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Titre: Sur les constructions des représentations supercuspidales

Résumé: Nous commencons par comparer les constructions des représen-
tations supercuspidales de Bushnell-Kutzko [13] et Yu [41]. Nous associons
de maniére explicite, sous une hypothése nécessaire de modération, & chaque
étape de la construction de Bushnell-Kutzko une partie d’'une donnée de Yu.
Nous obtenons ainsi finalement un lien entre les deux constructions dans le
cas ol les constructions sont toutes les deux définies: GL y dans une situation
modérée. Dans une seconde partie, G désigne un groupe réductif connexe
défini sur un corps p-adique k, nous définissons pour chaque point rationnel
x dans I'immeuble de Bruhat-Tits de G et chaque nombre rationnel positif r,
un sous-groupe k-affinoide G, , de 'analytifié (au sens de Bekovich) G*" de
G. Le bord de Shilov de G, est un singleton remarquable dans G". Nous
obtenons alors un céne dans I'analytifié G de GG paramétrisant les groupes
k-affinoides G, ». Nous définissons aussi des filtrations pour I’algebre de Lie
de G. Nous énoncons et prouvons plusieurs propriétés des filtrations analy-
tiques et produisons une comparaison avec les filtrations de Moy-Prasad.

Mots clefs: Représentations des groupes réductifs p-adiques, théorie des
types, comparaison des constructions de représentations supercuspidales de
Bushnell-Kutzko et J.-K. Yu, filtrations de Moy-Prasad, profondeur, espaces
de Berkovich, immeubles de Bruhat-Tits, analytifié d’'un schéma en groupe
réductif p-adique, filtrations analytiques, plongement canonique de Rémy-
Thuillier-Werner, cone, groupe k-affinoide, bord de Shilov.

Title: On the constructions of supercuspidal representations

Abstract: In a first part, we compare Bushnell-Kutzko’s [13] and Yu’s
[41] constructions of supercuspidal representations. In a tame situation, at
each step of Bushnell-Kutzko’s construction, we associated a part of a Yu
datum. We finally get a link between these constructions when they are
both defined: GLy in the tame case. In a second part we define analytic
filtrations. For any rational point x in the reduced Bruhat-Tits building of
G and any positive rational number r, we introduce a k-affinoid group G,
contained in the Berkovich analytification G*" of G. The Shilov boundary
of G, is a singleton. In this way we obtain a topological cone, whose basis
is the reduced Bruhat-Tits building and vertex the neutral element, inside
G parametrizing the k-affinoid groups G ,. We also define filtrations for
the Lie algebra. We state and prove various properties of analytic filtrations
and compare them with Moy-Prasad ones.

Keywords: Representations of reductive p-adic groups, types theory,
comparison of Bushnell-Kutzko and J.-K. Yu’s construction of supercuspidal
representations, Moy-Prasad filtrations, depth, Berkovich k-analytic spaces,
Bruhat-Tits buildings, analytification of a p-adic reductive group scheme,
analytic filtrations, canonical Rémy-Thuillier-Werner embedding, cone, k-
affinoid group, Shilov boundary.
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Introduction

This thesis consists of two chapters. The goal of the first one is to produce an
explicit link between Bushnell-Kutzko’s construction of supercuspidal rep-
resentations for GLy(F') and Yu’s construction of tamely ramified super-
cuspidal representations of the F-points of an arbitrary connected reductive
group G. Here F'is a non archimedean local field. In both Bushnell-Kutzko’s
and Yu’s constructions, the authors construct a compact modulo the center
subgroup K of G(F), and a certain irreducible representation p of K. The

compactly induced representation ¢ — ind[G((F) (p) is irreducible and super-
cuspidal. Given a collection of objects called a Yu datum, Yu constructs one
supercuspidal representation. In the first chapter of this thesis, assuming
a tameness hypothesis, we associate at various steps of the construction of
Bushnell-Kutzko, parts of a Yu datum. At the end, we get a complete Yu
datum. Moreover, the supercuspidal representation obtained at the end of
Bushnell-Kutzko’s construction is equal to the supercuspidal representation
associated to the obtained Yu datum. Let us describe this process. Let V
be an F-vector space of dimension N, A =Endp(V) and G = Autp(V).
Bushnell and Kutzko introduce the notion of a simple stratum. This con-
sists in a 4-uple [2, n,r, ] where 2 is a hereditary op-order in A, n and r
are integers and ( is an element in A. This 4-uple is submitted to strong
conditions, in particular the algebra generated by F and 8 in A has to be
a field; we denote this field by F. To a simple stratum are attached two
compact open subgroups H' C J° of G and a set of characters of H', called
the simple characters. Let 8 be a simple character, a S-extension of 6 is a
certain representation  of J° whose restriction to H' contains 6. Fix such a
k. To [, n,r, (] is attached an og-order Bg, it is equal to AN B where B is
the centralizer of F in A. We assume that this og-order is maximal. Let o

be an irreducible cuspidal representation of GL - (kg), where kg denotes
E:F

the residual field of E. The representation o extends to J° by inflation (see
section 1.2), we still denote o this inflation. Let A be an extension to E*.J°
of 0 ® k. Then the representation ¢ — ind%XJOA of A* = G obtained by
compact induction is irreducible and supercuspidal. Moreover all the irre-
ducible supercuspidal representations of G are obtained in this way. In this
thesis we say that ([, n,r, 5],0,k,0,A) is a Bushnell-Kutzko datum. A Yu



datum for a connected reductive group G defined over F' consists in a 5-tuple
(5, y, 7, p, 8) Let us explain roughly what is such a 5-uple (a precise def-
inition will be given in section 1.3). First, 8 is a strictly increasing tower
of reductive F-group schemes [ (G C G* C ...G% = @) defined over
F such that their exists a finite Galois tamely ramified extension E/F such
that

(G°xp ECG' ' xpEC...CG'%xrE)

is a split Levi sequence. Secondly, y is a vertex in the Bruhat-Tits build-
ing ([8], [9]) of G°. Thirdly, 7 is an increasing sequence (rq,...,rq) of
real numbers. Fourthly, p is an irreducible representation of G°(F )iy such
that its compact induction to G°(F) is irreducible supercuspidal of depth
zero. Here GO(F)}, is the stabilizer in G°(F) of the image of y in the re-
duced Bruhat-Tits building of G, it is an open subgroup of G°(F) compact
modulo the center. Fifthly, 3 is a sequence P, ..., P, of characters such
that ®; is a character of G*(F) which is G*™!-generic of depth r;. Here,
the depth is the notion introduced by Moy and Prasad [29]. The notion of
generic characters will be recalled in section 1.8. To each Yu datum, Yu has
associated a representation pg of a subgroup K¢ of G(F) such that the com-
pactly induced representation ¢ — indf((dF)pd is irreducible and supercuspidal.
We explain this construction in the section 1.3. In this text, we start with a
Bushnell-Kutzko datum ([, n,r, ], 6, k, 0, A) satisfying that the field exten-
sion F'[B]/F is tamely ramified. We then explain that we can find a defining
sequence {[A,n,r;, 3], 0 < i < s} (Bo = B) such that F[5;41] C F[B;] for
all 0 < 4 < s — 1, this result is due to Bushnell-Henniart. We then show
that this implies an other important property (see Proposition 1.4.3 and
Proposition 1.4.4). As we will explain in section 1.2 a defining sequence is
needed to define the simple characters attached to a simple stratum. In
the previous tame situation, the properties of the choosen defining sequence
imply that a simple character 6 attached to the simple stratum [2, n,r, (]
factors as a product of s characters 6;, 0 < i < s. We introduce an integer
d depending on s and on the condition 85 € F or 85 ¢ F. We introduce
a strictly increasing tower of reductive algebraic group G, using the defin-
ing sequence and putting G* = Respig,/rAutprg) (V). We explain that the

sequence 8 satisfies Yu’s conditions. Thanks to the work of Bruhat-Tits
[10] and Broussous-Lemaire |7], we show that B induces a point y in the
building of G°. We also introduce in this context an increasing sequence
T of real numbers. Moreover, we can attach to each 6; a character ®; of
G*(F), we prove that theses characters satisfy Yu’s condition. Then, using
k,o0 and A, we introduce a representation p of GO(F)[y]. Finally, the 5-tuple

(a,y,?,p,g) forms a Yu datum. Moreover the representation pg asso-
ciated to this Yu datum is isomorphic to A, in particular K¢ = F[B]*J°.



This implies that the associated supercuspidal representations ¢ — ind(A)
and ¢ — ind(pg) are isomorphic.

Let us describe the structure of the first chapter. The section 1.1 presents
the definition of a supercuspidal representation. It also presents a basic re-
sult which is at the root of these two constructions. Given an open subgroup
K of G(F') compact modulo the center, and an irreducible representation p
of K, it gives a criterion for the compactly induced representation from p
to G(F) to be irreducible and supercuspidal. The section 1.2 presents the
construction of Bushnell-Kutzko [13]|. The section 1.3 presents the construc-
tion of Yu [41]. The section 1.4 contains the definition of tame pure strata
and tame simple strata. It contains the Bushnell-Henniart result which al-
lows to choose an approximation v of a tame pure stratum [, n, r, 5] inside
the field F[S]. In section 1.4, we also prove a technical result (proposition
1.4.4) which is crucial in the proof that the characters ®;, 0 < i < s are
G'*l-generic. In section 1.5 we recall the notion of a standard representative
introduced by Howe [25] and prove a proposition which links tame minimal
elements of Bushnell-Kutzko and the notion of standard representative of
Howe (proposition 1.5.8). The proposition 1.5.8 is also crucial in our proof
that the characters ®;, 0 < i < s are G”l—generic. In section 1.6, we as-
sociate to each tame minimal element a generic element. In section 1.7 we
show that a tame simple character factors as a product of s characters, where
s is the length of a defining sequence. In section 1.8, we construct generic
characters ®;, 0 < ¢ < s. In section 1.9, we complete the Yu datum and
state the final result of our comparison. Readers are advised to read Theo-
rem 1.9.3 and others results mentioned in Theorem 1.9.3 before reading all
the details of chapter 1.

Before explaining the content of chapter 2, let us explain one motivation.
In chapter 1 we have compared two developements wich can be regarded as
formalisms, theories or constructions. Omne conclusion of chapter 1 is that
these theories are compatible where they are both defined. One can naturally
ask if there exists an other construction of supercuspidal representations
containing both Yu’s construction and Bushnell-Kutzko’s construction. As
chapter 1 shows, one needs firstly a formalism for some filtrations by compact
open subgroups.

The goal of chapter 2 of this thesis is to define a filtration, natural after
the work [33|. These filtrations are defined and studied using Berkovich’s k-
analytic spaces [3] and Berkovich’s point of view on Bruhat-Tits buildings |3,
chapter 5] [33]. V. Berkovich in the split case |3, Chapter 5], and B. Rémy, A.
Thuillier, and A. Werner (RTW) [33] have proved that the reduced Bruhat-
Tits Building of G embbeds canonically and continuously in G*"*. To each
rational! point z € BTR(G, k), and to each positive number r we define a
k-affinoid groups G . The Shilov boundary of G, is a singleton 6(z, ) in

!See Definition 2.3.1 for our definition of rational points.



G". Finally we get a continous and injective map
0 :BTE,(G, k) x Qsg — G,

Let us explain these constructions. Let z be a rational point in the re-
duced Bruhat-Tits building of G’ and r be a positive rational number, there
exists a finite Galois extension K /k satisfying the following three conditions.
Firstly, GG is split over K. Secondly, the image of z in the reduced Bruhat-
Tits building of G over K is special. Thirdly, the rational number r is
contained in ordy (K) where ordy, is the unique valuation on finite extensions
extending the valuation on k. By the two first conditions, we obtain a K°-
Demazure group scheme &. Since ordy(K) = W{’@Z (where e(K, k) is the
ramification index), the third condition implies that the number e(K, k) x r
is a positive integer. We consider I'c(k 1), (&), the e(K, k)r-th congruence
K°-subgroup of & defined by J.-K. Yu [43]. It is a smooth K°-group

scheme satisfying 'k ), (8)(K°) = ker(&(K°) — B(K° /i ERI)) Now
we can consider Fe(K/’k)T(Qﬁ)n the generic fiber of the formal completion of
Le(k kyr(®) along its special fiber. Finally we define G5 to be the projection

er/k(I‘e(K,k)r(@)n), we explain that it is a k-affinoid subgroup of G*"*. We
show that G, is well-defined, i.e. that it does not depend on the choice of
K. In chapter 2, we prove the following result:

Theorem. 1. The Shilov boundary of Gy is a singleton denoted (x,r),
it is a norm on Hopf(G) (see Proposition 2.5.3).

2. If r = 0, then Gy, = G, where G, is Rémy-Thuillier-Werners’s k-
affinoid group [33]. (see Proposition 2.5.3)

3. The holomorphically convexr envelope of 0(x,r) is egal to Gy, (see
Proposition 2.5.3).

4. If we can choose the extension K/k tamely ramified in order to define
Gar, then Gy, (k) is egal to the coresponding normalized Moy-Prasad
groups (see Proposition 2.5.9).

5. The map 0 is injective and continuous (see Proposition 2.5.7).

We also prove, among others things, that compatibility by base change
holds (see Proposition 2.5.7).

The image of 6 union the neutral element of G*" forms a topological
cone in G, If G = GL1, BT(G, k) = {x} is a singleton and G embbeds
in (A})* and corresponds to (A})® \ 0. In this case 6(z,r) is the norm
| [1,e-r € (A})*™. In this case, if r = 0, §(z, ) corresponds to the Gauss point
and to the reduced Bruhat-Tits building via [33]. In the case G = GLq, the
topological cone is a segment (see 2.5.6).

In this text we also define filtrations for the Lie algebra (see 2.4.3).



Let us describe the structure of the second chapter. In section 2.1, we
recall some results about schemes, we also introduce schematic congruence
groups following [43], [32] and [6]. In section 2.2, we introduce Berkovich’s
theory of k-analytic spaces following closely main steps of [3]. In section 2.3,
we recall some facts about Bruhat-Tits buildings and Moy-Prasad filtrations.
In section 2.4, we define analytic filtrations, in a natural and general context
of potentially Demazure objects (see 2.4), and prove various properties about
them. In section 2.5, we apply the results obtained in section 2.4 in special
cases: we obtain analytic filtrations for points in the Bruhat-Tits building
and properties about them.

At the end of the second chapter, the appendix A is part of a work in
progress about Moy-Prasad isomorphism for analytic filtrations. Appendix B
is a discussion about notions of rational points in Bruhat-Tits buildings: we
compare there the notion introduced by Broussous-Lemaire with the notion
introduced in the chapter 2 of this text, we show that both notions are
equivalent for GLy.

10



Chapter 1

Comparison of constructions of
supercuspidal representations:
from Bushnell-Kutzko’s
construction to Yu’s
construction

Notations and conventions for chapter 1

F = a fixed non archimedean local field
or = ring of integer of F'
pr = maximal ideal of op
kr = residual field of F’
7 = a fixed uniformizer of F'
e(F | F) = ramification index of a finite extension E/F
mg — a uniformizer of an extension F of F
vp = unique valuation on a finite
extension E/F such that vg(mg) =1
ord = unique valuation on algebraic

extensions of F' such that ord(np) =1

If £ is a field and if G is a k-group scheme, we denote by Lie(G) the Lie
algebra functor and Lie(G) the usual Lie algebra Lie(G)(k). The Lie algebra
functor, of a k-group scheme denoted with a big capital letter G, is denoted
by the same small gothic letter g. If G is a connected reductive group

11



defined over F, we denote by BT¥(G, F) and BT"(G, F) the enlarged and
reduced Bruhat-Tits buildings of G over F' [8], [9]. In this situation, if y
is a point of BT¥(G, F), we denote [y] the image of y via the canonical
projection BT¥(G, F) — BTR(G, F). The group G(F) acts on BT¥(G, F)
and BTH(G, F). We denote by G(F), and G(F)y the stabilizers in G(F')
of y and [y]. If G splits over a tamely ramified extension, we consider the
so called Moy-Prasad filtration! defined by Moy and Prasad [29] [30]. This
is the filtration used by Yu [41]. We use Yu’s notations. So for each real
number 7 > 0 and each y in BTF(G, F), we have some groups G(F),,
and G(F)yr+. As in [29] and [41], we have a filtration of the Lie algebra
Lie(G) = g(F) and of the dual of the Lie algebra g*(F'). So for each y in
BT#(G, F) and each real number y > 0, the notations 9(F)yr > 8(F)yr+,
9" (F)y,r and g*(F)y,+ are well defined. Let us recall here the definition of
9" (F)y,r and g*(F)y,r+, due to Moy-Prasad [29, page 400|. We have

g (F)y,—»={Xe€g"(F) | X(Y) €pp forall Y € g(F)yr+},

and

0 (F)y -+ = J 0" (F)y—s.
s<r
If s < r, we denote by G(F')y s, the quotient G(F)y s/G(F)y». If G is a torus
we can avoid the symbol y, we write for examples G(F), and Lie*(G)_,. If
H C G are groups and p is a representation of H, we denote by Iz (p) the
intertwining of p in G, i.e. the set

Ig(p) = {9 € G | Homspnu (Yp, p) # 0}

1.1 Intertwining, compact induction and supercus-
pidal representations

Let GG be a connected reductive group defined over F' and let P = M N be a
parabolic subgroup of G. As usual in the litterature, the notation P = M N
means that M is a Levi subgroup of P and N is the unipotent radical of P.
Let rg denote the normalized parabolic restriction functor from the category
M(G) of smooth representations of G(F') to the category M (M )of smooth
representations of M (F').

Let recall the definition of a supercuspidal representation.

Definition 1.1.1. A representation = € M(G) is supercuspidal if r&(m) = 0
for all proper parabolic subgroups P of G.

The following lemma is an important characterization of supercuspidal
representations.

! This filtration is defined without the tameness hypothesis.
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Lemma 1.1.2. /3] A representation m € M(QG) is supercuspidal if and only
if its matriz coefficients are compactly supported modulo the center of G(F).

If K is an open subgroup of G(F'), we denote by the symbol ¢ — ind?(
the compact induction functor. The lemma 1.1.2 allows one to prove the
following proposition.

Proposition 1.1.3. [14] Let K be an open subgroup of G(F') which is com-
pact modulo the center of G(F). Let p be a smooth irreducible representation
of K and let m = ¢c — ind%(p) be the compactly induced representation of p
on G(F). The following assertions are equivalent.

(i) The intertwining I(p) of p is reduced to K.
(ii) The representation w is irreducible and supercuspidal.

This observation (proposition 1.1.3) is absolutely fundamental and both
constructions of supercuspidal representations studied in this paper are based
on this fact.

1.2 Bushnell-Kutzko’s construction of supercuspi-
dal representations for GLy

Bushnell and Kutzko [13] have constructed for each irreducible supercuspi-
dal representation 7 of GLxy(F’), an open subgroup K, compact modulo the
center of GLy (F), and a smooth irreducible representation A of K such that
mT=cC-— indIG{LN () (A). There are several texts which resume this construc-
tion (for example see [11]). In this section we give an other overview of this
construction.

In the following we describe the construction of Bushnell and Kutzko, as
in their book [13]. We follow very closely Bushnell and Kutzko and most
parts of this section are copies of the original book [13]. We give almost all
the definitions and recall the main step of the construction, we add some
comments to help the reader. We want to insist that almost everything in
this section is extracted from Bushnell-Kutzko’s book. The reader is welcome
to read at the same time [13].

1.2.1 Simple strata

Let V' be an F-vector space of dimension N. Let A be the algebra Endg(V).
If 2 is a hereditary op-order in A, we denote by B its Jacobson radical and
by vg the valuation on 2 given by vy (z) = max{k € Z | x € B*}. A stratum
in A is a quadruple [2(,n,r, 8] where 2 is a hereditary op-order, n > r are
integers and f is an element in A such that vy(8) > —n. Let e( | op)
denote the period of an op-lattice chain associated to 2. Let K(2) be the
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normalizer of A in G = A*.

Before giving the definition of a pure stratum let us prove an elementary
lemma, which will be used often in others sections of this paper.

Lemma 1.2.1. Let A be an hereditary op-order in A, and let E be a field
in A such that E* C R(2(). Let B be an element in E, then

va(B)e(E | F) = e(2 | op)vi(B). (L1)

Proof. Let mg denote a uniformizer element in E. Since EX C K(2), the
elements g, 7p and § are in K(2A). Thus the equality [13, 1.1.3] is valid for
these elements. We use it in the following equalities.

On the one hand

BEIR)g = e DBy — pie(@lg( (1.2)
On the other hand
ﬁe(EIF)Ql — mVQ((/B)e(E‘F). (1.3)
Moreover by definition of e(2 | o) (see [13, 1.1.2]), we have
W;E(IB)QL _ me(QUUF)VE(ﬁ)' (14)
The equalities 1.2 , 1.3 and 1.4 show that
praB)e(EIF) — qe(lor)ve(B), (1.5)

Consequently vy (B)e(E | F) = e(2 | op)ve(B) and the equality 1.1 holds
as required.
O

Definition 1.2.2. [13, 1.5.5] A stratum is pure if the following conditions
hold.

(i) The F-algebra E = F[(], generated by F and [ in A, is a field.
(1) E* is included in R(2A).
(iii) The equality vy (B) = —n holds.

Let [, n,r, §] be a pure stratum, for each k € Z let DMy (5,2A) be the set
13, 1.4.3]

MW(, %) := {x € A | Bz — 2 € P}

Put B = Endp(g)(V) and B = BNRA. We can define the following critical
exponent ko(B,2() [13, 1.4.5]:
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—0if E=F
ko(B,21) ::{ max{k € Z | Mp(B,2A) ¢ B + P} if £ # F.

Definition 1.2.3. [13, 1.5.5] A stratum [, n,r, 3] is simple if it is pure and
r < —ko(5,2).

The simple stratum are constructed inductively from minimal elements,
through a process which is the object of the section 2.2 of Bushnell-Kutzko
's work [13, 2.2]. The following is the definition of a minimal element giving
birth to a stratum with just one iteration.

Definition 1.2.4. [13, 1./.14] Let E/F be a finite extension. An element
B € FE is minimal relatively to E/F if the following three conditions are
satisfied.

(1) The field F[p] is equal to the field E.
(i1) The integer ged(vgp(B),e(E | F)) is equal to 1.

—vE(B
(iii) The element Ty =(8)

kp.

BeEIF) Ly generates the residual field kg over

An element B in F is minimal over F if it is minimal relatively to the
extension F[B]/F.

Proposition 1.2.5. Let [2,n,n — 1,5] be a pure stratum in the algebra
Endp(V). The following assertions are equivalent.

(i) The element B is minimal over F.
(i) The critical exponent ko(B,2L) is equal to —n or is equal to —oo.
(i1i) The stratum [A,n,n — 1, 5] is simple.

Proof. This is a direct consequence of [13, 1.4.15]. Indeed, assume that 8 €
F, then f is clearly minimal over F', moreover ko(8,2l) = —oo by definition,
and thus ko(8,2) < —(n — 1), so the stratum [, n,n — 1, 5] is simple. The
three properties, being always satisfied in this case, are equivalent. Assume
now that 8 ¢ F, by [13, 1.4.15] (¢) and (4¢) are equivalent, moreover it is clear
that (i4) implies (¢i7). If (4i7) is true then ko(5,2) < —(n — 1) by definition
of a simple stratum, moreover [13, 1.4.15] shows that —n < ko(5,2). So
ko(5,21) = —n and the assertion (i7) holds.

O

We need, for the rest of the paper, to define the notion of a tame core-
striction [13, 1.3]. Let E/F be a finite extension of F' contained in A. Let
B denote Endg(V), the centralizer of E in A.
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Definition 1.2.6. [13, 1.3.3] A tame corestriction on A relatively to E/F
is a (B, B)-bimodule homomorphism s : A — B such that s(A) =2AN B for
every hereditary op-order 2 normalized by E*.

The following proposition shows that such maps exist.

Proposition 1.2.7. [13, 1.53.4, 1.3.8 (ii)] With the same notations as before,
the following holds.

(i) Let Yg, Y be complex, smooth, additive characters of E, F with con-
ductor pg, pr respectively. Let ¥p and ¥4 the additive characters
defined by Yp = g o Trg/p and Y4 = Yp o Try p. There exists a
unique map s : A — B such that 1 4(ab) = ¥p(s(a)b), a € A, b € B.
The map s is a tame corestriction on A relatively to E/F .

(i) If the field extension E/F is tamely ramified, there exists a tame core-
striction s such that s |p= Idp.

1.2.2 Simple characters

To each simple stratum [, n,r, 8] is associated a group H'(3,2l) and a set
of characters C(53,0,2) of H'(3,2) whose intertwining in G is remarkable.
This is the object of this section.

Definition 1.2.8. Two strata [, n,r, 1] and [A,n,r, Bs] are equivalent if
B1—PB2 € B~". The notation [A,n,r, B1] ~ [, n,r, Ba] means that [A, n,r, (1]
and [, n,r, B2] are equivalent.

The following theorem is fundamental for the construction of the group
a3, 2).
Theorem 1.2.9. [13, 2.4.1]

(i) Let [2A,n,r, (] be a pure stratum in the algebra A. There exists a simple
stratum [A,n,r, ] in A equivalent to [A,n,r, 3], i.e. such that

[917 n,r, ’Y] ~ [Q[a n,r, B]

Moreover, for any simple stratum [A,n,r,v| satisfying this condition,
e(F[v] | F) divides e(F[B] | F) and f(F[y] | F) divides f(F[B] | F).
Moreover, among all pure strata [A,n,r, 5] equivalent to the given pure
stratum [2A,n,r, B], the simple ones are precisely those for which the
field extension F[B']/F has minimal degree.

(ii) Let [, n,r, (] be a pure stratum in A withr = —ko(5,24). Let [A,n,r,~]
be a simple stratum in A which is equivalent to [A,n,r, 5], let s,
be a tame corestriction on A relative to F[y]/F, let By be the A-
centralizer of v, i.e B, = Endp(V), and B, = AN B,. Then
(B, r,r—1,5,(8 —7)] is equivalent to a simple stratum in B, .
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Remark 1.2.10. Let [, n,r, (] be a pure stratum which is not simple and
let [A,n,r,~| be a simple stratum equivalent to [A,n,r, (], by 1.2.9 (i) the
degree [F[B] : F| is strictly bigger than the degree [F|v| : F].

Corollary 1.2.11. [13, 2.4.2] Given a pure stratum [A,n,r, 5], the previ-
ous theorem and remark allow us to associate an integer s and a family
{4, n,ri, Bi], 0 <i < s} such that

(i) [, n,r, Bi] is a simple stratum for 0 <i <s,
(ZZ) [lenvr(]a/BO] ~ [lenﬂav /8]7
(1ii) r=ro <71 <...<rs <nand [F[Bo]: F] > [F[1]: F] > ... > [F[] : F],

(iv) riy1 = —ko(Bi,2A), and [A,n, 741, Biv1] is equivalent to [2A,n,rii 1, 3]
for0<i<s-—1,

(v) ko(Bs,A) = —n or —oo,

(vi) LetBpg, be the centralizer of 5; in A and s; a tame corestrition on A rel-
ativelty to F[3;]/F. The derived stratum [Bg,, ,7iv1,7i41—1, 5i41(68i—
Bi+1)] is equivalent to a simple stratum for 0 <i < s— 1.

This family is not unique and is called a defining sequence for [, n,r, B].
In order to help the reader, we give an explanation for this corollary.

Proof. & If [A,n,r, 3] is a simple stratum, put [2, n,rg, Bo] = [, n,r, F] (re-
mark that o < —ko(Bo,2()). We now have an algorithm. If 8y is minimal
over F', put s = 0. Then (i) and (i7) are obviously satified, r = ro < n is sat-
isfied by definition of a simple stratum and because the rest of condition (i)
is empty. Condition (7v) is empty in this case so is satisfied. Condition (v) is
satisfied by proposition 1.2.9. The condition (vi) is empty in this case and so
is satisfied. If fy is not minimal, consider the stratum [, n, —ko(Bo, ), Bol,
it is pure but not simple. We now have a general process: the theorem 1.2.9
shows that there exists a simple stratum [, n, —ko(SBo,2L), B1] equivalent to
[, n, —ko(Bo, ), Bo] (remark that [F[5y] : F| > [F[A1] : F] by 1.2.10) such
that for any tame corestriction sg, the stratum [Bg,,r,r — 1,53, (8o — f1)]
is simple. Put r; = —ko(Bo,2A). If B1 is minimal over F', put s = 1. The
condition (7), (ii), (iii), (iv) are now obviously satisfied. The condition (v)
is also satisfied by proposition 1.2.5 and because (1 is minimal over F'. The
condition (vi) is now obviously satisfied. If 8; is not minimal over F. Con-
sider the stratum [, n, —ko(51,20), £1], it is pure but not simple. As before,
we apply the process to get a stratum [, n, —ko(51,2), B2] equivalent to
R, n, —ko(B1,2), £1]. Put ro = —ko(51, ). If B2 is minimal, put s = 2. As
before, the conditions (i) to (vi) are easily satisfied. If 5y is not minimal,
we can apply the process and get a simple stratum [, n, —ko(B2,21), B3], if
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B3 is minimal we put s = 3 and r3 = —ko(f2,2). If B3 is not minimal, we
apply the process and get a new stratum and an element 84 and so on. We
claim that there exists an integer s such that this algorithm stops, i.e 55 is
minimal. Assume the contrary, then we have an infinite strictly increasing
sequence of numbers between r and n

r=r9<T1 Z—ko(ﬁo,m) < Tg Z—k‘o(ﬁl,m) <. o< Ty = —]{io(ﬁi,m) <...<n

this is a contradiction. This concludes the proposition in this case.
o If [, n,r 5] is pure but not simple, there exists a simple stratum
[2(, n, 7, Bo] equivalent to it and the previous case complete the proof.
O

Fix a simple stratum [, n,r, 8], and let r be the integer —ko(5,2).
The following is the definition of various groups and orders associated to
[2(,n,r, B]. Choose and fix a defining sequence {[A,n,r;, 5;],0 < i < s} of
[, n, 7, ] (we thus have 8 = fy). If s > 0, the element §; is often denoted
~v. We now define by induction on the length of the defining sequence various
objects.

Definition 1.2.12. [13, 3.1.7 ,3.1.8, 3.1.1/]
(i) Suppose that B is minimal over F. Put
(a) H(B,%) = By + P,
(b) 3(5,2) = Bp + P,

(ii) Suppose that r < n, and let [A, n,r,v| be the simple stratum equivalent
to [A,n,r, B] chosen in the previously fized defining sequence. Put

(a) H(B,A) =Bs+ H(7,A) NP,
7‘+1]'

(6) 3(8,%) = Bs +I(v,A) NP
(iii) For k >0, put

(a) H(8,%) = H(5,2%) N P*,
(b) 3*(B,2) = 3(6,2) N P".
(iv) Finally, put U™(A) = (1 4+PB™) ¢f m >0 and U™(A) =A* if m =0
and put
(a) H™(B,2) = H(8,2) nU™(A),
() J7(8,20) = (5, 2) N U™ ()

The set H™(3,2) and J™(3,2) are groups. The group J°(B3,%A)
is also denoted J(B,2).
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Remark 1.2.13. In the case r < n, H(B,2) is defined inductively: the order
H(Bs, ) is well-defined since Bs is minimal, then $(Bs—1,2) is well defined

and so on. The same remark occurs for J(5,2L).

Remark 1.2.14. By [13, 8.1.7, 3.1.9 (v)], 3*(3,20) and $H*(B,2A) are well-
defined, they do not depend on the choice of a defining sequence. So the same
is true for H™(B,2) and J™(5,2).

Proposition 1.2.15. [13, 8.1.15] Let m > 0 be an integer then the following
assertions hold.

(¢) The groups H™(B,2A) and J™(5,21) are normalized by R(Bg), so in
particular by F[B]*.

(13) The group H™(,2) is included in J"™(5,2).
(iii) The group H™1(B,2) is a normal subgroup of J°(53,2).

The following is devoted to the definition of the so called simple charac-
ters. Let ¥ be an additive character of F' with conductor pg. Let 14 be the
function on A defined by ¥4 (z) =1 o Try p(z). To any b € A is associated
a function ¢ on A given by

Yp(z) = Pa(blx —1)).
Definition 1.2.16. (i) Suppose that B is minimal over F.

For 0<m<n-—1, let C(A,m,B) denote the set of characters 0 of
H™Y(B) such that:

(a) 0 ‘H7VL+1(/B)[“|U[%]+1(Q[): Vg,
(b) 6 ‘Hm“(ﬁ)ﬂB; factors through detp, : By — F[B]*.

(1) Suppose that r < n. For 0 < m < r —1, let C(A,m,3) be the set of
characters 0 of H™ () such that the following conditions hold.

(¢) 0| H™(B) N By factors through detp,

(b) 0 is normalised by K(Bp)

(c) if m" = max{m, [5]}, the restriction 0 | H™+Y(B) is of the form
Ootbe for some Oy € C(A,m',~) where ¢ =  —~ and ~ is the first
element of the fived defining sequence.

Remark 1.2.17. In the second case, C(, m,3) is defined by induction:
recall that we have fized a defining sequence {[A,n,r;, 5], 0 < i < s} of
[2(,n,0,[], the last term of the defining sequence is such that Bs is minimal
over F' and by the first case, there is a set of character attached. Then, those
attached to [A,n,rs_1, Bs—1] are defined, and by iteration the set C(2A,m, ()
1s defined.
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Remark 1.2.18. [13, 3.2] The set C(2,m,3) defined above is independent
of the choice of the defining sequence.

Proposition 1.2.19. [13, 3.3.2] Let [, n,0, 5] be a simple stratum in the
algebra A. Put r = —ko(B,21). For 0 < m < [5] and 6 € C(A,m,3), the
intertwining of 0 in G is given by

Iq() = Jt

r+ r+1

2l(8,2)By JUF(5,9).

1.2.3 Simple types and representations

This section is devoted to the definition of simple types and to one of the
main theorems of Bushnell-Kutzko’s theory.

Let [2,n,0, 3] be a simple stratum and let § € C(5,0,2() be a simple
character attached to this stratum. There exists a unique, up to isomor-
phism, irreducible representation 7 of J!(3,2l) containing 6 [13, 5.1.1]. The

dimension of 7 is equal to [J1(5,2) : Hl(ﬁ,m)];

Definition 1.2.20. [13, 5.2.1] A B-extension of n is a representation K of
JO(B,20) such that the following conditions hold.

(i) K |n@ay=mn
(ii) K is intertwined by the whole of B*.

We say that k is a B-extension of 0 if there exists an irreducible repre-
sentation n of JY(B,21) containing 0 such that k is a B-extension of 0.

Proposition 1.2.21. Let x be an irreducible representation of J°(3,2). The
following assertions are equivalent.

(i) The representation K is a S—extension of 6.
(ii) The representation k satisfies the following three conditions.

(a) K contains 6
(b) K is intertwined by the whole of B*

(c) dim(x) = [J(3,2) : H'(3,2)]2.

Proof. If k is a 8 — extension, k satisfies (a), (b), (¢). Indeed, by definition
K restricted to J'(3,%) is equal to an irreducible representation 7 which
contains @, thus x contains § and dim(x) = dim(n) = [J*(3,A) : H'(B, Ql)]%
By definition, x is intertwined by the whole of B*. Reciprocally, if x satisfies
(a),(b),(c) then (k|syga)) |m1(g2) contains 6, so k [(gq) contains an
irreducible representation 1 which contains 6, and the equality on dimension
thus shows & | j1(g9)= 7. Thus & is a S—extension as required. O
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Proposition 1.2.22. Let k1 and k9 be two B-extension of 8. There ex-
ists a character x : U%og)/U'(og) — C* such that k1 is isomorphic to
ko ® x odetp.

Proof. There exists n; and 19, irreducible representations containing 6, such
that k1 is a B-extension of 71 and k9 is a [S-extension of 75. The representa-
tion 77 is isomorphic to n2. The proposition 1.2.22 is now a consequence of
13, 5.2.2].

O

Definition 1.2.23. A simple type in G is one of the following (a) or (b).
(a) An irreducible representation A = k ® o of J(B,2) where:

(i) A is a principal op-order in A and [A,n,0, (] is a simple stratum;
(ii) K is a B — extension of a character 0 € C(2,0,5);
(111) if we write E = F[5],B =2ANEndg(V), so that
J(B,2)/J(B,%) =~ U(B)/U'(B) ~ GLy (kg)*

for certain integers e, f, then o is the inflation of a representation
00 ® -+ ® o9 where ag is an irreducible cuspidal representation of

(b) An irreducible representation o of U(2A) where:

(i) A is a principal op—order in A,
(i) if we write U(A) /U (A) ~ GLy(kp)®, for certain integers e, f, then

o is the inflation of a representation oy ® - - - ® oy, where oq is an
irreducible cuspidal representation of GLg(kp).

The following theorem is one of the main theorem of Bushnell-Kutzko
theory [13].

Theorem 1.2.24. [153, 8.4.1] Let 7 be an irreducible supercuspidal represen-
tation of G = Autp (V) >~ GLN(F'). There ezxists a simple type (J,\) in G
such that 7| J contains \. Further,

(i) the simple type (J,\) is uniquely determined up to G-conjugacy,

(ii) if (J,\) is given by a simple stratum [A,n,0, 5] in A = Endp(V) with
E = F[p], there is a a uniquely determined representation A of E*.J
such that A |j= X and m = ¢ —ind(A), in this case AN Endg(V) is a
mazximal og-order Endg(V).

(tii) if (J,\) is of the form (b) , i.e if J = U(2A) for some maximal op-
order 2 and X is trivial on UY(2L), then there is a uniquely determined
representation A of F*U(RL) such that A [yqy= X and m = ¢ — ind(A).
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Let us now introduce a terminology specific to the purpose of this text.

Definition 1.2.25. A Bushnell-Kutzko datum in A is one of the following
sequence.

(a) A uple of the form ([2,n,0,5],0,k,0,\) such that:

(1) [A,n,0,0] is a simple stratum in A such that Bg is a mazimal
op-order,

(ii) 6 € C(,0,0) is a simple character attached to [2A,n,0, 5],

(iii) Kk is a B-extension of 0,

(iv) o is an irreducible cuspidal representation of U%(Bg)/U(Bg),
(v) A is an extension to EXJ(3,2) of K ® 0.

(b) A uple of the form (A, o,A) where A is a mazimal op-order in A, o
is a cuspidal representation of U°(A)/UL () and A is an extension to
FXU%A) of 0.

Remark 1.2.26. As in definition [13, 5.5.10], this distinction (a) and (b)
is quite superficial (see the remark after [13, 5.5.10]).

Remark 1.2.27. As we have explained in this section, in order to construct
one supercuspidal representation, Bushnell and Kutzko do some choices of
objects at various steps of the construction. These choices of objects may
depend on previously considered and choosen other objects. The "notion"
of Bushnell-Kutzko datum takes into account this. In the Bushnell-Kutzko
datum ([2,n,0,6],0,k,0,A), 8 depends on [A,n,0, (], k depends on 0, and A
depends on k and . In Yu’s construction, as we will see in the next section,
all the choices are done at the beginning.

In this chapter we are going to associate to each Bushnell-Kutzko datum
satisfying a tameness condition a Yu datum. The following is the definition
of a tame Bushnell-Kutzko datum.

Definition 1.2.28. A tame Bushnell-Kutzko datum is a Bushnell-Kutzko
datum ([, n,0,0],0,k,0,\) of type (a) such that [, n,0, 5] is a tame simple
stratum (see 1.4.1 for the definition of a tame simple stratum) or a Bushnell-
Kutzko datum of type (b).

1.3 Yu’s construction of tame supercuspidal repre-
sentations

Given a connected reductive algebraic F-group G, Yu [41] constructs irre-
ducible supercuspidal representations of G(F'), these representations are said
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to be tame. Adler’s work [1] has inspired parts of Yu’s construction. Kim
[27] has proved that when the residual characteristic of F' is sufficiently big,
the construction of Yu is exhaustive. Fintzen has recently posted online a
better exhaustion result [20].

In the following we describe the construction of Yu, as in Yu’s paper
[41]. We follow very closely Yu and most parts of this section are copies of
original Yu’s paper. We give almost all definitions and recall the main steps
of the construction, we add some comments to help the reader. Chapter 3 of
Hakim-Murnaghan’s paper [24] should also be helpful for this section. We use
some of Hakim-Murnaghan’s notations, in particular we use the notations
m_1, and k;. We want to insist that almost everything in this section is
extracted from Yu’s article [41]. The reader is welcome to read at the same
time [41]. In particular, the reader who knows Yu’s construction does not
have to read this part except for notations.

We start by recalling some facts on tame twisted Levi sequences (1.3.1).
We then introduce the definition of generic characters (1.3.2). This allows
us to introduce the definition of a generic supercuspidal Yu datum. We also
use the simpler expression "Yu datum" in this text. The notion of (non-
necessary supercuspidal) generic Yu datum exists [28] and generalize the
notion of supercuspidal Yu datum. Now in this text Yu datum will always
mean supercuspidal generic Yu datum.

1.3.1 Tamely ramified twisted Levi sequences and groups

In this section we introduce some notations and facts relative to them used
in Yu’s construction. We refer to the sections 1 and 2 of [41] for proofs.

We refer the reader to [8, 6.4.1] for the definition of the totally ordered
commutative monoid R=R L R+ L oc.

Definition 1.3.1. A tame twisted Levi sequence Zf i G is a sequence
(G'cGlc...cGi=Q)

of reductive F'-subgroups of G such that there exists a tamely ramified finite
Galois estension E/F such that G Xspec(F) SPeC(E) is a split Levi subgroup
of G Xgpec(F) SPeC(E), for 0 <i < d.

Let 8 be a tame twited Levi sequence, there exists a maximal torus
T C G° defined over F such that T Xspec(F) SPec(E) is split. For each
0 < i < d, let ®; be the union of the set of roots ®(G*,T, F) and {0}, i.e
®;, = ®(G*,T,E) U {0}. For each a € ®;\ {0}, let G, C G = G? the root
subgroup corresponding to a, and let G, be T if a = 0. Let g(E) be the
Lie algebra of G over E, and and let g*(F) be the dual of g(E). For each
a € @glet go(E) (resp gi(E) ) be the a-eigenspace of g(E) (resp g*(E)) as a
rational representation of T'. Then g,(F) is the Lie algebra of G,, and g} (E)
is the dual of g_,(F).
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If 0 <i < j <d, we have a natural inclusion of roots: ®; C ®;.

Let 7 (roy...,7i,...,7q) be a sequence of numbers in R we introduce
a function f- from CID(Gd, T,E) to R as follows: f(a) = 7o if a € @y,
f(a) =r if a € §p \ Dp_q.

By definition, a sequence 7 = (ro,71,...,74) of numbers in R is admis-
sible if there exists v € Z such that 0 < v < d and

Let y be in the appartement A(G,T, E) ¢ BT®(G, E).

The point y determines filtration subgroups {Ga(E)y,r},c 2 r50 of Ga(E),
lattices {ga(FE)yr},cp and latttices {g;(E)yr},cp in 85(E)y,r, for each a €
®q. If a # 0, the filtration of G4(E) can be extended to a filtration
{Gu(E)yr},cp indexed by the whole of R. For any R-valued function f on
@4 such that f(0) > 0, let G(E),, r be the subgroup generated by Go(E)y, f(q)
for all a € ®4, and let g(E), ; (resp g*(E),, ) be the lattice generated by
0a(E)y, () (resp g5(E)y f(a)) for all @ € &4. We will denote G( )y f? by

(E ) 7> and g(E)y. g (vesp g*(E)yf..) by @ (E), 7 (resp @*(E), 7). Let
? s be two admissible sequences of elements in ]R We erte ? < 5 (resp
?g 5) if r; < s (resp r; < ;) for 0 < i < d. If ¥ < ¢, to simplify the
notation, we put

G(B), 7w = C(E),»/G(E),v and T(E),»3 = T(E),»/8 (E),~

)

We have assumed that y € A(G,T,E) ¢ BTE(G,E). Therefore, y
determines a valuation of the root datum of (G, T, E) in the sense of [§].
This valuation restricted on the root datum of (G% T, FE), is a valuation
there. Therefore, it determines a point g; in A(G%, T, E) modulo the ac-
tion of X.(Z(G%),F) ®z R. A choice of y; determines an embedding j; :
BT?(G*, E) — BT¥(G, E), which is G*(E)-equivariant and maps y; to y.
We now fix y; for 0 < i < d and identify BTP(G?, E) with its image in
BT¥(G, E) under j;. We thus identify y; with y.

The following is an important proposition.

Proposition 1.3.2. [41] The following assertions hold.
(i) 8 E), +, T(E) y, 7 and ?(E)y’? are independent of the choice of T.

(ii) If 7,75 are two admissible sequences such that
0<r <s <min(rs,...,7q) —l—min(?) for0<i<d

then 8(E)y77:? is abelian and isomorphic to H(E)y?:?.

(iii) If 7 is an admissible increasing sequence, we have
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G(B)y7 = GO(B)yro G (E)yr, - - - GUE)

where GY(E)yr;, 0 <14 <d, are Moy-Prasad’s groups (see Notation).

The sets A(G, T, E) and BTZ(G, F) are both subsets of BT (G, E). We
put A(G,T,F) = A(G,T, E)NBT¥(G, F), it does not depend on the choice
of the splitting field E. Since T' (hence ﬁ) has a tamely ramified Galois
splitting field F, Gal(E/F) acts on A(G,T,E) by affine automorphisms.
The center of mass of a Gal(E/F)-orbit in A(G, T, E) is fixed by Gal(E/F),
and is a point of A(G, T, F) by a result of Rousseau. This observation has
been used by Adler in [1]. Let y € A(G,T,F) C A(G,T,E), and let 7 be
an (R-valued) admissible sequence of length d + 1. We define 8(}7 )y, 7 O
be B(E)yj N G(F), it does not depend on the choice of E. Recall that

we have assumed E/F to be a Galois extension. The group 8(E)y’7> is
Galois stable and 8(F)yj = B(E)ngal(E/F). The lattices E(F)yﬁ and
ﬁ*(F)yj are defined in the same fashion. Again we define 8(}7)%7:? =
(F)yj/a(F)yv? and define ?(F)yj:? and 7*(F)y77>:g> similarly.

The following is an important proposition.

Proposition 1.3.3. Let 0 < N < S and ¥ > 0. Then
(i) The natural morphisms of groups

Gal(E/F)

C(F), 7z = C(E), 2

and

T(F),7v — TE), 7z

are surjective

(i) If 0 < 7 < §,s; < min(ry,...,rq) +min(7) for all i, and E/F is
a splitting field of which is Galois and tamely ramified, then the
isomorphism G (E), 7.5 — 3(E)y7?:? induces an isomorphism

G(F), 7 = T(F), 7

We have assumed that y € BT®(G, E) N A(G, T, E). We may assume
that y; is fixed by Gal(E/F) . Then y; is a point in BT®(G! F) by a
result of Rousseau. The embedding j; : BTZ(G?, E) — BT¥(G, E) is Galois
equivariant, hence induces an embeddings BT (G*, F) — BT¥(G,F) by
an other result of Rousseau. We identify BTY(G?, F) with its image in
BT¥(G, F). Therefore, we identify y; with y.

We now have an other important proposition

25



Proposition 1.3.4. [41, 2.10] If 7 is increasing with ro > 0, we have
G(F), 7 = GOF)yryGL(F)yp . GUF)y
where GY(F)yr,, 0 < i <d, are Moy-Prasad’s groups (see Notation).

1.3.2 Generic elements and generic characters

Recall that if L is a lattice in an F-vector space V, the dual lattice L* is
defined to be

{xeV*|z(L) Cop}.

Put L* = L* ®, prp. If L C M are lattices in V, then the Pontrjagin
dual of M/L can be identified with L*/M*® via an additive character ¢ of
conductor pr. Explicitly, every element a € L® defines a character xy = x4
on M by xa(m) = ¢p(a(m)). Clearly, x, factors through M — M/L and
Xq depends on a mod M*® only. We say that a realizes the character x.

If 7 = (rg,...,7q) is an R-valued sequence, we define 7+ to be the
sequence (ro+, . ..,74+). Then g*(F), 5 is equal to g(F)Z’(77)+ ®op Pr and
9" (F)y 74 is equal to g(F); 4 Qo Pr-

Let r > 0 and let S be any group lying between G (F'), (r/2)4 and G(F')y .
Then S/G(F)ys+ =~ 5/9(F)yr+, where s is a lattice between g(F), (,/2)4 and

9(F )y

Definition 1.3.5. A character of S/G(F)y r+ is said to be realized by an
element a € g*(F)y,—r = (9(F)yr+)® if it is egal to the composition

S/G(F)yr —>5/g(F)yr4 ~—C*.

We now introduce the notion of generic element, a generic character will
be defined as certain characters whose restrictions are realized by generic
elements. Let G’ C G be a tamely ramified twisted Levi sequence. Let Z’ de
the center of G', and let T be a maximal torus of G’. The space Lie*((Z’)°)
can be regard as a subspace of Lie*(G’) in a canonical way: let V be the
subspace of Lie*(G’) fixed by the coadjoint action of G’. Each element of
V induces a linear function on Lie((Z')°) C Lie(G’) by restriction. This
gives a linear bijection from V to Lie*((Z’)°). We identify Lie*((Z")°) with
V' C Lie*(G’). The space Lie*(G’) can also be regarded as a subspace of
Lie*(@) in a canonical way: if we consider the action of (Z’)° on Lie*(G), then
the subspace fixed by (Z’)° can be identified with Lie*(G’). The connected
center (Z')° is a torus which split over a tamely ramified extension, so the
set (Z')°(F),Lie((Z')° and Lie*((Z')°) carry canonical filtrations.

An element X* of (Lie*(Z')°)_, is called G-generic of depth r € R if two
conditions GE1 and GE2 hold. Let us explain GE1. Let a denote a root
in ®(G, T, F), let " be the coroot of a, and let da" denote the differential
of aV. Let H, denote the element da" (1).
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Remark 1.3.6. In the following definition of Yu, it is implicit that we see
X* canonically as an element in Lie*(Z'° Xgye0(r) spec(F)). This is done
remarking two elementary facts valid for every reductive F-group scheme G.
First, Lie(G® Xgpec(r) spec(F)) is canonically isomorphic to Lie(G°) @ F
since F is a field, and theirs duals are thus canonically isomorphic. The
canonical injective map

Lie*(G°) — (Lie(G°) @ F)*
[ (@M= f(2)A)

ends this remark.

Definition 1.3.7. An element X* of (Lie*(Z')°)_, satisfies GE1 with depth
rif ord(X*(H,)) = —r for all root a € ®(G, T, F)\ ®(G,T, F).

We refer to section 8 of [41] for the definition of the condition GE2. In
general, the condition GE2 is implied by the condition GE1 in most cases.
In particular, in this paper the condition GE2 will always hold as soon as
the condition GE1 will hold thank to the following propositions. We refer to
the section 7 of [41], or [37] for the notion of torsion prime for a root datum.

Proposition 1.3.8. [{1, 8.1] If the residual characteristic of F is not a
torsion prime for the root datum (X, ®(G,T,F), X", ®V(G, T, F), then GE1
implies GE2.

Proposition 1.3.9. [37] Let (X,®, XY, ®Y) be a root datum of type A.
Then, the set of torsion prime for (X, ®, XV, ®V) is empty.

As announced before, the definition of a generic element is the following.

Definition 1.3.10. An element X* of (Lie*(Z')°)_, is called G-generic of
depth r € R if the conditions GE1 and GEZ2 hold.

We can now give Yu’s definition of generic characters.

Definition 1.3.11. (i) A character x of G'(F) is called G-generic if it is
realized (in the sense of definition 1.3.5) by an element X* in

(Lie*(Z")°) - C (Lie*G")y,—r which is G-generic of depth .

(i1) A character ® of G'(F) is called G-generic (relative to y) of depth r if
® is trivial on G'(F)y 4, non-trivial on G'(F)y, and ® restricted to
G'(F)yrrt is G-generic of depth r in the sense of (i).
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1.3.3 Yu data

The following is the list of objects in a Yu datum.

Definition 1.3.12. A Yu datum consists in the following objects.

(8) An anisotropic tame twisted Levi sequence in G, i.e

(y)

(7)

(p)

(®)

GOc...cGc---cG'=@G
such that

(a) there exists a finite tamely ramified Galois extension E/F
such that G' Xgpee(r)spec(E) ds a split Levi subgroup of
G Xgpec(F) SPeC(E),

(b) Z(G°)/Z(Q) is anisotropic.

A point y € BT¥(G?, F) N A(G, T, E) where T is a mazimal torus of
G°, such that T Xspec(F) SPec(E) is split and A(G,T, E) denotes the
appartement associated to T over F,

A sequence of real numbers 0 < rg <ry < ..<rgq1<rqgifd>0,
0<rpifd=0,

0
. [v]
and such that m_1 :==c — indf(o(F) (p) is irreducible and supercuspidal.

An irreducible representation p of KO = GO, such that p |GO(F)

y,0+

A sequence ®q, ..., 8,4 of characters of G°(F),...,GYF). We assume
that ®; is trivial on G*(F)yr,+ but not on G*(F)yy, for 0<i<d—1.
If rg1 <rg, we assume Py is trivial on Gd(F)yJ-dJr but mnot on
Gd(F)y’rd. If rq_1 = rq, we assume that ®4 = 1. The characters
are assumed to satisfy the generic condition of Yu: ®; is G*-generic
of depth r; for 0 <i<d-—1.

1.3.4 Yu’s construction

We fix in the rest of this section a generic Yu datum. The three first ob-
jects (8, v, 7) allow to define various groups. The point y can be seen as a
point in the enlarged Bruhat-Tits Building of G* for each 4 using embeddings
BTZ(G°, F) — BTP?(G', F) < ... — BTF(G? F) as explained in the sec-
tion 2 of Yu’s paper |41, §2 | page 589 line 5|. We fix, for the rest of this
section, such embeddings. The following is the definition of three groups.

Definition 1.3.13. [{1, §3, 15.8] Puts; = 5 for 0 <i <d.
Fori =0, put

(i) K§ = GO(F)yo+
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(ii) °K® = GO(F),
(iii) KO =G°(F)y.

For1 <11 <d, put

(i)
Ki = GO(F)y,O—i—Gl (F)y,so—i— T Gi(F)y,Si—H-
= (GO’ le . 7G'L)(F)y7(0+730+’m,3i_1+)
(i1)
K' = GO(F)yGl(F)y,So e Gi(F)%Si—l
= GO(F):L/(GO’ Gla s ’Gz)(F)y,(O,so,...,si_l)
(iii)

K' = GO(F)[y]Gl(F)%SO T Gi(F)yasi—l
= GO(F)[y](G07 le <o 7Gl)(F)y,(O,SO,..A,si,l)'
Proposition 1.3.14. [41] Let 0 <i < d.
(i) The three objects K%, °K', K' defined precedently are groups.

(i) They do not depend on the choice of the embeddings
BTE(GY, F) — BT¥(G',F) — ... — BTE(G", F).

(ii1) There are inclusions K. C °K' C K.

(iv) The groups Kj_ and °K* are compact and K" is compact modulo the
center. Moreover °K* is the mazimal compact subgroup of K°.

Yu also define groups J* and J_i for 1 <i<dasfollows. For1 <i<d
, (ri—1,8i—1) and (r;_1, $;—1+) are admissible sequence

Definition 1.3.15. Let J¢ be the group (Gifl,Gi)(F)(riihsiil) and J'. be
the group (Gl_l)Gl)(F)(T¢_17Si—1+)'

Proposition 1.3.16. Let 0 < i < d — 1. The following equalities of groups
hold:

(i) K"'J' = K
(i) K'7'JL = K.
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d .
Thanks to g, Yu defines a character [[ ®; on K i. Then, he constructs

i=1
a representation pg = pd(a,y,?,p, 3) on K9 [41, §4]. Let us explain the
construction of these objects.

Let 0 < <d—1.

Put T* = (Z(G"))®, let us consider the adjoint action of T% on g, the
space g = Lie(G?) is the maximal subspace on which T acts trivialy. Let
n’ be the sum of the remaining isotypic subspaces. Let s > 0 € R, then
g(F)s = g'(F)s ® n'(F)s where n'(F)s C n’(F). There exists a sequence of
morphisms as follows (see [41, section 4]).

Gi(F)Si+ZI'7Z+ = gi(F)Si+ZI‘1:+ - gi(F)Sv',+11‘i+ @ ni(F)Si+¢Ti+ = G(F)Si+11‘i+
(1.6)

The character ®; of G*(F) is of depth r;. Thus it induces, thanks to the
isomorphism (1.6) , a character on g*(F)s,,.r,,. We extend the latter to
gi(F)SH;ri+ D t1i(F)sl.+;ri+ by decreting that it is 1 on ni(F)si+;ri+. We ob-
tain thanks to the last isomorphim in 1.6 a character on G(F')s,, that Yu
denotes by ;. By construction, the following equality holds P, |Gi(F)S_+:
P, |Gi(F)S_+. There exists a unique character on G°(F),G'(F)oG(F)s,,
which extends ®; and i'l Yu denote this character also by the symbol Cf’l
Remark thatAKi C GO(F)[y]Gi(F)OG(Fst, in particular we have defined
a character ®; on Ki. The character ®; depends only on (8,3/,?,(1%-),
we sometimes denote it ®; = @i(a,y,?,éi). Let G(B,y,?,a) be the

d .
character [[ ®; \Ki We put &, = ®,.

=0

(2

Then Yu constructs for 0 < j < d a representation p; of KJ. The com-
pactly induced representation ¢ — indIG;j(F)(pj) is an irreducible and super-
cuspidal representation of G7(F). However, we are mainly interested in the
case j = d, i.e in the representation pg, since p; depends on 8,y, ?,g,p,
we also write pg = pa(G, v, T, ,p). We will use similar notations in the
following. For each j, the representation p; of K7 is naturally expressed as
a tensor product of representations.

Lemma 1.3.17. [{1, §//Let 0 < i < d—1, there exists a canonical irreducible
representation ®; of K' x J'1 such that the following conditions hold.

i) The restriction of ®; to 1 x JF is (®; | i —1isotypic.
+ J
+
i) The restriction of ®; to Ki x 1 is 1—1sotypic.
+

Lemma 1.3.18. Let 0 <i <d—1. Let inf(®;) be the inflation of ®; |k to
Kiwx J*HL Let ®; be the canonical irreducible representation introduced in
lemma 1.3.17. Then inf(®;) ® ®; factors through the map
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Ki X Ji-‘rl SN KiJi+1 — Ki-‘rl‘

Proof. This is easy and proved in section 4 of [41].
O

Definition 1.3.19. Let us denote by ®! the representation of K1 whose
inflation to K* x J™*L is inf(®;) @ ®;.
Lemma 1.3.20. [2/, page 50] The following assertions hold.

(i) If 1 is a representation of K' which is 1-isotypic on K' N JH1 =

Gi(F)yr then there is a unique extension of u to a representation,

denoted 1an ( ), of K1 which is 1-isotypic on J'TL. Ifi < d —1,
this mﬂated representation is 1-isotypic on Kt N Jit2.

(ii) We may repeatedly inflate ,u More preczsely, if 0 <1< j<d then we
may define 1an1( ) =infk] 0., 0 1an (,u)

Definition 1.3.21. Let 0 < j <d. Let 0 <¢ < j. Let fi] be the inflation of
®; to K7, i.e K] 1an1+1(<I>/) Let ,%J be ®; |xi. Let &’ be the inflation

of p to K, e /-@71 = 1anO( ).

If j =dand —1 <17 <d, we also denote /ﬁf by x;. This notation and the
statement of the following proposition is due to Hakim-Murnaghan.

Proposition 1.3.22. The representation p; constructed by Yu is isomorphic
to

Kj;l@,‘{%@...@l{g.
In particular, the representation pg constructed by Yu is isomorphic to

K1 QKX ... R Kq-

Proof. The representation p; is constructed in [41] at page 592. Yu con-
structs inductively two representations p; and p] . ‘
Let us show by induction on j that p;/ =’ | ® /@0 ®...Q H;il and
pj =K 4 ®/<;0® ®/<c] If j = 0, then by definition, the represen-
tation pf constructed by Yu is p and pg is py ® (®o |go). We have
kY, = p and /<a0 = ‘I’o ]Ko So the case j = 0 is complete. Assume that
pjl—Hl(X)H QR Vand pj =k '@ @ ®/€§i Then
by deﬁnltlpn P is equal to infg-_l(p;-fl) ® ®_,. By definition ®}_; is

J
equal to Kj_1- Moreover

me] 1(/)J 1) = 1anJ 1(/1 ®/<;0 ls. ®/§j ;)
lanJ (K7 )®1an] 1 (K 671)® me] 1(#@)

J
:R_1®f€0®...®f€j_2
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Consequently p;’ = /{j_l ® mé ®...® /{g ®...Q /—@?_ﬂl. Fipally, by Yu’s
definition, p; is equal to p;. ® ®; |gi, and thus p; = K 1 ® K,% ®...® /ﬁ?;, as
required.

O

Proposition 1.3.23. Let 0 < j <d. Let 0 <i < j. The dimension of /{z 18
equal to the dimension of ®;. The dimension of ® is equal to [J' T : Jfl]%.

Proof. By definition /-;g is an inflation of ®;, consequently theses representa-
tions have equal dimensions. The representation @/ is the unique represen-
tation of K%+ 1 whose inflation to K® x Jt1 is &,. Thus, the dimension of
®’ is equal to ®;. The representation ®; is constructed in [41, 11.5] and is
the pull back of the Weil representation of Sp(J*1/J™) x (Ji+1/N;) where
N; = ker(®;) (see [41]). Thus, the dimension of ®; is [J7F! : Jfl]%.

O

Theorem 1.3.24. (Yu) [41, 4.6 , §15] The representation ¢ — indf((dF)pd is
wrreducible and supercuspidal.

We now introduce some notations that we will use later in chapter 1.
Put °pg = Om(@,y,?,p,g) = pd |oga. Put also °k; = k; |ox, and \° =°
Ko X ... ®° Kd-

The following theorem shows that the construction of Yu is exhaustive

when the residual characteristic is sufficiently large.

Theorem 1.3.25. (Kim) [27] Let G be a connected reductive F' group, if
the residue characteristic p of F is sufficiently large, for each irreducible
supercuspidal representation m of G(F'), there exists ( ,y,?,p,g), such

that m = ¢ — indf((dF)pd(g, 1, T, p, ®).

Fintzen has recently ameliorated this exhaustion result [20].

1.4 Tame simple strata

In this section, the main object of study is the approximation process for
simple strata [2,n,r, 5] described previously in section 1.2, when the field
extension F[3]/F is tamely ramified. It is a well-known result that in this
situation, an approximation element - can be chosen inside the field F[5].
We will refer to Bushnell-Henniart for this fact which will be recalled as
proposition 1.4.3 in this section. The main new result in this section is
proposition 1.4.4, the proposition 1.4.2 is used to prove proposition 1.4.4.

Definition 1.4.1. A pure (resp simple) stratum [, n,r, (] is a tame pure
(resp tame simple) stratum if the field extension F[B]/F is tamely ramified.
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Let [2(,n,r, ] be a tame pure stratum in the algebra A = Endp(V),
set E = F[f]. Set also B = Endg(V). Let s : A — Bg be the tame
corestriction which is the identity on Bg, we recall that such map exists by
1.2.7. The element s(b) is denote by "b" when b is in Br. Let B be the
Jacobson radical of 2. Set Brp = AN Bg and Qp =P N Bg. Thus By is
an op-hereditary order in Bp and Qp is the Jacobson radical of Bp.

The following is a analogous to [13, 2.2.3|, the difference is that the
tameness condition is supposed and a maximality one removed.

Proposition 1.4.2. Let [, n,r, ] be a tame simple stratum. Let b € Q"
and suppose that the stratum [Bg,r,r — 1,b] is simple. Then

(i) The stratum [2A,n,r — 1,3+ b] is simple
(1) The field F[f + b] is equal to the field F[3,b]
(143) We have

[ —r=ko(b,BE) fbZE
Fo(B +b,2) = { kg(ﬁ,%(()) ifbeE

Proof. Let L = {L;};cz be an op-lattice chain such that

A={zxe A|x(L;) C L;,i € Z}.
By definition [13, 2.2.1],

R ={zxeG|z(Li)e Liel}
and

RKBp)={z e Gg|z(L;) € L,i€Z}.
Thus
R(BE) C R). (1.7)

The stratum [Bg,r,r—1,b] is simple, thus the definition of a simple stratum
shows that
E[b]* C A(BE). (1.8)

Put By = E[b] = F[B,b]. Equations 1.7 and 1.8 imply that EJ* C K(2).
This allows us to use the machinery of [13, 1.2] for 2 and Ej.

Set Bg, = Endg, (V) and Bg, = AN Endg, (V). The proposition [13,
1.2.4] implies that B, is an og,-hereditary order in Bg,. Let A(E;) be
the algebra Endp(FE7) and let 2((E7) be the op-hereditary order in A(FE7)
defined by A(E1) = {z € Endp(E1) | x(p%,) C pl,,i € Z}. Let W be the
F-span of an og,-basis of the og,-lattice chain £. The proposition [13, 1.2.8]
shows that the (W, E)-decomposition of A restricts to an isomorphism 2( ~
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QI(El)@)OEl B of (A(E1), B, )-bimodules. Similarly we have a decomposition
Bp~Bp(k) Qop, %El'
Set Bp(F1) = Endg(E;) and Bg(E1) = Br(E1) N2A(E;1). Set also
r

n(Ep) = and r(E,) = .

————. Let us prove that the
(%E1 ’ UEI)

6(%EH | 0E1)
following two equalities hold.

Vo) (B) = —n(Er) (1.9)

Vg () (b) = —r(E1) (1.10)

Let us prove that the equation 1.9 holds. By definition of Ey, the element
B is inside Ey and thus vgg,)(8) = vE, (B). The lemma 1.2.1 thus shows that

va(Be(Er | F) = e(A | op)vae,) (B)- (1.11)
The proposition [13, 1.2.4] give us the equality

e | or)

G F) (1.12)

e(%El ‘ 0E1) =
Since [, n,r, ] is a simple stratum, n is equal to —vy (), consequently
using equations 1.11 and 1.12, the following sequence of equality holds.

w(Ble(Ey | F) _ w(B) -n_
- = = —n(En)
e(A|op) e(Bp, |op) e(Bg |op)
This concludes the proof of the equality 1.9 and the equality 1.10 is easily
proved in the same way.

The proposition [13, 1.4.13] gives

va(e)(B) =

ko (B, A(Er)) = m
t 1

ko(b, Bp)
ko(b,Bg(F1)) = —————~
o B = s o)

Consequently [Q[(El)vn(El)7T(El)7B] and [%E(El)vr(E1)7T<E1) - lvb]
are simple strata and satisfy the hypothesis of the proposition [13, 2.2.3].
Consequently [A(E1),n,r — 1,5+ b] is simple and the field F[5 + b] is equal
to the field F'[3,b]. Moreover [13, 2.2.3] implies that

ko(8 + b, A(EL)) = { ];)Q%Elgz(zjc;(lbf l‘)lﬁggEl)) ifh¢ B

The valuation vgg,)(8 +b) is equal to —n(E) and the same argument
as before shows that vy(8 + b) = —n. The proposition [13, 1.4.13| shows
that ko(8 + b, 2A) = ko(8 + b, A(E1))e(Bg, | o, )

Thus
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[ —r=ko(b,Bp) ifb g E
kdﬁ+amy_{kd&ﬂ§ﬂbeE

This completes the proof.
O

Given a, non necessary tame, pure stratum [, n, r, 5], the existence of a
simple stratum [, n, r, 7] equivalent to [, n,r, 3] is a fundamental theorem
in Bushnell-Kutzko’s theory. Given such [, n,r, (] and [, n,r, 7], there
is no, in general, inclusion between the field F[3] and F[y], however the
following arithmetical properties are always true.

e(F [ F) [e(F[B] | F) (1.13)

FENE) | FEP]F) (1.14)

Moreover if [2(,n,r, 8] is not simple, then the degree [F[S] : F] is strictly
bigger than [F[y] : F| by 1.2.9.

In the tame situation, a new property is always true. Given a tame
pure stratum [, n, r, 8] such that r = —ko(3,2), there is an equivalent tame
simple stratum [2(, n, 7, 7] such that the field F[y] is included in the field F'[5].
We refer to Bushnell-Henniart for the proof of this fact. This property is the
following proposition.

Proposition 1.4.3. [12, 3.1 Corollary] Let [, n,r, 3] be a tame pure stra-
tum in the algebra A = Endp(V) such that r = —ko(B,20). There is an
element v in the field F|B] such that the stratum [A,n,r,v| is simple and
equivalent to [A,n,r, ]

In order to make an explicit link between Bushnell-Kutzko and Yu’s
formalisms, the following proposition is used crucialy in the section 1.8 of
this paper.

Proposition 1.4.4. Let [, n,r, 3] be a tame pure stratum such that
r=—ko(5,2).

For all elements v in the field F[3] such that [A,n,r,v| is a simple stratum
equivalent to [A,n,r, B, the stratum [B,r,r—1, 3 —~] is simple, here B, =
EndFM (V)N

Proof. Using a similar argument than in the proposition 1.4.2, it is enough
to prove the proposition in the case where F'[5] is a maximal subfield of the
algebra A = Endp(V). So let [2(,n,r, 5] be a tame pure stratum such that
F[f] is a maximal subfield of A and ko(3,2A) = —r. Let v be in F[5] such that
[, n,r,~] is simple. The stratum [B,,r,r — 1,5 — 7] is pure in the algebra
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Endpg,)(V), because it is equivalent to a simple one by [13, 2.4.1]. Moreover
[B,,r,r— 1,5 —~] is tame pure so the proposition 1.4.3 shows that there
exists a simple stratum B, 7,7 — 1, o] equivalent to [B,,r,r—1, 3—7], such
that F[v][a] C F[v][8 —]. By proposition 1.4.2, [, n,r — 1,y + ] is simple
and F[y + o] is equal to the field F[y,a]. Set Q, = rad(®B,) = B, NP.
The equivalence [B.,r,r —1,a] ~ [B,,r,r— 1,5 — 7] shows that a = f — v
( mod Q;(T_l)). This implies v + o = 8 ( mod P~~1). We deduce
that [, n,7 — 1,7+ o] and [, n,r — 1, 5] are two simple strata equivalent.
Indeed, the first is simple by construction, and the second by hypothesis,
since ko(B,2) = —r. The definitions shows that F[y + o] C F[f], and 1.2.9
shows that [F[y + «] : F] = [F[B] : F]. Thus F[y+ o] = F[5]. The trivial
inclusions F[y + o] C F[y,a] C F[f] then shows that F[y + a] = F[y,a] =
F(g)

We have thus obtained that the three assertions hold.

- The stratum [B,,7,7 — 1, a] is a simple stratum in End g, (V).

- The field F'[y][a] is a maximal subfield of the F[y]-algebra Endpp, (V).

-8, r—1,a] ~ [By,r,r—1,8—1]

Consequently, by [13, 2.2.2|, [B,,r,r — 1,5 — ] is simple as required.

]

1.5 Minimal elements and standard representatives

Recall that we have fixed a non-archimedean local field F' and a uniformizer
mr of F. In this section we prove some properties relying minimal elements of
Bushnell-Kutzko and standard representative elements introduced by Howe
[25]. We recall that Howe’s construction of supercuspidal representations
should be considered as the common ancestor of [13] and [41] and Moy’s
presentation of Howe’s construction has been an hint in our work. The main
result of this section is the proposition 1.5.8.

The following describes the multiplicative group of a non archimedean
local field.

Proposition 1.5.1. /31, Chapter 2 Proposition 5.7/

Let K be a non archimedean local field and ¢ = p! the number of elements
in the residue field of K. Let pg,—1 denote the group of (¢ — 1)-th roots of
unity i K. Let mi be a uniformizer in K. Then the following hold.

(i) If K has characteristic 0, then one has the following isomorphisms of
topological groups

K>~ rloxoje ~mle x g1 x (14 pg) ~ Zx L/ (q—1)Zx L/ pLx L2

where a > 0 and d = [K : Q).

The first three groups are denoted multipticatively and the last one ad-
ditively.
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(ii) If K has characteristic p, then one has the following isomorphisms of
topological groups:

KX ~qfe xof e X gy X L4+ pg 2 Z X L)(q — 1)Z X Y.

The first three groups are denoted multipticatively and the last one ad-
ditively.

The previous proposition allows us to deduce the following corollary
which is a well-know result. Recall that we have a fixed uniformizer 7p.

Corollary 1.5.2. Let E denote a tamely ramified extension of F. There
exists a uniformizer mg of E and a root of unity z € E, of order prime to p,
such thal gz = mp.

Proof. Let m be a uniformizer of E. The proposition 1.5.1 shows that there
exist an isomorphism f : EX ~ 7% x p,1 x G’ where G' = 1+ pg is
a multiplicatively denoted group. Each element of G’ have an e-th root.
Indeed, the proposition 1.5.1 shows that 1+ pg is isomorphic to the additive
group Z/p*Z x Zg or to the additive group ZpN. The image of wp by f is
(e,2,g) where (e, 2,9) € T2 X p1g—1 x G, i.e 7p = 7°zg. Let 7 be in G’ such
that 7 = g. Then 77 is a uniformizer of E and 7p = (rm)°2. So 7 = rm
has the required property.

O

Definition 1.5.3. Let E/F and g as in the previous corollary, i.e such
that mp = w4z with z a root of unity of order prime to p. Let Cg be the
group generated by wg and the roots of unity of order prime to p in E*.

Proposition 1.5.4. The group Cg is independent of the choice of g used
i 1.5.8 to define it.

Proof. Let m; and me be two uniformizers of E and z1 , z2 be two roots of
unity of order prime to p such that 7°2; = 7p and w529 = mp. Let C! be
the group generated by m; and the root of unity of order prime to p. Let
C? be the group generated by 7 and the root of unity of order prime to p.
By symmetry, it is enough show that C' c C?. It is also enough to show
that m; € Cy. The equation n{z; = 7p implies that 7{ € Cs, thus there
exists a root of unity z of order prime to p such that n{ = w5z. We have
(mim51)¢ = 2. Let o, be the order of z, it is an integer prime to p. We
have (m17; 1) = 1. The integer eo, is prime to p, indeed e = e(E | F) is
prime to p since E/F is a tamely ramified extension and o, is prime to p.
Consequently mymy is a root of unity of order prime to p. This implies that
w1 € Cy as required.

O

37



We have fixed at the beginning of the text a uniformizer mr. So to each
tamely ramified extension E/F, the group Cg is well-defined and does not
depend on any choice.

Proposition 1.5.5. Let E/F be a tamely ramified extension. Let ¢ be an
element in E*. The following holds.

(i) There exists a unique element sr(c) € Cg, called the standard repre-
sentative of ¢ and a unique element x € 1+ pg such that ¢ = sr(c) x z.

(i) The element sr(c) is the unique element in Cg such that vg(sr(c)—c) >
ve(c)

Proof. (i) The proposition 1.5.1 shows that E* ~ Cg x (14 pg) and (7)
is a consequence.

(ii) The element sr(c) is the unique element in Cg such that ¢ = sr(c) x
(14 y) with y € pg. Thus sr(c) is the unique element in Cg such that
c—sr(c) € sr(c)pg. Thus (it) holds remarking that sr(c) and ¢ have
the same valuation.

0

Proposition 1.5.6. Let E'/E/F be a tower of finite tamely ramified exten-
stons. The following assertions hold.

(i) The group Cg is included in the group Cgr.

(ii) If E/F is a Galois extension, then Cg is stable under the Galois action
of Gal(E/F) on E. Moreover, if 01 and o2 are elements in Gal(E/F)
and s is an element in Cg such that o1(s) # oa(s), then

vp(o1(s) — oa2(s)) = ve(s) .

Proof. (i) Recall that the group Cg and Cpgr are independent of the choices
of uniformizers used to define them by 1.5.4. Let mg be a uniformizer of
and z a root of unity of order prime to p in E such that W%ElF)z = mp. Since

E'/E is tamely ramified, there exists a uniformizer 7z € E’ and a root of
e(E'|E)

unity w of order prime to p in E’ such that 7y, w = 7g. Elevating to
the power e(E | F) we have wg,E IEY(BIF) ye(EIF) = WE(ElF). We thus get

71.}%(IE|F)we(E\F) (E|F)

z = mp. The element w® z is a root of unity of order prime
to p. Consequently Cgr is the group generated by wg and the roots of unity
of order prime to p in E’. The equation W%,Elw)w = 7 shows that 7g is
inside C'gs. Trivially, the roots of unity of order prime to p in E are inside
the roots of unity of order prime to p in E’. Consequently CF is inside Cgy

as required.
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(i1) Let 0 € Gal(E/F), and let mg be an element such that 7%z = 7p
for z a root of unity in E of order prime to p. Let o, the order of z. It
is enough to show that z and mp are mapped in Cg by o. The equality
(0(2))?* =1 shows that o(z) is a root of unity of order prime to p and thus
inside Cg. The equality o(mg)0(z) = mp together with 1.5.4 show that we
can use o(mg) to define Cg, and thus o(ng) is inside Cg. This proves the
first part of the assertion.

The element o1(s) is in Cg so sr(o1(s)) = o1(s). Consequently

vp(oi(s) —  oa(s)) = vie(o1(s)), indeed assume
vp(o1(s) — o2(s)) # ve(oi(s)), then wvg(oi(s) — o2(s)) > o1(s), and
so o2(s) = sr(o1(s)) = oi1(s) by 1.5.5, this is a contradiction. This
completes the second part of the assertion and the proof of the proposition.

O

We need to remark an elementary lemma in order to prove the proposition
1.5.8 which is the main result of this section.

Lemma 1.5.7. Let E/F be a finite unramified extension. Let z € E be a
root of unity of order prime to p. Then z generates E/F if and only if z+pg
generates the residual field extension kg /kr.

Proof. 1f z generates E over F, then z generates og over op by [31, 7.12].
Thus z generates the residual field extension kg /kp. Let us check the reverse
implication. Assume z + pp generates kg/kp. The field extension E/F is
unramified, so [kg : kp| = [E : F]. Let P, € F[X] be the minimal polynomial
of z and d its degree, clearly P, is in op[X]. It is enough to show that
d=[E: F]. We have d < [E : F]. The reduction mod pg of P, is of degree
d and annihilates z + pg, a generator of kg/kp, and thus [kg : kr] < d. So
kg : kp)| <d < [E:F|. Sod=[E: FJ|, and this concludes the proof.

O

Proposition 1.5.8. Let E/F be a finite tamely ramified extension, let 5 be
an element in E such that E = F[B], the following assertions are equivalent.

(i) The element [ is minimal over F.

(ii) The standard representative element of B generates the field extension
E/F, i.e. Flsr(p)] = E.

Proof. Let us prove that (i) implies (i7). Assume § is minimal over F. Let
us remark that the definition of sr(3) implies trivially that F[sr(5)] C E.
Let E™ denote the maximal unramified extension contained in E. In order
to prove the opposite inclusion E C Flsr(f)], it is enough to show that
E™ C Flsr(8)] and E C E™[sr(B)]. Put v = vg(B), e = e(E | F). The val-
uation of w;" 3¢ is equal to 0, consequently by 1.5.5 we have vg(sr(m"3¢) —
7w B°) > 0, and so sr(n."B°) +pE =75 B° + pr. We have sr(n,”B°) =
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7 sr(B)¢, and this is a root of unity of order prime to p. The definition of
being minimal implies that w"sr(8)¢ + pg generates kg/kp. So w,"sr(B)°
generates E™ by 1.5.7. So E™ C F[sr(83)]. We have vg(B) = vg(sr(B)), so
ged(vg(sr(B)), e) = 1. Let a and b be integers such that avg(sr(8))+be = 1.
Thus vg(sr(B)*n%) = 1 and so E™[sr(8)%r%] = E since a finite totaly ram-
ified extension is generated by an arbitrary uniformizer. So E™[sr(8)] = E
and (i) hold. We have thus show that E™ C F[sr(f)] and E C E™[sr(8)]
and so (7) implies (i7).

Let us prove that (ii) implies (i). Assume F[sr(f8)] = E. We start
by showing that e is prime to v. The field E™ is generated over F' by
the roots of unity of order prime to p contained in E. Let d = ged(v,e)
and b = g. Let mg be a uniformizer in E such that 7%z = 7p with 2
a root of unity of order prime to p. The element sr(f) is in Cr and so
sr(B) = m%w with w a root of unity of order prime to p in E. The equalities
sr(B) = (w%)mwb = (sz_l)mwb shows that sr() is contained
in E™. By hypothesis, the element sr(3) generates E over F' and so generates
E over E™. Consequently the field E is generated by an element whose
b-th power is in E™. Consequently, the inequality [E : E™] < b holds.
The extension E™ is the maximal unramified extension contained in F, so
[E : E™] = e. Thus the inequality e < b < § holds. This implies d = 1 and
so v is prime to e. Let us prove that 7”3 4 pg generates the residue field
extension kg over kp. Since 7" +pp = n."sr(8)°+pE, it is equivalent to
show that = + pg generates kg over kp , where v = m;"sr(3)°. The element
sr() generates E over F' by hypothesis, i.e E = F[sr()]. So the inequality
[E : Flz]] < e holds, indeed F is generated over F'[x] by the element sr(f)
whose e-th power is in F[z]. Since z is a root of unity of order prime to p,
the field F[z] is include in E™, so [E : E™] < [E : F[z]]. Consequently,
the identity e = [E : E™] < [E : F[z]] < e holds. Since F[z] C E™, the
previous identity implies that F[z] = E™. Thus by 1.5.7 the element = + pg
generates kp over kp. So [ is minimal over F.

This finish the proof of the proposition 1.5.8.

O

Remark 1.5.9. The implication (ii) implies (i) is analogous to [39, page
11].

1.6 Twisted Levi sequences in GLy and generic el-
ements associated to minimal elements

In this section, we give an example of tamely ramified twisted Levi sequence

and an example of generic element. This generic element comes from a

minimal element relatively to a finite tamely ramified field extension. More
precisely, let E'/E/F be a tower of tamely ramified field extensions and let
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V be an E’'-vector space of dimension d. We are going to define and describe
explicitly the groups scheme H' = Resp//pAutp (V), H = Resg pAut (V)
and G = Autp(V). We will show that the sequence (H',H,G) forms a
tamely ramified twisted Levi sequence in G. The choice of an E’-maximal
decomposition D; V = (Vi ®...®&Vy), of V in 1-dimensional E’-vector spaces
gives birth to a maximal torus Tp of Auty, (V). By restriction of scalar, we
get a maximal torus T' = Resp//p(Tp) of H'. We are going to describe the
set over F of roots of H' and H with respect to 7. Moreover we will describe
the condition GE1 in this situation. Finally, given ¢ € E' minimal over E,
we will introduce an element X7\ € Lie*(Z(H')) and prove that it satisfies
GE1 and is H-generic.

1.6.1 The group schemes of automorphisms of a free A-module
of finite rank

Let A be a commutative ring and M be a free A-module of rank r. The
functor

{A — algebra} — Gp
B — AutB(M ®A B)

is representable by and affine A-scheme that we denote Aut,(M). This
scheme is isomorphic to the group scheme GLy over A, with N =r. Let D
be a decomposition M =M; @ ... & M, of M in submodule of rank 1. Let
us define a maximal split torus of Aut(M). The functor

{A — algebra} — Gp

B — {.13 S AutB(M XA B)

For all i € {1,...,7}, there exists \(x) € B*
such that z(v; ® 1) = N (x)(v; ® 1) for all v; € M;

is representable by and affine A-scheme that we denote Tp, this is a closed
affine subscheme of Aut,(M). The A-scheme Tp is canonicaly isomorphic

N

to H Auty (M;). Let us give an explicit expression of the set of roots
i=1

®(Auty (M), Tp) in this functorial point of view. The notation 0 < i #1i <r

means that 1 <i <r, 1 <4 <r and that i # ¢’. The set of root of Aut, (M)

relatively to Tp is the set

®(Auty (M), Tp) = {air |1 <i#i <r}
where a; is the morphism of algebraic group Tp — G, characterized

by the formula,
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for all A-algebras B, for all z € Tp(B) , ayir () = XNe(z)(\¥ (z)) L.

For each root a, let av : G,, — Tp be the coroot of a and let daV be
the derivative of a. Finally let H, be the element daV (1) € Lie(Tp)(A).
Let us make these objects explicit in our functorial point of view.
Let 1 <@ # ¢ < r, the coroot o, is the morphism of algebraic group
Gy — Tp characterized by the formula,
ali N (v @1)=ANvy; ®1) Yu; € M;
for all A-algebras B, forall A € B* , < o, (\)(vy @ 1) = A Yoy ® 1) Yoy € My
(N (0 ©1) = (0 © 1) Yoy, € My, k # 4,7

The derivative of o), is the differential morphism dev), : G, — Lie(Tp),
it is characterized by the formula (see [2, 3.9.4)),
dayy (h)(v; ®1) = h(v; ® 1) Yv; € M;
for all A-algebra B, forall h € B, < da (h)(vy @ 1) = —h(vy @ 1) Yoy € My
dal, (h)(ve ®1) =0 Yo € My Yk # 14,4,

Consequently  the element H, , which is by definition
da,(1) € Lie(Tp)(A) = Ends(M) is the element sending each element
v; € M; to v;, each element vy € M; to —vy and, for all k different of 4,4/,
each element v, € M}, to 0.

1.6.2 Trace of endomorphisms and base change

In this paragraph we give the intrinsic definition of the trace and give a
formula.
Let A be a commutative ring and let M be a free A-module of rank N.
As usual let Enda (M) be the A-algebra of A-linear maps Homp (M, M).
The A-linear map

M ®a Hompa (M, A) Endj (M)
me fr———(m' — f(m').m)
is a canonical isomorphism.
The A-linear map

~

M @4 Hompa (M, A) A

m® fr——=f(m)

induces a A-linear map Enda (M) — A, this map is called the trace map
and is usually denoted Tr or Try or Trgpq, () O Trend, (v)/A-
Let B be a commutative A-algebra. The B-linear map

G: Enda (M) ® B Endg(M ®4 B)
FRb—— ((m®c)— F(m) ® be)
is a canonical isomorphism.

The following is a lemma which give a compatibility of Tr under base
change.

~
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Lemma 1.6.1. The following triangle of B-linear maps is commutative.

EndA ®AB
WB
/B

Endp(M ®a B)

Proof. Tt is equivalent to prove that the following triangle of B-linear map
is commutative.

(M®A HomA M, A ®a B

Tra®ldp

(M ®4 B) ®p Homp( M@AB B)
It is enough to compute the image of (m® f)®b € (M®aHoma (M, A))®a
B by the map Tra ® Idg and by TrgoG and to show that they are equal. By
definition of Tra, Tra ® Idg((m® f)®b) = f(m)b. The map G is explicitely
given by (m ® f) ®b) —» (m®b) ® (m ® ¢ — f(m')c). Consequently
Trgo G(m® f) ®@b) = Trg((m @ b) @ (M’ @ ¢ — f(m')e) = f(m)b. This
concludes the proof of lemma 1.6.1. O

1.6.3 Abstract twisted Levi sequences

In this subsection, we prove algebraic facts that will be applied to the follow-
ing subsections. We start with a very easy and well-known lemma. Let f be
commutative ring and B be a commutative f-algebra, C' be an B-algebra.
Let A be an f-algebra. In this situation A ®; B is an B-algebra and C' is
naturally an f-algebra.

Lemma 1.6.2. With the previous notations, the C-algebra (A®; B) ®p C
is canonically isomorphic to ARy C. Ezplicitly, the isomorphism is given by

(AfB)®pC — A®sC
(a®b)®cr a® be.

The inverse is explicitly given by

A;C = (A®fB)®pC
a®@cr (a®1)®@ec.
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Proof. The two maps are morphisms of C-algebras and one composed with
the other is equal to the identity map. O

We now fix in the rest of this subsection a tower of finite separable
extensions of fields I'/l/f. In the next subsection, we will apply this to
I! = FE'l = E and f = F, where E'/E/F is a tower of finite tamely
ramified extensions. Let V be an [’-vector space of dimension d. Let
DV =D ®...® Dd)), be an I’-decomposition of V in subspaces of di-
mension 1.

In a previous subsection we have introduced an I’-group scheme Aut; (V),
and a maximal split torus T of Auty (V). Let H' be the restriction of scalar
from 1" to f of Aut;, (V). Also, let T' be Res;,¢(Tp).

Thus H' represents the functor

{f —algebra} - Gp

For each f-algebra A the group H'(A) is thus equal to the group
AutA@fl/ (V Ry (A f l/))

Since | C I, V is an l—space and, we have a group Aut;(V) and its
restriction of scalar H. So that for each f-algebra A the group H(A) is
equal to the group Autag,i (V @ (A®;y1)). Let also G be Aut (V).

For each f-algebra A, the canonical morphism A ®fl — A®y I’ induces
a canonical morphism of groups

Autag v (Ver(Aoel)) — Autag, (V@ (A®y 1))

, which is functorial in A. We thus get a canonical morphism of f-group
scheme H' — H. This morphism is a closed immersion. We also have a
canonical morphism of F-group schemes H — G.

We are interested in Condition GEL, it is related to the extension of
scalar from f to f, the algebraic closure of f. So let us compute

T ><spec(f) spec(f), H' ><spec(f) spec(f) and H ><spec(f) spec(f).

Let A be an f-algebra, by definition H X spec(f) spec(f)(A) = H(A). We
have seen that it is equal to Autag, (V ®; (A ®y1)). We need to study the
algebra A®y [.

We know that there exists o1,...,0,..., 0.y, distincts morphisms of f-
algebra from [ to the Galois closure of [. We also know that for 0 <4 < [l : f],
there exists [I’ : I] morphisms of f-algebra from !’ to the Galois closure of I’

extending o;, we denote them o1, ..., 045, ..., 0. We write H instead
i
[:£] [:£] [1:0)
of H and @ @ instead of @ EB, we use others "abuses of notation" of
i=1 i i=1 j=1

this nature.
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Proposition 1.6.3. Let f be a field, let I'/1/f be a tower of finite separable
extensions. Let K' be the Galois closure of I and let K be the Galois closure
ofl. Leto1,...,0i,...,0. be the distinct morphisms of f-algebra from [ to
K. For1<i<[l:f],letoiu,...,00,...,0y be the distinct morphisms of
f-algebra from I’ to K' which extend o;. Let A be a K'-algebra. Let A — B
be a morphism of K'-algebra. The following assertions holds.

(i) The A-algebra A®yl is canonicaly isomorphic to HA“ where A; = A

i
for each i. Moreover this isomorphism is explicitely given as follow.

e |

a®e|—>Haai(e)

)

(ii) The A-algebra A ®¢ 1 is canonicaly isomorphic to HHAU’ where

i
A;;j = A for each i,j. Moreover this isomorphism is explicitely given

as follow.
A@pll —= H H Ayj
(]

a®e|—>HHanj(e)

(iii) The A-algebra A® ¢l is canonicaly an A®fl-algebra. The ring H H Ajj
v g
s canonicaly an HAi—algebm and the structure is given by

(2

(H Az‘)-(l_[l_‘[aij) = HH Aitij -

% %

(iv) There is a canonical commutative diagram of A-algebras
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A@fl/ B®fl,

Proof. (i) The field [ is a finite separable extension of f and thus there
exists an element o € [ such that [ = fla]. Thus [ is isomorphic to
the quotient ring f[X]/(P) where P is the minimal polynomial of «.
Since K is the Galois closure of I, the polynomial P(X) split over [
and the formula P = H(X — oi(@)) holds. We have some elementary

i
isomorphisms f1, fo, f3, f4, f5 of A-algebras.

A®pl—r— Ay f[X]/(P) P A[X]/(P)

f3
[1 A< TTAXI/X — oifo)) <5 ALX]/ TLX ~ oi(o).

The map f; is the isomorphism associating a ® e to a ® e(X) where
e(X) is a polynomial such that e(a)) = e. The map f is the one which
associate to a ® @ the polynomial a@). The map f3 is obvious. The
map fy is the product of projection maps and is an isomorphism by
the chinese remainder theorem. The map f5 is the product of the map
sending X to o;(«). The required map is the map fso fyo fyo fao fi.
This map does not depend on the choice of «, and so it is canonical.

(ii) This is a direct consequence of (7).

(iii) Since '/l is an extension of field, I’ is canonically an [-algebra and thus
there is a canonical morphism of rings ¢ from A®s 1 to A®s 1. So
A ®y 1 is canonically an A ®; l-algebra.
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It is enough to show that the square 4 @l N HHAij is com-

i

g hT
Aopl— =TT 4

mutative, where g is the canonical map introduced above, S and S’ are

the maps introduced in (i) and (i7), and h is the map sending (H Ai)
i

to (HH)\U), where Aj; = A; for all i, j. Let a®@ e € A®y 1. We have

i

Soglawe)=Sawe) =]][]oile)a
L]

We have

)

hoS(a®e) = h(H gi(e)a) = H Hai(e)a.

We have o;;(e) = o;(e), since by definition the restriction to [ of oy; is
equal to ;. This concludes the proof of (ii).

(iv) The square relative to A on the left is introduced in the proof of (i),
the square relative to B on the right is the analogue for B, the hor-
izontal arrow are canonicaly induced by the morphism A — B. It is
easy to prove that this is commutative.

O

Let A be a commutative ring, let A; and As be two commutative A-
algebras. Let By be an Aj-algebra and let Bs be an As-algebra. Let M be a
free A-module of rank r.

The canonical projections and injections

By x By — By
By x By — B
By — By X Bg
By — By X Bg
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induce canonical maps

p1:M®a (B % By) = M ®y By
p2: M ®a (B % By) = M ®a B
i1: M ®s By — M®u (B; X Bs)
i9: M ®4 By — M ®4 (By x Bs).

Theses maps satisfy various relations, for example, we have

proip =1d
pg oio = 1d
p2oip =0
proiz =0

We have canonical and well-defined maps

F: EndAle2<M XA (Bl X BQ)) — EndAl(M XA Bl) X EndA2(M XA BQ)
L+~ (p1oLoiy),(paoLoig)

and

G EndAl(M XA Bl) X EndAz(M XA BQ) — EndAleg(M XA (Bl X Bz))
Ly, Ly — (i1 0 Ly opy + i3 0 Ly 0 pa),

the previously mentioned relations shows that F' and G are groups homo-

morphisms. It is easy to show that F oG = 1d and Go F' = Id by direct com-

putations. Moreover F' and G induce by restriction a canonical isomorphism

between AutA1 xAg (M®A (Bl X Bg)) and AutA1 (M@A Bl) X AutA2 (M@A Bz).
We thus get an explicit and canonical isomorphism of groups

AutAlez(M XA (Bl X BQ)) ~ AUJJA1 (M XA Bl) X AutA2(M XA Bg) (115)
The isomorphism (1.15) induces the following lemma.

Lemma 1.6.4. Let A be a commutative ring, let A; , 0 < i < d, be some
commutative A-algebras. For 0 < i < d, let B; be an A;-algebra. Let M
be a free A-module of finite rank. Then we have a canonical and explicit
isomorphism of groups

d
Autppe (M @4 [, Bi) = [ Auta,(M @4 By).
1=1
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Let us use the notation of proposition 1.6.3. Let ¢, 5, k be integers as
above and let C'//K’ be a field extension (K’ is the Galois closure of I'). We
put Vi; = V ®p Cy; (Ci; = C is introduced in proposition 1.6.3). We put
also Dijk = Di Qp ng

Proposition 1.6.5. With the previously introduced notations, the following
assertions hold.

(i) There is a canonical commutative diagram of f-schemes

Tx;C I H x;C h hs
f ><f %HXJCC%GXJCC

v1 l"@ v3 lvél

TTTITI Aute (Di) —2 [T T Aute (Vi) —2> [T Auto (@D Vis) —2> Aute (D €D Vis).

(1) There is a canonical commutative diagram of k-spaces

Lie(T) ——— = Lie(H’) Lie(H) Lie(G)

| | | |

Lie(T x § C) ———— Lie(H' xy C) ———— Lie(H Xy C) ———— > Lie(G x5 C)

| | | |

[TIITTEndc(Dijn) — [T Ende(Vij) —— [[Endc (D Vij) —— Endc (P D Vi)
i j k i g i J i J

(i1i) Let s be an element in l'. Let mg be the element of Lie(T) which send
an element h to sh. Let mgc be the element in Endc(@®%j)

i
characterized by the formula,

for all i, j, for all vij € Vij, msc(vij) = 045(5)vij.

Then the image of mg in Endc(@ @ Vij) through the diagram intro-

i
duced in (i) is mg C.

Remark 1.6.6. In the next sections we will apply this proposition with C =
F or C a finite extension of K'.

Proof. (i) The upper horizontal line is induced by the previously intro-
duced morphisms T'— H' — H — G. We thus get some maps hy, ho
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and h3. Let A be a C-algebra. In the rest of this proof, we still denote
hi(A) by hi, we do the same for hy and hg. We have

(T Xspec(f) spec(C)) (A) = <Resl’/f HMZ/(Dk>> (A>
k

By properties of Res ~ (H Resl//fAutl/(Dk)> (A)
k
~ ][ (Resy, sAut, (Dy)(A))
k
. /
By definition of Res ~ HMI’(DIC)(A f l )
k
By definition of Aut =~ H Autag v (D @y (A@y 1))
k
By proposition 1.6.3 ~ H AUtHi I1, Aij (Dy, @y (H H Aij))
By proposition 1.6.4 ~ H H H AUtAij (Dy, ®yp Aij)
k ¢
~ H H H AH’CAZ-J- (Dk R Aij)
ik
~ H H H AUtAij (D”k)
ik

We thus get an isomorphism

(T X spec(f) spec(C)) (A) — HH HAU'CAU (Dijk),
ik

let us denote it v1. We have

(H/ ><spec(f) SpeC(C)) (A) = (Resl’/fMl’(V)) (A)
~Auty (V)(A @ 1)
:AutA@)fl/(V R (A ®f l/))

~Autyy, 11, Ay (V@ (H H Aij))
]
~ H H AutAij (V & AU)
v g
~ H H AUtAij (V;J)
v g
We thus get an isomorphism
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(H/ Xspec(F) spec(C)) (A) - H HAutAij (V;j)7

let us denote it vo. We have

(H Xspec(f) spec(C)) (A) = (Resl/fﬂl(v)) (A)
e Auty (V)(A 51
2AutA®fl(V &y (A Qf l))

As an A®yl-module, V ®; (A®¢1) is isomorphic to V @y (A®1"). So

(H Xgpec(s) spec(C)) (A) ~Aut g (V @r (A®yl'))
~Autry 4,(V ®p (H H Aij))

i
By proposition 1.6.4 ~ H AutAi(V Ry (H Az'j)
( J
o~ H AutAi(@ V @y Aij)
( J
~ [ [ Auta, (EP Vi)
{ J

We thus get an isomorphism

(H ><spec(f) spec(C)) (A) - Hz AutAi (@] ‘/ij)a
let us denote it v3. We have

(G Xspec(p) spec(C)) (A) ~=(Aut (V))(4)
zAutA(V Qf A)
~AutAo(V ®p (l/ Ry A))

~Auta(V @y (JTT]4)
g
EAutA(@ @ |4 ®[/ AZ])
(2
SN
v g
We thus get an isomorphism
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(G Xspec(y) sPEC(C)) (A) 2= (Aut,(V))(A) — AutA(EB Vig),

let us denote it v4.

Let us recall that for all 7,j, V;; = @Dijk. In the following wv;j;i
k

denotes an arbitrary vector in Dj;jx, and v;; denote an arbitrary vector

in ‘/;]

Let f1 be the canonical morphism
[TIIITAuta, (D) = TTT] Auta, (€D Disr)
17k i g k

sending [, IT; ITe(Lije) to IT; IT; g vijk = 225 Lijr(vige))- 1t is a
formal computation to verify that the morphism vs o hy is equal to
fiowvi. Let fy be the canonical morphism

TTTT Auta, (Vi) = [ ] Auta, (P Viy)
i g i J

sending [[; []; Lij to []; (E] vij = 122, Lij(vij)) It is a formal
computation to verify that the morphism v3 o ho is equal to fs o vs.

Let f3 be the canonical morphism

[T Auta, (P Vij) — Auta(@ P vij)

7

sending [, L; to (Zl 220 = 2 LY vij)>. It is a formal compu-
tation to verify that vy o hg is equal to f3 o vs.

The previous isomorphisms are functorial in A and form a canonical
diagram, thus induce the required diagram at the level of C-algebraic
groups. This concludes the proof of (7)

This is a consequence of (i), taking the Lie algebra of all objects.

The image of m, in Lie(G) = End¢(V') is the map sending v to sv. The
map Lie(G) — Lie(G Xgpee(r) spec(C)) is the map

End;(V) — Endc(V @ C)

sending a f-linear map L to the C-linear map (v® A +— L(v) ® \)

so the image of ms in Lie(G Xgpee(r) spec(F) is the map (v @ A
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sv ® A), let still denote it mg. Consider the diagram of C-linear maps
VerlC T Verl

Ver (o C) Ver ('@ Cij)
V®HHCij V®HHCij
] A
QDY DO

7 J ? J

where c¢ is the canonical map, ¢ is the map induced by the map in-
troduced in proposition 1.6.3, and b is the canonical map induced by

the definition of V;;. The image of my in End# @ @ Vij | is the
(2]

composition boiocomgoc toi tob L.

Let us show that it is equal to mgc. The equality
boiocomgoc toilob !l = ms,c is equivalent to the equal-
ity boiocoms =mgcoboioc. Let us prove this last equality by
calculation. Let v ®@ A € V ®p C, we have

boiocoms(v®@A) =boioc(sv®A)
=boi(sv®(1®N))
=boi(v®(s®N))

=b(v ® H H ij(s)\)
= Z qu ® oi(s)A
(2]
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and

mgcoboioc(v®A) =mgcoboi(v® (1®AN))

=Ms,C © b(v & H H )\)
:ms’c(z Z VR A)
= Z Zv ® oij(s)A.

This concludes the proof of (ii7).
O

So, the torus T Xgpee(p) spec(C) is a maximal split torus of
H' Xgpec(f) sPeC(C), H Xgpee(s) spec(C) and G Xgpee(s) spec(C).  More-
over, H' Xgec(p)spec(C) is a Levi subgroup of H Xgpeo(r) spec(C), and
H Xgpee() sPec(C) is a Levi subgroup of G Xgpec(s) spec(C). We thus have
inclusion of the corresponding set of roots.

(H',T,C) C ®(H,T,C) C ®(G,T,C)

Let us identify, using 1.6.5,

T Xspec(f) sPEC(C) with HHH@C(DU%),
ik
H' Xgpee(f) speC(C) with HﬁAutC(Vij),
H Xgpee(f) spec(C) with HAjutc(@ Vij), and
i J
G Xgpec(f) SPEC(C) with MC(@ @ Vij)-
L]

Since @ @ Vij is equal to @ @ @ D; i, we can apply 1.6.1 to describe
i i§ ok

the set of roots ®(G,T,C). Putting

I={1,...00,...,[l: f]}
J={1,....5,...,[": 1]}
K={1,... k...d,

we obtain the following equality.
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(G, T,C) =A{aijrijn | (6,5:k), (', 5, ) € (I x J x K), (i, 5, k) # (', ', ')}
The set of roots ®(H, T, C) is the following subset of ®(G, T, C)
O(H,T,C) = {aijesjw € ®G,T,F) |i=i}
The set of roots ®(H', T, C) is the following subset of ®(G, T, C)
O(H',T,C) = {asjpiymw € (G, T,C) |i=4 and j = j'}.

The condition GE1 is relative to the set ®(H,T,C)\ ®(H',T,C). The
following is a description of this set:

(I)(H, T, C) \ @(H/,T, C) = {Oéijk,i/j’k’ S CI)(G,T, O) | 1 =1 and ] 7& Jl}

The condition GE1 involves the element H, for « in
O(H, T,C)\ ®(H',T,C). Let us recall the description given in 1.6.1. Let
kit € (G, T,C), the element H, which is by defintion dalvjkvi,j,k/(l) is
the element sending each element v € D;j;; to v, and sending each element
v € Dyjuy to —v and, for all ¢"j”k"” different of ijk,4'j'k’, sending each
element v € Dy jmpr to 0.

1.6.4 Tame twisted Levi sequences

Let E'/E/F be a tower of finite tamely ramified extensions. Let
V be an E’-vector space of dimension d and D be a decomposition
V=D1®...8D,®...® Dy) of V in one dimensional E’-vector spaces.

In the previous subsection, we have introduced H' = Resp//pAutp (V),
H = Resg/pAutp(V), and G = Autp(V). We have also associated a torus
T = Resgr/p(Tp) to the decomposition D.

In proposition 1.6.5, we have computed the extension of scalar of these
F-groups scheme to an extension containing the Galois closure of E'. We
deduce the following corollary.

Corollary 1.6.7. The sequence H C H C G is a tamely ramified twisted
Levi sequence in G, moreover Z(H')/Z(G) 1is anisotropic.

Proof. We have to verify that the definition given in the beginning of section
1.3 is satisfied. Firstly, we need to show that there exists a finite tamely
ramified Galois extension L of F such that H'Xgpec(myspec(L) and H' Xgpeq(r)
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spec(L) are Levi subgroups of G X g,ec(ryspec(L). This is a direct consequence
of 1.6.5.

Secondly, the isomorphism of topological groups (Z(H')/Z(QG)) (F) =~
E’™™/F* holds. The explicit description of the topological multiplicative
group of a non archimedean local field given in proposition 1.5.1 implies
that E/* /F* is compact. This implies that Z(H')/Z(G) is anisotropic. This
concludes the proof of the corollary.

O

1.6.5 Generic elements associated to minimal elements

We use in this subsection the notations of the previous subsection. The
center Z' of H' is isomorphic to Resgr/p(Gyn). Thus it is connected, i.e.
z° =2

The inclusions Z’ —+ H' — H — G induces a canonical diagram

Lie(Z") Lie(G)
Il Il

Lie(Z" X gpeo(r) sPeC(F)) — Lie(G Xgpec(r) sPec(F)

As explained after Definition 1.3.5, we have canonical inclusions

Lie*(Z') — Lie*(H') — Lie*(H) — Lie*(G),

inducing a canonical inclusion Lie*(Z’) — Lie*(G) and a canonical com-
mutative diagram

Lie*(Z') Lie*(G)
Lie*(Z") @ F Lie*(G) @p F
Il Il

Lie*(Z" Xgpec(F) SPeC(F)) —Lie* (G Xgpec(r) sPec(F).

Recall that an element X* € Lie*(Z’) is H-generic of depth r if and only
if X* € Lie*(Z’)_, and if Conditions GE1 and GE2 hold. Since H' and
H are of type A, Condition GE1 implies Condition GE2 by 1.3.8. Given
X* € Lie*(Z’) we denote by X7 the image of X* in Lie™(Z" X spec(r) spec(F))
via the previous commutative diagram. Let recall that Condition GE1 holds
for X* if X2.(Ha) = —r for all root oo € ®(H, T,F)\ ®H' T,F).
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Definition 1.6.8. Let s € E'. Let X} be the element in Lie*(Z') send-
ing an element h € Lie(Z") to Trgna, vy p(ms o i(h)) where i is the map
Lie(Z') — Lie(G), and ms € Endp(V) is the map sending v € V to sv, i.e
ms 18 the multiplication by s.

Proposition 1.6.9. Let s € E'. Let X} € Lie*(Z') be the element in-
troduced in definition 1.6.8. Let X:f be the corresponding element in

Lie*(Z" Xspec(r) sSPEC(F)). Then

(i) X:T(H%nkl,igjgkg) = T (8) — Oigja(s)  for all  roots
iy j1ky injaks € @(G,T, F)

(i1) The element X} is in Lie*(Z")_, where r = —ord(s).

Proof. (i) Consider the diagram

Lie(Z') i Endp(V) s

mso

F

Endp(V)F

Id®1 i[d@l l[d@l Id®1

Endp(V) ©p F2Endp (V) 0p F F2LF

S N N

Lie(Z" Xspecr) spec(F) — Endg(V ®@p F) = End#(V ®p F) _ETF

where ¢ is the canonical inclusion, mgso is the composition by mg, and
m, 7o is the composition by the image m_ + of m, in Endi(V ®@F F).

Let us prove that it is commutative. The left part of the diagram was
introduced before and is the canonical diagram induced by 7' — G.
The upper middle and right square are trivialy commutative. The right
lower square is commutative by Lemma 1.6.1. Let us prove that the
middle lower square is commutative. Let L& A € Endp(V) ®p F, then

(7000 1)) (L®X) =(m, 7) (18 X > L(v) ® M)
=(v®@ N sL(v) ® AX)

and

(fo(ms @I LR =msoL® A
=X = cL(v) @A\,

This concludes the proof of the commutativity of the diagram. By
definition, we have
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X} =Trpo(mso)oi
and

X! 5= ((Trp o (myo) 0i) © Id) 0 g 7"

We thus get

X:F = (Trp ® Id) o ((mso) @ Id) o (i ® Id) o g~ 1.

)

The commutativity of the previous diagram implies thus

X:,F = ’I‘I‘F 9] (mSFO) o Zf

Consequently for all roots a € (G, T, F), we have
X:F(Ha) = Trz(my 7 o Ha) (1.16)

We have already computed m,+ and H, in terms of the decomposition

VerpF = @Dijk. Let us recall this. By proposition 1.6.5, m F is
i7j7k
the map

m&f : @ Dijk — @Dijk

i7j7k“ i7j7k“
> vigk = Y i ()vigi
i7j7k“ i7j7k

Let iy jikisjake € ®(G, T, F). By the calculation done in the end of
the subsection 1.6.3, H, is the map

i171k1,9272k2

Ho‘hhszjzkz : @Dijk - @Dzjk

3.5,k i,j.k
E :Uz‘jk = Vigjikr — Yiggioka-
i,j.k

Consequently the maps m o H, is the map

iy g1k igioks

msF© Hai1j1k1vi2j2k2 : @ Dijk - @ Dijk

i7j7k i?j?k
) ik > Gigy (8)Visjaky — Tings (5)Vijoky-
i7j7k
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This implies that
Trf(msf o Ha’iljlklvi2j2k2) = 04,5, (8) — Tinjn(5). (1.17)

The proposition is now a consequence of the equations (1.16) and (1.17).

(ii) Recall that we put r = —ord(s). By definition (see the notation at the
beginning of the document)

Lie*(Z')_, = {X € Lie*(2') | X (Lie((Z)y4) C pp}.

We have sLie(Z'),4 = Lie(Z")o4 and thus Trppq,.(v)/r(sLie(Z')) C pr.
So X} € Lie*(Z')_,.
O

Proposition 1.6.10. Let s € Cpr such that E[s| = E'.
Then the element X;‘F satisfies Condition GE1, more precisely, for all

roots « € ®(H, T, F)\ ®(H',T, F), we have
ord(X? (Ha)) = ord(s).

Proof. Let Qiyjiky injoks € ®(H, T, F)\ ®(H',T, F), by 1.6.9,
X:,F(Haﬁhkbizjzkz) = Oi1g (8) — Oiyjo (3)

We have i; = iy and j; # j2 (see subsection 1.6.3). Consequently oy, ;,
and 0;,j, are two distinct morphisms of F-algebras from E’ to the Galois
closure K’ of E' whose restrictions to F are equal. Since s generates E’ over
E, 0., (s) is not equal to 04,4, (s). Let 73,5, and 74,5, be two morphisms of F-
algebras from K’ to K’ extending o;,j, and 0y,j,, then 7, () # 7iyj, (s) and
thus v (7iyj, (8) = Tigja (8)) = vier(s) by 1.5.6. Soi)rd(ailjl (s) — Tiago (s)) =
ord(s). Consequently for all roots o € ®(H,T,F)\ ®(H',T, F), we have
ord(X:F) = ord(s), as required.

O

Corollary 1.6.11. Let ¢ € E' be minimal relatively to the extension E'/E
(see 1.2.4, in particular E|c] = E'). Let r be —ord(c). Let sr(c) be the stan-
dard representative of c. Then, the element X;‘T(C) is an element of Lie*(Z')_,
and is H-generic of depth r

Proof. Since ord(c) = ord(sr(c)), the proposition 1.6.9 (ii) implies that the
element X7 ) is in Lie*(Z')_,. By 1.5.8 the element sr(c) € Cps generates
E'/E, thus by 1.6.10 the element X € Lie*(Z') satisfies GE1 with depth
—ord(sr(c)). As explained before, Condition GE2 is also satisfied. So X
is H-generic of depth r, since ord(c) = ord(sr(c)). O
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1.7 Factorization of tame simple characters

Let [2(,n,r, 8] be a tame simple stratum. In this section, we choose and

fix a defining sequence {[2,n,7;, 3], 0 < i < s} and a simple character
S

0 € C(2A,0,08) , we show that 6 = HGi where 6° satisfies some conditions.
i=0
We then introduce two cases depending on the condition that 5; € F or

Bs & F.

1.7.1 Abstract factorizations of tame simple characters

Fix a tame simple stratum [, n,r, 5] in the algebra A = Endp (V). Propo-
sitions 1.4.3 and 1.4.4 allow us to choose a defining sequence {[,n,r;, Bil,
0 <i < s} (see corollary 1.2.11) such that, putting By, := AN Endpg, (V)
and rg = 0, By = B the following holds.

(Vll) F[ﬁerl] g F[ﬁl] for 0 < 7 <s-— 1

(vi") The stratum [Bg,, ,, 711,741 — 1, 8 — Biy1] is simple in the algebra
Endps,,, (V) for 0 <i < s — 1.

We fix such a defining sequence in the rest of this section 1.7, this includes
the following subsection 1.7.2.

The elements f; , 0 < ¢ < s are all included in F[3]. Put E; := F[3;] for
0<?<s.

Let us define elements ¢; , 0 < i < s, thanks to the following formulas.

‘Cizﬁi_,ﬁi—&-l ifOSiSS—l

o cs = f3s

The following proposition is the factorisation of tame simple characters
as anounced before.

Theorem 1.7.1. Let 6 € C(A,m,[) be a simple character. There exists
smooth characters ¢, ..., ¢s of E, ..., EJ such that

0= He
=0

where 0°,0 < i < s, is the character defined by the following conditions.

(i) 0" |[m+1(gq)np, = ¢i o detp,,

(ii) 6 | mit1(g 0= Ye; where m; = max{[_l%(ci)],m}.

Proof. Let us prove the proposition by induction. Suppose first that s =0
i.e that 3 is minimal over F. Put ° = 6. Then the condition (i) is trivially
satisfied thanks to the definition of simple character in the minimal case
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(see |13, 3.2.1] or 1.2.16 ). The integer s is equal to 0, thus 8 = [y =
co- S0 —Vy(e,) = —va(B) = n. By the definition of simple characters in

the minimal case, the restriction ’HWH(ﬁ,m)mU[%]“(QL) is equal to 1. So

it is enough to verify that H™1(8,2) N UEHL(A) = H™HL(B,2A) where

m{, = max{[2],m} which is a consequence of the definition of H™"(3,2).

Suppose now that s > 0. Let us remark that —ko(5,2d) = —vg(co), indeed

the stratum [Bg,, —ko(5,2A), —ko(B8,A) — 1,80 — Bi1] is simple. Thus the

definition of simple characters implies that € |gmo+1(5,0)= 0'th¢, where 0’ €

C(2A,mg, $1). Thanks to the induction hypothesis there exists characters
S

é1,...¢sof B, ..., EX such that 0’ = H 0" where the 6" are the characters
i=1
defined by the following conditions.
(i) 0" |Hmo+1(5,m)mBﬁi: ¢; o dety, |Hm/+1(57m)035i

(ii") 0" | mi+1 (g 2)= Yo

(
Identity (4i’) is a consequence of the induction hypothesis (i7) and the
fact that max([— VQ‘(CZ |,mp) = max([— ”Qé(cl)},[_”%(co)],m) = m;, because
—va(co) < _VQl(Cz)

For 1 < i < s, the character 0" is defined on H™0+1(3,92) and we can
extend 0" to H™"(3,2) thanks to the character ¢; as follows. The group
H™TY(B,20) is equal to U™ (B g, ) H™T1(B,2), we extend 6’ to a function
¢ of H™1(B,21) by puting 0°(z) = ¢; o det g, (x) for x € U™ (Bg,). The
function 6° is a character. The character §° satisfies the required conditions
(i) and (7i) by construction.

S

Finaly, put 6° = 6 x [ J(6")~". The restriction 6° to H™*1(3,2) N By,
i=1

is equal to the product of the restriction of 6§ to H™V1(3,2) N Bg, by the
restriction of 9;1 for 1 < ¢ < s. Let us show that each factor factors
through detBﬂO. By definition of a simple character, this is the case for
0°. Let 1 < i < s, because of H™T(3,2) N Bg, C H™T(B,2) N Bg,, the
restriction of 6" to H™1(3,2) N Bg, is equal to ¢; o detpy, |gm+1(8.20nB,, -
However, a basic fact of algebraic number theory shows that det B, | Bp, =
detBﬁ0 oNg,/g;, whereNg, /g, is the norm map. Thus each factor factors
through detB Consequently there exists a smooth character ¢g of E
such that the condltlon (1) is satisfied. Let us prove that (i7) holds.
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6° | mo1 ()= (9 lmoi gy < [J(0)7 ’Hmoﬂ(ﬁ,m))

= (9 | Frmot1(5.21) ><(9/)_1>
= (1hey x 0" x (6)71)

This completes the proof of the theorem, indeed we have found the re-
quired characters ¢; , 0 < ¢ < s such that Conditions (7) and (i) are satisfied.
O

1.7.2 Explicit factorizations of tame simple characters

In order to associate to each Bushnell-Kutzko datum a generic Yu datum, we
need to introduce two cases. The two cases are denoted like this: (Case A)
or (Case B). In the rest of this paper we write (Case A) at the begining of
a paragraph or in a sentence to signify that we work under the (Case A) hy-
pothesis. We will introduce particular notations in the (Case A). The same
holds for (Case B). The (Case A) is by definition when the last element [
of the fixed choosen defining sequence is inside the field F, i.e §; € F'. The
(Case B) is the other case, i.e when 35 & F.

Explicit factorizations of tame simple characters in (Case A)

Recall that in this case S5 € F. In this case we put d = s. Let us give
an explicit description of the group H'(3,2) in this case. This explicit
description is written in a convenient manner in order to compare with Yu'’s
construction.

Proposition 1.7.2. (Case A) The group H'(53,2) is equal to the following
group

—va(ei—1)

—vy(c —vg(es—1)
U (B UL I (B,) . U0 )L O ()
(1.18)

Proof. Recall that 8 = fy. By [13, 3.1.14,3.1.15]|, it is enough to show that

_VQ[(CO)H_I _
H(B,A) =Bg, + Q5 * +...4+Q, 7 . (1.19)
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Let us prove (1 19) by induction on s. If s = 0, by definition,
H(B,A) = By, + qs 21t1. The element S is in F, thus Bg, = A. Con-
sequently $(8,) = Bg,. If s>0, by induction hypothesis we have

_V‘Zl(cl)]+1
9(81,2%) = By, + 0, 9}

By definition $(3,2) = By, + H(F1,A) NPl Let us remark
that since the stratum [Bg,, —ko(B0, ), —ko(Bo, ) + 1, Bo — B1] is simple by
the condition (vi’), the equality vs, (8o — B1) = ko(Bo, ) holds. We have

v, (Bo — B1) = va(Bo — B1) = vau(co). So ko(Bo,2A) = vau(co). Consequently

vy ( Cs 1)]+1

0(50 )]Jrl

—vy((cq)
H(B,2A) = By, + H(1,A) NPz
vy Co>]+1 [~ vy (cs— 1)] 1

—%ﬁo +Qﬁl +Qﬁé 2 9

as required. O

We now reformulate Theorem 1.7.1 in (Case A) for simple characters in
C(2,0, ). This will be useful in order to associate generic characters in this
case.

Corollary 1.7.3. (Case A) Let 6 € C(2,0, B) let o, P1, ..., s be the char-

acters introduced in theorem 1.7.1, then 6 = HQ’ where 0' is the character
i=0
defined as follows.
If0 < i < s—1, the character 0; is defined by the following two conditions.

(i) o' | —vy(co) —v(ci—1) = ¢;odetp,
UL (B UL 2 I ()0l () &
(”) 9 ’ "Ql (i) —va(cs—1) = /l/]Ci .
]+1(%5i+1)"'U[f]+1(§BBS)

Ifi=s, 0 is defined by 6" |1 (g20= ¢i o det.

Proof. The proof consists in applying Theorem 1.7.1 using the explicit de-
scription of H'(3,2l) given in the lemma 1.7.2. Tn Theorem 1.7.1, we have
S

introduced smooth characters ¢y, ...¢s of EJ,... EJ such that § = Hei

S
i=0
where 07 is defined by the following two conditions.

(i) ¢ |18, 200B,, = ¢i © detpy,
(il) 07 | ymi+1(g00= e, Where m; = max{[~%(], 0}.

Let 0 < i < s — 1, then Lemma 1.7.2 shows that H1(3,2) N Bs, =

(c0) —vy(c;—1)
Ul(iBgo)U[ 5 ]H(SBBI)...U[ e ]‘H(EB/B,L.). Consequently the condi-
tion (i) of the corollary 1.7.3 is satisfy for 6°.
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Trivially m; = [_”%(C’)], moreover the lemma 1.7.2 shows that

S g 9y = U B, ) U (8,). Thus Con-
dition (#7) of Corollary 1.7.3 is satisfy for 0.

Finally, for i = s, we have 0" |1 (BB, = @i © detpy by the theorem
and the condition of the corollary is satisfied’ remarking that Bg, = A since
Bs € F.

O

Explicit factorizations of tame simple characters in (Case B)

Recall that in this case Bs € F. In this case we put d = s+ 1. Let us
give an explicit description of the group H'(3,2l) in this case. This explicit
description is written in a convenient way in order to compare with Yu’s
construction.

Proposition 1.7.4. (Case B) The group H'(3,2l) is equal to the following
group:

Vql(Co) vo(ci—1) vo(es—1) vy (e s)
U*(B,)U! i, ). Ul () Ul Ul (g,

(1.20)

Remark 1.7.5. The difference with (Case A) is that there is "one more
term” in this multiplicative expression of H'(B,21). This is due to the defi-
nition of H(B,21) in the minimal case, as explained in the following proof.

Proof. By [13, 3.1.14,3.1.15], it is enough to show that

_VQL(CO>}+1 _VQ((csfl)}_i_l

—vy(cs)
H(BA) =By, + Q5 ° | +...+Q, ° + Rl L (121)

Let us prove (1.21) by induction on s. If s = 0, by definition, H(3,2) =
Bg, + P21+ where by definition n = —uy(8,2). Since s = 0, the equality

—vy(cs)
B = cy = co hold. Thus $(B,2) = By, + Pl
If s > 0, by induction hypothesis we have

H1 as required.

V21(01)]+1 _Vm<62.s—1)]+1

—vy(cs)
ot Q[ﬁs s

5(31.%) = B, + 9L,
By definition $(3,2A) = Bs, + H(41,A) NP . Let us remark
that since the stratum [Bg,, —ko (B0, A), —ko(Bo,2A) + 1, Bo — B1] is simple by
the condition (vi’), the equality vs, (B0 — B1) = ko(Bo, ) holds. We have
v, (Bo — B1) = va(Bo — B1) = vau(co). So vau(co) = ko(Bo, ). Consequently

—k 2
O(QBO )]+1

H(8,2) = By, + H(B1,A) NP

vo(co) vo(cs—1) —vy(cs
=g, + 0 ¢ Tl T gy
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as required.
O

We now reformulate Theorem 1.7.1 in (Case B) for the simple characters
in C(A,0,3). This will be useful in order to associate generic characters in
this case.

Corollary 1.7.6. (Case B) Let 0 € C(2,0,05), there exists ¢o, P1,--.,¢s

such that 0 = HHi where the 0° are the characters defined by the following

o i=0
conditions.

For 0 <1i <s, the character 0; is defined as follows.

(Z) HZ ’ _ 21( 0) —vyg(cy 1) - sz (0] detB
vy (¢ 7 — Bz
UL(Bp U2 (8. U2 1t ()
(1) 0| iy —vg(cs1) —vg(cs) =Y, -
T I 0 A ARG

Proof. The proof consists in applying Theorem 1.7.1 using the explicit de-
scription of H'(3,) given in Lemma 1.7.4. By Theorem 1.7.1, there exist

S
smooth characters ¢y, ..., ¢s of £, ..., E such that § = Hﬁi, where 6%,

s
1=0

0 <1 < s, is defined by the following two conditions.

(1) O |z (s.20nB,, = 91 © detp,,

(ii) 07 | ymit1(gan= Ve, where m; = max{[~%(],0}.
Let 0 < i <s. Then Lemma 1.7.4 shows that

e (¢ —vy(ci—1)
HY(8,%) N By, = UN(Bp,)U 5141 ) . U124 (8, ),

Thus condition (i) of the corollary 1.7.6 is satisfied for 6.

%(C‘)] Moreover Lemma 1.7.4 shows that
—va(e) —va(es—1)

HIESEI (3 90) = UL (B, ) U (g U ).
Thus Condition (i7) of Corollary 1.7.6 is satisfied for °.

Trivialy we have m; = |

O

1.8 Generic characters associated to tame simple
characters

We continue with the same notations as in section 1.7. Thus we have a fixed
tame simple stratum [2A,n,0, 3] and various objects and notations relative
to it. In particular we have a defining sequence and a simple character
0 € C(2,0,5. We have also distinguished two cases. In both (Case A)
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and (Case B), we have introduced various objects and notations and have
established results relative to them. In this section we are going to introduce
a 4-uple (87 y, 7, 3) which will be part of a complete Yu datum.

1.8.1 The characters ®; associated to a factorization of a
tame simple character

We start with (Case A).

The characters ®; in the (Case A)
In section 1.7, we have introduced a sequence of fields
Ey2E1D2...2FE D...2E,.

Recall that in this case d = s and Es = F, since 8; € F and E; = F[fs].
For each i, the field E; is included in the algebra A = Endp(V) i.e V' is an
FE;-vector space.

For 0 <i < s, put G* = ResEi/F@Ei(V). If 0 <i<j<dthen G'is
canonically a closed subgroup scheme of GY.

Let 8 be the sequence G° C G* C ... C G*.

Proposition 1.8.1. (Case A) The sequence 8 s a tamely ramified twisted
Levi sequence in G.

Proof. This is a consequence of 1.6.7.
O

We now introduce some real numbers r; for 0 <1 < s. Put r; := —ord(c¢;)
for 0 <i<s. Putalso ¥ = (ro,r1,...,rj, ..., rs).

Proposition 1.8.2. (Case A) For 0 < i < s, the real number ry satisfies
the following formula:

_ —va(a)
Ti = C@lor)

Proof. By definition, r; = —ord(c¢;). By definition of ord we know that

I/E.(Ci)
d(c;) = ———. 1.22
or (Cl) G(Ez | F) ( )
Lemma 1.2.1 shows that
vale) _ _vela) (1.23)
e(Ql | OF) G(EiOFF)

Equations 1.22 and 1.23 together finish the proof of the proposition.

O
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Proposition 1.8.3. (Case A) There exists a point y in BTE(GY, F) such
that the following properties hold.

(I) The following equalities hold.

(i) U%(Bg,) = G*(F)yo
(ii) U'(Bg,) = G°(F)y0+
(iii) Qp, = §°(F)y 04
(iv) B, = °(F)yo
(v) FIB*U(Bg,) = GO(F)yy
(II) There exist continous, affine and G~ (F)-equivariant maps
L BTE(GFl,F)CL BT®(G, F) , for 1 <i < s, such that,

denoting ' the composition 1;01,,_, o...0 11, the following equalities

hold.
. —vg(ci—1) i
(i) Ul Hl(%ﬁi) =G (F)Li(y),”T*l+
B —vg(ej—1)+1 i
(i) U— =2 1(Bg) =G (F) iy, ris

(iii) U0 (B ) = G'(F) i) e+
(iv) U—(@=1)(Bg,) = G'(F),i(

Y)ri—1
—vg(ci—1)
——+1 :
(’U) Qﬁz 2 } g gZ(F)LL(y),”%+
[_”QI(C;—1>+1] )
. — s _
(m) Qﬁi =9 (F)Li(y),r’T_l

(vii) Q5" = G(F) ey s

(viii) QgiVm(Ci—l) — gi(}?)ﬂ(y)’mi1 and moreover,
(ir) U2()(Bg,) = G'(F)i(y).x,
(z) U—raledtl(Bg) = G (F)i(y) e+

In the rest of this paper, we identify '(y) and y.

Proof. In [7], the authors construct an explicit bijection between the set
Latt! (V) of all lattices functions in V' (see 7, Definition [.2.1] for the defini-
tion of a lattice function) and the enlarged Bruhat-Tits building of Auty (V)
(combine [7, Prop 1.1.4] and [7, Prop 1.2.4]). The group R acts on Latt! (V)
and the previous bijection induces a bijection between Latt(V') := Latt*(V)/R
and the reduced Bruhat-Tits building BT®(Aut(V), F). The authors show
[7, Theorem II.1.1] that if E/F C A is a separable extension of fields, there is
a canonical affine and continuous emdedding from BT (Resp yr(Autg(V), F)
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to BT®(Autp, F). Using the general fact that if G is a connected reductive
K'-group and k'/k is a separable finite extension of non archimedean lo-
cal field then BTR(Resk//k(G), k') = BTH(G, k); we deduce canonical maps
BTE(G1,F) - BTR(G!, F) for 1 <i < d. Recall that BT®(G, k) is de-
fined as BT®(G, k) x X.(Z(G), F) ®z R. Since Z(G°®)/Z(G) is anisotropic,
X (Z(G7Y, F) ®z R and X.(Z(G*, F) are isomorphic for 1 < i < d. Fix
such isomorphisms. They induce continous, affine and G*~!(F)-equivariant
embeddings

BTE(G!, F) — BTE(GY, F).
In |7, I §7], the authors explain that there are injective maps

{Lattices chains in V'} — {Lattices sequences in V' } — {Lattices functions in V'}.

Let A € Latt'(V). To the class A of A, Broussous-Lemaire attach a
filtration a,(A) of A and a filtration U,(A) of AX = G, they are indexed by
R and R>q. If A comes from a lattices chain £, then the filtration of A of
Broussous-Lemaire is compatible with the filtration, indexed by Z, given by
powers of the radical of the hereditary order associated to L.

Let £ be an og-lattices chain associated to B. We thus get a point in
BTE (GO, F) by the previous considerations. The rest of the proposition is a
consequence of [7||Theorem I11.1.1] and [7||Appendix A|, up to contemporary
normalization of Moy-Prasad filtrations.

O
Let us introduce some character ®; , 0 < i < s.

Definition 1.8.4. (Case A) Let 0 < i < s, and let ®; be the smooth complex
character of G'(F) defined by ®; = ¢; o detp, where ¢; is the character
introduced in 1.7.1 ,1.7.5.

Proposition 1.8.5. (Case A) The following assertions hold.

(i) For0 <i < s—1, the character ®; is G"*'-generic of depth r; relatively
to y.

(i) The character ®4 is of depth rs relatively to y.

Proof. (i) Let us first prove that ®; is of depth r; relatively to y for
0 <7 < s—1. The restriction ®; |G¢(F)r. is equal to the restriction
P, ’U*”‘zt(%)(%gi) by proposition 1.8.3.

Let us prove that the two inclusions

— vy (e —vg((co) —valei—1)
U=l (B5) C UN (B, ) U5 FL(Bg,) ... U5 1+(Bp)
(1.24)
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and

_'/‘21(20571)]4»1

—va()
U*Vm(ci)(%ﬁi) c U[me»l(%ﬁiJfl) UL (%Bs,) (1.25)

hold.

If ¢ = 0, the first inclusion is trivial. Assume now ¢ > 0. In order
to prove the first inclusion in this case, remark that the inequality of
integers —uy(ci—1) < —vg(c;) holds.

We deduce easily and successively the inequalities

—VQ((CZ'_l) < _Vﬂ(ci)
_1/91(262‘_1 < —VQ[(Ci)
[”Q‘(;“)] +1 < —wy(e)

—vo(c;i—1)

So U—a(e)(B,) C Ul—= Hl(%@), and the first equality holds.

In order to prove the inclusion (1.25), remark that the integer —uvg(c¢;)
is strictly bigger than 0. We deduce easily successively that

—vy(e) > _VQ;(Ci)
“vafe) > [y

Thus, since Bg, C Bg,,,, we get

U-rae)(B,) € UEHL (8, )

and the second inequality follows. The inclusions (1.24) and (1.25)
together with 1.7.3 imply that

P; |Gi(F)y7,.i: ¢z odet ‘U*Vm(Ci)(&BBi): 0" |U*VQ((C¢)(%BZ_):
@Z)ci ‘U*”%l(cﬁ(%ﬁi)'

We know that 4, is trivial on U~¥2()F1(B4) and non-trivial on
U—va)(Bg.). Consequently, since U2 +F (B ) = G(F), 4 by
1.8.3, the character ®; is of depth r; relatively to y.

We have to show that ®; is G**!-generic of depth r; for 0 <i < s — 1.
By definition, ., (1+x) = 1 oTr4/p(c;z). We have thus obtained that
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P, ’Gi(F)ri:ri+ (1 + .%') =1o TI“A/F(CZ'{L') (1.26)

As explained in section 1.3, the characters of g'(F)pur4 =
g'(F)r;/g"(F)r;4 are in bijection via ¢ with g'(F)3. | /g'(F)p, where

r

gi(F);i—i- = {x S gl*(F) ‘ x(Qi(F>ri+) - UF} ®0F Pr = gi*<F)—ri

and

o' (F)r, = {z € " (F) | (8" (F)x,) C 07} Qo pr = 0" (F)(-ry)+

The isomorphism G*(F)y;x;t =~ ¢°(F)r;rt used by Yu [41], is the same
as the one used by Adler in [1] , and it is given in our case by the map
(1 +2) > x). The element X7 = (v + Try/p(c;w)) is an element
in Lie*(Z(G"))—r; C g" (F)y,—r;- The equation (1.26) shows that Xz
realizes ®; |¢i( Frporg In order to verify GE1, we want to show that
the element X;,(Ci) realizes also ®; ‘Gi(F)ri.

The element X7, is in Lie*(Z(G"))—r, C 0" (F)y,—r; = g'(F)34 by

1.6.9 (ii). So it is enough to prove that (X;‘T(C — X}) e g'(F)p,. Let

i)
us remark that the equalities

g'(F)y, = {z € g" (F) | 2(6"(F)ry) C 0p} @0y pr C g' (F)
= {z € g (F) | 2(¢"(F)x) C pr}

hold. Let us prove that (X7 X;‘r(c_)) € g (F)s. Lety € g"(F)yr,, we

T

have
(X&, = Xoen) W) = X, (y) — X50(®)
= Try p(ciy) — Trayp(sr(ci)y)
= Try/p(ciy — sr(ci)y)
= TrA/F((cZ- — sr(c)y)
By 1.5.5, ord(c; — sr(c;)) > ord(c;) = ord(sr(c;)). So
(c; —sr(ci))y € g8 (F)o- This finally implies that

Trayp((ci —sr(ei))y) € pp. Thus the character ®; |gip),., . i8
realized by the element X:T(Ci). This element is G**!-generic of depth
—ord(c;) by 1.6.11. Thus ®; is G '-generic of depth r;.

Let us show that ®, is of depth rg relatively to y. This is
easier than (i). By 1.8.3, we have G(F)y,, = U () (Bg,) and
G(F)yr = Ut (B,

Thus, using 1.7.1, we get
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@, ’G(F)y,rsz ¢s o det |U*Vm(cs)(%ﬁs): 0 |U*"9t<68>(%5s): Ye,-

The character v, is trivial on G(F)yp,+ = U2()¥1(B4 ) and non
trivial on G(F), r, = U7"2(¢)(B4). This ends the proof of (i)
O

The characters ®; in (Case B)

We have already introduced a sequence of fields
EoD2FE 2...2E2...DFE,.

Recall that in this case d = s + 1 and F; = F by definition. For each 1,
the field F; is contained in the algebra A = Endp(V) i.e V is an E;-vector
space.

For 0 <i <d, put G* = ResEi/F@Ei(V). If 0 <i<j<dthen G'is
canonically a closed group subscheme of GY.

Let G be the sequence GO c G ¢ ... c G“.

Proposition 1.8.6. (Case B) The sequence 8 s a tamely ramified twisted
Levi sequence in G.

Proof. The (Case A) proof adapts to (Case B) without change. O
We now introduce some real numbers r; for 0 < i < d. Put r; := —ord(c¢;)
for 0 <i<s. Putry=r, Putalso T = (ro,r1,..., T4y ..., s, Tyq).

Proposition 1.8.7. (Case B) For 0 < i < s, the real number r; satisfy the
formula

— —vale)
= o)
Proof. The (Case A) proof adapts to (Case B) without change. O

Proposition 1.8.8. (Case B) There exists a point y in BTE (GO, F) such
that the following properties hold.

(I) The following equalities hold.
(i) U%(Bg,) = G*(F)yo
(ii) U (Bg,) = G(F)yo+
(iii) Qg = §°(F)y0+
(iv) B, = g"(F)yo
(v) FIB*U°(Bg,) = GO(F)y
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(II) There exist continous, affine and G~ (F)-equivariant maps
i BTP(G1, )= BTE(GL F) for1<i<s, such that,
denoting ' the composition 1;01,,_, o...0 11, the following equalities

hold.

. —vg(ci—1) i
(Z) U[ 2 *]‘H(%Bi) =G (F>Li(y),”771+

21(07. 1)+1 }

(i) U (B5,) = G'(F) 0 it
(iii) U0 (B ) = GU(F)i(y) 00+

(7’.1}) U_Vm(Ci_l)(%ﬂi) = Gi(F)Li(y),ri,1

[7”‘21(%’71)}4»1

('U) Q,B- : = gi(F)Li(y)yw%+

_”‘ZI(C'L 1)+1]

i) Q=g
(vii) Q5" = G ) e,
(viii) Qgiug‘(cifl) = 0"(F)i(y)r;_, and moreover,
(i) U2()(Bg,) = G'(F)i(y).x,
(x) U2 (Bg ) = G(F) i) w1t
(ITT) There exists a continous, affine and G*(F)-equivariant map

tg: BTF(G®, F)—“ = BTF (G, F) such that, denoting 1 the
composition tqg o, o ...o 1, the following equalities hold.

(i) US04 () = GUF) i)+
(ii) U 52(0) = GI(F) e
(iii) U2 eTHA) = GUF) () rut
(iv) U2 (@) = GUF) iy,

() B gl ()
(0i) BT = gU(F) iy s
(vii) Pl = g (F) i) oot
(uiii) P = g(F) i)

In the rest of this paper, we identify i'(y) and y.

Proof. The (Case A) proof adapts to (Case B) without change for (I) and
(II), the proof of (II) adapts to (I1I) without effort. O
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Let us introduce certain characters ®; , 0 < i < d.

Definition 1.8.9. (Case B) Let 0 < i < s, and let ®; be the smooth complex
character of Gl(F) defined by ®; := ¢; o detBﬁi, where ¢; is the character
introduced in 1.7.1, 1.7.6. Let also ®,4 be the trivial character 1 of G4(F).

Proposition 1.8.10. (Case B) For 0 < i < s, the character ®; is G-
generic of depth r;.

Proof. The (Case A) proof adapts to (Case B) without change.

A

1.8.2 The characters ®;

In both (Case A) and (Case B), we have obtained part of a Yu datum
(8, Y, 3) To (B,y,r, 3) is attached by Yu various objects. In the rest
of this section we shows that the characters ®; (see section 1.3) are equal to
the factors 6; of 6.

Proposition 1.8.11. In both (Case A) and (Case B), let
Ki = Ki(@, Y, g) be the group attached to (8, Y, 3) (see section 1.3).
Then H'(3,2) = K4.

Proof. (Case A) By proposition 1.7.2, we have the equality

7UQ;2(00)]+1 *Vm(;z—l) *Wzt(;s—l)]

HY(8,2) = U (Bp, UL (Bg,) .. .Ul H(B,)... Ul t1(Bg,).

_>
By definition of Ki(a, y,r, ¢ ), and because of d = s, we have the equality
— ; ,
KL(C,y,r, @) = GO(F)y0s GM(F)ysos - G (Fysy - G (F)yss 4

The required statement is now a formal consequence of 1.8.3.
(Case B) By proposition 1.7.4, we have the equality

—vales—1) —vg(cs)

—ve(c0)
2260 (s, ..Ul 3 (5 YUl 14 (g,

HY(8,2) = U (B, U 2 ]“(%ﬁl).‘.(ﬂ_)
By definition of Ki(g,y,r, ¢ ), and because of d = s+ 1, we have the
equality

—vo(ci—1)
2

Ki(a,y, 7"73) = GO(F)y,OvLGl (F)quOJr t Gi(F)yysz'a ---GS(F)vas—lJer(F)y,ser'
The required statement is now a formal consequence of 1.8.8.
O

Proposition 1.8.12. In both (Case A) and (Case B), let 0 < i < d and let
®, be the character attached to ®; (see section 1.3). Then

(i) éizﬁifor()gigs
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d
(ii) [[®i=0
=0

Proof. Recall that ®; is defined in [41, section 4] and also in the section 1.3
of this text. In order to prove (i), we need first to study the decomposition
g = g @ n’. In our situation where G = Autp(V), the Lie algebra g is
Endp (V) and the Lie algebra of G denoted g* is Endp(g,(V). The space g’
is characterized by the fact that it is the maximal subspace of g such that
the adjoint action of the center Z(G'(F)) of G*(F) is trivial. By definition,
n’ is the sum of the other isotypic spaces for the adjoint action of T*(F) on
g. This implies that there is an integer R; such that each n € n’ is a finite
sum

such that for each 0 < k < R;, there is an element t; € Z(G(F)) and A\, # 1
such that ady, (nx) = Agni. We are now able to prove (i) of the proposition
1.8.12.

If v € g, let v = mi(z) + 7y (z) denote the decomposition of x relatively
to the decomposition g = g* @ n*.

Let 0 < i < s. By definition (see section 1.3) ®; is the character of K
defined by

* @i i)kt = ®i lqi(r)nie

* & |G(F)y,simK1 (14 ) = (1 + mgi(z)).

Let us verify that it is equal to the character 6 defined in proposition
1.7.1.

First, note that the group Ki is equal to the group H'(3,2) by proposi-
tion 1.8.11, so it makes sense to compare ®; and %. The group G'(F)N Kf‘ﬁ

is equal to B, N H(B,24). Thus, the definitions of §° given in proposition
1.7.1 shows that

Pi |qi(r)nxe= Pi loirnre = di 0 detp,, |qi(rynxe= 0" leimynrce - (1.27)

It is enough to show that ®; ‘G(F)ys.J,ﬂKi is equal to 6° ‘G(F)ys.ngi'

—vg (i)

The group G(F),s,+ is equal to U2 ~171(2). Consequently

®; |G(F)yysi+ﬂKi (I+z)=2; |G(F)y,si+ﬂKi (1+ Mgt ()
(Because 14, (x) € c'r) = B4 |G(F)y,si+ﬂKimGi(F) (1 + Tgi ($))

I
(By eq. (1.27) and equality of groups) — 9 ‘ —vg(¢;) (1 + T 1(:1:))
Hl(ﬂg{)mBﬁimU[J—é i ]+1(Q[) g

—ve(eq)

(By def. of 6" on H'(8,2) nUlT—2 1ty =) o TrA/F(cmgi(:U)).
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Let us now compute Try,p(cimgi(z)). We have the equalities
Tr(ciz) = Tr(ci(mgi(z) + mi(2))) = Tr(cimgi () + Tr(cimyi ().

Let us compute Tr(c;my(x)). Since mi(z) € n’, there is an integer R;
such that m () is a finite sum

R;
i () = Z ng
k=0

such that for each 0 < k < R;, there is an element t, € Z(G*(F)) and A\, # 1
such that ady, (nr) = Agng. We have

R; R;
Tr(cimyi(z)) = Tr(e Z ng) = Z Tr(cing).
k=0 k=0

Fix 0 < k < R;. The element tp commutes with ¢;. Consequently
teinpt ™! = citngt ™! = ¢;Ang. So

Tr(cing) = Tr(te;ngt ™) = ATr(cing)
This implies that
Tr(cing) =
And so
Tr(cimai(z)) = 0.
Thus the equality
Try p(cimgi(w)) = Try p(civ)

holds.
Consequently

P, |Gy, a et (L @) =10 Tryp(c) =ve, =0 |, nxd;
as required. This concludes the proof of (i) of Proposition 1.8.12.
S

The proof of (ii) is now easy because 6 = H 0' and because in (Case A),

=0
d = s, and in (Case B), d = s+ 1 and &, = 1. This ends the proof of
Proposition 1.8.12. 0
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1.9 Extensions and main theorem of the compar-
ison: from Bushnell-Kutzko’s construction to
Yu’s construction

In this section, we keep notations of the sections 1.7 and 1.8. In particular, we
have fixed a tame simple stratum [2(, n,r, §] and a choosen defining sequence
{[&,n,7i, Bi] , 0 <i < s}, such that F[Bi41] C F[f;] forall 0 <i<s—1. We
have also fixed a simple character 6 € C(2,0, 3). We have distinguished two
cases, (Case A) occurs when 5 € F. In this case we have put d = s. In the
opposite (Case B), we have put d = s+ 1. In both case we have introduced
part of a Yu datum (G, y,r, 3) We have also proved some results relative
to these objects. In this section we are going to show that the representation
NGy, 3) is a [-extension of #. Then, given a cuspidal representation
o of U%(Bg,)/U(Bg,) and A an extension to EXJO(B,2) of k ® o, we are

_>
going to show that there exists p such that A = pd(g, Yy, 7, @, p).

Proposition_> 1.9.1. In both (Case A) and (Case B) the group
oKd(a,y,r, @) is equal to JO(5,20).

Proof. 'This proposition is similar to that of Proposition 1.8.11 and the proof
adapts trivially. O

Proposition 1.9.2. In both (Case A) and (Case B), the representation
_>
G, y,r. b)
of °K js q B-extension of 0.

%
Proof. Let us verify that °A =° /\(8, y,T, @) satisfies the criterion given in
Proposition 1.2.22.

(a) The representation °\ is equal to °kp ® ... ® °kq (see section 1.3). By
construction of x;,0 < i < d, the representation °k; contains ®; (see |24,
3.27]). Consequently °\ contains ®¢ ® ... ® ®4. Thus °\ contains 6 by
1.8.12.

(b) Again, °A =° kg ® ... ®° kg. Thus, it is enough to show that G°(F) is
contained in Ig(p)(°ki) for 0 <4 < d. Theorem 14.2 of [41], which is
satisfied here, implies that GY(F) is contained in I(p) (@i |o ). How-
ever, °k; is an inflation of ®;’ |-+ (see definition 1.3.21). Consequently
Iry (@i ogi) C Igp(°ki). Consequently GO(F) C Igr)(°ki) as re-
quired.

(¢c) The representation °X\ is equal to °kp ® ... ® °K; ® ... @ °kg.
For 0<i<d-1 the dimension of °s; is [JiT! Jfl]%.
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The representation °kg is one dimensional. So it is enough

d
to show that [[(77"':Ji" = [J'B.A) : HY(B,A).  The
i=1
group J1(B,2) is equal to GO(F)y0+GYUF)ysy---GUF)ysy 1
this is thus also equal to GO(F)yorJt...J% The group
HY(B,2) is  equal to  GUF)y0+G U F)ysot - GUF)ysy i+
this is thus also equal to GO(F)y04+Jt...J9. Since
GO(F)yor b .. . JYGO(F)yordt ... Js ~ JLoJgd/gt .. Jd it is
d

enough to show that H[JZ cJ ) =g g% g Jd]. Let us prove

this by induction on d. Ifd = 1, this is trivial. Let us assume this is true

1 d. 7l d
for d — 1. It is now enough to show that [J¢: J¢] = l[J ';{1"]?“‘]5],1 :
[Jt..Jd=t gt o]

The following fact will be useful.

Fact: Let G' C G be groups and let H be a normal subgroup of G. Let
v be the injective morphism of group G'/(G' N H) — G/H. As G-set,
G/HG' and (G/H)/(G'/(G' N H)) are isomorphic.

Since J}r e Jj‘f is a mnormal subgroup of J'...J% we can ap-
ply the previous fact to G = J'...J¢ G = Jt... g1 |
H = Jl...J!. [Using the fact that H N &' = JL...J&
we deduce that, as J'....J%sets, Jl...Jd/Jl...Jd_le‘f and
(JUogd gl gdy (Tt T g g9 are isomorphic. Let X
be this J'...J%set. The set X is a fortiori a J%set. The group J¢
acts transitively on X = J'...J¢/Jt. .. Jd_le‘f, and the stabilizer of
(JU.ooo g tgdy e gt gt gt gdtgd s gt g4 gd 0 g4 The
group J!. .. Jd_le_ N J% is equal to Jf_. Consequently

[(Jl..Jd gt g
[Jl..Jd=1 gt gty

[J4:Jd] = #(X) =

as required. This ends the proof of the proposition.

O

The following theorem is the outcome of Sections 1.7 and 1.8. It shows

that given a Bushnell-Kutzko datum, there exists a Yu datum (8, Y, T, 3, 0),

such that A = pd(a,y, 7“,8,/)). The objects (8,3/,7’,3,/)) are given ex-
plicitely in terms of the Bushnell-Kutzko datum.

Theorem 1.9.3. Let V be a N-dimensional F-vector space. Let A denote
Endr(V) and let G denote A* ~ GLN(F). The following assertions hold.
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(1) Let (A, n,r fB],0,0,k,A) be a tame Bushnell-Kutzko datum of type (a)
in A. Let {[,n,r,B;], 0 < i < s} be a defining sequence such that
F[ﬁz] gF[ﬁZ+1] fO’I‘OSZSS*l
o (Case A) If Bsisin F, putd = s, and G* = Respig,)/rAut prg, (V)
for 0 < i < s. Put G = (GY,...,G%). Choose a factorization

0= HQi as in Theorem 1.7.1, Corollary 1.7.3. Let ®; , 0 < i <
=0

s, be the associated characters as in Definition 1.8.4. Put 3 =
(®g,...,®,). Let y € BTE(G, F) and T as in Proposition 1.8.2.
Then, there exists a representation p of G[[)y] such that (8,% 7, 3, p)
is a Yu datum and pd(a,y, 7, g,p) is 1somorphic to A (see section
1.3).

e (Case B) If Bs ¢ F, putd = s+1, and G* = Resp(s,) rAut prg, (V)
for 0 < i < s. Put also G* = Aut(V). Put G = (GY,...,G*,G?).

S

Choose a factorization 0 = H@i asin 1.7.1, 1.7.6. Let ®;, 0 <i<s
=0

be the associated characters and let ®,4 be the trivial character as in

1.8.9. Put ® = (®,..., 0y, ®,). Let y € BTG, F) and T as in

Proposition 1.8.7. Then there ezists a representation p of G?y] such

that (a,y,7,¥,p) is a Yu datum and pd(a,y,7,¥,p) s isomor-
phic to A (see section 1.3).

(1I) Let (A,0,A) be a Bushnell-Kutzko datum of type (b). Put d = 0,
GY = Autp(V) and ¢ = (GY). Putry =0 and T = (ry). Let
y € BT*(GY, F) such that 2% = GO(F),. Put ® =1 and ® = (®y).
Let p be A. Then (a,y, 7, g,p) is a Yu datum and pd(a,y, 7, 37 p)
s 1somorphic to A.

Proof. (1) As usual, put E = F[f]. Let p' be an arbitrary extension of o
to G°(F)p,. Then the compact induction of p to G°(F) is irreducible

and supercuspidal and so (8,_7;,7,8,;)’) is a Yu datum. We are
going to show that there exists a character x of G°(F)p, such that

(a,y, 7, 3’ P ®x) is a Yu datum such that pd(a,y, 7, 3, pRxX) is
isomorphic to A.

The representation O)\(a, y, 7, 3) is a f-extension of € by Proposition
1.9.2. Consequently, by 1.2.22, there exists a character

& UO(Bg,) U (Bg,) = J(8,20) /T (8,2) — C

of the form o o det with o' : U%(0g)/U'(0g) — C* and such that &
is isomorphic to °A®¢’. Let ¥’ be an extension of £’ to EXU®(Bg,) =
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G"(F)py- The compact induction of p’ @’ to GY(F) is irreducible and
supercuspidal and so (8, Y, 7, 3, p' ®x') is a Yu datum. The repre-
sentation Opd(a,y, 7, g,p’ ® ') is equal to o ® &' ®° (Zf, T, 8)
Thus it is isomorphic to 0 ® k. Consequently pd(a, Y, 7, é/, prex)
and A are two extensions of o ® k. This implies that there exists a
character

X" EXJO(B,2) — EXJ(B,2)/J°(8,2A) ~ GO(F),; /G°(F), — C*,

such that pd(a,y, 7, 3, P ®x') ® x" is isomorphic to A. Seeing x”
as a character of G(F )jy)» the compact induction of the represen-
tation p’ ® ' ® x” to GY(F) is irreducible and supercuspidal, and
pd(a,y, 7, ®, 0 ®x)®x" is isomorphic to A.

The assertion (I) follows putting p = p' @ X' ® x”.

(II) In this case the representation pg is p, and there is nothing to prove.
O
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Chapter 2

Analytic filtrations

In this chapter, as announced in the introduction, we define some k-analytic
filtrations using Berkovich spaces theory. Taking rational points, we obtain
filtrations comparable to Moy-Prasad filtrations.

Notations and conventions for chapter 2

p : a prime number
k/Q, : a finite extension
7y, : a uniformizer of k
ord = ordy, : valuation on algebraic extensions of k such that ord(my) =1
e > 1: areal number strictly bigger than 1
lo| = e~ (®) (norm on k)
E={xeck]| |z|<1 }=o0k
Fo={wek| lol<1 }=p,
k = k°/k°° residual field
: connected reductive k-group scheme
BT®(G, k) : reduced Bruhat-Tits building
BT (G, k) : enlarged Bruhat-Tits building
G : analytification of G (Berkovich k-analytic space)

Q

If H is an S-group scheme with S = spec(k) or S = spec(k®), then
Lie(H) denote the Lie algebra functor (it was denoted Lie(H) in chapter 1.
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2.1 Schemes

2.1.1 Generalities

There is a stripping functor Sch — Top associating to a scheme its un-
derlying topological space, a scheme X is called connected or irreducible if
and only if its underlying topological space has the same property. If .S is
a scheme we note S — Sch the category of scheme over S, this is a cate-
gory whose objects are pairs (X, f) where X is a scheme and f : X — S
is a morphism of scheme. There is a stripping functor S — Sch — Sch. If
S = spec(A) is affine we sometimes call a S-scheme a A-scheme, and write
A — Sch instead of S — Sch. If S is a scheme and X, Y are two schemes
over S we note X xgY the product of X and Y in the category S — Sch, if
moreover S = spec(A) is affine, we sometimes denote X xgY by X x4 Y,
and if Y = spec(B) is also affine we denote X xgY by X x4 B.

Let B be an A-algebra B. Let X be an A-scheme. Then Aut_q4(B) acts
canonically on the right of X Xg,ec(a) spec(B) by A-scheme automorphisms.

A group scheme is a group Sch-objet, the connected component contain-
ing the unit element is a group scheme called the neutral component. A
S-group scheme is a group S — Sch-objet.

Proposition 2.1.1. [40, Theorem 6.6] Let k be a field and let G = spec(A)
be an affine k-group scheme such that A is a finitely generated algebra over
k, the following are equivalent:

1. spec(A) is connected
2. spec(A) is irreducible.

If f:X — Sisan S-scheme, and s € S is a point, let k(s) be the
residue field of s and spec(k(s)) — S the canonical morphism. The fibre of
the morphism f over the point s is the scheme X, = X xg spec(k(s)).

Recall that k denote a finite extension of Q,. The scheme spec(k®) is
reduced to two points, the first is the prime ideal 0 and the second is the
maximal ideal k°°. Let X be a k°-scheme, the fibre over 0 is called the
generic fibre and the fibre over k°° is called the special fibre. Explicitely
they are given by X X0 k and X Xgo k. We say that a k°-scheme X is
connected if its special and generic fibres are connected, as elements of Sch.
A non connected k°-scheme X can have a underlying connected scheme. A
connected k°-scheme always have a underlying connected scheme. If & is a
k°-group scheme, we define the neutral component of the k°-group scheme &
as the images of the neutral components, as group scheme, of the special and
generic fibres, under the natural morphism to &. The neutral component of
a k°-group scheme & is denoted by &°. We have the following result which
is useful to have in mind in this text (see [22] for a general statements and
proofs)
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Proposition 2.1.2. Let X = spec() be a smooth k°-scheme. Then
1. X is a flat k°-scheme

2. The algebra A Qo k is a reduced l;‘—algebm.

2.1.2 Higher dilatations and congruence subgroups

In this section we recall some results about dilatations, higher dilatations,
and congruence subgroups for schemes and group schemes over k° where k is
a finite extension of Q,. The references are [6], [43] and [32|. The dilatation
is a process which produces, from a flat k°-scheme X of finite type and a
closed subscheme of the special fiber of X, a flat closed k°-subscheme of X.
It preserves group schemes structures. Higher dilatation is an iteration of
dilatations. It preserves group schemes structures. A congruence subgroup
in this setting is obtained by higher dilatation of a k°-group scheme relatively
to the neutral element. We start by the definition of dilatation following [6].

Definition/Proposition 2.1.3. [6, §3.2] Let X be a flat k°-scheme of finite
type, let Yy, be a closed subscheme of the special fibre X X o k of X, let J be
the sheaf of ideals of Ox defining ;.. Let X' — X be the blowing-up of Y;,
on X, and let v : XI. — X denote its restriction to the open subscheme of X’
where J.Ox is generated by w. Then:

(a) X7, is a flat k°-scheme, and uj : X7 X o k — X Xyo k factors throught
;.
* (b) For any flat k°-scheme 3 and for any k°-morphism v : 3 — X such
that vy © 3 Xjo E— X xpo k factor through )i, there exists a unique k°-
morphism v’ : 3 — X such that v =uov’ .

Moreover (X, u) is the only couple satisfying (a) and (b) up to canonical
isomorphism, we denote it by Dil(X,2;). Ifj is realized as the special fiber
Q) Xpo k of a closed subscheme ) of X, then we also denote Dil(X,9) Xjo k)
by Dil(X,9).

Remark 2.1.4. Let X be a flat k°-scheme of finite type, then Dil(X,X) =X
since it satisfies (a) and (b).
The following functorial compatibility property holds.

Proposition 2.1.5. [6, §3.2 Proposition 2 (c)] Let X9 be a closed sub-
scheme of a flat k°-scheme of finite type X1 and let Y be a closed sub-

scheme of the special fibre Xo X go k. Then there is a natural closed immersion

Dil(%g, Q‘j];,) — Dil(%l, Q‘jfc)
Dilatation preserves products and group structures as follows.

Proposition 2.1.6. [6, §3.1 Proposition 2 (d)] Let .’{i~be flat k°-schemes of
finite type and let 2);} be closed subschemes of X' xyo k, for i = 1,2. There
s a canonical isomorphism of k°-schemes
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Dil(X" xpo X2, D1 X1 V) = Dil (X', V1) xpo Dil(X?,D3).

In particular, if X is a k°-group scheme, and if Y. is a subgroup scheme
of X Xpo k, then Dil(X,);) is a k°-group scheme and the canonical map
Dil(X,9;) — X is a k°-group scheme morphism.

We now introduce the J.-K. Yu and G. Prasad notion of higher dilatation.

Definition 2.1.7. [32, §7.2 | Let X be a flat k°-scheme of finite, and ig :
) — X be a flat closed k°-subscheme. Let us define by induction a sequence of
flat k°-scheme T',,(X,9)) together with closed immersion i, : ) — T'n(X,9).
Let To(%,9) =X and ip : Y — X =T10(X,2). After I',(X,9) and iy, have
been defined, we let T'y11(X,2) be Dil(T',(X,2),in()). Thanks to 2.1.5 we
have a closed immersion

int1:Y = Dil(,Y) = Dil(T'n(X,9),in(D)) = Lnp1(X, D).

Remark 2.1.8. With the same notations as 2.1.7, the generic fibres of X
and I'(X,9)) are canonically isomorphic.

Construction of higher dilatations and preservation of groups structure
for dilatations imply that higher dilatations preserve groups structure as
follows.

Proposition 2.1.9. [32, §7.4 | With the same notations as 2.1.7, suppose
X is a k°-group scheme and ) a closed k°-group scheme. Then T',,(X,9)) is
naturally a k°-group scheme.

We now give an explicit description of higher dilatations in the affine
cagse. It will be important for us.

Proposition 2.1.10. /32, Proof of Proposition 7.3] Let X be an affine and
flat k°-scheme of finite type, and ) be a closed k°-subscheme of X. Let A and
J such that X = spec(2) and Q) = spec(A/J). Then I',(X,9) = spec(2y,)
where
Ay = Am, "I =A+ D> m ™ T C ARy k
i>1

We now introduce the notion of congruence subgroups.

Definition 2.1.11. Let & be a flat k°-group scheme of finite type and eg be
the neutral element, this is a closed k°-group scheme in &. Then ', (8, ep)
is called the n-th congruence subgroup of &, and is denoted by I'y,(®), this is
a flat k°-group scheme together with a closed immersion I'p(®) — &.
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Let X = spec(A) be an affine k-scheme of finite type. Let K/k be a finite
Galois extension. Let X = spec(2) be an affine flat K°-scheme of finite type
such that X xgo K = X x; K. We thus have A o K = A ®, K. The
action by k-scheme automorphism on the right of X x; K corresponds to a
left action by k-algebras automorphisms on A ®; K. In this situation, we say
that X is Gal(K /k)-stable if AR o1 is Gal(K /k)-stable in AR g K = AR K.

In order to prove preservations of Galois stabilities under the operations
of taking congruence subgroups, we need the following lemma.

Lemma 2.1.12. Let K/k be a finite Galois field extension. Let A be a k-
algebra and Ax = A ®y K. The action of the Galois group Gal(K/k) on
Ak is given by v.(a ® x) = a®@y(x) (v € Gal(K/k), a € A, x € K). Let
A be a K°-sub-algebra of Ax and assume A Qgo K — Ag, a ® x — ax is
an isomorphism and identify these rings. Let J be an ideal of A. Assume
A and J are Gal(K/k)-stable, then for all positive integer m, the algebra
A, = An"J] = A+ Soqm" Tt C Ag is Gal(K/k)-stable (tx is a
uniformizer of K ). -

Proof. Put m = mg. The valuation on K is invariant under the action
of Gal(K/k) on K, and so each 7—J% is Gal(K/k)-stable. Indeed, let
y € 7" J% then there is an element j € J® such that y = 774, let
v € Gal(K/k), then y(7~™) = o x 7~ with o an element of valuation zero
in K°. Evidently, v(j) € J? because .J is Gal(K /k)-stable by hypothesis, so
ox7(j) € J* because J* is an ideal in the ring 2l and 0 € A. So y(y) € 7~ "J".
Moreover 2 is Gal(K /k)-stable by hypothesis, so 2, is Gal(K/k)-stable. [

Lemma 2.1.13. Let K/k be a finite Galois extension. Let A be a Hopf
algebra over k. In particular we have the augmentation €4 : A — k. Let
Ax = A ®y K, it is naturally a Hopf algebra, the augmentation €4, 1is
ea®Id. Then ker(es, ) =ker(ea) ®x K and it is Gal(K/k)-stable in Ak.

Proof. We have an exact sequence 0 — ker(e4) - A — k — 0, and so,
because of K is flat over k, 0 — ker(e4) @ K - A®r K - k® K — 0, and
so ker(e4, ) = ker(e4) ®i K. The last assertion follows from it. O

Lemma 2.1.14. Let G = spec(A) be an affine k-group scheme of finite type
and A be a flat sub-Hopf K°-algebra of finite type of the Hopf K-algebra
A = A®y K, pult & = spec() and assume thal

1. ARko K — Ag is an isomorphism,
TR AT

2. AR 1 is Gal(K/k)-stable in Ak.

Then for any positive integer n, the congruence subgroup I', (&) = spec(2,)
is Gal(K/k)-stable.
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Proof. Let g9 : )l — K° be the augmentation, then by lemma 2.1.10 2, =
A+> "o, 5" T where J = ker(eg). Let’s remark that ey is the restriction to
2 of the augmentation e 4®1Id : AQ K — K of Ag. So J = ker(eq4®Id)NA.
The set ker(e4 ® Id) is Gal(K/k)-stable thank to proposition 2.1.13, and 2
is stable by hypothesis, so J is Gal(K/k)-stable as the intersection of two
Gal(K /k)-stable subsets of A®y K, the proposition now follows from lemma
2.1.12.

O

We also have a compatibility between extension of scalars and taking
congruence subgroups (up to ramification index).

Lemma 2.1.15. Let K/k be a finite extension, let e(K, k) be the ramification
indez, let m be a uniformizer of k and wi be a uniformizer of K. Let & =
spec(A) be an affine flat k°-group scheme of finite type. Because of the
flatness hypothesis, A embeds in A Qpo k and we identify A with A® 1. We
also have an embedding A Qo k — (A Rpo k) @ K, we identify A Qpo k with
(A@pek)@1. Then the Hopf algebras of Ty (&) X o K° and T o jyn (B X o K°)
are egal in (A ko k) @y K.

Proof. Let o : 2 — k° be the augmentation and J = ker(ey). Let 2, be
the Hopf k°-algebra such that I';,(&) = spec(2,), then 2, = A+ Zwlzmﬂ

i>1
by 2.1.10. So, we have

HOpf(Fn(®)XkoKo) = Q[n@)koKo = Ql@koKo—F Z’/Tk_inJi ®koKo. (21)
1>1

Let eg ® Id : A ®po K° — K° be the augmentation of 2 Qpe K° and Jgo =
ker(2 @pe K°). By 2.1.10, the Hopf K°-algebra of I'c( jyn (& xpo K°) is

Hopf (Lo (e jyn(® xpe K°)) = A@pe K+ Y aEHm (Jpe)’. (2.2)

i>1

Because of K° is flat over k°, Jgo = J ®po K° (see the proof of Lemma
2.1.13).

We claim and remark that if A is a k°-algebra, J is an ideal of A, and n
is a positive integer, then J ®go K° is an ideal of A ®xo K° and we have the
following equality of ideal J" ®@ko K° = (J ®ko K°)™ in A ®jo K° (we report
the proof of this claim after deducing the required result).
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So finally we can deduce easily the equality

Hopf(I'), (&) xpo K°) =

By equation (2.1) = A Qgo K° + Zﬂ'];sz Qo K°
i>1

By properties of sum and tensor product = A o K° + Z ((ﬂ'k_mJZ) Qo KO)
i>1
o K Y (U e )
i>1
By the claim = 2 Ko K°®+ Z W];m (J Ko Ko)i
i>1

K.k —e(K k)i i
m K° :ﬂ';{( ’ )KO and see before the claim = A ®po KO+ZTFK6( ’ )m(JKo)Z

i>1
By equation (2.2) = HOpf(Fe(KJc)n(Qf X o Ko))

as required.
Let us now prove the claim i.e. that we have the egality of ideal
(J @go K°)" = (J" ®ko K°). Let us first prove the inclusion D. Since J"
consists in sums of n-products of elements in J and since (J ®po K°)"
is stable by addition, it is enough to show that any element of the form
r=(J1.-..Jn ®A) € (J" Qo K°) is contained in (J Qo K°)™. This is obvi-
ous, writting (j1...7n @A) = (71 ®A)(j2®1)...(jn ®1). Now let us prove
the inclusion C. Since (J®go K°)™ consists of sums of n-products of elements
in J ®ko K° and since (J ®go K°) consists in sums of pure tensors and since
(J™ ®ko K°) is stable by addition, it is enough to show that any element of
the form z = (j1®A1) ... (jn®An) € (J®po K°)™ is contained in (J" ®go K°).
This is obvious, writting (j1 ® A1) ... (Jn @ An) = (J1-..Jn @ A1 ... \n). This
ends the proof of the claim and so the lemma is proved.
O]

We finish this section with important facts about congruence subgroups.

Proposition 2.1.16. [4/3, 2.8] Let & be a smooth (thus flat by 2.1.2) k°-
group scheme affine and of finite type. Let n € N, then

1 To(®)(k°) = ker((k°) — B(k° /n"k))

2. The special fibre of T',(®) is a vector /;:—group scheme. In particular it
is connected and irreducible. Moreover since I'n(®) is smooth over k°,
if A, denotes the k°-Hopf algebra of T, (&), then A, Qpeo k is reduced
(by 2.1.2).

If & is a k°-group scheme, we denote by Lie(®) its Lie algebra functor,
it is a k°-scheme. We denote by Lie(®)(k°) the k°-points.
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2.2 Berkovich k-analytic spaces

In this section we recall Berkovich’s definitions of k-affinoid algebras and
spaces. We follow very closely [3] and most parts of this section are copies
of [3]. The reader is welcome to read at the same time [3]. We then give
references for definitions of general Berkovich spaces. A general Berkovich
analytic space is a locally ringed space obtained by gluing k-affinoid spaces
having certain compatibility conditions. The notion of Berkovich k-analytic
spaces exists for a larger class of field k than extension of Q, (see [3]).
The reference for the definition of general Berkovich analytic spaces is [4,
§1|. The spaces defined in [3| correspond to good spaces in [4] (see [18,
1.3]). In general, Berkovich k-analytic space are equiped with a Grothendieck
topology (see [4, §1.3]|). V. Berkovich’s k-affinoid theory relies on S. Bosch,
U. Giintzer and R. Remmert’s book "Non archimedean Analysis" [5]. I
Gelfand, D. Raikov and G. Shilov’s book "Commutative normed rings" [21]
seems to has fournished important ideas in the Berkovich’s approach. For a
more complete historical approach of Berkovich’s space, we refer the reader
to the introduction of Berkovich’s book [3]. The litterature on Berkovich’s
space is wide and applications are abundant. A list of some applications can
be fund in [18]| and [19].

2.2.1 k-affinoid algebras

We refer to [3, §1.1] for usual definitions concerning Banach rings, we freely
use the following notions:

e non-Archimedean seminorms and norms on an abelian group, equiva-
lence of seminorms, residue seminorms, bounded and admissible morphims
of seminormed groups,

e seminormed rings, normed rings, Banach rings, non-Archimedean fields,

e seminormed A-modules, normed A-modules, Banach A-modules, com-
plete tensor products MQN.

Definition 2.2.1. /3, §2.1] For real numbers ry,...,r, > 0, we set:

E{fr7 Ty, r ' Ty = {f = Z a, TV | a, € k and |a,|r” — 0 as |v| — oo}

r'n

veNn
(Here v = (v1,...,vn) , V| =vi+...+vp, TV =17 ... T0" and r” =0 ..rpon).
This is a commutative Banach k-algebra with respect to the multiplicative
norm ||f|| = max|a,|r”. For brevity this algebra will also be denoted by
v

k{r='T}.

o A k-affinoid algebra is a commutative Banach k-algebra A such that
there exists an admissible epimorphism k{r—'T} — A. If such an epimor-
phism can be found with r =1, A is said to be strictly k-affinoid.

o An affinoid k-algebra is a K-affinoid algebra for some non archimedean
field K over k.
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The following proposition characterizes strictly k-affinoid algebras among
k-affinoid algebras.

Proposition 2.2.2. [5, §6.1] Let r = (r1,...,14,...,m) > 0. The k-affinoid
algebra k{r=T} is strictly k-affinoid if and only if, for all i

ri € {a € R>q | ™ € |k*| for some integer m > 1}.

Proposition 2.2.3. [3, 2.1.3] Let A be a k-affinoid algebra and I be an ideal
of A. Then

1. A is a Noetherian ring,
2. I is a closed ideal of A.

We refer to [3, §2.1|for many others interesting propositions on k-affinoid
algebras.

2.2.2 k-affinoid spaces

In this section, we introduce the spectrum M(A) of a k-Banach algebra A,
it is a compact topological space. If A is a k-affinoid algebra, M(.A) is called
a k-affinoid space, it is provided with a locally ringed space structure.

Spectrum of a k-Banach algebra

We start with general definitions.

Definition 2.2.4. /3, 1.2] Let A be a commutative Banach ring with identity.
The spectrum M(A) is the set of all bounded multiplicative seminorms on
A provided with the weakest topology with respect to which all real valued
functions on M(A) of the form | | — |f|, f € A, are continous.

Remark 2.2.5. Let A be a commutative Banach ring with identity. An
element in the "space” M(A) is generically denoted x, it is a map from A
to R>g. More precisely, the element x is a bounded multiplicative seminorm
on A and we also denote x by | |,. An element in A is genericaly denoted
foIfx e M(A) and f € A, the real number x(f) = | |z(f) is also denoted

[ fe-

Proposition 2.2.6. [3, 1.2.1] Let A be a non-zero commutative Banach ring
with identity. The spectrum M(A) is a nonempty, compact Hausdorff space.

Following Berkovich, let us introduce the valuation field associated to a

point of M(A).
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Definition 2.2.7. [3, 1.2.2 (i)] Let A be a commutative Banach ring with
identity. Let v € M(A). The kernel py of | |z is a closed prime ideal of
A. The value |f|; depends only on the residue class of f in A/py. The
resulting valuation on the integral domain A/py extends to a valuation | |,
on its fraction field F'. The closure of F with respect to the valuation is a
valuation field denoted by H(x). The image of an element f € A in H(x)
will be denoted by f(x).

Remark 2.2.8. Let A be a commutative Banach ring with identity. Let
x € M(A). Remark that |f(z)|s = |flz- Berkovich does not write the
subscript x and therefore denote | f(x)[. by |f(z)|. Thus x(f), [ |=(f) , [fls s
|f(x)|, and |f(z)| are well defined notations denoting the same real number
(see 2.2.5). Berkovich’s notation |f(x)| seems to be the best notation to use
and is the most used in the literature. In this text, we also use the notation

|fle-
The following is an other description of the spectrum M(A).

Fact 2.2.9. /3, 1.2.2 (ii)] Let K’ and K" two valuation fields. Two nonzero
bounded morphisms X' : A — K' and X" : A — K" are said to be equivalent if
there exist a valuation field K and a non zero bounded morphism x : A — K
and embeddings K — K' and K — K" such that the diagram

A

1N

K/ - K I K//
is commutative. The set M(A) coincides with the set of equivalence
classes of nonzero bounded morphism from A to a valuation field.

We have the following functorial fact.

Fact 2.2.10. /3, 1.2.2 (iii)[Any bounded morphism of commutative Banach
rings ¢ : A — B sending the identity to the identity induces a continuous
map ¢* : M(B) — M(A).

Let us introduce the notion of spectral radius of an element f in a Banach
ring A.

Definition 2.2.11. /3, 1.3/ Let A be a Banach ring and let f € A. The
numbers lim Hf”H% and inf Hf”H% exist and are equal. This number is
n—oo n

called the spectral radius of f and is denoted by p(f).
We have he following proposition.

Proposition 2.2.12. /3, 1.3.3] Let A be a Banach ring. The function f —
p(f), from A to R>o, is a bounded seminorm called the spectral norm.

Let us finish this section with the following proposition.
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Proposition 2.2.13. /3, 1.3.5] Suppose that A is a commutative Banach
algebra over a valuation field k, and let K be a finite Galois extension. The
group Gal(K/k) naturally acts on the right of M(A® K). Moreover we have
a bijection

M(A&LK)/Gal(K/k) ~ M(A)

k-affinoid spaces

Affinoid domains We fix a k-affinoid algebra A and we put X = M(A).

Definition 2.2.14. /3, 2.2.1] A closed subset V' C X is said to be an affinoid
domain in X if there exists a bounded homomorphism of k-affinoid algebras
¢ A — Ay satisfying the following universal property. Given o bounded
homomorphism of affinoid k-algebras A — B such that the image of M(B)
in X liesin V, there exits a unique bounded homomorphism Ay — B making

the diagram
\ A
B
commutative.
A closed subset of X which is finite union of affinoid domains is called a
special subsets of X.

A

We have the following proposition.
Proposition 2.2.15. /3, 2.2.}] Let V be an affinoid domain in X. Then

1. M(Ay) =~V ; in particular, the homomorphism A — Ay is uniquely
determined by V;

2. Ay is a flat A-algebra.
We can now introduce k-affinoid spaces.

Definition/Proposition 2.2.16. /3, 2.3/ For an open set U C X, we sel

F(U, Ox) = lim.Av,
<$—

where the limit is taken over all special subsets V C U.

This is a sheaf of ring on X and the stalk Ox,x ot a point x € X is a
local ring. The locally ringed space X obtained is called a k-affinoid space.
If A is strictly k-affinoid, X is called a strictly k-affinoid space.

The following is the definition of a morphism of k-affinoid spaces.
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Definition 2.2.17. A morphism of k-affinoid spaces X = M(A) - Y =
M(B) is a morphism of locally ringed spaces which comes from a bounded
morphism B — A

The category of k-affinoid spaces is antiequivalent to the category of k-
affinoid algebras. For any non Archimedean field K over k, we have a ground
field extension functor M(A) — M(ARK).

We refer to [3, 2.3] for many interesting results on k-affinoid spaces.

Shilov boundaries

We start with the definition of the Shilov boundary of a commutative Banach
k-algebra.

Definition/Proposition 2.2.18. /3, page 36] A closed subset ' of the spec-
trum of a commutative Banack k-algebra A is called a boundary if every
element of A has its mazimum in T'. The set of all boundaries is partially
ordered by inclusion, and it satisfies the conditions of Zorn’s Lemma. Hence,

there exist minimal boundaries. If there exists a unique minimal boundary,
it is said to be the Shilov boundary of A, and it is denoted by T'(A).

We are going to explain that the Shilov boundary of a strictly k-affinoid
algebra exists. That’s why we introduce the reduction map [3, 2.4] in the
following. Given a commutative Banach algebra A, the set

A ={feAlp(f) <1}

is a ring and

A = {f e Al plf) <1}

is an ideal in it. The residue ring A°/A° is denoted by A. Every mor-
phism of commutative Banach algebras ¢ : A — B induces ring morphisms
¢°; A° — B° and ¢ : A — B. In particular, for any point 2 € M(A) there is
a morphism X, : A — H(z). Because H(z) is a field, ker(x,) is a prime ideal
of A. Letting k(#) denote the fraction field of the ring A/ ker(X,), we obtain
an embedding of fields k(Z) — % and the following so-called reduction

map:

m: M(A) — spec(A)
x +— ker(xz)
We can now state the following important proposition.

Proposition 2.2.19. [3, 2.4.4] Let A be a strictly k-affinoid algebra. Set
X = M(A) , X =spec(A) and denote by Xgen the set of generic points of
the irreducible components of X. The following holds.
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1. The reduction map © : X — X is surjective.
2. For any T € Xgen, there ezists a unique point v € X with w(x) = .

3. The set W_I(Xgen) is the Shilov boundary of A (so by the previous
assertion, it is in bijection with Xgen ).

Holomorphically convex envelopes

We recall Berkovich’s notion of holomorphically convex envelope following
[3, 2.6].

Definition 2.2.20. Let X be a closed subset in o k-affinoid space X =
M(A). Let ||fllz = max |f|z- The set
x

Hol(X) = {z € X | |flz < [[flls for all f € A}
1s called the holomorphically conver envelope of ¥ in X.

If ¥ is a singleton {o} we simply write Hol(o) instead of Hol({c}).
We refer to [3, 2.6] for results on this notion.

2.2.3 k-analytic spaces

The category k — an of k-analytic space is defined by Berkovich in [3]. An
enlarged category is introduced in [4, §1|. In [4], analytic spaces correspond-
ing to ones defined in [3] are called good (see [18, §1.3]).

e A k-analytic space is a particular locally ringed space obtained by gluing
k-affinoid spaces. By [4, §1], these spaces are equipped with a Grothendieck
topology [23]|. The category of k-analytic spaces is denoted k — an.

e An analytic space over k is a K-analytic space for some non-Archimedean
field K over k. The corresponding category is denoted Any.

The notion of k-affinoid domains, k-analytic domains, open immersions
and closed immersions are defined in [4].

The category of k-affinoid spaces is a full subcategory of the category of
k-analytic spaces.

Proposition 2.2.21. The category of k-analytic spaces admits fibre products
and a final object: M(k).

Definition 2.2.22. A k-analytic group is a group k — an-object (see nota-
tions). A k-affinoid group is a k-analytic group whose underlying k-analytic
space 18 k-affinoid.

Let us now introduce a certain class of k-analytic space obtained from
schemes over k.
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Definition/Proposition 2.2.23. [3, §3.4] let X be a scheme of locally finite
type over k. Let ® be the functor from the category Any of analytic spaces
over k to the category of sets which associates to every analytic space X the
set of morphisms of k-ringed spaces Homy (X, X).

The functor ® is represented by k-analytic space X and a morphism
m: X — X. Moreover w is surjective and for any non-Archimedean field
K/k, there is a bijection X" (K) ~ X (K).

The k-analytic space X is called the analytification of X.

Let us describe the analytifaction explicitly.

Proposition 2.2.24. [3, 3.4.2] If X = spec(A), where A is a finitely gener-
ated ring over k, then the underlying topological space X*™ coincides with the
set of all multiplicative seminorms on A whose restriction to k is the norm
on k.

If X is arbitrary, X" (as a set) can be described as follows. The set
U X(K), where the union is over oll non-Archimedean extension of k, is
Kk
endowed with the following equivalence relation. If ' € X(K') and 2" €
X(K"), then ' ~ x" if there is a non-Archimedean field K and embeddings
K — K' and K — K" such that the points ' and x" come from the same
point of X(K). Then X coincides with the set of such equivalence classes.

We want to make a remark about k-analytic spaces.

Remark 2.2.25. In the beginning of the section we have written that a gen-
eral k-analytic space is a particular locally ringed space obtained by gluing
k-affinoid spaces. One could try to do a parallel with the definition of o gen-
eral scheme by gluing affine schemes. This parallel could not be deeper than
the previous semantic comparison: the analytifcation of an affine k-scheme
1s absolutely not in general a k-affinoid space. However, the analytification
functor enjoys many properties [3, 3.4.3 , 3.4.6].

If K/k is an affinoid extension, and X is a k-analytic space, we denote
by prgj the canonical morphism X xj_q, M(K) — X coming from the
cartesian square

X Xk—an M(K) HM(K)

| |

X M(k)
where M(K) — M(k) is the map induced by the morphism of k-affinoid
algebra £ — K, and X — M(k) is the canonical morphism of k-analytic
spaces X — M (k) (recall that M (k) is the final object in k — an). The map
Pri /i, between underlying set is surjective.

If K/k is a finite Galois extension and X is a k-analytic space, the group
Gal(K/k) acts naturally on the right of X x vy M(K) as follows.
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Let v € Gal(K/k), v is a morphism of k-algebras from K to K. It is
a morphism of k-affinoid algebras, so it induces a morphism of k-affinoid
spaces v : M(K) - M(K). Let Idx denote the identity of X. We get a
canonical automorphism of k-analytic spaces

Idx XM(k) 7V X X M(k) M(K) —- X X M(k) M(K)
This is a right action.

Proposition 2.2.26. [3/ Let X be a k-analytic space and let K/k be a finite
Galois extension, let Gal(K/k) act on X Xg—an M(K). Then pri . induces
an isomorphism (X Xp_qn M(K))/Gal(K/k) ~ X.

We deduce easily the following corollary.

Corollary 2.2.27. With the same notations as 2.2.26, let Dk be a sub-
set of X Xp—an M(K) then Dy is Gal(K/k)-stable if and only if pri, o
prir(Di) = Dk

We now get a very important descent theorem, this is due to Rémy-
Thuillier-Werner.

Theorem 2.2.28. /33, Appendiz A] Let X be a k-affinoid space. Let K
be a k-affinoid extension. Let D be a subset of X, then D is a k-affinoid
domain of X if and only if the subset pr[_(}k(D) 1s a K-affinoid domain in
X Xk—an M(K)

In this text, we are going to construct k-affinoid groups by descent of
K-affinoid groups, where K/k is a certain finite extension. The K-affinoid
groups are constructed from K°-group scheme by the process of taking "the
generic fiber of the formal completion along the special fiber". The following
is precisely what we need, it is extracted from Rémy-Thuillier-Werner’s work
[33, 1.2.4] and Thuillier’s thesis |38, 2.1.1] (see also [3, 5.3.2]).

Definition/Proposition 2.2.29. Let 2 be a flat topologically finitely pre-
sented k°-algebra whose spectrum we denote X. Let X = spec(U @po k) be
the generic fibre of X. The map

lla : A @po k = Rsp, a— Inf{|A|| € kX anda e A(A®1)}

is a norm on A Qre k. The Banach algebra A obtained by completion is
a strictly k-affinoid algebra whose spectrum is denoted by .’%7 and is called
the generic fibre of the formal completion of X along its special fibre. This
affinoid space is naturally an affinoid domain in X" (whose points are mul-
tiplicative seminorms on AR k which are bounded with respect to the semi-
norm |.|s).

Moreover, there is a reduction map T : :%77 — X Xpo k defined as follows:
a point T in :%77 gives a sequence of ring homomorphisms:
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—

whose kernel T(x) defines a prime ideal of A Qo l;:, i.e a point in X Xpo k.

If the scheme X is integrally closed in its generic fibre — in particular
if X is smooth — then T is the reduction map of Berkovich (see 2.2.2 or [3,
2.4]). And so the Shilov Boundary of %77 15 @n bijection with the irreducible
components of the special fibre X X o k. Moreover, the spectral norm p (see
2.2.12) on A is egal to | |o if and only if the algebra A Qo k is reduced [38,
Proposition 2.1.1].

Let us state an other result in this area.
Lemma 2.2.30. Let 2 be a flat k°-algebra of finite type such that
1. spec(2l) is a smooth k°-scheme

2. spec() xpo k is irreducible

—

Then the Shilov boundary of spec(), is egal to the norm | |y (see 2.2.29).

Proof. By 2.2.29, Shi(s@l)n) is a singleton. By 2.1.2, A ®o k is reduced,

thus by 2.2.29, | | is the spectral norm. This implies that Shi(sp/ec@[)n) =
| | (see [3, page 26], see also |33, proof of 2.4(ii)]).
[

We now show that being Galois stable is preserved by taking the generic
fiber of the formal completion along the special fibre. We prove it under
somes conditions.

Proposition 2.2.31. Let K/k be a finite Galois extension. Let X = spec(A)
be an affine k-scheme of finite type and let X = spec(2l) be a smooth, flat K°-
scheme of finite type such that X X o K = X x; K and such that X X o K
is irreducible with a reduced K -algebra. Suppose 2 is a stable Gal(K/k)-
stable subalgebra of Ay K. Then the generic fibre of the formal completion
of X along its special fibre is a Gal(K/k)-stable K-affinoid domain in of
X Xk—an M(K)

Proof. Let | |, € .’%77 C X Xp—qn M(K), it is a seminorm on A ®j K bounded
by | |a- Recall that Gal(K/k) acts on the right of X Xg_g M(K). Let
v € Gal(K/k), we need to show that | |,.y stay in .’%n. Let f € A®y K, then
(| 1z-7)(f) = |7-f|z- By definition of | |z, we have |y.f|z < |v.f|a. Since A
is Gal(K/k) stable in A ®; K, we have 7.2 = 2 for all v € Gal(K/k) and
we deduce the following.
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lv.fla= inf {|I\| | 7.feA ARk K}
AKX

= inf {|\ | fey ' ACARK K}
AEK X

= inf {|]A | feACARK- K}
AEK X

= |fla

Consequently, we have (Ie-)(f) = 1v-fle < |v-fla = |fla- Thus | |z.y <
| |2, and so (| [z.7) € X, as required.
O

We will also need the following proposition, to ensure that certain k-
affinoid spaces are k-affinoid groups.

Proposition 2.2.32. Let G be a k-analytic group, let K/k be an affinoid
extension, let Hi be a k-affinoid subgroup of G Xp—_qn M(K), let H =
er/k(HK), if it 1s a k-affinoid domain of G then it is a k-affinoid subgroup
of G.

Proof. Let m : G Xg_q, G — G be the multiplication map and inv: G — G
the inversion map comming from the group-structure on G. We have to
show that the restriction maps m : H Xg_qn H — G and inv : H — G
factor through H. Consider the following diagram whose four squares are

commutative:

p Gr x Gk n Gk

HX\ ” H\p
G x G - G

Let x be in H x H, it is enough to show that there is y in H such that
moi(z) =1i(y). Let z in Hg x Hg such that p(z) = x, then

moi(x) =mopoi(z) =pomoi(z) =poiom(z) =iopom(z)

So y = pom(z) works. The same argument works for inv.
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2.3 Bruhat-Tits buildings and Moy-Prasad filtra-
tions

Let G be a connected reductive group over a complete non archimedean
field k. Bruhat and Tits defined a combinatoric structure called the reduced
Bruhat-Tits building BT®(G, k). Tt is an euclidean building in the sense of
Rousseau [36], in particular it is a topological space with a metric and facets,
walls and vertices are defined, moreover we have a notion of special points.
We do not recall these definitions here. If k is discretly valued, BT?(G, k) is
a polysimplicial complex. In this situation a facet is a polysimplex. Bruhat
and Tits also defined the enlarged Bruhat-Tits building BT (G, k) of G.
The enlarged building BT¥(G, k) is the direct product of BT¥(G, k) by a
real affine space of dimension depending on the split rank of the center of
G. There is a natural projection BTY(G,k) — BTH(G,k). The group
G(k) of rational points of G acts on BT®(G, k) and BT(G, k), and the
natural projection is G(k)-equivariant. To certain subsets Q of BTR(G, k),
Bruhat-Tits associated a canonical smooth group scheme &g over k°, Bq
has the property that ®q(k°) is the stabilizer of the preimage of €2 under the
projection BT?(G, k) — BT®(G, k). In this paper we only consider the case
where © = {z} is a singleton, in this case B¢ is well-defined and is denoted
;. If G is defined over a non archimedean local field k, Rousseau [35]
proved that for each extension K/k of non archimedean local fields there is
a canonical injective map BTH(G, k) — BT®(G, K) which is continous and
G (k)-equivariant. This induces the same property for enlarged buildings.

Definition 2.3.1. A point x € BTR(G, k) is called rational if there exists a
finite extension k'/k such that

1. iy i(z) is a special point of BTE(G, k),
2. G is split over k',

The set of rational points is denoted BTE, (G, k).

rat

Proposition 2.3.2. The set BTE, (G, k) is a dense subset of BT®(G, k).

Proof. Remark first that if G is split over k, it is obvious that BTZ (G, k)
is dense in BTT(G, k), since for any maximal split torus S over k and
any finite extension K/k, the appartement A%(G,S)/K is obtained from
AR(G, S)/k adding regularly e(K, k) times more walls. Let us now prove
the proposition. It is enough to show that for any maximal split torus S
of G over k, AR (G,S) is dense in A®(G,S). Let L be a finite Galois
extension such that G is split over L. By [9, 4.1.1,4.1.2,5.1.12], there ex-
ists a torus T' D S defined over k such that T x; L is a maximal split
torus of G xj L. There exists a facet I in A®(G, T)/L which is Gal(L/k)-
stable. The barycentre x of F is Gal(L/k)-stable and so = € A(G,S)/k
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(since (AR(G,T)/L)G2L/R) = AR(G,S)/k). By [16, §6.3.4, lines 8-9], the
point x becomes special over a finite extension K/L. So we have proved
that there exists one rational point = in A®(G,S). Now the set of points
{g.x | g € S(k)} consists in a dense subset of A¥(G,S) constitued of rational
points. Indeed, let us first show that this set consists in rational points. So let
g € S(k), there exists a finite extension K/L such that g € S(K). The point
x is special in the building BTT(G, K) (since G is split over L and x is special
in the building BT®(G, L)), so g.z is special in BT®(G, K). By definition
T(k) acts on AR(G,T)/L by translation (the translation vector v associated
to t € T(k) is given by the usual formula "< v, >= —ord(a(t)) Vo', see [9,
4.2.3(1)]) and for any g € S(k) C T(k), we have g.x € AR(G,S)/k, so g.x is
a rational point in BT (G, k). Since ord(k) is dense in R, {g.z | g € S(k)}
is dense in A®(G,S). The propositon follows.

O

In an appendix at the end of this document, we produce a discussion on
the notion of rational points.

Following |33, 1.1| we refer to [17, Ezposés XIX to XXVI| for group
schemes and theirs properties. A Demazure k°- group scheme is a connected
and split reductive k°-group scheme (see [3, 1.1.2]).

Proposition 2.3.3. /33, end of page 15] [9, 4.6.22] If G is split over k and
x is a special point, then &, is a Demazure group scheme and &, Xpo k = G.
Moreover &, is smooth and its special fibre is irreducible (Thus by 2.1.2, it
1s flat over k° and the l;:—algebm of its special fibre is reduced).

To any point € BTT(G, k) and any r € R>g A. Moy and G. Prasad

attached a compact subgroup G(k)MF c G(k), they also introduced a sub-
group g(k)%rp of the Lie algebra g(k). If v/ > r then G(k)M c G(k)MF,
we thus get filtrations. We refer to Moy-Prasad original articles [29] [30] for
the original definition of Moy-Prasad filtrations in the general case. We refer
to [41] for a current and contemporary definition of these filtrations, with
suitable normalizations, they are defined there only if G split over a tamely
ramified extension. See also [43, 0.4] and [42]| for important commentaries,

informations and works that one should know about Moy-Prasad filtrations.

Fact 2.3.4. [41, line 36 page 588] [27, line 15 page 278] Let r > 0 and
z € BTE(G, k) and assume G split over a tamely ramified extension, then for
any finite tamely ramified extension E/k, GMP(E),, N G(k) = GMP (k).

2.4 Definitions and first properties of analytic fil-
trations

Recall that k is a finite extension of Q,.
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2.4.1 Notions of potentially Demazure objects

Let G = spec(A) be a connected reductive k-group scheme. Let G*" be the k-
analytic group associated to G by analytification. B. Rémy, A. Thuillier and
A. Werner [33] have introduced the notion of potentially k-affinoid Demazure
subgroup of G*". We also introduce a related notion of rational potentially
k-affinoid Demazure subgroup of G**.

Definition 2.4.1. A k-affinoid subgroup H of G is called a k-affinoid
Demazure subgroup of G if there is a Demazure k°-group scheme & with
generic fibre G and such that H is the generic fibre of the formal completion
of & along its special fibre, t.e. H = @57,. A k-affinoid subgroup H is called
potentially of Demazure type if there is a k-affinoid extension K such that
H Xp_gn M(K) is a K-affinoid Demazure subgroup of G Xj_an M(K).
A potentially k-affinoid Demazure subgroup of G is called a rational po-
tentially k-affinoid Demazure subgroup if the extension K/k can be choosen
finite.

Proposition 2.4.2. [33] [19] Let H be a potentially k-affinoid Demazure
subgroup of G**. Then

1. The Shilov Boundary of H is reduced to a point op.

2. The underlying k-affinoid domain of H is the holomorphically conver
envelope of ogr.

Definition 2.4.1 and Proposition 2.4.2 give birth naturally to the following
notions.

Definition 2.4.3. Let x be a point in G".

o [t is a Demazure point if its holomorphically convex envelope in G is
a k-affinoid Demazure subgroup of G.

e [t is a potentially Demazure point if its holomorphically convex envelope
mn G 1s a potentially k-affinoid Demazure subgroup of G".

e [t is a rational potentially Demazure point if its holomorphically convex
envelope in G is o rational potentially k-affinoid Demazure subgroup of
GCLTL.

We denote by Dem(G),D/cyn(G’),M(G) the corresponding subsets of
G of course the following inclusions hold

Dem(G) C Dem(G) C D/c?n(G) c G,

As we are going to explain in the following, Rémy-Thuillier-Werner [33]
(sometimes following certain ideas of Berkovich [3, Chapter 5|) proved that
the reduced Bruhat-Tits building BT¥(G, k) of a conneted reductive group

over a non archimedean local field k canonically embeds in @(G). Thuil-
lier gave a non published characterization of BTE(G, k) inside Dem(G).
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For each x € Dem(G) and each positive real rational number 7 in Q>o,
using the notion of congruence subgroup, we are going to introduce a point
O(x,r) € G, whose holomorphically convex envelope is a subanalytic group
of the holomorphically convex envelope of z. For each x € Dem(G), the
map Qs¢ — G, x — 0(z,r) is continous. We have BT®(G, k)N Dem(G) =
BTZ,(G, k) and we will prove that the otained map (BTZ(G, k)NDem(G)) x
Q>0 — G is continous and injective. By density, we get a continous and
injective map BT®(G, k) x R>g — G®*. The image of this map forms a cone

in G whose basis is BTT(G, k) and vertex is the neutral element of G.

2.4.2 Filtrations of rational potentially Demazure k-affinoid
groups

Let k denote a finite extension of @, and G be a connected reductive k-group
scheme. For each x € Dem(G) and each positive real rational number in
Q>0, using the notion of congruence subgroup, we are going to introduce a
point (z,r) € G* whose holomorphically convex envelope is a k-affinoid
subgroup of the holomorphicaly convex envelope of z. We start by a partic-
ular case.

The split rational case

Assume G is split and let  be a Demazure point in G**. Let & be the k°-
Demazure group scheme such that H := Hol(x) = QAﬁn. Let T be a maximal
k°-split torus of & and ® be the corresponding set of roots. Let 9 be a
Borel subgroup such that ¥ is a Levi component of 8. Let ®~,®* be the
corresponding sets of negative and positive roots. For each a € @, we have
a canonical k°-root subgroup 4, C &. Choose an ordering on ®~, ®*, then
the multiplication morphism of £°-schemes

H o Xpo T Xpo H Uy — & (2.3)
acd— acdt

is an open immersion. Its image, which does not depend on the choice of the
ordering, is denoted 2 and is called the grosse cellule of &. Taking generic
fibres, we obtain similar objects for G. The objects

T := T Xgpec(ke) spec(k)
Ua = Uq X spec(k°) spec(k)
B := B Xgpec(ko) spec(k)
are respectively a maximal split torus, a roots subgroup, and a Borel sub-

group of G = & Xgpec(ko) SPec(k). We can identify canonically @ with the
set of roots associated to G,T. Moreover (2.3) induces an open immersion
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I] UaxxTxi J] Ua—G

acd— acdt

whose image, independent of the ordering, is denoted €2 and is called the
grosse cellule of G. We can identify  and © Xgpec(ko) spec(k). The grosse
cellule () is affine and the open immersion 2 — G corresponds to an injective
morphism of Hopf algebras from Hopf(G) to Hopf(£2) (see [3, line 24 page
103]. We are going to construct k-affinoid subgroups H, of Hol(z) satisfying
that Shi(H,) € G is a singleton. So Shi(H,) will appear as a function on
Hopf(G), the Hopf algebra of G. We will show that Shi(H,) can be seen
as a function on the Hopf algebra of Q. This leads us to study firstly Hopf
algebras of various affine group schemes.

The torus ¥ is split so it is isomorphic to (G,,/k°)® for some integer s.
Fix an isomorphism

T ~spec(k®[X1,..., Xs, Y1,...,Ys]/(X;Yi=1for 1 <i<3s)).

Fix an integral Chevalley basis of Lie(®, k°), it induces, for each root o € P,
a k°-isomorphism U, ~ Gggq, where Ggyqq is the additive group over k°.
Thus we have fixed an isomorphism i, ~ spec(k°[Z,]), i.e. we have fixed
an isomorphism Hopf(8,) ~ k°[Z,], for any root a.

Recall that ord is a valuation on k such that ord(my) = 1 for any uni-
formizer m;, of k (see notations). Let r € Z>g, and consider the r-th congru-
ence k°-group scheme I',. (&) (see 2.1.11). By [43] we have an open immersion

II Trtta) xio Tn(T) e J] Tr(tha) = Tn(®), (2.4)

aed— acdt

its image does not depend on the ordering and is I',(£2).

Definition/Proposition 2.4.4. Using the process given in 2.2.29, let H, be
FT(QS)W the generic fiber of the formal completion of T'r(®) along its special
fiber. We have

o —

1. I’r(@)n s a k-affinoid subgroup of H

2. Its Shilov Boundary Shi(H,) is reduced to a point.

o —

Proof. If r = 0, Fr((’5)n is just H and the proposition follows from Propo-
sition 2.4.2. If r > 0, by 2.1.16, T',(®) is a smooth (and thus flat by 2.1.2)
k°-scheme of finite type. Moreover its special fibre I',.(&) X o k is irreducible.

—

So by 2.2.29, I';(®), is a k-affinoid group and the Shilov Boundary of I' (&),
is in bijection with the irreductible component of the special fiber of T',(&).

So Shi(lf(g)n) is a singleton. O
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Proposition 2.4.5. Let A, A’ be two k°-subalgebra of Hopf(G) such that
& = spec(2A) and &' = spec(A) are two Demazure k°-group scheme with
generic fibers G (recall that G is split).

If @n = 65\’,7 (equality in G*"), then A = 2.

Proof. By 2.4.4, @577 and 65\’,7 are two k-affinoid domain in G** whose Shilov

boundaries are singletons. By 2.2.30, we thus have Shi(@\’n) = Shi(@n) =

| | = | |or. By definition, | |9 is a norm on Hopf(G) given by the formula

|fla = /\inkf {IAl] f € (A ®1)}. The valuation of k is discrete, so we have
e X

fedeole{rek® [Ferx@@ D}« inf {A[feXADD} <1 & [fla<l,

Similarly we have f € A" < [flor < 1. So finally f € A & f € A, as
required.
O

In order to give an explicit description of Shi(H, ), we need to study the
Hopf algebra of I',(2). We start by studying the Hopf algebra of €.

Since
Q=[] UaxaTxx [] Vs
acd— acdt
we obtain
Hopf () = (X) Hopf(Us) @) Hopf(T) @, (X) Hopf(Ua).
acd— acdt

The torus T is egal to T Xyo k. The previously fixed isomorphism
T ~spec(k®[X1,..., Xs, Y1,..., Y] /(X;Yi =1 for 1 <i<3s)).
induces a similar isomorphism over k for 7. The set!
{X*Y! |kl eN;k#0=1=0}

is a basis of the k-vector space k[X,Y]/XY — 1. We need an other basis of
Hopf(Gyy,), "centered at unity". The set

{(X-DFY -1 EkIleN;kE#0=1=0}

'Remark that the condition (k # 0 = [ = 0) is equivalent to the condition (k = 0 or
[ =0), it is also equivalent to the condition (I # 0 = k = 0) and to the condition (—=(k # 0
and ! # 0)). So it is a symmetric condition. The algebra k[X,Y]/XY — 1 is sometimes
written k[X, X '] and X7Z is a k-basis of the underlying vector space. Similar remarks
about this kind of conditions apply in the following. Remark also that k denote a field
and also an integer, it is not a problem.
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is a basis of the k-vector space k[X,Y]/XY — 1.

The previously fixed isomorphisms {Hopf(ty) ~ k°[Z,]}aes induce iso-
morphisms Hopf (U, ) ~ k[Z,]. We identify the corresponding objects. The
set {Z,™ | mq € Z>0} is a basis of the k-vector space Hopf(U,). These
considerations allow us to fix an isomorphism

Hopf(Q) =~ | Q) k[Za] | @& <®k[Xi,m/Xm - 1) @ | Q) klZa))

acd— i=1 acdt
=~ k[le s 7X57Y17- . -7}/;% {Za}aeq)]/(X’L}/Z - 17 1<:< S)

Moreover the set

{(JIx-DR@=0k I 2a™ | kiyliyma € NiVL <i < s,k # 0= [; = 0}
i=1 acd

is a k-basis of the k-vector space Hopf(€2). So given f € Hopf(2), f can be

written uniquely as

S

f= > Uy kol dsmaacd | [(X — DR (Y = D% [T 20 .

k1yeesksyl1yesls,maa€d i=1 acd

In order to simplify the notation, we denote a parameter
ki,....ks, l1,...,ls,ma, a0 € D with k;,l;, mq € Nj k5 75 0 = l; = 0 by the

symbol w, and U the set of all such parameters. Moreover, the element
S

[[xi—0)k(v;—1)% T] Zi= is denoted by the symbol (X — 1)(Y - 1)2)".
=1 acd
With these conventions, an element f € Hopf(Q2) is written uniquely as

F=> a (X -1 -1)2)"

uelU
Since
H F Xko Xk.o H F
acd— acdt
we obtain
Hopf (T ® Hopf (T, (L)) @go Hopf (T'(%)) Qe ® Hopf (T, (4y))
acd— ] acdt

Using 2.1.10 , we have
HOpf(Fr(ﬂa)) =k° [ﬂ—k_TZa]

and
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Hopf(T(T)) = k°[x " (X1 — 1),..., 7, " (Xs — 1), 7" (Y1 — 1),..., 7, " (Vs — 1)] C Hopf(T).

Finally, we get the formula
Hopf(T'(2)) = k°[{m, " Za}aca, {m, " (Xi = 1), m" (Vi — D h<i<s] C Hopf(Q).

Proposition 2.4.6. With the same notations as in 2.4.4, Shi(H,) is a norm
on Hopf(G) inside G*. The point Shi(H,) belongs to Q" and corresponds
to a norm on Hopf(Q2). The norm Shi(H,) factorizes trough the canonical in-
jective morphism of Hopf algebras Hopf(G) — Hopf(S2). The corresponding
norm on Hopf(Q) is explicitely given, using the notations introduced previ-
ously, by the following formula

HOpf(Q) — RZO

E a, (X =1)(Y =1)2)" — max |y |e™"Y
ue
uelU

where |u| is egaltok1+...+ks+l1+...+ls+zma.

o —

Proof. By 2.44, Shi(If(g)) € I'(®) is the unique point such that the re-

duction map sends to the generic point of T';(&) Xgpec(ro) spec(k). Let z

denote the generic point of I';(&) Xgpec(ko) spec(k). The closure T of x is egal

to I'(®) Xgpec(ke) sPec(k). The special fibre ' () Xpec(re) spec(k) is open
in I';(6) (and non empty), consequently z is contained in I'r(£2) Xgpec(ko)

spec(k). Indeed, assume z ¢ T',(Q) X spec(k°) spec(k), then x is contained
in the closed subset ' (&) Xgpec(ko) spec(k) \ I'»(Q) X spec(k°) spec(k), and so

T # I'(6) Xgpec(ke) spec(k), this is a contradiction. So z is contained in

[ () Xgpec(ko) spec(k). The commutative diagram

Ly

FT(Q)’r] — FT‘(Q) X spec(k°) Spec(%) >

|

—_—
FT(6)7]
whose vertical arrows are inclusions shows that

Shi(T,(8)) = g (x) € [ (2),,

T jod

- Fr(®) X spec(k®) spec(k)

So Shi((T(®)) = Shi(T(Q),).

By 2.2.29 and 2.2.30, Shi(@n) is the norm | [gope(r, (@)) on Hopf($2)
given as follows.
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For f € Hopf(Q), write f = Z a, (X —1)(Y —1)2)".
uceU
| flopt(r,(2)) = Inf{|A| [ A € k and f € A(Hopf(I'»(2) ® 1)}
=inf{|A\| | A € k and a, € A(m,")"E° Vu e U}
= inf{|A| | A € k and |a,| < |A||7. " Vu € U}
= inf{|A] | A € k and |a,||=}|™ < |\ Vue U}

_ v lul
glgg\aullﬂkl

= max]a, e
uelU

This ends the proof. O

Let’s show that H, is determined by its Shilov boundary point.

Proposition 2.4.7. With the previously introduced notations, the k-affinoid
group H, is the holomorphically convex envelope of Shi(H,).

Proof. Put oy, = Shi(H,). The point op, is a norm on Hopf(G) that we
also denote | |5, . Recall that the holomorphically convex envelope of og,
is

Hol(om,) ={x € G | |fle <|floy, V[ €Hopf(G) }.

By 2.2.29 and 2.2.30, the k-affinoid algebra A, of H, is the completion
of Hopf(G) relatively to the norm | |5, . Let i denote the natural cor-
responding injective k-algebras morphism Hopf(G) — A,. The inclusion
H, = M(A,, ) C G™ is given by

v M(Agy ) = G
| e =] lzod.

Since M(Ag, ) is the set of all multiplicative bounded seminorm on A, ,
t(M(Asy, ) is contained in the holomorphically convex envelope of o, .
Reciprocally, let € Hol(on,), * = | | is a multiplicative seminorm
Hopf(G) — Rxq such that |f|.<|flsy, ~ Vf € Hopf(G). Since A, is the
completion of Hopf(G), = induces a multiplicative seminorm on .4, bounded
by og,. This ends the proof. O

The general case

Lemma 2.4.8. Let k be an algebraic closure of k. Let r € Q. Let H be
a rational potentially k-affinoid Demazure subgroup of G*". There exists a
finite Galois extension K/k in k such that:

105



o r € ord(K)
o H Xy_gn M(K) is a K—affinoid Demazure subgroup of G Xg.gn

Proof. By definition, there exists a finite extension L/k, such that H X v
M(L) is a L-affinoid Demazure subgroup of G x pq) M(L). There exists
a finite extension E/k, such that » € ord(E). Let K be a finite Galois
extension of k such that L, E C K, it obviously exists. Then K satisfies the
required properties since being potentially k-affinoid Demazure subgroup is
stable by finite base change. O

Definition 2.4.9. Let H be a rational potentially k-affinoid Demazure sub-
group of G and r € Q>o. Let K be a finile extension as in the previous

lAemma. Let & be the Demazure K°-group scheme such that H X g.gnM(K) =
®,. We assume that the Hopf K°-algebra A of & is Gal(K/k)-stable.

Then, pose H, = er/k(Fe(K,k)T((’j)n), the projection of the generic fibre
of the formal completion along the special fibre of the e(K, k)r-th congruence
subgroup of &.

We have the following proposition.
Proposition 2.4.10. We have

1. In definition 2.4.9, H, is independant of the choice of K.

2. Hy=H

3. H, is a k-affinoid subgroup of G, it is a k-affinoid subgroup of H.
Proof. We first prove (3), then (1) and then (2). By 2.1.12,2.1.10 and
2.2.31, (i yr(®)y is Gal(K/k)-stable in G X pq() M(K). Consequently,
2.2.27 shows that pr%}k(er/k(Fe(Kk)T((’j)n)) = Fe(Kk)r(@)n' So by Theo-
rem 2.2.28, pryc /i (Ue(x k) (®)) is a k-affinoid domain in G*". By Proposition
2.2.32, er/k(Fe(mﬁ)) is a k-affinoid group. This finishes (3). Let us now

show that er/k(Fe(mﬁ)) does not depend on the choice of the exten-
sion. So let K and K’ be two extensions satisfying the conditions of Lemma
24.8. Let & /K° and &’ /K'® be the integral Demazure group schemes
such that H X ) M(K) = (/’577 and H X pq) M(K') = @\’n. Let K" be
a finite Galois extension such that K, K’ C K”. We have equalities (in
(G X pm(y M(K™)))

H X iy MK") = (H X pqiy M(E)) X pqizey MIE") = & X pqc) M(K")
= (H X pmy M(K")) X paeery M(K") = &) X pq(iey M(K”)
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and

8, X pm(x) M(K") = (& X K,

&y X piicry M(K") = (&' x g0 K"°),

We thus get an equality (& m”o)n ~ (&' @K”O)n. Using 2.4.5,
we deduce an equality & X o K"° = &' x g K"° let &” denote this K°-
Demazure-group scheme.

By PI‘OpOSitiOIl 2].]_5, Fe(K”,k)T(® X Ko K”O) = Fe(K,k)r(ﬁ) X Ko K", So

—

To(scr pyr (®"), = Fe(mé)n X () M(K"). We deduce that

er”/K(Fe(K”,k)r(®”)n) = Fe(K,k)r(ﬁ)n-

—

However, er”/k(Fe(KTJ—c)T(GjH)n) = er/k(er”/K(Fe(K”,k)r(QjH)n))-

So eru/k(Fe(Km@”)n) = er/k(Fe(K/Jg)T(QS)n). By symmetry, we get
er///k@e(@@")n) = b (Ceqrer i (8, )- 80 Prcp(Te(rop (©),) =
er//k(Fe(K/yk)r(Qi’)n), and (1) is proved. Let K/k be a finite Galois exten-

sion such that H x yq) M(K) is a Demazure K °-affinoid group scheme QAS,I.
Then

o —

I'o(6),)
6

= er/k( n)

Hy = prig;(

So (2) is proved and the proof ends here.

We now have a fundamental result.

Proposition 2.4.11. Let H be a rational potentially k-affinoid Demazure
group. Let K/k and & be objects such that H Xy M(K) =~ &, (see

definition 2.4.9). Let ngK’k)r be the K°-algebra of Tc(x ), (®).

1. The Shilov boundary of H, is reduced to a point o,
2. The map

‘ |Ql§(K . :HOpf(G Xk K) — RZO
f Ag{fxw | f € MLk ® 1) C Hopf (G x, K)}.
is a norm on Hopf(G x K), moreover
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‘ | ‘Hopf(G): Shi(Hr)'

QléiK,k)r
3. The k-affinoid algebra of H, is the completion of Hopf(G) relatively to

the norm | |Ql§(K,k)r \Hopf((;).

4. H, 1s the holomorphically convex envelope of o, .

5. Shi(Hol(og,)) = om, and Hol(Shi(H,)) = H,.

Proof. 1. The Shilov boundary of deqj)n is a singleton by the split

rational case (see 2.4.4). The Shilov boundary of Fe(K,k)r(Qj)n surjects

onto the Shilov boundary of H, by [3, 1.4.5 proof], and so the Shilov
boundary of H, is a singleton.

2. By 2.4.6 the map | |yx is a norm on Hopf(G x; K). By 2.2.29 and

e(K,k)r

2:2.30, | |y, s the Shilov boundary of To(rciyr(®),. The Shiloy

boundary of H, is egal to er/k(Shi(Fe(mﬁ)n)) and pryy, is real-
ized by the restriction map of functions from Hopf(G X gpec(r) spec(K))
to Hopf(G). This explains both assertions.

3. We have already prove it in the "split rational case". We adapt the
argument given by [33, proof of 2.4 (ii)] to descent this result. Let Ag,
be the k-affinoid algebra of H,.. Since Apg, is reduced, the norm of Ag,
coincides with the spectral norm |3, 2.1.4| of Ag,, and so it is egal to
| log, since oy, = Shi(H,). Let Hopf(G)| o5 be the completion of
Hopf(G) relatively to the norm | |5, . The injective morphism of k-
algebras i : Hopf(G) — Ag, (corresponding to H, C G*"), extends to
an isometric embedding 7 : Hopf(G)| o _, Ap,. Let Ag, 00 M(K)
be the K-affinoid algebra of H, X pqx) M(K). By definition Hy. X pqx)
M(K) is egal to Fe(k,k)r(ﬁ)n (6 is the K°-Demazure group scheme
used to define H,). So, by the rational split case,

‘ ‘UH7~><M(,€)M(K)

AHTXM(k)M(K) = HOpf(G Xk K)

r

other words Hopf(G) ®; K is dense in Ay, @, K. Tt follows that i@y K :
Hopf(G)| o, ®rK — Ay, ®1K is an isomorphism of Banach algebras,
hence Hopf(G)‘ o _ Apg,. by [3, Lemma A.5].

In particular Hopf(G xj K) is dense in AHrXM(k)M(K) = Ag.. In

4. Following the "split rational case " (see 2.4.7), this is a consequence
of the previous assertion. Let us write it. By the previous assertion,
the k-affinoid algebra A, of H, is the completion of Hopf(G) relatively
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to the norm | |5, . Let i denote the natural corresponding inclusion
Hopf(G) = Ap,. The inclusion H, = M(Ay,, ) C G is given by

v M(Agy, ) — G
| le =] lsod.

Since M( Ay, ) is the set of all multiplicative bounded seminorms on
Aoy, t(M(Asy, ) is contained in the holomorphically convex enve-
lope of op,. Reciprocally, let 2 € Hol(og, ), = is a multiplicative semi-
norm Hopf(G) — Rxq such that |f|.<[f|s,, V[ € Hopf(G). Since A,
is the completion of Hopf(G), z induces a multiplicative seminorm on
A, bounded by op,. This ends the proof.

5. These are obvious consequences of the previous assertions.

Remark 2.4.12. Ifr > s € Q>9, H, ; H,.

Proof. This is an easy consequence of the definition taking the K-points for
any sufficiently big extension K/k. O

Proposition 2.4.13. The map Q>9 — G, r — oq, is continous.

Proof. One can adapt the proof of 2.5.7.

2.4.3 Filtrations of Lie algebra

Let g be the k-Lie algebra of G it is a a k-scheme. In this section we
define k-affinoid groups h, C g%", for any rational potentially Demazure k-
affinoid subgroup H and any r € Q>g. So let H be a rational potentially
Demazure k-affinoid subgroup of G and r € Q>¢. In 2.4.9, we have defined
an analytic group H,. In order to define H,, we have choosen a certain
extension K/k (see 2.4.9). Let & the K°-Demazure group scheme such
that H X ) M(K) = Q/Sn. Let Te(g p)r(8) be the e(K, k)r-th congruence
subgroup of I'. Let Lie(T'¢(x 1), (®)) be its K°-Lie algebra, it is in particular
a K°-group scheme, it is a smooth (and thus flat by 2.1.2) group scheme
over K°, its special fibre is irreducible with reduced K -algebra. We denote
by pri; the canonical map g*" Xy-an M(K) — g*".

Definition 2.4.14. With the previously introduced notations, we put
br = PTk/k (Lie(re(K,k)r(ﬁ)L):

the projection of the generic fibre of the formal completion along its special
fibre of Lie(L'e(k 1) (&)).
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Proposition 2.4.15. With the previously introduced notations, b, is a k-
affinoid domain of g*", it is a k-affinoid group, moreover

1. The Shilov boundary of b, is reduced to a point oy, and is egal to

| |Hopf(Lie(Fe(K’k)r)) ’Hopf(g)'
2. Hol(oy,) = by

3. The k-affinoid algebra of b, is the completion of Hopf(g) relatively to
the norm | [Hopt(Lie(T (s 1), (6))) [Hopt(g)-

Proof. The proof is similar to that of Proposition 2.4.11. O

2.5 Filtrations associated to points in the Bruhat-
Tits building

2.5.1 Definitions and properties of GG, , and 0

Let G be a connected reductive k-group scheme, let z € BTH(G, k) be a
rational point in the reduced Bruhat-Tits building of G and let r be a positive
rational number.

Proposition 2.5.1. There exists a finite Galois extension K/k such that
1. ig,(x) is a special point in BT?(G, K),
2. G is split over K
3. 1 is in ord(K )

Proof. Since x is rational, by Definition 2.3.1 there is a finite Galois extension
K /k such that (1) and (2) are satified. It is obvious that there exists a finite
Galois extension Ks/k such that (3) is satisfied. The proposition follows
taking a finite Galois extension K/k containing K; and Ks. It is easy to
check that K satisfies the three properties (recall that if G is split over K
and y is special over Kj, then ix/k, (y) is special over any finite extension
K of Kj). O

Let K be an extension of k£ as in Proposition 2.5.1. Let & = &, be the
canonical K°-Demazure group scheme attached to z € BT®(G, K) charac-
terized by the fact that its K°-points form the stabilizer of a preimage of
ik /k(z) in the enlarged Bruhat-Tits building (see section 2.3). In these con-
ditions, the K°-Hopf algebra of & is Gal(K/k)-stable in A ®j K. As usual,
let pri ), denote the projection G*" Xy-an M(K) — G*".
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o~

Definition/Proposition 2.5.2. e Let G be pry (&), it is a rational
potentially Demazure k-affinoid subgroup of G™ equal to the k-affinoid group
defined and considered in [33, theorem 2.1]. It is characterized by the fact
that for any non archimedean extension k'/k,

G (K) = stab(iy 4(2)) C G(K).

where & € BTE (G, k) is a preimage of x under the projection (see section
o Letr € Q>, using 2.4.9, we obtain a k-affinoid subgroup (Gz), of G*,
it is equal to er/k(Fe(K,k)r(®)n)~ We simply write G, instead of (Gg)r.

~

Proof. The fact that pry /,(8,) is a rational potentially Demazure k-affinoid
subgroup of G*" equal to the k-affinoid group G, defined and considered in
[33, definition 2.1] is explained during the proof of [33, 2.1]. The last part of
the proposition is a direct consequence of 2.4.9.

O

The previous section 2.4 gives us the following properties of G ;.
Proposition 2.5.3. We have:
1. Gy, is a k-affinoid subgroup of G*".

2. The Shilov boundary of G, is reduced to a point that we denote
O(x,r). The point O(x,r) € G is a norm on Hopf(G) egal to
| [Hopt(P. (1), (8)) [HopE(G) -

3. Gy is the holomorphically conves envelope of 0(x,r).

4. If r =0, Gy = Gy where Gy is the k-analytic group defined in [33,
2.1].

5. The k-affinoid algebra of G, is the completion of Hopf(G) relatively

to the norm | |Hopf( (®)) |Hopf(g), i.e. by a previous assertion, the

Fe(K,k)r

completion of Hopf(G) relatively to 6(z,r).
Proof. These are corollaries of 2.4.10 and 2.4.11 . 0

Proposition 2.5.4. Let x be a rational point in the reduced Bruhat-Tits
building of G, let r be a positive rational number and let g € G(k), then

1. Gg‘x,r = ng,rgil

2. 0(g.x,7) = gb(x,r)g?
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Proof. By 2.5.3, the two assertions are equivalent. Let us prove the first
assertion. The case r = 0 is proved in [33, 2.5]. For r > 0 rational, choose
an extension K/k as in the definition of G, and let & be the K°-Demazure
group scheme attached to the special point ig/i(r) € BT"(G, K). The
point g.ig /() € BT(G, K) is special and the K°-Demazure group scheme
attached to g.ig/p(7) € BTH(G,K) is B, = 96,9 1. We then deduce the
equality

" 7]

= er/k( e(k k) g®xg 1)n)
S (

= pry i (g Tty (® 971)

=g Prk/k ( e(k,k)r (%)n)g_l

= gGm,rg_l

We now introduce a natural map.

Definition 2.5.5. Let Q>o denote the semi-field of positive real rational
numbers. Let BTE, (G, k) be the set of rational points of the reduced Bruhat-
Tits building of G. Let

6:BTE

rat

(G, ]{7) X QZO — Gan

be the map sending (x,r) to the Shilov boundary of the previously defined
k-affinoid group Gy .

Remark 2.5.6. Let k' /k be a finite extension of k. Let x € BTE (G, k'), let
r € Q>0, we define a k'-affinoid group as follows. Let K/ be a ﬁmte Galois
extension such that G is split over K, iy () is special in BTE,(G, K)
and r € ordg(K). Let & be the K°-Demazure group scheme attached to
ir/ (). We put G, = er/k/(Fe(m(’j)n), this is a K -affinoid subgroup
of (G xy k). Let 0 be the correspondmg map BTE(G, k') x Qs¢ —
(G xx k)", sending (z,7) to Shi(G7, ). If x € BTE,(G, k') comes from k,
i.e. & =iy (x) for a point x € BTmf(G, k), we also denote naturally the k'-
affinoid group G', . by le,/k( )r- Remark that we have used in the definition
the ramification mdeaj e(K,k) and not e(K, k'), this reflects the fact that
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k is a "reference” object in this work, indeed we work with the valuation
ord = ordy. These choices allow us to state the following proposition.
Proposition 2.5.7. 1. The map 0 : BTE, (G, k) x Q>0 — G is G(k)-
equivariant relatively to the actions:
e g.(x,7) = (g.x,7) for all (z,r) € BTE,(G, k) x Q0

o g.x=grg~ ! for all x € G

2. For any finite extension k'/k, the diagram

0,
BTEM(G, k/) X @20 L> (G Xk kl)(m
ik//kxldT lprk//k

0

BTZ,(G, k) x Q>

is commutative, where the map Oy 1is defined in the previous remark
2.5.6. Moreover, for any rational point x € BTE (G, k) and any r €

rat

Q>o0, the equality of k'-affinoid subgroups of G X pqxy M(K') holds:

Gdn

Gy (@) = Gar X ) MK).

3. For any finite extension k'/k,

(:c),r(k/) N G(k) = G:v,r(k)

k! /K

4. The map 6 : BTE (G, k) x Q>0 — G is continuous and injective.

rat

Proof. 1. We have to show that ¢g.0(x,r) = 6(g.(z,r)). This is a direct
consequence of 2.5.4, indeed

0(g.(x,7)) = 0(g.x,7) = gO(x,7)g~ ' = g.0(x,7)

2. We use the notation of remark 2.5.6. Let K/k be the extension used to
define G, as Gy = Prc /(Lo kyr(B)y), We can assume that &' C K.
We have G, . = pric/p (e iy (®)n), thus Gup = pryy (G ). By
definition é(z,r) = Shi(G, ), by the previous sentence and properties
of Shilov boundaries, this is egal to pry /;(Shi(G7,)). The commu-
tativity of the diagram follows. We have pr;{}k(G%r) = Gip o)

by definition of G, and since K/k is a Galois extension. We thus

get pr;(}k,(prlz,l/k(Gx,r)) = Giyp(w)r- We also have pr;(}k,(G;M) =

Gl i (x),r Dy definition of G}, and since K/k' is a Galois extension.

We thus obtain

prf_(l/k/ (pr]:,;k (Gx,r ) = pr]_(}k/ (Gg:,r) .
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This implies prl;l/k(me) = G, since pry s is surjective. Now since

G, is a k'-affinoid domain of G*" x yq() M(K') and G, is a k-affinoid
domain of G, we have G, . = Gy X pq() M(F').

3. This is a direct consequence of the previous assertion and the fact that
G, 1s a k-affinoid domain of G".

4. We follow [33, Proposition 2.6 (ii) and Proposition 2.8 (iii)] for the
continuity. Let k'/k be a finite extension such that G is split over k'
Since the maps iy, X Id : BTE,(G, k) x Qsg — BTE,(G, k') x Q¢
and pry . (G xgk')*" — G are continous, it is enough to show that

BTE,(G, k) x Q>0 — (G xi k)" is continous. In other words, we
can assume G is split over k. So assume G is split over k and choose
a special point € BTE,(G, k). Let & be the k°-Demazure group
scheme attached to x. Let ¥ be a maximal split k°-torus of & and let
B be a k°-Borel such that T is a Levi subgroup of B. Let ®, &, & be
the corresponding set of roots. Choose a Chevalley basis of the k°-Lie
algebra of &. We are in a similar situation as in 2.4.2, and we use the
same notations as 2.4.2 in the following. We can use z to identify the
appartement A(T, k) with V(T') = Homp(X*(T),R). It is enough to
show that the restriction map A,;q (T, k) X Q>0 — (G)*" is continous.
We claim that for any rational point y in A(T,k) = V(T) and any
r € Q>0, the point O(y,r) belong to Q%" and corresponds to the norm

HOpf(Q) — RZO

>~ au((X = (Y = 1)2.)" = maxla, e~ [T emesve>
uelU acd

where < .,. >isthemap V(T)x X*(T) —» R, (y,a) »< y,a >= y(a).
This claim implies the continuity since this formula is continous in?
the variable (y,7) . We now prove the claim following closely [33,
Proposition 2.6 (ii)]. Since y is a rational point, there exists a finite
extension K /k such that y = t.z with t € T(K). Let UX be U, x K,
QF be Q x;, K and TX be T xj, K. For any t € T(K), and any root
a € ®, the element ¢ normalizes the root group UX and conjuguation
by ¢ induces an automorphism of U which is just the homothety of
ratio a(t) € K*. If we read it through the isomorphisms G.qq — UK,
we have a commutative diagram

’Be carefull that what is denoted by w in [33] is here denoted by y and u here is a
parameter for a basis of Hopf(§2) (see 2.4.2)

114



spec(Hopf (1) [{ Za }ace]) — QF
\LT int(t)

spec(Hopf (TH)[{ Za }aca]) — QK
where 7 is induced by the Hopf (T5)-automorphism 7* of Hopf(T5)[{ Zs }aco
mapping Z, to a(t)Z, for any a € ®. It follows that, over K, (t.x,r) =
t0(z, )t~ is the point of (G x}, K)™ defined by the multiplicative norm on
Hopf (2F) mapping f = Y a,((X — 1)(Y = 1)Z,)" to
uclU

0(x,r)

™ Dloter) = | 2 ( I a(t)mw> (X =D - 1)2,)"
uelU
_ —7r|ul Ma
= rileaé(‘azt‘e H |a(t)]
acd
— —7r|ul ma <y,a>
Tea[}(\au\e H e

acd

Since G is assumed to be split over k and by properties of Shilov bound-
aries, we get the claim by restriction from K to k. This ends the proof of
the continuity.

Let us explain the injectivity. Let (x1,71) and (z9,79) be in BTE (G, k) x
Q>0 such that 0(x1,7r1) = 0(x2,72). Let us first explain, by the absurd, that
necessarily we have r1 = ro. So assume by the absurd that there exists
(z1,71) and (z2,r2) with r1 # ro such that 6(z1,7m1) = 0(x2,r2). Assume
r1 > 72 (the other case can be treated in a similar way). Since 0(x1,71) =
(z2,72), taking holomorphically convexe envelope, we have G, r, = Gy .ry
by 2.5.3. Since z; and z9 are rational points, there exists a finite extension
K/k such that 39 € G(K) such that g.ig/i(71) = ig/k(r2). By 2.5.4, we
thus get

9G, (e =G

By 2.4.12, we thus obtain

K/k(x1)7T197 9k i(T1),m1 i k(T2),m1

gGiK/k(xQ)J”Qgil = gGiK/k(Il)J‘l 9 irc/k(@2),m2

lc@
#

We have thus deduced the existence of a k-affinoid group Gupsurd =

G satisfying

irc/r(22),m2

gGabsurdgil g Gabsurdy
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this is absurd. So we have proved that 0(x1,71) = 0(x9,72) = r1 = 9.
Let us now prove that we also necessarily have x1 = x9. Assume first G
is split over k. Let (21,7) and (z2,7) be in BTE,(G, k) x Q>¢. We know,
by properties of Bruhat-Tits buildings, that there exists an appartement
A(T, k) such that x; and x2 belongs to this appartement. The choice of
a special point in A(T,k) induces, as in the proof of the continuity, an
explicit map Ayq:(T, k) X Q>0 — G** which factorizes through Q. Let

(y,1) € Arat (T, k) x Q>0, the explicit formula for 6(y, )
HOpf(Q) — RZO

>~ au((X = (Y = 1)2.)" = maxla, e~ [T eme<ve>
uelU aed

claimed and proved before (during the proof of the continuity) shows that
0(x1,7r) = 0(x2,r) = 1 = 2. Indeed, the formula give us
0(z1,7)(Zy) = e "e<"1* for any root «

0(z2,7)(Zy) = e "e<"2* for any root «,

consequently,

O(x1,7) = 0(x2,7) =< 71,00 >=< 9, ¢ > for all roots «

= T = T2

as required.
In general, if G is not split, we prove injectivity using a finite Galois
extension k’'/k such that G is split over k' and using the diagram

BTE, (G, k) x Qs s (G x5, k)™

rat
ik//kXIdT prk//k

BTE,(G, k) x Qs0 2 G,
By the split case, the map 6y is injective. The map i /p X Id is injective.
So it is enough to show the restriction of pry /. : (G xj k)™ — G" to the
image of s o iy /3, x Id is injective. This is a consequence of the fact that
O (i (), 7) is Gal(k'/k)-stable for any (z,7) € BTE, (G, k) x Qxo.

rat

O]

2.5.2 A cone

We have defined a continous and injective map 6 : BTE (G, k) x Qs — G™™.
By completion, we get a continous and injective map 6 : BT(G, k) x R>g —
G For all x € BTR(G, k), we put 0(z,4+00) = e, where eq € G is the

neutral element.
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Definition/Proposition 2.5.8. The set {#(BT?(G, k),R>q) Ueg} C G
s a topological cone in G". Its base is the reduced Bruhat-Tits building and
its vertex is the neutral element. If p = 0(x,r) € G is in this cone, the
depth of p is by definition the number r. The subset (BTE,(G, k), Qs0)Ueg
1s called the rational cone.

Proof. For any x € BTE (G, k), the point 0(z,r) approaches eg as r ap-
proaches +oo. This makes clear 2.5.8. O

2.5.3 Comparison with Moy-Prasad filtrations in the tame
case

Let G be a connected reductive k-group scheme that split over a tamely
ramified extension. Recall that G (k)i\ffrp denote the normalized Moy-Prasad
filtration (see section 2.3). The well known results

e if (7 is split and x is special, then Moy-Prasad filtrations are obtained by
taking set-theoretic congruence subgroups of the integral points of the
attached integral Demazure group & ;

e Moy-Prasad filtrations are compatible relatively to field extensions in the
tame case;

together with the definitions of G, imply the following proposition.

Proposition 2.5.9. Assume we can choose the extension K/k tamely rami-
fied in order to define G, (see Definitions 2.5.2 and 2.4.9), then Gy (k) =
G(k)MP.

x,T

Proof. Let K/k be a finite tamely ramified extension such that we can write
Gur = P (re( K,W(eﬁ)n). The following equality hold.

Gor(k) = Gor(K)NG(k)
= (e (®), (K) N G(k)
=T e(k, )(KO) N G(k?)
[43,8.8] = ker(6(K°) — &(K° /x5 K°)) N G(k)

]
[43,8.8] = ker(B(K°) — &(K° /7, K°) N G(k)
[43,8.8] = G(K )MP N G(k)
[27,line 5 page 6] = G(k )
This ends the proof. O
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2.5.4 Filtrations of the Lie algebra

By section 2.4.3 and Definition 2.5.2, we obtain analytic filtrations of the Lie
algebra g, := (gz)r, for each x € BTE,(G, k) and each r € Q. We recall

rat
the formal definition in the following definition.

Definition 2.5.10. Let x € BTZ (G, k) and r € Q>¢. Let K/k as in 2.5.1,

then gzr = DPryp (Lie(Fe(Kyk)r(ﬁ))n) where & is the K°-Demazure group
scheme attached to i/, (x) € BTE, (G, K).

rat

If K/k can be choosen tamely ramified in order to define g, ,, then
o (k) = g(k)MT for 2 € BTZ,(G,k) and r € Qs (the proof of the G

rat

case, using [27]| and [43], can be easily adapted).

2.5.5 Moy-Prasad isomorphism

Let = € BTE (G, k) and let r, s € Q>0 be rational numbers such that

rat
r
0<§§S§T‘.

Question 2.5.11. Do we have an isomorphism
Ga,s(k)/Gor (k) — 92,5(k)/9z,r(K) 7

If such an isomorphism exists we say that the filtrations {G,(k)} and
{9z, (k)} introduced in Definition 2.5.2 and Definition 2.5.10 satisfy Moy-
Prasad isomorphism.

The question can also be posed for general stable rational potentially
k-affinoid groups. In Appendix A, we present a partial answer.

2.5.6 Examples and pictures
In this section we give some examples and pictures of the previously intro-
duced objects.

The split torus of rank one

Let R be a commutative ring. The R-algebra R[X,Y]/(XY —1) is naturally
a Hopf R-algebra. Recall that its augmentation map is

RX,)Y]/XY —-1—>R
X—1
Y —1

and its kernel is generated by X —1 and Y —1. Now let A be k[X,Y]/XY —
1 (k is our fixed p-adic field). Let G be spec(A), it is a split torus of rank one
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over k. The morphism of k-algebra k[X]| — k[X,Y]/XY — 1 induces a mor-
phism of affine scheme G — Aj. It also induces an inclusion G** C (A} )™,
it is injective and G = (A})?" \ 0. The reduced Bruhat-Tits building of
G is a singleton {z}. The point z is special and G is split over k. The
grosse cellule of G is G. The k°-Demazure group scheme attached to =z
is ® = spec(k°[X,Y]/XY — 1). Let make explicit the definition of the k-
affinoid group Gy, for r > 0. If r = 0, G, = Gzpo = QAﬁn and 0/5,7 =
M(E{X,Y}/XY —1). Assume now r > 0, we have to choose a finite Galois
extension K/k such that r € ord(K). Let & be the K°-Demazure group
scheme attached to i/ (7). It is egal to spec(K°[X,Y]/XY —1). By defini-
tion Gy, is egal to pry (Fre(/KJg\)(QS)n). The K°-scheme T, ), (&) is the
e(k, k)r —th congruence subgroup of &. By 2.1.10 , Hopf (L' 1) (®) is egal
to Ko[r P (x —1), m 2P (v 1)) € K[X,Y]/XY —1, since the kernel
of the augmentation is generated by X —1 and Y — 1. The K-affinoid group
Fe(mﬁ)n is the Berkovich spectrum of the K-affinoid algebra obtained
by completion of K[X,Y]/XY —1 relatively to the norm || |[sopt(r, x..(®))-
Writting f € K[X,Y]/XY —1as Y agp(X - 1" (Y = 1) (U is the
(k1,k2)eU
set of parameter for the basis of K[X,Y]/XY — 1 "centered at unity", see

2.4.2), the norm || HHopf(I‘e(K e (®)) 18 explicitely given by the map

K[X,Y]/XY —1 - Rsq

ORI (x — 1), m TRy 1)) € KX, Y]/XY — 1}

f inf {|I\|f € XK [x
AeKX
= inf LAl ek kg (X = DFLY = P2 € KOO = 1), m fOBT(r — 1))k k) € UY
AEK
= inf {IA] | ap g € Amg UORITRITRD o g ko € U
AeK X
. —re(K,k)(k k
= inf_ (I | lag kol < A ORI EITRD | vy ko) € UY
AEKX
= inf {|Al| langwyle”"F1TR2) <X V(k1, ko) € U}
AeK X
—r(k1+k2)

= max  |ag. g, |€
(ky,kg)eU "172

Completing K[X,Y]/XY — 1, we deduce that the K-affinoid algebra of
Fre(K,lc)(ﬁ)77 is

{3 arr (X = DR = 1)%2 | ag ey €k and [ag, 1yl(e” MM = 0 as |ul— oo} € K[[X,Y])/XY —1
(k1,kg)e€U

We denote it as K{e"(X — 1),e"(Y — 1)}/XY — 1. The Shilov bound-

ary of Fe(Kvk)r<®)7] is || ||H0pf(F€(K’k)r(@)). The Shilov boundary 6(z,r)
of pTK/k(Fe(K,k)r(@)n) is || HHopf(Fe(K’k)r(qj)) restricted to the k-algebra

Hopf(G). The point §(z,r) € G* is thus egal to the norm on k[X, Y]/ XY —1

which map Z Ok ks (X — 1)k1 (Y — 1)k2 to max ‘aklk‘z ’efr(k1+k2). It
(k1,k2)€U

(k1,k2)€U
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corresponds via the embedding G — (A})*\0 to the norm usually denoted
| |1 ,e-r inside (Aj)*".
We have the picture
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Reduced Bruhat-Tits Building

0(z,2) =|

1,e—2

0(x,4+00) =] |1,0¢

11«1»‘rr2+7r3 1«}»7?2 1+7'r+7r2 1+m é

1-4—71'71
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giving some points (of course it is not exhaustive) of G inside (A})?". Here
d is an element in (k°)* \ 1 + £°°. The point 0(z,0) is mapped to the so-
called Gauss point, and corresponds to the reduced Bruhat-Tits building.
When r > 0 is increasing the point §(z,r) is getting closer to 1, the neutral
element of G*". The holomorphically convex envelope G , of §(x,r) should
be thought as all the points under (attainable by going only down) 6(x, ) and
the k-rational points of G, as certain lower extremities. In this situation
the cone is the red line, it is homeomorphic to the segment [0, 1] ( Note that

[0, +00] " [1,0] ).

A computation of G, in the case of a wild torus of norm one
elements in a quadratic extension

In this section k = Qo. The polynomial X2 — 2 does not have any solution
in k. Let m; € k be a root of this polynomial and let [ be the field k(m;) C k.
The extension [/k is a widely ramified Galois extension. We have [ : k] =
e(f : k) = 2. The element 7 is a uniformizer of I. The k-vector space [ is
2-dimensional and {1,7;} is a k-basis. So each element in [ can be written
as x +my with x,y € k. The norm of x + my is egal to (x +my)(z — my) =
22 — 2y%. The set of norm 1 elements is an algebraic group. Let us write
the Hopf algebra of the corresponding affine k-group scheme G. The Hopf
k-algebra of G is k[X,Y]/X? — 2Y? — 1, moreover the comultiplication A,
the antipode 7 and the augmentation ¢ are

AKX, Y]/X?2-2Y?2 -1 5 k[X,Y]/X? —2Y? — 1@ k[X,Y]/X?-2Y%2 -1
XXX +2YeY
Y= XY +Y®X

T R[X,Y]/X?+2Y% — 1 = k[X,Y]/X?+2Y% — 1
X—X
Y —-Y

e k[X,Y]/X242Y2 -1 =k
X—1
Y—0.

The k-group G is a torus, indeed the equation
EX,Y]/X?-2Y? 1@, 1 ~1[X,Y]/X?-2Y?—1
~ X Y] /(X +mY) (X —mY) -1
~ U, V]/UV — 1
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shows that G Xgyec(k) spec(l) =~ G, /l. The reduced Bruhat-Tits building
BTH(G, k) is a singleton {x}. The point x is a (rational) special point of
BTH(G, k) and i k() € BTH(G, K) is special for any finite extension K /k.
The group G is not split over k, it is split over [. Let us make explicit the
group G, . We need to find an extension K/k such that G is split over K,
ir/k(7) is special, and 7 = 0 € ord(K). The field K = | works. By definition

~

the k-analytic group Gy is egal to pr; (&), where & is the [°-Demazure
group scheme attached to 7/, (z). By the previous example 2.5.6, in the
coordinate U, V, & = spec(I°[U,V]/UV —1). Thus in the coordinate X,Y,
Hopf(®) is egal to the [°-subalgebra of I[X,Y]/X? — 2Y? — 1 generated by
I°, X+mY, X—mY. By 2.5.3, the k-affinoid algebra of G, o is the completion
of Hopf(G) = k[X,Y]/X? —2Y? — 1 relatively to the norm | |Hopt(@) [Hopt(c)
(recall that | |fops(e) is @ norm on Hopf(G X 1) ). So let us make as explicit
as possible the norm | [gopg(s) |Hopt()- By definition, we have

| [Hopt(®) : Hopf(G x 1) = Rxo
f— Alnlf {IAl'] f € AM(Hopf (&) ® 1) C Hopf(G xj 1)}
E X

We deduce that

‘ |H0pf(®) :Z[Xa Y]/X2 - 2Y2 —1— RZO
fre /\mlf {IANfeAcl®, X —mY, X +mmY >) C Hopf(G x; 1)}
c X

And so, by restriction

| IHopt(®) IHopt() * KX, Y]/ X% —2Y? — 1 = Rxg
f— /\mlf {MN ] feX<®, X —mY, X +mY >) C Hopf(G x 1)}
e X

We have to complete k[X,Y]/X? — 2Y? — 1 relatively to this norm, in
order to simplify notation let us put || || = | [Hopt(e) [Hopt(G)-
Let us compute the value || X||. By definition it is egal to

Inf {]\]| X € \(< 1%, X —mY, X +mY >) C Hopf(G xx 1)}.
c X

Since
X & (<I°, X —mY, X +mY >) C Hopf(G xi 1)
mX & (<1°, X —mY,X +mY >) C Hopf(G x 1)
2X =X € (<1°, X —mY, X +mY >) C Hopf(G xy 1),

we deduce that ||X|| = |27!| = e (2 is a uniformizer of k). Let us now
compute the value ||Y||. By definition it is egal to
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/\lIllf {A Y e M(<1°, X —mY, X +mY >) C Hopf(G xi 1)}.
c X

Since
(< P, X-mY, X+mY >) CHOpf(G Xkl)
mY g (<1, X —-—mY, X +mY >) C Hopf(G xy 1)
2X =Y ¢ (< 1°, X —mY, X +mY >) C Hopf(G x} 1)
omX =Y € (<1°,X —mY, X +mY >) C Hopf(G xi 1),
we deduce that ||Y|| = |7;%| = es .

By completion, the k-Banach algebra of G is egal to

ke X, (e2) 7Y} /X2—2v2 —1 , |||

3
2

where k{e 1 X, (e2)71Y} is the k-algebra

akalekQ Ay k ek e% k2—>0ask1+k:2—>oo C k[[X,Y]].
1R2 1Kk2
k1,k2

Let us check directly that the k-affinoid algebra of G ¢ is k{e 1 X, (e %) yy/x2—
22 —1, |-

We need to check that (k{e !X, (e%)_lY}/X2 —2Y2 — 1)®yl is isomor-
phic to the [-affinoid algebra of (’A5n. In the coordinates U,V , the [-affinoid
algebra of QA577 is I{U,V}/UV — 1. The l-algebra (k{e 1X, (e%)_lY}/X2 -
2Y2 — 1)&,l is isomorphic to I{e !X, (e2)1Y}/X2 — 2Y2 — 1).

The isomorphism previously considered [[X,Y]/X%—-2Y2~1 ~ [[U,V]/UV —
1 induces maps

He X, (e2) Y}/ X2 —2Y2 — 1 & {U, VYUV — 1
X +7T1Y < U
X — 7T1Y < \%

¥ . U+V
2

Y > U_V.
2

These maps are mutual inverse k-Banach algebras isometries.
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APPENDIX A: About
Moy-Prasad isomorphism (part
of a work in progress)

In this Appendix we discuss Question 2.5.11. We work in order to answer if
there exists an isomorphism

Hy(k)/Hr (k) = bs(k)/br(F).

for some rational numbers 0 < g < s < r and any Galois stable k-affinoid
rational potentially Demazure subgroup H of G*".

Recall that the filtration H, is defined as the projection of Fe(];)r\(ﬁ)n

where & and K are asin 2.4.9 and 2.4.10 (H, = er/k(Fe(K/Jﬂ)T(ﬁ)n)' The fil-
tration on Lie algebra is obtained by a similar process taking the K°-Lie alge-
bra of & (see section 2.4.3). The K-rational points of H, are I'¢(g 1), (®)(K°)
and the k-rational points of H, are T'c(k 1), (8)(K°) N G(k) (see in the be-
ginning of the second part of the proof of 2.5.25 below for more details).
Similarly the K-rational points of b, are Lie(I'e(x 1)-(&))(K°) and the k-
rational points of b, are Lie(T'c(x ), (8))(K°) Ng(k).

In this appendix, the idea is to use the identity written in [43, §2.8, proof
of Lemmal. In [43], Yu writes (we translate here with our notations) in §2.8,
in the second line of the proof of Lemma, that given a K°-smooth affine
scheme & and integers 0 < a < b < 2a, there is a functorial isomorphism

['p(8)(K*)/Ta(®)(K") ~ Lie(I'y(6))(K°)/Lie(T'a(6)) (K°).

There is no proof of this fact in [43], and we did not find a proof in the
litterature. In this appendix we construct explicitely an injective morphism
of groups for integers r, s such that 0 < § < s <r

U Ts(6)(K°) /T (6)(K° ~ Lie(I's(8)) (K°)/Lie(I'(8)) (K°)

and we conjecture that it is surjective (we work under certains hypothesis as
explained after).
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In the litterature such isomorphism (see for example [1, §1.5] , [41, Lemma
1.3]) is constructed in the situation of reductive group and it is constructed
using a maximal torus, roots groups and splitting the reductive group. Here
we do not use a torus, the approach is algebraic. We use the explicit descrip-
tion of Hopf algebras of congruence groups of &. For any k°-group scheme
®, we use that Lie(®) is explicitely given by Homyo _moq(I/12, k°) where T
is the augmentation ideal of Hopf(®).

About proof of [43, Proof of Lemma 2.8]

Let k£ be anon arch. local field, and let 7 , k°, the usual associated notations.

Lemma 2.5.12. Let & = spec(2A) be an affine smooth (thus flat) k°-group
scheme. Let A be the k°-Hopf algebra of &. Let € : A — k° be the counit.
Let I := ker(¢) be the augmentation ideal. Let I? be the ideal 11, it is a
submodule of I. Then

1. I/1? is a free k°-module.

2. There exists a section s of the projection I 2 I/I?. It is a morphism
of k°-modules

s:1/I? =1
such that pos =1d .

Proof. 1. By [15, remark6.7] I/I? is projective, thus by [26], it is free.
y J y

2. It is a direct consequence of the previous assertion. Indeed, choose

a basis g1,...,9n of I/I? and choose also §i,...,qn, preimages of
g1, ---,9n under p. Theses choices induce a section s of p, sending g;
to g~i-

O

Lemma 2.5.13. Let & = spec() be a flat affine k°-scheme satisfying the
hypothesis of [32, Lemma 5.1]. Then

1. A contains no non-zero k°-divisble element.

2. The ideal of augmentation I and its square power I? contain no non-
zero k°-divisible element.

3. A, I and I? are free k°-modules.
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Proof. The first assertion is the conclusion of [32, Lemma 5.1|. The second
assertion is implied by the first one since I and I? are contained in 2. The
third assertion is a consequence of the assertion "Let V' be a vector space of
at most countable dimension over K and L an k°-submodule of V such that
L contains no non-zero k°-divisible elements. Then L is a free k°-module."
written and proved in [32, proof of Lemma 5.2]

O

Remark 2.5.14. If & is a k°-Demazure group scheme, & satisfies hypothe-
sis of [32, Lemma 5.1/

Lemma 2.5.15. Let R be a ring and let A be a R-Hopf algebra. Let I be the
augmentation ideal of A. Let A : A — A® A be the comultiplication map.
Then

Vgel Alg)=9g®1+1®g modI®I .

Proof. 1t is a well-know fact which is a direct consequence of the axioms
"Id®e)A=1Id " and " (¢ ® Id)A =1d " of Hopf algebras, writing A(g) as
a sum of tensors and using that (g) = 0. O

Let us fix from now on a smooth k°-scheme & = spec(2) satisfying the
hypothesis of Lemmas 2.5.12 and 2.5.13. Let ¢ be its counit and I the
augmentation ideal of A. Let m > 0 be an integer. We recall that the
n-th congruence subgroup of & is an affine k°-scheme with Hopf algebra
Wp :=Ar "] =A+ Zﬂflmlk C A ®go k (see Proposition 2.1.10).

k>1

Lemma 2.5.16. Let I, be the augmentation ideal of A,. Then

1. The ideal I, is egal to (m~™I), the ideal of the ring A, generated by the
k°-module 71 C U,.

2. The ideal I, is egal to ZW_"ka C A Qo k.
k>1

Proof. 1. The counit eg, is the restriction to 2(,, of the counit of A ®yo £,
and the counit of A ko k is ¢ ® Id. Let x € A,,. Since A, = A7~ "],
we can write z as a finite sum

n. " .
Tr=a-+ E ayT iy T Yy aEQ[,ZVjEI

V=V1..Vj .V,
ky>1

Assume x € I,,. So eg, (z) = 0, thus

0=¢c(a)+ Z e(ay)m™"e(iy,) ... m "eliy,,) a€ iy, €l

U=UV1...Vj.
ky>1
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This implies €(a) = 0. So a € I. Thus a € 77"[ and so z € (77 "I).

So we have proved that I, C (77"I). It is obvious that the reverse
inclusion holds, indeed if x € (7~"I), then

x:ZaVﬂf”iy acU,, i, €1
14

and applying g, gives zero. This finishes the first assertion.

2. Let us prove the formula (77 "1) = Z 7 *" % The k°-module Z mknk
E>1 E>1
is stable by multiplication by element of 2l,,, so it is an ideal. Moreover

7m~ "I is contained in this ideal, so (77"I) C Zw_k"Ik.
k>1
Let us now show that Z 7= FnI* < (x7"I). Tt is enough to show that
k>1
for any k > 1, we have 7=*"I* C (z7"I). So let x € 7~*"I*. We have

e=7"" N ayiy iy, ay €Uy €

V=V1...Vj...Vg
= g aym iy o My, ay €A 0y, €1

V=U1..V5. Vg

So x € (w7 "I), and this ends the proof.

Lemma 2.5.17. Let p > 0, then 7PI N I% = 7PI?.

Proof. Recall that A, I, I? and I/I? are free k°-modules by 2.5.13 and
2.5.12. We will use in this proof that I/I? and I? are free. Choose a k°-basis
{exYrer of I2. Choose preimages {e}res under the projection I % I/I?
of a k°-basis {ex}res of I/I? (SNT = ). Let us prove that {ex}resur
is a k°basis of I. Let us prove that this is generator. Let z € I. Write
the image [z] of x under p as Z/\k‘ik' Then x — Z)\kek is contained in
keS keS
I?. So = — Z)\kek = Z)\kek. This shows that {ex}resur is generator.
keS keT
Let us show that this is a free family. So assume Z Ager = 0. Then
keSuT
Y ores ek = 0. So A\, =0forall k€ S. So Z)\kek = 0. Thus A\; = 0 for

keT
all k € T. So the family if free. Consequently the family is a basis.

Now let z € #PI N I%. Write x = Z Aiep. Since x € I? we have

keSuT
A =0 for all k € S. Since x € wPI we have A\, € 7Pk° for all k€ SUT.
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So we conclude that z = Z e with A\ € nPk° for all k € T'. This implies
keT
that = € 7PI%. So wPI N I? C 7PI>.
The reverse inclusion 7PI N I? D «PI? is obvious since 7PI? C I? and
7PI? C 7PI. The lemma is proved.
O

Lemma 2.5.18. Let n > 0. Then I,°> = Zw_knlk,
k>2

Proof. Let us show first that I,,2 D Zﬂ*knlk. It is enough to show that
k>2
for any k> 2, 7=* 1% C I2. So let x € 7~*"IF. We write

x =7 k" Z Auiyy -y, ay €2 4y, € 1.

I/Zl/l...Vj...Vk

So
T = Z aym iy T My, ay €A 4y, €1
V=UV1...V
So z € (x~"I)*. Thus = € I,,*. Consequently z € I,? since k > 2.
Let us now show that I,,2 C walmlk. Let = € I,,?, it can be written

k>2
as
xr = Z agig,ig, ag €W, ig €1, g, € Iy.
B=p1,B2
So it is enough to show that for each 3, we have agig, ig, € Z mFn 1k Since
k>2
A, = A+ Zw‘lmlk, the element ag € A, can be written as

k>1

ag Za—‘rZﬂ_knigk ac g€ I*.
E>1

Similarly by 2.5.16, for j = 1,2 we can write

ig; = Zﬂ'_kniﬁjk iﬂjk e I*.
E>1

Now by distributivity the element agig, ig, is a sum of terms of the form
a Wﬁkniﬁlk ﬂ'fk/nigzkl k, K > 1 or of the form Wﬁk//niﬁk// ﬂ'fkniglk ﬂfk/niBQk/ k”, k, K >
1. Thus each term is included in Zﬂ*knlk. So agig, i, is included in

E>2

Zw_lmlk. Consequently z is included in Zw_lmlk as required.
k>2 k>2
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Lemma 2.5.19. Let a > b > 0. Then I, N 1,2 = I,2.
Proof. Recall that by 2.5.16 and 2.5.18 we have

L=nT+7 22 4 77303 4 72014 .

and that
Ia2 — 7r—2a[2 + 7T—3a[3 + 7T_4aI4 4.
Put M = 77T and N = 7= 2b]2 7303 4 =414 4 | g0 that I, =
M + N; put also P = I,2. Thus we want to prove that (M + N)N P = N,
since by 2.5.18 we have N = [,>. We have N C P. So the inclusion
N C (M + N)N P is obvious.
Let us prove the reverse inclusion. We have

(M +N)NP=(MnP)+N.

Indeed (MNP)C (M+N)NPand N C (M+N)NnPandso (MNP)+N C
(M +N)NP. Reciprocally let x € (M +N)NP thus z = m+n withm € M
and n € N. The element m + n and n are contained in P, so m is in p so
r=m+nisin (M NP)+ N.

We are thus reduced to prove that (M N P) C N. Let + € M N P.
We have P = n=20]2 4 g=30[3 4 gr=4eJ4 1 There is an integer D > 2

D D
such that = € wa%“lk. So w2Pay ZTrQa(D*k)Ik. Forall2 <k <D,
k=2 k=2
m2eD=k 1k « 12 So n2Pay e J2. But by hypothesis, z € M = 7 °I.
So w2Pe ¢ g2Pa=by  Thus n?Px € x2Pe=b1 N 2. So by 2.5.17 n*Pex ¢
72Pa=b12 S0 ¢ € 77812, So x € N and this ends the proof.
O

Maps ¢ , ©
Let 0 < s <r. We have I; C I, the kernel of the composed morphism
I, c I, —I,/I,?

is I, N2 = I? by 2.5.19. So we get an injective morphism of k°-modules
15/152 ey IT/L,Q7 we sometimes write IS/IS2 C IT/IT2. It induces a morphism
of k°-modules

® : Hompo_moa(I, /12, k°) — Hompo _moq(Is/1s2, k°)
g = golfs,r

We have an inclusion morphism of k°-algebras 1; C 2., it induces a map

o Homko_alg(ﬂr, k?o) — Homko_alg(le, ko)

g = gl
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Lemma 2.5.20. Let r > s, then

1. Let x € A, then there exists a positive integer N such that 7V € .
2. Let x € I,., then there exists a positive integer N such that nNx € I,

3. Let x € I,/1,2, then n" %z € I,/I%.

Proof. The first two assertions are direct consequences of the fact that for
any positive integer n, we have

Wy =A+ > 7 FTF CA@po k
k>1

and
I, = Zw—”’fﬂf C Ao k.
E>1

Let us prove the third assertion. Let x € IT/ITQ. Consider the commu-
tative diagram

I,—S 1,

ips \LPT
IS/ISZ *C> 7"/-[7“2
We have I, = 7~ "I + I,2 by 2.5.18. So we can choose a preimage & of
x under p, in 7= "I. Then n"~%% € 751 C I,. The projection ps(n"°Z) €
I,/1.% is egal to 7" %x. So 7" %z € I,/I,%
O

Lemma 2.5.21. 1. An element f € Homyo_yoa(Is/Is2, k°) is in the im-
age of ® if and only if for all ¢ € I, the image of i under the composed
morphism

IcL, 1,125k
1s inside T k°.

2. An element f € Hompo 1o (Us, k°) is in the image of © if and only if
for alli € I, the wmage of © under the the composed morphism

rca, b
15 inside T k°.
3. The morphism ® is injective.

4. The morphism © is injective.
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Proof. 1. Let f € Hompo_poq(Zls/Is%, k°). Assume it is in the image of
®. So thereis g € Homko,mod(IT/ITQ, k°) such that f is the composed
morphism

L)L 5 1,/ 12 % ke

Let ¢ € I, and let p, be the morphism I, Py I./1.2. We have

fops(i) =gop(i)
= g(p, (1))

as required. Reciprocally, assume for all i € I we have f o pg(i) €
7" k°. The restriction of ps to 7= °I, w=°1 — IS/ISQ, is surjective; since
I, = 7751 + I, by 2.5.18. So we deduce that for any =z € I,/I,>
we have f(x) € 777°k° (indeed let z € I,/I,%, then & = py(n%i) so
7 f(z) = 7(f(ps(0)) = fpo(i) € 7'k°). Now for any @ € I,/L?,
"5z € I,/I,2 by 2.5.20 and we put g(z) := 7~ f(z"~5z). This
defines a morphism of k°-module g : I,./I,? — k°, such that ®(g) = f.

2. Let f € Homyo_n14(Us, k°). Assume it is in the image of ©. So there
is g € Hompo_n1q (2, k°) such that f = g |o, . Then for any i € I,
f@) = f(z"n7"i) = 7" f(r~"i) € 7"k°. Reciprocally, assume that
for all i € I, f(i) € 7"k°. We are going to construct a morphism
g : A, — k° whose restriction to 25 is f. We have that 20, C A Qe k
and f induces a morphism of k-algebras s Qe k fgd k. By restriction
we obtain a morphism of ring g : A, — k.

Recall that 2, = A[7r~"I], and write and x € 2, as a finite sum

. . ,
T = E aym™ iy o Ty, ay €24 4y, € 1.

V=U1...Vg,,

The map g sends 2, > Z ayT iy T iy, 1O

V=UV1...Vf,

Z flay)m " f(iy,) ... " f(iy,, ) it is in k°. So g is a morphism

V=V1...Vg,

of k°-algebras. We have ¢ |q,= f. This ends the proof of the assertion.

3. The map is injective, indeed let g € Homko_mod(fr/frz,ko), assume
®(g) =0. Let x € I./I,2, then 7"z € I,/I;*> and so 0 = g(n"~*z) =
" %g(x) so g(z) =0, so g = 0. Thus ker(®) = 0.

4. Let g € Hompo 415 (A, k°), assume O(g) = 0. Let z € A, by 2.5.20,
there is an N such that ¥z € 2. We have 0 = g(7Vz) = 7V g(z), so
g(z) = 0. Thus g = 0. Consequently ker(©) = 0.

0
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Lemma 2.5.22. Let n € N. Recall that we have a canonical injective mor-
phism of k°-modules I/I*> C I,/I,2. Let s : I/I> — I be a section of
p:I—I/I%

Then s induces a section I,,/I,? ™ I, of the projection I, 23 I,/I,%.
This induces an explicit bijection

Z : sectiony(I/I?, 1) =~ sectiony, (I,/1,% 1)
s n

—5

such that s, |r/;2= s (here section,(I /1%, 1) means all the section of
p: I — I/I% and similarly for p,).

Proof. By 2.5.18, I, = 7= "I + I,,%. So the natural composed morphism
7" — I, = I,,/1,,>

is surjective. The kernel is 771 N 2 =r"I,2 by 2.5.19. So there is a
canonical isomorphism

7 Jn " ~ 1, /1,2

So for any z € I,,/I,,%, 7"z € I/I? by 2.5.20. Now let s € section,(I/12,1).
Let us define a map I, /1,2 ™ I, by

sp(x) = 7 "(s(n"x)) V€ I,/I,°

The map s, is a morphism of k°-modules. Moreover we have, for any = €
I,/1,*

T pn(8n(2)) = 7"pu(m"s(7" 1)) = pn(s(n"z)) = p(s(r"x)) = 7"z
So pn(sp(xz)) = x. Thus s, is a section of p,. So we have introduced
amap Z : § — 8,. Let s a section I/I? — I and let € I/I? then
sp(z) = 7 "s(7"z) = s(v), so 5 |;)2= 5. This immediately implies that
the previously introduced map Z is injective. The map Z is surjective,
indeed for any section sy, : LL/In2 — I, we have s, = Z(s,, ]1/12) ( indeed
let x € I,/I,% we have the identity s(x) = 7 "1"s,(2) = 7 "5, (7"2) =
T "8y [y (7"2) = Z(sn [1/12)(2) ).
O

Let us now state the theorem

Theorem 2.5.23. Let r, s be integers such that 0 < % < s<r. There is an
explicit injective morphism of groups

['s(6)(k°) /T (8) (k%) ~ Lie(I's(6))(k°) /Lie(T'»(6)) (K°).
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Proof. Recall that I',(®)(k°) = Hompo_a1g(Un, k°) and Lie(I's(®))(k°) =
Hompo _mod (Inn/In2, k°) for n > 0.
Let s : I, /1,2 — I, be a section of p, : I, — I,/I%. Let

W, Hompo_ag(As, k%) — Hompe _moa(Is/ 152, k°)

xr — x|, 08
Let us prove that the composed map ¥

Homyo _a1g (s, £°) 28 Hompo —moa (I /Is2, k°) = Hompo —mod (Is/Is2, k°) /Hompo —moa (I /1,2, k°)

does not depend on s. So let s/ be another section IS/IS2 2 I;. We need to
show that
x|, 08—, 08 € Hompo_moa(I, /12, k°),

thus by 2.5.21 we need to show that
(x|, os—x |, 05)(ps(i)) e n"k® Viel.

Put a = ps(i) and let us study s(a) — s'(a). We have ps(s(a) — s'(a)) =
a—a=0s0s(a) —s(a’) € I,2. Moreover 5(a) = 5(ps(i)) = s(ps(n°7%)) =
86(ps(m~51)) € I. Similarly s'(a) € I. So s(a) — s'(a) € I. Consequently
s(a) — 5'(a) € I,2N 1. By 2.5.19, we deduce that s(a) — s'(a) € I?. So we
have

(@ |1, 08— |1, 0 ') (ps(i) = x(s(ps(d)) — &' (ps()))
— 2(s(a) - 5(a))
= x(y) with v € I*

Recall that x € Homyo_,14(2s, k°); the algebra 2 is egal to A[n~°I], so
for any i € I, we have x(i) € m°k°. We deduce that x(y) € 72°k°. Since
0 <% <s <r, wededuce nk° C 7"k°. So z(y) € n"k°. So we have
finished to prove that ¥ does not depend on the section s. So we get a

well-defined map
T Hompge e (As, k°) = Hompe _moa(Is/Is%, k°) /Hompe _moa (I /1%, k°)

x +— [z, o8] ,

which does not depend on s.

Let us now show that ¥ is a morhism of groups. The source is denoted
multiplicatively and the target additively. So let x,y € Hompo_a1q(Us, k°).
Take a section s : I;/I2 — I,. We need to show that Us(zy) = Us(z)+Vs(y)
mod Homypo _mod (I /1.2, k°). By 2.5.21, it is enough to show that for an i € I,
Us(2y) (ps(i)) — Us (@) (ps(i)) — Vs (y) (ps(4)) € 7"k°. We have Us(zy)(ps(1)) —
Wa() (s (1)) — Wa(y)(poli)) = 2y(s(pali)) — 2(s(ps(1))) — y(s(ps(i)). Put
a = s(ps(i)), as we have already explained before in a similar situation, it is
in I. By definition zy is the following composed morphism
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A B A, Dpo Ay " k° Do k° ~ KO

Thus zy(a) = (x®y)(A(a)). By Lemma 2.5.15 applied to R = k°, A =2,
we obtain A(a) =a®1+1®a mod I ®I. Thus zy(a) = z(a)+ y(a)
mod 72°k°. So W is a morphism of groups.

Let us now prove that ker(¥) = Homyo_a14(2,, k°). Let us first prove
the inclusion ker(¥) C Hompo_n14(2,, k°). So let o € ker(¥). By 2.5.21, it
is enough to show that (i) € n"k° for all ¢ € I. As in the proof of 2.5.17,
choose a basis {ej, }rer of I? and complete it by {ej}scs in order to obtain a
basis {ex }sur of I. The family {ej }res induces a section s : I/I? — I, which
send p(eg) to e for any k € S. By 2.5.22, we obtain a section of ps whose
restriction to I/I? is s. We denote it also by 5. The element z is in ker(¥),
this implies that Ws(x) € Hompo _moq(I-/I,2, k°). Let us fix an ¢ € I. Write
i= Z Aker Ak € k°. Then z(i) = Z Arz(ex). Let us study x(eg)

kesSuT kesSuT
for any k € SUT. If k € T, then e, € I?, and z(ex) € 72k° (by 2.5.21).

Now if k € S. Then by 2.5.21 Uy(x)(ps(er)) € n"k°. Now Ws(z)(ps(ex)) =
x(s(ps(er))) = x(s(p(ex))) = z(ex). So z(ex) € ©"k°. So z(i) € n"k°. Con-
sequently € Hompo_a15(4r, k°). So ker(¥) C Homyo_n14(2A,, k°). Let us
show now the reverse inclusion. Let € Hompo_,1¢(U,, k°). Let s be a sec-
tion I, /1,2 — I,. It is enough to show that Wy(z) € Hompyo _medq(1,/ 12, k°).
Let i € I. By 2.5.21, it is enough to show that W4(z)(ps(i)) € 7"k°. We have
U, (x)(ps(i)) = z(s(ps(i))). We have s(ps(i)) € I (for example by 2.5.22). So
x(s(ps(7))) € 7"k°. This ends the proof of the injectivity.

O

Remark 2.5.24. Let us now give a comment about surjectivity. Let x €
Homypeo —mod(Is/Is, k°). By construction of U, it is enough to find g1, ..., gn €
I, such that

1. The class [g1],...,[gn] € Is/1s* of g1,...,gn € I is a basis of I/I,>
(so that g1,...,gn € I, induce a section I;/I1,% — I,).

2. There is a morphism f of k°-algebra A5 — k° such that f(g;) = x([g:])
for1 <i<n.

We are thus interested in finding g1, ..., gn € Is such that the first assertion
holds and such that gi1,...,g, have essentially no algebraic relations. This
should be a consequence of smoothness.

About Moy-Prasad isomorphism for analytic filtra-
tions

In this section we write a partial answer to the question 2.5.11. This is done
using the morphism 2.5.23, at level of congruence groups, written by Yu in
|43, §2.8] and studied in the previous section.
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Proposition 2.5.25. Let H be a stable rational potentially Demazure k-

affinoid subgroup of G*". Let r € Q<o and s € Qsq be rational numbers
such that 0 < % < s < r. Let K/k be a finite Galois extension and &

be a K°-Demazure group scheme such that H, = pry (Fe(K/,kW@)n) and
Hg = pricyy, (Fe(m(%)n). Assume that

1. The morphism of groups W of Theorem 2.5.28 is surjective,

2. HY(Gal(K/k), Te(x 1)s(®)(K°)) =0,

3. Hl(Gal(K/k),Lie(Fe(Kyk)s(Qﬁ))(Ko)) =0.

Then we have

Hy(k)/Hy (k) =~ bs(K)/br(F). (2.5)

Proof. Let us first prove it in the split rational case. Thus assume first that H
is a Demazure k-affinoid group and r € ord(K). Let & be the k°-Demazure
group scheme such that H = (’5 Then by definitions

H, =T,(®),
Hs = /S(E)r]
b, = Lie(T'(®)),

So we have

H, (k) =T'v(6)(k°)
Hy(k) =T's(®)(k°)
br (k) = Lie(I'-(6))(k°)
hs(k) = Lie(I's(6))(k°)

The isomorphism (2.5) is now a consequence of Theorem 2.5.23 and the
first hypothesis.
Let us prove now the general case. We have

Hy = pry/5, (T E<K e (®),) Hy X () MOK) = Do g (®), Hr(K) =T s 10 (8) (K°)
Hy = pricsi, (Ve (®),) H X i) MUE) = To(ion(®), Ha(K) = Te(ic s (8)(K°)
b = pric/p (Lie(Ce(en(®)),) b Xaace) MK) = Lie(Te(e, ) (8)), br(K) = Lie(Te e 1) (8)) (K°)

be = prici (Lie(Te(roma(®)),) s Xy MUK) = Lie(De(re (), hs () = Lie(Te (e 1)s (8))(K°),

left equalities are definitions, middle ones are formal consequences of left
ones and right ones are direct consequences of middle ones. Since H,, Hg, b,
and b, are k-affinoid spaces, we have
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H, (k) = H, (K)G0/0)
Hy(k) = Hy(K)GAE/)
b, (k) = b, (K)GI0/R)
(k) = (K )GAE/R

Hy (k) = T oy (6) (K°) M) < T e 1, (8)(K°) N G (k)
Hy (k) = Tore s (®) (K°)FEM =T 0 (8)(K°) 0 (G(k)
b, (k) = Lie(Te (s k) (8)) (5 °) S M) = Lie(T (g ) (8)) (K°) M g (k)
bs(k) = Lie(Te(x k)s (6)) (K ) S5 = Lie(T (1 1)s(8)) (K°) N g (k)

Since 0 < ==~
case, we have

Lesck)s (8)(K°) /T, iyr (B) (K°) 2 Lie(Te (s s (6)) (K7) /Lie(Te(e,kyr (8)) (K°). (2.6)

The group Gal(K/k) acts canonically on ' )5 (8) (K°) /T i ) (&) (K°)
and on Lie(T'e(x 1)s(®))(K°)/Lie(L ¢ 1), (8))(K°), these actions are equiv-
ariant relatively to the isomorphism (2.6). We thus get

Gal(K/k) _

(Tt (8K /T (1 1y (8)(K)) = (Lie(Te 1,y (€)) (K°) /Lie(T e iy (8)) (5 %)) S /H)

Conditions on H' implies now that
T (i i)s (B)E )G /T e () (K)o Lie(T, (g, 1y (6)) (K°) G2 /Lie(Ty (x gy, (8)) (k) G21U)
where Gal(K) := Gal(K/k). We deduce now the desired isomorphism (2.5)
using equations (x).
O

We now state and prove a Lemma which ensure that hypothesis of the
previous proposition holds.

Let K/k be a finite Galois extension. Let & be a Gal(K/k)-stable K°-
Demazure group scheme. Let N € Z-( be a strictly positive integer. Let
'y (®) be the N-th congruence K°-scheme of &. Write I'y := T'y(8)(K?).
It is Gal(K/k)-stable by 2.1.14. Let ¢ be a positive integer, I'; and I';1; are
Gal(K /k)-stable, so Gal(K/k) acts on I'y/T'y41.

Lemma 2.5.26. Assume H'(Gal(K/k),T;/Ty11) = 0 for all positive integer
t. Then, for any N > 0,

HY(Gal(K/k), T (®)(K°)) = 0.
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Proof. By |41, Lemma 2.8], it is enough to prove that
(xi) H'(Gal(K/k) ,Tn(&)(K°)/Tnii(B)(K°) =0 foralli€ Zs.

Let us prove it by induction on 7. The initialisation (i = 1) is a direct
consequence of the hypothesis. Let us do the heredity. Assume the relation
(x7) is satisfied for an ¢ > 0 and let us show that this implies that (xi + 1) is
also satisfied. We have an exact sequence of Gal(K/k)-groups
0 ——>In+4i/TNtit1 — > Tn/TNtiv1 —— (ON/TN4is1) /(DN 4i /T N4ip1) —— 0

By hypothesis we have H'(Gal(K/k),T ny1i/Tnyit1) = 0. By induction
hypothesis H'(Gal(K/k),I'y/Tn+;) = 0. Thus by [41, Lemma 2.5], we
deduce H'(Gal(K/k),Tn/Tn1it1) = 0. This ends the proof of the heredity.
We have finished the induction and the proof ends here.

O
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APPENDIX B: On notions of
rational points in the reduced
Bruhat-Tits building

Let k be a non archimedean local field and G be a connected reductive k-
group scheme. We have two natural notions of rational points in the reduced
Bruhat-Tits building BT?(G, k).

1. (Here G = GLy in the original definition of Broussous-Lemaire |7|)
A point € BTH(G, k) is called barycentrically rational if it is the
barycentre of vertex in a chamber with rational weights (this definition
is natural after Broussous-Lemaire work, see their work on comparison
of filtrations [7]). We denote by BTE, (G,k) the associated subset

ratper
of BTE(G, k).

2. A point = € BT®(G, k) is called specially rational if there exists K/k
finite such that

(a) ig/m(z) € BT?(G, K) is a special point (iK1 is the canonical map
between buildings, this notion of rational point is introduced in
this text (see section 2.3))

(b) G is split over K (this condition is always satisfied in this ap-
pendix).
We denote BTZ

ratspe

the associated subset of BTT(G, k).

(G, k) (it was denoted BTZ

rat

(G, k) in section 2.3)

In this appendix we prove that they are equivalent in the case G = GLy,
ie BTE, (GLy,k) = BTE, (GLy,k). We then illustrate the proof in

ratspe Tatbar
the G L3 case with an example and a picture.

Proof that the two notions are equivalent for G = GLy

Here G = GLy, it is split /k and the reduced building is a simplicial complex.
That last condition means that any facet F'is a simplex. Let F' be a maximal
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facet in an appartement A, and fix it. Let S1,...,.5;,..., Sy be the vertex
of the facet F. Put I ={1,...,N}.
e Since F' is a maximal simplex, for all 7 € I, the set

Ri=1{5:5;|jelandi#j}

is a repére of A. That means that for any i € I and each P € A, there

. . ~ ? T o
exists® unique real numbers z1,...,Z;,...xy such that ;P = ijSiSj.
JeI
i
The numbers x1,...,Z;,...xy are called the coordinates of P in the repére
R;.

e (Since G = GLy) The directions * of the walls in A are in bijection
with the vertex of the maximal simplex F' as follows

{Vertex of F } +» {direction of the walls in A}

S; —D; = {direction of the wall containing S1,...,S;,...,Sn}

e Let K/k be a finite extension, since G is split, for any maximal split
torus 9, the simplicial structure on the associated appartement A%(G,S)
satisfies the following: The appartement AR(G,S)/K is obtained from
AR(G, S8)/k adding regularly e times more walls for each direction. Fix
a vertex S;, we thus get a direction D; , and we put:

Wallsg, = {The set of walls having direction D;, and coming from finite extensions }

Let P € A (think P € F'). Write the coordinates of P in the repére R;:
oo . .
ST? = Z x;5;S;. By Thalés Theorem, we deduce (j € I\ 4):
FEING
P € Wallsg; < The j-th coordin. z; of P
in the repére R; is a rational numb.

Recall that a point P is special over an extension K/k if for every direc-
tion D;, there exists a wall of BT®(G, K) such that P is contained in this
wall.

We deduce that

3The symbol hat over a symbol in a list of symbol means that we ommit it.
4By the direction of a wall we mean the vectorial part.
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P eBT/, (G k)& Vjel,PeWalls,
< Vi, j € I;i # j; the j-th coordinate of P
in the repére R; is rational.
& Vi € I, the coordinates of P in the

repére R; are rational numbers

e Let us now prove that BTF = BTE

ratspe ratyqr”
We start by the inclusion C. Let x € BTfatspe. Let i € I, we write P in
the repére R;

;5? = Z l‘JSZ—S;
JeI\i

with z; rational numbers.
We deduce the relation, using Chasles

SiP = Z xﬂﬁ%— P—S;).
Jel\i
This allows us to write
e
0= ((Z SL‘]') — 1)@4— Z ZU]‘PSJ'
jel\i jel\i

This makes clear that P € BT, (G, k) by definition of barycentres.

ratper

Let us prove the reverse inclusion O. Let P € BTE, (G, k). We have

ratpar
to show that for each 4, the coordinates of P in the repére R; are rational

numbers. By definition of BTfatbm(G, k), there exists rational numbers ¢;
such that

ZC]'P—S; =0.

We thus get

S" ¢(PS, + 5:5;) + i PS, = 0.

JEIN
So we obtain

Z cjﬂ + (Z Cj)ﬁ = 0.

FISAY Jjel
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Putting k = Z c; (it is # 0), we get
Jel
SP=% %sis}.
JeI\i

This shows that the coordinates of P in the repére R; are rational num-
bers. So P € BTE (G, k), as required.

ratsp

Illustration of the proof in GL3

Take G = GL3. A maximal simplex of an appartement in the reduced
building look like this:
B

Ase *(C.

In black are represented walls over k£ and in red walls over an extension
K /k of ramification index 4. There are three directions, here one horizontal
realized by AC, an other oblic realized by AB and an other BC. With the
notations introduced before, the direction AC is Dg, AB is D¢ and BC
is D4. Consider the point P, it is a point in BTfatspe (G, k), since for each
direction, a red line realizing this direction pass by P. In the repére R4,
the coordinates of P are (1,3), i.e. AP = izﬁ + %zﬁ

We succesively deduce the relations

ﬁ:iﬁJﬁﬁJﬁ/ﬁﬁ%ﬁ
%ﬁ+iﬁ+%(fp:o

So P is a rational special point in the sense of Broussous-Lemaire, i.e.
PecBTE, (G k).

ratpar
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Now take a point P € BT®, (G,k), and we research an extension K/k

ratyer

such that P is special in BT®(G, K). Assume for example that P is the
barycentre ((4,2),(B,3),(C,5)), we thus get

9AP + 3B + 50P = 0
We deduce, using Chasles, that
10AP + 3BA + 5C4 = 0

So ﬁ = l%zﬁ + %@, and the coordinates of P in R4 are rational.
Analogously, one can see that the coordinates of P in the repére Rp and
Rc are rational. We deduce that P becomes special over an extension with
ramification index multiple of 10.
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