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Soutenue le 10 décembre 2018 devant le jury composé de :
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École Doctorale de Sciences
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“To live in an asymmetric world, you should
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Je me sens également très reconnaissant à Shu Shen, Malo Jézéquel, Colin Guil-
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Opérateurs de transfert et moyennes
horocycliques sur les variétés fermées

Résumé

Cette thèse de doctorat approfondit l’étude de la dynamique hyperbolique sur

les variétés fermées et connexes M et des opérateurs de transfert associés.

Nous étudions deux problèmes : le premier problème concerne les perturbati-

ons analytiques réelles des difféomorphismes d’Anosov linéaires sur le tore : une

résonance non triviale apparâıt-t-elle pour une perturbation génériques d’un

difféomorphisme d’Anosov linéaire sur le tore ?

Le second problème concerne une hypothèse sur la moyenne temporelle des flots

horocycliques induits par un flot d’Anosov : la moyenne temporelle des flots

horocycliques en courbure négative variable converge-t-elle vers la moyenne er-

godique en vitesse polynomiale ?

Les opérateurs de transfert associés agissent de façon bornée sur certains espaces

de Banach anisotropes par la composition du système dynamique inverse suivie

d’une multiplication avec des fonctions de poids spécifiques. Dans notre analyse

des problèmes mentionnés ci-dessus, ces opérateurs de transfert représentent le

principal intérêt. Nous devons étudier leur spectre bas pour progresser sur nos

deux problèmes. Par le spectre bas, nous entendons la partie du spectre qui se

situe entre le spectre périphérique et le spectre essentiel de ces opérateurs de

transfert.

L’approche fonctionnelle de ces opérateurs de transfert se concentre sur les es-

paces de Banach anisotropes. Nous expliquons l’idée principale derrière cette

approche dans le cas des difféomorphismes d’Anosov : des exemples simples

de difféomorphismes d’Anosov F sont donnés par les difféomorphismes linéaires

d’Anosov sur le tore bidimensionnel. Nous savons que les difféomorphismes

d’Anosov transitifs et analytiques ont une unique mesure SRB µSRB (qui est in-

variante par le difféomorphisme). Pour les automorphismes linéaires sur le tore,

la mesure SRB est la mesure de Lebesgue µLeb. Notons toutefois que même

de petites perturbations analytiques de A ne préservent pas systématiquement

µLeb. Puisque µSRB est une mesure de Borel, on a µSRB P C pMq1. Nous souhai-

tons maintenant écrire µSRB comme l’unique vecteur propre associé à la valeur

propre 1 pour un certain opérateur de transfert L qui apparâıt comme l’adjoint
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de l’opérateur de composition KF . Cependant les mesures supportées sur les

orbites périodiques de F sont également contenues dans C pMq1. Afin de trou-

ver les bonnes propriétés spectrales de l’opérateur L, celui-ci doit être défini sur

un espace de Banach anisotrope B et non sur C pMq1. La norme de B prend en

compte le comportement dilatant et contractant de l’application F . En particu-

lier, la norme anisotrope de B traite les éléments de B comme des fonctions dans

les directions dilatantes et comme des distributions dans les directions contrac-

tantes de F .

Les valeurs propres discrètes réciproques de L sont aussi appelées les résonances

de F . Si F � A, alors il y a seulement les résonances triviales t0, 1u. Jusque là

il n’était pas su qu’il s’agissait d’un comportement attendu si A est perturbé de

manière générique.

On entend ici par perturbation générique toute application d’un ensemble ouvert

et dense dans une boule de difféomorphismes analytiques réels contenant A.

Dans de l’étude du premier problème, nous agissons avec L sur un espace de

Hilbert anisotrope. Nous répondons à la question dans le premier problème par

l’affirmative.

Le second problème que nous examinons fait intervenir les flots d’Anosov. Ces

flots ont été instaurés par Anosov pour étudier le flot géodésique sur le fibré

tangent unitaire de variétés fermées à courbure sectionnelle négative variable.

De plus, nous avons besoin les flots d’Anosov d’être des flots de contact. Des ex-

emples de flots d’Anosov-contact sont donnés par les flots géodésiques. Les flots

horocycliques associés au flot d’Anosov sont dirigés dans la direction contractant

du flot d’Anosov. Nous savons par les travaux de Marcus que pour tout flot horo-

cyclique continu qui correspond à un flot d’Anosov C2 mélangeant, il existe une

unique mesure de probabilité de Borel invariante par le flot horocyclique. Ka-

tok et Burns ont démontré que tout flot d’Anosov-contact est mélangeant. Par

conséquent, dans notre contexte, la moyenne temporelle de l’horocycle converge

vers la moyenne ergodique unique. Mais à quelle vitesse converge la moyenne

temporelle ?

Dans le contexte de la courbure négative constante, on sait grâce aux travaux

de Flaminio et Forni que cette vitesse est polynomiale. La vitesse est contrôlée

par des valeurs propres pour certaines distributions propres du flot géodésique.

Un problème analogue dans lequel le flot géodésique est remplacé par un

difféomorphisme d’Anosov a été étudié plus tard par Giulietti et Liverani. Ils ont,

de plus, dans leurs travaux, supposé que le résultat de Flaminio–Forni devrait

s’étendre au flot géodésique dans le contexte de la courbure négative variable.
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Dans l’étude du second problème des opérateurs de transfert pondérés Lα, α ¡ 0

apparaissent. Suivant l’approche fonctionnelle, il suffit essentiellement de con-

struire un espace de Banach anisotrope B tel que les opérateurs Lα agissent

sur B, et d’avoir un spectre périphérique consistant en une valeur propre simple

isolée. Cependant, la direction d’écoulement du flot d’Anosov n’est ni contractée

ni dilatée par le flot d’Anosov, ce qui pose problème dans notre analyse. Nous

appliquons donc à la place la stratégie suivante:

Sur un espace de Banach anisotrope B bien choisi, la famille d’opérateur de

transfert tLα : B Ñ B | α ¥ 0u forme un semi-groupe fortement continu et ad-

met donc un générateur bien défini. La quasi-compacité de la résolvante de

ce générateur garantit qu’une partie du spectre du générateur par rapport à B
ne contient qu’un spectre discret de multiplicité finie. On trouve alors que le

spectre discret contrôle la vitesse de convergence. Cependant, pour montrer que

la vitesse de convergence est polynomiale, nous devons imposer une condition

supplémentaire à la norme de la résolvante.

Cette thèse est organisée comme suit : dans le premier chapitre, nous étudions

les perturbations analytiques réelles et génériques rA d’un difféomorphisme

d’Anosov linéaire sur le tore bidimensionnel. Nous appliquons l’approche foncti-

onnelle aux opérateurs de transfert comme décrit ci-dessus dans le cadre d’un

espace de Hilbert anisotrope.

Cet espace de Hilbert est explicitement construit comme la complétion d’un

espace de Hardy par rapport à une norme anisotrope. Nous montrons que

l’opérateur de composition K rA est à trace. En fait, nous montrons que K rA
est nucléaire d’ordre 0, ce qui est un résultat plus fort. On obtient la réponse au

premier problème par un calcul de la trace de K rA associé au système perturbé.

Nous abordons ensuite des propriétés spectrales de l’opérateur de transfert L.

Le premier chapitre figure tel qu’il a été publié en 2017 dans Nonlinearity 30.3, à

l’exception de l’annexe qui est séparée en Appendix A et de la liste de références

qui est combinée avec celle de cette thèse.

Dans le second chapitre, nous traitons des flots d’Anosov différentiables finis

sur des variétés fermées et connexes ainsi que les flots horocycliques stables as-

sociés.

La définition de cônes et d’hyperbolicité via des cônes d’une application est

développée. Nous introduisons des familles d’opérateurs de transfert tLα, α ¡ 0u
avec des fonctions de poids positives arbitraires. Ceci est suivi par la con-

struction d’espaces de Banach anisotropes. Ces espaces sont analogues aux
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espaces construits par Baladi et Tsujii pour étudier les difféomorphismes hyper-

boliques.

Nous étudions les propriétés des opérateurs Lα, α ¡ 0, sur les espaces de Banach

anisotropes ainsi que les propriétés de la résolvante des générateurs des familles

tLα, α ¡ 0u. Nous établissons une inégalité de Lasota–Yorke pour la résolvante.

Nous introduisons et abordons la condition supplémentaire sur les bornes de la

résolvante.

Ensuite, nous nous focalisons sur les flots d’Anosov de contact en dimension 3

(nous considérons aussi la co-dimension 1). Nous donnons des bornes locales à

l’intégrale de l’horocycle, ce qui nous permet de obtenir notre décomposition de

l’intégrale de l’horocycle. Enfin, la condition supplémentaire sur la résolvante

est utilisée pour obtenir la vitesse polynomiale de convergence vers la moyenne

ergodique.

Le troisième chapitre est également disponible sur arXiv.

Mots-clés

Flot d’Anosov, flot horocyclique, opérateur de transfert, espace de Banach ani-

sotrope, resonances, moyenne ergodique.
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Transfer operators and horocycle
averages on closed manifolds

Abstract

This doctoral thesis deepens the study of hyperbolic dynamics on connected,

closed Riemannian manifolds M and associated transfer operators.

We investigate two problems: The first problem concerns real analytic pertur-

bations of linear toral Anosov diffeomorphisms: Does a non-trivial resonance

appear for generic perturbations of a linear toral Anosov diffeomorphism?

The second problem is to make a statement about the time average of horocycle

flows with underlying contact Anosov flow: Does the time average of horocycle

flows in variable negative curvature converge to the ergodic mean in polynomial

time?

The associated transfer operators act boundedly on certain anisotropic Banach

spaces by composition of the inverse dynamical system followed by a multipli-

cation with specific weight functions. In our analysis of the beforementioned

problems these transfer operators are of central interest. We need to investigate

their deeper spectrum to progress on our two problems. By the deeper spectrum

we mean here the part of the spectrum which lies in between the peripheral and

the essential spectrum of these transfer operators.

The functional approach to these transfer operators puts importance on the ani-

sotropic Banach spaces. We explain the principal idea behind this approach

in the case of Anosov diffeomorphisms: Simple examples of Anosov diffeomor-

phisms F are provided by the linear Anosov diffeomorphisms A on the two-

dimensional torus. Real analytic transitive Anosov diffeomorphisms are known

to have associated a so-called unique SRB-measure µSRB which is invariant by

the diffeomorphism. For the linear toral automorphisms the SRB-measure is just

the Lebesgue measure µLeb. Note however that even small real-analytic pertur-

bations of A may not preserve µLeb. Since µSRB is a Borel measure it holds

µSRB P C pMq1. We wish now to recover µSRB as the unique 1-eigenvector for a

certain transfer operator L which arises as the adjoint of the composition opera-

tor KF . However measures supported on periodic orbits of F are also contained

in C pMq1. In order to find good spectral properties of the operator L, it has to

be defined on an anisotropic Banach space B and not on C pMq1. The norm of

11



B takes into account the expansive and contractive behavior of the map F . In

particular, the anisotropic norm of B treats elements in B as functions along the

expanding directions and as distributions along the contracting directions of F .

The reciprocal discrete eigenvalues of L are also called the resonances of F . In

case that F � A there are only the trivial resonances t0, 1u. It was not known

before whether this is an expected behavior if A is perturbed generically.

By a generic perturbation we mean here any map in an open and dense subset

of a ball of real analytic toral diffeomorphisms containing A with respect to the

uniform norm.

In the investigation of the first problem, we act with L on an anisotropic Hilbert

space. We answer the question in the first problem in the affirmative.

The second problem that we investigate involves Anosov flows. These flows

where introduced by Anosov to study the geodesic flow on the unit tangent

bundle of closed Riemannian manifolds with variable negative sectional curva-

ture. Moreover, we require the contact assumption for the Anosov flow. Exam-

ples of contact Anosov flows are provided by geodesic flows on the unit tangent

space. The horocycle flows associated to the contact Anosov flow point into the

contracting direction of the Anosov flow. We know by the work of Marcus that

for every continuous horocycle flow which corresponds to a C2 mixing Anosov

flow, there exists exactly one Borel probability measure which is invariant by the

horocycle flow. Katok and Burns have shown that every contact Anosov flow is

mixing. Hence in our setting, the continuous horocycle time average converges

to the unique ergodic mean. But how fast is this convergence?

In the constant negative curvature setting, for the geodesic flow, it is known

due to the work of Flaminio and Forni, that this speed is polynomial and is

controlled by eigenvalues for certain eigendistributions for the geodesic flow.

An analogous problem where the geodesic flow is replaced by an Anosov diffeo-

morphism was studied later by Giulietti and Liverani. Moreover, in their work

they conjectured that the above result of Flaminio–Forni should extend to the

geodesic flow in variable negative curvature.

In the study of the second problem weighted transfer operators Lα, α ¡ 0, ap-

pear. Following the functional approach, in principal, it is enough to construct

an anisotropic Banach space B such that the operators Lα, acting on B, have

a peripheral spectrum consisting of an isolated simple eigenvalue. However, the

flow direction of the Anosov flow is neither contracted nor expanded by the Ano-

sov flow which poses a problem in our analysis. We apply instead the following

strategy:
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With a good choice of an anisotropic Banach space B the transfer operator fa-

mily tLα : B Ñ B | α ¥ 0u forms a strongly continuous semigroup and admits

therefore a well-defined generator. Quasi-compactness of the resolvent of this

generator ensures that part of the spectrum of the generator with respect to B
contains only discrete spectrum of finite multiplicity. The discrete spectrum is

then found to control the speed of convergence. However to show polynomial

speed of convergence we need to impose an additional condition on bounds of

the resolvent.

Keywords

Anosov flow, horocycle flow, transfer operator, anistropic Banach space, reso-

nances, ergodic mean.
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0 Introduction

This doctoral thesis deepens the study of hyperbolic dynamics on connected,

closed Riemannian manifolds M and associated transfer operators.

Two problems are studied: The first problem concerns real analytic perturba-

tions of linear toral Anosov diffeomorphisms. The second problem is to make

a detailed statement about the time average of horocycle flows with underlying

C3 contact Anosov flow. The precise problems are formulated in Problem 1 and

Problem 2 in the next section below.

The associated transfer operators act boundedly on certain anisotropic Banach

spaces by composition of the inverse dynamical system followed by a multipli-

cation with a weight function. In our analysis of the beforementioned problems

for specific weight functions these transfer operators are central objects. We

need to investigate their deeper spectral properties to progress on our two pro-

blems. By the deeper spectrum we mean here part of the spectrum which lies

in between the peripheral and the essential spectrum of these transfer operators.

The functional approach to these transfer operators puts importance on the

anisotropic Banach spaces. It is a more recent method with notably results in

the last decades for Anosov diffeomorphisms (e.g. [5], [7], [11], [15], [30], [32],

[33], [61]) and flows (e.g. [8], [21]–[24], [27], [31], [48], [64], [65]).

We explain the principal idea behind the functional approach briefly in the

case of Anosov diffeomorphisms: A diffeomorphic dynamical system F : M Ñ
M being an Anosov diffeomorphism means that the tangent space TM of the

manifold is split into unstable E� � TM and stable E� � TM distributions.

In particular, one assumes a non-trivial splitting

TM � E� ` E�, (0.1)

such that for every norm }�} on linear maps TM Ñ TM , for some 0   β   1,

sup
nPN

���β�n DFn|E�

���   8 and sup
nPN

���β�n DF�n
|E�

���   8. (0.2)
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0 Introduction

The arguably simplest example is a toral Anosov diffeomorphism given by Ar-

nold’s cat map:

A : R2{Z2 Ñ R2{Z2 : x ÞÑ
�

2 1

1 1

�
x.

Similar examples on the torus R2{Z2 are provided by any hyperbolic unimodular

matrix A P SL2 pZq, where hyperbolic matrix means here that A has one eigenva-

lue larger than 1 in modulus. Those are the toral linear Anosov diffeomorphisms.

The map A is also analytic and mixing. By topological mixing of the map F we

mean that for all non-empty subsets U, V �M there exists N P N such that for

all n ¥ N it holds

U X Fn pV q � H.

By transitivity of the map F we mean that there exists a dense orbit of F in M .

Real analytic transitive Anosov diffeomorphisms F are known to have associated

so-called SRB-measures µSRB [67, Theorem 1]. (A detailed explanation of µSRB

is given in [6], [67].) What is of importance here is that for a given such map

F the Borel probability measure µSRB is uniquely characterized by the property

that for Lebesgue-almost every x PM and every continuous function ϕ P C pMq

µSRB pϕq � lim
nÑ8

1

n

ņ

k�0

ϕ � F k pxq .

An example for which µSRB equals the Lebesgue measure µLeb is given by the

map A. However we note that even small perturbations of A may not preserve

µLeb.

The composition operator is defined by KFϕ � ϕ � F for every ϕ P C pMq.
Invariance of µSRB by F yields for every ϕ P C pMq

µSRB pKFϕq � µSRB pϕq .

Hence the dual operator L :� K1F acts on C pMq1 and fixes µSRB. It is straight

forward to show that L with respect to µLeb is given for all ϕ P C pMq by

Lϕ � ��det DF�1
�� � ϕ � F�1,

where
��det DF�1

�� is called the weight function for L. In the functional approach

one wishes now to recover µSRB as the unique eigenvector to the eigenvalue 1 for

L. More precisely, it is the peripheral spectrum of L which is here of immediate

interest. The peripheral spectrum of L and the properties of the map F should

18



be related in the following way:

• The peripheral spectrum of L
contains 1 which is a simple ei-

genvalue.

• The map F is transitive.

• The peripheral spectrum of L is

t1u and 1 is a simple eigenvalue.

• The map F is mixing.

However measures supported on periodic orbits are also contained in C pMq1
and are therefore eigenvectors to the eigenvalue 1 for L. In order to proceed one

changes the domain of the transfer operator L. In particular L has to be defined

on an anisotropic Banach space B and not on C pMq1. The space B contains

usually densely Cr�1 pMq functions for some r ¡ 1 or r P t8, ωu if F P Cr1. The

norm of B takes into account the expansive and contractive behavior of the map

F . In particular, the anisotropic norm of B treats elements in B as functions

along E� and as distributions along E�.

As we have explained, the construction of B is constrained by the resulting

properties of the spectrum of L on B. This makes such anisotropic Banach

spaces an important part in the functional approach. In the last two decades

several constructions of B have been provided in the differentiable and analytic

category of the map F :

The detailed study of anisotropic Banach spaces in the hyperbolic case started

in the differentiable setting with the work of Blank, Keller and Liverani [15]. It

is now a well established tool (e.g. see the references mentioned above).

Real analytic perturbations of hyperbolic toral automorphisms A were later

addressed by Faure and Roy [25]. They considered an anisotropic Hilbert space

H, which appeared already briefly in a work of Fried [29, Sect 8, I].

On this Hilbert space H, the operator L turns out to be compact which implies

that the essential spectrum of L is contained in t0u and the deeper spectrum of

L consist of eigenvalues of finite multiplicity. Moreover the spectrum of L on H
admits a spectral gap between the deeper and the peripheral spectrum which

relates to the following:

• The peripheral spectrum of L is

t1u and 1 is an isolated simple ei-

genvalue.

• The correlation function for F

admits exponential decay.

1If 0   r   8 is not an integer, Cr means Ctru with all partial derivatives of order tru being
pr � truq-Hölder continuous.
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0 Introduction

By exponential decay of the correlation function for F we mean that for some

ϕ1, ϕ2 P C pM,Cq and for some λ ¡ 0 it holds

sup
nPN

eλn |µSRB pϕ1 � ϕ2 � Fnq � µSRB pϕ1qµSRB pϕ2q|   8.

Usually λ depends on the regularity of the observables ϕ1 and ϕ2 and not on

the observables itself.

We comment shortly on the weight function
��det DF�1

�� in L: In general the

weight function can be any positive Cr�1 function, depending on the applica-

tion. Then of course the maximal eigenvalue λmax may change, as well as the

associated eigenvector (this is also called the Gibbs state), replacing µSRB. If

one considers then the renormalized transfer operator rL :� λ�1
maxL, we expect a

peripheral spectrum for rL as discussed, depending on the properties of the map

F .

The dynamical determinant dF carries statistical information about the behavior

of the map F at periodic orbits of F . It is a holomorphic function defined for

all small enough z P C by

dF pzq :� exp�
8̧

n�1

zn

n

¸
Fnpxq�x

|det pid�Dx F
nq|�1 .

A way to extend the domain of holomorphy of dF is by using the transfer opera-

tor. For example if KF is of trace class then the holomorphic extension is given

by the Fredholm determinant for all z P C byexplain

det p1�zLq � det p1�zKF q � dF pzq . (0.3)

The second equality in (0.3) is a consequence of the trace formula for all n P N

trKnF �
¸

Fnpxq�x

|det pid�Dx F
nq|�1 . (0.4)

The reciprocal discrete eigenvalues of the transfer operator are also called the

(Ruelle-Pollicott) resonances for the map F and the above equality in (0.3) shows

a direct relation between the resonances and the zeros of dF .

In the hyperbolic setting, Rugh proved the holomorphy of the dynamical deter-

minant of real analytic Anosov diffeomorphisms on surfaces [55], [56].
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The two problems

The two problems

A small computation shows the following (e.g. using Lemma A.1):

Lemma 1 (Trivial resonances). For every hyperbolic matrix M P SL2 pZq the

associated dynamical determinant satisfies for every z P C

dM pzq � 1� z.

Another direct computation shows:

Lemma 2 (Superexponential decay ([6, Chapter 4.4.1])). For every hyperbolic

matrix in SL2 pZq the dynamical correlation function decays superexponentially

on real analytic observables.

It was not known before whether the above two lemmas show an expected be-

havior for a generic real analytic toral Anosov diffeomorphisms.

In particular, what happens if we perturb generically a hyperbolic matrix A by

a real analytic map?

By a generic perturbation we mean here any map in an open and dense subset

of a ball of real analytic toral diffeomorphisms containing A with respect to the

uniform norm (see directly above Theorem 1.4.3).

Problem 1 (Non-trivial resonances). Does a non-trivial resonance appear for

generic perturbations of a hyperbolic matrix in SL2 pZq?

If we consider for a moment only an expanding system (E� � M � t0u) then

more was already known: The expanding case was initially studied by Ruelle

[54]. More recently, Bandtlow, Slipantschuk and Just [13], [59] calculated the

resonances of real analytic expanding maps T : S Ñ S on the unit circle S ex-

plicitly for Blaschke products. Their transfer operator acts on the Hardy space

of holomorphic functions on the annulus. (See also Keller and Rugh [45] in the

differentiable category.)

Moreover, Bandtlow and Naud [12] showed that generically expanding circle

maps admit infinitely many resonances.

The second problem that we investigate involves Anosov flows gα P C3 pM,Mq
where dimM � 3, α P R and

gα � gα1 � gα2 , for all α1 � α2 � α.
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These flows where introduced by Anosov to study the geodesic flow on the unit

tangent bundle of closed Riemannian manifolds with variable negative sectional

curvature [3], [4]. It is required that the splitting of TM contains in addition a

neutral (or central) distribution spanned by the bounded vector field X genera-

ting the flow:

TM � E� ` E� ` RX, (0.5)

with an analogous condition on the distributions E� and E� as in (0.2). Mo-

reover, we require the contact assumption for the flow gα which means that a

certain invariant 3� form in pT �Mq3 is never zero (see Section 2.2). Geodesic

flows are well-studied examples of contact Anosov flows.

If E� is orientable we define another flow hρ : M Ñ M , ρ P R, which points

into E�. This is the (stable) horocycle flow associated to the contact Anosov

flow gα. (The term horocycle flow was used originally only in the case of the

geodesic flow, e.g. see [49, p.84] or [38].) In general the defining vector field of

the horocycle flow is at best C2�ε for all ε ¡ 0 [40].

Theorem 1 (Unique ergodicity, [50, Theorem 3.5]). For every continuous ho-

rocycle flow which corresponds to a C2 mixing Anosov flow there exists exactly

one Borel probability measure which is invariant by the horocycle flow.

Theorem 2 (Mixing ([41, Theorem 3.6], [48, Corollary B.6])). Every contact

Anosov flow is mixing.

Hence in our setting, the continuous time average converges to the unique ergodic

mean for all ϕ P C pMq and for all x PM

µ pϕq � lim
TÑ8

1

T

» T
0
ϕ � hρ pxqd ρ,

where µ denotes the unique Borel measure given by Theorem 1. But how fast

is the convergence to µ pϕq? Put otherwise, what can we say about

1

T

» T
0
ϕ � hρ pxq d ρ� µ pϕq ,

for all T ¡ 0 for fixed x and fixed ϕ? Clearly, if ϕ � Bρ rϕ � hρ|ρ�0 for somerϕ P C pM,Cq then » T
0
ϕ � hρ pxq d ρ � rϕ � hT pxq � rϕ pxq .
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The two problems

This poses a generic lower bound on the speed of convergence as � 1{T , even ifrϕ is very regular such that ϕ P C2�ε for all ε ¡ 0.

Are there any other obstructions which can slow down the speed of convergence

even more? The approach to answer this question is again by means of a weighted

transfer operator. We find for every T, α ¥ 0 and every x PM

γx pϕ, T q :�
» T

0
ϕ � hρ pxq d ρ �

» τpT,α,xq
0

Lαϕ � hρ � gα pxq d ρ,

where for all α ¥ 0, assuming here for simplicity that the flow hρ has unit speed,

Lαϕ � det D g�α|E� � ϕ � g�α, (0.6)

and where for all x PM and all ρ, α P R

gα � hρ pxq � hτpρ,α,xq � gα pxq .

The function τ is called the renormalization time. To find a stronger slowdown

than 1{T in the speed of convergence, the idea is the following: If on a certain

anisotropic Banach space B the operator Lα has an eigenvector Dλ P B such

that LαDλ � eλαDλ for some <λ ¡ 0 and for all α ¥ 0 then formally

γx pDλ, T q �
» τpT,α,xq

0
LαDλ � hρ � gα pxqd ρ � eαλ

» τpT,α,xq
0

Dλ � hρ � gα pxq d ρ.

As pointed out by Anosov [3], the topological entropy htop of the time-one map

g1 is positive. It is an important property of the renormalization time τ that

τ pT, α, xq ¤ 1 implies ehtopα ¤ CT for some constant C ¡ 0 independent of

every T ¥ 1 and every x PM (e.g. use Proposition 2.5.13 below).

Hence in our example, the unique ergodic mean is reached only with at most a

speed of � T
<λ
htop

�1
.

Let us assume for simplicity that all eigenvalues eλα are simple for all α ¡ 0.

Then we have associated to each λ a finite rank operator given by Dλ b Oλ,

where Oλ P B1. Now we can decompose formally for every ϕ P B and for every

δ P R

ϕ �
¸

<λ¡δ
Oλ pϕqDλ � ϕE , (0.7)

with some remainder term ϕE .
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In the constant negative curvature setting, for the geodesic flow, the following is

known due to the work of Flaminio and Forni, where the flows gα and hρ arise

both from constant vector fields:

Theorem 3 (Flaminio–Forni, [28, Theorem 1.5]). Let M be the unit tangent

bundle of a compact hyperbolic Riemannian surface of constant negative curva-

ture. Let vol be the canonical volume form on M . Then it holds for all ϕ P C4,

for all x PM and for all T ¡ 1» T
0
ϕ � hρ pxq d ρ � T vol pϕq �

¸
λPΣ 1

2
zt1u

T λcλ pT, xqOλ pϕq � ET,x pϕq ,

where supT¡1,xPM
|ET,xpϕq|
T

1
2 log T

  8 and supT¡1,xPM |cλ pT, xq|   8 .

In fact the result of Flaminio–Forni gives a much more detailed expansion, in-

cluding a summation over all <λ ¡ 0 and lower bounds on the coefficients cλ.

An analogous problem where the geodesic flow is replaced by an Anosov dif-

feomorphism was studied later by Giulietti and Liverani [31]. Moreover, in

their work they conjectured (see [31, Conjecture 2.14]) that the above result

of Flaminio–Forni should extend to the geodesic flow in the variable negative

curvature setting.

Problem 2 (Horocycle flows in variable negative curvature). Does an expansion

of the horocycle integral analogous to Theorem 3 hold for the horocycle flow

induced by the geodesic flow of a surface of variable negative curvature?

Following the functional approach, it is in principle enough to construct an ani-

sotropic Banach space B such that the operator Lα, acting on B, has a peripheral

spectrum consisting of an isolated simple eigenvalue at ehtopα for all α ¥ 0 and

such that γx
�
Dhtop , T

�
and γx pϕE , T q are well-defined. Indeed all this could

follow if Lα,φα is quasi-compact on B for all α ¥ 0. What prevents us in doing

so is the flow direction X in the splitting in (0.5) which is neither contracted

nor expanded by the geodesic flow. We apply instead the following strategy:

With a good choice of an anisotropic Banach space B the transfer operator family

tLα : B Ñ B | α ¥ 0u

forms a strongly continuous semigroup and admits therefore a well-defined ge-

nerator X�V . Quasi-compactness of the resolvent Rz of X�V for large values
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<z ¡ 0 ensures that part of the spectrum of X � V with respect to B

Σδ :� σ pX � V q |B X tλ P C | <λ ¡ δu

contains only discrete spectrum of finite multiplicity for some δ ¡ 0.

Note that Lα is a transfer operator with a different weight than we discussed

above in the diffeomorphism case.

In full analogy to our discussion of the peripheral spectrum of L, we expect that

the peripheral spectrum of the operator e�htopαLα on B consists of the simple

eigenvalue 1 for all α ¡ 0 and that the associated eigenvector coincides with the

unique Borel probability measure given by Theorem 1.

Moreover, the weight function for Lα is det D g�α|E� which depends on the re-

gularity of E�, which we noted is C2�ε for all ε ¡ 0. To deal with such irregular

weights one can lift the dynamics to the Grassmanian. This has been used with

success, e.g. in [30], [33] and more recently in [65]. However, we handle directly

the given weight function which allows us to avoid such additional technicalities.

We should add here that the additional conjecture that the distributions Ov ap-

pearing in the right-hand side in (0.7) are fixed by the adjoint of the horocycle

flow remains still open. In contrast this was the starting point in [28]. Here,

progress has been made by Faure and Guillarmou [24] in dimension 3 for smooth

contact Anosov flows.

Although we do not study here the dynamical zeta function for the transfer

operator Lα, we believe that the anisotropic Banach space B constructed in

Section 2.3.2 could be a suitable choice to be dealt with.

Statement of results

We present here in a simplified form the main results of this thesis. The first

result states that it is quite common for the composition operator to have non-

trivial spectrum if the dynamical system is a real analytically perturbed hyper-

bolic matrix:

Theorem I (Non-trivial resonances (Theorem 1.4.3)). Let A P SL2 pZq be hyper-

bolic. For a generic real analytic perturbation rA of A there exists an anisotropic
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Hilbert space H such that

K rA : HÑ H

is of trace class and it holds

sp
�
K rA

� z t0, 1u � H.

This result implies that the dynamical determinant d rA has at least one non-

trivial zero and therefore answers the question in Problem 1 in the affirmative.

By construction the Hilbert spaceH contains real analytic observables as a dense

subset. Hence the existence of a non-trivial resonance poses an obstruction to

the superexponential decay of the correlation function for real analytic observa-

bles.

In some sense our result is optimal: We cannot hope to replace ‘generic pertur-

bations’ with ‘for all perturbations’. In the expanding case there exists Blaschke

products arbitrary close to a linear function on the circle and which have trivial

spectrum (and which are note C1 conjugated to a linear function) [59, Example

5.6].

It is reasonable to believe that similar constructions work in the Anosov case,

using the generalized Blaschke products in [61]. This means that isospectral

perturbations are expected but they are not generic.

The second result makes a statement about the time average of a horocycle flow

with underlying contact Anosov flow. The full result treats the general case with

possible non-trivial Jordan blocks. For simplicity of the statement we assume

here that the spectrum is simple:

Proposition II (Horocycle integral (Theorem 2.5.7, Proposition 2.5.10)). There

exists an anisotropic Banach space B and λmin   htop such that Σλmin consists

only of discrete eigenvalues of finite multiplicity. For all x P M and all T ¥ 1,

for every λmin ¤ δ   htop and for every finite subset Λδ � Σδ and for all ϕ P C3

it holds» T
0
ϕ � hρ pxq d ρ � chtop pT, xqµ pϕq �

¸
λPΛδ

<λ htop

T
λ

htop cλ pT, xqOλ pϕq � ET,x,Λδ pϕq ,

where µ is the unique Borel measure which is invariant by the horocycle flow hρ

and

sup
T¥1,xPM

cλ pT, xq
T

  8 and lim
TÑ8

ET,x,Λδ pϕq
T

� 0.
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Note that the expected principal term Tµ pϕq is obscured since we ordered the

expansion by Oλ pϕq. One recovers the principal term, using

Tµ pϕq �
» T

0
1 � hρ pxq d ρ.

We use this later in Corollary 2.5.9 in Section 2.5 below. Clearly, we only

answer partially the question in Problem 2 in the affirmative. The reason is

that quasi-compactness of Rz is not enough to give us e.g. a finite set Σδ for

some δ ¥ λmin. We impose the following extra condition on the resolvent to

affirm the full question for C3 contact Anosov flows in dimension 3:

Condition A (Spectral gap with (Dolgopyat) bounds (Condition 2.4.11)). For

some 0   δ   htop, a ¡ 0, b ¡ 0, C ¡ 0 and some

γ P p0, 1{ logp1� phtop � δq{aqq ,

and for all z P C with <z � a and |=z| ¥ b, it holds���Rrnz�λtop���W s,t,q
p

¤ Crn |<z � phtop � δq|�rn , where rn � rγ log |=z|s .

Under this additional condition we obtain:

Theorem III (Theorem 2.5.7, Proposition 2.5.10). Under the assumptions of

Proposition II, if in addition Condition A holds with same δ then we can take

Λδ � Σδ and it holds |ET,x,Σδ pϕq| ¤ CT
δ

htop
�ε

for all ε ¡ 0 and some C �
C pϕq ¥ 0 independent of T and x.

We shall note a curiosity which we do not discuss further in this thesis: An

application of the last theorem which presents itself is the deeper analysis of the

renormalization time τ itself! It follows from the construction of the transfer

operator Lα that for all ρ, α ¡ 0 and for all x PM it holds

τ pρ,�α, xq � γx pLα1, ρq .

Of course, in the setting of constant vector fields (i.e. constant negative curva-

ture) we cannot learn anything new about τ , but other cases might be of further

interest (e.g. in studying small perturbations of the constant vector fields).
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Organization of the thesis

We investigate Problem 1 in Chapter 1 and Problem 2 in Chapter 2.

In Chapter 1 we study generic real analytic perturbations rA of a linear Anosov

diffeomorphism on the two-dimensional torus as introduced before Problem 1.

We apply the functional approach to transfer operators as described above in

the setting of an anisotropic Hilbert space.

This Hilbert space is explicitly constructed in Section 1.2 as the completion of

some Hardy space with respect to an anisotropic norm. The trace class property

of the Koopman operator K rA is shown in Section 1.3. In fact, we show that K rA
is nuclear of order 0 which is a stronger result.

Theorem I which is Theorem 1.4.3 below is finally shown in Section 1.4. This is

done essentially by the calculation of the trace of the transfer operator associa-

ted to the perturbed system, using the equality in (0.4) which is shown as well.

The spectral properties of the transfer operator L are discussed in Section 1.5.

Chapter 1 is presented as it was published [1], except that the appendix is moved

to Chapter A and the reference list is combined with that of this thesis.

In Chapter 2 we deal with finite differentiable Anosov flows on connected, closed

Riemannian manifolds and the associated stable horocycle flows.

The necessary notion of cones and cone-hyperbolicity of a map is introduced in

Section 2.2.

In Section ?? we introduce families tLα | α ¡ 0u of transfer operators similar to

those in (0.6) but with arbitrary positive weight functions. This is followed by

the construction of anisotropic Banach spaces. These spaces are a flow analogue

to the spaces constructed by Baladi and Tsujii [10] to study hyperbolic diffeo-

morphisms.

In Section 2.4 we discuss properties of the operators Lα, α ¡ 0, on the con-

structed anisotropic Banach spaces as well as properties of the resolvent of the

generators of the families tLα | α ¡ 0u. We show a Lasota–Yorke inequality for

the resolvent, which is Theorem 2.4.5 below. We introduce and discuss Condi-

tion A which is Condition 2.4.11 below.

In Section 2.5 we specialize to contact Anosov flows in dimension 3 (we consider

also the co-dimension 1 case).

We give local bounds on the horocycle integral in Lemma 2.5.14. This lemma

enables us to show Theorem III which is Theorem 2.5.7 below.

The additional Condition A is finally needed to obtain a polynomial rate of
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Organization of the thesis

convergence to the ergodic mean for horocycle flows induced by contact Anosov

flows in dimension 3.

This chapter is also available on arXiv [2].
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1 Generic non-trivial resonances for

Anosov diffeomorphisms

1.1 Introduction

Let T : T2 Ñ T2 be a real analytic Anosov diffeomorphism. We define the Ruelle

resonances of T to be the zeroes of the (holomorphically continued in z P C)

dynamical determinant

dT pzq :� exp�
8̧

n�1

zn

n

¸
Tnpxq�x

|det pid�Dx T
nq|�1 . (1.1)

It is well-known (e.g. combining (1.1) and Lemma A.1) that 1 is the only re-

sonance if T is a hyperbolic linear toral automorphism M . A subset of the

Banach space of T2-preserving maps, holomorphic and uniformly bounded on

some annulus, is called generic if it is open and dense. We show in Theorem

1.4.3, using an idea of Naud [51], that there is such a set G so that for all ψ P G,

appropriately scaled, the Anosov diffeomorphism M �ψ admits non-trivial Ru-

elle resonances. For this, we construct a Hilbert space of anisotropic generalized

functions on which the transfer operator LT f :� pf{|det D T |q � T�1 is nuclear

with its Fredholm determinant equal to dT . Moreover, we prove that some of

those generic perturbations preserve the volume while some do not.

The expanding case is easier and was initially studied by Ruelle [54]. More

recently, Bandtlow et. al [13], [59] calculated the resonances of real analytic

expanding maps T : S Ñ S on the unit circle S explicitly for Blaschke products.

Their transfer operator acts on the Hardy space of holomorphic functions on the

annulus. (See also Keller and Rugh [45] in the differentiable category.)

In the hyperbolic setting, Rugh proved the holomorphy of the dynamical deter-

minant of real analytic Anosov diffeomorphisms on surfaces [55], [56]. The idea

was generalized by Fried to hyperbolic flows in all dimensions [29]. The detailed

study of anisotropic Banach spaces in the hyperbolic case started with the pio-

neering work of [15] (in the differentiable setting) and is now a well established
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1 Generic non-trivial resonances for Anosov diffeomorphisms

tool, see e.g. [11] and [32].

Faure and Roy [25] later addressed real analytic perturbations of hyperbolic

linear toral automorphisms on the two-dimensional torus, considering an aniso-

tropic complex Hilbert space, which had already been briefly discussed by Fried

[29, Sect 8, I].

Our approach is based on this construction and strongly relies on an idea sug-

gested by Naud [51]. We put the transfer operator at the center of our analysis.

We introduce an anisotropic Hilbert space (Definition 1.2.4) in Section 1.2.

In Section 1.3, we rephrase a result from Faure and Roy [25, Theorem 6] to show

that the Koopman operator KT f :� f � T is nuclear of order 0 when acting on

our anisotropic Hilbert space.

In Section 1.4, we use this result and an idea of Naud [51] to show that the

Koopman operator admits non-trivial Ruelle resonances under a small generic

perturbation of the dynamics.

In Section 1.5, we consider the adjoint of the Koopman operator, which is just

the transfer operator, acting on the dual Hilbert space and obtain our final re-

sults.

In the Appendix, we recall two needed basic properties of integer matrices (seen

as linear maps on the torus) and provide a sufficient condition for determinant

preserving perturbations of differentiable real maps.

In principal the analogous problem on any higher dimensional torus can be tre-

ated with the presented method. However, one has to modify slightly the used

space from Section 1.2 if the linear toral automorphism has non-trivial Jordan

blocks.

Blaschke products were recently generalized to the hyperbolic setting by Slipant-

schuk et al. [60] who calculate the entire spectrum of these real analytic Anosov

volume preserving diffeomorphisms explicitly.

1.2 An anisotropic Hilbert space

We denote the flat 2-torus by T2 :� R2{Z2. We embed T2 into the standard

polyannulus in C2 and set for each r ¡ 0

Ar :� T2 � i p�r, rq2.
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1.2 An anisotropic Hilbert space

We see Ar as a submanifold of C2. The Hilbert space L2

�
T2

�
is equipped

with the canonical Lebesgue measure on T2. This space admits an orthonormal

Fourier basis given by

ϕn : T2 Ñ C : x ÞÑ exp pi 2πn�xq , n P Z2, (1.2)

where n� is the canonical dual of n. We recall a construction from Faure and

Roy [25] for a complex Hilbert space HAM,c . This space also has been described

briefly by Fried as an ”ad hoc example” [29, Sect. 8, I.] of a generalized function

space. The construction will be based on:

Definition 1.2.1 (Hardy space H2 pArq). For each r ¡ 0 and each holomorphic

function f : Ar Ñ C, we define the norm

}f}H2pArq :� sup
yPp�r,rq2

�»
T2

|f px� i yq|2 dx


 1
2

.

Then we set

H2 pArq :�
!
f : Ar Ñ C | f holomorphic, }f}H2pArq   8

)
.

The space H2 pArq is the 2-dimensional analogue of the Hardy space studied in

[58, p. 4]. It admits a Fourier basis given by

ϑrn : Ar Ñ C : x ÞÑ exp p�2πr}n}qϕn, n P Z2,

where }z} :� |z1| � |z2| for all pz1, z2q �: z P C2 and z P T2. With this choice

of norm, the Fourier basis is orthonormal. Under the canonical isomorphism

L2

�
T2

� � L2

�
T2

��
, we have the isomorphism

pϑrnq� � ϑ�rn . (1.3)

A matrix M P SL2 pZq is called hyperbolic if its eigenvalues do not lie on the unit

circle. We denote by E�
M the eigenspace for the eigenvalue of modulus λM ¡ 1

and by E�
M the eigenspace of the eigenvalue of modulus λ�1

M . We decompose

y P R2 uniquely as

y � y�M � y�M with y�M P E�
M� and y�M P E�

M� . (1.4)

We have ��M�y�M
�� � λM

��y�M�� and
��M�y�M

�� � λ�1
M

��y�M��. (1.5)
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1 Generic non-trivial resonances for Anosov diffeomorphisms

Definition 1.2.2 (Scaling map AM,c). Let c ¡ 0, and M P SL2 pZq be hyperbolic.

For every n P Z2, we set, recalling (1.2),

AM,cϕn :� exp
��2πc

���n�M�� � ��n�M����ϕn.

Lemma 1.2.3 (Continuous embedding of H2 pArq). Let c ¡ 0 and let M P
SL2 pZq be hyperbolic. Then the map AM,c can be extended by continuity to an

injective linear map

AM,c : H2 pAcq Ñ L2

�
T2

�
,

bounded in operator norm by 1.

Proof. By Definition 1.2.2, for each f P H2 pAcq we have

}AM,cf}2L2pT2q �
¸
nPZ2

|ϕ�nAM,cf |2 �
¸
nPZ2

exp
��4πc

���n�M�� � ��n�M���� |ϕ�nf |2
�

¸
nPZ2

exp
��4πc

���n�M�� � ��n�M�� � }n}�� |ϑcn�f |2 ,

where we used (1.3) in the last step. Using the triangle inequality, we find

��n�M�� � ��n�M�� � }n} ¥ 0.

Hence, it holds¸
nPZ2

exp
��4πc

���n�M�� � ��n�M�� � }n}�� |ϑcn�f |2 ¤ }f}2H2pAcq .

Injectivity follows since AM,c is invertible on the Fourier basis of L2

�
T2

�
.

The image of H2 pAcq under AM,c is dense in L2

�
T2

�
since it contains all Fourier

polynomials.

Definition 1.2.4 (Hilbert space HAM,c). Let c ¡ 0 and let M P SL2 pZq be

hyperbolic. Let AM,c be the map given by Definition 1.2.2. Then we set

HAM,c :� closure of H2 pAcq with respect to the norm }AM,c�}L2pT2q ,

and extend AM,c by continuity to a linear map

AM,c : HAM,c Ñ L2

�
T2

�
.
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1.2 An anisotropic Hilbert space

As a direct consequence of this construction, the scalar product on HAM,c satis-

fies

x�, �yHAM,c
: HAM,c �HAM,c Ñ C : pf, gq ÞÑ xAM,cf,AM,cgyL2pT2q .

An orthonormal Fourier basis of HAM,c is given by

%n :� A�1
M,cϕn, n P Z2. (1.6)

Lemma 1.2.5 (Dual space ofHAM,c). Under the canonical isomorphism L2

�
T2

� �
L2

�
T2

��
, the dual space H�

AM,c
is isomorphic to A2

M,cHAM,c.

Proof. Under the canonical isomorphism L2

�
T2

� � L2

�
T2

��
, we have for each

n1, n2 P Z2, using (1.6),

ϕ�n1
pϕn2q � ϕ�n1

pAM,c%n2q � pAM,cϕn1q� p%n2q �
�
A2
M,c%n1

�� p%n2q .

Remark 1.2.6. By Lemma 1.2.5, we associate to every linear functional f� P
H�
AM,c

a unique vector f P A2
M,cHAM,c. Then, for every g P HAM,c, the product

fg is absolutely integrable with respect to the Lebesgue measure on T2.

The decomposition in (1.4) defines two cones

C�
M :�  

y P R2 | ��y�M�� ¥ ��y�M��( and C�
M :�  

y P R2 | ��y�M�� ¤ ��y�M��( .

Example 1.2.7. We let M �
�

3 1

2 1

�
, then λM � 2�?

3. An eigenvector for

λM for M� is
�
1�?

3, 1
�

and an eigenvector for λ�1
M is

�
1�?

3, 1
�
. The two

subspaces E�
M� and E�

M� and the two cones C�
M and C�

M are shown in Figure

1.1.

We set

H�
AM,c

:�
$&% ¸
nPC�MXZ2

x%n, fyHAM,c
%n | f P HAM,c

,.- and

H�
AM,c

:�
$&% ¸
nPC�MXZ2

x%n, fyHAM,c
%n | f P HAM,c

,.- .
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1 Generic non-trivial resonances for Anosov diffeomorphisms

C+
MC−

M

E+
M∗

E−
M∗

Figure 1.1: The map M is from Example 1.2.7. The dark gray area is the cone
C�
M which contains the subspace E�

M� . The light gray area is the
cone C�

M and contains E�
M� . A part y P R2 belongs to the dashed

lines if and only if
��y�M�� � ��y�M��.

Hence, we have HAM,c � H�
AM,c

� H�
AM,c

. Comparing for each n P C�
M the

Fourier basis %n with ϕn, it follows immediately that H�
AM,c

� L2

�
T2

�
. For

each n P C�
M , comparing the Fourier basis %n with ϑcn

�, using (1.3), shows

H�
AM,c

� H2 pAcq�. We conclude therefore that HAM,c contains linear functionals

which do not belong to L2

�
T2

�
. By construction, the space HAM,c is a rigged

Hilbert space, i.e.:

H2 pAcq � HAM,c � H2 pAcq� . (1.7)

Remark 1.2.8. We note that in the construction of HAM,c, the expanding and

contracting directions appear in the dual coordinates n P Z2 of the Fourier basis

(1.6). This distinguishes HAM,c from the space of Rugh [56] where expanding

and contracting coordinates are spatial. We observe

n�x � �
n�M � n�M

�� �
x�M� � n�M�

� � �
n�M

��
x�M� �

�
n�M

��
x�M�.

Hence, we can rewrite (1.6) as

%n pxq � exp
�
2πc

���n�M�� � ��n�M���� exp pi 2πn�xq
� exp

�
2πc

��n�M��� exp
�

i 2π
�
n�M

��
x�M�

	
(1.8)

� exp
��2πc

��n�M��� exp
�

i 2π
�
n�M

��
x�M�

	
.

It is tempting to think of the %n as basis elements for a tensor product space of
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1.3 The Koopman operator is nuclear

a Hardy space on an annulus, with the dual of such a Hardy space. However,

we cannot use %n as such a basis since n�M and n�M are not independent of each

other. Nevertheless, we can decompose HAM,c into two generalized Hardy spaces

as follows. We define four norms

µj pfq :� sup
yPAj

�»
T2

|f px� i yq|2 dx


 1
2

, f P L2

�
T2

�
, j P t1, 2, 3, 4u , where

A1 :�
!
y P R2 | y�M� P p�c, cq2, y�M� P pc,8q2

)
,

A2 :�
!
y P R2 | y�M� P p�c, cq2, y�M� P p�8,�cq2

)
,

A3 :�
!
y P R2 | y�M� P p�c, cq2, y�M� P pc,8q � p�8,�cq

)
,

A4 :�
!
y P R2 | y�M� P p�c, cq2, y�M� P p�8,�cq � pc,8q

)
.

For all f P L2

�
T2

�
the norms µj pfq cannot be finite but they are so at least for

some Fourier polynomials. The spaces Hj, j P t1, 2, 3, 4u, are the completions

with respect to the norms µj above. E.g. using µ1, it holds for all f P H1

µ1 pfq2 � sup
yPA1

�»
T2

|f px� i yq|2 dx



� sup

yPA1

¸
nPZ2

exp p�4πn�yq |ϕ�nf |2

� sup
yPA1

¸
nPZ2

exp
�
�4π

�
n�M

��
y�M� � 4π

�
n�M

��
y�M�

	
|ϕ�nf |2

� sup
y�
M�Ppc,8q2

¸
nPZ2

exp
�

4πc
��n�M�� � 4π

�
n�M

��
y�M�

	
|ϕ�nf |2

�
¸
nPZ2

n�MPr0,8q2

exp
�
4πc

��n�M�� � 4πc
��n�M��� |ϕ�nf |2 � ¸

nPZ2

n�MPr0,8q2

|ϕ�nAM,cf |2 .

Similar calculations for the other three norms show then that the spaces Hj, j P
t1, 2, 3, 4u disjointly partition the space HAM,c with respect to the dual coordinate

up to n � 0. Since E�
M is a one dimensional subspace of R2, always two of the

spaces contain only the constant functions (note that n�M � 0 implies n � 0),

say, H3 and H4. Then all vectors in the spaces H1 and H2 are holomorphic

functions on T2 � iA1 and on T2 � iA2, respectively.

1.3 The Koopman operator is nuclear

We set for each r ¡ 0

Tr :�  
T : T2 Ñ T2 | T extends holomorphically and boundedly on Ar

(
.
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1 Generic non-trivial resonances for Anosov diffeomorphisms

For every T P Tr the Koopman operator

KT : L2

�
T2

�Ñ L2

�
T2

�
: f ÞÑ f � T

is well-defined by differentiability of T . It is well-known that the operator KT
acting on L2

�
T2

�
is not compact. We say that two maps f , g P Tr are C1-close

if the distance

d pf, gq :� sup
zPAr

}fpzq � gpzq} � sup
zPAr

}Dz f �Dz g}

is small. In this section we revisit the proof of Faure and Roy [25]. They showed

that KT , acting on the Hilbert space HAM,c , (see Definition 1.2.4), is nuclear of

order 0 if T is sufficiently C1-close to a hyperbolic matrix M P SL2 pZq for some

c ¡ 0.

We recall that a linear operator L : HÑ H on a Hilbert space H with norm }�}H
is called nuclear of order 0 if it can be written as a sum L � °

nPN dnψ1,nψ
�
2,n with

inf tp ¡ 0 | °
nPN |dn|p   8u � 0 and ψ1,n, ψ2,n P H, }ψ1,n}H , }ψ2,n}H ¤ 1,

dn P C, n P N [34, II, §1, n�1, p.4]. In particular, such an operator is trace

class, hence bounded and admits a trace trL :� °
nPN e

�
nLen, invariant for any

choice of orthonormal basis en, n P N of H. Moreover, one can show that trL
equals the sum, including multiplicity (dimension of corresponding generalized

eigenspace), over the spectrum sp pLq of L. The Fredholm determinant, defined

for small enough z P C by

det p1� zLq :� exp

�
�

8̧

n�1

zn

n
trLn

�
, (1.9)

extends to an entire function in z, having zeroes at z � λ�1, λ P sp pLq z t0u of

same order as the multiplicity of λ.

Theorem 1.3.1 (Nuclearity of KT ). Let M P SL2 pZq be hyperbolic and let

r ¡ 0. Then there exist constants δM ¡ 0 and 0   c1   r such that for each

T P Tr with dpT,Mq ¤ δM the map

KT : HAM,c1 Ñ HAM,c1 : f ÞÑ f � T

defines a nuclear operator of order 0. In particular, there exists c2 ¡ 0 depending
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1.3 The Koopman operator is nuclear

only on c1, M , and }�} so that for each n1, n2 P Z2

����x%n1 ,KT%n2yHAM,c1

���� ¤ exp p�2πc2 p}n1} � }n2}qq .

For every n1, n2 P Z2, we set

In1,n2 pT q :� xϕn1 ,KTϕn2yL2pT2q . (1.10)

Estimating this ”oscillatory integral” is central for Theorem 1.3.1. In the case

T �M , we have simply

In1,n2 pMq �
$&%1 if M�n2 � n1

0 if M�n2 � n1

. (1.11)

The strategy of the proof is as follows. We get an upper bound for |In1,n2 pT q| in

Lemma 1.3.2, taking advantage of the holomorphicity of T . In Lemma 1.3.3, we

compare the contribution of n1 and n2 in the expanding and contracting directi-

ons, using here essentially the hyperbolicity of M . Combining both results, we

obtain a weaker bound on |In1,n2 pT q| in Proposition 1.3.4, which finally allows

for the proof of Theorem 1.3.1.

For every n P Z2 and y P R2 any solution x P T2 so that

exp p�2π pn� Dx Tyqq �
»
T2

exp p�2π pn� Dz Tyqq dz (1.12)

is denoted by xn pyq. Since the integrand is continuous in y such a solution exists

by the Mean Value Theorem.

Lemma 1.3.2 (Upper bound on |In1,n2 pT q| (I)). Let r ¡ 0. Then, there exists

C ¥ 0 so that for each T P Tr and n1, n2 P Z2 and y P p�r, rq2, recalling (1.10),

we have

|In1,n2 pT q| ¤ exp
�

2π
�
�n�2 Dxn2 pyq

Ty � n�1y � CdpT, 0q }y}3 }n2}
		

.

Proof. By definition

In1,n2 pT q � xϕn1 ,KTϕn2yL2pT2q �
»
T2

exp pi2π pn�2T pxq � n�1xqq dx.

Since T P Tr, the Z2-invariance of the integrand follows. By holomorphicity of T

on Ar, we can change the path of integration to x ÞÑ x� iy for every y P p�r, rq2.
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1 Generic non-trivial resonances for Anosov diffeomorphisms

Therefore for any y P p�r, rq2

|In1,n2 pT q| ¤
»
T2

exp p2π pn�1y � = pn�2T px� i yqqqq dx,

where = is the imaginary part. We expand T (or rather its lift to R2) at x P T2

in a Taylor series to the second order. This yields

T px� i yq � T pxq � i Dx Ty � P px� i yq �R2 px� i yq .

Here, P px � i yq is the second order term of the expansion which is R2-valued,

and R2 is the remainder of the series expansion. We find therefore

=T px� iyq � Dx Ty � =R2 px� i yq .

Since T is holomorphic we find a constant C ¡ 0 independent of T such that

|n�2R2 px� i yq| ¤ CdpT, 0q }n2} }y}3.

We are left with the evaluation of»
T2

exp p�2π pn� Dz Tyqq dz.

Using (1.12) yields the result.

The following abbreviation is used in the remaining section. We set for each

y P R2

|y|M :� ��y�M�� � ��y�M��. (1.13)

Lemma 1.3.3 (Directional inequality). Let M P SL2 pZq be hyperbolic. Let

ε ¡ 0 and κ ¥ 0 and let R : R2 Ñ R¥0 be a map such that for all z P R2 with

}z}   ε it holds

Rpzq ¤ κ }z} .

Then there exists cM ¡ 0 such that if κ   cM there exist 0   c2   c1   ε

such that for all n1, n2 P Z2 there exists yn1,n2 P R2 independent of R with

}yn1,n2}   ε such that it holds

�c1 p|n1|M � |n2|M q � pn�2M � n�1q yn1,n2 � }n2}R pyn1,n2q ¤ �c2 p}n1} � }n2}q .

Proof. We assume 0   c2 ¤ c1. For n1 � n2 � 0 there is nothing to prove. For

every py1, y2q P R2 we set |py1, y2q| :�
a
y2

1 � y2
2. We let 0   c̃1 ¤ 1 ¤ c̃2 such
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1.3 The Koopman operator is nuclear

that

c̃�1
2

���y�M�� � ��y�M��� ¤ }y} ¤ c̃�1
1 |y| , for all y P R2. (1.14)

Whenever n2 � 0 we find a linear map Ma such that Man2 � M�n2 � n1 and

whenever n1 � 0 we find a linear map Mb such that Mbn1 � M�n2 � n1. For

now we let κ̃ ¡ 0 be a variable which will be fixed later on, independently of n1

and n2. We consider the following four cases

(a) }n2} ¡ 0 and }n2} ¥ }n1}
(i) }Man2} ¥ κ̃ }n2},
(ii) }Man2}   κ̃ }n2},

(b) }n1} ¡ 0 and }n1} ¥ }n2}
(i) }Mbn1} ¥ κ̃ }n1} ,

(ii) }Mbn1}   κ̃ }n1}.

We assume Case (a)(i). For every δ ¡ 0 we let

y � δMa
n2

}n2} .

It follows, using (1.14), that

�pn�2M � n�1q y � �n�2M�
a y ¤ �c̃2

1 }Man2} }y} . (1.15)

We recall |�|M from (1.13). Using that c1�c2 ¡ 0 and that (a) holds, we estimate

�c1 p|n1|M � |n2|M q ¤ c1 p}n1} � }n2}q
� �c2 p}n1} � }n2}q � pc1 � c2q p}n1} � }n2}q
¤ �c2 p}n1} � }n2}q � 2 pc1 � c2q }n2} .

Using (a)(i) and the assumed bound on R for }y}   ε, we have

�c1 p|n1|M � |n2|M q � }n2}
�
c̃2

1

����Ma
n2

}n2}
���� }y} �R pyq



¤

� c2 p}n1} � }n2}q �
�
2pc1 � c2q �

�
c̃2

1κ̃� κ
� }y}� }n2} .

(1.16)

We put cM :� c̃2
1κ̃. Any value }y} P p0, εq can be attained by controlling δ.

Assuming that cM ¡ κ, it follows from (1.15) and (1.16) that

0   c1 � c2   cM � κ

2
ε. (1.17)

The reasoning in Case (b)(i) is completely analogous and yields the same bounds
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1 Generic non-trivial resonances for Anosov diffeomorphisms

on c1 � c2.

In Case (a)(ii) and (b)(ii), we take y � 0, where Rp0q � 0 by assumption on R.

We assume now Case (a)(ii). We find, using (1.14),

��pMan2q�M
�� � ��pMan2q�M

�� ¤ c̃2 }Man2}
  c̃2κ̃ }n2} ¤ c̃2κ̃

����n�2,M��� � ���n�2,M���	 . (1.18)

We have

��pMan2q�M
�� � ���M�n�2,M � n�1,M

��� and
��pMan2q�M

�� � ���M�n�2,M � n�1,M

���.
Recalling (1.5), this allows the estimate

��pMan2q�M
�� � ��pMan2q�M

�� ¥ ���M�n�2,M

��� � ���n�1,M��� � ���M�n�2,M

��� � ���n�1,M���
¥ λM

���n�2,M��� � λ�1
M

���n�2,M��� � ���n�1,M��� � ���n�1,M���.
Together with (1.18) we find therefore

� |n1|M � �
���n�1,M��� � ���n�1,M���   �pλM � κ̃c̃2q

���n�2,M��� � �
λ�1
M � κ̃c̃2

� ���n�2,M���.
We set

κ� :� λM � κ̃c̃2 � 1 and κ� :� 1� λ�1
M � κ̃c̃2.

We finally estimate

�c1 p|n1|M � |n2|M q   �c1κ�

���n�2,M��� � c1κ�

���n�2,M���.
Note that we have κ� ¡ κ� because λM ¡ 1. Assuming that c1κ� ¥ 2c2, we

find

�c1κ�

���n�2,M��� � c1κ�

���n�2,M���   �c1κ� }n2} ¤ �2c2 }n2} ¤ �c2 p}n1} � }n2}q .

In Case (b)(ii) we consider the bounds

|n2|M � λM

���n�1,M��� � λ�1
M

���n�1,M��� ¤ �����pM�q�1Mbn1

	�
M

���� � �����pM�q�1Mbn1

	�
M

����
¤ c̃2

���pM�q�1Mbn1

���   κ̃c̃2

���pM�q�1
��� }n1} .

Therefore κ� is replaced by 1 � λ�1
M �

���pM�q�1
��� κ̃c̃2 which we require to be
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1.3 The Koopman operator is nuclear

positive. Since
���pM�q�1

��� ¡ 1, this yields the stronger conditions

0   κ̃   1� λ�1
M���pM�q�1
��� c̃2

and c2 ¤
1� λ�1

M �
���pM�q�1

��� κ̃c̃2

2
c1. (1.19)

Any such choice for κ̃ is independent of n1 and n2 and fixes cM . Using (1.19)

for an upper bound on c2 and (1.17), we find the stronger condition

0   c1   cM � κ

3� λ�1
M

ε.

Therefore the choices of c1 and c2 are valid if κ   cM . They depend only on ε,

M and }�} and not on n1 or n2.

Proposition 1.3.4 (Upper bound on |In1,n2 pT q| (II)). Let M P SL2 pZq be

hyperbolic and let r ¡ 0. Then there exist constants 0   δM and 0   c2   c1   r

such that for each n1, n2 P Z2 and each T P Tr with dpT,Mq ¤ δM it holds that

exp p�2πc1 p|n1|M � |n2|M qq |In1,n2 pT q| ¤ exp p�2πc2 p}n1} � }n2}qq .

Proof. By Lemma 1.3.2 there is a constant C ¡ 0 independent of T such that

for each y P p�r, rq2 and n1, n2 P Z2 it holds that

|In1,n2 pT q| ¤ exp
�

2π
�
�n�2 Dxn2 pyq

Ty � n�1y � CdpT, 0q }y}3 }n2}
		

. (1.20)

We rewrite

n�2 Dxn2 pyq
Ty � n�2My � n�2 Dxn2 pyq

pT �Mq y,

and set

Rpyq :�
$&%

n�2
}n2}

Dxn2 pyq
pM � T q y � CdpT, 0q }y}3 if n2 � 0

0 if n2 � 0
.

Let δM ¡ 0 and assume that dpT,Mq ¤ δM . We choose 0   ε ¤ r sufficiently

small such that for all y P R2 with }y}   ε there is κ ¡ 0 such that

|Rpyq| ¤ κδM .

Since dpT, 0q ¤ dpT,Mq�dpM, 0q ¤ δM �dpM, 0q this choice of ε is independent
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1 Generic non-trivial resonances for Anosov diffeomorphisms

of T . Lemma 1.3.3 applied to M and |R| gives c1, c2 and yn1,n2 P R2 for which

the right-hand side of (1.20) fulfills the desired inequality.

Proof of Theorem 1.3.1. Proposition 1.3.4 yields 0   δM and 0   c2   c1   r

such that if dpT,Mq ¤ δM it holds

Cn1C
�1
n2
|In1,n2 pT q| ¤ exp p�2πc2 p}n1} � }n2}qq , (1.21)

where

Cn :� exp
��2πc1

���n�M�� � ��n�M���� , n P Z2.

We put c :� c1 and M in Definitions 1.2.2 and 1.2.4, giving a linear map AM,c1

and a Hilbert space HAM,c1 . Recalling (1.6), and assuming that KT : HAM,c1 Ñ
HAM,c1 is well-defined, we have����x%n1 ,KT%n2yHAM,c1

���� � ����Aϕn1 , AM,c1KTA�1
M,c1

ϕn2

E
L2pT2q

����
� Cn1C

�1
n2
|In1,n2 pT q| . (1.22)

Using (1.21) to estimate the right-hand side, the bound in Theorem 1.3.1 follows.

We next obtain well-definedness and nuclearity of order 0 of KT . Let f P HAM,c1
and put g :� AM,c1f . We have then

KT f P HAM,c1 ô AM,c1KT f P L2

�
T2

�ô ¸
nPZ2

|ϕ�nAM,c1KT f |2   8

ô
¸

n1PZ2

������
¸

n2PZ2

ϕ�n1
AM,c1KTA�1

M,c1
ϕn2ϕ

�
n2
g

������
2

  8

ô
¸

n1PZ2

������
¸

n2PZ2

Cn1C
�1
n2
In1,n2 pT qϕ�n2

g

������
2

  8.

Using (1.21) and the Cauchy-Schwartz inequality, it follows that

¸
n1PZ2

������
¸

n2PZ2

Cn1C
�1
n2
In1,n2 pT qϕ�n2

g

������
2

¤
� ¸
nPZ2

e�4πc2}n}

�2

}g}2L2pT2q   8.

This gives the well-definedness of KT . Now, using the Cauchy-Schwartz inequa-
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1.4 Non-trivial resonances for the Koopman operator

lity, we have����x%n,KT fyHAM,c1

����2 ¤ ¸
mPZ2

����x%n,KT%myHAM,c1

����2 }f}2HAM,c1

.

Using (1.22) and (1.21) to bound

����x%n,KT%myHAM,c1

����, we find a constant C ¡ 0

such that ����xC exp p2πc2 }n}q %n,KT fyHAM,c1

���� ¤ }f}HAM,c1

.

This allows the representation of KT as

KT f �
¸
nPZ2

C�1 exp p�2πc2 }n}q xC exp p2πc2 }n}q %n,KT fyHAM,c1

%n,

from which nuclearity of order 0 follows. Finally, a brief inspection of the proofs

for Lemma 1.3.3 and Proposition 1.3.4 gives the statement about the constants.

1.4 Non-trivial resonances for the Koopman operator

Given any hyperbolic matrix M P SL2 pZq, we find by Theorem 1.3.1 constants

0   δM and c ¡ 0 such that for each map T P Tr, satisfying dpT,Mq ¤ δM , the

operator KT acting on the Hilbert space HAM,c is nuclear of order 0. Therefore

it has a well-defined trace

trKT :�
¸
nPZ2

x%n,KT%nyHAM,c
. (1.23)

The map T is an Anosov diffeomorphism (for all small enough δM ), by structural

stability [35, Theorem 9.5.8]. Then the map T has the same number NM �
|det pid�Mq| of fixed points as the matrix M . We recall a well-known result

[25, Proposition 9].

Lemma 1.4.1 (Trace formula for KT ). Let M P SL2 pZq be hyperbolic and let

r ¡ 0. Then there exist constants δM ¡ 0 and c ¡ 0 such that for each T P Tr
with dpT,Mq ¤ δM , letting KT act on HAM,c, it holds

trKT �
¸

T pxq�x

|det pid�Dx T q|�1 .

For the convenience of the reader, we give a proof:
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1 Generic non-trivial resonances for Anosov diffeomorphisms

Proof. Using Theorem 1.3.1 gives constants c ¡ 0 and δM ¡ 0 and well-

definedness of KT . For small enough δM ¡ 0, by structural stability and Lemma

A.1 (ii), the map id�T can be partitioned into NM surjective submaps. In

particular, there are diffeomorphisms yj : Dj Ñ T2, Dj � T2, 1 ¤ j ¤ NM such

that id�T � �NM
j�1 yj . Then, using (1.6), we have for each n P Z2

x%n,KT%nyHAM,c
�

A
ϕn, AM,cKTA�1

M,cϕn

E
L2pT2q

�
»
T2

exp pi 2πn� pT � idq pxqq dx

�
NM̧

j�1

»
y�1
j pT2q

exp pi 2πn�yjpxqq dx

�
NM̧

j�1

»
T2

exp pi 2πn�zq���det
�

id�Dy�1
j pzq T

	���dz.
For N P N and z P T2 the following sum

DN pzq :�
¸
nPZ2

}z}¤N

exp pi 2πn�zq

is the 2-dimensional analogue of the Dirichlet kernel [44, p.13]. Together with

(1.23), this yields immediately

trKT � lim
NÑ8

¸
nPZ2

}n}¤N

x%n,KT%nyHAM,c
�

¸
T pxq�x

|det pid�Dx T q|�1 .

Using Lemma 1.4.1, and the definitions (1.1) and (1.9) for the dynamical deter-

minant and Fredholm determinant, respectively, we see directly that

det p1� zKT q � dT pzq . (1.24)

The Ruelle resonances correspond to the zeroes of the Fredholm determinant,

hence to the inverses of the non-zero eigenvalues of KT .

Remark 1.4.2. In view of Equation 1.24 and the relation of the Ruelle reso-

nances of T to the eigenvalues of KT , one may ask how the spectrum of KT
would be affected if we let KT act on a different Banach space. The following

relates a part of the eigenvalues of two linear operators sharing a common dense

subspace and is due to a result of Baladi and Tsujii [11, Appendix A]. Consi-

der two separable Banach spaces pB1, }�}1q and pB2, |�|q. This induces two other
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1.4 Non-trivial resonances for the Koopman operator

Banach spaces

�
B1 � B2, }�}�

�
and pB1 X B2, }�}Xq , where

}f}� :� inf t}f1}1 � |f2| | f1 P B1, f2 P B2, f � f1 � f2u and

}f}X :� max t}f}1 , |f |u .

Suppose that BX is dense in B1 and B2. Let L : B� Ñ B� be a linear map which

preserves the spaces BX, B1 and B2 and is a bounded linear operator on the

restrictions L|B1
and L|B2

. Then the part of the spectrum of L|B1
and of L|B2

which lies outside the closed disc with radius larger to both essential spectral radii

of L|B1
and L|B2

coincide. Moreover, the corresponding generalized eigenspaces

of L|B1
and L|B2

coincide and are contained in BX.

For the applications that we have in mind, the map L is just the Koopman or

transfer operator, defined on B1 and B2, respectively, extended to the space B�.

The spectrum sp pKT q of KT on HAM,c is invariant under complex conjugation

since T is real. The constant functions on T2 are all fixed by KT . Therefore

we have 1 P sp pKT q. If we take T � Mk, k P N in Lemma 1.4.1, it follows

that trKT � 1. Hence, the dynamical determinant is just dT pzq � 1 � z, also

noted in [55, p.3]. We find immediately that 1 is the only Ruelle resonance. We

show now that this finding is non-generic in the following sense. The rest of this

section is devoted to an idea of Naud [51]. We put for every r ¡ 0

Br :�  
T P Tr | The lift of T to R2 is Z2-periodic

(
. (1.25)

Endowed with the uniform norm this is a Banach space.

Theorem 1.4.3 (Non-trivial Ruelle resonances (I)). Let M P SL2 pZq be hyper-

bolic. For each r ¡ 0 there exists an open and dense set G � Br such that the

linear functional

BM : Br Ñ R : ψ ÞÑ NM
�1

¸
Mx�x

tr
�
pid�Mq�1 Dx ψ

	
never vanishes on G. For all ψ P G there exists ε0 ¡ 0 such that for all ε   ε0

trKM�εψ � 1� εBM pψq �O
�
ε2
�

.
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1 Generic non-trivial resonances for Anosov diffeomorphisms

In particular, for all sufficiently small ε ¡ 0 it holds

sp pKM�εψq z t0, 1u � H.

Lemma 1.4.4 (Real analyticity of fixed points). Let M P SL2 pZq be hyperbolic

and r ¡ 0. Then for all ψ P Br the fixed points of the map

M � δψ

are real analytic functions of δ where δ lies in a real neighborhood of 0.

Proof. We set for δ P R

F pδ, xq :�Mx� δψpxq � x.

We fix a point yj :� p0, xjq where xj , 1 ¤ j ¤ NM , is a fixed point of M . By

construction, the map F has a holomorphic extension to C � Ar. Since M is

hyperbolic, we have det Dxj pF p0, �qq � 0. We apply the Holomorphic Implicit

Function Theorem [47, Theorem 1.4.11] on F with F pyjq � 0. This yields a

holomorphic function xj pδq such that xj p0q � xj and which is obviously real

analytic for δ P R in a neighborhood of 0.

Proof of Theorem 1.4.3. Let δ P R and ψ P Br and set M̃ :�M�δψ. We choose

δ small in Lemma 1.4.4 which gives for each fixed point x of M a real analytic

function x̃ with x̃ p0q � x. Using a Taylor expansion on x̃ at 0, we have

x̃ pδq � x�Opδq.

Using real analyticity of the derivative Dx ψ, we have

Dx ψ �Dx̃pδq ψ � Opδq.

We write now for each fixed point x of M���det
�

id�Dx̃pδq M̃
	��� � ��det

�
id�M � δDx ψ � δ

�
Dx ψ �Dx̃pδq ψ

����
� NM

���det
�

id�pid�Mq�1 �δDx ψ �
�
δDx ψ � δDx̃pδq ψ

��	���
� NM

���det
�

id�δ pid�Mq�1 Dx ψ �O
�
δ2
�	���

� NM

�
1� δtr

�
pid�Mq�1 Dx ψ

	
�O

�
δ2
�	

.
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1.5 Non-trivial resonances for the transfer operator

We have by Lemma 1.4.1 for δ small enough

trKM̃ � 1� δ

NM

¸
Mx�x

tr
�
pid�Mq�1 Dx ψ

	
�O

�
δ2
�

.

Now we set

BM : Br Ñ R : ψ ÞÑ NM
�1

¸
Mx�x

tr
�
pid�Mq�1 Dx ψ

	
.

We next check that this is a non-trivial linear functional. Note that formally

BM pid�Mq � 2. However, no non-zero linear map is in the space of additive

perturbations Br. We denote by vj , j P t1, 2u the j-th column of the matrix�pid�Mq���1
and we fix now j. Let ψ0 : T� i p�r, rq Ñ C be holomorphic and

bounded. For every px1, x2q �: x P T2 we put

ψ pxq :� ψ0 pxjq vj .

By construction, we have ψ P Br and we evaluate

BM pψq � v�j vj

NM

¸
Mx�x

ψ
p1q
0 pxjq .

The right-hand side is a finite sum and by taking for ψ0 a suitable Fourier

polynomial (e.g. a shifted sine with sufficiently high frequency), we can establish

BM pψq � 0. We set G :� B�1
M pRz t0uq. By continuity of BM , the set G is open

and dense in Br.

1.5 Non-trivial resonances for the transfer operator

As before, we consider maps T P Tr, r ¡ 0 which are sufficiently C1-close to a

hyperbolic linear map M P SL2 pRq. We turn to the adjoint of KT , acting on

the dual space H�
AM,c

, which we denote by LT .

Lemma 1.5.1 (Transfer operator). Let M P SL2 pZq be hyperbolic and let r ¡ 0.

Then there exist constants 0   δM and c ¡ 0 such that for each T P Tr with

dpT,Mq ¤ δM the map

LT : H�
AM,c

Ñ H�
AM,c

: f ÞÑ f

|det D T | � T
�1
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1 Generic non-trivial resonances for Anosov diffeomorphisms

defines a nuclear operator of order 0, conjugate to KT . In particular,

sp pLT q � sp pKT q .

Proof. By Theorem 1.3.1 there is 0   δM , c ¡ 0 and HAM,c such that KT acting

on HAM,c is nuclear of order 0 if dpT,Mq ¤ δM . The same can be said about its

adjoint, acting on H�
AM,c

(e.g. see [57, p. 77]). The trace of KT and LT coincide,

so does their Fredholm determinant, and hence their resonances. By definition

of the adjoint, @f� P H�
AM,c

, @g P HAM,c : pLT fq� pgq � f� pKT gq. Using Lemma

1.2.5, it holds

f� pKT gq �
A
A�2
M,cf,KT g

E
HAM,c

�
»
T2

�
A�1
M,cf̄

	
pxq pAM,cKT gq pxqdx

�
»
T2

f̄ pxq pKT gq pxqdx �
»
T2

�
f̄

|det D T | � T
�1



pxq g pxqdx

�
B
A�2
M,c

�
f

|det D T | � T
�1



, g

F
HAM,c

�
�

f

|det D T | � T
�1


�

pgq .

By Lemma 1.5.1, recalling (1.6), and Lemma 1.4.1 it holds

trLT �
¸
nPZ2

LT%�n p%nq �
¸

T pxq�x

|det pid�DT q|�1 .

We have the equality

dT pzq � det p1� zKT q � det p1� zLT q .

We give now analogously to Theorem 1.4.3 a spectral result for the transfer

operator (recall Br from (1.25)).

Lemma 1.5.2 (Non-trivial Ruelle resonances (II)). Let M P SL2 pZq be hyper-

bolic. For each r ¡ 0 there exists an open and dense set G � Br such that for

all ψ P G there exists ε0 ¡ 0 such that for all 0   ε ¤ ε0

sp pLM�εψq z t0, 1u � H.

Proof. By Theorem 1.4.3 we know that under every perturbation ψ P G there

is ε0 ¡ 0 such that we find for all 0   ε ¤ ε0 non-trivial Ruelle resonances.

Using Lemma 1.5.1 for well-definedness of LM�εψ and for the relation sp pLT q �
sp pKT q, the result follows.
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1.5 Non-trivial resonances for the transfer operator

Clearly, the Lebesgue measure (by Remark 1.2.6, the constant density 1) is fixed

by LM . This does not persist under a generic perturbation of M . However, the

spectral relation in Lemma 1.5.1 implies that LT fixes some functionals inH�
AM,c

.

In particular, using Remark 1.4.2, we can apply [15, Theorem 3] to our transfer

operators LM and LT . Hence, the eigenvalue 1 of LT is simple and the projector

Π�
1 onto the corresponding eigenspace of LT gives us the SRB measure

µSRB :� Π�
11�,

in the usual sense. (It is absolutely continuous with respect to Lebesgue measure

in the unstable direction.)

We finish this section by showing the existence of non-zero perturbations ψ P Br
which allow the determinant det pM � εDx ψq to remain constant or to vary for

x P T2.

Lemma 1.5.3 (Volume under perturbations). Let r ¡ 0 and let M P SL2 pZq
be hyperbolic. Then there exist non-zero maps ψ P Br in each of the following

cases:

(i) For all ε ¡ 0 and all x P T2 it holds det pM � εDx ψq � 1.

(ii) For all ε ¡ 0 and Lebesgue almost all x P T2 it holds |det pM � εDx ψq| �
1.

In particular, the map ψ can be chosen such that for all small ε ¡ 0 the corre-

sponding transfer operator

LM�εψ

admits non-trivial Ruelle resonances.

Proof. We prove first Claim (i), including the statement about the non-trivial

Ruelle resonances. We will apply Lemma A.2 (i). We choose j P t1, 2u, r ¡ 0

and let φ : T � i p�r, rq Ñ C be a holomorphic and bounded map. For α P R2

we set for every px1, x2q �: x P T2

ψφ,α pxq :� pα1φ pxjq , α2φ pxjqq .

We put d :� 2, j, T :� M , φ and Tφ :� ψφ,α (e.g. as lift to R2) in Lemma A.2.

Since M is a constant matrix, say, M �
�
a b

c d

�
for suitable a, b, c, d P Z, we

can write Condition A.2 (i) as

α1d � α2b if j � 1 or α1c � α2a if j � 2. (1.26)
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1 Generic non-trivial resonances for Anosov diffeomorphisms

Hence, we have non-zero solutions in α independent of x. We choose such a

solution α and take ψ � ψφ,α. Then ψ P Br which yields det pM � εDx ψq � 1

for every ε ¡ 0. We are free to choose any suitable φ. In particular, Theorem

1.4.3 yields a linear functional BM and a dense subset G � Br on which BM is

non-zero. We have to make sure that ψ P G. Then for ε small LM�εψ admits

non-trivial Ruelle resonances by Lemma 1.5.2. To this end, we evaluate BM at

ψ which yields

BM pψq � BM pψφ,αq � NM
�1

¸
Mx�x

tr
�
pid�Mq�1 Dx ψφ,α

	
� v�j α

NM

¸
Mx�x

φp1q pxjq ,

where v�j is the j-th row of pid�Mq�1. The sum over the fixed points of M can

be made non-zero by a suitable Fourier polynomial. Now we have

v�1α �
p1� dqα1 � cα2

det pid�Mq or v�2α �
bα1 � p1� aqα2

det pid�Mq .

Using (1.26), we find

v�1α �
�
c� b� b

d

�
α2

det pid�Mq or v�2α �
�
b� c� c

a

�
α1

det pid�Mq .

Both equations can never be zero since M is not diagonal. We prove now Claim

(ii) by modifying the map ψ. For δ P Rz t0u we set α̃ :� α � δwj , where wj is

the j-th column of M and put rψ :� ψφ,α̃. We have

det
�
M � εDx

rψ	 � det
�
M � εDx ψ � εDx

� rψ � ψ
		

� 1� δεφp1q pxjq .

Since φ is not constant, the right-hand side differs from 1 (and �1) for Lebesgue

almost all x. Since v�j α̃ � v�j α� δv�jwj � 0 for the right choice of the sign of δ,

we have BM

� rψ	 � 0.
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2 Horocycle averages on closed

manifolds

2.1 Introduction

Let M be a closed (compact without boundary) orientable Riemannian manifold

of arbitrary finite dimension d ¥ 3. On such manifolds Anosov introduced C2

flows

gα1 � gα2 � gα1�α2 � gα : M ÑM, α, α1, α2 P R,

to study the geodesic flow on the unit tangent bundle of closed Riemannian

manifolds with variable negative sectional curvature [3], [4]. As pointed out by

Anosov [3], the topological entropy htop of the time-one map g1 of an Anosov

flow is positive.

A special class of such Anosov flows are those which preserve a contact structure.

The geodesic flows are well-studied examples of contact Anosov flows. We give

the precise definition of a (contact) Anosov flows in Section 2.2.

Every Anosov flow admits a contracting transversal foliation. The underlying

vector bundle E� is called the strong stable distribution. If the leaves of the

contracting foliation are one-dimensional and orientable, one associates with gα

another flow, the horocycle flow hρ : M Ñ M , ρ P R. (The term horocycle flow

was used originally only in the case of the geodesic flow, e.g. see [49, p.84] or [38].)

For every x PM the flow trajectory hR pxq is such a contracting leaf. Statistical

properties of contact Anosov flows are nowadays fairly well understood (see [23],

[33], [48]). Regarding the horocycle flow one knows by the work of Bowen and

Marcus unique ergodicity of and minimality of the horocycle flow (e.g. see [18],

[50]). The corresponding invariant probability measure µ will play an important

role below. (It is related to but distinct from the measure of maximal entropy

of the flow.)

Since the horocycle flow is induced by the Anosov flow the following pointwise
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2 Horocycle averages on closed manifolds

equality for all x PM holds for a suitable function τ pρ, α, xq:

gα � hρ pxq � hτpρ,α,xq � gα pxq .

We call τ pρ, α, xq the renormalization time.

This kind of renormalization has been used effectively in the work of Flaminio

and Forni [28] to give a precise understanding of the horocycle integral

γx pϕ, T q �
» T

0
ϕ � hρ pxqd ρ, x PM, T ¡ 0,

in the setting of unit speed geodesic flows on hyperbolic compact (more generally

finite volume) Riemannian surfaces with constant negative sectional curvature

(i.e. Riemann surfaces), for ϕ : M Ñ R in Sobolev spaces of positive order. In

this case, htop � 1. Flaminio and Forni found that the speed of convergence of

γx pϕ, T q {T to µ pϕq as T Ñ8 is controlled by invariant distributions under the

push-forward of the horocyclic vector field. These distributions are also eigendis-

tributions under the push-forward of the geodesic vector field and the eigenvalues

give the powers of T appearing in the expansion of T�1γx pϕ, T q � µ pϕq.
Their approach inspired Giulietti and Liverani [30] to study a toy model, re-

placing the Anosov flow with a hyperbolic diffeomorphism, using the renorma-

lization dynamics as a key to study γx pϕ, T q. They show analogously (for the

corresponding invariant measure µ) that the speed of convergence to zero of

T�1γx pϕ, T q � µ pϕq is controlled by eigendistributions for a weighted transfer

operator of the hyperbolic diffeomorphism.

Giulietti and Liverani conjectured that a similar behavior holds in the setting

of more general Anosov flows, e.g. for the geodesic flow on the unit tangent

bundle of a Riemannian manifold with variable negative sectional curvature [30,

Conjecture 2.12]. More precisely, we expect for smooth enough observables ϕ

an expansion like

γx pϕ, T q � T

»
ϕdµ�

¸
δ <λ htop

T
<λ
htop cpλ, T, xqOλ pϕq � ET,x pϕq , (2.1)

with ET,x � OpT
δ

htop q, uniformly in x. The Oλ are generalized eigendistributions

associated to the eigenvalue λ for the adjoint of the generator X�V of a certain

weighted transfer operator Lα,φα , acting on an anisotropic Banach space (see

below). The real parameter δ is an upper bound on the essential spectral bound
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2.1 Introduction

of X � V . The complex coefficients cpλ, T, xq are bounded from above indepen-

dently of x by |log T |c for some c � cpλq ¥ 0 which depends whether <λ   0,

<λ � 0 or <λ ¡ 0 and if there are non-trivial Jordan blocks for λ. This is

analogous to the bounds in [28],[30]. However our methods show no substantial

improvement of the error term ET,x if the summation in λ includes some <λ   0

(this is seen also in [28],[30]). We restrict ourself therefore to δ ¥ 0 (i.e. always

<λ ¡ 0).

The main result of this work, Theorem 2.5.7, gives conditions under which such

an asymptotic expansion indeed holds, for some δ ¡ 0, for codimension one

topologically mixing Anosov flows, under an assumption of “spectral gap with

(Dolgopyat) bounds” (Condition 2.4.11 below). In Proposition 2.5.10 we spe-

cialize to C3 contact Anosov flows in dimension d � 3. For compact Riemann

surfaces (recall that this is the constant negative curvature case) Randol [53]

proved that there exist eigenvalues arbitrarily close to 1 (his result is for the

associated Laplacian). This provides examples with a non-trivial expansion.

Analogous to the work of Giulietti and Liverani [30], the key idea to study

γxpϕ, T q is to introduce a weighted transfer operator family

Lα,φα : W s,t,q
p ÑW s,t,q

p , Lα,φαϕ � φα � ϕ � g�α, α ¥ 0,

where the weight is φα � Bρτ p0,�α, �q and where W s,t,q
p is an anisotropic Ba-

nach space with certain real regularity parameters s, t, q and p. In the case of

the unit speed parametrization of the flow hρ, the weight Bρτ p0,�α, �q is just

the Jacobian along the strong stable distribution evaluated at negative time �α.

The paper is organized as follows: After recalling some facts about Anosov flows

in Section 2.2, the transfer operator Lα,φα is defined in Section 2.3.1 (for more

general weights) and the Banach spaces W s,t,q
p are constructed in Section 2.3.2.

These spaces are a flow analogue to the spaces constructed by Baladi and Tsujii

[10] to study hyperbolic diffeomorphisms. Anisotropic Banach spaces are now

considered a standard tool (yet with still ongoing research) for investigating

transfer operators and zeta functions associated to hyperbolic dynamics [7]–[9],

[13], [15], [23], [31], [33], [48], [52], [64], [65]. Although we do not study here

the dynamical zeta function for the transfer operator Lα,φα , we believe that this

space could be a suitable choice to be dealt with.

In Section 2.4 we establish properties of the transfer operator, its generator

X � V and the resolvent Rz. Most of these results do not require the contact
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2 Horocycle averages on closed manifolds

assumption. Among those are norm estimates which yield a Lasota–York ine-

quality for the resolvent. This is Theorem 2.4.5. Then in Lemma 2.4.10 one

obtains a strip in the spectrum of the generator, containing at most countable

eigenvalues of finite multiplicity. Those are precisely the eigenvalues λ in the

summation over λ in (2.1). Finally, these results are used in Section 2.5 to give

the expansion (2.1) of γxpϕ, T q in terms of eigendistributions and eigenvalues of

X � V under a spectral gap with bounds condition, see Condition 2.4.11.

We end this introduction with two remarks about possible further work:

First, the conjecture that the distributions Ov appearing in the expansion (2.1)

are fixed by the (adjoint) of the horocycle flow remains still open. (In contrast

this was the starting point in [28]!) Here, progress has been made by Faure and

Guillarmou [24] in dimension 3 for smooth contact Anosov flows.

Second, the renormalization time τ pρ, α, xq inherits the regularity properties of

the underlying Anosov foliation and horocycle flow, i.e. the regularity in x is

expected to be no more than Hölder. To deal with such irregular flows one can

lift the dynamics to the Grassmanian. This has been used with success, e.g. in

[30], [33] and more recently in [65]. However in this work we wish to avoid such

technicalities and we will make additional assumptions ensuring that τ pρ, α, xq
enjoys sufficient regularity.

In particular, if the Anosov flow is Cr we require Bρτ p0, α, �q to be Cr�1 for all

α ¥ 0. This is reasonably only if r is small since the regularity of the stable

foliation is usually only Hölder. In the setting of C3 contact Anosov flows in

dimension 3 we can take r � 2 � ε for all ε ¡ 0 by a result of [40] (see also

Remark 2.5.8 in Section 2.5).

The Appendix comprises our computational tools. On the lowest level, we utilize

Fourier transform, integration by parts, and Young’s inequality [17, Theorem

3.9.4] to estimate convolutions.

2.2 Geometric setting

Let M be a closed, connected, orientable, smooth Riemannian manifold of di-

mension d ¥ 3. We let gα : M Ñ M , α P R, be a Cr Anosov flow on M 1for

r ¡ 1. That is, there exists a decomposition of the tangent space TM of M as

1In this chapter it holds: if r ¡ 0, is not an integer, Cr means Ctru with all partial derivatives
of order tru being pr � truq-Hölder continuous.
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2.2 Geometric setting

a direct sum

TM � E� ` E� ` E0, (2.2)

such that for some constants C ¥ 1, 0   θ   1 and every α ¥ 0

}D gαv} ¤ Cθα }v} , for all v P E�,

}D g�αv} ¤ Cθα }v} , for all v P E�,
(2.3)

and E0 � xXy where X is the generator of the Anosov flow

X :� Bαg�α|α�0. (2.4)

Note that the conditions in (2.3) are closed. Hence by compactness of M the

distributions E� and E� are uniformly continuous and so are the weak-stable

E�`E0 and weak-unstable E�`E0 distributions. The restriction of the tangent

space to a base point x PM is denoted by

TxM � E�,x ` E�,x ` E0,x, (2.5)

The dimensions of those vector spaces do not vary with x and we set for some

x PM

d� :� dimE�,x. (2.6)

The cotangent space T �M is the dual space of TM and has the canonical

splitting

T�M � E�
� ` E�

� ` E�
0 and T�

xM � E�
�,x ` E�

�,x ` E�
0,x, x PM, (2.7)

where E�
� � pE� ` E0qK, E�

� � pE� ` E0qK, E�
0 � pE� ` E�qK. This splitting

is pD gαqtr-invariant and satisfies an analogue of (2.3).

A contact form is a 1-form η P T �M such that η ^� d�1
2

n�1 d η vanishes nowhere

(d η is the exterior derivative of η). An Anosov flow is a contact flow if there

exists a C1 contact form η which is preserved by the pullback of gα. Clearly, a

contact form can only exist if d is odd.

We mean by ”�” for sets A,B � T �M (or � Rd) that

A � B ô Ā � pintB Y t0uq .
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2 Horocycle averages on closed manifolds

Here Ā denotes the closure of A and intB the interior of B. We say that a cone

A is compactly included in a cone B if and only if A � B. We say that a cone

A and a cone B are transversal if and only if AXB � t0u.
We introduce two closed convex cone fields on M in the cotangent space:

For every x P M and for every v P T�
xM we have v � v� � v� � v0, where

vσ P E�
σ,x, σ P t�,�, 0u. For every 0   γ   1 we set

C�
γ pxq :�  

v P T�
xM | }v�} � ��v0

�� ¤ γ }v�}( ,

C�
γ pxq :�  

v P T�
xM | }v�} � ��v0

�� ¤ γ }v�}( .
(2.8)

If γ1 ¡ γ then we have the compact inclusions

C�
γ pxq � C�

γ1 pxq and C�
γ pxq � C�

γ1 pxq .

Moreover, this construction implies E�
�,x � C�

γ pxq, and E�
�,x � C�

γ pxq and also

transversality E�
0,x X

�
C�
γ pxq Y C�

γ pxq
� � t0u and C�

γ pxq X C�
γ pxq � t0u.

We have (see Lemma B.1) for all α ¥ 0 so that C2θαγ   γ1   1 and for all

x PM the compact inclusions

pD g�αqtrC�
γ pxq � C�

γ1 pgα pxqq and pD gαqtrC�
γ pxq � C�

γ1 pg�α pxqq . (2.9)

The cones defined in (2.8) are expanding and contracting, respectively (see

Lemma B.2). Note that the cones in (2.8) have non-empty interior while [43,

Proposition 17.4.4] uses “flat” cones included in E�
� ` E�

�.

Let Vω � Ω, ω P Ω, be an open cover of M , where Ω is a finite index set. We let

A be an atlas for M , containing diffeomorphic Cr-charts κω : Vω Ñ Rd, compa-

tible with the splittings (2.2) and (2.7), as we explain now. Fixing coordinates

px1, . . . , xdq P Rd and recalling X from (2.4), we may and do require the flowbox

condition

DκωX|Vω � Bxd . (2.10)

Since gα is Cr the chart maps κω, ω P Ω, are also Cr diffeomorphisms. We set

Cσγ,ω :�
¤
xPVω

�
Dκ�1

ω

�tr
Cσγ pxq , σ P t�,�u , ω P Ω. (2.11)
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2.2 Geometric setting

We require the sets Vω to be small enough such that for small 0   γ�, γ� ¤ 1

there exist 0   γ��, γ
�
� ¤ 1 such that for all ω P Ω and for all x P Vω

pDx κωqtrC�
γ�,ω � C�

γ��
pxq and pDx κωqtrC�

γ�,ω � C�
γ��
pxq . (2.12)

This is possible by uniform continuity of the weak-stable and weak-unstable

distributions and the flowbox condition in (2.10). Note that the cones Cσγ,ω are

not necessarily convex. This poses no problem since the differential is linear

and hence the convex closure of Cσγσ ,ω is contained in Cσ
γ�σ
pxq (this is already a

convex, closed cone) for all x PM . Without loss of generality we identify Cσγσ ,ω

with its convex closure.

Definition 2.2.1 (Cone ensemble). Let C�, C� � Rd, d ¥ 3, be transversal,

convex, closed cones with non-empty interiors. Let Φσ : Rdz t0u Ñ r0, 1s be C8

maps, σ P t�,�, 0u, such that

Φ�| intC� � 1, Φ�| intC� � 1, Φ� � Φ� � Φ0 � 1 and

C� � Rdz psupp Φ� Y supp Φ0q , C� � Rdz psupp Φ� Y supp Φ0q .

We call Θ :� pΦ�,Φ�,Φ0q a cone ensemble.2

Definition 2.2.2 (Cone hyperbolicity). Let K � Rd be open and let F : K Ñ
F pKq be a diffeomorphism. Let Θ, Θ� be two cone ensembles. Let

C� :� Rdz psupp Φ� Y supp Φ0q .

We say that F is pΘ�,Θq-cone hyperbolic on K if there exists C8 maps

rΦ�, rΦ�
σ : Rdz t0u Ñ r0, 1s

such that rΦ�| supp Φ� ,
rΦ�
σ| supp Φ�σ

� 1 for all σ P t�, 0u such that for all z P K

pDz F qtr supp rΦ�
� � C� and pDz F qtr supp rΦ�

0 � Rdz supp rΦ�. (2.13)

In Section 2.3.2 an anisotropic Banach space is constructed where the cones C�,

C� determine the directions of lowest and highest regularity, respectively. The

inclusions (2.13) ensure that no parts of higher regularity are mapped to parts

of lower regularity.

2By the support of a function f : S Ñ C we mean supp :� tx P S | f pxq � 0u which can be
an open set in the topology of S.
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2 Horocycle averages on closed manifolds

Lemma 2.2.3 (Existence of admissible cones). Let α P R and let ω, ω1 P Ω. Set

Vα,ωω1 :� Vω X gα pVω1q and set

F�α,ωω1 : κω
�
Vα,ωω1

�Ñ κω1
�
V�α,ω1ω

�
: y ÞÑ κω1 � g�α � κ�1

ω pyq .

Then there exists α0 ¡ 0 such that for all ω, ω1 P Ω there exist cone ensembles

Θω � pΦ�,ω,Φ�,ω,Φ0,ωq and Θ�
ω1 �

�
Φ�
�,ω1 ,Φ

�
�,ω1 ,Φ

�
0,ω1

�
,

such that for all α ¥ α0 the map F�α,ωω1 is
�
Θ�
ω1 ,Θω

�
-cone hyperbolic. Moreover,

for every ω P Ω it holds

supp Φ�
0,ω � supp Φ0,ω Y supp Φ�,ω and supp Φ�

�,ω � supp Φ�,ω. (2.14)

Proof. We let ω, ω1 P Ω. We assume Vα,ωω1 � H (otherwise we are done). We let

0   γ�, γ� ¤ 1 be small such that γ��, γ
�
� ¡ 0 are the values attained in (2.12)

for all cones C�
γ�,ω, C�

γ�,ω, ω P Ω. These cones are transversal, convex and closed

by construction. We repeat the construction, resulting in values rγ��   γ�� andrγ��   γ��, using now values

rγ�   γ�, rγ�   γ�,

sufficiently small (possibly by passing to a finer open cover) such that for all

ω P Ω and all x P Vω�
Dκωpxq κ

�1
ω

�tr
C�
rγ��
pxq � C�

γ�,ω,
�
Dκωpxq κ

�1
ω

�tr
C�
rγ��
pxq � C�

γ�,ω. (2.15)

We note that the map Fα,ωω1 is a diffeomorphism by construction. We construct

further cones as follows: By the construction of local cones in (2.11) and the

compact inclusion given in (2.12) for some C2βαγ�� ¤ γ1�   rγ�� and for all α ¥ α0

we have for all x P Vα,ωω1

pD gαqtr pDx κωqtrC�
γ�,ω � pD gαqtrC�

γ��
pxq � C�

γ1�
pg�α pxqq � C�

rγ��
pg�α pxqq .

Comparing with the compact inclusion in (2.15), there exists a convex, closed

cone rC�
γ�,ω1

� Rd such that

�
DFα,ω1ω

�tr
C�
γ�,ω � rC�

γ�,ω1
� C�

γ�,ω1
. (2.16)
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2.3 The transfer operator and the anisotropic Banach space

Analogously we find

�
DF�α,ω1ω

�tr
C�
γ�,ω � rC�

γ�,ω1
� C�

γ�,ω1
. (2.17)

Recalling Definition 2.2.1, we let

Θω � pΦ�,ω,Φ�,ω,Φ0,ωq and Θ�
ω1 �

�
Φ�
�,ω1 ,Φ

�
�,ω1 ,Φ

�
0,ω1

�
be the cone ensembles such that

Φ�,ω| int rC�γ�,ω
� Φ�,ω| intC�γ�,ω

� Φ�
�,ω1| intC�

γ�,ω
1
� Φ�

�,ω1| int rC�
γ�,ω

1
� 1.

The supports of Φ�,ω,Φ�,ω and Φ�
�,ω1 ,Φ

�
�,ω1 are taken to be disjoint, respectively,

considering slightly larger convex cones. We check
�
Θ�
ω1 ,Θω

�
-cone hyperbolicity

of Fα,ωω1 , recalling Definition 2.2.2. The supports of rΦ�
�,ω1 ,

rΦ�,ω1 , rΦ�
0,ω1 are chosen

analogously on corresponding slightly larger cones. The first compact inclusion

in (2.13) is a direct consequence of the compact inclusion in (2.17). To see the

second compact inclusion in (2.13) note that��
DF�α,ωω1

�tr
	�1 �

Rdz supp Φ�,ω

	
� Rdz �DFα,ω1ω

�tr
supp Φ�,ω.

Comparing with the compact inclusion in (2.16), we conclude. The claim in

(2.14) follows again by comparing with the compact inclusions in (2.16) and

(2.17).

2.3 The transfer operator and the anisotropic Banach

space

2.3.1 The transfer operator

We denote by CrpMq the space of Ctru functions whose tru-th partial derivatives

in charts are Cr�tru. We let Cr�1
X pMq3 be the space of Cr�1 functions which

are Cr in the flow direction X defined by (2.4). Fixing a “potential function”

V P Cr�1pM,Rq, we introduce the φα-weighted transfer operator family

Lα,φα : ϕ ÞÑ φα � pϕ � g�αq , α ¥ 0, (2.18)

3If ϕ P Cr�1 pMq then ϕc :� 1
c

³c
0
ϕ � g�α dα P Cr�1

X pMq for all c ¡ 0. In the Banach spaces
we construct the limit limcÑ0 ϕc exists.
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2 Horocycle averages on closed manifolds

acting on ϕ P Cr�1
X pMq, where

φαpxq :� exp

�» α
0
V � g�α1pxqdα1



.

We will construct Banach spaces W s,t,q
p containing Cr�1

X pMq as a dense subspace

(for suitable choices p, s, t, q P R) on which the family (2.18) of operators extends

continuously to a strongly continuous semigroup (see Lemma 2.4.4 below). Note

that

V � Bαφα|α�0� . (2.19)

Our construction will show that for all ϕ P Cr�1
X pMq

BαLα,φαϕ|α�0� � Xϕ� V ϕ,

is well-defined in the sense that pX � V qϕ PW s,t,q
p if ϕ P Cr�1

X pMq. The opera-

tor X � V is the generator of the semigroup
!
Lα,φα : W s,t,q

p ÑW s,t,q
p | α ¥ 0

)
.

We denote by

σ pX � V q |W s,t,q
p

the spectrum of X � V to emphasize the dependency of the domain and hence

the spectrum of X � V on W s,t,q
p . We show in Theorem 2.4.5 that the resolvent

of X � V

Rzϕ :� pz � V �Xq�1 ϕ, z R σ pX � V q |W s,t,q
p

, ϕ PW s,t,q
p , (2.20)

admits a Lasota–Yorke inequality for large <z ¡ 0. This allows us to identify

a vertical left-open strip in the complex plane in which σ pX � V q |W s,t,q
p

con-

tains only isolated eigenvalues of finite multiplicity of X�V (see Lemma 2.4.10).

2.3.2 The anisotropic Banach space

We work locally with the atlas A, introduced in Section 2.2. We let Ψn : Rd Ñ
r0, 1s, n P Z¥0, be a Paley–Littlewood decomposition as follows:

Let χ : R¡0 Ñ r0, 1s be a C8 map so that χ|p0,1s � 1 and suppχ � r0, 2s. Let

|�| : Rd Ñ R¥0 be a smooth norm on Rdz t0u. Define Ψn by setting for all

62



2.3 The transfer operator and the anisotropic Banach space

ξ P Rdz t0u

Ψ0 pξq :� χ p|ξ|q and Ψn pξq :� χ
���2�nξ���� χ

���21�nξ
��� , n ¥ 1. (2.21)

This defines a partition of unity on Rdz t0u since we have

8̧

n�0

Ψn pξq � lim
nÑ8

χ
���2�nξ��� � 1.

For all n ¥ 1 it holds Ψnpξq � Ψ1p2�n�1ξq from which one finds

supp Ψn �
!
ξ P Rd | 2n�1 ¤ |ξ| ¤ 2n�1

)
. (2.22)

The inverse Fourier transform is given by

F�1ϕpxq :� p2πq�d
»
Rd
ei ξxϕpξqd ξ,

where

ξx :� xξ, xy

is the canonical scalar product on Rd. The convolution of two complex valued

functions ϕ1, ϕ2 on Rd (and extended to distributions) is given by

ϕ1 � ϕ2pxq :�
»
Rd
ϕ1px� yqϕ2pyq d y.

We will make frequent use (e.g. in the proof of Lemma 2.3.1 below and Lemma

2.4.16 in Section 2.4.4) of a special case of Young’s inequality for convolutions,

}ϕ1 � ϕ2}Lp ¤ }ϕ1}L1
}ϕ2}Lp , for all p P r1,8s .

Given a cone ensemble Θ � pΦ�,Φ�,Φ0q, we set for all σ P t�,�, 0u , n P Z¥0,

Ψσ,n :� ΨnΦσ and ΨOp
σ,nϕ :� �

F�1Ψσ,n

� � ϕ. (2.23)

We let rΨ0, rΨ1 P C8 such that rΨ0| supp Ψ0
� 1 and rΨ1| supp Ψ1

� 1. We set for

every n P N rΨn :� rΨ1 � 21�n.

(In principal it is enough to require the condition on the support of rΨn for

each n individually. Regarding the bounds in (2.25) below our choice here is
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2 Horocycle averages on closed manifolds

reasonable.) Then we set for every σ P t�,�, 0u and every n P Z¥0

rΨσ,n :� rΨn
rΦσ and rΨOp

σ,nϕ :�
�
F�1rΨσ,n

	
� ϕ, (2.24)

where rΦσ P C8 and supp rΦσ is a closed convex cone such that rΦσ| supp Φσ � 1

and Φσ1Φσ2 � 0 ñ rΦσ1
rΦσ2 � 0 for all σ1, σ2 P t�,�, 0u. We have the following

estimates for all σ and all n P N:

��F�1Ψn

��
L1
� ��F�1Ψ1

��
L1
  8, ��F�1Ψσ,n

��
L1
� ��F�1Ψσ,1

��
L1
  8. (2.25)

Analogous estimates hold for F�1Ψσ,0 and F�1Ψ0 and for the �-versions as well.

If Θ� is another cone ensemble we define Ψ�
σ,n,Ψ�Op

σ,n and rΨ�
σ,n,rΨ�Op

σ,n analogously.

We set

B :�
!
x P Rd | |x|   1

)
and Bc :� RdzB. (2.26)

In order to show a continuous embedding of certain spaces we will use very

often the following statement about convolution operators (an extension of [62,

Theorem 0.3.1] for the case r � 1 and Kpx, yq � Kpx � yq in his notation).

In Lemma 2.3.1 below all the occurring Lp-spaces are understood (as Bochner

spaces, cf. [16]) such that if a P Lp
�
Rd,B

�
for some complex Banach space B

then the norm of a is given by

}a}LppRd,Bq :� }}a}B}LppRd,R¥0q
.

The following lemma handles the range p P r1,8s. (For parameters p P p1,8q
one could apply instead the classical Marcinkiewicz theorem quoted e.g. as [10,

Theorem 3.1].)

Lemma 2.3.1. Let B1 and B2 be (complex) Banach spaces, let d P N and let

Q P Cd�1
�
Rd,L pB1,B2q

�
satisfy for its partial derivatives���BβξQpξq���LpB1,B2q

¤ C pβq |ξ|�|β| as |ξ| Ñ 8,

for some constants C pβq ¡ 0 and all multi-indices β P t0, . . . , d� 1ud such that

|β| ¤ d� 1, where |β| :� β1 � . . .� βd. Then for all p P r1,8s the map

QOp : Lp

�
Rd,B1

	
Ñ Lp

�
Rd,B2

	
: a ÞÑ

»
Rd

�
F�1Q

� px� yqapyqd y, (2.27)
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2.3 The transfer operator and the anisotropic Banach space

defines a bounded linear operator, where for every b P B1 and every x P Rd

F�1Q pxq b :� p2πq�d
»
Rd
eixξQ pξq bd ξ.

It holds

��QOp
��
LpLppRd,B1q,LppRd,B2qq

¤ ��F�1Q
��
L1pRd,LpB1,B2qq

  8.

Proof. Linearity of QOp follows if QOp is a bounded operator. Suppose first that

F�1Q P L1

�
Rd,L pB1,B2q

�
. We estimate

��QOpa
��
LppRd,B2q

�
�����
����»

Rd

�
F�1Q

� p� � yqapyq d y

����
B2

�����
Lp

¤
����»

Rd

���F�1Q
� p� � yqapyq��B2

d y

����
Lp

¤
����»

Rd

���F�1Q
� p� � yq��LpB1,B2q

}apyq}B1
d y

����
Lp

�
�����F�1Q

��
LpB1,B2q

� }a}B1

���
Lp

.

Using Young’s inequality, we estimate and conclude�����F�1Q
��
LpB1,B2q

� }a}B1

���
Lp
¤

�����F�1Q
��
LpB1,B2q

���
L1

��}a}B1

��
Lp

� ��F�1Q
��
L1pRd,LpB1,B2qq

}a}LppRd,B1q
.

We now show
��F�1Q

��
L1pRd,LpB1,B2qq

  8. It remains to show an upper bound

for

I :�
»
Rd

����»
Rd
ei yξQ pξq a d ξ

����
B2

d y.

Inside I we substitute, whenever y � 0

ξ ÞÑ xy, yy� 1
2 ξ

which yields

I �
»
Rd
xy, yy� d

2 }J pyq}B2
d y,

where

J :� J pyq �
»
Rd
ei yxy,yy�

1
2 ξQ

�
xy, yy� 1

2 ξ
	
a d ξ.
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For every y P Rdz t0u we set

ξ0 :� y xy, yy� 1
2 π.

Clearly, it holds

xξ0, ξ0y � π2.

We now repeat the following substitution pd� 1q-times

ξ ÞÑ ξ � ξ0,

which yields

J �
»
Rd
ei yxy,yy�

1
2 ξ rQ pξq a d ξ,

where rQ pξq � 2�d�1
d�1̧

n�0

�
d� 1

n



p�1qnQ

�
xy, yy� 1

2 pξ � nξ0q
	
.

We let 0   ε   1. We split the part in rQ if y P B for every 0 ¤ n ¤ d� 1 as

1 � χ
�
pξ � nξ0q xy, yy

ε
2

	
� p1� χq

�
pξ � nξ0q xy, yy

ε
2

	
,

for every corresponding summand in rQ, respectively. The part in I which cor-

responds to χ
�
pξ � nξ0q xy, yy

ε
2

	
is estimated trivially, using boundedness of Q

and integrability of xy, yy ε�d2 on B. Using the identity

Q pξq �Q pξ � ξ0q �
» 1

0
BtQ

�
pξ � ξ0 � tξ0q xy, yy�

ε
2

	
d t

� �xy, yy� ε
2

» 1

0
pDQq

�
pξ � ξ0 � tξ0q xy, yy�

ε
2

	
ξ0 d t,

we now write the remaining part in rQ as

rQ pξq � 2�d�1

»
r0,1sd�1

d�1̧

n�0

�
d� 1

n



xy, yynε2 xy, yy� d�1�n

2 (2.28)

�
�
pDn p1� χqq � xy, yy ε2

�
Dd�1�nQ

	
� xy, yy� 1

2

	
pξ ptqq p�ξ0qbpd�1q d t,

where we put

ξ ptq :� ξ � pd� 1q ξ0 � tξ
bpd�1q
0 and ξ

bpd�1q
0 :� pξ0, . . . , ξ0q

pd�1q�times

.
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We observe that the part where derivatives of
�
p1� χq � xy, yy ε2

	
pξq contribute

implies

ξ P pp2Bq zBq xy, yy� ε
2 .

Using the decay condition on all the partial derivatives of Q, recalling that

xy, yy ε�d2 log xy, yy

is integrable on the unit ball, and exchanging the order of integration with

respect to t as the outermost (justified by absolute integrability), we find for the

corresponding part in I, for some constants C1, C2, C3 ¡ 0

I ¤ C1
πd�1

2d�1
}a}B1

d�1̧

n�0

�
d� 1

n


»
B

»
pp2BqzBqxy,yy�

ε
2

|ξ|�d�1�n d ξ xy, yynε�d2 d y

� C1π
d�1 }a}B1

»
B

»
2xy,yy�

ε
2Bc

|ξ|�d�1 d ξ xy, yy� d
2 d y

¤ C2π
d�1 plog dq }a}B1

»
B

�
1� ε

2
|log xy, yy|

	
xy, yy ε�d2 d y

¤ C3 }a}B1
.

In the case y P Bc we proceed analogously, using the formular for rQ pξq given in

(2.28), but without splitting the integral with respect to ξ. We have now

rQ pξq � 2�d�1

»
r0,1sd�1

xy, yy� d�1
2

�
Dd�1Q

	�
xy, yy� 1

2 ξ ptq
	
p�ξ0qbpd�1q d t.

If ξ P B xy, yy ε2 we bound the corresponding part in I trivially, using boundedness

of the pd� 1q-th partial derivatives of Q and integrability of xy, yy dε�2d�1
2 on Bc.

If ξ P Bc xy, yy ε2 we use the decay condition of the pd� 1q-th partial derivatives

of Q instead and integrability of xy, yy� d�ε
2 on Bc.

For every open set K � Rd with compact closure we let Cr�1
0 pKq be the space of

Cr�1 functions which vanish at the boundary of K. Since Cr�1
0 pKq � Lp pK,Cq

for all p P r1,8s, the following definition makes sense.

Definition 2.3.2 (Local norm and local Banach space). Let p P r1,8s and let

s, t, q   r � 1. Let Θ be a cone ensemble from Definition 2.2.1 and let K � Rd

be an open set with compact closure. For every ϕ P Cr�1
0 pKq we set as the local
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norm

}ϕ}W s,t,q
p,Θ,K

:�
������
�

8̧

n�0

4ns
���ΨOp

�,nϕ
���2 � 4nt

���ΨOp
�,nϕ

���2 � 4nq
���ΨOp

0,nϕ
���2� 1

2

������
LppRdq

.

The completion W s,t,q
p,Θ,K of Cr�1

0 pKq under }�}W s,t,q
p,Θ,K

is our local anisotropic Ba-

nach space.

This is an anisotropic version of a Triebel–Lizorkin space [63, p.45, Definition

2] with a certain inner l2-norm and an outer Lp-norm. More precisely, we relate

the summation in n and σ which appears in the norm of W s,t,q
p,Θ,K to the norm of

a Hilbert space of complex valued sequences defined on t�,�, 0u�Z¥0. We set

cp�q :� s, cp�q :� t, cp0q :� q. (2.29)

Then we denote by `c2 the Hilbert space with norm given for all a P `c2 by

}a}`c2 :�
�¸
σ,n

4cpσqn |aσ,n|2
� 1

2

. (2.30)

For s1, t1, q1 P R we define c1 and `c2 analogously.

Lemma 2.3.3 (Multiplication and composition operator). Let p P r1,8s and let

s1, t1, q1, s, t, q   r�1. Let rr ¡ max t0, s, t, qu�min t0, s1, t1, q1u and let f P Crr0 pKq
for some open set K P Rd with compact closure and let F : K Ñ F pKq be a Crr

diffeomorphism. Let Θ and Θ� be two cone ensembles. Then the linear operator

MF,f : W s1,t1,q1

p,Θ�,K ÑW s,t,q
p,Θ,F�1pKq

: ϕ ÞÑ f � pϕ � F q

is bounded if cpσq ¤ c1 pτq whenever
�
xPK supp Ψσ X DF pxqtr supp Ψ�

τ � H.

Moreover, if F � id and Θ � Θ� the linear operator Mid,f is bounded if s ¤ q ¤
t.

Proof. We exclude first the indices for given σ, τ P t�,�, 0u such that¤
xPK

supp Ψσ XDF pxqtr supp Ψ�
τ � H, (2.31)

and given n, ` P Z¥0 such that����� sup
xPF pKq,ξPpsupp ΨσXBq

��DF�1pxqtrξ�������
�1

2�4 ¤ 2n�l ¤ 24 sup
xPK,ηPpsupp Ψ�

τXBq

��DF pxqtrη�� .
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2.3 The transfer operator and the anisotropic Banach space

For all remaining σ, τ P t�,�, 0u and n, ` P Z¥0 we bound the local norm for

every ε ¡ 0 and some constant C1 � C1pεq ¡ 0

}MF,fϕ}W s,t,q
p,Θ,K

�
������
�¸
σ,n

4�εn4pcpσq�εqn
��ΨOp

σ,nMF,fϕ
��2� 1

2

������
LppRdq

¤ C1 sup
σ,n

2pcpσq�εqn
��ΨOp

σ,nMF,fϕ
��
LppRdq

. (2.32)

On the excluded indices we estimate as in the proof of Lemma 2.4.13 below, using

Lemma 2.3.1 and Cauchy–Schwarz in ` and that n � ` and using c pσq ¤ c1 pτq.
We recall the map rΨ�

τ,` defined in (2.24). Then we bound for every n ¥ 0 and

every σ P t�,�, 0u
��ΨOp

σ,nMF,fϕ
��
LppRdq

¤
¸
τ,`

���ΨOp
σ,nMF,f

rΨ�Op
τ,` Ψ�Op

τ,` ϕ
���
LppRdq

�
¸
τ,`

2�c
1pτq`2c

1pτq`
���ΨOp

σ,nMF,f
rΨ�Op
τ,` Ψ�Op

τ,` ϕ
���
LppRdq

. (2.33)

Note that if supp Ψσ and DF pxqtr supp Ψ�
τ have empty intersection, since the

supports are open, we may assume that supp Ψσ and DF pxqtr supp rΨ�
τ have

empty intersection as well. Since we excluded the conditions regarding certain

σ, τ and n, ` given in (2.31) and below of it then by construction of rΨ�
τ,`, for

some constant C2 ¡ 0 it holds, in the following assuming n, ` ¡ 0,

inf
xPK

���supp Ψσ,n �DF pxqtr supp rΨ�
τ,`

��� ¥ C22maxtn,`u or

inf
xPF pKq

���DF�1pxqtr supp Ψσ,n � supp rΨ�
τ,`

��� ¥ C22maxtn,`u. (2.34)

In the following we assume the first inequality in (2.34). Otherwise the next

estimates are done with the substitution F pyq ÞÑ y. If n � 0 or ` � 0 the

following estimate is done analogously, using that either ξ or η is bounded. We

set rξ :� 2�nξ, rη :� 2�`η, and U :� Rd � Rd �K � Rd.
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2 Horocycle averages on closed manifolds

We write for every x P R

Ipxq :� Iσ,n,τ,` pxq :� p2πq2d
2pn�`qd

ΨOp
σ,nMF,fΨ�Op

τ,` ϕ pxq

� p2πq2d
2pn�`qd

ΨOp
σ,nMF,f

rΨ�Op
τ,` Ψ�Op

τ,` ϕ pxq

�
»
U
ei 2nrξpx�yqei 2`rηpF pyq�zqΨσ,1

�rξ	 rΨ�
τ,1 prηq f pyqΨ�Op

τ,` ϕ pzqd z d y d rξ d rη.

Note that by assumption we have

rr ¡ max t0, s, t, qu �min
 
0, s1, t1, q1

( ¥ 0. (2.35)

Integrating rr-times by parts (see Lemma B.3-Lemma B.5) in y, using the lower

bound in (2.33), we arrive at

Ipxq �
»
U
ei 2nrξpx�yqei 2`rηpF pyq�zqΨσ,1

�rξ	 rΨ�
τ,1 prηq frr pyq

2maxtn,`urrΨ�Op
τ,` ϕ pzqd z d y d rξ d rη,

where all derivatives of frr pyq with respect to rη and rξ are bounded uniformly for

all
�rξ, rη, y	 P supp Ψσ,1 � supp rΨ�

τ,1 �K. We set for every y P Rd and for every

n ¥ 0

u pyq :�
$&%1, |y| ¤ 1

|y|�d�1 , otherwise
, un :� u � 2n.

If |x� y| 2n ¡ 1 we integrate pd� 1q-times by parts in rξ and if |z � F pyq| 2` ¡ 1

we integrate pd� 1q-times by parts in rη. Hence we arrive at

Ipxq � 2�maxtn,`urr
»
U

rfrr �rξ, rη, y	un px� yqu` pz � F pyqqΨ�Op
τ,` ϕ pzq d z d y d rξ d rη,

where rfrr �rξ, rη, y	 is uniformly bounded for all
�rξ, rη, y	 P supp Ψσ,1�supp rΨ�

τ,1�
K. Hence we estimate for some constant C3 ¡ 0

|Ipxq| ¤ C32�maxtn,`urrun � pu` � F q �
���Ψ�Op

τ,` ϕ
��� pxq . (2.36)

We estimate for every σ, τ P t�,�, 0u and every n, ` ¥ 1, using the equality in

(2.35) and assuming ε ¡ 0 small enough,

2pcpσq�εqn�c
1pτq`�maxtn,`urr ¤ 2pmaxts,t,qu�εqn�mints1,t1,q1u`�maxtn,`urr ¤ 2�ε`. (2.37)

Hence we bound, using the estimates in (2.32), (2.33), (2.36), two times Young’s
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2.3 The transfer operator and the anisotropic Banach space

inequality and the bound in (2.37), for some constants C4, . . . , C6 ¡ 0

}MF,fϕ}W s,t,q
p,Θ,K

¤ C1 sup
σ,n

¸
τ,`

2pcpσq�εqn�c
1pτq`2c

1pτq`
���ΨOp

σ,nMF,f
rΨ�Op
τ,` Ψ�Op

τ,` ϕ
���
Lp

� C1 p2πq�2d 2dpn�`q sup
σ,n

¸
τ,`

2pcpσq�εqn�c
1pτq`2c

1pτq` }Iσ,n,τ,`}Lp

¤ C4 sup
σ,n

¸
τ,`

2pcpσq�εqn�c
1pτq`�maxtn,`urr2pn�`qd2c

1pτq`
���un � pu` � F q �Ψ�Op

τ,` ϕ
���
Lp

¤ C5

¸
τ,`

2�`ε2c
1pτq`

���Ψ�Op
τ,` ϕ

���
Lp
¤ C6 sup

τ,`
2c

1pτq`
���Ψ�Op

τ,` ϕ
���
Lp

.

To see the statement if F � id we estimate the corresponding cases c1 pτq   c pσq
if σ � τ and n � ` and n, ` � 0 in a different way. We use

rIpxq :�
»
U
ei 2nrξpx�yqei 2`rηpy�zqrΨσ,1

�rξ	Ψσ,1

�rξ	 rΨ�
τ,1 prηq f pyqΨOp

τ,`ϕ pzq d z d y d rξ d rη.
We express Ψσ,1

�rξ	, using the identity

Ψσ,1

�rξ	�Ψσ,1 prηq � » 1

0
pD Ψσ,1q

�rξ � p1� hq
�rη � rξ		dh

�rξ � rη	 .
We repeat this k-times in the right-hand side of this identity, replacing rξ and

yielding in total k � 1 terms. The first k terms are linear combinations of

Ψσ,1

�
jrη � pj � 1q rξ	 ,

where 1 ¤ j ¤ k � 1. If j � 0 then this is just Ψσ,1 prηq. The corresponding part

in rIpxq is hence

rI1pxq � rΨOp
σ,n

�
f �ΨOp

σ,nΨOp
τ,`ϕ

	
� rΨOp

σ,n

�
f �ΨOp

σ,n

�
1�

¸
σ1�τ

ΨOp
σ1,`

�
ϕ

�
.

Note that rΨσ,n and Ψσ,n satisfy the vanishing conditions in Lemma 2.3.1 as seen

as an operator `c2 ÞÑ `c2. Then we bound with some constant C5 � C5pfq

���rI1

���
Lp
¤ C5

������
�

8̧

n�0

��4σnΨOp
σ,nϕ

��2� 1
2

������
Lp

,

using two times Lemma 2.3.1 and that cp�q ¤ cp0q ¤ cp�q and that ΨOp
�,`Ψ

Op
�,n �
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2 Horocycle averages on closed manifolds

0. The terms where j ¡ 0 are dealt with, using first the substitution

jrη � pj � 1q rξ ÞÑ rη,
and then rr-times integration by parts analogous as before. The last k � 1 term

is

rΨk prηq :�
»
r0,1sk

�
Dk Ψσ,1

	�rξ � ķ

j�1

p1� tjq
�rη � rξ	� d t

�rξ � rη	bk .
We split now according to the size

���rη � rξ���. We let ε ¡ 0. We note that

2�nεppd�1q�kqχ
����rη � rξ��� 2nε	 rΨk prηq

satisfies the vanishing conditions in Lemma 2.3.1 uniformly in rξ as seen as an

operator `c2 ÞÑ `c2 in rη. We bound the Lp norm of the corresponding part

analogous as in the case rI1. This is bounded appropriately with the choice

of k below. On the range
�

1� χ
����rη � rξ��� 2nε		 ¡ 0 we integrate rr-times by

parts in y and then pd� 1q-times in rξ and rη in the corresponding part of rI pxq.
The terms which depend on χ are treated as in the range χ

����rη � rξ��� 2nε	 ¡ 0.

In the remaining part we gained a factor � 2p�n�εqrr�nεpd�1q. We choose ε small

compatible with the inequality given in (2.35) and then k large enough such that

2pcpσq�cpτqqn ¤ 2�nεpp2d�2q�kq.

Lemma 2.3.4 (Continuity and compactness). Let p P r1,8s, let s1 ¤ s, q1 ¤ q,

t1 ¤ t, and s ¤ q ¤ t and let Θ, Θ� be two cone ensembles, recalling Definition

2.2.1. Suppose the compact inclusions

supp Φ�
0 � supp Φ0 Y supp Φ� and supp Φ�

� � supp Φ�. (2.38)

Then the inclusion

W s,t,q
p,Θ,K �W s1,t1,q1

p,Θ�,K

is continuous for every open subset K � Rd with compact closure. Moreover, if

s1   s, t1   t and q1   q then the inclusion

W s,t,q
p,Θ,K �W s1,t1,q1

p,Θ,K
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2.3 The transfer operator and the anisotropic Banach space

is compact.

Proof. We prove first the claim on the continuous inclusion. We set for all

n P Z¥0

F�,n :� 2ps
1�sqn

�
Ψ�
�,n

M�
2pq�sqnΨ0,n � 2pt�sqnΨ�,n �Ψ�,n

		
,

F�,n :� 2pt
1�tqn

�
Ψ�
�,n

L
Ψ�,n

�
,

F0,n :� 2pq
1�qqn

�
Ψ�

0,n

M�
2pt�qqnΨ�,n �Ψ0,n

		
.

We define a map Q on the Hilbert space `c2 (with norm as given in (2.30)) by

setting for all σ P t�,�, 0u, n P Z¥0 and all a P `c2

pQaqσ,n :� Fσ,naσ,n.

In Lemma 2.3.1 we take B1 � B2 � `c2. It follows from the definition of Ψσ,n

in (2.23), the compact inclusion assumptions in (2.38) and the assumptions on

s, t, q, s1, t1, q1 that Q satisfies the decay conditions on Q in Lemma 2.3.1. It

follows that the corresponding operator QOp in (2.27) is bounded. Let ϕ P
W s,t,q
p,Θ,K . We set for all n P N¥0

b�,n :� 2snF�1
�

2pq�sqnΨ0,n � 2pt�sqnΨ�,n �Ψ�,n

	
� ϕ,

b�,n :� 2tnF�1Ψ�,n � ϕ,

b0,n :� 2qnF�1
�

2pt�qqnΨ�,n �Ψ0,n

	
� ϕ.

Then pbσ,n | σ P t�,�, 0u , n P N¥0q �: b P Lp
�
Rd, `c2

�
by assumption on ϕ and

in particular it holds, for some constant C ¥ 1, }b}LppRd,`c2q ¤ C }ϕ}W s,t,q
p,Θ,K

. We

estimate, using Lemma 2.3.1, and conclude

}ϕ}
W s1,t1,q1

p,Θ�,K

�
�����QOpb

��
`c2

���
Lp
¤ C }b}LppRd,`c2q .

We show the claim on the compact inclusion. We let U �W s,t,q
p,Θ,K be a bounded

set in W s,t,q
p,Θ,K with bound R ¡ 0. We set c1 with respect to s1, t1, q1 analogous to

c. It is enough to find for each ε ¡ 0 an open cover of U in W s1,t1,q1

p,Θ,K where each

open set in the cover has size � ε. (This yields total boundedness of U in W s1,t1,q1

p,Θ,K

and hence compactness.) Now there is δ ¡ 0 such that for all σ P t�,�, 0u

c1pσq � δ � cpσq   0. (2.39)
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2 Horocycle averages on closed manifolds

For all ϕ P U and all N P N we bound������
d ¸
σ,n¥N

4�δn
���2pc1pσq�δqnΨOp

σ,nϕ
���2
������
Lp

¤ C sup
σ,n¥N

2pc
1pσq�δqn

��ΨOp
σ,nϕ

��
Lp

¤ C2pc
1pσq�δ�cpσqqNR, (2.40)

for some σ P t�,�, 0u. Recalling the bound in (2.39), we make the bound in

(2.40) smaller than ε by taking N � Npε, Rq large enough. Suppose now that

the embedding is not compact. Then there are infinitely many ϕm P U , m P N,

such that for all m1 ¡ m2 it holds

}ϕm1 � ϕm2}W s1,t1,q1

p,Θω,κωpVωq

¡ ε. (2.41)

Recalling the bound in (2.40), it holds for some n   N and some σ P t�,�, 0u

}ϕm1 � ϕm2}W s1,t1,q1

p,Θω,κωpVωq

¤ C2pc
1pσq�δqn

��ΨOp
σ,n pϕm1 � ϕm2q

��
Lp

. (2.42)

Since Cr�1
0 pKq is dense in W s1,t1,q1

p,Θω ,κωpVωq
we may assume ϕm P Cr�1

0 pKq. We

set S :� Yσ,n N supp Ψσ,n. Since all ϕm are uniformly bounded in W s,t,q
p,Θω ,κωpVωq

-

norm and suppϕm is uniformly bounded in m as well, the Fourier transform

of ϕm cannot diverge on a dense subset of S as m Ñ 8 (this would violate

the Paley–Wiener Theorem [39, Theorem 1.7.7]). By passing to a subsequence

in m we may split S � S1 \ S2 such that the family
 
Fϕm|S1

| m P N
(

is uni-

formly bounded. Then, using again that ϕm has compact support with maximal

diameter independent of m, the family
 
Fϕm|S1

| m P N
(

is also uniformly equi-

continuous. Hence by the Arzelà–Ascoli Theorem there is a subsequence in m

such that ϕm|S1
is a Cauchy sequence in C0. Repeating the argument inducti-

vely for the part Fϕm|S2
, then using a diagonal argument, we find a subsequence

in m such that Fϕm|S is a Cauchy sequence in C0. Hence the right-hand side in

(2.42) can be made arbitrary small which contradicts the lower bound in (2.41)

and we conclude.

Lemma 2.3.5 (Local derivative). Let p P r1,8s, s, t, q   r � 1 and let ϕ P
W s,t,q
p,Θω ,κωpVωq

. It holds for some constant C ¡ 0, for every 1 ¤ j ¤ d, for every

σ P t�,�, 0u such that

ξj � 0 if pξ1, . . . , ξdq � ξ P supp Ψ1,σ,
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and for every rr P R������
�

8̧

n�0

4rrn
��ΨOp

σ,nϕ
��2� 1

2

������
Lp

¤ C

������
�

8̧

n�0

4prr�1qn
��ΨOp

σ,nBxjϕ
��2� 1

2

������
Lp

. (2.43)

Proof. Using the triangle inequality, it is enough to consider only the terms with

n ¡ 0. For every ξ P Rdz t0u and b P C we put

pDpξqbqn :� i
ξj
2n

Ψσ,npξqb, n P N.

We note

ΨOp
σ,n

�Bxjϕ� � �
F�1Ψσ,n

� � Bxjϕ � �BxjF�1Ψσ,n

� � ϕ � 2n
�
DOpϕ

�
n

.

We let `2 be the space of complex valued sequences space over N. As norm we

set }a}`2 :�
b°8

n�1 4rrn |an|2. For every ξ P Rdz t0u, every a P `2 and every

n P N we put

pQpξqaqn :� � i
2n

ξj
rΨσ,npξqan,

where rΨσ,n is defined in (2.24). Note that
�
QOpDOpϕ

�
n
� ΨOp

σ,nϕ. Moreover

since ξj � 0 by assumption, the map Q satisfies the decay condition on its

derivatives as required in Lemma 2.3.1. Hence, using Lemma 2.3.1 with B1 �
B2 � `2, the map QOp : Lp

�
Rd, `2

� Ñ Lp
�
Rd, `2

�
is a bounded linear operator.

We conclude, using the estimate for some constant C ¡ 0�����QOpDOpϕ
��
`2

���
Lp
¤ C

�����DOpϕ
��
`2

���
Lp

.

We recall the open cover Vω �M and the chart maps κω P A, ω P Ω, introduced

in Section 2.2. Also we recall the vector space Cr�1
X pMq from the beginning of

Section 2.3.2.

Definition 2.3.6 (Anisotropic Banach space). Let ϑω : Vω Ñ r0, 1s be a Cr

partition of unity adapted to the chart maps κω and let Θω be hyperbolic cone

ensembles, recalling Definition 2.2.2, where ω P Ω. Let p P r1,8s, let s, q, t  
r � 1 and let α0 ¡ 0. We put for every ϕ P Cr�1

X pMq and every p P r1,8s

}ϕ}W s,t,q
p

:�
�¸
ωPΩ

» α0

0

���ϑω � pLα,φαϕq � κ�1
ω

���2

W s,t,q
p,Θω,κωpVωq

dα

� 1
2

, (2.44)
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We denote by W s,t,q
p the completion of Cr�1

X pMq under this norm.

Remark 2.3.7. Note that W s,t,q
p depends on the dynamics, α0, the atlas A and

the cone ensembles Θω, ω P Ω. We understand each ϑω � κ�1
ω in (2.44) as

extended to Rd by zero. By Lemma 2.3.3 a Cr change of the atlas and hence

a change of the cone ensemble yields an equivalent norm if s ¤ q ¤ t   r � 1.

The integration with respect to α is a way to ”project out” the small times where

the flow is not sufficiently hyperbolic. This is similar to [27, Definition 8.1] and

also Baladi–Liverani [9, p.705, (3.2)] with the supremum replaced by an integral

in the latter case. In turn, for p � 2 the space W s,t,q
2 is a Hilbert space because

the parallelogram law

}ϕ1 � ϕ2}2W s,t,q
p

� }ϕ1 � ϕ2}2W s,t,q
p

� 2 }ϕ1}2W s,t,q
p

� 2 }ϕ2}2W s,t,q
p

holds [14, Proposition 15.2].

The compact inclusion of the local Banach space in Lemma 2.3.4 carries over to

the anisotropic Banach space W s,t,q
p .

Lemma 2.3.8 (Compactness). Let p P r1,8s, let s ¤ q ¤ t such that max t0, tu�
min t0, su   r�1 and let s1   s, t1   t and q1   q such that max t0,min ts1, t1, q1uu�
min t0, s1, t1, q1u   r � 1. Then there exist cone ensembles Θω, ω P Ω, such that

the inclusion

W s,t,q
p �W s1,t1,q1

p

is compact.

Proof. We let s1   s, t1   t, q1   q. Let U � W s,t,q
p be a bounded set in the

norm of W s,t,q
p . In order to show the compact inclusion we proceed analogous

to the proof in Lemma 2.3.4. To this end we let ϕm P U , m P N, be a sequence,

satisfying the analog bound in (2.41). Suppose now that there has to be some

fixed ω P Ω and some fixed α ¥ 0 such that there exists C1 ¡ 0 such that for all

m ¡ 0 ¸
ωPΩ

���ϑω � �Lα,φαϕm � κ�1
ω

����
W s,t,q
p,Θω,κωpVωq

¤ C1.

and that there exists some ε ¡ 0 such that for all m1 ¡ m2 (up to some subse-

quence)

��ϑω � pLα,φα pϕm1 � ϕm2qq � κ�1
ω

��
W s1,t1,q1

p,Θω,κωpVωq

¡ ε. (2.45)

Since
�
ϑω � pLα,φαϕmq � κ�1

ω

� P W s1,t1,q1

p,Θω ,κωpVωq
we find a Cauchy subsequence,
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using the statement on the compact inclusion in Lemma 2.3.4. Note that by the

Mean Value Theorem there exist non-fixed α � α pmq and α � α pm1,m2q which

satisfy these inequalities. In particular, we wish to find a Cauchy subsequence

for the left-hand side in the inequality (2.45) for the choice α � α pm1,m2q.
Suppose 0 ¤ α1 ¤ α0. We have���ϑω � �L2α0,φ2α0

ϕm

	
� κ�1

ω

���
W s,t,q
p,Θω,κωpVωq

¤¸
ω1PΩ

���ϑω � �L2α0�α1,φ2α0�α
1

�
ϑω1 � Lα1,φα1ϕm

�	 � κ�1
ω

���
W s,t,q
p,Θω,κωpVωq

.

By Lemma 2.2.3 there exists cone ensembles pΘω,Θ
�
ωq, ω P Ω, satisfying the

condition (2.38) in Lemma 2.3.4 such that the local diffeomorphism of g�α with

α ¥ α0 is cone hyperbolic. Then, using Lemma 2.3.3 and s ¤ q ¤ t, max t0, tu�
min t0, su   r�1 and taking α1 � αpmq, we bound this sequence in m uniformly

from above. Let s2 � min ts1, t1, q1u. Then, using Lemma 2.3.3, recalling that

it holds max t0,min ts1, t1, q1uu � min t0, s1, t1, q1u   r � 1, we find (abusing the

notation Lα,φα with negative α)

��ϑω � �Lα1,φα1 pϕm1 � ϕm2q
� � κ�1

ω

��
W s2,s2,s2

p,Θω,κωpVωq

¤ (2.46)¸
ω1PΩ

����ϑω � �Lα1�2α0,φα1�2α0

�
ϑω1 � L2α0,φ2α0

pϕm1 � ϕm2q
		

� κ�1
ω

	���
W s2,s2,s2

p,Θω,κωpVωq

¤ C2

¸
ωPΩ

���ϑω � �L2α0,φ2α0
pϕm1 � ϕm2q

	
� κ�1

ω

���
W s1,t1,q1

p,Θω,κωpVωq

.

for some constant C2 ¡ 0 independent of the choice of α1 and of m1,m2. Now we

take α1 � α pm1,m2q and let the right-hand side vanish in (2.46) as pm1,m2q Ñ
8. Then from the left-hand side for all σ, n���ΨOp

σ,n

�
ϑω �

�
Lαpm1,m2q,φαpm1,m2q

pϕm1 � ϕm2q
	
� κ�1

ω

	���
Lp
Ñ 0.

By uniform boundedness in W s,t,q
p,Θω ,κωpVωq

(analogous to the proof of Lemma

2.3.4), the lower bound in (2.45) comes from a finite number of terms���ΨOp
σ,n

�
ϑω �

�
Lαpm1,m2q,φαpm1,m2q

pϕm1 � ϕm2q
	
� κ�1

ω

	���
Lp

with n ¤ C3 � C3pεq. Hence we found a Cauchy subsequence for the left-hand

side in the inequality (2.45) for the choice α � α pm1,m2q.
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2.4 Properties of the transfer operator, the generator

and its resolvent

2.4.1 Bounds on the transfer operator

We introduce a local transfer operator in (2.47) below and state a local norm

estimate for this operator in Lemma 2.4.1. We then give a norm estimate for

the transfer operator family (2.18) in Lemma 2.4.2, making use of Lemma 2.4.1.

Let K � Rd be an open set. Let f : Rd Ñ C be a Cr�1
0 pKq-map and let

F : K Ñ F pKq be a pΘ�,Θq-cone hyperbolic Cr-diffeomorphism on K (recall

Definition 2.2.2). The f -weighted local transfer operator is defined by

LF,f : Cr�1
0 pF pKqq Ñ Cr�1

0 pKq : ϕ ÞÑ f � ϕ � F . (2.47)

Recalling rΦ�
�,

rΦ�
�,

rΦ�
0 from (2.24), we put for every subset I � K

}F }�,I :� inf
yPI

0�ηPsupp rΦ��

��pDy F qtr η
��

|η| , }F }�,I :� sup
yPI

0�ηPsupp rΦ��

��pDy F qtr η
��

|η| ,

}F }0,I :� sup
yPI

0�ηPsupp rΦ�0

��pDy F qtr η
��

|η| .

Lemma 2.4.1 (Upper bound for local transfer operator). Let tWu denote the

connected components of supp f . Let p P r1,8s. Let

s1   s   0   q ¤ t   r � 1� s1, q1   q, t1   t.

Then for every ϕ PW s,t,q
p,Θ,F pKq it holds

}LF,fϕ}W s,t,q
p,Θ,K

¤ C0 }ϕ}W s1,t1,q1

p,Θ�,F pKq

� C1 }ϕ}W s1,t1,q
p,Θ�,F pKq

� C2 }ϕ}W s,t,q
p,Θ�,F pKq

,

where, for some constants C ¡ 0 and k ¡ 0, it holds

C0 ¤ C
°

W max
!

1, }F }1�r�,W , }F }1�r0,W
)
}DF }kCr�1pWq }f}Cr�1pWq

���|det DF |� 1
p

���
L8pWq

,

C1 ¤ C supW
���f |det DF |� 1

p

���
L8pWq

max
!

1, }F }q0,W
)

and

C2 ¤ C supW
���f |det DF |� 1

p

���
L8pWq

max
!
}F }t�,W , }F }s�,W

)
.

Lemma 2.4.1 is proven in Section 2.4.4. For every s, t, α P R and every x P M
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we set

λpt,s,αq pxq :� max

#����pD gαqtr|E�
�,g�αpxq

�����t , ���pD g�αqtr|E��,x
���s+ . (2.48)

For s   0   t this quantity decreases exponentially fast to 0 as α Ñ 8, which

is a consequence of the Anosov property given in (2.3) of the flow gα.

Lemma 2.4.2 (Bound on the transfer operator). Let p P r1,8s. Let

s1   s   0   q ¤ t   r � 1� s1 and t1   t.

There exist α0 ¡ 0, cone ensembles Θω, ω P Ω, and constants A ¡ 0 and C ¡ 0,

such that for all ϕ PW s,t,q
p with }ϕ}W s,t,q

p
� 1 and all α ¥ 0 it holds

}Lα,φαϕ}W s,t,q
p

¤ CeAα }ϕ}
W s1,t1,q
p

� C pα� 1q
���φα |det D g�α|�

1
p � λpt,s,αq

���
L8

.

Proof. We recall the map F�α,ωω1 and the set Vα,ωω1 defined in Lemma 2.2.3 for

all α ¥ 0 and all ω1, ω P Ω. By Lemma 2.2.3 there exist cone ensembles Θ�
ω1 ,Θω

such that the map F�α,ωω1 is
�
Θ�
ω1 ,Θω

�
-cone hyperbolic. We recall the partition

of unity ϑω (see Definition 2.3.6). We let

Vα,ωω1 � rVα,ωω1 � Vω

such that F�α,ωω1 is also
�
Θ�
ω1 ,Θω

�
-cone hyperbolic on κω

�rVα,ωω1	. This is pos-

sible due to the compact inclusion of cones as required in the cone-hyperbolicity

definition. We let

ϑα,ωω1 : rVα,ωω1 Ñ r0, 1s

be a Cr�1
0 map such that

ϑα,ωω1|Vα,ωω1 � ϑω|Vα,ωω1 .

For all z P κω pVωq we have

ϑω � κ�1
ω pzq � ϑω1 � κ�1

ω1 � F�α,ωω1pzq � ϑα,ωω1 � κ�1
ω pzq � ϑω1 � κ�1

ω1 � F�α,ωω1pzq.

Note that
��ϑα,ωω1��Cr�1 is controlled by the rate of expansion of F�α,ωω1 . Let

ϕ P W s,t,q
p and put Wω :� W s,t,q

p,Θω ,κωpVωq
and Wωω1 :� W s,t,q

p,Θω ,rVα,ωω1
. For all
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α ¥ α0, for some C ¥ 1, we estimate for every p P r1,8s

}Lα,φαϕ}2W s,t,q
p

¤ C max
ωPΩ

» α0

0

��pϑω � pφα1 � Lα,φαϕ � g�α1qq � κ�1
ω

��2

Wω
dα1

� C max
ωPΩ

» α0

0

�����pϑω � φαq � κ�1
ω �

¸
ω1PΩ

�
ϑω1 � Lα1,φα1ϕ

� � κ�1
ω1 � F�α,ωω1

�����
2

Wω

dα1

� C max
ωPΩ

» α0

0

����� ¸
ω1PΩ

�
ϑα,ωω1 � φα

� � κ�1
ω � �ϑω1 � Lα1,φα1ϕ� � κ�1

ω1 � F�α,ωω1
�����
2

Wω

dα1

¤ C2 max
ω,ω1PΩ

» α0

0

���ϑα,ωω1 � φα� � κ�1
ω � �ϑω1 � Lα1,φα1ϕ� � κ�1

ω1 � F�α,ωω1
��2

Wω
dα1

� C2 max
ω,ω1PΩ

» α0

0

���LF�α,ωω1 ,pϑα,ωω1 �φαq�κ�1
ω

��
ϑω1 � Lα1,φα1ϕ

� � κ�1
ω1

����2

Wωω1

dα1.

(2.49)

We used in the last step the definition of the weighted local transfer operator (see

(2.47)) in which we take F :� F�α,ωω1 and as the Cr�1
0 -weight f :� �

ϑα,ωω1 � φα
��

κ�1
ω .

We now show the claimed upper bound for Lα,φα . We recall that

supp f � κω

�rVα,ωω1	 �§
κω pWq ,

where the disjoint union is over all the finitely many connected components W
of rVα,ωω1 . The inclusion W s,t,q

p,Θ�,κω1 pVω1 q
� Wω1 is continuous by Lemma 2.3.4.

Together with the bound given by Lemma 2.4.1 this yields the upper bound

}Lα,φαϕ}W s,t,q
p

¤ rC1 }ϕ}W s1,t1,q
p

� rC2 }ϕ}W s,t,q
p

,

where

rC1 ¤ C2 max
ω,ω1PΩ

C0

�
F�α,ωω1 , f

�� C1

�
F�α,ωω1 , f

�
, rC2 ¤ C2 max

ω,ω1PΩ
C2

�
F�α,ωω1 , f

�
,

and C0, C1, C2 are the constants from Lemma 2.4.1. We claim for some constant

C4 ¡ 0 the following bound���φα |det D g�α|�
1
p

���
L8pWq

¤ C4 inf
xPW

���φα |det D g�α|�
1
p

��� pxq (2.50)

� C4

����φ�α |det D gα|�
1
p

	
� g�α

���
L8pWq

.

Due to the construction of rVα,ωω1 , all points in a connected component W stay

close under iterates by gα1 for all 0 ¤ α1 ¤ α. Then in the case of hyperbolic maps
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the bound in (2.50) follows, using [43, Proposition 20.2.6.]. However for Anosov

flows the distance between two points x1, x2 P W may never be sufficiently

contracted under iterates by gα1 , e.g. if x1, x2 belong to a same orbit of gα1 .

We split (along the flow direction X in charts) each W into parts Wj , 1 ¤ j ¤
tαu � 1, in which now two points are no more than � ptαu� 1q�1 apart. We

set �W :� tWju for all 1 ¤ j ¤ tαu � 1. Then it holds the bound in (2.50) with

W replaced by Wj . We modify ϑα,ωω1 , taking a sufficiently small neighborhood

Uj containing Wj , such that ϑα,ωω1|Uj is Cr0 . Then passing to this new weights

ϑα,ωω1|Uj and summing over j we obtain an additional factor � pα� 1q in the

right-hand side in (2.49). We recall λpt,s,αq pxq from (2.48) and }F }�,I , }F }�,I
introduced below (2.47) in which we take I �Wj and F � F�α,ωω1 . In addition

note F�1
�α,ωω1 � Fα,ω1ω. Then we write

��F�α,ωω1���,κωpWjq
�

����inf
yPκωpWjq

0�ηPpDy F�α,ωω1qtr supp rΦ�
�,ω1

�����DF�α,ωω1 pyq
Fα,ω1ω

	tr
η

����
|η|

���
�1

.

We recall the construction in (2.16) of the C�-cones in the proof of Lemma 2.2.3.

We find a compactly embedded cone

C�
γ�,ω �

�
Dy F�α,ωω1

�tr
supp rΦ�

�,ω1 ,

which is transversal to another cone C�
γ�,ω. Hence the unstable distribution E�

(in charts) stays away from
�
Dy F�α,ωω1

�tr
supp rΦ�

�,ω1 by some positive angle.

Replacing the inf with the sup, it holds for some constant C5 ¡ 0

��F�α,ωω1���,κωpWjq
¤ C5

�
sup
xPWj

����pD gαqtr|E�
�,g�αpxq

����
��1

. (2.51)

By analogous reasoning we conclude similar for
��F�α,ωω1���,κωpWjq

. We estimate
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2 Horocycle averages on closed manifolds

for some constants C6, . . . , C9 ¡ 0, using the bounds in (2.51) and (2.50),

rC2 ¤ C6 max
�W,WjP�W

���φα |det D g�α|�
1
p

���
L8pWjq

���λpt,s,αq���
L8pWjq

¤ αC7 max
�W,WjP�W

���φα |det D g�α|�
1
p

���
L8pWjq

���λpt,s,αq���
L8pWjq

¤ αC8 max
�W,WjP�W

����φ�α |det D gα|�
1
p

	
� g�α

����1

L8pWjq

���λpt,s,αq���
L8pWjq

¤ αC9 max
�W,WjP�W

���φα |det D g�α|�
1
p λpt,s,αq

���
L8pWjq

.

Inspecting the constant rC1, all terms depending on F and f are bounded by

the maximal expansion of F�α,ωω1 and φα, respectively, which grow at most

exponentially in α. Hence, there is A ¡ 0 and C10 ¥ 1 such that rC1 ¤ C11e
Aα. If

α   α0 we split
³α0

0 � ³α0�α
0 � ³α0

α0�α
. Hence it holds }Lα,φαϕ}W s,t,q

p
¤ }ϕ}W s,t,q

p
����Lα0,φα0

ϕ
���
W s,t,q
p

. The latter term is estimated as in the case α ¥ α0. Since

α ¤ α0, we combine here the upper bound of }Lα,φαϕ}W s,t,q
p

with the second

term of our desired estimate, increasing the constant C11.

Remark 2.4.3. A weaker upper bound for the transfer operator, e.g.

}Lα,φα}W s,t,q
p ÑW s,t,q

p
¤ C1 exp pC2αq

for all α ¥ 0 and for some constants C1, C2 ¥ 1 independent of α, can be

obtained for a wider choice of s, t, q, e.g. for some s ¡ 0 (and this carries over to

Lemma 2.4.4 below as well). However, we are interested in the parameter range

as assumed in Lemma 2.4.2 which allows us to show the Lasota–Yorke inequality

for the resolvent given in Theorem 2.4.5 below. See also Lemma 2.5.17 in the

next section below for such a bound in the case of a special weight.

We recall that the family
!
Lα,φα : W s,t,q

p ÑW s,t,q
p | α ¥ 0

)
forms a strongly con-

tinuous semigroup if and only if limαÑ0� }Lα,φαϕ� ϕ}W s,t,q
p

� 0 for all ϕ PW s,t,q
p

(e.g. see [46, Proposition I.1.3]).

Lemma 2.4.4 (Strongly continuous semigroup). Let p P r1,8s and let s   0  
q ¤ t   r � 1� s. Then the transfer operator family

 
Lα,φα : W s,t,q

p ÑW s,t,q
p | α ¥ 0

(
forms a strongly continuous semigroup.
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2.4 Properties of the transfer operator, the generator and its resolvent

Proof. Let ϕ P W s,t,q
p . For fixed s   0   q ¤ t such that t � s   r � 1 there is

δ ¡ 0 such that t� s   r� 1� δ. We set s1 :� s� δ and let t1   t. Then s, t, q, s1

and t1 satisfy the assumptions of Lemma 2.4.2. Using Lemma 2.4.2, we bound

the transfer operator for all small α ¥ 0

}Lα,φαϕ}W s,t,q
p

¤ C1 }ϕ}W s1,t1,q
p

� C2 }ϕ}W s,t,q
p

¤ pC1 � C2q }ϕ}W s,t,q
p

, (2.52)

for some constants C1, C2 ¡ 0 independent of α. By density, for every ε ¡ 0

there is rϕ P Cr�1
X pMq such that

}ϕ� rϕ}W s,t,q
p

¤ ε. (2.53)

Using first the triangle inequality and then the bounds (2.52)-(2.53), we estimate

}Lα,φαϕ� ϕ}W s,t,q
p

¤ }Lα,φα pϕ� rϕq}W s,t,q
p

� }ϕ� rϕ}W s,t,q
p

� }Lα,φα rϕ� rϕ}W s,t,q
p

¤ C3ε� }Lα,φα rϕ� rϕ}W s,t,q
p

, (2.54)

for some constant C3 ¡ 0 independent of ε and α. Since ϕ P Cr�1
X pMq we have

Lα,φα rϕ� rϕ � α

» 1

0

�Bα1Lα1,φα1ϕ�|α1�hα dh.

Since
�Bα1Lα1,φα1ϕ�|α1�hα P Cpr�1q pMq the norm

����Bα1Lα1,φα1ϕ�|α1�hα���W s,t,q
p

is

finite for all 0 ¤ h ¤ 1. Hence for some constant C4 pϕq � C4 ¡ 0 we bound

}Lα,φα rϕ� rϕ}W s,t,q
p

¤ α sup
0¤h¤1

����Bα1Lα1,φα1ϕ�|α1�hα���W s,t,q
p

¤ C4α. (2.55)

We conclude by a combination of the estimates (2.54)-(2.55).

2.4.2 Lasota–Yorke inequality for the resolvent

We use Lemma 2.4.2 to prove Theorem 2.4.5 below. We use in addition that

the resolvent improves regularity in the flow direction. We set, recalling λpt,s,αq

in (2.48),

λmin � λminps, t, pq :� lim
αÑ8

1

α
log

���φα |det D g�α|�
1
p λpt,s,αq

���
L8pMq

. (2.56)

The following theorem will allow us to show that λminps, tq plays the role of the

essential spectral bound of X � V :
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Theorem 2.4.5 (Lasota–Yorke inequality for the resolvent). Let p P r1,8s and

let

s1   s   0   q ¤ t   r � 1� s1, q � 1 ¤ q1   q, t1   t.

There exist α0 ¡ 0, A0 ¡ λmin, cone ensembles Θω, ω P Ω, and a constant

C ¡ 0 such that for every ϕ P W s,t,q
p with }ϕ}W s,t,q

p
� 1, for every z P C with

<z ¡ A0 and for every n P N it holds

��Rn�1
z ϕ

��
W s,t,q
p

¤ C
|z| � 1� p<z �A0q
p<z �A0qn�1 }ϕ}

W s1,t1,q1
p

� Cn p<z � λminq�1 � C

p<z �A0q p<z � λminqn .

Proof. Since λps,t,αq grows at most exponentially as α Ñ 8, the constant λmin

is finite by a result on superadditive functions [37, Theorem 7.6.1]. We let

A0 ¡ λmin. By Lemma 2.4.4 the transfer operator family (2.18) forms a strongly

continuous semigroup with a well-defined generator X�V . We estimate powers

of the resolvent Rz defined in (2.20). To this end we work with the integral

representation of powers of the resolvent defined in (2.57) below (see [46, Corol-

lary II.1.11]). We recall the constant A given in Lemma 2.4.2 and let A0 ¡ A.

We set for every z P C such that <z ¡ A0 and every n P N

Rnzϕ :�
» 8

0

αn�1e�zα

pn� 1q! Lα,φαϕdα, ϕ PW s,t,q
p . (2.57)

We have directly from (2.57) for all α ¥ 0

RnzLα,φαϕ � Lα,φαRnzϕ. (2.58)

Using Lemma 2.4.2, we estimate for some constant C1 ¡ 0

��Rn�1
z ϕ

��
W s,t,q
p

¤
» 8

0

αn�1e�<zα

pn� 1q! }Lα,φαRzϕ}W s,t,q
p

dα

¤ C1

p<z �A0qn }Rzϕ}W s1,t1,q
p

� C1 pn� p<z � λminqq
p<z � λminqn�1 }Rzϕ}W s,t,q

p
.

(2.59)

Using Lemma 2.4.2, we get boundedness for some constant C2 ¡ 0

}Rzϕ}W s,t,q
p

¤ C2

<z �A0
}ϕ}W s,t,q

p
. (2.60)

Therefore the second term in the right-hand side in (2.59) is bounded as claimed.

We bound now the first term in the right-hand side in (2.59). Inverting the
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flowbox condition (2.10), we find Dκ�1
ω Bxd � X|Vω . Hence it holds

Bxd pϑω � ϕq � κ�1
ω pxq � D pϑω � ϕq � κ�1

ω pxqDx κ
�1
ω Bxd

� �
D pϑω � ϕqX|Vω

� � κ�1
ω pxq � ppXϑωq � ϕ� ϑω � pXϕqq � κ�1

ω pxq . (2.61)

We set W q
ω :�W s1,t1,q

p,Θω ,κωpVωq
, ω P Ω. We estimate the local norms inside the norm

}Rzϕ}W s1,t1,q
p

, using the equality in (2.61), then Lemma 2.3.5 and the equality in

(2.58), for some constant C3 ¡ 0:

���ϑω � Lα1,φα1Rzϕ� � κ�1
ω

��
W q
ω
¤ C3

���ϑω � Lα1,φα1ϕ� � κ�1
ω

��
W q�1
ω

(2.62)

�C3

���pXϑωq � Lα1,φα1Rzϕ� � κ�1
ω

��
W q�1
ω

� C3

���ϑω �XRzLα1,φα1ϕ� � κ�1
ω

��
W q�1
ω

.

We note that pXϑωq � κ�1
ω P Cr�1

0 pκω pVωqq and t � s   r � 1. Using Lemma

2.3.3, we bound for some constant C4pXq � C4 ¡ 0

���pXϑωq � Lα1,φα1Rzϕ� � κ�1
ω

��
W q�1
ω

¤ C4 sup
ωPΩ

���ϑω � Lα1,φα1Rzϕ� � κ�1
ω

��
W q�1
ω

.

(2.63)

Using the equality

XRzϕ � zRzϕ� VRzϕ� ϕ,

together with the equality in (2.58), we find

���ϑω �XRzLα1,φα1ϕ� � κ�1
ω

��
W q�1
ω

¤ |z| ���ϑω � Lα1,φα1Rzϕ� � κ�1
ω

��
W q�1
ω

(2.64)

� ���ϑω � V Lα1,φα1Rzϕ� � κ�1
ω

��
W q�1
ω

� ���ϑω � Lα1,φα1ϕ� � κ�1
ω

��
W q�1
ω

.

Recalling that V P Cr�1 pMq, we bound the term which contains the factor

pϑω � V q � κ�1
ω in the right-hand side in (2.64) analogous as in the estimate

in (2.63). The final estimate follows by a combination of the bounds (2.59)-

(2.60) and (2.62)-(2.64), together with the trivial continuous inclusion W q1
ω �

W q�1
ω .

A direct consequence of Theorem 2.4.5 is the bound on the essential spectral

radius of the resolvent:

Corollary 2.4.6 (Essential spectral radius). Under the assumptions of Theorem

2.4.5 (including the choices for p, s, t, q P R), letting A0 and λmin � λmin ps, t, pq
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be the constants from that theorem, the essential spectral radius of the resolvent

Rz : W s,t,q
p ÑW s,t,q

p is bounded by |<z � λmin|�1 for all z P C with <z ¡ A0.

Proof. Let s1   s, t1   t and q1   q. The inclusion W s,t,q
p � W s1,t1,q1

p is compact

by Lemma 2.3.8. Then, together with a result of Hennion [36, Corollaire 1] and

Theorem 2.4.5 we find the claimed bound on the essential spectral radius of the

resolvent.

We recall λmin defined in (2.56) and φα in (2.18).

Lemma 2.4.7. Let d � 3 and let |det D gα| � 1. Set rt :� min t�t, su. Then it

holds

λmin � lim
αÑ8

1

α
log

����φα ���det pD g�αqtr |E��
���rt����

L8pMq

.

Proof. Since the flow is volume preserving, we have���det pD g�αqtr |E��
����1

�
���det

�
Dg�α gα

�tr
|E�0

��� ���det
�
Dg�α gα

�tr
|E��

��� .
Since d� � 1 � d�2 we can replace

���pD g�αqtr|E��,x
��� in λps,t,αq by

���det pD g�αqtr |E��,x
���

and

����pD gαqtr|E�
�,g�αpxq

���� by
���det pD g�αqtr |E��,x

����1
. Moreover

���det
�
Dg�α gα

�tr
|E�0

���
is bounded from above and below and we conclude.

Remark 2.4.8. Note that Lemma 2.4.7 holds in the particular case of a contact

Anosov flow if d � 3. Clearly, if |φα| ¤
���det pD g�αqtr |E��

����rt for all α ¡ 0 then

λmin ¤ 0   htop.

2.4.3 Spectral properties of the generator

All spectral properties of the generator X � V are with respect to its domain

DpX�V q � DpX�V q|W s,t,q
p

for admissible choices p, s, t, q P R which is discussed

in the following lemma.

Lemma 2.4.9 (Domain of the generator). Let p, s, q, t P R satisfy the assumpti-

ons of Lemma 2.4.4. Then the family
!
Lα,φα : W s,t,q

p ÑW s,t,q
p | α ¥ 0

)
admits

a generator

X � V : DpX � V q ÑW s,t,q
p ,

which is a closed operator on its domain DpX � V q. Moreover, the inclusion

DpX � V q �W s,t,q
p
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2.4 Properties of the transfer operator, the generator and its resolvent

is dense and the inclusion

Cr�1
X pMq � DpX � V q

is dense for the graph norm }�}W s,t,q
p

� }pX � V q p�q}W s,t,q
p

.

Proof. Using Lemma 2.4.4, the statement aboutX�V being a densely (inW s,t,q
p )

defined closed operator is [46, Theorem II.1.4]. Suppose now Lα,φα
�
Cr�1
X pMq� �

Cr�1
X pMq. Then the inclusion statement Cr�1

X pMq � DpX � V q is [46, Pro-

position II.1.7], using [46, Definition II.1.6]. We let ϕ P Cr�1
X pMq. It holds

Xϕ,Lα,φαϕ P Cr�1 pMq since the flow is Cr. Recalling the weight φα of the

transfer operator in (2.18), with generating function f P Cr�1 pMq, we calculate

and conclude:

XLα,φαϕ � pXφαq�ϕ�g�α�φα�pXϕq�g�α � pf � g�α � fq�Lα,φαϕ�φα�pXϕq�g�α.

We set as the maximal spectral bound of the generator

λmax � λmax ps, t, q, pq :� sup<σ pX � V q |W s,t,q
p

. (2.65)

Lemma 2.4.10 (Discrete spectrum). Under the assumptions of Theorem 2.4.5

(including the choices for p, s, t, q P R), the set!
λ P σ pX � V q |W s,t,q

p
| <λ ¡ λmin

)
consists of isolated eigenvalues of finite multiplicity.

The discrete spectrum described in the previous lemma if λmax ¡ λmin, is so-

metimes referred to as (Ruelle-Pollicott) resonances of X � V . In principle, the

resonances depend on the choices p, s, t, and q of the space W s,t,q
p . We shall not

enter into details here, but note that our main result in the next section shows

that this dependence is mild, in particular, for the choice of V there, λmax is

independent of p, t, s, and q.

Proof. Using Corollary 2.4.6, spectral radius of the resolvent is bounded from

above by |<z � λmin|�1. Assume λ P σ pX � V q |W s,t,q
p

such that <λ ¡ λmin. It

follows from the Spectral Theorem for the Resolvent [46, Theorem V.1.13] that

there exists z P C (e.g. with =z � =λ) in the resolvent set of X � V such that
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2 Horocycle averages on closed manifolds

the spectral radius of the resolvent Rz has a lower bound given by

|z � λ|�1 � p<z � <λq�1 ¡ p<z � λminq�1 .

Since =λ was arbitrary we conclude.

The following notation associated to the eigenvalue spectrum is needed in Section

2.5 for the statement and proof of Theorem 2.5.7. We assume for the rest of this

subsection

λmax � λmax ps, t, q, pq ¡ λmin ps, t, pq � λmin,

for any fixed choice p P r1,8s and �s   0   q ¤ t   r � 1 � s. By Lemma

2.4.10 each λ P σ pX � V q |W s,t,q
p

such that <λ ¡ λmin has a finite geometric

multiplicity nλ P N and finite algebraic multiplicities mλ,i P N, 1 ¤ i ¤ nλ, with

generalized eigenstates

Dpλ,i,jq P D pX � V q , 1 ¤ j ¤ mλ,i,

satisfying

pX � V � λqj Dpλ,i,jq � 0 and if j ¡ 1: pX � V � λqj�1Dpλ,i,jq � 0.

Moreover, to each geometric eigenvector there is associated a projector Πλ,i and

a nil-potent operator Nλ,i of finite ranks such that

Πλ1,i1Πλ2,i2 � 0, Nλ1,i1Nλ2,i2 � 0 if λ1 � λ2 or i1 � i2, (2.66)

Πλ1,i1Nλ2,i2 � Nλ2,i2Πλ1,i1 �
$&%Nλ2,i2 if λ1 � λ2 and i1 � i2

0 if λ1 � λ2 or i1 � i2
,

Nmλ,i�1
λ,i � 0.

Note that the projector Πλ,i can be written as a finite rank operator

Πλ,i �
nλ,i̧

j�1

Dpλ,i,jq bOpλ,i,jq, (2.67)
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2.4 Properties of the transfer operator, the generator and its resolvent

where the dual vectors Opλ,i,jq P D pX � V q1 satisfy

Opλ1,i1,j1q

�
Dpλ2,i2,j2q

� �
$&%1, if pλ1, i1, j1q � pλ2, i2, j2q

0, otherwise.

We shall use the following Dolgopyat-type condition, adapted from [19, Assump-

tion 3A], on the resolvent Rz � pz �X � V q�1, to control the remainder term

ET,x in (2.1) in Theorem 2.5.7 (to reduce to the case studied by Butterley, con-

sider the renormalized semi-group e�λmaxαLα,φα with generator X � V � λmax

and resolvent Rz�λmax)4:

Condition 2.4.11 (Spectral gap with (Dolgopyat) bounds). There exists

δ P pλminps, t, pq, λmaxps, t, q, pqq

so that the following holds: For some a ¡ 0, b ¡ 0, C ¡ 0, some

γ P p0, 1{ logp1� pλmax � δq{aqq ,

and for all z P C with <z � a and |=z| ¥ b, we have���Rrnz�λmax

���
W s,t,q
p

¤ Crn |<z � pλmax � δq|�rn , where rn � rγ log |=z|s .

It is well known that if }Lα,φα}W s,t,q
p ÑW s,t,q

p
¤ Ceλmaxα for all α and if Rz enjoys

Lasota–Yorke estimates for λminps, tq on W s,t,q
p , in the sense of Theorem 2.4.5,

then Condition 2.4.11 for some constant δ implies a spectral gap for the same δ,

in the sense that

σ pX � V q |W s,t,q
p

X t<λ ¡ δu is a finite set, (2.68)

see e.g. [19, Theorem 1]. (Note that [19, Assumption 1] follows from the facts

that W s,t,q
p � W s,t,q�1

p , }pX � V qϕ}
W s,t,q�1
p

¤ C }ϕ}W s,t,q
p

for some constant

C ¡ 0, using Lemma 2.3.3 and Lemma 2.3.5, and

e�λmaxαLrα,φ
rα
ϕ� ϕ � pX � V � λmaxq

» α
0
e�λmaxrαLrα,φ

rα
ϕd rα (2.69)

for all ϕ PW s,t,q
p .)

4Note the iterated constant C rn contrary to C in [19, Assumption 3A]. This change was made
to avoid a conflict in the proof of [19, Lemma 4.4], involving in there the constant C6, and
was communicated with Butterley [20].
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2 Horocycle averages on closed manifolds

Beware that even when W s,t,q
p is a Hilbert space, the operator X�V is not self-

adjoint a priori, so the existence of a spectral gap for X�V with δ does not imply

a spectral gap with bounds on the resolvent in general. (In the self-adjoint case,

classical bounds on the iterated resolvent Rnz in terms of the distance between

z and the spectrum give bounds stronger than Condition 2.4.11.)

See also Remark 2.5.11 for a further discussion of Condition 2.4.11.

2.4.4 Proof of Lemma 2.4.1

We need some preparations. We recall the quantities }F }�,I , }F }�,I , }F }0,I
given below (2.47). We introduce an arrow relation as used by Baladi and Tsujii

in [10, p.16].

Definition 2.4.12 (Arrow relation). Let n, ` P Z¥0 and σ, τ P t�,�, 0u. We

write

pτ, `q ãÑI pσ, nq ô
$&%τ � � and 2n�` ¤ 24 }F }�,I
τ � σ � � and 2n�` ¥ 2�4 }F }�,I

,

` ãÑI pσ, nq ô
$&%τ � σ � 0 and 2n�` ¤ 24 }F }0,I
σ � � and τ � 0

,

and pτ, `q �ãÑI pσ, nq in the other cases.

We recall the function c defined in (2.29). We let c1 be analogously defined

for s1 ¤ s, t1 ¤ t, q1 ¤ q. We have for some constant C ¡ 0, for all fixed

τ P t�,�, 0u , ` P Z¥0¸
pτ,`qãÑIpσ,nq

2cpσqn�cpτq` �
¸

pτ,`qãÑIpσ,nq

2pcpσq�cpτqqn�cpτqpn�`q ¤
¸

pτ,`qãÑIpσ,nq

2cpτqpn�`q

¤C max
!
}F }t�,I , }F }s�,I

)
. (2.70)

An analogous estimate holds for all fixed σ, n. Similarly, we find either for all

fixed ` or for all fixed σ, n¸
`ãÑIpσ,nq

2cpσqn�q` ¤ C max
!

1, }F }q0,I
)

. (2.71)

We recall the norm of the Hilbert space `c2 (and analogously `c
1

2 ) given in (2.30).

Clearly, we have the inclusion `c2 � `c
1

2 . We recall the definitions of ΨOp
σ,n in (2.23).
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2.4 Properties of the transfer operator, the generator and its resolvent

We let given a family of pairwise disjoint sets

I :� tI � Ku .

For every paτ,`q � a P Lp
�
Rd, `c12

	
we set

�
QOp

ãÑIa
�
σ,n

:� ΨOp
σ,n

°
IPI

°
pτ,`qãÑIpσ,nq

1|Iaτ,`,

�
QOp

ãÑ0,Ia
	
σ,n

:� ΨOp
σ,n

°
IPI

°
lãÑIpσ,nq

1|Ia0,l.

(2.72)

Lemma 2.4.13 (Boundedness I). For all p P r1,8s the map

QOp
ãÑI : Lp

�
Rd, `c2

	
Ñ Lp

�
Rd, `c2

	
is a bounded linear operator. Moreover, for some constant C ¥ 0, for every

f P L8
�
Rd,Rz t0u� and every a P Lp

�
Rd, `c2

�
, it holds

��QOp
ãÑIa

��
LppRd,`c2q ¤ C sup

IPI
max

!
}F }t�,I , }F }s�,I

) ��f|I��L8
�����¸
IPI

1

f|I
}a}`c2

�����
Lp

.

Let c1p0q � cp0q. Then for all p P r1,8s the map

QOp
ãÑ0,I : Lp

�
Rd, `c

1

2

	
Ñ Lp

�
Rd, `c2

	
is a bounded linear operator. Moreover, for every a P Lp

�
Rd, `c12

	
it holds

���QOp
ãÑ0,Ia

���
LppRd,`c2q

¤ C sup
IPI

max
!

1, }F }q0,I
) ��f|I��L8

�����¸
IPI

1

f|I
}a}

`c
1

2

�����
Lp

.

Proof. For every b P `c2 we set

pQbqσ,n :� Ψσ,nbσ,n,

and for every a P Lp
�
Rd, `c2

�
we set

pKaqσ,n :�
¸
IPI

¸
pτ,`qãÑIpσ,nq

1|Iaτ,`.
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2 Horocycle averages on closed manifolds

We let QOp be the operator in (2.27) associated to Q. We note that

QOp
ãÑI

� QOp �K.

Using Lemma 2.3.1, we bound for some constant C1 ¡ 0

��QOpKa
��
LppRd,`c2q ¤ C1 }Ka}LppRd,`c2q .

We estimate with constants C2, C3 ¡ 0, using pairwise disjointness of elements

I P I, Cauchy–Schwarz and the bound in (2.70),

}Ka}LppRd,`c2q �

��������
��¸
σ,n

4cpσqn

��¸
IPI

¸
pτ,`qãÑIpσ,nq

1|Iaτ,`

�2�
1
2

��������
Lp

¤

�������
��¸
σ,n

¸
IPI

�� ¸
pτ,`qãÑIpσ,nq

2cpσqn�cpτq`

� ¸
pτ,`qãÑIpσ,nq

2cpσqn�cpτq`
��1|Iaτ,`��2

�1
2

�������
Lp

¤ C2

�������
��¸
IPI

max
!
}F }t�,I , }F }s�,I

)¸
σ,n

¸
pτ,`qãÑIpσ,nq

2cpσqn�cpτq`
��1|Iaτ,`��2

�1
2

�������
Lp

� C2

�������
��¸
IPI

max
!
}F }t�,I , }F }s�,I

)¸
τ,`

22cpτq`
��1|Iaτ,`��2 ¸

pτ,`qãÑIpσ,nq

2cpσqn�cpτq`

�1
2

�������
Lp

¤ C3

�������
��¸
IPI

max
!
}F }2t�,I , }F }2s�,I

) ��f|I��2

L8

¸
τ,`

22cpτq`

���� 1

f|I
aτ,`

����2
�1

2

�������
L8

¤ C3 sup
IPI

max
!
}F }t�,I , }F }s�,I

) ��f|I��L8
�������
��¸
IPI

¸
τ,`

22cpτq`

���� 1

f|I
aτ,`

����2
�1

2

�������
Lp

.

The statement about QOp
ãÑ0,I follows analogously, using (2.71).

We recall (see above (2.47)) that F is assumed to be pΘ�,Θq-hyperbolic on K

and recall the maps rΦ�
�,

rΦ�
0 assumed in Definition 2.2.2 which we use to construct
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rΨ�
σ,n defined in (2.24). We set

J :� tp�, 0, 0, 0q , p�, 0,�, 0q , p0, 0,�, 0q , p�, 0,�, 0quY
tp�, `,�, 0q , p�, `, 0, 0q , p0, `, 0, 0q | ` ¥ 0u Y tp�, 0,�, nq | n ¥ 0u .

(2.73)

We recall the arrow notation f from Definition 2.4.12.

Lemma 2.4.14 (Directional inequality). Let pτ, `q �ãÑI pn, σq and pτ, `, σ, nq R
J . Let η P supp rΨ�

τ,` and ξ P supp Ψσ,n. Set

mpτq :�
$&%max tn, `u , if τ P t�, 0u
n, if τ � �

. (2.74)

Then, for some C ¡ 0 and for all y P I it holds

��pDy F qtr η � ξ
�� ¥ C2mpτq min

!
1, }F }�,I , }F }0,I

)
.

Proof. This can be seen case-by-case for admissible σ, τ as follows. We recall the

set J defined in (2.73). We let pτ, `q �ãÑI pn, σq such that pτ, `, σ, nq R J . Due to

the construction of Ψσ,n and rΨ�
τ,`, respectively, if n ¥ 1 then 2n�1 ¤ |ξ| ¤ 2n�1

and if ` ¥ 1 then 2`�2 ¤ |η| ¤ 2`�2. We assume first cpσq ¤ cpτq. Let τ � �.

Then 2n�` ¡ 24 }F }�,I and moreover, the exclusion of J implies n ¥ 1. Using

the triangle inequality, we find

��pDy F qtr η � ξ
�� ¥ |ξ| � ��pDy F qtr η

�� ¥ 2n�1 � }F }�,I 2`�2 ¥ 2n�1 � 2n�2 ¥ 2n�2.

The case τ � 0 is analogous. Just note that we have also the estimate

2n�1 � }F }0,I 2`�2 ¥ }F }0,I 2l�3 � }F }0,I 2`�2.

If τ � � it holds 2n�`   2�4 }F }�,I . The exclusion of J implies l ¥ 1. Using

the triangle inequality, we find

��pDy F qtr η � ξ
�� ¥ ��pDy F qtr η

��� |ξ| ¥ }F }�,I 2`�2 � 2n�1 ¡ 2n�2 � 2n�1 ¥ 2n�1.

On the other hand we have also the estimate

}F }�,I 2`�2 � 2n�1 ¡ }F }�,I 2`�2 � }F }�,I 2l�3.

Now we assume cpσq ¡ cpτq. We assume first τ � �. Then σ P t0,�u. We recall
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that F is cone-hyperbolic (see Definition 2.2.2). The exclusion of J implies n � 0

or l � 0. Together with the first compact inclusion in (2.13) we conclude that

the angle between pDy F qtr η and ξ is bounded from below. This implies a lower

bound ¥ C2maxtn,lu for the distance in both cases where C ¡ 0 is some constant.

We assume now τ � 0 which implies σ � �. The reasoning is analogous as for

τ � �, using the second compact inclusion in (2.13) to bound the angle between

pDy F qtr η and ξ from below.

Lemma 2.4.15. Let p P r1,8s, b P Lp and let pτ, `q �ãÑI pσ, nq and pτ, n, σ, `q �
J . It holds for the local transfer operator LF,f|I���ΨOp

σ,nLF,f|I
rΨ�Op
τ,` b

���
Lp
¤ C3pF, f|Iq2�pr�1qmpτq }b}Lp ,

where for some C ¥ 1 it holds

C3pF, f|Iq ¤ C max
!

1, }F }1�r�,I , }F }1�r0,I

)
}DF }kCr�1 }f}Cr�1 supyPK |det Dy F |�

1
p .

Proof. This is analogous to the proof of Lemma 2.3.3, except that we have to

deal with the additional composition operation by the map F . We set f :� f|I .

We expand the convolution and inverse Fourier transform

ΨOp
σ,nLF,f

rΨ�Op
τ,` bpxq � C

»
R4d

ei ηpF pzq�yqei ξpx�zqfpzqbpyqΨσ,npξqrΨ�
τ,`pηqdηdξdzdy

� C

»
Rd
V τ,`
σ,npx, yqbpF pyqq |det DF pyq|dy,

for some constant C ¡ 0 and where we set

V τ,`
σ,npx, yq :�

»
R3d

e� i ηF pyqei ξxΨσ,npξqrΨ�
τ,`pηqeipηF pzq�ξzqfpzqdzdηdξ. (2.75)

We transform (2.75), first integrating by parts tru � 1-times in z (see Lemma

B.3 with function Gpzq :� ηF pzq� ξz which has a gradient bounded from below

by Lemma 2.4.14). Therefore we replace fpzq in (2.75) with another function

Vtru�1pz, η, ξq which satisfies the iterative construction given in Lemma B.3 (B.1).

Using Lemma 2.4.14 and Lemma B.3 (B.2), we estimate for some constant C ¥ 1

��Vtr�1u

��
C0 ¤ C rC12�mpτqtr�1u max

!
1, }F }�tr�1u

�,I , }F }�tr�1u
0,I

)
}f}Ctr�1u ,

where rC1 :� suppz,η,ξqPsupp f max0¤|γ|¤tr�1u

������pDz F qtr η � ξ
�� Bγz pDz F q

trη�ξ

|pDz F qtrη�ξ|2
����tr�1u

.

Moreover, this function is a Crr-map for rr :� r� tru. Using Lemma B.5 (in there

we take ε � L�1 � 2�mpτq), we proceed with a regularized integration by parts
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in z. This yields

V τ,`
σ,npx, yq �

»
R3d

ei ηpF pzq�F pyqqei ξpx�zqΨσ,npξqrΨ�
τ,`pηqVr�1pz, η, ξqdzdηdξ,

(2.76)

where Vr�1 is given in (B.4) in Lemma B.5 with bound

}Vr�1}C0 ¤ C rC22�mpτqrr max
!

1, }F }�rr�,I , }F }�rr0,I

)
, (2.77)

where rC2 :� suppz,η,ξqPsupp f

�
1� ���pDz F qtr η � ξ

���� ����ppDz F qtrη�ξqVtr�1up�,η,ξq

|pDz F qtrη�ξ|2
����
C rr

.

We now substitute ξ Ñ 2`ξ1 and η Ñ 2nη1 in (2.76). By construction the

function Vr�1

�
z, 2nη1, 2`ξ1

�
is uniformly bounded in n and ` in the C8-norm

with respect to η1 and ξ1. We transform (2.76), integrating by parts d� 1-times

in ξ1 if |2npz � xq| ¡ 1, and d � 1-times in η1 if
��2`pF pzq � F pyqq�� ¡ 1, which

yields for some constant C1 ¡ 0

V τ,`
σ,npx, yq � C1

»
R3d

ei 2`η1pF pzq�F pyqq

u`pF pzq � F pyqq
ei 2nξ1px�zq

unpx� zq 2dp`�nq rV τ,`
σ,npz, η1, ξ1qdzdη1dξ1,

where rV τ,`
σ,npz, η1, ξ1q together with un : Rd Ñ p0, 1s : x ÞÑ

$&%1 , if |2nx| ¤ 1

|2nx|d�1 , else

replaces Ψσ,np2`ξ1qrΨ�
τ,`p2nη1qVr�1

�
z, 2nη1, 2`ξ1

�
in (2.76). Since we only derived

Vr�1 with respect to η1 and ξ1, respectively, the C0-norm of rV τ,`
σ,npz, η1, ξ1q is con-

trolled by the upper bound given in (2.77). We recall that ξ1, η1 are uniformly

bounded. We estimate trivially for some constant C2 ¥ 1���ΨOp
σ,nLF,f

rΨ�Op
τ,` b

���
Lp
¤ C

���rV τ,`
σ,n

���
C0

2dpn�`q
���� 1

un
�
�
pb � 1

u`
q � F


����
Lp

¤ C2C3pF, fq2�mpτqpr�1q }b}Lp ,

where we used twice Young’s inequality in the last step.

We set for all n P Z¥0, for all σ P t�,�, 0u and for all I P I

�
QOp
�ãÑ,Ia

	
σ,n

:� ΨOp
σ,n

¸
pτ,`q�ãÑIpσ,nq

aτ,`,
�
QOpa

�
σ,n

:� rΨ�Op
σ,n aσ,n. (2.78)
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2 Horocycle averages on closed manifolds

Lemma 2.4.16 (Boundedness II). Let cp�q � c1p�q   r � 1. Then for all

p P r1,8s the map QOp
�ãÑ,ILF,f|IQ

Op : Lp

�
Rd, `c12

	
Ñ Lp

�
Rd, `c2

�
is a bounded

linear operator. In particular, it holds���QOp
�ãÑ,ILF,f|IQ

Op
���
LppRd,`c12 qÑLppRd,`c2q

¤ CC4pF, f|Iq,

where for some C ¥ 1 and some k ¥ 0

C4pF, fq ¤ C max
!

1, }F }1�r�,I , }F }1�r0,I

)
max

!
1, }DF }kCr�1

)
}f}Cr�1 sup

yPK
|det Dy F |�

1
p

Proof. Let paτ,`q � a P Lp
�
Rd, `c12

	
. We have

���QOp
�ãÑ,ILF,f|IQ

Opa
���
LppRd,`c2q

�

��������
��¸
σ,n

4cpσqn

������
¸

pτ,`q�ãÑIpσ,nq

ΨOp
σ,nLF,f|I

rΨ�Op
τ,` aτ,`

������
2�

1
2

��������
Lp

¤
¸

pτ,`q�ãÑIpσ,nq

2cpσqn
���ΨOp

σ,nLF,f|I
rΨ�Op
τ,` aτ,`

���
Lp

. (2.79)

We recall the set of indices J in (2.73). We assume pτ, l, σ, nq P J . Now we

make three distinctions in the estimate of the corresponding part of the sum in

(2.79). If τ P t�, 0u then n � 0 and l ¥ 0. Then, using Young’s inequality, for

some C ¥ 1

8̧

l�0

���ΨOp
σ,0LF,f|I

rΨ�Op
τ,` aτ,`

���
Lp
¤ C sup

zPI
|fpzq| |det Dz F |�

1
p

8̧

l�0

2�c
1pτql sup

l
2c

1pτql }aτ,`}Lp

¤ C sup
zPI

|fpzq| |det Dz F |�
1
p }a}

LppRd,`c12 q .

If τ � σ � � then n ¥ 0 and l � 0. Recall that s   0. Then, using Young’s

inequality,

8̧

n�0

2sn
���ΨOp

σ,nLF,f|I
rΨ1Op
�,0 a�,0

���
Lp
¤ C sup

zPI
|fpzq| |det Dz F |�

1
p }a}

LppRd,`c12 q .

In the three remaining cases n � l � 0 we estimate analogously, using Young’s

inequality. Now we assume pτ, l, σ, nq R J . We recall m pτq defined in (2.74) in

Lemma 2.4.14 and the constant C3pF, fq in Lemma 2.4.15. Using Lemma 2.4.15,
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we estimate the remaining part of the sum in (2.79)¸
pτ,`q�ãÑIpσ,nq
pτ,l,σ,nqRJ

2cpσqn
���ΨOp

σ,nLF,f|I
rΨ�Op
τ,` aτ,`

���
Lp

¤ CC3pF, fq
¸

pτ,`q�ãÑIpσ,nq
pτ,l,σ,nqRJ

2cpσqn�c
1pτql�mpτqpr�1q sup

τ,`
2c

1pτql }aτ,`}Lp

(2.80)

¤ CC3pF, fq }a}LppRd,`c12 q ,

where the sums in n, l, respectively, in the right-hand side in (2.80) are bounded

by geometric sums, using the assumption c1p�q ¡ r�1� cp�q. In particular, we

find for (the worst-case since 0   cp0q ¤ cp�q   r � 1) τ � �, σ � �, if l ¥ n

for all small enough ε ¡ 0

pcp�q � εqn� c1p�ql �m p�q pr � 1q ¤ �
cp�q � ε� c1p�q� l �m p�q pr � 1q

� �
cp�q � ε� c1p�q � r � 1

�
l   0,

and an analogous estimate holds for l   n. We note

sup
zPI

|fpzq| |det Dz F |�
1
p ¤ C }f}Cr�1 sup

zPI
|det Dz F |�

1
p .

We set C4pF, f|Iq :� CC3pF, f|Iq. Combining the estimates for all the parts of

the sum (2.79), we conclude.

Proof of Lemma 2.4.1. Let s, q, t, p satisfy the hypotheses in Lemma 2.4.1. That

is s1   s   0   q ¤ t   r�1�s1, q1   q, t1   t and p P r1,8s. We put cp�q :� s,

cp�q :� t, cp0q :� c1p0q :� q and c1p�q :� c2p�q :� s1, c1p�q :� c2p�q :� t1

and c2p0q :� q1. Then c,c1,c2 satisfy (2.29), respectively, while c, c1 satisfy the

hypotheses in Lemma 2.4.13, and c, c2 that of Lemma 2.4.16. Let ϕ PW s,t,q
p,Θ,F pKq.

We set

aτ,` :� LF,fΨ�Op
τ,` ϕ.
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2 Horocycle averages on closed manifolds

We have a P Lp
�
Rd, `c2

� � Lp

�
Rd, `c12

	
because

}a}LppRd,`c2q �

�������
��¸
τ,`

4cpτq` |aτ,`|2
�1

2

�������
Lp

�

�������
��¸
τ,`

4cpτq`
���f � �Ψ�Op

τ,` ϕ
	
� F

���2
�1

2

�������
Lp

¤
���f |det DF |� 1

p

���
L8pKq

�������
��¸
τ,`

4cpτq`
���Ψ�Op

τ,` ϕ
���2
�1

2

�������
LppF pKqq

(2.81)

¤
���f |det DF |� 1

p

���
L8

}ϕ}W s,t,q
p,Θ�,F pKq

.

We set bτ,` :� Ψ�Op
τ,` ϕ. By the first statement in Lemma 2.3.4, it holds ϕ P

W s1,t1,q1

p,Θ�,F pKq hence pbτ,` | τ P t�,�, 0u , ` P Z¥0q �: b P Lp
�
Rd, `c22

	
. By assump-

tion on K, we can decompose K � \W into finitely many open sets W. For

each component W we set

a|W,τ,` :� LF,f|WΨ�Op
τ,` ϕ and a :�

¸
W
a|W .

By construction (see above (2.78)), it holds rΨ�
τ,`| supp Ψ1

τ,`
� 1 hence Ψ�Op

τ,` ϕ �rΨ�Op
τ,` Ψ�Op

τ,` ϕ. For each W there is a corresponding arrow relation given by

Definition 2.4.12 and the restriction f|W is also Cr�1. We rewrite

ΨOp
σ,nLF,f|Wϕ � ΨOp

σ,n

¸
τ,`

a|W,τ,` �ΨOp
σ,n

¸
pτ,`qãÑW pσ,nq

a|W,τ,` �ΨOp
σ,n

¸
lãÑW pσ,nq

a|W,0,`

�ΨOp
σ,n

¸
pτ,`q�ãÑW pσ,nq

LF,f|W
rΨ�Op
τ,` Ψ�Op

τ,` ϕ. (2.82)

We recall the definitions of the operators QOp
ãÑ,tWu, Q

Op
ãÑ0,tWu, Q

Op
�ãÑ,W given in

(2.72) and in (2.78), respectively (in which we take I � tWu and I � W). We

estimate, using the decomposition given in (2.82),

}LF,fϕ}W s,t,q
p,Θ,K

�
�����¸W LF,f|Wϕ

�����
W s,t,q
p,Θ,K

�

�������
��¸
σ,n

4cpσqn

�����ΨOp
σ,n

¸
W
LF,f|Wϕ

�����
2
�1

2

�������
Lp

¤ 5
���QOp

ãÑ,tWua
���
LppR,`c2q

� 5
���QOp

ãÑ0,tWua
���
LppR,`c2q

� 5
¸
W

���QOp
�ãÑ,WLF,f|WQ

Opb
���
LppR,`c2q

.

We conclude, using Lemma 2.4.13 and Lemma 2.4.16 together with the estimate

given in (2.81).
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2.5 Asymptotics of horocycle averages

In this section, we assume r ¥ 2 and topological mixing of the Anosov flow gα.

(Contact Anosov flows are topologically mixing [41, Theorem 3.6] and hence

serve as examples for such Anosov flows gα in the case d � 3.) In order to define

the horocycle flow in Definition 2.5.1 below we assume that the stable dimension

d� � 1 and that the strong-stable distribution E� is orientable. The stable

manifolds of M with respect to the flow gα are those (non-compact) Riemannian

submanifolds which are tangent to E�. As consequence of topological mixing,

each of those stable manifolds is dense in M [49, p. 84].

2.5.1 Horocycle flows and integrals and main results (Theorem

2.5.7)

Definition 2.5.1 (Horocycle flow). A flow hρ : M Ñ M in ρ P R is called a

stable horocycle flow if and only if for all ρ P R

Bρhρ P E�z t0u .

Remark 2.5.2 (Unit speed parametrization). By the Stable Manifold Theorem

(see e.g. [42, Theorem 8.12]), there exists a parametrization of stable manifolds

by the arc-length induced by the Riemannian metric on M . Since we assumed

that E� is orientable, this yields the unit speed parametrization of the horocycle

flow (i.e. |Bρhρ| � 1).

Our main result, Theorem 2.5.7 provides a decomposition giving the T -asymptotics

of the following horocycle integral:

Definition 2.5.3 (Horocycle integral). For all ϕ P Cr�1
X pMq, for all x PM let

γxpϕ, T q :�
» T

0
ϕ � hρpxq d ρ. (2.83)

denote the horocycle integral of the horocycle flow hρ for the observable ϕ at base

point x.

In Theorem 2.5.7 we reveal its connection to the eigendistributions of a weighted

transfer operator for the Anosov flow g�α introduced in Section 2.3.1, using re-

normalization dynamics to connect the stable flow with the Anosov flow. Results

can be obtained for an unstable horocycle flow in an analogous way.
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2 Horocycle averages on closed manifolds

Definition 2.5.4 (Pointwise renormalization time). A map τ : R2 �M Ñ R
which satisfies

gα � hρpxq � hτpρ,α,xq � gαpxq , @ρ, α P R ,@x PM, (2.84)

is called a pointwise renormalization time for the stable flow hρ.

Remark 2.5.5. This definition of the renormalization time τ is the same as

used by Marcus (denoted by s� in his notation) in [49, p.83] to study ergodic

properties of the horocycle flow.

Lemma 2.5.6 (Existence and uniqueness). A pointwise renormalization time

exists and is unique.

Proof. For every x PM and for every ρ, α P R we set hα,ρ pxq :� gα�hρ�g�α pxq.
By Definition 2.5.1 and the invariant splitting (2.2), we find Bρhα,ρ P E�,xz t0u.
Hence hα,ρ pxq parametrizes the same stable manifold with respect to ρ as hρ pxq.
If there were two different pointwise renormalization times τ , there would be

ρ1   ρ2 P R such that hα,ρ pxq � hρ1 pxq � hρ2 pxq. By density of stable leaves

and non-singularity of the flow hρ, there are no periodic points of hρ hence

ρ1 � ρ2.

Further properties of the renormalization time τ are given in Proposition 2.5.13

below. Assuming Bρτ p0,�α, �q P Cr�1pMq for all α ¥ 0, we will consider the

potential V defined by

V � �BαBρτ p0, 0, �q . (2.85)

Then φα defined in (2.18) is just

φα :� Bρτp0,�α, �q. (2.86)

It follows from (iv) in Lemma 2.5.18 below that for any p P r1,8s, t� s   r� 1

and s   0   q ¤ t the spectral bound λmax � sup<σ pX � V q |W s,t,q
p

for the

generator satisfies

λmax � htop. (2.87)

In the special case of unit speed horocycle flow (see Remark 2.5.2) it holds (using

Proposition 2.5.13 (viii) below)

φα � det D g�α|E� .
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2.5 Asymptotics of horocycle averages

Hence if the strong stable distribution E� is C1 (see Proposition 2.5.10 where

this holds true if d � 3 under the contact assumption) and r ¥ 2 then we

find Bρτ p0,�α, �q P C1
X pMq. In particular, our results apply to all C1 time

reparametrizations of the unit speed horocycle flow hρ (this is analogous to [30,

Remark 2.4]).

The following theorem will be proved at the end of Section 2.5.3:

Theorem 2.5.7 (Expansion of horocycle integrals). Let gα be a topologically

mixing Cr-Anosov flow, with r ¥ 2, such that E� is orientable and d� � 1.

Let µ be the unique Borel measure which is invariant by the horocycle flow hρ.

Assume for all α ¥ 0

φα :� Bρτ p0,�α, �q P Cr�1pMq.

Assume further that there exist p P r1,8s, and s   0   q ¤ t with t� s   r � 1

such that, for the corresponding anisotropic space W s,t,q
p it holds λmin   λmax �

htop, with λmin � λmin pt, s, pq from (2.56). Then, for all x PM and T ¥ 0 there

exist, for each λ P σ pX � V q |W s,t,q
p

with <λ ¡ λmin, constants cpλ,i,jqpT, xq P C
with

sup
T¡0, xPM

|cpλ,i,jqpT, xq|   8 , @1 ¤ i ¤ nλ , 1 ¤ j ¤ mλ,i,

such that, for any δ P R with

max tλmin, 0u ¤ δ   htop

and any finite 5 subset Λδ of

Σδ :� σ pX � V q |W s,t,q
p

X tλ P C | <λ ¡ δu ,

such that for all ϕ P Cr�1
X pMq and all T ¥ e

» T
0
ϕ � hρ pxq d ρ � γx

�
Dphtop,1,1q, T

�
µ pϕq

�
¸
λPΛδ

<λ htop

¸
1¤i¤nλ

1¤j¤mλ,i

T
λ

htop plog T qj�1 cpλ,i,jq pT, xqOpλ,i,jq pϕq � ET,x,Λδ pϕq ,

where the dual eigendistributions Opλ,i,jq P DpX � V q1 are associated to the

5Note that Lemma 2.4.10 and our choice of δ ensure that for any finite b ¡ 0 the spectral box
Λσpbq � σ pX � V q |

W
s,t,q
p

X t<λ ¡ δ, |=λ| ¤ bu is a finite set.
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2 Horocycle averages on closed manifolds

eigenvalue λ by Lemma 2.4.10 (see (2.67)), and where

lim
TÑ8

γx
�
Dphtop,1,1q, T

�
T

� 1 and lim
TÑ8

ET,x,Λδ pϕq
T

� 0.

Moreover, if for some c ¡ 0 and some constant C1 � C1pϕ, c,Λδq ¥ 0 for all

α ¥ 0 �����Lα,φα
� ¸
λPΛδ

nλ̧

i�1

Πλ,iϕ� ϕ

������
W s,t,q
p

¤ C1e
cα, (2.88)

then there exists C2 ¡ 0 such that

sup
xPM

|ET,x,Λδ pϕq| ¤ C2

�
C1T

c
htop � }ϕ}C0 � 1

	
.

If, in addition, Condition 2.4.11 holds for δ, then Σδ is finite and, taking Λδ � Σδ

and assuming

t� r � 2 ¤ 0   r � 2,

it holds c � δ � ε in (2.88) for all ε ¡ 0 and all ϕ PW s,t,q
p .

Recall that if Dpλ,i,jq PW s,t,q
p , for some λ with <λ ¡ δ, is a generalized eigenvec-

tor of the generator X � V then for all <λ̃ ¡ δ we have that Oλ̃,̃ı,̃pDλ,i,jq � 1 if

λ � λ̃, i � ı̃, and j � ̃, while Oλ̃,̃ı,̃pDλ,i,jq vanishes otherwise.

Remark 2.5.8. The condition λmax � htop is superficial although we show only

λmax � htop and unique simplicity under an additional vanishing assumption

in Section 2.5.3. The proof of Theorem 2.5.7 however shows that the horocycle

expansion sees only the part of the spectrum with real part below htop and the

eigendistribution µ which is associated to htop.

Recalling Remark 2.4.8, we find always λmin   htop if �s and t can be taken to

be 1� ε for all ε ¡ 0. This is the case if the geodesic flow is C3�ε for all ε ¡ 0

(e.g. the flow is of Zygmund type). If one knows then that the weight is C2�ε

the basic assumptions of Theorem 2.5.7 are all satisfied (an example is given in

Proposition 2.5.10 below for C3 contact Anosov flows when d � 3).

Note that γx
�
Dphtop,1,1q, T

�
is well-defined in the sense of distributions is part of

the theorem. By unique ergodicity the expected principal term Tµ pϕq is hidden by

the term γx
�
Dphtop,1,1q, T

�
µ pϕq as we ordered the expansion by the distributions

O... pϕq. We can always write

Tµ pϕq � γx p1, T qµ pϕq
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2.5 Asymptotics of horocycle averages

and use the expansion result on γx p1, T q again which shows that the leading order

term is indeed what we expect. The other terms are modified by the contributions

of O... p1qµ pϕq. We make use of this in the following corollary.

Assuming all conditions in the above theorem, this gives polynomial convergence

of horocycle averages to the ergodic mean:

Corollary 2.5.9 (Polynomial convergence). Under the assumptions of Theorem

2.5.7 (including Condition 2.4.11 for δ and t � r � 2 ¤ 0   r � 2) then there

exists ε ¡ 0 such that for all ϕ P Cr�1
X pMq there exists C ¡ 0 such that���� 1

T

» T
0
ϕ � hρ pxqd ρ� µ pϕq

���� ¤ CT�ε,

where µ is the unique Borel measure which is invariant by the horocycle flow hρ.

Proof. We apply Theorem 2.5.7, using the assumption that Condition 2.4.11

holds for δ and that t � r � 2 ¤ 0   r � 2. Then there are only finitely many

eigenvalues λ P σ pX � V q such that <λ ¡ δ and the remainder term ET,x,Λδ pϕq
is bounded from above by T

δ
htop

�ε
for all ε ¡ 0. Hence all but one term in

the expansion of the ergodic average decay like T�ε for some ε ¡ 0. We finally

bound the leading term in the expansion

1

T
γx

�
Dphtop,1,1q, T

�
µ pϕq � µ pϕq � 1

T
γx

�
Dphtop,1,1q � 1, T

�
µ pϕq ,

using again Theorem 2.5.7 as before, noting that µ p1q � µ
�
Dhtop,1,1

� � 1.

We next discuss the assumptions of our main theorem and the corollary above.

We first give sufficient conditions ensuring that Bρτ p0,�α, �q P Cr�1 and that

there exist parameters in our anisotropic space giving λminps, t, pq   htop:

Proposition 2.5.10. Let gα be a C3 contact Anosov flow on a closed Rieman-

nian manifold M of dimension d � 3 preserving a C1 contact form and let the

strong-stable distribution E� be orientable. Then there exists a horocycle flow

hρ such that Bρτ p0,�α, �q P Cr�1 for every α ¥ 0 and for any r P r2, 3q.
Setting �s � t � r�1

2 � ε
2 for suitable 0   ε   r�1

2 , the constant λminps, t, pq is

independent of p and can be taken arbitrary close to 0� while t�r�2 ¤ 0   r�2.

Proof. The contact assumption means that there is an invariant 1-form η P T �M

such that µ :� η ^ d η � 0 everywhere. By assumption η is C1. Moreover η

is annihilated on E� � E� and µ P ^3T �M is preserved by the flow. We use

[40, Theorem 3.1] together with the comment on the relation between Zygmund

103



2 Horocycle averages on closed manifolds

and Hölder regularity to infer that the strong-stable distribution is Cr�1 for

all r P r2, 3q if d � 3. Hence for the horocycle flow given by the unit speed

parametrization (and more general all of its Cr�1 reparametrizations) we find

Bρτ p0,�α, �q P Cr�1. By assumption the flow gα preserves volume and d � 3.

To see a gap between λmin � λmin ps, t, pq and htop, we may assume the unit

speed parametrization of the horocycle flow hρ. It follows by Proposition 2.5.13

(viii) and Lemma 2.3.3 that for all Cr�1 reparametrizations the resulting transfer

operators are conjugate to each other.

Then it follows from Lemma 2.4.7 together with Proposition 2.5.13 (viii) that

λmin is independent of p and is arbitrary close to 0� for a suitable choice of s, t

and r. Moreover, if we assume 0   t ¤ r�3
2 � ε we satisfy t� r � 2 ¤ 0   r � 2

since ε   r�1
2 .

Second, we discuss Condition 2.4.11:

Remark 2.5.11. Condition 2.4.11 was inspired by estimates of Dolgopyat [23],

who was working with operators acting on symbolic spaces. This condition, re-

placing however our W s,t,q
p by other anisotropic Banach spaces, was proved by

several authors [9], [31], [48], [66] for the generator X�V , associated to contact

Anosov flows and V � 0 the trivial potential, for which they also obtained the

additional condition in Corollary 2.5.9.

In the case of geodesic flows on compact surfaces of constant negative curvature,

we find that V is a constant, but the fact that our Banach space is different

makes it difficult to apply the results of [9], [31], [48], [66] directly in order to

establish Condition 2.4.11. We expect however that the condition holds and (as

pointed out by Liverani and Butterley) can be obtained by exploiting e.g. [19,

Remark 2.6].

For non-constant potential V , since Dolgopyat [23] obtained exponential decay of

correlations for Gibbs measures with Hölder potentials, we expect that Condition

2.4.11 indeed holds also in our setting, in particular for compact surfaces of

variable negative curvature (e.g. using an argument similar as for the proof

in [24, Proposition 3.4]). (We warn the reader that the value of δ given by

Dolgopyat-type arguments is usually very close to λmax.)

We end this subsection by a comparison of our main theorem and the results

of Flaminio and Forni [28]: Let M be the unit tangent bundle of a compact

hyperbolic Riemann surface. Let gα be its unit speed geodesic flow and let

vol be the canonical (invariant) volume form on M (which is also a measure of
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2.5 Asymptotics of horocycle averages

maximal entropy) and consider the unit speed horocycle flow which leaves vol

invariant as well (hence µ � vol). Then htop � 1 because τ pρ, α, xq � ρ exp p�αq
and Dp1,1,1q � 1 (hence γx

�
Dp1,1,1q, T

� � T ). In the setting of Riemann surfaces,

the possible Jordan blocks are known [28, Theorem 1.5]. In particular, the

eigenvalue htop � 1 is simple, there are no other eigenvalues of real part equal

to one, all eigenvalues with <λ ¡ 0 are semi-simple, and there are only finitely

many eigenvalues with <λ ¡ 1
2 . Moreover, since the vector fields are constant,

the regularity parameters �s, t can be taken large enough such that λmin   0.

Hence we can take any δ ¥ 0 in Theorem 2.5.7, and we find, for any finite subset

of Σδ containing 1,» T
0
ϕ � hρ pxq d ρ �T vol pϕq �

¸
λPΛδzt1u

nλ̧

i�1

T λcpλ,i,1q pT, xqOpλ,i,1q pϕq � ET,x,Λδ pϕq ,

where we can take Λδ � Σδ if δ ¥ 1
2 , and where cpλ,i,1q and ET,x,Λδ satisfy the

claims of Theorem 2.5.7 (with an additional log T -factor if λ � 1
2). In particular,

if Condition 2.4.11 holds for some δ ¡ 1
2 (see Remark 2.5.11) there exists C ¡ 0

such that for all ε ¡ 0

|ET,x,Σδ pϕq| ¤ CT δ�ε.

Note that we required δ ¥ 0 because for δ   0 we find no improvement of

the remainder term (this comes the local bounds in Lemma 2.5.14). An analo-

gous behavior is seen in the corresponding expansion of Flaminio–Forni in [28,

Theorem 1.5]. However they are not limited to finite sets Λδ of eigenvalues

(Faure–Tsujii do not seem to be limited either in [26]). Our methods, however,

do not seem to allow to go beyond the first vertical line with infinitely many

resonances in σ pX � V q |W s,t,q
p

in the expansion of the horocycle integral. (This

could be a natural limitation, as discussed in [66, p.1497, below Theorem 1.1].)

2.5.2 Weighted horocycle integrals, properties of τ , local bounds

In order to use a smooth cutoff trick of Giulietti–Liverani to decompose γxp�, T q
in Lemma 2.5.14 below, we need to consider weighted horocycle integrals: For

all ϕ P Cr�1
X pMq, for all compactly supported w P C pR,Cq and for all x P M ,

let

γw,xpϕq :�
»
R
w pρq � pϕ � hρpxqq d ρ. (2.89)
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2 Horocycle averages on closed manifolds

denote the horocycle integral of the horocycle flow hρ for the observable ϕ at

base point x with weight w.

For further purposes, it is useful to view γw,x as a functional in the topolo-

gical dual space of W s,t,q
p for weights w with compact support and sufficient

differentiability:

Lemma 2.5.12. Let p P r1,8s and let 0   q ¤ t   r � 1 and let �r   s   0.

Let x P M . Then for some C ¡ 0, for all C�s maps w : R Ñ C with compact

support it holds

}γw,x}W s,t,q
p ÑC ¤ C |suppw| }w}C�s .

Proof. We recall the partition of unity ϑ$ and chart maps κ$, $ P Ω (see

Definition 2.3.6). We set for all x PM , for all α ¥ 0 and for all ϕ P Cr�1
X pMq

yx,$1,α pρq :� κ$1 � gα � hρpxq, (2.90)

ϕw,x,$1,$2,α pzq :� pϑ$2 � φ�α � g�αq � κ�1
$1
pzq �

» 8

�8
w pρq δ pz � yx,$,α pρqq d ρ,

ϕ$1,α pzq :� pϑ$1 � Lα,φαϕ1q � κ�1
$1
pzq .

With this notation, recalling the weighted horocycle integral associated to Defi-

nition 2.5.1, we express for all α ¥ 0

γw,x pϕq �
¸

$1,$2PΩ

»
Rd
ϕw,x,$1,$2,α pzq � ϕ$1,α pzq d z. (2.91)

We set

c1p�q :� �s, c1p0q :� �t, c1p�q :� �t.

We recall rΨσ,n defined in (2.24). We bound, using Plancherel’s Theorem, Cauchy–

Schwarz for the sum in σ and n, and twice Hölder’s inequality with respect to z

and α, respectively, for some constant C ¡ 0

α0 |γw,x pϕq| �
» α0

0

����� ¸
$1,$2

»
Rd
ϕw,x,$1,$2,α pzq � ϕ$1,α pzq d z

�����dα
¤
» α0

0

¸
$1,$2

�����
»
Rd

¸
σ,n

2�cpσqnrΨOp
σ,nϕw,x,$1,$2,α pzq 2cpσqnΨOp

σ,nϕ$1,α pzqd z

�����dα
¤ C sup

α,$1,$2

������
�¸
σ,n

4c
1pσqn

���rΨOp
σ,nϕw,x,$1,$2,α

���2� 1
2

������
Lp�

}ϕ}W s,t,q
p

,

(2.92)
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2.5 Asymptotics of horocycle averages

where p� :� 1 � 1
p is the Hölder conjugate of p. To conclude, it is enough to

establish the following upper bounds for
���rΨOp

σ,nϕw,x,$1,$2,α

���
Lp�

:

(i) There exists a constant C1 ¡ 0 such that for every C0 map w : R Ñ R,
every p P r1,8s, every σ P t�,�, 0u, n P N, every $1, $2 P Ω it holds���rΨOp

σ,nϕw,x,$1,$2,α

���
Lp
¤ C1 |suppw| }w}L8 , @x PM, @0 ¤ α ¤ α0.

(ii) There exists a constant C2 ¡ 0 such that for every �r   s   0, for every
C |s| map w : R Ñ R with compact support, every p P r1,8s, every n P N,
every $1, $2 P Ω it holds���rΨOp

�,nϕw,x,$1,$2,α

���
Lp
¤ C22sn |suppw| }w}C�s , @x PM, @0 ¤ α ¤ α0.

We first show claim (i). We fix w, σ, n,$1, $2, x and α. We let J � suppw be the

maximal subset such that yx,$1,α|J is well-defined. We note that J decomposes

into a finite disjoint union, e.g. J � �N
k�1 Ik for some N P N and some real

intervals Ik. In particular, since the flow hρ is non-singular and, in addition the

manifold M is compact and each stable leaf is dense in M and 0 ¤ α ¤ α0, for

some constant C1 ¡ 0, we have |Ik| ¤ C1 diamV$1 and N ¤ C1
|suppw|

diamV$1
. For

every z P Rd we estimate for some constants C2, . . . , C4 ¡ 0

|ϕw,x,$1,$2,α pzq| ¤ C2

����»
J
w pρq δ pz � yx,$1,α pρqq d ρ

����
�

����� Ņ
k�1

»
Ik

w pρq δ pz � yx,$1,α pρqq d ρ

����� �
������
Ņ

k�1

¸
ρPy�1pzqXIk

wpρq |Bρyx,$1,αpρq|�1

������
¤ C3N max

ρPsuppw

���wpρq |Bρyx,$1,αpρq|�1
��� ¤ C4 |suppw| }w}L8 , (2.93)

where we used in the last step non-singularity of hρ and 0 ¤ α ¤ α0. We

conclude, using Young’s inequality on
���rΨOp

σ,nϕw,x,$1,$2,α

���
Lp

together with the

bound in (2.93).

We now show claim (ii). Again we fix w, σ, n,$1, $2, x and α and set y :�
yx,$1,α. Analogously as in the proof of (i), we let Ik � R, 1 ¤ k ¤ N , be the N

connected components of J for some N P N. For every z P Rd we expand

rΨOp
�,nϕw,x,$1,$2,αpzq �

2dn

p2πqd
»
Rd

»
Rd

rΨ�,1 pξq ei 2nξpz�ryqϕ pryqd ξ d ry,

where we set

ϕ pryq :� ϕw,x,$1,$2,α pryq .
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2 Horocycle averages on closed manifolds

We note that suppϕ � y pJq. In particular, we reparametrize ry P suppϕ byry � rz prρq for some diffeomorphism z P Cr and rρ P R. We set Drρ p�q :� i Brρ p�q
B
rρξrz .

Since rz pRq is a piece of a stable manifold in charts there exists a constant C3 ¡ 0

such that we have
��Brρξrz prρq�� ¥ C12n for all ξ in supp rΨ�,n is essentially part of

an unstable cone in charts by construction. We note that ϕ�z is Cr. Using t�su-
times integration by parts (see Lemma B.3), followed by a regularized integration

by parts with respect to rρ if �s R N, respectively (see Lemma B.5 in which we

take d � 1, G � y and L�1 � ε � 2�n), this yields

rΨOp
�,nϕw,x,$1,$2,αpzq �

2pps�dqnq

p2πqd
»
Rd

»
R
rΨ�,1 pξq ei 2nξpz�rzprρqqrD�s

rρ rϕ prρq d ξ d rρ,

where

rD�s

rρ rϕ :�
$&%D�s

rρ
�rϕ � rz � Brρrz� , if � s P N

2p�s�t�suqn
�
Brρ

�
1

2nξrz rrϕ	ε � Brρξrz � � 1
ξrz rrϕ� �

1
ξrz rrϕ	ε		 , if � s R N

,

rrϕ :� D
t�su
rρ

�rϕ � rz � Brρrz� ,
and the ε-term is just the convolution

�
1
ξy D

t�su
rρ rϕ	 � νε with a C8 map νε

with supp νε � p�ε, εq. Note that all derivatives of rD�s

rρ rϕ in ξ are bounded in

n, using Lemma B.5 and non-singularity of hρ and 0 ¤ α ¤ α0. We proceed

analogously as in the proof of Lemma 2.3.3, integrating pd� 1q-times by parts in

ξ if 2n |z � rz prρq| ¡ 1 and conclude, using that supp rD�s

rρ rϕ � supp rϕ is bounded.

We group below some properties of the pointwise renormalization. (Note in

particular that Claim (xi) in Proposition 2.5.13, which will follow from [31,

Remark C.4] of Giulietti–Liverani–Pollicott, will play a key part to estimate the

spectral bound of X � V . Also, Claim (viii) in Proposition 2.5.13 shows that

φα � Bρτ p0,�α, �q differs from the unit speed parametrization function by a

multiplicative 1-coboundary.)

Proposition 2.5.13 (Properties of pointwise renormalization). Let τ be the
renormalization time of a stable horocycle flow. For all ρ, α P R and for all
x PM it holds:

(i) τp0, α, xq � 0,

(ii) τpρ, 0, xq � ρ,

(iii) τpρ, α1 � α2, xq � τpτpρ, α2, xq, α1, gα2pxqq, for all α1, α2 P R,
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2.5 Asymptotics of horocycle averages

(iv) τpρ1 � ρ2, α, xq � τ pρ1, α, hρ2pxqq � τpρ2, α, xq, for all ρ1, ρ2 P R,

(v) Bρτpρ, α, xq � Bρτp0, α, hρpxqq,
(vi) Bρτp0, α1, gα2pxqqBρτp0, α2, xq � Bρτp0, α1 � α2, xq, for all α1, α2 P R,

(vii) τpρ, α, xq � γx pBρτp0, α, �q, ρq,

(viii) Bρτp0, α, �q � det D gα|E�
pBρh0q

�pBρh0q

pBρh0�gαq
�pBρh0�gαq

where Bρh0pxq :� Bρhρ|ρ�0pxq,

(ix) 0   Bρτp0, α, xq   8,

(x) if α ¥ 0 there exist C1 ¡ 0 and 0   θ   1 both independent of α and x
such that }Bρτ p�, α, xq}Cr�1 ¤ C1θ

α,

(xi) if |ρ| ¥ 1 and α ¥ 0 there exists C2 ¥ 1 independent of ρ, α and x such
that

C�1
2 |ρ| ehtopα ¤ |τ pρ,�α, xq| ¤ C2 |ρ| ehtopα.

(xii) if α ¥ 0 such that |τ pρ, α, xq| � c for some c ¥ 1 then there exists C3 ¥ 1
independent of ρ, α and x such that

C�1
3 cehtopα ¤ |ρ| ¤ C3ce

htopα.

Proof. We note that by Definition 2.5.1, Definition 2.5.4 and Lemma 2.5.6 the

renormalization time is differentiable in ρ. Every stable leaf is dense in M hence

together with non-singularity of the flow hρ it follows hρ1pxq � hρ2pxq ñ ρ1 � ρ2.

Then Claim (i)-(ii) follow directly from (2.84). We deduce from (2.84)

hτpρ,α1�α2,xq � gα1�α2pxq � gα1�α2 � hρpxq � gα1 � hτpρ,α2,xq � gα2pxq
� hτpτpρ,α2,xq,α1,gα2 pxqq � gα1�α2pxq.

This yields Claim (iii). Also from (2.84) we find

hτpρ1�ρ2,α,xq � gαpxq � gα � hρ1�ρ2pxq � gα � hρ1 � g�α � gα � hρ2 � g�α � gαpxq
� hτpρ1,α,hρ2 pxqq

� hτpρ2,α,xq � gαpxq.

This yields Claim (iv). Claim (v) and (vi), using Claim (i), follow by differenti-

ating both sides in (iv) and (iii) at ρ1 � 0 and ρ � 0, respectively.

Claim (vii) follows from (2.83) and (v).

To show Claim (viii), we take derivatives on both sides of (2.84) with respect to

ρ

D gαBρhρpxq � Bρτpρ, α, xq � pBρh0q � hτpρ,α,xq � gαpxq. (2.94)
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2 Horocycle averages on closed manifolds

Now we let pBρh0q� P E�
� be the canonical dual of Bρh0. We calculate

pBρh0 � gαq� pD gαBρh0q � pBρh0 � gαq� ppgαq� Bρh0q � pgαq� pBρh0 � gαq� pBρh0q
� det

�
D gα|E�

�� pBρh0q� pBρh0q � det D gα|E� pBρh0q� pBρh0q .

(2.95)

We set ρ � 0 in (2.94) and conclude, using (2.95) and non-singularity of the

horocycle flow.

Claim (ix) follows from (viii) together with the fact limαÑ0 det D gα|E� � 1 and

compactness of M .

In order to show (x), we note first, since r ¥ 2, using Claim (v) and the cocycle

property (vi),

Bρτ pρ, α, xq � Bρτ p0, α, hρ pxqq � exp�
» α

0
V � grα � hρ pxqd rα,

where V :� �BαBρτ p0, 0, �q P Cr�1. Therefore it holds, using the equality in

(2.84),

B2
ρτ pρ, α, xq � �Bρτ pρ, α, xq � Bρ

» α
0
V � grα � hρ pxq d rα

� �Bρτ pρ, α, xq �
» α

0
Bρτ pρ, rα, xq � pDV Bρh0q � grα � hρ pxq d rα,

(2.96)

where |Bρτ pρ, α, xq | ¤ Cθα for some 0   θ   1 and C1 ¡ 0 both independent of

α, ρ and x by (viii). Hence there is C2 � C2pV q ¡ 0 such that
��B2
ρτ pρ, α, xq

�� ¤
C2θ

α. By induction, all derivatives Bkρτ pρ, α, xq, where k P N, depend only on

Bρτ pρ, α, xq (and k and derivatives of V which are independent of α) and so

does the Hoelder norm }Bρτ pρ, α, xq}Cr�1 . Since r ¥ 2 the Hoelder coefficicent

of Bρτ p�, α, xq is bounded by
��B2
ρτ p�, α, xq

��
C0 and we conclude.

Claim (xi) for ρ ¥ 1 and α ¤ 0 follows from [31, Lemma C.1] and [31, Remark

C.4] (recall that gα is transitive) in which we replace W with a manifold which

contracts in forward time. To this end we set Wx :� hr0,1s pxq for every x P M .

Since the stable flow is non-singular, the stable manifold Wx is of bounded length

(from above and below) for all x P M . We estimate, using Proposition 2.5.13

(viii) for the first and [31, Remark C.4] for the last inequality, with constants
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2.5 Asymptotics of horocycle averages

C3, . . . , C6 ¡ 0 independent of ρ, α, x

τ pρ,�α, xq ¤ C3

» ρ
0

det D g�α|E� � hρ pxq d ρ ¤ C4ρ

»
det D g�α|E� dWx

¤ C5ρ vol pg�α pWxqq ¤ C6ρe
htopα.

A lower bound for τ pρ,�α, xq is obtained in an analogous way, using the last sta-

tement in [31, Lemma C.1]. We conclude for all |ρ| ¥ 1, noting that τ p�ρ, α, xq �
�τ pρ, α, h�ρ pxqq, using Claims (iv) and (i).

Claim (xii) follows from Proposition 2.5.13 (viii), and the following equality

which follows from Claim (iii)

ρ � τ pτ pρ, α, xq ,�α, gα pxqq � τ pc,�α, gα pxqq .

We shall use in the next two lemmas the following key identity for the horocyle

integral (2.89)

γw,x pϕq � γw�τp�,�α,gαpxqq,gαpxq
�
Lα,Bρτp0,�α,�qϕ

�
, @α ¥ 0. (2.97)

To check the above identity, using (2.84) and Proposition 2.5.13 (iii), (v)-(vi),

just notice that for all α P R

γw,x pϕq �
» 8

�8
w pρq � ϕ � g�α � gα � hρpxqd ρ

�
» 8

�8
w pρq � ϕ � g�α � hτpρ,α,xq � gαpxq d ρ

�
» 8

�8
w pτ pρ,�α, gαpxqqq � ϕ � g�α � hρ � gαpxq � Bρτ pρ,�α, gαpxqq d ρ

�
» 8

�8
w pτ pρ,�α, gαpxqqq � pBρτ p0,�α, �q � ϕ � g�αq � hρ � gαpxqd ρ

� γw�τp�,�α,gαpxqq,gαpxq pBρτ p0,�α, �q � ϕ � g�αq (2.98)

� γw�τp�,�α,gαpxqq,gαpxq
�
Lα,Bρτp0,�α,�qϕ

�
, if α ¥ 0.

We now state upper bounds for |γx pϕ, T q| similar to the results in [28, Lemma

5.16]. The prove uses the analogue of the smooth cutoff used by Giulietti–

Liverani [30] but uses a different construction of the local decomposition of

γx pϕ, T q.
Lemma 2.5.14 (Local bounds). For every T ¡ 0 and for every x P M there
exists w P C�s pR, r0, 1sq such that for every ϕ P W s,t,q

p , where p P r1,8s and
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s   0   q ¤ t   r � 1� s, the following holds:

(i) There exists C1 ¡ 0 independent of T, x and ϕ such that

|γxpϕ, T q � γw,xpϕq| ¤ C1 }ϕ}C0 .

Moreover, if �s   θmin
θmax

, where for some 0   θmin   θmax, for some C0 ¥ 1
and for all α ¥ 0 it holds

C�1
0 e�θmaxα ¤ inf

xPM
Bρτ p�, α, xq ¤ sup

xPM
Bρτ p�, α, xq ¤ C0e

�θminα, (2.99)

then for some C2 ¡ 0 independent of T, x and ϕ it holds

|γxpϕ, T q| ¤ C2 max

"
T, T

θmin
θmax

�s θmax
θmin

*
}ϕ}W s,t,q

p
.

(ii) If for some rϕ P W s,t,q
p it holds for all α ¥ 0, for some λ P R, c ¥ 0 and

some C � C pλ, c, rϕq ¡ 0

}Bρτ p0,�α, �q � rϕ � g�α}W s,t,q
p

¤ Ceλα max t1, |α|cu , (2.100)

then there exists C3 � C3 pλ, cq ¡ 0 independent of T, x and rϕ such that

|γw,xprϕq| ¤ CC3

$''&''%
T

λ
htop pmax t1, log T uqc , if λ ¡ 0

min t1, T u pmax t1, log T uqc�1 , if λ � 0

min t1, T u pmax t1, log T uqc , if λ   0

.

Moreover, if the bound in (2.100) holds for all α P R with λ ¡ 0 then

|γxprϕ, T q � γw,xprϕq| ¤ CC3.

Proof. Let x PM , T ¡ 0, 0   ε ¤ 1
4 . We define β�k , β

�
k P R for every k P N by

τ
�
T, β�0 , x

� � 1

ε
and τ

�
τ

�
1

ε
,�β�k , gβ�k pxq



, β�k�1, x



� 1,

β�0 :� β�0 and τ

�
τ

�
�1

ε
,�β�k , gβ�k � hT pxq



, β�k�1, hT pxq



� �1.

(2.101)

If T ¡ 1 we assume β�0 ¡ 0, if T � 1 we assume β�0 � 0 and if T   1 we assume

β�0   0. This is justified since τ pT, 0, xq � T and by Proposition 2.5.13 (xi).

Since ε   1 we may assume without loss of generality for all k P N

β�k   β�k�1 and β�k   β�k�1.
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Combining the definitions in (2.101) with (iii) and (xi) in Proposition 2.5.13, we

find C1 ¥ 1 independent of ε, x, k and T such that for all k P N it holds

C�1
1 ε ¤ ehtoppβ�k �β�k�1q, ehtoppβ�k �β�k�1q ¤ C1ε. (2.102)

If β�0 ¥ 0 it follows for all k P Z¥0, using the upper bounds in (2.102) and

Proposition 2.5.13 (xii) on τ
�
T, β�0 , x

� � 1
ε ,

T
�
C�1

1 ε
�k�1 ¤ ehtopβ

�
k ¤ T pC1εqk�1 . (2.103)

If β�0   0 it holds for all k P Z¥0

�
C�1

0 T
� htop
θmin

�
C�1

1 ε
�k ¤ ehtopβ

�
k ¤ pC0T q

htop
θmax pC1εqk , (2.104)

where C0, θmin and θmax are from the assumptions in (2.99). By symmetry we

obtain analogous bounds for β�k . We let w�, w� P C8 pR, r0, 1sq such that

w� � w� � pT � �q , w�
|p 1

2ε
,8q � 1 and w�

|p�8, 1
4εq � 0.

We set

w0 :� w� � τ ��, β�0 , x� � w� � �T � τ
�� � T, β�0 , hT pxq

��
,

and we set for all k P N

w�
k :� w� � τ ��, β�k , x�� w� � τ ��, β�k�1, x

�
,

w�
k :� w� � �T � τ

�� � T, β�k , hT pxq
��� w� � �T � τ

�� � T, β�k�1, hT pxq
��
,

wk :� w�
k � w�

k .

We let N P Z for now be arbitrary. If N ¥ 0 we set

w :�
Ņ

k�0

wk � w0 � w� � τ ��, β�N , x�� w� � τ ��, β�0 , x�
� w� � �T � τ

�� � T, β�N , hT pxq
��� w� � �T � τ

�� � T, β�0 , hT pxq
��

.

If N   0 we put w � 0. Since ε ¤ 1
4 , it follows directly from the definitions of

113



2 Horocycle averages on closed manifolds

β�k and β�k in (2.101) that for all k P N

τ

�
1

2ε
,�β�k , gβ�k pxq



¤ τ

�
1

4ε
,�β�k�1, gβ�k�1

pxq



and

τ

�
1

�2ε
,�β�k , gβ�k � hT pxq



¥ τ

�
� 1

4ε
,�β�k�1, gβ�k�1

� hT pxq


.

Together with the assumptions on the supports of w� and w�, we find if N ¥ 0

supp
�
1|r0,T s � w

� ��
0, τ

�
1

2ε
,�β�N , gβ�N pxq




Y
�
T � τ

�
� 1

2ε
,�β�N , gβ�N � hT pxq



, T



.

We put

N :� X� log
�
C�1

1 T
� { log pC1εq

\
.

Hence if N   0 then T is bounded and if N ¥ 0 then β�N , β
�
N ¥ 0. The latter

follows from the lower bounds in (2.103). Therefore the first statement in Claim

(i) follows immediately, using in addition Proposition 2.5.13 (xii) and the upper

bounds in (2.103).

Using Proposition 2.5.13 (iii) and also Proposition 2.5.13 (iv) in the last equality

for rw0, we find for all k P N

rw�
k :�w�

k � τ
�
�,�β�k , gβ�k pxq

	
� w� � w� � τ

�
�, β�k�1 � β�k , gβ�k

pxq
	
,

rw�
k :�w�

k p� � T q � τ
�
�,�β�k , gβ�k � hT pxq

	
�w� pT � �q � w� �

�
T � τ

�
�, β�k�1 � β�k , gβ�k

� hT pxq
		

,

rw0 :�w0 � τ
�
�,�β�0 , gβ�0 pxq

	
�w� � w� �

�
T � τ

�
τ
�
�,�β�0 , gβ�0 pxq

	
� T, β�0 , hT pxq

		
�w� � w� �

�
T � 1

ε
� �



.

For this construction it holds for all k P N

supp rw�
k ,� supp rw�

k , supp rw0 �
�
0,
C2

1

2
1{ε2

�
. (2.105)

Since Bρτ p�, α, xq P Cr�1 for all α P R and all x PM it follows for some constant

C3 ¡ 0 for all k P N, all x PM and all T ¡ 0, using Proposition 2.5.13 (viii) and
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2.5 Asymptotics of horocycle averages

the bounds in (2.102),

�� rw�
k

��
Cr
,
�� rw�

k

��
Cr
, } rw0}Cr ¤ C3. (2.106)

We note

γw,x pϕq � γw�p��T q,hT pxq pϕq .

Assuming N ¥ 0, together with the equality in (2.97), we find the local decom-

position6 for all ϕ PW s,t,q
p

γw,x pϕq �γ rw0,gβ�0
pxq

�
Lβ�0 ,φβ�0

ϕ



�

Ņ

k�1

γ rw�k ,gβ�
k
pxq

�
Lβ�k ,φβ�

k

ϕ



� γ rw�k ,gβ�

k
�hT pxq

�
Lβ�k ,φβ�

k

ϕ



. (2.107)

Using the bound in Lemma 2.5.12 with the bounds in (2.106), and using the

assumption in (2.100) for some rϕ PW s,t,q
p

}Lα,φα rϕ}W s,t,q
p

� }Bρτ p0,�α, �q � rϕ � g�α}W s,t,q
p

¤ Ceλα max t1, |α|cu , (2.108)

and the bounds in (2.103), we estimate the right-hand side in the decomposition

in (2.107) for some constant C4 � C4 pcq ¡ 0, recalling that T is uniformly

bounded from below if N ¥ 0, and conclude the first statement in Claim (ii):

|γw,x pϕq| ¤ CC4T
λ

htop

Ņ

k�0

pC1εqk
λ

htop pmax t1, pk � 1q |log pC1εq| , log T uqc .

(2.109)

If N   0 then w � 0 and T is uniformly bounded from above and we conclude

as well. To see the second statements in Claims (i)-(ii), we recall that the

construction of the functions wk is valid for every T ¡ 0 and hence

8̧

k�0

wk � 1|p0,T q.

Since for all ϕ P Cr�1
X pMq it holds

γx pϕ, T q � γ°8
k�0 wk,x

pϕq � 0,

6This is analogous to the decomposition in [31, Lemma 3.1]. The main difference to our
decomposition is that we use a more explicit construction of the smoothing functions.
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2 Horocycle averages on closed manifolds

we find by density for all ϕ PW s,t,q
p

γx pϕ, T q � γ°8
k�0 wk,x

pϕq .

It holds

suppw0 � r0, T s .

Comparing with the supports in (2.105), together with the bounds in (2.103)

and (2.104), we find some C5 ¡ 0 independent of k, T, x and ϕ such that for all

k P N, if β�k ¥ 0 and β�k ¥ 0,

�
T � suppw�

k

�
, suppw�

k �
�
0, C5 pC1εqk T

�
,

respectively, and if β�k   0 and β�k   0,

�
T � suppw�

k

�
, suppw�

k �
�

0, C5T
θmin
θmax

�
pC1εqk

	 θmin
htop

�
.

Moreover, we find for some constant C5 ¥ 1 for all ρ1, ρ2 P R, all α,�s ¥ 0 and

all x PM , using Proposition 2.5.13 (iv) and the assumption of the upper bound

for Bρτ in (2.99),

pτ pρ1, α, xq � τ pρ2, α, xqq�s � τ pρ1 � ρ2, α, hρ2 pxqq�s ¤ C�s
5 pρ1 � ρ2q�s esθminα.

If α ¤ 0 it holds analogously, now using the lower bound for Bρτ in (2.99),

pτ pρ1, α, xq � τ pρ2, α, xqq�s � τ pρ1 � ρ2, α, hρ2 pxqq�s ¤ C�s
5 pρ1 � ρ2q�s esθmaxα.

Since 0   �s   1 and 0   θmin ¤ θmax it holds for some constant C6 ¡ 0

independent of T, x and ϕ, using the lower bounds in (2.103)-(2.104), for all

k P N and for all T ¡ 0,

}wk}C�s ¤ C6 max

"
1, T

s θmax
θmin

�
pC1εqk

	s θmax
htop

*
.

Then we estimate for every ϕ P W s,t,q
p , using Lemma 2.5.12 and �s   θmin

θmax
, for
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2.5 Asymptotics of horocycle averages

some constants C7, C8 ¡ 0 independent of T, x, w and ϕ

|γx pϕ, T q| ¤ lim
nÑ8

����� ņ
k�0

γwk,x pϕq
�����

¤ C7

8̧

k�0

max

"
T, T

θmin
θmax

�s θmax
θmin

*�
pC1εqk

	 θmin
htop max

"
1,
�
pC1εqk

	s θmax
htop

*
}ϕ}W s,t,q

p

¤ C8 max

"
T, T

θmin
θmax

�s θmax
θmin

*
}ϕ}W s,t,q

p
.

This yields the second statement in Claim (i). On the other hand, using the

equality in (2.98) and assuming N ¡ 0, we find,

γx prϕ, T q � Ņ

k�0

γwk,x prϕq � 8̧

k�N�1

γ rw�k ,gβ�
k
pxq

�
Bρτ

�
0,�β�k , �

� � rϕ � g�β�k 	
�

8̧

N�1

γ rw�k ,gβ�
k
�hT pxq

�
Bρτ

�
0,�β�k , �

� � rϕ � g�β�k 	 .

Then we proceed analogously as for the bound in (2.109), now using the upper

bounds in (2.103) and the assumption in (2.108) for all α P R and some λ ¡ 0,

c ¥ 0 (recall that T pC1εqN is bounded from above). If N ¤ 1 then T λ |log T |c
is bounded from above and we conclude as well, now using the upper bounds in

(2.104).

Remark 2.5.15. The second statement in Lemma 2.5.14 (i) can be used to avoid

the }ϕ}C0-term in the bound of the error term in Theorem 2.5.7. However the

required range for s may not be very large (except in the case of constant vector

fields). The second statement in Lemma 2.5.14 (ii) is free from an additional

condition on s. We use it in the following subsection in the proof of Lemma

2.5.18 (v) and Theorem 2.5.7. Both statements give also bounds for all values

T ¡ 0 which seems to be new.

2.5.3 Showing λmax � htop and Theorem 2.5.7

In this subsection we shall prove Theorem 2.5.7. First, we state and prove two

lemmas which will imply that λmax � htop, assuming λmin   λmax, is a simple

eigenvalue and that λmax is uniquely attained.

We remind the reader that uniqueness and simplicity of the spectral bound is

known to hold (see [22, Lemma 5.1], [21]) for the spectrum of mixing Anosov

flows (which are not necessarily contact), but for different anisotropic spaces,

and only for the potential V given by the Jacobian of the flow (and associated
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2 Horocycle averages on closed manifolds

to the SRB measure).

For the sake of the next two lemmas we have to introduce the following condi-

tion7:

Condition 2.5.16 (Strong vanishing). Let 0   t, q,�s   r�1 and let p P r1,8s.
Let ϕα PW s,t,q

p for all α ¥ 0 such that }ϕα}W s,t,q
p

� 1 and

lim sup
αÑ8

e�htopα }Lα,φαϕα}W s,t,q
p

¡ 0.

If for some �s ¤ �s1 for all x PM and all w P C�s1

0 pRq

lim
αÑ8

γw,x

�
Lα,φαϕα

}Lα,φαϕα}W s,t,q
p

�
� 0

then limαÑ8 }ϕα}W s,t,q
p

� 0.

We give the upper bound on the spectral radius:

Lemma 2.5.17 (Upper bound on the spectral radius). Let 0   t, q,�s   r � 1

and let p P r1,8s. For all x PM and all α ¥ 0 let Bρτ p�,�α, xq P Cr�1 pR,Mq.
Under Condition 2.5.16, With the choice φα � Bρτ p0,�α, �q for some constant

C ¡ 0 it holds for all α ¥ 0

}Lα,φα}W s,t,q
p ÑW s,t,q

p
¤ Cehtopα.

Proof. We show the claim on }Lα,φα}W s,t,q
p ÑW s,t,q

p
by contradiction. Suppose

e�htopα }Lα,φα}W s,t,q
p ÑW s,t,q

p
Ñ8 as αÑ8.

Then there exists ϕα PW s,t,q
p such that }ϕα}W s,t,q

p
� 1 and

���e�htopαLα,φαϕα
���
W s,t,q
p

Ñ8 as αÑ8. (2.110)

We assume for some w P Cs0 pRq and some x PM

lim inf
αÑ8

�����γw,x
�

Lα,φαϕα
}Lα,φαϕα}W s,t,q

p

������ ¡ 0. (2.111)

7This is introduced ad hoc as it was pointed out by Colin Guillarmou and Giovanni Forni
that for the weak-vanishing to imply strong vanishing is not obvious here. In some sense
one would expect even a stronger statement. Namely that for every eigendistribution D in
the expansion of Theorem 2.5.7 at least for one piece of horocycle orbit w around x P M
one has |γw,x pDq| ¡ 0.
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2.5 Asymptotics of horocycle averages

This assumption is justified, assuming Condition 2.5.16. We choose T ¥ 1 and

α ¥ 0 such that

τ pT, α, xq � 1.

Then, using Proposition 2.5.13 (xii), we find for some constant C ¥ 1

C�1ehtopα ¤ T ¤ Cehtopα. (2.112)

We have, using the equality given in (2.97),

γw�τp�,α,xq,x pϕαq � γw,gαpxq pLα,φαϕαq . (2.113)

We recall �s   r � 1. Therefore the norm }w � τ p�, α, xq}C�s is bounded as

α Ñ 8, using Proposition 2.5.13 (x). By Lemma 2.5.12, the linear functionals

γw�τp�,α,xq,x and γw,gαpxq which appear in (2.113) are continuous on W s,t,q
p . Hence

the left-hand side in (2.113) grows at most by T as αÑ8 uniformly in x.

Then, comparing with the estimates for T in (2.112), using the assumption in

(2.111), this contradicts the assumption in (2.110) and we conclude.

We next show the lower bound (and uniqueness and simplicity of the spectral

bound λmax):

Lemma 2.5.18 (Invariant measure and spectral bound). Let µ be the unique
Borel probability measure which is invariant by the horocycle flow hρ. Let p P
r1,8s and let s   0   q ¤ t such that t� s   r � 1. It holds:

(i) µ P
�
W s,t,q
p

	1
,

(ii) L1α,φαµ � ehtopαµ (L1α,φα denotes the adjoint operator of Lα,φα),

(iii) htop P σ pX � V q |W s,t,q
p

.

Moreover, assuming Condition 2.5.16, it holds:

(iv) λmax � htop.

(v) The spectral bound λmax is uniquely attained by the simple eigenvalue htop,
assuming λmin   λmax.

The vector µ is also invariant by the adjoint horocycle flow since the time average

converges to the (unique) ergodic mean (a result by Marcus [50]). This is in

analogy to [31, Lemma 2.11].
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2 Horocycle averages on closed manifolds

Proof. We note for every ϕ P Cr�1
X pMq, using [49, Theorem 2.1] for the first,

the equality in (2.97) for the second and [49, Lemma 3.1] for the third equality,

for some λ ¡ 0, for every α ¥ 0

µ pϕq � lim
TÑ8

1

T
γx pϕ, T q � lim

TÑ8

τ pT, α, xq
T

1

τ pT, α, xqγgαpxqpLα,φαϕ, τ pT, α, xqq

� λ�αµ pLα,φαϕq . (2.114)

To see λ � ehtop we refer to [49, p.84] (alternatively use Proposition 2.5.13 (xi)).

Using Claims (i)-(ii) with λ � htop in Lemma 2.5.14 together with the bound

given by Lemma 2.5.17, there is w P Cr pRq and a constant C1 ¡ 0 such that for

all ϕ P Cr�1
X pMq

|µpϕq| ¤ lim
TÑ8

���� 1

T
γw,xpϕq

���� ¤ C1 }ϕ}W s,t,q
p

. (2.115)

Claim (iii) follows from σ
�pX � V q1� |pW s,t,q

p q1 � σ pX � V q |W s,t,q
p

, using [46,

Section II.2.5]. Claim (iv) follows from (iii) together with Lemma 2.5.17. To

see Claim (v), first we note that all λ P σ pX � V q such that <λ � htop are

eigenvalues, using Lemma 2.4.10 together with the assumption λmin   λmax.

Using Claim (iii), there exists D1 P W s,t,q
p such that Lα,φαD1 � ehtopαD1 for all

α ¥ 0. We let D1 � D2 P W s,t,q
p z t0u such that Lα,φαD2 � eλαD2 for all α ¥ 0,

where λ P C and <λ � htop. Then it holds, using Claim (ii) for the last equality,

eλαµ pD2q � µ pLα,φαD2q � ehtopαµ pD2q .

Since λ � htop it holds µ pD2q � 0. In fact, by same reasoning we can always

assume µ pD2q � 0 if λ � htop. And if λ � htop there are only finitely many

such D2 and we can again assume µ pD2q � 0 by a change of basis. The upshot

is that the following reasoning works always if <λ ¥ htop and µ pD2q � 0.

Then, using Claim (i) and the equality in (2.114), for every ε ¡ 0 there is

ϕ P Cr�1
X pMq such that for all α P R and for all x PM

lim
TÑ8

���� 1

T
γg�αpxq pϕ, T q

���� � |µ pϕq| ¤ ε. (2.116)

Using Lemma 2.5.14 (i), for all T ¡ 0, for all x P M and for all α P R there

exists w P Cr such that

lim
TÑ8

���� 1

T
γg�αpxq pϕ, T q

���� � lim
TÑ8

���� 1

T
γw,g�αpxq pϕq

���� . (2.117)
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2.5 Asymptotics of horocycle averages

Since Bρτ p0,�α, �q P Cr�1 for all α P R, using Lemma 2.3.3, we find Lα,φαD2 �
eλαD2 for all α P R which matches the condition (2.100) in Lemma 2.5.14 (ii).

Then, using Lemma 2.5.14 (ii) for the upper bound and the equality in (2.97)

for the last step, we find for some constant C2 ¡ 0 independent of x, α and ϕ,

for all α P R

lim
TÑ8

���� 1

T
γw,g�αpxq pϕq

���� � lim
TÑ8

���� 1

T
γw,g�αpxq pD2q � 1

T
γw,g�αpxq pϕ�D2q

����
¥ lim

TÑ8

���� 1

T
γg�αpxq pD2, T q

����� C2 }ϕ�D2}W s,t,q
p

� lim
TÑ8

����ehtopα

T
γx pD2, τ pT, α, xqq

����� C2 }ϕ�D2}W s,t,q
p

.

(2.118)

By density of Cr�1
X pMq in W s,t,q

p we assume

}ϕ�D2}W s,t,q
p

¤ ε.

For every T ¥ T0 ¥ 1 we let α ¥ 0 such that τ pT, α, xq � T0. By Proposition

2.5.13 there is C3 ¥ 1 independent of T and x such that ehtopα ¥ C�1
3

T
T0

. Since

ε ¡ 0 was arbitrary we conclude for all T0 ¥ 1 and all x PM , using the estimates

(2.116)-(2.118),

γx pD2, T0q � 0.

On the other hand we find for all T1, T0 ¥ 1

γx pD2, T0 � T1q � γh�T1
pxq pD2, T0q � γh�T1

pxq pD2, T1q � 0.

Hence it holds γx pD2, T q � 0 for every T P R and every x PM . Then for every

w P Cs�1
0 we find, using integration by parts,

γw,x pD2q � �
»
R
pBρwq pρq � γx pD2, ρqd ρ.

Since γx pD2, ρq � 0 for all ρ ¥ 0 we conclude γw,x pD2q � 0. Then, using

Condition 2.5.16, we find D2 � 0 but we assumed D2 � 0.

Proof of Theorem 2.5.7. By assumption

max tλmin, 0u   δ ¤ λmax � htop.

We note that we have always λmax � htop and uniqueness and simplicity of λmax
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2 Horocycle averages on closed manifolds

under Condition 2.5.16. Using the equality in (2.67) for the projectors Πλ,i, we

have for all 1 ¤ i ¤ nλ

Πλ,iϕ �
mλ,i̧

j�1

Opλ,i,jq pϕqDpλ,i,jq.

Recalling the nil-potent operators Nλ,i of finite rank (e.g. see in (2.66)), using

the formula for the matrix action Lα,φαΠλ,i � exp pλαq exp pNλ,iαqΠλ,i for all

α ¥ 0 and

exp p�λαq exp p�Nλ,iαqLα,φαΠλ,i � Πλ,i,

we find for some constant C1 � C1 pλ, i, jq for all α P R

��Bρ p0,�α, �q �Dpλ,i,jq � g�α��W s,t,q
p

¤ C1 exp p<λαqmax
!

1, |α|j�1
)

.

Hence Dpλ,i,jq satisfies the upper bound in (2.100) for all α P R if <λ ¡ 0.

Inspecting the end of the proof of Lemma 2.5.18, we notice that all eigendis-

tributions Dpλ,i,jq associated to some eigenvalue λ with <λ ¥ htop do not con-

tribute to the expansion except Dphtop,1,1q. This follows, if j � 1 using that

γx
�
Dpλ,i,1q, T

� � 0 for all T ¥ 0 and all x P M . If j ¡ 1 we arrive at the same

conclusion, using in the estimate in (2.118) for all α ¥ 0

Lα,φαDpλ,i,jq � exp pλαq exp pNλ,iαqDpλ,i,jq.

Let λ P Σδ � σ pX � V q |W s,t,q
p

X tz P C | <z ¥ δu. For every T ¥ 0 and every

x PM we set, using w P Cr given in Lemma 2.5.14,

cpλ,i,jq � cpλ,i,jqpT, xq :� T
� λ
htop max

!
1, |log T |1�j

)
γw,x

�
Dpλ,i,jq

�
.

Then, using the first statement in Lemma 2.5.14 (ii), the coefficients cpλ,i,jq are

bounded independently of T and x. It holds

γw,x pΠλ,iϕq �
mλ,i̧

j�1

Opλ,i,jq pϕq γw,x
�
Dpλ,i,jq

�
�

mλ,i̧

j�1

cpλ,i,jqT
λ

htop max
!

1, |log T |j�1
)
Opλ,i,jq pϕq .

We let µ as given in Lemma 2.5.18. Using Lemma 2.5.18 (v), and assuming
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2.5 Asymptotics of horocycle averages

T ¥ e, we find for every finite subset Λδ � Σδ

γxp�, T q � γx
�
Dphtop,1,1q, T

�
µ�

¸
λPΛδ

<λ htop

nλ̧

i�1

mλ,i̧

j�1

cpλ,i,jqT
λ

htop plog T qj�1Opλ,i,jq�ET,x,Λδ ,

where the remainder term is

ET,x,Λδ :� �
γw,x

�
Dhtop,1,1

�� γx
�
Dphtop,1,1q, T

��
µ

� γw,x

�
id�

¸
λPΛδ

nλ̧

i�1

Πλ,i

�
� pγx p�, T q � γw,xq . (2.119)

The existence of the limit limTÑ8 T
�1γx

�
Dphtop,1,1q, T

�
is shown by analogue es-

timates (2.116)-(2.118). Then the statement on the limit limTÑ8 T
�1ET,x,Λδ pϕq

follows, using unique ergodicity of the horocycle flow [49, Theorem 2.1] and fi-

niteness of Λδ. We bound |ET,x,Λδ pϕq| as required, using the first statement in

Lemma 2.5.14 (i) and the full statement in Lemma 2.5.14 (ii) together with the

assumed upper bound in (2.88).

The additional claims under Condition 2.4.11 can be seen as follows (see also

the remarks above and below Condition 2.4.11): The finiteness of Σδ follows

from [19, Theorem 1]. To this end we have to show that [19, Assumption 1-3A]

are satisfied for the renormalized semigroup e�htopαLα,φα : W s,t,q
p Ñ W s,t,q

p . In

fact Condition 2.4.11 yields just a reformulation of [19, Assumption 3A] for the

resolvent of the generator X �V �htop. Now [19, Assumption 1] states that for

some Banach space W s,t,q
p � B it holds

sup
α¥0

1

α

���id�e�htopαLα,φα
���
W s,t,q
p ÑB

  8. (2.120)

We set B :�W s,t,q�1
p . We bound the left-hand side in (2.120), using the equality

in (2.69) together with Lemma 2.3.3, Lemma 2.3.5 and Lemma 2.5.17. Now [19,

Assumption 2] just states that the essential spectral bound of X � V � htop is

bounded by some λ   0, where V � �BαBρτ p0, 0, �q. By assumption it holds

λ ¤ λmin � htop   0. Finally, the claimed choice c � δ � ε for all ε ¡ 0 follows

from [19, Theorem 1] as well. In particular, this choice for c follows if for all

α ¥ 0 and for all ε ¡ 0 there exists C2 � C2 pδ, ε, ϕq such that�����Lα,φα
�

id�
¸
λPΣδ

nλ̧

i�1

Πλ,i

�
ϕ

�����
W s,t,q
p

¤ C2e
pδ�εqα.
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2 Horocycle averages on closed manifolds

We set ϕδ :� ϕ�°
λPΣδ

°nλ
i�1 Πλ,iϕ. If t� q� 1   r� 1 it follows, using Lemma

2.3.3, Lemma 2.3.5 and [19, Theorem 1], for some constants C3, C4 � C4 pεq ¡ 0

}Lα,φαϕδ}W s,t,q
p

¤ C3 }Lα,φα pX � V qϕδ}W s,t,q�1
p

� C3 }Lα,φαϕδ}W s,t,q�1
p

¤ C3 }Lα,φα pX � V � htopqϕδ}W s,t,q�1
p

� pC3 � htopq }Lα,φαϕδ}W s,t,q�1
p

¤ C4e
pδ�εqα

����pX � V � htopq2 ϕ
���
W s,t,q
p

� }pX � V � htopqϕ}W s,t,q
p



.

Boundedness of the last estimate follows if q   r�2 because then }X pV ϕq}W s,t,q
p

and
��X2ϕ

��
W s,t,q
p

are bounded, recalling ϕ P Cr�1
X pMq and V P Cr�1. Combining

the required bounds for q yields

t� r � 2   q   r � 2.

Since we required q ¡ 0 it is enough to require t� r� 2 ¤ 0 and 0   r� 2 which

yields the additional condition on t and r.
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For the readers convenience we give a proof of a well-known result:

Lemma A.1 (Fixed points). Let M be 2�2 integer matrix acting on T2. Assume

that det pid�Mq � 0. Then the following holds:

(i) The number NM of fixed points of M is given by NM � |det pid�Mq|.

(ii) There exists a disjoint partition Dj � T2, 1 ¤ j ¤ NM of T2 such that the

maps yj : Dj Ñ T2 : x ÞÑ pid�Mqx are bijections.

Proof. We let id�M act on the cover R2. The linear map id�M sends a

fundamental region of T2, e.g. r0, 1q2, to a convex polytope having a non-zero

volume given by |det pid�Mq|. Each fixed point of M on T2 is mapped by

id�M to an element of Z2, and the number of integer points contained in the

polytope is just given by its volume. Claim (i) follows.

Let v1, v2 P Z2 be two different such integer points in the polytope. Now assume

that there are f1, f2 P r0, 1q2 such that

pid�Mq�1 pf1 � f2q � pid�Mq�1 pv1 � v2q
�

mod r0, 1q2
	

.

The right-hand side is mapped to a fixed point of M on T2, implying that f1�f2

is an integer point, which is only possible if f1 � f2. Therefore, v1 � v2, which

contradicts the assumption, and Claim (ii) follows.

For d P N and every real d� d matrix M we denote by �i,j pMq, 1 ¤ i, j ¤ d the

submatrix arising by removing the i-th row and j-th column from M .

Lemma A.2 (Determinant preserving transformation). Let d P N, and let

T : Rd Ñ Rd and φ : R Ñ R be differentiable maps. Fix 1 ¤ j ¤ d and α P Rd

and set

Tφ : Rd Ñ Rd : x ÞÑ pαiφ pxjq | 1 ¤ i ¤ dq .

Then for x P Rd it holds

det Dx pT � Tφq � det Dx pT q � 0
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if and only if at least one of the conditions holds:

(i)
°d
i�1 p�1qi αi det �i,j pDx T q � 0 or

(ii) φp1q pxjq � 0.

Proof. We develop the determinant of Dx pT � Tφq with respect to the j-th co-

lumn. Since Tφ depends only on xj this gives

det Dx pT � Tφq � p�1qj
ḑ

i�1

p�1qiBj pT � Tφqi pxq det �i,j pDx T q .

Hence, it holds

det Dx pT � Tφq � det pDx T q � p�1qj
ḑ

i�1

p�1qi det �i,j pDx T q Bj pTφqi pxq

� p�1qjφp1q pxjq
ḑ

i�1

p�1qi αi det �i,j pDx T q .

One deduces Claim (i) and (ii) directly from the right-hand side.

Dolgopyat pointed out that one can use some sort of bootstrapping by looking at

even powers of traces to show that there are at least two non-trivial resonances.

Suppose that there exists only one non-trivial λ P spKT . Then we find

TrK2
T � 1� λ2 � 1� ε2BM pψq2 �Op2ε3BM pψqq �Opε4q
� TrKT 2 � 1� εBM2pψεq �Opε2q,

where ψε :� Mψ � ψ � pM � εψq. Then if ψ0 � 0 would imply the existence of

a further resonance (for smaller ε0). We could extend the reasoning by using

TrK
T 2k � TrK2k

T ¤ 1�
�

TrK2k�1

T � 1
	2

,

to show additional resonances for even smaller ε0.
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We check the expansion and contraction properties of the cones claimed in

Section 2.2:

Lemma B.1. Let C and θ be the constants from (2.2). Let x PM and 0   γ   1
and recall the cones C�

γ pxq and C�
γ pxq defined in (2.8). Let α ¡ 0 and γ1 ¡ 0

such that C2θαγ   γ1 ¤ 1. Then it holds:

(i) pD g�αqtrC�
γ pxq � C�

γ1 pg�α pxqq,

(ii) pD gαqtrC�
γ pxq � C�

γ1 pgα pxqq.

In particular, there exists γ1 ¡ 0 such that for all large enough α ¡ 0 it holds

γ1   γ.

Proof. First we note that a fixed choice γ1   γ is possible for all large α ¡ 0

because θ   0. We show claim (i). Claim (ii) is shown analogously. We let

v� � v� � v0 � v P C�
γ pxq. We estimate (assuming 1

C

��v0
�� ¤ ��pD g�αqtr v0

�� ¤
C
��v0

��)
��pD g�αqtr v�

�� � ��pD g�αqtr v0
�� ¤ C

���v��� � ��v0
��� ¤ Cγ

��v���
¤ C2θαγ

��pD g�αqtr v�
�� .

It follows that pD g�αqtr v P C�
γ1 pg�α pxqq if γ1 ¥ C2θαγ. Since C�

γ1 pg�α pxqq �
C�
γ1�ε pg�α pxqq for all ε ¡ 0 we conclude.

Lemma B.2. Assuming the constants C and θ from (2.2), let γ ¡ 0, x P M
and suppose that C2θαγ   1. Then for all C2θαγ   γ1   1 it holds:

(i) If v P C�
γ pxq then

}pD g�αq
trv}

}v} ¥ C 1�γ
1�γ1 θ

�α.

(ii) If v P pD gαqtrC�
γ pxq then

}pD g�αq
trv}

}v} ¤ C 1�γ
1�γ1 θ

α.

Proof. Let v P T �
xM . We recall

v � v� � v� � v0, vσ P Eσ,x, σ P t�,�, 0u .
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If v P C�
γ pxq then by (2.9), for all λ ¥ 0 it holds

��pD g�αqtr v
�� ¥ ��pD g�αqtr v�

�� � ��pD g�αqtr v�
�� � ��pD g�αqtr v0

��
¥ 1

C
θ�α }v�} � C p}v�} � }v0}q

¥ Cθ�α
�
1� γ1

� ��v��� � Cθ�α
��

1� γ1 � λ
� ��v��� � λ

��v����
¥ Cθ�α

�
p1� γ � λq ��v��� � λ

γ1
���v0

�� � ��v����
 .

The choice λ � 1�γ
1
γ1
�1

yields
��pD g�αqtr v

�� ¥ C 1�γ
1�γ1 θ

�α }v}.
If v P pD gαqtrC�

γ pxq then by (2.9), for all λ ¥ 0 it holds

��pD g�αqtr v
�� ¤ Cθα p1� γq ��v��� � Cθα

�p1� γ � λq ��v��� � λ
��v����

¤ Cθα
�
p1� γ � λq ��v��� � λ

γ1
���v0

�� � ��v����
 .

The choice λ � 1�γ
1
γ1
�1

yields
��pD g�αqtr v

�� ¤ C 1�γ
1�γ1 θ

α }v}.

We let ∇z be the gradient and ∇tr
z the divergence with respect to z P Rd.

Lemma B.3 (Integration by parts (cf. [10, p.10])). Let B be a Banach space

and let f : Rd Ñ B be C1 such that

}f pzq}B Ñ 0 as |z| Ñ 8.

Let G : Rd Ñ R be C2 and assume that |∇zGpzq| ¡ 0 for every z P supp f . Then

it holds »
Rd
eiGpzqfpzqd z � i

»
Rd
eiGpzq∇tr

z

∇zGpzqfpzq
|∇zGpzq|2

d z.

We understand the above transformation as integration by parts. Repeated

application leads to the following iteration pattern.

Lemma B.4. Let fpz, η, ξq and ∇zG pz, η, ξq be complex and real valued functi-

ons, respectively, both Cr1, Cr2, Cr3 in z, η, ξ P Rd for some r1, r2, r3 ¡ 0,

respectively. Let V0pz, η, ξq :� fpz, η, ξq and

Vkpz, η, ξq � ∇tr
z

∇zGpz, η, ξqVk�1pz, η, ξq
|∇zGpz, η, ξq|2

, where k � 1, . . . , tr1u . (B.1)
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If |∇zGpx, η, ξq| ¡ 0 then it holds

Vkpz, η, ξq � |∇zGpz, η, ξq|�k fkpz, η, ξq,

where fkpz, η, ξq is Cr1�k in z, Cr2, Cr3 in η, ξ, respectively and supp f �
supp fk. Moreover, it holds for some constant C ¥ 1

}fk}C0 ¤ C sup
pz,η,ξqPsupp f

max
0¤|γ|¤k

����|∇zGpz, η, ξq| Bγz ∇zGpz, η, ξq|∇zGpz, η, ξq|2
����k }fp�, η, ξq}Ck .

(B.2)

Proof. We prove this by induction. For V0 � V0pz, η, ξq the hypothesis holds. We

assume the hypothesis to hold for Vk � Vkpz, η, ξq up to some 0 ¤ k ¤ tr1u� 1.

We have therefore

Vk�1 � ∇tr
z

∇zG
|∇zG|fk

|∇zG|k�1
�
∇tr
z

�
∇zG
|∇zG|fk

	
|∇zG|k�1

� pk � 1q
∇tr
z G

|∇zG|2
fk∇z |∇zG|

|∇zG|k�1
. (B.3)

Hence we can write Vk�1 � |∇zG|�k�1 fk�1, where fk�1 � fk�1pz, η, ξq is regular

as required by the lower bound on |∇zG|. In (B.3) one sees that supp fk�1 �
supp fk. From (B.3) one finds

fk�1 � |∇zG|k�1∇tr
z

�
∇zG
|∇zG|2

fk

|∇zG|k
�

.

We recursively expand fk into this equation and estimate by the worst term

which yields the upper bound (B.2).

A regularized version of integration by parts is used if the involved maps are only

Hölder continuous. A form of Lemma B.5 below appeared in a work of Baladi-

Tsujii [10, p.12, Equation 3.4]. We let φ : Rd Ñ R¥0 be C8, supported on the

unit ball such that
³
Rd φpxqdx � 1. For every ε ¡ 0 we set φεpxq � 1

εd
φ
�
x
ε

�
.

Lemma B.5 (Regularized integration by parts). Let 0   δ   1. Let f : Rd Ñ C
be a compactly supported Cδ-map and let G : Rd Ñ R be C1�δ and assume that

|∇zG| ¡ 0 for every z P supp f . Set hpzq :� ∇zGpzqfpzq
|∇zGpzq|2

and hε :� h � φε. For

every L ¥ 1 it holds»
Rd
eiLGpzqfpzq d z � i

L

»
Rd
eiLGpzq∇tr

z hεpzq d z (B.4)

�
»
Rd
eiLGpzq∇tr

z Gpzq phpzq � hεpzqq d z.
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In particular, for some constant C ¥ 1, it holds }∇zhε}L8 ¤ C }h}Cδ εδ�1 and

}h� hε}L8 ¤ C }h}Cδ εδ.

Proof. Since G is C1�δ and |∇zG| ¡ 0, the map h is Cδ. We have∇tr
z Gpzqhpzq �

fpzq and we write»
Rd
eiLGpzqfpzq d z �

»
Rd
eiLGpzq

�
∇tr
z Gpzqhεpzq �∇tr

z Gpzq phpzq � hεpzqq
�

d z.

And since hε is compactly supported we have, using integration by parts,»
Rd
eiLGpzq∇tr

z Gpzqhεpzq d z � � 1

iL

»
Rd
eiLGpzq∇tr

z hεpzq d z.

To see the norm estimates, we have

|hpzq � hεpzq| �
����ε�d »

Rd

�
hpzq � hpz � z1q� ν �z1

ε



d z1

����
�

����»
Rd

�
hpzq � hpz � εz1q� ν �z1�d z1

���� ¤ }h}Cδ εδ.

Since supph is compact, for every z P Rd there exists z̄ P Rd such that hpz� z̄q �
0. We estimate, for some constant C ¥ 1, using 1-Lipschitz continuity of the

norm,����»
Rd
hpz1q p∇zνq

�
z � z1

ε



d z1

���� � ����»
Rd

�
hpz � z1q � hpz � z̄q� p∇zνq�z1

ε



d z1

����
¤ C }h}Cδ

»
Rd

��z1 � z̄
��δ ����p∇zνq�z1ε


����d z1 ¤ C }h}Cδ εδ�d.
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perbolic diffeomorphisms,” Ann. Inst. Fourier (Grenoble), vol. 57, pp. 127–

154, 2007.

131

https://arxiv.org/abs/1809.04062


References

[11] ——, “Dynamical determinants and spectrum for hyperbolic diffeomor-

phisms,” in Geometric and Probabilistic Structures in Dynamics, ser. Con-

temp. Math. Vol. 469, Amer. Math. Soc., Providence, RI, 2008, pp. 29–

68.

[12] O. F. Bandtlow and F. Naud, “Lower bounds for the Ruelle spectrum of

analytic expanding circle maps,” Ergodic Theory and Dynamical Systems,

pp. 1–22, 2017.

[13] O. F. Bandtlow, W. Just, and J. Slipantschuk”, “Spectral structure of

transfer operators for expanding circle maps,” Annales de l’Institut Henri
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