
HAL Id: tel-02865507
https://theses.hal.science/tel-02865507

Submitted on 11 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contributions to robotic control design with formal
safety and stability guarantees

Philipp Schlehuber-Caissier

To cite this version:
Philipp Schlehuber-Caissier. Contributions to robotic control design with formal safety and stability
guarantees. Automatic. Sorbonne Université, 2018. English. �NNT : 2018SORUS346�. �tel-02865507�

https://theses.hal.science/tel-02865507
https://hal.archives-ouvertes.fr

2

Contents

List of Figures 7

List of Tables 9

1 Introduction 13

1.1 Control law synthesis via timed automata . 14
1.2 Stabilizability of dynamical systems . 16
1.3 Learning stable vector fields from demonstration . 18

2 Timed-automata abstraction of controlled systems 21

2.1 Introduction . 21
2.2 Related Work and Background . 22

2.2.1 Timed Automata . 22
2.2.2 Related Work . 24

2.3 Graphs of Control Funnels . 28
2.3.1 Control Funnels . 28
2.3.2 Formalizing the Reach-Avoid Problem for Controlled Systems 30
2.3.3 Reach-Avoid Objectives on Graphs of Control Funnels 31

2.4 Reduction to Timed Automata . 34
2.5 LQR Funnels . 36

2.5.1 Lyapunov Stability and Construction . 36
2.5.2 Computing the Tuples . 37

2.6 Examples of Application . 40
2.6.1 Synchronization of Sine Waves . 40
2.6.2 A 1D Pick-and-Place Problem . 41

2.7 Bounding Funnels with Conjectured Properties . 45
2.7.1 Introducing Bounding Funnels with Conjectured Properties 45
2.7.2 Reach-Avoid Problem for a Modified Dubins’ car 47

2.8 Conclusion and Future Work . 54

3 Stability of Dynamical Systems 57

3.1 Introduction . 57
3.2 Theoretical Background . 59

3.2.1 Convex Optimization and Semidefinite Programming 59
3.2.2 Lyapunov Stability . 59
3.2.3 Contraction Analysis . 63
3.2.4 Positive Polynomials and Hilbert’s 17th Problem 63
3.2.5 Application to Linear and Polynomial Systems and Feedback Controller Design . . 64

3.3 Problem Statement . 69
3.4 Related Work . 70

3

4 CONTENTS

3.4.1 Approaches Involving Lyapunov Theory on SoS-Techniques 70
3.4.2 Approaches Involving Contraction Analysis and LMIs 72

3.5 State-Space Partitioning Based On Optimal Control Input 73
3.5.1 Stabilizability As Min-Max problem . 73
3.5.2 State-Space Partitioning . 73
3.5.3 State Space Partitioning for Perturbed Systems . 76

3.6 Resulting Dynamics and Links to Sliding Mode and QP-Control 78
3.6.1 Sliding Mode Control . 78
3.6.2 From Sliding Mode Control to a Continuous Control Law 79
3.6.3 Comparison with Sliding Mode Control . 81

3.7 Extension to Time-Varying Case and Implementation . 81
3.7.1 Time-Varying Lyapunov Functions and Nonlinear Dynamics 82
3.7.2 Funnel Construction via Retro-Propagation . 83

3.8 Certificates for Non-Positiveness . 85
3.8.1 Underestimators Based on Reformulation-Linearisation-Techniques 85
3.8.2 Reformulation-Linearisation-Techniques for Polynomial Programming 88
3.8.3 Application . 90
3.8.4 Connections to the Theory of Moments . 92

3.9 Computing and Propagating Suitable Lyapunov Functions 93
3.9.1 Time-Dependent Linearisation . 94
3.9.2 Computing Lyapunov Function Candidates Based on LQR-Techniques 95
3.9.3 Adaption to the Constrained Time-Depending Case 96
3.9.4 Examples and interpolation . 97

3.10 Examples and Numerical Results . 100
3.10.1 Simple Pendulum . 101
3.10.2 Acrobot . 104
3.10.3 Controlled Polynomial System . 107

3.11 Conclusion and Outlook . 108

4 Learning Globally Asymptotically Stable Vector Fields 111

4.1 Introduction . 111
4.2 Diffeomorphic Transformations and Smooth Equivalence 113
4.3 Problem Statement and Related Work . 114
4.4 One-Step Learning . 120

4.4.1 Diffeomorphic Locally Weighted Translations . 120
4.4.2 Diffeomorphic Matching . 123
4.4.3 Learning Globally Asymptotically Stable Nonlinear Dynamical Systems 130
4.4.4 Results and Numerical Evaluation . 134

4.5 Two-Step Learning . 142
4.5.1 Motivation and Problem Statement . 143
4.5.2 Definitions and Curve Matching . 144
4.5.3 Locally Weighted Multitranslations . 146
4.5.4 Diffeomorphic Curve Matching . 154
4.5.5 Learning Globally Asymptotically Stable Nonlinear Dynamical Systems 157
4.5.6 Results . 163
4.5.7 Robot Experiments . 170

4.6 Conclusion and Future Work . 176

5 Conclusion 179

5.1 High-level Planning . 180
5.2 Trajectory Servoing and Optimization based Control 182

CONTENTS 5

Bibliography 185

6 CONTENTS

List of Figures

1.1 Control law synthesis via timed automata - Introduction 16
1.2 Stabilizability of dynamical systems - Introduction . 17
1.3 Diffeomorphic learning - Introduction 1 . 19
1.4 Diffeomorphic learning - Introduction 2 . 20

2.1 Introduction - finite automaton . 23
2.2 Introduction - timed automaton . 25
2.3 Control funnel - first example . 29
2.4 Control funnel - exponentially converging trajectories . 30
2.5 Transitions within a funnel timed transition system . 32
2.6 Example run in a TSS . 33
2.7 Catch and realease example . 38
2.8 Absorption for fixed size LQR . 39
2.9 Inclusion testing for ellipsoids . 39
2.10 Synchronisation example . 41
2.11 Example reactive controller synthesis . 41
2.12 A 1D pick-and-place problem - Depiction . 43
2.13 A 1D pick-and-place problem - Solution . 44
2.14 Nonmonotonic convergence . 46
2.15 Conjecturing convergence for LTI-systems . 48
2.16 Modified Dubins’ car definitions . 49
2.17 Dubins’ cart - control law verification . 50
2.18 Conjectures Dubins’ car . 51
2.19 Typical problem instances and funnel system for Dubins’ car 52
2.20 Dubins’ car - Solution problem 1 . 53
2.21 Dubins’ car - Solution problem 2 . 54

3.1 Lyapunov’s second method . 61
3.2 Lyapunov’s second method . 62
3.3 Stability for Lyapunov criterion and contraction analysis 68
3.4 State space partitioning . 75
3.5 State space partitioning - Perturbed case . 77
3.6 QP control law . 81
3.7 Comparison with sliding mode . 82
3.8 Dichotomic volume maximization . 85
3.9 Simple RLT example . 88
3.10 Bounding box for RLT . 92
3.11 Torque controlled pendulum - static . 98
3.12 Torque controlled pendulum - dynamic . 99

7

8 LIST OF FIGURES

3.13 Zone interpolation . 100
3.14 Lyapunov candidate computation comparison - Pendulum 102
3.15 Comparison with Drake Toolbox - Pendulum . 103
3.16 Swing up motion- Pendulum . 104
3.17 Difference separation plane and surface . 105
3.18 Comparison with drake toolbox - Acrobot . 106
3.19 Acrobot swing-up . 107
3.20 Example polynomial dynamics . 108

4.1 Unconstrained GMM - problems . 117
4.2 Depiction τ -SEDS . 119
4.3 Depiction τ -SEDS - restraints . 119
4.4 Locally weighted translation . 122
4.5 Problem case - Spiral movements . 126
4.6 LWT based diffeomorphism - β influence . 127
4.7 LWT based diffeomorphism - direction influence . 128
4.8 Control-space dynamics - λ′ . 132
4.9 Demonstration-space Lyapunov function . 134
4.10 LASA dataset - Constructing Y and X . 135
4.11 LASA dataset - Results . 137
4.12 LASA dataset - Results velocity profiles . 138
4.13 Source and target construction - multimodal demonstration set 139
4.14 Multimodal demonstrations . 140
4.15 Cyclic motion . 142
4.16 Limits of point matching approaches . 144
4.17 Depiction of compatible and incompatible configurations 145
4.18 Locally weighted multitranslation - injectivity . 150
4.19 Locally weighted multitranslation - injectivity 2 . 151
4.20 Locally weighted multitranslation - surjectivity . 153
4.21 Approximative curve matching - Iterations . 158
4.22 Approximative curve matching - Comparison . 159
4.23 Locally converging directions . 161
4.24 Locally converging directions around converging trajectories 162
4.25 Demonstration-space speed model . 163
4.26 Comparison One-Step and Two-Step Learning . 165
4.27 Two-Step learning LASA - continued . 166
4.28 Comparison One-Step and Two-Step learning - Velocity profiles 167
4.29 Two-Step learning - Velocity profiles . 168
4.30 Two-Step learning - 10d demonstrations . 170
4.31 Robot experiment - Iterative learning . 174
4.32 Robot experiment - Identified model . 175
4.33 Robot experiment - Identified model . 177

5.1 Layered control structure . 179

List of Tables

4.1 Comparison with MATCHINE . 129

9

10 LIST OF TABLES

Notation

Groups and sets

γ scalars are usually lowercase Greek letters, sometimes Latin letters

v vectors are usually bold lowercase letters, sometimes Greek letters

M matrices are usually uppercase Latin letters

N denotes the natural numbers

Z denotes the integers

Q denotes the rational numbers

R denotes the real numbers

X−|+ with X ∈ {Z,Q,R} denotes the negative | positive integers, rational or real numbers

X−|+
0 with X ∈ {Z,Q,R} denotes the non-positive | non-negative integers, rational or real numbers

Xn with X ∈ {Z,Q,R} and n ∈ N denotes a column-vector of natural, rational or real numbers with
n-elements

Xn×m with X ∈ {Z,Q,R} and n,m ∈ N denotes a matrix of n-rows and m-columns over the integers,
rational or real numbers

R denotes the real numbers, scalars are usually lowercase Latin font

Sn denotes a quadratic symmetric matrix, so if A ∈ Sn then AT = A

Sn
+|− denotes the cone of symmetric semidefinite positive or negative matrices, so symmetric matrices

with only non-negative or non-positive eigenvalues

Sn
++|−− denotes the cone of symmetric definite positive or negative matrices, so symmetric matrices with

only strictly positive or negative eigenvalues

2X denotes the power set of the set X, so the set of all possible sets that can be formed from the elements
in X. By abuse of notation we note 2R

n

the (infinite) set of closed subset of Rn.

∂S denotes the boundary of the set S

Algorithms

λ(A) denotes the vector of eigenvalues of the square matrix A

λMax(A) denotes the largest eigenvalue of the square matrix A

λMin(A) denotes the smallest eigenvalue of the square matrix A

C = chol(A) denotes the cholesky factorization of a matrix A ∈ Sn
++ such that CT.C = A

11

12 LIST OF TABLES

Chapter 1

Introduction

One of the key issues for robotic applications, or in a larger sense for all cyber-physical systems, is safety.
Safety can have different implications depending on the field of work and the system concerned. However
a very broad definition of safety can be given as ensuring that certain states or events never occur or that
the consequences resulting from such unsafe events are bounded to an acceptable level, no matter the
circumstances. For instance, in an environment shared by robots and humans, one can either demand
that the robot never collides with any human or one could demand that if a collision occurs, the maximal
impact force must be low in order to avoid injuries.
There are different ways to achieve safety, and one of them can be labelled as passive safety. It can either
be directly ensured by the hardware, using for instance compliant actuators or shock absorbing coating, or
by making appropriate changes to the control strategy. Adapting the hardware is not always possible or
reasonable, as the solution has to be explicitly designed to prevent a specific consequence. This approach
therefore provides no generic way to deal with safety concerns. For instance the collaborative robots
Baxter and Sawyer have serial elastic actuators (SEA) to reduce the maximal impact force and absorb
energy on (unexpected) impact. However, if the robotic arm is near a singular configuration during the
impact, the SEA may not be able to reduce the impact force to an acceptable level. Passive safety can also
be obtained in control laws by imposing constraints on the actuation and formally proving that, under an
assumption of faithfulness for some physical model, these constraints do not allow undesirable behaviours
such as excessive velocity (eventually relative to the obstacle) or force (see for instance Meguenani et al.
[2016]). These approaches often lead to conservative solutions as they typically only reason about the
near future. It can even occur that multiple, concurrently active safety constraints are incompatible, for
instance in the case of multi-object avoidance, causing the problem to be infeasible . Such situations can
occur as this approach so to speak misses informations about the context and (future) world state.

In this thesis a more active type of safety is pursued, strengthening the constraints on the control
strategy rather than directly on the control outputs. The goal is to provide means to automatically
generate control strategies that provide formal, model-based guarantees that no undesired states or events
occur, considering all possible circumstances. This is a somewhat more ambitious goal than passive safety,
in the sense that it does not seek to modify the inputs of the system based on additional constraints and
an existing control strategy, but to generate a control strategy that can be safely executed without
additional “run-time” constraints or hardware based safety. It is very important to note that what we
aim to do is to generate controllers that can be considered safe under the hypothesis that the model used
for the dynamics of the robot and its environment is sufficiently correct (assume-guarantee approach).
With model-based approaches, making this assumption is unavoidable, but in real applications it should
never be taken for granted. Making sure that the model is good enough, or refining it via extensive
testing, is necessary, and only then can model-based approaches for safety such as ours be of relevance.
In this thesis we use classical models of the robot dynamics, and suppose that they have been empirically
verified. The approaches presented rely on formal proofs of safety based on a model, and while they give

13

14 CHAPTER 1. INTRODUCTION

absolute certainty for evolutions that happen according to the model, they are no more valid than the
model itself, and therefore their use in practice must always be accompanied with important efforts of
modelling. Even though this implies that the presented approaches do not provide the certainty of safety
when used on a real robot, one of their interesting strengths is precisely that, by having a formal proof of
safety, any failure brings valuable information on the limits of the model (or, as we will see in section 2.7,
approximate abstractions of the model). Therefore, a simultaneous effort on empirical verifications of
the model and on synthesis and tests of formally proven control strategies can be beneficial for the
improvement of both the model and the controller and therefore increase the overall confidence in the
considered system. Here we do not focus on designing and testing models (except for section 4.5.7), even
though we present ways to abstract or approximate conveniently some of their properties. Our main
focus is on the automated synthesis of control strategies that have formal guarantees of safety.

Generating such strategies is a computationally challenging task as synthesis is in general significantly
more complex than verification problems when considering the same system. We are therefore exploring
ways to define model-based computationally efficient abstractions for robotic systems that can be used
to generate control strategies for a priori defined specifications. Such efficient constructions are possible
in the case of controlled linear dynamics and to some extent for nonlinear dynamics. Moreover some of
the proposed methods are also applicable in the context of general cyber-physical systems, considerably
enlarging the possible field of application.

To this end, this thesis presents contributions to three different but interconnected research topics:

(1) Control law synthesis via timed automata abstraction

(2) Stabilizability of dynamical systems

(3) Learning stable vector fields from demonstration

for which the motivation and interconnections are summed up in the remainder of the introduction.

1.1 Control law synthesis via timed automata

The first approach considered in this thesis is to perform controller synthesis with the help of formal
methods. The initial goal of formal methods is verification, which consists of automatically verifying that
a given object (for instance a graph, or a finite automaton) complies with some specification expressed as
a logical formula (e.g. “every state is reachable from any state”). Such methods were initially developed
in the context of “verified software”, where some properties of the discrete steps of an algorithm are
translated into , for instance, a finite state machine, which can then be used for verification.

More advanced formal methods include controller synthesis, a problem in which the interaction be-
tween a controller and the environment is modelled as a two-player game, one player being the controller
and the other the environment, the adversary. The goal is to design algorithms that can generate con-
troller strategies that are proven to respect a given specification no matter which action the adversary
chooses (e.g. whatever happens, the controller can always force the system to eventually go back to
its initial state). These tools are powerful because they can produce strategies that verify potentially
complex specifications.

There is a long and rich history of scientific works concerned with the problem of using formal
methods for controller synthesis, dating back as far as the early 1960’s (Church [1962]). A broad variety
of techniques and more or less restrictive specification languages were henceforth developed, with a major
breakthrough being the works of Rabin (Rabin [1969]) and Büchi (Büchi and Landweber [1969]) that
independently proved the decidability of important synthesis problems using tree automata and infinite
games respectively. Since then many works tackled the problem of synthesizing controller strategies for
specifications given in different types of logics (Kress-Gazit et al. [2009]; Smith et al. [2011]) and for a
multitude of different problems like scheduling or correct multi-agent behaviour. However, even though

1.1. CONTROL LAW SYNTHESIS VIA TIMED AUTOMATA 15

these specification languages do allow for a rich variety of specifications and impressive results have been
obtained, they lack the possibility to express quantitative constraints or dependencies on time. Indeed
the specification languages used in the works cited above can only incorporate qualitative constraints on
time (like linear temporal logic (LTL, see Pnueli [1977])), such as “state B is the successor of state A”, but
no quantitative statement like “state B is the successor of state A and has to be reached before x-time
units have passed”, can be made. This is partly due to the fact that such model checking tools were
originally developed to analyse sequential computer programs or software and therefore the qualitative
notion of time was sufficient. This changed with the occurrence and growing complexity of cyber-physical
and hybrid systems. These systems have both, discrete states which can change instantaneously and
continuous states or variables that often evolve according to dynamics described by differential equations.
In this context it can be crucial to have a quantitative notion of time in order to describe the behaviour
of the system in a correct or sufficiently precise manner. Therefore we pursue a different approach within
this thesis relying on timed automata (TA), which provide an expressive framework to describe timed
events. Also timed automata are a well established research field, providing many theoretical results and
mature tools like UPPAAL (Behrmann et al. [2006]).

Timed automata (TA) have been introduced in the 90’s by Rajeev Alur and David L. Dill (Alur and
Dill [1994b]) and allow for the description and analysis of systems that have quantitative constraints on
time. To be more specific, a timed automaton is a finite automaton equipped with a finite set of clocks
that continuously evolve at a constant rate, but which can be reset during transitions. The verification
of logical constraints on dynamical systems by abstracting them to timed automata (see Maler and
Batt [2008]; Sloth and Wisniewski [2013]) and then checking reachability conditions on the resulting
automata is a field of active research and yielded interesting approaches. These approaches are often
computationally intensive as they rely on some form of discretization of the state-space which tends to
scale badly with the size of the system. The usage of timed automata to represent controlled dynamical
systems in order to generate control laws or strategies has not been explored as much, but nonetheless
attracted a certain amount of attention (see Asarin et al. [1998]; Sloth and Wisniewski [2010b]). These
approaches vary in the types of allowed specifications and the “coarseness” of abstraction, suiting the
targeted application.

We developed a new representation for cyber-physical systems based on Lyapunov stability which is
compatible with the theory of timed automata. In this representation the discrete states correspond to
time-dependent invariant subsets in the state space of the system. Typically we use stabilisable regions
around reference trajectories and derive conditions allowing to safely switch between them. The safety of
these transitions can then be translated into guards on the transitions in the timed automaton, making
the timed automaton a sound abstraction, as shown in Figure 1.1

Once the timed automata is constructed, a control law can be synthesized by specifying the set of
undesired events or states as logical formula or auxiliary automaton and solving the reachability problem
for the TA under these constraints. Therefore in this framework controller synthesis corresponds to the
verification of the TA. As verification is in general less complex than synthesis we reduce the computa-
tional complexity, however at the price of possibly obtaining larger automata.

This approach has been implemented in Python and the verification software UPPAAL. Several nu-
merical examples have been realised concerning, for instance, the control of a mass point in acceleration for
non-trivial planing or the path-planning for the Dubins’ car. Note that the dynamical system describing
the Dubins car is a nonlinear and nonholonomic system, for which formally proven abstractions generated
from Lyapunov theory are difficult to obtain. In order to treat this kind of systems, the definition of the
discrete states is adapted: instead of formally proving their properties using Lyapunov theory, they are
conjectured based on numerical results. Therefore the resulting control strategy is only guaranteed to
be safe if the conjecture holds, but it potentially allows to synthesize control laws for systems for which
proofs based on Lyapunov theory cannot be automatically generated. In this case each failure of the
control strategy directly provides a trace pinpointing the violating conjecture and allowing to improve
the coherence between the model and the abstraction by (repeated) refinement.

18 CHAPTER 1. INTRODUCTION

1.3 Learning stable vector fields from demonstration

In the third research topic we investigate means to learn globally asymptotically stable nonlinear vector
fields from demonstration. This is an interesting approach for multiple reasons. Firstly such vector fields
provide a formal guarantee that all states are driven to a unique position: the equilibrium point of the
vector field. Such vector fields have therefore a natural correspondence with reaching or grabbing motions,
by interpreting the vector field as a velocity field for the robot in the task or joint space. Therefore learning
nonlinear vector fields from demonstrations can be seen as a type of robot programming by demonstration
and the difficulty is to guarantee stability while also faithfully recreating the demonstrations and to
provide suitable generalization of the movement into neighbouring regions. Secondly, seen from a formal
method point of view, such vector fields naturally translate certain linear temporal logic specifications to a
corresponding velocity for a dynamical system. So given for instance the formula “eventually position A”
and a globally asymptotically stable vector field with its equilibrium point at position A, then it is
possible, independently of the current state of the system, to use the vector field to define the (desired)
velocity of the system and it is guaranteed that position A will be reached and the specification is
verified. Finally such learned vector fields can also be seen as generators of reference trajectories, which
can then be used within the timed automata abstraction (research topic (1)) by constructing funnels
around them. As it is assumed that the given demonstrations correspond to feasible trajectories for the
concerned dynamical system, deducing an underlying vector field with good generalization properties
allows to create reference trajectories between initial points “close” to the demonstrations ending at the
equilibrium point. Due to the generalization of the movement by the vector field, these are likely to be
suitable for the dynamical system. This is an interesting property as obtaining such trajectories is a
generally a difficult task (for motion planning under dynamic constraints see for instance Plaku et al.
[2010]). In this thesis the focus lies on the first point mentioned above, teaching a robot new movements
via learning from demonstration, as it is the most direct application and also a large and very active
research topic which we introduce hereafter.

The learning from demonstration (LfD) paradigm allows non-expert users to conveniently teach the
robot new skills by constructing goal-driven behaviour from demonstration. Teaching a robot by demon-
stration is a very promising route to increase the flexibility and ease of use of robots that frequently
encounter new tasks and for which no specifically trained staff is available, like service robots or manu-
facturing robots in small enterprises. Teaching someone/something by demonstration is very natural for
humans and resolves many frequently encountered problems in motion planning like singular configura-
tions, self collision and redundancy. The paradigm has a long and rich history in the robotics community
with more and more commercial applications appearing (Baxter, Sawyer and others). The learning is
normally based on well-known machine learning techniques training models like Gaussian mixture models
(GMM) or Markov decision process (MDP) on the given data. An interesting way to encode motions
is to represent them as (autonomous) dynamical systems, as this increases the motions inherent robust-
ness to spatial and temporal perturbations. Despite the significant progress made in the last ten years,
guaranteeing (global exponential) stability for the learned dynamical system without deteriorating the
quality of reproduction remains a challenging problem.
To tackle this problem we propose a solution that takes advantage of the conservation of topological prop-
erties, such as convergence, under (smooth) diffeomorphic transformations. We can learn complex, highly
nonlinear vector fields by constructing a diffeomorphic transformation that maps simple curves (mostly
straight lines) which can be easily and faithfully reproduced by a “simple”, globally exponentially stable
vector field onto the given demonstration, see Figure 1.3. In this way, the diffeomorphic transformation
increases the expressiveness of the simple dynamical system, while preserving the stability properties. In
order to contruct the diffeomorphism we present a novel method to perform (approximative) diffeomor-
phic point matching, resulting in smooth transformations, which is advantageous when seeking to control
second order dynamical systems (depicted in Figure 1.3).

Nonetheless this approach has several drawbacks, which are mainly due to the simplicity of the
source curves used to construct the diffeomorphism and the corresponding simplicity of the control space

Chapter 2

Timed-automata Abstraction of

Controlled Systems

The development of formal methods for control design is an important challenge

with potential applications in a wide range of safety-critical cyber-physical systems.

Focusing on switched dynamical systems, we propose a new abstraction, based on

time-varying regions of invariance (the control funnels), that models behaviours of

systems as timed automata. The main advantage of this method is that it allows au-

tomated verification of formal specifications and reactive controller synthesis with-

out discretizing the evolution of the state of the system. Efficient constructions are

possible in the case of controlled linear and to some extent for nonlinear dynamics.

We demonstrate the potential of our approach with two examples.

2.1 Introduction

Verification and synthesis are notoriously difficult for hybrid dynamical systems, i.e. systems that al-
low abrupt changes in continuous dynamics. For instance, reachability is already undecidable for 2-
dimensional piecewise-affine maps (Koiran et al. [1994]), or for 3-dimensional dynamical systems with
piecewise-constant derivatives (Asarin et al. [1995]). For systems governed by state-dependent differen-
tial equations, there also exist many negative results. The case of general nonlinear differential equations
is only treatable using (conservative) approximations as in Asarin et al. [2003] or Althoff et al. [2008].
Even for the case of linear differential equations, exact reachability for the system ẋ = A.x is decidable
only if A has a certain eigenstructure1, affecting its applicability for real-world systems (see Lafferriere
et al. [1998]).

To enlarge the class of systems considered, switched (nonlinear) systems of the form ẋ = fi(x)
with x ∈ Rd denoting a point in the state space, x ∈ Rd being the velocity of the system and fi ∈
{f0, f1, · · · , fN} denoting the current (nonlinear) dynamics, belonging to the finite set {f0, f1, · · · , fN}.
To enable automated logical reasoning on switched dynamical systems, most methods tend to entirely
discretize the dynamics, for example by approximating the behaviour of the system with a finite-state
machine. Alternatively, early work pointed out links between hybrid and timed systems (Maler et al.

1it has to be either nilpotent, have only real or only imaginary eigenvalues

21

22 CHAPTER 2. TIMED-AUTOMATA ABSTRACTION

[1992]), and several methods have been designed to create formal abstractions of dynamical systems that
do not rely on a discretization of time, such as Frazzoli et al. [2005].

The contribution proposed in this chapter is a novel timed-automata abstraction of switched dynamical
systems based on a particular kind of time-varying regions of invariance: control funnels. Recent results
have shown that these invariants are very useful for robust motion planning and control (see for instance
Tedrake et al. [2010a]; Majumdar and Tedrake [2013]; Majumdar et al. [2013a]), and that funnels or
similar concepts related to the notion of Lyapunov stability or contraction control analysis can be used
for formal verification of hybrid systems (Julius and Pappas [2009]; Duggirala et al. [2013]), and for
reactive controller synthesis as in DeCastro and Kress-Gazit [2014].

The chapter is organized as follows: after a brief introduction to timed automata and an overview of
related approaches in section 2.2, section 2.3 describes how control funnels, in particular for trajectory
tracking controllers, can be used to create timed transition systems that abstract the behaviour of a
given switched dynamical system, and as a result can potentially allow the use of verification tools to
solve Reach-Avoid problems for this kind of systems. In section 2.4, we show how these timed transition
systems can be encoded as timed automata. In section 2.5, we consider the case of linear dynamics and
introduce the notion of fixed size LQR funnel, a convenient form of funnel used within the examples and
present efficient algorithms to construct the funnel system and the corresponding timed automaton. In
section 2.6 we present a variety of problem cases for which we can successfully perform controller synthesis
reformulated as a reachability problem in a timed automaton deduced from a LQR-funnel system. These
cases comprise motion planning for the Dubins’ car, a nonholonomic system, and a Pick-And-Place
scenario under logical constraints. In all cases the model checker Uppaal (Behrmann et al. [2006]) or
its extension to timed games Uppaal-Tiga (Behrmann et al. [2007]) are used to solve the resulting TA.
Finally section 2.8 concludes the chapter and presents some avenues for future work.

The contributions presented can be summed up as

Contributions in this chapter

• Presentation of a novel abstraction method for switched dynamical systems

• Reduction of such abstractions to timed automata

• Proof-of-concept by synthesizing control laws and strategies for different systems
and problems

The material presented in this chapter is (partially) published in Bouyer et al. [2015,
2017].

2.2 Related Work and Background

2.2.1 Timed Automata

Timed automata were introduced in the early 90’s as an extension to finite automata in Alur and Dill
[1994b] and have gained great popularity within the formal verification community. But let us first
introduce finite automata and build on that.

A finite automaton is described by a tuple A = (L,L0, LF ,Σ, E) where L is a finite set of locations
or states, L0 ∈ L is the initial state, LF ⊂ L is a set of final states, meaning that a run terminates when
attaining any of these states, Σ is called the alphabet of the automaton and contains all labels associated
to the edges and finally the set of edges E ⊂ L × Σ × L of the form (ℓ, δ, ℓ′). Two locations ℓ, ℓ′ ∈ L

are said to be connected if there exists an edge (ℓ, δ, ℓ′), also denoted ℓ
δ
−→ ℓ′, in E for some letter δ of

the alphabet Σ. We also say that there exists a transition between ℓ and ℓ′ in the automaton. Here we
are only interested in deterministic finite automata. That is the set L contains only a finite number of
states and it is deterministic in the sense that all outgoing edges from a state have different labels. A

24 CHAPTER 2. TIMED-AUTOMATA ABSTRACTION

verification of the automaton to be more involved (see Bouyer et al. [2005]), leading to higher complexity
of the verification process. As we will see, our approach does not depend on this kind of guards and
we therefore only consider so-called diagonal-free TAs. We denote by C(C) the set of clock constraints
over C. We write v |= g if v satisfies g. That is if the current values of all clocks satisfy all atomic
constraints, or better propositions, in g. A reset of the clocks is an element res of (Q ∪ {⊥})C (which
we may write R(C)), and if v is a valuation, its image by res, denoted res(v), is the valuation mapping
c to v(c) whenever res(c) = ⊥ (the clock is unchanged), and to some predefined constant res(c) ∈ Q
otherwise (deterministic reset). In the framework of timed automata such resets can only take place
during a transition.

Finally Inv is called the invariant labelling function, which assigns to each location a clock constraint
that has to be verified while staying in this location. Note that different possibilities to define the tuple
representing the timed automaton exist, including or excluding the explicit labelling of the transitions
and the presence of invariants. These are however only differences in notation and do not restrict or
extent the expressiveness of the automaton. Here the most explicit version is chosen, as in Sloth and
Wisniewski [2010a].

In contrast to finite automata the configuration in a TA is no longer entirely determined by the current
location ℓ, but by the pair specifying the current state and clock valuation, so by the pair (ℓ, v) ∈ L×RC .
Or informally by the state and the “current time”. The invariant labelling function Inv : L → C(C)
assigns an invariant to each location, that is a set of clock constraints that has to be satisfied when in
this state. Therefore the configuration pair introduced above always has to be such that v |= Inv(ℓ).
Finally the finite set of edges E is a subset off all possible transitions in the TA, defined by the tuples
(L×C(C)×R(C)×Σ×L). That is, a tuple describing the initial location, the clock constraints (defining
“when” the transition can be taken), the clock reset (defining the clock valuation after the transition) and
the letter or symbol associated to this edge as well as the target location.

The configuration given configuration (ℓ, v) of the timed automaton A evolves according to the fol-
lowing two rules:

• time-elapsing transition: (ℓ, v)→ (ℓ, v +∆) whenever v + δ |= Inv(ℓ) for every 0 ≤ δ ≤ ∆;

• switching transition: (ℓ, v)→ (ℓ′, v′) whenever there exists (ℓ, g, res, ℓ′) ∈ E such that v |= g∧ Inv(ℓ),
v′ = res(v), and v′ |= Inv(ℓ′).

A run in such an automaton is, much similar to the one in the case of finite automata, a sequence of
consecutive transitions, or more specifically, a sequence of time-elapsing and switching transitions. This
sequence, due to the labelling and the timing requirements is called a timed word, so a list of actions to
take (element of Σ) and times to let pass (∆ ∈ R+), as shown in Figure 2.2. Equally, a run can also be
identified as a sequence of configurations, that is the run r is defined by ((ℓ0, v0), (ℓ1, v1), . . . , (ℓN , vN))
and for each run the associated timed word can be found and vice-versa.

Similar to the case of the finite automaton, the reachability problem in a TA asks to find an accepted
timed-word for the given timed automaton with all clocks initialised to zero. This property is shown to
be decidable and PSPACE-complete (Relying on the region constructiong, see Alur and Dill [1994b]),
making timed automata an interesting framework for our use-case.

2.2.2 Related Work

In the literature a number of different approaches exist for the verification of (switched) dynamical systems
and some also seek to perform formally verified controller synthesis, and reflect the growing interest in
such approaches as well as the broad variety of different problems falling into this category.

Firstly the existing approaches for verification can roughly be divided into two groups, direct and
indirect methods. Direct methods are able to reason directly about nonlinear differential equations by
computing (over-)approximations of the reachable set, given the set of possible initial conditions. The
main computational complexity of such approaches lies in the computation of these sets and several

26 CHAPTER 2. TIMED-AUTOMATA ABSTRACTION

To study the reachability property of a continuous dynamical system, an abstraction to a timed
automaton is presented in Maler and Batt [2008]. Here the state space is decomposed into a regular grid
and each hypercube of this grid corresponds to a discrete state in the automaton. For each dimension
of the considered system there is an associated clock in the automaton and the guards and invariants
correspond to the maximal and minimal dwell time of the system in the current hypercube. As this work is
principally concerned with reachability objectives, the set of reachable states has to be overapproximated
by the abstraction to be sound. Therefore the minimal dwell time in a hypercube ensured by the guards
is the side-length of the hypercube divided by the maximal velocity in the dimension corresponding to
the clock attained anywhere within the hypercube. Similarly, the maximal dwell time is insured by
the invariants and is set to the side-length of the hypercube divided by the minimal velocity (in the
dimension corresponding to the clock attained anywhere within the hypercube). Transitions only exist
between hypercubes that share a facet, and each time a transition is taken, the corresponding clock is
set to zero. By adding these time-restrictions, the over-approximation of the timed-automata abstraction
is obviously tighter than an abstraction without it, like finite state-machines (De Jong et al. [2001]),
however due to the use of the minimal and maximal occurring velocity within each hypercube, the
“quality” of the timing constraints is directly linked to the size of hypercubes (excepts for systems with
constant derivatives) and the local Lipschitz constant of the system. This causes this approach to be
computationally expensive especially for highly “dynamic” systems. The number of clocks is equal to the
dimension of the system, the number of hypercube grows exponentially with the dimension and finally
small hypercubes are required to obtain expressive timing constraints, making the approach intractable
for medium-sized problems.

A different line of work that has a similar flavour is proposed in Sloth and Wisniewski [2010a, 2013].
Here the state space is also entirely decomposed into cells (bounded, simply connected subsets of the state
space) which serve then as discrete states in the timed automaton, however they are constructed in a more
sophisticated way resulting in tighter bounds. In Sloth and Wisniewski [2010a] so called “slice-families”,
a collection of sublevel-sets of a Lyapunov like function, are generated such that each sublevel-set is an
invariant for the considered dynamical system. Taking one slice of each slice family and forming the
intersection, one gets, in general, several disjoint subsets. Defining a cell as one of the subsets, which is
then simply connected, one obtains a partition of the state-space defined by these cells. By associating a
clock to each slice-family generating the partitioning, guards and invariants for each state can be deduced.
Due to the construction of the slices using invariant sets, better bounds (upper and lower bounds on the
dwell-time in a slice) can be derived. Even though these bounds are tighter than the ones obtained in
Maler and Batt [2008], they remain conservative. In Sloth and Wisniewski [2013], the authors address
this problem by building on this approach while restricting the dynamics to polynomial systems. By
restricting the so-called partitioning functions to be polynomial as well, the demand that all level-sets
of different partitioning functions intersect each other transversally becomes computationally tractable.
Transversally in this context means that the combined tangent space of the intersecting level-sets spans
the entire state space and this is a necessary condition to prevent degenerated cells. This approach is
able to generate sound, as the works cited above, but in certain cases even complete timed automata
abstractions of dynamical systems. This is worth mentioning as completeness is significantly harder to
obtain than soundness. Soundness in this context means that if there is a trajectory for the dynamical
system from some state x0 in some cell c0 to another state x1 in some other cell c1 in time T , then there
exists a run in the automaton of total time T from the state corresponding to c0 to the state corresponding
to c1. This is also the case for the approach presented in Maler and Batt [2008]. But the abstraction
is, in certain cases, also complete in the sense that if there exists a run in the automaton of duration T
from a state corresponding to cell c0 to a state corresponding to c1, then there exists also a trajectory of
duration T for the dynamical system starting at some point in c0 and ending somewhere in c1, which is
not the case for Maler and Batt [2008]. If an abstraction is not complete, there are more transitions in
the abstraction then actually realisable by the dynamical system. This is also known as false transitivity.
To guarantee completeness one has to prove that the bounds on the minimal and maximal dwell-time are
tight, that is they coincide and therefore all states have to traverse a slice in the same time, independently

2.2. RELATED WORK AND BACKGROUND 27

of their position. This is not achievable in all cases, depending on the given system, and if it is infeasible
to derive such partitioning functions the presented approach seeks to obtain the tightest possible bounds.

Such approaches are interesting as they allow to formally reason about the dynamics of a system and
allow to verify timed specifications on the system, but do not address controlled or switched dynamical
systems. Such synthesis problems ask to generate a control law or switching sequence which formally
verifies a given specification for the model of the dynamical system under all possible realisations of
a given environment, equally given as a specification. Such problems are addressed with a variety of
different approaches and techniques. Most of these approaches are concerned with generating control
laws for linear temporal logic or fragments of it and therefore only provide a qualitative notion of time.
As these are nonetheless interesting approaches and the approach proposed in this chapter draws some
inspiration from them, they are detailed in the following.

In Kloetzer and Belta [2008] an approach to derive a continuous control law for controlled linear
systems under polyhedral input constraints (ẋ = A.x+B.u+ b, C.u ≤ g) satisfying a LTL specification
is presented. The approach is constructive in the sense that it will terminate if such a control law exists.
It relies on first partitioning the state space into polyhedrons with respect to the propositions in the
given formula, then these polyhedrons are subdivided with respect to the dynamics of the system, such
that there exists an admissible control input that drives all states in the polyhedron through a specific
facet. This way the polyhedrons form an abstraction for the dynamical system and a corresponding
automaton respecting the possible transitions between the polyhedrons and the specification given can
be constructed. This way, a low-level control law is generated such that the resulting dynamics verify the
specification. In this work too, only qualitative timing constraints can be accounted for.

The approach proposed in Kress-Gazit et al. [2007, 2009] and the method presented in this chapter have
in common that the abstraction rather relies on guarantees provided by some low-level control law instead
of seeking to directly synthesize the low-level control. The problem addressed in these works corresponds
to motion planning under LTL constraints for service robots. In a first step the workspace is decomposed
into polyhedrons and by relying on the control law described in Conner et al. [2003], it can be assured that
all states within a polyhedron can be driven through a prespecified facet into an adjacent polyhedron.2

Then again the polyhedrons in the workspace correspond to the discrete states of an automaton and a
transition between them exists if and only if they are adjacent and there exists a control law that drives
all states in the outgoing polyhedron through the facet shared with the ingoing polyhedron in finite time.
By restricting the specification to a fragment of LTL, known as General Reactivity (1), a reactive control
law can be synthesized in reasonable time for fairly complicated task and environment specifications (see
Piterman et al. [2006]). The drawback of this approach is the simplicity of the admissible dynamics (it
is restricted to so-called kinematic models x = u in the proposed version).

In Sloth and Wisniewski [2010b] the idea of using a state space partitioning induced by the intersection
of partitioning functions is extended to controlled systems. To achieve this, a set of inputs or control laws
is defined under the constraint that the dynamics conditioned by each of these control laws is transversal
to any sublevel-set of any partitioning function, a non-trivial constraint. Once this achieved, the path-
planning problem for dynamical systems can be reformulated as a game on this timed game automaton and
additional specifications in terms of Timed Computation Tree Logic can be defined. This approach allows
for quantitative timing constraints, however, these can not be very precise without the goal becoming
unreachable due to the conservative bounds on the transition times between the cells. Another drawback
of the presented approach is that it is not fully implementable within existing verification tools due to
its specific updates.

Closer to the approach proposed in this thesis are the ones in Tedrake et al. [2010b]; Le Ny and
Pappas [2012]; Majumdar and Tedrake [2017]. They all have in common that they use some sort of
time-dependent positive invariant set (funnel) to abstract the possible system trajectories. In Tedrake
et al. [2010b] pure motion planning without other timing constraints is considered. In order to be able
to guarantee that the all states can be driven to a target zone, first reference trajectories are generated

2The control law used in Kress-Gazit et al. [2007, 2009] shows many similarities to the one presented in Rimon and
Koditschek [1991].

28 CHAPTER 2. TIMED-AUTOMATA ABSTRACTION

ending in the target zone, then “large” funnels are constructed around these trajectories, such that their
final zone is a subset of the target zone. In order to cover the entire state space, new reference trajectories
are generated leading to the initial zone of existing funnels and new funnels are created around them
such that their final zone is in turn a subset of the initial zone of the existing funnels (connectivity
condition) in an iterative process. As all funnels either end in a successor funnel or the target zone,
and due to the positive invariance of the funnels, all states can be driven to the target zone. This gives
the set of so created funnels the structure of a directed graph with the funnels being the vertices and
the existence of an edge between two vertices v and v′ depends on whether or not the final zone of
the funnel associated to v is englobed by the initial zone of the funnel associated to v′. In Le Ny and
Pappas [2012], similar ideas are used, but also take into account partially observability of the system
and (bounded) disturbances and modelling errors. Instead of generating reference trajectories, here a
finite set of predefined controllers (supposed to come with guarantees on convergence) is assumed and
instead of generating a library covering the entire state space, the sequential composition of the funnels is
integrated into a rapidly-exploring random tree (RRT, LaValle [1998]) like approach. Here the addressed
problem is steering a given initial set into a final region.

In the here presented approach we also rely on funnels, however their reduction to timed-automata
does not result in a loss of exact, or quantitative, timing properties. Therefore a richer variety of tasks
can be addressed in theory, such as “pick up object A in position x at the exact time-point T ”, however
at the cost of a possibly higher computational complexity.

A different approach to formally verify hybrid systems is based on differential dynamical logic (dL),
an extension to first-order logic. This approach is successfully used in the verification tools KeYmaera
(Platzer and Quesel [2008]; Fulton et al. [2015]) and SpaceEx (Frehse et al. [2011]). Using such frameworks
to directly synthesize control strategies for complex systems and task is (currently) beyond their scope.
The abstraction proposed within this chapter could also be translated into dL formulas but this is less
natural. It might be interesting to consider connections between dL formulas and our approach in the
future, but we focus on timed automata in this chapter.

In this chapter the main idea behind the proposed approach to synthesize control strategies verifying
logical constraints is presented before showcasing its application.

2.3 Graphs of Control Funnels

2.3.1 Control Funnels

Consider a controlled dynamical system governed by the general nonlinear differential equation:

ẋ = f̃(x) + g(x, u(x, t)) = f(x, t, u(x, t)) = fu(x, t), (2.1)

where x ∈ Rd is the state of the system, t ∈ R+
0 is a real (clock) value corresponding to an inter-

nal controller time, f̃ : Rd → Rd is the system dynamic, g : Rd × Rk → Rd is the input dynamic and
u(x, t) : Rd × R+

0 → Rk is the control law. To shorten notations, this can be equally written as fu(x, t),
denoting the dynamics of the system conditioned by the control law u. To ensure uniqueness of the
solution for a given initial condition, we suppose that fu is continuously differentiable from Rd × R+

0 to
Rd, meaning that f̃ and g are continuously differentiable from Rd to Rd and from Rd × Rk to Rd and
u(x, t) is continuously differentiable form Rd × R+

0 to Rk.
In this work, we mostly consider state spaces that describe the position and velocity of systems con-

trolled in acceleration, such as articulated robots or autonomous vehicles. The continuity of trajectories
in the state space ensures that the position is always a continuously differentiable function of time. More-
over, without loss of generality, we restrict ourselves to nonnegative time values. It is worth noting that,
since t is an internal controller time, it can have a discontinuous evolution with discrete resets to any
value in R+

0 . However, except for these resets, the controller time is assumed to continuously increase at
the same rate as physical time.

2.3. GRAPHS OF CONTROL FUNNELS 31

{xp(t) | tp0 ≤ t ≤ tp1} for 1 ≤ p ≤ P . Therefore the resulting trajectory is almost everywhere differentiable,
except at the time points where switching occurs.

Example 3

Consider the case of the two-dimensional controlled kinematic system ẋ = ui with the finite set
of control laws u0 =

[

1 0
]T

(“go right”), u1 =
[

−1 0
]T

(“go left”), u2 =
[

0 1
]T

(“go up”) and

u3 =
[

0 −1
]T

(“go down”). The problem is further defined by its initial point x0 =
[

0 1
]T

, target

zone Tf =
{

[

0 −1
]T
}

and obstacle Ω = {x | ‖x‖2 ≤ 0.5}. Then one can see that the time values

((0, 1), (0, 2), (0, 1)) together with the control law indices (0, 3, 1) and the corresponding sequence of

points

([

1
1

]

,

[

1
−1

]

,

[

0
−1

])

is a solution for the Reach-Avoid problem. The trajectory of the system

results from applying control law u1 for 1 time unit (internal controller clock going from 0 to 1), resulting

in the trajectory portion x0(t) = x0+
[

1 0
]T

t (with 0 ≤ t ≤ 1). Then a discrete change in the dynamics
occurs when switching from control law u1 to u3. At the same time as the switching occurs, the internal
controller clock is reset to zero. The control law u3 is then applied for 2 time units resulting in the
trajectory portion p1(t) =

[

1 0
]T

+
[

0 −1
]T

t (with 0 ≤ t ≤ 2). Finally, at t = 2, a second discrete
change of the dynamics occurs, when switching to control law u1, which is then applied for 1 time unit.
This results in the third trajectory portion p2(t) =

[

1 −1
]T

+
[

−1 0
]T

t (with 0 ≤ t ≤ 1) and the
system safely attains Tf , as p2(1) ∈ Tf .
Note that there are often infinitely many solutions to a specific problem and in order to rank them some
sort of optimality is often demanded. The most common condition is to demand the fastest solution, so
the solution necessitating the least amount of time. As we will see later on this problem is decidable for
timed automata.

2.3.3 Reach-Avoid Objectives on Graphs of Control Funnels

We now explain how the Reach-Avoid problem can be abstracted using timed transition systems based
on control funnels, which can then be translated to a timed automaton.

For each control law ui(x, t), we assume that we have a finite set of control funnels F0
i ,F

1
i , . . . ,F

mi−1
i ,

respectively defined over I0i ⊆ R+
0 , I1i ⊆ R+

0 , . . . , Imi−1
i ⊆ R+

0 . We assume that for every 0 ≤ i ≤ n− 1,
for every 0 ≤ j ≤ mi−1, for every t ∈ Iji , it holds Fj

i (t)∩Ω = ∅, which means that trajectories contained
in these funnels always avoid the obstacle Ω.

Consider a control law switch at position x′ to law ui(x, t) with clock value t0. If there exists a control
funnel Fj

i such that t0 ∈ Iji , and x′ ∈ Fj
i (t0), then we know that the state of the system will remain

inside Fj
i (t) for any t > t0 in Iji (as long as the control law ui(x, t) is used). To always keep the system

inside one of the control funnels, we can impose sufficient conditions on the switches. For instance, if
the state is inside Fj

i (t0), and if for some future clock value t1, there exists a control funnel F l
k and

t2 ∈ I lk such that Fj
i (t1) ⊆ F

l
k(t2), then when the clock value is t1 we can safely switch to the control

law uk(x, t) while setting the clock to t2. Indeed, we know that the state of the system at the switch
instant will be inside F l

k(t2), and therefore it will remain inside F l
k(t) after the switch. Such transitions

from a funnel to another are illustrated on the right side of Figure 2.3, or in greater detail in Figure 2.5.
It is worth noting that similar transitions could be achieved with, instead of control funnels, controller
specifications as introduced in Le Ny and Pappas [2012], which are more conservative but directly account
for disturbances in the actuation and sensor noise.

For some control funnels Fj
i and Fk

i associated to the same control law, it is the case (see section 2.5)
that when funnel Fj

i is entered at time t, then at any time t′ ≥ t + hj→k
i (where hj→k

i is a constant),
the state of the system is inside Fk

i (t
′) (and obviously also inside Fj

i (t
′) if t′ ∈ Iji as the control law

34 CHAPTER 2. TIMED-AUTOMATA ABSTRACTION

2.4 Reduction to Timed Automata

Timed automata (Alur and Dill [1994a]), as introduced in section 2.2, provide an expressive formalism
for modelling and reasoning about real-time systems, and enjoy decidable reachability properties; much
efforts have been invested over the last 20 years for the development of efficient algorithms and tools for
their automatic verification such as Kronos (Bozga et al. [1998]) and Uppaal (Behrmann et al. [2006]).
Due to its more recent implementation and sophisticated GUI, Uppaal is the tool of choice in this
chapter. Its efficient data-structures and implementation allow for the analysis of large scale automata
in reasonable time and allow to obtain the later presented results.

We define a slightly modified variant of timed automata with rational constants, general boolean
combinations of clock constraints and extended clock resets; those timed automata are as expressive as
standard timed automata (see Bouyer et al. [2004]), but they will be useful for expressing funnel timed
transition systems. These extensions are also directly supported by the tool Uppaal, with the exception
of rational constants. In Uppaal all constants have to be integers, which can however be easily achieved
with a preprocessing step to almost arbitrary precision.

The timed automaton is defined by the tuple A = (L,L0, LF , C,E,Σ, Inv) where L is a finite set of
locations, L0 ⊆ L is a set of initial locations, LF ⊆ L is a set of final locations, C is a finite set of clocks,
Σ is the alphabet and E ⊆ L × C(C) × R(C) × Σ × L is a finite set of edges, and Inv : L → C(C) is an
invariant labelling function.

A configuration of A is a pair (ℓ, v) ∈ L× RC such that v |= Inv(ℓ), and the timed transition system
generated by A is given by the following two rules:

• time-elapsing transition: (ℓ, v)→ (ℓ, v +∆) whenever v + δ |= Inv(ℓ) for every 0 ≤ δ ≤ ∆;

• switching or absorbing transition: (ℓ, v)
α
−→ (ℓ′, v′) whenever there exists (ℓ, g, res, α, ℓ′) ∈ E such

that v |= g ∧ Inv(ℓ), v′ = res(v), and v′ |= Inv(ℓ′).

Or informally

• time-elapsing transition: the configuration can stay in the current state and let time pass by as
long as the invariant associated to this state is not violated;

• switching or absorbing transition: the configuration can change instantaneously from (ℓ, v) to (ℓ′, v′)
if there exist an edge between these states and the corresponding (transition) guard as well as the
invariant of the new state after the transition is satisfied.

A run in A is a sequence of consecutive transitions. The most fundamental result about timed
automata is the following:

Theorem 2.2 (Alur and Dill [1994a]). Reachability in timed automata is PSPACE-complete.

By comparing the structure of the timed automaton and the funnel timed transition system, the
similarities are numerous. The states of the timed automaton correspond to the different funnels, the edges
correspond to the transitions and the constraints defining the validity of a transition can be translated
into guards. The domain over which the funnel is defined can be interpreted as the associated invariant.

We consider again the family of control laws U = (ui(x, t))0≤i≤n−1, and the family of funnels F =

((Fj
i , I

j
i))0≤i≤n−1,0≤j≤mi−1, as in the previous section. For every pair 0 ≤ i, k ≤ n − 1, and every

0 ≤ j ≤ mi − 1 and 0 ≤ l ≤ mk − 1, we select finitely many tuples (switch, [α, β], (i, j), γ, (k, l)) with
α, β, γ ∈ Q such that

(i) [α, β] ⊆ Iji (α and β satisfies the invariant of the current state)

(ii) γ ∈ I lk (γ satisfies the invariant of the next state)

(iii) for every t ∈ [α, β], Fj
i (t) ⊆ F

l
k(γ) (for every time instant between α and β the current funnel has

to be englobed by the next funnel at time point γ)

2.4. REDUCTION TO TIMED AUTOMATA 35

This allows us to under-approximate the possible switches between funnels, as there can often be infinitely
many such switches. An empirically justified way to select the switches is detailed in section 2.5. For every
0 ≤ i ≤ n − 1, for every pair 0 ≤ j, k ≤ mi − 1 we select at most one tuple (absorb, ν, (i, j, k)) such that
ν ∈ Q and Fk

i (t) ν-absorbs Fj
i (t). This allows us to under-approximate the possible absorbing transitions.

For every 0 ≤ i ≤ n − 1 and every 0 ≤ j ≤ mi − 1, we fix a finite set of tuples (initial, α, (i, j)) such
that α ∈ Q ∈ Iji and x0 ∈ F

j
i (α). This allows us to under-approximate the possible initialization

to a control funnel containing the initial point x0. For every 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ mi − 1,
we fix finitely many tuples (invariant, Si,j , (i, j)), where Si,j ⊆ Iji is a finite set of closed intervals with
rational bounds. This allows us to under-approximate the definition set of the funnels. Finally, for every
0 ≤ i ≤ n − 1 and 0 ≤ j ≤ mi − 1, we fix finitely many tuples (target, [α, β], (i, j)), where α, β ∈ Q and
[α, β] ⊆ Iji ∩ {t | F

j
i (t) ⊆ Tf}. This allows us to under-approximate the target zone. We denote by K

the set of all tuples we just defined.
We can now define a timed automaton that conservatively computes the runs generated by the funnel

timed transition system. It is defined by AU,F,K = (L,L0, LF , C,E,Σ, Inv) with:

• L = {Fj
i | 0 ≤ i ≤ n− 1, 0 ≤ j ≤ mi − 1} ∪ {init, stop}; L0 = {init}; LF = {stop};

• C = {ct, cg, ch};

• E is composed of the following edges:

(a) for every (initial, α, (i, j)) ∈ K, we have an edge (init, true, res,Fj
i) in E, with res(ct) = α and

res(cg) = res(ch) = 0;

(b) for every (switch, [α, β], (i, j), γ, (k, l)) ∈ K, we have an edge (Fj
i , α ≤ ct ≤ β, res,F l

k) with
res(ct) = γ, res(ch) = 0 and res(cg) = ⊥;

(c) for every (target, [α, β], (i, j)) ∈ K, we have an edge (Fj
i , α ≤ ct ≤ β, res, stop) in E, with

res(ct) = res(cg) = res(ch) = ⊥;

(d) for every (absorb, ν, (i, j, k)) ∈ K, we have an edge (Fj
i , ch ≥ ν, res,Fk

i) with res(ch) = 0 and
res(ct) = res(cg) = ⊥;

• for every (invariant, Si,j , (i, j)) ∈ K, we let Inv(Fj
i) ,

∨

[α,β]∈Si,j
(α ≤ ct ≤ β).

Note that the invariant associated to a state is the intersection between the domain of the reference
trajectory and the time intervals for which the funnel constructed around the reference trajectory does
not intersect with the obstacle.

With the so defined automaton we easily get the following result:

Theorem 2.3. Let (init, v0) → (ℓ1, v1) → · · · → (ℓP , vP) → (stop, vP) be a run in AU,F,K such that v0
assigns 0 to every clock. Then r = ((ℓ1, v1), . . . , (ℓP , vP)) is a run of the funnel timed transition system
TU,F that brings x0 to r(x0) ∈ Tf while avoiding the obstacle Ω.

This shows that the reachability of stop in AU,F,K implies that there exists an appropriate schedule
of control law switches that safely brings the system to the target zone. Of course, the method is not
complete, not all schedules can be obtained using the timed automaton AU,F,K . But if AU,F,K is precise
enough, it will be possible to use automatic verification techniques for dynamic trajectory generation.

Before continuing with the effective construction of funnels for linear systems, we would like to give
some additional remarks.

Remark 2.1. The absorbing transitions in (d) are defined as (Fj
i , ch ≥ ν, res,Fk

i). By adding this tran-
sition only if ν > 0, that is if Fk

i is smaller than Fj
i and by ensuring that all transitions that exist for

Fk
i also exist for Fj

i if j > k, we can change the transition to (Fj
i , ch = ν, res,Fk

i). This simplifies the
automaton without loosing expressiveness. In Uppaal we can even enforce this transition by making it
urgent (see Barbuti and Tesei [2004]), further reducing the verification complexity without reducing the
expressiveness.

36 CHAPTER 2. TIMED-AUTOMATA ABSTRACTION

Remark 2.2. We could be more precise in the modelling as a timed automaton, if we could use non-
deterministic clock resets (see Bouyer et al. [2004]); but we should then be careful with decidability
issues. Additionally, non-deterministic resets are not implemented in Uppaal, which is why we have
chosen timed automata with deterministic resets only.

Remark 2.3. The invariants are constructed such that they represent a finite set of closed intervals with
rational bounds on the controller clock ct. This can be loosened into boolean combinations of expressions
of the form cx ∼ α, with cx being either the controller or world clock, α is again a constant Q and
∼ ∈ {≤, <,=, >,≥}. This could be useful to simulate a changing environment, but was not necessary for
the examples presented.

Remark 2.4. As we show with some examples in section 2.6, our timed-automata abstraction can be used
for other types of objectives than just reachability with avoidance. In particular, the approach can be
extended to timed games (Asarin et al. [1998]), where special uncontrollable transitions model uncertainty
in the environment. In that case, the aim is not to synthesize one single run in the system, but rather a
strategy that dictates how the system should be controlled, depending on how the environment evolves.
It is worth knowing that winning strategies can be computed in exponential time in timed games, and
that the tool Uppaal-Tiga (Behrmann et al. [2007]) computes such winning strategies. In section 2.6.1,
we give an example of application where timed games and Uppaal-Tiga are used.

2.5 LQR Funnels

2.5.1 Lyapunov Stability and Construction

In this section we consider the particular case of linear time-invariant stabilizable systems whose dynamics
are described by the following equation:

ẋ = A.x+B.u, (2.3)

where A ∈ Rd×d and B ∈ Rd×k are two constant matrices, and u ∈ Rk is the control input. We
also consider reference trajectories that can be realized with controlled systems described by (2.3),
i.e. trajectories xref(t) defined for t ∈ [0, T] for which there exists uref(x, t) such that ẋref(t) =
A.xref(t) + B.uref(t) for all t ∈ [0, T]. We can combine this equation with (2.3) and get ẋ(t)− ẋref(t) =
A.(x(t)− xref(t)) +B.(u(t)− uref(t)), which rewrites

ẋ∆(t) = A.x∆(t) +B.u∆(t). (2.4)

To track ẋref, we compute u∆ using the linear quadratic regulator in its infinite horizon version (LQR,see
Sontag [1998]), i.e. a minimization of the quadratic cost: J =

∫∞
0

(

x∆
TQx∆ + u∆

TRu∆

)

dt, where
Q and R are respectively positive-semidefinite and positive-definite matrices, see section 3.2 for a more
detailed introduction. The solution is a time-independent feedback control matrix K defined as K =
R−1.BT.P with P being the unique positive-definite matrix solution to the continuous time algebraic
Riccati equation: PA + ATP − PBR−1BTP + Q = 0. By applying the control law u∆ = −Kx∆, the
cost J is minimized and moreover the quadratic function V (x∆(t)) = x∆(t)

T
.P.x∆(t) is a Lyapunov

function for the closed loop system with some minimal exponential convergence rate, so some γ > 0 for
which V̇ (x∆(t)) ≤ −γV (x∆(t)) or equally V (x∆(t+ δt)) ≤ V (x∆(t)). exp(−γδt) holds. This means that
the error term x∆ tends to 0 exponentially fast and therefore all trajectories converge to the reference
trajectory xref(t).

This convergence property can be used to define control funnels as follows. For α > 0, we define:

Fα(t) = {xref(t) + x∆(t) | V (x∆(t)) ≤ α} (2.5)

where F is a control funnel defined over t ∈ [0, T] (the duration of the reference trajectory): if x∆(t) =
x(t)− xref(t) is a solution of equation (2.4) such that x(t1) ∈ Fα(t1), then for any t2 > t1, since V (x∆)
only decreases, V (x∆(t2)) ≤ V (x∆(t1)) ≤ α, and thus x(t2) = xref(t2) + x∆(t2) ∈ Fα(t2).

2.5. LQR FUNNELS 37

The funnel Fα(t) is therefore defined by a fixed d-dimensional ellipsoid, which is a sublevel-set for
the associated Lyapunov function, translated along the reference trajectory as it is at each time point
centred at xref(t). Due to the guaranteed minimal convergence rate γ, for any solution x∆(t) of (2.4) we
have:

∀t ∈ [0, T] , ∀δt ∈]0, T − t] , V (x∆(t+ δt)) ≤ exp(−γδt)V (x∆(t)). (2.6)

This proves that if the system is inside the control funnel Fα(t) at a given instant, then after letting
time elapse for a duration of δt, the system will be inside the control funnel Fα exp(−γδt)(t). This means
that the funnel Fα′(t) absorbs the funnel Fα(t) and the corresponding constant is derived in section 2.5.2.
Thanks to this property, for a given LQR controller and a reference trajectory xref(t), we can define a
finite set of fixed-size control funnels Fα0

(t),Fα1
(t), . . . , Fαq

(t), with α0 > α1 > · · · > αq > 0, and
absorbing transitions between them in the corresponding timed automaton. For such families of funnels
we will adopt the notation that Fj

i denotes the funnel constructed around the ith reference trajectory as

the sublevel-set
{

xi
ref
(t) + x∆(t) | x∆(t)

T
.P.x∆(t) ≤ αj

}

.

Here we have deliberately chosen to consider only disturbance free and fully observable linear systems.
However, the decisive properties of positive and invariance and minimal convergence rate can also be
computed for systems with (bounded) disturbance and partial observability of the form

ẋ = A.x+B.u+D.ω (2.7a)

y = H.x (2.7b)

where D determines the channels of the vector of (bounded) disturbances and y is the output, given as a
linear transformation of the system state by the H. This necessitates more involved stability proofs and
induces increased conservativeness in order to deal with the disturbances, but does not fundamentally
change the approach of how the funnels are constructed.

In the remainder of this chapter, we will mainly use this kind of fixed size control funnels, which we
call “LQR funnels”. They are convenient because the larger ones can be used to “catch” other control
funnels, and the smaller ones can easily be caught by other control funnels or used when a “precise”
location of the system (in the state space) has to be defined. Figure 2.7 depicts a typical sequence,
where first a large control funnel F0

1 (in green) catches the system which previously evolved in F0
0 via

a switching transition. The bounds α and β on F0
0 are shown as the ellipsoids with dashed line. Then

after some time longer than h0→1
0 , an absorbing transition can be triggered and the system switches from

F0
1 to F1

1 . Finally, a new switching transition brings the system to a larger control funnel F0
2 (in blue)

defined around another reference trajectory.
Testing for inclusion between fixed-size ellipsoids can be done very efficiently (by introducing some con-

servativeness, see section 2.4), and therefore LQR funnels allow for efficient algorithms for the computation
of the tuples needed for the timed-automaton reduction ((switch, [α, β], (i, j), γ, (k, l)), (invariant, Si,j , (i, j)), . . . ,
also see section 2.4).

It should be noted that the concepts of fixed size control funnels and absorbing transitions, introduced
here for linear systems, are also suitable for nonlinear and in particular polynomial systems. Lyapunov
functions in general, and quadratic ones in particular, can be computed via convex optimization for
polynomial systems, for example with Sum-of-Squares techniques (Majumdar et al. [2013a]), contraction
theory (Lohmiller and Slotine [1998]) or convexification and state-space seperation (chapter 3). In all
these approaches, the minimial exponential convergence necessary for the absorbing transitions can be
imposed within the framework of each of the approaches cited above.

2.5.2 Computing the Tuples

In order to reduce the funnel timed transition system we need to compute constants within the tuples
defining the absorbing and switching transitions.

40 CHAPTER 2. TIMED-AUTOMATA ABSTRACTION

that α ≤ γ ≤ β with all three satisfying I if Fj
i (t) ⊂ F

k
i (t) for all t ∈ I. Such transitions allow to

“accelerate” or “decelerate” on the reference trajectory.

2.6 Examples of Application

In this section we will show how to apply the proposed reduction of a funnel system constructed with fixed
size LQR funnels for fairly different problem settings. Before showing how to relax certain constraints in
the next section.

2.6.1 Synchronization of Sine Waves

In this example, there is a unique reference trajectory: xref(t) = sin(2πτ t), for t ∈ [0, τ] and τ ∈ Q. The
controlled system corresponds to a linear second order system controlled in acceleration, so

ẋ =

(

ẋ
ẍ

)

= A.x+B.u = A.x+

(

0
1

)

u. (2.11)

By computing a unique LQR controller (choosing the matrices Q and R), and introducing the reference
trajectory the system becomes

ẍ = ẍref +A[1, :].(x− xref)−B[1, :].K.(x− xref) (2.12)

where X[k, :] for some matrix X ∈ Rm×n denotes the extraction of the kth row from X, interpreted as a
1× n matrix.

We define two fixed size LQR funnels F0 (the large one) and F1 (the small one) defined over [0, τ] such
that F1 γ-absorbs F0 for some γ ∈ Q+. The size of F0 is computed such that an upper bound on the
acceleration is always ensured, as long as the state of the system remains inside the control funnel. More
importantly, limiting the size of F0 also allows to limit the maximal control input u, so um ≤ u ≤ uM

(see section 3.9.3) holds for all states inside the funnel, which is a very important property for real
applications.

The set F0(τ/2) englobes the smaller control funnel F1(t) for a range of time values [α, β] for some
α < τ

2 ∈ Q and β > τ
2 ∈ Q. This allows switching transitions from F1 to F0 with abrupt modifications

of the controller clock ct. Together with the absorbing transition and “cyclic transitions” that come from
the equalities F0(0) = F0(τ) and F1(0) = F1(τ), the timed automaton shown on the left Figure 2.10
corresponds to the reduction of the timed transition system.

The goal is to synchronize the controlled signal to a fixed signal sin(2πτ t+ϕ0). The phase ϕ0 is initially
unknown, which we model using an adversary: we use a new clock c′t, and an opponent transition as in
the timed automaton on the right of Figure 2.10.

With these two timed automata, we can use the tool Uppaal-Tiga (see Behrmann et al. [2007])
to synthesize a controller that reacts to the choice of the adversary, and performs adequate switching
transitions until ct = c′t. It is even possible to generate a strategy that guarantees that the synchronization
can always be performed in a bounded amount of time.

We show in Fig. 2.11 a trajectory generated by the synthesized reactive controller. In this example,
the phase chosen by the adversary is such that it is best to “accelerate” the controlled signal. Therefore,
the controller uses twice the switching transition from F1 to F0 with a reset of the controller clock from
α to τ/2 (1 and 2 in Fig. 2.11). Between these switching transitions, an absorbing transition is taken
to go back to the control funnel F1 (A in Figure 2.11) before taking the “cyclic transition”. After the
first two switching transitions, the remaining gap ǫ = c′t − ct is smaller than τ

2 − α, and therefore the
controller waits a bit longer (until τ

2 − ǫ) to perform the switching transition that exactly synchronizes
the two signals (3 in Figure 2.11).

This example shows that our abstraction can be used for reactive controller synthesis via timed games.
The main advantage of our approach over methods based on full discretization is that, since a “continuous”

42 CHAPTER 2. TIMED-AUTOMATA ABSTRACTION

On this line, four positions are defined as lanes (see Figure 2.12). On three of these lanes (1, 2 and 3),
packages arrive that have to be caught at the right time by the system and later delivered to lane 0. The
system has limited acceleration, control input and velocity, and can carry at most two packages at a time.
While the boundedness of the velocity, acceleration and control input to certain predefined values can
be directly ensured during the construction of the funnel system, the logical constraint that a maximum
of two items can be carried at a time corresponds to a “run-time” constraint and cannot be ensured via
the funnel construction. Therefore an auxiliary automaton encoding this logical constraint as well as the
task of picking up the objects itself is created. By solving the product automaton of the one encoding the
task plus constraints and the one representing the funnel timed transition system, one obtains a feasible
strategy for the given task and considered dynamical system, as depicted in Figure 2.12.

The LQR funnels in this example are constructed based on 12 reference trajectories. The first four
have different constant positive velocities (xi

ref
with i ∈ {1, . . . , 4}, the fastest one being x4

ref
, and the

slowest one x1
ref

). The next four are the same trajectories but with negative velocities. On each of these
reference trajectories, five different control funnels of constant size are defined (Fj

i for j ∈ {0, . . . , 4},
the largest one being F0

i). The control funnels with negative constant velocity are the mirror image
of those with positive velocity. Additionally, four stationary trajectories xLk

ref (with k ∈ {1, . . . , 4}) at
the positions of the lanes are defined. The controllers associated to these trajectories simply stabilize
the system at lane positions. For each of these trajectories a small (j = 1) and a large (j = 0) control
funnel are constructed. They are denoted by Fj

Lk. By construction, neighbouring trajectories (e.g. x3
ref

and x2
ref

or x1
ref

and x−1
ref

) are connected, meaning that for two neighbouring trajectories xi
ref

and xk
ref

,
∀t ∈ Ii, ∃t

′ ∈ Ik such that F4
i (t) ⊂ F

0
k (t

′) (see Figure 2.12). This allows the system to reach a higher
or lower velocity without the need of an explicitly defined acceleration trajectory. While the abstraction
based on these control funnels does not represent all the possible behaviours of the system (it is not
complete), switching between different velocity references allows the system to perform a great variety of
trajectories with continuous and bounded velocity and bounded accelerations and control inputs.

To fully specify the timed-automata abstraction, the tuples defining the transition guards must be
computed (see Section 2.4). For each trajectory we empirically choose a number of equidistantly dis-
tributed time points γ within the bounds of the duration of the reference trajectory. Then the approach
presented in section 2.5.2 is used to compute the switching transition ((switch, [α, β], (i, j), γ, (k, l))) for
each such γ.

We consider an example where three packages respectively arrive on lanes 3, 2 and 1 at times t1
arrive

=
40, t2

arrive
= 111 and t3

arrive
= 122, corresponding to the marked transitions in Figure 2.12. The goal is to

find a trajectory that catches all the packages and delivers them to lane 0. At the moment of the catch
(cg = tp

arrive
), the reference xi

ref
tracked by the system must be exactly at the correct position (i.e. on

the lane of the arriving package). Depending on the reference trajectory, this corresponds to a particular
value of ct. We add the following constraints on the catches: an upper bound on velocity such that the
system cannot be tracking x4

ref
, x3

ref
, x−3

ref
or x−4

ref
when it catches a package, and a bound on uncertainty

such that the system must be in a small control funnel to catch a package. Checking this reachability
objective, Uppaal outputs a timed word that corresponds to the schedule of control-law switches and
the trajectory shown on Figure 2.13, which successfully catches the packages and delivers them to lane 0.

The two upper graphs of Figure 2.13 show the evolution of the system in its state space and some of
the regions of invariance when taking a switching transition (coloured ellipsoids). The green dots mark
positions at which absorbing transitions take place (Fj

i → F
j+1
i). Purple crosses represent a package.

The lower graph compares the evolution of the position of the real system with the reference. One can see
that even though the reference velocity can only take seven different values, a relatively smooth trajectory
is realized.

Before catching the first package, the system switches from F4
1 to F0

L3 1 . It then converges to F1
L3 2

just before the catch. The difference between the real system position and the reference is very small
at that point in time, as implied by the current funnel. The system then switches to F0

−1 3 in order
to return to lane 0. It is interesting to notice that the system chooses to return to lane 0 after having
picked only one package, therefore adopting a non-greedy strategy. This is because it wouldn’t have time

2.7. BOUNDING FUNNELS WITH CONJECTURED PROPERTIES 45

2.7 Bounding Funnels with Conjectured Properties

The proposed approach allows to reason about the dynamics of LTI systems by abstracting their possible
behaviour into a finite set of funnels. While this approach offers the advantage of keeping a continuous
notion of time, the abstraction is only correct if these funnels correspond to time-dependent zones of
positive invariance. This property is comparably easy to obtain for LTI systems, but this drastically
changes when considering dynamical systems described by nonlinear differential equations.

In this section, we propose a method to treat this class of systems, introducing the concept of bounding
funnels, and using conjectured properties that are empirically verified. This approach is then used to
solve a Reach-Avoid problem for a modified version of the Dubins’ car, a nonlinear and nonholonomic
system.

2.7.1 Introducing Bounding Funnels with Conjectured Properties

The main problem encountered when trying to construct control funnels for nonlinear systems, is the diffi-
culty to find a suitable pair of monotonic Lyapunov function and control law. The associated optimization
problem is in general nonconvex and no generic approach exists to find such pairs, even without address-
ing the problem of finding large regions of invariance in the case of constrained inputs or maximizing
the (guaranteed) convergence rate. There exist approaches for certain subclasses of nonlinear dynamics,
like semidefinite programming for polynomial Lyapunov functions and systems with polynomial dynam-
ics as done in Prajna et al. [2004]. In Majumdar et al. [2013a], it is shown how to use sum-of-squares
optimization to handle nonlinear systems by using time-dependent polynomial approximations. It is an
interesting approach, but its high computational complexity and the introduced conservativeness restrain
its usability, even though the computational burden is later on decreased in Ahmadi and Majumdar
[2014] by using more conservative constraints. Moreover the demand of monotonic convergence some-
what contradicts the use of quadratic Lyapunov functions. In general, the (controlled) system might only
converge with respect to more complex functions or demand complex control laws in order to converge
with respect to a simple Lyapunov function. As the proposed approach relies on cheap inclusion testing,
which is not possible for sublevel-sets for more complicated Lyapunov functions, this is not admissible.

We propose therefore a different approach: bounding funnels with conjectured properties. Bounding
funnels enlarge the concept of regular funnels by weakening some of the required assumptions. The
properties of these funnels are as hard to guarantee as the properties of regular funnels, but due to the
weakened assumptions they are more likely to be true. We propose to conjecture these properties based
on numerical simulations. With these bounding funnels, the control sequence obtained is guaranteed
to satisfy a given specification provided that the conjectures hold for the nonlinear dynamics under all
circumstances that can occur. However as usually only a finite number runs is actually performed on the
real system, it can never be fully assured that the conjectures truly hold under all circumstances.

Bounding Funnels

The concept of bounding funnels relies on a modified concept of positive invariance, which, together with
the conservative approximation of convergence time, makes funnels suitable for timed automata reduc-
tion. The property of positive invariance described by equation (2.2) is closely linked to the concept of
monotonic Lyapunov functions. For general nonlinear systems this property is very difficult to obtain.
There exists no generic way to generate them, so the Lyapunov functions and control laws have to be
found on a case to case basis. An expressive sub-class of nonlinear dynamics allowing for a generic way
to compute the control law and the Lyapunov function is the class of polynomial systems. However,
constructing funnels based on proofs on the truncated Taylor expansion (or any other polynomial ap-
proximation) of the real nonlinear dynamics is in some sense also conjecturing the properties, except
if one uses additional constraints as proposed in Chesi [2009] overapproximating the error between the
models and therefore increasing conservativeness.

2.7. BOUNDING FUNNELS WITH CONJECTURED PROPERTIES 47

Conjecturing the Properties

As stated above, formally proving the convergence and the weak positive invariance for general nonlinear
systems is a complex problem. Therefore we replace the formal guarantees by conjectures based on, for
example, numerical simulations. This allows to use general optimization methods to simultaneously find
a control law and suitable outer/inner funnel shapes in the sense that the outer funnel is as small as
possible while achieving a good convergence time hO,j→j

i . To define the conjectures, sufficiently many
initial points in Fj

i can be numerically evaluated, and the convergence time hj→k
i is defined as an upper

bound of the maximal time needed to arrive and stay inside Fk
i . The outer funnel can be taken as an

ellipsoid with minimized volume under the constraint that (2.13) must hold.

This loss of guarantees may at first seem to be a very serious drawback, as obtaining certified be-
haviours is one of the main objectives of this work. Nevertheless, we argue that performing formal
synthesis with such conjectured properties of the control laws can lead to interesting results. Indeed,
after a controller has been synthesized with our approach, if an execution fails to verify the specification,
we know that it can only be because at least one conjecture does not hold and therefore one or more
properties of the bounding funnel are violated. We can even raise flags during execution to pinpoint
the faulty bounding funnel or even the violated conjecture itself. This structure, where the logic of the
controller is proven, but some “atomic” properties are only conjectured, is similar to formally verified
cryptographic protocols, where the security depends on how reliable some cryptographic primitives are.
It helps keeping safety issues localized, and therefore it makes it easier to improve the global behaviour
with confidence by performing isolated tests of the validity of each funnel. Moreover, formally proven
funnels are true funnels only in the mathematical model, and therefore, as far are as runs on the real
system are concerned, they are in fact conjectured as well.

To further highlight the interest of using funnels with conjectured properties, reconsider the case of
LQR funnels for LTI-systems. In this case, the funnels are “real” funnels and all properties are formally
proven. Now let us take a closer look at the absorption transition. The time constant is hi→k is derived
based on the minimal convergence rate γ, which is equal to (for LTI-systems ẋ = A.x and quadratic
Lyapunov functions of the form V (x) = xT.P.x) the maximal eigenvalue of Ci

T.(AT.P + P.AT).Ci,
with Ci = chol(P)−1. However, in general the eigenvalues do not coincide. Therefore the average
convergence rate over any trajectory portion is (considerably) higher than it can be guaranteed, as shown
in Figure 2.15. Therefore it is interesting to conjecture a smaller absorption time.

Another interesting application for bounding funnels with conjectured properties is the case of dis-
turbed dynamics as shortly mentioned in section 2.5.1. In order to prove monotonic convergence for such
a system, the disturbance has to be bounded, baring the usage of normal distributions as noise source.
By using bounding funnels, this is possible by demanding for instance that 95 percent of the possible
executions converge in a given time. Such bounds can then be computed using tools from stochastic
control.

2.7.2 Reach-Avoid Problem for a Modified Dubins’ car

We use the above introduced bounding funnel concept to perform path planning for a modified Dubins’
car. A Dubins’ car is a simplified model of an automobile that evolves on a 2D plane, which is frequently
used in the context of path-planning for automobiles, see for instance Scheuer and Fraichard [1997] or
Macharet et al. [2011].

Dynamical Model and Control Law

The state of the Dubins’ car is defined by its position (denoted by p) and its heading (denoted θp). The
position is relative to the global coordinate frame and the heading is given as the angle between the global
eg,x-axis and the local ec,x-axis of the car. The current linear velocity of the car, denoted vp, always

2.8. CONCLUSION AND FUTURE WORK 55

decidability issues.
Another line of work related to the presented timed automata abstraction concerns the representation

of general nonlinear systems. In section 2.7 we present bounding funnels with conjectured properties to
treat such systems, however the associated numerical verification was only addressed within the examples,
as no generic method can be given. Even though it is possible to conjecture the funnels based only on
numerical evaluations, any method that increases the confidence in these conjectures can be of interest.
Moreover empirically testing dynamical systems with a higher dimensional state space is also a challenging
task, as the number of points to verify tends to grow exponentially with the system dimension. Therefore
in chapter 3 a way to compute funnels for systems with polynomial vector fields is presented. Moreover it is
shown how it can be used to approximate general nonlinear dynamical systems around predefined reference
trajectories. By coupling the formal proof of positive invariance for the polynomial approximation of the
system together with numerical evaluations of the true nonlinear dynamics, we might be able to obtain
conjectures of high quality and low conservativeness.

56 CHAPTER 2. TIMED-AUTOMATA ABSTRACTION

Chapter 3

Stability of Dynamical Systems

In this chapter we are interested in the stability, or more precisely stabilizability,

of dynamical systems. We present sufficient conditions for a polynomial system

to be stabilizable on a subset of the state space based on Lyapunov theory and

ideas from optimal control. The so derived conditions can be efficiently verified

using semidefinite programming, a subclass of convex programming. The derived

conditions directly prove stabilizabilty and therefore avoid the search for an explicit

control law. The resulting optimization problems are therefore convex and compu-

tationally less demanding. Furthermore it is shown how this approach can be used

to find an inner approximation of the true zone of stabilizability and how to construct

time-varying regions of stabilizability along given reference trajectories.

3.1 Introduction

Executing robotic tasks in the presence of safety or timing constraints in a robust fashion requires not
only that the reference trajectory satisfies these constraints but also that there exists a region around this
trajectory which is guaranteed to converge towards it and also respects the constraints. Given a dynamic
model of the robotic system, guaranteeing convergence on regions of the configuration space is usually done
with stability certificates, which are computationally generated formal proofs based on Lyapunov theory or
contraction analysis. However obtaining such stability certificates for nonlinear systems, such as walking
or flying robots, or even simpler systems such as the Acrobot (Majumdar et al. [2013b]), that induce such
regions is notoriously difficult and remains a challenging problem despite the enormous progress made
in recent years using a variety of different approaches. These approaches include, but are not limited
to, outer approximation via occupation measures (Henrion and Korda [2014]), counter-example guided
synthesis (Ravanbakhsh and Sankaranarayanan [2016]) and sum-of-squares (SoS) approaches (Majumdar
et al. [2013b]; Jarvis-Wloszek et al. [2003]) and more tractable relaxations of SoS-approaches (Ahmadi
and Majumdar [2014]). The most comparable to the approach presented in this chapter are the methods
mentioned last, based on approximating the system as polynomial using a truncated Taylor expansion
and prove the convergence of the approximated system with respect to a polynomial, often quadratic,
Lyapunov function using SoS optimization.

When the system has control inputs, what is required are not certificates of stability, often provided
as a pair control law plus Lyapunov function, but certificates of stabilizabilty. Such certificates prove
that for bounded control inputs, there always exists at least one input that brings the system back to its

57

58 CHAPTER 3. STABILITY

reference. This is necessary to properly model robots, since their actuators can only provide a limited
amount of effort (e.g. joint actuators are usually limited in torque), which makes obtaining certificates
more difficult, especially for SoS techniques as shown later on. Moreover these certificates must be
constructive and yield ways to compute such control inputs. Therefore in this chapter an approach to
prove exponential stabilizability of a controlled polynomial system under input constraints with respect
to quadratic Lyapunov function candidates is presented. This approach is based on two principles: state-
space partitioning and convexification. This leads to a formulation that inherently yields certificates of
local stabilizability and takes into account the boundedness of the input in a very natural way.

In the remainder of this chapter it is shown how to partition the state-space into subsets defined by
the optimal control input and how this relates to proving stabilizability for a given region and system
(section 3.5). This is done after briefly discussing the necessary concepts and tools in section 3.2. In sec-
tion 3.8 the applied method to prove non-positiveness of multivariate polynomials based on an extension
of Reformulation and Linearisation Techniques (RLT) is presented and finally in section 3.10 numerical
results for the Acrobot, a torque controlled simple pendulum and controlled polynomial vector fields are
presented.

The contributions detailed in this chapter can be summed up as follows.

Contributions

• Deriving a state-space partitioning based on convergence optimal control input

• Derive sufficient conditions for stabilizability on the subsets forming the partition

• Solving the arising optimization problem for polynomial dynamics based on an
extension of the Reformulation and Linearisation Technique

• Showcasing the effectiveness of the proposed approach on a set of well-known test-
cases

The material presented in this section was (in parts) published in Schlehuber-Caissier and
Perrin [2018].

3.2. THEORETICAL BACKGROUND 59

3.2 Theoretical Background

In this section the theoretical background necessary to prove stability for nonlinear systems, with an accent
on the special case of polynomial systems and quadratic Lyapunov functions, is briefly recapitulated. For
a more in-depth discussion the interested reader is referred to, for instance Khalil [1996].

3.2.1 Convex Optimization and Semidefinite Programming

To make it short, from all well-defined optimization problems, the set of convex problems is the only one
which can be efficiently solved, in the sense of finding the global optimum and the minimizing variables.
Or to put it more formally, the set of convex problems which have a conic form, such as linear programs
(LP), quadratic programs (QP), second order cone programs (SOCP) or semidefinite programs (SDP)
can be solved to arbitrary precision in polynomial time using interior-point methods, see Nesterov and
Nemirovskii [1994]; Boyd and Vandenberghe [2004]. The class of optimization problems on which we will
rely throughout this chapter is semidefinite programming, the most general class of the above cited, and
which received enormous attention in the last two decades due to significant advances in the theory of
convex optimization but also due to the appearance of publicly available high quality solvers.

They are optimization problems over the cone of symmetric positive semidefinite (psd) matrices de-
noted Sn

+, so all matrices X for which we have X = XT and λ(X) ≥ 0, meaning that all eigenvalues of
X are non-negative, denoted X � 0.
A SDP in its standard form is given as

minimize tr (C.X) (3.1a)

subject to tr (Ai.X) = bi, ∀i (3.1b)

X � 0. (3.1c)

The objective is a linear function of the decision variable X ∈ Sn, so the set of all symmetric matrices
of size n × n, and the weighting matrix C ∈ Sn. The optimization is subject to a non-negativity
(equation (3.1c)) and a set of linear constraints (equation (3.1b)). Note that tr (Y.X), with Y,X ∈ S, is
the general real-valued linear function on S, see Boyd and Vandenberghe [2004] section. 4.6. Note that
a SDP, due to the self-duality of Sn

+, can equivalently be written as (can be written in its dual form as)

minimize cT.x (3.2a)

subject to
∑

i

xiFi +G � 0 (3.2b)

Ax = b. (3.2c)

with Fi, G ∈ Sn, A ∈ Rp×n and c ∈ Rn, which is often a more convenient notation.
Semidefinite programs are very versatile as they include Linear Programming (LP), Quadratic Pro-

gramming (QP) and Second-Order-Cone Programming (SOCP) as special cases, resulting in specific
structures of the constraint and objective matrices and have many practical applications. Semidefinite
programs can be efficiently solved, as the cone S+ is self-dual and therefore an SDP is a special case of
cone programming. The most broadly utilized algorithm to solve SDPs is the interior point method (see
for instance Sturm [1999]) for small and medium sized problems or methods based on the alternating di-
rections method which is (partly) amenable to efficient GPU implementations suitable for large problems,
see O’Donoghue et al. [2016].

3.2.2 Lyapunov Stability

Lyapunov stability theory dates back to end of the 19th century when it was first published by the Russian
mathematician Aleksandr Mikhailovich Lyapunov (Lyapunov [1892]), but its importance, with respect

60 CHAPTER 3. STABILITY

to control theory, was largely undiscovered until the works of Nikolăı Gurevich Chetaev (Chetaev [1961])
and Joseph La Salle (LaSalle [1976]; La Salle and Lefschetz [2012]) picking up on Lyapunov’s discoveries
and expanding the theory, see Parks [1992].

Much of the popularity of Lyapunov theory comes from what is called Lyapunov’s second method,
also simply known as Lyapunov stability criterion. This approach had a deep impact onto the control
community from around 1960 on. It provides conditions for an autonomous system to be asymptot-
ically/exponentially stable, which can be checked in practice for many systems. It is also a crucial
building block for the method presented in the rest of the chapter and is therefore presented in greater
detail here.

Lyapunov’s Second Method The autonomous system ẋ = f(x) with x, ẋ ∈ Rn and a continuous
function V (x) : Rn → R prove that the origin is a stable equilibrium if

V (x) = 0 iff x = 0 (3.3a)

V (x) > 0 iff x 6= 0 (3.3b)

∀x ∈ Rn \ {0} : V̇ (x) = 〈
∂

∂x
V (x),

d
d t

x〉 = ∇xV (x).f(x) ≤ 0 (3.3c)

where 〈·, ·〉 denotes the inner product and ∇x is defined in the usual way as the (row-) vector of partial
derivatives with respect to x. Even though it is sufficient for Lyapunov theory that V (x) is continuous,
we will generally assume the stronger condition that it is also differentiable.

One can interpret the above conditions in the following way: V (x) corresponds to a potential function
(see Figure 3.1), as it is everywhere positive except at the origin and its value is not allowed to increase
over time along any trajectory of the system. This ensures that for a trajectory with initial position x0,
V (x (t)) ≤ V (x0) holds for all t ∈ R+ and therefore the equilibrium point at the origin is stable. An
equivalent notion of stability can be given as

∀ǫ > 0, ∃δ = δ(ǫ) > 0, such that ‖x0‖2 < ǫ =⇒ ‖x(t)‖2 < δ holds for all t ≥ 0. (3.4)

In order to ensure that the stability definition in (3.4) implies the one given in (3.3) and vice-versa in
the entire space, and not only locally around the equilibrium point, V (x) has to be radially unbounded,
meaning that ‖x‖ → ∞⇒ V (x)→∞ for any norm ‖·‖.

By changing (3.3c) to be

∀x ∈ Rn \ {0} : V̇ (x) = ∇xV (x).f(x) < 0 (3.5)

ones obtains a proof that the origin is asymptotically stable, as the value of V (x) has to decrease along the
trajectory at each moment on every trajectory. In order to prove exponential stability with convergence
rate γ ≥ 0 (3.3c) is replaced by

∀x ∈ Rn \ {0} : V̇ (x) = ∇xV (x).f(x) < −γV (x). (3.6)

Indeed, if (3.6) holds, for the trajectory with the initial position x0 at t = 0, V (x (t)) < V (x0)e
−γt is

true for all t ∈ R+. This result is very useful as it gives a decreasing upper bound for the V (x(t)) and
will be used extensively.

Till here it was shown how to use Lyapunov’s second method to prove the global (asymptotic /
exponential) stability of the origin, in practice however it is often the case that the system dynamics
possess only local stability. In order to restrict the proof to local stability, one has to introduce a suitable
subset of the state space Ω0 on which one seeks to prove stability. A natural choice is to define Ω0 as a
sublevel-set of the Lyapunov function candidate V (x), Ω0 = {x|V (x) ≤ α0}. The autonomous system is

3.2. THEORETICAL BACKGROUND 63

• (region of attraction) ∀x ∈ Ω \ {0} : ∇xV (x).f(x) ≤ 0

• (region of stabilizability) ∀x ∈ Ω \ {0} , ∃u ∈ U : ∇xV (x).f(x,u) ≤ 0 .

3.2.3 Contraction Analysis

Contraction analysis was introduced by Winfried Lohmiller and Jean-Jacques Slotine in the ’90s (Lohmiller
and Slotine [1998]) and since then gained a lot of interest in the control research community as it provides
a different approach for proving the stability of nonlinear systems. In contrast to Lyapunov’s stability
criterion, which seeks to prove stability for a known equilibrium point, contraction theory considers the
evolution of the distance between neighbouring trajectories. The main idea is that if the distance between
any two trajectories decreases over time (with respect to some metric), then they will converge to the
same trajectory and under additional conditions to an equilibrium point. By extension, as any point
(in the stable region) can be taken as initial position for the trajectory, all points will converge. The
location of the equilibrium does therefore not have to be known in advance and the distance between two
trajectories can be defined as a virtual displacement. To put it formally without going into the details:

Given the dynamical autonomous system ẋ = f(x), the virtual dynamics are defined as

δẋ =
∂

∂x
f(x).δx = F (x).δx (3.10)

where δx is the virtual displacement and δẋ is the virtual velocity. By introducing the state-dependent
(non-flat) metric M(x), the distance of two points given as the virtual displacement δx with respect to
M(x) is

d(δx) = δxT.M(x).δx. (3.11)

The derivative with respect to time of d considering the system dynamics is

ḋ(δx) = δxT.
(

F (x)
T
.M(x) +M(x).F (x)

)

.δx. (3.12)

As stated above, the dynamical system is stable if the distance between neighbouring trajectories decreases
over time. This is the case if ḋ(δx) < 0 which can be relaxed to

F (x)
T
.M(x) +M(x).F (x) ≺ 0 (3.13)

as shown in section 3.2.4.
Note that in order for M(x) to be a metric, one has to ensure that

∀x : M(x) = M(x)
T (3.14a)

∀x : M(x) ≻ 0. (3.14b)

Stability proofs based on contraction analysis can also be modified to prove exponential convergence
or be restricted to a local proof in a similar fashion as presented for Lyapunov’s second method.

3.2.4 Positive Polynomials and Hilbert’s 17th Problem

The question of proving the positivity of polynomials and whether all positive polynomials can be rep-
resented as a sum-of-squares is a long standing research topic and also known as Hilbert’s 17th problem,
see for instance Henrion and Garulli [2005] and Marshall [2008]. In this section the main results useful
to the rest of this thesis are briefly summarized and the connections to semidefinite programming are
pointed out, see Boyd and Vandenberghe [2004] and Parrilo [2000].

64 CHAPTER 3. STABILITY

The following standard notation is adopted: Let

mk
n = 1,x0,x1, · · · ,xn−1,x0x1, · · · ,x0xn−1,x1x2, · · · ,x

k
0 , · · · ,x

k
n−1 (3.15)

be the vector of monomials used as the standard basis for real valued multivariate polynomials p : x ∈
Rn → p(x) ∈ R of degree k in n variables, which can then be written as p(x) = cT.mk

n, where c ∈ Rsm(n,k)

denotes the coefficient vector. The length of the vector mk
n is denoted sm(n, k) and is given by the binomial

(

n+k
n

)

. A monomial m of degree k in n variables is conveniently denoted as m = xβ =
∏n−1

i=0 x[i]β[i] with
x ∈ Rn, β ∈ Nn

+ and
∑

i β[i] = |β| = k.
Proving the positivity of a polynomial on a region Ω ⊆ Rn is shown to be NP-hard for k ≥ 4 even in

the case Ω = Rn (see Ahmadi [2012]) and is therefore not computationally tractable.
On the other hand, there are sum-of-squares (SoS) polynomials, so polynomials psos(x) of degree 2k

which can be written as

psos(x) =
∑

j

(p̃j)
2 (3.16)

where p̃j are polynomials with degree k or less. Obviously such polynomials are everywhere non-negative1.
Moreover, if a polynomial is SoS, it can be equivalently written as

psos(x) =
∑

j

∥

∥

∥c̃
T

j .m
k
n

∥

∥

∥

2

2
=
∑

j

mk
n

T

.c̃j .c̃
T

j .m
k
n = mk

n

T

.

∑

j

Mj

 .mk
n = mk

n

T

.M.mk
n (3.17)

with the c̃j being the coefficient vector (with respect to the standard base given in (3.15)) of p̃j and

M ∈ S
sm(n,k)
+ as it is the sum of the symmetric rank-one matrices Mj . This condition is sufficient and

necessary, so a polynomial of degree 2k is SoS if and only if there exists a matrix M ∈ S
sm(n,k)
+ such that

p(x) = mk
n

T
.M.mk

n. The advantage of using SoS-polynomials for proving non-negativity stems from the

fact that the constraint M ∈ S
sm(n,k)
+ or equivalently M � 0 is an LMI-constraint and can therefore be

efficiently solved in polynomial time using semidefinite programming.
The question that naturally arises is whether all non-negative polynomials can be represented as sum-

of-squares. As it was stated above that proving non-negativity of polynomials of degree greater or equal to
four is NP-hard and SoS-polynomials have polynomial time algorithms, the answer has to be no. Indeed
there exist non-negative polynomials that are not SoS, like the Motzkin polynomials (Motzkin [1967]),
but the set of SoS-polynomials is sufficiently large compared to the set of non-negative polynomials to
be useful in practice.

3.2.5 Application to Linear and Polynomial Systems and Feedback

Controller Design

The above presented methods provide sufficient conditions for a dynamical system to be stable. These
constraints are mostly positivity and non-negativity constraints, which are difficult to handle for general
nonlinear systems. However there are certain subclasses for which these problems are well-studied and
computationally tractable, which are notably the cases of linear and the polynomial dynamics. It is also
interesting to take the conditions and go one step further by using them to design feedback control laws
guaranteed to stabilise the system. In this section we will briefly introduce common strategies and their
links to recent developments in convex optimization. For an in-depth discussion the reader is referred to,
for instance, Boyd et al. [1994]; Chesi [2010].

1The distinction between positive and non-negative polynomials is for numerical solutions obsolete.

3.2. THEORETICAL BACKGROUND 65

Controlled Linear Dynamics Reconsider the unconstrained controlled linear dynamics

ẋ = A.x+B.u. (3.18)

By fixing a linear feedback control law, one obtains u(x) = −K.x. From classical control theory we
know that the system is asymptotically stable if the matrix A′ = A − B.K is Hurwitz, meaning that
the real part of all eigenvalue is negative. This condition can also be formulated as an equivalent convex
feasibility problem:

exists P (3.19a)

subject to P ≻ 0 (3.19b)

P.A′ +A′T.P � 0 (3.19c)

derived from Lyapunov’s second method with V (x) = ‖x‖2P . Constraints (3.3a) and (3.3b) are trivially
fulfilled as constraint (3.19b) imposes P ∈ Sn

++. The constraint (3.3c) can be written as

∀x 6= 0: V̇ (x) = ∇xV (x).ẋ ≤ 0

= xT.P.ẋ+ ẋT.P.x ≤ 0

= xT.P.A′.x+ xT.A′T.P.x ≤ 0

= xT.(P.A′ +A′T.P).x ≤ 0.

The derived condition xT.(P.A′ + A′T.P).x ≤ 0 is true if and only if (P.A′ + A′T.P) ∈ Sn
− which is

equivalent to the constraint (3.19c).
To illustrate the advantage of this reformulation of the stability criterion into a convex optimization

problem, consider the problem of designing a linear feedback control law. Using the Hurwitz criterion,
one has to find the roots of the characteristic polynomial of A−B.K and find the scalar values Kij that
satisfy the Hurwitz criterion, a nontrivial task. On the other hand, by using the above feasibility problem
one gets

exists P, K (3.20a)

subject to P ≻ 0 (3.20b)

P.(A−B.K) + (A−B.K)
T
.P � 0 (3.20c)

which is no longer a convex problem due to the multiplication of the decision variables P and K.
Multiplying (3.20c) left and right with P−1 and by introducing the new variables Y = P−1 and

K̃ = −K.Y one obtains

exists Y, K̃ (3.21a)

subject to Y ≻ 0 (3.21b)

Y.A+AT.Y +B.K̃ + K̃T.BT � 0 (3.21c)

which is convex in Y and K̃. The solution to the problem (3.20) can be extracted from the solution to
(3.21). This demonstrates the usefulness of LMI constraints in control applications.

Controlled Polynomials Dynamics The second class of dynamics, which is used extensively through-
out the rest of this thesis, are polynomial dynamics due to their ability to approximate well general non-
linear dynamics and in particular rigid body dynamics. Moreover, if the considered dynamical system
and Lyapunov function candidate are polynomial, the resulting constraint (3.3c) will also be polynomial.
In this case, the in general computationally intractable constraints (3.3), can be relaxed to demanding

66 CHAPTER 3. STABILITY

that the polynomial must be sum-of-squares, allowing the use of efficient optimization techniques while
still providing good bounds for the original problem.

In this work we are mostly concerned with quadratic Lyapunov functions due to their importance for
practical applications and third degree polynomial dynamics since they approximate well the trigono-
metric terms appearing in the rigid body dynamics equations. Moreover (3.3c) is the multiplication of
the gradient of the Lyapunov function and the dynamics equation which corresponds to a fourth degree
polynomial in this case.

Consider the nonlinear system dynamics

ẋ = f(x) autonomous case (3.22a)

ẋ = f(x) + g(x).u controlled case (3.22b)

where each element fi(x) of the vector valued function f(x) : Rn → Rn is a multivariate polynomial of
maximal degree k in n variables, similarly each element gi,j(x) of the input dynamics g : Rn → Rn×m is
a multivariate polynomial of maximal degree l in n variables. The Lyapunov function candidate is given
as a quadratic polynomial

V (x) = xT.P.x. (3.23)

In this case, the constraints 3.3 proving stability for the autonomous dynamical system can be relaxed
to the feasibility problem

exists P (3.24a)

subject to P ≻ 0 (3.24b)

V̇ (x) = xT.P.f(x) + f(x)
T
.P.x is SoS (3.24c)

or to make the connection to SDP more obvious

exists P (3.25a)

subject to P ≻ 0 (3.25b)

−M � 0 (3.25c)

V̇ (x) = xT.P.f(x) + f(x)
T
.P.x = m2

n
T
.M.m2

n. (3.25d)

Where (3.25b) is equivalent to the constraints (3.3a) and (3.3b). The constraint (3.25c) guarantees that

the polynomial m2
n

T
.M.m2

n is SoS and therefore −m2
n

T
.M.m2

n is non-positive on Rn, while the equality
constraints (3.25d) guarantee that the system dynamics are taken into account correctly.

In the controlled case, the control input has to be defined. Consider using a polynomial feedback
control law of maximal degree 3 − l denoted u = −k(x) : Rn → Rm, then the input dynamics become
−g(x).k(x) : Rn → Rn with each element being a polynomial of degree three (the same as the system
dynamics). Then the feasibility problem for proving stability becomes

exists P, k (3.26a)

subject to P ≻ 0 (3.26b)

−M � 0 (3.26c)

V̇ (x) = xT.P.(f(x)− g(x).k(x)) + (f(x)− g(x).k(x))
T
.P.x = m2

n
T
.M.m2

n. (3.26d)

Note that now the feasibility problem is no longer convex due to the multiplication of the decision
variables P and k in (3.26d). One could seek to use a similar change of variables as done in the linear
case, however this approach makes it impossible to add additional constraints on the control law k(x) or
to consider local stability. To solve this problem, two-step algorithms are usually applied, first fixing the
Lyapunov function candidate and searching for the control law k(x). In the second step the control law
from the last-step is fixed and one searches for suitable Lyapunov function candidate by searching for P ,
as detailed in section 3.4.

3.2. THEORETICAL BACKGROUND 67

Comparing Lyaponov’s Second Method and Contraction Analysis Contraction analysis is an
appealing way for proving stability as one is not required to have explicit knowledge about the equilibrium
point or path. Also, at first glance, it seems to be computationally lighter as the constraint ensuring
stability (equation (3.13)) reads

F (x)
T
.M(x) +M(x).F (x) � 0

with F (x) being the Jacobian of the system dynamics f(x) whereas one obtains

xT.P.f(x) + f(x)
T
.P.x ≤ 0

for Lyapunov’s stability criterion. If one uses the flat metric P , so ∀x : M(x) = P , the highest degree
appearing in the contraction analysis criterion is the degree of f minus one, whereas it is degree of f plus
one in Lyapunov’s criterion. As the computational cost is directly related to the length of the vector of
monomials sm(n, k) =

(

n+k
n

)

with k being the highest degree of any monomial, this can make a crucial
difference. This computational advantage however only holds for the case of flat metrics. The next toy
example shows that contraction analysis with flat metrics is less expressive, in the sense that the region
for which stability can be proven is never larger and sometimes smaller, than Lyapunov’s criterion for
quadratic candidate functions.

Consider the unidimensional autonomous system with third order polynomial dynamics

ẋ = −x+ x3 (3.27)

and the Lyapunov function candidate

V (x) = x2 (3.28)

and the corresponding metric M(x) = 1.
The Lyapunov stability criterion then becomes

V̇ (x) = 2x(−x+ x3) = 2(x4 − x2) ≤ 0

indicating that f(x) is locally stable for x ∈ [−1, 1], which coincides with the true region of attraction
(RoA). Using contraction analysis on the other hand, one obtains

F (x) =
d

dx
f(x) = −1 + 3x2

and the criterion becomes

2(−1 + 3x2) < 0

indicating that f(x) is locally contracting for x ∈
[

−
√

1/3,
√

1/3
]

which is significantly smaller than the

true region of attraction, see Figure 3.3.

Theorem 3.1. The largest region of attraction derived from Lyapunov’s stability criterion

ΩL =
{

x|(x− x∗)T.P.(x− x∗) ≤ α, (x− x∗)T.P.f(x) + f(x)
T
.P.(x− x∗) ≤ 0

}

containing the equilibrium point x∗ is always at least containing the region of contraction (RoC) derived
from contraction analysis ΩC using the flat metric M(x) = P containing x∗, so ΩC ⊆ ΩL

Proof. Contraction analysis proves that the distance between any two neighbouring trajectories within
the region of contraction monotonically decreases over time with respect to the metric M(x). However
if the metric M(x) is flat, the requirement that the trajectories are neighbouring can be dropped as the

3.3. PROBLEM STATEMENT 69

3.3 Problem Statement

We propose a new method to find an inner approximation of the true region of stabilizability (RoS) for
polynomial control affine systems by scaling a given quadratic Lyapunov function candidate

V (x) = xT.P.x = ‖x‖2P , with P ∈ Sn
++. (3.29)

More precisely, we consider systems of the form

ẋ = f(x) +B.u, u ∈ U (3.30)

where x ∈ Rn denotes a point in the state-space, f(.) : Rn → Rn represents the polynomial system dy-
namics, B ∈ Rn×m is a constant input matrix defining the linear input dynamics, u ∈ Rm denotes the
control input vector and U is the set of admissible control inputs. We suppose that B has full column
rank and that each control input u[i], is bounded, and that the constraints are independent of the other
control inputs, u−[i] ≤ u[i] ≤ u+[i] so that

U =
{

u|u− ≤ u ≤ u+
}

. (3.31)

This type of input constraints, also called box-constraint is typical for torque controlled articulated
robots, which are our primary target as far as applications are concerned, but also occurs frequently in
other applications. The problem treated in this section is to find an as large as possible sublevel-set of
the quadratic Lyapunov function candidate V (x), denoted Ω = {x|V (x) ≤ α} ⊂ Rn for which exists an
admissible control input that makes this set exponentially stable, or more formally

prove ∀x ∈ Ω : ∃u

subject to u− ≤ u ≤ u+

〈∇xV, f(x) +B.u〉 ≤ −γ.V (x)

where 〈., .〉 denotes the usual scalar product, ∇x denotes the gradient with respect to x and γ ≥ 0 is
called the convergence rate. The limit case γ = 0 is equivalent to the set Ω, and each subset Ω′ =
{x|V (x) ≤ α′ < α}, being invariant. To avoid confusion with other approaches, note that our approach
does not modify the given Lyapunov function candidate V (.) but seeks to enlarge the subset Ω by enlarging
α. This approach is reasonable for dynamical systems for which a good Lyapunov function candidate
can be found by other means. The method to compute these good candidates used within this work is
presented in section 3.9.

To avoid ambiguity with other definitions and to recall some properties from section 3.2.2. We call a
function V (x) a Lyapunov function candidate if it is differentiable, radially unbounded and everywhere
strictly positive, except at the origin where it evaluates to zero. A function V (x) is called a Lyapunov
function for the dynamical system ẋ = f(x) if it is a Lyapunov function candidate and its derivative along
any trajectory of the system is everywhere non-positive except at the origin where it is zero. Moreover, a
Lyapunov function proves exponential stability if its derivative along any trajectory is everywhere smaller
than its current value multiplied with a negative factor except at the origin where it is zero.

Due to their outstanding practical importance stemming from the ease of inclusion and intersection
testing (see section 2.5.2) as well as their inherent suitability for second order systems, we restrain
ourselves to quadratic Lyapunov functions of the form (3.29). The conditions for V (x) being a Lyapunov
function candidate are met if P ∈ Sn

++. Within this section, it is, without loss of generality, supposed
that the origin is an equilibrium for the dynamical system. Moreover, to ease notation, it is assumed
that the Lyapunov function candidate is time-independent, the necessary adaptations to time-dependent
Lyapunov functions are straight-forward and presented in detail in section 3.7.

70 CHAPTER 3. STABILITY

3.4 Related Work

The problem of proving stability for dynamical systems is a long standing problem that was first encoun-
tered by physicists and only much later found its place in engineering sciences, namely control theory.
Naturally, in a control theoretic environment one is not satisfied by drawing conclusions about the natural
stability of autonomous systems, but it is much more interesting to derive criteria for the stability or
stabilizability of controlled dynamical systems.

Many of the approaches developed to prove stability are based on contraction analysis or Lyapunov’s
stability criterion. As the proposed approach is based on Lyapunov theory, we will mainly present existing
approaches that also rely on Lyapunov theory with other approaches discussed briefly afterwards.

3.4.1 Approaches Involving Lyapunov Theory on SoS-Techniques

Recall the definition of exponential stability with rate γ in the Lyapunov sense for a bounded region:
given a Lyapunov function candidate V (x) and a region of the state space Ω defined as sublevel-set of
the Lyapunov function, proving exponential convergence for the dynamical system ẋ = f(x) amounts to
finding a certificate of non-positivity for V̇ (x) plus a convergence term valid within Ω. So one has to
prove that

∀x ∈ Ω \ {0} : V̇ (x) = 〈∇xV (x), f(x)〉+ γ.V (x) ≤ 0 (3.32)

or equivalently

max
x∈Ω\{0}

〈∇xV (x), f(x)〉+ γ.V (x) ≤ 0 . (3.33)

There exists no generic way to solve this optimization problem for general nonlinear systems and Lyapunov
functions and therefore one has to either rely on hand-made solutions for specific cases or restrict the
class of functions considered. In recent years enormous progress has been made by restraining both, the
dynamics and the Lyapunov function candidate to be polynomial in x as showcased in Jarvis-Wloszek
et al. [2003], Majumdar et al. [2013b], Ahmadi and Majumdar [2014] or Aylward et al. [2008] and Singh
et al. [2017] for contraction analysis. These advancements have been made possible by the appearence
and progress on solvers for SDPs like Sturm [1999], ApS [2017] or Andersen et al. [2013].

The approach presented in Majumdar et al. [2013b] is the closest to the method proposed in this
chapter and is therefore detailed in the following. Note that Majumdar et al. [2013b] explicitly aims at
proving convergence towards a trajectory, so time-dependent Lyapunov functions. To ease notations and
concepts, this method is here presented in its time-independent version.

By restricting the Lyapunov function and the dynamical systems to polynomials in x, the time-
derivative of the Lyapunov function ˙V (x) also becomes a polynomial of degree deg(f(x))+deg(V (x))−1 in
x. Therefore the question V̇ (x) ≤ −γV (x) can be relaxed to the SDP feasibility problem stated in (3.25).
This problem however proves global exponential convergence of the autonomous system with respect to
the obtained Lyapunov function. To be useful for solving realistic problems, the approach needs to take
into account the control inputs and be restricted to prove local stability. So the considered dynamical
system becomes ẋ = f(x) + g(x).u where each element f(x)[i] and g(x)[i, j] are polynomials in x and,
without loss of generality, f(0) = 0. To achieve this, a polynomial control law u = −K(x) : Rn → Rn

3.4. RELATED WORK 71

and multiplier terms are introduced and the local stability criterion on Ω = {x|V (x) ≤ α} becomes

exists V (x), K(x), L(x),Mi(x) (3.34a)

subject to V (x)− ǫxT.x is SoS (3.34b)

L(x) is SoS (3.34c)

∀i, Mi(x) is SoS (3.34d)

− 〈∇xV (x), f(x)− g(x).K(x)〉 − γV (x) + L(x)(V (x)− α) is SoS (3.34e)

∀i, u+[i]−K(x)[i] +Mi(x)(V (x)− α) is SoS (3.34f)

∀i, K(x)[i]− u−[i] +Mi(x)(V (x)− α) is SoS (3.34g)

V (1) = 1. (3.34h)

The constraints (3.34b), (3.34c) and (3.34d) ensure that V (x) is indeed a Lyapunov function candidate
(by setting ǫ > 0) and that the multiplier terms L(x) and Mi(x) are non-negative. Constraint (3.34e)
ensures the exponential convergence with minimal rate γ of the dynamical system for the control law K(x)
with respect to V (x) in Ω. This is ensured as L(x) is everywhere non-negative and V (x)−α is negative
within Ω and non-negative in the complement of Ω, Ω̄. This means that outside of Ω, the positivity of
L(x)(V (x) − α) can outweigh the possible negativeness of the other terms, resulting in an overall SoS
expression. However inside of Ω this approach increases the conservativeness, especially farther away
from the boundary of Ω. The constraints (3.34f) and (3.34g) guarantee that u− ≤ u = K(x) ≤ u+ in
the same way as (3.34e). The last constraint (3.34h) is a normalization constraint, necessary as one could
always increase α dividing all coefficients defining the polynomial V (x) by some scalar, resulting in an
unbounded problem.

As one can see, the input dynamics and the polynomial control law are multiplied in (3.34e), possi-
bly increasing the maximal occurring degree. In order to be able to ensure global non-negativeness,
or rather SoS-representability of the whole expression, the degree of the multipliers has to be suf-
ficiently large. So, for instance in the constraint (3.34e), deg(L(x)(V (x) − α)) has to be at least
deg(−〈∇xV (x), f(x) − g(x).K(x)〉 − γV (x)) + 2 increasing the overall complexity of the approach.
Moreover, in the constraints (3.34a), (3.34b) and (3.34c), the decision variables (the coefficients of)
V (x), K(x), L(x) and Mi(x) are multiplied causing the problem to be non-convex.

Therefore in Majumdar et al. [2013b] a three step algorithm is proposed, which already occurs in a
slightly different version not taking into account input constraints in Jarvis-Wloszek et al. [2003], that
seeks to find an as large as possible inner approximation of the region of attraction defined as a sublevel-set
of a Lyapunov function and provides the associated polynomial feedback control law.

Algorithm 1 RoA computation as in Majumdar et al. [2013b]

1: Parameter γ > 0, ǫ > 0
2: Initialize V (x), α using LQR
3: converged=false
4: while not converged do

5: Step 1 : Solve feasibility problem by searching for K(x), L(x) and Mi(x) while fixing V (x)
and α

6: Step 2 : Maximize α by searching for K(x) and α while fixing V (x), L(x) and Mi(x)
7: Step 3 : Maximize α by searching for V (x) and α while fixing K(x), L(x) and Mi(x)
8: Step 4 : converged = isConverged(V (x), α)
9: end while

In Step 1 feasible multipliers and control laws are found for the current region size α and Lyapunov
function V (x). In Step 2 the current region is enlarged by maximizing α. As the current solution is
feasible, the resulting α∗ has to be at least as large as the α from the last iteration. However the increase

72 CHAPTER 3. STABILITY

possible depends largely on the current multiplier terms which are fixed in this step and there is no way
to generate them during STEP 1 in such a way that “large” increases of α during STEP 2 can be
ensured. Finally in STEP 3 the Lyapunov function itself is updated, again while seeking to maximize α.
In this step the quality of the normalization constraints to represent the volume of the region is crucial.
Overall this algorithm is a method to solve the initial non-convex problem (3.34) by breaking it into
convex subproblems and iteratively improve the found solution. Therefore the final result depends on
the quality of the initial guess of V (x) and α, and suitable candidates are often found relying on the
linearised system and LQR-techniques or they are user-provided input.

In the following some additional remarks on Algorithm 1 are listed.

Remark 3.1. The conservativeness induced by the constraints (3.34f) and (3.34g) regarding the control
input can be reduced by explicitly taken into account the saturation, which is presented in Tedrake et al.
[2010b] and also applied in Majumdar et al. [2013b]. This approach increases the overall complexity and
also involves multiplier terms.

Remark 3.2. By dropping the constraints (3.34c) and (3.34d) from the problem (3.34) and setting γ to
zero, Ω is an invariant instead of an exponentially converging set and the input constraints are only ensured
on the boundary of Ω. This is interesting as it significantly decreases the computational complexity and
possibly even the conservativeness at the cost of obtaining a weaker certificate.

Remark 3.3. Step 3 of the algorithm depends on the normalization constraint (3.34h) since the problem
would be unbounded otherwise. As the goal is to maximize the RoA one needs to specify according to
which measure one wants to maximize. A natural choice would be the volume. The volume of a region of
the state space defined as a sublevel-set of the SoS expression V (x) is however not convex with respect
to the coefficients of the polynomial. Therefore simpler normalization constraint needs to be found. Here
the constraint V (1) = 1 is chosen, which is a somewhat bad measure for the volume, even for quadratic
Lyapunov functions and which tends to bias the optimization as we will see in section 3.10. In Jarvis-
Wloszek et al. [2003], this problem is resolved by demanding that the sublevel-set Ω1 defined by V (x) ≤ 1
comprises a predefined region, providing a lower bound for the volume of the sub-level set.

As stated before, we restrict ourselves for the moment being to polynomial control affine systems of
the form ẋ = f(x) + B.u and quadratic Lyapunov functions V (x) = xT.P.x with P ∈ S++, which is
simply a special case for the approaches described above.

3.4.2 Approaches Involving Contraction Analysis and LMIs

Applying contraction theory for answering the question of local stability on Ω of controlled polynomial
systems, as done in Manchester and Slotine [2017] and Singh et al. [2017], the constraint ensuring expo-
nential convergence becomes

(Ax +Bx.Kx)
T
.Mx +Mx.(Ax +Bx.Kx) ≤ −2γMx (3.35)

with Ax and Bx being the Jacobians of the system and input dynamics, Kx denoting the differential
control law and Mx representing the state-dependent metric. Each element Mx[i, j] = Mx[j, i] is a
multivariate polynomial in x of predefined degree. Additionally one has to ensure that Mx is indeed
a metric on Ω. This can be done via sum-of-squares constraints and LMIs as shown in Aylward et al.
[2008]. Once Kx and Mx found, the actual control law is obtained by integrating the differential control
law along the trajectory for some initial value (for the system state and the control law).

As shown in Singh et al. [2017], box-constraints, so that the resulting control input has to suffices
u− ≤ u ≤ u+, can be imposed onto the the control law, however making the problem significantly more
complex and inducing conservativeness.

3.5. STATE-SPACE PARTITIONING BASED ON OPTIMAL CONTROL INPUT 73

3.5 State-Space Partitioning Based On Optimal Control

Input

In the last section it was briefly discussed how SoS-techniques tackle the problem of proving local stability
of dynamical systems with polynomial system and input dynamics. In this section the arising optimiza-
tion problem will be viewed from a different point of view and a new approach based on ideas from
optimal control and Lyapunov theory is presented. The resulting optimization problem can be resolved
by polynomial programming as shown in the following sections.

3.5.1 Stabilizability As Min-Max problem

The question whether the controlled dynamical system ẋ = f(x) + B.u is exponentially stabilizable for
u ∈ U with respect to the Lyapunov function V (x) within a region defined as a sublevel-set V (x) ≤ α
comes down to finding a certificate for

∀x ∈ Ω \ {0} , ∃u ∈ U : ∇xV (x).(f(x) +B.u) ≤ −γV (x)

or equivalently

max
x∈Ω\{0}

min
u∈U

∇xV (x).(f(x) +B.u) + γV (x) ≤ 0. (3.36)

So the above optimization problem asks, if for all points in the region there exists an admissible control
input that ensures exponential convergence. Due to the interweaving of optimizations this is a very
difficult optimization problem which cannot be efficiently solved even if V (x) and f(x) are polynomial.
This is due to the structural properties of the optimization problem on one and to the lack of good
available software packages on the other, see for instance Fang and Wu [1996].

The approach taken by the works cited in the last section to tackle this problem is to introduce a
polynomial (differential) control law u = K(x), transforming the controlled system into a closed loop
autonomous system. This simplifies the optimization problem as the inner minimization is dropped, but
also increases the number of variables and adds conservativeness. Due to the predefined structure of the
control law, it cannot result in the optimal control input with respect to convergence for each point in
the general case.

3.5.2 State-Space Partitioning

Instead of introducing auxiliary variables representing a polynomial control law, our approach relies on
input optimal state space partitioning.

Lemma 3.2. Optimal Input Partition

For polynomial control affine systems and quadratic Lyapunov candidate functions, the state space can be
partitioned into 2m subsets Hi∈[0,2m−1] and an associated optimal control input with respect to convergence
u∗
i can be defined. Moreover this optimal control input takes on exclusively values from u+ and u−.

In order to prove this claim, reconsider the quadratic Lyapunov function candidate V (x) = xT.P.x
and the polynomial control affine system ẋ = f(x) +B.u. Then the time derivative of V is given as

V̇ (x) = 〈∇xV (x), ẋ〉

= 2xT.P.(f(x) +B.u) . (3.37)

This indicates that the derivative can be separated into two parts: An uncontrollable part resulting from
the system dynamics 2xT.P.f(x) denoted V̇f and an input dependent part 2xT.P.B.u denoted V̇u. In
order to obtain the desired partitioning of the state-space, V̇u is explicitly written as sum

V̇u =
∑

j

xT.P.B[:, j].u[j]. (3.38)

74 CHAPTER 3. STABILITY

So the input dependent part of the derivative can be written as the sum of each control input element
u[j] multiplied by the scalar xT.P.B[:, j]. By denoting nj = P.B[:, j] one obtains xT.nj , which is simply
the minimal directed distance scaled by ‖nj‖2 between the point considered and a separating hyperplane
passing through the origin with normal vector nj denoted Pj . The problem (3.36) can be rewritten as

max
x∈Ω\0

∇xV (x).f(x) + γV (x) + min
u∈U

m−1
∑

j=0

(xT.nj)u[j]

 ≤ 0. (3.39)

The box-constraint defining U (see (3.31)), ensuring that u[i] is independent of u[j] if i 6= j, implies the
following equivalence:

min
u∈U

m−1
∑

j=0

(xT.nj)u[j]

 =

m−1
∑

j=0

min
u−[j]≤u[j]≤u+[j]

(

(xT.nj)u[j]
)

as the minimum over a sum of independent terms is the sum of the minima of each term. Finally one
can rewrite (3.36) in the simpler form

max
x∈Ω\0

∇xV (x).f(x) + γV (x) +

m−1
∑

j=0

min
u−[j]≤u[j]≤u+[j]

(

(xT.nj)u[j]
)

≤ 0. (3.40)

Therefore demanding the system to converge as fast as possible for a fixed point x with respect to
the given Lyapunov function is equal to minimizing V̇u, which in turn is equal to minimizing each term
in the sum in (3.38) as one can deduce from (3.40).

To achieve this minimization, the j-th control input has to be chosen as small as possible if xT.nj > 0
(x lies in the upper half-space of Pj) and as large as possible if xT.nj < 0 (x lies in the lower half-space
of Pj) to obtain the minimal value of each summand defining V̇u. The corresponding optimal control
input in the sense of instantaneous convergence of the system is

u∗(x)[j] =

u+[j] if xT.nj < 0

u−[j] if xT.nj > 0

uPj
else

(3.41)

where, in order to remove the ambiguity, any input uPj
, satisfying u−[j] ≤ uPj

≤ u+[j], can be chosen
if the current state belongs to the hyperplane. The undefined character of uPj

does not pose a problem
for proving stability since its contribution to V̇u is 0 independently of the value of uPj

as xT.nj = 0. As
one can see this control law partitions the state-space into two open half-spaces for each of the m control
inputs. Denoting Hi for i ∈ [0, 2m − 1] the unbounded convex polytope defined as the intersection of m
upper or lower half-spaces generated by the hyperplanes Pj∈[0,m−1] we get

Hi =
{

x|∀j ∈ [0,m− 1] cijx
T.nj ≤ 0

}

(3.42)

where cij ∈ {−1, 1}, see Figure 3.4, is a switch to determine whether the upper or lower half-space of the
j-th hyperplane is used. Note that in (3.42) the strict inequalities of (3.41) are replaced with inequalities.
This poses no problem as the control input on the hyperplane can be chosen arbitrarily. One can easily
see that for each such polytope Hi the optimal control input u, denoted u∗

i , is independent of x. Since
there exist m such hyperplanes, the state-space is partitioned into 2m polytopes with different optimal
inputs. Note that each of these polytopes has non-empty interior if the matrix P is positive definite and
B has full column rank (i.e. rank m). The definiteness of P is always given in order to ensure that
V (x) = xT.P.x is a Lyapunov function candidate and in general, for dynamical systems, B is of rank m.
If the rank condition on B is violated, it means that there exist at least two inputs which are linearly

76 CHAPTER 3. STABILITY

candidate

V̇ ∗
i (x) = 〈∇xV (x), ẋ∗〉 = 2.xT.P.(f(x) +B.u∗

i). (3.44)

Now the min-max problem (3.36) for proving stability can be reformulated. Since we determined the
optimal input with respect to instantaneous convergence for each Hi we can drop the inner minimiza-
tion by checking each intersection of the partition with the sublevel-set of V considered. So the inner
minimization

min
u∈U
〈∇xV (x), f(x) + g(x).u〉 (3.45)

becomes

x ∈ Hi : 2.xT.P.(f(x) +B.u∗
i) (3.46)

and therefore

∀i : max
x∈(Ω∩Hi)\{0}

V̇ ∗
i (x) = 2.xT.P.(f(x) +B.u∗

i) ≤ −γ.x
T.P.x (3.47)

is equivalent to the initial problem (3.36) and represents a proof of exponential convergence. It also proves,
constructively, that Ω is a region of exponential stabilizability with guaranteed minimal convergence rate
γ.

Note the conceptual difference. While the works cited in section 3.4 prove stability by introducing
a (polynomial) control law u = K(x) and then enlarge the region of attraction with respect to the
closed loop system, the proposed partitioning of the state space in contrast directly takes advantage
of the specific problem structure and reasons directly on the region of stabilizability. This yields two
advantages. First the conservativeness resulting from enforcing the constraint that the control law has to
generate admissible control inputs everywhere in the considered region is avoided. Secondly the resulting
optimization has less decision variables as no control law or additional multipliers have to be introduced,
resulting in a possibly simpler optimization problem.

The ultimate goal is to maximize the size or better volume of Ω, which depends only on one parameter,
α, as we do not seek to modify V (x) defining the shape of the sublevel-set. In section 3.7, we use a
dichotomic search to quickly find a large value for α. This requires us to efficiently check the validity of
(3.47). In section 3.8 we show how this can be done by using relaxations to deal with the non-convex
polynomial expressions arising in (3.47).

3.5.3 State Space Partitioning for Perturbed Systems

The above presented state space partitioning can readily be extended to the case of control and pertur-
bation affine polynomial systems of the form

ẋ = f(x) +B.u+Bω.ω (3.48)

with Bω ∈ Rn×l representing the perturbation channels and ω ∈ Rl represents the perturbations. In
order for this approach to be directly applicable to this case, we consider that the perturbations are also
box-constrained, so ω− ≤ ω ≤ ω+ holds element-wise.

In this case we can see the perturbations much like the control inputs, however with the “goal” to
make the system diverge from the equilibrium point. Therefore we can compute a separation hyperplane
for each perturbation ωj called nω,j as P.Bω[:, j] and define the divergence optimal perturbation as

ω∗(x)[j] =

ω+[j] if xT.nω,j > 0

ω−[j] if xT.nω,j < 0

ωPj
else

(3.49)

78 CHAPTER 3. STABILITY

3.6 Resulting Closed Loop Dynamics and Links to Sliding

Mode and QP-Control

In this section we point out links between the optimal control law with respect to instantaneous con-
vergence (3.41) and first order sliding mode control. Since this control mode can induce chattering and
premature wear out due to the high, possibly infinite, switching frequency on the sliding surface it is not
suitable for real applications. We therefore introduce a quadratic programming (QP) control law that
results in continuous control trajectories and provides the same certificates. To illustrate the approach
and the resulting dynamics, the torque controlled simple pendulum, see (3.43), and the Acrobot (Spong
[1995]), are used as a showcase.

3.6.1 Sliding Mode Control

Sliding mode control was introduced in the 1970s, see for instance Emel’yanov and Utkin [1964] for one of
the early works, and is concerned with proving stability of nonlinear control systems of the general form
ẋ = f(x,u). The main idea of sliding mode control is the following: in a first step a sliding manifold
is created on which the system behaves in the desired the way, e.g. the system is asymptotically stable.
Then in a second step, control laws are designed that drive the state towards the sliding manifold within
some neighbourhood around it. The advantage lies in the fact that on the sliding manifold, the order of
the system is effectively decreased, as the switching between the control laws will keep the state on the
manifold making convergence proofs possibly easier.

To put it formally for a simple case, consider the nonlinear control system ẋ = f(x,u), the sliding
manifold implicitly defined as Ω = h(x) = 0 with h : Rn → R being C1, the reduced order system on the
sliding manifold ˙̃x = f̃(x̃) and the control laws k0(x) and k1(x). Then, in order to prove global stability
of the system, one has to prove that

∀x ∈ Ω: lim
t→∞

x̃ = 0 (3.53a)

∀x ∈ U(Ω) ∩ {x|h(x) > 0} : 〈∇xh(x), f(x, k0(x))〉 < 0 (3.53b)

∀x ∈ U(Ω) ∩ {x|h(x) < 0} : 〈∇xh(x), f(x, k1(x))〉 > 0 (3.53c)

∀x, ∃Tr <∞ : ∀t > Tr h(x) = 0 (3.53d)

where U(Ω) denotes some neighbourhood of Ω and the last condition, known as finite reaching time
condition, ensures that all states reach the sliding manifold in finite time. There also exist local versions
of the above conditions but these are usually tailored for the dynamical system at hand, see for instance
Wang et al. [2004].

This gives the system a variable control structure, as the resulting dynamical system can be defined
as

ẋ =

f(x, k0(x)) if h(x) > 0

f(x, k1(x)) else if h(x) < 0

f(x,0) else

. (3.54)

The advantages of sliding mode control are that one can choose control laws with high gains providing
good perturbation rejection while ensuring a smooth overall behaviour on the sliding manifold by their
design. For real applications however the high (infinite) frequency switching between the control laws
can cause chattering for second-order systems and is generally not desirable.

Till here the main concept of sliding mode control was briefly introduced. For a more complete
introduction to the topic and approaches to deal with the high frequency switching see, among others,
Edwards and Spurgeon [1998] or Pisano and Usai [2011].

By defining h(x) = xT.n, k0(x) = u− and k1(x) = u+ the structure given above corresponds to the
optimal control law derived in the last section for the torque controlled pendulum and given Lyapunov

3.6. RESULTING DYNAMICS AND LINKS TO SLIDING MODE AND QP-CONTROL 79

function. Therefore one might draw the conclusion that the separating hyperplanes Pj defined by the
corresponding normal vector nj correspond to sliding manifolds defined by hj(x) = xT.nj = 0. However
this is not true. For the running example of the torque controlled pendulum, the separating hyperplane
is indeed a (local) sliding manifold, but this does not hold in general. The stability proof based on
Lyapunov’s second method demands that all states converge towards the origin with respect to the
Lyapunov function V (x). The condition that all states within some neighbourhood of the manifold have
to converge towards it does not follow from this constraint. Indeed one can perfectly imagine a dynamical
system and a Lyapunov function candidate for which xT.nj increases along a trajectory after crossing
Pj while also converging with respect to V (x). Even though we have just shown that our approach does
not directly match sliding mode control, the concerns about the possibly infinite switching frequency
on the separating hyperplane do directly transfer to our approach. To be more precise, the infinite
switching frequency poses problems from a practical and theoretical point of view. It induces chattering
and premature wear out of the system, especially for second order models such as robotic systems. On
the other hand it also raises theoretical concerns as the solution to such a system is ill-defined due to the
zeno effect.

3.6.2 From Sliding Mode Control to a Continuous Control Law

To showcase the resulting partition in Figure 3.4, the dynamical system represents a torque controlled pen-
dulum and the Lyapunov function candidate V (x) = xT.Id.x is imposed. Since the pendulum is a single
input system, there exists only one separating hyperplane defined by the normal vector n = Id.B = cτeθ̇.
We obtain the optimal control inputs associated to the partitioning of the state space formed by two
subsets H0 and H1 as u∗

0 = u− and u∗
1 = u+. As already stated above, the system states converge to

the hyperplane if they belong to the true region of stabilizability for the considered Lyapunov function.
Once this surface obtained, the system is in sliding mode, meaning that the switching between the u−

and u+ occurs at high, possibly infinite frequency, and the state is maintained on the hyperplane. This
corresponds to first order sliding mode control and the separating hyperplane is the sliding surface for this
system. Note that this is merely an observation for the dynamical system at hand and not something that
can be deduced from the proof of stabilizability, as pointed out above. However this observation holds
for both dynamical systems used as showcases here, the already introduced torque controlled pendulum
and the Acrobot which we will introduce now. The Acrobot is a planar underactuated 2R robot. Its base
joint is passive, only the joint between the first and second segment is actuated. Its dynamics, written in
the usual convention, are given as

S.τ = Mq.q̈ + Cq,q̇ + gq (3.55)

where Mq ∈ S2
++ is the mass matrix, Cq,q̇ is the vector containing the nonlinear forces (Coriolis and

centrifugal forces), gq denotes the gravity forces and S =
(

0 1
)T

being the input selection matrix. The

indices q and q̇ denote the dependencies to the configuration q =
(

θ0 θ1
)T

and its derivative q̇.
Now we can bring this system into the standard form ẋ = fnl(x) + gnl(x).u by defining

x =

(

q

q̇

)

=

θ0
θ1
ω0

ω1

u = τ

fnl(x) =

ω0

ω1

−M−1
q .

(

Cq,q̇ + gq

)

 gnl(x) =

(

0

M−1
q

)

.S .

These equations, as indicated by nl, correspond to the fully nonlinear system. As the proposed
approach is restricted to control affine polynomial systems, we use the truncated (multivariate) Taylor

80 CHAPTER 3. STABILITY

expansion, usually up to degree 3, with respect to the equilibrium point (x∗, u∗) for the system dynamics
and the value of gnl(x∗) as (linear) approximation for the input dynamics. So the dynamical system used
within the stabilizability proof becomes

ẋ = f(x) +B.u (3.56a)

f [i](x) =
3
∑

|β|=0

(x− x∗)β

|β|!

∂|β|

∂xβ

(

fnl[i]
)

(x∗) (3.56b)

B = gnl(x∗) (3.56c)

using the notations for monomials introduced in section 3.2.4. Note that the approximation of the
original nonlinear system using linearisation and truncated Taylor expansion is not conservative in the
sense that it is not guaranteed that the RoS found for (3.56a) is strictly contained inside the RoS of
the nonlinear system. This can be ensured by considerations involving the (local) Lipschitz constant of
the error dynamics or by the approach proposed by Chesi [2009], directly reasoning on the worst-case
remainder of the truncated Taylor extension. In this work, as in Tedrake et al. [2010b], Singh et al. [2017]
or Majumdar et al. [2013b], we do not ensure this conservativeness but rely on the supposition that
the rigid-body dynamics of robotic systems can be well approximated by third order Taylor expansion,
as shown empirically in section 3.10. Moreover, as the proposed approach relies on efficiently solving
nonconvex polynomial programming over subsets of the state space, one can seek to refine the model by
first partitioning each subset of the state space into smaller set, then use the input optimal partitioning to
check convergence on each subset. This way one can linearise around the center of each subset reducing
the largest occuring error between the polynomial approximation and the true nonlinear system.

QP-Control for a Continuous Control Law

As pointed out above, first order sliding control raises concerns from both theoretical and practical point
of view. To remedy these problems we propose a QP-based control law and prove, using Berge’s Maximum
Theorem (Berge [1970]), that it guarantees exponential convergence on Ω \ {0} and results in continuous
control trajectories if (3.47) holds.

The proposed QP-control is

minimize
u

h(x,u) = uT.Q.u+ 2xT.P.B.u (3.57a)

subject to u− ≤ u ≤ u+ (3.57b)

2xT.P.B.u ≤ −2xT.P.f(x)− γ.xT.P.x (3.57c)

where 2xT.P.B.u is the input dependent part of the derivative of the Lyapunov function V̇u(x), Q ∈ S++

is user chosen, typically diagonal, and reflects the cost of the control effort. The first constraint repre-
sents the boundedness of the control input and the second constraint ensures the demanded exponential
convergence. Note that this optimization problem is guaranteed to have a solution for all x ∈ Ω \ {0} if
(3.47) holds. Moreover, the form of the objective function (with Q ∈ S++), together with the convexity
of the constraints, ensures uniqueness of solutions and makes the problem amenable to convex quadratic
programming.

In order to prove continuity of the resulting control trajectory, we employ Berge’s Maximum Theorem,
which, combined with the uniqueness of solutions, guarantees continuous control trajectories. Berge’s
Maximum Theorem provides conditions to ensure the continuity (properly speaking the upper hemiconti-
nuity) of the set of control inputs respecting the constraints and minimizing the objective function. Since
this set collapses to a singleton u∗ (the unique solution) in the case of convex quadratic programming, it
ensures continuity. The fulfilled conditions are that the objective function h(x,u) is jointly continuous in
x and u and that the set of inputs respecting the constraints is compact and hemicontinuous (upper and

3.7. EXTENSION TO TIME-VARYING CASE AND IMPLEMENTATION 83

f(δx) ≈ fnl(x) and g(δx) ≈ gnl(x) respectively. Note that xr
t is also the center of Ωt and is therefore

the natural choice. Now the condition is written

∀i : max
x∈(Ωt∩H̃i)\{0}

V̇ ∗
i (t,x) = 2.δxT.P.(f(δx) + g(δx).ũ∗

i − ẋr
t) + δxT.Ṗt.δx ≤ −γ.δx

T.P.δx. (3.61)

In this condition all terms are polynomial, and therefore efficiently solvable, but the condition on which
the optimal state space partitioning is based, that the system is affine with respect to the control inputs,
is violated, as we have polynomial input dynamics. Therefore the unbounded polytopes Hi in the control
affine case now become semi-algebraic sets defined by polynomial inequalities of the form

H̃i =
{

x|cji δx
T.P.g(δx)[:, j] ≤ 0

}

(3.62)

inducing the associated optimal control input ũ∗. These sets are much more general than the polytopes,
resulting in constraints harder to express and which are not suitable for the proposed approach to prove
non-positiveness presented in section 3.8. To remedy this problem, we compute the optimal control input
u∗ and the partitioning Hi based on the linearised input dynamics B = gnl(xr

t). The condition then
becomes

∀i : max
x∈(Ωt∩Hi)\{0}

V̇ ∗
i (t,x) = 2.δxT.P.(f(δx) + g(δx).u∗

i) + δxT.Ṗt.δx+ γ.δxT.P.δx ≤ 0 (3.63)

which is equivalent to proving non-positiveness of a polynomial. Here the “relative” character of the
current system state with respect to the current reference point is explicitly denoted using the δ prefix.
In order to keep notations short, the δ will be dropped if it is clear from context that x is relative to xr

t .
In this case we also redefine f(x) = f(δx)− ẋr

t .
Obviously, the optimal control input u∗ is only optimal with respect to the affine input dynamics, not

for the polynomial input dynamics. This sub-optimality is in general small for the considered systems
due to two reasons. First, for polynomial expressions derived from second-order systems, the nonlinear
terms of f(x) are usually smaller than the linear terms within the RoS. This results in the absolute error
of the dynamics induced by using the sub-optimal control law to be small and moreover, the region where
u∗ is different from ũ∗ is close to the separating hyperplane Pj . As we have seen that the contribution of
the control input u[j] to V̇u depends on the distance between the state and the hyperplane the induced
error in the controlled part of the derivative V̇u is the product of two supposedly small values. Therefore
the difference between the largest RoS provable by (3.61) and (3.63) is probably negligible (within this
use-case).

3.7.2 Funnel Construction via Retro-Propagation

The initial problem that we are seeking to answer is to construct an as large as possible funnel around
a reference trajectory for which we can ensure that all states inside of it will remain inside of it or even
converge exponentially towards the reference trajectory. Due to this property a funnel can be used to
drive all states into a goal region, see the application of funnels in chapter 2.

We have to embed the proofs of convergence with respect to time-dependent Lyapunov functions and
polynomial systems into an algorithm that constructs these funnels. It is theoretically possible to treat
time just like another dimension and develop conditions that proof stability for all t ∈ [T0, T1]. But
this approach suffers from multiple drawbacks. Approximating the evolution of the dynamical system
along a reference trajectory with respect to time is likely to cause larger errors as the change of state
along the reference trajectory from T0 to T1 might be larger than the difference within Ωt for a fixed
t. Secondly, due to the increased dimension, the optimization problem is computationally more costly.
Finally, in order to use the proposed state space partitioning, the evolution of the optimal control law
u∗ would also have to be approximated, leading to additional errors and increased maximal degree of
the condition. Instead condition (3.63) is ensured on finitely many points distributed along the reference
trajectory similar to the approaches in Tedrake et al. [2010b] and Majumdar et al. [2013b].

84 CHAPTER 3. STABILITY

The iterative algorithm used in this work to construct the funnel for a given trajectory and dynamical
system is given in Algorithm 2. This algorithm relies on two important sub-procedures: the retro-

Algorithm 2 Funnel construction via retro-propagation

1: Input ΩT =
{

x| ‖x− xr
T ‖PT

≤ αT

}

2: Parameter Nsteps ∈ N+, Ninter ∈ N+, γ ∈ R+

3: Output
(

P k, αk
)

0≤k≤Nsteps

4: dT = T
Nsteps

5: P k ← PT

6: αk ← αT

7: T ← linspace(0, T,Nsteps)
8: for k from Nsteps to 1 by −1 do

9: P k−1, αk−1 ← Retro-Prop(P k, αk, dT)
10: αk−1 ← DichotomicSearch(P k−1, P k, αk,T [k − 1],T [k], Ninter)
11: end for

12: Return
(

P k, αk
)

0≤k≤Nsteps

propagation of a region Ω along a reference trajectory for a given system and the maximization of the
volume by performing a dichotomic search.

The retro-propagation is a crucial step in the algorithm as it is the only step in which the shape of
the Lyapunov function (the Pt) is modified. Therefore it is vital that the resulting shape is compatible
with the dynamical system. The method used for the examples shown in section 3.10 is based on the
linear quadratic regulator (LQR) and presented in detail in section 3.9.

In order to maximize the volume of Ω, we seek to maximize αk−1 at each step of the iteration. As the
sufficient conditions for stabilizability presented above necessitate to fix Ω, a dichotomic search is used
to quickly converge towards the largest admissible αk−1. In contrast to the approach in Majumdar et al.
[2013b], in which the stability condition is only check at each “base” point, we also check the stabilizability
condition on Ninter intermediate points, equidistantly distributed between T [k−1] and T [k]. This means
the stabilizability condition checked within the procedure DichotomicSearch becomes

∀tl ∈ linspace(T0 = T [k − 1], T1 = T [k], Ninter + 2), ∀i :

max
x∈(Ωtl

∩Hl
i)\{0}

2.δxT.Ptl .(f
l(δx) + gl(δx).ul∗

i − ẋr
tl
) + δxT.Ṗtl .δx+ γ.δxT.Ptl .δx ≤ 0 (3.64)

with δx = x − xr
tl

and f l(.) and gl(.) being the truncated Taylor expansion of the nonlinear dynamical
system at xr

tl
as shown in Figure 3.8. The partitioning of the state space into the polytopes Hl

i and the
corresponding optimal control input ul∗

i are derived based on Ptl and linear input dynamics Bl = gnl(xr
tl
).

Special care has to be taken to properly interpolate between the start and end region as linear
interpolation can result in undesired behaviour, as shown in section 3.9.4.

86 CHAPTER 3. STABILITY

on X. For quadratic programming this set of new variables has to replace all terms quadratic in x and
can be conveniently written as a symmetric matrix variable X, where the new variable Xij linearises the
term xixj . To ease notations we introduce the linearisation operator 7→Lin, which replaces all nonlinear
terms in the expression on the left hand side with their corresponding newly introduced variable, so

xixj 7→Lin Xij (3.66)

which can also be applied to vector or matrix expressions by applying it to each element, for instance

x.xT 7→Lin X

xT.x 7→Lin tr (X) .

In the running example, one therefore gets

xT.Q.x+ L.x 7→Lin tr (X.Q) + L.x

and the problem becomes

minimize
x,X

tr (X.Q) + L.x (3.67a)

subject to x |= C1 (3.67b)

In order to ensure that the gap between the solution of the original and the linearised problem is
small and remains conservative, in the sense that the linearised problem is an underestimator for the
original problem, one has to construct valid constraints on X. This can be done by taking products of
constraints on x. For instance, reconsider the set of linear constraints C1 = ∪k∈[0,K−1]C

k
1 . By multiplying

two constraints Cm
1 , Cn

1 one obtains a valid constraint with terms up to order 2 in x, then again one
can replace the nonlinear (quadratic in this case) terms by the corresponding variables in X and thereby

a linear constraint in x ∪X is obtained. For short, Cm
1 ⊗ Cn

1 = Cm,n
2 7→Lin

∼
C

m,n

X , where ⊗ denotes the
product of constraints. For instance consider the following example

Cm
1 = axi + bxj ≥ 0 (3.68a)

Cn
1 = xi − c ≥ 0 (3.68b)

then

Cm
1 ⊗ Cn

1 = Cm,n
2 = ax2

i + bxixj − acxi − bcxj ≥ 0 (3.68c)

and finally

Cm,n
≤2 7→Lin

∼
C

m,n

≤X = aXii + bXij − acxi − bcxj ≥ 0 (3.68d)

with
∼
C≤X being linear in x ∪X, as denoted by ≤X .

By an abuse of notation, we will denote by ⊗ also the product of constraint sets, enumerating all
possible combinations, so C1 ⊗ C1 = ∪i∈[0,K−1] ∪j∈[i,K−1] C

i
1 ⊗ Cj

1 . We denote by Ci a constraint set were

all appearing monomials are of degree i or less and
∼
C≤X denotes the corresponding linearised version, a

set of linear constraints with variables in x∪X. Forming such product constraints ensures that the new
variables are bounded while guaranteeing that the linearised objective function remains an underestimator
of the original objective function, since the set of admissible values in x ∪X is strictly larger than the set
of admissible values of the original problem2. This corresponds to the standard RLT and was originally
proposed in Sherali and Adams [1990].

In Lovász and Schrijver [1991] an improvement to the standard approach is given by adding semidefi-
nite constraints, reducing significantly the gap between the solution of the relaxed and original problem.

2For more details see Sherali and Tuncbilek [1995].

3.8. CERTIFICATES FOR NON-POSITIVENESS 87

To introduce these constraints reconsider the nonconvex part of the objective function xT.Q.x and its
linearisation tr(X.Q). It is clear that the minimum of the original objective is obtained if X = x.xT

holds, as the problem

minimize
x,X

tr (X.Q) + L.x (3.69a)

subject to x |= C1 (3.69b)

X = x.xT (3.69c)

is equivalent to the the original problem (3.65). The only difference is, that the non-convexity of the
objective function was translated into the non-convex constraint (3.69c). So as we cannot impose this
constraint in a convex program, suitable relaxations have to be found. And indeed by transforming the
problem into an SDP, we can impose the constraint X � x.xT as an linear matrix inequality (LMI) via
the Schur-complement by adding the constraint

[

1 xT

x X

]

� 0

which is amenable to semidefinite programming. The optimisation resulting from applying the enhanced
RLT on (3.65) is given as

minimize
x,X

tr(X.Q) + L.x

subject to x |= C1

x, X |=
∼
C≤X

[

1 xT

x X

]

� 0

where
∼
C≤X denotes the linearisation of the set of constraints C1 ⊗ C1 = C2 7→Lin

∼
C≤X .

This relaxation also conserves the property that the linearised objective function is an underestima-
tor for the original problem as the set of admissible values is strictly enlarged, as

{

X|X = x.xT
}

⊂
{

X|X � x.xT
}

.
This approach was successfully applied to nonconvex quadratic optimisation problems (Kezurer et al.

[2015]) or within branch and bound algorithms for general nonlinear programming (Sherali and Tuncbilek
[1992]) and is further demonstrated in the following example.

Consider the following unidimensional problem

minimize
x

− x2 + x (3.70a)

subject to x+ 1 ≥ 0 (3.70b)

− x+ 1 ≥ 0 (3.70c)

which is nonconvex. The set of linear constraints C1 is {x+ 1 ≥ 0,−x+ 1 ≥ 0}. By introducing the

new variable X linearising x2, we can compute the set of linearised product constraints
∼
C≤X to be

{X + 2x+ 1 ≥ 0, −X − 2x+ 1 ≥ 0, X − 2x+ 1 ≥ 0}. Moreover, as we have −1 ≤ x ≤ 1, we also obtain

the “natural” constraints 0 ≤ X and X ≤ 1, which can be added to
∼
C≤X . So the linearised SDP reads

minimize
x

−X + x (3.71a)

subject to x |= C1 (3.71b)

x ∪X |=
∼
C≤X (3.71c)

X � x.xT. (3.71d)

3.8. CERTIFICATES FOR NON-POSITIVENESS 89

in x. Again, imposing the constraint
[

X Y
Y T Z

]

=

(

x

vec(X)

)

.

(

x

vec(X)

)T

is not impossible due to its non-convexity and is therefore relaxed to
[

X Y
Y T Z

]

�

(

x

vec(X)

)

.

(

x

vec(X)

)T

Finally, by applying the Schur-complement a valid LMI-constraint is generated for the linearisation of all
monomials of degree up to 4

1 xT vec(X)
T

x X Y
vec(X) Y T Z

 � 0 . (3.74)

Note that not all elements in Y or Z are unique, as for instance the linearisation of xiXjj is equivalent
to the linearisation of xjXij and that Z is symmetric.

To further illustrate the approach, consider the case x ∈ R2. Then we have

x.xT =

[

x2
0 x0x1

x1x0 x2
1

]

7→Lin X =

[

X00 X01

X01 X11

]

(3.75a)

vec(X) =
(

X00 X01 X11

)T
(3.75b)

x.vec(X)
T
=

[

x0X00 x0X01 x0X11

x1X00 x1X01 x1X11

]

7→Lin Y =

[

Y00 Y01 Y02

Y01 Y02 Y13

]

(3.75c)

vec(X).vec(X)
T
=

X00X00 X00X01 X00X11

X01X00 X01X01 X01X11

X11X00 X11X01 X11X11

 7→Lin

Z00 Z01 Z02

Z01 Z02 Z12

Z02 Z12 Z22

 (3.75d)

In order to ensure that the linearised objective gives tight bounds, valid constraints on X, Y and Z
have to be constructed based on the original constraint sets C1, C2, C3 and C4. Valid constraints can in
this case be obtained if the degree of the resulting constraint is less or equal to 4. Some examples of
valid constraint sets are C1 ⊗ C1 ⊗ C1 = C≤3 7→Lin

∼
C≤Y , C1 ⊗ C1 ⊗ C≤2 = C≤4 7→Lin

∼
C≤Z , where

∼
C≤Y /

∼
C≤Z

is a set of linear constraints in x ∪X ∪ Y /x ∪X ∪ Y ∪ Z. Using this approach, which is inspired by the
ideas developed in Sherali et al. [2012], we can underestimate the original objective function of degree 4

minimize
x

(

xT zT
)

.Q.

(

x

z

)

+ L.x (3.76a)

subject to x |= C1, C2, C3, C4 (3.76b)

with

minimize
x,X,Y,Z

tr

([

X Y
Y T Z

]

.Q

)

+ L.x (3.77a)

subject to x |= C1 (3.77b)

x, X, Y, Z |=
∼
C≤X ,

∼
C≤Y ,

∼
C≤Z (3.77c)

1 xT vec(X)
T

x X Y
vec(X) Y T Z

 � 0 (3.77d)

where
∼
C≤X ,

∼
C≤Y and

∼
C≤Z are the sets of all obtainable constraints constructed via multiplication of

C≤1, C≤2 and C≤3 plus the linearisation of C2, C3, C4, the naturally arising constraints on the new variables
and their respective products.

90 CHAPTER 3. STABILITY

Remark 3.6. The number of variables is this optimisation problem is equal to the number of monomials
of degree up to 4 in x. The approach presented in Majumdar et al. [2013b], or in general all approaches
relying on introducing a polynomial control law, need a similar number of variables to represent just one
component of the polynomial control law (depending on the degree of the control law) plus the variables
necessary to represent the multiplier functions which have to be of superior degree in general. Therefore
the number of decision variables and the size of the LMI constraints are significantly larger. Moreover
it is not clearly stated in [Majumdar et al., 2013b] whether polynomial or linear input dynamics are
used within stability criterion. Using polynomial input dynamics is expensive for SoS-based techniques
as the degree of the input dynamics and the controller add up, significantly increasing the complexity of
the optimization problem. For our case on the other hand, polynomial input dynamics only introduce a
usually small sub-optimality of the control law. Therefore this only increases conservativeness, but not
the computational complexity.

Remark 3.7. The number of linear constraints in the sets C≤1/≤2/≤3/≤4 and (even more so)
∼
C≤X/≤Y/≤Z

grows rapidly with the size of x. However linear constraints are computationally cheap and additionally
there exist methods to limit number of constraints. These methods are based on the redundancy often
occurring, when taking all products possible between the constraint sets.

Remark 3.8. The above presented approach to construct enhanced RLT representation of nonconvex
polynomial problems is by no means confined to polynomials of degree 4. By reapplying the method
above k times one can linearise optimisation problems containing monomials of degree up to 2k. Again,
all the new variables have to be bounded forming the natural and product constraints.

Remark 3.9. The decision variables in the resulting semidefinite program are associated with remarkably
sparse matrices in the LMI constraints. For instance, the sdp matrices associated to the decision variables
in the LMI constraint (3.77d) for x ∈ R2 are of size 5 × 5 but have at most 4 non-zero entries. This
structure can probably be exploited to solve the problem even faster with a tailored solver.

3.8.3 Application

In this section it is shown how to apply the above introduced method for proving stabilizability and some
implementation details are discussed.

RLT for Proving Stabilizabilty

Above is shown how to construct a linear underestimator in a higher dimensional space (x∪X ∪ Y ∪Z)
for a (nonconvex) polynomial function of order 4 in x and how to construct constraint sets for the new
variables (X ∪ Y ∪ Z) such that the underestimation usually results in reasonably tight bounds. Now we
will shortly discuss how to apply this approach to prove stabilizability of a controlled system.

According to (3.47) we can prove the stabilizability of a polynomial control affine system on a sublevel-
set Ω of a quadratic Lyapunov function candidate V (x) = xT.P.x by assuring the negativity of each of
the 2m (nonconvex) terms 2xT.P.(f(x) +B.u∗

i) on Ω ∩Hi \ {0}. For each i ∈ [0, 2m − 1], this can be
written as

minimize
x

(

x

z

)T

.Qi.

(

x

z

)

+ Li.

(

x

z

)

(3.78a)

subject to C1 =
{

∪j∈[0,m−1]c
i
jx

T.nj ≤ 0
}

(3.78b)

C2 =
{

xT.P.x ≤ α
}

(3.78c)

where Qi[i, j] and Li[j] can be uniquely identified with the terms of 2xT.P.(f(x)+B.u∗
i)+xT.(γP+Ṗ).x

with f(x) ≈ fnl(x) being the truncated Taylor expansion of the differential nonlinear system dynamics.
C2 represents the quadratic constraint confining x to the sublevel-set Ω and C1 is the set of linear con-
straints restricting x to the i-th polytope of the optimal input partitioning. This shows how to bring the

3.8. CERTIFICATES FOR NON-POSITIVENESS 91

resulting optimal convergence for each of the 2m input optimal subsets into the form of (3.76). If the
minimal objective value of the optimization problem (3.78) is larger than 0 for each subset Hi ∩Ω, then
Ω is exponentially stabilisable.

In order to reduce the difference between the system used within the proof and the full nonlin-
ear dynamical system, we proposed to derive the optimal input and the partitioning with respect to
the linear input dynamics, but use the truncated Taylor expansion of the input dynamics with the
stabilizability condition (3.63). This is straight forward by identifying Qi and Li with the terms of
2xT.P.(f(x) + g(x).u∗

i) + xT.(γP + Ṗ).x with g(x) ≈ gnl(x) being the truncated Taylor expansion of
the nonlinear input system dynamics.

Implementation with Bounding Box and Hypersphere

Even though the proposed enhanced RLT approach can be directly applied to solve the optimization
problem (3.78), this formulation does not provide very tight bounds. Indeed, the conditioning of the
problem, meaning the ratio between largest absolute value of each decision variable, can have a significant
influence on the size of the gap. It turns out that these methods work best when the problem is bounded
such that the conditioning approaches 1, which is naturally the case for the original use cases of 0-1-
programming.

Therefore instead of solving directly (3.78), a linear coordinate transformation taking the ellipsoidal
region Ω to the unit hypersphere defined as

C = chol

(

P

α

)

(3.79a)

x̂ = C.x. (3.79b)

is applied. Then, by substituting x with C−1.x̂ in the polynomial expressions f(x) and g(x), the
optimization problem becomes

minimize
x̂

(

x̂

ẑ

)T

.Q̂.

(

x̂

ẑ

)

+ L̂i.

(

x̂

ẑ

)

(3.80a)

subject to C1 =
{

∪j∈[0,m−1]c
i
jx̂

T.n̂j ≤ 0
}

(3.80b)

C2 =
{

x̂
T.Id.x̂ ≤ 1

}

. (3.80c)

Now we can apply the enhanced RLT approach obtaining the linearised problem (3.77) in x̂-variables
and take a closer look at the construction of admissible constraints. The technique is demonstrated for
a two-dimensional problem with one input, but it is valid for any number of dimensions.

The set of linear constraints C1 of the original problem consists only of the constraints defining the
polytope Hi. But as we know that the problem is bounded to the unit hypersphere independently
of considered dynamics or polytope, additional constraints can be constructed, some of them possibly
redundant, see Figure 3.10.

For the equivalent problem on the hypersphere, the natural linear constraints of the form

∀i : x̂i ≥ −1 (3.81a)

∀i : − x̂i ≥ −1 (3.81b)

are obviously admissible and can be added to C1. In fact, valid linear constraints on x̂ can be deduced
from every hyperplane tangent to the unit hypersphere. The problem is, that there are infinitely many
of them and there is no generic way to select a suitable finite subset of them, given the concrete problem.

In the next step, we can search for natural constraints for the new variables in X, Y and Z. As,
due to x̂

T.x̂ ≤ 1, all monomials in x̂, denoted m4
n, have to be bounded too and so is their respective

3.9. COMPUTING AND PROPAGATING SUITABLE LYAPUNOV FUNCTIONS 93

with P(K) being the space of finite Borel measures defined on K. This problem as such is not tractable
as the space of Borel measures is infinite, however if the polynomial is of degree m in n variables, then the
criterion becomes linear aT.y on the finite collection of moments {yα}, up to order m of the probability
measure µ (Lasserre [2001]) defined as

yα =

∫

xαdµ. (3.85)

So the optimization problem is transformed into a problem about the variables yα and how to constrain
the support of µ to K via suitable constraints on the yα in order to reduce the gap between the original
problem and its relaxation using the finite moment series.

In Lasserre [2001] it is shown that this can be done using LMIs: a sufficient but not necessary
condition that the {yα} are the moments of a measure is that the so-called moment matrix is psd. This
matrix, even though derived very differently, has the same structure as the matrix used as LMI constraint
(3.74) in the enhanced RLT. The moment matrix constructed from the sequence of moments y for the
multivariate polynomial of degree 2k, will be denoted Mk(y). So every new variable in X ∪ Y ∪ Z can
be uniquely identified with a corresponding moment yα. Moreover, as we know which variable linearises
which monomial, so for instance the monomial x0x1 = xα with α =

[

11
]

is linearised by the variable
X01 in enhanced RLT and identified with the moment y11 and we have

M2(y) =

1 xT vec(X)
T

x X Y
vec(X) Y T Z

 . (3.86)

If the moment matrix is psd, the moments correspond to an actual measure, but it is not ensured
that this measure is finite. This corresponds to the situation in RLT were the new variables have been
introduced, but no admissible constraints to bound them have been added to the optimization problem.
In Lasserre [2001] it is shown that this too can be done via LMI’s. Consider the constraint g(x) ≥ 0 with
degree 2l. This can be enforced by constructing a “constraint moment matrix” Mk−l(gy) (see Lasserre
[2001] for details) and impose Mk−l(gy) � 0 as an additional LMI constraint to the optimization problem.

The main result of Lasserre [2001] is, that by increasing the maximal degree 2k represented in the
moment and constraint moment matrices Mk(y) and Mk−l(gy), the gap between the relaxation and the
original problem vanishes. This is always the case when allowing k →∞, but is often the case for finite
values of k.

This provides a different approach to solving the resulting non-convex polynomial optimization arising
in the stabilizability proofs. The larger amount of linear variables is replaced by a smaller number of
LMI constraints, however it is not clear if the method proposed by Lasserre achieves tighter bounds for
a reasonable order of the relaxation. To further investigate and potentially improve the relaxation of
Lasserre by adding the most significant linear constraints obtained by RLT is a possible avenue for future
work.

3.9 Computing and Propagating Suitable Lyapunov Func-

tions

In section 3.5 it was shown how state-space partitioning and convexification can be used to obtain
certificates of stabilizability for polynomial dynamics and a quadratic Lyapunov function candidate V (x)
on a given sublevel-set Ω = {x|V (x) = ‖x‖P ≤ α}. However it was neither discussed how to obtain a
suitable Lyapunov candidate function nor how to propagate it along a given reference trajectory for a
given dynamical system with input constraints. In contrast to the works cited in section 3.4 we do not seek
to modify the shape of the Lyapunov function candidate due to the reasons mentioned beforehand, but
rely on the similarity between the behaviour of the original system and the behaviour of its linearisation in

94 CHAPTER 3. STABILITY

the neighbourhood of a stabilizable reference point. The approach presented here, like the one presented
in Tedrake et al. [2010b], is based on LQR techniques and time-dependent linearization, differs however
in certain important points, like the scaling of the feedback gain matrix.

3.9.1 Time-Dependent Linearisation

Reconsider the nonlinear system dynamics ẋ = f(x) + g(x).u and the reference trajectory (xr(t),ur(t))
defined for t ∈ [T0, T1]. By definition the reference trajectory satisfies3

∀t ∈ [T0, T1] :
d
d t

xr
t = f(xr

t) + g(xr
t).u

r
t

u− + ǫ ≤ ur
t ≤ u+ − ǫ

for some predefined control margin ǫ > 0 ensuring that each point on the reference trajectory is an
equilibrium point for the system in the deviation variables δx and δu

δ̇x = f(xr
t + δx) + g(xr

t + δx).(u
r
t + δu) . (3.87)

Moreover, as ǫ > 0 provides a margin between the true input constraints and the reference control input
ur, there exists a stabilizable neighbourhood for each point on the reference trajectory.

We can then define the time-dependent (Jacobian) linearisation as

δ̇x = At.δx +Bt.δu (3.88)

with

At =
∂

∂x
f(xr

t)

Bt = g(xr
t) .

Next we have to consider the control input. Consider the time-dependent saturated linear feedback
control law K̃(t,x) : [T0, T1]× Rn 7→ Rm defined as

K̃(t,x)[i] =

u+[i], if ur
t [i]−Kt[i, :].x > u+[i]

ur
t [i]−Kt[i, :].x else if ur

t [i]−K(t)[i, :].x > u−[i]

u−[i], else

(3.89)

and the resulting closed-loop system

ẋ = f(x) + g(x).K̃(t,x) (3.90)

and its time-dependent linearisation at the reference point

δ̇x = At.δx −Bt.Kt.δx = (At −Bt.Kt).δx = Ãt.δx. (3.91)

Conjecture 3.1. The time-dependent linearisation defined eq. 3.90 is a reasonably good approximation of
the nonlinear system in a “large” region around the reference point.

The nonlinear systems of interest here are polynomial functions, often approximating the second
order rigid body dynamics of a robot using Taylor expansion. Therefore the system dynamics f and
input dynamics g are smooth functions which asymptotically behave like the linearisation around the
equilibrium. The only discontinuity arises from the input constraints (the linearisation of K̃). Therefore
as long Ω does not intersect with the zone that saturates the control law K̃, the linearisation approximates
the real dynamics reasonably well.

3Note that in order to ease notation, explicit time-dependency is indicated by the index t, so a(t) ≡ at. Also, in the
case that the time-dependency is clear from context, as for instance in the case of the current state of the system x, it is
dropped.

3.9. COMPUTING AND PROPAGATING SUITABLE LYAPUNOV FUNCTIONS 95

3.9.2 Computing Lyapunov Function Candidates Based on LQR-Techniques

In the above we have established a time-dependent linearisation of the nonlinear dynamics along a ref-
erence trajectory. Now we can modify classical optimal control approaches to compute suitable Lya-
punov function candidates. A broadly utilized control law synthesis method for linear systems yielding
a quadratic Lyapunov function as byproduct is called linear quadratic regulator (LQR) in its finite or
infinite horizon version. Before adapting and applying this method to our case, let us briefly revisit the
theory behind it, see also Lunze [2013].

LQR falls into the category of unconstrained optimal control. Given a (controllable) linear time-
invariant system

ẋ = A.x+B.u (3.92)

with the usual system A ∈ Rn×n and input dynamics B ∈ Rn×m matrices, LQR seeks to compute a
time-dependent linear feedback matrix Kt that minimizes the cost functional4

J(u,x0) =
1

2
x(T)

T
.S.x(T) +

∫ T

0

xT.Q.x+ uT.R.u dt . (3.93)

Where S ∈ Sn
++ is the terminal cost, so a penalty for the distance between the origin and the attained

position for t = T , x(T). The matrix Q ∈ Sn
+ determines the state cost and finally R ∈ Sm

++ defines
the cost of the control input. All of these matrices are frequently chosen to be diagonal and roughly
speaking large eigenvalues of Q favour fast convergence whereas large eigenvalues of R favour smaller
control inputs. However, no optimal way for choosing Q and R exists, but they need to be adapted for
the specific dynamical system and application at hand.

Without going into the details, the minimization problem can be solved, for instance, using a dynamic
programming approach, which yields a time-dependent cost function, denoted V (t) = xT.P (t).x with
P (t) ∈ Sn

++. The evolution of P with respect to time is called the differential Riccati equation:

Ṗ (t) = −Pt.A−AT.Pt + Pt.B.R−1.BT.Pt −Q (3.94)

with the boundary condition P (T) = S. The associated optimal linear feedback matrix is

K∗
t = R−1.BT.Pt. (3.95)

Theorem 3.3. The above defined cost function V (t) = xT.Pt.x is a Lyapunov function for the linear
dynamics defined in equation (3.92) for u = −K∗

t .x with a guaranteed convergence exponent γ.

Proof. Reconsider the (Lie) derivative of the Lyapunov function with respect to the closed loop system
dynamics

V̇ (t) = xT.Pt.(A−B.Kt).x+ xT.(AT −KT

t B
T).Pt.x+ xT.Ṗt.x

When using the optimal feedback controller K∗
t and by substituting the corresponding terms in the

Riccati differential equation (3.94) we get

V̇ (t) = xT.(−Q− Pt.B.R−1.BT.Pt).x ≤ λmax(−Q− Pt.B.R−1.BT.Pt)x
T.x = −γ.xT.x ≤ 0

where λmax(A) denotes the largest eigenvalue of the square matrix A. The inequalities hold since Q ∈ Sn
+,

Pt ∈ Sn
++ and R ∈ Sn

++. Moreover the cone of psd-matries is self-dual, therefore R−1 ∈ Sn
++ and

Y T.X.Y � 0 if X � 0 for any matrix Y of compatible size. Therefore −Q − Pt.B.R−1.BT.Pt � 0 and
the guaranteed minimal convergence exponent γ is equal to the negation of the largest eigenvalue which
has to be non-positive.

4There exist also versions of LQR adding the mixed cost x
T
.N.u, which could be equally applied in this scheme.

96 CHAPTER 3. STABILITY

3.9.3 Adaption to the Constrained Time-Depending Case

In section 3.9.1 it was shown how to compute a suitable (time-dependent) Lyapunov function candidate
for a nonlinear system using its linearisation and standard LQR-techniques. Now this computation has
to be adapted in order to take into account the time-dependency of the linearisation and the input
constraints. In the literature exist methods to incorporate (linear) input and state constraints to the
problem of minimizing the quadratic cost defined in (3.93) with respect to a LTI system. However, the
resulting minimization problem is frequently reformulated into a MPC-formulation, like Scokaert and
Rawlings [1996] or Johansen et al. [2000]. These approaches however only consider the input (and state)
constraints, not the time-dependency of the linearisation. This problem is tackled by another line of work
mostly known under the name State-Dependent Ricatti equation, see Cimen [2008] or Erdem [2001].
These approaches however are either computationally intensive (MPC-based formulations), or not easily
adaptable to our use case and the correspond implementations are not publicly available.

As we do not care about the optimality of the resulting control law, but only seek to find suitable
Lyapunov function candidates for the nonlinear system by using its linearisation, the method is based on
the following reasoning:

• The system matrices A and B can be time-dependent within the differential Riccati equation

• Control input saturation can be avoided by rescaling the optimal feedback controller K∗
t .

So given a time-dependent linearisation At, Bt, a reference trajectory (xr
t ,u

r
t) defined on t ∈ [0, T],

the cost matrices Q and R, the final zone Ω(T) =
{

x|V (T,x) = ‖x− xr(T)‖2P (T) ≤ 1
}

can be retro-

propagated using

P (Ti) = P (T) +

∫ Ti

T

Ṗ (t) dt (3.96)

with

Ṗ (t) = −Pt.At −At
T.Pt +

1

2
Pt.B.K̂∗

t +
1

2
K̂∗T

t .BT.Pt −Q (3.97)

where K̂∗
t is the scaled optimal (in the LQR-sense) feedback controller.

So with K∗
t = R−1.Bt

T.Pt the scaling factor αK∗ is computed as

∆u = min
(

u+ − ur
t , ur

t − u−)

Ct = chol(Pt)

Kc = K∗
t .C

−1
t

αK∗ = min

(

min
i

∆u [i]

‖Kc [i, :]‖2
, 1.

)

and finally define K̂∗
t = αK∗K∗

t which ensures that

∀x ∈ Ωt : u− ≤ ur
t − K̂∗

t .(x− xr
t) ≤ u+ (3.98)

with Ωt =
{

x| ‖x− xr
t‖

2
Pt
≤ 1
}

.

Using (3.96) we can compute a suitable time-dependent Lyapunov function for the time-dependent
linear system which provides a good Lyapunov function candidate for the nonlinear system. Note that the
initial formulation and parametrization are adopted from LQR-theory, but since we are only interested in
computing suitable Lyapunov function candidates for the nonlinear system, one can look at the equations
(3.96) and (3.97) as regularized dynamics defining an approximative evolution of the backwards reachable
set, taking into account the linearised system dynamics.

3.9. COMPUTING AND PROPAGATING SUITABLE LYAPUNOV FUNCTIONS 97

3.9.4 Examples and interpolation

In order to assess the improvements brought about by the changes to LQR listed above and to showcase the
results of this approach, reconsider the dynamics of the torque controlled pendulum with x =

(

θ ω
)T

.
In Figure 3.11 the resulting RoS using Algorithm 2 for two different initial regions are compared. The
reference trajectory is given as

xr(t) =
(

160
180π 0

)

ẋr(t) = 0

ur(t) such that f(xr) + g(x).ur(t) = 0.

The first initial region is computed using the standard LQR approach (RoS LQR), the second region
(RoS VAR) is obtained by retro-propagating the final zone (a small sphere centred at ẋr(0))

Ω(Tf) =
{

x|V (Tf ,x) = ‖x− xr(Tf)‖
2
P (Tf)=100Id ≤ 1

}

according to equations (3.96) and (3.97) until a steady-state is reached (Ṗt ≈ 0) resulting in an initial
zone

Ω(0) =
{

x| ‖x− xr(0)‖2P (0) ≤ 1
}

.

Due to the constant reference trajectory, the matrices At and Bt of the linearisation are constant (time
independent) and the only difference to the usual differential Riccati equation is the scaling of the feedback
gain matrix.

The second example is closer to the way the proposed approach is used in Algorithm 2 by retro-
propagating a zone along a trajectory during a specified period, again for the torque controlled pendulum.
In Figure 3.12, the results of using the time-dependent linearisation and the scaled feedback gain matrix
are compared to the results obtained using the differential Riccati equation in the setting

t ∈ [0., T = 0.075]

x0 =

(

π
2.5

)

ur
t =

(

2.
)

xr
t = x0 +

∫ t

0

f(xr
t) + g(xr

t).u
r
t dτ .

In the case of the standard differential Riccati equation, the linearisation of the system around the final
point xr

T is used to compute the matrices A and B. As one can see, the modifications lead to a better
estimate of the evolution of the stabilizable region.

In the first example, the final zone is retro-progated according to the ode defined in (3.96) and
(3.97) until a steady-state is reached. In contrast, Algorithm 2 which constructs the funnel for the
time-dependent polynomial system, alternates between two steps. First the above introduced method
to retro-propagate a given zone Ω(Ti) from Ti to Ti−1 taking into account the linearised system is
used. Then in the second step the volume of the funnel for the given shape is maximized while guar-
anteeing stabilizability. Therefore the initial zone for this step has the parametrized form Ω(Ti−1) =
{

x|
∥

∥

∥
x− xr

Ti−1

∥

∥

∥

2

PTi−1

≤ αi−1

}

and Algorithm 2 seeks to maximize αi−1 using a line search approach.

As the evolution of Pt is nonlinear, storing and modifying Pt directly is not possible. Therefore
only the final zone and the shape of the initial zone are stored and in order to check convergence on
intermediate points with Ti−1 ≤ tj < Ti and to compute the time-derivative of Pt and αi−1 one has to
rely on appropriate interpolation methods.

3.10. EXAMPLES AND NUMERICAL RESULTS 101

3.10.1 Simple Pendulum

The first example provided is a torque controlled simple pendulum, modelled as a point mass on a
massless beam with viscous friction in the hinge joint, for which we want to approximate the region
of stabilizability of the upright position. The numerical values of the system are taken from the drake
toolbox as mass equal to 1kg, the beam length is 0.5m and the damping coefficient is 0.1Nm/s. Note that
for this example, the system dynamics are nonlinear, whereas the input dynamics are affine. This means
that the state-space partitioning and the resulting control law are truly optimal.

Comparison of Methods Generating Lyapunov Candidates

Before comparing the method presented in this chapter with a state-of-the-art SoS-technique, the resulting
RoS for three different approaches to compute the shape of the Lyapunov function are compared:

a) Computing V (x) based on the linearisation of the system around the equilibrium point x∗ and the
standard LQR method (RoS LQR).

b) Retro-propagating the singleton x∗ (approximated by a small sphere) according to (3.97) until the
steady-state is reached (RoS VAR).

c) Constructing a funnel for the trajectory xr
t = x∗, ur

t = u∗ with the final zone ΩT being a small
sphere centred at the equilibrium with T chosen such that steady-state is reached (RoS Funnel).

In the last two approaches attaining steady-state means that Ṗt ≈ 0, that is the funnel shape does no
longer change. The results are shown in Figure 3.14. Each of the methods yields ellipsoids of comparable
surface but slightly different shapes. This indicates that all three methods yield suitable Lyapunov func-
tion candidates for the polynomial approximation of the nonlinear system by relying on the linearisation
around the equilibrium point.

Comparison with drake toolbox

Next we compare the RoA for the upright position obtained with the drake toolbox and the RoS for
the upright position obtained with the approach presented in this chapter and the Lyapunov function
candidates described above. Our approach provides in this example significantly larger regions of stabi-
lizability than the iterative SoS-approach, even-though it does not modify the shape of the region. It is
worth noting that in Majumdar et al. [2013b] the ellipsoids are normalized by the condition V (1) = 1,
where 1 is the vector of all ones. Even though this normalization does not introduce any conservativeness
in the sense that a class of functions is excluded from the optimization, it introduces a bias since it is
not equivalent to normalizing the ellipsoids by their volume. The ellipsoids in the top right image of
Figure 3.15 obtained with the proposed method (red, green and blue ellipsoid) have similar cost values
for 1, but have an about seven times larger surface than the one obtained using drake (black ellipsoid).
One can see that the resulting closed-loop dynamics are relatively similar for the chosen regularization
value Q. Even more interesting, the generated RoA SoS could be scaled without changing the control
law and still be an invariant set, however the conservativeness introduced by the multiplier terms seems
to inhibit this. It is also worth noting that the deduced control input and dynamics at the critical point
(marked by the bright green ellipsoid) are also equivalent for the two approaches. A last remark on a
qualitative difference between the generated sets: while the set RoA SoS is an invariant set according
to Majumdar et al. [2013b], the regions of stabilizability obtained with the proposed approach are a
exponentially converging sets. This is worth noting since this change does not impact the runtime of our
approach but has a significant impact on SoS approaches due to the additional SoS constraints necessary
on the multiplier terms.

3.11. CONCLUSION AND OUTLOOK 109

This will allow to treat robotic systems actual used in manufacturing like manipulators with 6 or 7 degrees
of freedom in a very efficient manner.

Finally we are interested in enlarging the modelling capabilities of the approach by taking into account
perturbations represented by distributions and model uncertainties. Even though the formal the character
of the funnels (no states can leave it) must be weakened in this case to a statistical statement (95% of
the executions will not leave the funnel), this is an important step to take as many real-life applications
are subject to non-negligible disturbances, which can be approximated well by (Gaussian) distributions.

110 CHAPTER 3. STABILITY

Chapter 4

Learning Globally Asymptotically

Stable Vector Fields

In this chapter we investigate methods to learn globally asymptotically stable vector

fields and apply them within a learning from demonstration framework. To suc-

cessfully learn nonlinear vector fields providing such guarantees, we propose a

novel approach based on diffeomorphic transformations. Indeed such transforma-

tions allow us to increase the expressiveness of “simple” globally asymptotically

stable vector fields while conserving the convergence property. The diffeomorphic

transformations used within this chapter are based on locally weighted translations,

which can, in contrast to state-of-the-art diffeomorphisms based on flows, be evalu-

ated extremely quickly and are therefore suitable for real-time controller implemen-

tations.

4.1 Introduction

As seen in previous chapters, the combined notion of stability and safety essentially require to know in
advance bounds on the evolution of the system, such that these bounds remain under control and exclude
states that are considered unsafe. Moreover, these bounds must be valid at all time. A weaker version of
these properties consist in focusing only in the asymptotic behaviour of the robot. For instance, having
the guarantee that it will eventually reach its target. When stronger guarantees are not available, it can
be interesting to try to enforce such weaker properties.

To this end, two approaches for learning globally asymptotically stable (GAS) vector fields are pre-
sented. Such vector fields provide guarantees on the asymptotic behaviour of the system. More specifi-
cally, they guarantee that a) there exists an unique equilibrium point and b) this equilibrium point is a
global attractor. That is, all states will be driven to and will remain inside an ǫ small neighbourhood of
it in finite time. These properties can be useful in different settings.

One might observe that, by denoting the state of the system with x ∈ Rd, the global attractor with
x∗ ∈ Rd and the GAS vector field f : Rd → Rd, saying that “all states will be driven to and remain
inside an ǫ small neighbourhood of the global attractor in finite time” is somewhat equivalent to the LTL
specification “eventually x = x∗” when the system evolves according to ẋ = f(x).

The ability to translate such atomic LTL specification into a desired velocity for a dynamical system

111

112 CHAPTER 4. LEARNING

can be exploited to perform control strategy synthesis as done in Kress-Gazit et al. [2007]. Here the
“high-level” control strategy for (a fragment of) LTL specifications are synthesized relying on “low-level”
properties provided by the controller developed in Conner et al. [2003].

The here proposed methods for learning a vector field can provide similar “low-level” guarantees, but,
as the vector field is deduced from the given demonstrations, it is likely to be such that it can be easily
followed by the controlled system given the demonstrations are suitable. This is an interesting property
as it reduces the gap between the mathematical model used for verification and synthesis and the real
world system.

On the other hand, by interpreting the learned vector field as a velocity field in the joint or task
space of a robotic manipulator, learning a globally asymptotically stable vector field can be interpreted
as a type of learning from demonstration under stability guarantees. As all trajectories generated by
the learned vector field converge to a unique point, such vector or velocity fields naturally correspond to
grabbing or reaching motions, as they also converge to a unique position and we focus on this use case
within this chapter.

Learning from Demonstration Programming robots to perform specific tasks is a very challenging
problem which can usually only be performed by trained and experienced persons (“experts”), even for
very simple tasks, including reaching and grabbing motions. This is due to multiple reasons, such as
the nonlinear mapping between the joint and task space via the geometric model of the robot, the often
occurring redundancy of joints, the avoidance of self-collision or the dynamic feasibility of the trajectory.
This poses an essential problem especially for the growing field of robots deployed in flexible manufacturing
chains typically found in small or medium sized business or the possibility of relying on robots to provide
services within regular households in the future. Such robots have to come with a built-in mechanism
that allows the owner or the production workers to conveniently teach the robot how to successfully carry
out a new task.

The learning from demonstration paradigm provides a possible solution to this problem. It allows
the user the teach the robot by providing successful examples of task completion, relying for instance
on kinesthetic training. This is a very natural way for humans to teach, as it is comparable to teaching
movements to children, and moreover alleviates many of the above cited problems of motion planning
and trajectory generation. It inherently takes the geometric model and the problem of self-collision into
account. Also movements demonstrated by humans are dynamically feasible, in the sense that they
do not exceed the maximal effort the actuators can provide, for usual robotic systems. Moreover, the
“programming” of the robot does not involve coding be it in general purpose languages or in a provided
high-level language.

These are the advantages of learning from demonstration, but they do not provide a clear path as to
how such learning can be achieved. There exists a broad variety of approaches to tackle this problem,
depending on the kind of task being demonstrated. The first developments in this sector were seeking
to extract a set of (timed) way-points to be attained by the robot, see Grossman [1977] or Lozano-Perez
[1983] and references therein. This i also comparable to how the learning is accomplished in the (formerly)
commercial robots Baxter and Sawyer. Later on the research community focused on constructing abstract
descriptions of tasks as finite state machines or decision trees allowing for symbolic reasoning, as in Segre
and DeJong [1985] or DeJong and Mooney [1986].

In more recent developments, a clearer distinction is made between high-level and low-level learning
(see the surveys Atkeson and Schaal [1997] or more recently Billard et al. [2008] and Argall et al. [2009]).
For high-level planning Markov processes are an attractive possibility (see Konidaris et al. [2012]), but
due to the necessarily discrete state and action space it is less suitable for learning low-level motions
or motor control. For this scenario, recent developments have shown that representing a motion as
dynamical systems (DS) and learning the parameters of the DS from demonstration yields interesting
results (Schaal [2006]). In particular, expressing a motion as a dynamical system naturally increases the
robustness to spatial and (if the system is autonomous) temporal perturbations. On the other hand, by
introducing a dynamical system, the problem of stability naturally arises. Indeed, data-driven stochastic

4.2. DIFFEOMORPHIC TRANSFORMATIONS AND SMOOTH EQUIVALENCE 113

approaches generally provide no guarantee concerning the stability of the resulting system. The problem
of reconciling learning from demonstration while guaranteeing stability has become an active field of
research, starting with Khansari-Zadeh and Billard [2010].

The contributions proposed in this chapter fall into this category. More precisely, we present novel
ways to construct or learn globally asymptotically stable nonlinear dynamical systems which are able to
reproduce the given demonstrations. As discussed later on in detail, global asymptotic stability is an
important, but difficult to ensure, property for dynamical systems and therefore the main focus of the
presented approach, next to the ability to properly reproduce the given demonstrations.

The main idea of the proposed approach is to use a diffeomorphic transformation in order to be able
to guarantee the global stability of complex vector fields able to reproduce complicated motions.

The rest of this chapter is structured as follows. After a brief recapitulation of the properties of
diffeomorphic transformations and their implications on dynamical systems in section 4.2, the treated
problem is formally stated and existing techniques seeking to solve similar problems are reviewed in
section 4.3. In section 4.4 the first approach for learning nonlinear globally asymptotically stable vector
fields relying on diffeomorphic transformations, called One-Step learning is presented and evaluated. In
section 4.5 an extension to the One-Step learning, called Two-Step learning is presented. Here the focus
lies on interweaving the diffeomorphic matching and machine learning techniques in order to overcome
several limitations of the One-Step learning. Concluding remarks and some avenues for future work are
given in section 4.6.

The contributions in this chapter can be summed as follows.

Contributions

• A novel method to construct diffeomorphic transformation by composing local dif-
feomorphic transformations

• The extension of these transformations to multitranslations

• An efficient algorithm to construct such transformations

• Showcasing the obtainable results for the LASA-Dataset

• Extensions to multimodal and cyclic demonstrations

The material presented in this chapter was (in parts) published in Perrin and Schlehuber-
Caissier [2016].

4.2 Diffeomorphic Transformations and Smooth Equiva-

lence

In this chapter show how diffeomorphic transformations can be used within a learning from demon-
stration or supervised learning framework, but before doing so, the main properties and notations of
diffeomorphisms are recapitulated.

A diffeomorphism is defined as an isomorphism between smooth manifolds, that is given two smooth
manifolds X and Y, the transformation

Φ: X → Y (4.1)

x 7→ y

is a diffeomorphism if it is bijective, invertible and the transformation and its inverse are differentiable
on X and Y respectively. Moreover, if Φ and Φ−1 are k-times differentiable, then the diffeomorphormism
is said to be a Ck-diffeomorphism. The demand that Φ is bijective, forces the manifolds X and Y to have
the same dimension.

114 CHAPTER 4. LEARNING

In this work we only use diffeomorphic transformations from Rd onto itself, so X = Y = Rd, but
we keep the distinct symbols X and Y to clarify notations. Note that in this case, the tangent space of
both manifolds is trivial and also equal to Rd, so we have X = TxX = Y = TyY = Rd. The usage of
diffeomorphisms in the context of learning is motivated by the conservation of topological properties, such
as connectedness, disjointness or convergence. The later is particularly interesting when reasoning about
vector fields and dynamical systems: given two dynamical systems ẋ = f(x) and ẏ = g(y) defined by the
vector fields f : x ∈ X → ẋ ∈ TxX and g : y ∈ Y → ẏ ∈ TyY. Suppose that f is globally asymptotically
stable, then one can prove the stability of g by proving that it is smoothly equivalent, or diffeomorphic,
to f under some C1-diffeomorphism Φ.

That is if

∀y : g(y) = JΦ(Φ
−1(y)).f(Φ−1(y)) (4.2)

with JΦ denoting the Jacobian matrix of Φ, ∂Φ
∂x (x), holds. To ease notation, the explicit state dependency

of the Jacobian is often dropped, when the evaluation point is clear from context. So JΦ(Φ
−1(y)).f(Φ−1(y))

is for instance typically written as JΦ.f(Φ
−1(y)).

To put the above statement formally:

Theorem 4.1. If two DS ẋ = f(x) and ẏ = g(y) are smoothly equivalent, then if one is globally
asymptotically stable, both are.

Proof. Let Φ: X → Y be a diffeomorphism such that ∀x ∈ X = Rd we have g(Φ(x)) = JΦf(x), which is
equivalent to (4.2). For any forward orbit of f(.), i.e. a trajectory (x(t))t≥0 such that d

d tx(t) = f(x(t))
and x(0) = x0, let us consider its image under Φ, (Φ (x(t)))t≥0. We get:

d
d t

Φ (x(t)) = JΦ.ẋ(t) = JΦ.f(x(t)) = g(Φ(x(t))). (4.3)

This implies that (Φ (x(t)))t≥0 is a forward orbit of g(.). More generally, any orbit (y(t))t≥0 of
g(.) can be written (Φ (x(t)))t≥0, with x(0) = Φ−1 (y(0)) and (x(t))t≥0 orbit of f(.). If f is globally
asymptotically stable, then all orbits converge towards the unique equilibrium x∗, and thus all orbits g(.)
converge towards Φ(x∗), which proves that g(.) is globally asymptotically stable. A similar demonstration
proves the converse implication.

Using the smooth equivalence, one can make further statements about the properties of the DS. If the
dynamical system ẏ = g(y) is smoothly equivalent to the DS x = f(x) with f being Ck via the Cl+1-
diffeomorphism Φ, then we know g(y) to be Cmin(k,l). This can immediately be deduced from deriving
(4.2) using the product rule.

This property is used extensively in the following sections to learn globally stable nonlinear systems.

4.3 Problem Statement and Related Work

In this chapter the problem of learning a dynamical system, or better the associated vector field,
from demonstrations is considered. More precisely, given a list of trajectories as the list of tuples
(

tji, yj(ti), ẏj(ti)
)

j
, observing each demonstration indexed by j as timed sequences of points and veloc-

ities y, ẏ ∈ Rd at given timed-points indexed by i, the objective is to build a (continuous) autonomous
system ẏ = g(y) (i.e. the vector field g : Y → TyY) that reproduces the demonstrations as closely as
possible1.

The ability to construct such DS is an important skill in imitation learning (see for example Schaal
et al. [2003]), as they provide an elementary building block to achieve high-level goals. The learned

1The choice of denoting a point in the state-space by y, instead of for instance x, may seem odd at the moment, but
facilitates notations in the next sections.

4.3. PROBLEM STATEMENT AND RELATED WORK 115

systems can be used as dynamical movement primitives generating goal-directed behaviours (see for
instance Ijspeert et al. [2013]), from given data in a very natural way. Modelling movement primitives
with DS is convenient for closed loop implementations as the current position of the system is the
only input necessary, and their generalization to unseen parts of the state space provides robustness
to spatial perturbations. Moreover, the choice of autonomous (i.e. time-invariant) systems, while not
always suitable or preferable, is interesting in many situations as they are inherently robust to temporal
perturbations.

The most common movement primitives consist of motions that converge towards a single targeted
configuration. They therefore naturally correspond to globally asymptotically stable DS as their unique
global attractor can be identified with the target configuration. The catch is that classical learning
algorithms cannot provide guarantees regarding the global asymptotic stability of their output. They
might produce DS showing divergent behaviour, spurious attractors or limit cycles, depending on the
initial condition. This issue has recently been studied by, among others, by Mohammad S. Khansari-
Zadeh and Aude Billard (see for instance Khansari-Zadeh and Billard [2010]) who proposed several
approaches to learn globally asymptotically stable nonlinear DS.

Note that in this chapter we are not only interested in proving global stability of the learned movement,
but, as we are concerned with reaching and grasping motions, also seek to guarantee that the learned
motions end precisely at the targeted configuration. So we seek to proof that the targeted configuration
is the only global attractor of the system, in contrast to approaches like Calinon et al. [2010] which
guarantees stability (to some extent) but not that the target configuration and the global attractor
coincide.

Basically the approaches of Khansari-Zadeh and others can be divided into two main groups.
The first group fixes a Lyapunov function candidate V (y), often taken to be the squared euclidean

distance, and trains a model under the constraint that V (y) is indeed a (control) Lyapunov function
and thereby assuring global asymptotic stability. For instance in Khansari-Zadeh and Billard [2011] an
approach called Stable Estimator of Dynamical Systems (SEDS) is presented. Here the utilized model to
represent the data is a GMM. As the GMM is a weighted sum of Gaussian components, the regression,
with respect to the maximum a posteriori method (MAP), can be interpreted as a weighted sum of
linear dynamics, where the weights are nonlinear functions of the position y. In order to ensure global
asymptotic stability, the linear dynamics induced by each component have to admit V (y) as a common
Lyapunov function.

The second group seeks to learn a Lyapunov function candidate (also simply called Lyapunov can-
didate) V (y) that is highly compatible with the demonstrations in the following sense: at almost every
point yj(tji), which we also denote by yji to shorten notations, the estimated or measured velocity ẏji

is such that its scalar product with the gradient of V is negative: ∇yV (yji).ẏji < 0. Then standard
learning techniques like Gaussian Mixture Models, Locally Weighted Projection Regression (LWPR) or
even neural networks can be used for unconstrained learning, resulting in a model that (hopefully) repre-
sents well the data, however without stability guarantees. Finally in the last step, the velocity deduced
from the model, denoted ˙̃y, is modified using an “online” correction signal if it violates the convergence
criteria of the learned Lyapunov function. That is if the scalar product of the gradient of the Lyapunov
function at y and the estimated velocity from model ˙̃y is positive. This correction signal should not be
active or only slightly modify the learned dynamics in the neighbourhood of the demonstrations as we
have ∇yV (yji).ẏji < 0 for almost all points. This, together with a “good” model of the dynamics, implies
that ˙̃yji ≈ ẏji and therefore ∇yV (yji). ˙̃yji < 0 should also hold for almost all points. This approach is
presented in Khansari-Zadeh and Billard [2014].

Each of these approaches has its own drawbacks. Incorporating the stability directly into the learning
process as done in the first group, complicates the learning. The arising constraints that ensure stability
are typically nonlinear and nonconvex, necessitating the utilisation of general nonlinear programming
approaches that are susceptible to local minima causing the found optimum to be depending on the
initial parameters, as for the approach presented in Khansari-Zadeh and Billard [2011]. Due to these
constraints the standard method for training a GMM, the expectation maximization (EM) algorithm,

116 CHAPTER 4. LEARNING

cannot be applied and instead the optimization is performed using the simplex method (Nelder-Mead-
algorithm). We show later why this can be problematic. Secondly the predefined nature of the Lyapunov
function candidate induces problems itself. In the case of SEDS, the chosen Lyapunov function candidate
is the squared euclidean distance. This on one hand guarantees global asymptotic stability, on the other
hand this also means that only movements for which the euclidean distance decreases monotonically along
the trajectory are representable, significantly reducing its ability to learn complex motions.

The second group, which aims at separating the learning of the Lyapunov function from the learning
of the movement has the drawback that one does not a priori know when the correction will be triggered,
resulting in possibly undesired behaviour. Also learning or training Lyapunov functions itself is a complex
problem. The conditions necessary for V (y) to be considered a Lyapunov function candidate are that
it has to be radially unbounded and everywhere strictly positive except at the origin (see section 3.2.2).
This comprises a very large class of functions for which no coherent parametrization, such that the set
of admissible parameters is for instance convex, can be found. Also Lyapunov function candidates are in
general not stable by addition or multiplication, meaning that the sum or product of Lyapunov function
candidates does not have to be a Lyapunov candidate, as local extrema might appear. Therefore one has
to restrain the search to a well-defined subclass of Lyapunov function candidates, which in turn limits
the expressiveness.

In Khansari-Zadeh and Billard [2014] an approach called Control Lyapunov Function based Dynamic
Movements (CLF-DM) is presented, belonging to this group. In this approach the class of considered
Lyapunov function candidates are weighted sums of asymmetric quadratic functions (WASQF), so

V (y) =
∑

i

βi(y)(y − y∗
i)

T
.Pi.(y − χi − y∗

i) (4.4)

with y∗
i being the center, χi representing the asymmetry and Pi being the weighting matrix for the i-th

component which has to be positive definite. Note the additional function βi(y) ensuring non-negativity
as

βi(y) =

{

1 if (y − y∗
i)

T
.Pi.(y − χi − y∗

i) ≥ 0.

0 else
. (4.5)

This causes V (y) to be “only” C1, so one time continuously differentiable. The weighting matrix does
not necessarily have to be symmetric and due to χi adding antisymmetric matrices (matrices for which
we have AT = −A) does actually influence the shapes of the level-sets.

This parametrisation facilitates the search for a suitable function as the resulting sum is guaranteed
to be a Lyapunov function candidate as long all Pi are definite positive, however this comes at the cost
of reducing the expressiveness. For instance all Lyapunov functions that are WASQF are necessarily
compatible with the dynamical system ẏ = −y. Or, to have a better comparison with SEDS, there
exists no WASQF Lyapunov function that is compatible with a trajectory whose norm is not monotoni-
cally decreasing with respect to the uniform norm ‖y‖∞. Note that the inverse of the above statement
is not true, meaning that not all trajectories decreasing with respect to the uniform norm along the
trajectory do have a compatible WASQF Lyapunov function. Additionally, each asymmetric quadratic
function is convex and therefore the sublevel-set of any WASQF Lyapunov function is a convex set. The
search for the best WASQF function given the demonstration is rather efficient due to the following
fact: the set of Lyapunov function candidates compatible with a given DS (for instance ẏ = −y) is a
(blunt) convex cone. This follows directly from the definition of a cone: suppose V0(x) and V1(x) are
compatible with the dynamical system ẋ = f(x), so ∇xV0(x).f(x) < 0 and ∇xV1(x).f(x) < 0, then
α∇xV0(x).f(x) + β∇xV1(x).f(x) < 0 for any α, β ∈ R+. Obviously αV0(x) + βV1(x) ≥ 0 for all x
except 0 and any α, β ∈ R+ also holds as V0 and V1 are everywhere strictly positive (except at the
origin). Therefore V (x) = αV0(x) + βV1(x) is a Lyapunov function for f(x).

There exist also approaches that do not necessarily fall into one of the above categories. In a very
recent work, Ravichandar et al. [2017] propose a method to learn globally stable dynamics based on

118 CHAPTER 4. LEARNING

therefore yields a globally optimal solution without depending on good initial guesses for the parameters
or heuristics. Secondly it prevents what we term drift-error. In all of the other methods, in a form or
another, a statistical model is trained on the given data (position and velocity) and regression is used to
obtain an estimator for the best or most likely velocity, given a position. As this velocity is then integrated
over time, even small, but persistent, errors can lead to large differences in the obtained trajectories. The
reproduction drifts away from the demonstration, ending up in possibly unexplored regions of the state
space. Formulating integral constraints or costs, that is constraints or costs that penalize the difference
between the reproduction and the demonstration, for model learning the velocity is very difficult. To our
knowledge MoA is the only approach directly taking into account such a cost during the learning phase,
but it does not provide (even for the time-dependent case) any kind of convergence guarantee. In the
same article they also show a modified version of their approach to construct a time-independent vector
field, but the construction method is prone to produce limit cycles instead of convergent behaviour.

In Neumann and Steil [2015] the, to our knowledge, first approach to use diffeomorphic transformations
in the context of learning from demonstration is proposed. The approach can be briefly summarized
into the three following steps: First, much like the second group above, one seeks to obtain a highly
compatible Lyapunov function VY(y) for the given dataset. In the second step, a (smooth) diffeomorphic
transformation

Φ: Y → X (4.6)

y 7→ x

is constructed such that the image of the level-sets in the demonstration space {y|VY(y) = α} are hy-
perspheres in the control space

{

x|xT.x = α
}

(see Figure 4.2), with their radius equal to the value of
the Lyapunov function. Note that here the diffeomorphism is constructed as transformation from the
demonstration space to the control space, whereas within the approach presented in this chapter it is
constructed from the control space to the demonstration space. This is worth noting not because it is an
actual difference, but in order to avoid confusion regarding the meaning of Φ and Φ−1.

As VY(y) is a highly compatible Lyapunov function for the original data, the transformed data-points
xji = Φ(yji) and ẋji = JΦ.ẏji, with JΦ denoting the Jacobian matrix of Φ, are highly compatible with
the simple Lyapunov function VX (x) = xT.x, reducing the complexity of the movement and making
it thus easier to learn. This approach can, for instance, be used together with SEDS (called τ -SEDS)
and alleviate the constraint that the demonstration space trajectories have to converge with respect to
the l2-norm along the trajectory, as only the control space trajectories are used for training SEDS. The
approach in depicted in Figure 4.2.

In order to be able to construct the diffeomorphic transformation Φ from the Lyapunov function VY(y)
in a generic way, not all types of Lyapunov functions are admissible, depending on the construction.
Without going into details, the diffeomorphic transformation presented in Neumann and Steil [2015] is
given as

x = Φ(y) =

{
√

VY(y)
y

‖y‖
2

if y 6= 0

0 else
(4.7)

and therefore directly inherits the smoothness properties of the Lyapunov function used for construction,
except at the origin. This definition of the diffeomorphism relies on the property that every ray whose
initial point is located at the origin intersects only once with any level-set of the Lyapunov function.
Otherwise the function would not be injective, which can be seen in Figure 4.3. This forces all level-sets
to be “star”-shaped inducing, among others, the restriction that any admissible Lyapunov function has
to be everywhere compatible with the dynamical system ẏ = −y.

In the following sections we present methods to learn globally asymptotically stable nonlinear vector
fields from demonstrations, using an in some sense dual approach to τ -SEDS. Instead of inferring a
diffeomorphic transformation from a compatible Lyapunov function, we seek directly for a diffeomorphic

120 CHAPTER 4. LEARNING

By transposing this vector field into the demonstration space using the diffeomorphism, one obtains a
“complex” vector field able to reproduce the demonstrations. As the transformation is diffeomorphic, the
global asymptotic stability of the “complex” vector field is guaranteed by the stability of the “simple” one.

In section 4.4 we show how this can be done for fixed pseudo-linear control-space dynamics allowing the
representation of a unimodal demonstration set for similar demonstrations. In section 4.5 we extend this
approach to unlabelled multimodal demonstration sets showing a higher variance in the demonstrations
relying on learned control-space dynamics.

4.4 One-Step Learning

In this section we first introduce a new algorithm for diffeomorphic matching based on smooth symmetric
positive definite kernels and compare it with a state-of-the-art algorithm. Then, in the second part, we
show how it can be used to map simple curves, which can be easily reproduced by DS known to be globally
asymptotically stable like ẋ = −x (which we call control-space dynamics) onto the given demonstrations.
This gives a new way to generate Lyapunov candidates as well as globally asymptotically stable smooth
autonomous systems reproducing the given demonstrations.

Contributions

• A novel method to construct diffeomorphic transformation by composing local dif-
feomorphic transformations

• An efficient algorithm to construct such transformations

• Showcasing the obtainable results for the LASA-Dataset

• Extensions to multimodal and cyclic demonstrations

The material presented in this section was (in parts) published in Perrin and Schlehuber-
Caissier [2016].

4.4.1 Diffeomorphic Locally Weighted Translations

Diffeomorphic transformations are by definition stable by composition, that is given two Ck-diffeomorphism
from Rd onto itself, denoted Ψ0 and Ψ1, the transformation Φ defined as

Φ = Ψ1 ◦Ψ0 : X = Rd → Y = Rd (4.8)

x 7→ y = Ψ1(Ψ0(x))

is also a Ck-diffeomorphism from Rd onto itself. This is a very convenient property, but before introducing
the algorithm used construct the diffeomorphism we start by introducing its building blocks, the locally
weighted translation (LWT).

Given a smooth (symmetric positive definite) kernel function kρ(x,x
′) : Rd × Rd → R+, depending

on some parameter ρ, such that ∀x, ∀ρ : kρ(x,x) = 1 and ∀ρ : kρ(x,x
′) → 0 when ‖x′ − x‖2 → ∞ ,

given a “translation” v ∈ Rd and a center c ∈ Rd , we consider the following locally weighted translation:

Ψρ,c,v = x+ kρ(x, c)v. (4.9)

The so defined transformation is obviously not always a diffeomorphic, so one has to came up with
adequate restrictions and ways to proof their validity.

4.4. ONE-STEP LEARNING 121

Theorem 4.2. If

∀ (x,x′) ∈ Rd × Rd :
∂kρ
∂x

(x,x′).v > −1 (4.10)

then Ψρ,c,v is a C∞-diffeomorphism.

Proof. For a given y ∈ Rd, let us try to find x ∈ Rd such that Ψρ,c,v(x) = y. This can be rewritten
x = y − kρ(x, c)v, so we know that x must be of the form y + rv for some scalar r. The equation
becomes Ψρ,c,v(y+ rv) = y, i.e.: rv+ kρ(y+ rv, c)v = 0. If v = 0, Ψρ,c,v is the identity (and a smooth
diffeomorphism), and x = y. Otherwise, solving Ψρ,c,v(x) = y amounts to solving r+ kρ(y+ rv, c) = 0.

Let us define:

hy : R→ R (4.11)

r 7→ r + kρ(y + rv, c).

If ∂kρ

∂x (x,x′).v ≥ −1, we get: ∀r ∈ R, d

d rhy > 0. Because of the absolute monotonicity of hy, and
since hy(r) tends to −∞ when r tends to −∞, and to +∞ when r tends to +∞ , we deduce that there
exists a unique scalar value sρ,c,v(y) ∈ R such that hy(sρ,c,v(y)) = 0. It follows that the equation
Ψρ,c,v(x) = y has a unique solution:

x = y + sρ,c,v(x)v.

We conclude that Ψρ,c,v is invertible, and:

Ψ−1
ρ,c,v(y) = y + sρ,c,v(x)v. (4.12)

The above proves that Ψ is indeed a bijection. As Ψ has C∞ smoothness, the implicit function
theorem can be applied to prove that sρ,c,v(y) is smooth, and as a consequence Ψρ,c,v is a smooth
diffeomorphism.

Gaussian Radial Basis Function

In the first part of this chapter, we rely on Gaussian Radial Basis functions (also simply called Gaussian
kernels), due to their smoothness and succesfull application in many areas, including other diffeomorphic
matching algorithms like Glaunes et al. [2004]. The resulting deformation is showcased in Figure 4.4.

The Gaussian Radial Basis function is defined as

kρ(x,x
′) = exp

(

−ρ2 ‖(x− x′)‖
2
2

)

(4.13)

and therefore

∂kρ
∂x

(x,x′).v = −2ρ2 exp
(

−ρ2 ‖(x− x′)‖
2
2

)

(x− x′)
T
.v

with the lower bound

−2ρ2 exp
(

−ρ2 ‖(x− x′)‖
2
2

)

‖x− x′‖2 ‖v‖2 ≤ −2ρ
2 exp

(

−ρ2 ‖(x− x′)‖
2
2

)

(x− x′)
T
.v.

After replacing ‖x− x′‖2 with δx to shorten notations, we derive the above expression with respect
to it to find an extrema by solving

−4ρ4δx exp
(

−ρ2δx2
)

δx ‖v‖2 − 2ρ2 exp
(

−ρ2δx2
)

‖v‖2 = 0.

This equation is equal to zero for δx = 1√
2ρ

and considering the strictly monotonic decrease of kρ, one
can conclude that it is a minima.

4.4. ONE-STEP LEARNING 123

Algorithm 3 x = Ψ−1(y)

1: Input y, ρ, c
2: Parameter ǫ > 0
3: Initialize r = 0.
4: while |hy(r)| > ǫ do

5: r ← r − hy(r)
h′

y
(r)

6: r ← max(−1.,min(r, 0.))
7: end while

8: Return x = y + rv

Algorithm 3 is the usual Newton method, with the difference that the bounds are explicitly enforced
to achieve faster convergence. Initializing r to zero, instead of the median of the admissible region −0.5
for example, proves to be more efficient, as the kernel is acting only locally and therefore the chances are
higher that the point will not be significantly influenced by this kernel than the opposite.

4.4.2 Diffeomorphic Matching

The problem of diffeomorphic point matching poses the following problem: given two sequences of N
pair-wise distinct points of the same dimension d, X = (xi)0≤i≤N−1 and Y = (yi)0≤i≤N−1, compute
a diffeomorphic transformation Φ that maps each xi onto the yi, either exactly or approximately. By
pair-wise distinct points we mean that xi = xj for some i 6= j implies that yi = yj . Or, to put it more
formally, by defining some cost or distance function dist(X,Y) between two point sequences holding the
same number of points having the same dimension and by denoting Φ(X) the point sequence (Φ(xi))i, we
seek to find the diffeomorphism that minimizes dist (Φ(X), Y). We often call the sequence X the source
sequence or curve and Y the target sequence or curve.

State-of-the-Art

Most of the research concerning diffeomorphic matching is related to medical imaging. Within this
context it is often used to match different images of organs deformed under mechanical stress together.
This stress is often caused by the imaging process itself, as for instance ultrasound imaging, and can
therefore not be avoided. As neither an analytical model nor the necessary applied forces are available to
compute the elastic deformation and thereby correct the image, matching such images via diffeomorphic
transformations has proven to be very successful, see for instance Sotiras et al. [2013]. This is partly due
to the inherent property of diffeomorphisms to conserve topologies. In the case of medical imaging, this
means that organs or tissue segments can neither be dissected nor glued together by the image treatment
process.

The diffeomorphic matching approaches used within the context of medical imaging can be divided
into methods to match points, lines or surfaces. As we use diffeomorphic matching within the context
of learning from demonstration, the distance between two successive points is an important property,
as these points have corresponding time-stamps. So the distance between these points is directly linked
to the current velocity on the trajectory. Therefore the only method applicable in this context is point
matching. Since we have no a priori knowledge about the shapes of the curves to match, the, to the best
of our knowledge, state-of-the-art techniques to solve this problem are based on the Large Deformation
Diffeomorphic Metric Mapping (LDDMM) framework introduced in the seminal article by Joshi and
Miller [2000]. The core idea of this approach is to work with a time-dependent vector field v(x, t) ∈ Rd

with t ∈ [0, 1] and define a flow Φ(x, t) via the transport equation:

d
d t

Φ(x, t) = v(Φ(x, t), t) (4.16)

124 CHAPTER 4. LEARNING

with the initial condition Φ(x, 0) = x. Under very mild regularity conditions of the vector field v(x, t),
such as that the velocity has to be continuous in x and its partial derivatives with respect to x have to
be finite (see Dupuis et al. [1998] for details) the resulting transformation

Φ: Rd × [0, 1]→ Rd (4.17)

x, t 7→ y = Φ(x, t)

is indeed a diffeomorphism. This diffeomorphism also inherits the smoothness property of the generating
vector field, meaning that if the partial derivatives of v(x, t) with respect to x are Ck, then the resulting
diffeomorphism is a Ck-diffeomorphism given by

Φ(x) = x+

∫ 1

0

v(Φ(x, t), t) dt. (4.18)

Using an appropriate Hilbert space for the vector field v(x, t) and interpreting the point sequences as
a discrete distribution given as a weighted sum of Dirac measures, one obtains a variational formulation
for a cost function taking into account, and therefore performing a trade-off between, the regularity of
the resulting transformation and the matching of the point pairs. This problem can then be solved using
gradient descent algorithms, as done in Glaunes et al. [2004]. Note that the regularity of a diffeomorphic
transformation is difficult to quantify and we use this term (within the context of describing a diffeomor-
phism) in a very informal way. We say that a diffeomorphic transformation is regular, if the kernels have
an appropriate minimal size compared to the problem and there is some well identifiable margin for it
being inversible.

This formulation has several advantages like being able to efficiently trade-off between the regular-
ity of the transformation and matching accuracy. Also this formulation allows for different types of
cost functions measuring the similarity between diffeomorphic geometrical objects and not just point
sequences.

Nonetheless this formulation also entrails significant disadvantages. As Φ is not given as a closed-
form solution, evaluating it requires an integration which can be slighty time-comsuming. As our interest
is using the diffeomorphic transformation within the closed loop controller of a robotic system, fast
evaluation of Φ and Φ−1 is crucial. Moreover, the complexity of the approach proposed in Glaunes
et al. [2004] scales badly with the number of points in the provided dataset for two reasons. Firstly, the
complexity of constructing the time-dependent vector field is at least cubic in the number of data points.
This is not desirable, but acceptable as it is offline computation time and therefore not crucial. The real
disadvantage concerns the structure of the vector field v(x, t), as it is given as

v(x, t) =
∑

i

k(x,Φ(xi, t))vi(t). (4.19)

This means that to each point in the sequence X a time-dependent vector field of the form vi(x, t) =
k(x,Φ(xi, t))vi(t) is associated, defined by the symmetric positive definite kernel k centred at the current
image of xi and the current velocity vi(t). The total vector field is then simply the sum over the individual
ones. Therefore the evaluation time of Φ and Φ−1 scales linearly with the number of points which is not
admissible in our context.

Fast Diffeomorphic Matching

We propose a completely different approach to construct a diffeomorphic transfomation (approximatively)
matching two point sequences based on the locally weighted translations presented in section 4.4.1. These
translations and their inverse can be evaluated extremely quickly which, together with constant evaluation
complexity with respect to the number of points in the sequences, allows it to be used within a closed
loop controller alleviating some of the drawbacks of LDDMM.

4.4. ONE-STEP LEARNING 125

The main idea is that, as each locally weighted translation defines a simple diffeomorphic transforma-
tion, many such transformations can be composed to obtain more complex ones in an iterative process.
Therefore we fix a number of iterations K, and two parameters 0 < µ < 1 and 0 < β < 2. K is defined
empirically, as the number of iterations required for a good approximation depends on the intrinsic dif-
ficulty of the problem. That is it depends on the difference between the source and target sequences. µ
can be interpreted as a “safety margin”: strictly less than 1, it ensures that each resulting LWT cannot
be arbitrarily close to being non-invertible. β is similar to a learning rate: a small value allows only small
modifications at every iteration, whereas large values force larger changes and kernels.

Initially we define Z = X and at every iteration Z is updated with a newly constructed LWT. The
j-th iteration constructing the j-th LWT can be summed up into the following four steps, that can also
be found in the pseudo-code Algorithm 4:

1. select the center cj as the point zl in Z that is the furthest away from the corresponding target
point yl in Y

2. select the translation vj = β(yl − zl)

3. construct the j-th LWT Ψρj ,cj ,vj
by optimizing the size of the kernel ρj such that it minimizes

dist
(

Ψρj ,cj ,vj
(Z), Y

)

subject to 0 ≤ ρj < ρMax(vj) ensuring that it is diffeomorphic

4. perform the update Z = Ψρj ,cj ,vj
(Z)

The resulting (smooth) diffeomorphism Φ is the composition of all LWT constructed as described
above, so

Φ = ΨρK−1,cK−1,vK−1
◦ΨρK−2,cK−2,vK−2

◦ · · · ◦Ψρ1,c1,v1
◦Ψρ0,c0,v0

. (4.20)

Algorithm 4 Construct Φ

1: Input X = (xi)i,Y = (yi)i
2: Parameters K ∈ N+, µ ∈ [0, 1[, β ∈]0, 2[
3: Initialize Z = X
4: for j ← 0 to K − 1 do

5: l← argmax
i

(‖zi − yi‖2)

6: cj ← zl

7: vj ← β (yl − zl)
8: ρj ← argmin

ρ∈[0,µρMax(vj)]

dist
(

Ψρ,cj ,vj
(Z), Y

)

9: Z ← Ψρj ,cj ,vj
(Z)

10: end for

11: return (ρj , cj ,vj)j

Before presenting the results of this algorithm graphically, we would like to give some additional
remarks and insights gained from experience.

Remark 4.1. Here we have presented a version of the algorithm in which the parameter µ and β are
constant, but we can also make them vary from one iteration to another. By experience, matching
performance for the LASA-Dataset was increased by interpolating β linearly between 0.3 for the first
iteration and 0.7 for the last iteration. Varying µ has less influence and is therefore usually kept constant
with values ranging from 0.5 to 0.9, where smaller values lead to increased regularity, whereas higher
values might speed up convergence if the underlying trajectories (represented by the point sequence)
have higher curvatures.

4.4. ONE-STEP LEARNING 129

Experimental Evaluation

We compared the proposed Algorithm 4 to a publicly available implementation for diffeomorphic matching
in the LDDMM framework developed by J. Glaunès (the ”MATCHINE” software Glaunes [2005])

Given a sequence of points Y = (yi)i∈[0,N−1] representing a trajectory, we set X = (xi)i∈[0,N−1] with

xi = y0 +
i

N
(yN − y0)

and applied our algorithm or the LDDMM algorithm to construct a diffeomorphism Φ such that Φ(X)
and Y match. As shown in the next section, the definition of the source sequence as linear interpolation
between the start and end-point of the target trajectory is not arbitrary, but is exactly our use-case. The
results of the proposed algorithm for some 2D-trajectories taken from the LASA-Dataset. In Table 4.1 a
comparison of the results obtained on these trajectories with our algorithm and the LDDMM algorithm
is shown. Each trajectory, was represented as sequences of 20, 50 and 100 points (i.e. N = 20, N = 50,
N = 100). For both algorithms, the same parameters were kept across all the trials, notably the number
of LWTs or iterations for Algorithm 4 was set to 150. In all cases, our algorithm provided a substantial
speedup. For example, with N = 50 (a very small number of data points for statistical learning, Φ was
learned in average 58 times faster and, more importantly, evaluated 240 times faster, while the error
dist(Φ(X), Y) was 2.67 times smaller. The tests were made on an Intel(R) Core(TM) i7-4700MQ @ 2.4
GHz with 4 GB of RAM, with both approaches implemented in Matlab(R).

N Our algorithm LDDMM
Learning: average duration of the construction of Φ 20 0.25s 2.78s

50 0.25s 14.5s
100 0.26s 53.3s

Forward evaluation: average duration of computing Φ(X) 20 3.05ms 157ms
50 3.35ms 804ms
100 3.72ms 3130ms

Backward evaluation: average duration of computing Φ−1(X) 20 29.8ms 145ms
50 35ms 798ms
100 38.5ms 3110ms

Accuracy of mapping: average value of dist(Φ(X), Y) 20 3.49× 10-3 18.2× 10-3

50 8.32× 10-3 22.2× 10-3

100 9.51× 10-3 22.0× 10-3

Generalization: average value of dist(Φ(X1000), Y1000) 20 19.8× 10-3 20.3× 10-3

50 9.51× 10-3 21.6× 10-3

100 11.5× 10-3 22.3× 10-3

Table 4.1 – Comparison of experimental results for the 4 examples (“Sine”, “Snake”, “hee”, “Leaf2”) of the
LASA-Dataset. Remark: standard deviations are negligible for our algorithm: it is deterministic, and the
computation times depend almost entirely on the input size (N) and on the fixed number of iterations
(K). Y is obtained by subsampling from an initial recording of 1000 points: Y1000. X1000 is the linear
progression from y0 to y999. To get a sense of how precisely the mapping generalizes around the set of
training points, we compute dist(Φ(X1000), Y1000). We observe that for N = 50 and N = 100, our results
are about twice as accurate as the ones obtained with the algorithm based on LDDMM.

130 CHAPTER 4. LEARNING

4.4.3 Learning Globally Asymptotically Stable Nonlinear Dynam-

ical Systems

In this section, we show how a diffeomorphic matching algorithm can be used to learn globally asymp-
totically stable DS that reproduce the demonstrated trajectories. We show how the introduction of the
control space, demonstration space and a diffeomorphism between them can simplify stability proofs and
allows for the reproduction of highly complex trajectories.

Remark 4.8. We only consider locally Lipschitz dynamical systems, which is compatible with the aim
of learning trajectories for robotic systems. Secondly we assume, without loss of generality, that the
equilibrium point of the dynamical system is at the origin, in order to ease notations.

Remark 4.9. We consider only diffeomorphisms for which we have Φ(0) = 0, or in words, diffeomorphisms
that are equivalent to identity at the origin. As we suppose that all demonstrations converge to the origin,
this ensures that all trajectories of the dynamical system converge to the same point and that this point
coincides with the target of the demonstrations. To enforce this, an additional transformation is added
to the diffeomorphism found using Algorithm 4 with vK = −Φ(0) and cK = Φ(0). Nonetheless, all
proofs presented also hold for the general case, by introducing the equilibrium points x∗ and y∗ with
y∗ = Φ(x∗).

Recall from section 3.2.2 that a function has to be everywhere strictly positive except at the origin,
be zero at the origin and be radially unbounded in order to be called Lyapunov function candidate2.
Additionally we demand in this section that the function has no other local extrema than the origin and
we denote them by V (.). This Lyapunov function candidate is called a Lyapunov function for the DS
ẋ = f(x), if they are compatible, that is if

∀x ∈ Rd \ {0} : ∇xV (x).f(x) < 0.

The demand that a Lyapunov function candidate has no other extrema makes it stronger than the usual
definition, but necessary when using the Lyapunov candidate as a stepping-stone to construct the GAS
dynamical system, as, due to the vanishing gradient at the extrema the compatibility is numerically not
tractable.

In the last sections we have seen that Algorithm 4 is able to construct a C∞-diffeomorphism matching
straight line segments (represented by an equally spaced point sequence) onto a demonstrated trajectory
(represented by a point sequence of the same length). We have also shown that global asymptotic stability
is preserved under diffeomorphic transformations (smooth equivalence). Therefore if one could construct
a globally asymptotically stable dynamical system, which we call control-space dynamics denoted as ẋ =
f(x), whose forward trajectory is precisely this line segment, then we can use the diffeomorphism found
beforehand to deduce the globally asymptotically stable demonstration-space dynamics using the smooth
equivalence. We denote this DS as ẏ = g(y) and its relation to the f(x) is g(y) = JΦ.f(Φ

−1(y)). If the
matching is exact, then the trajectory generated by g(y) starting at the initial point of the demonstrated
trajectory will coincide with it. Moreover, with the diffeomorphism being C∞, the demonstration-space
dynamics is guaranteed to have the same smoothness as the control-space dynamics (but with different
Lipschitz constants). In the following we show how to construct such control-space dynamics, deduce
compatible Lyapunov functions in the demonstration space and provide preliminary results.

Control-Space Dynamics

The forward trajectories of the control-space have to correspond to the straight line segment between
starting point x0 = x(0) and the end point xT = 0 of the trajectory, which is, without loss of generality,
terminating at the origin after T seconds. The prototype of the control space dynamics is therefore given

2Note that here we are always interested in proving global asymptotic or even exponential stability and therefore the
term Lyapunov function candidate is adjust accordingly

4.4. ONE-STEP LEARNING 131

as

ẋ = f̃(x) = −γ
A.x

‖A.x‖2
. (4.21)

Defined as such, the matrix A ∈ Rd×d defines the direction of the velocity and γ ∈ R+ defines the speed.
By taking

γ =
‖x0‖2
T

(4.22)

and A = Idd, we obtain a dynamical system whose trajectory from any starting point is a straight line
to the origin and the time needed to attain the origin from x0 is precisely T . The origin is a global
attractor, but it is not an equilibrium point, as lim‖x‖

2
→0 f̃(x) is ill-defined. To remedy this problem we

define a r-ball around the origin within which the norm of the velocity is gradually reduced, so

ẋ = f(x) =

{

f̃(x) if ‖x‖2 > r
‖x‖

2

r f̃(x) else
. (4.23)

Defining f(x) this way, it is obviously globally asymptotically stable and ‖x‖22 is a Lyapunov function.
Also, by choosing r sufficiently small, the difference between the point sequence used to construct the
diffeomorphism and the forward trajectory of x0 under f is negligible. This configuration is shown in the
middle row of Figure 4.8.

In a similar fashion, we can construct control-space dynamics providing additional properties. Con-
sider the rotation matrix R (unitary matrix in Rd×d) defined as

R =
[

x0

‖x0‖2

null(x0
T)
]

(4.24)

where null denotes the base of the nullspace of a matrix. This causes R.e0 with e0 =
[

1 0 · · · 0
]T

to
point into the direction of x0. Now we define the matrix A according to

A = R. diag(
[

1. λ′ · · · λ′]).RT (4.25)

where diag constructs a diagonal matrix from a vector. If choosing λ′ strictly larger then zero, than f(x)

is again globally asymptotically stable with ‖x‖22 being a Lyapunov function as (considering the case
outside the r-ball around the origin, but the results also hold within):

∇xV (x).f(x) = xT.

(

Id.

(

−γ
A.x

‖A.x‖2

)

+

(

−γ
A.x

‖A.x‖2

)T

.Id

)

.x < 0. (4.26)

By multiplying with the non-negative term ‖A.x‖2 (x 6= 0), dividing by the strictly positive term γ and
considering that A is symmetric, one obtains

xT.(−A).x < 0 (4.27)

By chosing λ′ strictly larger than zero, then −A is symmetric definite negative and the inequality holds
everywhere except at the origin as demanded.

Defining f(x) this way has the advantage that by setting λ′ to specific values we can influence the
global behaviour of the system. Choosing λ′ larger than 1, causes the system to converge quickly towards
the straight line going through x0 and the origin, whereas values smaller than 1 cause the trajectories to
keep the distance to the straight line and be “parallel” to it. This behaviour is also transposed into the
demonstration space and therefore provides a effective tool to counter the drift error. If the matching via
Φ is perfect, then larger λ′ values cause the state to converge to the demonstration, whereas smaller values
usually cause better generalization of the movement into the regions surrounding the demonstration, as
shown in the top and bottom row of Figure 4.8.

4.4. ONE-STEP LEARNING 133

X 7→ y ∈ Y. If VX (x) is a Lyapunov function for ẋ = f(x) , then VY = VX ◦Φ−1 is a Lyapunov function
for ẏ = g(y).

Proof. As VX is a Lyapunov function and therefore also a Lyapunov function candidate, it can immedi-
ately be deduced that VY is also a Lyapunov function candidate, since Φ is a one-to-one correspondence.
I.e. if there exists a y′ 6= 0 for which VY would be either zero or a local extrema, then one could imme-
diately deduce that x′ = Φ−1(y′) is a point for which VX is either zero or a local extrema. As no such
point can exist, VY is a Lyapunov function candidate.

For VY to be a Lyapunov function, we need to have

VY(y) = ∇yVY .g(y) < 0

for all y 6= 0. This however is equivalent to (chain rule)

∇xVX (Φ−1(y)).∇yΦ
−1.JΦ.f(Φ

−1(y)) = ∇xVX (x).f(x)

which we know to be strictly negative as VX is a Lyapunov function for f(x).

This provides a convenient way to determine Lyapunov functions in the demonstration space, which
are highly adapted to the given demonstration as seen in Figure 4.9.

The prototypic control-space dynamic corresponds to a scaled linear system and from basic control
theory we know that linear systems are stable iff the system matrix is Hurwitz. In section 3.2 we have seen
that the Hurwitz-criterion is equivalent to proving the existence of a symmetric definite positive matrix
P for which P.A+AT.P is symmetric definite negative and that the quadratic function xT.P.x is indeed
a Lyapunov function in this case. This holds for the linear, but also for the scaled linear system. Now the
interesting question is, can we construct an optimal Lyapunov function for the prototypic control-space
dynamics?

If we consider for the moment the linear system, then by defining optimal as having the fastest
exponential convergence, so

P.A+AT.P � −γ∗P

with γ∗ > 0 being the largest value for which the inequality holds, then we see that

2P.A � −γ∗P

as AT = A and by left-multiplying with P−1 we get 2A � −γId.

This indicates that for symmetric system matrices, the convergence rate for quadratic Lyapunov functions
is independent of the matrix P . This is an interesting fact, but also means that all sdp-matrices are optimal
in this sense, providing no way to chose a particular one.

Therefore let’s reconsider the scaled linear dynamics f(x). By defining optimality of the Lyapunov
function as the smallest angle between the inward pointing normal vector on the level-set (equal to
−P.x/‖P.x‖

2
) and ẋ, one obtains a criterion for ranking the control-space Lyapunov functions. This

criterion is very natural, as it prefers Lyapunov functions for which the velocity points steeper into the
sublevel-set. This angle is the smallest (equal to zero) if these vectors point into the same direction, or in
other words, if ẋ is perpendicular to the level-set. The direction of the scaled linear dynamics is A.x, the
direction of the (inward pointing) normal vector is −P.x. Therefore if we identify P with −A we obtain
the optimal Lyapunov function (Note that it is not just the optimal quadratic Lyapunov function, but
truly the optimal Lyapunov function among all Lyapunov function candidates). This, and the obtained
demonstration-space Lyapunov functions, is showcased in Figure 4.9.

Another way to look at the resulting diffeomorphism and demonstration-space dynamics is to compare
it with the diffeomorphic construction of navigation functions in Rimon and Koditschek [1991]. A naviga-
tion function in this work is basically a Lyapunov function candidate defined inside the unit-sphere, with

136 CHAPTER 4. LEARNING

common Lyapunov function for all components. These constraints are not compatible with the EM-
algorithm, which is undoubtedly the most popular way to train GMMs, but one has to rely on gradient
descent methods from general nonlinear programming. This often causes the centers of the Gaussians to
be far away from the demonstrations, causing the weights for some kernels to approach machine precision,
preventing a smooth blending of the components. This is especially striking in the 4th row.

4.4. ONE-STEP LEARNING 141

defined as

ÿ = γ(1− y2)ẏ − y (4.30)

or equally

ẏ =

(

y1

γ(1− y2
0)y1 − y0

)

(4.31)

which can be shown to possess a limit cycle for γ > 0, see for instance Grimshaw [2017]. For the results
presented in Figure 4.15 we used γ = 1.5 and k = 0.75rs 2π/T .

Till now we have only been concerned with trajectories, which can be treated like controllable first
order systems, however the Van der Pol oscillator is a second order system. Therefore two possibilities
arise: either we ignore the second order nature of the system and treat it like a first order system
according to (4.31). This has the advantage that the global asymptotic stability towards the limit cycle
is proven, but leads to inconsistency in the following sense: as y1 corresponds to the velocity, we must
have d

d ty0 = y1 = g(y)[0] (With g(y) denoting again the learned demonstration-space dynamics). This
however is not guaranteed to hold for the demonstration-space dynamics arising from the prototypic
control-space dynamics and the diffeomorphism. The second possibility is to redefine the demonstration-
space dynamics in the following way

ẏ =

(

y1

g(y)[1]

)

. (4.32)

This means that we construct a second order system based on the second component from the learned
vector field. This way, the redefined model, has the same order as the original model, but no guarantees
can be given concerning stability. A trajectory visualizing both approaches is shown on the bottom right
image of Figure 4.15.

As one can see, the learned limit cycle matches closely the demonstrated one, but the trajectory
during the transient phase, so until the limit cycle is reached, can be significantly different. This is due
to the lack of information in these regions as only the limit cycle is provided.

4.5. TWO-STEP LEARNING 143

Contributions

• Introduction of locally weighted multitranslations

• Conception of an approximative curve matching algorithm

• Interweaving of learning and curve matching in order to learn movements from one
or many demonstrations

• Implementation, experimental set-up and evaluation

4.5.1 Motivation and Problem Statement

The approach proposed in the last section composed many locally weighted translations into a diffeomor-
phism, based on a heuristic point matching algorithm. This algorithm performs poorly when presented
with a large variance within the trajectories representing the same movement and has an reduced expres-
siveness if confronted with multimodal demonstrations set.

This is caused by multiple reasons. The demonstration-space speed (we say “speed” when we talk
about the norm of ẋ or ẏ and velocity when we talk about the vectors and finally we say “direction” for
the normalized velocity) is “encoded” in the diffeomorphism, as the norm of the prototypic control-space
dynamics is state-independent (except for the small r-ball around the origin). Therefore the evolution of
the speed is entirely defined by the diffeomorphism. While this works well if only one demonstration is
given, this leads to problems for multiple demonstrations as shown in Figure 4.16. Especially if there exist
trajectories which have a similar geometry, but different velocity profiles. Secondly, as the diffeomorphism
and the control-space dynamics is built considering solely the meta-demonstration, the approach cannot
deduce suitable generalizations of the movement into neighbouring regions, as the variance is lost during
the averaging process. Finally, the structure of the diffeomorphism makes it hard to modify or improve a
once constructed diffeomorphism if presented with new demonstrations. Therefore the drawbacks which
we seek to compensate are:

(a) Each demonstration has to be labelled according to the movement it represents, its mode.

(b) The algorithm cannot handle well multiple demonstrations having a high variance for the same
movement.

(c) The expressiveness is reduced for multimodal demonstration sets.

(d) The dynamics found cannot be improved or modified providing new demonstrations.

(e) The approach often results in overly deformed state-spaces.

In order to tackle these drawbacks, we propose a new approach based on the following main ideas.
Firstly we separate the learning of the speed from the direction or the normalised tangent vector of a

trajectory. This has the advantage that different velocity profiles for (geometrically) similar trajectories
can be better handled. Reconsider the left image of Figure 4.16. Point matching algorithms fail to find
meaningful transformations in this setting, as there exists no reasonably regular diffeomorphism between
the points in the source and target sequences and averaging over the demonstrations also fails to produce
representative a meta-demonstration. However, if we are only interested in matching the geometry of the
source curves onto the geometry of the target curves, then the problem becomes feasible. Learning the
speed directly in the demonstration space is what allows us to do this. The statistical model for learning
the speed averages over the different velocity profiles, whereas the transformation of the geometry is
learned by the diffeomorphism based on curve matching.

Secondly we seek to learn or construct richer control-space dynamics based on the given demonstra-
tions without loosing the GAS property in the control space. As the speed is directly learned in the

146 CHAPTER 4. LEARNING

Geometric Equivalence

In section 4.2 it was shown that if two DS ẋ = f(x) and ẏ = f(y) are smoothly equivalent via the
C1-diffeomorphism Φ, then both are globally asymptotically stable if one of them is. This theorem
is not directly applicable in this new setting, as the speed of the trajectory is directly learned in the
demonstration space. Therefore the demonstrations space dynamics is now obtained as

ẏ = g(y) = m(y)JΦ(Φ
−1(y)).f(Φ−1(y)) (4.34)

with ẋ = f(x) being the GAS control-space dynamics and m : y ∈ Rd → R+ denoting the regression
model for the speed which takes a point in the demonstration space and maps it to a strictly positive
scaling factor. If (4.34) holds, we say f and g are geometrically equivalent. As we can see if ∀y : m(y) = 1
we return to the definition of smooth equivalence.

Theorem 4.4. If two DS ẋ = f(x) and ẏ = g(y) are geometrically equivalent via a C1-diffeomorphism
Φ and strictly positive scaling function m : y ∈ Rd → R+, then if one is globally asymptotically stable,
both are.

Proof. In Theorem 4.2 it was shown that the image of forward trajectories of f(x) under Φ are forward
trajectories of g(y) if they are smoothly equivalent via Φ. As f(x) is known to be GAS all trajectories
converge and therefore all trajectories of g(y) converge too.

The only difference between Theorem 4.4 and Theorem 4.1 is the scaling function m(y). This scaling
only affects the norm of the velocity, not the direction, as it is strictly positive. Therefore consider
an (endless) forward trajectory of f(x) denoted (x(t))t≥0 starting at x0 = x(0) and its image under
diffeomorphism (Φ(x(t)))t≥0 as well as the forward trajectory of g(y) starting at y0 = Φ(x0) denoted
(y(t))t≥0. Then for each point we have

d
d t

Φ (x(t)) = JΦ.ẋ(t) = JΦ.f(x(t)) (4.35)

which is exactly g(y) divided by m(y), so the tangent vector of the transformed trajectory and the
tangent vector of g(.) are parallel. This means that all points on the image of the forward trajectory
(Φ(x(t)))t≥0 are also on the forward trajectory (y(t))t≥0. Moreover as m(y) is strictly positive, the
direction of movement on the curve does not change and each point on the trajectory is attained exactly
once, so for each yi ∈ (y(t))t≥0 there exists a unique ti such that yi = y(ti) and therefore for each t
there exists a unique t′ such that y(t′) = Φ(x(t)) holds and one can conclude that g(y) is GAS if f(x)
is GAS.

A similar demonstration using m′(y) = 1
m(y) proves the converse implication as the inverse of a

diffeomorphism is also a diffeomorphism.

4.5.3 Locally Weighted Multitranslations

In section 4.4.1 locally weighted translations have been introduced, which were then composed to construct
the diffeomorphism. As these transformations act only locally, many such transformations have to be
composed, giving Φ a deep structure.

In order to give the diffeomorphism a more regular structure reducing evaluation time, we seek to
group multiple translations, similar to the ones presented in section 4.4.1, into one diffeomorphic (sub-)
transformation. These transformations, called locally weighted multitranslations (LWMT) have the form

Ψ(ρi,ci,vi)i
(x) = x+

∑

i

kρi
(x− ci)vi , (4.36)

4.5. TWO-STEP LEARNING 147

where kρ denotes a (symmetric positive definite) kernel function parametrized by the vector of variables
ρ, c is again the center of the kernel and v is the associated translation. All of them are indexed by i to
indicate the different components of the multitranslation.

Gaussian Radial Basis functions have the advantage of being C∞, but they are also unbounded in
the sense that their value vanishes nowhere, complicating the proofs that the resulting transformation is
diffeomorphic (when using them within LWMT). Therefore we propose to use the piecewise Polynomial
Radial Basis functions introduced in the next section.

Polynomial Radial Basis Functions

The symmetric kernels used in this section are based on piecewise polynomial functions, so we have

kρ(x− c) = kθ,b(x− c) =

{

pθ(‖x− c‖2) if ‖x− c‖2 ≤ b

0 else
. (4.37)

The so defined kernel has therefore zero influence outside of the hypersphere centred at c with radius b.
Inside the hypersphere the value corresponds to the value of an nth order piecewise continuous polynomial
pθ : r ∈ [0, bi] 7→ pi(r) ∈ [0, 1], evaluated at r = ‖x− c‖2 and whose coefficients are stored in θ.

In order for the so defined function to be useful in the context of constructing diffeomorphic transfor-
mations additional restrictions have to be enforced:

• p(0) = 1

• d

d rp(0) = 0

• d
2

d r2 p(0) = 0

• p(r) is strictly monotonically decreasing
from 0 to b

• p(b) = 0

• d

d rp(b) = 0

• d
2

d r2 p(b) = 0

• kρ(r) : R
+
0 → R+

0 is Ck≥1

These conditions ensure the smoothness of the function and that it can be used as a kernel. More specif-
ically, for the rest of this chapter we consider fourth order piece-wise polynomial functions with p being
C2.

Sufficient Conditions

In order for the locally weighted multitranlation to be diffeomorphic additional constraints ensuring that
the resulting function is bijective have to be constructed. To this end, we show that computationally
tractable conditions can be found, guaranteeing that the LWMT is injective, before showing that these
conditions are also sufficient for the LWMT to be surjective.

The proof of injectivity is presented in multiple steps, with each step reducing the conservativeness
of the condition at the cost of increased complexity. In a first step, consider the application

Ξ: X → Y (4.38)

x 7→ x+

N−1
∑

j=0

νj(x)

with each νj : X → Y being C1 and representing a position dependent translation vector.

Lemma 4.5. The application Ξ defined in (4.38) is injective if each νj has a (global) Lipschitz constant
Kj strictly smaller 1/N.

148 CHAPTER 4. LEARNING

Proof. An application is injective if any element (point) in the codomain is the image of at most one
element (point) in the domain. Therefore any two distinct points xA,xB ∈ X , xA 6= xB , must have
distinct images yA,yB ∈ Y:

yA 6= yB

Ξ(xa) 6= Ξ(xb)

xA +

N−1
∑

j=0

νj(xA) 6= xB +

N−1
∑

j=0

νj(xB)

N−1
∑

j=0

ν(xA)−
N−1
∑

j=0

νj(xB) 6= xB − xA.

This can be guaranteed by imposing
∥

∥

∥

∥

∥

∥

N−1
∑

j=0

(ν(xA))−
N−1
∑

j=0

(ν(xB))

∥

∥

∥

∥

∥

∥

2

< ‖xB − xA‖2

∥

∥

∥

∥

∥

∥

N−1
∑

j=0

(ν(xA)− ν(xB))

∥

∥

∥

∥

∥

∥

2

< ‖xB − xA‖2 .

Applying the triangle inequality and as we supposed νj to be C1 with a global Lipschitz constant Kj < 1/N
we obtain

∥

∥

∥

∥

∥

∥

N−1
∑

j=0

(ν(xA)− ν(xB))

∥

∥

∥

∥

∥

∥

2

≤
N−1
∑

j=0

‖ν(xA)− ν(xB)‖2 ≤

N−1
∑

j=0

Kj ‖xB − xA‖2 <

N−1
∑

j=0

1

N
‖xB − xA‖2 = ‖xB − xA‖2 (4.39)

In the case of LWMT based on Polynomial Radial Basis function the νj can be identified with the
locally weighted translations vjkj(‖x− cj‖2). As kj(‖x− cj‖2) = 0 if ‖x− cj‖2 > bj , only the case of x
being inside the basis is of interest. Therefore we now have to construct a condition limiting the Lipschitz
constant of vjpj(‖x− cj‖2) to 1/N:

∥

∥vjpj(‖x+∆x− cj‖2)− vjpj(‖x− cj‖2)
∥

∥

2
≤ Kj ‖∆x‖2 ,

where ∆x = xB − xA and x = xA. One obtains
∥

∥vjpj(‖x+∆x− cj‖2)− vjpj(‖x− cj‖2)
∥

∥

2
≤

sup
x,ǫ

∥

∥

∥

∥

vj

(

pj(‖x− cj‖2) +

∣

∣

∣

∣

pj(‖x+ ǫ∆x/‖∆x‖
2
− cj‖2)− pj(‖x− cj‖2)

ǫ

∣

∣

∣

∣

‖∆x‖2 − pj(‖x− cj‖2)

)∥

∥

∥

∥

2

≤

sup
x

(
∣

∣p′j(‖x− cj‖2)
∣

∣) ‖∆x‖2
(x− cj)

T

‖x− cj‖2
.vj ≤

Mp′j ‖vj‖2 ‖∆x‖2 (4.40)

with Mp′j = supx(
∣

∣p′j(‖x− cj‖2)
∣

∣). This means that each locally weighted translation has a global
Lipschitz constant of Mp′j ‖vj‖2. As ‖vj‖2 is known and Mp′j can be analytically determined for the
polynomials used in this section as a function of the size of the kernel (bj), the condition

∀j ∈ [0, N − 1] : Mp′j ‖vj‖2 ≤
1

N
− µ (4.41)

4.5. TWO-STEP LEARNING 149

with 0 < µ < 1
N provides a computationally tractable condition to ensure injectivity of the LWMT with

a safety margin of µ.
The above presented condition is very conservative for multiple reasons. First, it always takes into

account all locally weighted translations, even in the case that their bases do not intersect. Secondly it
directly reasons about the Lipschitz constants, neglecting the possibility that the translation directions
associated to each kernel can be different.

First the latter drawback is addressed. Again, we seek to proof injectivity by showing that xA,xB ∈ X ,
xA 6= xB implies that the images yA and yB are distinct:

yA 6= yB

N−1
∑

j=0

vjpj(‖xA − cj‖2)−
N−1
∑

j=0

vjpj(‖xB − cj‖2) 6= xB − xA.

By denoting x = xA and ∆x = xB − xA this can again be ensured by
∥

∥

∥

∥

∥

∥

N−1
∑

j=0

vjpj(‖x+∆x− cj‖2)−
N−1
∑

j=0

vjpj(‖x− cj‖2)

∥

∥

∥

∥

∥

∥

2

< ‖∆x‖2 . (4.42)

One obtains
∥

∥

∥

∥

∥

∥

N−1
∑

j=0

pj(‖x+∆x− cj‖2)vj −
N−1
∑

j=0

pj(‖x− cj‖2)vj

∥

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

∥

N−1
∑

j=0

((

pj(‖x+∆x− cj‖2)− pj(‖x− cj‖2)
)

vj

)

∥

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

∥

N−1
∑

j=0

(

αj sup
x,ǫ

(∣

∣

∣

∣

pj(‖x+ ǫ∆x/‖∆x‖
2
− cj‖2)pj(‖x− cj‖2)

ǫ

∣

∣

∣

∣

)

‖∆x‖2 vj

)

∥

∥

∥

∥

∥

∥

2

(4.43)

for some αj ∈ [−1, 1] depending on x, ∆x and cj . Therefore one can write
∥

∥

∥

∥

∥

∥

N−1
∑

j=0

(

αj sup
x,ǫ

(∣

∣

∣

∣

pj(‖x+ ǫ∆x/‖∆x‖
2
− cj‖2)pj(‖x− cj‖2)

ǫ

∣

∣

∣

∣

)

‖∆x‖2 vj

)

∥

∥

∥

∥

∥

∥

2

≤

max
{αj}j

∥

∥

∥

∥

∥

∥

N−1
∑

j=0

(

αj sup
x,ǫ

(∣

∣

∣

∣

pj(‖x+ ǫ∆x/‖∆x‖
2
− cj‖2)pj(‖x− cj‖2)

ǫ

∣

∣

∣

∣

)

‖∆x‖2 vj

)

∥

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

∥

N−1
∑

j=0

(

Mp′j
Avj

)

∥

∥

∥

∥

∥

∥

2

‖∆x‖2 (4.44)

with Mp′j = supx
(∣

∣p′j(‖x− cj‖2)
∣

∣

)

and Avj [i] = |vj [i]| is the element-wise absolute translation vector.
The associated constraint

∥

∥

∥

∥

∥

∥

N−1
∑

j=0

(

Mp′j
Avj

)

∥

∥

∥

∥

∥

∥

2

≤ 1− µ (4.45)

provides a less conservative alternative to the constraint (4.41) while providing a similar safety margin
µ ∈]0, 1[. These constraints also have a geometrical interpretation as shown in Figure 4.18.

152 CHAPTER 4. LEARNING

The above proposed constraint guarantees that the LWMT is injective and globally Lipschitz contin-
uous. Now surjectivity is proven by contradiction.

Lemma 4.6. For a LWMT to be surjective it is sufficient that a) condition (4.53) holds b) there exists
some value RM ∈ R+ such that ‖cj‖2 < RM and |bj | < RM holds for all j

Proof. Reconsider the LWMT

Ψ(x) = x+
∑

j

vjpj(‖x− cj‖2)

respecting (4.53). All locally weighted translations have a bounded base, therefore the locally weighted
multitranslation is equal to the identity mapping outside of the closed ball centred at the origin with
radius rM = maxj(‖cj‖2+ bj) < 2RM (supposition b) denoted BM (black circle in Figure 4.20). Suppose
the LWMT Ψ is not surjective, then there must exist an open set in the control-space S ⊂ Y (green
shape), for which

∀y ∈ S, ∄x ∈ X such that y = Ψ(x). (4.54)

As the LWMT is equal to the identity mapping outside of BM , S must be inside, so S ⊂ BM . Consider
two hyperplanes HX ,0, HX ,1 in the demonstration-space perpendicular to the first dimension x0 (so the
space spanned by the dimension 1 to d− 1) containing the points −1.1rMx0 and 1.1rMx0 (black lines).
As HX ,0 and HX ,1 are completely outside of BM , they do not change under Ψ, so HY,i = Ψ(HX ,i) = HX ,i

for i = 0, 1. Now consider the hyperplane defined as

HX ,λ = HX ,0 + 2.2λrMx0 (4.55)

for λ = [0, 1]. So HX ,λ is a continuous mapping from HX ,0 (for λ = 0) to HX ,1 (for λ = 1). And its image
under Ψ is denoted as HY,λ = Ψ(HX ,λ). By continuity one concludes that there must exist a value for λ,
denoted λ′, such that Ψ(HY,λ′) is tangential to S, that is Ψ(HY,λ′)∩ ∂S 6= ∅ and Ψ(HY,λ′)∩S = ∅ (blue
line). Finally there must exist two ǫ > 0 close points (red points), element of HX ,λ′ , with the distance
of their images bounded by Kǫ (supposition a). Now consider the hyperplane HX ,λ′+ǫ′ (cyan line). The
two points translated by ǫ′ along x0 (purple points) are still ǫ close, but their image under Ψ can no
longer be separated by at most Kǫ due to the set S which is supposed to have no preimage. Therefore
the supposition that Ψ has a global Lipschitz constant is violated by these points and therefore no such
set S can exist and Ψ is surjective.

This concludes the proof that the LWMT defined in (4.36) under the constraint (4.53) is a bijection
and as it is moreover in C2, it is indeed a C2-diffeomorphism.

Computing Ψ−1

Before continuing on how to use such LWMT in the context of diffeomorphic curve matching, two possibil-
ities to compute the inverse transformation are proposed. Again, as for the locally weighted translations,
it is not possible to compute an analytic expression of the inverse function, and one has to rely on
iterative algorithms to solve the inversion. The first algorithm relies on a simple update scheme and
provides exponential convergence, however at an in theory small convergence rate. The second algorithm
proposed is closer to the one used to invert the locally weighted translation (Algorithm 3), and provides
a theoretically slower convergence but is nonetheless very efficient in practice.

Given the criterion (4.53) holds, the LWMT

y = Ψ(x) = x+

Nl−1
∑

i=0

kρi
(x− ci)vi

154 CHAPTER 4. LEARNING

and obviously

x = Ψ−1(y) = y −
Nl−1
∑

j=0

rjvj . (4.60)

In section 4.4.1 the problem of finding the inverse is reformulated to the problem of finding the solution
of a function in one variable, which, due the monotonicity properties of the problem, could be efficiently
solved using Newtons-method. Here we can define the multivariate vector-valued equivalent:

hy : R
Nl → RNl (4.61)

r 7→ r −
[

kρi
(y −

∑Nl−1
j=0 rjvj − ci)

]

i
.

Finding an r∗ for which hy(r
∗) is element-wise zero is equivalent to finding the point ri = kρi

(x − ci)
which is unique and therefore the same as finding Ψ−1. This problem can be efficiently solved using the
multidimensional version of the Newton-algorithm. That is interpreting r in Algorithm 3 as the vector r
and changing line 6 of Algorithm 3 to

r ← r −

(

∂

∂r
hy(r)

)−1

.hy(r). (4.62)

The element-wise limiting of the current value of r is not necessary, but speeds up convergence in some
cases. For this algorithm no strict error-bounds can be given, but empirical observations show that it
usually converges (normh(y)(r) ≤ 1e−6) within 5 to 10 iterations.

In contrast to the first method presented above, we do not have a final proof for the convergence of
this algorithm, however it can be conjectured due to an empirical and an analytical finding. The empirical
finding is that during the extensive use of this algorithm to compute the examples presented later on, it
always terminated and has never produced inconsistent result. The analytical finding is that each element
of h(y)[i] is strictly monotone in r[i] independently of the current value of r[j], i 6= j. This suggests that
the function has no local minima and converges to the global using the Newton-Euler algorithm.

4.5.4 Diffeomorphic Curve Matching

In section 4.4.2, we introduced a heuristic algorithm which constructs a diffeomorphism between two
point sequences relying on point matching. That is, these points do not have an implicit or underlying
structure, but the quality of the matching is defined by some weighted average of the distance between
the image of a source point and the corresponding target point.

This is different in the framework of curve matching. In this case the point sequence represents a
underlying curve in its discretized form. That is a demonstration, given as timed sequence (ti,yi)i∈[0,N−1]

of N points is interpreted as discretized version Cdis of some parametric curve c : [0, T = tN−1]→ Rd for
which we have yi = c(ti). As we have stated in the introduction and what is explained in greater detail
in section 4.5.5, the diffeomorphism is only concerned with matching the geometry of the curves and they
can therefore be arbitrarily re-parametrized using any valid parametrization function h(.). Therefore, in
this context, the matching quality between a (parametric) source curve cs(.) and target curve ct(.) is the
minimal cost under a valid (re-) parametrization of the curve.

This is not a tractable problem, as there are infinitely many valid parametrization functions and
moreover no easily identifiable but expressive structure can be imposed to reduce the complexity of the
problem. We therefore propose a heuristic approach to construct a diffeomorphism based on iterative
(re-) parametrization of the point sequence, which is inspired by the point matching Algorithm 4 and
performs well in practice.

4.5. TWO-STEP LEARNING 155

State-of-the-Art

Here again, most works adressing this issue stem from research in medical imaging. The state-of-the-art
approaches (see Glaunès et al. [2008] or Sotiras et al. [2013]) to perform curve matching equally rely on
constructing flow based diffeomorphisms, as presented in section 4.4.2. The main difference is the type
of metric or cost function used to evaluate the closeness of the source and target.

While for point matching only the distance between source and target has to be accounted for, in
curve matching the tangent direction has a meaning too and has therefore to be taken into account by
the cost function. In Glaunès et al. [2008] this is done by looking at the natural action of the curve in its
parametrised form c : [0, 1] : Rd on a vector field ω : Rd → Rd:

〈c|ω〉 =

∫ 1

0

c′(s).ω(c(s)) ds. (4.63)

The value of this action is large if the direction of the vector field is similar to the direction of the curve.
This can be used to compare curves by using the target curve to construct a vector field which naturally
agrees with the curve and looking at the action between this vector field and the source curve. Then
one can again maximize this action using gradient descent methods. Other measures to compare (plane)
curves are derived in Bauer et al. [2014].

The drawbacks of this method, regarding our specific context, are basically the same as the ones in
the point matching setting, they mainly stem from the flow-based construction of the diffeomorphism
causing increased evaluation times, which also grow linearly with the number of points in the demonstrated
trajectories/curves to be matched. Also the function to maximize (4.63) does not represent our needs, as
it does not only take into account tangent direction, but also the norm of the tangent vector (the speed).
We only seek to match the geometry and therefore this measure is not adapted.

Approximative Diffeomorphic Curve Matching

In this section the diffeomorphic curve matching algorithm is detailed. As outlined in the last section,
actual curve matching suffers from multiple drawbacks that reduce its utility in this context. We therefore
seek to emulate curve matching by iterative reparametrization of the discrete form of the curves to match.
We first introduce the algorithm and then detail the different steps.

Consider the problem of curve matching the list of source curves
(

Xdis
j

)

j
and target curves

(

Y dis
j

)

j

given in their discrete version. Without stint we can demand that the discretized forms have the same
number of points and that the point density is high enough to capture the shape of the trajectory.

One of the key elements of Algorithm 5 is the procedure Naturalize. It takes a list of curves in their
discretized form and ensures that ∀t ∈ [0, T] : s = t/T =

∫
t

0
‖vc(z)‖2

dz/
∫

T

0
‖vc(z)‖2

dz holds. Or, in words,
that the points are distributed equidistantly along the curve, causing the algorithm to match the shape
of the curves, disregarding the given velocity profile.

The heuristic in Algorithm 4 chooses the centre and direction of the next LWT based on the largest
distance between the current image of the source and target sequence. This is not desirable when
confronted with trajectories showing significant variance between them as it can create local minima for
the heuristic, resulting in drawback (b). To alleviate this problem we base the deduction of the next
center and translation on statistical considerations, as proposed in Algorithm 6. Therefore the algorithm
does not have the tendency to minimize the currently largest error between the sequences, but to improve
regions with bad matching but similar error vectors (the error vectors between the image of the source
curve and the target point in a similar direction having similar amplitudes).

We rely on Algorithm 6 to compute a center and a translation that is likely to improve the matching
when used to construct the next locally weighted translation. To achieve this, a matrix is constructed by
concatenating the points and errors of all current images of the source curves (line 4). We then cluster
these points in the “position-error”-space resulting in the cluster centres µ. These cluster centres can
then be interpreted as the concatenation of a point and a translations which is likely to coincide with the

156 CHAPTER 4. LEARNING

Algorithm 5 Approximative diffeomorphic curve matching

1: Input
(

Xdis
j

)

j
,
(

Y dis
j

)

j

2: Output Φ
3: Parameter NK > 0, Nl > 0 ⊲ Number of LWMT NK , and translations per LWMT Nl

4: Initialize Φ← Id ⊲ Φ is initialized to be the identity function
5:
(

Y dis
j

)

j
← Naturalize(

(

Y dis
j

)

j
) ⊲ Compute the natural discrete versions of the targets

6: for k from 0 to NK − 1 do

7:
(

Rdis
j

)

j
←
(

Φ
(

Xdis
j

))

j
⊲ Compute the the current image of the source curves

8:
(

Rdis
j

)

j
← Naturalize

(

(

Rdis
j

)

j

)

9: Θk = () ⊲ Empty parameter vector for the current LWMT
10: for l from 0 to Nl − 1 do

11:
(

Zdis
j

)

j
←
(

ΨΘk

(

Rdis
j

))

j
⊲ Update the image using the current LWMT

12:
(

Zdis
j

)

j
← Naturalize(

(

Zdis
j

)

j
)

13: (ej)j ←
(

Y dis
j − Zdis

j

)

j
⊲ Compute current error

14: cl,vl ← ComputeCenterAndDirection

(

(

Rdis
j

)

j
, (ej)j

)

15: β∗
l , b

∗
l ← argmin

βj ,bj

Cost

(

(ej)j − kθl,bl

(

(

Rdis
j

)

j
− cj

)

((βlvl)
)

16: Θk ← (Θk, (θl, b
∗
l , cl, β

∗
l vl)) ⊲ Add the found optimal translation

17: Θk ← EnsureDiffeo(Θk)
18: end for

19: Φ← ΨΘk
◦ · · · ◦ΨΘ0

⊲ Update diffeomorphism

20: if converged

(

Φ,
(

Xdis
j

)

j
,
(

Y dis
j

)

j

)

then

21: Return Φ
22: end if

23: end for

24: Return Φ

Algorithm 6 ComputeCenterAndDirection

1: Input
(

Rdis
j

)

j
, (ej)j

2: Output c, v ⊲ Heuristic guess for next center and translation
3: Parameter Nc, ǫ > 0 ⊲ Number of clusters, Trade-off parameter

4: D =

[

Rdis
j

ej

]

j

⊲ Concatenate points and errors into one matrix

5: T =
[

Tangent
(

Rdis
j

)]

j
⊲ Compute the normalised tangent vectors

6: (µi)i∈[0,Nc−1] , l = KMeans (D) ⊲ Compute clusters and labels

7:

(

ci
vi

)

= (µi)i ⊲ Separate center and translation

8: i∗ = argmax
i

(

‖vi‖2 + ǫ
(

1.−
∣

∣

∣

vi
T.(

∑
T [:,l==i]

‖vi‖2
Nli

∣

∣

∣

))

9: Return ci∗ , vi∗

4.5. TWO-STEP LEARNING 157

error vectors of all points in some neighbourhood (line 7). Finally the best such tuple has to be chosen.
Here we trade-off between the norm of the translation (which is directly related to the norm of the error
of the surrounding points) and the angle between the average tangent direction of the trajectories in the
neighbourhood and the translation. Obviously translations perpendicular to the tangent vector of the
directions are preferable as these correspond to actually changing the shape of the trajectory, whereas
translations parallel to the tangent vector correspond rather to a (local) re-parametrization. In this work
we use the k-Means clustering-algorithm based on Llyod’s algorithm (as provided by Pedregosa et al.
[2011]) as it is one of the fastest (average and worst-case complexity, see Lloyd [1982]). Also there exist
very efficient “mini-batch”-versions of this algorithm, in case the number of data points is very large. Using
GMMs as clustering methods delivers comparable results, but slows down the overall process considerably.

Once the optimal center and translation (direction) found, so after line 14 in Algorithm 5, a suitable
base, or size of the kernel, has to be found. Also, in contrast to the heuristic in Algorithm 4, the
relative (with respect to the current error vector) length of the translation is not fixed (parameter β).
Instead the optimal base size (using gradient descent) is computed for some predefined values for β. We
typically define around 10 values ranging from 0 to 1.1. The pair (β, bβ) achieving the lowest cost is then
returned. Good choices for the cost are again the mean squared error or the largest eigenvalue of the
errors, regularized by a trade-off giving priority to larger bases. If the variance within the given curves
to be matched is very high an interesting alternative for the cost function is

dist(X,Y) =
1

N

N−1
∑

i=0

√

‖xi − yi‖2. (4.64)

The so defined cost function is more robust when faced with large regions of dynamical incompatibil-
ities due to its degressive character. Such situations can occur, as for example in the “WShape”-dataset.
Here the trajectory marked with the green arrow in Figure 4.16 in the middle image is dynamically in-
compatible with the other demonstrations due to the intersection and moreover the distance to the other
demonstrations is “large”. Using the mean squared error as cost function tends to focus on improving
the matching for this curve, which is however not feasible and therefore leads to undesired results. The
first iterations of this algorithm are showcased in Figure 4.21 and compared to the matching method
described in Algorithm 4 in Figure 4.22.

Due to the increased complexity of the algorithm, training times are significantly higher. This increase
in computation time is partly due to the necessary clustering, partly to the larger search space. In
Algorithm 4, the parameter β (scaling factor for the largest error then used as translation) is predefined
and in each iteration only ρ (size of the kernel) is optimized. In Algorithm 5, we search, basically using a
grid search approach, for the best norm of the translation vector and the size of the kernel, increasing the
complexity. Overall computation-time is however still reasonable with less than half a minute for 7000
points in the sequence X. The online evaluation time of Φ is comparable or even shorter.

4.5.5 Learning Globally Asymptotically Stable Nonlinear Dynam-

ical Systems

In order to be able to take advantage of the variance within a set of trajectories demonstrating the
same movement, we seek to construct globally asymptotically stable control-space dynamics which are
more expressive than the prototypic dynamic function used within the One-Step learning. Then we show
how this can be combined with a statistical model used to learn the magnitude of the velocity in the
demonstration-space and a diffeomorphic transformation obtained with Algorithm 5.

Control-Space Dynamics

We have seen that we can match the geometry or shape of a list of source curves onto the corresponding
target curves using a diffeomorphism performing curve matching. Moreover, recalling Theorem 4.4, it

160 CHAPTER 4. LEARNING

Algorithm 7 WeightedDirection

1: Input x ⊲ Point for which to compute the direction
2: Parameter µ, d∗, α ≥ 0, β ≤ 0
3: Output d

4: P = null
(

d∗T
)

5: dy ← P.(x− µ)
6: dys ← sgn(dy)
7: dya ← abs(dy)
8: dya ← max(0,dya − α)
9: dy ← dya · dys

10: d← d∗ +
∑

i P
T[:, i]dy[i]

11: d← dw(x− µ)
12: Return d

vector field is therefore parallel to the base direction in zone defined by µ, d∗ and α. It converges towards
the straight line going through µ in the direction of d∗. The convergence rate is defined by the parameter
β and the resulting vector field is showcased in Figure 4.23.

Finally, in order to be able to obtain expressive vector fields, multiple such components are added up
according to Algorithm 8. The resulting direction from adding up the components is neither guaranteed
to be GAS nor to admit ‖x‖22 as Lyapunov function. Therefore a correction signal is applied if the
convergence criterion is modified. Here we have chosen a simple correction type (line 6), where γ∗

x,d is
the smallest non-negative value for which xT.(d − γx) < 0 holds. As we use the geometric equivalence
between vector fields, the norm of the resulting direction is arbitrary and therefore scaled to have unit
norm.

Algorithm 8 CombinedWeightedDirec

1: Input x

2: Output d

3: Parameter (µi,d
∗
i , αi, βi)i, ǫ < 0 ⊲ List of parameters

4: d← ǫ x
‖x‖

2

⊲ Base convergence

5: d← d+
∑

i WeightedDirecµi,d
∗

i ,αi,βi
(x) ⊲ Sum over components

6: d← d− γ∗
x,dx

7: d← d
‖d‖

2

⊲ Normalize
8: Return d

Converging Trajectories Consider one or multiple trajectories for which parts are convergent with
respect to the l2-norm and other parts are not. In order to reduce the necessary state-space deformation
induced by the diffeomorphism while admitting the l2-norm as Lyapunov function, we seek to replace
the non-convergent parts of the trajectories. As shown in Figure 4.24, this is achieved by the following
method: consider the discretized curve (yi,y

′
i)i where y′

i denotes the normalized tangent vector at point
yi. Assume that j is the first index for which yj

T.y′
j < 0 does not hold. Then we compute the first

index j′ for which
∥

∥yj′

∥

∥

2
<
∥

∥yj

∥

∥

2
(1. − ǫ) and yj′

T.y′
j′ < 0 hold for the predefined convergence margin

ǫ > 0. Then the trajectory segment from index j to j′ can be replaced by a converging arc segment. By
repeating this procedures until the convergence criterion holds for all points, one obtains a converging
version of the trajectory minimizing the difference between the resulting and the original trajectory while
guaranteeing convergence. The so obtained trajectory can then be learned using LCD by distributing
components along each trajectory. This approach therefore takes advantage of the variance between the

164 CHAPTER 4. LEARNING

straight line segment onto the meta-demonstration. This results in a diffeomorphism with very high
gradients and a poor matching quality at the beginning of the motion. Here the reproduced trajectories
show some undesirable “pleats”, before the vector field becomes smoother later on the trajectory. The
demonstration-space Lyapunov function seems to have local minima, however this is not the case, here
again the problem is the high deformation causing artificats in the plot. The Two-Step learning provides
a demonstration-space vector field that is everywhere “smooth”, even at the beginning of the trajecto-
ries. The converging trajectories have a smaller distance to the given demonstrations, facilitating the
search for a diffeomorphism. Therefore the demonstration-space Lyapunov function is also closer to the
control-space Lyapunov function VX (x) = ‖x‖22. This comes at the cost that the Lyapunov function is
however less adapted to the dynamics, in the sense that the angle between the velocity and the level-set is
stepper for the One-Step learning. The obtained demonstration-space dynamics generalise well the given
demonstrations and provide good reproductions. The next demonstrations set, the “WShape” is chosen
as it demonstrates well the ability of the Two-Step learning to better deal with or even profit from a
higher variance within the data. One-Step learning is not able to generalise the meta-demonstration to
a large enough region to cover all initial points of the demonstrations, causing large differences between
the demonstrations and reproductions. Here Two-Step learning performs significantly better. Moreover
we can see that the approach of clustering the error works well even when presented with significant
differences in the geometry of the curves, which is the case here. For this demonstration-set it is also
advantageous to use the cost function defined in (4.64) as one trajectory has a significantly different shape
than the others (indicated by the green arrow). Both approaches result in comparable demonstration-
space dynamics and reproductions for the last presented dataset, “Leaf_2”. The main difference is the
significantly reduced distortion of the state-space and the significantly reduced amount of kernels needed.
For the One-Step learning around 100 LWT are needed to obtain good results (Here the result for 150
LWTs is shown), whereas in the Two-Step learning the diffeomorphism comprises 3 LWMT with a total
of 24 translations.

Figure 4.27 shows the results obtained using Two-Step learning for a broader variety of demonstration-
sets. Of special interest here are the multimodal demonstrations, which can be handled by the Two-Step
algorithm without further information. The top row shows the results for “easy-to-learn” motions, like
the “DoubleBendedLine” and the “Snake”. The second row shows demonstration-sets which are harder to
learn. Both are more difficult as the angle between the converging trajectories and the demonstrations
are large at the beginning of the movement. For these cases the control-space dynamics cannot be
very rich, as the demonstrations have large parts that diverge with respect to the l2-norm. Moreover the
demonstration-set “Leaf_1” is inherently difficult as some details of the motion (the top peak) are smaller
than the variance within the demonstration. The last row shows demonstrations posing problems to the
One-Step learning. The right configuration can only be learned using manual adjustments, whereas the
“DoubleSharpC” is infeasible when relying on the proposed approach of computing meta-demonstrations
and matching straight line segments.

4.5. TWO-STEP LEARNING 169

In order to evaluate the ability to learn nonlinear vector fields from demonstration in high-dimensional
spaces, we concatenate 5 different trajectories from the LASA-Dataset as to obtain demonstration trajec-
tories of dimension 10. Specifically we concatenate the demonstrations “Leaf2”, “GShape”, “BendedLine”,
“DoubleBendedLine”, “Leaf1”, “Sharpc”, “Snake” and “NShape”, so that the first and second dimension
correspond to “Leaf2”, the third and forth to “GShape” and so forth.

In this case learning, that is constructing the control-space dynamics and the diffeomorphism takes
about 30% longer than for two-dimensional datasets, forward integrating the a trajectory takes about
three times longer7. Matching results and generalisation, as shown in Figure 4.30, are of comparable
quality than for 2d datasets, using the same parameters. As we propose to learn the vector field from
demonstrations given as trajectories, that is curves embedded in the demonstration space, one could
expect to obtain worse generalisation of the movements when the dimension of the demonstration space
increases. This would be natural, as the curve, so a one-dimensional manifold, contains (relatively) less
and less information when the dimension grows, however it seems that the control-space dynamics based
on locally contracting directions seems to counter this problem.

7The construction of the diffeomorphism is implemented in python and has therefore a significant computational overhead.
Therefore the time needed to construct the diffeomorphism grows only slightly even though the dimension was significantly
increased. The forward integration is implemented in C++ relying on Eigen and has therefore less overhead and computation
times show a higher correlation with the dimension.

4.5. TWO-STEP LEARNING 171

These experiments have been performed before the final version of the Two-Step learn-
ing has been established and are therefore based on a slightly different algorithms and
methods. It can be seen as an intermediate step between the presented One-Step and
Two-Step learning approach. The main differences are

• The control-space dynamics are learned using a GMM trained via greedy insertion
(instead of LCD).

• The diffeomorphic matching is based on LWMTs and clustering to behave better
when faced with variances within the demonstration-set, but point matching is
performed. That is, the matching is based on Algorithm 5, but the procedure
Naturalize does not change the point sequence.

• The piecewise Polynomial Radial Basis function was defined as piecewise continuous
and continuously differentiable function inside of the base, so the resulting kernel is
C1 (Instead of C3 for the examples presented so far).

Robotic Platform and Experimental Set-Up

The humanoid robot Sigmaban has a total of 20 degrees of freedom (DoF), six per leg, three per arm and
two for the head. All DoF are actuated using Dynamixel™ servo-motors, based on small DC-motors and
integrated gearboxes with a gear ratio of about 200. The servos are controlled using specifically designed
integrated circuits in order to allow for reasonably high control frequencies around 100Hz.

The servomotors used in the legs are Dynamixel MX106 which are position controlled. That is only
a goal position for the servomotor can be externally set and an internal control loop based on a PID
(proportional-integral-derivative)-controller tracks the goal position by modifying the duty-cycle of the
pulse-width-modulation (PWM) powering the actual DC-motor.

In this test we are only interested in performing a kick-like motion with one foot involving hip,
knee and ankle, basically forming a 3R-robot. As there is no stability control mechanism in the control
architecture, but the walking and performed shots have to be open-loop stable, the robot is fixed during
the experiments.

Dynamic Model and Feedforward-Control The proposed approach constructs a vector fields that
allows to accurately reproduce the given demonstrations. That is for a given point in the state-space the
learned model returns a desired velocity. This is however not directly compatible with the position control
of the servomotors. The most direct approach of simply setting the target position q∗k+1 to the current
position qk plus the currently desired velocity multiplied with the cycle time of the control loop δqk = q̇∗kδt
does not work either. As the dynamical model of the robot is not accounted for in the internal control
law of the servo-motor, the joint torques necessary to compensate for gravity and accelerations forces
are not taken into account directly but have to generate a position error before being compensated for
by the internal PID-controller. During dynamic movements or in positions necessitating “large” torques
to compensate for gravity, this error is order of magnitudes larger than the position offset δqk which is
therefore basically disregarded. For these reasons a different approach based on feedforward control and
model identification is used.

Given the standard dynamics equation of a robotic system based on the rigid-body dynamics given
as

Mq.q̈ + Cq,q̇.q̇ + gq = τ

with Mq being the mass matrix, Cq,q̇ the matrix of nonlinear effects, gq denoting the gravity vector and
τ the vector of joint torques (generalised efforts, however all joints are revolute joints).

172 CHAPTER 4. LEARNING

Therefore if one disposes of the current position and velocity as well as the desired acceleration, one
can compute the necessary joint torques. In order to generate these torques with the given servomotors,
we need to finely control the duty cycle of PWM driving the motor and relate it to the generated torque
via some mathematical model.

To achieve this, first consider the simple electrical model of a DC-motor, in which the dynamics of
the electrical parts are neglected due to their significantly smaller time constants:

τ =
kτ
R

U −
k2τ
R

ω =
kτ
R

USαPWM −
k2τ
R

ω (4.65)

with kτ being the torque constant of the DC-motor, R the ohmic resistance of the motor and ω the
rotation speed. The tension at the motor U is simply the supply tension times the duty cycle of the
PWM. This means that we can control the servomotor on a torque level if we can control the duty cycle
of the PWM, as we can hope to achieve the desired torque by setting αPWM

8.
To obtain the desired duty cycle we use only the proportional control of the internal PID by setting

the coefficients of the integral and derivative to zero. Then the duty cycle of the PWM αPWM only
depends on the current error, the proportional gain kP and some internal factor γ, so

αPWM = −γkP (q
∗ − q). (4.66)

By setting q∗ = q − αPWM

γkP
we get exactly the desired duty cycle for this instant. As we have a control

loop frequency of about 100Hz, we set the actual goal position to q∗ = q+ q̇
100 −

αPWM

γkP
. In order to ensure

that the desired torque stays approximately constant during the control loop, kP has to be chosen small.
This way αPWM

γkP
is significantly larger than the change of the position during one cycle, causing the duty

cycle of the PWM to stay (more or less) constant.
To summarize, in a first step the desired torque

τ = Mq.q̈
des + Cq,q̇.q̇ + gq (4.67)

is computed based on the mathematical model of the robot, as a function of the desired acceleration q̈des

as well as the current position and velocity. On the actual servomotor we then try to emulate control on
the torque level by using a model for the servomotor and “abusing” the internal proportional controller
of the servomotor.

Model Identification The above described approach only works if the mathematical model of the
robot is approximately correct. The rigid body dynamics equations used above need to be improved by
taking into account a (simple) model for dry and viscous friction. This is very important as the high
ratio gearboxes of the servomotors induce considerable friction torques, that can, in certain cases, even
dominate the dynamics. Therefore the dynamics equation becomes

τ = Mq.q̈
des + Cq,q̇.q̇ + gq + µq,q̇,q̈des (4.68)

where µq,q̇,q̈des denotes the vector of friction torques. There exists no analytical formula to compute the
friction torques, but one has to rely on simplified models, as for instance Stribeck [1902].

Secondly the parameters of the dynamical model (mass, center of gravity, inertia matrix) of each
body within the chain are not well known. To reduce this uncertainty and calibrate the friction model
we propose to use model identification, as described in, for instance, Khalil and Dombre [2004] or Wu
et al. [2010].

Certain particularities, mostly caused by the servomotors, which make the identification process more
difficult have to be taken into account.

8In order to have a precise enough model, some other details need to be taken into account, like the voltage drop at the
H-bridge. As these details are not the core interest here, they are omitted.

4.5. TWO-STEP LEARNING 173

• The high backlash in the gears causes vibrations in the whole chain every time the sign of the
acceleration of one of the actuations changes

• The estimation of the velocity and in particular the acceleration is difficult due to the discrete
measurement of the position in addition to the backlash

• The gearboxes induce high friction torques, which are additionally nonlinear and can only be mod-
elled approximatively

Many different approaches for model identification and the generation of movements facilitating identi-
fication, such as Kostic et al. [2004], exist. Due to the above cited particularities an approach comparable
to the one described in Schwarz and Behnke [2013] is chosen. The main idea is to perform identification
on periodic movements and modulate the input using an iterative learning approach until the difference
between the reference movement and the observed movement is negligible. Each improvement step of the
iterative learning is basically a proportional and derivative control step of the input based on the current
error and its derivative as, see Oh et al. [1988] and Liu [1994]. Once the learning sequence converged, see
Figure 4.31, it offers the advantage that the velocity and acceleration do no longer have to be estimated
from the measured data but can be directly taken as the derivatives of the reference trajectory. Moreover
we chose the reference trajectory as a superposition of different sine functions with different frequencies
similar to the approach presented in Swevers et al. [1996]. This overall movement is conceived such that
all DoF change sign of the acceleration at the same moment, minimizing the impact of the backlash onto
the measurements.

The identification itself is then a minimization problem and we seek simultaneously for the parameters
of the robot and the servomotors. In order to prevent the minimization problem to be unbounded, we
fix the torque constant of the DC-motors to the one obtained from the datasheet, as it is most likely the
parameter showing the least uncertainty. The one deduced from the datasheet is moreover coherent with
the ones reported in Rao [2016]. The results of the identification process is shown in Figure 4.32. The
obtained ameliorations of the tracking may not seem to be very significant, but as the approach relies on
an accurate tracking of the desired velocity, the increased responsiveness and reduced error increases the
overall performance.

An additional remark concerns the power supply of the DC-Motors. All servomotors of one leg share
the same powerline. Therefore the supply voltage of the servomotor is not equal to the battery voltage,
as the resistance of all connectors and the cable is not negligible. The voltage drop at each resistance
(connector/cable) add up and therefore the effective supply voltage of each servomotor depends on the
current load of all motors in the chain and its position within the chain. Moreover, the capacity integrated
in the electrical circuit of the servomotor is not large enough stabilize to voltage even for duty cycles
of only 20%, causing high-frequency oscillations of the effective supply voltage. The evolution of the
effective supply voltage depending on the desired torques can be taken into account within the feedforward
computation, as this tension is measured by the servomotor every 0.1s. The high frequency oscillations
of the supply tension on the other hand can be reduced by locally adding a capacity to the servomotor
as they cannot be directly measured or be accounted for otherwise.

Obtaining Accelerations The robotic system is a second order system controlled on the acceleration
or torque level. The feedforward control necessitates the computation of the currently desired acceleration.
This acceleration is composed of two parts: the first one corresponds to the acceleration resulting from
the demonstration space dynamics, the second part corresponds to an additional correction term.

To compute the first part, a naive approach is to define the acceleration as the finite difference

q̈traj =
g(q + δtq̇)− g(q)

δt
. (4.69)

This definition however is not adapted to the diffeomorphic transformation used, as the C1-kernels induce
a high variance in the computed acceleration. We therefore computed the desired acceleration for a

176 CHAPTER 4. LEARNING

within the region for which the demonstrations are well generalized, as the reproductions correspond to
the demonstrated movement.

4.6 Conclusion

In this chapter two different approaches for learning globally asymptotically stable vector fields from
demonstration are presented. They are based on a novel method to construct diffeomorphic via the
composition of simple sub-transformation called locally weighted (multi-)translation. In contrast to
state-of-the-art techniques which construct diffeomorphisms as on flows based on the transport equation,
the presented method drastically reduces computation time for computing the forward and inverse trans-
formation as no integration is needed for the evaluation. This speed-up allows the proposed approach to
be integrated into the control-loop of a robotic system while achieving a high control frequency, neces-
sary in many applications. We moreover propose two heuristic algorithms that can be used to construct
such diffeomorphic transformation based on point- (One-Step learning) or approximative curve matching
(Two-Step learning).

The advantage of the proposed approach however lies not only in its reduced calculation time, but
also in its ability to generalize shown movements into some neighbourhood of the demonstration and to
be able to learn a movement successfully from as view a one demonstration. This is typically a problem
for learning strategies based on statistical inference, as the data is often too sparse in this case. As the
proposed approach is exploiting the geometry of the given trajectories, having a “sparse” dataset is not
a hindrance to successful learning. In fact in the case of One-Step, learning a sparse dataset with only
one demonstration is even the “optimal” case, as this approach has a limited capability to cope with the
variance and probable incompatibility (in a diffeomorphic sense) often arising when considering several
trajectories demonstrating the same movement. This is not true for the second method proposed, called
Two-Step learning, which alleviates this and some other drawbacks by interweaving diffeomorphic (curve)
matching with statistical learning. This approach allows to extract more information from the diversity
within the demonstration set while still being able to successfully learn from a sparse dataset.

It was shown that the approaches can be used to learn complex (loop-free) 2D and 3D reaching
motions, partly taken from the publicly available LASA-Dataset. By performing manual adjustments,
we are also able to learn limit cycles and can therefore extend the approach to periodic motions. The
proposed algorithms scale well with dimension as its parameters are dimension independent. The only
except to this is the clustering necessary in Algorithm 5. In this work the k-Means clustering is used,
whose average runtime is dimension independent, but its worst-case runtime scales exponentially with
dimension. This should give the approach an advantage when dealing with higher dimensional data, as
the number of variables for statistical approaches usually scales at least quadratically with the dimension.

For these reasons we believe it can be applied with ease to efficiently learn a large variety of globally
asymptotically stable autonomous systems, with applications in dynamic movement primitives construc-
tion or more generally in control design.

178 CHAPTER 4. LEARNING

180 CHAPTER 5. CONCLUSION

which is then handed down to the trajectory servoing layer. This layer can already be executed at a higher
frequency and usually takes into account the current state of the robotic system and is therefore always
part of the closed loop controller. This layer is necessary, as the given reference trajectories cannot simply
be executed in an open-loop fashion, as this is almost guaranteed to fail due to modelling imprecisions
or external perturbations. Therefore the trajectory servoing layer computes desired accelerations or
velocities, or sequences thereof, that (are supposed to) bring the state of the system back to the reference
trajectory. The last layer, which is executed at the highest rate, is typically a quadratic program. It
computes the desired control torque that allows to achieve the desired accelerations or velocities (if
possible) while respecting the input constraints. Furthermore this layer is typically regularized by taking
into account the overall control effort.

5.1 High-level Planning

The high-level planning addresses the problem of converting a specification into a reference trajectory for
the robotic system verifying this specification. There exists a large variety of different approaches, which
are able to take into account more or less expressive specifications and system dynamics.

The “simplest” specifications are pure motion planning problems, so generating a (theoretically)
collision-free trajectory from A to B and approaches to solve this problems range from early works
like A∗ searching over predefined nodes (Hart et al. [1968]) in which no underlying model of the robot is
used, over approaches considering the kinematic model of the robot like Dubins [1957] to ones in which
the full dynamical robot model is accounted for (as in KPIECE Şucan and Kavraki [2012] or Rapidly ex-
ploring Random Trees (RRT) see LaValle [1998]). In Tedrake et al. [2010b] the motion planning problem
is solved by constructing trees of funnels. In difference to the works cited before, this method does not
only provide a reference trajectory, but also the guarantee that all states within the funnel can be driven
to the target configuration, providing higher robustness. The approach presented in Le Ny and Pappas
[2012] uses funnels within a RRT-framework, achieving robust motion planning.

More complex specifications, or more precisely (fragments of) Linear Temporal Logic can be handled
by approaches like the ones proposed in Kress-Gazit et al. [2009] for kinematic models of the form ẋ = u or
Kloetzer and Belta [2008] for linear systems. The difference between the two approaches is the reactivity.
In the latter a plan to verify a given formula is computed, whereas the approach in Kress-Gazit et al.
[2009] has an additional specification defining the environment, and by computing a winning strategy
for the two player game (controller versus environment) a reactivate control strategy adapting to the
environment is generated.

Timed-automata Abstraction The approach proposed in chapter 2 can also be used as such a high-
level planner. By abstracting the dynamical system to a timed automaton where the discrete states of the
automaton correspond to positively invariant subsets of the state-space of the dynamical system, e.g. the
joint-space of a robotic manipulator, we obtain several advantages over existing methods. Notably due to
the properties of the abstraction, we obtain similar robustness and safety properties as the approaches in
Tedrake et al. [2010b]; Le Ny and Pappas [2012]. Specifically, the proposed abstraction of the dynamical
system to a funnel timed transition system, which can then be reduced to a timed automaton, is proven
to be sound with respect to reachability. That is, if the set of undesired states (such as collisions between
the robot and its environment) is not reachable in to automaton, it is guaranteed that the associated
events will not occur on the real system (the robot will not collide with the environment, no matter
the circumstances). Moreover, our approach keeps a continuous notion of time and is therefore able
to synthesize control strategies for tasks necessitating quantitative and exact timing constraints, like the
Pick-and-Place scenario presented in section 2.6.2. It therefore allows more expressive specifications than,
for instance, Kress-Gazit et al. [2009] our other approaches relying on (fragments of) LTL to specify the
task and the environment. It is important to note that all approaches proposed in this work rely on a basic
assume-guarantee principle: its is guaranteed that the given specification is verified by the synthesized

5.1. HIGH-LEVEL PLANNING 181

control strategy if a) the underlying (mathematical) model is correct and b) the actual environment
evolves in accordance with the specification describing it. This in turns indicates that every execution
on the real system that fails to verify the specification supplies information about the limits or errors in
the modelling of the system. This way the proposed approach can contribute to a better understanding
of the overall system and its environment by iteratively refining the modelling, synthesizing new control
strategies and executing them on the real system.

The drawbacks of the proposed approach are essentially that the abstraction is not complete and
its overall computational complexity. The size of the constructed automaton grows rapidly with the
dimension of the system or when seeking to represent all possible trajectories of the controlled dynamical
system (seeking to approach completeness). This is making it impossible to treat higher dimensional
systems using the proposed approach in its current form. Even though it is in theory possible to compute
winning strategies considering an adversarial environment as showcased in section 2.6.1, more complex
environments like the ones considered in Kress-Gazit et al. [2007, 2009] are currently intractable with the
proposed approach.

A secondary, not negligible, source of complexity stems directly from abstracting the controlled dy-
namical system to (time-dependent) invariants, that is to construct the funnel system. This abstraction
is generic in the sense that it is not restricted to a specific class of dynamical systems, but relies on
properties directly provided by the funnel system. This stands in contrast to most of the approaches in
the literature, as these often rely on specific properties guaranteed by a suitable choice of the class of
admissible dynamical systems. The property of (conjectured) positive invariance of the funnels necessary
for our approach is closely linked to Lyapunovs stability criterion. This property is established before
the actual synthesis (checking reachability on the associated automaton) in a “preprocessing” step when
constructing the funnels and generating the funnel timed transition system. This can be efficiently done
for linear systems (see section 2.5.1), in which case the time necessary to create the funnel system is
negligible compared to the verification of the TA. But this step is already significantly more complex
when considering polynomial systems (see chapter 3) and no generic approach exists for general non-
linear systems. To deal with such systems, we proposed the use of bounding funnels with conjectured
properties. It provides a frame work to deal with general nonlinear dynamics, however the problem of
obtaining not only a (hopefully) correct but also useful conjecture is a complicated problem in it self.

Nonetheless the provided examples (see section 2.6) showcase the utility of precise timing constraints
within a Pick-and-Place scenario, often encountered in industrial applications. Here the approach has
proven its capability of synthesizing non-trivial strategies to control second-order systems under logi-
cal and timing constraints. In the example synchronizing sine-waves we have shown the possibility of
computing winning strategies relying on the proposed abstraction method and an auxiliary automaton
describing the possible evolution of the (adversarial) environment. Here the specifications can be more
expressive than the ones considered in Kress-Gazit et al. [2009], however due to the complexity only
“toy-examples”, like the one proposed, can be solved in practice.

In order to go one step further and adapt the proposed method to larger problems with nonlinear
system dynamics, several promising directions exist.

The first one is closely intertwined with the method proposed in chapter 3 and is concerned with
finding computationally less complex certificates of positive invariance for polynomial systems. Any
advance on this subject could significantly reduce the time needed to construct the funnel system and
enlarge the class of dynamical systems actually treatable.

The generation of certificates of positive invariance for polynomial systems is also interesting in com-
bination with conjectured funnels. As it is shown in chapter 3, the in general nonlinear dynamics of
robotic systems and in particular robotic manipulators are well approximated by its Taylor expansion
around a reference trajectory. This indicates that the certificate for the Taylor expansion provides a good
conjecture for the nonlinear system and allows to have a high confidence in the conjecture with only very
few additional numerical simulations. This is an important step, as the method of covering the funnel
with regularly spaced initial points for numerical evaluation as done in the examples (Dubins’ car) scales
badly to higher dimensions.

182 CHAPTER 5. CONCLUSION

Another key to achieve better scalability is to identify ways to generate funnels adapted to the given
task specification. That is instead of constructing funnels in a brute force manner and purely rely on the
verification tool to find a suitable sequence of funnels, it is interesting to construct a smaller automaton
representing a “suitable” funnel system with respect to the task. This way, the abstraction could approach
completeness without blowing up the size of the automaton. One could even seek to directly interweave
the construction of the funnel system and the verification process, by generating suitable funnels on the
fly. The size of the automaton would not be defined in advance, but would grow during the verification.

Globally Asymptotically Stable Vector Fields Restricting the expressiveness of the task specifi-
cation, the methods proposed in chapter 4 for learning nonlinear globally asymptotically stable vector
fields can also be seen as a way to achieve high-level planning. As these vector fields guarantee that all
states converge exponentially fast to the unique global attractor, and therefore attain an arbitrarily small
neighbourhood of the target point in finite time, they bear resemblance to the “eventually” operator in
LTL. By constructing several such vector fields with different attractors, it can be used for path-planning
under simple LTL constraints.

An advantage of this method is that, as the learned vector field reproduces the given demonstrations
and generalizes the movement to some neighbourhood, the vector field is likely to be suitable for the
dynamical system if the given demonstrations are. Therefore this approach not only allows to learn
complex movements from demonstration, but can also be seen as a method to generate suitable and
converging reference trajectories for the dynamical system.

In contrast to the timed-automata abstraction, the computational complexity of both approaches
(One-Step and Two-Step learning) scales very well to higher dimensions, as the number of parameters
optimized within the iterative algorithms is independent of the dimension. Moreover, the approaches can
successfully learn nonlinear vector fields from as few as a single demonstration, which is not necessarily
the case for learning methods relying on statistical models.

To go further, the approaches could be extended to create vector fields used for navigation as the
ones created in Conner et al. [2003], with the difference that they (indirectly) take into account the
system dynamics, instead of supposing unconstrained kinematic systems. This could be achieved by
adding repulsive fields around the obstacles, similar to the ideas proposed in Khansari-Zadeh and Billard
[2012]. To obtain the (almost everywhere) asymptotic stability, it would be interesting to construct
the diffeomorphism not only based on the demonstrations, but at the same time seek to transform the,
possibly non-convex, obstacles into convex shapes (similar to the idea in Rimon and Koditschek [1991]),
and add repulsive fields around the convex images, as this avoids creating spurious attractors.

Many of the draw-backs of the One-Step learning are already tackled by the Two-Step learning,
however there is still room for improvement. The current weak point of the Two-Step learning is the
construction of the control-space dynamics based on the given demonstrations. The fact of relying on the
locally contracting directions introduced in section 4.5.5 has the advantage that it provides a contracting
vector field that converges with respect to the euclidean norm, but it introduces a number of user-defined
parameters, which have to be hand-tuned to some extent. Also, the number of components defining the
control-space dynamics grows linearly with the number of demonstrations (the number of trajectories,
not data points), which is, due to their small computational cost, acceptable, but not desirable. It is an
interesting research direction to replace this with another machine learning technique providing similar
benefits (locally contracting while globally stable, taking into account that we seek to learn a direction,
so a unit vector), while being independent of the number of demonstrations.

5.2 Trajectory Servoing and Optimization based Control

As already stated above, the trajectory servoing layer computes desired accelerations or velocities for the
robotic system as a function of its current state and reference trajectory. This is typically done relying
on one of the following methods. The most traditional approach, which is still very present especially

5.2. TRAJECTORY SERVOING AND OPTIMIZATION BASED CONTROL 183

in manufacturing robots, is the proportional-integral-derivative (PID) controller. This method typically
provides acceptable error rejection at the cost of the often necessary hand-tuning of the parameters.
Moreover the output is not guaranteed to respect input or state constraints of the robot. Another
commonly used approach is to use (nonlinear) model predictive control (Morari and Lee [1999]), which
computes a sequence of cost optimal accelerations or velocities for a finite horizon. Here the computational
cost depends on the model used (linear/nonlinear) and the size of the time window considered.

The last layer computes desired torques using the inverse dynamics model of the robot taking into
account the current position and velocity as well as the desired accelerations. This optimization has to be
computationally cheap as it is typically executed in the real-time loop of the robot, which is why many
approaches rely on quadratic programming (see Righetti and Schaal [2012]; Liu et al. [2016]).

Using Funnels for Trajectory Servoing The funnels, defined as timed-dependent, stabilizable re-
gions, proposed in chapter 3 can be seen as a way to perform trajectory servoing directly within the
optimization layer. In chapter 3 it was shown how to construct an as large as possible region around
a given reference trajectory for which it is proven that there exists an control input driving all states
to the (time-dependent) reference point. These regions are defined by quadratic Lyapunov functions
and it was shown that the decisive constraint guaranteeing convergence can be formulated as a simple
linear constraint on the torques (control inputs), see (3.57c). This constraint therefore not only ensures
(exponential) convergence, but also provides a direct and easily interpretable link between the acceler-
ation/torque, the current difference of the current state and the reference state and the instantaneous
convergence.

In the proposed examples, treating both polynomial approximations of nonlinear systems and truly
polynomial systems, it was shown that reasoning directly about stabilizability for a (suitable) given
Lyapunov function candidate instead of searching for a couple Lyapunov function and (polynomial)
control law in a iterative fashion can be beneficial. Even thought we rely on simple methods to compute
the Lyapunov function candidate, which only takes into account the linearisation of the system, our
approach is able to find significantly larger (in terms of the enclosed volume) regions of stabilizability
then the regions of attractions obtained by Majumdar et al. [2013b], a state-of-art algorithm.

To obtain smooth control trajectories, we embed the linear constraint ensuring convergence into a
quadratic programming based control law, trading off instantaneous convergence (with respect to the
funnel) and control effort. In a more general setting, when working with funnels the trajectory servoing
layer can be dropped, if the optimization based layer allows to add the convergence constraint. As this
constraint is linear, and therefore the most basic constraint form, this should always be possible. This
allows the control law to minimize its objective as long as no safety issue can arise, that is as long as
convergence is guaranteed.

Reducing the Computational Cost of Funnels To reduce the computational cost of this method
even further, several directions can be of interest.

To reduce the number of linear constraints necessary to obtain tight bounds, we seek to combine LMI
constraints derived from the Theory of Moments (see section 3.8.4) with the linear constraints derived
from the modified Reformulation and Linearization technique. This could be interesting, as the gap
between the true optimum of the polynomial expression and its relaxation by the Theory of Moments
decreases when increasing the maximal degree occurring in the relaxation. By fixing a low maximal
degree of the relaxation the gap resulting from the application of the Theory of Moments can possibly
be reduced by adding the linear constraints, while reducing the overall complexity of the optimization
problem.

When computing a funnel around a reference trajectory, the subset of the state space having the
worst convergence usually stays the same when considering two consecutive time step, as the reference
trajectory and the system and control dynamics are continuous. This can be exploited by using heuristics
within the line-search performed to find an as large as possible inner approximation of the true region

184 CHAPTER 5. CONCLUSION

of stabilizability. This way the number of “atomic” convergence proofs is reduced, reducing overall
computation time.

Finally it would be interesting to search for ways to modify the Lyapunov function candidate found
based on the linearisation of the system around the reference point, especially when constructing a funnel
around a dynamic reference trajectory. This could be done by considering the point having currently the
worst convergence (found as a by-product of the optimization, as it is the minimizer of the expression)
and its velocity. By adapting the funnel shape in such a way that the gradient of the Lyapunov function
at this point aligns better with the velocity at this point, the sub-levelset could be further enlarged.

Bibliography

A. A. Ahmadi. Non-monotonic lyapunov functions for stability of nonlinear and switched systems: theory
and computation. Master’s thesis, Massachusetts Institute of Technology, 2008.

A. A. Ahmadi. Algebraic relaxations and hardness results in polynomial optimization and Lyapunov
analysis. PhD thesis, Massachusetts Institute of Technology, 2012.

A. A. Ahmadi and A. Majumdar. Dsos and sdsos optimization: Lp and socp-based alternatives to sum
of squares optimization. In Information Sciences and Systems (CISS), 2014 48th Annual Conference
on, pages 1–5. IEEE, 2014.

M. Althoff, O. Stursberg, and M. Buss. Reachability analysis of nonlinear systems with uncertain param-
eters using conservative linearization. In Proc. of the 47th IEEE Conference on Decision and Control,
2008.

M. Althoff, O. Stursberg, and M. Buss. Computing reachable sets of hybrid systems using a combination
of zonotopes and polytopes. Nonlinear analysis: hybrid systems, 4(2):233–249, 2010.

R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183–235,
1994a.

R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183–235,
1994b.

M. Andersen, J. Dahl, and L. Vandenberghe. Cvxopt: A python package for convex optimization. abel.
ee. ucla. edu/cvxopt, 2013.

M. S. Andersen, J. Dahl, and L. Vandenberghe. Cvxopt: A python package for convex optimization,
version 1.1. 6 (2013).

MOSEK ApS. The MOSEK optimization toolbox for MATLAB manual. Version 8.1., 2017. URL http:

//docs.mosek.com/8.1/toolbox/index.html.

B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning from demonstration.
Robotics and autonomous systems, 57(5):469–483, 2009.

E. Asarin, O. Maler, and A. Pnueli. Reachability analysis of dynamical systems having piecewise-constant
derivatives. Theoretical Computer Science, 138(1):35–65, 1995.

E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed automata. In Proc. IFAC
Symposium on System Structure and Control, pages 469–474. Elsevier, 1998.

E. Asarin, T. Dang, and A. Girard. Reachability analysis of nonlinear systems using conservative ap-
proximation. In International Workshop on Hybrid Systems: Computation and Control, pages 20–35.
Springer, 2003.

185

186 BIBLIOGRAPHY

C. G. Atkeson and S. Schaal. Robot learning from demonstration. In ICML, volume 97, pages 12–20,
1997.

J. P. Aubin. Viability tubes. In Modelling and Adaptive Control, pages 27–47. Springer, 1988.

E. M. Aylward, P. A. Parrilo, and J.-J. E. Slotine. Stability and robustness analysis of nonlinear systems
via contraction metrics and sos programming. Automatica, 44(8):2163–2170, 2008.

R. Barbuti and L. Tesei. Timed automata with urgent transitions. Acta Informatica, 40(5):317–347,
2004.

M. Bauer, M. Bruveris, S. Marsland, and P. W. Michor. Constructing reparameterization invariant
metrics on spaces of plane curves. Differential Geometry and its Applications, 34:139–165, 2014.

G. Behrmann, A. David, K. G. Larsen, J. Håkansson, P. Pettersson, W. Yi, and M. Hendriks. Uppaal 4.0.
In Proc. 3rd International Conference on Quantitative Evaluation of Systems (QEST’06), pages 125–
126. IEEE, 2006.

G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G. Larsen, and D. Lime. UPPAAL-Tiga: Time
for playing games! In Proc. 19th International Conference on Computer Aided Verification (CAV’07),
volume 4590 of LNCS, pages 121–125. Springer, 2007.

C. Berge. Espaces topologiques, fonctions multivoques (dunod, paris, 1959). Google Scholar, 1970.

A. Billard, S. Calinon, R. Dillmann, and S. Schaal. Robot programming by demonstration. In Springer
handbook of robotics, pages 1371–1394. Springer, 2008.

C. Blocher, M. Saveriano, and D. Lee. Learning stable dynamical systems using contraction theory. In
Proceedings of the International Conference on Ubiquitous Robots and Ambient Intelligence (URAI
2017), 2017.

V. D. Blondel, E. D. Sontag, M. Vidyasagar, and J. C. Willems. Open problems in mathematical systems
and control theory. Springer Science & Business Media, 2012.

P. Bouyer, C. Dufourd, E. Fleury, and A. Petit. Updatable timed automata. Theoretical Computer
Science, 321(2-3):291–345, 2004.

P. Bouyer, F. Laroussinie, and P.-A. Reynier. Diagonal constraints in timed automata: Forward analysis
of timed systems. In International Conference on Formal Modeling and Analysis of Timed Systems,
pages 112–126. Springer, 2005.

P. Bouyer, N. Markey, N. Perrin, and P. Schlehuber-Caissier. Timed-automata abstraction of switched
dynamical systems using control funnels. In International Conference on Formal Modeling and Analysis
of Timed Systems, pages 60–75. Springer, 2015.

P. Bouyer, N. Markey, N. Perrin, and P. Schlehuber-Caissier. Timed-automata abstraction of switched
dynamical systems using control invariants. Real-Time Systems, 53(3):327–353, 2017.

S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.

S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear matrix inequalities in system and control
theory, 1994.

M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kronos: A model-checking tool for
real-time systems. In International Symposium on Formal Techniques in Real-Time and Fault-Tolerant
Systems, pages 298–302. Springer, 1998.

BIBLIOGRAPHY 187

J. R. Büchi and L. H. Landweber. Solving sequential conditions by finite-state strategies. Transactions
of the American Mathematical Society, 138:295–311, 1969.

A. Butz. Higher order derivatives of liapunov functions. IEEE Transactions on automatic control, 14(1):
111–112, 1969.

S. Calinon, F. D’halluin, E. Sauser, D. Caldwell, and A. Billard. A probabilistic approach based on
dynamical systems to learn and reproduce gestures by imitation. IEEE Robotics and Automation
Magazine, 17(2):44–54, 2010.

X. Chen. Reachability analysis of non-linear hybrid systems using taylor models. PhD thesis, PhD thesis,
RWTH Aachen University, 2015.

X. Chen, E. Ábrahám, and S. Sankaranarayanan. Flow*: An analyzer for non-linear hybrid systems. In
International Conference on Computer Aided Verification, pages 258–263. Springer, 2013.

G. Chesi. Estimating the domain of attraction for non-polynomial systems via lmi optimizations. Auto-
matica, 45(6):1536–1541, 2009.

G. Chesi. Lmi techniques for optimization over polynomials in control: a survey. IEEE Transactions on
Automatic Control, 55(11):2500–2510, 2010.

N. G. Chetaev. The stability of motion. Pergamon Press, 1961.

A. Church. Logic, arithmetic and automata. In Proceedings of the international congress of mathemati-
cians, volume 1962, pages 23–35, 1962.

T. Cimen. State-dependent riccati equation (sdre) control: A survey. IFAC Proceedings Volumes, 41(2):
3761–3775, 2008.

D. C. Conner, A. A. Rizzi, and H. Choset. Composition of local potential functions for global robot control
and navigation. In Intelligent Robots and Systems (IROS), 2003 IEEE/RSJ International Conference
on, volume 4, pages 3546–3551. IEEE, 2003.

H. De Jong, M. Page, C. Hernandez, and J. Geiselmann. Qualitative simulation of genetic regulatory
networks: Method and application. In IJCAI, pages 67–73, 2001.

J. DeCastro and H. Kress-Gazit. Synthesis of nonlinear continuous controllers for verifiably-correct high-
level, reactive behaviors. IJRR, 34(3):378–394, 2014.

G. DeJong and R. Mooney. Explanation-based learning: An alternative view. Machine learning, 1(2):
145–176, 1986.

L. E. Dubins. On curves of minimal length with a constraint on average curvature, and with prescribed
initial and terminal positions and tangents. American Journal of mathematics, 79(3):497–516, 1957.

P. : Duggirala, S. Mitra, and M. Viswanathan. Verification of annotated models from executions. In
Embedded Software (EMSOFT), 2013 International Conference on, pages 1–10. IEEE, 2013.

P. Dupuis, U. Grenander, and M. I. Miller. Variational problems on flows of diffeomorphisms for image
matching. Quarterly of applied mathematics, pages 587–600, 1998.

C. Edwards and S. Spurgeon. Sliding mode control: theory and applications. Crc Press, 1998.

SV. Emel’yanov and VI. Utkin. Stability of motion of a class of variable structure control systems. Izv.
AN SSSR, Tech. Cyber, (2):140–142, 1964.

188 BIBLIOGRAPHY

E. B. Erdem. Analysis and real-time implementation of state-dependent Riccati equation controlled sys-
tems. PhD thesis, Citeseer, 2001.

R. Fabre, H. Gimbert, L. Gondry, L. Hofer, O. Ly, S. N’Guyen, G. Passault, and Q. Rouxel. Rhoban
football club–team description paper. Humanoid KidSize League, Robocup 2015 Hefei, 2015.

S.-C. Fang and S.-Y. Wu. Solving min-max problems and linear semi-infinite programs. Computers &
Mathematics with Applications, 32(6):87–93, 1996.

E. Frazzoli, M. A. Dahleh, and E. Feron. Maneuver-based motion planning for nonlinear systems with
symmetries. IEEE Trans. Robotics, 21(6):1077–1091, 2005.

G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang, and
O. Maler. Spaceex: Scalable verification of hybrid systems. In International Conference on Computer
Aided Verification, pages 379–395. Springer, 2011.

N. Fulton, S. Mitsch, J.-D. Quesel, M. Völp, and A. Platzer. Keymaera x: An axiomatic tactical
theorem prover for hybrid systems. In International Conference on Automated Deduction, pages 527–
538. Springer, 2015.

K. Gatermann and P. A. Parrilo. Symmetry groups, semidefinite programs, and sums of squares. Journal
of Pure and Applied Algebra, 192(1-3):95–128, 2004.

J. Glaunes. The matchine software (c). 2005.

J. Glaunes, A. Trouvé, and L. Younes. Diffeomorphic matching of distributions: A new approach for
unlabelled point-sets and sub-manifolds matching. In Computer Vision and Pattern Recognition, 2004.
CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on, volume 2, pages II–II.
Ieee, 2004.

J. Glaunès, A. Qiu, M. I. Miller, and L. Younes. Large deformation diffeomorphic metric curve mapping.
International journal of computer vision, 80(3):317, 2008.

R. Grimshaw. Nonlinear ordinary differential equations. Routledge, 2017.

D. D. Grossman. Programmimg a Computer Controlled Manipulator by Guiding Through the Motions.
IBM, 1977.

Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determination of
minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):100–107, 1968.

D. Henrion and A. Garulli. Positive polynomials in control, volume 312. Springer Science & Business
Media, 2005.

D. Henrion and M. Korda. Convex computation of the region of attraction of polynomial control systems.
IEEE Transactions on Automatic Control, 59(2):297–312, 2014.

T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. Algorithmic analysis of nonlinear hybrid systems. IEEE
transactions on automatic control, 43(4):540–554, 1998.

A. J. Ijspeert, J. Nakanishi, and S. Schaal. Learning attractor landscapes for learning motor primitives.
In Advances in neural information processing systems, pages 1547–1554, 2003.

A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal. Dynamical movement primitives:
learning attractor models for motor behaviors. Neural computation, 25(2):328–373, 2013.

BIBLIOGRAPHY 189

Z. Jarvis-Wloszek, R. Feeley, W. Tan, K. Sun, and A. Packard. Some controls applications of sum
of squares programming. In Decision and Control, 2003. Proceedings. 42nd IEEE Conference on,
volume 5, pages 4676–4681. IEEE, 2003.

T. A. Johansen, I. Petersen, and O. Slupphaug. On explicit suboptimal lqr with state and input con-
straints. In Decision and Control, 2000. Proceedings of the 39th IEEE Conference on, volume 1, pages
662–667. IEEE, 2000.

S. C. Joshi and M. I. Miller. Landmark matching via large deformation diffeomorphisms. IEEE transac-
tions on image processing, 9(8):1357–1370, 2000.

A. A. Julius and G. J. Pappas. Trajectory based verification using local finite-time invariance. In Hybrid
Systems: Computation and Control, volume 5469 of LNCS, pages 223–236. Springer, 2009.

I. Kezurer, S. Z. Kovalsky, R. Basri, and Y. Lipman. Tight relaxation of quadratic matching. In Computer
Graphics Forum, volume 34, pages 115–128, 2015.

H. K. Khalil. Noninear systems. Prentice-Hall, New Jersey, 2(5):5–1, 1996.

W. Khalil and E. Dombre. Modeling, identification and control of robots. Butterworth-Heinemann, 2004.

S. M. Khansari-Zadeh and A. Billard. Bm: An iterative algorithm to learn stable non-linear dynamical
systems with gaussian mixture models. In Robotics and Automation (ICRA), 2010 IEEE International
Conference on, pages 2381–2388. IEEE, 2010.

S. M. Khansari-Zadeh and A. Billard. Learning stable nonlinear dynamical systems with gaussian mixture
models. IEEE Transactions on Robotics, 27(5):943–957, 2011.

S. M. Khansari-Zadeh and A. Billard. A dynamical system approach to realtime obstacle avoidance.
Autonomous Robots, 32(4):433–454, 2012.

S. M. Khansari-Zadeh and A. Billard. Learning control lyapunov function to ensure stability of dynamical
system-based robot reaching motions. Robotics and Autonomous Systems, 62(6):752–765, 2014.

M. Kloetzer and C. Belta. A fully automated framework for control of linear systems from temporal logic
specifications. IEEE Transactions on Automatic Control, 53(1):287–297, 2008.

P. Koiran, M. Cosnard, and M. Garzon. Computability with low-dimensional dynamical systems. Theo-
retical Computer Science, 132(1):113–128, 1994.

G. Konidaris, S. Kuindersma, R. Grupen, and A. Barto. Robot learning from demonstration by con-
structing skill trees. The International Journal of Robotics Research, 31(3):360–375, 2012.

D. Kostic, B. De Jager, M. Steinbuch, and R. Hensen. Modeling and identification for high-performance
robot control: An rrr-robotic arm case study. IEEE Transactions on Control Systems Technology, 12
(6):904–919, 2004.

H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Where’s waldo? sensor-based temporal logic motion
planning. In Robotics and Automation, 2007 IEEE International Conference on, pages 3116–3121.
IEEE, 2007.

H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Temporal-logic-based reactive mission and motion
planning. IEEE transactions on robotics, 25(6):1370–1381, 2009.

J. La Salle and S. Lefschetz. Stability by Liapunov’s Direct Method with Applications by Joseph L Salle
and Solomon Lefschetz, volume 4. Elsevier, 2012.

G. Lafferriere, G. J. Pappas, and S. Yovine. Decidable hybrid systems. Citeseer, 1998.

190 BIBLIOGRAPHY

J. P. LaSalle. The stability of dynamical systems, volume 25. SIAM, 1976.

J. B. Lasserre. Global optimization with polynomials and the problem of moments. SIAM Journal on
Optimization, 11(3):796–817, 2001.

J. B. Lasserre. Moments and sums of squares for polynomial optimization and related problems. Journal
of Global Optimization, 45(1):39–61, 2009.

Steven M LaValle. Rapidly-exploring random trees: A new tool for path planning. 1998.

J. L. Le Ny and G. J. Pappas. Sequential composition of robust controller specifications. In Robotics and
Automation (ICRA), 2012 IEEE International Conference on, pages 5190–5195. IEEE, 2012.

J.-S. Liu. Joint stick-slip friction compensation for robotic manipulators by iterative learning. In In-
telligent Robots and Systems (IROS), 1994 IEEE/RSJ International Conference on, volume 1, pages
502–509. IEEE, 1994.

M. Liu, Y. Tan, and V. Padois. Generalized hierarchical control. Autonomous Robots, 40(1):17–31, 2016.

S. Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):129–137,
1982.

R. Lober. Task Compatibility and Feasibility Maximization for Whole-Body Control. PhD thesis, UPMC,
2017.

W. Lohmiller and J.-J. E. Slotine. On contraction analysis for non-linear systems. Automatica, 34(6):
683–696, 1998.

R. Longchamp. Stable feedback control of bilinear systems. IEEE Transactions on Automatic Control,
25(2):302–306, 1980.

L. Lovász and A. Schrijver. Cones of matrices and set-functions and 0–1 optimization. SIAM Journal on
Optimization, 1(2):166–190, 1991.

T. Lozano-Perez. Robot programming. Proceedings of the IEEE, 71(7):821–841, 1983.

J. Lunze. Regelungstechnik 2: Mehrgrößensysteme Digitale Regelung. Springer-Verlag, 2013.

A. M. Lyapunov. The general problem of motion stability. Annals of Mathematics Studies, 17, 1892.

D. G. Macharet, A. A. Neto, V. F. da Camara Neto, and M. FM. Campos. Nonholonomic path planning
optimization for dubins’ vehicles. In Robotics and Automation (ICRA), 2011 IEEE International
Conference on, pages 4208–4213. IEEE, 2011.

A. Majumdar and R. Tedrake. Robust online motion planning with regions of finite time invariance. In
Algorithmic Foundations of Robotics X, volume 86 of STAR, pages 543–558. Springer, 2013.

A. Majumdar and R. Tedrake. Funnel libraries for real-time robust feedback motion planning. The
International Journal of Robotics Research, 36(8):947–982, 2017.

A. Majumdar, A. A. Ahmadi, and R. Tedrake. Control design along trajectories with sums of squares
programming. In Robotics and Automation (ICRA), 2013 IEEE International Conference on, pages
4054–4061. IEEE, 2013a.

A. Majumdar, A. A. Ahmadi, and R. Tedrake. Control design along trajectories with sums of squares
programming. In Robotics and Automation (ICRA), 2013 IEEE International Conference on, pages
4054–4061, 2013b.

BIBLIOGRAPHY 191

O. Maler and G. Batt. Approximating continuous systems by timed automata. In Formal methods in
systems biology, volume 5054 of LNBI, pages 77–89. Springer, 2008.

O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems. In Real-time: theory in practice,
volume 600 of LNCS, pages 447–484. Springer, 1992.

I. R. Manchester and J.-J. E. Slotine. Control contraction metrics: Convex and intrinsic criteria for
nonlinear feedback design. IEEE Transactions on Automatic Control, 62(6):3046–3053, 2017.

S. Manschitz, M. Gienger, J. Kober, and J. Peters. Mixture of attractors: A novel movement primitive
representation for learning motor skills from demonstrations. IEEE Robotics and Automation Letters,
2018.

M. Marshall. Positive polynomials and sums of squares. Number 146. American Mathematical Soc., 2008.

M. T. Mason. The mechanics of manipulation. In Robotics and Automation (ICRA), 1985 IEEE Inter-
national Conference on, volume 2, pages 544–548. IEEE, 1985.

A. Meguenani, V. Padois, J. Da Silva, A. Hoarau, and P. Bidaud. Energy based control for safe human-
robot physical interaction. In International Symposium on Experimental Robotics, pages 809–818.
Springer, 2016.

M. Morari and J. H. Lee. Model predictive control: past, present and future. Computers & Chemical
Engineering, 23(4-5):667–682, 1999.

T. S. Motzkin. The arithmetic-geometric inequality. Inequalities (Proc. Sympos. Wright-Patterson Air
Force Base, Ohio, 1965), pages 205–224, 1967.

Y. Nesterov and A. Nemirovskii. Interior-point polynomial algorithms in convex programming, volume 13.
SIAM, 1994.

K. Neumann and J. J. Steil. Learning robot motions with stable dynamical systems under diffeomorphic
transformations. Robotics and Autonomous Systems, 70:1–15, 2015.

S.-R. Oh, Z. Bien, and I. H. Suh. An iterative learning control method with application to robot manip-
ulators. IEEE Journal on Robotics and Automation, 4(5):508–514, 1988.

B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd. Conic optimization via operator splitting and ho-
mogeneous self-dual embedding. Journal of Optimization Theory and Applications, 169(3):1042–1068,
2016.

P. M. Pardalos and S. A. Vavasis. Quadratic programming with one negative eigenvalue is np-hard.
Journal of Global Optimization, 1(1):15–22, 1991.

P. C. Parks. Am lyapunov’s stability theory—100 years on. IMA journal of Mathematical Control and
Information, 9(4):275–303, 1992.

P. A. Parrilo. Structured semidefinite programs and semialgebraic geometry methods in robustness and
optimization. PhD thesis, California Institute of Technology, 2000.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine Learning in Python . Journal of Machine Learning Research, 12:
2825–2830, 2011.

N. Perrin and P. Schlehuber-Caissier. Fast diffeomorphic matching to learn globally asymptotically stable
nonlinear dynamical systems. Systems & Control Letters, 96:51–59, 2016.

192 BIBLIOGRAPHY

A. Pisano and E. Usai. Sliding mode control: A survey with applications in math. Mathematics and
Computers in Simulation, 81(5):954–979, 2011.

N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of reactive (1) designs. In International Workshop on
Verification, Model Checking, and Abstract Interpretation, pages 364–380. Springer, 2006.

E. Plaku, L. E. Kavraki, and M. Y. Vardi. Motion planning with dynamics by a synergistic combination
of layers of planning. IEEE Transactions on Robotics, 26(3):469–482, 2010.

A. Platzer and J.-D. Quesel. Keymaera: A hybrid theorem prover for hybrid systems (system description).
In International Joint Conference on Automated Reasoning, pages 171–178. Springer, 2008.

A. Pnueli. The temporal logic of programs. In Foundations of Computer Science, 1977., 18th Annual
Symposium on, pages 46–57. IEEE, 1977.

S. Prajna, A. Papachristodoulou, and F. Wu. Nonlinear control synthesis by sum of squares optimization:
A Lyapunov-based approach. In Control Conference, 2004. 5th Asian, volume 1, pages 157–165. IEEE,
2004.

M. O. Rabin. Decidability of second-order theories and automata on infinite trees. Transactions of the
american Mathematical Society, 141:1–35, 1969.

A. Z. Rao. Realization of Dynamixel Servo Plant Parameters to Improve Admittance Control for a
Compliant Human-robot Interaction. PhD thesis, New Jersey Institute of Technology, Department of
Biomedical Engineering, 2016.

H. Ravanbakhsh and S. Sankaranarayanan. Robust controller synthesis of switched systems using coun-
terexample guided framework. In ACM/IEEE Conference on Embedded Software (EMSOFT), pages
8:1–8:10, 2016.

H. Ravichandar, I. Salehi, and A. Dani. Learning partially contracting dynamical systems from demon-
strations. In Conference on Robot Learning, pages 369–378, 2017.

L. Righetti and S. Schaal. Quadratic programming for inverse dynamics with optimal distribution of
contact forces. In Humanoid Robots (Humanoids), 2012 12th IEEE-RAS International Conference on,
pages 538–543. IEEE, 2012.

E. Rimon and D. E. Koditschek. The construction of analytic diffeomorphisms for exact robot navigation
on star worlds. Transactions of the American Mathematical Society, 327(1):71–116, 1991.

Q. Rouxel, G. Passault, L. Hofer, S. N’Guyen, and O. Ly. Learning the odometry on a small humanoid
robot. In Robotics and Automation (ICRA), 2016 IEEE International Conference on, pages 1810–1816.
IEEE, 2016.

G. Rozenberg and A. Salomaa. Handbook of Formal Languages: Volume 3 Beyond Words. Springer
Science & Business Media, 2012.

S. Schaal. Dynamic movement primitives-a framework for motor control in humans and humanoid
robotics. In Adaptive motion of animals and machines, pages 261–280. Springer, 2006.

S. Schaal, A. J. Ijspeert, and A. Billard. Computational approaches to motor learning by imitation.
Philosophical Transactions of the Royal Society of London B: Biological Sciences, 358(1431):537–547,
2003.

A. Scheuer and T. Fraichard. Continuous-curvature path planning for car-like vehicles. In Intelligent
Robots and Systems (IROS), 1997 IEEE/RSJ International Conference on, volume 2, pages 997–1003.
IEEE, 1997.

BIBLIOGRAPHY 193

P. Schlehuber-Caissier and N. Perrin. Computing regions of stabilizability for nonlinear control systems
with input constraints. In 2018 Annual American Control Conference (ACC), pages 2869–2876. IEEE,
2018.

M. Schwarz and S. Behnke. Compliant robot behavior using servo actuator models identified by iterative
learning control. In Robot Soccer World Cup, pages 207–218. Springer, 2013.

P. OM. Scokaert and J. B. Rawlings. Infinite horizon linear quadratic control with constraints. IFAC
Proceedings Volumes, 29(1):5905–5910, 1996.

A. Segre and G. DeJong. Explanation-based manipulator learning: Acquisition of planning ability through
observation. In Robotics and Automation. Proceedings. 1985 IEEE International Conference on, vol-
ume 2, pages 555–560. IEEE, 1985.

H. D. Sherali and W. P. Adams. A hierarchy of relaxations between the continuous and convex hull
representations for zero-one programming problems. SIAM Journal on Discrete Mathematics, 3(3):
411–430, 1990.

H. D. Sherali and B. MP. Fraticelli. Enhancing rlt relaxations via a new class of semidefinite cuts. Journal
of Global Optimization, 22(1-4):233–261, 2002.

H. D. Sherali and C. H. Tuncbilek. A global optimization algorithm for polynomial programming problems
using a reformulation-linearization technique. Journal of Global Optimization, 2(1):101–112, 1992.

H. D. Sherali and C. H. Tuncbilek. A reformulation-convexification approach for solving nonconvex
quadratic programming problems. Journal of Global Optimization, 7(1):1–31, 1995.

H. D. Sherali, E. Dalkiran, and J. Desai. Enhancing rlt-based relaxations for polynomial programming
problems via a new class of v-semidefinite cuts. Computational Optimization and Applications, 52(2):
483–506, 2012.

S. Singh, A. Majumdar, J.-J. Slotine, and O. Pavone. Robust online motion planning via contraction
theory and convex optimization. In Robotics and Automation (ICRA), 2017 IEEE International Con-
ference on, pages 5883–5890. IEEE, 2017.

C. Sloth and R. Wisniewski. Abstraction of continuous dynamical systems utilizing lyapunov functions.
In Decision and Control (CDC), 2010 49th IEEE Conference on, pages 3760–3765. IEEE, 2010a.

C. Sloth and R. Wisniewski. Timed game abstraction of control systems. Technical Report 1012.5113,
ArXiv, 2010b.

C. Sloth and R. Wisniewski. Complete abstractions of dynamical systems by timed automata. Nonlinear
Analysis: Hybrid Systems, 7(1):80–100, 2013.

J. Smith, S. L .and Tümová, C. Belta, and D. Rus. Optimal path planning for surveillance with temporal-
logic constraints. The International Journal of Robotics Research, 30(14):1695–1708, 2011.

E. D. Sontag. Mathematical control theory: deterministic finite dimensional systems. Springer, 1998.

A. Sotiras, C. Davatzikos, and N. Paragios. Deformable medical image registration: A survey. IEEE
transactions on medical imaging, 32(7):1153–1190, 2013.

P. Soueres, A. Balluchi, and A. Bicchi. Optimal feedback control for route tracking with a bounded-
curvature vehicle. International Journal of Control, 74(10):1009–1019, 2001.

M. W. Spong. The swing up control problem for the acrobot. IEEE control systems, 15(1):49–55, 1995.

194 BIBLIOGRAPHY

R. Stribeck. Die wesentlichen eigenschaften der gleit-und rollenlager. Zeitschrift des Vereines Deutscher
Ingenieure, 46:1341–1348, 1902.

J. F. Sturm. Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones. Optimization
methods and software, 11(1-4):625–653, 1999.

I. A. Şucan and L. E. Kavraki. A sampling-based tree planner for systems with complex dynamics. IEEE
Transactions on Robotics, 28(1):116–131, 2012.

I. A. Şucan, M. Moll, and L. E. Kavraki. The open motion planning library. IEEE Robotics & Automation
Magazine, 19(4):72–82, 2012. http://ompl.kavrakilab.org.

J. Swevers, C. Ganseman, J. De Schutter, and H. Van Brussel. Experimental robot identification using
optimised periodic trajectories. Mechanical Systems and Signal Processing, 10(5):561–577, 1996.

R. Tedrake and the Drake Development Team. Drake: A planning, control, and analysis toolbox for
nonlinear dynamical systems, 2016. URL http://drake.mit.edu.

R. Tedrake, I. R. Manchester, M. Tobenkin, and J. W. Roberts. LQR-trees: Feedback motion planning
via sums-of-squares verification. IJRR, 29(8):1038–1052, 2010a.

R. Tedrake, I. R. Manchester, M. Tobenkin, and J. W. Roberts. Lqr-trees: Feedback motion planning via
sums-of-squares verification. The International Journal of Robotics Research, 29(8):1038–1052, 2010b.

J. J. Verbeek, N. Vlassis, and B. Kröse. Efficient greedy learning of gaussian mixture models. Neural
computation, 15(2):469–485, 2003.

W. Wang, J. Yi, D. Zhao, and D. Liu. Design of a stable sliding-mode controller for a class of second-order
underactuated systems. IEE Proceedings-Control Theory and Applications, 151(6):683–690, 2004.

J. Wu, J. Wang, and Z. You. An overview of dynamic parameter identification of robots. Robotics and
computer-integrated manufacturing, 26(5):414–419, 2010.

	Contents
	List of Figures
	List of Tables
	Introduction
	Control law synthesis via timed automata
	Stabilizability of dynamical systems
	Learning stable vector fields from demonstration

	Timed-automata abstraction of controlled systems
	Introduction
	Related Work and Background
	Timed Automata
	Related Work

	Graphs of Control Funnels
	Control Funnels
	Formalizing the Reach-Avoid Problem for Controlled Systems
	Reach-Avoid Objectives on Graphs of Control Funnels

	Reduction to Timed Automata
	LQR Funnels
	Lyapunov Stability and Construction
	Computing the Tuples

	Examples of Application
	Synchronization of Sine Waves
	A 1D Pick-and-Place Problem

	Bounding Funnels with Conjectured Properties
	Introducing Bounding Funnels with Conjectured Properties
	Reach-Avoid Problem for a Modified Dubins' car

	Conclusion and Future Work

	Stability of Dynamical Systems
	Introduction
	Theoretical Background
	Convex Optimization and Semidefinite Programming
	Lyapunov Stability
	Contraction Analysis
	Positive Polynomials and Hilbert's 17th Problem
	Application to Linear and Polynomial Systems and Feedback Controller Design

	Problem Statement
	Related Work
	Approaches Involving Lyapunov Theory on SoS-Techniques
	Approaches Involving Contraction Analysis and LMIs

	State-Space Partitioning Based On Optimal Control Input
	Stabilizability As Min-Max problem
	State-Space Partitioning
	State Space Partitioning for Perturbed Systems

	Resulting Dynamics and Links to Sliding Mode and QP-Control
	Sliding Mode Control
	From Sliding Mode Control to a Continuous Control Law
	Comparison with Sliding Mode Control

	Extension to Time-Varying Case and Implementation
	Time-Varying Lyapunov Functions and Nonlinear Dynamics
	Funnel Construction via Retro-Propagation

	Certificates for Non-Positiveness
	Underestimators Based on Reformulation-Linearisation-Techniques
	Reformulation-Linearisation-Techniques for Polynomial Programming
	Application
	Connections to the Theory of Moments

	Computing and Propagating Suitable Lyapunov Functions
	Time-Dependent Linearisation
	Computing Lyapunov Function Candidates Based on LQR-Techniques
	Adaption to the Constrained Time-Depending Case
	Examples and interpolation

	Examples and Numerical Results
	Simple Pendulum
	Acrobot
	Controlled Polynomial System

	Conclusion and Outlook

	Learning Globally Asymptotically Stable Vector Fields
	Introduction
	Diffeomorphic Transformations and Smooth Equivalence
	Problem Statement and Related Work
	One-Step Learning
	Diffeomorphic Locally Weighted Translations
	Diffeomorphic Matching
	Learning Globally Asymptotically Stable Nonlinear Dynamical Systems
	Results and Numerical Evaluation

	Two-Step Learning
	Motivation and Problem Statement
	Definitions and Curve Matching
	Locally Weighted Multitranslations
	Diffeomorphic Curve Matching
	Learning Globally Asymptotically Stable Nonlinear Dynamical Systems
	Results
	Robot Experiments

	Conclusion and Future Work

	Conclusion
	High-level Planning
	Trajectory Servoing and Optimization based Control

	Bibliography

