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Opérateurs de transfert et moyennes horocycliques sur les variétés fermées

Résumé

Cette thèse de doctorat approfondit l'étude de la dynamique hyperbolique sur les variétés fermées et connexes M et des opérateurs de transfert associés.

Nous étudions deux problèmes : le premier problème concerne les perturbations analytiques réelles des difféomorphismes d'Anosov linéaires sur le tore : une résonance non triviale apparaît-t-elle pour une perturbation génériques d'un difféomorphisme d'Anosov linéaire sur le tore ?

Le second problème concerne une hypothèse sur la moyenne temporelle des flots horocycliques induits par un flot d'Anosov : la moyenne temporelle des flots horocycliques en courbure négative variable converge-t-elle vers la moyenne ergodique en vitesse polynomiale ?

Les opérateurs de transfert associés agissent de façon bornée sur certains espaces de Banach anisotropes par la composition du système dynamique inverse suivie d'une multiplication avec des fonctions de poids spécifiques. Dans notre analyse des problèmes mentionnés ci-dessus, ces opérateurs de transfert représentent le principal intérêt. Nous devons étudier leur spectre bas pour progresser sur nos deux problèmes. Par le spectre bas, nous entendons la partie du spectre qui se situe entre le spectre périphérique et le spectre essentiel de ces opérateurs de transfert.

L'approche fonctionnelle de ces opérateurs de transfert se concentre sur les espaces de Banach anisotropes. Nous expliquons l'idée principale derrière cette approche dans le cas des difféomorphismes d'Anosov : des exemples simples de difféomorphismes d'Anosov F sont donnés par les difféomorphismes linéaires d'Anosov sur le tore bidimensionnel. Nous savons que les difféomorphismes d'Anosov transitifs et analytiques ont une unique mesure SRB µ SRB (qui est invariante par le difféomorphisme). Pour les automorphismes linéaires sur le tore, la mesure SRB est la mesure de Lebesgue µ Leb . Notons toutefois que même de petites perturbations analytiques de A ne préservent pas systématiquement µ Leb . Puisque µ SRB est une mesure de Borel, on a µ SRB C pMq I . Nous souhaitons maintenant écrire µ SRB comme l'unique vecteur propre associé à la valeur propre 1 pour un certain opérateur de transfert L qui apparaît comme l'adjoint de l'opérateur de composition K F . Cependant les mesures supportées sur les orbites périodiques de F sont également contenues dans C pMq I . Afin de trouver les bonnes propriétés spectrales de l'opérateur L, celui-ci doit être défini sur un espace de Banach anisotrope B et non sur C pMq I . La norme de B prend en compte le comportement dilatant et contractant de l'application F . En particulier, la norme anisotrope de B traite les éléments de B comme des fonctions dans les directions dilatantes et comme des distributions dans les directions contractantes de F .

Les valeurs propres discrètes réciproques de L sont aussi appelées les résonances de F . Si F A, alors il y a seulement les résonances triviales t0, 1u. Jusque là il n'était pas su qu'il s'agissait d'un comportement attendu si A est perturbé de manière générique.

On entend ici par perturbation générique toute application d'un ensemble ouvert et dense dans une boule de difféomorphismes analytiques réels contenant A. Nous étudions les propriétés des opérateurs L α , α ¡ 0, sur les espaces de Banach anisotropes ainsi que les propriétés de la résolvante des générateurs des familles tL α , α ¡ 0u. Nous établissons une inégalité de Lasota-Yorke pour la résolvante.

Nous introduisons et abordons la condition supplémentaire sur les bornes de la résolvante.

Ensuite, nous nous focalisons sur les flots d'Anosov de contact en dimension 3

(nous considérons aussi la co-dimension 1). Nous donnons des bornes locales à l'intégrale de l'horocycle, ce qui nous permet de obtenir notre décomposition de l'intégrale de l'horocycle. Enfin, la condition supplémentaire sur la résolvante est utilisée pour obtenir la vitesse polynomiale de convergence vers la moyenne ergodique.

Le troisième chapitre est également disponible sur arXiv.
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Transfer operators and horocycle averages on closed manifolds Abstract

This doctoral thesis deepens the study of hyperbolic dynamics on connected, closed Riemannian manifolds M and associated transfer operators.

We investigate two problems: The first problem concerns real analytic perturbations of linear toral Anosov diffeomorphisms: Does a non-trivial resonance appear for generic perturbations of a linear toral Anosov diffeomorphism?

The second problem is to make a statement about the time average of horocycle flows with underlying contact Anosov flow: Does the time average of horocycle flows in variable negative curvature converge to the ergodic mean in polynomial time?

The associated transfer operators act boundedly on certain anisotropic Banach spaces by composition of the inverse dynamical system followed by a multiplication with specific weight functions. In our analysis of the beforementioned problems these transfer operators are of central interest. We need to investigate their deeper spectrum to progress on our two problems. By the deeper spectrum we mean here the part of the spectrum which lies in between the peripheral and the essential spectrum of these transfer operators.

The functional approach to these transfer operators puts importance on the anisotropic Banach spaces. We explain the principal idea behind this approach in the case of Anosov diffeomorphisms: Simple examples of Anosov diffeomorphisms F are provided by the linear Anosov diffeomorphisms A on the twodimensional torus. Real analytic transitive Anosov diffeomorphisms are known to have associated a so-called unique SRB-measure µ SRB which is invariant by the diffeomorphism. For the linear toral automorphisms the SRB-measure is just the Lebesgue measure µ Leb . Note however that even small real-analytic perturbations of A may not preserve µ Leb . Since µ SRB is a Borel measure it holds µ SRB C pMq I . We wish now to recover µ SRB as the unique 1-eigenvector for a certain transfer operator L which arises as the adjoint of the composition operator K F . However measures supported on periodic orbits of F are also contained in C pMq I . In order to find good spectral properties of the operator L, it has to be defined on an anisotropic Banach space B and not on C pMq I . The norm of B takes into account the expansive and contractive behavior of the map F . In particular, the anisotropic norm of B treats elements in B as functions along the expanding directions and as distributions along the contracting directions of F .

The reciprocal discrete eigenvalues of L are also called the resonances of F . In case that F A there are only the trivial resonances t0, 1u. It was not known before whether this is an expected behavior if A is perturbed generically.

By a generic perturbation we mean here any map in an open and dense subset of a ball of real analytic toral diffeomorphisms containing A with respect to the uniform norm.

In the investigation of the first problem, we act with L on an anisotropic Hilbert

space. We answer the question in the first problem in the affirmative.

The second problem that we investigate involves Anosov flows. In the constant negative curvature setting, for the geodesic flow, it is known due to the work of Flaminio and Forni, that this speed is polynomial and is controlled by eigenvalues for certain eigendistributions for the geodesic flow.

An analogous problem where the geodesic flow is replaced by an Anosov diffeomorphism was studied later by Giulietti and Liverani. Moreover, in their work they conjectured that the above result of Flaminio-Forni should extend to the geodesic flow in variable negative curvature.

In the study of the second problem weighted transfer operators L α , α ¡ 0, appear. Following the functional approach, in principal, it is enough to construct an anisotropic Banach space B such that the operators L α , acting on B, have a peripheral spectrum consisting of an isolated simple eigenvalue. However, the flow direction of the Anosov flow is neither contracted nor expanded by the Anosov flow which poses a problem in our analysis. We apply instead the following strategy:

With a good choice of an anisotropic Banach space B the transfer operator family tL α : B Ñ B | α ¥ 0u forms a strongly continuous semigroup and admits therefore a well-defined generator. Quasi-compactness of the resolvent of this generator ensures that part of the spectrum of the generator with respect to B contains only discrete spectrum of finite multiplicity. The discrete spectrum is then found to control the speed of convergence. However to show polynomial speed of convergence we need to impose an additional condition on bounds of the resolvent.

Introduction

This doctoral thesis deepens the study of hyperbolic dynamics on connected, The associated transfer operators act boundedly on certain anisotropic Banach spaces by composition of the inverse dynamical system followed by a multiplication with a weight function. In our analysis of the beforementioned problems for specific weight functions these transfer operators are central objects. We need to investigate their deeper spectral properties to progress on our two problems. By the deeper spectrum we mean here part of the spectrum which lies in between the peripheral and the essential spectrum of these transfer operators.

The functional approach to these transfer operators puts importance on the anisotropic Banach spaces. It is a more recent method with notably results in the last decades for Anosov diffeomorphisms (e.g. [START_REF] Baladi | Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps: A Functional Approach[END_REF], [START_REF]The quest for the ultimate anisotropic Banach space[END_REF], [START_REF]Dynamical determinants and spectrum for hyperbolic diffeomorphisms[END_REF], [START_REF] Blank | Ruelle-Perron-Frobenius spectrum for Anosov maps[END_REF], [START_REF] Giulietti | Parabolic dynamics and Anisotropic Banach spaces[END_REF], [START_REF] Gouëzel | Banach spaces adapted to Anosov systems[END_REF], [START_REF]Compact locally maximal hyperbolic sets for smooth maps: fine statistical properties[END_REF], [START_REF]Complete spectral data for analytic anosov maps of the torus[END_REF]) and flows (e.g. [START_REF] Baladi | Exponential decay of correlations for finite horizon Sinai billiard flows[END_REF], [START_REF] Butterley | Robustly invariant sets in fiber contracting bundle flows[END_REF]- [START_REF] Faure | Horocyclic invariance of Ruelle resonant states for contact Anosov flows in dimension 3[END_REF], [START_REF]The semiclassical zeta function for geodesic flows on negatively curved manifolds[END_REF], [START_REF] Giulietti | Anosov flows and dynamical zeta functions[END_REF], [START_REF] Liverani | On contact Anosov flows[END_REF], [START_REF] Tsujii | Exponential mixing for generic volume-preserving Anosov flows in dimension three[END_REF], [START_REF]On cohomological theory of dynamical zeta functions[END_REF]).

We explain the principal idea behind the functional approach briefly in the case of Anosov diffeomorphisms: A diffeomorphic dynamical system F : M Ñ M being an Anosov diffeomorphism means that the tangent space T M of the manifold is split into unstable E T M and stable E ¡ T M distributions.

In particular, one assumes a non-trivial splitting

T M E ¡ E , (0.1) 
such that for every norm }¤} on linear maps T M Ñ T M , for some 0 β 1, (0.2) 0 Introduction

The arguably simplest example is a toral Anosov diffeomorphism given by Arnold's cat map:

A : R 2 {Z 2 Ñ R 2 {Z 2 : x Þ Ñ £ 2 1 1 1 x.
Similar examples on the torus R 2 {Z 2 are provided by any hyperbolic unimodular matrix A SL 2 pZq, where hyperbolic matrix means here that A has one eigenvalue larger than 1 in modulus. Those are the toral linear Anosov diffeomorphisms.

The map A is also analytic and mixing. By topological mixing of the map F we mean that for all non-empty subsets U, V M there exists N N such that for all n ¥ N it holds U F n pV q $ r.

By transitivity of the map F we mean that there exists a dense orbit of F in M .

Real analytic transitive Anosov diffeomorphisms F are known to have associated so-called SRB-measures µ SRB [67, Theorem 1]. (A detailed explanation of µ SRB is given in [START_REF]Positive transfer operators and decay of correlations[END_REF], [START_REF] Young | What Are SRB Measures, and Which Dynamical Systems Have Them?[END_REF].) What is of importance here is that for a given such map F the Borel probability measure µ SRB is uniquely characterized by the property that for Lebesgue-almost every x M and every continuous function ϕ C pMq

µ SRB pϕq lim nÑV 1 n n ķ0 ϕ ¥ F k pxq .
An example for which µ SRB equals the Lebesgue measure µ Leb is given by the map A. However we note that even small perturbations of A may not preserve

µ Leb .
The composition operator is defined by K F ϕ ϕ ¥ F for every ϕ C pMq.

Invariance of µ SRB by F yields for every ϕ C pMq µ SRB pK F ϕq µ SRB pϕq .

Hence the dual operator L : K I F acts on C pMq I and fixes µ SRB . It is straight forward to show that L with respect to µ Leb is given for all ϕ C pMq by

Lϕ § § det D F ¡1 § § ¤ ϕ ¥ F ¡1 ,
where § § det D F ¡1 § § is called the weight function for L. In the functional approach one wishes now to recover µ SRB as the unique eigenvector to the eigenvalue 1 for L. More precisely, it is the peripheral spectrum of L which is here of immediate interest. The peripheral spectrum of L and the properties of the map F should be related in the following way:

• The peripheral spectrum of L contains 1 which is a simple eigenvalue.

• The map F is transitive.

• The peripheral spectrum of L is t1u and 1 is a simple eigenvalue.

• The map F is mixing.

However measures supported on periodic orbits are also contained in C pMq I and are therefore eigenvectors to the eigenvalue 1 for L. In order to proceed one changes the domain of the transfer operator L. In particular L has to be defined on an anisotropic Banach space B and not on C pMq I . The space B contains usually densely C r¡1 pMq functions for some r ¡ 1 or r tV, ωu if F C r1 . The norm of B takes into account the expansive and contractive behavior of the map F . In particular, the anisotropic norm of B treats elements in B as functions along E and as distributions along E ¡ .

As we have explained, the construction of B is constrained by the resulting properties of the spectrum of L on B. This makes such anisotropic Banach spaces an important part in the functional approach. In the last two decades several constructions of B have been provided in the differentiable and analytic category of the map F :

The detailed study of anisotropic Banach spaces in the hyperbolic case started in the differentiable setting with the work of Blank, Keller and Liverani [START_REF] Blank | Ruelle-Perron-Frobenius spectrum for Anosov maps[END_REF]. It is now a well established tool (e.g. see the references mentioned above).

Real analytic perturbations of hyperbolic toral automorphisms A were later addressed by Faure and Roy [START_REF] Faure | Ruelle-Pollicott resonances for real analytic hyperbolic maps[END_REF]. They considered an anisotropic Hilbert space H, which appeared already briefly in a work of Fried [START_REF] Fried | Meromorphic Zeta functions for Analytic Flows[END_REF]Sect 8,I].

On this Hilbert space H, the operator L turns out to be compact which implies that the essential spectrum of L is contained in t0u and the deeper spectrum of L consist of eigenvalues of finite multiplicity. Moreover the spectrum of L on H admits a spectral gap between the deeper and the peripheral spectrum which relates to the following:

• The peripheral spectrum of L is t1u and 1 is an isolated simple eigenvalue.

• The correlation function for F admits exponential decay.
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By exponential decay of the correlation function for F we mean that for some ϕ 1 , ϕ 2 C pM, Cq and for some λ ¡ 0 it holds

sup nN e λn |µ SRB pϕ 1 ¤ ϕ 2 ¥ F n q ¡ µ SRB pϕ 1 q µ SRB pϕ 2 q| V.
Usually λ depends on the regularity of the observables ϕ 1 and ϕ 2 and not on the observables itself.

We comment shortly on the weight function § § det D F ¡1 § § in L: In general the weight function can be any positive C r¡1 function, depending on the application. Then of course the maximal eigenvalue λ max may change, as well as the associated eigenvector (this is also called the Gibbs state), replacing µ SRB . If one considers then the renormalized transfer operator r L : λ ¡1 max L, we expect a peripheral spectrum for r L as discussed, depending on the properties of the map

F .
The dynamical determinant d F carries statistical information about the behavior of the map F at periodic orbits of F . It is a holomorphic function defined for all small enough z C by

d F pzq : exp ¡ V ņ1 z n n F n pxqx |det pid ¡ D x F n q| ¡1 .
A way to extend the domain of holomorphy of d F is by using the transfer operator. For example if K F is of trace class then the holomorphic extension is given by the Fredholm determinant for all z C by det p1 ¡zLq det p1 ¡zK F q d F pzq .

(0.

3)

The second equality in (0.3) is a consequence of the trace formula for all n N

tr K n F F n pxqx |det pid ¡ D x F n q| ¡1 . (0.4)
The reciprocal discrete eigenvalues of the transfer operator are also called the In the hyperbolic setting, Rugh proved the holomorphy of the dynamical determinant of real analytic Anosov diffeomorphisms on surfaces [START_REF] Rugh | Generalized Fredholm determinants and Selberg zeta functions for Axiom A dynamical systems[END_REF], [START_REF]The correlation spectrum for hyperbolic analytic maps[END_REF].

The two problems

A small computation shows the following (e.g. using Lemma A.1):

Lemma 1 (Trivial resonances). For every hyperbolic matrix M SL 2 pZq the associated dynamical determinant satisfies for every z C

d M pzq 1 ¡ z.
Another direct computation shows:

Lemma 2 (Superexponential decay ([6, Chapter 4.4.1])). For every hyperbolic matrix in SL 2 pZq the dynamical correlation function decays superexponentially on real analytic observables.

It was not known before whether the above two lemmas show an expected behavior for a generic real analytic toral Anosov diffeomorphisms.

In particular, what happens if we perturb generically a hyperbolic matrix A by a real analytic map?

By a generic perturbation we mean here any map in an open and dense subset of a ball of real analytic toral diffeomorphisms containing A with respect to the uniform norm (see directly above Theorem 1.4.3).

Problem 1 (Non-trivial resonances). Does a non-trivial resonance appear for generic perturbations of a hyperbolic matrix in SL 2 pZq?

If we consider for a moment only an expanding system (E ¡ M ¢ t0u) then more was already known: The expanding case was initially studied by Ruelle [START_REF] Ruelle | Zeta-Functions for Expanding Maps and Anosov Flows[END_REF]. More recently, Bandtlow, Slipantschuk and Just [START_REF] Bandtlow | Spectral structure of transfer operators for expanding circle maps[END_REF], [START_REF] Slipantschuk | Analytic expanding circle maps with explicit spectra[END_REF] calculated the resonances of real analytic expanding maps T : S Ñ S on the unit circle S explicitly for Blaschke products. Their transfer operator acts on the Hardy space of holomorphic functions on the annulus. (See also Keller and Rugh [45] in the differentiable category.)

Moreover, Bandtlow and Naud [START_REF] Bandtlow | Lower bounds for the Ruelle spectrum of analytic expanding circle maps[END_REF] showed that generically expanding circle maps admit infinitely many resonances.

The second problem that we investigate involves Anosov flows g α C 3 pM, M q where dim M 3, α R and

g α g α 1 ¥ g α 2 , for all α 1 α 2 α.
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These flows where introduced by Anosov to study the geodesic flow on the unit tangent bundle of closed Riemannian manifolds with variable negative sectional curvature [START_REF] Anosov | Geodesic flows on closed Riemann manifolds with negative curvature, 1st[END_REF], [START_REF]Roughness of geodesic flows on compact Riemannian manifolds of negative curvature[END_REF]. It is required that the splitting of T M contains in addition a neutral (or central) distribution spanned by the bounded vector field X generating the flow:

T M E E ¡ RX, (0.5) 
with an analogous condition on the distributions E ¡ and E as in (0.2). Mo- reover, we require the contact assumption for the flow g α which means that a certain invariant 3 ¡ f orm in pT ¦ M q 3 is never zero (see Section 2. Hence in our setting, the continuous time average converges to the unique ergodic mean for all ϕ C pMq and for all x M µ pϕq lim

T ÑV 1 T » T 0 ϕ ¥ h ρ pxq d ρ,
where µ denotes the unique Borel measure given by Theorem 1. But how fast is the convergence to µ pϕq? Put otherwise, what can we say about

1 T » T 0 ϕ ¥ h ρ pxq d ρ ¡ µ pϕq ,
for all T ¡ 0 for fixed x and fixed ϕ? Clearly, if ϕ f ρ r ϕ ¥ h ρ|ρ0 for some r ϕ C pM, Cq then

» T 0 ϕ ¥ h ρ pxq d ρ r ϕ ¥ h T pxq ¡ r ϕ pxq .

The two problems

This poses a generic lower bound on the speed of convergence as 1{T , even if r ϕ is very regular such that ϕ C 2¡ for all ¡ 0.

Are there any other obstructions which can slow down the speed of convergence even more?

The approach to answer this question is again by means of a weighted transfer operator. We find for every T, α ¥ 0 and every x M γ x pϕ, T q :

» T 0 ϕ ¥ h ρ pxq d ρ » τ pT,α,xq 0 L α ϕ ¥ h ρ ¥ g α pxq d ρ,
where for all α ¥ 0, assuming here for simplicity that the flow h ρ has unit speed,

L α ϕ det D g ¡α|E ¡ ¤ ϕ ¥ g ¡α , (0.6)
and where for all x M and all ρ, α R

g α ¥ h ρ pxq h τ pρ,α,xq ¥ g α pxq .
The function τ is called the renormalization time. To find a stronger slowdown than 1{T in the speed of convergence, the idea is the following: If on a certain anisotropic Banach space B the operator L α has an eigenvector D λ B such that L α D λ e λα D λ for some λ ¡ 0 and for all α ¥ 0 then formally

γ x pD λ , T q » τ pT,α,xq 0 L α D λ ¥ h ρ ¥ g α pxq d ρ e αλ » τ pT,α,xq 0 D λ ¥ h ρ ¥ g α pxq d ρ.
As pointed out by Anosov [START_REF] Anosov | Geodesic flows on closed Riemann manifolds with negative curvature, 1st[END_REF], the topological entropy h top of the time-one map g 1 is positive. It is an important property of the renormalization time τ that τ pT, α, xq ¤ 1 implies e htopα ¤ CT for some constant C ¡ 0 independent of every T ¥ 1 and every x M (e.g. use Proposition 2.5.13 below).

Hence in our example, the unique ergodic mean is reached only with at most a speed of T λ h top ¡1 .

Let us assume for simplicity that all eigenvalues e λα are simple for all α ¡ 0. Then we have associated to each λ a finite rank operator given by D λ O λ , where O λ B I . Now we can decompose formally for every ϕ B and for every δ R

ϕ ¸ λ¡δ O λ pϕq D λ ϕ E , (0.7) 
with some remainder term ϕ E .
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In the constant negative curvature setting, for the geodesic flow, the following is known due to the work of Flaminio and Forni, where the flows g α and h ρ arise both from constant vector fields:

Theorem 3 (Flaminio-Forni, [START_REF] Flaminio | Invariant distributions and time averages for horocycle flows[END_REF]Theorem 1.5]). Let M be the unit tangent bundle of a compact hyperbolic Riemannian surface of constant negative curvature. Let vol be the canonical volume form on M . Then it holds for all ϕ C 4 , for all x M and for all T ¡ 1

» T 0 ϕ ¥ h ρ pxq d ρ T vol pϕq λΣ 1 2 zt1u T λ c λ pT, xq O λ pϕq E T,x pϕq , where sup T ¡1,xM |ET,xpϕq| T 1 2 log T V and sup T ¡1,xM |c λ pT, xq| V .
In fact the result of Flaminio-Forni gives a much more detailed expansion, including a summation over all λ ¡ 0 and lower bounds on the coefficients c λ .

An analogous problem where the geodesic flow is replaced by an Anosov diffeomorphism was studied later by Giulietti and Liverani [START_REF] Giulietti | Anosov flows and dynamical zeta functions[END_REF]. Moreover, in their work they conjectured (see [START_REF] Giulietti | Anosov flows and dynamical zeta functions[END_REF]Conjecture 2.14]) that the above result of Flaminio-Forni should extend to the geodesic flow in the variable negative curvature setting.

Problem 2 (Horocycle flows in variable negative curvature). Does an expansion of the horocycle integral analogous to Theorem 3 hold for the horocycle flow induced by the geodesic flow of a surface of variable negative curvature?

Following the functional approach, it is in principle enough to construct an anisotropic Banach space B such that the operator L α , acting on B, has a peripheral spectrum consisting of an isolated simple eigenvalue at e htopα for all α ¥ 0 and such that γ x D htop , T ¨and γ x pϕ E , T q are well-defined. Indeed all this could follow if L α,φα is quasi-compact on B for all α ¥ 0. What prevents us in doing so is the flow direction X in the splitting in (0.5) which is neither contracted nor expanded by the geodesic flow. We apply instead the following strategy:

With a good choice of an anisotropic Banach space B the transfer operator family

tL α : B Ñ B | α ¥ 0u
forms a strongly continuous semigroup and admits therefore a well-defined generator X V . Quasi-compactness of the resolvent R z of X V for large values z ¡ 0 ensures that part of the spectrum of X V with respect to B

Σ δ : σ pX V q | B tλ C | λ ¡ δu
contains only discrete spectrum of finite multiplicity for some δ ¡ 0.

Note that L α is a transfer operator with a different weight than we discussed above in the diffeomorphism case.

In full analogy to our discussion of the peripheral spectrum of L, we expect that the peripheral spectrum of the operator e ¡htopα L α on B consists of the simple eigenvalue 1 for all α ¡ 0 and that the associated eigenvector coincides with the unique Borel probability measure given by Theorem 1.

Moreover, the weight function for L α is det D g ¡α|E ¡ which depends on the re- gularity of E ¡ , which we noted is C 2¡ for all ¡ 0. To deal with such irregular weights one can lift the dynamics to the Grassmanian. This has been used with success, e.g. in [START_REF] Giulietti | Parabolic dynamics and Anisotropic Banach spaces[END_REF], [START_REF]Compact locally maximal hyperbolic sets for smooth maps: fine statistical properties[END_REF] and more recently in [START_REF]On cohomological theory of dynamical zeta functions[END_REF]. However, we handle directly the given weight function which allows us to avoid such additional technicalities.

We should add here that the additional conjecture that the distributions O v appearing in the right-hand side in (0.7) are fixed by the adjoint of the horocycle flow remains still open. In contrast this was the starting point in [START_REF] Flaminio | Invariant distributions and time averages for horocycle flows[END_REF]. Here, progress has been made by Faure and Guillarmou [START_REF] Faure | Horocyclic invariance of Ruelle resonant states for contact Anosov flows in dimension 3[END_REF] in dimension 3 for smooth contact Anosov flows.

Although we do not study here the dynamical zeta function for the transfer operator L α , we believe that the anisotropic Banach space B constructed in Section 2.3.2 could be a suitable choice to be dealt with.

Statement of results

We present here in a simplified form the main results of this thesis. The first result states that it is quite common for the composition operator to have nontrivial spectrum if the dynamical system is a real analytically perturbed hyper- In some sense our result is optimal: We cannot hope to replace 'generic perturbations' with 'for all perturbations'. In the expanding case there exists Blaschke products arbitrary close to a linear function on the circle and which have trivial spectrum (and which are note C 1 conjugated to a linear function) [START_REF] Slipantschuk | Analytic expanding circle maps with explicit spectra[END_REF]Example 5.6].

It is reasonable to believe that similar constructions work in the Anosov case, using the generalized Blaschke products in [START_REF]Complete spectral data for analytic anosov maps of the torus[END_REF]. This means that isospectral perturbations are expected but they are not generic.

The second result makes a statement about the time average of a horocycle flow with underlying contact Anosov flow. The full result treats the general case with possible non-trivial Jordan blocks. For simplicity of the statement we assume here that the spectrum is simple:

Proposition II (Horocycle integral (Theorem 2.5.7, Proposition 2.5.10)). There exists an anisotropic Banach space B and λ min h top such that Σ λ min consists only of discrete eigenvalues of finite multiplicity. For all x M and all T ¥ 1, for every λ min ¤ δ h top and for every finite subset Λ δ Σ δ and for all ϕ C 3 it holds Note that the expected principal term T µ pϕq is obscured since we ordered the expansion by O λ pϕq. One recovers the principal term, using

» T 0 ϕ ¥ h ρ pxq d ρ c htop pT, xq µ pϕq λΛ δ λ htop T λ h top c λ pT, xq O λ pϕq E T,x,Λ δ pϕq ,
T µ pϕq » T 0 1 ¥ h ρ pxq d ρ.
We use this later in Corollary 2.5.9 in Section 2.5 below. Clearly, we only answer partially the question in Problem 2 in the affirmative. The reason is that quasi-compactness of R z is not enough to give us e.g. a finite set Σ δ for some δ ¥ λ min . We impose the following extra condition on the resolvent to affirm the full question for C 3 contact Anosov flows in dimension 3:

Condition A (Spectral gap with (Dolgopyat) for all ¡ 0 and some C C pϕq ¥ 0 independent of T and x.

We shall note a curiosity which we do not discuss further in this thesis: An application of the last theorem which presents itself is the deeper analysis of the renormalization time τ itself! It follows from the construction of the transfer operator L α that for all ρ, α ¡ 0 and for all x M it holds τ pρ, ¡α, xq γ x pL α 1, ρq .

Of course, in the setting of constant vector fields (i.e. constant negative curvature) we cannot learn anything new about τ , but other cases might be of further interest (e.g. in studying small perturbations of the constant vector fields).

Organization of the thesis

We investigate Problem 1 in Chapter 1 and Problem 2 in Chapter 2.

In Chapter 1 we study generic real analytic perturbations r A of a linear Anosov diffeomorphism on the two-dimensional torus as introduced before Problem 1.

We apply the functional approach to transfer operators as described above in the setting of an anisotropic Hilbert space.

This Hilbert space is explicitly constructed in Section 1.2 as the completion of some Hardy space with respect to an anisotropic norm. The trace class property of the Koopman operator K r A is shown in Section 1.3. In fact, we show that K r A is nuclear of order 0 which is a stronger result.

Theorem I which is Theorem 1.4.3 below is finally shown in Section 1.4. This is done essentially by the calculation of the trace of the transfer operator associated to the perturbed system, using the equality in (0.4) which is shown as well.

The spectral properties of the transfer operator L are discussed in Section 1.5.

Chapter 1 is presented as it was published [START_REF] Adam | Generic non-trivial resonances for Anosov diffeomorphisms[END_REF], except that the appendix is moved to Chapter A and the reference list is combined with that of this thesis.

In Chapter 2 we deal with finite differentiable Anosov flows on connected, closed Riemannian manifolds and the associated stable horocycle flows.

The necessary notion of cones and cone-hyperbolicity of a map is introduced in Section 2.2.

In Section ?? we introduce families tL α | α ¡ 0u of transfer operators similar to those in (0.6) but with arbitrary positive weight functions. This is followed by the construction of anisotropic Banach spaces. These spaces are a flow analogue to the spaces constructed by Baladi and Tsujii [START_REF] Baladi | Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms[END_REF] to study hyperbolic diffeomorphisms.

In Section 2.4 we discuss properties of the operators L α , α ¡ 0, on the constructed anisotropic Banach spaces as well as properties of the resolvent of the generators of the families tL α | α ¡ 0u. We show a Lasota-Yorke inequality for the resolvent, which is Theorem 2.4.5 below. We introduce and discuss Condition A which is Condition 2.4.11 below.

In Section 2.5 we specialize to contact Anosov flows in dimension 3 (we consider also the co-dimension 1 case).

We give local bounds on the horocycle integral in Lemma 2.5.14. This lemma enables us to show Theorem III which is Theorem 2.5.7 below.

The additional Condition A is finally needed to obtain a polynomial rate of convergence to the ergodic mean for horocycle flows induced by contact Anosov flows in dimension 3.

This chapter is also available on arXiv [START_REF]Horocycle averages on closed manifolds and transfer operators[END_REF].

1 Generic non-trivial resonances for Anosov diffeomorphisms

Introduction

Let T : T 2 Ñ T 2 be a real analytic Anosov diffeomorphism. We define the Ruelle resonances of T to be the zeroes of the (holomorphically continued in z C)

dynamical determinant d T pzq : exp ¡ V ņ1 z n n Ţ n pxqx |det pid ¡ D x T n q| ¡1 . (1.1)
It is well-known (e.g. combining (1.1) and Lemma A.1) that 1 is the only resonance if T is a hyperbolic linear toral automorphism M . A subset of the Banach space of T 2 -preserving maps, holomorphic and uniformly bounded on some annulus, is called generic if it is open and dense. We show in Theorem 1.4.3, using an idea of Naud [START_REF] Naud | Anosov diffeomorphisms with non-trivial Ruelle spectrum[END_REF], that there is such a set G so that for all ψ G, appropriately scaled, the Anosov diffeomorphism M ψ admits non-trivial Ruelle resonances. For this, we construct a Hilbert space of anisotropic generalized functions on which the transfer operator L T f : pf{| det D T |q ¥ T ¡1 is nuclear with its Fredholm determinant equal to d T . Moreover, we prove that some of those generic perturbations preserve the volume while some do not.

The expanding case is easier and was initially studied by Ruelle [START_REF] Ruelle | Zeta-Functions for Expanding Maps and Anosov Flows[END_REF]. More recently, Bandtlow et. al [START_REF] Bandtlow | Spectral structure of transfer operators for expanding circle maps[END_REF], [START_REF] Slipantschuk | Analytic expanding circle maps with explicit spectra[END_REF] calculated the resonances of real analytic expanding maps T : S Ñ S on the unit circle S explicitly for Blaschke products.

Their transfer operator acts on the Hardy space of holomorphic functions on the annulus. (See also Keller and Rugh [45] in the differentiable category.)

In the hyperbolic setting, Rugh proved the holomorphy of the dynamical determinant of real analytic Anosov diffeomorphisms on surfaces [START_REF] Rugh | Generalized Fredholm determinants and Selberg zeta functions for Axiom A dynamical systems[END_REF], [START_REF]The correlation spectrum for hyperbolic analytic maps[END_REF]. The idea was generalized by Fried to hyperbolic flows in all dimensions [START_REF] Fried | Meromorphic Zeta functions for Analytic Flows[END_REF]. The detailed study of anisotropic Banach spaces in the hyperbolic case started with the pioneering work of [START_REF] Blank | Ruelle-Perron-Frobenius spectrum for Anosov maps[END_REF] (in the differentiable setting) and is now a well established 1 Generic non-trivial resonances for Anosov diffeomorphisms tool, see e.g. [START_REF]Dynamical determinants and spectrum for hyperbolic diffeomorphisms[END_REF] and [START_REF] Gouëzel | Banach spaces adapted to Anosov systems[END_REF].

Faure and Roy [START_REF] Faure | Ruelle-Pollicott resonances for real analytic hyperbolic maps[END_REF] later addressed real analytic perturbations of hyperbolic linear toral automorphisms on the two-dimensional torus, considering an anisotropic complex Hilbert space, which had already been briefly discussed by Fried Our approach is based on this construction and strongly relies on an idea suggested by Naud [START_REF] Naud | Anosov diffeomorphisms with non-trivial Ruelle spectrum[END_REF]. We put the transfer operator at the center of our analysis.

We introduce an anisotropic Hilbert space (Definition 1.2.4) in Section 1.2.

In Section 1.3, we rephrase a result from Faure and Roy [START_REF] Faure | Ruelle-Pollicott resonances for real analytic hyperbolic maps[END_REF]Theorem 6] to show that the Koopman operator K T f : f ¥ T is nuclear of order 0 when acting on our anisotropic Hilbert space.

In Section 1.4, we use this result and an idea of Naud [START_REF] Naud | Anosov diffeomorphisms with non-trivial Ruelle spectrum[END_REF] to show that the Koopman operator admits non-trivial Ruelle resonances under a small generic perturbation of the dynamics.

In Section 1.5, we consider the adjoint of the Koopman operator, which is just the transfer operator, acting on the dual Hilbert space and obtain our final results.

In the Appendix, we recall two needed basic properties of integer matrices (seen as linear maps on the torus) and provide a sufficient condition for determinant preserving perturbations of differentiable real maps.

In principal the analogous problem on any higher dimensional torus can be treated with the presented method. However, one has to modify slightly the used space from Section 1.2 if the linear toral automorphism has non-trivial Jordan blocks.

Blaschke products were recently generalized to the hyperbolic setting by Slipantschuk et al. [START_REF]Complete spectral data for analytic Anosov maps of the torus[END_REF] who calculate the entire spectrum of these real analytic Anosov volume preserving diffeomorphisms explicitly.

An anisotropic Hilbert space

We denote the flat 2-torus by T 2 : R 2 {Z 2 . We embed T 2 into the standard polyannulus in C 2 and set for each r ¡ 0 A r : T 2 i p¡r, rq 2 .

An anisotropic Hilbert space

We see A r as a submanifold of C 2 . The Hilbert space L 2 T 2 ¨is equipped with the canonical Lebesgue measure on T 2 . This space admits an orthonormal Fourier basis given by

ϕ n : T 2 Ñ C : x Þ Ñ exp pi 2πn ¦ xq , n Z 2 , (1.2)
where n ¦ is the canonical dual of n. We recall a construction from Faure and Roy [START_REF] Faure | Ruelle-Pollicott resonances for real analytic hyperbolic maps[END_REF] for a complex Hilbert space H A M,c . This space also has been described briefly by Fried as an "ad hoc example" [29, Sect. .

Then we set

H 2 pA r q : 3 f : A r Ñ C | f holomorphic, }f} H 2 pArq V A .
The space H 2 pA r q is the 2-dimensional analogue of the Hardy space studied in [58, p. 4]. It admits a Fourier basis given by

ϑ r n : A r Ñ C : x Þ Ñ exp p¡2πr}n}q ϕ n , n Z 2 ,
where }z} : |z 1 | |z 2 | for all pz 1 , z 2 q : z C 2 and z T 2 . With this choice of norm, the Fourier basis is orthonormal. Under the canonical isomorphism

L 2 T 2 ¨! L 2 T 2 ¨¦, we have the isomorphism pϑ r n q ¦ ! ϑ ¡r n . (1.3) 
A matrix M SL 2 pZq is called hyperbolic if its eigenvalues do not lie on the unit circle. We denote by E M the eigenspace for the eigenvalue of modulus λ M ¡ 1

and by E ¡ M the eigenspace of the eigenvalue of modulus λ ¡1

M . We decompose y R 2 uniquely as

y y M y ¡ M with y M E M ¦ and y ¡ M E ¡ M ¦ . (1.4)
We have 

M ¦ y M λ M y M and M ¦ y ¡ M λ ¡1 M y ¡ M . (1.5)
A M,c : H 2 pA c q Ñ L 2 T 2 ¨,
bounded in operator norm by 1.

Proof. By Definition 1.2.2, for each f H 2 pA c q we have }A M,c f } 2 L 2 pT 2 q ņZ 2 |ϕ ¦ n A M,c f | 2 ņZ 2 exp ¡4πc n M ¡ n ¡ M ¨¨|ϕ ¦ n f | 2 ņZ 2 exp ¡4πc n M ¡ n ¡ M }n} ¨¨|ϑ c n ¦ f | 2 ,
where we used (1.3) in the last step. Using the triangle inequality, we find

n M ¡ n ¡ M }n} ¥ 0.
Hence, it holds

ņZ 2 exp ¡4πc n M ¡ n ¡ M }n} ¨¨|ϑ c n ¦ f | 2 ¤ }f} 2 H 2 pAcq .
Injectivity follows since A M,c is invertible on the Fourier basis of

L 2 T 2 ¨.
The image of H 2 pA c q under A M,c is dense in L 2 T 2 ¨since it contains all Fourier polynomials.

Definition 1.2.4 (Hilbert space H A M,c ). Let c ¡ 0 and let M SL 2 pZq be hyperbolic. Let A M,c be the map given by Definition 1.2.2. Then we set H A M,c : closure of H 2 pA c q with respect to the norm }A M,c ¤} L 2 pT 2 q , and extend A M,c by continuity to a linear map

A M,c : H A M,c Ñ L 2 T 2 ¨.
As a direct consequence of this construction, the scalar product on H A M,c satisfies x¤, ¤y

H A M,c : H A M,c ¢ H A M,c Ñ C : pf, gq Þ Ñ xA M,c f, A M,c gy L 2 pT 2 q .
An orthonormal Fourier basis of H A M,c is given by

n : A ¡1 M,c ϕ n , n Z 2 . (1.6) Lemma 1.2.5 (Dual space of H A M,c ). Under the canonical isomorphism L 2 T 2 ¨! L 2 T 2 ¨¦, the dual space H ¦ A M,c is isomorphic to A 2 M,c H A M,c .
Proof. Under the canonical isomorphism L 2 T 2 ¨! L 2 T 2 ¨¦, we have for each

n 1 , n 2 Z 2 , using (1.6), ϕ ¦ n 1 pϕ n 2 q ϕ ¦ n 1 pA M,c n 2 q pA M,c ϕ n 1 q ¦ p n 2 q A 2 M,c n 1 ¨¦ p n 2 q .
Remark 1.2.6. By Lemma 1.2.5, we associate to every linear functional f ¦

H ¦ A M,c a unique vector f A 2 M,c H A M,c
. Then, for every g H A M,c , the product f g is absolutely integrable with respect to the Lebesgue measure on T 2 .

The decomposition in (1.4) defines two cones

C M : 2 y R 2 | y M ¥ y ¡ M @
and C ¡ M :

2 y R 2 | y M ¤ y ¡ M @ . Example 1.2.7. We let M £ 3 1 2 1
, then λ M 2 c

3. An eigenvector for We set 

λ M for M ¦ is 1 c 3, 1 ¨and an eigenvector for λ ¡1 M is 1 ¡ c 3,
H A M,c : 6 8 7 ņC M Z 2 x n , f y H A M,c n | f H A M,c D F E and H ¡ A M,c : 6 8 7 ņC ¡ M Z 2 x n , f y H A M,c n | f H A M,c D F E . 1 Generic non-trivial resonances for Anosov diffeomorphisms C + M C - M E + M * E - M *
y M y ¡ M .
Hence, we have

H A M,c H A M,c H ¡ A M,c . Comparing for each n C ¡ M the Fourier basis n with ϕ n , it follows immediately that H ¡ A M,c L 2 T 2 ¨.
For each n C M , comparing the Fourier basis n with ϑ c n ¦ , using (1.3), shows H A M,c H 2 pA c q ¦ . We conclude therefore that H A M,c contains linear functionals which do not belong to L 2 T 2 ¨. By construction, the space H A M,c is a rigged Hilbert space, i.e.:

H 2 pA c q H A M,c H 2 pA c q ¦ . (1.7)
Remark 1.2.8. We note that in the construction of H A M,c , the expanding and contracting directions appear in the dual coordinates n Z 2 of the Fourier basis (1.6). This distinguishes H A M,c from the space of Rugh [START_REF]The correlation spectrum for hyperbolic analytic maps[END_REF] where expanding and contracting coordinates are spatial. We observe

n ¦ x n M n ¡ M ¨¦ x M ¦ n ¡ M ¦ ¨ n M ¨¦ x M ¦ n ¡ M ¨¦ x ¡ M ¦ .
Hence, we can rewrite (1.6) as

n pxq exp 2πc n M ¡ n ¡ M ¨¨exp pi 2πn ¦ xq exp 2πc n M ¨exp ¡ i 2π n M ¨¦ x M ¦
a Hardy space on an annulus, with the dual of such a Hardy space. However, we cannot use n as such a basis since n M and n ¡ M are not independent of each other. Nevertheless, we can decompose H A M,c into two generalized Hardy spaces as follows. We define four norms µ j pfq : sup

yA j ¢» T 2 |f px i yq| 2 dx 1 2
, f L 2 T 2 ¨, j t1, 2, 3, 4u , where

A 1 : 3 y R 2 | y ¡ M ¦ p¡c, cq 2 , y M ¦ pc, Vq 2 A , A 2 : 3 y R 2 | y ¡ M ¦ p¡c, cq 2 , y M ¦ p¡V, ¡cq 2 A , A 3 : 3 y R 2 | y ¡ M ¦ p¡c, cq 2 , y M ¦ pc, Vq ¢ p¡V, ¡cq A , A 4 : 3 y R 2 | y ¡ M ¦ p¡c, cq 2 , y M ¦ p¡V, ¡cq ¢ pc, Vq A .
For all f L 2 T 2 ¨the norms µ j pfq cannot be finite but they are so at least for some Fourier polynomials. The spaces H j , j t1, 2, 3, 4u, are the completions with respect to the norms µ j above. E.g. using µ 1 , it holds for all f H 1

µ 1 pfq 2 sup yA 1 ¢» T 2 |f px i yq| 2 dx sup yA 1 ņZ 2 exp p¡4πn ¦ yq |ϕ ¦ n f | 2 sup yA 1 ņZ 2 exp ¡ ¡4π n ¡ M ¨¦ y ¡ M ¦ ¡ 4π n M ¨¦ y M ¦ © |ϕ ¦ n f | 2 sup y M ¦ pc,Vq 2 ņZ 2 exp ¡ 4πc n ¡ M ¡ 4π n M ¨¦ y M ¦ © |ϕ ¦ n f | 2 ņZ 2 n M r0,Vq 2 exp 4πc n ¡ M ¡ 4πc n M ¨|ϕ ¦ n f | 2 ņZ 2 n M r0,Vq 2 |ϕ ¦ n A M,c f | 2 .
Similar calculations for the other three norms show then that the spaces H j , j t1, 2, 3, 4u disjointly partition the space H A M,c with respect to the dual coordinate up to n 0. Since E M is a one dimensional subspace of R 2 , always two of the spaces contain only the constant functions (note that n M 0 implies n 0), say, H 3 and H 4 . Then all vectors in the spaces H 1 and H 2 are holomorphic functions on T 2 i A 1 and on T 2 i A 2 , respectively.

The Koopman operator is nuclear

We set for each r ¡ 0 T r : For every T T r the Koopman operator 

K T : L 2 T 2 ¨Ñ L 2 T 2 ¨: f Þ Ñ f ¥ T is well-
L °nN d n ψ 1,n ψ ¦ 2,n with inf tp ¡ 0 | °nN |d n | p Vu 0 and ψ 1,n , ψ 2,n H, }ψ 1,n } H , }ψ 2,n } H ¤ 1, d n C, n N [34, II, §1, n ¥ 1, p.4].
In particular, such an operator is trace class, hence bounded and admits a trace trL : °nN e ¦ n Le n , invariant for any choice of orthonormal basis e n , n N of H. Moreover, one can show that trL equals the sum, including multiplicity (dimension of corresponding generalized eigenspace), over the spectrum sp pLq of L. The Fredholm determinant, defined for small enough z C by det p1 ¡ zLq : exp

£ ¡ V ņ1 z n n trL n , ( 1.9) 
extends to an entire function in z, having zeroes at z λ ¡1 , λ sp pLq z t0u of same order as the multiplicity of λ.

Theorem 1.3.1 (Nuclearity of K T ). Let M SL 2 pZq be hyperbolic and let r ¡ 0. Then there exist constants δ M ¡ 0 and 0 c 1 r such that for each T T r with dpT, M q ¤ δ M the map

K T : H A M,c 1 Ñ H A M,c 1 : f Þ Ñ f ¥ T
defines a nuclear operator of order 0. In particular, there exists c 2 ¡ 0 depending

1.
3 The Koopman operator is nuclear only on c 1 , M , and }¤} so that for each

n 1 , n 2 Z 2 § § § § x n 1 , K T n 2 y H A M,c 1 § § § § ¤ exp p¡2πc 2 p}n 1 } }n 2 }qq .
For every n 1 , n 2 Z 2 , we set

I n 1 ,n 2 pTq : xϕ n 1 , K T ϕ n 2 y L 2 pT 2 q .
(1.10)

Estimating this "oscillatory integral" is central for Theorem 1.3.1. In the case T M , we have simply

I n 1 ,n 2 pMq 6 8 7 1 if M ¦ n 2 n 1 0 if M ¦ n 2 $ n 1 . (1.11)
The strategy of the proof is as follows. 

|I n 1 ,n 2 pTq| ¤ exp ¡ 2π ¡ ¡n ¦ 2 D xn 2 pyq T y n ¦ 1 y CdpT, 0q }y} 3 }n 2 } ©© .
Proof. By definition

I n 1 ,n 2 pTq xϕ n 1 , K T ϕ n 2 y L 2 pT 2 q » T 2 exp pi2π pn ¦ 2 T pxq ¡ n ¦ 1 xqq dx.
Since T T r , the Z 2 -invariance of the integrand follows. By holomorphicity of T on A r , we can change the path of integration to x Þ Ñ x iy for every y p¡r, rq 2 .
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Therefore for any y p¡r, rq 2

|I n 1 ,n 2 pTq| ¤ » T 2 exp p2π pn ¦ 1 y ¡ pn ¦ 2 T px i yqqqq dx,
where is the imaginary part. We expand T (or rather its lift to R 2 ) at x T 2 in a Taylor series to the second order. This yields

T px i yq T pxq i D x T y P px i yq R 2 px i yq .
Here, P px i yq is the second order term of the expansion which is R 2 -valued, and R 2 is the remainder of the series expansion. We find therefore

T px iyq D x T y R 2 px i yq . Since T is holomorphic we find a constant C ¡ 0 independent of T such that |n ¦ 2 R 2 px i yq| ¤ CdpT, 0q }n 2 } }y} 3 .
We are left with the evaluation of

» T 2 exp p¡2π pn ¦ D z T yqq dz.
Using (1.12) yields the result.

The following abbreviation is used in the remaining section. We set for each

y R 2 |y| M : y M ¡ y ¡ M . (1.13)
Lemma 1.3.3 (Directional inequality). Let M SL 2 pZq be hyperbolic. Let ¡ 0 and κ ¥ 0 and let R : R 2 Ñ R ¥0 be a map such that for all z R 2 with }z} it holds Rpzq ¤ κ }z} . Then there exists

c M ¡ 0 such that if κ c M there exist 0 c 2 c 1 such that for all n 1 , n 2 Z 2 there exists y n 1 ,n 2 R 2 independent of R with }y n 1 ,n 2 } such that it holds ¡c 1 p|n 1 | M ¡ |n 2 | M q ¡ pn ¦ 2 M ¡ n ¦ 1 q y n 1 ,n 2 }n 2 } R py n 1 ,n 2 q ¤ ¡c 2 p}n 1 } }n 2 }q .
Proof. We assume 0 c 2 ¤ c 1 . For n 1 n 2 0 there is nothing to prove. For every py 1 , y 2 q R 2 we set |py 1 , y 2 q| :

y 2 1 y 2 2 . We let 0 c1 ¤ 1 ¤ c2 such that c¡1 2 y M y ¡ M ¨¤ }y} ¤ c¡1 1 |y| , for all y R 2 .
(1.14)

Whenever n 2 $ 0 we find a linear map M a such that M a n 2 M ¦ n 2 ¡ n 1 and whenever n 1 $ 0 we find a linear map

M b such that M b n 1 M ¦ n 2 ¡ n 1 .
For now we let κ ¡ 0 be a variable which will be fixed later on, independently of n 1 and n 2 . We consider the following four cases

(a) }n 2 } ¡ 0 and }n 2 } ¥ }n 1 } (i) }M a n 2 } ¥ κ }n 2 }, (ii) }M a n 2 } κ }n 2 }, (b) }n 1 } ¡ 0 and }n 1 } ¥ }n 2 } (i) }M b n 1 } ¥ κ }n 1 } , (ii) }M b n 1 } κ }n 1 }.
We assume Case (a)(i). For every δ ¡ 0 we let

y δM a n 2 }n 2 } . It follows, using (1.14), that ¡ pn ¦ 2 M ¡ n ¦ 1 q y ¡n ¦ 2 M ¦ a y ¤ ¡c 2 1 }M a n 2 } }y} . (1.15) 
We recall |¤| M from (1.13). Using that c 1 c 2 ¡ 0 and that (a) holds, we estimate

¡c 1 p|n 1 | M ¡ |n 2 | M q ¤ c 1 p}n 1 } }n 2 }q ¡c 2 p}n 1 } }n 2 }q pc 1 c 2 q p}n 1 } }n 2 }q ¤ ¡c 2 p}n 1 } }n 2 }q 2 pc 1 c 2 q }n 2 } .
Using (a)(i) and the assumed bound on R for }y} , we have

¡c 1 p|n 1 | M ¡ |n 2 | M q ¡ }n 2 } ¢ c2 1 M a n 2 }n 2 } }y} ¡ R pyq ¤ ¡ c 2 p}n 1 } }n 2 }q 2pc 1 c 2 q ¡ c2 1 κ ¡ κ ¨}y} ¨}n 2 } . (1.16)
We put c M : c2

1 κ. Any value }y} p0, q can be attained by controlling δ. Assuming that c M ¡ κ, it follows from (1.15) and (1.16) that

0 c 1 c 2 c M ¡ κ 2 .
(1.17)

The reasoning in Case (b)(i) is completely analogous and yields the same bounds
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In Case (a)(ii) and (b)(ii), we take y 0, where Rp0q 0 by assumption on R.

We assume now Case (a)(ii). We find, using (1.14),

pM a n 2 q M pM a n 2 q ¡ M ¤ c2 }M a n 2 } c2 κ }n 2 } ¤ c2 κ ¡ n 2,M n ¡ 2,M © . (1.18)
We have

pM a n 2 q M M ¦ n 2,M ¡ n 1,M and pM a n 2 q ¡ M M ¦ n ¡ 2,M ¡ n ¡ 1,M .
Recalling (1.5), this allows the estimate

pM a n 2 q M pM a n 2 q ¡ M ¥ M ¦ n 2,M ¡ n 1,M ¡ M ¦ n ¡ 2,M n ¡ 1,M ¥ λ M n 2,M ¡ λ ¡1 M n ¡ 2,M ¡ n 1,M n ¡ 1,M .
Together with (1.18) we find therefore

¡ |n 1 | M ¡ n 1,M n ¡ 1,M ¡ pλ M ¡ κc 2 q n 2,M λ ¡1 M κc 2 ¨ n ¡ 2,M .
We set

κ : λ M ¡ κc 2 ¡ 1 and κ ¡ : 1 ¡ λ ¡1 M ¡ κc 2 .
We finally estimate

¡c 1 p|n 1 | M ¡ |n 2 | M q ¡c 1 κ n 2,M ¡ c 1 κ ¡ n ¡ 2,M . Note that we have κ ¡ κ ¡ because λ M ¡ 1. Assuming that c 1 κ ¡ ¥ 2c 2 , we find ¡c 1 κ ¡ n 2,M ¡ c 1 κ ¡ n ¡ 2,M ¡c 1 κ ¡ }n 2 } ¤ ¡2c 2 }n 2 } ¤ ¡c 2 p}n 1 } }n 2 }q .
In Case (b)(ii) we consider the bounds

|n 2 | M λ M n ¡ 1,M ¡ λ ¡1 M n 1,M ¤ ¡ pM ¦ q ¡1 M b n 1 © M ¡ pM ¦ q ¡1 M b n 1 © ¡ M ¤ c2 pM ¦ q ¡1 M b n 1 κc 2 pM ¦ q ¡1 }n 1 } . Therefore κ ¡ is replaced by 1 ¡ λ ¡1 M ¡
pM ¦ q ¡1 κc 2 which we require to be positive. Since pM ¦ q ¡1 ¡ 1, this yields the stronger conditions

0 κ 1 ¡ λ ¡1 M pM ¦ q ¡1 c2 and c 2 ¤ 1 ¡ λ ¡1 M ¡ pM ¦ q ¡1 κc 2 2 c 1 . (1.19)
Any such choice for κ is independent of n 1 and n 2 and fixes c M . Using (1.19) for an upper bound on c 2 and (1.17), we find the stronger condition

0 c 1 c M ¡ κ 3 ¡ λ ¡1 M .
Therefore the choices of c 1 and c 2 are valid if κ c M . They depend only on , M and }¤} and not on n 1 or n 2 .

Proposition 1.3.4 (Upper bound on |I n 1 ,n 2 pTq| (II)). Let M SL 2 pZq be hyperbolic and let r ¡ 0. Then there exist constants 0 δ M and 0 c 2 c 1 r such that for each n 1 , n 2 Z 2 and each T T r with dpT, M q ¤ δ M it holds that

exp p¡2πc 1 p|n 1 | M ¡ |n 2 | M qq |I n 1 ,n 2 pTq| ¤ exp p¡2πc 2 p}n 1 } }n 2 }qq . Proof. By Lemma 1.3.2 there is a constant C ¡ 0 independent of T such that for each y p¡r, rq 2 and n 1 , n 2 Z 2 it holds that |I n 1 ,n 2 pTq| ¤ exp ¡ 2π ¡ ¡n ¦ 2 D xn 2 pyq T y n ¦ 1 y CdpT, 0q }y} 3 }n 2 } ©© . (1.20) We rewrite n ¦ 2 D xn 2 pyq T y n ¦ 2 M y n ¦ 2 D xn 2 pyq pT ¡ M q y,

and set

Rpyq :

6 8 7 n ¦ 2 }n 2 } D xn 2 pyq pM ¡ T q y CdpT, 0q }y} 3 if n 2 $ 0 0 if n 2 0
.

Let δ M ¡ 0 and assume that dpT, M q ¤ δ M . We choose 0 ¤ r sufficiently small such that for all y R 2 with }y} there is κ ¡ 0 such that |Rpyq| ¤ κδ M .

Since dpT, 0q ¤ dpT, M q dpM, 0q ¤ δ M dpM, 0q this choice of is independent 

such that if dpT, M q ¤ δ M it holds C n 1 C ¡1 n 2 |I n 1 ,n 2 pTq| ¤ exp p¡2πc 2 p}n 1 } }n 2 }qq , (1.21) 
where

C n : exp ¡2πc 1 n M ¡ n ¡ M ¨¨, n Z 2 .
We put c : c 1 and M in Definitions 1.2.2 and 1.2.4, giving a linear map A M,c 1 and a Hilbert space H A M,c 1 . Recalling (1.6), and assuming that K T :

H A M,c 1 Ñ H A M,c 1 is well-defined, we have § § § § x n 1 , K T n 2 y H A M,c 1 § § § § § § § § e ϕ n 1 , A M,c 1 K T A ¡1 M,c 1 ϕ n 2 i L 2 pT 2 q § § § § C n 1 C ¡1 n 2 |I n 1 ,n 2 pTq| . (1.22) 
Using (1.21) to estimate the right-hand side, the bound in Theorem 1.3.1 follows.

We next obtain well-definedness and nuclearity of order 0 of

K T . Let f H A M,c 1
and put g : A M,c 1 f . We have then

K T f H A M,c 1 ô A M,c 1 K T f L 2 T 2 ¨ô ņZ 2 |ϕ ¦ n A M,c 1 K T f | 2 V ô ņ 1 Z 2 § § § § § § ņ 2 Z 2 ϕ ¦ n 1 A M,c 1 K T A ¡1 M,c 1 ϕ n 2 ϕ ¦ n 2 g § § § § § § 2 V ô ņ 1 Z 2 § § § § § § ņ 2 Z 2 C n 1 C ¡1 n 2 I n 1 ,n 2 pTq ϕ ¦ n 2 g § § § § § § 2 V.
Using (1.21) and the Cauchy-Schwartz inequality, it follows that

ņ 1 Z 2 § § § § § § ņ 2 Z 2 C n 1 C ¡1 n 2 I n 1 ,n 2 pTq ϕ ¦ n 2 g § § § § § § 2 ¤ £ ņZ 2 e ¡4πc 2 }n} 2 }g} 2 L 2 pT 2 q V.
This gives the well-definedness of K T . Now, using the Cauchy-Schwartz inequa-1.4 Non-trivial resonances for the Koopman operator

lity, we have § § § § x n , K T f y H A M,c 1 § § § § 2 ¤ mZ 2 § § § § x n , K T m y H A M,c 1 § § § § 2 }f} 2 H A M,c 1 . Using (1.22) and (1.21) to bound § § § § x n , K T m y H A M,c 1 § § § § , we find a constant C ¡ 0 such that § § § § xC exp p2πc 2 }n}q n , K T f y H A M,c 1 § § § § ¤ }f} H A M,c 1 .
This allows the representation of K T as

K T f ņZ 2 C ¡1 exp p¡2πc 2 }n}q xC exp p2πc 2 }n}q n , K T f y H A M,c 1 n ,
from which nuclearity of order 0 follows. Finally, a brief inspection of the proofs for Lemma 1.3.3 and Proposition 1.3.4 gives the statement about the constants.

Non-trivial resonances for the Koopman operator

Given any hyperbolic matrix M SL 2 pZq, we find by Theorem 1.3.1 constants 0 δ M and c ¡ 0 such that for each map T T r , satisfying dpT, M q ¤ δ M , the operator K T acting on the Hilbert space H A M,c is nuclear of order 0. Therefore it has a well-defined trace trK T :

ņZ 2 x n , K T n y H A M,c . (1.23)
The map T is an Anosov diffeomorphism (for all small enough δ M ), by structural stability [START_REF] Hasselblatt | A First Course in Dynamics: with a Panorama of Recent Developments[END_REF]Theorem 9.5.8]. Then the map T has the same number N M |det pid ¡Mq| of fixed points as the matrix M . We recall a well-known result [START_REF] Faure | Ruelle-Pollicott resonances for real analytic hyperbolic maps[END_REF]Proposition 9].

Lemma 1.4.1 (Trace formula for K T ). Let M SL 2 pZq be hyperbolic and let r ¡ 0. Then there exist constants δ M ¡ 0 and c ¡ 0 such that for each T T r with dpT, M q ¤ δ M , letting

K T act on H A M,c , it holds trK T Ţ pxqx |det pid ¡ D x T q| ¡1 .
For the convenience of the reader, we give a proof:

1 Generic non-trivial resonances for Anosov diffeomorphisms

Proof. Using Theorem 1.3.1 gives constants c ¡ 0 and δ M ¡ 0 and welldefinedness of K T . For small enough δ M ¡ 0, by structural stability and Lemma A.1 (ii), the map id ¡T can be partitioned into N M surjective submaps. In particular, there are diffeomorphisms y j :

D j Ñ T 2 , D j T 2 , 1 ¤ j ¤ N M such that id ¡T N M j1 y j . Then, using (1.6), we have for each n Z 2 x n , K T n y H A M,c e ϕ n , A M,c K T A ¡1 M,c ϕ n i L 2 pT 2 q » T 2 exp pi 2πn ¦ pT ¡ idq pxqq dx N M j1 » y ¡1 j pT 2 q exp pi 2πn ¦ y j pxqq dx N M j1 » T 2 exp pi 2πn ¦ zq § § §det ¡ id ¡ D y ¡1 j pzq T © § § § dz.
For N N and z T 2 the following sum 

D N pzq :
B 1 B 2 , }¤} ¨and pB 1 B 2 , }¤} q , where }f} : inf t}f 1 } 1 |f 2 | | f 1 B 1 , f 2 B 2 , f f 1 f 2 u and }f} : max t}f} 1 , |f|u .
Suppose that B is dense in B 1 and B 2 . Let L : B Ñ B be a linear map which preserves the spaces B , B 1 and B 2 and is a bounded linear operator on the restrictions L |B 1 and L |B 2 . Then the part of the spectrum of L |B 1 and of L |B 2 which lies outside the closed disc with radius larger to both essential spectral radii of L |B 1 and L |B 2 coincide. Moreover, the corresponding generalized eigenspaces of L |B 1 and L |B 2 coincide and are contained in B .

For the applications that we have in mind, the map L is just the Koopman or transfer operator, defined on B 1 and B 2 , respectively, extended to the space B .

The spectrum sp pK T q of K T on H A M,c is invariant under complex conjugation since T is real. The constant functions on T 2 are all fixed by K T . Therefore we have 1 sp pK T q. If we take T M k , k N in Lemma 1.4.1, it follows that trK T 1. Hence, the dynamical determinant is just d T pzq 1 ¡ z, also noted in [55, p.3]. We find immediately that 1 is the only Ruelle resonance. We show now that this finding is non-generic in the following sense. The rest of this section is devoted to an idea of Naud [START_REF] Naud | Anosov diffeomorphisms with non-trivial Ruelle spectrum[END_REF]. We put for every r ¡ 0

B r : 2 T T r | The lift of T to R 2 is Z 2 -periodic @ . (1.25)
Endowed with the uniform norm this is a Banach space. 

B M : B r Ñ R : ψ Þ Ñ N M ¡1 Mxx tr ¡ pid ¡Mq ¡1 D x ψ
© never vanishes on G. For all ψ G there exists 0 ¡ 0 such that for all

0 trK M ψ 1 B M pψq O 2 ¨.
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In particular, for all sufficiently small ¡ 0 it holds sp pK M ψ q z t0, 1u $ r.

Lemma 1.4.4 (Real analyticity of fixed points). Let M SL 2 pZq be hyperbolic and r ¡ 0. Then for all ψ B r the fixed points of the map

M δψ

are real analytic functions of δ where δ lies in a real neighborhood of 0.

Proof. We set for δ R

F pδ, xq : M x δψpxq ¡ x.
We fix a point y j : p0, x j q where x j , 1 ¤ j ¤ N M , is a fixed point of M . By construction, the map F has a holomorphic extension to C ¢ A r . Since M is hyperbolic, we have det D x j pF p0, ¤qq $ 0. We apply the Holomorphic Implicit Function Theorem [START_REF] Krantz | Function Theory of Several Complex Variables[END_REF]Theorem 1.4.11] on F with F py j q 0. This yields a holomorphic function x j pδq such that x j p0q x j and which is obviously real analytic for δ R in a neighborhood of 0.

Proof of Theorem 1.4.3. Let δ R and ψ B r and set M : M δψ. We choose δ small in Lemma 1.4.4 which gives for each fixed point x of M a real analytic function x with x p0q x. Using a Taylor expansion on x at 0, we have

x pδq x Opδq.

Using real analyticity of the derivative D x ψ, we have

D x ψ ¡ D xpδq ψ Opδq.
We write now for each fixed point

x of M § § §det ¡ id ¡ D xpδq M © § § § § § det id ¡M ¡ δ D x ψ δ D x ψ ¡ D xpδq ψ ¨¨ § § N M § § §det ¡ id ¡ pid ¡Mq ¡1 δ D x ψ δ D x ψ ¡ δ D xpδq ψ ¨¨© § § § N M § § §det ¡ id ¡δ pid ¡Mq ¡1 D x ψ O δ 2 ¨© § § § N M ¡ 1 ¡ δtr ¡ pid ¡Mq ¡1 D x ψ © O δ 2 ¨© .
We have by Lemma 1.4.1 for δ small enough

trK M 1 δ N M Mxx tr ¡ pid ¡Mq ¡1 D x ψ © O δ 2 ¨.

Now we set

B M : B r Ñ R : ψ Þ Ñ N M ¡1 Mxx tr ¡ pid ¡Mq ¡1 D x ψ © .
We next check that this is a non-trivial linear functional. Note that formally B M pid ¡Mq 2. However, no non-zero linear map is in the space of additive perturbations B r . We denote by v j , j t1, 2u the j-th column of the matrix pid ¡Mq ¦ ¨¡1 and we fix now j. Let ψ 0 : T i p¡r, rq Ñ C be holomorphic and bounded. For every px 1 , x 2 q : x T 2 we put ψ pxq : ψ 0 px j q v j .

By construction, we have ψ B r and we evaluate

B M pψq v ¦ j v j N M Mxx ψ p1q 0 px j q .
The right-hand side is a finite sum and by taking for ψ 0 a suitable Fourier polynomial (e.g. a shifted sine with sufficiently high frequency), we can establish

B M pψq $ 0. We set G : B ¡1 M pRz t0uq. By continuity of B M , the set G is open
and dense in B r .

Non-trivial resonances for the transfer operator

As before, we consider maps T T r , r ¡ 0 which are sufficiently C 1 -close to a hyperbolic linear map M SL 2 pRq. We turn to the adjoint of K T , acting on the dual space H ¦ A M,c , which we denote by L T .

Lemma 1.5.1 (Transfer operator). Let M SL 2 pZq be hyperbolic and let r ¡ 0.

Then there exist constants 0 δ M and c ¡ 0 such that for each T T r with dpT, M q ¤ δ M the map

L T : H ¦ A M,c Ñ H ¦ A M,c : f Þ Ñ f |det D T | ¥ T ¡1
defines a nuclear operator of order 0, conjugate to K T . In particular, sp pL T q sp pK T q .

Proof. By Theorem 1.3.1 there is 0 δ M , c ¡ 0 and H A M,c such that K T acting on H A M,c is nuclear of order 0 if dpT, M q ¤ δ M . The same can be said about its adjoint, acting on H ¦ A M,c (e.g. see [57, p. 77]). The trace of K T and L T coincide, so does their Fredholm determinant, and hence their resonances. By definition

of the adjoint, df ¦ H ¦ A M,c , dg H A M,c : pL T f q ¦ pgq f ¦ pK T gq. Using Lemma 1.2.5, it holds f ¦ pK T gq e A ¡2 M,c f, K T g i H A M,c » T 2 ¡ A ¡1 M,c f © pxq pA M,c K T gq pxq dx » T 2 f pxq pK T gq pxq dx » T 2 ¢ f |det D T | ¥ T ¡1 pxq g pxq dx f A ¡2 M,c ¢ f |det D T | ¥ T ¡1 , g p H A M,c ¢ f |det D T | ¥ T ¡1 ¦ pgq .
By Lemma 1.5.1, recalling (1.6), and Lemma 1.4.1 it holds

trL T ņZ 2 L T ¦ n p n q Ţ pxqx |det pid ¡ D T q| ¡1 .
We have the equality

d T pzq det p1 ¡ zK T q det p1 ¡ zL T q .
We give now analogously to Theorem 1.4.3 a spectral result for the transfer operator (recall B r from (1.25)).

Lemma 1.5.2 (Non-trivial Ruelle resonances (II)). Let M SL 2 pZq be hyperbolic. For each r ¡ 0 there exists an open and dense set G B r such that for all ψ G there exists 0 ¡ 0 such that for all 0 ¤ 0 sp pL M ψ q z t0, 1u $ r.

Proof. By Theorem 1.4.3 we know that under every perturbation ψ G there is 0 ¡ 0 such that we find for all 0 ¤ 0 non-trivial Ruelle resonances. Using Lemma 1.5.1 for well-definedness of L M ψ and for the relation sp pL T q sp pK T q, the result follows.

Clearly, the Lebesgue measure (by Remark 1.2.6, the constant density 1) is fixed by L M . This does not persist under a generic perturbation of M . However, the spectral relation in Lemma 1.5.1 implies that L T fixes some functionals in H ¦ A M,c . In particular, using Remark 1.4.2, we can apply [START_REF] Blank | Ruelle-Perron-Frobenius spectrum for Anosov maps[END_REF]Theorem 3] to our transfer operators L M and L T . Hence, the eigenvalue 1 of L T is simple and the projector Π ¦ 1 onto the corresponding eigenspace of L T gives us the SRB measure

µ SRB : Π ¦ 1 1 ¦ ,
in the usual sense. (It is absolutely continuous with respect to Lebesgue measure in the unstable direction.)

We finish this section by showing the existence of non-zero perturbations ψ B r which allow the determinant det pM D x ψq to remain constant or to vary for x T 2 . Lemma 1.5.3 (Volume under perturbations). Let r ¡ 0 and let M SL 2 pZq be hyperbolic. Then there exist non-zero maps ψ B r in each of the following cases:

(i) For all ¡ 0 and all x T 2 it holds det pM D x ψq 1.

(ii) For all ¡ 0 and Lebesgue almost all x T 2 it holds |det pM D x ψq| $ 1.

In particular, the map ψ can be chosen such that for all small ¡ 0 the corresponding transfer operator

L M ψ admits non-trivial Ruelle resonances.
Proof. We prove first Claim (i), including the statement about the non-trivial Ruelle resonances. We will apply Lemma A.2 (i). We choose j t1, 2u, r ¡ 0 and let φ : T i p¡r, rq Ñ C be a holomorphic and bounded map. For α R 2 we set for every px 1 , x 2 q : x T 2 ψ φ,α pxq : pα 1 φ px j q , α 2 φ px j qq .

We put d : 2, j, T : M , φ and T φ : ψ φ,α (e.g. as lift to R 2 ) in Lemma A.2.

Since M is a constant matrix, say, M 

α 1 d α 2 b if j 1 or α 1 c α 2 a if j 2.
(1.26)

1 Generic non-trivial resonances for Anosov diffeomorphisms

Hence, we have non-zero solutions in α independent of x. We choose such a solution α and take ψ ψ φ,α . Then ψ B r which yields det pM D x ψq 1 for every ¡ 0. We are free to choose any suitable φ. In particular, Theorem 1.4.3 yields a linear functional B M and a dense subset G B r on which B M is non-zero. We have to make sure that ψ G. Then for small L M ψ admits non-trivial Ruelle resonances by Lemma 1.5.2. To this end, we evaluate B M at ψ which yields

B M pψq B M pψ φ,α q N M ¡1 Mxx tr ¡ pid ¡Mq ¡1 D x ψ φ,α © v ¦ j α N M Mxx φ p1q px j q ,
where v ¦ j is the j-th row of pid ¡Mq ¡1 . The sum over the fixed points of M can be made non-zero by a suitable Fourier polynomial. Now we have

v ¦ 1 α p1 ¡ dq α 1 cα 2 det pid ¡Mq or v ¦ 2 α bα 1 p1 ¡ aq α 2 det pid ¡Mq . Using (1.26), we find v ¦ 1 α c ¡ b b d ¨α2 det pid ¡Mq or v ¦ 2 α b ¡ c c a ¨α1
det pid ¡Mq .

Both equations can never be zero since M is not diagonal. We prove now Claim (ii) by modifying the map ψ. For δ Rz t0u we set α : α δw j , where w j is the j-th column of M and put r ψ : ψ φ, α. We have

det ¡ M D x r ψ © det ¡ M D x ψ D x ¡ r ψ ¡ ψ ©© 1 δ φ p1q px j q .
Since φ is not constant, the right-hand side differs from 1 (and ¡1) for Lebesgue 

almost all x. Since v ¦ j α v ¦ j α δv ¦ j w j $ 0
g α 1 ¥ g α 2 g α 1 α 2 g α : M Ñ M, α, α 1 , α 2 R,
to study the geodesic flow on the unit tangent bundle of closed Riemannian manifolds with variable negative sectional curvature [START_REF] Anosov | Geodesic flows on closed Riemann manifolds with negative curvature, 1st[END_REF], [START_REF]Roughness of geodesic flows on compact Riemannian manifolds of negative curvature[END_REF]. As pointed out by was used originally only in the case of the geodesic flow, e.g. see [49, p.84] or [START_REF] Hirsch | Smoothness of horocycle foliations[END_REF].)

For every x M the flow trajectory h R pxq is such a contracting leaf. Statistical properties of contact Anosov flows are nowadays fairly well understood (see [START_REF] Dolgopyat | On decay of correlations in Anosov flows[END_REF], [START_REF]Compact locally maximal hyperbolic sets for smooth maps: fine statistical properties[END_REF], [START_REF] Liverani | On contact Anosov flows[END_REF]). Regarding the horocycle flow one knows by the work of Bowen and

Marcus unique ergodicity of and minimality of the horocycle flow (e.g. see [START_REF] Bowen | Unique ergodicity for horocycle foliations[END_REF], [START_REF]Unique ergodicity of the horocycle flow: variable negative curvature case[END_REF]). The corresponding invariant probability measure µ will play an important role below. (It is related to but distinct from the measure of maximal entropy of the flow.)

Since the horocycle flow is induced by the Anosov flow the following pointwise equality for all x M holds for a suitable function τ pρ, α, xq:

g α ¥ h ρ pxq h τ pρ,α,xq ¥ g α pxq .
We call τ pρ, α, xq the renormalization time.

This kind of renormalization has been used effectively in the work of Flaminio

and Forni [START_REF] Flaminio | Invariant distributions and time averages for horocycle flows[END_REF] to give a precise understanding of the horocycle integral

γ x pϕ, T q ! » T 0 ϕ ¥ h ρ pxq d ρ, x M, T ¡ 0,
in the setting of unit speed geodesic flows on hyperbolic compact (more generally finite volume) Riemannian surfaces with constant negative sectional curvature (i.e. Riemann surfaces), for ϕ : M Ñ R in Sobolev spaces of positive order. In this case, h top 1. Flaminio and Forni found that the speed of convergence of γ x pϕ, T q {T to µ pϕq as T Ñ V is controlled by invariant distributions under the push-forward of the horocyclic vector field. These distributions are also eigendistributions under the push-forward of the geodesic vector field and the eigenvalues give the powers of T appearing in the expansion of T ¡1 γ x pϕ, T q ¡ µ pϕq.

Their approach inspired Giulietti and Liverani [START_REF] Giulietti | Parabolic dynamics and Anisotropic Banach spaces[END_REF] to study a toy model, replacing the Anosov flow with a hyperbolic diffeomorphism, using the renormalization dynamics as a key to study γ x pϕ, T q. They show analogously (for the corresponding invariant measure µ) that the speed of convergence to zero of T ¡1 γ x pϕ, T q ¡ µ pϕq is controlled by eigendistributions for a weighted transfer operator of the hyperbolic diffeomorphism.

Giulietti and Liverani conjectured that a similar behavior holds in the setting of more general Anosov flows, e.g. for the geodesic flow on the unit tangent bundle of a Riemannian manifold with variable negative sectional curvature [30, Conjecture 2.12]. More precisely, we expect for smooth enough observables ϕ an expansion like

γ x pϕ, T q T » ϕ d µ δ λ htop T λ h top cpλ, T, xqO λ pϕq E T,x pϕq , (2.1)
with E T,x OpT δ h top q, uniformly in x. The O λ are generalized eigendistributions associated to the eigenvalue λ for the adjoint of the generator X V of a certain weighted transfer operator L α,φα , acting on an anisotropic Banach space (see below). The real parameter δ is an upper bound on the essential spectral bound of X V . The complex coefficients cpλ, T, xq are bounded from above independently of x by |log T | c for some c cpλq ¥ 0 which depends whether λ 0, λ 0 or λ ¡ 0 and if there are non-trivial Jordan blocks for λ. This is analogous to the bounds in [START_REF] Flaminio | Invariant distributions and time averages for horocycle flows[END_REF], [START_REF] Giulietti | Parabolic dynamics and Anisotropic Banach spaces[END_REF]. However our methods show no substantial improvement of the error term E T,x if the summation in λ includes some λ 0 (this is seen also in [START_REF] Flaminio | Invariant distributions and time averages for horocycle flows[END_REF], [START_REF] Giulietti | Parabolic dynamics and Anisotropic Banach spaces[END_REF]). We restrict ourself therefore to δ ¥ 0 (i.e. always λ ¡ 0).

The main result of this work, Theorem 2.5.7, gives conditions under which such an asymptotic expansion indeed holds, for some δ ¡ 0, for codimension one topologically mixing Anosov flows, under an assumption of "spectral gap with (Dolgopyat) bounds" (Condition 2.4.11 below). In Proposition 2.5.10 we specialize to C 3 contact Anosov flows in dimension d 3. For compact Riemann surfaces (recall that this is the constant negative curvature case) Randol [START_REF] Randol | Small eigenvalues of the Laplace operator on compact Riemann surfaces[END_REF] proved that there exist eigenvalues arbitrarily close to 1 (his result is for the associated Laplacian). This provides examples with a non-trivial expansion.

Analogous to the work of Giulietti and Liverani [START_REF] Giulietti | Parabolic dynamics and Anisotropic Banach spaces[END_REF], the key idea to study γ x pϕ, T q is to introduce a weighted transfer operator family

L α,φα : W s,t,q p Ñ W s,t,q p , L α,φα ϕ φ α ¤ ϕ ¥ g ¡α , α ¥ 0,
where the weight is φ α f ρ τ p0, ¡α, ¤q and where W s,t,q p is an anisotropic Banach space with certain real regularity parameters s, t, q and p. In the case of the unit speed parametrization of the flow h ρ , the weight f ρ τ p0, ¡α, ¤q is just the Jacobian along the strong stable distribution evaluated at negative time ¡α.

The paper is organized as follows: After recalling some facts about Anosov flows in Section 2.2, the transfer operator L α,φα is defined in Section 2.3.1 (for more general weights) and the Banach spaces W s,t,q p are constructed in Section 2.3.2.

These spaces are a flow analogue to the spaces constructed by Baladi and Tsujii [START_REF] Baladi | Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms[END_REF] to study hyperbolic diffeomorphisms. Anisotropic Banach spaces are now considered a standard tool (yet with still ongoing research) for investigating transfer operators and zeta functions associated to hyperbolic dynamics [START_REF]The quest for the ultimate anisotropic Banach space[END_REF]- [START_REF] Baladi | Exponential Decay of Correlations for Piecewise Cone Hyperbolic Contact Flows[END_REF], [START_REF] Bandtlow | Spectral structure of transfer operators for expanding circle maps[END_REF], [START_REF] Blank | Ruelle-Perron-Frobenius spectrum for Anosov maps[END_REF], [START_REF] Dolgopyat | On decay of correlations in Anosov flows[END_REF], [START_REF] Giulietti | Anosov flows and dynamical zeta functions[END_REF], [START_REF]Compact locally maximal hyperbolic sets for smooth maps: fine statistical properties[END_REF], [START_REF] Liverani | On contact Anosov flows[END_REF], [START_REF]The Ruelle spectrum of generic transfer operators[END_REF], [START_REF] Tsujii | Exponential mixing for generic volume-preserving Anosov flows in dimension three[END_REF], [START_REF]On cohomological theory of dynamical zeta functions[END_REF]. Although we do not study here the dynamical zeta function for the transfer operator L α,φα , we believe that this space could be a suitable choice to be dealt with.

In Section 2.4 we establish properties of the transfer operator, its generator X V and the resolvent R z . Most of these results do not require the contact assumption. Among those are norm estimates which yield a Lasota-York inequality for the resolvent. This is Theorem 2.4.5. Then in Lemma 2.4.10 one obtains a strip in the spectrum of the generator, containing at most countable eigenvalues of finite multiplicity. Those are precisely the eigenvalues λ in the summation over λ in (2.1). Finally, these results are used in Section 2.5 to give the expansion (2.1) of γ x pϕ, T q in terms of eigendistributions and eigenvalues of X V under a spectral gap with bounds condition, see Condition 2.4.11.

We end this introduction with two remarks about possible further work:

First, the conjecture that the distributions O v appearing in the expansion (2. Guillarmou [START_REF] Faure | Horocyclic invariance of Ruelle resonant states for contact Anosov flows in dimension 3[END_REF] in dimension 3 for smooth contact Anosov flows.

Second, the renormalization time τ pρ, α, xq inherits the regularity properties of the underlying Anosov foliation and horocycle flow, i.e. the regularity in x is expected to be no more than Hölder. To deal with such irregular flows one can lift the dynamics to the Grassmanian. This has been used with success, e.g. in [START_REF] Giulietti | Parabolic dynamics and Anisotropic Banach spaces[END_REF], [START_REF]Compact locally maximal hyperbolic sets for smooth maps: fine statistical properties[END_REF] and more recently in [START_REF]On cohomological theory of dynamical zeta functions[END_REF]. However in this work we wish to avoid such technicalities and we will make additional assumptions ensuring that τ pρ, α, xq enjoys sufficient regularity.

In particular, if the Anosov flow is C r we require f ρ τ p0, α, ¤q to be C r¡1 for all α ¥ 0. This is reasonably only if r is small since the regularity of the stable foliation is usually only Hölder. In the setting of C 3 contact Anosov flows in dimension 3 we can take r 2 ¡ for all ¡ 0 by a result of [START_REF] Hurder | Differentiability, rigidity and Godbillon-Vey classes for Anosov flows[END_REF] (see also Remark 2.5.8 in Section 2.5).

The Appendix comprises our computational tools. On the lowest level, we utilize Fourier transform, integration by parts, and Young's inequality [17, Theorem 3.9.4] to estimate convolutions.

Geometric setting

Let M be a closed, connected, orientable, smooth Riemannian manifold of di-

mension d ¥ 3. We let g α : M Ñ M , α R, be a C r Anosov flow on M 1 for r ¡ 1.
That is, there exists a decomposition of the tangent space T M of M as

2.2 Geometric setting a direct sum T M E ¡ E E 0 , (2.2) 
such that for some constants C ¥ 1, 0 θ 1 and every α ¥ 0 }D g α v} ¤ Cθ α }v} , for all v E ¡ , }D g ¡α v} ¤ Cθ α }v} , for all v E , (2.3) and E 0 xXy where X is the generator of the Anosov flow

X : f α g ¡α|α0 . (2.4)
Note that the conditions in (2.3) are closed. Hence by compactness of M the distributions E ¡ and E are uniformly continuous and so are the weak-stable E ¡ E 0 and weak-unstable E E 0 distributions. The restriction of the tangent space to a base point x M is denoted by

T x M E ¡,x E ,x E 0,x , (2.5) 
The dimensions of those vector spaces do not vary with x and we set for some

x M d ¡ : dim E ¡,x . (2.6)
The cotangent space T ¦ M is the dual space of T M and has the canonical splitting

T ¦ M E ¦ ¡ E ¦ E ¦ 0 and T ¦ x M E ¦ ¡,x E ¦ ,x E ¦ 0,x , x M, (2.7) 
where

E ¦ ¡ ! pE E 0 q u , E ¦ ! pE ¡ E 0 q u , E ¦ 0 ! pE ¡ E q u .
This splitting is pD g α q tr -invariant and satisfies an analogue of (2.3). A contact form is a 1-form η T ¦ M such that η d¡1 2 n1 d η vanishes nowhere (d η is the exterior derivative of η). An Anosov flow is a contact flow if there exists a C 1 contact form η which is preserved by the pullback of g α . Clearly, a contact form can only exist if d is odd.

We mean by "" for sets A, B T ¦ M (or R d ) that

A B ô Ā pint B t0uq .
Here Ā denotes the closure of A and int B the interior of B. We say that a cone A is compactly included in a cone B if and only if A B. We say that a cone A and a cone B are transversal if and only if A B t0u.

We introduce two closed convex cone fields on M in the cotangent space:

For every x M and for every v T ¦

x M we have v v ¡ v v 0 , where v σ E ¦ σ,x , σ t¡, , 0u. For every 0 γ 1 we set ) for all α ¥ 0 so that C 2 θ α γ γ I 1 and for all x M the compact inclusions pD g ¡α q tr C ¡ γ pxq C ¡ γ I pg α pxqq and pD g α q tr C γ pxq C γ I pg ¡α pxqq . (2.9)

C ¡ γ pxq : 2 v T ¦ x M | }v } v 0 ¤ γ }v ¡ } @ , C γ pxq : 2 v T ¦ x M | }v ¡ } v 0 ¤ γ }v } @ . ( 2 
The cones defined in (2. (2.10)

Since g α is C r the chart maps κ ω , ω Ω, are also C r diffeomorphisms. We set

C σ γ,ω : ¤ xVω D κ ¡1 ω ¨tr C σ γ pxq , σ t¡, u , ω Ω.
(2.11)

We require the sets V ω to be small enough such that for small 0 γ ¡ , γ ¤ 1 there exist 0 γ ¦ ¡ , γ ¦ ¤ 1 such that for all ω Ω and for all x V ω pD x κ ω q tr C ¡ γ ¡ ,ω C ¡ γ ¦ ¡ pxq and pD x κ ω q tr C γ ,ω C γ ¦ pxq .

(2.12) This is possible by uniform continuity of the weak-stable and weak-unstable distributions and the flowbox condition in (2.10). Note that the cones C σ γ,ω are not necessarily convex. This poses no problem since the differential is linear and hence the convex closure of C σ γσ,ω is contained in C σ γ ¦ σ pxq (this is already a convex, closed cone) for all x M . Without loss of generality we identify C σ γσ,ω with its convex closure. Definition 2.2.1 (Cone ensemble). Let C ¡ , C R d , d ¥ 3, be transversal, convex, closed cones with non-empty interiors. Let Φ σ : R d z t0u Ñ r0, 1s be C V maps, σ t¡, , 0u, such that

Φ ¡| int C ¡ 1, Φ | int C 1, Φ ¡ Φ Φ 0 1 and C ¡ R d z psupp Φ supp Φ 0 q , C R d z psupp Φ ¡ supp Φ 0 q .
We call Θ : pΦ ¡ , Φ , Φ 0 q a cone ensemble. 2Definition 2.2.2 (Cone hyperbolicity). Let K R d be open and let F : K Ñ F pKq be a diffeomorphism. Let Θ, Θ ¥ be two cone ensembles. Let

C ¡ : R d z psupp Φ supp Φ 0 q . We say that F is pΘ ¥ , Θq-cone hyperbolic on K if there exists C V maps r Φ , r Φ ¥ σ : R d z t0u Ñ r0, 1s such that r Φ | supp Φ , r Φ ¥ σ| supp Φ ¥ σ 1 for all σ t¡, 0u such that for all z K pD z F q tr supp r Φ ¥ ¡ C ¡ and pD z F q tr supp r Φ ¥ 0 R d z supp r Φ .
(2.13)

In Section 2.3.2 an anisotropic Banach space is constructed where the cones C ¡ , C determine the directions of lowest and highest regularity, respectively. The inclusions (2.13) ensure that no parts of higher regularity are mapped to parts of lower regularity.

Lemma 2.2.3 (Existence of admissible cones). Let α R and let ω, ω I Ω. Set V α,ωω I : V ω g α pV ω Iq and set

F ¡α,ωω I : κ ω V α,ωω I ¨Ñ κ ω I V ¡α,ω I ω ¨: y Þ Ñ κ ω I ¥ g ¡α ¥ κ ¡1 ω pyq .
Then there exists α 0 ¡ 0 such that for all ω, ω I Ω there exist cone ensembles

Θ ω pΦ ¡,ω , Φ ,ω , Φ 0,ω q and Θ ¥ ω I Φ ¥ ¡,ω I, Φ ¥ ,ω I, Φ ¥ 0,ω I ¨,
such that for all α ¥ α 0 the map F ¡α,ωω

I is Θ ¥ ω I , Θ ω ¨-cone hyperbolic. Moreover,
for every ω Ω it holds

supp Φ ¥ 0,ω supp Φ 0,ω supp Φ ,ω and supp Φ ¥ ,ω supp Φ ,ω . (2.14)
Proof. We let ω, ω I Ω. We assume V α,ωω I $ r (otherwise we are done). We let 0 γ ¡ , γ ¤ 1 be small such that γ ¦ ¡ , γ ¦ ¡ 0 are the values attained in (2.12) for all cones C ¡ γ ¡ ,ω , C γ ,ω , ω Ω. These cones are transversal, convex and closed by construction. We repeat the construction, resulting in values

r γ ¦ ¡ γ ¦ ¡ and r γ ¦ γ ¦ , using now values r γ ¡ γ ¡ , r γ γ ,
sufficiently small (possibly by passing to a finer open cover) such that for all

ω Ω and all x V ω

D κωpxq κ ¡1 ω ¨tr C ¡ r γ ¦ ¡ pxq C ¡ γ ¡ ,ω , D κωpxq κ ¡1 ω ¨tr C r γ ¦ pxq C γ ,ω . (2.15)
We note that the map F α,ωω I is a diffeomorphism by construction. We construct further cones as follows: By the construction of local cones in (2.11) and the compact inclusion given in (2.12) for some C 2 β α γ ¦ ¤ γ I r γ ¦ and for all α ¥ α 0 we have for all x V α,ωω I pD g α q tr pD x κ ω q tr C γ ,ω pD g α q tr C γ ¦ pxq C γ I pg ¡α pxqq C r γ ¦ pg ¡α pxqq .

Comparing with the compact inclusion in (2.15), there exists a convex, closed

cone r C γ ,ω I R d such that D F α,ω I ω ¨tr C γ ,ω r C γ ,ω I C γ ,ω I .
(2.16)

The transfer operator and the anisotropic Banach space

Analogously we find

D F ¡α,ω I ω ¨tr C ¡ γ ¡ ,ω r C ¡ γ ¡ ,ω I C ¡ γ ¡ ,ω I . (2.17)
Recalling Definition 2.2.1, we let

Θ ω pΦ ¡,ω , Φ ,ω , Φ 0,ω q and Θ ¥ ω I Φ ¥ ¡,ω I, Φ ¥ ,ω I, Φ ¥ 0,ω I be the cone ensembles such that Φ ¡,ω| int r C ¡ γ ¡ ,ω Φ ,ω| int C γ ,ω Φ ¥ ¡,ω I | int C ¡ γ ¡ ,ω I Φ ¥ ,ω I | int r C γ ,ω I 1.
The supports of Φ ¡,ω , Φ ,ω and Φ ¥ ¡,ω I , Φ ¥

,ω I are taken to be disjoint, respectively, considering slightly larger convex cones. We check Θ ¥ ω I , Θ ω ¨-cone hyperbolicity of F α,ωω I, recalling Definition 2.2.2. The supports of r Φ ¥ ¡,ω I , r Φ ,ω I, r Φ ¥ 0,ω I are chosen analogously on corresponding slightly larger cones. The first compact inclusion in (2.13) is a direct consequence of the compact inclusion in (2.17). To see the second compact inclusion in (2.13) note that

¡ D F ¡α,ωω I ¨tr © ¡1 ¡ R d z supp Φ ,ω © R d z D F α,ω I ω ¨tr supp Φ ,ω .
Comparing with the compact inclusion in (2.16), we conclude. The claim in (2.14) follows again by comparing with the compact inclusions in (2. [START_REF] Bochner | Integration von Funktionen, deren Werte die Elemente eines Vektorraumes sind[END_REF]) and

(2.17).

2.3

The transfer operator and the anisotropic Banach space

The transfer operator

We denote by C r pMq the space of C tru functions whose tru-th partial derivatives in charts are C r¡tru . We let C r¡1 X pMq 3 be the space of C r¡1 functions which are C r in the flow direction X defined by (2.4). Fixing a "potential function"

V C r¡1 pM, Rq, we introduce the φ α -weighted transfer operator family

L α,φα : ϕ Þ Ñ φ α ¤ pϕ ¥ g ¡α q , α ¥ 0, (2.18) 
3 If ϕ C r¡1 pMq then ϕc :

1 c ³ c 0 ϕ ¥ g¡α d α C r¡1 X
pMq for all c ¡ 0. In the Banach spaces we construct the limit limcÑ0 ϕc exists.

acting on ϕ C r¡1 X pMq, where

φ α pxq : exp ¢» α 0 V ¥ g ¡α Ipxq d α I
.

We will construct Banach spaces W s,t,q p containing C r¡1 X pMq as a dense subspace (for suitable choices p, s, t, q R) on which the family (2.18) of operators extends continuously to a strongly continuous semigroup (see Lemma 2.4.4 below). Note that

V f α φ α|α0 . (2.19)
Our construction will show that for all ϕ C r¡1 X pMq f α L α,φα ϕ |α0 Xϕ V ϕ, is well-defined in the sense that pX V q ϕ W s,t,q p if ϕ C r¡1 X pMq. The operator X V is the generator of the semigroup

3 L α,φα : W s,t,q p Ñ W s,t,q p | α ¥ 0 A .
We denote by

σ pX V q | W s,t,q p
the spectrum of X V to emphasize the dependency of the domain and hence the spectrum of X V on W s,t,q p . We show in Theorem 2.4.5 that the resolvent

of X V R z ϕ : pz ¡ V ¡ Xq ¡1 ϕ, z σ pX V q | W s,t,q p , ϕ W s,t,q p , (2.20) 
admits a Lasota-Yorke inequality for large z ¡ 0. This allows us to identify a vertical left-open strip in the complex plane in which σ pX V q | W s,t,q p contains only isolated eigenvalues of finite multiplicity of X V (see Lemma 2.4.10).

The anisotropic Banach space

We work locally with the atlas A, introduced in Section 2.2. We let Ψ n : R d Ñ r0, 1s, n Z ¥0 , be a Paley-Littlewood decomposition as follows: Let χ : R ¡0 Ñ r0, 1s be a C V map so that χ |p0,1s 

pξq : χ § § 2 ¡n ξ § § ¨¡ χ § § 2 1¡n ξ § § ¨, n ¥ 1. (2.21)
This defines a partition of unity on R d z t0u since we have

V ņ0 Ψ n pξq lim nÑV χ § § 2 ¡n ξ § § ¨ 1.
For all n ¥ 1 it holds Ψ n pξq Ψ 1 p2 ¡n 1 ξq from which one finds

supp Ψ n 3 ξ R d | 2 n¡1 ¤ |ξ| ¤ 2 n 1 A . (2.22)
The inverse Fourier transform is given by

F ¡1 ϕpxq : p2πq ¡d » R d e i ξx ϕpξq d ξ,
where ξx : xξ, xy is the canonical scalar product on R d . The convolution of two complex valued functions ϕ 1 , ϕ 2 on R d (and extended to distributions) is given by

ϕ 1 ¦ ϕ 2 pxq : » R d ϕ 1 px ¡ yqϕ 2 pyq d y.
We will make frequent use (e.g. in the proof of Lemma 2.3.1 below and Lemma 2.4.16 in Section 2.4.4) of a special case of Young's inequality for convolutions,

}ϕ 1 ¦ ϕ 2 } Lp ¤ }ϕ 1 } L 1 }ϕ 2 } Lp , for all p r1, Vs .
Given a cone ensemble Θ pΦ ¡ , Φ , Φ 0 q, we set for all σ t¡, , 0u , n Z ¥0 ,

Ψ σ,n : Ψ n Φ σ and Ψ Op σ,n ϕ : F ¡1 Ψ σ,n ¨¦ ϕ.
(2.23)

We let r Ψ 0 , r

Ψ 1 C V such that r Ψ 0| supp Ψ 0 1 and r Ψ 1| supp Ψ 1 1. We set for every n N r Ψ n : r Ψ 1 ¥ 2 1¡n .
(In principal it is enough to require the condition on the support of r Ψ n for each n individually. Regarding the bounds in (2.25) below our choice here is reasonable.) Then we set for every σ t¡, , 0u and every n Z ¥0 r Ψ σ,n : r Ψ n r Φ σ and r Ψ Op σ,n ϕ :

¡ F ¡1 r Ψ σ,n © ¦ ϕ, (2.24) 
where r Φ σ C V and supp r Φ σ is a closed convex cone such that r Φ σ| supp Φσ 1 and Φ σ 1 Φ σ 2 0 ñ r Φ σ 1 r Φ σ 2 0 for all σ 1 , σ 2 t¡, , 0u. We have the following estimates for all σ and all n N:

F ¡1 Ψ n L 1 F ¡1 Ψ 1 L 1 V, F ¡1 Ψ σ,n L 1 F ¡1 Ψ σ,1 L 1 V. (2.25)
Analogous estimates hold for F ¡1 Ψ σ,0 and F ¡1 Ψ 0 and for the -versions as well. 

Q Op : L p ¡ R d , B 1 © Ñ L p ¡ R d , B 2 © : a Þ Ñ » R d F ¡1 Q ¨px ¡ yqapyq d y, (2.27)
defines a bounded linear operator, where for every b B 1 and every

x R d F ¡1 Q pxq b : p2πq ¡d » R d e i xξ Q pξq b d ξ.
It holds

Q Op LpLppR d ,B 1 q,LppR d ,B 2 qq ¤ F ¡1 Q L 1 pR d ,LpB 1 ,B 2 qq V. Proof. Linearity of Q Op follows if Q Op is a bounded operator. Suppose first that F ¡1 Q L 1 R d , L pB 1 , B 2 q ¨.
We estimate

Q Op a LppR d ,B 2 q » R d F ¡1 Q ¨p¤ ¡ yqapyq d y B 2 Lp ¤ » R d F ¡1 Q ¨p¤ ¡ yqapyq B 2 d y Lp ¤ » R d F ¡1 Q ¨p¤ ¡ yq LpB 1 ,B 2 q }apyq} B 1 d y Lp F ¡1 Q LpB 1 ,B 2 q ¦ }a} B 1

Lp

. Using Young's inequality, we estimate and conclude

F ¡1 Q LpB 1 ,B 2 q ¦ }a} B 1 Lp ¤ F ¡1 Q LpB 1 ,B 2 q L 1 }a} B 1 Lp F ¡1 Q L 1 pR d ,LpB 1 ,B 2 qq }a} LppR d ,B 1 q .
We now show 

F ¡1 Q L 1 pR d ,LpB
I : » R d » R d e i yξ Q pξq a d ξ B 2 d y.
Inside I we substitute, whenever y $ 0 ξ Þ Ñ xy, yy ¡ 1 2 ξ which yields

I » R d xy, yy ¡ d 2 }J pyq} B 2 d y,
where

J : J pyq » R d e i yxy,yy ¡ 1 2 ξ Q ¡ xy, yy ¡ 1 2 ξ © a d ξ.
For every y R d z t0u we set

ξ 0 : y xy, yy ¡ 1 2 π.
Clearly, it holds xξ 0 , ξ 0 y π 2 .

We now repeat the following substitution pd 1q-times ξ Þ Ñ ξ ξ 0 , which yields

J » R d e i yxy,yy ¡ 1 2 ξ r Q pξq a d ξ, where r Q pξq 2 ¡d¡1 d 1 ņ0 ¢ d 1 n p¡1q n Q ¡ xy, yy ¡ 1 2 pξ nξ 0 q
is estimated trivially, using boundedness of Q and integrability of xy, yy ¡d 2 on B. Using the identity

Q pξq ¡ Q pξ ξ 0 q » 1 0 f t Q ¡ pξ ξ 0 ¡ tξ 0 q xy, yy ¡ 2 © d t ¡ xy, yy ¡ 2 » 1 0 pD Qq ¡ pξ ξ 0 ¡ tξ 0 q xy, yy ¡ 2 © ξ 0 d t,
we now write the remaining part in r Q as

r Q pξq 2 ¡d¡1 » r0,1s d 1 d 1 ņ0 ¢ d 1 n xy, yy n 2 xy, yy ¡ d 1¡n 2 (2.28) ¢ ¡ pD n p1 ¡ χqq ¥ xy, yy 2 ¡ D d 1¡n Q © ¥ xy, yy ¡ 1 2 © pξ ptqq p¡ξ 0 q pd 1q d t,
where we put ξ ptq : ξ pd 1q ξ 0 ¡ tξ pd 1q 0 and ξ pd 1q 0 : pξ 0 , . . . , ξ 0 q pd 1q¡times .

We observe that the part where derivatives of

¡ p1 ¡ χq ¥ xy, yy 2 © pξq contribute implies ξ pp2Bq zBq xy, yy ¡ 2 .
Using the decay condition on all the partial derivatives of Q, recalling that xy, yy ¡d 2 log xy, yy is integrable on the unit ball, and exchanging the order of integration with respect to t as the outermost (justified by absolute integrability), we find for the corresponding part in I, for some constants

C 1 , C 2 , C 3 ¡ 0 I ¤ C 1 π d 1 2 d 1 }a} B 1 d 1 ņ0 ¢ d 1 n » B » pp2BqzBqxy,yy ¡ 2 |ξ| ¡d¡1 n d ξ xy, yy n ¡d 2 d y C 1 π d 1 }a} B 1 » B » 2xy,yy ¡ 2 B c |ξ| ¡d¡1 d ξ xy, yy ¡ d 2 d y ¤ C 2 π d 1 plog dq }a} B 1 » B ¡ 1 2 |log xy, yy| © xy, yy ¡d 2 d y ¤ C 3 }a} B 1 .
In the case y B c we proceed analogously, using the formular for r Q pξq given in (2.28), but without splitting the integral with respect to ξ. We have now

r Q pξq 2 ¡d¡1 » r0,1s d 1 xy, yy ¡ d 1 2 ¡ D d 1 Q © ¡
xy, yy ¡ 1 2 ξ ptq © p¡ξ 0 q pd 1q d t. 

}ϕ} W s,t,q p,Θ,K : £ V ņ0 4 ns § § §Ψ Op ¡,n ϕ § § § 2 4 nt § § §Ψ Op ,n ϕ § § § 2 4 nq § § §Ψ Op 0,n ϕ § § § 2 1 2 LppR d q .
The completion W s,t,q p,Θ,K of C r¡1 0 pKq under }¤} W s,t,q p,Θ,K is our local anisotropic Banach space.

This is an anisotropic version of a Triebel-Lizorkin space [63, p.45, Definition 2] with a certain inner l 2 -norm and an outer L p -norm. More precisely, we relate the summation in n and σ which appears in the norm of W s,t,q p,Θ,K to the norm of a Hilbert space of complex valued sequences defined on t¡, , 0u ¢ Z ¥0 . We set cp¡q : s, cp q : t, cp0q : q.

(2.29)

Then we denote by c 2 the Hilbert space with norm given for all a c 2 by

}a} c 2 : £ σ,n 4 cpσqn |a σ,n | 2 1 2 . ( 2.30) 
For s I , t I , q I R we define c I and c 2 analogously.

Lemma 2.3.3 (Multiplication and composition operator). Let p r1, Vs and let s I , t I , q I , s, t, q r¡1. Let r r ¡ max t0, s, t, qu¡min t0, s I , t I , q I u and let f C r r 0 pKq for some open set K R d with compact closure and let F : K Ñ F pKq be a C r r diffeomorphism. Let Θ and Θ ¥ be two cone ensembles. Then the linear operator

M F,f : W s I ,t I ,q I p,Θ ¥ ,K Ñ W s,t,q p,Θ,F ¡1 pKq : ϕ Þ Ñ f ¤ pϕ ¥ F q is bounded if cpσq ¤ c I pτq whenever xK supp Ψ σ D F pxq tr supp Ψ ¥ τ $ r. Moreover, if F id and Θ Θ ¥ the linear operator M id,f is bounded if s ¤ q ¤ t.
Proof. We exclude first the indices for given σ, τ t¡, , 0u such that

¤ xK supp Ψ σ D F pxq tr supp Ψ ¥ τ $ r, (2.31) 
and given n,

Z ¥0 such that § § § § § sup xF pKq,ξpsupp ΨσBq § § D F ¡1 pxq tr ξ § § § § § § § ¡1 2 ¡4 ¤ 2 n¡l ¤ 2 4 sup xK,ηpsupp Ψ ¥ τ Bq § § D F pxq tr η § § .
For all remaining σ, τ t¡, , 0u and n, Z ¥0 we bound the local norm for every ¡ 0 and some constant

C 1 C 1 p q ¡ 0 }M F,f ϕ} W s,t,q p,Θ,K £ σ,n 4 ¡ n 4 pcpσq qn § § Ψ Op σ,n M F,f ϕ § § 2 1 2 LppR d q ¤ C 1 sup σ,n 2 pcpσq qn Ψ Op σ,n M F,f ϕ LppR d q .
(2.32)

On the excluded indices we estimate as in the proof of Lemma 2.4.13 below, using Lemma 2.3.1 and Cauchy-Schwarz in and that n and using c pσq ¤ c I pτq.

We recall the map r Ψ ¥ τ, defined in (2.24). Then we bound for every n ¥ 0 and every σ t¡, , 0u 

Ψ Op σ,n M F,f ϕ LppR d q ¤ τ, Ψ Op σ,n M F,f r Ψ ¥ Op τ, Ψ ¥ Op τ, ϕ LppR d q τ, 2 ¡c I pτq 2 c I pτq Ψ Op σ,n M F,f r Ψ ¥ Op τ, Ψ ¥ Op τ, ϕ LppR d q . ( 2 
inf xK § § §supp Ψ σ,n ¡ D F pxq tr supp r Ψ ¥ τ, § § § ¥ C 2 2 maxtn, u or inf xF pKq § § §D F ¡1 pxq tr supp Ψ σ,n ¡ supp r Ψ ¥ τ, § § § ¥ C 2 2 maxtn, u .
(2.34)

In the following we assume the first inequality in (2.34). Otherwise the next estimates are done with the substitution F pyq Þ Ñ y. If n 0 or 0 the following estimate is done analogously, using that either ξ or η is bounded. We set r ξ : 2 ¡n ξ, r η : 2 ¡ η, and

U : R d ¢ R d ¢ K ¢ R d .
We write for every x R

Ipxq : I σ,n,τ, pxq : p2πq 2d 2 pn qd Ψ Op σ,n M F,f Ψ ¥ Op τ, ϕ pxq p2πq 2d 2 pn qd Ψ Op σ,n M F,f r Ψ ¥ Op τ, Ψ ¥ Op τ, ϕ pxq » U e i 2 n r ξpx¡yq e i 2 r ηpF pyq¡zq Ψ σ,1 ¡ r ξ © r Ψ ¥ τ,1 pr ηq f pyq Ψ ¥ Op τ, ϕ pzq d z d y d r ξ d r η.
Note that by assumption we have r r ¡ max t0, s, t, qu ¡ min 2 0, s I , t I , q I @ ¥ 0.

( 

Ipxq 2 ¡ maxtn, ur r » U r f r r ¡ r ξ, r η, y © u n px ¡ yq u pz ¡ F pyqq Ψ ¥ Op τ, ϕ pzq d z d y d r ξ d r η, where r f r r ¡ r ξ, r η, y © is uniformly bounded for all ¡ r ξ, r η, y © supp Ψ σ,1 ¢supp r Ψ ¥ τ,1 ¢ K. Hence we estimate for some constant C 3 ¡ 0 |Ipxq| ¤ C 3 2 ¡ maxtn, ur r u n ¦ pu ¥ F q ¦ § § §Ψ ¥ Op τ, ϕ § § § pxq . (2.36)
We estimate for every σ, τ t¡, , 0u and every n, ¥ 1, using the equality in (2.35) and assuming ¡ 0 small enough, 2 pcpσq qn¡c I pτq ¡maxtn, ur r ¤ 2 pmaxts,t,qu qn¡mints I ,t I ,q I u ¡maxtn, ur r ¤ 2 ¡ . (2.37)

Hence we bound, using the estimates in (2.32), (2.33), (2.36), two times Young's inequality and the bound in (2.37), for some constants C 4 , . . . , C 6 ¡ 0 }M F,f ϕ} W s,t,q p,Θ,K ¤ C 1 sup σ,n τ,

2 pcpσq qn¡c I pτq 2 c I pτq Ψ Op σ,n M F,f r Ψ ¥ Op τ, Ψ ¥ Op τ, ϕ Lp C 1 p2πq ¡2d 2 dpn q sup σ,n τ, 2 pcpσq qn¡c I pτq 2 c I pτq }I σ,n,τ, } Lp ¤ C 4 sup σ,n τ,
2 pcpσq qn¡c I pτq ¡maxtn, ur r 2 pn qd 2 c I pτq

u n ¦ pu ¥ F q ¦ Ψ ¥ Op τ, ϕ Lp ¤ C 5 τ, 2 ¡ 2 c I pτq Ψ ¥ Op τ, ϕ Lp ¤ C 6 sup τ, 2 c I pτq Ψ ¥ Op τ, ϕ Lp .
To see the statement if F id we estimate the corresponding cases c I pτq c pσq if σ $ τ and n and n, $ 0 in a different way. We use r Ipxq :

» U e i 2 n r ξpx¡yq e i 2 r ηpy¡zq r Ψ σ,1 ¡ r ξ © Ψ σ,1 ¡ r ξ © r Ψ ¥ τ,1 pr ηq f pyq Ψ Op τ, ϕ pzq d z d y d r ξ d r η.
We express Ψ σ,1

¡ r ξ © , using the identity

Ψ σ,1 ¡ r ξ © ¡ Ψ σ,1 pr ηq » 1 0 pD Ψ σ,1 q ¡ r ξ p1 ¡ hq ¡ r η ¡ r ξ ©© d h ¡ r ξ ¡ r η © .
We repeat this k-times in the right-hand side of this identity, replacing r ξ and yielding in total k 1 terms. The first k terms are linear combinations of

Ψ σ,1 ¡ j r η ¡ pj ¡ 1q r ξ © ,
where 1 ¤ j ¤ k 1. If j 0 then this is just Ψ σ,1 pr ηq. The corresponding part in r Ipxq is hence

r I 1 pxq r Ψ Op σ,n ¡ f ¤ Ψ Op σ,n Ψ Op τ, ϕ © r Ψ Op σ,n £ f ¤ Ψ Op σ,n £ 1 ¡ σI $τ Ψ Op σ I , ϕ .
Note that r Ψ σ,n and Ψ σ,n satisfy the vanishing conditions in Lemma 2.3.1 as seen

as an operator c 2 Þ Ñ c 2 .
Then we bound with some constant C 5 C 5 pfq r

I 1 Lp ¤ C 5 £ V ņ0 § § 4 σn Ψ Op σ,n ϕ § § 2 1 2

Lp

, using two times Lemma 2.3.1 and that cp¡q ¤ cp0q ¤ cp q and that Ψ Op , Ψ Op ¡,n 0. The terms where j ¡ 0 are dealt with, using first the substitution

j r η ¡ pj ¡ 1q r ξ Þ Ñ r η,
and then r r-times integration by parts analogous as before. The last

k 1 term is r Ψ k pr ηq : » r0,1s k ¡ D k Ψ σ,1 © £ r ξ k j1 p1 ¡ t j q ¡ r η ¡ r ξ © d t ¡ r ξ ¡ r η © k
.

We split now according to the size § § §r η ¡ r ξ § § §. We let ¡ 0. We note that 2 ¡n ppd 1q¡kq χ

¡ § § §r η ¡ r ξ § § § 2 n © r
Ψ k pr ηq satisfies the vanishing conditions in Lemma 2.3.1 uniformly in r ξ as seen as an

operator c 2 Þ Ñ c 2 in r η.
We bound the L p norm of the corresponding part analogous as in the case r I 1 . This is bounded appropriately with the choice of k below. On the range

¡ 1 ¡ χ ¡ § § §r η ¡ r ξ § § § 2 n
©© ¡ 0 we integrate r r-times by parts in y and then pd 1q-times in r ξ and r η in the corresponding part of r I pxq.

The terms which depend on χ are treated as in the range χ

¡ § § §r η ¡ r ξ § § § 2 n © ¡ 0.
In the remaining part we gained a factor 2 p¡n qr r n pd 1q . We choose small compatible with the inequality given in (2.35) and then k large enough such that 2 pcpσq¡cpτqqn ¤ 2 ¡n pp2d 2q¡kq .

Lemma 2.3.4 (Continuity and compactness). Let p r1, Vs, let s I ¤ s, q I ¤ q, t I ¤ t, and s ¤ q ¤ t and let Θ, Θ ¥ be two cone ensembles, recalling Definition 2.2.1. Suppose the compact inclusions supp Φ ¥ 0 supp Φ 0 supp Φ and supp Φ ¥ supp Φ .

(2.38)

Then the inclusion W s,t,q p,Θ,K W s I ,t I ,q I p,Θ ¥ ,K is continuous for every open subset K R d with compact closure. Moreover, if s I s, t I t and q I q then the inclusion W s,t,q p,Θ,K W s I ,t I ,q I p,Θ,K is compact.

Proof. We prove first the claim on the continuous inclusion. We set for all

n Z ¥0 F ¡,n : 2 ps I ¡sqn ¡ Ψ ¥ ¡,n w¡ 2 pq¡sqn Ψ 0,n 2 pt¡sqn Ψ ,n Ψ ¡,n ©© , F ,n : 2 pt I ¡tqn Ψ ¥ ,n v Ψ ,n ¨, F 0,n : 2 pq I ¡qqn ¡ Ψ ¥ 0,n w¡ 2 pt¡qqn Ψ ,n Ψ 0,n ©© .
We define a map Q on the Hilbert space c 2 (with norm as given in (2.30)) by setting for all σ t¡, , 0u, n Z ¥0 and all a c 2 pQaq σ,n : F σ,n a σ,n .

In Lemma 2.3.1 we take B 1 B 2 c

2 . It follows from the definition of Ψ σ,n in (2.23), the compact inclusion assumptions in (2.38) and the assumptions on s, t, q, s I , t I , q I that Q satisfies the decay conditions on Q in Lemma 2.3.1. It follows that the corresponding operator

Q Op in (2.27) is bounded. Let ϕ W s,t,q p,Θ,K . We set for all n N ¥0 b ¡,n : 2 sn F ¡1 ¡ 2 pq¡sqn Ψ 0,n 2 pt¡sqn Ψ ,n Ψ ¡,n © ¦ ϕ, b ,n : 2 tn F ¡1 Ψ ,n ¦ ϕ, b 0,n : 2 qn F ¡1 ¡ 2 pt¡qqn Ψ ,n Ψ 0,n © ¦ ϕ. Then pb σ,n | σ t¡, , 0u , n N ¥0 q : b L p R d , c
2 ¨by assumption on ϕ and in particular it holds, for some constant C ¥ 1, }b} LppR d , c 2 q ¤ C }ϕ} W s,t,q p,Θ,K . We estimate, using Lemma 2.3.1, and conclude

}ϕ} W s I ,t I ,q I p,Θ ¥ ,K Q Op b c 2 Lp ¤ C }b} LppR d , c 2 
q . We show the claim on the compact inclusion. We let U W s,t,q p,Θ,K be a bounded set in W s,t,q p,Θ,K with bound R ¡ 0. We set c I with respect to s I , t I , q I analogous to c. It is enough to find for each ¡ 0 an open cover of U in W s I ,t I ,q I p,Θ,K where each open set in the cover has size . (This yields total boundedness of U in W s I ,t I ,q I p,Θ,K and hence compactness.) Now there is δ ¡ 0 such that for all σ t¡, , 0u c I pσq δ ¡ cpσq 0.

(2.39) For all ϕ U and all N N we bound

d σ,n¥N 4 ¡δn § § §2 pc I pσq δqn Ψ Op σ,n ϕ § § § 2 Lp ¤ C sup σ,n¥N 2 pc I pσq δqn Ψ Op σ,n ϕ Lp ¤ C2 pc I pσq δ¡cpσqqN R, (2.40) 
for some σ t¡, , 0u. Recalling the bound in (2.39), we make the bound in (2.40) smaller than by taking N N p , Rq large enough. Suppose now that the embedding is not compact. Then there are infinitely many ϕ m U , m N, such that for all m 1 ¡ m 2 it holds }ϕ m 1 ¡ ϕ m 2 } W s I ,t I ,q I p,Θω ,κω pVωq ¡ .

(2.41)

Recalling the bound in (2.40), it holds for some n N and some σ t¡, , 0u

}ϕ m 1 ¡ ϕ m 2 } W s I ,t I ,q I p,Θω ,κω pVωq ¤ C2 pc I pσq δqn Ψ Op σ,n pϕ m 1 ¡ ϕ m 2 q Lp . (2.42)
Since C r¡1 0 pKq is dense in W s I ,t I ,q I p,Θω,κωpVωq we may assume ϕ m C r¡1 0 pKq. We set S : σ,n N supp Ψ σ,n . Since all ϕ m are uniformly bounded in W s,t,q p,Θω,κωpVωqnorm and supp ϕ m is uniformly bounded in m as well, the Fourier transform of ϕ m cannot diverge on a dense subset of S as m Ñ V (this would violate the Paley-Wiener Theorem [39, Theorem 1.7.7]). By passing to a subsequence in m we may split S S 1 S 2 such that the family 2 Fϕ m|S 1 | m N @ is uniformly bounded. Then, using again that ϕ m has compact support with maximal diameter independent of m, the family

2 Fϕ m|S 1 | m N @
is also uniformly equicontinuous. Hence by the Arzelà-Ascoli Theorem there is a subsequence in m such that ϕ m|S 1 is a Cauchy sequence in C 0 . Repeating the argument inductively for the part Fϕ m|S 2 , then using a diagonal argument, we find a subsequence in m such that Fϕ m|S is a Cauchy sequence in C 0 . Hence the right-hand side in (2.42) can be made arbitrary small which contradicts the lower bound in (2.41) and we conclude. Lemma 2.3.5 (Local derivative). Let p r1, Vs, s, t, q r ¡ 1 and let ϕ W s,t,q p,Θω,κωpVωq . It holds for some constant C ¡ 0, for every 1 ¤ j ¤ d, for every σ t¡, , 0u such that

ξ j $ 0 if pξ 1 , . . . , ξ d q ξ supp Ψ 1,σ , and for every r r R £ V ņ0 4 r rn § § Ψ Op σ,n ϕ § § 2 1 2 Lp ¤ C £ V ņ0 4 pr r¡1qn § § Ψ Op σ,n f x j ϕ § § 2 1 2
Lp .

(2.43)

Proof. Using the triangle inequality, it is enough to consider only the terms with n ¡ 0. For every ξ R d z t0u and b C we put

pDpξqbq n : i ξ j 2 n Ψ σ,n pξqb, n N.
We note

Ψ Op σ,n f x j ϕ ¨ F ¡1 Ψ σ,n ¨¦ f x j ϕ f x j F ¡1 Ψ σ,n ¨¦ ϕ 2 n D Op ϕ ¨n .
We let 2 be the space of complex valued sequences space over N. As norm we set }a}

2 : °V n1 4 r rn |a n | 2 .
For every ξ R d z t0u, every a 2 and every n N we put pQpξqaq n :

¡ i 2 n ξ j r Ψ σ,n pξqa n ,
where r Ψ σ,n is defined in (2.24). Note that Q Op D Op ϕ ¨n Ψ Op σ,n ϕ. Moreover since ξ j $ 0 by assumption, the map Q satisfies the decay condition on its derivatives as required in Lemma 2.3.1. Hence, using Lemma 2.3.1 with B 1 B 2 2 , the map Q Op : L p R d , 2 ¨Ñ L p R d , 2 ¨is a bounded linear operator. We conclude, using the estimate for some constant C ¡ 0

Q Op D Op ϕ 2 Lp ¤ C D Op ϕ 2 Lp .
We recall the open cover V ω M and the chart maps κ ω A, ω Ω, introduced in Section 2.2. Also we recall the vector space C r¡1 X pMq from the beginning of Section 2.3.2.

Definition 2.3.6 (Anisotropic Banach space). Let ϑ ω : V ω Ñ r0, 1s be a C r partition of unity adapted to the chart maps κ ω and let Θ ω be hyperbolic cone ensembles, recalling Definition 2.2.2, where ω Ω. Let p r1, Vs, let s, q, t r ¡ 1 and let α 0 ¡ 0. We put for every ϕ C r¡1 X pMq and every p r1, Vs }ϕ} W s,t,q p :

£ ωΩ » α 0 0 ϑ ω ¤ pL α,φα ϕq ¥ κ ¡1 ω ¨ 2 W s,t,q p,Θω ,κω pVωq d α 1 2 , (2.44) 
We denote by W s,t,q p the completion of C r¡1 X pMq under this norm.

Remark 2.3.7. Note that W s,t,q p depends on the dynamics, α 0 , the atlas A and the cone ensembles Θ ω , ω Ω. We understand each ϑ ω ¥ κ ¡1

ω in (2.44) as extended to R d by zero. By Lemma 2.3.3 a C r change of the atlas and hence a change of the cone ensemble yields an equivalent norm if s ¤ q ¤ t r ¡ 1.

The integration with respect to α is a way to "project out" the small times where the flow is not sufficiently hyperbolic. This is similar to [27, Definition 8.1] and also Baladi-Liverani [9, p.705, (3.2)] with the supremum replaced by an integral in the latter case. In turn, for p 2 the space W s,t,q 2 is a Hilbert space because the parallelogram law

}ϕ 1 ϕ 2 } 2 W s,t,q p }ϕ 1 ¡ ϕ 2 } 2 W s,t,q p 2 }ϕ 1 } 2 W s,t,q p 2 }ϕ 2 } 2 W s,t,q p holds [14, Proposition 15.2].
The compact inclusion of the local Banach space in Lemma 2.3.4 carries over to the anisotropic Banach space W s,t,q p . Lemma 2.3.8 (Compactness). Let p r1, Vs, let s ¤ q ¤ t such that max t0, tu¡ min t0, su r¡1 and let s I s, t I t and q I q such that max t0, min ts I , t I , q I uu¡ min t0, s I , t I , q I u r ¡ 1. Then there exist cone ensembles Θ ω , ω Ω, such that the inclusion W s,t,q p W s I ,t I ,q I p is compact.

Proof. We let s I s, t I t, q I q. Let U W s,t,q p be a bounded set in the norm of W s,t,q p . In order to show the compact inclusion we proceed analogous to the proof in Lemma 2.3.4. To this end we let ϕ m U , m N, be a sequence, satisfying the analog bound in (2.41). Suppose now that there has to be some fixed ω Ω and some fixed α ¥ 0 such that there exists

C 1 ¡ 0 such that for all m ¡ 0 ωΩ ϑ ω ¤ L α,φα ϕ m ¥ κ ¡1 ω ¨¨ W s,t,q p,Θω ,κω pVωq ¤ C 1 .
and that there exists some ¡ 0 such that for all m 1 ¡ m 2 (up to some subsequence)

ϑ ω ¤ pL α,φα pϕ m 1 ¡ ϕ m 2 qq ¥ κ ¡1 ω W s I ,t I ,q I p,Θω ,κω pVωq ¡ . (2.45)
Since ϑ ω ¤ pL α,φα ϕ m q ¥ κ ¡1 ω ¨ W s I ,t I ,q I p,Θω,κωpVωq we find a Cauchy subsequence, using the statement on the compact inclusion in Lemma 2.3.4. Note that by the Mean Value Theorem there exist non-fixed α α pmq and α α pm 1 , m 2 q which satisfy these inequalities. In particular, we wish to find a Cauchy subsequence for the left-hand side in the inequality (2.45) for the choice α α pm 1 , m 2 q. Suppose 0 ¤ α I ¤ α 0 . We have

ϑ ω ¤ ¡ L 2α 0 ,φ 2α 0 ϕ m © ¥ κ ¡1 ω W s,t,q p,Θω ,κω pVωq ¤ ωI Ω ϑ ω ¤ ¡ L 2α 0 ¡α I ,φ 2α 0 ¡α I ϑ ω I ¤ L α I ,φ α I ϕ m ¨© ¥ κ ¡1 ω W s,t,q
p,Θω ,κω pVωq

. By Lemma 2.2.3 there exists cone ensembles pΘ ω , Θ ¥ ω q, ω Ω, satisfying the condition (2.38) in Lemma 2.3.4 such that the local diffeomorphism of g ¡α with α ¥ α 0 is cone hyperbolic. Then, using Lemma 2.3.3 and s ¤ q ¤ t, max t0, tu ¡ min t0, su r ¡1 and taking α I αpmq, we bound this sequence in m uniformly from above. Let s P min ts I , t I , q I u. Then, using Lemma 2.3.3, recalling that it holds max t0, min ts I , t I , q I uu ¡ min t0, s I , t I , q I u r ¡ 1, we find (abusing the notation L α,φα with negative α)

ϑ ω ¤ L α I ,φ α I pϕ m 1 ¡ ϕ m 2 q ¨¥ κ ¡1 ω W s P ,s P ,s P p,Θω ,κω pVωq ¤ (2.46) ωI Ω ¡ ϑ ω ¤ ¡ L α I ¡2α 0 ,φ α I ¡2α 0 ¡ ϑ ω I ¤ L 2α 0 ,φ 2α 0 pϕ m 1 ¡ ϕ m 2 q ©© ¥ κ ¡1
2.4 Properties of the transfer operator, the generator and its resolvent 

L F,f : C r¡1 0 pFpKqq Ñ C r¡1 0 pKq : ϕ Þ Ñ f ¤ ϕ ¥ F . (2.47) Recalling r Φ ¥ ¡ , r Φ ¥ , r Φ ¥ 0 from (2.
24), we put for every subset I K }F} ¡,I : inf

yI 0$ηsupp r Φ ¥ ¡ § § pD y F q tr η § § |η| , }F} ,I : sup yI 0$ηsupp r Φ ¥ § § pD y F q tr η § § |η| , }F} 0,I : sup yI 0$ηsupp r Φ ¥ 0 § § pD y F q tr η § § |η| .
Lemma 2.4.1 (Upper bound for local transfer operator). Let tWu denote the connected components of supp f . Let p r1, Vs. Let s I s 0 q ¤ t r ¡ 1 s I , q I q, t I t.

Then for every ϕ W s,t,q p,Θ,F pKq it holds }L F,f ϕ} W s,t,q p,Θ,K ¤ C 0 }ϕ} W s I ,t I ,q I p,Θ ¥ ,F pKq

C 1 }ϕ} W s I ,t I ,q p,Θ ¥ ,F pKq C 2 }ϕ} W s,t,q p,Θ ¥ ,F pKq
, where, for some constants C ¡ 0 and k ¡ 0, it holds For s 0 t this quantity decreases exponentially fast to 0 as α Ñ V, which is a consequence of the Anosov property given in (2.3) of the flow g α .

C 0 ¤ C °W max 3 1, }F} 1¡r ¡,W , }F} 1¡r 0,W A }D F } k C r¡1 pWq }f} C r¡1 pWq |det D F | ¡ 1 p LVpWq , C 1 ¤ C sup W f |det D F | ¡ 1 p LVpWq max 3 1, }F} q 0,W A and C 2 ¤ C sup W f |det D F | ¡
Lemma 2.4.2 (Bound on the transfer operator). Let p r1, Vs. Let s I s 0 q ¤ t r ¡ 1 s I and t I t.

There exist α 0 ¡ 0, cone ensembles Θ ω , ω Ω, and constants A ¡ 0 and C ¡ 0, such that for all ϕ W s,t,q p with }ϕ} W s,t,q p 1 and all α ¥ 0 it holds

}L α,φα ϕ} W s,t,q p ¤ Ce Aα }ϕ} W s I ,t I ,q p C pα 1q φ α |det D g ¡α | ¡ 1 p ¤ λ pt,s,αq LV .
Proof. We recall the map F ¡α,ωω I and the set V α,ωω I defined in Lemma 2.2.3 for all α ¥ 0 and all ω I , ω Ω. By Lemma 2.2.3 there exist cone ensembles Θ ¥ ω I , Θ ω such that the map F ¡α,ωω I is Θ ¥ ω I , Θ ω ¨-cone hyperbolic. We recall the partition of unity ϑ ω (see Definition 2.3.6). We let

V α,ωω I r V α,ωω I V ω such that F ¡α,ωω I is also Θ ¥ ω I , Θ ω ¨-cone hyperbolic on κ ω ¡ r V α,ωω I ©
. This is possible due to the compact inclusion of cones as required in the cone-hyperbolicity definition. We let

ϑ α,ωω I : r V α,ωω I Ñ r0, 1s be a C r¡1 0 map such that ϑ α,ωω I |V α,ωω I ϑ ω|V α,ωω I .
For all z κ ω pV ω q we have

ϑ ω ¥ κ ¡1 ω pzq ¤ ϑ ω I ¥ κ ¡1 ω I ¥ F ¡α,ωω Ipzq ϑ α,ωω I ¥ κ ¡1 ω pzq ¤ ϑ ω I ¥ κ ¡1 ω I ¥ F ¡α,ωω Ipzq.
Note that ϑ α,ωω I C r¡1 is controlled by the rate of expansion of F ¡α,ωω I. Let ϕ W s,t,q p and put W ω : W s,t,q p,Θω,κωpVωq and W ωω I : W s,t,q p,Θω, r

V α,ωω I . For all α ¥ α 0 , for some C ¥ 1, we estimate for every p r1, Vs }L α,φα ϕ} 2

W s,t,q p ¤ C max ωΩ » α 0 0 pϑ ω ¤ pφ α I ¤ L α,φα ϕ ¥ g ¡α Iqq ¥ κ ¡1 ω 2 Wω d α I C max ωΩ » α 0 0 pϑ ω ¤ φ α q ¥ κ ¡1 ω ¤ ωI Ω ϑ ω I ¤ L α I ,φ α I ϕ ¨¥ κ ¡1 ω I ¥ F ¡α,ωω I 2 Wω d α I C max ωΩ » α 0 0 ωI Ω ϑ α,ωω I ¤ φ α ¨¥ κ ¡1 ω ¤ ϑ ω I ¤ L α I ,φ α I ϕ ¨¥ κ ¡1 ω I ¥ F ¡α,ωω I 2 Wω d α I ¤ C 2 max ω,ω I Ω » α 0 0 ϑ α,ωω I ¤ φ α ¨¥ κ ¡1 ω ¤ ϑ ω I ¤ L α I ,φ α I ϕ ¨¥ κ ¡1 ω I ¥ F ¡α,ωω I 2 Wω d α I C 2 max ω,ω I Ω » α 0 0 L F ¡α,ωω I,pϑ α,ωω I¤φαq¥κ ¡1 ω ϑ ω I ¤ L α I ,φ α I ϕ ¨¥ κ ¡1 ω I ¨ 2 W ωω I d α I . (2.49)
We used in the last step the definition of the weighted local transfer operator (see (2.47)) in which we take F : F ¡α,ωω I and as the C r¡1

0 -weight f : ϑ α,ωω I ¤ φ α ¨¥ κ ¡1 ω .
We now show the claimed upper bound for L α,φα . We recall that

supp f κ ω ¡ r V α,ωω I © § κ ω pWq ,
where the disjoint union is over all the finitely many connected components W of r V α,ωω I. The inclusion W s,t,q p,Θ ¥ ,κ ω IpV ω Iq W ω I is continuous by Lemma 2.3.4.

Together with the bound given by Lemma 2.4.1 this yields the upper bound

}L α,φα ϕ} W s,t,q p ¤ r C 1 }ϕ} W s I ,t I ,q p r C 2 }ϕ} W s,t,q p , where r C 1 ¤ C 2 max ω,ω I Ω C 0 F ¡α,ωω I, f ¨ C 1 F ¡α,ωω I, f ¨, r C 2 ¤ C 2 max ω,ω I Ω C 2 F ¡α,ωω I, f ¨,
and C 0 , C 1 , C 2 are the constants from Lemma 2.4.1. We claim for some constant

C 4 ¡ 0 the following bound φ α |det D g ¡α | ¡ 1 p LVpWq ¤ C 4 inf xW § § §φ α |det D g ¡α | ¡ 1 p § § § pxq (2.50) C 4 ¡ φ ¡α |det D g α | ¡ 1 p © ¥ g ¡α LVpWq .
Due to the construction of r V α,ωω I, all points in a connected component W stay close under iterates by g α I for all 0 ¤ α I ¤ α. Then in the case of hyperbolic maps the bound in (2.50) follows, using [START_REF]Introduction to the Modern Theory of Dynamical Systems, ser. Encyclopedia of mathematics and its applications[END_REF]Proposition 20.2.6.]. However for Anosov flows the distance between two points x 1 , x 2 W may never be sufficiently contracted under iterates by g α I, e.g. if x 1 , x 2 belong to a same orbit of g α I.

We split (along the flow direction X in charts) each W into parts W j , 1 ¤ j ¤ tαu 1, in which now two points are no more than ptαu 1q ¡1 apart. We set W : tW j u for all 1 ¤ j ¤ tαu 1. Then it holds the bound in (2.50) with W replaced by W j . We modify ϑ α,ωω I, taking a sufficiently small neighborhood U j containing W j , such that ϑ α,ωω I |U j is C r 0 . Then passing to this new weights ϑ α,ωω I |U j and summing over j we obtain an additional factor pα 1q in the right-hand side in (2.49). We recall λ pt,s,αq pxq from (2.48) and }F} ¡,I , }F} ,I introduced below (2.47) in which we take I W j and F F ¡α,ωω I. In addition note F ¡1 ¡α,ωω I F α,ω I ω . Then we write

F ¡α,ωω I ,κωpW j q ¤ ¦ ¦ ¥ inf yκωpW j q 0$ηpDy F ¡α,ωω Iq tr supp r Φ ¥ ,ω I § § § § ¡ D F ¡α,ωω Ipyq F α,ω I ω © tr η § § § § |η| ¡1 .
We recall the construction in (2.16) of the C -cones in the proof of Lemma 2.2.3.

We find a compactly embedded cone

C γ ,ω D y F ¡α,ωω I ¨tr supp r Φ ¥ ,ω I,
which is transversal to another cone C ¡ γ ¡ ,ω . Hence the unstable distribution E ¡ (in charts) stays away from D y F ¡α,ωω I ¨tr supp r Φ ¥

,ω I by some positive angle.

Replacing the inf with the sup, it holds for some constant

C 5 ¡ 0 F ¡α,ωω I ,κωpW j q ¤ C 5 £ sup xW j pD g α q tr |E ¦ ,g ¡α pxq ¡1 . ( 2 

.51)

By analogous reasoning we conclude similar for F ¡α,ωω I ¡,κωpW j q . We estimate for some constants C 6 , . . . , C 9 ¡ 0, using the bounds in (2.51) and (2.50),

r C 2 ¤ C 6 max W,W j W φ α |det D g ¡α | ¡ 1 p
LVpW j q λ pt,s,αq

LVpW j q ¤ αC 7 max W,W j W φ α |det D g ¡α | ¡ 1 p
LVpW j q λ pt,s,αq

LVpW j q ¤ αC 8 max W,W j W ¡ φ ¡α |det D g α | ¡ 1 p © ¥ g ¡α

¡1

LVpW j q λ pt,s,αq

LVpW j q ¤ αC 9 max W,W j W φ α |det D g ¡α | ¡ 1
p λ pt,s,αq

LVpW j q .
Inspecting the constant r C 1 , all terms depending on F and f are bounded by the maximal expansion of F ¡α,ωω I and φ α , respectively, which grow at most exponentially in α. Hence, there is A ¡ 0 and

C 10 ¥ 1 such that r C 1 ¤ C 11 e Aα . If
α α 0 we split

³ α 0 0 ³ α 0 ¡α 0 ³ α 0 α 0 ¡α . Hence it holds }L α,φα ϕ} W s,t,q p ¤ }ϕ} W s,t,q p L α 0 ,φα 0 ϕ W s,t,q p
. The latter term is estimated as in the case α ¥ α 0 . Since α ¤ α 0 , we combine here the upper bound of }L α,φα ϕ} W s,t,q p with the second term of our desired estimate, increasing the constant C 11 .

Remark 2.4.3. A weaker upper bound for the transfer operator, e.g. }L α,φα } W s,t,q p ÑW s,t,q p ¤ C 1 exp pC 2 αq for all α ¥ 0 and for some constants C 1 , C 2 ¥ 1 independent of α, can be obtained for a wider choice of s, t, q, e.g. for some s ¡ 0 (and this carries over to Lemma 2.4.4 below as well). However, we are interested in the parameter range as assumed in Lemma 2.4.2 which allows us to show the Lasota-Yorke inequality for the resolvent given in Theorem 2.4.5 below. See also Lemma 2.5.17 in the next section below for such a bound in the case of a special weight.

We recall that the family 3 L α,φα : W s,t,q p Ñ W s,t,q p | α ¥ 0 A forms a strongly continuous semigroup if and only if lim αÑ0 }L α,φα ϕ ¡ ϕ} W s,t,q p 0 for all ϕ W s,t,q p (e.g. see [START_REF] Klaus-Jochen | A Short Course on Operator Semigroups[END_REF]Proposition I.1.3]). Lemma 2.4.4 (Strongly continuous semigroup). Let p r1, Vs and let s 0 q ¤ t r ¡ 1 s. Then the transfer operator family 2 L α,φα : W s,t,q p Ñ W s,t,q p | α ¥ 0 @ forms a strongly continuous semigroup.

2.4 Properties of the transfer operator, the generator and its resolvent Proof. Let ϕ W s,t,q p . For fixed s 0 q ¤ t such that t ¡ s r ¡ 1 there is δ ¡ 0 such that t ¡s r ¡1¡δ. We set s I : s ¡δ and let t I t. Then s, t, q, s I and t I satisfy the assumptions of Lemma 2.4.2. Using Lemma 2.4.2, we bound the transfer operator for all small α ¥ 0 }L α,φα ϕ} W s,t,q p ¤ C 1 }ϕ} W s I ,t I ,q p C 2 }ϕ} W s,t,q p ¤ pC 1 C 2 q }ϕ} W s,t,q p , (2.52)

for some constants C 1 , C 2 ¡ 0 independent of α. By density, for every ¡ 0 there is r ϕ C r¡1 X pMq such that }ϕ ¡ r ϕ} W s,t,q p ¤ .

(2.53)

Using first the triangle inequality and then the bounds (2.52)-(2.53), we estimate

}L α,φα ϕ ¡ ϕ} W s,t,q p ¤ }L α,φα pϕ ¡ r ϕq} W s,t,q p }ϕ ¡ r ϕ} W s,t,q p }L α,φα r ϕ ¡ r ϕ} W s,t,q p ¤ C 3 }L α,φα r ϕ ¡ r ϕ} W s,t,q p , ( 2.54) 
for some constant C 3 ¡ 0 independent of and α. Since ϕ C r¡1 X pMq we have

L α,φα r ϕ ¡ r ϕ α » 1 0 f α IL α I ,φ α I ϕ ¨|α I hα d h.
Since f α IL α I ,φ α I ϕ ¨|α I hα C pr¡1q pMq the norm f α IL α I ,φ α I ϕ ¨|α I hα W s,t,q p is finite for all 0 ¤ h ¤ 1. Hence for some constant

C 4 pϕq C 4 ¡ 0 we bound }L α,φα r ϕ ¡ r ϕ} W s,t,q p ¤ α sup 0¤h¤1 f α IL α I ,φ α I ϕ ¨|α I hα W s,t,q p ¤ C 4 α. (2.55)
We conclude by a combination of the estimates (2.54)-(2.55).

Lasota-Yorke inequality for the resolvent

We use Lemma 2.4.2 to prove Theorem 2.4.5 below. We use in addition that the resolvent improves regularity in the flow direction. We set, recalling λ pt,s,αq in (2.48), λ min λ min ps, t, pq : lim

αÑV 1 α log φ α |det D g ¡α | ¡ 1 p λ pt,s,αq LVpM q . ( 2 

.56)

The following theorem will allow us to show that λ min ps, tq plays the role of the essential spectral bound of X V :

Theorem 2.4.5 (Lasota-Yorke inequality for the resolvent). Let p r1, Vs and let s I s 0 q ¤ t r ¡ 1 s I , q ¡ 1 ¤ q I q, t I t. There exist α 0 ¡ 0, A 0 ¡ λ min , cone ensembles Θ ω , ω Ω, and a constant C ¡ 0 such that for every ϕ W s,t,q p with }ϕ} W s,t,q p 1, for every z C with z ¡ A 0 and for every n N it holds

R n 1 z ϕ W s,t,q p ¤ C |z| 1 p z ¡ A 0 q p z ¡ A 0 q n 1 }ϕ} W s I ,t I ,q I p Cn p z ¡ λ min q ¡1 C p z ¡ A 0 q p z ¡ λ min q n .
Proof. Since λ ps,t,αq grows at most exponentially as α Ñ V, the constant λ min is finite by a result on superadditive functions [37, Theorem 7.6.1]. We let We set for every z C such that z ¡ A 0 and every n N

A 0 ¡ λ min .
R n z ϕ : » V 0 α n¡1 e ¡zα pn ¡ 1q! L α,φα ϕ d α, ϕ W s,t,q p . ( 2 

.57)

We have directly from (2.57) for all α ¥ 0

R n z L α,φα ϕ L α,φα R n z ϕ. (2.58)
Using Lemma 2.4.2, we estimate for some constant

C 1 ¡ 0 R n 1 z ϕ W s,t,q p ¤ » V 0 α n¡1 e ¡ zα pn ¡ 1q! }L α,φα R z ϕ} W s,t,q p d α ¤ C 1 p z ¡ A 0 q n }R z ϕ} W s I ,t I ,q p C 1 pn p z ¡ λ min qq p z ¡ λ min q n 1 }R z ϕ} W s,t,q p .
(2.59)

Using Lemma 2.4.2, we get boundedness for some constant

C 2 ¡ 0 }R z ϕ} W s,t,q p ¤ C 2 z ¡ A 0 }ϕ} W s,t,q p . ( 2 

.60)

Therefore the second term in the right-hand side in (2.59) is bounded as claimed.

We bound now the first term in the right-hand side in (2.59). Inverting the 2.4 Properties of the transfer operator, the generator and its resolvent flowbox condition (2.10), we find D κ ¡1

ω f x d X |Vω . Hence it holds f x d pϑ ω ¤ ϕq ¥ κ ¡1 ω pxq D pϑ ω ¤ ϕq ¥ κ ¡1 ω pxq D x κ ¡1 ω f x d D pϑ ω ¤ ϕq X |Vω ¨¥ κ ¡1 ω pxq ppXϑ ω q ¤ ϕ ϑ ω ¤ pXϕqq ¥ κ ¡1 ω pxq . (2.61)
We set W q ω : W s I ,t I ,q p,Θω,κωpVωq , ω Ω. We estimate the local norms inside the norm }R z ϕ} W s I ,t I ,q p , using the equality in (2.61), then Lemma 2.3.5 and the equality in (2.58), for some constant C 3 ¡ 0:

ϑ ω ¤ L α I ,φ α I R z ϕ ¨¥ κ ¡1 ω W q ω ¤ C 3 ϑ ω ¤ L α I ,φ α I ϕ ¨¥ κ ¡1 ω W q¡1 ω (2.62) C 3 pXϑ ω q ¤ L α I ,φ α I R z ϕ ¨¥ κ ¡1 ω W q¡1 ω C 3 ϑ ω ¤ XR z L α I ,φ α I ϕ ¨¥ κ ¡1 ω W q¡1 ω .
We note that pXϑ ω q ¥ κ ¡1 ω C r¡1 0 pκ ω pV ω qq and t ¡ s r ¡ 1. Using Lemma 2.3.3, we bound for some constant

C 4 pXq C 4 ¡ 0 pXϑ ω q ¤ L α I ,φ α I R z ϕ ¨¥ κ ¡1 ω W q¡1 ω ¤ C 4 sup ωΩ ϑ ω ¤ L α I ,φ α I R z ϕ ¨¥ κ ¡1 ω W q¡1 ω . (2.63)
Using the equality

XR z ϕ zR z ϕ ¡ V R z ϕ ¡ ϕ,
together with the equality in (2.58), we find

ϑ ω ¤ XR z L α I ,φ α I ϕ ¨¥ κ ¡1 ω W q¡1 ω ¤ |z| ϑ ω ¤ L α I ,φ α I R z ϕ ¨¥ κ ¡1 ω W q¡1 ω (2.64) ϑ ω ¤ V L α I ,φ α I R z ϕ ¨¥ κ ¡1 ω W q¡1 ω ϑ ω ¤ L α I ,φ α I ϕ ¨¥ κ ¡1 ω W q¡1 ω .
Recalling that V C r¡1 pMq, we bound the term which contains the factor pϑ ω ¤ V q ¥ κ ¡1 ω in the right-hand side in (2.64) analogous as in the estimate in (2.63). The final estimate follows by a combination of the bounds (2.59)-(2.60) and (2.62)-(2.64), together with the trivial continuous inclusion

W q I ω W q¡1 ω .
A direct consequence of Theorem 2.4.5 is the bound on the essential spectral radius of the resolvent:

Corollary 2.4.6 (Essential spectral radius). Under the assumptions of Theorem 2.4.5 (including the choices for p, s, t, q R), letting A 0 and λ min λ min ps, t, pq be the constants from that theorem, the essential spectral radius of the resolvent

R z : W s,t,q p Ñ W s,t,q p is bounded by | z ¡ λ min | ¡1 for all z C with z ¡ A 0 .
Proof. Let s I s, t I t and q I q. The inclusion W s,t,q p W s I ,t 

|E ¦ § § § ¡1 § § §det D g ¡α g α ¨tr |E ¦ 0 § § § § § §det D g ¡α g α ¨tr |E ¦ ¡ § § § . Since d ¡ 1 d¡2 we can replace pD g ¡α q tr |E ¦ ¡,x in λ ps,t,αq by § § §det pD g ¡α q tr |E ¦ ¡,x § § § and pD g α q tr |E ¦ ,g ¡α pxq by § § §det pD g ¡α q tr |E ¦ ,x § § § ¡1 . Moreover § § §det D g ¡α g α ¨tr |E ¦ 0 § § §
is bounded from above and below and we conclude. 

Spectral properties of the generator

All spectral properties of the generator X V are with respect to its domain DpX V q DpX V q |W s,t,q p for admissible choices p, s, t, q R which is discussed in the following lemma.

Lemma 2.4.9 (Domain of the generator). Let p, s, q, t R satisfy the assumptions of Lemma 2.4.4. Then the family

3 L α,φα : W s,t,q p Ñ W s,t,q p | α ¥ 0 A admits a generator X V : DpX V q Ñ W s,t,q p ,
which is a closed operator on its domain DpX V q. Moreover, the inclusion DpX V q W s,t,q p is dense and the inclusion C r¡1 X pMq DpX V q is dense for the graph norm }¤} W s,t,q p }pX V q p¤q} W s,t,q p . Proof. Using Lemma 2.4.4, the statement about X V being a densely (in W s,t,q p ) defined closed operator is [START_REF] Klaus-Jochen | A Short Course on Operator Semigroups[END_REF]Theorem II.1.4]. Suppose now L α,φα C r¡1 X pMq ¨ C r¡1 X pMq. Then the inclusion statement C r¡1 X pMq DpX V q is [46, Proposition II.1.7], using [START_REF] Klaus-Jochen | A Short Course on Operator Semigroups[END_REF]Definition II.1.6]. We let ϕ C r¡1 X pMq. It holds Xϕ, L α,φα ϕ C r¡1 pMq since the flow is C r . Recalling the weight φ α of the transfer operator in (2.18), with generating function f C r¡1 pMq, we calculate and conclude: XL α,φα ϕ pXφ α q¤ϕ¥g ¡α φ α ¤pXϕq¥g ¡α pf ¥ g ¡α ¡ f q¤L α,φα ϕ φ α ¤pXϕq¥g ¡α .

We set as the maximal spectral bound of the generator λ max λ max ps, t, q, pq : sup σ pX V q | W s,t,q p .

(

Lemma 2.4.10 (Discrete spectrum). Under the assumptions of Theorem 2.4.5

(including the choices for p, s, t, q R), the set

3 λ σ pX V q | W s,t,q p | λ ¡ λ min A
consists of isolated eigenvalues of finite multiplicity.

The discrete spectrum described in the previous lemma if λ max ¡ λ min , is sometimes referred to as (Ruelle-Pollicott) resonances of X V . In principle, the resonances depend on the choices p, s, t, and q of the space W s,t,q p . We shall not enter into details here, but note that our main result in the next section shows that this dependence is mild, in particular, for the choice of V there, λ max is independent of p, t, s, and q.

Proof. Using Corollary 2.4.6, spectral radius of the resolvent is bounded from

above by | z ¡ λ min | ¡1 . Assume λ σ pX V q | W s,t,q p such that λ ¡ λ min . It
follows from the Spectral Theorem for the Resolvent [46, Theorem V.1.13] that there exists z C (e.g. with z λ) in the resolvent set of X V such that the spectral radius of the resolvent R z has a lower bound given by |z ¡ λ| ¡1 p z ¡ λq ¡1 ¡ p z ¡ λ min q ¡1 . Since λ was arbitrary we conclude.

The following notation associated to the eigenvalue spectrum is needed in Section 2.5 for the statement and proof of Theorem 2.5.7. We assume for the rest of this subsection λ max λ max ps, t, q, pq ¡ λ min ps, t, pq λ min , for any fixed choice p r1, Vs and ¡s 0 q ¤ t r ¡ 1 s. By Lemma 2.4.10 each λ σ pX V q | W s,t,q p such that λ ¡ λ min has a finite geometric multiplicity n λ N and finite algebraic multiplicities m λ,i N,

1 ¤ i ¤ n λ , with generalized eigenstates D pλ,i,jq D pX V q , 1 ¤ j ¤ m λ,i , satisfying pX V ¡ λq j D pλ,i,jq 0 and if j ¡ 1 : pX V ¡ λq j¡1 D pλ,i,jq $ 0.
Moreover, to each geometric eigenvector there is associated a projector Π λ,i and a nil-potent operator N λ,i of finite ranks such that

Π λ 1 ,i 1 Π λ 2 ,i 2 0, N λ 1 ,i 1 N λ 2 ,i 2 0 if λ 1 $ λ 2 or i 1 $ i 2 , (2.66) Π λ 1 ,i 1 N λ 2 ,i 2 N λ 2 ,i 2 Π λ 1 ,i 1 6 8 7 N λ 2 ,i 2 if λ 1 λ 2 and i 1 i 2 0 if λ 1 $ λ 2 or i 1 $ i 2 , N m λ,i ¡1 λ,i 0.
Note that the projector Π λ,i can be written as a finite rank operator

Π λ,i n λ,i j1 D pλ,i,jq O pλ,i,jq , (2.67) 
where the dual vectors O pλ,i,jq D pX V q I satisfy O pλ 1 ,i 1 ,j 1 q D pλ 2 ,i 2 ,j 2 q ¨ 6 8 7

1, if pλ 1 , i 1 , j 1 q pλ 2 , i 2 , j 2 q 0, otherwise.

We shall use the following Dolgopyat-type condition, adapted from [19, Assumption 3A], on the resolvent R z pz ¡ X ¡ V q ¡1 , to control the remainder term E T,x in (2.1) in Theorem 2.5.7 (to reduce to the case studied by Butterley, consider the renormalized semi-group e ¡λmaxα L α,φα with generator X V ¡ λ max and resolvent R z λmax )4 :

Condition 2.4.11 (Spectral gap with (Dolgopyat) bounds). There exists δ pλ min ps, t, pq, λ max ps, t, q, pqq so that the following holds: For some a ¡ 0, b ¡ 0, C ¡ 0, some γ p0, 1{ logp1 pλ max ¡ δq{aqq , and for all z C with z a and | z| ¥ b, we have

R r n z λmax W s,t,q p ¤ C r n | z pλ max ¡ δq| ¡r n , where r n rγ log | z|s .
It is well known that if }L α,φα } W s,t,q p ÑW s,t,q p ¤ Ce λmaxα for all α and if R z enjoys Lasota-Yorke estimates for λ min ps, tq on W s,t,q p , in the sense of Theorem 2.4.5, then Condition 2.4.11 for some constant δ implies a spectral gap for the same δ, in the sense that

σ pX V q | W s,t,q p t λ ¡ δu is a finite set, (2.68) see e.g. [19, Theorem 1]. (Note that [19, Assumption 1] follows from the facts that W s,t,q p W s,t,q¡1 p , }pX V q ϕ} W s,t,q¡1 p ¤ C }ϕ} W s,t,q p
for some constant C ¡ 0, using Lemma 2.3.3 and Lemma 2.3.5, and

e ¡λmaxα L r α,φ r α ϕ ¡ ϕ pX V ¡ λ max q » α 0 e ¡λmaxr α L r α,φ r α ϕ d r α (2.69)
for all ϕ W s,t,q p .)

Beware that even when W s,t,q p is a Hilbert space, the operator X V is not selfadjoint a priori, so the existence of a spectral gap for X V with δ does not imply a spectral gap with bounds on the resolvent in general. (In the self-adjoint case, classical bounds on the iterated resolvent R n z in terms of the distance between z and the spectrum give bounds stronger than Condition 2.4.11.) See also Remark 2.5.11 for a further discussion of Condition 2.4.11.

Proof of Lemma 2.4.1

We need some preparations. We recall the quantities }F} ¡,I , }F} ,I , }F} 0,I given below (2.47). We introduce an arrow relation as used by Baladi τ σ 0 and 2 n¡ ¤ 2 4 }F} 0,I σ ¡ and τ 0 , and pτ, q ãÑ I pσ, nq in the other cases.

We recall the function c defined in (2.29). We let c I be analogously defined for s I ¤ s, t I ¤ t, q I ¤ q. We have for some constant C ¡ 0, for all fixed τ t¡, , 0u , Z ¥0 pτ, qã Ñ I pσ,nq

2 cpσqn¡cpτ q pτ, qã Ñ I pσ,nq 2 pcpσq¡cpτqqn cpτ qpn¡ q ¤ pτ,
qã Ñ I pσ,nq

2 cpτ qpn¡ q ¤C max 3 }F} t ,I , }F} s ¡,I A . ( 2.70) 
An analogous estimate holds for all fixed σ, n. Similarly, we find either for all fixed or for all fixed σ, n

¸ ãÑ I pσ,nq 2 cpσqn¡q ¤ C max 3 1, }F} q 0,I A . ( 2 

.71)

We recall the norm of the Hilbert space c 2 (and analogously c I 2 ) given in (2.30). Clearly, we have the inclusion c 2 c I 2 . We recall the definitions of Ψ Op σ,n in (2.23).

We let given a family of pairwise disjoint sets

I : tI Ku . For every pa τ, q a L p ¡ R d , c I 2 ©
we set

Q Op ãÑ I a ¨σ,n : Ψ Op σ,n °II °pτ, qã Ñ I pσ,nq 1 |I a τ, , ¡ Q Op ãÑ 0,I a © σ,n : Ψ Op σ,n °II °lã Ñ I pσ,nq 1 |I a 0,l .
(2.72) Lemma 2.4.13 (Boundedness I). For all p r1, Vs the map

Q Op ãÑ I : L p ¡ R d , c 2 © Ñ L p ¡ R d , c 2 ©
is a bounded linear operator. Moreover, for some constant C ¥ 0, for every

f L V R d , Rz t0u ¨and every a L p R d , c 2 ¨, it holds Q Op ãÑ I a LppR d , c 2 q ¤ C sup II max 3 }F} t ,I , }F} s ¡,I A f |I LV II 1 f |I }a} c 2 Lp .
Let c I p0q cp0q. Then for all p r1, Vs the map

Q Op ãÑ 0,I : L p ¡ R d , c I 2 © Ñ L p ¡ R d , c 2 ©
is a bounded linear operator. Moreover, for every We let Q Op be the operator in (2.27) associated to Q. We note that

a L p ¡ R d , c I 2 © it holds Q Op ãÑ 0,I a LppR d , c 2 q ¤ C sup II max 3 1, }F} q 0,I A f |I LV II 1 f |I }a} c I
Q Op ãÑ I Q Op ¥ K. Using Lemma 2.3.1, we bound for some constant C 1 ¡ 0 Q Op Ka LppR d , c 2 q ¤ C 1 }Ka} LppR d , c
2 q . We estimate with constants C 2 , C 3 ¡ 0, using pairwise disjointness of elements I I, Cauchy-Schwarz and the bound in (2.70),

}Ka} LppR d , c 2 q ¤ ¥ σ,n 4 cpσqn ¤ ¥ II pτ, qã Ñ I pσ,nq 1 |I a τ, 2 1 2 Lp ¤ ¤ ¥ σ,n II ¤ ¥ pτ,
qã Ñ I pσ,nq

2 cpσqn¡cpτ q pτ, qã Ñ I pσ,nq 2 cpσqn cpτ q § § 1 |I a τ, § § 2 1 2 Lp ¤ C 2 ¤ ¥ II max 3 }F} t ,I , }F} s ¡,I A σ,n pτ, qã Ñ I pσ,nq 2 cpσqn cpτ q § § 1 |I a τ, § § 2 1 2 Lp C 2 ¤ ¥ II max 3 }F} t ,I , }F} s ¡,I A τ, 2 2cpτ q § § 1 |I a τ, § § 2 pτ,
qã Ñ I pσ,nq

2 cpσqn¡cpτ q 1 2 Lp ¤ C 3 ¤ ¥ II max 3 }F} 2t ,I , }F} 2s ¡,I A f |I 2 LV τ, 2 2cpτ q § § § § 1 f |I a τ, § § § § 2 1 2 LV ¤ C 3 sup II max 3 }F} t ,I , }F} s ¡,I A f |I LV ¤ ¥ II τ, 2 2cpτ q § § § § 1 f |I a τ, § § § § 2 1 2

Lp

.

The statement about Q Op ãÑ 0,I follows analogously, using (2.71).

We recall (see above (2.47)) that F is assumed to be pΘ ¥ , Θq-hyperbolic on K and recall the maps r

Φ ¥ ¡ , r Φ ¥ r Ψ ¥
σ,n defined in (2.24). We set J :

tp¡, 0, 0, 0q , p¡, 0, , 0q , p0, 0, , 0q , p , 0, ¡, 0qu tp , , , 0q , p , , 0, 0q , p0, , 0, 0q | ¥ 0u tp¡, 0, ¡, nq | n ¥ 0u .

(2.73)

We recall the arrow notation f from Definition 2.4.12.

Lemma 2.4.14 (Directional inequality). Let pτ, q ãÑ I pn, σq and pτ, , σ, nq J . Let η supp r Ψ ¥ τ, and ξ supp Ψ σ,n . Set

mpτ q : 6 8 7 max tn, u , if τ t¡, 0u n, if τ .
(2.74)

Then, for some C ¡ 0 and for all y I it holds § § pD y F q tr η ¡ ξ § § ¥ C2 mpτ q min 3 1, }F} ¡,I , }F} 0,I

A

.

Proof. This can be seen case-by-case for admissible σ, τ as follows. We recall the set J defined in (2.73). We let pτ, q ãÑ I pn, σq such that pτ, , σ, nq J . Due to the construction of Ψ σ,n and r

Ψ ¥ τ, , respectively, if n ¥ 1 then 2 n¡1 ¤ |ξ| ¤ 2 n 1 and if ¥ 1 then 2 ¡2 ¤ |η| ¤ 2 2 .
We assume first cpσq ¤ cpτ q. Let τ . Then 2 n¡ ¡ 2 4 }F} ,I and moreover, the exclusion of J implies n ¥ 1. Using the triangle inequality, we find § § pD y F q tr η ¡ ξ

§ § ¥ |ξ| ¡ § § pD y F q tr η § § ¥ 2 n¡1 ¡ }F} ,I 2 2 ¥ 2 n¡1 ¡ 2 n¡2 ¥ 2 n¡2 .
The case τ 0 is analogous. Just note that we have also the estimate

2 n¡1 ¡ }F} 0,I 2 2 ¥ }F} 0,I 2 l 3 ¡ }F} 0,I 2 2 . If τ ¡ it holds 2 n¡ 2 ¡4 }F} ¡,I . The exclusion of J implies l ¥ 1. Using the triangle inequality, we find § § pD y F q tr η ¡ ξ § § ¥ § § pD y F q tr η § § ¡ |ξ| ¥ }F} ¡,I 2 ¡2 ¡ 2 n 1 ¡ 2 n 2 ¡ 2 n 1 ¥ 2 n 1 .
On the other hand we have also the estimate

}F} ¡,I 2 ¡2 ¡ 2 n 1 ¡ }F} ¡,I 2 ¡2 ¡ }F} ¡,I 2 l¡3 .
Now we assume cpσq ¡ cpτ q. We assume first τ ¡. Then σ t0, u. We recall that F is cone-hyperbolic (see Definition 2.2.2). The exclusion of J implies n $ 0 or l $ 0. Together with the first compact inclusion in (2.13) we conclude that the angle between pD y F q tr η and ξ is bounded from below. This implies a lower bound ¥ C2 maxtn,lu for the distance in both cases where C ¡ 0 is some constant. We assume now τ 0 which implies σ . The reasoning is analogous as for τ ¡, using the second compact inclusion in (2.13) to bound the angle between pD y F q tr η and ξ from below.

Lemma 2.4.15. Let p r1, Vs, b L p and let pτ, q ãÑ I pσ, nq and pτ, n, σ, q $ J . It holds for the local transfer operator

L F,f |I Ψ Op σ,n L F,f |I r Ψ ¥ Op τ, b Lp ¤ C 3 pF, f |I q2 ¡pr¡1qmpτq }b} Lp , where for some C ¥ 1 it holds C 3 pF, f |I q ¤ C max 3 1, }F} 1¡r ¡,I , }F} 1¡r 0,I A }D F } k C r¡1 }f} C r¡1 sup yK |det D y F | ¡ 1 p .
Proof. This is analogous to the proof of Lemma 2.3.3, except that we have to deal with the additional composition operation by the map F . We set f : f |I .

We expand the convolution and inverse Fourier transform

Ψ Op σ,n L F,f r Ψ ¥ Op τ, bpxq C » R 4d e i ηpF pzq¡yq e i ξpx¡zq f pzqbpyqΨ σ,n pξq r Ψ ¥ τ, pηqdηdξdzdy C » R d V τ, σ,n px, yqbpF pyqq |det D F pyq| dy,
for some constant C ¡ 0 and where we set

V τ, σ,n px, yq : » R 3d e ¡ i ηF pyq e i ξx Ψ σ,n pξq r Ψ ¥ τ, pηqe ipηF pzq¡ξzq f pzqdzdηdξ. (2.75)
We transform (2.75), first integrating by parts tru ¡ 1-times in z (see Lemma B.3 with function Gpzq : ηF pzq ¡ξz which has a gradient bounded from below by Lemma 2.4.14). Therefore we replace f pzq in (2.75) with another function V tru¡1 pz, η, ξq which satisfies the iterative construction given in Lemma B.3 (B.1). Using Lemma 2.4.14 and Lemma B.3 (B.2), we estimate for some constant C ¥ 1

V tr¡1u C 0 ¤ C r C 1 2 ¡mpτqtr¡1u max 3 1, }F} ¡tr¡1u ¡,I , }F} ¡tr¡1u 0,I A }f} C tr¡1u , where r C 1 : sup pz,η,ξqsupp f max 0¤|γ|¤tr¡1u § § § § § § pD z F q tr η ¡ ξ § § f γ z pDz F q tr η¡ξ |pDz F q tr η¡ξ| 2 § § § § tr¡1u .
Moreover, this function is a C r r -map for r r : r ¡tru. Using Lemma B.5 (in there we take L ¡1 2 ¡mpτq ), we proceed with a regularized integration by parts in z. This yields

V τ, σ,n px, yq » R 3d e i ηpF pzq¡Fpyqq e i ξpx¡zq Ψ σ,n pξq r Ψ ¥ τ, pηqV r¡1 pz, η, ξqdzdηdξ, (2.76)
where V r¡1 is given in (B.4) in Lemma B.5 with bound

}V r¡1 } C 0 ¤ C r C 2 2 ¡mpτqr r max 3 1, }F} ¡r r ¡,I , }F} ¡r r 0,I A , (2.77) 
where r

C 2 : sup pz,η,ξqsupp f 1 § § pD z F q tr η ¡ ξ ¨ § § ¨ ppDz F q tr η¡ξqV tr¡1u p¤,η,ξq |pDz F q tr η¡ξ| 2 C r r .
We now substitute ξ Ñ 2 ξ I and η Ñ 2 n η I in (2.76). By construction the function V r¡1 z, 2 n η I , 2 ξ I ¨is uniformly bounded in n and in the C V -norm with respect to η I and ξ I . We transform (2.76), integrating by parts d 1-times (2.76). Since we only derived V r¡1 with respect to η I and ξ I , respectively, the C 0 -norm of r V τ, σ,n pz, η I , ξ I q is controlled by the upper bound given in (2.77). We recall that ξ I , η I are uniformly bounded. We estimate trivially for some constant

in ξ I if |2 n pz ¡ xq| ¡ 1, and d 1-times in η I if § § 2 pFpzq ¡ F pyqq § § ¡ 1, which yields for some constant C 1 ¡ 0 V τ, σ,n px, yq C 1 » R 3d e i 2 η I pFpzq¡Fpyqq u pFpzq ¡ F pyqq e i 2 n ξ I px¡zq u n px ¡ zq 2 dp nq r V τ, σ,n pz, η I , ξ I qdzdη I dξ I , where r V τ, σ,n pz, η I , ξ I q together with u n : R d Ñ p0, 1s : x Þ Ñ 6 8 7 1 , if |2 n x| ¤ 1 |2 n x| d 1 , else replaces Ψ σ,n p2 ξ I q r Ψ ¥ τ, p2 n η I qV r¡1 z, 2 n η I , 2 ξ I ¨in
C 2 ¥ 1 Ψ Op σ,n L F,f r Ψ ¥ Op τ, b Lp ¤ C r V τ, σ,n C 0 2 dpn q 1 u n ¦ ¢ pb ¦ 1 u q ¥ F Lp ¤ C 2 C 3 pF, f q2 ¡mpτqpr¡1q }b} Lp ,
where we used twice Young's inequality in the last step.

We set for all n Z ¥0 , for all σ t¡, , 0u and for all I

I ¡ Q Op ãÑ,I a © σ,n : Ψ Op σ,n pτ, q ãÑ I pσ,nq a τ, , Q Op a ¨σ,n : r Ψ ¥ Op σ,n a σ,n .
(2.78) Lemma 2.4.16 (Boundedness II). Let cp q ¡ c I p¡q r ¡ 1. Then for all p r1, Vs the map

Q Op ãÑ,I L F,f |I Q Op : L p ¡ R d , c I 2 © Ñ L p R d , c
2 ¨is a bounded linear operator. In particular, it holds

Q Op ãÑ,I L F,f |I Q Op LppR d , c I 2 qÑLppR d , c 2 q ¤ CC 4 pF, f |I q
, where for some C ¥ 1 and some k ¥ 0

C 4 pF, f q ¤ C max 3 1, }F} 1¡r ¡,I , }F} 1¡r 0,I A max 3 1, }D F } k C r¡1 A }f} C r¡1 sup yK |det D y F | ¡ 1 p Proof. Let pa τ, q a L p ¡ R d , c I 2 © . We have Q Op ãÑ,I L F,f |I Q Op a LppR d , c 2 q ¤ ¥ σ,n 4 cpσqn § § § § § § pτ,
q ãÑ I pσ,nq

Ψ Op σ,n L F,f |I r Ψ ¥ Op τ, a τ, § § § § § § 2 1 2 Lp ¤ pτ,
q ãÑ I pσ,nq

2 cpσqn Ψ Op σ,n L F,f |I r Ψ ¥ Op τ, a τ, Lp . (2.79) 
We recall the set of indices J in (2.73). We assume pτ, l, σ, nq J . Now we make three distinctions in the estimate of the corresponding part of the sum in (2.79). If τ t , 0u then n 0 and l ¥ 0. Then, using Young's inequality, for some

C ¥ 1 V ļ0 Ψ Op σ,0 L F,f |I r Ψ ¥ Op τ, a τ, Lp ¤ C sup zI |fpzq| |det D z F | ¡ 1 p V ļ0 2 ¡c I pτql sup l 2 c I pτql }a τ, } Lp ¤ C sup zI |fpzq| |det D z F | ¡ 1 p }a} LppR d , c I 2 q . If τ σ ¡ then n ¥ 0 and l 0. Recall that s 0. Then, using Young's inequality, V ņ0 2 sn Ψ Op σ,n L F,f |I r Ψ I Op ¡,0 a ¡,0 Lp ¤ C sup zI |fpzq| |det D z F | ¡ 1 p }a} LppR d , c I 2 q .
In the three remaining cases n l 0 we estimate analogously, using Young's inequality. Now we assume pτ, l, σ, nq J . We recall m pτq defined in (2.74) in Lemma 2.4.14 and the constant C 3 pF, f q in Lemma 2.4.15. Using Lemma 2.4.15,

2.4 Properties of the transfer operator, the generator and its resolvent we estimate the remaining part of the sum in (2.79) pτ, q ãÑ I pσ,nq pτ,l,σ,nqJ

2 cpσqn Ψ Op σ,n L F,f |I r Ψ ¥ Op τ, a τ, Lp ¤ CC 3 pF, f q pτ,
q ãÑ I pσ,nq pτ,l,σ,nqJ

2 cpσqn¡c I pτql¡mpτqpr¡1q sup τ, 2 c I pτql }a τ, } Lp (2.80) ¤ CC 3 pF, f q }a} LppR d , c I 2 q ,
where the sums in n, l, respectively, in the right-hand side in (2.80) are bounded by geometric sums, using the assumption c I p¡q ¡ r ¡1¡cp q. In particular, we find for (the worst-case since 0 cp0q ¤ cp q r ¡ 1) τ ¡, σ , if l ¥ n for all small enough ¡ 0 pcp q q n ¡ c I p¡ql ¡ m p¡q pr ¡ 1q ¤ cp q ¡ c I p¡q ¨l ¡ m p¡q pr ¡ 1q cp q ¡ c I p¡q ¡ r 1 ¨l 0, and an analogous estimate holds for l n. We note

sup zI |fpzq| |det D z F | ¡ 1 p ¤ C }f} C r¡1 sup zI |det D z F | ¡ 1 p .
We set C 4 pF, f |I q : CC 3 pF, f |I q. Combining the estimates for all the parts of the sum (2.79), we conclude.

Proof of Lemma 2.4.1. Let s, q, t, p satisfy the hypotheses in Lemma 2.4.1. That is s I s 0 q ¤ t r ¡1 s I , q I q, t I t and p r1, Vs. We put cp¡q : s, cp q : t, cp0q : c I p0q : q and c I p¡q : c P p¡q : s I , c I p q : c P p q : t I and c P p0q : q I . Then c,c I ,c P satisfy (2.29), respectively, while c, c I satisfy the hypotheses in Lemma 2.4.13, and c, c P that of Lemma 2.4.16. Let ϕ W s,t,q p,Θ,F pKq .

We set

a τ, : L F,f Ψ ¥ Op τ, ϕ. We have a L p R d , c 2 ¨ L p ¡ R d , c I 2 © because }a} LppR d , c 2 q ¤ ¥ τ, 4 cpτ q |a τ, | 2 1 2 Lp ¤ ¥ τ, 4 cpτ q § § §f ¤ ¡ Ψ ¥ Op τ, ϕ © ¥ F § § § 2 1 2 Lp ¤ f |det D F | ¡ 1 p LVpKq ¤ ¥ τ, 4 cpτ q § § §Ψ ¥ Op τ, ϕ § § § 2 1 2
LppF pKqq 

(2.81) ¤ f |det D F | ¡ 1 p LV }ϕ} W s,t
}L F,f ϕ} W s,t,q p,Θ,K W L F,f |W ϕ W s,t,q p,Θ,K ¤ ¥ σ,n 4 cpσqn § § § § § Ψ Op σ,n W L F,f |W ϕ § § § § § 2 1 2 Lp ¤ 5 Q Op ãÑ,tW u a LppR, c 2 q 5 Q Op ãÑ 0 ,tWu a LppR, c 2 q 5 W Q Op ãÑ,W L F,f |W Q Op b LppR, c 2 q .
We conclude, using Lemma 2.4.13 and Lemma 2.4.16 together with the estimate given in (2.81).

Asymptotics of horocycle averages

In this section, we assume r ¥ 2 and topological mixing of the Anosov flow g α .

( 

» T 0 ϕ ¥ h ρ pxq d ρ.
(2.83)

denote the horocycle integral of the horocycle flow h ρ for the observable ϕ at base point x.

In Theorem 2.5.7 we reveal its connection to the eigendistributions of a weighted transfer operator for the Anosov flow g ¡α introduced in Section 2.3. Proof. For every x M and for every ρ, α R we set h α,ρ pxq : g α ¥h ρ ¥g ¡α pxq. By Definition 2.5.1 and the invariant splitting (2.2), we find f ρ h α,ρ E ¡,x z t0u.

Hence h α,ρ pxq parametrizes the same stable manifold with respect to ρ as h ρ pxq.

If there were two different pointwise renormalization times τ , there would be

ρ 1 ρ 2 R such that h α,ρ pxq h ρ 1 pxq h ρ 2 pxq
. By density of stable leaves and non-singularity of the flow h ρ , there are no periodic points of h ρ hence

ρ 1 ρ 2 .
Further properties of the renormalization time τ are given in Proposition 2.5.13 below. Assuming f ρ τ p0, ¡α, ¤q C r¡1 pMq for all α ¥ 0, we will consider the potential V defined by V ¡f α f ρ τ p0, 0, ¤q .

(2.85)

Then φ α defined in (2.18) is just φ α : f ρ τ p0, ¡α, ¤q.

(2.86)

It follows from (iv) in Lemma 2.5.18 below that for any p r1, Vs, t ¡ s r ¡ 1 and s 0 q ¤ t the spectral bound λ max sup σ pX V q | W s,t,q p for the generator satisfies λ max h top .

(2.87)

In the special case of unit speed horocycle flow (see Remark 2.5.2) it holds (using Proposition 2.5.13 (viii) below)

φ α det D g ¡α|E ¡.
Hence if the strong stable distribution E ¡ is C 1 (see Proposition 2.5.10 where this holds true if d 3 under the contact assumption) and r ¥ 2 then we find f ρ τ p0, ¡α, ¤q C 1 X pMq. In particular, our results apply to all C 1 time reparametrizations of the unit speed horocycle flow h ρ (this is analogous to [START_REF] Giulietti | Parabolic dynamics and Anisotropic Banach spaces[END_REF]Remark 2.4]).

The following theorem will be proved at the end of Section 2.5.3:

Theorem 2.5.7 (Expansion of horocycle integrals). Let g α be a topologically mixing C r -Anosov flow, with r ¥ 2, such that E ¡ is orientable and d ¡ 1.

Let µ be the unique Borel measure which is invariant by the horocycle flow h ρ .

Assume for all α ¥ 0 φ α : f ρ τ p0, ¡α, ¤q C r¡1 pMq.

Assume further that there exist p r1, Vs, and s 0 q ¤ t with t ¡ s r ¡ 1 such that, for the corresponding anisotropic space W s,t,q p it holds λ min λ max h top , with λ min λ min pt, s, pq from (2.56). Then, for all x M and T ¥ 0 there exist, for each λ σ pX V q | W s,t,q p with λ ¡ λ min , constants c pλ,i,jq pT, xq C

with sup T ¡0, xM |c pλ,i,jq pT, xq| V , d1 ¤ i ¤ n λ , 1 ¤ j ¤ m λ,i ,
such that, for any δ R with max tλ min , 0u ¤ δ h top and any finite 5 subset Λ δ of

Σ δ : σ pX V q | W s,t,q p tλ C | λ ¡ δu ,
such that for all ϕ C r¡1 X pMq and all T ¥ e Moreover, if for some c ¡ 0 and some constant

» T 0 ϕ ¥ h ρ pxq d ρ γ x D phtop,1,1q
C 1 C 1 pϕ, c, Λ δ q ¥ 0 for all α ¥ 0 L α,φα £ λΛ δ n λ i1 Π λ,i ϕ ¡ ϕ W s,t,q p ¤ C 1 e cα , (2.88) 
then there exists C 2 ¡ 0 such that

sup xM |E T,x,Λ δ pϕq| ¤ C 2 ¡ C 1 T c h top }ϕ} C 0 1 © .
If, in addition, Condition 2.4.11 holds for δ, then Σ δ is finite and, taking Λ δ Σ δ and assuming t ¡ r 2 ¤ 0 r ¡ 2, it holds c δ in (2.88) for all ¡ 0 and all ϕ W s,t,q p . Recall that if D pλ,i,jq W s,t,q p , for some λ with λ ¡ δ, is a generalized eigenvector of the generator X V then for all λ ¡ δ we have that O λ,ĩ, pD λ,i,j q 1 if λ λ, i ĩ, and j , while O λ,ĩ, pD λ,i,j q vanishes otherwise.

Remark 2.5.8. The condition λ max h top is superficial although we show only λ max h top and unique simplicity under an additional vanishing assumption in Section 2.5.3. The proof of Theorem 2.5.7 however shows that the horocycle expansion sees only the part of the spectrum with real part below h top and the eigendistribution µ which is associated to h top .

Recalling Remark 2.4.8, we find always λ min h top if ¡s and t can be taken to be 1 ¡ for all ¡ 0. This is the case if the geodesic flow is C 3¡ for all ¡ 0 (e.g. the flow is of Zygmund type). If one knows then that the weight is C 2¡ the basic assumptions of Theorem 2.5.7 are all satisfied (an example is given in Proposition 2.5.10 below for C 3 contact Anosov flows when d 3).

Note that γ x D phtop,1,1q , T ¨is well-defined in the sense of distributions is part of the theorem. By unique ergodicity the expected principal term T µ pϕq is hidden by the term γ x D phtop,1,1q , T ¨µ pϕq as we ordered the expansion by the distributions O ... pϕq. We can always write T µ pϕq γ x p1, T q µ pϕq and use the expansion result on γ x p1, T q again which shows that the leading order term is indeed what we expect. The other terms are modified by the contributions of O ... p1q µ pϕq. We make use of this in the following corollary.

Assuming all conditions in the above theorem, this gives polynomial convergence of horocycle averages to the ergodic mean: Corollary 2.5.9 (Polynomial convergence). Under the assumptions of Theorem 2.5.7 (including Condition 2.4.11 for δ and t ¡ r 2 ¤ 0 r ¡ 2) then there exists ¡ 0 such that for all ϕ C r¡1 X pMq there exists

C ¡ 0 such that § § § § 1 T » T 0 ϕ ¥ h ρ pxq d ρ ¡ µ pϕq § § § § ¤ CT ¡ ,
where µ is the unique Borel measure which is invariant by the horocycle flow h ρ .

Proof. We apply Theorem 2.5.7, using the assumption that Condition 2.4.11 holds for δ and that t ¡ r 2 ¤ 0 r ¡ 2. Then there are only finitely many eigenvalues λ σ pX V q such that λ ¡ δ and the remainder term E T,x,Λ δ pϕq is bounded from above by T δ h top for all ¡ 0. Hence all but one term in the expansion of the ergodic average decay like T ¡ for some ¡ 0. We finally bound the leading term in the expansion 1 T γ x D phtop,1,1q , T ¨µ pϕq ¡ µ pϕq 1 T γ x D phtop,1,1q ¡ 1, T ¨µ pϕq , using again Theorem 2.5.7 as before, noting that µ p1q µ D htop,1,1 ¨ 1.

We next discuss the assumptions of our main theorem and the corollary above.

We first give sufficient conditions ensuring that f ρ τ p0, ¡α, ¤q C r¡1 and that there exist parameters in our anisotropic space giving λ min ps, t, pq h top : Proposition 2.5.10. Let g α be a C 3 contact Anosov flow on a closed Riemannian manifold M of dimension d 3 preserving a C 1 contact form and let the strong-stable distribution E ¡ be orientable. Then there exists a horocycle flow h ρ such that f ρ τ p0, ¡α, ¤q C r¡1 for every α ¥ 0 and for any r r2, 3q. Setting ¡s t r¡1 2 ¡ 2 for suitable 0 r¡1 2 , the constant λ min ps, t, pq is independent of p and can be taken arbitrary close to 0 while t¡r 2 ¤ 0 r¡2. Proof. The contact assumption means that there is an invariant 1-form η T ¦ M such that µ : η d η $ 0 everywhere. By assumption η is C 1 . Moreover η is annihilated on E E ¡ and µ 3 T ¦ M is preserved by the flow. We use [START_REF] Hurder | Differentiability, rigidity and Godbillon-Vey classes for Anosov flows[END_REF]Theorem 3.1] together with the comment on the relation between Zygmund maximal entropy) and consider the unit speed horocycle flow which leaves vol invariant as well (hence µ vol). Then h top 1 because τ pρ, α, xq ρ exp p¡αq and D p1,1,1q 1 (hence γ x D p1,1,1q , T ¨ T ). In the setting of Riemann surfaces, the possible Jordan blocks are known [START_REF] Flaminio | Invariant distributions and time averages for horocycle flows[END_REF]Theorem 1.5]. In particular, the eigenvalue h top 1 is simple, there are no other eigenvalues of real part equal to one, all eigenvalues with λ ¡ 0 are semi-simple, and there are only finitely many eigenvalues with λ ¡ 1 2 . Moreover, since the vector fields are constant, the regularity parameters ¡s, t can be taken large enough such that λ min 0. Hence we can take any δ ¥ 0 in Theorem 2.5.7, and we find, for any finite subset of Σ δ containing 1,

» T 0 ϕ ¥ h ρ pxq d ρ T vol pϕq λΛ δ zt1u n λ i1 T λ c pλ,i,1q pT, xq O pλ,i,1q pϕq E T,x,Λ δ pϕq ,
where we can take Λ δ Σ δ if δ ¥ 1 2 , and where c pλ,i,1q and E T,x,Λ δ satisfy the claims of Theorem 2.5.7 (with an additional log T -factor if λ 1 2 ). In particular, if Condition 2.4.11 holds for some δ ¡ 1 2 (see Remark 2.5.11) there exists C ¡ 0 such that for all ¡ 0 |E T,x,Σ δ pϕq| ¤ CT δ .

Note that we required δ ¥ 0 because for δ 0 we find no improvement of the remainder term (this comes the local bounds in Lemma 2.5.14). An analogous behavior is seen in the corresponding expansion of Flaminio-Forni in [START_REF] Flaminio | Invariant distributions and time averages for horocycle flows[END_REF]Theorem 1.5]. However they are not limited to finite sets Λ δ of eigenvalues (Faure-Tsujii do not seem to be limited either in [START_REF] Faure | Band structure of the Ruelle spectrum of contact Anosov flows[END_REF]). Our methods, however, do not seem to allow to go beyond the first vertical line with infinitely many resonances in σ pX V q | W s,t,q p in the expansion of the horocycle integral. (This could be a natural limitation, as discussed in [66, p.1497, below Theorem 1.1].)

Weighted horocycle integrals, properties of τ , local bounds

In order to use a smooth cutoff trick of Giulietti-Liverani to decompose γ x p¤, T q in Lemma 2.5.14 below, we need to consider weighted horocycle integrals: For all ϕ C r¡1 X pMq, for all compactly supported w C pR, Cq and for all x M , let γ w,x pϕq :

» R w pρq ¤ pϕ ¥ h ρ pxqq d ρ.
(2.89) denote the horocycle integral of the horocycle flow h ρ for the observable ϕ at base point x with weight w.

For further purposes, it is useful to view γ w,x as a functional in the topological dual space of W s,t,q p for weights w with compact support and sufficient differentiability:

Lemma 2.5.12. Let p r1, Vs and let 0 q ¤ t r ¡ 1 and let ¡r s 0. Let x M . Then for some C ¡ 0, for all C ¡s maps w : R Ñ C with compact support it holds }γ w,x } W s,t,q p ÑC ¤ C |supp w| }w} C ¡s .

Proof. We recall the partition of unity ϑ and chart maps κ , Ω (see Definition 2.3.6). We set for all x M , for all α ¥ 0 and for all ϕ C r¡1 X pMq

y x, 1 ,α pρq : κ 1 ¥ g α ¥ h ρ pxq,
(2.90)

ϕ w,x, 1 , 2 ,α pzq : pϑ 2 ¤ φ ¡α ¥ g ¡α q ¥ κ ¡1 1 pzq ¤ » V ¡V w pρq δ pz ¡ y x, ,α pρqq d ρ, ϕ 1 ,α pzq : pϑ 1 ¤ L α,φα ϕ 1 q ¥ κ ¡1 1 pzq .
With this notation, recalling the weighted horocycle integral associated to Definition 2.5.1, we express for all α ¥ 0

γ w,x pϕq ¸ 1 , 2 Ω » R d ϕ w,x, 1 , 2 ,α pzq ¤ ϕ 1 ,α pzq d z.
(2.91)

We set c I p q : ¡s, c I p0q : ¡t, c I p¡q : ¡t.

We recall r Ψ σ,n defined in (2.24). We bound, using Plancherel's Theorem, Cauchy-Schwarz for the sum in σ and n, and twice Hölder's inequality with respect to z and α, respectively, for some constant C ¡ 0 

α 0 |γ w,x pϕq| » α 0 0 § § § § § ¸ 1 , 2 » R d ϕ w,x, 1 , 2 ,α pzq ¤ ϕ 1 ,α pzq d z § § § § § d α ¤ » α 0 0 ¸ 1 , 2 § § § § § » R d σ,n 2 ¡cpσqn r Ψ Op σ,n ϕ w,x, 1 , 2 ,α pzq 2 cpσqn Ψ Op σ,n ϕ 1 ,α pzq d z § § § § § d α ¤ C sup α, 1 , 2 £ σ,n 4 c I pσqn § § § r Ψ Op σ,n ϕ w,x, 1 , 2 ,α § § § 2 1 2 L p ¦ }ϕ} W s,t,q p , ( 2 
Ψ Op ¡,n ϕ w,x, 1 , 2 ,α
Lp ¤ C 2 2 sn |supp w| }w} C ¡s , dx M, d0 ¤ α ¤ α 0 . We first show claim (i). We fix w, σ, n, 1 , 2 , x and α. We let J supp w be the maximal subset such that y x, 1 ,α|J is well-defined. We note that J decomposes into a finite disjoint union, e.g. J N k1 I k for some N N and some real intervals I k . In particular, since the flow h ρ is non-singular and, in addition the manifold M is compact and each stable leaf is dense in M and 0 ¤ α ¤ α 0 , for some constant

C 1 ¡ 0, we have |I k | ¤ C 1 diam V 1 and N ¤ C 1 |supp w| diam V 1 . For every z R d we estimate for some constants C 2 , . . . , C 4 ¡ 0 |ϕ w,x, 1 , 2 ,α pzq| ¤ C 2 § § § § » J w pρq δ pz ¡ y x, 1 ,α pρqq d ρ § § § § § § § § § N ķ1 » I k w pρq δ pz ¡ y x, 1 ,α pρqq d ρ § § § § § § § § § § § N ķ1 ρy ¡1 pzqI k wpρq |f ρ y x, 1 ,α pρq| ¡1 § § § § § § ¤ C 3 N max ρsupp w § § §wpρq |f ρ y x, 1 ,α pρq| ¡1 § § § ¤ C 4 |supp w| }w} LV , (2.93) 
where we used in the last step non-singularity of h ρ and 0 ¤ α ¤ α 0 . We conclude, using Young's inequality on r

Ψ Op σ,n ϕ w,x, 1 , 2 ,α
Lp together with the bound in (2.93).

We now show claim (ii). Again we fix w, σ, n, 1 , 2 , x and α and set y :

y x, 1 ,α .
Analogously as in the proof of (i), we let

I k R, 1 ¤ k ¤ N , be the N connected components of J for some N N. For every z R d we expand r Ψ Op ¡,n ϕ w,x, 1 , 2 ,α pzq 2 dn p2πq d » R d » R d r Ψ ¡,1 pξq e i 2 n ξpz¡r yq ϕ pr yq d ξ d r y,
where we set ϕ pr yq : ϕ w,x, 1 , 2 ,α pr yq .

We note that supp ϕ y pJq. In particular, we reparametrize r y supp ϕ by r y r z pr ρq for some diffeomorphism z C r and r ρ R. We set D r ρ p¤q : i f r ρ p¤q f r ρ ξr z . Since r z pRq is a piece of a stable manifold in charts there exists a constant C 3 ¡ 0 such that we have § § f r ρ ξr z pr ρq § § ¥ C 1 2 n for all ξ in supp r Ψ ¡,n is essentially part of an unstable cone in charts by construction. We note that ϕ¥z is C r . Using t¡sutimes integration by parts (see Lemma B.3), followed by a regularized integration by parts with respect to r ρ if ¡s N, respectively (see Lemma B.5 in which we take d 1, G y and L ¡1 2 ¡n ), this yields 

r Ψ Op ¡,n ϕ w,x, 1 , 2 ,α pzq 2 pps dqnq p2πq d » R d » R r Ψ ,
¥ r z ¤ f r ρ r z ¨, if ¡ s N 2 p¡s t¡suqn ¡ f r ρ ¡ 1 2 n ξr z r r ϕ © f r ρ ξr z ¤ ¡ 1 ξr z r r ϕ ¡ ¡ 1 ξr z r r ϕ © ©© , if ¡ s N , r r ϕ : D t¡su r ρ r ϕ ¥ r z ¤ f r ρ r z ¨,
and the -term is just the convolution pfρh 0 q ¦ pfρh 0 q pfρh 0 ¥gαq ¦ pfρh 0 ¥gαq where f ρ h 0 pxq : f ρ h ρ|ρ0 pxq, (ix) 0 f ρ τ p0, α, xq V, (x) if α ¥ 0 there exist C 1 ¡ 0 and 0 θ 1 both independent of α and x such that }f ρ τ p¤, α, xq}

C r¡1 ¤ C 1 θ α , (xi) if |ρ| ¥ 1 and α ¥ 0 there exists C 2 ¥ 1 independent of ρ, α and x such that C ¡1 2 |ρ| e htopα ¤ |τ pρ, ¡α, xq| ¤ C 2 |ρ| e htopα . (xii) if α ¥ 0 such that |τ pρ, α, xq| c for some c ¥ 1 then there exists C 3 ¥ 1 independent of ρ, α and x such that C ¡1 3 ce htopα ¤ |ρ| ¤ C 3 ce htopα .
Proof. We note that by Definition 2.5.1, Definition 2.5.4 and Lemma 2.5.6 the renormalization time is differentiable in ρ. Every stable leaf is dense in M hence together with non-singularity of the flow h ρ it follows h ρ 1 pxq h ρ 2 pxq ñ ρ 1 ρ 2 .

Then Claim (i)-(ii) follow directly from (2.84). We deduce from (2.84)

h τ pρ,α 1 α 2 ,xq ¥ g α 1 α 2 pxq g α 1 α 2 ¥ h ρ pxq g α 1 ¥ h τ pρ,α 2 ,xq ¥ g α 2 pxq
h τ pτpρ,α2,xq,α1,gα 2 pxqq ¥ g α 1 α 2 pxq.

This yields Claim (iii). Also from (2.84) we find

h τ pρ 1 ρ 2 ,α,xq ¥ g α pxq g α ¥ h ρ 1 ρ 2 pxq g α ¥ h ρ 1 ¥ g ¡α ¥ g α ¥ h ρ 2 ¥ g ¡α ¥ g α pxq h τ pρ 1 ,α,hρ 2 pxqq ¥ h τ pρ 2 ,α,xq ¥ g α pxq.
This yields Claim (iv). Claim (v) and (vi), using Claim (i), follow by differentiating both sides in (iv) and (iii) at ρ 1 0 and ρ 0, respectively.

Claim (vii) follows from (2.83) and (v).

To show Claim (viii), we take derivatives on both sides of (2.84) with respect to ρ D g α f ρ h ρ pxq f ρ τ pρ, α, xq ¤ pf ρ h 0 q ¥ h τ pρ,α,xq ¥ g α pxq.

(2.94)

Now we let pf ρ h 0 q ¦ E ¦ ¡ be the canonical dual of f ρ h 0 . We calculate pf ρ h 0 ¥ g α q ¦ pD g α f ρ h 0 q pf ρ h 0 ¥ g α q ¦ ppg α q ¦ f ρ h 0 q pg α q ¦ pf ρ h 0 ¥ g α q ¦ pf ρ h 0 q det D g α|E ¡ ¨¦ pf ρ h 0 q ¦ pf ρ h 0 q det D g α|E ¡ pf ρ h 0 q ¦ pf ρ h 0 q .

(2.95)

We set ρ 0 in (2.94) and conclude, using (2.95) and non-singularity of the horocycle flow.

Claim (ix) follows from (viii) together with the fact lim αÑ0 det D g α|E ¡ 1 and compactness of M .

In order to show (x), we note first, since r ¥ 2, using Claim (v) and the cocycle property (vi),

f ρ τ pρ, α, xq f ρ τ p0, α, h ρ pxqq exp ¡ » α 0 V ¥ g r α ¥ h ρ pxq d r α,
where V : ¡f α f ρ τ p0, 0, ¤q C r¡1 . Therefore it holds, using the equality in (2.84),

f 2 ρ τ pρ, α, xq ¡f ρ τ pρ, α, xq ¤ f ρ » α 0 V ¥ g r α ¥ h ρ pxq d r α ¡f ρ τ pρ, α, xq ¤ » α 0 f ρ τ pρ, r α, xq ¤ pD V f ρ h 0 q ¥ g r α ¥ h ρ pxq d r α, (2.96) 
where |f ρ τ pρ, α, xq | ¤ Cθ α for some 0 θ 1 and C 1 ¡ 0 both independent of α, ρ and x by (viii). Hence there is C 2 C 2 pV q ¡ 0 such that § § f 2 ρ τ pρ, α, xq § § ¤ C 2 θ α . By induction, all derivatives f k ρ τ pρ, α, xq, where k N, depend only on f ρ τ pρ, α, xq (and k and derivatives of V which are independent of α) and so does the Hoelder norm }f ρ τ pρ, α, xq} C r¡1 . Since r ¥ 2 the Hoelder coefficicent of f ρ τ p¤, α, xq is bounded by Since the stable flow is non-singular, the stable manifold W x is of bounded length (from above and below) for all x M . We estimate, using Proposition 2.5.13

(viii) for the first and [START_REF] Giulietti | Anosov flows and dynamical zeta functions[END_REF]Remark C.4] for the last inequality, with constants

C 3 , . . . , C 6 ¡ 0 independent of ρ, α, x τ pρ, ¡α, xq ¤ C 3 » ρ 0 det D g ¡α|E ¡ ¥ h ρ pxq d ρ ¤ C 4 ρ » det D g ¡α|E ¡ d W x ¤ C 5 ρ vol pg ¡α pW x qq ¤ C 6 ρe htopα .
A lower bound for τ pρ, ¡α, xq is obtained in an analogous way, using the last statement in [START_REF] Giulietti | Anosov flows and dynamical zeta functions[END_REF]Lemma C.1]. We conclude for all |ρ| ¥ 1, noting that τ p¡ρ, α, xq ¡τ pρ, α, h ¡ρ pxqq, using Claims (iv) and (i).

Claim (xii) follows from Proposition 2.5.13 (viii), and the following equality which follows from Claim (iii) ρ τ pτ pρ, α, xq , ¡α, g α pxqq τ pc, ¡α, g α pxqq .

We shall use in the next two lemmas the following key identity for the horocyle integral (2.89) γ w,x pϕq γ w¥τ p¤,¡α,gαpxqq,gαpxq L α,fρτ p0,¡α,¤q ϕ ¨, dα ¥ 0.

(2.97)

To check the above identity, using (2.84) and Proposition 2.5.13 (iii), (v)-(vi), just notice that for all α R

γ w,x pϕq » V ¡V w pρq ¤ ϕ ¥ g ¡α ¥ g α ¥ h ρ pxq d ρ » V ¡V w pρq ¤ ϕ ¥ g ¡α ¥ h τ pρ,α,xq ¥ g α pxq d ρ » V ¡V w pτ pρ, ¡α, g α pxqqq ¤ ϕ ¥ g ¡α ¥ h ρ ¥ g α pxq ¤ f ρ τ pρ, ¡α, g α pxqq d ρ » V
¡V w pτ pρ, ¡α, g α pxqqq ¤ pf ρ τ p0, ¡α, ¤q ¤ ϕ ¥ g ¡α q ¥ h ρ ¥ g α pxq d ρ γ w¥τ p¤,¡α,gαpxqq,gαpxq pf ρ τ p0, ¡α, ¤q ¤ ϕ ¥ g ¡α q (2.98) γ w¥τ p¤,¡α,gαpxqq,gαpxq L α,fρτ p0,¡α,¤q ϕ ¨, if α ¥ 0.

We now state upper bounds for |γ x pϕ, T q| similar to the results in [START_REF] Flaminio | Invariant distributions and time averages for horocycle flows[END_REF]Lemma 5.16]. The prove uses the analogue of the smooth cutoff used by Giulietti-Liverani [START_REF] Giulietti | Parabolic dynamics and Anisotropic Banach spaces[END_REF] but uses a different construction of the local decomposition of γ x pϕ, T q. Lemma 2.5.14 (Local bounds). For every T ¡ 0 and for every x M there exists w C ¡s pR, r0, 1sq such that for every ϕ W s,t,q p , where p r1, Vs and s 0 q ¤ t r ¡ 1 s, the following holds:

(i) There exists C 1 ¡ 0 independent of T, x and ϕ such that |γ x pϕ, T q ¡ γ w,x pϕq| ¤ C 1 }ϕ} C 0 .

Moreover, if ¡s θ min θmax , where for some 0 θ min θ max , for some C 0 ¥ 1 and for all α ¥ 0 it holds 

C ¡1 0 e ¡θmaxα ¤ inf xM f ρ τ p¤, α,
T λ h top pmax t1, log T uq c , if λ ¡ 0 min t1, T u pmax t1, log T uq c 1 , if λ 0 min t1, T u pmax t1, log T uq c , if λ 0 .
Moreover, if the bound in (2.100) holds for all α R with λ ¡ 0 then |γ x pr ϕ, T q ¡ γ w,x pr ϕq| ¤ CC 3 .

Proof. Let x M , T ¡ 0, 0 ¤ 1 4 . We define β k , β ¡ k R for every k N by τ T, β 0 , x ¨ 1 and τ ¢ τ ¢ 1 , ¡β k , g β k pxq , β k¡1 , x 1, β ¡ 0 : β 0 and τ ¢ τ ¢ ¡ 1 , ¡β ¡ k , g β ¡ k ¥ h T pxq , β ¡ k¡1 , h T pxq ¡1.
(2.101)

If T ¡ 1 we assume β 0 ¡ 0, if T 1 we assume β 0 0 and if T 1 we assume β 0 0. This is justified since τ pT, 0, xq T and by Proposition 2.5.13 (xi). Combining the definitions in (2.101) with (iii) and (xi) in Proposition 2.5.13, we find C 1 ¥ 1 independent of , x, k and T such that for all k N it holds

C ¡1 1 ¤ e htoppβ k ¡β k¡1 q , e htoppβ ¡ k ¡β ¡ k¡1 q ¤ C 1 .
(2.102)

If β 0 ¥ 0 it follows for all k Z ¥0 , using the upper bounds in (2.102) and Proposition 2.5.13 (xii) on τ T, β 0 , x ¨ 1 ,

T C ¡1 1 ¨k 1 ¤ e htopβ k ¤ T pC 1 q k 1 .
(2.103)

If β 0 0 it holds for all k Z ¥0 C ¡1 0 T ¨htop θ min C ¡1 1 ¨k ¤ e htopβ k ¤ pC 0 T q h top θmax pC 1 q k , (2.104) 
where C 0 , θ min and θ max are from the assumptions in (2.99). By symmetry we obtain analogous bounds for β ¡ k . We let w , w ¡ C V pR, r0, 1sq such that w ¡ w ¥ pT ¡ ¤q , w |p 1 2 ,Vq 1 and w |p¡V, 1 4 q 0. We set

w 0 : w ¥ τ ¤, β 0 , x ¨¤ w ¡ ¥ T τ ¤ ¡ T, β ¡ 0 , h T pxq ¨¨, and we set for all k N w k : w ¥ τ ¤, β k , x ¨¡ w ¥ τ ¤, β k¡1 , x ¨, w ¡ k : w ¡ ¥ T τ ¤ ¡ T, β ¡ k , h T pxq ¨¨¡ w ¡ ¥ T τ ¤ ¡ T, β ¡ k¡1 , h T pxq ¨¨, w k : w k w ¡ k .
We let N Z for now be arbitrary. If N ¥ 0 we set w :

N ķ0 w k w 0 w ¥ τ ¤, β N , x ¨¡ w ¥ τ ¤, β 0 , x ¨ w ¡ ¥ T τ ¤ ¡ T, β ¡ N , h T pxq ¨¨¡ w ¡ ¥ T τ ¤ ¡ T, β ¡ 0 , h T pxq ¨¨. If N 0 we put w 0. Since ¤ 1 β k and β ¡ k in (2.101) that for all k N τ ¢ 1 2 , ¡β k , g β k pxq ¤ τ ¢ 1 4 , ¡β k¡1 , g β k¡1 pxq and τ ¢ 1 ¡2 , ¡β ¡ k , g β ¡ k ¥ h T pxq ¥ τ ¢ ¡ 1 4 , ¡β ¡ k¡1 , g β k¡1 ¥ h T pxq .
Together with the assumptions on the supports of w and w ¡ , we find if

N ¥ 0 supp 1 |r0,Ts ¡ w ¨ ¢ 0, τ ¢ 1 2 , ¡β N , g β N pxq ¢ T τ ¢ ¡ 1 2 , ¡β ¡ N , g β ¡ N ¥ h T pxq , T .
We put N : Using Proposition 2.5.13 (iii) and also Proposition 2.5.13 (iv) in the last equality for r w 0 , we find for all k N r w

¡ log C ¡1 1 T ¨{ log pC 1 q . Hence if N 0 then T is bounded and if N ¥ 0 then β N , β ¡ N ¥ 0.
k :w k ¥ τ ¡ ¤, ¡β k , g β k pxq © w ¡ w ¥ τ ¡ ¤, β k¡1 ¡ β k , g β k pxq © , r w ¡ k :w ¡ k p¤ T q ¥ τ ¡ ¤, ¡β ¡ k , g β ¡ k ¥ h T pxq © w ¡ pT ¤q ¡ w ¡ ¥ ¡ T τ ¡ ¤, β ¡ k¡1 ¡ β ¡ k , g β ¡ k ¥ h T pxq ©© , r w 0 :w 0 ¥ τ ¡ ¤, ¡β 0 , g β 0 pxq © w ¤ w ¡ ¥ ¡ T τ ¡ τ ¡ ¤, ¡β 0 , g β 0 pxq © ¡ T, β 0 , h T pxq ©© w ¤ w ¡ ¥ ¢ T ¡ 1 ¤ . For this construction it holds for all k N supp r w k , ¡ supp r w ¡ k , supp r w 0 0, C 2 1 2 1{ 2 & . ( 2 

.105)

Since f ρ τ p¤, α, xq C r¡1 for all α R and all x M it follows for some constant C 3 ¡ 0 for all k N, all x M and all T ¡ 0, using Proposition 2.5.13 (viii) and the bounds in (2.102), r

w k C r , r w ¡ k C r , } r w 0 } C r ¤ C 3 .
(2.106)

We note γ w,x pϕq γ w¥p¤ T q,h T pxq pϕq . Assuming N ¥ 0, together with the equality in (2.97), we find the local decomposition 6 for all ϕ W s,t,q p γ w,x pϕq γ r

w 0 ,g β 0 pxq ¢ L β 0 ,φ β 0 ϕ N ķ1 γ r w k ,g β k pxq ¢ L β k ,φ β k ϕ γ r w ¡ k ,g β ¡ k ¥h T pxq ¢ L β ¡ k ,φ β ¡ k ϕ . (2.107)
Using the bound in Lemma 2.5.12 with the bounds in (2.106), and using the assumption in (2.100) for some r ϕ W s,t,q p }L α,φα r ϕ} W s,t,q p }f ρ τ p0, ¡α, ¤q ¤ r ϕ ¥ g ¡α } W Since for all ϕ C r¡1 X pMq it holds γ x pϕ, T q ¡ γ °V k0 w k ,x pϕq 0, we find by density for all ϕ W s,t,q p γ x pϕ, T q γ °V k0 w k ,x pϕq .

It holds supp w 0 r0, T s .

Comparing with the supports in (2.105), together with the bounds in (2.103) and (2.104), we find some C 5 ¡ 0 independent of k, T, x and ϕ such that for all k N, if

β k ¥ 0 and β ¡ k ¥ 0, T ¡ supp w ¡ k ¨, supp w k 0, C 5 pC 1 q k T % , respectively, and if β k 0 and β ¡ k 0, T ¡ supp w ¡ k ¨, supp w k 0, C 5 T θ min θmax ¡ pC 1 q k © θ min h top ' .
Moreover, we find for some constant C 5 ¥ 1 for all ρ 1 , ρ 2 R, all α, ¡s ¥ 0 and all x M , using Proposition 2.5.13 (iv) and the assumption of the upper bound for f ρ τ in (2.99), pτ pρ 1 , α, xq ¡ τ pρ 2 , α, xqq ¡s τ pρ 1 ¡ ρ 2 , α, h ρ 2 pxqq ¡s ¤ C ¡s 5 pρ 1 ¡ ρ 2 q ¡s e sθ min α .

If α ¤ 0 it holds analogously, now using the lower bound for f ρ τ in (2.99), pτ pρ 1 , α, xq ¡ τ pρ 2 , α, xqq ¡s τ pρ 1 ¡ ρ 2 , α, h ρ 2 pxqq ¡s ¤ C ¡s 5 pρ 1 ¡ ρ 2 q ¡s e sθmaxα .

Since 0 ¡s 1 and 0 θ min ¤ θ max it holds for some constant C 6 ¡ 0 independent of T, x and ϕ, using the lower bounds in (2.103)-(2.104), for all k N and for all T ¡ 0,

}w k } C ¡s ¤ C 6 max 4 1, T s θmax θ min ¡ pC 1 q k © s θmax h top B .
Then we estimate for every ϕ W s,t,q p , using Lemma 2.5.12 and ¡s θ min . This yields the second statement in Claim (i). On the other hand, using the equality in (2.98) and assuming N ¡ 0, we find,

γ x pr ϕ, T q ¡ N ķ0 γ w k ,x pr ϕq V ķN 1 γ r w k ,g β k pxq ¡ f ρ τ 0, ¡β k , ¤ ¨¤ r ϕ ¥ g ¡β k © V Ņ 1 γ r w ¡ k ,g β ¡ k ¥h T pxq ¡ f ρ τ 0, ¡β ¡ k , ¤ ¨¤ r ϕ ¥ g ¡β ¡ k © .
Then we proceed analogously as for the bound in (2.109), now using the upper bounds in (2.103) and the assumption in (2.108) for all α R and some λ ¡ 0, c ¥ 0 (recall that T pC 1 q N is bounded from above). If N ¤ 1 then T λ |log T | c is bounded from above and we conclude as well, now using the upper bounds in (2.104).

Remark 2.5.15. The second statement in Lemma 2.5.14 (i) can be used to avoid the }ϕ} C 0 -term in the bound of the error term in Theorem 2.5.7. However the required range for s may not be very large (except in the case of constant vector fields). The second statement in Lemma 2.5.14 (ii) is free from an additional condition on s. We use it in the following subsection in the proof of Lemma 2.5.18 (v) and Theorem 2.5.7. Both statements give also bounds for all values T ¡ 0 which seems to be new.

Showing λ max h top and Theorem 2.5.7

In this subsection we shall prove Theorem 2.5.7. First, we state and prove two lemmas which will imply that λ max h top , assuming λ min λ max , is a simple eigenvalue and that λ max is uniquely attained.

We remind the reader that uniqueness and simplicity of the spectral bound is known to hold (see [START_REF]Smooth Anosov flows: Correlation spectra and stability[END_REF]Lemma 5.1], [START_REF] Butterley | Robustly invariant sets in fiber contracting bundle flows[END_REF]) for the spectrum of mixing Anosov flows (which are not necessarily contact), but for different anisotropic spaces, and only for the potential V given by the Jacobian of the flow (and associated to the SRB measure).

For the sake of the next two lemmas we have to introduce the following condition7 :

Condition 2.5.16 (Strong vanishing). Let 0 t, q, ¡s r¡1 and let p r1, Vs.

Let ϕ α W s,t,q p for all α ¥ 0 such that }ϕ α } W s,t,q p 1 and lim sup αÑV e ¡htopα }L α,φα ϕ α } W s,t,q p ¡ 0.

If for some ¡s ¤ ¡s I for all x M and all w C ¡s I 0 pRq lim αÑV γ w,x £ L α,φα ϕ α }L α,φα ϕ α } W s,t,q p 0 then lim αÑV }ϕ α } W s,t,q p 0.

We give the upper bound on the spectral radius:

Lemma 2.5.17 (Upper bound on the spectral radius). Let 0 t, q, ¡s r ¡ 1 and let p r1, Vs. For all x M and all α ¥ 0 let f ρ τ p¤, ¡α, xq C r¡1 pR, M q. Under Condition 2.5.16, With the choice φ α f ρ τ p0, ¡α, ¤q for some constant C ¡ 0 it holds for all α ¥ 0 }L α,φα } W s,t,q p ÑW s,t,q p ¤ Ce htopα .

Proof. We show the claim on }L α,φα } W s,t,q p ÑW s,t,q p by contradiction. Suppose e ¡htopα }L α,φα } W s,t,q p ÑW s,t,q p Ñ V as α Ñ V.

Then there exists ϕ α W s,t,q p such that }ϕ α } W s,t,q p 1 and e ¡htopα L α,φα ϕ α W s,t,q p Ñ V as α Ñ V.

(2.110)

We assume for some w C s 0 pRq and some x M

lim inf αÑV § § § § § γ w,x £ L α,φα ϕ α }L α,φα ϕ α } W s,t,q p § § § § § ¡ 0.
(2.111)

This assumption is justified, assuming Condition 2.5.16. We choose T ¥ 1 and α ¥ 0 such that τ pT, α, xq 1.

Then, using Proposition 2.5.13 (xii), we find for some constant C ¥ 1

C ¡1 e htopα ¤ T ¤ Ce htopα .

(2.112)

We have, using the equality given in (2.97), γ w¥τ p¤,α,xq,x pϕ α q γ w,gαpxq pL α,φα ϕ α q .

(2.113)

We recall ¡s r ¡ 1. Therefore the norm }w ¥ τ p¤, α, xq} C ¡s is bounded as α Ñ V, using Proposition 2.5.13 (x). By Lemma 2.5.12, the linear functionals γ w¥τ p¤,α,xq,x and γ w,gαpxq which appear in (2.113) are continuous on W s,t,q p . Hence the left-hand side in (2.113) grows at most by T as α Ñ V uniformly in x.

Then, comparing with the estimates for T in (2.112), using the assumption in (2.111), this contradicts the assumption in (2.110) and we conclude.

We next show the lower bound (and uniqueness and simplicity of the spectral bound λ max ):

Lemma 2.5.18 (Invariant measure and spectral bound). Let µ be the unique Borel probability measure which is invariant by the horocycle flow h ρ . Let p r1, Vs and let s 0 q ¤ t such that t ¡ s r ¡ 1. It holds:

(i) µ ¡ W s,t,q p © I , (ii) L I α,φα µ e htopα µ (L I α,φα denotes the adjoint operator of L α,φα ), (iii) h top σ pX V q | W s,t,q p . Moreover, assuming Condition 2.5.16, it holds:

(iv) λ max h top .

(v) The spectral bound λ max is uniquely attained by the simple eigenvalue h top , assuming λ min λ max .

The vector µ is also invariant by the adjoint horocycle flow since the time average converges to the (unique) ergodic mean (a result by Marcus [START_REF]Unique ergodicity of the horocycle flow: variable negative curvature case[END_REF]). This is in analogy to [START_REF] Giulietti | Anosov flows and dynamical zeta functions[END_REF]Lemma 2.11].

Proof. We note for every ϕ C r¡1 X pMq, using [49, Theorem 2.1] for the first, the equality in (2.97) for the second and [49, Lemma 3.1] for the third equality, for some λ ¡ 0, for every α ¥ 0 µ pϕq lim T ÑV Claim (iii) follows from σ pX V q I ¨|pW s,t,q p q I σ pX V q | W s,t,q p , using [46, Section II.2.5]. Claim (iv) follows from (iii) together with Lemma 2.5.17. To see Claim (v), first we note that all λ σ pX V q such that λ h top are eigenvalues, using Lemma 2.4.10 together with the assumption λ min λ max .

Using Claim (iii), there exists D 1 W s,t,q p such that L α,φα D 1 e htopα D 1 for all α ¥ 0. We let D 1 $ D 2 W s,t,q p z t0u such that L α,φα D 2 e λα D 2 for all α ¥ 0, where λ C and λ h top . Then it holds, using Claim (ii) for the last equality, e λα µ pD 2 q µ pL α,φα D 2 q e htopα µ pD 2 q . Since λ $ h top it holds µ pD 2 q 0. In fact, by same reasoning we can always assume µ pD 2 q 0 if λ $ h top . And if λ h top there are only finitely many such D 2 and we can again assume µ pD 2 q 0 by a change of basis. The upshot is that the following reasoning works always if λ ¥ h top and µ pD 2 q 0. Then, using Claim (i) and the equality in (2.114), for every ¡ 0 there is ϕ C r¡1 X pMq such that for all α R and for all x M lim T ÑV § § § § 1 T γ g ¡α pxq pϕ, T q § § § § |µ pϕq| ¤ .

(2.116) Using Lemma 2.5.14 (i), for all T ¡ 0, for all x M and for all α R there exists w C r such that lim

T ÑV § § § §
1 T γ g ¡α pxq pϕ, T q § § § § lim

T ÑV § § § §
1 T γ w,g ¡α pxq pϕq § § § § .

(2.117)

Since f ρ τ p0, ¡α, ¤q C r¡1 for all α R, using Lemma 2.3.3, we find L α,φα D 2 e λα D 2 for all α R which matches the condition (2.100) in Lemma 2.5.14 (ii).

Then, using Lemma 2.5.14 (ii) for the upper bound and the equality in (2.97)

for the last step, we find for some constant C 2 ¡ 0 independent of x, α and ϕ, for all α R X pMq in W s,t,q p we assume }ϕ ¡ D 2 } W s,t,q p ¤ .

For every T ¥ T 0 ¥ 1 we let α ¥ 0 such that τ pT, α, xq T 0 . By Proposition 2.5.13 there is C 3 ¥ 1 independent of T and x such that e htopα ¥ C ¡1

3 T T 0 . Since ¡ 0 was arbitrary we conclude for all T 0 ¥ 1 and all x M , using the estimates (2.116)-(2.118), γ x pD 2 , T 0 q 0. On the other hand we find for all T 1 , T 0 ¥ 1 γ x pD 2 , T 0 ¡ T 1 q γ h ¡T 1 pxq pD 2 , T 0 q ¡ γ h ¡T 1 pxq pD 2 , T 1 q 0. Hence it holds γ x pD 2 , T q 0 for every T R and every x M . Then for every w C s 1 0 we find, using integration by parts, γ w,x pD 2 q ¡ » R pf ρ wq pρq ¤ γ x pD 2 , ρq d ρ.

Since γ x pD 2 , ρq 0 for all ρ ¥ 0 we conclude γ w,x pD 2 q 0. Then, using Condition 2.5.16, we find D 2 0 but we assumed D 2 % 0.

Proof of Theorem 2.5.7. By assumption max tλ min , 0u δ ¤ λ max h top .

We note that we have always λ max h top and uniqueness and simplicity of λ max under Condition 2.5.16. Using the equality in (2.67) for the projectors Π λ,i , we have for all 1 ¤ i ¤ n λ Π λ,i ϕ m λ,i j1 O pλ,i,jq pϕq D pλ,i,jq .

Recalling the nil-potent operators N λ,i of finite rank (e.g. see in (2.66)), using the formula for the matrix action L α,φα Π λ,i exp pλαq exp pN λ,i αq Π λ,i for all α ¥ 0 and exp p¡λαq exp p¡N λ,i αq L α,φα Π λ,i Π λ,i , we find for some constant C 1 C 1 pλ, i, jq for all α R f ρ p0, ¡α, ¤q ¤ D pλ,i,jq ¥ g ¡α W s,t,q p ¤ C 1 exp p λαq max Inspecting the end of the proof of Lemma 2.5.18, we notice that all eigendistributions D pλ,i,jq associated to some eigenvalue λ with λ ¥ h top do not contribute to the expansion except D phtop,1,1q . This follows, if j 1 using that γ x D pλ,i,1q , T ¨ 0 for all T ¥ 0 and all x M . If j ¡ 1 we arrive at the same conclusion, using in the estimate in (2.118) for all α ¥ 0 L α,φα D pλ,i,jq exp pλαq exp pN λ,i αq D pλ,i,jq .

Let λ Σ δ σ pX V q | W s,t,q p tz C | z ¥ δu. For every T ¥ 0 and every x M we set, using w C r given in Lemma 2.5.14, c pλ,i,jq c pλ,i,jq pT, xq : T ¡ λ h top max O pλ,i,jq pϕq .

We let µ as given in Lemma 2.5.18. Using Lemma 2.5.18 (v), and assuming

T ¥ e, we find for every finite subset Λ δ Σ δ γ x p¤, T q γ x D phtop,1,1q , T Π λ,i pγ x p¤, T q ¡ γ w,x q .

(2.119)

The existence of the limit lim T ÑV T ¡1 γ x D phtop,1,1q Assumption 2] just states that the essential spectral bound of X V ¡ h top is bounded by some λ 0, where V ¡f α f ρ τ p0, 0, ¤q. By assumption it holds λ ¤ λ min ¡ h top 0. Finally, the claimed choice c δ for all ¡ 0 follows from [19, Theorem 1] as well. In particular, this choice for c follows if for all α ¥ 0 and for all ¡ 0 there exists C 2 C 2 pδ, , ϕq such that

L α,φα £ id ¡ λΣ δ n λ i1 Π λ,i ϕ W s,t,q p ¤ C 2 e pδ qα .

123

We set ϕ δ : ϕ ¡ °λΣ δ °nλ i1 Π λ,i ϕ. If t ¡ q 1 r ¡ 1 it follows, using Lemma 2.3.3, Lemma 2.3.5 and [19, Theorem 1], for some constants C 3 , C 4 C 4 p q ¡ 0 }L α,φα ϕ δ } W s,t,q p ¤ C 3 }L α,φα pX V q ϕ δ } W s,t,q¡1 p C 3 }L α,φα ϕ δ } W s,t,q¡1 p ¤ C 3 }L α,φα pX V ¡ h top q ϕ δ } W s,t,q¡1 p pC 3 h top q }L α,φα ϕ δ } W s,t,q¡1 p ¤ C 4 e pδ qα ¢ pX V ¡ h top q 2 ϕ W s,t,q p }pX V ¡ h top q ϕ} W s,t,q p . Boundedness of the last estimate follows if q r ¡2 because then }X pV ϕq} W s,t,q p and X 2 ϕ W s,t,q p are bounded, recalling ϕ C r¡1 X pMq and V C r¡1 . Combining the required bounds for q yields t ¡ r 2 q r ¡ 2.

Since we required q ¡ 0 it is enough to require t ¡r 2 ¤ 0 and 0 r ¡2 which yields the additional condition on t and r.

If |∇ z Gpx, η, ξq| ¡ 0 then it holds V k pz, η, ξq |∇ z Gpz, η, ξq| ¡k f k pz, η, ξq, where f k pz, η, ξq is C r 1 ¡k in z, C Proof. We prove this by induction. For V 0 V 0 pz, η, ξq the hypothesis holds. We assume the hypothesis to hold for V k V k pz, η, ξq up to some 0 ¤ k ¤ tr 1 u ¡ 1.

We have therefore In particular, for some constant C ¥ 1, it holds }∇ z h } LV ¤ C }h} C δ δ¡1 and }h ¡ h } LV ¤ C }h} C δ δ .

V k 1 ∇ tr z ∇zG |∇zG| f k |∇ z G| k 1 ∇ tr z ¡ ∇zG |∇zG| f k © |∇ z G| k 1 ¡ pk 1q ∇ tr z G |∇zG| 2 f k ∇ z |∇ z G| |∇ z G| k 1 . (B.
Proof. Since G is C 1 δ and |∇ z G| ¡ 0, the map h is C δ . We have ∇ tr z Gpzqhpzq f pzq and we write And since h is compactly supported we have, using integration by parts,

» R d e i LGpzq ∇ tr z Gpzqh pzq d z ¡ 1 i L » R d e i
LGpzq ∇ tr z h pzq d z.

To see the norm estimates, we have

|hpzq ¡ h pzq| § § § § ¡d » R d hpzq ¡ hpz ¡ z I q ¨ν ¢ z I d z I § § § § § § § § » R d hpzq ¡ hpz ¡ z I q ¨ν z I ¨d z I § § § § ¤ }h} C δ δ .
Since supp h is compact, for every z R d there exists z R d such that hpz ¡zq 0. We estimate, for some constant C ¥ 1, using 1-Lipschitz continuity of the 

  Dans de l'étude du premier problème, nous agissons avec L sur un espace de Hilbert anisotrope. Nous répondons à la question dans le premier problème par l'affirmative. Le second problème que nous examinons fait intervenir les flots d'Anosov. Ces flots ont été instaurés par Anosov pour étudier le flot géodésique sur le fibré tangent unitaire de variétés fermées à courbure sectionnelle négative variable. De plus, nous avons besoin les flots d'Anosov d'être des flots de contact. Des exemples de flots d'Anosov-contact sont donnés par les flots géodésiques. Les flots horocycliques associés au flot d'Anosov sont dirigés dans la direction contractant du flot d'Anosov. Nous savons par les travaux de Marcus que pour tout flot horocyclique continu qui correspond à un flot d'Anosov C 2 mélangeant, il existe une unique mesure de probabilité de Borel invariante par le flot horocyclique. Katok et Burns ont démontré que tout flot d'Anosov-contact est mélangeant. Par conséquent, dans notre contexte, la moyenne temporelle de l'horocycle converge vers la moyenne ergodique unique. Mais à quelle vitesse converge la moyenne temporelle ? Dans le contexte de la courbure négative constante, on sait grâce aux travaux de Flaminio et Forni que cette vitesse est polynomiale. La vitesse est contrôlée par des valeurs propres pour certaines distributions propres du flot géodésique. Un problème analogue dans lequel le flot géodésique est remplacé par un difféomorphisme d'Anosov a été étudié plus tard par Giulietti et Liverani. Ils ont, de plus, dans leurs travaux, supposé que le résultat de Flaminio-Forni devrait s'étendre au flot géodésique dans le contexte de la courbure négative variable. Dans l'étude du second problème des opérateurs de transfert pondérés L α , α ¡ 0 apparaissent. Suivant l'approche fonctionnelle, il suffit essentiellement de construire un espace de Banach anisotrope B tel que les opérateurs L α agissent sur B, et d'avoir un spectre périphérique consistant en une valeur propre simple isolée. Cependant, la direction d'écoulement du flot d'Anosov n'est ni contractée ni dilatée par le flot d'Anosov, ce qui pose problème dans notre analyse. Nous appliquons donc à la place la stratégie suivante: Sur un espace de Banach anisotrope B bien choisi, la famille d'opérateur de transfert tL α : B Ñ B | α ¥ 0u forme un semi-groupe fortement continu et admet donc un générateur bien défini. La quasi-compacité de la résolvante de ce générateur garantit qu'une partie du spectre du générateur par rapport à B ne contient qu'un spectre discret de multiplicité finie. On trouve alors que le spectre discret contrôle la vitesse de convergence. Cependant, pour montrer que la vitesse de convergence est polynomiale, nous devons imposer une condition supplémentaire à la norme de la résolvante. Cette thèse est organisée comme suit : dans le premier chapitre, nous étudions les perturbations analytiques réelles et génériques r A d'un difféomorphisme d'Anosov linéaire sur le tore bidimensionnel. Nous appliquons l'approche fonctionnelle aux opérateurs de transfert comme décrit ci-dessus dans le cadre d'un espace de Hilbert anisotrope. Cet espace de Hilbert est explicitement construit comme la complétion d'un espace de Hardy par rapport à une norme anisotrope. Nous montrons que l'opérateur de composition K r A est à trace. En fait, nous montrons que K r A est nucléaire d'ordre 0, ce qui est un résultat plus fort. On obtient la réponse au premier problème par un calcul de la trace de K r A associé au système perturbé. Nous abordons ensuite des propriétés spectrales de l'opérateur de transfert L. Le premier chapitre figure tel qu'il a été publié en 2017 dans Nonlinearity 30.3, à l'exception de l'annexe qui est séparée en Appendix A et de la liste de références qui est combinée avec celle de cette thèse. Dans le second chapitre, nous traitons des flots d'Anosov différentiables finis sur des variétés fermées et connexes ainsi que les flots horocycliques stables associés. La définition de cônes et d'hyperbolicité via des cônes d'une application est développée. Nous introduisons des familles d'opérateurs de transfert tL α , α ¡ 0u avec des fonctions de poids positives arbitraires. Ceci est suivi par la construction d'espaces de Banach anisotropes. Ces espaces sont analogues aux espaces construits par Baladi et Tsujii pour étudier les difféomorphismes hyperboliques.

  These flows where introduced by Anosov to study the geodesic flow on the unit tangent bundle of closed Riemannian manifolds with variable negative sectional curvature. Moreover, we require the contact assumption for the Anosov flow. Examples of contact Anosov flows are provided by geodesic flows on the unit tangent space. The horocycle flows associated to the contact Anosov flow point into the contracting direction of the Anosov flow. We know by the work of Marcus that for every continuous horocycle flow which corresponds to a C 2 mixing Anosov flow, there exists exactly one Borel probability measure which is invariant by the horocycle flow. Katok and Burns have shown that every contact Anosov flow is mixing. Hence in our setting, the continuous horocycle time average converges to the unique ergodic mean. But how fast is this convergence?

  Riemannian manifolds M and associated transfer operators. Two problems are studied: The first problem concerns real analytic perturbations of linear toral Anosov diffeomorphisms. The second problem is to make a detailed statement about the time average of horocycle flows with underlying C 3 contact Anosov flow. The precise problems are formulated in Problem 1 and Problem 2 in the next section below.

(

  Ruelle-Pollicott) resonances for the map F and the above equality in (0.3) shows a direct relation between the resonances and the zeros of d F .

Theorem 1 (

 1 2). Geodesic flows are well-studied examples of contact Anosov flows. If E ¡ is orientable we define another flow h ρ : M Ñ M , ρ R, which points into E ¡ . This is the (stable) horocycle flow associated to the contact Anosov flow g α . (The term horocycle flow was used originally only in the case of the geodesic flow, e.g. see [49, p.84] or [38].) In general the defining vector field of the horocycle flow is at best C 2¡ for all ¡ 0 [40]. Unique ergodicity, [50, Theorem 3.5]). For every continuous horocycle flow which corresponds to a C 2 mixing Anosov flow there exists exactly one Borel probability measure which is invariant by the horocycle flow. Theorem 2 (Mixing ([41, Theorem 3.6], [48, Corollary B.6])). Every contact Anosov flow is mixing.

  Theorem I (Non-trivial resonances (Theorem 1.4.3)). Let A SL 2 pZq be hyper- bolic. For a generic real analytic perturbation r A of A there exists an anisotropic 0 IntroductionHilbert space H such thatK r A : H Ñ H is of trace class and it holds sp K r A ¨z t0, 1u $ r.This result implies that the dynamical determinant d r A has at least one nontrivial zero and therefore answers the question in Problem 1 in the affirmative.By construction the Hilbert space H contains real analytic observables as a dense subset. Hence the existence of a non-trivial resonance poses an obstruction to the superexponential decay of the correlation function for real analytic observables.

  where µ is the unique Borel measure which is invariant by the horocycle flow h ρ and sup T ¥1,xM c λ pT, xq T V and lim T ÑV E T,x,Λ δ pϕq T 0.

[ 29 ,

 29 Sect 8, I].

  1 ¨. The two subspaces E M ¦ and E ¡ M ¦ and the two cones C M and C ¡ M are shown in Figure 1.1.

Figure 1 . 1 :

 11 Figure 1.1: The map M is from Example 1.2.7. The dark gray area is the cone C M which contains the subspace E M ¦ . The light gray area is the cone C ¡ M and contains E ¡ M ¦ . A part y R 2 belongs to the dashed
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ņZ 2 }z}¤NRemark 1 . 4 . 2 .

 2142 exp pi 2πn ¦ zq is the 2-dimensional analogue of the Dirichlet kernel[44, p.13]. Together with(1.23), this yields immediatelytr K T lim N ÑV ņZ 2 }n}¤N x n , K T n y H A M,c Ţ pxqx |det pid ¡ D x T q| ¡1 .Using Lemma 1.4.1, and the definitions (1.1) and (1.9) for the dynamical determinant and Fredholm determinant, respectively, we see directly that det p1 ¡ zK T q d T pzq . (1.24) The Ruelle resonances correspond to the zeroes of the Fredholm determinant, hence to the inverses of the non-zero eigenvalues of K T . In view of Equation 1.24 and the relation of the Ruelle resonances of T to the eigenvalues of K T , one may ask how the spectrum of K T would be affected if we let K T act on a different Banach space. The following relates a part of the eigenvalues of two linear operators sharing a common dense subspace and is due to a result of Baladi and Tsujii [11, Appendix A]. Consider two separable Banach spaces pB 1 , }¤} 1 q and pB 2 , |¤|q. This induces two other Banach spaces

Theorem 1 . 4 . 3 (

 143 Non-trivial Ruelle resonances (I)). Let M SL 2 pZq be hyperbolic. For each r ¡ 0 there exists an open and dense set G B r such that the linear functional

  suitable a, b, c, d Z, we can write Condition A.2 (i) as

  for the right choice of the sign of δ, we have B M Let M be a closed (compact without boundary) orientable Riemannian manifold of arbitrary finite dimension d ¥ 3. On such manifolds Anosov introduced C 2 flows

Anosov [ 3 ]

 3 , the topological entropy h top of the time-one map g 1 of an Anosov flow is positive. A special class of such Anosov flows are those which preserve a contact structure. The geodesic flows are well-studied examples of contact Anosov flows. We give the precise definition of a (contact) Anosov flows in Section 2.2. Every Anosov flow admits a contracting transversal foliation. The underlying vector bundle E ¡ is called the strong stable distribution. If the leaves of the contracting foliation are one-dimensional and orientable, one associates with g α another flow, the horocycle flow h ρ : M Ñ M , ρ R. (The term horocycle flow

1 )

 1 are fixed by the (adjoint) of the horocycle flow remains still open. (In contrast this was the starting point in[START_REF] Flaminio | Invariant distributions and time averages for horocycle flows[END_REF]!) Here, progress has been made byFaure and 

8 )

 8 are expanding and contracting, respectively (see Lemma B.2). Note that the cones in (2.8) have non-empty interior while [43, Proposition 17.4.4] uses "flat" cones included in E ¦ E ¦ ¡ .Let V ω Ω, ω Ω, be an open cover of M , where Ω is a finite index set. We let A be an atlas for M , containing diffeomorphic C r -charts κ ω : V ω Ñ R d , compatible with the splittings (2.2) and (2.7), as we explain now. Fixing coordinates px 1 , . . . , x d q R d and recalling X from (2.4), we may and do require the flowbox condition D κ ω X |Vω f x d .

3 x

 3 If Θ ¥ is another cone ensemble we define Ψ ¥ σ,n ,Ψ ¥ Op σ,n and r R d | |x| 1 A and B c : R d zB.

( 2 . 26 )

 226 In order to show a continuous embedding of certain spaces we will use very often the following statement about convolution operators (an extension of[62, Theorem 0.3.1] for the case r 1 and Kpx, yq Kpx ¡ yq in his notation).In Lemma 2.3.1 below all the occurring L p -spaces are understood (as Bochner spaces, cf.[START_REF] Bochner | Integration von Funktionen, deren Werte die Elemente eines Vektorraumes sind[END_REF]) such that if a L p R d , B ¨for some complex Banach space B then the norm of a is given by }a} LppR d ,Bq : }}a} B } LppR d ,R ¥0 q .The following lemma handles the range p r1, Vs. (For parameters p p1, Vq one could apply instead the classical Marcinkiewicz theorem quoted e.g. as [10, Theorem 3.1].) Lemma 2.3.1. Let B 1 and B 2 be (complex) Banach spaces, let d N and let Q C d 1 R d , L pB 1 , B 2 q ¨satisfy for its partial derivatives f β ξ Qpξq LpB 1 ,B 2 q ¤ C pβq |ξ| ¡|β| as |ξ| Ñ V, for some constants C pβq ¡ 0 and all multi-indices β t0, . . . , d 1u d such that |β| ¤ d 1, where |β| : β 1 . . . β d . Then for all p r1, Vs the map

  If ξ B xy, yy 2 we bound the corresponding part in I trivially, using boundedness of the pd 1q-th partial derivatives of Q and integrability of xy, yy d ¡2d¡1 2 on B c . If ξ B c xy, yy 2 we use the decay condition of the pd 1q-th partial derivatives of Q instead and integrability of xy, yy ¡ d 2 on B c . For every open set K R d with compact closure we let C r¡1 0 pKq be the space of C r¡1 functions which vanish at the boundary of K. Since C r¡1 0 pKq L p pK, Cq for all p r1, Vs, the following definition makes sense. Definition 2.3.2 (Local norm and local Banach space). Let p r1, Vs and let s, t, q r ¡ 1. Let Θ be a cone ensemble from Definition 2.2.1 and let K R d be an open set with compact closure. For every ϕ C r¡1 0 pKq we set as the local norm

. 33 )

 33 Note that if supp Ψ σ and D F pxq tr supp Ψ ¥ τ have empty intersection, since the supports are open, we may assume that supp Ψ σ and D F pxq tr supp r Ψ ¥ τ have empty intersection as well. Since we excluded the conditions regarding certain σ, τ and n, given in (2.31) and below of it then by construction of r Ψ ¥ τ, , for some constant C 2 ¡ 0 it holds, in the following assuming n, ¡ 0,

Remark 2 . 4 . 8 .

 248 Note that Lemma 2.4.7 holds in the particular case of a contact Anosov flow if d 3. Clearly, if |φ α | ¤ § § §det pD g ¡α q tr |E ¦ α ¡ 0 then λ min ¤ 0 h top .

  For every b c 2 we set pQbq σ,n : Ψ σ,n b σ,n , and for every a L p R d , c 2 ¨we set pKaq σ,n : II pτ, qã Ñ I pσ,nq 1 |I a τ, .

1 pξq e i 2 n ξpz¡r zpr ρqq r D ¡s r ρ r ϕ pr ρq d ξ d r

  

ϕ

  with a C V map ν with supp ν p¡ , q. Note that all derivatives of r in ξ are bounded in n, using Lemma B.

f 2 ρ

 2 τ p¤, α, xq C 0 and we conclude. Claim (xi) for ρ ¥ 1 and α ¤ 0 follows from [31, Lemma C.1] and [31, Remark C.4] (recall that g α is transitive) in which we replace W with a manifold which contracts in forward time. To this end we set W x : h r0,1s pxq for every x M .

Since 1 we

 1 may assume without loss of generality for all k N β k β k¡1 and β ¡ k β ¡ k¡1 .

  |γ w,x pϕq| ¤ CC 4 T λ h top N ķ0 pC 1 q k λ h top pmax t1, pk 1q |log pC 1 q| , log T uq c .(2.109)If N 0 then w 0 and T is uniformly bounded from above and we conclude as well. To see the second statements in Claims (i)-(ii), we recall that the construction of the functions w k is valid for every T ¡ 0 and henceV ķ0w k 1 |p0,Tq .

θmax , for some constants C 7 , C 8 ¡

 78 0 independent of T, x, w and ϕ |γ x pϕ, T q| ¤ lim

g ¡α pxq pD 2 q 1 Tγx pD 2

 12 w,g ¡α pxq pϕ ¡ D 2 q pxq pD 2 , T q § § § § ¡ C 2 }ϕ ¡ D 2 } W s,t, τ pT, α, xqq § § § § ¡ C 2 }ϕ ¡ D 2 } W s,t,

3 1 ,

 1 |α| j¡1 A .Hence D pλ,i,jq satisfies the upper bound in (2.100) for all α R if λ ¡ 0.

3 1 ,top max 3 1,

 13 |log T | 1¡j A γ w,x D pλ,i,jq ¨.Then, using the first statement in Lemma 2.5.14 (ii), the coefficients c pλ,i,jq are bounded independently of T and x. It holdsγ w,x pΠ λ,i ϕq m λ,i j1 O pλ,i,jq pϕq γ w,x D pλ,i,jq m λ,i j1 c pλ,i,jq T λ h |log T | j¡1 A

c

  pλ,i,jq T λ h top plog T q j¡1 O pλ,i,jq E T,x,Λ δ ,where the remainder term isE T,x,Λ δ : γ w,x D htop,1,1 ¨¡ γ x D phtop,1,1q , T ¨¨µ γ

r 2 ,

 2 C r 3 in η, ξ, respectively and supp f supp f k . Moreover, it holds for some constant C ¥ 1}f k } C 0 ¤ C sup pz,η,ξqsupp f max 0¤|γ|¤k § § § § |∇ z Gpz, η, ξq| f γ z ∇ z Gpz, η, ξq |∇ z Gpz, η, ξq| 2 § § § § k }fp¤, η, ξq} C k . (B.2)

3 )R d φpxq d x 1 .Lemma B. 5 (

 315 Hence we can write V k 1 |∇ z G| ¡k¡1 f k 1 , where f k 1 f k 1 pz, η, ξq is regular as required by the lower bound on |∇ z G|. In (B.3) one sees that suppf k 1 supp f k . From (B.3) one finds f k 1 |∇ z G| k 1 ∇ tr z £ ∇ z G |∇ z G| 2 f k |∇ z G| k. We recursively expand f k into this equation and estimate by the worst term which yields the upper bound (B.2). A regularized version of integration by parts is used if the involved maps are only Hölder continuous. A form of Lemma B.5 below appeared in a work of Baladi-Tsujii [10, p.12, Equation 3.4]. We let φ : R d Ñ R ¥0 be C V , supported on the unit ball such that ³ For every ¡ 0 we set φ pxq 1 d φ x¨. Regularized integration by parts). Let 0 δ 1. Let f : R d Ñ C be a compactly supported C δ -map and let G : R d Ñ R be C 1 δ and assume that |∇ z G| ¡ 0 for every z supp f . Set hpzq : ∇zGpzqf pzq |∇zGpzq| 2 and h : h ¦ φ . For every L ¥ 1 it holds » R d e i LGpzq f pzq d z i L » R d e i LGpzq ∇ tr z h pzq d z (B.4) » R d e i LGpzq ∇ tr z Gpzq phpzq ¡ h pzqq d z.

  LGpzq f pzq d z » R d e iLGpzq ∇ tr z Gpzqh pzq ∇ tr z Gpzq phpzq ¡ h pzqq ¨d z.

¤

  ¡ z I q ¡ hpz ¡ zq ¨p∇ z νq ¢ C }h} C δ » R d § § z I ¡ z § § δ § § § § p∇ z νq ¢ z I § § § § d z I ¤ C }h} C δ δ d .

  bounds (Condition 2.4.11)). For some 0 δ h top , a ¡ 0, b ¡ 0, C ¡ 0 and some γ p0, 1{ logp1 ph top ¡ δq{aqq , and for all z C with z a and | z| ¥ b, it holds R | z ph top ¡ δq| ¡r n , where r n rγ log | z|s .

	r n z λtop	p W s,t,q	¤ C r
	Under this additional condition we obtain:
	Theorem III (Theorem 2.5.7, Proposition 2.5.10). Under the assumptions of
	Proposition II, if in addition Condition A holds with same δ then we can take
	Λ δ Σ δ and it holds |E T,x,Σ δ pϕq| ¤ CT	δ h top

n 

1

  Generic non-trivial resonances for Anosov diffeomorphisms Definition 1.2.2 (Scaling map A M,c ). Let c ¡ 0, and M SL 2 pZq be hyperbolic. For every n Z 2 , we set, recalling (1.2),

	A M,c ϕ n : exp ¡2πc	n M	¡	n ¡ M	¨¨ϕ n .
	Lemma 1.2.3 (Continuous embedding of H 2 pA r q). Let c ¡ 0 and let M SL 2 pZq be hyperbolic. Then the map A M,c can be extended by continuity to an
	injective linear map				

  defined by differentiability of T . It is well-known that the operator K T acting on L 2 T 2 ¨is not compact. We say that two maps f , g T r are C 1 -close

	if the distance		
	d pf, gq : sup zAr	}fpzq ¡ gpzq} sup zAr	}D z f ¡ D z g}
	is small. In this section we revisit the proof of Faure and Roy [25]. They showed
	that K T , acting on the Hilbert space H A M,c , (see Definition 1.2.4), is nuclear of
	order 0 if T is sufficiently C 1 -close to a hyperbolic matrix M SL 2 pZq for some c ¡ 0.
	We recall that a linear operator L :	

H Ñ H on a Hilbert space H with norm }¤} H is called nuclear of order 0 if it can be written as a sum

1

  Generic non-trivial resonances for Anosov diffeomorphisms of T . Lemma 1.3.3 applied to M and |R| gives c 1 , c 2 and y n 1 ,n 2 R 2 for which the right-hand side of (1.20) fulfills the desired inequality.

	Proof of Theorem 1.3.1. Proposition 1.3.4 yields 0	δ M and 0	c 2	c 1	r

  .8) If γ I ¡ γ then we have the compact inclusions

C ¡ γ pxq C ¡ γ I pxq and C γ pxq C γ I pxq . Moreover, this construction implies E ¦ ¡,x C ¡ γ pxq, and E ¦ ,x C γ pxq and also transversality E ¦ 0,x C ¡ γ pxq C γ pxq ¨ t0u and C ¡ γ pxq C γ pxq t0u. We have (see Lemma B.1

  1 and supp χ r0, 2s. Let |¤| : R d Ñ R ¥0 be a smooth norm on R d z t0u. Define Ψ n by setting for all ξ R d z t0u Ψ 0 pξq : χ p|ξ|q and Ψ n

  Let K R d be an open set. Let f : R d Ñ C be a C r¡1 0 pKq-map and let F : K Ñ F pKq be a pΘ ¥ , Θq-cone hyperbolic C r -diffeomorphism on K (recall Definition 2.2.2). The f -weighted local transfer operator is defined by

	2.4.1 Bounds on the transfer operator
	We introduce a local transfer operator in (2.47) below and state a local norm
	estimate for this operator in Lemma 2.4.1. We then give a norm estimate for
	the transfer operator family (2.18) in Lemma 2.4.2, making use of Lemma 2.4.1.

  I ,q I We recall λ min defined in (2.56) and φ α in (2.18). Let d 3 and let |det D g α | 1. Set r t : min t¡t, su.

							p	is compact
	by Lemma 2.3.8. Then, together with a result of Hennion [36, Corollaire 1] and
	Theorem 2.4.5 we find the claimed bound on the essential spectral radius of the
	resolvent.						
	Lemma 2.4.7. Then it
	holds						
	λ min lim αÑV	1 α	log	φ α	§ § §det pD g ¡α q tr |E ¦ ¡	§ t r § §	LVpM q

.

Proof. Since the flow is volume preserving, we have § § §det pD g ¡α q tr

  and Tsujii in [10, p.16]. Definition 2.4.12 (Arrow relation). Let n, Z ¥0 and σ, τ t¡, , 0u. We write pτ, q ãÑ I pσ, nq ô n¡ ¤ 2 4 }F} ,I τ σ ¡ and 2 n¡ ¥ 2 ¡4 }F} ¡,I

		6 8 7	τ and 2 ,
	ãÑ I pσ, nq ô	6 8 7

  By the first statement in Lemma 2.3.4, it holds ϕW s I ,t I ,q I p,Θ ¥ ,F pKq hence pb τ, | τ t¡, , 0u , Z ¥0 q : b L p we can decompose K W into finitely many open sets W. For each component W we set a |W,τ, : L F,f |W Ψ ¥ Op τ, ϕ and a : W a |W . Op τ, Ψ ¥ Op τ, ϕ.For each W there is a corresponding arrow relation given by Definition 2.4.12 and the restriction f |W is also C r¡1 . We rewrite

			,q p,Θ ¥ ,F pKq	.
	We set b τ, : Ψ ¥ Op τ, ϕ. ¡	R d , c P 2	© . By assump-
	tion on K, By construction (see above (2.78)), it holds r Ψ ¥ τ, | supp Ψ I τ, 1 hence Ψ ¥ Op τ, ϕ
	Ψ Op σ,n L F,f |W ϕ Ψ Op σ,n	τ,	a |W,τ, Ψ Op σ,n Ψ Op σ,n	pτ, qã Ñ W pσ,nq pτ, q ãÑ W pσ,nq a |W,τ, Ψ Op σ,n L F,f | W r Ψ ¥ Op τ, Ψ ¥ Op ļã Ñ W pσ,nq τ, ϕ. (2.82) a |W,0,
	We recall the definitions of the operators Q Op ãÑ,tW u , Q Op ãÑ 0 ,tWu , Q Op ãÑ,W given in (2.72) and in (2.78), respectively (in which we take I tWu and I W). We
	estimate, using the decomposition given in (2.82),

r Ψ ¥

  Contact Anosov flows are topologically mixing [41, Theorem 3.6] and hence serve as examples for such Anosov flows g α in the case d 3.) In order to define the horocycle flow in Definition 2.5.1 below we assume that the stable dimension d ¡ 1 and that the strong-stable distribution E ¡ is orientable. The stable manifolds of M with respect to the flow g α are those (non-compact) Riemannian submanifolds which are tangent to E ¡ . As consequence of topological mixing, each of those stable manifolds is dense in M [49, p. 84]. Definition 2.5.1 (Horocycle flow). A flow h ρ : M Ñ M in ρ R is called a stable horocycle flow if and only if for all ρ R f ρ h ρ E ¡ z t0u . Remark 2.5.2 (Unit speed parametrization). By the Stable Manifold Theorem (see e.g. [42, Theorem 8.12]), there exists a parametrization of stable manifolds by the arc-length induced by the Riemannian metric on M . Since we assumed that E ¡ is orientable, this yields the unit speed parametrization of the horocycle flow (i.e. |f ρ h ρ | 1).

	2.5.1 Horocycle flows and integrals and main results (Theorem
	2.5.7)
	Our main result, Theorem 2.5.7 provides a decomposition giving the T -asymptotics
	of the following horocycle integral:
	Definition 2.5.3 (Horocycle integral). For all ϕ C r¡1 X pMq, for all x M let
	γ x pϕ, T q :

  1, using re- normalization dynamics to connect the stable flow with the Anosov flow. Results can be obtained for an unstable horocycle flow in an analogous way. Definition 2.5.4 (Pointwise renormalization time). A map τ : R 2 ¢ M Ñ R which satisfies g α ¥ h ρ pxq h τ pρ,α,xq ¥ g α pxq , dρ, α R , dx M,

	(2.84)
	is called a pointwise renormalization time for the stable flow h ρ .
	Remark 2.5.5. This definition of the renormalization time τ is the same as
	used by Marcus (denoted by s ¦ in his notation) in [49, p.83] to study ergodic
	properties of the horocycle flow.
	Lemma 2.5.6 (Existence and uniqueness). A pointwise renormalization time
	exists and is unique.

  , T ¨µ pϕq top plog T q j¡1 c pλ,i,jq pT, xq O pλ,i,jq pϕq E T,x,Λ δ pϕq , where the dual eigendistributions O pλ,i,jq DpX V q I are associated to the eigenvalue λ by Lemma 2.4.10 (see (2.67)), and where

	λΛ δ λ htop h lim 1¤j¤m λ,i 1¤i¤n λ T T ÑV γ x D phtop,1,1q , T T λ 1 and lim T ÑV	E T,x,Λ δ pϕq T	0.

  .92) where p ¦ : 1 ¡ 1 p is the Hölder conjugate of p. To conclude, it is enough to establish the following upper bounds for r There exists a constant C 1 ¡ 0 such that for every C 0 map w : R Ñ R, every p r1, Vs, every σ t¡, , 0u, n N, every 1 , 2 Ω it holds rΨ Op σ,n ϕ w,x, 1 , 2 ,α Lp ¤ C 1 |supp w| }w} LV , dx M, d0 ¤ α ¤ α 0 . (ii)There exists a constant C 2 ¡ 0 such that for every ¡r s 0, for every C |s| map w : R Ñ R with compact support, every p r1, Vs, every n N, every 1 , 2 Ω it holds r

	Ψ Op σ,n ϕ w,x, 1 , 2 ,α	L p ¦	:
	(i)		

  5 and non-singularity of h ρ and 0 ¤ α ¤ α 0 . We proceed analogously as in the proof of Lemma 2.3.3, integrating pd 1q-times by parts in ξ if 2 n |z ¡ r z pr ρq| ¡ 1 and conclude, using that supp r (iii) τ pρ, α 1 α 2 , xq τ pτpρ, α 2 , xq, α 1 , g α 2 pxqq, for all α 1 , α 2 R, (iv) τ pρ 1 ρ 2 , α, xq τ pρ 1 , α, h ρ 2 pxqq τ pρ 2 , α, xq, for all ρ 1 , ρ 2 R, (v) f ρ τ pρ, α, xq f ρ τ p0, α, h ρ pxqq, (vi) f ρ τ p0, α 1 , g α 2 pxqqf ρ τ p0, α 2 , xq f ρ τ p0, α 1 α 2 , xq, for all α 1 , α 2 R, (vii) τ pρ, α, xq γ x pf ρ τ p0, α, ¤q, ρq, (viii) f ρ τ p0, α, ¤q det D g α|E ¡

	D ¡s r ρ r ϕ supp r ϕ is bounded.
	We group below some properties of the pointwise renormalization. (Note in
	particular that Claim (xi) in Proposition 2.5.13, which will follow from [31,
	Remark C.4] of Giulietti-Liverani-Pollicott, will play a key part to estimate the
	spectral bound of X V . Also, Claim (viii) in Proposition 2.5.13 shows that
	φ α f ρ τ p0, ¡α, ¤q differs from the unit speed parametrization function by a
	multiplicative 1-coboundary.)
	Proposition 2.5.13 (Properties of pointwise renormalization). Let τ be the
	renormalization time of a stable horocycle flow. For all ρ, α R and for all
	x M it holds:
	(i) τ p0, α, xq 0,
	(ii) τ pρ, 0, xq ρ,

  xq ¤ sup xM f ρ τ p¤, α, xq ¤ C 0 e ¡θ min α , (2.99)then for some C 2 ¡ 0 independent of T, x and ϕ it holds |γ x pϕ, T q| ¤ C 2 max ¥ 0, for some λ R, c ¥ 0 and some C C pλ, c, r ϕq ¡ 0 }f ρ τ p0, ¡α, ¤q ¤ r ϕ ¥ g ¡α } W s,t,q

		4 T, T	θ min θmax s θmax θ min	B	}ϕ} W s,t,q p	.
	(ii) If for some r ϕ W s,t,q p	it holds for all α 6 9 9 8		
		9 9 7			

p ¤ Ce λα max t1, |α| c u , (2.100) then there exists C 3 C 3 pλ, cq ¡ 0 independent of T, x and r ϕ such that |γ w,x pr ϕq| ¤ CC 3

  α, xq γ g αpxq pL α,φα ϕ, τ pT, α, xqq λ ¡α µ pL α,φα ϕq .(2.114)To see λ e htop we refer to[49, p.84] (alternatively use Proposition 2.5.13 (xi)). Using Claims (i)-(ii) with λ h top in Lemma 2.5.14 together with the bound given by Lemma 2.5.17, there is w C r pRq and a constant C 1 ¡ 0 such that for all ϕ C r¡1 X pMq |µpϕq| ¤ lim

	1 T	γ x pϕ, T q lim					
		T ÑV	§ § § §	1 T	γ w,x pϕq	§ § § § ¤ C 1 }ϕ} W s,t,q p	.	(2.115)

T ÑV τ pT, α, xq T 1 τ pT,

  , T ¨is shown by analogue es- timates (2.116)-(2.118). Then the statement on the limit lim T ÑV T ¡1 E T,x,Λ δ pϕq follows, using unique ergodicity of the horocycle flow [49, Theorem 2.1] and finiteness of Λ δ . We bound |E T,x,Λ δ pϕq| as required, using the first statement in Lemma 2.5.14 (i) and the full statement in Lemma 2.5.14 (ii) together with the assumed upper bound in (2.88). The additional claims under Condition 2.4.11 can be seen as follows (see also the remarks above and below Condition 2.4.11): The finiteness of Σ δ follows from [19, Theorem 1]. To this end we have to show that [19, Assumption 1-3A]are satisfied for the renormalized semigroup e ¡htopα L α,φα : W s,t,q We bound the left-hand side in (2.120), using the equality in (2.69) together with Lemma 2.3.3, Lemma 2.3.5 and Lemma 2.5.17. Now[19, 

					p	Ñ W s,t,q p	. In
	fact Condition 2.4.11 yields just a reformulation of [19, Assumption 3A] for the
	resolvent of the generator X V ¡ h top . Now [19, Assumption 1] states that for
	some Banach space W s,t,q p	B it holds		
	sup α¥0	1 α	id ¡e ¡htopα L α,φα	W s,t,q p	ÑB V.

(2.120) 

We set B : W s,t,q¡1 p .

If 0 r V is not an integer, C r means C tru with all partial derivatives of order tru being pr ¡ truq-Hölder continuous.

© $ 0.

In this chapter it holds: if r ¡ 0, is not an integer, C r means C tru with all partial derivatives of order tru being pr ¡ truq-Hölder continuous.

By the support of a function f : S Ñ C we mean supp : tx S | f pxq $ 0u which can be an open set in the topology of S.

Note the iterated constant C r n contrary to C in[START_REF] Butterley | A note on operator semigroups associated to chaotic flows[END_REF] Assumption 3A]. This change was made to avoid a conflict in the proof of[START_REF] Butterley | A note on operator semigroups associated to chaotic flows[END_REF] Lemma 4.4], involving in there the constant C6, and was communicated with Butterley[START_REF]Dolgopyat-type bound for the resolvent[END_REF].

assumed in Definition 2.2.2 which we use to construct

Note that Lemma 2.4.10 and our choice of δ ensure that for any finite b ¡ 0 the spectral box Λσpbq σ pX V q | W s,t,q p t λ ¡ δ, | λ| ¤ bu is a finite set.

, it follows directly from the definitions of

This is analogous to the decomposition in[START_REF] Giulietti | Anosov flows and dynamical zeta functions[END_REF] Lemma 3.1]. The main difference to our decomposition is that we use a more explicit construction of the smoothing functions.

This is introduced ad hoc as it was pointed out by Colin Guillarmou and Giovanni Forni that for the weak-vanishing to imply strong vanishing is not obvious here. In some sense one would expect even a stronger statement. Namely that for every eigendistribution D in the expansion of Theorem 2.5.7 at least for one piece of horocycle orbit w around x M one has |γw,x pDq| ¡ 0.

Remerciements

and Hölder regularity to infer that the strong-stable distribution is C r¡1 for all r r2, 3q if d 3. Hence for the horocycle flow given by the unit speed parametrization (and more general all of its C r¡1 reparametrizations) we find f ρ τ p0, ¡α, ¤q C r¡1 . By assumption the flow g α preserves volume and d 3.

To see a gap between λ min λ min ps, t, pq and h top , we may assume the unit speed parametrization of the horocycle flow h ρ . It follows by Proposition 2.5.13 (viii) and Lemma 2.3.3 that for all C r¡1 reparametrizations the resulting transfer operators are conjugate to each other.

Then it follows from Lemma 2.4.7 together with Proposition 2.5.13 (viii) that λ min is independent of p and is arbitrary close to 0 for a suitable choice of s, t and r. Moreover, if we assume 0 t ¤ r¡3

Second, we discuss Condition 2.4.11: Remark 2.5.11. Condition 2.4.11 was inspired by estimates of Dolgopyat [START_REF] Dolgopyat | On decay of correlations in Anosov flows[END_REF], who was working with operators acting on symbolic spaces. This condition, replacing however our W s,t,q p by other anisotropic Banach spaces, was proved by several authors [START_REF] Baladi | Exponential Decay of Correlations for Piecewise Cone Hyperbolic Contact Flows[END_REF], [START_REF] Giulietti | Anosov flows and dynamical zeta functions[END_REF], [START_REF] Liverani | On contact Anosov flows[END_REF], [START_REF]Quasi-compactness of transfer operators for contact Anosov flows[END_REF] for the generator X V , associated to contact Anosov flows and V 0 the trivial potential, for which they also obtained the additional condition in Corollary 2.5.9.

In the case of geodesic flows on compact surfaces of constant negative curvature, we find that V is a constant, but the fact that our Banach space is different makes it difficult to apply the results of [START_REF] Baladi | Exponential Decay of Correlations for Piecewise Cone Hyperbolic Contact Flows[END_REF], [START_REF] Giulietti | Anosov flows and dynamical zeta functions[END_REF], [START_REF] Liverani | On contact Anosov flows[END_REF], [START_REF]Quasi-compactness of transfer operators for contact Anosov flows[END_REF] directly in order to establish Condition 2.4.11. We expect however that the condition holds and (as pointed out by Liverani and Butterley) can be obtained by exploiting e.g. [START_REF] Butterley | A note on operator semigroups associated to chaotic flows[END_REF]Remark 2.6].

For non-constant potential V , since Dolgopyat [START_REF] Dolgopyat | On decay of correlations in Anosov flows[END_REF] obtained exponential decay of correlations for Gibbs measures with Hölder potentials, we expect that Condition 2.4.11 indeed holds also in our setting, in particular for compact surfaces of variable negative curvature (e.g. using an argument similar as for the proof in [START_REF] Faure | Horocyclic invariance of Ruelle resonant states for contact Anosov flows in dimension 3[END_REF]Proposition 3.4]). (We warn the reader that the value of δ given by Dolgopyat-type arguments is usually very close to λ max .)

We end this subsection by a comparison of our main theorem and the results of Flaminio and Forni [START_REF] Flaminio | Invariant distributions and time averages for horocycle flows[END_REF]: Let M be the unit tangent bundle of a compact hyperbolic Riemann surface. Let g α be its unit speed geodesic flow and let vol be the canonical (invariant) volume form on M (which is also a measure of

Appendix A

For the readers convenience we give a proof of a well-known result:

Lemma A.1 (Fixed points). Let M be 2¢2 integer matrix acting on T 2 . Assume that det pid ¡Mq $ 0. Then the following holds:

(i) The number N M of fixed points of M is given by N M |det pid ¡Mq|.

(ii) There exists a disjoint partition D j T 2 , 1 ¤ j ¤ N M of T 2 such that the maps y j : D j Ñ T 2 : x Þ Ñ pid ¡Mq x are bijections. Proof. We let id ¡M act on the cover R 2 . The linear map id ¡M sends a fundamental region of T 2 , e.g. r0, 1q 2 , to a convex polytope having a non-zero volume given by |det pid ¡Mq|. Each fixed point of M on T 2 is mapped by id ¡M to an element of Z 2 , and the number of integer points contained in the polytope is just given by its volume. Claim (i) follows.

Let v 1 , v 2 Z 2 be two different such integer points in the polytope. Now assume that there are f 1 , f 2 r0, 1q 2 such that pid ¡Mq ¡1 pf 1 ¡ f 2 q pid ¡Mq ¡1 pv 1 ¡ v 2 q ¡ mod r0, 1q 2 © .

The right-hand side is mapped to a fixed point of M on T 2 , implying that f 1 ¡f 2 is an integer point, which is only possible if f 1 f 2 . Therefore, v 1 v 2 , which contradicts the assumption, and Claim (ii) follows.

For d N and every real d ¢ d matrix M we denote by ¥ i,j pMq, 1 ¤ i, j ¤ d the submatrix arising by removing the i-th row and j-th column from M . 

if and only if at least one of the conditions holds:

(i) °d i1 p¡1q i α i det ¥ i,j pD x T q 0 or (ii) φ p1q px j q 0. Proof. We develop the determinant of D x pT T φ q with respect to the j-th column. Since T φ depends only on x j this gives det D x pT T φ q p¡1q j d i1 p¡1q i f j pT T φ q i pxq det ¥ i,j pD x T q . Hence, it holds det D x pT T φ q ¡ det pD x T q p¡1q j d i1 p¡1q i det ¥ i,j pD x T q f j pT φ q i pxq p¡1q j φ p1q px j q d i1 p¡1q i α i det ¥ i,j pD x T q . One deduces Claim (i) and (ii) directly from the right-hand side.

Dolgopyat pointed out that one can use some sort of bootstrapping by looking at even powers of traces to show that there are at least two non-trivial resonances.

Suppose that there exists only one non-trivial λ sp K T . Then we find

where ψ : M ψ ψ ¥ pM ψq. Then if ψ 0 % 0 would imply the existence of a further resonance (for smaller 0 ). We could extend the reasoning by using

to show additional resonances for even smaller 0 .

We check the expansion and contraction properties of the cones claimed in Section 2.2:

Lemma B.1. Let C and θ be the constants from (2.2). Let x M and 0 γ 1 and recall the cones C ¡ γ pxq and C γ pxq defined in (2.8). Let α ¡ 0 and γ I ¡ 0 such that C 2 θ α γ γ I ¤ 1. Then it holds:

(i) pD g ¡α q tr C ¡ γ pxq C ¡ γ I pg ¡α pxqq, (ii) pD g α q tr C γ pxq C γ I pg α pxqq.

In particular, there exists γ I ¡ 0 such that for all large enough α ¡ 0 it holds γ I γ.

Proof. First we note that a fixed choice γ I γ is possible for all large α ¡ 0 because θ 0. We show claim (i). Claim (ii) is shown analogously. We let

It follows that pD g ¡α q tr v C ¡ γ I pg ¡α pxqq if γ I ¥ C 2 θ α γ. Since C ¡ γ I pg ¡α pxqq C ¡ γ I pg ¡α pxqq for all ¡ 0 we conclude. Lemma B.2. Assuming the constants C and θ from (2.2), let γ ¡ 0, x M and suppose that C 2 θ α γ 1. Then for all C 2 θ α γ γ I 1 it holds:

Proof. Let v T ¦

x M . We recall

If v C ¡ γ pxq then by (2.9), for all λ ¥ 0 it holds pD g ¡α q tr v ¥ pD g ¡α q tr v ¡ ¡ pD g ¡α q tr v ¡ pD g ¡α q tr v 0

The choice λ 1 γ 1 γ I 1 yields pD g ¡α q tr v ¥ C 1 γ 1 γ I θ ¡α }v}. If v pD g α q tr C γ pxq then by (2.9), for all λ ¥ 0 it holds

We let ∇ z be the gradient and ∇ tr We understand the above transformation as integration by parts. Repeated application leads to the following iteration pattern.

Lemma B.4. Let f pz, η, ξq and ∇ z G pz, η, ξq be complex and real valued functions, respectively, both C r 1 , C r 2 , C r 3 in z, η, ξ R d for some r 1 , r 2 , r 3 ¡ 0, respectively. Let V 0 pz, η, ξq : f pz, η, ξq and