Biophysical modeling of bacterial population dynamics and the immune response in the gut - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2018

Biophysical modeling of bacterial population dynamics and the immune response in the gut

Modélisation biophysique des dynamiques d'une population bactérienne et de la réponse immunitaire dans les intestins

Florence Bansept

Résumé

The first part of this thesis focuses on the colonization dynamics of a bacterial population in early infection of the gut. The aim is to infer biologically relevant parameters from indirect data. We discuss the optimal observable to characterize the variability in genetic tags distributions. In a first one-population model, biological arguments and inconsistencies between several experimental observables lead to the study of a second model with two-subpopulations replicating at different rates. As expected, this model allows for broader possibilities in observables combination, even though no clear conclusion can be drawn as to a data set on Salmonella in mice. The second part concerns the mechanisms that make the immune response effective. The main effector of the immune system in the gut, IgA (an antibody), enchains daughter bacteria in clonal clusters upon replication. Our model predicting the ensuing reduction of diversity in the bacterial population contributes to evidence this phenomenon, called “enchained growth”. Inside the host, the interplay of cluster growth and fragmentation results in preferentially trapping faster-growing and potentially noxious bacteria away from the epithelium, which could be a way for the immune system to regulate the microbiota composition. At the scale of the hosts population, in the context of evolution of antibiotic resistance, if bacteria are transmitted via clonal clusters, the probability to transmit a resistant bacteria is reduced in immune populations. Thus we use statistical physics tools to identify some generic mechanisms in biology.
La première partie de cette thèse porte sur les dynamiques de colonisation d'une population bactérienne au début d'une infection intestinale. Le but est de déduire des paramètres biologiquement pertinents de données indirectes. Un modèle simple est étudié, et l'on discute de l'observable optimale pour caractériser la variabilité d'une distribution d'étiquettes génétiques. Des arguments biologiques et des incohérences entre des observables expérimentales avec le premier modèle motivent l'étude d'un second, où deux sous-populations se répliquent à des taux différents, mais on ne peut pas conclure clairement sur le jeu de données utilisé. La seconde partie porte sur les mécanismes de la réponse immunitaire. Le principal effecteur du système immunitaire adaptatif dans l'intestin, l'IgA (un anticorps), enchaîne les bactéries-filles en agrégats clonaux lors de la réplication. Nous avons contribué à prouver ce phénomène par un modèle qui prédit la réduction de la diversité bactérienne qui en découle. Au sein de l'hôte, l'interaction entre la croissance et la fragmentation des agrégats a pour conséquence le piégeage préférentiel des bactéries à croissance rapide, ce qui pourrait permettre au système immunitaire de réguler la composition du microbiote. A l'échelle de la population-hôte, et dans le contexte de l'évolution d'une résistance aux antibiotiques, si les bactéries sont transmises sous forme d'amas clonaux, alors la probabilité de transmettre une bactérie résistante est réduite dans une population immunisée. Ainsi, des outils de physique statistique nous permettent d'identifier des mécanismes génériques en biologie.
Fichier principal
Vignette du fichier
these_BANSEPT_Florence_2018.pdf (14.04 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-02865541 , version 1 (11-06-2020)

Identifiants

  • HAL Id : tel-02865541 , version 1

Citer

Florence Bansept. Biophysical modeling of bacterial population dynamics and the immune response in the gut. Biological Physics [physics.bio-ph]. Sorbonne Université, 2018. English. ⟨NNT : 2018SORUS397⟩. ⟨tel-02865541⟩
196 Consultations
132 Téléchargements

Partager

Gmail Facebook X LinkedIn More