
HAL Id: tel-02868511
https://theses.hal.science/tel-02868511

Submitted on 15 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Smart and secure network softwarization
Abdelhadi Azzouni

To cite this version:
Abdelhadi Azzouni. Smart and secure network softwarization. Networking and Internet Architecture
[cs.NI]. Sorbonne Université, 2018. English. �NNT : 2018SORUS259�. �tel-02868511�

https://theses.hal.science/tel-02868511
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE
LA SORBONNE UNIVERSITÉ

Spécialité

Informatique

École doctorale Informatique, Télécommunications et Électronique de Paris

Présentée par

Abdelhadi AZZOUNI

Pour obtenir le grade de

DOCTEUR de la SORBONNE UNIVERSITE

Sujet de la thèse :

Smart and Secure Network Softwarization

Soutenue le 13 Avril 2018
devant le jury composé de :

M. Nadjib AIT SAADI Rapporteur, Professeur - ESIEE Paris
M. Olivier FESTOR Rapporteur, Professeur - Directeur de Télécom Nancy
M. Prosper CHEMOUIL Examinateur, Directeur de recherche - Orange Labs
M. Raouf BOUTABA Examinateur, Professeur - Université de Waterloo - Canada
M. Igor. M MORAES Examinateur, Professeur -

Universidade Federal Fluminense, Brésil
M. Rami LANGAR Examinateur, Professeur - Université Paris-Est
M. Guy PUJOLLE Directeur de thèse, Professeur - Sorbonne Université
Mme. T-M-Trang NGUYEN Co-directrice de thèse, HDR - Sorbonne Université

Remerciements

Je souhaite remercier en premier lieu mon directeur de thèse, M. Guy PUJOLLE,
Professeur des Universités et ma co-directrice de thèse, Mme. Thi-Mai-Trang NGUYEN,
HDR-Sorbonne Université, pour m’avoir accueilli au sein de leur équipe. Je lui suis
également reconnaissant pour le temps conséquent qu’ils m’ont accordé, leurs qualités
pédagogiques et scientifiques, leur franchise et sa sympathie. J’ai beaucoup appris à
leur côtés et je leur adresse ma gratitude pour tout cela.

Je tiens à remercier tous les membres de l’équipe PHARE pour leur aide, leur soutien
et pour leur sympathie durant mes trois années de thèse. Les moments que j’ai passé
avec les thésards de l’équipe resteront gravés à jamais dans ma mémoire.

Je tiens aussi à remercier Professeur Raouf BOUTABA et son équipe de recherche à
l’université de Waterloo au Canada, avec qui j’ai passé une grande partie de ma thèse.

Enfin, je remercie toute ma famille, à commencer par mes parents qui m’ont contin-
uellement soutenu durant ma thèse, je remercie également mes frères et sœurs ainsi que
mes amis pour leurs encouragements.

3

Abstract

The recent trend toward Network Softwarization is driving an unprecedented techno-
economic shift in the Telecom and ICT (Information and Communication Technologies)
industries. By separating the hardware on which network functions/services run and
the software that realizes and controls the network functions/services, Software-Defined
Networking (SDN) and Network Function Virtualization (NFV) are creating an open
ecosystem that drastically reduces the cost of building networks and changes the way
operators operate their networks. SDN and NFV paradigms add more flexibility and
enable more control over networks, thus, related technologies are expected to dominate
a large part of the networking market in the next few years (estimated at USD 3.68B
in 2017 and forecasted by some to reach $54B by 2022 at a Compound Annual Growth
Rate (CAGR) of 71.4% 1).

However, one of the major operators’ concerns about Network Softwarization is se-
curity. In this thesis, we have first designed and implemented a pentesting (penetration
testing) framework for SDN controllers. We have proposed a set of algorithms to fin-
gerprint a remote SDN controller without having direct connection to it. Using our
framework, network operators can evaluate the security of their SDN deployments (in-
cluding Opendaylight, Floodlight and Cisco Open SDN Controller) before putting them
into production. Second, we have studied the Topology Discovery problem in SDN con-
trollers and discovered major security (as well as performance) issues around the current
de-facto OpenFlow Topology Discovery Protocol (OFDP). In order to fix these major
issues, we have designed and implemented a new secure and efficient OpenFlow Topol-
ogy Discovery Protocol (called sOFTDP). sOFTDP requires minimal changes to the
OpenFlow switch design and is shown to be more secure than previous workarounds on
traditional OFDP. Also, sOFTDP outperforms OFDP by several orders of magnitude
which we confirmed by extensive experiments.

The second axis of our research in this thesis is smart management in softwarized
networks. Inspired by the recent breakthroughs in machine learning techniques, notably,
Deep Neural Networks (DNNs), we have built a traffic engineering engine for SDN

1This is a very optimistic forecast. A conservative one would still predict a double digit number
http://www.reportsnreports.com/reports/166733-software-defined-networking-sdn-and-network-virtualization-market-
global-advancements-business-models-technology-roadmap-forecasts-analysis-2012-2017.html

5

6

called NeuRoute, entirely based on DNNs. Current SDN/OpenFlow controllers use a
default routing based on Dijkstra’s algorithm for shortest paths, and provide APIs to
develop custom routing applications. NeuRoute is a controller-agnostic dynamic routing
framework that (i) predicts traffic matrix in real time, (ii) uses a neural network to
learn traffic characteristics and (iii) generates forwarding rules accordingly to optimize
the network throughput. NeuRoute is composed of two main components: NeuTM and
NeuRoute-TRU. NeuTM is a traffic matrix (TM) prediction framework that uses Long-
Short Term Memory (LSTM) Neural Network architecture to learn long-range traffic
dependencies and characteristics then accurately predicts future TMs. NeuRoute-TRU
is a path selection engine that computes optimal paths for traffic matrices predicted by
NeuTM. NeuRoute-TRU achieves the same results as the most efficient dynamic routing
heuristic but in much less execution time.

Keywords

Network Softwarization, Software Defined Networking, Network Function Virtual-
ization, Virtual Networks, Virtualization, Cloud, Network Security, Traffic Engineerig,
Routing, Traffic Matrix, Network Management, Machine Learning, Neural Networks.

7

8

Table of Contents

I Introduction 19

1 Introduction 21

1.1 Context and Motivations . 22
1.2 Contributions . 23

1.2.1 Fingerprinting OpenFlow controllers: The first step to attack an
SDN control plane . 24

1.2.2 sOFTDP: Secure and Efficient OPenFlow Topology Discovery Pro-
tocol . 24

1.2.3 NeuTM: A Neural Network-based Framework for Traffic Matrix
Prediction in SDN . 24

1.2.4 NeuRoute: Predictive Dynamic Routing for Software-Defined Net-
works . 25

1.3 Outline . 25

II Overview of Network Softwarization 27

2 Overview of Network Softwarization 29

2.1 Introduction . 30
2.2 An Overview of Network Softwarization 30

2.2.1 A Brief History Of Network Softwarization 31
2.2.2 A Brief Overview of SDN . 31
2.2.3 A Brief Overview of NFV . 33
2.2.4 The Integration of NFV and SDN 35
2.2.5 Use Cases of Network Softwarization 36

9

10 TABLE OF CONTENTS

III Security in Softwarized Networks 39

3 Security in Softwarized Networks: State of the Art 41

3.1 Introduction . 42
3.2 Security Challenges in Network Softwarization: State of the Art 43

3.2.1 Lack of Authenticated/Authorized Access 43
3.2.2 Data Leakage . 44
3.2.3 Data Modification . 44
3.2.4 Malicious Applications . 44
3.2.5 Denial of Service Attacks . 45
3.2.6 Compromised Infrastructure . 45

3.3 Conclusion . 46

4 Fingerprinting OpenFlow Controllers 49

4.1 Introduction and Motivation . 50
4.2 Background Information . 51
4.3 Related Work . 51
4.4 Fingerprinting OpenFlow Controllers . 52

4.4.1 Timing-Analysis based techniques 52
4.4.1.1 Timeout Values Inference 52
4.4.1.2 Processing-Time Inference 54

4.4.2 Packet-Analysis based techniques 56
4.4.2.1 LLDP message analysis 56
4.4.2.2 ARP response analysis 57

4.5 Experiment Environment and Methodology 57
4.6 Results . 58

4.6.1 Timeout Values Inference technique 58
4.6.2 Processing-Time Inference technique 59
4.6.3 LLDP message analysis technique 60

4.7 Conclusion . 60

5 Secure Topology Discovery Protocol for OpenFlow Networks 63

5.1 Introduction . 64
5.2 Why OFDP shouldn’t be implemented in production networks 65

5.2.1 OFDP is not secure . 65
5.2.2 OFDP is not efficient . 68
5.2.3 Other issues . 69

5.3 Introducing sOFTDP: Secure OpenFlow Topology Discovery Protocol . . 69
5.3.1 Fundamental requirements for topology discovery 70
5.3.2 sOFTDP design . 70

5.3.2.1 BFD as Port Liveness Detection mechanism 70
5.3.2.2 Asynchronous notifications 71

TABLE OF CONTENTS 11

5.3.2.3 Topology memory . 71
5.3.2.4 FAST-FAILOVER groups 72
5.3.2.5 "drop lldp" rules . 72
5.3.2.6 Hashed LLDP content 73

5.3.3 How sOFTDP works . 73
5.4 Evaluation . 76

5.4.1 Emulation Testbed . 76
5.4.2 Experiments and results . 76

5.5 Related work . 79
5.6 Conclusion . 80

IV Traffic Engineering in Softwarized Networks 83

6 Traffic Engineering in Softwarized Networks: State of the Art 85

6.1 Introduction . 86
6.2 SDN Traffic Engineering . 87

6.2.1 Traffic Monitoring/Measurement in SDN 89
6.2.2 Cognitive Routing in SDN . 91

6.3 Conclusion . 92

7 Real Time Traffic Matrix Prediction for OpenFlow Networks 95

7.1 Introduction . 97
7.2 Time Series Prediction . 98

7.2.0.1 Linear Prediction . 98
7.2.0.2 Neural Networks for Time Series Prediction 99

7.3 Long Short Term Memory Neural Networks 100
7.3.1 LSTM Architecture . 101
7.3.2 LSTM Equations . 102

7.4 Traffic Matrix Prediction Using LSTM RNN 103
7.4.1 Problem Statement . 103
7.4.2 Feeding The LSTM RNN . 103
7.4.3 Performance Metric . 104

7.5 Experiments and Evaluation . 105
7.6 Related Work . 106
7.7 Conclusion . 106

8 Predictive Dynamic Routing for OpenFlow Networks 109

8.1 Introduction . 110
8.2 The Dynamic Routing Problem . 111

8.2.1 MT-MC-DRP As Two Linear Problems 111
8.2.1.1 CMaxF-LP . 112
8.2.1.2 CMinC-LP . 112

12 TABLE OF CONTENTS

8.2.2 Heuristic Solution for The MT-MC-DRP 113
8.3 System Design . 113

8.3.1 Traffic Matrix Estimator . 113
8.3.2 Traffic Matrix Predictor . 114
8.3.3 Traffic Routing Unit . 115

8.3.3.1 Deep Feed Forward Neural Networks 116
8.3.3.2 Input Pre-Processing and Normalization 117
8.3.3.3 Routing Over Time . 117

8.4 Implementation and Evaluation . 118
8.5 Related Work . 121
8.6 Conclusion . 122

V Conclusion 125

9 Conclusions and Future Work 127

9.1 Conclusions . 127
9.2 Future Work . 128
9.3 Publications . 129

Bibliography 130

List of Figures

2.1 SDN architecture and interfaces. 33
2.2 NFV architectural framework (Adapted from [81]). 34
2.3 Combined NFV and SDN architecture (Adapted from [92]). 35
2.4 Network functions virtualization of home environment (Adapted from

[102]). 37
2.5 Network functions virtualization of EPC (Adapted from [102]). 37

4.1 Simplified architecture to measure controllers’ processing time 55
4.2 Test environment . 58
4.3 Measured processing times compared to average processing times (in ms) 59
4.4 Controllers’ LLDP-emission-interval comparison 60

5.1 Discovering a unidirectional link in OFDP 64
5.2 LLDP packet format [158] . 66
5.3 Switch spoofing attack . 66
5.4 LLDP content used by POX controller 67
5.5 Link Fabrication attack . 67
5.6 LLDP content used by Floodlight controller 68
5.7 LLDP flood attack . 69
5.8 How sOFTDP works . 74
5.9 New link detection time in ms . 76
5.10 Adaptation time in ms . 76
5.11 Link removal detection time in ms . 77
5.12 CPU time (y axis, in ms) over number of switches (x axis) 78

7.1 Feed Forward Deep Neural Network . 100
7.2 Deep Recurrent Neural Network . 100
7.3 DRNN learning over time . 101
7.4 LSTM architecture . 102
7.5 MSE over number of hidden layers (500 nodes each) 103

13

14 LIST OF FIGURES

7.6 Training time over network depth (20 epochs) 104
7.7 Comparison of prediction methods . 104
7.8 Sliding learning window . 105

8.1 NeuRoute architecture . 114
8.2 Traffic Matrix Prediction Over Time . 115
8.3 Deep Feed Forward Neural Network . 116
8.4 GÉANT2 Network Topology [212] . 118
8.5 Picking the number of hidden layers . 119
8.6 Picking the number of hidden nodes . 119
8.7 Accuracy over different learning rate values 120
8.8 Accuracy over number of training epochs 121

List of Tables

3.1 Security threats on SDN+NFV environments 46

4.1 Default Timeout Values . 58
4.2 Processing-time database (Tp: processing time). 59
4.3 Results of LLDP message analysis . 61

15

16 LIST OF TABLES

LIST OF TABLES 17

18 LIST OF TABLES

Part I

Introduction

19

Chapter 1
Introduction

Summary
1.1 Context and Motivations . 22

1.2 Contributions . 23

1.2.1 Fingerprinting OpenFlow controllers: The first step to attack an SDN control
plane . 24

1.2.2 sOFTDP: Secure and Efficient OPenFlow Topology Discovery Protocol . . . 24

1.2.3 NeuTM: A Neural Network-based Framework for Traffic Matrix Prediction
in SDN . 24

1.2.4 NeuRoute: Predictive Dynamic Routing for Software-Defined Networks . . . 25

1.3 Outline . 25

21

22 1.1. CONTEXT AND MOTIVATIONS

1.1 Context and Motivations

Computer networks are complex and can be very difficult to manage. In a typical network,
one can find many kinds of equipment, ranging from forwarding elements such as routers
and switches to middleboxes, which are equipments that perform a wide range of networking
tasks, such as firewalls, network address translators (NATs), load balancers, intrusion detec-
tion/prevention systems, etc.

For the past few decades, network operators have been relying on a handful of equipment
vendors that provide proprietary and vertically integrated hardware running complex, closed
and proprietary control software. The software implements network protocols that undergo
years of standardization and interoperability testing. Because of the lack of network pro-
grammability and flexible management interfaces, network administrators typically configure
individual network devices adapting tedious and error-prone manual configuration methods.
This mode of operation has slowed innovation, increased complexity, and inflated both the
capital and operational costs of running a network.

The recent trend toward Network Softwarization is driving an unprecedented techno-
economic shift in the Telecom and ICT (Information and Communication Technologies) indus-
tries. By separating the hardware on which network functions/services run and the software
that realizes and controls the network functions/services, Software-Defined Networking (SDN)
and Network Function Virtualization (NFV) are creating an open ecosystem that drastically
reduces the cost of building networks and changes the way operators manage their networks.
SDN and NFV paradigms enable the design, deployment and management of networking ser-
vices with much lower costs and higher flexibility than traditional networks. In particular, they
are contributing to the deployment of 5G infrastructures, from high data rate fixed-mobile ser-
vices to the Internet of Things. As a result, new value chains and service models are emerging,
creating novel business models and significant socio-economic impact [39, 40].

SDN and NFV are two sides of the same trend toward network softwarization. SDN involves
three principles: separation of the control logic (control plane) from packet forwarding (data
plane), centralization of the control logic and programmability of the data plane through well
defined control plane-data plane interfaces.

Unlike traditional networks where control is distributed and embedded into network devices
(switches and routers), SDN logically centralizes the control plane in one entity called the
SDN controller. The SDN controller runs on a single or cluster of servers, has a global view
of the network, and translates high level operational policies into switch/flow level traffic
management decisions. This separation allows employing much simpler forwarding hardware
(generic switching equipment that is built using cheap merchant silicon) that provides much
faster packet forwarding. OpenFlow [15] is the standard communications interface defined
between the control and forwarding planes of an SDN. This programmability enables a great
flexibility in network management, and leads to faster innovation in network traffic engineering,
security and efficiency.

CHAPTER 1. INTRODUCTION 23

On the other hand, NFV softwarizes network functions (NFs) such as load balancers,
firewalls and intrusion detection systems that were previously provided by special-purpose,
generally closed and proprietary hardware. NFs will now be implemented by software that
could run on virtual machines running on commodity hardware. They also can be provisioned
as virtual NFs (VNFs) in a cloud service to leverage the economies of scale provided by cloud
computing, and consequently, reducing network capital and operational expenditures [40].

While either SDN or NFV can be used by itself, the two technologies are complementary
and there is big synergy in combining both of them. However, the new features brought by
either SDN or NFV are also the source of new security challenges, and the combination of
both technologies may increase the impact of the related security threats. For NFV and SDN
to achieve widespread adoption by the industry, security remains a top concern and has been
a hurdle to the adoption of network softwarization. Based on recent surveys, security is one
of the biggest concerns impacting the broad adoption of SDN and NFV [9]. In this thesis,
we discuss thoroughly the security concerns in softwarized environments and contribute by
proposing concepts and designing tools at different security levels.

Another research question that we tackle in this thesis is How to leverage the centralized
control in SDN to advance traffic routing, which is arguably the most fundamental networking
task. For decades, innovation in routing did not get a fair attention from the industry for
various historical, financial and practical reasons. However, the unprecedented growth in
network traffic and application requirements witnessed by today’s networks is driving a huge
need for automation. Network operators are paying attention to innovative routing and traffic
engineering solutions. We argue that the combination of network sofwarization and the recent
breakthroughs in machine learning techniques offer an ideal framework for network automation.
For example, thanks to new powerful deep learning techniques, operators are able to model
very complex networks and find patterns in large amounts of network data, which offers great
opportunities toward automation of network control.

1.2 Contributions

In this thesis we address two major challenges in network softwarization, namely, security
and traffic engineering.

First, we present a thorough state of the art study of security in SDN and NFV followed by
Three contributions aiming to define and fix major security issues. The first contribution ad-
dresses the security of SDN controllers. The second contribution exposes major security issues
found in the de-facto OpenFlow Topology Discovery Protocol (OFDP) then proposes a secure
and efficient Topology Discovery Protocol for SDN called sOFTDP. Finally, we contribute to
the implementation of a secure, light weight orchestration system for virtual network functions
called nf.io 1.

1In collaboration with the networking research group at David R. Cheriton School of Computer Science, Univer-
sity of Waterloo, Canada. Paper here: http://conferences.sigcomm.org/sigcomm/2015/pdf/papers/p361.pdf. Code here:

24 1.2. CONTRIBUTIONS

In the second part of this thesis, we combine state of the art machine learning techniques
with the centralized control offered by SDN to build a Predictive Dynamic Routing System
called NeuRoute. We build NeuRoute in two steps, with a separate contribution at each step.
In the first contribution, we study the traffic matrix prediction problem and propose a novel
machine learning-based framework (called NeuTM) to efficiently predict traffic matrix in real
time. In the second contribution, we combine NeuTM with a route selection engine, that is
entirely based on Deep Neural Networks, to optimize routing in SDN.

1.2.1 Fingerprinting OpenFlow controllers: The first step to attack an SDN control
plane

As a first contribution, we demonstrate the feasibility of the fingerpirinting attack on SDN
controllers. We propose techniques allowing an attacker placed in the data plane, which is sup-
posed to be physically separate from the control plane, to detect which controller is managing
the network. The fingerpirinting techniques are categorized into two classes: Timing Analysis
based techniques and Packet Analysis based techniques. Timing Analysis based techniques use
precise time measurements to infer key parameters of the controller. Packet Analysis based
techniques allows an attackers to identify the controller by observing the content of LLDP
packets broadcasted by the OpenFlow Topology Discovery Protocol during the topology dis-
covery process. Note that this work has as primary goal to emphasize the necessity to highly
secure the controller and provide a penetration testing framework for network administrators.
It also led to a conference publication in the the Global Communication conference (Globecom)
[151]

1.2.2 sOFTDP: Secure and Efficient OPenFlow Topology Discovery Protocol

As a second contribution, we demonstrate that the de-facto protocol for topology discov-
ery in SDN, named OFDP (OpenFlow Topology Discovery Protocol), has serious security
and performance problems. Then, we introduce a novel protocol that we call sOFTDP to re-
place OFDP. sOFTDP is more secure and outperforms OFDP by several orders of magnitude,
which we confirm with extensive evaluation. Note that this contribution led to two conference
publications: one in the the Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-
Net) and the second in the IEEE/IFIP Network Operations and Management Symposium
(IEEE/IFIP NOMS).

1.2.3 NeuTM: A Neural Network-based Framework for Traffic Matrix Prediction in
SDN

As a third contribution, we study the traffic matrix prediction problem and propose a novel
framework (called NeuTM) based on Long Short Term Memory Neural Networks, which is a

https://github.com/abdelhadi-azouni/nf.io

CHAPTER 1. INTRODUCTION 25

machine learning technique proven to be very powerful in predicting time series, and has been
successfully utilized in many areas including video frame prediction and speech recognition.
The goal of NeuTM is to precisely estimate historic traffic matrices in an SDN then accurately
predict the future one. The benefits of traffic matrix prediction range from security to traffic
engineering. For example, to detect DDoS attacks in their early stage, it is necessary to be
able to detect high-volume traffic clusters in real-time, which is not possible relying only on
current monitoring tools. We have implemented NeuTM as an application on top of an SDN
controller. Through extensive testing, we show that NeuTM achieves outstanding prediction
results compared to previous methods. Note that this contribution is the object of a conference
publication in the IEEE/IFIP Network Operations and Management Symposium (IEEE/IFIP
NOMS).

1.2.4 NeuRoute: Predictive Dynamic Routing for Software-Defined Networks

As a fourth contribution, we combine NeuTM (previous subsection) with a route selection
engine, that is entirely based on Deep Neural Networks, to optimize routing in SDN. The
final routing system is called NeuRoute. So far, the common practice to ensure a good QoS
is to over-provision network resources. Operators over-provision the network so that capacity
is based on peak traffic load estimates. Although this approach is simple for networks with
predictable peak loads, it is not economically justified in the long-term. NeuRoute predicts
traffic matrix in real time and optimizes routes for the predicted future traffic matrix. We
achieve this by "teaching" routing to the system using a dynamic routing heuristic and real
network data. Finally, experiments show that NeuRoute outperforms the most efficient dy-
namic routing heuristic by four orders of magnitude on real network data. This contribution is
the object of a conference publication in the International Conference on Network and Service
Management (CNSM).

1.3 Outline

The rest of this thesis is organized as follows. The second part introduces the network
softwarization paradigm. The third part addresses security issues in network softwarization.
The fourth part addresses routing and traffic engineering in SDN. The fifth part concludes this
thesis and draws a plan for future work.

26 1.3. OUTLINE

Part II

Overview of Network Softwarization

27

Chapter 2
Overview of Network
Softwarization

Summary
2.1 Introduction . 30

2.2 An Overview of Network Softwarization . 30

2.2.1 A Brief History Of Network Softwarization 31

2.2.2 A Brief Overview of SDN . 31

2.2.3 A Brief Overview of NFV . 33

2.2.4 The Integration of NFV and SDN . 35

2.2.5 Use Cases of Network Softwarization . 36

In this chapter, we give an overview of network softwarization paradigms including Software
Defined Networking (SDN) and Network Function Virtualization (NFV) and a brief history
of these technologies. We also discuss the integration of NFV and SDN in the same network.
Finally, we present some use cases of network softwarization technologies.

29

30 2.1. INTRODUCTION

2.1 Introduction

In modern days, with the increasing diversity and data rates from users, Telecommuni-
cations Service Providers (TSPs) must correspondingly and continuously purchase, store and
operate new physical equipment, and manually manage the complex network with very limited
tools. It leads to high expenditure and operation costs. Network softwarization technologies
including SDN and NFV [41, 42] were proposed as new networking paradigms allowing the
design, deployment and management of networking services with much lower costs. SDN and
NFV decouples physical network equipments from the functions that run on them. For exam-
ple, a commodity server can be used to run multiple Virtual Network Functions (VNFs) on it,
and SDN offers an abstraction to speed up innovation in the networks through the separation
between the data plane and the control plane. Network softwarization improves the operating
performance and operational efficiency.

2.2 An Overview of Network Softwarization

SDN is an architecture that decouples the control logic from the packet forwarding hardware
for a dynamic, manageable, cost-effective, and adaptable network system. To promote the
adoption of SDN through open standards development, the Open Networking Foundation
(ONF) [43] was formed in 2011. As defined by ONF, the high-level architecture of SDN
consists of three planes: data plane, control plane, and application plane [44]. SDN brings a
great flexibility in network programming which accelerates the rate of innovation in network
architectures and operations.

On the other hand, NFV utilizes virtualization technologies to provide network functions
(NFs) through running software on standard commodity servers [45]. For example, a virtual-
ized intrusion detection system can be set up to protect the network security without deploying
dedicated physical units. Compared to traditional network architectures, NFV greatly reduces
the equipment expenditure through using common-purpose commodity servers for NFs. Fur-
thermore, NFV enables flexible network function deployment and dynamic operation [46, 47].

While either SDN or NFV can be used by itself, there is synergy in combining the two
technologies. While NFV replaces specific types of networking gear such as routers, switches,
firewalls, and load balancers with virtual ones, SDN offers an abstraction of the forwarding
elements (switches, routers) and standard interfaces between these elements and management
applications. SDN is thus considered to be a natural platform to enable NFV. In this thesis,
we use the term "Network Softwarization" to denote the use of either or both SDN and NFV
technologies in building networks. In addition to being cost effective solution, the move towards
network softwarization will enable more systematic, industrial and abstracted methods to
manage large networks and to meet quality of service requirements.

In the following sections, we present a brief history of Network Softwarization, some detail
about SDN and NFV, and a few use cases of network softwarization.

CHAPTER 2. OVERVIEW OF NETWORK SOFTWARIZATION 31

2.2.1 A Brief History Of Network Softwarization

Network softwarization was inspired by the early work on programmable networks[48]
started in the middle of 1990’s. The programmable networks promote the separation of hard-
ware and control software. The Open Signaling (OPENSIG) [49] and the Active Networking
[50], [51] were two leading projects on programmable networks [52]. The OPENSIG project
targeted on creating more open, extensible, and programmable ATM and mobile networks [53],
while the Active Networking [54], [55] aimed at building programmable networks to encourage
greater innovations [56]. However, both projects encountered security problems since they ran
the user code at the infrastructure level. This blocked the further researches and developments
in these areas [57].

After the programmable networks, separating the data plane and the control plane at-
tracted more and more attention. More effort was directed to build open and standard inter-
face between the control plane and the data plane [58], [59], [60], [61], [62]. ForCES [60] was
a framework to separate the forwarding element and the control element. RCP [61] and PCE
[62] were developed to provide a logically centralized control over the network. These works
had the constraints of scalability and compatibility, which hampered their further develop-
ment and deployment. The 4D [63], SANE [64], and Ethane [65] were designed later to fully
separate control plane and data plane furthermore. In particular, the switch design in Ethane
became the basis of the original OpenFlow API [66], which directly led to the arrival of SDN.

A Stanford University research group first introduced the concept of OpenFlow and used
it in the campus networks [15]. OpenFlow provided a programming interface for programming
the network elements, which was later standardized by ONF [66], [67]. Soon after many
controllers designs appeared such as NOX [68], Onix [69], ONOS [70], Cisco IOS [71], Junos OS
[72], ExtremeXOS [73], and Service Router Operating System (SR OS) [74]. These designs led
to more convenient deployment, management and control of network protocols and applications
[75].

The Network Function Virtualization (NFV) is another dimension of network softwariza-
tion, which uses software-based network components to replace the traditional dedicated hard-
ware. The term was proposed for the first time in June 2012, followed by the publication of the
first NFV white paper [45] in October 2012 by the Network Functions Virtualization Indus-
try Specification Group (NFV ISG) of the European Telecommunications Standards Institute
(ETSI) [76]. The organization soon released the second [77] in 2013 and the third NFV white
paper [78] in 2014. Nowadays the membership of ISG NFV has grown to over 270 individ-
ual companies including 38 of the world’s major service providers from both telecoms and IT
vendors [76].

2.2.2 A Brief Overview of SDN

Software-Defined Networking has emerged as an efficient, flexible and cost effective network
paradigm, capable of supporting the dynamic nature of today’s network applications while

32 2.2. AN OVERVIEW OF NETWORK SOFTWARIZATION

lowering operating costs through simplified hardware and improving management through
centralized control. SDN focuses on three key features:

• Decoupling the control plane from the data plane (the underlying network),

• Centralization (one physical machine or a cluster of physical machines) of the controller,
and

• Programmability of the network and enabling third party applications to operate on the
network through management APIs.

SDN architecture: As shown in Figure 2.1, the SDN architecture design consists of three
planes:

• Data Plane: It comprises physical switches and virtual switches that act as the forward-
ing elements.

• Control Plane: It includes different software-based SDN controllers. These SDN con-
trollers are able to supervise and control the network behaviors. The controllers commu-
nicate through three interfaces: the south-bound interface, the north-bound interface,
and sometimes the east/west-bound interface [79].

• Application Plane: It consists of SDN applications for users, such as network virtualiza-
tion, server load balancing, and security application [80].

The control plane manages the underlying network through the control channel using a
SDN control protocol. As stated before, OpenFlow is the first standardized open protocol
to manage communication between the control plane and the data plane. The controller
implements network stack abstraction and offer it as an API so that developers can build
management applications on top of it.

The logical centralization of control offers the following benefits: First, modifying network
policies through software is simpler and less error-prone than via low-level device configura-
tions. Second, the centralization of control logic with global knowledge of the network state
simplifies the development of more sophisticated network applications. This ability to dy-
namically program the network to control the underlying data plane is the crucial value of
SDN.

Flow handling: The control/forwarding layers separation (figure 2.1) reduces switches to
basic packet forwarding devices containing flow tables populated with localized flow rules.
These rules are managed by the control plane to describe how incoming packets will be han-
dled based on matching fields (such as packet header content, incoming port, etc.). When a
corresponding flow rule is not found in the flow tables, the switch requests the control plane to
compute a routing pathfor the new flow and send back corresponding flow rule updates. The
communication between control plane and data plane is done via a southbound interface such
as OpenFlow protocol. Note that openFlow messages must be exchanged through a secured
channel. To exchange with the controller, the switch needs to implement a separate OpenFlow
module [66]. On the other side, the controller provides an abstraction of the network stack

36 2.2. AN OVERVIEW OF NETWORK SOFTWARIZATION

2.2.5 Use Cases of Network Softwarization

There are many use cases for Network softwarization technologies. In this subsection, we
list a few that are commonly cited in the literature.

Enterprise Networks: Enterprise networks are usually in large scale and have strong
demands for security and performances [65]. SDN is able to satisfy these requirements by
programmatically implementing network policies, monitoring network behaviors and adjusting
network performances, while NFV can bring down the cost of enforcing security and keeping up
the performance. For example, An enterprise network can use SDN for network flow handling
and build network function such as switches, firewall, IDS upon virtualized infrastructure.

Data Centers Managing traffics and enforcing policies are very important in large scale
data centers since a service disruption could result in a huge profit loss. Google applied the
concept of SDN into data centers and designed B4, a software defined wide area network
(WAN) to connect Google’s world-wide data centers [94], [95]. As an OpenFlow enabled SDN
architecture, B4 [95] controls different switches and splits application flows among various
paths to balance the network capacity. CloudNFV [96] is an open project that implements
both NFV and SDN technologies into the framework. The project was launched in 2013 and
its goal was to make every application that can run in the cloud into a potential virtual
function [97].

Home Networks The current home networking model includes relatively low-cost, error-
prone devices and becomes increasingly complicated by involving different network operators
and services. Security and privacy become an issue in such environment. SDN and NFV
technologies offer a solution to the problem, such as moving the home gateway to the cloud [98].
Many home virtualization solutions have been proposed [99, 100, 101]. Fig. 2.4 illustrates the
virtualization of services and functions in home networks. However, virtualization of home
networks moves the responsibility from end users to the operator, thus generating new security
issues to network service providers. How to ensure safety and secure communication among
home NFV components remains an open problem [99].

38 2.2. AN OVERVIEW OF NETWORK SOFTWARIZATION

Part III

Security in Softwarized Networks

39

Chapter 3
Security in Softwarized Networks:
State of the Art

Summary
3.1 Introduction . 42

3.2 Security Challenges in Network Softwarization: State of the Art 43

3.2.1 Lack of Authenticated/Authorized Access 43

3.2.2 Data Leakage . 44

3.2.3 Data Modification . 44

3.2.4 Malicious Applications . 44

3.2.5 Denial of Service Attacks . 45

3.2.6 Compromised Infrastructure . 45

3.3 Conclusion . 46

As an emerging network technologies, network softwarization encounters many security
threats from both SDN and NFV sides. In this chapter, we focus on the security issues in
network softwarization. More specifically, we provide detailed information about and catego-
rization of security concerns and solutions in softwarized networks including SDN and NFV.
We particularly highlight the overlap between the two paradigms. We also introduce the latest
development trends and research work in network softwarization security and provide methods
and guidance on how to assure their security. We overview the existing security platforms for
network softwarization platforms that have been implemented and used in practice.

41

42 3.1. INTRODUCTION

3.1 Introduction

Although network softwarization technologies reduce costs, offer great flexibility in network
management, and accelerate innovation, they also bring new potential security threats [106,
107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120]. The centralized nature
of SDN controllers, the shared resources of the virtualized infrastructure and the multivendor
software stack in a softwarized environment open a new set of attack points and security
challenges for network operators. For example, a new vulnerability of SDN would be the fact
that the SDN centralized controller could be a single point of failure. Controller scalability
issues, resilience to failure and how to maintain the network availability when the controllers
happen to fail should be seriously taken into account. More importantly, security problems
including Distributed Denial of Service (DDoS) attacks, forged or faked traffic, unauthorized
access and so on, remain to be overcome.

NFV also brings various security concerns. For example, components in NFV architectural
frameworks, such as hypervisors and orchestrators, may be vulnerable to potential security
threats. The shared storage and networking may introduce new security vulnerabilities. Ap-
plication programming interfaces (APIs) are used to support programmable orchestration in
NFV creating additional security risks to virtual network functions. Furthermore, hypervisors,
hardware and VNFs are likely to be offered by different vendors, thus resulting in integration
complexity and generating security loop-holes.

As identified by the European Telecommunications Standards Institute (ETSI)-NFV [10],
the investigation into security for NFV/SDN covers several different domains including:

• Topology validation and enforcement

• Availability of management support infrastructure

• Secured boot

• Attestation

• Secure crash

• Performance isolation

• User/Tenant authentication, authorization and accounting (AAA)

• Authenticated time service

• Private keys within cloned images

• Back-doors via virtualized test and monitoring functions

• Multi-Administrator isolation

• Security monitoring

• Regulatory (lawful intercept and retained data)

CHAPTER 3. SECURITY IN SOFTWARIZED NETWORKS: STATE OF THE ART 43

• Privacy

On the solution side, various works [126, 127, 128, 134, 135] have emerged to address the
security concerns in network softwarization and pointed out possible solutions. ONF proposed
a set of security principles [107] that provide criteria and instructions for designing and devel-
oping ONF specifications for OpenFlow networks. NFV ISG also provided guidances [124, 107]
to ensure security in NFV’s external operational environment and related technologies for se-
curity and trust in NFV. In the rest of this chapter we will give a systematic overview and
categorization of existing works on the security issues on network softwarization.

3.2 Security Challenges in Network Softwarization: State of the Art

In addition to the threats specific to SDN or NFV, the combination of the two technologies
in one single network also increases the security risks and open doors to more security attacks
[121], [122]. Considering a SDN network with virtual OpenFlow switches (vSwitches are
considered VNFs and run on top of a hypervisor), a flooding attack on a vSwitch exhausts
its resources much easily compared to a physical switch. Another example is when a SDN
controller is running as a VNF on top of a hypervisor, in this case an attack from a compromised
application can spread to other co-existing controllers leveraging eventual weaknesses in the
hypervisor.

In this section, we present the state of the art of security challenges in network softwariza-
tion technologies including SDN and NFV, classified by the nature of addressed issues, and we
highlight eventual overlaps that might amplify the impact of security threats.

3.2.1 Lack of Authenticated/Authorized Access

Underlying areas of concern in network softwarization security include user/tenant au-
thentication and authorization. In SDN, controllers run many applications that need to access
the network resources. Both authentication and authorization of the applications is required
to ensure that only trusted applications are connected to the network. Also, because of the
logically centralized control in SDN and the possibility to run multiple controllers to manage
the same underlying network, it is possible that a fake controller gains access to the network
resources and compromise a part of or the entire network [123]. Therefore, there is a strong
demand for authentication and authorization of applications and controllers in SDN.

On the other hand, the introduction of NFV brings new security issues when it comes
to Authentication and authorization [124] [125]. Unauthorized access threats are expected to
increase when implementing network functions in a virtualized environment. That is, in addi-
tion to being target to traditional unauthorized access threats that affect VMs (or containers),
VNF-specific aspects like chaining and placement requirements may bring additional severity
to this kind of threats.

44 3.2. SECURITY CHALLENGES IN NETWORK SOFTWARIZATION: STATE OF THE ART

3.2.2 Data Leakage

Timing-analysis based attacks can be used to get important information from the SDN
components [127]. [126] demonstrates the possibility that an attacker discovers a remote SDN
network and hence launch some SDN-specific attacks on it. An inference attack model for flow
table capacity and usage is described in [128].

Data leakages impact is amplified in SDN+NFV environments. All traditional cross-VM
side channel attacks are also applicable on VNFs. Furthermore, In a virtualized SDN environ-
ment, multiple OpenFlow vSwitches are instantiated on top of an OpenFlow capable switch
hypervisor (e.g., Openvswitch) [129]. Assume that different vSwitches are assigned to differ-
ent tenants, in this case, if the logical networks and their associated credentials (e.g., keys,
certificates) are not securely isolated or containerized, this can lead to data leakages that can
compromise the functionality of SDN vSwitches and affect the network functionality. This
scenario is more disastrous in the case of co-existing virtual controllers on top of a vulnerable
hypervisor.

3.2.3 Data Modification

In a softwarized environment, data modification attacks often come after data leakage
attacks by exploiting vulnerabilities in the virtualization infrastructure or the lack of access
control in SDN controllers. SDN has a split-plane architecture, and security threats arise when
intermediate components are designed between the control plane and data plane [130], [131],
[132]. For example, FlowVisor [130] is proposed as a hypervisor for OpenFlow, but it can not
provide an appropriate isolation mechanism. Therefore, an attacker has the chance to modify
the data in the network. Also, a vulnerable control channel is subject to Man-In-The-Middle
attacks that affects the consistency of control-switch communications. Knowing that the use
of TLS to secure the control channel is optional in the OpenFlow switch specification [66], this
problem seems to be not seriously addressed yet, and thus, the data modification is a security
challenge to be overcome in SDN.

Similarly, access to the virtualization infrastructure or to VNFs by an attacker, generally
results in data modification that affects the compromised VNF, the whole VNF chain or the
whole infrastructure. In the case of VNF chains controlled within SDN network, data modi-
fication on SDN elements (vSwitches or controllers running as VNFs) can be more disastrous
[133]. For example, changing forwarding data in vSwitches can easily affect the whole chains
of VNFs.

3.2.4 Malicious Applications

Both SDN and NFV have brought the idea of running third party applications on top of
the networking infrastructure, which makes them both be the target of attacks from malicious
applications. A malicious application can attack the SDN controller and affect the entire

CHAPTER 3. SECURITY IN SOFTWARIZED NETWORKS: STATE OF THE ART 45

network. A flawed third party application also can bring vulnerabilities and security flaws to
the entire system. On the other hand, a malicious VNF (e.g., a malicious vSwitch instance or
a malicious middlebox installed by a tenant) can affect the security of co-exsiting vSwitches
and middleboxes [136].

3.2.5 Denial of Service Attacks

Denial of Service (DoS) attacks and Distributed Denial of Service (DDoS) attacks are
the major security concerns in SDN. This is due to its nature of centralized control plane. A
successful DoS attack can prevent legitimate users from getting access to the network resources
and services. DoS attacks and DDoS attacks can cause detrimental effects on SDN controllers
[137]. For example, an attacker can assign random headers to IP packets and keep transmitting
these IP packets in order to drive the SDN controller out of normal working state [138]. DOS
attacks are also considered to be the most common threat on virtual environments and thus
VNFs, exploiting many hypervisor platforms and ranging from flooding a network with traffic
to sophisticated leveraging of a host’s own resources [139]. In NFV+SDN environments, the
limited computing power of OpenFlow vSwitches makes the DOS attacks more effective since
it exhausts the vSwitch’s resources much easier compared to a physical switch.

3.2.6 Compromised Infrastructure

As a software-based system the components in SDN and NFV may contain vulnerabilities
which may be exploited by attackers. The results may be the compromised or malfunctioning
components in the network. For example, the controller or switches [140] in a SDN may be
compromised, which may cause partial or complete network dysfunctional. How to detect and
isolate compromised network components can be a challenge for SDN.

On the NFV side, compute domain, hypervisor domain, and network domain constitute
the NFV infrastructure (NFVI). The compute domain includes the bare-bone servers and
storage, the hypervisor domain moves the resources from the hardware to the virtual machines,
and the network domain manages the VNFs. NFVI suffers from both internal and external
security threats. Internal threats result from inappropriate operations of people and it can be
avoided by following strict operational procedures. External threats exist due to the design or
implementation vulnerabilities. To solve this problem, NFVI should adopt standard security
mechanisms for authentication, authorization, encryption and validation [141], [142], [143].

Table 3.1 summerizes mentionned attacks, classified by nature, on both SDN and NFV
and highlights the eventual overlaps. The symbol 2�means that the attack originated from
either NFV or SDN can affect (and the impact may be amplified) in case both technologies are
used together. Example, VNF instance hijacking attack is more disastrous when the hijacked
VNF is actually a controller VM for example. Data plane vSwitches are also concerned by
this attack since they are considered as VNFs.

46 3.3. CONCLUSION

Table 3.1: Security threats on SDN+NFV environments

Security threats
SDN NFV
Application layer Control layer Data plane NFVI VNF

Unauthorized access
Unauthorized application X X X

Controller hijacking X X

VNF instance hijacking 2� 2� X

Unauthorized access to NFVI 2� 2� X X

Data leakage
Inference attacks X

Credential theft 2� 2� X X

Data modification
Man In The Middle X X

Malicious applications
Malicious rule injection X X X

DOS
DOS on Controller X

DOS on SDN swicth X

DOS on VNFs (including vSwitches) 2� 2� X

3.3 Conclusion

Network softwarization technologies including SDN and NFV reduce network equipment
costs and improves operational efficiency. However, For NFV and SDN to achieve widespread
adoption by the industry, security remains a top concern and has been a hurdle to the adoption
of network softwarization. Based on recent surveys, security is one of the biggest concerns
impacting the broad adoption of SDN/NFV [9]. In this chapter, we highlighted security
concerns in network softwarization technologies. We summarized the security challenges in
SDN and NFV and provided existing security solutions from the literature to address those
security concerns. Some proposed security architectures for SDN and NFV are presented.
Finally we discussed future challenges that remain unsolved in software-based networks.

CHAPTER 3. SECURITY IN SOFTWARIZED NETWORKS: STATE OF THE ART 47

48 3.3. CONCLUSION

Chapter 4
Fingerprinting OpenFlow
Controllers

Summary
4.1 Introduction and Motivation . 50

4.2 Background Information . 51

4.3 Related Work . 51

4.4 Fingerprinting OpenFlow Controllers . 52

4.4.1 Timing-Analysis based techniques . 52

4.4.2 Packet-Analysis based techniques . 56

4.5 Experiment Environment and Methodology . 57

4.6 Results . 58

4.6.1 Timeout Values Inference technique . 58

4.6.2 Processing-Time Inference technique . 59

4.6.3 LLDP message analysis technique . 60

4.7 Conclusion . 60

SDN controllers are considered as Network Operating Systems (NOSs) and often viewed
as a single point of failure. Detecting which SDN controller is managing a target network is
a big step for an attacker to launch specific/effective attacks against it. In this chapter, we
demonstrate the feasibility of fingerpirinting SDN controllers. We propose techniques allowing
an attacker placed in the data plane, which is supposed to be physically separate from the
control plane, to detect which controller is managing the network. Our primary goal is to
emphasize the necessity to highly secure the controller. We focus on OpenFlow-based SDN
networks since OpenFlow is currently the most deployed SDN technology by hardware and
software vendors.

49

50 4.1. INTRODUCTION AND MOTIVATION

4.1 Introduction and Motivation

The centralized control provided by SDN is expected to facilitate the deployment and
hardening of network security [137, 123]. However, SDN controllers can be subject to new
threats compared to conventional network architectures. For example, an attacker can change
the whole underpinning of the network traffic behavior by modifying the controller. The Open
Networking Foundation (ONF) identifies a number of SDN security issues that the community
must address [144]:

• The centralized controller emerges as a potential single point of attack that must be
protected.

• The southbound interface between the controller and underlying networking devices
(OpenFlow) is vulnerable to threats that could degrade the availability, performance,
and integrity of the network. Using TLS or UDP/DTLS is recommended to secure the
OpenFlow channel.

• The underlying network must be capable of enduring occasional periods where the SDN
controller is unavailable.

In the most common schemes of attacking a remote system, the first step is to determine
the set of possible attacks by collecting information about the target. In this chapter, we
demonstrate some techniques that allow an attacker to fingerprint the OpenFlow controller
of the network. Once the attacker knows which controller is used, he/she can launch tailored
attacks exploiting its known vulnerabilities. We study the common case where the attacker is
placed in the underlying network managed by the target SDN controller, and does not have
access to either the controller or the control channel.

This work aims to demonstrate the feasibility of fingerpirinting OpenFlow controllers, with
the ultimate goal of building a Penetration Testing framework that can be used by network
administrators to test their SDN networks. Many frameworks have been created for the same
purpose in traditional networks, NMAP [145], for instance, is a widely used scanner that
can fingerprint remote systems among other capabilities. OWASP Zed Attack Proxy Project
(ZAP) [146] is another security testing framework that includes fingerprinting remote web
servers and web applications. As in NMAP and ZAP, our proposed techniques are not to be
used separately, that is, one may get non-accurate results when only using the first Timing-
Analysis based technique (section 4.4.1.1) for example, but the combination of all proposed
techniques, generally gives accurate results. The key contributions in this chapter are as
follows:

• We demonstrate the feasibility of fingerpirinting attack on OpenFlow controllers by de-
signing, implementing and testing several fingerpirinting techniques and

• We highlight the need for building a Penetration Testing framework for SDN networks.

This chapter is organized as follows. Section 4.2 provides OpenFlow background informa-
tion. Related works are discussed in section 4.3. Our proposed fingerpirinting techniques are

CHAPTER 4. FINGERPRINTING OPENFLOW CONTROLLERS 51

presented in section 4.4, our experimental testbed is described in section 4.5 and the results are
given in section 4.6. Section 4.7 concludes the chapter and discusses some future directions.

4.2 Background Information

We recall main OpenFlow messages. An OpenFlow message is either a switch-to-controller
or a controller-to-switch message. OpenFlow messages are detailed in [149] of which the most
important ones are:

• Hello messages: exchanged between the controller and the switch when the connection
is first established.

• Echo request/reply messages: used to exchange information about latency, bandwidth
and liveness.

• Packet-In messages: used by the switch to send a packet to the controller when it has
no flow-table matching the packet.

• Packet-Out messages: used by the controller to inject packets into the data plane of a
particular switch.

• Flow-mod messages: used by the controller to modify the state of an OpenFlow switch.

• Stats request messages: used by the controller to request information about individual
flows.

4.3 Related Work

S. Shi and G. Gun developed SDN Scanner [126] which exploits the network header field
change. If a client sends packets to an SDN network, this client will observe different response
times, because the flow setup time can be added in the case of non-matching flow (i.e., there is
no corresponding flow rule in the data plane: response time T1) compared to the case when the
corresponding flow rule exists (response time T2). SDN Scanner collects the response times
then uses statistical tests to compare them. Thus, if an attacker can clearly differentiate T1
from T2 then he/she can detect the SDN network (the presence of an SDN controller). The
evaluations conducted in the paper showed that SDN Scanner can fingerprint 24 networks out of
28 (i.e., a fingerprinting rate of 85.7%). However, SDN Scanner does not detect the controller
type. In addition, collecting accurate values of T1 and T2 is extremely hard in real-world
WANs because of the many variables that affect the response time. As such this method may
not be efficient in WANs. [150] leverages information from the RTT and packet-pair dispersion
to fingerprint controller-switch interactions (i.e. whether an interaction between the controller
and the switches has been triggered by a given packet) in a remote SDN network.

52 4.4. FINGERPRINTING OPENFLOW CONTROLLERS

L. Junyuan et. al [128] propose techniques to infer key network parameters like flow table
capacity and flow table usage. For example, when the flow table is full, extra interactions
between controller and switch are needed to remove some of the existing flow entries to make
room for new ones, which may result in a performance decrease of the network. An attacker
can take advantage of the perceived performance change to launch more effective attacks.
More specifically, knowing the flow table size and usage, the attacker can estimate with high
accuracy how many packets he/she needs to generate per second to flood the flow table and the
required time to fill it up. hence, he/she could choose and correctly configure their attacking
tools. Contrary to [128], our methods aim to infer control plane parameters to fingerprint
controllers, which is more critical and of higher impact.

4.4 Fingerprinting OpenFlow Controllers

The main approach developed in this chapter is to combine several techniques to finger-
print an SDN controller from its underlying data forwarding plane. Although our proposed
techniques can be used separately, the accuracy of the results is much higher when combining
them. Also, using only one technique may not give any result in some situations. In other
words, each method has its success probability, and combining several techniques intuitively
increases the probability of identifying the type of SDN controller used.

The following subsections present our techniques categorized into two classes: Timing-
Analysis based techniques and Packet-Analysis based techniques.

4.4.1 Timing-Analysis based techniques

These techniques are based on time measurement to infer some indicative parameters of
the controller.

4.4.1.1 Timeout Values Inference

Each flow entry has an idle_timeout and a hard_timeout field values associated with it.
They indicate respectively the time in seconds after which the entry will be removed from the
switch if no packet matches it, and the time after which to remove the entry anyway. These
timeout values can be set and modified by application developers or network administrators.
But, in most cases when the network or parts of the network only need a basic flow forwarding
without additional traffic engineering logic, the network admins tend to use the forwarding
applications that come with the controllers (typically L2-Switches) and the probability that
they change these applications’ parameters is fairly low. Note that in recent controllers, those
forwarding elements even include some advanced features [152].

The idea is to infer flow-entry timeout values and compare them to known timeout values
of different controllers (timeout database). The timeout database is constructed as follows:

CHAPTER 4. FINGERPRINTING OPENFLOW CONTROLLERS 53

for open source controllers, default timeout values can be gathered from their code source or
configuration files. For proprietary controllers, the default timeout values can easily be figured
out by simply using the controller and directly measuring the values. This method can be fairly
accurate because of the low probability for default values to be modified by administrators.

To measure timeout values from an end-host in the underlying network, we propose the
two following algorithms (algorithm 1 and algorithm 2). These algorithms consider network
disruptions that may affect communication channels between end-hosts and the switch, and be-
tween the switch and the controller. Both algorithms require the ability to connect to another
end-host in the same data plane (a pingable end-host). Algorithm 1 measures idle_timeout in
two steps: first, it calculates RTT_avg (average Round-Trip Time using ping) in case when
corresponding flow entries are installed in the switch. Measurements may be made for a con-
figurable duration and/or number of probing packets n. Second, it measures RTT every wait
seconds. wait value will be incremented by step seconds until a significant difference between
measured RTT and calculated RTT_avg is encountered. This difference means that the flow
entry expired and the switch needed to call the controller asking how to handle the new ping.
Final value of wait matches the flow-entry idle_timeout value. A more accurate version of
the algorithm is conceivable by using a binary search around the final wait value, but by using
step of 5ms, the algorithm remains very accurate even without binary search.

Note that in some controllers, the default idle_timeout value is set to 0 which means
infinite, so the flow entry will never be removed. We found this in the Ryu controller and
Hydrogen, an old version of OpenDaylight [153]. In this case, after a number of iterations,
the algorithm will decide that the idle_timeout value is infinite and the controller may be Ryu
or Hydrogen version of OpenDaylight. The search space has been limited to two controllers
in this case, but we need to apply more techniques to decide which one of them.

Algorithm 1 idle_timeout measurement

1: Send first ping to install flow entry;
2: Send n pings and calculate the average ping time RTT_avg;
3: Wait wait seconds;
4: Send one ping and calculate ping time Tping
5: if Tping ≈ RTT_avg then //the flow entry still exists
6: wait← wait+ step;
7: Go to 3;
8: else//idle_timeout expired and the flow entry removed
9: idle_timeout = wait

10: end if

To measure hard_timeout value, we first calculate the average of RTT time (RTT_avg)
and idle_timeout values as in algorithm 1. Second, we send one ping to install the flow
entry in the switch. Then, we send a ping every wait seconds such as wait value is less then
idle_timeout. As long as the RTT value is close to the average (RTT_avg), we continue to
add wait seconds to the hard_timeout value initialized to zero. We stop when we find a RTT

54 4.4. FINGERPRINTING OPENFLOW CONTROLLERS

value which is significantly greater than (RTT_avg).

Algorithm 2 hard_timeout calculation

1: hard_timeout← 0 seconds;
2: Calculate RTT_avg as in algorithm 1;
3: Calculate idle_timeout as in algorithm 1;
4: Send one ping to make the controller install flow entry;
5: Wait wait seconds, wait must be less then idle_timeout;
6: Send one ping and calculate ping time Tping;
7: if Tping ≈ RTT_avg then //the flow entry still exists
8: hard_timeout← hard_timeout+ wait
9: Go to 5;

10: else//hard_timeout expired and the flow entry removed
11: print hard_timeout
12: end if

The attacker then compares the measured values (idle_timeout, hard_timeout) to known
timeout values of controllers to guess which controller is used.

4.4.1.2 Processing-Time Inference

Each SDN controller is programmed differently using different tools, libraries and frame-
works, so that each controller has its own execution speed. In other words, when receiving
packets from the data plane, each controller takes a different time to process those packets and
reply back to the data plane. The idea of this technique is to use estimated packet-processing
time to determine the controller. As we mentioned before, authors of [126] used timing to
determine if a remote network is an SDN network based on the difference of RTT in two cases:
presence and absence of flow entries. As it has been mentioned by the authors, it is very
difficult to measure with high accuracy the RTT to a remote network in a WAN because of
many potential sources of disruption that may result in random variations of RTT values. In
our technique, these disruption sources are minimal since the attacker is placed in the data
plane of the target controller. And unlike [126], our method uses some key parameters inferred
from the network to estimate processing time with higher precision.

The main idea in our approach is to measure the response time of the target controller and
compare it to the processing-time database created beforehand. The processing-time database
is a table that associates each controller to its processing time. Like in the previous technique
(timeout values inference), we need a pingable destination end-host in the same data plane
(the best scenario is that the attacker controls the destination end-host as well to be sure
that its processing time does not affect the measurements). To create the processing-time
database, we use a simplified architecture (Fig. 4.1) where the propagation times (1) and (2)

CHAPTER 4. FINGERPRINTING OPENFLOW CONTROLLERS 55

Figure 4.1: Simplified architecture to measure controllers’ processing time

are minimal. we first measure idle_timeout and RTT_avg values as in algorithm 1. Then,
we send n (100 for example) pings separated by period seconds between every two pings,
with period greater then idle_timeout. Every ping will cause the switch to send a Packet-In
to the controller (by receiving the Packet-In message, the controller processes it to extract
field values and installs the corresponding flow rule into the switch). Finally we calculate the
average ping time Tpavg of the n pings and we record Tpavg −RTT_avg value in a table. This
is the processing time of the current controller. We repeat this process with all controllers and
we create the processing-time database by inserting tuples (controller, processing_time(Tp))
(algorithm 3).

Algorithm 3 Building the processing-time database

1: Calculate RTT_avg as in algorithm 1;
2: Calculate idle_timeout as in algorithm 1;
3: for i← 1..n do
4: Wait period seconds, period must be greater than idle_timeout;
5: Send a ping and save ping time;
6: end for
7: Calculate the average of saved ping time values Tpavg and calculate controller processing time
Tp = Tpavg −RTT_avg;

8: Insert (controller, Tp) in the processing-time database;

Note that, as propagation times (1) and (2) (Fig. 4.1) are minimal, measured RTT_avg
is accurate and hence Tp values are accurate.

Algorithm 4 Fingerprinting controller

1: Calculate RTT_avg as in algorithm 1;
2: Calculate idle_timeout as in algorithm 1;
3: for i← 1..m do //m = 20 for example
4: Wait period seconds, period must be greater then idle_timeout;
5: Send a ping and save ping time;
6: end for
7: Calculate the average of saved ping-time values RTT ′ and compare RTT ′ − RTT_avg to the

processing-time entries;

56 4.4. FINGERPRINTING OPENFLOW CONTROLLERS

Now that we have the processing-time database, to fingerprint the target controller that
manages the real SDN network we are connected in, we first measure RTT_avg to a des-
tination, then we ping the same destination with a spoofed IP address to ensure that no
corresponding flow entry exists in the switch and we compare the value RTT −RTT_avg to
the processing-time database entries. For accuracy, we do not rely on a single ping, disrup-
tions can happen during the ping affecting the response time. Instead, we send many (20 for
example) pings with period seconds between every two pings (such as period value is greater
than idle_timeout), we calculate the average of these ping times RTT ′ and finally compare
the value RTT ′ −RTT_avg to the processing-time database entries (algorithm 4).

In addition to the probability that the network admin somehow modifies the execution time
of the controller, which we argue is very low, there is a fair chance that during the scan, the
controller is overloaded resolving requests and installing rules, which may significantly change
the response time. In this case, if the attacker has further knowledge about the network state
then he/she can surpass this problem. For example, he/she can avoid peak hours, and only
scan the controller when the network is in its normal state.

4.4.2 Packet-Analysis based techniques

4.4.2.1 LLDP message analysis

This is a passive method which consists of identifying the controller by sniffing and ana-
lyzing OpenFlow Discovery Protocol (OFDP) packets sent over the data plane.

SDN is based on maintaining a global network view at the level of the controller. To obtain
the global network topology, discovery modules of the controllers use OFDP to collect updated
information from different elements of the network including end hosts. OFDP leverages the
packet format of Link Layer Discovery Protocol (LLDP) with subtle modifications to perform
topology discovery in an OpenFlow network.

Unlike ordinary LLDP enabled switches, an OpenFlow switch needs the controller to send
and process OFDP messages and cannot do this by itself. The following is a simple scenario of
the topology discovery process using OFDP . First, the SDN controller creates an individual
LLDP packet for each port on each switch. Then, the controller sends these packets to the
switches via Packet-Out messages that include instructions to send them out on the corre-
sponding ports. In each switch, all received LLDP packets will be forwarded to neighbours.
When a switch receives a new LLDP packet from another switch, it forwards it to the con-
troller via a Packet-In message. At the end of the process, the controller will get information
about all the data-plane connections. The entire discovery process is repeated periodically
with the time periods varying from one controller to another, which is can be leveraged to
identify which controller is managing the network. Also, the content of the LLDP packets
differs from one controller to another, which can be used accurately identify the controller.
Table 4.3 in section 4.6.3 shows LLDP packets sent by different controllers.

CHAPTER 4. FINGERPRINTING OPENFLOW CONTROLLERS 57

4.4.2.2 ARP response analysis

This technique can only be used to determine if the controller is the Hydrogen version
of OpenDaylight and cannot be generalized to other types of controllers. It builds on the
observation of how the controller reacts to unknown Address Resolution Protocol (ARP)
requests in the data plane. The attacker sends an unknown ARP request, which means that
the destination IP address is not assigned to any host in the network. As the destination IP is
not present in the network, the switch, in addition to broadcasting the request, sends it to the
SDN controller via a Packet-In message asking how to handle it. The OpenFlow specifications
indicate that the controller responds to the switch by a Packet-Out and/or a flow-mod message
explaining how to handle the request. The controller’s response message differs from one
controller to another, but the only controller whose behavior can be captured from an end-
host is Hydrogen. Hydrogen version of OpenDaylight instructs the switch to broadcast the
request once again which duplicates it in the broadcast domain. This duplicated ARP request,
with one of the switch’s Media Access Control (MAC) addresses as source address, indicates
that Hydrogen is used.

As we mentioned in the introduction, the techniques we presented in this section are not to
be used in an exclusive manner. Each technique is able to identify the controller with a certain
probability that we did not compute analytically in this chapter. The user can use a subset or
all the techniques executing them one by one, or better combine them in some optimal order.
The selection of the optimal combination of techniques is an interesting research question that
we leave for future work.

4.5 Experiment Environment and Methodology

As shown in Figure 4.2, our experiment environment consists of four physical machines
(only three are shown in Fig. 4.2) carrying 4 virtual machines each and connected via Open-
Flow virtual bridges (Openvswitch) forming a small-size data-center where VMs generate ran-
dom traffic (ping and iperf) to random destinations. Note that, since we are not exploiting any
weaknesses in the switch, it does not make any difference using a virtual switch or a physical
one in this context, we only need a switch that correctly implements OpenFlow specifications.
Note also that we did not add hops (transit switches) between bridges and the controller be-
cause even in real-world networks, a very small number (0, 1 or 2) of transit switches is enough
to build a fairly large Local Area SDN network, like a data-center or a campus network. Such
a small number of hops does not affect timing measurements in previous algorithms, The at-
tacker is on the red (or black) VM connected to br0, and can ping the orange (or dark grey)
VM connected to br2 (it could be any other VM in the network).

We have performed our experiments on five open source still maintained, OpenFlow con-
trollers among the most widely used: OpenDaylight [153], POX [68], Beacon [161], Floodlight[155],
and Ryu [162].

58 4.6. RESULTS

Figure 4.2: Test environment

4.6 Results

4.6.1 Timeout Values Inference technique

To evaluate the Timeout Values Inference method, we ran algorithms 1 and 2 ten times on
each controller from the set of our target controllers. Default timeout values are given in table
4.1. Our algorithms did 2 errors in 50 measurements in both idle_timeout and hard_timeout
and that is because algorithm 1 is used in algorithm 2.

Controller idle_timeout
(s)

hard_timeout (s)

OpenDaylight 0 0
Floodlight 5 0
POX 10 30
Ryu 0 0
Beacon 5 0

Table 4.1: Default Timeout Values

We also evaluated algorithms 1 and 2 separately by manually setting different values for
idle_timeout and hard_timeout in POX source code, and running the algorithms from the
attacker virtual machine (red VM in Fig. 4.2) to infer these values. We set the values
5, 10, 15, ..30ms for idle_timeout and the values 10, 20, ..60ms for hard_timeout respectively.
For each algorithm, we repeated the execution 10 times on each value. idle_timeout calcula-
tion algorithm has an error rate of 0.03% (2 errors in 60 measurements) with a relative error
of less than 1s. The hard_timeout calculation algorithm has an error rate of 0% (no error)
on 60 measurements.

CHAPTER 4. FINGERPRINTING OPENFLOW CONTROLLERS 59

4.6.2 Processing-Time Inference technique

First, we have built the processing-time database (table 4.2) of our set of target controllers
by running algorithm 3 (n = 100) on a simplified testbed as described in Fig. 4.1.

Controller Tp (ms) Tp adjusted (ms)

OpenDaylight 1.004 0.177
Floodlight 3.454 2.627
POX 34.266 33.439
Ryu 5.216 4.389
Beacon 3.197 2.370

Table 4.2: Processing-time database (Tp: processing time).

Then, to evaluate this technique in our experimental environment (Fig. 4.2) we have
run algorithm 4 ten times: measured Tp in Fig. 4.3 is the average value of the different
executions. To get more precise comparisons, we calculate Tp adjusted: adjusted processing
time = processing time - the average of RTT time in case the flow rule exists (RTTavg).

For controllers Floodlight and Beacon which have very similar values of Tp, the use of only
this technique, is not sufficient as it cannot decide between them.

Figure 4.3: Measured processing times compared to average processing times (in ms)

60 4.7. CONCLUSION

4.6.3 LLDP message analysis technique

Figure 4.4 compares LLDP -packet reception intervals for different controllers. Table 4.3
shows the difference between controllers’ LLDP packets. By receiving the LLDP packet, the
attacker compares the different values against Fig. 4.4 and table 4.3 to identify the controller.
Similar to technique 4.4.1.1, for proprietary controllers, the way to gather LLDP information
is to simply use the controllers, analyze its LLDP packets, then use this information to
fingerprint target controllers.

Figure 4.4: Controllers’ LLDP-emission-interval comparison

4.7 Conclusion

In this work, we demonstrated the feasibility of fingerprinting attacks on OpenFlow con-
trollers from the data plane by designing, implementing and testing practical techniques to
identify the controller without access to the control plane. This is a critical step for a number
of attack models since it provides the attacker with sufficient information about the controller
to carry out more tailored attacks. Knowing the vulnerabilities of the target controller or one
of its components, the attacker can indeed use known or design new attacks to take down
the controller. In the future, we plan to expand the scope of this work by fingerprinting a
larger set of controllers and by designing more techniques for fingerprinting controllers. We
also plan to investigate formal methods for the evaluation of fingerprinting techniques and
how they can be possibly combined to increase success rate. Finally, we plan to explore what
countermeasures must be deployed to harden the security of SDN networks against controller
fingerprinting and subsequent attacks.

CHAPTER 4. FINGERPRINTING OPENFLOW CONTROLLERS 61

Controller OFDP interval
(s)

Remarks

OpenDaylight
(Lithium &
Helium)

5 LLDP packets include System Name field with value = "open-
flow" and no System Description field

OpenDaylight
(Hydrogen)

300 LLDP packets include System Name field with value =
"OF|[MAC address of the OF switch]" and no System Descrip-
tion field

Floodlight 15 Each LLDP packet is followed by an 0x8942 Ethernet packet sent
in broadcast. This makes it easy to distinguish between Flood-
light and Beacon

POX variable (≈ 5) LLDP packets include System Description field with value =
"dpid:[MAC address of the OF switch]"

Ryu 1 Note that the Topology discovery module is still not stable and
not included in the controller core.

Beacon 15 LLDP packets include two "unknown" fields and no System
Name or Description feild

Table 4.3: Results of LLDP message analysis

62 4.7. CONCLUSION

Chapter 5
Secure Topology Discovery
Protocol for OpenFlow Networks

Summary
5.1 Introduction . 64

5.2 Why OFDP shouldn’t be implemented in production networks 65

5.2.1 OFDP is not secure . 65

5.2.2 OFDP is not efficient . 68

5.2.3 Other issues . 69

5.3 Introducing sOFTDP: Secure OpenFlow Topology Discovery Protocol 69

5.3.1 Fundamental requirements for topology discovery 70

5.3.2 sOFTDP design . 70

5.3.3 How sOFTDP works . 73

5.4 Evaluation . 76

5.4.1 Emulation Testbed . 76

5.4.2 Experiments and results . 76

5.5 Related work . 79

5.6 Conclusion . 80

One of the SDN controller’s duties is to perform an accurate, secure and near real time
topology discovery to provide management applications with an up-to-date view of the network
topology. However, all current SDN controllers perform topology discovery using OpenFlow
Discovery Protocol (OFDP), which is far from being secure and efficient [156]. In this chapter,
we show that OFDP has serious security and performance problems, then we introduce a
novel protocol sOFTD (secure and efficient OpenFlow Topology Discovery), as an alternative
that is more secure and more efficient than OFDP .

63

64 5.1. INTRODUCTION

5.1 Introduction

The separation between the control plane and the data plane introduced by Software-
Defined Networking (SDN) allows operators to employ quite damn, remarkably cheap but
very fast hardware to forward packets, moving the control logic to a centralized and much
smarter entity called controller. The controller plays the role of an operating system of the
network. It abstracts the underlying forwarding hardware details and offers high level APIs
that the network admins leverage to program their networks. One of the fundamental functions
that a controller must offer is an accurate, near real time visibility of the network topology.
This function is known as Topology Discovery. Topology discovery in SDN is more sensitive
compared to traditional networks based on Link-State routing protocols like OSPF. In SDN, To
discover the network topology, all current OpenFlow controllers implement the same protocol
OFDP (OpenFlow Discovery Protocol).

Figure 5.1: Discovering a unidirectional link in OFDP

Figure shows how OFDP works; To discover the unidirectional link s1→ s2, the controller
encapsulates a LLDP packet in a Packet-out message and sends it to s1. The packet-out
contains instruction for s1 to send the LLDP packet to s2 via port p1. By receiving the LLDP
packet via port p2, s2 encapsulates it in a Packet-in message and sends it back to the controller.
The controller receives the LLDP packet and concludes that there is a unidirectional link from
s1 to s2. The same process is performed to discover the opposite direction s2 → s1 as well
as all other links in the network. Note that, OFDP packets are sent to a "normal" multicast
MAC (01:23:00:00:00:01) to avoid being swallowed by 802.1d compliant switches.

In dynamic networks like large data-centers and multi-tenant cloud networks, keeping an
up-to-date visibility of the topology is a critical function; Switches leave and join the network
dynamically creating changes in the topology which affects routing decisions that the controller
has to make continuously. To remain up-to-date, the controller needs to repeat the process
described in figure 5.1 periodically. The period separating two discovery rounds must be
chosen carefully based on the dynamicity, size and capacity of the network; A 10 seconds
period might not be suitable for a highly dynamic network as it may introduce a delay of up
to 10 seconds. A short period (e.g. 3 seconds) also might not be suitable for a less-dynamic
large size network as the large number of frequent discovery packets may exhaust controller’s

CHAPTER 5. SECURE TOPOLOGY DISCOVERY PROTOCOL FOR OPENFLOW NETWORKS65

resources. Put together, every discovery-round period T , the controller sends
∑n

i=1
pi (where

n is the number of switches and pi is the number of ports in switch i) Packet-out messages and
receives 2L Packet-in messages. [160] proposes to reduce the number of Packet-out messages
to n by rewriting LLDP packet-headers in the switch.

A non optimized or buggy topology discovery mechanism can affect routing logic and
drastically reduce network performance. Our main goal in this paper is to demonstrate that
OFDP has serious, non-solved yet, security and performance problems, then we briefly intro-
duce sOFTD (secure and efficient OpenFlow Topology Discovery), a secure alternative that
is more efficient than OFDP .

The remainder of this chapter is organized as follows: In section 5.2 we demonstrate
why OFDP shouldn’t be implemented in production networks. We introduce our alternative
protocol sOFTD in section 5.3. Then we evaluate sOFTD in section 5.4. Related work is
discussed in section 8.5 and finally we conclude the paper in section 8.6.

5.2 Why OFDP shouldn’t be implemented in production networks

5.2.1 OFDP is not secure

As implemented by all controllers we have tested (OpenDaylight [153], Floodlight [152],
NOX [68], POX [68], Beacon [161], Ryu [162] and Cisco Open SDN Controller [163]), OFDP
uses clear, non authenticated LLDP packets to detect links between switches which makes it
vulnerable to a number of attacks:

Switch spoofing. As described in figure 8.8, e ach LLDP packet contains a version field,
flags, TTL and TLVs (Type-length-value) for information advertisement. Mandatory TLVs in
OFDP are ChssisSubtype and PortSubtype to track packets. In figure 5.1, the LLDP packet
sent by switch s2 to the controller contains the tuple (chassisSubtype = switch1ID, PortSubtype =
p1), hence the controller will detect that this is the same packet he sent to switch s1 with p1
as out-port.

The problem is that all controllers we have tested set chassisSubtype value to the MAC
address of the local port of the switch (figure 5.4), which makes it easy for an adversary to
spoof that switch since controllers use that MAC address as a unique identifier of the switch.
By intercepting clear LLDP packets containing MAC addresses, a malicious switch can spoof
other switches to falsify the controller’s topology graph. In the example shown in figure 5.3,
s4 intercepts LLDP packets from s1 containing s1’s local port MAC address. Now, s4 can use
it as its own MAC and reconnect to the controller as s1 messing up the controller’s topology
graph (e.g. the controller adds nonexistent links s1 → s3 and s3 → s1). We have tested the
switch spoofing attack successfully against Opendaylight and Floodlight.

68 5.2. WHY OFDP SHOULDN’T BE IMPLEMENTED IN PRODUCTION NETWORKS

Figure 5.6: LLDP content used by Floodlight controller

duplication (Figure 5.5). [159] proposes a similar technique but using dynamic keys: a unique
key for each LLDP packet assuming that h2, for example, uses only one example of LLDP
packets received from h1 to generate future fake packets. However, an attacker controlling
both hosts can permanently forward captured LLDP packets from h1 to h2 and from h2 to h1
and inject them back into switches without any modification.

Controller fingerprinting. As we explained in a previous work [164], the LLDP con-
tent is different from one controller to another which allows fingerprinting attacks on SDN
controllers. An adversary (h1 in figure 5.5) matches the LLDP content he receives from s1
(LLDP packets originate from the controller) against a controller signature database to detect
which controller is managing the network. Such information is very useful to launch specific
and more efficient attacks on the controller. Figures 5.4 and 5.6 present the LLDP content
of controllers POX and Floodlight respectively. Note also that the controllers use different
default discovery-round periods which offers another way to differentiate between controllers.
Although it is possible that network admins change both discovery-round period and LLDP
content, it is more likely that the default values are kept unmodified.

LLDP Flood. This is a form of DoS attack where an adversary generates enough fake
LLDP packets to exhaust the controller resources. In figure 5.7, host h1 generates large
number of LLDP packets and send them to s1 which has a rule to forward every LLDP packet
to the controller. Hence, a large number of LLDP packets can exhaust the link connecting the
switch to the controller as well as the controller resources. Basic countermeasure methods like
port blocking or packet filtering may not be effective, especially in the case of very dynamic
environments (e.g. multi-tenant cloud) since connected hosts and switches change frequently,
which may result in preventing legitimate LLDP packets from reaching the controller.

5.2.2 OFDP is not efficient

By using OFDP, the controller periodically sends many packets to every switch in the
network, which could result in performance decrease of the data plane. Experiments made
on different controllers [170] show that when the network size (i.e. number of switches) ex-
ceeds some threshold, running the discovery module alone results in significant increase of the
controller’s CPU usage and considerable decrease in network performance.

CHAPTER 5. SECURE TOPOLOGY DISCOVERY PROTOCOL FOR OPENFLOW NETWORKS69

Figure 5.7: LLDP flood attack

5.2.3 Other issues

Other issues with OFDP include that it may not reliably work for heavily loaded links
because discovery packets might get dropped or delayed. Moreover, when using OFDP in
a multi-controller SDN network (e.g. running several guest controllers through FlowVisor),
discovery cost increases linearly as more controllers are added.

5.3 Introducing sOFTDP: Secure OpenFlow Topology Discovery Proto-
col

In a dynamic data center SDN, the controller needs to be updated whenever a topology
change occurs in order to make the suitable routing decisions for the new topology. Topology
changes typically occur as a consequence of two events: (i) a new link is added to the network
or (ii) an existing link is removed from the network. Both events are the result of either
adding a new switch, removing an existing switch or adding/removing a link between two
existing switches (the latter include link and switch failures). sOFTDP design assumes that
the controller has no prior knowledge of the occurrence of such events and it is expected to
dynamically update its topology map and adapt its routing decisions accordingly.

Network as a Service (NaaS) platforms are good examples where the controller has no
prior knowledge of upcoming events. This is the case for example, of a public Cloud provider
that offers customers the possibility to create their own networks, including hosts and SDN
switches in virtual machines. The consumer (or tenant) can create hosts and switches and
link them on the fly using a web interface, while the provider’s controller manages the network
and ensure the connectivity. In this way, the tenant can add, remove, place or move host and
switch instances without worrying about the underlying configuration.

In the remaining of this section we first identify some fundamental requirements for topol-

705.3. INTRODUCING SOFTDP: SECURE OPENFLOW TOPOLOGY DISCOVERY PROTOCOL

ogy discovery in the context of dynamic virtualized data center networks, then we detail the
sOFTDP design choices.

5.3.1 Fundamental requirements for topology discovery

Topology discovery is a critical process that is required to be:

• Error free: a topology error leads to wrong routing of flows. The impact can be very
harmful if the error is in the routing core (core routers and links)

• Secure: a discovery protocol must be secure, preventing the introduction of fake links
and information leakage (including topology information).

• Efficient: a discovery protocol must not flood the controller with redundant information
and only transmit the topology events information when they occur.

5.3.2 sOFTDP design

sOFTDP 1 is designed to satisfy the above requirements. The main idea is to move a part
of the discovery process from the controller to the switch. By introducing minimal changes to
the OpenFlow switch design, sOFTDP enables the switch to autonomously detect link events
and notify the controller. We also implement the necessary logic in the controller to handle
switch notifications. The key ingredients of sOFTDP design are: Bidirectional Forwarding
Detection (BFD) as port liveness detection mechanism, asynchronous notifications, topology
memory, FAST-FAILOVER groups, "drop lldp" rules and hashed LLDP content. In the fol-
lowing we describe each of these mechanisms.

5.3.2.1 BFD as Port Liveness Detection mechanism

sOFTDP uses BFD (Bidirectional Forwarding Detection [166]) as port-liveness-detection
mechanism to quickly detect link events. Instead of requesting topology information by sending
periodic LLDP frames, the controller just listens for link event notifications from switches to
make topology updates. Hence, the switch needs a mechanism to autonomously and quickly
detect link events and report them to the controller.

BFD is a protocol that provides fast routing-protocol-independent detection of layer-3
next hop failures. BFD establishes a session between two preconfigured endpoints over a
particular link, and performs a control and echo message exchange to detect link liveliness.
sOFTDP implements BFD in asynchronous mode: once a session is set up with a three-way
handshake, neighbor switches exchange periodic control messages to confirm absence of a

1We interchangeably use the name sOFTDP for the topology discovery protocol and for the topology discovery applica-
tion implementing it

CHAPTER 5. SECURE TOPOLOGY DISCOVERY PROTOCOL FOR OPENFLOW NETWORKS71

failure (presence of link) between them. Note that sOFTDP only relies on BFD to detect link
removal events. For link addition events, sOFTDP uses OFPT_PORT_STATUS messages to
update the topology as we will detail in the next subsection. The reason for using BFD instead
of OFPT_PORT_STATUS messages in detecting link removal is to include link failures that
do not originate from administratively shutting down ports, e.g., failure of the underlying
physical link or switch failure, etc.

BFD detection time of link events depends on the control packet transmission interval Ti
and the detection multiplier M [166]. The former defines the frequency of control messages
and the latter defines how many control packets can be lost before the neighbor end-point is
considered unreachable. In the worst case, failure detection time is given by equation 5.3.1

Tdet =M ∗ Ti (5.3.1)

The transmit interval Ti is lower-bounded by the RTT of the link. Note that a transmit
interval of Ti = 16.7ms and a detection multiplier of M = 3 are sufficient to achieve a detection
time of Tdet = 50ms. Also, M = 3 prevents small packet loss from triggering false positives.
Furthermore, a such session generates only 60 packets per second.

5.3.2.2 Asynchronous notifications

sOFTDP enables the switch to inform the controller about port connectivity events. In
case of administrative changes to port status (port turned up or down), the switch reports it
via a OFPT_PORT_STATUS message defined in OpenFlow switch specifications. But, in
the case of link failure or the remote port going down, OpenFlow doesn’t provide any mech-
anism for the switch to inform the controller. sOFTDP adds this functionality to the switch
by defining a new switch-to-controller message BFD_STATUS.

5.3.2.3 Topology memory

sOFTDP keeps track of topology events and builds a database of potential backup links
besides the actual link database. When a new link is added, sOFTDP computes the local topol-
ogy (relative to the added link). If the new link forms a shorter path between two switches
and no traffic engineering application decides otherwise, the new path will be used for for-
warding and the previous one will be saved as potential backup. sOFTDP installs OpenFlow
FAST-FAILOVER groups [66] on the switches of the new link and marks the link as ’safe to
remove’ since it has at least one potential backup. Note that potential backup links are not
considered backup links until all traffic engineering applications agree. Traffic engineering ap-
plications must communicate with sOFTDP to prevent interference in selecting primary paths

725.3. INTRODUCING SOFTDP: SECURE OPENFLOW TOPOLOGY DISCOVERY PROTOCOL

and backups.

5.3.2.4 FAST-FAILOVER groups

OpenFlow groups enable OpenFlow to abstract a set of ports as a single forwarding entity
allowing advanced forwarding and monitoring at the switch level. The group table contains
group entries; each group entry is composed of a set of action buckets with specific semantics
dependent on the group type. When a packet is sent to a group, the actions in one or more
action buckets are applied to it before forwarding to the egress port. Groups buckets can also
forward to other groups, enabling to chain groups together.

The following four types of group tables are provided:

• All: used for multicast and flooding

• Select: used for multipath

• Indirect: simple indirection

• Fast Failover: use first live port

Different types of group tables are associated with different abstractions such as multicast-
ing or multipathing. In particular, the Fast Failover Group Table monitors the status of ports
and applies forwarding actions accordingly. When the monitored port goes down, the Fast
Failover Group Table switches to the first port alive without consulting the controller [66].

sOFTDP enables seamless removal of switches and links while preserving connectivity. In
order to accomplish that, when a link removal event occurs, sOFTDP uses OpenFlow FAST-
FAILOVER groups (optional in OpenFlow 1.1+) to watch switch ports and perform fast
switchover to backup links. Hence, switches concerned by the link removal start forwarding
flows through the backup link and do not have to wait until the controller receives the topology
event and installs new rules.

5.3.2.5 "drop lldp" rules

The switch has a rule "drop lldp" to drop every LLDP packet to prevent LLDP flooding
attacks (see figure 5.7). In a SDN running OFDP, traditional Denial of Service (DoS) mitigat-
ing methods like placing firewalls or Intrusion Detection Systems (IDSs) to filter out LLDP
packets are not effective because it is hard to distinguish between legitimate LLDP packets
(generated by the controller and forwarded by switches) from the fake ones (generated by the
attacker and also forwarded by switches to the controller). By removing periodically broad-
casted LLDP packets, sOFTDP eliminates the possibility that malicious LLDP packets get
forwarded to the controller and hence prevents it from being flooded.

CHAPTER 5. SECURE TOPOLOGY DISCOVERY PROTOCOL FOR OPENFLOW NETWORKS73

5.3.2.6 Hashed LLDP content

The controller sends encrypted LLDP packets only when it receives a OFPT_PORT_STATUS
with the flag PORT_UP set to 1 indicating the port went from down to up status. The LLDP
packets are sent only to the concerned switches along with OpenFlow rules to forward them
to the controller. These rules must have a higher priority than "drop lldp" rules and their
hardtimeout values are set to 500ms. The purpose of the LLDP packets here is to learn
added links as shown in figure 5.8b and detailed in subsection 5.3.3. Finally, 500ms is a small
arbitrary value to ensure that potential malicious LLDP packets generated exactly during this
time window will not significantly affect the controller.

5.3.3 How sOFTDP works

Figure 5.8 shows how sOFTDP works. To bootstrap, the controller sends LLDP packets to
all connected switches like in traditional OFDP (figure 5.8a). The main difference is that we do
not use clear MAC addresses as switch DPIDs. Instead, we use hash values of them to prevent
all information discloser and switch spoofing attacks. We also hash system_description field
value to prevent controller fingerprinting [164].

CHAPTER 5. SECURE TOPOLOGY DISCOVERY PROTOCOL FOR OPENFLOW NETWORKS75

of connected switches. The feature reply message also includes ports status which are all
down initially. In figure 5.8b, when switch s4 joins the network and new links are established,
switches s1, s3 and s4 send PORT_STATUS messages to inform the controller that involved
ports s1.p2, s4.p1, s4.p2 and s3.p2 went up and are connected. The controller ’c’ then sends
LLDP packets to be forwarded only through those ports: c→ s1.i→ s1.p2→ s4.p1→ s4.i→
c, c → s4.i → s4.p2 → s3.p2 → s3.i → c, c → s3.i → s3.p2 → s4.p2 → s4.i → c and
c→ s4.i→ s4.p1→ s1.p2→ s1.i→ c. With i indicates internal port.

Once all LLDP packets are received, the controller identifies the new links and store them
in the Topology Map. Note that by using PORT_STATUS messages as trigger to learn new
links, the controller doesn’t need to periodically send discovery packets and switches do not
need to be too smart to determine the new links (as in [167]) or to store them locally.

Once the new topology is computed, the controller detects multiple paths between pairs of
switches. Independently of traffic engineering applications running on the same controller, the
sOFTDP topology module tags shortest paths as primary paths and longer paths as secondary
paths or potential backups (e.g., s1 ↔ s2 is a primary path and s1 ↔ s4 ↔ s3 ↔ s2 is a
secondary path). Then, if not specified otherwise by any traffic engineering application, the
controller installs fast-failover group rules on the switches of the shortest path. This ensures
continuity of connectivity in case of topology events. In the example shown in figure 5.8b,
there are two similar paths, in term of number of hops, between s1 and s3. The controller
arbitrary tags s1↔ s4↔ s3 as primary path and installs fast-failover group rules on switches
s1 and s3 to watch ports s1.p1, s1.p2, s3.p1 and s3.p2.

When a switch leaves the network (s2 in figure 5.8c), neighbor switches detect and report
link events to the controller: BFD session on s1.p1 detects the link s1.p1↔ s2.p1 failure and
sends a BFD_STATUS message to the controller. In the case of link removal, the controller
doesn’t need to send LLDP packets and just removes the link from the topology map. The
same process applies to link s2.p2 ↔ s3.p1. Switches s1 and s3 automatically switch traffic
through the path s1 ↔ s4 ↔ s3 using the fast-failover group rules installed previously.

When a link is added between two existing switches (s1↔ s3 in figure 5.8d), the involved
ports s1.p1 and s3.p1 send PORT_STATUS messages to the controller with "port up" flags
set. The controller then sends LLDP packets to be forwarded only through s1.p1 and s3.p1:
controller → s1.internal → s1.p1 → s3.p1 → controller and controller → s3.internal →
s3.p1→ s1.p1→ controller. After the new topology is computed, the controller tags s1↔ s3
as the shortest path and s1 ↔ s4 ↔ s3 as a potential backup path and installs fast-failover
group rules on s1 and s3 (in this particular example, the same rules already exist)

When an existing link is removed (s3 ↔ s4 in figure 5.8e), the involved ports s3.p2 and
s4.p2 detect loss of connectivity very quickly using BFD and report it to the controller via
BFD_STATUS messages. The controller then drops the link s3 ↔ s4 from its topology map
without the need to send LLDP packets. Finally, the controller removes the tag from the
remaining path.

76 5.4. EVALUATION

5.4 Evaluation

5.4.1 Emulation Testbed

To evaluate sOFTDP, we implemented sOFTDP topology module on Floodlight. We
conducted experiments on an emulated testbed using Mininet [168]. The emulated testbed is
composed of four virtual bridges based on Open vSwitch [169] and controlled by Floodlight
controller from a different physical machine. We upgraded existing Open vSwitch (of mininet
v2.2.1) to the newer version 2.3.1 that supports the BFD protocol and fast failover groups.
Then we added a simple patch to Open vSwitch to send BFD_STATUS to the controller upon
BFD events (see section 5.3.2.2). BFD detection time is set to 1ms.

5.4.2 Experiments and results

Figure 5.9: New link detection time in ms

Figure 5.10: Adaptation time in ms

78 5.4. EVALUATION

Figure 5.12: CPU time (y axis, in ms) over number of switches (x axis)

To further demonstrate sOFTDP performance, we also measure the overall adaptation time
when a new link is added (see figure 5.8d) to the network. adaptation time includes learning
the new link, installing fast-failover group rules in the switches and the actual switchover time.
Figure 5.10 depicts the result averaged from 50 conducted experiments. The average and 95%
confidence interval are of 6.12± 0.7ms.

Scenario two: Link s3.p2↔ s4.p2 is removed (figure 5.8e). We measure the learning time
the controller takes to learn the change in the topology. The link is brought down upon the
first BFD_STATUS message of either of its endpoints.

The learning time in this case is:

Tlearn(i, j) = min(Tbfd(i), Tbfd(j)) (5.4.5)

Where Tbfd(x) is the BFD detection time on the involved port of node x. Computed as
follows:

Tbfd(x) = T x
det + Tdelv(x, c) (5.4.6)

Where T x
det isBFD detection time given in equation 5.3.1 and Tdelv(x, c) is packet delivery time

from node x to the controller.

Figure 5.11 shows sOFTDP learning time average (taken over 50 performed experiments)
and the 95% confidence interval resulting in 3.25± 0.008ms

sOFTDP learning time is independent of the size of the network and depends only on the
inter-switch RTT and the RTT between switches and the controller. Figure 5.12 compares

CHAPTER 5. SECURE TOPOLOGY DISCOVERY PROTOCOL FOR OPENFLOW NETWORKS79

sOFTDP to OFDP and OFDPv2 [160] in term of CPU time. Each experiment is performed
over 200s period during which one topology event is generated every second.

5.5 Related work

Unlike our proposal, most of previous work focus either on security problems or on perfor-
mance problems in OFDP. In [157], authors identified link fabrication attacks on OFDP and
proposed to authenticate LLDP packets by adding an optional TLV "HMAC" to ensure their
origin and integrity.

The average overhead introduced by this approach differs between the first discovery round
and the following rounds, because the HMAC value is computed once and cached for the future
construction and validation of LLDP packets. The average overhead accounts for 80.4% of
overall LLDP construction time in the first round and accounts for 2.92% in the following
rounds. Although this approach prevents link fabrication by fake LLDP injection, it does not
defend against link fabrication in a relay manner as discussed in section 5.2. The authors argue
that a solution to the link fabrication by a relay could be that the controller monitors ports
to detect whether the connected machine is a host or a switch. If the connected machine is a
host generating LLDP packets then an alert is triggered. However, a host can easily behave
like a switch making this solution unpractical.

A similar approach was proposed in [159] but using HMAC with a dynamic key which is
randomly generated for every single LLDP packet. This approach adds an extra 8% of in CPU
load.

OFDPv2 [160] reduces the number of OFDP-related packet-out messages by rewriting
LLDP packet headers in the switch. In the traditional OFDP, the controller sends

∑n
i=1

pi
packet-out messages every discovery round, where n is the number of switches and pi the
number of ports in switch i. The number of packet-out messages shrinks to n by sending only
one packet per switch and rewriting copies for different ports at level of the switch. OFDPv2
achieves 50% reduction in CPU load compared to OFDP but obviously requires more logic
to be added to the switch. Also, OFDPv2 does not reduce the number of packet-in messages
that the controller periodically receives from switches.

In [167] authors implemented the ForCES [59] protocol to communicate the topology infor-
mation between switches and the controller. Switches acquire neighbor topology information
by exchanging LLDP packets as in traditional networks and store it in their device maps.
The acquired information is updated periodically as LLDP frames are exchanged. Then, upon
receiving a topology change notification from a switch, the controller needs to query the con-
nected switches in order to learn their respective neighbors. The authors measured an average
learning time of 12ms without considering the LLDP exchange time. In other words, the LLDP
time exchange time is not included and it takes 12ms for the switch to detect the topology
change, send a notification to the controller and then answer the controller’s request for the
topology information.

80 5.6. CONCLUSION

5.6 Conclusion

In this work, we extended our previous paper on OFDP limitations by introducing and
detailing a novel topology discovery protocol for OpenFlow (sOFTDP). We argue that this is
the first time major security and performance issues related to the topology discovery process in
current SDN controllers, are tackled. Our proposal requires minimal changes to the OpenFlow
switch design and is shown to be more secure (by design) than previous workarounds on
traditional OFDP. Also, our proposal outperforms OFDP and OFDPv2 by several orders of
magnitude which we confirmed by proof of concept experiments. Further experiments on larger
physical testbeds are being conducted ad will be included in future work.

CHAPTER 5. SECURE TOPOLOGY DISCOVERY PROTOCOL FOR OPENFLOW NETWORKS81

82 5.6. CONCLUSION

Part IV

Traffic Engineering in Softwarized
Networks

83

Chapter 6
Traffic Engineering in Softwarized
Networks: State of the Art

Summary
6.1 Introduction . 86

6.2 SDN Traffic Engineering . 87

6.2.1 Traffic Monitoring/Measurement in SDN 89

6.2.2 Cognitive Routing in SDN . 91

6.3 Conclusion . 92

Traffic Engineering (TE) is a key element in network management. It studies measurement
and management of network traffic and optimizes routing mechanisms in order to improve
utilization of network resources and meet quality of service (QoS) requirements. Compared to
traditional networks, SDN greatly facilitates the design and imeplementation of TE algorithms
due to its programmability and global centralized control. In this chapter, we review SDN
traffic engineering research and introduce our contributions in this field.

85

86 6.1. INTRODUCTION

6.1 Introduction

Traffic Engineering (TE) generally means analyzing network traffic and optimizing traffic
flow and resource allocation in order to enhance the performance of an operational network
[11]. TE has been widely exploited in data networks, from past ATM (Asynchronous Transfer
Mode) networks to current IP/MPLS networks. However, current networking paradigms and
the TE solutions implemented for them are unfavorable for the future generations of networks
due to two main reasons. First, they don’t meet the requirements of today’s Internet appli-
cations in term of real time reaction, and support of large amount of traffic. The underlying
network should be able to classify a variety of traffic types and to provide a suitable service
for each traffic type in real time (i.e., order of ms). Second, the massive growth of large
scale data centers, with significant bandwidth requirements -as the needs for cloud computing,
multimedia contents, and big data analysis are increasing- urgently requires new, intelligent
and more efficient traffic engineering mechanisms to assure optimal resource utilization and
performance.

In the past, traditional service provider networks employed technologies like X.25, Frame
Relay or ATM (standardized in the late 1980s) to provide Layer 2 point-to-point virtual
circuits with contractually predefined bandwidth. Traffic engineering (in the sense of optimal
distribution of load across all available network links) was inherent in these services. The
calculation of the optimum routing of virtual circuits was mostly done off-line by a network
management platform. Real-time on-demand establishment of virtual circuits was offered by
networks employing Frame Relay or ATM as follows [12]:

• The management platform examines the free network capacity.

• The management platform computes the end-to-end hop-by-hop path throughout the
network that satisfied the contractual requirements.

• The management platform establishes a virtual circuit along the computed path.

On the other hand, most IP-based services, including VPNs implemented with MPLS VPN,
IPsec or L2TP (Layer 2 transport protocol), follow a completely different service model:

• Every IP packet is independently routed through the network, and every router in the
path makes independent next-hop decisions.

• All packets toward the same destination take the same path once merged.

Layer 2 switched networks employ complex circuit setup mechanisms and expensive switch-
ing methods. On the other hand, IP networks focus on low-cost, high-speed switching of a
high volume of traffic. Hence, IP networks were adopted by nearly all service providers to
build next-generation networks, even modern fiber-optics networks. However, there are many
scenarios in IP networks where some links are underutilized and others are overloaded. Ef-
fectively, there is need for traffic engineering capabilities in routed IP networks, but they are
simply not available in the traditional hop-by-hop, destination-only routing model that most
IP networks use.

CHAPTER 6. TRAFFIC ENGINEERING IN SOFTWARIZED NETWORKS: STATE OF THE ART87

In order to bring traffic engineering to IP-based networks, various approaches have been
proposed:

• Build on a layer 2 switched technology that has inherent traffic engineering capabilities.
This approach was used extensively by service providers when they were introducing IP
as an additional service on top of their layer 2 switched technology. This approach is no
longer adopted and operators only use pure IP-based networks.

• Adjusting parameters of the IP routing protocols to influence the paths taken by packets.
These techniques shift traffic to underutilized links by artificially lowering their cost and
making them more attractive to routing protocols such as Open Shortest Path First
(OSPF). Such approach is almost impossible in a complex network and works only in
niche situations.

• Using more advanced techniques such as IP-over-IP tunneling and Multiprotocol Label
Switching (MPLS) traffic engineering. While virtual circuits implemented with IP-over-
IP tunnels are too complex and so are better avoided, MPLS, on the other hand, has a
complete set of traffic engineering features similar to those available in advanced ATM or
Frame Relay networks. For example: tracking available resources on each link using ex-
tensions to OSPF for example. When establishing an MPLS tunnel, the end-to-end path
through the network is computed hop-by-hop based on the reported state of available
resources.

Due to their unique features, SDNs provide huge incentive for new TE techniques that
exploit the global network view, monitoring capabilities, and programmability available for
better traffic control and management. In the rest of this chapter, we survey current SDN
traffic engineering techniques and proposals. We pay a special attention to traffic measurement
and cognitive routing. We refer to [13] for a survey on non-cognitive routing methods in SDN.

6.2 SDN Traffic Engineering

Traffic engineering mechanisms in SDN can be more efficient and more intelligent compared
to the conventional approaches such as ATM, IP, and MPLS because of the major advantages
of the SDN architecture. More specifically, SDN provides:

• Centralized view that enable deploying a scalable measurement and monitoring mecha-
nisms. The SDN controller collects and stores the entire network information, including
the network topology, the network status, and global application requirements including
QoS and security requirements.

• Global programmability. The network operator leverages the SDN controller to dy-
namically program the forwarding layer devices to optimize the allocation of network
resources.

88 6.2. SDN TRAFFIC ENGINEERING

• Openness. The interface between the controller and forwarding equipment has is unified
across vendors [13, 14].

There are four axes of traffic engineering in SDN: flow management, fault tolerance, topol-
ogy update, and traffic analysis.

First, according to the basic operation of flow management in SDNs, when a flow arriving
at the switch does not match any rules in the flow table, it will be processed as follows:

• The first packet of the flow is sent by the ingress switch to the controller.

• The controller computes the forwarding path for the flow.

• The controller sends the corresponding forwarding rules to install in the flow tables at
each switch along the computed path.

• Finally, all subsequent packets in the flow are forwarded in the data plane along the
installed path.

To balance the load across multiple paths, the SDN controller can leverage OpenFlow to
program multiple switches to carry the same flow. However, in this operation, if the aggregated
traffic consists of high number of new flows, the resulting latency overhead from installing large
numbers of forwarding rules can be yielded at both the control plane and data plane. Hence,
the traffic engineering mechanisms must address the tradeoffs between the latency and load-
balance.

Second, whenever a failure occurs (switch, link or controller failure), the SDN should be
able to recover rapidly, transparently and gracefully to ensure the network reliability. A single
failure should be recovered within 50 ms in carrier grade networks [16]. As we covered in
chapter 5, in OF v1.1+, a fast failover mechanism is introduced in which an alternative port
and path can be specified, enabling the switch to switch to an alternate forwarding path
without requiring a round trip to the controller. However, the failure recovery still needs to
consider the limited memory and flow table resources at switches.

Third, as we covered in chapter 5, the key challenge in topology update is how the SDN
controller can efficiently update the network with required consistency in (near) real time. The
topology discovery and update process is more complex in large SDN network, where switches
are controlled by clusters of controllers and mostly through in-band control traffic.

Finally, the traffic analysis mechanisms should include:

• Traffic/network monitoring tools which are the most important prerequisite for all other
traffic analysis tasks.

• network invariant checking mechanisms

• programming error debugging software

• flow/state data collection

• analytics/ mining of patterns/characteristics

CHAPTER 6. TRAFFIC ENGINEERING IN SOFTWARIZED NETWORKS: STATE OF THE ART89

• etc.

Finally, many SDN architectures use the existing flow based monitoring tools from tradi-
tional IP networks, which can lead to high monitoring overhead for the switch [17]. With the
release of OpenFlow v1.3, more advanced flow metering mechanisms were introduced, hence
the need to design more advance monitoring tools to take advantage of it, while keeping a low
complexity design, low measurement overhead and a high measurement accuracy.

6.2.1 Traffic Monitoring/Measurement in SDN

Traffic measurement is a crucial task in traffic engineering. It includes three main subtasks:
network topology measurement, network traffic measurement, and network performance mea-
surement. We have extensively studied the network topology measurement in chapter 5, and
here we focus on the traffic and performance part.

In order to react to traffic changes, the management applications require accurate and
timely statistics on network resources at different aggregation levels (such as flow, packet
and port) [13]. Hence the SDN controller must continuously monitor traffic counters and
performance metrics to quickly adapt forwarding rules in switches.

However, many SDN architectures use traditional monitoring solutions that either require
complex additional modules at the switch or impose significant measurement overhead. For
instance, Cisco’s NetFlow [18] installs probes at switches as special modules to collect either
complete or sampled traffic statistics, and send them to a central collector [13]. Another
flow sampling tool is sFlow [19], which samples traffic in a time-based fashion. Another flow
sampling tool is Juniper’s JFlow [20] which is quite similar to NetFlow.

These approaches introduce significant overhead incurred by statistics collection from the
whole network. To cope with this problem, The following solutions was proposed to provide
more efficient monitoring with higher accuracy and lower overhead.

PayLess [21] is a query-based monitoring framework designed as a component of the Open-
Flow controller. PayLess provides a flexible RESTful API, translating request commands from
applications into flow statistics collection at different aggregation levels (such as flow, packet
and port), where it performs highly accurate information gathering in real-time without in-
curring significant network overhead. Instead of making the controller continuously polling
switches, PayLess uses an adaptive scheduling algorithm that achieves the same level of ac-
curacy as continuous polling with much less communication overhead. The evaluation results
show that PayLess sends only 6.6 monitoring messages per second on average, compared to the
controller’s periodic polling, which has an overhead of 13:5 monitoring messages per second
on average.

OpenTM [22] is a query-based monitoring system that aims to measure the traffic matrix
(TM) for OpenFlow networks. It keeps track of all active flows in the network. First, it
gets the routing information, including routing paths, from the routing applications, then it
periodically polls flow byte and packet-count counters from switches on each flow path. Using

90 6.2. SDN TRAFFIC ENGINEERING

the polled statistics, OpenTM constructs the traffic matrix which represents the added amounts
of traffic measured from each source to each destination in the network. In general, the number
of network flows is very big, but available measurement resources, namely Ternary Content
Addressable Memory (TCAM), are expensive, power hungry and hence limited, so in practice,
it is impossible to obtain the traffic matrix by measuring the size of each flow directly. To
solve this problem, selective and random switch polling approaches were proposed. Usually,
random switch polling is not effective because selected switches might not be of significant
importance in term of traffic volume. Selective switch polling however are more efficient.

iSTAMP [23] is an intelligent Traffic (de)Aggregation and Measurement Paradigm. iS-
TAMP partitions TCAM entries of switches into two parts (1) wildcard rules for aggregate
measurements, and (2) fine grained rules to de-aggregate and directly measure the most infor-
mative flows for per-flow measurements. iSTAMP then processes these aggregate and per- flow
measurements to estimate individual network flows using a variety of optimization techniques.
iSTAMP seems to find balance between limitations of network resources and measurement ac-
curacy, however, it does not consider routing and flow aggregation feasibility when designing
optimal flow aggregates and only focuses on single-switch scenario. [24] extended iSTAMP
framework to multi-switch scenario.

OpenMeasure [25]: assumes that the aggregation matrix is given based on the underlying
routing and flow aggregation rules. OpenMeasure leverages the global view of SDN controller
to identify the available monitoring resources, employs an online learning algorithm to de-
termine the most informative flows for sampling and places flow sampling rules in selected
SDN switches. Furthermore, OpenMeasure is light-weight and compatible with hybrid SDN
networks.

In contrast to the on-demand query-based approaches, passive push-based monitoring
methods have been proposed to analyze control messages between the controller and switches.
These methods use the controller messages to monitor and measure network utilization, such
as bandwidth consumption, without inducing additional overhead.

FlowSense [26] analyzes dynamic changes in network flows using messages received by the
controller. For example, FlowSense uses PacketIn and FlowRemoved messages in OpenFlows
networks to estimate per flow link utilization. The evaluation results show that FlowSense has
higher accuracy compared to the request-based methods.

OpenSketch [27] is a software defined traffic measurement architecture, which separates
the measurement data plane from the control plane. OpenSketch is generic and designed
to allow more customized operations. It can perform efficient data collection with respect
to flow selection by using both hashing and wildcard rules. In the data plane, OpenSketch
provides a three-stage pipeline (hashing, filtering, and counting), which can be implemented
with commodity switch components and support many measurement tasks. OpenSketch pro-
vides a library that contains a list of sketches, the sketch manager, and the resource allocator.
Sketches can be used for different measurement programs such as heavy hitter detection and
fine-grained delay measurement. The skecth library makes measurement programming easier
by freeing operators from understanding the complex switch implementations and parame-

CHAPTER 6. TRAFFIC ENGINEERING IN SOFTWARIZED NETWORKS: STATE OF THE ART91

ter tuning in diverse sketches. The measurement library automatically configures the data
plane pipeline for different sketches and allocates resources (switch memory) across tasks to
maximize accuracy.

OpenSample [28] proposed by IBM, is a sampling-based SDN measurement system.
Rather than using the expensive OpenFlow rules which, OpenSample leverages sFlow [19],
which is present in most switches, to capture packet header samples from the network with
low overhead and uses TCP sequence numbers from the captured headers to measure accurate
flow statistics. From random samples, OpenSample can infer a variety of information about
the network including the elephant flows and link utilization.

6.2.2 Cognitive Routing in SDN

Recently, machine learning (ML) techniques have made breakthrough progress in a variety
of application fields, such as computer vision, speech recognition and bioinformatics. Machine
learning is the applied science of constructing algorithms and models that can learn to make
decisions directly from data without following predefined rules. Machine learning generally
deals with complex problems where the notion of probability and uncertainty plays an impor-
tant role, and usually require classification, regression and decision making. Machine learning
techniques may perform close to or even better than humans in such problems (eg. the go
game [29], chess and facial recognition).

Although applying machine learning techniques in networking, particularly traffic engi-
neering, became an active and promising research area recently, it has not been used widely
in computer networks. For example, various machine learning-based approaches proposed for
routing in computer networks during the 1990’s and early 2000’s [30, 31, 32, 33] remained iso-
lated and failed to get much attention from the networking research and industry communities
[34].

Why apply machine learning to routing? Routing is one of the most fundamental
networking tasks and, consequently, has been extensively researched in a various contexts such
as data centers, WANs, ISP networks, interdomain routing with BGP, wireless networks, and
more) [38].

There is a big deal of uncertainty in route-optimization when trying to optimize routing
configurations with respect to previously observed traffic, with the hope that these configura-
tions fare well with the future traffic. Unfortunately, optimizing with respect to past traffic
conditions or optimizing for the worst-case conditions across a broad range of considered traf-
fic scenarios might fail miserably in achieving good performance even if the actual traffic
conditions are not too different from the optimized ones.

Machine Learning provides a new option: leveraging information about past traffic con-
ditions to learn good routing configurations for future traffic conditions. Although the exact
future traffic demands are unknown, on can realistically assume that some information about
the future are embedded in the historical traffic demands (e.g., changes in traffic across times

92 6.3. CONCLUSION

of day, day of week, the skewness of traffic, etc.). Hence, a valid approach is to continuously
observe traffic demands and adapt routing with respect to learned traffic characteristics.

Traditionally, network intelligence was implemented in the network nodes that were very
limited in term of computational power and memory, which made them incapable of processing
computationally intense machine learning algorithms. Now, with SDN and NFV centralizing
the network intelligence and decoupling it from the network devices, it is possible to implement
global machine learning based control algorithms on powerful control servers.

In the following, we present the few recent applications of machine learning to routing in
SDN.

[207] proposes a supervised machine learning based meta-layer to solve the dynamic routing
problem in real time. The authors use a heuristic algorithm’s results as input to train their
framework. The meta-layer architecture is quite extensible and can accommodate a variety
of traffic engineering scenarios in the network. The results show that the meta-layer gives
heuristic-like results. However, their proposal considers origin-destination pairs independently,
hence the routes are optimized without considering the global condition of the network. As we
detail later in chapter 8, this proposed scheme is not practical since the number of OD pairs
(hence the number of neural networks associated) explodes in large networks.

[36] proposes a reinforcement learning based QoS-aware adaptive routing (QAR) imple-
mented on a multi-layer hierarchical SDN control plane. QAR algorithm optimizes routing
policy with regard to long-term revenue. Specifically, the softmax action selection policy, state-
action-reward-state-action (SARSA) method for quality update, and Markov decision process
(MDP) with QoS-aware reward function are used to realize an adaptive, QoS-provisioning
routing Simulation results show that QAR provides fast convergence with QoS provisioning.

[37] proposes a machine learning based application-aware multi-path flow routing frame-
work for SDN called AMPS. Applications generated by the devices have different bandwidth
and delay requirements and compete for a constrained resource such as bandwidth or low la-
tency path. AMPS controller prioritize flows based on application type and assign a path based
on its classified priority. AMPS controller supports multipath routing using Yen-K-shortest
path algorithm. The authors implemented AMPS on OpenvSwitch as a proof of concept and
observed a significant improvement in comparison to traditional routing techniques.

6.3 Conclusion

In this chapter, we have reviewed research work on traffic statistics collection in SDN and
applying machine learning to traffic engineering, specifically routing in SDN. It is clear that
applying machine learning techniques in networking, particularly traffic engineering, is rapidly
getting attention from the networking community although the number of contributions is still
very limited. In the following two chapters, we present our contributions in this field: we first
introduce a machine learning based traffic matrix prediction framework then we follow it by a

CHAPTER 6. TRAFFIC ENGINEERING IN SOFTWARIZED NETWORKS: STATE OF THE ART93

machine learning based predictive dynamic routing framework for SDN.

94 6.3. CONCLUSION

Chapter 7
Real Time Traffic Matrix
Prediction for OpenFlow
Networks

Summary
7.1 Introduction . 97

7.2 Time Series Prediction . 98

7.3 Long Short Term Memory Neural Networks . 100

7.3.1 LSTM Architecture . 101

7.3.2 LSTM Equations . 102

7.4 Traffic Matrix Prediction Using LSTM RNN . 103

7.4.1 Problem Statement . 103

7.4.2 Feeding The LSTM RNN . 103

7.4.3 Performance Metric . 104

7.5 Experiments and Evaluation . 105

7.6 Related Work . 106

7.7 Conclusion . 106

A Traffic Matrix (TM) is a matrix giving the traffic volumes between origin and destination
nodes in a network. It has a tremendous utility for IP networks planning and management.
It is widely used in network planning, resource management and network security. One of the
most interesting problems revolving around traffic matrices is that these matrices are often
hard to measure in real time in large operational IP networks or data centers. TM prediction
is defined as the problem of estimating future network traffic matrix from the previous and

95

96

achieved network traffic data. In this chapter, we present NeuTM, a novel machine learning-
based framework for predicting TM in large networks. By validating our framework on real-
world data from GÉANT network, we show that our model converges quickly and gives state
of the art TM prediction performance.

CHAPTER 7. REAL TIME TRAFFIC MATRIX PREDICTION FOR OPENFLOW NETWORKS97

7.1 Introduction

Having an accurate and timely network TM is essential for most network operation/management
tasks such as traffic accounting, short-time traffic scheduling or re-routing, long-term capac-
ity planning, network design, and network anomaly detection. For example, to detect DDoS
attacks in their early stage, it is necessary to be able to detect high-volume traffic clusters in
real-time, which is not possible relying only on current monitoring tools. Another example is,
upon congestion occurrence in the network, traditional routing protocols cannot react imme-
diately to adjust traffic distribution, resulting in high delay, packet loss and jitter. Thanks to
the early warnings, a proactive prediction-based approach would be faster, in terms of high-
volume traffic detection and DDoS prevention. Similarly, predicting network congestion is
more effective than reactive methods that detect congestion through measurements, only after
it has significantly influenced the network operation.

Network traffic is characterized by: self-similarity, multiscalarity, long-range dependence
and a highly nonlinear nature (insufficiently modeled by Poisson and Gaussian models for
example). These statistical characteristics determine the traffic’s predictability [171].

Several methods have been proposed for network traffic prediction and can be classified into
two categories: linear prediction and nonlinear prediction. The ARMA/ARIMA model [173],
[176], [178] and the Holt–Winters algorithm [173] are the most widely used traditional linear
prediction methods. Nonlinear forecasting methods commonly involve neural networks (NN)
[173], [179], [180]. The experimental results from [184] show that nonlinear traffic prediction
based on NNs outperforms linear forecasting models (e.g. ARMA, ARAR, HW). [184] suggests
that if we take into account both precision and complexity, the best results are obtained by
a Feed Forward Neural Network predictor with multiresolution learning approach. However,
most of the research using neural networks for network traffic prediction aims to predict the
aggregate traffic value. In this work, our goal is to predict the traffic matrix which is a far
more challenging task.

Unlike feed forward neural networks (FFNN), Recurrent Neural Network (RNNs) have
cyclic connections over time. The activations from each time step are stored in the internal
state of the network to provide a temporal memory. This capability makes RNNs better
suited for sequence modeling tasks such as time series prediction and sequence labeling tasks.
Particularly, Long Short-Term Memory (LSTM) is a powerful RNN architecture that was
recently designed by Hochreiter and Schmidhuber [186] to address the vanishing and exploding
gradient problems [177] that conventional RNNs suffer from. RNNs (including LSTMs) have
been successfully used for handwriting recognition [172], language modeling, phonetic labeling
of acoustic frames [181].

Our contribution in this chapter is threefold.

• First, we present, for the first time, a LSTM based framework for large scale TM pre-
diction.

• Second, we implement our framework and deploy it on a Software Defined Network

98 7.2. TIME SERIES PREDICTION

(SDN) and train it on real world data using GÉANT data set.

• Finally, we evaluate our LSTM models at different configurations. We also compare our
model to traditional models and show that LSTM models converge quickly and give state
of the art TM prediction performance.

Note that we do not address the problem of TM estimation in this chapter and we suppose
that historical TM data is already accurately obtained.

The remainder of this chapter is organized as follows: Section 7.2 summarizes time-series
prediction techniques. LSTM architecture and equations are detailed in section 7.3. The
process of feeding the LSTM model and predicting TM is described in section 7.4. Evaluation
and results are presented in section 7.5. Related work is discussed in section 8.5 and the
chapter is concluded by section 8.6.

7.2 Time Series Prediction

For completeness sake, we give a brief summary of various linear predictors based on
traditional statistical techniques. We use the same notation and definitions as in [184] and
we refer to the original paper and to [192] for a thorough background. Then we discuss NNs
usage for time series prediction.

7.2.0.1 Linear Prediction

7.2.0.1.1 ARMA model The time series {Xt} is called an ARMA(p, q) process if {Xt} is
stationary and

Xt − φ1Xt−1 − ...− φpXt−p = Zt + θ1Zt−1 + ...+ θqZt−q (7.2.1)

where {Zt} ≈ WN(0, σ2) is white noise with zero mean and variance σ2 and the polynomials
φ(z) = 1−φ1z− ...−φpz

p and θ(z) = 1+ θ1z+ ...+ θqz
q have no common factors. Predictions

can be made recursively using: X̂n+1 =

∑n
j=1

θnj(Xn+1−j − X̂n+1−j) if1 ≤ n ≤ m)∑q
j=1

θnj(Xn+1−j − X̂n+1−j)

+φ1Xn + ..+ φpXn+1−p ifn ≥ m

where

m = max(p, q) and θnj is determined using the innovations algorithm.

7.2.0.1.2 ARAR algorithm The ARAR algorithm applies memory-shortening transforma-
tions, followed by modeling the dataset as an AR(p) process: Xt = φ1Xt−1+ ..+φpXt−p+Zt.
The time series {Yt} of long-memory or moderately long- memory is processed until the trans-
formed series can be declared to be short-memory and stationary:

St = ψ(B)Yt = Yt + ψ1Yt−1 + ...+ ψkYt−k (7.2.2)

CHAPTER 7. REAL TIME TRAFFIC MATRIX PREDICTION FOR OPENFLOW NETWORKS99

The autoregressive model fitted to the mean-corrected series

Xt = St − S, t = k + 1, n, where S

represents the sample mean for Sk+1, ..., Sn , is given by φ(B)Xt = Zt , where φ(B) =
1 − φ1B − φl1B

l1 − φl2B
l2 − φl3B

l3 , {Zt} ≈ WN(0, σ2), while the coefficients φj and the
variance σ2 are calculated using the Yule–Walker equations described in [192]. We obtain the
relationship:

ξ(B)Yt = φ(1)S + Zt (7.2.3)

where ξ(B)Yt = ψ(B)ϕ(B) = 1 + ξ1B + ...+ ξk+l3
Bk+l3 From the following recursion relation

we can determine the linear predictors

PnYn+h = −

k+l3∑

j=1

ξPnYn+h−j + φ(1)S h ≥ 1 (7.2.4)

with the initial condition PnYn+h = Yn+h for h ≤ 0.

7.2.0.1.3 Holt–Winters algorithm The Holt–Winters forecasting algorithm is an exponential
smoothing method that uses recursions to predict the future value of series containing a trend.
If the time series has a trend, then the forecast function is:

Ŷn+h = PnYn+h = ân + b̂nh (7.2.5)

where ân and b̂n are the estimates of the level of the trend function and the slope respectively.
These are calculated using the following recursive equations:

{
ân+1 = αYn+1 + (1− α)(ân + b̂n)

b̂n+1 = β(ân+1 − ân) + (1− β)̂bn
(7.2.6)

Where Ŷn+1 = PnYn+1 = ân + b̂n represents the one-step forecast. The initial conditions are:
â2 = Y2 and b̂2 = Y2− Y1. The smoothing parameters α and β can be chosen either randomly
(between 0 and 1), or by minimizing the sum of squared one-step errors

∑n
i=3

(Yi − Pi−1Yi)
2

[192].

7.2.0.2 Neural Networks for Time Series Prediction

Thanks to their strong self-learning and their ability to learn complex non-linear patterns,
Neural Networks (NNs) are widely used for modeling and predicting time-series. NNs are
capable of estimating almost any linear or non-linear function in an efficient and stable man-
ner, when the underlying data relationships very complex. Unlike the techniques presented
above, NNs rely on the observed data rather than on an analytical model. Furthermore, The
architecture and the parameters of a NN are determined solely by the dataset.

102 7.3. LONG SHORT TERM MEMORY NEURAL NETWORKS

Figure 7.4: LSTM architecture

7.3.2 LSTM Equations

An LSTM network maps an input sequence x = (x1, ..., xT) to an output sequence y =
(y1, ..., yT) by computing the network unit activations using the following equations iteratively
from t = 1 to T.

it = σ(Wixxt +Wimmt−1 +Wicct−1 + bi) (7.3.7)

ft = σ(Wfxxt +Wfmmt−1 +Wfcct−1 + bf) (7.3.8)

ct = ft � ct−1 + it � g(Wcxxt +Wcmmt−1 + bc) (7.3.9)

ot = σ(Woxxt +Wommt−1 +Wocct + bo) (7.3.10)

mt = ot � h(ct) (7.3.11)

yt = ϕ(Wymmt + by) (7.3.12)

Where i, f, o and c are respectively the input gate, forget gate, output gate and cell
activation vectors. m is the output activation vector. � is the element-wise product of the
vectors. g and h are the cell input and cell output activation functions. tanh and ϕ are the
network output activation function. The b terms denote bias vectors and the W terms denote
weight matrices. and σ is the logistic sigmoid function [181].

CHAPTER 7. REAL TIME TRAFFIC MATRIX PREDICTION FOR OPENFLOW NETWORKS103

7.4 Traffic Matrix Prediction Using LSTM RNN

We train a deep LSTM architecture with a deep learning method (backpropagation through
time algorithm) to learn the traffic characteristics from historical traffic data and predict the
future TM.

7.4.1 Problem Statement

Let N be the number of nodes in the network. The N -by-N traffic matrix is denoted by
Y such as an entry yij represents the traffic volume flowing from node i to node j. We add
the time dimension to obtain a structure of N-by-N-by-T tensor (vector of matrices) S such as
an entry stij represents the volume of traffic flowing from node i to node j at time t, and T is
the total number of time-slots. The traffic matrix prediction problem is defined as solving the
predictor of Y t (denoted by Ŷ t) via a series of historical and measured traffic data set (Y t−1,
Y t−2, Y t−3, ..., Y t−T). The main challenge here is how to model the inherent relationships
among the traffic data set so that one can exactly predict Y t.

7.4.2 Feeding The LSTM RNN

Figure 7.5: MSE over number of hidden layers (500 nodes each)

To effectively feed the LSTM RNN, we transform each matrix Y t to a vector Xt (of size
N × N) by concatenating its N rows from top to bottom. Xt is called traffic vector (TV).
Note that xn entries can be mapped to the original yij using the relation n = i×N + j. Now
the traffic matrix prediction problem is defined as solving the predictor of Xt (denoted by X̂t)
via a series of historical measured traffic vectors (Xt−1, Xt−2, Xt−3, ..., Xt−T).

One possible way to predict the traffic vector Xt is to predict one component xtn at a
time by feeding the LSTM RNN one vector (xt0, x

t
1, ..., x

t
N2) at a time. This is based on the

assumption that each OD traffic is independent from all other ODs which was shown to be

104 7.4. TRAFFIC MATRIX PREDICTION USING LSTM RNN

Figure 7.6: Training time over network depth (20 epochs)

Figure 7.7: Comparison of prediction methods

wrong by [193]. Hence, considering the previous traffic of all ODs is necessary to obtain a more
correct and accurate prediction of the traffic vector. Continuous Prediction Over Time:
Real-time prediction of traffic matrix requires continuous feeding and learning. Over time, the
total number of time-slots become too big resulting in high computational complexity. To cope
with this problem, we introduce the notion of learning window (denoted by W) which indicates
a fixed number of previous time-slots to learn from in order to predict the current traffic vector
Xt (Fig. 8.2). We construct the W -by-N2 traffic-over-time matrix (that we denote by M) by
putting together W vectors (Xt−1, Xt−2, Xt−3, ..., Xt−W) ordered in time. Note that T ≥W
(T being the total number of historical matrices) and the number of matrices M is equal to
T/W .

7.4.3 Performance Metric

To quantitatively assess the overall performance of our LSTM model, Mean Square Error
(MSE) is used to estimate the prediction accuracy. MSE is a scale dependent metric which

106 7.6. RELATED WORK

7.6 Related Work

Various methods have been proposed to predict traffic matrix. [184] evaluates and com-
pares traditional linear prediction models (ARMA, ARAR, HW) and neural network based
prediction with multi-resolution learning. The results show that NNs outperform traditional
linear prediction methods which cannot meet the accuracy requirements. [193] proposes a
FARIMA predictor based on an α-stable non-Gaussian self-similar traffic model. [191] com-
pares three prediction methods: Independent Node Prediction (INP), Total Matrix Prediction
with Key Element Correction (TMP-KEC) and Principle Component Prediction with Fluc-
tuation Component Correction (PCP-FCC). INP method does not consider the correlations
among the nodes, resulting in unsatisfying prediction error. TMP-KEC method reduces the
forecasting error of key elements as well as that of the total matrix. PCP-FCC method im-
proves the overall prediction error for most of the OD flows.

7.7 Conclusion

In this work, we have shown that LSTM architectures are well suited for traffic matrix
prediction. We have proposed a data pre-processing and RNN feeding technique that achieves
high prediction accuracy in a very short training time. The results of our evaluations show
that LSTMs outperforms traditional linear methods and feed forward neural networks by many
orders of magnitude.

CHAPTER 7. REAL TIME TRAFFIC MATRIX PREDICTION FOR OPENFLOW NETWORKS107

108 7.7. CONCLUSION

Chapter 8
Predictive Dynamic Routing for
OpenFlow Networks

Summary
8.1 Introduction . 110

8.2 The Dynamic Routing Problem . 111

8.2.1 MT-MC-DRP As Two Linear Problems . 111

8.2.2 Heuristic Solution for The MT-MC-DRP 113

8.3 System Design . 113

8.3.1 Traffic Matrix Estimator . 113

8.3.2 Traffic Matrix Predictor . 114

8.3.3 Traffic Routing Unit . 115

8.4 Implementation and Evaluation . 118

8.5 Related Work . 121

8.6 Conclusion . 122

Current SDN/OpenFlow controllers use a default routing based on Dijkstra’s algorithm
for shortest paths, and provide APIs to develop custom routing applications. In this chapter,
we introduce NeuRoute, a dynamic routing framework for SDN entirely based on machine
learning, specifically, Deep Neural Networks. NeuRoute is a controller-agnostic dynamic rout-
ing framework that (i) predicts traffic matrix in real time, (ii) uses a neural network to learn
traffic characteristics and (iii) generates forwarding rules accordingly to optimize the network
throughput. NeuRoute achieves the same results as the most efficient dynamic routing heuris-
tic but in much less execution time.

109

110 8.1. INTRODUCTION

8.1 Introduction

The modern Internet is experiencing an explosion of the Machine-to-Machine (M2M) com-
munications and Internet-of-Things (IoT) applications, in addition to other bandwidth inten-
sive applications such as voice over IP (VoIP), video conferencing and video streaming services.
Thus leading to a high pressure on carrier operators to increase their network capacity in order
to support all these applications with an acceptable Quality of Service (QoS). The common
practice to ensure a good QoS so far is to over-provision network resources. Operators over-
provision a network so that capacity is based on peak traffic load estimates. Although this
approach is simple for networks with predictable peak loads, it is not economically justified in
the long-term.

In addition, most ISP networks today use Shortest Path First (SPF) routing algorithms,
namely the Open Shortest Path First (OSPF) [194]. OSPF routes packets statically by as-
signing weights to links hence the routing tables are recalculated only when a topology change
occurs. OSPF is a best effort routing protocol, meaning that when a packet experiences con-
gestion, the routing subsystem cannot send it through an alternate path, thus failing to provide
desired QoS during congestion even when the total traffic load is not particularly high.

Although OSPF has a QoS extension [195] that dynamically changes link weights based
on measured traffic, it is still not implemented in the Internet for two major reasons. First,
changing the cost of a link in one part of the network may cause a lot of routing updates
and in turn negatively affect traffic in a completely different part of the network. This can
be disruptive to many (or all) traffic flows. Another problem concerns routing loops that
may occur before the routing protocol converges. Therefore, in networks with distributed
control plane, changing the link cost is considered just as disruptive as link-failures. On the
other hand, without the possibility to differentiate between traffic flows more granularly (not
only based on destination IP address), dynamic routing cannot positively contribute to load
balancing [196].

The dynamic routing problem, also known as QoS routing or concurrent flow routing, is a
case of Multi-commodity flow problem where flows are packets or traffic flows and the goal is
to maximize the total network flow while respecting routing constraints such as load balancing
the total network traffic or minimizing the traffic delay. Due to their high computational
complexity, multi-commodity flow algorithms are rarely implemented in practice.

There are many variants of the dynamic routing problem including the maximum through-
put dynamic routing, the maximum throughput minimum cost dynamic routing and the max-
imum throughput minimum cost multicast dynamic routing. In this work, we focus on the
maximum throughput minimum cost unicast dynamic routing where given a traffic demand
matrix, the objective is to maximize the total throughput of the network while minimizing the
cost of routing the total traffic knowing that each flow can be routed through only one end-
to-end path. We present NeuRoute, a Neural Network based hyperheuristic that is capable of
computing dynamic paths in real time. NeuRoute learns from a dynamic routing algorithm
then imitates it achieving the same results but in only 25% of its execution time. The basic

CHAPTER 8. PREDICTIVE DYNAMIC ROUTING FOR OPENFLOW NETWORKS 111

motivation behind NeuRoute is that dynamic routing using traditional algorithmic solutions
is not practical due to their high computational complexity. That is, at every execution round
the routing algorithm uses measured link loads as input and performs a graph search to find
the near optimal paths.

The main contributions of this chapter are summarized as follows: (i) We introduce for the
first time an integral routing system based on machine learning and detail its architecture, (ii)
we detail the design of the neural network responsible for matching traffic demands to routing
paths and (iii) we evaluate our proposal against an efficient dynamic routing heuristic and
show our solution’s superiority.

The remainder of this chapter is organized as follows: Section 8.2 formally states the
dynamic routing problem and discusses its most prominent heuristic solutions. Section 8.3
details NeuRoute design. In section 8.4, we evaluate NeuRoute on real world network data
and topology and we conclude the paper in section 8.6

8.2 The Dynamic Routing Problem

In this section, we formulate the maximum throughput minimum cost dynamic routing
problem (MT-MC-DRP) as a linear program, and then prove its NP-completeness. The prob-
lem is equivalent to the known Unsplittable Constrained Multicommodity Max-Flow-Min-Cost
problem. We want to find routings for multiple unicast flows which maximizes the aggregate
flow in a graph, while minimizing the routing-cost. By focusing on unsplittable multicommod-
ity flow we exclude multipath routing where a flow can be split and routed through multiple
end-to-end paths.

We consider a software-defined network G(V, L), where V is the set of SDN-enabled switch
nodes, and L is the set of links that connect the switches where each link li,j has a capacity
C(l). Each unicast flow f has source and destination nodes denoted sf and df respectively,
a requested traffic rate Rf and a minimum necessary traffic rate Nf . Let rfin(v) and rfout(v)
denote the aggregate flow rate into/out of node v due to flow f , respectively. The traffic rate
related to flow f and flowing through link l is denoted by rf (l). Each ink has a routing cost
denoted by Θ(l) that can represent any linear function of the traffic flowing on it , i.e., delay,
jitter, congestion probability or reliability. We define an Admissible Routing as an assignment
of flows to the links in G, such that no capacity constraints are violated, and flow-conservation
applies at every node. The MT-MC-DRP problem can be stated as follows: Does there exist
an admissible routing for the flows, where each flow receives its requested rate rf while the
total routing cost is minimized?

8.2.1 MT-MC-DRP As Two Linear Problems

We formulate MT-MC-DRP as a succession of two linear problems (LPs): A Constrained-
Maximum-Flow LP (CMaxF-LP) and a Constrained-Minimum-Cost LP (CMinC-LP).

112 8.2. THE DYNAMIC ROUTING PROBLEM

8.2.1.1 CMaxF-LP

maximize(
∑

f∈F

rfin(df)) (8.2.1)

subject to:
rf (l) ≥ 0 ∀f ∈ F, ∀l ∈ Lf (8.2.2)

rf (l) ≤ C(l) ∀f ∈ F, ∀l ∈ Lf (8.2.3)
∑

f∈F

rf (l) ≤ C(l) ∀l ∈ L (8.2.4)

rfin(v) = rfout(v) ∀f ∈ F, ∀v ∈ V f − {sf , df} (8.2.5)

rfin(sf) = 0 ∀f ∈ F (8.2.6)

rfout(df) = 0 ∀f ∈ F (8.2.7)

rfout(sf) ≤ R
f ∀f ∈ F (8.2.8)

rfout(sf) ≥ N
f ∀f ∈ F (8.2.9)

8.2.1.2 CMinC-LP

minimize(
∑

f∈F

∑

l∈L

rf (l)×Θ(l)) (8.2.10)

subject to:
rfout(sf) = Πf + /− ε ∀f ∈ F, ∀l ∈ Lf (8.2.11)

∑

f∈F

rc(l) ≤ C(l) ∀l ∈ L (8.2.12)

rfin(v) = rfout(v) ∀f ∈ F, ∀v ∈ V ′ (8.2.13)

rfin(sf) = 0 ∀f ∈ F (8.2.14)

rfout(df) = 0 ∀f ∈ F (8.2.15)

Theorem. The Maximum Throughput Minimum Cost Dynamic Routing Problem as pre-
sented above is NP-hard.

Proof. refer to [198] [202] �

CHAPTER 8. PREDICTIVE DYNAMIC ROUTING FOR OPENFLOW NETWORKS 113

8.2.2 Heuristic Solution for The MT-MC-DRP

Due to its NP-completeness, an exact solution for the MT-MC-DRP as defined above is
not practical to be implemented in the network controller. It is more practical to design an ap-
proximate but fast solution. Therefore, a major research effort was put into designing efficient
fully polynomial-time approximation schemes (FPTAS) for multicommodity flow problems in-
cluding max flow min cost multicommodity problem. A fully polynomial-time approximation
scheme for a flow maximization problem is an algorithm that, given an accuracy parameter
ε > 0, computes, in polynomial time in the size of the input and 1/ε, a solution with an ob-
jective value within a factor of (1− ε) of the optimal one [199]. The multicommodity problem
literature has a rich body of work providing FPTASes. In this work, we use the novel method
proposed in [199] as a baseline heuristic to solve the MT-MC-DRP. We also refer to the same
paper for more literature on other existing heuristics.

8.3 System Design

As shown in figure 8.1, NeuRoute is designed as an integral routing application for the
SDN controller. NeuRoute is composed of three key components: a Traffic Matrix Estimator
(TME), a Traffic Matrix Predictor (TMP) and a Traffic Routing Unit (TRU). In this chapter,
we focus on and detail the TRU but also describe briefly the two other components for the
sake of completeness.

8.3.1 Traffic Matrix Estimator

As mentioned earlier,detailed design of the traffic matrix (TM) estimator is out of the
scope of this chapter. Here we only motivate the need for a traffic matrix estimator and define
its interfaces with the rest of NeuRoute components.

A network TM presents the traffic volume between all pairs of origin-destination (OD)
nodes of the network at a certain time t. The nodes in a traffic matrix can be Points- of-
Presence (PoPs), switches, routers or links. In OpenFlow SDNs, the controller leverages
packet_in messages to build a global view of the network. When a new flow arrives to a
switch, it is matched against forwarding rules to determine a forwarding path for it. If the
flow does not match any rule, the switch forwards the first packet or only the packet header to
the controller. In addition, the controller can query switches for packet counts that track the
number of packets and bytes handled by the switch. However, the number of packet_in and
the number of controller queries, necessary for a near real-time measurement, increases rapidly
with a large number of switches and flows, making this measurement mechanism not practical.
Also, there is a chance that by the time the controller receives the message, the values of the
counters become out of date and do not reflect the near real-time state of the switch anymore.
These and a number of other issues listed in [28] call for an efficient measurement mechanism

114 8.3. SYSTEM DESIGN

Figure 8.1: NeuRoute architecture

to capture traffic matrix in near real-time. In its current implementation, NeuRoute uses a
variant of a recent proposal called openMeasure [25] to estimate traffic matrix.

8.3.2 Traffic Matrix Predictor

Network Traffic Matrix prediction refers to the problem of estimating future network traffic
from the past and current network traffic data. Internet traffic is known to be self-similar
enabling it to be predictable with high accuracy [171]. NeuRoute’s Traffic Matrix Predictor
(TMP) uses a Long Short Term Memory Recurrent Neural Network (LSTM-RNN) described
in [200]. Figure 8.2 shows the sliding prediction window where at each time instant t, the
TMP takes a fixed size set of achieved traffic matrices as input and outputs the traffic matrix
of time instant t+ 1

Prediction using NNs involves two phases: a) the training phase and b) the test (prediction)
phase. During the training phase, the NN is supervised to learn from the data by presenting
the training data at the input layer and dynamically adjusting the parameters of the NN to
achieve the desired output value for the input set. The most commonly used learning algorithm
to train NNs is called the backpropagation algorithm. The underlying idea is to propagate
the error backward, from the output to the input, where the weights are changed continuously
until the output error falls below a preset value. In this way, the NN learns correlated patterns

116 8.3. SYSTEM DESIGN

new paths. In the following, we detail the design elements and the design challenges of TRU.

8.3.3.1 Deep Feed Forward Neural Networks

Deep neural networks are currently the most successful machine learning technique for
solving a variety of tasks including language translation, image classification and image gen-
eration. TRU is similar to an image classifier that has a set of images in input and tries to
find a function that matches these images to a set of classes. In the routing case, the traffic
matrices are the images and the routing paths represent the output classes. The deep neural
network used in TRU is presented in figure 8.3. It takes a traffic matrix and an NS instance
as input and matches them to a unique path yi as output.

Figure 8.3: Deep Feed Forward Neural Network

In a deep feed forward network, the information flows only forward through the network
from the input nodes, through the hidden nodes to the output nodes, with no cycles or loops.
Each node has an activation function which acts like a threshold for the node to fire up: A
node n produces a value for its output nodes only if the weighted sum of the input values of n
is equal or exceeds the threshold. Each edge has a weight and permits transfer of value from
node to node.

Learning Algorithm. We use the Backpropagation learning algorithm that was first
introduced in the 70s and now is the most widely used algorithm for supervised learning in
deep feed-forward networks. The goal is to make the network learn some target function, in
our case, matching traffic matrices to routing paths. The basic idea of the algorithm is to
look for the minimum of the error function in weight space by repeatedly applying the chain
rule to compute the influence of each weight in the network with respect to the error function:
The output values of the network are compared with the learning sample (correct answer) to
compute the value of the error function. The calculated error is then fed back through the
network and used to adjust the weights of each connection in order to reduce the value of
the error function by some small amount. After repeating this process for a sufficiently large

CHAPTER 8. PREDICTIVE DYNAMIC ROUTING FOR OPENFLOW NETWORKS 117

number of training cycles, the network will usually converge to some state where the error is
small enough. In other words, we say that the network has learned the target function to some
extend. We refer to [204] for more details about the algorithm.

Optimization Algorithm. In this work, we use Adam (short for Adaptive Moment
Estimation) optimizer, one of the most adopted optimization algorithms among deep learning
practitioners for applications in computer vision and natural language processing. Adam opti-
mizer is an improvement of the gradient descent algorithm that can yield quicker convergence
in training deep networks [205].

Learning Rate. The learning rate determines how quickly or how slowly we want the
network weights to be updated (by the backpropagation algorithm). In other words, how
quickly or how slowly we want the network to forget learned features and learn new ones.
Picking a learning rate is problem dependent since the optimum learning rate can differ based
on a number of parameters including epoch size, number of learning iterations, number of
hidden layers and/or neurons and number and format of the inputs. Trial and error is often
used in order to determine the ideal learning condition for each problem studied. We describe
our empirical approach for choosing the learning rate in the implementation section 8.4.

8.3.3.2 Input Pre-Processing and Normalization

The input (NS+traffic matrix) are merged into one single vector of numbers then nor-
malized by dividing all numbers by the greatest number. The result is a vector of numbers
ranging between 0 and 1. This normalization is a good practice that can make training faster
and reduce the chance of getting stuck in local optima [201].

8.3.3.3 Routing Over Time

At each time instant t, the TRU’s trained model takes predicted traffic matrix of time
instant t+ 1 (TMt+1) and corresponding NS as input. The model function is applied and the
output is a set of path probabilities where the highest value indicates the best routing path.
TRU then sends the chosen path to the controller in order to be installed in switches as flow
rules. By the time t+1, when the flows arrive, the forwarding rules are already installed which
minimizes considerably the network delay.

Matching traffic matrices and network states to routing paths is similar to classifying a
stream of frames in a video, witch is not a common and well studied problem since the usual
image classification is applied to individual images. Besides tweaking the neural network
architecture and parameters to obtain a high classification performance, there are two unique
challenges that arise in our problem:

• The runtime performance of the trained model is critical and needs to be optimized
to perform continuous routing over time. We achieve high performance by keeping the

118 8.4. IMPLEMENTATION AND EVALUATION

predicted traffic matrices in memory before feeding them to the LRU’s neural network.

• Unlike images and videos, there is no camera bias in traffic matrices (Camera bias refers
to the fact that in many images and videos, the object of interest often occupies the
center region), hence it is not possible to work around resolutions to optimize training
time as it was done in [203].

8.4 Implementation and Evaluation

We implemented NeuRoute as a routing application on top of POX controller [189]. The
TRU’s neural network is implemented using Keras library [208] on top of Google’s TensorFlow
machine learning framework [209]. We have chosen the GÉANT network topology for our
testbed as GÉANT’s traffic matrices are already available online [210]. We implemented the
GÉANT topology (shown in figure 8.4) as an SDN network using Mininet [211] setting link
capacities at 10Mbps. We use link delay as the cost function with 2ms delay per link.

Figure 8.4: GÉANT2 Network Topology [212]

Data generation. In order to generate the learning data, we applied the BH on the
testbed described above with GÉANT’s traffic matrices as input. We obtained a data set of
10000 samples (traffic matrix+network state, near optimal path) that we split to training data
set of 7000 samples and test data set of 3000 samples.

The neural network architecture. Determining the neural network architecture
is problem dependent, hence we adopted an empirical approach to determine the number of

CHAPTER 8. PREDICTIVE DYNAMIC ROUTING FOR OPENFLOW NETWORKS 119

hidden layers and the size of each hidden layer. We measured the training time and the learning
performance (GÉANT traffic matrices + related network states as input and the results of the
BH as output) for different numbers of hidden layers and different hidden layer sizes. This
allowed us to pick an optimal number of hidden layers of 6 with 100 nodes per hidden layer.
Note that we choose the architecture parameters based on the measured learning performance,
and we stop experimenting when the training time becomes too long.

(a) MSR over number of hidden layers
(b) Training time over number of hidden lay-
ers

Figure 8.5: Picking the number of hidden layers

(a) Training time over number of hidden
nodes

(b) Training time over number of hidden
nodes

Figure 8.6: Picking the number of hidden nodes

Figure 8.5a depicts the measured MSR over different numbers of hidden layers. The MSR
diminishes at high numbers of hidden layers (deep network) but figure 8.5b shows that the
deeper is the network the longer it takes to train it. To select a good compromise, we fix the
training time to 2 minutes. This training time corresponds to a depth of 6 hidden layers.

120 8.4. IMPLEMENTATION AND EVALUATION

Similarly, figure 8.6a shows that the MSR diminishes at higher network sizes but the
training time goes up as figure 8.6b shows. We fix again the training time to 2 minutes and
obtain the corresponding hidden nodes number of 600, or 100 nodes per hidden layer. Note
that a 2 minutes training time is not too long but is chosen proportionally to the size of the
data set. Larger data sets may take hours or days to train.

Data preparation. We prepared the input data as follows: we split the total learning
data into batches of size 100 each. Each input sample is a vector of size 506 + 38 = 544, 506
being the size of a vector representing one traffic matrix of 23 nodes (23*22) and 38 being the
number of links in the GÉANT topology, which is equal to the size of one network state vector.
The output vector is of size 23∗22∗5 with 23*22 being the number of origin-destination (OD)
pairs and we arbitrarily fix the number of possible paths per OD pair to 6.

The learning rate. Like the neural network’s architecture, the learning rate is problem
dependent. Our approach is to start with a high value and go down to lower values, recording
the learning performance and training time for every learning rate value.

Figure 8.7: Accuracy over different learning rate values

Figure 8.7 depicts the MSR variation over different learning rate values. The training time
does not change for different learning rates (5s per epoch).

The overfitting problem. Overfitting is a serious problem that occurs when training
a neural network on limited data. It happens when a model learns the detail and noise in
the training data to the extent that it negatively impacts its performance on new data. This
means that the noise or random fluctuations in the training data is picked up and learned
as features by the model. The problem is that these features do not apply to new data and
negatively impact the model’s ability to generalize. Various methods have been proposed
to avoid or reduce overfitting, including stopping the training as soon as performance on a
validation set starts to get worse, introducing weight penalties of various kinds such as L1 and
L2 regularization and Dropout [213]. In this work, we use the Dropout technique which is
proven to be the most effective [213]. Dropout is a technique that addresses both these issues.

CHAPTER 8. PREDICTIVE DYNAMIC ROUTING FOR OPENFLOW NETWORKS 121

It prevents overfitting and provides a way of approximately combining exponentially many
different neural network architectures efficiently. The term “dropout” refers to dropping out
units (hidden and visible) in a neural network.

Evaluation of TRU. Finally, we applied the trained model on the test data and recorded
the accuracy (number of correctly chosen paths from the test set) over number of training
epochs in figure 8.8. One epoch is a one complete training pass over the whole training data
set where each epoch takes roughly 2s to complete. Figure 8.8 shows that the model picks
the near optimal path learned from the BH with an estimated error of less than 0.05% when
trained well (3min of training is enough to reach this error rate). Furthermore, the trained
model executes and finds the near optimal path in 30ms compared to the BH execution time
of 120ms.

Figure 8.8: Accuracy over number of training epochs

8.5 Related Work

The authors of paper [207] propose a machine learning meta-layer composed of multiple
modules. Each module works only for one OD pair. The proposed scheme is however not
practical since the number of OD pairs (hence the number of neural networks associated)
explodes in large networks. Knowing that each neural network is trained separately and each
trained model operates separately, this approach does not capture the relations between ODs
requests that arrive at the same time. It is also much more complicated to implement and
computationally expensive than our approach.

122 8.6. CONCLUSION

8.6 Conclusion

In this chapter, we introduced NeuRoute, a machine learning based dynamic routing frame-
work for SDN. NeuRoute learns a routing algorithm and imitates it with higher performance.
We implemented NeuRoute as a routing application on top of Pox Controller and performed
proof of concept experiments that showed our solution’s superiority compared to an efficient
dynamic routing heuristic. Experiments on larger data sets are being conducted and will be
presented in a future work along with more details about the system.

CHAPTER 8. PREDICTIVE DYNAMIC ROUTING FOR OPENFLOW NETWORKS 123

124 8.6. CONCLUSION

Part V

Conclusion

125

Chapter 9
Conclusions and Future Work

Summary
9.1 Conclusions . 127

9.2 Future Work . 128

9.3 Publications . 129

In this chapter, we present the general conclusions of this manuscript and then list a
number of perspectives for future work.

9.1 Conclusions

The Telecom and ICT sector is witnessing an unprecedented techno-economic shift due
to the emerging Network Softwarization technologies. By separating the hardware on which
network functions/services run and the software that realizes and controls the network func-
tions/services, Software-Defined Networking (SDN) and Network Function Virtualization (NFV)
are creating an open ecosystem that drastically reduces the cost of building networks and
changes the way operators operate their networks. SDN and NFV paradigms add more flexi-
bility and enable more control over networks, thus, related technologies are expected to dom-
inate a large part of the networking market in the next few years (estimated at USD 3.68B in
2017 and forecasted to reach $54B by 2022 at a Compound Annual Growth Rate (CAGR) of
71.4%).

However, one of the major operators’ concerns about Network Softwarization is security.
In the first part of this thesis, we have addressed some of the most sensitive security issues in
SDN. First, we have designed and implemented a pentesting (penetration testing) framework
for SDN controllers. We have proposed a set of algorithms to fingerprint a remote SDN

127

128 9.2. FUTURE WORK

controller without having direct connection to it. Using our framework, network operators
can evaluate the security of their SDN deployments (including Opendaylight, Floodlight and
Cisco Open SDN Controller) before putting them into production. Second, we have studied
the Topology Discovery problem in SDN controllers and discovered major security (as well
as performance) issues around the current de-facto OpenFlow Topology Discovery Protocol
(OFDP). In order to fix these major issues, we have designed and implemented a new secure
and efficient OpenFlow Topology Discovery Protocol (called sOFTDP). sOFTDP requires
minimal changes to the OpenFlow switch design and is shown to be more secure than previous
workarounds on traditional OFDP. Also, sOFTDP outperforms OFDP by several orders of
magnitude which we confirmed by extensive experiments.

In the second part of this thesis, we have proposed a novel traffic engineering scheme for
softwarized networks. Inspired by the recent breakthroughs in machine learning techniques,
notably, Deep Neural Networks (DNNs), we have built a traffic engineering engine for SDN
called NeuRoute, entirely based on DNNs. Current SDN/OpenFlow controllers use a default
routing based on Dijkstra’s algorithm for shortest paths, and provide APIs to develop custom
routing applications. NeuRoute is a controller-agnostic dynamic routing framework that (i)
predicts traffic matrix in real time, (ii) uses a neural network to learn traffic characteristics and
(iii) generates forwarding rules accordingly to optimize the network throughput. NeuRoute is
composed of two main components: NeuTM and NeuRoute-TRU. NeuTM is a traffic matrix
(TM) prediction framework that uses Long-Short Term Memory (LSTM) Neural Network ar-
chitecture to learn long-range traffic dependencies and characteristics then accurately predicts
future TMs. NeuRoute-TRU is a path selection engine that computes optimal paths for traffic
matrices predicted by NeuTM. NeuRoute-TRU achieves the same results as the most efficient
dynamic routing heuristic but in much less execution time.

9.2 Future Work

Several future works can be added to this study to advance both security and traffic
engineering in softwarized networks.

First, to further investigate and harden the security of SDN and NFV, the SDN con-
troller fingerprinting framework can be extended by fingerprinting a larger set of controllers
and designing more techniques for fingerprinting controllers. Also, formal methods could be
investigated to evaluate fingerprinting techniques and how they can be possibly combined to
increase success rate. Furthermore, various security countermeasures must be explored and
deployed to harden the security of SDN networks against controller fingerprinting and subse-
quent attacks. On the topology discovery side, our protocol sOFDTP needs to be evaluated at
the scale of large software defined data center networks before pushing it into a standardization
process. Designing new attacks on sOFTDP would improve its security as well.

Second, our machine learning based traffic engineering system NeuRoute is being tested
on large SDNs. We aim to collaborate with industrial partners to test it in their data center

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 129

and campus networks. On the research side, we see a great potential in using reinforcement
learning for traffic engineering in SDN, especially when the learning data is too large to be
labeled, which is mostly the case in networking.

9.3 Publications

Azzouni, Abdelhadi, et al. "Fingerprinting OpenFlow controllers: The first step to attack
an SDN control plane."Global Communications Conference (GLOBECOM). IEEE, 2016.

Azzouni, Abdelhadi, et al. "Limitations of openflow topology discovery protocol." Ad Hoc
Networking Workshop (Med-Hoc-Net), 2017 16th Annual Mediterranean. IEEE, 2017.

Azzouni, Abdelhadi, Raouf Boutaba, and Guy Pujolle. "NeuRoute: Predictive Dynamic
Routing for Software-Defined Networks." 4th International Workshop on Management of SDN
and NFV Systems (ManSDN/NFV)-CNSM, IEEE, 2017.

Azzouni, Abdelhadi, et al. "sOFTDP: Secure and Efficient OpenFlow Topology Discovery
Protocol." IEEE/IFIP NOMS 2018. to appear.

Azzouni, Abdelhadi, and Guy Pujolle. "NeuTM: A Neural Network-based Framework for
Traffic Matrix Prediction in SDN." IEEE/IFIP NOMS 2018. to appear.

130 9.3. PUBLICATIONS

Bibliography

[1] BERDE, Pankaj, GEROLA, Matteo, et al. ONOS: towards an open, distributed SDN OS.
In : Proceedings of the third workshop on Hot topics in software defined networking. ACM,
2014. p. 1-6.

[2] FIELDING, Roy. Representational state transfer. Architectural Styles and the Design of
Netowork-based Software Architecture, 2000, p. 76-85.

[3] YAP, Kok-Kiong, HUANG, Te-Yuan, DODSON, Ben, et al. Towards software-friendly
networks. In : Proceedings of the first ACM asia-pacific workshop on Workshop on systems.
ACM, 2010. p. 49-54.

[4] KREUTZ, Diego, RAMOS, Fernando MV, VERISSIMO, Paulo Esteves, et al. Software-
defined networking: A comprehensive survey. Proceedings of the IEEE, 2015, vol. 103, no
1, p. 14-76.

[5] Open Networking Foundation (ONF), 2014. [Online]. Available:
https://www.opennetworking.org/

[6] LARA, Adrian, KOLASANI, Anisha, et RAMAMURTHY, Byrav. Network innovation
using openflow: A survey. IEEE communications surveys & tutorials, 2014, vol. 16, no 1,
p. 493-512.

[7] ALLIANCE, N. G. M. N. Further study on critical C-RAN technologies. Next Generation
Mobile Networks, 2015.

[8] HAERICK, W. et GUPTA, M. White Paper: 5G and the Factories of the Future. 5G-PPP,
Tech. Rep, 2015.

[9] SDXCentral. Virtual Versus Reality: The Challenges of Enterprise NFV Adoption.
https://www.sdxcentral.com/articles/contributed/the-challenges-of-enterprise-nfv-
adoption/2017/10/

131

132 BIBLIOGRAPHY

[10] ETSI GS NFV. Network Functions Virtualisation (NFV) Release 3; Security; Secu-
rity Management and Monitoring specification. http://www.etsi.org/deliver/etsi_gs/NFV-
SEC/001_099/013/03.01.01_60/gs_NFV-SEC013v030101p.pdf

[11] D. Awduche, A. Chiu, A. Elwalid, I. Widjaja, X. Xiao, Overview and Principles of Internet
Traffic Engineering, RFC 3272, Tech. Rep., May 2002

[12] Ivan Pepelnjak. Traffic engineering the service provider network. searchtele-
com.techtarget.com (http://searchtelecom.techtarget.com/feature/Traffic-engineering-the-
service-provider-network)

[13] Akyildiz, Ian F., et al. "A roadmap for traffic engineering in SDN-OpenFlow networks."
Computer Networks 71 (2014): 1-30.

[14] Shu, Zhaogang, et al. "Traffic engineering in software-defined networking: Measurement
and management." IEEE Access 4 (2016): 3246-3256.

[15] MCKEOWN, Nick, ANDERSON, Tom, BALAKRISHNAN, Hari, et al. OpenFlow: en-
abling innovation in campus networks. ACM SIGCOMM Computer Communication Re-
view, 2008, vol. 38, no 2, p. 69-74.

[16] B. Niven-Jenkins, D. Brungard, M. Betts, N. Sprecher, S. Ueno, Requirements of an
MPLS Transport Profile, RFC 5654, Tech. Rep., September 2009.

[17] A.R. Curtis, W. Kim, P. Yalagandula, Mahout: low-overhead datacenter traffic manage-
ment using end-host-based elephant detection, April 2011, pp. 1629–1637.

[18] Netflow. http://www.cisco.com/en/US/prod/collateral/iosswrel/
ps6537/ps6555/ps6601/prod_white_paper0900aecd80406232.html

[19] sflow. http://www.sflow.org/sFlowOverview.pdf.

[20] A.C. Myers, Jflow: practical mostly-static information flow control, in: Proceedings of
the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL’99, January 1999, pp. 228–241.

[21] S.R. Chowdhury, M.F. Bari, R. Ahmed, R. Boutaba, Payless: a low cost network mon-
itoring framework for software defined networks, in: Proceedings of the 14th IEEE/IFIP
Network Operations and Management Symposium, NOMS’14, May 2014.

[22] A. Tootoonchian, M. Ghobadi, Y. Ganjali, Opentm: traffic matrix estimator for openflow
networks, in: Proceedings of the 11th International Conference on Passive and Active
Measurement, PAM’10, April 2010, pp. 201–210.

[23] M. Malboubi, L. Wang, C.-N. Chuah, and P. Sharma, “Intelligent SDN based traffic
(de) aggregation and measurement paradigm (iSTAMP),” in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), Apr./May 2014, pp. 934–942.

BIBLIOGRAPHY 133

[24] Gong, Yanlei, et al. "Towards accurate online traffic matrix estimation in software-defined
networks." Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined Net-
working Research. ACM, 2015.

[25] Liu, Chang, AMehdi Malboubi, and Chen-Nee Chuah. "OpenMeasure: Adaptive flow
measurement & inference with online learning in SDN." Computer Communications Work-
shops (INFOCOM WKSHPS), 2016 IEEE Conference on. IEEE, 2016.

[26] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, H.V. Madhyastha, Flowsense: mon-
itoring network utilization with zero measurement cost, in: Proceedings of the 14th In-
ternational Conference on Passive and Active Measurement, PAM’13, March 2013, pp.
31–41.

[27] M. Yu, L. Jose, R. Miao, Software defined traffic measurement with opensketch, in: Pro-
ceedings of the 10th USENIX Symposium on Networked Systems Design and Implemen-
tation, NSDI’13, vol. 13, April 2013, pp. 29–42.

[28] J. Suh, T. Kwon, C. Dixon, W. Felter, and J. Carter, “Opensample: A low-latency,
sampling-based measurement platform for sdn,” IBM Research Report, January 2014.

[29] Techcrunch. Google’s AlphaGo AI beats the world’s best human Go player.
https://techcrunch.com/2017/05/23/googles-alphago-ai-beats-the-worlds-best-human-
go-player/

[30] J. A. Boyan and M. L. Littman, “Packet routing in dynamically changing networks: a
reinforcement learning approach,” in Advances in Neural Inform. Process. Syst., J. Jack,
D. Cowan, G. Tesauro, and J. Alspector, Eds. San Francisco, CA, USA: Morgan Kaufmann
Publishers, 1994, vol. 6, pp. 671–678.

[31] S. P. M. Choi and D. Y. Yeung, “Predictive q-routing: a memory-based reinforcement
learning approach to adaptive traffic control,” in Advances in Neural Inform. Process. Syst.,
D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, Eds. Cambridge, MA, USA: The MIT
Press, 1996, vol. 8, pp. 945–951.

[32] A. Nowe, K. Steenhaut, M. Fakir, and K. Verbeeck, “Q-learning for adaptive load based
routing,” in Proc. IEEE Int. Conf. Syst., Man, and Cybern., vol. 4, San Diego, CA, USA,
Oct. 1998, pp. 3965–3970.

[33] L. Peshkin and V. Savova, “Reinforcement learning for adaptive routing,” in Proc. Int.
Joint Conf. Neural Netw., vol. 2, Honolulu, HI, USA, May 2002, pp. 1825–1830.

[34] Soroush Haeri. Applications of Reinforcement Learning to Routing and Virtualization in
Computer Networks. 2016. PHD thesis. School of Engineering Science Faculty of Applied
Science, B. Eng., Multimedia University, Malaysia.

[35] Yanjun, Li, Li Xiaobo, and Yoshie Osamu. "Traffic engineering framework with machine
learning based meta-layer in software-defined networks." Network Infrastructure and Dig-
ital Content (IC-NIDC), 2014 4th IEEE International Conference on. IEEE, 2014.

134 BIBLIOGRAPHY

[36] Lin, Shih-Chun, et al. "QoS-aware adaptive routing in multi-layer hierarchical software
defined networks: a reinforcement learning approach." Services Computing (SCC), 2016
IEEE International Conference on. IEEE, 2016.

[37] Pasca, S. Thomas Valerrian, Siva Sairam Prasad Kodali, and Kotaro Kataoka. "AMPS:
Application aware multipath flow routing using machine learning in SDN. " Communica-
tions (NCC), 2017 Twenty-third National Conference on. IEEE, 2017.

[38] Valadarsky, Asaf, et al. "A machine learning approach to routing." arXiv preprint
arXiv:1708.03074 (2017).

[39] Feamster, Nick, Jennifer Rexford, and Ellen Zegura. "The road to SDN." Queue 11.12
(2013): 20.

[40] Harvey Freeman and Raouf Boutaba. Networking industry transformation through soft-
warization. IEEE Communications Magazine, August 2016.

[41] B. Han, V. Gopalakrishnan, L. S. Ji, and S. J. Lee, “Network Function Virtualization:
Challenges and Opportunities for Innovations,” IEEE Communications Magazine, vol. 53,
no. 2, pp. 90–97, Feb. 2015.

[42] D. Cotroneo, L. De Simone, A. K. Iannillo, A. Lanzaro, R. Natella, F. Jiang, and P. Wang,
“Network Function Virtualization: Challenges and Directions for Reliability Assurance,”
in ISSREW, Nov. 2014.

[43] Open Networking Foundation (ONF). https://www.opennetworking.org/.

[44] Open Networking Foundation (ONF), “Software-Defined Networking: The New Norm for
Networks,” Apr. 2012.

[45] ETSI NFV ISG, “Network Functions Virtualization Introductory White Paper: An Intro-
duction, Benefits, Enablers, Challenges & Call for Action,” in SDN and OpenFlow World
Congress, Oct. 2012.

[46] H. Hawilo, A. Shami, M. Mirahmadi, and R. Asal, “NFV: State of the Art, Challenges,
and Implementation in Next Generation Mobile Networks (vEPC),” IEEE Network, vol.
28, no. 6, pp. 18–26, Nov./Dec. 2014.

[47] Alcatel-Lucent White Paper, “Network Functions Virtualization: Challenges and Solu-
tions,” Jun. 2013.

[48] D. F. Macedo, D. Guedes, L. F. M. Vieira, M. A. M. Vieira, and M. Nogueira,
“Programmable Networks-From Software-Defined Radio to Software-Defined Networking,”
IEEE Communications Surveys & Tutorials, vol. 17, no. 2, pp. 1102–1125, May 2015.

[49] A.-T. Campbell, I. Katzela, K. Miki, and J. Vicente, “Open signaling for ATM, inter-
net and mobile networks (OPENSIG’98),” ACM SIGCOMM Computer Communication
Review, vol. 29, no. 1, pp. 97–108, Jan. 1999.

BIBLIOGRAPHY 135

[50] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and G. J. Minden, “A
Survey of Active Network Research,” IEEE Communications Magazine, vol. 35, no. 1, pp.
80–86, Jan. 1997.

[51] S. da Silva, Y. Yemini, and D. Florissi, “The NetScript Active Network System,” IEEE
Journal on Selected Areas in Communications, vol. 19, no. 3, pp. 538–551, Mar. 2001.

[52] A.-T. Campbell, H. G. De Meer, M. E. Kounavis, K. Miki, J. B. Vicente, and D. Villela, “A
Survey of Programmable Networks,” ACM SIGCOMM Computer Communication Review,
vol. 29, no. 2, pp. 7–23, Apr. 1999.

[53] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti, “A Survey
of Software-Defined Networking: Past, Present, and Future of Programmable Networks,”
IEEE Communications Surveys & Tutorials, vol. 16, no. 3, pp. 1617–1634, Aug. 2014.

[54] K. L. Calvert, S. Bhattacharjee, E. Zegura, and J. Sterbenz, “Directions in Active Net-
works,” IEEE Communications Magazine, vol. 36, no. 10, pp. 72–78, Oct. 1998.

[55] J. M. Smith and S. M. Nettles, “Active Networking: One View of the Past, Present, and
Future,” IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and
Reviews, vol. 34, no. 1, pp. 4–18, Feb. 2004.

[56] D.-L. Tennenhouse and D. J. Wetherall, “Towards an Active Network Architecture,” ACM
SIGCOMM Computer Communication Review, vol. 37, no. 5, pp. 81–94, Oct. 2007.

[57] K. Calvert, “Reflections on Network Architecture: an Active sNetworking Perspective,”
ACM SIGCOMM Computer Communication Review, vol. 36, no. 2, pp. 27–30, Apr. 2006.

[58] J. E. Van der Merwe, S. Rooney, I. Leslie, and S. Crosby, “The Tempest-A Practi-
cal Framework for Network Programmability,” IEEE Network, vol. 12, no. 3, pp. 20–8,
May/Jun. 1998.

[59] E. Haleplidis, J. H. Salim, J. M. Halpern, S. Hares, K. Pentikousis, K. Ogawa, W.-M.
Wang, S. Denazis, and O. Koufopavlou, “Network Programmability With ForCES,” IEEE
Communications Surveys & Tutorials, vol. 17, no. 3, pp. 1423–1440, Aug. 2015.

[60] L. Yang, R. Dantu, T. Anderson, and R. Gopal, “Forwarding and Control Element Sepa-
ration (ForCES) Framework,” in Internet Engineering Task Force (IETF), Apr. 2004, pp.
1–40.

[61] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and J. van der Merwe,
“Design and Implementation of a Routing Control Platform,” in Proceedings of the 2nd
conference on Symposium on Networked Systems Design & Implementation (NSDI), vol.
2, 2005, pp. 15–28.

[62] J. Vasseur and J. L. Roux, “Path Computation Element (PCE) Com- munication Protocol
(PCEP),” Internet Engineering Task Force (IETF), pp. 1–87, Mar. 2009.

[63] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, G. Rexford, J.and Xie, H. Yan,
J.-B. Zhan, and H. Zhang, “A Clean Slate 4D Approach to Network Control and Man-

136 BIBLIOGRAPHY

agement,” ACM SIGCOMM Computer Communication Review, vol. 35, no. 5, pp. 41–54,
Oct. 2005.

[64] M. Casado, T. Garfinkel, A. Akella, M. J. Freedman, D. Boneh, N. McKeown, and S.
Shenker, “SANE: A Protection Architecture for Enterprise Networks,” in Proceedings of
the 15th conference on USENIX Security Symposium (USENIX-SS’), vol. 15, no. 10, 2006,
pp. 1–15.

[65] M. Casado, J. Freedman, M. J.and Pettit, J.-Y. Luo, N. McKeown, and S. Shenker,
“Ethane: Taking Control of the Enterprise,” ACM SIGCOMM Computer Communication
Review, vol. 37, no. 4, pp. 1–12, Oct. 2007.

[66] O.S.Specification, “1.5.1,” 2015, https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow/openflow-switch-v1.5.1.pdf.

[67] F. Hu, Q. Hao, and K. Bao, “A Survey on Software-Defined Network and OpenFlow:
From Concept to Implementation,” IEEE Communica- tions Surveys & Tutorials, vol. 16,
no. 4, pp. 2181–2206, Nov. 2014.

[68] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and S. Shenker, “NOX:
Towards an Operating System for Networks,” ACM SIGCOMM Computer Communication
Review, vol. 38, no. 3, pp. 105–110, Jul. 2008.

[69] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R. Ramanathan,
Y. Iwata, H. Inoue, T. Hama, and S. Shenker, “Onix: A Distributed Control Platform
for Large-scale Production Networks,” in Proceedings of the 9th USENIX conference on
Operating Systems Design and Implementation (OSDI), vol. 10, 2010.

[70] Open Network Operating System (ONOS), http://onosproject.org/.

[71] V. Bollapragada, R. White, and C. Murphy, Inside Cisco IOS Software Architecture. Cisco
Press, 2008.

[72] Junos OS, http://www.juniper.net/us/en/products-services/nos/junos/.

[73] ExtremeXOS, http://www.extremenetworks.com/product/extremexos- network-
operating-system.

[74] Service Router Operating System (SR OS), https://www.alcatel- lu-
cent.com/products/sros.

[75] D. Kreutz, F. M. V. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg, S. Azodolmolky,
and S. Uhlig, “Software-Defined Networking: A Comprehensive Survey,” Proceedings of
the IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.

[76] “European telecommunications standards institute, the network functions virtualization
industry specification group,” http://www.etsi.org/technologies-clusters/technologies/nfv.

BIBLIOGRAPHY 137

[77] ETSI NFV ISG, “Network Functions Virtualization Update White Paper: Network Op-
erator Perspectives on Industry Progress,” in SDN and OpenFlow World Congress, Oct.
2013.

[78] ETSI NFV ISG, “Network Functions Virtualization White Paper 3: Network Operator
Perspectives on Industry Progress,” in SDN and OpenFlow World Congress, Oct. 2014.

[79] Y. Jarraya, T. Madi, and M. Debbabi, “A Survey and a Layered Taxonomy of Software-
Defined Networking,” IEEE Communications Surveys & Tutorials, vol. 16, no. 4, pp.
1955–1980, Nov. 2014.

[80] W.-F. Xia, Y.-G. Wen, C.-H. Foh, D. Niyato, and H.-Y. Xie, “A Survey on Software-
Defined Networking,” IEEE Communications Surveys & Tutorials, vol. 17, no. 1, pp. 27–51,
Mar. 2015.

[81] ETSI. "Network Functions Virtualization (NFV) Management and Orchestration,” Dec.
2014.

[82] “ETSI Group Specification: Network Functions Virtualization (NFV) Virtualization Re-
quirements,” Oct. 2013.

[83] “ETSI Group Specification: Network Functions Virtualization (NFV) Resiliency Require-
ments,” Jan. 2015.

[84] J.-L. Izquierdo-Zaragoza, A. Fernandez-Gambin, J.-J. Pedreno- Manresa, and P. Pavon-
Marino, “Leveraging Net2Plan planning tool for network orchestration in OpenDaylight,”
in SaCoNeT, Jun. 2014.

[85] S. Ristov, M. Gusev, and A. Donevski, “Security Vulnerability Assessment of OpenStack
Cloud,” in CICSyN, May 2014.

[86] A. Mayoral, R. Vilalta, R. Munoz, R. Casellas, R. Martinez, and J. Vilchez, “Integrated
IT and network orchestration using OpenStack, OpenDaylight and active stateful PCE for
intra and inter data center connectivity,” in ECOC, Sep. 2014.

[87] OPNFV. https://www.opnfv.org/.

[88] G. Monteleone and P. Paglierani, “Session Border Controller Virtualization Towards
“Service-Defined" Networks Based on NFV and SDN,” in SDN4FNS, Nov. 2013.

[89] G.-Y. Liu and T. Wood, “Cloud-Scale Application Performance Monitoring with SDN
and NFV,” in IC2E, Mar. 2015.

[90] T. Wood, K. K. Ramakrishnan, J. Hwang, G. Liu, and W. Zhang, “Toward a Software-
Based Network: Integrating Software Defined Networking and Network Function Virtual-
ization,” IEEE Network, vol. 29, no. 3, pp. 36–41, May/Jun. 2015.

[91] S. M. M. Gilani, T. Hong, and G.-F. Zhao, “SN-FMIA: SDN and NFV enabled Future
Mobile Internet Architecture,” in ICACT, Jul. 2015.

138 BIBLIOGRAPHY

[92] N. Omnes, M. Bouillon, G. Fromentoux, and O. Le Grand, “A Programmable and Virtu-
alized Network & IT Infrastructure for the Internet of Things,” in ICIN, Feb. 2015.

[93] K. Giotis, Y. Kryftis, and V. Maglaris, “Policy-based Orchestration of NFV Services in
Software-Defined Networks,” in NetSoft, Apr. 2015.

[94] Google, “Inter-Datacenter WAN with centralized TE using SDN and OpenFlow,” 2012,
pp. 1–2.

[95] S. Jain et al., “B4: Experience with a Globally-Deployed Software Defined WAN,” ACM
SIGCOMM Computer Communication Review, vol. 43, no. 4, pp. 3–14, Oct. 2013.

[96] “The cloudnfv project,” 2013, http://www.cloudnfv.com/.

[97] “The cloudnfv project white paper,” 2013, http://www.cloudnfv.com/WhitePaper.pdf.

[98] M. Dillon and T. Winters, “Virtualization of home network gateways,” Computer, no. 11,
pp. 62–65, 2014.

[99] Z. Bronstein and E. Shraga, “Nfv virtualisation of the home environment,” in Consumer
Communications and Networking Conference (CCNC), 2014 IEEE 11th. IEEE, 2014, pp.
899–904.

[100] M. Ibanez, N. M. Madrid, and R. Seepold, “Virtualization of Residential Gateways,” in
WISES, Jun. 2007.

[101] V. Aggarwal, V. Gopalakrishnan, R. Jana, K. K. Ramakrishnan, and V. A. Vaisham-
payan, “Optimizing Cloud Resources for Delivering IPTV Services Through Virtualiza-
tion,” IEEE Transactions on Mul- timedia, vol. 15, no. 4, pp. 789–801, Jun. 2013.

[102] “ETSI Group Specification: Network Functions Virtualization (NFV) Use Cases,” Oct.
2013.

[103] I. Giannoulakis, E. Kafetzakis, G. Xylouris, G. Gardikis, and A. Kourtis, “On the Ap-
plications of Efficient NFV Management Towards 5G Networking,” in 5GU, Nov. 2014.

[104] J. Soares, C. Goncalves, B. Parreira, P. Tavares, J. Carapinha, J. P. Barraca, R. L.
Aguiar, and S. Sargento, “Toward a Telco Cloud Environment for Service Functions,”
IEEE Communications Magazine, vol. 53, no. 2, pp. 98–106, Feb. 2015.

[105] C. Liang, F. R. Yu, and X. Zhang, “Information-Centric Network Function Virtualization
over 5G Mobile Wireless Networks,” IEEE Network, vol. 29, no. 3, pp. 68–74, May/Jun.
2015.

[106] Huawei. “Observation to NFV, White Paper” Nov. 2014.

[107] “ETSI Group Specification: Network Functions Virtualization (NFV) NFV Security and
Trust Guidance,” Dec. 2014.

[108] J. Keeney, S. van der Meer, and L. Fallon, “Towards Real-time Management of Virtual-
ized Telecommunication Networks,” in CNSM, Nov. 2014.

BIBLIOGRAPHY 139

[109] B. Anwer, T. Benson, N. Feamster, D. Levin, and J. Rexford, “A slick control plane
for network middleboxes,” in Proceedings of ACM SIGCOMM workshop on Hot topics in
software defined networking. ACM, 2013, pp. 147–148.

[110] S. K. Fayazbakhsh, V. Sekar, M. Yu, and J. C. Mogul, “Flowtags: Enforcing network-
wide policies in the presence of dynamic middlebox actions,” in Proceedings of the second
ACM SIGCOMM workshop on Hot topics in software defined networking. ACM, 2013, pp.
19–24.

[111] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, “Simple-fying middlebox
policy enforcement using sdn,” in ACM SIGCOMM computer communication review, vol.
43, no. 4. ACM, 2013, pp. 27–38.

[112] J. H. Jafarian, E. Al-Shaer, and Q. Duan, “Openflow random host mutation: transparent
moving target defense using software defined networking,” in HotSDN. ACM, 2012, pp.
127–132.

[113] R. Braga, E. Mota, and A. Passito, “Lightweight ddos flooding attack detection using
nox/openflow,” in Local Computer Networks (LCN), 2010 IEEE 35th Conference on. IEEE,
2010, pp. 408–415.

[114] S. Shin and G. Gu, “Cloudwatcher: Network security monitoring using openflow in
dynamic cloud networks (or: How to provide security monitoring as a service in clouds?),”
in Network Protocols (ICNP), 2012 20th IEEE International Conference on. IEEE, 2012,
pp. 1–6.

[115] J. Naous et al., “Delegating Network Security with More Information,” in Proceedings
of the 1st ACM workshop on Research on Enterprise Networking (WREN), Aug. 2009, pp.
19–26.

[116] R. Skowyra, S. Bahargam, and A. Bestavros, “Software-defined ids for securing embed-
ded mobile devices,” in High Performance Extreme Computing Conference (HPEC), 2013
IEEE. IEEE, 2013, pp. 1–7.

[117] A. Goodney, S. Narayan, V. Bhandwalkar, and Y. H. Cho, “Pattern based packet fil-
tering using netfpga in deter infrastructure,” in 1st Asia NetFPGA Developers Workshop,
Daejeon, Korea, 2010.

[118] S.-A. Mehdi, J. Khalid, and S.-A. Khayam, “Revisiting Traffic Anomaly Detection using
Software Defined Networking,” in Proceed- ings of the 14th international conference on
Recent Advances in Intrusion Detection (RAID), 2011, pp. 161–180.

[119] C. C. Liang and F. R. Yu, “Wireless Network Virtualization: A Survey, Some Research
Issues and Challenges,” IEEE Communications Surveys & Tutorials, vol. 17, no. 1, pp.
358–380, Aug. 2015.

[120] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. D. Turck, and R. Boutaba, “Net-
work Function Virtualization: State-of-the-Art and Research Challenges,” IEEE Commu-
nications Surveys & Tutorials, vol. 18, no. 1, pp. 236–262, Jan. 2016.

140 BIBLIOGRAPHY

[121] Y.-D. Lin et al., “An Extended SDN Architecture for Network Function Virtualization
with a Case Study on Intrusion Prevention,” IEEE Network, vol. 29, no. 3, pp. 48–53,
May/Jun. 2015.

[122] Y. Li and M. Chen, “Software-Defined Network Function Virtualization: A Survey,”
IEEE Access, vol. 3, pp. 2542–2553, Dec. 2015.

[123] S. Scott-Hayward, S. Natarajan, and S. Sezer, “A Survey of Security in
Software Defined Networks,” IEEE Communications Surveys & Tutorials,
DOI:10.1109/COMST.2015.2453114.

[124] “ETSI Group Specification: Network Functions Virtualization (NFV) NFV Security
Problem Statement,” Oct. 2014.

[125] “ETSI Group Specification: Network Functions Virtualization (NFV) NFV Security and
Trust Guidance,” Dec. 2014.

[126] S. Shin and G. Gu, “Attacking software-defined networks: A first feasibility study,” in
Proceedings of the second ACM SIGCOMM workshop on Hot topics in software defined
networking. ACM, 2013, pp. 165–166.

[127] R. Kloti, V. Kotronis, and P. Smith, “Openflow: A security analysis,” in Network Pro-
tocols (ICNP), 2013 21st IEEE International Conference on. IEEE, 2013, pp. 1–6.

[128] J. Leng, Y. Zhou, J. Zhang, and C. Hu, “An inference attack model for flow table
capacity and usage: Exploiting the vulnerability of flow table overflow in software-defined
network,” arXiv preprint arXiv:1504.03095, 2015.

[129] S. T. Ali, V. Sivaraman, A. Radford, and S. Jha, “A Survey of Securing Networks
Using Software Defined Networking,” IEEE Transactions on Reliability, vol. 64, no. 3, pp.
1086–1097, Sep. 2015.

[130] R. Sherwood et al., “FlowVisor: A Network Virtualization Layer,” OPENFLOW-TR-
2009-1, pp. 1–14, Oct. 2009.

[131] A. Al-Shabibi et al., “OpenVirteX: Make Your Virtual SDNs Programmable,” in
HotSDN, 2014, pp. 25–30.

[132] D. Drutskoy, E. Keller, and J. Rexford, “Scalable Network Virtualization in Software-
Defined Networks,” IEEE Internet Computing, vol. 17, no. 2, pp. 20–27, Mar/Apr. 2013.

[133] A. Feghali, R. Kilany, and M. Chamoun, “SDN Security Problems and Solutions Anal-
ysis,” in ICPE and NTDS, Jul. 2015, pp. 1–5.

[134] Alcatel-Lucent. Providing Security in NFV: Challenges and Opportunities, White Paper.
May 2014.

[135] Ayadi, I. and Diaz, G. and Simoni, N. "QoS-based Network Virtualization to Future
Networks: An approach based on network constraints ". Fourth International Conference
on the Network of the Future (NOF). Oct, 2013.

BIBLIOGRAPHY 141

[136] A. Akhunzada, E. Ahmed, A. Gani, M. Khan, M. Imran, and S. Guizani, “Securing
Software Defined Networks: Taxonomy, Requirements, and Open Issues,” IEEE Commu-
nications Magazine, vol. 53, no. 4, pp. 36–44, Apr. 2015.

[137] I. Ahmad, S. Namal, M. Ylianttila, and A. Gurtov, “Security in Software Defined
Networks: A Survey,” IEEE Communications Surveys & Tutorials, vol. 17, no. 4, pp.
2317–2346, Nov. 2015.

[138] P. Fonseca, R. Bennesby, E. Mota, and A. Passito, “A Replication Component for Re-
silient OpenFlow-based Networking,” in IEEE Network Operations and Management Sym-
posium (NOMS), Apr. 2012, pp. 933–939.

[139] E. P. Krishna, E. Sandhya, and M. G. Karthik, “Managing ddos attacks on virtual
machines by segregated policy management,” Global Journal of Computer Science and
Technology, vol. 14, no. 6-E, p. 19, 2014.

[140] A. Kamisinski and C. Fung, “FlowMon: Detecting Malicious Switches in Software-
Defined Networks,” in Proceedings of the 2015 Workshop on Automated Decision Making
for Active Cyber Defense (SafeConfig), Oct. 2015, pp. 39–45.

[141] “ETSI Group Specification: Network Functions Virtualization (NFV) Infrastructure
Compute Domain,” Dec. 2014.

[142] “ETSI Group Specification: Network Functions Virtualization (NFV) Infrastructure Hy-
pervisor Domain,” Jan. 2015.

[143] “ETSI Group Specification: Network Functions Virtualization (NFV) Infrastructure
Network Domain,” Dec. 2014.

[144] Open Networking Foundation. "SDN Security Considerations in the Data Center", Ver-
sion 1.4.0 (Wire Protocol 0x05). October 14, 2013

[145] NMAP. https://nmap.org/

[146] OWASP Zed Attack Proxy Project. https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Pro

[147] Open Networking Foundation. "Software-Defined Networking".
https://www.opennetworking.org/sdn-resources/sdn-definition.

[148] Open Networking Foundation. "OpenFlow". https://www.opennetworking.org/sdn-
resources/openflow.

[149] Open Networking Foundation. "OpenFlow Switch Specification", Version 1.5.0 (Wire
Protocol 0x06). December 19, 2014.

[150] Bifulco, Roberto, et al. "Fingerprinting software-defined networks." 2015 IEEE 23rd In-
ternational Conference on Network Protocols (ICNP). IEEE, 2015.

[151] Azzouni, Abdelhadi, et al. "Fingerprinting OpenFlow controllers: The first step to attack
an SDN control plane." Global Communications Conference (GLOBECOM), 2016 IEEE.
IEEE, 2016.

142 BIBLIOGRAPHY

[152] Project Floodlight. https://floodlight.atlassian.net/wiki/display/floodlight- con-
troller/Supported+Topologies

[153] Linux Foundation. "OpenDaylight". https://www.opendaylight.org/.

[154] What is Beacon?. https://openflow.stanford.edu/display/Beacon/Home/

[155] Floodlight. http://Floodlight.openflowhub.org/

[156] Azzouni, Abdelhadi, et al. "Limitations of OpenFlow Topology Discovery Protocol."
arXiv preprint arXiv:1705.00706 (2017).

[157] Hong, Sungmin, et al. "Poisoning Network Visibility in Software-Defined Networks: New
Attacks and Countermeasures." NDSS. 2015.

[158] Congdon, P. (2002). Link layer discovery protocol and MIB. V1. 0 May 20. 2002,
http://www. IEEE802.

[159] Alharbi, Talal, Marius Portmann, and Farzaneh Pakzad. "The (In) Security of Topology
Discovery in Software Defined Networks. " Local Computer Networks (LCN), 2015 IEEE
40th Conference on. IEEE, 2015.

[160] Pakzad, Farzaneh, et al. "Efficient topology discovery in software defined networks." Sig-
nal Processing and Communication Systems (ICSPCS), 2014 8th International Conference
on. IEEE, 2014.

[161] Erickson, David. "The beacon openflow controller." In Proceedings of the second ACM
SIGCOMM workshop on Hot topics in software defined networking, pp. 13-18. ACM, 2013.

[162] Ryu. http://osrg.github.com/ryu/

[163] Cisco. "Cisco Open SDN Controller". http://www.cisco.com/c/en/us/products/cloud-
systems-management/open-sdn-controller/index.html

[164] Azzouni, A et al. "Fingerprinting OpenFlow controllers: The first step to attack an SDN
control plane". GLOBECOM. 2016.

[165] IXIA and NEC. "White paper: SDN Controller Testing, Part 1".
https://www.necam.com/docs/?id=2709888a-ecfd-4157-8849-1d18144a6dda

[166] IETF, Bidirectional Forwarding Detection (BFD), https://tools.ietf.org/html/rfc5880

[167] Tarnaras, George, Evangelos Haleplidis, and Spyros Denazis. "SDN and ForCES based
optimal network topology discovery. " Network Softwarization (NetSoft), 2015 1st IEEE
Conference on. IEEE, 2015.

[168] Antonenko, Vitaly, and Ruslan Smelyanskiy. "Global network modelling based on mininet
approach." Proceedings of the second ACM SIGCOMM workshop on Hot topics in software
defined networking. ACM, 2013.

[169] Pfaff, Ben, et al. "The design and implementation of open vswitch." 12th USENIX sym-
posium on networked systems design and implementation (NSDI 15). 2015.

BIBLIOGRAPHY 143

[170] IXIA and NEC. ”White paper: SDN Controller Testing, Part 1”.
https://www.necam.com/docs/?id=2709888a-ecfd-4157-8849-1d18144a6dda

[171] W. Leland, M. Taqqu, W. Willinger and D. Wilson, “On the self-similar nature of
Ethernet traffic,” In Proc. SIGCOMM ’93, pp.183–193, 1993.

[172] Liwicki, Marcus, et al. "A novel approach to on-line handwriting recognition based on
bidirectional long short-term memory networks." Proc. 9th Int. Conf. on Document Anal-
ysis and Recognition. Vol. 1. 2007.

[173] P. Cortez, M. Rio, M. Rocha, P. Sousa, Internet Traffic Forecasting using Neural Net-
works, International Joint Conference on Neural Networks, pp. 2635–2642. Vancouver,
Canada, 2006.

[174] Felix A. Gers, Nicol N. Schraudolph, and Jurgen Schmidhuber, “Learning precise tim-
ing with LSTM recurrent networks,” Journal of Machine Learning Research , vol. 3, pp.
115–143, Mar. 2003

[175] Felix A. Gers and Jurgen Schmidhuber, “LSTM recurrent networks learn simple context
free and context sensitive languages,” IEEE Transactions on Neural Networks , vol. 12, no.
6, pp. 1333–1340, 2001

[176] H. Feng, Y. Shu, Study on Network Traffic Prediction Techniques, International Con-
ference on Wireless Communications, Networking and Mobile Computing, pp. 1041–1044.
Wuhan, China, 2005.

[177] Hochreiter, Sepp. "The vanishing gradient problem during learning recurrent neural nets
and problem solutions." International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems 6.02 (1998): 107-116.

[178] J. Dai, J. Li, VBR MPEG Video Traffic Dynamic Prediction Based on the Modeling and
Forecast of Time Series, Fifth International Joint Conference on INC, IMS and IDC, pp.
1752–1757. Seoul, Korea, 2009.

[179] V. B. Dharmadhikari, J. D. Gavade, An NN Approach for MPEG Video Traffic Pre-
diction, 2nd International Conference on Software Technology and Engineering, pp. V1-
57–V1-61. San Juan, USA, 2010.

[180] A. Abdennour, Evaluation of neural network architectures for MPEG-4 video traffic
prediction, IEEE Transactions on Broadcasting, Volume 52, No. 2, pp. 184–192. ISSN
0018-9316, 2006.

[181] Sak, Hasim, Andrew W. Senior, and Françoise Beaufays. "Long short-term memory
recurrent neural network architectures for large scale acoustic modeling." Interspeech. 2014.

[182] Sak et al. Long Short-Term Memory Recurrent Neural Network Architectures for Large
Scale Acoustic Modeling. https://arxiv.org/pdf/1402.1128.pdf

[183] Alex Graves. Supervised Sequence Labelling with Recurrent Neural Networks.
http://www.cs.toronto.edu/ graves/phd.pdf

144 BIBLIOGRAPHY

[184] Barabas, Melinda, et al. "Evaluation of network traffic prediction based on neural net-
works with multi-task learning and multiresolution decomposition." Intelligent Computer
Communication and Processing (ICCP), 2011 IEEE International Conference on. IEEE,
2011.

[185] H. Feng, Y. Shu, Study on Network Traffic Prediction Techniques, International Con-
ference on Wireless Communications, Networking and Mobile Computing, pp. 1041–1044.
Wuhan, China, 2005.

[186] Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural compu-
tation 9.8 (1997): 1735-1780.

[187] https://www.geant.org/Projects/GEANT_Project_GN4

[188] Uhlig, Steve, et al. "Providing public intradomain traffic matrices to the research com-
munity." ACM SIGCOMM Computer Communication Review 36.1 (2006): 83-86.

[189] https://openflow.stanford.edu/display/ONL/POX+Wiki

[190] Abadi, Martín, et al. "Tensorflow: Large-scale machine learning on heterogeneous dis-
tributed systems." arXiv preprint arXiv:1603.04467 (2016).

[191] Liu, Wei, et al. "Prediction and correction of traffic matrix in an IP backbone network."
Performance Computing and Communications Conference (IPCCC), 2014 IEEE Interna-
tional. IEEE, 2014.

[192] P. J. Brockwell, R. A. Davis, Introduction to Time Series and Forecast- ing, Second
Edition. Springer-Verlag,ISBN 0-387-95351-5, 2002.

[193] Wen, Yong, and Guangxi Zhu. "Prediction for non-gaussian self-similar traffic with neu-
ral network." Intelligent Control and Automation, 2006. WCICA 2006. The Sixth World
Congress on. Vol. 1. IEEE, 2006.

[194] Moy, John. "OSPF version 2." (1997).

[195] QoS Routing Mechanisms and OSPF Extensions, IETF, RFC 2676, Aug. 1999.

[196] Tomovic, Slavica, et al. "A new approach to dynamic routing in SDN networks." Elec-
trotechnical Conference (MELECON), 2016 18th Mediterranean. IEEE, 2016.

[197] Szymanski, Ted H. "Max-flow min-cost routing in a future-Internet with improved QoS
guarantees." IEEE Transactions on Communications 61.4 (2013): 1485-1497.

[198] Hall, Alex, Steffen Hippler, and Martin Skutella. "Multicommodity flows over time:
Efficient algorithms and complexity." Theoretical Computer Science 379.3 (2007): 387-404.

[199] Madry, Aleksander. "Faster approximation schemes for fractional multicommodity flow
problems via dynamic graph algorithms." Proceedings of the forty-second ACM symposium
on Theory of computing. ACM, 2010.

BIBLIOGRAPHY 145

[200] Azzouni, Abdelhadi, and Guy Pujolle. "A Long Short-Term Memory Recurrent
Neural Network Framework for Network Traffic Matrix Prediction." arXiv preprint
arXiv:1705.05690 (2017).

[201] Sola, J., and J. Sevilla. "Importance of input data normalization for the application of
neural networks to complex industrial problems." IEEE Transactions on Nuclear Science
44.3 (1997): 1464-1468.

[202] Szymanski, Ted H. "Max-flow min-cost routing in a future-Internet with improved QoS
guarantees." IEEE Transactions on Communications 61.4 (2013): 1485-1497.

[203] Karpathy, Andrej, et al. "Large-scale video classification with convolutional neural net-
works." Proceedings of the IEEE conference on Computer Vision and Pattern Recognition.
2014.

[204] Demuth, Howard B., et al. Neural network design. Martin Hagan, 2014.

[205] Kingma, Diederik, and Jimmy Ba. "Adam: A method for stochastic optimization." arXiv
preprint arXiv:1412.6980 (2014).

[206] Kohavi, Ron. "A study of cross-validation and bootstrap for accuracy estimation and
model selection." Ijcai. Vol. 14. No. 2. 1995.

[207] Yanjun, Li, Li Xiaobo, and Yoshie Osamu. "Traffic engineering framework with ma-
chine learning based meta-layer in software-defined networks." Network Infrastructure and
Digital Content (IC-NIDC), 2014 4th IEEE International Conference on. IEEE, 2014.

[208] Keras Documentation. https://keras.io/

[209] Google TensorFlow. https://www.tensorflow.org/

[210] https://goo.gl/JD6t78

[211] mininet. http://mininet.org/

[212] Barreto, Fernando, Emílio CG Wille, and Luiz Nacamura Jr. "Fast emergency paths
schema to overcome transient link failures in ospf routing." arXiv preprint arXiv:1204.2465
(2012).

[213] Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks from over-
fitting." Journal of machine learning research 15.1 (2014): 1929-1958.

