton for the controlled signal (the system). On the right: the
timed automaton used to model the target signal with an initially unknown phase ¢g. The opponent
transition (dashed) is the one used to set pq.

15 1 1 i Ll T
1.0 ifni ial state A
ol the system
0.5 i
8 0.0 |
-0.5 |
iFi ial state
-1.0 of the target |
-1.5 1
0.5 1.0
T 1 1 1
== Ttarget = Lref == Tgystem

Figure 2.11 — The reactive controller performs three switching transitions to exactly adjust its phase to
that of the target signal.

notion of time is kept in our abstraction, the reactive strategy is theoretically able to exactly synchronize
the controlled signal to any rational value of ¢y without augmenting the necessary size of the automaton
as necessary by approaches using a full discretization.

2.6.2 A 1D Pick-AND-PLACE PROBLEM

In this second example, we show that timed-automata abstractions based on control funnels can be used
to perform non-trivial planning under logical constraints. We propose a one-dimensional pick-and-place
scenario. The set-up consists of a linear system controlled in acceleration moving along a straight line.

42 CHAPTER 2. TIMED-AUTOMATA ABSTRACTION

On this line, four positions are defined as lanes (see Figure 2.12). On three of these lanes (1, 2 and 3),
packages arrive that have to be caught at the right time by the system and later delivered to lane 0. The
system has limited acceleration, control input and velocity, and can carry at most two packages at a time.
While the boundedness of the velocity, acceleration and control input to certain predefined values can
be directly ensured during the construction of the funnel system, the logical constraint that a maximum
of two items can be carried at a time corresponds to a “run-time” constraint and cannot be ensured via
the funnel construction. Therefore an auxiliary automaton encoding this logical constraint as well as the
task of picking up the objects itself is created. By solving the product automaton of the one encoding the
task plus constraints and the one representing the funnel timed transition system, one obtains a feasible
strategy for the given task and considered dynamical system, as depicted in Figure 2.12.

The LQR funnels in this example are constructed based on 12 reference trajectories. The first four
have different constant positive velocities (z¢.; with i € {1,...,4}, the fastest one being z%;, and the
slowest one x};). The next four are the same trajectories but with negative velocities. On each of these
reference trajectories, five different control funnels of constant size are defined (]—'f for j € {0,...,4},
the largest one being F?). The control funnels with negative constant velocity are the mirror image
of those with positive velocity. Additionally, four stationary trajectories :c{:ff (with k& € {1,...,4}) at
the positions of the lanes are defined. The controllers associated to these trajectories simply stabilize
the system at lane positions. For each of these trajectories a small (j = 1) and a large (j = 0) control
funnel are constructed. They are denoted by F7,. By construction, neighbouring trajectories (e.g. x>

) ref
and x2; or x!; and z_;) are connected, meaning that for two neighbouring trajectories x! ; and z¥

ref?
vt € I;, ' € Iy such that F}(t) € F2(t') (see Figure 2.12). This allows the system to reach a higher
or lower velocity without the need of an explicitly defined acceleration trajectory. While the abstraction
based on these control funnels does not represent all the possible behaviours of the system (it is not
complete), switching between different velocity references allows the system to perform a great variety of
trajectories with continuous and bounded velocity and bounded accelerations and control inputs.

To fully specify the timed-automata abstraction, the tuples defining the transition guards must be
computed (see Section 2.4). For each trajectory we empirically choose a number of equidistantly dis-
tributed time points v within the bounds of the duration of the reference trajectory. Then the approach
presented in section 2.5.2 is used to compute the switching transition ((switch, [, 8], (¢,7),~, (k,1))) for
each such 7.

We consider an example where three packages respectively arrive on lanes 3, 2 and 1 at times ¢! . . =
40, t2 .o = 111 and ¢3_; . = 122, corresponding to the marked transitions in Figure 2.12. The goal is to
find a trajectory that catches all the packages and delivers them to lane 0. At the moment of the catch
(cg =t ..e), the reference x!; tracked by the system must be exactly at the correct position (i.e. on
the lane of the arriving package). Depending on the reference trajectory, this corresponds to a particular
value of ¢;. We add the following constraints on the catches: an upper bound on velocity such that the
system cannot be tracking xt ., 3 ;, w;e? or w;fL when it catches a package, and a bound on uncertainty
such that the system must be in a small control funnel to catch a package. Checking this reachability
objective, UPPAAL outputs a timed word that corresponds to the schedule of control-law switches and
the trajectory shown on Figure 2.13, which successfully catches the packages and delivers them to lane 0.

The two upper graphs of Figure 2.13 show the evolution of the system in its state space and some of
the regions of invariance when taking a switching transition (coloured ellipsoids). The green dots mark
positions at which absorbing transitions take place (F] — F] +1). Purple crosses represent a package.
The lower graph compares the evolution of the position of the real system with the reference. One can see
that even though the reference velocity can only take seven different values, a relatively smooth trajectory
is realized.

Before catching the first package, the system switches from Fi to FP, (D). It then converges to Fla ®)
just before the catch. The difference between the real system position and the reference is very small
at that point in time, as implied by the current funnel. The system then switches to F°, (3) in order
to return to lane 0. It is interesting to notice that the system chooses to return to lane 0 after having

picked only one package, therefore adopting a non-greedy strategy. This is because it wouldn’t have time

2.6. EXAMPLES OF APPLICATION 43

deposit lane
lo 1 2 | 3|
| |
»n 2
I E I g) I I ref
=1 Q
I Bl | g I *! ;f
| 2 | | |
~1
I I I ref

L[0—3]
ref

Figure 2.12 — Graphical depiction of the problem setting and funnel system used. The highest/lowest
velocity can be attained in F/F°,, which is by construction admissible.

to perform a delivery to lane 0 between the arrival of the second and third package.

When the second package arrives on lane 2, the system catches it while being in F?, @ . This is
again a non-trivial behavior: in order to get both the second and the third package, the system has to
first go a little bit further than lane 2 so as to be able to catch the two packages without violating the
limit on acceleration. A slight adjustment of the reference position (5) has to be done to catch the third

package exactly on time @ After that, the system performs a local acceleration @ to reach lane 0 as
soon as possible, and delivers the two packages.

CHAPTER 2. TIMED-AUTOMATA ABSTRACTION

44

t € [78,138]

2
<)

1.0
0.5

12

10

lane 3

10 | lane 2

14
12

140

Figure 2.13 — Execution of a succeeding control strategy given as a timed word.

2.7. BOUNDING FUNNELS WITH CONJECTURED PROPERTIES 45

2.7 BOUNDING FUNNELS WITH CONJECTURED PROPERTIES

The proposed approach allows to reason about the dynamics of LTI systems by abstracting their possible
behaviour into a finite set of funnels. While this approach offers the advantage of keeping a continuous
notion of time, the abstraction is only correct if these funnels correspond to time-dependent zones of
positive invariance. This property is comparably easy to obtain for LTI systems, but this drastically
changes when considering dynamical systems described by nonlinear differential equations.

In this section, we propose a method to treat this class of systems, introducing the concept of bounding
funnels, and using conjectured properties that are empirically verified. This approach is then used to
solve a Reach-Avoid problem for a modified version of the Dubins’ car, a nonlinear and nonholonomic
system.

2.7.1 INTRODUCING BOUNDING FUNNELS WITH CONJECTURED PROPERTIES

The main problem encountered when trying to construct control funnels for nonlinear systems, is the diffi-
culty to find a suitable pair of monotonic Lyapunov function and control law. The associated optimization
problem is in general nonconvex and no generic approach exists to find such pairs, even without address-
ing the problem of finding large regions of invariance in the case of constrained inputs or maximizing
the (guaranteed) convergence rate. There exist approaches for certain subclasses of nonlinear dynamics,
like semidefinite programming for polynomial Lyapunov functions and systems with polynomial dynam-
ics as done in Prajna et al. [2004]. In Majumdar et al. [2013a], it is shown how to use sum-of-squares
optimization to handle nonlinear systems by using time-dependent polynomial approximations. It is an
interesting approach, but its high computational complexity and the introduced conservativeness restrain
its usability, even though the computational burden is later on decreased in Ahmadi and Majumdar
[2014] by using more conservative constraints. Moreover the demand of monotonic convergence some-
what contradicts the use of quadratic Lyapunov functions. In general, the (controlled) system might only
converge with respect to more complex functions or demand complex control laws in order to converge
with respect to a simple Lyapunov function. As the proposed approach relies on cheap inclusion testing,
which is not possible for sublevel-sets for more complicated Lyapunov functions, this is not admissible.

We propose therefore a different approach: bounding funnels with conjectured properties. Bounding
funnels enlarge the concept of regular funnels by weakening some of the required assumptions. The
properties of these funnels are as hard to guarantee as the properties of regular funnels, but due to the
weakened assumptions they are more likely to be true. We propose to conjecture these properties based
on numerical simulations. With these bounding funnels, the control sequence obtained is guaranteed
to satisfy a given specification provided that the conjectures hold for the nonlinear dynamics under all
circumstances that can occur. However as usually only a finite number runs is actually performed on the
real system, it can never be fully assured that the conjectures truly hold under all circumstances.

BoUNDING FUNNELS

The concept of bounding funnels relies on a modified concept of positive invariance, which, together with
the conservative approximation of convergence time, makes funnels suitable for timed automata reduc-
tion. The property of positive invariance described by equation (2.2) is closely linked to the concept of
monotonic Lyapunov functions. For general nonlinear systems this property is very difficult to obtain.
There exists no generic way to generate them, so the Lyapunov functions and control laws have to be
found on a case to case basis. An expressive sub-class of nonlinear dynamics allowing for a generic way
to compute the control law and the Lyapunov function is the class of polynomial systems. However,
constructing funnels based on proofs on the truncated Taylor expansion (or any other polynomial ap-
proximation) of the real nonlinear dynamics is in some sense also conjecturing the properties, except
if one uses additional constraints as proposed in Chesi [2009] overapproximating the error between the
models and therefore increasing conservativeness.

46 CHAPTER 2. TIMED-AUTOMATA ABSTRACTION

On the other hand, if a system converges asymptotically to the origin, it also eventually stays inside
any neighbourhood of the origin. Or, to put it differently, if V*(x,t) is a Lyapunov function for the
dynamical system & = f(x,t), then the system will also converge, possibly non-monotonically, with
respect to every other Lyapunov function candidate V'(x,t), see Figure 2.14. This property is very
useful since it allows us to use functions with simple level sets, like ellipsoids, to construct our funnels,
“independently” of dynamical system treated. In certain cases the non-monotonic convergence can even
be proven (see Ahmadi [2008], Butz [1969]) and a Lyapunov function with monotonic convergence can
be constructed based on intermediate results of the proof, but this is not the goal here as we seek to
keep the simple shape of the sublevel-sets. For a bounding funnel .7-";7 : Iij C Rt — 2Rd, the property of
positive invariance is weakened in the sense that to each inner funnel FJ we associate an outer funnel

Fio g Iij — 2% guch that the following property holds: Z

Vi eIl Vg e I, ty > ty, @(ty) € F(t1) = x(ts) € FOU (L) (2.13)
70
60
50

40

T
S

30

20

10

8 10 12

Figure 2.14 — Example for the non-monotonic convergence of a globally asymptotically stable system. On
the left a trajectory of the system (black line) and the level-sets of two different (here both quadratic)
Lyapunov functions are shown (red and blue lines). On the right the evolution of the respective value of
the two Lyapunov function along the trajectory is shown. Both converge to zero, however the one shown
in red does so in non-monotonic fashion. Both can be used to construct bounding funnels, but only the
one shown in blue is admissible for regular funnel construction.

Informally, the outer funnel, for which vt € I7, F/(t) C]:io J(t) holds, is chosen such that the
trajectories of any initial position in .7-"5 will not leave Fio . This modification is necessary due to the
possibly non-monotonic convergence. Consequently, if the actual initial state of the system is inside
}"ij (to), the initial state of the timed automaton corresponds to the associated outer funnel .FZ-O JA
switching transition (see Section 2.4) in a bounding-funnel system has the form: (F/,v) — (}"ko R0
whenever v/(c,) = v(cy), v'(cn) = 0, v(cr) € IZ, v'(¢;) € IL, and F/(v(c;)) C FL(v'(ct)), where]-"ko’l
denotes the bounding funnel associated with F}. In some cases (for example with fixed size inner and
outer funnels), there exists a minimal duration that implies convergence from the outer to the inner
funnel, i.c. a constant h>7 77 such that FJ h7 7 /-absorbs F*/. To put the concept of bounding
funnels in perspective, a regular funnel is a bounding funnel with]—"io J(t) = Fl(t), Yt € T/, and the
G

absorption time h? is equal to zero.

2.7. BOUNDING FUNNELS WITH CONJECTURED PROPERTIES 47

CONJECTURING THE PROPERTIES

As stated above, formally proving the convergence and the weak positive invariance for general nonlinear
systems is a complex problem. Therefore we replace the formal guarantees by conjectures based on, for
example, numerical simulations. This allows to use general optimization methods to simultaneously find
a control law and suitable outer/inner funnel shapes in the sense that the outer funnel is as small as
possible while achieving a good convergence time h?’j 4 To define the conjectures, sufficiently many
initial points in .7-'17 can be numerically evaluated, and the convergence time hi ~* is defined as an upper
bound of the maximal time needed to arrive and stay inside FF. The outer funnel can be taken as an
ellipsoid with minimized volume under the constraint that (2.13) must hold.

This loss of guarantees may at first seem to be a very serious drawback, as obtaining certified be-
haviours is one of the main objectives of this work. Nevertheless, we argue that performing formal
synthesis with such conjectured properties of the control laws can lead to interesting results. Indeed,
after a controller has been synthesized with our approach, if an execution fails to verify the specification,
we know that it can only be because at least one conjecture does not hold and therefore one or more
properties of the bounding funnel are violated. We can even raise flags during execution to pinpoint
the faulty bounding funnel or even the violated conjecture itself. This structure, where the logic of the
controller is proven, but some “atomic” properties are only conjectured, is similar to formally verified
cryptographic protocols, where the security depends on how reliable some cryptographic primitives are.
It helps keeping safety issues localized, and therefore it makes it easier to improve the global behaviour
with confidence by performing isolated tests of the validity of each funnel. Moreover, formally proven
funnels are true funnels only in the mathematical model, and therefore, as far are as runs on the real
system are concerned, they are in fact conjectured as well.

To further highlight the interest of using funnels with conjectured properties, reconsider the case of
LQR funnels for LTI-systems. In this case, the funnels are “real” funnels and all properties are formally
proven. Now let us take a closer look at the absorption transition. The time constant is A*~* is derived
based on the minimal convergence rate «, which is equal to (for LTI-systems & = A.z and quadratic
Lyapunov functions of the form V(z) = 2T.P.z) the maximal eigenvalue of C;*.(AT.P + P.AT).C;,
with C; = chol(P)~!. However, in general the eigenvalues do not coincide. Therefore the average
convergence rate over any trajectory portion is (considerably) higher than it can be guaranteed, as shown
in Figure 2.15. Therefore it is interesting to conjecture a smaller absorption time.

Another interesting application for bounding funnels with conjectured properties is the case of dis-
turbed dynamics as shortly mentioned in section 2.5.1. In order to prove monotonic convergence for such
a system, the disturbance has to be bounded, baring the usage of normal distributions as noise source.
By using bounding funnels, this is possible by demanding for instance that 95 percent of the possible
executions converge in a given time. Such bounds can then be computed using tools from stochastic
control.

2.7.2 REACH-AVOID PROBLEM FOR A MODIFIED DUBINS’ CAR

We use the above introduced bounding funnel concept to perform path planning for a modified Dubins’
car. A Dubins’ car is a simplified model of an automobile that evolves on a 2D plane, which is frequently
used in the context of path-planning for automobiles, see for instance Scheuer and Fraichard [1997] or
Macharet et al. [2011].

Dynamical Model and Control Law

The state of the Dubins’ car is defined by its position (denoted by p) and its heading (denoted 6,). The
position is relative to the global coordinate frame and the heading is given as the angle between the global
eg4..-axis and the local e, -axis of the car. The current linear velocity of the car, denoted v, always

48 CHAPTER 2. TIMED-AUTOMATA ABSTRACTION

7 0 0.5 1 1.5 2
t

Figure 2.15 — This image showcases why it might by interesting to conjecture convergence time even in

the case of LTI-systems. The system is defined by A = 0 1], B = [0 1]T controlled via the

-1. —-0.1
LQR feedback matrix resulting from @ = Id and R = Id. Here the reference trajectory is given as the
constant velocity trajectory z(t) = 3t. On the left the resulting system trajectories for different initial
positions (shown in black) distributed on the boundary of the converging funnel (red lines) is shown.
The convergence of the funnel is chosen as the minimally guaranteed convergence rate. On the right the
corresponding Lyapunov values of the trajectories (black) and the funnel (red) are shown. As one can
see all trajectories converge significantly faster, as the eigenvalues of C;'.(AT.P + P.A).C; are —0.62 and
—2.1. Therefore conjecturing a higher v can be advantageous and a valid option if a minimal dwell time
in the funnel is normally given.

points in the current direction of e. ., so we get

. (cos(B)p)
p= (sin(Gp) Up:
In this example we control directly the velocity v, as well as the turning rate w, = ép, but both

control inputs must be continuous and bounded. The state space of the system is the concatenation of
its position with respect to global frame and the heading:

- (5)

The dynamics of the system is
b vpcos(6p)

T = (> = | vpsin(6y)

Wp

We impose positive upper and lower bounds on the current velocity as well as bounds on the curva-
ture of the resulting trajectory (corresponding to the turning cycle of the car), so that the control law
introduced afterwards always has to satisfy

0<vm <vp <oy (2.14a)
—cp < ‘*’P/vp <cp- (214b)

To create a (conjectured) funnel we must first define reference trajectories and a control law. For the
reference trajectory we use a continuously differentiable curve defined on an interval I C RT denoted by

sl = (7))

2.7. BOUNDING FUNNELS WITH CONJECTURED PROPERTIES 49

€g,x

Figure 2.16 — Modified Dubins’ car with controlled inputs v, and w,. A possible reference trajectory and
the current normal and tangent directions is shown in green and indexed by .

satisfying the conditions (2.14). In order to make sure that not only the curve is satisfying these con-
straints, but that there exists also some neighbourhood around the trajectory which can be driven towards
it with a suitable control law, a margin between the absolute limits of the system and maximal values
on the reference trajectory should exist. In addition the curve has to be admissible for the considered
system, so it must hold that:

Viel: #(t) = (zif((g((g))) o (t).

Every such curve can be used as a reference. The frame attached to the reference point is indexed by ef.
The angle between the global e, , and the local et axes (see Figure 2.16) is denoted O.f.

This nonlinear, nonholonomic dynamical system requires relatively complex control laws in order to
ensure convergence. We propose the following scheme:

(Z) - (Z> - (ﬁ(AG + ? tﬁrﬁ(n Ay,,))) (2.15)

where «, 8 and 1 denote parameters in R™, ¢ is a parameter in]0,7/2], Az, the projection of p — r onto
the e -axis, Ay, the projection of p — r onto the ecfy-axis and Af = 6, — 0,. The resulting values
are then saturated to respect the constraints in (2.14) (for example if v, > var, vy, = var; if Wefv, > e,
Wp = CMUp).

In this control law the term (tanh(nAy,) is introduced to cope with the error in the orthogonal
direction to the motion (Ay.), which is not directly controllable due to the nonholonomy. So in order to
correct an offset in the e, direction, an error in the direction has to be introduced first. By choosing
¢ large, preference is given to quickly correct this offset by allowing for higher errors in . We verify
empirically the convergence properties of this control law: see Figure 2.17. Note that any other control
law for the Dubins’ car such as the ones proposed in Macharet et al. [2011] relying on different feedback
modes and a finite state machine to switch between them or the approach based on sliding mode control
proposed in Soueres et al. [2001] could be used as well. The reason why we did not choose one of these
is due to the increased implementation complexity and the easy interpretation of the control law given
in (2.15). Additionally, for both approaches cited above, the conjecture is harder to test numerically, as
the control law has discontinuities (either by changing the state/feedback mode or by crossing the sliding
surface), which makes it harder to draw general assumptions on the behaviour based on a finite number
of testing points.

50 CHAPTER 2. TIMED-AUTOMATA ABSTRACTION
0.5
0.4 /\\ Axr 0 —=
03 N 05 “‘_,
02 I\
Lo 0.5
NN —
02 . 0.5
03 Yo 0.5
7 A 0 S
03 gh T . 1 xg 05 '
Y, Pez 0 05 1 11%5 25 3

mm solid/dashed e = 0.5/ — 0.5: p(0) = r(0) + [e 0]"; AG(0) =0
== solid/dashed e = 0.25/ — 0.25: p(0) = r(0) + [0 ¢]™; AG(0) =0
m= solid/dashed e = 45°/ — 45°: p(0) = 7(0); AG(0) = ¢

Figure 2.17 — Trajectories of the system for initial offsets in only one dimension and a reference trajectory
of the form r(t) = [t, O]T, Orer(t) = 0. An initial offset only in the eyef -direction is corrected without
inducing an error in the other components, since this direction is directly controllable. An initial error
in the ecfy-direction induces an error in the heading in order to be corrected and vice versa.

OPTIMIZING THE FUNNEL SHAPE AND COMPUTING THE TUPLES

For the bounding funnels we keep the ellipsoidal shaped funnels introduced in section 2.5 due to their
computational advantages and extend them with the introduction of outer funnels:

Fl(t) = {fvref + Az | V] (Am) < odf} (2.16)
FOIt) = {er + Az | V] (M) < a7} (2.17)

where
v/ (Am) = [ﬁ;’]T.Pi : {ig] (2.18)

is a quadratic function defined by the symmetric and positive matrix Pij and aio’j > a{ € Rt are
constants defining the size of the funnel. Here the outer funnels are chosen to be a scaled version of the
inner funnel, but it is perfectly possible to chose any other (symmetric and positive) matrix Pio’j to define
the outer funnel. By restricting the size of the funnels in order to ensure that Af can never be smaller
than —m or larger than 7, no special care has to be taken to correctly represent the “angular nature” of
A0, and it can be treated as if it were a regular scalar.

As pointed out above, the convergence time is approximated using numerical simulations and depends
on the (parametrization of the) control law and the matrix P/ defining the funnel shape. As the dynamics
of the system are invariant under a change of reference, i.e. it always behaves the same with respect to its
own frame of reference, we use the same matrix for all funnels (causing them to have the same shape), by
setting P/ = P! = P (when given with respect to the reference trajectory frame) to construct the larger
funnels. To facilitate switching from and to funnels constructed around reference trajectories having
different directions (different ycf), the smaller funnels constructed around the same reference trajectory
are rotated (in the e ,-e.,-plane) and scaled versions of the larger funnels. In order to find a suitable
ellipsoid and the corresponding control law parameters, the following optimization is performed: we fix
a priori a diagonal matrix Dy = diag([0.4% 0.4 (807/180)%]) which is suited to englobe smaller funnels
constructed around reference trajectories with a difference in 6. of up to 60°. This diagonal matrix is

2.7. BOUNDING FUNNELS WITH CONJECTURED PROPERTIES ol

O initial positions
— trajectories

Figure 2.18 — On the left, the trajectories for initial states distributed on the surface of the optimized
funnel shape F° are shown. The control parameters are o = 4.43, 8 = 7.94, n = 2.94 and ¢ = 4.57.
The dynamics induced by these parameters are denoted f(.). The second image depicts the evolution
of VY(Az) with the large funnel FY being defined as VO(Ar, Af,) < o = 1.0. The maximal value
encountered is 1.0, so the associated outer funnel F©:° can be chosen equal to F°. Note that even-
though F9(t) = FOO(¢) the convergence is highly non-monotonic. The third image shows the evolution
of V! (red) and V2 (blue). After 3.4 time units all states have converged to the small funnels 7! and F2.

rotated during optimization (parametrized via three Euler angles) in order to minimize the convergence
time to the two smaller funnels.

The optimization, relying on gradient descent methods to find a local optimum, resulted in a minimal
convergence time of 3.4 time units for the optimized funnel shape and control law parameters as shown
in Figure 2.18.

These results conjecture the absorption time between a larger and two smaller funnels as well as the
equality of the outer and inner funnel (for the larger funnel). These bounding funnels can be constructed
around any reference trajectory of the form

Zo cos(a)
Tret(t) = | yo | + | sin(e)
0o 0

with g, yo € R, 6, € [0, 27[, so any straight line trajectory with unit velocity.

52 CHAPTER 2. TIMED-AUTOMATA ABSTRACTION

PATH PLANNING FOR THE DUBINS’ CAR ON A FUNNEL SYSTEM

The objective is to perform (timed) path planning for the Dubins’ car. That is to find a timed sequence
of transitions between reference trajectories that brings the system from an initial region Qg = ffoo(to)
to a final region Q; = .7711 (t1). To achieve this, we need to construct a suitable system of reference
trajectories, around which we can then define the (conjectured) funnels. By requiring the model checker
to supply the fastest trace (i.e. a sequence with minimum time elapsed on the global clock ¢,), we expect
the kind of solutions as depicted in Figure 2.19 on the left for different sets of regions.

SAN N
EVAVAVAVAVYE

Problem 1

5

»— first layer ~ »— second layer

0, =0° 0, = 60°
»— third layer
0, = 120°

Figure 2.19 — On the left: Depiction of two instances of the problem and an “optimal” or desirable
reference trajectory (solid black line). The dashed black line shows the qualitative evolution of funnel
taking Qg to ;. In Problem 2 a reference trajectory leading directly from Qg to ©; would violate the
curvature or velocity bounds, forcing the loop-like reference trajectory. On the right: depiction of the
first three layers of reference trajectories for 07 = a; € [0°, 60°, 120°]. Such a funnel system is likely to
generate the kind of desired movement.

The reference trajectories used to construct the funnel system for the examples shown form a regular
grid: The first layer is composed of 2Np + 1 trajectories with eyt parallel to e4 , of the form

‘ 0 tv, — Np 6D
—NDSiSND: :cief(t): 10D + 0
0 0

defined on the interval I’ = [0, (2Np dD)/y,]. So 6D defines the distance between two neighbouring trajec-
tories and by fixing Np one can determined the size of the region covered by the funnel system.

The other layers are formed by rotating the first layer around the 0 axis, considering a 3D Cartesian
representation of the state space. We use N4 such layers, each of the trajectories having the form

o 0 t’UT—ND(SD
—Np<i<Np,0<j<Nyu—1: a:i’ejf(t):Rg(aj). 10D | + 0
ay 0

with o; = (2m9)/Na, 1 < j < N4 and Ry(a;) denoting the rotation matrix corresponding to a rotation of
angle a; around the #-axis. By fixing N4, one can determine the angular offset between two neighbouring

2.7. BOUNDING FUNNELS WITH CONJECTURED PROPERTIES 93

-4 =2 0 2 4
1 15 ; ; i
1.0 < Qo 0
0 0
0.5 i
-1 0.0 g,T 5‘;

Ql -0.5

-1.0
=15

-2.0

=25

Figure 2.20 — Time-optimal solution found for problem 1. At every switching transition from F; ;(t)
to f,gl(t’), we distribute states over the surface of F; ;(t') and show two different projections of their
trajectories a(t) until the next switching transition.

4,0
ref

i,Na—1

layers of parallel trajectories. Naturally we have that the angular difference between x), and = is

. 0 i1
the same as the difference between @, ; and @,

On each of these reference trajectories three funnels of different sizes are defined. The funnels defined

on the reference z' are denoted FP; (the "large’ funnel), F}; (the small funnel connecting to the

layer j+1), F7; (the small funnel connecting to the layer j — 1) and f%x (the associated outer funnels).

Their respective sizes are chosen such that transitions exist from each small funnel F;J/Q to its direct
neighbours in the same layer Fp, 1,; (on the parallel reference trajectories) and to all the large funnels in

the layer above .7-11 i .7-',2 }(1-1 and below]-',fj —]—",S]‘:0_1. As no switching transition to the small funnels
exists, the associated outer funnels are not important in this case. Note that due to the angular nature
of the third coordinate, there exist also transition between the reference trajectories x:ﬁﬁg and :cij;fv*‘_l
In this example, we chose Np = 12 and N4 = 6 resulting in a total of 25 -7 -3 = 525 funnels. Due
to the symmetry of the funnel system the number of available transitions can be approximated: on any
reference trajectory, only the small funnels have outgoing transitions. Each of the two small funnels F le/ 2

is connected to the large funnels F ; on each of the 125 possible transition points. Furthermore there

is an average of six transitions between a small funnel lej/Q and any of the large funnels in the layer above
(F{ ;1) or below (F; ;). So in total the automaton has 25 - 7-2(2 - 125 + 25 - 6) = 140.000 transitions
between 525 states.

This funnel system allows to conveniently switch the heading direction and specific funnels needed to
attain a certain direction can easily be added if needed.

In the two examples presented, we consider that the initial region is centred around 6 = 45° and the
desired final region is centred around § = —45°. The decisive difference between the two problems is the
distance (in e, ,-direction) between the regions as shown in Figure 2.19 on the left.

The results obtained using the funnel system described above are shown in Figure 2.20 and Figure 2.21.
The generated reference trajectories are qualitatively similar to the optimal ones shown in Figure 2.19.
The resulting system trajectories satisfy the specifications and are time-optimal (for the funnel system
considered, not for the general case).

As shown in this example, bounding funnels (with conjectured properties) are a promising method to
perform certified planning for general nonlinear systems. The resulting time-optimal trajectories for the
Dubins’ car resemble the classical optimal Dubins’ trajectories, so trajectories of constant velocity with
bounded curvature (Dubins [1957]). But in contrast to these trajectories, the here presented solution
guarantees a stabilizable neighbourhood of the trajectory and allows to impose additional timing or
logical constraints.

54 CHAPTER 2. TIMED-AUTOMATA ABSTRACTION

-2 4

0 0, —

o 4
| » Cow

-8 4 | -1 -+

-6 4

Figure 2.21 — Time-optimal solution found for problem 2.

The advantage of the proposed approach to conjecture the properties lies not only in the ability to
treat nonlinear systems, but also in the possibility to adapt the funnel shape with respect to the needed
convergence time without the additional constraint of monotonic convergence.

2.8 CONCLUSION AND FUTURE WORK

In this chapter a novel timed-automata abstraction for switched dynamical systems relying on (control)
funnels, i.e. time-varying regions of positive invariance is presented. Commonly used verification tools
like UPPAAL can be used to solve Reach-Avoid problems on the so generated abstractions and more
complicated tasks can be solved by verifying the product automaton of the automaton representing
the controlled dynamical system and another one representing additional tasks and constraints. These
tasks and constraints can, in contrast to other approaches for similar problems existing in the literature,
have quantitative timing constraints. This ability is highlighted within the pick-and-place example,
necessitating the fulfilment of strict timing constraints in order to achieve task completion. Moreover
it was shown how such abstractions can be used within the context of timed games to automatically
synthesize reactive control strategies from given specifications.

In order to enlarge the class of dynamical systems amenable to this type of formal reasoning, bounding
funnels with conjectured properties are introduced. These funnels can be generated for dynamical systems
for which automated stability proofs, necessary to establish the positive invariance, are beyond the state
of the art. They allow to conveniently interface numerical optimization procedures and formal reasoning
as shown in the example performing path-planning for the Dubins’ car.

To address more complex dynamical systems in the sense of a larger state space and to reduce the
computational complexity of this approach, several interesting avenues remain to be investigated. In
this work, the funnels have been created a priori and then abstracted to a timed automaton. This is
feasible for the “small” examples, but gets quickly tedious for more complicated problems. Moreover the
complexity of the Reach-Avoid problem is directly related to the number of discrete states and transitions
between them. Therefore the number of funnels and their degree of connectivity is a good indicator for
the complexity of the verification process. We therefore investigate ways to automatically generate a
suitable but “small” funnel system directly from the task specification and dynamical system at hand. To
go even further, it would be interesting to generate new funnels on the fly while verifying the automaton,
that is to directly interface the verification and funnel construction process and to investigate the arising

2.8. CONCLUSION AND FUTURE WORK 55

decidability issues.

Another line of work related to the presented timed automata abstraction concerns the representation
of general nonlinear systems. In section 2.7 we present bounding funnels with conjectured properties to
treat such systems, however the associated numerical verification was only addressed within the examples,
as no generic method can be given. Even though it is possible to conjecture the funnels based only on
numerical evaluations, any method that increases the confidence in these conjectures can be of interest.
Moreover empirically testing dynamical systems with a higher dimensional state space is also a challenging
task, as the number of points to verify tends to grow exponentially with the system dimension. Therefore
in chapter 3 a way to compute funnels for systems with polynomial vector fields is presented. Moreover it is
shown how it can be used to approximate general nonlinear dynamical systems around predefined reference
trajectories. By coupling the formal proof of positive invariance for the polynomial approximation of the
system together with numerical evaluations of the true nonlinear dynamics, we might be able to obtain
conjectures of high quality and low conservativeness.

56

CHAPTER 2. TIMED-AUTOMATA ABSTRACTION

Chapter 3

STABILITY OF DYNAMICAL SYSTEMS

In this chapter we are interested in the stability, or more precisely stabilizability,
of dynamical systems. We present sufficient conditions for a polynomial system
to be stabilizable on a subset of the state space based on Lyapunov theory and
ideas from optimal control. The so derived conditions can be efficiently verified
using semidefinite programming, a subclass of convex programming. The derived
conditions directly prove stabilizabilty and therefore avoid the search for an explicit
control law. The resulting optimization problems are therefore convex and compu-
tationally less demanding. Furthermore it is shown how this approach can be used
to find an inner approximation of the true zone of stabilizability and how to construct
time-varying regions of stabilizability along given reference trajectories.

3.1 INTRODUCTION

Executing robotic tasks in the presence of safety or timing constraints in a robust fashion requires not
only that the reference trajectory satisfies these constraints but also that there exists a region around this
trajectory which is guaranteed to converge towards it and also respects the constraints. Given a dynamic
model of the robotic system, guaranteeing convergence on regions of the configuration space is usually done
with stability certificates, which are computationally generated formal proofs based on Lyapunov theory or
contraction analysis. However obtaining such stability certificates for nonlinear systems, such as walking
or flying robots, or even simpler systems such as the Acrobot (Majumdar et al. [2013Db]), that induce such
regions is notoriously difficult and remains a challenging problem despite the enormous progress made
in recent years using a variety of different approaches. These approaches include, but are not limited
to, outer approximation via occupation measures (Henrion and Korda [2014]), counter-example guided
synthesis (Ravanbakhsh and Sankaranarayanan [2016]) and sum-of-squares (SoS) approaches (Majumdar
et al. [2013b]; Jarvis-Wloszek et al. [2003]) and more tractable relaxations of SoS-approaches (Ahmadi
and Majumdar [2014]). The most comparable to the approach presented in this chapter are the methods
mentioned last, based on approximating the system as polynomial using a truncated Taylor expansion
and prove the convergence of the approximated system with respect to a polynomial, often quadratic,
Lyapunov function using SoS optimization.

When the system has control inputs, what is required are not certificates of stability, often provided
as a pair control law plus Lyapunov function, but certificates of stabilizabilty. Such certificates prove
that for bounded control inputs, there always exists at least one input that brings the system back to its

o7

58 CHAPTER 3. STABILITY

reference. This is necessary to properly model robots, since their actuators can only provide a limited
amount of effort (e.g. joint actuators are usually limited in torque), which makes obtaining certificates
more difficult, especially for SoS techniques as shown later on. Moreover these certificates must be
constructive and yield ways to compute such control inputs. Therefore in this chapter an approach to
prove exponential stabilizability of a controlled polynomial system under input constraints with respect
to quadratic Lyapunov function candidates is presented. This approach is based on two principles: state-
space partitioning and convexification. This leads to a formulation that inherently yields certificates of
local stabilizability and takes into account the boundedness of the input in a very natural way.

In the remainder of this chapter it is shown how to partition the state-space into subsets defined by
the optimal control input and how this relates to proving stabilizability for a given region and system
(section 3.5). This is done after briefly discussing the necessary concepts and tools in section 3.2. In sec-
tion 3.8 the applied method to prove non-positiveness of multivariate polynomials based on an extension
of Reformulation and Linearisation Techniques (RLT) is presented and finally in section 3.10 numerical
results for the Acrobot, a torque controlled simple pendulum and controlled polynomial vector fields are
presented.

The contributions detailed in this chapter can be summed up as follows.

Contributions
e Deriving a state-space partitioning based on convergence optimal control input
e Derive sufficient conditions for stabilizability on the subsets forming the partition

e Solving the arising optimization problem for polynomial dynamics based on an
extension of the Reformulation and Linearisation Technique

e Showcasing the effectiveness of the proposed approach on a set of well-known test-
cases

The material presented in this section was (in parts) published in Schlehuber-Caissier and
Perrin [2018].

3.2. THEORETICAL BACKGROUND 59

3.2 THEORETICAL BACKGROUND

In this section the theoretical background necessary to prove stability for nonlinear systems, with an accent
on the special case of polynomial systems and quadratic Lyapunov functions, is briefly recapitulated. For
a more in-depth discussion the interested reader is referred to, for instance Khalil [1996].

3.2.1 CONVEX OPTIMIZATION AND SEMIDEFINITE PROGRAMMING

To make it short, from all well-defined optimization problems, the set of convex problems is the only one
which can be efficiently solved, in the sense of finding the global optimum and the minimizing variables.
Or to put it more formally, the set of convex problems which have a conic form, such as linear programs
(LP), quadratic programs (QP), second order cone programs (SOCP) or semidefinite programs (SDP)
can be solved to arbitrary precision in polynomial time using interior-point methods, see Nesterov and
Nemirovskii [1994]; Boyd and Vandenberghe [2004]. The class of optimization problems on which we will
rely throughout this chapter is semidefinite programming, the most general class of the above cited, and
which received enormous attention in the last two decades due to significant advances in the theory of
convex optimization but also due to the appearance of publicly available high quality solvers.

They are optimization problems over the cone of symmetric positive semidefinite (psd) matrices de-
noted 57, so all matrices X for which we have X = X1 and A(X) > 0, meaning that all eigenvalues of
X are non-negative, denoted X > 0.

A SDP in its standard form is given as

minimize tr(C.X) (3.1a)
subject to tr(A4;.X) =b;, Vi (3.1b)
X = 0. (3.1¢)

The objective is a linear function of the decision variable X € S", so the set of all symmetric matrices
of size n x n, and the weighting matrix C € S". The optimization is subject to a non-negativity
(equation (3.1c)) and a set of linear constraints (equation (3.1b)). Note that tr (YV.X), with Y, X € S, is
the general real-valued linear function on S, see Boyd and Vandenberghe [2004] section. 4.6. Note that
a SDP, due to the self-duality of S}, can equivalently be written as (can be written in its dual form as)

minimize c’.x (3.2a)
subject to ZmiFi +G =0 (3.2b)
Az =b. (3.2¢)

with F;, G € S, A € RP*™ and ¢ € R", which is often a more convenient notation.

Semidefinite programs are very versatile as they include Linear Programming (LP), Quadratic Pro-
gramming (QP) and Second-Order-Cone Programming (SOCP) as special cases, resulting in specific
structures of the constraint and objective matrices and have many practical applications. Semidefinite
programs can be efficiently solved, as the cone S, is self-dual and therefore an SDP is a special case of
cone programming. The most broadly utilized algorithm to solve SDPs is the interior point method (see
for instance Sturm [1999]) for small and medium sized problems or methods based on the alternating di-
rections method which is (partly) amenable to efficient GPU implementations suitable for large problems,
see O’Donoghue et al. [2016].

3.2.2 LYAPUNOV STABILITY

Lyapunov stability theory dates back to end of the 19th century when it was first published by the Russian
mathematician Aleksandr Mikhailovich Lyapunov (Lyapunov [1892]), but its importance, with respect

60 CHAPTER 3. STABILITY

to control theory, was largely undiscovered until the works of Nikolai Gurevich Chetaev (Chetaev [1961])
and Joseph La Salle (LaSalle [1976]; La Salle and Lefschetz [2012]) picking up on Lyapunov’s discoveries
and expanding the theory, see Parks [1992].

Much of the popularity of Lyapunov theory comes from what is called Lyapunov’s second method,
also simply known as Lyapunov stability criterion. This approach had a deep impact onto the control
community from around 1960 on. It provides conditions for an autonomous system to be asymptot-
ically /exponentially stable, which can be checked in practice for many systems. It is also a crucial
building block for the method presented in the rest of the chapter and is therefore presented in greater
detail here.

Lyapunov’s Second Method The autonomous system & = f(x) with &, € R™ and a continuous
function V(x): R™ — R prove that the origin is a stable equilibrium if

V(z)=0iffx =0 (3.3a)
V() >0iff x #0 (3.3b)
Ve € R"\ {0} : V(z)= (%V(m), %@ = V.V (z).f(x) <0 (3.3¢)

where (-, -) denotes the inner product and V is defined in the usual way as the (row-) vector of partial
derivatives with respect to . Even though it is sufficient for Lyapunov theory that V(x) is continuous,
we will generally assume the stronger condition that it is also differentiable.

One can interpret the above conditions in the following way: V (x) corresponds to a potential function
(see Figure 3.1), as it is everywhere positive except at the origin and its value is not allowed to increase
over time along any trajectory of the system. This ensures that for a trajectory with initial position xg,
V (z (t)) < V(xo) holds for all t € Ry and therefore the equilibrium point at the origin is stable. An
equivalent notion of stability can be given as

Ve >0, 30 = d(e) > 0, such that [|zo|, < e = |x(t)|, < J holds for all t > 0. (3.4)

In order to ensure that the stability definition in (3.4) implies the one given in (3.3) and vice-versa in
the entire space, and not only locally around the equilibrium point, V(2) has to be radially unbounded,
meaning that ||z| — co = V(z) — oo for any norm ||-||.

By changing (3.3c) to be

Ve c R"\ {0} : V(z)=V,V(x).f(x) <0 (3.5)

ones obtains a proof that the origin is asymptotically stable, as the value of V(x) has to decrease along the
trajectory at each moment on every trajectory. In order to prove exponential stability with convergence
rate v > 0 (3.3c) is replaced by

Ve e R"\ {0} : V(z) = V.V(x).f(x) < —V(x). (3.6)

Indeed, if (3.6) holds, for the trajectory with the initial position @g at t = 0, V (z (t)) < V(xo)e " is
true for all t € R;. This result is very useful as it gives a decreasing upper bound for the V' (x(¢)) and
will be used extensively.

Till here it was shown how to use Lyapunov’s second method to prove the global (asymptotic /
exponential) stability of the origin, in practice however it is often the case that the system dynamics
possess only local stability. In order to restrict the proof to local stability, one has to introduce a suitable
subset of the state space 29 on which one seeks to prove stability. A natural choice is to define 2 as a
sublevel-set of the Lyapunov function candidate V(x), Qo = {z|V(z) < ap}. The autonomous system is

3.2. THEORETICAL BACKGROUND 61

then (asymptotically / exponentially) stable for Qq if equations (3.3) (using (3.5)/(3.6)) hold V& € €.
Note that the constraints on V() for asymptotical /exponential stability (egs. 3.5/3.6) ensure that V()
has no local minima in 2, as the gradient would vanish at these minima. This guarantees that all sets
Qo ={z|V(z) < a} for a €]0, o] are connected, which is not necessarily the case when proving stability
(using (3.3¢)).

Another, sometimes easier to grasp, interpretation of Lyapunov’s second method is geometric: Given
the dynamical system & = f(x) and a region of the state space defined as the sublevel-set of the Lyapunov
function Qo = {x|V(x) < ap}, the vector & has to point to the interior of Q = {x|V (x) < a} at every
point & on the boundary of Q (Va € 9Q) for all « € [0, ag], see Figure 3.1.

Q ={z | V(z) < ao}

F1.50
—~
L 100 o
> —
)
0.50
0.00
2.0
1.0
0.0 .~ To
“20 10 40 -1.0 ¢ —_
" 1.0 2.0 -2.0
o

Figure 3.1 — The image on the left (Adopted from Ahmadi [2008]), depicts the interpretation of the
Lyapunov function as potential, which decreases along the trajectory if the system is asymptotically
stable. On the right the geometric interpretation is depicted. The velocity vector & for the point on each
trajectory xq for which V(xq) = g is depicted by the green arrows.

Control Lyapunov Functions Control Lyapunov functions (CLF) are a useful extension to Lya-
punov theory, see for instance Blondel et al. [2012], as they enlarge the class of systems considered from
autonomous to controlled nonlinear systems. So the system dynamics can now be written as

= f(x,u) (3.7)

where © € Y C R™ is the m-dimensional control input vector, that may be restrained to some set U/
respecting possible input constraints.
In the case of control Lyapunov functions, the constraints on V(x) (equations (3.3a) and (3.3b)) are
not modified, however equation (3.3c) becomes
Ve, Jucl: Vix)=VV(z).f(x,u) <0 (3.8)

This constraint can be trivially adjusted for the case of asymptotic / exponential stabilizability and
its local formulation. Moreover, in the uncontrolled case the origin has to be an equilibrium point, or
f(0) = 0. In the controlled case this constrained is also weakened to

JugeU: f(0,up)=0. (3.9)

62 CHAPTER 3. STABILITY

The informal description of the above constraints is, that for every point in the considered region, there
exists a valid control input which ensures that the value of the potential function does not increase, or,
in the spirit of the geometric interpretation, ensures that the vector f(a,w) points into the interior of
the region, see Figure 3.2.

Qo ={z|V(z) < a}

Figure 3.2 — Again the image on the left, depicts the interpretation of the Lyapunov function as potential,
however now the derivative at each point (green arrows) could have taken multiple values corresponding
to the possible w € U (limit cases depicted by the blue arrows) and can be interpreted as differential
inclusion. On the right, the geometric interpretation is shown. The velocity vector @ for the point on
the trajectory g for which V(xq) = «q is depicted by the green arrows and again the limit cases of the
possible range of velocity vectors as a function of the chosen control input is depicted by the blue arrows.

In order to clarify notations, the terms invariant region, region of attraction (RoA) and region of
stabilizability (RoS) are now formally introduced.

e We say that a region 2 C R™ is an invariant for the dynamical system & = f(x) iff from xq € 2 it
follows that x; € € forall ¢ > 0.

e We say that a region 2 C R" is a region of attraction for the dynamical system & = f(x) with
the equilibrium point «* € Q iff from xg € Q2 it follows that lim; , € — x*, or equivalently € is
asymptotically stable.

e We say that a region Q2 C R is a region of stabilizability for the dynamical system & = f (@, u) with
the equilibrium pair (x*, u*) € (Q, U) iff for every xy € Q there exists a time-dependent control
signal u(t) € U respecting the control input constraints driving the state to the equilibrium x* in
finite time.

For practical reasons, the regions used to prove invariance / stability / stabilizability in this work are de-
fined as sublevel-sets of quadratic Lyapunov function candidates, so Q2 = { x|V (z) = 2T.P.x = ||w||?3 < a}

and the corresponding criteria with respect to the Lyapunov’s second method become

e (invariant region) Va € 9Q: V,V(x).f(x) <0

3.2. THEORETICAL BACKGROUND 63
e (region of attraction) Vo € Q\ {0} : V,V(x).f(z) <0
e (region of stabilizability) Ve € Q\ {0}, Ju e U: V,V(x).f(x,u) <O0.

3.2.3 CONTRACTION ANALYSIS

Contraction analysis was introduced by Winfried Lohmiller and Jean-Jacques Slotine in the *90s (Lohmiller
and Slotine [1998]) and since then gained a lot of interest in the control research community as it provides
a different approach for proving the stability of nonlinear systems. In contrast to Lyapunov’s stability
criterion, which seeks to prove stability for a known equilibrium point, contraction theory considers the
evolution of the distance between neighbouring trajectories. The main idea is that if the distance between
any two trajectories decreases over time (with respect to some metric), then they will converge to the
same trajectory and under additional conditions to an equilibrium point. By extension, as any point
(in the stable region) can be taken as initial position for the trajectory, all points will converge. The
location of the equilibrium does therefore not have to be known in advance and the distance between two
trajectories can be defined as a virtual displacement. To put it formally without going into the details:
Given the dynamical autonomous system & = f(«), the virtual dynamics are defined as

0

517:%

(z).0x = F(x).0x (3.10)

where dx is the virtual displacement and d& is the virtual velocity. By introducing the state-dependent
(non-flat) metric M (x), the distance of two points given as the virtual displacement dx with respect to
M(x) is

d(éx) = éa™ .M (z).0x. (3.11)
The derivative with respect to time of d considering the system dynamics is
d(dz) = 6. (F(w)T.M(:c) + M(:c).F(a:)) Sz (3.12)

As stated above, the dynamical system is stable if the distance between neighbouring trajectories decreases
over time. This is the case if d(dx) < 0 which can be relaxed to

F(z)" .M(x) + M(x).F(z) < 0 (3.13)

as shown in section 3.2.4.
Note that in order for M (x) to be a metric, one has to ensure that

Va: M(xz) = M(z)" (3.14a)
Va: M(z) > 0. (3.14b)

Stability proofs based on contraction analysis can also be modified to prove exponential convergence
or be restricted to a local proof in a similar fashion as presented for Lyapunov’s second method.

3.2.4 POSITIVE POLYNOMIALS AND HILBERT’S 17TH PROBLEM

The question of proving the positivity of polynomials and whether all positive polynomials can be rep-
resented as a sum-of-squares is a long standing research topic and also known as Hilbert’s 17th problem,
see for instance Henrion and Garulli [2005] and Marshall [2008]. In this section the main results useful
to the rest of this thesis are briefly summarized and the connections to semidefinite programming are
pointed out, see Boyd and Vandenberghe [2004] and Parrilo [2000].

64 CHAPTER 3. STABILITY

The following standard notation is adopted: Let

mk =120, 21, , Tp_1, XX, , TXy_1, T 1T, -, Tl x| (3.15)
be the vector of monomials used as the standard basis for real valued multivariate polynomials p: €
R™ — p(x) € R of degree k in n variables, which can then be written as p(x) = ¢*.mF, where ¢ € Rsm (")
denotes the coefficient vector. The length of the vector m?” is denoted s,,,(n, k) and is given by the binomial
(":k) A monomial m of degree k in n variables is conveniently denoted as m = &P = H;;—ol x[i]Pl with
xR, BeN} and), B[i] =|8| = k.

Proving the positivity of a polynomial on a region €2 C R"™ is shown to be NP-hard for & > 4 even in
the case @ =R™ (see Ahmadi [2012]) and is therefore not computationally tractable.

On the other hand, there are sum-of-squares (SoS) polynomials, so polynomials ps,s(x) of degree 2k
which can be written as

psos(m) = Z(ﬁ])Q (316)

where p; are polynomials with degree k or less. Obviously such polynomials are everywhere non-negative'.
Moreover, if a polynomial is SoS, it can be equivalently written as

~T .k
¢;.my, "

Psos(x) = Z ’

2 T T T
— kT o Tk k 4 ko_ ok k
= g m, .C;.C; .M, =m, . E M; | m;, =m, Mm; (3.17)
j J

with the ¢; being the coefficient vector (with respect to the standard base given in (3.15)) of p; and

M € 87" as it is the sum of the symmetric rank-one matrices M;. This condition is sufficient and

necessary, so a polynomial of degree 2k is SoS if and only if there exists a matrix M € Si’”(n’k) such that

p(x) = mﬁT.M .mF. The advantage of using SoS-polynomials for proving non-negativity stems from the
fact that the constraint M & Si’"(n’k) or equivalently M > 0 is an LMI-constraint and can therefore be
efficiently solved in polynomial time using semidefinite programming.

The question that naturally arises is whether all non-negative polynomials can be represented as sum-
of-squares. As it was stated above that proving non-negativity of polynomials of degree greater or equal to
four is NP-hard and SoS-polynomials have polynomial time algorithms, the answer has to be no. Indeed
there exist non-negative polynomials that are not SoS, like the Motzkin polynomials (Motzkin [1967]),
but the set of SoS-polynomials is sufficiently large compared to the set of non-negative polynomials to
be useful in practice.

3.2.5 APPLICATION TO LINEAR AND POLYNOMIAL SYSTEMS AND FEEDBACK
CONTROLLER DESIGN

The above presented methods provide sufficient conditions for a dynamical system to be stable. These
constraints are mostly positivity and non-negativity constraints, which are difficult to handle for general
nonlinear systems. However there are certain subclasses for which these problems are well-studied and
computationally tractable, which are notably the cases of linear and the polynomial dynamics. It is also
interesting to take the conditions and go one step further by using them to design feedback control laws
guaranteed to stabilise the system. In this section we will briefly introduce common strategies and their
links to recent developments in convex optimization. For an in-depth discussion the reader is referred to,
for instance, Boyd et al. [1994]; Chesi [2010].

1The distinction between positive and non-negative polynomials is for numerical solutions obsolete.

3.2. THEORETICAL BACKGROUND 65

Controlled Linear Dynamics Reconsider the unconstrained controlled linear dynamics
T = A.x+ B.u. (3.18)

By fixing a linear feedback control law, one obtains u(x) = —K.x. From classical control theory we
know that the system is asymptotically stable if the matrix A’ = A — B.K is Hurwitz, meaning that
the real part of all eigenvalue is negative. This condition can also be formulated as an equivalent convex
feasibility problem:

exists P (3.19a)
subject to P > 0 (3.19b)
PA+ATP=0 (3.19¢)

derived from Lyapunov’s second method with V(z) = ||w||?3 Constraints (3.3a) and (3.3b) are trivially
fulfilled as constraint (3.19b) imposes P € S’} ,. The constraint (3.3c) can be written as

Ve #£0: V(z)=VaV(x)d <0
=a2T Pi+a". Px<0
— 2T PA x+2" AT Px <0
=a2T.(PA + A" P)a<o.

The derived condition #T.(P.A’ + A" .P).c < 0 is true if and only if (P.A’ + A’".P) € 5" which is
equivalent to the constraint (3.19c¢).

To illustrate the advantage of this reformulation of the stability criterion into a convex optimization
problem, consider the problem of designing a linear feedback control law. Using the Hurwitz criterion,
one has to find the roots of the characteristic polynomial of A — B.K and find the scalar values K;; that
satisfy the Hurwitz criterion, a nontrivial task. On the other hand, by using the above feasibility problem
one gets

exists P, K (3.20a)
subject to P > 0 (3.20b)
P(A-B.K)+(A-BK)".P=0 (3.20c)

which is no longer a convex problem due to the multiplication of the decision variables P and K.
~ Multiplying (3.20c) left and right with P~' and by introducing the new variables Y = P~! and
K = —K.Y one obtains

exists Y, K (3.21a)
subject to Y > 0 (3.21b)
V.A+ATY +BK +KT'.BY <0 (3.21c)

which is convex in Y and K. The solution to the problem (3.20) can be extracted from the solution to
(3.21). This demonstrates the usefulness of LMI constraints in control applications.

Controlled Polynomials Dynamics The second class of dynamics, which is used extensively through-
out the rest of this thesis, are polynomial dynamics due to their ability to approximate well general non-
linear dynamics and in particular rigid body dynamics. Moreover, if the considered dynamical system
and Lyapunov function candidate are polynomial, the resulting constraint (3.3c) will also be polynomial.
In this case, the in general computationally intractable constraints (3.3), can be relaxed to demanding

66 CHAPTER 3. STABILITY

that the polynomial must be sum-of-squares, allowing the use of efficient optimization techniques while
still providing good bounds for the original problem.

In this work we are mostly concerned with quadratic Lyapunov functions due to their importance for
practical applications and third degree polynomial dynamics since they approximate well the trigono-
metric terms appearing in the rigid body dynamics equations. Moreover (3.3c) is the multiplication of
the gradient of the Lyapunov function and the dynamics equation which corresponds to a fourth degree
polynomial in this case.

Consider the nonlinear system dynamics

z = f(x) autonomous case (3.22a)
& = f(x) 4+ g(x).u controlled case (3.22b)
where each element f;(x) of the vector valued function f(z): R™ — R"™ is a multivariate polynomial of
maximal degree k in n variables, similarly each element g; ;(x) of the input dynamics g: R™ — Rn x m is

a multivariate polynomial of maximal degree [in n variables. The Lyapunov function candidate is given
as a quadratic polynomial

V(z) =z Px. (3.23)

In this case, the constraints 3.3 proving stability for the autonomous dynamical system can be relaxed
to the feasibility problem

exists P (3.24a)

subject to P > 0 (3.24b)
V(z) =z .P.f(z)+ f(x)" .Px is SoS (3.24¢)

or to make the connection to SDP more obvious

exists P (3.25a)

subject to P > 0 (3.25b)
~M=0 (3.25¢)
V(z)=2".P.f(z)+ f(z)" . Px = miTMme (3.25d)

Where (3.25b) is equivalent to the constraints (3.3a) and (3.3b). The constraint (3.25¢) guarantees that
the polynomial m%T.M .m?2 is SoS and therefore —miT.M .m?2 is non-positive on R", while the equality
constraints (3.25d) guarantee that the system dynamics are taken into account correctly.

In the controlled case, the control input has to be defined. Consider using a polynomial feedback
control law of maximal degree 3 — [denoted u = —k(x): R” — R™, then the input dynamics become
—g(x).k(x): R® — R™ with each element being a polynomial of degree three (the same as the system
dynamics). Then the feasibility problem for proving stability becomes

exists P, k (3.26a)
subject to P > 0 (3.26b)
~M>0 (3.26¢)

V(z) =z . P.(f(z) — g(x).k(z)) + (f(z) — g(x).k(z)" .Px = miTMmfl (3.26d)

Note that now the feasibility problem is no longer convex due to the multiplication of the decision
variables P and k in (3.26d). One could seek to use a similar change of variables as done in the linear
case, however this approach makes it impossible to add additional constraints on the control law k(x) or
to consider local stability. To solve this problem, two-step algorithms are usually applied, first fixing the
Lyapunov function candidate and searching for the control law k(x). In the second step the control law
from the last-step is fixed and one searches for suitable Lyapunov function candidate by searching for P,
as detailed in section 3.4.

3.2. THEORETICAL BACKGROUND 67

Comparing Lyaponov’s Second Method and Contraction Analysis Contraction analysis is an
appealing way for proving stability as one is not required to have explicit knowledge about the equilibrium
point or path. Also, at first glance, it seems to be computationally lighter as the constraint ensuring
stability (equation (3.13)) reads

F(z)" . M(x) + M(x).F(z) < 0
with F'(x) being the Jacobian of the system dynamics f(x) whereas one obtains
&' P.f(x)+ f(x)" Pz <0

for Lyapunov’s stability criterion. If one uses the flat metric P, so Va: M(x) = P, the highest degree
appearing in the contraction analysis criterion is the degree of f minus one, whereas it is degree of f plus
one in Lyapunov’s criterion. As the computational cost is directly related to the length of the vector of
monomials s,,(n, k) = (”:k) with k£ being the highest degree of any monomial, this can make a crucial
difference. This computational advantage however only holds for the case of flat metrics. The next toy
example shows that contraction analysis with flat metrics is less expressive, in the sense that the region
for which stability can be proven is never larger and sometimes smaller, than Lyapunov’s criterion for
quadratic candidate functions.
Consider the unidimensional autonomous system with third order polynomial dynamics

i =—x+ a8 (3.27)
and the Lyapunov function candidate
V(z) =2 (3.28)

and the corresponding metric M (z) = 1.
The Lyapunov stability criterion then becomes

V(z) =2z(—z+2°) =2(* —2%) <0
indicating that f(x) is locally stable for « € [—1, 1], which coincides with the true region of attraction
(RoA). Using contraction analysis on the other hand, one obtains

Fla) = 2 f(a) = 1+ 327

x)=—Ff(x)=— x
dx

and the criterion becomes

2(—1+32%) <0
indicating that f(x) is locally contracting for z € [—\/ /3, «/1/3} which is significantly smaller than the
true region of attraction, see Figure 3.3.
Theorem 3.1. The largest region of attraction derived from Lyapunov’s stability criterion

Qp = {m|(m —a) ' Px—a)<a, (@—2) Pflx)+ flx) Pz —a*) < o}
containing the equilibrium point * is always at least containing the region of contraction (RoC) derived
from contraction analysis Q¢ using the flat metric M (x) = P containing *, so Qo C Qp,

Proof. Contraction analysis proves that the distance between any two neighbouring trajectories within
the region of contraction monotonically decreases over time with respect to the metric M (x). However
if the metric M () is flat, the requirement that the trajectories are neighbouring can be dropped as the

68 CHAPTER 3. STABILITY

geodesic between two points is the straight line for flat metrics. Choosing one of the two trajectories to be

the equilibrium, one directly obtains that all trajectories monotonically converge towards &* with respect

to [|[@ — || p;(z)—p which is equivalent to Lyapunov condition V (x) = L(x—)" P.(x — %) <0.
However the converse it not necessarily true. From

d (x—x) . P(x—ax*) <0

Ve e Qp: V(z) = 1

one cannot deduce contraction criterion
Va1, o € Qp,0x = x1 — @9 Szt .Pox + oz . Pox <0

without further knowledge of f(x) and therefore Q¢ C Q. O

Now one could ask about non-flat metrics and the resulting difference between RoA and RoC. It
is difficult to draw general conclusions for the case of non-flat metrics, especially in higher dimension,
therefore let us simply continue with the running example and consider some state-dependent metric
M (z). In order to ensure that M (z) is indeed a metric, it has to be integrable and everywhere positive.
The criterion becomes

2M (z)(—1+32%) <0

and one can see that in the unidimensional case, the complexity of M (z) has no influence on the RoC,
which will always be = € {—\/ /3, \/1/3} independently of the metric considered.

As discussed above, the non-positivity constraint in Lyapunov’s criterion can be relaxed to a SoS-
condition, which provides reasonably good bounds while being computationally efficient. The constraint
of M(x) > 0 is in this general form also intractable, but convex relaxation can be found, see for instance
Gatermann and Parrilo [2004]. These relaxations introduce auxiliary variables which, together with the
increased maximal degree due to the metric itself, absorb the computational advantage. Due to these
findings the presented method is based on Lyapunov theory.

Dynamics Lyapunov criterion Contraction criterion
q 2.0 4
2.0 J RoA RoA
15 1 L E - N RoC
o RoC :
05 10 2
E 0.0 E é/
- _0s5 > 0.5 S
10
0.0 A1 0 A1
-15 A \/\/ v
20 1o T T T . T T 05 A . T T T . T -1 4= T T T T
-1.5 -1.0 -05 0.0 0.5 1.0 15 =15 -=10 -05 0.0 0.5 1.0 1.5 -15 =10 -05 0.0 0.5 1.0 15
x x x

Figure 3.3 — Comparison of RoC and RoA for a unidimensional dynamical system. The left image
shows the systems dynamics and the obtained RoA (Lyapunov criterion) and RoC (contraction analysis).
The image in the middle shows the derivative of the Lyapunov function V(T) and the RoA, so all
x for which V(z) < 0 around z* = 0. The right image shows the value of the contraction metric
Ce(x) = M(z).F(z)+ F(x)" .M for the flat metric M(z) = 1 (blue line) and the metric M (z) = 0.1 +z2.
In both cases the RoC defined as C.(z) < 0 is identical.

3.3. PROBLEM STATEMENT 69

3.3 PROBLEM STATEMENT

We propose a new method to find an inner approximation of the true region of stabilizability (RoS) for
polynomial control affine systems by scaling a given quadratic Lyapunov function candidate

V(z) =z Px = ||:c|\i, , with P e S . (3.29)
More precisely, we consider systems of the form
&= f(x)+ Bu, ueld (3.30)

where & € R™ denotes a point in the state-space, f(.): R™ — R"™ represents the polynomial system dy-
namics, B € R"*™ is a constant input matrix defining the linear input dynamics, u € R™ denotes the
control input vector and U is the set of admissible control inputs. We suppose that B has full column
rank and that each control input w[i], is bounded, and that the constraints are independent of the other
control inputs, w™[i] < w[i] < wT[i] so that

U={uu” <u<u'}. (3.31)

This type of input constraints, also called box-constraint is typical for torque controlled articulated
robots, which are our primary target as far as applications are concerned, but also occurs frequently in
other applications. The problem treated in this section is to find an as large as possible sublevel-set of
the quadratic Lyapunov function candidate V' (z), denoted Q = {z|V(x) < a} C R™ for which exists an
admissible control input that makes this set exponentially stable, or more formally

prove Vax € Q: Jdu
subject to v~ <u < ut
(Vg V. f(x) + Bu) < —.V(x)

where (.,.) denotes the usual scalar product, V, denotes the gradient with respect to @ and v > 0 is
called the convergence rate. The limit case v = 0 is equivalent to the set 2, and each subset Q' =
{z|V(x) < &' < a}, being invariant. To avoid confusion with other approaches, note that our approach
does not modify the given Lyapunov function candidate V' (.) but seeks to enlarge the subset €2 by enlarging
«. This approach is reasonable for dynamical systems for which a good Lyapunov function candidate
can be found by other means. The method to compute these good candidates used within this work is
presented in section 3.9.

To avoid ambiguity with other definitions and to recall some properties from section 3.2.2. We call a
function V(x) a Lyapunov function candidate if it is differentiable, radially unbounded and everywhere
strictly positive, except at the origin where it evaluates to zero. A function V(x) is called a Lyapunov
function for the dynamical system & = f(x) if it is a Lyapunov function candidate and its derivative along
any trajectory of the system is everywhere non-positive except at the origin where it is zero. Moreover, a
Lyapunov function proves exponential stability if its derivative along any trajectory is everywhere smaller
than its current value multiplied with a negative factor except at the origin where it is zero.

Due to their outstanding practical importance stemming from the ease of inclusion and intersection
testing (see section 2.5.2) as well as their inherent suitability for second order systems, we restrain
ourselves to quadratic Lyapunov functions of the form (3.29). The conditions for V() being a Lyapunov
function candidate are met if P € S, . Within this section, it is, without loss of generality, supposed
that the origin is an equilibrium for the dynamical system. Moreover, to ease notation, it is assumed
that the Lyapunov function candidate is time-independent, the necessary adaptations to time-dependent
Lyapunov functions are straight-forward and presented in detail in section 3.7.

70 CHAPTER 3. STABILITY

3.4 RELATED WORK

The problem of proving stability for dynamical systems is a long standing problem that was first encoun-
tered by physicists and only much later found its place in engineering sciences, namely control theory.
Naturally, in a control theoretic environment one is not satisfied by drawing conclusions about the natural
stability of autonomous systems, but it is much more interesting to derive criteria for the stability or
stabilizability of controlled dynamical systems.

Many of the approaches developed to prove stability are based on contraction analysis or Lyapunov’s
stability criterion. As the proposed approach is based on Lyapunov theory, we will mainly present existing
approaches that also rely on Lyapunov theory with other approaches discussed briefly afterwards.

3.4.1 APPROACHES INVOLVING LYAPUNOV THEORY ON SOS-TECHNIQUES

Recall the definition of exponential stability with rate v in the Lyapunov sense for a bounded region:
given a Lyapunov function candidate V(x) and a region of the state space Q2 defined as sublevel-set of
the Lyapunov function, proving exponential convergence for the dynamical system & = f(x) amounts to
finding a certificate of non-positivity for V() plus a convergence term valid within . So one has to
prove that

Ve e Q\ {0} : V(x) = (V,V(x), f(x)) +~.V(z) <0 (3.32)
or equivalently

mé?)g\i?o} (VV(x), f(x))+v.V(x) <0. (3.33)

There exists no generic way to solve this optimization problem for general nonlinear systems and Lyapunov
functions and therefore one has to either rely on hand-made solutions for specific cases or restrict the
class of functions considered. In recent years enormous progress has been made by restraining both, the
dynamics and the Lyapunov function candidate to be polynomial in x as showcased in Jarvis-Wloszek
et al. [2003], Majumdar et al. [2013b], Ahmadi and Majumdar [2014] or Aylward et al. [2008] and Singh
et al. [2017] for contraction analysis. These advancements have been made possible by the appearence
and progress on solvers for SDPs like Sturm [1999], ApS [2017] or Andersen et al. [2013].

The approach presented in Majumdar et al. [2013b] is the closest to the method proposed in this
chapter and is therefore detailed in the following. Note that Majumdar et al. [2013b] explicitly aims at
proving convergence towards a trajectory, so time-dependent Lyapunov functions. To ease notations and
concepts, this method is here presented in its time-independent version.

By restricting the Lyapunov function and the dynamical systems to polynomials in x, the time-
derivative of the Lyapunov function V() also becomes a polynomial of degree deg(f(z))+deg(V (x))—1 in
x. Therefore the question V(&) < —yV () can be relaxed to the SDP feasibility problem stated in (3.25).
This problem however proves global exponential convergence of the autonomous system with respect to
the obtained Lyapunov function. To be useful for solving realistic problems, the approach needs to take
into account the control inputs and be restricted to prove local stability. So the considered dynamical
system becomes & = f(x) + g(x).u where each element f(x)[i] and g(x)i, j] are polynomials in « and,
without loss of generality, f(0) = 0. To achieve this, a polynomial control law © = —K(x): R® — R”

3.4. RELATED WORK 71

and multiplier terms are introduced and the local stability criterion on = {x|V (z) < a} becomes

exists V(x), K(x), L(x), M;(x) (3.34a)
subject to V(z) — ex®.x is SoS (3.34b)
L(x) is SoS (3.34¢)

Vi, M;(x) is SoS (3.34d)
—(VaV(2), f(z) — g(z).K(x)) — vV (x) + L(x)(V(x) — a) is SoS (3.34¢)

Vi, ut[i] — K(z)[i] + M;(z)(V(x) — a) is SoS (3.34f)

Vi, K(z)[i] — uw™ [{] + M;(x)(V(x) — «) is SoS (3.34¢g)

V(1)=1. (3.34h)

The constraints (3.34b), (3.34¢) and (3.34d) ensure that V() is indeed a Lyapunov function candidate
(by setting € > 0) and that the multiplier terms L(x) and M;(x) are non-negative. Constraint (3.34e)
ensures the exponential convergence with minimal rate -y of the dynamical system for the control law K (x)
with respect to V() in . This is ensured as L(x) is everywhere non-negative and V() — « is negative
within Q and non-negative in the complement of 2, . This means that outside of €, the positivity of
L(x)(V(x) —) can outweigh the possible negativeness of the other terms, resulting in an overall SoS
expression. However inside of) this approach increases the conservativeness, especially farther away
from the boundary of 2. The constraints (3.34f) and (3.34g) guarantee that v~ < u = K(z) < u™ in
the same way as (3.34e). The last constraint (3.34h) is a normalization constraint, necessary as one could
always increase « dividing all coefficients defining the polynomial V(x) by some scalar, resulting in an
unbounded problem.

As one can see, the input dynamics and the polynomial control law are multiplied in (3.34e), possi-
bly increasing the maximal occurring degree. In order to be able to ensure global non-negativeness,
or rather SoS-representability of the whole expression, the degree of the multipliers has to be suf-
ficiently large. So, for instance in the constraint (3.34e), deg(L(x)(V(x) — «)) has to be at least
deg(—(VzV(x), f(x) — g(x).K(x)) — vV (x)) + 2 increasing the overall complexity of the approach.
Moreover, in the constraints (3.34a), (3.34b) and (3.34c), the decision variables (the coefficients of)
V(x), K(x), L(x) and M;(x) are multiplied causing the problem to be non-convex.

Therefore in Majumdar et al. [2013b] a three step algorithm is proposed, which already occurs in a
slightly different version not taking into account input constraints in Jarvis-Wloszek et al. [2003], that
seeks to find an as large as possible inner approximation of the region of attraction defined as a sublevel-set
of a Lyapunov function and provides the associated polynomial feedback control law.

Algorithm 1 RoA computation as in Majumdar et al. [2013b]

Parameter v > 0, ¢ >0
Initialize V(x), @ using LQR
converged=false
while not converged do
Step 1 : Solve feasibility problem by searching for K (x), L(x) and M;(x) while fixing V(x)
and «

6: Step 2 : Maximize « by searching for K (x) and « while fixing V(x), L(z) and M;(x)
7: Step 3 : Maximize « by searching for V(x) and a while fixing K (x), L(z) and M;(x)
8: Step 4 : converged = isConverged(V (x), a)

9: end while

In Step 1 feasible multipliers and control laws are found for the current region size o and Lyapunov
function V(x). In Step 2 the current region is enlarged by maximizing «. As the current solution is
feasible, the resulting a* has to be at least as large as the « from the last iteration. However the increase

72 CHAPTER 3. STABILITY

possible depends largely on the current multiplier terms which are fixed in this step and there is no way
to generate them during STEP 1 in such a way that “large” increases of a during STEP 2 can be
ensured. Finally in STEP 3 the Lyapunov function itself is updated, again while seeking to maximize «.
In this step the quality of the normalization constraints to represent the volume of the region is crucial.
Overall this algorithm is a method to solve the initial non-convex problem (3.34) by breaking it into
convex subproblems and iteratively improve the found solution. Therefore the final result depends on
the quality of the initial guess of V(x) and «, and suitable candidates are often found relying on the
linearised system and LQR-techniques or they are user-provided input.

In the following some additional remarks on Algorithm 1 are listed.

Remark 3.1. The conservativeness induced by the constraints (3.34f) and (3.34g) regarding the control
input can be reduced by explicitly taken into account the saturation, which is presented in Tedrake et al.
[2010b] and also applied in Majumdar et al. [2013b]. This approach increases the overall complexity and
also involves multiplier terms.

Remark 3.2. By dropping the constraints (3.34c) and (3.34d) from the problem (3.34) and setting ~ to
zero, () is an invariant instead of an exponentially converging set and the input constraints are only ensured
on the boundary of €2. This is interesting as it significantly decreases the computational complexity and
possibly even the conservativeness at the cost of obtaining a weaker certificate.

Remark 3.3. Step 3 of the algorithm depends on the normalization constraint (3.34h) since the problem
would be unbounded otherwise. As the goal is to maximize the RoA one needs to specify according to
which measure one wants to maximize. A natural choice would be the volume. The volume of a region of
the state space defined as a sublevel-set of the SoS expression V() is however not convex with respect
to the coefficients of the polynomial. Therefore simpler normalization constraint needs to be found. Here
the constraint V(1) = 1 is chosen, which is a somewhat bad measure for the volume, even for quadratic
Lyapunov functions and which tends to bias the optimization as we will see in section 3.10. In Jarvis-
Wloszek et al. [2003], this problem is resolved by demanding that the sublevel-set 2; defined by V(x) < 1
comprises a predefined region, providing a lower bound for the volume of the sub-level set.

As stated before, we restrict ourselves for the moment being to polynomial control affine systems of
the form & = f(z) + B.u and quadratic Lyapunov functions V(z) = T.P.x with P € S, which is
simply a special case for the approaches described above.

3.4.2 APPROACHES INVOLVING CONTRACTION ANALYSIS AND LMIs

Applying contraction theory for answering the question of local stability on 2 of controlled polynomial
systems, as done in Manchester and Slotine [2017] and Singh et al. [2017], the constraint ensuring expo-
nential convergence becomes

Ap + Ba . Ky) " My + My.(Ag + By K. M,

with A, and B, being the Jacobians of the system and input dynamics, K, denoting the differential
control law and M, representing the state-dependent metric. Each element Mg[i,j] = Mg[j,i] is a
multivariate polynomial in x of predefined degree. Additionally one has to ensure that M, is indeed
a metric on €. This can be done via sum-of-squares constraints and LMIs as shown in Aylward et al.
[2008]. Once K, and M, found, the actual control law is obtained by integrating the differential control
law along the trajectory for some initial value (for the system state and the control law).

As shown in Singh et al. [2017], box-constraints, so that the resulting control input has to suffices
u~ <u < ut, can be imposed onto the the control law, however making the problem significantly more
complex and inducing conservativeness.

3.5. STATE-SPACE PARTITIONING BASED ON OPTIMAL CONTROL INPUT 73

3.5 STATE-SPACE PARTITIONING BASED ON OPTIMAL CONTROL
INPUT

In the last section it was briefly discussed how SoS-techniques tackle the problem of proving local stability
of dynamical systems with polynomial system and input dynamics. In this section the arising optimiza-
tion problem will be viewed from a different point of view and a new approach based on ideas from
optimal control and Lyapunov theory is presented. The resulting optimization problem can be resolved
by polynomial programming as shown in the following sections.

3.5.1 STABILIZABILITY AS MIN-MAX PROBLEM

The question whether the controlled dynamical system & = f(x) + B.u is exponentially stabilizable for
u € U with respect to the Lyapunov function V(z) within a region defined as a sublevel-set V(x) < «
comes down to finding a certificate for

Ve e Q\ {0}, Jucld: V. V(x).(f(x)+ Bu) < —V(x)
or equivalently

weIIslz&\L?{{o} umelzr; VeV (x).(f(x) + B.u) ++V(x) <0. (3.36)
So the above optimization problem asks, if for all points in the region there exists an admissible control
input that ensures exponential convergence. Due to the interweaving of optimizations this is a very
difficult optimization problem which cannot be efficiently solved even if V(x) and f(x) are polynomial.
This is due to the structural properties of the optimization problem on one and to the lack of good
available software packages on the other, see for instance Fang and Wu [1996].

The approach taken by the works cited in the last section to tackle this problem is to introduce a
polynomial (differential) control law w = K(z), transforming the controlled system into a closed loop
autonomous system. This simplifies the optimization problem as the inner minimization is dropped, but
also increases the number of variables and adds conservativeness. Due to the predefined structure of the
control law, it cannot result in the optimal control input with respect to convergence for each point in
the general case.

3.5.2 STATE-SPACE PARTITIONING

Instead of introducing auxiliary variables representing a polynomial control law, our approach relies on
input optimal state space partitioning.

Lemma 3.2. OPTIMAL INPUT PARTITION

For polynomial control affine systems and quadratic Lyapunov candidate functions, the state space can be
partitioned into 2™ subsets H;c[o,2m —1] and an associated optimal control input with respect to convergence
u; can be defined. Moreover this optimal control input takes on exclusively values from ut and u™.

In order to prove this claim, reconsider the quadratic Lyapunov function candidate V(x) = xT.P.x
and the polynomial control affine system & = f(a) + B.u. Then the time derivative of V' is given as

V(z) = (VaV(x), &)
=2z P.(f(x) + B.u) . (3.37)

This indicates that the derivative can be separated into two parts: An uncontrollable part resulting from
the system dynamics 2zT.P.f(z) denoted V; and an input dependent part 2z™.P.B.u denoted V,. In
order to obtain the desired partitioning of the state-space, V,, is explicitly written as sum

V= ZwT.P.B[:,j].u[j]. (3.38)

74 CHAPTER 3. STABILITY

So the input dependent part of the derivative can be written as the sum of each control input element
u[j] multiplied by the scalar *.P.B[:, j]. By denoting n; = P.B][:, j] one obtains «'.n;, which is simply
the minimal directed distance scaled by ||n;||, between the point considered and a separating hyperplane
passing through the origin with normal vector n; denoted P;. The problem (3.36) can be rewritten as

m—1
. <0. .
wrggazico VeV (x).f(x) +~vV(x) + mln ; z'.nj)u <0 (3.39)

The box-constraint defining U (see (3.31)), ensuring that w[i] is independent of u[j] if ¢ # j, implies the
following equivalence:

m—1 m—
. T 0 Nayls
el JE::O o Z) ~)<ubi<ut (@"n)uli])

as the minimum over a sum of independent terms is the sum of the minima of each term. Finally one
can rewrite (3.36) in the simpler form

Jmax VoV (x).f(x) + 4V (x Z m1n<u+[]] ((2T.n;)ulj]) <o. (3.40)

Therefore demanding the system to converge as fast as possible for a fixed point & with respect to
the given Lyapunov function is equal to minimizing V,,, which in turn is equal to minimizing each term
in the sum in (3.38) as one can deduce from (3.40).

To achieve this minimization, the j-th control input has to be chosen as small as possible if :BT.nj >0
(z lies in the upper half-space of P;) and as large as possible if 7.n; < 0 (z lies in the lower half-space
of P;) to obtain the minimal value of each summand defining V.. The corresponding optimal control
input in the sense of instantaneous convergence of the system is

ut[j] if zTon; <0
u'(z)jj] = S u[j]if zT.m; >0 (3.41)

up, else

where, in order to remove the ambiguity, any input up,, satisfying u™[j] < up, < u™[j], can be chosen
if the current state belongs to the hyperplane. The undefined character of up, does not pose a problem
for proving stability since its contribution to V,, is 0 independently of the value of u p; as xTn; =0. As
one can see this control law partitions the state-space into two open half-spaces for each of the m control
inputs. Denoting #H,; for i € [0,2™ — 1] the unbounded convex polytope defined as the intersection of m
upper or lower half-spaces generated by the hyperplanes Pj¢(,m—1] We get

H;={xVj€[0,m—1] cla".n; <0} (3.42)

where c§- € {—1,1}, see Figure 3.4, is a switch to determine whether the upper or lower half-space of the
j-th hyperplane is used. Note that in (3.42) the strict inequalities of (3.41) are replaced with inequalities.
This poses no problem as the control input on the hyperplane can be chosen arbitrarily. One can easily
see that for each such polytope 7{; the optimal control input u, denoted u;, is independent of . Since
there exist m such hyperplanes, the state-space is partitioned into 2™ polytopes with different optimal
inputs. Note that each of these polytopes has non-empty interior if the matrix P is positive definite and
B has full column rank (i.e. rank m). The definiteness of P is always given in order to ensure that
V(x) = zT.P.x is a Lyapunov function candidate and in general, for dynamical systems, B is of rank m.
If the rank condition on B is violated, it means that there exist at least two inputs which are linearly

3.5. STATE-SPACE PARTITIONING BASED ON OPTIMAL CONTROL INPUT 75

dependent. One can then proceed to replace these two or more inputs by fewer linearly independent
inputs resulting in the equivalent input dynamics matrix B’ and the corresponding control vector u’ and
input constraints " and «/~. Then one can define the equivalent dynamical system @& = f(z) + B'.u/
subject to v/~ < ' < w4’~ and return to the general case. This approach is based on the ideas developed
in Longchamp [1980] for bilinear systems.

To better visualize the approach of state-space partitioning, the running example of the torque con-
trolled pendulum is introduced and preliminary results are presented.

Consider the dynamical system

&= <Z) = f(x) + B = (—w2 fin(9)> + (COT) .u (3.43)

representing a torque controlled simple pendulum with § = 0 corresponding to the stable, “hanging”
position. Further w denotes the natural frequency of the system and ¢, the normalized torque. The set
of admissible control inputs is ¢/ = [u~,u*]. Consider the Lyapunov function candidate V (x) = «*.1d.x,
corresponding to convergence with respect to the squared lo-norm. Since the pendulum is a single
input system B = B[, 0], there exists only one separating hyperplane defined by the normal vector
n = Id.B = cre; as indicated by the green arrow in Figure 3.4. We therefore obtain the optimal control
inputs associated to the partitioning of the state space formed by the two subsets Ho and H; as ufy = v~
and u} = uT. From both half-spaces the system states converge to the hyperplane when the states belong
to the true region of stabilizability when applying the optimal control law (3.41), otherwise they diverge.
The black circle show the largest RoS, the largest «, such that the set Q = {x|xT.Id.x < a} is a subset
of the true region of stabilizabilty. Once the state attains the separating hyperplane, switching between
u~ and u™ occurs, at possibly infinite frequency, in order to maintain the state on the hyperplane. This
bears resemblances to sliding-mode control which will be discussed in section 3.6.

|

o il

Figure 3.4 — The resulting partitioning for the torque controlled pendulum and the Lyapunov function
V(x) = xT.Id.x is shown on the left, the resulting streamline plot when using the optimal control
law is shown on the right. The green lines indicate the border of the true region of stabilizability for
this Lyapunov function with a convergence rate « equal to zero. The black circle is the largest inner
approximation defined as a sublevel-set of V().

This approach allows us to obtain 2" subsets of the state space H;, the dynamics conditioned by
the optimal control input & = f(z) + B.u} and the best obtainable derivative of the Lyapunov function

76 CHAPTER 3. STABILITY

candidate
Vi (x) = (Vo V(x), &) = 227 . P.(f(x) + Bu}). (3.44)

Now the min-max problem (3.36) for proving stability can be reformulated. Since we determined the
optimal input with respect to instantaneous convergence for each H; we can drop the inner minimiza-
tion by checking each intersection of the partition with the sublevel-set of V' considered. So the inner
minimization

min (VoV (), f(2) + g(2).u) (3.45)
becomes
xcH;: 22" P(f(x) + Bu) (3.46)

and therefore

Vi : Vi (x) =2.2T.P(f(x) + Bu}) < —v.ax".Px (3.47)

max
xe(QNH,)\ {0}
is equivalent to the initial problem (3.36) and represents a proof of exponential convergence. It also proves,
constructively, that € is a region of exponential stabilizability with guaranteed minimal convergence rate
5.

Note the conceptual difference. While the works cited in section 3.4 prove stability by introducing
a (polynomial) control law u = K(x) and then enlarge the region of attraction with respect to the
closed loop system, the proposed partitioning of the state space in contrast directly takes advantage
of the specific problem structure and reasons directly on the region of stabilizability. This yields two
advantages. First the conservativeness resulting from enforcing the constraint that the control law has to
generate admissible control inputs everywhere in the considered region is avoided. Secondly the resulting
optimization has less decision variables as no control law or additional multipliers have to be introduced,
resulting in a possibly simpler optimization problem.

The ultimate goal is to maximize the size or better volume of 2, which depends only on one parameter,
a, as we do not seek to modify V(x) defining the shape of the sublevel-set. In section 3.7, we use a
dichotomic search to quickly find a large value for . This requires us to efficiently check the validity of
(3.47). In section 3.8 we show how this can be done by using relaxations to deal with the non-convex
polynomial expressions arising in (3.47).

3.5.3 STATE SPACE PARTITIONING FOR PERTURBED SYSTEMS

The above presented state space partitioning can readily be extended to the case of control and pertur-
bation affine polynomial systems of the form

= f(x)+ Bu+ B,.w (3.48)

with B, € R"*! representing the perturbation channels and w € R represents the perturbations. In
order for this approach to be directly applicable to this case, we consider that the perturbations are also
box-constrained, so w™ < w < w™T holds element-wise.

In this case we can see the perturbations much like the control inputs, however with the “goal” to
make the system diverge from the equilibrium point. Therefore we can compute a separation hyperplane
for each perturbation w; called n,, ; as P.B[:, j] and define the divergence optimal perturbation as

whjlifzTn,; >0
wi(x)j] = Cw] if zTn,,; <0 (3.49)

wp; else

3.5. STATE-SPACE PARTITIONING BASED ON OPTIMAL CONTROL INPUT 7

which is exactly the same as (3.49) except that the half-space for which the minimal or maximal pertur-
bation is used are exchanged. Now the extended control law @ can defined as

o = (::> (3.50)

with the extended input matrix

B=[B B, (3.51)
and return to the equivalent control affine polynomial dynamics under the optimal control law

&= f(x)+ B.a* (3.52)

for which we can apply the above method resulting in 2™ polytopes.

The resulting partitioning for the pendulum example with the perturbations defined by w and B, =
[1,1]" is shown in Figure 3.5.

This approach however is very conservative, as for each instant the worst possible perturbation is
assumed, instead of it being drawn from some distribution.

Figure 3.5 — The resulting partitioning for the torque controlled pendulum and the Lyapunov function
V(x) = xT.1d.x for the perturbed case.

78 CHAPTER 3. STABILITY

3.6 RESULTING CLOSED LOooP DYNAMICS AND LINKS TO SLIDING
MOoODE AND QP-CONTROL

In this section we point out links between the optimal control law with respect to instantaneous con-
vergence (3.41) and first order sliding mode control. Since this control mode can induce chattering and
premature wear out due to the high, possibly infinite, switching frequency on the sliding surface it is not
suitable for real applications. We therefore introduce a quadratic programming (QP) control law that
results in continuous control trajectories and provides the same certificates. To illustrate the approach
and the resulting dynamics, the torque controlled simple pendulum, see (3.43), and the Acrobot (Spong
[1995]), are used as a showcase.

3.6.1 SLIDING MODE CONTROL

Sliding mode control was introduced in the 1970s, see for instance Emel’yanov and Utkin [1964] for one of
the early works, and is concerned with proving stability of nonlinear control systems of the general form
@ = f(x,u). The main idea of sliding mode control is the following: in a first step a sliding manifold
is created on which the system behaves in the desired the way, e.g. the system is asymptotically stable.
Then in a second step, control laws are designed that drive the state towards the sliding manifold within
some neighbourhood around it. The advantage lies in the fact that on the sliding manifold, the order of
the system is effectively decreased, as the switching between the control laws will keep the state on the
manifold making convergence proofs possibly easier.

To put it formally for a simple case, consider the nonlinear control system & = f(x,u), the sliding
manifold implicitly defined as Q = h(z) = 0 with h: R™ — R being C!, the reduced order system on the
sliding manifold & = f(&) and the control laws ko(z) and k; (). Then, in order to prove global stability
of the system, one has to prove that

Vo € Q: tliglori‘ =0 (3.53a)
Ve € U(Q) N{x|h(x) >0} : (Vih(x), f(x, ko(x))) <0 (3.53b)
Ve e U(Q) N {x|h(x) <0} : (Vih(x), f(x, ki(x))) >0 (3.53¢)
Ve, 3T, < oo: Ve > T, h(x) =0 (3.53d)

where U(f2) denotes some neighbourhood of € and the last condition, known as finite reaching time
condition, ensures that all states reach the sliding manifold in finite time. There also exist local versions
of the above conditions but these are usually tailored for the dynamical system at hand, see for instance
Wang et al. [2004].

This gives the system a variable control structure, as the resulting dynamical system can be defined
as

f(x, ko(x)) if h(z) >0
=1 f(z,ki(x)) elseif h(z) <0. (3.5
f(iB, O) else

The advantages of sliding mode control are that one can choose control laws with high gains providing
good perturbation rejection while ensuring a smooth overall behaviour on the sliding manifold by their
design. For real applications however the high (infinite) frequency switching between the control laws
can cause chattering for second-order systems and is generally not desirable.

Till here the main concept of sliding mode control was briefly introduced. For a more complete
introduction to the topic and approaches to deal with the high frequency switching see, among others,
Edwards and Spurgeon [1998] or Pisano and Usai [2011].

By defining h(x) = £T.n, ko(x) = v~ and ky(x) = u the structure given above corresponds to the
optimal control law derived in the last section for the torque controlled pendulum and given Lyapunov

3.6. RESULTING DYNAMICS AND LINKS TO SLIDING MODE AND QP-CONTROL 79

function. Therefore one might draw the conclusion that the separating hyperplanes P; defined by the
corresponding normal vector n; correspond to sliding manifolds defined by h;(x) = *.n; = 0. However
this is not true. For the running example of the torque controlled pendulum, the separating hyperplane
is indeed a (local) sliding manifold, but this does not hold in general. The stability proof based on
Lyapunov’s second method demands that all states converge towards the origin with respect to the
Lyapunov function V(x). The condition that all states within some neighbourhood of the manifold have
to converge towards it does not follow from this constraint. Indeed one can perfectly imagine a dynamical
system and a Lyapunov function candidate for which T.n; increases along a trajectory after crossing
P; while also converging with respect to V(x). Even though we have just shown that our approach does
not directly match sliding mode control, the concerns about the possibly infinite switching frequency
on the separating hyperplane do directly transfer to our approach. To be more precise, the infinite
switching frequency poses problems from a practical and theoretical point of view. It induces chattering
and premature wear out of the system, especially for second order models such as robotic systems. On
the other hand it also raises theoretical concerns as the solution to such a system is ill-defined due to the
zeno effect.

3.6.2 FROM SLIDING MODE CONTROL TO A CONTINUOUS CONTROL LAw

To showcase the resulting partition in Figure 3.4, the dynamical system represents a torque controlled pen-
dulum and the Lyapunov function candidate V(x) = zT.I;.« is imposed. Since the pendulum is a single
input system, there exists only one separating hyperplane defined by the normal vector n = I3.B = c-e;.
We obtain the optimal control inputs associated to the partitioning of the state space formed by two
subsets Ho and H; as uf = v~ and uj = uT. As already stated above, the system states converge to
the hyperplane if they belong to the true region of stabilizability for the considered Lyapunov function.
Once this surface obtained, the system is in sliding mode, meaning that the switching between the u~
and uT occurs at high, possibly infinite frequency, and the state is maintained on the hyperplane. This
corresponds to first order sliding mode control and the separating hyperplane is the sliding surface for this
system. Note that this is merely an observation for the dynamical system at hand and not something that
can be deduced from the proof of stabilizability, as pointed out above. However this observation holds
for both dynamical systems used as showcases here, the already introduced torque controlled pendulum
and the Acrobot which we will introduce now. The Acrobot is a planar underactuated 2R robot. Its base
joint is passive, only the joint between the first and second segment is actuated. Its dynamics, written in
the usual convention, are given as

ST =Mgq+Cqq+9, (3.55)

where My € 52, is the mass matrix, Cq 4 is the vector containing the nonlinear forces (Coriolis and
centrifugal forces), g, denotes the gravity forces and S = (0 I)T being the input selection matrix. The

indices 4 and 4 denote the dependencies to the configuration q = (00 91)T and its derivative q.
Now we can bring this system into the standard form & = f™(x) + ¢"!(x).u by defining

to
2 (Q) _| & w=r
q Wo
w1
wWo 0
@) = o 7@ = ()5

fMl;l. (quq + gq)

These equations, as indicated by ™, correspond to the fully nonlinear system. As the proposed
approach is restricted to control affine polynomial systems, we use the truncated (multivariate) Taylor

80 CHAPTER 3. STABILITY

expansion, usually up to degree 3, with respect to the equilibrium point (*, u*) for the system dynamics
and the value of g"!(x*) as (linear) approximation for the input dynamics. So the dynamical system used
within the stabilizability proof becomes

&= f(x)+ B.u (3.56a)
5 (m—w*)’@ oLl
flil(e) = A 0aP (f"[i) (") (3.56b)
1B8]=0
B = g"(z") (3.56¢)

using the notations for monomials introduced in section 3.2.4. Note that the approximation of the
original nonlinear system using linearisation and truncated Taylor expansion is not conservative in the
sense that it is not guaranteed that the RoS found for (3.56a) is strictly contained inside the RoS of
the nonlinear system. This can be ensured by considerations involving the (local) Lipschitz constant of
the error dynamics or by the approach proposed by Chesi [2009], directly reasoning on the worst-case
remainder of the truncated Taylor extension. In this work, as in Tedrake et al. [2010b], Singh et al. [2017]
or Majumdar et al. [2013b], we do not ensure this conservativeness but rely on the supposition that
the rigid-body dynamics of robotic systems can be well approximated by third order Taylor expansion,
as shown empirically in section 3.10. Moreover, as the proposed approach relies on efficiently solving
nonconvex polynomial programming over subsets of the state space, one can seek to refine the model by
first partitioning each subset of the state space into smaller set, then use the input optimal partitioning to
check convergence on each subset. This way one can linearise around the center of each subset reducing
the largest occuring error between the polynomial approximation and the true nonlinear system.

QP-CoONTROL FOR A CONTINUOUS CONTROL LAaw

As pointed out above, first order sliding control raises concerns from both theoretical and practical point
of view. To remedy these problems we propose a QP-based control law and prove, using Berge’s Maximum
Theorem (Berge [1970]), that it guarantees exponential convergence on 2\ {0} and results in continuous
control trajectories if (3.47) holds.

The proposed QP-control is

minimize h(z,u) = u*.Q.u + 2z .P.B.u (3.57a)
subject to u”™ < u < u’ (3.57b)
22T P.Bu < 2z .P.f(x) —va'.Px (3.57¢)

where 22T .P.B.u is the input dependent part of the derivative of the Lyapunov function V, (x), Q € S,
is user chosen, typically diagonal, and reflects the cost of the control effort. The first constraint repre-
sents the boundedness of the control input and the second constraint ensures the demanded exponential
convergence. Note that this optimization problem is guaranteed to have a solution for all x € Q\ {0} if
(3.47) holds. Moreover, the form of the objective function (with Q € S), together with the convexity
of the constraints, ensures uniqueness of solutions and makes the problem amenable to convex quadratic
programming.

In order to prove continuity of the resulting control trajectory, we employ Berge’s Maximum Theorem,
which, combined with the uniqueness of solutions, guarantees continuous control trajectories. Berge’s
Maximum Theorem provides conditions to ensure the continuity (properly speaking the upper hemiconti-
nuity) of the set of control inputs respecting the constraints and minimizing the objective function. Since
this set collapses to a singleton w* (the unique solution) in the case of convex quadratic programming, it
ensures continuity. The fulfilled conditions are that the objective function h(x,w) is jointly continuous in
@ and w and that the set of inputs respecting the constraints is compact and hemicontinuous (upper and

3.7. EXTENSION TO TIME-VARYING CASE AND IMPLEMENTATION 81

lower) with respect to . This condition is trivially fulfilled as (3.57b) is independent of & and (3.57c¢) is
a jointly smooth function in and u.
The influence of the regularization matrix @ on the control effort and dynamics is shown in Figure 3.6.

u

Figure 3.6 — In these figures the resulting dynamics, of the control affine polynomial approximation, for
the inverse pendulum using the proposed QP-control are shown. The convergence rate v = 0.5 is the
same for all figures. The regularization term @ is takes on the values 2, 1 and 0.5 from the left to the right
image. As one can see, a high regularization induces a smoother control law (illustrated by a smoother
transition in the colours). As the regularization term diminishes, to resulting control law approaches
more and more the optimal (discontinuous) control law u*, which maximizes instantaneous convergence.
For points outside the ellipsoid (€2) the QP-problem is not always feasible (when the point considered is
outside the true RoS) in which case u* is used for plotting.

Remark 3.4. We will see in section 3.9 that V() (thus P) can be chosen such that the control inputs
are not only continuous but also the slopes have reasonable absolute values.

Remark 3.5. The optimization objective is arbitrary (as long as Berge’s Maximum Theorem hypotheses
hold) and the decisive constraint assuring convergence is a simple linear constraint on the control input,
which can be easily added to existing optimization based controllers.

3.6.3 COMPARISON WITH SLIDING MODE CONTROL

In Spong [1995] a generic way to obtain stable sliding-mode control laws for a class of underactuated
second-order systems, including the Acrobot, is proposed. Even though this approach also yields a
hyperplane (not equivalent to ours) used to switch the sign of (a part of) the input, the resulting behaviour
and properties are very distinct. The proof of convergence of the sliding mode control is performed in
two steps: I) Prove that the system converges to the sliding surface (the hyperplane) II) Prove that all
points on the hyperplane converge to the origin. Using such an approach, it is not obvious how to deal
with bounded inputs or specify an invariant region. Since trajectories are allowed to stray very far from
the origin while converging towards the sliding surface, it increases the risk of leaving the true RoA that
takes into account the boundedness of the input, see Figure 3.7.

3.7 EXTENSION TO TIME-VARYING CASE AND IMPLEMENTATION

Up to here it was shown how we can partition the state space based on the optimal input with respect
to instantaneous convergence in the case of time-independent quadratic Lyapunov functions and control
affine polynomial systems. In this section we discuss how to adapt this approach to construct large

82 CHAPTER 3. STABILITY

Figure 3.7 — In these images, the resulting trajectories from applying the QP-based control law (3.57)
(blue lines) and the sliding mode control from Spong [1995] (red lines) are compared with the initial states
randomly distributed close to the boundary of the largest RoS found using Algorithm 2. One can see
that the trajectories for the sliding mode control law tend to converge faster towards the equilibrium but
with greater oscillations. Due to the proof of stability based on the sliding mode conditions, no quadratic
Lyapunov function (with respect to) can be found for the closed loop system. Moreover, since input
constraints are not taken into account, the trajectory marked with @ is almost leaving the RoA.

funnels, defined as time-varying region of exponential stbilizability, along reference trajectories. This
imposes time-dependent Lyapunov functions and necessitates an iterative algorithm to construct the
funnel. The reference trajectories are suppossed to be user-supplied as this method does not seek to
perform path planning, but to establish large regions of stabilizability. The reference trajectories are
supposed to have the form (" (¢),u"(t)) defined on ¢t € I = [0,7] with «"(¢) being differentiable and
vtel: Lar(t) = fri(x)) + g™ (z)).u" (1)

3.7.1 TIME-VARYING LYAPUNOV FUNCTIONS AND NONLINEAR DYNAMICS

To construct a time-varying region of stabilizability (funnel) denoted €, the ellipsoidal regions resulting
from the quadratic Lyapunov functions have to be centred on the reference trajectory, so we have

Q= {a:|V(t,a:) =@—z)) . P.(x—x)) < at} . (3.58)
Therefore the time-derivative of the stability condition becomes

V(t, @) < dy (3.59a)
Vit,e)= (& —&]) P (x—x))+ (& —a)) .P.(&—z}) + (& —x]) P (z —). (3.59b)

As our primary target of applications are articulated robotic systems, we also have to deal with the
fully nonlinear dynamics & = f™(z) + g™ (x).u(t).

We use the following approach: for checking exponential stabilizability at time ¢ for a fixed P; and
ay, the fully nonlinear condition according to (3.47) becomes

Vi max V7 (t,x) = 2.62T.P.(f"(x) + g™ (x).a] — &}) +0xT . P .oz < —~.02T.P.ox (3.60)
x€(Q:NH,;)\{0}

with & = x—] and @] denoting the optimal control input with respect to the nonlinear input dynamics
and H,; being the associated set in the partition of the state space (which is no longer a polytope).

This condition however is computationally not tractable due to the fully nonlinear dynamics and
the higher “complexity” of the corresponding subsets defining the partitioning of the state space. We
therefore replace them with their truncated Taylor expansion around the current reference point xy,

3.7. EXTENSION TO TIME-VARYING CASE AND IMPLEMENTATION 83

f(6xz) = f(x) and g(6x) ~ g™ (x) respectively. Note that x] is also the center of €2; and is therefore
the natural choice. Now the condition is written

Vi : max Vit) = 2.0xT . P.(f(0x) + g(6x).a] — &}) + 0z . Pp.ox < —v.02T . P.oz. (3.61)
xze(Q:NH:)\{0}
In this condition all terms are polynomial, and therefore efficiently solvable, but the condition on which
the optimal state space partitioning is based, that the system is affine with respect to the control inputs,
is violated, as we have polynomial input dynamics. Therefore the unbounded polytopes H; in the control
affine case now become semi-algebraic sets defined by polynomial inequalities of the form

H = {x|cg'5mT.P.g(5w)[;,j] < o} (3.62)

inducing the associated optimal control input @*. These sets are much more general than the polytopes,
resulting in constraints harder to express and which are not suitable for the proposed approach to prove
non-positiveness presented in section 3.8. To remedy this problem, we compute the optimal control input
u* and the partitioning H; based on the linearised input dynamics B = g"!(x%). The condition then
becomes

Vi : Vi (t, x) = 2.0 P.(f(6x) + g(0x).u}) + 6x . P,.6x + .62 . P.ox <0 (3.63)

max
z€(Q:NH;)\{0}
which is equivalent to proving non-positiveness of a polynomial. Here the “relative” character of the
current system state with respect to the current reference point is explicitly denoted using the ¢ prefix.
In order to keep notations short, the § will be dropped if it is clear from context that « is relative to xj.
In this case we also redefine f(x) = f(dx) — ;.

Obviously, the optimal control input «* is only optimal with respect to the affine input dynamics, not
for the polynomial input dynamics. This sub-optimality is in general small for the considered systems
due to two reasons. First, for polynomial expressions derived from second-order systems, the nonlinear
terms of f(x) are usually smaller than the linear terms within the RoS. This results in the absolute error
of the dynamics induced by using the sub-optimal control law to be small and moreover, the region where
u* is different from @" is close to the separating hyperplane P;. As we have seen that the contribution of
the control input u[j] to Ve, depends on the distance between the state and the hyperplane the induced
error in the controlled part of the derivative V,, is the product of two supposedly small values. Therefore
the difference between the largest RoS provable by (3.61) and (3.63) is probably negligible (within this
use-case).

3.7.2 FUNNEL CONSTRUCTION VIA RETRO-PROPAGATION

The initial problem that we are seeking to answer is to construct an as large as possible funnel around
a reference trajectory for which we can ensure that all states inside of it will remain inside of it or even
converge exponentially towards the reference trajectory. Due to this property a funnel can be used to
drive all states into a goal region, see the application of funnels in chapter 2.

We have to embed the proofs of convergence with respect to time-dependent Lyapunov functions and
polynomial systems into an algorithm that constructs these funnels. It is theoretically possible to treat
time just like another dimension and develop conditions that proof stability for all ¢ € [Ty, T1]. But
this approach suffers from multiple drawbacks. Approximating the evolution of the dynamical system
along a reference trajectory with respect to time is likely to cause larger errors as the change of state
along the reference trajectory from Ty to 77 might be larger than the difference within Q; for a fixed
t. Secondly, due to the increased dimension, the optimization problem is computationally more costly.
Finally, in order to use the proposed state space partitioning, the evolution of the optimal control law
u* would also have to be approximated, leading to additional errors and increased maximal degree of
the condition. Instead condition (3.63) is ensured on finitely many points distributed along the reference
trajectory similar to the approaches in Tedrake et al. [2010b] and Majumdar et al. [2013b].

84 CHAPTER 3. STABILITY

The iterative algorithm used in this work to construct the funnel for a given trajectory and dynamical
system is given in Algorithm 2. This algorithm relies on two important sub-procedures: the retro-

Algorithm 2 Funnel construction via retro-propagation

—

lput Q7 = {al |2 |, < or}
Parameter Ngieps € N, Njpger € NT, 4 € RT
Output (Pk,ak)
dT = =~

Nuteps
Pk — PT
Ozk — ar
T <+ LINSPACE(0, T, Nyteps)
for k£ from Ngieps to 1 by —1 do

PE=1 aF=1 « RETRO-PROP(PF*, o, dT)

a*~! « DICHOTOMICSEARCH(P*~1, P* o Tk — 1], T[k], Ninter)
: end for
Return (Pk,a’“)

0<k<Nsteps

_ =
M 22

OSkSNsteps

propagation of a region {2 along a reference trajectory for a given system and the maximization of the
volume by performing a dichotomic search.

The retro-propagation is a crucial step in the algorithm as it is the only step in which the shape of
the Lyapunov function (the P;) is modified. Therefore it is vital that the resulting shape is compatible
with the dynamical system. The method used for the examples shown in section 3.10 is based on the
linear quadratic regulator (LQR) and presented in detail in section 3.9.

In order to maximize the volume of Q, we seek to maximize o*~1 at each step of the iteration. As the
sufficient conditions for stabilizability presented above necessitate to fix €2, a dichotomic search is used
to quickly converge towards the largest admissible a*~!. In contrast to the approach in Majumdar et al.
[2013b], in which the stability condition is only check at each “base” point, we also check the stabilizability
condition on Njpter intermediate points, equidistantly distributed between T'[k — 1] and T'[k]. This means
the stabilizability condition checked within the procedure DICHOTOMICSEARCH becomes

Vt, € LINSPACE(Ty = T'[k — 1],Th = T'[k], Ninter + 2), Vi :

max 2.0x". Py, .(fl(0x) + ¢! (0x).ul* — &7) + 6xT. P, .0x + v.6x . P, .0 <0 (3.64)
&€ (R, NHL)\{0} !

with dx = = — xj, and fY(.) and g'(.) being the truncated Taylor expansion of the nonlinear dynamical
system at xj, as shown in Figure 3.8. The partitioning of the state space into the polytopes ’Hé and the
corresponding optimal control input uﬁ* are derived based on P;, and linear input dynamics B! = g”l(w{l).

Special care has to be taken to properly interpolate between the start and end region as linear
interpolation can result in undesired behaviour, as shown in section 3.9.4.

3.8. CERTIFICATES FOR NON-POSITIVENESS 85

t=Tp

N/ Q; for ag = 1.0
Q, for ag = 0.5

AN — ~—/ t="1
|

S =
~I R
WA
N\,

1A ,
AT R

Figure 3.8 — Qualitative depiction of the dichotomic search and the checked criterion for Njpe = 1. The
reference trajectory is depicted by the black line. With Nj,., being one, the stabilizability criterion is
checked at Tp, T1 and To+T1/2, for which the differential closed loop dynamics using the optimal control
law is depicted by the streamlines. The final zone Q7 is fixed, but modifying o, scales the resulting
funnel around the reference trajectory, as shown by the green and red ellipsoids.

N

3.8 CERTIFICATES FOR NON-POSITIVENESS

3.8.1 UNDERESTIMATORS BASED ON REFORMULATION-LINEARISATION-TECHNIQUES

Up to now it was detailed how to partition the state space into input optimal subsets and derive an
associated polynomial expression (3.47), whose non-positiveness on the respective subset is a partial
proof of exponential stabilizability. In this section we show how to efficiently treat this problem using a
modified version of the well-known Reformulation and Linearisation Technique (RLT) first introduced in
Sherali and Adams [1990] and Sherali and Tuncbilek [1992] for zero-one programming problems, extended
to continuous variables in Sherali and Tuncbilek [1995] and further enhanced with semidefinite constraints
in Lovasz and Schrijver [1991] and Sherali and Fraticelli [2002].

In order to informally introduce the basic idea behind RLT consider the general quadratic objective
subjected to a set of linear constraints Cy

minimize 7.Q.x + L.x (3.65a)
x
subject to x = C; (3.65b)

with QT = @, @ € R™ ™ and the decision variable & € R™. Recall that by = |= C; we denote that x
has to satisfy some set of linear constraints and is therefore equivalent to A.x < b. This notation is
very handy when dealing with general polynomial constraints of the form Vi: g;(x) < 0 with the highest
occurring degree being k, as they can be written @ |= C<;. Note that the symmetry of @ is for mere
convenience and does not restrain the generality of the problem, as the value of the pure quadratic form
zT.Q.x only depends on the symmetric part of the matrix Q.

This problem is non-convex and NP-hard if @ ¢ S, (see Pardalos and Vavasis [1991]) and therefore
cannot be efficiently solved. The Relaxation and Linearisation Technique copes with this problem by
replacing all nonlinears terms in the optimization problem with new variables. This gives rise to a set of
additional new variables, here denoted X and the objective function becomes linear in the set ® UX. This
linearisation comes at the cost of the new linear objective being unbounded, due to the lack of constraints

86 CHAPTER 3. STABILITY

on X. For quadratic programming this set of new variables has to replace all terms quadratic in @ and
can be conveniently written as a symmetric matrix variable X, where the new variable X;; linearises the
term x;x;. To ease notations we introduce the linearisation operator —r,, which replaces all nonlinear
terms in the expression on the left hand side with their corresponding newly introduced variable, so

;% —Lin Xij (3.66)
which can also be applied to vector or matrix expressions by applying it to each element, for instance
2T S, X
xl.x = tr (X).
In the running example, one therefore gets
xl. Q.+ L.x —pp tr (X.Q)+ L.x
and the problem becomes
mirlmigl(ize tr (X.Q)+ L. (3.67a)
subject to x = C; (3.67b)

In order to ensure that the gap between the solution of the original and the linearised problem is
small and remains conservative, in the sense that the linearised problem is an underestimator for the
original problem, one has to construct valid constraints on X. This can be done by taking products of
constraints on @. For instance, reconsider the set of linear constraints C; = Ugc(o,x -1 CF. By multiplying
two constraints C[", C7 one obtains a valid constraint with terms up to order 2 in @, then again one
can replace the nonlinear (quadratic in this case) terms by the corresponding variables in X and thereby

~ T,

a linear constraint in U X is obtained. For short, C7" @ C7" = C3"" +>p;, Cx , where ® denotes the
product of constraints. For instance consider the following example

Cl" =ax; +bx; >0 (3.68a)
Cl=x;,—c>0 (3.68b)
then

C"® O = Cy" = ax? + bx;z; — acx; — bex; > 0 (3.68c¢)
and finally

CZ5" = Lin (NJZ; = aX;; +bX;; —acx; — bex; >0 (3.68d)

with 5’§X being linear in & U X, as denoted by <x.
By an abuse of notation, we will denote by ® also the product of constraint sets, enumerating all
possible combinations, so C1 ® C1 = Uje(o,x—1) Yje[i,k—1] C1 ® C{. We denote by C; a constraint set were

all appearing monomials are of degree i or less and C <x denotes the corresponding linearised version, a
set of linear constraints with variables in @ U X. Forming such product constraints ensures that the new
variables are bounded while guaranteeing that the linearised objective function remains an underestimator
of the original objective function, since the set of admissible values in & U X is strictly larger than the set
of admissible values of the original problem?. This corresponds to the standard RLT and was originally
proposed in Sherali and Adams [1990].

In Lovéasz and Schrijver [1991] an improvement to the standard approach is given by adding semidefi-
nite constraints, reducing significantly the gap between the solution of the relaxed and original problem.

2For more details see Sherali and Tuncbilek [1995].

3.8. CERTIFICATES FOR NON-POSITIVENESS 87

To introduce these constraints reconsider the nonconvex part of the objective function xT.Q.x and its
linearisation tr(X.Q). It is clear that the minimum of the original objective is obtained if X = z.x*
holds, as the problem

minirg}ize tr(X.Q)+ L.z (3.69a)

x,

subject to « = Cy (3.69b)
X =z’ (3.69¢)

is equivalent to the the original problem (3.65). The only difference is, that the non-convexity of the
objective function was translated into the non-convex constraint (3.69¢). So as we cannot impose this
constraint in a convex program, suitable relaxations have to be found. And indeed by transforming the
problem into an SDP, we can impose the constraint X = .z as an linear matrix inequality (LMI) via
the Schur-complement by adding the constraint

[1 zT

x X]>O

which is amenable to semidefinite programming. The optimisation resulting from applying the enhanced
RLT on (3.65) is given as

minin}}ize tr(X.Q) + L.x

subject to @ = Cy

:IJ,X >:5§X
1 xT
e

where 83)(denotes the linearisation of the set of constraints C; ® C1 = C2 —Lin 53){-

This relaxation also conserves the property that the linearised objective function is an underestima-
tor for the original problem as the set of admissible values is strictly enlarged, as {X | X = a:.acT} C
{X|X = xa™}.

This approach was successfully applied to nonconvex quadratic optimisation problems (Kezurer et al.
[2015]) or within branch and bound algorithms for general nonlinear programming (Sherali and Tuncbilek
[1992]) and is further demonstrated in the following example.

Consider the following unidimensional problem

minimize — 2%+ 2 (3.70a)
subject to z+12>0 (3.70b)
—z+1>0 (3.70¢)

which is nonconvex. The set of linear constraints C; is {x +1>0,—2z + 1 > 0}. By introducing the

new variable X linearising 22, we can compute the set of linearised product constraints 53 x to be
{X+224+1>0,—-X —2x+12>0, X —22+1 > 0}. Moreover, as we have —1 < 2 < 1, we also obtain

the “natural” constraints 0 < X and X < 1, which can be added to ng. So the linearised SDP reads

minixmize —X+z (3.71a)
subject to = | C (3.71b)
xUX ;:59((3.71¢)

X -za” (3.71d)

88 CHAPTER 3. STABILITY

1.6} ' ! ' 1 1.6 F ' T T
1.4 1.4
optimal value: X =1, z = —1

1.2} X = a? 1.2
1 1
X X
0.8 F . 0.8
admissible variable set
0.6 | : 0.6 |
04F 1 04+t -X +

0.2 T 1 0.2}

0 ot

o2b \/ | \/ -~ . -0.2 /
1 1

1 05 0 05 1

T T

Figure 3.9 — On the left the admissible set is depicted. The original constraints on x, C; are shown in red.
The product constraints are shown in green, whereas black corresponds to the natural constraint. Finally,
in blue, the LMI constraint X > 22. Note that in this case the product constraints are redundant, as the
LMI-constraint and the natural constraint would be sufficient. This however is not true in general. On
the right the gradient of the objective functions and some level-sets are depicted as well as the minimizing
variables.

The constraint set and the sublevel-set of the objective function are shown in Figure 3.9. As one can see,
the minimizer of the linearised problem is X = 1 and # = —1. As in this case the inequality X > 2 holds
strictly, this also corresponds to true optimum and z is a minimizer for the non-convex problem. In this
case there is no gap between the convex underestimator and the original problem. Note that another,
yet equivalent way, to test whether there is no gap is to check the rank of the LMI. If

rank (B “;:D — (3.72)

holds, then there is no gap.

3.8.2 REFORMULATION-LINEARISATION-TECHNIQUES FOR POLYNOMIAL PRO-
GRAMMING

Below, we apply our method to polynomial dynamics of degree 3, and therefore the polynomial expressions

in (3.47) are of degree 4. So, the above presented enhanced RLT has to be modified in order to treat such

polynomials. As seen above, a new set of variables, denoted X, is created to linearise quadratic terms in

x which we write as .27 1 X. We denote 2z the column vector composed of all quadratic terms in
@ and vec(X) the column vector where the upper triangle of X is stored, for & € R"

vee(X) = (X[0,:] X[1,1] -+ X[n—-2n-2: Xpn—1,n—1))" (3.73)

So we have z 1, vec(X) and one can construct the following matrix

(2)-(2) i (o)) o [55 7]

where the symmetric matrix X linearises all quadratic terms, x.vec(X)T —1in Y linearises all cubic terms
and vec(X).vec(X)T —1Lin Z linearises all quadratic terms in X and therefore corresponds to quartic terms

3.8. CERTIFICATES FOR NON-POSITIVENESS 89

in . Again, imposing the constraint

5= (i) (o)

is not impossible due to its non-convexity and is therefore relaxed to

= (Vecng)> ' (Veca(JX)> :

Finally, by applying the Schur-complement a valid LMI-constraint is generated for the linearisation of all
monomials of degree up to 4

1 T vee(X)T
T X Y
vec(X) YT Z

S
_YT Z-

=0. (3.74)

Note that not all elements in Y or Z are unique, as for instance the linearisation of x; X;; is equivalent
to the linearisation of x;X;; and that Z is symmetric.
To further illustrate the approach, consider the case € R?. Then we have

2
T T3 ToT Xoo Xo1
r.xrx = —Lin X = 3.75a
[sclsco x? } L {Xm le ()
T
VGC(X) = (XOO XOl Xll) (375b)
X xoX| xoX Y. Yo Y.
vee(X) T = |®oXoo ToXor ToXii| oy = Yoo Yor Yoo 375

@.vee(X) Lleoo 1 Xon *Xu| ¢ Yor Yoz Yis (8.75¢)

- XooXoo XooXor XooXi1 Zoo Zor Zo2
vec(X).vec(X) = X01X00 X01X01 X01X11 —Lin Z01 Z02 Z12 (375d)

X11Xoo X11Xo1 X1 X Zoo Ziz2 Zao

In order to ensure that the linearised objective gives tight bounds, valid constraints on X, Y and Z
have to be constructed based on the original constraint sets Ci, Ca, C3 and C4. Valid constraints can in
this case be obtained if the degree of the resulting constraint is less or equal to 4. Some examples of
valid constraint sets are C; ® C1 ® C1 = C<3 —Lin 5§Y7 C1 ®C1 ®C<2 =C<a PLin (N,’SZ, where (N,’Sy/(NZSZ
is a set of linear constraints in x UX UY /2 U X UY U Z. Using this approach, which is inspired by the
ideas developed in Sherali et al. [2012], we can underestimate the original objective function of degree 4

minimize (z¥ 27).Q. (:B) + Lz (3.76a)
T z
subject to & |= Cy, Ca, C3, Cy (3.76b)
with
. X Y

minimize tr ([YT Z} Q) +Lax (3.77a)
subject to & = Cy (3.77b)
z, X,Y, Z = Cex, Cey, C<y (3.77¢)

1 T vec(X)"
X Y |=o0 (3.77d)

vec(X) YT Z

where C <X, c <y and c <z are the sets of all obtainable constraints constructed via multiplication of
C<1, C<g and C<3 plus the linearisation of Cy, C3, C4, the naturally arising constraints on the new variables
and their respective products.

90 CHAPTER 3. STABILITY

Remark 3.6. The number of variables is this optimisation problem is equal to the number of monomials
of degree up to 4 in &. The approach presented in Majumdar et al. [2013b], or in general all approaches
relying on introducing a polynomial control law, need a similar number of variables to represent just one
component of the polynomial control law (depending on the degree of the control law) plus the variables
necessary to represent the multiplier functions which have to be of superior degree in general. Therefore
the number of decision variables and the size of the LMI constraints are significantly larger. Moreover
it is not clearly stated in [Majumdar et al., 2013b] whether polynomial or linear input dynamics are
used within stability criterion. Using polynomial input dynamics is expensive for SoS-based techniques
as the degree of the input dynamics and the controller add up, significantly increasing the complexity of
the optimization problem. For our case on the other hand, polynomial input dynamics only introduce a
usually small sub-optimality of the control law. Therefore this only increases conservativeness, but not
the computational complexity.

Remark 3.7. The number of linear constraints in the sets C<q,<9/<3/<4 and (even more so) 5§X/§Y/§Z
grows rapidly with the size of . However linear constraints are computationally cheap and additionally
there exist methods to limit number of constraints. These methods are based on the redundancy often
occurring, when taking all products possible between the constraint sets.

Remark 3.8. The above presented approach to construct enhanced RLT representation of nonconvex
polynomial problems is by no means confined to polynomials of degree 4. By reapplying the method
above k times one can linearise optimisation problems containing monomials of degree up to 2*. Again,
all the new variables have to be bounded forming the natural and product constraints.

Remark 3.9. The decision variables in the resulting semidefinite program are associated with remarkably
sparse matrices in the LMI constraints. For instance, the sdp matrices associated to the decision variables
in the LMI constraint (3.77d) for € R? are of size 5 x 5 but have at most 4 non-zero entries. This
structure can probably be exploited to solve the problem even faster with a tailored solver.

3.8.3 APPLICATION

In this section it is shown how to apply the above introduced method for proving stabilizability and some
implementation details are discussed.

RLT rOorR PROVING STABILIZABILTY

Above is shown how to construct a linear underestimator in a higher dimensional space (x UX UY U Z)
for a (nonconvex) polynomial function of order 4 in @ and how to construct constraint sets for the new
variables (X UY U Z) such that the underestimation usually results in reasonably tight bounds. Now we
will shortly discuss how to apply this approach to prove stabilizability of a controlled system.

According to (3.47) we can prove the stabilizability of a polynomial control affine system on a sublevel-
set Q) of a quadratic Lyapunov function candidate V(x) = xT.P.z by assuring the negativity of each of
the 2™ (nonconvex) terms 2zT.P.(f(x) + B.u}) on QN H; \ {0}. For each i € [0,2™ — 1], this can be
written as

T
minimize C") Q:. (Z’) + L. (i’) (3.78a)

subject to C; = {Uje[o,m,l]cé-:cT.nj <0} (3.78b)
Co={z". Pz <a} (3.78¢)

where Q;[i, j] and L;[j] can be uniquely identified with the terms of 2&™.P.(f(x)+ B.u})+x*.(yP+P).x
with f(x) ~ f™(x) being the truncated Taylor expansion of the differential nonlinear system dynamics.
C, represents the quadratic constraint confining @ to the sublevel-set 2 and C; is the set of linear con-
straints restricting @ to the i-th polytope of the optimal input partitioning. This shows how to bring the

3.8. CERTIFICATES FOR NON-POSITIVENESS 91

resulting optimal convergence for each of the 2™ input optimal subsets into the form of (3.76). If the
minimal objective value of the optimization problem (3.78) is larger than 0 for each subset H; N, then
Q) is exponentially stabilisable.

In order to reduce the difference between the system used within the proof and the full nonlin-
ear dynamical system, we proposed to derive the optimal input and the partitioning with respect to
the linear input dynamics, but use the truncated Taylor expansion of the input dynamics with the
stabilizability condition (3.63). This is straight forward by identifying @; and L; with the terms of
22T P.(f(x) + g(x).ul) + T.(vP + P).x with g(x) ~ g™ (x) being the truncated Taylor expansion of
the nonlinear input system dynamics.

IMPLEMENTATION WITH BOUNDING B0OX AND HYPERSPHERE

Even though the proposed enhanced RLT approach can be directly applied to solve the optimization
problem (3.78), this formulation does not provide very tight bounds. Indeed, the conditioning of the
problem, meaning the ratio between largest absolute value of each decision variable, can have a significant
influence on the size of the gap. It turns out that these methods work best when the problem is bounded
such that the conditioning approaches 1, which is naturally the case for the original use cases of 0-1-
programming.

Therefore instead of solving directly (3.78), a linear coordinate transformation taking the ellipsoidal
region {2 to the unit hypersphere defined as

C = chol (P) (3.790)

[e%

B

= C.ax. (3.79b)

is applied. Then, by substituting & with C~1.& in the polynomial expressions f(x) and g(z), the
optimization problem becomes

AT . .

. z ~ (& - (&
minimize (2) .Q. (2> + L;. (2) (3.80a)
subject to C; = {uje[o,m,l]cj.;&?ﬁj < o} (3.80b)

Cy = {ﬁ:T.Id.:i < 1}. (3.80¢)

Now we can apply the enhanced RLT approach obtaining the linearised problem (3.77) in &-variables
and take a closer look at the construction of admissible constraints. The technique is demonstrated for
a two-dimensional problem with one input, but it is valid for any number of dimensions.

The set of linear constraints C; of the original problem consists only of the constraints defining the
polytope H;. But as we know that the problem is bounded to the unit hypersphere independently
of considered dynamics or polytope, additional constraints can be constructed, some of them possibly
redundant, see Figure 3.10.

For the equivalent problem on the hypersphere, the natural linear constraints of the form

Vi: & > —1 (3.81a)
Vii —@; > -1 (3.81b)

are obviously admissible and can be added to C;. In fact, valid linear constraints on Z can be deduced
from every hyperplane tangent to the unit hypersphere. The problem is, that there are infinitely many
of them and there is no generic way to select a suitable finite subset of them, given the concrete problem.

In the next step, we can search for natural constraints for the new variables in X, Y and Z. As,
due to .2 < 1, all monomials in &, denoted m?, have to be bounded too and so is their respective

92 CHAPTER 3. STABILITY

Figure 3.10 — On both images, the region 2 is indicated by the black ellipsoid or circle. The constraint
defining the polytope is shown in green. The natural constraints defined by the minimal and maximal
values for @; or &; within Q are shown in red. The admissible constraints for arbitrary weighted sum
of &y, 1, so Byxo + B;21 < c for some By, B; € R” and ¢ > 0 can be computed, but as there exist
infinitely many of them and there is no systematic way to choose from them, they are not used. The
generally larger gap for the original problem, the corresponding bounding constraints are shown on the
left, is possibly linked to the fact that € covers a smaller portion of the natural bounding box.

linearisation. By denoting the minimal and maximal value of the monomial m? [k] attainable in the unit
hypersphere mX~[k]/mk+[k], we can add the constraints

mi[k] < mETE] —pm v < mbTE] (3.82a)
mi[k] > mb k] —riw v > mbT (k] (3.82b)
(3.82¢)

for some variable v in X,Y or Z to the respective constraint set 5§ X5 (Nfgy or 5§ z. Now all natural
constraints on the linearised problem have been constructed, but before proceeding to form all admis-
sible product constraints between C1, C <x and C <v, the relaxation of the unit hypersphere condition

272 < 1iopy tr (X) <1 has to be added to 59{.

3.8.4 CONNECTIONS TO THE THEORY OF MOMENTS

The theory of moments is so to speak the dual problem of the non-negativity of polynomials on a compact,
semi-algebraic set K. In this section the theory of moments is briefly revisited with a focus on polynomial
optimization. For a detailed introduction into this topic see, among others, Henrion and Garulli [2005],
Lasserre [2001] and Lasserre [2009].

Consider the problem of finding the minimum of a real-valued polynomial p(x): R™ — R on a compact,
semialgebraic set K, so a set defined by polynomial constraints K = {x|Vi: g;(x) > 0}:

p* = ;nellr%p(as) (3.83)

One can show that this is equivalent to the dual problem

v = min [@) (3.84)

HEP(K)

3.9. COMPUTING AND PROPAGATING SUITABLE LYAPUNOV FUNCTIONS 93

with P(K) being the space of finite Borel measures defined on K. This problem as such is not tractable
as the space of Borel measures is infinite, however if the polynomial is of degree m in n variables, then the
criterion becomes linear a™.y on the finite collection of moments {y,,}, up to order m of the probability
measure p (Lasserre [2001]) defined as

Yo, = /wo‘du. (3.85)

So the optimization problem is transformed into a problem about the variables y,, and how to constrain
the support of p to K via suitable constraints on the y,, in order to reduce the gap between the original
problem and its relaxation using the finite moment series.

In Lasserre [2001] it is shown that this can be done using LMIs: a sufficient but not necessary
condition that the {y,} are the moments of a measure is that the so-called moment matrix is psd. This
matrix, even though derived very differently, has the same structure as the matrix used as LMI constraint
(3.74) in the enhanced RLT. The moment matrix constructed from the sequence of moments y for the
multivariate polynomial of degree 2k, will be denoted My (y). So every new variable in X UY U Z can
be uniquely identified with a corresponding moment y,. Moreover, as we know which variable linearises
which monomial, so for instance the monomial xgx; = £ with a = [11} is linearised by the variable
Xo1 in enhanced RLT and identified with the moment y,; and we have

1 T vee(X)"
Ms(y) = x X Y . (3.86)
vec(X) YT Z

If the moment matrix is psd, the moments correspond to an actual measure, but it is not ensured
that this measure is finite. This corresponds to the situation in RLT were the new variables have been
introduced, but no admissible constraints to bound them have been added to the optimization problem.
In Lasserre [2001] it is shown that this too can be done via LMI’s. Consider the constraint g(x) > 0 with
degree 2. This can be enforced by constructing a “constraint moment matrix” My_;(gy) (see Lasserre
[2001] for details) and impose My_;(gy) = 0 as an additional LMI constraint to the optimization problem.

The main result of Lasserre [2001] is, that by increasing the maximal degree 2k represented in the
moment and constraint moment matrices My (y) and My_;(gy), the gap between the relaxation and the
original problem vanishes. This is always the case when allowing k — oo, but is often the case for finite
values of k.

This provides a different approach to solving the resulting non-convex polynomial optimization arising
in the stabilizability proofs. The larger amount of linear variables is replaced by a smaller number of
LMI constraints, however it is not clear if the method proposed by Lasserre achieves tighter bounds for
a reasonable order of the relaxation. To further investigate and potentially improve the relaxation of
Lasserre by adding the most significant linear constraints obtained by RLT is a possible avenue for future
work.

3.9 COMPUTING AND PROPAGATING SUITABLE LYAPUNOV FUNC-
TIONS

In section 3.5 it was shown how state-space partitioning and convexification can be used to obtain
certificates of stabilizability for polynomial dynamics and a quadratic Lyapunov function candidate V (x)
on a given sublevel-set Q = {z|V(x) = ||z| p, < a}. However it was neither discussed how to obtain a
suitable Lyapunov candidate function nor how to propagate it along a given reference trajectory for a
given dynamical system with input constraints. In contrast to the works cited in section 3.4 we do not seek
to modify the shape of the Lyapunov function candidate due to the reasons mentioned beforehand, but
rely on the similarity between the behaviour of the original system and the behaviour of its linearisation in

94 CHAPTER 3. STABILITY

the neighbourhood of a stabilizable reference point. The approach presented here, like the one presented
in Tedrake et al. [2010b], is based on LQR techniques and time-dependent linearization, differs however
in certain important points, like the scaling of the feedback gain matrix.

3.9.1 TIME-DEPENDENT LINEARISATION

Reconsider the nonlinear system dynamics @ = f(x) + g(«).u and the reference trajectory (" (), u"(t))
defined for t € [Ty, T1]. By definition the reference trajectory satisfies®

d T T T T
amt = f(z;) + g(x}) uy

u*—|—e§u,’;§u+—e

Vit € [To,Tﬂ :

for some predefined control margin € > 0 ensuring that each point on the reference trajectory is an
equilibrium point for the system in the deviation variables d, and &,

bp = (2] 4 0g) + g(] + 05).(u] + 0y) . (3.87)

Moreover, as € > 0 provides a margin between the true input constraints and the reference control input
u”, there exists a stabilizable neighbourhood for each point on the reference trajectory.
We can then define the time-dependent (Jacobian) linearisation as

with
9 .0 .
Ay = 9 (xf)
By = g(x}) .

Next we have to consider the control input. Consider the time-dependent saturated linear feedback
control law K (¢,) : [To, T1] x R™ — R™ defined as

i ut[i], if wili] — Kyi,:].x > uw*|i]
K(t,z)[i]| = uj[i] — Ki[i,:].x else if uy[i] — K(t)[i,:].x > u™[{] (3.89)
u~[i], else

and the resulting closed-loop system

= f(x)+g(x).K(t, x) (3.90)
and its time-dependent linearisation at the reference point
bp = Ay.0p — By K65 = (Ay — Br.Ky).0p = Ay.bg. (3.91)

Congecture 3.1. The time-dependent linearisation defined eq. 3.90 is a reasonably good approximation of
the nonlinear system in a “large” region around the reference point.

The nonlinear systems of interest here are polynomial functions, often approximating the second
order rigid body dynamics of a robot using Taylor expansion. Therefore the system dynamics f and
input dynamics g are smooth functions which asymptotically behave like the linearisation around the
equilibrium. The only discontinuity arises from the input constraints (the linearisation of K). Therefore
as long €2 does not intersect with the zone that saturates the control law K, the linearisation approximates
the real dynamics reasonably well.

3Note that in order to ease notation, explicit time-dependency is indicated by the index ¢, so a(t) = a¢. Also, in the
case that the time-dependency is clear from context, as for instance in the case of the current state of the system «, it is
dropped.

3.9. COMPUTING AND PROPAGATING SUITABLE LYAPUNOV FUNCTIONS 95

3.9.2 COMPUTING LYAPUNOV FUNCTION CANDIDATES BASED ON LQR-TECHNIQUES

In the above we have established a time-dependent linearisation of the nonlinear dynamics along a ref-
erence trajectory. Now we can modify classical optimal control approaches to compute suitable Lya-
punov function candidates. A broadly utilized control law synthesis method for linear systems yielding
a quadratic Lyapunov function as byproduct is called linear quadratic regulator (LQR) in its finite or
infinite horizon version. Before adapting and applying this method to our case, let us briefly revisit the
theory behind it, see also Lunze [2013].

LQR falls into the category of unconstrained optimal control. Given a (controllable) linear time-
invariant system

t=Ax+ Bu (3.92)

with the usual system A € R™*™ and input dynamics B € R™*" matrices, LQR seeks to compute a
time-dependent linear feedback matrix K; that minimizes the cost functional?

T
J(u, o) = %w(T)T.S.w(T) —|—/ x'.Qx+u".Rudt. (3.93)
0

Where S € S, is the terminal cost, so a penalty for the distance between the origin and the attained
position for ¢t = T', (T). The matrix) € S" determines the state cost and finally R € S, defines
the cost of the control input. All of these matrices are frequently chosen to be diagonal and roughly
speaking large eigenvalues of @ favour fast convergence whereas large eigenvalues of R favour smaller
control inputs. However, no optimal way for choosing) and R exists, but they need to be adapted for
the specific dynamical system and application at hand.

Without going into the details, the minimization problem can be solved, for instance, using a dynamic
programming approach, which yields a time-dependent cost function, denoted V(t) = zT.P(t).z with
P(t) € S ;. The evolution of P with respect to time is called the differential Riccati equation:

P(t)=—-P.A— AT P, + P.B.R"*BT.P, - Q (3.94)
with the boundary condition P(T) = S. The associated optimal linear feedback matrix is
K =R 'B".P,. (3.95)

Theorem 3.3. The above defined cost function V(t) = xT.P,.x is a Lyapunov function for the linear
dynamics defined in equation (3.92) for u = —K[.x with a guaranteed convergence exponent .

Proof. Reconsider the (Lie) derivative of the Lyapunov function with respect to the closed loop system
dynamics

V(t) =2".P,.(A-B.K)).x +2". (AT — K}'B").P,.x + z'.P.x

When using the optimal feedback controller K; and by substituting the corresponding terms in the
Riccati differential equation (3.94) we get

V(t)=2".(-Q — P.B.R"V.BT.P).x < A\pax(-Q — P.B.R"L.BY P)aTx = —y.zT.x <0

where Apax(A) denotes the largest eigenvalue of the square matrix A. The inequalities hold since @ € S7;,
P, € 8%, and R € S} ,. Moreover the cone of psd-matries is self-dual, therefore R! ¢ S, and
YTXY =0if X = 0 for any matrix Y of compatible size. Therefore —Q — P,.B.R"1.BT.P, <0 and
the guaranteed minimal convergence exponent « is equal to the negation of the largest eigenvalue which

has to be non-positive.
O

4There exist also versions of LQR adding the mixed cost T .N.u, which could be equally applied in this scheme.

96 CHAPTER 3. STABILITY

3.9.3 ADAPTION TO THE CONSTRAINED TIME-DEPENDING CASE

In section 3.9.1 it was shown how to compute a suitable (time-dependent) Lyapunov function candidate
for a nonlinear system using its linearisation and standard LQR-techniques. Now this computation has
to be adapted in order to take into account the time-dependency of the linearisation and the input
constraints. In the literature exist methods to incorporate (linear) input and state constraints to the
problem of minimizing the quadratic cost defined in (3.93) with respect to a LTI system. However, the
resulting minimization problem is frequently reformulated into a MPC-formulation, like Scokaert and
Rawlings [1996] or Johansen et al. [2000]. These approaches however only consider the input (and state)
constraints, not the time-dependency of the linearisation. This problem is tackled by another line of work
mostly known under the name State-Dependent Ricatti equation, see Cimen [2008] or Erdem [2001].
These approaches however are either computationally intensive (MPC-based formulations), or not easily
adaptable to our use case and the correspond implementations are not publicly available.

As we do not care about the optimality of the resulting control law, but only seek to find suitable
Lyapunov function candidates for the nonlinear system by using its linearisation, the method is based on
the following reasoning:

e The system matrices A and B can be time-dependent within the differential Riccati equation

e Control input saturation can be avoided by rescaling the optimal feedback controller K.

So given a time-dependent linearisation A;, By, a reference trajectory (z},u;) defined on ¢ € [0, T7,
the cost matrices @ and R, the final zone Q(T) = {:B|V(T7£B) = |l — :BT(T)H?D(T) < 1} can be retro-
propagated using

Ti .
P(T}) = P(T) + / P(t) dt (3.96)
T
with
. 1 1.
P(t) = —P.A, — AP+ §Pt.B.Kt* + §K;T.BT.Pt -Q (3.97)

where K;‘ is the scaled optimal (in the LQR-sense) feedback controller.
So with K} = R~1.B,T.P, the scaling factor g~ is computed as

Au=min (v’ —uj, uj —u")

Cy = chol(R,)
K.=K;.C;t

o min < min Aull] 1)
K* = 1 =, 1.
A A (2]

and finally define K7 = ax+K; which ensures that

VeeQ: u <ul — Kf.(x—x)) <u’ (3.98)
with Q = {a:| |z — @], < 1}.

Using (3.96) we can compute a suitable time-dependent Lyapunov function for the time-dependent
linear system which provides a good Lyapunov function candidate for the nonlinear system. Note that the
initial formulation and parametrization are adopted from LQR-theory, but since we are only interested in
computing suitable Lyapunov function candidates for the nonlinear system, one can look at the equations
(3.96) and (3.97) as regularized dynamics defining an approximative evolution of the backwards reachable
set, taking into account the linearised system dynamics.

3.9. COMPUTING AND PROPAGATING SUITABLE LYAPUNOV FUNCTIONS 97

3.9.4 EXAMPLES AND INTERPOLATION

In order to assess the improvements brought about by the changes to LQR listed above and to showcase the
results of this approach, reconsider the dynamics of the torque controlled pendulum with & = (9 w)T.
In Figure 3.11 the resulting RoS using Algorithm 2 for two different initial regions are compared. The
reference trajectory is given as

x'(t) = (%ﬂ' O)
z"(t) =0
u”(t) such that f(x") + g(x).u"(t) = 0.

The first initial region is computed using the standard LQR approach (RoS LQR), the second region
(RoS VAR) is obtained by retro-propagating the final zone (a small sphere centred at " (0))

Q(Ty) = {w|V(Tf»"’3) =z - wT(Tf)H;(Tf)ZIOOId = 1}

according to equations (3.96) and (3.97) until a steady-state is reached (P, ~ 0) resulting in an initial
zone

2(0) = {al e~ @ (0)[}o < 1}

Due to the constant reference trajectory, the matrices A; and B; of the linearisation are constant (time
independent) and the only difference to the usual differential Riccati equation is the scaling of the feedback
gain matrix.

The second example is closer to the way the proposed approach is used in Algorithm 2 by retro-
propagating a zone along a trajectory during a specified period, again for the torque controlled pendulum.
In Figure 3.12, the results of using the time-dependent linearisation and the scaled feedback gain matrix
are compared to the results obtained using the differential Riccati equation in the setting

t e [0., T = 0.075]

In the case of the standard differential Riccati equation, the linearisation of the system around the final
point 7 is used to compute the matrices A and B. As one can see, the modifications lead to a better
estimate of the evolution of the stabilizable region.

In the first example, the final zone is retro-progated according to the ode defined in (3.96) and
(3.97) until a steady-state is reached. In contrast, Algorithm 2 which constructs the funnel for the
time-dependent polynomial system, alternates between two steps. First the above introduced method
to retro-propagate a given zone Q(7;) from T; to T;_; taking into account the linearised system is
used. Then in the second step the volume of the funnel for the given shape is maximized while guar-
anteeing stabilizability. Therefore the initial zone for this step has the parametrized form Q(T;_1) =

2
{sc| Hx -z, - < Ozi_l} and Algorithm 2 seeks to maximize a;_1 using a line search approach.
T;

As the evolutionlof P, is nonlinear, storing and modifying P; directly is not possible. Therefore
only the final zone and the shape of the initial zone are stored and in order to check convergence on
intermediate points with T;_; < t; < T; and to compute the time-derivative of P, and o;_; one has to
rely on appropriate interpolation methods.

98 CHAPTER 3. STABILITY

8 8
° — ggg I\Jfﬁg 6 o mT
4 4 3
2 2
3 0 0
-2 -2
-4 -4
-6 -6

RoS VAR

1.0 15 2.0 2.5 3.0 3.5 20 45

0

Figure 3.11 — In the top left figure the resulting RoS for the shapes resulting from standard LQR, Prgor
(RoS LQR) and the proposed approached Pyar (RoS VAR) are depicted for the equilibrium point
x* = (160, 0.)T7u* = 1.68. In both cases the costs are defined as @ = Id and R = [1] Note that
the eigenvectors of both matrices almost coincide, but the eigenvalues differ due to the scaling of the
feedback gain matrix, resulting in a twice as large volume of RoS VAR compared to RoS LQR. The top
right images shows the evolution of the zone Q; = {||z —] || p, < 1.} with initial condition Pr = 100.1d
and T chosen such that Py ~ 0 (steady-state). The black ellipsoid corresponds to RoS VAR. In the
bottom row (RoS LQR left, RoS VAR right) the resulting vector fields (using the QP-controller proposed
in section 3.6.2 with €, = 1.0.) are shown and the colouring of the streamlines corresponds to the control
effort.

A very similar problem occurs in Majumdar et al. [2013b]. In this work, multiple intermediate points
defined by T;, x;, P; and «; are distributed along the trajectory and a linear parametrization is assumed,
resulting in

oz Ticipy s Litl pop
P(t;) = T THP(TJ o THP(TH) (3.99)
and
: P(T;) — P(T;_
p(ty) = DI = PTiy) (3.100)

e

when using the right-handed limit as derivative. As Majumdar et al. [2013b] also seek to modify the shape
of funnel (in other words, the P;’s are in the decision variables), P(t;) has to be defined as a weighted
sum of the P;’s or the resulting problem would no longer be convex. In contrast, Algorithm 2 provides

3.9. COMPUTING AND PROPAGATING SUITABLE LYAPUNOV FUNCTIONS 99

4.0 4.5 5

— QT 4.0
= (g LQR
—)y VAR

35

3.0 35

25
3.0

2.5
1.5
2.0
1.0

05 15

0.0 1.0

-0.5 0.5
27 28 29 30 31 32 33 34 35 36 29 30 31 32 33 34 35 36 37 2.6 2.8 3.0 3.2 3.4 3.6 3.8

Figure 3.12 — In the left figure the resulting RoS for the shapes resulting from standard LQR (¢ LQR)
and the proposed approached €y VAR are depicted alongside with the target region Qr, translated so
that all centres coincide. The target region is computed using infinite horizon LQR using the same cost
matrices used for retro-propagation. In both cases the costs are defined as Q = Id and R = [1] The
middle image depicts the evolution of the stabilizable region €2; LQR. The black ellipsoids represent the
interpolations (using the Cholesky interpolation presented in the next paragraph) of the actual stabilizable
region, whereas the blue ellipsoids represent the evolution of 27 described by the Riccati equation. The
actual region is significantly smaller, as the retro-propagation based on the Riccati equation does not
take into account the control input limits. In the image on the right, the black ellipsoids represent once
more the interpolations of the actual stabilizable region, whereas the blue ellipsoids show the evolution of
Qr using the proposed approached. One can see that the difference between the blue and black ellipsoids
is significantly reduced, implying a more suitable retro-propagating of the proposed method.

a certificate of stabilizability for fixed P;_;, P; and «; and performs a line search to maximize «;_ .
Therefore it does not impose the necessity of a(t;) and P(t;) to be affine in {a;}, and {P;}, respectively.

We therefore propose to perform an interpolation based on the Cholesky decomposition of the P;’s
and illustrate the advantages of this approach bby comparing the obtained overall results for the torque
controlled pendulum.

Cholesky Interpolation Given Fy, P, € S, and the corresponding times Ty, 177 € Ry, T > Tj the
Cholesky interpolation for time ¢ in the interval I = [Ty, T1[is given as

Cp = chol(Py), Cy = chol(Py) (3.101)
Ct) = jfl__z;fio Cr o+ 1?: 1__;0 Co (3.102)
: e

Ct) = ﬁ (3.103)
P(t)=Cc@®).Ct) (3.104)
P(t)=C@) .Ct) + C)T.C1) . (3.105)

As seen in Figure 3.13, this nonlinear (with respect to Py and P;) interpolation method rotates and
scales the initial zone €y gradually, whereas the linear parametrization of (3.99) contracts and expands
zone over time, often resulting in an increased control effort.

100 CHAPTER 3. STABILITY

0.t B

== [inear

== Cholesky

Figure 3.13 — Comparison of linear and Cholesky interpolation for zones defined as sublevel-sets of
quadratic functions centred at the origin defined by €, = {:c| ||£B||?3f < 1}. In this example Ty = 0,

2. 0. 0.85 —0.82
0. 0.25 —-0.82 1.53
linear interpolation (left image) and the proposed Cholesky interpolation (right image). The evolution
of the volume of €, over time is depicted in the lower row. The volume of intermediate zones for linear
interpolation is significantly smaller than the volume of the final or initial zone. As these zones have to
be invariant for the dynamical system, this can indicate the necessity of higher control efforts. Cholesky
interpolation on the other hand provides a more natural evolution of the zone and its volume. Note that
in the linear case Vt € [0, 1] : ©Q; C Q¢ U Qy, which is not true for Cholesky interpolation.

T =1 P = {] and P, = {] . The evolution of §2; is depicted in the upper row for

3.10 EXAMPLES AND NUMERICAL RESULTS

The above presented approach based on state space partitioning and underestimation of real-valued
polynomials is implemented in python using cvxopt (Andersen et al.) and compared to the results
obtained using the drake toolbox (Tedrake and Team [2016]) for Matlab™ relying on a very similar
approach to the one presented in Majumdar et al. [2013b] and other examples found in the literature.
The largest region of attraction for the unstable position of a torque controlled simple pendulum and
the Acrobot, a 2 DoF underactuated robotic arm as defined in (3.55) with the physical constants taken
from Tedrake and Team [2016], are presented and compared. Additionally, a time varying region of
stabilizability (“funnel”) is presented for a swing-up trajectory for the pendulum and the Acrobot using
reference trajectories generated with OMPL (Sucan et al. [2012]) and KPIECEL (Sucan and Kavraki
[2012]).

3.10. EXAMPLES AND NUMERICAL RESULTS 101

3.10.1 SiMPLE PENDULUM

The first example provided is a torque controlled simple pendulum, modelled as a point mass on a
massless beam with viscous friction in the hinge joint, for which we want to approximate the region
of stabilizability of the upright position. The numerical values of the system are taken from the drake
toolbox as mass equal to 1kg, the beam length is 0.5m and the damping coefficient is 0.1Nm/s, Note that
for this example, the system dynamics are nonlinear, whereas the input dynamics are affine. This means
that the state-space partitioning and the resulting control law are truly optimal.

Comparison of Methods Generating Lyapunov Candidates

Before comparing the method presented in this chapter with a state-of-the-art SoS-technique, the resulting
RoS for three different approaches to compute the shape of the Lyapunov function are compared:

a) Computing V(x) based on the linearisation of the system around the equilibrium point * and the
standard LQR method (RoS LQR).

b) Retro-propagating the singleton x* (approximated by a small sphere) according to (3.97) until the
steady-state is reached (RoS VAR).

c¢) Constructing a funnel for the trajectory &f = x*, uy = u* with the final zone Qp being a small
sphere centred at the equilibrium with T' chosen such that steady-state is reached (RoS Funnel).

In the last two approaches attaining steady-state means that P, ~ 0, that is the funnel shape does no
longer change. The results are shown in Figure 3.14. Each of the methods yields ellipsoids of comparable
surface but slightly different shapes. This indicates that all three methods yield suitable Lyapunov func-
tion candidates for the polynomial approximation of the nonlinear system by relying on the linearisation
around the equilibrium point.

Comparison with drake toolbox

Next we compare the RoA for the upright position obtained with the drake toolbox and the RoS for
the upright position obtained with the approach presented in this chapter and the Lyapunov function
candidates described above. Our approach provides in this example significantly larger regions of stabi-
lizability than the iterative SoS-approach, even-though it does not modify the shape of the region. It is
worth noting that in Majumdar et al. [2013b] the ellipsoids are normalized by the condition V(1) = 1,
where 1 is the vector of all ones. Even though this normalization does not introduce any conservativeness
in the sense that a class of functions is excluded from the optimization, it introduces a bias since it is
not equivalent to normalizing the ellipsoids by their volume. The ellipsoids in the top right image of
Figure 3.15 obtained with the proposed method (red, green and blue ellipsoid) have similar cost values
for 1, but have an about seven times larger surface than the one obtained using drake (black ellipsoid).
One can see that the resulting closed-loop dynamics are relatively similar for the chosen regularization
value Q. Even more interesting, the generated RoA SoS could be scaled without changing the control
law and still be an invariant set, however the conservativeness introduced by the multiplier terms seems
to inhibit this. It is also worth noting that the deduced control input and dynamics at the critical point
(marked by the bright green ellipsoid) are also equivalent for the two approaches. A last remark on a
qualitative difference between the generated sets: while the set RoA SoS is an invariant set according
to Majumdar et al. [2013b], the regions of stabilizability obtained with the proposed approach are a
exponentially converging sets. This is worth noting since this change does not impact the runtime of our
approach but has a significant impact on SoS approaches due to the additional SoS constraints necessary
on the multiplier terms.

102 CHAPTER 3. STABILITY

15 Funnel
— RoS LQR
10 — RoS Funnel
s — RoS VAR =
g
30 g
i
_ @]
5 2
-10
-15 - - - —
0o 1 2 3 4 5 6 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

nonlinear

_ 1 8
0 1 2 3 4 5 6 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

Figure 3.14 — On the top left the different regions of stabilizability are compared. The largest surface
(4.99) is obtained for the funnel approach (RoS Funnel), whereas the standard LQR (RoS LQR, 4.86)
outperforms the retro-propagation (RoS VAR, 4.04), where in all cases Q@ = Id,, and R = 5Id,, was
used. It is important to notice that despite the different areas obtained, they all significantly outperform
the results obtained with drake toolbox as shown in Figure 3.15. On the right the resulting streamlines
using the QP-based control law is shown for RoS Funnel and RoS LQR. As one can see the polynomial
approximation of the dynamical system (upper row) approximates well the fully nonlinear dynamics
(lower row). In fact for this case the approximation is conservative, that is RoS Funnel and LQR are
also stabilizable regions for the original dynamics. In the lower left image a quantitative impression of
the QP-based control law is given. Small red circles indicate that the control input constraint is active,
whereas blue dots indicate the activation of the constraint ensuring convergence. Green dots indicate
that no constraint is active, whereas the absence of a dot indicates that the problem is infeasible, meaning
that convergence cannot be ensured.

Swing-Up Funnel

The last example shows a funnel generated around a swing-up reference trajectory for the pendulum
and is presented in Figure 3.16. The input constraints do not allow the system to directly attain the
unstable upright position. Therefore several “pumping” movements, corresponding to the oscillations of
the reference trajectory in the lower right image of Figure 3.16, have to be performed to accumulate
energy. Generating a funnel in such a case is interesting for two reason. Firstly the funnel can be used
for collision detection and certified planning under the assumption that the mathematical description of
the true system is correct. Secondly one can define a time-independent control law in the following way:
given a funnel described by the time-dependent Lyapunov function V'(t,x) = ||& — | 5, and the current
state of the system , then one can find the most suitable reference point as

te = mtin V(t, x), (3.106)

3.10. EXAMPLES AND NUMERICAL RESULTS 103

20
10
15
10

05

= RoS LQR
= RoS Funnel
=10 | = ROS VAR

24 26 28 30 32 34 36 38 40 1 2

3 4 5

AW
\ p

N

AYAY

olynomial

Figure 3.15 — Figure top left: Green ellipsoid: Region of attraction obtained with the drake toolbox for a
cubic controller denoted RoA SoS; Blue ellipsoid obtained with our approach (denoted RoS Opt) initialised
with the Lyapunov function of RoA SoS. Green line: Separating hyperplane and defining normal vector;
red, black and blue line: Set of points where the cubic control law (from drake toolbox) attains u™, 0
and u~. This means that below the red curve and above the blue curve, the control inputs of the optimal
control law u* and that of the saturated polynomial control law from drake toolbox are equivalent. Figure
top right: Region of stabilizability obtained with our approach for the different initialisations presented
in Figure 3.14 (RoS LQR in red, RoS VAR in blue and RoS Funnel in green). Bottom row: Streamlines
obtained when applying the generated control law. Left: Regularized QP-control with v = 0.001 and
@ = [0.5] based on our approach. Right: Cubic feedback control law saturated to meet input constraints.
For both plots the Taylor expansion up to degree 3 of the simple pendulum is used as system dynamics.

104 CHAPTER 3. STABILITY

so as the time-point for which the associated cost is minimal, as it is shown in Tedrake et al. [2010D].
Then the control input according to this time-point can be computed. Moreover, if V(t.,x) < ay, then
the state of the system will converge towards the (time-dependent) trajectory and therefore remain inside
the funnel. By defining this time-independent control law, one can also see the advantage of generating
“large” funnels. In Tedrake et al. [2010b] not just one funnel, but a whole tree of interconnect funnels is
constructed until the whole state space is covered. Generating larger funnels is in this case directly linked
to a smaller number of funnels necessary and therefore reduces offline and online computation time.

15 - - - - - - - 2.0
1.5
1.0
10 | 0.5
~_ 0.0
-0.5
-1.0
51 1 -1.5
-2.0
-2.5
30» 01234567289
10
-5 | i 5
=
3
— 0
-10 | S
-5
-15 ‘ : : : - - - —10 Lo e
-4 -3 -2 -1 0 1 2 3 4 0123456789
0 t

Figure 3.16 — The reference trajectory is shown on the right. The input constraints of the system are
—3. <wu < 3 and are respected with a relatively large margin by the reference control input shown in the
upper right image. The lower right image shows the evolution of 6" (blue) and w” (green). On the left
the resulting funnel for v = 2. is presented. Note that a convergence rate of 2 is fairly large in the sense
that it implies quick convergence, but the algorithm is still able to find a large funnel. One can easily see
the influence of the time-depending linearisation which induces significant changes of the funnel shape.

3.10.2 ACROBOT

The underactuated two link robot called Acrobot does not belong to the class of control affine systems
since its mass matrix is state-dependent and we therefore obtain nonlinear input and system dynamics
& = f(x) + g™ (x).u. Therefore we seek to quantify the suboptimalty induced by the polynomial input
before presenting results for stabilizing the unstable, upright position and a swing-up trajectory.

Quantifying the Suboptimality

In order to get a quantitative impression of the order of magnitude of the error induced by considering the
linearised input dynamics to derive the input partitioning instead of the polynomial one, in Figure 3.17
the separating hyperplane and the separating hypersurface defined as

proly — {:c|wT.P.g($) = 0} (3.107)

are compared.
The intersection of the hyperplane / hypersurface with five different hyperplanes parallel to the 6y-6;
plane are plotted. These planes are chosen such that they quantitatively cover the RoS.

3.10. EXAMPLES AND NUMERICAL RESULTS 105

1.0 1.0 1.0 1.0 1.0
7001
0.6 0.6 0.6 0.6 0.6
< 0.2 0.2 0.2 0.2 0.2
-0.2 -0.2 -0.2 -0.2 -0.2
-0.6 0.6 -0.6 0.6 -0.6
26 30 34 38 26 30 34 38 26 30 34 38 26 30 34 38 26 30 34 38
0o o 0o 0o 0o

Figure 3.17 — In this figure the intersection of the separation hyperplane (blue) and the hypersurface
(red) with the p-0;-plane is shown. The difference between them within the region is marginal in
this example, empirically justifying the use of the optimal control and the associated polytopes even for
nonlinear or polynomial input dynamics.

Stabilising the upright position

Again we compare the region of attraction found for the upright position under input constraints for the
drake toolbox and the region of stabilizability. Due to numerical issues solving the resulting semidefinite
optimization problem when searching for a cubic controller using the drake toolbox, only a linear feedback
controller is used. In Figure 3.18 the projections of the two regions on different planes (the 6y/6;-plane,
0o/wo and the 0, /wi-plane) are shown. Here again, the volume of the ellipsoid obtained with the proposed
approach (RoS Funnel) is significantly larger (about 25 times) than the volume of RoA SoS, but the value
of the Lyapunov functions for normalization constraint V(1) are very similar (20.1072 to 22.1073).

Funnel around a Swing-Up Trajectory

As final example we seek to construct an as large as possible time-varying exponentially converging region,
around a given reference trajectory. The reference trajectory describes a swing up motion, i.e. a motion
taking the Acrobot from the stable “hanging” position to the unstable upright position. We want to
compute a funnel that takes as many states as possible, measured by the volume of the ellipsoids defining
the funnel, to a small ellipsoid centred on the upright position. To achieve this, we first distribute
N sample points along the trajectory, for which we will actually prove convergence as described in
section 3.7.2, similar to the method in Majumdar et al. [2013b]. It has proven to be better, in the sense
of achieving larger volumes, to distribute the points for which convergence is verified equidistantly on the
curve z; and not equidistantly along the time, as equidistant distribution with respect to time can lead
to long curve segments in the high-velocity parts of the trajectories. These longer curve segments often
induce larger changes in the shape of the regions, complicating interpolation.

The projection of the resulting funnel onto different planes is shown in Figure 3.19. For this example
we prove convergence on 95 points (Ngeps = 95) and 2 intermediate steps for each interval (Njpier = 2).
Each retro-propagation step takes about 12 seconds, so the entire funnel is computed in about 20 minutes
on a desktop pc with an Intel(R) Core(TM) i7-3770 @ 3.4GHz processor.

106 CHAPTER 3. STABILITY

0.6
0.4+

0.2+

0.0} | === RoS LQR
< 3
0.2}
-0.4}

~0.6 T L -8
2.4 26 2.8 3.0 3.2 3.4 3.6 3.8 2.4 26 2.8 3.0 3.2 3.4 3.6 3.8 -0.6-0.4-0.2 0.0 0.2 0.4 0.6

90 0 91

—

0.8

4
0.6} 3
04] 2|
0.2} 1 | === RoA SoS
0
1

(= R
—— —

0.0}
Al o —
S .2t 1 3- 32t | === RoS SoS
-0.4 1 -2t J —4 |

—0.6} 1 s 1 el v

oL . . N |
2.6 2.8 3.0 3.2 3.4 3.6 3.8 2.6 2.8 3.0 3.2 3.4 3.6 3.8 0.8 -04 00 04 08

0o 0o 01

Figure 3.18 — Top row: different projections of the RoS found using the proposed approach initialised
with standard LQR is shown in red (RoS LQR), the steady-state region for the funnel constructed around
the reference point relying on Algorithm 2 is shown in green (RoS Funnel). In this case the standard LQR
initialisation outperforms the funnel approach by achieving a hypervolume of 0.053 compared to 0.04.
For both approaches the cost matrices are given as @ = diag([10, 10, 1,1]) and R = 0.01Id,,. It is worth
noting that, probably due to the underactuation of system, the volume of the region is more sensitive to
the parameters @ and R than for the pendulum. In the bottom row the resulting RoS are compared to
the RoA found using Drake toolbox and a linear control law (RoA SoS, black). The RoS SoS, that is the
proposed approach initialised with RoA SoS, is shown in blue. As for the torque controlled pendulum,
the region RoA SoS can be enlarged without changing its shape. The shapes of RoS Funnel and and RoS
SoS differ significantly with RoS Funnel having a larger volume, empirically validating the effectiveness
of Algorithm 2.

| === RoS Funnel

1 === RoS Funnel

3.10. EXAMPLES AND NUMERICAL RESULTS 107

15 25
20

10
15
5 10
o —
3 390
0
5 \ -5

\\

-10

-10
-15
- -15 -20

-4 3 -2 -1 0 1 2 3 4 -4 3 -2 -1 0 1 2 3 4 4 3 -2 -1 0 1 2 3 4
) 6o 01

Figure 3.19 — Projection of the funnel (from left to right) onto the 6y/6;-plane, 6p/wp-plane and
01 /wi-plane. Due to the under-actuation of the system, a small neighbourhood around the ori-
gin has to be excluded to prove exponential convergence, so we have V(wx,t) < —V(x,t) on
O ={zlea(t) < V(x,t) < a(t)} with e = 0.05 and v = 0.1 for this example. The reference input is
confined between —10 and 10 and we set the minimal/maximal input to —20/20, other numerical values
defining the system are taken from the drake toolbox.

3.10.3 CONTROLLED POLYNOMIAL SYSTEM

To showcase the versatility of the proposed approached and to show that it can be successfully applied
to polynomial systems that do not correspond to Taylor expansions, we consider the two-dimensional
system proposed in Jarvis-Wloszek et al. [2003]:

. 0 1
r= (—sco + %x%) + (—1) v (3.108)

with v € R. As one can see, this dynamical system falls into the class of control affine polynomial
systems, for which the derived state-space partitioning is optimal. Secondly we see that the control input
is unbounded, so 4T = 0o and u~ = —oo. This is not compatible with the proposed approach, as the
derivative of the Lyapunov function would always be equal to plus or minus infinity. However we can solve
the problem of finding the largest RoS for increasingly large absolute values for artificially introduced
upper and lower bound of the input value. If the system is only locally stabilizable, the RoS of the usual
form Q = {z|xT.P.x < o} will monotonously converge towards a*, with o* being the largest value for
which € is still strictly contained in the true region of stabilizability. In the case of global stabilizability,
«* is infinite, and the series will diverge.

By taking a closer look at the dynamical system (3.108), we see that, as u is unbounded, the system
can always be dominated by the control input which is state-independent. Or, in other words, for all
states within a ball of radius 7 centred at the origin one can find an v such that the dynamics can be
simplified to

i~ (_11> u*) (3.109)
This approximated system is clearly globally stabilizable for any quadratic Lyapunov function candidate
and a convergence rate v = 0 when applying the optimal control input.

This corresponds to the findings using our approach as shown in Figure 3.20. These findings highlight
that reasoning directly on optimal control inputs and local stabilizability can yield significant advantages
over approaches enforcing locality using multipliers and iterations as they can get stuck in local minima.
This is not the case for the presented algorithm, however at the cost of fixing the shape of the Lyapunov
function.

108 CHAPTER 3. STABILITY

150 200
100 150
100
50 50
§ 0 S g o
50 _50
-100
_ +
100 150 , ga)
~150 200 /’\\/\\nu\ll‘
-100 -50 0 50 100 15 - -5 15
T wO
150
s \ xziéfisi“w'vﬁ i 226;55"2"’7 ;51‘5’7‘218‘52”“‘;27; T
100 N sof
50 b\ s\\ 20+ ”
— \ 10+]
8 0 \ ;
a1
50 |
-10[
~100 a0k
-150 —80py ‘ ; ; 3 : : : ;
-100 50 100 -20 -15 -10 -5)9 5 10 15 20

Figure 3.20 — On the top left image the sequence of RoS obtained for a monotonically increasing sequence
of the artificially introduced input constraints is shown. Starting from blue to red, v takes on the
values [10, 100, 1000, 10000, 50000] and the constraint becomes —uM < 4 < uM. The Lyapunov function
is taken as the one found in Jarvis-Wloszek et al. [2003], shown on the bottom right image (image taken
from Jarvis-Wloszek et al. [2003]), using an iterative approach indicated by the blue ellipsoid. The green
dashed ellipsoid is the initial guess for the iteration. In the bottom left image the resulting streamlines
for u™ = 50000 are shown and the color correspond to the control input, where again the QP-based
control is used. The red line corresponds to the separating hyperplane. The top right image shows the
obtainable RoS for 4™ = 50000 when using the Lyapunov function derived from standard LQR with
Q = Ids and R = [/u™]. As we can see the RoS based on LQR has a larger area than the RoA found in
Jarvis-Wloszek et al. [2003], indicating once again that computing Lyapunov function candidates based
on the linearised system is a good option.

3.11 CONCLUSION AND OUTLOOK

In this chapter a new approach to prove stabilizability for polynomial systems has proposed. It is based on
ideas from optimal control and Lyapunov theory and results in an input optimal state space partitioning.
The proof of stabilizability is then reformulated as an optimization problem on each of the subsets forming
the partition and it was shown how to efficiently solve them by constructing a linear underestimator.

The effectiveness of the proposed approach has been showcased on typical examples from the literature
outperforming state-of-the-art sum-of-squares techniques in terms of the volume of the region of attraction
compared to the region of stabilizability.

To increase the scalability of the approach, it is interesting to investigate the possibility of adding
the LMI constraints derived from the theory of moments. By constructing these constraints for a “small”
maximal degree in the relaxation and adding the “most significant” linear constraints derived with RLT
one can possibly obtain tight bounds at a reduced computational complexity. Moreover the size and
number of the LMI constraints scales better to higher dimensions than the number of linear constraints.

3.11. CONCLUSION AND OUTLOOK 109

This will allow to treat robotic systems actual used in manufacturing like manipulators with 6 or 7 degrees
of freedom in a very efficient manner.

Finally we are interested in enlarging the modelling capabilities of the approach by taking into account
perturbations represented by distributions and model uncertainties. Even though the formal the character
of the funnels (no states can leave it) must be weakened in this case to a statistical statement (95% of
the executions will not leave the funnel), this is an important step to take as many real-life applications
are subject to non-negligible disturbances, which can be approximated well by (Gaussian) distributions.

110 CHAPTER 3. STABILITY

Chapter 4

LEARNING GLOBALLY ASYMPTOTICALLY
STABLE VECTOR FIELDS

In this chapter we investigate methods to learn globally asymptotically stable vector
fields and apply them within a learning from demonstration framework. To suc-
cessfully learn nonlinear vector fields providing such guarantees, we propose a
novel approach based on diffeomorphic transformations. Indeed such transforma-
tions allow us to increase the expressiveness of “simple” globally asymptotically
stable vector fields while conserving the convergence property. The diffeomorphic
transformations used within this chapter are based on locally weighted translations,
which can, in contrast to state-of-the-art diffeomorphisms based on flows, be evalu-
ated extremely quickly and are therefore suitable for real-time controller implemen-
tations.

4.1 INTRODUCTION

As seen in previous chapters, the combined notion of stability and safety essentially require to know in
advance bounds on the evolution of the system, such that these bounds remain under control and exclude
states that are considered unsafe. Moreover, these bounds must be valid at all time. A weaker version of
these properties consist in focusing only in the asymptotic behaviour of the robot. For instance, having
the guarantee that it will eventually reach its target. When stronger guarantees are not available, it can
be interesting to try to enforce such weaker properties.

To this end, two approaches for learning globally asymptotically stable (GAS) vector fields are pre-
sented. Such vector fields provide guarantees on the asymptotic behaviour of the system. More specifi-
cally, they guarantee that a) there exists an unique equilibrium point and b) this equilibrium point is a
global attractor. That is, all states will be driven to and will remain inside an € small neighbourhood of
it in finite time. These properties can be useful in different settings.

One might observe that, by denoting the state of the system with € R%, the global attractor with
x* € R? and the GAS vector field f: R? — R? saying that “all states will be driven to and remain
inside an € small neighbourhood of the global attractor in finite time” is somewhat equivalent to the LTL
specification “eventually @ = x*” when the system evolves according to & = f(x).

The ability to translate such atomic LTL specification into a desired velocity for a dynamical system

111

112 CHAPTER 4. LEARNING

can be exploited to perform control strategy synthesis as done in Kress-Gazit et al. [2007]. Here the
“high-level” control strategy for (a fragment of) LTL specifications are synthesized relying on “low-level”
properties provided by the controller developed in Conner et al. [2003].

The here proposed methods for learning a vector field can provide similar “low-level” guarantees, but,
as the vector field is deduced from the given demonstrations, it is likely to be such that it can be easily
followed by the controlled system given the demonstrations are suitable. This is an interesting property
as it reduces the gap between the mathematical model used for verification and synthesis and the real
world system.

On the other hand, by interpreting the learned vector field as a velocity field in the joint or task
space of a robotic manipulator, learning a globally asymptotically stable vector field can be interpreted
as a type of learning from demonstration under stability guarantees. As all trajectories generated by
the learned vector field converge to a unique point, such vector or velocity fields naturally correspond to
grabbing or reaching motions, as they also converge to a unique position and we focus on this use case
within this chapter.

Learning from Demonstration Programming robots to perform specific tasks is a very challenging
problem which can usually only be performed by trained and experienced persons (“experts”), even for
very simple tasks, including reaching and grabbing motions. This is due to multiple reasons, such as
the nonlinear mapping between the joint and task space via the geometric model of the robot, the often
occurring redundancy of joints, the avoidance of self-collision or the dynamic feasibility of the trajectory.
This poses an essential problem especially for the growing field of robots deployed in flexible manufacturing
chains typically found in small or medium sized business or the possibility of relying on robots to provide
services within regular households in the future. Such robots have to come with a built-in mechanism
that allows the owner or the production workers to conveniently teach the robot how to successfully carry
out a new task.

The learning from demonstration paradigm provides a possible solution to this problem. It allows
the user the teach the robot by providing successful examples of task completion, relying for instance
on kinesthetic training. This is a very natural way for humans to teach, as it is comparable to teaching
movements to children, and moreover alleviates many of the above cited problems of motion planning
and trajectory generation. It inherently takes the geometric model and the problem of self-collision into
account. Also movements demonstrated by humans are dynamically feasible, in the sense that they
do not exceed the maximal effort the actuators can provide, for usual robotic systems. Moreover, the
“programming” of the robot does not involve coding be it in general purpose languages or in a provided
high-level language.

These are the advantages of learning from demonstration, but they do not provide a clear path as to
how such learning can be achieved. There exists a broad variety of approaches to tackle this problem,
depending on the kind of task being demonstrated. The first developments in this sector were seeking
to extract a set of (timed) way-points to be attained by the robot, see Grossman [1977] or Lozano-Perez
[1983] and references therein. This i also comparable to how the learning is accomplished in the (formerly)
commercial robots Baxter and Sawyer. Later on the research community focused on constructing abstract
descriptions of tasks as finite state machines or decision trees allowing for symbolic reasoning, as in Segre
and DeJong [1985] or DeJong and Mooney [1986].

In more recent developments, a clearer distinction is made between high-level and low-level learning
(see the surveys Atkeson and Schaal [1997] or more recently Billard et al. [2008] and Argall et al. [2009]).
For high-level planning Markov processes are an attractive possibility (see Konidaris et al. [2012]), but
due to the necessarily discrete state and action space it is less suitable for learning low-level motions
or motor control. For this scenario, recent developments have shown that representing a motion as
dynamical systems (DS) and learning the parameters of the DS from demonstration yields interesting
results (Schaal [2006]). In particular, expressing a motion as a dynamical system naturally increases the
robustness to spatial and (if the system is autonomous) temporal perturbations. On the other hand, by
introducing a dynamical system, the problem of stability naturally arises. Indeed, data-driven stochastic

4.2. DIFFEOMORPHIC TRANSFORMATIONS AND SMOOTH EQUIVALENCE 113

approaches generally provide no guarantee concerning the stability of the resulting system. The problem
of reconciling learning from demonstration while guaranteeing stability has become an active field of
research, starting with Khansari-Zadeh and Billard [2010].

The contributions proposed in this chapter fall into this category. More precisely, we present novel
ways to construct or learn globally asymptotically stable nonlinear dynamical systems which are able to
reproduce the given demonstrations. As discussed later on in detail, global asymptotic stability is an
important, but difficult to ensure, property for dynamical systems and therefore the main focus of the
presented approach, next to the ability to properly reproduce the given demonstrations.

The main idea of the proposed approach is to use a diffeomorphic transformation in order to be able
to guarantee the global stability of complex vector fields able to reproduce complicated motions.

The rest of this chapter is structured as follows. After a brief recapitulation of the properties of
diffeomorphic transformations and their implications on dynamical systems in section 4.2, the treated
problem is formally stated and existing techniques seeking to solve similar problems are reviewed in
section 4.3. In section 4.4 the first approach for learning nonlinear globally asymptotically stable vector
fields relying on diffeomorphic transformations, called One-Step learning is presented and evaluated. In
section 4.5 an extension to the One-Step learning, called Two-Step learning is presented. Here the focus
lies on interweaving the diffeomorphic matching and machine learning techniques in order to overcome
several limitations of the One-Step learning. Concluding remarks and some avenues for future work are
given in section 4.6.

The contributions in this chapter can be summed as follows.

Contributions

e A novel method to construct diffeomorphic transformation by composing local dif-
feomorphic transformations

e The extension of these transformations to multitranslations
e An efficient algorithm to construct such transformations

e Showcasing the obtainable results for the LASA-Dataset

e Extensions to multimodal and cyclic demonstrations

The material presented in this chapter was (in parts) published in Perrin and Schlehuber-
Caissier [2016].

4.2 DIFFEOMORPHIC TRANSFORMATIONS AND SMOOTH EQUIVA-
LENCE

In this chapter show how diffeomorphic transformations can be used within a learning from demon-
stration or supervised learning framework, but before doing so, the main properties and notations of
diffeomorphisms are recapitulated.

A diffeomorphism is defined as an isomorphism between smooth manifolds, that is given two smooth
manifolds X and), the transformation

o X =Y (4.1)
Ty

is a diffeomorphism if it is bijective, invertible and the transformation and its inverse are differentiable

on X and Y respectively. Moreover, if ® and ®~! are k-times differentiable, then the diffeomorphormism

is said to be a C*-diffeomorphism. The demand that & is bijective, forces the manifolds X and)’ to have
the same dimension.

114 CHAPTER 4. LEARNING

In this work we only use diffeomorphic transformations from R? onto itself, so X = Y = R?, but
we keep the distinct symbols X and) to clarify notations. Note that in this case, the tangent space of
both manifolds is trivial and also equal to R%, so we have X = T,X = Y = T,Y = R%. The usage of
diffeomorphisms in the context of learning is motivated by the conservation of topological properties, such
as connectedness, disjointness or convergence. The later is particularly interesting when reasoning about
vector fields and dynamical systems: given two dynamical systems & = f(x) and y = ¢g(y) defined by the
vector fields f:x € X - & €T, X and g: y € Y — ¢ € T,). Suppose that f is globally asymptotically
stable, then one can prove the stability of g by proving that it is smoothly equivalent, or diffeomorphic,
to f under some C!-diffeomorphism ®.

That is if

Vy: g(y) = Jo (@ (y).f(2 () (4.2)

with Jg denoting the Jacobian matrix of ®, ‘g—‘i(w)7 holds. To ease notation, the explicit state dependency
of the Jacobian is often dropped, when the evaluation point is clear from context. So Jg(®71(y)).f(®(y))
is for instance typically written as Jg.f(®1(y)).

To put the above statement formally:

Theorem 4.1. If two DS & = f(x) and y = g(y) are smoothly equivalent, then if one is globally
asymptotically stable, both are.

Proof. Let ®: X —) be a diffeomorphism such that Vz € X = R? we have g(®(z)) = Jo f(x)
equivalent to (4.2). For any forward orbit of f(.), i.e. a trajectory (@(t)),~, such that La(t
and x(0) = o, let us consider its image under @, (® (z(1))),5,. We get:

which is

f((1))

d
;& @) = Jo.ie(t) = Jo.f(2(1)) = 9(2(x(1)))- (4.3)
This implies that (® (x(t))),s, is a forward orbit of g(.). More generally, any orbit (y(t)),~, of
g(.) can be written (® (x(t))),sq, with (0) = @~ (y(0)) and (z(t)),, orbit of f(.). If f is globally
asymptotically stable, then all orbits converge towards the unique equilibrium x*, and thus all orbits g(.)
converge towards ®(x*), which proves that g(.) is globally asymptotically stable. A similar demonstration
proves the converse implication. O

Using the smooth equivalence, one can make further statements about the properties of the DS. If the
dynamical system ¢ = g(y) is smoothly equivalent to the DS & = f(x) with f being C*¥ via the C'*+1-
diffeomorphism ®, then we know g(y) to be Ccmin(k:l) - This can immediately be deduced from deriving
(4.2) using the product rule.

This property is used extensively in the following sections to learn globally stable nonlinear systems.

4.3 PROBLEM STATEMENT AND RELATED WORK

In this chapter the problem of learning a dynamical system, or better the associated vector field,
from demonstrations is considered. More precisely, given a list of trajectories as the list of tuples
(tji, y;(ti), yj(ti))j, observing each demonstration indexed by ; as timed sequences of points and veloc-

ities 1,9 € R? at given timed-points indexed by ;, the objective is to build a (continuous) autonomous
system ¢ = g(y) (i.e. the vector field g: Y — T,)) that reproduces the demonstrations as closely as
possible!.

The ability to construct such DS is an important skill in imitation learning (see for example Schaal
et al. [2003]), as they provide an elementary building block to achieve high-level goals. The learned

IThe choice of denoting a point in the state-space by ¥, instead of for instance a, may seem odd at the moment, but
facilitates notations in the next sections.

4.3. PROBLEM STATEMENT AND RELATED WORK 115

systems can be used as dynamical movement primitives generating goal-directed behaviours (see for
instance Ijspeert et al. [2013]), from given data in a very natural way. Modelling movement primitives
with DS is convenient for closed loop implementations as the current position of the system is the
only input necessary, and their generalization to unseen parts of the state space provides robustness
to spatial perturbations. Moreover, the choice of autonomous (i.e. time-invariant) systems, while not
always suitable or preferable, is interesting in many situations as they are inherently robust to temporal
perturbations.

The most common movement primitives consist of motions that converge towards a single targeted
configuration. They therefore naturally correspond to globally asymptotically stable DS as their unique
global attractor can be identified with the target configuration. The catch is that classical learning
algorithms cannot provide guarantees regarding the global asymptotic stability of their output. They
might produce DS showing divergent behaviour, spurious attractors or limit cycles, depending on the
initial condition. This issue has recently been studied by, among others, by Mohammad S. Khansari-
Zadeh and Aude Billard (see for instance Khansari-Zadeh and Billard [2010]) who proposed several
approaches to learn globally asymptotically stable nonlinear DS.

Note that in this chapter we are not only interested in proving global stability of the learned movement,
but, as we are concerned with reaching and grasping motions, also seek to guarantee that the learned
motions end precisely at the targeted configuration. So we seek to proof that the targeted configuration
is the only global attractor of the system, in contrast to approaches like Calinon et al. [2010] which
guarantees stability (to some extent) but not that the target configuration and the global attractor
coincide.

Basically the approaches of Khansari-Zadeh and others can be divided into two main groups.

The first group fixes a Lyapunov function candidate V (y), often taken to be the squared euclidean
distance, and trains a model under the constraint that V(y) is indeed a (control) Lyapunov function
and thereby assuring global asymptotic stability. For instance in Khansari-Zadeh and Billard [2011] an
approach called Stable Estimator of Dynamical Systems (SEDS) is presented. Here the utilized model to
represent the data is a GMM. As the GMM is a weighted sum of Gaussian components, the regression,
with respect to the maximum a posteriori method (MAP), can be interpreted as a weighted sum of
linear dynamics, where the weights are nonlinear functions of the position y. In order to ensure global
asymptotic stability, the linear dynamics induced by each component have to admit V(y) as a common
Lyapunov function.

The second group seeks to learn a Lyapunov function candidate (also simply called Lyapunov can-
didate) V(y) that is highly compatible with the demonstrations in the following sense: at almost every
point yj(tji), which we also denote by y;; to shorten notations, the estimated or measured velocity y,;
is such that its scalar product with the gradient of V' is negative: V4,V (y;;).9;; < 0. Then standard
learning techniques like Gaussian Mixture Models, Locally Weighted Projection Regression (LWPR) or
even neural networks can be used for unconstrained learning, resulting in a model that (hopefully) repre-
sents well the data, however without stability guarantees. Finally in the last step, the velocity deduced
from the model, denoted ¥, is modified using an “online” correction signal if it violates the convergence
criteria of the learned Lyapunov function. That is if the scalar product of the gradient of the Lyapunov
function at y and the estimated velocity from model ¥ is positive. This correction signal should not be
active or only slightly modify the learned dynamics in the neighbourhood of the demonstrations as we
have vyV(yﬁ).yﬁ < 0 for almost all points. This, together with a “good” model of the dynamics, implies
that @ﬂ ~ y,;; and therefore VyV(yji).jS < 0 should also hold for almost all points. This approach is
presented in Khansari-Zadeh and Billard [2014].

Each of these approaches has its own drawbacks. Incorporating the stability directly into the learning
process as done in the first group, complicates the learning. The arising constraints that ensure stability
are typically nonlinear and nonconvex, necessitating the utilisation of general nonlinear programming
approaches that are susceptible to local minima causing the found optimum to be depending on the
initial parameters, as for the approach presented in Khansari-Zadeh and Billard [2011]. Due to these
constraints the standard method for training a GMM, the expectation maximization (EM) algorithm,

116 CHAPTER 4. LEARNING

cannot be applied and instead the optimization is performed using the simplex method (Nelder-Mead-
algorithm). We show later why this can be problematic. Secondly the predefined nature of the Lyapunov
function candidate induces problems itself. In the case of SEDS, the chosen Lyapunov function candidate
is the squared euclidean distance. This on one hand guarantees global asymptotic stability, on the other
hand this also means that only movements for which the euclidean distance decreases monotonically along
the trajectory are representable, significantly reducing its ability to learn complex motions.

The second group, which aims at separating the learning of the Lyapunov function from the learning
of the movement has the drawback that one does not a priori know when the correction will be triggered,
resulting in possibly undesired behaviour. Also learning or training Lyapunov functions itself is a complex
problem. The conditions necessary for V(y) to be considered a Lyapunov function candidate are that
it has to be radially unbounded and everywhere strictly positive except at the origin (see section 3.2.2).
This comprises a very large class of functions for which no coherent parametrization, such that the set
of admissible parameters is for instance convex, can be found. Also Lyapunov function candidates are in
general not stable by addition or multiplication, meaning that the sum or product of Lyapunov function
candidates does not have to be a Lyapunov candidate, as local extrema might appear. Therefore one has
to restrain the search to a well-defined subclass of Lyapunov function candidates, which in turn limits
the expressiveness.

In Khansari-Zadeh and Billard [2014] an approach called Control Lyapunov Function based Dynamic
Movements (CLF-DM) is presented, belonging to this group. In this approach the class of considered
Lyapunov function candidates are weighted sums of asymmetric quadratic functions (WASQF), so

V(y) = Zﬂi(y)(y —y) Py —xi —y]) (4.4)

with y! being the center, x; representing the asymmetry and P; being the weighting matrix for the i-th
component which has to be positive definite. Note the additional function f;(y) ensuring non-negativity
as

0 else

This causes V (y) to be “only” C!, so one time continuously differentiable. The weighting matrix does
not necessarily have to be symmetric and due to y; adding antisymmetric matrices (matrices for which
we have AT = —A) does actually influence the shapes of the level-sets.

This parametrisation facilitates the search for a suitable function as the resulting sum is guaranteed
to be a Lyapunov function candidate as long all P; are definite positive, however this comes at the cost
of reducing the expressiveness. For instance all Lyapunov functions that are WASQF are necessarily
compatible with the dynamical system ¢ = —y. Or, to have a better comparison with SEDS, there
exists no WASQF Lyapunov function that is compatible with a trajectory whose norm is not monotoni-
cally decreasing with respect to the uniform norm ||y[| . Note that the inverse of the above statement
is not true, meaning that not all trajectories decreasing with respect to the uniform norm along the
trajectory do have a compatible WASQF Lyapunov function. Additionally, each asymmetric quadratic
function is convex and therefore the sublevel-set of any WASQF Lyapunov function is a convex set. The
search for the best WASQF function given the demonstration is rather efficient due to the following
fact: the set of Lyapunov function candidates compatible with a given DS (for instance y = —y) is a
(blunt) convex cone. This follows directly from the definition of a cone: suppose Vy(x) and Vi(z) are
compatible with the dynamical system & = f(z), so Vo Vo(x).f(x) < 0 and V,Vi(z).f(x) < 0, then
aVaVo(x).f(x) + BVLVi(z).f(x) < 0 for any o, 3 € RT. Obviously aVy(z) + BVi(x) > 0 for all =
except 0 and any «,3 € RT also holds as Vj and V; are everywhere strictly positive (except at the
origin). Therefore V(x) = aVp(x) + BVi(x) is a Lyapunov function for f(x).

There exist also approaches that do not necessarily fall into one of the above categories. In a very
recent work, Ravichandar et al. [2017] propose a method to learn globally stable dynamics based on

4.3. PROBLEM STATEMENT AND RELATED WORK 117

GMDMs and contraction theory. In difference to the approaches cited so far, the optimization process
seeks to find a state dependent metric M (y) with respect to which the movement has to contract and
the parameters defining the GMM (and thereby the dynamical system) simultaneously. This comes at
the cost of ever increased complexity of the optimization problem due to the larger number of variables
(The parametrisation of the metric and the GMM) and the increased number of constraints. The usage
of contraction analysis (instead of Lyapunov’s stability criterion) has the advantage that it is not only
proven that all trajectories converge to the target point, but also converge towards each other (with
respect to the metric). This is a very desirable property, especially for GMM representations as here
“limit” cases tend to diverge, as shown in Figure 4.1. It is important to recall that this contraction
property only holds between trajectories generated by the GMM and not between demonstrations and
their replays. Moreover, the complexity of the movement has to be “matched” by the complexity of
the metric, in the sense that for a trajectory converging with respect to the ls-norm, the flat metric
M (y) = Id is sufficient, whereas it has to be nonlinear function of the state for more complex motions.
As the contraction property only holds with respect to the metric, the distance between trajectories can
locally grow in an euclidean sense, somewhat weakening the advantages.

The figure on the left showcases the problems of
learning a dynamical system using unconstrained
learning. It shows the given demonstrations and
velocities (dashed black lines) used to train a GMM
(via greedy insertion, see Verbeek et al. [2003]),
and the velocity field (cyan streamlines), which
is defined as the regression on the GMM by the
maximum a posteriori method. The demonstrations
used are taken from the “ShaprC’-set, part of the
LASA-Dataset. The components of the GMM
are qualitatively depicted by the blue ellipsoids,
centred at the mean and whose shape corresponds
to the covarianz matrix. As expected, the learned
vector field is not stable. To remedy this drawback
one can search for additional constraints derived
from Lyapunov theory. Moreover GMM’s tend to
create vector fields with regions (bright green boxes)
Figure 4.1 — This figure highlights the problem where “neighbouring” initial points generate very
of unconstrained learning using GMM’s. different trajectories (red lines). This is (partly)

prohibited when relying on stability proofs derived

from contraction theory.

50

40

30

T

20

10

—40 -30 -20 -10 0 10

The approach yields very good results on commonly used test-cases, which however only comprise
multiple demonstrations of the same movement, also called unimodal data or demonstration sets. It would
be interesting to see its performance for multimodal datasets, as the parametrization of the metric as
polynomial (for each element of the matrix) and the necessary symmetry of the matrix favours symmetry
of the metric with respect to the origin. Nonetheless this is a very interesting approach which is however,
except for the results, hardly comparable to the one presented in the this chapter due to the different
theoretical frameworks.

In Manschitz et al. [2018] an approach to learn nonlinear dynamics from demonstration called Mixture
of Attractors (MoA) is presented. Even though it can be hardly compared to the other approaches cited
so far as it learns time-dependent vector fields, it is an approach worth mentioning as it has several
interesting properties. Firstly the learning process is formulated as a convexr optimization problem and

118 CHAPTER 4. LEARNING

therefore yields a globally optimal solution without depending on good initial guesses for the parameters
or heuristics. Secondly it prevents what we term drift-error. In all of the other methods, in a form or
another, a statistical model is trained on the given data (position and velocity) and regression is used to
obtain an estimator for the best or most likely velocity, given a position. As this velocity is then integrated
over time, even small, but persistent, errors can lead to large differences in the obtained trajectories. The
reproduction drifts away from the demonstration, ending up in possibly unexplored regions of the state
space. Formulating integral constraints or costs, that is constraints or costs that penalize the difference
between the reproduction and the demonstration, for model learning the velocity is very difficult. To our
knowledge MoA is the only approach directly taking into account such a cost during the learning phase,
but it does not provide (even for the time-dependent case) any kind of convergence guarantee. In the
same article they also show a modified version of their approach to construct a time-independent vector
field, but the construction method is prone to produce limit cycles instead of convergent behaviour.

In Neumann and Steil [2015] the, to our knowledge, first approach to use diffeomorphic transformations
in the context of learning from demonstration is proposed. The approach can be briefly summarized
into the three following steps: First, much like the second group above, one seeks to obtain a highly
compatible Lyapunov function Vy,(y) for the given dataset. In the second step, a (smooth) diffeomorphic
transformation

d: Yo X (4.6)
Yy—x

is constructed such that the image of the level-sets in the demonstration space {y|Vy(y) = a} are hy-
perspheres in the control space {w|wT33 = a} (see Figure 4.2), with their radius equal to the value of
the Lyapunov function. Note that here the diffeomorphism is constructed as transformation from the
demonstration space to the control space, whereas within the approach presented in this chapter it is
constructed from the control space to the demonstration space. This is worth noting not because it is an
actual difference, but in order to avoid confusion regarding the meaning of ® and ®~!.

As Vy(y) is a highly compatible Lyapunov function for the original data, the transformed data-points
xj; = ®(y;;) and &j; = Jp.y,;, with Jp denoting the Jacobian matrix of ®, are highly compatible with
the simple Lyapunov function Vy(x) = xT.z, reducing the complexity of the movement and making
it thus easier to learn. This approach can, for instance, be used together with SEDS (called 7-SEDS)
and alleviate the constraint that the demonstration space trajectories have to converge with respect to
the ly-norm along the trajectory, as only the control space trajectories are used for training SEDS. The
approach in depicted in Figure 4.2.

In order to be able to construct the diffeomorphic transformation ® from the Lyapunov function Vy (y)
in a generic way, not all types of Lyapunov functions are admissible, depending on the construction.
Without going into details, the diffeomorphic transformation presented in Neumann and Steil [2015] is
given as

o= 9(y) = {\/Vy<y>|;~q2 ify#0

0 else (4.7)
and therefore directly inherits the smoothness properties of the Lyapunov function used for construction,
except at the origin. This definition of the diffeomorphism relies on the property that every ray whose
initial point is located at the origin intersects only once with any level-set of the Lyapunov function.
Otherwise the function would not be injective, which can be seen in Figure 4.3. This forces all level-sets
to be “star’-shaped inducing, among others, the restriction that any admissible Lyapunov function has
to be everywhere compatible with the dynamical system y = —y.

In the following sections we present methods to learn globally asymptotically stable nonlinear vector
fields from demonstrations, using an in some sense dual approach to 7-SEDS. Instead of inferring a
diffeomorphic transformation from a compatible Lyapunov function, we seek directly for a diffeomorphic

4.3. PROBLEM STATEMENT AND RELATED WORK 119

demonstation space control space
Vy(y): Y= Ry Vy(z) =z x
Dx
Dy
§=Jg @ = f(x)

Figure 4.2 — This image depicts the approach of (and is also adapted from) Neumann and Steil [2015].
On the left, the original dataset Dy and a suitable Lyapunov function Vy is shown. The diffeomorphism
®, constructed based upon Vy, maps the level-sets onto circles, shown on the right. Applying ® onto the
dataset Dy, one obtains the transformed dataset Dy which converges, in contrast to D,,, with respect
to the lo-norm along the trajectories (almost everywhere). Then some adequate model is trained on Dy,
resulting in the estimation function f(.) with &;; ~ & = f(z;;) and x;;T.f(x;;) < 0. Finally the learned
velocity in the demonstration space is obtained as y = Jg'.f(x ;).

Figure 4.3 — In order for the transformation defined in (4.7) to be a diffeomorphism, each ray with its initial
point at the origin may intersect only once with any level-set of the Lyapunov function. This is shown in
the upper half of the image. The transformation and its inverse are defined by differentiable one-to-one
maps. More complex level-set shapes, as shown in the lower half, cause each ray to intersect multiple
times and therefore the transformation becomes a many-to-one map, which can not be diffeomorphic.

transformation and can then infer a suitable Lyapunov function based on the transformation. The main
idea is to construct a diffeomorphism mapping a “simple” curve, often a straight line, in the control space
X onto the given demonstrations (trajectories in the demonstration space)). Then a “simple” globally
asymptotically vector field can be constructed or learned, which faithfully reproduces these simple curves.

120 CHAPTER 4. LEARNING

By transposing this vector field into the demonstration space using the diffeomorphism, one obtains a
“complex” vector field able to reproduce the demonstrations. As the transformation is diffeomorphic, the
global asymptotic stability of the “complex” vector field is guaranteed by the stability of the “simple” one.

In section 4.4 we show how this can be done for fixed pseudo-linear control-space dynamics allowing the
representation of a unimodal demonstration set for similar demonstrations. In section 4.5 we extend this
approach to unlabelled multimodal demonstration sets showing a higher variance in the demonstrations
relying on learned control-space dynamics.

4.4 ONE-STEP LEARNING

In this section we first introduce a new algorithm for diffeomorphic matching based on smooth symmetric
positive definite kernels and compare it with a state-of-the-art algorithm. Then, in the second part, we
show how it can be used to map simple curves, which can be easily reproduced by DS known to be globally
asymptotically stable like & = —a (which we call control-space dynamics) onto the given demonstrations.
This gives a new way to generate Lyapunov candidates as well as globally asymptotically stable smooth
autonomous systems reproducing the given demonstrations.

Contributions

e A novel method to construct diffeomorphic transformation by composing local dif-
feomorphic transformations

e An efficient algorithm to construct such transformations
e Showcasing the obtainable results for the LASA-Dataset
e Extensions to multimodal and cyclic demonstrations

The material presented in this section was (in parts) published in Perrin and Schlehuber-
Caissier [2016].

4.4.1 DIFFEOMORPHIC LOCALLY WEIGHTED TRANSLATIONS

Diffeomorphic transformations are by definition stable by composition, that is given two C*-diffeomorphism
from R? onto itself, denoted ¥, and ¥;, the transformation ® defined as

="T,00,: ¥ =R? 5 Yy=R? (4.8)
x—y =V (Yo(x))
is also a C*-diffeomorphism from R? onto itself. This is a very convenient property, but before introducing

the algorithm used construct the diffeomorphism we start by introducing its building blocks, the locally
weighted translation (LWT).

Given a smooth (symmetric positive definite) kernel function k,(z,z’): R? x R? — R*, depending
on some parameter p, such that Va, Vp: k,(x,x) =1 and Vp: k,(x,z’) — 0 when |z’ — x|, = oo ,
given a “translation” v € R? and a center ¢ € R? , we consider the following locally weighted translation:

Uyew=a+k,(x,c)v. (4.9)

The so defined transformation is obviously not always a diffeomorphic, so one has to came up with
adequate restrictions and ways to proof their validity.

4.4. ONE-STEP LEARNING 121

Theorem 4.2. If

V(z,x') € R? x R%: %(m,m’).v > —1 (4.10)

then U, ¢ o 5 a C*°-diffeomorphism.

Proof. For a given y € R%, let us try to find & € R? such that U, cv(®x) =y. This can be rewritten

x =1y — k,(x,c)v, so we know that & must be of the form y + rv for some scalar r. The equation

becomes ¥, »(y +1v) =y, i.e: ro+k,(y+rv,c)v=0. Ifv =0, ¥, ., is the identity (and a smooth

diffeomorphism), and = y. Otherwise, solving ¥, . ,() = y amounts to solving r + k,(y +rv,c) = 0.
Let us define:

hy: R—R (4.11)
r—=r+ky,(y+rv,c).

If aakm” (z,z')v > —1, we get: Vr € R, %hy > 0. Because of the absolute monotonicity of hy, and
since hy(r) tends to —oo when r tends to —oo, and to +00 when r tends to 400 , we deduce that there
exists a unique scalar value s,¢.(y) € R such that hy(s,co(y)) = 0. It follows that the equation

U, cv(x) = y has a unique solution:
T =Y+ Spco(T)v.

We conclude that ¥, ., is invertible, and:

Vo) =Y+ 5pc0(@)v. (4.12)

The above proves that ¥ is indeed a bijection. As ¥ has C*° smoothness, the implicit function
theorem can be applied to prove that s,c.(y) is smooth, and as a consequence ¥, ., is a smooth
diffeomorphism. O

GAUSSIAN RADIAL BAsis FUNCTION

In the first part of this chapter, we rely on Gaussian Radial Basis functions (also simply called Gaussian

kernels), due to their smoothness and succesfull application in many areas, including other diffeomorphic

matching algorithms like Glaunes et al. [2004]. The resulting deformation is showcased in Figure 4.4.
The Gaussian Radial Basis function is defined as

o, a') = exp (2 |(z — 2')113) (4.13)

and therefore

ok
(@ a@)v = =20 exp (=% | (@ —) 3) (@ —) v

with the lower bound

2 2 T
—2p2exp (=% [|(@ = 2)I3) & — &', o]}, < ~2%exp (—* |[(@ — &)[3) (@ — @)

V.

After replacing || — @’||, with dx to shorten notations, we derive the above expression with respect
to it to find an extrema by solving

—4p*ox exp (—p*62?) 6z ||v||, — 2p* exp (—p*62?) ||v]|, = 0.

This equation is equal to zero for dz = \[%p and considering the strictly monotonic decrease of k

0, One

can conclude that it is a minima.

122 CHAPTER 4. LEARNING

This minima then yields the lower bound

ok,

(e.al)0z ~VEfolypesp (-3) (1.14)

Finally, by applying Theorem 4.2, one can conclude that the locally weighted translation is a smooth
diffeomorphic transformation if either v = 0 or

p < paras(lolly) = mexp (1/2). (4.15)

This provides a tractable condition that ¥, ., is a bijection. As moreover ¥, ., is C*, one can
deduce that it is indeed a C°°-diffeomorphism.

\If det(J\p) max Jk
1.5 1.5 1.5
1 1 16 0.7
0.5 /:ég:\ 0.5 - 0.5 00
:] /ﬁ y : - 12 ¥ 0.5
[A 41 NN [
0 17 Ny 0 1 0 0.4
-0.5 B -0.5 - 08 0.5 0.3
) T . 0.6 0.2
_ - 04 0.1
15 -1.5 -1.5 O
15 -1 -05 0 05 1 15 -1.5 -1 -05 0 0.5 1 1.5 .15 -1 -0.5 0 0.5

Figure 4.4 — The image on the left depicts the transformation resulting from applying one locally weighted
translation in R? with a Gaussian kernel centred at the origin (¢ = 0), the translation vector defined as

v = [0. 0.5]T and the coefficient p chosen as 0.8pyax(v) = 1.87 onto a regular rectangular grid. The
value of the Gaussian kernel is depicted by the green circle, on which k,(x, c) = 0.5. In the middle image
the determinant of the Jacobian is shown. One can see that it is everywhere strictly positive. Note that
values smaller than one for the determinant of the Jacobian indicate dilatation, whereas values larger
than one correspond to compression. On the right, the maximal eigenvalue of J; = v. aa (@, ¢) is shown.
As one can see the maximal value attained is 0.8 (corresponding to the definition of p as 0.8pyax). On
the lower half of the image the only nonzero eigenvalue is smaller than zero.

CoMPUTING U1

The locally weighted transform ¥, . ,, is a diffeomorphic transformation if either v = 0 or p < pniax(||v][5)
This only proves the existence of the inverse transformation ¥~', but does not provide an efficient way
to compute it. Due to the occurrence of & as such and in the kernel function within ®~!, no analytic
formula can be given for the inverse function. However, as we have seen in section 4.4.1, finding U—!
equivalent to solving r + k,(x + rv,c) = 0. This is a problem of optimizing one bounded variable, as we
have —1 <r <0.

For the Gaussian kernel one obtains

hy =7+ exp (—p2 lly +rv — c||§> =

and the derivative

d
ﬂhy =hy=1- 20%(y +rv —¢) wexp (—p2 ly +rv— c||§)

The function hy is strictly monotone and r is bounded between —1 and 0, therefore one can rely on
Newton’s method to efficiently compute the e-close inverse of ¥ as described in Algorithm 3.

4.4. ONE-STEP LEARNING 123

Algorithm 3 z = ¥~1(y)

Input y, p, ¢
Parameter € > 0
Initialize r = 0.
while |hy(r)] > € do
hy(r)
hy, (1)
r < max(—1., min(r,0.))
end while
Return ¢ =y + rv

r4—T =

Algorithm 3 is the usual Newton method, with the difference that the bounds are explicitly enforced
to achieve faster convergence. Initializing r to zero, instead of the median of the admissible region —0.5
for example, proves to be more efficient, as the kernel is acting only locally and therefore the chances are
higher that the point will not be significantly influenced by this kernel than the opposite.

4.4.2 DIFFEOMORPHIC MATCHING

The problem of diffeomorphic point matching poses the following problem: given two sequences of N
pair-wise distinct points of the same dimension d, X = (i), y_; and Y = (y;)g<;<ny_1» compute
a diffeomorphic transformation ® that maps each x; onto the y,, either exactly or approximately. By
pair-wise distinct points we mean that @; = x; for some i # j implies that y;, = y;. Or, to put it more
formally, by defining some cost or distance function dist(X,Y") between two point sequences holding the
same number of points having the same dimension and by denoting ®(X') the point sequence (®(x;)),, we
seek to find the diffeomorphism that minimizes dist (®(X),Y). We often call the sequence X the source
sequence or curve and Y the target sequence or curve.

STATE-OF-THE- ART

Most of the research concerning diffeomorphic matching is related to medical imaging. Within this
context it is often used to match different images of organs deformed under mechanical stress together.
This stress is often caused by the imaging process itself, as for instance ultrasound imaging, and can
therefore not be avoided. As neither an analytical model nor the necessary applied forces are available to
compute the elastic deformation and thereby correct the image, matching such images via diffeomorphic
transformations has proven to be very successful, see for instance Sotiras et al. [2013]. This is partly due
to the inherent property of diffeomorphisms to conserve topologies. In the case of medical imaging, this
means that organs or tissue segments can neither be dissected nor glued together by the image treatment
process.

The diffeomorphic matching approaches used within the context of medical imaging can be divided
into methods to match points, lines or surfaces. As we use diffeomorphic matching within the context
of learning from demonstration, the distance between two successive points is an important property,
as these points have corresponding time-stamps. So the distance between these points is directly linked
to the current velocity on the trajectory. Therefore the only method applicable in this context is point
matching. Since we have no a priori knowledge about the shapes of the curves to match, the, to the best
of our knowledge, state-of-the-art techniques to solve this problem are based on the Large Deformation
Diffeomorphic Metric Mapping (LDDMM) framework introduced in the seminal article by Joshi and
Miller [2000]. The core idea of this approach is to work with a time-dependent vector field v(z,t) € R¢
with ¢t € [0,1] and define a flow ®(x,t) via the transport equation:

d
8@ 1) = v(®(,1), 1) (4.16)

124 CHAPTER 4. LEARNING

with the initial condition ®(x,0) = . Under very mild regularity conditions of the vector field v(x,t),
such as that the velocity has to be continuous in « and its partial derivatives with respect to have to
be finite (see Dupuis et al. [1998] for details) the resulting transformation

®: RYx[0,1] — R? (4.17)
z,t—y=o(x,t)

is indeed a diffeomorphism. This diffeomorphism also inherits the smoothness property of the generating
vector field, meaning that if the partial derivatives of v(x,t) with respect to @ are C*, then the resulting
diffeomorphism is a C*-diffeomorphism given by

O(x) =x+ /1 v(P(x,t),t)dt. (4.18)
0

Using an appropriate Hilbert space for the vector field v(x,t) and interpreting the point sequences as
a discrete distribution given as a weighted sum of Dirac measures, one obtains a variational formulation
for a cost function taking into account, and therefore performing a trade-off between, the regularity of
the resulting transformation and the matching of the point pairs. This problem can then be solved using
gradient descent algorithms, as done in Glaunes et al. [2004]. Note that the regularity of a diffeomorphic
transformation is difficult to quantify and we use this term (within the context of describing a diffeomor-
phism) in a very informal way. We say that a diffeomorphic transformation is regular, if the kernels have
an appropriate minimal size compared to the problem and there is some well identifiable margin for it
being inversible.

This formulation has several advantages like being able to efficiently trade-off between the regular-
ity of the transformation and matching accuracy. Also this formulation allows for different types of
cost functions measuring the similarity between diffeomorphic geometrical objects and not just point
sequences.

Nonetheless this formulation also entrails significant disadvantages. As ® is not given as a closed-
form solution, evaluating it requires an integration which can be slighty time-comsuming. As our interest
is using the diffeomorphic transformation within the closed loop controller of a robotic system, fast
evaluation of ® and ®~! is crucial. Moreover, the complexity of the approach proposed in Glaunes
et al. [2004] scales badly with the number of points in the provided dataset for two reasons. Firstly, the
complexity of constructing the time-dependent vector field is at least cubic in the number of data points.
This is not desirable, but acceptable as it is offline computation time and therefore not crucial. The real
disadvantage concerns the structure of the vector field v(x,t), as it is given as

v(x,t) = Zk(m,@(mi,t))vi(t). (4.19)

This means that to each point in the sequence X a time-dependent vector field of the form v;(x,t) =
k(x, ®(x;,t))v;(t) is associated, defined by the symmetric positive definite kernel k centred at the current
image of x; and the current velocity v;(t). The total vector field is then simply the sum over the individual
ones. Therefore the evaluation time of ® and ®~ scales linearly with the number of points which is not
admissible in our context.

FAST DIFFEOMORPHIC MATCHING

We propose a completely different approach to construct a diffeomorphic transfomation (approximatively)
matching two point sequences based on the locally weighted translations presented in section 4.4.1. These
translations and their inverse can be evaluated extremely quickly which, together with constant evaluation
complexity with respect to the number of points in the sequences, allows it to be used within a closed
loop controller alleviating some of the drawbacks of LDDMM.

4.4. ONE-STEP LEARNING 125

The main idea is that, as each locally weighted translation defines a simple diffeomorphic transforma-
tion, many such transformations can be composed to obtain more complex ones in an iterative process.
Therefore we fix a number of iterations K, and two parameters 0 < 4 < 1 and 0 < 8 < 2. K is defined
empirically, as the number of iterations required for a good approximation depends on the intrinsic dif-
ficulty of the problem. That is it depends on the difference between the source and target sequences. p
can be interpreted as a “safety margin”: strictly less than 1, it ensures that each resulting LWT cannot
be arbitrarily close to being non-invertible. S is similar to a learning rate: a small value allows only small
modifications at every iteration, whereas large values force larger changes and kernels.

Initially we define Z = X and at every iteration Z is updated with a newly constructed LWT. The
j-th iteration constructing the j-th LWT can be summed up into the following four steps, that can also
be found in the pseudo-code Algorithm 4:

1. select the center c¢; as the point z; in Z that is the furthest away from the corresponding target
point y; in Y

2. select the translation v; = 5(y; — z;)

3. construct the j-th LWT W, .. . by optimizing the size of the kernel p; such that it minimizes
dist (¥, ¢, v,(Z),Y) subject to 0 < p; < pumax(v;) ensuring that it is diffeomorphic

4. perform the update Z =V, .. ,.(Z)

The resulting (smooth) diffeomorphism @ is the composition of all LWT constructed as described
above, so

o=V oVv o oW, o © Vo covo- (4.20)

PK—-1,CK—1,VK—1 PK—-2,CK—2,VK—-2

Algorithm 4 Construct ¢
Input X = (z;);,Y = (y,),
Parameters K € N, u € [0,1[, 8 €]0,2]
Initialize Z = X
for j < 0to K —1do
[argmax (||z; — y;l,)

Cj < 2|

vj By, — z1)

pj < argmin dist (U,c, 0,(2),Y)
PE[O’#PMax(Uj)]

9: Z =Wy e, (Z)

10: end for

11: return (p;, ¢;, v;);

Before presenting the results of this algorithm graphically, we would like to give some additional
remarks and insights gained from experience.

Remark 4.1. Here we have presented a version of the algorithm in which the parameter y and g are
constant, but we can also make them vary from one iteration to another. By experience, matching
performance for the LASA-Dataset was increased by interpolating S linearly between 0.3 for the first
iteration and 0.7 for the last iteration. Varying p has less influence and is therefore usually kept constant
with values ranging from 0.5 to 0.9, where smaller values lead to increased regularity, whereas higher
values might speed up convergence if the underlying trajectories (represented by the point sequence)
have higher curvatures.

126 CHAPTER 4. LEARNING

Remark 4.2. In line 8, the distance function denoted dist was not yet properly defined. A natural choice
for it is to use the sum of the squared errors, so dist (X,Y) =, |l; — yz||g7 however it has proven more
efficient to use the largest singular value norm of (X —Y) = [z; — y;], taken as a matrix in R¥*N. This
can be explained by the fact that the largest singular value norm is a better measure for the improvement
in the direction of v;.

Remark 4.3. Also line 8 of the algorithm performs a nonlinear optimization, but it depends only on one
bounded real variable, so a minimum can be found very quickly and precisely. There is no guarantee
that there exist no local minimum for the admissible range of p, however it seems to be the case in
practice. We can add a fixed upper bound pps > 0, so that all p; € [0, min(par, pmax(v;))], and add
a regularization term in the cost of the optimization problem of line 8, to prevent the diffeomorphism
from overly deforming the space by using kernels approaching a Dirac, to get a perfect matching. For
the examples later on we used the cost function /v dist (\I'p,cj,vj (Z),Y) — ep?, with € > 0 being the
trade-off parameter between better matching and the use of larger kernels. Simply using inputs with a
dense representation (large value of N) has a similar effect (and it barely slows the algorithm down).

Remark 4.4. Nothing prevents the algorithm from getting stuck in a local minimum, so a general proof
of convergence cannot be found. However, as we show in the next sections, experimental results give
empirical evidence that the algorithm is efficient and converges quickly in practice, even on difficult
matching problems. An exception to this are matching problems between straight lines and spirals in 2d
or their equivalent in higher dimensions. In this case the algorithm will inevitable be stuck in a bad local
minima as shown in Figure 4.5. Note that flow based methods also fail in such cases.

1.5 1.5

1 1

0.5 r 0.5

0 0
-0.5 ¢ -0.5

-1 F -1+
-1.5 . . - - . . -1.5)
-1.5 -1 -0.5 0 0.5 1 1.5 -1.5 -1 -0.5 0 0.5 1 1.5
—_— X —_— Y — D(X)

Figure 4.5 — In this figure the matching results for spiral-like trajectories are shown. The matching result
for the MATCHINE software is shown on the left, the result for the proposed approach is shown the
right. In both cases the source and target curves are given as a sequence of 150 points and both methods
fail to find a meaningful matching, highlighting the intrinsic difficulty of such trajectories.

Remark 4.5. If taking the scaling factor 8 larger than 2, the algorithm will diverge for any concrete
matching problem as this is equivalent to enlarge and change the sign of the maximal error at each
iteration. Scaling factors larger than one are rarely useful as they correspond to an oscillatory convergence
(see Figure 4.6). In practice useful values for 8 range between 0.2 and 0.8.

Remark 4.6. The safety margin p is directly related to the smallest occurring eigenvalue of the Jacobian
by Amin(Jw) = 1 — p. By composing K such LWT within the diffeomorphism ®, the worst-case safety
margin that ® is invertible is (1—z)%. This however never happens in practice as the LWT are distributed
over the point sequences and the regions of the smallest eigenvalues do usually not coincide. Nonetheless
the safety margin can get small even in realistic applications as seen on the top right image of Figure 4.7.

4.4. ONE-STEP LEARNING

B=1/s =1

40 40 80
35
30 0 —r
25 0
20 ! BaEH “\\
” 000
10 0 w N S
5 ;
- 1 /

-5 -5 -40

-50 -40 -30 -20 -10 0 10 -50 -40 -30 -20 -10 O -50 -40 -30 -20 -10 O

127

iteration
J

Il
>~<>< QQ =~

Figure 4.6 — The images show the first four iterations of Algorithm 4 for a simple matching problem
and different values of 8. A value of 3 = 1.5 causes Z to “oscillate” and the large values of [|v;]|, force
small values for p and therefore the source points are mainly translated. Choosing 5 = 1/3 the iterated
point-sequence Z converges “monotonically” towards the target sequence Y. For this setting 8 = 1/3

clearly induces the most desirable behaviour.

The top three gridlines, initially parallel to the xg-axis (black line top left image), almost coincide in the
region marked by the blue circle. This is equivalent to the Jacobian having small eigenvalues.

Remark 4.7. As shown in Figure 4.7, the algorithm performs better when the length of the source curve
(by interpreting the point sequence X as discretized curve) is shorter than the length of the target curve.
This is due to the tendency to create pleats when seeking to compress regions. These pleats then generate

local minima and cannot be undone by Algorithm 4.

128 CHAPTER 4. LEARNING

35 .

30 | .-

25 |

20 |

’

15 | .-
.

10

35

30 | /—

25

20 t

sl S

_ R PR
_5 . . .
-40 -30 -20 -10
— X
-- Y

Figure 4.7 — The initial configuration is depicted in the left column, the blue line corresponds to the
source sequence and the dashed black line is the target sequence. The right column depicts the image of
the source sequence (blue line) and the regular grid under the transformation ®. As one can see the image
of the source curve in the top row is very smooth and matches well the target sequence. In the bottom
row, the image of the source sequence shows many pleats and is very irregular, indicating that stretching
the distances between the points is easier than compressing them. As one can see (blue circle) due to
the sequential composition the minimal guaranteed safety margin to non-invertible transformations can
become very small. This results in a highly deformed space.

4.4. ONE-STEP LEARNING 129
EXPERIMENTAL EVALUATION

We compared the proposed Algorithm 4 to a publicly available implementation for diffeomorphic matching
in the LDDMM framework developed by J. Glaunés (the "MATCHINE” software Glaunes [2005])

Given a sequence of points Y = (yi)ie[o N—1] Tepresenting a trajectory, we set X = (Ti)icro n—1) With

€]

)
T =Y+ N(yN *yo)

and applied our algorithm or the LDDMM algorithm to construct a diffeomorphism ® such that ®(X)
and Y match. As shown in the next section, the definition of the source sequence as linear interpolation
between the start and end-point of the target trajectory is not arbitrary, but is exactly our use-case. The
results of the proposed algorithm for some 2D-trajectories taken from the LASA-Dataset. In Table 4.1 a
comparison of the results obtained on these trajectories with our algorithm and the LDDMM algorithm
is shown. Each trajectory, was represented as sequences of 20, 50 and 100 points (i.e. N = 20, N = 50,
N =100). For both algorithms, the same parameters were kept across all the trials, notably the number
of LWTs or iterations for Algorithm 4 was set to 150. In all cases, our algorithm provided a substantial
speedup. For example, with N = 50 (a very small number of data points for statistical learning, ® was
learned in average 58 times faster and, more importantly, evaluated 240 times faster, while the error
dist(®(X),Y) was 2.67 times smaller. The tests were made on an Intel(R) Core(TM) i7-4700MQ @ 2.4
GHz with 4 GB of RAM, with both approaches implemented in Matlab(R).

N Our algorithm LDDMM

Learning: average duration of the construction of ® 20 0.25s 2.78s

50 0.25s 14.5s

100 0.26s 53.3s
Forward evaluation: average duration of computing ®(X) 20 3.05ms 157ms

50 3.35ms 804ms

100 3.72ms 3130ms
Backward evaluation: average duration of computing ®~1(X) 20 29.8ms 145ms

50 35ms 798ms

100 38.5ms 3110ms
Accuracy of mapping: average value of dist(®(X),Y) 20 3.49x 1073 18.2x 1073

50 8.32x 103 22.2x 1073

100 9.51x 1073 22.0x 1073
Generalization: average value of dist(®(X1000), Y1000) 20 19.8x 1073 20.3x 103

50 9.51x 107 21.6x 10

100 11.5x 1073 22.3x 1073

Table 4.1 — Comparison of experimental results for the 4 examples (“Sine”, “Snake”, “hee”, “Leafy”) of the
LASA-Dataset. Remark: standard deviations are negligible for our algorithm: it is deterministic, and the
computation times depend almost entirely on the input size (V) and on the fixed number of iterations
(K). Y is obtained by subsampling from an initial recording of 1000 points: Yip00. X100 is the linear
progression from 1y, to yg99. To get a sense of how precisely the mapping generalizes around the set of
training points, we compute dist(®(X1000), Y1000). We observe that for N = 50 and N = 100, our results
are about twice as accurate as the ones obtained with the algorithm based on LDDMM.

130 CHAPTER 4. LEARNING

4.4.3 LEARNING GLOBALLY ASYMPTOTICALLY STABLE NONLINEAR DYNAM-
ICAL SYSTEMS

In this section, we show how a diffeomorphic matching algorithm can be used to learn globally asymp-
totically stable DS that reproduce the demonstrated trajectories. We show how the introduction of the
control space, demonstration space and a diffeomorphism between them can simplify stability proofs and
allows for the reproduction of highly complex trajectories.

Remark 4.8. We only consider locally Lipschitz dynamical systems, which is compatible with the aim
of learning trajectories for robotic systems. Secondly we assume, without loss of generality, that the
equilibrium point of the dynamical system is at the origin, in order to ease notations.

Remark 4.9. We consider only diffeomorphisms for which we have ®(0) = 0, or in words, diffeomorphisms
that are equivalent to identity at the origin. As we suppose that all demonstrations converge to the origin,
this ensures that all trajectories of the dynamical system converge to the same point and that this point
coincides with the target of the demonstrations. To enforce this, an additional transformation is added
to the diffeomorphism found using Algorithm 4 with vx = —®(0) and cx = ®(0). Nonetheless, all
proofs presented also hold for the general case, by introducing the equilibrium points * and y* with
y* = d(x").

Recall from section 3.2.2 that a function has to be everywhere strictly positive except at the origin,
be zero at the origin and be radially unbounded in order to be called Lyapunov function candidate?.
Additionally we demand in this section that the function has no other local extrema than the origin and
we denote them by V(.). This Lyapunov function candidate is called a Lyapunov function for the DS
@ = f(x), if they are compatible, that is if

Ve € R\ {0} : V,V(x).f(z) < 0.

The demand that a Lyapunov function candidate has no other extrema makes it stronger than the usual
definition, but necessary when using the Lyapunov candidate as a stepping-stone to construct the GAS
dynamical system, as, due to the vanishing gradient at the extrema the compatibility is numerically not
tractable.

In the last sections we have seen that Algorithm 4 is able to construct a C*°-diffeomorphism matching
straight line segments (represented by an equally spaced point sequence) onto a demonstrated trajectory
(represented by a point sequence of the same length). We have also shown that global asymptotic stability
is preserved under diffeomorphic transformations (smooth equivalence). Therefore if one could construct
a globally asymptotically stable dynamical system, which we call control-space dynamics denoted as & =
f(x), whose forward trajectory is precisely this line segment, then we can use the diffeomorphism found
beforehand to deduce the globally asymptotically stable demonstration-space dynamics using the smooth
equivalence. We denote this DS as ¢ = g(y) and its relation to the f(zx) is g(y) = Jo.f(®1(y)). If the
matching is exact, then the trajectory generated by g(y) starting at the initial point of the demonstrated
trajectory will coincide with it. Moreover, with the diffeomorphism being C*°, the demonstration-space
dynamics is guaranteed to have the same smoothness as the control-space dynamics (but with different
Lipschitz constants). In the following we show how to construct such control-space dynamics, deduce
compatible Lyapunov functions in the demonstration space and provide preliminary results.

CONTROL-SPACE DYNAMICS

The forward trajectories of the control-space have to correspond to the straight line segment between
starting point g = x(0) and the end point 1 = 0 of the trajectory, which is, without loss of generality,
terminating at the origin after T" seconds. The prototype of the control space dynamics is therefore given

2Note that here we are always interested in proving global asymptotic or even exponential stability and therefore the
term Lyapunov function candidate is adjust accordingly

4.4. ONE-STEP LEARNING 131

as

. A
&= flz) = —yﬁ. (4.21)

Defined as such, the matrix A € R?*? defines the direction of the velocity and v € R defines the speed.
By taking

ol
T

and A = Idg, we obtain a dynamical system whose trajectory from any starting point is a straight line
to the origin and the time needed to attain the origin from xq is precisely T. The origin is a global
attractor, but it is not an equilibrium point, as lim)|, o f (z) is ill-defined. To remedy this problem we
define a r-ball around the origin within which the norm of the velocity is gradually reduced, so

(4.22)

f) i el >

¢=ﬂ@={u¢ﬂ@ e (4.23)

Defining f(x) this way, it is obviously globally asymptotically stable and Hng is a Lyapunov function.
Also, by choosing r sufficiently small, the difference between the point sequence used to construct the
diffeomorphism and the forward trajectory of &y under f is negligible. This configuration is shown in the
middle row of Figure 4.8.

In a similar fashion, we can construct control-space dynamics providing additional properties. Con-
sider the rotation matrix R (unitary matrix in R?*?) defined as

R= |2y mull(m)] (4.24)
where null denotes the base of the nullspace of a matrix. This causes R.eq with eqg = [1 0 --- 0] T to
point into the direction of xg. Now we define the matrix A according to

A= R.diag([l. N - N]).R" (4.25)

where diag constructs a diagonal matrix from a vector. If choosing X strictly larger then zero, than f(x)
is again globally asymptotically stable with ||:c||§ being a Lyapunov function as (considering the case
outside the r-ball around the origin, but the results also hold within):

V.V(x).f(z) =T, (Id. (—7%) + (—7@%) .Id) x < 0. (4.26)

By multiplying with the non-negative term ||A.xz||, (x # 0), dividing by the strictly positive term v and
considering that A is symmetric, one obtains

xT.(-A).x <0 (4.27)

By chosing) strictly larger than zero, then —A is symmetric definite negative and the inequality holds
everywhere except at the origin as demanded.

Defining f(x) this way has the advantage that by setting A’ to specific values we can influence the
global behaviour of the system. Choosing A’ larger than 1, causes the system to converge quickly towards
the straight line going through xy and the origin, whereas values smaller than 1 cause the trajectories to
keep the distance to the straight line and be “parallel” to it. This behaviour is also transposed into the
demonstration space and therefore provides a effective tool to counter the drift error. If the matching via
® is perfect, then larger ' values cause the state to converge to the demonstration, whereas smaller values
usually cause better generalization of the movement into the regions surrounding the demonstration, as
shown in the top and bottom row of Figure 4.8.

132 CHAPTER 4. LEARNING

N
o

—

— " 157

e

= |

0 0.5 1 1.5 2 2.5 3 3.5

W

Figure 4.8 — This figure shows the influence of X’ on the control- and demonstration-space dynamics. The
diffeomorphism ® is the same for all three rows. The value for \’ increases from top to bottom and one
can see how this gives priority to converging to the trajectory over converging towards the origin.

LyapuNov FUNCTIONS

The prototypic control-space dynamics defined in (4.23) all admit ||£1:||§ as Lyapunov function, we de-
note control-space Lyapunov function (candidates) by Vy(x). Now we show how demonstration-space
Lyapunov functions, denoted Vi (y), can be derived from the control-space Lyapunov functions and the
diffeomorphism ® and showcase their expressiveness.

Theorem 4.3. Let & = f(x) and ¢ = g(y) be smoothly equivalent via the C*-diffeomorphism ®: x €

4.4. ONE-STEP LEARNING 133

Xy €. If Vx(z) is a Lyapunov function for & = f(x) , then Vy = Vyo®~1 is a Lyapunov function
fory =yg(y).

Proof. As Vy is a Lyapunov function and therefore also a Lyapunov function candidate, it can immedi-
ately be deduced that Vy is also a Lyapunov function candidate, since ® is a one-to-one correspondence.
Le. if there exists a y’ # 0 for which V3, would be either zero or a local extrema, then one could imme-
diately deduce that ' = ®~!(y’) is a point for which Vy is either zero or a local extrema. As no such
point can exist, Vy is a Lyapunov function candidate.

For Vy to be a Lyapunov function, we need to have

Vy(y) = VyVy.g(y) <0
for all y # 0. This however is equivalent to (chain rule)
VaVa (271 (y)).Vy@ LJs. f(27(y)) = VoV (2).f()
which we know to be strictly negative as Vy is a Lyapunov function for f(x). O

This provides a convenient way to determine Lyapunov functions in the demonstration space, which
are highly adapted to the given demonstration as seen in Figure 4.9.

The prototypic control-space dynamic corresponds to a scaled linear system and from basic control
theory we know that linear systems are stable iff the system matrix is Hurwitz. In section 3.2 we have seen
that the Hurwitz-criterion is equivalent to proving the existence of a symmetric definite positive matrix
P for which P.A+ A".P is symmetric definite negative and that the quadratic function . P.x is indeed
a Lyapunov function in this case. This holds for the linear, but also for the scaled linear system. Now the
interesting question is, can we construct an optimal Lyapunov function for the prototypic control-space
dynamics?

If we consider for the moment the linear system, then by defining optimal as having the fastest
exponential convergence, so

PA+ AT P < —~*P
with v* > 0 being the largest value for which the inequality holds, then we see that

2P.A < —y*P
as AT = A and by left-multiplying with P~ we get 24 < —~Id.

This indicates that for symmetric system matrices, the convergence rate for quadratic Lyapunov functions
is independent of the matrix P. This is an interesting fact, but also means that all sdp-matrices are optimal
in this sense, providing no way to chose a particular one.

Therefore let’s reconsider the scaled linear dynamics f(x). By defining optimality of the Lyapunov
function as the smallest angle between the inward pointing normal vector on the level-set (equal to
—Pz/|pa|,) and &, one obtains a criterion for ranking the control-space Lyapunov functions. This
criterion is very natural, as it prefers Lyapunov functions for which the velocity points steeper into the
sublevel-set. This angle is the smallest (equal to zero) if these vectors point into the same direction, or in
other words, if & is perpendicular to the level-set. The direction of the scaled linear dynamics is A.x, the
direction of the (inward pointing) normal vector is —P.xz. Therefore if we identify P with —A we obtain
the optimal Lyapunov function (Note that it is not just the optimal quadratic Lyapunov function, but
truly the optimal Lyapunov function among all Lyapunov function candidates). This, and the obtained
demonstration-space Lyapunov functions, is showcased in Figure 4.9.

Another way to look at the resulting diffeomorphism and demonstration-space dynamics is to compare
it with the diffeomorphic construction of navigation functions in Rimon and Koditschek [1991]. A naviga-
tion function in this work is basically a Lyapunov function candidate defined inside the unit-sphere, with

134 CHAPTER 4. LEARNING

<
=
)
S
N

XXX
&
N
N

—
S

N

=
W
A
‘:.&
\‘}{\\
\\\}‘

N

oS

0

D
i

“

‘:\5\

S

i;‘
! “
i
I\

Figure 4.9 — This figure showcases the demonstration-space Lyapunov functions defined as V3, = Vyo®~1.
For all cases of), the optimal Lyapunov function is chosen, and the middle column corresponds to the
case where the control-space Lyapunov function is ||a7||§ (N = 1). The diffeomorphism is the same as
the one used in Figure 4.7. As one can see the optimality of the Lyapunov function in the control space
is, to some extent, transposed into the demonstration space. However, due to the higher gradient of the
diffeomorphism in comparison to the Lyapunov function, the optimality is less obvious.

the additional restriction that it takes its maximal value (arbitrarily chosen equal to 1) on the boundary
of the unit-sphere and the boundary of all obstacles (all obstacles are hyperspheres strictly included inside
the unit-sphere). Such a function can be analytically constructed for a Euclidean sphere world, see Rimon
and Koditschek [1991], page 93. Then a diffeomorphic transformation is given in its analytical form to
transform the sphere world into a star world, representing the real environmental. Here, similar to the
constraints for 7-SEDS, only diffeomorphisms between spheres and star-shaped sets (given as level-sets
of positive definite homogeneous polynomials) can be computed. If then, during execution, the velocity
of the system to be navigated is chosen such that the value of the navigation function declines, one is
guaranteed to avoid the obstacles and converge to the origin/target. So here too the desired properties,
encoded as navigation/Lyapunov function, are conserved under a diffeomorphic transformation and the
diffeomorphism helps to augment the expressiveness of the overall approach. In this work, the matching
algorithm could readily replace the analytic construction of the diffeomorphism and alleviate the necessity
of the target world being star-shaped. It would be sufficient if the obstacles is the target world do not
intersect.

4.4.4 RESULTS AND NUMERICAL EVALUATION

In this section the results obtained by generating the demonstration-space dynamics based on the proto-
typic control-space dynamics (section 4.4.3) and the diffeomorphic matching (Algorithm 4) are compared
to the ones obtained using 7-SEDS using WASQF Lyapunov functions. Note that the way the diffeomor-

4.4. ONE-STEP LEARNING 135

phism is constructed in 7-SEDS, necessitates all level-sets of the Lyapunov functions to be star-shaped.
WASQF function do satisfy the even stronger criteria of having convex level-sets, as one can see in the
examples showing the results for the LASA-Dataset, see Figure 4.11

REsSULTS FOR THE LASA-DATASET AND COMPARISON WITH 7-SEDS

The LASA-Dataset (Khansari-Zadeh and Billard [2011]) is a publicly available database for testing and
comparing different learning from demonstration approaches. It is composed of several datasets represent-
ing handwritten symbols, so 2D-trajectories. Most of them being unimodal, so showing only one symbol
per dataset, which can be learned by the proposed approach in the following way: all trajectories in the
LASA-Dataset are given as a timed sequence of 1000 points, so in the first step a meta-demonstration is
created by averaging over all demonstrated trajectories as they show the same symbol. So each point in
the target sequence Y = (y;), is defined as

1 Nl
Y=% Z Yji (4.28)
j=0

where N is the number of demonstrations available, which are indexed by j. This way a representative
trajectory (the meta-demonstration) is obtained. Finally we scale each dimension, such that the variance
of all points is equal to one, separately for each dimension. Doing this, improves the results obtained, as
the locally weighted translations used as building blocks for the diffeomorphism show a radial symmetry.
This scaling can be seen as another diffeomorphic transformation, as long as the demonstrations are
not degenerated, in the sense that the variance for each dimension is non-zero. Then we proceed to
construct the source sequence the same way as described in section 4.4.2 as an equally spaced point
sequence representing the straight line segment between the initial point of the meta-demonstration and
the origin, denoted X, as shown in Figure 4.10. Finally the diffeomorphism ® and the control-space
dynamics are constructed based on Y and X. The parameter X is fixed beforehand and good results are
typically obtained for values between 1.5 and 5.

45

40, 2.5
35|

30 2

251 1.5
20|

151 1

10} 0.5
5 ¢

ol 0

-5 -0.5

-35 -3 -25 -2 -1.5 -1 -0.5 0
- X =Y

Figure 4.10 — On the left the averaging over all given demonstrations (Y;, black lines) to obtain the
meta-demonstration (Y, red line) is shown. In the zoom, all lines connecting y, and all y;; for some i
are shown in blue. On the right the scaled version of Y and X used to construct the diffeomorphism are
shown.

As one can see in Figure 4.11, the proposed approach allows to efficiently learn very expressive
Lyapunov functions from demonstrations, without the restriction of them being compatible with some
predefined dynamical system. For instance the Lyapunov functions in rows 2,4 and 6 are not compatible
with y = —y and could therefore not be used within the 7-SEDS approach.

Another advantage is the, comparatively, high smoothness of the obtained vector field. SEDS uses
Gaussian mixture models to learn the data under the additional constraints ensuring that ||y\|§ is a

136 CHAPTER 4. LEARNING

common Lyapunov function for all components. These constraints are not compatible with the EM-
algorithm, which is undoubtedly the most popular way to train GMMs, but one has to rely on gradient
descent methods from general nonlinear programming. This often causes the centers of the Gaussians to
be far away from the demonstrations, causing the weights for some kernels to approach machine precision,
preventing a smooth blending of the components. This is especially striking in the 4th row.

4.4. ONE-STEP LEARNING 137

Lyapunov function Vy Dynamics g(y)

presented approach - presented approach

Figure 4.11 — In this figure the results for some of the demonstrations contained in the LASA-Dataset
are shown and compared with the results obtained using 7-SEDS with WASQF (Images in the columns
“WASQF” and “7-SEDS” taken from Neumann and Steil [2015]). On the left the resulting demonstration-
space Lyapunov functions are shown. On the right, the given demonstrations (black lines) the reproduc-
tions from the learned dynamics (red lines) and the streamlines (blue lines) are shown for both approaches.

138 CHAPTER 4. LEARNING
EVALUATING THE DYNAMICS

In the last section it was shown that the learned demonstration-space dynamics is able to represent
complex motions. However so far we have only seen that it is able to recreate the shape or geometry of
the given trajectories, but have not yet taken a closer look at the velocity profile.

Unsurprisingly, the velocity profile for demonstrations which are very similar to the meta-demonstration
are well matched. In fact if the match were perfect, the velocity profiles would inevitably match to due
to the smooth equivalence via a C*>°-diffeomorphism. More surprisingly, the velocity profile is also “well”
generalized into some neighbourhood of the meta-demonstration. A common problem is a “time-delay”
occurring at the beginning of the trajectory, see for instance the trajectory indicated by the green arrow
bottom left image in Figure 4.12. This is caused by a usually high deformation in that area and the
trajectories starting farther away from the meta-demonstration need some transition time to attain the
neighbourhood of the meta-demonstration into which the movement is well generalised. The approach
reaches its limits when the variance in the initial positions is comparable to the size of the trajectories,
so if the bounding box containing all initial positions is, in at least one dimension, of comparable size
to the bounding box containing all demonstrations. In this case the ability of the proposed approach
to generalise the movement is often not sufficient, as in the case of the “WShape” (bottom-right in
Figure 4.12).

— 20 7 20 W T
]/ 8 // A\ 2 X N
-20 20 NN / \\\s‘
-40 T N/
0 05 1 1.5 2 25 3 35 4 0051152253 354 455

time ¢ time ¢

Figure 4.12 — This figure depicts the obtained velocity profiles for four different demonstration-sets.
The velocity profiles are generally well matched, with the exception of the “WShape”. The time-delay
sometimes occuring at the beginning of the trajectory can be best observed for the “ZShape”. Here the
trajectory indicated by the green arrow converges first towards the meta-demonstrations and then follows
it with a time-delay of about 0.5s.

4.4. ONE-STEP LEARNING 139

RESULTS ON MULTIMODAL DEMONSTRATIONS AND CycLIC MOVEMENTS

To go one step further, we seek to apply the method introduced above to multimodal datasets and
cyclic movements, i.e. movements converging towards a limit cycle when ¢ — oo. Due to how the
diffeomorphism and the control-space dynamics are defined, this necessitates some manual adjustments.
First we take a look at the multimodal demonstrations before presenting results for the Van der Pol
oscillator representing a cyclic movement.

Multimodal Demonstrations When working with multimodal demonstration sets, one can define a
source and target sequence by concatenating the source and target sequences constructed in the same way
as in the unimodal case for each mode present in the demonstration set. In order to be able to construct
them, the only additional information necessary for each trajectory is which motion is represented by
it, so the demonstrations have to be labelled. Then, once all source-target tuples (X k,Yk) defined,
we can simply concatenate them (by interpreting each point sequence as a d X Ni-matrix) in order to
obtain the source and target point sequences used to construct the diffeomorphism. This is possible as
Algorithm 4 only seeks to match paired points and uses no other underlying asumptions on the point
sequences. Therefore one can obtain a diffeomorphism for multimodal demonstration sets in a fairly
straight-forward way and the result is shown in Figure 4.13.

50

40

30 . . .
Figure 4.13 — Here a demonstration set with 2

20 modes or movements is shown. Each of them is

10 represented by 7 trajectories (black lines), which

0 are then averaged in order to obtain the two meta-

demonstrations Y? and Y (red lines) as well as

-10 the source curves X and X! (blue lines). These

20 curves, taken as point sequences are then concate-

30 nated in order to obtain X and Y.

-40

-50 1 L Il 1 1 1 1 1 J

-50 -40 -30 -20 -10 0 10 20 30 40

A more significant problem is the definition of the control-space dynamics relying on the prototypic
function. The first observation is, that, except in very specific cases, the matrix A has to be chosen as
the identity matrix in order to assure that the forward trajectories from the initial point of each meta-
demonstration (one for each distinct movement in the dataset) are indeed straight line segments from
this point to the origin. So we can no longer modify the value of ' to improve the global behaviour
of the learned DS, which has proven to be very efficient. Secondly the velocity scaling factor v was
previously defined as distance of the initial point of the meta-demonstration divided by the average time
of a demonstration llzoll,/7. Now multiple § and and T* exist, whose quotients do usually not coincide.
There is no obvious way of modifying the prototypic control-space dynamics to account for this and
therefore the best possible solution is to average over all meta-demonstrations. Therefore, in the case of
multimodal demonstration sets, the velocity profiles of the movements are not well learned, but have a
constant scaling factor with respect to the velocity profiles of the demonstrations. The results for 2 such
datasets are shown in Figure 4.14.

140 CHAPTER 4. LEARNING

50 , 50
40 40 \\
30 30 [j
20 20 \
10 10 F\ ———
-10 -10 \
-20 -20
=30 N -30
-40 -40
-50 OO -50

-50 -40 -30 -20 -10 0 10 20 30 40 -50 -40 -30 -20 -10 0 10 20 30 40
30 30 ¢

20 F 20

10 10 &
0 0
-10

-20 B

-30

Figure 4.14 — As in Figure 4.11 level-sets for the demonstration-space Lyapunov functions and the
demonstration-space dynamics are shown. Note that the reproduced trajectories (shown in red) have
been integrated till convergences, due to the unique speed-factor v, the velocity profiles cannot be re-
spected. As one can see the restriction to A’ = 1 causes the reproduction to stray further from the
demonstrations.

Cyclic Movements The source curves used to construct the diffeomorphism are defined as straight
line segments, as they are, in theory, diffeomorphic to any loop free open curve, which is typically the
case for trajectories representing reaching or grabbing motions. Limit cycles on the other hand are closed
curves and therefore not diffeomorphic to any straight line segment, however they are diffeomorphic to
any circle. Moreover we can define prototypic control-space dynamics in a similar fashion to the globally
asymptotically stable case. In this section we consider only dynamical systems with 2 dimensions, but
the proposed approach can be readily extended to any number of dimensions.

Consider the limit cycle of the DS ¢ = ¢g(y) in the demonstration space given as timed point sequence
of N + 1 points (y;,t;); with yy = yy and T' = ty. We empirically set the source curve to be a circle
with radius 7, = 0.75 min; (||y;||,) and again represent this source curve by N equally spaced points. The
prototypic control space dynamics producing this source curve as forward trajectory can then be defined

- ()-0)- (it

in polar coordinates with wy = 27/, k > 0 and the usual transformation between the polar coordinates &
and the cartesian coordinates @. Defined this way, one can easily see that the circle defined above is the
limit cycle for this dynamical system. Note that the diffeomorphism from cartesian to polar coordinates
has a singularity at the origin, which is however without practical significance.

We demonstrate this approach for the limit cycle of the Van der Pol oscillator, a second order system

4.4. ONE-STEP LEARNING 141

defined as
j=71—-y)y—vy (4.30)
or equally
. Y1
= 4.31
Y (7(1 ~Y5)y1 — yo) (4.31)

which can be shown to possess a limit cycle for v > 0, see for instance Grimshaw [2017]. For the results
presented in Figure 4.15 we used v = 1.5 and k = 0.75r 27/7.

Till now we have only been concerned with trajectories, which can be treated like controllable first
order systems, however the Van der Pol oscillator is a second order system. Therefore two possibilities
arise: either we ignore the second order nature of the system and treat it like a first order system
according to (4.31). This has the advantage that the global asymptotic stability towards the limit cycle
is proven, but leads to inconsistency in the following sense: as y; corresponds to the velocity, we must
have %yo =y, = g(y)[0] (With g(y) denoting again the learned demonstration-space dynamics). This
however is not guaranteed to hold for the demonstration-space dynamics arising from the prototypic
control-space dynamics and the diffeomorphism. The second possibility is to redefine the demonstration-
space dynamics in the following way

y= <g<§>1 m> ' (4.32)

This means that we construct a second order system based on the second component from the learned
vector field. This way, the redefined model, has the same order as the original model, but no guarantees
can be given concerning stability. A trajectory visualizing both approaches is shown on the bottom right
image of Figure 4.15.

As one can see, the learned limit cycle matches closely the demonstrated one, but the trajectory
during the transient phase, so until the limit cycle is reached, can be significantly different. This is due
to the lack of information in these regions as only the limit cycle is provided.

142 CHAPTER 4. LEARNING

&= f()
o \
0.5 \
0 f _— Y
\
-0.5 W
-1.5 \il 05 0 0.5/1/ 1.5
Van der Pol
4 -
.| \\\//
1 = Van der Pol
I — first order

— second order

—

-25-2 -15-1 -050 05 1 1.5 2 25

A

-25-2 -15-1 -0.50 05 1 1.5 2 25

Figure 4.15 — In the top left the prototypic control-space dynamics and the resulting limit cycle is shown.
All trajectories converge asymptotically towards the limit cycle except at the origin where the behaviour
is undefined. In the bottom left image, the resulting streamlines for the Van der Pol oscillator are shown,
again together with the limit cycle. Top right depicts the resulting diffeomorphism, by showing the
source, target and image of the source sequence. Also the image of a regular grid is shown. Note that Y
and ®(X) do almost coincide. Bottom right depicts the resulting vector field (when interpreted as first
order system) along with a resulting trajectory for the original system and the learned dynamical system
interpreted as first and second order system, which all have the (approximately) same limit cycle.

4.5 TwWO-STEP LEARNING

In the last section we have seen how to learn globally asymptotically stable nonlinear systems from
demonstration, relying on a diffeomorphism constructed between a straight line segment and a meta-
demonstration formed by averaging over all trajectories demonstrating the same movement. This ap-
proach, due to its inherent restrictions, works best if the demonstration set is unimodal and only one
or highly similar® trajectories are given. This considerably restrains the applicability of this method to
perform well with real-world data, where multiple, possibly contradicting demonstrations are available
for the same movement. To overcome this and some other drawbacks detailed later on, we present a new
approach which seeks to interweave statistical learning and diffeomorphic matching.

3The notion of similarities between demonstrations is detailed later on, and used in an informal way for now.

4.5. TWO-STEP LEARNING 143

Contributions

Introduction of locally weighted multitranslations

Conception of an approximative curve matching algorithm

Interweaving of learning and curve matching in order to learn movements from one
or many demonstrations

Implementation, experimental set-up and evaluation

4.5.1 MOTIVATION AND PROBLEM STATEMENT

The approach proposed in the last section composed many locally weighted translations into a diffeomor-
phism, based on a heuristic point matching algorithm. This algorithm performs poorly when presented
with a large variance within the trajectories representing the same movement and has an reduced expres-
siveness if confronted with multimodal demonstrations set.

This is caused by multiple reasons. The demonstration-space speed (we say “speed” when we talk
about the norm of & or y and velocity when we talk about the vectors and finally we say “direction” for
the normalized velocity) is “encoded” in the diffeomorphism, as the norm of the prototypic control-space
dynamics is state-independent (except for the small r-ball around the origin). Therefore the evolution of
the speed is entirely defined by the diffeomorphism. While this works well if only one demonstration is
given, this leads to problems for multiple demonstrations as shown in Figure 4.16. Especially if there exist
trajectories which have a similar geometry, but different velocity profiles. Secondly, as the diffeomorphism
and the control-space dynamics is built considering solely the meta-demonstration, the approach cannot
deduce suitable generalizations of the movement into neighbouring regions, as the variance is lost during
the averaging process. Finally, the structure of the diffeomorphism makes it hard to modify or improve a
once constructed diffeomorphism if presented with new demonstrations. Therefore the drawbacks which
we seek to compensate are:

(a) Each demonstration has to be labelled according to the movement it represents, its mode.

(b) The algorithm cannot handle well multiple demonstrations having a high variance for the same
movement.

(¢) The expressiveness is reduced for multimodal demonstration sets.
(d) The dynamics found cannot be improved or modified providing new demonstrations.
(e) The approach often results in overly deformed state-spaces.

In order to tackle these drawbacks, we propose a new approach based on the following main ideas.

Firstly we separate the learning of the speed from the direction or the normalised tangent vector of a
trajectory. This has the advantage that different velocity profiles for (geometrically) similar trajectories
can be better handled. Reconsider the left image of Figure 4.16. Point matching algorithms fail to find
meaningful transformations in this setting, as there exists no reasonably regular diffeomorphism between
the points in the source and target sequences and averaging over the demonstrations also fails to produce
representative a meta-demonstration. However, if we are only interested in matching the geometry of the
source curves onto the geometry of the target curves, then the problem becomes feasible. Learning the
speed directly in the demonstration space is what allows us to do this. The statistical model for learning
the speed averages over the different velocity profiles, whereas the transformation of the geometry is
learned by the diffeomorphism based on curve matching.

Secondly we seek to learn or construct richer control-space dynamics based on the given demonstra-
tions without loosing the GAS property in the control space. As the speed is directly learned in the

144 CHAPTER 4. LEARNING

Figure 4.16 — On the left, the resulting source (blue line) and target (red line) point sequences of the
averaging process proposed in section 4.4.3 when used on demonstrations with similar trajectories having
different velocity profiles (black lines) is shown. As one can see, the averaged curve is not representative
in this case and the averaging process is only a valid option for demonstrations having similar velocity
profiles. The small blue lines going from the ith point in the source sequence to the corresponding point
in the target sequence. If the velocity profiles are similar, these line were almost parallel. The middle and
right image showcase the limitations of the proposed One-Step learning approach concerning the variance
within the demonstration set. Even though the averaging process does produce a representative curve
indicating similar velocity profiles for the demonstrations, the reproduced trajectories do not match
well the demonstrations especially in the first part of the movement. This is partly caused by the
large, compared to the total size of the demonstrations, distances between the initial positions of the
demonstrations and the initial position of the meta-demonstration.

demonstration-space, the control-space dynamics are only concerned with learning directions and the
stability is guaranteed due to Theorem 4.4. By allowing for a richer variety of control-space dynamics
compared to the prototypic control-space dynamics function used within the approach presented in the
last section we are able extract more information from the different demonstrations representing the same
movement. This helps to avoid situations as the one shown in the middle and right image of Figure 4.16.

Each of these steps is detailed in the next sections, but we first take a look at the definitions of curve
matching and why it tends to perform better when presented with multiple demonstrations compared to
point matching algorithms

4.5.2 DEFINITIONS AND CURVE MATCHING

Before introducing the building blocks of the proposed diffeomorphic transformation, some definitions
and notations concerning curves and an adapted version for the smooth equivalence have to be given.

NoTATIONS CONCERNING CURVES

In the remainder of this section, several definitions concerning curves are used, which are given here?.
A curve C embedded in R? is defined as the set of all points generated from its parametric function
c:t€0,T] — c(t) € R, with ¢(0)/c(T) being the start/end point of the curve. We denote by velocity
of the curve the tangent vector

ve(t) = %c(t), (4.33)

4Some definitions have already been stated before, but are repeated for clarity.

4.5. TWO-STEP LEARNING 145

we say the speed of a curve for ||v.||, and the direction of a curve for its normalised velocity, so the velocity
divided by the speed. We say that a curve is in its discretized form C%* when talking about a sorted list
of N + 1 points that correspond to the evaluation of its parametric form for some ¢ € [0, 7] resulting in
Chs = (x; = c(ti))ieo,n With 0 < ¢; <41 <T. We say that a curve is naturally parametrized if

t
c d
VtE[O,T]:s—i—M

—_-D :
T [y llve(2)lly dz

so s corresponds to the fraction of the arc length of the curve between the start point and the point
corresponding to ¢. Or, put in a different way, if ||v.(t)||, = const for all ¢ € [0,T]. We say that two
curves C; and Cy given in their parametric form ¢y and co are geometrically identical if there exists a
strictly monotonic function & : [0, 1] — [0, 1] such that Vs € [0,1] : ¢;(T1s) = c2(T2h(s)). We say that the
source and target curves are compatible if there exists a reasonably regular diffeomorphic transformation
® such that the images of the source curves under the transformation approzimately match the target
curves. We keep this notion of reasonable regularity vague: it roughly corresponds to diffeomorphisms
that produce only limited deformations. So in the middle image of Figure 4.17, the region between the
two target curves would have to be strongly or unreasonably deformed to achieve a match between the
source and target curves. They are therefore not compatible. We also introduce the weaker notion of
dynamic compatibility: we say that the source and target curves are dynamically compatible if there
exist parametrization functions and a transformation ® such that the images of the parametrized source
curves under ® approximately match the target curves, see Figure 4.17. Finally the source and target
curves are considered dynamically incompatible if no such combination of parametrization functions and
a transformation exists (see Figure 4.17).

Compatible Dynamically compatible Dynamically incompatible
ZaN ™ g

dis
Ciy

\
Veas \edy

‘ | i=0
Figure 4.17 — The images show different source (C%*, C%#) and target (Cii®, C#) curves in their dis-
cretized form. The left image shows a compatible configuration, that is there exists a reasonably regular
diffeomorphic transformation for which ®(C%*) ~ C#* and ®(C%*) ~ C#*. The image in the mid-
dle shows a dynamically compatible configuration. That is, there exists no transformation taking the
sources to the targets. However if we seek to match the curves instead of the points representing the
discretized curves, we can find two parametrization functions hg, h; and a transformation ® for which
D(cs0(Tsoho(s))) =~ co(Tias) and P(cs1(Ts1hi(s))) =~ ¢i1(Tas) holds for all s € [0,1], where ¢, is the
parametric form of the curve C,. The image on the right depicts a dynamically incompatible configu-
ration. Since the source curves do intersect and the target curves do not intersect, no diffeomorphic
transformation can exist between these curves independently of the parametrization. In this case the best
solution is to find a transformation that minimizes some error criterion.

146 CHAPTER 4. LEARNING

GEOMETRIC EQUIVALENCE

In section 4.2 it was shown that if two DS & = f(x) and y = f(y) are smoothly equivalent via the
C'-diffeomorphism ®, then both are globally asymptotically stable if one of them is. This theorem
is not directly applicable in this new setting, as the speed of the trajectory is directly learned in the
demonstration space. Therefore the demonstrations space dynamics is now obtained as

¥ =g(y) =my)Je(® (). £(2 " (y)) (4.34)

with & = f(x) being the GAS control-space dynamics and m: y € R? — Rt denoting the regression
model for the speed which takes a point in the demonstration space and maps it to a strictly positive
scaling factor. If (4.34) holds, we say f and g are geometrically equivalent. As we can see if Vy: m(y) =1
we return to the definition of smooth equivalence.

Theorem 4.4. If two DS & = f(x) and y = g(y) are geometrically equivalent via a C*-diffeomorphism
® and strictly positive scaling function m: y € R4 — R, then if one is globally asymptotically stable,
both are.

Proof. In Theorem 4.2 it was shown that the image of forward trajectories of f(x) under ® are forward
trajectories of g(y) if they are smoothly equivalent via ®. As f(x) is known to be GAS all trajectories
converge and therefore all trajectories of g(y) converge too.

The only difference between Theorem 4.4 and Theorem 4.1 is the scaling function m(y). This scaling
only affects the norm of the velocity, not the direction, as it is strictly positive. Therefore consider
an (endless) forward trajectory of f(x) denoted (x(t)),, starting at @y = «(0) and its image under
diffeomorphism (®(x(t))),~, as well as the forward trajectory of g(y) starting at y, = ®(xo) denoted
(y(t));>o- Then for each point we have

Lo () = Ju(t) = Ja.f(alt) (4.35)
which is exactly ¢g(y) divided by m(y), so the tangent vector of the transformed trajectory and the
tangent vector of g(.) are parallel. This means that all points on the image of the forward trajectory
(®(x(t)));>, are also on the forward trajectory (y(t)),~,- Moreover as m(y) is strictly positive, the
direction of movement on the curve does not change and each point on the trajectory is attained exactly
once, so for each y; € (y(t)),s, there exists a unique ¢; such that y;, = y(¢;) and therefore for each ¢
there exists a unique ¢’ such that y(¢') = ®(x(t)) holds and one can conclude that g(y) is GAS if f(x)
is GAS.

A similar demonstration using m’(y) = ﬁ proves the converse implication as the inverse of a
diffeomorphism is also a diffeomorphism.
O

4.5.3 LocALLY WEIGHTED MULTITRANSLATIONS

In section 4.4.1 locally weighted translations have been introduced, which were then composed to construct
the diffeomorphism. As these transformations act only locally, many such transformations have to be
composed, giving ® a deep structure.

In order to give the diffeomorphism a more regular structure reducing evaluation time, we seek to
group multiple translations, similar to the ones presented in section 4.4.1, into one diffeomorphic (sub-)
transformation. These transformations, called locally weighted multitranslations (LWMT) have the form

\II(Pi,Ci,vi)i (:C) =x + Z kPi (:E — ci)vi s (436)
7

4.5. TWO-STEP LEARNING 147

where k, denotes a (symmetric positive definite) kernel function parametrized by the vector of variables
p, ¢ is again the center of the kernel and v is the associated translation. All of them are indexed by ; to
indicate the different components of the multitranslation.

Gaussian Radial Basis functions have the advantage of being C°°, but they are also unbounded in
the sense that their value vanishes nowhere, complicating the proofs that the resulting transformation is
diffeomorphic (when using them within LWMT). Therefore we propose to use the piecewise Polynomial
Radial Basis functions introduced in the next section.

PoLyNoMIAL RADIAL BASis FUNCTIONS

The symmetric kernels used in this section are based on piecewise polynomial functions, so we have

po(llxz —clly) if lz—cl, < b. (4.37)
0 else

ky(x —c) =kop(x —c) = {
The so defined kernel has therefore zero influence outside of the hypersphere centred at ¢ with radius b.
Inside the hypersphere the value corresponds to the value of an nth order piecewise continuous polynomial
po: 1 € [0,b;] = pi(r) € [0,1], evaluated at r = || — cl|, and whose coefficients are stored in 6.
In order for the so defined function to be useful in the context of constructing diffeomorphic transfor-
mations additional restrictions have to be enforced:

* p(0)=1 e p(b)=0
d

e 17p(0)=0 . () =0
d2

* dmpl0) =0 * dd:2p(b) =0

e p(r) is strictly monotonically decreasing i Rt R i OF2
from 0 to b ® kp(r): Ry 0 isC

These conditions ensure the smoothness of the function and that it can be used as a kernel. More specif-

ically, for the rest of this chapter we consider fourth order piece-wise polynomial functions with p being
c2.

SUFFICIENT CONDITIONS

In order for the locally weighted multitranlation to be diffeomorphic additional constraints ensuring that
the resulting function is bijective have to be constructed. To this end, we show that computationally
tractable conditions can be found, guaranteeing that the LWMT is injective, before showing that these
conditions are also sufficient for the LWMT to be surjective.

The proof of injectivity is presented in multiple steps, with each step reducing the conservativeness
of the condition at the cost of increased complexity. In a first step, consider the application

XY (4.38)
N-1
T—x+ Z vi(x)
7=0

with each v;: X — Y being C! and representing a position dependent translation vector.

Lemma 4.5. The application = defined in (4.38) is injective if each v; has a (global) Lipschitz constant
K strictly smaller 1/N.

148 CHAPTER 4. LEARNING

Proof. An application is injective if any element (point) in the codomain is the image of at most one
element (point) in the domain. Therefore any two distinct points x4, x5 € X, T4 # xp, must have
distinct images y4,yp € V:

Ya FYp
E(xa) # Z(xp)
N-—1 N—1
Tat+ Y vil@wa)#xp+ Y vi(zp)
7=0 3=0
N—-1 N—-1
v(za) —) vi(xp) #xp —Ta
=0 j=0

This can be guaranteed by imposing

N—1 N—1

Y wlma)) =Y (wlzp))| <z —wall,
j=0 §=0

N-1 :

(v(wa) —v(wp))|| <lzs—Tall,-
=0)

Applying the triangle inequality and as we supposed v; to be C ! with a global Lipschitz constant K <N
we obtain

N-1 N-1

Z (v(@a) —v(zp))| < Z [v(@a) —v(@p)ll, <

=2

-1 N-1

1
K llzs —wally < 3~ lon = @ally = s — zall, (439)
=0

<
Il
=3

O

In the case of LWMT based on Polynomial Radial Basis function the v; can be identified with the
locally weighted translations v;k;(||lx — ¢;||,). As k;(||x — ¢;l,) = 0if | — ¢;||, > bj;, only the case of
being inside the basis is of interest. Therefore we now have to construct a condition limiting the Lipschitz
constant of v;p;(||x — ¢;l|,) to I/n:

[vjpi ([l + Az — ¢jl,) — vp;(llz — ¢ll,)|, < K; Az,

where Ax = g — x4 and £ = 4. One obtains

[vipi(lz + Az —ejl,) —v;p; (|2 — ¢;ll,)|, <

)+ pi(llz + eA=/laxl, — ¢jll,) —pi(lZ = ¢ll,)
€

sup |[v; (pj<|m<an2
x,€

HAﬂbmﬂwa9>

2
/ (:13 - cj)T M, 1
sup([pf ([lz — ¢jll)]) [| Az, o=, S P [ojlly Az, (4.40)
x J12
with M p; = supm(|p;(||a: —¢jlly)])- This means that each locally weighted translation has a global

Lipschitz constant of Mp/ [|v;l,. As [Jv;l, is known and »p/ can be analytically determined for the
polynomials used in this section as a function of the size of the kernel (b;), the condition

. 1
vje 0N =1 My flugl, < 1 — g (4.41)

<

4.5. TWO-STEP LEARNING 149

with 0 < p < % provides a computationally tractable condition to ensure injectivity of the LWMT with
a safety margin of .

The above presented condition is very conservative for multiple reasons. First, it always takes into
account all locally weighted translations, even in the case that their bases do not intersect. Secondly it
directly reasons about the Lipschitz constants, neglecting the possibility that the translation directions
associated to each kernel can be different.

First the latter drawback is addressed. Again, we seek to proof injectivity by showing that x4, xp € X,
x4 # xp implies that the images y 4 and yz are distinct:

Ya 75 Yp

N—-1
> vipillea—cilly) = > vipi(les — ¢jll,) # x5 — @a.
. P

By denoting * = x4 and Ax = g — x4 this can again be ensured by

N—

N-1
Zvapj lz + Az —¢;l,) = Y vipi(le —¢5l,)| < [|Az],. (4.42)
j=0 7=0

One obtains

N-1 N-1

> pillz+ Az —cj,)v pi(llz = ¢jlly)vi)| =
7=0 7=0

2

((pi(lz + Az —cjll,) —pi(lz = gjlly) vy) | =

2
—1
(aj sup (
X x,€

for some «a; € [—1,1] depending on @, Ax and ¢;. Therefore one can write

<.
I
o

2

pi(ll® + eA2/llazll, — ¢jll,)p; (= — ¢ll,)
€

) ||Aa:||21;j> (4.43)

2

<
Il
o

N-1
i([lx + eAz/|az|, — ¢; i(Jle — ¢
(o up (Rl et bl =) o) |
X x,€ €
j=0 2
- pi(llz + ere/iael, — c;ll,)pi (1 — ¢ll,)
max Z o sup Az, v; =
{O‘j}j —0 x,€ €
7= 2
N-1
M1 A
(M)| A, (4.44)
=0

2

with Mp’ = sup,, (|p(lz — ¢;ll,)|) and Av;[i] = |v,[i]| is the clement-wise absolute translation vector.
The assomated constraint

N-1

> (Mp)| <1-p (4.45)

Jj=0 9

provides a less conservative alternative to the constraint (4.41) while providing a similar safety margin
1 €]0,1[. These constraints also have a geometrical interpretation as shown in Figure 4.18.

150 CHAPTER 4. LEARNING

M,/
—— Vo Po
M,/
— VU1 P1

=== B(Aw, ||Az,r)

.......... B(Az, || Az|,r)

Figure 4.18 — In this figure the different constraints (4.41) and (4.45) are showcased for a two dimensional
multitranslation with two components. Constraint (4.41) sums up the norm of the translations scaled
by the maximal derivative of the kernels. By imposing that it has to be smaller than one, this can be
reinterpreted as a closed ball centred at Ax and the sum corresponds to r. As r is smaller than one, the
ball B(Ax, ||Az|,r) does not contain the origin, which is equivalent to ensuring injectivity. The second
constraint (4.45) can also be interpreted as a ball centred at Az, but here ' = ||Mp6A'U0 + MpflA'ul”2
takes into account the direction of the translation. Therefore the associated ball B(Ax,||Ax|, ") is

smaller, indicating that the constraint is less conservative.

Now the drawback that all locally weighted translations are taken into account, even in the case
that their bases do not intersect, is addressed. Some of the conservativeness of condition (4.44) ensuring
injec<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>