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A B S T R A C T

The study of critical phenomena in two-dimensional statistical physics
is mainly performed with the help of conformal field theory and in-
tegrable models. The relationship between these two formalisms is
an active field of research, particularly in the framework of the so-
called non-rational theories. This thesis is focused on certain critical
systems described by an extended conformal theory, i.e. a theory that
presents additional symmetries. The first problem studied is the fully
packed loop model (FPL). Loop models are non-local statistical mod-
els based on the description of assembly of polymers . In particular,
they represent the interfaces formed within a particular spin model.
Their continuous limit is a non-rational conformal theory. The FPL
model is integrable and its spectrum reflects an underlying symme-
try Uq(sl(3)). The link between this model and the W3 symmetry, a
conformal symmetry extended by a three-dimensional field, is stud-
ied in detail, numerically (by exact diagonalization) and analytically.
The relationship with loop models naturally leads to the study of the
non-scalar operator content of the W3 theory. The second problem
concerns the calculation of entanglement in unidimensional quantum
systems. In this context, the preferred object of study is the entropy
of entanglement between a subsystem and its complement. For the
fundamental state of a spin chain, the behaviour of this entropy as a
function of the size of the subsystem is a clear marker of the critical-
ity of the chain. In this manuscript, a new way of calculating these
entropies in critical models is presented. It is based on conformal
theories extended by a symmetry called orbifold. This method is par-
ticularly applicable to entropies of excited states or disjointed subsys-
tems. Here the Yang-Lee and Ising models serve as examples, entropy
is calculated analytically and compared to a numerical study.
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R É S U M É

L’étude des phénomènes critiques en physique statistique bidimen-
sionnelle a pour outils privilégiés la théorie conforme et les modèles
intégrables. La relation entre ces deux formalismes est un domaine
de recherche actif, notamment dans le cadre des théories dites non-
rationnelles. Cette thèse s’intéresse à certains systèmes critiques dé-
crits par une théorie conforme étendue, c’est-à-dire présentant des
symétries supplémentaires. Le premier problème étudié est le mo-
dèle de boucles entièrement compactes (fully packed loop model,
FPL). Les modèles de boucles sont des modèles de physique statis-
tique non locaux, s’inspirant de la description des polymères. Ils re-
présentent notamment les interfaces formées au sein d’un modèle de
spin. Leur limite continue est une théorie conformes non-rationnelle.
Le modèle FPL est intégrable et son spectre reflète une symétrie sous-
jacente Uq(sl(3)). Le lien entre ce modèle et la symétrie W3, une sy-
métrie conforme étendue par un champ de dimension trois, est étudié
en détail, numériquement (par diagonalisation exacte) et analytique-
ment. La relation avec les modèles de boucles mène naturellement à
l’étude du contenu non-scalaire de la théorieW3. Le second problème
concerne le calcul de l’intrication dans des systèmes quantiques uni-
dimensionnels. Dans ce cadre, l’objet d’étude privilégié est l’entropie
d’intrication entre un sous-système et son complément. Pour l’état
fondamental d’une chaîne de spin, le comportement de cette entro-
pie en fonction de la taille du sous-système est un marqueur clair
de la criticalité de la chaîne. Dans ce manuscrit, une nouvelle ma-
nière de calculer ces entropies dans le cadre des modèles critiques
est présentée. Elle s’appuie sur des théories conformes étendues par
une symétrie dite d’orbifold. Cette méthode est particulièrement ap-
plicable aux entropies d’états excités ou de sous-systèmes disjoints.
Ici les modèles de Yang-Lee et d’Ising servent d’exemples, l’entropie
est calculée analytiquement et comparée à une étude numérique.
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On the Continuity
of the Gaseous and
Liquid States of
Matter [6]

I N T R O D U C T I O N

Critical phenomena appear in a wide range of physical systems. Clas-
sical examples include the critical points of water, or the ferromag-
netic transition in metals. A modern example list would also include
turbulence, polymer physics, and multiple condensed matter exam-
ples (critical quantum chain, quantum Hall effect, . . . ). These systems
are extremely constrained by their symmetries, to the extent that, in
specific circumstances, their behaviour can be fully determined by
these symmetries alone. The aim of this thesis is to apply the meth-
ods of conformal field theories to study various statistical systems at
their critical point. This introduction is structured as follows: after a
short historical recapitulation, basic concepts of conformal field the-
ory will be reviewed, with a focus on the bootstrap method. Then we
will describe extended conformal field theories, using the Z2 orbifold
as an example. Lastly we will rapidly describe some relevant discrete
statistical systems, and common numerical methods.

1.1 historical considerations

The scientific study of criticality started in earnest at the beginning
of the 19th century. One of the main question at that time involved
phase transition in liquids. Charles Cagniard de la Tour, discovered
in 1823 that above a certain temperature and pressure, the clear phase
transition between liquid and gas disappears and the transformation
becomes continuous, in modern term the fluid enters the supercritical
phase. Scientists such as Faraday and Mendeleev took up the subject
but it is the work of Thomas Andrew, which proved to be critical (no
pun intended).

In 1869, he studied the phase transition in carbon dioxide by mea-
suring both pressure and volume along isotherms. He carefully char-
acterized the position of the point where liquid and gas become in-
distinguishable (located at a reasonable 31 ◦C for CO2). At that exact
point, the liquid starts to get cloudy and diffuse. Andrew christened
the word “critical” to talk about this precise point (which rolled more
off the tongue than “disliquefying” that Faraday used).

A theoretical framework was developed subsequently by Gibbs,
Maxwell and Van der Waals, forming the basis of modern thermo-
dynamic theory. In Van der Waals analysis [142] the density of the

1



2 introduction

two coexistent phases, near the critical point, should approach each
other like the square root of the temperature.

ρg(T)− ρl(T) ∝ (T − Tc)
β with β =

1
2

This behaviour is now considered a staple of critical system. β = 1/2
was the first critical exponent defined. Amusingly, it happens to be way
off marks for this system, in which the critical exponent is closer to
1/3.

On the theoretical side, things went relatively quiet for more or
less twenty years. Precise measure of critical exponents were (and
still are) difficult to do, and the deviations from the theory of Van der
Waals were few. On the experimental side however, many new criti-
cal points were discovered in various systems. One of the most im-
portant in terms of the theoretical development that followed was the
discovery, by Pierre Curie, of a critical point in ferromagnetic materi-
als. Ferromagnetic iron, heated up to the Curie temperature (1043 K),
suddenly lost any magnetization it could have had. The various at-
tempts to simplify the complex magnetization models and to explain
this behaviour lead to the definition of a very simplified magnetiza-
tion model by Lenz in 1920, the Ising model [30, 87].

In the Ising model, the magnetic spins can only take two values
σ = ±1, and the interaction happens between direct neighbours. The
energy of a configuration is hence:

E = −J ∑
i,j neighbours

σiσj

Depending on the sign of J, the model is either ferromagnetic (J > 0)
or anti-ferromagnetic (J < 0)

The model was going to become one of the, if not the most, stud-
ied model of statistical physics, but the lack of a phase transition in
one dimension disheartened its early investigators. Ising, which was
Lenz student at that time, conclude in his dissertation in 1928 that the
model does not have a phase transition in one dimension. Heisenberg
built on Ising legacy to develop his own model, giving a more real-
istic spin interaction to the atoms. His hope was that the additional
sophistication would be enough to obtain a phase transition. In his
own words : “Ising succeeded in showing that also the assumption of
directed sufficiently great forces between two neighbouring atoms of
a chain is not sufficient to explain ferromagnetism.”

Bethe found in 1935 the generic form of the eigenvectors of the
Heisenberg model [21]. The Bethe ansatz became one of the main tool
in the analysis of integrable models, but, like the Ising model, not
before going through a period of relative obscurity. The Ising model
was revived one year after, by Rudolf Peierls [119] (helped by Bethe)
who showed with a simple argument (nicknamed Peierls droplets)
that the two-dimensional Ising model did exhibit a phase transition.
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Lars Onsager was, it
seems, not known
for his pedagogy

For example the
Ising phase
transition
correspond to the
broken Z2
symmetry between +
and − spins

One of the first
application of
renormalization to
the Ising model
comes from the
well-known paper

“Critical exponents
in 3.99 dimensions”
[148]

This led to a flurry of work to determine this critical point. In 1941

Krammers and Wannier [102] determined the exact critical tempera-
ture using a duality between high and low energy behaviour. And,
in a seminal presentation in 1942, Lars Onsager (a polymath, who
later won a Nobel Prize for chemistry) announced a solution for the
Ising model in two dimensions [113]. In a large part his result can be
considered as the starting point of the study of integrable models in
statistical physics. Many physicists tried to simplify his result, or to
express it in a more elegant fashion, and these attempts later give way
to a complete set of tools at the heart of modern integrable theory.
Those impressive developments only happened in two dimensions.
Despite high hopes the three-dimensional case remained closed.

At the same period, Lev Landau formed a comprehensive field-
theoretical description of generic phase transitions. His main contri-
bution to the subject was to associate a phase transition to a broken
symmetry in the theory [105]. Landau approach is strictly mean-field.
In most real critical systems (at least in dimension lower than four) lo-
cal fluctuations keep the critical point away from the Landau solution.
However, his approach was pioneering in the sense that it unified ev-
ery critical theory behind an identical formalism.

A new set of ideas emerged in the sixties, with, at the center, scale
covariance and renormalization. Renormalization emerged as a way to
deal with perturbative expansions in quantum field theory. It con-
sisted in adding a dependence on the scale in the parameters of a
Lagrangian. A deeper understanding of what was at that point a rel-
atively empirical method was obtained through statistical physics by
Leo P. Kadanoff who, in 1966, introduced the idea of the renormaliza-
tion group [94–96]. The works of Kenneth Wilson and Michael Fisher
[69, 147] gave substance to these ideas and introduced important new
concepts.

In the case of the ferromagnetic Ising model, to which it was first
applied, the statistical renormalization transformation consists in a
form of coarse-graining, where close spins are averaged to form a
new model at a different scale. If one starts at a temperature below
the critical point, under repeated application of this transformation,
the effective temperature of the model will decrease until it reaches
the zero temperature point where all spins are oriented in the same di-
rection. Similarly, if we start above the critical temperature, the model
will converge toward the high temperature point. If the temperature
is exactly the critical temperature, the effective temperature does not
change under the renormalization group. Hence, the Ising model has
three fixed point, two stable ones at zero and infinite temperature re-
spectively, and an unstable one at the critical point. Wilson remarked
that during the renormalization process, a lot of the details of the
interaction were lost. This created a new justification for the univer-
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Figure 1.1: Renormalization flow for the Ising model, left to right, starting
at two different temperatures, slightly below criticality (top), and
at criticality (bottom).

sality of critical points: they are the end-points in a generic flow of
parametrised Hamiltonians.

Influenced by works on current algebras (Gell-Mann [79]), Wilson
also put forward the concept, in 1969, of Operator product expansions
[146]. The idea consists in re-expressing two fields close to each other
as a sum of fields, effectively giving an algebra structure to the op-
erators in the theory. Similar concepts were also, seemingly inde-
pendently, developed by Kadanoff and Polyakov. While Wilson him-
self did not venture much in that direction [124], multiple groups
(Polyakov 1974 [125], Mack 1977 [110], Gatto et al. 1973 [68]) realized
that if the system was also supposed invariant under conformal trans-
formation – a generalization of scale transformations – the operator
product expansions simplified.

Belavin, Polyakov and Zamolodchikov understood in 1984 [14],
how this conformal symmetry, in two dimensions, opened the pos-
sibility of completing the OPE program analytically. One of the first
application of this formalism to statistical physics is due to Cardy [37],
and it led to the classification of many critical point. These progress
were paralleled with the development of the theory of quantum inte-
grable models. The Bethe Ansatz underwent a renewal in 1963, with
the work of Lieb and Liniger [109]. Later, the Yang-Baxter relation
(1968 [151] and 1971 [12]) gave a common formalism to the field. It
led to deep mathematical development at the interface, such as the
notion of quantum groups [55]. The relation between integrable mod-
els and conformal field theory in two dimension has been extremely
fruitful, yet many questions remain open.
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The two different
stereographic
projections each
cover the whole
sphere except for one
of the pole. Both
coordinates live in
the complex plane.

1.2 conformal field theory in two dimensions

The aim of this section is to provide a very basic introduction to
Conformal Field Theory (CFT), and to fix notations for the rest of the
thesis. More comprehensive references include the very well-known
yellow book [73] by P. Di Francesco, P. Mathieu and D. Senechal,
conformal invariance and critical phenomena by M. Henkel [82], the
more mathematical courses by M. Schottenloher [133] or K. Gawedski
[78] the recent CFT review by S. Ribault [129] and many others.

1.2.1 Conformal symmetry

Let Ω be a two-dimensional smooth manifold, equipped with a metric
g, with the associated distance measure:

d2s = gµνdrµdrν .

We will consider theories covariant under Weyl transformations, trans-
formations of the metric of the form:

gµν(r)→ g′µν(r) = Λ(r)gµν(r) .

Where Λ is a smooth, positive, real function.
The metric gµν(r) is the bilinear form associated with the local

scalar product between any two tangent vectors at a position r. Hence,
in geometric terms, a Weyl transformation is a local scale transforma-
tion : lengths are changed, but not angles. The equivalence class of
metrics by all possible Weyl transformations is named a conformal
structure or conformal class.

Conformal transformations are angle-preserving maps. More for-
mally a diffeomorphism between two Riemannian manifolds is con-
formal if the pulled back metric is the same as the original one up to
a Weyl transformation.

A canonical example of a conformal transformation is the stereographic projec-
tion. The sphere S2 = {(x, y, z) ∈ R3|x2 + y2 + z2 = 1} is usually represented
by the stereographic coordinates ζ and ξ:

ζ =
x + iy
1− z

(x, y, z) 6= (0, 0, 1) ,

ξ =
x− iy
1 + z

(x, y, z) 6= (0, 0,−1) .

The metric inherited from this embedding in R3 is the so-called round metric:

ds2 =
4

(
1 + ζζ̄

)2 dζdζ̄ . (1.1)

Like every conformal metric in two dimensions, the round metric is locally
conformally flat. It’s obvious from the expression 1.1 that there exists a Weyl
transformation that can, locally, map the metric to the flat metric.

Generically, for a metric of the form eσ(z)dzdz̄ (“conformal”), the curvature is
given by R = − 1

eσ ∆σ, where ∆ designs the Laplacian, hence:
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For a detailed
reference on

Riemann surfaces
see [71]

R =
(1 + ζζ̄)2

2
∆ log

(
1 + ζζ̄

)
= 2 .

As expected for a round sphere of radius one, the curvature is constant and
the total curvature (the integral of the scalar curvature) is equal to 8π.

The total curvature does not vanish, hence if the round metric can be made
locally flat after a Weyl transformation, it cannot be made globally flat. Case

in point, the Weyl transformation g → 1
4
(
1 + ζζ

)2 g flattens the metric on the
open set S2\{(x, y, z) = (0, 0, 1)}. The rest of the curvature is then localized
at the north pole (x, y, z) = (0, 0, 1). To see this explicitly consider the second
stereographic chart ξ. Outside of ζ = 0 and ξ = 0, the two coordinate are
mapped to each other through ζ = ξ−1, hence the metric and the curvature on
S2\{z = −1} can be written:

d2s =
1

(ξξ)2
dξ dξ , R = 4

(
ξξ
)2

δ(ξ) .

The scalar curvature is zero everywhere except at the north pole, ξ = 0 (ζ →
∞).

Another commonly used Weyl transformation is d2s = e2π(w+w)/L dw dw,
which deforms the punctured plane at the origin – i.e. the twice punctured
sphere – into a cylinder. Similarly, the cylinder has vanishing curvature ev-
erywhere. But if one compactifies it by adding the two points at infinity, the
curvature will be localized at these points.

Any two-dimensional oriented riemannian manifold is naturally a
Riemann surface, i.e. it admits an atlas whose transition functions are
holomorphic.

This stems form the fact that two-dimensional riemannian mani-
folds are locally conformally flat : there exists isothermal coordinates
around any point, that is coordinates in which the metric is of the
form g = Λ(x, y)(dx2 + dy2).

Since transition functions between isothermal coordinates preserve
the angles, they are either holomorphic or anti-holomorphic. Upon
adding a global orientation, one can make all the transition func-
tions holomorphic. Moreover, orientation preserving conformal trans-
formations coincide with holomorphic maps.

Riemann surfaces can be classified by the sign of their total Gaus-
sian curvatures, which does not change under Weyl transformations.
This separates them in three families:

• elliptic surfaces, with a positive curvature, for which the unique
representative is the Riemann sphere that we described previ-
ously,

• parabolic surfaces, with vanishing curvature, like the plane and
the various tori,

• hyperbolic surfaces, with negative curvature, the largest family.
It contains for example the open disk and higher genus surfaces
(with more than one “hole”).

More precisely, the uniformization theorem states that every simply connected
Riemann surface is conformally equivalent to one of three simply connected
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On the sphere, the
rotations z→ eiωz
correspond to
azimuthal rotation
(around z), scale
transformations
correspond to polar
rotation and
translations are
more difficult to
visualize.

surfaces, the Riemann sphere (for surfaces with positive total curvature), the
complex plane (zero curvature) or the open disk (negative curvature). For non
simply connected surfaces, the surface is the quotient of its universal cover
(which is a simply connected Riemann surface) by a discrete subgroup.

The Riemann sphere CP1 = C ∪ {∞} is the simplest of the three
simply connected Riemann surfaces. Up to conformal transformation,
it is the only Riemann surface of positive curvature. For physical ap-
plications of CFT one rarely works with the sphere equipped with the
round metric, but rather with the compactified plane with the metric
dsˆ2 = d dz̄, in which all the curvature is at infinity. Note that these
two metrics are in the same conformal class (up to a slight technical
issue : the Weyl factor vanishing at infinity).

The flat metric (around 0) on the compactified plane : ds2 = dz dz
is a natural choice. While there will be some foray on surfaces with
no or negative total curvature, most of this manuscript will take place
on the Riemann sphere, equipped with this metric.

A particular type of Weyl transformation on the sphere is given by:

d2s = dz dz→ d2s =
dz dz

(c z + d)2(c z + d)2
, with c, d ∈ C , cd 6= 0 .

Contrary to the transformation from the round to the flat metric, these
transformations leave the surface invariant, in the sense that there ex-
ist bi-holomorphic diffeomorphism from CP1 = C ∪∞ to itself, such
that the pull-back of the new metric gives back the flat metric. Those
are called the Möbius (or projective) transformations. They form a
group (under composition):

f : z→ az + b
cz + d

, a, b, c, d ∈ C , ad− bc = 1 . (1.2)

The elements of this group, named global conformal transformations
include the translations (z → z + b), rotations (z → eiωz, ω ∈ R)
and scale transformations (z → λz). The full group also contains an
additional transformation of the form:

z→ 1
cz + d

, c 6= 0 .

This last type of transformations is called special conformal transfor-
mation. Special conformal transformations are harder to represent on
the plane than the three other types of transformations (see figure 1.2).
On the cylinder (or the sphere) however, the inversion z→ 1

z is simply
a reflection with respect to the x-axis.

An important property of the global conformal transformations
is that there is always one (and only one) of them which send the
triplet {z1, z2, z3} ∈

(
CP1)3 to {0, 1, ∞}. The subgroup which does

not contain the special transformations can only fix the position of
two points.
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Figure 1.2: Effect of the conformal transformation z→ z/(z+ 1) on a square
lattice and a typical configuration of the Ising model at its critical
temperature.

The group of global conformal transformation 1.2, known as the
Möbius group, is in bijection with PSL(2, C).

ϕ : PSL(2, C)→ G
(

a b

c d

)
→
{

z→ a z + b
c z + d

}
.

This bijection implies that the set of global transformations is a Lie
group of (complex) dimension three. The associated Lie algebra is in
bijection with sl2. Instead of the traditional Pauli base {σx, σy, σz}, a
more adapted basis for this algebra is:

l0 =
σz

2
l±1 =

σx ± iσy

2
.

For εa infinitesimal real numbers, we see that:

ϕ (1+ ε0l0 + ε−1l−1 + ε+1l1) (z)

=
(1 + ε0/2)z + ε−1

ε+1z + (1− ε0/2)
≈ z + ε−1 + ε0 z + ε1 z2 .

Hence l−1 action on the group of conformal transformation corre-
sponds to an infinitesimal translation (associated to the Lie generator
∂z), l0 to a dilatation (z∂z) and l1 to one of the special conformal trans-
formations (z2∂z). The Lie group formed by rotation, translation and
scaling only have an associated algebra of dimension two.
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The large number of
conformal
transformations –
holomorphic
functions form an
infinite dimensional
vector space – is a
particularity of the
two-dimensional
case. A classic
theorem of Liouville
proves that in larger
dimension conformal
transformations are
far less common.

The quotient of a
manifold by a
discrete subgroup is
not always a
manifold and is
generically named
orbifold. The
surfaces we consider
here are nonetheless
always manifolds.

The Witt algebra
was first defined by
Cartan [39].

These Weyl transformations are the only one which do not modify
the surface. Now, we can slightly relax this constraint and look for
Weyl transformations that keep a surface invariant locally : on an
open set around every point there exists coordinates y, y in which the
metric has the same expression as before the Weyl transformation.

The transformation r → r′, of Jacobian matrix J, will be conformal
if and only if:

Jt g J = Λg

With Λ a smooth, positive, function. If the original metric is flat, this
implies:

Jt J = Λ 1 ⇒ det (J) = ±Λ and det (J) J−1 = ±JT

Re-expressed in term of derivatives, this relation gives the Cauchy-
Riemann equations (or the Riemann-Cauchy equations, their anti-
holomorphic equivalent):

∂x′

∂x
= ±∂y′

∂y
∂x′

∂y
= ∓∂y′

∂x

Hence, in two dimensions, the conformal transformations are the
holomorphic and anti-holomorphic functions. Only the former pre-
serves the orientation of the surface. These transformations are local
conformal transformations. They are not diffeomorphism in general, the
initial surface is only conserved locally.

An interesting surface (that will come in handy in chapter 3) is formed by
the disjoint union of two planes C, both with a cut along the semi-infinite
real line [0, ∞] on which they are joined. This object is a Riemann surface,
flat nearly everywhere. If the two planes have coordinates z1 and z2, one can
define a continuous coordinate z, on the whole surface, with z =

√
z1 on the

first surface and z = −√z2 on the second one. In term of z, the metric can be
written:

d2s =
1

4|z| dz dz .

Of course, outside of 0 and ∞, the change of variable y = z2 will give back a
flat metric. z → z2 is a transformation which is locally conformal, but is not a
diffeomorphism.

Following on the footsteps of the global transformations, we can
write local generators for the Lie algebra associated with these trans-
formations:

ln = −zn+1 ∂

∂z
.

This algebra is called the Witt algebra and the commutation relations
take the form:

[ln, lm] = zn+1∂z

(
zm+1∂z

)
− zm+1∂z

(
zn+1∂z

)

= zn+m+1(m + 1− n + 1)∂z

= (n−m) ln+m .
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In two dimensions,
the distinction is

made between
operators covariant

under global or local
conformal

transformations.
This lead to the

notion of
quasi-primary and

primary field,
respectively. In

dimension d ≥ 3
however there are no

local conformal
transformations, and
quasi-primary fields

are simply called
primary in this

context.

For the same
reasons, the

symmetry group of a
rotationally

invariant quantum
system is SU(2)

rather than SO(3).
If the initial Lie
algebra is finite

dimensional though,
the commutation
relations are not

modified.

In all the models we
consider, the central

charge is also real,
c ∈ R. For unitary

models this comes
from the “unitarity
of L0” (and in that

case c is positive). It
is also generally true
for statistical models

with real weights.

1.2.2 Conformal field theory

A conformal field theory is composed of operators {Oa}. Operators
are functions from the Riemann surface Ω to a complex vector space.
The full set of operators is called the spectrum of the theory.

The operators covariant under global conformal transformations
are called quasi-primary. Here this takes the following meaning, if f
is a global conformal transformation:

Oa(z)→ f ′(z)−ha f ′(z)−haOa(z) , (1.3)

ha and h̄a are called the chiral dimensions of the operator Oa. ∆a =

ha + ha and sa = ha− ha are respectively the conformal dimension and
the conformal spin of the operator. A scalar operator satisfies sa = 0.
An operator present in all theories is the identity operator 1, with
trivial action. It has ∆1 = 0 and s1 = 0.

States can be defined naturally by radial quantification. Usually
one assumes the existence of a state |1〉, every other states are then
defined as:

O(0)|1〉 = |O〉 ,

This relation defines the state-operator correspondence.

The symmetry algebra acting on the spectrum is not exactly the
Witt algebra. Because states in the spectrum are only defined up to a
multiplicative constant, hence the action of the symmetry group only
translates to a projective action on the spectrum. This gives an addi-
tional degree of freedom to the Lie algebra acting on the operators.
In full generality, the algebra is a central extension of the Witt algebra,
called the Virasoro algebra:

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2− 1)δn,−m1 , ∀ n, m ∈ Z . (1.4)

The factor c is called the central charge of the theory. The presence
of the central charge does not modify the space of global conformal
transformations, generated by L0, L1 and L−1, and all three keep the
same interpretations. Notably L0 is associated with scale transforma-
tions and L−1 with translations, which permits us to write:

(L0Oa) (z) = haOa(z) (L−1Oa) (z) = ∂zOa(z) .

The algebra is not complete yet, as we allowed the operators to
behave differently in z and z̄. This means that we need to consider
another algebra, commuting with the previous one, and which will
verify exactly the same relations:

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n + 1)(n− 1)δn,−m1

and [Ln, Lm] = 0 , ∀n, m ∈ Z .
(1.5)
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And for a given operator Oa, L0Oa = haOa. This means that, purely
in algebraic terms, the holomorphic and anti-holomorphic parts of
the operators have been dissociated. The two sectors are called chi-
ral, with a left-moving one (holomorphic) and a right-moving one
(anti-holomorphic). In a full theory, the two chiral sectors are rarely
independent: this translates into constraints on the spins of operators.
An example of the kind of restriction imposed will be given in chap-
ter 3. The equality between the holomorphic and anti-holomorphic
central charge, c = c usually holds, in statistical systems at least, and
will always be supposed true thereafter.

To prove that this algebra is indeed the only one possible, see that if ρ is a
projective representation of the conformal group, then, by definition:

ρ(g1)ρ(g2) = ω(g1, g2)ρ(g1g2) .

Elements of the associated Lie algebra are given by P = d
dt ρ(g(t))

∣∣∣
t=0

, where

g(t) is a differentiable path in the group of conformal transformation equal to
the identity in t = 0. The Lie bracket can be computed:

[P1, P2] =
d
dt

ρ(g1(t)) ρ(g2(t)) ρ(g1(t))−1 ρ(g2(t))−1
∣∣∣∣
t=0

.

Hence:

[P1, P2] =
d
dt

C(g1(t), g2(t))ρ(g1(t)g2(t)g1(t)−1g2(t)−1)

∣∣∣∣
t=0

.

With C a complex-valued function. We can use the product rule on the deriva-
tive (remembering that gi(0) = 1), and obtain:

[P1, P2] =
d
dt

C(g1(t), g2(t))
∣∣∣∣
t=0

1+
d
dt

ρ(g1(t)g2(t)g1(t)−1g2(t)−1)

∣∣∣∣
t=0

.

The second term is what one would obtain in a regular representation, but the
first one is new. In our case, it means that:

[Ln, Lm] = (n−m)Ln+m + cn,m1 , (1.6)

cn,m is anti-symmetric in its two variables and cn,n = 0. The transformation:

L̃n =
1
n
[L0, Ln] ∀n 6= 0 and L̃0 = L0 ,

is a Lie algebra homomorphism. Hence, up to equivalence, we can always
replace the Ln by the L̃n, and choose c0,n = 0.

Applying the Jacobi relation to 1.6 gives the following equation on c:

0 = (n−m)ck,n+m + (k− n)cm,k+n + (m− k)cn,m+k .

With n = 0:

(m + k)ck,m = (m− k)c0,m+k = 0 .

Hence, ck,m is only non-zero if k + m = 0, ck,m = ckδk,−m. And cm verify the
recursions relation:

ck+1
ck

=
2 + k
k− 1

.

Which finally implies ck ∝ (k − 1)k(k + 1), and the equation 1.4 is obtained.
The factor 1

12 is chosen to give to the free boson theory a central charge equal
to 1.
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A tacit assumption
of the convention 1.9

is that the identity
always appears in

the OPE of two
identical fields.

Many
counter-examples
exist, in extended

CFTs or in LogCFTs
for example. In some

of these cases, the
dual of an operator
O∗ can be defined as

the only field such
that 〈O(0)O∗(z)〉.

Operators in a conformal theory belong in a representation of the
Virasoro algebra. In a given representation, consider the eigenstate of
the operator L0 with the lowest (non-zero) eigenvalue ∆ : |O〉. Because
L0Ln|O〉 = (∆− n)Ln|O〉, this implies that Ln|O〉 = 0 , ∀ n > 0. This
type of state is called primary. ∆ = h + h is the conformal weight
of the state, it controls its behaviour under a scaling transformation.
The states L−r1 · · · L−rn L−s1 · · · L−smO are called the descendant states
and have dimensions h + ∑m

i=1 ri and h̄ + ∑m
i=1 si. The order of the

descendant is given by ∑n
i=1 ri + ∑m

i=1 si. The vector space formed by
the primary field and its descendants is the Verma module V(c, ∆).
Primaries operators O have the particularity to satisfy the relation 1.3
for any holomorphic function f :

Oprim.(z)→ f ′(z)−hprim. f ′(z)−h̄prim.Oprim.(z) . (1.7)

To fully define a CFT we need the spectrum but also the way dif-
ferent operators interact. In a general Quantum Field Theory (QFT),
it would be necessary to determine all possible correlation functions..
In a CFT, thanks to conformal invariance, we can restrict ourselves
to study the behaviour of two operators infinitesimally close from
one another, a fusion. The fusion creates one unique local operator
which can be decomposed into operators of the spectrum (or else the
CFT would not be closed under this operation). This decomposition is
called an operator product expansion (OPE). Formally, scale invariance
imposes the following form:

O1(z)O2(0) ≈
z→0

∑
Op∈spectr.

C
(
O1,O2,Op

)
zhp−h1−h2 zhp−h1−h2 Op(0) . (1.8)

The coefficients C (O1,O2,O3) are the structure constants of the theory.
With the spectrum, they fully determine correlation functions on the
sphere. Because the operators are defined up to a multiplicative con-
stant, the coefficients are not well-defined yet. A choice often made in
statistical physics is to normalize the two-point correlation function
of primary fields as follows:

〈O1(z)O1(0)〉 =
1

(z1 − z2)2h(z1 − z2)2h̄
⇔ C (O1,O1,1) = 1 . (1.9)

This relation allows to define conjugate states:

〈O| = lim
z→∞
z̄→∞

z2hz2h〈1|O(z, z) such that 〈O|O〉 = 1 .

The three-point correlation function of primary fields have a simple
expression:

〈O1(z1)O2(z2)O3(z3)〉

=
C(O1,O2,O3)

zh1+h2−h3
12 zh2+h3−h1

23 zh1+h3−h2
13 zh1+h2−h3

12 zh2+h3−h1
23 zh1+h3−h2

13

.
(1.10)
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The stress-energy
tensor has the same
meaning as in
traditional QFT:
when the theory has
a well-defined action,
Tµν is the functional
derivative of the
action with respect
to the metric.

Because the
stress-energy tensor
is not a primary, its
transformation
under a local
conformal
transformation is
more complicated,
and depends on c.
This gives another
possible
interpretation of the
central charge as an
anomaly. i.e. a
breaking of the
conformal symmetry
at the quantum level.
For this reason c is
sometimes referred
to as the conformal
anomaly. As a
consequence the
central charge
appears whenever a
scale is introduced
in the system (when
working in finite
volume or on a
curved background
for instance).

Stronger still, the three-point functions involving descendants can
all be computed in term of the three-point function of their primaries
and their conformal dimensions. Hence, only the structure constants
and dimensions of primary fields are needed to fully build the theory.
The primary fields are the building blocks of two-dimensional CFTs.

Two operators of particular importance are the formal power series
of the L−n and of the L−n:

T(z) = ∑
n∈Z

L−nzn−2, T(z̄) = ∑
n∈Z

L̄−n z̄n−2 .

Those two fields are local: they are simply the components of the
stress energy tensor of the theory : Tz,z = T(z), Tz,z̄ = Tz̄,z = 0, Tz̄,z̄ =

T̄(z̄). The stress energy tensor itself is not primary, using the corre-
spondence between states and operators, we can see it as a descen-
dant of the identity operator.

T(z)|1〉 = ∑
n≤−2

z−n−2Ln|1〉 , lim
z→0

T(z)|1〉 = L−2|1〉 .

OPEs between the stress-energy operator and primary operators are
quite simple:

T(z)Oa(0) ≈
haOa(0)

z2 +
∂Oa(0)

z
+ regular terms .

And the OPE between the stress-energy tensor and itself gives the
result:

T(z)T(0) =
c/2
z4 +

2T(0)
z2 +

∂T(0)
z

+ regular terms .

Using the relation 1.7 for individual primaries, the transformation
of a correlation function of primary operators can be written:

〈Oa1(z1) · · · Oan(zn)〉Ω
→∏

i
f ′(zi)

−hi f ′(zi)
−hi 〈Oa1(z1) · · · Oan(zn)〉 f (Ω) .

Where Ω and f (Ω) are respectively the original Riemann surface and
its image under the transformation f . While this relation is valid for
any holomorphic function, if the transformation is not global the sur-
face on which the correlation is computed is modified. In the event
where f is a global conformal transformation, these relations can
be used to find back the expressions 1.9 and 1.10 for the two and
three-point correlation functions. In contrast, a four-points function
cannot be entirely determined from the global conformal transforma-
tions alone. However, they depend on only one parameter instead
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Orthogonal, and not
orthonormal since
the inner product

need not be positive
definite for

non-unitary theories.

If one of the
descendant has
norm zero this

formula fails. We
will see what this

entails in the next
section.

of four, as there is always a transformation sending the quadruplet
{z1, z2, z3, z4} to {0, 1, z = (z3−z1)(z2−z4)

(z3−z4)(z2−z1)
, ∞}.

Inserting the OPE relation 1.8 in a four-points function gives:

〈O1|O2(1)O3(z)|O4〉
= ∑
Op∈spect.

C
(
O3O4Op

)
zhp−h3−h4 zhp−h3−h4〈O1|O2(1)|Op〉 .

The sum on the right-hand side can be split into sums over the dif-
ferent Verma modules of each primary. A Verma module V(c, ∆) is
a graded algebra, the set of descendants at a given level (n, n) forms
a vector space V(n,n)

c,∆ , and V(c, ∆) =
⊕

n,n V(n,n)
c,∆ . These vector spaces

have finite dimensions, and we can extract an orthogonal basis from
them.

For example, an orthogonal basis for the descendants at level (2, 0)
of a state |O〉, with dimension h, is formed by the two states:

K(2,0)
0 = L−2|O〉 and K(2,0)

1 =

(
L−2 −

8h + c
12h

L2
−1

)
O .

Given these bases we can use the completeness relation:

1 = ∑
O primary

∑
n,n∈N

dim
(

V(n,n)
c,∆O

)

∑
j=0

1

〈K(n,n)
j |K(n,n)

j 〉
|K(n,n)

j O〉〈K(n,n)
j O| .

And fully rewrite the four-point function as follows:

〈O1|O2(1)O3(z)|O4〉

= ∑
Op primary

zhp−h3−h4 zhp−h3−h4 ∑
n,n∈N

zn zn

〈K(n,n)
j |K(n,n)

j 〉

×
dim

(
V(n,n)

c,∆O

)

∑
j=0

C
(
O3,O4, K(n,n)

j Op

)
〈O1|O2(1)|K(n,n)

j Op〉 .

(1.11)

The structure constants of descendants are proportional to the three-
point function of their associated primaries, hence in full generality:

〈O1|O2(1)O3(z)|O4〉 = ∑
Op primary

C34p C12p F1,2
p→3,4

(z)F
1,2

p→3,4
(z) . (1.12)

the functions F isolated in 1.12 are entirely defined by the algebra
and only depends on the conformal dimensions of the operators.
These two functions are named conformal blocks, and have the form:

F : z→ zhp−h3−h4
(
1 + #z + #z2 + · · ·

)
.

We will use the term generic to describe a situation where operators
Op, appearing in the fusion, have different dimensions modulo 1. In
this case all the conformal blocks appearing in a given fusion are
linearly independent. While possible in theory, computing and using
directly these blocks in analytic computations is difficult.
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Such a state would
be of norm 0, the
representation to
consider in this case
are the Verma
module with the
sub-module
generated by the
null state quotiented
out.
Due to the Virasoro
algebra it is
sufficient that
L1(L−nO) = 0 and
L2(L−nO) = 0.
This in turns imply
the other constraints
since
Lp ∝ [Lp−2

1 , L2].

The origin of these
notations will be
made clear later
1.2.4.

1.2.3 Degenerate operators and rational models

An operator is degenerate if one of its descendant state vanishes. The
operator is degenerate at order n if the first descendant to vanish is
of order n:

L−nO = 0 ,

where L−nO is a linear combination of order n descendants. A nec-
essary condition for degeneracy is that L−nO is a primary operator.
This already constrains the dimension of the primary O as a function
of the central charge c, as the operator will have to verify:

Lp (L−nO) = 0 ∀p ≥ 1 . (1.13)

For example:

• If the operator O is degenerate at order n = 1, the condition
L−1O = 0 must be verified. Hence:

L1L−1O = 2L0O = 2∆O = 0

which boils down to ∆ = 0. Note that L−1 is also the generator
of the translations, so O is invariant under translation, so O can
only be the identity in this scenario.

• If the operator O is degenerate at order n = 2, the condition is
of the form

(
L−2 − αL2

−1

)
O = 0. Which gives two equations:

L2
(

L−2 − αL2
−1
)
O = 4L0 +

c
2
− 6αL0 = 0 ,

and:

L1
(

L−2 − αL2
−1
)
O = (3− 2α− 4α∆)L−1O = 0 ,

which fixes the expression of the degenerate descendant but
also add a constraint on the conformal dimension of O.

h =
(5− c)±

√
(c− 1)(c− 25)
16

.

Before introducing the general form of all the degenerate states,
let’s introduce more workable notations:

c = 1− 6Q2 Q = b−1 − b b =

√
1− c

24
+

√
25− c

24
.

These notations are coming from Liouville field theory. b is usually
called the coupling constant, and Q the background charge. If the central
charge is lower than one (or larger than 25), b2 is real. Additionally, in-
stead of defining an operator through its conformal dimensions (h, h),
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These operators form
the Kac table of the
CFT. Kac was one of
the first to study the

representation
theory of Virasoro

[92].

Unitarity is a sine
qua non condition in

quantum system,
less so in statistical

systems.

In the Ising model,
for T > Tc and

specific imaginary
values of the

magnetization ih,
the partition

function can be
equal to zero. These

zeros are all
localized below a
critical value ihc.

The density of zeros
near hc behaves, in

the continuum limit,
like (h− hc)−1/6.

This power-law
betrays the presence

of a CFT,
corresponding to the

Yang-Lee edge
singularity [106].

we will often use the conformal charge α, with its anti-holomorphic
counterpart α. Which are related to h and h through:

h = α(α−Q) h = α(α−Q) .

This expression is defined up to the reflection α → Q − α. Another
common notation is:

P = α− Q
2

h = P2 − Q2

4
. (1.14)

In general, the classification of all degenerate operators can be done
through the study of the modular structure of the theory (the consis-
tency of the theory on the torus) [137], or through the Coulomb-gas
analysis [54]. Here we will just list them without proof. The confor-
mal charge of a degenerate operator can be written:

αr,s =
Q
2
+

r
2

b− s
2

b−1 r, s ∈ Z .

And its fusion rules with a given operator Oα takes the form:

Oαr,s ⊗Oα =
r−1

∑
k=1−r

k+r≡1[2]

s−1

∑
l=1−s

l+s≡1[2]

Oα+ k
2 b+ l

2 b−1 . (1.15)

If b2 is a rational number, there exist two integers p and p′ such
that pb− p′b−1 = 0. In these circumstances, it is possible to close the
operator algebra with a finite number of primary fields. The fusion
relations between these operators are also well-known, they mimic
the fusion rules of the representation of the su(2) Lie algebra:

Oαr1,s1
⊗Oαr2,s2

=
r1+r2−1

∑
r=1+|r1−r2|
r+r1+r2≡1[2]

s1+s2−1

∑
s=1+|s1−s2|
s+s1+s2≡1[2]

Oαr,s .

With these fusion rules at hand, we can define minimal conformal field
theories, which have the minimal number of fields necessary to be
closed under the OPE. The minimal conformal field theory M(p, p′)
is formed by the primary {Oαr,s,αr,s}1≤r<p,1≤s<p′ and their descendants.
Additionally, if p = p′ + 1, the theory does not contain any operator
of negative dimension, and the theory is unitary. Examples of minimal
models include:

• M1,1 = {1}, the trivial CFT.

• M5,2 = {1, Φ} the simplest non-trivial theory. Φ is a field of
dimension −2/5 and Φ⊗Φ = 1⊕Φ. Because one of the field
has negative dimension, the model is also not unitary. This min-
imal model corresponds to the Yang-Lee edge singularity, and
its central charge is c = −22/5.
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• M4,3 = {1, σ, ε}, whose fields have dimensions {0, 1/8, 1}. Two
important operators of the critical Ising model are contained in
M4,3, σ is the spin operator and ε the energy operator. Fusion
rules give σ⊗ σ = ε⊕ 1, σ⊗ ε = σ and ε⊗ ε = 1. The model
has central charge c = 1

2 .

Another type of model that can be constructed easily (but whose con-
sistency is harder to infer) are the CFTs formed by the reunion of all
the degenerate operators {Oαr,s,αr,s}r,s∈Z. These CFTs are called gener-
alized minimal models.

The condition 1.13 : L−nO is a primary operator is called the null-vector con-
dition and is a very strong constraint. L−nO and O do not have the same
dimension, hence 〈L−nO|O〉 = 0. This relation stays true for all the descen-
dants of O, hence 〈L−nO|L−pO〉 = 0, and in particular the norm of L−nO
is 0. This does not mean O = 0 however, in general the inner product is not
positive definite.

1.2.4 Bootstrap

In a nutshell, the bootstrap approach consists in a method to iter-
atively build entire theories from their underlying symmetries and
potential additional constraints.

The starting point is a four-point function of scalar primary oper-
ators. The conformal block decomposition that was presented previ-
ously 1.12 gives:

〈
4

∏
i=1
Oi(zi)〉 = ∑

p
C12pCp34

∣∣∣F
1,2

p→3,4
(zi)

∣∣∣
2

= ∑
p

C12pCp34

O3O1

O2 O4

Op .

The previous equation was obtained by expanding the operator prod-
uct between O1 and O2. Naturally, the same result can be obtained by
starting with the expansion ofO1⊗O3 instead, the order in which the
products in the correlation function are taken should not matter. This
means that the following equation between conformal blocks should
be valid:

∑
p

C12p Cp34 F1,2
p→3,4

(zi)F 1̄,2̄
p̄→3̄,4̄

(zi)

= ∑
q

C13q Cq24 F1,3
q→2,4

(zi)F 1̄,3̄
q̄→2̄,4̄

(zi) .
(1.16)

This equation is known as the bootstrap equation. The underlying sym-
metry, called crossing symmetry is very natural and should be veri-
fied in every CFT. The expansion on the left-hand side is sometimes
called t-channel expansion by analogy with particle scattering, while
the right-hand side is the s-channel expansion.
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The “bootstrap”
image is used in

many domains and
supposedly

originates from the
German Baron

Munchausen’s book:
“Here I would have
undoubtedly died, if

not the strength of
my own arm,

grabbing my own
pigtail, had pulled
me, including my

horse —which I
squeezed tightly

between my
legs—out of it.”

A similar argument
can be made in

larger dimensions,
and can be used to

numerically estimate
critical exponents

[136]

In diagrammatic form:

∑
p

C12pCp34

O3O1

O2 O4

Op
= ∑

q
C13qCq24

O3O1

O2 O4

Oq . (1.17)

The conformal blocks only depend on the conformal dimensions of
the operators of the theory’s spectrum. If this spectrum is known, the
quadratic equations 1.16 are enough to entirely determine the three-
point functions (if the spectrum does not contain any degeneracies).
In turn, we saw that the fusion rules and the spectrum can, at least
theoretically, determine all the correlation functions of the theory. The
theory is building itself from its most basic bloc (the spectrum), effec-
tively pulling itself up by its own bootstraps.

The bootstrap equations also imply that the conformal blocks in
the s and t channels are linearly related. Again assuming generic di-
mensions, the number of operators appearing in the sum should be
the same on both sides of the equality.

In concrete examples, these equations are complicated to use di-
rectly. As explained before, conformal blocks are hard to compute,
and the OPE between generic operators creates a large, if not infi-
nite, number of fields. But the recursion relations have been used as
a consistency check of various CFTs [130].

If one assumes unitarity, the three-point functions must be real, and the boot-
strap equation for a correlation function consisting of four copies of the same
fields 〈O1O1O1O1〉 can be written:

∑
p

C2
11p|F

(s)
11→11(zi)|2 = ∑

q
C2

11q|F
(t)
11→11(zi)|2 (1.18)

Because the three-point functions are real, the equation is convex, which re-
strict the possible spectrum. The unitary minimal models happens to all lie on
the extremal boundary of the convex domain of the solution [122].

There is one interesting case where these equations simplify dras-
tically and the bootstrap becomes possible to solve analytically : if
one of the operator of the four-points function is degenerate. Sup-
pose that one of the operators in the correlation function is one of the
two operators degenerate at level 2 seen in the previous section, O2,1

(α2,1 = b/2) for example. The OPE of O2,1 with another operator Oα

is a special case of 1.15:

O2,1 ⊗Oα = Oα+ b
2
⊕Oα− b

2
.

Consider a four-points function of the form:

〈Oα3 |Oα2(1)O2,1(z)|Oα1〉 ,
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Riemann’s point of
view was that an
analytic function,
instead of being
defined through an
obscure series
expression, could
just as well be
defined by its
singularities. In the
case of
hypergeometric
functions this is
particularly notable,
many seemingly
obscure change of
variable formulas
become quite trivial
when considering
the “singularity”
definition. See the
appendix 4.A for
details on the
hypergeometric
function.

the sum in the bootstrap relations 1.16 will only have two terms. The
conformal blocks appearing in the fusions z → 0, z → ∞ and z →
1 form a basis of the same function space. They are holomorphic
nearly everywhere except at the positions 0, 1 and ∞ where they have,
respectively, singularities of the form zhp−h2,1−h1 , (1− z)hp−h2,1−h1 and
z−(hp+h2,1−h1), which translates as:

• zα1b and z(Q−α1)b for z→ 0,

• (z− 1)α2b, (z− 1)(Q−α2)b for z→ 1,

•
( 1

z

)(α3+b/2−Q)b
,
( 1

z

)−(α3−b/2)b
for z→ ∞.

Notice that the sum of these six exponents is equal to one, an in-
direct consequence of the residue theorem. A result due to Riemann
[43] states that the only solutions possible are in the vector space gen-
erated by the two functions:

I1(z) = zα1b (z− 1)bα2 2F1

[
bPt, b(Pt − 2P3)

1 + 2P1b
; z
]

,

I2(z) = z(Q−α1)b (z− 1)bα2 2F1

[
b(Pt − 2P1), b(Pt − 2P1 − 2P3)

1− 2P1b
; z
]

.

Where 2F1 is the hypergeometric function, and Pt =
1
2b + ∑i Pi, with the

notation Pi = (αi −Q/2) defined previously 1.14.

Generically one writes a Riemann scheme (or Riemann P-symbol) describing
the behaviour of the expected function(s) near singularities.





0 1 ∞

t1 u1 v1

t2 u2 v2





This reads as follows, the different functions should have singularities of the
form:

• Near 0, #zt1 + #zt2 ,

• Near 1, #(1− z)u1 + #(1− z)u2 ,

• Near ∞, #z−v1 + #z−v2 .

The relation ∑i ti + ui + vi = 1 is imposed by the residue theorem as the func-
tions are holomorphic outside of these three points. The only vector space
verifying these conditions is generated by:

I1(z) = zt1 (z− 1)u1
2F1

[
t1 + u1 + v1, t1 + u1 + v2

1 + t1 − t2
; z
]

,

I2(z) = zt2 (z− 1)u1
2F1

[
t2 + u1 + v1, t2 + u1 + v2

1 + t2 − t1
; z
]

.

The presence of two solutions is made obvious by the exchange t1 ↔ t2.



20 introduction

Some correlation
functions do not

have a trivial
monodromy, for

example in theories
involving

(para)fermions, or
non-local operators

in general.
Additionally, if

non-scalar operators
can appear in the

theory, imposing the
monodromy can be

trickier [61], and see
chapter 3 in this

thesis.

2F1 has an entire expansion for small z, hence this specific basis has
a diagonal monodromy around 0, when the variable winds around 0 I1

and I2 stay invariant up to a scalar:

I1(z) →
z	0

e2iα1b I1(z) I2(z) →
z	0

e2iQ(Q−α1)b I2(z) .

However around 1 (or ∞), their monodromy matrix is not diagonal.
The basis with a diagonal monodromy around 1 is given by:

J1(z) = zbα1 (1− z)bα2 2F1

[
bPt, b(Pt − 2P3)

1 + 2bP2
; 1− z

]
,

J2(z) = zbα1 (1− z)b(Q−α2) 2F1

[
bPt, b(Pt − 2P3)

1− 2bP2)
; 1− z

]
.

And the two basis are related through an invertible matrix M, Ii =

Mi,k Jk, with:

M =
π

sin(2πbP2)




1
Γ( 1

2+ρ+−−)Γ( 1
2+ρ+−+)

1
Γ( 1

2+ρ+++)Γ( 1
2+ρ++−)

1
Γ( 1

2+ρ−−−)Γ( 1
2+ρ−−+)

1
Γ( 1

2+ρ−++)Γ( 1
2+ρ−+−)


 .

ρε1,ε2,ε3 = b ∑
i=1

(−1)εi Pi

(1.19)

Another way, more canonical, to obtain the hypergeometric solutions would
be to use the null-vector equation of the operator O2,1:

(
L−2 − αL2

−1

)
O2,1 = 0 .

Generically, all the Virasoro generators L−n, applied to an operator in a corre-
lation function, have a differential expression. We already saw the example of
L−1O(z) = ∂zO(z), but in general:

〈(L−nO) (z)O(z2) · · · O(zp)〉

=∏
i

(
hi

(z− zi)2 +
∂z

(z− zi)

)
〈O(z1)O(z2) · · · O(zp)〉 .

Hence, the relation 〈Oα3 |
(

L−2 − αL2
−1
)
O2,1Oα2 (1)|Oα1 〉 = 0, will lead to a dif-

ferential equation of order 2, which happens to be a hypergeometric equation.

Identical arguments apply to the anti-holomorphic conformal blocks.
Hence, the full correlation function (with the two chiralities) can be
written:

G(z) = ∑
i,j

Xi,j Ii(z)Ij(z) = ∑
i,j

Yi,j Ji(z)Jj(z) .

At this point the two chiral sectors are still independent and up
to 4 fields can appear in each fusions : (hα+ε1b/2, hα+ε2b/2), ε1, ε2 ∈
{−1,+1}. Only two of them are scalar, the non-scalar operators will
not appear if we impose that the correlation function has a trivial
monodromy at every point:

G(z 	 a) = G(z) for a ∈ {0, 1, ∞}
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Initially, the result
was found for c > 1.
The extension to
c ≤ 1 is not just an
analytic
continuation and
took some time to be
understood [132,
156], numerically
and conceptually.

This will be true for G if and only if Xi,j and Yi,j are diagonal – In the
generic case again.

Xi,j = δi,jXi,i Yi,j = δi,jYi,i

Xi,i and Yi,i can be written in terms of the structure constants appear-
ing in the bootstrap equation:

X1,1 = C
(

α1 +
b
2

, α1,
b
2

)
C
(

α1 +
b
2

, α2, α3

)
,

X2,2 = C
(

α1 −
b
2

, α1,
b
2

)
C
(

α1 −
b
2

, α2, α3

)
.

Using the change of basis 1.19,

Yk,l = 0 ∀k 6= l ⇒∑
i

Xi,i Mi,k Mi,l = 0 ∀k 6= l

this reduces to:

X11

X22
=

M2,1M2,2

M1,1M1,2
=

C(α1 +
b
2 , α1, b

2 )C(α1 +
b
2 , α2, α3)

C(α1 − b
2 , α1, b

2 )C(α1 − b
2 , α2, α3)

.

These relations are valid for every α1, α2, α3, and give recursion rela-
tions for all the structure constants.

The operator O1,2 and O2,1 can be exchanged under the symmetry
b → −b−1. If both operators are present in the theory, another recur-
sion relation, involving −b−1 rather than b can be written through the
same method:

C
(

α1 − b−1

2 , α2, α3

)
C
(

α1 − b−1

2 , α1,− 1
2b

)

C
(

α1 +
b−1

2 , α2, α3

)
C
(

α1 +
b−1

2 , α1,− 1
2b

) =
N2,1N2,2

N1,1N1,2
.

If b2 is not a rational number, these two relations entirely fix the three-
point correlation functions (bZ + b−1Z is dense in R). The solution
admits an analytic form:

C(α1, α2, α3) =
Υb(−P1 − P2 − P3)∏{i,j,k}∈Cycl3

Υb(Pi − Pj − Pk)√
∏3

i=1 Υb(b + 2Pi)Υb(b−1 + 2Pi)
,

(1.20)

where the product in the numerator is over the 3 cyclic permutations
of {1, 2, 3}.

This is the Dorn-Otto-Zamolodchikov-Zamolodchikov (DOZZ) for-
mula initially found by [53, 153]. The development we followed is
closer to the one of Teschner [139]. The normalization is fixed by im-
posing C(α, α, 0) = 1.
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A theory is
consistent if every

four-points
functions verify the
bootstrap equations

Taking the operator
Oα1=0, one can

notice that
C(0, α2, α3) 6= 0
even if α2 6= α3.

This implies that 1
is not the only

operator of
conformal dimension

0. The theory is not
completely free of

degeneracy, in fact
every dimension

belonging in the Kac
table is represented

twice.

The function Υb is defined on the real interval ]0, b + b−1[ by:

Υb

(
b + b−1

2
− z

)
= exp



∫ dt

t


z2e−t − sinh

( z t
2
)2

sinh
(

b t
2

)
sinh

( t
2b
)




 .

The function can be extended outside of this interval by the relations (valid on
the full definition space C):

Υb(z + b) = γ(bz) b1−2bz Υb(z) ,

Υb(z + b−1) = γ(b−1z) b−1+2zb−1
Υb(z) ,

Υb(b + b−1 − z) = Υb(z) .

where γ(z) = Γ(z)
Γ(1−z) with Γ the Euler gamma function.

Υb(
b+b−1

2 ) = 1 and Υb is entire analytic everywhere, with 0 at:

z = −kb−1 − lb

z = (k + 1)b−1 + (l + 1)b
k, l ∈N .

This expression is valid for every scalar theory without degenera-
cies, but its interpretation can depend upon the exact spectrum of
primaries considered. For operators in the Kac table, appearing for
example in generalized minimal models, the expression 1.20 needs
to be regularized. The bootstrap method can also be applied to non-
scalar fields, with additional complications (as will be shown in the
third chapter). Remarkably, this expression can also be used to fully
define a theory with a continuous spectrum {Oα}α∈R and the struc-
ture constants 1.20: the Liouville conformal field theory.The consistency
of such a theory is hard to prove, short of obtaining an analytic ex-
pression for every four-points functions. Numerical tests have so far
not found any inconsistency [130].

We avoided until now the traditional representation of a QFT, with fields and
Lagrangians, and the Liouville CFT is entirely defined by its spectrum and
structure constants. Still, most CFT can have a Lagrangian formulation, and
Liouville is not an exception:

A =
∫

d2x
√

g
4π

[
ga,b∂a ϕ∂b ϕ + iQRϕ + 4πµe−2ibϕ

]
.

R is the curvature associated with the metric gµν and the following normaliza-
tion for the bosonic field ϕ will be used:

〈ϕ(x)ϕ(y)〉 = − log |x− y| .

The equation of motion is given by the Liouville equation (from which the
theory takes its name):

∆ (iϕ) = µbe−2biϕ ,

while the stress-energy tensor takes the form:

T(z) = − : (∂ϕ)2 : +iQ∂2 ϕ .

In this setting the primary operators can be expressed as Vertex operators, ex-
ponential of the bosonic field. If an operator is designated by its conformal
charge α, the associated vertex operator is:

Oα ≡ Vα(x) = eiαϕ(x) , with ∆α = α · (α−Q) .
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One of the
generalizations of
the Ising model
includes the
possibility of
introducing
vacancies in the
lattice. The model
then depends both
on the temperature
and on the chemical
potential. At a
unique point of its
phase diagram, three
phases met. This
point is the
tricritical Ising
model.

1.3 conformal field theory (extended)

1.3.1 Extended symmetries

In addition to conformal invariance, some field theories present a
symmetry under a larger group of transformations. In a field theory
these underlying symmetries can be obvious, such as the Z3 sym-
metry of the three-Potts model or not so obvious in the case of the
super-symmetry of the Ising model at its tricritical point.

The description of conformal field theories made in the previous
sections still apply to extended CFTs. However, in the spectrum, the
presence of an additional symmetry leads to multiple degeneracies.
In the case of the Pott’s model with three states (the minimal model
M(6, 5)) for example; one of the primary state is of dimension 3. The
solution often consists in classifying operators not only in terms of
their dimensions, but also in term of their behaviour under the new
symmetries. These new internal symmetries are also responsible for
the apparition of additional currents in the theory, which themselves
lead to new conserved charges. The modes generated by the current
will, together with the modes Ln, yields a new, “extended”, algebra,
containing Virasoro. The notion of primary field can then be refined:
only few primary fields are still primary under the large symmetry,
the rest will be re-expressed as descendants in the extended algebra.

For example, the spectrum of the three-Pott’s model, as a Virasoro
representation, contains the operators {1, ε, X, Y, σ, Z} of dimensions
{0, 2/5, 7/5, 3, 1/15, 2/3}. The fields (1, Y), and (ε, X) have integer
differences between their dimensions, which betrays the presence of
an additional symmetry: the three-Pott’s model has a W3 symmetry.
The conserved current is the operator Y ≡ W(z). The extended pri-
maries are {1, ε, σ, Z}, and the two Virasoro primaries X and Y can
be interpreted as extended descendants of, respectively, ε (at order 1)
and 1 (at order 3).

Restricting the spectrum of the theory is not just interesting for
computational purposes. Minimal models are one of the major ac-
complishments of conformal field theory, they permit to restrict the
space of all possible unitary models with c ≤ 1. However, this classifi-
cation fails for c greater than 1, where every model (with no primary
of negative dimension) is unitary. Additional symmetries allow to go
beyond the c = 1 frontier and introduce a partial classification in the
space of possible theories for larger c.

A standard method to build extended CFTs consists in including in
the spectrum an additional operator of integer (or half-integer) con-
formal dimension. Common examples include:

• Wn algebras with an additional current of dimension n [27, 66,
67].
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• WZW models are associated with a specific Lie algebra g. They
have dim(g) additional one-dimensional currents which behave
like the basis of g [144, 149].

• Orbifolds with additional currents of dimension 2 [52].

• Super-conformal theories, such as the tricritical Ising model,
contain a current of half-integer dimension [20].

1.3.2 The Z2 orbifold, algebraic perspective

One of the simplest non-trivial example can be found by adding a
unique primary operator of chiral dimensions (2, 0), temporarily nick-
named T̃(z). We will only work in the holomorphic sector, but the
same reasoning can be applied in both sectors. Because T̃ is primary,
its OPE with the stress-energy tensor T should verify:

T(z)T̃(0) =
2T̃
z2 +

∂T̃(0)
z

+ regular terms .

Additionally, the fusion between two operators T̃ will only create the
identity and its descendants, T̃ ⊗ T̃ = 1.

To see this, consider the following four-points function:

G : z→ 〈T|T̃(z)T̃(1)|T〉 .

Its conformal blocks in the limits z → 0 and z → ∞ are constrained by the
OPE T ⊗ T̃, and should verify:

• z→ 0, G(z) ∝
z→0

1
z2 ,

• z→ ∞, G(z) ∝
z→0

1
z2 .

Hence, in the limit z → 1, G(z) ∝ 1, which implies T̃ ⊗ T̃ = 1. This is a
consequence of a more general result: operators with integer dimensions form
a closed sub-algebra under fusion.

The standard normalization for the operator T̃ is not the most ap-
propriate in this context, and the convention 〈T̃(z)T̃(0)〉 = c/2

z4 will
be preferred.

This gives the following OPE for the operator T̃ with himself:

T̃(z) · T̃(0) = c
2z4 +

C(T̃T̃L−21)

〈L−21|L−21〉
T(0)

z2 +
C(T̃T̃L−31)

〈L−31|L−31〉
∂T(0)

z
+ · · ·

=
c

2z4 +
2T(0)

z2 +
∂T(0)

z
+ regular terms .

The operators T(0) = 1
2

(
T + T̃

)
and T(1) = 1

2

(
T − T̃

)
satisfy the

OPEs:

T(i)(z)T(j)(0) =
cδi,j

4
δi,j

z4 +
2T(i)

z2 +
∂T(i)

z
+ regular terms ∀i, j ∈ {0, 1} .
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Hence, both T(0) and T(1) behave like stress-energy tensors in two de-
coupled copies of a theory with central charge c/2. In this setup, T
and T̃ become the symmetric and anti-symmetric modes associated
with the operators T(i). In accordance, we will modify our conven-
tions and rename T = T(0) + T(1) → T̂(0) and T̃ = T(0) − T(1) → T̂(1).

Crucially, the OPE of T̃ = T̂(1) with a generic primary operator O is
also constrained. The four-point correlation function 〈O|T̂(1)(1)T̂(1)(z)|O〉
only have one canal in z → 1. This means that only one operator ap-
pears in the two other possible fusions, corresponding to the limits
z→ 0 and z→ ∞.

T̂(1)(z)O(0) = 1

zhOp−hO−2Op(0) .

With:

hOp − hO ∈
1
2

Z .

The function f (z) = 〈O(z1)T̂(1)(z)T̂(1)(0)O(z2)〉 is holomorphic everywhere
except in 0, z1 and z2. Near z = zi, the fusion rules impose the form f (z) = (z−
zi)

hOp−hO−2gi(z) and f (z) = z−4g0(z) near z = 0, where ga, a ∈ {0, 1, 2} are
holomorphic functions. The function ∂z f

f = ∂z (log(z)) can only have integer
residues outside of the three points 0, z1 and z2. Hence, the sum of the residues
in these three points should be an integer:

−4 + 2(hOp − hO − 2) ∈ Z → hOp − hO ∈
1
2

Z

We can then separate the space of primary states between:

• Untwisted states, for which the states appearing in the fusion
T(1) ⊗O have the same dimension as O up to an integer,

• Twisted states, where the same fusion leads to states with dimen-
sion hO + n + 1/2 with n ∈ Z.

For the two operators T(0) and T(1), untwisted states behave like pri-
mary states. Hence, if only the untwisted sector is taken into account,
the CFT we are considering is the tensor product of two CFTs of
central charges c/2 each. However a different modular invariant the-
ory can be built using the full spectrum – with both twisted and un-
twisted states – is considered, this CFT is called a Z2 orbifold conformal
field theory.

Both T̂(0) and T̂(1) admit a mode decomposition,

T̂(0)(z) = ∑
n

L̂(0)
n z−n−2 T̂(1)(z) = ∑

n∈Z/2
L̂(1)

n z−n−2 .

For T̂(1), twisted states impose the presence of half-integer modes. It
is easy to check that the commutation relations of the different modes
are similar to the Virasoro ones:

[
L̂(i)

n , L̂(j)
m

]
= (n−m)L̂(i+j)

n+m+
c

12
n(n + 1)(n− 1)δn,−mδi,j1

n, m ∈ 1
2

Z i, j ∈ Z2 .
(1.21)
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1

τ

Figure 1.3: Two representations of the torus, embedded in a three-
dimensional space and as a quotient of the plane by the lattice
Z + τZ. τ is the ratio of the two period of the torus. The Gauss-
Bonnet theorem can be used to prove that the genus of the torus
is 1.

1.3.3 The Z2 orbifold, geometrical perspective

While this construction gives an idea of the different types of restric-
tions applied on an extended CFT, it misses the remarkable interpre-
tation of orbifold CFTs. Indeed, these CFTs have a deeply geometric
construction. This is far from being the case for all extended CFTs,
and, for most the only possible construction is a variation on the
method exposed previously (the W3 CFT, studied in chapter 3, gives
a good example of a CFT whose extended symmetry does not have
any obvious interpretation).

We will present this construction on a torus. Contrary to the sur-
face of genus zero, all tori are not conformally equivalent. The set of
conformally distinct tori are labelled by a complex parameter called
τ, which is the ratio of the two periods in the flat representation of the
torus (see figure 1.3). Hence, on the torus, the partition (or generating)
function Z depends non-trivially on τ, and becomes an interesting
quantity to study. It is invariant under the modular transformations
on the torus, a group in bijection with PSL(2, Z), which consists in
the functions:

τ → aτ + b
cτ + d

, a d− b c = 1 a, b, c, d ∈ Z . (1.22)

In particular, it contains the two transformations T and S .

T : τ → τ + 1 and S : τ → −1
τ

which together, generate the full group.
Now, consider a CFT of central charge cM, where M stands for

Mother theory. To create the orbifold theory we will associate two com-
pletely identical copies of this CFT, labelled 0 and 1. On the torus, they
can be coupled through the periodic conditions, and the full partition
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τ

Z(τ)2 Z(2τ)

Z(τ/2) Z((τ + 1)/2)

τ

1

2τ

1

2

τ τ + 1

1

0

0

0 0

10

Figure 1.4: The four possible periodic conditions on the torus for the orb-
ifold conformal field theory. The two colors represent the two
independent CFTs. The parts surrounded with black correspond
to the primitive cells of each sector. Except for the top-left case,
twisted boundary conditions in one or more of the torus direc-
tions will couple both sectors together, in this case the new parti-
tion functions are equal to the original one, but on a larger torus.

function is separated in four sectors Zm,n, m, n ∈ {0, 1} depending on
its behaviour under a period shift (see figure 1.4). Z0,0 has periodic
boundary conditions in both direction while Z0,1, Z1,0 and Z1,1 have
“twisted” boundary conditions – which exchanges copies – respec-
tively vertically, horizontally and in both directions.

Zm,n(τ + 1) = Zm+n,n(τ) Zm,n(−τ−1) = Zn,m(τ) n, m ∈ Z2

ZOrb =
1
2

1

∑
m,n=0

Zm,n .

On one hand, in the partition function Z0,0, the two CFTs are com-
pletely disconnected. Hence, because the two CFTs are identical:

Z0,0(τ) = Z(τ)2 ,

where Z is the torus partition function of the mother theory.
On the other hand, it is easy to see on figure 1.4 that the coupled

sectors will have the expression:

Z1,0(τ) = Z(2τ) Z0,1(τ) = Z(τ/2) Z1,1(τ) = Z((τ + 1)/2) .
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In general, the
action of S mixes

the character.
Knowing how the

character transform
under both T and S

entirely fixes the
theory.

The full partition function is therefore given by:

ZOrb(τ) =
1
2
(Z0,0(τ) + Z0,1(τ) + Z1,0(τ) + Z1,1(τ))

=
1
2

(
Z(τ)2 + Z(2τ) + Z

(τ

2

)
+ Z

(
τ + 1

2

))
.

The central charge of the orbifold theory will be twice the one of the
mother theory, c = 2 cM.

The partition function of a CFT is often said to “contain the full
spectrum” of the theory. More specifically, for a theory which only
contains scalar operators, the following is true:

Z(τ) = ∑
O∈primaries

|χO(τ)|2 .

Where χO are the characters of the theory. They are defined as the
trace over the Virasoro representation associated with O.

χO(τ) = Tr
O module

[
e2iπτ(L0−c/24)

]
.

The characters can be viewed as the conformal blocks of the zero-
point correlation function on the torus. They transform diagonally
under the action of the operator T :

χO(τ + 1) = e2iπτ(hO−c/24)χO(τ) .

The partition function itself associates the two sectors (holomorphic
and anti-holomorphic) of the theory to create an object invariant un-
der modular transformations. When τ → i∞, the characters take the
form:

χO(τ) ≈
τ→i∞

exp (2iπτ(hO − c/24)) .

Assuming that the spectrum of the mother CFT is known and
non-degenerate, we find back the dichotomy between untwisted and
twisted states:

ZOrb(τ) =
1
2


Z(τ)2 + Z(2τ)︸ ︷︷ ︸

untwisted

+ Z
(τ

2

)
+ Z

(
τ + 1

2

)

︸ ︷︷ ︸
twisted


 . (1.23)

If we decompose the partition function Z in characters, we get:

∑
i<j

∣∣χi(τ)χj(τ)
∣∣2 + 1

2 ∑
i

(
|χi(τ)|4 + |χi(2τ)|2

)

+
1
2 ∑

i
|χi(τ/2)|2 + |χi((τ + 1)/2)|2 .

This expression allows us to find the characters of the orbifold CFT
(and hence its complete spectrum).
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The two
representations
(symmetric and
anti-symmetric)
generated by φi ⊗ φj
with i 6= j are
isomorphic. In the
orbifold theory we
only conserve one
copy.

More precisely, the object we consider are the highest-weight representations
of the algebra A, generated by the operator Π – which exchanges the two

copies – and the “neutral” combinations of descendant operators L̂(r1)
m1 · · · L̂

(rp)
mp

(all invariant under Π). The extended algebra of the orbifold contains the Vi-
rasoro algebra but is strictly smaller than the simple product of two Virasoro
algebras.

To extract the characters we can use the fact that they diagonalize the
operator T .

• The first terms,
∣∣χi(τ)χj(τ)

∣∣2, i 6= j, lead to operators of di-
mensions hφi + hφj . The states associated are simply the tensor
product of the two state |φi〉 and |φj〉 from the mother theory:
φi ⊗ φj. They are part of the untwisted sector.

• The next term can be decomposed as:

1
2
|χi(τ)|4 + |χi(2τ)|2

=

∣∣∣∣
1
2

χi(τ)
2 +

1
2

χi(2τ)

∣∣∣∣
2

+

∣∣∣∣
1
2

χi(τ)
2 − 1

2
χi(2τ)

∣∣∣∣
2

=
∣∣∣χ(φi⊗φi)(0̂)

∣∣∣
2
+
∣∣∣χ(φi⊗φi)(1̂)

∣∣∣
2

.

The two states (φi ⊗ φi)
(0̂) and (φi ⊗ φi)

(1̂) are respectively of
dimension 2hφi and 2hφi + 1. They correspond to the splitting
between anti-symmetric and symmetric representation of the
tensor product φi ⊗ φi. Both of them are also part of the un-
twisted sector.

• The two last terms form the twisted sector. Under the operator
T , the two characters χi(τ/2) and χi((τ + 1)/2) transform as:

(
χi
(

τ+1
2

)

χi
(

τ+2
2

)
)
→
(

χi
(

τ+1
2

)

e2iπτ(hφi−cM/24)χi
(

τ
2

)
)

Hence, the decomposition which is diagonal under T will be
written:

1
2
|χi(τ/2)|2 + |χi((τ + 1)/2)|2

=

∣∣∣∣
1
2

χi(τ/2) + e−iπ(hφi−cM/24)χi

(
τ + 1

2

)∣∣∣∣
2

+

∣∣∣∣
1
2

χi(τ/2)− e−iπ(hφi−cM/24)χi

(
τ + 1

2

)∣∣∣∣
2

=

∣∣∣∣χτ
(0)
φi

∣∣∣∣
2

+

∣∣∣∣χτ
(1)
φi

∣∣∣∣
2

.

In the limit τ → i∞, these two terms have the form:

χ
τ
(0)
φi

≈
iτ→∞

eiπτ(hi−cM/24) = e2iπτ(hi/2+cM/16−c/24) ,

χ
τ
(0)
φi

≈
iτ→∞

eiπτ(hi−cM/24+1) = e2iπτ(hi/2+cM/16+1/2−c/24) .
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The operators τ1 are
particularly

interesting, as they
can be interpreted as

“plane-switching”
operators. Starting

from the plane, they
can be used to build

up more complicated
surfaces (see

chapter 4 for details).

Again two types of fields appear, τφi ≡ τ
(0)
φi

, is of dimension

hφi /2 + cM/16, while τ
(1)
φi

is of dimension hφi /2 + 1/2 + cM/16.

In every extended CFTs, extended rational models – containing
only a finite number of operators under the extended algebra and
degeneracy in descendants – can be constructed, like in the stan-
dard Virasoro setup. These rational extended CFTs can sometimes
even coincide with (Virasoro) minimal models. For example the orb-
ifold formed by the Yang-Lee model will have operators with dimen-
sions {0,−1/5,−2/5,−11/40,−3/8} and is included in the minimal model
M3,10.

Extended symmetries also permit to define extended conformal
blocks, which sum over the descendants under the extended sym-
metry. In theory, they could be used to apply a bootstrap process to
extended CFTs. However, in contrast with the standard Virasoro case,
these conformal blocks are not, in general, computable through the
algebra alone. Some three-point functions of extended descendants
for example, can only be determined through bootstrap.

1.4 critical lattice models

Let’s put continuum field theories aside for a moment. Most two-
dimensional statistical models are defined on a discrete lattice. Crit-
ical systems were first studied through these discrete models, and
they never got out of fashion. The exact nature of the link between
discrete critical systems and conformal theories has been explored
since the 80s, starting with the seminal paper by Cardy [37] and fol-
lowed by, for example and without a specific order, the link between
the Restricted Solid On Solid (RSOS) model and minimal models [116],
the description of quantum group symmetries [55], the link between
percolation and boundaries CFT [38]. One of the most overlooked con-
tribution of lattice model to the study of critical system is the access
they give to numerical computations and verifications.

1.4.1 Discrete statistical model

The Ising model is one of the simplest, non-trivial, two-dimensional
system, and it will provide a common thread for this section. Let’s
consider the Ising model on a square lattice, with M rows and N
columns. The spins {si,j}i,j at each vertex of the lattice can take the
values ±1. They satisfy, in this section at least, periodic boundary
conditions horizontally:

si,j+N = si,j .
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As is typically the
case with unitary
models, the Ising
transfer matrix T
can be chosen
positive symmetric.
This ensures a real
spectrum and a
unique ground state.

The energy of a given spin configuration {si,j}i,j takes the usual form:

E({si,j}i,j) = −J ∑
i,j

(
si,jsi+1,j + si,jsi,j+1

)
.

The partition function can be written:

Z = ∑
{si,j=±1}i,j

e−βE({si,j}i,j) . (1.24)

Calling µa = {si,a} the set of spins belonging to the row a, the
energy can be decomposed into the energy between rows and the
internal energy of each row:

E(µa) = −J
N

∑
k=1

sk,ask+1,a ,

E(µa, µa+1) = −J
N

∑
k=1

sk,ask,a+1 .

And the total energy of the system is written:

E({µa}a) =
N

∑
a=1

E(µa) + E(µa, µa+1) .

The transfer matrix method consists in re-expressing the partition
function 1.24 in term of a transfer matrix, T, which act on rows of
spins. In the case of the Ising model it is a 2N × 2N square matrix
defined by:

〈µa|T|µa+1〉 = exp(−β [(E(µa) + E(µa+1)) /2 + E(µa, µa+1)]) .

In this formalism, the Ising model partition function can be rewritten:

Z = ∑
µ1

· · ·∑
µM

exp(−βE({µa}a))

= ∑
µ1

· · ·∑
µM

∏
a

exp(−β (E(µa) + E(µa, µa+1)))

= ∑
µ1

· · ·∑
µM

∏
a
〈µa|T|µa+1〉

= 〈ψdown|TM|ψup〉 .

(1.25)

With |ψdown〉 and |ψup〉 two row vectors specifying the boundary con-
ditions at the two vertical ends of the cylinder. If Λ1 ≥ Λ2 ≥ · · · ≥
ΛM are the eigenvalue of T and |Λi〉 the associated eigenvectors, the
partition function takes the form:

Z = ∑
i

ΛM
i 〈ψdown|Λi〉〈Λi|ψup〉 .
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σx =

(
0 1

1 0

)

σy =

(
0 i

−i 0

)

σz =

(
1 0

0 −1

)

A classic example of
a Wick

transformation.

In the infinite cylinder limit M → ∞, Z ≈ ΛM
1 〈ψdown|Λ1〉〈Λ1|ψup〉

(if the boundary conditions are generic) and the free-energy per unit
surface f = − 1

βMN log(Z) will depend only on the largest eigenvalue:

f ≈M→∞
1

Nβ
Λ1 .

The vector space associated with the matrix T is a 2N-dimensional
space, consisting of N copies of a two-dimensional space V:

V ⊗ · · · ⊗V︸ ︷︷ ︸
N times

.

It can be re-expressed in a simpler form, by introducing the Pauli
matrices σx, σy and σz:

T = ∏
k

eβJσz,aσz,a+1 eβJσx,a .

Where σu,a represent the σu matrix acting on site a, leaving the rest of
the row unchanged:

σu,a = 1⊗ · · · ⊗ 1⊗ σu ⊗ 1 · · · ⊗ 1︸ ︷︷ ︸
N times

.

a

If the constant βJ is taken to be imaginary, the transfer matrix T
can also be understood as the time-evolution operator of a quantum
system, consisting of two-by-two interacting spin 1/2 particles, with a
time-step ∆τ = −iβJ. Within this framework, the cylinder limit of the
partition function 〈ψdown|TM|ψup〉 gives the amplitude of obtaining
a state |ψdown〉 after an evolution during a time M∆τ with an initial
state |ψup〉.

This quantum system will have for Hamiltonian the operator H,
such that T = exp(∆τH). If the time-steps ∆τ are infinitesimally
small, T ≈

∆τ→0
1+ ∆τH (the limit ∆τ → 0 is the Hamiltonian limit).

In this case, the Hamiltonian takes the form:

H ∝ ∑
a
[σx,a + σz,a · σz+1,a] .

This is a first example of a quantum chain Hamiltonian, the quantum
Ising model. The quantum Ising model itself is a special case of the
XY spin chain. But other examples exist, including the Heisenberg
model (XXX, XXZ or XYZ chain) that we already mentioned, models
with higher order symmetry (the sl3 spin chain will be considered
again in the next chapter) or models with higher spins.

1.4.2 The Temperley-Lieb loop model

Going back to statistical physics, a common description of the Ising
model is the “low-temperature expansion”.
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1D quantum system 2D statistical system

Generating function Partition function

Time evolution operator Transfer matrix

Classical Hamiltonian H Classical action A
Ground state Equilibrium state

Propagators Correlation functions

inverse correlation length energy gaps

Time Complex temperature

Quantum Ising model Ising model

Heisenberg model 8-vertex model

SU(3) spin chain 15-vertex models

Table 1.1: Correspondence between one-dimensional quantum systems and
two-dimensional statistical systems.

Z = ∑
sx

∏
|x−y|=1

eβJsxsy

= e−2βJMN ∑
sx

∏
|x−y|=1

(
1 + 2 sinh(βJ)eβJδ(sx, sy)

)
,

where δ is the Kronecker delta. For this section, the periodicity at the
edge of the lattice is removed and the model is defined on a finite
rectangular lattice, of size M× N with open boundary conditions.

The product can be expanded, leaving a sum over 2|E| terms where
|E| is the number of edges, each term corresponding to a subset F
of all the edges E. Using the notation v = 2 sinh(βJ)eβJ , the sum
becomes:

Z = e−βJ|E| ∑
F⊂E

v|F| 2k(F) ,

k(F) is the number of connected components in the graph (V, F),
where V is the set of all vertices.

This graph-theory inspired form can be generalized to arbitrary
graphs and has an interesting consequence for planar graphs. Con-
sider the planar dual E∗ of the graph E – the faces of E are the vertices
of E∗ and vice-versa. In the case where E is a regular square lattice,
its dual is also a square lattice, simply translated by half a diagonal. If
we define the “dual” F∗ of a subset F ⊂ E by the set of all edges that
do not intersect edges that belongs to F (see figure 1.5), another Ising
model, “dual” to the first one, whose spins lie on the faces rather than
on the vertices, can be constructed. Its partition function is given by:

Zdual = e2βJ|E| ∑
F∗⊂E∗

v|F
∗| 2k(F∗) .
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Figure 1.5: The graph E associated to the initial Ising model is in black, and
its dual in blue. The thick edges correspond to a specific con-
figuration F (black) and F∗ (blue). The red lines form the loop
structure associated with this configuration.

Non-exhaustive list
of other models that

can be mapped to the
Ising model : XX
model (≈ Ising2),

lattice free fermions,
A3 RSOS model, . . .

Starting from a given configuration F ⊂ E, one can draw the loops
separating the spins clusters F of the model from those of its dual F∗ .
In practice, they can be defined by adding a decoration on each edge
of the initial graph:

+ − or + + .

The number of such loops l(F) in an edge configuration F is equal
to:

l(F) = 2k(F)− |V|+ |F| .

Where k(F) was defined previously as the number of connected com-
ponents in the configuration, and |V| and |F| are respectively the
number of vertices and occupied edges in the graph.

This can be proved by induction:

• F = ∅ : l(∅) = |V|, k(∅) = |V|.
• If we add an edge to F, |F| → |F|+ 1, two cases are possible:

– Either the new edge links two clusters which were not connected,
in which case both clusters merge, and so do the loops surrounding
them. On the dual graph though the number of clusters does not
change. k(F)→ k(F)− 1 and l(F)→ l(F)− 1.
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The O(n) model has
a loop representation
valid for every real
n. If every edge has
an occupation
probability x, the
model has two
non-trivial critical
points. A diluted
one, for x = xc =(

2 + (2− n)1/2
)1/2

,
and a dense one for
x < xc. This last
one being in the
universality class of
the TL model.
Mathematicians
have developed a
model of random
growing planar
curves, named SLE
(Schramm-Loewner
evolution) [134]
which, in many
ways, is related to
the loop models
considered here –
with more rigorous
if slightly less
powerful tools.
Specifically, the
notion of conformal
loop ensemble
(CLEκ , “soup” of
SLE)[135], is
conjectured to
correspond to the
universality class of
the O(n) model,
with
n = −2 cos(πκ/4).

– Or the new edge links two already existing clusters. This move does
not change the number of clusters in the original graph, but splits
one of the dual cluster in two, which increases the number of loops
by one. k(F)→ k(F) and l(F)→ l(F) + 1.

In these conditions the partition function can be rewritten:

Z ∝ ∑
F⊂E

(
v√
2

)|F| (√
2
)l(F)

.

And the dual partition function will verify, noting that |F∗| = |E| − |F|
and that, by definition, l(F) = l(F∗):

Zdual ∝ ∑
F∗⊂E∗

(
v√
2

)−|F| (√
2
)l(F)

.

Both the model and its dual should have the same critical point (as-
suming that the Ising critical point is unique), hence the value of the
critical point is reached for v =

√
2 i.e. βJ = 1

2 log
(

1 +
√

2
)

.
The partition function at the critical point will take the form:

Z = ∑
loop configurations

(
√

2)# of loops .

This form of partition function can be generalized by replacing
√

2 by
a generic real n (called the fugacity):

Z = ∑
loop configurations

n# of loops .

This is a first example of a loop model. For generic values of n, this
class of loop models are called Temperley-Lieb (TL) models (or dense
O(n) models). They are critical for real values of the fugacity n, from
−2 to 2. The model is a generalization of various well-known critical
models. For n =

√
Q, with Q ∈ Z, the loop model is directly equiva-

lent to the Q-Potts model. The n → 1 limit is linked to a percolation
system, while the n→ 0 limit is equivalent to the self-avoiding walks
problem.

Because they are critical, the low-energy effective field theory of
these models is expected to be a conformal field theory, but the exact
equivalence class should depend on the value of n (the Ising and per-
colation model for example are known to live in very different CFTs).
At least part of the operators of the loop model can be described by
a Liouville CFT, parametrized by b such that n = −2 cos(πb2). The
continuum limit of a particular loop model will be studied in section
2. This is the so-called Fully Packed loop model, a variant of the O(n)
model.

The different representations of the Ising model we have described
(the classical two-dimensional spin model, the quantum spin chain,



36 introduction

Critical statistical system CFTs

RSOS models Minimal models

Solid On Solid (SOS) models Generalized minimal models

XXX Spin Chain Free compact boson

loop models Non-rational CFTs, discrete spectrum

Table 1.2: Correspondence between statistical models and CFTs.

and the loop model) are all described by a conformal field theory with
c = 1/2. Another important representative of a c = 1/2 CFT is the
one-dimensional Majorana fermion. However, all these models do not
have the same CFT in the continuum limit. For example, the TL(

√
2)

loop model converges toward a Liouville theory with a continuous
spectrum, while the spectrum of the quantum chain Ising model is
discrete. Similarly, lattice fermions converges toward a free-field the-
ory, with an infinite spectrum, but the transformation between Ising
and the lattice fermions is non-local, and they do not share the same
spectrum. Claims of universality must be considered with caution,
even the existence of an exact, discrete, mapping between two mod-
els is not enough to ensure that they converge toward the exact same
CFT.

1.4.3 Transfer matrix exact diagonalisation

Discrete models give a useful tool to study conformally invariant the-
ory. And, while for integrable models an analytic solution is some-
times at hand, most methods are numerical. The most common tools
used to study a spin-chain or a statistical model include:

• Monte Carlo methods. They rely on a large number of random
sampling, and are a very natural tool in the study of statisti-
cal models. While the critical exponents can be hard to reach,
Monte Carlo methods are well adapted to the measure of corre-
lation functions.

• Density Matrix Renormalization Group (DMRG). A relatively
recent method [145], which gives extremely good results for one-
dimensional quantum systems with short range interactions. It
works by reducing the effective degrees of freedom to those re-
sponsible for the quantum entanglement in a given state. In a
more modern language, DMRG is now understood as a varia-
tional approach within the space of matrix-product states. The
method is slightly less effective for critical systems where cor-
relation lengths are larger. It is also not adapted to statistical
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Figure 1.6: Representation of the action of the transfer matrix on the cylinder.
The R matrix acts only on two sites.

For integrable
models, Bethe ansatz
methods can
sometimes give
access to the
spectrum and
eigenvalues, but
exact computations
of correlation
functions are still
complicated.

models which do not have a local quantum spin chain equiva-
lent (such as loop models).

• Exact diagonalisation. The method consists in extracting the
highest eigenvalues of either the transfer matrix or the Hamil-
tonian. It does not depend on the criticality of the system, and
gives direct access to the critical exponents. However, it can only
be used for very small sizes (up to 30 sites for a simple quan-
tum chain), leading to important finite-size effects. And while
computing correlation functions is certainly possible it can be
slightly tricky. Nonetheless, this is the method employed in this
thesis.

The transfer matrix on the cylinder is related with the dilatation op-
erator of the CFT. When the transfer matrix is defined on a periodic
system, the numerical results should be compared with the confor-
mal theory on a cylinder. Translation along the axis of the cylinder
correspond to dilatation on the plane. Hence, we expect the transfer
matrix to have, at least in the large L limit, the same eigenvalues as
the L0 + L0 operator. If the cylinder perimeter is L, the eigenvalues of
the transfer matrix take the general form (at the isotropic point):

− log (Λi) = f0L− 2π(hi + h̄i − c
12 )

L
.
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L = 4

L = 6

Figure 1.7: Loop states (up to translation) for a given perimeter L.

The Arnoldi
algorithm is a more
efficient variant on

the simple power
iteration method

An|x〉 ≈ λA,max|x〉.
The transfer matrix
is not sparse, sadly

For L = 30,
(30

15)
2
octets ≈

104Teraoctets

hi is the dimension of a quasi-primary field in the spectrum, and f0

is a constant. In a unitary theory, where the operator of the lowest
dimension is the identity, both the central charge c and the constant
f0 can be extracted by fitting the highest eigenvalue as a function of L.
The Arnoldi iteration algorithm was used to diagonalize the matrices,
with help from the PETSC/SLEPC libraries [8–10, 83, 84, 131].

The transfer matrix associated with the Temperley-Lieb loop model
gives an interesting non-trivial example. We will consider the transfer
matrix on the square lattice rotated by π/4 (see figure 1.6). In this
setup, the transfer matrix for the TL model can be written:

T = ∏
i=1,··· ,L

i odd

Ri,i+1 ∏
i=1,··· ,L

i even

Ri,i+1 ,

Ri,i+1 = sin(u) + sin(λ− u) RL,L+1 = RL,1 .

(1.26)

The matrix Ri,j acts only on two neighbouring sites at a time. It cor-
responds to the R-matrix of the system, which plays a large role in
integrable theories.

The space on which the transfer matrix acts is a “loop space”,
formed by all the valid half-loop configurations that can be gener-
ated by the R-matrix. For example, for L = 4, there are 2 possible
states up to translation, 4 for L = 6 (see figure 1.7).

The loops are in bijection with the binary words with the same number of 0
and 1, in total they are ( L

L/2) loop states. If we consider only states up to transla-
tion (circular shift), the sequence becomes A003239, whose large L asymptotic
is, as expected, roughly equal to 1

L (
L

L/2).

In general the size of the full matrix is then of order 2L × 2L. At
the sizes we consider (up to 30 sites for TL), the main limitation is the
memory usage of the program. For these reasons, we do not store the
full transfer matrix, but code directly its action on a given vector. The
diagonalisation algorithm only need to know the product operation,
and this allows to keep only of the order of 2L variables.
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A seemingly simpler method would be to directly look at the eigenvalues of
the Hamiltonian. The Hamiltonian takes the form:

H ∝ ∑
i

Ui,i+1 ,

where Ui,i+1 is an operator acting only on the two sites i, i + 1, related to the
R-matrix. We can define the translation operator τ, which operates a rotation
of e2iπ/L around the axis of the cylinder. τ sends the site i toward the site i + 1.
Both the Hamiltonian and the transfer matrix commute with this operator, but
not the individual Ri,i+1/Ui,i+1 matrices.

Critical models are invariant under rotation around the axis of the cylinder,
hence every eigenstate can be decomposed on the sectors created by the action
of τ. States without (conformal) spin – a property shared by most primary
states – will be found in the sector of momentum 0. When diagonalizing the
Hamiltonian we can stay in this sector during the whole process, but this is
not the case for the transfer matrix. This invariance can be taken into account
to divide the space of states by a factor L.

The drawback is that the Hamiltonian is defined up to a multiplicative con-
stant, vF, called the Fermi velocity of the system. Hence, the critical exponents
are only defined up to this multiplicative constant. Nonetheless, finding the
right constant is sometimes possible, especially for integrable model.

While the eigenvalues give a lot of information about the spectrum
of the theory, to study the full theory we also need its structure con-
stants. The eigenvectors of the transfer matrix can be used to compute
correlation function and more precisely three-point correlation func-
tions, hence the structure constants.

A (normalized) correlation function between three primary fields
can be written:

〈O1|O2(1)|O3〉cyl = C (O1,O2,O3) .

If Λ1 and Λ3 are the eigenvectors associated respectively with the
primaries O1 and O3, the structure constants have the expression:

C (O1,O2,O3) =
〈〈Λ1|Odiscrete

2 Λ3〉〉
〈〈Λ2|Odiscrete

2 Λ1〉〉

√
〈〈Λ2|Λ2〉〉〈〈Λ1|Λ1〉〉
〈〈Λ1|Λ1〉〉〈〈Λ3|Λ3〉〉

.

Two difficulties still need to be overcome to compute numerically the
structure constants. The first is to find a discrete equivalent of the O2

operator and the second is to find the “right” scalar product, that is,
the scalar product which makes the Hamiltonian density self-adjoint.
For unitary models, only the first point is problematic, the scalar prod-
uct is the standard one, associated with the Hermitian Hamiltonian.
Finding the right operator Odiscrete

2 can still be tricky though.
For non-local models, like the loop model, or non-unitary theories

in general, the choice of the scalar product itself is not trivial. In the
case of the Temperley-Lieb model (and in general, of loop models),
the right scalar product is the one associated with the loop algebra.
Some example of discrete operators in loop models will be studied in
detail in the next chapter.
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1.5 brief thesis outline

This thesis is divided in three mostly independent chapters. They can
be read in any order.

The first chapter is principally based on the publication [57]. It
seeks to clarify the continuum limit of the Fully Packed Loops (FPL)
model. The FPL model is a variant of the dense O(n) model allowing
some vacancies. On the cylinder it is related to vertex models with
Uq(sl3) symmetry. After a description of the FPL model and its rela-
tion with other integrable models, the chapter contains an in-depth
analysis both of the spectrum and of the structure constants of the
FPL model. Numerical simulations are used to confirm these results.
Particular care is given to the exact link between the fully packed loop
model,W3 and the Liouville field theory.

The second chapter, based on the paper [] is more technical and
focuses on the computation of structure constants in the imaginary
Toda field theory, a generalization of Liouville field theory, associated
with a description of spin constraints in generic Wn model. These
spin constraints permit to obtain a classification of the different non-
scalar operators that can be obtained in a genericWn theory.

The last chapter, based on the article [56], presents a new method
to compute Rényi entropies – a measure of entanglement entropy– of
minimal models. This method uses as key ingredients the differential
equations associated with the null-vectors of an orbifold theory. The
paper starts with a description of the orbifold CFTs, and of their link
with entanglement entropy. The method is then illustrated through
the Yang-Lee and the Ising model.
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The FPL model is defined on the hexagonal lattice. Its configura-
tions are reunion of non-crossing loops, such that every vertex
of the lattice are occupied. Each loop contributes a weight n to
the configuration. If n is real and |n| ≤ 2, the model is critical,
and in the continuum will be described by a CFT.
The model shows sign of a Z3 symmetry. For n = 2, the
model is equivalent to a three-colour model. Additionally, on
the cylinder, the FPL model can be exactly mapped to a SU(3)
vertex model, known to renormalize, up to a twist, toward a
CFT withW3 symmetry.
This chapter, using both numeric and analytic arguments, ex-
plains why this symmetry appears in a specific situation, and
clarifies why the loop model in general does not verify it. Main
results include:

• The full description of the low-energy field theory of the
FPL model, through Coulomb-Gas arguments. The the-
ory renormalizes toward the tensor product of a compact
boson and a Liouville field theory.

• The expression of the toroidal partition function of the
model (2.2.4).

• The complete description of the FPL model spectrum on
the cylinder (2.2.5), compared to numerical simulations
(2.3.2). In the twisted case the W3 symmetry can be ob-
served.

• A conjecture, checked numerically, for a certain type of
three-point correlation functions. Operators that give a
certain weight to loops around them can be associated
with primary fields of the CFT, with generic conformal
weights. We verify that their three-point functions are
given by the Liouville structure constants (2.2.6).

Summary

In this chapter, we consider a variant of the TL loop model, namely
the FPL model on the hexagonal lattice. This model was introduced
by Reshetikhin [128], and is related to the fifteen-vertex model with
Uq(ŝl3) symmetry. The spectrum of the corresponding quantum spin

41
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chain has been studied numerically [3] and analytically [157]. On one
hand, when appropriate twisted periodic boundary conditions (PBC)
are applied, it was shown that the Uq(ŝl3) spin chain scales to the W3

algebra [65], an extension of the Virasoro algebra including a spin-3
conserved current W(z), additionally to the stress-energy tensor T(z).
On the other hand, the Coulomb Gas formalism for the FPL model
was developed in [101]. In both approaches, the scaling theory was
found to be a CFT with central charge in the range −∞ < c ≤ 2. In
this chapter, we aim to clarify the exact nature of the Fully Packed
Loop model, by making a connection between the Coulomb Gas con-
struction of [101] and the Liouville conformal field theory. The con-
sequence of the Uq(ŝl3) symmetry and the link with the W3 algebra
[65] are also discussed in detail. This opens the way to a complete de-
scription of the excitation spectrum of the FPL model , and allows us
to exhibit an interesting class of modular invariant partition function.

The structure of this chapter is the following. In Sec. 2.1, we re-
call the definition of the FPL model, and its relation with the inte-
grable Uq(ŝl3) vertex and face models. In Sec. 2.2, we study the con-
tinuum limit of the FPL model with potentially different loop fugaci-
ties for contractible and non-contractible loops. We then classify the
spectrum of the loop model and discuss three-point correlation func-
tions. These results are verified numerically by an exact diagonali-
sation procedure, explained in Sec. 2.3. In Sec. 2.2.4, we turn to the
study of toroidal partition functions: by applying the steps of [72], we
derive the full spectrum of conformal dimensions of the FPL model,
and express the FPL model partition function on the torus in terms
of Coulombic partition functions. Particular values of the loop fugac-
ity n =

√
2 and n = 1 are examined in more detail. The Appendix

contains some technical calculations needed in Sec. 2.2.4 as well as a
discussion over diagrammatic representations of Uq

(
ŝl3

)
.

2.1 fully-packed loop model and related lattice mod-
els

2.1.1 The loop model

The A(1)
2 loop model on the square lattice is defined in [143] as follows.

The allowed configurations are those represented in Fig. 2.1 a, their
local weights are given in terms of the crossing parameter λ and the
spectral parameter u :

a1, . . . , a7 =

sin(λ− u), e+iu sin λ, e−iu sin λ, sin u, sin u, sin(λ− u), sin u ,
(2.1)

and each closed loop gets a weight n = 2 cos λ. On a surface with
cycles (cylinder, torus . . . ), the non-trivial loops (those which wind
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a1 a2 a3 a4 a5 a6 a7

(a)

(b)

Figure 2.1: (a) The plaquette configurations of the A(1)
2 loop model on the

square lattice. (b) The double-plaquette configurations of the
Fully Packed Loop model on the hexagonal lattice, obtained by
setting a1 = a6 = 0 and a2 = a3 = a4 = a5 = a7.

Modifying the
spectral parameter u
modify the form of
the lattice.

around the cycles of the surface) get a different weight ñ. Hence, the
partition function reads:

Zloop(n, ñ, u) = ∑
loop config. C

aNi(C)
i nL(C) ñL̃(C) , (2.2)

where the sum is over every loop configuration C on the square lattice
obtained by combining the plaquettes {a1, . . . a7}, Ni(C) is the num-
ber of plaquettes of type ai appearing in C, and L(C) [resp. L̃(C)] is
the number of trivial (resp. non-trivial) closed loops in C.

For a generic value of u, the natural embedding of the square lattice
is given by rhombi of the form

θ

with opening angle θ = 4
3 πu/λ. The “isotropic” point sits at the value

u = λ : for this value, one has, after dropping the irrelevant factors
e±iu :

a1 = a6 = 0 , a2 = a3 = a4 = a5 = a7 = sin λ . (2.3)

At this value u = λ, the A(1)
2 loop model reduces [128] to the FPL

model on the hexagonal lattice (see Fig. 2.1 b). The partition function
becomes

Zloop(n, ñ, u = λ) = (sin λ)N/2 ∑
FPL loop config. C

nL(C) ñL̃(C)

≡ (sin λ)N/2 × ZFPL(n, ñ) , (2.4)

where the sum is over every loop configuration C on the hexagonal
lattice visiting each vertex exactly once, and N is the total number of
vertices.
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w1 w2 w3 w4 w5 w6

w13

w7

w14w12 w15w11w10w9w8

Figure 2.2: Configurations of the 15-vertex model

Note that ZFPL(n = ñ = 2) is equal to the number of three-colouring
of the hexagonal lattice [101]: if the colours are called (A, B, C), each
empty edge is labelled A, and the edges along a closed loop are la-
belled BCBCBC . . . or CBCBCB . . . , resulting in loop fugacities n =

ñ = 2 (λ = 0).

2.1.2 The fifteen-vertex model

The 15-vertex model is defined by the R-matrix acting on two funda-
mental representations of the Uq(ŝl3) quantum affine algebra, whose
basis is taken as (|↑〉, |·〉, |↓〉). The corresponding vertex configura-
tions are shown in Fig. 2.2, and their weights are given by [89]:

w1 = w10 = w11 = sin(λ− u) ,

w2 = w4 = w14 = e+iu sin λ ,

w3 = w5 = w15 = e−iu sin λ ,

w6 = w7 = w8 = w9 = w12 = w13 = sin u .

(2.5)

When spectral parameters are attached to the lines of the vertex
model, we use the following graphical conventions:

R(u1 − u2) = u1

u2

.

The 15-vertex model can be obtained directly from the loop model,
by using the trick of [13]. Let us describe this equivalence on the
plane first, where no non-trivial loop can occur. One gives an ori-
entation to each loop (independently of the others), and assigns a
weight eiλ (resp. e−iλ) to the anti-clockwise (resp. clockwise) oriented
loops, so that the total loop weight is indeed n = 2 cos λ. Then, the
phase factor for each loop is distributed locally, by attributing a fac-
tor exp[iαλ/(2π)] to each oriented loop segment in Fig. 2.1 which
turns by an angle α (we take the convention that the loop segments
cross the edges of the rhombic plaquettes orthogonally). Then, on
each edge carrying the spectral parameter u, one inserts the opera-
tor 1 = e+iuη × e−iuη , where η = diag( 1

3 , 1,− 1
3 ), so that the factor
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h1

h2

h3

Figure 2.3: The height graph Ak=4.

e+iuη (resp. e−iuη) acts on the incoming (resp. outgoing) vector space
of the adjacent R-matrix. This last step may be viewed as a change of
gauge. Through the whole procedure, the loop model with weights
(2.1) maps to the 15-vertex model with weights (2.5).

On surfaces with cycles, the non-trivial loops have a total winding
equal to zero, and must be treated separately. On a cylinder of width
N sites and circumference M sites, the partition function of the loop
model is obtained by introducing twisted boundary conditions:

Zcyl(n, ñ) = tr
[
(Kµ ⊗ · · · ⊗ Kµ)(tN)

M
]

, ñ = 2 cos µ , (2.6)

where tN is the row-to-row transfer matrix, tr stands for the conven-
tional trace, and Kµ = diag(eiµ, 1, e−iµ).

On the torus, the weight of non-trivial loops cannot be distributed
locally into the vertex model: rather, to give non-trivial loops a weight
ñ = 2 cos µ, each vertex configuration with arrow fluxes m and m′

through the two cycles of the torus must be given the non-local phase
factor exp[iµ(m ∧ m′)], where m ∧ m′ denotes the greatest common
divisor (gcd) of m and m′.

2.1.3 The RSOS model

The third model of interest is the RSOS model based on the Weyl al-
cove Ak of sl3 [90]. Let us first rapidly set up our conventions for sl3,
which shall be used throughout the thesis. A more complete descrip-
tion of general sln Lie algebra can be found in the appendix 3.A. The
simple roots (e1, e2) are two-dimensional vectors with scalar products:

e1 · e1 = e2 · e2 = 2 , e1 · e2 = −1 . (2.7)

The fundamental weights (ω1, ω2) are given by:

ω1 =
1
3
(2e1 + e2) , ω2 =

1
3
(2e2 + e1) ⇔ ωi · ej = δij . (2.8)
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Classic RSOS models
are defined on a

ADE graph. In the
continuum limit

they correspond to
Virasoro minimal

models. The
correspondence
between RSOS
graphs and the

modular invariant of
W3 CFTs was done

by Di Francesco and
Zuber [49]. These

graphs also classify
the modular

invariant of SU(3).
For other type of

extended algebras,
the question is still

partially open.

This gives ω1 ·ω1 = ω2 ·ω2 = 2/3 and ω1 ·ω2 = 1/3. The root and
weight lattices are respectively:

R = Ze1 + Ze2 , R∗ = Zω1 + Zω2 . (2.9)

The weights of the fundamental representation are

h1 = ω1 , h2 = ω2 −ω1 , h3 = −ω2 . (2.10)

The Weyl vector is ρ = e1 + e2 = ω1 + ω2. The oriented graph Ak is
defined as follows (see also Fig. 2.3). The set of vertices of Ak is given
by the dominant integral weights of ŝu(3)k, namely:

Ak = {λ1ω1 + λ2ω2, λi ∈N, λ1 + λ2 ≤ k} , (2.11)

and the edges of Ak are oriented along the three vectors (h1, h2, h3).
In the following, we will refer to Ak as the height graph. In the RSOS

model, each vertex of the square lattice carries a height variable which
is a vertex of Ak, and the Boltzmann weight of a face is denoted by:

W

(
a b

d c

∣∣∣∣∣ u

)
=

a

u

b

cd

=

a

u

κ

σµ

ν

= W

(
a a + hκ

a + hµ a + hµ + hν

∣∣∣∣∣ u

)
,

(2.12)

where the labels 1 ≤ κ, σ, ν, µ ≤ 3, and must satisfy hµ + hν = hκ + hσ.
Setting µ 6= ν, the face weights are given by:

a

uµ

µ

µ

µ

= sin(λ− u) ,

a

uµ

µ

ν

ν

=
sin λ sin(λaµν + u)

sin λ aµν
,

a

uµ

ν

ν

µ =
sin u sin λ(aµν + 1)

sin λ aµν
,

(2.13)

where λ ≡ π/(k + 3) and aµν ≡ (a + ρ) · (hµ − hν). On simply con-
nected domains, the RSOS model is related to the 15-vertex model
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See appendix 2.C.1
for details.

through the vertex-face correspondence [91]. On the cylinder, the re-
lation between these two models (along with the FPL model) uses the
Hecke algebra symmetry, combined with the Markov trace: see next
section.

2.1.4 Hecke algebra and Markov trace

The FPL, 15-vertex and RSOS models are three realizations of the su(3)
Hecke algebra. In all three cases, the Boltzmann weight of a square
plaquette at position j on the lattice can be written as

sin(λ− u)1+ sin u Uj , (2.14)

where U1, U2 . . . UN−1 are the Hecke generators, obeying the algebraic
relations:

U2
j = 2 cos λ×Uj , (2.15)

UjUj+1Uj −Uj = Uj+1UjUj+1 −Uj+1 , (2.16)

Uj′Uj = UjUj′ if |j− j′| > 1 , (2.17)

(Uj−1 −Uj+1UjUj−1 + Uj)(UjUj+1Uj −Uj) = 0 . (2.18)

With j lives in Z/NZ, N being the length of the periodic system.
Equations (2.15–2.17) are the defining relations of the Hecke alge-

bra, and the additional relation (2.18) defines the su(3) quotient of
the Hecke algebra, which we denote as HN in the following.

When the model is defined on a cylinder of N ×M sites (where M
is the circumference), the partition function is defined as

Zcyl = Tr
[
(tN)

M
]

, (2.19)

where tN is the row-to-row transfer matrix with open boundary condi-
tions, and Tr is a linear form on HN , which obeys the Markov property:

∀j , ∀x ∈ Hj , Tr(Uj x) =
sin 2λ

sin 3λ
× Tr x (2.20)

whereHj is the sub-algebra generated by {U1, . . . Uj−1}. A linear form
obeying this property is called a Markov trace. Let us give the explicit
form of the generators Uj and the Markov trace Tr for the three lattice
models of interest.

• In the FPL model, the Hecke generator takes the form

U = eiλ + e−iλ + + + (2.21)

The Markov trace is Tr x = (2 cos 2λ)L̃(x), where L̃(x) is the
number of closed loops appearing when the top and bottom
part of the diagram x are identified. In other words, the Markov
property is obeyed when ñ = 2 cos 2λ.
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• In the 15V model, the R-matrix Ř(u) ≡ PR(u), where P is the
permutation operator, has the form Řj,j+1(u) = sin(λ − u)1+

sin u Uj, with

U =




0 0 0 0 0 0 0 0 0

0 e+iλ 0 1 0 0 0 0 0

0 0 e+iλ 0 0 0 1 0 0

0 1 0 e−iλ 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 e+iλ 0 1 0

0 0 1 0 0 0 e−iλ 0 0

0 0 0 0 0 1 0 e−iλ 0

0 0 0 0 0 0 0 0 0




, (2.22)

expressed in the basis (|↑〉, |·〉, |↓〉)⊗ (|↑〉, |·〉, |↓〉). The Markov
trace is given by

Tr x = tr[K⊗Nx] , (2.23)

where tr denotes the conventional trace, and K = diag(e2iλ, 1, e−2iλ).

• In the RSOS model, the face weights can be written

W

(
a b

d c

∣∣∣∣∣ u

)
= sin(λ− u) δb,d + sin u U

(
a b

d c

)
, (2.24)

where the Hecke generators read:

U

(
a a + hκ

a + hµ a + hµ + hν

)
= (1− δµν)

sin λ(aµν + 1)
sin λaµν

. (2.25)

The Markov trace in this model is given in the Appendix of [117].

As it is argued in [117], the algebraic relations (2.15–2.17) and the
Markov property (2.20) determine completely the value of Tr x for
any x ∈ HN . Hence, the FPL, 15-vertex and RSOS models have the
same partition function on the cylinder.

2.2 continuum limit of the fpl model

The continuum limit of loop models is rather well understood and
typically yields a bosonic action coupled to the background curvature
[70]. The scaling limit of the A(1)

2 loop model in the case n = ñ has
been studied extensively in [101]. Through a mapping to Coulomb
gas, (part of) the spectrum and conformal dimensions were obtained.
We extend those results and discuss the continuum limit of the FPL.While
the Coulomb gas obtained for the FPL loop model is not exactly equiv-
alent to the W3 Coulomb gas on generic Riemann surfaces, we argue
that these two theories are indistinguishable on the flat cylinder.
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φφ− 2πbh1

φ + 2πbh2 φ− 2πbh1

φ + 2πbh3

Figure 2.4: Mapping from the three-colour model to a height model.

2.2.1 Coulomb gas description

Later in this section we will focus on the flat cylinder, but for now
we consider a generic (i.e. non flat) Riemann surface of genus zero.
As pointed out in [70], this is extremely instructive in order to under-
stand the coupling to the curvature. The flat torus will be considered
in Sec. 2.2.4. Before extending to n < 2, let us first consider the case
n = ñ = 2 on the hexagonal lattice, in which the partition function
simply counts the number of three-colouring (see Sec. 2.1.1). Let φ be
a two-components discrete height field living on the dual lattice, for
which the loops are level lines : φ varies by ±2πbhi when crossing
an edge. b is a non-zero real constant and the value of i = {1, 2, 3}
depends on the colour crossed, lastly the sign depends on the orienta-
tion of the edge, defined by the bi-partition of the lattice, see Fig. 2.4.
h1 + h2 + h3 = 0 hence the height is well-defined. In the scaling limit,
this height field renormalizes towards a two-component compactified
free boson with compactification lattice 2πbR (2.9).

The compactification radius can be extracted easily by looking at the effect on
the field of the different defects possible. A defect in this model correspond
to the non-respect of the three-colours rule. In term of the field, the insertion
of a defect modify the value of φ by a vector of the lattice R. A different
explanation, which does not involve defects, can be given by considering the
height differences between different types of “most flat” configurations [101].

The action of the three-colour model is then given by:

1
8π

∫
d2x

√
|g| gµν∂µφ · ∂µφ ,

φ ≡ φ + 2πbR ,
(2.26)

where g is the metric of the underlying Riemann surface. The normal-
ization of the field φ is chosen in such a way that:

〈φi(z, z̄)φj(0, 0)〉 = −δi,j log |z|2 .

The loop model is obtained from the colour model by drawing a
loop on the edges of colours h1 or h3 and letting empty the ones
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Figure 2.5: Lattice with a “cubic corner” singularity. The sums of the corner
angles of loops around the singularity (in red) are equal to 3π

2
versus 2π for the other loops (in blue).

of colour h2. We saw in the last section that a local way to give a
weight n to the loops consisted in giving an orientation to each loop
associating a weight e−iλ (resp. e+iλ) to left-turning loops (resp. right-
turning loops). This method only works on the plane, for example
loops circling a cylinder, or following the great circle of a sphere will
only get weight 1. These curves do not get the right weight because
they separate two regions of non-zero curvature. In the Lagrangian,
this effect can be compensated by the presence of a coupling to the
curvature:

A0 =
1

8π

∫
d2x

√
|g|
(

gµν∂µφ(x) · ∂µφ(x) + 2iQ ·φ(x)R(x)
)

,

Empty edges should not be affected by the curvature, hence Q · h2 =

0, which implies Q = Qρ. To link the value of Q to the weight of
the loops we can, for example, consider a “cube corner” singularity,
located at x = 0 on an otherwise flat surface (see figure 2.5).

On one hand, loops surrounding such a singularity will have a total
angle 3π

2 , hence the weight of a counter-clockwise loop will be ei3λ/4,
instead of eiλ for a loop on flat space.

On the other hand, the Ricci scalar around zero will have the form
R(x) = πδ(x) (the integral of the Ricci scalar on a full cube is 8π).
The curvature term is then equal to eiQ·φ(0)/4. Adding a (counter-
clockwise) loop around 0 increases the value of φ(0) · ρ by 2πb, hence
add a factor ei(2πbQ)/4.

Therefore, the curvature term will compensate for the angular de-
fect if and only if λ = 2πbQ.

n = e2iπbQ + e−2iπbQ = 2 cos(2πbQ) . (2.27)

The presence of a curvature coupling, in the action, can be shown more gener-
ally. Consider the model on a simply connected surface Ω, with no boundaries
but with a marked point x0, in order to be able to differentiate between the in-
terior and the exterior of a loop (the exterior contains x0). Call h(x) = ρ ·φ(x),
the projection of φ over the direction of the loops. Suppose that a clockwise
loop γ encloses a surface int(γ). The Gauss-Bonnet theorem implies that:

∫∫

int(γ)

1
2

R(x)d2x +
∫

γ
kg(s)ds = 4π .
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The term R(x)h(x0)
4πb

can be integrated
over to gives a
vertex operator at
the point x0, of the
form e−2iQ·φ(x0).
This operator has
weight zero, but it
does have an effect
on the theory, and is
not the identity.

Without the
compactification
condition, this is
simply the product
between a free boson
theory and a
one-dimensional
coulomb-gas theory,
in the direction of ρ.

where R(x) is the scalar curvature of the surface and kg is the geodesic curva-
ture of ∂M. If the loop is anti-clockwise we can write:

−
∫∫

int(γ)

1
2

R(x)d2x +
∫

γ
kg(s)ds = −4π .

Summing these two expressions over every loop (clockwise or otherwise) sur-
rounding x, and then summing over x:

∫∫

Ω

1
2

R(x) [(# loops 	 x)− (# loops � x)]d2x + ∑
L loop

∫

L
kg(s)ds

= 4π(# clockwise loops− # anti-clockwise loops) .

(2.28)

The number of loops around a point x is controlled by the height h(x). Explic-
itly:

[(# loops 	 x)− (# loops � x)] =
h(x)− h(x0)

2πb
.

For a geodesic loop – for example one of the great circle on the sphere – kg(s) =
0 and only the first term matter. Inserting in the action a term of the form:

ibQ
2

∫∫

Ω

√
|g|d2xR(x)

(h(x)− h(x0))

4πb
,

would give straight loops a weight e2iπbQ + e−2iπbQ = 2 cos(2πbQ), as ex-
pected.

The second term, which depends on kg is local: on the lattice, it would be
implemented by local weights, added at each loop turn. What exactly becomes
of this term after the renormalization flow is difficult to analyse. We will ignore
the exact form of this term in the following, and replace it with an effective
term. It is nonetheless possible to re-express it in term of the height field h. kg
is the geodesic curvature of the curve implicitly defined by h(x, y) = H, where
H is a constant. Along this curve, kg has the expression [80]:

kg =
(∇h)T · (∇∇h) · (∇h)

|∇h|3 − ∆h
|∇h|

Where∇h,∇∇h and ∆h are respectively the gradient, the Hessian matrix and
the Laplacian of h.

The line integral on kg can be rewritten:
∫

γ
kg(s)ds =

∫∫

int(γ)

√
|g|d2x δ(h− H) kg|∇h| .

Finally, by summing over all possible value of H, we get an integral over
the full space Ω, and a term proportional to kg|∇h| can be added to the La-
grangian.

The coupling to the curvature modifies the stress-energy tensor,
lowering the central charge :

T(z) = −1
2

: ∂ϕ · ∂ϕ: +Q · ∂2ϕ, c = 2− 12 Q ·Q = 2− 24Q2 , (2.29)

where we have used the convention φ(z, z̄) = ϕ(z) + ϕ̄(z̄) for the
holomorphic and anti-holomorphic parts of the free field. Q is called
the background charge.
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The notation R∗
comes from the fact

that this graph is
also the dual of R.

This is a Coulomb-gas theory, where the vertex operators defined by:

Vα = : eiα·φ: , (2.30)

have conformal dimensions:

hα = h̄α =
1
2

α · (α− 2Q) . (2.31)

2.2.2 Liouville term

In order to give the right weight to contractile loops, we need to add
to the action an additional potential which will, at the lattice level,
give a weight n to the loops.

A = A0 +
1

8π

∫
d2x V [φ(x)] .

On the hexagonal lattice, adding a weight for the (contractile) loop
is equivalent to adding a local weight e±iπλ/6 to every turn, with a
positive sign when the loop turns right and a negative one when
the loop turns left. This means that the potential is local, and, at a
point, it should not be modified by the presence of additional loops
surrounding this point. Hence, the potential should be invariant un-
der φ → φ + 2πbhi i = 1, 3. Hence, V is periodic on the sub-lattice
2πbR∗ = 2πb ∑i Zhi of the lattice 2πbR.

This periodicity imposes a specific form under Fourier transforma-
tion:

V(φ) = ∑
e∈R

Ṽe eib−1φ·e . (2.32)

Since the loop model is critical, the potential V cannot be relevant
in the R sense. Furthermore, there must be at least one term in the
sum (2.32) that is marginal, lest this potential be entirely washed away
in the infra-red. Therefore, we demand:

min
e∈R

(hb−1e + hb−1e) = 2 .

Because the dimensions depend directly on the value of Q, this equa-
tion will fix the value of the background charge. But the lowest-
dimensional term in the potential 2.32 can vary depending on the
value of Q. Therefore, after obtaining the value of Q we must verify,
in retrospect, that the operator chosen is still the most relevant.

This analysis give two possible values for Q, Q = ± 1
2

( 1
b − b

)
, cor-

responding to two different choice of relevant operator: V±b−1ρ =

e±ib−1φ·ρ. This dichotomy corresponds to a choice of sign ±φ, and
do not change the physic of the system. We choose the convention:

A =
∫ d2x

8π

√
|g|
{

∂µφ · ∂µφ + iR(x)
(

1
b
− b
)

ρ ·φ + µeib−1φ·ρ
}

,

φ ≡ φ + 2πbR .
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Note that this
argument is only
valid for b2 6= 1, if
b = 1, there are six
marginal operators
V±b−1e1

, V±b−1e2

and V±b−1ρ. We
recover the bosonic
description of
SU(3)1, together
with its 6 currents.

(2.33)

Where µ is a constant (nicknamed cosmological constant in QFT ap-
plications).

To see that b2 must be less or equal to 1, one can notice that the relation:

2 ≥ hb−1e1
+ h−b−1e1

=
2
b2

implies that b2 ≤ 1.

To see that the most relevant terms in 2.32 are necessarily of the form V±b−1ρ,
one can do as follows. The most relevant term is generically of the form
Vn1b−1e1+n2b−1e2

, with n1, n2 ∈ Z. Since we want this term to be exactly marginal,
we have hn1b−1e1+n2b−1e2

= 1 should be verified. This fixes the value of which
yields the following value for Q = Qρ:

Q = b
b−2 (n2

1 − n1n2 + n2
2
)
− 1

n1 + n2
.

But that means that the weight of the fields V±b−1ρ are now:

hb−1ρ =
n1 + n2 − n2

1 − n2
2 − (n1 − n2)

2

b2(n1 + n2)
+

2
n1 + n2

,

h−b−1ρ =
n1 + n2 + n2

1 + n2
2 + (n1 − n2)

2

b2(n1 + n2)
− 2

n1 + n2
.

Both terms should be larger than 1 if we want V±b−1ρ to be a sub-dominant
term. On one hand, if |n1 + n2| ≥ 2 (and (n1, n2) 6= (1, 1)), the term n1 + n2 −
n2

1 − n2
2 − (n1 − n2)

2 in the first line is strictly negative and h−b−1ρ < 2. On the
other hand:

hb−1(n1+n2)e1
= 1 +

3n1n2

b2 .

Hence, n1n2 ≥ 0. This leaves only two possibilities for (n1, n2) – outside of
(n1, n2) = (1, 1). Either (n1, n2) = (0, 1) or (1, 0), and in this case:

hb−1ρ = 3b−2 − 2 h−b−1ρ = 2− b−2 .

At least one of these terms is smaller than one, for any real value of b.

If we decompose the field according to its components along ρ and
h2, φ = hρ + ϕh2, the action can be split into two terms:

A =
∫ d2x

8π

√
|g|
{

2∂µh∂µh + 2iR(x)(b−1 − b)h+µei2b−1h

+
2
3

∂µ ϕ∂µ ϕ
}

.

In a nutshell, the theory is the tensor product of a Liouville field the-
ory for the loops (along the direction ρ) and of a free boson along the
direction h2, with a compactification lattice mixing the two directions.
Since n = 2 cos πbQ, and Q = 1

2 (b
−1 − b) we have:

n = −2 cos πb2, b2 ≤ 1 (2.34)
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A confirmation of this value of n, which does not assume that all loops have
the same weight consists in going back to the relation between the FPL model
and the Hecke algebra, detailed in the first section 2.1. The Hecke algebra, with
λ = π − πb2 is associated with a CFT (with W3 symmetry) of central charge
c = 2− 24 λ2

(π−λ)2 [117]. Which gives back the relation 2.34. The weight of the
contractible loops is “local”, in the sense that it does not depend on the genus
of the surface. So even if the correspondence between the Hecke algebra and
the loop model is not valid on curved surfaces, the relation 2.34 is true.

If for some reason the term eibφ·ρ happens to be absent or forbid-
den, the next leading term in the potential V(φ) would be of the form
µ1eib−1φ·e1 + µ2eib−1φ·e2 , and the value of Q matching a conformal field
theory would be modified. This theory is the Toda field theory asso-
ciated with sl(3) and will be described in much more details in the
next chapter.

2.2.3 The FPL model on the cylinder: non-contractible loops

On a compact surface of genus 0, all closed loops are in the same
homotopy class except if one marks two points on the surface, say x0

and y0. Then, those closed loops which separates the points x0 and
y0 become non-contractible, and we want to assign them a weight
n1 = 2 cos (πe1). One may think of changing the amplitude of the
curvature term in the action (2.33), but this would modify the loop
fugacities as soon as loops enclose a non-zero curvature, so this pro-
cedure is incorrect for generic surfaces of genus zero.

Rather, we keep the action (2.33), and insert the vertex operators
VQ−β(y0) and VQ+β(x0), with β0 = e1

2 b ρ. Both of these operators have
conformal dimensions h = h̄ = (β2

0 −Q2)/2.

On the flat cylinder, the curvature is localized at both infinities:

R(x) = 4π (δ(x, ∞) + δ(x,−∞)) ,

with x ∈ R being the non-compact coordinate. Hence, on the cylin-
der, adding two operators at x0 = +∞, y0 = −∞, is equivalent to
modifying the coupling to the curvature.

Zñ=n1

Zñ=n
=

〈
V( e1b

2 −Q
)

ρ
(∞)V( e1b

2 −Q
)

ρ
(−∞)

〉

ñ=n

For the FPL model on the flat cylinder, changing the weight ñ
of non-contractible loops can be interpreted in two ways. One can
change the coupling to curvature Q, or one can add electric charges
at infinity. While indistinguishable on the flat cylinder, these two the-
ories become different when we deform the cylinder. In particular
changing the coupling to curvature modifies the central charge c→ c̃,
while inserting electric field does not : it changes the ground-state,
and c̃ is now an effective central-charge. When dealing with the FPL



2.2 continuum limit of the fpl model 55

theory on the flat cylinder, we will stick to the later interpretation. In
particular the effective central charge is

ceff = c− 24hQ−β0
= 2− 12 β2

0 = 2− 6(e1/π2)2

b2 . (2.35)

In this theory, the effective conformal dimensions of Vα are found by
shifting the vertex charge by Q− β0:

heff
α = h̄eff

α = hα+Q−β0
− hQ−β0

=
1
2
(α2 − 2β0 · α) . (2.36)

A particularly interesting case to study, is the twist prescribed by
the Hecke algebra and the Markov trace (see Sec. 2.1.4):

n = 2 cos λ , ñ = 2 cos 2λ , 0 < λ < π . (2.37)

The effective theory will then have:

b =

√
π − λ

π
, β0 =

(
1
b
− b
)

ρ , (2.38)

The central charge in this case reads:

ceff = 2− 24(1− b2)2

b2 . (2.39)

This is the central charge of the W3 theory, and we expect the spec-
trum to reflect this symmetry.

2.2.4 The FPL model on the torus, modular invariance

The method that we used in the previous sections only works on sim-
ply connected surfaces. For example on the flat torus, the Ricci scalar
is 0, and the weight of straight loops must be imposed differently. The
partition function on the torus will give the complete spectrum of the
theory. As usual, we parametrize the torus by a complex number τ,
with Im(τ) > 0 such that T = C/ (τZ + Z). The partition function
will be expressed as a function of q = e2iπτ.

2.2.4.1 Partition function of the compact boson

The partition function of the loop model can be obtained starting
from the partition function of a compact boson, following [49]. If φ is
a boson compactified on a given lattice 2πR, a configuration of the
field will verify:

φ(z + 1, z̄ + 1) = φ(z, z̄) + 2πb q ,

φ(z + τ, z̄ + τ̄) = φ(z, z̄) + 2πb q′ ,
(2.40)
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where q, q′ ∈ R2. The calculation of the torus partition function in
the sector (q, q′) is a standard exercise. Separating the quantum and
classical degrees of freedom of φ, one finds

Zq,q′(b, τ) =
1

2b2 Im τ|η(τ)|4 exp
(
− πb2

2 Im τ

∣∣qτ − q′
∣∣2
)

. (2.41)

The full partition function is expected to be of the form

Z(τ) = ∑
(q,q′)∈R2

cq,q′Zq,q′(b, τ) , (2.42)

where the cq,q′ are some constant coefficients. For the compact boson
theory (2.26), all the sectors contribute with the same weight, and by
convention cq,q′ = Vol(R), where Vol(R) =

√
3 is the area of the unit

cell of R:

Zc[b,R, τ] = Vol(R) ∑
(q,q′)∈R2

Zq,q′(b, τ) . (2.43)

The global normalization has been chosen to recover the usual be-
haviour Z ∼ (qq̄)−c/24 as q → 0 of the full partition function. Indeed,
using a Poisson summation to express the result in term of magnetic
and electric charges yields

Zc[b,R, τ] =
1

|η(τ)|4 ∑
e∈R∗

∑
q∈R

qδ(e,q)q̄δ̄(e,q) . (2.44)

By analogy with the su(2) case, we will call this model of compact
boson the f model [115]. The weights δ, δ̄ correspond to the spectrum
of the free compact boson:

δ(e, q) =
1
2

(
e
b
− 1

2
bq
)2

δ(e, q) =
1
2

(
e
b
+

1
2

bq
)2

. (2.45)

We also recall the duality relation

Zc[b,R, τ] = Zc[2/b,R∗, τ] . (2.46)

2.2.4.2 Partition function of the loop model

In the loop model the coefficients cq,q′ in (2.42) depend on the weight
of the non-contractible loops, as was first established in the case of
the O(n) model [49]. The same kind of arguments apply to the FPL

model. Let ñ = 2 cos 2πe0 be the weight of non-contractible loops,
then the partition function on the torus is

Zloop [b, e0,R] = Vol(R)
× ∑

(q,q′)∈R2

exp
[
2iπe0(q · ρ) ∧ (q′ · ρ)

]
Zq,q′(b) (2.47)
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where a ∧ b stands for the greatest common divisor (gcd) of a and
b (note that for any q ∈ R, one has q · ρ ∈ Z). The spectrum can
be extracted using Poisson summation and a careful treatment of the
gcd factor, as was done for the O(n) model [49, 127]. The details of
this derivation for the FPL model can be found in Appendix 2.A. The
partition function takes the form

Zloop[b, e0,R] = (qq̄)(2−c)/24

|η(τ)|4


∑

q∈R
m=0

∑
e∈R∗

qh(e−e0ρ,q)q̄h̄(e−e0ρ,q)

+ ∑
q∈R
m 6=0

∑
k|m

∑
e∈R̃∗k

Λ(k, m, e0)qh(e,q)q̄h̄(e,q)


 , (2.48)

where we have introduced m = q · ρ for compactness. The lattice R̃∗k
is defined as

R̃∗k =

{
aω1 +

bρ

k
, (a, b) ∈ Z2 , b ∧ k = 1

}
, (2.49)

and the central charge and the exponents are

h(e, q) = δ(e, q)− δ(e0, 0) ,

h̄(e, q) = δ̄(e, q)− δ̄(e0, 0) ,

c = 2− 24h(e0, 0) .

(2.50)

The function Λ(k, m, e0) can be found in Appendix 2.A.
The expression (2.48) can be used to extract the full spectrum of

the theory. Indeed, for a generic module of conformal weights h, the
character reads:

Trh

[
qL0−c/24

]
=

qh+(2−c)/24

η(τ)2 . (2.51)

2.2.5 Operators and spectrum of the loop model

We saw in the previous section that the bulk spectrum of the FPL

model with fugacities (2.37) could be described by considering sep-
arately the sectors of given “magnetic charge” q ∈ R, where 2πbq
is the defect picked by the field φ along the circumference of the
cylinder.

In this section, we describe the spectrum of the theory, in the case
ñ = 2 cos(2λ) to take advantage of the Uq(ŝl3) symmetry, and high-
light the link with W3. Additionally, we adopt the notation, inspired
by theW3 symmetry (see next chapter 3):

α

(
n1 m1

n2 m2

)
= b−1 [(n1 − 1)ω1 + (n2 − 1)ω2]

− b [(m1 − 1)ω1 + (m2 − 1)ω2] .

(2.52)
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• In the “purely electric” sector, i.e. the sector for q = 0, non-
contractible loops may occur. The primary operators are all scalar
vertex operators Vα allowed by the compactification condition
φ ≡ φ + 2πbR. For the vertex operator Vα = : eiα·φ: to be single-
valued, one needs to impose α ∈ b−1 R∗. We end up with vertex
charges of the form

α = b−1(n1ω1 + n2ω2) = α

(
1 + n1 1

1 + n2 1

)
, (n1, n2) ∈ Z2 .

(2.53)

This “purely electric” sector, which includes the ground state,
appears for lattices of width N multiple of three. Due to the
conservation laws, N/3 lines of empty edges propagate along
the axis of the cylinder.

• The sector where an additional 2k lines of empty edges propa-
gate has a magnetic charge q = k(2h2 − h1 − h3) = k(e2 − e1).
Note that (e2 − e1)Z is the set of vectors q ∈ R such that
q · ρ = 0. Like in the q = 0 sector, non-contractible loops are
allowed. The magnetic charge q = k(e2 − e1) may be combined
with a vertex operator of charge β ∈ b−1 R∗. The correspond-
ing eigenvalues of (L0, L̄0) may be computed from the Gaussian
action by standard methods, and one gets

h = hα , h̄ = hᾱ , (2.54)

where

α = α

(
1 + n1 1− 3k

2

1 + n2 1 + 3k
2

)

ᾱ = α

(
1 + n1 1 + 3k

2

1 + n2 1− 3k
2

) (n1, n2) ∈ Z2 . (2.55)

The conformal spin is

s = hα − hᾱ =
1
2
(α + ᾱ− 4Q) · (α− ᾱ) , (2.56)

which yields, for the above values of the vertex charges, s =

3k(n1 − n2). Hence, this sector contains an infinity of scalar op-
erators, including the most relevant one, obtained by setting
n1 = n2 = 0.

• Any sector with one or more loop strands propagating has a
magnetic charge q with q · ρ 6= 0. For instance, the combination
of 2` strands and 2k extra empty lines gives a magnetic charge
q = `(e1 + e2) + k(e2 − e1). A generic charge q ∈ R satisfying
q · ρ 6= 0 can be written:

q = q1e1 + q2e2 , where(q1, q2) ∈ Z2 , and q1 + q2 6= 0 . (2.57)
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In this case, because of the non-intersecting nature of loops,
there are no non-contractible loops. Moreover, the oriented loop
strands may wind around the cylinder, which produces un-
wanted factors due to the vertex charges at ±∞. Hence, the
magnetic defects in these sectors must be combined with “elec-
tric charges” ±Q to compensate this effect. One ends up with
eigenvalues (2.54), parametrized by the charges:

α = α

(
n1 q1 − q2

2

n2 q2 − q1
2

)
,

ᾱ = α

(
n1 −q1 +

q2
2

n2 −q2 +
q1
2

)
,

(n1ω1 + n2ω2) ∈ R∗q . (2.58)

In this expression, Rq = Zq + Z(e1 − e2) is the lattice of al-
lowed defects along the axis of the cylinder, and R∗q is its recip-
rocal lattice:

R∗q =

{
n1ω1 + n2ω2

∣∣∣∣ n1, n2 ∈
Z

q1 + q2
, n1 + n2 ∈ Z

}
. (2.59)

This includes operators with rational, non-integer Kac indices
n1 and n2 in (2.58). However, the conformal spin remains an
integer:

s = −(n1 + n2)(q1 + q2)− (n1 − n2)(q1 − q2) . (2.60)

2.2.6 Generalized electric three-point functions

Let us go back to the untwisted, n = ñ, FPL model. On the cylinder,
we saw that modifying the weight of loops separating x1 and x2 from
n to n1 was equivalent to the insertion of two operators of charges:

α1 = Q +
e1ρ

2b
.

where e1 is defined by n1 = 2 cos(πe1).
Similarly to the results obtained in [86], it is possible to generalize

this result to three points functions.
The partition function Zn1,n2,n3(x1, x2, x3) ≡ Z123 is defined as the

partition function of the loop model, on the plane, where loops sep-
arating xi from the two other points have a weight ni (related to the
vertex charge αi) ; while other types of loops keep their weight n
(see figure 2.6). We use the abbreviation Zijk ≡ Zni ,nj,nk , with i, j, k ∈
{0, 1, 2, 3} and n0 = n.

These partition functions can be interpreted as (non-normalized)
correlation functions of three operators. As the FPL model flow to-
ward a Liouville field theory (in the direction of ρ) we expect to find,
like in the paper [86] where the O(n) was discussed, that the mod-
ified partition functions Z123 behave, with the correct normalisation,
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x1

x2x3

Figure 2.6: The four possible types of loops. In black, contractible loops, of
weight n, red, blue and green loops have respectively weights n1,
n2 and n3.

like Liouville structure constant CL defined in the introduction 1.20.
To make this relation exact, the partition function Z123 needs to be
normalized by “two-point functions” of the form Z0ii, Zi0i and Zii0:

CL

(
α1 ·

ρ

2
, α2 ·

ρ

2
, α3 ·

ρ

2

)
=

Z123

Z000

√
Z011Z000

Z101Z110

Z202Z000

Z220Z022

Z330Z000

Z033Z303
. (2.61)

Where CL are the structure constants of the Liouville conformal the-
ory, defined in the previous chapter 1.20. Explicitly:

CL(a1, a2, a3) =
Υb(b− 2Q + a1 + a2 + a3)∏3

i=1 Υb(b + a1 + a2 + a3 − 2ai)√
Υb(b)3Υb(b− 2Q)−1 ∏3

i=1 Υb(b + 2ai)Υb(b− 2Q + 2ai)
.

Where Υb is defined like in the introduction (1.2.4).
It seems tempting to explain this behaviour by going back to the

height model, and modelling the weight change by the insertion of
vertex operators. This is the method we employed for two insertions,
and it is at the heart of the Coulomb-gas methods applied to loop
models. But, three weights operators of the form eiαi ·φ can only be
inserted consistently if the sum of their charges, ∑ αi is equal to 0.
This leaves the freedom of fixing two of the loops weights, but not
the third one. The operators changing the weights of the loops are
non-local, which marks the difference between the loop model and
the vertex/height models.
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On the cylinder, with two points sent to the two extremities ±∞,
the expression 2.61 simplifies to:

CL (a1, a2, a3) =
Zcyl

123

Zcyl
202

√√√√Zcyl
202Zcyl

000

Zcyl
101Zcyl

303

,

ai = Q +
ei

2b
ni = 2 cos(πei) .

(2.62)

Where Zcyl
ijk is the partition function, on the cylinder, with loop weights

ni (resp. nk) for non-contractible loops below (resp. above) 0, nj for
loops around 0 and n = n0 elsewhere.

While the spectrum of the two theories are markedly different,
these ratios of partition function verify the same formula as in the
TL and O(n) model (see [86] for these two cases). We show numeri-
cally that this is also true for the (non-integrable) fully packed loop
model on the square lattice (see Figure 2.22).

The empty lines (h2) do not form loops. Hence, like on the vertex
model, generic bulk operators cannot be defined. But it is possible to
insert a “twist line” along the cylinder, corresponding to the insertion
of two operators of the form e±iah2·φ at the two extremities of the
surface. In the loop model, this twist line adds a weight eiµ (resp.
e−iµ) each time one empty line crosses the line from left to right (resp.
right to left). This modification only affects the free boson part, and it
leaves the ratio of partition functions invariant.

2.3 numerical study

2.3.1 Hamiltonian, Hilbert space and quantum numbers

In order to check the previous results we use exact diagonalisation
methods on systems ranging from N = 6 sites to N = 18. For sim-
plicity, we restrict ourselves to the case when N is multiple of 3. We
consider the Hamiltonian of the loop model transfer matrix with pe-
riodic boundary conditions:

HN ∝
d log tN(u)

du

∣∣∣∣
u=0

= −
N

∑
j=1

Uj , (2.63)

where Uj is given by (2.21), and we restrict specifically to the case
ñ = n2 − 2. The Hilbert space for the Hamiltonian is generated by
non-intersecting link patterns which allow vacancies: see next section.

In the scaling limit, one expects from conformal invariance the fol-
lowing form of the energy and momentum:

EN ∼ Nebulk +
2πv f

N

(
h + h̄− c

12

)
, (2.64)

PN ∼ const +
2π

N
(
h− h̄

)
, (2.65)
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Figure 2.7: The sectors V(N)
d,v of the loop model for N = 3.

where ebulk is the non-universal bulk energy density. The Fermi veloc-
ity v f in (2.64) may be inferred from the expression of the embedding
angle θ = 4

3 πu/λ (see Sec. 2.1.1):

v f =
2π sin λ

3λ
. (2.66)

By analogy with the standard modules in the representation theory
of the (periodic) TL algebra, we consider the representation of the
Hamiltonian HN on vector spaces generated by link patterns. In this
work, we are not treating mathematically the representation theory
of the periodic version of the sl(3) Hecke algebra. Rather, we choose
empirically a family of representations (which we call loop sectors),
and show numerically that the associated conformal weights match
the predictions from the Coulomb-Gas approach.

We fix the system size N, multiple of 3. For any d ∈ {0, 1, . . . N} and
v ∈ {−N

3 ,−N
3 + 1, . . . 2N

3 − d} such that d ≡ v mod 2, let V(N)
d,v be the

vector space generated by all link patterns with d strands connected
to infinity, and (N/3 + v) vacant sites: see Fig. 2.7 The action of the
generators Uj on V(N)

d,v is analogous to that of the periodic Temperley-
Lieb on its standard modules: each plaquette of (2.21) (considered
as acting from SW to NE), evolves the link pattern according to the
graphical prescription, and introduces a factor n or ñ for every closed
contractible or non-contractible loop. Note that two strands connected
at infinity cannot get contracted under the action of the Uj’s.

In the continuum limit, i.e. in the two-component boson theory
of Sec. 2.2.3, we expect the low-energy part of V(N)

d,v to be described by
the sectors of magnetic charges q which correspond to d propagating
strands and N/3 + v vacancies. For instance, for d and v even, the
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lowest-energy state of V(N)
d,v has magnetic charge q = 1

2 [d(e1 + e2) +

v(e2 − e1)] (see Sec. 2.2.5). The ground state is located in the sector
V(N)

0,0 .
Translation invariance is also respected on the cylinder, the dif-

ferent sectors can be further decomposed along momentum sectors,
defined by the eigenspaces of the translation operator. A non-zero
conformal spin (h 6= h̄) in the continuum limit will correspond to a
non-zero momenta on the lattice, however an additional lattice mo-
mentum, independent of the conformal spin can appear.

2.3.2 W3 symmetry of the FPL model at ñ = 2 cos(2λ)

When the non-contractible loop of the FPL model on the cylinder
have weight ñ = 2 cos(2λ), then the cylinder partition function of the
model coincides with models known for their Uq(sl(3)) symmetries.
As a priori, the FPL model does not have this symmetry, this value
of ñ is particularly intriguing. Plotting the first weights as a function
of the momentum (for every sector) shows well the underlying Z3

structure of the model (see figure 2.9). In this section we focus on
both confirming numerically the result of the previous sections, and
identifying the trace of theW3 symmetry appearing in the spectrum.

We compute the energies of HN in various sub-sectors of fixed
momentum within the sectors V(N)

d,v , and extract the scaling dimen-
sions (h + h̄) using (2.64). We extrapolate the data from system sizes
L = 6 . . . 18 using Shank’s method (see [11]). The sizes obtainable are
limited by the memory needed by the Hilbert space (of size ∼ 106 for
L = 18). The noticeable results we have obtained are:

• The expression (2.39) for the central charge is confirmed.

• The predictions from Sec. 2.2.5 on the scaling dimensions of
primary operators in various sectors are confirmed. Fractional
Kac indices, as predicted by 2.59 appear for non-zero magnetic
charges. Contrary to the O(n) case, they can appear even in sec-
tors with zero conformal spin.

• In addition to Virasoro descendants, we identify additional states,
whose conformal dimensions match with descendants under
the modes Wn<0 of the W operator, the current associated with
theW3 symmetry.

• Unlike in the O(n) model, some electro-magnetic excitations
[see (2.55)] can have vanishing conformal spin, even though
their electric and magnetic charges are non-zero.

• The finite-size effects can be quite important especially near c =
2, due to the increased presence of logarithmic corrections, or
when different states cross. Far from the free boson point (n =
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2), descendant states are extremely sensible to finite-size effects
compared to primaries.

• Similarly to the O(n) model [61], [118], the descendants L−1|0〉
and W−1|0〉, although they have zero norm, do appear in the
spectrum of the lattice Hamiltonian HN . This suggests the exis-
tence of logarithmic CFT features of the FPL model for any value
of c.

• States with no conformal spin in the continuum limit can ap-
pear at momenta 0, N

3 and 2N
3 . This decoupling seems related to

the charges of the vertex in the continuum limit, if e(n1, n2) =

n1ω1 + n2ω2 the charge n1 + n2[3] determine the sector in the
example we observed. If n1 + n2 is a multiple of three the state
appear in the zero momentum sector, otherwise it appears in
the 2π

3 / 4π
3 momentum sector.

• Descendants stay in the same “sector” as the primary (meaning
for example that if a field Φ is in a sector of momentum p, its
descendant L−1Φ will be in a sector with momentum p + 2π/N

).
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Figure 2.8: Central charge of the FPL model for ñ = n2 − 2, as a function of
n. The numerical data for sizes N = 6, 9, 12, 15, 18 are compared
to the analytic prediction (2.39).
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of the momentum, for n = 1.7. Multiple size are represented, for
N = 6, 9, 12, 15
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Figure 2.10: The purely electric sector, V(N)
0,0 , momentum P = 0. Dots are

numerical results, darker dots corresponds to larger size, from
6 to 15, dotted lines their Shank’s transform and the full lines
represent the theory. The labels on the curve represent vertex
charges and correspond to (2.53).
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Figure 2.11: The purely electric sector, V(N)
0,0 , momentum P = 2π/N. Dots are

numerical results (lighter N = 6 up to darker N = 15 in step of
3), dotted lines their Shank’s transform and the full lines give
the theory. While the convergence for descendant states is pretty
bad, their position in the spectrum and their momentum label
those two states as L−1|0〉 and W−1|0〉. The Shank’s transform
of the blue descendant do not converge well due to eigenvalues
crossing and is not shown here.

-1

-0.5

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2

S
ca
li
n
g
d
im

en
si
on

n

Sector with a defect V
(N)
1,−1

α

(
0 1

0−1/2

)

α

(
1 1

0−1/2

)

3 descendan
ts states (

level 2) of
α

(
0 1

0−1/2

)

Figure 2.12: Sector V(N)
1,−1, momenta P = 0 and P = 2π/3, same conventions

as in Fig. 2.10 . The label on the curve have to be understood as
the holomorphic part of a defect plus an electric charge, corre-
sponding to the expression (2.58) with q1 = 1 and q2 = 0. As
per (2.59), no fractional electric charge appears in this sector.
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to (2.58) with q1 = 2 and q2 = 1. This time electric charges live
in Z/3.
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Figure 2.15: The purely electric sector, V(N)
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same conventions as Fig. 2.10. Again, descendants states tend
to converge badly, but their degeneracy is consistent with the
theory.
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Figure 2.16: Two hole sector V(N)
0,2 , same conventions as Fig. 2.10. It is a mag-

netic sector with charge q perpendicular to ρ, hence the vertex
charges correspond to the case (2.55). In the case n = ñ = 2, the
model enjoys an additional Z3 symmetry (cyclic permutations
of the colours – see Fig. 2.4), and the sectors V(N)

0,2 and V(N)
3,−1

become isomorphic.

2.3.3 Three-point functions and Liouville theory

In this section we come back to the original FPL model, n = ñ. While
the spectrum of the twisted model on the cylinder does show sign of
a W3 symmetry, however the analysis done in section 2.2 invalidates



2.3 numerical study 69

this hypothesis. This motivates us to look at the behaviour of three-
point functions.

We compute the “modified partition function” defined in the sec-
tion 2.2.6: Zcyl

n1,n2,n3 . On the cylinder the loops can have four different
fugacities:

• n1 if the loop is non-contractible and passes above 0,

• n2 if the loop is contractible and separates 0 from the two ex-
tremities of the cylinder,

• n3 if the loop is non-contractible and passes below 0,

• n otherwise.

To obtain this partition function, we compute the transfer matrix in
the sector where the contractible loops have fugacity ñ = ni, ni =

n1, n3. The eigenvector associated with the highest eigenvalue of the
transfer matrix, |ni〉, is then kept.

The (fully packed) loop scalar product is defined on the loop model
Hilbert space. In principle, it is similar to the Temperley-Lieb scalar
product. Starting with two half-loop states, we give a weight corre-
sponding to the number of loops they create when associated. If the
empty edges do not match, the scalar product is zero. To insert an
operator O2, we modify, in the scalar product, the weight of loops
around the vertex at position 0. For example, in size L = 7:

→ = n× n2

Like before, the computations are made for cylinders with perime-
ter sizes multiple of three, L = 6, 9, 12, 15. The results are compared
to the theoretical values computed in 2.2.6. In figure 2.17, 2.18 and
2.19, operators of dimension 0 are considered. Their non-triviality is
made obvious: 〈n1|Oh=0|n3〉 is non-zero. In Figure 2.22, we compare
different types of loop models. We use the definitions of [143] for FPL

square lattice, TL and diluted O(n).
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Figure 2.17: Correlation function C(n1, n, n) as a function of n1. Only one
operator gives weight n1 to the loops at one end of the cylin-
der. The weight of contractible loops is fixed, equal to n =
2 cos(0.84).
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Figure 2.18: Correlation function C(n1, n, n3) as a function of n1. Two op-
erators modify the weight of the loops at both ends of the
cylinder. The weight of contractible loops is fixed, equal to
n = 2 cos(0.84) and the weight of the non-contractible loops
below 0 is equal to n3 = 2 cos(1.21) (those above 0 get weight
n1).
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Figure 2.19: Correlation function C(n1, n, n3) as a function of n1. Two oper-
ators modifying the weight of the loops at both ends of the
cylinder. The weight of contractible loops is fixed, equal to
n = 2 cos(2.57) and the weight of the non-contractible loops
below 0 is equal to n3 = 2 cos(1.21) (those above 0 get weight
n1).
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Note that in this
figure 2.21, n goes
beyond the points
were the model is

"critical"
n ∈ [−2, 2]. The

relation 2.61 is still
a match (with a

complex value of b).
This fact, already
remarked for the
O(n) model [86],
seems to indicate
that a part of the

structure of the CFT
is conserved for the

(integrable) FPL
model with n larger

than 2.

Figure 2.20: Correlation function C(n1, n2, n3) as a function of n1. Three op-
erators modify the weight of the loops at both ends of the cylin-
der and around 0. The weight of contractible loops is fixed,
equal to n = 2 cos(1.5), except for loops around 0 which get the
weight n2 = 2 cos(2.24) and the weight of the non-contractible
loops below 0 (resp. above 0) is equal to n3 = 2 cos(1.21) (resp.
n1).
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Figure 2.21: Correlation function C(n1, n, n3) as a function of n this time.
Three operators modify the weight of the loops at both ends of
the cylinder and around 0. The weight of the non-contractible
loops below 0 (resp. above 0) is equal to n3 = 2 cos(1.21) (resp.
n1 = 2 cos(0.8)).
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Figure 2.22: Correlation function C(n1, n, n) as a function of n1 for differ-
ent models. Three operators modify the weight of the loops
at both ends of the cylinder and around 0. The weight of con-
tractible loops is fixed, equal to n = 0.7, except for loops around
0 which get the weight n2 = 2 cos(π 0.12) and the weight
of the non-contractible loops below (resp. above) 0 is equal to
n3 = 2 cos(π 0.22) (resp. n1). All models are defined on a cylin-
der with size L = 12.

2.4 conclusion

In this chapter we considered the FPL model, we gave a particular
emphasis to the case ñ = n2 − 2 where an extended W3 symmetry is
expected in the continuum.

Through the exact calculation of the partition function on the torus
in the continuum limit, the full spectrum was obtained for generic
values of n and ñ. These results are consistent with the Coulomb gas
approach. In the case ñ = n2 − 2, the spectrum has been checked
numerically by an exact diagonalisation procedure, and an excellent
agreement was obtained.

On the cylinder, the integrable structure underlying the FPL model
is closely related to a su(3) quotient of the Hecke algebra. We showed
that this symmetry was not a feature of the FPL model in general,
and that, in its continuum limit, the model could be mapped to the
product of a Liouville CFT with a free boson, compactified on a two-
dimensional lattice with a symmetry of order three. This hypothesis
was confirmed through the numerical computations of ratio of parti-
tion functions, which match the three-point correlation functions of
Liouville field theory.

Experience in the O(n) model suggests that the FPL model has a
rich logarithmic CFT structure in the continuum limit, and under-
standing the Operator Product Expansions of this theory remains a
challenge. The structure constants associated with magnetic operators
notably are, like in the O(n) case, still unknown.





A P P E N D I C E S

2.a resummation of the loop partition function

In this appendix we give the derivation of (2.48). The goal is to resum
the expression:

Zloop [b, e0,R] = Vol(R)
× ∑

(q,q′)∈R2

exp
[
2iπe0(q · ρ) ∧ (q′ · ρ)

]
Zq,q′(b) (2.67)

by Poisson summation and a careful treatment of the gcd factor, as
was done for the O(n) model [49, 127].

2.a.1 Zero-strand sectors

Let us start with the sectors where q · ρ = 0 (including the purely
electric sector where q = 0). In this case the gcd boils down to (q ·
ρ)∧ (q′ · ρ) = |q′ · ρ| and the sum over q′ can be Poisson transformed
directly. For fixed q one has

Vol(R)× ∑
q′∈R

Zq,q′(b) exp(2iπe0q′ · ρ)

=
√

3 ∑
q′∈R

Zq,q′(b) exp(2iπe0q′ · ρ)

=
b2
√

3
2 Im τ|η(τ)|4 ∑

q′∈R
exp

(
− πb2

2 Im τ

∣∣qτ − q′
∣∣2 − 2iπe0q′ · ρ

)

=
1

|η(τ)|4 ∑
e∈R∗

qδ(e−e0ρ,q)q̄δ̄(e−e0ρ,q) .

2.a.2 Other magnetic sectors

In the magnetic sectors where q · ρ 6= 0, things are a bit more compli-
cated. Following [127], we define the function fq : N→ R as

fq(d) = Vol(R) ∑
q′∈R: m∧m′=d

Zq,q′(b) , (2.68)

where the integer m is defined as m = q · ρ (and m′ = q′ · ρ). Note
that fq(d) = 0 unless d|m (d is a divisor of m). We have:

Zloop [b, e0,R] = ∑
q∈R

∑
d>0,d|m

cos(2πe0d) fq(d) . (2.69)

75
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We introduce an auxiliary function gq(d) defined as

gq(d) = ∑
d′>0: d|d′, d′|m

fq(d′) . (2.70)

Notice that this sum is finite since m 6= 0, and that fq(d) can be
recovered using a variant of the Möbius inversion formula

fq(d) = ∑
d′>0: d|d′, d′|m

gq(d′)µ(d′/d) , (2.71)

where µ is the Möbius function. The quantity fq(d) is not easy to
calculate directly, because the sum is not over a regular lattice. The
auxiliary gq(d) on the other hand is better behaved. Indeed,

gq(d) = Vol(R) ∑
q′∈R: d|m′

Zq,q′ = Vol(R) ∑
q′∈Rd

Zq,q′ ,

Rd = Zde1 + Z(e2 − e1) .

It is now straightforward to transform this expression, using the Pois-
son summation formula, yielding

gq(d) =
Vol(R)

|η(τ)|4Vol(Rd)
∑

e∈R∗d
qδ(e,q)q̄δ̄(e,q),R∗d = Zω1 + Z

ω1 + ω2

d
.

where the volume of the unit cell is Vol(Rd) = |de1∧ (e2− e1)| = d
√

3.
Going back to fq(d) we have

fq(d) =
1

|η(τ)|4 ∑
d′>0: d|d′, d′|m

µ(d′/d)
d′ ∑

e∈R∗d′
qδ(e,q)q̄δ̄(e,q) (2.72)

There are duplicates in the sums over q′, because R∗d1
∩R∗d2

= R∗d1∧d2
.

We can decompose

R̃∗d = R∗d \ ∪d′<d: d′|dR∗d′ =
{

aω1 +
b
d

ρ, a, b ∈ Z, gcd(b, d) = 1
}

and

R∗d′ = tk>0: k|d′R̃∗k

Therefore

fq(d) =
1

|η(τ)|4 ∑
d′>0: d|d′, d′|m

µ(d′/d)
d′ ∑

k: k|d′
∑

e∈R̃∗k
qδ(e,q)q̄δ̄(e,q) (2.73)

=
1

|η(τ)|4 ∑
k: k|m

µ
(

k
d∧k

)

m
ϕ
(m

d

)

ϕ
(

k
d∧k

) ∑
e∈R̃∗k

qδ(e,q)q̄δ̄(e,q) (2.74)
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where we used the following identity [127]

∑
d′>0: d|d′, k|d′, d′|m

µ(d′/d)
d′

=
1
m ∑

d′′>0: k
d∧k |d′′, d′′|md

µ(d′′)
m/d
d′′

=
µ
(

k
d∧k

)

m
ϕ
(m

d

)

ϕ
(

k
d∧k

) ,

(2.75)

and ϕ(n) is Euler’s totient function. We end up with

Zloop [b, e0,R] = 1
|η(τ)|4


∑

q∈R
m=0

∑
e∈R∗

qδ(e−e0ρ,q)q̄δ̄(e−e0ρ,q)

+ ∑
q∈R
m 6=0

∑
k|m

∑
e∈R̃∗k

Λ(k, m, e0)qδ(e,q)q̄δ̄(e,q)


 , (2.76)

where

Λ(k, m, e0) = ∑
d|m

µ
(

k
d∧k

)

m
ϕ
(m

d

)

ϕ
(

k
d∧k

) cos(2πde0) . (2.77)

2.b some interesting particular cases

2.b.1 Combinatorial point

The FPL model with n =
√

2 and ñ = n2 − 2 = 0 has a vanishing
central charge.

This is a combinatorial point [50], and like in the O(n) model at
n = 1, the coefficients of the eigenvector associated to the ground
state have a particular structure, in this case they are all either inte-
gers or multiple of

√
2. For example, for L = 6 (taking into account
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translation invariance and mirror symmetry) the ground eigenstate
is:

2

12
√

2

18
√

2

12

8

5
√

2

40

15
√

2

20

50
√

2

20
√

2

10

(2.78)

Let us now compute the torus partition function. Setting ñ = 0
means e0 = 1/4, and the partition function can be simplified to

Zloop [b, 1/4,R] = Vol(R) ∑
q,q′∈R

cos
[π

2
(q · ρ) ∧ (q′ · ρ)

]
Zq,q′(b)

This boils down to

Zloop [b, 1/4,R] = Vol(R)


 ∑

q,q′∈R
m∧m′=0 mod 4

Zq,q′ − ∑
q,q′∈R

m∧m′=2 mod 4

Zq,q′




= Vol(R)


2 ∑

q,q′∈R
m∧m′=0 mod 4

Zq,q′ − ∑
q,q′∈R

m∧m′=0 mod 2

Zq,q′




= Vol(R)
(

2 ∑
q,q′∈R4

Zq,q′(b)− ∑
q,q′∈R2

Zq,q′(b)

)

This means

Zloop [b, 1/4,R] = 1
2
(Zc[b,R4]− Zc[b,R2])

This can be further simplified by observing that Rd is a square lattice
when d = 2k is even. As a consequence the partition function of the
two-component compact boson Zc[b,R2k] factorizes into

Zc[b,R2k] = Z
[√

6b
]

Z
[
k
√

2b
]

(2.79)
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where Z[R] stands for the partition function of the one-component
compact boson at radius R :

Z[R] = Z[2/R] =
1

|η(τ)|2 ∑
e,q∈Z

q
1
2 (

e
R−

qR
2 )

2

q̄
1
2 (

e
R+

qR
2 )

2

(2.80)

Setting then n =
√

2, which corresponds to b =
√

3
2 , we get

Zloop

[√
3/2, 1/4,R

]
= Z

[
3
√

2/2
] Z

[√
6
]
− Z

[√
3/2

]

2

As expected the contributions from the identity in both sums cancel
out, since the cylinder partition function is trivial. While this theory
has a vanishing central charge, the field content is not trivial as illus-
trated by the partition function on the torus.

2.b.2 The model at n = 1 : symplectic fermions and Dimer model

2.b.2.1 The case ñ = 1

For n = ñ = 1 the FPL model can be mapped to the dimer model,
and their partition function must be equal in the continuum. This
can be seen from the three-colour model, we can choose one of the
colour to act as a dimer. Then we obtain the usual partition function
of the dimer model on the hexagonal lattice. We now have e0 = 1

6 ,
and therefore:

Zloop [b, 1/6,R] = Vol(R) ∑
q,q′∈R

cos
[π

3
(q · ρ) ∧ (q′ · ρ)

]
Zq,q′(b)

= Vol(R)


 ∑

q,q′∈R
m∧m′=0 mod 6

Zq,q′ +
1
2 ∑

q,q′∈R
m∧m′=±1 mod 6

Zq,q′

−1
2 ∑

q,q′∈R
m∧m′=±2 mod 6

Zq,q′ − ∑
q,q′∈R

m∧m′=3 mod 6

Zq,q′




= Vol(R)


3 ∑

q,q′∈R
m∧m′=0 mod 6

Zq,q′ −
3
2 ∑

q,q′∈R
m∧m′=0 mod 3

Zq,q′

− ∑
q,q′∈R

m∧m′=0 mod 2

Zq,q′ +
1
2 ∑

q,q′∈R
Zq,q′




=
1
2
(Zc[b,R6]− Zc[b,R3]− Zc[b,R2] + Zc[b,R])
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For b =
√

2/3 we again get the cancellation from Zc[
√

2/3,R3] =

Zc[
√

2/3,R], and we have

Zloop

[√
2/3, 1/6,R

]
=

1
2

(
Zc[
√

2/3,R6]− Zc[
√

2/3,R2]
)

(2.81)

Since R6 and R2 are square lattices, we get a factorization

Zloop

[√
2/3, 1/6,R

]
= Z[1]

(
Z[
√

12]− Z[
√

3]
)

2
(2.82)

Finally the term (Z[
√

12] − Z[
√

3])/2 = 1 since it is the partition
function of the c = 0 minimal model M(2, 3), and we have

Zloop

[√
2/3, 1/6,R

]
= Z[1] (2.83)

which is the partition function of the one-component compact boson
at radius R = 1, or equivalently the one of the Dirac fermions. This is
also the partition function of the Dimer model.

Zloop

[√
2/3, 1/6,R

]
= ZDimer =

1
2

(∣∣∣∣
θ2(0|τ)

η(τ)

∣∣∣∣
2

+

∣∣∣∣
θ3(0|τ)

η(τ)

∣∣∣∣
2

+

∣∣∣∣
θ4(0|τ)

η(τ)

∣∣∣∣
2
)

2.b.2.2 The case ñ = −1

When n = 1 the W3 symmetry is expected for ñ = n2 − 2 = −1.

This means c = −2 (b =
√

2
3 and e0 = 1

3 ). The central charge c =

−2 does not correspond to the dimer model (c = 1), because of the
behaviour of the non-contractible loop. It’s the central charge of the
symplectic fermions model [75] (interestingly the W3 algebra is is
a sub-algebra of the symplectic fermions ones). It’s a different take
on the well known correspondence between dimers and symplectic
fermions [112]. The partition function vanishes identically in this case.

Zloop [b, 1/3,R] = Vol(R) ∑
q,q′∈R

cos
[

2π

3
(q · ρ) ∧ (q′ · ρ)

]
Zq,q′(b)

= Vol(R)


 ∑

q,q′∈R
m∧m′=0 mod 3

Zq,q′ −
1
2 ∑

q,q′∈R
m∧m′=±1 mod 3

Zq,q′




= Vol(R)




3
2 ∑

q,q′∈R
m∧m′=0 mod 3

Zq,q′ −
1
2 ∑

q,q′∈R
Zq,q′




=
1
2
(Zc[b,R3]− Zc[b,R])

However for b =
√

2/3, one finds that Zc[
√

2/3,R3] = Zc[
√

2/3,R],
so we get

Zloop

[
b =
√

2/3, e0 = 1/3,R
]
= 0
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The conventions for
the definition of the
Hecke algebra can
vary, the sign of U
is different in most
of the mathematical
sources.

If Ui = τi + q−1,
the two last relations
2.86, 2.87 written in
terms of τi form the
Artin Braid group
[98].

2.c models with Uq(sl3) symmetry

2.c.1 The Hecke relations

The aim of this section is to justify the relation between the sl3 group
and the Hecke algebra 2.18.

Start with an integrable spin chain, with L sites. The integrability
of the theory expresses itself in the R-matrix. If we assume that the
R-matrix has the following ansatz (trigonometric):

Ri(λ, u) = sin(λ− u)1+ sin(u)Ui .

The R-matrix verifies the Yang-Baxter equation:

(R(u)⊗ 1)(1⊗ R(u + v))(R(v)⊗ 1)

= (1⊗ R(v))(R(u + v)⊗ 1)(1⊗ R(u)) . (2.84)

Which can be rewritten as algebraic relations on the Ui operators:

U2
i = [2]qUi , (2.85)

UiUj = UjUi if |i− j| > 2 , (2.86)

UiUi+1Ui −Ui = Ui+1UiUi+1 −Ui+1 . (2.87)

Where quantum numbers, such as [2]q, are defined by [m]q = qm−q−m

q−q−1 .

The second relation is trivially verified, while the other two can be obtained
through simple algebraic manipulation. With u = −v = λ we find:

U2
i − 2 cos(λ)Ui = U2

i+1 − 2 cos(λ)Ui+1 .

Hence, U2
i = 2 cos(λ)Ui.

While, with u = v = λ,

− sin(λ)U2
i + sin(2λ)UiUi+1Ui = + sin(λ)U2

i+1 + sin(2λ)Ui+1UiUi+1

Ui −UiUi+1Ui = Ui+1 −Ui+1UiUi+1 .

In the limit where q = 1, the quantum group will behave like their
associated classical group. Notably, the matrices 1− τi,i+1, where τi,j is
the transposition matrix exchanging i and j, verify the Hecke relations
2.85. Hence, the spin chain is simply a reunion of L independent
particles. If we additionally consider that every particle has a SU(N)

symmetry, the tensor space decomposes into a direct sum of tensor
products of irreducible modules (Schur-Weyl duality).

This condition has a corollary in the group algebra CSL, the Young
anti-symmetrizer associated with the alternating tensor product space
of dimension N + 1,

∧N+1 C⊗N , should be 0:

AN+1 = ∑
σ∈SN+1

ε(σ)τσ = 0 .

Where τσ = τi1,i1+1 · · · τip,ip+1 if σ = (i1 i1 + 1)(i2 i2 + 1) · · · (ip ip + 1),
and ε(σ) is the signature of the permutation. And, in terms of Ui:
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A more honest name
may be Web model

to follow the
convention of

mathematicians, but
“spiders” sounds

better

• For sl2, we find back the Temperley-Lieb relation:

UiUi+1Ui = Ui . (2.88)

• For sl3:

(Ui−1 −Ui+1UiUi−1 + Ui) (UiUi+1Ui −Ui) = 0 . (2.89)

For q < 1, the permutation group is replaced by the (Artin) Braid
group, but most of the representation structure stays in place. The
anti-symmetrizer AN+1 can be defined (up to a scalar multiple) by
the relation:

Ui AN+1 = AN+1Ui = 0 ∀i ∈ {1, · · · , N − 1} .

And the previous relations 2.88 and 2.89 are still valid.

2.c.2 The Spider model

The TL loop model is a diagrammatic representation of the TL alge-
bra, which itself is the Hecke algebra associated with Uq(ŝl2). This
opens up the question of finding an equivalent diagrammatic repre-
sentation for the Uq(sl3) Hecke algebra. For the reasons developed
in this chapter, the fully packed loops do not fulfil this role. A good
diagrammatic representation was found by Kuperberg [103]. In turn
this diagrammatic expansion can naturally be transformed into a sta-
tistical model with an Uq(ŝl3) symmetry. Describing this model is the
aim of this appendix.

The Spider model is defined on a finite square lattice of height M
and width N. Each face of the lattice can be occupied by either one
of the two plaquettes or . They have a specific orientation: the
model is not invariant under a π/2 rotation. The set of all plaquette
configurations forms the configuration space.

A given finite configuration of plaquettes form a planar bicubic
graph : a bipartite planar graph, with three edges at every vertices.

The weight of a configuration is given by the following rules:

= [3]q ,

= [2]q ,

= + .

(2.90)

Those rules are enough to reduce any bicubic graph to a scalar weight. Sup-
pose that there exists a connected graph that cannot to be simplified, this graph
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cannot have any faces of size 2 or 4, and because it is bipartite every face are
of even length. Being planar, and connected, it verifies the Euler relation, if V
is the number of vertices, E the number of edges and F the number of faces:

V − E + F = 2 .

Every edge is attached to three vertices hence 2E = 3V. And, if Fn is the
number of faces with n sides:

F = ∑
n>0

F2n E = ∑
n>0

2
2n

F2n .

Reinserted in the Euler relation, we find:

∑
n>0

(
1− n

3

)
F2n = 2 .

Hence, if 2F2 + F4 < 6, there is no such graph. So in particular if F2 = 0 and
F4 = 0 the graph simplifies to a scalar weight.

This model is integrable. On a strip of length L, the transfer matrix
in the top-right direction is given by:

T = ∏
j even ≥0

Rj,j+1 ∏
j odd >0

Rj,j+1 .

Where Rj,j+1 is the R-matrix of the system:

Rj,j+1(λ, u) = sin(λ− u) j + sin(u) j q = eiλ .

The operator Uj = j plays the role of the Hecke generator, and
verifies the algebraic relations:

U2
j = (q + q−1)Uj , (2.91)

UjUj+1Uj −Uj = Uj+1UjUj+1 −Uj+1 , (2.92)

UjUk = UkUj if |j− k| ≥ 2 , (2.93)

(Uj−1 −Uj+1UjUj−1 + Uj)(UjUj+1Uj −Uj) = 0 . (2.94)

Those relations can be found by applying the rules 2.90. The Markov
trace (noted Tr) associated with this model consist simply in linking
together the incoming and outgoing links, then applying the rules
2.90 on the resulting graph. The trace verifies the relation:

Tr[Uj x] =
q2 − q−2

q3 − q−3 Tr[x] . (2.95)

If x belongs to the algebra generated by {U0, U1, · · · , Uj−1}.
The relations 2.90 can be found by diagrammatically manipulating the graphs.
For example:

U2
j =

j

j + 1
= [2]q

j

j + 1
= (q + q−1) Uj .

The equation 2.95 can also be verified through similar methods. For example:

Tr[U1] = = [2]q = [2]q[3]q

Tr[1] = = [3]2q =
q3 − q−3

q2 − q−2 Tr[U1]
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It is also possible to
define operators,

which would modify
the weight of the

loop surrounding
them (only pure
loops, faces with

only one edge),
similarly to the loop

model, and to
compute their

weight. An
equivalent of the

“three-point”
partition functions

of the loop model
however is more

complicated to find,
due to the existence
of non-trivial spider

diagrams on the
sphere with three

punctures.
For example:

The Hilbert space of the system on a cylinder of perimeter L is
formed of all possible configurations that can be obtained from let-
ting the R-matrix iterate over a simple half-web configuration such as

. . . , and simplified using the relations 2.90.
A natural bilinear two-form can be defined over the half-webs, by

mirroring a half-web then simply concatenating it to another, through
the outgoing edges. The resulting object is a complete web and hence
can be simplified to a scalar. The resulting form is generically not
positive (hence not a scalar product), except if q is real positive.

The Hilbert space is finite, the proof is not trivial and details can
be found in [62].

It is possible to be more precise and link the number of states to the combina-
toric of Young tableaux. The number of states in the space of half-webs is equal

to the number of standard Young tableaux of size
(

L
3 , L

3 , L
3

)
(a standard Young

tableau is a Young diagram filled with strictly increasing integers in both di-
rections). The short explanation of the bijection that follows can be found in
more details within [120]. Start with a half-web, defined on the half plane, and
associate to every face its depth with respect to the exterior face (the only in-
finite face). Every edge can then be associated to a number in {−1, 0, 1} equal
to the difference of depth between its two adjacent faces (left minus right, the
orientation of the edge can be defined uniquely). The L outgoing edges are
then associated to a word of size L with alphabet {−1, 0, 1}, x1x2 · · · xL. The
Young tableau is then constructed by putting in the row number 1 − xi the
number i.

While there is no exact mapping toward a vertex model (yet ?), some
specific value of q are of interest on their own:

• q = 1: [3]q = 3 and [2]q = 2. The model maps directly to the
three-colors model.

• q = eiπ/3: [3]q = 0 and [2]q = 1. Corresponds to c = −2. Only
fully connected configurations are authorized, and they all have
the same weight.

• q = eiπ/4: Corresponds to c = 0. [3]q = 1 and [2]q =
√

2.

• q = eiπ/5: Corresponds to c = 4/5. [3]q = [2]q = 1+
√

5
2 .

These models are expected to map to the first rational models (p +

1, p) p = 1, · · · , 4 withW3 conformal symmetry.
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C O N F O R M A L T O D A F I E L D T H E O RY

The Toda theory is a generalization of the Liouville CFT with
an additional Wn symmetry. We study the c ≤ n − 1 theory,
which interpolates between the different W3 minimal models.
Like in the c ≤ 2 Liouville theory the spectrum is continuous
on the real line, operators are labelled by (n− 1) dimensional
vertex charges. We are interested in both the three-point con-
stants of the theory and in the restrictions imposed on the con-
formal spin of the operators. Main results include:

• The expression of the structure constants (3.36) of three
scalar operators when one of them is semi-degenerate.
Up to operator normalization, the structure constant of
three operators Oα1 , Oα2 and Oα3 takes the form, if α3 is
semi-degenerate:

C(α1, α2, α3) =
n

∏
k,`=1

Υb [b + (α1 −Q) · hk + (α2 −Q) · h` + 2µ] ,

µ =





1
2 (b
−1 − b)− κ

2n if α3 = κω1 ,
κ

2n if α3 = κωn−1 .

Where hi are the weights of the first representation of
SU(n), Q = (b−1 − b)(h1 + h3) and c = (n− 1)− 12Q2.

• The classification of the possible non-scalar operators in
a general Toda field theory. Non-scalar operators can be
labelled by their vertex charges α and ᾱ and a permuta-
tion σ ∈ SN , which fixes the fusion rules between the
operator and degenerate fields. We find the constraints:

α− ᾱ ∈ R/b , and α− σ ? ᾱ ∈ bR ,

where R is the root lattice of SU(3).

• The shift equations obeyed by the structure constants of
non-scalar operators, with their solution (3.77) when one
of the operators is scalar.

Summary

85
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3.1 introduction

In the context of Conformal Field Theory (CFT) applied to critical
models of statistical mechanics, the understanding of the operator al-
gebra, i. e.the spectrum of primary operators, their fusion rules and
the structure constants appearing in the Operator Product Expansion
(OPE), are of central importance. While the conformal dimensions de-
termine the critical exponents of a given universality class, the struc-
ture constants (together with the conformal blocks) are the building
blocks for N-point correlation functions.

In this chapter, we consider a model with Wn algebra symmetry,
namely the sln Toda field theory. Like for the Virasoro algebra, a
whole class of critical integrable lattice models – vertex and face mod-
els – scale to Wn-symmetric CFTs in the continuum limit [117], and
their central charge is c ≤ n − 1. For n = 3, we saw in the previ-
ous chapter that the FPL model on the honeycomb lattice [101, 128]
displays some features related to W3. The Wn analogue of the DOZZ

formula (see introduction 1.20) [53, 153], i.e. the structure constant
of three vertex operators for the sln Toda field theory with a real
background charge Q, was obtained by the conformal bootstrap pro-
cedure in [63, 64]. The results are restricted to the case when one of
the operators is “semi-degenerate” with respect to the Wn algebra.

This chapter is mostly centered around theW3 model, which serves
as the main example for all the results. It will be described in details
in the first part. Then, we calculate the structure constants of vertex
operators in the sln Toda CFT with imaginary background charge Q.
Like in the Liouville case [156], the structure constant does not follow
an analytic continuation, and the analytic expressions for real and
imaginary Q are different.

We then turn our attention to non-scalar primary fields. By de-
manding well-defined monodromies with the fully degenerate fields,
a classification of the possible non-scalar primary fields is obtained.
These fields are found to be in one-to-one correspondence with con-
jugacy classes of Sn, with the particular case of the identity being the
usual scalar fields.

Finally, we consider the structure constants in the presence of non-
scalar operators, which are found to be given by a geometrical mean
relation as was the case for n = 2 (Liouville) [61, 111].

3.2 the W3 conformal symmetry

3.2.1 Definition

The W3 algebra is a chiral symmetry algebra generated by two fields
[65, 152]: the usual spin-2 stress energy tensor, ensuring conformal
invariance, and an additional spin-3 current W(z). The operator al-
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gebra generated by these two operators is completely defined by the
singularities in the Operator Product Expansion (OPE):

T(z)T(0) =
c

2z4 +
2
z2 T(0) +

1
z

∂T(0) +
[

3
10

∂2T(0) + Λ(0)
]
+O(z)

T(z)W(0) =
3
z2 W(0) +

1
z

∂W(0) + reg. (3.1)

W(z)W(0) =
c

3z6 +
2T(0)

z4 +
∂T(0)

z3

+
1
z2

[
3
10

∂2T(0) +
32

22 + 5c
Λ(0)

]

+
1
z

[
1
15

∂3T(0) +
16

22 + 5c
∂Λ(0)

]
+ reg. .

The first relation defines the usual Virasoro algebra (central charge
c), the second one expresses that W is a primary field of dimension 3,
while the third one comes from the closure of the operator algebra.

To develop the origin of this last equation, the closure of the algebra imposes
the relation W⊗W → 1⊕W, but if the structure constant CW

W,W was non-zero,
the correlation function ξ → 〈W(z1)T(ξ)W(z2)W(z3)〉 would define a non-
zero meromorphic function with only three poles, of degree two, in zi, and
which behaves at infinity like ξ−4, which is prohibited by the residue theorem.
Hence, W ⊗W → 1.

And because W(z) is a primary field of weight 3,

W(z)W(0) = 〈W|W〉
(

1
z6 +

6
c

L−2

z4 +
L−1L−2

z3 + · · ·
)
1(0) ,

where the whole development is fixed by conformal invariance. The norm
〈W|W〉 is arbitrarily chosen to make the developments of T · T and W ·W
somewhat similar.

The modes of these two operators are defined by:

LnΦ(ξ) =
∮

dξ(u− ξ)n+1T(u)Φ(ξ) ,

WnΦ(ξ) =
∮

dξ(u− ξ)n+2W(u)Φ(ξ) .
(3.2)

The OPEs defined previously are equivalent to the following commu-
tations relations between the modes:

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δn+m,0

[Ln, Wm] = (2n−m)Wn+m

[Wn, Wm] =
c

360
(n2 − 4)(n2 − 1)nδn+m,0 +

16
22 + 5c

(n−m)Λn+m

+
1
30

(n−m)
(
2m2 + 2n2 −mn− 8

)
Ln+m ,

(3.3)

where Λn are the modes of the (quasi-primary) composite field Λ(z) =
: T2(z): − 3

10 ∂2T(z), namely:

Λn = ∑
k<n/2

LkLn−k + ∑
k≥n/2

Ln−kLk +

(
1 +

⌈ n
2

⌉) (
1 +

⌊ n
2

⌋)

5
Ln (3.4)
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Contrary to the case of the Virasoro algebra, the vector space defined by the
modes is not a Lie algebra because of the quadratic term in L appearing in
[Wn, Wm]. Nevertheless, the full algebra formed by the modes (with modes
multiplication allowed) is a Lie algebra, hence the Jacobi identity is obviously
verified by the bracket.

A primary field for W3 is a field Φ which is primary with respect
to both operators,

WnΦ = 0 ∀ n ∈N∗, LnΦ = 0 ∀ n ∈N∗,

W0Φ = wΦΦ, L0Φ = hΦΦ,

hΦ is the conformal dimension of the field, the couple (hΦ, wΦ) iden-
tifies a field in a W3-conformal theory. Based on these conditions, the
OPE of the fields T and W with the primary fields can be written:

W(z)Φ(0) =
wΦΦ(0)

z3 +
W−1Φ(0)

z2 +
W−2Φ(0)

z
+ reg.

T(z)Φ(0) =
hΦΦ(0)

z2 +
W−1Φ(0)

z
+ reg.

As a consequence, T(z) and W(z) behaves, when z → ∞, like 1
z4 and

1
z6 respectively.

The conjugate of a field Φ∗ is defined by the relation |Φ〉† = 〈Φ∗|.
It’s easy to see that, W being of odd dimension, the conjugate Φ∗ of a
field Φ have the opposite weight under W: wΦ = −wΦ∗ , and of course
hΦ = hΦ∗ .

If Φ1 and Φ2 are two operators, both primary forW3, and the fusion
Φ1 ⊗ Φ2 → Φp ⊕ · · · is allowed, then the (holomorphic part of
the) OPE of Φ1 with Φ2 will also involve all the descendants of Φp,
with respect to T and W,

Φ1(z)Φ2(0) = ∑
n,m

CW−n L−nΦp
Φ1,Φ2

W−nL−mΦp,

where, for n a multi-indices vector X−n = X−n1 X−n2 · · ·
Contrary to the Ln operators, the modes of W cannot be expressed

as differential operators. If in Virasoro, every three-point functions in-
volving descendants operator can be expressed in terms of the three-
point function of primaries, it is not the case in W3. Not all generic
three-point functions involving descendants of W can be computed
through the algebra alone.

To be more precise, every three-point functions involving descendants of pri-
mary fields, of the form 〈W−n1,−n2,···Φ1W−m1,−m2,···Φ2W−p1,−p2,···Φ3〉, can be
expressed in terms of the structure constants 〈Wn

−1Φ1Φ2Φ3〉, with n ∈ N,
which themselves cannot be simplified more (using the sole algebra, bootstrap
methods can of course be applied). This was proven in [97]. For completeness,
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we present a shortened version of their argument. If Ψ1, Ψ2 and Ψ3 are pri-
maries or descendants of primaries, the correlation function:

z→ 〈W(z)Ψ1(z1)Ψ2(z2)Ψ3(z3)〉
(z− z2)

2(z− z3)
2

(z− z1)n

behaves like 1/zn+2 at infinity. So for n ∈ N, we can apply the residue theorem
and say that:

∑
i

Res
[
〈W(z)Ψ1(z1)Ψ2(z2)Ψ3(z3)〉

(z− z2)
2(z− z3)

2

(z− z1)n

]∣∣∣∣
z=zi

= 0 .

In z2 and z3, the residue is only a function of 〈Ψ1(z1)Ψ2(z2)Ψ3(z3)〉 and wi,
while in z1 it involves all the three-point functions 〈W−kΨ1(z1)Ψ2(z2)Ψ3(z3)〉
with k ∈ {1, · · · , n + 2}. By recurrence every correlation functions can be com-
puted in terms of 〈Ψ1(z1)Ψ2(z2)Ψ3(z3)〉 and 〈W−1Ψ1(z1)Ψ2(z2)Ψ3(z3)〉. Be-
cause the commutation of the W modes only involves modes of T, the gener-
alization to multiple descendants is trivial.

3.2.2 Free fields realization

The free-field theory composed of two bosons has a W3 symmetry,
with c = 2. The chiral part of its stress-energy tensor takes the form:

T(z) = −1
2

: (∂ϕ · ∂ϕ): .

With ϕ the chiral part of a two-dimensional bosonic field. And, in
order to match the OPE 3.1, W must take the form:

W(z) ∝ :
3

∏
i=1

(∂ϕ− hi): .

We take the convention ϕi(z)ϕj(w) ∼ −δij log(z− w) i, j ∈ {1, 2} for
the two components of the chiral part of the boson. The vectors hi are
the weights of the first fundamental representation of su(3) (see the
appendix 3.A).

Another possible representation of the W3 symmetry is the WZW
(Wess-Zumino-Witten) model associated with Â2. The relation be-
tween the currents of the Â2 WZW and the T and W operators is
interesting to establish, as it underlines clearly the link between W3

and the SU(3) theory. The Lie symmetry in the action of the WZW
theory is reflected, at the quantum level, in a current algebra, whose
basis is a set of primary fields Ja of dimension 1, closed under OPE:

Ja(z)Jb(w) ∼ δab

(z− w)2 + ∑
c

i fabc
Jc(w)

(z− w)
.

Of course these operators Ja are in correspondence with the standard
basis of the Lie algebra: Ja(z)Jb(w)− Jb(w)Ja(z) ∼ 2 ∑c i fabc

Jc(w)
(z−w)

. As
often when working with Lie algebras it is easier to consider the op-
erators E±i(z) i ∈ {1, 2, 3} and H j(z) j ∈ {1, 2}, that are associated
with the Cartan-Weyl basis (see appendix 3.A). WZW theories have
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The operator E±i is
equal to e±iei ·φ up

to a sign, this sign is
necessary in order to

verify the correct
OPEs

a well-known vertex representation. Specializing to the SU(3) case,
it is simple to check that, given a two-dimensional bosonic field, the
bosonic operators:

H j = i∂φj and E±i ∝ e±iei ·φ

satisfy the correct OPEs. All these operators are current of dimension
1.

The stress-energy tensor of the theory is obtained by forming the
quadratic Casimir of the Lie algebra with these operators:

T ∝ ∑
a

: Ja Ja:∝ ∑
i

: Hi Hi: +∑
i

: EiE−i: + : E−iEi: . (3.5)

And, maybe less commonly known, the W operator comes from the
Casimir of order 3 [28]:

W ∝ ∑
a,b,c

da,b,c : Ja Jb Jc: (3.6)

Where da,b,c are the completely symmetric coefficient constants, de-
fined in 3.A. This operator is of course of conformal dimension 3,
hence verifies the OPE with T and by extension the OPE with itself.

Coming back to the bosonic realization, for c < 2, the stress-energy
tensor can be modified through a background charge Q:

T(z) = −1
2

: ∂ϕ · ∂ϕ: +iQ∂2ϕ, c = 2− 12Q ·Q

In order to keep the OPEs 3.1 valid, this implies:

W(z) ∝ : (∂ϕ2)
3: −3 : (∂ϕ1)

2∂ϕ2 : + 3iQ : ∂2ϕ1∂ϕ2 :

+ 9iQ : ∂ϕ1∂2ϕ2 : +6Q2 : ∂3ϕ2 : .

The primary operators are given by vertex operators Vα = : eiα·ϕ :,
which have weights:

∆α =
1
2

α · (α− 2Q) and wα =

√
48

22 + 5c ∏
i
(α−Q) · hi .

Where hi are the weights of the first representation of su(3), defined
in the appendix 3.A. From these expressions it is easy to extract the
following relations:

V∗α = Vα∗ V2Q−α∗ = Vα .

Or, more generically:

VQ+Ri(α−Q) = Vα ∀i .

With the dual of an operator Φ defined as the operator Φ∗ such that
〈Φ(0)Φ∗(z)〉 6= 0.
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We are concerned
with the simplest
W3 minimal models,
i.e. those with
diagonal modular
invariant [17].

p and q are coprime
integers, so a and b
exists such that
ap + bq = 1, take
n = aρ and
m = bρ. If
(p− q)2 6= 1 the
weight ∆n,m is
negative.

3.2.3 Coulomb gas theory

From the stress-energy tensor, we extract the action:

A =
1

8π

∫
d2x
√

g(x)
[
gµν∂µϕ(x) · ∂νϕ(x) + 2iR(x)Q ·ϕ(x)

]
.

Where g and R are respectively the metric and the scalar curvature of
the manifold on which the model is defined. This is the action of the
Coulomb-gas theory. The vector Q, which creates a coupling between
the field and the curvature, is called background charge.

All correlation functions of vertex operators, 〈Vα1Vα2 · · ·Vαp〉 must
respect the neutrality condition, wherein the sum of their charges
must be equal to the background charge:

∑
i

αi = Q

The primary fields of this Coulomb-gas theory are vertex operators
Vα, with α verifying:

α = α

(
n1 m1

n2 m2

)

= b−1 [(n1 − 1)ω1 + (n2 − 1)ω2]− b [(m1 − 1)ω1 + (m2 − 1)ω2]

If b2 is rational, this leads to a finite number of fields, a minimal
model.

3.2.4 Minimal models

The minimal models W3(p, q) – with p and q coprime integers, p, q ≥ 3
– are rational conformal field theories with W3 symmetry and central
charges:

c(p, q) = 2
(

1− 12
(q− p)2

pq

)
(3.7)

They have finitely many scalar primary fields Φn,m , with n ∈ ρ +

Ap−3 and m ∈ ρ + Aq−3, i.e.

n ∈ {n1ω1 + n2ω2, ni ≥ 1, n1 + n2 ≤ p− 1},
m ∈ {m1ω1 + m2ω2, mi ≥ 1, m1 + m2 ≤ q− 1} .

(3.8)

The conformal dimension of Φn,m is

∆n,m = ∆̄n,m =
(qn− pm)2 − 2(q− p)2

2pq
. (3.9)
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While rational, the minimal models W3(p, q) are only unitary for
q = p + 1 and p ≥ 4, and in this case they are equivalent to the
following GKO coset[121]

W3(p, p + 1) =
ŝu(3)k ⊗ ŝu(3)1

ŝu(3)k+1
, p = k + 3 . (3.10)

The minimal model W3(4, 5) is equivalent to the Virasoro minimal
model (6, 5) (3-Potts), but models W3(p, p+ 1) with p ≥ 5 verify c ≥ 1,
and hence are not minimal models for Virasoro.

3.2.5 Toda field theory

The model we are studying in this chapter is the analogue of the
Liouville model for theWn symmetry. The action associated with the
Toda field theory is:

A =
1

8π

∫
d2xgµν∂µϕ · ∂νϕ+ 2iR(x)Q ·ϕ+ µ

n−1

∑
k=1

eb(ek ·ϕ)

Where ϕ is a n− 1 dimensional field normalized by:

〈ϕi(z, z̄)ϕj(0, 0)〉 = −δij log |z|2

In the case ofW3, this model interpolates between the minimal model
described previously. It also contains the chiral part of the Coulomb
gas.

3.2.6 Semi-degenerate and fully-degenerate representations of W3

Some particular W3 primary fields have null vectors (i.e. some of
their descendants are linearly dependent). These primary fields are
called degenerate. Two types of degenerate representations must be
distinguished:

• semi-degenerate representations, satisfying only one null-vector
equation. The conformal dimension and the W-charge of the
semi-degenerate primaries are related by a polynomial equa-
tion.

• fully degenerate representations, with two or more null-vector
equations, for which both the conformal dimension and the W-
charge are fixed (for a given central charge).

For semi-degenerate representations, there is only one primitive
linear relation between descendants. The simplest example is the rep-
resentation generated by an operator with a null vector at level one.

L−1Φα ∝ W−1Φα, (3.11)
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which requires the relation

9w2
α =

2∆2
α (32∆α + 2− c)

22 + 5c
. (3.12)

In terms of charge vectors, this means (up to Weyl transformations)

α = κω1 or α = κω2 , (3.13)

where κ ∈ C. The explicit relation between descendants is:

W−1Φα =
3w
2∆

L−1Φα . (3.14)

Fully degenerate states possess additional null vectors. Focusing on
the simplest type of degenerate representation, consider a field Φ sat-
isfies the semi-degenerate condition (3.14), together with a linear rela-
tion at level two, between {W−2Φα, L−2Φα, L2

−1Φα}. The algebra (3.3)
then yields four possible values α ∈ {bω1, bω2,−b−1ω1,−b−1ω2},
where b is related to the background charge Q by

Q =
1
b
− b , b =

1
2

(
−Q +

√
4 + Q2

)
.

The precise form of the additional null-vector conditions is then
(see [29]):
(

W−2 −
12w

∆(5∆ + 1)
L2
−1 +

6w(∆ + 1)
∆(5∆ + 1)

L−2

)
Φα = 0 ,

(
W−3 −

16w
∆(∆ + 1)(5∆ + 1)

L3
−1 +

12w
∆(5∆ + 1)

L−1L−2

+
3w
2∆

(∆− 3)
(5∆ + 1)

L−3

)
Φα = 0 ,

(3.15)

where ∆ and w are given by (2.54).

3.2.7 Fusion in W3

The above null-vector equations impose constraints on the fusion
rules and on the structure constants involving degenerate fields. In
particular, we can extract from them the fusion rules of the fully de-
generate states. For example, one can show that the correlation func-
tion 〈ΦαΦbω1 Φβ∗〉 vanishes unless β = α + bhj for some j ∈ {1, 2, 3}.
Fusion rules match the behaviour of tensor product of representation
in su(3):

Φbω1 ⊗Φα →
3⊕

j=1

Φα+bhj , Φbω2 ⊗Φα →
3⊕

j=1

Φα−bhj . (3.16)

This result can be found in [63], it can also be extracted from the result
in the Appendix 3.B.1, by setting κ = 0 in the differential equation.
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Note however that generically there will be non-trivial multiplicities
in these fusion rules. This is why a generic four-point function involv-
ing a fully degenerate field Φbω1 does not obey a differential equation
of order three. If one of the other fields is semi-degenerate though, a
differential equation can be found, but its order depends on the semi-
degenerate field [15, 16].

For semi-degenerate operators, similar (if less strict) restrictions
exist. Let Φ1 and Φ2 be two semi-degenerate fields at level 1. The
residue theorem applied to the contour integral:

∮

C
dz (z− 1)2z 〈Φ2|W(z)Φα(1)|Φ1〉 ,

where C is a contour enclosing 0 and 1, yields

〈Φ2|W1Φα(1)|Φ1〉 − 〈Φ2|Φα(1)W−1|Φ1〉
+ (2(w1 − w2)− wα) 〈Φ2|Φα(1)|Φ1〉 = 0 .

Now using the null-vector condition W−1Φj =
3wj
2∆j

L−1Φj, and

〈Φ2|Φα(1)L−1|Φ1〉 = (∆1 + ∆α − ∆2)〈Φ2|Φα(1)|Φ1〉,
〈Φ2|L1Φα(1)|Φ1〉 = (∆2 + ∆α − ∆1)〈Φ2|Φα(1)|Φ1〉

we get the condition for 〈Φ2|Φα(1)|Φ1〉 to be non-zero:

wα =
3w2

2∆2
(∆2 + ∆α − ∆1)−

3w1

2∆1
(∆1 + ∆α − ∆2) + 2(w1 − w2) .

This restricts the fusion rules (up to Weyl transformations) as follows:

〈
Φκω1 Φκ′ω1 Φβ∗

〉
6= 0 for β ∈ Re1 + (κ + κ′)ω1 ,〈

Φκω2 Φκ′ω2 Φβ∗
〉
6= 0 for β ∈ Re2 + (κ + κ′)ω2 ,

〈
Φκω1 Φκ′ω2 Φβ∗

〉
6= 0 for β ∈ Rρ +

κ′ − κ

2
h2 .

(3.17)

A special case is the fusion between a semi- and a fully degenerate
field. It is possible to explicitly describe the allowed operators in the
fusion Φbω1 ⊗Φκωi . Putting together the previous fusion rules we get

Φbω1 ⊗Φκω1 → Φκω1+bh1 ⊕Φκω1+bh2 ,

Φbω1 ⊗Φκω2 → Φκω2+bh1 ⊕Φκω2+bh3 .
(3.18)

The semi- and fully degenerate representations of higher level can
be described explicitly by studying level-N null vectors. The fields
Φκω2+bh1 and Φκω2+bh3 , which appear in the previous fusions are also
semi-degenerate, see for example [16] for an explicit derivation.
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3.2.8 Wn algebra and conventions for sln

The Wn algebra is a generalization of the W3 algebra, in which there
are n− 1 holomorphic currents W(k)(z) with spin k = 2, 3, · · · , n. The
central charge is parametrized as:

c = (n− 1)− 12 Q ·Q = (n− 1)
(
1− n(n + 1)Q2) , (3.19)

where Q = Qρ and ρ is the Weyl vector of sln (see Appendix 3.A).
Primary fields are characterized by their zero modes w(k)

W(k)(z)Φ(0) =
w(k)

zk Φ(0) + · · · (3.20)

and the quantum numbers w(k) = w(k)
α are naturally parametrized

by an (n− 1)-dimensional vector α. Furthermore, they are invariant
under action of the sln Weyl group

∀σ ∈ W , w(k)
σ?α = w(k)

α . (3.21)

The dual of a charge α is α∗ = −s0(α), and is equivalent to 2Q− α.
Indeed, it follows from s2

0 = 1 and s0(ρ) = −ρ that

2Q− α = s0 ? (α
∗) (3.22)

Of particular importance are the four completely degenerate opera-
tors {Φbω1 , Φbωn−1 , Φ−b−1ω1

, Φ−b−1ωn−1
}. Their (chiral) fusion rules with

a generic primary field Φα are given by

Φbω1 ⊗Φα →
n⊕

j=1

Φα+bhj , Φbωn−1 ⊗Φα →
3⊕

j=1

Φα−bhj , (3.23)

Φ−b−1ω1
⊗Φα →

n⊕

j=1

Φα−b−1hj
, Φ−b−1ωn−1

⊗Φα →
3⊕

j=1

Φα+b−1hj
. (3.24)

A particularly simple class of semi-degenerate field is given by Wyl-
lard fields

Φκω1 and Φκωn−1 , κ ∈ C . (3.25)

These fields have (n− 2) null-vectors at level one:

W(k)
−1 Φκωj ∝ L−1Φκωj , k = 3, . . . , n , (3.26)

but they lack an extra null-vector to be fully degenerate.

3.3 structure constants of scalar fields

So far we have given a purely chiral description of the Wn theory. In
order to build a consistent conformal field theory the holomorphic
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In fact one formally
treats the variables z

and z̄ as being
independent, and

there are two
differential

equations : one with
respect to z, and one

with respect to z̄.

and anti-holomorphic sectors have to be glued appropriately. On the
torus the constraint is modular invariance of the partition function,
while on the sphere the constraint is crossing-symmetry of four-point
functions. Here we consider the latter, and we first discuss scalar
fields in the Wn Toda field theory with c ≤ n− 1. Generically a field
is scalar as long as its conformal spin is zero: s = ∆− ∆ = 0. In the
context of an extended symmetry such as the Wn theory, we take a
more constraining definition, namely that all left and right quantum
numbers coincide:

∀k ∈ {2, . . . n} , w(k) = w(k) . (3.27)

Primary fields are labelled by their holomorphic and anti-holomorphic
charge vectors as Φα,ᾱ(z, z̄), and scalar primary fields are those which
have α = α (up to Weyl group action): we shall simply denote them
as Φα(z, z̄). Our purpose is to compute the structure constants of the
operator algebra between scalar primary fields. These are related to
the three-point correlation functions:

C(α1, α2, α3) = 〈Φα1(0)Φα2(1)Φα3(∞)〉 . (3.28)

When one of the vertex charges is semi-degenerate, say

α3 = κω1 or α3 = κωn−1 , with κ ∈ R , (3.29)

and α1, α2 are generic, the conformal bootstrap approach developed
in [63, 64] can be adapted to the imaginary Toda case. It is important
to detail this calculation for the sln Toda field theory with c ≤ n− 1.
Indeed, in the case of Liouville (n = 2) it is known that the three-point
structure constants for c ≤ 1 are not given by the analytic continuation
of the ones obtained for c /∈]−∞, 1] [130, 156].

In order to compute these structure constants, following [63, 64],
we impose crossing symmetry on the correlation function

G(z, z̄) = 〈Φα2(∞)Φbω1(z, z̄)Φα3(1)Φα1(0)〉 .

This correlation function obeys a Fuchsian differential equation of
order n (see Appendix 3.B). The solutions of this differential equation
form a representation of the fundamental group

ρ : π1

(
CP1 \ {0, 1, ∞}

)
→ GL(n, C)

The fundamental group of the punctured sphere CP1 \ {0, 1, ∞} is
generated by the loops γ0 and γ∞ winding around 0 and ∞ respec-
tively (in the positive direction). Accordingly, we introduce two bases
of solutions for the differential equation : {Fi(z), i = 1, · · · , n} with
Abelian monodromies around 0, and {Gi(z), i = 1, · · · , n}with Abelian
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monodromies around ∞. Explicit formulas in terms of hypergeomet-
ric functions can be found in Appendix 3.B. These two bases are re-
lated through:

Fi(z) =
n

∑
j=1

MijGj(z) , (3.30)

where the matrix M is given by (3.93) in Appendix 3.B. The correla-
tion function G(z, z̄) is built by gluing left and right conformal blocks

G(z, z̄) =
n

∑
i,j=1

XijFi(z)Fj(z̄)

in such a way as to obtain a single-valued function of z, i.e. a function
with trivial monodromies. This means that for any λ ∈ π1

(
CP1 \ {0, 1, ∞}

)
,

one must have

ρ(λ)TXρ(λ) = X

It is sufficient to impose this condition for λ = γ0 and λ = γ∞. In the
generic case the blocks Fi(z) have distinct monodromies, and trivial
monodromy of G around z = 0 is equivalent to the matrix X being
diagonal. Similarly, around ∞ one can decompose

G(z, z̄) =
n

∑
i,j=1

YijGi(z)Gj(z̄) ,

and the matrix Y = MTXM has to be diagonal as well. Since X and
Y are diagonal, one has

∑
j

Xj Mjk Mjl = Ykδk,l .

This over-complete set of linear equations has a unique solution (up
to a global pre-factor)

Xi

Xj
=

Mjm
(

M−1)
mi

Mim (M−1)mj
.

provided the r.h.s. does not depend on m. For scalar fields this is
indeed the case, since

Mjm
(

M−1)
mi

Mim (M−1)mj
=

∏k 6=i γ(Ak − Ai)

∏k 6=j γ(Ak − Aj)

n

∏
k=1

γ(Ai + Bk)

γ(Aj + Bk)
,

where γ(x) = Γ(x)/Γ(1− x),

Ai = ∆α1+bhi − ∆α1 + bµ , Bi = ∆α2+bhi − ∆α2 + bµ , (3.31)

and

2µ =




(1/b− b)− κ

n if α3 = κω1 ,
κ
n if α3 = κωn−1 .

(3.32)
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The coefficients Xi are related to the structure constants as follows

Xi

Xj
=

C(α1, bω1, 2Q− α1 − bhi)

C(α1, bω1, 2Q− α1 − bhj)

C(α1 + bhi, α2, α3)

C(α1 + bhj, α2, α3)
,

and crossing symmetry boils down to

C(α1 + bhi, α2, α3)

C(α1 + bhj, α2, α3)
=

Ki(α1)

Kj(α1)
×

n

∏
k=1

γ(Ai + Bk)

γ(Aj + Bk)
, (3.33)

where Ki(α1) and Kj(α1) are some normalizing factors. Repeating the
same steps with the fully degenerate field Φ−b−1ω1

yields the same
relation with b→ −b−1:

C(α1 − hi/b, α2, α3)

C(α1 − hj/b, α2, α3)
=

K̂i(α1)

K̂j(α1)
×

n

∏
k=1

γ(Ci + Dk)

γ(Cj + Dk)
, (3.34)

where K̂i(α1) and K̂j(α1) are some normalizing factors, and

Ci = ∆α1−hi/b −∆α1 − µ/b , Di = ∆α2−hi/b −∆α2 − µ/b . (3.35)

If b is real and b2 is irrational then these two relations determine
uniquely the three point function up to a κ dependent multiplicative
factor. It can be expressed in terms of the Υb function, whose defini-
tion and main properties we recall in appendix 3.C:

C(α1, α2, α3) =

M(κ)× ∏n
k,`=1 Υb [b + (α1 −Q) · hk + (α2 −Q) · h` + 2µ]√

∏2
i=1 ∏e>0 Υb [b + (αi −Q) · e]Υb [b− (αi −Q) · e]

, (3.36)

where α3 must be semi-degenerate and µ is given in (3.32). In the
denominator the product is over all positive roots of sln. The full
bootstrap argument above is only valid when α3 is semi-degenerate,
and α1, α2 are non-degenerate, i.e. they are not of the form (3.29). In-
deed, if for instance α1 is semi-degenerate (say α1 = λω1), then in the
channel z → 0 only two conformal blocks are allowed for G, due to
the fusion rule

Φbω1 ⊗Φλω1 → Φλω1+bh1 ⊕Φλω1+bh2 ,

and then the above derivation of structure constants is no longer valid.
An exception is when α2 = 0: in this case one considers the OPE of a
semi-degenerate field Φα3 with the identity.

Note that it is not necessary to keep track of the normalizing factors
in (3.33–3.34) to derive (3.36). Any function of the form

C(α1, α2, α3) =
∏n

k,`=1 Υb [b + (α1 −Q) · hk + (α2 −Q) · h` + 2µ]

φ(α1)φ(α2)
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is a solution of (3.33–3.34) with some functions {Ki(α)} and {K̂i(α)}
given in terms of φ(α), and the precise form of φ(α) is completely
determined by imposing:

C(α1, α∗1 , 0) = 1 (3.37)

C(α1, α2, κω1) = C(α∗1 , α∗2 , κωn−1) . (3.38)

The factor M(κ) can be then be found by demanding that C(κω1, 0, κωn−1) =

1, which yields:

M(κ) =
1

Υb(b)n

√
Υb(b)Υb(b + nQ)

Υb(b + κ)Υb(b− κ + nQ)
. (3.39)

The three point function(3.36) enjoys the following properties:

C(α1, α2, α3) = C(α2, α1, α3) , (3.40)

∀σ, σ′ ∈ S2
n , C(α1, α2, α3) = C(σ ? α1, σ′ ? α2, α3) . (3.41)

Finally, to compare, the three-point function found by Fateev and
Litvinov [63, 64] in the case of real Toda with central charge c =

(n− 1) + 12 Q̂
2

is of the form:

CFL(α1, α2, κωn−1) =
A(α1)A(α2)B(κ)

∏i,j Υb̂

(
κ/3 + (α1 − Q̂) · hi + (α2 − Q̂) · hj

) (3.42)

where Q̂ =
(

b̂ + 1/b̂
)

ρ, and A(α) and B(κ) are some normalizing fac-
tors. We see that, like for the Liouville theory, the structure constants
of the imaginary Toda theory are not the analytic continuation of the
real Toda ones.

3.4 non-scalar fields in the imaginary toda field the-
ory

In the previous section we considered scalar fields parametrized by
the same charges α = ᾱ in the holomorphic and anti-holomorphic
sectors, in a Wn-conformal field theory with a generic central charge
c ≤ n− 1 (i.e. b2 non rational). Scalar fields are mutually local, and
this leads to monodromy invariant correlation function. But it is also
possible for a physical correlation function to acquire a non-trivial
phase as a field winds around another. For instance this is typically
the case for spin and disorder operators in the Zn parafermion model,
in which the phase is then a nth root of unity.

This motivates an investigation of non-scalar primary fields Φα,ᾱ

parametrized by two vector charges α and ᾱ.
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3.4.1 Non-degenerate non-scalar operators

The fully degenerate fields {Φbω1 , Φbωn−1 , Φ−b−1ω1
, Φ−b−1ωn−1

} are as-
sumed to be part of the spectrum of the theory. By demanding a
well-defined monodromy between Φα,ᾱ and these fully degenerate
fields, some constraints are obtained on the possible values of α and
ᾱ. Consider for instance the OPE between Φbω1 and Φα,ᾱ. Since we
know the (chiral) fusion rules of Φbω1 with any field, this OPE has to
be of the form

Φbω1(z, z̄)Φα,ᾱ(0)

=
n

∑
i,j=1
Cij z∆α+bhi

−∆bω1
−∆α z̄∆ᾱ+bhj

−∆bω1
−∆ᾱ Φα+bhi ,ᾱ+bhj(0) + · · ·

We impose that every term in the right-hand side has the same mon-
odromy e2iπη when z goes around zero, so that:

Φbω1

(
e2iπz, e−2iπ z̄

)
Φα,ᾱ(0) = e2iπη Φbω1 (z, z̄)Φα,ᾱ(0) . (3.43)

The monodromy exponent for the term (i, j) in the above sum is

ηij = (∆α+bhi − ∆ᾱ+bhj)− (∆α − ∆ᾱ) ,

and so we impose that (ηij − ηik) is an integer for any non-zero terms
(i, j) and (i, k) in the sum. After simple manipulations, this is equiva-
lent to (ᾱ−Q) · (hj− hk) ∈ Z/b. If ᾱ is generic, this means that j = k.
Hence, the coefficient matrix must be of the form:

Cij = δi,τ(j)Cj ,

where τ ∈ Sn is a permutation. This permutation encodes the fusion
rules

Φbω1 ×Φα,ᾱ =
n

∑
j=1

Φα+bhτ(j),ᾱ+bhj . (3.44)

Note that, using (3.21), we are free to relabel α → α′ = µ ? α, and
ᾱ→ ᾱ′ = µ̄ ? ᾱ, to get:

Φbω1 ×Φα′,ᾱ′ ≡ Φbω1 ×Φα,ᾱ =
n

∑
j=1

Φα+bhτ(j),ᾱ+bhj

≡
n

∑
j=1

Φµ?(α+bhτ(j)),µ̄?(ᾱ+bhj) =
n

∑
j=1

Φα′+bhµτ(j),ᾱ′+bhµ̄(j)

=
n

∑
k=1

Φα′+bh
µτµ̄−1(k),ᾱ

′+bhk
. (3.45)

In the OPE, which we now write as

Φbω1(z, z̄)Φα,ᾱ(0)

=
n

∑
j=1
Cj z

∆α+bhτ(j)
−∆bω1

−∆α z̄∆ᾱ+bhj
−∆bω1

−∆ᾱ Φα+bhτ(j),ᾱ+bhj + · · ·
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the monodromy exponent for the jth term in the sum is

ηj = (∆α+bhτ(j)
− ∆ᾱ+bhj)− (∆α − ∆ᾱ) = bhj · (τ−1 ? α− ᾱ) .

In the generic case, the n possible values of j are allowed (i.e. none of
the Cj vanishes) and all the terms must yield the same monodromy
e2iπη , leading to the condition

∀ (j, k) , ηj − ηk ∈ Z .

This boils down to b(hj − hk) · (τ−1 ? α− ᾱ) ∈ Z, which is equivalent
to

τ−1 ? α− ᾱ ∈ R/b ⇔ α− τ ? ᾱ ∈ R/b , (3.46)

whereR is the weight lattice defined in Appendix 3.A. An interesting
consequence is that

η ∈ Z

n
,

i.e. the overall monodromy around z = 0 of the OPE Φbω1(z, z̄)Φα,ᾱ(0)
can only be a nth root of unity.

One can repeat this argument with the fully-degenerate field Φbω1

replaced by its dual Φbωn−1 . The fusion rules can be written:

Φbωn−1 ×Φα,ᾱ =
n

∑
j=1

Φα−bhµ(j),ᾱ−bhj , (3.47)

with the constraint:

µ−1 ? α− ᾱ ∈ R/b ⇔ α− µ ? ᾱ ∈ R/b , (3.48)

for some permutation µ ∈ Sn. If µ 6= τ, the constraints (3.46) and
(3.48) will together yield:

(µτ−1) ? α− α ∈ R/b , and (µ−1τ) ? ᾱ− ᾱ ∈ R/b ,

which forces both α and ᾱ to live in some determined lattices. But
since we want to reason on generic values of α and ᾱ, we discard this
case, and in the following we consider only the case when µ = τ.

Let us now examine the fusion of our Φα,ᾱ with the fields Φ−ω1/b
and Φ−ωn−1/b, and suppose again that they are both determined by
some permutation σ ∈ Sn. The same line of reasoning as above yields:

σ−1 ? α− ᾱ ∈ bR ⇔ α− σ ? ᾱ ∈ bR , (3.49)

corresponding to the fusion rules

Φ−ω1/b ×Φα,ᾱ =
n

∑
j=1

Φα−hσ(j)/b,ᾱ−hj/b , (3.50)

Φ−ωn−1/b ×Φα,ᾱ =
n

∑
j=1

Φα+hσ(j)/b,ᾱ+hj/b . (3.51)
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Therefore, it appears that a generic primary field is labelled by two
charges (α, ᾱ) and two permutations (τ, σ). But we still have to dis-
cuss the effect of charge reparametrization by the Weyl group (3.21).
As seen in (3.45), if we relabel (α, ᾱ) → (α′, ᾱ′) = (µ ? α, µ̄ ? ᾱ), the
permutations τ and σ are changed to:

τ → µτµ̄−1 , σ→ µσµ̄−1 . (3.52)

Taking a generic permutation µ and setting µ̄ = µτ, we get

τ → id , σ→ µσ′µ−1 , (3.53)

where σ′ = στ−1. Hence, without loss of generality, τ can always be
set to the identity, whereas σ is defined modulo conjugation by any
permutation µ.

One may ask what permutations are attached to the primary fields
appearing in the right-hand side of fusion (3.44). This is easy to see
from the constraints (3.46) and (3.49) on vertex charges. We set τ to
the identity, so that (3.46) becomes α − ᾱ ∈ R/b. This condition is
obviously satisfied by (α + bhj, ᾱ + bhj). The second condition (3.49)
for this pair of charges reads:

(α− σ ? ᾱ) + b(hj − hσ(j)) ∈ bR ,

which is also satisfied, because every hk belongs to R. Similar argu-
ments hold for the other fusions considered above, and for the dual
field Φ2Q−α,2Q−ᾱ.

Overall, we get the following characterization of generic primary
fields:

• A primary field is labelled by a pair of vertex charges (α, ᾱ),
and a permutation σ ∈ Sn. We denote it as Φ(σ)

α,ᾱ , and the vertex
charges must satisfy:

α− ᾱ ∈ R/b , and α− σ ? ᾱ ∈ bR . (3.54)

Note that these conditions, as well as the quantum numbers
w(k)

α , w(k)
ᾱ , are invariant under reparametrization (α, ᾱ, σ)→ (µ ?

α, µ ? ᾱ, µσµ−1). Hence, the behaviour of Φ(σ)
α,ᾱ under fusion is

really determined by the conjugacy class of σ.

• The fusion rules with the fully degenerate fields are:

Φbω1 ×Φ(σ)
α,ᾱ =

n

∑
j=1

Φ(σ)
α+bhj,ᾱ+bhj

,

Φbωn−1 ×Φ(σ)
α,ᾱ =

n

∑
j=1

Φ(σ)
α−bhj,ᾱ−bhj

,
(3.55)
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Φ−ω1/b ×Φ(σ)
α,ᾱ =

n

∑
j=1

Φ(σ)
α−hσ(j)/b,ᾱ−hj/b ,

Φ−ωn−1/b ×Φ(σ)
α,ᾱ =

n

∑
j=1

Φ(σ)
α+hσ(j)/b,ᾱ+hj/b .

(3.56)

The monodromy exponents (defined up to the addition of an
integer) of the corresponding OPEs are :

η(α, ᾱ) = bh1 · (α− ᾱ) , η̂(α, ᾱ) = −1
b

h1 · (α− σ ? ᾱ) , (3.57)

for the fusion of Φ(σ)
α,ᾱ with Φbω1 and Φ−ω1/b, respectively. These

exponents belong to Z/n, and the monodromy factors e2iπη(α,ᾱ)

and e2iπη̂(α,ᾱ) can be considered as two Zn charges associated to
the field Φ(σ)

α,ᾱ .

• The dual of the field Φ(σ)
α,ᾱ is :

(
Φ(σ)

α,ᾱ

)∗
= Φ(σ)

2Q−α,2Q−ᾱ.

• The particular case σ = id corresponds to scalar primary fields.
Indeed, as long as b2 is not rational, the conditions (3.54) yield
α = ᾱ.

Note that this characterization is valid for generic (i.e. non-degenerate)
values of the vertex charges (α, ᾱ). Indeed, the fusion of a degenerate
operator with Φbω1 , Φbωn−1 , Φω1/b and Φωn−1/b is different from the
generic one (3.55–3.56), and the whole argument of this section is
then invalid.

3.4.2 Semi-degenerate non-scalar operators

For a semi-degenerate field, which we shall denote Φ̃α,ᾱ, we have to
use the fusion rules (3.92). For instance, for (α, ᾱ) = (κω1, κ̄ω1), one
has the chiral fusion rule:

Φbω1 ⊗Φκω1 → Φκω1+bh1 + (n− 1)Φκω1+bh2 ,

where the coefficient on the second term means that there are (n− 1)
independent conformal blocks corresponding to this internal field in
the fusion channel z→ 1 for any four-point function of the form (3.59).
For generic values of κ, the monodromy exponents corresponding to
the first term and the next (n− 1) do not differ by an integer. Hence,
in order to get a well-defined monodromy for the four-point function,
one has to select the fusion rule:

Φbω1 ⊗ Φ̃κω1,κ̄ω1 → Φκω1+bh1,κ̄ω1+bh1 + (n− 1)Φκω1+bh2,κ̄ω1+bh2 .

From there, using a similar computation as for the case of generic
non-scalar operators (see previous section), one gets the constraint:

κ − κ̄ ∈ Z/b . (3.58)
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3.4.3 Structure constants

3.4.3.1 Shift equation from the null descendant of Φbω1

In order to compute the structure constants, we turn to the four point
function

G(z, z̄) =
〈

Φ(σ2)
α∗2 ,ᾱ∗2

(∞)Φbω1(z, z̄)Φ̃α3,ᾱ3(1)Φ
(σ1)
α1,ᾱ1

(0)
〉

, (3.59)

where

(α3, ᾱ3) = (κω1, κ̄ω1) or (α3, ᾱ3) = (κωn−1, κ̄ωn1) , with(κ, κ̄) ∈ R2 .

For this correlation function to be non-trivial, one needs to impose
the constraint on monodromy exponents (3.57):

e2iπ[η(α1,ᾱ1)+η(α2,ᾱ2)+η(α3,ᾱ3)] = 1 , (3.60)

which can be viewed as a Zn charge neutrality condition on G.
The correlation function (3.59) is built by gluing the left and right

conformal blocks in such a way as to ensure well-defined global mon-
odromies :

G(z, z̄) =
n

∑
i,j=1

XijFi(z)F̄j(z̄) =
n

∑
i,j=1

YijGi(z)Ḡj(z̄) ,

where the conformal blocks are the same as in the scalar case, and are
given in appendix 3.B. For the reader’s convenience, we recall that the
holomorphic blocks Fi and Gi are expressed in terms of

Ai = ∆α1+bhi − ∆α1 + bµ , Ai = ∆ᾱ1+bhi − ∆ᾱ1 + bµ ,

Bi = ∆α2+bhi − ∆α2 + bµ , Bi = ∆ᾱ2+bhi − ∆ᾱ2 + bµ ,
(3.61)

where

(2µ, 2µ̄) =





[
(b−1 − b)− κ

n , (b−1 − b)− κ̄
n

]
if (α3, ᾱ3) = (κω1, κ̄ω1) ,

( κ
n , κ̄

n ) if (α3, ᾱ3) = (κωn−1, κ̄ωn−1) .

From the fusion rules of non-scalar fields with Φbω1 one must have
Xij = Xiδi,j and Yi,j = Yiδij. At this point it is interesting to compute
the differences:

Ai − Ai = bhi · (α1 − ᾱ1) + b(µ− µ̄) ,

Bi − Bi = bhi · (α2 − ᾱ2) + b(µ− µ̄) .
(3.62)

Since (αk − ᾱk) ∈ R/b, these quantities are independent of i (up to
an integer), and, due to (3.60), one has:

(Ai − Ai) + (Bj − Bj) ∈ Z . (3.63)
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Now if we apply the change of bases between 0 and ∞ to ∑j Yj|Jj(z)|2,
we find

Y = Mt X M ,

where the matrices M = M({Ai}, {Bj}) and M = M({Ai}, {Bj}) are
given by (3.93). Since X and Y are diagonal, one has for all k and `:

∑
j

MjkXj Mj` = Ykδk` . (3.64)

The subsystem of equations corresponding to fixed ` and k = 1, . . . , n
yields:

Xj ∝

(
M−1)

`j

Mj`
⇒ ∀(i, j) ,

Xi

Xj
=

Mj`
(

M−1)
`i

Mi` (M−1)`j
. (3.65)

For a non-trivial solution to exist, the ratio Xi/Xj should be indepen-
dent of `:

∀(i, j, `, m) ,
Mj`

(
M−1)

`i

Mi` (M−1)`j
=

Mjm
(

M−1)
mi

Mim (M−1)mj
,

which boils down to the consistency condition:

sin π(Ai + B`) sin π(Aj + B`)

sin π(Ai + B`) sin π(Aj + B`)

=
sin π(Ai + Bm) sin π(Aj + Bm)

sin π(Ai + Bm) sin π(Aj + Bm)
.

(3.66)

This is the sln generalization of the constraint obtained in [61] in the
sl2 case. The property (3.63) deriving from the single constraint (3.60)
is actually a sufficient condition for (3.66) to be satisfied.

Let us now turn to (3.65). This translates into the following shift
equation:

C(Φ(σ1)
α1,ᾱ1

, Φbω1
, Φ(σ1)∗

α1+bhi ,ᾱ1+bhi
)

C(Φ(σ1)
α1,ᾱ1

, Φbω1
, Φ(σ1)∗

α1+bhj,ᾱ1+bhj
)
×

C(Φ(σ1)
α1+bhi ,ᾱ1+bhi

, Φ(σ2)
α2,ᾱ2

, Φ̃α3,ᾱ3)

C(Φ(σ1)
α1+bhj,ᾱ1+bhj

, Φ(σ2)
α2,ᾱ2

, Φ̃α3,ᾱ3)

=

[
∏
k 6=i

Γ(Ak − Ai)

Γ(1− Ak + Ai)
∏
k 6=j

Γ(1− Ak + Aj)

Γ(Ak − Aj)

]
(3.67)

×
[

Γ(Ai + B`)Γ(1− Aj − B`)

Γ(Aj + B`)Γ(1− Ai − B`)
∏
k 6=`

Γ(Ai + Bk)Γ(1− Aj − Bk)

Γ(Aj + Bk)Γ(1− Ai − Bk)

]
.

The first bracket in the right-hand side only depends on α1 and ᾱ1.
Let us rewrite the second bracket as:

sin π(Ai + B`) sin π(Aj + B`)

sin π(Ai + B`) sin π(Aj + B`)

n

∏
k=1

Γ(Ai + Bk)Γ(1− Aj − Bk)

Γ(Aj + Bk)Γ(1− Ai − Bk)
.
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We note that (3.64) is invariant under the exchange (Ai, Bi)↔ (Ai, Bi).
Hence, up to a sign, one can replace the right-hand side of (3.67) by
the geometric mean:

C(Φ(σ1)
α1+bhi ,ᾱ1+bhi

, Φ(σ2)
α2,ᾱ2

, Φ̃α3,ᾱ3)

C(Φ(σ1)
α1+bhj,ᾱ1+bhj

, Φ(σ2)
α2,ᾱ2

, Φ̃α3,ᾱ3)

=
K(σ1)

i (α1, ᾱ1)

K(σ1)
j (α1, ᾱ1)

×
√

n

∏
k=1

γ(Ai + Bk)γ(Ai + Bk)

γ(Aj + Bk)γ(Aj + Bk)
,

(3.68)

where γ(x) = Γ(x)/Γ(1− x), and K(σ1)
i (α1, ᾱ1) and K(σ1)

j (α1, ᾱ1) are
some normalization factors.

3.4.3.2 Shift equation from the null descendant of Φ−ω1/b

Let us replace the degenerate field bω1 by −ω1/b in the four-point
function (3.59):

Ĝ(z, z̄) =
〈

Φ(σ2)
α∗2 ,ᾱ∗2

(∞)Φ−ω1/b(z, z̄)Φ̃α3,ᾱ3(1)Φ
(σ1)
α1,ᾱ1

(0)
〉

, (3.69)

and demand that the monodromy exponents satisfy:

η̂(α1, ᾱ1) + η̂(α2, ᾱ2) + η̂(α3, ᾱ3) ∈ Z . (3.70)

One can write the decomposition:

Ĝ(z, z̄) = ∑
i,j

X̂ij F̂i(z)F̂j(z̄) = ∑
k,`

Ŷk` Ĝk(z)Ĝ`(z̄) , (3.71)

where (F̂i, F̂j, Ĝk, Ĝ`) are the analogues of (Fi, Fj, Gk, G`) with the quadru-
plet (Ai, Aj, Bk, B`) replaced by:

Ci = ∆α1−hi/b − ∆α1 − µ/b , Cj = ∆ᾱ1−hj/b − ∆ᾱ1 − µ/b ,

Dk = ∆α2−hk/b − ∆α2 − µ/b , D` = ∆ᾱ2−h`/b − ∆ᾱ2 − µ/b .

Using the fusion rules (3.56), the coefficient matrices must be of the
form:

X̂ij = δi,σ1(j) X̂j , Ŷk` = δk,σ2(`) Ŷ` . (3.72)

Moreover, these matrices are related by

Ŷ = Nt X̂ N , (3.73)

where N = M({Ci}, {Dj}) and N = M({Ci}, {Dj}) in (3.93). We get
a relation similar to (3.64):

∑
j

N′jk X̂j N j` = δk` Ŷ` , (3.74)
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where we have defined the matrix elements N′jk = Nσ1(j),σ2(k). This
corresponds to the matrix in (3.93):

N′ = M({C′i}, {D′j}) , C′i = Cσ1(i) , D′j = Dσ2(j) . (3.75)

Reasoning as above, we obtain a shift equation analogous to (3.68):

C(Φ(σ1)
α1−hσ1(i)

/b,ᾱ1−hi/b, Φ(σ2)
α2,ᾱ2

, Φ̃α3,ᾱ3)

C(Φ(σ1)
α1−hσ1(j)/b,ᾱ1−hj/b, Φ(σ2)

α2,ᾱ2
, Φ̃α3,ᾱ3)

=
K̂(σ1)

i (α1, ᾱ1)

K̂(σ1)
j (α1, ᾱ1)

×

√√√√ n

∏
k=1

γ(Cσ1(i) + Dk)γ(Ci + Dk)

γ(Cσ1(j) + Dk)γ(Cj + Dk)
,

(3.76)

where K̂(σ1)
i (α1, ᾱ1) and K̂(σ1)

j (α1, ᾱ1) are some normalizing factors.

3.4.3.3 Solution of the shift equations

The shift equations (3.68–3.76) have a form very close to the one for
scalar operators (3.33). Up to normalizing factors, the right-hand side
of these equations is simply the geometric mean of the right-hand
side of (3.33), with charges (α1, α2, α3) and (ᾱ1, ᾱ2, ᾱ3), respectively.
The major difference with scalar operators is the fact that the con-
straints (3.54) impose a quantisation of the vertex charges α and ᾱ.

However, if one of the operators is scalar (say if σ1 = id) then its
vertex charge can take continuous values, and the solution takes the
form:

C(Φα1 , Φ(σ2)
α2,ᾱ2

, Φ̃α3,ᾱ3) =
√

C(α1, α2, α3)C(α1, ᾱ2, ᾱ3) , (3.77)

where C(α1, α2, α3) is the structure constant of scalar operators, given
in (3.36–3.39). Note that this result is valid only when Φ(σ1)

α1,ᾱ1
and Φ(σ2)

α2,ᾱ2

are non-degenerate, Φ̃α3,ᾱ3 is semi-degenerate, and the Zn charge neu-
trality conditions are satisfied:

e2iπ[η(α1,ᾱ1)+η(α2,ᾱ2)+η(α3,ᾱ3)] = 1 , e2iπ[η̂(α1,ᾱ1)+η̂(α2,ᾱ2)+η̂(α3,ᾱ3)] = 1 ,

where η and η̂ are defined in (3.57).
In the case of generic, non-scalar, operators, the vertex charges

obey the quantisation conditions (3.54), and the structure constants
C(Φ(σ1)

α1,ᾱ1
, Φ(σ2)

α2,ᾱ2
, Φ̃α3,ᾱ3) are determined by the shift equations (3.68–

3.76), up to an overall factor.

3.5 conclusion

In this chapter, we have defined and studied the “timelike” analogue
of the conformal sl3 Toda field theory, with central charge c = 2−
12(b− b−1)2. Our main results are (i) the structure constant (3.36) of
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three scalar operators when one of them is semi-degenerate, (ii) the
classification of non-scalar operators (see Sec. 3.4.1), and (iii) the shift
equations (3.68–3.76) that the structure constants C(Φ(σ1)

α1,ᾱ1
, Φ(σ2)

α2,ᾱ2
, Φ̃α3,ᾱ3)

obey, and their solution (3.77) when one of the operators is scalar.



A P P E N D I C E S

3.a conventions for sln : roots , weights and weyl group

Many features of the Toda field theory are related to the sln Lie alge-
bra. We recall basic facts and notations in this appendix.

3.a.1 Conventions for sl3

The Lie algebra sl3 has two simple roots e1 and e2, its Cartan matrix,
defined by the scalar product Ki,j = ei · ej, takes the form:

K =

(
2 −1

−1 2

)

The weight ωi of the Lie algebra are dual to its roots, ei · ωj = δi,j.
They can be written:

ω1 =
1
3
(2e1 + e2) , ω2 =

1
3
(2e2 + e1)

⇒ ω1 ·ω1 = ω2 ·ω2 =
2
3

and ω1 ·ω2 =
1
3

The weight of the first fundamental representation are defined as:

h1 = ω1, h2 = ω1− e1 = ω2−ω1, h3 = ω1− e1− e2 = −ω2

The weight lattice is R = Zω1 + Zω2, and its dual R∗ is the root
lattice. The Weyl vector can be written both in terms of ei and ωj:
ρ = ω1 + ω2 = e1 + e2 = h1 − h3.

The Weyl group W is generated by the reflections s1 and s2

si(v) = v− (v · ei)ei .

It has 6 elements, three reflections sj and three rotations Rj (see Fig.
3.A.1), j = 1, 2, 3. In terms of the generators s1 and s2 one has:

R1 = 1, R2 = s1s2, R3 = s2s1, s3 = s1s2s1 = s2s1s2

The Weyl group of sl3 can be identified with S3, the group of permu-
tations of three elements. In terms of the hi, the Weyl group acts by
permutations hi → hσ(i). In the following we will denote an element
of the Weyl group by the corresponding permutation σ.

Finally, the duality operation α 7→ α∗ is the reflection with respect
to ρ (this is the unique linear involution exchanging ω1 and ω2). This
reflection does not belong to the Weyl group.

109
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Figure 3.A.1: The generators of the latticesR (in blue/red) andR∗ (in black)
for sl3. The reflections of the Weyl group are the reflections
w.r.t. the dashed lines, while the rotation Rj (j = 1, 2, 3) sends
h1 to hj.

An explicit basis in the fundamental representation (of dimension
8) of su(3) can be written in terms of the Gell-Mann matrices:

λ1 =




0 1 0

1 0 0

0 0 0


 λ2 =




0 −i 0

i 0 0

0 0 0


 λ3 =




1 0 0

0 −1 0

0 0 0




λ4 =




0 0 1

0 0 0

1 0 0


 λ5 =




0 0 −i

0 0 0

i 0 0


 λ6 =




0 0 0

0 0 1

0 1 0




λ7 =




0 0 0

0 0 −i

0 i 0


 λ8 =

1√
3




1 0 0

0 1 0

0 0 −2


 .

They verify the relations:

Tr(λiλj) = 2δij ∀i, j .

The two relations:

[λj, λk] = 2i f jklλl , {λj, λk} =
4
3

δj,k + 2djklλl (3.78)

define respectively the completely anti-symmetric structure constants
of the theory, f jkl , and the completely symmetric coefficient constants,
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djkl . Another possible basis, standard for all Lie algebras, is the Cartan-
Weyl basis:

E±e1 =
λ4 ± iλ5√

2
E±e2 =

λ6 ± iλ7√
2

E±e3 =
λ1 ∓ iλ2√

2

H2 =
λ8√

2
H1 =

λ3√
2

This normalization gives the relations [Hi, Eα] = αiEα for i ∈ 1, 2 and
α a root.

Lastly the universal enveloping algebra of su(3) has a center that
can be generated by two elements, the Casimir operators:

C2 = ∑
k

λkλk C3 = ∑
jkl

djklλjλkλl

Where the λk have to be understood as elements of the enveloping
algebra rather than as matrices.

3.a.2 Conventions for sln

The generalization to sln is straightforward. Let {hi, i = 1, · · · , n} be
the first fundamental representation of sln, normalized as

hi · hj = δij −
1
n

. (3.79)

The weight and root lattices are

R =
n

∑
i=1

Zωi, R∗ =
n

∑
i=1

Zei (3.80)

where the fundamental weights ωi and the simple roots ei can be
expressed as

ωi =
i

∑
k=1

hk

ei = hi − hi+1

for i = 1, · · · , n− 1. The Weyl vector is

ρ =
n−1

∑
i=1

ωi = −
n

∑
i=1

ihi ρ · ρ =
n(n2 − 1)

12
. (3.81)

The Weyl group is isomorphic to Sn, and acts as

σ(hi) = hσ(i) . (3.82)

In particular the reflection si : x → x − (ei · x)ei is mapped to the
transposition τi,i+1, and the longest element of Weyl group (denoted
by s0), which for sln reads

s0 = s1s2 · · · sn−1s1s2 · · · sn−2 · · · s1s2s1 (3.83)
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corresponds to the permutation

ρ(i) = n− i . (3.84)

Finally, the dual operation is defined as

x∗ = −s0(x) . (3.85)

3.b hypergeometric conformal blocks for sl3

3.b.1 Hypergeometric conformal blocks for sl3

Event though the fusion of the form Φbω1 ⊗Φα only gives rise to three
primary operators as in (3.16), it is known that a generic four point
function 〈Φbω1 Φα1 Φα2 Φα3〉 has more than three Virasoro conformal
blocks. However, if one of the fields αi is semi-degenerate, a third-
order differential equation can be obtained for this function [15, 16, 63,
64]. The simplest semi-degenerate fields correspond to α3 = κωj (j =
1, 2), with a null-vector at level 1 as in (3.14). It was found in Fateev
and Litvinov for the real Toda theory [63, 64] that the correlation
function

G(z) = 〈Φβ∗ |Φbω1(z)Φκωj(1)|Φα〉

obeys a Fuchsian differential equation of order 3, whose solutions
are given in terms of generalized hypergeometric functions. In this
section we adapt these results in the case of imaginary Toda.

The residue theorem applied to the function

w→ 〈Φβ∗ |W(w)Φbω1(z)Φκωj(1)|Φα〉
(w− 1)w2

w− z

yields
(

wβ + wbω1 +
wα

z
+

(1− 2z)
(z− 1)2 wκωj

)
〈Φβ∗ |Φbω1(z)Φκωj(1)|Φα〉

+
1

1− z
〈Φβ∗ |Φbω1(z)

(
W−1Φκωj

)
(1)|Φα〉

+(3z− 1)〈Φβ∗ | (W−1Φbω1) (z)Φκωj(1)|Φα〉
+ z(3z− 2)〈Φβ∗ | (W−2Φbω1) (z)Φκωj(1)|Φα〉
+z2(z− 1)〈Φβ∗ | (W−3Φbω1) (z)Φκωj(1)|Φα〉 = 0 .

By using the null-vector equations (3.15), it is possible to rewrite this
equation in terms Virasoro modes, leading to a differential equation
for the correlation function. This differential equation takes a very
simple form in term of the function

f (z) := G(z)(1− z)−2bµ zbµ+∆bω1 ,
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where

µ =





1
2 κω2 · h1 if j = 2
1
2 (Q− κω2) · h1 if j = 1

The function f (z) obeys the following Fuchsian differential equation

z ∏
i
(ϑ + Bi) f (z) = ∏

i
(ϑ− Ai) f (z). (3.86)

where ϑ = z∂z and

Ai = ∆α+bhi − ∆α + bµ , Bi = ∆β+bhi − ∆β + bµ . (3.87)

Note that the equation is invariant under the simultaneous change
z→ z−1 and Ai ↔ Bi. This simply reflects the fact that

〈Φβ∗ |Φbω1(z)Φκωj(1)|Φα〉 = 〈Φα∗ |Φbω1(1/z)Φκωj(1)|Φβ〉z−2∆bω1 .

The Riemann scheme of this Fuchsian differential equation is





z = 0 z = 1 z = ∞

A1 0 B1

A2 1 B2

A3 2−∑i(Ai + Bi) B3





(3.88)

and the sum of all exponents is 3, as it should, according to the Fuchs
relation. The exponents as z→ 1 are compatible with the fusion rules
(3.18).

A basis of solutions with Abelian monodromies around z = 0 is
given by

fi(z) = (−z)Ai 3F2

[
B1 + Ai, · · · , B3 + Ai

1− A1 + Ai, · · ∗ · ·, 1− A3 + Ai
; z
]

,

where · · ∗ · · denotes suppression of the term 1− Ai + Ai. Likewise,
the solutions will Abelian monodromies around ∞ are simply ob-
tained through Ai ↔ Bi and z→ z−1 :

gi(z) = (−z)−Bi 3F2

[
A1 + Bi, · · · , A3 + Bi

1− B1 + Bi, · · ∗ · ·, 1− B3 + Bi
;

1
z

]
.

Going back to the function G, we have the following conformal blocks

Fi(z) = (1− z)2bµ (−z)ηi 3F2

[
B1 + Ai, · · · , B3 + Ai

1− A1 + Ai, · · ∗ · ·, 1− A3 + Ai
; z
]

,

Gi(z) =
(

1− 1
z

)2bµ (
−1

z

)ζi

3F2

[
A1 + Bi, · · · , A3 + Bi

1− B1 + Bi, · · ∗ · ·, 1− B3 + Bi
;

1
z

]
,
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where

ηi = Ai − bµ− ∆bω1 = ∆α+bhi − ∆α − ∆bω1

ζi = Bi − bµ + ∆bω1 = ∆β+bhi − ∆β + ∆bω1

are the fusion exponents as z→ 0 and z→ ∞.

Acting with the Weyl group on α simply permutes the blocks as
follows

Fi → Fσ(i), Gi → Gi

while reparametrization of β yields

Fi → Fi, Gi → Gσ(i)

The two bases are related through Fi(z) = MijGj(z) :

Mij =∏
k 6=i

Γ(1 + Ai − Ak)

Γ(1− Bj − Ak)
∏
` 6=j

Γ(Bl − Bj)

Γ(B` + Ai)

=∏
k 6=i

Γ(1 + ηi − ηk)

Γ(1− 2bµ− ζ j − ηk)
∏
` 6=j

Γ(ζ` − ζ j)

Γ(2bµ + ζ` + ηi)
.

The coefficients of M−1 are obtained by exchanging Ai ↔ Bi.

3.b.2 Hypergeometric conformal blocks for sln

The generalization to sln is as follows. Consider the correlation func-
tion

f (z) := 〈Φβ∗ |Φbω1(z)Φκωj(1)|Φα〉 (1− z)−2bµzbµ+∆bω1 ,

where j = 1 or j = n− 1, and

2bµ =





∆κω2+bh1 − ∆κω2 − ∆bω1 =
bκ
n if j = n− 1

∆κω1+bh2 − ∆κω1 − ∆bω1 = − bκ
n + (1− b2) if j = 1

The function f (z) obeys the following Fuchsian differential equation

z (ϑ + B1) · · · (ϑ + Bn) f (z) = (ϑ− A1) · · · (ϑ− An) f (z) (3.89)

where

Ai = ∆α+bhi − ∆α + bµ , Bi = ∆β+bhi − ∆β + bµ . (3.90)

The Riemann scheme is




z = 0 z = 1 z = ∞

A1 0 B1

A2 1 B2
...

...
...

An−1 n− 2 Bn−1

An n− 1−∑i(Ai + Bi) Bn





(3.91)
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and the exponents as z→ 1 give the fusion rules

Φbω1 ⊗Φκωn−1 → Φκωn−1+bh1 ⊕Φκωn−1+bhn ,

Φbω1 ⊗Φκω1 → Φκω1+bh1 ⊕Φκω1+bh2 .
(3.92)

A basis of solutions can be obtained by series expansion around z = 0,
namely

fi(z) = (−z)Ai nFn−1

[
B1 + Ai, · · · , Bn + Ai

1− A1 + Ai, · · ∗ · ·, 1− An + Ai
; z
]

,

where · · ∗ · · denotes suppression of the term 1− Ai + Ai. The above
series is convergent for |z| < 1, and it can be analytically continued.
The Weyl group (reparametrization of α) acts by permutations on
these n conformal blocks.

Likewise, around z = ∞ the solutions with Abelian monodromies
around ∞ are simply obtained through Ai ↔ Bi and z→ z−1 :

gi(z) = (−z)−Bi nFn−1

[
A1 + Bi, · · · , An + Bi

1− B1 + Bi, · · ∗ · ·, 1− Bn + Bi
;

1
z

]
.

The change of bases

fi(z) = ∑
j

Mij gj(z)

can be obtained using contour deformation of the following Mellin-
Barnes integral

I(z) =
1

2πi

∫
ds Γ(B1 + s) · · · Γ(Bn + s)Γ(A1 − s) · · · Γ(An − s) (εz)s ,

where ε = (−1)n and the integration contour goes from i∞ to −i∞
while keeping all the poles {Ai + k, k ∈ N} to the left and the poles
{−Bi − k, k ∈N} to the right. One finds

Mij = ∏
k 6=i

Γ(1 + Ai − Ak)

Γ(1− Bj − Ak)
∏
` 6=j

Γ(B` − Bj)

Γ(B` + Ai)
, (3.93)

and the coefficients of M−1 are obtained by exchanging Ai ↔ Bi.

3.c upsilon and double gamma functions

For 0 < Re(x) < b + b−1, the function x 7→ Υb(x) is given by:

ln Υb(x) ≡
∫ ∞

0

dt
t



(

b + b−1

2
− x
)2

e−t −
sinh2

[(
b+b−1

2 − x
)

t
2

]

sinh bt
2 sinh t

2b


 .

Outside of this interval, the function can be computed using the re-
cursion formulas:

Υb(x + b) = γ(bx) b1−2bx Υb(x) ,

Υb(x + b−1) = γ(xb−1) b−1+2xb−1
Υb(x) .

(3.94)
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Moreover, it is clear from the integral definition that

Υb(x) = Υb−1(x) ,

Υb(x) = Υb(b + b−1 − x) .
(3.95)

Γb = Γb−1 is a double Gamma function with periods b and b−1. It
satisfies:

Γb(x + b) =
√

2π
bbx−1/2

Γ(bx)
Γb(x) ,

Γb(x + b−1) =
√

2π
b−x/b−1/2

Γ(x/b)
Γb(x) .

(3.96)

These two functions are related through

Υb(x) =
1

Γb(x)Γb(b + b−1 − x)
. (3.97)

3.d detailed analysis of non-diagonal fields in sln toda

theory

A non-diagonal field is characterized by two charges (α, ᾱ) and a
permutation σ such that:

α− ᾱ ∈ b−1R , α− σ ? ᾱ ∈ bR , (3.98)

And up to the identification

Φ(σ)
α,ᾱ = Φ(µσµ−1)

µ?α,µ?ᾱ, ∀µ ∈ Sn . (3.99)

Therefore, to each conjugacy class of σ corresponds a different type
of non-diagonal field. We can choose a canonical representative of the
conjugacy class, with a simple cycle decomposition:

σ = (1, 2, · · · , c1)(c1 + 1, c1 + 2, · · · , c2) · · · (cp−1 + 1, · · · , cp) . (3.100)

We define c0 = 0 and {ci}i∈0···p are an increasing sequence of integers.
Like previously let α = Q + P. The previous constraints, rewritten
for P implies:

P− σP ∈ bR+ b−1R .

Which is equivalent to

Pσ(i) − Pi − (Pσ(j) − Pj) ∈ bZ + b−1Z ∀ i, j . (3.101)

where Pi = P · hi. For a given i we can sum j over one orbit of σ, with
a representative a, Oa(σ), which leads to:

∑
j∈Oa(σ)

Pj − Pσ(j) = |Oa(σ)|
(

Pi − Pσ(i)

)
∈ bZ + b−1Z,
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where |Oa(σ)| is the cardinal of the orbit. This relation is valid for
any value of j hence:

Pi − Pσ(i) ∈
1

GCD({|Oa(σ)|}a)

(
bZ + b−1Z

)
. (3.102)

Where GCD({|Oa(σ)|}a) is the greatest common denominator of the
integer set {

∣∣Oj(σ)
∣∣}j.

Let’s call Rnf the lattice generated by the vectors {hi − hσ(i)}i∈1···n,
and Vnf the vector space generated by the same vectors: Rn−1 = Vnf⊕
Vect [hi]i=σ(i). The vector ρnf = −∑i, i 6=σ(i) ihi belongs to Vnf and is
defined so that ρnf · (hj − hσ(j)) ≡ 1 mod |Oj(σ)| (for this to work,
the canonical representation of σ 3.100 must be used).

The two constraints 3.101 and 3.102 imply that, on the subspace Vnf,
P is quantized:

P|Vnf = δρnf + bE + b−1M

with δ ∈ 1
GCD({|Oj(σ)|}j)

(
bZ + b−1Z

)
and E, M ∈ Rnf

In contrast, along the direction associated with fixed points of σ,
P|Vect[hi ]i=σ(i)

is free. Of course P obeys the same restrictions, with δ, E

and M replacing δ, E and M.
For the non-fixed points of the permutation, the constraint P − P ∈
b−1R implies that

δ = δ and E = E (3.103)

While P− σP ∈ bR means that M = σM.
And along the direction of the fixed points i = σ(i), P · hi = P · hi.

The two extremes cases are especially interesting:

• Scalar fields correspond to σ = 1, and the two constraints (3.54)
boil down to α = ᾱ.

• In the case where σ is a maximal cycle, (1− σ) is invertible, and
the charge α and ᾱ are completely quantized:

α =
1
n

(
bE + b−1M

)
(3.104)

ᾱ =
1
n

(
bE + b−1M

)
(3.105)

where M = σ ? M̄ and E, M ∈ R. The fields generically have a
non-zero conformal spin. This quantification appears naturally
in the vertex and RSOS model associated with An [49].
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In the main text, we also considered the two fusions involving bω1

and bωn−1. We obtained constraints of the form:

α− ᾱ ∈ bR , α− σ ? ᾱ ∈ bR , (3.106)

In this case one also ends up with a quantification in the direction of
the non-fixed points of the permutation:

P|Vnf = δρnf + bE with δ ∈ 1
GCD({|Oj(σ)|}j)

bZ and E ∈ Rnf

Contrary to the previous case, taking σ different from the identity
does not relax the constraints on the conformal spin, and only limit
the number of allowed fields.

3.e a different path toward the differential equation

Another method, which only involves the fusion rules of theW3 alge-
bra, can be used to find the differential equation 3.89 for the confor-
mal blocks. Its interest lies in the fact that it does not rely as much on
null-vectors equations.

Consider the following correlation function of scalar operators:

G(z) = 〈Oα∗∞ |Obω1(z)Oα1(1)|Oα0〉 .

We will make the assumption that the field Oα1 is semi-degenerate.
The fusion rules 3.23 (and conformal invariance in general) fix the
way the correlation function should behave. Given a ∈ {0, 1, ∞}:

G(z) =
p

∑
i=1

Xa,i | fa,i(z)|2 , (3.107)

with p an integer, larger than n, Xi ∈ C, and fa,i(z) is the product of
an analytic function around a and a power-law term. Explicitly:

f0,i = za0,i
(
# + #z + #z2 + · · ·

)
,

f1,i = (1− z)a1,i
(
# + #(1− z) + #(1− z)2 + · · ·

)
,

f∞,i = za∞,i
(

# + #z−1 + #z−2 + · · ·
)

.

(3.108)

In general degeneracies are expected, but we impose au,i 6= au,j if i 6= j.
This is a convention rather than a restriction, a set of m identical expo-
nents a0,i, a0,i · · · , a0,i can always be replaced by a0,i, a0,i − 1 · · · , a0,i −m.
The values that the exponents au,i can take are fixed by the fusion
rules:

a0,i ∈ {∆(α0 + bhk)− ∆(α0)− ∆(bω1) | k ∈ {1, · · · , n}}+ N ,

a1,i ∈ {∆(α1 + bhk)− ∆(α1)− ∆(bω1) | k ∈ {1, · · · , n}}+ N ,

a∞,i ∈ {−∆(α∞ + bhk) + ∆(α∞)− ∆(bω1) | k ∈ {1, · · · , n}}+ N .
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This determinant is
a variation on the
Wronskian of the
system. Using ϑ

instead of simply ∂z
allows us to
conserve the form of
the function in 0
and ∞.

We aim to show that the functions fa,i are constrained by their sin-
gularities. To do so, we will consider a collection F of function ele-
ments ( f , D) – of functions f defined on a domain D – such that:

• F is complete: every analytic continuation of an element in F
also belongs to F .

• F is linear, and for a given domain D, the subset {( f , D)} ∈ F
should be at most p dimensional.

• Functions in F are analytic everywhere but in 0, 1 and ∞.

• At one of the singular points a ∈ {0, 1, ∞}, the functions of F ,
if they are non-zero, must have the same singularities as the
functions fa,i.

The Riemann symbol

P





0 1 ∞

a0,1 a1,1 a∞,1

a0,2 a1,2 a∞,2
...

...
...

a0,p a1,p a∞,p

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z





can describe either the full set F or any function of the set depending on the
context.

Consider a given domain D, and a basis of function fi in this do-
main. For example, D can be a small enough ball containing 0 and
fi = f0,i. If ( f , D) is a function in F , it will verify:

f (z) + c1 f1(z) + c2 f2(z) + · · ·+ cp fp(z) = 0 ∀z ∈ D .

For a given set of complex coefficients ci. This identity can be derived
any number of times, and we can write, with ϑ = z∂z:

∣∣∣∣∣∣∣∣∣∣∣

f f1 f2 · · · fp

ϑ f ϑ f1 ϑ f2 · · · ϑ fp
...

...
...

. . .
...

ϑ(p) f ϑ(p) f1 ϑ(p) f2 · · · ϑ(p) fp

∣∣∣∣∣∣∣∣∣∣∣

= 0 . (3.109)

The determinant can be expanded over the first column, and trans-
formed in a differential equation over f :

∑
r

(
ϑ(r) f

)
Qp−r({ fi}i,j) = 0 .

Where the Q are the first minor of the determinant, and hence have
polynomial expressions in the function fi and their derivatives. Rather
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than working directly with the functions Qr, we will consider the
functions:

pr(z) =
Qr( fi)

Q0( fi)
.

They have the nice property of being invariant under any linear trans-
formation of the functions fi. If we replace fi by ∑j ci,j f j the expression
of the functions pr is not modified. This means that pr is entire and
well-defined on the whole plane, except at the three points 0,1 and ∞
where we can expect singularities. To compute these, we can choose
any basis of function fi (pr do not depend on a specific choice). Near
z = 0 for example, if we choose fi = f0,i, the coefficients of the deter-
minant have the approximate form ϑ(i) f j ≈

z→0
ai

0,jz
a0,j . In this limit the

determinant 3.109 can be approximated, at first order in z, through
the Vandermonde formula:

z∑j a0,j

∣∣∣∣∣∣∣∣∣∣∣

f 1 · · · 1

ϑ f a0,1 · · · a0,p
...

...
. . .

...

ϑ(p) f ap
0,1 · · · ap

0,p

∣∣∣∣∣∣∣∣∣∣∣

= z∑j a0,j ∏
1≤i<j≤p

(a0,i− a0,j) ∏
1≤j≤p

(ϑ− a0,j) f .

This expression can be used to obtain the behaviour of the functions
pr near 0:

pr(z) ≈
z→0

(−1)p−r−1 ∑
1≤i1<···<ir≤p

(
r

∏
j=1

a0,ij

)
+O(z)

And for the exact same reasons, near z = ∞:

pr(z) ≈z→∞
(−1)p−r−1 ∑

1≤i1<···<ir≤p

(
r

∏
j=1

a∞,ij

)
+O(z)

Near 1, the behaviour is in general more complicated. Generically,
pr will be proportional to (1− z)−r−1 near z = 1. In particular, the
function p1 = Q1

Q0
= ϑQ0

Q0
= z∂z log(Q0) verifies:

p1(z) ≈
z→1

C1

z− 1
+ regular terms .

C1 is a constant, that can be obtained by expanding Q0 near z = 1:

Q0 = det

[
{ϑ(j−1) fi}1≤i≤p

1≤j≤p

]
∝ (z− 1)∑i a1,i−p(p−1)/2 ,

which implies C1 = ∑i a1,i − p(p−1)
2 .

Depending on the choice of exponents p1 can be either non-existent
or entirely determined. p1/z is the derivative of the logarithm of Q0,
which is an entire function except in 0, 1 and ∞. As a result, p1 only
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has integer residues, with potential exception in 0, 1 and ∞. Summing
the residues implies the relation:

∑
i

a0,i + ∑
i

a1,i −
p(p− 1)

2
= ∑

i
a∞,i + nr with nr ∈ Z . (3.110)

If nr = 0, p1 does not have any pole other than 1, and this completely
fixes the value of p1 = ∑i a∞,iz−a0,i

z−1 . Additionally, it proves that Q0 does
not have any zero.

Now let us consider the more specific case of the correlation func-
tion with a semi-degenerate field of the form α1 = κω1:

(z− 1)∆(α1)+∆(bω1)−∆(α1+bh2)〈Oα∗∞ |Obω1Oκω1 |Oα0〉
The fusion rules (3.23) apply, and in particular:

a1,i =





i− 1 for i < p

∆(α1 + bh1)− ∆(α1 + bh2) if i = p
.

It is not difficult to check that the relation 3.110 is verified with nr = 0.
Additionally, in this particular case:

pi ≈
z→1

Ci

z− 1
+ regular terms .

Where Ci are constants. Because Q0 does not have any 0 in C\{0, 1, ∞},
the functions pi do not have any other poles than 0, 1 and ∞. They
are entirely determined by their behaviour near 0 and ∞:

pr(z) =
(−1)p−r−1

z− 1

[
∑

1≤i1<···<ir≤p

(
r

∏
j=1

a∞,ij

)
z− ∑

1≤i1<···<ir≤p

(
r

∏
j=1

a0,ij

)]

In consequence, The differential equation verified by the function f is
fixed:

z
p

∏
i=1

(ϑ− a∞,i) f =
p

∏
i=1

(ϑ− a0,i) f

And of course, we find back the generalized hypergeometric differen-
tial equation (see 3.89).

Theoretically at least this method can be applied to any situation
where the number of conformal blocks is finite. The constraint on
p1 can be used to conjecture the fusion rules knowing the spectrum.
For example, we can make the conjecture that in W3, the correlation
function 〈Oα∗∞ |Obω1(z)Oα1(1)|Oα0〉 with a semi-degenerate field α1 =

κω1 + (bq2 − b−1q1)ω2, q1, q2 ∈ N will have p = 3(1 + q1 + q2 +

q1q2) conformal blocks. Additionally, the fusion rule in the z → 1
canal will verify (with multiplicities):

Obω1⊗Oα1 =
p
3
Oα1+bh1⊕

p
3

(
2 + q2

1 + q2

)
Oα1+bh2⊕

p
3

(
q2

1 + q2

)
Oα1+bh3 .





4
E N TA N G L E M E N T E N T R O P Y A N D O R B I F O L D S

This chapter presents a new method to compute Rényi en-
tanglement entropies in one-dimensional critical systems de-
scribed by a minimal CFT. Entanglement entropy is defined
with respect to a state ψ and a bipartition of space into two
regions, A and its complement B:

SN(A, ψ) =
1

1− N
log Tr

A

[(
Tr
B
(|ψ〉〈ψ|)

)N
]

.

The standard method consists in using the replica trick to
link the entropy to the partition function of the CFT on a Rie-
mann surface formed by N sheets, linked together along A.
This surface can grow quite complicated, especially if A is
not connected. Another approach consists instead in compli-
cating the field theory, rather than the surface, by considering
an extended orbifold CFT formed from the initial theory. In
this context the “twist fields” can be understood as the lowest
dimensional operators of the twisted sector of the orbifold. The
null-vector conditions on the twist fields of the cyclic orbifold
can be used to obtain differential equations on their correla-
tion functions. The correlation functions are then determined
by standard bootstrap techniques. This chapter contains:

• The computations of excited state Rényi entropies (N = 2
and N = 3) for generic minimal models (4.5.4, 4.5.5).

• The computations of the N = 2 Rényi entropy of
the Ising and Yang-Lee minimal models, on two inter-
vals (4.4.1, 4.5.2).

• The lattice implementation of the twist fields in critical
RSOS model. This is also used to numerically corroborate
our results (4.6).

• A discussion of “entanglement entropy” in non-unitary
CFT, focused around the Yang-Lee case. While the object
we consider is not the standard entanglement entropy in
the non-unitary case, it shares feature with it, notably as
a marker of criticality (4.2.3, 4.E).

Summary

123
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These methods rely
on the fact that the
ground state is far

from random, its
correlations tend to

be local thanks to the
area law.

4.1 introduction

Ideas coming from quantum information theory have provided in-
valuable insights and powerful tools for quantum many-body sys-
tems. One of the most basic tools in the arsenal of quantum infor-
mation theory is (entanglement) entropy [18]. Upon partitioning a
system into two subsystems, A and B, the entanglement entropy is
defined as the von Neumann entropy S(A) = −Tr ρA log ρA, with
ρA being the reduced density matrix of subsystem A.

Entanglement Entropy (EE) is a versatile tool. For a gapped system
in any dimension, the entanglement entropy behaves similarly to the
black hole entropy : its leading term grows like the area of the bound-
ary between two subsystems instead of their volume, in a behavior
known as the area law [59, 104, 107, 108, 123, 138, 150] :

S(A) ' α Vol(∂A) ,

where α is a non-universal quantity. Quantum entanglement – and
in particular the area law – has led in recent years to a breakthrough
in our understanding of quantum systems, and to the development
of remarkably efficient analytical and numerical tools. These meth-
ods, dubbed tensor network methods, have just begun to be applied to
strongly correlated systems with unprecedented success [7, 42, 140].

For critical systems, a striking result is the universal scaling of the
EE in one-dimension [35, 85, 141]. For an infinite system, with the
subsystem A being a single interval of length `, one has

S([0, `]) ' c
3

log ` ,

where c is the central charge of the underlying Conformal Field The-
ory (CFT). This result is based on a CFT approach to entanglement
entropy combined with the replica trick, which maps the (Rényi) EE to
the partition function on an N-sheeted Riemann surface with conical
singularities. In some particular cases – essentially for free theories –
it is possible to directly calculate this partition function [1, 2, 31, 32, 44,
74] using the general results from the 1980’s for free bosonic partition
functions on Riemann surfaces [5, 51, 52, 155]. In most cases how-
ever this is very difficult. An alternative approach is to replicate the
CFT rather than the underlying Riemann surface. Within this scheme
one ends up with the tensor product of N copies of the original CFT
modded out by cyclic permutations, and the conical singularities are
mapped to twist fields, denoted as τ. These theories are known as
cyclic orbifolds [25, 47, 99, 100]. Within this framework the Rényi EE

boils down to a correlation function of twist fields in the cyclic orb-
ifold [34, 36]. The case of a single interval is particularly simple as
it maps to a two-twist correlation function. When the subsystem A
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is the union of m > 1 disjoint intervals most results are restricted to
free theories [1, 2, 31, 32, 44, 45], and much less is known in general
[126]. In the orbifold framework, this maps to a 2m-twist correlation
function, which is of course much more involved to compute than a
simple two-point function.

In this chapter we report on a new method to compute twist fields
correlation functions. The key ingredients are (i) the null-vector con-
ditions obeyed by the twist fields under the extended algebra of the
cyclic orbifold and (ii) the Ward identities obeyed by the currents in
this extended algebra. Note that the null-vector conditions for twist
fields were already detected in [47], but until now then they have only
been exploited to determine their conformal dimension. Our method
is quite generic, the only requirement being that the underlying CFT
be rational (which in turn ensures that the induced cyclic orbifold is
rational). This approach provides a rather versatile and powerful tool
to compute the EE that is applicable to a variety of situations, such
as non-unitary CFT, EE of multiple intervals, EE at finite temperature
and finite size, and/or EE in an excited state.

We illustrate this method with the most basic minimal model of
CFT: the Yang-Lee model. This model has only two primary fields:
the identity 1 and the field φ. However, the simplicity of this situation
– in particular, the nice form of the null-vector conditions obeyed by
the identity operator – comes with a slight complication: the model
is not unitary, and φ has a negative dimension. Hence, the vacuum
|0〉 and the ground state |φ〉 are distinct (i.e. the vacuum is not the
state with the lowest energy), which implies that the ground state
breaks conformal invariance. This leads to an important modification
in the path integral description used in the replica trick : the boundary
conditions at every puncture must reflect the insertion of the field φ

(and not the identity operator). In practice, this means that the twist
field τ must be replaced by τφ ∝ :τφ : as noted in [23], but also that
the correlation functions of these twist fields must be evaluated in the
ground state |φ〉 rather than in the vacuum |0〉.

Hence, we see that, for the Yang-Lee model at finite size, even the
single-interval entropy requires the computation of a four-point func-
tion, and this is where the full power of null-vector equations can be
brought to bear.

The plan of the chapter is as follows. In Sec. 4.2, we review the
cyclic orbifold construction of [25, 47, 99], and its relation to Rényi
entropies. In Sec. 4.4, we describe a basic example where the null-
vector conditions on the twist field only involve the usual Virasoro
modes, and thus yield straightforwardly a differential equation for
the twist correlation function. In Sec. 4.5, we turn to more generic sit-
uations, where the null-vector conditions involve fractional modes of
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the orbifold Virasoro algebra: we first introduce the Ward identities
for the conserved currents T̂(r)(z) in the cyclic orbifold, and use them
to derive differential equations for a number of new twist correlation
functions. Finally, in Sec. 2.1.3 we describe a lattice implementation
of the twist fields in the lattice discretisation of the minimal models,
namely the critical Restricted Solid-On-Solid (RSOS) models. We con-
clude with a numerical check of our analytical results for various EEs
in the Yang-Lee model.

4.2 general background

4.2.1 Entanglement entropy and conformal mappings

Consider a critical one-dimensional quantum system (a spin chain
for example), described by a conformal field theory (CFT). Suppose
that the system is separated into two parts : A and its complement
B. The amount of entanglement between A and B is usually measured
through the Von Neumann entropy. If the system is in a normalized
pure state |ψ〉, with density matrix ρ = |ψ〉〈ψ|, its Von Neumann
entropy is defined as:

S(A, ψ) = −Tr
A
[ρA log(ρA)] , where ρA = Tr

B
|ψ〉〈ψ| . (4.1)

The Rényi entropy is a slight generalization, which depends on a real
parameter N:

SN(A, ψ) =
1

1− N
log Tr

A
(ρN
A) . (4.2)

In the limit N → 1, one recovers the von Neumann entropy: SN→1(A, ψ) =

S(A, ψ).

For integer N, a replica method to compute this entropy was devel-
oped in [35] (see [34] for a recent review). The main idea consists in
re-expressing geometrically the problem. The partial trace ρA acts on
states living in A and propagates them, while tracing over the states
in B. It can be seen as the density matrix of a “sewn” system kept
open along A but closed on itself elsewhere.

When A is a single interval (A = [u, v]), the resulting Riemann
surface is conformally equivalent to the sphere. It can be unfolded
(mapped to the sphere) using a change of variable of the form:

w =

(
z− u
z− v

)1/N

. (4.3)

When |ψ〉 = |vac〉 is the vacuum state of the CFT, this change of
coordinates allows [34] to compute the entropy of a single interval in
an infinite system, with the well-known result:

SN([u, v], vac) =
c
6

N + 1
N

log |u− v| . (4.4)
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Throughout this chapter, we shall rather consider the case of an inter-
val A = [0, `] in a finite system of length L with periodic boundary
conditions. In this case, one has [34]:

SN(`/L, vac) =
c
6

N + 1
N

log
[

L sin
(

π`

L

)]
, (4.5)

where we have slightly changed the notation to indicate that the total
system is of finite size L.

This type of calculations becomes more complicated for the en-
tropy of other states than the vacuum: two operators then need to
be added on each of the sheets of ΣN . This is one of the main lim-
itations of the method based on conformal mapping : a lot of the
structure of the initial problem disappears after the conformal map.
In this case, a one-variable problem (the size of the interval) becomes
a 2N-variable problem. These complicated correlation functions have
only been computed for free theories [4, 19], and have been used in
various contexts since then [33, 60, 114]. Moreover, if Σ is the initial
surface where the system lives, then the genus of ΣN is g(ΣN) =

Ng(Σ) + (N − 1)(p − 1), where p is the number of connected com-
ponents of A. Hence, if A is not connected or if the initial surface is
not the Riemann sphere, one has to deal with CFT on higher-genus
surfaces.

4.2.2 Correlation functions of twisted operators

The Rényi entropies can alternatively be interpreted as correlation
functions of twist operators. We consider a system of finite length L
with periodic boundary conditions, in the quantum state |ψ〉. In the
scaling limit, this corresponds to a CFT on the infinite cylinder of cir-
cumference L, with boundary conditions specified by the state ψ on
both ends of the cylinder. After the conformal mapping z 7→ exp 2πz

L ,
one recovers the plane geometry. The Rényi entropy of a single inter-
val A = [0, `] in the pure state |ψ〉 is given as a correlation function
in the ZN orbifold CFT (see below):

SN([0, `], ψ) =
1

1− N
log〈Ψ|τ(1)τ̃(x, x̄)|Ψ〉 , x = exp(2iπ`/L) , (4.6)

where Ψ = ψ⊗N corresponds to N replicas of the operator ψ at a given
point. The twist operators τ and τ̃ implement the branch points a the
ends of the interval. Since these branch points introduce singularities
in the metric, one has to choose a particular regularisation of the
theory at each branch point: each choice of regularisation corresponds
to a choice of primary twist operator τ. The classification of primary
twist operators is obtained by the induction procedure (see Sec. 4.3.3),
which uniquely associated any primary operator φ of the mother CFT
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to a twist operator τφ, with dimension ĥφ = (N − 1/N)c/24 + hφ/N.
In a unitary CFT, the most relevant operator is the identity (i.e. the
conformally invariant operator), and the correct choice for the twist
operator in (4.6) is τ = τ1. In Sec. 2.1.3 we introduce the construction
of a lattice regularisation scaling to any given primary twist operator
τφ in a minimal model of CFT.

More generally, if A is a union of p ≥ 1 disjoint intervals:

A = [u1, v1] ∪ [u2, v2] ∪ . . . [up, vp] ,

then one may define the p-interval correlation function:

〈Ψ|τ1(y1, ȳ1)τ̃1(x1, x̄1) . . . τp(yp, ȳp)τ̃p(xp, x̄p)|Ψ〉 , (4.7)

with
xj = exp(2iπvj/L) , yj = exp(2iπuj/L) ,

and any choice of twist operators (τ1, . . . τp) and (τ̃1, . . . τ̃p).

4.2.3 Non-unitary models

Although the goal of the present chapter is not to study specifically
entanglement in non-unitary models, some emphasis is put on the
Yang-Lee singularity model. The reason for this is that the correspond-
ing minimal model has the simplest operator algebra (it has only two
primary fields), which makes calculations more tractable and easy to
present. However, it should be stressed that what we are computing
are partition functions on N-sheeted surfaces. For a unitary model
this corresponds to Rényi entropies, and for that reason we chose
to refer to these partition functions as "entropies" even in the non-
unitary case. This is just a matter of terminology, and we do not claim
that they provide a good measure of the amount of entanglement.

The problem of entanglement entropy in non-unitary models has al-
ready been addressed in various contexts [22–24, 46]. For comparison
with the existing literature on the subject, we clarify in this section the
specific choices and observations that we made for non-unitary mod-
els. We refrain from using the bra/ket notations to avoid any possible
source of confusion.

Consider a Hamiltonian H acting on a vector space E. The trans-
pose operator tH acts in the dual space (consisting of all linear forms)
E∗ as

tH(w) = w ◦ H , (4.8)

for any linear form w. We assume that H is diagonalizable with a
discrete spectrum and eigenbasis {rj}

Hrj = Ejrj . (4.9)
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The dual basis {wj}, which is defined by wi(rj) = δij, is an eigenbasis
of tH

wj ◦ H = Ejwj , (4.10)

and the Hamiltonian can be written as

H = ∑
j

Ejrjwj . (4.11)

A possible definition for the density matrix of the system at inverse
temperature β is

ρ =
1
Z

e−βH =
1
Z ∑

j
e−βEj rjwj, Z = ∑

j
e−βEj . (4.12)

In particular at zero temperature this yields

ρ = r0w0 , (4.13)

where r0 denotes the ground state of H. Assuming a decomposition
E = EA ⊗ EB one can then trace over B to define ρA. Let { f j} be a
basis of EB and { f ∗j } the dual basis, the trace over B is defined as

ρA = TrB(ρ) = ∑
j

(
1A ⊗ f ∗j

)
ρ
(
1A ⊗ f j

)
. (4.14)

Note that tracing over B is independent of the basis { f j} chosen, and
does not require any inner product. With ρA at hand one then defines
the Von Neumann and Rényi entropies in the usual way.

The main advantage of this construction is that the corresponding
(Rényi) entropy Tr(ρN

A) maps within the path-integral approach to
an Euclidean partition function on an N-sheeted Riemann surface.
Underlying this result is the identification of the reduced matrix ρA
with the partition function on a surface leaving open a slit along A.
Note that such a partition function can be computed purely in terms
of matrix elements of the transfer matrix, and therefore it does not
involve any inner product structure.

The disadvantages of this construction are twofold. The main one
is that the reduced density matrix (and hence the entanglement en-
tropy) may not be positive. While this may seem like a pathological
property, loss of positivity in a non-unitary system might be accept-
able depending on the context and motivations. The other one is that
this definition only applies to eigenstates of H (and statistical super-
position thereof). This stems for the fact that there is no canonical
(i.e. basis independent) isometry between E and E∗. In practice this
means that knowing the ground state r0 is not enough to compute
the entanglement entropy, one also needs to know H to characterise
w0.
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Compatible with
locality in the sense

that the
Hamiltonian density

is self-adjoint.

Consider now an inner-product structure on E, i.e. a non-degenerate
hermitian form 〈·, ·〉. By virtue of being non-degenerate, this inner
product induces a canonical isometry between linear forms and vec-
tors. For every vector v ∈ E, denote by v† the linear form defined
by

v†(x) = 〈v, x〉, x ∈ E .

Every element in E∗ can be written in this form, and the map I :
v → v† is an antilinear isometry from E to E∗. In particular one can
associate a vector lj to every linear form wj such that wj = l†

j . The
vectors lj are what is commonly referred to as left eigenvectors of H.
These are nothing but the eigenvectors of H†, the hermitian adjoint
of H, which is characterised by the following property

〈H†v1, v2〉 = 〈v1, Hv2〉

for any vectors v1, v2 in E. The transpose tH and the Hermitian adjoint
H† are closely related :

H† = I−1 ◦ tH ◦ I .

In particular the relation tH(wj) = Ejwj becomes

H†lj = E∗j lj . (4.15)

While the previous prescription for the density matrix amounts in
this context to

ρ = r0 l†
0 , (4.16)

an alternative prescription is

ρ̃ = r0r†
0 . (4.17)

For many non-unitary models there exist a natural notion of inner
product that makes the Hamiltonian self-adjoint and is compatible
with locality, at the cost of not being definite-positive. For such an
inner-product left and right eigenvectors coincide and it follows that

ρ = ρ̃ .

This is typically the case within the CFT framework : the standard
CFT inner product is such that L†

n = L−n, and in particular the Hamil-
tonian is self-adjoint: L0 = L†

0. This is also the case for the loop model
based on the TL algebra[46] or for the Yang-Lee spin chain (see ap-
pendix 4.E).

Let us now assume that the inner product is definite-positive. For
a unitary system H = H† : left and right eigenvectors coincide, and
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both prescriptions yield the usual notion of density matrix and en-
tanglement. For a non-Hermitian Hamiltonian operator H in general
lj and rj are different (even if Ej is real). If H is symmetric but not
real (in some orthonormal basis), then the eigenvectors have non-real
components, and are related through complex conjugation :

lj = r∗j
On a more fundamental level this illustrates the fact that the canonical
map between linear forms and vectors is antilinear.

The prescription ρ̃, together with a positive-definite inner product,
seems to be physically more natural than ρ as it yields a positive en-
tanglement entropy (as can be seen from the Schmidt decomposition).
Moreover, it does not depend on H, only on the state considered and
on the inner product. However, this quantity is very much sensitive
to the inner product chosen, and for a non-Hermitian Hamiltonian
there is no canonical choice of a positive-definite inner product.

On a more technical side, when computing any quantity involving
ρ̃ in the path-integral formalism one needs to implement explicitly the
(inner-product dependent) time-reversal operation r0 → l0 (e.g. r0 →
r∗0 for symmetric H) in order to get a consistent Euclidean description.
Such a time-reversal defect can be thought of as a specific boundary
condition in the tensor product CFT⊗2, which is typically a difficult
problem.

It has been argued in [23] that for PT-symmetric Hamiltonian, the
left and right ground states r0 and l0 coincide (while working with a
definite positive inner product). This would circumvent this difficulty.
However, we found that this is not the case for the Yang-Lee model
in finite size. Moreover, assuming r0 = l0 immediately yields positive
entanglement entropies, which again we found is not the case (both
within our numerical and analytical calculations, see Figure 4.3).

In the following, when the model considered is non-unitary, we
will choose (4.13) as the density matrix so that the Euclidean path-
integral formalism described in Sec. 4.2.1, i.e. the interpretation of
Rényi entropies as partition functions on a replicated surface with
branch points, can be used straightforwardly. This is also the choice
made in [24, 46].

Within the Euclidean path-integral formalism an additional fact
to take into account when studying non-unitary models is the exis-
tence of a primary state φ with a conformal dimension lower than
the CFT vacuum h = 0 (i.e. the conformally invariant state). As was
first pointed out in [23], this has a dramatic effect on the twist field
: the most relevant twist operator is no longer τ1, but rather τφ. Re-
peating the steps of section 4.2.2, the one-interval Rényi entropy in
the ground state |φ〉 is mapped within the orbifold approach to

Tr(ρN
A) = 〈Φ|τφ(u)τ̃φ(v)|Φ〉 (4.18)
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When discussing the
result of [23] the

distinction between
ρ = r0l†

0 and
ρ = r0r†

0 is
irrelevant since they
argue that l0 = r0 at

criticality.

For simplicity, in
the following, we
consider only the
case when N is a

prime integer.

where Φ = φ⊗N . In [23] it was further claimed that the entanglement
entropy in a non-unitary model behaves as

SN ∼
ceff

6
N + 1

N
log |u− v| , (4.19)

where ceff = c − 24hφ is the effective central charge. However, this
result was based on an incorrect mapping to an Euclidean partition
function, namely

Tr(ρN
A) =

〈
τφ(u)τ̃φ(v)

〉

〈Φ(u)Φ(v)〉 (4.20)

instead of (4.18). We claim that the behaviour (4.19) is incorrect, and
the Cardy-Calabrese formulas (4.4–4.5) for the entanglement entropy
cannot be applied, even with the substitution c→ ceff.

4.3 the cyclic orbifold

The expression (4.4) suggests that the partition function on ΣN can be
considered as the two-point function of a “twist operator” of dimen-
sion

hτ =
c

24

(
N − 1

N

)
. (4.21)

Indeed, this point of view corresponds to the construction of the
cyclic orbifold. We described the case N = 2 in the introduction, in
this section we consider the general case. Mathematically, one starts
with N copies of the original CFT model (called the mother CFT, with
central charge c, living on the original surface Σ) then mod out the ZN

symmetry (the cyclic permutations of the copies). This cyclic orbifold
theory was studied extensively in [25, 47, 99]. We give an overview of
the relevant concepts that we shall use.

4.3.1 The orbifold Virasoro algebra

All the copies of the mother CFT have their own energy-momentum
tensor Tj(z) [and T̄j(z̄) for the anti-holomorphic part]. Their discrete
Fourier transforms (in replica space) are called T̂(r)(z), r ∈ {0, · · · , N−
1} and are defined by :

T̂(r)(z) =
N

∑
j=1

e2iπrj/N Tj(z) , Tj(z) =
1
N

N−1

∑
r=0

e−2iπrj/N T̂(r)(z) . (4.22)

The currents Tj are all energy-momentum tensors of a conformal field
theory, so their Operator Product Expansion (OPE) with themselves
is:

Tj(z) Tk(0) = δj,k

[
c/2
z4 +

2Tj(z)
z2 +

∂Tj(z)
z

]
+ regular terms. (4.23)
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For two distinct copies, Tj(z1) Tk(z2) is regular ; on the unfolded sur-
face, even when z1 → z2 the two currents are at different points. With
that in mind, the OPE between the Fourier transforms of these cur-
rents can be written:

T̂(r)(z) T̂(s)(0) =
(Nc/2) δr+s,0

z4 +
2 T̂(r+s)(z)

z2

+
∂T̂(r+s)(z)

z
+ regular terms,

(4.24)

where the indices r and s are considered modulo N. The modes of
the currents are defined as:

L̂(r)
m =

1
2iπ

∮
dz zm+1 T̂(r)(z) . (4.25)

In the untwisted sector of the theory the mode indices m have to be
integers since the operators T̂(r)(z) are single valued when winding
around the origin. In the twisted sector however the operators T̂(r)(z)
are no longer single-valued, and the mode indices m can be fractional.
Generically in the cyclic ZN orbifold we have

m ∈ Z/N . (4.26)

The actual values of m appearing in the mode decomposition are
detailed below: see (4.35) and (4.38). From the OPE (4.24) one obtains
the commutation relations:

[
L̂(r)

m , L̂(s)
n

]
= (m− n)L̂(r+s)

m+n +
Nc
12

m(m2 − 1) δm+n,0 δr+s,0 , (4.27)

where (m, n) ∈ (Z/N)2. The actual energy-momentum tensor in the
orbifold theory is Torb(z) = T̂(0)(z). It generates transformations af-
fecting all the sheets in the same way, so in the orbifold it has the
usual interpretation (derivative of the action with respect to the met-
ric). Correspondingly, the integer modes L̂(0)

m∈Z form a Virasoro sub-
algebra. The T̂(r)(z) for r 6= 0 also have conformal dimension 2, and
play the role of additional currents of an extended CFT with internal
ZN symmetry.

4.3.2 Operator content of the ZN orbifold

the untwisted sector Let z be a regular point of the surface
ΣN . A generic primary operator at such a regular point, which we
shall call an untwisted primary operator, is simply given by the tensor
product of N primary operators φ1, . . . , φN of dimensions h1, . . . , hN

in the mother CFT, each sitting on a different copy of the model:

Φ(z) = φ1(z)⊗ φ2(z)⊗ . . . φN(z) . (4.28)
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In the case when Φ includes at least one pair of distinct operators
φi 6= φj, it is also convenient to define the discrete Fourier modes

Φ̂(r)(z) =
1√
N

N−1

∑
j=0

e2iπrj/N φ1−j(z)⊗ φ2−j(z)⊗ · · · ⊗ φN−j(z) , (4.29)

where the indices are understood modulo N. The normalisation of
Φ̂(r)(z) is chosen to ensure a correct normalisation of the two-point
function:

〈
Φ̂(r)(z1)Φ̂(−r)(z2)

〉
= (z1 − z2)

−2hΦ , (4.30)

where hΦ = ∑N
j=1 hj. In particular, for a primary operator φ in the

mother CFT, if one sets φ1 = φh and φ2 = · · · = φN = 1, one obtains
the principal primary fields of dimension h:

φ̂
(r)
h (z) =

1√
N

N

∑
j=1

e2iπrj/N
1(z)⊗ · · · ⊗ φh(z)

(j-th)
⊗ · · · ⊗ 1(z) . (4.31)

The OPE of the currents with generic primary operators are:

T̂(r)(z)Φ̂(s)(0) =
ĥ(r)Φ Φ̂(r+s)(0)

z2 +
∂̂(r)Φ̂(s)(0)

z
+ regular terms , (4.32)

where we have introduced the notations

ĥ(r)Φ =
N

∑
j=1

e2iπrj/Nhj ,

and ∂̂(r) =
N

∑
j=1

e2iπrj/N(1⊗ . . . 1⊗ ∂
(j−th)

⊗ 1⊗ . . . 1) .

(4.33)

This expression reduces to a simple form in the case of a principal
primary operator:

T̂(r)(z)φ̂(s)
h (0) =

h φ̂
(r+s)
h (0)

z2 +
∂φ̂

(r+s)
h (0)

z
+ regular terms . (4.34)

From the expression (4.32), the product of T̂(r)(z) with an untwisted
primary operator is single-valued, and hence, only integer modes ap-
pear in the OPE:

T̂(r)(z)Φ̂(s)(0) = ∑
m∈Z

z−m−2 L̂(r)
m Φ̂(s)(0) . (4.35)

the twisted sectors The conical singularities of the surface ΣN

are represented by twist operators in the orbifold theory. A twist op-
erator of charge k 6= 0 is generically denoted as τ[k], and corresponds
to the end-point of a branch cut connecting the copies j and j + k. If
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Aj denotes the j-th copy of a given operator A of dimension hA, one
has:

Aj(e2iπz) τ[k](0) = e−2iπhA Aj+k(z) τ[k](0) . (4.36)

This relation can be considered as a characterisation of an operator
τ[k] of the k-twisted sector.

As a consequence, the Fourier components T̂(r) have a simple mon-
odromy around τ[k]:

T̂(r)(e2iπz) τ[k](0) = e−2iπrk/N × T̂(r)(z) τ[k](0) , (4.37)

and similarly for the primary operators Φ̂(r) and φ̂
(r)
h . Hence, the OPE

of T̂(r)(z) with a twist operator can only include the modes consistent
with this monodromy:

T̂(r)(z) τ[k](0) = ∑
m∈Z+kr/N

z−m−2 L̂(r)
m τ[k](0) . (4.38)

If one supposes that there exists a “vacuum” operator τ
[k]
1

in the k-
twisted sector, one can construct the other primary operators in this
sector through the OPE:

τ
[k]
φ (z) := Nhφ lim

ε→0

[
ε(1−1/N)hφ τ

[k]
1
(z) (φ(z + ε)⊗ 1⊗ · · · ⊗ 1)

]
. (4.39)

For convenience, in the following, we shall use the short-hand nota-
tions:

τφ := τ
[k=1]
φ , τ̃φ := τ

[k=−1]
φ . (4.40)

In a sector of given twist, most fractional descendant act trivially:

L(r)
l/Nτ[k] = 0 if l /∈ NZ + kr

Hence the short-hand notation:

Ll/Nτ[k] = 0 ≡ L(lmodN)/k
l/N τ[k] = 0

4.3.3 Induction procedure

Suppose one quantises the theory around a branch point of charge
k 6= 0 at z = 0. After applying the conformal map z 7→ w = z1/N

from ΣN to a surface where w = 0 is a regular point, the currents
T̂(r)(z) transform as:

T̂(r)(z) 7→ w2−2N
N−1

∑
j=0

e2iπ j(r`+2)/N T
(

e2iπ j/Nw
)
+

(N2 − 1)c δr,0

24Nz2 . (4.41)

Accordingly, one gets for the generators:

L̂(r)
m 7→

1
N

LNm +
c

24

(
N − 1

N

)
δr,0 δm,0 , for m ∈ Z+

rk
N

, (4.42)
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where the Ln’s are the ordinary Virasoro generators of the mother
CFT. It is straightforward to check that these operators indeed obey
the commutation relations (4.27). Similarly, the twisted operator τ

[k]
φ

(4.39) maps to the primary operator φh of the mother CFT:

τ
[k]
φ (z) 7→ w(1−N)hφ φ(w) . (4.43)

The relations (4.42–4.43) are called the “induction procedure” in [25].
Using (4.42–4.43) for r = m = 0, the dimension of τ

[k]
φ for any k 6= 0

is

ĥφ =
hφ

N
+

c
24

(
N − 1

N

)
. (4.44)

This formula first appeared in [26, 93], and, in the context of entan-
glement entropy, in [40]. In particular, when φ is the identity operator
1 with dimension h1 = 0, the expression (4.44) coincides with the
dimension hτ = ĥ1 (4.21) for τ1.

4.3.4 Null-vector equations for untwisted and twisted operators

We intend to fully use the algebraic structure of the orbifold. If the
mother theory is rational (i.e. it has a finite number of primary oper-
ators), then so is the orbifold theory. Also, from the induction proce-
dure, we shall find null states for the twisted operators in the orbifold.
In our approach, these null states are important, as they are the start-
ing point of a conformal bootstrap approach.

non-twisted operators . In the non-twisted sector, the null
states are easy to compute. A state Φ in the non-twisted sector is
a product of states of the mother theory. If one of these states (say,
on the jth copy), has a null vector descendant in the mother theory,
then the modes of Tj(z) generate a null descendant. After an inverse
discrete Fourier transform, these modes are easily expressed in terms
of the orbifold Virasoro generators L̂(r)

n .
For instance, take the mother CFT of central charge c, and consider

the degenerate operator φ12. We can parametrise the central charge
and degenerate conformal dimension as

c = 1− 6(1− g)2

g
, h12 =

3g− 2
4

, 0 < g < 1 , (4.45)

and the null vector condition then reads:
(

L−2 −
1
g

L2
−1

)
φ12 ≡ 0 . (4.46)

For a generic number of copies N we have

L̂(r)
n =

N

∑
j=1

e2iπrj/N(1⊗ . . . 1⊗ Ln
(j−th)

⊗ 1⊗ . . . 1) , (4.47)
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and hence for N = 2, and Φ = φ12 ⊗ φ12, we obtain
[

L̂(0)
−2 −

1
2g

(
L̂(0)
−1

)2
− 1

2g

(
L̂(1)
−1

)2
]

Φ ≡ 0 , (4.48)
[

L̂(1)
−2 −

1
g

L̂(0)
−1 L̂(1)

−1

]
Φ ≡ 0 . (4.49)

More generally, any product of degenerate operators from the mother
CFT is itself degenerate under the orbifold Virasoro algebra.

twisted operators . The twisted sectors also contain degener-
ate states, which are of great interest in the following. For example,
let us take k = 1, and characterise the degenerate states at level 1/N.
A primary state τ obeys L̂(r)

m τ = 0 for any r and positive m ∈ Z+ r/N.
For τ to be degenerated at level 1/N, one needs to impose the ad-
ditional constraint: L̂(1)

1/N L̂(−1)
−1/Nτ = 0. Using the commutation rela-

tions (4.27), we get:

L̂(1)
1/N L̂(−1)

−1/Nτ =
2
N

[
L̂(0)

0 −
c

24

(
N − 1

N

)]
τ . (4.50)

Thus, the operator τ is degenerate at level 1/N if and only if it has
conformal dimension hτ = c

24

(
N − 1

N

)
. This is nothing but the con-

formal dimension (4.21) of the vacuum twist operator τ1. Hence, one
always has

L̂(−1)
−1/Nτ1 ≡ 0 , L̂(1)

−1/N τ̃1 ≡ 0 . (4.51)

A more generic method consists in using the induction procedure.
First, (4.51) can be recovered by applying (4.42–4.43):

L−1 1 ≡ 0 ⇒ NL̂(−1)
−1/Nτ1 ≡ 0 . (4.52)

One can obtain the other twisted null-vector equations by the same
induction principle. Let us give one more example in the k = 1 sector:
the case of τφ12 . The relations (4.42–4.43) give:

(
L−2 + g−1L2

−1

)
φ12 ≡ 0

⇒
[

NL̂(−2)
−2/N +

N2

g

(
L̂(−1)
−1/N

)2
]

τφ12 ≡ 0 .
(4.53)

and hence τφ12 is degenerate at level 2/N. Note the insertion of some
factors N in the null-vector of τφ12 as compared to the null-vector
equation (4.46) of the mother CFT.
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4.4 first examples

4.4.1 Yang-Lee two-interval correlation function

We consider the CFT of the Yang-Lee (YL) singularity of central charge
c = −22/5, where the primary operators are the identity 1 = φ11 =

φ14 with conformal dimension h1 = 0, and φ = φ12 = φ13 with
hφ = −1/5. We shall compute the following four-point function in
the Z2 orbifold of the YL model:

G(x, x̄) = 〈τ1(∞)τ1(1)τ1(x, x̄)τ1(0)〉 . (4.54)

In the N = 2 cyclic orbifold of the YL model, the untwisted primary
operators are 1, Φ = φ⊗ φ and the principal primary fields φ̂(r) with
r = 0, 1. They have conformal dimensions, respectively, h1 = 0, hΦ =

−2/5 and hφ = −1/5. Note that for N = 2 the only twisted sector has
` = 1, and hence τ̃ ≡ τ. For the same reason, we shall sometimes omit
the superscripts on the generators L̂(r)

n , as r = 0, 1 are the only pos-
sible values. The twisted primary operators are τ1 and τφ, with con-
formal dimensions ĥ1 = −11/40 and ĥφ = −3/8. Here we have used
the standard convention 〈ψ(∞) . . .〉 := limR→∞

[
R4hψ 〈ψ(R) . . .〉

]
. Ge-

ometrically, this correlation function correspond to the partition func-
tion of the Yang-Lee model on a twice branched sphere, which can be
mapped to the torus.

The identity operator of the YL model satisfies two null-vector
equations:

L−11 = 0 ,
(

L−4 −
5
3

L2
−2

)
1 = 0 . (4.55)

Through the induction procedure, this yields null-vector equations
for the twist operator τ1:

L̂−1/2τ1 = 0 ,
(

L̂−2 −
10
3

L̂2
−1

)
τ1 = 0 (4.56)

where the Fourier modes are r = 1 and r = 0 respectively, as re-
quired from (4.38). The first equation of (4.56) is generic for all N = 2
orbifolds, and determines the conformal dimension of the τ1 opera-
tor. In contrast, the second equation is specific to the YL model. It
only involves the integer modes, which all have the usual differential
action when inserted into a correlation function. Hence, due to the
second equation of (4.56), the derivation of G(x, x̄) is very similar to
the standard case of a four-point function involving the degenerate
operator φ12 (see appendix 4.B). The conformal block in z → 0 have
the expression:

x11/20(1− x)11/20 I1(x) with I1(x) = 2F1(7/10, 11/10; 7/5|x) ,

x11/20(1− x)11/20 I2(x) with I2(x) = x−
2
5 2F1(7/10, 3/10; 3/5|x) ,

(4.57)
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And the total correlation function can be written:

G(x, x̄) = |x|11/10 |1− x|11/10 ×
[ ∣∣2F1(7/10, 11/10; 7/5|x)

∣∣2

+216/5 ∣∣x−2/5
2F1(7/10, 3/10; 3/5|x)

∣∣2
]

,
(4.58)

ope coefficients The coefficients Xj and Yj give access to the
OPE coefficients in the Z2 orbifold of the YL model:

C(τ1, τ1, Φ) =
√

X2 = 28/5 , (4.59)

Recalling hφ = −1/5, we see that (4.180) is consistent with the
expression C(Φ, τ1, τ1) = 2−8hφ (see Appendix 4.C).

mapping to the torus The mapping from the torus (with coor-
dinates t) to the branched sphere (with coordinates z) is:

z(t) =
℘(t)− ℘(1/2)

℘(τ/2)− ℘(1/2)
(4.60)

This maps 0, x, 1, ∞ ← 1
2 , 1

2 (1 + τ), τ
2 , 0. The relation between x and

the nome q = e2iπτ is given by:

x = 16
√

q
∞

∏
n=1

(
1 + qn

1 + qn−1/2

)8

(4.61)

Mapping the torus to the branched sphere, the partition function
transforms as:

Z(τ) = 4c/3|x|c/12|1− x|c/12 〈τ1|τ1(1)τ1(x, x̄)|τ1〉 (4.62)

The torus partition function of the Yang-Lee model involves two
characters, χ1,1(τ) (1), and χ1,2(τ) (φ).

Z = |χ3,1(τ)|2 + |χ4,1(τ)|2 (4.63)

The characters of minimal models have the well-known expression
χr,s(τ) = Kr,s(τ)− Kr,−s(τ), with:

Kr,s(τ) =
1

η(τ)

∞

∑
n=−∞

exp
(

iπτ
(20n + 2r− 5s)2

20

)
(4.64)

Where η is the Dedekind eta function.
We expect the following relation between the conformal blocks of

the correlation function and the characters of the theory:

χ1,1(τ) = 2−22/15x11/30 (1− x)11/30 I1(x)

χ1,2(τ) = 22/15x11/30 (1− x)11/30 I2(x)

Those two relations are not trivial, and the simplest way to prove
them seems to be by showing that the right-hand terms are vector
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modular form, with the same modular transformations as χ (see by
example [77] for details). An easy check consist in expanding the
right-hand side in power of q, confirming the equality for first orders:

2−22/15x11/30 (1− x)11/30 I1(x) ≈ 1 + q2 + q3 + q4 + · · ·

22/15x11/30 (1− x)11/30 I2(x) ≈ 1 + q + q2 + q3 + 2 q4 + · · ·
The relation 4.62 between the partition on the torus and G(x, x̄) is

verified:

Z(τ) = 2−44/15|x|−11/30|1− x|−11/30 〈τ1|τ1(1)τ1(x, x̄)|τ1〉 (4.65)

4.4.2 Yang-Lee one-interval correlation function

With minimal modifications to the previous argument, we can also
compute the following four-point function :

G(x, x̄) = 〈Φ(∞)τ1(1)τ1(x, x̄)Φ(0)〉 . (4.66)

Which, physically, is related to the generalised Rényi entropy SN=2(x, φ, τ1).
Technically, it is more convenient to work with twist operators lo-

cated at 0 and ∞, so we introduce

F(x, x̄) := 〈τ1(∞)Φ(1)Φ(x, x̄)τ1(0)〉 . (4.67)

Using the suitable projective mapping, one has the relation:

G(x, x̄) = |1− x|4(hΦ−ĥ1) F(x, x̄) .

Then, through the null-vector of τ1, we can obtain a differential
equation of order two for this correlation function:

[
10x2(1− x)2∂2

x + x(1− x)(3− x)∂x +
2
5
(5x2 + 3)

]
F(x, x̄) = 0 . (4.68)

The Riemann scheme of this equation is:





0 1 ∞

2
5

4
5 − 2

5

3
10

2
5 − 1

2





(4.69)

Which is consistent with the OPEs:

Φ× τ1 → τ1 + τφ , (4.70)

Φ×Φ→ 1+ Φ + (1⊗ φ) , (4.71)

τ1 × τ1 → 1+ Φ . (4.72)
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By appropriately shifting F, F(x, x̄) = |x|4/5 |1− x|8/5 f (x, x̄), we can
turn 4.68 in 4.166. At that point we can simply re-use the results of
the last sections with parameters:

a =
4
5

, b =
7

10
, c =

11
10

. (4.73)

The final result for the four-point function G(x, x̄) (4.66) is

G(x, x̄) = |x|4/5 |1− x|11/5 ×
[

X1
∣∣2F1(4/5, 7/10; 11/10|x)

∣∣2

+X2
∣∣x−1/10

2F1(3/5, 7/10; 9/10|x)
∣∣2
]

,
(4.74)

where X1, X2 are given in (4.180), and the parameters a, b, c, d are
given in (4.73). Using the identity (4.157) on hypergeometric func-
tions, we see that the solution (4.74) for G(x, x̄) agrees with the direct
computation given in Appendix 4.D.

4.5 twist operators with a fractional null vector

4.5.1 Orbifold Ward identities

Generically the null vectors for a twist operator can involve some
generators L(r)

m , with r 6= 1 and fractional indices m ∈ Z + r/N
[see (4.38)], which do not have a differential action on the correlation
function. In this situation, we shall use the extended Ward identities
to turn the null-vector conditions into a differential equation for the
correlation function.

Let us consider the correlation function:

G(r)(x, x̄, z) = 〈O1|O2(1)O3(x, x̄)T̂(r)(z)|O4〉 , (4.75)

where (O2,O3) are any two operators and (|O1〉, |O4〉) are any two
states of the cyclic orbifold. Each operator Oj or state |Oj〉 can be in
a twisted sector [k j] with k j 6= 0 mod N, or in the untwisted sector
(k j ≡ 0 mod N). The overall ZN symmetry imposes a neutrality con-
dition: k1 + k2 + k3 + k4 ≡ 0 mod N. Let C be a contour enclosing
the points {0, x, 1}. Then this is a closed contour for the following
integral:

1
2iπ

∮

C
dz (z− 1)m2+1(z− x)m3+1zm4+1 G(r)(x, x̄, z) , (4.76)
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where mj ∈ Z + rk j/N for j = 2, 3, 4. Then, by deforming the integra-
tion contour to infinity, we obtain the following identity:

∞

∑
p=0

ap〈O1|L̂(r)
−m1−pO2(1)O3(x, x̄)|O4〉

=
∞

∑
p=0

bp〈O1|[L̂(r)
m2+pO2](1)O3(x, x̄)|O4〉

+
∞

∑
p=0

cp〈O1|O2(1)[L̂
(r)
m3+pO3](x, x̄)|O4〉

+
∞

∑
p=0

dp〈O1|O2(1)O3(x, x̄)L̂(r)
m4+p|O4〉 , (4.77)

where

m1 = −m2 −m3 −m4 − 2 ⇒ m1 ∈ Z + rk1/N , (4.78)

and the coefficients ap, bp, cp, dp are defined by the Taylor expansions:

(1− z)m2+1(1− xz)m3+1 =
∞

∑
p=0

ap zp , (z− x)m3+1zm4+1 =
∞

∑
p=0

bp (z− 1)p ,

(z− 1)m2+1zm4+1 =
∞

∑
p=0

cp (z− x)p , (z− 1)m2+1(z− x)m3+1 =
∞

∑
p=0

dp zp .

In (4.77) we have used the notation:

[L̂(r)
m Oj](x, x̄) :=

1
2iπ

∮

Cx

dz (z− x)m+1 T̂(r)(z)Oj(x, x̄) , (4.79)

where Cx is a contour enclosing the point x. If all the Oj’s are chosen
among the primary operators or their descendants under the orbifold
Virasoro algebra, then the sums in (4.77) become finite. By choosing
appropriately the indices m1, . . . m4 (with the constraint ∑j mj = −2),

the relations (4.77) can be used to express, say,
〈

L̂(r)
r/Nτ . . .

〉
in terms of

correlation functions involving only descendants with integer indices.

4.5.2 Ising two-interval ground state entropy

The Ising model is the smallest non-trivial unitary model, with three
fields {1, σ, ε}, of conformal charges 0, 1/16, 1/2. Its central charge is
1
2 . By using the correspondence between the Ising model and free
fermions, the two-interval case was computed in [1], for any value of
N. Here, as an example, we compute the N = 2 two-interval entropy,
with our method, and using only the null vector of the model. The
N = 2 orbifold of the Ising model will have central charge 1. The first
field in the twisted sector is τ1, the identity twist, of charge hτ1 = 1/32.

The two null vector of the identity in the mother theory are:

L−11 = 0 ,
(
108L−6 + 264L−4L−2 − 93 L2

−3 − 64 L3
−2
)
1 = 0 . (4.80)
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And, through the induction process, we obtain null vector equations
for τ1.

L−1/2τ1 = 0 and(
54 L−3 + 264 L−2L−1 − 93 L2

−3/2 − 128 L3
−1
)

τ1 = 0 .
(4.81)

We aim to obtain a differential equation for the correlation function

G(x, x̄) = 〈τ1|τ1(x, x̄)τ1(1)|τ1〉 ,

We need to compute the term
〈(

L2
−3/2τ1(0)

)
τ1(x, x̄)τ1(1)τ1(∞)

〉
to

be able to use the null-vector. By using the Ward identity 4.77 with
{m1, m2, m3, m4} = {1/2,−1/2,−1/2,−3/2} and {O1,O2,O3,O4} = {τ1, τ1, τ1, L−3/2τ1},
we obtain the relation:

3

∑
p=0

dp
〈
τ1|τ1(1)τ1(x, x̄)L−3/2+p|L−3/2τ1

〉
= 0

Which, using the orbifold algebra is equivalent to:
〈
τ1|τ1(x, x̄)τ1(1)|L2

−3/2τ1
〉
=

1
64x3

(
32x2(1 + x) 〈τ1|τ1(x, x̄)τ1(1)|L−2τ1〉+

16x(x− 1)2 〈τ1|τ1(x, x̄)τ1(1)|L−1τ1〉+
(x− 1)2(1 + x) 〈τ1|τ1(x, x̄)τ1(1)|τ1〉

)

Using this relation and the null vector 4.81, we obtain the following
differential equation:

{
15 (2 x− 1) + 48 x (x− 1)(192 x2 − 192 x + 5) ∂x

+8448 (x− 1)2x2(2 x− 1)∂2
x + 4096 (x− 1)3x3∂3

x

}
G (x, x̄) = 0

(4.82)

The Riemann scheme of this equation is:




0 1 ∞

−1
16

1
16

15
16

−1
16

1
16

15
16

0 − 1
8 −1





(4.83)

Which is compatible with the OPE:

τ1 ⊗ τ1 → 1
⊗2 ⊕ σ⊗2 ⊕ ε⊗2 .

Under the change of variables C(x, x̄) = |x|−1/24|1− x|−1/24G(x, x̄),
the differential equation 4.82 becomes:

(
∂3

x −
(2(2x− 1))∂2

x
x(1− x)

+

(
391

(
x2 − x

)
+ 7
)

∂x

192x2(1− x)2

− 23(2− x)(x + 1)(2x− 1)
243x3(1− x)3

)
C(x, x̄) = 0

(4.84)



144 entanglement entropy and orbifolds

The solution of this differential equation are the characters of the Ising
model on the torus, as demonstrated in [58], by directly applying the
null vectors on the torus. Hence, we recover that the two-interval
N = 2 Rényi entropy maps to the torus partition function.

4.5.3 Yang-Lee one-interval ground state entropy

definitions . As argued above, the N = 2 ground state entropy
of the YL model is related to the correlation function:

G(x, x̄) =
〈
Φ(∞)τφ(1)τφ(x, x̄)Φ(0)

〉
, (4.85)

where Φ = φ⊗φ. It will be convenient to work rather with the related
function:

F(x, x̄) =
〈
τφ(∞)Φ(1)Φ(x, x̄)τφ(0)

〉
, (4.86)

with G(x, x̄) = |1− x|4(hΦ−ĥφ) F(x, x̄).

null vectors and independent descendants . In the mother
theory, the primary field φ has two null-descendants:

(
L−2 −

5
2

L2
−1

)
φ = 0 ,

(
L−3 −

25
12

L̂3
−1

)
φ = 0 . (4.87)

Through the induction procedure, this implies the following null vec-
tors for the twist field τφ:

(
L̂−1 − 5 L̂2

−1/2

)
τφ = 0 ,

(
L̂−3/2 −

25
4

L̂3
−1/2

)
τφ = 0 . (4.88)

The Ward identities (4.77) will give relations between descendants
at different levels. In order to get an idea of the descendants we need
to compute, we need to know the number of independent descen-
dants at each level. The number of Virasoro descendants at a given
level k is equal to the number of integer partitions of k. In a mini-
mal model not all those descendants are independent. The number
of (linearly) independent descendants at level k of a primary field φ

is given by the coefficients of the series expansion of the character as-
sociated with φ. Explicitly, if τ is the modular parameter on the torus,
the character of a field φrs in the minimal modelMp,p′ is given by:

χrs(τ) = Kpr−p′s(τ)− Kpr+p′s(τ) ,

Kλ(τ) =
1

η(τ) ∑
n∈Z

q(2pp′n+λ)2/2pp′ , q = e2iπτ .

The coefficient of order k in the series expansion with parameter q
of the character gives the number of independent fields at level k.
Through the induction procedure (4.42–4.43), the module of τφrs un-
der the orbifold algebra has the same structure as the module of φrs
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under the Virasoro algebra. Hence, this coefficient also gives the num-
ber of descendants at level k/N in the module of τφrs . For example, for
N = 2 and (p, p′) = (5, 2) (Yang-Lee), the numbers of independent
descendants for the field τφ = τφ12 are given in the following table.

level 1/2 1 3/2 2 5/2 3

descendants 1 1 1 2 2 3

integer descendants 0 1 0 2 0 3

So up to level 3, all descendants at an integer level (even formed
of non-integer descendants) can be re-expressed in terms of integer
modes. One gets explicitly:

L̂−5/2 L̂−1/2τφ =

(
1
2

L̂−3 +
3
2

L̂−1 L̂−2 −
5
3

L̂3
−1

)
τφ ,

L̂−3/2 L̂−1/2τφ =

(
1
4

L̂−2 −
1
2

L̂2
−1

)
τφ ,

L̂2
−1/2τφ =

1
5

L̂−1τφ , L̂1/2 L̂−1/2τφ =
(

L̂0 −
c

16

)
τφ .

(4.89)

ward identity. We now use (4.77) with the indices (m1, . . . , m4) =

(1/2, 0, 0,−5/2) and :

G(x, x̄, z) = 〈τφ|Φ(1)Φ(x, x̄)T̂(1)(z)L̂(1)
−1/2|τφ〉 .

Recalling that L̂(1)
0 Φ = 0, the only surviving terms are:

0 =
∞

∑
p=0

dp 〈τφ|Φ(1)Φ(x, x̄)L̂(1)
−5/2+p L̂(1)

−1/2|τφ〉 .

Inserting the explicit expressions for the coefficients dp, we get:

〈τφ|Φ(1)Φ(x)
[

x L̂−5/2 − (x + 1) L̂−3/2 + L̂−1/2

]
L̂−1/2|τφ〉 = 0 . (4.90)

differential equation. Combining (4.89) and (4.90), one gets
a linear relation involving only the integer modes L̂(0)

m . Using (4.161),
this leads to the third-order differential equation:

[
5
3

x3(1− x)3∂3
x + 2x2(1− x)2(1− 2x)∂2

x

+
1

20
x(1− x)(15x2 − 14x + 7)∂x

− 1
50

(x3 − 3x2 − 29x + 15)

]
F(x, x̄) = 0 . (4.91)
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The Riemann scheme of this equation is:




0 1 ∞
1
2

4
5

1
10

2
5

2
5 − 3

10
9

10
3
5 − 2

5





(4.92)

interpretation in terms of opes . We consider the conformal
blocks under the invariant subalgebra A0 generated by the mono-
mials L(r1)

m1 . . . L(rk)
mk with r1 + · · · + rk ≡ 0 mod N. With this choice,

the toroidal partition function of the orbifold has a diagonal form
Z = ∑j |χj|2 in terms of the characters (see [25, 99]). The OPEs under
the invariant subalgebra A0 are then:

Φ× τφ → τ1 + τφ + L̂(1)
−1/2τφ , (4.93)

Φ×Φ→ 1+ Φ + (1⊗ φ) , (4.94)

τφ × τφ → 1+ Φ + (1⊗ φ) . (4.95)

Note that L̂(1)
−1/2τφ is a primary operator with respect to A0. The local

exponents (4.92) are consistent with these OPEs.

holomorphic solutions . To express the solutions in terms of
power series around x = 0, it is convenient to rewrite (4.91) using the
differential operator θ = x∂x. On has, for any k ∈N:

xk∂k
x = θ(θ − 1) . . . (θ − k + 1) .

This yields the new form for (4.91):
[
P0(θ) + x P1(θ) + x2 P2(θ) + x3 P3(θ)

]
F(x, x̄) = 0 , (4.96)

where:

P0(θ) =
1
3
(2 θ − 1)(5 θ − 2)(10 θ − 9) ,

P1(θ) = −
1
5
(500 θ3 − 700 θ2 + 305 θ − 58) ,

P2(θ) =
1
5
(500 θ3 − 500 θ2 + 145 θ + 6) ,

P3(θ) = −
1

15
(5 θ − 2)(10 θ − 3)(10 θ + 1) .

(4.97)

The key identity satisfied by the operator θ is, for any polynomial P
and any real α:

P(θ) . xα = P(α) xα . (4.98)

Hence, if we choose α to be a root of P0 (i.e. one of the local exponents
at x = 0), there exists exactly one solution of the form:

I(x) = xα ×
∞

∑
n=0

an xn , with an = 1 . (4.99)
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The coefficients an are given by the linear recursion relation:

an = −P1(α + n)an−1 + P2(α + n)an−2 + P3(α + n)an−3

P0(α + n)
, (4.100)

with the initial conditions:

a0 = 1 , a1 = −P1(α + 1)
P0(α + 1)

,

a2 =
P1(α + 1)P1(α + 2)− P0(α + 1)P2(α + 2)

P0(α + 1)P0(α + 2)
.

(4.101)

For example, the conformal block corresponding to α = 1/2:

τφ(0)
τ1

τφ(∞)

Φ(1)Φ(x)

is given by

I1(x) = x1/2
(

1 +
256
55

x +
24446
1925

x2 + . . .
)

. (4.102)

The series converges for |x| < 1, and may be evaluated numerically
to arbitrary precision using (4.100).

numerical solution To determine the physical correlation func-
tion F(x, x̄) (4.86), we need to solve the monodromy problem, i. e.find
the coefficients for the decompositions:

F(x, x̄) =
3

∑
i=1

Xi |Ii(x)|2 =
3

∑
j=1

Yj |Jj(x)|2 , (4.103)

where (I1, I2, I3) are the holomorphic solutions of (4.91) with expo-
nents (1/2, 2/5, 9/10) around x = 0, and (J1, J2, J3) are the holomor-
phic solutions with exponents (4/5, 2/5, 3/5) around x = 1. In the
present case, we do not know the analytic form of the 3× 3 matrix A
for the change of basis:

Ii(x) =
3

∑
j=1

Aij Jj(x) . (4.104)

However, this matrix can be evaluated numerically with arbitrary pre-
cision, by replacing the Ii’s and Jj’s in (4.104) by their series expan-
sions of the form (4.102), and generating a linear system for {Aij}
by choosing any set of points {x1, . . . , x9} on the interval 0 < x < 1
where both sets of series Ii(x) and Jj(x) converge. We obtain the ma-
trix:

A =




0.46872 2.98127 −2.61803

0.292217 2.43298 −1.82483

3.52145 6.92136 −9.83452


 . (4.105)
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The coefficients giving a monodromy-invariant F(x, x̄) consistent with
the change of basis (4.104) are:

X1 = 30.6594 ,

X2 = −19.2813 ,

X3 = 0.211121 ,

Y1 = 1 ,

Y2 = 20.2276 ,

Y3 = −9.64063 .

(4.106)

We have set Y1 to one because it corresponds to the conformal block
with the identity as the internal operator.

ope coefficients . The coefficients Xi and Yj are related to the
OPE coefficients in the N = 2 orbifold of the YL model as follows:

X1 = C(Φ, τφ, τ1)
2 , (4.107)

X2 = C(Φ, τφ, τφ)
2 , (4.108)

X3 = C(Φ, τφ, L̂(1)
−1/2τφ)

2 , (4.109)

Y1 = C(Φ, Φ,1)C(1, τφ, τφ) = 1 , (4.110)

Y2 = C(Φ, Φ, Φ)C(Φ, τφ, τφ) , (4.111)

Y3 = C[Φ, Φ, (φ⊗ 1)]C[(φ⊗ 1), τφ, τφ] . (4.112)

Our numerical procedure can be checked by comparing some of the
numerical values (4.106) to a direct calculation of the OPE coefficients
done in Appendix 4.C. They match up to machine precision.

4.5.4 Excited state entropy for minimal models at N = 2

The same type of strategy can be used to compute excited state en-
tropies in other minimal models, for some specific degenerate states,
and small values of N. In this section we solve explicitly the case of
N = 2 for an operator degenerate at level 2.

definitions . We consider the minimal modelM(p, p′) with cen-
tral charge c = 1− 6(p−p′)2

pp′ , where p, p′ are coprime integers. Using
the Coulomb-gas notation, φ21 is one of the states of the mother CFT
which possess a null vector at level 2. In terms of the Coulomb-gas
parameter g = p/p′, the central charge and conformal dimensions of
the Kac table read:

c = 1− 6(1− g)2

g
, (4.113)

hrs =
(rg− s)2 − (1− g)2

4g
, for





r = 1, . . . , p′ − 1

s = 1, . . . , p− 1 .
(4.114)
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In particular, we have h21 = (3g− 2)/4. The null-vector condition for
φ21 reads:

(
L−2 −

1
g

L2
−1

)
φ21 = 0 . (4.115)

As shown before, in a unitary model (when q = p− 1), the entangle-
ment entropy of an interval in the state |φ21〉 is expressed in terms of
the correlation function

G(x, x̄) = 〈Φ(∞)τ1(1)τ1(x, x̄)Φ(0)〉 , (4.116)

where Φ = φ21 ⊗ φ21.

null vectors . The null vectors of τ1 and Φ can be obtained
through the induction procedure:

L̂(1)
−1/2

τ1 = 0 ,
(

L̂(1)
−2 −

1
g

L̂(0)
−1 L̂(1)

−1

)
Φ = 0 ,

[
L̂(0)
−2 −

1
2g

(
(L̂(0)
−1)

2 + (L̂(1)
−1)

2
)]

Φ = 0 .
(4.117)

ward identity. Using the Ward identity (4.77) with the choice of
indices (m1, · · · , m4) = (0,−1/2,−1/2,−1) for the function G(x, x̄, z) =
〈Φ|τφ(1)τφ(x, x̄)T̂(1)(z)L̂(1)

−1|Φ〉, and the null-vector condition (4.117),
we obtain the relation:

0 = 〈Φ|τ1(1)τ1(x, x̄)
(

d0 L̂(1)
−1 + d1 L̂(1)

0 + d2 L̂(1)
1

)
L̂(1)
−1|Φ〉 . (4.118)

Using the orbifold Virasoro algebra (4.27) and the explicit expression
for the dp’s, we get:

〈Φ|τ1(1)τ1(x, x̄)(L̂(1)
−1)

2|Φ〉 = x + 1
2x
〈Φ|τ1(1)τ1(x, x̄)L̂(0)

−1|Φ〉

+
h21 (x− 1)2

2x2 〈Φ|τ1(1)τ1(x, x̄)|Φ〉 .

(4.119)

differential equation. By inserting the second null-vector con-
dition of (4.117) into G(x, x̄), we get:

〈Φ|τ1(1)τ1(x, x̄)
[

L̂(0)
−2 −

1
2g

(
(L̂(0)
−1)

2 + (L̂(1)
−1)

2
)]
|Φ〉 = 0 . (4.120)

Then, the substitution of the (L̂(1)
−1)

2 term by 4.119 gives a linear rela-

tion involving only the modes L̂(0)
m , which have a differential action

on G(x, x̄). This yields the differential equation for G(x, x̄):
[
64g2(x− 1)2x2∂2

x

+(3g− 2)
(
16(g− 1)g2 + 12(1− 2g)gx + 3(5g− 6)(1− 2g)2x2)

+16g(x− 1)x(−2g2(7x + 4) + g(23x + 2)− 6x)∂x

]
G(x, x̄) = 0 .

(4.121)
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Its Riemann scheme is:



0 1 ∞

2− 3g
2

6g2 − 13g + 6
8g

−6 + 17g− 10g2

8g
1− g

2
38g2 − 29g + 6

8g
−18g2 + 21g− 6

8g





(4.122)

These exponents correspond to the fusion rules

τ1× τ1 → 1+φ31⊗φ31 + . . . and τ1×Φ→ τ1+ τφ31 + . . . (4.123)

in the channels x → 1 and x → 0, respectively.

solution. The problem can be solved as in Sec. 4.B.1. If we multi-
ply the correlation function by the appropriate factor, equation (4.121)
becomes the hypergeometric differential equation:

x(x− 1) ∂2
x f + [(a + b + 1)x− c]∂x f + ab f = 0 ,

where : f (x, x̄) = |1− x|4ĥ1 |x|4h21 G(x, x̄) ,

and : a = 2− 3g , b =
3
2
− 2g , c =

3
2
− g .

(4.124)

Following exactly the reasoning in Sec. 4.B.2, we find the correla-
tion function:

G(x, x̄) = |x|−4h21
[ ∣∣∣(1− x)−4ĥ1

2F1(a, b; 1− d|1− x)
∣∣∣
2

+X
∣∣∣(1− x)−4ĥ1+4g−2

2F1(c− b, c− a; 1 + d|1− x)
∣∣∣
2 ]

,

where d = c− a− b and

X =
25(1− 2g)2γ

(
2g− 1

2

)3
γ (2− 4g)2

(1− 4g)3γ(2− 3g)
. (4.125)

Of course, we may compare this solution to the one obtained by a con-
formal mapping of the four-point function 〈φ21φ21φ21φ21〉. The latter
also satisfies a hypergeometric equation, and using the transforma-
tion 4.157, the two solutions can be shown to match.

4.5.5 Excited state entropy for minimal models at N = 3

We now consider the correlation function in the N = 3 orbifold of the
minimal modelM(p, p′):

G(x, x̄) = 〈Φ(∞)τ1(1)τ1(x, x̄)Φ(0)〉 , (4.126)

where Φ = φ21 ⊗ φ21 ⊗ φ21. The conformal mapping method would
result in a much more complicated 6-point function, which is not the
solution of an ordinary differential equation. But through the orbifold
Virasoro structure, we can obtain such an equation. The method is
similar in spirit to what was done for N = 2, finding the null vector
conditions on the field Φ, then using the Ward identities.
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null vectors . We will need the null vectors of Φ3 up to level 4:

L̂(1)
−1 L̂(2)

−1Φ3 =
1
2

(
3gL̂(0)

−2 − L̂(0)
−1 L̂(0)

−1

)
Φ3

[
L̂(2)
−1 L̂(2)

−1 L̂(2)
−1 − 3g

(
L̂(1)
−2 L̂(2)

−1 − L̂(0)
−1 L̂(0)

−2

)
+ L̂(0)

−1 L̂(0)
−1 L̂(0)

−1

]
Φ3 = 0

[
3L(0)
−4 + L(0)

−3L(0)
−1 + 3L(1)

−3L(2)
−2 − L(2)

−3L(1)
−1 −

3g
2

(
L(0)
−2

)2
+ L(0)

−2

(
L(0)
−1

)2

+2L(2)
−2

(
L(2)
−1

)2
− 1

6g

(
L(0)
−1

)4
− 1

3g
L(0)
−1

(
L(2)
−1

)3
]

Φ3 = 0

ward identities . The descendants involving L̂(r)
−1, with r 6= 0

are eliminated through the Ward identities. For example, using 4.77,
with indices (m1, m2, m3, m4) = (0, 1/3,−1/3,−2), and the function
G(x, x̄, z) = 〈Φ3|τ̃(1)τ(x, x̄)T(2)(z)L̂(2)

−1 L̂(2)
−1|Φ3〉, we obtain the rela-

tion:

2

∑
m=−2

Qm(x)〈Φ|τ̃(1)τ(x, x̄)L̂(2)
m L̂(2)

−1 L̂(2)
−1|Φ〉 = 0

Q0(x) = 27x2(x2 − 8x− 2) Q−1(x) = 2 · 34x3(2 + x)

Q1(x) = 12x(x− 1)3 Q−2(x) = 35x4 Q2(x) = (x− 1)3(5 + 7x)

A similar relation can be found for the correlation functions of the
form

〈Φ|τ̃(1)τ(x, x̄)L̂(1)
−m L̂(2)

−1|Φ〉 and 〈Φ|τ̃(1)τ(x, x̄)L̂(2)
−m L̂(1)

−1|Φ〉

by using other Ward identities.

differential equation. Putting everything together we find
the following differential equation:
[

P0(θ) + x P1(θ) + x2 P2(θ) + x3 P3(θ) + x4 P4(θ)
]

G(x, x̄) = 0 , (4.127)

where θ = x∂x and:

P0(θ) = 16(1− 2g + gθ)(1− g + gθ)(6− 5g + 3gθ)(6− 4g + 3gθ)

P1(θ) = −16(1− g + gθ)
(
486− 963g + 666g2 − 160g3

+(567g− 810g2 + 296g3)θ + (234g2 − 180g3)θ2 + 36g3θ3)

P2(θ) = 28980− 68076g + 60344g2 − 24320g3 + 3840g4

+ (46008g− 84456g2 + 52272g3 − 10944g4)θ

+ (27720g2 − 35280g3 + 11424g4)θ2 + (7776g3 − 5184g4)θ3 + 864g4θ4

P3(θ) = −4(7− 4g + 2gθ)
(
1215− 1962g + 1008g2 − 160g3

+(1296g− 1404g2 + 376g3)θ + (504g2 − 288g3)θ2 + 72g3θ3)

P4(θ) = (7− 4g + 2gθ)(7− 2g + 2gθ)(15 +−10g + 6gθ)(15− 8g + 6gθ)
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The Riemann scheme is given by:

0 1 ∞

−1 + g
g

3
2g

15− 8g
6g

−6 + 4g
3g

−9 + 6g
2g

7− 4g
2g

−1 + 2g
g

−1 + 2g
2g

7− 2g
2g

−6 + 5g
3g

−5 + 4g
2g

15− 10g
6g

(4.128)

interpretation in terms of opes . The conformal dimensions
of the internal field in the channels x → 1 and x → 0 are respectively:

{0, h31, 2h31, 3h31} and {ĥφ21 , ĥφ21 + 1/3, ĥφ41 , ĥφ41 + 1} . (4.129)

Since 〈τ1.τ̃1.(φ31 ⊗ 1⊗ 1)〉 ∝ 〈φ31〉C = 0, the conformal block with
internal dimension h31 is in fact not present in the physical correlation
function. In the channel x → 0, this is mirrored by the presence of
two fields separated by an integer value : there is a degeneracy for
the field τφ41 .

this can be verified by bootstrap. The equation has 4 lin-
early independent solutions, which can be computed by series ex-
pansion around the three singularities. Like in 4.5.3, the monodromy
problem can be solved by comparing the expansions in their domain
of convergence. Up to machine precision the coefficient correspond-
ing to hφ3,1 vanishes for all central charges. Nevertheless, the other
structure constants converge, and we can still compute the full cor-
relation function through bootstrap. For the non-zero structure con-
stants, we checked that they were matching their theoretical expres-
sions for simple minimal models (Yang-Lee and Ising).

The effective presence of only three conformal blocks also seem to
imply that we should have been able to find a degree three differential
equation, instead of four, for this correlation function. However, we
have not managed to derive such a differential equation.

4.6 twist operators in critical rsos models

In this section we describe a lattice implementation of the twist fields
in the lattice discretisation of the minimal models, namely the critical
Restricted Solid-On-Solid (RSOS) models. Entanglement entropy in
RSOS models has already been considered in [48] for unitary models
and in [24] for non-unitary models, but for a semi-infinite interval
and away from criticality.
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4.6.1 The critical RSOS model

Let us define the critical RSOS model with parameters (m, k), where
m and k are coprime integers and k < m. Each site ~r of the square
lattice carries a height variable a~r ∈ {1, 2, . . . , m}, and two variables
a and b sitting on neighbouring sites should differ by one : |a− b| =
1. The Boltzmann weight of a height configuration is given by the
product of face weights:

W

(
a b

d c

∣∣∣∣∣ u

)
= u

cd

ba

= sin(λ− u) δbd + sin u δac
sin λ b
sin λ a

, (4.130)

where the crossing parameter λ is

λ =
πk

m + 1
. (4.131)

The quantum model associated to the critical RSOS model is ob-
tained by taking the very anisotropic limit u → 0 of the transfer ma-
trix. For periodic boundary conditions, one obtains a spin chain with
basis states |a1, a2, . . . , aL〉, where ai ∈ {1, . . . , m}, and |ai − ai+1| = 1,
and the Hamiltonian is

HRSOS = −
L

∑
i=1

ei , (4.132)

where ei only acts non-trivially on the heights ai−1, ai, ai+1:

ei|· · ·, ai−1, ai, ai+1, · · ·〉 = δai−1,ai+1 ∑
a′i ,

|a′i−ai−1|=1

sin λ a′i
sin λ ai

|· · ·, ai−1, a′i, ai+1, · · ·〉 ,

and the indices i± 1 are considered modulo L.
For simplicity, we now consider the RSOS model on a planar do-

main. The lattice partition function ZRSOS and the correlation func-
tions admit a graphical expansion [115] in terms of non-intersecting,
space-filling, closed loops on the dual lattice. The expansion of ZRSOS

is obtained by associating a loop plaquette to each term in the face
weight (4.130) as follows:

W

(
a b

d c

∣∣∣∣∣ u

)
= sin(λ− u)

cd

ba

+ sin u

cd

ba

. (4.133)

Then, after summing on the height variables, each closed loop gets
a weight β = 2 cos λ. Furthermore, following [116], correlation func-
tions of the local variables

ϕq(a) =
sin πqa

m+1

sin λ a
, q ∈ {1, . . . , m} , (4.134)
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Since p and p′ are
coprime, using the

Bézout theorem,
there exist two

integers u and v
such that

pu− p′v = 1, and
then it is possible to

find an integer `
such that (r, s) =

(qu + `p′, qv + `p)
belongs to the range

(4.139), whereas
pr− p′s = q.

also fit well in this graphical expansion. Let us recall, for example,
the expansion of the one-point function

〈
ϕq(a~r)

〉
. For any loop which

does not enclose~r, the height-dependent factors from (4.130) end up
to sin λb/ sin λa, where a (resp. b) is the outer (resp. inner) height
adjacent to the loop. Thus, summing on the inner height b gives the
loop weight:

∑
b

Aab ×
sin λ b
sin λ a

= 2 cos λ = β , (4.135)

where we have introduced the adjacency matrix Aab = 1 if |a− b| = 1,
and Aab = 0 otherwise. For the loop enclosing~r and adjacent to it, the
factor ϕq(b) should be inserted into the above sum, which gives:

∑
b

Aab × ϕq(b)×
sin λ b
sin λ a

= βq × ϕq(a) , (4.136)

where

βq = 2 cos
(

πq
m + 1

)
. (4.137)

Repeating this argument recursively, in the graphical expansion of〈
ϕq(a~r)

〉
, one gets a loop weight βq for each loop enclosing the point

~r. The N-point functions of the ϕq’s are treated similarly, through the
use of a lattice Operator Product Expansion (OPE) [116].

This critical RSOS model provides a discretisation of the minimal
modelM(p, p′), with central charge and conformal dimensions:

c = 1− 6(p− p′)2

pp′
, (4.138)

hrs =
(pr− p′s)2 − (p− p′)2

4pp′
r ∈ {1, · · · , p′ − 1} , (4.139)

s ∈ {1, · · · , p− 1} ,

with the identification of parameters:

p = m + 1 , p′ = m + 1− k . (4.140)

The operator ϕq changes the loop weight to βq: thus, in this sector
in the scaling limit, the dominant primary operator, which we denote
φq, has conformal dimension

hφq =
q2 − (p− p′)2

4pp′
. (4.141)

It is then easy to show that hφq is one of the dimensions of the Kac
table (4.139). Note that hφq=k = 0 corresponds to the identity operator.
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ai . . .ai+1
a′i+1

aj−1
a′j−1

aj

Figure 4.1: A generic reduced density matrix element〈
ai, ai+1, . . . , aj|ρA|a′i, a′i+1, . . . , a′j

〉
for the interval A = [i, j].

This matrix element is set to zero if ai 6= a′i or aj 6= a′j.

4.6.2 Partition function in the presence of branch points

We consider the reduced density matrix ρA for the interval A =

[i, j]. A generic matrix element
〈

ai, ai+1, . . . , aj|ρA|a′i, a′i+1, . . . , a′j
〉

cor-
responds to the partition function of the lattice shown in Fig. 4.1, with
the heights ai, . . . aj and a′i, . . . a′j fixed, and the other heights summed
over. In this convention, a branch point (or twist operator) sits on a
site ~r of the square lattice, and is denoted t(~r). Computing the n-th
Rényi entropy (4.2) amounts to determining the partition function
Z(n)

RSOS on the surface obtained by “sewing” cyclically n copies of the
diagram in Fig. 4.1 along the cut going from ai to aj.

The graphical expansion of the partition function on this surface
with two branch points is very similar to the case of a planar domain.
The only difference concerns the loops which surround one branch
point. Since such a loop has a total winding ±2πn instead of ±2π,
the height-dependent factors from (4.130) end up to (sin λb/ sin λa)n,
where a (resp. b) is the external (resp. internal) height adjacent to the
loop. Since (sin λb)n is not an eigenvector of the adjacency matrix A,
the sum over b does not give a well-defined loop weight.

For this reason, we introduce a family of modified lattice twist op-
erators:

tq(~r) = ϕ̂q(a~r)× t(~r) , where ϕ̂q(b) =
sin πqb

m+1

(sin λb)n . (4.142)

With this insertion of ϕ̂q at the position of the twist, the sum over the
internal height gives:

∑
b

Aab

(
sin λb
sin λa

)n

× ϕ̂q(b) = βq × ϕ̂q(a) , (4.143)
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and hence any loop surrounding tq gets a weight βq (4.137). Thus, the
scaling limit of tq is the primary operator τφq , which belongs to the
twisted sector, and has conformal dimension

ĥφq =
c

24

(
n− 1

n

)
+

hφq

n
. (4.144)

In particular, since βk = β = 2 cos λ, one has φk = 1, and the lattice
operator tk corresponds to τ1 in the scaling limit. Note that the “bare”
twist operator t is itself a linar combination of the tq’s:

t(~r) =
m

∑
q=1

xq tq(~r) , with xq =
2
m

m

∑
a=1

(sin λa)n sin
(

πqa
m + 1

)
. (4.145)

The scaling limit of t is thus always determined by the term t1, since it
has the lowest conformal dimension. In the case of a unitary minimal
model (k = 1), this corresponds to τ1. In contrast, for a non-unitary
minimal modelM(p, p′), t scales to the twist operator τφ1 , where φ1 is
the primary operator with the lowest (negative) conformal dimension
in the Kac table : hφ1 = −[(p− p′)2 − 1]/(4pp′).

4.6.3 Rényi entropies of the RSOS model

When defining a zero-temperature Rényi entropy, two distinct param-
eters must be specified:

1. The state |ψ〉R in which the entropy is measured (or equivalently
the density matrix ρ = |ψ〉R〈ψ|L).

2. The local state φq of the system in the vicinity of branch points.
This determines which twist operator tq should be inserted. In
the case of the physical Rényi entropy defined as (4.2), one in-
serts the linear combination t(~r) = ∑m

q=1 xqtq(~r).

In the following, we will be interested in the Rényi entropy of an
interval of length ` in the spin chain HRSOS (4.132) of length L with
periodic boundary conditions. This corresponds to the lattice average
value:

1
1− N

log
〈
Ψ|tq(0)tq(`)|Ψ

〉
, (4.146)

where |Ψ〉 = |ψ〉⊗N . The “physical” Rényi entropy (4.2) is related to:

1
1− N

log 〈Ψ|t(0)t(`)|Ψ〉 . (4.147)

The average values (4.146–4.147) scale to correlation functions on
the cylinder {z| 0 ≤ Im z < L}:

〈
Ψ|tq(0)tq(~u)|Φ

〉
∝
〈
Φ(−∞)τφq(0)τφq(u, ū)Ψ(+∞)

〉
cyl , (4.148)
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where u = i`, and similarly for tq replaced by t. Using the conformal
map x = exp(2πu/L), these are related to the correlation functions
on the complex plane:

〈
Ψ(−∞)τφq(0)τφq(u)Ψ(+∞)

〉
cyl =

(
2π

L

)4ĥφq〈
Ψ(0)τφq(1)τφq(x)Ψ(∞)

〉
pl.

In the case of the (generalised) Rényi entropy in the vacuum, we have
ψ = 1, and this becomes a two-point function, which is easily evalu-
ated:

SN(x,1, τφq) =
4ĥφq

N − 1
log
(

L
π

sin
π`

L

)
+ const . (4.149)

In particular, when φq = 1, one recovers the result from [35]:

SN(x,1, τ1) =
(N + 1)c

6N
log
(

L
π

sin
π`

L

)
+ const . (4.150)

For a generic state |ψ〉 however, the entropy SN(x, ψ, τφq) remains a
non-trivial function of `, and does not reduce to the simple form (4.149).

4.6.4 Numerical computations

4.6.4.1 Numerical setup

We have computed some Rényi entropies (4.146) and (4.147) in the
RSOS model with parameters m = 4 and k = 3, corresponding to
the Yang-Lee singularityM(5, 2) with central charge c = −22/5. The
primary fields are 1 = φ11 ≡ φ14 and φ = φ12 ≡ φ13, with conformal
dimensions h1 = 0 and hφ = −1/5. They correspond respectively to
1 ∝ ϕ3 and φ ∝ ϕ1.

A lattice eigenvector (scaling either to |1〉, or to |φ〉) of HRSOS with
periodic boundary conditions is obtained by exact diagonalisation
with the QR or Arnoldi method, and then used to construct the re-
duced density matrix ρA, where A = [0, `]. For the computation of
SN(x,1, tq) and SN(x, ψ, tq), the factor ϕ̂q(a0)ϕ̂q(a`) [see (4.142)] is in-
serted into the trace (4.2) of ρN

A. For the computation of SN(x, φ, t),
no additional factor is inserted. From the above discussion, we ex-
pect SN(x, φ, t) to be described by the insertion of the dominant twist
operators τφ.

4.6.4.2 Results for entropies at N = 2 in the Yang-Lee model

Here we present our numerical results obtained with the procedure
described above. In all the cases considered the cylinder correlation
functions have been rescaled with the factor L4h, where h is the appro-
priate twist field conformal dimension. The collapse of various finite
size data further confirms the correct identification of the twist field
(τφ or τ1).
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The results obtained are in excellent agreement with our CFT in-
terpretation (4.18) and with our analytical results. Moreover, they are
clearly not compatible (see Fig. 4.3) with the claim

SN ∼
ceff

6
N + 1

N
log |u− v| , (4.151)

which can be found in the literature [23, 46] (the effective central
charge of the Yang-Lee model is ceff = 2/5).
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Figure 4.2: N = 2 Rényi entropy of the Yang-Lee model in the vacuum |0〉
with various twist fields. In the left panel we consider the twist
t3 as in eq. (4.146), which corresponds in the continuum to τ1
(with ĥ1 = − 11

40 ). In the right panel the bare twist t is considered
(eq. (4.147)), corresponding to τφ (with ĥφ = − 3

8 ).
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Figure 4.3: N = 2 Rényi entropy of the Yang-Lee model in the ground state
|φ〉 with various twist fields. In the left panel we consider the
twist t3 as in eq. (4.146), which corresponds in the continuum to
τ1. Exact diagonalisation results are compared to the CFT pre-
diction (4.181) for the function 〈Φ(0)τ1(1)τ1(x, x̄)Φ(∞)〉. In the
right panel the bare twist t is considered (eq. (4.147)). Exact diag-
onalisation results are compared to the CFT prediction (4.91) for
the function

〈
Φ(0)τφ(1)τφ(x, x̄)Φ(∞)

〉
.

4.6.4.3 Results for entropies at N = 3 in the Yang-Lee model
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Figure 4.4: N = 3 Rényi entropy of the Yang-Lee model in the vacuum |0〉
with various twist fields. In the left panel we consider the twist
t3 as in eq. (4.146), which corresponds in the continuum to τ1
(with ĥ1 = − 22

45 ). In the right panel the bare twist t is considered
(eq. (4.147)), corresponding to τφ (with ĥφ = − 5

9 ).
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Figure 4.5: The N = 3 Rényi entropy (4.146) of the Yang-Lee model in the
state |φ〉, with the twist t3 corresponding to τ1. Exact diagonali-
sation results are compared to the CFT prediction from Sec. 4.5.5
for the function 〈Φ(0)τ1(1)τ1(x, x̄)Φ(∞)〉.

4.7 conclusion

In this chapter we have studied the Rényi entropies of one-dimensional
critical systems, using the mapping of the Nth Rényi entropy to a cor-
relation function involving twist fields in a ZN cyclic orbifold. When
the CFT describing the universality class of the critical system is ra-
tional, so is the corresponding cyclic orbifold. It follows that the twist
fields are degenerate : they have null vectors. From these null vectors
a Fuchsian differential equation is derived, although this step can be
rather involved since the null-vector conditions generically involve
fractional modes of the orbifold algebra. The last step is to solve this
differential equation and build a monodromy invariant correlation
function, which is done using standard bootstrap methods. We have
exemplified this method with the calculation of various one-interval
Rényi entropies in the Yang-Lee model, a two-interval entropy in the
Ising model and some one-interval entropies computed in specific
excited states for all minimal models.

We have also described a lattice implementation of the twist fields
in the lattice discretisation of the minimal models, namely the criti-
cal Restricted Solid-On-Solid (RSOS) models. This allows us to check
numerically our analytical results obtained in the Yang-Lee model.
Excellent agreement is found.

The main limitation of our method is that its gets more involved as
N increases, and as the minimal modelM(p, p′) under consideration
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gets more complicated (i.e. as p and/or p′ increases). For this reason,
we have limited our study to N = 2 and N = 3 in the Yang-Lee model
M(5, 2). However, this method is applicable in a variety of situations
where no other method is available, for instance when the subsystem
A is not connected (e.g. two-intervals EE).

Another interesting research direction would be to develop a Coulomb-
Gas formalism for the cyclic orbifold, as it would provide an efficient
tool to solve the twist-field differential equations à la Dotsenko-Fateev.
Indeed, the Coulomb Gas yields a very natural way to write down
conformal blocks (in the form of closed contour integrals of screening
operators), to compute their monodromies, and from there to solve
the bootstrap.



A P P E N D I C E S

4.a properties of hypergeometric functions

• The Gauss hypergeometric function 2F1 is defined as:

2F1(a, b; c|x) =
∞

∑
n=0

(a)n (b)n

n! (c)n
xn , (4.152)

where (a)n = a(a+ 1) . . . (a+ n− 1) is the Pochhammer symbol.

• Under the transformation x 7→ 1− x of the complex variable, it
satisfies the relations:

1
Γ(c) 2F1(a, b; c|x) = Γ(d)

Γ(c− a)Γ(c− b) 2F1(a, b, 1− d|1− x)

+
Γ(−d)

Γ(a)Γ(b)
(1− x)d

2F1(c− a, c− b; 1 + d|1− x) , (4.153)

2F1(a, b; 1− d|1− x) =

x1−c
2F1(a− c + 1, b− c + 1; 1− d|1− x) , (4.154)

for d = c− a− b.

• The matrix relating the bases of solutions to the hypergeometric
differential equation {I1, I2} (4.57) and {J1, J2} (4.170) as

Ii(x) =
2

∑
j=1

Aij Jj(x) (4.155)

is given by:

A =




Γ(c)Γ(d)
Γ(c−a)Γ(c−b)

Γ(c)Γ(−d)
Γ(a)Γ(b)

Γ(2−c)Γ(d)
Γ(1−a)Γ(1−b)

Γ(2−c)Γ(−d)
Γ(1−c+a)Γ(1−c+b)


 ,

A−1 =




Γ(1−c)Γ(1−d)
Γ(1−c+a)Γ(1−c+b)

Γ(c−1)Γ(1−d)
Γ(a)Γ(b)

Γ(1−c)Γ(1+d)
Γ(1−a)Γ(1−b)

Γ(c−1)Γ(1+d)
Γ(c−a)Γ(c−b)


 .

(4.156)

• Under the transformation x 7→ 4
√

x/(1 +
√

x)2, we have:

2F1(a, b; a− b + 1|x) = (1 +
√

x)−2a

2F1

(
a, a− b +

1
2

; 2a− 2b + 1
∣∣∣∣

4
√

x
(1 +

√
x)2

)
.

(4.157)
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4.b four-point function satisfying a second-order dif-
ferential equation

In this appendix we compute the correlation function

G(x, x̄) = 〈τ1(∞)τ1(1)τ1(x, x̄)τ1(0)〉 . (4.158)

in the Z2 orbifold of the YL model. It follows from the null-vector
(

L̂−2 −
10
3

L̂2
−1

)
τ1 = 0 (4.159)

This is the standard form of a null-vector at level 2, which yields in the
usual way a second order differential equation whose solutions are
hypergeometric functions. For completeness we recall the key steps
in computing G(x, x̄).

4.b.1 Differential equation

A standard CFT argument yields, for any n ∈ Z, any primary opera-
tors (O2,O3), and any states (|O1〉, |O4〉):

〈O1|O2(1)O3(x, x̄)Ln|O4〉 − 〈O1|LnO2(1)O3(x, x̄)|O4〉 =
{(1− xn)[x∂x + (n + 1)h3] + (h4 − h1)− n(h2 + h3)} (4.160)

〈O1|O2(1)O3(x, x̄)|O4〉 . (4.161)

Then (4.56) translates into the ordinary differential equation for G(x, x̄):

[
400(x− 1)2x2∂2

x + 40(x− 1)x(6x− 3)∂x + 33
]

G(x) = 0 (4.162)

This equation has the following Riemann scheme, giving the local
exponents, i.e. the allowed power-law behaviours at the three singular
points 0, 1 and ∞:

{
0 1 ∞
3
20

3
20 0

11
20

11
20 − 2

5

} (4.163)

In the limits x → 0, 1, ∞, we have the OPE:

τ1 × τ1 → 1+ Φ . (4.164)

So the local exponents (4.163) are consistent with the internal states
{1, Φ} of the conformal blocks for the channels. If we perform the
appropriate change of function to shift two of these local exponents
to zero:

G(x, x̄) = |x|11/10 |1− x|11/10 f (x, x̄) , (4.165)
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then (4.162) turns into the hypergeometric differential equation:

x(x− 1) ∂2
x f + [(a + b + 1)x− c]∂x f + ab f = 0 , (4.166)

with parameters:

a =
7

10
, b =

11
10

, c =
7
5

. (4.167)

It is also convenient to introduce the parameter d = c− a− b. If one
repeats the argument with the anti-holomorphic generators L̄n, one
obtains the same equation as (4.166), with (x, ∂x) replaced by (x̄, ∂̄x).

4.b.2 Determination of the four-point function

A basis of holomorphic solutions to (4.166) is given by:

I1(x) = 2F1(a, b; c|x) ,

I2(x) = x1−c
2F1(b− c + 1, a− c + 1; 2− c|x) ,

(4.168)

where 2F1 is Gauss’s hypergeometric function (4.152). The basis Ij has
a diagonal monodromy around x = 0:

(
I1(x)

I2(x)

)
7→

x 7→e2iπ x

(
1 0

0 e−2iπc

)(
I1(x)

I2(x)

)
. (4.169)

Similarly, by the change of variable x 7→ 1− x, one obtains a basis of
solutions

J1(x) = 2F1(a, b; a + b− c + 1|1− x) ,

J2(x) = (1− x)c−a−b
2F1(c− b, c− a; c− a− b + 1|1− x) ,

(4.170)

with a diagonal monodromy around x = 1:
(

J1(x)

J2(x)

)
7→

(1−x) 7→e2iπ(1−x)

(
1 0

0 e2iπ(c−a−b)

)(
J1(x)

J2(x)

)
. (4.171)

We shall construct a solution of the form

G(x, x̄) = |x|11/10 |1− x|11/10
2

∑
i,j=1

Xij Ii(x) Ij(x) . (4.172)

From the properties of the operators τ1 and Φ (see Sec. 4.2), G(x, x̄)
should be single-valued, which imposes the form Xij = δijXi for the
coefficients in (4.172). The solution should also admit a decomposi-
tion of the form:

G(x, x̄) = |x|11/10 |1− x|11/10
2

∑
k,`=1

Yk` Jk(x) J`(x) . (4.173)
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Again, single-valuedness of G(x, x̄) imposes the form Yk` = δk`Yk. The
key ingredient to determine the coefficients Xj and Yj is the matrix for
the change of basis between {I1(x), I2(x)} and {J1(x), J2(x)}. Using
the properties (4.153–4.154) of hypergeometric functions, one obtains:

Ii(x) =
2

∑
j=1

Aij Jj(x) , (4.174)

where A is given in (4.156). Comparing (4.172) and (4.173), we get the
matrix relations:

Y = A† X A , X = (A−1)† Y A−1 . (4.175)

Imposing a diagonal form for X and Y yields two linear equations on
(X1, X2):

Ā11X1A12 + Ā21X2A22 = 0 ,

Ā12X1A11 + Ā22X2A21 = 0 .
(4.176)

Since the entries of A are real, these two relations are equivalent. Sim-
ilarly, one gets a linear relation between Y1 and Y2. Finally, one gets
the ratios:

X2

X1
= −

[
Γ(c)

Γ(2− c)

]2

γ(1− a)γ(1− b)γ(1− c + a)γ(1− c + b) ,

(4.177)

Y2

Y1
= −

[
Γ(1− d)
Γ(1 + d)

]2

γ(1− a)γ(1− b)γ(c− a)γ(c− b) . (4.178)

The symbol Γ denotes Euler’s Gamma function, and we also intro-
duced the short-hand notation:

γ(x) =
Γ(x)

Γ(1− x)
. (4.179)

Moreover, the term |J1(x)|2 in (4.173) corresponds to the OPE τ1 ×
τ1 → 1, which fixes Y1 = 1. We thus get:

X1 = γ(1− c)γ(1− d)γ(c− a)γ(c− b) = 1 ,

X2 = − γ(c)
(1− c)2 γ(1− d)γ(1− a)γ(1− b) = 216/5 ,

(4.180)

and

Y1 = 1 , Y2 = −
[

Γ(1− d)
Γ(1 + d)

]2

γ(1− a)γ(1− b)γ(c− a)γ(c− b) = 216/5 .

The final result for the four-point function G(x, x̄) (4.54) is

G(x, x̄) = |x|11/10 |1− x|11/10 ×
[ ∣∣2F1(7/10, 11/10; 7/5|x)

∣∣2

+216/5 ∣∣x−2/5
2F1(7/10, 3/10; 3/5|x)

∣∣2
]

,
(4.181)



4.C direct computation of ope coefficients of twist operators 167

4.c direct computation of ope coefficients of twist op-
erators

In this appendix, we perform the computation of the structure con-
stants appearing in the Yang-Lee model on the N = 2 orbifold. They
provide a non-trivial check of the validity of our method based on
solving the differential equation for conformal blocks. In the follow-
ing, 〈. . .〉 denotes the average in the orbifold theory, whereas 〈. . .〉Σ2

(resp. 〈. . .〉C) denotes the average in the mother theory on the two-
sheeted Riemann surface (resp. on the Riemann sphere). Some of
those results were already obtained in [23], a generic way of comput-
ing those three-point functions can be found in [81]. In the specific
case of the Ising model similar three-point functions were found in
[32] and [126].

For three-point functions involving only untwisted operators, the
correlation function decouples between the N copies. For instance:

C(Φ, Φ, Φ) = C(φ, φ, φ)2 , (4.182)

where C(φ, φ, φ) is the structure constant in the mother theory (Yang-
Lee):

C(φ, φ, φ) =
i
√

1
2

(
3
√

5− 5
)

Γ
( 1

5

)3

10πΓ
( 3

5

) .

The structure constants involving twist operators can be computed
by unfolding through the conformal map z 7→ z1/2.

• Let us start with C(Φ, τ1, τ1), which unfolds to a two-point func-
tion:

C(Φ, τ1, τ1) = 〈τ1(∞)Φ(1)τ1(0)〉
=
〈

φ(1)φ(e2iπ)
〉

Σ2

=
〈

2−2hφ φ(1)× 2−2hφ φ(−1)
〉

C

= 2−8hφ .

• The constant C[(1⊗ φ)(0), τφ, τφ] which involves the untwisted
operator (1⊗ φ)(0) = 1√

2
(1⊗ φ + φ⊗ 1):

C[(1⊗ φ)(0), τφ, τφ] = lim
z∞→∞

z4hφ
∞ 〈τφ(0)τφ(1)(1⊗ φ)(0)(z∞)〉

=
√

2 lim
z∞→∞

z4hφ
∞ 〈τφ(0)τφ(1)(1⊗ φ)(z∞)〉

=

√
2

22hφ
lim

z∞→∞
z4hφ

∞ 〈φ(0)φ(1)φ(z∞)〉C

=

√
2C(φ, φ, φ)

22hφ
≈ 3.56664i
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• C(Φ, τφ, τφ) unfolds to a four-point function, computed in 4.D:

C(Φ, τφ, τφ) = 〈τφ|τφ(1)|Φ〉

=
1

24hφ
〈φ|φ(1)φ(−1)|φ〉C

=

(√
5− 1

)
Γ
( 1

5

)6
Γ
( 2

5

)2

80 22/5π4 ≈ −5.53709

• C(τφ, Φ, τ1):

C(τφ, Φ, τ1) = 〈τφ|τ1(1)|Φ〉

=
〈φ(0)φ(1)φ(−1)〉C

24hφ
=

C(φ, φ, φ)

26hφ
≈ 4.39104i

• C
(

τφ, Φ, L̂−1/2
̂̄L−1/2τφ

)
: we also need this structure constant which

involves a descendant state. The behaviour of the descendants
states during the unfolding is given by the induction procedure
4.42:

L̂−1/2 →
1
2

L−1

Hence, for the three-point function:

〈
[

L̂−1/2
̂̄L−1/2τφ

]
(0)τφ(1)Φ(∞)〉 = 1

24hφ+2 〈φ|φ(1)φ(−1)L−1 L̄−1|φ〉

This four-point function is computed in 4.D. To compute the
structure constant, we also need to normalize the descendant
state:

C
(

τφ, Φ, L̂−1/2
̂̄L−1/2τφ

)
=
〈
[

L̂−1/2
̂̄L−1/2τφ

]
(0)τφ(1)Φ(∞)〉

√
〈τφ|L̂1/2

̂̄L1/2 L̂−1/2
̂̄L−1/2|τφ〉

=
10

24hφ+2 [∂z ∂z̄〈φ(z)φ(1)φ(−1)φ(∞)〉|z=z̄=0]

=
24hφ+2

5
≈ 0.459479

(4.183)

4.d direct computation of the function in section 4 .4

The correlation function F(x, x̄) (4.54) can be computed using a direct
approach, by relating it to the four-point function 〈φ(∞)φ(1)φ(u)φ(0)〉
through an appropriate conformal mapping from the two-sheeted
Riemann surface Σ2 to the Riemann sphere. Indeed, let y ∈ C, and
consider the mapping:

z 7→ w =
2y(
√

z− 1)
(1 + y)(

√
z− y)

,
dw
dz

=
y(1− y)

(1 + y)(
√

z− y)2
√

z
. (4.184)
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The function F(x, x̄) can be written:

F(x, x̄) = 〈τ(∞)Φ(1)Φ(x, x̄)τ(0)〉
= 〈τ(∞)τ(0)〉 ×

〈
φ(1)φ(e2iπ)φ(x, x̄)φ(e2iπ x, e−2iπ x̄)

〉
Σ2

(4.185)

The four points of this correlation function are mapped as follows
under (4.184):

1 7→ 0 , e2iπ 7→ 4y
(1 + y)2 , x 7→ R =

2y(1−√x)
(1 + y)(y−√x)

,

e2iπ x 7→ 2y(1 +
√

x)
(1 + y)(y +

√
x)

.
(4.186)

If we let y→ √x, we have R→ ∞, and we get

F(x, x̄) =|1 +
√

x|−8hφ |16x|−2hφ × 〈φ(∞)φ(1)φ(u, ū)φ(0)〉C ,

u =
4
√

x
(1 +

√
x)2 .

(4.187)

Since φ ≡ φ12 is degenerate at level 2 (see (4.46), the function 〈φ(∞)φ(1)φ(u, ū)φ(0)〉
satisfies a second-order equation, which can be turned into a hyper-
geometric equation of the form (4.166) with parameters

ã =
3
5

, b̃ =
4
5

, c̃ =
6
5

, (4.188)

for the function g(u, ū) defined as

〈φ(∞)φ(1)φ(u, ū)φ(0)〉 = |u|−4hφ |1− u|−4hφ g(u, ū) . (4.189)

One obtains a solution of the form

F(x, x̄) = |16x|4/5
∣∣∣∣
1−√x
1 +
√

x

∣∣∣∣
8/5 [

X̃1
∣∣2F1(3/5, 4/5; 6/5|u)

∣∣2

+X̃2
∣∣u−1/5

2F1(3/5, 2/5; 4/5|u)
∣∣2
]

.

(4.190)

4.e quantum ising chain in an imaginary magnetic field

We consider the Hamiltonian:

H = −1
2

L

∑
j=1

(
λ σx

j σx
j+1 + σz

j + ihσx
j

)
, (4.191)

with periodic boundary conditions, with h and λ real, in the regime
0 < λ < 1.

Within the usual inner product all operators σa
j are self-adjoint, and

it is clear that H is not (the matrix representing H in the usual basis is
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symmetric but not real). Alternatively one can work with a different
hermitian form, namely

〈Φ, Ψ〉 = 〈Φ|P|Ψ〉, P =
L

∏
j=1

σz
j (4.192)

According to this hermitian form - which is not definite positive -
the Hamiltonian density σx

j σx
j+1 + σz

j + ihσx
j (and therefore H itself) is

self-adjoint.
With the usual inner product, note that PHP = H†, so P maps right

eigenvectors to left eigenvectors. In particular in the PT -unbroken
phase, we have

H|r0〉 = E0|r0〉, H†|l0〉 = E0|l0〉, P|r0〉 ∝ |l0〉 (4.193)

where |r0〉 is the ground state. Then |r0〉 = |l0〉 iff |r0〉 is an eigenstate
of P. For small systems (L = 1, 2) one can check analytically that
this is not the case. We have observed numerically that this trend
persists for larger systems. A curious observation is that for a single
site (L = 1), the Hamiltonian is not diagonalizable at the transition :
the two lowest eigenvalues E0 and E1 merge into a non-trivial Jordan
block. It would be interesting to study whether this is also the case
for larger systems, as it would suggest some logarithmic behaviour
in the continuum.

Despite being non-hermitian, the eigenvalues of H are either real,
or they appear in pairs of complex conjugates (E, E∗). This can be
seen using PT symmetry [41], or simply by noting that after the uni-
tary similarity transformation H̃ = UHU† with U = ∏L

j=1 exp(iπσz
j /4),

one gets a real, non-symmetric operator H̃.
For h = 0, the Hamiltonian is Hermitian, and thus its spectrum is

real. The regime 0 < λ < 1 and h = 0 corresponds to the (anisotropic
limit of) the 2d Ising model in the high-temperature phase, where the
correlation length ξ is finite. When h is increased while λ is kept con-
stant, the ground state and first excited energies remains finite, up to
a threshold value hc(λ, L), where they “merge” into a complex con-
jugate pair: see Fig. 4.E.1. The point hc corresponds to the vanishing
of the partition function in the 2d Ising model. In the scaling limit,
it converges to a critical point hc(λ, L) → hc(λ), called the Yang-Lee
edge singularity.

The finite-size study of the Yang-Lee edge singularity through the
model (4.191) is rather subtle: for a given system size of L sites,
one should first determine the threshold value hc(λ, L), and then ap-
proach this value from below. We have computed numerically the one-
interval ground state N = 2 Rényi entropy S2 for the model (4.191)
at λ = 0.8 and system sizes L = 12, 14, 16, 18 sites. The density ma-
trix is defined as in the rest of the paper as ρ = r0l†

0 , so the quantity
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Figure 4.E.1: The two lowest energies in the Yang-Lee model (4.191) as a
function of h, for λ = 0.8.

we compute corresponds at criticality to (4.18). These numerical cal-
culations lead to the following observations, depicted in Fig. 4.E.2.
In the off-critical regime h � hc(λ, L), the entropy S2 has a concave
form. Then, when increasing the value of h and approaching hc(λ, L)
from below, the function undergoes a crossover to the convex form
predicted by CFT (4.91). While not being positive, the entanglement
entropy defined using ρ = r0l†

0 is surprisingly effective at detecting
the phase transition.
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Figure 4.E.2: Crossover of the N = 2 ground state one-interval Rényi en-
tropy in the Yang-Lee model (4.191) for L = 18 sites and
λ = 0.8.



C O N C L U S I O N

The three subjects developed in this thesis are quite different, both
in subject and scope. A summary for each of them can already be
found in the local conclusions at the end of each chapter. In this global
conclusion I will try to develop the possible links between the differ-
ent subjects, tying the different chapters together more directly than
through the fuzzy concept of extended CFTs, while drawing poten-
tial direction for future study. Disclaimer : As is common in thesis
conclusions, some of the remarks below are of a rather speculative
nature.

loop models and W3 The first two chapters are the easiest to
mix. They do have a common ground, we spent some time, in the
first chapter describing how the twisted fully packed loop model, on
the cylinder, maps to the 15-vertex model, which possesses a Uq (sl3)
symmetry (its R-matrix verifies the Hecke algebra) and seemingly
corresponds, in the continuum limit, to a CFT with W3 symmetry.
The non-twisted FPL model however, does not have a W3 symmetry
and does not match the Toda field theory described in the second
chapter.

Finding a non-local model corresponding to W3 (like O(n) corre-
sponds to Virasoro) is still an open question. Some leads do exist,
the Spider model (developed in appendix 2.C.2), seems to fit part
of the bill. Another option would consist in a more complicated loop
model, in particular a loop model with three types of loops also seems
to verify the right Hecke algebra. Such a critical model would give a
method to compute numerically theW3 correlation constants – which
is all the more important as we do not know how to compute them
otherwise. Hypothetically, it could also help define the equivalent of
the operator W on the lattice, similarly to what have been done for T
through the TL algebra.

W3 and orbifolds A possible way to mix the two last chapters
would be to look at the entropy of a CFT with W3 symmetry. This
is not as ad hoc as it seems, the main limitations of the method pre-
sented in the last chapter are the difficulties posed by the general-
ization of the construction to even relatively small minimal models.
These difficulties are created by the fast growing rate of the orbifold’s
spectrum. Using an “extended minimal model” would decrease the
spectrum size and the conformal blocks’ differential equations would
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be of lower degree. Supersymmetric CFTs may be a better choice than
W3 for a first test of this idea.

The characters of W3 minimal models are known [76], but with
a rather complicated form, and it would be interesting to check if,
like in the Virasoro case, we can find differential equations associated
with some of these. In the other direction, the numerical bootstrap
that we employed in orbifold CFT could be useful to compute numer-
ically a subset ofW3 structure constants.

orbifolds and loop models A very natural question would
be “what kind of meaning can be given to the concept of entropy in
a loop model”. We are not the first to ask this question [88]. While it
is certainly possible to define an object similar to the Rényi entropy
on a given surface – with the geometric interpretation – giving it a
meaning in term of loop seems difficult. The discussion in the last
chapter about the issues caused by non-unitarity is probably relevant
in this context. While this thesis focused on surfaces without bound-
ary, the methods developed in the last chapter can be applied easily
to boundary CFTs, a context where loop models are well understood.
This makes it relatively easy to construct multi-boundaries surfaces,
which could be useful to work out some structure constants associ-
ated with loop models.

In conclusion, it seems important to keep studying in parallel the
discrete and the continuum, critical integrable models on one side
and conformal field theory on the other. The link between the two
topics is promising, in both directions. Integrability often provides
an insight on the meaning of CFTs operators and symmetries – or
at the very least a stable mathematical setting. While conformal field
theory has proven itself a very effective tool that can be used in many,
sometime unexpected, ways. This thesis, at its level, tried to develop
these ideas, both linking extended CFTs to their realizations with loop
models and using conformal field theory to compute the entropy of
critical spin chains.
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colophon

“- Yet he would not die lying down; he would find some crag of rock, and
there, his eyes fixed on the storm, trying to the end to pierce the darkness,

he would die standing. He would never reach R. ”

Virginia Woolf, To the Lighthouse


