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Résumé en francais

Les propriétés macroscopiques des metaux et des alliages métalliques (telles que la
résistance, la ductilité, la ténacité, la résistance a la corrosion et plusieurs autres)
dépendent fortement de leur microstructure. La taille des grains avec leurs formes
et orientations, la présence de précipités ou de phases différentes sont tous des
facteurs qui influencent les propriétés mécaniques d’un matériau. Par conséquent,
la compréhension de I’évolution de la microstructure dans des conditions ther-
momécaniques données est fondamentale pour prévoir ses propriétés finales ou
pour développer de nouveaux matériaux & hautes performances. A cet effet la
modélisation numérique est un instrument puissant. Plusieurs techniques de mod-
élisation a 1’échelle macro et mesoscopique ont été proposées au cours des dernieres
décennies pour I’étude de la plasticité cristalline, de la recristallisation et des trans-
formations de phase. La capacité de ces approches (qui ont I'avantage de donner
acces a des échelles de temps et espace relativement grandes) a saisir les caractéris-
tiques essentielles des phénomenes listés plus haut et a étre prédictifs repose sur
des lois phénoménologiques et des quantités moyennes utilisées dans leur formu-
lation. Afin de définir ces lois et parametres, nous devons étudier les mécanismes
qui régissent I’évolution de la microstructure a 1’échelle microscopique. Ce besoin a
conduit ces derniéres années a un intérét croissant pour les techniques empiriques
de modélisation atomistique, parmi lesquelles I'une des plus largement utilisées est
la Dynamique Moléculaire.

La Dynamique Moléculaire (DM) repose sur I’hypothese de Born-Oppenheimer
selon laquelle les électrons peuvent répondre instantanément aux changements de
position des noyaux. Les noyaux peuvent alors étre traités comme des particules
classiques et leurs trajectoires obtenues par intégration des équations de New-
ton. Cette approche de modélisation présente I'avantage de prendre en compte
la nature discrete de la matiere et donc d’incorporer automatiquement dans sa
formulation tous les processus agissant a ’échelle atomique (tels que la diffusione
des lacunes, le glissement et la montée des dislocations, la migration des interfaces,
la nucleation et propagation des microfissures) sans qu’aucune hypothese a priori
ne soit nécessaire sur leur dynamique. Cependant, il présente également certains
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inconvénients. Outre la difficulté a définir le potentiel permettant de décrire les
interactions entre atomes, les inconvénients majeurs de la DM sont la limitation
des échelles de temps et espaces accessibles. Effectivement, la présence de vibra-
tions & haute fréquence (phonons acoustiques et optiques) nécéssite I'utilisation de
pas d’integration de l'ordre de la femtoseconde, ce que limite 1’échelle de temps
observée a quelques nanosecondes et, au quotidien, le nombre d’atomes considérés
typiquement & 10° particules i.e. des dimensions linéaires de quelques dizaine de
nanometres.

La présente these traite explicitement de la problématique liée a la limite sur
I’echelle temporelle caractérisante les techniques de modélisation atomistique. Afin
de circonvenir la problématique des phonons, nous proposons l'utilisation d’une
dynamique de Langevin suramortie pour décrire 1’évolution temporelle des tra-
jectoires atomiques dans les matériaux cristallins. Avec cette dynamique, les vi-
brations ne sont pas explicitement représentées en raison de la nature du premier
ordre des équations utilisées et leur effet sur ’évolution du systéme est intégré
dans le bruit stochastique. A notre connaissance, c¢’est la premiére fois que la dy-
namique de Langevin suramortie est appliquée dans ce contexte de la physique des
materiaux. Par conséquent, I'objectif principal de cette these a été d’étudier les
potentialités de cette méthode en 'appliquant a deux des processus susmentionnés
qui régissent 1’évolution de la microstructure dans les métaux: la migration des
joints des grains et les transformations de phase. Ce travail a également néces-
sité un effort numérique important, consistant d’une part a développer un code
Fortran pour l'implémentation de la dynamique de Langevin dans différents en-
sembles thermodynamiques utilisant un potentiel interatomique a plusieurs corps
et, d’autre part, a analyser diverses méthodes numériques pour l'intégration des
équations différentielles stochastiques.



Chapter 1

Introduction

The subject of this thesis is the development and application of a novel approach
proposed for the atomistic modelling of crystalline materials. In this chapter, we
present the general context of our studies and the main objectives of the work
done.

1.1 General context

Macroscopic properties of metals and metallic alloys (such as strength, ductility,
toughness, corrosion resistance) are strongly dependent on their microstructure,
e.g. grain sizes and shapes, type and number of defects. This microstructure
is usually the result of a series of thermo-mechanical treatments during which
different processes contribute to the microstructural evolution. The ones which
are considered the most relevant in physical metallurgy are [6]:

1. plastic activity, which involves dislocation generation, propagation and reac-
tion;

2. recrystallization, which contributes to the regeneration of the microstructure
by new grain nucleation, grain growth wvia grain boundary migration and
defects rearrangement and/or annealing;

3. structural transformations such as phase transition and precipitation.

In this context, modelisation at the macro and meso-scale is a powerful instrument
to understand how the microstructure evolves and thus to predict final mechanical
properties or to develop new high-performances materials. Some modelling tech-

niques frequently used are: continuum crystal plasticity models [7], phase field
methods [8], Vertex and Monte Carlo pots models [9], Discrete Dislocations Dy-
namics [10]. All the models listed above have the advantage of giving access to the



simulation of rather large length and time scales. On the other side, the definition
of the phenomenological laws and averaged quantities used in their formulation
requires the understanding of the microscopic processes which drive dislocation
dynamics, grain boundary migration and phase transformation. This need has
lead to a growing interest in empirical atomistic models which take into account
the discrete nature of matter. At present, one of the best known and most used
atomistic modelling technique is Molecular Dynamics.

Molecular Dynamics (MD) relies on the Born-Oppenheimer hypothesis which
states that electrons can always respond instantaneously to changes in the atomic
positions. A consequence of this hypothesis is that we can write an Hamiltonian H
just for the nuclei and embody the effect of electrons in a potential energy function
® dependent only on nuclear positions. The nuclei are then treated as classical
particles and their trajectory is determined by integration of Newton equations
of motion [11]. MD has the advantage of automatically incorporate in its formu-
lation all processes acting at the atomistic length scale (such as dislocation glide
and climb, diffusion, interface motion) without the need of making any hypothe-
sis a priori on their dynamics. The elaboration of interatomic potentials able to
reproduce the thermodynamical properties of a specific material or a particular
phenomenon is a complex task but there has been several progress in the field
with the development of new many-body potentials in early 90’s [12, 13]. The
major drawbacks of MD is the limitation on the accessible length and time scales.
The necessity of memorizing the position and velocity of each atom bounds typi-
cal simulations to 10 particles (which is equivalent to tens of nanometres). Also,
the presence of high-frequency vibrations (phonons) restricts the integration time
step to the order of the femtosecond, thus allowing the simulation of only a few
nanoseconds with reasonable computational cost.

Several extensions of the original MD have been proposed, such as the Voter’s
hyperdynamics [1/] which provides an accelerated scheme that incorporates directly
thermal effects or the Laio and Parrinello’s metadynamics [15] which consists in
computing free energy barriers. Most of these approaches rely on the Transition
State Theory (TST), which basically consists in treating rare events as Markov
processes. Therefore, it is natural to look at other methods that are directly and
fully based on the TST, such as Monte Carlo methods or stochastic overdamped
dynamics which do not incorporate inertia and, consequently, automatically ex-
clude lattice vibrations.

Indeed, different methods have been developed in the past to get rid of the
time scale associated to phonons and to reach time scales associated to diffusion.

At the end of the century, a continuous atomic-scale method, the Phase Field
Crystal method (PFC), has been introduced [16]. It consists in following the evo-



lution of the atomic density, whose maxima correspond to the positions of atoms.
The method is attractive as, despite its simplicity, it automatically incorporates
elastic effects, multiple crystal orientation and the nucleation and motion of dis-
locations. Also, as the dynamics is purely dissipative, it gives access (at least in
principle) to diffusive time scales. However, being continuous by nature, the nu-
merical implementation requires the use of a grid with grid spacing much smaller
than the smallest length scale incorporated in the model, i.e. the atomic size.
Therefore, the method is drastically limited to very small systems.

Another methodology is based on the fact that, at low enough temperature,
diffusion events take place at a small rate and, therefore, these events can be con-
sidered as Markov processes. This is at the root of the so-called Kinetic Monte
Carlo method (KMC), which consists in following a Markov chain with a catalog
of predefined diffusion mechanisms to compute at every time step the escape rate
from a local minimum [17, 18]. However, since this catalog is predefined, the sys-
tem under study as to be discretized and atomic positions limited to fixed lattice
sites. In order to extend KMC to long-range elastic effects and, more importantly,
to disordered or distorted configurations (amorphous or liquid state, dislocations,

cracks, ...), various off-lattice versions have been developed. Among them, we
mention the k-ART method, which stands for “kinetic Activation-Relaxation Tech-
nique” [19]. This is an off-lattice KMC in which the energy barriers are evaluated

“on-the-fly”, which relaxes the need for a predefined catalog. However, the method
still relies on a catalog of events which, now, is not predefined but grows along the
route of the Markov chain. The updating of this catalog and its use are rather
complex (see for example [20]). As example, starting from a local minimum, the
generation of the transition path associated to a new event requires the random
identification of the direction of the lowest local instability and the identification
of the subsequent path to the nearest saddle point while the energy is minimized
in the hyperplane orthogonal to this direction. All together, these steps require a
few hundreds (typically 600 to 800) forces evaluation.

The overdamped Langevin method proposed below and the ART KMC belong
to the same category, as both rely on Markov dynamics applied to atomic posi-
tions. Therefore, they should give access to the same time scales. However, the
overdamped Langevin method is much simpler to use, because it does not require
the delicate creation and continous updating of a catalog of events.

1.2 Objectives and outline of the thesis

The present thesis explicitly addresses the time scale limit problematic character-
izing atomistic modelling techniques. In order to get rid of phonons, we propose
the use of an overdamped Langevin dynamics to describe the time evolution of



atomic trajectories in crystalline materials. With this dynamics, high-frequency
vibrations are not explicitly represented because of the first-order in time nature
of equations and their effect on the system evolution is embedded in the stochastic
noise. To our knowledge, it is the first time that the overdamped Langevin dy-
namics has been applied in the present context. Consequently, the main objective
of this thesis has been the investigation of the potentialities of this method by its
application to two of the above mentioned processes which govern the microstruc-
tural evolution in metals, i.e. grain boundary migration and phase transition. This
work has also required a relevant effort from a numerical point of view, which has
consisted in: (i) the development of a Fortran code that integrates the Langevin
dynamics in different thermodynamical ensembles, (ii) the implementation of a
spline-formulated many-body potential and (iii) the analysis of various numerical
methods for the time integration of stochastic differential equations.
The thesis is organized as follows:

e the theoretical formulation of the overdamped Langevin dynamics in differ-
ent thermodynamical ensembles is presented in chapter 2, together with an
heuristic justification of its validity;

e chapter 3 deals with the numerical implementation of the model i.e. with the
tests of different method for integrating the stochastic differential equations
and with the algorithms used for interatomic force calculation;

e in chapter 4 we present a first application of the overdamped Langevin dy-
namics to the study of grain boundary motion in a 2D Lennard-Jones solid.
The main purpose of this study as been the validation of the model by com-
paring our results with the ones obtained with Molecular Dynamics. How-
ever, it has also been the occasion for investigating some particular migration
mechanisms characterizing low angle and high angle tilt grain boundaries;

e chapter 5 is devoted to the analysis of the temperature induced f — «
phase transition in pure Titanium, with particular attention on the effect of
mechanical constraints in the final microstructural morphology and variant
selectivity;

e finally, chapter 6 is dedicated to conclusions and perspectives for future work
and route of progresses in this still to-be-explored theory for the atomistic
modelling of crystalline materials.



Chapter 2

Modelling approach: overdamped
Langevin dynamics for crystalline
materials

2.1 Introduction

In this chapter we describe the modelling approach proposed, whose main objective
is to avoid the short time scale associated with phonons. In order to do this, a
first order in time stochastic dynamics is proposed. A heuristic justification of the
hypothesis at the base of the present approach is then given.

2.2 Preliminaries: Langevin equations and sta-
tistical physics

Let {¢;} be a set of stochastic variables and E({¢;}) be a potential function.

Consider that the set {¢;} follows the following dynamics:

. 0  OFE
Vi 5 = m% + Bin;(t) (2.2.1)

where the mobilities v; and noise amplitudes B; are constant (they do not de-
pend on {¢;}, nor on t) and the stochastic terms 7;(t) are independent and white

Gaussian variables:
() = | 023
(mi()n; (t')) = d50(t — 1)
with §;; and §(t — t’) symbolizing the Kronecker and the Dirac delta respectively.

We remark that:




e equations (2.2.1) are a particular case of the general Langevin equation, in
which the mobilities v; and the noise amplitudes B; may depend on {¢;};

e as B, is constant, the It6 and Stratonovich calculus are identical (see chapter
3, section 3.2.1).

The set of equations (2.2.1) is equivalent to the following Fokker-Planck equation

[21]:

dP({¢;}) 0 0 1
it _§a¢il 96, “M] ;aqb%[B

where P({¢;}) is the (time-dependent) probability distribution for the set {¢;}.
We consider the case in which the noise term amplitudes are proportional to
the square root of the mobility terms:

P({¢:})] (2.2.3)

Vi: B} =2ay (2.2.4)
Then, if we suppose to have “natural boundary conditions”, i.e:

lim P({¢;}) =0 (2.2.5)

hi— 00

and if we restrict to integrable probabilities densities, it is straightforward to show
that the Fokker-Planck equation (2.2.3) admits only one fixed point, given by:

Prizea({9i}) = Aexp (—JE({M> (2.2.6)

Al = /exp( {@ )Hd@

Hence, to recover Gibb’s equilibrium, we just need to choose:
a = k’BT

where kg is the Boltzmann constant and 7' is the temperature.

In summary, the non-linear Langevin equations:

. 09 OF
Vi : 5 = —W% + /2kpTvm;(t)

with independent white Gaussian noises:

=0
(n (t) i () = 0iy0(t —t')



converge to the Gibb’s equilibrium:

t— o0 RWG¢J):/“MP<_EG¢J)>

kp T
A_lz/exp< o))

)Hmm

Therefore, provided that a first-order in time kinetics may be suitable for the
dynamic process we want to follow, the Langevin approach offers a well-defined
framework that guarantees convergence to the correct equilibrium state.

2.3 Overdamped Langevin dynamics in the (NVT)
ensemble

We consider a crystalline system composed of N atoms with coordinates ', where
the upper index n = 1,..., N refers to a particle and the lower index : = 1,2, 3 to
a cartesian coordinate. We suppose that the particles interact through a potential
O({z}}) and we consider the following first-order in time stochastic dynamics:

dz™ 0
! — B 2.3.1
= v+ B (231)

where v is a mobility coefficient and B the amplitude of a white Gaussian noise

ni*(t) such that:
(1)) = 0 032
(i (E)n"(¢')) = Onm0ij0(t — 1) -

with 0,,, and ¢;; symbolizing the Kronecker delta and (¢ — ¢') symbolizing the
Dirac delta. The coefficients v and B are supposed to be constant and independent
from particle positions. The N particles are restricted to stay within a fixed volume
V' by applying periodic boundary conditions on the coordinates {z!'}.

As recalled in section 2.2, the set of equations (2.3.1) is formally equivalent to
the following Fokker-Planck equation:

92
Oz {

i %

D 55 o v Pt + gt [PPU] (233)
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which in the long-time limit converges to the steady-state solution:

BQ

Al_/exp< 2D {x"} ) 1 T

n=1 1

t—o00: Py({x]'}) = Aexp (—W{x?})> (2.3.4)

This steady state solution corresponds to the Boltzmann equilibrium distribu-
tion in the (NVT) thermodynamical ensemble if and only if the mobility coefficient
v and the noise amplitude B are related by the fluctuation-dissipation relation:

B = \/2k,Tv. (2.3.5)

Therefore, under this condition, the dynamics given in Eq. 2.3.1 converges to the
correct thermodynamical state in the long-time limit.

2.4 Overdamped Langevin dynamics in the (NPT)
ensemble

The set of equations (2.3.1) allows the simulation of a system in fixed volume and
fixed temperature conditions. However, when working with crystalline materials,
we usually want to control the temperature and the stress applied while leaving
the specimen free of changing its shape and/or volume. In this section we explain
how we extended the dynamics to the (NPT) ensemble, where P symbolizes the
first Piola-Kirchhoff stress tensor. Our procedure is similar in spirit to the one
developed by Parrinello and Rahman for classical MD [22].

We need to augment our set of 3N DOFs by adding variables to define the
shape and volume of the simulation box. At each instant ¢, the box is supposed
to be a parallelepiped defined by three non-coplanar vectors Ly (t), Lo(t), L3(¢). In
the hypothesis of homogeneous deformation, we can describe its change in shape
via a deformation gradient F(¢) so that at each istant ¢:

(Lo)i(t) = Fy(LY); a=1,2,3 (24.1)

where the vectors LY = L,(0) define the reference configuration and Einstein’s
summation convention is implied. We choose as additional variables the nine com-
ponents Fj; of the deformation gradient tensor. We need to introduce a coupling
between the dynamics on atoms positions and the one on these new DOFs. In
order to do this, we define a new set of variables by the following transformation:

i = (G )] (2.4.2)
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where G = FL and L is a constant diagonal matrix with components:
Lo =| Lg |

We will refer to the variables ] as “scaled coordinates” We associate to the
change in shape of the simulation box the potential energy:

U = VoPapFap (2.4.3)

where P denotes the first Piola-Kirchhoff stress tensor and Vj the volume in the
reference configuration. From a mechanical point of view, the quantity U corre-
sponds to the strain energy associated to an impose stress. By considering this
additional contribution, we define a potential energy for the extended system of
(3N +9) DOFs:

H{7}, Fap}) = ({z}'}) + VoPasFas (2.4.4)
= O({7, Fap}) + VoPupFap

where H corresponds to the enthalpy of the system.

2.4.1 First tentative of an overdamped Langevin dynamics
Let’s consider the following overdamped Langevin dynamics on {z}, F, s}

oy OH

5 = Vg T B (t) (2.4.5)
OF,s  OH

where 1'(t) and (.5 are white Gaussian noise terms defined by:

i (En (1) = 6ij0nmd(t — 1) (2.4.7)
CaB (t)C'm (t/)> = 5cw5,6’175(t —t')
(i (£)Cap(t')) =0

Using an obvious generalization of equation (2.3.5), we impose that the noise
amplitudes B and A respect the fluctuation-dissipation relations:

B = Qk’bTV
A= QkibT"y



Then, in the long-time limit equations (2.4.5) and (2.4.6) converge to the steady-
state solution:

t—o00: Py ({27 F.s}) = Zexp <—}W> (2.4.8)

Z—lzfexp( W)nndl« 11 dFus

n=11=1 a,B=1

The probabﬂity of observing a given state (z}', F) within the infinitesimal volume
HnN I dar T2 5 dFups in the new scaled phase space is given by the expression:

1i=1

N 3 3
dP({i:L, Faﬁ}) eq {xl ) Faﬁ} H H df? H dFag (249)
n= a,f=1

Now, if P.,({z}, Fip}) is the equilibrium probability density defined in the original
configurational phase space {z}', F,3}, we must have:

N 3 3 N 3 3
Feg({77', Fap}) HH i 11 dFap = Pog({af, Fup}) HHdﬂf? I dFus
n=1i=1 a,B=1 n=1i=1 a,f=1
(2.4.10)
where the scaled coordinates {Z}'} and unscaled coordinates {z!} are linked by
equation (2.4.2). Therefore, we have:

dadalda! = det Gdidaldi? = Vi det Fdildaldi (2.4.11)

Substituting equation (2.4.11) in equation (2.4.10), we obtain:

N 3 3 N 3 3
Peg({77, Fap}) HH P dFus = Pg({af, Fog}) TT TT 27 11 dFas(Vodet F)Y
n=1 a,f=1

i=1 n=1i=1 a,f=1
(2.4.12)
which with equation (2.4.8) leads to:

3 H({i" F
P.,({z}', Fop}) = Zexp _HQ#, Fas}) (Vodet F)~V (2.4.13)

kgT

~ H
= Z exp (— — N1n(Vj det F)) (2.4.14)
kgT

which does not correspond to the Boltzmann distribution.

In conclusion, if we use the expression (2.4.4) for the enthalpy H in the dy-
namics (2.4.5) we do not recover the expected Boltzmann equilibrium distribution
in the long-time limit.
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2.4.2 Second tentative of an overdamped Langevin dynam-
ics

In order to correct for the extra term (N In(Vydet F)) in equation (2.4.14), we

define an “extended enthalpy”:

H = H—NksTIn(Vydet F) = ®({a"})+Vp Pag Fag— NkpTIn(Vp det F) (2.4.15)
and we replace the Langevin equations (2.4.5) and (2.4.6) by new ones:

ox __ OH

= B 2.4.16
8t a~Z + 771( ) ( )

0F o3 OH
=— t 2417
ot oF., (*) (2.4.17)

The new equilibrium probability density is then:
exr Zer F({j?7Fa5})

Peqt( 7, Fag}) = Z°" exp <_k’BT (2.4.18)

1i=1

(Ze:ct)—l :/exp< ({IZ vfaﬁ} ) 1;[ ﬁ dzr ];LdFﬁ

In the original unscaled configurational space, this leads to the following probabil-
ity density:

P.,({x}, F.5}) = Z° exp (—}W — N1n(Vp det F)) (2.4.19)

kT

H ({7, Faﬁ})>
kgT

- H({z!, F,
— geat exp (_w + Nln(‘/b det F) — Nln(‘/o det F))
= Z°exp (—

5 F N 3 3
7 _ [ exp <_) T I1d&" T dFs (2.4.20)
kT 11

kT n=11i=1 a,B8=1

/
- /exp <_H + N In(Vj det F)) (Vo det )~ fv[ 13] da” f[ dF,s
/



Hence the density P,.,({z}, F,3}) may be written as:

Py{al, Fup}) = Zexp (—W) (2.421)

Z-lz/exp< )HHdm 11 daFus

n=1i=1 a,p=1
which corresponds to the expected Boltzmann distribution.

In conclusion, the correct Langevin dynamics in the (NPT) ensemble is given
by equations (2.4.16) and (2.4.17) in which the driving forces must be extracted
from the extended enthalpy defined in equation (2.4.15).

2.4.3 Driving forces in the configurational space {z}, F,,5}

We now derive the expression of the forces acting on atoms and the ones associated
with the change in the box shape. Combining the definition of scaled coordinates
with the expression of H we obtain the three components of the force acting on
the atom n:

OH
oir 6x (O({x'}) + VoPagFup — NkgT In(Vy det F)) (2.4.22)
0P 0P
0z} Oz} :
Next, considering that:
a n
an - = bl st} (2.4.23)

and that the determinant of F can be expressed in function of its cofactors Cyp
as:

3
det F =Y (—1)*"F,5C,s (2.4.24)

we obtain the following expression for the forces acting on the deformation gradient
components Fig:

OH 5,
OFs 8F5( ({2}}) + VoPapFas — NkpT In(V det F)) (2.4.25)
309 O 1 OdetF
= Pos — NkpT——
ggé’w voF,, Tt N G R
N C ,
= L VPa 1 a+
Z:: o+ VoFos = th( )

Equations (2.4.22) and (2.4.25) give the driving forces that enter in the Langevin
dynamics given by equations (2.4.16) and (2.4.17).
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2.4.4 Virial term and pressure computation

The coherency of the extended dynamics can be further demonstrated by showing
how equations (2.4.16) and (2.4.17) leads to the same relation between external
pressure acting on the system and the virial that can be derived from statistical
mechanics [23].

We consider equation (2.4.17) and we multiply both sides by Fis thus obtain-
ing:

OF.; 10Fi;  0OH
ot T2 ot 0F.,
We then average equation (2.4.26) over its equilibrium probability distribution
PEQ({x?’ Faﬁ):

F, Fag + ACaﬁFaﬁ (2426)

| 8F25> < o >
L Pas\N O 5 N AlCsFas) - (2.4.27)
2< ot /e, OFus ™/ Pt P

Peg

The left side of (2.4.27) is zero because averages at equilibrium are obviously
no time dependent. Moreover, using It6 calculus (see for example [21]) we have
<C‘¥5Faﬂ>ﬁeq = 0 so that we obtain, using equation (2.4.25):

Peg

OH N 0P CopFup

——F, = ——FopLpih + VoFogPag — NkpT—"-52(=1)* ) =0

<3Fa6 B> <nzlfh“2 ol + VolapPop = NkaT 3 g (1) P
(2.4.28)

with @« = 1,2,3 and 8 = 1,2,3. Remembering the equalities (2.4.2) and (2.4.24),

we sum over the column index 3 and we obtain:

= axa j:l

N aq) 3
<Z —ap+ Vo) FajPaj> — NkgT =0 (2.4.29)
n=1 peq

We now sum over « and finally obtain:

1 & 1S /& o0,
3 eq 3 ox! 5

i,j=1 i=1 \n=1

Equation (2.4.30) relates the virial, the second term on the left-hand side of equa-
tion (2.4.30), to the pressure acting on the system.

For the sake of completeness, we consider the simple case of an initially cubic
box of volume V submitted to an hydrostatic pressure p. Before to proceed,
we must first remind the link between the Cauchy stress o and the first Piola-
Kirchhoff stress P used in our theory. The reason why we introduced above the
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first Piola-Kirchhoff stress is that, in order to let the simulation box relax, we
introduced the elements Fj; of the deformation gradient as new degrees of freedom.
Therefore, a new potential term had to be added to the Hamiltonian and this term
must be the product of the elements Fj; and their corresponding conjugate forces,
which are precisely the elements of the first Piola-Kirchhoff stress. Now, when
we consider a pressure p, we refer to a pressure that is applied to the deformed
configuration, whereas the first Piola-Kirchhoff stress is a mesure of the forces
acting on the elemental area of the reference state. Therefore, we need to use the
relation between the Cauchy stress o, which is a measure of the forces acting on
the deformed configuration, and the first Piola-Kirchhoff tensor P. This relation
is [24]:

Joi; = Pa(F7 ), (2.4.31)

where F7 is the transpose of the deformation gradient F and J is the determinant
of F. In the situation considered here, the tensors o, P and F are diagonal and
isotropic:

P’L’j = Pllfsij
Fij = Fi1di;

Using equations (2.4.31) and (2.4.32), we immediately get that the left-hand side
of equation (2.4.30) is equal to JpVp. Hence, as the deformed volume V' is simply

given by V = JV}, equation (2.4.30) becomes the well known equation of state for
a fluid [25]:

1 N
pV = NkgT + - (> r"-f" (2.4.33)
3 n=1 P
eq
where r" is the vector denoting the position of an atom n while f™ denotes the
force acting on it. If now we imagine that all the NV particles are indipendent, i.e.
f" = 0, we obtain the equation of state of a perfect gas.

2.4.5 Virial stress components computation under peri-
odic boundary conditions

Periodic boundary conditions (PBC) are a common way to avoid finite size ef-
fects. The concept is the following: the simulation is performed on a set of atoms
contained within a finite simulation cell, where the positions of atoms outside the
simulation cell are obtained by generating periodic images of the simulated atoms
in accordance with the periodicity of the cell. As already highlighted in previous
works concerned with pressure calculation in atomistic simulations [26, 27, 28], we

14



must be careful in calculating the variation of the potential energy ® as a function
of the deformation gradient components F,g when PBC are applied. In this case,
the potential energy of the unit cell will be function of the atom positions {z'}
and of the box shape/size define by the three vectors L., which depend on the
deformation gradient F:

® = o({zi'}, Ly) = ®({a7, Fus}) (2.4.34)

Equation (2.4.34) highlights the fact that in this case ® depends explicitly on the
components Fg and not just through the scaling of coordinates. Consequently,
when periodic boundary conditions are applied, the variation of the unit cell po-
tential energy with respect to F,z will be:

B SPSEAR LN
1 895? 8Fa5 aFaﬁ

n=1

(2.4.35)

aFaﬁ

y=1i=1
In equation (2.4.35) two contributions are present: (1) the variation of ® with re-
spect to Fi,g with atom position fixed i.e. bringing the atoms in one cell closer/farther
to the atoms in another cell (ii) the variation of ® due to the scaling of atoms posi-
tions. The problem is how to compute the additional contribution to the potential
energy variation.

In the case of potential for which the energy of the system can be computed
as a sum of pair interaction terms it is possible to bypass the problem by avoiding
an explicit dependence of ® on F,5. In order to do this, it is sufficient to write
the potential energy per unit cell as a sum of pair contributions i.e. as a function
of the relative distances between atoms:

N N N
= O({AY) = 3 Y Y 00 1 2 S o0mR) (2436
keZz3 n=1m>n keZz3 n=1
3
AgmE — (zr — k), ek = Z(Am?’mkﬁ e =g Gijk;
i=1
where 7™ denotes the distance between the atoms n and m, G;; is the matrix
containing the periodic cell vectors L., k € Z? is a vector of three integers repre-
senting the offset in the three directions of the periodic images so that z]"" defines
the position of one of the periodic images of atom m. The restriction m > n
avoid interactions to be computed twice. The second summation handles self-
interactions between periodic images of the same atom (which typically are not
relevant because of the presence of the cut-off). This implies that when periodic
boundary conditions are used, the formula to be used for calculating the variation
of ® in function of Fip is:

0 Y X 9p ormmk
= —_— (2.4.37)
aFaﬁ k§3 n;l n;n Jrnmk aFaﬂ
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The second derivative on the right-hand side of equation (2.4.37) is equal to:

arn,mk 3 arn,mk OHx™ 8rn,mk axmk
_ ( a0 O (2.4.38)
aFag 1 (‘9:}52 8Fa5 8:52 8Fa5
a,rn ,mk arn,mk K
- SL’ [e% + = ~m Fa
dxn P ’ Ok ?
A.’L’Z ,mk . AI” mk .
- rr,mk Lpfap — yn,mk Lptap

Combining equations (2.4.37) and (2.4.38) we obtain:

N N n,mk
00 Ax "
_ AR E 2.4.39
T = T Y S e AT (2.4.39)

keZ3 n=1m>n

Y S S AR,

keZ3 n=1m>n

where f™k is the component « of the force between atom n and a given periodic
image of atom m.

In our code, we implemented a Lennard-Jones potential, which will be used in
chapter 4 to analyse grain boundary migration, and a MEAM potential, that will
be used in chapter 5 to analyse the 5 — « phase transition in pure titanium. In
both cases, the virial stress components can be calculated by the use of equation
(2.4.39).

2.5 Heuristic justification of the overdamped Langevin
dynamics

We have seen in the previous sections that, whether we consider the (NVT) or
(NPT) ensemble, the overdamped Langevin dynamics converges to the correct
thermodynamic equilibrium in the long-time limit. We propose now a heuristic
argument to justify that, at a proper time scale, this overdamped dynamics re-
produces also the out-of-equilibrium dynamics. For that purpose we analyse the
auto-correlation functions of particles positions {z!'} and velocities {v}}. In order
to do this, we examine the time-evolution of an atom trajectory in a defect-free
single crystal by the use of Molecular Dynamics simulations. We simulated a
2D perfect crystal where atomic interactions are represented by a Lennard-Jones
potential. The simulation box size was taken as 5000 x 5000 o? with periodic
boundary conditions in order to approach the ideal condition of an infinite media
with reasonable computational costs. The initial positions were set on a perfect
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triangular lattice and the initial velocities were randomly assigned using a temper-
ature value of T'=0.125 €1;/kp (for units definition see chapter 4, section 4.4.2).
We integrated the trajectories via the Verlet scheme in the microcanonical ensem-
ble (NVE). After thermal equilibrium was reached, we considered the trajectory
(i.e. momentum and position) of a single atom in a time span [0, Tynq.| and we
calculated the following auto-correlation functions:

leyte + )y = [ =B D 20,
e+ ) = o [ OIS Ry

where v; and ; are time averages over T,,,, of velocity and position components
while agi and ai are the variances (as we consider here a single particle, the upper
index n has been omitted). The value of T},,, was chosen in order to be at least
100 times the maximum value of 7 for which the auto-correlation functions were
calculated. The results of these calculations are reported in Fig.2.5.1, where we
observe that the velocity auto-correlation function relaxes at a much smaller time
scale than the position auto-correlation function. Calling 7, the velocity auto-
correlation time, we infer that, at any time scale At larger than 7,, the velocities
reach a quasi-static equilibrium state with respect to the positions. Therefore, at
time scales AT > 7,, we may consider that velocities relax and that, consequently,
the phase space may be restricted to the set of positions {«}. This in turn implies
that the dynamics should involve only the first order time derivative of x'. Keep-
ing in mind that this dynamics must converge to the correct equilibrium state, we
conclude that, at time scales A7 > 7, the kinetics of {z'} is given by overdamped
Langevin dynamics such as the ones given in section 2.3 and 2.4, provided that
the amplitudes of the noise terms fulfill the appropriate fluctuation-dissipation re-
lation.

Of course, an exact formulation of the overdamped Langevin dynamics should
proceed through an explicit coarse-graining procedure over the initial Newtonian
dynamics. The outcome of this time coarse-graining would naturally lead to a
coarse-grained potential ®.,({z}}) that will differ from the original ®({z}}), as
phonons will be adiabatically embedded into ®.,({z}}). Moreover, explicit ex-
pressions for the mobility v and noise amplitude B would arise. In the present
work, we propose a simplification which consists in replacing the coarse-grained
potential by the original one:

Doy ({z7'}) ~ @({2i'}) (2.5.1)
Consequently, for the numerical applications reported in chapter 4 and 5 we have
been working with the same potentials as the ones used in Molecular Dynamics
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simulations.
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Figure 2.5.1: The normalized auto-correlation functions for the first and second
components of the velocity (blue curves) and position (red curves) of an atom in a
defect-free 2D crystal calculated from Molecular Dynamics simulations. As we can
see, the velocity components loose memory of their initial value much faster than
the position components.
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Chapter 3

Numerical implementation

3.1 Introduction

In this chapter, we give the details of the numerical implementation of the model
proposed. The chapter is divided into two parts. The first part deals with the
numerical integration of stochastic differential equations (SDEs). The second one
is dedicated to algorithms that we used in our home-made code to accelerate the
search of pairs of atoms within the range of cut-off radius for force calculation.

3.2 Time integration of stochastic differential equa-
tions

In this section, we illustrate the numerical methods tested for the time integration
of the system of SDEs used in our model. This field is still an active domain of re-
search. The section is organized as follows. We begin with a review of some general
concepts about time integration of SDEs, emphasizing the differences from ordi-
nary differential equations (ODEs). We then describe the methods implemented in
the present work for integrating the equations formalized in chapter 2 and report
the results of the numerical tests performed that motivated the final decision of
the algorithm used throughout this thesis.

3.2.1 Stochastic differential equations and stochastic inte-
grals: general concepts

Without loss of generality, a stochastic differential equation is a differential equa-
tion containing a stochastic process. In its more general form, for the one-dimensional
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case, it can be written as [29]:

L = Gx ()00, 1) (3:2.1)

where G is a given function that depends, in general, on the variable X(%), on the
time ¢ and on a stochastic process 7(t). The function G can have different forms as
a result of the underlying physical mechanism which it describes, see for instance
references [30, 31] as examples in microstructural evolution in alloys, plasticity,
and magnetism. In the present work, we are interested in the numerical solution

of SDEs of the form:
dX

dt
where the function a(X(t)) corresponding to the deterministic part is referred as
drift term, the function b(X (t)) is referred as diffusion term and n(t) is a white
Gaussian random noise such that (n(t)) = 0 and (n(t)n(t')) = o6(t —t'). The
noise term in Eq. 3.2.2 is called multiplicative or additive noise according to
the dependence of the function b on the variable X (¢). The random term in the
overdamped Langevin approach formulated in this thesis does not depend on the
state variable X (¢) and hence we deal with an additive noise. However, in the
following discussion, we consider the general case of multiplicative noise for the
completeness. Equation 3.2.2 can be seen as an ordinary differential equation
to which random fluctuations have been added. The “family” of solutions X (t),
one for each realization of n(t), is also a stochastic process which inherits all the
stochastic properties of the noise. In order to solve Eq. 3.2.2, we compute its
integral in the time span [t,t5] with ¢; < ta:

= a(X (1)) + b(X(8))n(t) (3.2.2)

t t
X(t2) = X(0) + | " a(X(s))ds + t *b(X (5))(s)ds (3.2.3)
The first term on the right-hand side of equation (3.2.3) is a Riemann integral
while the second is a stochastic integral. The evaluation of this integral is not
obvious because the function 7(t) is continuous everywhere but non-differentiable.
It can be thought as a sequence of delta peaks which cause jumps in the solution
so that the values of X (¢) and b(X(¢)) are undetermined at the time the delta

functions arrives. To be more precise, we recast the stochastic integral above as

/ b(X (1)) (t)dt = / b(X (1))dW, (3.2.4)

where dW = n(t)dt is the elementary increment of the Wiener process W (t). This
particular function is continuous but non-differentiable in any point. By definition
of Riemann integral, we have:

n—o0

/ b(X(t))dW = lim lib(X(T,))[wm) Wt — 1)), (3.2.5)
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where we consider a discrete time interval [t;, ¢, — 1] to which 7; belongs. One can
show that the above limit converges to a unique value for any choice of 7; within
the interval [t;,t; — 1] if W (¢) is a smooth function. On the other hand, for a
non-differentiable function W (t), the limit depends on the location of 7; in this
interval. The decision on the place of 7; leads to well known It6— Stratonovich
dilemma. In the It6 interpretation [32], the function b(X (t)) is evaluated at the
beginning of an interval such that:

70X ()n(s)ds = X ()W (12) — W ()] (3.2.6)

t1

In the Stratonovich interpretation [33], the function b(X(t)) is evaluated in the
middle of the interval so that:

[ b(x(s)n(s)ds = b

t1

(X(tQ) + X(t)
2

)W -we) G20
The two interpretations above are particular cases of the general formula:

to
B ms)ds = b{(1 = @)X (1) + aX () V(1) = Wt (3:28)
with any arbitrary « such that 0 < o < 1. Each particular choice of o generates a
different stochastic evolution and, once the choice is fixed, the stochastic dynamics
is unambiguously defined. Therefore, both the It6 and Stratonovich formulae are
correct from a purely mathematical point of view although they follows different
calculus rules. The choice depends on the underlying microscopic mechanism from
which the stochastic equation is derived. In general, when the noise is due to
external environmental effects, it can be argued that its intensity in the transition
from the ¢; to ty time instant is independent from AW (It6 interpretation). On
the other side, the Stratonovich interpretation seems more appropriate when the
white noise is used as an idealization of a smooth real noise process i.e. of a colored
noise process with small but in any case finite autocorrelation time [21]. The noise
in overdamped Langevin equations is an additive noise i.e. its amplitude does not
depend on the state of the system at time t. In this particular case, the 1t6 and
Stratonovich calculi coincide.

3.2.2 SDESs numerical integration

In this section, we briefly outline the numerical methods that we used for the time
integration of the SDEs in this work. We first begin with the introduction of some
basic concepts on numerical convergence and stability.
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3.2.3 Convergence and stability of numerical methods for
SDEs

When working with stochastic differential equations it is important to distinguish
between two different convergence criteria [34]:

1. in problems involving explicit simulations, the important point is the close-
ness of simulated trajectories to the real stochastic process. In this case we
talk about strong convergence. A measure of the closeness of a sample path
Xyum(t) to the real process X () at the end of the time interval [0, T is given
by the absolute error:

e(At) = B(|Xun(T) — X(T))) (3.2.9)

where E(-) is the average over different trajectories and At is the step size
adopted for the time integration. We say that an approximating process
Xum (t) converges in the strong sense with order -« if there exists a constant
K and a positive constant Aty such that:

e(At) = E(|X(T) — Xpum(T)|) < KAL" VAt € (0, Aty) (3.2.10)

2. in some applications, we are not interested in close path-wise approximation
of X(t) but in some function g of its value at time T or, more generally,
in the expectation F(g(X(7))). In this case, it suffices to have a good
approximation of the probability distribution of the random variable X (t)
and we talk about weak convergence. An approximating process X, (t) is
said to converge in the weak sense with order ~ if there exists a constant K
and a positive constant Aty such that:

E(At) = | B(g(X(T))) — E(g(Xnum(T)))|< KA VAL € (0, Aty) (3.2.11)

where g(X) is a given functional of the stochastic process X (¢) e.g. the mean
value or the standard deviation of the process.

Convergence gives us a measure of the rate at which we can improve the accuracy
of the numerical solution X, (t) by lowering the step size At. Another important
property of a numerical method is its stability domain i.e. the maximum At for
which an initial error remains bounded without growing in uncontrolled fashion
during integration. This concept is really important for stiff system i.e. set of
equations characterized by the presence of really different time scales where small
time scales imply strong limitations on the maximum At for time integration.
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3.2.4 Schemes for SDEs time integration

In the present work three different numerical schemes were tested: an explicit
scheme, a predictor-corrector and an implicit scheme.

The explicit Euler scheme

One of the simplest time-discrete approximations of (3.2.2) is the explicit Euler
approximation. We consider the stochastic process X = {X(¢),0 <t < T} in the
time interval [0, 7] and rewrite equation (3.2.2) in the following differential form:

dX = a(X)dt + bdW (t) (3.2.12)

For a given discretization 0 < 7 < ... < 7, = T of the time interval, the explicit
Euler approximation is given by the following iterative scheme:

X (t + A1) = Xy (1) + a( X () At + BAW (3.2.13)

where At = (7,41 — 7,,) is the step-size and AW = W, — W, is the incre-
ment of the Wiener process i.e. an independent random variable with distribution
N(0, At). In practice, AW can be calculated as AW = &(t)v/At where £(t) is an
independent random variable with distribution N(0,1). We can easily see that if
b = 0 this scheme reduces to the classical explicit Euler for ordinary differential
equations. In the present case, we deal with a multi-dimensional stochastic process
such that X(t) = z?(t), wherei = 1,2,3 and n = 1,..., N with N the total number
of particles. The time approximation for the single component z is given by (we
omit the pedex num for sake of clearness):

xp (t+ At) = 2 (t) + a({x]'(t) }) At + AW, (3.2.14)

The explicit Euler scheme has the advantages of an easy implementation, a low
computational cost and a “simple” interpretation. On the other side, its stability
domain is usually really limited. Its convergence is of order 1/2 in the strong
sense, so lower than the convergence of order 1 obtained for the corresponding
deterministic scheme. This is due to the fact that the increments of the Wiener
process AW are of order At'/2. In the weak sense, we can show that the scheme
converges with order 1 [34].

The Heun’s method

As mentioned before, implicit schemes have the advantage of a higher numerical
stability when compared to the explicit ones but one needs to solve a non-linear
set of equations. This can be quite tough and computationally expensive when
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working with a high number of DOF as it is the case for atomistic simulations.
Predictor-corrector schemes can represent a good compromise between numerical
stability and computational efficiency. In our work, we used the well-known Heun’s
method, also known as modified Euler’s method, which is given by:

T =al(t) + a({x](t)}) At + AW (3.2.15)
zi (t+ At) = 27 (t) + ; (a({zi(®)}) +a({Z}})) Al + DAW

Theoretically, the method has the same order of convergence as the explicit Euler
scheme, 0.5 in the strong and 1 in the weak senses. However, as reported in
[34], it could happen that in some particular cases the order of convergence is
higher. From the stability point of view, the fact of using the prediction Z] for
the evaluation of the drift term could lead to a higher numerical stability. From a
computational point of view, the method is more expensive than the explicit Euler
method because we evaluate forces twice at each time step. On the other hand,
as we will show later, the error significantly decreases. It is worth to mention that
this procedure can be considered as a two-stage second-order Runge-Kutta method
and therefore one can envision to use four or higher stage Runge-Kutta methods.
However, in our numerical tests, we found that the computational cost of fourth
stage Runge—Kutta method, due to the requirement of calculating forces four times
in each iteration, was higher than the largest possible increase in time-step size that
we can implement. Therefore, we did not use higher order Runge-Kutta schemes
in our simulations.

The implicit Euler scheme

Implicit integration schemes have the advantage of a higher numerical stability
compared to explicit integration schemes. The simpler one is the implicit Euler
scheme which can be seen as a generalization of the backward Euler scheme used for
classical ODEs. For a given time discretization, the implicit Euler approximation
is given by the following iterative scheme (we report directly the equations for the
multi-dimensional case):

zp(t+ At) = 2] (t) + a({x] (t + At)})At + bAW] (3.2.16)

with the same meaning of symbols used before. This scheme has the same order
of convergence of the explicit one previously illustrated but the evaluation at time
(t+At) of the drift term strongly increases the stability domain so that bigger time
steps can be used. On the other side, we need a good solver for the non-linear set
of equations (3.2.16). For this purpose, we used the L-BFGS conjugate gradient
method where the solution for the first iteration was obtained by the explicit
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Euler scheme. While we observed that this method may drastically increase the
time-step size, the number of iterations within the conjugate gradient step can
also increase and this, in turn, implies several calculations of forces in each time
step. Consequently, our implementation of the implicit Euler method was not very
effective to perform large scale simulations from computational point of view.

3.2.5 Numerical tests

In this section, we report the results of the tests performed in order to check the
convergence and stability of the integration schemes previously illustrated. The
test performed consisted in the equilibration of a 2D defect-free crystal on a time
span [0, T] at given temperature. We used a Lennard-Jones potential ® to describe
atomic interactions with coefficients 8-4 and applied periodic boundary conditions
in all directions. In the present work, we are not interested in path-wise closeness
of the single atomic trajectories. We are rather interested in the overall evolution
of the system. Consequently, we studied the convergence of the method in the
weak sense taking as a functional of X(t) = {z?(¢)} the mean potential energy of

the system ®:
_ 1 X

g({zi}) = @ = 5 > ®"({a7}) (3.2.17)

n=1

We then analyse the step size dependence of the error:
e(At) = |E((Xnum(T))) — E(P(Xezaet(T)))] (3.2.18)

Since we do not know the analytical solution of our equations, we approximately
assumed X .. equal to the numerical solution obtained by taking an integrating
time step At = 5 x 1078 EZ}V*1 (for units, we refer the reader to chapter 4,
section 4.4.2). As we will see later, this time step is really small if compared
to the range of accuracy and stability characterizing the methods tested. To
evaluate €(At), instead of taking an average of ® over several trajectories for each
At considered, we took a time average over a single trajectory after the system
has reached equilibrium. The substitution of an ensemble average with a temporal
average is justified by ergodicity. We then performed 20 simulations for each At by
changing the seed of the random noise in order to calculate a confidence interval for
€(At). The results of our calculations for the different integration schemes adopted
are reported in Tab. 3.1. The data are plotted in logarithmic scale in Fig. 3.2.1.
We can see that for a time step At < 5 x 107* ¢, Jv~! the round-off errors become
more important than the error linked to time discretization. The explicit Euler
and the Heun’s method converge both linearly although for the same time step
size the Heun’s method has an higher level of accuracy. From the point of view of
numerical stability, the maximum At achievable with the explicit Euler scheme is
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1073 EZ}V” whereas, with the Heun’s method, we can increase the time step size

to 4 x 1073 ¢, JvL. For these two reasons, we choose to use the Heun’s method to
integrate our equations.

-1.8
-2 L Euler expl ——
Heun —e—
2.2t
= 24 |
&
—~ 26 |
LU_J.-'
E’ -2.8 ;

7 65 -6 -55 -5 -45 -4 35 -3
log(At) [y v

Figure 3.2.1: The error € as a function of the step size At for the explicit Fuler
scheme and the Heun scheme (both azis are on logarithmic scale).
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Euler explicit Heun
At [V_1€Z} € [€LJ] A€ [ELJ] € [CLJ} A€ [ELJ]
1073 1.308 x1073 | 9.52 x107° | 1.67 x1073 | 9.38 x107°
5x107% | 7.50 x1073 | 2.03 x10~* | 9.30 x10~* | 2.04 x10~*
10~* 1.77x1073 | 1.66 x10~* | 6.07 x10=* | 1.52 x10~*
5x 107" | 6.01 x1073 [ 1.63 x10* | 4.20 x10~* | 9.74 x10~°
107 1.76 x1073 | 1.06 x10~* | 1.64 <1072 | 1.06 x10~*
5x 107 4.55 x10™* ] 9.36 x107° | 4.96 x10~* | 1.00 x10~*
1076 6.66 x10~* | 1.89 x10™* | 6.60 x10~* | 1.88 x10~*
5x 1077 1.67 x1073 | 1.36 x10~* | 1.67 x1072 | 1.36 x10~*
1077 5.58 x10~* | 1.00 x10~* | 5.57 x10=* | 1.00 x10~*
5x 1078 - - - -

Table 3.1: The error calculated from the numerical test performed with its confi-
dence interval for the explicit Fuler scheme and for the Heun scheme.

3.3 Algorithms for forces computation

One of the most expensive operations in an atomistic model is forces computation.
As an example, consider a system of N particles where interactions are described
by a pair potential ®. If we assume that interactions are inherently local, the force
acting on a given atom n depends on the interatomic distances between n and all
the N,, neighbouring atoms inside a certain cut-off radius r.;:

N 90
2

m=1

= (3.3.1)

M

In order to find the N,, neighbours, a straightforward approach would be the direct
evaluation of the inequality r™™ < r., for each atom n composing the system. This
search would require a double loop and so N? operations for each force evaluation,
which is really computationally inefficient. Furthermore, between two time steps
the positions of atoms usually do not change so much and consequently also their
neighbours. There are two methods generally used to avoid useless computations
of interatomic distances: the Verlet list and binning.

3.3.1 The Verlet list

The idea of the Verlet list method [35] is to store for each atom n a list of the atoms
inside a radius r,., defined in function of the cut-off radius and a skin distance e:

(3.3.2)

Tver = Teut + €
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At each iteration, to calculate the force on a given atom n, we need to check only
the atoms contained in its list. Of course, atoms move during a simulation so that
a suitable criterion must be stated in order to choose when the lists have to be
updated. A possible approach is to verify if the two largest distances d,,q,1 and
ez 2 travelled by the atoms are less than the skin distance. If:

dmax,l + dmax,Z <€ (333)

it is not possible that any lists have changed. This approach assumes that the two
most mobile atoms are near and have moved directly toward each other. In our
code, we used the more restrictive criterion:
€

Az < 3 (3.3.4)
With the Verlet list, the force computations requires p/N operations, where p is
the number of neighbours contained in the list, and occasionally N? operations
to rebuild the lists. The computational gain is difficult to estimate because it
depends on the atom mobility (so, for example, on the temperature at which we
are simulating the system) and on the skin distance e.

3.3.2 Binning

Binning [36] consists in dividing the simulation box containing the atoms in cubic
cells with side length l..;; > 7re:. When looking for the neighbours of a certain
atom, only the atoms within its own bin or within one of the 26 neighbouring bins
are checked. The computational cost is dominated by the assignment of each atom
to a bin, which needs N calculations. When the simulation box is allowed to change
shape, it is easier to make the cell assignment in the scaled reference configuration
where atom positions are identified by the coordinates {Z}'}. Consider a bin in the
current configuration (Fig. 3.3.1) identified by the three non-orthogonal vectors
{e1, ey, €3} with norm:

L? ?:1(F J ‘)2

Necell i

| e ||= (3.3.5)
where L? is the box length in the reference configuration and n.y, is the number of
subdivisions along the i direction. To define n.¢;;, we will impose that the height
of this prism in this direction must be equal to .. This is equal to the norm of
the vector a; = e, A ej/(]ex||e;|) which can be written as:

gt

o ||= 2 =15 )) (3.3.6)

Neell i
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The number of cells in the direction ¢ would be the highest integer approximating

the value:
Lo
Neell; = d (337)

lcell Z?:l (F;:T)2

!

A

™

\

Figure 3.3.1: An undeformed bin in the reference configuration (identified by the
vectors {€1,€y,83}) mapped by the deformation gradient F in the deformed one
identified by the three vectors {e;,eq, es}.

3.3.3 Combining the binning algorithm and the Verlet list

In our code, we combine binning with the Verlet list in order to further speed up the
forces computation. The forces are computed by using the neighbour lists which
allows to check a lower number of neighbours. When necessary, we use the binning
method with cell length [..; = 1.017,., in order to rebuild the neighbour lists thus
lowering of a factor N the computational cost of this operation. Furthermore,
for both the potentials used in our simulations the total force f™ acting on atom
n can be expressed as a sum of interactions between pairs ™. Considering
that f»™ = —f™" we need to compute the forces for each pair just one time.
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Consequently, we need to consider half of the surrounding bins of each atom to
form its list. This is done by storing atom m in atom n list, but not atom n in
atom m list, thus further reducing the number of computations. Finally, we recall
that the open-source code LAMMPS that we used to perform MD simulations uses
the combination of the binning algorithm with the Verlet list as well. We checked
that the performance of our implementation is comparable to the one implemented
in LAMMPS.

30



Chapter 4

15t application: coupling effect

during grain boundary migration

4.1 Introduction

In this chapter we report the results of the first application of the model formal-
ized in chapter 2, for which we decided to focus on the study of grain boundary
migration. The reasons for this choice are multiple. First of all, details of grain
boundary migration are of prominent interest to understand grain growth and
grain nucleation i.e. the kinetics of recrystallization. Secondly, the multiplicity of
microscopic processes involved in this phenomenon (dislocations glide and climb,
interaction between dislocations, atomic jumps, ...) represents a challenging test
for the model. The main objective of this part of our work has been the valida-
tion of the modelling approach proposed by comparison with Molecular Dynamics
simulations. However, it has also been the occasion to highlight some peculiarities
of GB migration.

The chapter is organized as follows. We firstly introduce some general concepts
on grain boundaries, grain boundary migration and coupled motion. After that, we
show the comparison between the results of our simulations and those obtained by
Molecular Dynamics. Finally, we present a deeper analysis of different mechanisms
of migration for low and high angle grain boundaries.
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4.2 Grain boundaries and grain boundary mo-
tion

In the present section, we give a brief introduction to grain boundaries and their
kinetics. For a more detailed treatment of the subject we address the reader to
the specific literature cited.

4.2.1 What is a grain boundary?

We define a grain boundary (GB) as the interface separating two regions of different
crystallographic orientation [37]. We can describe this entity in different ways, as
a function of the level of detail adopted [3].

From a continous point of view, 5 parameters are needed to define the geometry
of a plane grain boundary; an axis 1 and an angle 6 defining the rotation between
the two crystals (3 parameters) and the normal to the grain boundary plane n (2
parameters). On the basis of this first coarse-grained description, we distinguish
between:

e high angle and low angle GB as a function of the misorientation angle 6,

e symmetrical and asymmetrical GB as a function of the position of the GB
plane relatively to the two grains;

e tilt GB (the rotation axis lying on the GB plane) and twist GB (the rotation
axis lying orthogonal to the GB plane). In a general framework, a GB can
have a mixed character.

This macroscopic description is in fact rather poor. It provides a geometric refer-
ence of the orientation between the two lattices without incorporating any informa-
tion about the local GB structure. Effectively, once the 5 macroscopic parameters
have been fixed, at the atomic level different boundary structures can be obtained
by relative translation of the two crystals along the normal to the boundary plane
and along the plane itself.

From a discrete point of view, a GB can be described by using dislocation
models. The basic idea of these models is that the misorientation between two
contiguous grains can be accommodated by an array of dislocations. These dis-
locations are called intrinsic, since they are strictly necessary in terms of number
and type to reproduce the boundary structure. The first dislocation model for
symmetric tilt low angle grain boundaries was proposed by Bragg and Burgers in
early 40’s [39] and was further extended by Frank to general low misorientation
GB [10]. The description via dislocation models is more refined than the previous
one but still has some drawbacks. First, it is generally restricted to the case of low
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angle grain boundaries. For high misorientation angles, the spacing between dislo-
cations becomes small and single cores are no longer identifiable. Bilby proposed
a generalization to the high-misorientation case [11] which relies on the definition
of a continous dislocation distribution. Secondly, when a grain boundary has a
complex geometry different dislocations arrangement are possible i.e. the Frank
equation has multiple solutions. Energetic calculations are then needed in order
to find the minimum energy structure.

Finally, a grain boundary structure can be described as an ensemble of struc-
tural units i.e. regular polyhedrons with atoms at the vertex. A boundary can be
composed by a single structural unit or, in a more general case, by different units.
Depending on the grain boundary, these structures can have a short range or a
long range periodicity. This last description takes into account the local atomic
arrangement to give a complete description of the GB structure and has general
applicability. However, it is not easy to use for describing general grain boundaries
and, as for the case of dislocation models, needs energetic calculations to choose
the most probable structure among the multiple possibilities.

4.2.2 Basics on grain boundary motion and coupling effect

After defining what is a grain boundary and how it can be described at the macro
and microscopic level, we give some notions about its kinetics. We also give some
basics on the possibility of coupled-motion during grain boundary migration, which
will be useful to analyse the results reported in section 4.4 and 4.6.

The motion of a GB can be non-conservative or conservative [1]. Non-conservative
motion refers to a situation on which the interface migration is linked to long-range
mass transport across it. Conservative motion refers to a situation on which there
is only a local transfer of atoms across the interface from one crystal to the other.
The velocity of the boundary is linked to its crystallographic structure, to the
temperature and to the driving force. There are different types of driving forces.
In general, a driving force occurs if a boundary displacement allows a decrease in
the total free energy of the system. The most relevant sources of driving forces
are the following [12]:

e an excess density of defects (e.g. dislocations) in one of the adjoining grains;
e the free energy excess associated to the interface itself;

e the anisotropy of any physical properties between the two grains e.g. elastic
constants or magnetic susceptibility;

e the gradient of any intensive thermodynamic variable such as temperature,
pressure, contents of impurity and so on.
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When the motion of an interface requires thermal activation to overcome energy
barriers, its migration may be viewed as a viscous process and, therefore, its mi-
gration rate v can be expressed as:

v =MP (4.2.1)

where M is a mobility parameter and P is the driving force. P can be expressed
in terms of the free energy change G for a displacement 7 of the interface:

oG
P=- (4.2.2)

The mobility M should reflect the thermally-activated aspect of the migration
process and, therefore, an Arrhenius type law is usually adopted:

E

where M, is a prefactor and F is the activation energy.

Describing a grain boundary as an interface, it can move tangentially or nor-
mally with reference to its plane. These two displacements components are usually
coupled, although pure sliding is possible especially in high temperatures condi-
tions or if a high mechanical stress is applied. Consider the low angle symmetric
tilt GB in Fig. 4.2.1. In this simple case, the GB can be described by an array of
dislocations. If a stress is applied, dislocation glide will cause a normal motion of
the GB and the resulting growth of crystal 1 in crystal 2. At the same time, the
necessity of continuity of crystal planes impose that the specimen will be sheared
with a tangential movement of the interface. A priori, coupled GB motion is pos-
sible for low angle as well as for high angle boundaries and strongly depends on
the migration mechanism of the interface i.e. on its structure at the atomic level.
This particular phenomenon potentially plays an important role in the evolution
of a microstructure. For example, coupled motion of non-flat grain boundaries has
been pointed as responsible for grain rotation during grain growth or grain shrink-
ing [13, 11] and during plastic deformation of nanocrystalline materials [15, 16, 17].
Various theoretical models have been proposed in order to understand and predict
the occurrence of coupling during GB migration [18, 19, 50]. The possibility of
grain rotation induced by GB migration is further investigated in the following
sections.

4.3 Post-processing tools

Before showing the results of our numerical simulations, we describe in this section
the post-processing tools used for the analysis.
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Figure 4.2.1: A schematic representation of coupled motion explained via disloca-
tion model. Dislocation glide has two effects: i) the growth of crystal 1 in crystal
2 with normal displacement of the interface ii) the shearing of the specimen with
consequent tangential displacement of the interface. Figure adapted from [1].

4.3.1 Grain boundary description and defects identifica-
tion

We characterize the grain boundaries in terms of number and type of defects. In
order to do this, we use the Delaunay triangulation to find the nearest neighbours
of each atom. In a perfect 2-dimensional hexagonal grid, an atom has 6 nearest
neighbours (NN). Along grain boundaries, we observe the formation of topolog-
ical defects that consist in pairs of particles having 5 and 7 nearest neighbours
respectively [51]. In the following sections, we will refer to this defect as a 5-7
pair.

4.3.2 Grain misorientation calculation

An important observable used to analyse our simulations is the misorientation
between the grain and the matrix. In order to calculate the grain orientation at a
given time step we operate as follows:

e we identify the crystalline defects by the use of the Delaunay triangulation;

e we “numerically” define the GB as the polygon connecting these defects (n.b.

35



this definition excludes the possible defects emitted from the grain boundary
toward the matrix.);

e for each atom inside the grain, we calculate a local orientation parameter
using the algorithm proposed in [52]. We compare the local positions Ar;;
of the six nearest neighbours of an atom ¢ with the positions Ar;;(«) of the
six nearest neighbours of an atom in a perfect 2D hexagonal grid rotated of
an angle a. In order to do this, we define the parameter ¢;(«):

0) = : 26: 3 exp (_ [(Ari;)i — (QArik(a))lP)

J=1k=11=1 ap

where ag denotes the equilibrium lattice constant at the given temperature.
The quantity 1;(«) is calculated for sixty equally spaced rotations between
0° and 60°. The rotation delivering the maximum value of ¢;(a) and thus
corresponding to the best match between the actual and ideal lattice orien-
tations is assigned to atom ¢ as its orientation parameter;

e the grain orientation is defined as the average of the local orientations, ex-
cluding the atoms which forms topological defects.

4.3.3 Local deformation gradient calculation

To understand the microscopic mechanisms at the origin of the grain boundary
migration in the high misorientation case, we will see below that we need to analyse
the local atomic movements around a given atom. To do this, we use the following
approach.

We consider the relative position Ar;;(t*) between the atom i and its first
neighbour j at time ¢ = 0 and at time t* after the GB passage. Then, following
the approach proposed in [53], we try to identify a local linear transformation
F that describes the atomic movements around atom 7. In order to do this, we
minimize the mean-square difference between Ar;;(¢*) and the local displacement
that would result from the action of F* on Ar;;(0), j =1,...,6:

Z”Arm FZAI‘U( )|I? (4.3.1)

Numerically, the matrix F* which minimizes D®? ig given by:

6

2_: Ari;(0))k(Ar;(0))m 5 (Xi)iw = D (Ary(t*))i(Ari; (0)),

J=1

(Fim = (X)ir (Yi)yom (4.3.2)
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If, for a given atom ¢, this minimization process leads to a small enough D@? then
we may interpret the dynamics around the atom i as a uniform transformation
associated to the deformation gradient F?, i.e.:

Conversely, if the minimization does not lead to a small D(i)Q, atomic movements
around atoms ¢ cannot be described by an affine transformation.

4.4 Validation of the modelling approach pro-
posed

As previously highlighted, the main focus of this first application has been the vali-
dation of the modelling approach proposed. Consequently, we limited our study to
the “simple” case where curvature is the only driving force for GB motion. Further-
more, we performed 2D simulation thus limiting our study to the case of pure tilt
grain boundaries. In the following section we describe the particular case study
considered, the details of the simulation setup and finally show the comparison
between our results and those obtained by Molecular Dynamics simulations.

4.4.1 Case study

A simple example of GB motion driven only by curvature is the shrinking of
a circular island grain embedded in a monocrystalline matrix when there is no
strain energy difference between the two. This is a phenomenon well known in
literature which has already been study numerically [54, 55, 56, 57, 58, 59, 52,

| and experimentally [61, 62, 63]. All the numerical observations agree on the
possible presence of coupling during GB motion with rotation of the island grain
as a consequence of the interface curvature. On the other side, no grain rotation
has been seen during experiments. The discrepancy between experiments and
simulations may find an explication in a recent study [51] on mixed tilt-twist GB
and so in the possible non-ideal tilt character of the island grains in experiments. It
must be also underlined that the observation of coupled GB migration is not easy to
realize during in situ experiments since there is the need to measure simultaneously
the GB displacements in three directions as well as the change in orientation. A
discussion on the differences between the experimental evidence and numerical
modelling of curvature GB migration is beyond the scope of the present work but
we wanted to at least mention this point.
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4.4.2 Simulation setup

In our simulations, we consider the shrinkage of an initially circular 2D grain
embedded in a monocrystalline matrix. Atomic interactions are described by a
Lennard-Jones type potential:

ve|) (D)

where r;; is the interatomic distance, o is the unit length and €;; the energy scale
(see the appendix A). The values of the exponents are set equal to n = 8, m =
4. This particular pair-interaction potential is chosen for its simplicity and nu-
merical efficiency. At equilibrium, the resulting crystalline grid has an hexagonal
geometry. The cut-off distance for the forces calculation was set equal to 2.2 o.
We apply periodic boundary conditions in all directions and set the rectangular
simulation box equal to 180 x 180 v/3/202 . Simulations were performed in the
(NPT) ensemble at zero pressure, in order to avoid stresses generated by the vol-
ume change during the shrinking of the grain. The temperature was set equal to
0.125 €15/ kg, which corresponds to approximately 1/3 of the melting temperature.
This temperature was previously calculated by performing several simulations of
a perfect monocrystal at different temperature and following the evolution of the
mean potential energy of the system. In the 3D case, a sharp increase of this
variable takes place at the melting point. In our 2D geometry, a rapid variation of
the potential energy was also clearly visible and used as a definition of the melting
temperature (even though, strictly speaking, a real melting transition does not
exist at finite temperature in a 2D system).

Special care was taken to create an initial GB structure as close to equilibrium
as possible. For this purpose, the following procedure has been developed. Starting
from a perfect lattice previously relaxed at the desired temperature, a circular
central area is rotated. To avoid the occurrence, at the grain/matrix interface,
of atoms that are too close to each other, the monocrystalline matrix is slightly
expanded. Then, the system is shortly relaxed by integration in the isothermal-
isobaric ensemble. The final result of this procedure is an initial relaxed GB
configuration. In our simulations, we have always used a grain diameter smaller
than half the smallest dimension of the simulation box to minimize the interactions
with periodic images.

To perform LG dynamics simulations, we implemented the equations formalized
in chapter 2 in a code that we developed (written in Fortran). To perform MD
simulations we used the open-source code LAMMPS with a Nose-Hoover style
thermostat and barostat [64, 65].
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4.4.3 Comparison between LG and MD

In comparing the Langevin dynamics with MD, we consider three initial misorien-
tations: 6y = 10°, 45°, 38.2°. In Fig. 4.4.1, we present the evolution as a function
of the grain size of (i) the misorientation angle € (ii) the number of 5-7 defects at
the boundary. The results obtained from the LG model are presented in red and
the ones obtained from MD in blue. From the diagrams we observe that:

e the coupling effect is well capturated by the Langevin dynamics as well as
by MD. Both methods highlight the presence of grain rotation during the
boundary migration for # = 10° and 6 = 45° while for the value of § = 38.2°
no rotation is present;

e there is a good agreement between the Langevin and MD simulations in
terms of increase rate of the misorientation angle and sense of rotation (left
hand side of Fig. 4.4.1). Local mismatches between the curves are justified
by the fact that the dynamics is, in both simulations method, stochastic
(the Langevin dynamics is of course explicitly stochastic as it includes noise
terms; MD equations are formally deterministic but, as we know, they gener-
ate chaotic dynamics -even in the microcanonical ensemble- whose trajecto-
ries are extremely sensible to initial conditions, which confers to the overall
dynamics a stochastic character);

e the evolution of the number of 5-7 defects as a function of the grain size also
demonstrates a very good agreement between the simulation results obtained
by the two methods (right hand side of Fig. 4.4.1). This indicates that the
atomic mechanisms at the origin of the GB migration are similar in both
methods.

We can conclude from this comparison that the Langevin dynamics is able to catch
the complex dynamics of coupled GB migration and that the results obtained by
this new methodology strongly agrees with the ones obtained with more established
methods such as Molecular Dynamics.
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Figure 4.4.1: Fwvolution of the misorientation angle 0 and of the number of 5-7
defects along the grain boundary as a function of the grain area, for the initial
values By = 10° (top row), 38.2° (middle row), 45° (bottom row). The results
obtained with the LG model (in red) are compared with the ones obtained with MD
stmulations (in blue).
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4.5 Study of the GB migration mechanism

In this section we report our investigation on the GB migration mechanism for the
low and high misorientation cases. For both cases, we first make some observations
on the GB structure, which deeply influence the migration mechanism, and then
we analyse its dynamics during shrinking.

4.5.1 Low misorientation case

The following observations are referred to the initial misorientation value 6, = 10°.
However, similar migration mechanisms act for other low misorientation angles so
that the considerations here reported can be thought of general validity for all the
range of angles between 0° and 10°.

Grain boundary structure The GB structure consists of several well spaced
single 5-7 pairs (see Fig. 4.5.1). These defects can be interpreted as dislocation
cores. Six different edge dislocations were observed in our simulations whose Burg-
ers vectors are:

+[1,0, 0]ag, =1/2[1,v/3, 0]ag, +1/2[1, —v/3, 0]ag

where ay denotes the equilibrium lattice constant. At the simulation temperature
T = 0.125 €5 /kp, ag is equal to 0.950. In the following notation, we will omit
the constant ag for sake of clarity. The arrangement of these dislocations along
the boundary changes accordingly to the orientation of the GB plane as shown in
Fig. 4.5.3, where four different snapshots of the GB during shrinkage are reported.
When the normal to the boundary plane is nearly parallel to one of the above
listed Burgers vectors, the boundary mainly consist of only one dislocation type.
Indeed, we frequently observe the formation of facets during the GB migration,
as pointed out in previous works [58, 55]. These facets contain homogeneous
dislocation arrays with Burgers vectors parallel to the facet normal. An example
of faceting is also reported in Fig. 4.5.2.
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Figure 4.5.1: The four-sided polyhedrons formed by the 5-7 pairs (red and blue
atoms) intepreted as dislocation cores for the low misorientation grain boundary
0 = 10°. The matriz is represented in green and the circular grain in yellow.

Figure 4.5.2: In this snapshot, six facets are highlighted. The facets are mostly
composed by a single dislocation set and their normal is oriented parallel to the
corresponding Burgers vector.
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Figure 4.5.3: Four snapshots of the grain while shrinking. Dislocations are high-
lighted by couples of atoms in red-blue colour. Six Burgers vectors were identified
during simulations.

Grain boundary migration The grain boundary migrates towards its centre
of curvature until the grain totally disappears. No defects are left in the matrix
after the grain shrinkage. During the GB migration, there is an increase in the
misorientation 6 and a corresponding increase in the dislocation density pp at the

boundary, which is defined as:
Np

pp = =D 451
b= (4.5.1)

43

1100]
1/2[1+3 0]
1/2[1v3 0]
1100]

1/2[123 0]

1/2[13 0]



where Np is the number of dislocation cores along the boundary and p is the
boundary perimeter. We report the evolution of these two quantities as a function
of the grain area (normalized by their initial values 6y and pp,) in Fig. 4.5.4. We
can see that pp increases by approximately 40% from its initial value. Its evo-
lution strictly follows the change in the misorientation angle although it displays
some local peaks, due probably to the approximated and arbitrary method used
to estimate the perimeter of the grain (see section 4.3.2).

We go now more in detail on the microscopic processes driving the migration.
In our simulations, we observed two different reactions between dislocations:

1. partial or total annihilation between two or more dislocations. An example
of this reaction is shown in Fig. 4.5.5, where we observe the following reaction
in terms of Burgers vectors and with obvious notations:

A 1/2[1v/30] + B : [100] + C : 1/2[13/30] — B : [100] + B : [100]

Note that this three-to-two dislocation reaction may also be analysed as re-
sulting from three smaller scale reactions, namely the splitting of the middle
[100] Burgers vector into 1/2[14/30] and 1/2[11/30] followed by the merging
of these two Burgers vectors with dislocation A and C, respectively. How-
ever, as the overall process occurs at really small time and space scales, it is
not possible to assert if this three step process does exist. Therefore, we sim-
ply refer to this process as an annihilation mechanism through which three
initial dislocations react and generate only two dislocations;

2. the interaction between two dislocations. This mechanism is presented in
Fig. 4.5.6. The glide of the dislocations labelled A and B in Fig. (4.5.6)-a,

with Burgers vectors [100] and 1/2[14/30], necessarily brings the two dislo-
cations close to each other. When the distance between the dislocations is
of the order of two interatomic distances, a rapid movement of a few atoms
inside the overlapping dislocation cores leads to an effective exchange of
the Burgers vectors of the two dislocations. This mechanism, sketched in
Fig. (4.5.6)-c, is better shown in Fig. 4.5.7(a-c) where the additional planes
of the two dislocations are shown in dotted line. We look at the atoms
forming the grey lozenge. When the two dislocation cores approach the sur-
rounding lattice is highly distorted and the lozenge becomes a square. This
configuration is unstable and quickly collapse thus causing a rotation of the
two Burgers vectors. The displacement induced in the surroundings by this
process are represented by arrows. The final result can be interpreted as a
crossing of two dislocations supplemented by a displacement outside their
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gliding planes, without the need of a vacancy assisted climb with a pre-
existing surrounding atom vacancy. For this reason, we will refer to this first
mechanism as “effective climb”. As above, we note that this process could
also be analysed as a splitting of dislocation A into dislocations 1/2[1+/30]
and 1/2[11/30] followed by a merging of the latter with dislocation B but
again, as the overall process occurs at very small time and space scales, we
simply refer to the overall mechanism as a climb process, because this is the
process we observe when we compare the initial and final states.

In order to better understand what role dislocations play in the overall GB
migration, we track the dislocations gliding planes by following the movement of
the 5-7 pairs. In Fig. 4.5.8 we report four snapshots in which we coloured the
gliding plane in dark green. The grain is highlighted in yellow colour and the ma-
trix in light green. From these snapshots we can observe that the migration takes
place via a combination of dislocation glide and reactions, as clearly appears from
the numerous crossing points between dislocation gliding planes. Moreover, the
planes sheared by dislocations draw a regular pattern of hexagonal cells. These
cells decrease their size when approaching the grain centre. This observation is
in agreement with the fact that the dislocation density increases during the grain
shrinkage so their average distance along the boundary decreases (see top row in
Fig. 4.4.1). In Fig. 4.5.9 we show a colour map of the magnitude of atomic displace-
ments after the grain boundary passage. This map strictly follows the patterns
of the dislocation gliding planes. Moreover, it suggests that the GB migration
proceeds by the formation of several cellular “hexagonal shaped rings” which re-
sult from a combination of glide, effective climb (which allows the propagation of
dislocations along the boundary) and annihilation. A simplified description of this
phenomenon is given in the following.

We describe the grain boundary as an hexagon, as shown in Fig. 4.5.9-b. This
of course is an idealization that oversimplifies the observed shape of the grain
boundary. However, during the course of its shrinking, we do often observe that
the initially circular grain displays well defined facets that all together form a shape
that is not far from an hexagon. This is particularly clear in Fig. 4.5.9-a, where
we display the residual atomic displacements map after a grain has disappeared.
We indeed observe that, during grain shrinking, the grain boundary follows in
average an hexagonal symmetry. Then, the migration of this grain boundary can
be described as follows (see Fig. 4.5.10):

e the dislocations glide until an unstable situation is reached when the dislo-
cations at the corners arrive close one to the other (Fig. 4.5.10-a);

e effective climb of the dislocations meeting at the six corners (see green circles
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in Fig. 4.5.10-a and b);

e subsequent propagation of effective climb along the hexagon sides (see red
circles in Fig. 4.5.10-b and ¢);

e after propagation, a first hexagonal shaped ring is closed by partial annihi-
lation between two or more dislocations (see for example the blue circles in
Fig. 4.5.10-c and d).

In brief, the grain collapse proceeds through a succession of dislocation glide per-
pendicularly to the hexagonal facets, propagation of climb events along the facets
and one annihilation event per facet. The overall effect of this mechanism is an
increase of the misorientation angle 6 that follows the decrease of the grain area.

The link between the misorientation angle 6 and grain area A may be identified
as follows. As explained above, the process is analysed as the successive formation
of hexagons. We label the hexagons by the index n. At stage n, we note l,,, R,,, 0,,
N#e and d,, the length of the facets, the distance of the facets from the centre of
the hexagon, the misorientation angle, the number of dislocations along each facet
and the average distance between dislocations, respectively. Using Frank formula,
we have:

bl bl

~Y

"7 2sin(0,/2) O,
The facet length [, and the distance R,, are geometrically linked (see Fig. 4.5.9-b):

2
l, =—%=R,
V3
and d,, is defined by:
L,

dn - Nside
n

Now, we analyse the transition from hexagon n to hexagon (n + 1) as follows:

e first, all the dislocations that sit along the facets glide perpendicularly to
the facets and their number remains constant. Under the hypothesis that
the distance between two neighbouring dislocations that are separated by a
corner is equal to the average distance, a simple geometrical analysis shows
that an unstable situation (i.e. two dislocations come close to each other) is
reached after a gliding equal to d,;

e then, effective climb events start at the corners, propagate along the bound-
ary and stop when the new hexagon is closed through one annihilation event
per side.
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Obviously, this kinematics is associated to the following recursive relations:

Rn+1 = Rn - dn
Ny = Ny -1
2 Rn—H

Ayt = —=
T /BN

It is straightforward to integrate step by step these relations and to calculate, for
each index n, the actual value of the misorientation angle 8,, and hexagon area A,:

b
QHZSNJCEJU

A, =2V3R,

We used this kinematics to estimate the co-evolution of the misorientation # and
grain area A for a grain with initial misorientation 8, = 10° and area Ay = 2v/3 R,
with Ry = 44.74 0. The result is shown in Fig. 4.5.11 where, for comparison,
we also report the result obtained by the atomistic simulations (already shown
in Fig. 4.5.4). First, we observe that the model reproduces the grain rotation.
This means that a coupled normal-tangential motion of grain boundary is embed-
ded into the local mechanisms at the root of our model (glide, effective climb,
annihilation). Second, we observe that our approximate hexagonal kinematics re-
produces qualitatively the atomistic simulation, even if a quantitative agreement
is not obtained, which is not surprising, taking into account the simplicity of the
geometrical model we have proposed.

That said, we think that the overall agreement between the simulation and the
simple model confirms the validity of the local mechanisms (glide, effective climb
and three-to-two annihilation processes) that we identified as been at the root of
the grain shrinking mechanism for small initial misorientation. These mechanisms
generate grain rotation (more precisely, an increase of the misorientation) in agree-
ment with the atomistic simulations, thereby confirming the existence of a coupled
motion.
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Figure 4.5.5: Dislocation annihilation. In this figure dislocations are highlighted

The grain is shown in yellow, the matrix in

-red colour.
light green. We coloured the planes along which the dislocations have glided in dark

by a 5-7 couple in blue

The three dislocations A, B, C with

Burgers vectors 1/2[14/30], [100], 1/2[1v/30] recombine to form two dislocations

green in order to keep track of their paths.
with Burgers vectors [100].
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Figure 4.5.6: Effective climb (see text). Direct interaction of two dislocations A

and B with Burgers vectors [100] and 1/ 2[1%0]; a) initial configuration; b) final
configuration; c) sketch of the mechanism. The dashed line indicates the initial

position of the grain boundary. The colour code is the same as the one used in
Fig. /.5.5.
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Figure 4.5.7: Effective climb (see text). Ipg this figure: a) two dislocations approach
one to the other (center of the figure) b) they arrive at a distance comparable to two
interatomic spacings thus inducing a strong distortion in the surrounding lattice
¢) a local slip of atoms induces a rotation of the original Burgers vector (atom
displacements are represented by arrows). For the colour code see Fig. /.5.5.



Figure 4.5.8: In this figure dislocations are highlighted by a 5-7 couple in blue-red
colour. The grain is painted in yellow, the matriz in light green. We coloured the
planes along which the dislocations have glided in dark green. These traces form a
reqular pattern consisting in hexagonal-shaped cells.
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Figure 4.5.9: In this figure: a) colour map of the residual atomic displacements
map after a grain has disappeared for the low misorientation case 0 = 10°; b) toy
model to describe the boundary migration mechanism. The boundary is simplified
by a circumscribed hexagon. The average distance between dislocations on each
facet is function of the misorientation 6 on the basis of Frank formula.
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Figure 4.5.10: A simplified model is proposed to explain the boundary migration by
progressive cellular rings: a) simple glide of dislocations; b) an unstable situation
is reached at the corners when dislocations with Burgers vectors rotated by 60°
approach one to the other and proceed to an effective climb mechanism. Pairs
of dislocations that undergo this climb process are highlighted by green circles just
before -in a)- and just after -in b)- the climb process; c) the dislocations at the
corners propagate along the sides by a chain of effective climb events, see red
circles in b) and corresponding red circles in c); d) a cellular hexagonal-shaped
ring is closed and the dislocation number per side is lowered of 1 thorugh a three-
to-two annihilation reaction, see blue cibdes in c¢) and d).
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Figure 4.5.11: FEwolution of the misorientation 6 in function of the grain size as
predicted by the toy model (in red) compared with the results obtained by atomistic
simulations (in blue) for 6y = 10°.

4.5.2 High misorientation case

For the high misorientation case, we performed simulations taking different values
of the initial misorientation angle 6y. In Fig. 4.5.12, we report the evolution of the
misorientation angle for §, = 21.8°, 27.8°, 38.2°, 46.8°. In all cases, the coupling
effect -resulting in a change in # - is present except for the case of 0y = 21.8° and
0y = 38.2°. We also highlight that the rotation sense of the grain (i.e. the sign
of coupling) changes in function of 6. This fact with the observation that for
some particular initial misorientations no coupling effect is present were already
highlighted in previous works [58, 52]. A justification presented for the absence of
coupling has been the fact that the misorientations 38.2° and 21.8° correspond to
Coincidence Sites Lattice (CSL) for the hexagonal grid. However, this justification
is incomplete because, as we can see from Fig. 4.5.12, also the value 27.8° and 46.8°
correspond to CSL. In this section, we illustrate in detail the atomistic mechanism
at the origin of the GB migration for the value 6, = 38.2°. We will show that the
particular mechanism at the origin of the GB migration without coupling is linked
not just to the fact that this misorientation corresponds to a CSL but also to the
fact that this CSL is the one with lowest periodicity.
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Figure 4.5.12: FEwolution of the misorientation angle for the initial values 6y =
21.8°, 27.8°, 38.2°, 46.8°, corresponding to different coincidence site lattices.

Grain boundary structure The GB structure consists of several 5-7 pairs with
a spacing of the order of an atomic distance, as shown in Fig. 4.5.13-a. We describe
the GB in terms of structural units. Their migration is no longer describable
in terms of dislocation dynamics but can be explained in terms of local atomic
position readjustments, which lead to the transformation from one lattice to the
other [66]. Two main units, highlighted by regular polyhedron in Fig. 4.5.13-a,
were identified from our simulations:

e unit A, identified by a single couple (5-7);
e unit B, identified by a double couple (5-7).

These two units are already identifiable by looking at the dichromatic pattern of
the boundary, as shown in Fig. 4.5.13-b. Units A are comprised between two coin-
cidence sites along the direction named e; while units B are comprised between two
coincidence sites along the direction named e,. In our simulations, the orientation
of the units strictly follows this arrangement all along the boundary.
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Figure 4.5.13: In this figure: a) the structural units identified at the GB consisting
in a single and in double 5-7 pair; b) the same units identified in the dichromatic
pattern.

Grain boundary migration The grain boundary migrates towards its centre
of curvature till the grain totally disappears. No defects are left in the matrix after
the grain shrinkage. As already highlighted, during the GB migration there is no
significant change in the misorientation # and accordingly the 5-7 pairs density
ps—7 at the boundary remains constant. We report the evolution of these two
quantities as a function of the grain area (normalized by their initial values 6, and
ps—7,) in Fig. 4.5.14.

In order to clarify the kinematics of migration we kept track of the neighbor-
hood of each atom during the grain shrinkage and, at the same time, we map
the magnitude of atomic displacements after the GB passage (see Fig. 4.5.16).
Crossing these two informations we observed that:

e there is a set of atoms that hardly move;

e the first neighbour shell of these atoms remains unchanged, even though the
atoms within these shells are displaced.

The positions of these “fixed” atoms, shown in Fig. 4.5.16, are not random but
are locally distributed on a X7 coincidence sites grid. In this figure, there are
different regions where a X7 coincidence sites grid can be observed, with transition
zones between them. This is linked to the fact that 7 different CSL grids can be
defined for a »7 grain boundary, the different grids being related by a translation.
All the above observations suggest that, for the special case of 6, = 38.2° the
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migration of the boundary occurs by local adjustment of atoms rotating around
these “fixed” positions. To verify this hypothesis, using the approach illustrated in
section 4.3.3, we calculate a local deformation gradient F; and the corresponding
non-affine-square displacement D®. The results of this calculation are reported
in Fig. 4.5.17a, where we can see that the deviation D®* is almost zero for atoms
that are on the coincidence sites while it takes high values for the atoms around
them. Furthermore, for atoms inside the inital grain and for which D@W* < 0.1, we
have analyzed the deformation gradient F*. The histogram of the four components
of F? are presented in Fig. 4.5.17b. From these histograms, we conclude that all
the considered atoms have the deformation gradient

F (4.5.2)

~(0.9320 —0.3738
- 103735 0.9291

with a standard deviation smaller than 1.5 1072 on each component. Because the
standard deviations are small, F can reasonably be thought as representative of the
local deformation gradient F?. We can verify that det F ~ 1 and F'F ~ I These
properties allow us to identify F as a rotation matrix. In conclusion, the movements
of neighbours around atoms in coincidence site position can be interpreted as rigid
rotation. The entity of this rotation can be calculated as 6 & sin™!(Fq;) = 21.9°.
This value is coherent with the rotation needed to bring the lattice in the grain
coincident with the lattice in the matrix.

The fact that atoms on coincidence position behave as “fixed points” implies
that no rotation of the grain can occur during the boundary migration i.e. the
boundary must move normally to its plane. The local atomic movement which
leads to this normal migration can be described in terms of dynamics of 5-7 defects
(Fig. 4.5.15(b-e)). These 5-7 defects (blue-red atom pairs), located at the grain
boundary, migrate in between the coincidence lattice sites atoms (black atoms),
the latter keeping their 6 nearest neighbours. The evolution of the orientation
of the 5-7 defects during their migration reveals that their migration cannot be
described as a glide mechanism.
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Figure 4.5.14: Normalized 5-7 pairs density ps_7/ps—z, along the boundary (blue
curve) and change in the misorientation angle 0 /0y (red curve) during grain shrink-
age for the initial misorientation 6y = 38.2°.

Figure 4.5.15: Snapshots illustrating the movement of structural units around the
coincidence sites during the grain shrinkage. The coincidence sites are highlighted
in black and the structural units A and B by single or double red-blue couples,
respectively. The matriz is coloured in light green while the grain in yellow.
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Figure 4.5.16: Atomic structure after the grain shrinkage for 0 = 38.2°: a) atoms
which have not seen a change in their nearest neighbours are highlighted in green
while the other atoms in orange; b) the map of atomic displacement magnitude
after the grain boundary passage.
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Figure 4.5.17: a) colour map of the non-affine square displacement D®? for 0 =
38.2; b) histograms of the local deformation gradient coefficient for atoms, initially
belonging to the central grain, with D®* < 0.1.
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4.6 Discussion

In this chapter we have shown the results of a first application of the overdamped
Langevin dynamics to GB migration. For this purpose, we simulated the shrink-
ing of a 2D circular island grain embedded in a monocrystalline matrix at fixed
temperature. This study has lead to two main results:

e the validation of the modelling approach proposed by comparison with Molec-
ular Dynamics simulations;

e the analysis of the atomic mechanisms at the base of GB migration in the
low and high misorientation case.

The comparison between LG and MD simulations has been done by following the
evolution of two observables: (i) the misorientation angle €, (ii) the number of
defects along the boundary. The agreement between the two methods is really
good so we are confident in the applicability of the stochastic dynamics illustrated
in chapter 2 to the study of crystalline materials.

By analysing the structure and the atomic mechanisms of migration for different
misorientation, we highlight that:

e for 0° < 6y < 10° the migration proceeds through a combination of different
dislocation mechanisms. The GB motion proceeds by steps, lowering pro-
gressively the number of dislocations via propagation of the Burgers vectors
along the boundary and three-to-two annihilation mechanism. The propa-
gation is promoted by a particular type of interaction between dislocations
that we named “effective climb”. This migration mechanism has been further
explained by the use of a toy model,

e we verified that for the particular high angle grain boundary 6, = 38.2°,
which corresponds to a coincidence site 37, the migration occurs by local
readjustment of atomic positions. These local movements correspond to a
rotation around atoms in coincidence site position, which hardly move. The
fact that coincidence sites act as “fixed points” during the GB migration
prevents the embedded grain to rotate and thus exclude the presence of
coupled tangential-normal motion.

The simulations performed in this first step of our work have a rather “abstract”
character, in the sense that we limited our studies to 2D cases and we use a simple
pair potential to describe atomic interactions. In the next chapter, we show the
results of the second application of the model proposed in 3D for which we used
a many-body potential which represents the thermo-mechanical properties of a
specific material of interest (Titanium).
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Chapter 5

2nd gpplication: 8 — o phase

transition in pure titanium

5.1 Introduction

After the study of curvature driven grain boundary motion, we decided to apply
the model to another important phenomenon involved in metals microstructural
evolution i.e. martensitic phase transition. Early works on the atomistic modelling
of martensitic phase transition date back to 1980 [67, 68, 69]. From that time,
thanks also to the development of new many-body potentials in 1990, a wide
range of atomistic studies on the stress or temperature induced transition have
been performed. Each of these studies address a specific problematic and/or a
particular material. Here we give a list of some relevant works: Rubini et al. [70]

(Ni-Al alloys, 1993), Entel et al. [71, 72, 73] (Fe-Ni, 1998-2000), Grujiicic et al.
[74, 75, 75] (Fe-Ni and titanium alloys, 1995-1996), Morris [70] (Zr, 2001), Ackland
et al. [77, 78, 79, 80] (Zr, 1998 to 2011), Morrison et al. [31, 82] (Ni-Al, 2014),
Ding et al. [83, 81, 85, 806], Ma et al. [37] (Ni-Ti, 2017), Li et al. [38] (Ti, 2015),
Ko et al. [39, 90] (Ni-Ti, 2015-2017).

In the present study, we focused on the § — «a transition in pure titanium and,
in particular, on the effect of mechanical constraints in the resulting microstruc-
ture. The first step of our work was to find a suitable interatomic potential for
simulating the transition and implement it in our code. The second step was to
perform atomistic simulations of the microstructure evolution with different load-
ing conditions.
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5.2 Basics on titanium

In this section, we give a general introduction to titanium basic properties and to
its behaviour in different temperature-pressure conditions.

5.2.1 General properties

Titanium has several attractive properties; low density if compared with other
structural alloys such as steel, high strength and elastic modulus with respect to
other light weight metals such as aluminium, good resistance to corrosion and bio-
compatibility. Some indicative values are reported in Tab. 5.1. In the aeronautic
field, titanium is combined with other elements (such as molybdenum, nickel, alu-
minium, etc.) to obtain high-performance alloys used for aero-frames and engines.
Furthermore, its low reactivity makes it attractive for nuclear waste storage, chem-
ical and power industries, instrumentation and implantation in the bio-medical
field. From this brief summary, the interest in understanding the behaviour of this
material under thermo-mechanical solicitations clearly emerges.

Ti Fe Ni Al
Melting temperature [°C] 1670 1538 1455 660
Room temperature E [GPa] 115 215 200 72
Density [g/cm?] 45 79 89 27

Table 5.1: Some guiding values of titanium main properties compared with other

metals (from [5]).

5.2.2 Phase diagram and polymorphism

Similarly to other transition metals such as zirconium and hafnium, titanium ex-
hibits a temperature induced as well as pressure induced polymorphism i.e. it
adopts different crystal structures under different thermo-mechanical conditions.
Its phase diagram is reported in Fig. 5.2.1.

Three different solid phases exists for this material. At a temperature 7' > 1150
K and atmospheric pressure, titanium has an open BCC structure (the so-called
[ phase). When temperature is lowered, this structure becomes unstable and the
material adopts a close-packed HCP structure under atmospheric conditions (the
so-called o phase) or an hexagonal structure (referred as w phase) in high pressure
conditions [01]. In the present work we focused on the temperature induced 5 — «
phase transition.
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Figure 5.2.1: Experimental temperature-pressure phase diagram [”] for pure tita-
nium (image modified from [7]).

5.2.3 Crystallography of the 5 — o phase transition

Here we give some basic concepts in the crystallographic analysis of the § — «
transition. For a more detailed treatment of the subject we address the reader to
the following texts [3, 92].

Local lattice deformation

The transition from the open BCC to the close-packed HCP structure occurs
martensitically in the sense that each atom in one structure can be mapped to a
particular site in the other and no diffusion is involved. It is commonly accepted
that locally the transition proceeds by the so-called “Burgers mechanism” which
states the following correspondence between the lattices of the parent and child
phase [93]:

(110)BCC’H(0001)H0P ’ [ill]BCCH [1120]HC‘P (521)
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The (0001) gcop basal plane is derived from the (110) pce plane in the parent phase.
The close-packed directions [111]pcc and [111]pee lying on the (110)pcc plane
transform to two close-packed directions (1120)yop. On the basis of this corre-
spondence, the transformation involves a contraction 7; along the [001]poc direc-
tion and an elongation 7, along the [110]pcc direction, as schematically shown in
Fig. 5.2.2. An elongation 73 along the [110] poc direction and an alternate shuffling
of (110) e planes give the final HCP structure.

9
G-@
2
-0
. J
b-@
®

c)

Figure 5.2.2: In the figure: a) the (110)pcc plane becoming the basal plane of the
HCP structure. The transition involves b) a deformation of the plane and c) an
alternate shuffling of (110)gcc planes.

Taking as a basis the three vectors ey’ = [0,0,1], e’ = [1,1,0]/V/2, es’ =
[1,1,0]/4/2 in the cubic frame, this lattice deformation is described by the matrix:

m 0 0
U/ = 0 72 0

In the following, we will refer to this deformation as Bain strain. We underline
that it describes the overall change in shape of the cell comprised between two
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HCP basal planes i.e. it does not describe the alternate shuffling movement of
(110) pee planes. Knowing the lattice parameters ag and (a, ¢) of the parent and
child phase, the principal strains 7y, 72,73 can be computed:

a 3a c
Ui ao T2 \/;ao UE \/5&0 ( )

Rewriting matrix U’ in the cubic base e; = (1,0,0), es = (0,1,0), e = (0,0,1)
we obtain:
1 (et m3—m2 0
U=§ ns—mne M3+mn2 0
0 0 2771

The original BCC structure has six equivalent (110)pcc planes. Consequently,
six different Bain strain can be defined. The matrix representing these strains are
listed in Tab. 5.2. In the following, we will refer the term variant to this distinction
in terms of Bain strain. In this sense, there are six possible HCP variants.

!Some works (see for example [0, 95]) report 12 different variants of the HCP phase. The
contradiction with our analysis is only apparent. In these works the term variant refers to a
distinction in terms of orientation of the child phase with respect to the parent phase. As
already underlined, in our work the term variant refers to a distinction in terms of local strain
of the lattice.
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BAIN STRAIN MATRIX

2m 0 0 2m 0 0
U1§<0 n2 + 13 773772) Up=3| 0 m4n m—mns
0 m3—m2 m+mn3 0 me—m3 m2+mn3
mt+ns 0 mz—1n net+ny 0 nme—mn
Ugg( 0 2m 0 ) U= 0 2pp 0
ns—mn2 0 M+ m—mn3 0 1m+mns
ne+tmns —mt+mns 0 ne+mns m—mn 0
U52(772+n3 2 + 13 0) Us=3|m—n m+n 0
0 0 2m 0 0 2m
@ l‘.‘
v, ., ., "‘r
(011) (011) (101)
u4 ==
(101) (110) (110)

Table 5.2: The siz {110} gcc planes that can become the (0001)gcp basal plane
and the corresponding six Bain strains.
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Twinning modes

Martensitic microstructures are typically characterized by the occurrence of twins.
A twin is a visible coherent interface in a crystal which satisfies the following [96]:

e the lattice on one side can be obtained by a simple shear of the lattice on
the other;

e the lattice on one side can also be obtained by a rotation of the lattice on
the other.

The possible twin planes between two different variants can be obtained by solving
the so-called “twinning equation”:

QU,-U,=a®n (5.2.3)

where Q is a rotation, U; and U, are the associated Bain strain, n is the normal
to the twin plane and a is the shear direction. When equation (5.2.3) is solvable,
it leads to two solutions for n and a. It can be verified that for all the possible
couples of variants listed in Tab. 5.2 equation (5.2.3) admits solutions. Moreover,
there are three possible twinning modes for the transformation considered:

e the variants pairs 1-2, 3-4 and 5-6 (which do not share a (111)pc¢ direc-
tion) can form compound twins with a {100} pcc plane which becomes the
{2110} gop plane in the child phase (see Fig. 5.2.3);

e the other possible variants pairs (which all share a (111)gc¢ direction) can
form a Type I twin with a {110} pcc plane which becomes a {1011} gop plane
in the child phase (see Fig. 5.2.4)) and the reciprocal Type II twin .
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Figure 5.2.3: Ezample of compound twin between variant 1 and 2 (the future basal
planes are highlighted in colours while the twinning plane in grey).
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Figure 5.2.4: Ezample of Type I twin between variant 2 and 3 (the future basal
planes are highlighted in colours while the twinning plane in grey).
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5.3 Post-processing tools

Before discussing numerical simulation results, we describe in this section the
post-processing tools used to identify the different phases and variants in our
simulations.

5.3.1 Phases identification

The crystallography of the different phases is identified by the use of the Poly-
hedral Template Match analysis (PTM in the following) [97], a rather newly de-
veloped tool implemented in the visualization software OVITO. This algorithm
allows the identification of different crystallographic structures even when strong
thermal vibrations are present. We address the reader to the specific documenta-
tion at: https://www.ovito.org/manual/particles.modifiers.polyhedral_
template_matching.html.

5.3.2 Variants identification

The identification of the different variants is done by using a code of our own.
In simulations as well as in experiments, variants identification is crucial for the
analysis of microstructures. This can be done in different ways:

1. by studying the orientation of the HCP final products with respect to the
parent BCC phase. This orientation is the result of the lattice distortion and
of the subsequent accommodation phenomena;

2. in a finer way, when working with atomistic simulations, by calculating a
local strain to describe the lattice distortion, as proposed in [98].

To analyse our results we choose this second option. To calculate the local atomic
strain we implemented the following procedure:

e we start from a BCC structure with crystal axis (100) goc parallel to the main
frame axis. For every atom i, we consider six possible sets of neighbours by
taking six different configurations defined on the basis of the six cubic cells
which can deform into the orthorhombic one, as schematically illustrated in
Fig. 5.3.1. The alternate shuffling of {110}pcc planes is not described by
the overall deformation of the lattice so half of the atoms must be considered
in the six possible configurations;

e using the approach illustrated in chapter 4, section 4.3.3, we calculate for each
atom 1 six deformation gradients F} and, by polar decomposition, six strains
U7 each one associated to a {110} go¢ plane in the undeformed configuration;
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e the local strain for atom i is defined as the U} with minimum D?. On the ba-
sis of this assignment, we label the atom ¢ as belonging to the corresponding
variant.

The non-affine displacement D? quantifies the degree at which the local change
in the lattice can be described using an affine transformation. In the results later
shown, we set a threshold D% = for this parameter above which the approximation
is considered not meaningful and atoms are then excluded by calculations. On
the basis of the definition of D? (see chapter 4, section 4.3.3), this corresponds
to impose a limit on average on the mean square difference between the actual
relative position Ar;;(t*) between the atom 7 and its neighbour j and the one
estimated by the action of F; on Ar;;(0).
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Figure 5.3.1: a) the siz cubic cells which can deform in the orthorhombic cell are
highlighted in different colours (note that central atoms are not shown for sake of
simplicity); b) an example of neighbour set (coloured in black) for a given atom i
(coloured in red) for one of the six configurations considered.

5.4 Choice of the interatomic potential

The first step of our work was the selection of a relevant interatomic potential for
simulating the  — « transition. After a literature review, we selected three “can-
didates”. Because these potential were already implemented in the code LAMMPS,
we performed preliminary tests in Molecular Dynamics to choose the most suitable
one. We then implemented this potential in the Langevin code.
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5.4.1 Literature review on interatomic potentials

From the library “Interatomic Potentials repository project” (https://www.ctcms.
nist.gov/potentials/) we found the following potentials developed for titanium:

e a Finnis-Sinclair potential proposed by Ackland and co-workers in 1992 [99].
This potential has been used to study plastic behaviour and defects proper-
ties of pure titanium at low temperature [100, ) , 85]. However, we
found no application to modelling temperature induced phase transition;

e an EAM type potential proposed by Johnsons and co-workers in 2003 [103].
This potential was developed in the specific context of vapor-deposited mul-
tilayers. Furthermore, we did not find any application of this potential to
the atomistic modelling of titanium. Consequently, we decided to discard it;

e EAM type potentials recently proposed by Mendelev and Ackland in 2016
[104]. The authors developed three different potentials, one of them (the
Til, see the article) with the specific purpose of describing the § — « phase
transition. Maybe because recently developed, we have not been able to find
any application of this potential,

e a MEAM type potential proposed by Hennig and collaborators in 2008 [105].
This potential was developed with the specific purpose of being able to catch
the polymorphism of the material. It has mainly been used for the study of
the pressure induced o — w phase transition [38, 6], although an application
in the field of temperature induced 5 — « transition can be found in [100].

5.4.2 Pilot tests

As previously mentioned, to choose between the above listed “candidates” the
one to be implemented in the Langevin code we performed some pilot tests with
Molecular Dynamics, described in the following section.

Simulation setup

The simulations performed consist in two steps:

e equilibration of a BCC monocrystalline structure at high temperature (7" =1400
K);

e quenching of the structure previously equilibrated (7" =700 K).

The simulation box size is set equal to 36 x 36 X 36 a3, where a is the BCC lattice
constant. The number of atoms is 93312. Periodic boundary conditions are applied
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in all the directions. The simulations are performed in the (NPT) ensemble with
a Nosé-Hoover thermostat and barostat to control temperature and pressure. The
quenching is simulated by an instantaneous rescaling of temperature.

The result expected from this test is an initially stable BCC structure and a
subsequent transition to HCP when temperature is lowered.

Results

We performed simulations with the three potentials listed in section 5.4.1 and we
obtained the following results:

1. the EAM potential proposed in [99] does not show a stable BCC structure
at high temperature. Independently from the temperature value, the system
was always becoming unstable and switching to an HCP structure;

2. the EAM potential proposed by Mendelev and Ackland in [104] shows a
stable BCC structure at high temperature. However, no transition was seen
after quenching even after 1 nano-second of annealing at 700 K

3. the MEAM potential proposed by Hennig [105] shows a stable BCC struc-
ture at high temperature and the transition to HCP as a consequence of
quenching.

Comments

The first potential tested does not predict a stable BCC phase at 1400 K. A possible
reason is that this potential was developed by fitting only the properties of HCP
titanium, ignoring the presence of the BCC phase stable at high temperatures.

For the two other potentials, a stable BCC phase exists at high temperatures.
However, only with the MEAM potential we observe transition after quenching.
The reason why the transition is not seen using the other potential can be:

e the absence of any angular dependence in the embedding term (which on the
other side is present in MEAM potential) so that the directional nature of
bonding typical of transition metals such as titanium is not described;

e a high energy barrier for the nucleation of the HCP phase.

In conclusion, on the basis of the results obtained from the pilot tests, we de-
cided to use the MEAM potential developed by Hennig. We underline that the
MEAM has a higher computational costs if compared to the EAM. Consequently,
a computational efficient implementation becomes important. For this purpose,
we referred to the following work [107, 108] and enriched it by implementing the
computation of the virial terms.
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5.5 Study of the influence of mechanical con-
straints on martensite microstructures

In this section, we present and discuss the results of our study on the effect of
mechanical constraints preventing a free volume and/or shape change of the region
where the martensitic transition takes place. These constraints can be due to the
presence of neighbouring grains in a polycrystal or, for example, to a specific
growth sequence of martensite plates (see section 5.6). Their influence on the
martensitic microstructure in terms of number of variants, type of interfaces and
other defects generated, has been mentioned in several experiences on martensite
[109, 4, | and also on bainite [ 11, ]. The impact of the microstructural
morphology on the final mechanical properties of a material justifies the interest
in a deeper investigation of this influence.

5.5.1 Simulations setup

The simulations performed consist in the equilibration of a BCC structure at 1400
K and subsequent quenching at 700 K. The quenching is realized by instantaneous
rescaling of the temperature. The simulation box size is set equal to 36 x 36 x 36 a3
and periodic boundary conditions are applied in all directions. The total number
of atoms is 93312. The simulations are performed with the Langevin code in
the (NVT) ensemble and compared with the ones performed with MD in the
(NPT) ensemble. Real conditions experienced by a given region in a material
are expected to be an intermediate between these two cases. However, these two
extreme scenarios are useful for a global understanding of the influence of local
constraints which prevent a free change of shape and/or volume of the matrix
around the martensite nuclei.

5.5.2 Simulations results
Unconstrained conditions (NPT ensemble)

In unconstrained conditions, the simulation box is free of changing shape and
the system evolution is guided by the minimization of Gibbs free energy. The
microstructure evolution has been analysed by performing MD simulations in the
(NPT) ensemble.

After equilibration, the system turns to an HCP structure as a consequence of
quenching. We report in Fig. 5.5.1a the evolution of the BCC and HCP phases
percentages during the transition (the RMSD cutoff for the PTM analysis is set
equal to 0.14). As we can see, almost no BCC phase is left after the transformation
is completed. The simulation box develops a large shear and some defects are
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generated. These defects consist in twin boundaries, stacking fault and antiphase
boundaries and are later discussed. In Fig. 5.5.1b we report the number of atoms
belonging to a given variant as a function of the time step (D?,, = 6.5, number
of neighbours N,, = 22). As we can see, at the really beginning of the transition
all the six variants nucleate. However, quickly two of them become dominant and
form the final microstructure. In the case here examined, the variants selected are
the 2 and 3 (see Tab. 5.2). This pair shares the [111]gcc direction so the final
microstructure can be analysed by taking a slice orthogonal to this direction, as
shown in Fig. 5.5.3.

In Fig. 5.5.2 four snapshots of the microstructural evolution are reported. In
the figure we show only the atoms classified as HCP on the basis of the PTM
analysis. At the beginning, stable nuclei of all the six variants appear. In a
first step, all the different HCP domains develop. Later, some domains disappear
leaving some defects in the final structure composed by only two variants. As
typically seen in martensite, the two variants form a laminate microstructure which
consists of parallel {1011} twins, shown more in detail in Fig. 5.5.4-a. As shown
by atomistic calculations [113], the {1011} boundary has lower energy than the
{2110}. Consequently, it is reasonable to expect that the system favours the
formation of this type of boundaries and consequently the selection of a variant
pair which share a (111) go¢ direction. The twins span all the simulation box thus
showing that periodic BC have a rather strong influence in the final microstructure
for small systems. Various stacking faults are generated after transition. Some
of them extend through two twins. In previous works, their formation has be
imputed to the rigid rotation of variant domains to form the (1011) boundary [79]
(see Fig. 5.2.4). When a given (110)pcc plane deforms, two different directions
of shuffling are possible. This give rise to two possible HCP structures rotated
of 180° around the c-axis, which have been called a couple of anti-variants [31].
In our simulations, when two HCP domains with opposite shuffle directions meet
they form an interface which corresponds to a stacking fault when parallel to the
basal plane or to an anti-phase defect when parallel to the (1011)ycp pyramidal
plane, as shown in Fig. 5.5.4-b and c.

In Fig. 5.5.5 and 5.5.6 we report the histograms of the strain coefficients cal-
culated. The histograms include only the atoms classified as HCP on the basis of
the PTM analysis and for which D? < D2, . The main values of these coefficients
are reported in Tab. 5.3 and compared to the ones corresponding to the Bain
strain. For calculating the Bain strains we used: ag = 3.367 A, a = 2.960 A and
¢ =4.706 A. These lattice parameters values were calculated after the system has

reached equilibrium at 7' = 1400 K and 7" =700 K. Using these lattice parameters,
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we calculated the atomic volume V, for the two phases as:

2
ag

(Va)Bce = 5

3 2
(Va)iep = \/_4& © 17854 A (5.5.2)

=17.968 A (5.5.1)

This calculation clearly shows that the transformation mostly involves a change in
shape of the lattice rather than a change in volume.
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Figure 5.5.1: In the diagrams: a) evolution of the fractions of HCP and BCC
phases; b) evolution of the number of atoms classified as belonging to a given
variant. MD simulations in the (NPT) ensemble (P=0 Pa,).
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Figure 5.5.2: A sequence of four snapshots taken during the transition in the
(NPT) ensemble. Only atoms classified as HCP are shown and coloured on the
basis of the variant to which they belong: a) small stable nuclei of the siz variants

when transition begins; b)-c) coarsening of the microstructure; d) final laminate
microstructure with only two variants.
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0 Pa).

Figure 5.5.3: Microstructure obtained at 700 K in the (NPT) ensemble (P

Atoms classified as HCP are coloured on the basis of the variant to which they

belong, atoms classified as FCC' (indicating a stacking fault) are coloured in grey,

while atoms not classifiable in black. The orientation of the basal planes around

the [111] direction and the orientation of the ¢ axis are reported on the left.
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Figure 5.5.4: a) atomic structure of the low energy (1011) boundary between variant
3 and 2; b) boundary between two domains with same Bain strain, corresponding to
variant 3, but opposite shuffling direction. The interface between the anti-variants
is composed by stacking faults (in grey) and antiphase defects (in black), which are
shown more in detail c). Notice that the planes are referred to the original cubic

frame.
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VARIANT 2
Ui Usz Us3z Uiz Uiz Uss
U,um 0.893 | 1.023 | 1.030 | 0.003 | 0.002 | 0.033
Uguin 0.880 | 1.030 | 1.030 | 0.000 | 0.000 | 0.044
deviation [%] | 1.47 -0.60 0.00 | 0.30 0.20 |-25.00
VARIANT 3
U,.um 1.028 | 0.0.885 | 1.030 | 0.002 | -0.034 | 0.002
UBuin 1.030 | 0.880 | 1.030 | 0.000 | -0.044 | 0.000
deviation [%] | -0.19 0.57 0.00 | 0.20 | 22.72 0.20

Table 5.3: Mean values of the local strain coefficient numerically calculated com-
pared with the Bain strain for the two variant selected in the simulations using the

(NPT) ensemble (T=700 K, P= 0 Pa).
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Figure 5.5.5: The histograms of the Bain strain coefficients for variant 2 calculated
for the simulation in the (NPT) ensemble (T=700 K, P=0 Pa,).
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Figure 5.5.6: The histograms of the Bain strain coefficients for variant 3 calculated
for the simulation in the (NPT) ensemble (T=700 K, P=0 Pa).



Constrained conditions (NVT ensemble)

A rather strong constraint is imposed to the system by preventing the simulation
box to change its shape and volume. Its evolution is guided by the minimiza-
tion of Helmoltz free energy. The microstructure evolution has been analysed by
performing Langevin simulations in the (NVT) ensemble.

After quenching the system turns to an HCP structure and almost no BCC
phase is left as for the case of unconfined conditions. We report in Fig. 5.5.7a the
evolution of the BCC and HCP phase percentages during the transition (RMSD
cutoff = 0.14). Differently from the unconstrained case, we can distinguish two
regimes in these curves. When the system is quenched, the percentage of HCP
phase grows to reach approximately the 85%. In this first step, its evolution is
similar to the one in unconfined conditions. At this point there is still a 15% of
BCC phase. In a second step, the HCP percentage increases to reach its final value
of 95% and the BCC percentage further decreases. In Fig. 5.5.7b we report the
evolution of the number of atoms classified as belonging to a given variant as a
function of the time step (DZ, = 6.5, N,, = 22). As we can see, at the beginning
of the transition there is a significant nucleation of all the six possible variants as
in the unconfined case. This first phase coincides with the first part of the curves
in Fig. 5.5.7a. Then, three of these variants start growing at the expense of the
others and form the final microstructure. In the present case the selected variants
are the triplet 2-4-6 (see Tab. 5.2). These variants share the [111]pc¢ direction in
the parent phase so that it is easier to analyse the final microstructure by taking
a slice orthogonal to this direction, as shown in Fig. 5.5.8.

The resulting microstructure is richer in interfaces than the one in unconfined
conditions as it could be expected by the fact that a greater number of variants is
present. The three variants organize themselves by forming several triple junctions
involving only boundaries along the {1011} ycp planes. As shown by atomistic
calculations [113], the {1011} boundary has lower energy than the {1122}. Con-
sequently, it is reasonable to expect that the system favours the formation of this
type of boundaries. Some accommodation must be present to form this particular
junction because these planes form an angle of 61.5° with the basal plane and
not of 60° (see Fig. 5.5.9). In Fig. 5.5.10 four snapshots of the microstructural
evolution are reported. In the figure we show only the atoms classified as HCP on
the basis of the PTM analysis. The four snapshots are identified by stars along
the HCP percentage curve in Fig. 5.5.7a. At the beginning, stable nuclei of all
the six variants appear. Two triple junctions are already identifiable. This obser-
vation highlights the stability of these points and suggests that once formed they
guide the overall textural evolution. While the transition proceed, all the different
HCP domains develop. Later, the microstructure coarsens till only three vari-
ants remain. We repeated the simulation in the (NVT) ensemble several times by
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changing the seed for the random noise. The evolution of the variants domains for
four different simulations is reported in Fig. 5.5.11. From these diagrams, we can
see that in all the cases the system behaves similarly and, after the nucleation of
all the possible variants, progressively selects three variants with a similar volume
fraction. In all the simulations, the selected triplets share a [111]gcc direction. In
terms of microstructures, almost all the simulations performed show the selected
triplet organizing around triple junctions. However, in some simulations we ob-
served the co-existence of FCC domains with the HCP. One example of such a
microstructure is shown in Fig. 5.5.12. In this case the selected triplet is the 2-4-5
(see Tab. 5.2). Variant 4 forms two laminates, consisting of parallel twins along
the (1011)zcp plane, with variant 2 and 5. These two laminates develop parallel
to the two pyramidal planes of variant 4. At the crossing between variants 2 and
5, an FCC domain acts as a “buffer” by forming a coherent interface with both
the basal planes along two (111)pcc planes which share the [110]rcc direction.

In Fig. 5.5.13, 5.5.14, 5.5.15 we report the histograms of the strain coefficients
calculated for the three variants forming the microstructure in Fig. 5.5.8. The
histograms include only the atoms classified as HCP on the basis of the PTM
analysis and for which D* < D7 . The main values of these coefficients are
reported in Tab. 5.4 and compared to the ones corresponding to the Bain strain.
For calculating the Bain strains we used: ag = 3.30 A, @ = 2.960 A and ¢ =
4.706 A. These lattice parameters values were calculating after the system has
reached equilibrium at 7" = 1400 K and 7" = 700 K and essentially do not differ
from the ones calculated from simulations in the (NPT) ensemble.
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Figure 5.5.7: a) evolution of the fractions of HCP and BCC phases; b) evolution
of the number of atoms classified as belonging to a given variant. Simulations in
the (NVT) ensemble (constrained conditions).

VARIANT 2
Un Usa Us3 Ura Uiz Uss
Unum 0.918 | 1.046 | 1.038 | -0.0145 | -0.0158 | 0.0234
UBain 0.897 | 1.053 [ 1.053 | 0.000 | 0.000 | 0.045
deviation [%] | 2.34 | -0.66 | -1.42 | -1.45 | -1.58 | -48.00
VARIANT 4
Unum 1.049 [ 0.916 [ 1.039 [ -0.0152 | 0.0243 | -0.0169
U Bain 1.053 | 0.897 | 1.053 | 0.000 | 0.045 | 0.000
deviation [%] | -0.38 | 2.11 | -1.33 | -1.52 | -46.00 | -1.70
VARIANT 6
Uoum 1.051 | 1.041 [ 0.913 | 0.0262 | -0.0165 | -0.187
UBain 1.053 | 1.053 [ 0.897 | 0.045 | 0.000 | 0.000
deviation [%] | -0.20 | -1.14 | 1.78 | -41.77 | -1.65 | -1.87

Table 5.4: Mean values of the local strain coefficient numerically calculated com-

pared with the Bain strain for the three variant selected in constrained conditions
(NVT simulation).
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Figure 5.5.8: Microstructure obtained at 700 K in the (NVT) ensemble. Atoms
classified as HCP are coloured on the basis of the variant to which they belong while
atoms not classifiable are coloured in black. The orientation of the basal planes
around the [111] direction and the orientation of the ¢ axis are listed on the left.

83



110
Lo

1110

1117

N
61.5°
[110]
110’ A
[110]
) [111] ] -
30.0° 11100
e ;
4
61.5°
//
7

Figure 5.5.9: Three variants sharing a common [111] direction have the basal planes
relatively rotated of 60° degrees around this axis. This misorientation is close to
the 61.5° symmetric tilt boundary along the {1011} pyramidal plane. Actually,
with little accommodation, the three variants can form a triple junction.
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Figure 5.5.10: A sequence of four snapshots taken during the transition in the
(NVT) ensemble. Only atoms classified as HCP are shown and coloured on the
basis of the variant to which they belong: a) small stable nuclei of the siz variants
when transition begins. Two triple junctions are already identifiable; b) growth of
the HCP nuclei; ¢) coarsening of the microstructure after almost all of the BCC

phase has disappeared; d) final mz’cmst%%cture with only three of the six variants
initially nucleated.
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86



\S_L ) - q_juj l

3 ...
EEN o o000t ooty 020,304 20 e
R ' o B L"-LL' ele,
(£ R LT =
e I R ;e
L ‘! ) oo - -
28 e o I ®
T § 1
1 3
.._ ; - @ A5
? _ : ; [110]
L 3 110’
IT;\ O ' =
o, N
v ; ! > I..}'l??
g SEE Rt
[110] Al 1
L . U, - c[[[011]
U, - cf[101]
H : b )
[1].{:'] O U5 o C||[110]
[110)

Figure 5.5.12: Microstructure obtained at 700 K in the (NVT) ensemble with FCC
domains. Atoms classified as HCP are coloured on the basis of the variant to
which they belong, atoms classified as FCC are coloured in grey while atoms not
classifiable are coloured in black. The orientation of the basal planes around the
[111] direction and the orientation of the ¢ axis are listed on the left.
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Figure 5.5.13: The histograms of the Bain strain coefficients for variant 2 (mi-
crostructure of Fig. 5.5.8) calculated for the simulation in the (NVT) ensemble at
700 K.
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Figure 5.5.14: The histograms of the Bain strain coefficients for variant 4 (mi-
crostructure of Fig. 5.5.8) calculated for the simulation in the (NVT) ensemble at

700 K.
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Figure 5.5.15: The histograms of the Bain strain coefficients for variant 6 (mi-
crostructure of Fig. 5.5.8) calculated for the simulation in the (NVT) ensemble at

T=700 K.

5.6 Discussion

From the results of simulations in the (NPT) ensemble (section 5.5.2) and in the
(NVT) ensemble (section 5.5.2), the deep influence of local mechanical constraints
in the final microstructural morphology clearly emerges. Our observations can be
summarized in the following points:

e the transition principally implies a change in shape with negligible change
in volume;

e in absence of mechanical constraints, the system forms a laminate microstruc-
ture of parallel twins along the low energy boundary {1011};

e the presence of a mechanical constraint, which prevents the change in shape
and volume of the surroundings, induces the selection of three between the
six possible variants with a common (111) goe direction in the parent phase;

e several simulations performed reveal that the selected variants have the ten-
dency of self-organizing by forming triple junctions consisting of low energy
{1011} boundaries.

The selection of a triplet of variants is explicable in terms of self-accommodation.
The strain induced in the surroundings by a given triplet can be estimated as
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the average of the three associated Bain strain. By taking the lattice parameters
values calculated from simulations, this calculation gives:

- M2 +m3+2m £1/3(nz —n2) £1/3(n3 — m2)
U= 5 :l:l/?)(T]g — 772) N3 + N2 + 2771 :tl/?)(?]g — 772) (561)
+1/3(n3 —m2) £1/3(3 —m2)  2m +m3 + 1o
0.986 +£0.015 =+0.015
= | +£0.015 0986 =+0.015 (5.6.2)
+0.015 =+£0.015 0.986

where the plus or minus sign of the off-diagonal coefficients depends on the se-
lected triplet. The average strain U clearly approach the identity matrix so the
variant selection in our simulation can be reasonabbly justified in terms of a self-
accomodation criterion [114, 109].

Our observations are consistent with the experimental one reported in [1] for
zirconium alloys. In the paper, the authors highlight the presence of three charac-
teristic plate morphologies resulting from the martensitic transformation:

e large internally twinned plates arranged in a triangular morphology, referred
in the paper as primary plates (Fig. 5.6.1a and 5.6.1b);

e smaller 3-plate clusters located in the volume enclosed by the primary plates,
referred in the paper as secondary plates (Fig. 5.6.1¢);

e packets of martensite laths arranged parallely (Fig. 5.6.1d).
Moreover, the authors suggested the following growth sequence:
e formation of large primary martensite plates internally twinned;

e transformation of the volume included between primary plates into secondary
plates clusters.

This dynamics suggests a nucleation of secondary plates in conditions where self-
accommodation plays an important role in dictating the martensite plates arrange-
ment because the change in shape and volume of the surrounding matrix is limited.
A micrography of the secondary plates around the [111]pc¢ is shown in Fig. 5.6.2.
The three variants A-B-C which compose the cluster correspond to variants 6-4-2
in Tab. 5.2. They share a (1120)zcp dense direction and are related by {1011}
twins. This geometry strictly corresponds with the results of our simulations in
the (NVT) ensemble i.e. in constrained conditions. The presence of clusters of
three variants related by {1011} twins has been documented and related to self-
accommodation also in recent experimental works on Ni-Ti shape memory alloys

[110].
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We discuss now the strain numerically calculated from simulations. We can
observe that for the simulations in the (NPT) ensemble the numerical strain is in
agreement with the Bain distortion. The greatest deviation is seen in the non-zero
off-diagonal coefficient and can be justified by the fact that these coefficients are
really small so they are more difficult to accurately calculate. This is coherent
with the fact that, in this case, the system forms a laminate of parallel twins and
the elastic strain of a periodic structure of parallel coherent interfaces is zero. On
the other side, for the simulations in the (NVT) ensemble the deviation of the
numerical strain from the Bain strain is much higher (see Tab. 5.4) and differs also
of one order of magnitude from the case in the (NPT) ensemble. This is partic-
ularly evident for the off-diagonal coefficients. In this case, boundary conditions
prevent the system by forming a mono-variant or laminate structure with zero elas-
tic energy. Thanks to the negligible volume change involved in the BCC—HCP
transition, the system can select a specific triplet of variants in order to form a
microstructure which minimizes the elastic strain energy. However, as pointed out
by the deviation of the numerically calculated strain from the ideal Bain strain,
this microstructure presents some residual strain.

We want to highlight a last point regarding the microstructures obtained in
constrained conditions. Occasionally, we observed the three variants forming two
laminates with“buffer” FCC domains at the crossing. The presence of FCC phase
after transition has little experimental evidence [115]. On the other side, it has
been already documented in previous numerical works [76, 78, 80] and related to
the impossibility of forming a “coherent” triple junction between three variants
sharing a (11?0) ucp direction. Our simulations show that in presence of mechan-
ical constraints the self-organization of variants around triple junctions is possible
and seems strongly favoured with respect to an arrangement involving the presence
of FCC phase.

91



Figure 5.6.1: TEM micrograph showing the martensite morphology obtained in
Zr-2.5wt%Nb alloy: a) large primary plates (micrometer length scale) internally
twinned as shown in the detailed b); c) secondary plates consisting in a 3-variants
cluster (sub-micrometer length scale); d) packets of parallely stacked laths. Images

from [1]
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Figure 5.6.2: TEM micrograph of a representative secondary plate composed by
three variants, labelled A,B and C. Images from [/].
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Chapter 6

Conclusions and perspectives

The present work consisted in the development and application of a novel method
for the atomistic study of crystalline materials. The method uses a first order
in time stochastic dynamics in order to overcome the time scale limit associated
with crystalline vibrations which characterizes current modelling techniques such
as Molecular Dynamics. We formalized equations in the (NVT) as well as in the
(NPT) thermodynamic ensembles. Finally, we gave an heuristic justification of
the hypothesis at the basis of this formalism i.e. the presence of a time-scale sep-
aration between slow evolving DOFs (position variables) and fast evolving DOFs
(momenta variables).

The model was implemented in a Fortran code of our own within a spline-
formulated many-body potential. Different numerical schemes were tested for the
time integration of stochastic differential equations within different search algo-
rithms for the computation of interatomic forces.

Two applications of the model proposed were done.

The first application consisted in the study of curvature induced grain bound-
ary motion. For this purpose, we considered the shrinking of a 2D circular island
grain embedded in a monocrystalline matrix. We performed simulations with the
Langevin dynamics as well as with Molecular Dynamics. We then compared the
results in terms of evolution of two observables characterizing the phenomenon
i.e. the misorientation of the grain and the number of defects along the boundary.
The agreement between the two methods confirmed the applicability of our theory
for the study of crystalline materials. After this validation, we investigated the
migration mechanisms acting at the atomic scale for the high and low misorien-
tation cases. For angles between 0° and 10° we verified that the grain boundary
motion results from a combination of dislocation glide, reaction and annihilation.
A toy model has been proposed to illustrate this mechanism. For the particular
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high misorientation angle 38.2°, which corresponds to a coincidence site lattice 37,
we verified that the boundary migration proceeds by local readjustment of atomic
positions around atoms on coincidence sites. The fact that these atoms act as
“fixed points” prevents any rotation of the embedded grain.

The second application has consisted in the study of the temperature induced
[ — « phase transition in pure titanium, with particular focus on the effect of
local mechanical constraints. For this purpose, we performed simulations in the
(NPT) and (NVT) thermodynamical ensembles thus allowing/preventing a free
change in shape of the simulation box. Our study highlighted that mechanical
constraints have a strong influence on the final morphology of martensite and on
variant selectivity. In particular, our simulations show that, in confined conditions,
three between the six possible variants are selected. This selectivity is related to
the minimization, on average, of the overall strain. The microstructures obtained
are characterized by several triple junctions around which the selected variants
organize by forming low energy {1011} boundaries. These results are coherent
with previous experimental observations in zirconium alloys and in Ni-Ti shape
memory alloys.

Future perspectives are multiple and involve different aspects of the present
work.

From the theoretical point of view, the passage from the deterministic Newton
dynamics to the overdamped Langevin dynamics is still to be formalized. This
operation would need a deeper analysis of the position and momenta autocorrela-
tion functions in order to identify a suitable time span over which averaging the
fast evolving degrees of freedom. This procedure is expected to lead to a time
coarse-grained interatomic potential and to an explicit definition of the viscosity
parameters, i.e. of the time scale characterizing equations.

In the framework of grain boundary migration and coupled motion, it would
be of interest to further investigate the atomic mechanisms of migration for high
misorientation angles corresponding to different coincidence site lattices in order
to make a comparison with the “ideal” behaviour of the 37 — 38.2°. Accordingly
to the analysis in terms of dichromatic pattern for the high misorientation case,
another fascinating perspective is the analysis of the grain boundary migration
for the low misorientation case by the use of the O-lattice theory. Linking the
mechanisms acting at the atomic scale to purely geometrical features of a given
boundary would be of strong interest to develop simple models of migration and
in terms of grain boundary engineering.

In the framework of the 5 — « phase transition in titanium, the study per-
formed highlighted the deep influence of mechanical constraints on microstructural
morphology during the martensitic phase transition. In this field, further inves-
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tigations should be done by varying the level and typology of constraint applied
to the simulation box. Another important study that should be done is the influ-
ence of possible thermal cycling in defects generation and accumulation. Finally,
an intriguing field of research, which would combine the two topics addressed in
this thesis, would be the analysis of interface influence in martensite nucleation,
e.g. verifying the possible preference of martensite to nucleate at low/high angle
tilt /twist grain boundaries and/or triple junctions.
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Appendix A

Dimensionless equation

For the model implementation, we introduce dimensionless variables.

Let Ey being a generic unit of energy, ¢ a unit of length. In the following, we
will highlight dimensionless quantities by the symbol ™. For example, dimensionless
atom coordinates, lengths, potential energy and temperature are defined as:

xh N L ~ () A ]{?BT
i o ’ O" EQ’ EO
We firstly consider equations (2.4.16) and rewrite them as:

A

T H ~
a;; - _”Eong + 2T Egn?(t) (A.0.1)
"

2

We introduce the adimensional time:
t =vEyt (A.0.2)

Provided that:

0i(t) = ;' (t) (A.0.3)

(A.0.4)

O (E) = ok () i () = s (52) = 6 (- 1)

Substituting equations (A.0.2) and (A.0.3) in equation (A.0.1) we get the dimen-
sionless Langevin equations for variables z}":

93" OH -
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With a similar procedure, from equations (2.4.17) we obtain the dimensionless

equations for the deformation gradient components Fig:

A

or, oOH =
£ — _yE, + V29T EgCas
ot OF,,

v OH 29T+ -
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