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Opérateurs de transfert et moyennes
horocycliques sur les variétés fermées

Résumé

Cette these de doctorat approfondit 1’étude de la dynamique hyperbolique sur
les variétés fermées et connexes M et des opérateurs de transfert associés.
Nous étudions deux problemes : le premier probleme concerne les perturbati-
ons analytiques réelles des difféomorphismes d’Anosov linéaires sur le tore : une
résonance non triviale apparait-t-elle pour une perturbation génériques d’un
difféomorphisme d’Anosov linéaire sur le tore 7

Le second probléeme concerne une hypothése sur la moyenne temporelle des flots
horocycliques induits par un flot d’Anosov : la moyenne temporelle des flots
horocycliques en courbure négative variable converge-t-elle vers la moyenne er-
godique en vitesse polynomiale 7

Les opérateurs de transfert associés agissent de facon bornée sur certains espaces
de Banach anisotropes par la composition du systeme dynamique inverse suivie
d’une multiplication avec des fonctions de poids spécifiques. Dans notre analyse
des problemes mentionnés ci-dessus, ces opérateurs de transfert représentent le
principal intérét. Nous devons étudier leur spectre bas pour progresser sur nos
deux problemes. Par le spectre bas, nous entendons la partie du spectre qui se
situe entre le spectre périphérique et le spectre essentiel de ces opérateurs de
transfert.

L’approche fonctionnelle de ces opérateurs de transfert se concentre sur les es-
paces de Banach anisotropes. Nous expliquons 'idée principale derriere cette
approche dans le cas des difféomorphismes d’Anosov : des exemples simples
de difféomorphismes d’Anosov F' sont donnés par les difféomorphismes linéaires
d’Anosov sur le tore bidimensionnel. Nous savons que les difféomorphismes
d’Anosov transitifs et analytiques ont une unique mesure SRB ugrp (qui est in-
variante par le difféomorphisme). Pour les automorphismes linéaires sur le tore,
la mesure SRB est la mesure de Lebesgue pyen. Notons toutefois que méme
de petites perturbations analytiques de A ne préservent pas systématiquement
[1eb. Puisque psrp est une mesure de Borel, on a psgp € C (M)'. Nous souhai-
tons maintenant écrire pugrp comme l'unique vecteur propre associé a la valeur

propre 1 pour un certain opérateur de transfert £ qui apparait comme 1’adjoint



de l'opérateur de composition p. Cependant les mesures supportées sur les
orbites périodiques de F sont également contenues dans C (M)’. Afin de trou-
ver les bonnes propriétés spectrales de I'opérateur £, celui-ci doit étre défini sur
un espace de Banach anisotrope B et non sur C (M)'. La norme de B prend en
compte le comportement dilatant et contractant de ’application F'. En particu-
lier, la norme anisotrope de B traite les éléments de B comme des fonctions dans
les directions dilatantes et comme des distributions dans les directions contrac-
tantes de F'.

Les valeurs propres discretes réciproques de £ sont aussi appelées les résonances
de F. Si F = A, alors il y a seulement les résonances triviales {0, 1}. Jusque la
il n’était pas su qu’il s’agissait d’un comportement attendu si A est perturbé de
maniere générique.

On entend ici par perturbation générique toute application d’un ensemble ouvert
et dense dans une boule de difféomorphismes analytiques réels contenant A.
Dans de I’étude du premier probléme, nous agissons avec £ sur un espace de
Hilbert anisotrope. Nous répondons a la question dans le premier probléme par

laffirmative.

Le second probléeme que nous examinons fait intervenir les flots d’Anosov. Ces
flots ont été instaurés par Anosov pour étudier le flot géodésique sur le fibré
tangent unitaire de variétés fermées a courbure sectionnelle négative variable.
De plus, nous avons besoin les flots d’Anosov d’étre des flots de contact. Des ex-
emples de flots d’Anosov-contact sont donnés par les flots géodésiques. Les flots
horocycliques associés au flot d’Anosov sont dirigés dans la direction contractant
du flot d’Anosov. Nous savons par les travaux de Marcus que pour tout flot horo-
cyclique continu qui correspond & un flot d’Anosov C? mélangeant, il existe une
unique mesure de probabilité de Borel invariante par le flot horocyclique. Ka-
tok et Burns ont démontré que tout flot d’Anosov-contact est mélangeant. Par
conséquent, dans notre contexte, la moyenne temporelle de ’horocycle converge
vers la moyenne ergodique unique. Mais a quelle vitesse converge la moyenne
temporelle 7

Dans le contexte de la courbure négative constante, on sait grace aux travaux
de Flaminio et Forni que cette vitesse est polynomiale. La vitesse est controlée
par des valeurs propres pour certaines distributions propres du flot géodésique.
Un probléeme analogue dans lequel le flot géodésique est remplacé par un
difféomorphisme d’Anosov a été étudié plus tard par Giulietti et Liverani. Ils ont,
de plus, dans leurs travaux, supposé que le résultat de Flaminio—Forni devrait

s’étendre au flot géodésique dans le contexte de la courbure négative variable.



Dans I’étude du second probleme des opérateurs de transfert pondérés L, o > 0
apparaissent. Suivant ’approche fonctionnelle, il suffit essentiellement de con-
struire un espace de Banach anisotrope B tel que les opérateurs L, agissent
sur B, et d’avoir un spectre périphérique consistant en une valeur propre simple
isolée. Cependant, la direction d’écoulement du flot d’Anosov n’est ni contractée
ni dilatée par le flot d’Anosov, ce qui pose probleme dans notre analyse. Nous
appliquons donc a la place la stratégie suivante:

Sur un espace de Banach anisotrope B bien choisi, la famille d’opérateur de
transfert {L,: B — B | a > 0} forme un semi-groupe fortement continu et ad-
met donc un générateur bien défini. La quasi-compacité de la résolvante de
ce générateur garantit qu’'une partie du spectre du générateur par rapport a BB
ne contient qu’un spectre discret de multiplicité finie. On trouve alors que le
spectre discret controle la vitesse de convergence. Cependant, pour montrer que
la vitesse de convergence est polynomiale, nous devons imposer une condition

supplémentaire a la norme de la résolvante.

Cette these est organisée comme suit : dans le premier chapitre, nous étudions
les perturbations analytiques réelles et génériques A dun difféomorphisme
d’Anosov linéaire sur le tore bidimensionnel. Nous appliquons I’approche foncti-
onnelle aux opérateurs de transfert comme décrit ci-dessus dans le cadre d’un
espace de Hilbert anisotrope.

Cet espace de Hilbert est explicitement construit comme la complétion d’un
espace de Hardy par rapport a une norme anisotrope. Nous montrons que
l'opérateur de composition K3 est a trace. En fait, nous montrons que K j;
est nucléaire d’ordre 0, ce qui est un résultat plus fort. On obtient la réponse au
premier probleme par un calcul de la trace de K 7 associé au systéme perturbé.
Nous abordons ensuite des propriétés spectrales de 'opérateur de transfert L.
Le premier chapitre figure tel qu’il a été publié en 2017 dans Nonlinearity 30.3, a
I’exception de 'annexe qui est séparée en Appendixz A et de la liste de références

qui est combinée avec celle de cette these.

Dans le second chapitre, nous traitons des flots d’Anosov différentiables finis
sur des variétés fermées et connexes ainsi que les flots horocycliques stables as-
sociés.

La définition de cones et d’hyperbolicité via des cones d’une application est
développée. Nous introduisons des familles d’opérateurs de transfert {L,, a > 0}
avec des fonctions de poids positives arbitraires. Ceci est suivi par la con-

struction d’espaces de Banach anisotropes. Ces espaces sont analogues aux



espaces construits par Baladi et Tsujii pour étudier les difféomorphismes hyper-
boliques.

Nous étudions les propriétés des opérateurs L., o > 0, sur les espaces de Banach
anisotropes ainsi que les propriétés de la résolvante des générateurs des familles
{Lq,a > 0}. Nous établissons une inégalité de Lasota—Yorke pour la résolvante.
Nous introduisons et abordons la condition supplémentaire sur les bornes de la
résolvante.

Ensuite, nous nous focalisons sur les flots d’Anosov de contact en dimension 3
(nous considérons aussi la co-dimension 1). Nous donnons des bornes locales a
I'intégrale de I’horocycle, ce qui nous permet de obtenir notre décomposition de
I'intégrale de I’horocycle. Enfin, la condition supplémentaire sur la résolvante
est utilisée pour obtenir la vitesse polynomiale de convergence vers la moyenne
ergodique.

Le troisieme chapitre est également disponible sur arXiv.

Mots-clés

Flot d’Anosov, flot horocyclique, opérateur de transfert, espace de Banach ani-

sotrope, resonances, moyenne ergodique.
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Transfer operators and horocycle
averages on closed manifolds

Abstract

This doctoral thesis deepens the study of hyperbolic dynamics on connected,
closed Riemannian manifolds M and associated transfer operators.

We investigate two problems: The first problem concerns real analytic pertur-
bations of linear toral Anosov diffecomorphisms: Does a non-trivial resonance
appear for generic perturbations of a linear toral Anosov diffeomorphism?

The second problem is to make a statement about the time average of horocycle
flows with underlying contact Anosov flow: Does the time average of horocycle
flows in variable negative curvature converge to the ergodic mean in polynomial
time?

The associated transfer operators act boundedly on certain anisotropic Banach
spaces by composition of the inverse dynamical system followed by a multipli-
cation with specific weight functions. In our analysis of the beforementioned
problems these transfer operators are of central interest. We need to investigate
their deeper spectrum to progress on our two problems. By the deeper spectrum
we mean here the part of the spectrum which lies in between the peripheral and
the essential spectrum of these transfer operators.

The functional approach to these transfer operators puts importance on the ani-
sotropic Banach spaces. We explain the principal idea behind this approach
in the case of Anosov diffeomorphisms: Simple examples of Anosov diffeomor-
phisms F' are provided by the linear Anosov diffeomorphisms A on the two-
dimensional torus. Real analytic transitive Anosov diffeomorphisms are known
to have associated a so-called unique SRB-measure uggp which is invariant by
the diffeomorphism. For the linear toral automorphisms the SRB-measure is just
the Lebesgue measure pyen,. Note however that even small real-analytic pertur-
bations of A may not preserve urep. Since pusrp is a Borel measure it holds
psrp € C (M)'. We wish now to recover pgrp as the unique 1-eigenvector for a
certain transfer operator £ which arises as the adjoint of the composition opera-
tor Kr. However measures supported on periodic orbits of F' are also contained
in C (M)". In order to find good spectral properties of the operator £, it has to

be defined on an anisotropic Banach space B and not on C (M)'. The norm of
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B takes into account the expansive and contractive behavior of the map F. In
particular, the anisotropic norm of B treats elements in B as functions along the
expanding directions and as distributions along the contracting directions of F.
The reciprocal discrete eigenvalues of £ are also called the resonances of F'. In
case that F' = A there are only the trivial resonances {0, 1}. It was not known
before whether this is an expected behavior if A is perturbed generically.

By a generic perturbation we mean here any map in an open and dense subset
of a ball of real analytic toral diffeomorphisms containing A with respect to the
uniform norm.

In the investigation of the first problem, we act with £ on an anisotropic Hilbert

space. We answer the question in the first problem in the affirmative.

The second problem that we investigate involves Anosov flows. These flows
where introduced by Anosov to study the geodesic flow on the unit tangent
bundle of closed Riemannian manifolds with variable negative sectional curva-
ture. Moreover, we require the contact assumption for the Anosov flow. Exam-
ples of contact Anosov flows are provided by geodesic flows on the unit tangent
space. The horocycle flows associated to the contact Anosov flow point into the
contracting direction of the Anosov flow. We know by the work of Marcus that
for every continuous horocycle flow which corresponds to a C? mixing Anosov
flow, there exists exactly one Borel probability measure which is invariant by the
horocycle flow. Katok and Burns have shown that every contact Anosov flow is
mixing. Hence in our setting, the continuous horocycle time average converges
to the unique ergodic mean. But how fast is this convergence?

In the constant negative curvature setting, for the geodesic flow, it is known
due to the work of Flaminio and Forni, that this speed is polynomial and is
controlled by eigenvalues for certain eigendistributions for the geodesic flow.
An analogous problem where the geodesic flow is replaced by an Anosov diffeo-
morphism was studied later by Giulietti and Liverani. Moreover, in their work
they conjectured that the above result of Flaminio—Forni should extend to the
geodesic flow in variable negative curvature.

In the study of the second problem weighted transfer operators L., a > 0, ap-
pear. Following the functional approach, in principal, it is enough to construct
an anisotropic Banach space B such that the operators L, acting on B, have
a peripheral spectrum consisting of an isolated simple eigenvalue. However, the
flow direction of the Anosov flow is neither contracted nor expanded by the Ano-
sov flow which poses a problem in our analysis. We apply instead the following

strategy:
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With a good choice of an anisotropic Banach space B the transfer operator fa-
mily {L,: B — B | a = 0} forms a strongly continuous semigroup and admits
therefore a well-defined generator. Quasi-compactness of the resolvent of this
generator ensures that part of the spectrum of the generator with respect to B
contains only discrete spectrum of finite multiplicity. The discrete spectrum is
then found to control the speed of convergence. However to show polynomial
speed of convergence we need to impose an additional condition on bounds of

the resolvent.

Keywords

Anosov flow, horocycle flow, transfer operator, anistropic Banach space, reso-

nances, ergodic mean.
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0 Introduction

This doctoral thesis deepens the study of hyperbolic dynamics on connected,
closed Riemannian manifolds M and associated transfer operators.

Two problems are studied: The first problem concerns real analytic perturba-
tions of linear toral Anosov diffeomorphisms. The second problem is to make
a detailed statement about the time average of horocycle flows with underlying
C? contact Anosov flow. The precise problems are formulated in Problem 1 and
Problem 2 in the next section below.

The associated transfer operators act boundedly on certain anisotropic Banach
spaces by composition of the inverse dynamical system followed by a multipli-
cation with a weight function. In our analysis of the beforementioned problems
for specific weight functions these transfer operators are central objects. We
need to investigate their deeper spectral properties to progress on our two pro-
blems. By the deeper spectrum we mean here part of the spectrum which lies

in between the peripheral and the essential spectrum of these transfer operators.

The functional approach to these transfer operators puts importance on the
anisotropic Banach spaces. It is a more recent method with notably results in
the last decades for Anosov diffeomorphisms (e.g. [5], [7], [L1], [15], [30], [32],
133], [61]) and flows (e.g. [8], [21-[24], [27], [31], [45], [64], [65]).

We explain the principal idea behind the functional approach briefly in the
case of Anosov diffeomorphisms: A diffeomorphic dynamical system F: M —
M being an Anosov diffeomorphism means that the tangent space T'M of the
manifold is split into unstable £. < T'M and stable E_ < T'M distributions.

In particular, one assumes a non-trivial splitting
TM=E_®E., (0.1)
such that for every norm |-| on linear maps T'M — T'M, for some 0 < 5 < 1,

supHB*"DF‘%iH<oo and supHﬂ*”DF‘E:L

neN neN

< 0. (0.2)
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0 Introduction

The arguably simplest example is a toral Anosov diffeomorphism given by Ar-
nold’s cat map:

A:R?*/7? - R?/7%: z ( i 1 ) x
Similar examples on the torus R?/Z? are provided by any hyperbolic unimodular
matrix A € SLs (Z), where hyperbolic matriz means here that A has one eigenva-
lue larger than 1 in modulus. Those are the toral linear Anosov diffeomorphisms.
The map A is also analytic and mixing. By topological mizing of the map F we
mean that for all non-empty subsets U,V € M there exists IV € N such that for
all n > N it holds

UnF" (V) # .

By transitivity of the map F' we mean that there exists a dense orbit of F'in M.
Real analytic transitive Anosov diffeomorphisms F' are known to have associated
so-called SRB-measures puggrp [07, Theorem 1]. (A detailed explanation of usrp
is given in [6], [67].) What is of importance here is that for a given such map
F' the Borel probability measure ugrp is uniquely characterized by the property

that for Lebesgue-almost every z € M and every continuous function ¢ € C' (M)

. 1< &
psip () = lim — > @0 F¥ (x).
k=0

An example for which ugsgp equals the Lebesgue measure pyep is given by the
map A. However we note that even small perturbations of A may not preserve
HLeb-

The composition operator is defined by Krpp = ¢ o F for every ¢ € C(M).
Invariance of ugrp by F yields for every ¢ € C' (M)

usrB (Kry) = pusrs () -

Hence the dual operator £ := K/ acts on C (M )' and fixes ugrp. It is straight
forward to show that £ with respect to upep is given for all ¢ € C (M) by

Lo=|detDF ' -poF !,

where ‘det D Ffl‘ is called the weight function for £. In the functional approach
one wishes now to recover ugrp as the unique eigenvector to the eigenvalue 1 for
L. More precisely, it is the peripheral spectrum of £ which is here of immediate

interest. The peripheral spectrum of £ and the properties of the map F should

18



be related in the following way:

e The peripheral spectrum of L e The map F' is transitive.
contains 1 which is a simple ei-

genvalue.

e The peripheral spectrum of L is e The map F' is mixing.

{1} and 1 is a simple eigenvalue.

However measures supported on periodic orbits are also contained in C (M)’
and are therefore eigenvectors to the eigenvalue 1 for £. In order to proceed one
changes the domain of the transfer operator £. In particular £ has to be defined
on an anisotropic Banach space B and not on C (M)'. The space B contains
usually densely C"~1 (M) functions for some 7 > 1 or r € {o0,w} if F € C"!. The
norm of B takes into account the expansive and contractive behavior of the map
F. In particular, the anisotropic norm of B treats elements in 3 as functions
along E; and as distributions along E_.

As we have explained, the construction of B is constrained by the resulting
properties of the spectrum of £ on B. This makes such anisotropic Banach
spaces an important part in the functional approach. In the last two decades
several constructions of B have been provided in the differentiable and analytic
category of the map F":

The detailed study of anisotropic Banach spaces in the hyperbolic case started
in the differentiable setting with the work of Blank, Keller and Liverani [15]. It
is now a well established tool (e.g. see the references mentioned above).

Real analytic perturbations of hyperbolic toral automorphisms A were later
addressed by Faure and Roy [25]. They considered an anisotropic Hilbert space
H, which appeared already briefly in a work of Fried [29, Sect 8, I].

On this Hilbert space H, the operator £ turns out to be compact which implies
that the essential spectrum of £ is contained in {0} and the deeper spectrum of
L consist of eigenvalues of finite multiplicity. Moreover the spectrum of £ on H
admits a spectral gap between the deeper and the peripheral spectrum which

relates to the following:

e The peripheral spectrum of L is e The correlation function for F
{1} and 1 is an isolated simple ei- admits exponential decay.
genvalue.

'If 0 < r < 00 is not an integer, C" means C"! with all partial derivatives of order |r| being
(r — |r])-Holder continuous.

19



0 Introduction

By exponential decay of the correlation function for F' we mean that for some
©1,p2 € C(M,C) and for some A > 0 it holds

sup e |usrB (@1 92 0 F™) — psre (91) psrs (92)] < .

neN

Usually A depends on the regularity of the observables p1 and s and not on
the observables itself.

We comment shortly on the weight function ‘detDFfl‘ in £: In general the
weight function can be any positive C"~! function, depending on the applica-
tion. Then of course the maximal eigenvalue Apna.x may change, as well as the
associated eigenvector (this is also called the Gibbs state), replacing psgp. If

-1

max L, We expect a

one considers then the renormalized transfer operator L=\
peripheral spectrum for L as discussed, depending on the properties of the map

F.

The dynamical determinant dp carries statistical information about the behavior
of the map F' at periodic orbits of F. It is a holomorphic function defined for
all small enough z € C by

O _n
dp(z) = exp— Y % 3 [det (id — D, F)[ 7
n=1 F(z)=x

A way to extend the domain of holomorphy of dr is by using the transfer opera-
tor. For example if Kp is of trace class then the holomorphic extension is given

by the Fredholm determinant for all z € C by
det (1 —2L) = det (1 —2Kp) = dr (2). (0.3)
The second equality in (0.3) is a consequence of the trace formula for all n e N

trKp = > |det(id—D, F")["". (0.4)
Fr(z)=x

The reciprocal discrete eigenvalues of the transfer operator are also called the
(Ruelle-Pollicott) resonances for the map F' and the above equality in (0.3) shows
a direct relation between the resonances and the zeros of dp.

In the hyperbolic setting, Rugh proved the holomorphy of the dynamical deter-

minant of real analytic Anosov diffeomorphisms on surfaces [55], [56].
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The two problems

The two problems

A small computation shows the following (e.g. using Lemma A.1):

Lemma 1 (Trivial resonances). For every hyperbolic matrix M € SLy (Z) the

associated dynamical determinant satisfies for every z € C
dy(z)=1-—z.

Another direct computation shows:

Lemma 2 (Superexponential decay ([0, Chapter 4.4.1])). For every hyperbolic
matriz in SLy (Z) the dynamical correlation function decays superexponentially

on real analytic observables.

It was not known before whether the above two lemmas show an expected be-
havior for a generic real analytic toral Anosov diffeomorphisms.

In particular, what happens if we perturb generically a hyperbolic matrix A by
a real analytic map?

By a generic perturbation we mean here any map in an open and dense subset
of a ball of real analytic toral diffeomorphisms containing A with respect to the

uniform norm (see directly above Theorem 1.4.3).

Problem 1 (Non-trivial resonances). Does a non-trivial resonance appear for

generic perturbations of a hyperbolic matrix in SLo (Z)?

If we consider for a moment only an expanding system (E_ = M x {0}) then
more was already known: The expanding case was initially studied by Ruelle
[54]. More recently, Bandtlow, Slipantschuk and Just [13], [59] calculated the
resonances of real analytic expanding maps T: .S — S on the unit circle S ex-
plicitly for Blaschke products. Their transfer operator acts on the Hardy space
of holomorphic functions on the annulus. (See also Keller and Rugh [15] in the
differentiable category.)

Moreover, Bandtlow and Naud [I12] showed that generically expanding circle

maps admit infinitely many resonances.

The second problem that we investigate involves Anosov flows g, € C3 (M, M)
where dim M =3, a« € R and

Jo = Goy © Jay, forall o; +as =a.
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0 Introduction

These flows where introduced by Anosov to study the geodesic flow on the unit
tangent bundle of closed Riemannian manifolds with variable negative sectional
curvature [3], [1]. It is required that the splitting of T'M contains in addition a
neutral (or central) distribution spanned by the bounded vector field X genera-

ting the flow:
TM =E,®F_ ®ORX, (0.5)

with an analogous condition on the distributions £_ and E as in (0.2). Mo-
reover, we require the contact assumption for the flow g, which means that a
certain invariant 3 — form in (T*M)? is never zero (see Section 2.2). Geodesic

flows are well-studied examples of contact Anosov flows.

If E_ is orientable we define another flow h,: M — M, p € R, which points
into E_. This is the (stable) horocycle flow associated to the contact Anosov
flow go. (The term horocycle flow was used originally only in the case of the
geodesic flow, e.g. see [19, p.84] or [38].) In general the defining vector field of
the horocycle flow is at best C2~¢ for all € > 0 [40].

Theorem 1 (Unique ergodicity, [50, Theorem 3.5]). For every continuous ho-
rocycle flow which corresponds to a C? mizing Anosov flow there exists exactly

one Borel probability measure which is invariant by the horocycle flow.

Theorem 2 (Mixing ([11, Theorem 3.6], [18, Corollary B.6])). Every contact

Anosov flow is mizing.

Hence in our setting, the continuous time average converges to the unique ergodic
mean for all ¢ € C'(M) and for all z € M

1T
“(“O)ZTlféoTL pohy(z)dp,

where p denotes the unique Borel measure given by Theorem 1. But how fast

is the convergence to p (¢)? Put otherwise, what can we say about

T
;L pohy(x)dp—pulp),

for all T > 0 for fixed z and fixed ¢? Clearly, if ¢ = 0, o hp|,—o for some
g e C(M,C) then

T
|, om@an=gon@-pa.
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The two problems

This poses a generic lower bound on the speed of convergence as ~ 1/T", even if
@ is very regular such that ¢ € C?~¢ for all € > 0.

Are there any other obstructions which can slow down the speed of convergence
even more? The approach to answer this question is again by means of a weighted

transfer operator. We find for every T, = 0 and every z € M

T 7(T,a,x)
va%T):=L wohpwﬂdp=‘L Lapoh,oga(x)dp,

where for all o > 0, assuming here for simplicity that the flow h, has unit speed,
Lop=detDg op_ 90 g-a, (0.6)
and where for all z € M and all p,a e R
9o © hp (2) = hr(pa,2) © Ga () -

The function 7 is called the renormalization time. To find a stronger slowdown
than 1/T in the speed of convergence, the idea is the following: If on a certain
anisotropic Banach space B the operator £, has an eigenvector D) € B such
that LoDy = €D, for some RA > 0 and for all a > 0 then formally

T(T7a7x) A T(T7a7x)

’Yz(DA;T)ZJ LoDy ohyoge(z)dp =e® J Dy o hpyoga(x)dp.
0 0

As pointed out by Anosov [3], the topological entropy hiop of the time-one map

g1 is positive. It is an important property of the renormalization time 7 that
7(T,a,z) < 1 implies e™r® < CT for some constant C' > 0 independent of
every T' > 1 and every x € M (e.g. use Proposition 2.5.13 below).

Hence in our Kmiriple, the unique ergodic mean is reached only with at most a
speed of ~ T'htop

A are simple for all o > 0.

Let us assume for simplicity that all eigenvalues e
Then we have associated to each A a finite rank operator given by Dy ® O,

where Oy, € B'. Now we can decompose formally for every ¢ € B and for every
d)eR

=Y Ox(p)Dxr+ ¢, (0.7)
RA>0

with some remainder term g¢.
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0 Introduction

In the constant negative curvature setting, for the geodesic flow, the following is
known due to the work of Flaminio and Forni, where the flows g, and h, arise

both from constant vector fields:

Theorem 3 (Flaminio—Forni, [28, Theorem 1.5|). Let M be the unit tangent
bundle of a compact hyperbolic Riemannian surface of constant negative curva-

ture. Let vol be the canonical volume form on M. Then it holds for all p € C*,
for all x € M and for all T > 1

T
Jgpohp(a;)dp:Tvol(cp)—i— Z TAc,\(T,x)(’),\(go)—l—ET@(tp),

0 Aex\{1}
2
ST,z(SD)
where SUPp~1 zenr |T% logT| < 00 and supp-q zeps on (T, 7)] < o .

In fact the result of Flaminio—Forni gives a much more detailed expansion, in-

cluding a summation over all £\ > 0 and lower bounds on the coefficients cj.

An analogous problem where the geodesic flow is replaced by an Anosov dif-
feomorphism was studied later by Giulietti and Liverani [31]. Moreover, in
their work they conjectured (see [31, Conjecture 2.14]) that the above result
of Flaminio—Forni should extend to the geodesic flow in the variable negative

curvature setting.

Problem 2 (Horocycle flows in variable negative curvature). Does an expansion
of the horocycle integral analogous to Theorem 8 hold for the horocycle flow

mnduced by the geodesic flow of a surface of variable negative curvature?

Following the functional approach, it is in principle enough to construct an ani-
sotropic Banach space B such that the operator L, acting on B, has a peripheral
spectrum consisting of an isolated simple eigenvalue at e”r® for all o > 0 and
such that ~, (Dhtop,T) and 7, (pg,T) are well-defined. Indeed all this could
follow if L, ¢, is quasi-compact on B for all o > 0. What prevents us in doing
so is the flow direction X in the splitting in (0.5) which is neither contracted
nor expanded by the geodesic flow. We apply instead the following strategy:

With a good choice of an anisotropic Banach space B the transfer operator family
{Lo: B—> B|a=0}
forms a strongly continuous semigroup and admits therefore a well-defined ge-

nerator X + V. Quasi-compactness of the resolvent R, of X +V for large values
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Statement of results
Rz > 0 ensures that part of the spectrum of X + V with respect to B
Ysi=0(X+V)|gn{reC| RX>}

contains only discrete spectrum of finite multiplicity for some § > 0.

Note that L, is a transfer operator with a different weight than we discussed
above in the diffeomorphism case.

In full analogy to our discussion of the peripheral spectrum of £, we expect that
the peripheral spectrum of the operator e "L, on B consists of the simple
eigenvalue 1 for all & > 0 and that the associated eigenvector coincides with the
unique Borel probability measure given by Theorem 1.

Moreover, the weight function for £, is det D gz which depends on the re-
gularity of E_, which we noted is C?~¢ for all ¢ > 0. To deal with such irregular
weights one can lift the dynamics to the Grassmanian. This has been used with
success, e.g. in [30], [33] and more recently in [65]. However, we handle directly

the given weight function which allows us to avoid such additional technicalities.

We should add here that the additional conjecture that the distributions O, ap-
pearing in the right-hand side in (0.7) are fixed by the adjoint of the horocycle
flow remains still open. In contrast this was the starting point in [23]. Here,
progress has been made by Faure and Guillarmou [24] in dimension 3 for smooth

contact Anosov flows.

Although we do not study here the dynamical zeta function for the transfer
operator L., we believe that the anisotropic Banach space B constructed in
Section 2.3.2 could be a suitable choice to be dealt with.

Statement of results

We present here in a simplified form the main results of this thesis. The first
result states that it is quite common for the composition operator to have non-
trivial spectrum if the dynamical system is a real analytically perturbed hyper-

bolic matrix:

Theorem I (Non-trivial resonances (Theorem 1.4.3)). Let A € SLy (Z) be hyper-

bolic. For a generic real analytic perturbation A of A there exists an anisotropic
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0 Introduction

Hilbert space H such that
Kiy:H-oH

1s of trace class and it holds

sp (K;)\{0,1} # &.

This result implies that the dynamical determinant d; has at least one non-
trivial zero and therefore answers the question in Problem 1 in the affirmative.
By construction the Hilbert space H contains real analytic observables as a dense
subset. Hence the existence of a non-trivial resonance poses an obstruction to
the superexponential decay of the correlation function for real analytic observa-
bles.

In some sense our result is optimal: We cannot hope to replace ‘generic pertur-
bations’ with ‘for all perturbations’. In the expanding case there exists Blaschke
products arbitrary close to a linear function on the circle and which have trivial
spectrum (and which are note C! conjugated to a linear function) [59, Example
5.6].

It is reasonable to believe that similar constructions work in the Anosov case,
using the generalized Blaschke products in [61]. This means that isospectral

perturbations are expected but they are not generic.

The second result makes a statement about the time average of a horocycle flow
with underlying contact Anosov flow. The full result treats the general case with
possible non-trivial Jordan blocks. For simplicity of the statement we assume

here that the spectrum is simple:

Proposition IT (Horocycle integral (Theorem 2.5.7, Proposition 2.5.10)). There

exists an anisotropic Banach space B and Apin < hiop such that Xy consists

min

only of discrete eigenvalues of finite multiplicity. For all x € M and oll T > 1,
for every Apin < 8 < hiop and for every finite subset As X5 and for all ¢ € C?
it holds

T D
J pohy(@)dp=cn,, (Ta)p(p)+ >, THorey(T,z) Ox(p) + Eran; (¥),
0 AEAs
RA<hiop

where p is the unique Borel measure which is invariant by the horocycle flow h,

and T c
sup 76)‘( . 7) <o and lim LA P (%)

=0.
Te10em T T—w T
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Statement of results

Note that the expected principal term T'u () is obscured since we ordered the

expansion by O) (). One recovers the principal term, using
T
Tu(p) = Jo Loh,(x)dp.

We use this later in Corollary 2.5.9 in Section 2.5 below. Clearly, we only
answer partially the question in Problem 2 in the affirmative. The reason is
that quasi-compactness of R, is not enough to give us e.g. a finite set X5 for
some § = Apin. We impose the following extra condition on the resolvent to

affirm the full question for C? contact Anosov flows in dimension 3:

Condition A (Spectral gap with (Dolgopyat) bounds (Condition 2.4.11)). For
some 0 <0 < hiop, a>0,b>0, C >0 and some

v E (07 1/10g(1 + (h‘tOP - (5)/61,)) ’
and for all z € C with Rz = a and |Sz| = b, it holds

SOV Rz + (huop — 0)| ", where 7i = [ylog |32]] .

>\t W, ,t,
z op s,t,q

Under this additional condition we obtain:

Theorem III (Theorem 2.5.7, Proposition 2.5.10). Under the assumptions of
Proposition II, if in addition Condition A lgolds with same & then we can take
As = X5 and it holds |Er g5, (0)] < CTPor € for all ¢ > 0 and some C =
C (p) = 0 independent of T and x.

We shall note a curiosity which we do not discuss further in this thesis: An
application of the last theorem which presents itself is the deeper analysis of the
renormalization time 7 itself! It follows from the construction of the transfer

operator L, that for all p,a« > 0 and for all x € M it holds

T (,0, _aa$) = Ya (,Cal,p) .

Of course, in the setting of constant vector fields (i.e. constant negative curva-
ture) we cannot learn anything new about 7, but other cases might be of further

interest (e.g. in studying small perturbations of the constant vector fields).
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0 Introduction

Organization of the thesis

We investigate Problem 1 in Chapter 1 and Problem 2 in Chapter 2.

In Chapter 1 we study generic real analytic perturbations A of a linear Anosov
diffeomorphism on the two-dimensional torus as introduced before Problem 1.
We apply the functional approach to transfer operators as described above in
the setting of an anisotropic Hilbert space.

This Hilbert space is explicitly constructed in Section 1.2 as the completion of
some Hardy space with respect to an anisotropic norm. The trace class property
of the Koopman operator K ; is shown in Section 1.3. In fact, we show that K 3
is nuclear of order 0 which is a stronger result.

Theorem I which is Theorem 1.4.3 below is finally shown in Section 1.4. This is
done essentially by the calculation of the trace of the transfer operator associa-
ted to the perturbed system, using the equality in (0.4) which is shown as well.
The spectral properties of the transfer operator £ are discussed in Section 1.5.
Chapter 1 is presented as it was published [!], except that the appendix is moved
to Chapter A and the reference list is combined with that of this thesis.

In Chapter 2 we deal with finite differentiable Anosov flows on connected, closed
Riemannian manifolds and the associated stable horocycle flows.

The necessary notion of cones and cone-hyperbolicity of a map is introduced in
Section 2.2.

In Section ?? we introduce families {£, | o > 0} of transfer operators similar to
those in (0.6) but with arbitrary positive weight functions. This is followed by
the construction of anisotropic Banach spaces. These spaces are a flow analogue
to the spaces constructed by Baladi and Tsujii [10] to study hyperbolic diffeo-
morphisms.

In Section 2.4 we discuss properties of the operators Lo, a > 0, on the con-
structed anisotropic Banach spaces as well as properties of the resolvent of the
generators of the families {£, | @ > 0}. We show a Lasota—Yorke inequality for
the resolvent, which is Theorem 2.4.5 below. We introduce and discuss Condi-
tion A which is Condition 2.4.11 below.

In Section 2.5 we specialize to contact Anosov flows in dimension 3 (we consider
also the co-dimension 1 case).

We give local bounds on the horocycle integral in Lemma 2.5.14. This lemma
enables us to show Theorem IIT which is Theorem 2.5.7 below.

The additional Condition A is finally needed to obtain a polynomial rate of
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Organization of the thesis

convergence to the ergodic mean for horocycle flows induced by contact Anosov
flows in dimension 3.

This chapter is also available on arXiv [2].
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1 Generic non-trivial resonances for

Anosov diffeomorphisms

1.1 Introduction

Let T': T2 — T? be a real analytic Anosov diffeomorphism. We define the Ruelle
resonances of T' to be the zeroes of the (holomorphically continued in z € C)

dynamical determinant

O _on
dr(z) = exp— Y % 3 |det (id—D, T . (1.1)
n=1 T (z)=x

It is well-known (e.g. combining (1.1) and Lemma A.1) that 1 is the only re-
sonance if T is a hyperbolic linear toral automorphism M. A subset of the
Banach space of T?-preserving maps, holomorphic and uniformly bounded on
some annulus, is called generic if it is open and dense. We show in Theorem
1.4.3, using an idea of Naud [51], that there is such a set G so that for all ¢ € G,
appropriately scaled, the Anosov diffeomorphism M + 1) admits non-trivial Ru-
elle resonances. For this, we construct a Hilbert space of anisotropic generalized
functions on which the transfer operator Lrf = (f/|det D T|) o T~! is nuclear
with its Fredholm determinant equal to dp. Moreover, we prove that some of
those generic perturbations preserve the volume while some do not.

The expanding case is easier and was initially studied by Ruelle [51]. More
recently, Bandtlow et. al [13], [79] calculated the resonances of real analytic
expanding maps 7': S — S on the unit circle S explicitly for Blaschke products.
Their transfer operator acts on the Hardy space of holomorphic functions on the
annulus. (See also Keller and Rugh [15] in the differentiable category.)

In the hyperbolic setting, Rugh proved the holomorphy of the dynamical deter-
minant of real analytic Anosov diffeomorphisms on surfaces [55], [56]. The idea
was generalized by Fried to hyperbolic flows in all dimensions [29]. The detailed
study of anisotropic Banach spaces in the hyperbolic case started with the pio-

neering work of [15] (in the differentiable setting) and is now a well established
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1 Generic non-trivial resonances for Anosov diffeomorphisms

tool, see e.g. [11] and [32].

Faure and Roy [25] later addressed real analytic perturbations of hyperbolic
linear toral automorphisms on the two-dimensional torus, considering an aniso-
tropic complex Hilbert space, which had already been briefly discussed by Fried
[29, Sect 8, TJ.

Our approach is based on this construction and strongly relies on an idea sug-
gested by Naud [51]. We put the transfer operator at the center of our analysis.
We introduce an anisotropic Hilbert space (Definition 1.2.4) in Section 1.2.

In Section 1.3, we rephrase a result from Faure and Roy [25, Theorem 6] to show
that the Koopman operator Krpf := f o T is nuclear of order 0 when acting on
our anisotropic Hilbert space.

In Section 1.4, we use this result and an idea of Naud [51] to show that the
Koopman operator admits non-trivial Ruelle resonances under a small generic
perturbation of the dynamics.

In Section 1.5, we consider the adjoint of the Koopman operator, which is just
the transfer operator, acting on the dual Hilbert space and obtain our final re-
sults.

In the Appendix, we recall two needed basic properties of integer matrices (seen
as linear maps on the torus) and provide a sufficient condition for determinant

preserving perturbations of differentiable real maps.

In principal the analogous problem on any higher dimensional torus can be tre-
ated with the presented method. However, one has to modify slightly the used
space from Section 1.2 if the linear toral automorphism has non-trivial Jordan
blocks.

Blaschke products were recently generalized to the hyperbolic setting by Slipant-
schuk et al. [60] who calculate the entire spectrum of these real analytic Anosov
volume preserving diffeomorphisms explicitly.

1.2 An anisotropic Hilbert space

We denote the flat 2-torus by T? := R?/Z2 We embed T? into the standard

polyannulus in C? and set for each r > 0

Ay =T +i(—rr)%
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1.2 An anisotropic Hilbert space

We see A, as a submanifold of C2. The Hilbert space Lo (']I‘Q) is equipped
with the canonical Lebesgue measure on T2. This space admits an orthonormal

Fourier basis given by
on: T? - C: z - exp (i27n*z), neZ? (1.2)

where n* is the canonical dual of n. We recall a construction from Faure and
Roy [25] for a complex Hilbert space H Anr.- This space also has been described
briefly by Fried as an ”ad hoc example” [29, Sect. 8, I.] of a generalized function

space. The construction will be based on:

Definition 1.2.1 (Hardy space Ha (A;)). For each r > 0 and each holomorphic

function f: A, — C, we define the norm

Wliny = sw ([ 17 +infan)’

ye(—r,r)?

Then we set
Hy (A,) = {f A, —» C | f holomorphic, ||f] e,y < oo} .

The space Hy (A,) is the 2-dimensional analogue of the Hardy space studied in
[58, p. 4]. It admits a Fourier basis given by

I Ay — C: x> exp (=277 |n)|) pn, neZ?

where ||z| = |z1| + |22| for all (21,22) =t 2z € C? and z € T?. With this choice
of norm, the Fourier basis is orthonormal. Under the canonical isomorphism
Lo (’]I‘Q) x> [y (’JI‘Q)*, we have the isomorphism

r (1.3)

A matrix M € SLy (Z) is called hyperbolic if its eigenvalues do not lie on the unit
circle. We denote by E]T/[ the eigenspace for the eigenvalue of modulus Ap; > 1
and by E}, the eigenspace of the eigenvalue of modulus /\;41. We decompose

y € R? uniquely as
_ .+ — . + + — —
y=yy tyy with yy e Ey ., and y, € E, .. (1.4)
We have

|3y = Anellyae | and M7y | = Ay - (1.5)
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1 Generic non-trivial resonances for Anosov diffeomorphisms

Definition 1.2.2 (Scaling map Ay ). Letc > 0, and M € SLy (Z) be hyperbolic.

For every n € 72, we set, recalling (1.2),

Asreion = exp (=2me ([nj] = [nir ) en-

Lemma 1.2.3 (Continuous embedding of Hs (A,)). Let ¢ > 0 and let M €
SLy (Z) be hyperbolic. Then the map Apr. can be extended by continuity to an

injective linear map
A Ha (Ae) > Lo (T?),

bounded in operator norm by 1.

Proof. By Definition 1.2.2, for each f € Hy (A.) we have

|Anref 7,2y = D5 lenAnef I = Y exp (—4me (Jnig ]| = Ina])) 1511

nez2 nez?
= > exp (—dme (|nfy]| = [na] + Inl)) 1957 12,
nez?

where we used (1.3) in the last step. Using the triangle inequality, we find
[n3el = Ina| + lnll = 0.
Hence, it holds

> exp (=dme (g | = Jragl + Inl) 19571 < 11y, -

nez?2
Injectivity follows since Aps . is invertible on the Fourier basis of Lo (']1"2). ]

The image of Hy (A.) under A/ is dense in Lo (TQ) since it contains all Fourier

polynomials.

Definition 1.2.4 (Hilbert space Ha,,.). Let ¢ > 0 and let M € SLa(Z) be
hyperbolic. Let Aprc be the map given by Definition 1.2.2. Then we set

Hay,, = closure of Ha (Ac) with respect to the norm HAM,C-HLZ(TQ) ,
and extend Apr . by continuity to a linear map

AM,CZ HAM,C - L2 (Tz) .
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1.2 An anisotropic Hilbert space

As a direct consequence of this construction, the scalar product on H,,, . satis-
fies

<'7 .>HAJVIC : HAJ\/I,C X HA]M,C - C: (f7 g) = <AM,Cf7 AM,cg>L2(T2) .
An orthonormal Fourier basis of H4,, . is given by
g1 2
On = Ay pon, MEL. (1.6)

Lemma 1.2.5 (Dual space of HAM,C)' Under the canonical isomorphism Lo (’]I‘2) ~

Ly (']I‘Q)*, the dual space H}, s isomorphic to A?\J,CHAJW,C'
Proof. Under the canonical isomorphism Lo (’]I'Q) ~ [y ('JIQ)*, we have for each

n1, ng € Z2, using (1.6),

(P;;l (¢ny) = 8021 (AM,chz) = (AM,C‘Pm)* (Ony) = (A%\/[,ch)* (Ons) -

O

Remark 1.2.6. By Lemma 1.2.5, we associate to every linear functional f* €
H,,. @ unique vector f € A?M,CHAJ\/[,C' Then, for every g € Ha,, ., the product

fg is absolutely integrable with respect to the Lebesque measure on T2.

The decomposition in (1.4) defines two cones

Ch={yeR | v = v} and Cy={yeR* | |ui;| < vml}-

31
Example 1.2.7. We let M = <2 1) , then Ay = 2 + /3. An eigenvector for

Ay for M™ s (1 +4/3, 1) and an eigenvector for )\Xj 18 (1 — /3, 1). The two
subspaces Ej\”/[* and E} ;. and the two cones C]t[ and C},; are shown in Figure
1.1.

We set
HXA{,C = 2 <Qn, f>’HAM . Qn | f € HAA{,C and
neCyf, nz2 ’
HZA[’C = Z <Q’I’L7 f>HA1W . On | f € HA]W,C
neCy,NZ? ’
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1 Generic non-trivial resonances for Anosov diffeomorphisms

/
A J
/
/
i I
= /
C(M / C1M
/
| /
S~ /
SN/
—e— -
/ \\\\
/ T~
/ |
Ef,. /
/
/
/ —
/ EM*
/
/
/

Figure 1.1: The map M is from Example 1.2.7. The dark gray area is the cone
C;\} which contains the subspace EX/[* The light gray area is the
cone ('}, and contains E .. A part y € R? belongs to the dashed
lines if and only if Hy&” = Hyj\}”

Hence, we have Hy,, = HXMF + Hy,, .- Comparing for each n € Cj; the
Fourier basis g, with ,, it follows immediately that HEMC c Lo (']I'Q). For

each n € C]J\}, comparing the Fourier basis g, with ¥$*, using (1.3), shows

”HXM . C Hs (A.)*. We conclude therefore that H 4 .. contains linear functionals
which do not belong to Lo (’JI‘Q). By construction, the space Hy,, . is a rigged

Hilbert space, i.e.:
Hy (Ac) € Hay, © Ho (Ao)*. (1.7)

Remark 1.2.8. We note that in the construction of Ha,, ., the expanding and
contracting directions appear in the dual coordinates n € Z? of the Fourier basis
(1.6). This distinguishes Ha,, . from the space of Rugh [50] where expanding

and contracting coordinates are spatial. We observe

'z = (niy )" @i +gs) = (030) 2 + (0r) g
Hence, we can rewrite (1.6) as

on (@) = exp (2mc (|n;| = |nas])) exp (i27n*z)
= exp (27TcHn]TJH) exp (i 27 (nj\’/[)* $X4*) (1.8)

X exp (—27rcHn]T/[H) exp (i 2 (nij)* x&*) .

It is tempting to think of the o, as basis elements for a tensor product space of
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1.3 The Koopman operator is nuclear

a Hardy space on an annulus, with the dual of such a Hardy space. However,
we cannot use o, as such a basis since nj\r/[ and n,, are not independent of each
other. Nevertheless, we can decompose Ha,, , into two generalized Hardy spaces

as follows. We define four norms

1

2

1y (F) = sup (f |f(x+iy)|2dw) L FeLs(T?), je{1,2,3.4}, where
yEAj T2

A= {y e R |y € (6,0, yips € (0, 0)?),

Ag = {y eR? | Yy € (¢, 6)2, Yis € (—00, —0)2};

Ay = {y e R | yypm € (6,0, yipm € (c,00) x (~0,—0)},
A= {ye® | ypu e (e 0P, yis € (—o0.—0) x (c.0) ).

For all f € Lo (TQ) the norms p; (f) cannot be finite but they are so at least for
some Fourier polynomials. The spaces Hj, j € {1,2,3,4}, are the completions

with respect to the norms p; above. E.g. using pu1, it holds for all f € Hy

(0 =swp ([ 17 +inPar) = sup 3 exp(-mny) e

yeA; yeAL om0

= sup 37 exp (—4m ()" iyge =4 (1) " e ) IS
ved1 g2

=  sup 2 exp (4770 Inys| = 4m (n))" y]@*) ok fI?

2
y;t{* €(c,0)” pez?

= Y e (ne|ny| - dne[nf )i =Y lerAme P
nez? nez?
n;€[0,00)2 ni,€[0,00)2

Similar calculations for the other three norms show then that the spaces Hj, j €
{1,2,3,4} disjointly partition the space H 4 . With respect to the dual coordinate
up ton = 0. Since E]E is a one dimensional subspace of R?, always two of the
spaces contain only the constant functions (note that n;\r/[ = 0 implies n = 0),
say, Hs and Hy. Then all vectors in the spaces Hi and Ho are holomorphic

functions on T? +iA; and on T? 4 i Ay, respectively.

1.3 The Koopman operator is nuclear

We set for each r > 0

T, = {T: T? - T? | T extends holomorphically and boundedly on Ar} .
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1 Generic non-trivial resonances for Anosov diffeomorphisms

For every T € 7T, the Koopman operator
Kr: Lsy (T2) — Lo ('1['2) cfo foT

is well-defined by differentiability of T'. It is well-known that the operator Kr
acting on Lo (']TQ) is not compact. We say that two maps f, g € 7, are C'-close

if the distance

d(f,g) = sup [f(2) = g(2)| + sup |D. f — D g
2€A, z€A,

is small. In this section we revisit the proof of Faure and Roy [25]. They showed
that 7, acting on the Hilbert space Ha,, ., (see Definition 1.2.4), is nuclear of
order 0 if T is sufficiently C'-close to a hyperbolic matrix M € SLy (Z) for some
c>0.

We recall that a linear operator £: H — H on a Hilbert space H with norm |-||,,
is called nuclear of order 0 if it can be written as asum £ = . dntb1 0?3, with
inf{p>0 | Xpenldnl” <00} = 0 and ¢1n,thon € H, [Y1nlyy, [P2nly < 1,
d, € C, n e N [34, II, §1, n°1, p.4]. In particular, such an operator is trace

class, hence bounded and admits a trace trl = ), _yerLey,, invariant for any
choice of orthonormal basis e,, n € N of H. Moreover, one can show that trL
equals the sum, including multiplicity (dimension of corresponding generalized
eigenspace), over the spectrum sp (£) of £. The Fredholm determinant, defined

for small enough z € C by
oozn
det (1 — zL) == — —trl" 1.9
et (1 - L) xp<2n> (19)

extends to an entire function in z, having zeroes at z = A1, A € sp (£)\ {0} of

same order as the multiplicity of A.

Theorem 1.3.1 (Nuclearity of 7). Let M € SLy(Z) be hyperbolic and let
r > 0. Then there exist constants dp;y > 0 and 0 < ¢1 < r such that for each
T € T, with d(T, M) < 6pr the map

Kr: HAJM,cl - HAIM,cl cfe foT

defines a nuclear operator of order 0. In particular, there exists ca > 0 depending
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1.3 The Koopman operator is nuclear

only on c1, M, and |-| so that for each ny, ng € Z>

Conis Koo, | < exp(=2mea (Jmaf + [n2])))

For every ni, ng € Z2, we set
y 9 9y

Inl,nz (T) = <90n17}CT90n2>L2(T2) . (1.10)

Estimating this ”oscillatory integral” is central for Theorem 1.3.1. In the case

T = M, we have simply

1 if M*TLQ =N
Inyny (M) = . (1.11)
0 if M*ng # ny

The strategy of the proof is as follows. We get an upper bound for |I,,, n, (T)| in
Lemma 1.3.2, taking advantage of the holomorphicity of T'. In Lemma 1.3.3, we
compare the contribution of n1 and no in the expanding and contracting directi-
ons, using here essentially the hyperbolicity of M. Combining both results, we
obtain a weaker bound on |1, », (T')| in Proposition 1.3.4, which finally allows
for the proof of Theorem 1.3.1.

For every n € Z? and y € R? any solution = € T? so that

exp (=27 (n* D, Ty)) = LQ exp (=27 (n* D, Ty))dz (1.12)

is denoted by z,, (y). Since the integrand is continuous in y such a solution exists
by the Mean Value Theorem.

Lemma 1.3.2 (Upper bound on |1, n, (T')| (I)). Let r > 0. Then, there exists
C = 0 so that for each T € T, and ny, ng € Z2 and y € (—r,7)?, recalling (1.10),

we have
Ly ()] < exp (27 (=03 D, ) Ty + iy + CA(T, 0) [yl [ns]))
Proof. By definition
Ly (T) = (s Koy o) = JT2 exp (127 (3 T(x) — niz)) da.

Since T € 7y, the Z?-invariance of the integrand follows. By holomorphicity of T

on A, we can change the path of integration to  — z +iy for every y € (—r, 7).
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1 Generic non-trivial resonances for Anosov diffeomorphisms

Therefore for any y € (—r,7)?
[ Iny ny (T)] < J2 exp (27 (nfy — S (3T (z +iy)))) dz,
T

where 3 is the imaginary part. We expand T (or rather its lift to R?) at x € T?

in a Taylor series to the second order. This yields
T(zx+iy) =T(x) +iD, Ty + P(z +iy) + Ra (x +1y).

Here, P(x +iy) is the second order term of the expansion which is R?-valued,

and Ro is the remainder of the series expansion. We find therefore
ST(x+iy) =D, Ty + SRe (z +1iy) .
Since T is holomorphic we find a constant C' > 0 independent of 7" such that
[n3 R (x + iy)| < Cd(T,0) |na| [y,
We are left with the evaluation of
JT2 exp (=27 (n* D, Ty)) dz.

Using (1.12) yields the result. O

The following abbreviation is used in the remaining section. We set for each
y e R?

[l = o] = lval (1.13)
Lemma 1.3.3 (Directional inequality). Let M € SLy(Z) be hyperbolic. Let
€>0and k>0 and let R: R?2 — R be a map such that for all z € R? with

|z| < € it holds
R() <sle].

Then there exists cpr > 0 such that if kK < cpr there exist 0 < co < ¢1 < €
such that for all ni, ny € Z? there exists Ynine € R? independent of R with
[Ynyme | < € such that it holds

—c1(In1lyy = [n2lar) = (3 M = n7) Yy ny + (02l B (Ynina) < —c2 (Inal + [n2f]) -

Proof. We assume 0 < ¢o < ¢1. For n; = no = 0 there is nothing to prove. For
every (y1,v2) € R? we set |(y1,y2)] = A/y? +y5. Welet 0 < & < 1 < & such
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1.3 The Koopman operator is nuclear
that
& (Jwirl + larl) < Iyl <&yl forall y € R2. (1.14)

Whenever ny # 0 we find a linear map M, such that M ns = M*ng — nq and
whenever nq # 0 we find a linear map M, such that Myn, = M*ny — nq. For
now we let & > 0 be a variable which will be fixed later on, independently of ny

and ns. We consider the following four cases

(a) [nz2] >0 and [na| = |ni| (b) Ina] > 0 and [[na] = [na|
(i) [Manz| = &2l (i) [Mpna| = &[],
(ii) [Manz| < &|nz2|, (i) [Myna| < & |na].

We assume Case (a)(i). For every § > 0 we let

Y= 6Ma£.
[n2]
It follows, using (1.14), that
—(ngM —ni)y = —ny Mgy < —¢; |[Manz| |yl - (1.15)

We recall |-|,, from (1.13). Using that ¢; +c¢2 > 0 and that (a) holds, we estimate

—c1 (Inalpr = In2lar) < ex (]| + [ n2f)

—ca ([na]| + [n2ll) + (er + e2) (Jra]| + [m2])

N

—ca ([na] + [nall) + 2 (er + e2) o -

Using (a)(i) and the assumed bound on R for |y| < €, we have

" n9
1 (il — Inalyy) — o] (c% Maw‘ Iyl - R<y>) <
— ey (] + el + (2er + e2) — (@ — #) Lyl e

(1.16)

We put ¢y = &&. Any value |y| € (0,€) can be attained by controlling 4.
Assuming that cps > k, it follows from (1.15) and (1.16) that

CM — R

O<ci+e< 5

€. (1.17)

The reasoning in Case (b)(i) is completely analogous and yields the same bounds
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1 Generic non-trivial resonances for Anosov diffeomorphisms

on ci + ¢y.
In Case (a)(ii) and (b)(ii), we take y = 0, where R(0) = 0 by assumption on R.
We assume now Case (a)(ii). We find, using (1.14),

|(Man2) ;| + | (Manz)y | < &2 Mana]

< &ot 12| < G (H@MH + Hn;MH) . (118)
We have
H(Mam);\%H = HM*n;M — nfMH and H(Mam)&u = HM*TLQ_M — nl_MH
Recalling (1.5), this allows the estimate
litemdil + Jtamdil = [0 | = ] = [z a] + ]
—1ll = _
> Al = 35 Iz =[] + [
Together with (1.18) we find therefore
—mlyy = =[nfad] + [riad]| < = Onr = 7e2) [ndr]| + OGF + 722) g ]

We set

Ky =Ay—kég—1 and k_:= 1—/\JT/I1 — RCa.

We finally estimate
—c1 (|nilp — In2lyy) < _Cl’“an;,MH — clfi_HniMH.

Note that we have kK, > k_ because A\j;y > 1. Assuming that cik_ = 2¢o, we
find

_m_Hn;MH - clﬁ_\\n;M\\ < —c1ki_ |na|| < —2¢s [n2| < —ca (|ni] + [na]) -
In Case (b)(ii) we consider the bounds

_ + — -
[Pl + A ag] = Aad i < ‘((M*) lenl)M‘ + H((M*) 1Mbn1)M‘

< | ()™ My | < e | ()7 Il

Therefore x_ is replaced by 1 — )\X/} — H(M*)AH ko which we require to be
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1.3 The Koopman operator is nuclear

positive. Since H(M *)71H > 1, this yields the stronger conditions

-1 a—1] ~~

! 1-Ay —H(M ) H Ko
7“ ]1\/[ and ¢y < 5 c1- (1.19)
() &

Any such choice for & is independent of n; and ny and fixes c¢pr. Using (1.19)

for an upper bound on ¢y and (1.17), we find the stronger condition

cp — K

O0<ecp < —e.
ST

Therefore the choices of ¢; and co are valid if kK < ¢pr. They depend only on €,

M and |-| and not on ny or ngy. O

Proposition 1.3.4 (Upper bound on I, », (T')| (II)). Let M € SLg(Z) be
hyperbolic and let r > 0. Then there exist constants 0 < dpr and 0 < co < ¢y < r
such that for each ny, ns € Z? and each T € T, with d(T, M) < 6y it holds that

exp (=2mer ([nafpy = [n2(p)) Hnyns (T)] < exp (=27ez ([Ina]| + [n2]) -

Proof. By Lemma 1.3.2 there is a constant C' > 0 independent of T" such that
for each y € (—r,7)? and ny, ng € Z2 it holds that

Lz (D)) < exp (27 (=13 Ds, ) Ty + ity + CA(T,0) gl na]) ) - (1.20)

We rewrite
n3 Dy, ) Ty = nsMy +n3 D, () (T — M)y,
and set
Ry e | T Penat) O = D)y + CAT0) [yl im0
0 ifny =0

Let 057 > 0 and assume that d(T, M) < dpr. We choose 0 < € < r sufficiently
small such that for all y € R? with |y| < € there is x > 0 such that

[R(y)| < Kdn.

Since d(T,0) < d(T, M) +d(M,0) < dpr +d(M,0) this choice of € is independent
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1 Generic non-trivial resonances for Anosov diffeomorphisms

of T. Lemma 1.3.3 applied to M and |R| gives c1, ¢ and yn, n, € R? for which
the right-hand side of (1.20) fulfills the desired inequality. O

Proof of Theorem 1.3.1. Proposition 1.3.4 yields 0 < dpy and 0 < co < 1 < 1
such that if d(T, M) < dps it holds

Cny Cry [Ty ny (T)] < exp (=2mea (|ma| + [n2]) (1.21)

where

Cr := exp (=2mer ([nfy] = |ny ) nez”

We put ¢ := ¢ and M in Definitions 1.2.2 and 1.2.4, giving a linear map Ay,
and a Hilbert space H4,, . . Recalling (1.6), and assuming that Kr: Ha,, , —

Hay,, 1s well-defined, we have

(ony, K1 on, >’HAM o ‘ = ‘<80n1 s AMer ICTAJT/II,Q (pn2>

= Cnlcn_gl |In1,n2 (T)| . (1'22)

Lo (TQ)

Using (1.21) to estimate the right-hand side, the bound in Theorem 1.3.1 follows.
We next obtain well-definedness and nuclearity of order 0 of Kr. Let f € Ha,, .
and put g := Aprc, f. We have then

KrfeHay,, © AueKefeLa(T?) < Y |oh Ay Krf|? <o
nez?
2

* —1 *
e > 1D Oh AmaKrAy, onehg] < o0
’I’L1€Z2 TLQEZQ
2

& DD CnCol Iy iy (T) 99| < 00,

n1 GZ2 no EZ2

Using (1.21) and the Cauchy-Schwartz inequality, it follows that

2

S S 0 s Dt (2) oo < 0

n1€Z2 |no€Z2? nez?

This gives the well-definedness of 7. Now, using the Cauchy-Schwartz inequa-
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1.4 Non-trivial resonances for the Koopman operator

lity, we have

2

<

meZ?2

2

2
an e, 1B,

<QTL7 ICTQ7TL>’}-[A]M o

Using (1.22) and (1.21) to bound ‘<Qn,KTQm>HAM , we find a constant C' > 0
,C1

such that

(Coxprerlnl) 0n KDy, | < WLy, -

This allows the representation of Kp as

Krf = 3, € exp (=2mes [nl)) (Cexp (2res nl) 00, K7Dy, o0,

nez?

from which nuclearity of order 0 follows. Finally, a brief inspection of the proofs

for Lemma 1.3.3 and Proposition 1.3.4 gives the statement about the constants.
O

1.4 Non-trivial resonances for the Koopman operator

Given any hyperbolic matrix M € SLy (Z), we find by Theorem 1.3.1 constants
0 < dps and ¢ > 0 such that for each map T € T, satisfying d(T, M) < dyy, the
operator Kr acting on the Hilbert space H 4,, . is nuclear of order 0. Therefore

it has a well-defined trace

trkp = 2 <Q””CTQ">HAMC : (1.23)

nez?2

The map 7' is an Anosov diffeomorphism (for all small enough ), by structural
stability [35, Theorem 9.5.8]. Then the map 7 has the same number Ny =
|det (id —M )| of fixed points as the matrix M. We recall a well-known result
[25, Proposition 9].

Lemma 1.4.1 (Trace formula for 7). Let M € SLg (Z) be hyperbolic and let
r > 0. Then there exist constants dpr > 0 and ¢ > 0 such that for each T € 7,
with d(T, M) <y, letting K act on Ha,, ., it holds

trkp = )| |det(id—D, T)[ ",
T(x)=x

For the convenience of the reader, we give a proof:
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1 Generic non-trivial resonances for Anosov diffeomorphisms

Proof. Using Theorem 1.3.1 gives constants ¢ > 0 and dp; > 0 and well-
definedness of KCp. For small enough dps > 0, by structural stability and Lemma
A.1 (ii), the map id =T can be partitioned into Nj; surjective submaps. In
particular, there are diffeomorphisms y;: D; — T2, D; c T?, 1 < j < Ny such
that id =T = U;V:’“{ y;. Then, using (1.6), we have for each n € Z>

(On, ICTQH>HAM’C = <<pn, AM7CICTAX417Ccpn>L2(T2) = JW exp (i2an* (T —id) (x)) dx
N

- Z J exp (i2mn*y;(x)) dz
=1 Yy H(T?)

Npyg

f exp (i2mn*z) &
™ |det (id =D, 1, T)
J

For N € N and z € T? the following sum

j=1

Dy (2) = Z exp (127mn*z)

nez?

Izl <N
is the 2-dimensional analogue of the Dirichlet kernel [14, p.13]. Together with
(1.23), this yields immediately

. . -1
tr i = A}l_r)noo Z <gn,ICT.Qn>HAM‘C = Z |det (id =D, T')| ™.

nez? T(z)=x
In|<N

O]

Using Lemma 1.4.1, and the definitions (1.1) and (1.9) for the dynamical deter-

minant and Fredholm determinant, respectively, we see directly that
det (1 — 2K7) =dr (2). (1.24)

The Ruelle resonances correspond to the zeroes of the Fredholm determinant,

hence to the inverses of the non-zero eigenvalues of Krp.

Remark 1.4.2. In view of FEquation 1.24 and the relation of the Ruelle reso-
nances of T to the eigenvalues of K, one may ask how the spectrum of Kr
would be affected if we let KCp act on a different Banach space. The following
relates a part of the eigenvalues of two linear operators sharing a common dense
subspace and is due to a result of Baladi and Tsujii [11, Appendiz A]. Consi-
der two separable Banach spaces (B1, |-|;) and (Ba,||). This induces two other
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1.4 Non-trivial resonances for the Koopman operator

Banach spaces

(By + B, | l|,) and (B~ Ba,|-|.) . where

Il = mf{faly +1f2l | fr€By, f2€Ba, f = fi+ fo} and
11l = max {[l £l 1f1} -

Suppose that B~ is dense in By and Bs. Let L: By — B be a linear map which
preserves the spaces B~, By and By and is a bounded linear operator on the
restrictions Lz, and Liz,. Then the part of the spectrum of Lz, and of Lip,
which lies outside the closed disc with radius larger to both essential spectral radii
of Lip, and L, coincide. Moreover, the corresponding generalized eigenspaces
of Lis, and Lg, coincide and are contained in Br.

For the applications that we have in mind, the map L is just the Koopman or

transfer operator, defined on By and Ba, respectively, extended to the space B .

The spectrum sp (Kr) of K on Ha,, . is invariant under complex conjugation
since T is real. The constant functions on T? are all fixed by K7. Therefore
we have 1 € sp (Kr). If we take T = M* k € N in Lemma 1.4.1, it follows
that tr/lCp = 1. Hence, the dynamical determinant is just dp (z) = 1 — z, also
noted in [55, p.3]. We find immediately that 1 is the only Ruelle resonance. We
show now that this finding is non-generic in the following sense. The rest of this

section is devoted to an idea of Naud [51]. We put for every r > 0
B, ={T €T, | Thelift of T to R? is Z*-periodic} . (1.25)

Endowed with the uniform norm this is a Banach space.

Theorem 1.4.3 (Non-trivial Ruelle resonances (I)). Let M € SLy (Z) be hyper-
bolic. For each r > 0 there exists an open and dense set G < B, such that the

linear functional

By B, > R: ¢ — ]\,7]\/[71 2 tr <(id—M)71Da;1/1)
Mx=x

never vanishes on G. For all ¢y € G there exists €g > 0 such that for all € < €y

tI‘]CM_i_ew =1+4+€eBy (1/1) +0 (62) .
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1 Generic non-trivial resonances for Anosov diffeomorphisms

In particular, for all sufficiently small € > 0 it holds

sp (’CM-i-edJ) \ {07 1} 7 @

Lemma 1.4.4 (Real analyticity of fixed points). Let M € SLy (Z) be hyperbolic
and r > 0. Then for all ¢ € B, the fized points of the map

M + &

are real analytic functions of & where & lies in a real neighborhood of 0.

Proof. We set for § e R
F(§,z):= Mz + o¢(x) — x.

We fix a point y; := (0,2;) where z;, 1 < j < Ny, is a fixed point of M. By
construction, the map F has a holomorphic extension to C x A,. Since M is
hyperbolic, we have det D, (F'(0,-)) # 0. We apply the Holomorphic Implicit
Function Theorem [17, Theorem 1.4.11] on F' with F'(y;) = 0. This yields a
holomorphic function x; (0) such that x;(0) = z; and which is obviously real

analytic for § € R in a neighborhood of 0. O

Proof of Theorem 1.4.3. Let § € R and ¢ € B, and set M := M + 8. We choose
6 small in Lemma 1.4.4 which gives for each fixed point = of M a real analytic

function Z with z (0) = z. Using a Taylor expansion on Z at 0, we have
z(0) =z + O(9).
Using real analyticity of the derivative D, v, we have
Dy ¢ — Dy ¢ = O(9).
We write now for each fixed point x of M

‘det (id —Ds) M)‘ — |det (id =M — 6D, v + 5 (Dy ¥ — Dy(g)¥))]
- Ny ‘det (id— (id—M)~" (6D ¥ + (6 Dy ) — 6 Dags) ¢)))‘
— Ny ‘det (id 5 (i d—M) Dy + O (52))\

— N (1= dtr ((1a =20~ Dy w) + 0 (57)).
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1.5 Non-trivial resonances for the transfer operator

We have by Lemma 1.4.1 for ¢ small enough

=1+ ]\fM 1ot ((id —M)*lDz@b) +0 (6%).
Mzx=zx

Now we set

Bu: B, -»R: o Ny b ) ((id ~M)"'D, qp) .
Mz=x
We next check that this is a non-trivial linear functional. Note that formally
By (id —M) = 2. However, no non-zero linear map is in the space of additive
perturbations B,. We denote by v;, j € {1,2} the j-th column of the matrix
((id —M)*)f1 and we fix now j. Let ¢9: T +i(—r,r) — C be holomorphic and

bounded. For every (z1,z2) =: z € T? we put

¥ (x) = to (x5) ;-

By construction, we have ¥ € B, and we evaluate

Ly
By () =32 3 o @),
Mz=x
The right-hand side is a finite sum and by taking for g a suitable Fourier
polynomial (e.g. a shifted sine with sufficiently high frequency), we can establish
B () # 0. We set G := BJT/[l (R\ {0}). By continuity of By, the set G is open
and dense in B,. ]

1.5 Non-trivial resonances for the transfer operator

As before, we consider maps T € T,, r > 0 which are sufficiently C'-close to a
hyperbolic linear map M € SLg (R). We turn to the adjoint of Kp, acting on
the dual space H} _» which we denote by L.

Lemma 1.5.1 (Transfer operator). Let M € SLo (Z) be hyperbolic and let r > 0.
Then there exist constants 0 < dp; and ¢ > 0 such that for each T € 7T, with
d(T, M) < 6p; the map

f

T—l
~ |det D T'| °

ET: 7-l:’%]\/l,c - 7-[:Z]\/I,c: f
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1 Generic non-trivial resonances for Anosov diffeomorphisms

defines a nuclear operator of order 0, conjugate to K. In particular,
sp (L) = sp (Kr) .

Proof. By Theorem 1.3.1 there is 0 < dp7, ¢ > 0 and Ha,, . such that Kr acting
on Ha,, . is nuclear of order 0 if d(T', M) < dps. The same can be said about its
adjoint, acting on H% (e.g. see [57, p. 77]). The trace of K7 and L7 coincide,
so does their Fredholm determinant, and hence their resonances. By definition
of the adjoint, Vf* € /Hle,c’ Vg e Hay.: (Lrf)* (9) = f* (Krg). Using Lemma
1.2.5, it holds

* (Krg) = <AMCf /ch> .l L 2 (A;;c‘ () (Aps.cKrg) () da

_ ) (Krg) (@) de = | (0T 1) (0) g (2) da
2 \|det D T|

—1 _ f o —1 *
< (maDﬂ o )”>%W ~(pmo7”) @

By Lemma 1.5.1, recalling (1.6), and Lemma 1.4.1 it holds

trly = Y Lrof(en) = D |det(id—DT)| "

nez? T(z)=z
We have the equality
dp (z) =det (1 — 2Kp) = det (1 — 2L7) .
We give now analogously to Theorem 1.4.3 a spectral result for the transfer

operator (recall B, from (1.25)).

Lemma 1.5.2 (Non-trivial Ruelle resonances (II)). Let M € SLa (Z) be hyper-
bolic. For each r > 0 there exists an open and dense set G < B, such that for
all ¢ € G there exists g > 0 such that for all 0 < € < ¢

Sp (£M+6w)\{07 1} #* @

Proof. By Theorem 1.4.3 we know that under every perturbation ¢ € G there
is ¢g > 0 such that we find for all 0 < € < ¢y non-trivial Ruelle resonances.
Using Lemma 1.5.1 for well-definedness of £/, and for the relation sp (L7) =
sp (Kr), the result follows. O
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1.5 Non-trivial resonances for the transfer operator

Clearly, the Lebesgue measure (by Remark 1.2.6, the constant density 1) is fixed
by Lur. This does not persist under a generic perturbation of M. However, the
spectral relation in Lemma 1.5.1 implies that L7 fixes some functionals in HZM’C.
In particular, using Remark 1.4.2, we can apply [15, Theorem 3| to our transfer
operators Lys and Lr. Hence, the eigenvalue 1 of L7 is simple and the projector

I onto the corresponding eigenspace of L1 gives us the SRB measure
psrp = 1717,

in the usual sense. (It is absolutely continuous with respect to Lebesgue measure
in the unstable direction.)

We finish this section by showing the existence of non-zero perturbations ¢ € B,
which allow the determinant det (M + €D, 1)) to remain constant or to vary for
x e T2

Lemma 1.5.3 (Volume under perturbations). Let r > 0 and let M € SLy (Z)
be hyperbolic. Then there exist non-zero maps ¢ € B, in each of the following

Ccases:

(i) For all € > 0 and all x € T? it holds det (M + eD 1)) = 1.

(ii) For all € > 0 and Lebesgue almost all x € T? it holds |det (M + e D, )| #
1.

In particular, the map ¢ can be chosen such that for all small € > 0 the corre-

sponding transfer operator

Lrteyp
admits non-trivial Ruelle resonances.

Proof. We prove first Claim (i), including the statement about the non-trivial
Ruelle resonances. We will apply Lemma A.2 (i). We choose j € {1,2}, r > 0
and let ¢: T +i(—r,r) — C be a holomorphic and bounded map. For a € R?

we set for every (r1,z2) =: x € T?

wdnpc ($) = (algb (xj) , Q¢ (xj)) .

We put d := 2, j, T :== M, ¢ and T = 1y, (e.g. as lift to R?) in Lemma A.2.

a b
Since M is a constant matrix, say, M = ) for suitable a,b,c,d € Z, we
c
can write Condition A.2 (i) as
ard=ab ifj=1 or ajc=asa if j=2. (1.26)
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1 Generic non-trivial resonances for Anosov diffeomorphisms

Hence, we have non-zero solutions in « independent of x. We choose such a
solution a and take 9 = 14 . Then 9 € B, which yields det (M +eD, ) = 1
for every € > 0. We are free to choose any suitable ¢. In particular, Theorem
1.4.3 yields a linear functional Bj; and a dense subset G < B, on which Bj; is
non-zero. We have to make sure that ¢» € G. Then for € small Ly admits
non-trivial Ruelle resonances by Lemma 1.5.2. To this end, we evaluate B, at

1 which yields

v o

Bar (¥) = Ba (Y0 = Nur™ 3 tr (1 =D)"' Do) = 3= 3 6 (ay).

Mx=x Mz=x

where v} is the j-th row of (id —M)_l. The sum over the fixed points of M can

be made non-zero by a suitable Fourier polynomial. Now we have

(1—-d)aj +caz or vta - baqg + (1 —a) o
det (id —M) 2 det (id —M)

via =

Using (1.26), we find

. (c—b—i—%)ag . (b—c—i—ﬁ)al

T T qet d—n) T YT Tdet ld—M)

Both equations can never be zero since M is not diagonal. We prove now Claim
(ii) by modifying the map . For ¢ € R\ {0} we set & := a + dw;, where wj is
the j-th column of M and put J = 1y 5. We have

det (M-l—erqZ) = det (M-l—eDz?/)-l—eDz (J—?/})) =1+ depM ().

Since ¢ is not constant, the right-hand side differs from 1 (and —1) for Lebesgue

almost all 2. Since vja = via + dvjw; # 0 for the right choice of the sign of 4,

we have By (1;) # 0.
O
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2 Horocycle averages on closed

manifolds

2.1 Introduction

Let M be a closed (compact without boundary) orientable Riemannian manifold
of arbitrary finite dimension d > 3. On such manifolds Anosov introduced C?
flows

Jaq © Gas = Jar+as = Ga' M — M, «a,a1,09 €R,

to study the geodesic flow on the unit tangent bundle of closed Riemannian
manifolds with variable negative sectional curvature [3], [1]. As pointed out by
Anosov [3], the topological entropy hiop of the time-one map g; of an Anosov
flow is positive.

A special class of such Anosov flows are those which preserve a contact structure.
The geodesic flows are well-studied examples of contact Anosov flows. We give
the precise definition of a (contact) Anosov flows in Section 2.2.

Every Anosov flow admits a contracting transversal foliation. The underlying
vector bundle E_ is called the strong stable distribution. If the leaves of the
contracting foliation are one-dimensional and orientable, one associates with g,
another flow, the horocycle flow h,: M — M, p € R. (The term horocycle flow
was used originally only in the case of the geodesic flow, e.g. see [19, p.84] or [38].)
For every x € M the flow trajectory hg (z) is such a contracting leaf. Statistical
properties of contact Anosov flows are nowadays fairly well understood (see [23],
[33], [18]). Regarding the horocycle flow one knows by the work of Bowen and
Marcus unique ergodicity of and minimality of the horocycle flow (e.g. see [18],
[50]). The corresponding invariant probability measure p will play an important
role below. (It is related to but distinct from the measure of maximal entropy
of the flow.)

Since the horocycle flow is induced by the Anosov flow the following pointwise
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2 Horocycle averages on closed manifolds
equality for all x € M holds for a suitable function 7 (p, a, x):

Ga © h,o (z) = hT(p,a,x) © go ().

We call 7 (p, v, x) the renormalization time.
This kind of renormalization has been used effectively in the work of Flaminio

and Forni [28] to give a precise understanding of the horocycle integral

T
'yx(gp,T):J poh,(x)dp, zeM, T>0,
0

in the setting of unit speed geodesic flows on hyperbolic compact (more generally
finite volume) Riemannian surfaces with constant negative sectional curvature
(i.e. Riemann surfaces), for ¢ : M — R in Sobolev spaces of positive order. In
this case, hiop = 1. Flaminio and Forni found that the speed of convergence of
vz (p, T) /T to u(p) as T'— o is controlled by invariant distributions under the
push-forward of the horocyclic vector field. These distributions are also eigendis-
tributions under the push-forward of the geodesic vector field and the eigenvalues
give the powers of T appearing in the expansion of T !y, (o, T) — p (¢).

Their approach inspired Giulietti and Liverani [30] to study a toy model, re-
placing the Anosov flow with a hyperbolic diffeomorphism, using the renorma-
lization dynamics as a key to study v, (¢,T). They show analogously (for the
corresponding invariant measure p) that the speed of convergence to zero of
Ty, (¢, T) — pu(p) is controlled by eigendistributions for a weighted transfer
operator of the hyperbolic diffeomorphism.

Giulietti and Liverani conjectured that a similar behavior holds in the setting
of more general Anosov flows, e.g. for the geodesic flow on the unit tangent
bundle of a Riemannian manifold with variable negative sectional curvature [30,
Conjecture 2.12]. More precisely, we expect for smooth enough observables ¢

an expansion like

RA
Y (0, T) = Tf%"dlﬁ D Theee(\T,2)0x(¢) + Era (), (2.1)
O<RA<htop

6
with &, = O(T"ter ), uniformly in . The O, are generalized eigendistributions
associated to the eigenvalue A for the adjoint of the generator X +V of a certain
weighted transfer operator L, 4., acting on an anisotropic Banach space (see

below). The real parameter 0 is an upper bound on the essential spectral bound
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2.1 Introduction

of X + V. The complex coefficients ¢(\, T, z) are bounded from above indepen-
dently of z by [logT|® for some ¢ = ¢(\) = 0 which depends whether R\ < 0,
RA = 0 or RX > 0 and if there are non-trivial Jordan blocks for A. This is
analogous to the bounds in [28],[30]. However our methods show no substantial
improvement of the error term £r, if the summation in A includes some A < 0
(this is seen also in [28],[30]). We restrict ourself therefore to 6 > 0 (i.e. always
RA > 0).

The main result of this work, Theorem 2.5.7, gives conditions under which such
an asymptotic expansion indeed holds, for some ¢ > 0, for codimension one
topologically mixing Anosov flows, under an assumption of “spectral gap with
(Dolgopyat) bounds” (Condition 2.4.11 below). In Proposition 2.5.10 we spe-
cialize to C® contact Anosov flows in dimension d = 3. For compact Riemann
surfaces (recall that this is the constant negative curvature case) Randol [53]
proved that there exist eigenvalues arbitrarily close to 1 (his result is for the
associated Laplacian). This provides examples with a non-trivial expansion.

Analogous to the work of Giulietti and Liverani [30], the key idea to study

vz (@, T) is to introduce a weighted transfer operator family
ﬁa,% . Wp&t,q N W;‘,t,q7 ﬁa,%SD = g - $og_q, a=0,

where the weight is ¢o = 9,7 (0, —c, -) and where W,y "% is an anisotropic Ba-
nach space with certain real regularity parameters s,t,q and p. In the case of
the unit speed parametrization of the flow h,, the weight 0,7 (0, —a, ) is just

the Jacobian along the strong stable distribution evaluated at negative time —a.

The paper is organized as follows: After recalling some facts about Anosov flows
in Section 2.2, the transfer operator L, ¢, is defined in Section 2.3.1 (for more

14 are constructed in Section 2.3.2.

general weights) and the Banach spaces W,
These spaces are a flow analogue to the spaces constructed by Baladi and Tsujii
[10] to study hyperbolic diffeomorphisms. Anisotropic Banach spaces are now
considered a standard tool (yet with still ongoing research) for investigating
transfer operators and zeta functions associated to hyperbolic dynamics [7]-[9],
[13], [15], [23], [31], [33], [48], [52], [64], [65]. Although we do not study here
the dynamical zeta function for the transfer operator L, 4, , we believe that this
space could be a suitable choice to be dealt with.

In Section 2.4 we establish properties of the transfer operator, its generator

X + V and the resolvent R,. Most of these results do not require the contact
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2 Horocycle averages on closed manifolds

assumption. Among those are norm estimates which yield a Lasota—York ine-
quality for the resolvent. This is Theorem 2.4.5. Then in Lemma 2.4.10 one
obtains a strip in the spectrum of the generator, containing at most countable
eigenvalues of finite multiplicity. Those are precisely the eigenvalues A in the
summation over A in (2.1). Finally, these results are used in Section 2.5 to give
the expansion (2.1) of v, (p,T') in terms of eigendistributions and eigenvalues of

X + V under a spectral gap with bounds condition, see Condition 2.4.11.
We end this introduction with two remarks about possible further work:

First, the conjecture that the distributions O, appearing in the expansion (2.1)
are fixed by the (adjoint) of the horocycle flow remains still open. (In contrast
this was the starting point in [28]!) Here, progress has been made by Faure and

Guillarmou [24] in dimension 3 for smooth contact Anosov flows.

Second, the renormalization time 7 (p, o, x) inherits the regularity properties of
the underlying Anosov foliation and horocycle flow, i.e. the regularity in z is
expected to be no more than Holder. To deal with such irregular flows one can
lift the dynamics to the Grassmanian. This has been used with success, e.g. in
[30], [33] and more recently in [65]. However in this work we wish to avoid such
technicalities and we will make additional assumptions ensuring that 7 (p, a, x)
enjoys sufficient regularity.

In particular, if the Anosov flow is C" we require d,7 (0, @, -) to be C™1 for all
« = 0. This is reasonably only if r is small since the regularity of the stable
foliation is usually only Holder. In the setting of C* contact Anosov flows in
dimension 3 we can take r = 2 — € for all € > 0 by a result of [10] (see also
Remark 2.5.8 in Section 2.5).

The Appendix comprises our computational tools. On the lowest level, we utilize
Fourier transform, integration by parts, and Young’s inequality [17, Theorem

3.9.4] to estimate convolutions.

2.2 Geometric setting

Let M be a closed, connected, orientable, smooth Riemannian manifold of di-
mension d > 3. We let go: M — M, o € R, be a C" Anosov flow on M *for
r > 1. That is, there exists a decomposition of the tangent space TM of M as

'In this chapter it holds: if r > 0, is not an integer, C" means C"] with all partial derivatives
of order |r| being (r — |r|)-Holder continuous.
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2.2 Geometric setting
a direct sum
TM=FE ®FE,®E), (2.2)

such that for some constants C' > 1, 0 < 0 < 1 and every a = 0

|ID gav|| < CO* ||, forallveE (2.3)
ID g—av| < CO“|v], forallve Ey, '
and Ey = (X) where X is the generator of the Anosov flow
X = 0a9-aja=0- (2.4)

Note that the conditions in (2.3) are closed. Hence by compactness of M the
distributions £ and E, are uniformly continuous and so are the weak-stable
E_®FEy and weak-unstable F. @ Fy distributions. The restriction of the tangent
space to a base point x € M is denoted by

T.M=E ,®FE,®Fy., (2.5)

The dimensions of those vector spaces do not vary with x and we set for some
reM

d_:=dimFE_,. (2.6)

The cotangent space T*M is the dual space of T M and has the canonical
splitting

T*M = E* ®E* ®E; and T:M =E* , QE* ®E;,, zeM, (27)

where E* ~ (E, ®@ Ey)", E* = (E_ @ Ey)*, Ef ~ (E_ @ E,)". This splitting

is (D go)™-invariant and satisfies an analogue of (2.3).
d—1

A contact form is a 1-form 1 € T*M such that n A /\,,2; dn vanishes nowhere
(dn is the exterior derivative of 7). An Anosov flow is a contact flow if there
exists a C'! contact form 71 which is preserved by the pullback of g,. Clearly, a
contact form can only exist if d is odd.

We mean by ”€” for sets A, B < T*M (or € RY) that

AE€Be Ac (intBu{0}).
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2 Horocycle averages on closed manifolds

Here A denotes the closure of A and int B the interior of B. We say that a cone
A is compactly included in a cone B if and only if A € B. We say that a cone
A and a cone B are transversal if and only if A n B = {0}.

We introduce two closed convex cone fields on M in the cotangent space:

For every x € M and for every v € T* M we have v = v~ + vt + 0% where

v e EX o€ {—,+,0}. Forevery 0 <~y <1 we set

o,
Cy (@)= {we TEM | ot + o0 <yl 1}, .
C(a) = {oe TEM | o + o0 <y o+ 1}

If 4/ > « then we have the compact inclusions
- - + +
Cl ()€l (z) and CF(z) €C (2).

Moreover, this construction implies E* , = C7 (z), and E} , ¢ CJ (x) and also
transversality Eg, n (C; (z) v CF(z)) = {0} and CJ (z) n CF (z) = {0}.

We have (see Lemma B.1) for all @ > 0 so that C?0%y < 4’ < 1 and for all
x € M the compact inclusions

(Dg-a)" CF (2) €C5 (ga(2)) and  (Dga)” CF (z) € CS (g-a(x)). (2.9)

The cones defined in (2.8) are expanding and contracting, respectively (see
Lemma B.2). Note that the cones in (2.8) have non-empty interior while [13,
Proposition 17.4.4] uses “flat” cones included in Ei ®E*.

Let V, € Q, w € Q, be an open cover of M, where 2 is a finite index set. We let
A be an atlas for M, containing diffeomorphic C"-charts k,,: V,, — R?, compa-
tible with the splittings (2.2) and (2.7), as we explain now. Fixing coordinates
(z1,...,24) € R? and recalling X from (2.4), we may and do require the flowbox

condition
D KXy, = Ouy- (2.10)
Since g, is C" the chart maps k,,, w € €, are also C" diffeomorphisms. We set

s, = U (D ﬁ;l)tr Cy(z), oe{— +},wel (2.11)
€V,
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2.2 Geometric setting

We require the sets V,, to be small enough such that for small 0 < v_,v4 < 1
there exist 0 < v*,~} < 1 such that for all w € Q and for all z € V,

(Dy k)™ C, € C;* (r) and (D)™ Cl c C;r* (x). (2.12)

V—w — VW — T

This is possible by uniform continuity of the weak-stable and weak-unstable
distributions and the flowbox condition in (2.10). Note that the cones C7 , are
not necessarily convex. This poses no problem since the differential is linear
and hence the convex closure of CJ_ is contained in C’% (x) (this is already a

convex, closed cone) for all x € M. Without loss of generality we identify O3, w

with its convex closure.

Definition 2.2.1 (Cone ensemble). Let C~,CT < R%, d > 3, be transversal,
convez, closed cones with non-empty interiors. Let ®,: RN {0} — [0,1] be C®

maps, o € {—, +,0}, such that

q)—\intc_ =1, (I)—HintC'+ =1, P+ +Pp=1 and
C~ =R (supp @4 U supp ®g), C* = R (supp ®_ U supp Dy) .
We call © := (®_,®,,®y) a cone ensemble.”

Definition 2.2.2 (Cone hyperbolicity). Let K < R? be open and let F: K —
F (K) be a diffeomorphism. Let ©, ©° be two cone ensembles. Let

C~ == R (supp @, U supp Pp) .
We say that F is (©°,0)-cone hyperbolic on K if there exists C* maps
B, 321 RN {0} [0,1]

such that <T>+| supp o = 1 for all o € {—,0} such that for all z € K

SUPp<1>+’(I)Z\
(D, F)" supp ®° € C~ and (D, F)" supp &)8 € R%\ supp D . (2.13)

In Section 2.3.2 an anisotropic Banach space is constructed where the cones C~,
C* determine the directions of lowest and highest regularity, respectively. The
inclusions (2.13) ensure that no parts of higher regularity are mapped to parts

of lower regularity.

By the support of a function f: S — C we mean supp = {z € S | f (x) # 0} which can be
an open set in the topology of S.
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2 Horocycle averages on closed manifolds

Lemma 2.2.3 (Existence of admissible cones). Let « € R and let w,w' € Q. Set
Va,ww’ =Vyn Ja (le) and set

F—oc,ww’: Kw (Va,ww’) — Ry (V—a,w’w) PY P Ry ©g—a© K/;l (y) .
Then there exists ag > 0 such that for all w,w’ € Q there exist cone ensembles
@w = (‘bfﬂ,, ¢+,¢1J7 @O,W) (md @Z/ = ((I)i,w’7 (bi’w/, 870_)/) s

such that for all o« = o the map F_, . 18 (@Z,, @w)—cone hyperbolic. Moreover,
for every w € Q it holds

supp ®g ,, € supp Po, Usupp @y,  and  supp @S , Esupp Py . (2.14)

Proof. We let w,w’ € Q. We assume Vawe # & (otherwise we are done). We let
0 < v—,74+ < 1 be small such that v*,v% > 0 are the values attained in (2.12)
for all cones C_ ,, C. ,, w € Q. These cones are transversal, convex and closed

by construction. We repeat the construction, resulting in values ¥* < ~v* and

¥i <%, using now values

S’— <7- PNY+ <7+,

sufficiently small (possibly by passing to a finer open cover) such that for all
weandall zeV,

(Dro) 55)" O3 (@) €C5 . (D) ") O (2) € CF,

Y4,wW*

(2.15)

We note that the map F,, . is a diffeomorphism by construction. We construct
further cones as follows: By the construction of local cones in (2.11) and the
compact inclusion given in (2.12) for some C28%y* < v/, <¥* and for all a >

we have for all x € V,, o/
(D ga)tr (Dy "‘w)tr C;; w S (D ga)tr C (z) € c, (9-a (7)) € Co (9-a (7).
’ T+ T+ T+

Comparing with the compact inclusion in (2.15), there exists a convex, closed

cone CF , © R such that
Vo

tr ~
(D Fa,w’w) C;l,w < C;:,w’ < C,;:’w/- (216)
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Analogously we find

~

(D Fioﬁw/w)trc;*vw @ C;,,w’ @ C’;,,w" (217)

Recalling Definition 2.2.1, we let

O, = ((I)—,wy(I)-i-,wa (I)O,w) and @Z;’ = ((I)O (I)j- S,w’)

—w’ w'
be the cone ensembles such that

e} — o E]_

—,w|intCN’,y_7,w = q)Jr,w\intC%_,w = (I)f,w’|intC; ;T +,w’\inté::' ,
_, 4

w w

The supports of &_ ,,, &, ,, and <I>i’w,, <I>j’r’w, are taken to be disjoint, respectively,
considering slightly larger convex cones. We check (@Z,, @w)—cone hyperbolicity
of Iy, ., recalling Definition 2.2.2. The supports of (T)i,w” &)Jﬁw/, &)S,w’ are chosen
analogously on corresponding slightly larger cones. The first compact inclusion
in (2.13) is a direct consequence of the compact inclusion in (2.17). To see the

second compact inclusion in (2.13) note that

) ! r
((D Ffa,ww’)t ) (Rd\suppq)Jr,w) = IRd\ (D Fa,w’w)t Suppq)Jr,w-

Comparing with the compact inclusion in (2.16), we conclude. The claim in
(2.14) follows again by comparing with the compact inclusions in (2.16) and
(2.17). O

2.3 The transfer operator and the anisotropic Banach

space

2.3.1 The transfer operator

We denote by C” (M) the space of Cl"] functions whose |r|-th partial derivatives
in charts are C"~I"l. We let C%* (M)? be the space of C"~! functions which
are C" in the flow direction X defined by (2.4). Fixing a “potential function”
V e C"Y(M,R), we introduce the ¢,-weighted transfer operator family

Lope: ¢ S (pog-a), a=0, (2.18)

3If p € C"1 (M) then ¢, = 1 pog-adace C% ' (M) for all ¢ > 0. In the Banach spaces
we construct the limit lim.—,0 ¢ exists.
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2 Horocycle averages on closed manifolds

acting on ¢ € C%" (M), where

bale) = exp ([ V oy wlo)aar).

We will construct Banach spaces W, B containing C’;{l (M) as a dense subspace
(for suitable choices p, s, t, g € R) on which the family (2.18) of operators extends
continuously to a strongly continuous semigroup (see Lemma 2.4.4 below). Note
that

V = Gadajao:- (2.19)
Our construction will show that for all ¢ € C% * (M)
acy£oz,<15a<;0|oz=0+ = X‘P + V‘P:

is well-defined in the sense that (X + V) pe Wy %if e C% ' (M). The opera-
tor X + V is the generator of the semigroup {ﬁa,%: Wyt? —» Wit | o= O}.
We denote by

o(X+V) |W;,t,q

the spectrum of X + V to emphasize the dependency of the domain and hence
the spectrum of X +V on W, "%, We show in Theorem 2.4.5 that the resolvent
of X +V

Rop=(2-V-X)"1g, z¢c(X+V) e, 9 € W, (2.20)

admits a Lasota—Yorke inequality for large %8z > 0. This allows us to identify
a vertical left-open strip in the complex plane in which o (X + V)|, stqa con-
p

tains only isolated eigenvalues of finite multiplicity of X +V (see Lemma 2.4.10).

2.3.2 The anisotropic Banach space

We work locally with the atlas A, introduced in Section 2.2. We let ¥,,: R? —
[0,1], n € Zx0, be a Paley—Littlewood decomposition as follows:

Let x: Rso — [0,1] be a C* map so that X, = 1 and supp x < [0,2]. Let
|| : RY — R-g be a smooth norm on R¥ {0}. Define ¥, by setting for all
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2.3 The transfer operator and the anisotropic Banach space
¢ € R\ {0}

Vo () =x(I¢) and W, (&) = x (|277¢]) — x (|2'7"¢

),n=1.  (221)

This defines a partition of unity on R%\ {0} since we have

n—eo

DT, (8) = lim x (|27¢]) = 1.
n=0

For all n > 1 it holds ¥,,(¢) = ¥{(27"*1¢) from which one finds
supp U, © {g eRY| 2" < Je| < 2”*1}. (2.22)
The inverse Fourier transform is given by

Flp(z) = (2m)~ f S o(E) de,

R4

where

§x =)

is the canonical scalar product on R%. The convolution of two complex valued

functions @1, o2 on RY (and extended to distributions) is given by

p1 % p2(x) = JRd p1(r — y)pa(y) dy.

We will make frequent use (e.g. in the proof of Lemma 2.3.1 below and Lemma

2.4.16 in Section 2.4.4) of a special case of Young’s inequality for convolutions,
lpr = w2l < lerly, le2ly,, forallpel[l,o].

Given a cone ensemble © = (®_, &, (), we set for all 0 € {—,+,0} ,n € Zxy,

Uppi=T,0, and TPy := (F1T,,)*q. (2.23)

We let \Tlo,lffl € C'® such that ‘T’0|supp\1/0 =1 and ‘le\supp\pl = 1. We set for
every n € N
\I’n = \I’l @) 21in.

(In principal it is enough to require the condition on the support of U, for

each n individually. Regarding the bounds in (2.25) below our choice here is
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2 Horocycle averages on closed manifolds

reasonable.) Then we set for every o € {—, +,0} and every n € Zx¢

~

\If‘,’n = U, d, and \Tlglflgp = (F_I\T’mn) * (D, (2.24)

where &, € C® and supp @, is a closed convex cone such that &)a‘supp o, =1
and ¢, ®,, =0= CTJUl(T)m = 0 for all 01,092 € {—, +,0}. We have the following

estimates for all o and all n € N:

[F=0a]p, = [F0 ], <o [FTM0,

[, = [F" o

|, <o (2.25)

Analogous estimates hold for IF'*1\IJU,0 and F~1, and for the ~-versions as well.

If ©° is another cone ensemble we define ¥° Wy P and g @Z%p analogously.

ons =0, o,n?
We set
Bi={zeR!| [z <1} and B°=R\B. (2.26)

In order to show a continuous embedding of certain spaces we will use very
often the following statement about convolution operators (an extension of [62,
Theorem 0.3.1] for the case r = 1 and K(z,y) = K(z — y) in his notation).
In Lemma 2.3.1 below all the occurring Ly-spaces are understood (as Bochner
spaces, cf. [10]) such that if a € L, (Rd, B) for some complex Banach space B

then the norm of a is given by

laly, sy = lalsly gz

The following lemma handles the range p € [1,0]. (For parameters p € (1,0)
one could apply instead the classical Marcinkiewicz theorem quoted e.g. as |
Theorem 3.1].)

)

Lemma 2.3.1. Let By and Bs be (complex) Banach spaces, let d € N and let
Q e C4t1 (Rd, L (81,82)) satisfy for its partial derivatives

lofa)| <C@? as el -,

L(B1,B2)

for some constants C' () > 0 and all multi-indices 5 € {0,...,d + 1}d such that
|8l < d+1, where |B| == p1+ ...+ Bq. Then for all p € [1,0] the map

QOP: L, <Rd,81) - L, (Rd,Bg) Dav> » (Fle) (x —y)a(y)dy, (2.27)
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2.3 The transfer operator and the anisotropic Banach space

defines a bounded linear operator, where for every b e By and every x € R¢

F1Q (x)b = <27r>—df 7EQ (€)bdE.

R4

It holds

HQOPHE(LP(Rd,Bl),Lp(Rd,B2)) S HF_IQHLI(Rd>£(BlvB2)) <%

Proof. Linearity of Q9P follows if Q©P is a bounded operator. Suppose first that
F'Q € Ly (RY, L (B1,B2)). We estimate

B2

J (F'Q) (- —y)aly)dy
Rd

HQOpaHLp(Rd,BQ) -
LP

[ 1E0) = ety as
R I

N

P

N

[ 1EQ) € =), a0,

P

= HF_IQHQ&,BQ) * allg, L,

Using Young’s inequality, we estimate and conclude

1QH£(B1,62)

HHF_lQHL(B1,BZ) *[lalls, L S HHF_

L1 HHaHB1 HLI,
= HFilQHLl(Rd,C(Bl,Bg)) HaHLp(Rd,Bl) .

We now show HFleHLl(

for

RLL(BrBy)) < P It remains to show an upper bound

I::f
Rd

Inside I we substitute, whenever y # 0

dy.

f FUEQ (€)ade
Rd

B2

£ (yy) 7 E

which yields
_d
I= f W98 1T ()]s, Ay,
R‘i

where

1= 1) = [ e teq (o te)ade,

Rd
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2 Horocycle averages on closed manifolds
For every y € R\ {0} we set

o =yy,y)y 7.

Clearly, it holds
(€0, €0y = 7.

We now repeat the following substitution (d + 1)-times

g = 5 + 50)
which yields
J= | Q¢ ads,
R4
where vt
QE)=2""%] ( Z 1) (-1"Q <<y,y>’§ €+ néo)) :
n=0

We let 0 < € < 1. We split the part in@ifyeroreveryO<n<d—|—1 as
1= x (€ +n80) ) + (1 =0 ((€+n&o) ).

for every corresponding summand in @, respectively. The part in I which cor-

responds to x ((f + n&o) {y, y>§> is estimated trivially, using boundedness of @
and integrability of (y, y>% on B. Using the identity

1 €
Q) —Q+&) = fo 0:Q ((5 + & — t&o) <y,y>fa) dt

1
——ayt [ @) (&) E) G,

we now write the remaining part in @) as

d+1

~ d 1 ne _d+1l-n
Q) =27"" J[O o > ( ;,: )<y,y> 2y (2.28)
) n=0

(D" (1= X)) 0 o w)? (DT Q) 0 oy ™2 ) (€(1) (—€0)® "V at,

where we put

E(t) =€+ (d+1)& — e and Y = (&, ).
(d+1)—times
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2.3 The transfer operator and the anisotropic Banach space

We observe that the part where derivatives of ((1 —x) oy, y>%) (&) contribute
implies

£€((2B)\B)(y,y) 2.

Using the decay condition on all the partial derivatives of @), recalling that

e—d
y,y) 2 logly,y)

is integrable on the unit ball, and exchanging the order of integration with
respect to t as the outermost (justified by absolute integrability), we find for the

corresponding part in I, for some constants Cp, Co, C3 > 0

qd+1 d+1

d+1 J J —d—14n
<C d T d
15411 9d+1 H ”Bl ; ( ) (2BN\B) gy s |£| £<y y> Yy

+cl7rd“|a|31J f eyt dy
<y,y) ¢

2
d
< Cor ™! (log d) ||l 4, JB (1 +3 |10g<y,y>|) (yy 2 dy

< Cslalg, -

In the case y € B® we proceed analogously, using the formular for CNQ (&) given in

(2.28), but without splitting the integral with respect to £&. We have now

~

QE©) = 2d1J[ a1 W F (Ddﬂ Q) (<yyy>7% 3 (t)) (—&)® D dt.

If ¢ € By, y>§ we bound the corresponding part in I trivially, using boundedness
of the (d + 1)-th partial derivatives of @ and integrability of (y, y> =2 on B
If £ € By, y>2 we use the decay condition of the (d + 1)-th partial derivatives
of @ instead and integrability of (y, y>_% on B°. O

For every open set K € R with compact closure we let Cy ~1 (K) be the space of
C7! functions which vanish at the boundary of K. Since Cf ' (K) < L, (K, C)

for all p € [1, 0], the following definition makes sense.

Definition 2.3.2 (Local norm and local Banach space). Let p € [1, 0] and let
s,t,q <r—1. Let © be a cone ensemble from Definition 2.2.1 and let K < R¢

be an open set with compact closure. For every p € Cgil (K) we set as the local
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2 Horocycle averages on closed manifolds

norm

2 2
Wl U e

1
2 2
o)
‘1’0,290‘ )

0
lelysa, = (Z o
n=0

Lyp(R?)

- 87t7q r—1 . - -
The completion W, gy of Cg~ (K) under H'ng,t@,qK is our local anisotropic Ba-
nach space.
This is an anisotropic version of a Triebel-Lizorkin space [63, p.45, Definition

2] with a certain inner lp-norm and an outer L,-norm. More precisely, we relate
the summation in n and o which appears in the norm of W; ’qu to the norm of

a Hilbert space of complex valued sequences defined on {—, +,0} x Z=o. We set
o(—)=s, c(+)=t, ¢(0):=q. (2.29)

Then we denote by ¢ the Hilbert space with norm given for all a € ¢5 by

2) ’ . (2.30)

Lemma 2.3.3 (Multiplication and composition operator). Let p € [1,00] and let
s' ¢ s, t,q <r—1. Let ¥ > max {0,s,t,q}—min {0, 5", ', ¢'} and let f € C} (K)
for some open set K € R% with compact closure and let F: K — F (K) be a C™

”aHZS = (Z gelom |a0,n
on

For s',t',¢' € R we define ¢’ and ¢§ analogously.

diffeomorphism. Let © and ©° be two cone ensembles. Then the linear operator
g it .
Mep: Wik = Wyglhag: o= (0o F)

is bounded if c(c) < ¢ (1) whenever | J,er supp ¥y N D F (z)" supp U2 # .
Moreover, if F' = id and © = ©° the linear operator Miq s is bounded if s < q <
t.

Proof. We exclude first the indices for given o, 7 € {—, +,0} such that
U supp U, N D F ()™ supp ¥° # &, (2.31)
zeK

and given n, { € Z=( such that

1

sup ‘D F_l(x)trg‘ 27t g onl gt sup ‘D F(x)trn‘ .
zeF(K),te(supp ¥» N B) zeK,ne(supp Y2 B)
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2.3 The transfer operator and the anisotropic Banach space

For all remaining 0,7 € {—, +,0} and n,?¢ € Z=o we bound the local norm for

every € > 0 and some constant C7 = Cy(e) > 0

N

IM gl = (2 4o \\IIS,ELMFM)
o Ly(RY)

< Crsup A | AT (2.32)

On the excluded indices we estimate as in the proof of Lemma 2.4.13 below, using

Lemma 2.3.1 and Cauchy—-Schwarz in ¢ and that n ~ ¢ and using ¢ (o) < ¢ (7).

We recall the map \T’:,e defined in (2.24). Then we bound for every n > 0 and

every o € {—, +,0}

H‘I’?,ELMF,WHLP(W) < Z H\I/ b My 520702 0P

T

Lp(R%)

Yo (gd e H‘I’Op M \I;OOP\I;OOI’@H (2.33)
T4 L (Rd

Note that if supp ¥, and D F(x)" supp ¥2 have empty intersection, since the
supports are open, we may assume that supp ¥, and D F(z)" supp \T/i have
empty intersection as well. Since we excluded the conditions regarding certain
o,7 and n, ¢ given in (2.31) and below of it then by construction of \TJ;K, for

some constant Co > 0 it holds, in the following assuming n, ¢ > 0,

> O 2max{n,€} or

inf supp ¥, — D F(z)™ supp \TI%Z

inf ‘D F(z)" supp ¥, ,, — supp ‘i’:e
zeF(K) ’

(2.34)

In the following we assume the first inequality in (2.34). Otherwise the next
estimates are done with the substitution F(y) — y. If n = 0 or £ = 0 the
following estimate is done analogously, using that either £ or 7 is bounded. We

set
£:=27"¢, =27y and U:=R?IxR?x K xR
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2 Horocycle averages on closed manifolds

We write for every z € R

(27r)2d o0
Hz) = Ionre (2) = 50 VO My 075 e ()
_ (27’[’)2d \I/OPM \ioOp\I,oOp
= onrhd Son? RS E e P v ()

_ J eizng(xfy)ei 2€ﬁ(F(y)fz)q;o71 (fN) \f,:’l M f () \I/:,(e?p‘/? (2) dzdydgd 7.
U
Note that by assumption we have
7> max {0, s,t,q} —min {0, s, ', ¢’} = 0. (2.35)

Integrating 7-times by parts (see Lemma B.3-Lemma B.5) in y, using the lower

bound in (2.33), we arrive at

I(IL‘) _ eiQ"g(xfy)eiQ‘zﬁ(F(y)fz)\I, (g) s (~) I (y) \IJOOp (z)dzd dng
- U o,1 7,1 n 2max{n,é}7 0 ¥ Yy n,

where all derivatives of f(y) with respect to 7 and E are bounded uniformly for

all (5, 7, y) € supp ¥,,1 X supp \T/il x K. We set for every y € R¢ and for every

n=0

1, <1
vl Uy = uo 2™,

u(y) =

)
ly| 74, otherwise

If |z — y| 2" > 1 we integrate (d + 1)-times by parts in € and if |z — F(y)| 2/ > 1

we integrate (d 4+ 1)-times by parts in 7. Hence we arrive at
Ia) = 2700 | (8 (o= ) e 2 = P) W50 () d = dy aEa

where f,w (E, 7, y) is uniformly bounded for all (E, 7, y) € supp ¥, 1 X supp \flil x

K. Hence we estimate for some constant C3 > 0

[I(z)] < C32~™@xtnb7 s (ugo F) =

0O
\I:T,E%‘ (). (2.36)

We estimate for every o,7 € {—, +,0} and every n,¢ > 1, using the equality in

(2.35) and assuming € > 0 small enough,

2(c(o)+e)nfc’(T)meax{n,E}F < 2(max{s,t,q}+e)n7min{s’,t’,q'}éfmax{n,é}f' < g€l (237)

Hence we bound, using the estimates in (2.32), (2.33), (2.36), two times Young’s

70



2.3 The transfer operator and the anisotropic Banach space

inequality and the bound in (2.37), for some constants Cy,...,Cg > 0

M selyesa < Cusup Y 2061 In=< Ol O g 08 Mo 52 7w 07

on L
) ,7_7é P

o (%)—zd od(n+0) sup 2 olc(o)+e)n—c/(T)lod (T)t [y

o,n
[ 4

<0y Sup22(c(a’)+e)nfc'(T)meax{n,é}?2(n+€)d2c’(7)€ Hun " (W o F) " \IJOV?PSD

T

L,

Ly

on
Tl

<G )2 O w2yl < Cosup2” O [wr 0P
’ P 70 ’

Ty

L,

To see the statement if F' = id we estimate the corresponding cases ¢’ (1) < ¢ (o)

ifo#7andn ~f and n,?¢ # 0 in a different way. We use
— i12n8(z—y) i 2%(y—2) ¢ SN Jo . (5 Op Zar
Ta) = || S0 (€)W (8) 20 G0 £ () W0Fe (2) dzdyadan

We express Wy 1 (E), using the identity

1

Vo1 (g) — Vo (1) = L (D¥,1) (g+ (1—nh) (77— g)) dh (g— 77) :

We repeat this k-times in the right-hand side of this identity, replacing E and

yielding in total k& + 1 terms. The first k£ terms are linear combinations of
o (= (- 1)E).

where 1 < j < k+ 1. If j = 0 then this is just W, 1 (7). The corresponding part

in I(x) is hence
Ti(@) = W% (f- wORWe) = W05 (f Uon (1 -2 ‘P?f"e) w) -
o'#T

Note that \T’mn and ¥, , satisfy the vanishing conditions in Lemma 2.3.1 as seen

as an operator 5 — ¢5. Then we bound with some constant C5 = C5(f)

1
[e) 2
n], <cs (2 \40”‘1’?290\2> :
Ly n=0 ’

Ly

using two times Lemma 2.3.1 and that ¢(—) < ¢(0) < ¢(+) and that \1123\1/9}’” =
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2 Horocycle averages on closed manifolds

0. The terms where j > 0 are dealt with, using first the substitution

and then r-times integration by parts analogous as before. The last k + 1 term

B [ (o) (6 2 1t (3 ar(-0)"

We split now according to the size ‘ﬁ — ﬂ We let € > 0. We note that

9—ne((d+1)— (‘77 ﬂzne) T ()

satisfies the vanishing conditions in Lemma 2.3.1 uniformly in 5 as seen as an
operator /5 +— (5 in 7. We bound the L, norm of the corresponding part
analogous as in the case I;. This is bounded appropriately with the choice
of k below. On the range (1 — (‘n 5‘2”6)) > 0 we integrate T-times by
parts in y and then (d + 1)-times in € and 7 in the corresponding part of I (z).
The terms which depend on x are treated as in the range x (‘n — a 27“) > 0.
In the remaining part we gained a factor ~ 2= +ne(d+1) We choose ¢ small

compatible with the inequality given in (2.35) and then k large enough such that

2(0(0)—0(7’))71 < 2—ne((2d+2)—k) )

O

Lemma 2.3.4 (Continuity and compactness). Let p € [1,00], let s < s, ¢’ < g,
t' <t, and s < q <t andlet ©, ©° be two cone ensembles, recalling Definition

2.2.1. Suppose the compact inclusions
supp ®g € supp Pg usupp P,  and  supp P € supp P (2.38)

Then the inclusion
s,t,q t’,q
Wpﬁ K € W

is continuous for every open subset K < R% with compact closure. Moreover, if

s' < s, t' <t and ¢ < q then the inclusion

s5,t,q st
Wn@,K = Wp,G,K
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2.3 The transfer operator and the anisotropic Banach space

1§ compact.

Proof. We prove first the claim on the continuous inclusion. We set for all

7'1,6220

Fp =20 (g /(209 oty pw )Y,
P = 2000 (05,0,

Fop = 200=0n (\Ifgm / (2“—60”\14,” + \IJM)) :

We define a map @ on the Hilbert space ¢ (with norm as given in (2.30)) by
setting for all o € {—, +,0}, n € Zx¢ and all a € 4§

(Qa)@n = Lonlon-

In Lemma 2.3.1 we take By = By = (5. It follows from the definition of ¥, ,,
in (2.23), the compact inclusion assumptions in (2.38) and the assumptions on
s,t,q,8,t', ¢ that @ satisfies the decay conditions on () in Lemma 2.3.1. It
follows that the corresponding operator Q°P in (2.27) is bounded. Let ¢ €
W;”S?K. We set for all n € N5

b = 27 F (2070w 4 207 W) g,
bin = 21‘,an1\1]+7” *
bou 1= 2F (20700 4+ W ) x .
Then (byyn | 0 € {—,+,0} ,neNzg) =be L, (Rd,ﬁg) by assumption on ¢ and

in particular it holds, for some constant C' > 1, HbHLp(Rd ) <C HgoHWs,é,qK. We
? p,9,

estimate, using Lemma 2.3.1, and conclude

s, S Ol aes) -

Il = 1@l
We show the claim on the compact inclusion. We let U c W;”g?K be a bounded
set in W;’S?K with bound R > 0. We set ¢ with respect to s',t', ¢’ analogous to
c. It is enough to find for each € > 0 an open cover of U in W;’g:’g where each
open set in the cover has size ~ €. (This yields total boundedness of U in Wpsjét:’g
and hence compactness.) Now there is § > 0 such that for all o € {—, +,0}

d(o)+d—c(o) <0. (2.39)
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2 Horocycle averages on closed manifolds

For all ¢ € U and all N € N we bound

2 J
2 4—6n 2(6’(0)-&-5)71\]:12%()0 < C sup 2(0 (o) +d)n H\I}S%@H
onz=N L onzN ' L
P

< 02 (@)+I—)N R (2.40)

for some o € {—,+,0}. Recalling the bound in (2.39), we make the bound in
(2.40) smaller than e by taking N = N(e, R) large enough. Suppose now that
the embedding is not compact. Then there are infinitely many ¢,, € U, m € N,

such that for all mi > ms it holds

lom, = emoll o >e (2.41)

P,0w,kw (Vw)

Recalling the bound in (2.40), it holds for some n < N and some o € {—, +,0}

(o) +6
H‘Pm1 - (szHWS’,t’,q' < 02(0( yrom H\ll?}% ((Pml - (PTTLQ)HLP : (2'42)

,Ow,kw (Vw)

Since Cj ! (K) is dense in W;’/g:?;w(vw) we may assume ¢, € Cp ' (K). We
set S := Uy n<nsupp ¥y p,. Since all ¢, are uniformly bounded in W;}’é’zﬁw (Vo)

norm and supp ., is uniformly bounded in m as well, the Fourier transform
of ¢y, cannot diverge on a dense subset of S as m — oo (this would violate
the Paley-Wiener Theorem [39, Theorem 1.7.7]). By passing to a subsequence
in m we may split S = S7 u S2 such that the family {I&mel | me N} is uni-
formly bounded. Then, using again that ,, has compact support with maximal
diameter independent of m, the family {ngm‘ s, |meN } is also uniformly equi-
continuous. Hence by the Arzela—Ascoli Theorem there is a subsequence in m
such that ¢, s, is a Cauchy sequence in CP. Repeating the argument inducti-
vely for the part Fo,,|g,, then using a diagonal argument, we find a subsequence
in m such that Fop, g is a Cauchy sequence in C°. Hence the right-hand side in
(2.42) can be made arbitrary small which contradicts the lower bound in (2.41)

and we conclude. O

Lemma 2.3.5 (Local derivative). Let p € [1,0], s,t,q < r— 1 and let ¢ €
5,t,q
pvewyﬂu(vw)

o€ {—,+,0} such that

. It holds for some constant C > 0, for every 1 < j < d, for every

& #0 if (&1,...,8q) = esupp ¥y,
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2.3 The transfer operator and the anisotropic Banach space

and for every ¥ € R

N=
N|=

og}
<C (Z 40— Dn \\Ilgga$j<p\2) . (243)
n=0
Ly

& . 2
(Z 47 [T r | )
n=0 L,

Proof. Using the triangle inequality, it is enough to consider only the terms with
n > 0. For every £ € R {0} and b € C we put

(D), =1 W), neN.
We note
\I’S’% (axﬁo) = (Fil\yayn) * &’xjgo = (6%1&?’1\1107”) ® (= on (DOPSO)n

We let £5 be the space of complex valued sequences space over N. As norm we

set [lall,, = A/Dmeq 4T la,|®. For every £ € R4 {0}, every a € { and every
n € N we put
2"~
(Q(&)a)n =1 ?\Ijo,n(f)am
J

where ‘T’o,n is defined in (2.24). Note that (QOPDOPcp)n = \Ilg),%go. Moreover
since {; # 0 by assumption, the map @ satisfies the decay condition on its
derivatives as required in Lemma 2.3.1. Hence, using Lemma 2.3.1 with B; =
By = {5, the map QOP: L, (Rd,ﬁg) — L, (Rd,ﬁg) is a bounded linear operator.

We conclude, using the estimate for some constant C' > 0

H HQOPDOP‘PHeQ

<C H HDOp‘pHEQ

LP LP '

O]

We recall the open cover V,, € M and the chart maps x,, € A, w € €2, introduced
in Section 2.2. Also we recall the vector space Cx* (M) from the beginning of
Section 2.3.2.

Definition 2.3.6 (Anisotropic Banach space). Let ¥y,: V,, — [0,1] be a C”
partition of unity adapted to the chart maps k., and let ©, be hyperbolic cone
ensembles, recalling Definition 2.2.2, where w € Q. Let p € [1,00], let s,q,t <
r—1 and let ag > 0. We put for every p € C ' (M) and every p € [1, 0]

1
o 2
[ellypsea = (ZL (9o - (ﬁwa(p)on‘:l)uivs,t,q doz) . (2.44)

,Ow,kw (VL
e P,Ow,kw(Vw)
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2 Horocycle averages on closed manifolds

We denote by W™ the completion of C (M) under this norm.

Remark 2.3.7. Note that Wps’t’q depends on the dynamics, ag, the atlas A and
the cone ensembles ©,, w € Q. We understand each 9, o k% in (2.44) as
extended to R by zero. By Lemma 2.5.3 a C" change of the atlas and hence
a change of the cone ensemble yields an equivalent norm if s < q <t <r—1.
The integration with respect to o is a way to "project out” the small times where
the flow is not sufficiently hyperbolic. This is similar to [27, Definition 8.1] and
also Baladi—Liverani [9, p.705, (3.2)] with the supremum replaced by an integral
in the latter case. In turn, for p = 2 the space W;’t’q 1s a Hilbert space because

the parallelogram law

HSOl + 902H124/5»t»q + H‘Pl - @2|‘€V;,tvq =2 H‘Plﬂivg’tvq +2 H‘PZHivg,tvq

holds [1/, Proposition 15.2].

The compact inclusion of the local Banach space in Lemma 2.3.4 carries over to

. . t
the anisotropic Banach space W%

Lemma 2.3.8 (Compactness). Letp € [1,0], let s < g < t such that max {0, t}—
min {0, s} < r—1andlets’ < s,t’ <t andq < q such that max {0, min {s', ¢, ¢'}}—
min {0, s',t',¢'} <r — 1. Then there exist cone ensembles O, w € , such that

the inclusion

M/S,tﬂ _ |4/S/7tlzq/
p  ="p
18 compact.

Proof. We let s' < s,t' < t,¢' < q. Let U € W;y"? be a bounded set in the
norm of W;’t’q. In order to show the compact inclusion we proceed analogous
to the proof in Lemma 2.3.4. To this end we let ¢,,, € U, m € N, be a sequence,
satisfying the analog bound in (2.41). Suppose now that there has to be some
fixed w € ) and some fixed o« = 0 such that there exists C; > 0 such that for all

m >0
D+ (Lasasom o w5")) et <Oy

,Ow,kw (VL
e P,Ow,kw(Vw)

and that there exists some € > 0 such that for all m; > mg (up to some subse-

quence)

Hﬂw ' (‘Ca7¢a (‘Pm1 - Spmz)) © I{JIHWS’,t’,q’ > €. (2'45)

0w kw(Vw)

Since (Yo« (Lapnpm) 0 ky') € W;,g:q;w(vw) we find a Cauchy subsequence,
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2.3 The transfer operator and the anisotropic Banach space

using the statement on the compact inclusion in Lemma 2.3.4. Note that by the
Mean Value Theorem there exist non-fixed o = o (m) and o = o (my, m2) which
satisfy these inequalities. In particular, we wish to find a Cauchy subsequence
for the left-hand side in the inequality (2.45) for the choice a = a(my,m2).
Suppose 0 < o/ < ag. We have

—1
H/ﬁw ' (£2a07¢200 (Pm) © Hw HW‘S t,q <

P,Ow,kw(Vw)

—1
Z H'ﬂw . ('CQag—a’,qanO_al (ﬁw’ : »Co/,qﬁa/(pm)) © Ky st,mq
w'eN P,Ow,kw(Vw)

By Lemma 2.2.3 there exists cone ensembles (0, 0), w € Q, satisfying the
condition (2.38) in Lemma 2.3.4 such that the local diffeomorphism of g_, with
a = ag is cone hyperbolic. Then, using Lemma 2.3.3 and s < ¢ < ¢, max {0, ¢} —
min {0, s} < r—1 and taking o/ = a(m), we bound this sequence in m uniformly
from above. Let s” = min{s’,t,¢'}. Then, using Lemma 2.3.3, recalling that
it holds max {0, min {s’,¢',¢'}} — min {0, s',¢',¢'} < r — 1, we find (abusing the

notation L, ¢, with negative a)

H79w . (£Q/7¢a, ((Pml - (PmQ)) Ky HW " gl Sl < (246)

p, Ow Kw(Vw)

Z H (ﬂw . (£a172a0’¢a,_2a0 (190.,/ : ‘620407(2520@ (mel - meQ))) o K/JI) HWS//’SH’SH
w’eN

pyeu/UKW(VUJ)
-1
< Oy Z Hﬁw ' ([’2&0,@% (mel - mez)) © Ky HWs',z',q'

wef P,0w,kw(Vw)

for some constant Cy > 0 independent of the choice of o’ and of mq, ms. Now we
take o/ = a(mq,m2) and let the right-hand side vanish in (2.46) as (m1, mg) —
00. Then from the left-hand side for all o, n

— 0.
Ly

H‘I’% (ﬁ“’ ' (ca(mm%%(ml,m) (prms = 9”"12)) © Kuy 1)

b 7q
P,0w;kw

2.3.4), the lower bound in (2.45) comes from a finite number of terms

By uniform boundedness in W?’ (V) (analogous to the proof of Lemma

H\IJOP( ( Am1,m2) b (my my) (pm: = <'OMQ)) ° ’i‘zl) Ly

with n < C3 = C5(€). Hence we found a Cauchy subsequence for the left-hand
side in the inequality (2.45) for the choice o = o (my, ma2). O
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2 Horocycle averages on closed manifolds

2.4 Properties of the transfer operator, the generator

and its resolvent

2.4.1 Bounds on the transfer operator

We introduce a local transfer operator in (2.47) below and state a local norm
estimate for this operator in Lemma 2.4.1. We then give a norm estimate for
the transfer operator family (2.18) in Lemma 2.4.2, making use of Lemma 2.4.1.
Let K ¢ R? be an open set. Let f: RY - C be a C’Sfl (K)-map and let
F: K - F(K) be a (6°, 0)-cone hyperbolic C"-diffeomorphism on K (recall
Definition 2.2.2). The f-weighted local transfer operator is defined by

Lrs: Cy YN (F(K)) > Cy Y (K): o f-poF. (2.47)

Recalling d° &)i, 58 from (2.24), we put for every subset I € K

‘ (D F)tr n (D F)tr n
IF|_ ;= 1ng ‘y|n|‘7 [ENy = Sib ‘y|77|‘>
~ ye
0#nesupp ©° 0+£n€Esupp &"jr
D F tr
Pl = suwp  [DoD70]
’ yel N |77|
0#nesupp P4

Lemma 2.4.1 (Upper bound for local transfer operator). Let {W} denote the
connected components of supp f. Let p € [1,00]. Let

ss<s<O0<qg<t<r—145, ¢ <q t<t.

Then for every ¢ € W;’é’?F(K) it holds

ILefelysra < Colely,vre  +Culelvra  +Colelysta
P,©0,K ) D, )

)
p,©°, F(K e°,F(K p,©°,F(K)

where, for some constants C > 0 and k > 0, it holds
_ _ k _1
Co < C Xy max {1, IFIL3,  IFIS5H }ID FlEesomy 1 ler1w) | 1det D FI 72

C1 < C'supyy, Hf |detDF|7%

)

Lo (W)

max {1, HFHgW} and

s
- W

Lemma 2.4.1 is proven in Section 2.4.4. For every s,t,a € R and every x € M

Lo(W)

Oy < Csupyy Hf |det D F| ™7

Ft F
Ldmmwﬂ|mww|
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2.4 Properties of the transfer operator, the generator and its resolvent

we set

AE99) (1) .= max {H Dga

i H } (2.48)

+ 19— ()

For s < 0 < t this quantity decreases exponentially fast to 0 as a — oo, which

is a consequence of the Anosov property given in (2.3) of the flow g,.

Lemma 2.4.2 (Bound on the transfer operator). Let p € [1,00]. Let
s <s<0<qg<t<r—1+5 and t' <t.

There exist ag > 0, cone ensembles O, w € Q, and constants A > 0 and C > 0,
such that for all o € Wy™? with ||<,0HW5 tq =1 and all o = 0 it holds

A
Lage@ligen < Cer® el g +C (a+1)]

baldet Dg_o| P

Proof. We recall the map F_,, .. and the set V,, s defined in Lemma 2.2.3 for
all @ > 0 and all w',w € . By Lemma 2.2.3 there exist cone ensembles ©°,, ©,,
such that the map F_, . is (@w,, GW)—cone hyperbolic. We recall the partition
of unity v, (see Definition 2.3.6). We let

Va,ww’ = Va,ww’ = Vw

such that F_, s is also (@Z,, @w)—cone hyperbolic on &, (Vaww/). This is pos-
sible due to the compact inclusion of cones as required in the cone-hyperbolicity
definition. We let

ﬁa,ww’: Va,ww’ - [07 1]
be a Cgil map such that

Q9o<,ww’\Va’ww/ = ﬁw|Va’ww/'

For all z € K, (V) we have

Uy 0 Rgl(z) Uy © ’iojll © F—a,ww’(z) = 1904,ww’ © ﬁ;l(z) Uy 0 H;ll © F—a,ww’(z)‘

Note that Hﬁa’ww/ o1 is controlled by the rate of expansion of F_, .. Let

S,t,q - s,t,q - s,t,q
¢ € Wp™" and put W, = Wp,Gw,nw(Vw) and W, = Wp’@WJ;'a,ww/‘ For all
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2 Horocycle averages on closed manifolds

a = ap, for some C' > 1, we estimate for every p € [1, 0]

QQ
—1112
‘|£a,¢a@”12/vg,t,q < CmaXJ; H ('ﬂw : (d’a’ : La,¢a90 © gfa’)) © ’QwIHWw do

weN
2
do

ap
= Come [ {000 0451+ N (B Lo 9) 2 0 P
W

e
© 0 w'eQ

2
Qg
= CIZI?&(L Z (ﬁaww/ . ¢a) o n;l . (ﬁw/ Lot g, gp) o n;,l o F_q wu! do
w'eN W,
QY
< 02 max f ’ H(ﬂa,ww’ . ¢o¢) o] /ﬁ};l . (ﬁw’ . ['04/7(?5&/ (p) o /ﬁ};,l ¢} F—a,ww’ 12/‘/ dO[I
w,w'eR Jo w
aQ 2
= e [ Lo siyonst (O Lo o)), dar
(2.49)

We used in the last step the definition of the weighted local transfer operator (see

(2.47)) in which we take F := F_, . and as the Cj *-weight f := (Vauw’ - Ga)o

-1

Ky

We now show the claimed upper bound for £, 4,. We recall that

supp f = kg, (‘7&7ww/) = |_|/€w w),

where the disjoint union is over all the finitely many connected components W
of 17&7ww/. The inclusion W;;(?;ZM V) € W, is continuous by Lemma 2.3.4.
Together with the bound given by Lemma 2.4.1 this yields the upper bound

Cagutligrs < Crlplye s + Calolypen.

where

CN’I < 02 max Cp (F—a,ww’a f) + C1 (F—a,wa f) ) C~12 < 02 max Co (F—a,ww’7 f) )
w,w'eN) w,w’eN

and Cp, C1, Cy are the constants from Lemma 2.4.1. We claim for some constant

Cy > 0 the following bound

Go|det D g_o| 7

H% det D gl 7 (z) (2.50)

< Oy inf
) zeW

Lo (W
o H (¢_a |detha|’%) 0 g—a‘

Le(W)

Due to the construction of XN/QMWI, all points in a connected component W stay

close under iterates by g, for all 0 < o < . Then in the case of hyperbolic maps
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2.4 Properties of the transfer operator, the generator and its resolvent

the bound in (2.50) follows, using [13, Proposition 20.2.6.]. However for Anosov
flows the distance between two points x1,z2 € W may never be sufficiently
contracted under iterates by g., e.g. if x1,x2 belong to a same orbit of g, .
We split (along the flow direction X in charts) each W into parts W, 1 < j <
|a| + 1, in which now two points are no more than ~ (|o] +1) ' apart. We
set W = {W;} for all 1 < j < |a] + 1. Then it holds the bound in (2.50) with
W replaced by W;. We modify 9, ../, taking a sufficiently small neighborhood
Uj containing W, such that 9, ..y, is Cp. Then passing to this new weights
Vawwr|u; and summing over j we obtain an additional factor ~ (a+ 1) in the
right-hand side in (2.49). We recall A(:5%) (z) from (2.48) and IEN g IF
introduced below (2.47) in which we take I = W; and F = F_ . In addition

note F:iww, = Fyuw- Then we write
tr -1
yerw(W;) (DF_aMw/(y) Fa,w’w) n
HF—%ww’ H +,50(Wj) = | inf Oyéne(Dy F /)tr supp e ,
) J —,Ww +,w |77|

We recall the construction in (2.16) of the C*-cones in the proof of Lemma 2.2.3.

We find a compactly embedded cone

tr o
Ct € (Dy F—a,ww’) supp @3 v,

V+,W

which is transversal to another cone C7_ ,. Hence the unstable distribution E_
(in charts) stays away from (Dy F,a,ww/)tr supp (f(jr . Dby some positive angle.

Replacing the inf with the sup, it holds for some constant C5 > 0

-1
) . (2.51)

We estimate

(D ga)\t;j*

+,9 (@)

Pl <5 (s

By analogous reasoning we conclude similar for HF_Q,QM/ o (W)
—Hhw J
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2 Horocycle averages on closed manifolds

for some constants Cg, ..., Cy > 0, using the bounds in (2.51) and (2.50),

5’2 < Cq _max__ Hgf)a |det Dg,a|_% ‘)\(t,s,a)
W’WJEW L"f-‘(Wj) LfI,(Wj)
1
<aC7; max _|¢q|detDg_o| 7 ‘)\(us,Oc)
WW;eW Lo (W) Lo (W)
1 -1
< alCg max (Qbf det Dg _5) og_ ‘)\(t,s,a)
W,Wjeﬁ a| a| o Lo (W) Lo (W)
1
<aCy max _|pg |det Dg o 7 A=) ‘
W W;eW Lo (W;)

Inspecting the constant C~'1, all terms depending on F' and f are bounded by
the maximal expansion of F_, ../ and ¢, respectively, which grow at most
exponentially in «e. Hence, thereis A > 0 and C7g > 1 such that Cy < Cyrete. If
a < ag we split §° = {77 +§7°_ . Hence it holds [LapaPllwsta < lplyysna+
Hﬁao,%ogoHW;t’q. The latter term is estimated as in the case o = «ag. Since
a < ap, we combine here the upper bound of H'Cm%SOHW;M with the second

term of our desired estimate, increasing the constant C;. L]

Remark 2.4.3. A weaker upper bound for the transfer operator, e.q.
‘|£a7¢a |‘W;’t’q—>W;’t’q < Cl exp (CQOC)

for all & = 0 and for some constants C1,Cy = 1 independent of a, can be
obtained for a wider choice of s,t,q, e.g. for some s > 0 (and this carries over to
Lemma 2.4.4 below as well). However, we are interested in the parameter range
as assumed in Lemma 2.4.2 which allows us to show the Lasota—Yorke inequality
for the resolvent given in Theorem 2.4.5 below. See also Lemma 2.5.17 in the

next section below for such a bound in the case of a special weight.

We recall that the family {L’,m% o A S S 0} forms a strongly con-
tinuous semigroup if and only if lim,_,o+ | La,¢.® — @[ yst0 = 0 forall p € Wb
P

(e.g. see [16, Proposition 1.1.3]).

Lemma 2.4.4 (Strongly continuous semigroup). Let p € [1,00] and let s <0 <
q<t<r—1+4s. Then the transfer operator family

{Lao,: sz’t’q — W;tvq | @ = 0}

forms a strongly continuous semigroup.
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2.4 Properties of the transfer operator, the generator and its resolvent

Proof. Let ¢ € Wps’t’q. For fixed s < 0 < ¢ < t such that t — s < r — 1 there is
d >0suchthat t—s <r—1-—45. Weset s’ := s—¢ and let t’ < t. Then s,t,q,s
and t’ satisfy the assumptions of Lemma 2.4.2. Using Lemma 2.4.2, we bound

the transfer operator for all small a = 0

Labaelztn < Crlplyoa + Calelypea < €1+ Co) [@lygea,  (2:52)

for some constants C7,Cy > 0 independent of a. By density, for every € > 0
there is $ € C% * (M) such that

[ = Blysra < e (2.53)

Using first the triangle inequality and then the bounds (2.52)-(2.53), we estimate

oo = Plysia < Wb (0 = Blsea + 16 = Blgsca + [ Lapad - Flysea
< Cze + Hﬁaﬂﬁa& - QBHWvat"I ) (2'54)

for some constant C's > 0 independent of € and «. Since ¢ € C’;{l (M) we have

1

'Coz,qﬁa@ - ‘5 = aJO (aa"ca’,qba/ <‘0)\a’=ho¢ dh.

Since (8a/£a/7¢alcp)|a,:m e Or=1) (M) the norm H(@O/Ea/’%,(p) is

finite for all 0 < h < 1. Hence for some constant Cy (¢) = Cy > 0 we bound

/I
a 7ho¢Hnrs,t,q
| P

< Cya. (255)

S,t,q
Wy

1La6a% = Blyzea <o sup | (@urLars,,¢)

o<h<l |/ =ha

We conclude by a combination of the estimates (2.54)-(2.55). O

2.4.2 Lasota—Yorke inequality for the resolvent

We use Lemma 2.4.2 to prove Theorem 2.4.5 below. We use in addition that
the resolvent improves regularity in the flow direction. We set, recalling At:5:)

in (2.48),

1 L
Aumin = Amin(5.£,p) i= lim —log 6 |det D g_q| ™7 A=) (2.56)

Lo (M)

The following theorem will allow us to show that Amin(s,t) plays the role of the
essential spectral bound of X + V:
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2 Horocycle averages on closed manifolds

Theorem 2.4.5 (Lasota—Yorke inequality for the resolvent). Let p € [1, ] and
let
s<s<0<q<t<r—1+4+¢, ¢g—1<q¢d <q, t<t.

There exist ag > 0, Ay > Amin, cone ensembles O, w € Q, and a constant
C > 0 such that for every ¢ € Wps’t’q with ||<p\|W;,t,q = 1, for every z € C with
Rz > Ay and for every n € N it holds

Cn (Rz — Apin) + + C
(%Z — Ao) (§RZ — )\mm)n '

|z| + 1+ (Rz — Ap)

(Rz — Ag)" [l +

[RE# ]y <

Proof. Since A55%) grows at most exponentially as o — 00, the constant Amin
is finite by a result on superadditive functions [37, Theorem 7.6.1]. We let
Ap > Amin- By Lemma 2.4.4 the transfer operator family (2.18) forms a strongly
continuous semigroup with a well-defined generator X + V. We estimate powers
of the resolvent R, defined in (2.20). To this end we work with the integral
representation of powers of the resolvent defined in (2.57) below (see [16, Corol-
lary I1.1.11]). We recall the constant A given in Lemma 2.4.2 and let Ag > A.
We set for every z € C such that Rz > Ag and every ne N

0 anflefza
Ry = fo W[’a@a@da’ pE sz’t’q. (2.57)

We have directly from (2.57) for all @ > 0
Rgﬁayd)a(p = ﬁay(baRggo' (258)

Using Lemma 2.4.2, we estimate for some constant C7 > 0

] an—le—%za

[RE Melhggen < [ Sy P Replygeada

1 1 (n + (%Z — )\min))
< —— 7{ 14t
TRz — Ap)" IReliya + (Rz = Amin)" ™!

HRZ‘PHWij’WI .

(2.59)

Using Lemma 2.4.2, we get boundedness for some constant Cy > 0

Co
IRzl ysita < Tor — A, [P llyysa - (2.60)

Therefore the second term in the right-hand side in (2.59) is bounded as claimed.
We bound now the first term in the right-hand side in (2.59). Inverting the
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2.4 Properties of the transfer operator, the generator and its resolvent
flowbox condition (2.10), we find D £,,'d,, = X}y, . Hence it holds

Ozg (w - ) © “;1 () =D Wy -¢)o “;1 (z) Dy ’f;laxd
= (D (0w -9) X)) 0 r," () = (X)) - + 00 - (X)) 0kt (2) . (261)

We set Wi = W;l’@tl’qn (Vo) W € 2. We estimate the local norms inside the norm

IRz, s .4, using the equality in (2.61), then Lemma 2.3.5 and the equality in
p
(2.58), for some constant C3 > 0:

[ (0 Lav,g,, Rep) © 65y < Cs [ (G + Lavg0) © 657 g9
(2.62)

+C5 H((Xﬂw) -Eag%,chp) o m;leg_l + Cs H(ﬁw " XR.Lu g, ©) o

“ojluwg‘l '

We note that (X49,) o k' € Cf ' (ky (Vi) and t — s < r — 1. Using Lemma
2.3.3, we bound for some constant Cy(X) = Cy > 0

(X0 Lav Re) 05 s < Crsup | Do Lav Re) o 5y
we

(2.63)

Using the equality
XR.p=2R.0—VR,p— ¢,
together with the equality in (2.58), we find

| (o - XR:Lar,0) © K5 yam1 < N2l (Yoo - Lo, Rep) © 55 [ jramr (2.64)

TN - VL2 g, Re0) 0 5 yyam + (- Lavio,0) © i fygmr -

Recalling that V € C" ' (M), we bound the term which contains the factor

(9, - V) o k' in the right-hand side in (2.64) analogous as in the estimate

in (2.63). The final estimate follows by a combination of the bounds (2.59)-

(2.60) and (2.62)-(2.64), together with the trivial continuous inclusion Wi <
q—1 ]
o

A direct consequence of Theorem 2.4.5 is the bound on the essential spectral

radius of the resolvent:

Corollary 2.4.6 (Essential spectral radius). Under the assumptions of Theorem
2.4.5 (including the choices for p,s,t,q € R), letting Ao and Amin = Amin (S, t,D)

85



2 Horocycle averages on closed manifolds

be the constants from that theorem, the essential spectral radius of the resolvent
R.: Wt® —» Wit is bounded by |Rz — Ain| * for all z € C with Rz > Ay.

Proof. Let s < s,t' <t and ¢ < q. The inclusion Wy™"? W;I’tl’q, is compact
by Lemma 2.3.8. Then, together with a result of Hennion [36, Corollaire 1] and
Theorem 2.4.5 we find the claimed bound on the essential spectral radius of the

resolvent. O
We recall Apin defined in (2.56) and ¢4 in (2.18).

Lemma 2.4.7. Let d = 3 and let |det D go| = 1. Set t := min {—t,s}. Then it
holds

3
o |det (D g—a)™ |

1
Amin = lim — log
a—00 (¥

Lo(M)

Proof. Since the flow is volume preserving, we have

~1
‘det (Dg_o)™ x| = ‘det (Dg_& ga)t]r B det (Dg_a ga)t]r E* |-

Since d_ =1 = d—2 we can replace H(D g,a)‘t%f H in A(®62) by ‘det (Dg_ o)™ B

D tr
( ga)|Ej‘_7gia(z)

is bounded from above and below and we conclude. O

-1
and by ‘det (Dg_o)™ B ‘ . Moreover ‘det (Dy_., ga)trwak

Remark 2.4.8. Note that Lemma 2.4.7 holds in the particular case of a contact

Anosov flow if d = 3. Clearly, if |po| < ‘det (Dg—a)"” |E*
Amin < 0 < htOP'

-1
for all a > 0 then

2.4.3 Spectral properties of the generator

All spectral properties of the generator X + V are with respect to its domain
D(X+V) = D(X +V)‘Ws,t,q for admissible choices p, s, t, ¢ € R which is discussed
P

in the following lemma.

Lemma 2.4.9 (Domain of the generator). Let p, s,q,t € R satisfy the assumpti-
ons of Lemma 2.4.4. Then the family {'Ca,%: Wt? > Wt | a = 0} admits
a generator

X+V:D(X+V)—-Wphe,

which is a closed operator on its domain D(X + V). Moreover, the inclusion

D(X +V)c Wwphi
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2.4 Properties of the transfer operator, the generator and its resolvent

1s dense and the inclusion
Cy ' (M) S D(X +V)

is dense for the graph norm H-HW;,t,q + (X +V) ()HW;tq

Proof. Using Lemma 2.4.4, the statement about X +V being a densely (in Wlf’t’q)
defined closed operator is [16, Theorem IL.1.4]. Suppose now Lq 4, (C% ' (M)) S
C% ' (M). Then the inclusion statement C% ' (M) S D(X + V) is [16, Pro-
position 11.1.7], using [16, Definition I1.1.6]. We let ¢ € C% ' (M). It holds
X, Lap,p € CT71 (M) since the flow is C". Recalling the weight ¢, of the
transfer operator in (2.18), with generating function f € C"~! (M), we calculate

and conclude:

XLogop = (Xda)pog—atda(Xp)og_a = (fog-a— f)Lagptda(Xp)og_q.
O

We set as the maximal spectral bound of the generator
Amax = Amax (8,6, ¢,p) == supRo (X + V) |W;,t,q. (2.65)

Lemma 2.4.10 (Discrete spectrum). Under the assumptions of Theorem 2.4.5

(including the choices for p,s,t,q € R), the set
{/\ €0 (X +V)lyura | RA> )\mm}

consists of isolated eigenvalues of finite multiplicity.

The discrete spectrum described in the previous lemma if Apjax > Amin, 1S SO-
metimes referred to as (Ruelle-Pollicott) resonances of X + V. In principle, the
resonances depend on the choices p, s, ¢, and ¢ of the space W h4 We shall not
enter into details here, but note that our main result in the next section shows
that this dependence is mild, in particular, for the choice of V' there, Apa.x is

independent of p,t, s, and q.

Proof. Using Corollary 2.4.6, spectral radius of the resolvent is bounded from
above by |Rz — Amin| . Assume A € o (X + V) |W;,t,q such that R\ > Apin. It
follows from the Spectral Theorem for the Resolvent [16, Theorem V.1.13] that
there exists z € C (e.g. with 3z = J)\) in the resolvent set of X + V such that
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2 Horocycle averages on closed manifolds

the spectral radius of the resolvent R, has a lower bound given by
2= A P =Rz —=RN) P> Rz — Ain) -

Since S\ was arbitrary we conclude. O

The following notation associated to the eigenvalue spectrum is needed in Section
2.5 for the statement and proof of Theorem 2.5.7. We assume for the rest of this
subsection

Amax = Amax (37t7Q>p) > Amin (S,t,p) = Amin,

for any fixed choice p € [1,0] and —s < 0 < ¢ <t <r—1+s. By Lemma
2.4.10 each A € 0 (X +V) |W§,t,q such that A > Anin has a finite geometric
multiplicity n) € N and finite algebraic multiplicities m); € N, 1 < i < ny, with

generalized eigenstates

Donij) ED (X +V), 1<j<my,

satisfying
(X+V =2 Dy =0 and ifj>1: (X +V =\ "1D, 5 # 0.

Moreover, to each geometric eigenvector there is associated a projector IIy ; and

a nil-potent operator N ; of finite ranks such that

H>\1,i1H>\2,i2 =0, N>\1,i1N>\27i2 =0 if AN #X or iy #is, (2.66)

N)\ i if )\1 = )\2 and il = ig
H)\l,ilN)\Zﬂé = N)\27i2]:[/\1:il = o )
0 if A\ # Ay or i1 # 99

Note that the projector Il ; can be written as a finite rank operator
US>

;= Z Dirig) ® Onig)s (2.67)
j=1
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2.4 Properties of the transfer operator, the generator and its resolvent

where the dual vectors O(y; ;) € D (X + V) satisfy

1, if (A1, i1,751) = (Ao, i2, j2)

O()\Lihjl) (D(/\z,iz,h)) = )
0, otherwise.

We shall use the following Dolgopyat-type condition, adapted from [19, Assump-
tion 3A], on the resolvent R, = (2 — X — V)~ ! to control the remainder term
Erz in (2.1) in Theorem 2.5.7 (to reduce to the case studied by Butterley, con-

sider the renormalized semi-group e_)‘maxaﬁa’% with generator X + V — Apax
4

max) °

and resolvent R,y

Condition 2.4.11 (Spectral gap with (Dolgopyat) bounds). There ezists
0 € (Amin(s,t,0), Amaa(s, 1, 4, p))

so that the following holds: For some a > 0, b > 0, C > 0, some
7 € (0,1/1og(1 + (Amaz — 6)/a)) ,

and for all z € C with Rz = a and |3z| = b, we have

<O Rz + (Amaz— 6)| 7", where 7 = [ylog |3z]] .

RY
Z“rAmaz s,t,q
Wy

It is well known that if | Lo g, [yysta pste < Cermax® for all v and if R enjoys
p p

Lasota—Yorke estimates for Apin(s,t) on Wy H4 iy the sense of Theorem 2.4.5,

then Condition 2.4.11 for some constant § implies a spectral gap for the same 4,

in the sense that
oc(X+V) |Wps,t,q N {RA > ¢} is a finite set, (2.68)

see e.g. [19, Theorem 1]. (Note that [19, Assumption 1] follows from the facts
that Wytd < wta, (X +V)olystar < Cle|ysea for some constant
p p
C > 0, using Lemma 2.3.3 and Lemma 2.3.5, and
(63

IO L o= (X 4V = Ama) JO eIl odd (2.69)

for all ¢ € Wy"9.)

4Note the iterated constant C™ contrary to C in [19, Assumption 3A]. This change was made
to avoid a conflict in the proof of [19, Lemma 4.4], involving in there the constant Cs, and
was communicated with Butterley [20].
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2 Horocycle averages on closed manifolds

Beware that even when W, 4 is o Hilbert space, the operator X + V' is not self-
adjoint a priori, so the existence of a spectral gap for X +V with § does not imply
a spectral gap with bounds on the resolvent in general. (In the self-adjoint case,
classical bounds on the iterated resolvent R7 in terms of the distance between
z and the spectrum give bounds stronger than Condition 2.4.11.)

See also Remark 2.5.11 for a further discussion of Condition 2.4.11.

2.4.4 Proof of Lemma 2.4.1

We need some preparations. We recall the quantities |F'|_;,[F|, ;,[Fl;

given below (2.47). We introduce an arrow relation as used by Baladi and Tsujii
in [10, p.16].

Definition 2.4.12 (Arrow relation). Let n,¢ € Z=¢ and o,7 € {—,+,0}. We

write

7=+ and 2"t < 24||F
(T> E) d (Ga n) < H H+J
T=0=—and2" ' >274 (P Iy

T=0=0and 2" * <2'|F|,,
{—j(o,n) < ' ,
c=—and T =0

and (1,0) 451 (o,n) in the other cases.

We recall the function ¢ defined in (2.29). We let ¢’ be analogously defined
for s/ < s, t' <t, ¢ <q. We have for some constant C' > 0, for all fixed
TE {_’+70}7£€Z>0

2 2c(a)nfc(‘r)£ _ Z 2(0(0’)70(7))n+c(7)(n7€) < Z 20(7')(7176)

(1,£)—1(o,n) (1,£)—>1(o,n) (1,£)—>1(o,n)

<Cmax {|FI, 1 IFI* . (2.70)

An analogous estimate holds for all fixed o, n. Similarly, we find either for all

fixed ¢ or for all fixed o,n

M adomet o Cmax{l, HFHSJ}. (2.71)

Z;)I(U?n)

We recall the norm of the Hilbert space £ (and analogously £5) given in (2.30).

Clearly, we have the inclusion 5 € £5 . We recall the definitions of \IJUO,% in (2.23).
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2.4 Properties of the transfer operator, the generator and its resolvent

We let given a family of pairwise disjoint sets
7:={l<K}.

For every (a;¢) =a€ L, (Rd, €§'> we set

(@)
(QOP a) = \1]0'7% ZIGZ Z(T,K)HI(U,TL) 1|]a7,47
(2.72)
O
(QQPO ICL)U . = \I’U,EL ZIGI ZlHI(U,n) 1|1a07l.

)

Lemma 2.4.13 (Boundedness I). For all p € [1,00] the map

Qo : L, (Rd,eg) > 1L, (Rd,£§>

is a bounded linear operator. Moreover, for some constant C' = 0, for every

f € Ly (RL,R\{0}) and every a € L, (R, (5), it holds

Q28] (g 5y < Csupmax {IFIS 1 NP1 1} Il

Z 7 lallg

IeZ

Ly

Let ¢ (0) = ¢(0). Then for all p € [1,00] the map
Q% Iy (R 45) — L, (R%, £5)

is a bounded linear operator. Moreover, for every a € Ly, <Rd,€§,) it holds

Q% a|

CsupmaX{l HFH() 1} HfIIHL@,

>

IeZ

7 lalg

Lp(R4,65)

P

Proof. For every b € (5 we set

(Qb)o-ﬂ'L = \I’U,nba,na

and for every a € L, (R%, (3) we set

wi= 2, 2 lyeee

IeT (T7£)HI (o’,n)
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2 Horocycle averages on closed manifolds
We let QOP be the operator in (2.27) associated to Q. We note that
Q% = QoK.
Using Lemma 2.3.1, we bound for some constant C'y > 0
HQOPICGHLP(Rd,eg) <G HKGHLP(Rd,Eg) :

We estimate with constants Cs, C3 > 0, using pairwise disjointness of elements
I € 7, Cauchy—Schwarz and the bound in (2.70),

2\ 2
IKal,, (k) = SNa@n [ SN Lan
o,n I€L (1,)—1(om)
LP
1
2
< Z Z 2 20(0’)7170(7')8 2 20(0)n+c(7‘)€ ‘1|Ia*r ’ ‘2
onIel \ (r0)—1(on) (1,6)—1(o)n)
Lp
1
2
< Oy Z maX{HFHZ—,[ 7 ”FHi,I} 2 Z gc(o)n+c(r)e ‘I\IQT,Z‘Q
IeT on (rL)y—r(on)
LP
1
2
— 2 max {‘ i,]} 2 92c(T)t ‘l\lar,é‘Q Z gc(a)n—c(r)e
IeT 7L (1,£)—>1(o,n) L
P
N
< Cs Z:max“FHJr]7 }HquLIZchr)e g
ez fir
Lo
1
5\ 2
< Caspmax {IFIL 1 IFIE H Al | | 2 520 | 2on
lel | \1ez e
LP
The statement about Qgpo , follows analogously, using (2.71). O

We recall (see above (2.47)) that F' is assumed to be (©°,©)-hyperbolic on K

and recall the maps 52, &)8 assumed in Definition 2.2.2 which we use to construct
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2.4 Properties of the transfer operator, the generator and its resolvent
V¢ defined in (2.24). We set

{(-,0,0,0),(—,0,+,0),(0,0,4,0),(+,0,—,0)} L
{(+,4,4,0),(+,£,0,0),(0,£,0,0) | £=0} v {(—,0,—,n) |n=0}
(2.73)

J =

We recall the arrow notation f from Definition 2.4.12.

Lemma 2.4.14 (Directional inequality). Let (1,¢) 4> (n,0) and (1,¢,0,n) ¢
J. Let n € supp \Tji,e and & € supp ¥y, Set

m(r) = max {n, ¢}, if 7€ {—,0} ‘ (2.74)

n, if =+
Then, for some C > 0 and for all y € I it holds

‘(D F)Ty— §‘>C’2m(7)min{,

nt

Proof. This can be seen case-by-case for admissible o, 7 as follows. We recall the
set J defined in (2.73). We let (7,¢) 4> (n,0) such that (7,¢,0,n) ¢ J. Due to
the construction of ¥, , and \I/Te, respectively, if n > 1 then 271 < |¢| < 2nF!
and if £ > 1 then 272 < |n| < 272, We assume first c(0) < ¢(7). Let 7 = +.

Then 2" > 24| F| 41 and moreover, the exclusion of J implies n > 1. Using

7,Iv|

the triangle inequality, we find
(D, F)" 1 — €] > €] = |(Dy F)" | = 201 — |F|, 242 5 9L —gn-2 5 902
The case 7 = 0 is analogous. Just note that we have also the estimate

T | Fllo 277 = |1 F gy 270 — 1 Fllg p 2

If 7 = — it holds 2"¢ < 27* |F]|_ ;- The exclusion of J implies I > 1. Using
the triangle inequality, we find

|(D F 77 §| | )trn| o |€| > HFH_’] 26—2 _ 2n+1 > 2n+2 _ 2n+1 > 2n+1‘
On the other hand we have also the estimate
|FI_ 272 =2 > | F|_ 2072 — |F)_ 23

Now we assume c(0) > ¢(7). We assume first 7 = —. Then o € {0, +}. We recall
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2 Horocycle averages on closed manifolds

that F' is cone-hyperbolic (see Definition 2.2.2). The exclusion of 7 implies n # 0
or [ # 0. Together with the first compact inclusion in (2.13) we conclude that
the angle between (D, F')" 1 and ¢ is bounded from below. This implies a lower
bound > c2max{nl} for the distance in both cases where C' > 0 is some constant.
We assume now 7 = 0 which implies ¢ = +. The reasoning is analogous as for
T = —, using the second compact inclusion in (2.13) to bound the angle between
(D, F)™ 5 and ¢ from below. O

Lemma 2.4.15. Let pe [1,0], be Ly, and let (1,£) 41 (o,n) and (T,n,0,0) #
J. It holds for the local transfer operator Lva\I

H\I’ nLrf, OOpr Cs(F, f|1)2_(r_1)m(7) 1ol -

where for some C > 1 it holds
C3(F, fir) < Cmax{

Proof. This is analogous to the proof of Lemma 2.3.3, except that we have to

_1
67} ID F oot |f oot supyerc [det Dy F| 7.

deal with the additional composition operation by the map F. We set f = fj.

We expand the convolution and inverse Fourier transform
WP L pU2 Ph(a) = C | Q=2 £ ()b(y) W, (€) T2 o (n)dndéddy
Y R4d b

= C | VEle U et D Pyl dy
for some constant C' > 0 and where we set
Vi, y) = j e MWy, ()2 () M) £(2)dzdpds.  (2.75)
R3d

We transform (2.75), first integrating by parts |r| — 1-times in z (see Lemma
B.3 with function G(z) := nF(z) — £z which has a gradient bounded from below
by Lemma 2.4.14). Therefore we replace f(z) in (2.75) with another function
Vir—1(z,m, &) which satisfies the iterative construction given in Lemma B.3 (B.1).

Using Lemma 2.4.14 and Lemma B.3 (B.2), we estimate for some constant C' > 1

[Vl oo < CCr27 Ol =Y max {1, 7| Y 1 lteu

. [r—1]
D.F tr ol (D F)"'n—¢
‘( ) 77 5‘ |(Dz F)tr’ﬂ—§|2

Moreover, this function is a C™-map for ¥ := r — |r|. Using Lemma B.5 (in there

where €1 = SUD(. 5. ¢)esupp 5 1X0<]y|<|r—1]

we take e = L7 = 2_m(T)), we proceed with a regularized integration by parts

94



2.4 Properties of the transfer operator, the generator and its resolvent
in z. This yields

‘?ﬁmy>=f MFC=FW) =20y ()T, () Vi1 (2, m, €)dzdnde,

R3d
(2.76)
where V,_; is given in (B.4) in Lemma B.5 with bound
Vi tleo < CCo2~ O max {1, | F| 77, | Fl7 (2.77)

~ tr, . -,
where Ch := SUp(. , ¢)esupp f (1+|((D- F)tTy— ) ‘ (D= )" =€) Viy—1)(:n:6)

(D2 F)*y—¢|” o
We now substitute & — 2¢’ and n — 2"’ in (2.76). By construction the

function V,_1 (z, 2"77’,225’) is uniformly bounded in n and ¢ in the C*-norm

with respect to " and &’. We transform (2.76), integrating by parts d 4+ 1-times
in & if [2"(z —2)| > 1, and d + 1-times in ' if [2¢(F(2) — F(y))| > 1, which

yields for some constant C; > 0

iZén'(F(z)—F(y)) i2n¢ (z—2) -
V%mwzaf ¢ ‘ QUYL of € dzdif €',

rsd w(F(2) = F(y)) un(z - 2)

oy if (22 < 1
where Vy (2,1, €') together with u, : R — (0,1] : >

2nz| T else

replaces ‘I'g7n(2e£’)\f':e(2"n’)‘/r,1 (z,2™',2¢¢) in (2.76). Since we only derived
V,_1 with respect to 7/ and &', respectively, the C-norm of V;;f(z, 7', &) is con-
trolled by the upper bound given in (2.77). We recall that &', ' are uniformly

bounded. We estimate trivially for some constant Co > 1

~ ~ 1 1
OO Le Ve < C|Vn] 21O | (b )0 F
H onF f >0 L, 7| co Uy, * ( * ’LLg) © L,
< 0203(F7 f)2—m(7')(7‘—1) Hb”Lp )
where we used twice Young’s inequality in the last step.
O
We set for all n € Zx, for all 0 € {—, +,0} and for all I € Z
O J,0
(lel)’la)an = \IIE‘)’I;L Z At (Qopa)o',n = \Ij@(’f)lpaa’”' (278)

’ (r,0)4>1(o,n)
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2 Horocycle averages on closed manifolds

Lemma 2.4.16 (Boundedness II). Let ¢(+) — /(=) < r — 1. Then for all
p € [1,0] the map Q?_PILFJHQOP: L, (Rd,ﬁgl) — L, (Rd,ﬁg) is a bounded

linear operator. In particular, it holds

HQSLP,ILFJUQOPH < CCW(F, fi1),

Lp(RE05 ) > Lp(RAES)

where for some C =1 and some k =0

_1
Cu(F, f) < C { TFE }max {1, ID Fu’gw,l} £l sup|det Dy F|s
Yy

Proof. Let (ar¢) = a € Ly, (Rd,@'). We have

1
2\ 2
O O O oOp
Q21 Lr5, @ el | DI B IR SR s
PAT 2 o, (r,0)>1(o)n)
P
< Y 2O e, B Pary . (279)

(r,0)4>1(o,n)

We recall the set of indices J in (2.73). We assume (7,l,0,n) € J. Now we
make three distinctions in the estimate of the corresponding part of the sum in
(2.79). If 7 € {+,0} then n = 0 and [ > 0. Then, using Young’s inequality, for

some C' =1

ZH\II Lpfu z aTg < Csup|f(z)||detD, F| PZ2 )l supQC(T |
zel

1=0
<C detD, F| » oY -
sup £ ()] det D FI 7 Jal (g )
If r=0=—thenn = 0 and [ = 0. Recall that s < 0. Then, using Young’s

inequality,

sn Op /Op
Z 2 g’ L ’f‘I 0 a_vo I3
n=0 P

1
< P ’
< Osup |£(2)]4et s FI 7 o 51

In the three remaining cases n = [ = 0 we estimate analogously, using Young’s
inequality. Now we assume (7,1,0,n) ¢ J. We recall m (7) defined in (2.74) in
Lemma 2.4.14 and the constant C3(F, f) in Lemma 2.4.15. Using Lemma 2.4.15,
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2.4 Properties of the transfer operator, the generator and its resolvent

we estimate the remaining part of the sum in (2.79)

H\IJOPLFfu 0 an

(7, 5)‘1—7(0 n)
(T7l70-7n)¢\7
< CCs(F, f) Z ge(oIn—c (Ni—m(7)(r=1) gy, 9¢' (7)1
(T’Z)("_’I(U,n) 70
(T,l,(f,n)¢J

(2.80)
< CO(F, f) aly, (o) -

where the sums in n, [, respectively, in the right-hand side in (2.80) are bounded
by geometric sums, using the assumption ¢/(—) > r —1 —¢(+). In particular, we
find for (the worst-case since 0 < ¢(0) < c¢(+)<r—1)7=—,0=+,ifl=n

for all small enough € > 0

(ec(H)+e)n—-d(=)-m(=)(r—1)< (c(—i—) +e— c’(—)) I—m(=)(r-1)

=(c(+)+e—d(=)—r+1)l <0,
and an analogous estimate holds for [ < n. We note
_1 _1
sup |f(2)||det D, F| " » < C|f|or—1sup|detD, F| > .
zel zel

We set Cy(F, f|1) = CC3(F, f|;). Combining the estimates for all the parts of
the sum (2.79), we conclude. O

Proof of Lemma 2.4.1. Let s, q,t, p satisfy the hypotheses in Lemma 2.4.1. That
s <s<O0<qg<t<r—1+4¢,¢ <q t' <tandpe]|l,o]. We put ¢(—) = s,
c(+) =t, ¢(0) == d(0) = qgand d(—) = (—) = ¢, (+) = (+) =+
and ¢’(0) := ¢’. Then ¢,d,¢" satisfy (2.29), respectively, while ¢, ¢’ satisfy the
hypotheses in Lemma 2.4.13, and ¢, ¢’ that of Lemma 2.4.16. Let ¢ € WS b F(K)”
We set

Aryp = LFf‘I’Tg P.
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2 Horocycle averages on closed manifolds

We have a € L, (R, 45) € L, (Rd g because

1
2
2
2 oO
\|a|\Lp(R%): 24c<r)£|a7,e| 24% ‘f ( p >OF‘
70
L
s P
2
1
<|flesDF| | 240 ‘qﬁof’ ‘ (2.81)
Ly(F(K)
< |7 eD I el

We set brp == U Opg@ By the first statement in Lemma 2.3.4, it holds ¢ €
Wziéo’%(f() hence (br¢ | 7€ {—,+,0},0€Z=) = be L, (Rd,fg ) By assump-
tion on K, we can decompose K = L)V into finitely many open sets W. For

each component VW we set

. oOp —
apw,re = Lrg,V. ¢ and a:= Za‘w.
w

By construction (see above (2.78)), it holds ¥
\Ifo Op\I]o Op

o — o Op —
rllsupp ¥, = 1 hence ¥ P =

. For each W there is a corresponding arrow relation given by
Deﬁmtlon 2.4.12 and the restriction f)yy is also C"™ 1. We rewrite

0 0 0 0
U Lifne = U0 apyre =U00 D0 ap e+ TR > apyoy

e (r.)=w(on) l=w(omn)
+U D Lpy VIPPUIPe. (2.82)
(T,Z)“‘—)W(U,n)

We recall the definitions of the operators Q S Q;}O oWy Qi‘jw given in
(2.72) and in (2.78), respectively (in which we take Z = {W} and I = W). We

estimate, using the decomposition given in (2.82),

1
2\ 2

_ Z 4C(U)n

W:aqu a,n

O
Lp(R,65) v ’

O
HLF,fSDHW;qu = ‘E LF,f|w90 \I’O',I;LZLva\WSO
o w w

Ly

<sfe #5 o2,

»(R,65) Lp(R.t5)

We conclude, using Lemma 2.4.13 and Lemma 2.4.16 together with the estimate
given in (2.81). O
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2.5 Asymptotics of horocycle averages

2.5 Asymptotics of horocycle averages

In this section, we assume r > 2 and topological mixing of the Anosov flow g,.
(Contact Anosov flows are topologically mixing [11, Theorem 3.6] and hence
serve as examples for such Anosov flows g, in the case d = 3.) In order to define
the horocycle flow in Definition 2.5.1 below we assume that the stable dimension
d— = 1 and that the strong-stable distribution F_ is orientable. The stable
manifolds of M with respect to the flow g, are those (non-compact) Riemannian
submanifolds which are tangent to £_. As consequence of topological mixing,

each of those stable manifolds is dense in M [19, p. 84].

2.5.1 Horocycle flows and integrals and main results (Theorem
2.5.7)

Definition 2.5.1 (Horocycle flow). A flow h,: M — M in p € R is called a
stable horocycle flow if and only if for all p € R

d,h, € E_\ {0} .

Remark 2.5.2 (Unit speed parametrization). By the Stable Manifold Theorem
(see e.g. [/2, Theorem 8.12]), there exists a parametrization of stable manifolds
by the arc-length induced by the Riemannian metric on M. Since we assumed

that E_ is orientable, this yields the unit speed parametrization of the horocycle
flow (i.e. |0ph,| =1).

Our main result, Theorem 2.5.7 provides a decomposition giving the T-asymptotics

of the following horocycle integral:

Definition 2.5.3 (Horocycle integral). For all ¢ € C' (M), for all x € M let

T
Ve, T) = J() pohy(x)dp. (2.83)

denote the horocycle integral of the horocycle flow h, for the observable ¢ at base

point x.

In Theorem 2.5.7 we reveal its connection to the eigendistributions of a weighted
transfer operator for the Anosov flow g_, introduced in Section 2.3.1, using re-
normalization dynamics to connect the stable flow with the Anosov flow. Results

can be obtained for an unstable horocycle flow in an analogous way.

99



2 Horocycle averages on closed manifolds

Definition 2.5.4 (Pointwise renormalization time). A map 7: R* x M — R

which satisfies
9o © hy(T) = hr(paz) © Gal), Vp,a e R,Vr e M, (2.84)

is called a pointwise renormalization time for the stable flow h,.

Remark 2.5.5. This definition of the renormalization time T is the same as
used by Marcus (denoted by s* in his notation) in [/9, p.83] to study ergodic
properties of the horocycle flow.

Lemma 2.5.6 (Existence and uniqueness). A pointwise renormalization time

exists and is unique.

Proof. For every x € M and for every p, o € R we set hq,p (x) = gaohp09_a ().
By Definition 2.5.1 and the invariant splitting (2.2), we find dpha,, € E— ;\ {0}
Hence hq , (z) parametrizes the same stable manifold with respect to p as h, (x).
If there were two different pointwise renormalization times 7, there would be
p1 < p2 € R such that hq, (z) = hy, () = hp, (). By density of stable leaves

and non-singularity of the flow h,, there are no periodic points of h, hence

p1 = p2. O

Further properties of the renormalization time 7 are given in Proposition 2.5.13
below. Assuming 0,7 (0, —a,-) € C""Y(M) for all @ > 0, we will consider the
potential V' defined by

V =-0,0,7(0,0,"). (2.85)
Then ¢, defined in (2.18) is just
¢a = 0,7(0,—a, ). (2.86)

It follows from (iv) in Lemma 2.5.18 below that for any p € [1,0],t —s <r—1
and s < 0 < ¢ < t the spectral bound Ayax = sup Ro (X + V) |[};s.0qa for the
P

generator satisfies
)\max = htop- (287)

In the special case of unit speed horocycle flow (see Remark 2.5.2) it holds (using

Proposition 2.5.13 (viii) below)

ba = dethftx\E—'

100



2.5 Asymptotics of horocycle averages

Hence if the strong stable distribution E_ is C'' (see Proposition 2.5.10 where
this holds true if d = 3 under the contact assumption) and r > 2 then we
find 0,7 (0, —a,-) € C% (M). In particular, our results apply to all C! time
reparametrizations of the unit speed horocycle flow h, (this is analogous to [30),
Remark 2.4]).

The following theorem will be proved at the end of Section 2.5.3:

Theorem 2.5.7 (Expansion of horocycle integrals). Let g, be a topologically
mizing C"-Anosov flow, with r = 2, such that E_ is orientable and d— = 1.
Let v be the unique Borel measure which is invariant by the horocycle flow h,.

Assume for all « = 0
bo 1= 0,7 (0, —a,+) € C"H(M).

Assume further that there exist p € [1,00], and s <0< q¢<t witht —s <r—1
such that, for the corresponding anisotropic space Wps’t’q it holds Amin < Aoz =
Rtops With Amin, = Amin (t, 8, p) from (2.56). Then, for allz € M and T > 0 there
exist, for each A€ o (X +V) |W;,t,q with RA > Apin, constants ¢ ; (T, x) € C
with

sup e (1o @) <00, VI <i<ny, 1 <j<my,
T>0,zeM

such that, for any § € R with
max {Apin, 0} < < hygp
and any finite ° subset As of
Ysi=0(X+V) |Wps,t,q Nn{AeC | R\ > 4},

such that for all p € C' 71 (M) and all T > e

T
J(; @ o hp (l’) dp =1, (D(hmpalvl)’T) H (SO)

A
- -
+ > D T log TV ™ enigy (T,2) Origy () + Erans ()
AEAs 1<i<ny,
%)\<htop 1<]‘<TI’LAY1‘

where the dual eigendistributions Oy ; ;) € D(X + V) are associated to the

®Note that Lemma 2.4.10 and our choice of § ensure that for any finite b > 0 the spectral box

As(b) =0 (X +V) |W;,t,q N {RX > 6, |SA| < b} is a finite set.
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2 Horocycle averages on closed manifolds

eigenvalue A by Lemma 2.4.10 (see (2.67)), and where

X D 7T x
lim 7 ( (htop,1,1) ) =1 and lim 7€T’ As ()

T—w T T—o0 T =0

Moreover, if for some ¢ > 0 and some constant C1 = C1(p,c,As) = 0 for all
az=0

LON
Lo pa ( Z Z e — @) ‘ < Cre™, (2.88)
Wyt

AeAs i=1

then there exists Cy > 0 such that

SUp [Er.0.0, ()] < Ca (LT 70 + plco +1)
zeM
If, in addition, Condition 2.4.11 holds for §, then 3s is finite and, taking As = X
and assuming

t—r+2<0<r—2,

it holds ¢ = 6 + € in (2.88) for all € > 0 and all p € Wy,

Recall that if Dy ; jy € W) B4 for some A with A > 4, is a generalized eigenvec-
tor of the generator X 4+ V then for all RA > & we have that O5 zj(DA,i,j) =1if
A=), i=1 and j = j, while O;\j,j(D,\JJ) vanishes otherwise.

Remark 2.5.8. The condition \yee = hiop 15 superficial although we show only
Amaz = hiop and unique simplicity under an additional vanishing assumption
in Section 2.5.8. The proof of Theorem 2.5.7 however shows that the horocycle
expansion sees only the part of the spectrum with real part below hiop and the
eigendistribution p which s associated to hiop.

Recalling Remark 2.4.8, we find always Amin < hiop if —s and t can be taken to
be 1 — € for all € > 0. This is the case if the geodesic flow is C3~¢ for all € > 0
(e.g. the flow is of Zygmund type). If one knows then that the weight is C*~¢
the basic assumptions of Theorem 2.5.7 are all satisfied (an example is given in
Proposition 2.5.10 below for C® contact Anosov flows when d = 3).

Note that v, (D(hm,,,1,1)7 T) 1s well-defined in the sense of distributions is part of
the theorem. By unique ergodicity the expected principal term T (p) is hidden by
the term v, (D(h,,,,p,l,l)vT) i () as we ordered the expansion by the distributions
O..(¢). We can always write

Tu(p) =7 (1,T) p(p)
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2.5 Asymptotics of horocycle averages

and use the expansion result on v, (1,T) again which shows that the leading order
term is indeed what we expect. The other terms are modified by the contributions

of O. (1) u(p). We make use of this in the following corollary.

Assuming all conditions in the above theorem, this gives polynomial convergence

of horocycle averages to the ergodic mean:

Corollary 2.5.9 (Polynomial convergence). Under the assumptions of Theorem
2.5.7 (including Condition 2.4.11 for 6 and t —r +2 < 0 < r — 2) then there
exists € > 0 such that for all o € C * (M) there exists C > 0 such that

1 (7 .
‘TJO pohy(x)dp—p(p)|<CT

where 1 1s the unique Borel measure which is invariant by the horocycle flow h,,.

Proof. We apply Theorem 2.5.7, using the assumption that Condition 2.4.11
holds for § and that t — r + 2 < 0 < r — 2. Then there are only finitely many
eigenvalues A € o (X + V) such that R\ > 6 and the remainder term &7, A, ()
is bounded from above by T %H for all € > 0. Hence all but one term in
the expansion of the ergodic average decay like T—¢ for some € > 0. We finally

bound the leading term in the expansion

1
T

1

Yo (Do), T) 1 () — 1 (0) = T (Dihop1,1) = 1,T) (),

using again Theorem 2.5.7 as before, noting that (1) = u (Dhtop,l,l) =1. O

We next discuss the assumptions of our main theorem and the corollary above.
We first give sufficient conditions ensuring that d,7 (0, —«,-) € C"! and that

there exist parameters in our anisotropic space giving Amin(s,t,p) < hgop:

Proposition 2.5.10. Let g, be a C? contact Anosov flow on a closed Rieman-
nian manifold M of dimension d = 3 preserving a C' contact form and let the
strong-stable distribution E_ be orientable. Then there exists a horocycle flow
h, such that 0,7 (0, —a,-) € C™™1 for every a = 0 and for any r € [2,3).

r=1 _ e

Setting —s =t = 5= — § for suitable 0 < € < %, the constant Apin(s,t,p) is
independent of p and can be taken arbitrary close to 0% while t—r+2 <0 < r—2.

Proof. The contact assumption means that there is an invariant 1-form n € T* M
such that p :== n A dn # 0 everywhere. By assumption 1 is C'. Moreover 7
is annihilated on E, + E_ and pu € A3T*M is preserved by the flow. We use

[10, Theorem 3.1] together with the comment on the relation between Zygmund
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2 Horocycle averages on closed manifolds

and Holder regularity to infer that the strong-stable distribution is C™! for
all r € [2,3) if d = 3. Hence for the horocycle flow given by the unit speed
parametrization (and more general all of its C"~! reparametrizations) we find
0,7 (0, —a, ) € C"~!. By assumption the flow g, preserves volume and d = 3.
To see a gap between Amin = Amin (5,t,p) and hyop, we may assume the unit
speed parametrization of the horocycle flow h,. It follows by Proposition 2.5.13
(viii) and Lemma 2.3.3 that for all C"~! reparametrizations the resulting transfer
operators are conjugate to each other.

Then it follows from Lemma 2.4.7 together with Proposition 2.5.13 (viii) that
Amin is independent of p and is arbitrary close to 0" for a suitable choice of s, t
and r. Moreover, if we assume 0 < t < % +ewesatisfyt —r+2<0<r—2

since € < % O
Second, we discuss Condition 2.4.11:

Remark 2.5.11. Condition 2.4.11 was inspired by estimates of Dolgopyat [25],
who was working with operators acting on symbolic spaces. This condition, Te-
placing however our Wlf’t’q by other anisotropic Banach spaces, was proved by
several authors [9], [31], [15], [00] for the generator X +V, associated to contact
Anosov flows and V' = 0 the trivial potential, for which they also obtained the

additional condition in Corollary 2.5.9.

In the case of geodesic flows on compact surfaces of constant negative curvature,
we find that V is a constant, but the fact that our Banach space is different
makes it difficult to apply the results of [9], [71], [/5], [066] directly in order to
establish Condition 2.4.11. We expect however that the condition holds and (as
pointed out by Liverani and Butterley) can be obtained by exploiting e.g. [19,
Remark 2.6].

For non-constant potential V', since Dolgopyat [23] obtained exponential decay of
correlations for Gibbs measures with Holder potentials, we expect that Condition
2.4.11 indeed holds also in our setting, in particular for compact surfaces of
variable negative curvature (e.g. using an argument similar as for the proof
in [2/, Proposition 3.4]). (We warn the reader that the value of § given by

Dolgopyat-type arguments is usually very close to Apayz.)

We end this subsection by a comparison of our main theorem and the results
of Flaminio and Forni [28]: Let M be the unit tangent bundle of a compact
hyperbolic Riemann surface. Let g, be its unit speed geodesic flow and let

vol be the canonical (invariant) volume form on M (which is also a measure of
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2.5 Asymptotics of horocycle averages

maximal entropy) and consider the unit speed horocycle flow which leaves vol
invariant as well (hence p1 = vol). Then hiop, = 1 because 7 (p, o, ) = pexp (—«)
and D(y,1,1y = 1 (hence v, (D(Ll,l)v T) =T). In the setting of Riemann surfaces,
the possible Jordan blocks are known [28, Theorem 1.5]. In particular, the
eigenvalue hiop = 1 is simple, there are no other eigenvalues of real part equal
to one, all eigenvalues with RA > 0 are semi-simple, and there are only finitely
many eigenvalues with R\ > % Moreover, since the vector fields are constant,
the regularity parameters —s,t can be taken large enough such that Ay, < 0.
Hence we can take any § > 0 in Theorem 2.5.7, and we find, for any finite subset

of s containing 1,

T LN
f pohy(x)dp=Tvol(p) + > > T e (T.2) Opiny () + Erans (¢)
0 AeAs\{1}i=1

1
2
claims of Theorem 2.5.7 (with an additional log T-factor if A\ = %) In particular,
if Condition 2.4.11 holds for some § > % (see Remark 2.5.11) there exists C' > 0

such that for all e > 0

where we can take As = X5 if 6 > 3, and where ¢() ;1) and E7; A, satisfy the

|ET,$,Z5 (¢>| < CT6+E'

Note that we required § = 0 because for § < 0 we find no improvement of
the remainder term (this comes the local bounds in Lemma 2.5.14). An analo-
gous behavior is seen in the corresponding expansion of Flaminio—Forni in [28,
Theorem 1.5]. However they are not limited to finite sets As of eigenvalues
(Faure-Tsujii do not seem to be limited either in [26]). Our methods, however,
do not seem to allow to go beyond the first vertical line with infinitely many
resonances in (X + V) |;s..q in the expansion of the horocycle integral. (This

p
could be a natural limitation, as discussed in [66, p.1497, below Theorem 1.1].)

2.5.2 Weighted horocycle integrals, properties of 7, local bounds

In order to use a smooth cutoff trick of Giulietti-Liverani to decompose (-, 1)
in Lemma 2.5.14 below, we need to consider weighted horocycle integrals: For
all ¢ € C;(_l (M), for all compactly supported w € C (R,C) and for all x € M,
let

Tusl) = [ w(o) - (po b @) dp. (2.89)
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2 Horocycle averages on closed manifolds

denote the horocycle integral of the horocycle flow h, for the observable ¢ at
base point x with weight w.

For further purposes, it is useful to view <, as a functional in the topolo-
gical dual space of W, H4 for weights w with compact support and sufficient

differentiability:

Lemma 2.5.12. Let pe [l,00] and let 0 < g <t <r—1 and let —r < s < 0.
Let x € M. Then for some C > 0, for all C—° maps w: R — C with compact
support it holds

I zllysta e < Clsuppw] w] - -

Proof. We recall the partition of unity ¥, and chart maps ko, @w € Q (see
Definition 2.3.6). We set for all x € M, for all a > 0 and for all p € C% (M)

Yr,w1,0 (P) = Ky © ga © hp(), (2.90)

0

Pwzr w0 (2) = (Vmy - 009 a)o ki, (2)- J w(p) 6 (2 = Ya,m,a (p) d p,
—©
Pw1,a (Z) = (ﬁim : £a7¢agp1) © H;} (Z) .

With this notation, recalling the weighted horocycle integral associated to Defi-

nition 2.5.1, we express for all a = 0
Toa (@) = Y f s o (2) - P (2) . (2.91)

wl,WQEQ

We set

We recall \Ila,n defined in (2.24). We bound, using Plancherel’s Theorem, Cauchy—
Schwarz for the sum in ¢ and n, and twice Holder’s inequality with respect to z
and «, respectively, for some constant C' > 0

(o7)] |’Yw x f

do

5 f Gunam o (2) - ooy (2)d 2

w1,w2

<f) B | D IRz (7O W ()45
0 @i,
1

" 2\ ?

<C sup (Z 40 ?) ‘\IIU nPw,z,w1,w2,0 ) H(PHW;J,Q,
o, w1, -
Lp*
(2.92)
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2.5 Asymptotics of horocycle averages

where p* =1 — % is the Holder conjugate of p. To conclude, it is enough to

establish the following upper bounds for H‘T"(f),%‘?w,x,m,m,a

p¥

(i) There exists a constant C; > 0 such that for every C° map w: R — R,
every p € [1,00], every o € {—,+,0}, n € N, every w;, s € Q it holds

< Cr|suppw| |wl|y, , Yz e M, Y0 < a < ap.

H\I]o n‘Pw x,w1,w2,&
P

(ii) There exists a constant Cy > 0 such that for every —r < s < 0, for every
Clsl map w: R — R with compact support, every p € [1, 0], every n € N,
every wi, ws € {2 it holds

H\IJ_ Pz, w0 HL < Co2°" |supp w| |w|o-s, Ve E M, Y0 < o < p.
P

We first show claim (i). We fix w, o, n, w1, we, x and a. We let J < supp w be the
maximal subset such that y, o, os is well-defined. We note that J decomposes
into a finite disjoint union, e.g. J = |_|f€\7:1 I, for some N € N and some real
intervals Ij. In particular, since the flow h, is non-singular and, in addition the
manifold M is compact and each stable leaf is dense in M and 0 < a < «ag, for

some constant C7 > 0, we have |I;| < Cydiam Vg, and N < () d‘f:fﬁ;”' . For
w1

every z € R? we estimate for some constants Cs, ..., Cy > 0

[ 00156tz ) dp\

Z > wp) 0pYamralp)

k=1 pey=1(z)nI}

|‘Pw,m,w1,w2,a (Z)| <O

N
ZJ W (P) 6 (2 — Yoo
k=1"Y1k

< O3N max \w(pmpyx,m,a(p)r | < Culsuppw] Jull,, . (2.93)
pPESUPpP W 0

where we used in the last step non-singularity of h, and 0 < a < op. We
conclude, using Young’s inequality on H\Tl? 7 N together with the
bound in (2.93). ’

We now show claim (ii). Again we fix w,o,n,w;,ws,z and a and set y =

Yz,w1,a- Analogously as in the proof of (i), we let I € R, 1 <k < N, be the N

connected components of J for some N € N. For every z € R? we expand

2 n >~ 1on e A~ ~
\IIO nPwz, w1 w0 Z) = ~d J J ‘1’771 (f) e’ £(= y)go (y)dfdy,
(2m)" Jra Jrd

where we set

~

¥ (g) = QPw,z,wr,w2,0 (y) .
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2 Horocycle averages on closed manifolds

We note that suppy S y(J). In particular, we reparametrize § € supp ¢ by
y = Z(p) for some diffeomorphism z € C" and p'e R. We set D;(-) = 1856(22

Since Z (R) is a piece of a stable manifold in charts there exists a constant C3 > 0
such that we have ‘0555@)‘ > (12" for all £ in supp \T/,yn is essentially part of
an unstable cone in charts by construction. We note that oz is C". Using |—s|-
times integration by parts (see Lemma B.3), followed by a regularized integration
by parts with respect to p if —s ¢ N, respectively (see Lemma B.5 in which we

take d =1, G =y and L™! = ¢ = 27 ™), this yields

~ 0Op (s+d n) 2"§(z 3 ) _
vz n@wxwl,wz, ( = JRdJ P ﬁ (ﬁ)dgdp,
where
N D.° (§oZ-0;2), if —seN
Dﬁ Q= P

2 5 (), 02 (4= (4)). 1 =e

=D (oz052).

SN

and the e-term is just the convolution (é Dl[;SJ gB) % Ve with a C® map v,

with supprve € (—¢,€). Note that all derivatives of ]5:545 in ¢ are bounded in
n, using Lemma B.5 and non-singularity of h, and 0 < o < ap. We proceed
analogously as in the proof of Lemma 2.3.3, integrating (d 4+ 1)-times by parts in
€ if 2" |z — Z(p)| > 1 and conclude, using that supp I~)~sg5 C supp @ is bounded.

O]

We group below some properties of the pointwise renormalization. (Note in
particular that Claim (xi) in Proposition 2.5.13, which will follow from [31,
Remark C.4] of Giulietti-Liverani—Pollicott, will play a key part to estimate the
spectral bound of X 4+ V. Also, Claim (viii) in Proposition 2.5.13 shows that
¢a = 0,7(0,—a,-) differs from the unit speed parametrization function by a
multiplicative 1-coboundary.)

Proposition 2.5.13 (Properties of pointwise renormalization). Let 7 be the

renormalization time of a stable horocycle flow. For all p,a € R and for all
x € M it holds:

(i) 7(0,a,x) =0,

(”) T(p,O,l‘) =P

(iii) T(p, a1 + az,x) = 7(7(p, a2, ), A1, gay (x)), for all aq, a2 € R,
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2.5 Asymptotics of horocycle averages

(“}) T(pl + ,02,04,5[)) =T (pl?aahpz(w)) + T(p27a7$)7 fOT’ all p1,p2 € R;
(U) apT(pvavx) = apT(O’O‘a hp(x)))
(vi) 0,7(0, 1, gao (7)) 0,7 (0, 2, ) = 0,7(0, a1 + 2, x), for all g, 0 € R,

(U’L"i) T(p, «, SU) =Yz (a,DT(Ov a, ')7 P),

d,h0)* (8,h
(viii) 0,7(0,c,+) = det D ga|p_ (ap/EoZgzg*gaZhglga) where dpho(x) = 0php)p—o(T),

(ix) 0 < 0,7(0, o, ) < 0,

(x) if « = 0 there exist C1 > 0 and 0 < 6 < 1 both independent of o and x
such that 0,7 (-, a, )| o1 < C10,

(xi) if |p| = 1 and o = 0 there exists Cy = 1 independent of p,a and x such
that
C ol < [r (py—a.2)] < O o 70

(zit) if o = 0 such that |1 (p,a, )| = ¢ for some ¢ = 1 then there exists C3 > 1
independent of p, o and x such that

C:;lcehm"a < pl < Cgceh“’ﬁa.

Proof. We note that by Definition 2.5.1, Definition 2.5.4 and Lemma 2.5.6 the
renormalization time is differentiable in p. Every stable leaf is dense in M hence
together with non-singularity of the flow h, it follows h,, (x) = h,,(z) = p1 = pa.
Then Claim (i)-(ii) follow directly from (2.84). We deduce from (2.84)

hr(p,a1+a2,$) O Jaq+as (:E) = Jaj+az © hp(x) = Ja; © hT(p,ag,x) O Jas ('T)
= hT(T(p’OQ@),O“’go(2 (2)) © Ga +a (T)-
This yields Claim (iii). Also from (2.84) we find
hT(p1+p2,a,x) 0 9a(T) = ga © Ppy 45 (T) = Ga 0 hpy © 90 ©ga © hpy © g—a © ga(®)
= he(or.0hpy (@) © Pr(pa,0ca) © Ga()-

This yields Claim (iv). Claim (v) and (vi), using Claim (i), follow by differenti-
ating both sides in (iv) and (iii) at p; = 0 and p = 0, respectively.
Claim (vii) follows from (2.83) and (v).

To show Claim (viii), we take derivatives on both sides of (2.84) with respect to

p

Dgaaphp(x) = ,07—(/)7 Q, x) : (apho) © hT(p,a,m) © ga(l‘). (2'94)
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2 Horocycle averages on closed manifolds
Now we let (d,ho)* € E* be the canonical dual of d,hg. We calculate

(Gpho © ga)™ (D gadpho) = (9ph0 © ga)™ ((9a)x pho) = (9a)™ (Fpho © ga)™ (Ipho)
= det (D ga|E,)* (5ph0)* (Opho) = detha\E, (9ph0)* (Opho) -
(2.95)

We set p = 0 in (2.94) and conclude, using (2.95) and non-singularity of the
horocycle flow.
Claim (ix) follows from (viii) together with the fact lim,,odet D gop_ = 1 and
compactness of M.
In order to show (x), we note first, since r > 2, using Claim (v) and the cocycle
property (vi),
o

07 (pr ) = 0pr (0,0, (1)) = exp—fo Vo gaoh, (@) dd,
where V' = —0,0,7(0,0,-) € C™ 1. Therefore it holds, using the equality in
(2.84),

8/%7'(;),04,;2) = —@ﬂ'(p,@,m)-&’pﬁ) Vogsohy(x)da

= —0,7(p, v, x) - J 0p7 (p,&,x) - (DVd,ho) 0 gz oh,(x)da,
0
(2.96)

where |0,7 (p, a, z) | < CO for some 0 < 6 < 1 and C; > 0 both independent of
a, p and z by (viii). Hence there is Cy = C3(V) > 0 such that ‘8%7' (p, o, )| <
C20%. By induction, all derivatives 8’;T (p,a, z), where k € N, depend only on
0p7 (p,a,z) (and k and derivatives of V' which are independent of o) and so
does the Hoelder norm [|0,7 (p, &, )| sr—1. Since r > 2 the Hoelder coefficicent
of 0,7 (-, ¢, ) is bounded by H&%T (+,a, :L‘)HOO and we conclude.

Claim (xi) for p > 1 and o < 0 follows from [31, Lemma C.1] and [31, Remark
C.4] (recall that g, is transitive) in which we replace W with a manifold which
contracts in forward time. To this end we set W, = hyg 1) (v) for every = € M.
Since the stable flow is non-singular, the stable manifold W, is of bounded length
(from above and below) for all z € M. We estimate, using Proposition 2.5.13

(viii) for the first and [31, Remark C.4] for the last inequality, with constants
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2.5 Asymptotics of horocycle averages

Cs,...,Cg > 0 independent of p, o,z

0
T(p,—a,z) < Cgf detDg_qp_ohy(x)dp < C4pjdethaE_ dW,
0

< Cspvol (g_a (W) < Cgpelttor?,

A lower bound for 7 (p, —«, ) is obtained in an analogous way, using the last sta-
tement in [31, Lemma C.1]. We conclude for all |p| > 1, noting that 7 (—p, a, z) =
—7 (p,a, h—, (), using Claims (iv) and (i).

Claim (xii) follows from Proposition 2.5.13 (viii), and the following equality

which follows from Claim (iii)

p=T (T (p> «, J}) ) O o (.7})) =T (Cv —Q, Jo (ZL‘)) :

O

We shall use in the next two lemmas the following key identity for the horocyle
integral (2.89)

Yw,x ((P) = Ywor(-,—a,ga(x)),90(z) (Ea,ﬁpf(ﬂ,fa,-)(p) s Va = 0. (297)

To check the above identity, using (2.84) and Proposition 2.5.13 (iii), (v)-(vi),
just notice that for all « € R

0

Y,z () =f w(p) PO gea©gaohy(x)dp

—Q0

o0
= J w(p) "POGg-a OhT(p,a,x) oga(x)dp

—Q0

- (7 (9=, ga(@))) - 90 a0 by © gal) - 7 (pr —ats ga(x)) d p

—0Q0

- 0 (=90 (2))) - (7 (0. —s") - 9 0 ga) 0 By 0 gu(x) dp

—00
= ,Y’UJOT(',—CX,QQ(CF))yga(CU) (apT (0, —Q, ) cpo gia) (298)
= 'ywOT(-,—oc,ga(as)),ga(x) (Ea,ﬁpT(O,—a;)Cp) s if a > 0.

We now state upper bounds for |y (¢, T)| similar to the results in [28, Lemma
5.16]. The prove uses the analogue of the smooth cutoff used by Giulietti-
Liverani [30] but uses a different construction of the local decomposition of

Yz (0, T).

Lemma 2.5.14 (Local bounds). For every T > 0 and for every x € M there
exists w € C~* (R, [0,1]) such that for every ¢ € Wy, where p € [1,0] and

111



2 Horocycle averages on closed manifolds

s<0<qg<t<r—1+s, the following holds:
(i) There exists C1 > 0 independent of T,x and ¢ such that

V2 (0, T) — Yw,z (@) < C1 0] co -

Moreover, if —s < 9”“” e, where for some 0 < Opin < Omaz, for some Cy =
and for all a = 0 zt holds

CO e —Omaz e < 1nf apT( ,a,l’) < sup 5p7‘ (‘,O[,:B) < COe_emma, (299)
zeM zeM

then for some Cy > 0 independent of T, x and ¢ it holds

(0, T)| < Cp max {T I } Il

(ii) If for some @ € W;’t’q it holds for all o = 0, for some A € R, ¢ = 0 and
some C' = C (A, ¢,p) >0

10,7 (0, e, ) - @ 0 ga yptia < Ce ¥ max {1, ]|}, (2.100)
P

then there exists C5 = C3 (A, ¢) > 0 independent of T,z and ¢ such that

A
T"or (max {1,logT})°, ifA>0
Vw2 (@) < CC3 { min {1, T} (max {1,log T}, ifA=0-
min {1, T} (max {1,log T})°, ifA<0

Moreover, if the bound in (2.100) holds for all o« € R with A > 0 then

|’Y$(957 ) Yw, :c( )| CCS

Proof. Let xe M, T > 0,0 <e< Wedeﬁneﬁk,ﬁk € R for every k € N by

T(T')ﬁa—?x) :% and T<T <i7_/8[j7.g/3+( )> 5k 1 ):17

By =B and 7 <7‘ ( 1 Bk_,gﬁk— o hr (x)) B 1, hr (;v)) =—1.

-, =
€

(2.101)

If T > 1 we assume 37 > 0, if T = 1 we assume 3] = 0 and if T < 1 we assume
By < 0. This is justified since 7 (T,0,2) = T and by Proposition 2.5.13 (xi).

Since € < 1 we may assume without loss of generality for all k € N

B <Bi, and B <pB .
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2.5 Asymptotics of horocycle averages

Combining the definitions in (2.101) with (iii) and (xi) in Proposition 2.5.13, we
find C7 = 1 independent of €, z, k and T such that for all £ € N it holds

Oy le < eMor (8 =BLL1) hon (B =Bil1) < Oy, (2.102)

If B = 0 it follows for all k € Z>o, using the upper bounds in (2.102) and
Proposition 2.5.13 (xii) on 7 (T, B, z) = 1

€

k+1

T (C7'e) ™ < ehorfi < T (Cre)tL . (2.103)

If ﬁar < 0 it holds for all k£ € Z~g

htop

(Co ') (Cr ') < Meorfie < (o)

htop
6

max (Cle)k y (2104)

where Cp, Opin and Oy are from the assumptions in (2.99). By symmetry we
obtain analogous bounds for 5, . We let w™,w™ € C® (R, [0, 1]) such that

— _ ot . + _ + _
w =wo(T—"), w‘(im)_l and w‘(_oon%e)_O.

We set
wo = w+OT(-’ﬁ8_71‘) 'w_O(T+T(._T’Ba’hT(m)))’

and we set for all ke N
wy =wor (B ) —wTor (1B, 2),
wy =w o (T+7(-—T,8; ,hr (%)) —w o (T+7(-—T,5,_4,hr(x)),
Wi = w,j +w, .
We let N € Z for now be arbitrary. If N > 0 we set
N

wzzzwk=w0+w+o7'(-,ﬁ;{,,x)—fuﬁor(-,ﬁar,g;)
k=0

+w o(T+7(-=T, By hr(z))) —w o(T+7(-=T, 8, hr(x))).

If N <0 we put w=0. Since € < %, it follows directly from the definitions of
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2 Horocycle averages on closed manifolds

B and B; in (2.101) that for all k € N

. 1
T (267 _ﬁk agﬁz' (ZL’)) ST <46’ _kalagﬁ:_l (ZE)) and

1 B 1 B
T (—26’ _/Bk; )gﬂk— O hT (iU)) 2 T <—4€, _Bk_l’gﬁfc}—,1 o hT (z‘)) .

Together with the assumptions on the supports of w* and w™, we find if N > 0
supp (1 —w) < (0,7 E B> 95+ (x)
[[0,T] = ) %’ N>9Ipf

1 _
U <T+T (_%’_ﬁNuqﬁN o hr (:):)) ,T) )
We put

N = |-log (C{'T) /log (C1e)] .

Hence if N < 0 then T is bounded and if N = 0 then ﬁ;{[,ﬂ;, = 0. The latter
follows from the lower bounds in (2.103). Therefore the first statement in Claim
(i) follows immediately, using in addition Proposition 2.5.13 (xii) and the upper
bounds in (2.103).
Using Proposition 2.5.13 (iii) and also Proposition 2.5.13 (iv) in the last equality
for wp, we find for all k € N

’w]j 3:11.12_ °T ('7 _ﬁljagﬁz‘ (l‘)) = ’LU+ - ’UJ+ oT ('762;1 - B]jvgﬁl‘: (':U)> ’

’@T =wy, (-+T)orT (-, —,B,Z,gﬂ; o hr (:c)>

=w (T+:)—w o (T + T (-,,8,;1 — 512’9,8; o hr (m))) ,
Wo :=wg o T (., _/3(‘)“7963 (x))

—ut - wo (T4 7 (v (- ~85 9 (@) ~ 765 hr (=)

1
=w+-w_o(T—+->.
€

For this construction it holds for all k € N
CQ
supp @, — supp 0y, , supp Wy [O, 211/62:| . (2.105)

Since 0,7 (-, a, ) € C"7! for all @ € R and all x € M it follows for some constant
Cs3>0forall ke N, all z € M and all T > 0, using Proposition 2.5.13 (viii) and
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2.5 Asymptotics of horocycle averages
the bounds in (2.102),

~4
@]

oo [ @ g 1ol < Cs. (2.106)

We note
Yw,x (90) = Ywo(-+T),hr(z) ((P) :

Assuming N > 0, together with the equality in (2.97), we find the local decom-

. 3 ,t,
position® for all p € W,

Y (P) =g, 2 (ﬁﬁo* Pa (p)
N
+ Z 7@;19B+(I) (EB:7¢B+ (70) + Vﬁg,gﬁ,ohT(x) (‘Cﬂk_’qﬁﬁ SO) . (2107)
k=1 k k k k

Using the bound in Lemma 2.5.12 with the bounds in (2.106), and using the

assumption in (2.100) for some & e W4
|Lagalysra = 1057 (0, =0, ) - Fo gallyysa < Ce* max {1,]a|°}, (2.108)

and the bounds in (2.103), we estimate the right-hand side in the decomposition
in (2.107) for some constant Cy = C4(c) > 0, recalling that 7" is uniformly
bounded from below if N = 0, and conclude the first statement in Claim (ii):
X B
Nwe (9)] < CCTTer 7 (Cre) Mor (max {1, (k + 1) [log (Cre)], log T})° .
k=0
(2.109)

If N <0 then w =0 and T is uniformly bounded from above and we conclude
as well. To see the second statements in Claims (i)-(ii), we recall that the

construction of the functions wy, is valid for every T' > 0 and hence

e 0]
2, 0k = Lor):
k=0

Since for all p € C% ' (M) it holds

Yo (0. T) =957 wpe (P) = 0,

5This is analogous to the decomposition in [31, Lemma 3.1]. The main difference to our
decomposition is that we use a more explicit construction of the smoothing functions.

115



2 Horocycle averages on closed manifolds
we find by density for all ¢ € W9

Yo (0, T) = 157 wpee (0) -

It holds
suppwo < [0,77].

Comparing with the supports in (2.105), together with the bounds in (2.103)
and (2.104), we find some C5 > 0 independent of k, T, x and ¢ such that for all
keN, ifﬁ,j)OandB,; =0,

(T - suppw,;) ,suppw;’ S [O, Cs (Cle)kT] ,

respectively, and if B,j < 0and 3, <0,

(T — supp wk_) , supp w; -

emin ng
0, CT o ((C’le)k) h] .

Moreover, we find for some constant Cs = 1 for all p1,p2 € R, all a, —s > 0 and
all x € M, using Proposition 2.5.13 (iv) and the assumption of the upper bound
for 0,7 in (2.99),

$Omina

(7 (p1,0,2) = 7 (P22 0, )) ™ = 7 (01 — 2, g (2)) ™ < C5* (o1 — po) e
If & < 0 it holds analogously, now using the lower bound for d,7 in (2.99),

(T (Pl, O‘al‘) -7 (:027 «, m))_s =T (pl - P2, Q, hﬂ2 (1'))_8 < 05_8 (101 - p2)_s esﬂmaxa‘
Since 0 < —s < 1 and 0 < Opin < Omax it holds for some constant Cg > 0
independent of T,z and ¢, using the lower bounds in (2.103)-(2.104), for all
k e N and for all T > 0,

< fmax L smas
Hwk‘HC*S < 06 max 1,T Omin ((016) ) top )

Then we estimate for every ¢ € W;’t’q, using Lemma 2.5.12 and —s < grﬂ# for

)
max
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2.5 Asymptotics of horocycle averages

some constants C7, Cg > 0 independent of T, x,w and ¢

Z Ywg,w ()

k=0

e (0, T)| < lim

0

min Omax

0 emin Omax
< Cr ) max {T,Temax“emin } ((Cle)k) Mor max {1, ((Cle)k) hop } [

k=0

6
gYmax

Omin } H(p”wi,t,q .

Omin 4
< Cgmax { T, T Omax

This yields the second statement in Claim (i). On the other hand, using the
equality in (2.98) and assuming N > 0, we find,

N 0
Y (&7 T) - Z Ywy,,x (SB) = 2 7@;757 + <6pT (Oa _51:7 ) ' 9'5 © 975;)
k=0 k=N+1 P (=)

0]
+ Z 7ﬁg,gﬁ_ohT(x) (apT (07 —B ; ) Po 97,8,;> :
N+1 k

Then we proceed analogously as for the bound in (2.109), now using the upper
bounds in (2.103) and the assumption in (2.108) for all « € R and some A > 0,
¢ = 0 (recall that T (C1e)" is bounded from above). If N < 1 then T% [log T'|°

is bounded from above and we conclude as well, now using the upper bounds in
(2.104). O

Remark 2.5.15. The second statement in Lemma 2.5.14 (i) can be used to avoid
the |¢|lco-term in the bound of the error term in Theorem 2.5.7. However the
required range for s may not be very large (except in the case of constant vector
fields). The second statement in Lemma 2.5.14 (ii) is free from an additional
condition on s. We use it in the following subsection in the proof of Lemma
2.5.18 (v) and Theorem 2.5.7. Both statements give also bounds for all values

T > 0 which seems to be new.

2.5.3 Showing A\pax = htop and Theorem 2.5.7

In this subsection we shall prove Theorem 2.5.7. First, we state and prove two
lemmas which will imply that Apez = Rtop, assuming Amin < Amax, is a simple
eigenvalue and that \,,q, is uniquely attained.

We remind the reader that uniqueness and simplicity of the spectral bound is
known to hold (see [22, Lemma 5.1], [21]) for the spectrum of mixing Anosov
flows (which are not necessarily contact), but for different anisotropic spaces,

and only for the potential V' given by the Jacobian of the flow (and associated
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2 Horocycle averages on closed manifolds

to the SRB measure).
For the sake of the next two lemmas we have to introduce the following condi-

tion”:

Condition 2.5.16 (Strong vanishing). Let0 < t,q,—s <r—1 and letp € [1,0].
Let oo € Wyt? for all o > 0 such that |ealysta =1 and
p

limsup e " | L, 4., Pallysta > 0.
a—00 p

If for some —s < —s' for all x € M and all w € C’O_S’ (R)

L
lim Yw,z a.daPa =0
@557 \ [Lag ol

then hma_,oo HgOaHsz,t,q =0.

We give the upper bound on the spectral radius:

Lemma 2.5.17 (Upper bound on the spectral radius). Let 0 < t,q,—s <7 —1
and let p € [1,00]. For allz € M and all o = 0 let 0,7 (-, —a,x) € C"H (R, M).
Under Condition 2.5.16, With the choice ¢o = 0,7 (0, —ar,-) for some constant
C > 0 it holds for all a = 0

HﬁaﬁangathW;,uq < Clelttora

Proof. We show the claim on |L4 4, s,t.q by contradiction. Suppose

lyyrsta
Wit W

e fwore | £ st sitg — 00 as o — o0.
H a,ba Wp —)Wp

Then there exists ¢, € Wy such that |[@ayysta = 1 and
P
He_hmpaﬁa,%@aHW;’tq — 0 as  «— . (2.110)

We assume for some w € C§ (R) and some z € M

£Q,¢a Po
Yw,x
avtn palyzre

"This is introduced ad hoc as it was pointed out by Colin Guillarmou and Giovanni Forni
that for the weak-vanishing to imply strong vanishing is not obvious here. In some sense
one would expect even a stronger statement. Namely that for every eigendistribution D in
the expansion of Theorem 2.5.7 at least for one piece of horocycle orbit w around z € M
one has |yw, (D) > 0.

lim inf
a—>00

> 0. (2.111)
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2.5 Asymptotics of horocycle averages

This assumption is justified, assuming Condition 2.5.16. We choose T' > 1 and
o = 0 such that

(T, a,x) = 1.
Then, using Proposition 2.5.13 (xii), we find for some constant C' > 1
C~teford < T < Celtore, (2.112)
We have, using the equality given in (2.97),

Ywor (- o),z (9004) = Yw,ga(x) (£a7¢a<)0a) . (2113)

We recall —s < r — 1. Therefore the norm ||wo 7 (-,a, )|« is bounded as
o — oo, using Proposition 2.5.13 (x). By Lemma 2.5.12, the linear functionals
Ywor(-a,z)z A0 Yy g, (z) Which appear in (2.113) are continuous on Wy, Hence
the left-hand side in (2.113) grows at most by 7' as & — o0 uniformly in z.

Then, comparing with the estimates for 7" in (2.112), using the assumption in

(2.111), this contradicts the assumption in (2.110) and we conclude. O

We next show the lower bound (and uniqueness and simplicity of the spectral
bound Apax):

Lemma 2.5.18 (Invariant measure and spectral bound). Let u be the unique
Borel probability measure which is invariant by the horocycle flow h,. Let p €
[1,00] and let s <0 < q¢ <t such thatt —s < r — 1. It holds:

/
(i) we (W),
(it) Lo,y 1t = ehtorey, (L., 4, denotes the adjoint operator of Lo, ),

(111) hiop € 0 (X +V) |W;‘,t,q.
Moreover, assuming Condition 2.5.16, it holds:
(iv) Amaw = htop-
(v) The spectral bound Apay is uniquely attained by the simple eigenvalue Ptop,

assuming Amin < Amagz-

The vector y is also invariant by the adjoint horocycle flow since the time average
converges to the (unique) ergodic mean (a result by Marcus [50]). This is in

analogy to [31, Lemma 2.11].
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2 Horocycle averages on closed manifolds

Proof. We note for every ¢ € C (M), using [19, Theorem 2.1] for the first,
the equality in (2.97) for the second and [19, Lemma 3.1] for the third equality,

for some A > 0, for every a > 0

.1 . 17T, o, ) 1
plp) = lim v (p,T) = lim ——=—— T a.z) V% (Lapatp, T (T, v, 2))
- AN (Lagnf) (2.114)
To see A = eftor we refer to [19, p.84] (alternatively use Proposition 2.5.13 (xi)).

Using Claims (i)-(ii) with A = h¢op in Lemma 2.5.14 together with the bound
given by Lemma 2.5.17, there is w € C" (R) and a constant C; > 0 such that for
all pe C (M)

. 1
)] < Jim | a9 < Ct el .11

Claim (iii) follows from o ((X + V') |(W;,t,q)/ =o(X+V) |W;,t,q, using [46,
Section II.2.5]. Claim (iv) follows from (iii) together with Lemma 2.5.17. To
see Claim (v), first we note that all A\ € o (X 4+ V) such that R\ = hyp are
eigenvalues, using Lemma 2.4.10 together with the assumption Apin < Amax-
Using Claim (iii), there exists D; € W,'"? such that Leo.p. D1 = eMoreDy for all
a = 0. We let Dy # Dy € W%\ {0} such that L, 4, Dy = e Dy for all a > 0,
where A € C and R\ = hiop. Then it holds, using Claim (ii) for the last equality,

e (D2) = 11 (Lag,D2) = €"P® 1 (Da).

Since A # hiop it holds p(D2) = 0. In fact, by same reasoning we can always
assume [ (Dz) = 0 if X # hyop. And if A = hyop there are only finitely many
such Dy and we can again assume u (D3) = 0 by a change of basis. The upshot
is that the following reasoning works always if R\ = hyop and p (Dg) = 0.
Then, using Claim (i) and the equality in (2.114), for every € > 0 there is
¢ € %1 (M) such that for all o € R and for all z € M

1
A 1Yy () (%T)‘ =lp(p)l<e (2.116)

Using Lemma 2.5.14 (i), for all T > 0, for all z € M and for all & € R there

exists w € C" such that

. 1 ) 1
lim ‘T’Yg—a(x) (‘P,T)‘ = lim ‘T’Yw,g_a(;,;) (90)‘ (2.117)

T—oo T—o

120



2.5 Asymptotics of horocycle averages

Since 3,7 (0, —a, <) € C"! for all « € R, using Lemma 2.3.3, we find L, 4, D2 =
e**Dy for all o € R which matches the condition (2.100) in Lemma 2.5.14 (ii).

Then, using Lemma 2.5.14 (ii) for the upper bound and the equality in (2.97)
for the last step, we find for some constant Co > 0 independent of z, a and ¢,

forallae R

! .1 1
lim T’Yw,g_a(x) ((p)‘ = lim T’Vw,g_a(ar) (D2) + T’Yw,g_a(x) (p — Do)

T—w® T—w©
. 1
> lim | =5, @) (D2, T)‘ — Gl — Dol
. eltvopr
= ,Il‘l_I)Igo TFYI (D27 T (T7 Oé, :L‘))‘ — 02 HQO — DQHW;’t’q .

(2.118)
By density of C ' (M) in W;"" we assume
o~ Dalygen <.

For every T > Ty > 1 we let a = 0 such that 7 (T, «,z) = Tp. By Proposition
2.5.13 there is C3 = 1 independent of T and x such that ghtop® > CnglO. Since
€ > 0 was arbitrary we conclude for all Tj > 1 and all x € M, using the estimates
(2.116)-(2.118),

=
=

Y (DQ, To) = 0.

On the other hand we find for all 77,7y > 1

Yo (D2, To = T1) = Yn_qp, (@) (D2, T0) = Vn_rp, (2) (D2, T1) = 0.

Hence it holds 7, (D2,T) = 0 for every T € R and every x € M. Then for every

w E Cg“ we find, using integration by parts,

e (P2) = = [ (@) ()7 (Do) .

Since v, (D2,p) = 0 for all p > 0 we conclude v,z (D2) = 0. Then, using
Condition 2.5.16, we find Dy = 0 but we assumed D5 £ 0. O

Proof of Theorem 2.5.7. By assumption
max {Amin, 0} < 0 < Amax = Atop-

We note that we have always Aymax = hiop and uniqueness and simplicity of Amax
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2 Horocycle averages on closed manifolds

under Condition 2.5.16. Using the equality in (2.67) for the projectors IIy ;, we
have for all 1 < i < n)

My

Iy ;0 = Z Otrnig) (©) Dinigy-
=1

Recalling the nil-potent operators N ; of finite rank (e.g. see in (2.66)), using
the formula for the matrix action L, ¢, IIx; = exp (Aa) exp (Ny ;o) I, ; for all
a =0 and

exp (—Aa) exp (=N ;@) Lap, x; = Iy,

we find for some constant C7 = Cy (), 4,7) for all « € R
Hé’p (0, —a,") - Dri) © g,aHW;,t,q < C1 exp (RAa) max {1, |a|j71} .

Hence Dy ; ;) satisfies the upper bound in (2.100) for all v € R if A > 0.

Inspecting the end of the proof of Lemma 2.5.18, we notice that all eigendis-
tributions Dy ; ;) associated to some eigenvalue A with R\ > hiop do not con-
tribute to the expansion except Dy, 1,1)- This follows, if j = 1 using that
Y (D(M-,l),T) =0forall 7> 0and all ze M. If j > 1 we arrive at the same

conclusion, using in the estimate in (2.118) for all & > 0

LagaD(nig) = exp (Aa) exp (Ny i) Dy 5)-

Let Ae X5 =0 (X +V) |W;,t,q Nn{zeC| Rz = 6}. For every T = 0 and every

x € M we set, using w € C" given in Lemma 2.5.14,

_a .
C(}\mj) = C()\,i,j)(Tvx) =T htop max {17 |10g ’T|1 J}Vw,x (D(A,i,j)) .
Then, using the first statement in Lemma 2.5.14 (ii), the coefficients c(y ; ;) are
bounded independently of T" and z. It holds

mx

Yw,x H/\ 190 Z O(A Z,J) Pwi"L" (ID(AJJ))
j=1
my;

Z C(\ij T’Lcop max{l |logT|J }(’)(/\JJ) (p) .

We let p as given in Lemma 2.5.18. Using Lemma 2.5.18 (v), and assuming
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2.5 Asymptotics of horocycle averages

T = e, we find for every finite subset Ay < 35

ny Mi;

A
T i—1
% (T) =% (Pl D) 1t D5 25 D5 conapT ™ (08 T) ™1 Opr iy +Em,z a0
Xeds i=1 j=1
§R>\<htop

where the remainder term is

Erans = (Ywaz (Dhiop,1,1) — Vo (D(hmp,1,1),T)) 0

+ Yw,e (id— > 2 Hm) + (% (. T) = Ywa) - (2.119)

AeAs i=1

The existence of the limit lim7_, T 'v, (D(hmp,l,l)v T ) is shown by analogue es-
timates (2.116)-(2.118). Then the statement on the limit limy oo T Er 2 A, ()
follows, using unique ergodicity of the horocycle flow [19, Theorem 2.1] and fi-
niteness of As. We bound |E7, A, (¢)| as required, using the first statement in
Lemma 2.5.14 (i) and the full statement in Lemma 2.5.14 (ii) together with the
assumed upper bound in (2.88).

The additional claims under Condition 2.4.11 can be seen as follows (see also
the remarks above and below Condition 2.4.11): The finiteness of ¥ follows
from [19, Theorem 1]. To this end we have to show that [19, Assumption 1-3A]
are satisfied for the renormalized semigroup e r@L, , - Wt? — W9, In
fact Condition 2.4.11 yields just a reformulation of [19, Assumption 3A] for the
resolvent of the generator X +V — hiop. Now [19, Assumption 1] states that for

some Banach space W% < B it holds

1
a=0 &

< 0. (2.120)

Wy ti-B

We set B := W;’t’qfl. We bound the left-hand side in (2.120), using the equality
in (2.69) together with Lemma 2.3.3, Lemma 2.3.5 and Lemma 2.5.17. Now [19,
Assumption 2] just states that the essential spectral bound of X + V' — hyep is
bounded by some A < 0, where V' = —0,0,7(0,0,-). By assumption it holds
A < Amin — Mtop < 0. Finally, the claimed choice ¢ = § + € for all € > 0 follows
from [19, Theorem 1] as well. In particular, this choice for ¢ follows if for all
a = 0 and for all € > 0 there exists Co = C5 (0, €, ) such that

ny
‘ﬁa,% (id— 2 2 H/\,i) ¥

AeX5i=1

< 026(6+6)04.

S;t,q
Wy
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2 Horocycle averages on closed manifolds

We set 5 = ¢ — > \ex, 2oy i It —g+1 <r—1 it follows, using Lemma
2.3.3, Lemma 2.3.5 and [19, Theorem 1], for some constants C5,Cy = Cy (€) > 0

1La.aPsllysia < O3l Lage (X + V) @slystat + Cs [ Lagpsllyysra

< G5 Lo (X +V = hiop) @allysra + (Cs + huop) [ Lo g pslys o

< e+ (H(X +V = hyop)? goHWw + (X +V = hiop) ¢|W;,t,q) .
p

Boundedness of the last estimate follows if ¢ < r—2 because then [ X (Vo)|yys.t.0

and HXQQOHWS,t,q are bounded, recalling ¢ € C’;{l (M) and V € C"~1. Combining
P

the required bounds for ¢ yields

t—r+2<qg<r—2

Since we required ¢ > 0 it is enough to require t —r 4+ 2 < 0 and 0 < r — 2 which

yields the additional condition on ¢ and r. O
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For the readers convenience we give a proof of a well-known result:

Lemma A.1 (Fixed points). Let M be 2x2 integer matriz acting on T2. Assume
that det (id —M) # 0. Then the following holds:

(i) The number Ny of fized points of M is given by Npy = |det (id —M)]|.

ii) There exists a disjoint partition D; € T?, 1 < j < Ny of T? such that the
J

maps yj: D;j — T?: z +— (id —M) x are bijections.

Proof. We let id —M act on the cover R?. The linear map id —M sends a
fundamental region of T2, e.g. [0, 1)2, to a convex polytope having a non-zero
volume given by |det (id —M)|. Each fixed point of M on T? is mapped by
id —M to an element of Z?, and the number of integer points contained in the
polytope is just given by its volume. Claim (i) follows.

Let v1, v2 € Z? be two different such integer points in the polytope. Now assume
that there are f1, f2 € [0, 1)2 such that

(d—M) " (fi — fo) = (id —M) " (01 — v2) (mod [0, 1)2) .

The right-hand side is mapped to a fixed point of M on T?, implying that f; — fo
is an integer point, which is only possible if f; = fo. Therefore, v1 = vo, which

contradicts the assumption, and Claim (ii) follows. O

For d € N and every real d x d matrix M we denote by o; j (M), 1 <1, j < d the

submatrix arising by removing the i-th row and j-th column from M.

Lemma A.2 (Determinant preserving transformation). Let d € N, and let
T:R* - R? and ¢: R — R be differentiable maps. Fiz 1 < j < d and o € R?
and set

Ty: RS RY: 20 (i () | 1<i<d).

Then for x € R¢ it holds

det Dy (T +Ty) —det D, (T) = 0
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if and only if at least one of the conditions holds:
(i) 3%, (=) a;deto; ; (D, T) =0 or
(ii) M (z;) = 0.

Proof. We develop the determinant of D, (T + Ty) with respect to the j-th co-

lumn. Since T}y depends only on z; this gives

d
det Dy (T + Typ) = (—1)7 D (=1)0; (T + Ty), (x) det 5 ; (D, T) .
i=1

Hence, it holds

d
det D, (T + T) — det (D, T) 2 )i det o;; (Dy T) 0 (Ty), (z)
) d
= (1) (x; 2 ¥y det 5,5 (D2 T).
One deduces Claim (i) and (ii) directly from the right-hand side. O

Dolgopyat pointed out that one can use some sort of bootstrapping by looking at
even powers of traces to show that there are at least two non-trivial resonances.

Suppose that there exists only one non-trivial A € sp Kp. Then we find

TrK2 = 14+ A2 = 1+ B (v)® + 026 Bys(1)) + O(e")
= ’I‘I"CTQ =1 + EBMQ(LZJe) + 0(62)a

where 9, := M1 + 1 o (M + ep). Then if ¢y #% 0 would imply the existence of

a further resonance (for smaller ¢y). We could extend the reasoning by using
TrKCopor = Tr IC%k <1 (Tr ICQk ' ) ,

to show additional resonances for even smaller €.
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We check the expansion and contraction properties of the cones claimed in
Section 2.2:

Lemma B.1. Let C and 6 be the constants from (2.2). Letx € M and(0 <y <1
and recall the cones C (x) and C (x) defined in (2.8). Let o > 0 and o' > 0
such that C?0%y < ~' < 1. Then it holds:

(i) (Dg-a)" C5 () €C, (9-a (2)),

(ii) (D ga)" C () € C (9a ().

In particular, there exists v > 0 such that for all large enough o > 0 it holds
v <7
Proof. First we note that a fixed choice 4/ < 7 is possible for all large o > 0
because # < 0. We show claim (i). Claim (ii) is shown analogously. We let
v- +vt +00 =0 e ) (). We estimate (assuming S0 < | (@D g_a)” W] <
Cl

[(Dg-a)" v + [(Dg-a)" | < C (Jo"| + |o°]) < Cv o]
< C%9%y H(D g—a)"" 1)7H )

It follows that (Dg_ o)™ v € Co(g-a(z))ify > C?6v. Since C(9-a (@) €

-

e (9-a (@) for all € > 0 we conclude. O

Lemma B.2. Assuming the constants C' and 0 from (2.2), let v > 0, x € M
and suppose that C%20%y < 1. Then for all C?0%y < ' < 1 it holds:

(Dg—a)"v]

. . H 1+7 p—a
(i) If ve CF (z) then ol > C1i6 .
t
(ii) Ifve (Dga)” C5 (@) then L4 < oo o

Proof. Let ve T}M. We recall

v=0v"+0vt +°, V7 € Eyyp,0€ {—,+,0}.
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If v e C (v) then by (2.9), for all A > 0 it holds

H(D gfa)tr'UH > H(D gia)tr v- H - H(D gfa)tr U+H - H(D gfa)tr 'UOH
1
z &0 o=l + C (v ] + llwoll)
> Co™ (1=o) o[ = CO™ (1 =" =X) o] +A]o7])
A
>0 (=N o |+ 5 (] + o' D).
The choice A = 1 ylelds |(Dg_a H Cy 1+7 0~ |||

If ve (Dga)” c+( ) then by (2.9) for all A > 0 it holds

g )"0 < €O" (1 +9) || = €O (14 5+ 2 o] = Ao

. A _
< oo (aer e 0l =25 0]+ D))

The choice A = HV yields (D g—q)" v < Cfi?,@o‘ [v]. O
’Y
We let V, be the gradient and V' the divergence with respect to z € R,

Lemma B.3 (Integration by parts (cf. [10, p.10])). Let B be a Banach space
and let f: RY — B be C! such that

If ()lg =0 as [2] = .

Let G: R? — R be C? and assume that |V,G(z)| > 0 for every z € supp f. Then
it holds

J €iG(z)f(Z)dZ _ IJ €iG(Z)Vtr VZG(Z)f(Z) dz.
Rd Rd VLG

We understand the above transformation as integration by parts. Repeated

application leads to the following iteration pattern.

Lemma B.4. Let f(z,1,£) and V.G (z,1,§) be complex and real valued functi-
ons, respectively, both C™, C™2, C™ in z,n,6 € R? for some ry,r9,r3 > 0,
respectively. Let Vo(z,n,&) = f(z,1,€) and

VZG(Z7 n, £)Vk‘—1 (27 m, 5)
IV.G(z,n,)|*

Vi(z,m,€) = V¥ , where k=1,...,|r]. (B.1)
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If IV.G(z,n,€)| > 0 then it holds

Vi(z,m,€) = [V.G(2,1,6)|* fulz,m.€),

where fi(z,n,€) is C"7F in 2z, C™, C™ in n,€, respectively and supp f =

supp fr. Moreover, it holds for some constant C = 1

k
Ifilco <C sup  max [|V.G(z,1,8)] &) vm

(2,m,€)esupp f O<[I<k |V G(z,n 7§)| ¢

(B.2)
Proof. We prove this by induction. For Vy = V(z, 1, £) the hypothesis holds. We

assume the hypothesis to hold for Vi, = Vi(z,7,£) up to some 0 < k < |ry]| — 1.

We have therefore

r{ V.G
tr ‘Vzg|fk _ vtz (‘v G|fk) B (k+ ) V. G|2ka |V G|
|V G|k+1 |VZG|k+1 |VZG|k+1

Vir1 = (B.3)

Hence we can write Vi1 = |VZG|7k*1 fr+1, where fry1 = fri1(z,m, &) is regular
as required by the lower bound on |V,G|. In (B.3) one sees that supp fr11 S
supp fx. From (B.3) one finds

V.G [k
v Gk+1
Jer1 = | <|V GEv.GF )

We recursively expand fi into this equation and estimate by the worst term
which yields the upper bound (B.2). O

A regularized version of integration by parts is used if the involved maps are only
Holder continuous. A form of Lemma B.5 below appeared in a work of Baladi-
Tsujii [10, p.12, Equation 3.4]. We let ¢: RY — R~ be C®, supported on the
unit ball such that {3, ¢(z) da = 1. For every e > 0 we set ¢(z) = Eidgb (2).

Lemma B.5 (Regularized integration by parts). Let 0 < & < 1. Let f: R —» C
be a compactly supported C°-map and let G: R — R be C'*0 and assume that
|V.G| > 0 for every z € supp f. Set h(z) := % and he == h = ¢.. For
every L = 1 it holds

J 6iLG(z dZ _i 1LG z)vtrh ( )d (B4)
Rd L
+

d

J..c
|, ¢HOvEGE) ()~ ) a =

d
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In particular, for some constant C = 1, it holds |V he|, < C|h]cs €' and
I = el <Clhlgse.
Proof. Since G is C'*? and |V.G| > 0, the map h is C°. We have VI'G(2)h(z) =

f(2) and we write

J]Rd O f(2)dz = J L) (VUG (2)he(2) + VEG(2) (h(2) — he(2))) d 2.

Rd
And since h. is compactly supported we have, using integration by parts,

[ erooveaemaz =~ [ drovineas
Rd iL Rd

To see the norm estimates, we have
_d ’ 2 ’
€ (h(z) —h(z=2"))v (= ]d=z
Rd €
J (h(2) —h(z —€')) v (2') d 2
Rd

|h(2) = he(2)] =

< Ihlgs €.

Since supp h is compact, for every z € R there exists Z € R? such that h(z—2) =
0. We estimate, for some constant C' > 1, using 1-Lipschitz continuity of the

norm,

fRd W) (V.v) ('Z - Z/) 4z

<C HhHC5 J ‘ZI — 2‘6
R4

JRd (h(z = 2") = h(z — 2)) (V.v) (i) 4
(V.v) ( :

z
€

)‘dz' < C |h||gs €74
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