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Tchouang-tseu et Houei-tsu se promenaient sur le pont enjambant
la rivière Hao. Tchouang-tseu dit :

– Regarde les vairons, qui nagent et bondissent tout leur soûl. C’est
ça qui rend les poissons heureux.

Houei-tseu dit :
–Tu n’es pas un poisson, alors comment sais-tu ce qui rend les

poissons heureux ?
Tchouang-tseu dit :
– Tu n’es pas moi, alors comment sais-tu que je ne sais pas ce qui

rend les poissons heureux ?
Houei tseu dit :
– C’est vrai, je ne suis pas toi, je n’ai donc, c’est certain, aucune idée

de ce que tu sais. D’un autre côté, tu n’es pas un poisson, c’est certain,
et cela prouve simplement que tu ne peux pas savoir ce qui rend les
poissons heureux.

Tchouang-tseu dit :
– Revenons à ta question initiale. Tu as dit : "Comment sais-tu ce qui

rend les poissons heureux ?" Donc lorsque tu as posé cette question,
tu savais que je le savais. Je le sais parce que je suis ici, au-desuss de
la rivière Hao.

Tchouang-Tseu, 17





A B S T R A C T

In the last decades, progress in experimental techniques have given rise
to a vast increase in the number of known DNA and protein sequences.
This has prompted the development of various statistical methods in
order to make sense of this massive amount of data. Among those are
pairwise co-evolutionary methods, using ideas coming from statistical
physics to construct a global model for protein sequence variability.
These methods have proven to be very effective at extracting relevant
information from sequences only, such as structural contacts or effects
of mutations. While co-evolutionary models are for the moment used
as predictive tools, their success calls for a better understanding of
they functioning. In this thesis, we propose developments on existing
methods while also asking the question of how and why they work.
We first focus on the ability of the so-called Direct Coupling Analysis
(DCA) to reproduce statistical patterns found in sequences in a pro-
tein family. We then discuss the possibility to include other types of
information such as mutational effects in this method, followed by po-
tential corrections for the phylogenetic biases present in available data.
Finally, considerations about limitations of current co-evolutionary
models are presented, along with suggestions on how to overcome
them.

R É S U M É

Dans les dernières décennies, les progrès des techniques expérimenta-
les ont permis une augmentation considérable du nombre de séquences
d’ADN et de protéines connues. Cela a incité au développement de
méthodes statistiques variées visant à tirer parti de cette quantité
massive de données. Les méthodes dites co-évolutives en font partie,
utilisant des idées de physique statistique pour construire un modèle
global de la variabilité des séquences de protéines. Ces méthodes se
sont montrées très efficaces pour extraire des informations pertinentes
des seules séquences, comme des contacts structurels ou les effets
mutationnels. Alors que les modèles co-évolutifs sont pour l’instant
utilisés comme outils prédictifs, leur succès plaide pour une meil-
leure compréhension de leur fonctionnement. Dans cette thèse, nous
proposons des élaborations sur les méthodes déjà existantes tout en
questionnant leur fonctionnement. Nous étudions premièrement sur
la capacité de l’Analyse en Couplages Directs (DCA) à reproduire
les motifs statistiques rencontrés dans les séquences des familles de
protéines. La possibilité d’inclure d’autres types d’information com-
me des effets mutationnels dans cette méthode est présentée, suivie
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de corrections potentielles des biais phylogénétiques présents dans
les données utilisées. Finalement, des considérations sur les limites
des modèles co-évolutifs actuels sont développées, de même que des
suggestions pour les surmonter.
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1
I N T R O D U C T I O N

1.1 a word about protein sequences

Protein are molecules essential to almost all cellular processes. Sophis-
ticated experimental techniques developed in the last decades have
given rise to a vast increase of amino acid sequence data. Thanks
to next generation sequencing, databases have been subject to an ex-
ponential growth in their number of entries: as of 2018, the UniProt
database [78] now contains more than 100 million protein sequences.
However, most of those proteins have not been experimentally studied,
and little is known about their biological function properties. Only a
small fraction of UniProt sequences are manually annotated, 0.5% in
the SwissProt database, meaning that some of their biological features
has been studied either experimentally or through curator-evaluated
computational analysis.
The sole knowledge of the amino acid sequence does not allow for
a clear understanding of the function of the corresponding protein.
From a molecular point of view, proteins are characterized by the
complex three-dimensional structure resulting from the folding of the
amino acid chain. This structure is a fundamental determinant of the
molecular function. Through the exposure of certain active sites, the
specific and exclusive binding to some molecules, or through reactive
conformational changes, it allows proteins to perform a vast array of
essential cellular functions, ranging from catalytic activity to gene reg-
ulation or signaling. Proteins do not operate alone in those activities,
but combine with others to form a cellular pathway, a self-regulated
chain of chemical reactions aiming at a precise function for the cell.
The knowledge of the interaction network of proteins in the cell is
therefore crucial to grasp cellular activity. From the evolutionary point
of view, it is of great interest to understand the effect of mutations in
DNA and in the proteins. The rapid adaptation of viruses to immune
systems, the alarming rise in antibiotic resistant bacterial strains or
the development of cancerous cells are all due to mutational events in
the involved organisms. Is it possible, from the knowledge of protein
sequences, to deduce the effect of possible mutations on the phenotype
of the corresponding organism?
The extreme increase in "raw" sequence knowledge could prove very
important in answering those questions. However, without proper
theoretical methods, the sequences alone are not of much help. The
development of such methods is usually called computational biology
and has been the subject of intensive research in recent years. In this
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2 introduction

respect, one of the most impressive achievement of computational
methods has been the classification of protein sequences in families of
homologous domains: frequently observed sequence modules which
share a common ancestor. An fundamental property of protein fami-
lies is the conservation of structure and function across its members.
Essentially, a family groups different amino acid sequences which en-
code for biologically similar molecules. This feature calls for statistical
methods to model sequence variability inside the family. A central
focus of the present work is to study the ability of statistical physics
inspired techniques to model variability in protein sequences, and to
extract relevant biological informations from it.

1.2 protein families

1.2.1 Proteins

Proteins are the main constituent of the cell, accounting for most of
its dry mass. Chemically, they are polymers made from a succession
of amino acids linked by peptide bonds. Amino acids consist of core
atoms with carboxyl (COOH) and amino (NH2) groups on its ends,
and of a side chain. The bond between the carboxyl and amino groups
of two amino acid is called the peptide bond, at the basis of the
polypeptide backbone forming the protein. There are 20 different
side chains, giving rise to the 20 amino acids. Their unique chemical
properties – charge, size, hydrophobicity, ... – allow for the complex
structures and functions of proteins.
Each protein is chemically defined by its sequence of amino acids.
Formally, it can be represented as a string of letters, where each
letter stands for one of the 20 amino acids. The protein is usually
characterized by four levels of organization:

• Primary structure: the linear sequence of amino acids.

• Secondary structure: local arrangement of the amino acids, con-
sisting of the α helices and the β sheets along with less structured
loops.

• Tertiary structure: three dimensional shape of an entire chain,
where the elements of the secondary structure fold in a compact
structure.

• Quaternary structure: Combination of different polypeptide
chains, forming complexes consisting of multiple sub-units.

In parallel to those four levels, an important element of organization
is the protein domain. The domain is a polypeptide chain, usually of
the order of 100 amino acids, that can independently fold into a stable
structure. Domains can be seen as modular units, the combination



1.2 protein families 3

Figure 1.1: The polypeptide chain forming the protein consists of a backbone
linking amino and carboxyl groups of amino acids, and of a
variety of side chains giving the protein its chemical properties
(Source [2]).

of which builds larger proteins. They can usually be associated to
particular functions, such as binding to a specific molecule or to a
specific DNA fragment. Proteins usually consists of one to dozens of
domains, resulting in a broad distribution of their sizes.

1.2.2 Protein families

Known sequences can be organized into families. In the course of
evolution, protein or domains having similar biological functions but
present in different organisms have accumulated mutations, and now
present a high variety in amino acid sequences. However, they usually
share very similar three dimensional structures and biological activity
[2]. These proteins or domains are said to share a common ancestor,
and constitute the members of a family. The Pfam database lists 16712

domain families (as of version 31.0 released in March 2017 [63]), built
from 26.7 million sequences in the Uniprot reference proteome [78].
Homologous sequences are similar in some aspects, showing portions
of very conserved residues. However, accumulated mutations during
millions of years of evolution lead to a high diversity, with an average
sequence similarity as low as 30% between members of the family.
Moreover, because of deletions and insertions, sequences have varied
in length and are not directly comparable. For this reason, a Multiple
Sequence Alignment (MSA) is built to represent the family: sequences
are organized in an array where each line represents one protein
domain, and residues conserved across the family are placed in the
same columns. Mismatches in length of sequences due to deletions or
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Figure 1.2: Different physico-chemical properties of the 20 amino acids.
(Source [51]).
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Figure 1.3: Part of the MSA of the PF00014 Pfam family (Trypsin inhibitor),
with its corresponding HMM logo [72]. The red-boxed column
shows high conservation of a cysteine, while the blue-boxed
column seems to be very variable. This is well reflected in the
logo, looking at the second "large" C. In this example, columns
corresponding to insertions have been removed. PF00014 contains
M = 11819 sequences of length L = 53.

insertions are compensated by the addition of gaps, represented by
the symbol "-". An example of such an alignment is shown in figure 1.3.

Formally, an alignment can be represented as an array {am
i }, where

i ∈ {1 . . . L} is an index running over the sequences’ length, and
m ∈ {1 . . . M} is the sequence or line number. Each am

i is a number
between 1 and q = 21, standing for one of the 20 amino acids or for the
gap symbol. Typical alignments contain in the range of M = 102− 105

sequences, with very variable length ranging from 20 residues to
several hundreds. Depending on the family, the structures of many
or no members are known. For the case of PF00014, 259 structures
are present in the Protein DataBank (PDB). However, those are highly
redundant, often characterizing the exact same domain. Two of those
structures are visible in figure [REF - MAKE FIGURE].
Due to the conserved function and structure of the members of the
family, mutations do not happen at random: some positions in the
sequences allow for some mutations without disrupting the function,
while others cannot mutate and are observed to be completely con-
served. As a result, MSAs present strong statistical patterns visible in
the example of figure 1.3. These patterns are essential in many aspects:
they enable us to find new family members and are an indication
of the evolutionary constraints acting on the family. The HMM-logo
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represented in figure 1.3 is a simple way to visualize conservation of
columns in the MSA [72]. However, quantifying those requires adapted
theoretical tools as we will see in the next section.

1.2.3 Profile hidden Markov models

Protein families are intricately related to one of the most powerful
tools in bioinformatics, the profile Hidden Markov Models (HMM).
Profile HMM’s (abbreviated as HMM in the following) are a statistical
representation of an MSA used to find new members of a family, or
to find a family corresponding to a given sequence [25, 26]. In fact,
the families in the Pfam database are constructed using the HMMer
software [34, 35].
The idea behind HMM’s is to model statistical variability in an align-
ment based on the frequency at which amino acids and gaps are found
in each of its columns. Formally, it consists of a Markov chain based
on a directed graph (see figure 1.4 for a representation). This graph
contains three types of nodes or states:

• Match states: they model the frequency at which amino acids
are found in a non-insert column of an alignment.

• Insertion states: they account for potential insertions of amino
acids in some sequences of the family, resulting in gaps for the
others in the MSA.

• Deletion states: they account for the deletion of amino acids in
some proteins, generating a gap in the corresponding aligned
sequence.

To each match and insertion state corresponds an amino acid distri-
bution. In the case of insertion states, the background frequency of
each amino acid is used. In the case of match states, the distribution
of residues in the corresponding column of the MSA is used. When
the Markov chain reaches one of these states, it emits a residue in
accordance with the corresponding distribution. When it reaches a
deletion state, a gap symbol is emitted.
Transition probabilities exist between two "layers" of the graph only
in one direction, from left to right. Therefore, the trajectory of the
Markov chain in this graph (starting at the "Begin" state and ending at
the "End") results in one aligned sequence.
Parameters of the HMM, that is emission probabilities for match states
and transition probabilities between different states, must be learned
on an initial alignment, called the seed. This learning process mainly
depends on the conservation profile of the seed alignment. The emis-
sion distribution of each state should match frequencies at which
amino acids are found in different columns of the seed alignment.
Once the HMM is trained, it can be used to find new members of the
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Figure 1.4: Structure of a Hidden Markov Models (HMM). Squares represent
match states. A distinct emission probability is associated to each
of them, corresponding to the conservation pattern in a column
of the MSA. Diamonds represent insert states, with potential tran-
sition to the same insert state represented. Circles are deletion
states. Source [50].

seed family: sequences that would be obtained with a high probability
– compared to a null model – by the Markov chain. The found sequence
is aligned to the seed by computing the most likely corresponding
path from "Begin" to "End", using the Viterbi algorithm [25]
In the case of the Pfam families, manually curated alignment of about
100 sequences are used as seeds, and profile-HMM are trained. They
are then used to scan sequence databases, such as Uniprot, to find
homologous sequences. In this way, large alignments of thousands of
homologous sequences can be constructed.

1.2.4 Co-evolution in protein families

By construction, profile-HMM’s are based mostly on the profile of the
seed alignment, that is on the frequency at which amino acids are
found in each of its columns. The only allowed "interaction" between
columns is due to potentially different transition probabilities from
match to deletion states, from deletion to deletion states and from
match to match states. According to the HMM, the probability of find-
ing a gap or an amino acid at a given position of a sequence only
depends on the state of the previous position. This means that this
model is able to represent short range "gap-gap" or "gap-amino acid"
correlations. Nonetheless, the distribution of amino acids at a position
is completely independent from that of other positions.
However, correlation in the usage of amino acids at at different
columns of an MSA is observed for all known families. This phe-
nomenon, called co-evolution, is an indicator of epistasis: mutations
at different positions in a sequence can not always be considered
to have independent or additive effects. On the contrary, the effect
of a mutation may depend on the rest of the sequence, thus having
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different consequences for different proteins.
One of the possible explanation for epistasis is the presence of struc-
tural constraints due to the three-dimensional fold of the protein. If
two amino acids are in contact in this fold, a mutation at one of the
corresponding positions in the sequence may have to be compensated
by a mutation at the other position. In this scenario, two columns of
the MSA will show a correlation in their usage of amino acids. This
idea has been directly confirmed recently in [58, 67], where it is shown
that pairs of sequence positions experiencing strong epistatic effects
are close by in the protein fold, and that the structure may potentially
be reconstructed from them.
The idea of using co-evolutionary signal to predict structural contacts
in a protein has been present for a long time [24, 37, 59]. However, it
faces one important limitation. Indeed, apparent correlation between
two columns of an MSA can be due to a direct interaction of the two
corresponding residues, such as a contact, but also to indirect effects
[12]. Imagine residues A and B distant in the structure, but both in
contact with C: this may lead to an indirect co-evolution signal be-
tween A and B. For this reason, methods based solely on the direct
measurement of the correlation between columns of the MSA fail to
accurately predict structural contacts.
An important task is thus to disentangle direct and indirect sources of
correlations. This cannot be achieved by looking at pairs of columns
independently, but calls for a global sequence model as will be seen in
chapter 2.

Although HMM’s can be considered as global sequence models,
as they assign a probability to any given sequence of amino acids,
they are fundamentally unable to take correlations into account. Even
though the profile-HMM identifies members of a family among known
natural protein, it cannot be considered as a good statistical model for
sequences. Indeed, any artificial sequence that respects the column-
wise conservation profile of the family will be considered as a potential
member by the HMM, even though it does not respect the correlation
patterns between columns and is therefore very unlikely to represent a
functional protein. This will be shown in more details in section 2.5.2.
The current state of biology and bioinformatics thus calls for more
sophisticated sequence models. The Direct Coupling Analysis (DCA),
introduced in 2009 [82] and based on statistical physics ideas, is such
a model. Its description is the subject of the following chapter.



2
T H E P O T T S M O D E L F O R P R O T E I N S E Q U E N C E S

2.1 motivation : global statistical models for protein

sequences

If members of a protein family share a common three-dimensional
structure and biological function, it is natural to assume that they
also share similar evolutionary pressure. The constraints that natural
selection imposes on their sequences should be similar. If this is the
case, quantities such as the probability for a given sequence to be a
functional member of the family or the effect of mutations on members
of the family could be described by one single model, representing
the evolutionary constraints acting on this family.
The multiple sequence alignment represents essential information for
identifying those constraints. Indeed, statistical patterns present in the
MSA are a direct indication that mutations are not randomly selected.
Almost all families display very conserved columns in their MSA, indi-
cating a residue that cannot be mutated without a major detrimental
effect for functionality. Pairs of columns can also display correlation
patterns, meaning that pairs of amino-acids appear with a frequency
different of what would be expected based on the conservation in
their respective columns. This could for instance be an indicator of
compensatory mutations or residue-level co-evolution.
The aim of the DCA is to construct a probabilistic model using such sta-
tistical features of the MSA in order to have a quantitative description
of evolutionary pressure on the sequences. DCA assigns probability
score P(A|J, h) to every sequence of amino-acids or gaps A of the
length of the considered MSA. The specific functional form of P is
given by a class of probabilistic distributions named Potts models
(see Eq. 2.1), and J and h are sets of parameters defining the model,
referred to as couplings and fields.
Models of this form, originally coming from statistical physics, have
been successfully used in different biological contexts, ranging from
the description of patterns of neuron firing [31, 65, 70], the prediction
of contacts in protein structures [57, 62, 82], or the movement of flocks
of birds [14, 15].
In the case of protein sequences, one of the main characteristic of
DCA is that it relies on a global model. Indeed, the score described in
Eq. 2.1 depends jointly on the full sequence, and cannot be factorized
over columns of the MSA. This is a crucial difference with modeling
techniques such as the HMM. This choice is biologically well motivated.
Contacts between residues in the protein fold impose constraints on

9



10 the potts model for protein sequences

the corresponding pair of columns in the MSA, making mutations at
those positions possibly correlated. Moreover, there is ample evidence
of epistatis in proteins, meaning that the effect of a mutation depends
not only on the local change in amino-acid, but also on the full back-
ground sequence [11, 42, 58, 64]. As a consequence, global models
seem to be necessary to correctly represent relevant statistical features
found in MSAs.
The following sections will address the choice of Potts models as a
functional form for DCA models, the inference of the essential parame-
ters J and h, and results obtained on proteins using those methods.

2.2 maximum-entropy modeling

2.2.1 The Potts model

In this work, we will call Potts models probability distributions that
have the functional form given by Eq. 2.1. They are an extension of the
Ising model, extensively used in statistical physics, to spins or discrete
variables that take q states. In the Ising case we have q = 2, whereas in
the case of an MSA we have q = 21 to account for the 20 amino-acids
found in proteins and the gap symbol. Every configuration of the L
q-state variables A = (a1 . . . aL) is assigned a probability

P(a1 . . . aL|J, h) =
1

Z(J, h)
exp

(
−H(A)

)
, (2.1)

where the so-called Hamiltonian H is defined by

H(A) = −
L

∑
i=1

hi(ai)− ∑
1≤i<j≤L

Jij(ai, aj). (2.2)

Field parameters h are local, acting on one variable at a time. On the
other hand, couplings J reflect the symmetric interaction between two
distinct variables, with Jij(a, b) = Jji(b, a) and Jii(a, b) = 0 ∀i, j, a, b.
The partition function Z is a normalization constant, defined by

Z = ∑
{A}

exp
(
−H(A)

)
, (2.3)

where the sum runs over all possible configurations of variables in A.
Another convenient representation of the Potts model consists of
writing the variables ai in the form of a q-dimensional vector σi indexed
by α:

σi,α =

 1 if ai = α

0 otherwise.
(2.4)

The full configuration A is then written as an L× q vector of 0 or 1’s
σ. This allows rewriting Eq. 2.2 in a matrix form

H(A) = −hσ− 1
2

σJσ. (2.5)
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In this formulation, h = {hi(a)}, i = 1 . . . L, a = 1 . . . q is an L × q
vector, where as J is an Lq× Lq matrix built of L(L− 1)/2 blocks Jij,
each of size q× q.

Two reasons are commonly given in the literature to justify the
use of Potts-like models for protein sequences. The first is that the
correlation observed between two columns in an MSA may not be a
good indicator of a direct functional or structural interaction between
the two corresponding residues. In the case of structure for instance,
correlation could be caused either by a contact between two residues,
making mutations at the two positions inter-dependent, but could also
arise between distant residues because of indirect interactions.
The idealized scenario would be the one where residues A and B
are distant in the structure, but close to a third residue C. Possible
correlation between A and B is then the result of indirect interactions.
The structure of the Potts model is such that the full probability dis-
tribution P, and thus the corresponding correlations, is described by
means of the direct couplings J. In the case of protein sequences, the
hope is that those couplings reflect interactions which are biologi-
cally interpretable, such as structural proximity of the corresponding
residues.
The other motivation for using such a class of models is given by the
Maximum-Entropy Principle (MaxEnt).

2.2.2 The maximum-entropy principle

The maximum-entropy principle, first introduced by Jaynes [46, 47] can
be seen as a principled way to obtain functional forms of probability
distributions in inference problems. Given some data X consisting of
M configurations of L spins, one identifies a set of relevant observables
Op(X) ≡ 〈Op(x)〉X of the data, where p stands as a label for different
observables. MaxEnt states that in order to describe X, one has to find
the distribution P that reproduces the chosen observables of the data,
but is as general as possible in other regards. Quantitatively, P should
have the maximum possible Shanon entropy

S = −∑
x

P(x) log P(x), (2.6)

while reproducing the means of the observables over the data.

〈Op(x)〉P = 〈Op(x)〉X . (2.7)

This optimization problem in P can be solved using Lagrange multi-
pliers, yielding the following parametrization

P(x|{λp}) = 1
Z({λp}) exp

(
∑

p
λpOp(x)

)
, (2.8)
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where {λp} is the set of Lagrange multipliers corresponding to each
constraint.
In the case of protein sequences, the chosen observables are the single
and two-site frequencies in the MSA:

fi(a) =
1
M

M

∑
m=1

σm
ia

fij(a, b) =
1
M

M

∑
m=1

σm
ia σm

jb ,

(2.9)

where the notation defined in Eq. (2.4) is used. Intuitively, fi(a) (resp.
fij(a, b)) is the frequency at which amino-acid a (resp. a and b) is found
at column i (resp. i and j) of the MSA.
The constraints on P can then be written

∑
{A}

P(A)σi,a ≡ Pi(a) = fi(a),

∑
{A}

P(A)σi,aσj,b ≡ Pij(a, b) = fij(a, b).
(2.10)

Combining constraints in Eq. (2.10) and Eq. (2.8), it is immediate to see
that one recovers the Hamiltonian of Eq. (2.2), with couplings Jij(a, b)
and fields hi(a) acting as Lagrange multipliers.

At this point, two important remarks should be made. The first is
that in the MaxEnt setting, the choice of the Potts distribution to model
protein sequence data is a consequence of the chosen observables of
the data. One does not use pairwise couplings because they should
represent a direct interaction in structural contacts, but because they
enforce the constraint that P reproduces the pairwise frequencies of
amino-acids found in the MSA.
The choice of fi and fij as constraints is in a sense arbitrary. It is
motivated by the simplicity of the observable, its natural interpre-
tation in terms of co-evolution, and also by the typical size of MSAs

[82]: the number of available sequences usually does not allow one
to accurately compute higher order moments of the data, such as the
three-body distribution. This does not imply that higher order terms
in P are a priori useless, but rather that one choses to ignore them for
practical reasons in the standard DCA approach.
The case of profile models also enters in the MaxEnt setting. If one
chooses to ignore the pairwise distribution and to consider only the
single site frequencies fi, a model without coupling is obtained, very
similar to an HMM. As section 1.2 showed, these models are at the ba-
sis of the construction of MSAs. Yet, they do not model some essential
statistical features of the sequences as they do not reproduce correla-
tions between usage of amino-acids. This highlights the fact that the
right choice of observables is key in designing a good statistical model
of the MSA.



2.3 inference methods for the inverse potts problem 13

The second is that by construction, the only information about the data
present in P is the average value of observables. In a sense, the MaxEnt

model never "sees" the full data X, but only the quantities 〈Op(x)〉X .
This does not mean that the inference procedure – finding numerical
values for the Lagrange multipliers so that constraints are satisfied –
should discard all information about the data, as will be explained for
the pseudo-likelihood based inference method. However, two datasets
X and Y that give equal values of the observables, Op(X) = Op(Y),
will be exactly as likely according to the MaxEnt model, even if they
differ for other statistical measures.

As a last note, the MaxEnt principle and its applications to protein
sequences are closely related to the inverse Ising problem, and the
inverse statistical physics in general. Here, opposed to the classical
statistical physics, knowledge about "microscopic" configurations of
the system of interest is available, and what misses is a model to
describe them. Thus, the aim is to derive a quantitative model using
the observables as a starting point.

2.3 inference methods for the inverse potts problem

The MaxEnt principle gives a functional form for the distribution P.
However, values of the Lagrange multipliers need to be computed so
that the constraints are actually satisfied: this is the inference problem.
Formally, given data – an MSA A = ({Am}, m ∈ {1 . . . M}) with Am =(
{am

i }, i ∈ {1 . . . L}
)

– the correct values of parameters J and h are
the ones that satisfy constraints in Eq. (2.10) for this data. This is
equivalent to maximizing the log-likelihood of the data under P:

L(A|J, h) =
1
M

M

∑
m=1

log P(Am)

= ∑
1≤i<j≤L

q

∑
a,b=1

Jij(a, b) fij(a, b) +
L

∑
i=1

L

∑
a=1

hi(a) fi(a)− log Z(J, h).

(2.11)

An important assumption of Eq. (2.11) is that different sequences of
the MSA are independent and identically distributed (i.i.d.). We will see
in part 5 that because of phylogenetic relations between proteins, this
is only an approximation for actual sequence alignments.
As an alternate formulation, it is straightforward to show that the
log-likelihood of the data is, up to a sign and a constant, the Kullback-
Leibler distance (KL-distance) between P and the empirical probability
distribution defined by the data:

Pobs(A) =
1
M

M

∑
m=1

δA,Am , (2.12)
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where δ is the Kronecker symbol.
The log-likelihood is a concave function in the parameters, as can eas-
ily be checked from computing its Hessian matrix. As a consequence,
the global maximum is attainable by simple optimization methods
such as gradient ascent. However, the exact numerical computation of
the likelihood function or of its gradient is unfeasible: the number of
terms in the sum defining the partition function (Eq. (2.3)) is Lq, with
q = 21 and L of the order of 100 for typical protein domains.
Many approximation methods are available to tackle this problem, and
three of them will be described below. The Mean-Field (MF) approxi-
mation is the first "efficient" method that has been proposed for this
problem in the context of protein sequences, and though very limited,
it can give an estimate of the relative strength of coupling matrices Jij
[57]. The Pseudo-Likelihood Maximization (PLM) method is currently
the state of the art unsupervised method for predicting contacts in
protein structures using DCA [27]. Finally, the Boltzmann Machine
Learning (BML) is a computationally expensive method relying on
Montecarlo sampling, able to achieve arbitrarily accurate solutions to
the inference problem.

2.3.1 Mean-field approximation

First introduced in [57] for protein sequences, he MF approximation
relies on a high-temperature expansion of the Legendre transform of
the free energy of Hamiltonian H [77]:

G = − log Z +
L

∑
i=1

q−1

∑
a=1

hi(a)Pi(a). (2.13)

The sum over states a of variable i runs only up to q− 1 because of
the lattice-gas gauge choice, see section 2.4.1. In practice, one places
a factor β in front of the couplings in the Hamiltonian, Eq. (2.2).
The functional in Eq. (2.13) can be computed through a first order
expansion around β = 0. This is the so called Plefka expansion [38],
assuming high temperature or low couplings.
The linear response equations are then used to relate couplings and
fields to one and two point statistics:

hi(a) =
∂G

∂Pi(a)
,

(C−1)ij(a, b) =
∂hi(a)
∂Pj(b)

,
(2.14)

where we have introduced the connected correlation matrix C:

Cij(a, b) = Pij(a, b)− Pi(a)Pj(b). (2.15)
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The resulting MF equations reads

Pi(a) =
1
zi

exp

(
hi(a) + ∑

j 6=o

q−1

∑
b=1

Jij(a, b)Pj(b)

)
(2.16)

and

(C−1)ij(a, b) =

 −Jij(a, b) for i 6= j
δa,b

Pi(a) +
1

Pi(q)
for i = j

(2.17)

To solve the inference problem, one just has to replace Pi(a) and
Pij(a, b) by their empirical counterparts fi(a) and fij(a, b) (see Eq. (2.10)).
By inverting the empirical correlation matrix C, it is possible to obtain
values for the couplings J in a single step. In the same way, the fields
are recovered by inverting equation (2.16).
The careful reader will notice that by definition, the connected correla-
tions matrix C has zero modes:

∀i, j, a,
q

∑
b=1

Cij(a, b) =
q

∑
b=1

Pij(a, b)− Pi(a)Pj(b) = 0. (2.18)

Therefore, it is not invertible. This is a result of the over-parametrization
of the model, and is fixed by operating in the lattice-gas gauge (see
section 2.4.1).

The MF approximation was the first efficient method for inferring
Potts models in the context of protein sequences. Its main advantage
is that it is computationally quite inexpensive, since the only needed
operation is to inverse a matrix once. Resulting parameters usually
allow for accurate prediction of contacts in the protein structure (see
[57] for this biological application, as well as a rigorous derivation of
equations (2.16) and (2.17)). Similar schemes such as the gaussian DCA

[5] or the Pseudo-Sparse Inverse Covariance (PSICOV) [48] have been
used with success.
However, it is important to note that MF suffers from severe drawbacks.
First, the i = j case of Eq. (2.17) is inconsistent for the empirical statis-
tics fi and fij, showing that the approximation remains very crude.
Seconds, even though inferred parameters lead to good biological
predictions in some cases, they cannot claim to be a statistical descrip-
tion of the MSA. Values of the MF couplings are usually very high,
leading to glassy behavior and a distribution P that is hard to sample
by Markov Chain MonteCarlo (MCMC) simulations. This is consistent
with theoretical work showing that this approximation typically over-
estimates couplings [7].
As a result, for protein MSAs, a mean-field inferred model does not
satisfy the constraint in Eq. (2.10), and is only an approximate solution
to the MaxEnt problem.
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2.3.2 Pseudo-likelihood maximization

The PLM method aims at approximating the likelihood in Eq. (2.11) by
a tractable expression [4]. We introduce the quantity Pr(ar|a\r)

Pr(ar|a\r) =
exp

(
hr(ar) + ∑j 6=r Jrj(ar, aj)

)
∑

q
b=1 exp

(
hr(b) + ∑j 6=r Jrj(b, aj)

) , (2.19)

which is the probability to find site r in state ar given that the rest of
the configuration is a\r = (a1 . . . ar−1 ar+1 . . . aL), where a is the mth
sequence in the MSA.
The pseudo-likelihood is then written as

pL(A|J, h) =
L

∑
r=1
Lr

=
L

∑
r=1

(
1
M

M

∑
m=1

log Pm
r (am

r |am
\r)

)
.

(2.20)

Essentially, the approximation is to factorize P in L single site distribu-
tions depending on ar, with the rest of the configuration being fixed
to its data value am

\r.
From there, two strategies can be designed. The first is to directly
maximize the pseudo-likelihood 2.20, for instance through gradient
ascent. This is the so-called symmetric PLM [28].
The second is to notice that functions Lr each depend on a different
set of parameters hr and Jr = {Jri}i 6=r, forgetting for a moment that
couplings have to be symmetric, i.e. Jij = Jji. In the asymmetric PLM

[27], each Lr is maximized independently, and couplings are combined
by a simple average

Jij =
1
2

(
Ji
ij + J j

ji

)
, (2.21)

where the superscripts i (resp. j) mean that the coupling estimate
comes from maximizing Li (resp. Lj). The asymmetric version of PLM

has been shown to be faster and more accurate than the symetric one
[27], and will be the one used throughout this work.

PLM is the most commonly used co-evolutionary tool for predicting
contacts in protein structures from sequence data. It has been shown
to give high quality results over a large number of protein families [27].
Statistically, the pseudo-likelihood is a consistent estimator: if sequences
in the MSA were samples drawn from a Potts distribution, and if the
number of available sequences M was infinite, the estimates of PLM

would be exact. This contrasts with MF, which will show inconsisten-
cies even if this ideal case if the couplings of the "underlying" Potts
model are not small enough.
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The distribution P inferred by PLM is typically closer to fulfilling
constraints in Eq. (2.10) than MF – see chapter 3 for quantitative infor-
mation. However, it fundamentally remains an approximation, and
large deviation of the two point statistics from the inferred model Pij
from the data fij can be observed.

Last, it is important to notice that in order to compute Lr, knowl-
edge of the full sequences A is needed. This contrasts with what was
said about the MaxEnt principle in section 2.2.2: the only information
the model should have about the data is the average value of the
chosen observables, in this case the one and two point statistics. The
MaxEnt principle has been subject to critics for this reason [3].
One way to solve what appears as a conflict is to consider the MaxEnt

principle and the inference method as fulfilling two different goals.
The MaxEnt principle can be seen as a way to parametrize the dis-
tribution P that one wants to fit to the data, whereas an inference
method such as PLM is a necessary approximation needed to quantify
parameters of P.
Moreover, the result of the inference is still in agreement with MaxEnt:
the only information needed to know if distribution P was correctly
inferred is the pairwise statistics of the model, Pij, and of the data, fij.
In this sense, the pairwise statistics fij is still sufficient to determine
the correct model. If data was indeed sampled from a Potts distri-
bution, PLM guarantees that those two quantities will match. In this
case, the knowledge of the full sequence needed for PLM is in a sense
irrelevant: if pairwise statistics are sufficient to define the Potts distri-
bution, knowledge of full sequences does not add any information to
the resulting model.

2.3.3 Boltzmann machine learning

As stated at the beginning of section 2.3, the likelihood is a concave
function of parameters J and h. This means that a simple optimization
scheme such as gradient ascent is guaranteed to find the maximum
value of L [1]. The gradient of the likelihood with respect to the
parameters is

∂L
∂hi(a)

= fi(a)− Pi(a),

∂L
∂Jij(a, b)

= fij(a, b)− Pij(a, b).
(2.22)

Unfortunately, the exact computation of Pi(a) and Pij(a, b) is intractable.
The idea of BML is to draw samples from the current distribution
P through MCMC sampling, and use these samples to estimate the
gradient. Parameters of P are then updated in the direction of the
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gradient [41, 76]. This process is iterated until satisfactory convergence
is reached.
BML has one main advantage: it can be arbitrarily accurate. The only
limitation to the accuracy of the estimation of the gradient is the size
of the MCMC samples. With enough computational power, one can
achieve estimations of J and h as accurate as desired. Another benefit
is that given the expression of the gradient in Eq. (2.22), it is clear that
the only information BML uses is the pairwise statistics of the data fij.
The major drawback of this method is the computational cost. Each
estimation of the gradient requires a sample from P, ideally large
enough to avoid fluctuations. Even though the likelihood is a concave
function, it does not mean that the number of necessary gradient
ascent steps is small. For typical datasets, there seems to exist "flat"
directions in parameter space, making the learning process very long
[32]. Furthermore, it is impractical to consider computing the Hes-
sian matrix to speed up convergence, as its size is of the order of
L2q2 × L2q2.

All these problems will be addressed in section 3, where we refer
to an efficient implementation of the Boltzmann machine. However,
even in this case, the inference process is too slow to compete with
PLM or MF methods, and impractical for most biological applications.
The main advantage of the BML is that the resulting distribution
P satisfies constraints (2.10) with very high accuracy, making it a
plausible statistical model of the MSA.

2.4 technical points

2.4.1 Gauge invariance

The constraints in equation (2.10) are not all independent. Indeed, the
single site frequencies fi(a) sum up to 1, and the pairwise frequencies
fij(a, b) have the fi(a)’s as marginals. As a result, the number of truly
independent observables is N · (q− 1) for the single site frequencies
and N(N − 1)/2 · (q− 1)2 for the pairwise. This means that the Potts
model is over-parametrized: with couplings Jij(a, b) and fields hi(a),
there are more free parameters than constraints.
This results in what is called the gauge invariance: it is possible to
modify the parameters of the Potts model without changing the proba-
bility distribution defined in Eq. (2.1). For any arbitrary function Kij(a)
with 1 ≤ i, j ≤ N and a ∈ {1 . . . q} and for arbitrary constants ci and
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cij, 1 ≤ i, j ≤ N, the following transformation does not change the
probabilities:

Jij(a, b)→ Jij(a, b) + Kij(a) + Kji(b) + cij,

hi(a)→ hi(a)−
N

∑
j=1 (j 6=i)

Kij(a) + ci.
(2.23)

It can be easily verified that this transformation leads to adding a
constant to the energies of all configurations A = (a1 . . . aL). Since
this constant will be compensated for in the partition function Z (see
Eq (2.3)), probabilities defined by the model are unchanged.
In most applications of Direct Coupling Analysis (dca), particularly
contact prediction, it is usual to work in the so-called zero-sum gauge,
also known as Ising gauge. This gauge is obtained by the transforma-
tion

Jij(a, b)→ Jij(a, b)− Jij(a, ·)− Jji(·, b) + Jij(·, ·),

hi(a)→ hi(a)− hi(·) +
N

∑
j=1 (j 6=i)

(
Jij(a, ·)− Jij(·, ·)

)
,

(2.24)

where the notation g(·) stands for the average q−1 ∑
q
a=1 g(a). After this

transformation, parameters of the Potts model are such that

q

∑
b=1

Jij(a, b) =
q

∑
a=1

Jij(a, b) =
q

∑
a=1

hi(a) = 0. (2.25)

Importantly, this gauge minimizes the Frobenius norm of couplings
||Jij||, and is considered optimal for contact prediction for this reason
[28, 82] (see sections 2.4.3 and 2.5.1).
In the case of the MF implementation of DCA, the so-called lattice-gas
gauge is used, in which one state (usually q) is chosen as a reference
for the energies, so that

∀a, b, Jij(a, q) = Jij(q, b) = hi(q) = 0. (2.26)

This allows for the inversion of the correlation matrix described in 2.17

by removing trivially zero modes: lines and columns corresponding to
the state q are removed from the correlation matrix, making it full-rank
in case of sufficient data.

2.4.2 Regularization

Although large, the number of sequences in MSAs is far from being
infinite. Therefore, the use of a regularization in the DCA inference is
essential to avoid overfitting. Indeed, the number of parameters of the
Potts distribution for sequences typically of length L ∼ 100 is of the
order of 106, making overfitting a risk. In order to reliably measure
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the observables fij that DCA aims to fit, the number of sequences in an
MSA needs to be large with respect to the possible number of states of
columns i and j. That is, we need the number of sequences M to be
large with respect to q2 ∼ 400. For most protein families DCA is used
on, values of M in the range of 100–1000 barely satisfy this condition.
A simple example illustrates the need for regularization: in the typical
setting, DCA will be used on an MSA of about M = 1000 sequences.
Suppose amino acids A and B appear 10 times in columns i and j,
leading to measured frequencies fi(A) = 10−2 and f j(B) = 10−2. In
the absence of correlation, the expected value of the joint appearance
of A and B is fij = 10−4. Therefore, if the joint presence of A and B
is observed in one sequence, the frequency fij = 1/M = 10−3 will
exceed by a factor 10 the expected value, leading to a high measured
correlation and the need for a strong positive coupling. On the other
hand, if A and B are never observed together, an infinitely negative
coupling is needed for the Potts model to render this. Both of this
large coupling values are not justified by the available data, and the
use of a regularization term suppresses this problem.
In inference methods relying on the maximization of the likelihood,
such as PLM or BML, `2 regularization is usually used [28, 32]. In-
stead of directly maximizing the likelihood in Eq. (2.11), one adds a
penalty term proportional to the parameters, defining the regularized
likelihood:

L(Dnat|J, h) = log P(Dnat|J, h)− λJ ||J||2 − λJ ||h||2, (2.27)

with parameters λJ and λh defining the strength of regularization. `2

regularization can also be interpreted as a gaussian prior on the pa-
rameters of the Potts model [7]. In this case, the λ parameters should
scale as 1/M, vanishing for infinite number of sequences. However,
in typical implementations of DCA, a fixed value of λ = 10−2 or 10−3

is chosen. The `2 term usually makes the optimization of Eq. (2.27)
easier and faster. However, as will be seen in section 3.3, it biases the
Potts probability distribution.
In the MF technique, another common regularization scheme is the
use of pseudocounts [7, 57]. The empirical correlation matrix obtained
from the MSA is typically not invertible due to finite sampling. Pseu-
docounts are used to "add" random observations to the data in the
following way:

fi(a) =
1

λ + M

(
M

∑
m=1

σm
i,a +

λ

q

)
,

fij(a, b) =
1

λ + M

(
M

∑
m=1

σi,aσm
j,b +

λ

q2

)
.

(2.28)

It was observed in [57] that a very large pseudocount λ ' M is needed
for optimal contact predictions using this method.
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2.4.3 Phylogenetic biases: sequence re-weighting and APC correction

Sequences found in an MSA are not i.i.d. samples from a background
distribution. They are the result of an evolutionary process, and are re-
lated to each other by phylogenetic relations. Importantly, this means
that they cannot be considered as independent observations, as se-
quences that share a recent common ancestor are likely to share a
large part of their amino acid composition. This results in statistical
biases described in more details in chapter 5.
To remedy this, a simple re-weighting scheme has been introduced in
[82]. Each sequence Am in the MSA is attributed a weight wm defined as
the inverse of the number of sequences that share more than δ = 80%
identity with Am. Formally,

wm =

(
1 + ∑

n 6=m
Θ (dm,n < δ)

)−1

, (2.29)

with dm,n standing for the Hamming distance between sequences Am

and An, and Θ being the Heaviside function. As a consequence, an
isolated sequence in terms of Hamming distance will have a weight of
1, whereas a sequence with many neighbours will be down-weighted.
Frequencies are then computed accordingly:

fi(a) =
1

Me f f

M

∑
m=1

wmσm
ia

fij(a, b) =
1

Me f f

M

∑
m=1

wmσm
ia σm

jb ,

(2.30)

with Me f f = ∑M
m=1 wm. The value of the threshold δ = 0.8 is arbitrary,

and the most commonly used in DCA inferences. Contact prediction
results are robust with respect to variations around this value, and
consistently better than without any re-weighting.

Another proposed method to take phylogenetic biases into account
is the so-called Average Product Correction (APC). First introduced
in [24], APC is a correction to the the interaction score between two
columns of the MSA. In the case of DCA the interaction score used
to predict contacts is the Frobenius norm of the coupling matrix
Fij = ||Jij||2 = ∑

q
a,b=1 Jij(a, b)2 (see section 2.5.1). In this case, the APC

applies the following transformation to the scores:

FAPC
ij = Fij −

Fi·F·j
F··

, (2.31)

where the · stands for averaging over i or j. This correction is now used
in all implementations of DCA that are used for contact predictions.
The rational behind equation (2.31) is that DCA couplings either reflect
a direct structural or functional interaction of i with j, or a background
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Figure 2.1: Structure imposes constraints on the evolution of a protein se-
quence, which appear as statistical patterns in an MSA. Here,
contact between the two green residues is essential to maintain
the fold, leading co-evolution. The consequence is the correlation
of the two corresponding column in the alignment. This idea is at
the basis of contact prediction methods including DCA.

interaction due to phylogenetic biases. Since this background phylo-
genetic bias is expected to be roughly the same between any pair of
columns, removing the average interaction of i/j to all other columns
should suppress it [12]. It has recently been argued that APC is more
of a correction to entropic biases than to phylogeny [80]. However, the
exact reason of the success of the APC remains unclear.

2.5 state of the art : applications of dca

DCA was first introduced as a tool to predict pairs of contacting
residues in a protein structure from the knowledge of sequences
of homologs [82]. For this purpose, a Potts model (see Eq. (2.1)) is
inferred based on statistical patterns found in an MSA of homologous
sequences. The success of this application has encouraged the use of
the DCA model for other purposes. Main achievements in this regard
are the prediction of protein-protein interactions, and the scoring of
mutations or even full protein sequences. They are described in the
next sections. A more detailed review can be found in [19].

2.5.1 dca predicts residue-residue contacts

Predicting a protein’s structure from its sequence is one of the oldest
bioinformatics or biophysics question. The function of a protein is
usually determined by its structure, this knowledge is essential to
understanding how proteins operate. However, experimental charac-
terization using X-ray diffraction, NMR, or more recently electron
microscopy, remains expensive and time consuming. On the other
hand, methods relying on molecular dynamics simulations are com-
putationally very expensive and cannot readily be applied to large
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sequences.
The recent accumulation of sequence data and its classification in fam-
ilies lead to the use of statistical methods to help structure prediction.
Forgetting the idea of directly determining the full structure from the
sequence, those methods focus on predicting pairs of residues which
are likely to be in contact in the fold. The underlying idea is to use
the observed correlation in amino acid usage in different columns in
an MSA, termed co-evolution. If the contact between residues at two
positions i and j in the sequence is essential to the structure, they
should co-evolve. If one of the two positions mutates, the other may
have to mutate in a compensatory way to maintain contact. Thus, a
correlation will be measured between the corresponding columns of
the alignment. Figure 2.1 illustrates this idea with a sketch protein.
The first applications of this idea directly used correlation between
columns as a score indicating the likelihood of contact [24, 37, 59]. A
commonly used correlation score is the mutual information of columns
i and j:

MIij =
21

∑
a,b=1

fij(a, b) log
fij(a, b)

fi(a) f j(b)
, (2.32)

where fi(a) and fij(a, b) are respectively single site and pairwise fre-
quencies defined in 2.9.
However, this is limited by the fact that correlations can result from
direct or indirect interactions between variables, as is discussed in sec-
tion 1.2.4. To accurately predict contacts, it is necessary to disentangle
direct and indirect effects. The idea behind DCA is to find a model
that reconstructs the observed correlations using a network of direct
couplings. In practice, this model takes the Potts form of Eq. (2.1),
where the direct couplings J are responsible of correlations between
variables in the probability distribution P.

The contact prediction proceeds as follows. Pairs of columns (i, j)
are ranked according to the frobenius norm of the Jij coupling after
the APC is applied, see section 2.4.3 (previous works used the so-called
direct information [57] – see article in section 3 for a definition). Pairs
with |i − j| ≤ 4 are discarded from this ranking: strong couplings
between close-by positions in the sequence are frequently caused by
stretches of gaps in the alignment. Moreover, this constraint leads to
predictions for pairs which cannot be said to be structurally close from
the sequence only (note this excludes pairs corresponding to one turn
in an α-helix). The top pairs of this ranking are then used as contact
predictions.
As an illustration, figure 2.2 shows the result of this prediction for the
Pfam family PF00014 using the 30 top pairs. The performance of this
method has now been evaluated for numerous protein families [28,
57], demonstrating a consistent improvement over purely correlation
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Figure 2.2: Contact prediction based on the 30 top pairs for the mutual
information score of Eq. (2.32) (left) and for the DCA score (right).
Predictions are mapped onto the protein structure (PDB: 5PTI [83]):
green bars link distant residues (distance > 8Å), and red bars
link contacting residues (distance < 8Å). Source: [19]

based techniques. This is illustrated in figure 2.3. The currently best
stand-alone method in this aspect is the PLM implementation of DCA

[27].
In terms of structure prediction, determining contacts from the se-
quence beforehand is of great help when computationally folding
the protein. Recently, thousands of new protein structures have been
predicted using such co-evolutionary methods [62]. They have also
been extensively used in recent CASP competitions. Interestingly, the
quality of the inference of the DCA model matters little in the accuracy
of contact predictions. Very crude approximations like the MF method
still allow for very good predictions. Moreover, as will be seen in the
article of chapter 3, a very accurate method in terms of reproducing
statistical features of the MSA like the BML does not outperform the
much more approximate PLM in contact predictions. This can be ex-
plained by the fact that to achieve good contact predictions, it is only
necessary to recover the topology of interactions of the graph, and not
the exact value of parameters. The procedure used to predict contacts
illustrates that only the ranking of the strongest inferred couplings
matters, and not their precise numerical values. Moreover, the values
and ranking of smaller coupling parameters has no influence at all
in this matter. For this reason, it is important to make a distinction
between inferring an exact DCA model, that is solving the maximum
entropy problem from section 2.2.2, and recovering the topology of an
interaction network.
Lastly, it is important to note that the current best contact prediction
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Figure 2.3: Fraction of correctly predicted contacts as a function of the num-
ber of pairs (i, j) for which a prediction is made, averaged over 131

protein families. Contact is defined as a distance smaller than 8Å
between the two residues. DI is a score based on the couplings of
the DCA model, here inferred using the MF method (see Methods
of article in chapter 3 for a definition). The Bayesian dependency
tree is a model used in [12], also attempting to disentangle direct
and indirect sources of correlation. Source: [57].
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are obtained using so-called meta methods [49, 74, 81]. These methods
use information of many different sources, such as results of DCA but
also secondary structure or solvent accessibility predictions. These in-
formations along with known protein structures are used to train deep
neural networks. The obtained networks have a significantly higher
accuracy in predicting contacts. Differently from DCA techniques, these
methods are supervised and need to be trained on already known
protein structures.

2.5.2 Scoring mutations and sequences

The Potts model defines a probability distribution on all possible
sequences, based on their likelihood to belong to the family it has
been trained on. It can thus be used to quantitatively score sequences,
predicting whether they could be plausible members of the family,
i.e. similar in structure and function. This opens the way to two in-
teresting applications: scoring of mutations in natural sequences, and
generating artificial sequences for a given family by sampling the Potts
distribution P.

In the former application, one tries to quantitatively assess whether
a mutation – i.e. the change in one or a few amino acids – is delete-
rious for the function of a given protein. Thanks to next-generation
sequencing, experimental quantitative characterization of mutational
landscapes is becoming increasingly accessible, and has been per-
formed for a number of proteins [45, 54, 55]. The setting is quite
simple: a reference wild-type sequence Awt is chosen, and a set of
mutant sequences is designed. Those can be single mutants – changing
every possible amino acid of Awt into every other one, one at a time
–, or larger modifications such as double or more mutants. A proxy
biological function of every mutant is then experimentally determined,
through the measurement of, e.g. , structural stability, binding affinity
to some known target, or global fitness of the organism in which the
sequence is expressed.
The DCA model can simply be used as a computational predictor of the
result of such experiments. The simplest scoring system is to compare
the energies (or log-probabilities) of the wild-type sequence and of
the corresponding mutant:

∆Emut = H(Amut)−H(Awt). (2.33)

This computational score can be compared to experimental results to
assess the quality of DCA in this task. This has successfully been done
for a number of cases, comprising viral, bacterial or human proteins
[13, 16, 33, 36, 44, 52]. Such predictions are of high interest both from
a medical and evolution point of view, as mutations are responsible
of antibiotic resistance in bacterias, of viruses’ capacity of adaptation,
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Figure 2.4: Scoring mutations for the beta-lactamase TEM-1 protein, respon-
sible for antibiotic resistance. The Minimum Inhibitory Concen-
tration (MIC) of 990 single mutants of this protein has been ex-
perimentally characterized in [45]. The statistical energy score
obtained from the DCA is computed for each of those mutants,
and compared to the experimental value. Source: [33].

and of some diseases in humans. The ability of DCA-like models to
predict the effect of mutations based on the knowledge of homologous
sequences is the idea on which the integrative modeling described in
chapter 4 is based.

Scoring mutations in sequences can be thought of as a local recon-
struction of the fitness landscape of a protein. There are encouraging
results that DCA could also lead to a global reconstruction of the fit-
ness landscape, assessing the functionality of sequences far from any
natural one.
First experiments in this regard have been conducted in [68, 75]. The
WW domain family (Pfam PF00397) was used, a short 35 residues
long domain. Using a small curated alignment of 120 WW sequences,
called NAT in the following, artificial sequences were designed in
three ways:

• (R - random): Random scrambling of the alignment was per-
formed, killing all existing statistical patterns.

• (IC - independent conservation): Each column of the MSA was
shuffled independently, thereby perfectly conserving the intra-
column frequencies but removing any correlation between columns.
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• (CC - coupled conservation): starting from the IC dataset, a sim-
ulated annealing procedure was used to reproduce the pairwise
frequencies fij(a, b) found in the original MSA. This procedure
inspired the one described in section 5.1.4.

Importantly, it has been shown that if performed properly, the pro-
cedure of the CC dataset is equivalent to sampling from a perfectly
inferred DCA model, that is a maximum entropy model that exactly
reproduced the pairwise statistics fij(a, b) of the original alignment
[9].
Artificial sequences from the 3 datasets were tested for folding sta-
bility in [75] and for binding specificity to a target in [68]. None of
the R or IC sequences could fold into the proper structure. However,
31% of the CC and 67% of the NAT folded correctly. This result is
a very strong indication as to what information is needed to specify
a functional protein: the sole knowledge of column-wise statistics is
not sufficient (IC), but the pairwise distribution of amino acids in
columns is necessary and maybe close to sufficient (CC). These results
are summarized in figure 2.5.
This is a good indication that DCA-like models based on pairwise
statistics could be a good representation of the fitness landscape of
proteins and potentially be generative. The above states procedure of
generating artificial sequences results in an alignment, but is unable
to predict the functionality of the single sequence. It was first shown
in [4] that a PLM implementation of DCA could be used over those
artificial sequences to predict which of them could fold and which
could not. The energy of each sequence in the model is computed, and
those of low energy are considered more likely to be functional.
This was further investigated in [19], where sequences generated
by sampling the DCA distribution P were compared with the ones
mentioned above. Results are summarized in figure 2.6. DCA energy
distribution of sequences generated at random (like R), by an indepen-
dent profile model and by an Adaptive Cluster Expansion (ACE) [8, 17]
inferred DCA were computed. Whereas random sequences lie at very
high energies, distribution of those coming from an independent and
from the DCA model overlap. Energies of sequences from [75] were
then computed. CC and IC sequences show overlapping energies, with
CC being lowest on average, while the natural sequences have a small
overlapping with IC sequences. The main result is that energy seems
to be a very good discriminator between folding and non-folding
sequences: almost no sequence that is in the energy range of the IC
data is found to be folding, even if it is a natural one. On the contrary,
CC sequences with energies similar to the natural sequences are the
only functional artificial ones (see figure 2.6. Importantly, the pairwise
coupling terms of the Potts model are needed to achieve this. The
energy of a profile model or a HMM based score fail to discriminate
between folding and non-folding sequences [20].
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Figure 2.5: Folding experiment for artificial sequences of [75]. Grey: not
expressed. Yellow: insoluble. Blue: soluble but not folded. Red:
folded. Source: [75].

As in contact prediction, the different inference methods used for
obtaining the DCA model do not lead to large differences in scoring
sequences, either for local mutational landscape or global generative
purposes. Again, the only thing the model needs to do is to have a cor-
rect ranking of the energies of sequences. The precise numerical value
of those energies does not directly matter. However, it is important to
notice that scoring and generating sequences are two different tasks. In
order to generate sequences such as the CC ones, it is necessary that
the DCA distribution reproduces pairwise frequencies of the natural
MSA as closely as possible [9]. For this purpose, accurate inference
methods are needed, such as the ACE or the BML.

2.5.3 Other applications of dca

protein-protein interaction DCA can be used to determine
the existence of a biological interaction between members of two pro-
tein families, and also to help determine the structural interface of
this interaction if it exists. In practice, alignments of two families A
and B are used, with sequences of A and B belonging to the same
species being concatenated. In the case of paralogs, that is when sev-
eral sequences of A and B belong to the same organism, the so-called
matching problem has to be solved beforehand. If simple criteria such
as genomic co-localization is not available, DCA can actually be used
for such a task [10, 39].
A joint Potts model is then inferred for the concatenated alignments
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Figure 2.6: Top: DCA energy distribution for sequences sampled by the DCA

model (blue), the profile model (green) and random sequences
(red). Bottom: DCA energies of WW sequences from [75]. Each
bar indicates a sequence. Red bars indicate a folding sequence.
Source: [19].

of families A and B. By construction, this model will include both
intra (JA JB) and inter (JAB) protein couplings. The latter inter pro-
tein couplings represent an interaction between residues of the two
proteins according to the model. The strength of these couplings can
then be used to estimate whether members of the two families are
likely to interact. In [29], the average Frobenius norm FAPC of the top
4 inter-protein couplings is used as an interaction score, predicting
interacting pairs among the dozens of proteins constituting the small
and large ribosomal subunits.
The same idea can be applied to predict the structure of the interaction
interface. Similarly as in the contact prediction framework, large inter
protein couplings are predicted to be residue-residue contacts in this
interface. Using those predictions to guide computational structural
prediction methods allows the reconstruction of the interface [43, 61,
71]. The same idea can be applied to predict the structure of the inter-
action interface. Similarly as in the contact prediction framework, large
inter protein couplings are predicted to be residue-residue contacts in
this interface. Using those predictions to guide computational struc-
tural prediction methods allows the reconstruction of the interface [43,
61, 71].

dca couplings reflect biophysical interactions Strong
couplings inferred by DCA correspond to contacts. Is it possible to push
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further the interpretation of those parameters? Coupling matrices Jij
tend to be very noisy, making interpretation of the detailed interaction
between two residues unpractical. However, it has been shown in [21]
that averaging over many coupling matrices Jij for different protein
families and performing a spectral analysis of the resulting average
coupling matrix allows one to recover known bio-chemical interac-
tions. Main eigenmodes of the average coupling matrix are shown
to be patterns of electrostatic, hydrophobic/hydrophilic or cysteine-
cysteine interactions. Moreover, these statistical couplings are in good
agreement with the widely used Miyazawa-Jernigan potentials de-
rived from typical residue-residue contacts found in proteins [56].
Therefore, information contained in the parameters of the DCA model
can be interpreted in terms of biochemistry.





3
P O T T S M O D E L S A R E A C C U R AT E S TAT I S T I C A L
D E S C R I P T I O N O F P R O T E I N S E Q U E N C E
VA R I A B I L I T Y.

3.1 motivation

The success of DCA methods in terms of modeling protein sequences
is impressive. Summarized in section 2.5, they include the prediction
of structural contacts inside and between proteins, the prediction of
protein-protein interaction partners, and the scoring of mutations.
Less known applications, but still informative about the descriptive
capacity of the model, include its ability to score artificial sequences
for functionality and the fact that its coupling parameters recover
biochemical interactions between amino acids.
The fact that a single class of models is able to quantitatively describe
properties of proteins in so many ways calls for explanation. Usually,
two hypotheses are given for the cause of this success:

• DCA disentangles indirect from direct correlations. Statistical cor-
relation as measures in an MSA can come from direct interaction
of the two corresponding residues (e.g. structural contact), or
from indirect effects, such as mediation through intermediary
residues. The success of Potts models is attributed to their ability
to explain correlation using direct coupling parameters. As those
direct couplings reflect "real" physical or biological interactions
between residues of the protein, the resulting model can be
interpreted in a meaningful way.

• The maximum entropy principle is used at the basis of DCA. The
Potts model is the most general model that reproduces pairwise
statistics measured in MSAs. In a sense, the only information
used by the model is this pairwise statistics. If it turns out that
this is the correct quantity to reproduce, then Potts model should
be good sequence models. On the other hand higher order terms
which are not included in Potts model might be important for
making a sequence functional.

These two hypotheses raise questions. First, if it is true that direct
and indirect effects are explained through couplings J, it should be
possible to determine what indirect effects "look like": structurally
characterizing them, and quantify their effect for the co-evolution of
residues. Seconds, the MaxEnt reasoning only holds if pairwise statistics
is the correct observable to reproduce. For this reason, it is essential to
understand if there exist statistical features of the natural sequences

33
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that are not reproduced by the DCA model. In other words, one should
understand if higher order terms are needed to accurately describe
sequence variability in protein families.
To answer these two questions, it is necessary to be in possession of
a very accurately inferred model. Indeed, if the inferred DCA model
does not closely fit pairwise statistics, it is insignificant to try to
explain indirect correlations using its parameters, or to try finding
statistical observables that it cannot reproduce. Popular and efficient
inference scheme include the MF approximation and the PLM method.
While very useful for some most applications, these methods remain
very approximate. Mainly, a sample from the probability distribution
P learned using them will be statistically quite different from the
natural sequences, even concerning fitted quantities. For this reason,
answering the previous questions requires the design of an accurate
inference scheme.
In the following article [32], a BML method is used to infer Potts
models for the largest Pfam families. Properties of this model are then
investigated, the purpose being to understand the limits of DCA for
modeling protein sequences.

3.2 article
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Abstract

Global coevolutionary models of homologous protein families, as constructed by direct coupling analysis (DCA), have
recently gained popularity in particular due to their capacity to accurately predict residue–residue contacts from
sequence information alone, and thereby to facilitate tertiary and quaternary protein structure prediction. More re-
cently, they have also been used to predict fitness effects of amino-acid substitutions in proteins, and to predict evo-
lutionary conserved protein–protein interactions. These models are based on two currently unjustified hypotheses: 1)
correlations in the amino-acid usage of different positions are resulting collectively from networks of direct couplings;
and 2) pairwise couplings are sufficient to capture the amino-acid variability. Here, we propose a highly precise inference
scheme based on Boltzmann-machine learning, which allows us to systematically address these hypotheses. We show how
correlations are built up in a highly collective way by a large number of coupling paths, which are based on the proteins
three-dimensional structure. We further find that pairwise coevolutionary models capture the collective residue vari-
ability across homologous proteins even for quantities which are not imposed by the inference procedure, like three-
residue correlations, the clustered structure of protein families in sequence space or the sequence distances between
homologs. These findings strongly suggest that pairwise coevolutionary models are actually sufficient to accurately
capture the residue variability in homologous protein families.

Key words: coevolution, direct coupling analysis, global statistical inference, Boltzmann machine learning.

Introduction
In the course of evolution, proteins may substitute the vast
majority of their amino acids without losing their three-
dimensional structure and their biological functionality.
Rapidly growing sequence databases provide us with ample
examples of such evolutionary related, that is, homologous
proteins, frequently already classified into protein families and
aligned into large multiple-sequence alignments (MSA).
Typical pairwise sequence identities between homologous
proteins go down to 20–30%, or even below (Finn et al.
2014). Such low sequence identities are astonishing since
even very few random mutations may destabilize a protein
or disrupt its functionality.

Assigning a newly sequenced gene or protein to one of
these families helps us to infer functional annotations.
Structural homology modeling, for example, belongs to
the most powerful tools for protein-structure prediction
(Arnold et al. 2006; Webb and Sali 2014). However, beyond
the transfer of information, the variability of sequences
across homologs itself contains information about evolu-
tionary pressures acting in them, and statistical sequence
models may unveil that information (Durbin et al. 1998; de
Juan et al. 2013).

A first level of information is contained in the variability of
individual residues: low variability, that is, conservation, fre-
quently identifies functionally or structurally important sites
in a protein. This information is used by so-called profile

models (Durbin et al. 1998), which reproduce independently
the amino-acid statistics in individual MSA columns. They
belong to the most successful tools in bioinformatics; they
are at the basis of most techniques for multiple-sequence
alignment and homology detection, partially as profile
Hidden-Markov models accounting also for amino-acid inser-
tions and deletions (Eddy 1998).

A second level of information is contained in the co-
variation between pairs of residues, measurable via the
correlated amino-acid usage in pairs of MSA columns (de
Juan et al. 2013; Cocco et al. 2017). Covariation cannot be
captured by profile models, as they treat residues inde-
pendently. To overcome this limitation, global statistical
models with pairwise couplings—exploiting residue con-
servation and covariation—have recently become popu-
lar. Methods like the direct coupling analysis (DCA)
(Weigt et al. 2009; Morcos et al. 2011), PsiCov (Jones
et al. 2012), or Gremlin (Balakrishnan et al. 2011) allow
for the prediction of residue–residue contacts using se-
quence information alone, and can be used to predict
three-dimensional protein structures (Marks et al. 2012;
Ovchinnikov et al. 2017) and to assemble protein com-
plexes (Schug et al. 2009; Hopf et al. 2014; Ovchinnikov
et al. 2014). Currently, these methods are the central el-
ement of various of the best-performing residue-contact
predictors in the CASP competition for protein structure
prediction (Jones et al. 2015; Wang et al. 2017).
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Despite their success in practical applications, not much is
known about the reasons for this success and their intrinsic
limitations. Typically, two hypotheses are made: 1) The cor-
related amino-acid usage in two MSA columns may result
from a direct residue–residue contact in the protein struc-
ture, causing coordinated amino-acid changes to maintain
the protein’s stability. It may also result indirectly via inter-
mediate residues, making the direct use of covariation for
contact prediction impractical. The success of global models
is attributed to their capacity to extract direct couplings from
indirect correlations. 2) Using the maximum-entropy princi-
ple, the simplest models reproducing pairwise residue covari-
ation depend on statistical couplings between residue pairs.
Whether or not this model is sufficient to capture also higher-
order covariation remains currently unclear.

So far, these two points have not been investigated sys-
tematically. The reason is relatively simple: The inference of
pairwise models exactly reproducing the empirical conserva-
tion and covariation statistics extracted from an MSA
requires to sum over all 20 L sequences of aligned length L,
an unfeasible task for sequences of typical sizes L¼ 50–500.
Approximation schemes like mean-field approximation
(Morcos et al. 2011), Gaussian approximation (Jones et al.
2012), or pseudo-likelihood maximization (Balakrishnan
et al. 2011; Ekeberg et al. 2013) have been introduced; they
perform very well in contact prediction. Their approximate
character prohibits, however, the analysis of higher-order cor-
relations and collective effects, since even the pairwise statis-
tics are not well reproduced. More precise approaches have
been proposed recently (Sutto et al. 2015; Barton et al. 2016;
Haldane et al. 2016), but their high computational cost has
limited applications mostly to anecdotal cases so far.

Understanding these basic questions is essential for under-
standing the success of global coevolutionary models beyond
“black box” applications, but also for recognizing their current
limitations and thus potentially to open a way towards im-
proved statistical modeling schemes. To this end, we imple-
ment a highly precise approach for parameter inference in
pairwise statistical models. Applying this approach to a num-
ber of very large protein families (containing sufficient
sequences to reliably measure higher-order statistical fea-
tures), we demonstrate that indirectly generated pair corre-
lations are highly collective effects of entire networks of direct
couplings, which are based on the structural vicinity between
residues.

However, the most interesting finding of the article is the
unexpected accuracy of DCA at reproducing higher-order
statistical features, which are not fitted by our approach.
These nonfitted features include connected three-point cor-
relations, the distance distributions between natural sequen-
ces and between artificial sequences sampled from the model,
or the clustered organization of sequences in sequence space.
Currently we do not find indications, that more involved
models (e.g., including three-residue interactions) are needed
to reproduce the full sequence statistics: pairwise models are
not only necessary as argued above, but seem to be sufficient
to describe the sequence variability between homologous
proteins.

Results

Direct Coupling Analysis—Methodology and
Approximate Solutions
The aim of global coevolutionary sequence models as con-
structed by DCA is to provide a protein family-specific prob-
ability distribution

Pð
�
AÞ / exp

X
j>i

JijðAi;AjÞ þ
XN

i¼1

hiðAiÞ
 !

(1)

for all full-length amino-acid sequences
�
A ¼ ðA1; . . . ;ALÞ.

To model sequence variability in an MSA, couplings JijðA; BÞ
and biases (fields) hiðAÞ have to be fitted such that model
Pð

�
AÞ reproduces the empirically observed frequencies fiðAÞ

of occurrence of amino acid A in the ith MSA column, and
cooccurrence fijðA; BÞ of amino acids A and B in positions i
and j of the same sequence. In other words, the DCA model
has to satisfy

PiðAÞ ¼ fiðAÞ and PijðA; BÞ ¼ fijðA; BÞ (2)

for all columns i, j and all amino acids A, B, with Pi and Pij

being marginal distributions of model Pð
�
AÞ, cf. supplemen-

tary methods and section 1, Supplementary Material online.
Equation (2) has two important consequences. First, a

precisely inferred DCA model reproduces also pairwise con-
nected correlations (or covariances) cijðA; BÞ ¼ fijðA; BÞ� fi
ðAÞfjðBÞ found in the MSA. This is a crucial difference with
profile models, which show vanishing connected correlations
by construction. Second, the inference of Pð

�
AÞ via equation (2)

does not use all the information contained in the MSA, but
only the pairwise statistics. For this reason, model Pð

�
AÞ has a

priori no reason to reproduce any higher-order statistics con-
tained in the alignment. In particular, even though a model of
the form of equation (1) will contain higher-order correlations,
such as three-residue correlations, these may differ significantly
from those found in the original MSA.

To infer DCA parameters, we need to estimate marginal
probabilities for single positions and position pairs from
model Pð

�
AÞ. Exact calculations of these marginals require

to perform exponential sums over qL terms, with L being
the sequence length, and q¼ 21 enumerating amino acids
and the alignment gap. These sums are infeasible even for
short protein sequences, and have been replaced by approx-
imate expressions, for example, via mean-field (Morcos et al.
2011), Gaussian (Jones et al. 2012), or pseudo-likelihood
approximations (Balakrishnan et al. 2011; Ekeberg et al.
2013). These approximations are sufficiently accurate for
residue-contact prediction, which is topological in nature:
only the existence of a strong direct statistical coupling has
to be detected, not necessarily its precise numerical value. As
a consequence, these methods do not reproduce the empir-
ical frequencies and thus do not satisfy equation (2), cf.
figure 1 for pseudo-likelihood maximization (plmDCA
[Ekeberg et al. 2013]). More precise methods based on an
adaptive cluster expansion (Barton et al. 2016) or Boltzmann
machine learning using Markov-chain Monte Carlo sampling
(Ackley et al. 1985) for estimating marginal distributions have
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been proposed recently (Sutto et al. 2015; Haldane et al.
2016). While decreasing deviations from equation (2) sub-
stantially (i.e., fitting quality), they are typically much more
computationally expensive and not suitable for large-scale
application to hundreds or thousands of protein families.

Accurate Fitting Is Needed to Reproduce the Empirical
Residue Covariation in Homologous Protein Families
Since the aim of the current article is to unveil the way DCA
disentangles direct couplings and indirect correlations, and to
investigate if it captures higher-order statistical observables
estimated from the MSA, we have implemented an efficient
version of Boltzmann machine (BM) learning described in
“Materials and Methods” and, in full detail, in supplementary
section 2, Supplementary Material online. In short, BM learn-
ing estimates the pairwise marginal distributions of Pð

�
AÞ by

Monte-Carlo sampling, and iteratively updates model param-
eters until equation (2) is satisfied. In contrast to approx-
imations such as applied in plmDCA, the inference of
parameters using BM learning can be made arbitrarily
accurate, provided that Monte-Carlo samples are large
enough and sufficient iterations are performed. In anal-
ogy to earlier notation, we will use bmDCA for the

resulting implementation of DCA. As is shown in figure 1
and in table 1, bmDCA reaches very accurate fitting,
approaching the statistical uncertainties related to the
finite sample size (i.e., the sequence number in each
MSA), even for the very large protein families studied
here. Obviously bmDCA has a higher computational cost
than plmDCA: While plmDCA achieves inference typi-
cally in few minutes, bmDCA needs few hours to several
days for one family, in dependence of the sequence
length and the required fitting accuracy.

Interestingly, the increased fitting accuracy does not im-
prove the contact prediction beyond the one of plmDCA, the
currently best unsupervised DCA contact predictor, cf.
figure 1C and D. Couplings JijðA; BÞ are highly correlated be-
tween PLM and BM (Pearson correlations of 90–98% across all
studied protein families), in particular large couplings are ro-
bust and lead to very similar contact predictions. However, the
model statistics depends collectively on all Oðq2L2Þ parame-
ters and can thus differ substantially even for small differences
in the individual parameters. This sensitivity (so-called critical-
ity) has also been observed in other models inferred from
large-scale biological data, cf. (Mora and Bialek 2011).

FIG. 1. Fitting accuracy and contact prediction for DCA models inferred using pseudo-likelihood maximization (plmDCA) and Boltzmann-
machine learning (bmDCA): While the Potts model inferred by plmDCA (A) fails to reproduce the one- and two-residue frequencies (main
panel) and the connected two-point correlations (lower left insert) in the PF00072 protein family, the model inferred using our bmDCA algorithm
(B) is very accurate. Slight deviations visible for very small frequencies in log-scale (upper right insert) are results of the ‘2-regularization penalizing
strongly negative couplings. Despite these differences, the contact predictions (C for plmDCA and D for bmDCA) relying on the strongest 2 L¼ 224
DCA couplings (with ji � jj> 4) are close to identical: native contacts (all-atom distance below 8 Å) are shown above the diagonal, predicted
contacts (below the diagonal). Very similar results are observed across all studied protein families, cf. supplementary sections 5.1 and 5.5,
Supplementary Material online (color online).
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Indirect Correlations Result Collectively from
Networks of Direct Couplings
bmDCA provides a highly accurate approach to describe the
sequence variability of homologous proteins via a pairwise
coevolutionary model. This implementation allows us to
ask fundamental questions about how DCA works, its capac-
ities and its possible limitations, without being biased by the
specificities of approximate DCA implementations.

The success of global models as inferred by DCA is typically
attributed to the idea that they disentangle statistical corre-
lations, which are empirically observed in an MSA and mea-
sured via the mutual information (MI), into a network of
direct couplings between residues. The strongest direct cou-
plings are biologically interpretable as residue–residue con-
tacts in the three-dimensional protein structure. However,
this idea, even if stated in many papers on the subject, has
never been examined in detail, and important questions re-
main unanswered: can indirect effects be explained by a few
strong coupling chains, or are they distributed over networks
of numerous small couplings? Are these networks structurally
interpretable, that is, in relation to a proteins contact map?

Correlations Are Mediated Collectively by Distributed
Networks of Coevolutionary Couplings
To answer the first question, we need to quantify the corre-
lation induced by a coupling chain of arbitrary length, con-
necting any two residues. To this aim, we take inspiration
from the concept of direct information (DI) introduced in
(Weigt et al. 2009). DI is a proxy of the strength of the direct
interaction Jij between two residue positions i and j; it meas-
ures the correlation that i and j would have if they were only
connected by Jij, cf. figure 2A. To measure the indirect corre-
lation between i and j induced via a chain of intermediate
residues, we introduce the concept of path information (PI),
as illustrated again in figure 2A and defined in “Materials and
Methods”. Now, for each protein family, we extracted the 100
most correlated residue pairs (highest MI). Using a

modification of Dijkstra’s shortest-path algorithm (Dijkstra
1959)—which becomes approximate due to the nonadditiv-
ity of PI but delivers highly reliable results as shown in sup-
plementary section 3, Supplementary Material online—we
extracted for each residues pairs the 15 strongest coupling
paths (highest PI) connecting the two residues.

In figure 2B, we show that the decrease of the average
strength of the kth strongest path is compatible with a slowly
decreasing power law, hPIðkÞi / k�� , with exponents � be-
tween 1.1 and 2.3. While this fit is only approximate, as visible
by the strong deviations for the strongest path at k¼ 1, its
slow decay clearly shows that the correlation between two
residues typically is not mediated by one or few coupling
chains. On the contrary, indirect effects emerge collectively,
in the sense that a large number of partially overlapping
coupling chains have to be taken into account, each one
contributing only a small fraction to the total correlation. It
is important to note that the strongest path (rank k¼ 1) is on
average much stronger than the others and clearly does not
fall onto a power law. For the overwhelming majority of the
pairs, this strongest path is the direct one containing only one
coupling. Its contribution to the total correlation is, on aver-
age, about 12.5% of the total MI. This average is dominated by
the shortest protein families, PF00096 and PF01535, who are
expected to show less collectivity due to their small number L
of aligned residues.

On the Structural Basis of Coevolutionary
Coupling Networks
As a consequence of the last section, we need to consider the
collective effect of multiple paths rather than trying to bio-
logically interpret individual paths beyond the direct one.
While this is technically very hard in general, the collective
effect of all paths of length two is efficiently computable, cf.
“Materials and Methods.” The corresponding correlation
measure, named here length-two information (L2I) and illus-
trated in figure 2A, adds the L � 2 possible indirect paths of

Table 1. Results for the Ten Selected Protein Families.

Protein Family Fitting Quality Contact Prediction Three-Point Correlations Collectivity of Correlations

Pfam L M PDB PLM BM PLM BM PLM BM corr(DI, MI) corr(L2I, MI) �

PF00004 132 39277 4D81 0.630 0.954 0.672 0.672 0.333 0.980 0.33 0.42 1.2
PF00005 137 68891 1L7V 0.546 0.948 0.599 0.586 0.718 0.978 0.51 0.65 1.4
PF00041 85 42721 3UP1 0.897 0.973 0.715 0.671 0.893 0.991 0.61 0.77 1.7
PF00072 112 73063 3ILH 0.670 0.978 0.836 0.842 0.803 0.988 0.52 0.69 1.4
PF00076 69 51964 2CQD 0.868 0.977 0.877 0.833 0.963 0.993 0.53 0.72 1.5
PF00096 23 38996 2LVH 0.954 0.987 0.657 0.711 ND ND 0.95 0.99 2.3
PF00153 97 54582 2LCK 0.800 0.967 0.601 0.563 0.517 0.986 0.45 0.57 1.1
PF01535 31 60101 4G23 0.902 0.994 0.630 0.739 0.120 0.996 0.70 0.91 1.5
PF02518 111 80714 3G7E 0.624 0.970 0.423 0.396 �0.228 0.986 0.47 0.60 1.6
PF07679 90 36141 1FHG 0.823 0.955 0.826 0.826 0.797 0.993 0.48 0.58 1.8

NOTE.—The first four columns give the ID of the selected protein families together with the sequence length L, alignment depth M and a representative protein structure. The
fitting quality measures the Pearson correlation between connected two-point correlations in the natural data, and in a sample drawn from the Potts models inferred by
plmDCA and bmDCA (better quality emphasized in boldface). The contact prediction gives the fraction of true positives (all-atom distance< 8 Å) within the first 2 L
predictions. Columns 9 and 10 provide the Pearson correlation between connected three-point correlations observed in natural and in sampled sequences (due to the
dominance of insignificantly small terms, only those with cMSA

ijk ðA; B; CÞ > 0:01 are considered). PF00096, with only 23 aligned positions is the shortest considered protein
family, has no significant three-point correlations, neither in the data nor in the Potts model. The last three columns quantify the collective nature of correlations: the Pearson
correlation of direct information/mutual information as compared to the length-two information/mutual information, and the exponent of the approximate power-law decay
of the strongest paths (in terms of their path information) with their ranking.
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length 2 (one intermediate residue) to the direct path be-
tween two residue positions. As expected, L2I captures a
much higher fraction of the full mutual information than
DI, cf. table 1. However, a large fraction of the mutual infor-
mation is not yet covered. It is contributed by longer coupling
chains: L2I depends only on 2 L � 3 out of the LðL� 1Þ=2
couplings between residue pairs. Consistent with this obser-
vation, the correlation of L2I with MI is much larger in small
proteins, and decreases when going to larger proteins.

L2I allows for an interesting structural interpretation. It is
well established that large DI are good predictors for native
residue contacts. Is large L2I a good predictor of second
neighbors in the protein structure, that is, of residue pairs
which are two contacts away? To investigate this question,
the blue line in figure 2C displays the fraction of true positive
predictions (positive predictive value, averaged over the pro-
tein ensemble) within the highest 25 DI as a function of a
distance cutoff d, which varies between 1 and 25 Å. It starts at
0 for small d, and approaches 1 exponentially with a scaling
1� exp ð�d=d0Þ of characteristic length d0¼ 3.6 Å. At 8 Å
distance (typically used as contact definition in DCA studies),

an accurate prediction of about 85% true positives (TP) and
only 15% false positives (FP) is reached. Measuring the cut-off
dependent positive predictive value for the length-two infor-
mation L2I, we find again an exponential behavior but with
characteristic length d0¼ 4.4 Å. The fraction of TP therefore
reaches 85% only between 11 and 12 Å, a distance compatible
with second structural neighbors. The finding that the top DI
are dominated by direct contacts, and large L2I by residue
pairs which are up to second neighbors in the structure, fur-
ther underlines the structural basis of coevolutionary con-
straints as captured by DCA. We also note that the full
correlation MI—depending on coupling chains of all possible
lengths—does not imply an exponential behavior in figure 2,
and no characteristic length scale can be identified.

Pairwise Coevolutionary Models Accurately
Reproduce the Residue Variability beyond the Fitted
Two-Residue Statistics
Profile models assuming independent residues are not able to
extract the full information contained in the MSA of a protein
family. In particular, the inclusion of pairwise coevolutionary

FIG. 2. Collective nature of the correlation between two residue positions: (A) Illustration of the correlation measures used in this study. While the
mutual information MI depends collectively on the entire network of coevolutionary couplings, the direct information DI is obtained by taking
into account only the single direct coupling between the sites of interest (e.g., 1 and 3 in the figure). All other couplings are formally set to zero. The
path information PI is the direct generalization of DI to the correlation mediated by a single path (e.g., [1, 2, 4, 3] in the figure). The length-two
information L2I measures the collective effect of the direct coupling and all length-two paths (e.g., [1, k, 3] with k¼ 2, 4, 5). (B) A log–log plot of the
average ratio of path information to mutual information (triangular symbols and black fat line: average over all families) as a function of the rank of
the corresponding path, showing a very slow (approximately power-law) decay. This illustrates the fact that indirect correlations do not depend on
a single (or very few) coupling chains, but are distributed over coupling networks. (C) For the 25 highest ranking residue pairs according to DI, L2I,
and MI, the fraction of pairs of distance below d, as a function of d. The scale on the y-axis is logarithmic, and chosen in a way that functions of the
form 1� e�d=d0 will appear as straight lines, the insert shows a standard linear scale. For DI and PI, these curves show a clear exponential
convergence to 1, with characteristic distance scales of 3.6 resp. 4.4 Å. MI does not show any exponential behavior, and thus no characteristic
distance scale (color online).
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couplings is required for the prediction of intra or interpro-
tein residue–residue contacts, which has become the most
important application of coevolutionary modeling.
Furthermore, studies about protein mutational effects (Levy
et al. 2017) and the prediction of protein–protein interactions
(Szurmant and Weigt 2018) have underlined the importance
of pairwise couplings.

Is there information hidden in large MSA, which cannot be
captured by pairwise models? Does one need to include
higher-order couplings into the modeling? The highly accu-
rate inference of pairwise models obtained by bmDCA, repro-
ducing faithfully the empirical first- and second-order
statistics, allows to address these questions systematically.
To this aim, we use MCMC samples from the inferred models
to compare statistical observables, which are not a direct con-
sequence of the fitted covariances. These comparisons unveil
the astonishing capacity of bmDCA to capture local and
global statistical features, which are not explicitly fitted by
the model: pairwise couplings are not only necessary for char-
acterizing sequence variability between homologs, but they
also seem to be sufficient.

First, we observe that the three-residue statistics is accu-
rately reproduced by our model including only pairwise cou-
plings: figure 3 (cf. supplementary section 5.2, Supplementary
Material online, for other families) shows a density-colored
scatter plot of the connected three-point correlations of the
natural sequences versus the MCMC sample drawn from the
model. Correlations are high across all protein families for the
pairwise model, with close to perfect Pearson correlations
ranging from 0.978 to 0.997, cf. table 1. Profile models, which
by definition do not have any connected three-point corre-
lation, can be seen as null model testing the strength of three-
point correlations emerging due to finite sampling. As is
shown in figure 3D, they are at least one order of magnitude
smaller than those found empirically, underlining the signif-
icance of our findings. The only exception is family PF00096,
where no significant connected three-point correlations are
detectable in the MSA or in the sample. Note that we use
connected correlations cijkðA; B; CÞ ¼ fijkðA; B; CÞ � fijðA; BÞ
fkðCÞ � fikðA; CÞfjðBÞ � fjkðB; CÞfiðAÞ þ 2fiðAÞfjðBÞfkðCÞ,
which are intrinsically harder to reproduce than three-point
frequencies fijkðA; B; CÞ. Note also that our result is far from
being obvious: a Gaussian model with the same covariances
would have vanishing three-point correlations, while the se-
quence data and the sample from our DCA model do not.
Further more, it is easy to construct models with discrete
variables, whose three-point correlations are not reproduced
by a pairwise DCA model. This is shown in supplementary
section 4, Supplementary Material online, via analytical cal-
culations and numerical simulations.

To complement the three-point statistics, we investigated
more global quantities. The first one is the clustered organi-
zation of protein families in sequence space. Figure 3A shows
all sequences mapped onto their first two principal compo-
nents for PF00072 (cf. Supplementary Material online for
other families). We observe a clear clustering into at least
three distinct subfamilies, which identify different functional
subclasses of the PF00072 protein family (single domain vs.

multi-domain architectures with distinct DNA-binding
domains). A sample drawn from a profile model does not
reproduce this clustered structure (B), while the MCMC sam-
ple of the bmDCA model does, including the fine structure of
the clusters (C). Again, this structure is not a simple conse-
quence of the empirical covariance matrix as a sample from a
Gaussian model with the same covariances would not show
any clustering.

As a last measure, we compared the pairwise Hamming
distances between sequences in the natural MSA and in the
model-generated sequences. Again the pairwise bmDCA
model is needed to reproduce the bulk of the empirical dis-
tribution of pair distances. Interestingly, a difference between
the two becomes visible in the small-distance tail of the histo-
grams in figure 3G: while natural sequences may be close to
identical due to a close phylogenetic relation, small sequence
distances are never observed in an equilibrium sample of the
bmDCA model, that is, a part of the phylogenetic bias present
in the MSA is avoided by the bmDCA model.

Discussion
This article unveils a number of reasons behind the success of
global pairwise models in extracting information from the
sequence variability of homologous protein sequences. First,
we show that residue–residue correlations actually result
from the collective variability of many residues, and are not
the result of a few strong coupling chains. Therefore, local
statistical measures taking into account only a small numbers
of residues at a time (like correlation measures) are necessarily
limited in their capacity to represent the data, and global
modeling approaches are needed.

One of the most astonishing findings is that many features
of the data, which are not explicitly fitted by a pairwise model-
ing, are nevertheless well reproduced by the inferred models.
This includes higher-order correlations, like the connected
three-point correlations considered here, and more general
aspects of the distribution of amino-acid sequences like the
histogram of pairwise Hamming distances between pairs of
sequences or the clustered organization of the sample in se-
quence space. Interestingly, only the small distances between
phylogenetically closely related sequences are not reproduced
in a sample drawn from the inferred DCA model. This capac-
ity to reproduce the sequence variability beyond the fitted
empirical observables distinguishes the DCA model (fitting
one- and two-residue frequencies) from profile models of
independent residues (fitting only one-residue frequencies).
While the restriction to pairwise models was initially moti-
vated by the limited availability of sequence data—three-
point correlations require to estimate frequencies for 213 ¼
9261 combinations of amino acids or gaps—we find that
even for large MSA pairwise models seem to be sufficient
to capture collective effects beyond residue pairs.

Note that this argument does not rule out the existence of
higher-order residue effects in the underlying evolutionary
processes shaping the sequence variability in homologous
protein families (cf. Merchan and Nemenman 2016;
Schmidt and Hamacher 2017). However, their statistical
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signature is not strong enough to be detectable via deviations
from the behavior of a pairwise model, even in the large
families considered here. Random samples drawn from a
DCA model based exclusively on the knowledge of the em-
pirical one- and two-residue statistics appear to be statistically
indistinguishable from natural sequences.

This finding is particularly interesting in the context of
work made few years ago by the Ranganathan lab (Russ
et al. 2005; Socolich et al. 2005). Using the small WW domain,
they applied a number of diverse procedures to scramble
MSA of natural sequences to produce artificial sequences.
Scrambling MSA columns to maintain residue conservation
while destroying residue correlations, lead in all tested cases
to nonfolding amino-acid sequences. A procedure maintain-
ing also pairwise correlations lead to a substantial fraction of
folding and functional proteins. Later on it has been observed
that the functional artificial sequences actually have the high-
est probabilities within pairwise coevolutionary models

(Balakrishnan et al. 2011). These findings open interesting
roads to evolution-guided protein design (Reynolds et al.
2013).

Note, however, that the finite size of the input MSA
requires to use regularized inference, which penalizes large
absolute parameter values. It leads to a small bias visible in
figure 1B: small pair frequencies are slightly but systematically
overestimated by DCA. This may smoothen the inferred sta-
tistical model, cf. (Otwinowski and Plotkin 2014) for the re-
lated case of inferring epistatic fitness landscapes. As a
consequence “bad” sequences may be given high probabilities
in our model. Based on the findings presented in figures 1B
and 3, we expect these effects to be minor. When increasing
the regularization strength beyond parameters used in this
study, the clustered structure of sampled sequences (fig. 3C)
disappears gradually. Data in large MSA allow to use small
regularization, thereby simultaneously limiting overfitting of
statistical noise and reducing biases in parameter inference.

FIG. 3. Nonfitted statistical observables are captured by DCA: (A–C) Natural sequences (PF00072—A) and MCMC samples from inferred profile
(B) and bmDCA (C) models are projected on the first two principal components of the natural MSA. (D and E) Three-point correlations of samples
of the profile (D) and bmDCA (E) models, as compared to the three-point correlations in the natural sequences. (F and G) Histograms of all pairwise
Hamming distances between natural or MCMC sampled sequences, for profile (F) and bmDCA (G) models. Surprisingly bmDCA is able to
reproduce all three nonfitted statistical properties of the natural MSA, with the difference of the small distances between close homologs, while the
profile model not taking into account residue–residue couplings does not. This suggests that accurately inferred pairwise models are necessary and
sufficient to capture the residue variability in families of homologous proteins. Similar results are observed across all studied protein families, as is
documented in supplementary sections 5.2–5.4, Supplementary Material online (color online).
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This may be impossible for small MSA, so the ongoing growth
of sequence databases is key for the wide applicability of
global statistical sequence models.

One potentially important limitation remains: the distri-
bution of sequences in sequence space is not only determined
by functional constraints acting on amino-acid sequences,
but also by phylogenetic relations between sequences.
Natural sequences are, even beyond the very closely related
sequences not reproduced by the DCA model, far from being
an independent sample of all possible amino-acid sequences.
They are correlated due to finite divergence times between
homologs, and due to the human selection bias in sequenced
species. Any model reproducing the full empirical statistics of
the MSA describes therefore a mixture of functional and
phylogenetic correlations, while an ideal model would con-
tain the functional ones and discard the phylogenetic ones.
How these can be disentangled remains an important open
question.

Materials and Methods

Protein Families
We have selected ten protein families of known three-
dimensional structure which belong to the largest 20 Pfam
families (Finn et al. 2014), which are not repeat proteins (i.e.,
they are not just frequent because repeated many times on
the same protein), and have an aligned sequence length be-
low 200 amino acids (for computational reasons), cf. table 1.
Sequences with more than 50 alignment gaps are removed.
The resulting sequence numbers are reported in table 1. The
main reason to include only large Pfam families is the possi-
bility to accurately estimate three-point correlations. For each
triplet of residue positions, there are 213¼ 9,261 combina-
tions of amino acids or gaps. Nonsystematic tests in smaller
protein families show that our main findings of the paper
translate directly to these families.

Boltzmann Machine Learning
DCA infers a Potts model

PðA1; . . .;ALÞ ¼
1

Z
exp

X
i< j

JijðAi;AjÞ þ
X

i

hiðAiÞ
( )

(3)

reproducing the single- and two-residue frequencies found in
the input MSA:P

fAkjk 6¼ig PðA1; . . .;ALÞ ¼ fiðAiÞP
fAkjk 6¼i;jg PðA1; . . .;ALÞ ¼ fijðAi;AjÞ

(4)

with empirical frequencies fiðAiÞ and fijðAi;AjÞ defined,
respectively, as the fraction of sequences in the MSA
having amino acid Ai (resp. Ai and Aj) in column i
(resp. in columns i and j) (cf. supplementary section 1,
Supplementary Material online for a precise definition of
these frequency counts, including a sequence weighting
to reduce phylogenetic biases). For the sake of contact
prediction, this inference can be done with efficient
approximation schemes like mean-field of pseudo-

likelihood maximization. The objectives of this study—
to understand the collective variability of the residues—
require a more precise inference based on the classical
ideas of Boltzmann-machine learning (Ackley et al.
1985). It consists of an iterative procedure where

(i) for a given set of model parameters fJij; hig, Markov-
chain Monte Carlo (MCMC) sampling is used to estimate the
one- and two-point frequencies of the model;

(ii) parameters are adjusted when the estimated model
frequencies deviate from the empirical ones.

To reduce finite-sample effects, the model parameters are
subject to an ‘2-regularization. The likelihood function is con-
vex, guaranteeing convergence to a single globally optimal
solution, which reproduces the empirical one- and two-
point frequencies with arbitrary accuracy. The direct imple-
mentation of Boltzmann-machine learning is computation-
ally very slow. We have therefore introduced a
reparameterization of the model, which allows to replace
the gradient ascent of the likelihood by a faster pseudo-
Newtonian method. Technical details of the implementation
are described in supplementary section 2, Supplementary
Material online.

From Direct Couplings to Indirect Correlations
Quantifying the Strength of a Coupling Chain
To quantify the strength of a coupling chain, we generalize
the direct information introduced in (Weigt et al. 2009).
There, the direct probability

Pdir
ij ðAi;AjÞ ¼

exp fJijðAi;AjÞ þ ~hiðAiÞ þ ~hjðAjÞg=Zij :
(5)

was defined as the hypothetical distribution of two residues i
and j connected only by the inferred direct coupling Jij and
having the empirical single-residue frequencies fiðAiÞ and
fjðAjÞ, thereby removing all indirect effects from model P.
Parameters ~hi and ~hj are to be adjusted to ensure correct
marginals. The path probability between positions i1 and iLþ1

through the length-L path ½i1; i2 . . . iLþ1� is a direct
generalization:

Ppath
½i1...iLþ1�ðAi1 ;AiLþ1

Þ ¼
P
fAi2 ...AiLg

fi1ðAi1Þ
YL

l¼1

Pdir
ilþ1 il
ðAilþ1
jAilÞ ;

(6)

with Pdir
ij ðAijAjÞ ¼ Pdir

ij ðAi;AjÞ=fjðAjÞ. Equation (6) con-
tains the product of direct probabilities for all links in
the path, in analogy to a Markov chain. The sum over all
configurations taken by intermediate sites ½i2 . . . iL� is
performed efficiently by dynamic programming; the def-
inition guarantees the empirical marginals in all sites on
the path.

To measure the correlation mediated by direct links or
indirect paths, we use variants of the mutual information
based on the direct and path probabilities. To this aim, we
define the direct information (DI) as
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DIij ¼
Xq

Ai;Aj¼1

Pdir
ij ðAi;AjÞ log

Pdir
ij ðAi;AjÞ

fiðAiÞfjðAjÞ
; (7)

and the path information (PI) as

PI½i...j� ¼
Xq

Ai;Aj¼1

Ppath
½i...j�ðAi;AjÞ log

Ppath
½i...j�ðAi;AjÞ
fiðAiÞfjðAjÞ

: (8)

The full mutual information (MI) is defined by replacing
Pdir or Ppath by fij.

The Joint Effect of Paths of Length 2
Quantifying the strength of a group of indirect effects be-
tween two sites i and j is in general non trivial. However, it is
possible if one only considers all chains of couplings that go
through at most one intermediary site k. In other words, one
can combine the direct path ½ij� and all the chains of the form
½ikj� (k 6¼ i; j) into a single probability distribution:

PL2
ij ðAi;AjÞ /

PdirðAi;AjÞ
ziðAiÞzjðAjÞ

�
Y
k 6¼i;j

Ppath
½ikj� ðAi;AjÞ; (9)

where zi and zj ensure PL2
ij to have marginals fi and fj. The

path probabilities can be simply multiplied since each in-
termediate residue k appears only once, and they become
conditionally independent for given (Ai, Aj). The correla-
tion resulting from this combination of paths is the mutual
information of PL2

ij , called L2I.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online. Code and raw data can be accessed via
Github (https://github.com/matteofigliuzzi/bmDCA; last
accessed January 2018).
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3.3 artificial sequences : the effect of regularization

The above article showed that an accurately inferred DCA model is a
surprisingly good statistical model of the Multiple Sequence Align-
ment. The Potts model by construction reproduces conservation and
two-point correlation patterns found in the MSA, but also higher order
quantities such as three-body correlations, distribution of sequences in
a principal component space, and distribution of hamming distances
between sequences.
It is interesting to put this result in the context of figure 2.6 of section
2.5.2. There, a PLM-inferred DCA model was able to predict functional-
ity of artificially designed sequences of the WW domain. Natural WW
sequences were all located in the lower tail of the energy-distribution
of the inferred Hamiltonian. Artificial sequences designed by conserv-
ing correlation patterns (CC dataset) are not all folding, and have a
higher average energy according to the Hamiltonian. However, the
ones that do fold are seen to be the ones of lowest energy. Lastly,
sequences designed using the column-wise conservation profile never
fold correctly and have higher energies. As a result, all folding se-
quences are in the lower tail of the DCA energy distribution, while
high energy sequences are never folding.
It seems that in addition to be a good statistical model of sequences,
DCA provides an energy function able to discriminate between folding
and non-folding sequences. This makes the idea of designing artificial
protein sequences using a Potts model very promising. A sample from
the DCA distribution would have similar statistical properties than
natural sequences, and could also contain functional sequences recog-
nizable by statistical energies similar than the natural ones. However,
this simple idea cannot be straightforwardly implemented due to the
way the model is inferred. Figure 3.1 shows the energy distributions
of different sets of sequences using the Hamiltonian of the BML-DCA

model inferred on PF00072 (family used as an example in the article
above). Shown sequences include a randomized alignment, samples
from a profile model and from the inferred DCA model, and the ho-
mologs found in the Pfam MSA. As expected, sequences from the Potts
distribution have lower energies than those coming from the profile
model. However, it is also visible that the natural sequences have
lower energies than the DCA ones. This is surprising, as energies are
measured using the Hamiltonian of the DCA model which was trained
on the natural sequences.
This observation can also be made, though in a less clear manner, in
figure 2.6. There, it can be seen that the folding sequences – red bars on
the bottom plot – are almost all located in the lowest part of the DCA

energy spectrum, instead of being spread over all its width. It seems
that in order to be folding, sequences need to have statistical energies
in the range of the natural sequences. However, the pairwise model
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Figure 3.1: DCA energy distributions of different set of sequences. Top panel:
Random sequences, and samples of a profile model and the DCA

model. Bottom panel: natural sequences used to train the DCA

model. Red lines indicate energy averages of the DCA sample and
the natural sequences. The model was inferred on the PF00072

family.

generates sequences which have a higher energy than the natural ones.
This raises a number of question. Since the model is inferred using the
natural sequences, and since it precisely fits their statistical properties
such as conservation and correlation, why does it generate sequences
which on average have higher energies? One application of DCA could
be to design artificial sequences. In this regard, would it be possible to
generate sequences in a given energy range by changing the temper-
ature of the model? If so, would these "low temperature" sequences
still be similar to natural ones?

3.3.1 Energy shift due to regularization

In order to investigate these questions, the inference problem is put
in a formal and well defined setting. The MSA of M homologous
sequences of length L will be noted Dnat =

{
am

i
}

, with m = 1 . . . M
and i = 1 . . . L. Let us assume that those sequences are an i.i.d. sample
of a "true" distribution:

P0(a1 . . . aL) =
1

Z0 exp
(
−H0(a1 . . . aL)

)
. (3.1)

The function H0 can be imagined as the "true" fitness of sequence
(a1 . . . aL). The existence of such a function is not necessary to explain
the energy shift. However, it is useful to assume that it exists when
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investigating the sampling at lower temperature of the DCA model. H0

could in principle have a very different mathematical form than the
Potts Hamiltonian. However, we will show in the next sections that the
observed energy shift can be explained simply due to regularization
effects, whether H0 exists or not.
Dnat is used to infer the DCA model, which in practice is another
Hamiltonian Hin f parametrized by coupling and field parameters J
and h. This Hamiltonian is numerically obtained by maximizing the
regularized likelihood (see section 2.4.2 for the necessity of regulariza-
tion):

L(Dnat|J, h) = log P(Dnat|J, h)− λJ ||J||2 − λJ ||h||2, (3.2)

where ||J|| = ∑1≤i<j≤L ∑a,b Jij(a, b)2 and ||h|| = ∑L
i=1 ∑a hi(a)2 Since

Boltzmann Machine Learning is used, after a large enough number
of iteration of the learning algorithm, the gradient of the likelihood is
close to zero and the following relations stand:

f 0
i (a)− Pin f

i (a) = λhhi(a),

f 0
ij(a, b)− Pin f

ij (a, b) = λJ Jij(a, b),
(3.3)

where f 0
i and f 0

ij are the single site and pairwise frequencies measured

in Dnat, and Pin f
i and Pin f

ij the corresponding quantities for the inferred
model. Equation (3.3) makes clear that the frequencies as measured
in the data are only reproduced up to some precision which depends
on the regularization. The resulting deviation in frequencies is quite
small on the individual term – values used for regularization are
typically λ = 0.01 –, and only has a visible effect for very small
frequencies as can be seen in the figure 1 of the article above. However,
it becomes a bias when computing energies. Indeed, when computing
the average energy of natural sequences in the inferred Hamiltonian
taking Eq. (3.3), one obtains

〈Hin f 〉Dnat = −
1
2

L

∑
i,j=1

q

∑
a,b=1

Jij(a, b) f 0
ij(a, b)−

L

∑
i=1

q

∑
a=1

hi(a) f 0
i (a)

= 〈Hin f 〉Hin f − λJ ||J||2 − λh||h||2

.

(3.4)

Therefore, in the inferred model, energies of natural sequences are
systematically lower than energies of a sample of Hin f . This systematic
bias is due to regularization and can be quantified using equation 3.4:
in the case of figure 3.1, the quantity λJ ||J||2 + λh||h||2 has a numerical
value of 24.7, for a measured energy shift of ∼ 25 (red lines in the
figure).
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3.3.2 Sampling at lower temperature

If one trusts the DCA Hamiltonian as a good proxy for the "functional-
ity" of a sequence, then it would be interesting to generate sequences
with energies matching the ones of members of the MSA. Since regular-
ization shifts energies of a DCA sample upwards, one way to achieve
this is to lower the temperature at which the sampling is performed. In-
stead of taking samples directly from the Potts distribution in Eq. (2.1),
an inverse temperature parameters β = 1/T is introduced, and the
following distribution is sampled:

Pin f
β (a1 . . . aL) =

1
Z(β)

exp
(
−βHin f (a1 . . . aL)

)
. (3.5)

When lowering the temperature, that is increasing β, average energies
in Hin f of sampled sequences are decreased compared to the β = 1
case. In this way, it is possible to reach a temperature value such
that 〈Hin f 〉

Pin f
β

' 〈Hin f 〉Dnat . However, designing artificial sequences

requires that the "true" energies H0 of sampled sequences match those
of the natural ones. Of course, in practice, true energies – if they exist
– are unknown. However, if the inferred Hamiltonian Hin f is a good
proxy to the real one, then sampling from a low temperature Hin f

should result in an enrichment in in low energy sequences in H0.

Naturally, this cannot be directly tested in the case of biological
data, since H0 is unknown. Here, we use simulated data to test this
idea on an ideal case where the true Hamiltonian is of the Potts form.
The BML-DCA model learned on the PF00072 family is taken as the
true underlying model H0. A sample drawn at β = 1 plays the role of
the MSA Dnat. This sample is in turn used to infer a new Potts model
Hin f . This allows for the direct comparison of the true and inferred
models in terms of energies, but also of other statistical measure such
as KL-distance.
Figure 3.2 compares the energy behavior of Hin f when varying tem-
perature. As expected, the average energy 〈Hin f 〉

Pin f
β

decreases as β

increases, and there exists a temperature for which it reaches the aver-
age energy of the "natural" sequences 〈Hin f 〉Dnat . The second and third
panels of figure 3.2 directly compare the two averages 〈Hin f 〉

Pin f
β

and

〈H0〉
Pin f

β

. At β = 1, the energy in Hin f of sampled sequences is higher

than that of training ones. Interestingly, this directly translates in a
higher true energy H0. As temperature decreases, energies in the two
Hamiltonians stay perfectly correlated. Therefore, when temperature
is such that sampled and training sequences have similar energies
in Hin f , they also have similar energies in the true model H0. This
demonstrates that in this setting, the inferred energies can serve as a
good enough proxy of the true ones.
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Figure 3.2: A. Average value ofHin f over samples of Pin f
β , as a function of the

temperature β−1. Energies of the training sequences are displayed
by the horizontal line. B. Average energies of Hin f and H0 over
samples of Pin f

β , for values of β−1 between 1.1 and 0.8. C. Same
as B., but displaying energies of individual sequences instead
of averages. Circles are the training sequences, and crosses are
samples from the inferred DCA at different temperatures. Black
dots are the centers of mass of the crosses, corresponding to what
is shown in B.. For visibility, energies of only 50 sequences are
displayed for each temperature.
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The model is inferred at T = 1, meaning that it should reproduce
the pairwise frequencies f 0

ij of the training data at this temperature.
Figure 3.3 shows the fitting quality of βHin f as a function of β−1 – as
a reminder, the fitting quality for pairwise statistics is defined as the
Pearson correlation between the connected correlations measured in
the MSA and in a sample from the inferred model. The statistics are
best fitted at β = 1, as expected. However, the fitting quality quickly
deteriorates as the temperature is decreased, reaching values as low as
0.2 for temperatures around T = 0.8. The picture changes when look-
ing at the symmetric Kullback-Leibler distance (KL-distance) between
βHin f and H0. The symmetric version of the KL-distance is defined by

DKL(Pin f
β ||P

0)+ DKL(P0||Pin f
β ) = 〈βHin f −H0〉P0 + 〈H0− βHin f 〉

Pin f
β

.

(3.6)

As it depends only on energy differences, and not on the partition
function of the Hamiltonians as the standard unsymmetric KL-distance,
it is easily estimated by sampling from the two models. Figure 3.4
shows this quantity as a function of temperature, as well as the en-
ergy differences 〈H0〉

Pin f
β

− 〈H0〉P0 and 〈Hin f 〉
Pin f

β

− 〈Hin f 〉P0 , which

correspond to x- and y-axis differences between sampled and training
sequences in panels B and C of figure 3.2. A clear minimum of the
KL-distance can be seen around T ' 0.95, corresponding to the point
where the mentioned energy differences vanish. This means that the
temperature for which energies of training and sampled sequences
are similar in the inferred model is also the one for which the two
distributions are the closest in the sense of the KL-distance.

As a comparison, things are quite different when using a profile
model instead of a Potts Hamiltonian. We now infer a profile model
for Hin f , meaning that all the inferred couplings vanish. Since single
site frequencies are estimated with a higher accuracy than pairwise
ones, it is possible to use a very low regularization in this case. As
a result, inferred and true single site frequencies are almost exactly
matched, and the bias of Eq. (3.4) is negligible. Figure 3.5 is the equiva-
lent of figure 3.2 for the profile model. Here, according to the inferred
model, average energies of sampled and training sequences are the
same at β = 1. However, this does not give any indication about their
similarity in the true model. Indeed, sampled sequences have a much
higher energy than training ones for H0.
Decreasing the temperature lowers the energies of sampled sequences
both in the true and inferred models. In this manner, it is possible
to reach a point for which 〈H0〉

Pin f
β

= 〈H0〉Dnat . Sequences obtained

through the profile model at this temperature would then be expected
to be "functional", or at least typical of H0. However, as this optimal
temperature is quite low, the entropy of the corresponding sample
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Figure 3.3: Fitting quality of the inferred model. On the y-axis is the Pearson
correlation between both connected correlations cij and single
site frequencies fi of the inferred and true models. Single site
frequencies are close to perfectly fitted at T = 1 with Pearson
correlation of 1, and connected correlations are fitted with a high
accuracy at this temperature. However, the fitting quality for
connected correlation quickly drops as T is varied.

also decreases and many of the positions in the sequences only have a
small variability, as shown in figure 3.6.
Furthermore, in contrast to the case of the Potts model though, en-
ergies in Hin f are never a good proxy for energies in H0. If H0

were unknown, it would not be possible to use the training data
to self-consistently find a sampling temperature such that 〈H0〉

Pin f
β

=

〈H0〉Dnat .

If DCA is to be used to design artificial sequences, it is necessary
to correct for the bias in energies due to regularization. Even in an
ideal setting, true energies sequences sampled from an inferred Potts
model are higher than those of the natural/training ones. We have
shown here that this may be corrected by decreasing the temperature
at which sequences are sampled from the DCA model. If the inferred
Hamiltonian is a good enough proxy for the "real" energy function,
this allows to close the energy gap. It is not possible to apply this
method with profile model, as they are likely to not be a proxy for the
underlying energy function.
However, sequences sampled in this manner do not reproduce statisti-
cal patterns found in the original alignment. Even if the DCA model fits
pairwise frequencies with good accuracy, decreasing the temperature
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Figure 3.4: Top. Symmetric KL-distance between the true model H0 and the
inferred one at temperature β−1, βHin f , as a function of the tem-
perature. Bottom. Average energy differences between samples
from βHin f and the training sequences, measured with the two
Hamiltonians Hin f and H0. When this quantity is 0 for H0 (un-
known in practice), sequences generated by the inferred model
have exactly the same average true energies as training sequences.
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Figure 3.5: Equivalent to figure 3.2, but Hin f is now a profile model without
couplings.

Figure 3.6: Top. Per site entropy of the profile model Hin f as a function
of temperature. Bottom. Exponential of the site-entropy for the
profile model for two temperatures.



54 potts models are accurate statistical description of protein sequence variability.

leads to a biased way of sampling, favoring low energies, and thus
modifying frequencies.



4
I N T E G R AT I N G H E T E R O G E N E O U S D ATA I N T H E
I N V E R S E P O T T S P R O B L E M

4.1 motivation

DCA was initially introduced as a tool to predict structural contacts
from sequences only [82]. As the number of sequences in MSAs is
limited, only pairwise statistics are used to construct the model, and
other statistical signal is ignored for fear of it being too noisy. This
is also coherent with the view that co-evolution at the amino-acid
level is due to structural contacts between pairs of residues, and thus
influences pairwise correlation in the MSA. The Maximum-Entropy
Principle was used in this context to find a functional form to the DCA

model based on the chosen statistical observables.
In the article of chapter 3, it is shown that the Potts model inferred
using only pairwise statistics measured in the MSA is able to reproduce
higher order signal that was not fitted. This indicates that DCA may
not only be able to predict contact, but may also be an overall good
model of sequence variability. If this is true, one line of development
might be to improve its ability to model sequences. While it is hard
to use statistical patterns in MSAs beyond the pairwise level due to
limited amount of data, it is interesting to try including other sources
of information in the modeling process.

DCA is often linked to the problem of inverse statistical physics,
in which one attempts to deduce microscopic properties of a system
from the observation of its macroscopic behavior. In this analogy, the
protein family is the system of interest, single protein sequences repre-
sent one of its "microscopic" configuration, while the MSA summarizes
its average macroscopic behavior. Thus, frequencies measured in the
MSA correspond to macroscopic observables: quantities that do not
depend on a precise microscopic configuration (i.e. the sequence), but
on the average properties of the studied system. In other words, they
are an emerging property of the unobserved microscopic constraints
which in DCA are represented by the Hamiltonian H. In this sense,
they represent what we will call global information.
Experimental development in biology now allows to quantify the phe-
notype (or a proxy for it) of individual protein sequences. As stated in
section 2.5.2, quantitative characterization of mutational landscapes
has been conducted for a number of proteins [45, 54, 55]. In these
experiments, the fitness or phenotype of mutants of existing protein
sequences is measured. In our statistical physics analogy, this amounts

55
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to measuring properties of individual microscopic configurations. In this
sense, these measurements represent information of a different nature
than frequencies measured in the MSA, which we will call local infor-
mation.
Statistical physics deals with the question of going from microscopic
behavior to macroscopic one, and inverse statistical physics with the
one of going in the opposite direction. Here we can here attempt to
tackle the problem from both ends by combining statistical patterns
of the MSA (i.e. global information) with quantitative experiments on
mutational effects (i.e. local information). The article that follows – [6]
– introduces a mathematical framework to properly integrate these
two different types of information. This effectively extends the usual
setting of DCA in an attempt to increase its accuracy in modeling
constraints acting on a protein family.

4.2 article
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Improving landscape inference by 
integrating heterogeneous data  
in the inverse Ising problem
Pierre Barrat-Charlaix1,*, Matteo Figliuzzi1,2,* & Martin Weigt1

The inverse Ising problem and its generalizations to Potts and continuous spin models have recently 
attracted much attention thanks to their successful applications in the statistical modeling of biological 
data. In the standard setting, the parameters of an Ising model (couplings and fields) are inferred 
using a sample of equilibrium configurations drawn from the Boltzmann distribution. However, in 
the context of biological applications, quantitative information for a limited number of microscopic 
spins configurations has recently become available. In this paper, we extend the usual setting of the 
inverse Ising model by developing an integrative approach combining the equilibrium sample with 
(possibly noisy) measurements of the energy performed for a number of arbitrary configurations. 
Using simulated data, we show that our integrative approach outperforms standard inference based 
only on the equilibrium sample or the energy measurements, including error correction of noisy 
energy measurements. As a biological proof-of-concept application, we show that mutational fitness 
landscapes in proteins can be better described when combining evolutionary sequence data with 
complementary structural information about mutant sequences.

High-dimensional data characterizing the collective behavior of complex systems are increasingly available across 
disciplines. A global statistical description is needed to unveil the organizing principles ruling such systems and 
to extract information from raw data. Statistical physics provides a powerful framework to do so. A paradigmatic 
example is represented by the Ising model and its generalizations to Potts and continuous spin variables, which 
have recently become popular for extracting information from large-scale biological datasets. Successful examples 
are as different as multiple-sequence alignments of evolutionary related proteins1–3, gene-expression profiles4, 
spiking patterns of neural networks5,6, or the collective behavior of bird flocks7. This widespread use is motivated 
by the observation that the least constrained (i.e. maximum-entropy8) statistical model reproducing empirical 
single-variable and pairwise frequencies observed in a list of equilibrium configurations is given by a Boltzmann 
distribution:

Z
H H ∑ ∑= − = − −

< =
P s J s s h ss( ) 1 exp{ ( )}, ,

(1)i j

N

ij i j
i

N

i i
1

with s =​ (s1,..., sN) being a configuration of N binary variables or ‘spins’. Inferring the couplings J =​ {Jij}1≤i<j≤N and 
fields h =​ {hi}1≤i≤N in the Hamiltonian  from data, known as the inverse Ising problem, is computationally hard 
for large systems (N ≫​ 1). It involves the calculation of the partition function = ∑ −e s

s
( )Z H  as a sum over an 

exponential number of configurations. The need to develop efficient approximate approaches has recently trig-
gered important work within the statistical-physics community, cf. e.g. refs 9–17.

Despite the broad interest in inverse problems, the methodological setting has remained rather limited: all 
of this literature, including the biological cases mentioned in the beginning, seeks to estimate model parame-
ters starting from a set of configurations s, which are considered to be at equilibrium and independently drawn 
from P(s). Real data, however, may be quite different. In biological systems, “microscopic spins configurations” 
(e.g. amino-acid sequences) are increasingly accessible to experimental techniques, and quantitative informa-
tion for a limited number of particular configurations (e.g. three-dimensional structures, measured activities or 
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thermodynamic stabilities for selected proteins) is frequently available. It seems reasonable to actually integrate 
such information into the inverse Ising problem instead of ignoring it. In this work, we use two different types of 
data (cf. Fig. 1):

•	 As in the standard inverse Ising problem, part of the data comes as a sample of equilibrium configurations 
assumed to be drawn from the Boltzmann distribution to be inferred.

•	 The second data source is a collection of arbitrary configurations together with noisy measurements of their 
energy.

These data sets are limited in size and accuracy. Therefore an optimized integration of both data types is 
expected to improve the overall performance as compared to the individual use of one single data set.

The inspiration to develop this new integrative framework for the inverse Ising problem is taken from protein 
fitness landscapes in biology, which provide a quantitative mapping from any amino-acid sequence s =​ (s1,..., sN) to 
a fitness φ(s) measuring the ability of the corresponding protein to perform its biological function. Fitness land-
scapes are of outstanding importance in evolutionary and medical biology, but it appears impossible to deduce 
a protein’s fitness from its sequence only. Experimental or computational approaches exploiting other data are 
urgently needed.

Information about fitness landscapes can be found in the amino-acid statistics observed in natural protein 
sequences, which are related to the protein of interest. In fact they represent diverse but functional configurations 
sampled by evolution. It has been recently proposed that their statistical variability can be captured by Potts 
models (generalization of the Ising model to 21-state amino-acid variables). Indeed, statistical models inferred 
from large collections of natural sequences have recently led to good predictions of experimentally measured 
effects18–21: in a number of systems, the fitness cost Δ​φ(s) ≡​ φ(s) −​ φ(sref) of mutating any amino acid in a refer-
ence protein sref strongly correlates with the corresponding energy changes in the inferred statistical model,

φ∆










 = − −~s P s

P s
s s( ) log ( )

( )
( ( ) ( )),

(2)ref
ref 

suggesting that the Hamiltonian of the inferred models is strictly related to the underlying mutational landscapes.
While evolutionary diverged sequences can be regarded as a global sample of the fitness landscape, further 

information can be obtained from direct measurements on particular ‘microstates’ of the system, i.e. individual 
protein sequences. Recent advances in experimental technology allow for conducting large-scale mutagenesis 
studies: in a typical experiment, a reference protein of interest is chosen, and a large number (103–105) of mutant 
proteins (having sequences differing by one or few amino acids from the reference) are synthesized and then char-
acterized in terms of fitness. This provides a systematic local measurement of the fitness landscape22–24. Regression 
analysis may be used to globally model mutational landscapes25. A second-order parameterization of φ arises 
naturally in this context, when considering an expansion of effects in terms of independent additive effects and 
pairwise ‘epistatic’ interactions between sites26,

Figure 1.  Schematic representation of the inference framework: a sample of equilibrium configurations 
(dataset Deq) and noisy energy measurements for another set of configurations (dataset DE) are integrated 
within a Bayesian approach to infer the model . The dashed lines represent the underlying true landscape, 
which has to be inferred, the red line the inferred landscape.
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However, the number of accessible mutant sequences remains small compared to the number of terms in this 
sum, and mutagenesis data alone are not sufficient to faithfully model fitness landscapes27.

In situations where no single dataset is sufficient for accurate inference, integrative methods accounting for 
complementary data sources will improve the accuracy of computational predictions. In this paper, (i) we define 
a generalized inference framework based on the availability of an equilibrium sample and of complementary 
quantitative information; (ii) we propose a Bayesian integrative approach to improve over the limited accuracy 
obtainable using standard inverse problems; (iii) we demonstrate the practical applicability of our method in the 
context of predicting mutational effects in proteins, a problem of outstanding bio-medical importance for ques-
tions related to genetic disease and antibiotic drug resistance.

Results
An integrated modeling.  The inference setting.  Inspired by this discussion, we consider two different 
datasets originating from a true model 0. The first one, Deq =​ {s1,..., sM}, is a collection of M equilibrium config-
urations independently drawn from the Boltzmann distribution P0(s). For simplicity, we consider binary variables 
si ∈​ {0, 1}, corresponding to a “lattice-gas” representation of the Ising model in Eq. (1). This implies that energies 
are measured with respect to the reference configuration sref =​ (0,..., 0). The standard approach to the inverse Ising 
problem uses only this type of data to infer parameters of : couplings and fields in Eq. (1) are fitted so that the 
inferred model reproduces the empirical single and pairwise frequencies,
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µ
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µ

µ µ
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M
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emp

1

emp

1

The second dataset provides a complementary source of information, which shall be modeled as noisy meas-
urements of the energies of a set of P arbitrary (i.e. not necessarily equilibrium) configurations σa. These data are 
collected in the dataset DE =​ {(Ea, σa)a=1,...,P}, with

 σ ξ= + = ... .E a P( ) 1, , (5)a a a0

The noise ξa models measurement errors or uncertainties in mapping measured quantities to energies of the Ising 
model. For simplicity, we consider ξa to be white Gaussian noise with zero mean and variance Δ​2: 〈​ξaξb〉​ =​ δa,bΔ​2.

As schematically represented in Fig. 1, datasets Deq and DE constitute different sources of information about 
the energy landscape defined by Hamiltonian 0. Observables in Eq. (4) are empirical averages computed from 
equilibrium configurations in Deq, providing global information about the energy landscape. On the contrary, 
configurations in DE are arbitrarily given, and a (noisy) measurement of their energies provides local information 
on particular points in the landscape.

A maximum-likelihood approach.  To infer the integrated model, we consider a joint description of the probabili-
ties of the two data types for given parameters J and h of tentative Hamiltonian . The probability of observing the 
sampled configurations in Deq equals the product of the Boltzmann probability of each configuration,
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To derive an analogous expression for the second dataset, we integrate over the Gaussian distribution of the noise 
ξ σ= −E ( )a a a  obtaining a Gaussian probability of the energies (remember configurations in DE are arbitrarily 
given):
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The combination of these expressions provides the joint log-likelihood for the model parameters given the data:

= +P PJ h D D D J h D J h( , , ) log ( , ) log ( , ) (8)E Eeq eq

Maximizing the above likelihood with respect to parameters {hi}1≤i≤N and {Jij}1≤i<j≤N leads to the following 
self-consistency equations:
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with 


σ=p J h( , )i i , 


σ σ= 〈 〉p J h( , )ij i j  being single and pairwise averages in the model Eq. (1). We have 
introduced the parameter λ =

+∆

1
1 2 : in practical applications, the error Δ​ may not be known, and the parameter 

0 ≤​ λ <​ 1 allows to weigh data sources differently. For λ =​ 0 (i.e. large noise), the standard inverse Ising problem 
is recovered: optimal parameters are such that the model exactly reproduces magnetizations and correlations of 
the sample. For λ >​ 0, the second dataset containing quantitative data is taken into account: whenever energies 
computed from the Hamiltonian  do not match the measured ones, the model statistics deviates from the sam-
ple statistics. Both log-likelihood terms in (8) are concave, and thus their sum: Eq. (9) has a unique solution.

Noiseless measurements.  The case of noiseless energy measurements in Eq. (5) (i.e. λ →​ 1) has to be treated sep-
arately. First, energies have to be perfectly fitted by the model, by solving the following linear problem:
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specifies which parameters contribute to the energies of configurations in the second dataset. If 
K =​ N(N +​ 1)/2 −​ rank(X) >​ 0, the parameters cannot be uniquely determined from the measurements: The sam-
ple Deq can be used to remove the resulting degeneracy. To do so, we parametrize the set of solutions of Eq. (10) 
as follows:
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where 
→

nh  is any particular solution of the non homogeneous Eq. (10), and 
→

{ }k  a basis of observables spanning 
the null space of the associated homogeneous problem 

→
=X 0. The free parameters α ∈k  can be fixed by 

maximizing their likelihood given sample Deq,
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Equation (14) shows that the αk have to be fixed such that empirical averages ∑µ
µ

= s( )
M

M
k

1
1  equal model averages 

O
Hk . Any possible sparsity of the matrix of measured configurations X (entries are 0 or 1 by definition) can be 

exploited to find a sparse representation of the 
→

{ }k . In the protein example discussed above, mutagenesis exper-
iments typically quantify all possible single-residue mutations of a reference sequence (denoted (0,..., 0) without 
loss of generality). In this case, the pairwise quantities sisj with 1 <​ i <​ j <​ N can be chosen as the basis { }k  of the 
null space. A particular solution of the non-homogeneous system (10) is given by the paramagnetic Hamiltonian 
= ∑ E snh i

i
i , with Ei being the energy shift due to spin flip = s 0 1i .

Artificial data.  We first evaluate our method on artificial data (Materials and Methods). Random couplings 
J0 and fields h0 are chosen for a system of N =​ 32 spins. Dataset Deq is created by Markov chain Monte Carlo 
(MCMC) sampling, resulting in M =​ 100 equilibrium configurations. To mimic a protein ‘mutagenesis’ experi-
ment, one of these configurations is chosen at random as the reference sequence, and the energies of all N config-
urations differing by a single spin flip from the reference (thereafter referred to as single mutants) are calculated, 
resulting in dataset DE (after adding noise of standard deviation Δ​0). Datasets DE and Deq will subsequently called 
“local” and “global” data respectively.

Equations (9) are solved using steepest ascent, updating parameters J and h in direction of the gradient of the 
joint log-likelihood (8). Since the noise Δ​0 may not be known in practical applications, we solve the equations for 
several values of λ ∈​ [0, 1], weighing data sources differently. We expect the optimal inference to take place at a 
value λ that maximizes the likelihood in Eq. (8), i.e. λ = + ∆ −(1 )0 0

2 1. For λ =​ 0, this procedure is equivalent to 
the classical Boltzmann machine28, but for λ >​ 0, the term corresponding to the quantitative essay constrains 
energies of sequences in DE to stay close to the measurements. As explained above, the case λ =​ 1 has to be treated 
separately; a similar gradient ascent method is used. Since exact calculations of gradients are computationally 
hard, the mean-field approximation is used (Materials and Methods).

To evaluate the accuracy of the inference, most of the existing literature on the inverse Ising modeling simply 
compares the inferred parameters with the true ones. However, a low error in the estimation of each inferred 
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parameter does not guarantee that the inferred distribution matches the true one. On the contrary, in the case of a 
high susceptibility of the statistics with respect to parameter variations, or if the estimation of parameters is biased, 
the distributions of the inferred and true models could be very different even for small errors on individual param-
eters. For this reason, we introduce two novel evaluation procedures. First, to estimate the accuracy of the model 
on a local region of the configuration space, we test its ability to reproduce energies of configurations in DE. Then, 
we estimate the global similarity of true and inferred distributions using a measure from information theory.

Error correction of local data.  We first test the ability of our approach to predict the true single-mutant energies, 
when noisy measurements are presented in DE, i.e. to correct the measurement noise using the equilibrium sam-
ple Deq. For every λ, J and h are inferred and used to compute predicted energies of the N configurations in DE. 
The linear correlation between such predicted energies (measured with the inferred Hamiltonian) and the true 
energies (measured with the true Hamiltonian) is plotted as a function of λ in Fig. 2.

In the very low noise regime, ∆  00 , the top curve in Fig. 2 reaches its peak at λ  1, which is expected as 
local data is then sufficient to accurately “predict” energies from single mutants. On the contrary, in the high noise 
regime, the maximum is located close to λ =​ 0, pointing to the fact that local data is of little use in this case. 
Between those two extremes, an optimal integration strength can be found, yielding a better prediction of ener-
gies in DE as for any of the datasets taken individually. It is interesting to notice that even for highly noisy data, 
integrating the two sources of information with the right weight λ results in an improved modeling.

The insert of Fig. 2 shows the integration strength λ at which the best correlation is reached, against the corre-
sponding theoretical value λ = + ∆1/(1 )0 0

2  for different realizations. On average, optimal integration is reached 
close to the theoretical case of equation (8). This result highlights the possibility of using this integrative approach 
to correct measurement errors in the energies of single mutants. If a dataset such as Deq provides global informa-
tion about the energy landscape, and the measurement noise Δ​0 can be estimated, an appropriate integration can 
then be used to infer more accurately the energies of the single mutants.

Global evaluation of the inferred Ising model.  To assess the ability of our integrative procedure to provide a glob-
ally accurate model, we use the Kullback-Leibler divergence DKL(P0||P) between the true model ∝ −P e0 0  and 
the inferred ∝ −P e  (Materials and Methods). The symmetric expression

   

Σ = +

= − + −

P P D P P D P P( , ) ( ) ( )

(15)

KL KL

P P

0 0 0

0 0
0

Figure 2.  Integration of noisy measurements of energies of single mutants with M equilibrium 
configurations. The linear correlation between predicted and true single mutants energies is shown in 
dependence of integration parameter λ, for four different values of the noise Δ​0 =​ 0, 0.43, 0.92, 1.39 added to the 
energies in the second data set. The integration strength λ = + ∆1/(1 )0 0

2 , which would be naturally used in 
case of an a priori known noise level, is located close to the optimal inference, cf. the black circles for λ0 =​ 1, 
0.84, 0.54, 0.34. The insert shows the value of the integration strength λ reaching maximal correlation, as a 
function of the theoretical value + ∆1/(1 )0

2 , for 200 independent realisations of the input data at different noise 
levels. Points are found to be closely distributed around the diagonal (red line).
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simplifies to the average difference between true and inferred energies. It can be consistently estimated using 
MCMC samples D (resp. D0) drawn from P (resp. P0), without the need to calculate the partition functions. Σ(P0, P) 
has an intuitive interpretation in terms of distinguishability of models: It represents the log-odds ratio between the 
probability to observe samples D and D0 in their respective generating models, and the corresponding probability 
with models  and 0  swapped:

 
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Σ =
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
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


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.P P
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0
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where MK is the number of sampled configurations in D  and D0.
The inferred model undoubtedly benefits from the integration, as a minimal divergence between the gen-

erating and the inferred probability distributions is found for an intermediate value of λ, outperforming both 
datasets taken individually (Fig. 3). It has to be noted that even in the noiseless case Δ​0 =​ 0, the minimum in  
Σ​(P0, P) obtained at λ =​ 1 depends crucially on the availability of the equilibrium sample Deq. The local data DE 
are not sufficient to fix uniquely all model parameters, and the degeneracy in parametrization is resolved using 
Deq as explained at the end of Sec. 0.

As a comparison, the same analysis is done using an independent modeling that uses only fields h, and no 
couplings. The inset of Fig. 3 clearly shows that the pairwise modeling outperforms the independent one. Even the 
limit λ →​ 1, where Deq becomes irrelevant in the independent model, the performance of the integrative pairwise 
scheme is not attained.

Biological data.  To demonstrate the practical utility of our integrative framework, we apply it to the chal-
lenging problem of predicting the effect of amino-acid mutations in proteins. To do so, we use three types of data: 
(i) Multiple-sequence alignments (MSA) of homologous proteins containing large collections of sequences with 
shared evolutionary ancestry and conserved structure and function; they are obtained using HMMer29 using pro-
file models from the Pfam database30. Due to their considerable sequence divergence (typical Hamming distance 
~0.8N), they provide a global sampling of the underlying fitness landscape. (ii) Computational predictions of the 
impact of all single amino-acid mutations on a protein’s structural stability31 are used to locally characterize the 
fitness landscape around a given protein. The noise term ξa represents the limited accuracy of this predictor, and 
the uncertainty in using structural stability as a proxy of protein fitness. (iii) Mutagenesis experiments have been 
used before to simultaneously quantify the fitness effects of thousands of mutants22,23. While datasets (i) and (ii) 
play the role of Deq and DE in inference, dataset (iii) is used to assess the quality of our predictions (ideally one 
would use the most informative datasets (i) and (iii) to have maximally accurate predictions, but no complemen-
tary dataset to test predictions would be available in that case).

To apply the inference scheme to such protein data, three modifications with respect to simulated data are 
needed. First, the relevant description in this case is a 21-state Potts Model (Supporting Information), since each 
variable si, i =​ 1,..., N, can now assume 21 states (20 amino acids, one alignment gap)32. Second, since measured 

Figure 3.  Symmetric Kullback-Leibler divergence ∑ between true and integrated pairwise models versus 
strength of integration λ, estimated from MK = 3 · 106 MCMC samples. Different curves correspond to 
different noise levels added to single mutants energies used for integration, so that datasets DE are the same as in 
Fig. 2. Insert - Comparison with an independent model using only fields h, with the same methodology.
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fitnesses and model energies are found in a monotonous non-linear relation, we have used the robust mapping 
introduced in ref. 18 (reviewed in the Supporting Information). Third, since correlations observed in MSA are 
typically too strong for the MF approximation to accurately estimate marginals, we relied on Markov Chain 
Monte Carlo (Materials and Methods), which has recently been shown to outperform other methods in accuracy 
of inference for protein-sequence data33,34.

We have tested our approach for predicting the effect of single amino-acid mutations in two different proteins: 
the β-lactamase TEM-1, a bacterial enzyme providing antibiotic resistance, and the PSD-95 signaling domain 
belonging to the PDZ family. In both systems computational predictions can be tested against recent 
high-throughput experiments quantifying the in-vivo functionality of thousands of protein variants22,23. Figure 4 
shows the Pearson correlations between inferred energies and measured fitnesses as a function of the weight λ: 
Maximal accuracy is achieved at finite values of λ when both sources of information are combined, significantly 
increasing the predictive power of the models inferred considering the statistics of homologs only (λ =​ 0). When 
repeating the integrated modeling with a paramagnetic model where all sites are treated independently, 

= −∑ = h aa( ) ( )i
N

i i
ind

1  (only single-site frequencies are fitted in this case) the predictive power drops as com-
pared to the Potts model, cf. the red lines in Fig. 4.

Conclusion
In this paper, we have introduced an integrative Bayesian framework for the inverse Ising problem. In difference 
to the standard setting, which uses only a global sample of independent equilibrium configurations to reconstruct 
the Hamiltonian of an Ising model, we also consider a local quantification of the energy function around a refer-
ence configuration. Using simulated data, we show that the integrated approach outperforms inference based on 
each single dataset alone. The gain over the standard setting of the inverse Ising problem is particularly large when 
the equilibrium sample is too small to allow for accurate inference.

This undersampled situation is particularly important in the context of biological data. The prediction of 
mutational effects in proteins is of enormous importance in various bio-medical applications, as it could help 
understanding complex and multifactorial genetic diseases, the onset and the proliferation of cancer, or the evo-
lution of antibiotic drug resistance. However, the sequence samples provided by genomic databases, like the 
multiple-sequence alignments of homologous proteins considered here, are typically of limited size, includ-
ing even in the most favorable situations rarely more than 103–105 alignable sequences. Fortunately, such 
sequence data are increasingly complemented by quantitative mutagenesis experiments, which use experimental 
high-throughput approaches to quantify the effect of thousands of mutants. While it might be tempting to use 
these data directly to measure mutational landscapes from experiments, it has to be noted that current experi-
mental techniques miss at least 2–3 orders of magnitude in the number of measurable mutants to actually recon-
struct the mutational landscape.

In such situations, where no single dataset is sufficient for accurate inference, integrative methods like the one 
proposed here will be of major benefit.

Figure 4.  Linear correlation between experimental fitness effects and predictions from integrated models, 
at different values of λ, for 742 single mutations in the beta-lactamase TEM-1 (left panel) and for 1426 
single mutations in the PSD-95 PDZ domain (right panel). Error bars represent statistical errors estimated 
via jack-knife estimation.
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Methods
Data.  Artificial data.  For a system of N =​ 32 binary spins, couplings J0 and fields h0 are chosen from a 
Gaussian distribution with zero mean, and standard deviation .~ N0 8/  for J and 0.2 for h (analogous results are 
obtained for other parameter choices, as long as these correspond to a paramagnetic phase). Dataset Deq is created 
by Markov chain Monte Carlo (MCMC) simulation, resulting in M =​ 100 equilibrium configurations. A large 
number (~105) of MCMC steps are done between each of those configurations to ensure that they are independ-
ent. One of these configurations is chosen at random as the reference sequence (“wild-type”), and the energies of 
all N configurations differing by a single spin flip from the reference are computed (“single mutants”). Gaussian 
noise of variance ∆0

2 can be added to these energies, resulting in dataset DE.

Biological data.  Detailed information about the analysis of biological data is provided in the 
Supporting Information.

Details of the inference.  For artificial data, Eq. (9) are solved using steepest ascent, updating parameters J 
and h in direction of the gradient. To ensure convergence, we have added an additional 2-regularization to the 
joint likelihood: γ γ+h J( ) ( )h J2

2
2

2. A gradient ascent method has been analogously used for the case λ =​ 1. 
To estimate the gradient, it is necessary to compute single and pair-wise probabilities pi(J, h) and pij(J, h). Their 
exact calculation requires summation over all possible configurations of N spins, which is intractable even for 
systems of moderate size N, so we relied on the following approximation schemes.

Mean-field inference.  In the analysis of artificial data we relied on the mean-field approximation (MF) leading 
to closed equations for pi and pij:

= +

− = − .

∑ ∑+ +

−

≠ ≠p e e

p p p J
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i
h J p h J p

ij i j ij
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i j i ij j i j i ij j

The main advantage of the MF approximation is its computational efficiency: The first term is solved by an iter-
ative procedure, the second requires the inversion of the couplings matrix J. However, the approximation is only 
valid and accurate at “high temperatures”, i.e. small couplings35. This condition is verified in the case of the arti-
ficial data described above.

MCMC inference.  Correlations observed in MSA of protein sequences are typically too strong for the MF 
approximation to accurately estimate marginals of the model. Therefore we use MCMC sampling of MMC =​ 104 
independent equilibrium configurations to estimate marginals at each iteration of the previously described learn-
ing protocol.

Global evaluation of the inferred Ising model.  The Kullback-Leibler divergence =D P Q( )KL  
∑ P s P s Q s( )log { ( )/ ( )}s  is a measure of the difference between probability distributions P and Q. It is zero for 
P ≡​ Q, and otherwise positive. In the case of Boltzmann distributions ∝ −P e P and ∝ −Q e Q, its expression 
simplifies to

|| = − + − .D P Q( ) log log (18)KL Q P P Q PH H Z Z

Evaluating this expression requires the exponential computation of the partition function of both models P 
and Q . To overcome this difficulty, we use the symmetrized expression in Eq. (15), which only involves the aver-
age of macroscopic observables.

The symmetrized Kullback-Leibler divergence is computed by obtaining MK =​ 128000 equilibrium configura-
tions from both P and Q, using them to estimate the averages in Eq. (15).
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5
D I R E C T C O U P L I N G A N A LY S I S F O R
P H Y L O G E N E T I C A L LY C O R R E L AT E D D ATA

Statistical models of proteins sequences such as DCA are built on two
assumptions: sequences A are distributed according to some fixed
equilibrium distribution P0(A), and two homologous sequences found
in an alignment are independent samples from P0, i.e. P(A1, A2) =

P0(A1)P0(A2).
However, the evolutionary history of proteins is in evident contradic-
tion with that second assumption. The very notion of protein family
implies that present sequences derive from a common ancestor. If the
divergence time between members of a family is usually long enough
to result in large sequence diversity, it can also be very short for sub-
sets of sequences. This is commonly seen in MSAs, where sequences
differing only by a few amino acids are frequent.
If the branching event separating sequences A1 and A2 took place
at time ∆t in the past, the joint probability should be written as
P(A1, A2|∆t), a priori different from the product of the two equilib-
rium probabilities. This is made evident in the case ∆t = 0, where
A1 = A2 and P(A1, A2|∆t = 0) = P0(A1)δA1,A2 . This extreme situa-
tion can be observed in protein families, where protein sequences of
closely related organisms are distinct only by a few mutations.

This poses an important problem to the inference of a statistical
model, as the expression of the likelihood of the data in Eq. (2.11)
becomes approximate. Such an approximation leads to biased statistics,
such as those represented in figure 5.1. For instance, closely related
organisms over-represented in the family may bias statistics toward
certain sequences. Likewise, figure 5.2 shows the possible appearance
of spurious correlations, not due to any functional or structural inter-
action between residues but to the way data has been collected. Direct

Figure 5.1: Homologous proteins constituting an MSA are related by common
ancestors through a phylogenetic tree.
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Figure 5.2: Toy example of a possible spurious correlation due to phyloge-
netic bias. Here, the sequence consists of two letter drawn at
random. A recent common ancestor for the two top sequences
and the two bottom ones biases distribution at the leaves of the
tree.

inference of a DCA model thus leads to the existence of couplings
parameters that attempt to model those biased statistics. As a result,
the parameters of the DCA model cannot be expected to accurately
represent functional constraints acting on the protein, even if the single
sequences where distributed according to P0.
Usual implementations of DCA use the so-called re-weighting (section
2.4.3)scheme to account for phylogeny: sequences with more than 80%
identity are down-weighted, counting for one observation in total. In
the ∆t = 0 case, this has the correct effect of considering A1 and A2

as a single observation. In the general setting however, this is only
a crude correction for the biases. Here, we aim at designing a more
principled method of taking phylogenetic effects into account.

5.1 methods

Quantitatively, the evolutionary process can be defined by its propaga-
tor P0(A2|A1, ∆t): the probability of observing sequence A2 knowing
that it has sequence A1 as an ancestor at a time ∆t in the past. For the
evolutionary process to be stationary, the propagator should satisfy
the condition

∑
A1

P0(A2|A1, ∆t)P0(A1) = P0(A2). (5.1)

The equilibrium distribution of sequences can be recovered from this
expression by taking ∆t→ ∞, making sequence A2 independent from
A1. If this propagator is known, the topology of the evolutionary
tree allows one to have an analytical expression for the likelihood
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of observing the existing sequences of the MSA using an algorithm
designed by Felsenstein [30].
Let T stand for the evolutionary tree, with nodes of T indexed by
n. Following [86], let Ln(A) be the probability of observing existing
sequences that share n as an ancestor, given that the sequence of
this ancestor is A, and without any information on the sequences
at potential intermediary nodes. If n represents a leaf node, i.e. an
existing sequence An, we trivially have Ln(A) = δA,An . For an internal
node of the tree, the following recursion stands:

Ln(A) = ∏
m∈C(n)

(
∑
B

P(B|A, ∆tm)Lm(B)

)
, (5.2)

where C stands for the indexes of the children of node n, and ∆tm the
time separating node m from its direct ancestor n. Figure 5.3 illustrates
this idea. This recursion can be conducted from the leaves to the root
r of the tree, with Lr(A) as a result. Since the sequence of the root
of the tree is unknown, it is necessary to sum over all sequences one
more time. The probability of observing existing sequences given the
tree and the propagator P0 is then

L
(
{Am}, m ∈ leaves|P0) = ∑

A
P0(A)Lr(A). (5.3)

If the propagator would depend on parameters J and h of the DCA

model, it could be possible to optimize L over those parameters,
finding the most likely Potts distribution accounting for observed
sequences and their phylogenetic tree.
However, this approach suffers from two major problems. The first is
that the propagator P0(A2|A1, ∆t) associated to the Potts model is not
known a priori. A possibility for estimating it would be to sum over all
possible evolutionary trajectories from A1 to A2, but it is intractable
in practice. The second is that each use of the recursion relation (5.2)
involves the summation over all possible sequences of the children
of node n. This amounts to summing over 20L terms, L being the
sequence length, and so for every node in the tree. Thus, a direct
application of this scheme impossible for systems of realistic sizes.
The following sections propose two approximations based on the
previously described idea, intending to make the computation of the
likelihood tractable.

5.1.1 Approximating dynamics: independent sites evolution

In order to reduce the complexity of the problem, we choose to use an
approximation commonly used in evolutionary biology and phylogeny.
The independent sites approximation – also referred to as "single site"
approximation in the following– considers each column of the MSA

as evolving independently from the others. In this setting, instead of



70 direct coupling analysis for phylogenetically correlated data

Figure 5.3: Illustration of equation 5.2. Ln(A), represented by the left tree, is
the probability of observing configurations of the leaves given that
the common ancestor is A. This probability can be decomposed
into a product over A’s children, necessitating summation over
all possible configurations of the children.

considering probabilities of observing full sequences, as in Ln(A), we
focus on the distribution of amino acids at one MSA column only. The
equivalent of equation (5.2) becomes

Ln
i (α) = ∏

m∈C(n)

(
q

∑
β=1

P(β|α, ∆tm)Lm
i (β)

)
, (5.4)

where Ln
i (α) is the probability of observing the state of column i in ex-

isting sequences that share n as an ancestor, given that the sequence of
this ancestor contains α at this position. Summations over all possible
configurations of internal nodes are replaced by summations over one
symbol β, resulting in a complexity of O(L× N × q) for computing
the L site-wise likelihood, where N is the number of internal nodes of
the tree and L the length of the sequences.
In order to apply this idea, a propagator is designed using the Felsen-
stein model for evolution [30], using a constant mutation rate µ: in
time ∆t, one or more mutations happen with probability (1− e−µ∆t).
In this case, the new residue at position i is choosen according to its
stationary distribution P0

i (α) = ωi(α). In the case of no mutational
event, residue at i stays equal to that of its ancestor. The following
propagator summarizes this process:

Pi(β|α, ∆t) = e−µ∆tδα,β + (1− e−µ∆t)ωi(β). (5.5)
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Using this simple dynamical model and applying the recursion of
Eq. (5.4), it is possible to compute the likelihood of the observed data
in a reasonable time.

5.1.2 Approximating dynamics: independent pairs evolution

Using the independent sites approximation, one recovers the most
likely single site stationary distribution ωi,(α), given the existing align-
ment and the topology of the evolutionary tree. However, this method
is intrinsically unable to correct for spurious correlations such as that
displayed in figure 5.2. A way to take two point statistics into account
is therefore needed. On the other hand, performing the phylogenetic
inference with a model of the full sequence is intractable, as is ex-
plained at the beginning of this section.
To deal with this dilemma, we choose to use an independent pairs
approximation: each pair of sites i and j is thought of as evolving
independently from the others, with a propagator similar to that of
Eq. (5.5). The probability in time δt that i changes from α to γ, and j
from β to δ is defined as

Pij(γ, δ|α, β, ∆t) =e−2µ∆tδα,γδβ,δ

+e−µ∆t(1− e−µ∆t)
(
δα,γωij(δj|γi) + δβ,δωij(γi|δj)

)
+(1− e−µ∆t)2ωij(γ, δ) ,

(5.6)

where P0
ij(γ, δ) = ωij(γ, δ) is the stationary pairwise distribution at

sites i and j, and ωij(γ|δ) = P0
ij(γ, δ)/P0

i (δ) is the conditional prob-
ability of observing γ in i knowing δ in j. In turn, the Felsenstein’s
recursion relation becomes

Ln
ij(α, β) = ∏

m∈C(n)

(
q

∑
γ,δ=1

P(γ, δ|α, β, ∆tm)Lm
i (γ, δ)

)
. (5.7)

The summation over all possible configurations of two sites and the
computation of the likelihood for all pairs now results in a still feasible
complexity of O(L2 × N × q2).
Of course, a naive application of this method poses a major consistency
problem: two pairs sharing one residue cannot evolve independently.
As a result, the inference of the most likely pairwise statistic ωij(α, β)

for each pair will give inconsistent results. For three residues i,j and k,
one might have

q

∑
β=1

ωij(α, β) 6=
q

∑
γ=1

ωik(α, γ). (5.8)

To settle this inconsistency, we propose to optimize for the most likely
pairwise distribution under the constraint that its partial sums corre-
spond to the single site distribution obtained using the independent
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site approximation scheme (superscript is). In other words, for all i
and j, the following will stand:

q

∑
β=1

ωij(α, β) = ωis
i (α) and

q

∑
α=1

ωij(α, β) = ωis
j (β), (5.9)

where ωis
i (α) stands for the result of the scheme described in 5.1.1.

The hope is that by extending the phylogenetic inference beyond a site-
wise description, the background pairwise statistics of the evolutionary
process might be recovered, therefore improving the inference of the
DCA coupling parameters.

5.1.3 Optimization: maximizing the likelihood

The independent sites or independent pairs approximations allow for
a computationally efficient estimation of the likelihood. In order to
correct empirical frequencies f for phylogenetic bias, it is now needed
to find stationary frequencies ω that maximize the approximated like-
lihood: equation (5.4) (resp. (5.7)) has to be optimized over ωi(α) (resp.
ωij(α, β)). Since each site i or each pair (i, j) is independent from the
others (depending on the approximation used), the optimization is
conducted over either q or q2 parameters. However, the gradient of
the likelihood in both approximations is intractable, and its concavity
is unknown, making the use of standard gradient ascent techniques
impractical.
Here, we rely on a stochastic optimization scheme which was em-
pirically found to be efficient in this scenario, inspired from [22].
Parameter space – i.e. the ωi(a) or the ωij(a, b) – is randomly sampled
by making global or local random moves: in global moves, all parame-
ters to be optimized are simultaneously changed, while in local moves
only one is changed. The moves are only accepted if they lead to an
increase if the likelihood. Their magnitude is decreased throughout
the optimization, starting with large displacement in parameter space
and ending with small adjustments. After a pre-defined number of
moves are made, and the best parameters found are returned.
This scheme is rather empirical and does not guarantee convergence.
However, in testing scenarios where the stationary frequencies ω are
known, it was found to always lead to the correct solution.

In the case of the independent pairs approximation, ωij(α, β) needs
to be optimized under the constraints defined in equation (5.9). For
this reason, moves proposed by the stochastic exploration of parameter
space need to satisfy the constraints at all times. Here, we use a re-
parametrization trick inspired by the definition of Direct Information
(see appendix a.1): temptative pair frequencies are written as

ωij(α, β) =
1

Z(J, hi, hj)
exp

(
J(α, β) + hi(α) + hj(β)

)
. (5.10)
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The optimization is then conducted over the coupling parameter J.
Whenever J is changed, compensatory fields hi and hj are re-estimated
in order to satisfy the marginalization constraints. In this way, op-
timization is conducted in the space of frequencies that do satisfy
equation (5.9).

5.1.4 Inferring dca models based on corrected statistics

To infer Potts models based on frequencies corrected through the
method describe above, we used the PLM method (see section 2.3.2).
Its main advantage is its statistical consistency, meaning that with
enough i.i.d. samples we are guaranteed to recover the original model
(if it is of the Potts form). However, the PLM inference is not directly
based on frequencies fij but on the samples themselves. The methods
described above, however, do not yield corrected samples but corrected
frequencies.
In order to use the PLM inference, we designed a way to construct a
sequence alignment which has a given target pairwise statistic f target

ij ,
using a simulated annealing strategy based on the work in [75]. The
idea is to start with an alignment having the correct target profile
f target
i . Single variables am

i are then permuted in the following way: at
each move t, a column i and two lines m and n are chosen at random,
and an attempt to exchange am

i and an
i is made. The probability of the

exchange to take place is

P(exchange) = min
(

1, exp
(

β||Ct+1 − Ctarget|| − β||Ct − Ctarget||
))

,

(5.11)

where Ct and Ct+1 are the connected correlation matrices of the cur-
rent alignment before and after the exchange, Ctarget the correlation
matrix corresponding to the target frequencies, || · || stands for the
Frobenius norm of matrices, and β is an inverse temperature pa-
rameter. Thus, a move is more likely to be accepted if it makes the
connected correlation matrix of the alignment closer to that of the
target. Parameter β is initialized at a low value and slowly increased
as more moves are made. In this way, when β goes to infinity, we hope
to have C −→ Ctarget.
Importantly, this procedure never changes the single point marginals
of the alignment, since exchanges are made inside one column. Be-
cause the starting point has the correct single point marginals f target

i ,
the designed sample will always keep these marginals. In this way,
since we expect C −→ Ctarget as the temperature goes to zero, we will
also have fij −→ f target

ij . In practice, the result of this procedure gives
a Frobenius norm ||C − Ctarget|| typically smaller than noise due to
finite size samples on each fij(a, b).
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This procedure allows us to construct a sample based on the cor-
rected pairwise frequencies ωij, using the independent pairs approxi-
mation described above: the target frequencies are simply set to the
ones resulting from the optimization of the likelihood: f target

ij = ωij.
However, this is not possible when using the independent site cor-
rection, since only the single site frequencies ωi are corrected. In this
case, we build an artificial pairwise frequencies matrix defined by

ωij(a, b) = fij(a, b)− fi(a) f j(b) + ωi(a)ωj(b), (5.12)

The pairwise statistics defined in this way will have the corrected
single site frequencies as marginals, but uncorrected connected corre-
lations.
However, a major drawback of this method is that this manner of com-
bining different frequencies gives rise to inconsistencies, with some
terms ωij(a, b) being larger than 1 or smaller than 0. It is therefore
impossible for our simulated annealing procedure to construct an
alignment exactly reproducing these frequencies.
Once the corrected pairwise statistics are computed and a correspond-
ing alignment built, the PLM method is used to infer the DCA model.

5.2 results : toy model

5.2.1 Design of the toy model

In order to test the methodology, we first try our methods on a toy
model. As the aim of correcting data for phylogenetic bias is ultimately
to have a better DCA inference, we choose our toy model to be of the
Potts form. In this manner we know that without any phylogeny and
with enough samples from the toy model, the parameters J and h
should be recovered with high accuracy.
For computational efficiency, the length of the model is set as L = 25,
with q = 4 states for its variables. Couplings and fields are drawn
from a normal distribution, with couplings taking a ferromagnetic
form:

J0
ij(a, b) = sijx

J
ij · δa,b and h0

i (a) = xh
i (a), (5.13)

where {x J
ij}, i, j ∈ {1 . . . L} and {xh

i (a)}, i ∈ {1 . . . L}, a ∈ {1 . . . q} are
gaussian variables:

x J
ij ∼ N (µJ , σJ) and xh

i ∼ N (µh, σh), (5.14)

and sij are discrete variables taking values in {0, 1}:

sij =

 1 with probability c/L,

0 with probability 1− c/L.
(5.15)
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To mimic the effect of structural contacts, we dilute the couplings by
taking a value of c = 3, making the J0 matrix sparse. Therefore, each
site i shares a direct coupling Jij with on average 3 other sites j.

5.2.2 Artificial data

To simulate the effect of phylogeny, we sample the toy model P0 us-
ing MCMC on a binary tree. Two MCMC chains are initialized from a
root configuration, itself drawn from a fair sample of P0, resulting in
two new configurations. This process is then iterated, taking the two
resulting configurations as new roots, thus growing the tree. For K
iterations – "duplications" –, the resulting tree will have 2K leaves. For
each MCMC run, a number of "mutations" is drawn from a Poisson
distribution with parameters µτ. For each of those mutations, a site i is
chosen at random and its new state is drawn from the local conditional
probability P0(ai|A\i) in a Gibbs sampling manner.
This scheme guarantees that the number of mutational events will
correspond to dynamical models in Eqs. (5.5) and (5.6). However, the
way residues are re-drawn after a mutation depends on the full current
sequence through distribution P0, unlike the simplifying assumptions
of the propagators.
For simplicity reasons, µτ is set to be identical for all branches of the
tree, taking values 3, 5 or ∞ (i.e. µτ � L), resulting in respectively
strong, weak and absent phylogenetic effects. In the following, the
samples corresponding to finite values of τ will be referred to as biased
samples, while the one corresponding to tau→ ∞ will be referred to
as a "fair" or i.i.d. sample. 12 duplication events are performed, result-
ing in a tree of 212 = 4096 leaves and 212− 1 internal nodes. Finally, in
order not to depend on the particular choice of the root configuration,
30 repetitions of the sampling process are performed for each τ.
For concision of the main text, only results concerning the µτ = 3 are
shown. This represents the hardest case, as phylogeny effects are more
pronounced for short branch lengths. Results for the µτ = 5 case are
shown in appendix b in the form of figures.

5.2.3 Phylogenetic inference corrects one and two points statistics

To assess the quality of the phylogenetic correction, we first compare
single site and pairwise statistics before and after our inference to the
same observables measured in an i.i.d. sample drawn from P0.
In the case of the independent sites approximation, the single site
statistics are corrected. This observable as measured in the biased sam-
ple – i.e. sample coming from the leaves of the tree, without correction,
referred to in the figures as the "tree" sample – will be referred to as
f t
i . After correction, we refer to it as f in f

i , and as f 0
i in the case of the
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Figure 5.4: Result of the single site phylogenetic inference. A. Single site
statistics of a sample of P0 coming from a tree, before ("Tree") and
after ("Inferred") the phylogenetic inference, against "true" single
site statistics coming from the fair sample. B. Slope of the linear
regression and pearson correlation corresponding to the plot in A,
for the 30 repetitions of the experiment. The black-circled points
correspond to the repetition displayed in A.

i.i.d. sample.
As demonstrated in figure 5.4, the inference clearly improves the es-
timation of single site frequencies over naive counting in the biased
sample. Pearson correlations between f in f

i and f 0
i are significantly

higher than between f t
i and f 0

i , being larger than 0.8 in 29 out of 30

repetitions. This contrasts with the remarkably low correlations of 0.4
that can be achieved for some realizations of the tree if no correction
is performed. Similarly, the slope of a linear regression of f in f

i against
f 0
i tends to be much closer to 1 in most cases, also showing lower

variation from repetition to repetition.

A similar comparison is made for pairwise frequencies in the case
of the independent pairs approximation. We now compare f t

ij and

f in f
ij to their counterpart from the i.i.d. sample f 0

ij. The two top panels
of figure 5.5 once again show an improvement resulting from the
phylogenetic inference, as pairwise statistics are closer to match f 0

ij
after it is performed.
However, one has to keep in mind that some of this improvement
is due to the single site correction. Indeed, in the independent pairs
approximation, marginals of the pairwise frequencies are constrained
to match the corrected single site frequencies f in f

i . In order to evaluate
the intrinsic quality of the pairwise method, we focus on the connected
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correlations cij = fij − fi f j, thus removing the influence of the single
site correction. Bottom panels of figure 5.5 demonstrate that even this
intrinsically pairwise quantity is recovered with higher accuracy after
inference. Even our very crude approximation – considering every
pair as evolving independently – can correct some of the statistical
bias due to phylogeny, improving over naive counting in the MSA.

5.2.4 dca parameters are recovered with increased accuracy

We infer DCA models based both on the uncorrected and the corrected
frequencies f t

ij and f in f
ij using the methodology described in section

5.1.4. To evaluate both of our approximations, we infer the DCA model
in the case of the single site correction and the independent pair cor-
rection.
In the top panel of figure 5.6, inferred parameters are then compared
to the true ones J0 and h0 using Pearson correlation as a measure.
Both methods – single site and independent pairs, labeled as pairwise
in the figures – lead to a significant improvement in the inference
of fields. However, the inference of couplings is deteriorated when
using only the single site correction, whereas it is improved in the
pairwise case. This may be due to the inconsistencies appearing when
combining correlations from the biased sample with corrected single
site frequencies, as is explained in section 5.1.4. Indeed, such inconsis-
tencies (frequencies larger than 1 or smaller than 0) were observed for
all of the 30 repetitions.
To understand if the inferred DCA models are a better fit to the true
distribution, we compute their symmetric Kullback-Leibler distance
to P0:

DKL(Q||P0)+DKL(P0||Q) = 〈HQ−HP0〉HP0 + 〈HP0 −HQ〉HQ . (5.16)

An explanation for the use of this quantity is given in the Methods of
the article of chapter 4. Shortly, while the standard KL-distance depends
on the intractable calculation of the partition function of one of the
distributions, its symmetrized version can be easily estimated by
MCMC sampling. Figure 5.6 shows a histogram of this quantity for
the 30 repetitions of each sampling process. A clear ranking between
methods appears, with the inference based on the biased sample being
the worse. Both phylogenetic corrections result in a model that is
close to P0, with an advantage to the pairwise method. Surprisingly,
the decrease in inference quality of the couplings when using the
single site correction does not appear to have a strong influence on
Kullback-Leibler distance, as there is a very large drop of this quantity
between a biased sample based or a single site correction based DCA.
However, this does not stand in the case of "contact prediction", where
the single site correction based DCA performs significantly worse than
others. Since our artificial model is sparse in the sense that most of
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Figure 5.5: Result of the pairwise phylogenetic inference. A. Pairwise fre-
quencies fij(a, b) of a sample of P0 coming from a tree, before
("Tree") and after ("Inferred") the phylogenetic inference, against
"true" pairwise frequencies coming from the fair sample. B. Slope
of the linear regression and pearson correlation corresponding
to the plot in A, for the 30 repetitions of the experiment. The
black-circled points correspond to the repetition displayed in A.
C. Same as A for connected correlations cij = fij − fi f j. D. Same
as B for connected correlations.
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the J0
ij matrices are 0, we can use the inferred couplings as "contact"

predictors, where a contact is defined as a pair (i, j) for which the
coupling J0

ij is non zero. In this case, there is only a slight improvement
in using the pairwise phylogenetic correction and even a drop in
prediction quality when using the single site method.

5.2.5 Improvement in the prediction of single mutant’s energies

One of the most promising application of DCA-like methods is the
ability to infer the effect of mutations in proteins from the MSA of ho-
mologs. Here, we want to investigate the potential of our phylogenetic
correction to enhance accuracy of these predictions. To recreate this
setting in our toy model, we consider single mutants of "wild-type"
artificial sequences. Wild-types can be taken either in the the phyloge-
netically biased sample, as would be the case in standard DCA, either in
the i.i.d. sample. For each "wild-type" sequence Am, all of its L× (q− 1)
single mutants are denoted by {Am

α }, α ∈ {1 . . . L× (q− 1)}. For each
of those, the effect of the mutation is defined to be the difference of
energy between Am and the mutant:

∆Hm,α = H(Am
α )−H(Am). (5.17)

H can be either the true Hamiltonian H0, then defining the true muta-
tional effect, or an inferred one, corresponding to the inferred muta-
tional effect. In order to evaluate the influence of both the phylogenetic
correction and the DCA methodology on the quality of predictions,
we choose to also infer a profile model as a comparison point. As
described in the article of chapter 3, profile models have vanishing
couplings and reproduce the single site statistics fi using fields only.
They have been used with success for predicting mutational effects in
proteins based on the conservation profile of the MSA.

We first focus on the single site phylogenetic correction. For each
model, profile Hpro f and DCA Hdca, and for each statistic, uncorrected
f t
i and corrected f in f

i , we compute the Pearson correlation between
{∆Hm,α}α and the correct energies {∆H0

m,α}α. This is repeated for each
sequence Am in either the biased or the i.i.d. sample, and all resulting
Pearson correlation are averaged into one score representing the qual-
ity of predictions of the energies of single mutants with wild-types in
a given sample.
As is shown in figure 5.7, when the reference sequence is taken in the
biased sample, all methods seem to perform equally well, apart from
the profile model inferred on the biased frequencies. In particular,
applying the DCA methodology and thus attempting to fit correlations
or using a simple profile model on corrected data seems to result in
the same improvement.
The picture changes when the reference sequence is taken in a fair
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Figure 5.6: DCA model inferred after single site or pairwise phylogenetic
correction A. Pearson correlation between parameters of inferred
and of true DCA models. y-axis: couplings Jij ; x-axis: fields hi.
One point corresponds to one repetition of the MCMC process
on the tree. B. Histogram of the symmetric Kullback-Leibler dis-
tances between inferred and true models for all repetition. C.
Positive predictive value for predicting non zero couplings (i.e.
"contacts") using inferred DCA models. DCA inferred on the i.i.d.

sample performs perfectly in this case.
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Figure 5.7: Pearson correlation in predicting energies of single mutants aver-
aged over sets of reference sequence. In the top panel, reference
sequences are taken in the biased sample, i.e. among the leaves of
the phylogenetic tree. In the bottom panel, reference sequences
are taken in a fair sample of P0. Predictions are made using four
models: respectively a profile model and a Potts model trained on
the uncorrected biased sample (resp. "Profile on tree" and "DCA
on tree"), and using the corrected single site frequencies (reps.
"Profile + single site inf." and "DCA + single site inf."). Error bars
indicate the standard deviation across the 30 repetitions of the
tree sampling process.

sample. In this case, the performance of both DCA on uncorrected data
and of the profile models drop significantly, whereas DCA inferred
on corrected frequencies remains as accurate. To investigate this fur-
ther, we compute the average Pearson correlation as a function of the
Hamming distance of the wild-type to the closest sequence in the
biased sample. Figure 5.8 shows that while the performance of the
uncorrected DCA and the profile models declines rapidly when using
a reference sequence far away from the biased sample, the corrected
DCA has a more stable performance before large hamming distances
are reached.

Since the combination of DCA and of the single site phylogenetic
correction outperforms profile models or a naive DCA approach, we
now consider inferring the Potts model based on the corrected pair-
wise frequencies. The same scoring as above is used, using all single
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Figure 5.8: Pearson correlation in predicting energies of single mutants av-
eraged over reference sequence at a given hamming distance to
the closest sequence in the biased sample, as a function of this
hamming distance. Error bars are inversely proportional to the
square root of the number of sequences in each hamming distance
bin. Profile and Potts models are inferred either directly using
biased data, or using corrected single site frequencies.

mutants for wild-type sequences in both samples and computing the
average Pearson correlation across wild-types. Figure 5.9 compares
the predictions of the DCA models using the tree levels of phylogenetic
correction: none, site-wise and pairwise. The latter leads to a signifi-
cant improvement in accuracy of predictions, outperforming the two
other methods. This stands both in the case of a wild-type belonging
to the biased sample or to the fair sample.
Again, we investigate the dependence of those predictions on the
distance of the wild-type to the closest sequence in the biased sample.
The largest increase in Pearson correlation resulting from the pairwise
phylogenetic inference once again happens for sequences that are far
from the biased sample (figure 5.10). Removing part of the phyloge-
netic bias seems to have a stronger influence when considering the
energy landscape around sequences that are far away from the leaves
of the phylogenetic tree. When using those leaves as a sample without
accounting for their non-independence, the resulting model seems not
to learn much about the energy landscape far away from those points.
However, correcting for non-independence even in a rather crude way
leads to a much better inference in this regard.

This phenomenon is also apparent in figure 5.11, where the average
energy of sequences of the i.i.d. sample is shown as a function of the
hamming distance to the biased sample. Sequences of the leaves of
the tree being "typical" of P0, it is unsurprising to see that the average
energy computed in H0 increases as the sequence gets further away
from them. However, when inferring a Potts model using uncorrected
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Figure 5.9: Pearson correlation in predicting energies of single mutants aver-
aged over sets of reference sequence. In the top panel, reference
sequences are taken in the biased sample, i.e. among the leaves of
the phylogenetic tree. In the bottom panel, reference sequences
are taken in a fair sample of P0. Predictions are made using a
DCA model inferred either directly on biased data, either using
corrected single site frequencies, either using corrected pairwise
frequencies. Error bars indicate the standard deviation across the
30 repetitions of the tree sampling process.

statistics from the leaves sequences, this increase in average energy is
much more abrupt. Energy differences between "typical" sequences
and distant ones in H0 are or the order of 10, but go up to 20 for a
model inferred on biased frequencies. In this scenario, the result of
the phylogenetic correction is to correct this overshooting, resulting in
a more accurate inference of the energies of distant sequences.
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Figure 5.10: Pearson correlation in predicting energies of single mutants
averaged over reference sequence at a given hamming distance
to the closest sequence in the biased sample, as a function of
this hamming distance. Error bars are inversely proportional to
the square root of the number of sequences in each hamming
distance bin. The Potts model is inferred either directly on biased
data, either using corrected single site frequencies, either using
corrected pairwise frequencies.

Figure 5.11: Average energy of sequences as a function of the hamming
distance of the sequence to the closest point in the biased sample.



6
S O M E R E S U LT S A N D O P E N Q U E S T I O N S

According to the results of chapter 3, DCA seems like a good model to
capture sequence variability in a protein family. Rather than just a tool
to make predictions about the structure of the protein, it appears to
capture some of the evolutionary constraints acting on the sequences,
explaining its accuracy in reproducing statistical patterns of an Multi-
ple Sequence Alignment, both fitted and not fitted by the method. If
these constraints are indeed grasped by the model, it is not surprising
that DCA succeeds in predicting diverse features of proteins such as
structural contacts, effects of mutations or potential functionality of
sequences (c.f. section 2.5).
This calls for a deeper understanding of the method and the way it
operates. In particular, if constraints acting on sequences are well cap-
tured by DCA, we should be able to interpret the inferred parameters
in a biologically meaningful way. However, DCA is far from being per-
fect. It infers a very large number of parameters – O(L2 · q2) coupling
parameters for a family with sequences of length L – using a relatively
small number of sequences, resulting in severe undersampling. More-
over, typical MSAs may suffer from biases such as those induced by
phylogeny, making the disentangling of truly evolutionary constraints
and other statistical signal non trivial.
In this section, we question the DCA modeling by asking the question
of its robustness and of the interpretation of its parameters.

All results in the following will be shown on the PF00072 family,
also used as an example in the article of 3. Most of them – e.g. the
non-sparsity of coupling matrices or the difficulty to structurally
interpret indirect effects on correlation – are robust across protein
families studied in chapter 3. The sparse modeling of section 6.2 or
the construction of cliques in section 6.1.2 were tested on relatively
few families for computational reasons, still giving consistent results
across those.

6.1 interpreting "direct" couplings

6.1.1 Coupling matrices are not sparse

As the acronym suggests, couplings obtained with Direct Coupling
Analysis (DCA) should represent a direct interaction, with biological
meaning. The most straightforward reason for such interactions to ex-
ist is a structural contact between two residues in the protein fold. The
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ability of DCA to predict some of these contacts is a good demonstra-
tion that the strongest couplings are interpretable in biological terms.
There could be other ways through which two residues may interact.
The dimerization of some protein domains creates interfaces, resulting
in new contacts that are unseen in a single structure. The folding
process of the protein could also be the source of co-evolution between
residues. However, all these potential sources of interaction between
residues are expected to be sparse to some extent: most residue pairs
in the protein should not interacting directly.
Yet, as the DCA inference allows for a coupling Jij between any pairs
of columns in the MSA, most of the resulting parameters are non-zero.
Figure 6.1 shows the distribution of the Frobenius norm of couplings
||Jij||2 = ∑

q
a,b=1 Jij(a, b)2 for the PF00072 family. The parameters have

been inferred using the BML implementation of DCA, thus reproduc-
ing very accurately statistical features of the alignment (cf. article of
chapter 3). It is clearly apparent that DCA introduces a finite coupling
for all pairs of residues. The majority of Frobenius norms are around
0.4, only three to four times weaker than the strongest couplings.
Whereas the strong couplings almost always represent contacts, the
majority of the parameters do not. Indeed, the fraction of couplings
corresponding to structural contacts for Frobenius norms around 0.4,
where the majority of parameters lie, is roughly equivalent to the
overall fraction of contacts in the protein fold. In other words, the vast
majority of coupling parameters do not have any interpretation in
terms of structural contact.
However, figure 6.2 shows that those parameters seem to be essential
for the model to accurately fit the data. In this figure, couplings are
sparsified by setting to zero those with a Frobenius norm smaller than
some threshold Fth. Larger couplings remain unchanged. Properties
of the resulting model such as mean energies of natural sequences
or fitting quality are evaluated as a function of the Frobenius norm
threshold. When Fth reaches a value of 0.5, in practice removing weak
couplings that do not contain any structural signal according to fig-
ure 6.1, the energies of natural sequences measured in the model
are heavily changed, and the fitting quality of correlations drops to
zero. When structurally meaningful couplings start to be decimated
– approximatively Fth = 0.8− 0.9, the energies of natural sequences
have already been completely modified, rising by about ∆E = 150,
and the fitting quality is close to zero for correlations.
This leads to a paradoxical situation. On the one hand, DCA is able to
extract structural information from sequence data by disentangling
direct and indirect effects through the use of direct couplings. On the
other hand, the vast majority of inferred parameters, though neces-
sary for the model to reproduce statistical patterns found in the MSA,
cannot be interpreted in terms of structural contacts.
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Figure 6.1: Left axis. Distribution of the Frobenius norm of couplings ||Jij||
for a BML inference on the PF00072 family. Gauge used is the
zero-sum. Most couplings have finite non-zero values. Right axis.
Fraction of couplings which correspond to a structural contact for
a given value of the Frobenius norm. Strong couplings are clearly
structurally interpretable, but the bulk of the distribution is not.

6.1.2 Chains and networks of couplings

The ability of DCA to predict contact is usually attributed to its capacity
to disentangle two different sources of correlations between columns
of the MSA, namely a direct interaction between residues and indirect
effects mediated through intermediary residues. As it appears that
DCA provides an impressively good model for sequence variability in
a protein family – in terms of structural information, but also in terms
of mutational landscapes and maybe for designing artificial sequences
– it becomes important to understand if parameters of the model can
be interpreted. In particular, networks of couplings that mediate cor-
relation between structurally distant residues should themselves be
structurally interpretable.
The article of chapter 3 introduced the use of chains of couplings as a
measure of indirect correlation effects. It was shown there (figure 2.
of the article) that it is possible to extract some structural signal from
those chains: pairs of residues strongly linked by all chains of length
2 are typically closer than random residues, and yet further away
than pairs with a strong direct coupling. However, it does not seem
possible to explain the existence of pairs of strongly correlated but
distant residues through individual chains of couplings. Indeed, when
considering the strongest chains, it was found that any individual
indirect effect is very weak compared to the direct coupling, and that
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Figure 6.2: Decimating the DCA model for PF00072 by removing couplings
with Frobenius norms smaller than a threshold. Top. Mean energy
of natural sequences in the model as a function of the Frobenius
norm threshold. Bottom. Fitting quality – Pearson correlation
between observables cij = fij − fi f j and fi as measured in the
alignment or in the model – as a function of the Frobenius norm
threshold.
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Figure 6.3: Top. Histogram of the largest distance found in each coupling
chains. The chains considered are the 4 strongest (excluding the
direct coupling itself) between each of the 100 most correlated
residue pairs in PF00072. The subset of pairs corresponding to
non-contacting residues (distant of more than 8Å) is shown as a
separate histogram.Bottom. Histogram of the strength of chains,
the path information PI, scaled to the direct information DI, for
each of the chains described above.

correlation seems to be a network effect.

To investigate whether the way correlations are mediated by the
network can be structurally explained, we look at the strongest cou-
pling chains for the 100 most correlated pairs of columns in the MSA

of PF00072. Figure 6.3 shows the distribution of the largest distance
found in each of the 4 strongest chains for each pair, excluding the
chain of length 1 corresponding to the direct coupling. As an exam-
ple, if a chain goes through residues i, j, k, l, the distance we consider
here is max(dij, djk, dkl). If this distance is larger than the threshold
defining contacting residues, here 8Å, then the corresponding chain
is not structurally explainable. As can be seen in the figure, a large
fraction of the maximum distances are larger than the threshold for
contact. This gets worse for distant residues, for which almost none of
the strongest chain can be structurally interpreted. The same figure
also shows the distribution of the strengths of strongest chains (path
information PI) scaled by the strength of the corresponding direct
coupling for the considered pair (direct information DI). For most
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chains, this ratio is smaller than 10%. Importantly, this histogram
includes pairs of distant residues, where the direct coupling is likely
not to be very strong as hinted by figure 6.1. Thus, even the strongest
coupling chains between the most correlated pairs have quite weak
effects compared to the direct coupling. Taken individually, coupling
chains seem to be either dominated by noise or heavily influenced by
the existence of the many non-structural weaker couplings shown in
figure 6.1. As such, it remains hard to interpret them.

Since the single one-dimensional coupling chain does not provide
much information, we investigate the effect of sub-networks on the
correlation. For a pair of correlated columns in the MSA, there should
exist a sub-network of sites, which we will call a clique, through which
the DCA model explains this correlation. If such a clique can be found,
one could try to see if it has relations to the structure of the protein.
The problem of finding cliques of sites mediating correlation between
two residues is not trivial. As in the definitions of direct information or
path information, we would like to assess the effect of a sub-network
of sites on the correlation between two residues, keeping constant the
conservation profile of all members of the sub-network. Yet, as figure
6.2 shows, setting couplings to zero – a corollary of removing sites
from the full network – strongly impacts single-site statistics fi(a) at
all sites. One way to achieve a constant conservation while removing
sites would be to introduce compensatory fields h̃ to the Hamiltonian,
tuned to compensate the vanishing couplings. This is the method used
for direct information and path information measures. However, when
a whole subnetwork is considered, tuning those compensatory fields
amounts to training a new model for each sub-network to be evalu-
ated, making things computationally intractable. Here, we designed
an alternative methodology explained in details in the appendix a.
Quickly summarized, a sub-alignment including only the sites of the
desired sub-network is extracted from the full MSA. Intra-column shuf-
fling moves are then proposed and accepted with a probability that
depends only on the couplings between sites of the sub-network, in
an MCMC-like fashion. This guarantees that the correct conservation
profile is maintained for each site, while the correlations between
columns corresponds to the couplings between clique members (see
appendix a for more details).
To find cliques that mediate correlation between a given pair of
columns, we decimate the model by iteratively removing individual
or small groups of sites that contribute least to the mutual informa-
tion of the considered pair. At each iteration, every column is tried
for removal, and the ones which least modify the MI are effectively
removed. Iterations are repeated until only the direct coupling is
left, corresponding to the direct information. For efficiency reasons,
residues are removed by groups at the beginning of the decimation,
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Figure 6.4: For 50 well correlated pairs of PF00072, mutual information MI
remaining as a function of the number of nodes that are removed
from the network. For each pair, MI is scaled so that it equals
1 when whole network is present (corresponding to the value
measured in the MSA), and zero when all other nodes have been
removed and only the direct coupling remains. The flat portions
of the curves are explained by the fact that several nodes are
removed at once at the beginning of the decimation.

but one by one at the end. Figure 6.4 shows this process of decimation
for the 50 most correlated pairs in PF00072: the mutual information
mediated by the clique is shown as a function of the number of re-
moved residues. To allow for comparison between pairs, MI is scaled
so that it is one when all the network is present, and zero when only
the direct coupling remains (points higher than 1 in figure 6.4 are due
to a statistical bias when estimating MI, leading to overestimations for
finite size data).
Figure 6.4 indicates that it is possible to remove a significant number
of sites without changing much to the correlation of a given pair.
For some pairs, removing up to ∼ 40 residues (out of 112 in total)
leaves the mutual information roughly to its original level. However,
it is also visible that there is no sign of well-defined subnetworks or
cliques. Once the first sites are removed, MI decreases steadily as more
decimation iterations are performed, and it does not seem possible
to define a cutoff value or a characteristic size for subnetworks. It is
therefore unpractical to identify a clique responsible for the observed
long-range correlations in MSA. This suggests once again that corre-
lation is mediated by a large portion of the network of couplings,
making interpretation of indirect effects very difficult.
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6.1.3 Distinct sets of dca parameters with equally good fitting quality

The BML method described in chapter 3 is based on iteratively mod-
ifying the parameters J and h in the direction of the gradient of
the likelihood function. As the optimization problem is convex, this
scheme should converge to a unique solution independently of how
it is initialized. However, BML is only run for a finite time, and esti-
mation of the gradient through MCMC is always approximative. As a
result, exact convergence is never reached. Therefore, the parameters
obtained through BML could depend on the way they were initialized.

Figure 6.5 shows parameters of two BML-inferred models with dif-
ferent initializations. For the first, initial parameters Jplm and hplm

are inferred using PLM approximation, and the Boltzmann machine
is run from there. The resulting PLM-initialized parameters are called
JBM/plm and hBM/plm. For the second, the BML is initialized to zero,
with resulting parameters called JBM/0 and hBM/0. Both methods are
run for a large number of iterations, until the fitting quality has satu-
rated to high values of about ∼ 0.9.
The top panel of the figure shows a comparison of JBM/plm (x-axis)
with JBM/0 and Jplm (y-axis). While all these parameters are quite
similar in between each other, it is visible that the PLM-initialized
couplings are slightly more correlated to their initialization point
Jplm than the other BML inferred model JBM/0. This is made quan-
titative by looking at Frobenius norms between couplings: we find
that ||JBM/plm − Jplm|| ' 14, while ||JBM/plm − JBM/0|| ' 30. This im-
plies that even after a large number of iterations and the Boltzmann
machines have accurately fitted the pairwise statistics of the data, cou-
plings stay closer to their initialization point than to other couplings
inferred from a different initialization.
What is even more striking is that this picture is completely modified
when looking at statistical properties of models instead of parameters.
The bottom panel of figure 6.5 shows pairwise frequencies fij(a, b)
of the two BML models with PLM and null initialization along with
those of the PLM model. With this metric, it is evident that JBM/plm

and JBM/0 are much closer to each other than to Jplm. While both
BML models have very close pairwise statistics, both fitting the data
with quality > 0.9, the PLM inferred model completely fails at fitting
statistics of the MSA. Again, this is made quantitative by looking at
symmetrized KL-distance (abusively writing a Hamiltonian H in place
of the probability it defines at temperature 1):

DKL(HBM/plm||HBM/0) = 8.3,

DKL(HBM/plm||Hplm) = 16.8,

DKL(Hplm||HBM/0) = 28.4.

(6.1)
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Figure 6.5: Results of the Boltzmann Machine Learning (BML) for two dif-
ferent initialization of the parameters: the PLM-DCA, and a zero
(or null) initialization. Top. Direct comparison of the Jij(a, b) pa-
rameters, with the PLM-initialized BML JBM/plm on the x-axis, and
the null-initialized JBM/0 on the y-axis. The PLM-DCA couplings
Jplm themselves are also shown on the y-axis. It is visible that
the PLM-initialized model stayed very correlated with its initial
parameters. In terms of distance, ||JBM/plm − Jplm|| ' 14 while
||JBM/plm − JBM/0|| ' 30. Bottom. Comparison of pairwise statis-
tics fij(a, b) for the same models as above. The PLM-initialized
BML is shown on the x-axis, and both the null-initialized BML and
the PLM-DCA are on the y-axis. The two BML models are very close
in terms of frequencies – and also a good fit to MSA data with a
quality of ∼ 0.92 –, while the PLM model fails to fit frequencies
found in the MSA.

Thus, models HBM/plm and HBM/0 are distant in parameter space, but
closer in the space of probability distributions. Inversely, HBM/plm

stays quite close to its initialization point Hplm in parameter space,
but is very far from it in terms of distribution.

The fact that two models with different couplings can be equally
good at fitting is made even more striking when initializing the Boltz-
mann machine with couplings coming from a sparse DCA model. Such
models are discussed in more details in section 6.2. Briefly, they include
non-zero Jij couplings only for a minority of pairs (i, j). When initial-
izing the BML algorithm from such a well-inferred sparse model, zero
couplings naturally relax to non-zero values (since only `2 regulariza-
tion is used, as opposed to l1, there is no penalty for couplings being
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Figure 6.6: Similar to figure 6.1. Left axis. Distribution of the Frobenius norm
of couplings ||Jij|| for two BML-inferred models, initialized with
PLM-inferred parameters or with sparse parameters (see section
6.2). Right axis. Fraction of couplings which correspond to a
structural contact for a given value of the Frobenius norm.

different from zero). However, even after many iterations, initially zero
couplings remain small compared to initially non-zero couplings. This
results in a bimodal distribution of couplings, represented in figure
6.6, and we refer to the resulting model as "pseudo-sparse" for this
reason. The difference with the continuous distribution given by a
PLM-initialized learning is striking. However, as shown in figure 6.7,
the pairwise statistics of the two distributions are highly similar, both
again fitting the MSA data with good accuracy. In terms of KL-distance,
one measures

DKL(HBM/plm||Hp.sparse) = 3.3. (6.2)

The couplings of the pseudo-sparse model have a much nicer inter-
pretation in terms of structure, as seen in figure 6.2. The "strong"
couplings, i.e. with Frobenius norm larger than ∼ 0.9, correspond to
structural contacts in 82% of cases, whereas the "weak" couplings, i.e.
Frobenius norm smaller than ∼ 0.5, seem to randomly correspond to
contacting or distant residues. The bimodal nature of the distribution
of couplings strength is satisfying in terms of interpretation: large
parameters detached from the bulk of the distribution are biologically
relevant, whereas the majority of small ones are not. However, as far
as statistical properties of the DCA model are concerned, the two BML

inferred distributions are equivalent.
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Figure 6.7: Top. Frobenius norm of couplings of the PLM-initialized (x-axis)
and the sparse-initialized (y-axis) BML models. Bottom. Similarity
of the single site statistics fi(a) (left panel) and the connected
correlations cij(a, b) between the PLM-initialized and the sparse-
initialized BML models. Both models are a very good fit to MSA

statistics, respectively 0.93 and 0.96 in fitting quality of connected
correlations.

This poses major understanding problems of the parameters of DCA.
On the one hand, the Maximum-Entropy Principle principle states
that the "good" model is the one reproducing pairwise statistics found
in the MSA. But we show here that down to some accuracy threshold
in fitting pairwise statistics, many such models exist with highly vary-
ing parameters. This points to the existence of very flat directions in
parameter space: large changes of J and h parameters lead to very
similar probability distributions. Even if the BML algorithm is run
for a large amount of iterations, little movement is made in these
directions as the gradient of the likelihood is near to zero. As a result,
the inferred models tend to stay close to their initialization point in
parameter space, even though they accurately fit the data. In a sense,
this means that the problem of finding correct values for all the direct
couplings is to some extent ill-defined.
On the other hand, DCA is claimed to divide measured correlation into
biologically relevant direct couplings, and indirect effects mediated
through the network of direct couplings. The results of this section
show that it is actually hard to make sense of how those indirect effects
are constructed or to interpret them in relation with the considered
protein. This is not so surprising, as these effects are built up from
many small parameters which can vary regarding to how the inference
is performed.
The combination of those two observations shows the strong limita-
tions on the interpretation of the DCA parameters. While the article
of chapter 3 invites one to think that pairwise co-evolutionary mod-
els might be the "right" models to describe variability in a Multiple
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Sequence Alignment, the lack of understanding of most of the pa-
rameters remains frustrating. One way to make DCA models more
interpretable would be to make couplings sparse. As stated at the
beginning of this section, it is reasonable to assume that all pairs of
residues should not interact directly: sparse couplings could represent
a more realistic network of interaction. Moreover, reducing the number
of parameters with a sparse model would likely solve the degeneracy
problem due to the existence of flat directions in parameter space. Fi-
nally, since the the small direct couplings do not contain any structural
signal, setting them to zero would make the model less prone to fine
tuning of the parameters to a specific dataset, and thus overfitting.

6.2 sparse dca models?

6.2.1 Decimating the couplings

The most straightforward way to make parameters of the DCA model
sparse would be to use l1 regularization, effectively imposing a cost for
non-zero parameters. However, tests conducted with the BML method
of 3 shown convergence problems of the algorithm when l1 regulariza-
tion is used. Here, we try a different approach by slowly decimating
the coupling parameters.
The idea is simple: couplings blocks Jij are ranked using their Frobe-
nius norm, and the weakest r are set to zero. r is typically a frac-
tion amounting to 1% or 2% of the total number of coupling blocks
L(L− 1)/2. The model is then re-inferred on all the MSA data, but
with some of its parameters now constrained to zero. This procedure
is then iterated by setting each time the currently r weakest couplings
to zero, and inferring again a new model. After n iterations, a model
with only 1− nr non-zero couplings is obtained. Since this method
requires n = 1/r inferences to explore all the possible sparsities, it is
computationally unpractical to implement it using accurate schemes
like BML. In practice, we use the PLM method to infer models, since it
offers a good compromise between accuracy and speed and sparsity
is easily enforced (as oppose to the Mean-Field approximation for
instance).
Figure 6.8 shows the results of this decimation process, again for
PF00072. The x-axis of all panels shows the fraction of Jij blocks that
are set to zero, with the decimation thus proceeding from left to right.
The first panel shows the quality of contact prediction when L = 112
predictions are made, without using the APC correction (see section
2.4.3). The fraction of correctly predicted contacts slightly raises as
couplings are decimated, until reaching the level of the non-decimated
PLM using the APC. When too many couplings are removed, quality
drops rapidly. A similar behavior is observed for the fitting quality
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of the model. Surprisingly, correlations are reproduced with slightly
higher accuracy as couplings are decimated, with fitting quality reach-
ing a maximum when around 90% of the parameters are set to zero,
and obviously dropping to zero when all are removed (due to the use
of the PLM approximation, fitting quality remains lower than that of
a BML learned model). The last panels show the pseudo-likelihood
of the data according to the decimated model: unlike the likelihood,
the pseudo-likelihood (see Eq. (2.20)) can be exactly and efficiently
computed. Clearly, the pseudo-likelihood of the data can only be de-
creased when parameters are removed from the model, since it is now
maximized over a subset of parameters. However, it is interesting to
see that its decrease is quite slow. To quantify this, a naive null-model
is shown where each removed coupling block Jij reduces the pseudo-
likelihood by the same amount. The difference between the actual
values and this null model are shown in the bottom right panel, and
exhibits a clear maximum. Interestingly, the position of this maximum
roughly coincides with the points where the correlations are best fitted
and where the contact prediction is of highest quality.

The slightly better accuracy in predicting contacts (without the
APC) or the small improvement in fitting correlations with a PLM

approximation are not impressive by themselves. What makes them
remarkable is that they are obtained by removing 80− 90% of the
parameters of the DCA model. The remaining parameters are able to
better reproduce statistics found in the MSA while making more sense
with respect to the structure of the protein: 82% of them correspond
to structural contacts.
This contrasts with figure 6.2, where couplings were decimated with-
out re-inferring the model. In this case, removing even the smallest
couplings has a strong disruptive effect on the resulting probability
distribution. This prompts the question of which couplings are set to
zero in this new decimation scheme. Figure 6.9 attempts to answer
this. On the top panel, Frobenius norms ||Jij|| of the initial PLM model
and of the one decimated at nr = 90% are compared. Two observa-
tions can be made: strong couplings in the initial model remain strong
after decimation, well correlated with their initial value even though
stronger in norm. However, some couplings which are quite small in
the fully connected model end up not being decimated, but on the
contrary increase in magnitude. This is well visible in the "flat" part of
the top panel of 6.9, with Frobenius norms which are relatively high in
the decimated model but low in the original one. Furthermore, these
"promoted" couplings seem completely uncorrelated to their initial
values.
One can ask whether the promoted couplings are reproducible: if
the decimation is implemented in a slightly different manner, will
the same small couplings emerge from the bulk? To answer this, we
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Figure 6.8: Decimating the PLM-DCA model. The x-axis of all plots is the
fraction of coupling blocks Jij that have been set to zero. Top
left. Fraction of correctly predicted contacts when L predictions
are made. Prediction is made with and without using the APC
correction. The state of the art APC-corrected PLM is shown as a
horizontal line. Top right. Fitting quality of conservations fi(a)
and connected correlations cij(a, b). Bottom left. Value of the
pseudo-likelihood. Straight line shows a "null" model where every
Jij block set to zero reduces the pseudo-likelihood by the same
amount. Bottom right. Vertical difference of the previous panel
between the pseudo-likelihood and the null model. The maximum
value of this scaled pseudo-likelihood is an estimation of the "best"
decimation ratio.
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Figure 6.9: All axes represent Frobenius norms of coupling blocks Jij. Top
panel. 90% decimated PLM model against initial non-decimated
one. Bottom panel. 90% decimated PLM models trained on two
different MSAs. The two MSAs are non-intersecting sub-alignments
of the PF00072 family.

perform the same decimation strategy on two non-intersecting sub-
alignments of PF00072, each of M = 5000 sequences, forming datasets
with slightly differing statistics. The Frobenius norms of couplings
of the two resulting decimated model (again with a decimation ratio
of nr = 90%) are compared in the bottom panel of figure 6.9. If the
strongest couplings are almost exactly the same between the two mod-
els (e.g. , Frobenius norm larger than 1.5), a subset of the weaker ones
are not decimated in the same way. Points shown as orange squares
in the figure are found to be zero in one model and non-zero in the
other. Together, they form about 4% of all parameters, while the ones
on which to the two model agree amount to 8%. As the legend of
the figure shows, most of the couplings which are non-zero in the
two models are contacts, a fraction which sensibly diminishes when
considering couplings for which they conflict.
This shows that although the decimation procedure is robust for large
coupling values, it is largely variable in the way it keeps initially small
couplings.
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6.2.2 Highly accurate sparse models

The previous section shows that it seems possible to reduce the num-
ber of parameters of the DCA model. However, this is achieved using
the PLM approximation, thus not accurately fitting statistical features
of MSAs. Is it possible to design a model precisely fitting the data with
a reduced number of parameters? Achieving accuracy calls for using
inference methods such as the BML algorithm. However, it is unpracti-
cal to decimate this model in the way that was used previously.
To overcome this, we decide to infer parameters with BML, using the
decimated PLM model as a starting point. Two strategies are imple-
mented. The first is simply to let the gradient descent of the BML take
place on all the parameters of the initial sparse model, even the ones
that were decimated. In this case, initially zero parameters relax to
finite values, making the model non-sparse. However, the distribution
of couplings remains bimodal, with a clear separation between initially
non-zero couplings that remain strong, and initially zero couplings
that remain weak. This distribution was shown in figure 6.6, and the
corresponding model is referred to as "pseudo-sparse". The second is
to constrain the initially decimated parameters to remain zero during
the gradient descent. In this way, only the initially non-zero couplings
are optimized by the BML.
The corresponding distribution of couplings is shown in figure 6.10,
along with the local contact fraction for each Frobenius norm. Natu-
rally, as in the PLM decimated model, couplings are divided into large
ones, most of which correspond to contacts, and a majority of zero
ones.
However, what is striking is the ability of this sparse model to re-
produce statistics found in the MSA. The top panels of figure 6.11

show scatter plots of single site statistics and connected correlations
corresponding to a sample of the sparse model and to the MSA. Al-
though not as good of a fit as a fully connected BML trained model
(shown in chapter 3 for instance), it is clearly visible that the capacity
of this sparse model to reproduce correlations is much higher than ,
for example, that of a fully connected PLM model (see bottom panel of
figure 6.5). Quantitatively, the fitting quality of this sparse model is
0.84, with 0.94 for the full BML model.

Another interesting feature of the sparse modeling lies in its robust-
ness with respect to a global change of the parameters. The bottom
panel of figure 6.11 shows the behavior of the heat capacity of the
sparse model as function of temperature. The heat capacity C can be
related to moments of the Hamiltonian H using the equation

C =
∂〈H〉βH

∂T

=
1

T2

(
〈H2〉βH − 〈H〉2βH

)
.

(6.3)
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Figure 6.10: Similar to figure 6.1. Left axis. Distribution of the Frobenius
norm of couplings ||Jij|| for the accurate BML inferred sparse
model. The leftmost part of the histogram corresponds to exactly
zero couplings. Right axis. Fraction of couplings which corre-
spond to a structural contact for a given value of the Frobenius
norm.

Variance and mean of H can be easily estimated through MCMC sam-
pling, making the computation of C possible. The behavior of the heat
capacity as a function of temperature T is quite different for the sparse
and the fully-connected models. In the latter, it goes through a large
maximum at T ' 1, indicating that a slight change in temperature
leads to large variations of the average energy 〈H〉. This can be inter-
preted as a sort of phase transition of the model, with two different
behaviors at T > 1 and T < 1.
Since a change in temperature can also be written as a global change
in effective parameters by the transformations J → J/T and h→ h/T,
the large variation of C at the T ' 1 is a sign of non-robustness or
overfitting of the DCA model. This almost completely disappears in the
case of the sparse model, where C varies relatively little, showing only
a very broad and shallow maximum. This observation is consistent
with the idea that a fully connected DCA infers too many parame-
ters, fine tuning the distribution to the available data and lacking
robustness.

6.3 going beyond sparse models?

It is striking that very accurate models can be inferred using only
a fraction of the coupling parameters. This makes the name Direct
Coupling Analysis much more meaningful: statistical patterns found
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Figure 6.11: Top panels. Single site frequencies fi(a) and connected corre-
lations cij(a, b) found in the MSA of PF00072 (x-axis), and in a
sample from the sparse model (y-axis).Bottom panel. Heat ca-
pacity ∂〈H〉βH/∂T as a function of temperature T, both for the
sparse model and the fully connected BML model.

in the MSA are explained by direct couplings, and the majority of
those correspond to physically interpretable features of the protein:
structural contacts. The fact that more than 80% of the couplings that
the sparse model of section 6.2.2 uses correspond to structural contacts
is highly satisfying in terms of modeling.
However, figure 6.11 clearly shows that not all connected correlations
can be fitted using such a reduced number of parameters. Even if the
Boltzmann machine is run for a long time, it does not seem possible
to achieve a better fitting quality than what figure 6.11 shows. One
explanation for this could be that the sparsity derived from decimating
the model using the PLM approximation is not optimal, and that with
a better choice of non-zero parameters, data could be fitted more
accurately.
Here, reasons for the impossibility of sparse coupling matrices of
reproducing all statistical variability of the data are discussed. As
stated many times, the idea underlying DCA is that correlation patterns
found in the MSA can all be described by a sparse network of direct
interactions between residues. However, there are hints that some of
the measured correlation does not fit this picture. In [18], authors
attempt to derive a Hopfield representation of the Potts model used in
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DCA. Briefly, this amounts to writing the coupling matrix J as a sum
of orthogonal patterns ξ

µ
i (a) to which sequences are "attracted":

Jij(a, b) =
K

∑
µ=1

ξ
µ
i (a)ξµ

j (b). (6.4)

In this representation, the patterns are the eigenmodes of the coupling
matrix, its rank being the number of patterns K. In the Mean-Field
(MF) approximation, patterns also correspond to the eigenmodes of the
Pearson correlation matrix of the alignment. A pattern corresponding
to an eigenvalue λµ for the Pearson correlation matrix will correspond
to an eigenvalue 1/λµ for the couplings. This is similar to what would
be expected from the MF equation J ∼ C−1 (see Eq. (2.16)). In [18], it
was found that both high and low eigenvalues of the correlation matrix
(respectively λµ � 1 or � 1)contribute strongly to the likelihood
function. Eigenmodes ξ

µ
i (a) corresponding to low eigenvalues tend to

be localized on a few positions i (low inverse participation ratio). In
the coupling matrix, they thus naturally form strong localized entries.
However, eigenmodes corresponding to high eigenvalues are found to
be typically spread across all positions. Thus, in the coupling matrix,
they result in small but spread out entries.
Interestingly, in [85], it was shown that decomposing the correlation
matrix of an MSA in a sparse part and a low-rank part improves the
quality of contact prediction. The correlation matrix is written as

C = S + L, (6.5)

where S is sparse in the sense that most elements Sij(a, b) are zero,
and L has most of its eigenvalues equal to zero. The resulting sparse
matrix can then be used as a quite efficient contact predictor, almost
as good as some DCA implementations.
Lastly, many results have been obtained by the so-called Statistical
Coupling Analysis (SCA) method concerning sectors [40, 53]. Sectors
are large groups of coherently co-evolving residues, that can usually
be linked to structure and have been found to be sensitive to muta-
tions. Mathematically, sectors are based on an independent component
analysis of the MSA, roughly corresponding to large eigenmodes of
the re-weighted correlation matrix.
This again points to the fact that signal in C may not come only
from a sparse network of structurally interpretable couplings, but also
contains "spread-out" modes. Removing those drastically improves
contact prediction, hinting that structure may not be determinant for
their existence. This would explain results in section 6.1.1: energies
and statistical properties of the DCA model are dominated by small
couplings which do not correspond to any structurally interpretable
quantity.
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Where could these spread-out eigenmodes of the correlation matrix
come from? Several explanations can be given. In [66], it is shown
that phylogenetic biases are the source of large eigenvalues in the
correlation matrix. If corresponding eigenvectors are removed, con-
tact prediction is improved, at least on simulated data. If this is the
case in actual MSA of protein families, being able to accurately correct
phylogenetic biases becomes important, as this would disentangle
structural or functional sources of correlation from those induced by
evolutionary processes themselves.
Another explanation is the potential presence of higher order interac-
tions being responsible for correlation not well explainable by current
DCA. It was for instance found in [69] that the introduction of well-
chosen three-body interactions can improve the contact prediction
ability of an MF inferred DCA model. Another way to introduce higher
order interactions is to suppose that the fitness of a sequence is a non-
linear function of a simple energy function. As an example, imagine
proteins in a folded state have an energy defined by a simple function
E(A) = ∑i hi(ai), and a zero energy in the unfolded state. Fitness of
sequence A, defined as its probability to be in the folded state, might
then be written as

f (A) =
e−E(A)

1 + e−E(A)
. (6.6)

This contrasts strongly with the way DCA is currently used to predict
fitness (see section 2.5.2), which assumes the following functional
form:

f (A) = −H(A) = ∑
1≤i<j≤N

Jij(ai, aj) +
N

∑
i=1

hi(ai). (6.7)

Whereas equation (6.7) is limited to pairwise effects, equation 6.6 has
interactions at all orders. At best, the former can be considered as a
low order expansion of the latter. It is important to mention that in
recent work [60], fitness effects of all double mutants of a protein were
accurately fitted with a model similar to Eq. (6.6), using three physical
states for the protein instead of two.
One last potential cause for interactions unexplainable by pairwise
couplings is the presence of latent variables. It is argued in [73] that if
a hidden variable interacts with a system, the variables of this system
can appear as coupled at all orders. This phenomena can even lead to
critical points in a model inferred without the knowledge of the latent
variable. If this is the case for protein sequences, then DCA should
be adapted to model for potential hidden sources of interaction, thus
disentangling couplings that are proper to the protein from others.

How could current DCA approaches be augmented to take these
observations into account? The ideas presented in [69] are one way
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to introduce higher order interactions in a feasible way: only those
which seem strongly backed by data are used. However, it is hard to
deal with orders higher than 3-bodies with this method because of the
finite size of available data.
Another way, restricting the model to pairwise interactions, would be
to combine the sparse representation of couplings discussed before,
and the Hopfield one of [18]:

J = JS + JL, (6.8)

where, for instance, JS would be similar to the couplings found in
section 6.2.2, and JL would be of the form of equation (6.4). In this
way, structurally interpretable parameters are separated from those
which are necessary to explain other phenomena.
This idea does not allow for higher order terms in the Hamiltonian.
However, it can be extended with the formalism of Restricted Boltz-
mann Machines (RBMs) [79]. An RBM involves two types of nodes,
namely the observable ones – corresponding to observed residues in
the DCA setting – and the hidden ones. Interactions only take place
between two nodes of different types. This formalization naturally
introduces hidden variables while keeping the Potts model of DCA as
a particular case, in which the potential acting on hidden variables is
Gaussian. However, the choice of other potentials for hidden variables
leads to interaction at all orders between residues.





C O N C L U D I N G R E M A R K S

DCA was proposed in 2009 as a tool to help in protein structure pre-
diction. Taking advantage of the large number of available protein
sequences, it was aimed at improving on simple correlation based
contact predictors. Further work has since demonstrated that pairwise
models can do much more than predicting contacts (section 2.5).

In this thesis, we have tried the limits of such models while im-
proving them in different directions. In chapter 3, we have shown
that DCA can serve as a good model for sequence variability inside
protein families: statistical features of these sequences are reproduced
by the Potts distribution, even though they were not fitted, while the
way direct couplings mediate correlation between distant residues has
been shown to be interpretable to some extent.
Chapter 4 served as a proof of concept, showing that it is possible to
integrate different types of information in the DCA framework, com-
bining global statistical features at the level of the family with local
measurement of single sequences in a natural way. Even though this
method could not be applied by lack of data, the rapid development of
experimental techniques and the increasing number of studies about
protein mutational landscapes or protein design could make these
ideas relevant in the near future.
In chapter 5, we tried to design corrections for known biases of data
DCA is used on. Members of protein families are by definition re-
lated by evolution, and thus cannot be considered as completely
independent samples of the same distribution. However, current co-
evolutionary models account for this in empirical and non-principled
ways. Correcting data for phylogenetic effects may lead to important
improvements in the ability of DCA to disentangle sources of different
statistical signal found in MSAs, namely functional constraints on the
sequence and statistical biases due to phylogeny.
Lastly, chapter 6 dealt with limitations of co-evolutionary models. The
main concern here is the vast number of parameters inferred by DCA:
while potentially millions of couplings are inferred to model a protein
family, only a handful can be interpreted and used to predict structural
contacts, making current models the opposite of parsimonious. It was
shown here that the development of more sparse modeling methods
may lead to improvements in interpretability.

To conclude, two lines of future research are proposed. The first
follows ideas presented in the last section 6.3. If accurate models of
protein families are to be constructed, it is only natural to make them
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as parsimonious as possible. As the goal of such methods is ultimately
to understand the functional constraints acting on proteins, it is nec-
essary for models to make use of parameters which have biological
meaning and can be interpreted.
The second one concerns the exciting field of protein mutational land-
scapes and protein design. As stated in 3, pairwise models might be
used as generative models to create new functional protein sequences.
At the same time, chapter 4 shows that their capacity to model the
fitness landscape proteins evolve in might be increased by incorporat-
ing new experimental information. Continuous experimental progress
in quantitative characterization of single protein sequences may pro-
vide the necessary information to go beyond the use of homologous
sequences alone. This provides an exciting opportunity to improve the
quality and predictive power of DCA-like methods.
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a
Q UA N T I F Y I N G I N D I R E C T E F F E C T S : C H A I N S A N D
C L I Q U E S

a.1 chains of couplings

In the first DCA implementations [57, 82], the interaction score used
to predict contact was the Direct Information (DI). Once the direct
couplings J are inferred, DI is defined for each pair of positions (i, j)
as

DIij = I
(

Pdir
ij (a, b)

)
=

q

∑
a,b=1

Pdir
ij (a, b) log

(
Pdir

ij (a, b)

fi(a) f j(b)

)
,

(a.1)

where Pdir
ij is the so-called direct probability, the frequencies fi and f j

are those measures in the MSA, and the MI is written I . The direct
probability is defined as

Pdir
ij (a, b) = exp

{
Jij(a, b) + h̃i(a) + h̃j(b)

{
. (a.2)

The compensatory fields h̃i and h̃j are computed for each pair (i, j),
and ensure that Pdir

ij has the correct marginals:

q

∑
a=1

Pdir
ij (a, b) = f j(b) and

q

∑
b=1

Pdir
ij (a, b) = fi(a). (a.3)

The direct probability represents the distribution of amino-acids one
would find at columns i and j of the MSA if those columns were only
coupled by the direct coupling Jij while keeping the same conservation
profile. As such, DI provides a measure of the strength of a direct
coupling in a principled way.
In order to evaluate the strength of a chain of couplings going through
sites [i1 . . . iN ], we simply extend the definition of the direct probability
to include more couplings, defining the path probability:

Ppath
i1iN

(ai1 , aiL |[i1 . . . iN ]) =
q

∑
ai2 ...aiN−1=1

N−1

∏
l=1

Pdir
il il+1

(ail+1 |ail ) · fi1(ai1), (a.4)

with Pdir
ij (ai|bj) = Pdir

ij (ai, bj)/ f j(bj). In other words, for a chain [i1 . . . iN ],
direct probabilities of every link (ilil+1) of the chain are multiplied.
Since only the distribution of the extremities of the chain is interest-
ing, the resulting expression is summed over all configurations of
the intermediary positions. This summation is made possible by the

111



112 quantifying indirect effects : chains and cliques

unidimensionality of the chain: multiplying two direct probabilities
Pdir

ij and Pdir
jk and summing over configurations of the intermediary

variable j amounts to a matrix product. Thus, equation a.4 can be seen
as a product of transfer matrices.
Importantly, path probabilities have the correct marginals by construc-
tion:

q

∑
a=1

Ppath
ij (a, b|[i . . . j]) = f j(b) and

q

∑
b=1

Ppath
ij (a, b|[i . . . j]) = fi(a),

(a.5)

for an arbitrary path [i . . . j] linking i and j. This can be verified directly
by combining equations (a.4) and (a.3). The path probability, similarly
to its direct eponym, quantifies the distributions one would find at
positions i1 and iN if they were joined only by a one-dimensional chain
of coupling going through sites [i1, i2 . . . iN ]. To quantify the strength
of this chain by a scalar measure, we define the Path Information (PI)
similarly to Eq. (a.1):

PIij([i . . . j]) = I
(

Ppath
ij (a, b|[i . . . j])

)
. (a.6)

a.2 finding strongest coupling chains : dijkstra’s algo-
rithm and extensions

One can see a Potts model as a graph, with the sites a1, . . . , aL being
the vertices and the presence of a coupling Jij indicating that there is
an edge between vertices i and j. In the case of a Potts model inferred
using DCA on a protein’s MSA, this graph is a priori complete, since
every coupling Jij can in principle be non zero. The strength of a cou-
pling path joining two vertices can be defined using path information
PI. When looking for the strongest chains of couplings, it is natural to
consider Dijkstra’s algorithm.
On a graph with positive distances dij associated to each edge, Dijk-
stra’s algorithm allows one to find the shortest path through edges
from vertex i to vertex j [23] . A useful extension to this algorithm
is Yen’s algorithm [84], which solves the problem of finding the K
shortest paths between two arbitrary vertices in a similar graph.
Both these algorithms assume that lenghts of the edges are positive
and additive, in the sense that the distance of path [i k j] is equal
to dik + dkj. If one wants to find the strongest chains of couplings in
the graph defined by the Potts model, a straightforward procedure
is to modify Dijkstra’s algorithm to find the path with the strongest
information PI, which is similar to using PI as the inverse of a dis-
tance. Path information has one of the properties that is essential for
Dijkstra-like procedure to function, which is that adding an edge to
an existing path reduces the strength of this path, i.e. PI[i k] > PI[i k j].
In terms of distance, this is equivalent to saying that adding an edge
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to an existing path increases the length of this path, which is the case
for positive lengths on edges. However, path information is clearly
not additive: in order to add an edge to an existing path, one has to
multiply the probability matrix Ppath corresponding to the existing
path by the direct probability matrix Pdir corresponding to the new
edge. The definition of path information can actually lead to situations
sketched in figure a.1, where Dijkstra’s algorithm will obviously fail.
Nevertheless, it is still possible to naïvely apply Dijkstra’s and Yen’s

Figure a.1: Using path information as the inverse of a distance can result
in non-intuitive situations. In this sketch, imagine a situation
where PI(A, B|P1) > PI(A, B|P2), that is the strongest path link-
ing A and B is P1. However, it is possible that PI(A, C|[P1B]) <
PI(A, C|[P2B]). In other words, even though the strongest chain
from A to B is P1, the strongest chain from A to C consists in
taking path P2 and going through B. In this kind of scenario,
Dijkstra’s algorithm will fail to find the correct strongest chain.

algorithm, even if they are not guaranteed to find the strongest paths
in practice. As an evaluation of the performance of Yen’s algorithm in
such a case, it was applied to find the strongest 50 paths for each of the
100 most correlated pairs of sites in the model inferred on PF00004. For
each pair, the resulting paths were then sorted by decreasing strength,
and the list of sorted paths is compared to the direct output of Yen’s
algorithm. In an ideal scenario, both should coincide. In the case of
using path information as the inverse of a distance, it can however
be expected that Yen’s algorithm will not output paths in the correct
order, and the two lists will thus differ.
In the 100 pairs of arrays constructed in this way, 90 coincide, meaning
that Yen’s algorithm did not make any obvious mistake in those cases.
For the 10 arrays that did not coincide, Spearman’s rank correlation
between their entries was always higher than 0.98, indicating that
they are in practice almost perfectely sorted. Furthermore, differences
between the two arrays usually happened after the 10th position, sug-
gesting that top strongest chains were recovered in the correct order.
Although this analysis does not prove that the chains found using
Dijkstra’s algorithm and Yen’s algorithm are actually the strongest
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chains, it strongly suggests that situations such as that of figure a.1
are of minor importance. To make them even less probable, for the
analysis in the main text we have actually extracted the 25 best-scoring
paths using our modified algorithm, and then selected the 15 of high-
est PI for further analysis.

a.3 cliques

As shown in sections 3 and 6.1, individual coupling chains are rarely
informative about how the DCA network disentangles direct and indi-
rect correlations. For this reason, it is interesting to attempt to measure
how an entire subnetwork of sites correlated a given pair of positions
i and j. Such subnetworks will be called cliques in the following.
A clique of size N < L (where L is the length of the aligned sequences)
can be defined by the nodes composing it, AC = (ai1 , . . . , aiN ). Defin-
ing a probability distribution for these nodes based on the inferred
couplings is not trivial. Such a distribution P(ai1 , . . . , aiN ) would have
to satisfy marginalisation relations similar to those in equation a.3
for each of its variables. Indeed, what we want to measure is the
way direct couplings mediate correlation with a fixed conservation
profile, not the way the model reproduces this conservation. If the
ideas defining direct probability were to be used here, it would needed
to compute compensatory fields h̃il for each of the N variables in the
clique such that the correct marginals are exactly recovered:

P(ai1 , . . . , aiN ) ∝ exp

{
∑

1≤k<l≤N
Jik ,il (aik , ail ) +

N

∑
l=1

h̃il (ail )

}
. (a.7)

This leads to re-inferring the compensatory fields using a BML algo-
rithm for each clique that has to be evaluated, which is computationally
untractable.

To overcome this problem, a way to sample from P(ai1 , . . . , aiN )

without having to compute fields h̃ was derived. We start with a
large sample of an inferred DCA model – or possibly with the studied
MSA – noted {Am

i }, i = 1 . . . L, m = 1 . . . M. If the model is accurately
inferred, {Am

i } will have the same conservation profile as the original
sequence alignment.
If a clique (ai1 , . . . , aiN ) is considered, only columns belonging to this
clique are kept, resulting in a reduced sample {Am

i }C, i ∈ {i1 . . . iN}.
Swapping moves are then attempted on this sample: two lines m and n
are chosen at random, along with one column il . The move consists
in swapping variables am

il
and an

il
. It is accepted with a probability

min(1, e−∆Es), with

∆Es =Hc(am
i1 . . . an

il
. . . am

iN
) +Hc(an

i1 . . . am
il

. . . an
iN
)

−Hc(am
i1 . . . am

il
. . . am

iN
)−Hc(an

i1 . . . an
il

. . . an
iN
),

(a.8)
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where Hc is the Hamiltonian of the clique, including only couplings:

Hc(ai1 , . . . , aiN ) = − ∑
1≤k<l≤N

Jik ,il (aik , ail ). (a.9)

Since these move only allow intra-column swapping, they conserve
the single site frequencies of the sample at all times. In this way,
when enough moves are made and equilibrium is reached, the re-
duced sample {Am

i }C will include sequences distributed according to
a Hamiltonian involving all couplings in the clique but with single
site frequencies matching exactly those of the original inferred model.
Relevant measures can then be computed from this sample, such as
the correlation between two of its columns.

In section 6.1.2, a decimation strategy to find relevant cliques con-
necting two fixed sites i and j is mentioned. Here, we describe this
procedure in more detail. One starts with a sample from the full DCA

model, {Ak}. For each k 6= i, j, position k is removed from the model,
resulting in a clique of L − 1 nodes. A sample from this clique is
obtained using the strategy described above, and the MI Iij([k]) be-
tween sites i and j is computed with this sample. The node k∗ which
maximizes Iij([k]) is then removed permanently from the network.
This operation is then repeated, removing one node every time, until
only the clique of size 2 that nodes i and j form remains. At this point,
the remaining Mutual Information (MI) is by construction the DI.
This method allows to iteratively decimate the network, in a way that
removes nodes contributing the least to the MI between i and j at every
step. Figure 6.4 shows the remaining MI at each step of the process.
Importantly, the scheme described here is a greedy one, making a
locally optimal choice at each iteration. It does not guarantee that the
cliques it finds at each step are the optimal ones in terms of correlating
nodes i and j.
It is important to note that this method is computationally quite ex-
pensive. At each step, all remaining nodes of the network have to be
evaluated, meaning that the swapping procedure described above has
to be conducted about L(L − 1)/2 times, and this only to conduct
the decimation with respect to one pair of sites (i, j). In an attempt
to speed up the process, several nodes k∗1, . . . , k∗K can be removed at
each step, at least at the beginning of the decimation. The hope is that
nodes which are removed first matter little in the correlation between
i and j, and removing many at the same time does not reduce the
accuracy of the algorithm. This explains the "staircase" look of figure
6.4.





b
D I R E C T C O U P L I N G A N A LY S I S F O R
P H Y L O G E N E T I C A L LY C O R R E L AT E D D ATA :
S U P P L E M E N TA RY F I G U R E S

In chapter 5 of the main text, it is mentioned that artificial data was
generated for two different times of the branches of the tree, τ = 0.3
and τ = 0.5. Only the figures for the first case were shown in the main
text. Here, the same plots for the second case are shown.
τ = 0.5 is an easier case for the phylogenetic correction, in the sense
that the bias is not as strong as in the τ = 0.30 case. For this reason,
many of the improvement are not as strongly visible as those shown
in the main text. This can be seen for instance on figure 5.6 (main text)
or b.1, which represents the histograms of KL-distance for corrected and
uncorrected models. Another difference is visible between figures 5.11

and b.6: in the τ = 0.5 case, the DCA model inferred on uncorrected
statistics does not have as strong a bias towards giving higher energies
to sequences that are far away from the sample it was trained on.
The last figure b.7 shows the accuracy of our inference of parameter µ

using the method described in section 5.1.3.
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Figure b.1: DCA model inferred after single site or pairwise phylogenetic
correction A. Pearson correlation between parameters of inferred
and of true DCA models. y-axis: couplings Jij ; x-axis: fields hi.
One point corresponds to one repetition of the MCMC process
on the tree. B. Histogram of the symmetric Kullback-Leibler
distances between inferred and true models for all repetition. C.
Positive predictive value for predicting non zero couplings (i.e.
"contacts") using inferred DCA models. DCA inferred on the i.i.d.

sample performs perfectly in this case.
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Figure b.2: Pearson correlation in predicting energies of single mutants aver-
aged over sets of reference sequence. In the top panel, reference
sequences are taken in the biased sample, i.e. among the leaves of
the phylogenetic tree. In the bottom panel, reference sequences
are taken in a fair sample of P0. Predictions are made using four
models: respectively a profile model and a Potts model trained on
the uncorrected biased sample (resp. "Profile on tree" and "DCA
on tree"), and using the corrected single site frequencies (reps.
"Profile + single site inf." and "DCA + single site inf."). Error bars
indicate the standard deviation across the 30 repetitions of the
tree sampling process.
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Figure b.3: Pearson correlation in predicting energies of single mutants av-
eraged over reference sequence at a given hamming distance to
the closest sequence in the biased sample, as a function of this
hamming distance. Error bars are inversely proportional to the
square root of the number of sequences in each hamming distance
bin. Profile and Potts models are inferred either directly using
biased data, or using corrected single site frequencies.
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Figure b.4: Pearson correlation in predicting energies of single mutants aver-
aged over sets of reference sequence. In the top panel, reference
sequences are taken in the biased sample, i.e. among the leaves of
the phylogenetic tree. In the bottom panel, reference sequences
are taken in a fair sample of P0. Predictions are made using a
DCA model inferred either directly on biased data, either using
corrected single site frequencies, either using corrected pairwise
frequencies. Error bars indicate the standard deviation across the
30 repetitions of the tree sampling process.
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Figure b.5: Pearson correlation in predicting energies of single mutants av-
eraged over reference sequence at a given hamming distance to
the closest sequence in the biased sample, as a function of this
hamming distance. Error bars are inversely proportional to the
square root of the number of sequences in each hamming dis-
tance bin. The Potts model is inferred either directly on biased
data, either using corrected single site frequencies, either using
corrected pairwise frequencies.

Figure b.6: Average energy of sequences as a function of the hamming dis-
tance of the sequence to the closest point in the biased sample.
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Figure b.7: Histogram of the inferred µ values for the 30 different repetitions
of the simulated data. In red is the value µ = 10 used to generate
the data.
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Sujet : Comprendre et améliorer les modèles statistiques de
séquences de protéines

Résumé : Dans les dernières décennies, les progrès des techniques expérimentales ont permis
une augmentation considérable du nombre de séquences d’ADN et de protéines connues. Cela a
incité au développement de méthodes statistiques variées visant à tirer parti de cette quantité
massive de données. Les méthodes dites co-évolutives en font partie, utilisant des idées de phy-
sique statistique pour construire un modèle global de la variabilité des séquences de protéines.
Ces méthodes se sont montrées très efficaces pour extraire des informations pertinentes des seules
séquences, comme des contacts structurels ou des effets mutationnels. Alors que les modèles co-
évolutifs sont pour l’instant utilisés comme outils prédictifs, leur succès plaide pour une meilleure
compréhension de leur fonctionnement. Dans cette thèse, nous proposons des élaborations sur
les méthodes déjà existantes tout en questionnant leur fonctionnement. Nous étudions première-
ment la capacité de l’Analyse en Couplages Directs (DCA) à reproduire les motifs statistiques
rencontrés dans les séquences des familles de protéines. Puis est présentée la possibilité d’inclure
d’autres types d’information comme des effets mutationnels dans cette méthode, suivie de correc-
tions potentielles des biais phylogénétiques présents dans les données utilisées. Finalement, des
considérations sur les limites des modèles co-évolutifs actuels sont exposées, de même que des
suggestions pour les surmonter.

Mots clés : co-évolution, protéines, modèles statistiques, inférence statistique, entropie maxi-
male, physique statistique, phylogénie

Subject : Understanding and improving statistical models of protein
sequences

Abstract: In the last decades, progress in experimental techniques have given rise to a vast
increase in the number of known DNA and protein sequences. This has prompted the development
of various statistical methods in order to make sense of this massive amount of data. Among those
are pairwise co-evolutionary methods, using ideas coming from statistical physics to construct a
global model for protein sequence variability. These methods have proven to be very effective at
extracting relevant information from sequences, such as structural contacts or effects of mutations.
While co-evolutionary models are for the moment used as predictive tools, their success calls for
a better understanding of they functioning. In this thesis, we propose developments on existing
methods while also asking the question of how and why they work. We first focus on the ability of
the so-called Direct Coupling Analysis (DCA) to reproduce statistical patterns found in sequences
in a protein family. We then discuss the possibility to include other types of information such
as mutational effects in this method, and then potential corrections for the phylogenetic biases
present in available data. Finally, considerations about limitations of current co-evolutionary
models are presented, along with suggestions on how to overcome them.

Keywords : co-evolution, proteins, statistical models, statistical inference, maximum-entropy,
statistical physics, phylogeny
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