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Abstract
Soot particles (which are one kind of ultra-fine particles) can be produced and emitted in fuel
rich combustion conditions. Sectors like road and air transportation, or industry are significant
contributors to soot particles emissions. Soot particles are usually considered as a pollutant as their
negative impact on health has been assessed. In some specific cases like nanomaterials production,
they can be synthesized on purpose. In both cases, accurate understanding and prediction capability
of the Particle Size Distribution (PSD) is needed, for a better combustors design.

In this thesis, a novel numerical method is proposed to predict the Particle Size Distribution
(PSD) evolution. It consists in a hybrid approach featuring stochastic particles representing a
Probability Density Function (PDF), and fixed sections. The objective is to solve accurately for the
surface growth/oxidation term, mitigating the problem of numerical diffusion encountered in some
classical sectional methods. On the other hand, the proposed method is less expensive than a full
Monte Carlo method.

First, the context and motivation of the thesis are explained. Concepts and models for soot
physical source terms are shortly reviewed. Then, the Population Balance Equation (PBE), which
drives the evolution of the Particle Size Distribution (PSD), is presented as well as the different
classes of numerical methods used for its resolution. Subsequently, the novel hybrid method is in-
troduced. Its accuracy and efficiency are demonstrated on analytical test cases. Finally, the method
is applied on a premixed ethylene sooting flame.

Keywords: Aerosol modelling; Sectional method; Stochastic method; Hybrid modelling; Parti-
cle Size Distribution; Population Balance Equation; Probability Density Function; Soot modelling

Résumé
Les particules de suie (qui sont un type de particules ultrafines) peuvent être produites et émises
dans des conditions de combustion riche. Les secteurs comme les transports (routier et aérien), ou
l’industrie sont des contributeurs significatifs aux émissions de particules. Celles-ci sont habituelle-
ment considérées comme des polluants dans la mesure où leur impact négatif sur la santé a été
mesuré. Dans certains cas spécifiques comme la production de nanomatériaux, elles peuvent être
synthétisées de manière volontaire. Dans les deux cas, une compréhension précise et une capabilité
de prédiction de la distribution de tailles de particules (PSD en anglais) sont nécessaires, pour une
meilleure conception des chambres de combustion.

Dans cette thèse, une méthode innovante est proposée pour la prédiction de l’évolution de la
distribution de tailles de particules (PSD). Elle consiste en une approche hybride composée de
particules stochastiques représentant une fonction de densité de probabilité (PDF en anglais) et de
sections fixes. L’objectif est de résoudre de manière précise le terme source de croissance/oxydation,
en traitant le problème de diffusion numérique rencontré par des méthodes sectionnelles classiques.
D’autre part, la méthode proposée est moins coûteuse qu’une méthode de Monte Carlo complète.

D’abord, le contexte et les motivations de cette thèse sont expliqués. Les concepts et modèles
pour les termes sources physiques de suie sont brièvement résumés. Ensuite, l’équation de bilan de
population (PBE en anglais) qui pilote l’évolution de la distribution de tailles de particules (PSD),
est présentée, ainsi que les différentes classes de méthodes utilisées pour sa résolution. La nouvelle
méthode hybride est introduite. Sa précision et son efficacité sont démontrées sur des cas tests
analytiques. Enfin, la méthode est appliquée sur une flamme prémélangée d’éthylène.

Mots-clés: Modélisation aérosols; Méthode sectionnelle; Méthode stochastique; Modèle hybride;
Distribution de tailles de particules; Equation de bilan de population; Fonction de densité de prob-
abilité; Modélisation des suies
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questions qui m’ont permis de présenter de manière plus précise et claire mes travaux.
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confiance et orienté sur un sujet intéressant. Merci pour votre expertise scientifique et vos con-
seils toujours pertinents. Merci pour votre passion pour votre travail et votre disponibilité. Merci
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AFM Atomic Force Microscopy

BC Black Carbon. Usual name for soot particles in some areas of research like
envirenmental science or medecine
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MOMIC Method Of Moments with Interpolative Closure
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PSD Particle Size Distribution

PM10 Particulate Matter with diameter below 10 microns
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PM Particulate Matter

PAH Polycyclic Aromatic Hydrocarbon

QBMM Quadrature Based Methods of Moments

QMOM Quadrature Method of Moments
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P Gas pressure
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R Ideal gas constant
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Cmass mass of a carbon atom
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equations.
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1.1 Motivation
Soot particles are generated from combustion in many different contexts such as fires, domestic
or industrial burners, furnaces, internal combustion engines or aeronautical turbines. Generally
produced from fuel rich combustion, soot particles are usually an unwanted byproduct but can also
be synthesized on purpose in some applications. In this introductory section, a quick overview is
given on the impacts of soot particles on the environment and industry.

1.1.1 Impacts on health
Soot particles can cause cardiovascular diseases, cancer or respiratory diseases (Niranjan and Thakur,
2017). In general, in medical or environmental studies, soot particles are referred to as Black Carbon
(BC). They are considered as one type of particles. A more general measure of particles concentra-
tion or emissions is Particulate Matter (PM). Measured pollutants levels are usually indicated as
PM2.5 or PM10 (particulate matter with diameter below 2.5 microns and below 10 microns respec-
tively). One also refers to ultra-fine particles for particles below 100 nanometers. Estimates of the
health impacts attributable to exposure to air pollution indicate that PM2.5 concentrations in 2013
were responsible for about 467 000 premature deaths originating from long-term exposure in Eu-
rope (Guerreiro et al., 2016). Groups of experts have gathered the conclusions of numerous studies
to bring relevant information to decision makers and regulatory agencies. For instance, the World
Health Organization issued the Review of evidence on health aspects of air pollution – REVIHAAP
in which the health effects of particulate matter, including Black Carbon were assessed (WHO,

9
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2013). More recently, the ANSES (french national agency for sanitary security for food, environ-
ment and work) reviewed newer scientific contributions and assessed the impact of soot particles
(and other particulate matter) from several sectors and in particular road transportation (ANSES,
2019). The main conclusions were the following:

• Within particulate matter, the strongest levels of proof of negative effect on health were
gathered for soot particles, organic carbon, and ultra-fine particles (below 100 nanometers).

• The level of proof of negative effect on health of particles emitted by the road transportation
sector is considered as ”strong”.

• The negative effect on health from coal combustion, petroleum products industry and biomass
combustion was confirmed.

• For future regulation, the agency recommends to target primarily indicators on levels of soot
particles, organic carbon, and ultra-fine particles in addition to indicators on bigger particles
as PM2.5 and PM10.

It is therefore essential to develop accurate commercial measurements and numerical models for
ultra-fine particles and in particular, soot particles.

1.1.2 Impacts on climate
Black Carbon emissions induce a significant climate forcing. In Bond et al. (2013), a comprehensive
assessment of climate forcing by all known processes relative to black-carbon-rich sources was made.
Uncertainty levels are high but the main conclusions are that there is a very high probability that
black carbon emissions, independent of co-emitted species, have a positive forcing and warm the
climate. However, considering the co-emitted species, including some cooling agents, the net forcing
of these sources may be slightly negative. A schematic overview of the processes by which Black
Carbon induces climate forcing is shown in Figure 1.1. An illustration of the geographic distribution
of modeled BC emissions, burden, climate forcing and temperature response is shown in Figure 1.2.

1.1.3 Regulation and emissions trends in Europe
European emission standards have been implemented defining the acceptable limits for exhaust
emissions of new vehicles sold in the European Union and EEA member states. The latest EURO
6 standards define limits for PM levels (Particulate Matter in g/km) and PN levels (Particulate
Number in Particle/km) for diesel and gasoline engines. Standards on PM have continuously become
more stringent (Figure 1.3), while standards on PN have been introduced through Euro 5b for diesel
engines and Euro 6b for gasoline engines, both set at 6.1011[particle/km].

These standards have driven significant reduction of PM and BC emissions from road trans-
portation in Europe as can be seen on Figure 1.4. Other sectors contribute to BC emissions, in
particular the Commercial, institutional and households category which includes domestic biomass
combustion. Also, the emissions of the non-road transport sector are not negligible. Within the
aeronautical context, no standards were enforced yet on PM emissions. However, joint research pro-
grams involving industry and academic laboratories aim at getting a better understanding of soot
formation in aeronautical engines. For example, the SOPRANO project, coordinated by SAFRAN
Tech and funded by the European H2020 program, funded the present PhD thesis. The main
objective of the project is to improve experimental and numerical approaches related to the char-
acterization and prediction of soot emissions in Low NOx combustor environment. In particular,
numerical models must be available to accurately predict the Particle Size Distribution (PSD) to en-
able an optimized design of future engines. Within this context, the present thesis aims at bringing
an accurate numerical method for the evolution of the PSD.
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Figure 1.1: Schematic overview of the primary black-carbon emission sources and of the processes
by which Black Carbon induces climate forcing. Source: Bond et al. (2013)

Figure 1.2: Data from the HadGEM1 climate model. Source: Bond et al. (2013). (a) Emissions of
BC aerosols [mg.m−2.yr−1], (b) burden of BC aerosols [mg.m−2], (c) direct radiative forcing due to
BC aerosols [W.m−2], and (d) equilibrium surface temperature change [K] in response to the BC
direct radiative forcing.



CHAPTER 1. INTRODUCTION 12

Figure 1.3: Evolution of European standards for Particulate Matter emissions.

Figure 1.4: Evolution of BC emissions by sector in Europe. Source: European Environment Agency
(EEA).
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1.1.4 Material synthesis
In some applications, soot particles can be used for material synthesis. The objective is then to war-
rant reproducible generation of particles with well defined size, crystallinity and morphology. Soot
aggregates are interesting in electroceramics (gas sensors, battery materials) because they facilitate
electron transport by minimizing contact resistance (Strobel and Pratsinis, 2007). Another use of
soot aggregates is in catalysts and optical fiber as they ease transport of reactive and product gases
in catalyst beds (Kelesidis et al., 2017). Synthesis by combustion allows high purity materials which
is not always reachable by conventional wet-phase and solid state processes. Therefore, deep knowl-
edge on soot particle formation and on the evolution of the PSD and aggregates morphology are
of interest for ensuring reproducible production of new high-value products like carbon nanotubes,
nanosilver and biomagnetic nanofluids.

1.2 Soot particles: Definition and description

1.2.1 Definition
Soot particles are produced during the incomplete combustion of hydrocarbon fuels. Mainly com-
posed of carbon atoms, they also contain a non-negligible amount of hydrogen atoms.

Terminology and definition can vary depending on the field. In atmospheric science, the term
Black Carbon (BC) is used for particles exclusively formed during an incomplete combustion of hy-
drocarbon fuels. A combination of properties distinguishes BC from other light absorbing material,
such as some organic carbon compounds (Bond et al., 2013):

• A strong visible light absorption at 550 nm.

• Refractory, meaning that BC is resistant to decomposition by heat. Its vaporization temper-
ature is near 4000K.

• Aggregate morphology.

• Insolubility in water and common organic solvents

In combustion science, the term soot particle is not only used for aggregates but also for incipient
(nascent) particles, and agglomerates. Incipient soot particles are formed by nucleation from the
polycyclic aromatic hydrocarbon (PAH) species known to be precursors to soot formation (McEnally
et al., 2006). Incipient particles feature elemental carbon-to-hydrogen (C/H) ratios in the range of
1.4–2.5 (Russo et al., 2015). Their size ranges between 1 and 6 nm (Wang, 2011a). These incipient
particles grow through coalescence (merging with each other when colliding) and surface addition
to become larger primary particles with diameters in the range of 10–50 nm (Wang, 2011a). As
these particles grow, they undergo dehydrogenation and progressively solidify and aggregate rather
than coalesce, forming aggregates. Aggregation as opposed to coalescence means that the primary
particles (or spherules) stick together instead of merging when colliding. The agglomerates then
turn into graphitic aggregates through additional surface growth. As soot matures, the C/H ratio
increases (Russo et al., 2015). A schematic representation from Michelsen (2017) is reproduced here
(Fig. 1.5). It represents soot formation and evolution in a flame with an illustration of the different
terms used for soot particles (incipient particles, agglomerates, graphitic aggregates).

Absorption properties are also used to characterize incipient soot particles in the combustion
field. Based on the ability to absorb radiations from ultraviolet (UV) to infrared (IR) (which
increases with soot maturity) and soot size, two different definitions of incipient soot particles
coexist in the combustion community (Betrancourt, 2017):
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Figure 1.5: Schematic representation of soot formation and evolution in a flame. The molecular
species and particles are not drawn to scale. Source: Michelsen (2017)

• According to the first definition, two classes of incipient soot particles exist depending on their
absorption properties (D’Anna, 2009; Michelsen, 2017):

– Disordered incipient particles which are transparent to visible and IR radiations and have
a mean diameter of about 3 nm.

– Stacked incipient particles, larger than 3 nm and which absorb radiations in the visible
and IR spectrum.

• According to the second definition, soot particles can absorb from UV to IR and can be as
small as 1 nm. They are defined as particles able to emit black-body radiations naturally at
flame temperature or induced by laser absorption (laser induced incandescence) (Desgroux
et al., 2017).

1.2.2 Morphology
Soot particles are generally considered as either spherical (incipient particles) or as aggregates
constituted of several spherical primary particles (or primary spherules). Figure 1.6 shows a rep-
resentation of a fractal aggregate and corresponding characteristic dimensions which are defined
hereafter.

dp is the diameter of a primary spherule with Rp the corresponding radius. np is the number
of primary spherules composing the aggregate. dc is the diameter of the aggregate’s circumscribed
sphere. It is also used as a collision diameter. Corresponding radius is noted Rc. dg is the gyration
diameter with corresponding radius Rg. It is characteristic of the mass distribution (linked to the
inertial moment).

It is known that soot particles, within a certain size range, have fractal-like structure, i.e. there
is a relationship between np and dg. This relation is given by the fractal law:

np = kf(dg/dp)Df . (1.2.1)

Df is the fractal dimension, and kf is the fractal pre-factor. These constants can be determined
experimentally. Figure 1.7 (from Yon et al. (2011)) shows an example of agreement between mea-
surements and theoretical fractal law with different values for Df and kf depending on the fuel.
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Figure 1.6: Representation of soot aggregates characteristic dimensions.

Figure 1.7: Fractal law for (a) diesel and (b) diester soot. Points: Measurements. Line: fitted
fractal law. Source: Yon et al. (2011)
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Figure 1.8: BF-STEM mode (upper row) and TEM mode images (lower row) of soot agglomerates
from different engine thrust levels. Encircled in the lower row images are examples of primary
spherules. Source: Liati et al. (2014)

Figure 1.9: HRTEM images of primary multicore soot particles (from rhe P100 samples) surrounded
by relatively well-ordered, deformed graphene lamellae. Source: Liati et al. (2014)

Soot morphology depends on many parameters and can be difficult to predict. It may vary with
the fuel but also with operating conditions. For example, in Liati et al. (2014), comparison was
made of transmission electron microscopy (TEM) images of samples of soot particles from the same
gas turbine (a CFM 56-7B26/3 turbofan engine) at different engine thrust levels. 100%, 65% and
7% engine thrust respectively noted P100, P65 and P7 were sampled. These thrust levels roughly
correspond to takeoff, cruising, and taxiing, respectively. Images of representative aggregates for
each engine thrust level are shown in Figure 1.8. As observed by the authors, the samples exhibit a
diminishing size of the primary soot particles from the higher to the lower thrust. Also, the primary
spherules in the 7% engine thrust level are significantly smaller as compared to the 65% and the
100% thrust samples. The primary spherules composing an aggregate from the P100 sample can be
observed in Figure 1.9.

1.3 Objectives and outline

1.3.1 Objectives
The simulation of sooting flames is challenging at several levels.
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• First, complex chemistry and physical phenomena as nucleation are involved in soot formation.
It is difficult to produce quantitative and generic models and the most accurate ones feature
heavy kinetical schemes.

• Second, once the physical source terms are estimated, the evolution of the Particle Size Dis-
tribution (PSD) through nucleation, agglomeration and surface growth/loss must be tracked.
This is done through the resolution of the Population Balance Equation (PBE). Several tech-
niques have been derived for this purpose. They can be classified into the following main
classes: monodisperse assumption-based, Method of Moments (MOM), sectional methods
and Monte Carlo methods. Each class presents specific advantages and drawbacks and choice
between them may vary depending on the application.

• Finally, radiation and chemistry-turbulence interaction may play an important role in sooting
flame applications.

In this thesis, we will focus on the second point. The main objective is to develop an accurate
and efficient method for the resolution of the Population Balance Equation. Radiation
and chemistry-turbulence interaction are beyond the scope of the present work. General background
and recent advances in the understanding of soot physics and chemistry (first point) will be pre-
sented. However, the innovative part of the present work lies in the development and validation of
a novel numerical method.

The proposed method, called HYPE (for HYbrid Population balance Equation) features a hybrid
formulation with stochastic particles defining a Probability Density Function, and a fixed-sectional
discretization for agglomeration source terms calculation. The goals of this method are:

• To solve accurately for the Particle Size Distribution. Specific attention will be given to the
growth/loss source term.

• To maintain a relatively moderate computational cost as compared to other highly accurate
numerical methods.

Figure 1.10 illustrates the main steps involved in the simulation of a sooting flame and the role
of the proposed numerical method (HYPE).

1.3.2 Outline
This thesis is organized as follows:

• Chapter 2: Models for soot formation and dynamics
Some background on soot chemistry and physics is provided. In particular, the phenomena
of PAH growth, soot nucleation, agglomeration and surface growth/oxidation are described.
Several widely used models are presented as well as some more recent breakthroughs.

• Chapter 3: Numerical approaches to solve the Population Balance Equation
The main classes of numerical methods for the resolution of the Population Balance Equation
are presented. The concept of numerical diffusion is explained. Advantages and drawbacks
of each class of methods are listed. The positioning and strategy of the HYPE method are
introduced.

• Chapter 4: A novel hybrid stochastic/sectional method: the HYPE method
Detailed theoretical formulation of the HYPE method is carried on. Practical algorithm
is presented. Analytical test cases are performed. Accuracy and computational cost are
measured and compared to reference sectional methods.
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• Chapter 5: Application to a laminar premixed flame
A laminar premixed ethylene flame is simulated using the HYPE method for soot modelling.
Results are compared to a reference sectional method. Aggregate shape modelling is discussed
and a parametric study is carried out.

• Chapter 6: Conclusion and perspectives

• Appendix
Some chemical species cited in this thesis are represented (structure and formula) in the
appendix. Also, Bouaniche et al. (2019a) was included in the appendix because it is not
directly linked to the topic of this thesis (in contrast, Bouaniche et al. (2019b) was used to
write chapter 4). Finally, a summary of this thesis in french has been added in the appendix.

Figure 1.10: Graphical abstract



Chapter 2

Models for soot formation and dynam-
ics
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In this chapter, Some background on soot chemistry and physics is provided. Many uncertainties
remain on soot formation processes. However, these processes can be broken into different steps:
Gas phase chemistry, nucleation, agglomeration, surface growth/loss through surface reactions and
PAH condensation. Some of the most accepted theories and models will be presented for each step
in this chapter.

19
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Figure 2.1: A version of the Hydrogen Abstraction Carbon Addition (HACA) reaction mecha-
nism. The standard Gibbs function per carbon atom is plotted relative to an initial system with
benzene:acetylene:H atom = 1:5:1 at 1800 K. Source: Wang (2011b)

2.1 Gas phase chemistry
The nucleation processes are still widely uncertain and subject to intense research. However, it is
widely accepted that PAH (Polycyclic Aromatic Hydrocarbon) species are the main precursors for
the formation of incipient soot particles. It is therefore crucial to predict correctly at least some
PAH species for most nucleation models. Kinetic mechanisms must be able to reproduce accurately
fuel oxidation and the evolution of the main species as well as PAH formation. Different PAH
formation and growth pathways have been proposed.

One of the most popular pathways is the Hydrogen-Abstraction-Carbon-Addition (HACA) mech-
anism which was introduced in Frenklach and Wang (1991). It is based on the postulate that factors
important to both flame chemistry and soot formation are:

• Acetylene (C2H2), because it is the most abundant hydrocarbon intermediate. It plays the
role of molecular building block.

• The H atom, because it is the driving force behind chain branching and flame propagation.
It plays the role of ”catalyst”.

• High temperature because it facilitates fast kinetics. However, high temperature also limits
the molecular mass growth through fragmentation of PAH molecules.

A schematic representation of the HACA mechanism (from Wang (2011b)) is shown in Fig-
ure 2.1. The fact that soot precursors must survive from fragmentation at high temperatures
advocates for the participation of Stein’s stabilomers (Stein and Fahr, 1985) in soot formation. The
presence of these stabilomers in sooting flames has been experimentally confirmed. The pericon-
densed PAHs, consisting of six-membered benzenoid rings are probably the most important for soot
formation (even though more recent experimental results may indicate a significant importance of
five-membered rings) and indices of acetylenic PAH growth process have been observed (Dobbins
et al., 1995, 1998). Examples of pericondensed PAHs include naphthalene, phenanthrene, pyrene,
and coronene.

It can be noted on Figure 2.1 that the Gibbs free energy does not evolve monotonically as benzene
grows towards naphthalene, phenanthrene and pyrene. This means that these reactions are highly
reversible and kinetically controlled. This high reversibility results in a high dependence on flame
temperature and a high sensitivity of PAH formation to a multitude of chemical reactions including
the first aromatic ring formation. Other pathways for PAH growth have been proposed since the



CHAPTER 2. MODELS FOR SOOT FORMATION AND DYNAMICS 21

Figure 2.2: Structures of the most stable isomers in the most stable classes of C2nH2m molecules
(“stabilomers”). Source: Stein and Fahr (1985)

.

Figure 2.3: Pyrene and fluoranthene formation through the combination of benzyl and indenyl
radicals. From Sinha et al. (2017)

.

introduction of the HACA mechanism. In particular, mechanisms involving Resonantly Stabilized
Radicals (RSR) like propargyl (C3H

•
3 ), benzyl (C7H

•
7 ), and cyclopentadienyl (C5H

•
5 ) have been

presented. Propargyl recombination to form benzene has been supported by several works (Miller
and Melius, 1992; Miller and Klippenstein, 2001). The formation of four-ring aromatics, pyrene and
fluoranthene, through the combination of benzyl and indenyl radicals was studied in Sinha et al.
(2017) (Fig. 2.3). Other types of mechanisms like phenyl addition/cyclization (PAC) or methyl
addition/cyclization (MAC) have been proposed (Shukla and Koshi, 2011) (Figs. 2.4 and 2.5).

More recently, high-resolution atomic force microscopy (AFM) was used for direct imaging of
the building blocks forming the particles in the early stages of soot formation in a laminar premixed
ethylene/air flame (Schulz et al., 2019). The main conclusions of this work were that:

• There is a large variety of aromatic compounds participating in the formation of the initial
soot particles.

• Not only six-membered benzenoid rings but also penta-rings were frequently observed in the

Figure 2.4: PAC mechanism from Shukla and Koshi (2011)
.
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Figure 2.5: MAC mechanism from Shukla and Koshi (2011)
.

Figure 2.6: AFM images and chemical structure of some representative molecules, as well as molec-
ular orbital densities measured by scanning tunneling microscopy (STM) and corresponding density
functional theory (DFT) simulations. “R” labels denote unidentified parts of the molecules. Scale
bars are 5 Angstroms. Adapted from: Schulz et al. (2019)

.

imaged aromatic molecules.

• Several molecules contained non-aromatic side-groups such as cycloaliphatic moieties, methyl
groups and alkyl chains.

• There are indications for the presence of unpaired π-electrons within the aromatic building
blocks.

Other experimental contributions like Johansson et al. (2015) indicate the existence of a vari-
ety of PAH species that extends beyond the traditional Stein stabilomers classification in sooting
flames. These evidences may drive research towards new pathways for PAH growth and lead to
better prediction of PAH concentrations and soot nucleation. A non-exhaustive list of some kinetic
schemes among the most used for PAH growth is given in Table 2.1. Currently, available kinetic
schemes for PAH growth can give reasonable results depending on the application and species re-
ported but consistent accuracy on a wide variety of flames and species is still difficult to obtain.
Pejpichestakul et al. (2019) conducted a wide review of available data on rich laminar premixed
flames of hydrocarbon fuels. The CRECK (Politecnico di Milano kinetic modeling group) kinetic
mechanism of PAH and soot formation was tested and compared to experimental data from 60
flames from the literature, for more than 20 different fuels, in a wide range of equivalence ratios
(φ = 1.00 to φ = 3.06) and pressures (P = 0.03 atm to P = 1.00 atm). Some comparisons were also
made with mechanisms from other groups: the Blanquart mechanism from Blanquart et al. (2009)
and the KAUST KM2 mechanism from Wang et al. (2013) (also cited in Table 2.1). Their main
conclusions are the following:
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Group(s)/Mech. name Reference(s)
ABF Wang and Frenklach (1997), Appel et al. (2000)

Stanford / Caltech Blanquart et al. (2009), Narayanaswamy et al. (2010)
KAUST Wang et al. (2013), Park et al. (2017)

Sandia / BTU Moshammer et al. (2017)
USTC Yang et al. (2015), Yuan et al. (2015)
DLR Slavinskaya and Frank (2009), Slavinskaya et al. (2012)
PC2A Bakali et al. (2012), Desgroux et al. (2017)
MIT Richter et al. (2005), Ergut et al. (2006)

LLNL Marinov et al. (1998)
CRECKM Saggese et al. (2013), Pelucchi et al. (2014)

Table 2.1: A non-exhaustive list of some kinetic schemes among the most used for PAH growth.

• Most major species (CO2, H2, H2O, CH4) are well predicted for the whole range of flames.
(Fig. 2.7).

• Other important species like C2H4 and C2H2 show some significant error levels depending
on the pressure and fuel type. (Even though the sum of C2H4 and C2H2 is consistently well
predicted). (Fig. 2.7).

• Large under-predictions of C4H2 are observed in atmospheric flames. (Fig. 2.8).

• The overall prediction of PAHs in atmospheric flames is satisfactory. However, most of the
low-pressure benzene flames show an overestimation of phenylacetylene (C6H5C2H) and un-
derestimation of naphthalene (C10H8). (Fig. 2.9).

• The effect of soot formation on PAH consumption is significant. Therefore, soot models must
systematically be included in kinetic modeling efforts aiming at reproducing PAH growth in
sooting flames. (Fig. 2.10).

• Similar levels of error where observed for the two other tested mechanisms (Blanquart from Blan-
quart et al. (2009) and KAUST KM2 from Wang et al. (2013)).

PAH growth modeling is difficult for several reasons:

• Rate constants are challenging because of the difficulties of applying ab-initio techniques to
PAH molecules which are large.

• The large number of different species and isomers makes lumping necessary at some level.

• Aromatics formation is highly kinetically controlled. Therefore, a precise knowledge about
the underlying mechanism and kinetics at almost every step of the reaction sequence is
needed (Wang, 2011a).

• The need to take soot into account for PAH growth modeling because of PAH consumption
makes the coupling even more intricate. Also, there is no consensus yet on soot nucleation
modeling.
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Figure 2.7: Scatter plots of the maximum calculated and measured concentration of major species.
Each marker represents main fuels,

a
: CH4, �: C2H2, �: C2H4,

`
: C2H6, and : ©: C3+. Void

symbol: low-pressure flames. Filled symbol: atmospheric flames. Source: Pejpichestakul et al.
(2019)

.

Figure 2.8: Scatter plots of the maximum calculated and measured concentration of C4H2 using
CRECK, KAUST and Blanquart models. Symbols as in Fig. 2.7. Source: Pejpichestakul et al.
(2019)

.
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Figure 2.9: Scatter plots of the maximum calculated and measured concentration of phenylacetylene
and naphthalene using CRECK, KAUST and Blanquart models. Symbols as in Fig. 2.7. Source: Pe-
jpichestakul et al. (2019)

.

Figure 2.10: Comparison between experimental (symbols) and predicted benzene profiles. Model
predictions with (dashed lines) and without soot kinetic model (solid lines). Left panel: CH4 flames
(flames from Melton et al. (1998)). Middle panel: C2H6 flames (Flames from Melton et al. (2000)).
Right panel: C2H4 flame (Flame from Carbone et al. (2017). Source: Pejpichestakul et al. (2019)

.
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2.2 Nucleation

2.2.1 Characterization of incipient particles and experimen-
tal evidences

In this subsection, an attempt is made to gather and summarize some of the current knowledge on
incipient particles based on experimental observations.

Incipient soot particles are freshly nucleated particles (from PAH precursors). They have been
detected in the size range of 1 to 6 nm (Wang, 2011a; Oktem et al., 2005; Commodo et al., 2015b).
According to Michelsen (2017), incipient particles can be classified in at least two types which may
be referred to as: Disordered incipient particles and Stacked incipient particles.

Disordered incipient particles:

• Absorb in the UV but are transparent at visible and IR wavelengths (D’Anna et al., 2005;
Sgro et al., 2003).

• Fluoresce predominantly in the UV (Bruno et al., 2007).

• Have diameters smaller than 3 nm (Commodo et al., 2015b; Bruno et al., 2007).

• Are formed under relatively fuel-lean conditions (Commodo et al., 2015b; Sirignano et al.,
2012)

• Seem to be constituted of randomly ordered aromatic structures combined with some aliphatic
content (Sirignano et al., 2012; Commodo et al., 2015a).

Stacked incipient particles:

• Absorb in the visible and IR regions (Sirignano et al., 2012; Minutolo et al., 1996).

• Fluoresce in the visible (Bruno et al., 2007; Sirignano et al., 2012).

• Have diameters larger than 3 nm (Wang, 2011a; Abid et al., 2008; Grotheer et al., 2009)

• Are formed under fuel-rich conditions (Commodo et al., 2015b; Grotheer et al., 2009; Sirignano
et al., 2012).

• Seem to be composed of nucleated stacked (Chen and Dobbins, 2000) PAH structures held
together by van der Waals forces (Sirignano et al., 2012).

• Appear spherical (Russo et al., 2015; Abid et al., 2008) and liquid-like (Wang, 2011a; Kholghy
et al., 2013) when observed through Transmission Electron Microscopy (TEM) and Atomic-
Force Microscopy (AFM).

Alternatively, incipient particles can also be defined in a different way (Desgroux et al., 2017):
Soot particles are able to absorb 1064 nm radiation and to radiate spectrally continuous blackbody-
type radiation. Incipient soot particles can be as small as 1.5 to 4 nm.

Independently of the differing definitions or categories of incipient soot particles, information
on their composition and on their precursors is crucial for the understanding and modeling of the
nucleation process. Incipient particles have elemental carbon to hydrogen ratios (C/H) ranging from
1.4 to 2.5 (Russo et al., 2015; Blevins et al., 2002; Ciajolo et al., 1998). It is usually considered that
they have significantly more aromatic than aliphatic character (Russo et al., 2015; Cain et al., 2014;
Mckinnon et al., 1996). However, they have significant abundances of aliphatic and oxygenated
groups (Cain et al., 2014; Mckinnon et al., 1996). Recently, aliphatically bridged multi-core PAH
have been detected in sooting flames (Adamson et al., 2018) (Fig. 2.11). Also, as stated in the
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Figure 2.11: Conceivable C34H26 isomers that are consistent with the findings of the tandem mass
spectra. The structures consist of dual and triple core aromatics that are bridged through aliphatic
chains. Source: Adamson et al. (2018)

previous section, penta-rings were observed in sooting flames (Schulz et al., 2019) and may be
abundant in incipient soot particles.

A wide range of species may be involved in soot particle nucleation. The precursors may not be
the most thermodynamically stable isomers as was previously thought (Stein’s stabilomers (Stein
and Fahr, 1985)). The presence of Resonantly Stabilized Radicals in an atmospheric-pressure lam-
inar premixed ethylene-oxygen flame was observed in Johansson et al. (2018) (Fig. 2.12). RSR’s
may be an important contributor to soot nucleation. Also, dimers, constituted of two stacked PAH
monomers, may play an important role in soot nucleation even though they are not thermody-
namically stable at flame temperature. In Mercier et al. (2019), experimental evidence supporting
the existence of PAH dimers in the proximity of the soot nucleation region of a methane laminar
diffusion flame was reported (Fig. 2.13).

2.2.2 Theoretical models
Experimental diagnostics bring important insights on the species that participate to soot nucleation.
Theoretical models must be consistent with experimental observations and, at the same time, enable
to propose numerical models to quantitatively predict nucleation. The main theoretical models for
nucleation can be summarized in three conceptual pathways (Wang, 2011a) (Fig. 2.14):

• Fullerene-like Nucleation (Path A): Growth of “two-dimensional” PAHs into curved, fullerene-
like structures (Homann, 1998).

• Physical Nucleation (Path B): Physical coalescence of moderate-sized PAHs into stacked clus-
ters (Herdman and Miller, 2008; Schuetz and Frenklach, 2002).

• Chemical Nucleation (Path C): Reaction or chemical coalescence of PAHs into crosslinked
three-dimensional structures (Violi et al., 2004; Richter and Howard, 2000).

Even though the three paths probably all contribute to soot nucleation in flames, their relative
importance or feasibility at different temperatures remains to be clarified. Molecular Dynamics
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Figure 2.12: Schematic overview of the clustering of hydrocarbons by radical-chain reactions
(CHRCR) mechanism. Source: Johansson et al. (2018)

Figure 2.13: Specific profiles of PAHs and dimers subtracted from the LIF intensities determined
from the simulated spectra obtained along the centerline of the flame. The dimers profile is an
average profile of the dimers profile of pyrene, benzo(a)pyrene and perylene. The soot profile has
been obtained with laser induced incandescence (LII). Source: Mercier et al. (2019)
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Figure 2.14: Conceptual mechanisms of soot particle nucleation. Source: Wang (2011a)

(MD) simulations can be useful to determine under which conditions and for which compositions
one path has more chances to be dominant. MD is a computer simulation method for studying
the physical movements of atoms and molecules. Interactions between particles/molecules and
their potential energies are calculated using inter-atomic potentials or molecular mechanics force
fields. In Mao et al. (2017) an efficient simulation method (ReaxFF MD) is used to investigate soot
nucleation and growth from PAHs of different masses at varied temperatures. The authors conclude
that three distinctive regimes can be identified for soot formation as a function of temperature and
PAH mass (Fig. 2.15):

• Physical nucleation regime: At low temperatures (around 400 K), PAHs of all sizes experience
physical nucleation and form incipient particles constituted of stacked clusters with different
orientations.

• No nucleation regime: As temperature increases, PAH dimers and trimers are formed but do
not grow into incipient soot particles. Large PAH monomers have higher probability to grow
into incipient soot particles than small PAHs due to stronger physical interactions.

• Chemical nucleation regime: At 2500 K, PAHs grow to incipient soot particles by the chemical
mechanism. PAH monomers are submitted to ring opening with the abstraction of H, C2H2
and polyacetylenic chain radicals. For large PAHs like coronene, ovalene and circumcoronene,
polyacetylenic chain radicals help to connect them to form soot particles in stacked structures
with ‘carbon bridges’ on the edge. Moreover, the dissociated radicals connect with each other
and nucleate to form fullerene-like soot particles for all types of PAHs.

This kind of study may help to develop more accurate soot nucleation models by considering
temperature and PAH mass together with physical and chemical effects. However, further work is
needed to confirm these regimes experimentally. Indeed, several experiments seem to indicate the
presence of nucleation from small PAHs at temperatures lower than 2400K and higher than 800K
(which would be the ”no nucleation regime”) (Sirignano et al., 2017).

In Johansson et al. (2018) a chemical path to soot nucleation, viable at flame temperature was
proposed. The idea is that hydrocarbon complexes could be bound covalently and form clusters.
These bounds would be promoted by abundant radicals reacting with the hydrocarbon species. The
proposed mechanism regenerates radicals and is likely to eject free H atoms as it proceeds. This
mechanism, called Clustering of Hydrocarbons by Radical-Chain Reactions (CHRCR) may be a key
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Figure 2.15: Nucleation mechanisms of PAHs in homogeneous systems. The closed red squares,
black stars and blue circles represent physical nucleation, no nucleation and chemical nucleation,
respectively. The open olive diamonds and tan triangles are from the previous studies on the PAH
boiling/sublimation temperatures (White, 1986) and equilibrium temperatures for PAH dimeriza-
tion (Wang, 2011a), respectively. Soot nucleation mechanisms can be roughly divided into three
regions according to PAH masses and temperatures, (i) physical nucleation (white), (ii) no nucle-
ation (light grey) and (iii) chemical nucleation (dark grey). Source: Mao et al. (2017)

theoretical breakthrough as it may explain the aliphatic and aromatic content observed spectroscop-
ically in carbonaceous particles. It also could overcome the issue of insufficient abundances of viable
PAHs and of dimers instability at flame temperature as it features clustering of a wide range of
hydrocarbon sizes and structures. Figure 2.16 provides an overview of the CHRCR mechanism in
three stages:

• (A) The CHRCR mechanism is initiated and propagated by resonantly stabilized radicals
sequentially generated through radical-chain reactions involving acetylene or vinyl.

• (B) To form an incipient particle, these RSRs can cluster a wide range of hydrocarbons,
including radicals, stable PAHs, and unsaturated aliphatic species, through radical chain
reactions fueled by loss and gain of extended conjugation.

• (C) Cyclopentadienyl-type groups are deposited on cluster surfaces and further propagate
growth via the CHRCR mechanism.

Even though there is no consensus yet on soot nucleation mechanisms, numerical models have
evolved in an attempt to take into account theses advances on the theoretical and experimental
knowledge.

2.2.3 Numerical models for nucleation
2.2.3.1 Acetylene based models
In some simplified numerical models, nucleation does not rely on any PAH. Probably one of the
most used of these simplified models is the one of Leung et al. (1991). In this model, nucleation
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Figure 2.16: Schematic overview of the clustering of hydrocarbons by radical-chain reactions
(CHRCR) mechanism. Source: Johansson et al. (2018)
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takes place through an irreversible reaction from C2H2:

C2H2 −→ 2Csoot +H2 (2.2.1)

This has the advantage to enable the use of a light gas phase kinetic mechanism as the PAH
growth pathways are bypassed. Also C2H2 is usually more abundant and easier to predict than
PAH species. Because this model is computationally efficient, it is still used in some cases nowadays
for simulations of complex combustion configurations like diesel engines (Bolla et al., 2014). Also,
when important computational effort is focused on turbulent combustion modeling, C2H2 based
nucleation can be used. For example, in Schiener and Lindstedt (2019), a transported probability
density function is used and nucleation is modelled as first order in the acetylene concentration via:

8C2H2 → A4 + 3H2 (2.2.2)

With A4 corresponding to pyrene considered as incipient soot particle.

2.2.3.2 Stacked neutral PAH dimers
Even though Acetylene based nucleation is sometimes used, it is now admitted that PAH species
play an important role in soot nucleation. Taking this into account, many numerical models for
nucleation rely on PAH growth or dimerization. A first category of PAH based nucleation models
features stacked neutral dimers. PAH dimers are formed through the collision of neutral PAH
molecules held together by van der Waals forces. These dimers, or more generally PAH clusters,
are considered as incipient soot particles. In Frenklach and Wang (1991) PAH species grow through
the HACA mechanism. They can then collide with each other forming dimers. The dimers are
assumed to be solid phase e.g. incipient soot particles (and therefore, bigger PAH clusters as
trimers, tetramers are also considered to be incipient soot particles). They can then grow further
either through surface reaction or through collision with PAH monomers or clusters. This model
for nucleation can be summarized in the following equations:

Al → Al+1 → Al+2 → ...→ A∞ (2.2.3)

Representing PAH growth in the gas phase. Al represents an aromatic species containing l rings.
Nucleation takes place through:

Ai +Ai → Csoot (2.2.4)

with i ∈ l, l + 1, ...,∞. Depending on the variants of this models, dimerization can involve
different PAH species, dimerization of one specific PAH species (typically pyrene) or dimerization
of a lumped PAH species. In Frenklach and Wang (1991) all the Ai’s can collide with each other
and form dimers.

Nucleation reaction is treated as irreversible in Frenklach and Wang (1991). The sticking coeffi-
cient γ (also called collision factor) defines the probability for two colliding PAHs to stick together
and form a dimer/incipient particle. In Frenklach and Wang (1991) γ = 1 meaning that all colli-
sions between PAHs form dimers. At the stage of nucleation, incipient particles are small and the
collision dynamics is assumed to be in the free-molecular regime. A size-independent enhancement
factor of 2.2, based on the results of Harris and Kennedy (1988) is used in calculations of collision
frequencies βAi . The details of the calculation of collision frequencies are given in sub-section 2.3.5.
A nucleation source term Ḣ can then be defined, for example considering only collisions between
pyrene molecules as in Appel et al. (2000). Pyrene C16H10 is also commonly designed as A4 (because
it is a 4 rings PAH):

Ḣ = 1
2βA4NA4NA4 (2.2.5)
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Figure 2.17: Collision factors used for modeling soot nucleation with irreversible nucleation model
(IN) vs. peak PAH concentration in different premixed flames. In this figure, Kholgy et al refers
to Kholghy et al. (2018), Desgroux et al refers to Desgroux et al. (2017), Eaves et al refers to Eaves
et al. (2015), Saffaripour et al refers to Saffaripour et al. (2014), Chung refers to Chung (2011),
Blanquart and Pitsch refers to Blanquart and Pitsch (2009a). Adapted from Kholghy et al. (2018)

.

NA4 being the number of A4 molecules per cm3. Ḣ is then a nucleation term expressed in
[part.cm−3.s−1].

NA4 can be deduced from the molar concentration [A4]:

NA4 = [A4].NA (2.2.6)

With NA = 6.024.1023 [mol−1] the Avogadro number. Similar numerical models where incipient
soot particles are dimers or are formed by collision of dimers are still commonly used (Desgroux
et al., 2017; Rodrigues et al., 2018; Blanquart and Pitsch, 2009a).

2.2.3.3 Analogy to gas phase reactions: Lumping techniques and
nucleation involving PAH radicals

The choice of which PAH molecule should be used for nucleation is not clear. First, the relative
importance of small PAHs and big PAHs in nucleation is still subject to controversy. Also, the value
of γ is difficult to determine and seems to be adjusted to evolve with the peak PAH concentration
in the flames studied (Kholghy et al., 2018) (see Fig. 2.17). Some models consider dimerization of
a single PAH species like pyrene (Bhatt and Lindstedt, 2009; Dworkin et al., 2011) or an ensemble
of PAH species (Slavinskaya and Frank, 2009; Kholghy et al., 2016). Lumping techniques for PAHs
above a certain size have been developed (Richter et al., 2005). In these PAH models lumped
PAH molecules and lumped PAH radicals are used to distinguish dimerization of molecules and
dimerization involving radicals. Also, discretization for the H/C-ratio of PAHs was introduced for
example in Saggese et al. (2015) (Fig. 2.18).

With the use of lumped PAHs and radicals, nucleation models propose a ”chemical” nucleation
model as a complement or an alternative to the ”physical” nucleation that would result of collisions
between neutral molecules or dimers. It is to be noted that the nucleation source term can be ex-
pressed in the form of an Arrhenius law (even for the ”physical” nucleation). In this case, nucleation
is expressed as a chemical reaction with a rate constant k which is calculated through:

k = ATme
−Ea
RT (2.2.7)
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Figure 2.18: Classes of lumped pseudo-species defined as BINs (PAHs, particles, and aggregates) and
their properties: median mass, equivalent spherical diameter and H/C ratio for particles; collision
diameter and number of primary particles for each aggregate (Np). Source: Saggese et al. (2015)

.

In general, the units of the rate constant k in an Arrhenius law depend on the global order of
the reaction. If the reaction is first order it has the units [s−1]. For order two, the rate constant has
units [mol−1.cm3.s−1] (if concentration is expressed in [mol.cm−3]) and for third order reactions it
has units mol−2.cm6.s−1. T is the temperature in [K]. A is the pre-exponential factor. Its units
also depend on the order of reaction. ATm is homogeneous with k and with a collision frequency.
m is an exponent addressing dependence on temperature (in addition to the e

−Ea
RT term). Ea is the

activation energy for the reaction in [J.mol−1], and R the universal gas constant in [J.mol−1K−1].
Using the formalism of Arrhenius law, it is possible to define nucleation reactions by analogy to

gas phase reactions. For example, in Saggese et al. (2015) (as shown in Fig. 2.18), heavy PAHs and
particle sizes are discretized into 20 classes of pseudo-species with their masses doubled from one
class to the next. Each class is represented by lumped pseudo-species called BINi. The transition
between gas phase PAHs and soot particles is assumed to be between BIN4 and BIN5. This
nucleation step can happen either through, radical–radical reactions (Eq. 2.2.8), radical-molecule
reactions (Eq. 2.2.9) or molecule–molecule reactions (Eq. 2.2.10):

BIN•i +BIN•n → products (2.2.8)

BINi +BIN•n → products (2.2.9)

BINi +BINn → products (2.2.10)

With (i, n < 5). products designs bins of PAHs or soot particles with according stoichiometric
coefficients. The kinetic constants of theses reactions are calculated by analogy with reference
gaseous reactions. The reference values are then adjusted to take into account the specificity of
soot particles and PAH’s reactivity depending on criteria like H/C ratio and collision diameter.
The three reference reactions used to adjust the Arrhenius constants of Eq. 2.2.8, 2.2.9, 2.2.10 are
respectively reactions EQ. 2.2.11, 2.2.12, 2.2.13:

C5H
•
5 + C5H

•
5 → C10H8 + 2H• (2.2.11)
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which is the reference for the recombination of two resonantly stabilized radicals.

C6H
•
5 + C8H6 → C14H10 +H• (2.2.12)

for radical-molecule nucleation. Finally, molecule–molecule collisions leading to van der Waals
interactions correspond to the reference reaction:

C16H10 + C16H10 → C32H20 (2.2.13)

Similarly, in Eberle et al. (2017a), lumped pseudo-species are called PAHi for the gas phase and
SOOTi for soot particles. Transition from the gas phase to the solid phase is considered to happen
from PAH3 to SOOT1. In this model, PAH molecule (neutral) dimerization was considered to be
negligibly slow as compared to reactions involving PAH radicals PAH•i . Therefore, the nucleation
reactions are either radical-radical (EQ. 2.2.14) or radical-molecule reactions (EQ. 2.2.15).

PAH•i + PAH•3 → ν1PAH3 + ν2SOOT1 + ν3H2 (2.2.14)

PAH•i + PAH3 → ν1PAH3 + ν2SOOT1 + ν3H2 +H (2.2.15)

With νi the corresponding stoichiometric coefficients.

2.2.3.4 Reversible nucleation
Models taking into account reversibility for soot nucleation and PAH condensation processes have
been proposed, for example in Eaves et al. (2015); Veshkini et al. (2016). In these models, reverse
rates are introduced and parameters like gamma (sticking coefficient also called collision efficiency)
are not needed anymore. The reversible nucleation equation is then the following:

PAH + PAH ←→ Dimer (2.2.16)

In Veshkini et al. (2016) the forward rate of this dimerization reaction is determined by the rate
of physical collision of the precursors PAH molecules in the free-molecular regime, similar to the
nucleation model based on non-reversible dimerization. The forward rate of dimerization and the
forward rate coefficient (kFWD) for a dimer composed of PAHj and PAHk are calculated according
to Eqs. 2.2.17 and 2.2.18 respectively:(

∂NDIM

∂t

)
FWD

= kFWD[PAHj ][PAHk] (2.2.17)

With NDIM the number of dimers per unit of gas volume.

kFWD = 2.2
ρ

√√√√8π
(
NC,PAHj +NC,PAHk

)
kBT

CmassNC,PAHjNC,PAHk

(dPAHj + dPAHk
)2N2

A (2.2.18)

where kB is the Boltzmann constant, Cmass is the mass of a carbon atom, NC,PAHj is the number
of carbon atoms in the incipient PAHj species, dPAHj is the diameter of the incipient PAHj species,
NA is Avogadro’s number, and [PAH] denotes the molar concentration of the incipient PAH species.

Then the reverse rate coefficient kREV needs to be calculated. It is done through the relationship
between the dimerization equilibrium constant KD and rate coefficients:

kFWD

kREV
= KD(RT )∆n (2.2.19)

Assuming the dimer is a gaseous species leads to ∆n equal to 1. KD can be expressed as a
function of the Gibbs free energy of dimerization ∆G◦D
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Figure 2.19: Illustration of the reversible nucleation and PAH chemical bond formation (RNCBF)
model. Source: Kholghy et al. (2018)

.

KD = exp

(
−∆G◦D

RT

)
(2.2.20)

Then, ∆G◦D is estimated utilizing statistical mechanical principles to estimate the change in
entropy and enthalpy linked to the dimerization reaction. For further details see Veshkini et al.
(2016).

Finally, the reverse source term can be calculated:(
∂NDIM

∂t

)
REV

= kFWD

RTKD
[Dim] (2.2.21)

Where [Dim] is the concentration of the dimers.
In Kholghy et al. (2018), it is proposed to use the reversible model of Eaves et al. (2015) and to

add a step from dimers to soot particles through chemical bond formation (Fig. 2.19). Other recent
contributions feature reversible nucleation and nucleation involving PAH radicals (Eberle et al.,
2017a). Another nucleation submodel, based on a dampening factor was proposed in Aubagnac-
Karkar et al. (2018).

2.3 Agglomeration

2.3.1 Soot quantities
Here some quantities of interest for soot particles are defined. In this thesis, NT will be used for
the total (meaning all particle sizes) number density of soot particles per unit of gas volume in
[part.cm−3]. (Here part is used for denoting particles in units definition. part is homogeneous to
a number e.g. homogeneous to [−]). If we describe soot particles as spheres and with a constant
particle density ρsoot = 1.8 g.cm−3, then a mono-variate description can be used. Each soot particle
can be characterized by its volume v [cm3] (particle mass or diameter can also be chosen as char-
acteristic size variable). In order to describe the distribution of particles over the range of particle
size v, a number density function n(v) is defined. n(v) is the number of particles of characteristic
size v per unit of flow volume and per unit of characteristic size [part.cm−6]. Finally, fv is the soot
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volume fraction [−]. It quantifies the fraction of volume of the studied system which is constituted
of soot. NT can be calculated from n(v) integrating over the whole particle size range:

NT =
∫ ∞

0
n(v)dv (2.3.1)

Similarly, fv relates to the size distribution through the integration of n(v)v over the whole
particle size range:

fv =
∫ ∞

0
n(v)vdv (2.3.2)

2.3.2 Agglomeration and Smoluchowski equation
Agglomeration can be defined by the collision of two soot particles of volumes v and v̄ to form a
new particle of volume v + v̄. One collision event results in the death of one particle at the level of
NT . It has no impact of fv. It changes the distribution n(v) towards bigger particles. This change
induced by agglomeration on the number density function n(v) is expressed by the agglomeration
source term ȧ(v). This term can be calculated through the continuous counterpart of Smoluchowski
equation (Smoluchowski, 1917):

ȧ(v) = 1
2

v∫
0

β(v − v̄, v̄)n(v − v̄)n(v̄)dv̄ − n(v)
∞∫
0

β(v, v̄)n(v̄)dv̄ (2.3.3)

Where β(v, v̄) is the collision frequency between particles of volume v and v̄. The calculation of
β(v, v̄) is described in 2.3.5.

2.3.3 Concepts of pure coalescence and pure aggregation
We refer to the terminology of Eberle et al. (2017c) and Fredrick et al. (2010) for the different
concepts used to describe agglomeration processes in soot formation:

• Pure aggregation (Fig. 2.20 (a)).

• Pure coalescence (Fig. 2.20 (b)).

• Partial coalescence (Fig. 2.20 (c)).

In the pure aggregation regime, two colliding particles stick together without merging. They are
linked by a contact point. After the collision of several particles, aggregates are formed (Fig. 2.20
(a)). In a pure coalescence regime, the two colliding particles merge totally to form a new bigger
spherical particle (Fig. 2.20 (b)). In reality, soot particles agglomeration is somewhere between
these two asymptotic regimes. An intermediate regime is defined as partial coalescence (Fig. 2.20
(c)). When an aggregate or spherical particle collides with another particle, the changes induced
on its geometrical variables vary depending on the collision model. In the case of pure aggregation
between spherules of the same size, np increases while dp stays constant. On the other hand, in
the case of pure coalescence, np stays constant (equal to one) and dp increases. In Eberle et al.
(2017c) an aggregation factor χagg is defined to quantify how close to pure aggregation or pure
coalescence the model is. The range of particle size is discretized into M sections. In each section,
a representative aggregate geometry is considered with a fixed set of geometric characteristics in
each section i: vi, dp,i, np,i. The discretization is defined by a constant factor Fs = vi+1/vi. Then
χagg = np,i+1/np,i and χagg ∈ [1, Fs]. If χagg = 1 pure coalescence is modeled and if χagg = Fs
pure aggregation is modeled. Depending on the flame studied χagg needs to be carefully validated.
In Eberle et al. (2017c) χagg = 1.5 is used as this value is found to lead to very good predictions
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Figure 2.20: Schematic representation of agglomeration conceptual descriptions. Source: Fredrick
et al. (2010)

.

of soot morphology in a series of laminar diffusion flames. Additionally, a critical diameter dcrit is
considered, below which pure coalescence is modeled. In Eberle et al. (2017c) the value of dcrit = 14
nm is chosen, in line with the literature values in the range of 10 nm to 40 nm (Saggese et al., 2015;
Kazakov and Frenklach, 1998; Bhatt and Lindstedt, 2009; Smooke et al., 2005). Once a value of
χagg is chosen, all the np,i are known ∀i. dp,i can be deduced using:

dp,i =
(

6vi
πnp,i

) 1
3

(2.3.4)

and the aggregate geometry is defined as a function of vi.

2.3.4 Collision diameter
In order to calculate the collision frequency β(v, v̄) between two particles, the collision diameter dc
corresponding to an aggregate of volume v must be estimated. When soot particles are considered
as spheres, dc is equal to the equivalent sphere diameter dc = dev = (6v/π)1/3. When soot particles
are considered as fractal aggregates, it is usually assumed (Eberle et al., 2017c) that the collision
diameter dc(v) is the diameter of the aggregate’s circumscribed sphere. Then dc can be estimated
using the relation of Koeylue et al. (1995):

dc =
√
Df + 2
Df

dg (2.3.5)

and dg can be deduced from the fractal law (Eq. 1.2.1).

dg = dp ·
(
np
kf

) 1
Df

(2.3.6)

Df and kf are usually assumed constant for a given type of flame. The estimation of dp and np
depends on the model used. In (Eberle et al., 2017c) as described in subsection 2.3.3 dp,i and np,i
are directly known for each section discretizing the range of v. Alternatively, in some multi-variate
models, multiple variables are directly solved for. In particular, Monte Carlo methods are convenient
for solving several independent variables and not only v as the space of particle size does not need
to be discretized. For example, in Patterson (2007) particle mass and surface area are considered
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as independent variables. In Park and Rogak (2004) the authors propose a discretized (sectional)
method where the number density of particles (aggregates) and the number density of primary
spherules are solved for separately in each section. np,i can then be deduced and subsequently dp,i
is deduced from v and np,i through Eq. (2.3.4).

2.3.5 Collision frequency
Once the expression of dc(v) is known, the collision frequency β(v, v̄) between a particle of size v
and a particle of size v̄ can be calculated. β(v, v̄) depends on the value of the Knudsen number of
the considered particles. The Knudsen number Kn is defined for a particle of size v as follows:

Kn = 2λ
dc(v) (2.3.7)

Where λ is the gas mean free path. λ is calculated through:

λ = RT

π
√

2d2
gasNAP

(2.3.8)

where R is the ideal gas constant and dgas the diameter of a gas particle, considered constant
and equal to 0.2 nm as in Rodrigues (2018).

Once Kn is determined, three collisional regimes can be identified as classified by Kazakov and
Frenklach (1998):

• Free molecular regime for Kn > 10. This regime corresponds to a relatively low pressure
and/or relatively small particles.

• Continuum regime for Kn < 0.1. This regime corresponds to relatively high pressure and/or
relatively large particles.

• Intermediate regime for 0.1 < Kn < 10.

In the free molecular regime β(v, v̄) is expressed as:

βv,v̄ = βfmv,v̄ = εn

√
πkBT

2mv,v̄
(dc(v) + dc(v̄))2 (2.3.9)

Where εn is the Van der Waals enhancement factor taken equal to 2.2 (Blanquart and Pitsch,
2009b) and mv,v̄ is the reduced mass as in Blanquart and Pitsch (2009b) expressed as:

mv,v̄ = ρsoot
vv̄

v + v̄
(2.3.10)

In the continuum regime β(v, v̄) is expressed as:

β(v, v̄) = β(v, v̄)c = 2kBT
3µ (dc(v) + dc(v̄))

(
Cu(v)
dc(v) + Cu(v̄)

dc(v̄)

)
(2.3.11)

where µ is the dynamic gas viscosity:

µ = C1T
3
2

T + C2
(2.3.12)

Cu(v) is the corrective Cunningham coefficient for a particle of size v:

Cu(v) = 1 + 1.257Kn(v) (2.3.13)

with C1 = 1.4558 10−6[kg.m−1.s−1.K−
1
2 ] and C2 = 110.4[K]



CHAPTER 2. MODELS FOR SOOT FORMATION AND DYNAMICS 40

Figure 2.21: Collision frequency β(v, v̄) as a function of Kn calculated with different analytical
expressions at a pressure of 10 bar and a temperature of 1800 K. In the plotted quantity β/4K,
K = 2kBT/3µ. Source: Kazakov and Frenklach (1998)

.

In the intermediate regime β(v, v̄) is calculated through the harmonic mean of β(v, v̄)fm and
β(v, v̄)c:

β(v, v̄) = β(v, v̄)int = β(v, v̄)fmβ(v, v̄)c

β(v, v̄)fm + β(v, v̄)c (2.3.14)

Alternatively, The collision frequency in the intermediate regime β(v, v̄)int can be expressed by
the semi-empirical formula of Fuchs (1964). Fig. 2.21 illustrates the variation of β(v, v̄) with Kn
for the different expressions of β(v, v̄).

2.4 Surface growth/loss and condensation
Soot particles interact with gaseous species through three main processes:

• Carbon addition surface reactions: C2H2 molecules or Resonantly Stabilized Radicals react
at the surface of a soot particle and increase its number of carbon atoms (and size). This
process is believed to be similar to the processes of PAH growth (HACA mechanism, RSRs
recombination).

• Particle oxidation: Oxidant species react at the surface of a soot particle and decrease its
number of carbon atoms (and size).

• PAH condensation: A gaseous PAH molecule collides with a solid soot particle which increases
its number of carbon atoms (and size). This process is similar to agglomeration except it
features a gas molecule - solid particle collision instead of a collision between two solid particles.

Formally, all these processes only increase or decrease particle size but have no impact on particle
number (unless particle ”death” by oxidation is considered). Therefore NT and np are not influenced
by surface growth/loss and condensation while fv and dp increase with carbon addition and PAH
condensation and decrease with oxidation.
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2.4.1 Carbon addition surface reactions
Some of the main models proposed for carbon addition surface reactions are described below.

2.4.1.1 HACA mechanism
The HACA mechanism was already introduced in section 2.1 as it is used for PAH growth reactions.
In their study, Frenklach and Wang (1991) proposed to use the HACA mechanism for soot surface
growth by similarity to gaseous PAH surface growth. The reactions of the HACA mechanism
corresponding to surface growth are the following:

CnC +H ↔ C•nC
+H2 (2.4.1)

C•nC
+H → CnCH (2.4.2)

C•nC
+ C2H2 → CnC+2H +H (2.4.3)

with CnCH representing a soot particle with nC carbon atoms and C•nC
the corresponding

radical. Reaction 2.4.1 represents the hydrogen atom abstraction from CnCH which results in the
appearance of C•nC

. Reaction 2.4.2 is the associated deactivation reaction. Just like in the case of
gaseous PAH growth, the key species for soot surface growth in the HACA mechanism is acetylene
(C2H2). Acetylene reacts with a radical C•nC

at soot surface through reaction 2.4.3 which increases
particle’s size. In Wang et al. (1996) two reactions were added:

CnC +OH ↔ C•nC
+H2O (2.4.4)

C•nC
+ C2H2 → C•nC+2 +H2 (2.4.5)

Where reaction 2.4.4 is another surface activation reaction by OH instead of H and reaction 2.4.5
is similar to 2.4.3 except the radical site on the soot particle surface is preserved after the reaction.
The HACA soot oxidation reactions are presented in section 2.4.2. Modified versions of the HACA
mechanism have been proposed, for example the Hydrogen-Abstraction/Carbon-Addition Ring-
Closure (HACA-RC) mechanism from Mauss et al. (1994).

2.4.1.2 Resonantly Stabilized Radicals addition
As explained in section 2.1, different pathways have been proposed as an alternative to the HACA
mechanism for PAH growth. These can be used for soot surface growth as well. In particular,
growth mechanisms involving RSRs have been proposed. For example, in Saggese et al. (2015),
small resonantly stabilized radicals contribute to soot growth through addition reactions (in addition
to the HACA Mechanism). These RSRs (denoted RR• in the following equations) can react with
lumped bins BINi corresponding to lumped PAHs or soot particles via:

RR• +BINi → products (2.4.6)

RR• +BIN•i → products (2.4.7)

again, as for nucleation, kinetic constants are calculated by analogy to gaseous reactions and
then adjusted to account for soot particle size, morphology and H/C ratio. The reference reactions
for surface growth involve propargyl radicals C3H

•
3 :

C3H
•
3 + C6H

•
5 → C9H8 (2.4.8)
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C3H
•
3 + C6H6 → C9H8 +H• (2.4.9)

2.4.2 Oxidation
The oxidation reactions of the HACA mechanism proposed in Frenklach and Wang (1991) are the
following:

C•nC
+O2 → products (2.4.10)

CnCH +OH → products (2.4.11)

Where the products can be explicitly described as in Mauss et al. (1994):

C•nC
+O2 → C•nC−2 + 2CO (2.4.12)

CnCH +OH → C•nC−2 + CH +HCO (2.4.13)

Usual models consider oxidation rates to be proportional to soot surface. Also, as stated earlier,
most models consider that oxidation decreases dp and fv but has no impact on np and NT . Reality
may be more complex. In Yon et al. (2018), in-situ characterization of soot particles oxidation
was carried out by coupling three different techniques (Small Angle X-ray Scattering, Static Light
Scattering and Laser Induced Incandescence). In order to isolate the oxidation phenomenon, soot
was generated upstream by a miniCAST generator and injected into a non-sooting flame. The main
conclusions of this work were the following:

• As expected, Dp,geo (which is dp distribution’s modal or peak value) decreases through oxida-
tion. (Fig. 2.22 top-left).

• Oxidation results in an increase of the geometric standard deviation of the primary sphere
diameter. (Fig. 2.22 bottom-left)

– The previous observation could be explained by a transition from a volume (diffusion)
to a surface (reaction) oxidation process.

– This transition could be explained by a transition from an oxidation process by O2 at
smaller heights above burner (HAB) to an oxidation process by OH at higher HAB which
is consistent with these species concentration variations in flat flame burners. Mature
soot graphitization could be a cause of the decrease of O2 volume oxidation for higher
HAB.

• At lower HAB np increases (Fig. 2.22 top-right) and NT decreases (Fig. 2.22 bottom-right)
because of aggregation.

• At higher HAB np decreases (Fig. 2.22 top-right) and NT increases (Fig. 2.22 bottom-right)
indicating that a fragmentation process is dominating over aggregation. This fragmentation
process would be caused by oxidation.

Soot oxidation is a complex phenomenon which may involve surface and volume oxidation,
fragmentation and variable oxidation rates depending on soot maturity and graphitization. Taking
all these aspects into account in numerical simulations may bring improvements in the accuracy of
the models. However, due to the complexity of all processes involved in soot formation, growth and
oxidation, some simplifications are often made and most current numerical models don’t consider
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Figure 2.22: Result of the SLS/SAXS/LII data inversion. Reported values at Height Above
Burner (HAB) = 0 mm correspond to the values determined on fresh soot by non-optical methods
(TEM/SMPS/PPS-TEOM). On the top-left plot the modal diameter of primary particles is repre-
sented. On the bottom-left plot the geometric standard deviation of the primary sphere diameter
is represented. Source: Yon et al. (2018)

.
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soot fragmentation and only consider surface oxidation (and not volume oxidation) (Desgroux et al.,
2017; Rodrigues et al., 2018; Eberle et al., 2017a). This is also the case of the present work. When
making the assumption that soot growth and oxidation reactions happen at the surface of soot
particles, the concentration in active sites and radical sites at soot surface needs to be calculated
to determine growth and oxidation source terms. This calculation is described hereafter.

2.4.3 Active sites
In Frenklach and Wang (1991) the rate expression for the reactions of the HACA mechanism was
assumed to take the following form

ẋg = kg,sCgαχsiNi (2.4.14)

where kg,s is the per-site rate coefficient, Cg is the concentration of the reacting gaseous species g
such as C2H2 in reaction 2.4.3, α is the fraction of surface sites available for a given reaction, χ is the
number density of surface sites (i.e., number of sites per unit area), si is the surface area per particle
of size i, and Ni is the number density of particles of size i. The exact definition of Ni depends on the
statistical model adopted for the Particle Size Distribution. More details on statistical descriptions
of Particle Size Distributions will be given in chapter 3. For example, in a sectional model, Ni is
the particle number density in the i-th section of size. χCnC

H The number density of CnCH sites
per soot surface area is assumed to be constant equal to 2.3 1015 sites.cm−2. χC•

nC
The number

density of radical sites C•nC
per soot surface area can then be determined assuming steady state for

χC•
nC

. si is generally calculated depending on particle size (for example particle volume vi) and on
the description of aggregates morphology (sphere, fractal law...).

Many recent works rely on this approach or very similar variants (Desgroux et al., 2017; Ro-
drigues et al., 2018). The α parameter is still subject to uncertainty and may vary from one study to
the other. In Appel et al. (2000) a dependence on temperature and soot particle size is introduced
for the α parameter. This dependence of α on particle size expresses the fact that mature particles
have a lower proportion of active sites per unit of surface.

In other works like Blanquart and Pitsch (2009b) multi-variate models are used to solve for soot
particle surface and number of hydrogenated (or active) sites as independent variables in addition
to particle volume. In this case, the assumed constants χCnC

H and α are not needed. In another
alternative model, Singh et al. (2006) introduced an equation for the number of active sites per
surface area. This relaxation equation features a starting surface reactivity of χ0 = 2.3 1019 m−2

in the nucleation zone and decreases with residence time towards an asymptotic value of χ∞ = 4.6
1018 m−2.

2.4.4 PAH Condensation
Condensation is the process involving a collision between a gaseous PAH species and a solid soot
particle. Conceptually, it is considered that condensation increases particle volume without agglom-
erating new primary spherules. In other words, np and NT stay constant while dp and fv increase
through condensation.

The total rate of molecules of a PAH species PAHg condensing on soot particles of all sizes can
be expressed as:

ḢcondT
= NPAHg

∫ ∞
0

β(vPAHg , v)n(v)dv (2.4.15)

with NPAHg = [PAHg]NA and β(vPAHg , v) calculated as in section 2.3.5. More details on
statistical descriptions of Particle Size Distributions will be given in chapter 3 but let us consider
the example of a sectional method with a discretization of particle volume v into M intervals Ivi
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Figure 2.23: Relative contributions of HACA mechanism and PAH condensation reactions to the
growth of soot particles at low (dashed lines) and atmospheric pressure (solid lines). The thickness
of the arrows represents the importance of the different paths. Source: Pejpichestakul et al. (2019)

.

also called sections. Each section has a representative volume vi. Then the rate of molecules of
PAHg condensing on soot particles contained in Ivi can be expressed as

Ḣcondi
= β(vPAHg , vi)NPAHgNi (2.4.16)

with Ni =
∫
Ivi
n(v)dv and vPAHg the volume of one PAHg molecule. Note that the assumption

that β(vPAHg , v) = β(vPAHg , vi) is constant over Ivi has been made. Then an equivalent growth
source term Gcond(vPAHg , vi) for the soot particles contained in Ivi due to condensation of species
PAHg can be expressed as:

Gcond(vPAHg , vi) =
mPAHgḢcondi

ρsootNi
(2.4.17)

with mPAHg the mass of one PAHg molecule. Gcond(vPAHg , vi) expresses a rate of volume
increase per soot particle contained in Ivi . Therefore, condensation can be treated as a growth
source term in the same way as surface growth reactions like acetylene addition. Note that the
assumption of constant density ρsoot for soot particles has been made.

The condensation process is usually considered irreversible (Desgroux et al., 2017; Rodrigues
et al., 2018) but can also be modeled as reversible (Veshkini et al., 2016; Aubagnac-Karkar et al.,
2018).

The relative importance of condensation and acetylene addition depends on the models used
and on the flame conditions, in particular pressure. In (Pejpichestakul et al., 2019) a series of
premixed flames were simulated and the relative contribution of both phenomena was looked at.
Their results can be seen in Fig. 2.23. In their simulations Acetylene is primarily involved in the
HACA mechanism with PAH growth. Mainly in very rich flames at high pressure, condensation of
benzene and heavy PAHs are important. However, at lower pressure acetylene addition dominates
over PAH condensation which heavily depends on pressure (Mebel et al., 2017). This is in agreement
with previous experimental observations (in diffusion flames) (Guo et al., 2013).



Chapter 3

Numerical approaches to solve the Pop-
ulation Balance Equation

Contents
3.1 Context of polydispersed particles and definitions . . . . . . . . . . . . . 47
3.2 The Population Balance Equation . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 Homogeneous PBE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.2 PBE in laminar flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Monodisperse assumption based models . . . . . . . . . . . . . . . . . . . 51
3.4 Methods of Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.1 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.2 QBMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.2.1 QMOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.2.2 DQMOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4.2.3 EQMOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4.2.4 CQMOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.3 MOMIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5 Sectional methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5.1 Discretization schemes for agglomeration . . . . . . . . . . . . . . . . . . . 59
3.5.1.1 Pointwise approximation methods . . . . . . . . . . . . . . . . . . 59
3.5.1.2 Finite Element/Volume Methods (FEM/FVM) . . . . . . . . . . . 60
3.5.1.3 The SPAMM approach . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5.2 Discretization schemes for growth . . . . . . . . . . . . . . . . . . . . . . . . 62
3.5.2.1 First order upwind finite difference . . . . . . . . . . . . . . . . . . 62
3.5.2.2 High resolution schemes . . . . . . . . . . . . . . . . . . . . . . . . 62
3.5.2.3 High resolution scheme from Park and Rogak (2004) . . . . . . . . 64
3.5.2.4 Moving and adaptive grid methods . . . . . . . . . . . . . . . . . . 66

3.6 Monte Carlo methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.6.1 DSMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.6.2 Constant-volume or constant-number . . . . . . . . . . . . . . . . . . . . . . 68
3.6.3 Time-driven or event-driven . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.6.4 Strategies for more efficient algorithms . . . . . . . . . . . . . . . . . . . . . 71

3.7 Comparative advantages and drawbacks . . . . . . . . . . . . . . . . . . . 72

46



CHAPTER 3. NUMERICAL APPROACHES TO SOLVE THE POPULATION BALANCE
EQUATION 47

In this chapter, the concepts of polydispersed particles and Population Balance Equation are
first explained. Then, the main classes of numerical methods for its resolution are presented.
Advantages and drawbacks of each class of methods are listed. The positioning and strategy of the
HYPE method are introduced.

3.1 Context of polydispersed particles and definitions
As stated in the introductory chapter, there is great interest in describing and predicting soot
Particle Size Distribution. Soot PSDs feature large ranges of particle size even very locally in
physical space. They can therefore be referred to as polydispersed particles. This wider term refers
to any population of particles, droplets or bubbles, characterized by one variable (usually linked
to their size like volume, mass, diameter...) which features a range of values. The concept of
polydispersed particles is at the opposite of a monodisperse phase featuring only one size (at one
point in space and time). The resolution of the evolution of polydispersed particles distributions is
of interest in several fields like soot formation but also nanomaterial synthesis, crystallisation and
precipitation, cloud formation...

One could think, as a straightforward approach, to simulate individually one computational
particle for each real particle and to follow the evolution of particles properties like size and to solve
for the motion is physical space in a Lagrangian way. However, this approach is only feasible in very
specific applications with small populations of particles. Indeed in most applications the number of
particles is very high (up to 1010 - 1011 soot particles per cm3 in a rich premixed flame for example).
Simulation of individual particles is then computationally intractable. Some statistical treatment
of the polydispersed particles is required. These can be described by several properties, especially
when complex geometries are modeled. For now, we will consider a mono-variate model describing
each particle by its volume v. Then, a statistical description of the distribution can be done via
particle number density n. n describes how many particles of a given volume v are present at a
given location x in physical space (and at a given time t). Formally, if we integrate n(v, x, t) over a
particle size interval Ivi and over a volume of gas V in physical space we get the number of particles
contained in V of size v ∈ Ivi . If n(v, x, t) is integrated only over Ivi , the number of particles of size
v ∈ Ivi per unit of gas volume at location x and time t is obtained:

Ni(x, t) =
∫
Ivi

n(v, x, t)dv (3.1.1)

with Ni in [part.m−3] and n(v, x, t) in [part.m−6]. Moments of the distribution can be defined
integrating over v. For example, the zeroth moment of the distribution m0, also called NT in this
thesis, denotes the total number of particles per unit of gas volume:

m0(x, t) = NT (x, t) =
∫ ∞

0
n(v, x, t)dv (3.1.2)

with NT (x, t) in [part.m−3] The first moment m1, also called fv in this thesis, denotes the total
volume of particulate matter per unit of gas volume (more precisely per unit of the system volume
composed of the containing gas and particulate matter):

m1(x, t) = fv(x, t) =
∫ ∞

0
vn(v, x, t)dv (3.1.3)

with fv(x, t) in [−]. In this thesis, the term Particle Size Distribution (PSD) will refer to n (unless
stated otherwise. In some test cases, PSD refers to n(v)v). If one fixes location in physical space
(and time), then number density only depends on particle volume. Figures 3.1 and 3.2 illustrate
the concepts explained above.
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Figure 3.1: Schematic representation of number density n(v) (at a given location x).
.

Figure 3.2: Schematic representation of number density n(v) at two different locations x1 and x2
in a diffusion flame.
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3.2 The Population Balance Equation

3.2.1 Homogeneous PBE
The objective of the Population Balance Equation is to solve for the evolution of n(v, x, t). Let
us begin with the example of a spatially homogeneous, stirred reactor where particles are only
submitted to growth and not to nucleation, agglomeration or transport in physical space. Then,
the Population Balance Equation (PBE) can be written as a continuity equation in the space of
particle size (volume v):

∂n(v, t)
∂t

+ ∂ (G(v, t)n(v, t))
∂v

= 0 (3.2.1)

with G(v, t) the particle growth rate. Eq (3.2.1) accounts for convection in the space of particle
size (particle growth). Dependence on x does not appear here because we are considering the case
of a spatially homogeneous, stirred reactor. Of course, G(v, t) can be negative and then correspond
to a loss rate. In the case of soot particles, G(v, t) can be calculated as described in section 2.4. It
depends on particle volume v and on gas phase composition (implicitly shown by the dependence
on time t).

Depending on applications, a term for particle formation can be necessary. In the case of soot
particles, this is the nucleation term ḣ(v, t). For soot particles, ḣ(v, t) is non-zero only at very small
sizes, (often modeled as > 0 only at the smallest size considered solid). ḣ(v, t) can be calculated as
described in section 2.2. The PBE with growth and nucleation in a spatially homogeneous, stirred
reactor becomes:

∂n(v, t)
∂t

+ ∂ (G(v, t)n(v, t))
∂v

= ḣ(v, t) (3.2.2)

To account for particle collisions, an agglomeration source term ȧ(v, t) must be added to the
PBE:

∂n(v, t)
∂t

+ ∂ (G(v, t)n(v, t))
∂v

= ḣ(v, t) + ȧ(v, t) (3.2.3)

with ȧ(v, t) following the continuous counterpart of Smoluchowski equation (Smoluchowski,
1917) (as already explained in section 2.3.2):

ȧ(v, t) = 1
2

v∫
0

β(v − v̄, v̄)n(v − v̄, t)n(v̄, t)dv̄ − n(v, t)
∞∫
0

β(v, v̄)n(v̄, t)dv̄ (3.2.4)

The calculation of β(v, v̄) is described in 2.3.5. Equation (3.2.3), which represents the case of
a homogeneous system, is an integro-partial differential equation which makes its direct numerical
resolution difficult (as opposed to a set of Ordinary Differential Equations for example). Moreover,
nucleation and growth rates require coupling with gas phase source terms and their response can
be stiff. Except some specific canonical cases, analytical solutions are not achievable. Up to now,
no universal numerical method has emerged as best suited for all applications. Many numerical
methods have been proposed for the solution of the homogeneous PBE with nucleation, growth
and agglomeration (Eq. 3.2.3), each with its advantages and drawbacks. Comprehensive reviews
on this topic are available, for example in Ramkrishna (2000). In the following sections, a short,
non-exhaustive review will be made on these methods in order to better clarify the objectives of
the new presented method. It is important to note that this chapter focuses on the homogeneous
PBE (with no transport in physical space) as it is a prerequisite to understand the challenges of
numerical solution of the PBE. A quick description of the PBE for laminar flows is given hereafter.
For the extension to turbulent flows, one is referred to dedicated reviews like Rigopoulos (2010) as
this is an even more intricate problem than the case of homogeneous PBE.
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3.2.2 PBE in laminar flows
Transport in physical space is now introduced into the PBE for the case of a laminar flow. A first
distinction to be made is between inertial and non-inertial particles. The Stokes number St can be
used to characterize the effect of inertia on particles suspended in a fluid flow. St can be defined as:

St = τP
τF

(3.2.5)

with τP the relaxation time of the particle (related to the decay of particle velocity due to drag
force) and τF a flow characteristic time. If St << 1 particles will follow the fluid streamlines. In
this case, particles are called non-inertial. If St >> 1 the effect of inertia on particles trajectories
is important and they will deviate from fluid streamlines. In this case, particles are called inertial.
For inertial particles, the drag forces imposed on the particles will depend on their size. Therefore,
particles of different sizes will exhibit different velocities in physical space. Number densities de-
pending on particle velocities must then be introduced. For more details on the PBE for inertial
particles, one is referred to Rigopoulos (2010). In the case of soot particles in flames, the Stoke
number is low and the assumption of non-inertial particles is generally made. If particle size is
described by one variable v as previously then the PBE (in a laminar flow) is:

∂n(v, x, t)
∂t

+ ∂ (G(v, x, t)n(v, x, t))
∂v

+∇ · (un(v, x, t)) =

+∇ · (Ds∇n(v, x, t)) +∇ ·
(
Cthν

∇T
T
n(v, x, t)

)
+

ḣ(v, x, t) + ȧ(v, x, t)

(3.2.6)

where:

• uT = −
(
Cthν

∇T
T

)
is the thermophoretic velocity,

• The approximation Cth = 0.556 is used as in Bisetti et al. (2012)

• ν is gas kinematic viscosity,

• Ds is the particle diffusion coefficient

In the case of sooting flames, the thermophoretic velocity may not be negligible. It is generally
included in the velocity term such that:

∂n(v, x, t)
∂t

+ ∂ (G(v, x, t)n(v, x, t))
∂v

+∇ · ((u + uT )n(v, x, t)) =

∇ · (Ds∇n(v, x, t)) + ḣ(v, x, t) + ȧ(v, x, t)
(3.2.7)

The Schmidt number Sc is defined as the ratio of momentum diffusivity (kinematic viscosity) ν
and mass diffusivity (diffusion coefficient) Ds.

Sc = ν

Ds
(3.2.8)

In the case of sooting flames, Sc is very high and molecular diffusion can be neglected as in Bisetti
et al. (2012). The PBE for a laminar sooting flames is then:

∂n(v, x, t)
∂t

+ ∂ (G(v, x, t)n(v, x, t))
∂v

+∇ · ((u + uT )n(v, x, t)) =

ḣ(v, x, t) + ȧ(v, x, t)
(3.2.9)
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In the following sections, some of the existing methods for solving the homogeneous PBE with
nucleation, growth and agglomeration (Eq. 3.2.3) are presented. Finally, an attempt to compare
the respective advantages and drawbacks of each method will be made, which will motivate the
introduction of the novel hybrid method. For brevity, notations of the dependence on external
coordinates x̄ and t will be dropped in the rest of this chapter and only dependence on internal
coordinate v will be explicitly written.

3.3 Monodisperse assumption based models
In some simplified models, polydispersed particles are modeled as monodisperse. This means that
at one given physical location x and time t there is a unique particle size and not a distribution.
This rather drastic assumption has been widely used to lower the associated computational cost and
ease the coupling of soot models with LES computations on complex geometries. These methods are
generally based on empirical or semi-empirical correlations and they generally feature two equations
(for the homogeneous PBE). Therefore, they are often referred to as two-equation models. Examples
of this kind of method are Tesner et al. (1971); Kennedy et al. (1990); Leung et al. (1991). The model
of Leung et al. (1991) has been used up to now in some LES simulations for its low computational
cost (Gallen et al., 2019; Felden et al., 2018). In this model, equations for NT and for soot mass
fraction Ys are solved. In the homogeneous case (without transport in physical space) the equations
are the following:

∂Ys
∂t

= MS

ρ
(ṙ1 + ṙ2 + ṙ3) (3.3.1)

∂NT

∂t
= 2NA

Cmin
ṙ1 + ṙ4 (3.3.2)

with ṙ1, ṙ2, ṙ3, ṙ4 the rates of, respectively, the nucleation, surface growth, oxidation and
agglomeration reactions. It is to be noted that fv can be deduced from Ys through:

fv = ρ

ρs
Ys (3.3.3)

Reaction (1) for nucleation corresponds to:

C2H2 → 2Csoot +H2 (3.3.4)

Reaction (2) for surface growth is:

C2H2 + CnC → CnC+2 +H2 (3.3.5)

Reaction (3) for oxidation is:

Csoot + 1
2O2 → CO (3.3.6)

And reaction (4) for agglomeration is:

nCnC → Cn·nC (3.3.7)

The rates for the above reactions are calculated as follows:

ṙ1 = k1(T )[C2H2] (3.3.8)

ṙ2 = k2(T )[C2H2]S1/2
T (3.3.9)
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ṙ3 = −k3(T )ST [O2] (3.3.10)

ṙ4 = −2Ca
( 6Ms

πρsoot

)1/6 (6kBT
ρsoot

)1/2
N

11/6
T

(
ρYs
Ms

)1/6
(3.3.11)

where ρ is the gas density in kg.m−3, Cmin = 100 is the number of carbon atoms in incipient
particles and Ca = 9 is a constant for the agglomeration source term. [X] designs the molar
concentration of species X. Ms = 12.011 kg.kmol−1 is carbon molar mass. ST is the total surface
area of soot per unit of gas volume in [m−1] depending on the estimated mean particle size. Finally,
the two-equation model can be written:

∂Ys
∂t

= MS

ρ

(
k1(T )[C2H2] + k2(T )[C2H2]S1/2

T − k3(T )ST [O2]
)

(3.3.12)

∂NT

∂t
= 2NAk1(T )

Cmin
[C2H2]− 2Ca

( 6Ms

πρsoot

)1/6 (6kBT
ρsoot

)1/2
N

11/6
T

(
ρYs
Ms

)1/6
(3.3.13)

Thus, NT evolves according to nucleation and agglomeration while Ys evolves through nucleation,
surface growth and oxidation. However, as particles are considered monodisperse, the variability of
collision frequencies β(v, v̄) is not taken into account as well as the variability of available reactive
surface on soot particles of different sizes. Therefore, the parameters for this method must be
adjusted to each specific case and it is not easily generalizable for different types of flames. Moreover,
no distribution can be obtained.

More recently, a three-equation model aimed at soot modeling in LES of gas turbines was
proposed in Franzelli et al. (2019). Equations for NT , Ys and ST are solved. The objective of
the additional equation for ST is to better account for soot fractality and for the increased avail-
able surface of fractal aggregates over spherical particles. However, this model also relies on the
monodisperse assumption and the three equations only solve for integral values. Nevertheless, a
post-processing method for PSD reconstruction based on the solved integral quantities is proposed.
It relies on a priori assumptions on the PSD shape.

The equations for the thee integral quantities are the following:

∂Ys
∂t

= ω̇Ys (3.3.14)

∂NT

∂t
= ω̇NT

(3.3.15)

∂ST
∂t

= ω̇ST
(3.3.16)

with the source terms expressed as:

ω̇Ys

ρsoot
= vdimβ(vdim, vdim)N2

dim︸ ︷︷ ︸
nucleation

+ vdimβ(vdim,v)NdimNT︸ ︷︷ ︸
condensation

+

vC2λksgsNT︸ ︷︷ ︸
surface growth

− cC2λkoxsNT︸ ︷︷ ︸
surface oxidation

(3.3.17)

ω̇NT
= β(vdim, vdim)N2

dim

2︸ ︷︷ ︸
nucleation

− (1−H(v − vC2))λkoxsNT︸ ︷︷ ︸
surface oxidation

− β(v, v)N2
T

2︸ ︷︷ ︸
agglomeration

(3.3.18)
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Figure 3.3: Reconstruction (red continuous line) of the normalized PSD as the sum of a Pareto (blue
cross) and a log-normal (green plus) distribution. Results correspond to two axial positions: x = 3
mm (left), x = 9 mm (right). The reference PSD obtained from a sectional method is presented as
black circles. Source: Franzelli et al. (2019)

ω̇ST
= (18π)1/3(vdim)2/3β(vdim, vdim)N2

dim︸ ︷︷ ︸
nucleation

+ δsfracvdim
β(vdim, v)NdimNs︸ ︷︷ ︸
condensation

+

δsfracvC2
λksgsNT︸ ︷︷ ︸

surface growth

− δssphervC2
λkoxsNT︸ ︷︷ ︸

surface oxidation

(3.3.19)

where s and v are the (unique) values for the solved surface and volume of a representative
soot particle. H(v) is the Heaviside function, vC2 is the volume of two carbon atoms and vdim is
the volume of a PAH dimer. Spherical dimers are assumed for nucleation. Ndim represents dimers
number density. δsfracδv denotes the particle surface variation induced by a particle volume variation
δv following a fractal behavior, while δsspherδv denotes the particle surface variation induced by a
particle volume variation δv following a spherical behavior. ksg and kox are surface growth and
surface oxidation reactions constants respectively. λ = 1/sC2 is the number of active sites per unit
surface with sC2 the surface of two carbon atoms.

Based on the solved integral quantities and deduced v and s, a reconstruction of the PSD
can be calculated assuming an a priori shape. Again, the PSD is not solved for in this method
but assuming that the PSD is a sum of a Pareto distribution and a log-Normal distribution, a
post-processing can be done on the solved values to get an approximated PSD. The Pareto and
log-Normal distributions are defined by three parameters which evolve with v. The evolution of
these parameters according to v has been fitted and generalization to a wide range of flames is
not obvious. Nevertheless, when correctly calibrated, this method can give satisfactory results.
For illustration, an example of PSD reconstruction at two axial positions in a burner-stabilized
stagnation laminar premixed C2H4/Ar/O2 flame is shown in Figure . The PSD reconstruction is
compared to a reference solution from a sectional method.

It is important to notice at this point, that NT and fv are the 0th and 1st order moments
of a polydispersed distribution in general. In the so-called two-equation models or three-equation
models, the source terms for the 0th and 1st order moments (sometimes Ys is solved for but fv can be
directly deduced from Ys) are derived using the monodisperse assumption. In contrast, in methods
of moments, the source terms are closed without this assumption thanks to other techniques. More
details on the methods of moments are given in the next section.
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3.4 Methods of Moments

3.4.1 Principle
Aside from the PSD, a population of polydispersed particles can be described by integral values like
the moments of the distribution. The statistical moment mk is defined as:

mk =
∫ ∞

0
vkn(v)dv (3.4.1)

As stated earlier, the moments that have easiest physical representation are the zeroth and the
first moment which correspond respectively to NT and fv. In the method of moments the equation
for n(v) (PBE) is transformed into an equation for the moments of the distribution. The moments
are directly solved for. Still in the context of a homogeneous PBE, a general form of the equations
to be solved is:

∂mk

∂t
= ṁk (3.4.2)

where ṁk denotes the source terms for the moments corresponding to the nucleation, agglomer-
ation and surface growth/loss processes. The advantage of equation 3.4.2 over equation 3.2.3 (PBE
solving for n(v)) is that it does not depend on the internal coordinate v, it only depends on exter-
nal coordinates x and t. This makes coupling with a Computational Fluid Dynamics (CFD) code
easier. However, the PSD is not directly calculated in the method of moments (only the moments
are solved for). In theory, knowing all the moments (k = 0, · · ·,∞) would be equivalent to knowing
the PSD. But in practice, only a few moments are transported (to maintain a low computational
cost). In some applications, the knowledge of some moments is a valuable information and can be
sufficient but techniques must be implemented to reconstruct the PSD from them if information on
the distribution is needed.

Another difficulty is the calculation of the source terms ṁk. Even if one is not interested in
the PSD and only wants to know some moments, the source terms often require information on the
PSD to be calculated. In this case they are unclosed. Therefore, closure approaches are necessary.
The strategies for closing the source terms ṁk can be separated into two main categories:

• A number density n∗(v) is reconstructed from the known set of solved moments mk = [m0, · ·
·,mk−1]. Then n∗(v) is used to calculate the set of source terms ṁk = [ṁ0, · · ·, ṁk−1].
Finally, theses source terms are used to advance equation 3.4.2 and n∗(v) can be reconstructed
again. Methods like the Quadrature Method of Moments (QMOM) (McGraw, 1997) follow
this strategy.

• Unknown moments are estimated directly from the set of solved moments. No reconstruction
of the distribution is needed. For example, the Method of Moments with Interpolative Closure
(MOMIC) (Frenklach and Harris, 1987) and the Taylor-series Expansion Method of Moments
(TEMOM) (Yu et al., 2008) follow this strategy.

3.4.2 QBMM
Quadrature Based Methods of Moments (QBMM) include QMOM and other approaches of the same
’family’ like DQMOM, EQMOM and CQMOM. These methods are shortly described hereafter.

3.4.2.1 QMOM
In the Quadrature Method of Moments (QMOM) the moments are approximated by a M -point
Gaussian quadrature rule. In general, the Gaussian quadrature rule is a method, also used outside
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this specific application, for approximating the integral of a function f(x). Usually, a weighted sum
of the function value at specific points of the integration domain (called nodes or abscissas) is used:

∫ b

a
w(x)f(x) '

M∑
i=1

wif(xi) (3.4.3)

where w : (a, b) → R+ is a weight function which ensures f integrability. The wi coefficients
are the quadrature weights and the xi values are the quadrature abscissas. It can be shown that
the expression of the integral by a M -point Gaussian quadrature is exact if f(x) is a polynomial of
order less or equal to 2M − 1.

In the case of the method of moments, the integral which must be approximated is mk =∫∞
0 vkn(v)dv. In practice, the use of the M -point quadrature in is then equivalent to:

mk =
∫ ∞

0
vkn(v)dv =

M∑
i=1

wiv
k
i , k ∈ {0, · · ·, 2M − 1} (3.4.4)

If the moments of order k = 0, · · ·, 2M − 1 are known, the M abscissas vi and the M weights wi
can be calculated solving a set of 2M equations (with 2M unknown parameters):

m0 =
M∑
i=1

wi

m1 =
M∑
i=1

wivi

...

m2M−1 =
M∑
i=1

wiv
2M−1
i

(3.4.5)

Once this system of equations is solved, the PSD can be reconstructed:

n∗(v) =
M∑
i=1

wiδ(v − vi) (3.4.6)

Then, n∗(v) can be used to calculate the source terms ṁk and close equation 3.4.2.
The resolution of equation 3.4.5 involves the use of specific algorithms at each iteration. A widely

used algorithm for this task is the product-difference algorithm formulated in Gordon (1968).
The QMOM has been shown to be accurate (Marchisio et al., 2003) for problems which are well

described by a mono-variate formulation of the PBE and where the source terms ṁk do not depend
strongly on n(v). Indeed, the two main drawbacks of the method are (Marchisio and Fox, 2005):

• As moments are solved for instead of n(v), it is difficult to account for strong dependency of
the source terms on the internal coordinates (v if we stick to the mono-variate case described
by particle volume).

• If a multi-variate formulation is needed, the use of QMOM becomes complex as the application
of product-difference algorithm (or similar algorithms) becomes intractable.

3.4.2.2 DQMOM
As explained above, the QMOM relies on the ability to efficiently invert the moments to get the
quadrature weights and abscissas (solving equation 3.4.5). As an alternative, Direct Quadrature
Method of Moments was proposed in Marchisio and Fox (2005). The idea is to solve directly for
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the quadrature parameters (weights and abscissas), while in QMOM the strategy was to solve for
the moments, deduce the quadrature parameters from the known set of moments and close the
moments source terms with the quadrature parameters. Like n∗(v) in the QMOM, n(v) is directly
modeled as a summation of (potentially mulit-dimensional) Dirac delta functions in DQMOM. In
the mono-variate case:

n(v) =
M∑
i=1

wiδ(v − vi) (3.4.7)

Introducing equation. (3.4.7) directly into the PBE (Eq. 3.2.3), equations for the evolution of
the weights and abscissas can be derived. In the case of a homogeneous PBE formulation:

∂wi
∂t

= ẇi

∂vi
∂t

= v̇i

(3.4.8)

where ẇi and v̇i for i = {1, · · ·,M} are closed thanks to the assumption on the PSD shape.
In the homogeneous mono-variate case, the QMOM and DQMOM solutions are equivalent (Marchi-

sio and Fox, 2005). The improvement of DQMOM over QMOM appears for multivariate PBE
formulations. In cases where it is important to solve for more than one internal coordinates (for
example particle volume and surface) the multivariate PBE may be necessary. The extension of
DQMOM to multivariate cases is straightforward and the additional computational cost scales as
the number of internal coordinates whereas QMOM is no longer computationally tractable in this
case Marchisio and Fox (2005).

3.4.2.3 EQMOM
In Extended Quadrature Method of Moments, Kernel Density Functions are used instead of Dirac
delta functions to approximate n(v). In general, Kernel Density Functions (KDF) are known dis-
tribution functions like Gaussian, gamma, log-normal which are used to estimate the probability
density function of a random variable. Here the KDFs δσ(v, vi) are used to estimated n(v). The
reconstructed distribution n∗(v) is a weighted sum of Nkdf continuous KDFs positioned at ṽi:

n∗(ṽ) =
Nkdf∑
i=1

wiδσ(ṽ, ṽi) (3.4.9)

where σ is a parameter of the chosen KDF and ṽ is a new coordinate introduced to match the
physical boundaries of the problem studied with the limits of the chosen KDF. For example, if we
consider a minimum nucleating volume for soot particles vo, and if gamma distributions, supporting
[0,∞[ are used as KDFs then ṽ is defined as:

ṽ = v − vo, ṽ ∈ [0,∞[ (3.4.10)

The choice of the shape of the KDFs used to describe n(v) depends on the application. Previous
studies involving EQMOM for soot PSD description featured gamma and/or log-normal distribu-
tions (Wick et al., 2017; Salenbauch et al., 2015). In the original EQMOM σ is assumed to be the
same for all the nodes. The weights, abscissas and σ can be solved iteratively from the moments.
However, the solution is non-unique as several values can exist for for σ (Salenbauch, 2018). Then
a second gaussian quadrature is applied on each KDF with Nsgq,i nodes on each KDF as in Yuan
et al. (2012). The advantage of EQMOM over QMOM is that the KDFs have known shapes. Two
transported moments per KDF are necessary, but then, no additional transported moment is needed
for the nodes of the second quadrature and Nsgq,i can be chosen arbitrarily. Greater accuracy for



CHAPTER 3. NUMERICAL APPROACHES TO SOLVE THE POPULATION BALANCE
EQUATION 57

the calculation of the source terms can be achieved by increasing the number of quadrature nodes
Nsgq,i independent of the number of transported moments. Taking into account the second Gaussian
quadrature, the reconstructed distribution is expressed as:

n∗(v) =
Nkdf∑
i=1

Nsgq,i∑
j=1

wiwi,sgq,i,jδ(ṽ − ṽsgq,i,j) (3.4.11)

Alternatively, a split-based EQMOM can be applied. The principle, introduced in Megaridis
and Dobbins (1990) is to define the distribution by the sum of Ns overlapping sub-distributions
ns(v):

n(v) =
Ns∑
s=1

ns(v) (3.4.12)

The sub-distributions are also modeled with known KDFs. However, different values for σs for
each KDF are possible:

n∗(ṽ) =
Ns∑
s=1

δσs(ṽ; ṽs)ws (3.4.13)

As compared to original EQMOM, more transported moments per KDF are necessary. For each
sub-distribution, three moments are transported, to deduce three unknowns: ṽs, ws and σs. The
inversion step is numerically robust. In original EQMOM (Yuan et al., 2012) only two moments are
transported per KDF to deduce ṽs, wi and σ (which is identical for all KDF). The Nsgq,i weights
and nodes of the KDFs require no additional transported moment.

3.4.2.4 CQMOM
The Conditional Quadrature Method of Moments proposed in Yuan and Fox (2011) relies on another
quadrature-based formulation of the distribution. In contrast with QMOM and EQMOM which were
designed for mono-variate problems, CQMOM can be efficiently applied on multivariate problems
(like DQMOM). The principle of CQMOM is to split a joint multivariate distribution into a product
of conditional density functions. As the focus of this thesis is not on multivariate formulations this
method is not described in details here.

3.4.3 MOMIC
The Method Of Moments with Interpolative Closure (MOMIC) belongs to the second category of
Methods of Moments as presented at the beginning of the section. Indeed, the source terms are
formulated in terms of moments and are not calculated based on a reconstructed distribution. The
additional unknown moments needed to close the source terms are directly determined from the
transported ones. For illustration, we can look into the expression of the source terms for the
evolution of the moments (ṁk in Eq. 3.4.2) in the case of a spatially homogeneous gas phase with
polydispersed particles submitted to agglomeration only (with no growth/loss or nucleation). Here,
a discretized representation of the distribution is used and it is assumed that vi = i · v1 and particle
bulk density (generalization of ρsoot for the type of particle considered) is constant as in Frenklach
(2002). The variation of number density Ni at size vi then evolves as:

dNi

dt
= 1

2

i−1∑
j=1

β(vj , vi−j)NjNi−j −
∞∑
j=1

β(vi, vj)NiNj (3.4.14)

The corresponding source terms for the moments are:
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dm0
dt

= −1
2

∞∑
i=1

∞∑
j=1

β(vi, vj)NiNj ,

dm1
dt

= 0,

dm2
dt

=
∞∑
i=1

∞∑
j=1

ijβ(vi, vj)NiNj ,

...

dmr

dt
= 1

2

r−1∑
k=1

(
r

k

) ∞∑
i=1

∞∑
j=1

mk
im

r−k
j β(vi, vj)NiNj



(3.4.15)

In this form, the equations are unclosed as only a set of moments is transported. Moreover,
Ni, Nj are not known and β(vi, vj) depends on particle volume. Instead of trying to estimate Ni

and Nj , equation 3.4.15 is derived to express dmr/dt as a function of fractional-order moments. As
shown in Frenklach (2002), for the continuum regime, dmr/dt can be expressed as:

dmr

dt
= 1

2Kc

r−1∑
k=1

(
r

k

)
[2µkµr−k + µk+1/3µr−k−1/3 + µk−1/3µr−k+1/3+

K ′c(µk−1/3µr−k + µkµr−k−1/3 + µk+1/3µr−k−2/3µk−2/3µr−k+1/3)]m2
0

(3.4.16)

where Kc = 2kBT/3µ with µ the dynamic gas viscosity, K ′c = 2.514λ(πρsoot/6)1/3 and µr =
mr/m0 is the reduced moment of order r. Only integer-order moments are solved for. Therefore,
fractional-order moments need to be determined to close equation 3.4.16. In MOMIC, this is
done through Lagrange interpolation of the fractional-order moments based on known integer-order
moments. Once the fractional-order moment have been determined by interpolation, the source
terms are closed and the evolution of integer-order moments can be advanced. The results of a test
case from Frenklach and Harris (1987) are shown in Figure 3.4.

As compared to quadrature-based methods of moments, MOMIC presents the advantage of
closing the source terms without inversion of the moments (to get weights and abscissas representing
a reconstructed distribution) and without assumption on PSD shape. However, a disadvantage is
the non-uniqueness of PSD reconstruction from its moments.

3.5 Sectional methods
Sectional methods rely on the discretization of the space of the internal coordinate (here, particle
volume v). These methods aim at direct solving of n(v) over this discretized space. Sectional
methods are flexible and do not require a priori assumptions on the PSD shape. However, the
discretization of the PBE can be challenging. Equation 3.2.3 is integro-differential and hyperbolic.
The simultaneous resolution of agglomeration source terms and nucleation-growth source terms is
intricate. Moreover, the range of the domain to be discretized is very wide for a limited number
of cells. In practice, for soot modeling, particle diameter varies roughly from 1 nm to 100 nm
which corresponds to a factor 106 in volume. At the same time, for computational cost issues,
when coupling soot modeling to an inhomogeneous CFD calculation, the number of cells/sections
is often limited to approximately 30 (Eberle et al., 2017a; Rodrigues et al., 2018). In the following,
an overview of the sectional methods is given. First, the discretization of the agglomeration source
term is described. Then, methods for the discretization of the growth/loss term are studied.



CHAPTER 3. NUMERICAL APPROACHES TO SOLVE THE POPULATION BALANCE
EQUATION 59

Figure 3.4: Normalized moments vs. moment order. Solid dots represent results of numerical
simulations with a reference population balance model (see the ’soot’ case of Frenklach and Harris
(1987)); and open squares denote the corresponding results of moment interpolation. The solid line
exemplifies a linear relationship in these coordinates. Source: Frenklach (2002)

3.5.1 Discretization schemes for agglomeration
The integral source term ȧ of equation 3.2.3 (expressed in equation 3.2.4) needs to be discretized so
that the PBE can be transformed into as set of Ordinary Differential Equations and subsequently
solved. Many different methods have been proposed. Their common characteristic is that the space
of particle volume v (or another internal coordinate) is discretized into an integer number M of
intervals Ivi called sections or bins. They can be classified into two main categories (following the
terminology of Liu and Rigopoulos (2019)).

• Pointwise approximation methods: In these methods, the distribution is concentrated at dis-
crete points vi (one per section) in the space of v. Each of these points is assigned a number
density value Ni. The coefficients in the discretized source terms are derived to conserve one
or two moments of the distribution n(v).

• Finite Element/Volume methods (FEM/FVM): In these methods, a continuous function (of-
ten simply a constant, sometimes more complex functions) is used to model n(v) within each
interval. Integration over continuous intervals can then be carried out. In these methods, con-
servation of the first moment is not obvious on a general non-uniform grid. Some FEM/FVM
aim at higher accuracy while other were derived aiming at conservation of one or two moments.

3.5.1.1 Pointwise approximation methods
In the first implementations of this type of method, the grid (in the space of v) had to follow a
geometric progression such that vi+1/vi = 2 (Bleck, 1970; Hounslow et al., 1988). This assumption
simplifies the form of the source terms but is quite restrictive. Later on, the method of Hounslow
et al. (1988) was extended to grids such that vi+1/vi = 21/q where q is an integer. An even
more flexible approach was proposed in Kumar and Ramkrishna (1996a,b) where any two chosen
moments are conserved with no constraint on the grid. In this approach, called the pivot technique,
the particles contained in a section are supposed to be concentrated at representative sizes vi. As
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the grid has a general form, the sum of two colliding pivots may not match with another existing
pivot. Then, the principle of the method is to assign the colliding particles to two adjacent sections
so that mass and number (in the case of the zeroth and first moment) are conserved through the
agglomeration event. The pivot technique has been widely used (Park and Rogak, 2004; Schiener
and Lindstedt, 2019) for its flexibility and ease of implementation and because it enables to conserve
two moments. For the conservation of the zeroth and first moment, the homogeneous PBE with
agglomeration only is:

dNi

dt

∣∣∣∣
agglo

=
k≤j≤i∑

vi−1≤vj+vk≤vi+1

(
1− δj,k

2

)
ηβj,kNjNk −Ni

M−1∑
k=0

βi,kNk (3.5.1)

with:

η =


vi+1 − (vj + vk)

vi+1 − vi
if vi ≤ vj + vk ≤ vi+1

vi−1 − (vj + vk)
vi−1 − vi

if vi−1 ≤ vj + vk ≤ vi
(3.5.2)

Where δj,k = 1 if j = k and δj,k = 0 if j 6= k (Kronecker delta). The notation βj,k = β(vj , vk) is
used for brevity. Accuracy of the method has been assessed against analytical solutions in Kumar
and Ramkrishna (1996a). However, the fact that colliding particles are assigned on only two adjacent
sections (and therefore at two representative sizes, also called pivots) introduces a discretization error
as shown in Liu and Rigopoulos (2019).

3.5.1.2 Finite Element/Volume Methods (FEM/FVM)
In the class of Finite Element/Volume Methods (FEM/FVM), a continuous function is used to model
the distribution n(v) within each section. Different types of functions have been assumed: cubic
splines (Gelbard and Seinfeld, 1978), constant functions (Gelbard and Seinfeld, 1980), collocation
and Galerkin methods (Nicmanis and Hounslow, 1996; Roussos et al., 2005), collocation with linear
trial functions (Rigopoulos and Jones, 2003). In Netzell et al. (2007) soot volume fraction density
q(v) = n(v) · v is directly solved for instead of n(v). A piecewise linear description of q(v) was
originally developed in this work. However, subsequent implementations of this approach featured
constant functions for q(v) in each section (Rodrigues, 2018; Aubagnac-Karkar, 2014). Finite volume
methods have also been applied to the PBE (Filbet and Laurençot, 2004; Qamar and Warnecke,
2007; Liu and Rigopoulos, 2019).

In the FEM approach, once a function is chosen to represent n(v) within the section, the source
term for agglomeration ȧ given in equation 3.2.4 must be integrated over each section. Different
strategies exist to ease this integration step. Generally, the assumption is made that β(v, v̄) =
β(vi, vj) = βi,j is constant within sections i.e. for any pair of particles of volume {v, v̄} with v ∈ Ivi

and v̄ ∈ Ivj . Moreover, some assumptions on the grid (in the space of v) can simplify the calculation
of these integral terms.

For example, in (Aubagnac-Karkar, 2014) it is supposed that the width of the sections (or
intervals) grows (or stays constant) with v (which is usually the case of fixed-sectional grids). Then,
the terms representing the positive and negative terms of dNi/dt due to agglomeration can be
expressed more easily. For two colliding sections i and j, the middle vcl of the ’receiving’ interval
[vinfi + vinfj ; vsupi + vsupj ] is contained in section Ivl

. Thanks to the assumption on the grid, one can
conclude that the particles agglomerated from sections Ivi and Ivj belong to at most three sections
Ivl−1 , Ivl

and Ivl+1 . Moreover, assuming constant q(v) within each section enables to express n(v)
within each section Ivi as:

ni(v) = qi
v
∀v ∈ [vinfi , vsupi ] (3.5.3)
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Defining Qi the soot volume fraction in section Ivi:

Qi =
∫
Ivi

q(v)dv =
∫
Ivi

qidv = qi(vsupi − vinfi ) (3.5.4)

Q̇agglo,i the variation of Qi due to agglomeration can then be calculated through:

Q̇agglo,i =

 i∑
j,k

Ṅ j,k→i
agglo −

M−1∑
j=0

Ṅout
ij

 vsupi − vinfi

ln

(
vsup

i

vinf
i

) (3.5.5)

where Ṅout
ij corresponds to the negative term for section i of particles from this section colliding

with particles from section j and Ṅ j,k→i
agglo corresponds to the positive source term of colliding particles

from sections j and k giving birth to particles in section i. These terms are expressed as:

Ṅout
ij =

∫ ∫
Ivi ,Ivj

βi,jni(vi)nj(vj)dvidvj (3.5.6)

Ṅ j,k→i
agglo = Gagglo(j, k, i)Ṅout

jk (3.5.7)

where Gagglo(j, k, i) is a coefficient expressing the proportion of colliding particles from sections j
and k ’transferred’ to section i through agglomeration. The details of the calculation of Gagglo(j, k, i)
are not given here for brevity but can be found in (Aubagnac-Karkar, 2014). These coefficients
Gagglo(j, k, i) can be compared conceptually to the η coefficients in equation 3.5.1.

One can observe that in both classes of sectional methods (pointwise approximation and FEM/FVM),
the discretization of the internal coordinate into M sections results in a double sum (equations 3.5.1
and 3.5.5) in which a size dependant value for β is calculated. For computational cost considerations,
we will refer to this step as a M ×M calculation.

3.5.1.3 The SPAMM approach
The simultaneous particle and molecule modeling (SPAMM) approach also relies on the discretiza-
tion of the space of particle size for the resolution of the PBE. Once the grid is fixed and when
additional assumptions are made like constant βi,j and constant ni within sections, transfer co-
efficients between sections like Gagglo(j, k, i) from equation 3.5.7 or η from equation 3.5.1 can be
calculated in advance. These don’t depend on the time evolution of n(v), only on the chosen grid.
Therefore, so-called ’stoichiometric’ coefficients can be derived, so that the agglomeration process
is modeled as a chemical reaction and each section (or bin) is modeled as a chemical species. This
approach was introduced in Pope and Howard (1997) and is still commonly used currently (Eberle
et al., 2017a; Saggese et al., 2015). Collisions involving particles from intervals Ivi and Ivj are
represented as a reaction between species BINi and BINj :

BINi +BINj → νBINiBINi + νBINi+1BINi+1 + νAA ∀i ≥ j (3.5.8)

where BINi can represent a section containing solid particles, gaseous PAHs, or PAH radicals.
A dependence of particle composition on particle size (as for example a decreasing H/C ratio with
increasing size of soot particles) can be accounted for by release of gas phase species (species A in
this case). Surface growth/loss can also be formulated in terms of a chemical reaction:

C +BINi → νBINi + νBINi+1BINi+1 (3.5.9)

where C denotes a reacting gas species as C2H2 for example. Of course, the stoichiometric
coefficients are different for each ’reaction’.

The SPAMM approach (also sometimes called kinetic approach) has the advantage of easy
and direct coupling with chemistry solvers. However, if the grid is changed, the stoichiometric
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coefficients must be changed accordingly. Moreover, constraints on the grid are usually necessary
as for example vi+1/vi ≥ 2 in Eberle et al. (2017a). Furthermore, the SPAMM approach excludes
the use of separate time steps for gas phase chemistry and for the PBE, which may have different
characteristic times.

3.5.2 Discretization schemes for growth
Different discretization methods were presented for the resolution of agglomeration source terms.
Let us now examine the PBE with growth only:

∂n(v, t)
∂t

+ ∂ (G(v, t)n(v, t))
∂v

= 0 (3.5.10)

Similarly to transport in physical space, finite difference methods or finite volume methods can
be applied. When the discretization grid is fixed, one refers to fixed-sectional methods as opposed
to moving sectional methods or adaptive grid methods when the grid is moving. Before getting into
the details of existing approaches for the resolution of the general case (where G(v) depends on v
and the grid can be of any form) let us study the special case of constant growth G and uniform
grid. This will illustrate some of the main challenges faced when discretizing equation 3.5.10.

3.5.2.1 First order upwind finite difference
If G does not depend on v, then equation 3.5.10 can be reduced to:

∂n(v, t)
∂t

+G
n(v, t)
∂v

= 0 (3.5.11)

Let us denote here for brevity nmi = n(vi, tm) the discretized number density at volume vi and
at time tm. tm+1 = tm + ∆t denotes the subsequent time instant and vi+1 = vi + ∆v denotes the
next representative size in the grid. A simple way to discretize equation 3.5.11 is to use a first-order
upwind finite difference method such that:

nm+1
i = nmi −G

∆t
∆v (nmi − nmi−1) (3.5.12)

This method presents the advantage of being stable and robust. However, it exhibits significant
numerical diffusion. This can be illustrated with a simple numerical test. Such a test case was run
in Ma et al. (2002) where an initial distribution is submitted to constant growth. The analytical
solution is simply the translation of the initial distribution towards bigger size. The result for the
first order upwind scheme can be seen in Figure 3.5. One can observe that this scheme gives a
smeared solution because of numerical diffusion. At this point, it is important to notice that several
recent simulations featuring sectional methods coupled to LES for soot modeling rely on upwind
schemes (for solving particle growth) due to the stability and robustness of the method (Rodrigues
et al., 2018; Aubagnac-Karkar et al., 2015; Eberle et al., 2017a). A major objective of this thesis
is to present existing alternatives to this scheme in the context of the PBE and to propose a novel
hybrid method. The latter will be presented in the next chapter. For now, existing alternatives
are presented. In order to tackle the issue of numerical diffusion, higher order schemes have been
proposed. Some of them are presented hereafter.

3.5.2.2 High resolution schemes
Still in Ma et al. (2002), the authors propose a high-resolution method based on the ones that have
been developed for solving hyperbolic partial differential equations in the context of transport in
physical space (Leveque, 1992; LeVeque, 1997). First, they show that some commonly used second-
order schemes result in spurious oscillations. To demonstrate this, they test the Lax-Wendroff
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Figure 3.5: Numerical resolution of equation 3.5.11 using the first order upwind discretization.
Adapted from Ma et al. (2002)

discretization scheme. It is designed to eliminate numerical diffusion and gives second-order accu-
racy. This scheme can be expressed (for equation 3.5.11) as follows:

nm+1
i = nmi −

∆tG
2∆v (nmi+1 − nmi−1) + ∆t2G2

2∆v2 (nmi+1 − 2nmi + nmi−1) (3.5.13)

While this method does not give numerical diffusion, it can add spurious oscillations in some
cases. The authors of Ma et al. (2002) applied the same test case of pure growth to an initial
distribution with the Lax-Wendroff scheme. The results are presented on Figure 3.6. One can
observe the oscillations that would result in nonphysical negative values for n(v).

To better understand the causes for these spurious oscillations, the Lax-Wendroff scheme can
be rewritten as:

nm+1
i = nmi −

∆tG
∆v (nmi − nmi−1)− ∆tG

2∆v

(
1− ∆tG

∆v

) [
(nmi+1 − nmi )− (nmi − nmi−1)

]
(3.5.14)

which shows that the Lax-Wendroff method is a sum of the first-order upwind method and
an anti-diffusion term. The observed oscillations are caused by a too large amplitude of the anti-
diffusion term close to discontinuities of the distribution. Therefore the use of limiter functions φi
is proposed in Ma et al. (2002) to control the amplitude of the anti-diffusion term and tackle the
spurious oscillations. The limiters depend on local gradients. Several different limiter functions
exist, the one proposed in Ma et al. (2002) is:

φi = |θi|+ θi
1 + θi

(3.5.15)

where θi is the ratio of the local gradients:

θi =
nmi − nmi−1
nmi+1 − nmi

(3.5.16)
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Figure 3.6: Numerical resolution of equation 3.5.11 using the Lax-Wendroff discretization. Adapted
from Ma et al. (2002)

Finally, equation 3.5.11 can be solved through the high-resolution scheme with limiter:

nm+1
i = nmi −

∆tG
∆v (nmi − nmi−1)− ∆tG

2∆v

(
1− ∆tG

∆v

) [
(nmi+1 − nmi )φi − (nmi − nmi−1)φi+1

]
(3.5.17)

The same test case as run with the first order upwind and the Lax-Wendroff schemes is run with
the high-resolution scheme with limiter in Ma et al. (2002). The results are shown in Figure 3.7.

One can observe that the solution does not present oscillations. The scheme still gives a small
amount of spurious diffusion but significantly less than the first order upwind scheme.

Several other high-resolution schemes have been proposed including finite volume schemes. A
comparison between some of these high-resolution schemes in the context of the PBE was realized
in Qamar et al. (2006). In this thesis, the high-resolution scheme of Park and Rogak (2004) was
chosen as a reference fixed-sectional scheme. This scheme is similar to the one of Ma et al. (2002) as
it features a limiter function complementing a three-point centered scheme. This choice was made
as this scheme was specifically derived for coarse geometrically spaced grids, which are well suited
for the resolution of soot agglomeration (for a moderate computational cost). It has recently been
used by other authors for soot modeling (Schiener and Lindstedt, 2019). The details of this scheme
are given hereafter.

3.5.2.3 High resolution scheme from Park and Rogak (2004)
The objective of this scheme is to solve for the growth source term of the PBE with no oscillations
and with the least numerical diffusion possible. It was specifically derived and tested on geometric
grids where Fs = vi+1/vi is the grid spacing factor. A three-point centered scheme is used together
with limiters to get a good trade-off between accuracy and stability. Here we come back to a more
general case where G(v) depends on particle size and the grid is not uniform (but is geometric such
that Fs is constant). The variation of Ni is expressed instead of ni as the particles are assumed
to be concentrated at representative sizes of ’pivots’ like in the method of Kumar and Ramkrishna
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Figure 3.7: Numerical resolution of equation 3.5.11 using the high-resolution scheme with limiter.
Adapted from Ma et al. (2002)

(1996a). Gi = G(vi) is used in this discretized expression. The evolution of Ni due to growth only
is then expressed as:

dNi

dt

∣∣∣∣
growth

= Ai−1Gi−1Ni−1
vi−1

+ BiGiNi

vi
+ Ci+1Gi+1Ni+1

vi+1
(3.5.18)

where Ai, Bi and Ci are coefficients derived to conserve the zeroth and first moment, reduce
numerical diffusion and mitigate spurious oscillations. Detailed explanations on how these coeffi-
cients were derived can be found in Park and Rogak (2004). They depend on the local slope of the
distribution such that:

Bi =

−
Fs
Fs−1erf

(
1
4

d ln(Ni)
d ln(vi)

)
if d ln(Ni)

d ln(vi) ≤ 0
− 1
Fs−1erf

(
1
4

d ln(Ni)
d ln(vi)

)
if d ln(Ni)

d ln(vi) > 0
(3.5.19)

where d ln(Ni)/d ln(vi) is calculated using the second-order central scheme. Once Bi is calcu-
lated, Ai and Ci can be deduced:

Ai = Fs −Bi(Fs − 1)
F 2
s − 1 (3.5.20)

Ci = −(Ai +Bi) (3.5.21)

For comparison, a first order upwind scheme for any grid shape is also given in Park and Rogak
(2004):

dNi

dt

∣∣∣∣
growth

= Gi−1Ni−1
vi − vi−1

− GiNi

vi+1 − vi
(3.5.22)

In the following, the schemes defined by equations 3.5.18 and 3.5.22 will be called the 3-point
and 2-point sectional methods respectively. Equation 3.5.18 is taken as being representative of high
resolution schemes while Equation 3.5.22 is representative of first order upwind schemes. During
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this thesis, these methods have been implemented and run on analytical test cases. Results obtained
with these two reference methods are compared with the novel hybrid method in chapter 4.

3.5.2.4 Moving and adaptive grid methods
As an alternative to fixed sectional methods with high resolution schemes, moving sectional methods
have been proposed. In Kumar and Ramkrishna (1997) the authors introduced the method of
characteristics where the section’s boundaries move at the rate of G(v). The growth source term
is solved in a Lagrangian manner (in the space of v). This technique totally remedies the problem
of numerical diffusion as growth/loss is not solved by transfer between sections anymore. However,
special treatments are needed like continuous introduction of new sections at the smallest size
to account for nucleation and split/merges of sections when they become too big or too small.
Moreover, the generalization of such methods to a general spatially inhomogeneous problem can be
challenging.

Different from the method of characteristics, adaptive grid methods have been developed. In
these methods, the grid is adapted to the distribution for better resolution but the growth source
term still results in fluxes between sections. Therefore, adaptive grid methods are often coupled
with high resolution schemes. In Qamar et al. (2007), a finite volume scheme is combined with
an adaptive mesh technique to solve for the PBE. This technique had first been developed for
hyperbolic conservation laws in Tang and Tang (2003). It consists in an iterative procedure where
the mesh is first redistributed by moving the spatial grid points. Then, the corresponding numerical
solution at the new grid points is obtained by solving a linear advection equation.

A different adaptive grid approach was proposed in Sewerin and Rigopoulos (2017) where the
mesh and the solution are redistributed according to the shape of the distribution at previous
time instant directly. In contrast with many moving or adaptive grid approaches, no additional
system of equations needs to be solved for the transport of the solution and mesh nodes in the
space of v. This explicit coordinate transformation aims at facilitating the extension to spatially
inhomogeneous cases. Moreover, a numerical scheme for accommodating localized source terms and
preventing grid distortion (which could be problematic with some other moving grid approaches) was
proposed, based on node density distribution. Figure 3.8 compares the results of a fully upwinded
orthogonal collocation finite element method (OCFEM) (Rigopoulos and Jones, 2003) and a high
resolution Finite Volume Method (Koren and Vreugdenhil, 1993), both with and without the explicit
adaptive grid method (EAGM) proposed in Sewerin and Rigopoulos (2017). The test case is the
time evolution of a step-shaped profile only submitted to growth. One can observe that coupled
high resolution FVM and EAGM give the best results for the same number of grid cells. In general,
coupled high resolution schemes with adaptive grids constitute generic and accurate methods for
solving the PBE.

3.6 Monte Carlo methods

3.6.1 DSMC
Another class of methods that has been widely used for PBE resolution is the class of Monte Carlo
methods. The simplest and most widely used Monte Carlo method is the Direct Simulation Monte
Carlo (DSMC) method which was originally used in the field of molecular gas dynamics Bird (1976).
The principle is the following: instead of directly discretizing the space of internal coordinates (in
our case v), the population of real physical particles is represented by a (smaller) population of
computational (also called stochastic) particles. The real system is represented by a smaller sample.
This sampling can be viewed as an indirect discretization where each stochastic particle corresponds
to a number of real particles. Then, each stochastic particle evolves individually being submitted to
source terms modeling the physics of the problem and events like nucleation or agglomeration will
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Figure 3.8: Comparison of the analytical solution for the time evolution of a step-shaped profile with
different numerical methods. FVM denotes the high resolution Finite Volume Method from Koren
and Vreugdenhil (1993) (first applied to the PBE in Qamar et al. (2006)) with fixed sections.
OCFEM stands for a fully upwinded orthogonal collocation finite element method by Rigopoulos and
Jones (2003). EAGM denotes the explicit adaptive grid method proposed in Sewerin and Rigopoulos
(2017). The numerical solutions were obtained using 20 finite volume cells/finite elements. The
markers, indicate the cell face/node locations in physical particle property space. Source: Sewerin
and Rigopoulos (2017)
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Figure 3.9: Probability Pk of obtaining an aggregate containing k primary spherules as a function
of particle size. Solid line: analytical solution. Triangles: DSMC with NP = 105. Circles: DSMC
with NP = 104. Adapted from: Kruis et al. (2000)

be directly, individually represented, for example with the introduction of a new stochastic particle
in the simulation or with one stochastic particle merging with another. Known collision frequencies
are transformed into event probabilities (events represented individually).

One advantage of DSMC is that growth source terms can be solved in a straightforward man-
ner, with great accuracy for size-dependant growth as it is applied individually on each stochastic
particle, and with no numerical diffusion as the space of particle size is not discretized. Another
advantage, that also comes from the fact that the space of internal coordinates is not discretized, is
that models can easily be extended to multi-variate formulations (van Peborgh-Gooch and Houn-
slow, 1996; Kruis et al., 2000).

On the other hand, an inherent drawback of the method is that ’rare’ particles (namely the part
of the distribution that has lowest number density or probability) will be modeled by few stochastic
particles and their evolution will be more prone to error. This is illustrated in Figure 3.9 from Kruis
et al. (2000) where the DSMC method is accurate at higher values of the distributions but shows
some statistical noise at the tails of the distributions. In order to tackle this issue, a very high
number of stochastic particles is sometimes necessary which can result in a high computational
cost.

Another issue arises in cases where the number of physical particles represented evolves rapidly.
Typically nucleation or agglomeration can lead to a fast increase or decrease of the number of
physical particles and, consequently, of stochastic particles. A rapid increase of stochastic particles
may lead to intractable computational cost while a rapid decrease of stochastic particles may increase
the statistical error by using a too small sample for calculating events probabilities. In order to
tackle this issue and maintain an optimal level of resolution, two strategies have been used: constant-
volume Monte Carlo and constant-number Monte Carlo, which are explained in the next subsection.

3.6.2 Constant-volume or constant-number
The concepts of constant-volume and constant-number Monte Carlo are illustrated in figure 3.10 for
particles submitted to agglomeration. In constant-volume Monte Carlo, a constant fluid volume is
tracked. Therefore, in presence of agglomeration, the number of physical particles represented in the
volume decreases in time and so does the number of stochastic particles. In the constant-number
Monte Carlo, the control fluid volume is continuously adjusted to maintain the same number of
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physical particles inside the control volume and therefore, the same number of stochastic particles.
In both cases, agglomeration results in the same decrease of the number of particles per unit of gas
volume NT .

In the constant-volume Monte Carlo method, if a simulation with agglomeration was run indef-
initely, the number of stochastic particles NP would decrease until there is only one left. Before
this happens, accuracy decreases as NP decreases. To solve this issue, a procedure was introduced
in Liffman (1992) and later used, for example in Kruis et al. (2000), where when NP reaches half of
its initial number it is multiplied by two as well as corresponding volume. At this point the simula-
tion goes back to its initial number of stochastic particles with a doubled volume. The properties
of each ’old’ particle are copied to the ’new’ particles in the added volume in order to conserve
the statistical properties. Therefore, one can observe that at the end this adjustment is conceptu-
ally similar to a constant-number Monte Carlo except it is done in a stepwise manner instead of a
continuous manner for the constant-number Monte Carlo.

In the case of constant-number Monte Carlo (Smith and Matsoukas, 1998; Lin et al., 2002),
the level of resolution/accuracy does not vary but two questions arise: First, when a stochastic
particle is depleted by an agglomeration event, it must be replaced by a new particle to maintain
NP constant. Therefore, a particle is selected at random and copied. Second, NT must be tracked.
Indeed, in constant-volume Monte Carlo, the knowledge of NT is straightforward because the ratio
NT /NP stays constant until the adjustment (mentioned above) is carried out, and when multiplying
NP by two, the ratio NT /NP is instantly divided by two. However, in constant-number Monte Carlo,
there is no such direct relationship. In Lin et al. (2002) the authors propose strategies to follow the
evolution of NT in the context of constant-number Monte Carlo (these won’t be detailed here for
brevity).

3.6.3 Time-driven or event-driven
DSMC techniques can also be distinguished depending on the way time-steps are calculated. In
time-driven Monte Carlo (Liffman, 1992; Eibeck and Wagner, 2000), the time step is explicitly
determined and several events can take place during this time step. In contrast, in event-driven
Monte Carlo (Shah et al., 1977; Kruis et al., 2000; Goodson and Kraft, 2002), only one event can
occur in each time step and the duration of each time step must be calculated at each iteration
depending on the events probabilities.

In event-driven Monte Carlo, important steps are the calculation of the time step ∆t and the
selection of the next event. In constant-number event driven Monte Carlo like Lin et al. (2002),
the time increment follows:

∆t = NT

NP

1∑
iRi

(3.6.1)

where
∑
iRi is the sum of all source terms per unit of fluid volume [m−3s−1] corresponding to

all physical processes taking place in the problem studied. In the case of event-driven step-wise
constant-volume Monte Carlo like Kruis et al. (2000), ∆t follows:

∆t =
(1

2

)q NT (t = 0)
NP (t = 0)

1∑
iRi

(3.6.2)

where q is the number of times control volume and number of stochastic particles were doubled
following the procedure explained above from Liffman (1992).

Now let us have a look at the expression of the agglomeration rate Rag. For the single event
of agglomeration between two particles of volumes vi and vj in the control volume V , the rate is
determined as:
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Figure 3.10: Schematic representation of constant-volume and constant-number sampling in Monte
Carlo simulation of agglomeration. At each instant tm the simulation tracksNPm stochastic particles
in volume Vm. The total number of real particle per unit of volume (total number density) NT

decreases with agglomeration process. NT values at a given time are the same in the two methods
(one with less particles in the same volume and the other with the same number of particles in a
bigger volume). Adapted from: Lin et al. (2002)
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Rag = 1
2V 2

NP∑
i

NP∑
j 6=i

β(vi, vj) (3.6.3)

In a standard implementation, the calculation of the total agglomeration rate and therefore,
the calculation of the time increment implies a double sum on all stochastic particles with the
calculation of the size-dependant β(vi, vj). This double sum is very expensive and some alternative
techniques have been proposed to lower the computational cost (see next subsection).

Once ∆t has been calculated, decision is made of which kind of process will occur (nucleation or
agglomeration or surface growth...). This decision is made by a random pick between these processes
with a probability Pi proportional to their rates:

Pi = Ri∑
lRl

(3.6.4)

Then the specific particle or particle pair which will go through the process must be chosen.
A commonly used method is the acceptance/rejection method (Garcia et al., 1987) even though
other techniques have been proposed (Kruis et al., 2000). In the case of agglomeration with the
acceptance/rejection method, a pair of particles, (i, j) is selected at random and is accepted for the
event to occur with probability:

Pi,j = β(vi, vj)∑NP
i

∑NP
j 6=i β(vi, vj)

(3.6.5)

Let us denote rnd a randomly generated number from a uniform distribution in [0, 1]. Then, the
particle pair is accepted if rnd ≤ Pi,j . Else, the pair is rejected. The process of acceptance/rejection
is repeated until acceptance occurs. Alternatively, the acceptance ratio can be artificially increased
by substituting equation 3.6.5 for:

Pi,j = β(vi, vj)
MAXi,j{β(vi, vj)}

(3.6.6)

MAXi,j{} denoting for the maximum value over i and j.
In time-driven Monte Carlo like Liffman (1992), ∆t is fixed and every stochastic particle goes

through a random test to see if it participates in a process during this time step or not. For example,
stochastic particle i will be involved in an agglomeration event if:

rnd < 1− exp
(
− ∆t

2tagglo,i

)
(3.6.7)

with

tagglo,i = V∑
j β(vi, vj)

(3.6.8)

3.6.4 Strategies for more efficient algorithms
Comparisons between different Monte Carlo techniques were carried out, for example in Maisels
et al. (2004); Zhao et al. (2007). Some of the main conclusions of Zhao et al. (2007) were that :

• The levels of error of the compared methods (time-driven and event-driven, constant-volume
and constant-number) are similar.

• The error is primarily controlled by the number of stochastic particles NP
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Figure 3.11: Qualitative comparison of the advantages and drawbacks of each class of method for
the resolution of the PBE.

• Event-driven methods may be more computationally efficient but are more difficult to couple
to a larger simulation (e.g. CFD) that performs explicit integration in time.

As the order of magnitude of NP is at least 103 in the studies cited above, the main challenges
for elaborating more efficient Monte Carlo algorithms have been:

• To avoid the double sum of size dependant kernels on NP stochastic particles (equation 3.6.3).

• To better account for the ’tails’ (lower values of n(v)) of the distribution without increasing
NP .

Concerning the first point of the above list, majorant kernels were first proposed in Eibeck
and Wagner (2000) and further developed in Goodson and Kraft (2002); Patterson et al. (2006).
They rely on the use of inequalities where majorant values for the kernel are used to simplify the
calculation of agglomeration rates. Thanks to majorant kernels the cost of equation 3.6.3 scales as
O(NP ) or O(NP logNP ) instead of O(N2

P ) (Patterson, 2007).
Moreover, in order to avoid the cost of this double sum again at the step of particle pair selection,

the binary tree technique has been proposed Patterson (2007).
Concerning the second point, differentially weighted Monte Carlo methods have been proposed

to increase accuracy and reduce statistical noise (Zhao et al., 2009; Patterson et al., 2011). Similarly,
the mass flow algorithm (MFA) (Babovsky, 1999) and the multi Monte Carlo method (MMC) (Haibo
et al., 2005) rely on the concept of weighting stochastic particles.

3.7 Comparative advantages and drawbacks
Now that the main classes of methods for the resolution of the PBE in a homogeneous gas phase
have been presented, an attempt is made to summarize the advantages and drawbacks of each class
of method. For this purpose, a comparative table is presented in Figure 3.11. Of course, one could
argue that the relative evaluations are not accurate. Moreover, a diversity of different methods
exists within each class so that such comparison cannot be exhaustive. Nevertheless, this effort
of qualitative comparison seems worthwhile for two reasons. First, the non-expert reader may be
interested in having an overview of the relative strengths of each class of method and have a first clue
of what kind of method to choose based on the application and objectives. Second, this comparative
table will be useful to better introduce the positioning and added value of the novel hybrid method
(HYPE: HYbrid Population balance Equation) developed in this thesis. Detailed description of this
method will be given in the next chapter but its comparative strengths and weaknesses are already
introduced here so that the reader can better understand the adopted strategy and objectives.

Let us explain each evaluated category:
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• As explained in section 3.5.2, the discretization of the space of v, necessary in sectional meth-
ods, induces spurious numerical diffusion. Even though first order upwind schemes introduce
significant numerical diffusion, they are still widely used in LES simulations (Rodrigues et al.,
2018; Eberle et al., 2017a) because they accurately account for polydispersity and are robust
and easy to couple with CFD. High resolution schemes were proposed to mitigate numerical
diffusion. However, in the context of soot modelling, the range of values of v is very large
and only a few cells are used for discretization. Therefore, even these high resolution schemes
exhibit some numerical diffusion. This will be demonstrated in the next chapter through the
resolution of analytical test cases with Park and Rogak (2004) as a reference high resolution
scheme. Adaptive grid methods go further in numerical diffusion reduction but they are still
sensitive to grid resolution for the growth source term calculation. On the other hand, the
space of internal coordinates is not discretized for Monodisperse assumption-based models,
Methods of Moments and Monte Carlo methods. Therefore, these do not exhibit numerical
diffusion in the space of v. In the novel method developed in this thesis (HYPE for HYbrid
Population balance Equation), the space of v is discretized for agglomeration solving but not
for growth. A formalism featuring stochastic particles is used such that the HYPE method is
not subject to numerical diffusion. This will also be demonstrated in the next chapter.

• By definition, monodisperse assumption-based models are not designed to account for com-
plex polydispersity. They usually give a single average particle size. Sometimes, a PSD is
reconstructed but it is based on a priori assumed shape like log-normal or pareto functions.
In methods of moments, the PSD is not solved for directly. Some PSD reconstruction is pos-
sible but this is usually done with a limited number of nodes (for example in the context of
QMOM). Therefore, polydispersity is accounted for but not as precisely as with sectional or
Monte Carlo methods. In the HYPE method, polydispersity is fully accounted for by a set of
stochastic particles.

• The use of multivariate models (with multiple internal coordinates like particle volume v,
particle surface s and primary spherule diameter dp) can be useful for complex modeling of
aggregate’s shape. In Monte Carlo methods extension to multivariate models is straight-
forward and complex interaction between particles can be modeled as well as the historical
evolution of single stochastic particles. In monodisperse assumption-based models and in some
classes of MOM the simultaneous resolution of several internal coordinates is affordable. In
contrast, in sectional methods, as the space of each internal coordinate must be discretized,
the CPU cost grows very quickly with the number of internal variables solved for. In the case
of the HYPE method, internal coordinates are discretized for agglomeration solving, therefore,
the same problem exists.

• In most industrial applications, the homogeneous gas phase PBE is not sufficient. Methods
must be extended to inhomogeneous (sometimes turbulent) cases. Ease of coupling with
CFD solvers can be a criteria of choice. The easiest methods to couple with CFD are the
monodisperse assumption based models as they usually resume to a 2-equation or 3-equation
model. Methods of Moments and fixed sectional methods also have been widely coupled
to CFD calculations. Special treatment is necessary in the case of adaptive grid sectional
methods (Sewerin and Rigopoulos, 2017). Coupling of Monte Carlo methods to CFD has
also been successfully realized even though it is not straightforward (Zhao and Zheng, 2013;
Pesmazoglou et al., 2016). Extension of the HYPE method to inhomogeneous systems could
be realized along these lines.

• Finally, the CPU cost inherent to each class of methods is also naturally a criteria of choice,
depending on the final application. Here, we will focus on the cost linked to the calculation of
agglomeration source terms, as it is often the most expensive operation in PSD prediction. As
one could expect, monodisperse assumption-based models are the fastest as a single equation
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with no sum of size-dependant kernels is necessary for the resolution of agglomeration (for
example Eq 3.3.11). In methods of moments like QMOM, a reconstruction of the PSD based
on a limited number of nodes (of the order of 3-5) is used for agglomeration calculation so that
the associated CPU cost is low. In sectional methods, the cost associated to agglomeration
source terms usually scales as O(M2) (with M the number of sections of the order of 30). This
quadratic relation can be understood by the presence of double sums of size-dependant kernels
(Eq. 3.5.1 or 3.5.5). Special techniques have been developed to reduce the cost for sectional
methods toO(M logM) Hackbusch (2006). In the case of Monte Carlo approaches, the original
DSMC results in a cost that scales as O(N2

P ) with NP the number of stochastic particles (of
the order of 103-105). This is also explained by the double sum of size-dependant kernels on all
stochastic particle pairs (Eq. 3.6.3). Even though techniques have been developed to reduce
the associated CPU cost to O(NP ) or O(NP logNP ) as explained in section 3.6.4, the cost of
Monte Carlo techniques stays high as compared to other methods. The originality of the HYPE
method is to combine a stochastic description with a sectional one for agglomeration such that
agglomeration source terms are solved through equation 3.5.1 instead of equation 3.6.3 as
would be the case for a Monte Carlo method. The stochastic particles are then dynamically
reallocated following a process described in the next chapter. This enables to drastically
reduce the cost of the HYPE method as compared to a Monte Carlo method. At the same
time, the HYPE method features no numerical diffusion as growth is solved on individual
stochastic particles.

Now that the motivation and strategy for the novel hybrid method have been explained, the
latter is described in details hereafter.
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In this chapter, detailed theoretical formulation of the HYPE method is carried out. Then,
practical algorithm is presented. Analytical test cases are performed. Finally, accuracy and com-
putational cost are measured and compared to reference sectional methods.

4.1 Problem formulation
The method is described here as in Bouaniche et al. (2019b). As seen earlier, the Particle Size
Distribution n(v;x, t), number of particles of characteristic size v (in terms of volume or mass, v is
a continuous independent variable), per unit of flow volume and per unit of characteristic size of an
aerosol submitted to simultaneous nucleation, surface variation and agglomeration, is governed by
a Population Balance Equation (PBE) (Ramkrishna, 2000; Solsvik and Jakobsen, 2015):

∂n(v;x, t)
∂t

+ u · ∇n(v;x, t) + ∂

∂v
[G(v)n(v;x, t)] = ḣ(vo;x, t) (4.1.1)

+1
2

∫ v

0
β(v − v̄, v̄)n(v − v̄;x, t)n(v̄;x, t)dv̄ − n(v;x, t)

∫ ∞
0

β(v, v̄)n(v̄;x, t)dv̄ ,

where usual notations are adopted. G(v) > 0 is the surface growth rate or G(v) < 0 the surface
loss rate. ḣ(vo) > 0 is the nucleation rate or ḣ(vo) < 0 the disappearance rate, seen at size vo. The
integral source term on the RHS accounts for agglomeration following the continuous counterpart

75



CHAPTER 4. A NOVEL HYBRID STOCHASTIC/SECTIONAL METHOD: THE HYPE
METHOD 76

of Smoluchowski equation (Smoluchowski, 1917), with β(v, v̄) the collision kernel for two particles
of volume v and v̄. The PSD evolution is thus driven by an integro-partial-differential equation of
the hyperbolic type.

The surface variation rate G(v) stands as a convective term in the particle size space. Resolution
of G(v) is challenging, similarly to the non-linear flow convective term in physical space (Ferziger
and Perić, 1996), which motivates the present study.

Further quantities related to the PSD are introduced. Ni(x, t) is defined as the number of
particles of characteristic size vi per unit of flow volume

Ni(x, t) =
∫
Ivi

n(v;x, t)dv , (4.1.2)

where the interval Ivi ≡ [vinfi , vsupi ] defines the i-th fixed-section of size. The total number density
per unit of flow volume is the sum over all sizes or over the M sections considered

NT (x, t) =
∞∫
vo

n(v;x, t)dv =
M−1∑
i=0

Ni(x, t) . (4.1.3)

Similarly, the nucleation source per unit of flow volume is

Ḣo(x, t) =
∫
Ivo

ḣ(v;x, t)dv . (4.1.4)

The Smoluchowski agglomeration sources/sink (Eq. (4.1.1)),

ȧ(v;x, t) (4.1.5)

= 1
2

v∫
0

β(v − v̄, v̄)n(v − v̄;x, t)n(v̄;x, t)dv̄ − n(v;x, t)
∞∫
0

β(v, v̄)n(v̄;x, t)dv̄ ,

leads to the definition of the agglomeration source for the i-th section

Ȧi(x, t) =
∫
Ivi

ȧ(v;x, t)dv , (4.1.6)

and AT is the total sink due to agglomeration over all particles, thus the sum of Ai(x, t) over all
sections

ȦT (x, t) =
∞∫
vo

ȧ(v;x, t)dv =
M−1∑
i=0

Ȧi(x, t) . (4.1.7)

All these quantities allow for combining the PBE with the evolution of the probability density
function of the characteristic particle size.

4.2 Hybrid Stochastic/Fixed-Sectional method

4.2.1 Control parameters and statistical description
To benefit from a description in which surface growth or loss is cast into the form of a linear term,
instead of directly solving for the population balance equation, it is proposed to consider both
NT (x, t), the total number of particles per unit volume, and P (v∗;x, t), the probability density
function (PDF) of the particles characteristic size, where v∗ ∈ [vo,∞] denotes the sample space
variable associated to v, seen as a random variable.
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The relation between n(v;x, t), the particle number density per unit size, Ni(x, t), the number
density of particles whose size is in the section Ivi (v ∈ Ivi) at the flow position ‘x’ at time ‘t’
(Eq. (4.1.2)), and P (v∗;x, t), the PDF of the particles sizes reads:∫

Ivi

n(v∗;x, t)dv∗ = Ni(x, t) = NT (x, t)
∫
Ivi

P (v∗;x, t)dv∗ , (4.2.1)

where ∫
Ivi

P (v∗;x, t)dv∗ (4.2.2)

is the probability to find particles of sizes v ∈ Ivi . Because (4.2.1) should be valid whatever Ivi ,

n(v∗;x, t) = NT (x, t)P (v∗;x, t) . (4.2.3)

The function

δ(v − v∗) = lim
dv→0

1/dv if v ∈ [v∗ − dv/2, v∗ + dv/2] (4.2.4)

= 0 otherwise , (4.2.5)

is introduced and P (v∗;x, t) = δ(v(x, t)− v∗), where · denotes a statistical average (Lundgren, 1967;
Dopazo, 1979; Kollmann, 1990; Dopazo et al., 1997).

The nucleation term in the PBE (Eq. (4.1.1)) may be written ḣ(vo;x, t) = Ḣo(x, t)δ(vo − v∗),
with Ḣo(x, t) defined by (4.1.4) in the limit where the size of the interval Io goes to zero. Similarly,
the agglomeration term may be written ȧ(v∗;x, t) = Ȧi(x, t)δ(vi − v∗), with Ȧi(x, t) defined by
(4.1.6) in the limit where Ivi goes to zero. Then the PBE formally becomes

∂n(v∗;x, t)
∂t

+ u · ∇n(v∗;x, t) + ∂

∂v∗
[G(v∗)n(v∗;x, t)] (4.2.6)

= Ḣo(x, t)δ(vo − v∗) + Ȧi(x, t)δ(vi − v∗) .

The total number density NT evolves according to

∂NT (x, t)
∂t

+ u(x, t) · ∇NT (x, t) = Ḣ(vo;x, t) + ȦT (x, t) , (4.2.7)

with ȦT (x, t) given by (4.1.7). From (4.2.3) the PDF evolves as

∂P (v∗;x, t)
∂t

=
[ 1
n(v∗;x, t)

∂n(v∗;x, t)
∂t

− 1
NT (x, t)

∂NT (x, t)
∂t

]
P (v∗;x, t) . (4.2.8)

Introducing (4.2.6) and (4.2.7) in this relation, the PDF evolution equation is obtained

∂P (v∗;x, t)
∂t

+ u(x, t) · ∇P (v∗;x, t) =

(i)︷ ︸︸ ︷
− ∂

∂v∗

[
G(v∗)P (v∗;x, t)

]
+ Ḣo(x, t)
NT (x, t)

(
δ(vo − v∗)− P (v∗;x, t)

)
︸ ︷︷ ︸

(ii)

+ 1
NT (x, t)

(
Ȧi(x, t)δ(vi − v∗)− ȦT (x, t)P (v∗;x, t)

)
︸ ︷︷ ︸

(iii)

. (4.2.9)
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In this balance equation, as in the PBE, the change of particles sizes at the rate G(vi) is a
convective term in size space (term (i)). The term (ii) on the RHS is nucleation, which is decomposed
into two parts preserving the normalisation of the PDF. The first, proportional to δ(vo − v∗),
increases the probability to find the smallest particles at the nucleation rate Ḣo(x, t)/NT (x, t),
while the second decreases, at the same rate, the probability for all sizes. A similar formulation
is found for agglomeration (term (iii)), with the probability evolving at the positive or negative
rate Ȧi(x, t)/NT (x, t), associated to a correction proportional to −ȦT (x, t)/NT (x, t) > 0, so that
the PDF normalisation is preserved. Indeed, when two particles of characteristic sizes vi and vj
agglomerate, the probability of their respective initial size decreases (Ȧi(x, t) < 0 and Ȧj(x, t) < 0),
to increase the probability of their new size vk (Ȧk(x, t) > 0). However, because the total number
of physical particles decreases in this process, the probability of all sizes benefit from an increase
proportional to −AT , the overall particle sink.

The solutions of the equations (4.2.7) and (4.2.9) provide all the necessary information to sim-
ulate the nucleation and the growth of an ensemble of particles transported in a flow. The particle
size distribution Ni(x, t) can then be recovered from (4.2.1).

Because the focus is on the numerical solving of terms controlling the PSD shape, a perfectly
stirred/homogeneous reactor is considered (u = 0). However, the addition of the convective flow
velocity is discussed in the last chapter of this thesis (perspectives).

4.2.2 Hybrid Stochastic/Fixed-Sectional solution
The probability density function P (v∗; t) can be discretized over a set of NP stochastic particles,1
each carrying information on the particle size, i.e. v = vk for k = 1, · · · , NP and P (v∗; t) =
(1/NP )

∑NP
k=1 δ(vk(t)− v∗). The total number of stochastic particles NP is fixed.

The v-space is also discretized in M fixed sections, to define a mesh providing a distribution of
∆vi = vsupi − vinfi , for i = 0, · · · ,M − 1. Uniform, geometric and exponential sectional grids will be
tested thereafter. The characteristic size vk of a stochastic particle can take any value between the
considered size bounds [vo, vM ], independently of the fixed sectional mesh.

Within this set of NP particles, an integer number nPi(t) of stochastic particles features sizes
so that vk ∈ Ivi ≡ [vinfi , vsupi ]. This number of stochastic particles relates to the PDF and to Ni(t),
the number densities of the physical particles (Eq. (4.2.1)), according to:∫

Ivi

P (v∗; t)dv∗ = nPi(t)
NP

= Ni(t)
NT (t) . (4.2.10)

To simulate the PDF time evolution through vk(t), the stochastic particles time evolution, a
fractional-step method is followed. Starting at time tn, surface growth/loss is first applied to advance
the solution to time tn+ 1

2 . This is applied in a deterministic way to every k-th particle, as a simple
linear process proportional to G(vk(t)), which is the major advantage of the proposed approach.
Then from the time tn+ 1

2 , the solution is advanced to tn+1 by applying nucleation and agglomeration
effects, which are simulated by moving the stochastic particles between the defined sections. The
number of stochastic particles randomly selected to be removed from a section and dispatched over
the others, are calculated according to the nucleation and agglomeration rates controlling the PDF
evolution (Eq. (4.2.9)). At every instant tn, δt is determined so that stability is secured, different
amplitudes of δt may be required in practice to advance from tn to tn+ 1

2 (growth/loss) and from
tn+ 1

2 to tn+1 (nucleation and agglomeration).
1Physical space is omitted in this subsection for brevity.
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Ḣ

o
(t

n
+

1 2
)
+

Ȧ
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Figure 4.1: Flowchart of the hybrid stochastic/fixed-sectional method.
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4.2.2.1 Surface growth/loss
During surface growth or loss, the size of the k-th stochastic particle evolves according to:

dvk(t)
dt

= G(vk(t)) , k = 1, · · · , NP . (4.2.11)

Each stochastic particle then carries information on an updated size vk(tn+ 1
2 ). The total number

density stays constant during growth (dNT (t)/dt = 0). Once Eq. (4.2.11) is solved for each particle,
an updated distribution of the stochastic particles is available and the PDF P (v∗; tn+ 1

2 ) is known
along with nPi(tn+ 1

2 ) the number of stochastic particles in every section.

4.2.2.2 Nucleation and agglomeration
Nucleation and agglomeration are subsequently applied, which impacts on the number density NT (t)
and on the PDF through the change of nPi(tn+ 1

2 ) for each interval Ivi . Starting from NT (tn) =
NT (tn+ 1

2 ), the number density evolves from tn+ 1
2 to tn+1 with

dNT (t)
dt

= Ḣo(t) + ȦT(t) . (4.2.12)

Once NT (x, tn+1) is known solving (4.2.12), the PDF equation (4.2.9) is advanced in time with
nucleation and agglomeration:

P (v∗; tn+1) = αHoδ(vo − v∗) + αAiδ(vi − v∗)
+ (1− αHo − αAT

)P (v∗; tn+ 1
2 ) , (4.2.13)

with αHo the relative increase of P (vo; tn+ 1
2 ) by nucleation (and decrease of P (v∗; tn+ 1

2 ) for v∗ 6= vo),
αAi the relative increase/decrease due to agglomeration and αAT

the total agglomeration sink
defined by Eq. (4.2.9):

αHo = Ḣo(tn+ 1
2 )

NT(tn+1) · δt , (4.2.14)

αAi = Ȧi(tn+ 1
2 )

NT (tn+1) · δt , (4.2.15)

αAT
= ȦT (tn+ 1

2 )
NT (tn+1) · δt . (4.2.16)

According to Eq. (4.2.10), integrating over Ivi and multiplying by NP the PDF evolution given by
the relation (4.2.13) leads to the evolution of the number of stochastic particles per section. This
discretized time evolution is organised as:

nPi(tn+1) = nPi(tn+ 1
2 ) + ∆nPi(tn+ 1

2 ) , (4.2.17)

with increments ∆nPi(tn+ 1
2 ) in the form of real numbers, which will need to be transformed subse-

quently into integer numbers of particles in the Monte Carlo algorithm. From (4.2.13),

∆nPo(tn+ 1
2 ) = (αHo + αAo)NP − (αHo + αAT

)nPo(tn+ 1
2 )

+ αRoNP , (4.2.18)
∆nPi(tn+ 1

2 ) = αAiNP − (αHo + αAT
)nPi(tn+ 1

2 )
+ αRiNP for i 6= o . (4.2.19)
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The terms proportional to αRi are the accumulation of the round-off error, which goes to zero
for NP → ∞. Cumulated over the iterations, this will impact on particles when αRi ≥ 1/NP . At
every iteration, ∆nPi(tn+ 1

2 ) is thus decomposed into its integer and fractional (or decimal) parts.
The fractional part {∆nPi(tn+ 1

2 )} is defined from the nearest integer b∆nPi(tn+ 1
2 )e,

{∆nPi(tn+ 1
2 )} = ∆nPi(tn+ 1

2 )− b∆nPi(tn+ 1
2 )e . (4.2.20)

The integer part b∆nPi(tn+ 1
2 )e sets the variation of the number of stochastic particles within a

section during the reallocation step corresponding to nucleation and agglomeration. The following
Monte Carlo algorithm is applied:

• If b∆nPi(tn+ 1
2 )e is negative, a random number −b∆nPi(tn+ 1

2 )e of stochastic particles is picked
among the nPi(tn+ 1

2 ) present in Ivi .

• All the picked particles from all Ivi intervals (i = 0, · · · ,M−1) constitute an ensemble P(tn+ 1
2 )

of particles whose characteristic size needs to change.

• If b∆nPi(tn+ 1
2 )e is positive, b∆nPi(tn+ 1

2 )e particles are taken from P(tn+ 1
2 ) and allocated to

Ivi at the representative size v?i (tn+ 1
2 ), defined to conserve mass, as discussed in the next

subsection.

The larger the total number of stochastic particles NP , the smaller the relative contribution of
the decimal part {∆nPi(tn+ 1

2 )} to ∆nPi(tn+ 1
2 ). This residual decimal part defines NR

i (tn), a residual
number density of physical particles in the section vi, which is computed at time tn following (4.2.10)

NR
i (tn) = {∆nPi(tn−

1
2 )}

NP
NT (tn) , (4.2.21)

where ∆nPi(tn−
1
2 ) denotes ∆nPi of the previous iteration in time. The growth/loss of the phys-

ical particles represented by this number density residual NR
i (tn) is not included in the stochastic

particles and needs a separate solving, between tn and tn+ 1
2 (i.e., simultaneously with growth/loss

for the stochastic particles Eq. (4.2.11)) This is done with a sectional method based on the 3-point
discretization for particle growth/loss (Park and Rogak, 2004) (Eq. 3.5.18). Then, NR

i (tn+ 1
2 ) is

known and αRi is obtained from

αRi = NR
i (tn+ 1

2 )
NT (tn+1) , (4.2.22)

and applied to Eqs. (4.2.18) and (4.2.19) to compute ∆nPi(tn+ 1
2 ). For sufficiently large values of

NP , typically 105 as shown thereafter, the residual number density of particles is expected to be
negligible and will not perturb much the accuracy of the method. Then, αR(vi) can be set to zero
in the relations (4.2.18) and (4.2.19). However as shown below, accounting for the contribution of
the residual part allows for reducing NP (such as 103 or less) and therefore the CPU time.

Optionally, a trigger can also be set so that when the number of stochastic particles present in a
given section becomes too small, the surface growth/loss is then fully solved through the evolution
of NR

i (t). In practice, a trigger of 5 particles per section is used and has been found to be sufficient
to avoid any noise on the tails of distributions.

Figure 4.1 displays a flowchart summarising the method.

4.2.2.3 Agglomeration source
The method proposed in Kumar and Ramkrishna (1996a) is retained for computing the agglomera-
tion source Ȧi(t) of Eq. (4.2.15). For any colliding particles of volume v in section i and v̄ in section
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Table 4.1: Growth parameters

Case 1(a) 1(b)
Initial 1 for 0.2 ≤ v; 0 else δ(1)
Growth kernel 0.05 v
Agglo. kernel 0 0
Number of sections 20 40
Grid type unif. ∆v = 0.2 geo. Fs = 2
Size range 0 – 4 0.7 – 7.3 · 1011

j, the collision kernel β(v, v̄) is assumed fixed to β(vi, vj) = βi,j . Particles formed by agglomeration
are distributed in the sections in a manner that conserves the zeroth and first moments of the
PSD, namely number and mass. This method avoids the evaluation of the double integrals of the
collision kernel and is therefore computationally efficient (see Kumar and Ramkrishna (1996a) for
more details). The agglomeration source used in (4.2.15) reads

Ȧi(t) =
k≤j≤i∑
j,k

vi−1≤vj+vk≤vi+1

(
1− δj,k

2

)
ηβj,kNj(t)Nk(t)

− Ni(t)
M−1∑
k=0

βi,kNk(t) , (4.2.23)

with

η =


v?i+1 − (v?j + v?k)

v?i+1 − v?i
if v?i ≤ v?j + v?k ≤ v?i+1 ,

v?i−1 − (v?j + v?k)
v?i−1 − v?i

if v?i−1 ≤ v?j + v?k ≤ v?i ,
(4.2.24)

In the hybrid stochastic/fixed-sectional approach, the characteristic volume v?i must be representa-
tive of the average mass contained in the i-th section. v?i is calculated dynamically, depending on
the volumes of the stochastic particles contained in both the section and the residual terms resulting
from the round-off,

v?i (tn+ 1
2 ) = (NT (tn)/NP )

∑nPi
(t)

k=1 vki (tn+ 1
2 ) +NR

i (tn+ 1
2 )v?i (tn)

(NT (tn)/NP )nPi(tn+ 1
2 ) +NR

i (tn+ 1
2 )

, (4.2.25)

where vki = vk if vk ∈ Ivi and vki = 0 otherwise, nPi(tn+ 1
2 ) is the number of stochastic particles

in the i-th section (Eq. (4.2.10)) and NR
i (tn+ 1

2 ) is the residual number density of the particles in
the section after applying surface gross or loss. v?i needs to be updated again after reallocation
of the particles due to agglomeration, to provide v?i (tn+1) from (4.2.25) with NT (tn+1), vki (tn+1),
NR
i (tn+1), v?i (tn+ 1

2 ), nPi(tn+1).
Once v?i has been determined, the particles reassigned to the i-th section are distributed in this

section following a two-step process:

• First, the b∆nPi(tn+ 1
2 )e particles are allocated randomly within the section at sizes vk(tn+ 3

4 ),
which are samples of a random variable v following a target piecewise linear distribution
defined by the probability density function,

p(v | vinfi , vsupi , wi, wi+1) = 2wi(v
sup
i − v) + wi+1(v − vinfi )

(wi + wi+1)∆v2
i

. (4.2.26)
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Table 4.2: Agglomeration parameters

Case 2(a) 2(b)
Initial e−v e−v

Agglo. kernel 1 vi + vj

Number of sections 40 40
Grid type: Exponential, α 1.17 1.25
Size range 6.7 · 10−2 – 209 6.7 · 10−2 – 2006

In this distribution, the weights, wi, are calculated from the variations of the number densities
at v?i ,

wi = ∆ni(tn+ 1
2 ) + ∆ni(tn+ 1

2 )−∆ni−1(tn+ 1
2 )

v?i − v?i−1
(vinfi − v?i−1) ,

wi+1 = ∆ni(tn+ 1
2 ) + ∆ni+1(tn+ 1

2 )−∆ni(tn+ 1
2 )

v?i+1 − v?i
(vsupi − v?i ) ,

with ∆ni(t) = ∆nPi(t)NT (t)/(NP∆vi) (Eq. (4.2.10)). Such random piecewise linear distri-
bution secures a continuous distribution of the stochastic particles. However, it does not
guarantee strict volume/mass conservation by itself.

• Mass conservation is achieved in a second step by calculating a corrective factor Ki

Ki = v?i (tn+ 1
2 )

(1/nPi(tn+ 3
4 ))
∑nPi

(tn+1)
k=1 vki (tn+ 3

4 )
, (4.2.27)

then,
vki (tn+1) = Kiv

k
i (tn+ 3

4 ) , (4.2.28)

and mass is conserved through the reallocation process.

Nucleation size is set as the lower boundary of the smallest size section vo. As the numerical
steps corresponding to nucleation/agglomeration and growth are sequential in the present model,
it is necessary to account for a dispersion of effective nucleation sizes due to particle growth during
the nucleation/agglomeration time step. For b∆nPo(tn+ 1

2 )e > 0, the b∆nPo(tn+ 1
2 )e particles are

therefore allocated randomly following a target uniform distribution between vo and vo +G(vo)δt.

4.2.2.4 Time steps
As stated earlier, a fractional-step method is followed. The notation δt used above was schematic to
explain the algorithm structure. The characteristic time step size of the first growth/loss sub-step
(Fig. 4.1) is calculated following a usual Courant Friedrichs Lewy (CFL) condition (Ferziger and
Perić, 1996), based on the velocity G(v) and sections discretization

δtG = C min [∆v0/|G(v0)|, · · · ,∆vM−1/|G(vM−1)|] . (4.2.29)

Calculations have been performed with C = 0.01, to fully secure stability for both stochastic and
sectional parts.
The characteristic time step size of the nucleation-agglomeration sub-step of the algorithm is deter-
mined to limit the relative change of the distribution

δtA = (γ + σ) NT∣∣∣Ḣo + ȦT
∣∣∣+∑M−1

i=0

∣∣∣Ȧi∣∣∣ , (4.2.30)
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Table 4.3: Growth/Loss & agglomeration parameters

Case 3(a) 3(b) 3(c) 3(d) 3(e)
Initial e−v e−v e−v e−v e−v

Growth kernel v v v v −v
Agglo. kernel 0.1 1 10 1 1
Number of sections 40 40 40 80 40
Geometric grid, Fs 2 2 2

√
2 2

Size range 6.7 · 10−4 – 7.3 · 108 8.3 · 10−4 – 9.1 · 108 6.7 · 10−11–73

with σ = 0.02 in the simulations presented thereafter. If particle nucleation dominates, as in the
beginning of a calculation with a negligible initial distribution mostly present in the smallest section
with also very few exchange of particles between sections, larger time steps may be allowed to let
NT increase faster until the exchange of particles between sections becomes significant, then γ = 1
is used in (4.2.30). This specific ‘nucleation dominated’ regime is considered reached at a given time
in a simulation if

∣∣∣Ḣo(t) + ȦT (t)
∣∣∣ > 100 ·

M−1∑
i=0

∣∣∣Ȧi(t)∣∣∣ , (4.2.31)

N0(t)/NT (t) > 0.99 . (4.2.32)

Otherwise, γ = 0 is imposed in (4.2.30) to solve for the more general regimes of PSD evolution.
For the test cases considered in this work, δtG ≤ δtA and one or several surface growth/loss sub-
iterations can be applied between two agglomeration/nucleation sub-iterations. δtG is then further
adjusted so that δtA is one of its multiple, still verifying the stability condition.

4.3 Canonical test cases
Four main representative cases for which analytical solutions exist are considered. Sectional meth-
ods, based on two discretization of the growth term, and the hybrid stochastic/sectional approach
discussed above are applied to simulate these canonical problems.

The number of sections set to discretize the normalised problems is fixed to 20, 40 or 80 depending
on the case, for various size ranges (see the details in Tables 4.1 to 4.4). Following the literature,
three types of grid discretization are used: uniform, geometric and exponential. Defining vinfi the
inferior boundary of section i, the uniform grid reads

vinfi = vinf0 + i∆v , (4.3.1)

the geometric grid is constructed as in Park and Rogak (2004) following

vinfi = vinf0 F is , (4.3.2)

and the exponential grid as in Rigopoulos and Jones (2003)2

vinfi = vinf0 + vinf0
1− αi

1− α . (4.3.3)

The values of Fs and α are given in Tables 4.1 to 4.4.
The first main case features only growth and is broken into two sub-cases 1(a) and 1(b). Fol-

lowing Sewerin and Rigopoulos (2017), case 1(a) of Table 4.1 considers the advection of a unit step
distribution, whose exact solution is a pure advection of the step function at the constant normalised
speed G = 0.05.

2Exponent i is used instead of i− 1 of Rigopoulos and Jones (2003) as i begins at 0 in the present case.
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Table 4.4: Nucleation & growth parameters

Case 4
Initial 10−5 δ(vo)
Growth kernel v
Number of sections 40
Geometric grid, Fs 2
Size range 0.7 – 7.3 · 1011

Case 1(b) in Table 4.1 is from Park and Rogak (2004) and represents the pure growth of a set of
mono-disperse particles. The initial particle size distribution is a delta function, which is translated
in size space at a speed proportional to the particle volume G(v) = v. Cases 1(a) and 1(b) are quite
stringent, since numerical diffusion can transform the expected delta function into a poly-disperse
distribution.

The second case in Table 4.2 is pure agglomeration. Case 2(a) is with a fixed agglomeration
frequency, as proposed in Rigopoulos and Jones (2003). From an initial exponential distribution
exp(−v), the analytical solution of the time evolution of the PSD was discussed in Scott (1968),

n(v; t) = 4
(t+ 2)2 exp

(
− 2v
t+ 2

)
. (4.3.4)

Case 2(b) is with a non-uniform collision frequency. Here, the Golovin sum kernel β(vi, vj) = (vi+vj)
is retained to mimic the expected increase with volume of the collision frequency between two
particles of characteristic sizes vi and vj . Starting from the same initial exponential distribution,
the analytical solution of the PSD reads (Scott, 1968; Rigopoulos and Jones, 2003)

n(v; t) =
(1− θ
θ1/2

)
· exp (−v(θ + 1))

v
· I1

[
2vθ1/2

]
, (4.3.5)

where θ = 1− exp(−t) and I1 denotes the first order Bessel-I function.
In a third series of cases, agglomeration with either surface growth or loss is considered (Ta-

ble 4.3). Starting from an initial exponential distribution, the time evolution follows (Ramabhadran
et al., 1976):

n(v; t) = 4
(2 + β0t)2 exp

(
−2v exp(−t)

2 + β0t
− t
)
. (4.3.6)

The value of the size-independent collision kernel βo is varied by two orders of magnitude (βo = 0.1
case 3(a), βo = 1 case 3(b), 3(d) and 3(e), βo = 10 case 3(c), Table 4.3). In case 3(d), in the
comparison between the hybrid method and the fixed-sectional one, the latter benefits from twice
the number of sections. In case 3(e), surface loss is applied instead of surface growth withG(v) = −v.
The initial distribution and collision kernel are the same as in case 3(b).

Case 4 is the evolution of an initial exponential distribution submitted to nucleation and growth
(Table 4.4), evolving into a uniform distribution for large times. The normalised nucleation kernel
Ḣ(vo, t) is fixed to unity in this last test case.

4.4 Results
Analytical solutions are compared with simulation results. Simulations were run for all cases of
Tables 4.1 to 4.4 with the hybrid stochastic/fixed-sectional approach and with the standard fixed-
sectional method. Convection in size space was solved using either a 2-point or a 3-point algo-
rithm (Park and Rogak, 2004) (see equations 3.5.22 and 3.5.18 respectively). Only test case 1(a)
was not run with the 3-point algorithm, which is not designed to solve for growth on a uniform grid.
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Figure 4.2: Particle Size Distribution n(v; t). Growth: case 1(a) of Table 4.1. Dashed line: initial
distribution (jump is between centred sections values). Normalised time t = 60. Line with empty
diamonds: 2-point sectional method. Line with full circles: hybrid method, NP = 103 (values are
shown at v?i (Eq. (4.2.25)).

In case 1(a), the hybrid method perfectly reproduces the analytical solution (Fig. 4.2), with
the pure convection of the step function. As expected, applying growth directly on the stochastic
particles enables to convect the distribution in size space with no numerical diffusion. Similar results
were obtained by Sewerin and Rigopoulos (2017) using explicit adaptive grid method (EAGM),
while in Fig. 4.2, the 2-point fixed sectional approach yields results close to those of fully upwinded
orthogonal collocation finite element method (OCFEM), see Fig. 7 of Rigopoulos and Jones (2003).

Case 1(b) of Table 4.1 features an initial monodisperse distribution submitted to growth only,
with a particle surface growth rate proportional to the particle volume. The expected solution is
thus a translation of the distribution in size space. Figure 4.3 shows that the fixed-sectional methods
(line with diamonds and circles) would need much more advanced numerics to capture this extreme
case. However, the hybrid method operating here without any residual, returns the exact solution.
In specific aerosol flow zones, where nucleation and pure growth can dominate the physics, the
spurious spreading of the distributions observed with sectional methods could strongly impair the
calibration of the physical models.

The pure agglomeration case 2(a) of Table 4.2, with a fixed agglomeration frequency, is simulated
with the hybrid approach for NP = 103, 104 and 105. The initial distribution and the solutions at
two successive times are shown in Fig. 4.4. To assess the impact of the residual number density
(Eq.( 4.2.21)), Figs 4.4a, 4.4b and 4.4c are obtained forcing αR = 0 (Eq. (4.2.22)). As NP is
decreased from 105 to 103, the effect of the round-off then becomes visible. The introduction of the
procedure discussed above to deal with the residual part, allows for alleviating this effect to better
match the solution (Fig. 4.4d). The case 2(b) of Table 4.2 with the Golovin agglomeration kernel
(Eq. (4.3.5)) is also perfectly reproduced (Fig. 4.5).

The cases 3(a), (b) and (c), with both surface growth and agglomeration of the particles, are
shown in Fig. 4.6. Here comparisons are made between the exact solution given by the relation
(4.3.6), the solution with the hybrid method and the solutions with the fixed-sectional method
using the classical 2-point and 3-point discretization for growth (Park and Rogak, 2004). Three
collision parameters are applied (βo = 0.1, 1.0 and 10) and results are given in both linear and log
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Figure 4.3: Size Distribution n(v; t)·v. Growth: case 1(b) of Table 4.1. Triangle: Initial distribution.
Plus symbol: Analytical solution. Line with empty diamonds: sectional 2-point method. Line with
circles: sectional park 3-point method (Park and Rogak, 2004). Full diamond symbols: hybrid
method without residual term, αR = 0, NP = 103.

scale for the amplitude of the PSD. As expected, the sectional 3-point method is more accurate than
its 2-point counterpart (Fig. 4.6). The hybrid stochastic/fixed-sectional method returns the best
results, with a better prediction of the peak value and less spurious diffusion of the distribution. The
comparison between log-scale and linear plots also illustrates the risk in concluding from log-plots
only, specifically for physical problems with high sensitivity to small fluctuations of size around a
targeted peak level. Even in case 3(d), βo = 1 with a much finer grid for the sectional method,
which results in a number of sections multiplied by two (M = 80), still keeping (M = 40) for the
hybrid method, the latter achieves a similar level of accuracy as compared with the three-point
fixed-sectional method and performs better than the two-point one (Fig. 4.7). The case 3(e) with
surface loss (Fig. 4.8) combined with agglomeration shows that the sectional 3-point method over-
estimates the peak value of the distribution with a too narrow size distribution, as a result of the
effect of the flux-limiting in case of negative velocity. On the opposite, the hybrid method follows
with much better accuracy the analytical solution.

In case 4 of Table 4.4, simultaneous growth and constant nucleation are applied as in Park and
Rogak (2004). A negligible initial distribution, orders of magnitude smaller than the expected con-
verged solution, is introduced to initialize the stochastic particles. Both fixed-sectional and hybrid
methods are applied and results are seen in Fig. 4.9. The hybrid method reproduces the steep
moving front induced by simultaneous growth and nucleation, with results closer to the analytical
number density than those of the 3-point fixed-sectional method over the whole range of particles
sizes. The 3-point fixed-sectional method overestimates the number density for v ∈ [2, 103]. Then,
from sizes around 2 ·103 up to the theoretically moving front, the number density is largely underes-
timated by the 3-point fixed-sectional method. The 2-point method is highly diffusive as compared
with the 3-point and hybrid approaches.

In addition to the visualisation of the PSD distributions, to verify that no additional error
accumulates with the hybrid method compared with the sectional ones, three measures of the error
against n(v; t), the exact solutions of the canonical test cases given by (4.3.4), (4.3.5) and (4.3.6),
have been computed. εMq , with q = 1 or 2, is the departure in % between the q-th moment of the
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Figure 4.4: Particle Size Distribution n(v; t). Size independent agglomeration: case 2(a) of Table 4.2
(Eq. (4.3.4)). Points: initial distribution. t = 10, dashed line: analytical solution, crosses: hybrid
method. t = 20, solid line: analytical solution, plus: hybrid method. (a)-(c): without residual term,
αR = 0. (d): with residual term (Eq. (4.2.22)).
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Figure 4.5: Particle Size Distribution n(v; t). Size dependant agglomeration: case 2(b) of Table 4.2
(Eq. (4.3.4)). Points: initial distribution. t = 0.5, dashed line: analytical solution, crosses: Hybrid
method. t = 2, solid line: analytical solution, plus: hybrid method, NP = 104.

analytical solution

Mq(t) =
∫ vM

vo

n(v; t)vqdv , (4.4.1)

against either the moment of the hybrid method

MHyb
q (t) =

M−1∑
i=0

NT (t)
NP

nPi
(t)∑

k=1

(
vki (t)

)q
+NR

i (t) (v?i (t))
q

 (4.4.2)

with v?i (t) from (4.2.25), or the moment of the fixed-sectional method

MSec
q (t) =

M−1∑
i=0

Ni(t)vqi . (4.4.3)

As expected, the fixed-sectional methods are accurate on the integral first moment of the distri-
bution (Table 4.5). The hybrid stochastic/fixed-sectional approach returns values of εM1 which are
also of the order of a few percent. The error on the second moment, εM2 , reveals the accumulation
of a much larger level of error with the sectional methods as soon as surface growth or loss is acting
on the PSD (Table 4.5), confirming the better description of PSD shape with the hybrid approach.

The third measure is based on the Earth Mover’s Distance (EMD) (Rubner et al., 1998), or
Wasserstein metric, computed using the package ‘emdist’ of the cran project (Urbanek, 2012).
EMD is a statistical metric that represents the distance between two probability distributions. It
does not require the same discretization of the compared distributions. EMD has previously been
used for Particle Size Distributions and compared with other distance measures (Hu et al., 2018).
The EMD is normalised by the standard deviation of the exact distribution. The hybrid method
reports for εEMD similar trends than with the fixed-sectional methods (Table 4.5), with better
estimation in case 3 (agglomeration and growth) and case 4 (nucleation and growth), as expected
from the above discussion.

With fixed-sectional methods, the error on the PSD usually increases as Rτ , the ratio between
the characteristic growth and agglomeration times, decreases (Park and Rogak, 2004), i.e., when
growth tends to dominate over agglomeration. Going from case 3(c) to 3(b) and 3(a), the colli-
sion frequency β0 decreases while keeping the surface growth rate constant (Table 4.3), which is
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Figure 4.6: Size Distribution n(v; t) · v. Surface growth (G(v) = v) & agglomeration: case 3(a),
3(b), 3(c) of Table 4.3. βo: size-independent collision kernel (Eq. (4.3.6)). Dashed line: initial
distribution. t = 7, dashed dotted line: analytical solution. Line with empty diamonds: 2-point
sectional method. Line with empty circles: 3-point sectional method. Line with full circles: hybrid
method, NP = 103.
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Figure 4.7: Size Distribution n(v; t)·v. Growth & agglomeration: case 3(d) of Table 4.3. Dashed line:
initial distribution. Dashed dotted line: analytical solution at t = 7. Line with empty diamonds:
2-point sectional method (M = 80 sections). Line with empty circles: 3-point sectional method
(M = 80 sections). Line with full circles: hybrid method, NP = 103 (M = 40 sections).
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Figure 4.8: Size Distribution n(v; t) · v. Surface loss (G(v) = −v) & agglomeration: case 3(e) of
Table 4.3. βo: size-independent collision kernel (Eq. (4.3.6)). Dashed line: initial distribution. t = 5,
dashed dotted line: analytical solution. Line with empty diamonds: 2-point sectional method. Line
with empty circles: 3-point sectional method. Line with full circles: hybrid method, NP = 103.
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Figure 4.9: Size Distribution n(v; t) · v. Nucleation and growth Case 4 of Table 4.4. Dash-dot line:
analytical solution at t = 9.7. Line with empty diamonds: 2-point sectional method. Line with
empty circles: 3-point sectional method. Line with full circles: hybrid method, NP = 103.

equivalent to decreasing Rτ . This results in higher levels of εEMD for both 2-point and 3-point
fixed-sectional methods, while εEMD remains relatively low and almost constant with the hybrid
method (Table 4.5). Similarly, the error on the second moment εM2 increases from case 3(c) to 3(a),
especially using the 2-point fixed-sectional method.

Using the same sections discretization, the extra CPU cost of the hybrid method stays moderate
(Table 4.5), between 8% and 42%, except for cases 3(a) and 3(b) featuring parameters requiring
sub-stepping to solve growth because of the small Rτ ratios. Overall, the sectional method yields
lower error as mesh is refined, but with a CPU cost rapidly growing. For instance, in the case 3(d),
where the grid of the sectional method has been refined to reach the accuracy of the hybrid method,
the sectional method costs about 8 times more than the novel hybrid approach.

4.5 Convergence and response to resolution parame-
ters

The proposed hybrid method features two resolution parameters: NP the total number of stochastic
particles, and M the number of sections discretizing the particle size space. The effects of these
parameters on accuracy and CPU cost are now assessed. The CPU cost is normalised by the
computational cost of the 3-point sectional method for M = 30.

Test case 3(b) (growth and agglomeration) is chosen for this analysis with particle volume v
ranging from 6.66 · 10−7 to 7.3 · 105. On the fixed-sectional part, geometric grids are used and M
and Fs (Eq. (4.3.2)) are varied, keeping the size range constant. NP is varied for the stochastic
part.

Comparison of the obtained solutions through the hybrid method and the sectional 3-point
method is performed at the normalised time t = 7. A measure of normalized L1 error of calculated
distributions against analytical solutions is provided. To make error comparison more meaningful
across solutions obtained with different values of M , for each solution, the M values of Ni/∆vi
obtained after calculation are linearly interpolated over MR = 1000 logarithmically spaced vi points
over the size range. Then, these MR calculated Ni/∆vi values are compared with the analytical
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Table 4.5: Accuracy and CPU costs. Case 1: Pure growth. Case 2: Pure agglomeration, Case 3:
Growth/Loss & agglomeration. Case 4: Nucleation & growth.

Case Error Method
Sectional 2pt Sectional 3pt Hybrid

1(a)

εM1 (%) -0.13 - -0.0078
εM2 (%) 1.5 - -0.012
εEMD 0.11 - 1.9e-17

CPU time 1.0 - 1.1

1(b)

εM1 (%) -2.9 -2.9 -2.7
εM2 (%) 770 845 105 -5

CPU time 1.0 1.0 1.4

2(a)

εM1 (%) 0.4 0.4 -0.1
εM2 (%) 1.6 1.6 0.7
εEMD 0.006 0.006 0.013

CPU time 1.0 1.0 1.3

2(b)

εM1 (%) -1.1 -1.1 -2.2
εM2(%) 0.4 0.4 -1.4
εEMD 0.0008 0.0008 0.0048

CPU time 1.0 1.0 1.2

3(a)

εM1 (%) 5.4 5.6 -0.5
εM2 (%) 48 783 54 1.8
εEMD 0.62 0.19 0.06

CPU time 1.0 1.1 1.7

3(b)

εM1 (%) 5.4 5.7 0.9
εM2 (%) 22 141 49 16
εEMD 0.60 0.17 0.10

CPU time 1.0 1.0 1.3

3(c)

εM1 (%) 5.7 5.5 0.4
εM2 (%) 9 811 49 17
εEMD 0.57 0.16 0.13

CPU time 1.0 1.0 1.1

3(d)

εM1 (%) 0.6 0.5 0.9
εM2 (%) 776 -1.4 16
εEMD 0.44 0.08 0.10

CPU time 1.0 1.1 0.1

3(e)

εM1 (%) 5.4 5.8 1.1
εM2 (%) 760 33 32
εEMD 0.47 0.24 0.09

CPU time 1.0 1.1 1.2

4

εM1 (%) -3.4 -3.4 -3.4
εM2 (%) 696 121 60 -9
εEMD 0.66 0.18 0.02

CPU time 1.0 1.0 1.5
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Figure 4.10: Normalized CPU cost vs NP for different values of M . Hybrid method. Solid line
with full circles: M = 30. Dotted line with triangles: M = 40. Dashed line with full squares:
M = 50. Dashed line with plus symbols: M = 70. Dotted line with cross-square symbols: M = 80.
Agglomeration and growth (Case 3, Table 4.3).

n(vi) values. The error metric is defined as:

L1error =
∑MR
i=1 |Ni/∆vi − n(vi)| ·∆vi∑MR

i=1 n(vi) ·∆vi
. (4.5.1)

Let us first examine the evolution of the normalized CPU cost as a function of NP and M .
Figure 4.10 shows that from NP = 10 to NP = 1000, CPU cost is nearly constant for a given value
of M . A slight increase is observed from NP = 1000 to NP = 104 and then there is a sharp increase
from NP = 104 to NP = 105. This is because the calculation of agglomeration source terms is made
at the level of the sections with a CPU cost scaling with M . On the other hand, stochastic particles
need to be counted in each section and then reallocated over the sections according to the calculated
agglomeration (and nucleation) source terms. The CPU cost of these operations depends on M and
NP . In this test case, the cost linked to stochastic particles count and reallocation stays low as
compared with the one linked to agglomeration source terms calculation up to NP = 1000 and
becomes significant for NP = 10000 and NP = 105. Figure 4.11 confirms that CPU cost depends
on M for all values of NP . From NP = 10 to NP = 1000 the CPU overhead linked to the use of
the hybrid method instead of the sectional method is relatively low as compared with the overcost
caused by an increase of M (the lines are practically superposed at the plotted scale). The overcost
stays moderate for NP = 10000 and turns very high for NP = 105.

Now, the impact of M and NP on accuracy is examined. Figure 4.12 shows that for NP = 10
and NP = 100 the hybrid method cannot perform well. After increasing NP up to 1000, the error
on the PSD significantly decreases. However, for the tested values of M , further increasing NP only
decreases L1error marginally. Once a sufficient value of NP is reached, M becomes the main driver
of L1error .

Figure 4.13a shows that the error decreases with M for both methods. Moreover, the hybrid
method yields lower error than the 3-point sectional method for the whole range of M tested. Fig-
ure 4.13b confirms that the hybrid method constitutes an interesting tradeoff between accuracy and
CPU cost as compared with the 3-point sectional methods. Figure 4.14 illustrates the convergence
of both 3-point sectional and hybrid method versus M .

Finally, the degree of variability of the solution induced by the random character of particle
allocation is examined. Figure 4.15 shows average values and standard deviation over 10 runs of
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Figure 4.11: Normalized CPU cost vs M for different values of NP (Hybrid method) and for the 3-
point sectional method. Solid line with full circles: NP = 10. Dotted line with triangles: NP = 100.
Dashed line with full squares: NP = 1000. Dashed line with plus symbols: NP = 10000. Dotted line
with cross-square symbols: NP = 105. Solid line with stars: 3-point sectional. (Case 3, Table 4.3.)
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M = 30. Dotted line with triangles: M = 40. Dashed line with full squares: M = 80. (Case
3, Table 4.3 at the normalised time t = 7.)
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Figure 4.15: Average values and standard deviation over 10 runs. Dashed line: analytical solution
at t = 7.0. Solid line with empty circles: hybrid method solution at t = 7.0 with M = 40 and
NP = 1000. Vertical error bars: standard deviation around average values of n(v) · v. (Case
3, Table 4.3.) Horizontal error bars: standard deviation around average values of v?i (Eq. (4.2.25)).

n(v) ·v and of v?i (Eq. (4.2.25)) for case 3(b), with M = 40 and NP = 1000. Non-negligible variance
is observed, especially at the tails of the distribution where less stochastic particles are present.
However, the distribution does not qualitatively vary from one run to the other. The observed
standard deviation on L1error over these 10 runs is 0.007 which represents about 6.5% of average
L1error . This enables us to be confident on the level of accuracy of the solution obtained after only
one run, without averaging over several runs (at least for NP ≥ 1000).

4.6 Chapter summary
A novel hybrid stochastic/sectional method for solving the population balance equation (PBE) has
been presented. To design this numerical method, the particle size distribution (PSD) is decomposed
into the total number density of particles times the particle size probability density function (PDF).
The PDF is discretized into a fixed number of stochastic particles whose evolution is governed by
a Monte Carlo procedure. The stochastic particles carry information on their size and the surface
growth/loss is then solved in a direct manner, without resorting to any discretization of the size
space. This represents a serious advantage compared with fixed-sectional methods, which require
some specific treatment to control the non-linear convective term representative of growth/loss in
size space. These numerical treatments usually go with artificial diffusion of the PSD in size space.

In this hybrid approach, the agglomeration and nucleation sources are however computed fol-
lowing a fixed-sectional discretization of sizes. These sources or sinks are then transformed into
numbers of stochastic particles to be exchanged between sections following a Monte Carlo proce-
dure. The transformation of these sources into integer numbers of particles leads to residuals, which
are cumulated and transported through a usual 3-point fixed-sectional approach, thus allowing for
securing accuracy, even with a moderate number of stochastic particles and then at a moderate
CPU cost.
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Application to a laminar premixed flame
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In this chapter, the HYPE method is tested on a laminar premixed flame. First, the models
used for the physical source terms of nucleation, growth and agglomeration are presented. Then, the
experimental flame is briefly described as well as the simulation settings. Subsequently, the results
in terms of gaseous species, integral soot quantities and Particle Size Distribution are presented.
A discussion on aggregate shape modeling and a parametric analysis are carried out. Finally, the
results of the hybrid (HYPE) and fixed-sectional method are compared.

5.1 Modeling of nucleation, growth and agglomera-
tion source terms

Each stochastic particle is associated with a volume vk. Soot particles are considered spherical
(usual assumption in the range of sizes studied Zhao et al. (2003); Aubagnac-Karkar et al. (2015)),
except for the results presented in section 5.3.

Well established nucleation modeling by the collision of two pyrene (C16H10) is used (Appel
et al., 2000),

Ḣ(x, t) = 0.5βpyN
2
py , (5.1.1)

with
Npy = [C16H10]NA , (5.1.2)

the volume number of pyrene molecules, NA is the Avogadro constant.
The surface growth rate G is controlled by (i) condensation of pyrene molecules on soot particles

(GCond), (ii) C2H2 (acetylene) addition by the HACA mechanism and surface oxidation by O2 and
OH (GHACA,Oxi) (Appel et al., 2000). G(vk;x, t) = GCond(vk;x, t) + GHACA,Oxi(vk;x, t) is applied
to each particle vk through equation (4.2.11). The condensation source term is:

GCond(vk;x, t) = mpyḢCond(vk;x, t)/Ni(x, t) , (5.1.3)

98
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(for vk ∈ Ivi), with mpy the mass of one pyrene molecule and

ḢCond(vk;x, t) = βvk,pyNi(x, t)Npy . (5.1.4)

The surface reaction source term is

GHACA,Oxi(vk;x, t) = (ω̇C2H2 + ω̇O2 + ω̇OH)/Ni(x, t) , (5.1.5)

with the chemical sources,

ω̇C2H2 = 2WCkC2H2 [Rvk ][C2H2] , (5.1.6)
ω̇O2 = −2WCkO2 [Rvk ][O2] , (5.1.7)
ω̇OH = −WCkOH[Svk ][OH] , (5.1.8)

where WC is the molar mass of Carbon, and kC2H2 , kO2 , kOH are calculated using the kinetic
parameters given in Appel et al. (2000). [Svk ] and [Rvk ], are obtained as in Aubagnac-Karkar et al.
(2015); Appel et al. (2000) through

[Svk ] + [Rvk ] = skχαHACANi(x, t)/NA , (5.1.9)

sk is the particle surface and χ is the number of sites per unit surface of soot. [Svk ] is representative
of stable sites at soot particles surface and [Rvk ] of radical sites. [Rvk ] is calculated assuming that
radical sites are in quasi-steady state. αHACA(vk) is adapted from Appel et al. (2000), calculating
its value for each stochastic particle instead of using the first size moment to calculate a unique
value of αHACA. In practice

αHACA(vk) = tanh
(

a

log(ρsoot × vk/(WC/NA) + b

)
, (5.1.10)

where a = 12.65− 0.00563T and b = −1.38 + 0.00068T . This dependence of αHACA(vk) on particle
size expresses the fact that mature particles feature a lower proportion of active sites per unit of
surface.
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Figure 5.1: Species mass fractions. Lines: present simulation. Symbols: reference Zhao et al. (2003).

Agglomeration is described by the standard Smoluchowski equation. The collision rates entering
the Smoluchowski equation expressing Ȧi(x, t), are calculated depending on the Knudsen number
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as in Kazakov and Frenklach (1998); Blanquart and Pitsch (2009b), with βf,mvi,vj
in the free molecular

regime and βcontvi,vj
in the continuum regime. The harmonic mean of the asymptotic values is taken

in the transition regime βf,mvi,vj
βcontvi,vj

/(βf,mvi,vj
+βcontvi,vj

). Collision frequencies are calculated in the same
manner for collisions between pyrene molecules (nucleation) or between pyrene molecules and soot
particles (condensation). The Smoluchowski equation is discretized following equation 3.5.1 to
account for the source term Ȧi(x, t) in each Ivi interval (or section).

5.2 Simulation of a one-dimensional freely propagat-
ing laminar premixed flame

5.2.1 Flow configuration and model parameters
A one-dimensional fuel-rich (φ = 2.07) laminar premixed ethylene-argon-oxygen flame Zhao et al.
(2003) is simulated at ambient pressure. The velocity, temperature and mole fractions in the fresh
gases are 8.26 cm/s, 300 K, XC2H4 = 0.133, XO2 = 0.193 and XAr = 0.674, respectively. Soot
particles whose mobility diameter is superior to 3 nm were detected through SMPS, to provide PSD
at several heights above burner. Both measurements and simulations reported in Zhao et al. (2003)
will serve as reference to evaluate the proposed soot modeling.

The gaseous one-dimensional flame is first computed with complex molecular transport and the
detailed chemical scheme by Appel et al. Appel et al. (2000) (101 species and 544 elementary reac-
tions) using CANTERA (Goodwin et al., 2017). To limit potential compensation of errors between
heat transfer and chemistry, as in previous works (Zhao et al., 2003), the measured temperature
profile is imposed.

The gas phase species mass fractions (Figures 5.1a and 5.1b) agree with previous calculations,
in which soot chemistry was fully coupled. In our case, only pyrene consumption is considered when
solving Eqs. (4.2.7)-(4.2.9) for soot, without much impact on most influential species. As in Zhao
et al. (2003); Balthasar and Kraft (2003), soot dynamics are simulated in a moving reference frame,
following the fluid particles from fresh to burnt gases. For the sake of comparison, as in Zhao et al.
(2003), a shift by +0.25 cm of the computational distance above the burner is added, to account
for the probe cooling effect.

To compare against experiments, soot number density is expressed as n(d) = dN(log(d))/d log(d)
and total number density reads N =

∫∞
do
n(d)d log(d) with d being the particle diameter in nm and

do the lowest soot particle diameter considered. The particle characteristic size is defined from its
volume or mass as one can be directly deduced from the other through mk = ρsoot × vk. Particle
volume freely evolves according to Eq. (4.2.11) during growth and oxidation. According to the
algorithm discussed above, for nucleation and agglomeration, intervals of sizes Ivi must be defined.
The nucleation mass mo = 2mpy, corresponds to the mass of nascent soot particles from the collision
of two pyrene molecules. The left boundary of Ivo is vo = mo×ρsoot. This corresponds to a diameter
of 0.88 nm. A geometric grid is used, following:

vinfi = voF
i
s , (5.2.1)

Here the value of Fs = 1.5 is used. The upper diameter of the grid is 51 nm. Another size range
and other values of Fs are also tested in section 5.4. The stochastic particles are initialised at the
lowest section and NT (t = 0) = 1.0 cm−3. This initial distribution is only necessary to start the
calculation but it is largely negligible as compared to NT levels reached during the calculation (see
Figure 5.2a). This approach has been validated elsewhere against analytical test cases featuring
simultaneous nucleation and growth (Bouaniche et al., 2019b).



CHAPTER 5. APPLICATION TO A LAMINAR PREMIXED FLAME 101

0.25 0.50 0.75 1.00 1.25
x[cm]

109

1010

1011

N
[c
m

−3
]

(a) Number density

0.25 0.50 0.75 1.00 1.25
x[cm]

10−10

10−9

10−8

10−7

10−6

f v
(b) Volume fraction

Figure 5.2: Soot number density and volume fraction vs height above burner. Symbols: experiments.
(a) and (b) (diameters larger than 3 nm) Solid line: present simulation. Dashed line: reference
simulation Zhao et al. (2003). (a) (for all diameters) Dash-dot line: present simulation. Dotted
line: reference Zhao et al. (2003).

5.2.2 Results
Figure 5.2a shows that the simulation approximates well NT , the total number density. The satisfac-
tory prediction of pyrene mass fraction, aside from a small over-prediction for H > 1 cm (Fig. 5.1b),
brings confidence on the calculation of the nucleation term. Therefore, observing good results on to-
tal number density suggests that agglomeration is well resolved. The over-prediction of NT against
the reference calculation (Zhao et al., 2003) post-processing all diameters seen for higher values of
H, the distance to the burner, may be explained by the stronger nucleation induced by the small
over-prediction of pyrene.

Soot volume fraction also agrees with the previously published simulations (Fig. 5.2b). This
was expected as the same physical models for the nucleation, agglomeration and surface growth
source terms were used. However, compared to measurements, soot volume fraction is significantly
underestimated in both simulations above H = 0.75 cm, which may indicate an underestimation of
surface growth. A possible cause of surface growth underestimation could be the soot formation and
growth models. Another possible cause could be the models used for aggregate geometry through
the calculated collision diameters and reactive surface. In the present study, new source terms
models are out of scope. Only the α parameter is varied and the influence of aggregate shape
modelling on the Particle Size Distribution is looked at (section 5.3). Indeed, it is not obvious that
soot particles can be modelled as perfect spheres in premixed ethylene flames as reported in Schenk
et al. (2015). Figure 5.3 shows PSD and confirms the capability of the model to capture the soot
size distribution. A unique nucleation mode is seen in both reference and present simulation for
the lower streamwise position H. The transition to the bimodal distribution, with an additional
accumulation mode, takes place approximately at the same height above burner. Finally, at H = 1.2
cm both PSD feature similar shapes. The present calculation shows higher number densities for
small particles, which is in line with the previous observation that nucleation and total number
density are slightly enhanced in the current simulation for higher values of H.

In this first attempt, the numerical noise was minimized by performing the simulation with a
set of NP = 104 stochastic particles. The crosses in Fig. 5.3 show results obtained with NP = 1000,
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Figure 5.3: Particle Size Distribution for several heights above the burner. Solid line: present
simulation with 104 stochastic particles. Cross: 1000 stochastic particles. Dashed line: reference
simulation (Zhao et al., 2003) with 2 · 105 stochastic particles.
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Figure 5.4: Normalized Particle Size Distribution for several heights above the burner. Solid line:
present simulation. Dashed line: reference simulation Zhao et al. (2003). Symbols: experiments.

without much differences. This is to be compared with the reference simulation of (Zhao et al.,
2003) where the number of stochastic particles was NP = 2 · 105. As further assessed in section 5.4,
the moderate CPU cost of the proposed method allows to envision the use of the hybrid strategy in
LES within either Eulerian or Lagrangian context for transporting the stochastic particles, defining
NP , the total number of stochastic particles, from those present within a mesh cell Haworth (2010).

Figure 5.4 presents PSD with number densities normalized by total number density. The
computations (current and reference one) predict the right trend of the evolution, from a pure
nucleation mode toward a bimodal distribution. The localization of the number density dip between
both modes at about 4 nm compares well to experiment. Nevertheless, both computations fail to
reproduce the number densities in the accumulation mode. Measured diameters are significantly
larger than simulated ones, which goes with the underestimation of soot volume fraction in both
simulations.

As discussed in Zhao et al. (2003), this underestimation could result from the disturbance
by the probe, responsible of flow stagnation in front of the sampling orifice, increasing particles
residence time and therefore their sizes. On the modeling side, the underestimation may come from
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source terms modeling (in particular, surface growth). A second candidate for this difference is
the mobility diameters measured by SMPS, which might not be directly comparable to diameters
simulated assuming perfect spheres and constant density of the solid. A point which is now further
examined.

5.3 Parametric analysis of aggregate shape modeling
The influence of particle shape modeling on computed PSD and on integral values, as soot volume
fraction, is now explored. The measured mobility diameters, which were directly used for compari-
son in Fig. 5.4, are converted into equivalent sphere diameters assuming specific fractal shapes, thus
enabling more meaningful comparisons between experiment and simulations. Then, the agglom-
eration modeling is improved with a particle shape based on the fractal law, to better estimate,
in additional simulations, the collision diameters in the calculation of the βvi,vj , the frequency of
collision of the particles and the aggregate surfaces.
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Figure 5.5: Normalized Number Density at H = 1.2 cm vs the sphere equivalent diameter dev.
Circles: dm measured mobility diameters. Crosses: dev with dp = 30 nm. Triangles: dev with
dp = 15 nm. Plus symbols: dev with dp = 5 nm.

Using the semi-empirical closure for the effective density measurements of the fractal aggregates
proposed by Yon et al. Yon et al. (2015), an equivalent sphere diameters dev can be inferred from
dm, the measured mobility diameters. The calculation is made under the pressure and temperature
conditions of the experiment, with a primary particle density ρsoot = 1800 kg.m−3 and a fractal
dimension Df = 1.73, i.e. corresponding to the soot properties determined in the conversion model
used in the present study (Table 1 of Yon et al. (2015) for ’CAST’ aggregates). Consequently, the
corresponding parameters have been determined in a propane diffusion flame. Nevertheless, the
proposed range is in agreement with most of the values reported in the literature. Furthermore, by
keeping in mind the large experimental uncertainties related to the determination of these param-
eters, there is, up to now, no evidences of a possible variability of these parameters to the fuel and
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the nature of the flame. For example, the authors of Schenk et al. (2015) measured Df ranging
from 1.2 to 1.8 in a series of premixed ethylene flames. Similar values have been used for simulating
ethylene premixed flames, for example in Saggese et al. (2015) the authors used a constant value
of Df = 1.8. Concerning the density of the primary particles, ρsoot = 1800 kg.m−3 is the most
encountered value related to black carbon and “mature soot”. The existence of a strong dependence
of this parameter to the content of organic carbon has been recently shown (Ouf et al., 2019). This
reference reports a density up to 1834 kg.m−3 for low OC content (below 5 percent) and smaller
values for organic particles. Nevertheless, up to now, it is difficult to assess the amount of organic
carbon of soot in flames. In consequence, the hypothesis of mature and inorganic soot is done.
This hypothesis is done by experimentalists, for example, the value of 1860 kg.m−3 was used for
the particle size determination based on LII models (Bladh et al., 2015). It is also a common value
for numerical studies on ethylene premixed flames in the literature. Similarly, the values of 1800
kg.m−3 and 1860 kg.m−3 were used in Eberle et al. (2017b) and Aubagnac-Karkar et al. (2015)
respectively. The number density distribution versus dev, calculated from the measurements of dm,
are shown in Fig. 5.5 for various dp, the diameter of the primary particles. For the higher values of
dp, the particles are mostly spherical and dev does not significantly differ from the measured mobil-
ity diameter. The departure from the spherical shape becomes significant as the characteristic size
dp of the primary particles decreases, leading to aggregates composed of many primary particles.

Additional simulations are performed in which the mobility dm and collision dc diameters, which
enter the calculation of the collision frequencies βvi,vj , are estimated from dg, the gyration diameter.
The constant of proportionality is evaluated by considering the limit of a single sphere, as in Kruis
et al. (1993); Blanquart and Pitsch (2009b); Kazakov and Frenklach (1998) (equation 2.3.5). dg is
estimated according to the fractal law

np = kf(dg/dp)Df . (5.3.1)

np is the number of primary particles in the aggregates, Df is the fractal dimension, and kf is
the fractal pre-factor. Df = 1.73 and kf = 1.94 are assumed constant for aggregates verifying
np > 10 (Yon et al., 2015; Lattuada et al., 2003). np = vk/(πd3

p/6) can be inferred from vk, the
aggregate volume solved with the PDF of sizes. The only parameter left to determine dg from (1.2.1)
is then dp. An attempt to estimate dp is done by performing a preliminary simulation accounting
only for nucleation and surface growth, thus without agglomeration, leading to dp of the order of
5 nm at the streamwise position H = 1.2 cm.

To analyze the sensitivity of the modeling to these various particle parameters, simulations
including the fractal law are performed first fixing dp = 5 nm and varying αHACA, calibrating in
the modeling the surface reactivity of the particles (Fig. 5.6). In a second series of simulations
(Fig. 5.7), αHACA = 1 and dp is varied between 5 nm up to an upper value for which the fractal law
provides results similar to those of spherical particles (denoted ‘spheres’, dotted line in Fig. 5.7). It
is important to note that we considered the particles to be spherical when the corresponding volume
is lower or equal to the one of a primary spherule i.e dev ≤ dp.

Experimental results are fairly well reproduced with αHACA = 1.0 and dp = 5 nm (Figs. 5.6
and 5.7). For the lower values of dp, the reactive surface available for C2H2 addition is higher, which
explains higher values of the volume fraction as observed in Figure 5.8. Moreover, for small values
of dp, aggregates are more open and dc, the collision diameter, increases, which in turn increases
collision rates (in particular in the free molecular regime) and the distribution is shifted towards
larger particles (Fig. 5.7).

This exercise illustrates the strong impact of particle shape modeling when comparing against
experiments. In particular, spherical particles might not always be the best choice. Also, bi-
variate Patterson and Kraft (2007) or even tri-variate modeling Blanquart and Pitsch (2009b) could
constitute an interesting alternative to calculate dp.
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Figure 5.6: Normalized PSD at H = 1.2 cm. dp = 5 nm. Solid line: αHACA = 1.0. Dashed line:
αHACA = 0.9. Dash-dot line: αHACA = 0.8. Dotted line: αHACA = 0.7. Crosses: experiments dev
with dp = 30 nm. Plus symbols: experiments dev with dp = 5 nm.
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Figure 5.7: Normalized PSD at H = 1.2 cm. αHACA = 1.0. Solid line: dp = 5 nm. Dashed line:
dp = 7 nm. Dash-dot line: dp = 10 nm. Dotted line: sphere model. Crosses: experiments dev with
dp = 30 nm. Plus symbols: experiments dev with dp = 5 nm.
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Figure 5.8: Soot volume fraction vs height above burner. Solid line: dp = 5 nm. αHACA = 1.0.
Dash-dot line: spheres. αHACA = 1.0. Dotted line: spheres. αHACA from Appel et al. (2000) as
in Zhao et al. (2003). Dashed line: reference Zhao et al. (2003). Symbols: experiment.

5.4 Comparison between hybrid and sectional meth-
ods

In this section, the present hybrid method is compared to a representative sectional method. The
source terms for nucleation, growth and agglomeration are calculated in the same way for both
methods. While growth is solved directly through stochastic particles in the hybrid method, a
discretization scheme is used for the sectional method as in Park and Rogak (2004):

∂Ni(x, t)
∂t

= G(vi−1)Ni−1(x, t)
vi − vi−1

− G(vi)Ni(x, t)
vi+1 − vi

. (5.4.1)

The impact of mesh resolution is studied hereafter. Again, a geometric grid is used as defined
by equation (4.3.2). The centered section sizes range from 0.88 to 225 nm. This corresponds to a
base case grid with Fs = 2 and 25 sections which are typical values in the literature as for example
in Eberle et al. (2017a). As the number of sections M is varied, the size range is kept constant and
Fs is varied accordingly. The results for height above the burner of 1.2 cm can be seen in Figures 5.9
and 5.10 respectively in logarithmic and in linear scales. For the sake of clarity, the figures do not
include the results for all grids for which calculations were run.

Considering the 200 sections simulation as a reference, the hybrid method yields better results
than the sectional one using the same number of sections. For more quantitative comparison, the
error against the 200 sections simulation can be calculated for each mesh. The Earth Mover’s
Distance (EMD) Rubner et al. (1998), also known as Wasserstein-1 distance, is used as metric of
error. It is calculated using the ‘emdist’ package of the CRAN project Urbanek (2012). The EMD
is then normalised by the standard deviation of the reference distribution. The evolution of this
normalised EMD is given as a function of the number of sections in Figure 5.11. The hybrid method
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Figure 5.9: PSD at H = 1.2 cm. Logarithmic scale. Dotted line: Sectional M = 25. Dashed line:
Sectional M = 45. Solid line: Sectional M = 200. Line with empty circles: Hybrid M = 25. Line
with full circles: Hybrid M = 45.
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Figure 5.10: PSD at H = 1.2 cm. Linear scale. Dotted line: Sectional M = 25. Dashed line:
Sectional M = 45. Solid line: Sectional M = 200. Line with empty circles: Hybrid M = 25. Line
with full circles: Hybrid M = 45.
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Figure 5.11: Normalised EMD as a function of the number of sections M (reference: 200 sections,
solution at x = 1.2 cm). Dashed line: Sectional method. Solid line: Hybrid method.
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Figure 5.12: Normalised CPU cost as a function of the number of sections M . Dashed line: Sectional
method. Solid line: Hybrid method.

yields lower error (with the same mesh refinement) for the whole range of tested grids. On the other
hand, it presents a moderate CPU cost overhead as compared to the sectional method, as can be
seen in Figure 5.12. The normalized CPU cost presented here is the CPU cost of the simulation
divided by the CPU cost of the base case simulation (sectional, 25 sections). In order to assess the
tradeoff between accuracy and cost the EMD error metric is plotted as a function of normalized
CPU cost in Figure 5.13. For better readability, only the calculations up to 45 sections are shown
on this last plot. Better accuracy is reached for lower CPU cost in the range of tested meshes.
The hybrid method seems to offer an advantageous tradeoff in terms of CPU cost and accuracy, at
least on this test case. Generalization of these conclusions will depend on the relative importance of
agglomeration and growth source terms as the advantage of the present method over fixed sectional
methods lays in accurate surface growth solving.
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6.1 Conclusions
The main achievements of this Ph.D. thesis can be summarized as follows:

• A novel method (HYPE) has been proposed for the resolution of the Population
Balance Equation. This hybrid stochastic/sectional algorithm is aimed at offering an al-
ternative to sectional methods such that surface growth/loss is resolved directly on a set of
stochastic particles without numerical diffusion. On the other hand, the computational cost is
maintained moderate as compared to standard Monte Carlo methods by avoiding to calculate
agglomeration source terms through a sum on stochastic particles pairs. The space of par-
ticle size is discretized as for a sectional method for agglomeration source terms calculation,
resulting in a similar computational cost. The calculation of these source terms drives the
reallocation of the stochastic particles.

• The HYPE method was implemented from zero during the Ph.D. thesis.

• Two fixed sectional methods were implemented from zero for comparison purpose.

• Analytical test cases were run. Accuracy and computational cost were measured
and compared to fixed sectional methods. Comparison confirms the interest of
the method, in accordance with the set objectives.

• The method was successfully applied to a 1-D premixed ethylene flame.

• Aggregate shape modelling was discussed and a parametric analysis was carried
out.

6.2 Perspectives
Full extension to spatially inhomogeneous cases still needs to be implemented. The stochastic
particles would need to be transported also in physical space, for instance following well-established
flow transport methods within the context of Monte Carlo solutions. This may be done either in
Lagrangian (Haworth, 2010) or Eulerian (Pope, 1981) contexts. In the Lagrangian formulation,

111
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aside from flow transport by a Langevin type equation, the time advancement of the PSD would
be directly constructed from the set of stochastic particles present within a given mesh cell. In
the Eulerian formulation, in addition to the local evolution of the stochastic particles simulating
nucleation, surface growth/loss and agglomeration, the set of Monte Carlo particles fixed at every
computational cell would exchange information with their neighboring nodes according to random
processes simulating flow transport (Pope, 1981). Monte Carlo methods for the Population Balance
Equation were previously successfully extended to spatially inhomogeneous flows (Zhao and Zheng,
2013).

A potential useful application of the HYPE method in the future is for validation or calibration
of physical models for soot formation and evolution. Indeed, compensation of error must be mini-
mized for the calibration of such models and the absence of numerical diffusion guarantees cleaner
comparison of the models to experimental measurements. Direct calculation of estimated mobility
diameters from equivalent sphere diameters (depending on some assumptions on aggregates shape)
may also ease comparison between models and experiments.

Moreover, the HYPE code may be used for reduced model generation. Currently, it is being
coupled to the ORCh code (Optimized Reduced Chemistry) (Jaouen et al., 2017). The objective
is to run the HYPE method on a stochastic canonical case representative of turbulent combustion
in an aeronautical burner. The generated database will then be fed into machine learning/deep
learning models (similar to the ones used in Seltz et al. (2019)) to produce a reduced model derived
for applications to aeronautical turbines. The purpose of this reduced model would be to solve only
for some soot integral values and to deduce the PSD evolution.
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Appendix

7.1 Molecules structures
Molecule’s structures and formulae are given here in alphabetic order. 2-D representations are from
the PubChem (2019) website. Also, the paper Bouaniche et al. (2019a) has been added. Finally, a
summary of the thesis written in french is available in this appendix.

Figure 7.1: Acetylene C2H2

Figure 7.2: Benzene C6H6

Figure 7.3: Benzyl radical C7H7
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Figure 7.4: Circumcoronene C54H18

Figure 7.5: Coronene C24H12

Figure 7.6: Cyclopentadienyl radical C5H5

Figure 7.7: Ethylene C2H4

Figure 7.8: Fluoranthene C16H10

Figure 7.9: Fullerene C60
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Figure 7.10: Naphtalene C10H8

Figure 7.11: Ovalene C32H14

Figure 7.12: Perylene C20H12

Figure 7.13: Phenanthrene C14H10

Figure 7.14: Phenyl radical C6H5

Figure 7.15: Propargyl radical C3H3
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Figure 7.16: Pyrene C16H10

7.2 Additional published paper
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Abstract Turbulent flames with high Karlovitz numbers have deserved further attention
in the most recent literature. For a fixed value of the Damköhler number (ratio between
an integral mechanical time and a chemical time), the increase of the Karlovitz number
(ratio between a chemical time and a micro-mixing time) by an order of magnitude implies
the increase of the turbulent Reynolds number by two orders of magnitude (Bray, Symp.
(Int.) Combust. 26, 1–26 1996). In the practice of real burners featuring a limited range
of variation of their turbulent Reynolds number, high Karlovitz combustion actually goes
with a drastic reduction of the Damköhler number. Within this context, the relation between
the dilution by burnt gases and the apparition of high Karlovitz flames is discussed. Basic
scaling laws are reported which suggest that the overall decrease of the burning rate due to
very fast mixing can indeed be compensated by the energy brought to the reaction zone by
burnt gases. To estimate the validity of these scaling laws, in particular the response of the
quenching Karlovitz versus the dilution level with a vitiated stream, the micro-mixing rate is
varied in a multiple-inlet canonical turbulent and reactive micro-mixing problem. A reduced
n-decane/air chemical kinetics is used, which has been derived from a more detailed scheme
using a combination of a directed relation graphs analysis with a Genetic Algorithm. The
multiple-inlet canonical micro-mixing problem includes liquid fuel injection and dilution by
burnt gases, both calibrated from conditions representative of an aeronautical combustion
chamber. The results confirm the possibility of reaching, with the help of a vitiated mixture,
very high Karlovitz combustion before quenching occurs.
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Flow Turbulence Combust

1 Introduction

In the quest for combustion systems with high fuel-efficiency, the strong increase of the tur-
bulence intensity has recently seen a renewed interest [1–30]. Higher turbulence intensity is
expected to favour enhanced micro-mixing of the reactants, followed by a higher volumet-
ric burning rate. In his seminal works, Karlovitz [14] noted that flames can be ‘arrested by
high velocity gradients and strong velocity fluctuations’. Such flame quenching by intense
turbulence was examined under various conditions. One of the first experimental observa-
tion concluded that above a critical value of the numberK = (δL/SL)(u′/�T), ratio between
a chemical time and a mechanical time, of the order of a few tenth [31], combustion prop-
agating in fresh gases cannot be sustained. u′ denotes the rms turbulent velocity, �T is the
integral scale of turbulence, δL the laminar flame thickness and SL the laminar burning
velocity. Results which immediately triggered further discussions on the exact definition of
the characteristic scales chosen to measure K [32].

Along the same lines, the phenomenological analysis of the structure of turbulent flames
initiated by Borghi [33], was followed by the development of combustion regime diagrams
[34–36], built from Damköhler and Karlovitz numbers and additional ratios of times and
length scales characteristic of the turbulence and the reaction zones. The Damköhler number
is usually approximated as Da = τT/τc, where τT is an integral mixing time and τc a
chemical time. The Karlovitz number relates to small-scale turbulent mixing, Ka = τc/τk,
with τk the small-scale (Kolmogorov) mixing time [37], leading to the relation [38]

Da × Ka = τT

τk
≈ Re1/2T , (1)

where ReT = u′�T/ν is the turbulent Reynolds number, with ν the kinematic viscosity of
the fluid. Therefore, for a fixed value of Da at which combustion occurs, ReT ≈ Ka2, and
increasing the Karlovitz number by, say a factor 10, would mean increasing the turbulent
Reynolds number by a factor 100. Such large increase of the turbulent Reynolds number
cannot always be achieved. In practice, when Ka goes up, Da does go down in order to fulfil
the relation (1). In fact, this approximate relation (1) suggests that, at very high Reynolds
numbers (ReT → ∞), chemistry can still be fast (Da → ∞), as long as the chemical time
scale is shorter (or of the order of) than the shortest flow time scale, i.e. the amplitude of Ka
stays moderate. It is usually believed that this is the operating conditions of most practical
combustion systems and it was the state of affair till around the year 2010. Over the last
eight years however, studies have been published displaying an exponential growth of the
Karlovitz number with years, see Fig. 1. As in the pioneer works reported above, the exact
definition of Ka may differ from one study to the other, but the increase in Ka is large
enough to be significant, whatever its exact definition. At the same time, the Damköhler
number suffered from a drastic decrease of its amplitude (Fig. 2).

The flames at the highest Ka examined in the works of Fig. 1 were actually not ‘self-
sustained’, but benefitted from a large reservoir of hot burnt gases, for instance a vitiated
co-flow. These flames with very high values of the Karlovitz number (up to more than 1500),
and thus very low values of the Damköhler numbers (down to 0.02), may eventually release
less heat than they gain from burnt gases to maintain fuel oxidation. Nonetheless, all the fuel
injected was burnt and thus high-Karlovitz combustion was achieved. This flame regime
may be of interest locally in a combustion chamber, for instance to secure flame stabilisation
in a highly turbulent flow zone. It is therefore legitimate to wonder by which mechanisms
the dilution by burnt gases makes the flame more robust to high Ka (and low Da) and how
the response of the quenching Karlovitz number scales versus the level of dilution by burnt
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gases. Among the numerous candidates, in the case of premixed combustion, an increase
of the flame speed is a potential phenomenon and in the case of non-premixed systems,
fast mixing with burnt gases may help local auto-ignition. At least three questions emerge
from these preliminary remarks: (i) what is the basic scaling for flame speed including
both dilution by burnt gases and Ka effect? (ii) In a non-premixed system, how much of
recirculating burnt products must be included to secure high Ka combustion? (iii) What is
the global scaling of Ka at quenching versus the dilution level of the fresh mixture with a
vitiated stream.

In an attempt to answer these basic questions, simple scaling laws are proposed in this work
combining premixed and non-premixed regimes. Simulations of micro-mixing/chemistry
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interaction are then performed to verify the trends. If the effect of turbulence is over-
simplified through a basic stochastic mixing closure, the impact of spray evaporation and of
n-decane detailed chemistry is included. To do so, a set of reduced chemical schemes is first
derived for n-decane/air combustion, as reported in the next section. The elementary scal-
ing relations for high Ka flame in vitiated stream are discussed in the subsequent section,
before examining the response of n-decane/air combustion at high Ka in the final section.

2 A Fuel-Spray Stochastic Micro-mixing Canonical Problem for High-Ka
Analysis

Starting from a given set of initial conditions, representative of the streams feeding the
reaction zones in an aeroengine, reference time evolutions of thermochemical quantities
are constructed in a pseudo-reactor, combining the approaches discussed in [39, 40]. A set
of NP = 1000 stochastic particles are distributed at initial time according to the chemical
composition of three inlets, containing either liquid kerosene, air or burnt gases. This last
inlet mimics recirculation of burnt gases, as it would be observed in a swirled fuel injec-
tion. After the initialisation, evaporation of the liquid fuel occurs and the gas phase evolves
at about 10 bars according to a stochastic mixing model to which the chemical sources of
kerosene/air chemistry are added. The thermochemical properties of the particles vary fol-
lowing a procedure explained below, to generate synthetic turbulent distributions, as the
scatter plot of temperature versus mixture fraction seen in Fig. 3. Various distributions will
be obtained varying both the initial amont of burnt gases and a Karlovitz number constructed
from the control parameters of the canonical problem.
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Fig. 3 Scatter plot of stochastic particles temperature vs mixture fraction. Particles are coloured depending
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The number of stochastic particles initially set at the concentration and temperature of
the j -th inlet (j = 1, 2, 3) is proportional to Q̇mj

, the mass flow rate injected by this inlet,

NPj
= NP × Q̇mj

Q̇m
, (2)

where Q̇m = Q̇m1 + Q̇m2 + Q̇m3 denotes the total mass flow rate. The liquid kerosene inlet
at T = 450 K represents 2.3% of Q̇m (Q̇m1 = 0.023Q̇m). The mass flow rate of the air
inlet at T = 703 K is Q̇m2 = 0.644Q̇m. To mimic the injection of primary and secondary
air, as done in some combustion chambers, 60% of the total mass of air is introduced at the
initial time, the rest of air particles are then progressively released over 1 ms. The third and
last inlet of burnt gases, taken at chemical equilibrium for the equivalence ratio of the full
mixture at T = 1877 K, brings Q̇m3 = 0.333Q̇m. These 33% were estimated from large
eddy simulation of a representative aeronautical combustion chamber [41] and these burnt
gases secure ignition in a first set of calculations.

As in Farcy et al. [39], the elementary mass flow rate q̇m = q̇
p
mL(t) + q̇

p
mG(t) carried by

every p-th particle (p = 1, · · · , NP) is decomposed into liquid (q̇p
mL(t)) and gas (q̇p

mG(t))
phases. The evolution of the thermochemical property φp carried by the p-th stochastic
particles reads

dφp(t)

dt
= MIXp(τ ) + ω̇

p
φ + ω̇p

vφ
, (3)

where ω̇
p
φ is the gaseous phase chemical source obtained from the chemical scheme, ω̇

p
vφ

relates to the liquid fuel (evaporation or heat), computed from the particle properties.
MIXp(τ ) denotes the Curl [42] micro-mixing closure, with τ the characteristic micro-
mixing time. Many other micro-mixing models exist in the literature, like modified Curl
[43, 44], Euclidian Minimum Spanning Tree (EMST) [45], Multiple Mapping Condition-
ing (MMC), which allows for introducing flamelet-like correlations between species [46],
or again the advanced hierarchical parcel-swapping representation of turbulent mixing [47].
However, for examining the global scaling laws considered in this work, the basic version
of the Curl micro-mixing model was found sufficient.

To account for the evaporation of the liquid fuel, the simplified modeling used in [39] is
adopted. The thermal condition is assumed above the liquid boiling point and the droplets
diameter follows the so-called D2-law [48–50], d2

j (t) = d2
j (to)(1−(t/τv)). The characteris-

tic evaporation time is fixed at τv = 0.491 ms, which was estimated from the experimental
results by Nomura et al. [51]. It was thus preferred to fix τv from experiments, rather than
introducing additional uncertainties in its dynamic calculation from approximate liquid and
flow properties.

The rate of gaseous mass of the i-th component released by a single droplet reads

Ẇ
p
i (t) = Y

p
i,L(t) × ρL

π

6

[
dj

3(t) − dj
3(t + 
t)


t

]
, (4)

where Y
p
i,L denotes the mass fraction of the i-species in the liquid of the p-th particle. A

single stochastic particle issued from the j -th inlet carries a number ṅj of droplets injected
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per unit time. Then, the balance between liquid and gaseous mass flow rates carried by a
given particle issued from the j -th inlet may be written

q̇
p
mG(t + 
t) = q̇

p
mG(t) +

Ns∑
i=1

ṅj Ẇ
p
i (t)
t, (5)

q̇
p
mL(t + 
t) = q̇

p
mL(t) −

Ns∑
i=1

ṅj Ẇ
p
i (t)
t, (6)

where Ns is the number of species considered. The net gaseous source of evaporation of the
i-th chemical species in the p-th particle is

ω̇p
vi

(t) = 1


t

[
q̇

p
mG(t)Y

p

i,G(t) + ṅj Ẇ
p
i (t)
t

q̇
p
mG(t + 
t)

− Y
p

i,G(t)

]
, (7)

where Y
p

i,G is the gaseous mass fraction of the i-th species in the p-th particle. The source
of the sensible enthalpy hs is

ω̇p
vhs

(t) = 1


t

[
q̇

p
mG(t)h

p
s (t) + ∑N

i=1ṅj Ẇ
p
i (t)[hi(TB) − Lvi

]
t

q̇
p
mG(t + 
t)

− h
p
s (t)

]
, (8)

in which TB = 750 K is the boiling temperature, hi is the enthalpy of the i-th species
and Lvi

= 251 000 J/kg is the latent heat of evaporation. At injection, a single droplet
diameter d = 12.8 μm is imposed, as it was estimated from the Sauter mean diameter of
a representative aeronautical injector. This modeling leads to usual and generic scatter plot
responses, as seen in Fig. 3.

3 Reduced n-decane Chemistry

The Luche et al. [52, 53] chemical kinetics accounts for 91 species and 991 reacting steps,
and is derived from the more detailed kerosene-air mechanism by Dagaut [54]. This mech-
anism was selected because of its reasonable size, at least in comparison to other more
detailed schemes for kerosene-air combustion. It is not attempted to provide in this work a
reduced chemistry for kerosene that would benefit from the most recent findings in terms
of real aeronautical fuels [55], which may include complex chemical properties distribu-
tions across the distillation curve and related complex phenomena. The sole objective is to
compare the normalised response of a chemical scheme featuring multiple chemical time
scales against the scaling laws discussed thereafter, and using the Luche et al. mechanism
as a starting point is sufficient to address this point.

To further reduce the Luche et al. chemistry so that multiple calculations can be per-
formed, the ORCh approach is followed [40], which combines the directed graph analysis
with error propagation (DRGEP) [56, 57]. Species and reactions are progressively removed
according to their relative importance measured along reference chemical evolutions (φD(t)

trajectories), with the automatic generation of an analytical part using quasi-steady state
assumption (QSS) and a subsequent optimisation of the chemical rates with a Genetic Algo-
rithm. All detail concerning this combination of reduction/optimisation methods to generate
a series of reduced chemical kinetics can be found in [40, 58].
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To compact the information and ease the analysis, two additional deterministic trajec-
tories are solved, from the air and kerosene inlets, with the linear relaxation deterministic
micro-mixing closure (IEM or LMSE) [34, 59]

dφD(t)

dt
= 〈φ〉(t) − φD(t)

τ
+ ω̇D

φ . (9)

The statistical mean entering this deterministic mixing model is computed at every instant
in time from the full set of stochastic particles,

〈φ〉(t) =
∑NP

p=1q̇
p
mG

(t)φp(t)∑NP

p=1q̇
p
mG(t)

. (10)

These additional deterministic trajectories are easily coupled with a Genetic Algorithm,
to optimise chemical rates after chemistry reduction [40]. Figure 4 shows typical φD(t)

distributions.
The kerosene in the initial mechanism by Luche et al. [52, 53] is a surrogate composed of

n-decane (n-C10H22, 76.7388% in mass), propylbenzene (PHC3H7, 13.1402%) and propyl-
cyclohexane (CYC9H18, 10.1210%). In the present reduction, the initial composition of the
fuel is even more simplified to 100% n-decane. The species of the reduced mechanism are
given in Table 1. This mechanism relies on the transport of 26 chemical species and on the
solving of 24 quasi-steady state relations and contains 338 elementary reactions.

The associated trajectories (9) for operating conditions reported above are displayed in
Figs. 4 and 5, in which the symbols denote the detailed scheme. The trajectories from fuel
and air inlet differ till a residence time of 1 ms, before the species evolve toward the equilib-
rium condition. The thermal energy brought by the burnt gases first promote the formation
of NO through their mixing with fresh air. At 0.5 ms, the temperature conditions are so that
part of this NO is recombined into NO2, to then increase again after 1.25 ms through the
mixing with the remaining air in a post-flame region. Aside from the unavoidable difference
in n-decane (fuel surrogate in the detailed mechanism and only n-decane in the reduced one
in Fig. 3), the response of the reduced scheme stays very close to the detailed one, specifi-
cally in terms of position of ignition and of the peak of CO (Fig. 3), which will be considered
thereafter in the analysis increasing Ka and varying the amount of burnt gases.

The reduced mechanism has been obtained considering only the turbulent micro-mixing
problem (3), which overall features similarities with non-premixed combustion. It is there-
fore of interest to verify that a perfectly premixed combustion regime is also reproduced.
Figure 6 shows a comparison of the flame velocity, the equilibrium temperature and the
equilibrium levels for CO and for NO obtained from perfectly premixed kerosene-air flame
computations at a pressure of 9.63 · 105 Pa with the Cantera solver [60]. Some departure is
observed on the estimation of the flame speed SL for equivalence ratios between unity and
2, but overall the description is acceptable considering the level of reduction. For compari-
son, are added the results obtained with a less reduced chemical mechanism (32 transported
species, with 27 QSS relations and 419 elementary reactions), obtained keeping the origi-
nal surrogate fuel composition. Both reduced mechanisms perfectly capture the equilibrium
temperature and equilibrium CO level for every equivalence ratio. An over prediction of the
NO levels is achieved using the most reduced mechanisms for conditions around the stoi-
chiometric point. However, because NOx species will not be considered in the subsequent
analysis, this most reduced mechanism based on n-decane (Table 1) is retained.
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Fig. 4 Representative species trajectories (9) for the kerosene surrogate and n-decane reduced mechanism.
τ = 0.2 ms. Symbols: Reference chemistry [53]. Lines: Reduced n-decane mechanism (Table 1). Solid-line:
Air inlet trajectory. Dotted-Line: Fuel inlet trajectory

Table 1 Species of a n-decane (n-C10H22) reduced mechanism composed of 26 transported species
associated to 24 QSS relations and 338 reactions

Transported species Analytically resolved species (QSS)

H2, O2, CO, CO2, CH4, C2H6, CH2O, C2H2, HCO, CH3OH, C2H5, CH3O, CH2OH, CH2CO,

C2H4, C3H6, C4H6, NC10H22, H, O, OH, C2H3, CH2HCO, HCCO, NC3H7, PC4H9, AC6H13,

HO2, H2O, CH3, C3H3, AC3H5, BC6H13, N2 AC8H17, C10H21(L)

NO, HCN, N2O, NO2 HNO, HONO, H2CN, NNH, NH2, NH, N,

CN, NCO, HNCO
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Fig. 5 Temperature trajectories
(9). τT = 0.2 ms.
Symbols: Reference chemistry
[53]. Lines: Reduced n-decane
mechanism (Table 1). Solid-line:
Air inlet trajectory. Dotted-line:
Fuel inlet trajectory
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Fig. 6 Freely propagating premixed flames. Response versus equivalence ratio, species and temperature
taken in burnt gases. Symbols: Reference chemistry [53]. Solid-line: Reduced surrogate mechanism. Dashed-
line: Reduced n-decane mechanism (Table 1)
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4 Basic Scaling for High-Ka Flames in Vitiated Mixture

Oversimplified scaling relations for weakly vitiated flames are recalled in this section.

4.1 Vitiated steady premixed flamelet

Consider the steady premixed laminar flamelet equation

ρu
dφ

dξ
= d

dξ

(
ρDφ

dφ

dξ

)
+ ω̇φ − ρṠKφ , (11)

where ρ is the density, u is the velocity, Dφ is the diffusion coefficient of the scalar φ evolv-
ing through the flame front and ω̇φ its chemical source. The coordinate in the direction
normal to the flame front is ξ and ṠKφ is a leakage term, representative of all fluxes occur-
ring along the flame surface [61], as transverse convection and diffusion resulting from
straining and curvature of the flamelet surface.

The fresh gases condition φu is expressed from a reference fresh gases unburnt condition
φo and the dilution (or vitiation) factor fb (the subscript ‘u’ and ‘b’ denote unburnt and
burnt gases respectively)

φu = φo(1 − fb) + fbφb. (12)
fb = 0 corresponds to fresh mixtures (fuel mixed with oxidiser) and burnt vitiated gases
appears for 0 < fb << 1.

Integrating (11) through an unstrained one-dimensional flame (ṠKφ = 0) and accounting
for mass conservation, the unstrained flame speed reads

SL(fb, ṠKφ = 0) = uu =
(

ρb

ρu

)
ub = 1

φb − φu

⎡
⎣ 1

ρu

+∞∫
−∞

ρω̇φdξ

⎤
⎦ . (13)

The peak reaction rate in the integral in Eq. 13 is toward the burnt gaz side, also it is assumed
that the density weighted integral of the source does not vary much with dilution by burnt
gases, at least for weak levels of fb. Combining this hypothesis with the relations (13) and
(12) leads to

SL(fb, ṠKφ = 0) = 1

1 − fb
× 1

φb − φo

⎡
⎣ 1

ρo

+∞∫
−∞

ρω̇φdξ

⎤
⎦ ,

=
(

1

1 − fb

)
So
L (14)

with So
L = SL(fb = 0, ṠKφ = 0). Figure 7 shows the evaluation of this relation in the sim-

ulation of a freely propagating premixed flame with a single-step chemistry cast as in [62],
for a Zeldovitch number β = 15. The expected trend is recovered for 0 < fb << 1. In this
single-step chemistry simulation, the addition of the vitiated gases is mimicked by preheat-
ing the fresh mixture, and the one-dimensional flame is computed with a fully compressible
sixth-order flow solver using a PADE scheme [63]. This hyperbolic behaviour of flame
speed versus dilution by burnt gases was also reported in the literature at various places,
for instance simulating vitiated premixed flamelets with detailed chemistry (see Fig. 4a in
[64]).1

1This scaling may also be retrieved from high-activation energy asymptotic developments after matching
fluxes with vitiated fresh gases [65].
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Considering now a flamelet submitted to stretch without dilution and assuming that the
integral of the source stays close to the unstretched flame burning velocity, Eq. 11 leads to

ρoSL(fb = 0, ṠKφ ) = 1

φb − φo

⎡
⎣ +∞∫
−∞

ρω̇φdξ −
+∞∫

−∞
ρṠKφ dξ

⎤
⎦ ,

= ρoS
o
L

⎛
⎜⎜⎜⎝1 −

+∞∫
−∞

ρṠKφ dξ

(φb − φo)ρoS
o
L

⎞
⎟⎟⎟⎠ . (15)

The usual linear response of the flame speed to small levels of stretch is found [66]

SL(fb = 0, ṠKφ ) = So
L(1 − K), (16)

with (φb − φo)ρoS
o
L × K =

+∞∫
−∞

ρṠKφ dξ .

The linear reduction of flame speed by (1 − K) (16) and the increase of flame speed
by (1 − fb)

−1 (14), suggest that the effect of flame speed reduction by tangential stretch
applied to the flame surface can be compensated by the vitiation of the fresh gases.

4.2 Vitiated diffusion flamelet quenching

The relation (14) for the unstretched and diluted flame may also be combined with an
estimation of the quenching condition in a diffusion flamelet. τmq the mechanical time at
quenching in a non-premixed system is known to relate to the stoichiometric and freely
propagating flame speed as [35, 67]

1

τmq

= Z2
st(1 − Zst)

2

aT /S2
L

, (17)
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where aT is the thermal diffusivity and Zst the stoichiometric value of the mixture fraction
[35]. Assuming a fixed reference chemical time, Kaq, the Karlovitz number at quenching
varies as τ−1

mq
. The introduction in Eq. 17 of the relation (14), giving the unstrained flame

speed SL = SL(fb, ṠK = 0) in the presence of dilution, provides a scaling relation for a
non-premixed system weakly vitiated by burnt gases

Kaq(fb) ≈
(

1

1 − fb

)2

. (18)

Hence, the value of the Karlovitz number at the quenching point should increase in the
presence of dilution by burnt gases (fb > 0), making the reaction zones evolving in vitiated
mixture more robust to intense turbulence. This scaling is now tested against calculations
with the reduced kerosene chemistry.

5 Response of Ka at Quenching in a Vitiated Stream

The above dilution factor fb calibrates the relative amount of burnt and fresh gases present
in the unburnt mixture (12). In the canonical problem used for chemistry reduction (Eqs. 3
and 9), the relative amount of burnt gases introduced initially may be varied adjusting the
mass flow rates of the three streams injected in the system (Q̇m1: fuel, Q̇m2: air and Q̇m3:
burnt gases), thus varying 〈Yi(t = 0)〉, the averaged mass fractions injected at t = 0,
including liquid fuel.

To study the sensitivity of the pseudo-reactor to the amount of added recirculating burnt
gases, fb is defined as

fb = Q̇m3

Q̇m − Q̇m3

. (19)

where Q̇m = ∑
j Q̇mj

is the total mass flow rate injected. With this definition, fb = 0 in
the case of no-dilution by burnt gases and fb = 1 in the asymptotic limit where mass flow
rates of fresh (Q̇m1 + Q̇m2) and burnt gases (Q̇m3) are equal.

The response of the turbulence/chemistry interaction to variations of τ , the micro-mixing
time, is characterized by three stages [62]. (i) very small micro-mixing times, and thus very
fast micro-mixing, prevent combustion. (ii) intermediate values of τ lead to ignition and
burning with turbulence/chemistry interaction. (iii) above a given threshold, the too large
micro-mixing times, associated with very small frequency of micro-mixing, do not allow for
sufficient mixing of the fresh and burnt gases to secure ignition within the allowed residence
time (here 2 ms). These three stages ((i) no-burning, (ii) burning and (iii) no-burning) are
seen in Fig. 8, displaying 〈c〉, the average progress variable (c = 0 in the fresh gases and
c = 1 in fully burnt products) plotted at tEnd = 2 ms for cases featuring a micro-mixing
time τ varying between 0.002 and 0.8 ms, and for the representative case fb = 0.5. The
average progress of reaction 〈c〉 is here calculated from the normalised production of CO2
by combustion

〈c〉(t) = 〈YCO2〉(t) − 〈YCO2〉(t = 0)

Y
Eq

CO2
− 〈YCO2〉(t = 0)

, (20)

with Y
Eq

CO2
calculated from the full mixture at t = 0, including primary and secondary air.

A zoom in the high-Ka zone is given in Fig. 8b. The decrease of τ down to τ = 0.015 ms
(thus the increase of Ka) is followed by a rapid transition from burning to non-burning in



Flow Turbulence Combust

Fig. 8 Response of the progress variable cD(tEnd) versus mechanical mixing time. fb = 0.5 and tEnd = 2 ms

the progress variable response. The mid-point of a linear distribution constructed between
the last fully burning point and the first very weakly burning condition is chosen to define,
τmq , the mechanical time at quenching. This determines the smallest micro-mixing time
that does allow for ignition and burning in the combustion problem defined by Eq. 3. The
corresponding quenching Karlovitz number can then be related to a limit value that would
prevent ignition and thus flame stabilisation in burnt gases vitiated mixture.

The dilution factor fb (19) is now varied between 0.25 and 1. For every case, a set of
trajectories (9) are obtained for given values of τ , to determine the response of τmq versus fb,
according to the procedure shown in Fig. 8b. To define a Karlovitz number, a chemical time
must be chosen. With complex chemistry, in the present case 48 species, many options exist.
After considering the evolution of various species, the trajectories of carbon monoxyde were
found to provide a similar shape for the various dilution levels, it is also a species which is

Fig. 9 Illustration of the arbitrary definition of the chemical time from YD
CO(t), the CO mass fraction

deterministic trajectory (9). Representative case fb = 0.5
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Fig. 10 Response of Kaq versus fb. Circle: simulations (Eqs. 3 and 9). Dashed line: Eq. 18 (b): zoom in
moderate Ka level

well captured by the reduced scheme (Fig. 3). The decay of the CO mass fraction after its
peak value can be interpolated

YCO(t) = Ymax
CO exp(−(t − tpeak)/to), (21)

where Ymax
CO = YCO(tpeak) denotes the peak CO mass fraction (Fig. 9). The characteristic

relaxation time to is measured from the observed CO distribution, so that YCO(tpeak + to) =
Ymax
CO exp(−1). Twice the chemical time, 2τc, is arbitrarily chosen as the time duration

between the two observations of Ymax
CO exp(−1) in the CO distributions (Fig. 9). The value

of the Karlovitz at quenching for various fb is finally taken as the ratio

Kaq(fb) = τc

τmq

. (22)

Obviously, other formulations could be introduced, however this global measure is sufficient
to compare against the basic scaling discussed above.

The response of Kaq versus the dilution factor fb is given in Fig. 10. The robustness
of the n-decane combustion to intense mixing does increase with dilution by burnt gases.
A rapid growth of the value of Kaq at quenching is particularly observed after reaching
fb = 0.6 (Fig. 10b). Interestingly, a zoom in the lower values of fb shows that the response
of Kaq follows quite well the scaling given by Eq. 18. It is worthwhile to note that the
relation (18), which was derived for 0 < fb << 1 (thus without matching in the one-
dimensional approximate analysis the fb definition based on the mass flow rate (19)), seems
here reasonably fit for approximating the flame response, even up to large values of fb.

6 Discussion and Summary

A stochastic canonical problem has been constructed to explore turbulence chemistry/
interaction with kerosene liquid fuel injection. The information obtained has been used at first
to optimise a reduced chemical scheme, whose objective is to predict major species only.
Then, the response of the quenching Karlovitz number to the amount of burnt gases mixed
with the fresh mixture has been studied. It is found that basic scaling laws derived for burnt-
gases vitiated premixed and non-premixed systems agree well with the results, with dilution
promoting an inverse squared enhancement of the flame robustness to intense turbulence.
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Table 2 Characteristic length
scales approximated from
quasi-DNS of a swirl burner
[68, 69]

ReT Reλ �T τT ηk τk

1480 149 7 mm 2 ms 29 mm 0.051 ms

Estimating characteristic length and time scales relevant for turbulent flames in real com-
bustion systems, or in experiments representative of real injectors, is not an easy task [13].
Along these lines, well-resolved Large Eddy Simulation (LES) or quasi Direct Numerical
Simulation (DNS) of real burners provide additional information. The Table 2 summarises
length and time scales extracted from the quasi-DNS [68] of the aeronautical swirl burned
studied experimentally by Meier et al. [69].

In Fig. 8 for fb = 0.5, combustion is expected for micro-mixing times in the range
0.015 ms < τ < 0.1 ms. Interestingly, τk in Table 2 lies within this range, close to the
lower limit for this swirled flow injector, which was designed to operate with a quite strong
precessing vortex core, featuring a characteristic frequency of about 540 Hz with a time
scale of the order of 1.9 ms, thus with strong recirculation of burnt gases. Drawing further
conclusions on the exact numbers would not be fair at this stage. However, above results
open perspectives for advanced injector design, thus considering high Karlovitz combustion
aside from toy problems. The opportunity of counterbalancing the negative impact of strong
turbulence on the flame-base thanks to entrainment of burnt gases, appears actually stronger
than expected from usual combustion regime analysis. At the same times, it confirms that
high Karlovitz combustion can hardly be sustained without addition of burnt gases.
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7.3 Summary in french / Résumé en français
Dans cette section, le contenu de cette thèse est résumé en français.

Contexte
Les particules de suie sont générées par la combustion dans différents contextes comme les feux do-
mestiques ou brûleurs industriels, fourneaux, moteur à combustion interne ou turbines aéronautiques.
Généralement produites lors d’une combustion riche, les particules de suie sont habituellement con-
sidérées comme des sous-produits indésirables mais peuvent parfois être synthétisées de manière
volontaire dans certaines applications. Un bref aperçu de l’impact des particules de suie sur
l’environnement et l’industrie est donné ci-après.

Impacts sur la santé
Les particules de suie peuvent causer des maladies cardio-vasculaires, des cancers ou des maladies
respiratoires (Niranjan and Thakur, 2017). En général, le terme Black Carbon (BC) est utilisé dans
les études médicales ou environnementales pour désigner les particules de suie. Une mesure plus
générale de concentration en particules ou d’émissions est le niveau de Particulate Matter (PM).
Toutes les particules, indépendamment de leur composition, sont mesurées en fonction de leur taille.
PM2.5 correspond à des particules dont le diamète est inférieur à 2,5 microns, tandis que PM10
correspond à des particules dont le diamètre est inférieur à 10 microns. Le terme ultra-fine particles
se réfère quant à lui au particules dont le diamètre est inférieur à 100 nanomètres. Il est estimé
que l’exposition long terme aux PM2.5 a causé environ 467 000 décès prématurés en Europe en
2013 (Guerreiro et al., 2016).

Différents groupes d’experts ont rassemblé les conclusions de nombreuses études afin d’apporter
les informations pertinentes aux preneurs de décision et aux agences de régulation. Par exemple,
l’Organisation Mondiale de la Santé a remis un rapport sur les preuves des impacts de la pollution
de l’air sur la santé (rapport REVIHAAP) dans lequel les effets sur la santé des PM, y compris
Black Carbon ont été quantifiés (WHO, 2013). Plus récemment, l’ANSES (Agence Nationale de
Sécurité sanitaire de l’alimentation, de l’Environnement et du travail) a compilé des contributions
scientifiques nouvelles et quantifié l’impact des particules de suie (et d’autres particules) issues de
différents secteurs et, en particulier, du secteur du transport routier (ANSES, 2019). Les conclusions
principates sont les suivantes:

• Parmi les Particulate Matter (différents types de particules) le plus haut niveau de preuve de
nocivité est atteint pour les particules de suie, le carbone organique, et les paricules ultra-fines
(moins de 100 nanomètres).

• Le niveau de preuve de nocivité des particules émises par le secteur du transport routier est
considéré comme ’fort’.

• La nocivité de la combustion du charbon, de produits pétroliers et de biomasse a été confirmée.

• Pour les régulations futures, l’agence recommande de cibler prioritairement des indicateurs
de niveaux de particules de suie, de carbone organique, de particules ultra-fines en plus des
indicateurs sur les particules plus grosses PM2.5 et PM10.

C’est pourquoi il est essentiel de développer des méthodes de mesure précises et des modèles
numériques pour les particules ultra-fines, en particulier pour les particules de suie.
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Figure 7.17: Schema des sources d’émission de Black Carbon primaire et des procédes par lesquels
le Black Carbon induit un forçage climatique. Source: Bond et al. (2013)

Impacts sur le climat
Les émissions de Black Carbon induisent un forçage climatique significatif. In Bond et al. (2013),
une évaluation complète du forçage climatique par tous les procédés liés aux sources riches en black
carbon a été effectuée. Les niveaux d’incertitude sont élevés mais une des principale conclusions est
qu’il y a une très haute probabilité que les émissions de black carbon (seul, sans considérer les espèces
co-émises) contribuent à un forçage positif et donc au réchauffement. En revanche, si les espèces
co-émises sont considérées, le forçage net pourrait être légèrement négatif. Une représentation
schématique des procédés par lesquels le Black Carbon induit un forçage climatique est disponible sur
la figure 7.17. Les distributions géographiques des émissions de Black Carbon, de leur concentration,
du forçage climatique et de la réponse en température sont illustrées sur la Figure 7.18.

Régulation et évolution des émissions en Europe
Des normes européennes d’émissions ont été implémentées afin de définir les limites acceptables
d’émissions à l’échappement des véhicules neufs vendus au sein de l’Union Européenne. Les dernières
normes EURO 6 définissent des limites en masse et en nombre: pour les niveaux de PM (Particulate
Matter en g/km) et PN (Particulate Number en particules/km). Pour les véhicules diesel et essence.
Les normes PM successives ont été de plus en plus contraignantes (Figure 7.19), tandis que les
normes PN ont été introduites avec EURO 5b pour les véhicules diesel et EURO 6b pour les
véhicules à essence. Dans les deux cas, la limite est de 6.1011[particle/km].

Ces normes ont entrâıné une réduction significative des émission de PM et BC par le secteur
automobile en Europe comme cela peut être observé sur la Figure 7.20. D’autres secteurs contribuent
aux émissions de BC, en particulier les ménages, commerces et institutions (cette catégorie inclut



CHAPTER 7. APPENDIX 137

Figure 7.18: Données issues du modèle HadGEM. Source: Bond et al. (2013). (a) Emissions de
particules de BC [mg.m−2.yr−1], (b) Concentration en BC [mg.m−2], (c) forçage radiatif direct dû
aux particules de BC [W.m−2], et (d) Variation de température de surface [K] en réponse au forçage
radiatif direct dû aux particules de BC.

Figure 7.19: Evolution des normes européennes pour les émissions de PM.
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Figure 7.20: Evolution des émissions de BC par secteur en Europe. Source: European Environment
Agency (EEA).

la combustion domestique de biomasse comme les feux de cheminée). De plus, les émissions liées
aux moyens de transport non-routiers sont non-négligeables. Dans le contexte aéronautique, il
n’existe pas encore de normes sur les émissions de PM. Cependant, des programmes de recherche
incluant des industriels et des laboratoires académiques visent à une meilleure compréhension de la
formation des particules de suie dans les turbines aéronautiques. Par exemple, le projet SOPRANO,
coordonné par SAFRAN Tech et financé par le programme de la commission européenne H2020,
a financé cette thèse. L’objectif principal du projet est d’améliorer les approches numériques et
expérimentales liées à la caractérisation et la prédiction des émissions de particules de suie dans un
environnement de brûleur bas-NOx. En particulier, des modèles numériques doivent être disponibles
pour prédire précisément la distribution de tailles de particules (Particle Size Distribution, PSD)
afin de permettre une conception optimisée des futurs moteurs. Dans ce contexte, cette thèse vise
à amener un modèle numérique précis pour l’évolution de la PSD.

Synthèse de matériaux
Dans certaines applications, les particules de suie peuvent être utilisées pour de la synthèse de
matériaux. L’objectif est alors de garantir une génération reproductible de particules avec une
taille, cristallinité et morphologie bien définies. Les aggrégats de suie sont intéressants pour les
électrocéramiques (utilisation finale: capteurs, batteries) car ils facilitent le transport d’electrons
en minimisant la résistance de contact (Strobel and Pratsinis, 2007). Une autre utilisation des
aggrégats de suie est dans les catalyseurs et fibres optiques car ils facilitent le transport de réactifs
et des produits gazeux dans les lits catalytiques (Kelesidis et al., 2017). La synthèse par combustion
permet de hauts degrés de pureté ce qui n’est pas toujours le cas des procédés conventionnels en
phase liquide ou solide. Par conséquent, une connaissance approfondie de la formation des particules
de suie et de l’évolution de la PSD ainsi que de la morphologie des aggrégats sont intéressants afin
de pouvoir assurer la reproductibilité de la fabrication de produits à haute valeur ajoutée comme
des nanotubes de carbone.
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Particules de suie: Définition et description
Définition
Les particules de suie sont produites durant la combustion incomplète d’hydrocarbures. Princi-
palement composées d’atomes de carbone, elles contiennent également une quantité non-négligeable
d’atomes d’hydrogène.

La terminologie et les définitions varient en fonction du domaine scientifique. En science at-
mosphérique, le terme Black Carbon (BC) est utilisé pour les particules exclusivement formée pen-
dant une combustion incomplète d’hydrocarbures. Une combinaison de propriétés distingue le BC
d’autres matériaux absorbant comme les composés de carbone organique (Bond et al., 2013):

• Une importante absorption de la lumière visible à 550 nm.

• Une résistance à la décomposition à la chaleur. La température de vaporisation est autour de
4000K.

• La morphologie en aggrégat.

• L’insolubilité dans l’eau.

En science de la combustion, le terme de particule de suie n’est pas seulement utilisé pour les
aggrégats mais également pour les particules naissantes et les agglomérats. Les particules naissantes
sont formées par nucléation à partir des hydrocarbures aromatiques polycycliques (PAH) (McEnally
et al., 2006). Les particules naissantes présentent un ratio des éléments carbone-hydrogène (C/H)
compris entre 1.4 et 2.5 (Russo et al., 2015). Leur taille est comprise entre 1 et 6 nm (Wang,
2011a). Ces particules naissantes grossissent par coalescence (en fusionnant entre elle lorsqu’elles
entrent en collision) et par réaction de surface. Elles forment de plus grosses particules primaires
avec des diamètres compris entre 10 et 50 nm (Wang, 2011a). Tandis que les particules grossissent,
elles sont soumises à des réactions de déshydrogénation et se solidifient progressivement et forment
alors des aggrégats plutôt que des sphères. L’aggrégation, en opposition à la coalescence, signifie
que les particules primaires (ou sphérules) adhèrent l’une à l’autre par un point de contact au lieu
de fusionner lorsqu’elles entrent en collision. Les agglomérats se transforment alors en aggrégats
graphitiques via la croissance surfacique. Tandis que les particules de suie réagissent et deviennent
’matures’, le rapport C/H augmente (Russo et al., 2015). Un schema de Michelsen (2017) est
reproduit ici (Fig. 7.21). Il représente la formation de particules de suie et leur évolution dans
une flamme. Différents termes sont illustrés: particules naissantes (incipient particles), agglomérats
(agglomerates), aggrégats graphitiques (graphitic aggregates).

Les propriétés d’absorption sont également utilisées pour caractériser les particules naissantes
dans le domaine de la combustion. En fonction de leur faculté à absorber des radiations de l’ultra-
violet (UV) à l’infra-rouge (IR) (qui augmente avec la maturité des particules) et de la taille des
particules, deux définitions des particules naissantes coexistent dans la communauté de la combus-
tion (Betrancourt, 2017):

• D’après la première définition, deux classes de particules naissantes existent en fonction de
leurs propriétés d’absorption (D’Anna, 2009; Michelsen, 2017):

– Les particules naissantes désordonnées qui sont transparentes au visible et IR et ont un
diamètre moyen d’environ 3 nm.

– Les particules naissantes dites empilées, dont le diamètre est supérieur à 3 nm et qui
absorbent dans le visible et IR.
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Figure 7.21: Schema de la formation des particules de suie dans une flamme. Les espèces moléculaires
et particules ne sont pas représentées à l’échelle. Source: Michelsen (2017)

• D’après la seconde définition, les particules de suie peuvent absorber depuis les UV jusqu’aux
IR et peuvent avoir un diamètre minimal de 1 nm. Elles sont définies comme des particules
capables d’émettre des radiations de corps noir naturellement à température de flamme ou de
manière induite par laser (laser induced incandescence, LII) (Desgroux et al., 2017).

Morphologie
Les particules de suie sont généralement considérées, soit sphériques (particules naissantes), soit
comme des aggrégats constitués de plusieurs particules primaires sphériques (sphérules). La fig-
ure 7.22 montre une représentation d’un aggrégat fractal et les dimensions caractéristiques corre-
spondantes, définies ci-après.

dp est le diamètre d’un sphérule primaire avec Rp le rayon correspondant. np est le nombre de
sphérules primaires composant l’aggrégat. dc est le diamètre de la sphère circonscrite à l’aggrégat.
Cette dimension est également utilisée comme diamètre de collision. Le rayon correspondant est
noté Rc. dg est le diamètre de gyration avec le rayon correspondant Rg. dg est caractéristique de
la distribution de masse de l’aggrégat (lié au moment d’inertie).

Il est admis que les particules de suie, dans certains intervalles de taille, ont une structure
fractale, c’est-à-dire une relation entre np et dg. Cette relation est décrite par la loi fractale:

np = kf(dg/dp)Df . (7.3.1)

Df est la dimension fractale, kf est le pre-facteur fractal. Ces constantes peuvent être déterminées
expérimentalement. La figure 7.23 (de Yon et al. (2011)) montre un exemple d’accord entre des
mesures et une loi fractale théorique avec différentes valeurs de Df et kf en fonction du carburant.

La morphologie des particules de suie dépend de plusieurs paramètres et peut être difficile à
prédire. Elle peut varier en fonction du carburant mais également en fonction des conditions de
fonctionnement. Par exemple, dans Liati et al. (2014), des images d’échantillons de particules de
suie issue de la même turbine à gas on été observées par microscope electronique en transmission.
Ces images ont été comparées à différents niveaux de puissance du moteur. Les niveaux de puis-
sance à 100%, 65% and 7% sont notés respectivement P100, P65 et P7. Ces niveaux de puissance
correspondent approximativement au décolage, vitesse de croisière et à la circulation au sol respec-
tivement. Des images représentatives des aggrégats pour chaque niveau de puissance sont montrées
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Figure 7.22: Représentation d’un aggrégat de suie et de ses dimensions caractéristiques.

Figure 7.23: Loi fractale pour des particules de suie issue de (a) diesel et (b) diester. Points:
Mesures. Lignes: Loi fractale paramétrée. Source: Yon et al. (2011)
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Figure 7.24: Image BF-STEM (ligne supérieure) et images TEM (ligne inférieure) d’aggrégat de suie
issus de différent niveaux de puissance moteur. Sur la ligne inférieure, des exemples de sphérules
primaires ont été entourés. Source: Liati et al. (2014)

Figure 7.25: Images HRTEM de particules primaires de suie (de l’échantillon P100) présentant
plusieurs ’coeurs’. Celles-ci sont entourées de lamelles de graphène. Source: Liati et al. (2014).

sur la figure 7.24. Les auteurs de l’étude observent que la taille de sphérules primaires diminue
tandis que la puissance de fonctionnement diminue. Les sphérules qui composent un aggrégat de
l’échantillon P100 peuvent être observés sur la figure 1.9.

Objectifs
La simulation des flammes produisant des particules de suie est complexe à différents niveaux.

• D’abord, des phénomènes chimiques et physiques complexes comme la nucléation entrent
en jeu dans la formation des particules de suie. Il est difficile de produire des modèles
généralisables et quantitatifs et les plus précis d’entre eux incluent des schemas cinétiques
lourds.

• De plus, une fois que les termes sources physiques sont estimés, l’évolution de la distribution
de tailles de particules (PSD) à travers la nucléation, l’agglomération et les réactions de crois-
sance/oxydation de surface doit être résolue. Ceci est fait par la résolution de l’équation de bi-
lan de population (PBE). Différentes techniques ont été développées dans ce but. Elles peuvent
être classifiées entre les principales classes de méthodes suivantes: hypothèse monodisperse,
méthodes des moments (MOM), méthodes sectionnelle et méthodes de Monte Carlo. Chaque



CHAPTER 7. APPENDIX 143

classe présente des avantages et inconvénients spécifiques et le choix parmi ces différentes
alternatives peut varier selon l’application.

• Enfin, les phénomènes de radiation et d’interaction chimie-turbulence peuvent jouer un rôle
important selon les applications.

Dans cette thèse, nous nous focaliserons sur le second point. Le principal objectif est de
développer une méthode précise et efficace pour la résolution de l’équation de bi-
lan de population. Les phénomènes de radiation et d’interaction chimie-turbulence sont au-delà
du cadre de cette étude. Des concepts généraux et de récents progrès sur la compréhension de la
physique et de la chimie des suies (premier point) seront présentés. Cependant, la partie innovante
de cette thèse est le développement et la validation d’une nouvelle méthode numérique.

La méthode proposée, appelée HYPE (pour HYbrid Population balance Equation) consiste
en une formulation hybride avec des particules stochastiques définissant une fonction de densité
de probabilité (PDF) et d’une discrétisation sectionnelle fixe pour le calcul des termes sources
d’agglomération. Les objectifs de cette méthode sont de:

• Résoudre précisément l’évolution de la distribution de tailles de particules. Une attention
particulière doit être apportée au terme source de croissance/réduction.

• Maintenir un coût de calcul relativement modéré comparé à celui d’autres méthodes numériques
hautement précises.

La Figure 7.26 illustre les principales étapes de la simulation d’une flamme et des particules de
suie associées ainsi que le rôle de la méthode numérique proposée (HYPE).

Figure 7.26: Graphical abstract
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Une nouvelle méthode hybride stochastique/sectionnelle: la
méthode HYPE
Dans cette partie, une formulation détaillée de la méthode HYPE est d’abord effectuée. Ensuite,
l’algorithme pratique est présenté. Des cas tests analytiques sont calculés. Finalement, la précision
et le coût de calcul sont mesurés et comparés à des méthodes sectionnelles de référence.

Formulation du problème
La méthode est décrite ici comme dans Bouaniche et al. (2019b). Comme expliqué précédemment, la
distribution de tailles de particules (PSD) n(v;x, t), nombre de particules à la taille caractéristique
v (en termes de volume ou masse, v est une variable continue indépendante), par unité de volume
de fluide et par unité de taille caractéristique de l’aérosol soumis aux phénomènes simultanés de
nucléation, réactions de surface, et agglomération, est régie par l’equation de bilan de population
(PBE) (Ramkrishna, 2000; Solsvik and Jakobsen, 2015):

∂n(v;x, t)
∂t

+ u · ∇n(v;x, t) + ∂

∂v
[G(v)n(v;x, t)] = ḣ(vo;x, t) (7.3.2)

+1
2

∫ v

0
β(v − v̄, v̄)n(v − v̄;x, t)n(v̄;x, t)dv̄ − n(v;x, t)

∫ ∞
0

β(v, v̄)n(v̄;x, t)dv̄ ,

avec les notations usuelles utilisées. G(v) > 0 est le taux de croissance de surface ou G(v) < 0
de décroissance de surface. ḣ(vo) > 0 est le taux de nucléation ou ḣ(vo) < 0 le taux de ’disparition’
vu à la plus petite taille vo. Le terme source intégral du membre de droite de l’équation prend
en compte l’agglomération selon la version continue de l’équation de Smoluchowski (Smoluchowski,
1917), avec β(v, v̄) la fréquence de collision pour deux particules de volumes v et v̄. L’évolution de
la PSD est donc pilotée par une équation intégro-différentielle-partielle de type hyperbolique.

Le taux de variation surfacique G(v) correspond à un terme convectif dans l’espace des tailles de
particules. La résolution de G(v) est complexe, de manière similaire au terme convectif non-linéaire
dans l’espace physique (Ferziger and Perić, 1996), ce qui justifie la proposition d’une méthode dans
cette étude.

D’autres quantités liées à la PSD sont introduites. Ni(x, t) est défini comme le nombre de
particules à la taille caractéristique vi par unité de volume de fluide.

Ni(x, t) =
∫
Ivi

n(v;x, t)dv , (7.3.3)

où l’intervalle Ivi ≡ [vinfi , vsupi ] définit la i-ème section fixe de taille. La densité de nombre totale
par unité de volume de fluide est la somme sur toutes les tailles ou sur les M sections considérées.

NT (x, t) =
∞∫
vo

n(v;x, t)dv =
M−1∑
i=0

Ni(x, t) . (7.3.4)

De même, le terme source de nucléation par unité de volume de fluide est

Ḣo(x, t) =
∫
Ivo

ḣ(v;x, t)dv . (7.3.5)

Le terme source d’agglomération de Smoluchowski (Eq. (7.3.2)),
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ȧ(v;x, t) (7.3.6)

= 1
2

v∫
0

β(v − v̄, v̄)n(v − v̄;x, t)n(v̄;x, t)dv̄ − n(v;x, t)
∞∫
0

β(v, v̄)n(v̄;x, t)dv̄ ,

conduit à la définition du terme source d’agglomération pour la i-ème section

Ȧi(x, t) =
∫
Ivi

ȧ(v;x, t)dv , (7.3.7)

et AT est le terme source (négatif) total dû à l’agglomération sur toutes les particules, donc la
somme des Ai(x, t) sur toutes les sections

ȦT (x, t) =
∞∫
vo

ȧ(v;x, t)dv =
M−1∑
i=0

Ȧi(x, t) . (7.3.8)

Toutes ces quantités permettent de combiner la PBE avec l’évolution de la PDF dest tailles
caractéristiques de particule.

Méthode hybride stochastique/sectionnelle
Paramètres de contrôle et description statistique Afin de bénéficier d’une description dans
laquelle la croissance de surface (ou décroissance) est calculée sous la forme d’un terme linéaire, au
lieu de résoudre directement la PBE discrétisée, il est proposé de considérer NT (x, t), le nombre
total de particules par unité de volume et P (v∗;x, t), la fonction de densité de probabilité (PDF)
des tailles caractéristiques de particules, où v∗ ∈ [vo,∞] correspond à l’espace d’échantillonnage
associé à la variable v, vue comme une variable aléatoire.

La relation entre n(v;x, t), la densité de nombre de particules par unité de taille, Ni(x, t), la
densité de nombre de particules dont la taille est dans la section Ivi (v ∈ Ivi) à la localisation dans
l’espace physique x au temps t (Eq. (7.3.3)), et P (v∗;x, t), la PDF des tailles de particules s’exprime:∫

Ivi

n(v∗;x, t)dv∗ = Ni(x, t) = NT (x, t)
∫
Ivi

P (v∗;x, t)dv∗ , (7.3.9)

où ∫
Ivi

P (v∗;x, t)dv∗ (7.3.10)

est la probabilité de trouver des particules de taille v ∈ Ivi . Puisque (7.3.9) devrait être valide
quel que soit Ivi ,

n(v∗;x, t) = NT (x, t)P (v∗;x, t) . (7.3.11)

La fonction

δ(v − v∗) = lim
dv→0

1/dv if v ∈ [v∗ − dv/2, v∗ + dv/2] (7.3.12)

= 0 otherwise , (7.3.13)

est introduite et P (v∗;x, t) = δ(v(x, t)− v∗), où · correspond à la moyenne statistique (Lundgren,
1967; Dopazo, 1979; Kollmann, 1990; Dopazo et al., 1997).
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Le terme de nucléation dans la PBE (Eq. (7.3.2)) peut être écrit ḣ(vo;x, t) = Ḣo(x, t)δ(vo− v∗),
avec Ḣo(x, t) défini par (7.3.5) dans la limite où la taille de l’intervalle Io tend vers zero. De même, le
terme d’agglomération peut être écrit ȧ(v∗;x, t) = Ȧi(x, t)δ(vi − v∗), avec Ȧi(x, t) défini par (7.3.7)
dans la limite où Ivi tend vers zéro. La PBE devient alors

∂n(v∗;x, t)
∂t

+ u · ∇n(v∗;x, t) + ∂

∂v∗
[G(v∗)n(v∗;x, t)] (7.3.14)

= Ḣo(x, t)δ(vo − v∗) + Ȧi(x, t)δ(vi − v∗) .

La densité de nombre totale NT évolue selon

∂NT (x, t)
∂t

+ u(x, t) · ∇NT (x, t) = Ḣ(vo;x, t) + ȦT (x, t) , (7.3.15)

avec ȦT (x, t) donné par (7.3.8). D’après (7.3.11) la PDF evolue selon

∂P (v∗;x, t)
∂t

=
[ 1
n(v∗;x, t)

∂n(v∗;x, t)
∂t

− 1
NT (x, t)

∂NT (x, t)
∂t

]
P (v∗;x, t) . (7.3.16)

En introduisant (7.3.14) et (7.3.15) dans cette expression, l’équation d’évolution de la PDF est
obtenue

∂P (v∗;x, t)
∂t

+ u(x, t) · ∇P (v∗;x, t) =

(i)︷ ︸︸ ︷
− ∂

∂v∗

[
G(v∗)P (v∗;x, t)

]
+ Ḣo(x, t)
NT (x, t)

(
δ(vo − v∗)− P (v∗;x, t)

)
︸ ︷︷ ︸

(ii)

+ 1
NT (x, t)

(
Ȧi(x, t)δ(vi − v∗)− ȦT (x, t)P (v∗;x, t)

)
︸ ︷︷ ︸

(iii)

. (7.3.17)

Dans cette equation de bilan, comme dans la PBE, l’évolution de la taille des particules au
taux de croissance G(vi) est un terme convectif dans l’espace des tailles (terme (i). Le terme (ii) du
membre de droite est la nucléation, qui se décompose en deux parties préservant la normalisation de
la PDF. La première, proportionnelle à δ(vo−v∗), augmente la probabilité de trouver les plus petites
particules, en accord avec le taux de nucléation Ḣo(x, t)/NT (x, t), tandis que le second diminue,
au même taux, la probabilité pour toutes les tailles. Une formulation similaire est utilisée pour
l’agglomération (terme (iii)), avec la probabilité évoluant au taux positif ou négatif Ȧi(x, t)/NT (x, t),
associé à la correction proportionnelle à −ȦT (x, t)/NT (x, t) > 0, tel que la normalisation de la PDF
est préservée. En effet, lorsque deux particules de tailles caractéristiques vi et vj s’agglomèrent, la
probabilité de leurs tailles initiales respectives diminue (Ȧi(x, t) < 0 and Ȧj(x, t) < 0), tandis que la
probabilité de la nouvelle taille formée vk augmente (Ȧk(x, t) > 0). Cependant, étant donné que la
densité de nombre totale en particules physiques diminue au cours du phénomène d’agglomération,
la probabilité de toutes les tailles augmente proportionnellement à −AT , le terme source (négatif)
global.

Les solutions des équations (7.3.15) et (7.3.17) fournissent toutes les informations nécessaires
pour simuler la nucléation et la croissance d’un ensemble de particules transportées dans un fluide.
La distribution de tailles de particules Ni(x, t) peut alors être déduite de (7.3.9).

Puisque l’objectif de la présente étude est de proposer un outil pour la résolution numérique des
termes contrôlant l’évolution de la PSD, un réacteur homogène est considéré (u = 0).
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Solution hybride stochastique/sectionnelle-fixe La fonction de densité de probabilité P (v∗; t)
peut être discrétisée sur un ensemble de NP particules stochastiques, chacune comportant une in-
formation de taille de particule (par exemple le volume), c’est-à-dire v = vk pour k = 1, · · · , NP et
P (v∗; t) = (1/NP )

∑NP
k=1 δ(vk(t)− v∗). Le nombre total de particules stochastiques NP est constant.

L’espace de v est également discrétisé en M sections fixes, afin de définir un maillage fournissant
la distribution de ∆vi = vsupi −v

inf
i , pour i = 0, · · · ,M−1. Des maillages uniformes, géométriques et

exponentiels sont testés dans les paragraphes suivants. La taille caractéristique vk d’une particule
stochastique peut prendre n’importe quelle valeur entre les limites [vo, vM ], indépendamment du
maillage fixé.

Parmi cet ensemble de NP particules, un nombre entier nPi(t) de particules stochastiques com-
prend des tailles telles que vk ∈ Ivi ≡ [vinfi , vsupi ]. Ce nombre de particules stochastiques est lié à la
PDF et à Ni(t), la densité de nombre de particules physiques (Eq. (4.2.1)), selon:∫

Ivi

P (v∗; t)dv∗ = nPi(t)
NP

= Ni(t)
NT (t) . (7.3.18)

Afin de simuler l’évolution dans le temps de la PDF à travers vk(t), l’évolution temporelle des
particules stochastiques, une méthode de pas de temps fractionnaire est employée. En commençant
à l’instant tn, la croissance/diminution de surface est d’abord appliquée pour avancer la solution à
l’instant tn+ 1

2 . Ceci est appliqué de manière déterministe à chaque k-ème particule, comme un simple
procédé linéaire proportionnel à G(vk(t)), ce qui est l’avantage majeur de la méthode proposée.
Ensuite, à partir de l’instant tn+ 1

2 , la solution est avancée à tn+1 en appliquant les effets de la
nucléation et de l’agglomération qui sont simulés en déplaçant les particules stochastiques entre les
sections. Le nombre de particules stochastiques sélectionnées de manière aléatoire pour être retirées
d’une section et allouées à une autre est calculé selon les taux de nucléation et d’agglomération qui
pilotent l’évolution de la PDF (Eq. (7.3.17)). A chaque instant tn, δt est calculé tel que la stabilité
est garantie. Différentes valeurs de δt peuvent être nécessaires en pratique afin d’avancer de tn à
tn+ 1

2 (croissance/diminution) et de tn+ 1
2 à tn+1 (nucléation et agglomération).

Croissance/perte de surface Pendant la phase de croissance ou de perte de surface, la taille
de la k-ème particule stochastique évolue selon

dvk(t)
dt

= G(vk(t)) , k = 1, · · · , NP . (7.3.19)

A chaque particule stochastique correspond une taille mise à jour vk(tn+ 1
2 ). La densité de nombre

totale reste constante pendant l’étape de croissance (dNT (t)/dt = 0). Une fois que l’équation (7.3.19)
est résolue pour chaque particule, une distribution mise à jour de particules stochastiques est
disponible et la PDF P (v∗; tn+ 1

2 ) est connue ainsi que nPi(tn+ 1
2 ) le nombre de particules stochas-

tiques dans chaque section.

Nucléation et agglomération La nucléation et l’agglomération sont appliqués successivement,
ce qui impacte le nombre de densité total NT (t) et la PDF via le changement de nPi(tn+ 1

2 ) pour
chaque intervalle Ivi . En commençant à NT (tn) = NT (tn+ 1

2 ), la densité de nombre évolue de tn+ 1
2

à tn+1 avec

dNT (t)
dt

= Ḣo(t) + ȦT(t) . (7.3.20)

Une fois que NT (x, tn+1) est connu (7.3.20), l’équation de la PDF (7.3.17) est avancée dans le
temps avec la nucléation et l’agglomération:
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dvk(t)

dt
= G(vk(t))
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Figure 7.27: Organigramme de la méthode hybride stochastique/sectionnelle-fixe
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P (v∗; tn+1) = αHoδ(vo − v∗) + αAiδ(vi − v∗)
+ (1− αHo − αAT

)P (v∗; tn+ 1
2 ) , (7.3.21)

avec αHo l’augmentation relative de P (vo; tn+ 1
2 ) par nucléation (et la diminution de P (v∗; tn+ 1

2 )
pour v∗ 6= vo), αAi l’augmentation/diminution relative due à l’agglomération et αAT

la source
(négative) totale d’agglomération définie par Eq. (7.3.17):

αHo = Ḣo(tn+ 1
2 )

NT(tn+1) · δt , (7.3.22)

αAi = Ȧi(tn+ 1
2 )

NT (tn+1) · δt , (7.3.23)

αAT
= ȦT (tn+ 1

2 )
NT (tn+1) · δt . (7.3.24)

D’après Eq. (7.3.18), en intégrant sur Ivi et en multipliant par NP , l’évolution de la PDF donnée
par la relation (4.2.13) conduit à l’évolution du nombre de particules stochastiques par section. Cette
évolution temporelle discrétisée est organisée selon:

nPi(tn+1) = nPi(tn+ 1
2 ) + ∆nPi(tn+ 1

2 ) , (7.3.25)

avec des incrémentations ∆nPi(tn+ 1
2 ) sous la forme de nombres réels, qui devront être trans-

formés par la suite en nombres entiers de particules dans l’algorithme de Monte Carlo. D’après
(7.3.21),

∆nPo(tn+ 1
2 ) = (αHo + αAo)NP − (αHo + αAT

)nPo(tn+ 1
2 )

+ αRoNP , (7.3.26)
∆nPi(tn+ 1

2 ) = αAiNP − (αHo + αAT
)nPi(tn+ 1

2 )
+ αRiNP for i 6= o . (7.3.27)

Les termes proportionnels à αRi sont l’accumulation de l’erreur d’arrondi, qui tend vers zéro
pour NP → ∞. Après accumulation sur plusieurs itérations, cela impacte les particules lorsque
αRi ≥ 1/NP . A chaque itération, ∆nPi(tn+ 1

2 ) est ainsi décomposé en une partie entière et une
partie fractionnaire (décimale). La partie décimale {∆nPi(tn+ 1

2 )} est définie en fonction de la
partie entière qui est le plus proche entier b∆nPi(tn+ 1

2 )e,

{∆nPi(tn+ 1
2 )} = ∆nPi(tn+ 1

2 )− b∆nPi(tn+ 1
2 )e . (7.3.28)

La partie entière b∆nPi(tn+ 1
2 )e définit la variation du nombre de particules stochastiques au sein

d’une section pendant l’étape de réallocation correspondant à la nucléation et à l’agglomération.
L’algorithme de Monte Carlo suivant est appliqué:

• Si b∆nPi(tn+ 1
2 )e est négatif, un nombre aléatoire −b∆nPi(tn+ 1

2 )e de particules stochastiques
est sélectionné parmi les nPi(tn+ 1

2 ) particules présentes dans Ivi .

• Toutes les particules sélectionnées de tous les intervalles Ivi (i = 0, · · · ,M − 1) constituent un
ensemble P(tn+ 1

2 ) de particules dont les caractéristiques doivent changer.
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Table 7.1: Growth parameters

Cas 1(a) 1(b)
Distrib. initiale 1 for 0.2 ≤ v; 0 else δ(1)
Taux de croissance 0.05 v
Freq. Agglo. 0 0
Nombre de sections 20 40
Type de maillage unif. ∆v = 0.2 geo. Fs = 2
Intervalle de taille 0 – 4 0.7 – 7.3 · 1011

• Si b∆nPi(tn+ 1
2 )e est positif, b∆nPi(tn+ 1

2 )e particules sont prises de P(tn+ 1
2 ) et allouées à Ivi

à la taille représentative v?i (tn+ 1
2 ), définie pour conserver la mass, comme expliqué dans le

paragraphe suivant.

Plus le nombre total de particules stochastiques NP est grand, plus la contribution relative de
la partie décimale {∆nPi(tn+ 1

2 )} à ∆nPi(tn+ 1
2 ) est petite. Cette partie résiduelle décimale définit

NR
i (tn), une densité de nombre résiduelle de particules physiques dans la section vi, qui est calculée

au temps tn suivant (7.3.18)

NR
i (tn) = {∆nPi(tn−

1
2 )}

NP
NT (tn) , (7.3.29)

où ∆nPi(tn−
1
2 ) correspond à ∆nPi de l’itération précédente dans le temps. La croissance/réduction

des particules physiques représentées par cette densité de nombre résiduelle NR
i (tn) n’est pas inclue

dans les particules stochastiques et nécessite une résolution spécifique, entre tn et tn+ 1
2 (c’est-à-dire

en même temps que la croissance/réduction pour les particules stochastiques Eq. (7.3.19)). Cela est
fait via une méthode sectionnelle basée sur la discrétisation à 3 points pour la croissance/réduction
des particules (Park and Rogak, 2004) (Eq. 3.5.18). Ensuite, NR

i (tn+ 1
2 ) est connu et αRi est obtenu

à partir de

αRi = NR
i (tn+ 1

2 )
NT (tn+1) , (7.3.30)

et appliqué aux équations (7.3.26) et (7.3.27) pour calculer ∆nPi(tn+ 1
2 ). Pour des valeurs suff-

isamment grandes de NP , typiquement 105 comme montré ci-après, le nombre de densité résiduel
est négligeable et ne va pas perturber considérablement la précision de la méthode. Dans ce cas,
αR(vi) peut être fixé à zéro dans les expressions (7.3.26) et (7.3.27). Cependant, comme montré
ci-dessous, considérer la contribution de la partie résiduelle permet de réduite NP (jusqu’à 103 ou
moins) et par conséquent, le coût de calcul.

De manière optionnelle, un seuil peut également être paramétré tel que lorsque le nombre de par-
ticules stochastiques présentes dans une section donnée devient trop petit, la croissance/réduction
de surface est entièrement résolue via l’évolution de NR

i (t). En pratique, un seuil de 5 particules par
section est utilisé et a été considéré suffisant pour éviter un éventuel bruit en queue de distribution.

Un organigramme résumant la méthode est représenté Figure 7.27

Termes sources d’agglomération La méthode proposée dans Kumar and Ramkrishna (1996a)
est retenue pour calculer les termes sources d’agglomération Ȧi(t) de l’équation (7.3.23). Pour deux
particules quelconques entrant en collision, de volume v dans la section i et v̄ dans la section j, la
fréquence de collision β(v, v̄) est supposée constante, égale à β(vi, vj) = βi,j . Les particules formées
par agglomération sont distribuées dans les sections d’une manière qui conserve les moments d’ordre
0 et 1 de la PSD, c’est-à-dire le nombre et la masse. Cette méthode évite l’évaluation d’une double
intégrale des fréquences de collision et est par conséquent peu coûteuse (voir Kumar and Ramkrishna
(1996a) pour plus de details). la source d’agglomération utilisée dans (7.3.23) s’exprime:



CHAPTER 7. APPENDIX 151

Ȧi(t) =
k≤j≤i∑
j,k

vi−1≤vj+vk≤vi+1

(
1− δj,k

2

)
ηβj,kNj(t)Nk(t)

− Ni(t)
M−1∑
k=0

βi,kNk(t) , (7.3.31)

avec

η =


v?i+1 − (v?j + v?k)

v?i+1 − v?i
if v?i ≤ v?j + v?k ≤ v?i+1 ,

v?i−1 − (v?j + v?k)
v?i−1 − v?i

if v?i−1 ≤ v?j + v?k ≤ v?i ,
(7.3.32)

Dans l’approche hybride stochastique/sectionnelle-fixe, le volume caractéristique v?i doit être
représentatif de la masse moyenne des particules contenue dans la i-ème section. v?i est calculé de
manière dynamique, en fonction des volumes des particules stochastiques contenues dans la section
et en fonction des termes résiduels résultants de l’opération d’arrondi,

v?i (tn+ 1
2 ) = (NT (tn)/NP )

∑nPi
(t)

k=1 vki (tn+ 1
2 ) +NR

i (tn+ 1
2 )v?i (tn)

(NT (tn)/NP )nPi(tn+ 1
2 ) +NR

i (tn+ 1
2 )

, (7.3.33)

où vki = vk si vk ∈ Ivi et vki = 0 sinon, nPi(tn+ 1
2 ) est le nombre de particules stochastiques dans

la i-ème section (Eq. (7.3.18)) et NR
i (tn+ 1

2 ) est la densité de nombre résiduelle dans la section après
application de la croissance surfacique. v?i doit être mis à jour de nouveau après la réallocation
des particules due à l’agglomération, pour en déduire v?i (tn+1) de l’équation (7.3.33) avec NT (tn+1),
vki (tn+1), NR

i (tn+1), v?i (tn+ 1
2 ), nPi(tn+1).

Une fois que v?i est déterminé, les particules assignées à la i-ème section sont distribuées dans
la section suivant deux étapes:

• D’abord, les b∆nPi(tn+ 1
2 )e particules sont allouées aléatoirement dans chaque section aux

tailles vk(tn+ 3
4 ), qui sont des tirages d’une variable aléatoire v suivant une distribution linéaire

par parties définie par la PDF.

p(v | vinfi , vsupi , wi, wi+1) = 2wi(v
sup
i − v) + wi+1(v − vinfi )

(wi + wi+1)∆v2
i

. (7.3.34)

Dans cette distribtution, les poids wi sont calculés comme les variations des densités de nombre
à v?i ,

wi = ∆ni(tn+ 1
2 ) + ∆ni(tn+ 1

2 )−∆ni−1(tn+ 1
2 )

v?i − v?i−1
(vinfi − v?i−1) ,

wi+1 = ∆ni(tn+ 1
2 ) + ∆ni+1(tn+ 1

2 )−∆ni(tn+ 1
2 )

v?i+1 − v?i
(vsupi − v?i ) ,

avec ∆ni(t) = ∆nPi(t)NT (t)/(NP∆vi) (Eq. (7.3.18)). Une telle distribution garantit une
allocation relativement continue des particules stochastiques. Cependant, elle ne garantit pas
strictement la conservation de la masse/volume de particules.
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Table 7.2: Agglomeration parameters

Case 2(a) 2(b)
Initial e−v e−v

Agglo. kernel 1 vi + vj

Number of sections 40 40
Grid type: Exponential, α 1.17 1.25
Size range 6.7 · 10−2 – 209 6.7 · 10−2 – 2006

• La conservation de la masse est obtenue dans un second temps en appliquant un facteur de
correction Ki

Ki = v?i (tn+ 1
2 )

(1/nPi(tn+ 3
4 ))
∑nPi

(tn+1)
k=1 vki (tn+ 3

4 )
, (7.3.35)

Ensuite,

vki (tn+1) = Kiv
k
i (tn+ 3

4 ) , (7.3.36)

et la masse est conservée au cours de l’étape de réallocation.

La taille de nucléation est fixée à la limite inférieure de la plus petite section vo. Comme
les étapes numériques correspondant aux phénomènes de nucléation/agglomération et de crois-
sance sont séquentielles dans le modèle, il est nécessaire de prendre en compte la dispersion des
tailles de nucléation effectives dues à la croissance des particules pendant un pas de temps de
nucléation/agglomération. Pour b∆nPo(tn+ 1

2 )e > 0, les b∆nPo(tn+ 1
2 )e particules sont par conséquent

allouées aléatoirement suivant une distribution uniforme entre vo et vo +G(vo)δt.

Pas de temps Comme indiqué précédemment, une méthode de pas de temps fractionnaire
est adoptée. La notation δt utilisée plus haut était schematique pour expliquer la structure de
l’algorithme. Le pas de temps caractéristique du premier sous pas de temps de croissance (Fig. 7.27)
est calculé en suivant une condition usuelle de Courant Friedrichs Lewy (CFL) (Ferziger and Perić,
1996), basée sur le taux de croissance G(v) et la discrétisation des sections

δtG = C min [∆v0/|G(v0)|, · · · ,∆vM−1/|G(vM−1)|] . (7.3.37)

Les calculs ont été réalisés avec C = 0.01 afin de garantir la stabilité des parties sectionnelles et
stochastiques.
Le temps caractéristique de nucléation-agglomération de l’algorithme est déterminé dans le but de
limiter le changement relatif de la distribution

δtA = (γ + σ) NT∣∣∣Ḣo + ȦT
∣∣∣+∑M−1

i=0

∣∣∣Ȧi∣∣∣ , (7.3.38)

avec σ = 0.02 dans les simulations présentées ci-après. Si la nucléation domine, comme par
exemple au début d’un calcul avec une distribution initiale négligeable et présente en majorité dans
la plus petite section, de plus larges pas de temps peuvent être autorisés afin de permettre à NT

de s’accrôıtre plus rapidement jusqu’à ce que l’échange de particules entre les sections deviennent
significatif. Dans ce cas, γ = 1 est utilisé dans l’équation (7.3.38). Ce régime spécifique ’nucléation-
dominant’ est considéré comme atteint à un certain instant si:

∣∣∣Ḣo(t) + ȦT (t)
∣∣∣ > 100 ·

M−1∑
i=0

∣∣∣Ȧi(t)∣∣∣ , (7.3.39)

N0(t)/NT (t) > 0.99 . (7.3.40)
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Figure 7.28: PSD n(v; t). Croissance: cas 1(a) du tableau 7.1. Pointillés: Distribution initiale
(la discontinuité est entre les abscisses centrées des sections). Temps normalisé: t = 60. Ligne
avec diamants vides: méthode sectionnelle 2-points. Ligne avec cercles pleins: méthode hybride,
NP = 103 (les valeurs sont données à v?i (Eq. (7.3.33)).

Sinon, γ = 0 est imposé dans (7.3.38) afin de résoudre les régimes plus généraux de l’évolution
de la PSD.

Pour les cas tests considérés dans cette étude, δtG ≤ δtA et une ou plusieurs sous-itérations de
croissance peuvent être appliquées entre deux sous-itérations d’agglomération/nucléation. δtG est
ensuite ajusté afin que δtA soit un de ses multiples, tout en vérifiant la condition de stabilité.

Cas tests analytiques
Des cas tests analytiques pour lesquels les termes sources ont des formes simplifiées, permettant
de connaitre la solution analytique ont été simulés. Cela permet d’évaluer de manière détaillée la
précision de la méthode numérique. Les conditions initiales et termes sources sont diponibles dans
la thèse complète (en anglais). Seules les figures illustrant les principaux résultats sont reportées
dans ce résumé en français.
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Table 7.3: Précision et coût CPU. Cas 1: Pure croissance, Cas 2: Pure agglomération, Cas 3:
Croissance/perte & agglomération. Cas 4: Nucléation & croissance.

Cas Erreur Methode
Sectionnelle 2pt Sectionnelle 3pt Hybride

1(a)

εM1 (%) -0.13 - -0.0078
εM2 (%) 1.5 - -0.012
εEMD 0.11 - 1.9e-17

Temps CPU 1.0 - 1.1

1(b)

εM1 (%) -2.9 -2.9 -2.7
εM2 (%) 770 845 105 -5

Temps CPU 1.0 1.0 1.4

2(a)

εM1 (%) 0.4 0.4 -0.1
εM2 (%) 1.6 1.6 0.7
εEMD 0.006 0.006 0.013

Temps CPU 1.0 1.0 1.3

2(b)

εM1 (%) -1.1 -1.1 -2.2
εM2(%) 0.4 0.4 -1.4
εEMD 0.0008 0.0008 0.0048

Temps CPU 1.0 1.0 1.2

3(a)

εM1 (%) 5.4 5.6 -0.5
εM2 (%) 48 783 54 1.8
εEMD 0.62 0.19 0.06

Temps CPU 1.0 1.1 1.7

3(b)

εM1 (%) 5.4 5.7 0.9
εM2 (%) 22 141 49 16
εEMD 0.60 0.17 0.10

Temps CPU 1.0 1.0 1.3

3(c)

εM1 (%) 5.7 5.5 0.4
εM2 (%) 9 811 49 17
εEMD 0.57 0.16 0.13

Temps CPU 1.0 1.0 1.1

3(d)

εM1 (%) 0.6 0.5 0.9
εM2 (%) 776 -1.4 16
εEMD 0.44 0.08 0.10

Temps CPU 1.0 1.1 0.1

3(e)

εM1 (%) 5.4 5.8 1.1
εM2 (%) 760 33 32
εEMD 0.47 0.24 0.09

CPU time 1.0 1.1 1.2

4

εM1 (%) -3.4 -3.4 -3.4
εM2 (%) 696 121 60 -9
εEMD 0.66 0.18 0.02

Temps CPU 1.0 1.0 1.5
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Figure 7.29: Distribution de tailles n(v; t) · v. Croissance: cas 1(b) du Tableau 4.1. Triangles:
distribution initiale. Symboles plus: solution analytique. Ligne avec des diamants vides: méthode
sectionnelle 2-points. Ligne avec des cercles: méthode sectionnelle 3-points (Park and Rogak, 2004).
Diamants pleins: méthode hybride sans terme résiduel, αR = 0, NP = 103.
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(d) NP = 103, αR by (4.2.22).

Figure 7.30: PSD n(v; t). Agglomération à fréquence de collision constante: cas 2(a) du Tableau 4.2.
Points: distribution initiale. t = 10, pointillés: solution analytique, croix: méthode hybride. t = 20,
ligne pleine: solution analytique, plus: méthode hybride. (a)-(c): sans terme résiduel, αR = 0. (d):
avec terme résiduel (Eq. (7.3.30)).
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Figure 7.31: PSD n(v; t). Agglomération à fréquence de collision dépendante de la taille: cas 2(b)
du tableau 7.2. Points: distribution initiale. t = 0.5, pointillés: solution analytique, croix: méthode
hybride. t = 2, ligne pleine: solution analytique, plus: méthode hybride, NP = 104.
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Figure 7.32: Distribution de tailles n(v; t) · v. Croissance de surface (G(v) = v) & agglomération:
cas 3(a), 3(b), 3(c) du Tableau 4.3. βo: fréquence de collision constante (Eq. (4.3.6)). Pointillés:
distribution initiale. t = 7, lignes à pointillés-points: solution analytique. Ligne avec diamants vides:
méthode sectionnelle 2-points. Ligne avec cercles vides: méthode sectionnelle 3-points. Ligne avec
cercles pleins: méthode hybride, NP = 103.
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Figure 7.33: Distribution de tailles n(v; t) · v. Croissance et agglomération: cas 3(d) du tableau 4.3.
Pointillés: distribution initiale. Pointillés et points: solution analytique à t = 7. Ligne avec
diamants vides: méthode sectionnelle 2-points (M = 80 sections). Ligne avec cercles vides: méthode
sectionnelle 3-points (M = 80 sections). Ligne avec cercles pleins: méthode hybride, NP = 103

(M = 40 sections).
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Figure 7.34: Distribution de tailles n(v; t)·v. Perte de surface (G(v) = −v) & agglomération: cas 3(e)
du tableau 4.3. βo: fréquence de collision constante (Eq. (4.3.6)). Pointillés: distribution initiale.
t = 5, pointillés-points: solution analytique. Ligne avec diamants vides: méthode sectionnelle 2-
points. Ligne avec cercles vides: méthode sectionnelle 3-points. Ligne avec cercles pleins: méthode
hybride, NP = 103.
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Figure 7.35: Distribution de tailles n(v; t)·v. Nucléation et croissance cas 4 du tableau 4.4. Pointillés:
solution analytique à t = 9.7. Ligne avec diamants vides: méthode sectionnelle 2-points. Ligne avec
cercles vides: méthode sectionnelle 3-points. Ligne avec cercles pleins: méthode hybride, NP = 103.
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