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Thesis Abstract 

Seamounts are ubiquitous topographic features across all ocean basins. They rise steeply 

through the water column from abyssal depths. Depending on their size, shape and summit 

depths, seamounts reportedly have an influence on the physical flow regimes which may 

promote the aggregation of zooplankton, micronekton, and top predators above or in the 

immediate vicinity of their summits. Micronekton form a key trophic link between zooplankton 

and top marine predators, and are divided into the broad categories: crustaceans, cephalopods 

and mesopelagic fishes. The vertical and horizontal distributions, assemblages and trophic 

relationships of micronekton were investigated at two shallow seamounts of the south-western 

Indian Ocean. La Pérouse is a steep bathymetric feature rising from a deep seabed located at 

5000 m and with a summit depth at ~60 m below the sea level. This seamount is located at the 

north-western periphery of the oligotrophic Indian South Subtropical Gyre province. A 

seamount to the south of Madagascar, named “MAD-Ridge” in this study, has a summit depth 

at ~240 m below the sea level and rises from a base at ~1600 m. MAD-Ridge is located within 

an “eddy corridor” within the productive East African Coastal Province. The micronekton 

acoustic densities were greater at MAD-Ridge relative to La Pérouse, in accordance with the 

difference in productivity between the two sites. Physical processes within the cyclonic 

mesoscale eddy sampled during the MAD-Ridge cruise led to enhanced micronekton acoustic 

densities in the eddy relative to the MAD-Ridge seamount. While the shallow scattering layer 

(0-200 m) consisted of common oceanic micronekton species, the summits and flanks of La 

Pérouse and MAD-Ridge both showed presence of resident or seamount-associated fish species 

during day and night. Micronekton were also shown to exhibit a range of migration strategies 

such as diel vertical migration, mid-water migration and no diel migration. However, despite 

the differing productivity between both pinnacles, crustaceans, smaller-sized squids and 

mesopelagic fishes exhibited trophic levels ranging from 3 to 4 at both seamounts. This thesis 

highlights important knowledge gaps on seamount ecosystems and ecological patterns 

associated to shallow pinnacles. It also underlines the importance of studying seamount 

ecosystems of the south-western Indian Ocean in order to promote management and 

conservation measures for a sustainable use of such specific environments. 
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Synthèse des travaux en français 

 

Les monts sous-marins sont des structures bathymétriques s'élevant de manière abrupte dans la 

colonne d'eau depuis une profondeur d'au moins 1000 m. Ils sont le plus souvent d'origine 

volcanique et sont répartis dans tous les bassins océaniques. En tant qu'obstacle topographique, 

les monts sous-marins peuvent être sources d’enrichissement biologique en influençant la 

circulation océanique qui impacte la disponibilité en sels nutritifs et les communautés marines 

le long de la chaine alimentaire (Pitcher et al., 2007). Les monts sous-marins peuvent également 

créer des perturbations locales qui favorisent l'agrégation des organismes marins, du 

phytoplancton aux prédateurs supérieurs. Le Pétrel de Barau, un oiseau marin qui s'alimente 

sur des zones productives en phytoplancton et en micronecton, comme la ride qui s’étend au 

sud de Madagascar, en est un exemple bien décrit (Pinet et al., 2012). Ainsi les monts sous-

marins sont souvent considérés comme des points chauds de biodiversité (Morato et al., 2010), 

avec un certain degré d'endémisme répertorié dans la littérature, en particulier pour les espèces 

benthiques (Richer de Forges et al., 2000; Worm et al., 2003). Il a été constaté que 30-40% de 

la faune en poisson sur le sommet du Walters Shoal est endémique aux groupes d'îles connues 

comme les "West-Wind Islands" (Collette et Parin, 1991). Les monts sous-marins sont connus 

également pour agréger des espèces de poissons à forte valeur commerciale comme les thons 

et les poissons à rostre (Fonteneau, 1991; Holland et Grubbs, 2007, Marsac et al., 2014) et sont 

par conséquent soumis à une pression de pêche. Environ 15% des prises de thons à la palangre 

dans la zone de la Réunion provient de deux carrés statistiques adjacents au mont La Pérouse 

(Marsac et al., 2020). 

 

Cependant, force est de constater que les monts sous-marins de l’océan Indien sont peu étudiés 

comparés aux monts Condor, Great Meteor, Vema et Kelvin de l’Atlantique ou les monts 

Bowie, Cross, Graveyard, Hancock, Hawaiian-Emperor, Jasper, Lord Howe, et Tasmanian du 

Pacifique, malgré un effort de pêche non négligeable sur ces structures. Cette thèse s’inscrit 

dans le cadre d’un projet du IIOE-2 (International Indian Ocean Expedition-2) qui a pour but 

de mieux comprendre l’écosystème pélagique autour de deux monts sous-marins du sud-ouest 

de l’Océan Indien. La Pérouse est un mont peu profond qui s’élève à environ 60 m sous la 

surface de la mer d’une base qui se situe à 5000 m de profondeur. Ce mont est situé au nord-

ouest de l’île de la Réunion, au sein du gyre anticyclonique ISSG (Gyre subtropical du sud de 
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l’Inde). Sur la ride de Madagascar se situe un autre mont peu profond qui s’élève d’une base à 

1600 m et qui culmine à environ 240 m sous la surface de la mer. Ce mont a été baptisé MAD-

Ridge dans cette étude. Deux campagnes océanographiques ont été organisées en 2016 à bord 

du navire Antea de l’Institut de recherche pour le développement (IRD, France). Le but de la 

campagne La Pérouse était de charactériser l’environnement physique et biologique afin 

d’évaluer un possible impact du guyot sur la productivité océanique dans une zone 

généralement qualifiée d’oligotrophe, traversée par le courant sud-équatorial. Le thème général 

de la campagne MAD-Ridge était d’étudier l’influence des processus physiques liés aux 

interactions entre la circulation océanique et la topographie sur la production biologique autour 

du mont sous-marin. 

 

Alors que les bas niveaux trophiques- le phytoplancton, zooplancton, l’ichthyoplancton ainsi 

que les prédateurs supérieurs ont été étudiés dans cette zone, peu d’études se sont intéressées 

au micronecton. Le micronecton est constitué principalement de crustacés, céphalopodes et 

poissons mésopélagiques qui mesurent de 2 à 20 cm en longueur. Bien que les gélatineux ne 

fassent pas officiellement partie de ce groupe, les salpes et pyrosomes, constituent une 

biomasse importante dans les chaluts mésopélagiques et jouent un rôle capital dans la pompe 

biologique de carbone. Certaines espèces de gélatineux sont les proies des poissons 

mésopélagiques et de prédateurs superieurs tels que le thon. Mes travaux de thèse ont donc 

pour but de contribuer à combler des lacunes sur le compartiment micronectonique associé aux 

écosystèmes des monts sous-marins. Les objectifs principaux étant (i) d’étudier la distribution 

horizontale et verticale du micronecton en fonction des tourbillons méso-échelles, du plateau 

continental de Madagascar et de reliefs sous-marins (chapitre 3), (ii) de décrire les 

communautés présentes et les différentes stratégies de migration de certaines espèces (chapitre 

4), (iii) de déterminer les modes alimentaires et le niveau trophique du micronecton dans le 

réseau trophique pélagique (chapitre 5). 

 

Dans le cadre de cette étude, les données satellites de chlorophylle de surface, d’anomalie de 

hauteur d’eau, de bathymétrie et de courant géostrophique ont été téléchargées des sites 

MODIS, COPERNICUS et de la NASA. Pendant les campagnes La Pérouse et MAD-Ridge, 

une CTD couplée à un profileur de courant- L-ADCP et d’un capteur de fluorescence, a été 

utilisée pour enregistrer des profils de courant, fluorescence, température, salinité et oxygène 



Synthèse des travaux en français 

3 

dissous de la surface jusqu’à plus de 1000 m de profondeur. L’eau de mer a été prélevée en 

surface et à la profondeur du maximum de chlorophylle, puis filtrée à bord du bateau pour des 

analyses d’isotopes stables du carbone et de l’azote. Un échosondeur à quatre fréquences (38, 

70, 120 et 200 kHz) a également été utilisé pour enregistrer la distribution spatiale et verticale 

du micronecton en continu pendant MAD-Ridge et de façon ponctuelle au cours de la 

campagne La Pérouse. Ces enregistrements ont été traités et analysés à terre avec le logiciel 

Matecho. Un chalut mésopélagique a été utilisé au cours des campagnes pour collecter le 

micronecton de jour comme de nuit et à différentes profondeurs. Les différentes communautés 

mésopélagiques ont été identifiées à bord du bateau et lors d’un atelier organisé à l’Université 

du Cap en Afrique du Sud avec des experts en taxonomie. A terre, les échantillons destinés aux 

analyses d’isotopes stables ont été lyophilisés, broyés, délipidés, décarbonatés (matière 

organique particulière-MOP- et zooplancton uniquement), encapsulés et analysés au 

spectromètre de masse au LEMAR à Brest. Les isotopes stables du carbone (δ13C) apportent 

des informations sur les sources de production primaire et le régime alimentaire alors que les 

isotopes stables de l’azote (δ15N) renseignent sur la position trophique de l’individu dans la 

chaine alimentaire. 

 

Cette thèse se décline donc sur cinq chapitres principaux, suivis d’une discussion générale. Le 

chapitre 1 fournit une description détaillée des interactions entre les processus physiques et 

les monts sous-marins pouvant conduire à une réponse biologique des niveaux trophiques 

faibles et supérieurs. Des exemples sont donnés de monts sous-marins ayant fait l’objet de 

nombreuses études dans l’Atlantique et le Pacifique. Certains monts peuvent atteindre la zone 

euphotique, d’autres la zone intermédiaire et d’autres encore sont plus profonds, le sommet 

n’atteignant pas 400 m sous la surface de la mer. Les monts sous-marins peuvent également 

être de forme circulaire, conique, elliptique ou allongée et peuvent faire partie d’une ride, d’un 

groupe de monts ou être isolé. De part leurs tailles, formes et structures, les monts sous-marins 

ont des impacts très differents sur la circulation océanique. Diverses pertubations de la 

circulation océanique ont été decrites dans la littérature (White et al., 2007). En tant 

qu'obstacles topographiques, les monts sous-marins peuvent bifurquer, piéger, fendre ou 

détruire les tourbillons méso-échelles (Schouten et al., 2000; Herbette et al., 2003; Adduce & 

Cenedese, 2004; Sutyrin, 2006; Lavelle & Mohn, 2010). Sous certaines conditions, un relevé 

topographique peut causer une élévation des isocèles (lignes de densité) (Owens & Hogg, 

1980). Il a également été signalé que les monts sous-marins peuvent agir comme des puits 
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d'énergies pour l'énergie des ondes internes et provoquer des perturbations dans les profondeurs 

de l'océan (White & Mohn, 2004). Les processus liés à la topographie peuvent générer un 

mélange au-dessus du fond et comprennent la réflexion des ondes internes et la génération de 

marées internes (Eriksen, 1998; Kunze & Llewelllyn Smith, 2004). Sous certaines conditions, 

des colonnes de Taylor peuvent également être formées au-dessus d’un mont sous-marin. Ces 

colonnes de Taylor sont des tourbillons anticycloniques qui s’élèvent en colonnes au-dessus du 

mont et sont formées à partir des interactions entre les courants et le relevé topographique. Ils 

agissent comme des “pièges” pour les organismes planctoniques qui s’y agrègent en 

abondance. Si la productivité se trouve piégée sur le mont, cela peut attirer les consommateurs 

secondaires et tertiaires telles que les zooplanctons, les micronectons et éventuellement les 

prédateurs supérieurs. 

 

Le chapitre 2 dresse un aperçu des écosystèmes pélagiques du sud-ouest de l’océan Indien. 

Cette zone est délimitée à l’ouest par la côte africaine et l’île de Madagascar qui est positionnée 

en travers du courant sud-équatorial (South Equatorial Current), jouant ainsi un rôle crucial 

dans la circulation régionale en provoquant une bifurcation du courant en deux branches (nord 

et sud) sur sa côte orientale et la formation de tourbillons méso-échelles dans le canal du 

Mozambique et au sud de L’île. Le sud-ouest de l’océan Indien est également caracterisé par 

deux provinces biogéochimiques définies dans Longhurst (1998, 2007) comme étant l’ISSG et 

l’EAFR (Province côtière de l'Afrique de l'Est). La circulation anticyclonique à grande échelle 

qui prévaut dans l'ISSG entraîne un downwelling physique, qui limite l'apport de nutriments 

dans les couches de surface (Jena et al., 2013). D’autre part, les tourbillons méso-échelles qui 

dominent l’EAFR crés des conditions favorables à la prolifération de phytoplancton. Ces 

tourbillons méso-échelles sont d’une importance capitale pour les prédateurs supérieurs tels 

que les thons, espadons et oiseaux marins, qui utilisent ces structures comme zones 

d’alimentation. Les reliefs sous-marins du sud-ouest de l’océan Indien semblent aussi jouer un 

rôle important comme zones d’alimentation pour ces prédateurs supérieurs (Pinet et al., 2012). 

Les monts sous-marins du sud-ouest du l’océan Indien sont parmi les moins explorés au monde 

(Bhattacharya & Chaubey, 2001), avec seuls 15 monts de l’océan Indien ayant fait l’objet 

d’études biologiques (Sautya et al., 2011). Cette étude contribue donc à améliorer nos 

connaissances des processus physico-chimique entrainant une réponse biologique à deux monts 

sous-marins du sud-ouest de l’océan Indien. 
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Le chapitre 3 de cette thèse se focalise sur l’influence des tourbillons méso-échelles, du plateau 

continental de Madagascar et des monts sous-marins peu profonds sur la distribution verticale 

et spatiale du micronecton avec une approche acoustique. Pendant la campagne MAD-Ridge, 

un dipôle (paire de tourbillons contra-rotatifs) était présent dans les environs de MAD-Ridge 

avec la composante anticyclonique stationnée sur le mont pendant toute la campagne et la 

composante cyclonique situé à l’ouest du mont. Le cyclone a causé une remontée de la 

thermocline et des eaux plus denses, ainsi qu’un enrichissement biologique caractérisé par des 

concentrations en chlorophylle plus élevées comparé à l’anticyclone. Les densités du 

micronecton étaient faibles dans l’anticylone et sur le sommet et les flancs du mont MAD-

Ridge par rapport aux densités mesurées dans le tourbillon cyclonique et sur le plateau 

continental de Madagascar. Le micronecton a suivi le schéma habituel de migration 

nycthémérale, montant verticalement à la surface au crépuscule et descendant vers les couches 

plus profondes (moins de 400 m) à l'aube, sauf dans le tourbillon cyclonique pendant MAD-

Ridge où des densités acoustiques plus importantes ont été enregistrées dans la couche de 

surface diurne. Ces densités acoustiques au sein du cyclone dans la couche de surface de jour, 

ont démontré une forte réponse au 38 kHz comparé au 70 et 120 kHz. Des études antérieures 

ont démontré que les poissons épi- et mésopélagiques ayant de petites vessies natatoires 

remplies de gaz et le plancton gélatineux ayant des inclusions de gaz, dominent la fréquence 

de 38 kHz (Porteiro & Sutton, 2007; Kloser et al., 2002; Kloser et al., 2009; Davison et al., 

2015; Cascão et al., 2017; Proud et al., 2018). Les organismes se situant dans la couche de 

surface au sein du cyclone de jour étaient peut-être des poissons épi- et mésopélagiques remplis 

de gaz qui nageaient et se nourrissaient activement dans le cyclone, ou des organismes 

gélatineux avec des inclusions de gaz. Comme démontré dans ce chapitre, il y a peu de 

probabilité d’un enrichissement local causé par des interactions courants-topographie comme 

la formation de colonnes de Taylor ou la remontée des isocèles aux monts La Pérouse et MAD-

Ridge. Les processus d’enrichissement rencontrés pendant la campagne MAD-Ridge, à savoir 

une forte productivité primaire et une densité élevée du micronecton, sont principalement liés 

aux upwellings au sud de Madagascar et à la dynamique des tourbillons méso-échelles, et 

probablement aussi à l’activité d’ondes internes. 

 

Au cours de mon travail de thèse, j’ai donc mis en évidence que les tourbillons cycloniques 

peuvent concentrer une forte densité acoustique du micronecton dans la couche de surface (0-

200 m) de jour, ce qui est contraire au comportement habituel de la majorité des espèces 
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micronectoniques qui occupent un habitat profond de jour. Généralement, les tourbillons 

cycloniques concentrent une forte densité de production primaire dans la couche euphotique, 

retenant ainsi le zooplancton et, à terme, les poissons mésopélagiques. Les densités acoustiques 

du micronecton étaient également plus élevées au mont MAD-Ridge comparé à La Pérouse. 

La dynamique des structures méso-échelles telles que les tourbillons cycloniques et anti-

cycloniques au sud de Madagascar, augmente la production primaire et concentre une forte 

biomasse, abondance et densité acoustique du micronecton dans cette zone qui se démarque 

ainsi de la région oligotrophe du gyre ISSG au sein duquel se situe La Pérouse. Par mes travaux, 

j’ai mis en évidence que la distribution spatiale du micronecton dans le sud-ouest de l’océan 

Indien serait donc influencée par des processus physico-chimiques. 

 

Le chapitre 4 a pour but de déterminer la distribution verticale et les assemblages du 

micronecton aux monts La Pérouse et MAD-Ridge. La migration nycthémérale du micronecton 

est importante pour le transfert de nutriments et d’éléments essentiels de la surface vers les 

profondeurs. J’ai démontré que certaines espèces du micronecton sont capables d’effectuer de 

grandes migrations nycthémérales vers la surface (couche 0-200 m) au crépuscule et vers les 

profondeurs (>400 m) à l’aube. A l’aube, on observe plusieurs vagues de migration de la 

couche intermédiaire (200-400 m) vers les profondeurs (>400 m) et de la couche de surface 

vers les profondeurs. Il y a donc plusieurs stratégies de migration. Certaines espèces de la 

communauté mésopélagique migrent en-dessous de 800 m (probablement afin d’échapper aux 

prédateurs visuels) alors que d’autres espèces sont non-migrantes et se situent principalement 

dans la couche de surface (comme certains gélatineux) ou en profondeur telles que les 

Cyclothone sp., de jour comme de nuit. 

 

Les données acoustiques analysées au cours de ma thèse ont également mis en évidence que la 

couche de surface (0-200 m) est constituée d’espèces de micronecton communes à divers 

bassins océaniques. Par contre, certaines espèces de poissons mésopélagiques, telle que les 

Diaphus suborbitalis, s’associent uniquement aux sommets et flancs des monts sous-marins La 

Pérouse et MAD-Ridge de jour comme de nuit. Il a déjà été constaté que de grandes populations 

de D. suborbitalis étaient associées au mont sous-marin de l'Équateur dans l’océan Indien 

(Parin & Prut’ko, 1985). Ces poissons se trouveraient sur les pentes à 500-600 m de profondeur 
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pendant la journée et remonteraient en bancs denses et compacts jusqu'à 80 à 150 m de 

profondeur la nuit pour se nourrir principalement de copépodes (Gorelova & Prut’ko, 1985), 

tout en étant la proie de plusieurs prédateurs supérieurs tels que les thons et espadons (Parin & 

Prut’ko, 1985). Ces espèces forment des bancs compacts sur les monts sous-marins afin de 

bénéficier probablement des avantages que confèrent ces espaces, tels que l’augmentation de 

proies, la diversité qu’offrent ces types d’habitats et des sites de repos. Cependant, force est de 

constater que des estimations plus faibles en abondance et biomasse du micronecton ont été 

enregistrées sur les sommets de La Pérouse et de MAD-Ridge comparé aux alentours 

immédiats de ces monts. L'obstruction physique créée par un mont sous-marin est supposée 

réduire la densité des animaux sur les flancs et les sommets, en particulier la nuit (eg. Genin et 

al., 1988; Diekmann et al., 2006; De Forest & Drazen, 2009). 

 

Par le biais d’analyses d’isotopes stables du δ13C et δ15N, le chapitre 5 met en évidence les 

interactions trophiques du micronecton par rapport à la MOP et au zooplancton aux monts La 

Pérouse et MAD-Ridge. La MOP de surface a enregistré des valeurs en δ13C supérieures à 

MAD-Ridge comparé à La Pérouse. La MOP se constitue généralement de phytoplancton, 

bactéries, matières fécales et détritus (Riley, 1971; Saino & Hattori, 1987; Fabiano et al., 1993; 

Dong et al., 2010; Liénart et al., 2017). Les concentrations en chlorophylle de surface étaient 

plus élevées à MAD-Ridge comparé à La Pérouse (Annasawmy et al., 2019). Les apports 

nutritifs à MAD-Ridge sont plus élevés qu’à La Pérouse de part l’action des remontées d’eau 

sur le plateau continental Malgache, entrainant ainsi un enrichissement en phytoplancton 

(Ramanantsoa et al., 2018), par l'advection au large de cette productivité côtière et/ou du 

plateau continental par le transport transversal (Noyon et al., 2018), et par un enrichissement 

au sein des tourbillons méso-échelles qui se déplacent sur le mont MAD-Ridge (De Ruijter et 

al., 2004; Vianello et al., 2020). La Pérouse, se situant loin des influences marquées par les 

remontées d’eau et loin des tourbillons à forte puissance, bénéficie moins des apports nutritifs, 

provoquant ainsi des valeurs en δ13C moins élevées de la MOP. 

 

Le chapitre 5 décrit egalement que la MOP et le zooplancton ont des valeurs isotopiques 

inférieures aux crustacés, céphalopodes et poissons mésopélagiques à La Pérouse et à MAD-

Ridge. Le niveau trophique des espèces de micronecton est influencé par le mode alimentaire 

de l’individu et la taille. Les omnivores (crustacés qui se nourrissent principalement de 



Synthèse des travaux en français 

8 

zooplancton et de matières végétales) et carnivores (poissons mésopélagiques et céphalopodes 

qui se nourrissent essentiellement de copépodes, d’amphipodes, d’euphausiacés et 

d’ostracodes) sont fortement enrichis en δ15N comparé aux filtreurs (salpes et pyrosomes) et 

détritivores (larves leptocéphales). Les filtreurs et détritivores ont généralement un niveau 

trophique de 2. Les crustacés, poissons mésopélagiques et petits céphalopodes se situe 

généralement à un niveau trophique entre 3 et 4, au-dessus du zooplancton et en-dessous des 

prédateurs supérieurs tels que les thons et les espadons. La taille d’un individu a généralement 

une influence sur ces valeurs de δ15N en raison de la relation taille-proie (un individu plus grand 

ingérera une proportion plus importante de proies de grande taille ayant un δ15N plus élevé que 

des proies de taille inférieure). Cette relation a été observée pour plusieurs espèces de 

micronecton. Cependant, il a été observé que les poissons mésopélagiques et benthopélagiques 

associés de façon quasi-permanente sur les sommets et les flancs de La Pérouse et de MAD-

Ridge, ont le même niveau trophique quelles que soient leurs tailles. Ceci peut s’expliquer par 

le fait que ces espèces se nourrissent de proies similaires, ou bien de proies différentes mais 

ayant le même niveau trophique.  

  

Le micronecton est donc un maillon important dans la chaine alimentaire de par la prédation 

qu’il exerce sur le zooplancton et comme source d’alimentation pour les prédateurs supérieurs 

tels que les thons et les espadons. Les différents processus contrôlant la distribution spatiale et 

verticale du micronecton méritent d’être détaillés car les prédateurs supérieurs marins 

dépendent de ce groupe, et indirectement les populations humaines par la pêche et ses autres 

activités économiques associées. Il est donc important de mieux comprendre le fonctionnement 

des écosystèmes marins associés aux monts sous-marins notamment le rôle des processus 

physiques qui influencent les différents maillons trophiques, afin de proposer des mesures 

adaptées à la conservation de ces espaces et à une exploitation raisonnée et durable de leurs 

ressources marines. 

 

Cette étude a démontré le fonctionnement de l'écosystème de deux relevés topographiques peu 

étudiés du sud-ouest de l’océan Indien. Lorsqu'on replace les monts La Pérouse et MAD-Ridge 

dans un contexte régional, les densités acoustiques totales du micronecton au mont La Pérouse 

sont typiques de celles de la province de l'ISSG, tandis que les réponses acoustiques au mont 

MAD-Ridge sont typiques de celles de la province de l'EAFR. Les densités acoustiques en 
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micronectons étaient plus élevées dans l’EAFR et au mont sous-marin MAD-Ridge comparé à 

la province de l'ISSG et le mont sous-marin La Pérouse, probablement en raison de l'effet des 

tourbillons méso-échelle et de la productivité accrue dans l’EAFR. Aucune augmentation nette 

du micronecton n'a été observée aux monts sous-marins par rapport à l'océan environnant dans 

les provinces biogéochimiques. Cependant, des agréggations denses ont été observées collées 

aux sommets des deux monts pendant la journée, probablement en raison de la présence de 

poissons s'agrégeant de façon quasi-permanente sur les sommets et les flancs de ces monts. 

 

Bien que les relevés topographiques soient omniprésents dans les océans du monde, les monts 

sous-marins et leurs écosystèmes sont encore mal connus. Seuls 0,4 à 4 % de la population 

mondiale des monts sous-marins ont été directement échantillonnés pour la recherche 

scientifique (Kvile et al., 2014). Le partage et l'accessibilité des données constituent autant 

d’obstacles importants à la recherche sur les monts sous-marins. La présente étude vient donc 

enrichir les connaissances actuelles sur le fonctionnement de l'écosystème des monts sous-

marins. Un résultat important de cette étude est la présence d'agréggations denses sur les 

sommets et les flancs de La Pérouse et de MAD-Ridge de jour comme de nuit. Ce résultat est 

similaire à celui d'autres études précédentes, dans lesquelles des poissons ont été trouvés en 

association étroite avec des monts sous-marins dans plus de 150 cas (Kvile et al., 2014). Malgré 

leurs topographies complexes et leurs processus physiques locaux, il a été démontré que les 

monts sous-marins confèrent des avantages sélectifs au regroupement des poissons qui utilisent 

ces caractéristiques pour s'alimenter, se reproduire ou se reposer (Porteiro & Sutton, 2007). 

L'intégration des observations de cette étude dans des bases de données mondiales telles que le 

SEEF (Seamount Ecosystem Evaluation Framework) (Kvile et al., 2014) peut aider à identifier 

les lacunes dans nos connaissances, à caractériser les particularités de chaque mont sous-marin 

et à tester davantage les effets potentiels des monts sous-marins afin de comprendre quels sont 

les facteurs qui déterminent la dynamique des différents types de monts. Il est important de 

mieux comprendre les ecosystèmes associés à différents monts sous-marins afin de pouvoir 

proposer des mesures de gestion appropriées quant aux ressources associées. 
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Glossary of principal abbreviations 

 

Regions, provinces and zones 

AAIW     Antarctic Intermediate Water 

ADT     Absolute Dynamic Topography 

BPA     Benthic Protected Area 

CTD     Conductivity Temperature Depth (rosette system) 

DCM     Deep Chlorophyll Maximum 

DSL     Deep scattering layer 

DVM     Diel Vertical Migration 

EAFR     East African Coastal Province 

EBSA     Ecologically and Biologically Significant Area 

EEZ     Exclusive Economic Zone 

EMC     East Madagascar Current 

Fmax depth    Depth of the maximum Fluorescence 

IOTC     Indian Ocean Tuna Commission 

ISSG     Indian South Subtropical Gyre 

IYGPT     International Young Gadoid Pelagic Trawl 

L-ADCP    Lowered Acoustic Doppler Current Profiler 

MPA     Marine Protected Area 

MSLA     Mean Sea Level Anomalies 

NADW    North Atlantic Deep Water 

NEMC     North East Madagascar Current 

Nmi     Nautical mile 

POC     Particulate Organic Carbon 

POM     Particulate Organic Matter 

RFMO     Regional Fisheries Management Organization 

RGB     Red Green Blue (composite images generated from  
     acoustic data) 

sa     Area scattering coefficient 
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sA, NASC    Nautical Area Scattering Coefficient 

SEC     South Equatorial Current 

SEMC     South East Madagascar Current 

SIODFA    Southern Indian Ocean Deepsea Fishers Association 

SIOFA     Southern Indian Ocean Fisheries Agreement 

SSC     Sea surface chlorophyll 

SSL     Shallow scattering layer 

sv     Volume backscattering coefficient 

Sv     Volume backscattering strength 

SWIO     South West Indian Ocean 

SWIOFC    Southwest Indian Ocean Fisheries Commission 

SWIR     Southwest Indian Ridge 

TL     Trophic Level 

TSG     Thermosalinograph 

uCDW     upper Circumpolar Deep Water 

WIO     Western Indian Ocean 
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Chapter 1: General Introduction 

1.1 Background 

1.1.1 Seamount geology and characteristics 

Seamounts are ubiquitous features of the world’s oceans. Depending on their definition, there 

are an estimated 200 000 seamounts (Kitchingman & Lai, 2004; Wessel, 2007; Clark et al., 

2010b) (Fig. 1.1). Seamounts have an elevation >1000 m (IHO, 2008) whereas knolls have an 

elevation that ranges between 500-1000m. Approximately 30 000-60 000 seamounts and 138 

000 knolls have been identified (Hillier & Watts, 2007; Costello et al., 2010; Yesson et al., 

2011). An estimated 24 000 to 100 000 large seamounts remain uncharted (Hillier & Watts, 

2007; Wessel et al., 2010). Seamounts may also occur as chains perpendicular to a ridge, as 

isolated topographic features or in clusters (Kitchingman & Lai, 2004; Etnoyer et al., 2010). 

Most seamounts are the result of intense oceanic volcanism (Craig & Sandwell, 1988; Wessel, 

2001; Yesson et al., 2011) and are associated with intraplate hotspots, mid-ocean ridges or 

island arcs (Wessel, 2007; Yesson et al., 2011). 

 

Figure 1.1 Estimated global distribution of large seamounts with an elevation >1500 m (yellow 
diamond symbols) based on data described in Kitchingman & Lai, 2004 (Source: Clark, 2009). 

The majority of seamounts are composed of basalt (Wessel, 2007). Approximately 50 million 

tons of basalt per year are estimated to be required to produce seamounts (Iyer et al., 2012), 

alongside several other factors deemed necessary to control the birth and development of such 

features (Craig & Sandwell, 1988). An adequate supply of magma with sufficient hydraulic 

head and latent heat is deemed essential to penetrate the oceanic lithosphere without freezing 

during ascent. For a volcano to develop, the lithosphere must remain over the heat source or 
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magma pool for a sufficient amount of time (Craig & Sandwell, 1988). In the early stages of 

formation, seamounts on the deep seafloor may exhibit strong axial symmetry. The seamount 

may ultimately grow if additional magma is available and if the seafloor is mechanically strong 

(Wessel, 2007). Seamounts can be observed using satellite altimetry (Wessel, 2001; 

Kitchingman & Lai, 2004). 

 

1.1.2 Physical processes resulting from current-topography interactions 

As topographic obstacles rising from abyssal depths, interactions are expected with the local 

physical flow regime causing increased hydrodynamic activities in the vicinity of the seamount, 

relative to the flat abyssal ocean (White et al., 2007; Mohn et al., 2009). These pinnacles may 

also disrupt large scale oceanic flow (Royer, 1978). Seamounts may be circular, elongated, 

conical or elliptical in shape and may be shallow, intermediate (summit below the euphotic 

zone but within the upper 400 m) and deep (summit below 400 m) (White & Mohn, 2004). 

There is also an ecological definition associated to seamounts with shallow seamounts 

penetrating the euphotic zone (Yesson et al., 2011), middle-depth seamounts reaching the base 

of the euphotic zone from 1500 m depth while deeper seamounts are found below the zone of 

influence of the deep-scattering layer (Pitcher et al., 2007). The particular combination of 

seamounts’ shapes, sizes and summit depths ultimately determines the physical flow processes. 

A variety of flow disturbances have been described (White et al., 2007; Fig. 1.2) and a number 

of flow-topography interactions have been observed at pinnacles of the Atlantic and Pacific 

Oceans (Appendix: Table A). 
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Figure 1.2 Characteristic features of motion at an isolated southern hemisphere seamount. 
These features, including a vertical circulation cell, isopycnal doming and anticyclonic-
horizontal circulation, are shown near the summit depth, superimposed on oscillatory currents 
and oscillatory temperature and salinity distributions. The occurrence, properties and 
variability of these features depend on local turbulence K, internal waves !"# (propagating 
horizontally and vertically), and on incident mean current !$%&', eddies ($%&', tidal and 
other oscillations Uvar, and possibly wind-driven currents Uwind (Source: adapted from Lavelle 
& Mohn, 2010). 

1.1.2.1 Eddy-topography interactions 

Mesoscale eddies, that range in diameter from 10 to 300 km, are typically produced as a result 

of wind stress circulation patterns (Falkowski et al., 1991; Mann & Lazier, 2006). These eddies 

are circulating water masses and are either cyclonic (clockwise rotation in the southern 

hemisphere) or anticyclonic (anticlockwise rotation in the southern hemisphere) (Bakun, 

1996). The cyclonic rotation may lead to a doming and localized upwelling of cold, deep, 

nutrient-rich waters into the euphotic zone (Falkowski et al., 1991) whereas anticyclonic 

rotation may lead to a depression of isotherms and downwelling of nutrient-rich waters. 

As topographic obstacles, seamounts may either bifurcate, trap, split or destroy eddies 

(Schouten et al., 2000; Herbette et al., 2003; Adduce & Cenedese, 2004; Sutyrin, 2006; Lavelle 

& Mohn, 2010). Outcomes of eddy-seamount interactions largely depend on the seamount’s 

dimensions (width, height and orientation) (van Geffen & Davies, 1999) and current speeds. 

Eddies with diameters up to ~37 km have been reported to be formed from the North Pacific 
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current and seamount interactions north of Hawaii (Royer, 1978). Some seamounts such as the 

Emperor Seamount Chain in the Pacific Ocean may act as generators of quasi-stationary 

mesoscale eddies (Bograd et al., 1997). Haida eddies from the northeast Pacific have been 

shown to be associated with Bowie seamount, with the Haida-2000a eddy being trapped on the 

seamount for a period of 3 months (Dower et al., 2004). Numerical models have also shown 

that an eddy may cross a ridge or be rebounded by the topography, preventing the eddy from 

crossing the ridge on its first encounter (van Geffen & Davies, 2000b). 

The propagation of Meddies (Mediterranean Water eddies), formed from the Mediterranean 

outflow near the continental slope of Portugal, may also have weak, moderate or strong 

interactions with seamounts of the Atlantic Ocean (Bashmachnikov et al., 2009). Weak 

interactions can lead to deflection of Meddies after the latter have rotated some distance around 

large seamounts (van Geffen & Davies, 2000a). The deflection of a Meddy was observed by 

the Gorringe Bank aka. Gorringe Ridge (Bower et al., 1995) in the Atlantic. At Seine seamount 

in the subtropical northeast Atlantic, portion of a Meddy was seen to escape the seamount after 

having performed several rotations around the summit (Baschmachnikov et al., 2009). Strong 

interactions of Meddies with seamounts can lead to vortex trapping or splitting 

(Baschmachnikov et al., 2009). Meddies were partially split after collision with Hyères and 

Irving seamounts (Shapiro et al., 1995) and destroyed by Sedlo (Bashmachnikov et al., 2009), 

Hyères (Richardson et al., 1989; 2000), Josephine (Schultz Tokos et al., 1994; Richardson et 

al., 2000), Lion seamounts and pinnacles in the Horseshoe chain in the Atlantic Ocean 

(Richardson et al., 2000). A Meddy was further cleaved into two approximate equally sized 

smaller Meddies by Cruiser and Irving seamounts (Richardson et al., 2000). 

1.1.2.2 Local processes at seamounts- Isopycnal doming 

Localised processes are also observed at seamounts, such as isopycnal doming (Owens & 

Hogg, 1980), formation of enclosed circulation cells (Freeland, 1994), amplification and 

rectification of tidal motions (Brink, 1995), and increased vertical mixing (Kunze & Sanford, 

1996; Eriksen, 1998). Isopycnal doming, i.e. upwelling on the upstream side of a topographic 

feature and doming of density surfaces, is due to ocean currents impinging on a seamount 

(Martin & Christiansen, 2009) or due to the rectification by trapped waves for sub-inertial 

frequencies (Mohn & Beckmann, 2002). The doming of isotherms is generated when the fluid 

is forced to rise over the pinnacle due to the associated geostropically induced anticyclonic 

tendency of the flow field (Brainard, 1986). Topographic obstacles may cause a dome-like 
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structure in the temperature, salinity and density fields (Torres et al., 2004) and can result from 

Taylor cone formations (White et al., 2007). 

1.1.2.3 Local processes at seamounts- Taylor columns 

Trapped, enclosed circulations over topographic obstacles are known as Taylor columns (or 

cones) and have been reported to occur over some seamounts of the Atlantic and Pacific oceans 

(Appendix: Table A). The Taylor-Proudman Theorem showed that when a steady and 

homogeneous flow encounters a seamount, an anticyclonic circulation following the isobaths 

is generated with any fluid being trapped in a stagnant area above the topographic obstacle, 

thus creating a Taylor column (Huppert, 1975; Huppert & Bryan, 1976; White & Mohn 2004; 

Fig. 1.3). Flow transitioning to equilibrium will cause two counter rotating vortices to form 

over idealized Gaussian-shaped seamounts, with stronger impinging flows causing the cyclonic 

vortex to be shed downstream (White et al., 2007) while the anticyclonic vortex remains over 

the seamount (Huppert & Brian, 1976; Lavelle & Mohn, 2010). 

 

Figure 1.3 Characteristic features of motion at an isolated seamount, including flow patterns, 
and features such as Taylor columns, isopycnal doming and processes such as enhanced 
vertical mixing [Source: adapted from Henry et al., 2012]. 

 

Factors such as seamount’s shape, size, depth (of the summit), turbulence, stratification, current 

speed and direction, may influence the development of a Taylor Column. In those instances 

where the water column is stratified, the Taylor column does not extend to the sea surface and 

is hence known as a “Taylor cap” (González-Pola et al., 2012). If the current velocity is too 

high, a Taylor cap will not persist over the seamount (Lavelle & Mohn, 2010). A set of non-

dimensional parameters such as the Rossby number (Ro: a measure for the relative importance 

of advective and rotational effects), the Burger number (a measure for the strength of 

stratification) and the fractional height of the seamount (α), may be used as criteria for the 

formation of localised induced circulation around a seamount (Turnewitsch et al., 2004; White 
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et al., 2007; Fig. 1.4). Taylor caps may form over idealized Gaussian-shaped seamounts for 

specific combinations of Ro and α (Chapman & Haidvogel, 1992) and as such, Taylor columns 

will only form transiently. 

 

 

Figure 1.4 Diagram of the main factors controlling the localised dynamic processes at isolated 
topographic features, with Ut representing the tidal flow; U, the mean flow; ρ the water density 
with depth; L the seamount width in m; h0 is the height of the seamount relative to the water 
depth H; N, the vertical stratification, Ω, the Earth’s angular velocity, and f, the Coriolis 

parameter [White et al., 2007]. 

 

1.1.2.4 Local processes at seamounts- Tidal amplification and rectification 

Closed anticyclonic circulation cells around seamounts may also arise through tidal 

rectification, i.e. the generation of residual mean currents over the seamount by tidal flow 

(Mohn, 2002; White et al., 2007). A variety of processes such as seamount-trapped waves, tidal 

rectification and amplification, generation of internal tides and locally enhanced turbulent 

mixing, may arise through the interaction of tides with isolated seamounts (Mohn & White, 

2010). Tidal amplification over seamounts is due to the squeezing of flow as it passes over the 

topographic feature and formation of wave motions which are trapped at the bottom of the 

seamount (Brink, 1989) and rotate in an anticyclonic direction about the seamount (Beckmann 

et al., 2001). Periodic tidal forcing is a dominant phenomenon at the Great Meteor seamount 

in the North Atlantic, leading to closed circulation cells, generation of internal waves, flow 
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rectification and trapped waves (Mohn & Beckmann, 2002). Tidal rectification was shown to 

play an important role in generating anticyclonic circulations above the summit of Porcupine 

Bank along the shelf-edge west of Ireland and result in dome-like deformations in the 

temperature and density fields (Mohn, 2002). 

1.1.2.5 Local processes at seamounts- Internal waves and vertical mixing 

Seamounts have also been reported to act as energy sinks for internal wave energy which cause 

perturbations in the deep ocean (White & Mohn 2004). Topographically related processes that 

can generate mixing above the bottom include internal wave reflection and generation of 

internal tides (Eriksen, 1998; Kunze & Llewellyn Smith, 2004). When internal waves reflect 

from the bottom, the energy density and vertical current shear produced by the internal wave 

changes, leading to wave overturn and/or turbulent mixing (White & Mohn, 2004). Studies 

have shown a 100 to 10 000-fold increase in turbulent mixing at shallow topographic features 

relative to the far field (Lueck & Mudge, 1997). Enhanced turbulent mixing at seamounts may 

aid additional nutrient fluxes to the euphotic zone (Clark et al., 2010b). 

1.1.3 Biological responses at seamounts 

1.1.3.1 Seamount productivity 

The dynamic conditions at seamounts are suggested to favour enhanced productivity (White & 

Mohn, 2004). The uplifting of isotherms through Taylor cap formation or internal wave 

deflection, may bring deeper nutrient rich water over the seamount where, under favourable 

light conditions, may enhance local productivity in the surface waters above the seamount 

(Dower et al., 1992; Genin, 2004; White & Mohn 2004). In order to have a significant effect 

on higher trophic levels, phytoplankton entrapment of the order of weeks or months is 

necessary (Boehlert & Genin, 1987; Rogers, 1994), with anticyclonic vortices generated by 

topography-current and topography-internal/tidal wave interactions acting as retention 

mechanisms for this organic matter generated locally or advected from the far field (Vilas et 

al., 2009). 

1.1.3.2 Zooplankton dynamics at seamounts 

In theory, enhanced primary production at seamounts caused by local dynamic current-

topography interactions, offer higher food concentrations to zooplankton communities relative 

to the surrounding open ocean (Hirch et al., 2009). Interactions of zooplankton communities 

with topographic features have been suggested to result in gap formation (areas devoid of 

vertically migrating zooplankton) (Fig. 1.5), enhanced patchiness within the gaps and 

downstream of the seamount (Isaacs & Schwartzlose, 1965) and increased numbers of 
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crustacean carcasses over the seamount (Haury et al., 2000), with the three processes reported 

to be tightly linked (Haury et al., 2000; White & Mohn, 2004). 

 

Figure 1.5(a-e) Sequential acoustic transects of the 120 kHz frequency across Sixtymile Bank 
(west of California, USA), showing a gap formation in zooplankton distributions over the 
summit. By the last transect (e), the gap had advected ~3 km eastward and was beginning to 
fill with intrusions of zooplankton carried by the currents (Source: Haury et al., 2000). 

 

An increase in zooplankton densities has been observed in the waters above Minami-kasuga 

seamount both within and above a dome of cold dense water (Genin & Boehlert, 1985). 

However, no significant increase in zooplankton biomass has been observed above Seine, 

Sedlo (Hirch et al., 2009), Senghor, Ampère (Denda & Christiansen, 2014; Denda et al., 

2017a), Cobb (Dower & Mackas, 1996), Dom João de Castro (Sobrinho-Gonçalves & 

Cardigos, 2006), Volcano 7 (Saltzman & Wishner, 1997) and Condor (Carmo et al., 2013) 

seamounts. Gaps devoid of vertically migrating zooplankton have also been observed above 

the summit of Sixtymile bank (Genin et al., 1994; Haury et al., 2000; Fig. 1.5). 

The reduction of zooplankton biomass has been attributed to either predation by resident 

seamount-associated fishes, displacement of migrating and deep-water zooplankton taxa 

during the day and active avoidance of the seamounts (Martin & Christiansen, 2009; Denda & 

Christiansen, 2014). The physical displacement of migrating zooplankton and predation 

pressure have been suggested to lead to gap formation in zooplankton distribution (Haury et 

al., 2000), with average abundances being higher away from the summit rather than within the 

gaps (Genin et al., 1994). Increased predation pressure has further been hypothesized to result 

in increased carcasses at Dowd seamount, Fieberling Guyot, Sixtymile bank (Haury et al., 
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2000) and above the summit of Jasper seamount (Haury et al., 1995). This predation pressure 

is believed to be influenced by the topography itself which blocks zooplankton communities in 

their pre-dawn descent, exposing them to visual predators in daylight (Genin, 2004; Clark et 

al., 2010b). 

In the upper layers of the open ocean, zooplankton represents a key link between primary 

production and higher trophic levels, such as micronekton and ultimately top predators (Potier 

et al., 2007). Some argue, however, against the bottom-up transfer of energy from locally 

enhanced primary production through upwelling at abrupt features (Genin & Dower, 2007; 

Morato et al., 2009). Indeed, as mentioned previously, phytoplankton entrapment of the order 

of weeks or months would be necessary to have an influence on secondary and tertiary 

consumers (Genin & Dower, 2007). Other mechanisms which have been suggested to promote 

aggregations of zooplankton over abrupt topographies (Genin, 2004; Genin & Dower, 2007): 

1) Topographic blockage of daily migrating organisms 

Also known as the “sound-scattering layer interception hypothesis”, the “topographic 

blockage” hypothesis suggests that migrating organisms are blocked by the seamount 

topography and become trapped above the seamount at dawn before being consumed by 

predators (Genin, 2004) (Fig. 1.6). 

 

 

Figure 1.6 Schematic showing the bottom trapping of vertically migrating zooplankton 
(horizontal grey bar) over a seamount (black polygon) where the summit is deeper than the 
photic layer but shallower that the daytime depth of migrating zooplankters. Sun and moon 
symbols indicate day and night. The current is considered to flow from left to right throughout 
the water column for simplicity (Source: adapted from Genin & Dower, 2007). 

The schematic diagram shows the migrating zooplankton to be found on the seamount slopes 

during the day (Fig. 1.6a). At sunset, the organisms ascend to the photic layer, forming a gap 
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the width of which equals to that of the seamount at the depth where the migrating zooplankton 

were found during the day (Fig. 1.6b). The zooplankton drift with the surface current, gradually 

displacing the gap in zooplankton distribution away from the seamount. Other organisms are 

advected horizontally from the upstream region to above the seamount summit (Fig. 1.6c, d). 

At sunrise, the zooplankton start their descent. A layer of zooplankton is found above the entire 

shallow summit (Fig. 1.6e) and is blocked by the topography, unable to complete their descent 

to deeper layers (Fig. 1.6f). 

2) Accumulation of animals maintaining their depth by swimming against upwelling 

Some organisms are able to actively swim against vertical currents in order to maintain their 

position at specific depths in the water column (Genin, 2005). Counter-upwelling depth 

retention is believed to occur to avoid more illuminated waters during daytime (Genin, 2004). 

Organisms would hence remain in deeper layers. Another explanation for depth retention is the 

preferential association of organisms with layers of high food concentrations. 

3) Accumulation by depth retention of animals swimming against downwelling 

Zooplankton may also exhibit depth retention by swimming upward against downwelling 

currents. These counter-downwelling accumulations of organisms have been reported to occur 

mostly in the photic layer and the exact mechanisms explaining this behaviour are unclear 

(Genin, 2004). 

4) Amplification of currents above abrupt features leading to enhanced fluxes of suspended 

food. 

The above mentioned mechanisms that might cause biomass to accumulate at seamounts 

generate “trophic focusing”, whereby prey from large volumes of flowing water is accumulated 

in a relatively small area above the seamount, subsidizing higher trophic levels such as pelagic 

fishes and marine mammals that aggregate over their concentrated prey (Genin, 2004; Carmo 

et al., 2013). The magnitude of this subsidy depends on the flow speed, the concentration of 

plankton and detritus and the ability of the resident communities to trap drifting food particles 

(Genin & Dower, 2007). Unlike corals and sponges that remain stationary and wait for currents 

to bring food, mobile organisms can swim and enhance their encounter rate with their prey 

(Genin & Dower, 2007). 

1.1.3.3 Seamount associated fish species 

Seamounts allow fish to rest in the quiescent shelters offered by the topography during non-

feeding intervals, while they continuously sense the abundance of prey in the flowing water. 

Fish will feed in the flow when the prey flux is high. In the open ocean, fish have to swim 
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constantly to find rich patches of prey (Genin, 2004). This is the basis of the “feed-rest” 

hypothesis (Genin & Dower, 2007; Porteiro & Sutton, 2007) believed to be supported by the 

horizontal flux of allochthonous prey that pass seamounts and sustain rich communities living 

on seamounts (Morato et al., 2009; Clark et al., 2010b). Several studies have shown that a 

number of species can be defined as being “seamount-associated”, i.e. they occur almost 

exclusively or in higher abundance over a seamount as opposed to adjacent waters (De Forest 

& Drazen, 2009). A list of common seamount-associated fish species is given in the Appendix 

section (Table B). 

Population maintenance of seamount-associated species in the face of increased current speeds 

may depend on a range of behavioural and physical mechanisms (Wilson & Boehlert, 2004). 

It has been observed that populations of Maurolicus muelleri and Gnathophausia longispina 

are able to adjust their depths throughout the night through exposure to differential current 

directions. Maurolicus muelleri and G. longispina that had been advected from the summit 

would descend to bottom layers at the seamount flank, then orient in an upflank direction such 

that they can migrate vertically up the slope to shallower layers by nightfall (Wilson & 

Boehlert, 2004). To prevent advective loss from the seamount, seamount-associated species 

orient themselves and reduce nearest-neighbour distances, thus allowing individuals to be in 

the direction that densities of scatterers are the greatest, i.e. toward the summit (Wilson & 

Firing, 1992). The association of these species with seamounts may hence confer some 

selective advantages such as “habitat diversification” in which seamounts provide a range of 

favourable habitats (both pelagic and benthic) (Denda et al., 2017c; Letessier et al., 2017), 

enhanced feeding success (Haury et al., 1995; Wilson & Boehlert, 2004), decreased energy loss 

through the “feed-rest” hypothesis (Genin & Dower, 2007) and enhanced encounter rate with 

other con-specifics for reproduction (De Forest & Drazen, 2009). 

1.1.3.4 Mesopelagic organisms at seamounts 

The mesopelagic fish species M. muelleri and C. maderensis and the crustacean G. longispina 

are few examples of a widespread and common group of organisms collectively called 

micronekton. They form a substantial biomass with an estimated number of >10 000 million 

tons of mesopelagic fishes in oceanic waters worldwide and 380 million tons of Antarctic Krill 

recorded in the Southern Ocean (Atkinson et al., 2009; Irigoien et al., 2014). Micronekton are 

a diverse assemblage of crustaceans (including large euphausiids, pelagic decapods, and 

mysids), cephalopods (small species and juvenile stages of large oceanic species) and fishes 

(mainly mesopelagic species and juveniles of pelagic nekton) (Brodeur & Yamamura, 2005; 
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De Forest & Drazen, 2009; Drazen et al., 2011; Ménard et al., 2014; Annasawmy et al., 2018). 

They range in size from 2-20 cm. Micronekton organisms are important in the energy transfer 

to higher trophic levels since several species are preyed upon by apex predators such as tuna, 

swordfish and seabird (Guinet et al., 1996; Bertrand et al., 2002; Potier et al., 2007; Cherel et 

al., 2010; Danckwerts et al., 2014; Jaquemet et al., 2014). They also play a key role in energy 

transfer to the deep ocean via respiration, excretion and natural mortality (Hidaka et al., 2001; 

Catul et al., 2011; Bianchi et al., 2013). Several species of micronekton undergo diel vertical 

migrations (DVM) of several hundred metres to the surface waters at dusk and to deeper waters 

at dawn (Lebourges-Dhaussy et al., 2000; Béhagle et al., 2014; Annasawmy et al., 2018). 

Gelatinous salps and pyrosomes are also commonly caught in mesopelagic trawl surveys. Salps 

and pyrosomes are pelagic tunicates that feed in surface waters (Zeldis et al., 1995; Perissinotto 

& Pakhomov, 1998; Décima et al., 2018). They exhibit non-selective feeding (Nishikawa et 

al., 1995; Kremer, 2002) and are important in the carbon and nitrogen export to the deep ocean 

through the sinking of their large and rapidly sinking fecal pellets (Bruland & Silver, 1981; 

Morris et al., 1988; Caron et al., 1989; Phillips et al., 2009; Henschke et al., 2016; Iversen et 

al., 2017). They are further important in the rapid sedimentation of microflagellates and 

coccoliths that are too small to be consumed by other herbivores (Iseki, 1981). Salps’ fecal 

pellets thus play an important role in contributing to the energy requirements of bathypelagic 

organisms (Wiebe et al., 1979; Iseki, 1981; Kremer, 2002). Some species of salps and 

pyrosomes are known to undertake DVM over several hundred metres to the surface layer at 

night (Wiebe et al., 1979; Andersen & Sardou, 1994; Madin et al., 2006; Décima et al., 2018) 

and even to perform reverse migrations by streaming up the water column during the day 

(Madin et al., 1996). Some salps are prey to other micronekton such as Cubiceps pauciradiatus 

(Potier et al., 2008). Gelatinous plankton are also preyed upon by several apex predators 

including lancetfish Alepisaurus ferox (albeit in small proportions; Potier et al., 2007), 

yellowfin tuna Thunnus albacares (Grubbs et al., 2001), bluefin tuna Thunnus thynnus, little 

tunny Euthynnus alletteratus, spearfish Tetrapturus belone, swordfish Xiphias gladius and 

loggerhead sea turtles Caretta caretta (Cardona et al., 2012). 

Several studies have found higher biomasses of micronekton scattering layers at seamounts’ 

flanks and summits relative to the surrounding ocean, e.g. the Emperor seamount in the Pacific 

(265m, Boehlert, 1988); Cross in the Pacific (330 m, Johnston et al., 2008); Condor (182-214 

m) and Gigante (161 m) in the Azores (Cascão et al., 2017). By contrast, other studies based 

on net surveys have found reduced micronekton abundance over Cross pinnacle (De Forest & 
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Drazen 2009; Drazen et al., 2011) and reduced mesopelagic fish densities, species numbers 

and diversity above the flanks of Atlantis (250-400 m) and Great Meteor (330 m) seamounts 

in the NE Atlantic (Pusch et al., 2004), and Sixtymile Bank (97 m) in the North Pacific (Haury 

et al., 2000). 

Several hypotheses have been developed to explain the high abundance and biomass estimates 

of micronekton typically observed at seamounts: (1) enhanced primary and secondary 

production due to local physico-chemical processes (Dower et al., 1992; Mouriño et al., 2001), 

(2) advection and retention of organisms from the surrounding ocean (Isaacs & Schwartzlose, 

1965; Genin, 2004; Wilson & Boehlert, 2004), (3) the “feed-rest” hypothesis (Genin & 

Boehlert, 1985; Porteiro & Sutton, 2007; Cascão et al., 2017), (4) lunar-related light 

illumination in the form of the lunar cycle with increased abundance during the new moon 

phase (Drazen et al., 2011), and (5) population maintenance at the summit through a 

combination of physical and behavioural mechanisms such as directed swimming behaviours 

to prevent advection to the far field (Wilson & Boehlert, 2004). The hypotheses formulated to 

explain low biomasses at seamounts are equally numerous and include: (1) predation, (2) 

advection of organisms from the summit due to physical processes, (3) active avoidance of the 

summit (Martin & Christiansen, 2009; Pusch et al., 2004) because of the presence of a hard 

substrate or increased predator abundance (Drazen et al., 2011), or because organisms have 

daytime depths that are deeper than the depth of the summit (De Forest & Drazen 2009), and 

(4) moon phase with a reduction in abundance during full moon (Drazen et al., 2011). 

According to Porteiro & Sutton (2007), interactions of midwater fishes with seamounts can be 

divided into four groups: 

1) Mesopelagic fauna that undergo their daily vertical migration process by migrating to the 

epipelagic layer (above 200 m) at night and interacting with seamounts during their migration 

process (Fig. 1.7). These organisms may be advected over seamounts by surface currents at 

night and remained trapped at the summit of shallow seamounts at dawn before being predated 

upon, resulting in a “gap formation” above seamounts. 
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Figure 1.7 Time-series from 19:31 pm to 06:30 am of acoustic transects of the 38 kHz 
frequency over Southeast Hancock seamount on 17-18 July 1984. (a) At dusk, the scattering 
layers (consisting mainly of the fish M. muelleri), migrated vertically up the water column to 
~50 m. (b) The scattering layer developed around the seamount at night. (c) The scattering 
layer remained stationary in the surface waters throughout the night and as light intensity 
increased, some scatterers moved downward. (d) Some scatterers remained above the 
seamount flanks late in the morning at depths as shallow as ~170 m (Source: Boehlert, 1988). 

 

2) Weakly migrant or non-migrant midwater fishes that enter the benthopelagic zone around 

seamounts. These species may not be able to counter strong currents and are hence advected 

over seamounts and are found in equally great abundances at seamount and non-seamount 

stations. 

3) Adults of meso- and bathypelagic species that dwell in the benthopelagic realm probably to 

increase feeding efficiency through the “feed-rest” hypothesis (Fig. 1.8) 

4) “Pseudoceanic” or “neritopelagic” species that occur near seamounts and are absent or less 

abundant in oceanic waters and that resist advection off the seamounts. 

 

Figure 1.8 Interactions between the different groups of deep-pelagic fishes and seamounts of 
various heights with the summit entering (a) epipelagic layers, (b) mesopelagic layers, and (c) 
bathypelagic layers. Horizontal arrows: non-migrant and weakly migrant meso- and 
bathypelagic fishes that are laterally advected to the benthopelagic zone around seamounts. 
Vertical arrows: Vertically migrating fishes interacting with the seamounts during their DVM. 
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Black arrows near seamount: adults of meso- and bathypelagic micronekton species dwelling 
in the benthopelagic zones. Grey arrows near seamount: non-migrant micronekton fish species 
associating with the benthopelagic layers of seamounts. U-shaped arrows: migrant 
micronekton fish species associated with the benthopelagic layers of seamounts and 
performing DVM (Source: Porteiro & Sutton, 2007). 

 

Mechanisms advecting or trapping micronekton at seamounts are equally important since it has 

been reported that several seamount-dwelling predators rely heavily on migrating micronekton 

(Sutton et al., 2010). At the Southeast Hancock seamount, pelagic armorheads, 

Pseudopentaceros wheeleri, were shown to rely heavily on migrating micronekton (pelagic 

tunicates, crustaceans and mesopelagic fishes) that were advected and trapped over the summit 

during their morning descent (Seki & Somerton, 1994). Epibenthic Sebastes spp. have been 

shown to feed on the crustaceans Euphausia pacifica, advected above Nidever bank by strong 

currents (Genin et al., 1988). At Sedlo seamount, the seamount-associated benthopelagic 

fishes, orange roughy (Hoplostethus atlanticus), were demonstrated to rely on non-migrant 

deeper meso- and bathypelagic prey items such as large lanternfishes and dragonfishes 

(Barcelos, 2005). Several studies, however, have shown the vulnerability of seamount-

aggregating fishes to exploitation by commercial fisheries (Ingole & Koslow, 2005; Morato et 

al., 2006; Watson et al., 2007). 

1.1.4 Large-scale fisheries at seamounts 

A large number of seamounts from around the world are subjected to fishing pressures (Clark 

et al., 2007) (Fig. 1.9) both for primary (that occur exclusively on seamounts) and secondary 

seamount species (not occurring exclusively on seamounts) (Fig. 1.10a, b). After 10 years of 

commercial exploitation by Soviet and Japanese vessels and over 800 000 tons of cumulative 

catch, pelagic armorheads (Pseudopentaceros richardsoni) were reportedly fished to 

commercial extinction on the Hawaiian and Emperor seamount chains in the 1960s (Koslow, 

2007). Strong decreases in orange roughy catch rates over time were observed over New 

Zealand seamounts due to extensive bottom trawling (Clark, 1999; 2001). A pattern of serial 

depletion of seamount demersal and benthic fish populations has been observed, whereby the 

fishery drives the target species to near depletion before moving onto new seamounts as catches 

decline (Clark, 1999). 
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Figure 1.9 Relative size of historical (1960-1980) seamount fisheries for Alfonsino (BYX), 
Orange roughy (ORH), Oreos (OEO), Cardinalfish (CDL), Redfish (RED), Pelagic armorhead 
(ARM), Mackerel (MAC), Roundnouse grenadier (RNG), Sablefish (SAB), Notothenid cods 
(NOT) and Toothfish (PTO). Data are gridded by 1° squares. Circle size is proportional to 
total catch for that grid square, maximum is 85 000 tons (Source: Clark et al., 2007). 

 

Figure 1.10 Global catch of (a) primary seamount species (caught primarily/ exclusively on 
seamounts), (b) secondary seamount species (not found exclusively/ primarily from seamount 
habitats), based on data described in Watson et al., 2004 (Source: Watson et al., 2007). 

 

1.1.5 Regular seamount visitors 

A number of other fisheries also regularly take place over seamounts such as those for the 

pelagic top predators, yellowfin, bigeye (Thunnus obesus), albacore (Thunnus alalunga), 

skipjack (Katsuwonus pelamis) and northern bluefin tunas (Fonteneau, 1991; Watson et al., 

2007; Morato et al., 2010b; Dubroca et al., 2013; Marsac et al., 2014) (Fig. 1.10b). These 

species are not restricted to seamounts but are widely dispersed in oceanic environments and 

only occasionally converge to seamounts. The residence times of yellowfin tunas ranged from 

~15 days at Espiritu Santo seamount in the Gulf of California (Klimley et al., 2003) and 18 

days at Cross seamount (Holland & Grubbs, 2007). Bigeye tuna had residence times of ~32-98 

± 19 days (Holland et al., 1999; Sibert et al., 2000; Holland & Grubbs, 2007) or 25 ± 12 days 
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at Cross (Musyl et al., 2003). Some seamounts have been documented to be attractive, not only 

for benthopelagic organisms and tunas, but also billfishes (Morato et al., 2010a), sharks 

(Klimley & Nelson, 1984; Klimley et al., 1988; Hazin et al., 1998; Litvinov, 2007; Junior et 

al., 2009; Meyer et al., 2010; Morato et al., 2010a; Barnett et al., 2012), sea turtles (Santos et 

al., 2007; Fiori et al., 2016; Vassallo et al., 2018), seabirds (Haney et al., 1995; Thompson et 

al., 2007, Morato et al., 2008; Amorim et al., 2008; Paiva et al., 2010; Newton & DeVogelaere, 

2013; Villani et al., 2014), and marine mammals such as whales (Worm et al., 2003; Johnston 

et al., 2008; Newton & DeVogelaere, 2013; Wong & Whitehead, 2014; McDonald et al., 2009; 

Dulau et al., 2017) and dolphins (Kaschner, 2007; Morato et al., 2008; Giorli et al., 2015). The 

main hypotheses explaining why large-scale migratory pelagic species might be attracted to 

seamounts include: 

i) Seamounts may provide navigational waypoints to fish movements (Holland et al., 1999; 

Fréon & Dagorn, 2000; Holland & Grubbs, 2007; Litvinov, 2007). 

Seamounts reportedly have distinct geo-magnetic signatures that tunas and sharks might be 

able to detect and orient to (Walker, 1984; Meyer et al., 2005) in their large pan-oceanic 

migrations, also known as “magnetic topotaxis” (Klimley, 1993). Seamounts may host these 

species transiently wherein the fishes briefly leave the seamount to forage for food and orient 

to the latter after foraging (Holland & Grubbs, 2007). 

ii) Seamounts may provide enhanced foraging opportunities to top predators (Holland et al., 

2003; Klimley et al., 2003; Kaschner, 2007; Santos et al., 2007; Morato et al., 2008; Johnston 

et al., 2008; Giorli et al., 2015). 

Foraging opportunities for apex predators may be enhanced at seamounts through the processes 

mentioned above, including enhanced upwelling events, development and retention of primary 

and secondary production of the order of weeks or months, the topographic blockage 

hypothesis and the “feed-rest” hypothesis (Genin, 2004; Genin & Dower, 2007; Porteiro & 

Sutton, 2007; Morato et al., 2009). It has been suggested that humpback whales use seamounts 

as supplementary feeding areas during their migrations (Garrigue et al., 2015) and that killer 

whales and beaked whales may use seamounts as barriers to herd prey into denser groups 

(Heimlich-Boran, 1988; Johnston et al., 2008). 

iii) Seamounts may represent favourable breeding habitats 
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Seamounts may be attractive as breeding habitats (Garrigue et al., 2015), as suggested for male 

humpback whales (Megaptera novaeangliae) visiting La Pérouse seamount in the Indian Ocean 

for residence times of ~1-17.5 days during the peak of the breeding season, from July to 

September (Dulau et al., 2017; Fig. 1.11). The New Caledonian humpback whale population 

have also been reported to aggregate at Antigonia pinnacle for an average of ~9.4 ± 5.8 days 

during their breeding period (Garrigue et al., 2015). 

 

Figure 1.11 Received Argos locations from humpback whales tagged in Réunion in 2013 (F: 
Female, M: Male). Male humpback whales engaged in localized behaviour in Réunion Island, 
La Pérouse seamount, St Brandon Shoal and Madagascar, while females  engaged in localized 
behaviour at Réunion Island and Ile Sainte-Marie (Source: Dulau et al., 2017). 

 

iv) Seamounts may function as “cleaning stations” for oceanic sharks and rays (O’Shea et al., 

2010; Oliver et al., 2011). 

Pelagic thresher sharks (Alopias pelagicus) reportedly frequently visit Monad Shoal seamount 

in the Philippines to interact with the blue streaked cleaner wrasse (Labroides dimidiatus) that 
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remove ectoparasites (Oliver et al., 2011). Cleanerfish at Osprey reef seamount in Australia 

were also observed removing ectoparasites from the mobulid ray (Manta birostris) and sharks 

belonging to the Carcharhinidae and Sphyrnidae families which would transit to the seamount 

(O’Shea et al., 2010). 

Oceanic fronts have been reported to enhance aggregation of pelagic visitors at seamounts by 

generating increased allochthonous productivity and hence creating more foraging 

opportunities (Morato et al., 2016). It has been hypothesized that tunas may force their prey to 

the surface where they are further concentrated by common dolphins, thus attracting seabirds 

to the seamount (Morato et al., 2008). Seamounts may thus be hotspots of pelagic biodiversity, 

with higher species richness of pelagic predatory fishes associated with the seamount relative 

to coastal and oceanic regions (Morato et al., 2010a; Worm et al., 2003). 

1.1.6 Seamount endemism 

Seamounts have further been hypothesized to support high levels of endemism, which is one 

of the most contradicted paradigms in seamount ecology (McClain, 2007; Rowden et al., 

2010a, 2010b). Endemic species are those that are restricted to a single or chain of seamounts 

only (Stocks & Hart, 2007). Seamount habitats have been speculated to be isolated and hence 

to promote local speciation leading to seamount species having limited, compressed geographic 

ranges thereby increasing levels of endemism (Hubbs, 1959). Some authors have reported 

levels of endemism of 15.4% among invertebrates and 11.6% among fishes from over 100 

seamounts worldwide, although 72% of that dataset comes from only five seamounts (Wilson 

& Kaufmann, 1987). Other authors have found levels of endemism of 29-34% over seamounts 

in the Tasman Sea and southeast Coral Sea (De Forges et al., 2000), endemism of <3% in 

antipatharian, scleractinian and gorgonian corals at seamounts in the northeast Atlantic (Hall-

Spencer et al., 2007), and endemism in the Pacific octocoral genus Chrysogorgia at New 

England and Corner seamounts (Pante et al., 2015). No endemic species of invertebrates and 

benthopelagic fish were recorded on the summit plateau of Seine (Christiansen et al., 2009), 

Ampère (Christiansen et al., 2015) and the Norfolk ridge (Samadi et al., 2006) seamounts. 

Much of the debate around endemicity arise from our inability to sample seamount ecosystems 

and non-seamount pools successfully (Rogers, 1994; McClain, 2007; Hart & Pearson, 2011). 

In the analysis of endemicity, the degree of connectivity of seamounts to neighbouring island 

and landmasses and recruitment mechanisms are important variables to consider (Hart & 

Pearson, 2011). Contrary to the “seamount endemicity” hypothesis, seamounts have also been 
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postulated to serve as “sources” and/or “sinks” of propagules from nearby habitats, with 

populations of invertebrates on seamounts being the source of propagules for adjacent slope 

sinks (Rowden et al., 2010a). This forms the basis of the “stepping stone” hypothesis, whereby 

seamounts aid species dispersal within the region, possibly powered by large-scale currents 

and eddies (Wilson & Kaufman, 1987; Boehlert et al., 1994; Christiansen et al., 2015; Packmor 

et al., 2015). 

1.1.7 Larval dispersal and seamount connectivity 

Marine ecological connectivity between distant ecosystems is mediated through two types of 

connections: passive circulation connectivity aided by ocean currents and/or active migratory 

connectivity achieved by actively swimming marine species (Cowen, 2006; Popova et al., 

2019). Larval type (long-lived vs. short-lived) and/or larval behaviour (larvae moving 

vertically in the water column or post-larvae attaching to floating materials) may also 

significantly influence the dispersal of a population (Bradbury & Snelgrove, 2001; Cowen, 

2006; Stocks & Hart, 2007) and hence its endemicity/ connectivity. Larvae released by 

populations at Fieberling Guyot, Cobb seamount and Porcupine bank were either settled into 

the benthos (if the larvae were benthic), were swept off the seamounts or were retained in 

Taylor caps (Parker & Tunnicliffe, 1994; Kloppmann et al., 2001; Mohn, 2002) and related 

features by forming patches of larvae with anomalously high abundances that originate near 

the summit but are later advected to the far-field and shed from the seamount by shifting 

impinging currents (Mullineau & Mills, 1997). An increase in larval abundance in the seamount 

waters at Senghor relative to the open ocean has been recorded, suggesting retention of larvae 

by mechanisms such as enhanced vertical mixing generated by the displacement of isotherms 

and isohalines (Denda et al., 2017a). Flow patterns reportedly contribute to seamount 

connectivity by aiding the transport of M. muelleri from the southern Emperor seamount to the 

region of Southeast Hancock seamount (Boehlert et al., 1994). Larval dispersal and exchange 

may result in significant genetic exchange and mixing between species on seamounts and the 

surrounding environment (Mullineau & Mills, 1997; Stocks & Hart, 2007), leading to species 

being genetically connected (Samadi et al., 2006). 

1.1.8 Seamount conservation and management strategies 

Seamount ecosystems may be significantly altered by human activities including deep-sea 

bottom trawling through the removal of coral habitats, the overexploitation of stocks and 

seabed mining for cobalt, ferro-manganese nodules and polymetallic sulphides (Clark & 

Koslow, 2007; Probert et al., 2007; Pitcher et al., 2010; Clark & Dunn, 2012). These impacts 



Chapter 1: General Introduction 

32 

highlight a pressing need to address the question of conservation and ecosystem-based 

management of seamounts. Seamounts are good candidates for the set-up of Marine Protected 

Area (MPA) networks promoted by the OSPAR Convention (OSPAR Commission, 2004) and 

the Natura 2000 network of protected areas established by member states of the European 

Commission (Santos et al., 2009). Management actions require a balance between exploitation 

and conservation, both of fisheries and habitats (Probert et al., 2007). No single management 

model is applicable to all seamounts (Probert et al., 2007; Clark et al., 2010b). 

Management tools are likely to include two complementary categories: site-specific (long-

term) and activity-related (short-term) (Probert et al., 2007; Clark et al., 2010b; Clark et al., 

2012). Site-specific regulations may include the implementation of single MPA or a network 

of MPAs and/or no-take zones (Probert et al., 2007; Barnett et al., 2012), identification and 

conservation of specific pelagic diversity hotspots (Worm et al., 2003), implementation of 

catch limits and/or small MPAs for individual features at specific times of the year to protect 

the target species nursery grounds and spawning aggregations thereby preventing local and 

serial depletion of stocks (Clark & Dunn, 2012; Fontes et al., 2014) and marine reserves to 

protect seabirds’ resting and foraging grounds during their breeding seasons (Amorim et al., 

2008). Activity-related management measures may comprise effort control through the 

prohibition of all fishing or specific gear types, set-up of line retrieval times, depth limits, 

establishment of catch quotas and bycatch quotas and licences or technical modifications to 

existing fishing gears so they have a lesser impact on seamount ecosystems (Clark & Koslow, 

2007; Santos et al, 2007; Probert et al., 2007; Clark, 2009; Clark & Dunn, 2012). 

Since most seamounts are located in areas beyond national jurisdiction, conservation measures 

and actions can only be implemented and enforced in cooperation with member states at a 

regional and international level (such as the Regional Fisheries Management Organisations), 

based on scientific information and consistent with international law (Probert et al., 2007), and 

based on open dialogue and free exchange of information between all the stakeholders and 

seamount users (Gubbay, 2005; Clark et al., 2010b). Several frameworks and criteria are now 

available for classifying individual seamounts as ecologically and biologically significant areas 

(EBSA) (Taranto et al., 2012), for the economic valuation of seamount ecosystems 

(Ressurreição & Giacomello, 2013), or for delineating Large Marine Ecosystems (LMEs) 

(Probert, 1999) to reduce threats and develop comprehensive and sustainable management 

strategies. Conservation actions can further be prioritized by grouping seamounts according to 

their general characteristics (Probert et al., 2007). 
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An essential input to all conservation and management actions is the accurate information about 

the geographic distribution of habitats and their associated biological resources (Clark et al., 

2012). Unfortunately, data with respect to benthic habitats are available only for a small 

percentage of seamounts globally. Significant knowledge gaps exists on seamount ecosystems 

of the Indian Ocean (Clark et al., 2010b), although ~40 years of fishing mark the history of the 

South West Indian Ocean seamounts (Zucchi et al., 2018). Regarding non-living resources, 

permits have been awarded to the Chinese contractor COMRA (China Ocean Mineral 

Resources Research and Development Association) for exploration of seabed minerals of the 

South West Indian Ridge (Guduff et al., 2018). The ocean governance framework in the 

Western Indian Ocean (WIO) is complex with various legal and institutional frameworks and 

regional powers including the Nairobi Convention and the Regional Fisheries Bodies- the 

IOTC (Indian Ocean Tuna Commission), SIOFA (South Indian Ocean Fisheries Agreement) 

and SWIOFC (Southwest Indian Ocean Fisheries Commission). 

Limited management measures have been implemented by the SIOFA. One such conservation 

measure is the delineation of 13 benthic protected areas (BPAs) where bottom or midwater 

trawling are banned. However, these measures do not regulate mining or oil/drilling activities. 

Other measures include limits on bottom fishing effort and catch and exclusion of gears (traps 

and lines). No MPAs have been set-up along the South West Indian Ridge (Guduff et al., 2018). 

The significant knowledge gaps identified during the 2016 and 2017 SIOFA meetings have 

been the cause of the rejection of a proposal to convert the SIODFA’s BPAs into formal VME 

(Vulnerable Marine Ecosystem) closures. Future research should thus strategically target these 

understudied regions, types of seamounts and critical ecological processes. Research should 

also aim at employing novel sampling and analysis technologies, using predictive modelling 

tools to predict habitat suitability for benthic species in poorly studied regions (Tittensor et al., 

2009; Guduff et al., 2018) and standardizing data collection and sharing (Clark et al., 2010b). 

1.2 Conclusion 

Some seamounts from the Atlantic and Pacific basins were reported to significantly enhance 

biomass of primary, secondary and tertiary consumers if physical processes are developed and 

maintained for a sufficient amount of time to allow a biological response to occur. While 

processes conducive for biological enhancement has been thoroughly studied at some 

seamounts of the Atlantic and Pacific oceans (Appendix: Tables A & B), our knowledge pool 

is limited, especially in the south-western Indian Ocean. Chapter 2 will hence aim at shedding 

new light on the general pelagic ecosystem within the South West Indian Ocean (SWIO). The 
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prevailing physical processes and topographic features of the SWIO, likely influencing the 

distribution, abundance and behaviour of lower through to higher trophic levels, will be 

described. 

1.3 Thesis Aims and Objectives 

This research project was inspired by the recognition that the La Pérouse and MAD-Ridge 

seamounts may host ecologically and biologically important organisms, that they are being 

exploited by fisheries and that the significant knowledge gaps have led to a lack of conservative 

measures to protect the associated ecosystems. This work is the first to investigate the dynamics 

of mesopelagic communities at La Pérouse and MAD-Ridge. 

Chapter 2 is dedicated to a detailed overview of the pelagic ecosystem of the south-western 

Indian Ocean. The relevance of physical oceanographic processes, seamounts and ridges of the 

south-western Indian Ocean for top predator species is also presented, along with fisheries 

impact and governance aspects. The La Pérouse and MAD-Ridge seamounts are introduced as 

case studies whereby the bathymetry, chemical oceanography, plankton, ichthyoplankton and 

mesozooplankton communities were investigated during two recent cruises.  

Chapter 3 examines the influence of mesoscale eddies, continental shelf and the shallow 

seamounts, La Pérouse and MAD-Ridge, on the vertical and horizontal distributions of 

micronekton. The conditions for the formation of Taylor columns are presented. The influence 

of environmental variables and productivity on micronekton communities at La Pérouse and 

MAD-Ridge are investigated. Micronekton’s diel vertical migration patterns are also revisited 

in light of the acoustic and environmental data collected. 

Chapter 4 investigates the prevailing environmental conditions at the La Pérouse and MAD-

Ridge seamounts using satellite data. The distributions and assemblages of micronekton 

communities are presented, using a combination of mesopelagic trawl data and a multi-

frequency acoustic visualisation technique. This acoustic visualisation technique has allowed 

the investigation of the relative contribution of each frequency to the overall backscatter and 

identification of dense aggregations of scatterers associated with the seamounts’ summits and 

flanks. Micronekton’s vertical and horizontal distributions and the different migration 

strategies of various species are analysed in more detail. 

Chapter 5 interrogates the stable isotope patterns at the La Pérouse and MAD-Ridge 

seamounts using stable carbon (δ13C) and nitrogen (δ15N) isotopic values of soft tissues of 
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selected micronekton taxa. The trophic interactions between particulate organic matter (POM), 

zooplankton, gelatinous organisms and micronekton are studied in more detail, along with the 

factors likely influencing stable isotope compositions. A seamount effect is further investigated 

by comparing the stable isotope values of omnivorous/ carnivorous fishes sampled at the 

seamounts’ flanks, vicinities and summits relative to the southern Mozambique Channel. The 

stable isotope values of the seamount-associated fish species identified in Chapter 5 are 

analysed. 

Chapter 6 highlights key findings from Chapters 3-5 and expands on their implications to 

science, fishers and management. Chapter 6 further discusses the overall micronekton acoustic 

densities at the La Pérouse and MAD-Ridge seamounts relative to the wider geographic area 

within the ISSG and EAFR provinces. Knowledge gaps and fruitful avenues of future research 

are key elements outlined in a forward-looking perspective.
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L’Homme et la Mer 

 

Homme libre, toujours tu chériras la mer ! 

La mer est ton miroir ; tu contemples ton âme 

Dans le déroulement infini de sa lame, 

Et ton esprit n’est pas un gouffre moins amer. 

 

Tu te plais à plonger au sein de ton image; 

Tu l’embrasses des yeux et des bras, et ton coeur 

Se distrait quelquefois de sa propre rumeur 

Au bruit de cette plainte indomptable et sauvage. 

 

Vous êtes tous les deux ténébreux et discrets: 

Homme, nul n’a sondé le fond de tes abîmes; 

Ô mer, nul ne connaît tes richesses intimes, 

Tant vous êtes jaloux de garder vos secrets! 

 

Et cependant voilà des siècles innombrables 

Que vous vous combattez sans pitié ni remord, 

Tellement vous aimez le carnage et la mort, 

Ô lutteurs éternels, ô frères implacables! 

 

Charles Baudelaire, 1861 
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2.1 The South West Indian Ocean: General Overview 

2.1.1 Geomorphology and sedimentation 

The latitudinal range of the South West Indian Ocean (SWIO) extends from 0 to 30-35°S while 

the longitudinal range encompasses the area between eastern Africa to 60°E. While the Indian 

Ocean is the third largest ocean in the world (Ingole & Koslow, 2005), it remains relatively 

less well explored scientifically relative to the Atlantic and Pacific Oceans. The 

geomorphological characteristics of the Indian Ocean comprise islands, mid-ocean ridges, 

abyssal plains, deep-sea trenches, submarine plateaus and seamounts, with the latter being 

poorly studied habitats (Demopoulos et al., 2003; Ingole & Koslow, 2005). The distribution of 

seamounts varies across ocean basins. The Pacific basin accounts for ~8950 potential 

seamounts relative to the Atlantic, Indian and Southern Oceans (2760, 1650 and 880, 

respectively) (Hillier & Watts, 2007; Kitchingman et al., 2007; Wessel, 2007; Etnoyer et al., 

2010). The low abundance of seamounts in the Indian Ocean has been associated with the 

smaller magmatic activity and cooler mantle temperatures in the region (Mendel & Sauter, 

1997). Most seamounts present in the Indian Ocean are associated with its ridge systems 

(Ingole & Koslow, 2005; Fig. 2.1). 
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Figure 2.1 Major ridge system, basins and two hotspots of the Indian Ocean bounded by the 
African, Asian, Australian and Antarctic continents [Source: adapted from Tomczak & 
Godfrey, 2002]. 
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The Madagascar Ridge is an elongated plateau that has originated from volcanism of the 

Marion hotspot (Sinha et al., 1981; Zhang et al., 2011; Fig. 2.1). It stretches 400 km across and 

~1300 km southwards from the Madagascar landmass and connects at 42°S with the Southwest 

Indian Ridge (SWIR) (Sinha et al., 1981; Zucchi et al., 2018). The Madagascar ridge system 

can be separated into two domains north and south of 31°S that differ in sea-floor topography, 

acoustical basement relief and sediment cover (Goslin et al., 1980). In the northern portion of 

the ridge, sediments are confined in narrow pockets between the numerous basaltic highs on a 

relatively old crust. In the southern portion of the ridge, the sediment cover is thicker and 

regularly layered on a younger oceanic crust (Goslin et al., 1980). The Mascarene Basin, on 

the other hand, extends between Madagascar and the Mascarene Plateau (Schlich, 1974). The 

Mascarene Plateau was formed from the Réunion hotspot (Bonneville et al., 1997). The shallow 

part of the Mascarene Plateau is 20-100 m deep along the banks that have steep descending 

slopes to ~3000-5000 m (New et al., 2005). The curvature of the Mascarene ridge is typical of 

the curvature of an island arc extending ~2000 km from Seychelles to Mauritius (Kamen-Kaye 

& Meyerhoff, 1980; Gallienne et al., 2004). The southern Mascarene Ridge consists of dark, 

fine-grained, grey basalt and younger volcanic rocks (Schlich, 1974), while the northern 

portion of the ridge exhibits older rocks (Kamen-Kaye & Meyerhoff, 1980). 

The ocean floor in the Indian Ocean is dominated by sediments containing a high proportion 

of calcium carbonate (Berger, 1974; Kolla et al., 1980; Demopoulos et al., 2003). Pelagic red 

clay and turbidites are present in the deepest parts of the Mascarene Basin (McCave et al., 

2005). Hard substrata in the Indian Ocean consist of ferromanganese concretions (Demopoulos 

et al., 2003) and manganese nodules at ~4000 m depth (Ingole & Koslow, 2005). The rubble 

and coral frameworks at Middle of What seamount along the SWIR were reported to be coated 

with manganese deposits (Narayanaswamy et al., 2017). Benthic-biological activity and strong 

bottom currents are deemed responsible for the presence of these nodules at the sediment-water 

interface (Demopoulos et al., 2003). 

2.1.2 Water masses and circulation patterns 

The Indian Ocean exhibits a complex system of water masses (Fig. 2.2). Warm and salty 

Tropical Surface Water occupies the upper layers (within the top 250 m) (Fig. 2.2). Some of 

the deeper parts to the north-west of Réunion Island consists of Red Sea Intermediate Water 

(Gordon et al., 1987) and the upper Circumpolar Deep Water (New et al., 2007). Both to the 

north-west of Réunion Island and south of Madagascar, other intermediate water masses are 

present- the South Indian Central Water/ the Sub-Antarctic Mode Water and the Antarctic 
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Intermediate Water (New et al., 2005; Vianello et al., 2020; Fig. 2.2). The Red Sea Intermediate 

Water is mostly observed near the Mascarene Plateau where it may meet with the Antarctic 

Intermediate Water (New et al., 2005). Bottom and deep waters of the Indian Ocean are mostly 

derived from the Atlantic and they are constrained to spread through deep fracture zones such 

as the Atlantis II fracture zone along the SWIR at longitude 57°E and latitude 33°S (Muller et 

al., 2000; Demopoulos et al., 2003; MacKinnon et al., 2008) where strong mixing of these 

deep- and bottom-waters occurs (MacKinnon et al., 2008). Once across the SWIR, depths 

below 3800 m are occupied by cold Antarctic Bottom Water that leaves the circumpolar current 

(Tomczak & Godfrey, 2001; Demopoulos et al., 2003). The Indian Deep Water formed from 

the North Atlantic Deep Water (Le Pichon, 1960) and carried into the Indian Ocean with the 

Upper Circumpolar Current, occupies depths between 1500 and 3800 m (Ingole & Koslow, 

2005). Part of the Atlantic water flowing inside the Indian Ocean, particularly the North 

Atlantic Deep Water, is balanced in the surface layer by flow from the Agulhas Current 

(Agulhas leakage; Beal et al., 2011). The Agulhas Current is fed from the South Equatorial 

Current (SEC) which is in turn fed from waters coming from the Pacific ocean as the 

“Indonesian Through-Flow” (Tomczak & Godfrey, 2001; McCave et al., 2005). 
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Figure 2.2 Temperature-Salinity diagrams indicating the water masses in the SWIO. 
Conservative Temperature (°C) vs. Absolute Salinity (g kg-1) (as in Vianello et al., 2020) 
profiles (a) to the North West of Réunion Island, and (b) south of Madagascar, showing the 
AAIW (Antarctic Intermediate Water), SICW (South Indian Central Water), SAMW (Sub-
Antarctic Mode Water), STUW (Subtropical Under Water) and Tropical surface Waters. The 
Red Sea Water and uCDW (upper Circumpolar Deep Water) were observed to the north-west 
of Réunion Island. 
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The shallow water circulation (upper 500 m), at ~15°S, consists of the westward-flowing and 

warm SEC that carries waters from the “Indonesian through-flow” across the Indian Ocean 

through gaps between the Saya de Malha and Nazareth banks at 12-13°S (New et al., 2005). 

The SEC forms a sharp boundary between nutrient-rich waters of the north-western Indian 

Ocean near Seychelles from the nutrient-poor water masses of the SWIO around the Mascarene 

Islands (New et al., 2005; Obura, 2012). On reaching the Madagascar landmass, the SEC 

bifurcates to form the northward and southward branches of the East Madagascar Current 

(NEMC and SEMC respectively) (Fig. 2.3) (Quartly & Srokosz, 2004; McCave et al., 2005; 

Quartly et al., 2005; Hall et al., 2017; Zucchi et al., 2018). The northward branch (NEMC) 

flows around the northern tip of Madagascar before branching again when reaching the east 

African coast, to form the East African coastal current (EACC) flowing equatorwards. The 

resulting southern branch flow southwards through the Mozambique Channel, with mesoscale 

eddies being formed at the narrower part of the channel at 17°S (De Ruijter et al., 2002; Quartly 

& Srokosz, 2004; Lutjeharms et al., 2012). Four to seven mesoscale eddies per year transit 

through the Mozambique Channel, from north to south (Schouten et al., 2003; Tew-Kai & 

Marsac, 2009, 2010). 

The narrow and nutrient-poor SEMC (Quartly & Srokosz, 2004) retroflects on reaching the 

southernmost tip of the Madagascar continental shelf, a process during which various 

mesoscale eddies and current fragments may become detached (Lutjeharms et al., 1981; De 

Ruijter et al., 2004). The development of mesoscale dipoles (pair of contra-rotating eddies) has 

been regularly observed to the south of Madagascar where the SEMC separates from the shelf 

(De Ruijter et al., 2004). These eddies generally propagate in a west- and south-westward 

direction, with some reaching the Agulhas Current to the south of Africa (De Ruijter et al., 

2004). Periods of enhanced dipole formation have been found to coincide with El Niño cycles 

and the negative phases of the Indian Ocean Dipole (De Ruijter et al., 2004). Upwelling cells 

also occur on the continental shelf south of Madagascar (Machu et al., 2002). These are most 

likely due to the dynamic effects of upwelling favourable wind stress and frictional interaction 

between the Madagascar continental shelf slope and the southward flowing EMC (De Ruijter 

et al., 2004; Machu et al., 2002; Ho et al., 2004; Ramanantsoa et al., 2018). 
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Figure 2.3 Schematic diagram of major surface currents (yellow and orange arrows) in the 
SWIO, labelled AC (Agulhas Current), SEC (South Equatorial Current), SEMC (South East 
Madagascar Current), NEMC (North East Madagascar Current), EACC (East Africa Coastal 
Current), ARC (Agulhas Return Current), AL (Agulhas Leakage). Atmospheric circulation over 
Southern Africa is also shown (grey lines). The Mozambique Channel (MC) and Transkei Basin 
(TB) are labelled. The Intertropical Convergence Zone (ITCZ) and the Congo Air Boundary 
(CAB) (dashed lines) are labelled. U1476, U1477, U1478, U1474, U1479 and U1475 represent 
drill sites during the International Ocean Discovery Program, IODP, JOIDES Resolution, 
Expedition 361. The colour bar indicates bathymetry (m) [Source: Hall et al., 2017]. 

 

2.1.3 Biogeochemical provinces of the SWIO 

The East African Coastal Province (EAFR) and Indian South Subtropical Gyre (ISSG) are two 

major provinces of the SWIO (Fig. 2.4). The ISSG province is bounded by the SEC to the north 

(Longhurst, 1998). The prevailing large-scale anticyclonic circulation pattern of the ISSG leads 

to a physical downwelling, that limits the supply of nutrients to the surface layers (Jena et al., 

2013). The ISSG province is characterised by low nutrients and chlorophyll a concentrations 
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(Jena et al., 2013) relative to the EAFR which shows higher sea surface primary production 

and elevated chlorophyll a concentrations all year round (Annasawmy et al., 2018). Based on 

in situ CTD (Conductivity Temperature Depth) data, the mean surface fluorescence 

concentrations were six times less in the ISSG, with deeper Deep Chlorophyll Maximum 

(DCM), relative to the Mozambique Channel in the EAFR (Annasawmy et al., 2018). The 

observed pattern could be ascribed to riverine outflow and presence of mesoscale eddies which 

advected productivity into the Mozambique Channel (Pous et al., 2014; Hood et al., 2017; 

Annasawmy et al., 2018). Elevated concentrations of nutrients and chlorophyll a were also 

observed in the upwelling region south of Madagascar (Machu et al., 2002). During austral 

summer, these nutrient-rich waters within the intensified upwelling cells along the south coast 

of Madagascar are transported offshore by mesoscale eddies (Raj et al., 2010). 

 

Figure 2.4 Longhurst’s (1998) biogeochemical provinces EAFR (East African Coastal 
Province) and ISSG (Indian South Subtropical Gyre) of the SWIO. 

 

Significant enrichments of nutrients and chlorophyll may occur within mesoscale eddies, with 

the potential for nutrients to be transported centrally to the euphotic zone by rotary motion 

within cyclonic eddies (Falkowski et al., 1991) and peripherally within anticyclonic ones 

(Martin et al., 2001; Raj et al., 2010). “Eddy pumping” processes may increase phytoplankton 

growth in an otherwise oligotrophic ocean (Falkowski et al., 1991; Oschlies & Garcon, 1998) 

due to the doming of water masses which bring nutrients closer to the surface where irradiance 

conditions are favourable for phytoplankton growth (Longhurst, 2007). Eddies may influence 

plankton communities by horizontal advection (either by stirring of surface currents around the 

eddy boundaries or trapping of specific water parcels having unique biological and physical 
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properties), by the vertical transport of nutrients into the photic zone, and by water column 

stratitication (whereby cells are maintained and concentrated in the photic layer by the eddy) 

(Gaube et al., 2014). During the forced phase, anticyclonic eddies may be characterised by 

accumulation of warm, chlorophyll-depleted water in the centre and nutrient-enriched water at 

the outer edge (Falkowski et al., 1991; Lévy et al., 2001; Tew Kai & Marsac, 2010). 

Phytoplankton blooms may aggregate secondary and tertiary consumers including 

zooplankton, micronekton and larger nekton (Piontkovski & Williams, 1995) that further 

attract top predators. This transfer of energy from primary producers to top predators is 

believed to be rapid in the tropical Indian Ocean (Longhurst, 1998), indicating that prey for top 

predators becomes readily available shortly after the onset of these blooms (Pinet et al., 2012). 

2.1.4 Biological compartments of the ISSG and EAFR provinces 

2.1.4.1 Phytoplankton pigments 

In oligotrophic environments, light and nutrient (including nitrate, silicate and iron) 

concentrations limit phytoplankton growth (Thomalla et al., 2011). Autotrophic organisms in 

these areas depend on nutrient recycling or on vertical flux of nutrients from deeper waters into 

the euphotic zone (Altabet & Francois, 1994). In such systems, mesoscale eddies may play a 

significant role in making nutrients available to phytoplankton in the photic layer (Falkowski 

et al., 1991; McGillicuddy et al., 1998). Previous studies have found enhanced surface total 

chlorophyll a concentrations (which are general indicators of phytoplankton biomass, Ewart et 

al., 2008) within cyclones relative to anticyclones of the Mozambique Channel (Barlow et al., 

2014). Furthermore, studies have found low concentrations of small phytoplankton cells to 

characterise subtropical waters in the south-west indian subtropical gyre (Thomalla et al., 

2011). This indicates that productivity was based almost entirely on recycled ammonium and 

urea instead of nitrate (Thomalla et al., 2011). 

Previous studies conducted in the ISSG province to the south of Mauritius Island (MICROTON 

cruise- DOI:  10.17600/10110010) and in the EAFR province within the Mozambique 

Channel (MESOP 2010 cruise- DOI: 10.17600/10110020/30) have shown a pre-dominance of 

prokaryotes at the sea surface, while flagellates were dominant at the DCM (Fig. 2.5). This is 

consistent with observations that prokaryotes are present in warm surface waters (>22°C) in 

the SWIO (Barlow et al., 2008; 2014) and flagellates dominate the DCM in the Mozambique 

Channel (Barlow et al., 2014). Prokaryotes have a high proportion of the photo-pigment PPC 

(photoprotective carotenoids) (Barlow et al., 2014) in their cells and hence they proliferate at 

high irradiance, low nutrient surface oligotrophic environments (Cavicchioli et al., 2003). 
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Flagellates, on the other hand, have higher concentrations of total chlorophyll a (whose major 

role is to absorb light) and PSC (photosynthetic carotenoids) in their cells (Barlow et al., 2008). 

These flagellates are hence better adapted to survive the low-light and nutrient-replete 

conditions of the DCM. Diatoms were more abundant within the oligotrophic ISSG province 

relative to the more productive EAFR province. Studies have also found dominance of diatoms 

in anticyclonic eddies and were related to high rates of vertical mixing (Thompson et al., 2007; 

Ewart et al., 2008). 

 

Figure 2.5 Relative contributions of diatoms, flagellates and prokaryotes within the ISSG and 
EAFR provinces. 

2.1.4.2 Mesozooplankton 

Zooplankton biomass may also be linked to the surrounding productivity and increased food 

availability. Higher zooplankton biomasses, associated with higher concentrations of nutrients, 



Chapter 2: Pelagic ecosystem and seamounts of the South West Indian Ocean 

47 

were recorded in the northern and equatorial Indian Ocean. Comparatively, the ISSG province 

recorded the lowest nutrient concentrations and zooplankton biomasses (Bailey, 1968; Rao, 

1973; Madhupratap, 1983). Copepods are generally the numerically dominant zooplankton 

taxa recorded in the Indian Ocean (Gallienne et al., 2004; Conway, 2005), followed by 

chaetognaths, ostracods, tunicates and siphonophores (Madhupratap, 1983). Previous studies 

conducted in the Mozambique Channel recorded enhanced zooplankton biovolume over the 

African shelf, at divergence and cyclonic eddy stations relative to anticyclonic and frontal 

stations (Huggett, 2014). The mesozooplankton community in the Mozambique Channel was 

found to be strongly dominated by small copepods (Dupuy et al., 2016), appendicularians, 

ostracods and chaetognaths (Huggett, 2014). Copepods can obtain food from different sources 

of organic matter in dissolved or particulate form, in the form of detritus or living prey (Poulet, 

1983), likely explaining their high recorded abundances from surveys in the Mozambique 

Channel (Huggett, 2014; Dupuy et al., 2016). 

Studies from different regions of the Indian Ocean have found copepods to constitute ~40-90% 

by number of the diet of lanternfishes, with minor contributions from amphipods, euphausiids, 

ostracods, chaetognaths, larvaceans, molluscs and polychaetes (Dalpadado & Gjøsæter, 1988). 

Larger lanternfishes were observed to feed on larger prey such as chaetognaths, fish larvae and 

polychaetes, without completely excluding smaller prey items from their diet (Dalpadado & 

Gjøsæter, 1988). Furthermore, zooplankton fractions remaining in the first 170 m of the water 

column by day are important prey items of the fishes that surface tuna feed upon (Roger, 1994). 

2.1.4.3 Micronekton 

Micronekton were sampled during previous IRD cruises in the ISSG and EAFR provinces 

(Potier et al., 2014; Annasawmy et al., 2018). With the sampling seawater volume accounted 

for, a greater biomass of mesopelagic organisms (crustaceans, squids, mesopelagic fishes and 

gelatinous plankton), were recorded in the southern and central Mozambique Channel (MESOP 

2009 and 2010 cruises) relative to the ISSG (MICROTON cruise) to the south of Mauritius 

Island (Potier et al., 2014; Annasawmy et al., 2018). The combined action of riverine input and 

entrainment of productivity and chlorophyll a from the African landmass to the Mozambique 

Channel by mesoscale eddies may favour the aggregation of zooplankton (Huggett, 2014) and 

micronekton in the EAFR (Annasawmy et al., 2018). Productivity and resulting secondary and 

tertiary consumer abundances were lower in the ISSG relative to the eutrophic Mozambique 

Channel. 
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Among the mesopelagic broad categories, gelatinous organisms and fishes dominated the total 

biomass estimates across the cruises in the SWIO. Gelatinous organisms were poorly identified 

during MESOP 2009, 2010 and MICROTON cruises because species broke apart in the nets 

making identification impossible, hence the low representation of these organisms in total net 

counts. Mesopelagic fishes and crustaceans dominated the abundance estimates during 

MICROTON and MESOP 2009. Squids were the most poorly represented in terms of 

abundance and biomass estimates across all cruises most probably due to net avoidance 

behaviours of species. 

Studies have shown the distribution of micronekton biomass to be seasonal, with highest values 

recorded south of 20°S in summer and north of 12°S in winter along longitude 110°E (Legand, 

1967). However, no seasonal pattern in micronekton acoustic backscatter were observed in a 

latitudinal gradient between 20-50°S (Béhagle et al., 2016). The authors also noted low 

backscatter intensities within the surface layer in winter relative to summer in the Polar Frontal 

Zone (Béhagle et al., 2016). Micronekton biomasses may be seasonal in the SWIO and tightly 

linked to the productivity in the region although further studies are required to test this 

hypothesis. 

The mean volume backscatter intensities were also strongly correlated with the position of 

fronts and water masses (Boersch-Supan et al., 2017). Mesoscale features such as cyclones 

recorded greater micronekton acoustic densities relative to anticyclones in the Mozambique 

Channel (Béhagle et al., 2014). The periphery of eddies exhibited large micronekton 

aggregations relative to the core (Sabarros et al., 2009). Other studies found higher species 

richness of micronekton in divergences and fronts that were characterised by low and high 

geostrophic velocities but small sea surface height anomalies (Lamont et al., 2014), relative to 

the core of cyclonic and anticyclonic eddies (Potier et al., 2014). Processes enhancing the 

biomass of micronekton in nutrient poor environments are key in controlling the abundance 

and distribution of higher trophic level organisms that have high energetic demands (Roger, 

1994). Bouts of productivity (either seasonal or caused by physical processes) are important to 

sustain top predator species, especially in the south-western tropical Indian Ocean where 

background oceanic productivity is low and micronektonic prey are patchily distributed 

(Weimerskirch, 2007). 
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2.1.4.4 Predator species 

Assemblages of seabirds, sea turtles, marine mammals, pelagic fishes and elasmobranches in 

the SWIO were shown to reflect the broad ecoregions- EAFR, ISSG, and Indian Monsoon Gyre 

(Longhurst, 1998) and habitat types- shelf, slope and oceanic (Weimerskirch, 2007; Laran et 

al., 2017). Below is a non-exhaustive list of some of the most prominent predators and marine 

mammals and their preferred dwelling (migrating and foraging) grounds and favourite prey, 

with respect to the circulation patterns and topographic features of the SWIO. 

Seabirds 

The tropical WIO is a hotspot for seabird colonies that are concentrated at three major breeding 

sites- Seychelles, the Mozambique Channel, and the Mascarene Archipelago (Tree, 2005; 

Catry et al., 2009; Le Corre et al., 2012; Laran et al., 2017). Studies suggest that marine birds 

depart from their respective colonies and commute to predictable productive mesoscale 

features such as frontal zones, eddies, shelf edges, upwelling zones (Weimerskirch, 2007) and 

seamounts (Le Corre et al., 2012). Elevated seabird densities have been reported to the south 

of Madagascar including the Madagascar continental shelf, MAD-Ridge and Walters Shoal 

seamounts (Le Corre et al., 2012; Mannocci et al., 2014). 

Breeding Barau’s petrels forage mainly on large nektonic squids such as Sthenoteuthis 

oualaniensis (Kojadinovic et al., 2007) and epi-, meso- pelagic fishes to the south of 

Madagascar, including MAD-Ridge and Walters Shoal seamounts, during their long trips 

between October and March (Stahl & Bartle, 1991; Le Corre et al., 2012; Pinet et al., 2012). 

Breeding red-tailed tropicbirds of Europa Island and Nosy Vé (southwest Madagascar) also 

forage around Walters Shoal during austral summer from November to April (Le Corre et al., 

2012). Breeding shearwaters avoid the shallow waters of the Mascarene region (Catry et al., 

2009) whereas chick-rearing Barau’s petrels forage locally around Réunion Island during their 

short trips (Le Corre et al., 2012). Site fidelity to distant foraging grounds at specific periods is 

likely supported by the high probability for these birds of finding productive sites with relevant 

prey items (Weimerskirch, 2007). After the breeding period, most of these birds migrate to the 

central Indian Ocean or eastwards (Stahl & Bartle, 1991; Le Corre et al., 2012). 

Marine birds show annual and seasonal (either summer or winter) or non-seasonal breeding, 

with the breeding pattern being driven by physical oceanographic patterns which influence the 

productivity and hence the prey availability (Le Corre, 2001; Jaquemet et al., 2007; Monticelli 

et al., 2007; Pinet et al., 2012). Foraging seabirds including sooty terns (Sterna fuscata), red-
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footed boobies (Sula sula) and Audubon’s shearwaters (Puffinus Iherminieri) that breed during 

austral winter (June-October) rely on the presence of subsurface predators such as tunas and 

dolphins which make prey readily available in the upper layer of the water column (Le Corre, 

2001; Jaquemet et al., 2007; Monticelli et al., 2007). Seabirds also aggregate in areas with 

higher oceanic productivity (Monticelli et al., 2007) during austral winter when sea surface 

temperatures are the lowest and when thermal fronts occur (Le Corre, 2001). Seabirds including 

frigatebirds, sooty terns Sterna fuscata and red-footed boobies Sula sula perform long foraging 

trips of ~1000 km during the breeding season to feed on flying fish and squids (Cherel et al., 

2008). The foraging grounds of the Great Frigatebirds Fregata minor were more frequently 

associated with higher surface chlorophyll concentrations and cyclonic vortices (Weimerskirch 

et al., 2010). 

Marine turtles 

The WIO is believed to host five species of marine turtles including the green turtle Chelonia 

mydas, the hawksbill Eretmochelys imbricata, loggerheads Caretta caretta, leatherbacks 

Dermochelys coriacea and the olive ridley Lepidochelys olivacea (Bourjea et al., 2008). These 

turtles nest on beaches of countries neighbouring the WIO (Bourjea et al., 2008) and forage in 

their national waters (Taquet et al., 2006; Bourjea et al., 2008; Jean et al., 2010; Mencacci et 

al., 2010; Ballorain et al., 2013). Loggerhead turtles were reported to consume crustaceans and 

molluscs in coastal habitats and jellyfish during their pelagic journeys, while leatherbacks were 

reported to feed exclusively on gelatinous zooplankton (Du Preez et al., 2018). The foraging 

patterns of leatherback turtles is also reportedly linked to mesoscale eddies, convergence or 

upwelling areas that concentrate prey. Leatherback turtles in the Mozambique Channel may 

remain associated with mesoscale eddies for prolonged periods (Lambardi et al., 2008). 

Cetaceans 

The WIO also reportedly hosts 33 cetacean species including seven species of baleen whales, 

ten toothed whales and sixteen delphinids (Kiszka et al., 2007; van der Elst & Everett, 2015). 

Due to their coastal or inshore habitats along southern Africa and island states in the region 

(Braulik et al., 2015; Viricel et al., 2016; Bouveroux et al., 2018), the delphinid species are less 

likely associated with seamounts along the Madagascar, South West Indian and Mascarene 

Ridges. Risso’s dolphins, however, which prefer steep-sloped bottoms near the outer edge of 

continental shelves, occur off eastern and southern Madagascar (Jefferson et al., 2014). 
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Delphinids from the region have been reported to feed on mesopelagic prey including fishes, 

cephalopods and crustaceans (Braulik et al., 2015). In the SWIO, Delphininae and 

Globicephalinae were reported to optimise their foraging success by feeding at shallow depths 

in regions of accessible and high prey densities (Lambert et al., 2014). Stenella spp. and 

Tursiops spp. were reported to forage mostly at night in the epipelagic zone (0-200 m), 

following the vertical migration of mesopelagic communities at dusk (Lambert et al., 2014). 

These species are occasionally able to perform deep dives down to 400 m (Benoit-Bird & Au, 

2003; Lambert et al., 2014). Sperm and beaked whales were shown to dive deeper and exploit 

prey resources in the bathypelagic zone (Lambert et al., 2014; Fig. 2.6). Cetaceans respond 

directly to the density, horizontal and vertical distributions of the deep scattering layer and with 

respect to their diving abilities (Lambert et al., 2014; Hazen & Johnston, 2010). The 

distribution of pilot whales was associated with high acoustic densities of prey in the mid- and 

deep layers. Stenella dolphins and false killer whales were correlated with a shallower 

backscattering layer (Lambert et al., 2014; Hazen & Johnston, 2010; Fig. 2.6). 

 

Figure 2.6 Modelled vertical distribution of (A) cetaceans and (B) scattering layers (prey items 
for top predators) in the water column [Source: Lambert et al., 2014]. 

Compared to the southeast Indian Ocean, the SWIO exhibits low humpback whale (Megaptera 

novaeangliae) aggregations (Best et al., 1998; Trudelle et al., 2019; Fig. 2.7). Four breeding 

sub-stocks of humpback whales have been identified in the SWIO by the International Whaling 

Commission (Fig. 2.7). The occasional blooms southeast of Madagascar and north of the 
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Crozet Plateau reportedly attract humpback whales and the whale sharks Rhincodon typus to 

the region (Brunnschweiler et al., 2009; Fossette et al., 2014). The Mozambique Channel is 

also reportedly an important habitat for whale sharks probably due to suitable sea surface 

temperatures and chlorophyll a concentrations (Sequeira et al., 2012). Réunion Island, 

Madagascar, La Pérouse and Walters Shoal seamounts are important breeding sites for 

humpback whales during austral winter (Best et al., 1998; Dulau-Drouot et al., 2012; Cerchio 

et al., 2013; Dulau et al., 2017). The occasional high humpback whale density at Walters Shoal 

has been reported to be due to the presence of large numbers of the crustacean Systellapsis sp. 

and the fish Trachurus at the seamount (Best et al., 1998; Shotton, 2006). A high proportion of 

blue whales were caught along the Madagascar Ridge by Soviet vessels from 1958 to 1973, 

while these cetaceans reportedly avoided oligotrophic central gyres such as the ISSG (Branch 

et al., 2007). Within the SWIO, Delphininae and Globicephalinae had low predicted densities 

in the ISSG province around the Mascarene Islands relative to the more productive 

Mozambique Channel where predicted densities were the highest (Mannocci et al., 2014; Laran 

et al., 2017). A high level of connectivity in terms of whale movements was also observed 

between the Mascarene and Madagascar regions (Dulau et al., 2017). 

 

Figure 2.7 Trajectories of humpback whale stocks and sub-stocks (coloured) recognised by the 
International Whaling Commission. Arrows represent the postulated migration routes of 
humpback whales in the SWIO from the sub-Antarctic region [Source: Ersts et al., 2011 and 
Trudelle et al., 2019]. 
 
Billfishes and tunas 

The hotspots of the swordfish, Xiphias gladius, in the Indian Ocean were associated with areas 

of high chlorophyll a concentrations and mesoscale activities to the southeast coast of 

Madagascar (Sabarros et al., 2014). Swordfish were shown to undertake large vertical 

migrations and forage at great depths, to a maximum of 600 m (Stillwell & Kohler, 1985). In 

the Mozambique Channel, smaller-sized swordfish foraged mostly on mesopelagic fishes 

(Nomeidae and Diretmidae), while larger individuals preyed on cephalopods Ommastrephidae 
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and Onychoteuthidae (Potier et al., 2007, 2008; Ménard et al., 2007, 2013). However, the 

foraging pattern of swordfish may not only depend on prey availability, but also on a certain 

degree of prey selection. Swordfish in the EAFR province that foraged close to Madagascar 

Island, consumed a greater proportion and diversity of lower trophic level micronekton species 

relative to similar-sized individuals that consumed a greater proportion of larger-sized squids 

in the ISSG province (Annasawmy et al., 2018). 

Physical oceanographic processes such as the edge of anticyclonic eddies stimulate 

phytoplankton growth in surface layers, leading to phytoplankton blooms and high prey 

densities for adult yellowfin tunas in the Indian Ocean (Fonteneau et al., 2008). The spatial 

distributions of large tunas were reported to strongly overlap with Longhust’s (2007) 

biogeochemical provinces (Reygondeau et al., 2012). Few studies have investigated the 

relationship between catch rate of tuna species and presence of seamounts from the SWIO. 

Marsac et al. (2014) have shown that the Coco de Mer seamount at the equator in the Indian 

Ocean sustains large catches of skipjack, yellowfin and smaller proportions of bigeye tunas. 

The author has suggested that local enrichment processes may lead to an increase in foraging 

opportunities for these top predators. However, the presence of an anchored ship acting like 

Fishing Aggregating Devices, along with the geo-magnetic properties of the seamount may 

jointly contribute to attract predators near the summit (Marsac et al., 2014). 

Yellowfin tunas are known to be non-selective feeders, with their foraging patterns depending 

on prey availability rather than selectivity (Roger, 1994). Yellowfin tunas from the Indian 

Ocean have been reported to spend most of their time in the surface layer of the water column 

(Potier et al., 2004; 2007) in areas in which the mixed layer depth is shallow and the 

stratification is strong (Miller, 2007; Fig. 2.8). Surface swimming yellowfin tunas from the 

Seychelles region fed exclusively on stomatopods, whereas the deep-dwelling individuals 

foraged on crustaceans, crab larvae, fish (including myctophids and small scombridae) and 

cephalopods (Potier et al., 2004; 2007; Zudaire et al., 2015). Potier et al. (2004) have suggested 

that the food chain leading to these tunas is relatively short in the WIO since crustaceans and 

smaller-sized individuals are dominant in the diet. Spawning yellowfin tunas, on the other 

hand, were reported to feed intensively on cigarfish Cubiceps pauciradiatus due to the specific 

energy content of this species (Zudaire et al., 2015). Hence, the diets of these top predators 

may also depend on their specific energetic needs during their life cycle. 
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Surface swimming bigeye tunas further preyed extensively on stomatopods and cephalopods 

(including Stenoteuthis oualaniensis and Ornithoteuthis volatilis) and deeper-dwelling 

individuals fed on cephalopods and fish (Potier et al., 2004; Fig. 2.8). The myctophid-dominant 

diet of bigeye tunas is consistent with norturnal and/or twilight feeding, reflecting the DVM of 

their prey items (Sardenne et al., 2016). Free swimming schools of skipjack tunas from the 

WIO were reported to occur within 25 km of favourable feeding habitats (Druon et al., 2017) 

and to have a lower consumption of myctophids but a higher consumption of crustaceans in 

their diet (Sardenne et al., 2016). Albacore tuna caught from the southern coast of South Africa, 

on the other hand, were shown to preferentially predate on two species of fish (L. hectoris and 

M. muelleri) and one cephalopod L. lorigera (Munschy et al., 2016). In subtropical oceanic 

waters, yellowfin, bigeye and albacore tunas were further reported to forage at different times 

of the day (Olson et al., 2016; Fig. 2.8). 

 

Figure 2.8 Schematic illustration of the niche partitioning of ALB (Albacore tuna), BET 
(Bigeye tuna), SKJ (Skipjack tuna) and YFT (Yellowfin tuna) in the western Indian Ocean. The 
bars represent the importance of the main prey categories (squid: black; crustacean: white; 
fish: grey) in the diet of each predator. The histograms represent the size distribution of the 
prey for each predator with the maximum prey size being 500 mm [Source: Olson et al., 2016]. 
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Sharks 

Little is known about the shark species from the SWIO apart from their high bycatch rates in 

tuna and swordfish pelagic longline and purse seine fisheries (García-Cortés & Mejuto, 2002; 

Amandè et al., 2008; Rabehagasoa et al., 2012). The stomach contents of several shark species, 

including the sandbar, Carcharhinus plumbeus (Cliff et al., 1988), dusky shark, Carcharhinus 

obscurus (Dudley et al., 2005), shortfin mako, Isurus oxyrinchus (Groeneveld et al., 2014), 

blacktip, Carcharhinus limbatus (Dudley & Cliff, 1993); tiger, Galeocerdo cuvier, smooth 

hammerhead, Sphyrna zygaena, scalloped hammerhead, S. lewini, and great hammerhead, S. 

mokarran, are dominated by cephalopods and teleosts to a large extent, and elasmobranchs and 

crustaceans to a lesser extent (Smale & Cliff, 1998; De Bruyn et al., 2005). The dominance of 

continental-shelf dwelling and deep-water cephalopods in the KwaZulu-Natal area off the coast 

of southern Africa, is believed to support common dolphins and sharks (Smale & Cliff, 1998). 

The link between shark distribution and seamount presence is poorly established in the SWIO 

except along the SWIR where male and females of a new catshark species, Bythaelurus naylori 

sp. n. have been discovered in relatively large numbers (Ebert & Clerkin, 2015). Males and 

females of a new species of the catshark, B. bachi, have been discovered at Walters Shoal 

seamount (Weigmann et al., 2016). Error seamount (Mount Error Guyot) in the north-western 

Indian Ocean host the catshark B. stewarti that was reported to feed mostly on cephalopods 

and teleosts (Weigmann et al., 2018). 

2.2 Industrical fisheries in the SWIO 

In 2015, the SWIO countries (Southern, Eastern Africa and island states) reportedly produced 

~13% of the WIO (FAO Area 51) total fish landings, which itself produced ~40% of the Indian 

Ocean landings (FAO, 2016). The WIO contributes barely 6% of the global fish catches. 

However, several small island countries of the WIO, including Maldives, Mauritius and 

Seychelles, are heavily reliant on marine fisheries for food security and for the national 

economies as source of foreign exchange (Kimani et al., 2009). Demersal and industrial 

fisheries occur in the SWIO and target a range of species as shown below. 

2.2.1 Demersal fisheries 

Demersal species can be classified into either benthic (those species being negatively buoyant 

and living off the bottom) or benthopelagic (species that have buoyancy mechanisms to 

maintain themselves in the water column to feed) (Koslow, 1996). Demersal fishes are 

generally closely associated with reefs and the benthic environment (van der Elst et al., 2009) 
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along shelves, continental slopes (Everett et al., 2015) and seamounts. Demersal species, that 

are closely associated with seamounts, generally have robust bodies with well-developed 

caudal organs and strong locomotory abilities to avoid advection by strong currents (Koslow, 

1996). These organisms may hence benefit from shelter regions offered by the topography and 

from the locally generated and/or advected foraging opportunities (Isaacs & Schwartzlose, 

1965; Genin et al., 1988, 1994; Seki & Somerton, 1994; Koslow, 1996). Some of these deep-

sea fishes also depend on local physical processes for basin-scale larval dispersal. Populations 

of adult orange roughy, for example, have been reported to depend on water masses such as 

AAIW (Antarctic Intermediate Water) and NADW (North Atlantic Deep Water) that provide 

optimal salinity conditions for larval dispersal (Clark et al., 2010a). 

Aggregations of several demersal fish species on seamounts have led to the boom of specific 

fisheries. Seamounts of the Indian Ocean have been targeted by commercial fishing vessels for 

primary seamount species including alfonsino (Beryx splendens) and orange roughy 

(Hoplostethus atlanticus) (Ingole & Koslow, 2005; Bensch et al., 2009). Spawning orange 

roughy were targeted on the Madagascar Ridge, peaking in 1999 and 2000 at around 7000 t, 

before declining in subsequent years (Ingole & Koslow, 2005; FAO, 2016) (Fig. 2.9). This 

fishery has experienced a boom-and-bust phase following US market demands, with the orange 

roughy population being reduced to more than 85%, partly due to its slow growth rate, low 

fecundity and delayed reproduction (Lack et al., 2003). Other bycatch species caught in the 

orange roughy fishery include black, spiky and smooth oreo (Allocyttus niger, Neocyttus 

rhomboidalis and Pseudocyttus maculatus respectively) and deep-sea sharks, along with small 

quantities of black corals (Antipatheria spp.) taken in bottom trawl fishing operations (Bensch 

et al., 2009; Lack et al., 2013). 
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Figure 2.9 Catches (in 1000 tons) from 1977-2015 for the most commonly caught deep-sea 
fishes from the Southern Indian Ocean (Source: FAO, 2016). 

 

2.2.2 Pelagic fisheries 

Small pelagic resources including scads, sardines, anchovies and horse mackerels are also 

exploited by inshore fishers from the WIO. However, the tonnage contribution of these 

resources is considerably less than that for large pelagic resources (van der Elst et al., 2009). 

Large pelagic fish resources comprising yellowfin, bigeye, albacore and skipjack tunas, 

billfishes (swordfish, marlins, sailfish), sharks, seerfishes (wahoos) and dolphinfish, are widely 

distributed throughout the WIO (Stéquert & Marsac, 1989). While the purse seine fishery 

operates mostly north of 12°S and in the Mozambique Channel, the longline fishery operates 

more widely throughout the whole Indian Ocean, to the South of Madagascar, around the 

Seychelles Plateau and the Mascarene region. Purse seiners catch schools associated with Fish 

Aggregating Devices and those being unassociated, i.e. swimming freely. The former are 

caught throughout the WIO, however with a greater intensity in the Somali Basin and in the 

Mozambique Channel (Fonteneau et al., 2000; Fonteneau, 2010). The free schools are mostly 

exploited in the Equatorial Counter Current, from 0-10°S (Fonteneau, 2010). 

Yellowfin tunas from the Indian Ocean (409 000 t in 2017) are exploited industrially by purse 

seine and longline fisheries, and artisanally by handline, gillnet, pole and line fisheries (IOTC, 

2018). Bigeye tunas (90 000 t in 2017) are primarity exploited by longliners that catch adult 

fish whereas purse seiners catch juvenile fish between 10°N and 15°S. However, a secondary 

fishing zone is found between latitudes 25°S-40°S. The centre of the ISSG province has very 

low bigeye catches (Fonteneau, 2010). Albacore is mostly caught by longline south of 10°S. 
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The SWIO region has shown a large increase in catches since the 1990s, with some activity in 

the vicinity of seamounts such as La Pérouse (Fonteneau, 2010). From 2001 to 2017, albacore 

tuna and swordfish were caught in higher proportions and yellowfin and bigeye tunas in lower 

numbers by longline fisheries in the vicinity of Réunion Island, as shown with high resolution 

data (1° square) provided by three fleets of the region (Fig. 2.10). 

 

 

Figure 2.10 Longline catches (by 1° square) of yellowfin (YFT), bigeye (BET), albacore (ALB) 
tunas and swordfish (SWO) in tons from France (Réunion Island), Mauritius and Seychelles 
fleets in the SWIO from 2001-2017. Neighbouring countries’ Exclusive Economic Zones are 

shown by blue lines [Data Souce: IOTC C/E database, 2018]. 

 

Longline catches along the continental slope to the south of Madagascar were mostly 

dominated by swordfish, with yellowfin and bigeye tunas being caught in lower numbers. The 

map using the lower resolution data (5° square) provided by all fleets in the region, show that 

both species diversity and volume of the catches increased from east to west. The relative 

proportion of swordfish increased along the Madagascar Ridge compared to the ISSG province 

(Fig. 2.11). Swordfish is known to be associated to oceanographic features such as seamounts 
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and frontal eddies (Sedberry & Loefer, 2001) which is a characteristic of the Madagascar 

Ridge. 

 

Figure 2.11 Longline catches (by 5° square) of yellowfin (YFT), bigeye (BET), albacore (ALB) 
tunas and swordfish (SWO) in tons from 1995 to 2015, combining all longline fleets operating 
in the Indian Ocean. Isobaths are represented in the background (1000 m depth interval). The 
2000 m isobaths is represented by a black line [Data sources: IOTC C/E database, (2018) and 
ETOPO1 database]. 

 

Other pelagic fisheries also occur in the SWIO, such as those for crustaceans, prawns and 

lobsters (Ivanov & Krylov, 1980; Pollock et al., 2000). Fisheries from the WIO yielded 350 

000 tons of crustaceans, dominated by shrimps and crabs in 2003 (van der Elst et al., 2009). 

French trawlers and a Spanish vessel reportedly caught deep-sea lobster Palinurus barbarae at 

Walters Shoal seamount (Collette & Parin, 1991; Bensch et al., 2009). Few crustacean fisheries 

from the Western Indian Ocean are managed on a national level and none is managed 

collectively at the regional level (van der Elst et al., 2009). High mortality rates of silky sharks 

Carcharhinus falciformis caught in purse seine fisheries were recorded in the Indian Ocean 

(Poisson et al., 2014). Bycatch rates from trawl fisheries in the WIO are also non-negligible 

(Fennessy, 1994; Fennessy & Groeneveld, 1997; van der Elst et al., 2009). 

2.3 Marine governance in the SWIO 

The SWIO supports several industrial, semi-industrial, recreational and artisanal fisheries for 

both pelagic and demersal resources, many of which are still unregulated or poorly regulated 
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due to a lack of scientific, technical, financial, human-resource and management capacities 

(Kimani et al., 2009; van der Elst et al., 2009). The marine biological resources of the SWIO 

are threatened by overfishing, bycatch and mortality of discarded organisms, fishery-induced 

impacts, illegal fishing practices, plastic and agricultural pollution, habitat degradation and 

deep-sea mining (Kimani et al., 2009). Twelve marine organisms in the SWIO are either listed 

as near threatened (such as the Indo Pacific humpback dolphins), as vulnerable (including 

sperm whales, Dugongs, Herald petrels, olive Ridley turtles), and as endangered or critically 

endangered (for e.g. Barau’s petrels, Mascarene petrels, the green, hawksbill, loggerhead and 

leatherback sea turtles, and hammer sharks) (Laran et al., 2017). Marine mammals, sea turtles 

and elasmobranchs are at risk of decline since they are incidentally caught by fisheries. 

There are still significant knowledge gaps on the biological characteristics, fishing pressure, 

fish stocks and effects of anthropogenic activities on marine resources of the SWIO (van der 

Erst et al., 2009). The fact that pelagic resources such as tunas and billfishes are highly 

migratory across ocean basins and nations’ Exclusive Economic Zones (EEZ), further calls for 

integrative and cooperative science management plans from the different nations in the region 

(Pentz et al., 2018). This difficult task is implemented by Regional Fisheries Management 

Organisations (RFMO). For several stocks (mostly coastal small pelagic and demersal fishes, 

as well as seamount-associated fishes), the status is uncertain with underreported catches when 

there are no observers on board, leading to uncertainties in fish stock assessments (Kimani et 

al., 2009). As usual, fisheries managers are tied between the need to devise policies that 

maximise social and economic benefits, while balancing the sustainable economic yield of the 

fishery and ensure viability of the resource (Kimani et al., 2009). 

According to the FAO, 75% of fisheries from the WIO are being exploited at their maximum 

biological productivity (i.e. the MSY- Maximum Sustainable Yield), while the remainder are 

currently overexploited (Kimani et al., 2009). Due to the remoteness of certain areas, 

monitoring, controlling and surveillance of fishing activities are difficult, especially for illegal, 

unreported and unregulated (IUU) fishing (Kimani et al., 2009). The RFMOs established under 

the UN Convention on the Law of the Sea (UNCLOS), are responsible for ensuring the proper 

management of fish stocks (optimal use and conservation) in the respective regions. RFMOs 

are the formal institutions enabling cooperation between nations outside of their EEZs. 

However, contracting parties whose interests will be negatively impacted can block the reforms 

proposed by RFMOs or adopt moderate quota reductions instead of approaches such as MPA 
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networks, thus reducing the management capacity of the organisation (Gjerde et al., 2013; 

Pentz & Klenk, 2017). 

Seventeen RFMOs currently cover the different high-sea regions in the world ocean. In the 

Indian Ocean, the IOTC (Indian Ocean Tuna Commission) is mandated to manage tuna and 

tuna-like species in the Indian Ocean EEZs and on the high seas (Pentz et al., 2018). The rules 

and decisions adopted by the IOTC apply to countries that are members of the organisation (31 

in 2017). These countries are strongly encouraged by international law (Article 17 of the 

UNFSA) to cooperate and abide by the rules and regulations set by the regional managing 

body, although IUU fishing may still occur (Gjerde et al., 2013). Another RFMO is the South 

West Indian Ocean Fisheries Commission (SWIOFC), composed of 12 countries. The 

SWIOFC aims at ensuring sustainable use of living resources (other than tunas and billfishes) 

in the SWIO region, and promoting the Large Marine Ecosystems (LMEs) approach initiated 

during the South West Indian Ocean Fisheries Project (SWIOFP) and the Agulhas-Somali 

Current Large Marine Ecosystem (ASCLME) projects (Vousden et al., 2008). 

There are increasing incentives for the set-up of MPAs in the region, including on the high seas 

(Laran et al., 2017). MPAs set-up in several jurisdictions via a high seas treaty targeting 

Biodiversity Beyond National Jurisdictions (BBNJ) may be of critical importance in protecting 

high seas ecosystems (Pentz et al., 2018) in the long run. However for a significant positive 

impact to be observed, the MPAs will need to have four or five of the following features: older 

(>10 years), larger (>100 km2), isolated by deep water or sand, non-extractive and effectively 

enforced (Edgar et al., 2014). Several other conventions such as UNESCO Biosphere Reserves, 

the UNEP’s Convention on Biological Diversity and Regional Seas Programme, Ramsar 

convention sites and the International Maritime Organization has been developed to better 

conserve and manage vulnerable sites to fishing and pollution (Attwood et al., 1997). A 

complete closure of certain areas of the high seas to fishing pressure may yield longer benefits 

via spill over effects into domestic EEZs. A system of MPA networks may also be beneficial 

via spillover effects and protection of adjacent areas (Roberts et al., 2018). Having mobile 

closures with different areas closed to fishing at different periods may prove more successful 

than spatial closures or seasonal closures due to high mobility of some species (Grantham et 

al., 2008). The downside is the difficulty to perform efficient monitoring, control and 

surveillance of such entities at reasonable costs, especially on the high seas. 
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Several areas of the SWIO, including the Mozambique Channel and south of Madagascar are 

recognised as being biodiversity hotspots and ecologically and biologically significant areas 

(EBSAs), with significant polymetallic nodules (Fig. 2.12). Nations including China, Germany, 

India and Korea have exploration permits for deep-sea mining along the SWIR (Guduff et al., 

2018). Some management efforts have been initiated in the SWIO such as promotion of 

responsible fishing practices by the Southern Indian Ocean Deepsea Fishers Association 

(SIODFA) and implementation of benthic protected areas (BPA) on the high seas within the 

Southern Indian Ocean Fisheries Agreement (SIOFA) boundary. However, significant 

knowledge gaps identified during the 2016-2017 SIOFA meetings have led to the rejection of 

a proposal to convert SIODFA’s BPAs into formal VME (Vulnerable Marine Ecosystem) 

closures (Guduff et al., 2018). More recently, five new protected areas on the high seas have 

been declared by SIOFA at its MoP5 (5th Meeting of the Parties in 2018) encompassing Atlantis 

Bank, Coral seamount, Fool’s Flat, Middle of What seamount and Walters Shoal seamount 

(IUCN, 2018). However, these closures apply only to bottom trawling and do not cover other 

fishing gears. Very few areas are regularly or completely closed on the high seas of the SWIO, 

with few exceptions to the south-eastern coast of South Africa and further south towards the 

Southern Ocean (Guduff et al., 2018). 

 

Figure 2.12 Map of the SWIO showing the distribution of seamounts having elevations >1000 
m and protected, closed and access regulated areas. The EEZ and extended continental shelf 
of states in the region are denoted, along with areas with conservation incentives. Deep sea 
mining exploration for polymetallic sulphides, crusts and nodules by China, Germany, India 
and Korea are shown (Source: Guduff et al., 2018). 
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2.4 Seamounts of the SWIO 

Seamounts of the SWIO may add further complexity to the local flow patterns and productivity. 

Only 15 seamounts have reportedly been explored biologically from the Indian Ocean (Sautya 

et al., 2011). Seamounts of the SWIO are thus among the least explored systems globally 

(Bhattacharya & Chaubey, 2001). A series of dedicated cruises have started shedding new light 

on the ecosystems associated to seamounts (Fig. 2.13). Some of these cruises include earlier 

expeditions forming part of the IIOE (International Indian Ocean Expedition) on the RV Anton 

Brunn at Walters Shoal seamount in 1964, devoted mainly to benthic biology. Soviet 

expeditions on the RV Akademik Kurchatov (6th cruise) and RV Rift (2nd cruise) in 1983, RV 

Vityaz II (17th cruise) in 1988, the RV Akademik Mstislav Keldysh (7th cruise) in 1984-1985, 

were conducted at seamount ecosystems of the SWIO. However, some of the resulting 

publications from these Soviet expeditions are either inaccessible or written in Russian. More 

recent seamount cruises in the SWIO include expeditions at Walters Shoal as part of the ACEP-

III (African Coelacanth Ecosystem Programme) programme on the RV Algoa in 2014. Atlantis, 

Sapmer, Middle of What, Melville and Coral seamounts of the SWIR (Fig. 2.13) were 

investigated during recent cruises on the RV Dr Fridjtof Nansen in 2009 and on the RV James 

Cook in 2011. La Pérouse and MAD-Ridge seamounts were explored in 2016 on the RV Antea 

and Walters Shoal in 2017 on the RV Marion Dufresne. 
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Figure 2.13 Seamounts being the focus of dedicated research cruises from 1964 to 2017: La 
Pérouse- in the Mascarene Basin; MAD-Ridge- along the Madagascar Ridge; WS- Walters 
Shoal at the southern tip of the Madagascar Ridge; Atlantis, Sapmer, MoW-Middle of What, 
Melville and Coral along the SWIR. The colour bar represents depth (m) below the sea surface. 

 

2.4.1 Seamount Endemism 

During an earlier cruise at Walters Shoal seamount (summit depth ~18 m), an endemic alpheid 

shrimp species, Alpheus waltervadi (Kensley, 1981), an endemic isopod, Jaeropsis waltervadi 

(Kensley, 1975), and recently, a new species of rock lobster, Palinurus barbarae (Groeneveld 

et al., 2006) were identified. During a more recent expedition (2011), new species of hippolytid 

shrimps, Lebbeus ketophilos sp. nov., and Eualus oreios sp. nov. were reported at Coral 

seamount (summit depth at ~200 m) (Nye, 2013). According to O’Loughlin et al. (2013), this 

expedition also sampled three new sea cucumber species, Amphigymnas staplesi, Pannychia 

taylorae and Psolus atlantis, on Atlantis Bank (summit depth at ~700 m) and Coral seamount. 

Following this expedition, seamounts of the SWIR have been reported to host new species of 

carnivorous sponges (Hestetun et al., 2017). Sponge diversity and taxonomic composition was 
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further investigated during the 2014 ACEP-III programme on the RV Algoa at Walters Shoal 

(Payne, 2015), with nine sponge specimens reported as new to science (Payne, 2015). 

Following these records, endemism seems to occur at SWIO seamounts. However, such 

observations have to be cautiously interpreted since levels of endemism may be much lower 

than previously suspected due to the low sampling effort in the region. It is believed that the 

fauna at seamounts generally reflects the regional species pool (Rogers & Taylor, 2011). 

Limited and inconsistent sampling coverage does not allow an accurate testing of the seamount 

endemism hypothesis (Hestetun et al., 2017). 

2.4.2 Deep-sea fauna at SWIR seamounts 

Reefs are other important components of the SWIO, providing shelter and acting as fish 

nurseries (Salm, 1983; Ahamada et al., 2004; Turner & Klaus, 2005). Studies modelling global 

habitat suitability for Scleratinian corals and Octocorals have shown the SWIO between 20°S 

and 60°S to be one of the most favourable habitats for stony corals from the surface to ~2500 

m depth (Tittensor et al., 2009, 2010). Stony corals are also likely to be present along seamount 

peaks of the Madagascar Ridge (Tittensor et al., 2009; Davies & Guinotte, 2011) and in the 

Southern Indian Ocean (UNEP, 2006). 

Deep-sea polychaetes were sampled at Coral, Melville, Middle of What and Atlantis seamounts 

across the SWIR. The most common benthic organisms along the SWIR were hard corals, 

octocorals and sponges (Rogers & Taylor, 2011). Atlantis Bank was also shown to host large 

populations of sea fans, siphonophores, lobsters and crabs. Across the SWIR, at Coral, 

Melville, Middle of What and Atlantis seamounts, a total of 122 solitary and 27 colonial 

scleractinian corals were collected at depths between 172 and 1395 m, corresponding to 

specific water masses including the subtropical waters, AAIW and uCDW (upper Circumpolar 

Deep Water) (Pratt et al., 2019). Coral seamount recorded a greater abundance and species 

diversity in subfossil Scleractinia relative to the other seamounts, most likely due to the high 

microbial community, surface chlorophyll concentrations and suitable thermal conditions over 

a wider depth range (Pratt et al., 2019). The Madagascar Ridge and SWIR were also predicted 

to be favourable habitats for soft corals Calcaxonia (Yesson et al., 2012). 

2.4.3 Pelagic ecosystem at SWIR seamounts 

The Dr Fridtjof Nansen cruise investigated the pelagic ecosystem at five seamounts in the 

SWIR, including Atlantis, Sapmer (summit depth ~332 m), Middle of What (~1078 m), Coral, 

and Melville (~120 m) (Groeneveld & Koranteng, 2017). There were little evidence for Taylor 
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column formation at these seamounts due to the relative instability in the flow patterns and 

strong currents associated with mesoscale eddies and the Agulhas Return Current (Read & 

Pollard, 2017). However, the generation of internal tides was observed at Coral, Sapmer and 

Melville banks due to the interactions of barotropic tides with the pinnacles (Read & Pollard, 

2017). Factors such as latitude, internal tides, vertical displacement of isopycnals and strong 

vertical mixing were found to favour the delivery of nutrients to the euphotic zone and to 

enhance phytoplankton biomass at Coral and Melville (Read & Pollard, 2017).  

A seamount effect on phytoplankton was observed on shallow seamounts Coral and Melville 

due to increased upwelling of organic matter (Sonnekus et al., 2017). The authors reported 

higher species richness and abundance of crustaceans including several lophogastrids collected 

at seamount stations relative to abyssal plains and ridge slopes (Letessier et al., 2017). 

However, an effect of the SWIR on the backscattering strength could not be detected, although 

increased backscatter were observed at the Subtropical and Subantarctic Fronts in the vicinity 

of Coral seamount (Boersch-Supan et al., 2017). The SWIO has been reported to be a hotspot 

of cephalopod diversity (Laptikhovsky et al., 2017). The increase in habitat availability offered 

by seamounts is believed to be the likely cause for the observed increase in richness of 

crustaceans and cephalopod communities (Vereshchaka, 1995). 

2.4.4 Pollution impact on SWIR seamounts 

Seamounts of the SWIO, although being remote and isolated features, are not free from 

pollution. Marine litter from the SWIR were dominated by fishing gear, with some seamounts- 

Sapmer seamount and Melville Bank- having a higher abundance of litter items than Atlantis, 

Middle of What or Coral seamounts (Woodall et al., 2015; Fig. 2.14). The fishing gear litter at 

seamounts of the SWIR were found to be heavily encrusted with corals and hydroids. Fish, 

crinoids, anemones, sea urchins and brittle stars, on the other hand, used the litter as habitat or 

as substrata for hiding or egg laying. However, entanglement were also observed and may 

constitute a negative impact on marine organisms. Plastic items, metal components, and other 

types of litter further contributed to the pollution of this ridge. The authors estimated that over 

38 million litter items are present along seamounts of the SWIO (Woodall et al., 2015) partly 

due to lack of appropriate policies and conservation measures. 
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Figure 2.14 Benthic litter densities (items ha-1) and composition, observed by remotely 
operated vehicle video systems, for seamounts of the SWIR [Source: adapted from Woodall et 
al., 2015]. 

 

2.5 Case Study: La Pérouse and MAD-Ridge seamounts 

As part of the Second International Indian Ocean Expedition (IIOE-2) science plan, surveys 

were conducted at two seamounts in the SWIO. These include La Pérouse seamount and an un-

named pinnacle along the Madagascar Ridge in 2016 on board the RV Antea. La Pérouse is 

located at 19°43’S and 54°10’E, i.e. ~160 km to the north west of Réunion Island. At 27°29’S 

and 46°16’E, is located an unnamed seamount lying ~240 km to the south of Madagascar on 

the northern part of the Madagascar Ridge. This feature has been termed “MAD-Ridge”. 

2.5.1 Bathymetry 

While the water column rises from a depth of 5000 m in the vicinity of La Pérouse seamount 

(Fig. 2.15a), it extends from the surface to a maximum depth of 2000 to 3000 m (Sinha et al., 

1981) over most of the Madagascar Ridge (Fig. 2.15b). The Madagascar continental slope rises 

from 1500 m depths to the continental shelf that is ~50 km wide south of Madagascar (Goslin 

et al., 1980). 
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(a)  

 

(b) 

 

 

Figure 2.15 Bathymetry along the West-East and South-North transects at (a) La Pérouse and 
(b) MAD-Ridge seamounts.The colour bar represents the depth (m) below the sea surface. 

 
La Pérouse therefore, unlike MAD-Ridge, is not part of a ridge system. The summit of La 

Pérouse reaches ~60 m below the sea surface and is 10 km long (Fig. 2.16). MAD-Ridge 

seamount rises from 1600 m from the ocean floor to a summit depth of ~240 m below the sea 

surface and is 33 km long (north to south) and 22 km wide (east to west). MAD-Ridge is 

bounded by four other topographic features with summit depths at 600 m, 800 m, 900 m and 

1200 m between latitudes 27-28°S and longitudes 46-46°45’E. 
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Figure 2.16 A 3D-bathymetry of La Pérouse and MAD-Ridge seamounts. The colour bar 
represents the depth (m) below the sea surface. 

 

2.5.2 Nutrient concentrations 

While La Pérouse seamount is located within the oligotrophic ISSG province (Longhurst, 

1998) with low mesoscale activity, MAD-Ridge is located in the EAFR province, within an 

eddy corridor with significant mesoscale dynamics all year round (Vianello et al., 2020). 
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Mesoscale cyclonic and anticyclonic eddies spin off the SEMC and are advected to MAD-

Ridge seamount. The dipole occurrence within the vicinity of MAD-Ridge pinnacle was 

estimated at 38.5% from 1993 to 2016. During MAD-Ridge cruise, an eddy dipole was present 

in the vicinity of the pinnacle, with the anticyclonic eddy being stationed on the seamount. The 

resulting mesoscale activity during MAD-Ridge cruise led to the shoaling of nutrients (nitrate, 

nitrite, phosphate and silicate) in the euphotic zone within the cyclonic eddy and over the shelf, 

and deepening of nutrients within the anticyclone (Fig. 2.17). 

 

 

Figure 2.17 Concentrations of nitrate, nitrite, silicate and phosphate (µmol l-1) along cyclonic 
(labelled C) and anticyclonic (labelled AC) stations across the West-East and the anticyclonic 
(AC) stations and shelf (labelled S) stations across the South-North transects during MAD-
Ridge cruise. 
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The vertical nutrient profiles at La Pérouse were homogeneous relative to MAD-Ridge, with 

nitrate concentrations below the detection limit and lower phosphate and silicate concentrations 

in the top 100 m of the water column and a gradual increase in deeper waters (Fig. 2.18). A 

peak in nitrate, nitrite, silicate and phosphate concentrations were observed in the euphotic 

zone between 100-200 m with maximum concentrations of 5.7, 0.26, 6.0 and 0.52 µmol l-1 

respectively. 

 
 
Figure 2.18 Vertical profiles of nitrate, nitrite, silicate and phosphate in µmol l-1 at La Pérouse 
seamount. 
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2.5.3 Phytoplankton communities at MAD-Ridge seamount 

The authors Rocke et al. (2020) investigated the pico- and nanoplankton composition in the 

upper 250 m of the water column at MAD-Ridge seamount and the main findings of the 

research are presented below. The MAD-Ridge cruise recorded enriched picoplankton and 

nanoplankton carbon biomass within the cyclonic eddy (probably partially due to the higher 

nitrite concentrations), and at the edges of the anticyclonic eddy. In the anticyclone sampled 

during the cruise, picoeukaryotes and Prochlorococcus dominated carbon biomass over 

Synechococcus. Picoeukaryotes dominated the bulk of the carbon biomass within the size 

fraction (0.2-2 µm) along the West-East and North-South transects, likely resulting from 

suitable conditions brought about by fresh nutrients and organic matter being entrained from 

the Madagascar shelf to the euphotic zone at MAD-Ridge. Overall, low picoplankton biomass 

were recovered over the MAD-Ridge pinnacle itself due to possible current disturbance and 

competition between different phytoplankton types for regenerated nutrients. However, the 

authors reported a peak in picoplankton biomass near the slope of the seamount at station 19 

(Fig. 2.19) between 40-100 m depth. They attributed this peak to a response due to enhanced 

turbidity on the slopes (Vianello et al., 2020) along with nutrient enrichment from the 

anticyclone which likely contributed to the resuspension of organic matter into the water 

column (Rocke et al., 2020). Jasmine et al. (2009) have shown pico- and nanoplankton to 

contribute ~90% of total chlorophyll a present in oligotrophic areas. Picoplankton are believed 

to be dominant under nitrate-depleted conditions due to their high surface area to volume ratio 

and sustain secondary production (mostly zooplankton) through the microbial foodweb 

(Jasmine et al., 2009). 
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Figure 2.19 Integrated Prochlorococcus, Synechococcus and Picoeukaryotes carbon biomass 
(in µgC m-2) and chlorophyll concentrations (in mg m-2) for all stations within the cycylone 
(labelled C) along the West-East and within the anticyclone (labelled AC) along the North-
South transects during the MAD-Ridge cruise [Source: Rocke et al., 2020]. 

 

2.5.4 Mesozooplankton at La Pérouse and MAD-Ridge vs. Walters Shoal 

The mesozooplankton communities at La Pérouse, MAD-Ridge and Walters Shoal seamounts 

were investigated by Noyon et al. (2020) and the main findings of their research work are 

presented below. No clear seamount effect in terms of either enhancement or depletion of 

mesozooplankton communities were recorded at La Pérouse, MAD-Ridge and Walters Shoal 

seamounts relative to off-seamount locations. Walters Shoal showed lower abundance of 

mesozooplankton than the other two seamounts most likely due to seasonality and the 

mesozooplantkon population dynamics. At La Pérouse, MAD-Ridge and Walters Shoal, the 

mesozooplankton abundance was strongly dominated by calanoid copepods (70% of the total 

abundance). The biomass was dominated by copepods and carnivorous chaetognaths at La 

Pérouse and MAD-Ridge, and copepods and euphausiids at Walters Shoal. 

The eddy dipole likely had an influence on mesozooplankton communities. High abundance 

and biovolume of zooplankton and over a deeper area were observed in the cyclonic eddy at 

MAD-Ridge than within the anticyclone where lower zooplankton concentrations in the upper 

25 m were observed. The authors note a possible link between the food availability and 
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zooplankton at the cyclonic stations. The edge of the anticyclone was shown to exhibit higher 

zooplankton abundance than the core of the eddy, matching previous observations that 

peripheries of eddies are richer (Sabarros et al., 2009). The authors, however, reported a peak 

in zooplankton abundance and biovolume at station 18 close to the seamount slope. They 

attributed this effect to sampling at dusk and DVM of organisms but noted the presence of 

small organisms that do not perform strong DVM and concluded to a natural patchiness of 

these organisms at this station and across a greater depth range. The authors reported a system 

dominated by small mesozooplankton communities at MAD-Ridge, enabling a high biomass 

of predators to be supported (Noyon et al., 2020). At La Pérouse, higher zooplankton 

abundances were recorded downstream relative to upstream, possibly linked to the varied 

current profile from the north to the south of the pinnacle. 

 

2.5.5 Ichthyoplankton assemblages at La Pérouse and MAD-Ridge vs. Walters 

Shoal 

The ichthyoplankton faunal assemblages were investigated at La Pérouse, MAD-Ridge and 

Walters Shoal by Harris et al. (2020) are the main findings of these studies are summarized 

below. MAD-Ridge recorded a greater number of species, species diversity and density of fish 

larvae than La Pérouse and Walters Shoal (Fig. 2.20). MAD-Ridge further recorded a greater 

number of neritic fish larvae relative to La Pérouse and Walters Shoal (Fig. 2.20). The authors 

attributed these observations to the transport of larvae from the nearby coastal waters and from 

the Madagascar continental slope by mesoscale eddies. 
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Figure 2.20 Larval fish densities (no. 100 m-3) and bottom depth (m) at each station for (a) La 
Pérouse, (b) MAD-Ridge and (c) Walters Shoal. DS represents stations found in the deep-sea, 
SL represent slope stations, SU- summit stations [Source: Harris et al., 2020]. 

 

The fish larvae at all three seamounts were numerically dominated by the Myctophidae and 

Gonostomatidae families (Harris et al., 2020). The most abundant myctophid and gonostomatid 

larval species were Diaphus spp. and Cyclothone sp. at both La Pérouse and MAD-Ridge. 

Larval fish of the Molidae family (Ranzania laevis) were also abundantly caught at MAD-

Ridge than at La Pérouse and Walters Shoal. The authors reported presence of all larval 

developmental stages present at each seamount which they attributed to local spawning of some 

species near the pinnacles. Larval densities were higher over the summit of both La Pérouse 

and MAD-Ridge than at off-summit locations, with the exception of station 18 of the MAD-

Ridge cruise, which recorded the highest larval density relative to all other stations. The authors 

suggested DVM of larval taxa might be responsible for the peak observed at station 18. On the 
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summit of La Pérouse and MAD-Ridge, postflexion and preflexion larval developmental stages 

were most abundantly caught relative to other developmental stages. The eddy dipole interface 

(between the cyclone and anticyclone) recorded the lowest larval fish density. 
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2.6 Conclusion 

The SWIO is an atypical region since it is bounded by the African landmass to the West and 

with a large island, Madagascar, centrally positioned in the pathway of the SEC leading to the 

shedding of mesoscale eddies in the Mozambique Channel and to the south of Madagascar. 

The deep water masses also have to navigate through fracture zones, banks and ridges to flow 

through the SWIO. Those ridges constitute important habitats for a wide variety of coral species 

and sponges. They represent an elevation of the seafloor and allow efficient cold-water coral 

growth that prefer the high-nutrient water mass uCDW, which is constrained to flow through 

the numerous basement highs and crests within the ridge. These coral communities may 

represent important habitats for various benthic organisms, some of which are preferentially 

associated with seamounts to benefit from shelter regions and enhanced foraging opportunities. 

The lower trophic levels of the SWIO include Prochlorococcus, Synechococcus, 

Picoeukaryotes, diatoms and flagellates. These plankton communities support a wide range of 

mesozooplankton including copepods, amphipods, euphausiids, ostracods and chaetognaths, 

which in turn support gelatinous organisms, crustaceans, squids and mesopelagic fishes. 

Various predators including seabirds, swordfish and tunas reportedly use the highly dynamic 

mesoscale eddies and elevated topographic features during their migration patterns or/and as 

foraging grounds. Swordfish, tunas, breeding seabirds reportedly depend on prey availability 

and hence tend to aggregate in areas of high prey biomasses. These top predators and demersal 

organisms are being subjected to fishing pressures in the SWIO and there is an apparent lack 

of conservation measures to better protect marine resources from anthropogenic disturbances 

including pollution, fishing and deep-sea mining. 

Several cruises and research works have already investigated the benthic assemblages, deep-

sea fauna, physical oceanography and biological oceanography (phytoplankton, zooplankton 

and ichthyoplankton) at SWIO seamounts. One compartment of the SWIO that has received 

little attention to date are the micronekton which, as seen in Chapter 1, constitute a key element 

in the carbon biological pump and in the trophic link between zooplankton and top predators. 

Although some species are able to actively swim, they may be influenced by the complex 

topography and hydrodynamic patterns of the SWIO and in turn influence the distribution of 

top predator species. Chapter 3, hence, aims at understanding the distribution of micronekton 

as influenced by mesoscale eddies, two shallow seamounts and the Madagascar continental 

shelf in the SWIO.
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Chapter 3: Influence of mesoscale eddies, shallow seamounts and 

continental shelf on micronekton’s distribution 

 

 

 

 

Extrait du Petit poème des poissons de la mer 

 

 

Je me suis penché sur la mer 

Pour communiquer mon message 

Aux poissons: 

«Voilà ce que je cherche et que je veux savoir» 

 

Les petits poissons argentés 

Du fond des mers sont remontés 

Répondre à ce que je voulais… 

 

 

 

 

Antonin Artaud, 1926 
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Abstract 

An investigation of the vertical and horizontal distributions of micronekton, as influenced by 

mesoscale eddies, the Madagascar shelf and shallow seamounts, was undertaken using acoustic 

data collected during two research cruises at an unnamed pinnacle (summit depth ~240 m), 

thereafter named “MAD-Ridge”, and at La Pérouse seamount (~60 m) in the south-western 

Indian Ocean. MAD-Ridge is located to the south of Madagascar, in an “eddy corridor”, known 

both for its high mesoscale activity and high primary productivity. In contrast, La Pérouse is 

located on the outskirts of the Indian South Subtropical Gyre (ISSG) province, characterised 

by low mesoscale activity and low primary productivity. During the MAD-Ridge cruise, a 

dipole was located in the vicinity of the seamount, with the anticylclone being almost stationary 

on the pinnacle. Total micronekton acoustic densities were greater at MAD-Ridge than at La 

Pérouse. Micronekton acoustic densities of the total water column were lower within the 

anticyclone than within the cyclone during MAD-Ridge. Micronekton followed the usual diel 

vertical migration (DVM) pattern, except within the cyclone during MAD-Ridge where greater 

acoustic densities were recorded in the daytime surface layer. The backscatter intensities were 

stronger at the 38 kHz than at the 70 and 120 kHz frequencies in the daytime surface layer at 

MAD-Ridge cyclonic stations. These backscatter intensities may correspond to gas-filled 

swimbladders of epi- and mesopelagic fishes actively swimming and feeding within the 

cyclone or gelatinous organisms with gas inclusions. Findings in this study evidenced that the 

distributions of micronekton and DVM patterns are complex and are influenced significantly 

by physical processes within mesoscale eddies. The mesoscale eddies’ effects were dominant 

over any potential seamount effects at the highly dynamic environment prevailing at MAD-

Ridge during the cruise. No significant increase in total micronekton acoustic densities was 

observed over either seamount, but dense aggregations of biological scatterers were observed 

on their summits during both day and night. 

Keywords: micronekton, diel vertical migration, mesoscale eddies, Madagascar shelf, 

seamount, south-western Indian Ocean 
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3.1. Introduction 

Features such as mesoscale cyclonic and anticyclonic eddies, upwelling events, tidal fronts, shelves, 

seamounts and river runoff play a significant role in regional ecosystems (Bakun, 2006; Mann & Lazier, 

2006; Benitez-Nelson & McGillicuddy, 2008). Mesoscale cyclonic and anticyclonic eddies are 

ubiquitous in the world’s oceans (Chelton et al., 2011). They have time-scales of approximately 10-30 

days and horizontal scales between 10 and 100 km (Mann & Lazier, 2006; Chelton et al., 2011). In 

oligotrophic systems, eddies are important features because they provide mechanisms whereby the 

physical energy of the ocean is converted to trophic energy to support biological processes (Bakun, 2006; 

Godø et al., 2012). Cyclonic eddies, through upwelling of nutrients in their centres from deeper layers 

to the euphotic zone, are usually known to enhance local productivity (Owen, 1980, 1981; McGillicuddy 

& Robinson, 1997; McGillicuddy et al., 1998; Klein & Lapeyre, 2009; Huggett, 2014; Singh et al., 

2015). Anticyclonic eddies may promote the development of frontal structures (Bakun, 2006). In 

anticyclones, highly productive waters may be entrained laterally from nearby regions to the eddy 

periphery or upwelling of nutrients may occur along the eddy boundary (McGillicuddy, 2016). At the 

frontier between eddies, smaller-scale or submesoscale features (elongated filaments with a 10-km 

width) have been reported to enhance nutrient supply and primary productivity in oligotrophic conditions 

(Lévy et al., 2001, 2018; Klein & Lapeyre, 2009). Biological responses to eddies, however, are complex 

and depend on a range of factors including seasonal modulation of the mixed layer depth (Dufois et al., 

2014), timing, magnitude and duration of nutrient input and also on eddy properties such as the 

formation, intensity, age and eddy-induced Ekman pumping (Benitez-Nelson & McGillicuddy, 2008). 

Continental shelves and seamounts are also features that may lead to enhanced productivity when certain 

conditions are met. Upwelling regions south of Madagascar have been observed to be biological hotspots 

with increased productivity (Raj et al., 2010; Ramanantsoa et al., 2018) and increased acoustic biomass 

estimates of pelagic fish and whale sightings (Pripp et al., 2014). Phytoplankton types may also differ 

between continental shelves and ocean basins, with shelf areas exhibiting larger phytoplankton cells 

because of the processes leading to high nutrient concentrations in the euphotic zone and cells rapidly 

take up nutrients (Nishino et al., 2011). Seamounts are ubiquitous features of the world’s oceans and 

have been reported to influence the prevailing ocean currents (Royer, 1978; White et al., 2007), creating 

various local dynamic responses such as formation of a Taylor column, isopycnal doming (Mohn & 

Beckmann, 2002), enclosed circulation cell (White et al., 2007), upwelling, vertical mixing of nutrient-

rich waters and enhanced productivity (Boehlert & Genin, 1987; Genin, 2004). In a nutrient-limited 

environment like the south-western Indian Ocean, processes injecting nutrients into the euphotic zone 

(such as mesoscale features,seamounts, coastal upwelling events and river runoff) are likely to modulate 
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the chlorophyll a signature by increasing phytoplankton growth, attracting a range of secondary and 

tertiary consumers such as zooplankton and micronekton. 

Mesopelagic micronekton are actively swimming organisms that typically range in size from 2-20 cm. 

They include diverse taxonomic groups (De Forest & Drazen 2009) such as crustaceans (adult 

euphausiids, pelagic decapods and mysids), squids (small species and juvenile stages of large oceanic 

species) and fishes (mainly mesopelagic species and juveniles of other fish) (Brodeur et al., 2005; 

Brodeur & Yamamura 2005; Ménard et al., 2014). Gelatinous organisms are under-represented 

components of the mesopelagic community (Lehodey et al., 2010; Kloser et al., 2016). Micronekton are 

important in the energy transfer to higher trophic levels because they are preyed upon by various top 

marine predators (Guinet et al., 1996; Bertrand et al., 2002; Potier et al., 2007; Cherel et al., 2010; 

Danckwerts et al., 2014; Jaquemet et al., 2014). They also transport energy to deeper regions of the 

ocean via respiration, excretion and natural mortality (Hidaka et al., 2001; Catul et al., 2011; Bianchi et 

al., 2013). This energy transport is made possible by the extensive DVM patterns of some micronekton 

species, with the organisms migrating to the upper 200 m of the water column at dusk and below 400 m 

at dawn (Lebourges-Dhaussy et al., 2000; Béhagle et al., 2014; Annasawmy et al., 2018). Diel vertical 

migration is believed to result from a compromise between the need to feed and to avoid predation 

(Heywood, 1996), with light being the main controlling factor in initiating ascent and descent (Heywood, 

1996; Andersen et al., 1998; Brierley, 2014). The distribution of micronekton communities across ocean 

basins is not uniform (Judkins & Haedrich, 2018). Some studies have reported higher biomasses of 

micronekton scattering layers at seamount flanks and summits relative to the surrounding ocean, e.g. the 

Emperor (265m, Boehlert, 1988) and Cross seamounts in the Pacific (330 m, Johnston et al., 2008); 

Condor (182-214 m) and Gigante (161 m) seamounts in the Azores (Cascão et al., 2017). 

At the ocean-basin scale, the western side of the oligotrophic ISSG biogeochemical province (Longhurst, 

1998; 2007) holds reduced micronekton abundances and acoustic densities relative to the dynamic and 

more productive EAFR province (Annasawmy et al., 2018). Within the ISSG and EAFR provinces, 

features such as eddies, coastal upwelling at the Madagascar shelf and seamounts may further impact 

the local productivity, resulting in significant variability in micronekton distributions via bottom-up 

processes. This work investigates the influence of mesoscale eddies, the south Madagascar shelf and two 

shallow seamounts, La Pérouse and an unnamed pinnacle on the Madagascar Ridge, hereafter called 

“MAD-Ridge”, in shaping micronekton vertical and horizontal distributions by combining data from 

ship-based platforms (acoustics, current profiler and CTD) and satellite altimetry. 
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3.2 Material and Methods 

3.2.1 Cruises 

Two research surveys were carried out on board the RV Antea at La Pérouse (19°43’S and 54°10’E) and 

MAD-Ridge seamounts (27°29’S and 46°16’E). La Pérouse (summit depth ~60 m) is located along the 

north-western boundary of the ISSG province and MAD-Ridge (summit depth ~240 m) is located on the 

southern boundary of the EAFR (Fig. 3.1a). The La Pérouse cruise (DOI: 10.17600/16004500) 

investigated the area within 10-18 km around the seamount from the 15 to 30 September 2016 (Fig. 

3.1b). The MAD-Ridge Leg 1 cruise (DOI: 10.17600/16004800) was divided into a West-East transect 

(248 km long from hydrographic station 1 to 15) and a South-North transect (292 km long from 

hydrographic station 16 to 31) and took place from the 8 to 24 November 2016 (Fig. 3.1a and 3.2a). 
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Figure 3.1(a) Map of MAD-Ridge and La Pérouse CTD stations (diamond symbols) conducted in the 
East African Coastal (EAFR) and Indian South Subtropical Gyre (ISSG) provinces respectively. 
Longhurst’s (1998) biogeochemical provinces are delimited by black solid lines. Landmasses are shown 

in grey and seamount summits in red. (b) The La Pérouse CTD stations are plotted on the bathymetry 
(m). The colour bar represents the depth below the sea surface. 

 

3.2.2 Satellite data 

The mesoscale eddy field during both the La Pérouse and MAD-Ridge cruises were described using 

daily delayed-time Absolute Dynamic Topography (ADT) with 1/4° (~25 km) spatial resolution. 

Delayed-time ADT was produced and distributed by the Copernicus Marine Environment Monitoring 

Service project (CMEMS) and available at http://marine.copernicus.eu/, from which absolute 

geostrophic currents have been calculated and used to derive dynamic parameters (see next section). 

Delayed-time Mean Sea Level Anomalies (MSLA) data, with 1/4° (~25 km) spatial resolution in the 

vicinity of MAD-Ridge seamount were also downloaded from http://marine.copernicus.eu/, and used for 

direct eddy field representation. 

3.2.3 Field Sampling 
3.2.3.1 In situ bathymetry 

The 12 kHz frequency of a Simrad EA500 echosounder was used to acquire a detailed bathymetry of the 

seamounts. The bathymetry data were interpolated on a regular grid using the Golden Surfer © software 

(version 10.3.705). 
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3.2.3.2 Hydrographic stations 

A Sea-Bird 911+ CTD rosette system equipped with a Wetlabs ECO FL fluorometer was used to profile 

temperature, fluorescence and dissolved oxygen from the surface to a depth of ~1000 m during the La 

Pérouse and MAD-Ridge cruises. Discrete samples of chlorophyll a measured by high pressure liquid 

chromatography was used to calibrate the fluorescence sensor of the CTD during both cruises and to 

determine the depth range where the maximum chlorophyll a values (Fmax) were found. The integrated 

chlorophyll a concentrations between 2 and 200 m (mg m-3) was calculated by taking the sum of 

chlorophyll a values in that depth range. The average depths of the thermocline were assessed from the 

CTD profiles using the 20°C isotherm depth as a proxy. 

Two 300 kHz RDI (upward and downward-looking) L-ADCP current profilers attached to the CTD 

frame were used to investigate the vertical structure of the current field during both cruises. The S-ADCP 

data were collected with a 75 kHz RDI Ocean Surveyor II. As L-ADCP data were missing at MAD-

Ridge stations 2 and 3, S-ADCP data were used instead. Both datasets showed strong correlations which 

allowed the use of the L- with the S-ADCP (Vianello et al., 2020). For each hydrographic station, the 

average current speed (in cm s-1) over the depth range 104-304 m, was calculated from the west-east 

zonal ()) and south-north meridional (*) velocity components measured by the S-ADCP or L-ADCP.  

A classification of MAD-Ridge hydrographic stations (numbered 1-31, Fig. 3.2) was performed based 

on their location relative to the mesoscale eddies (cyclonic, anticyclonic, interface between the dipole), 

to the seamount (summit or flank, both within the anticyclonic eddy) and to the Madagascar shelf. This 

classification was based on the hydrology (temperature-salinity profiles) of each station and a standard 

dynamic parameter, the Okubo-Weiss parameter, W (Okubo, 1970; Weiss, 1991; Isern-Fontanet et al., 

2004). The latter is calculated from equation 1 below, where+,' is the normal strain, ,- the shear strain, 

. the relative vorticity, and ) and * (Eq. 2 below) are the surface geostrophic velocity components 

derived from the absolute dynamic topography (altimetry). The Okubo-Weiss parameter allows the 

separation of the flow into a vorticity-dominated region (W </01) and a strain-dominated region (W 

>01), with 01= 0.2σW, (σW being the standard deviation in the whole domain) (Isern-Fontanet et al., 

2004). It has been used widely in the south-western Indian Ocean by Halo et al. (2014) to distinguish 

the core of eddies (W >/01) from the periphery of eddies (W </01) and is given by: 

W!=,'
2 3+,4
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However,!W values have to be used cautiously against in situ data because the spatial resolution of the 

altimetry is low (~25km) relative to each station. Therefore, for each station, the altimetry data were 

complemented by the available in situ data such as sea surface temperature and salinity obtained from a 

ship-mounted thermosalinograph and dissolved oxygen obtained from the CTD. This combined set of 

information allowed us to segregate the stations into different categories (see example for stations 3, 5 

and 13 in the Appendix: Fig. A, and Table 3.1). 

Table 3.1 List of MAD-Ridge Leg 1 classified hydrographic stations: UN for unresolved; C for Cyclonic; 
D.I for Dipole Interface; AC for Anticyclonic; S for summit; F for flank; Sf for Shelf. 

Station 

Number 

Day/ 

Sunset 

ADT 

(m) 

MSLA 

(m) 

Vorticity  

(s-1) 

Okubo-Weiss  

(s-2) 

Temper-

ature (°S) 

TSG 

Salinity 

(PSU) 

TSG 

Sea floor 

Depth 

(m) 

Classifi-

cations 

 

1 Day 0.89 -0.19 -1.21E-05 1.63E-11 23.68 35.36 1573 UN 

2 Day 0.82 -0.27 -1.97E-05 5.00E-11 23.92 35.36 1930 C 

3 Sunset 0.84 -0.25 -2.94E-05 -5.32E-10 23.89 35.38 1630 C 

4 Day 0.96 -0.15 -1.50E-05 -4.97E-10 23.72 35.30 1730 C 

5 Day 1.08 -0.03 -5.80E-07 1.02E-10 24.37 35.14 1460 D.I 

6 Day 1.21 0.10 1.49E-05 6.14E-11 24.71 35.18 1760 UN 

7 Day 1.30 0.20 2.86E-05 -3.34E-10 24.40 35.21 670 F/AC 

8 Day 1.33 0.23 3.15E-05 -4.92E-10 24.39 35.22 240 S/AC 

9 Day 1.36 0.25 3.14E-05 -5.33E-10 24.33 35.22 645 F/AC 

10 Day 1.42 0.32 3.01E-05 -5.85E-10 24.31 35.28 1600 AC 

11 Day 1.46 0.36 2.86E-05 -6.71E-10 24.49 35.28 1733 AC 

12 Day 1.45 0.37 2.54E-05 -5.62E-10 24.55 35.29 1585 AC 

13 Day 1.41 0.35 2.55E-05 -6.09E-10 24.42 35.28 1505 AC 

14 Day 1.31 0.27 1.81E-05 -3.23E-10 24.40 35.23 1964 UN 

15 Day 1.18 0.16 6.75E-07 7.35E-11 24.79 35.28 2110 UN 

16 Day 1.25 0.22 1.94E-05 -2.80E-10 24.25 35.21 1927 AC 

17 Day 1.34 0.28 1.95E-05 -2.20E-10 24.57 35.29 2380 AC 

18 Sunset 1.41 0.32 2.44E-05 -3.40E-10 24.58 35.28 1674 AC 

19 Day 1.43 0.33 2.69E-05 -4.79E-10 24.38 35.22 1668 AC 

20 Day 1.41 0.31 2.76E-05 -4.98E-10 24.65 35.23 720 F/AC 

21 Day 1.4 0.30 2.77E-05 -5.06E-10 24.84 35.24 257 S/AC 

22 Day 1.41 0.30 2.63E-05 -4.58E-10 24.40 35.24 255 S/AC 

23 Day 1.41 0.30 2.58E-05 -4.32E-10 24.77 35.24 621 F/AC 

24 Day 1.4 0.28 2.42E-05 -3.50E-10 24.77 35.24 1502 AC 
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25 Day 1.38 0.27 2.22E-05 -2.12E-10 24.77 35.24 1585 AC 

26 Day 1.32 0.22 1.50E-05 1.14E-11 24.46 35.14 1747 UN 

27 Day 1.25 0.20 8.21E-06 1.09E-12 24.46 35.14 1916 UN 

28 Day 1.21 0.23 9.75E-06 -9.40E-11 24.47 35.14 2125 UN 

29 Day 1.11 0.23 2.25E-06 3.08E-11 24.73 35.15 1875 UN 

30 Day 1.00 0.21 -7.82E-06 7.21E-11 24.77 35.21 1436 Sf 

31 Sunset 0.95 0.19 -7.39E-06 1.82E-10 24.68 35.30 840 Sf 

 

3.2.3.3 Zooplankton sampling 

Daytime zooplankton samples were collected with a 200-µm-mesh oblique Bongo net towed at a speed 

of 1-2 knots to a maximum depth of 200 m during the La Pérouse cruise (0.28 m2 mouth area). A 200-

µm-mesh oblique Multinet was towed to a maximum of 200 m during the MAD-Ridge cruise (0.25 m2 

mouth area) (Noyon et al., 2020). Samples from both cruises were emptied into a 200 µm sieve, poured 

into sampling jars with filtered seawater and stored in 4% buffered formaldehyde at room temperature 

on board before being analysed using a Hydroptic Zooscan following the protocols in Gorsky et al. 

(2010). Detailed zooplankton sampling and analyses were investigated in Noyon et al. 2020. 

3.2.3.4 Acoustic sampling 

A Simrad EK60 echosounder operating at four frequencies was used during both the La Pérouse and 

Leg 1 of the MAD-Ridge cruises: 38 kHz at 1000 W transmitted power, 70 kHz (acquired range of 500 

m) at 750 W, 120 kHz (250 m) at 200 W and 200 kHz (150 m) at 90 W. The water column was correctly 

sampled to a depth of 735 m during data acquisition for the 38 kHz frequency of the La Pérouse cruise, 

with data being of poor quality below that depth. For comparison with the La Pérouse cruise, echo-

integrated acoustic data for the 38 kHz frequency of the MAD-Ridge cruise has also been selected down 

to 735 m in this chapter. The pulse duration was set at 0.512 ms. The transducers were calibrated prior 

to both cruises following the procedures recommended in Foote et al. (1987). MAD-Ridge acoustic data 

were collected along the West-East and South-North transects (Fig. 3.2a) at a vessel speed of 8-9 knots. 

Additional transects were also conducted during day and night in close proximity to the MAD-Ridge 

summit and flanks at vessel speed of 8-9 knots (see Fig. 3.7 a, b) 

The Matecho software (an open source IRD tool computed with MATLAB 7.11.0.184, Release 2010b- 

and based on the IFREMER’s Movies3D software; Trenkel et al., 2009; Perrot et al., 2018) was used to 

process acoustic data from both cruises. Background, transient and impulsive noises along with 

attenuated signals (Perrot et al., 2018) were removed using the algorithms designed in De Robertis & 

Higginbottom (2007) and Ryan et al. (2015). An offset of 10 m below the sea surface was applied to 
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account for the acoustic detection of the surface turbulence. During both cruises, echo-integration of the 

acoustic data was performed on 1-m layers at an elementary sampling distance unit of 0.1 nmi (nautical 

mile) and at a threshold of -80 dB to exclude scatterers not representative of the micronekton community 

(Béhagle et al., 2017). The micronekton acoustic density was determined by the nautical area scattering 

coefficient NASC (sA, m2 nmi-2), related to the backscattered energy (MacLennan et al., 2002). NASC 

can be used as a proxy of the relative biomass of micronekton provided assumptions that the composition 

of scattering layers and the resulting scattering properties of micronekton are relatively homogeneous 

(Béhagle et al., 2014). The volume backscattering strength (Sv, dB re 1 m-1; MacLennan et al., 2002) 

was also calculated for each frequency (38 kHz, 70 kHz and 120 kHz) to obtain the relative acoustic 

density of scatterers per unit volume and was used to generate Red Green Blue (RGB) composite images 

(see next section). The water column at the 38 kHz frequency was separated into the following depth 

categories, based on epipelagic and mesopelagic layers: surface (10-200 m), intermediate (200-400 m), 

deep (400-735 m) and total water column (10-735 m). Diurnal and nocturnal periods were assessed using 

Matecho software through visual analysis of the echograms. 

3.2.4 Data visualisation 

Vertical distributions of the environmental descriptors (current speed, temperature, and chlorophyll a) 

were mapped from the surface to ~1000 m (except for chlorophyll) along the West-East and South-North 

transects of MAD-Ridge Leg 1 (Fig. 3.2b, c) using the Section mode of the software Ocean Data View 

(ODV, version 4.5.7; Schlitzer, 2013). The chlorophyll a data were only mapped from the surface to 300 

m because values were below the minimum level of detection deeper than that (Fig. 3.2d). Data 

interpolation between sampling stations was carried out using the DIVA (Data-Interpolating Variational 

Analysis) gridding option in ODV that spatially interpolates observations on a regular grid in an optimal 

way by taking into account coastlines and bathymetric features to structure and divide the domain on 

which estimations are performed. 

Acoustic data were represented using RGB colour coding. RGB composite images were generated in 

MATLAB (version 2016) based on the 38 kHz, 70 kHz and 120 kHz echo-integrated acoustic data of 

selected transects during the MAD-Ridge and La Pérouse cruises. The 38, 70 and 120 kHz echo-

integrated acoustic data were given in red, green and blue colour codes respectively on each RGB plot, 

with the dynamic of the Sv values in dB for each frequency being converted in 256 levels (0-255) of 

each colour. A linear transformation of the backscatter was applied to each frequency (fr): 

Colour index (fr) = [255/ (High scale threshold – Low scale threshold)] × [Sv (fr) – Low scale threshold], 

            Eq. 3 
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where the high and low scale thresholds are the maximum and minimum backscatter for hue 

visualisations, respectively. Sv (fr) is the backscatter value at each frequency. This acoustic visualisation 

technique is useful in determining the relative contribution of each frequency to the overall backscatter 

(red means that Sv 38 is dominant, and similarly for green and blue, Sv 70 and Sv 120 are respectively 

dominant) and to identify dense aggregations of scatterers (Sv 38, Sv 70 and Sv 120 all dominant and 

seen as “white patches”). On a RGB composite image based on the 38, 70 and 120 kHz frequencies, a 

dark red colour indicates a dominant but low 38 kHz backscatter, whereas a light red colour indicates a 

dominant but high 38 kHz backscatter. The same rule applies to the green (70 kHz) and blue (120 kHz) 

hues. Kloser et al. (2002) used a similar approach, but the composite image was produced by assigning 

a separate colour palette to each frequency (12, 38 and 120 kHz) and dynamically optimising the 

frequencies to highlight the amplitude differences in the echogram. 

3.2.5 Statistical analyses 

Kruskal Wallis tests and pairwise Wilcoxon rank sum tests were performed to assess the differences in 

integrated chlorophyll a concentrations between classified hydrographic stations. In order to cover the 

largest depth range, day and night acoustic transects at 38 kHz frequency were further selected to 

investigate the micronekton acoustic densities in close proximity to the summits and flanks of the 

pinnacles (see Fig. 3.7a, b). As the 38 kHz frequency data did not follow a normal distribution, non-

parametric Wilcoxon rank sum tests were performed to investigate the overall acoustic densities in each 

of the depth categories (surface: 10-200 m, intermediate 200-400 m and deep: 400-735 m) between La 

Pérouse and MAD-Ridge seamounts, and between day and night. Daytime acoustic density estimates 

representing the vertical distribution of micronekton across the depth categories (surface, intermediate, 

deep and total water column: 10-735 m) and averaged over 0.4 nmi on each side of the classified stations 

during MAD-Ridge cruise were investigated using non-parametric Kruskal-Wallis (KW) tests and 

pairwise Wilcoxon rank sum tests. All statistical tests were performed with version 3.3.1 of the R 

package. 

3.2.6 Taylor column theoretical calculation 

The following non-dimensional factors were used to determine the likelihood of a Taylor column 

formation over La Pérouse and MAD-Ridge summits (White et al., 2007), depending on the mean water 

stratification, the mean flow field, the latitude (earth’s rotation effect) and the shape of the seamount: 

(1) The Rossby number, Ro, with Ro =+
<

=>?+
 , 
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where U is the typical flow speed (0.3 m s-1 at La Pérouse and 0.5 m s-1 at MAD-Ridge); @ A B > +C >

sin+DEFGHG)IJK, where C is Earth’s angular velocity at 0.0000729 rads s-1; the sin+DEFGHG)IJK is sin(19.72) 

at La Pérouse and+sin(27.48) at MAD-Ridge; and L is the average width of the seamounts (10 000 m for 

La Pérouse and 27 500 m for MAD-Ridge). Ro estimates were calculated at 0.27 at La Pérouse and 0.17 

at MAD-Ridge. 

(2) The relative height of the seamount (h0) to water depth (H), with α =+
L1

M
 , 

where α was calculated at 0.99 at La Pérouse and 0.85 at MAD-Ridge. 

(3) A combination of Ro and α gives the blocking parameter Bl (where Bl =
N

OP
), 

which controls the formation of a Taylor column (White et al., 2007). A Bl value of 3.66 was calculated 

at La Pérouse and 4.88 at MAD-Ridge. According to Chapman & Haidvogel (1992), for seamounts taller 

than α ≈ 0.4, true Taylor caps will form if Ro <0.15 and Bl > ~2 for Gaussian-shaped seamounts with 

moderate stratification. According to the authors, Taylor cones will not form if the Rossby number 

exceeds the upper bound of 0.15-0.2. 

 

3.3 Results 

3.3.1 Synoptic ocean circulation during the MAD-Ridge cruise 

A cyclonic/anticyclonic eddy dipole was encountered along the West-East transect (hydrographic 

stations 1-15) of Leg 1 of the MAD-Ridge cruise, whereas the South-North transect (hydrographic 

stations 16-31) was mostly located inside the anticyclonic eddy and reached the Madagascar shelf (Fig. 

3.2a). Along the West-East transect, at hydrographic station 5, a sharp front can be observed in the sea 

surface temperature and salinity data collected from the ship-mounted thermosalinograph, indicating the 

transition between cyclonic and anticyclonic circulations (Appendix: Fig. A). This transition area 

coincided with the largest current velocity recorded at the surface (158 cm s-1) and in the depth layer 104 

and 304 m (99 cm s-1) relative to all other stations along the West-East and South-North transects (Fig. 

3.2b). 

MAD-Ridge hydrographic stations were divided into six categories, according to whether they belonged 

to the cyclonic eddy (C: stations 2, 3, 4), anticyclonic eddy (AC: stations 10-13, 16-19, 24, 25), dipole 

interface (Dipole I.: station 5), seamount summit and anticyclonic eddy (Summit/AC: stations 8, 21, 22), 

seamount flank and anticyclonic eddy (Flank/AC: stations 7, 9, 20, 23) and shelf (Shelf: stations 30, 31). 

The other hydrographic stations 1, 6, 14, 15, 26-29 could not be accurately resolved using the criteria 

mentioned in Section 3.2.3.2 and in the Appendix (Fig. A) and were not assigned to any of the listed 

categories. 
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Figure 3.2(a) Satellite surface absolute dynamic height (m) on 19 November 2016 during MAD-Ridge 
cruise. Geostrophic velocity vectors (m s-1) (black arrows) and the position of CTD stations numbered 
1 to 31 (grey dots) are superimposed along the West-East (W-E) and South-North (S-N) transects. The 
Madagascan landmass is shown in orange.
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Figure 3.2 Vertical distributions of (b) current speed (cm s-1), (c) temperature (°C), and (d) chlorophyll a (mg m-3) for MAD-Ridge Leg 1 West-
East transect (CTD stations labelled 1-15, left panels) across the cyclonic (C) and anticyclonic (AC) eddies, and South-North transect (CTD 
stations labelled 16-31, right panels ) across the anticyclonic eddy and on the Shelf (Sf). Thhe MAD-Ridge seamount and the Madagascan shelf 
are shown in grey.
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3.3.2 Hydrography and chlorophyll concentration during the MAD-Ridge cruise 

Surface temperatures among the station categories varied between 23.7°C (cyclonic station 4) 

and 24.9°C (Summit/AC station 21). The cyclonic and shelf stations were characterised by 

shallower thermocline (79-165 m and 97-117 m, respectively) than the anticyclonic stations. 

The anticyclonic, Summit/AC and Flank/AC stations were characterised by a relatively deeper 

thermocline (159-219 m, 206-209 m and 181-212 m, respectively) (Fig. 3.2c). Fmax values of 

0.35-0.38 mg m-3 and 0.62-0.74 mg m-3 were recorded at the cyclonic and shelf stations 

respectively, at depths of 54-122 m and 56-73 m, respectively (Fig. 3.2d). The anticyclonic, 

Summit/AC and Flank/AC stations had deeper Fmax depths (82-129 m, 131-153 m and 101-

144 m) relative to the cyclonic and shelf stations, with Fmax values of 0.16-0.30 mg m-3, 0.25-

0.31 mg m-3 and 0.17-0.33 mg m-3, respectively. Integrated chlorophyll a concentrations were 

statistically different between the classified hydrographic stations (KW, H=7.59, p < 0.05), 

especially between the cyclonic and anticyclonic stations (pairwise comparisons, p < 0.05). 

The mean ± S.D integrated chlorophyll a concentrations between 2 and 200 m were estimated 

at 29.1 ± 7.3 mg m-3 and 19.3 ± 2.1 mg m-3 within the cyclonic and anticyclonic eddies 

respectively. 

3.3.3 Micronekton acoustic densities at the MAD-Ridge seamount 

West-East Transect 

The daytime total micronekton acoustic densities of the 38 kHz echosounder frequency 

exhibited a decreasing trend along the West-East transect, with the greatest responses recorded 

across stations 1-2 within the cyclonic eddy during Day_I (1705 m2 nmi-2) (Fig. 3.3a). The 

lowest acoustic responses were recorded across the Summit/AC station 8 during Day_III (755 

m2 nmi-2) and stations 13-15 at the eastern periphery of the anticyclonic circulation during 

Day_V (702 m2 nmi-2). The night-time total micronekton acoustic densities were greater than 

the daytime acoustic responses and also exhibited a decreasing trend along the West-East 

transect. The greatest acoustic densities were recorded during Night_I (3241 m2 nmi-2) between 

cyclonic stations 3 and 4 and the lowest densities were recorded during Night_IV (1417 m2 

nmi-2) between stations 12 and 13 at the anticyclonic periphery (Fig. 3.3a). Differences of 1536 

m2 nmi-2, 1297 m2 nmi-2, 1058 m2 nmi-2and 595 m2 nmi-2 in the micronekton acoustic responses 

were recorded between Night_I-Day_I, Night_II-Day_II, Night_III-Day_III and Night_IV-

Day_IV, respectively.   
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Figure 3.3(a) West-East (W-E) transect of MAD-Ridge: Mean micronekton acoustic density 
(sA, m2 nmi-2) from Day_I to Day_V and Night_I to Night_IV: grey for surface layer (10-200 
m), white for intermediate layer (200-400 m) and black for deep layer (400-735 m). Stacked 
bars are labelled: C (Cyclonic), C/D.I (Cyclonic/Dipole Interface), S/AC (Summit/ 
Anticyclonic), AC (Anticyclonic), AC/P (Antycyclonic/Eddy periphery) and D.I (Dipole 
Interface). 

 

Interestingly, the surface layer gathered higher percentage acoustic densities than the deep layer 

during Day_I (stations 1-2), Day_II (Stations 4-6) and Day_III (stations 7-9), whereas the deep 

layer showed greater percentage acoustic densities than the surface layer during Day_IV and 

Day_V (Fig. 3.3a). The surface layer at night displayed 92%, 74%, 79% and 79% acoustic 

densities from Night_I to Night_IV, whereas the deep layer gathered 7% across Night_I and 

16% across Night_II to Night_IV (Fig. 3.3a). The intermediate layer displayed the lowest 

percentage acoustic responses (1-10%) during day and night. 

The echogram of the 38 kHz frequency showed organisms aggregating on the summits of deep 

topographic features labelled X and Y between 300 and 500 m and on the MAD-Ridge summit 

(Fig. 3.3b). These organisms contributed to the higher acoustic densities within the 

intermediate layer across Night_II relative to the intermediate layer across other transects. This 

echogram also provided evidence of organisms migrating to deeper layers (below 400 m) at 

sunrise and forming a dense aggregation between 400 and 600 m between the deep topographic 

feature Y and MAD-Ridge seamount (Fig. 3.3b). 
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Figure 3.3(b) Echogram of the 38 kHz frequency across CTD stations 6-8 (denoted by striped 
bars). Deep topographic features X and Y and MAD-Ridge seamount are labelled in red. The 
colour bar indicates sA in m2 nmi-2. Periods corresponding to sunset, night, sunrise and day 
are denoted by red, blue, violet and gold horizontal rectangles, respectively. 

 

RGB composite images showed a dominant and strong 38 kHz backscatter (red dominating the 

RGB plot) between ~20 and 70 m across cyclonic stations 2 and 3 during daytime and between 

~20 and 120 m across cyclonic stations 3 and 4 during the night and at sunrise (Fig. 3.3c). 

Between anticyclonic stations 10-12 and across stations 13 and 15, the backscatter of the 38 

kHz frequency was dominant but lower between ~20 and 80 m relative to the cyclonic stations. 

At these anticyclonic stations, the dominant and stronger 120 kHz backscatter between ~80 and 

140 m during daylight matches the Fmax depth of 82 and 129 m.
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Figure 3.3(c) RGB composite images of Sv values (dB re 1 m-1) across cyclonic CTD stations 2-3 and 4 and anticyclonic stations 10-12 and 
stations 13-15 (denoted by striped bars). The 38, 70 and 120 kHz frequencies were given red, green and blue colour codes, respectively, as 
explained in the methods. Periods corresponding to sunset, night, sunrise and day are denoted by red, blue, violet and gold horizontal rectangles, 
respectively. 
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South-North transect 

The total daytime acoustic densities of the 38 kHz echosounder frequency across the South-

North transect were greater during Day_VI (1050 m2 nmi-2) at the southern boundary of the 

anticyclonic circulation, decreased during Day_VII (805 m2 nmi-2) and Day_VIII (647 m2 nmi-

2) along the summit/flanks and within the anticyclonic circulation, before increasing at the 

northern periphery of the same circulation during Day_IX (1014 m2 nmi-2) and at shelf station 

30 during Day_X (1022 m2 nmi-2) (Fig. 3.4a). The night-time acoustic responses followed the 

same pattern as the daytime acoustic densities along the South-North transect, with the greatest 

responses across Night_VI (2609 m2 nmi-2) at the southern periphery of the anticyclonic 

circulation and Night_IX (2733 m2 nmi-2) at its northern boundary. The lowest responses along 

the South-North transect were recorded across Night_VII (1938 m2 nmi-2) and Night_VIII 

(1717 m2 nmi-2) over the summit and within the anticyclonic circulation. Differences of 1559 

m2 nmi-2, 1132 m2 nmi-2, 1071 m2 nmi-2and 1719 m2 nmi-2 in the micronekton acoustic densities 

were recorded between Night_VI-Day_VI, Night_VII-Day_VII, Night_VIII-Day_VIII and 

Night_IX-Day_IX, respectively. 

  

Figure 3.4(a) South-North (S-N) transect of MAD-Ridge: Mean micronekton acoustic density 
(sA, m2 nmi-2) from Day_VI to Day_X and Night_VI to Night_IX: grey for surface layer (10-
200 m), white for intermediate layer (200-400 m) and black for deep layer (400-735 m). 
Stacked bars are labelled: AC (Anticyclonic), AC/F/S (Anticyclonic/Flank/Summit), S/F/AC 
(Summit/Flank/Anticyclonic), AC/P (Anticyclonic/Eddy periphery) and AC.P/S (Anticyclonic 
eddy periphery and shelf), S/AC (Summit/Anticyclonic) and AC.P (Anticyclonic eddy 
periphery). 
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In contrast with Day_I, Day_II and Day_III along the West-East transect, the percentage 

micronekton acoustic responses at the 38 kHz echosounder frequency in the surface layer 

during the day was lower than that in the deep layer across all stations of the South-North 

transect, except at the summit station during Day_VIII (Fig. 3.4a). Across Night_VI to 

Night_IX, the surface layer displayed 76%, 80%, 76% and 67% of micronekton acoustic 

responses, whereas the deep layer recorded 20%, 9%, 20%, and 28%. Similar to the West-East 

transect, the intermediate layer along the South-North transect displayed the lowest percentage 

micronekton acoustic responses (4-11%) during day and night. 

RGB composite images showed a dominant and relatively high 38 kHz backscatter between 

~20-100 m across stations 21, 22, 23 (on the summit and flank, within the anticyclonic 

circulation) and shelf stations 30 and 31 (Fig. 3.4b). The 120 kHz backscatter was dominant 

between ~100 and 140 m, corresponding with Fmax depths ranging from 116 to 138 m at these 

stations. Across the shelf, the 120 backscatter was dominant between 60 and 80 m, 

corresponding to Fmax depths of 56-73 m at these stations. Regions of high Sv can be observed 

on the MAD-Ridge seamount (seen as “white patches” at 150-250 m on the RGB composite 

image between CTD stations 21 and 22), corresponding to aggregations of scatterers on the 

seamount summit (Fig. 3.4b).  
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Figure 3.4(b) RGB composite images of Sv values (dB re 1 m-1) at anticyclonic CTD stations 
21-23 and shelf stations 30-31 (labelled by striped bars). The 38 kHz, 70 kHz and 120 kHz 
frequencies were given red, green and blue colour codes, respectively. Periods corresponding 
to sunset, night, sunrise and day are denoted by red, blue, violet and gold horizontal rectangles, 
respectively on the plots.
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3.3.4 Environmental factors influencing micronekton distribution during the 

MAD-Ridge cruise 

Median micronekton acoustic densities in the total water column and in the surface layer were 

the highest within the cyclonic eddy than in any other station category (p < 0.05) (Fig. 3.5a). 

The Flank/AC stations showed higher median micronekton acoustic densities of the total water 

column relative to the Summit/AC stations (Fig. 3.5a). The Summit/AC stations exhibited 

higher median micronekton acoustic densities in the surface layer than in the AC and Dipole I. 

stations (p < 0.05) (Fig. 3.5a). Micronekton acoustic densities in the deep layer had the same 

overlapping ranges across all station categories except over the Summit/AC stations (p < 0.05). 

Station 18, which was conducted at sunset, within the anticyclonic eddy showed high 

micronekton acoustic densities in the total water column (1461 ± 531 m2 nmi-2), with the 

acoustic backscatter being distributed almost equally in the surface and deep layers (506 ± 345 

and 559 ± 298 m2 nmi-2 respectively) and in lower concentrations in the intermediate layer (397 

± 154 m2 nmi-2). This station can be considered as being anomalous relative to the other 

anticyclonic stations. However, when this station was removed from the above KW and 

pairwise analyses, the outcome remained unchanged. 

 

Figure 3.5(a) Boxplots of the total micronekton acoustic densities (sA, m2 nmi-2) of the 38 kHz 
frequency in the deep (400-735 m), intermediate (200-400 m), surface layers (10-200 m) and 
total water column (10-735 m) for the transects at CTD stations: 10-13, 16-19, 24, 25 (AC: 
anticyclonic); 2, 3, 4 (C: cyclonic); 5 (Dipole Interface); 7, 9, 20, 23 (Flank/AC); 30, 31 (Shelf); 
and 8, 21, 22 (Summit/AC) of the MAD-Ridge cruise. 

To summarise, the cyclonic eddy stations recorded the greatest micronekton acoustic densities 

of the total water column and were characterised by negative SLA relative to the other station 
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categories (Fig. 3.5a). The cyclonic eddy and shelf stations were characterised by the coldest 

temperature at 100 m, shallower Fmax, the highest integrated chlorophyll a concentrations 

between 2 and 200 m and the greatest mean zooplankton biovolumes (Fig. 3.5c-f). The 

anticyclonic circulation recorded lower micronekton acoustic densities in the total water 

column than the cyclonic circulation (Fig. 3.5a). These stations were characterised by positive 

SLA, warmer temperatures at 100 m, deeper Fmax, lower integrated chlorophyll a between 2 

and 200 m and higher variability of zooplankton biovolumes than the cyclonic stations (Fig. 

3.5b-f). The seamount summit stations did not exhibit remarkable micronekton acoustic 

densities, nor integrated chlorophyll a and mean zooplankton biovolumes among station 

categories (Fig. 3.5a, e, f). The station at the dipole interface recorded the lowest micronekton 

acoustic densities, although values were not significant (p < 0.05) compared with the other 

station categories, and were characterised by slightly negative SLA (Fig. 3.5a, b) and the 

highest mean current speed between of 99.1 m s-1 relative to all other stations (mean ± S.D. of 

40.6 ± 19.2 m s-1). 
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Figure 3.5 Mean and standard deviations of the variables (b) SLA (m), (c) Temperature at 100 
m, (d) Fmax depth (m), (e) integrated chlorophyll a between 2-200 m (mg m-3), and (f) 
zooplankton biovolume (mm3 m-3) plotted for the AC, C, Dipole I., Flank/AC, Shelf and 
Summit/AC stations. 
 

3.3.5 Physical and biological oceanography at La Pérouse seamount 

During the La Pérouse cruise, the seamount was under the influence of a weak cyclonic eddy 

with geostrophic speeds of <1 m s-1 and satellite surface absolute dynamic topography heights 

of ~1.1 m (Fig. 3.6). ADCP measurements recorded a current velocity of ~10-40 cm s-1 in the 

vicinity of the La Pérouse seamount, in the upper 200 m (Marsac et al., 2020). Surface 

temperatures ranged between 23 and 24°C, with a deeper thermocline (152-181 m) at La 

Pérouse (flanks and offshore stations combined) than at MAD-Ridge cyclonic stations. 

Maximum chlorophyll a values of 0.18 - 0.44 mg m-3 at Fmax depth between 65 and 140 m 

were recorded at all stations. 
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Figure 3.6 Satellite surface absolute dynamic height (m) on 16 September 2016 during the La 
Pérouse cruise showing La Pérouse seamount (black star). Geostrophic velocity vectors (m s-

1) (black arrows) are superimposed. Réunion landmass is shown in orange. 

 

3.3.6 Comparison of micronekton acoustic densities at both seamounts 

Wilcoxon tests performed on the 38 kHz frequency showed the overall acoustic densities of 

the depth categories (surface, intermediate and deep) differed significantly between La Pérouse 

and MAD-Ridge and between day and night (p < 0.05) along the transects mapped in Fig. 3.7. 

The mean acoustic densities for the 38 kHz frequency of the total water column (10-735 m) 

were lower over La Pérouse summit and flanks (Fig. 3.7a) during day (653 ± 689 m2 nmi-2) 

and night (903 ± 600 m2 nmi-2) relative to MAD-Ridge (Day: 1448 ± 1268 m2 nmi-2; Night: 

2261 ± 1035 m2 nmi-2) summit and flanks (Fig. 3.7b). During the day and the night, the surface 

layer displayed a greater percentage of acoustic responses relative to the deep layer both at La 

Pérouse (Day - Surface: 87.5%, Day - Deep: 7.2%; Night - Surface: 94.2%, Night - Deep: 

0.6%) and MAD-Ridge (Day - Surface: 57.2%, Day - Deep: 34.6%; Night - Surface: 74.3%, 

Night - Deep: 17.0%). The intermediate layer displayed percentage acoustic densities of 5-9% 

during day and night and at both seamounts. 
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Figure 3.7 Map of La Pérouse and MAD-Ridge, daytime (yellow lines) and night-time (blue 
lines) acoustic transects plotted on the bathymetry. The colour bar indicates bathymetry (m) 
and the scale bar is given. Bar charts of mean micronekton acoustic densities (sA, m2 nmi-2) ± 
standard deviations during day and night: grey for surface layer (10-200 m), white for 
intermediate layer (200-400 m) and black for deep layer (400-735 m) at (a) La Pérouse and 
(b) MAD-Ridge. 

RGB composite images showed relatively low but dominant 38 kHz backscatter between 

depths of ~20 and 60 m both at La Pérouse (Fig. 3.7c) and MAD-Ridge (Fig. 3.7d) during the 

day. A stronger response to the 120 kHz frequency relative to the 38 kHz frequency was 

observed between ~100 and 180 m at La Pérouse and between ~100 and 125 m at MAD-Ridge 

during the day. At night, the 38 kHz backscatter was overall stronger and more dominant 

relative to the 70 kHz backscatter between depths of ~20 and 180 m both at La Pérouse and 

MAD-Ridge (Fig. 3.7e and 3.7f). Regions of high acoustic densities (seen as “white patches” 

on RGB composite images) were observed at the La Pérouse and MAD-Ridge summits during 

day and night (Fig. 3.7c, d, e and f). 
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Figure 3.7 RGB composite images of SV values (dB re 1 m-1) of (c) La Pérouse day, (d) MAD-Ridge day, (e) La Pérouse night and (f) MAD-Ridge 
night. The MAD-Ridge and La Pérouse summits are shown in black. The 38, 70 and 120 kHz frequencies were given red, green and blue colour 
codes respectively. Regions of high SV are denoted by “white patches” on the RGB composites. 
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3.4 Discussion 

3.4.1 Oceanographic conditions during the MAD-Ridge and La Pérouse cruises 

This thesis demonstrated the strong influence of mesoscale cyclonic and anticyclonic eddies 

on the physical and biological properties at MAD-Ridge seamount. The doming of isotherms 

and shallowing of the Fmax depth was observed within the cyclonic eddy during the MAD-

Ridge cruise. Such processes are associated with eddy-induced pumping and upwelling of cool, 

nutrient-rich waters, triggering an increase in primary production in the photic layer 

(McGillicuddy & Robinson, 1997; McGillicuddy et al., 1998; Klein & Lapeyre, 2009; Huggett, 

2014; Singh et al., 2015). Phytoplankton within mesoscale cyclonic eddies can also grow in 

response to advection and subsequent retention of surrounding nutrient-rich waters within 

eddies (José et al., 2014; Lamont et al,. 2014). The anticyclonic eddy in this study was 

characterised by a deeper thermocline and Fmax, with a decrease in productivity in the photic 

layer than in the cyclonic eddy. 

The Madagascar shelf also had a significant effect on the physical and biological processes 

during the MAD-Ridge cruise. The thermocline and Fmax depth were shallower on the shelf 

than at the other stations within the anticyclonic eddy. Previous studies have shown that the 

coastal regions south of Madagascar are more productive than surrounding waters (Raj et al., 

2010; Pripp et al., 2014; Ramanantsoa et al., 2018) owing to coastal upwelling events driven 

by interactions between the East Madagascar Current and the continental shelf and by 

upwelling favourable winds (Ramanantsoa et al., 2018). This productivity can be entrained by 

mesoscale features that spin off the East Madagascar Current, farther south, potentially towards 

MAD-Ridge (Noyon et al., 2018; Ockhuis et al., 2017). 

La Pérouse seamount, on the other hand, is located on the edge of the ISSG and was under the 

influence of a weak mesoscale eddy field during the cruise there, reflecting average conditions 

observed throughout the year in this region, as shown by Pous et al. (2014) using the OSCAR 

product (https://podaac.jpl.nasa.gov/dataset/OSCAR_L4_OC_third-deg). Apart from 

disturbances caused by the seamount to circulation, phytoplankton and zooplankton at a small 

scale along the flanks (Marsac et al., 2020), the average conditions in the La Pérouse area with 

relatively deep thermocline and Fmax depth, were typical of the oligotrophic ISSG province. 

Overall, during the time of the cruises, sea surface chlorophyll concentrations were twice as 

low within the region of the La Pérouse seamount as at the MAD-Ridge seamount (Annasawmy 

et al., 2019). 
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3.4.2 Diel vertical migration of micronekton 

Micronekton is a diverse group of organisms capable of demonstrating various swimming 

behaviours (active swimming or passive drifting) and vertical migration strategies (diel 

migrants, semi-migrants or non-migrants) (Brodeur & Yamamura 2005). In this study, the 

different DVM patterns of micronekton were observed. Vertically migrating organisms 

ascended to the surface (above 200 m) at sunset and descended below 400 m at sunrise in the 

vicinity of both MAD-Ridge and La Pérouse, whereas only a small proportion of non-migrant 

or semi-migrant micronekton remained in the deep layer by day at both seamounts. On average, 

a difference of 595 m2 nmi-2 to 1719 m2 nmi-2 was recorded between day and night periods at 

MAD-Ridge (West-East and South-North transects) and a difference of 790 m2 nmi-2 between 

day and night at La Pérouse. These differences between alternate day and night periods are 

likely caused either by the vertical migration of micronekton towards the surface at night for 

feeding purposes, sometimes from layers deeper than 735 m (i.e. beyond the range set for the 

38 kHz transducer in this chapter), and/or the lateral advection of organisms. 

Micronekton acoustic densities were greater in the surface layer than in the deep layer during 

the day at cyclonic eddy stations. This particular finding contradicts the general paradigm that 

micronekton are located in deeper layers by day (eg. Baliño & Aksnes, 1993; Andersen et al., 

1998; Bertrand et al., 1999; Lebourges-Dhaussy et al., 2000; Benoit-Bird & Au, 2004; 

Domokos et al., 2010; Godø et al., 2009, 2012; Drazen et al., 2011; Béhagle et al., 2014; 

Menkes et al., 2015; Béhagle et al., 2016; Bianchi & Mislan, 2016; Annasawmy et al., 2018). 

Micronekton do not only undertake direct swimming in vertical and horizontal planes, but may 

also drift passively. Previous studies have reported passive drifting of the mesopelagic 

myctophid Benthosema glaciale with swimming speeds of 0-0.02 m s-1 along weak tidal 

currents and short bouts of active swimming in a vertical direction with swimming speeds of 

0.05 m s-1, possibly during feeding (Torgersen & Kaartvedt, 2001; Kaartvedt et al., 2009). This 

species has also been reported to undertake reverse DVM, ascending to approximately 200 m 

by day to forage on midwater plankton (Kaartvedt et al., 2009). The reverse DVM pattern is 

not common, with only some species of zooplankton (Ohman et al., 1983; Lampert, 1989) and 

mesopelagic fishes having been reported to ascend to the surface layer during the day to 

optimise feeding opportunities (Lebourges-Dhaussy et al., 2000; Kaartvedt et al., 2009). 

Some micronekton taxa may also preferentially stay in the surface layer during the day to 

reduce competition during feeding. The micronekton species Myctophum asperum, 

Myctophum nitidulum, Symbolophorus evermanni, and Chromis brevirostis showed delayed 
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vertical migration at night in the Kuroshio region of the western North Pacific, with specific 

peak feeding hours and specialisation on different food organisms in order to reduce 

competition (Watanabe et al., 2002). Daylight surface observations are rare but were made for 

the mesopelagic fish Benthosema pterotum in the Gulf of Oman (Gjøsæter, 1978, 1984), the 

myctophid Benthosema pterota off the coast of Central America (Alverson, 1961) and the 

myctophid Vinciguerria nimbaria in the eastern Tropical Atlantic (Marchal & Lebourges-

Dhaussy, 1996; Lebourges-Dhaussy et al., 2000). The reasons for the daylight surface 

occurrence of V. nimbaria has been linked to the presence of potential preys such as 

zooplankton at the Fmax depth (Lebourges-Dhaussy et al., 2000). Previous studies also have 

found the deep-dwelling cod Micromesistius poutassou which usually resides at a depth of 300-

500 m, migrating to the surface of anticyclonic eddies probably to enhance feeding 

opportunities (Godø et al., 2012). Micronekton organisms within the cyclonic eddy during 

MAD-Ridge might have adopted a combination of these strategies and this possibility is 

discussed in more detail below. 

3.4.3 Influence of mesoscale features on micronekton vertical and horizontal 

distribution 

As shown earlier, the vertical and horizontal distributions of micronekton at MAD-Ridge were 

significantly influenced by mesoscale processes linked to the presence of cyclonic and 

anticyclonic eddies. The daytime sA values within the eddy dipole interface were the lowest 

relative to the other hydrographic station categories used in this analysis. Harris et al. (2020) 

also recorded lower larval fish densities at the eddy dipole interface than at cyclonic and 

anticyclonic circulation stations. This can be attributed to the strong currents measured at this 

location that have led to the dispersion of micronekton communities. Alternatively, 

micronekton may have migrated below the depth range scanned by the 38 kHz transducer at 

that station due to a combination of strong currents and daytime light intensities.  

Overall, acoustic densities of the total water column recorded within the cyclonic eddy were 

approximately twice as great as those recorded within the anticyclonic circulation during both 

day and night. The integrated chlorophyll a and zooplankton biovolume maxima found in the 

cyclonic eddy, matched the micronekton maxima, during day and night. Micronekton biomass 

is reported to be dependent on the availability of planktonic prey (Menkes et al., 2015), and 

hence on the oceanographic drivers of plankton production, as observed in this study. In the 

anticyclonic eddy, the downwelling mechanism of nutrient-depleted surface waters may have 

led to a reduction of chlorophyll a concentrations in the euphotic zone, and a subsequent 
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reduction in mesozooplankton abundance and micronekton acoustic densities during both day 

and night. Previous studies conducted in the Mozambique Channel have also reported lesser 

micronekton acoustic densities in anticyclonic relative to cyclonic eddies (Béhagle et al., 2014). 

However, the same authors pointed out some variability in eddy-induced biological responses, 

with one case of higher micronekton density in an anticyclonic eddy that was attributed to 

larger and more mobile organisms that are less influenced by mesoscale features than smaller 

organisms. 

The RGB composite images have revealed the presence of a strong and dominant 38 kHz 

backscatter in the surface layer during the day across the cyclonic eddy (Fig. 3.3c). Previous 

studies have demonstrated that epi- and mesopelagic fishes with small gas-filled swimbladders 

and gelatinous plankton with gas inclusions dominate the 38 kHz frequency (Porteiro & Sutton, 

2007; Kloser et al., 2002; Kloser et al., 2009; Davison et al., 2015; Cascão et al., 2017; Proud 

et al., 2018). The occurrence of these organisms at the surface (10-200 m) by day may be 

considered a response to the cyclonic eddy exhibiting relatively high integrated chlorophyll a 

concentrations and zooplankton biovolumes. The question arises, though, whether these 

micronekton species showed reverse migration strategies and actively remained in the shallow 

layer by day or whether they were passively entrained with the current within the cyclonic 

circulation. This shallow scattering layer may also have consisted of gelatinous organisms, 

which as other zooplankton, responded to the localised cyclonic productivity. The mesoscale 

cyclonic eddy may also have provided physical mechanisms that led to zooplankton retention 

and concentration, thereby increasing the encounter rate between micronekton and their prey. 

The micronekton organisms, likely epi- and mesopelagic fishes, would then preferentially stay 

in the surface layer by day to increase their feeding opportunities. 

3.4.4 Influence of seamounts on micronekton vertical and horizontal 

distributions 

Dense aggregations of scatterers were observed over deep topographic features labelled X and 

Y peaking at 430 m and 460 m, during night-time and sunrise, respectively (Figure 3.3b). These 

dense aggregations may have been migrating during the time of the cruise, upwards over 

feature X at night or downwards at feature Y at sunrise. Alternatively, they may be non-

migrating organisms that remained preferentially associated with these topographic features 

during day and night. Studies have suggested that the bottom-trapping mechanism as well as 

the horizontal flux of non-migrating zooplankton maintain the densities of zooplanktivorous 

fishes at seamounts of intermediate depth (Genin & Dower, 2007). A range of other factors 
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such as the quiescent shelters offered by these topographies and the absence of shallow diving 

predators (Porteiro & Sutton, 2007) may also account for the presence of these dense 

aggregations at the features labelled X and Y. 

Micronekton acoustic densities over the summit and flanks of MAD-Ridge were lower than 

the acoustic densities recorded within the cyclonic eddy and over the Madagascar shelf. 

However, the acoustic densities surrounding MAD-Ridge’s summit and flanks were greater 

than those recorded in the vicinity of the summit and flanks of La Pérouse. Although there were 

clear mechanisms leading to enhanced productivity within the cyclonic eddy and over the 

Madagascar shelf, the local physical and biological dynamics over La Pérouse and MAD-Ridge 

seamounts were less straightforward. No clear enhancement in micronekton acoustic densities 

was observed over MAD-Ridge compared with the surrounding vicinity (within 14 nmi of the 

summit) at the time of the cruises (Annasawmy et al., 2019). 

In the literature, Taylor columns that form over seamounts are often seen as physical processes 

that are capable of enhancing productivity and isolating the seamount waters from the large-

scale environment (Genin & Boehlert, 1985; Dower et al., 1992; Genin, 2004). The Q, Ro and 

Bl values were above the threshold set in literature (Chapman & Haidvogel,1992; White et al., 

2007), at both La Pérouse and MAD-Ridge during the cruises. The mesoscale eddy activity in 

the MAD-Ridge area may have dominated any potential seamount effect. The summit of MAD-

Ridge during most of the cruise was under the influence of the anticyclonic eddy and current 

speeds exceeded 0.5 m s-1, thus making the formation of a Taylor column very unlikely. The 

MAD-Ridge’s seamount shape may also not be favourable to the formation of such features 

because the threshold set for α values in theoretical calculations was exceeded. Additionally, 

because of the presence of the anticyclonic eddy feature over MAD-Ridge’s summit, there was 

a downward deflection of isotherms between the surface and ~200 m, instead of an uplifting as 

seen across other studies (Genin & Boehlert 1985; Boehlert & Genin, 1987; Dower & Mackas, 

1996). MAD-Ridge is located in an “eddy corridor” to the south of Madagascar. Previous 

studies have found evidence of a westward drift of eddies at an estimated speed of 7.3 ± 1.7 

cm s-1 in the vicinity of the pinnacle, along 27°S and 45°E (Pollard & Read., 2017). 

Phytoplankton entrapment during several weeks would be needed to allow growth of 

zooplankton and to attract micronekton species (Genin & Boehlert 1985; Boehlert & Genin, 

1987; Dower et al., 1992). In such a dynamic system, strong currents may continuously sweep 

away phytoplankton cells from the summit. Phytoplankton retention mechanisms may not be 

sufficiently long to have a significant impact on higher trophic levels such as zooplankton and 
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micronekton, potentially explaining the lower micronekton acoustic densities recorded directly 

above MAD-Ridge’s summit during the cruise relative to the cyclonic eddy and shelf stations. 

La Pérouse’s pinnacle is believed to cause disruptions in the current velocities because flank 

stations (within 3 km of the summit) exhibited a larger diversity of current velocities and 

directions than control stations (10-21 km away) (Marsac et al., 2020). Over La Pérouse 

seamount, the formation of a Taylor column was very unlikely to have occurred because current 

speeds of 0.3 m s-1 and greater were recorded. The complex crescent shape of the seamount 

may not be favourable for the development of a steady anticyclonic circulation characteristic 

of Taylor columns. The La Pérouse wider region is under the influence of the anticyclonic 

circulation pattern of the ISSG province characterised by a deep thermocline, a halocline and 

a DCM at 100-150 m, with chlorophyll a concentrations <0.3 mg m-3 between the surface and 

200 m as observed in our study and in Jena et al. (2012, 2013). Overall mean acoustic densities 

of micronekton at the La Pérouse seamount were thus typical of those of the ISSG province 

both during day and night (Annasawmy et al., 2018). 

Common to both La Pérouse and MAD-Ridge seamounts is the presence of dense aggregations 

of scatterers (seen as “white patches” on RGB composite images, Fig. 3.4b and 3.7c-d) directly 

above the summits during day and night. A combination of trawls and acoustic data revealed 

these dense aggregations to consist of the myctophids Diaphus suborbitalis (both La Pérouse 

and MAD-Ridge), Benthosema fibulatum, Hygophum hygomii and the benthopelagic fish 

Cookeolus japonicus on MAD-Ridge’s summit and flanks (Annasawmy et al., 2019). 

Populations of D. suborbitalis have also been reported to be located between 500 and 600 m 

during the day along the flanks of the Equator seamount in the Indian Ocean, and to ascend to 

the summit of the seamount at dusk to feed on copepods (Gorelova & Prut’ko, 1985; Parin & 

Prut’ko, 1985; Porteiro & Sutton, 2007), while B. fibulatum has been found associated with the 

Hawaiian Cross seamount in the Pacific (De Forest & Drazen, 2009). Dense aggregations of 

scatterers were also observed above a ridge off the coast of Baja California and was thought to 

consist of the fish Sebastodes, anchovy and juvenile hake that prey on migrating zooplankton 

(Isaacs & Schwartzlose, 1965). Similar aggregations of scatterers were observed on the 

Southeast Hancock seamount in the central North Pacific, consisting of resident populations of 

the fish Maurolicus muelleri and the mysid Gnathophausia longispina (Boehlert et al., 1994). 

Time-series of acoustic transects showed these organisms to be concentrated on the seamount 

flanks at 400 m, before rising to the surface at dusk and streaming vertically downwards at 

dawn, with some scatterers remaining above the flanks at 170 m even during daylight. The 
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association of these fishes with seamounts may confer some selective advantages such as 

increased feeding opportunities (Wilson & Boehlert, 2004), increased habitat diversity (Wilson 

& Boehlert, 2004; Porteiro & Sutton, 2007), shelter areas for spawning, or decreased energy 

loss by using the seamount as a shelter during non-feeding intervals (Cascão et al., 2017). 

The maintenance of a population at a seamount also depends on local recruitment or advection 

of eggs and larvae from the shelf or neighbouring islands and seamounts (Boehlert et al., 1994; 

Diekmann et al., 2006). According to Harris et al. (2020), higher larval densities mostly of the 

families Myctophidae, Bregmacerotidae, Gonostomatidae and Molidae were recorded at 

MAD-Ridge’s summit. According to those authors, this observation points to some local 

spawning processes at the pinnacle. The MAD-Ridge seamount is close to shallow and deep 

topographic features and to the Madagascar shelf, features from which larvae might have been 

advected (Crochelet et al., 2020). The presence of a greater proportion of neritic species over 

the summit of MAD-Ridge seamount relative to La Pérouse seems to favour this hypothesis 

(Harris et al., 2020). The mesoscale activity on the Madagascar shelf and at MAD-Ridge may 

allow the periodic replenishment of advected larvae over the pinnacle (Harris et al., 2020; 

Crochelet et al., 2020), corresponding with enhanced micronekton acoustic densities compared 

to La Pérouse. 

 

3.5 Concluding Remarks 

This work has suggested a link between the physical processes leading to enhanced 

productivity and the biological response of micronekton. Two main processes were identified 

to have a positive effect on the observed productivity: 1) the influence of the cyclonic eddy 

through the enrichment of surface waters, 2) the advection of shelf waters with high chlorophyll 

a concentrations. La Pérouse and MAD-Ridge seamounts did not show any enhanced biomass 

of micronekton, as reported to be the case for other seamounts. However, despite the differing 

productivity levels at both seamounts, dense aggregations of scatterers were observed on the 

summits during day and night. This study has therefore suggested that seamount-associated 

species were the only seamount effect detected and that in a highly dynamic environment like 

south of Madagascar, mesoscale features have a stronger influence than seamounts on 

micronekton acoustic densities. 
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Inter-chapter I 

 

As seen in Chapter 2, seabirds breed at island states in the SWIO and regularly use seamounts 

or regions of enhanced productivity such as upwelling at continental shelves and within 

mesoscale eddies during their foraging trips. Tunas and swordfish may benefit from seamounts 

in the region for foraging, during their migrations and/or as navigational waypoints. These 

species also take advantage of mesoscale eddies for enhanced foraging opportunities. 

Humpback whales were further reported to use La Pérouse seamount during their breeding 

season. Different micronekton communities thus support a wide range of top predators in the 

SWIO. The spatial distribution of micronekton is not uniform across this region, which likely 

influences the foraging patterns of these predators. It is now well accepted that the spatial 

distribution of top predators is often associated with prey availability. 

Chapter 3 aimed at investigating which feature between two shallow seamounts, the 

Madagascar continental shelf and mesoscale eddies, would exhibit a greater density of 

available prey for top predators. Local dynamic processes caused by current-topography 

interactions such as Taylor columns and isopycnal domings could have contributed to the 

retention of plankton and aggregation of zooplankton and micronekton over the summits of La 

Pérouse and MAD-Ridge. However, these anticyclonic circulation cells are unlikely to occur 

at the seamounts. Both pinnacles recorded lower acoustic densities of micronekton relative to 

the cyclonic eddy observed during MAD-Ridge. The La Pérouse seamount is located on the 

outskirts of the ISSG province and is characterised by weaker mesoscale dynamics, deeper 

thermocline and lower maximum fluorescence, which are typical of oligotrophic marine 

systems. The MAD-Ridge seamount, on the other hand, is located along the Madagascar ridge 

in a region with high mesoscale activities. Productivity at the Madagascar shelf were associated 

with high micronekton acoustic densities. This productivity and micronekton larvae may 

further be entrained from the shelf to the MAD-Ridge pinnacle by the action of mesoscale 

eddies. These physical processes may be responsible for the higher acoustic densities recorded 

at MAD-Ridge relative to La Pérouse. 

The micronekton acoustic densities were also not uniform within mesoscale features, with the 

cyclonic eddy showing greater acoustic estimates relative to the anticyclone encountered 

during the MAD-Ridge cruise. The shallower depth of the maximum fluorescence, lower 

temperature values, higher chlorophyll a concentrations in the euphotic zone (as seen in 
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Chapter 3), enriched picoplankton and nanoplankton carbon biomass and greater zooplankton 

biovolumes (as seen in Chapter 2), may have contributed to this increase in micronekton 

backscatter intensities within the cyclone. The different micronekton communities may hence 

be able to respond to physical environmental cues and aggregate in areas with greater 

productivity and zooplankton prey availability. While the La Pérouse and MAD-Ridge 

seamounts did not show enhanced acoustic densities of micronekton on their summits and 

flanks relative to their surroundings, dense aggregations were recorded over their summits. 

Some organisms may hence preferentially associate with the summits of these pinnacles during 

day and night. 

Acoustics is a powerful tool that can be used to estimate the biomass of mesopelagic organisms 

throughout whole cruise transects. However, the species composition cannot be accurately 

determined based solely on acoustic techniques. Chapter 4 will hence investigate the 

composition of the micronekton communities using a combination of trawl data and a multi-

frequency acoustic visualisation technique. The composition of the dense aggregations of 

scatterers observed over the summit of the pinnacles in Chapter 3 will be determined. Chapter 

3 has also shown that some micronekton communities swim vertically to the surface at dusk 

and to deeper layers at dawn. However, the different species within the micronekton may 

exhibit different migration strategies than just DVM. The seamounts may further influence 

organisms in their migration patterns and this will be investigated in Chapter 4.



 

116 

Chapter 4: Micronekton distributions and assemblages at two shallow 

seamounts of the south-western Indian Ocean 

 

 

 

 

 

 

 

 

 

From left to right: Argyropelecus aculeatus (MAD-Ridge cruise) and 

Acanthuridae (La Pérouse cruise), identified during the 2017 Taxonomy 

Workshop organised at the Department of Biological Sciences, UCT. 

 

 
Photo Credit: Ukarapo T. Mungunda (Honours in Marine Biology, UCT) 

Photo title: The Beauty and the Beast 

Digital Imaging Techniques: Nikon Stereoscopic Zoom Microscope SMZ1500 

with a ring light and fibre optic arms, at 0.75 X Magnification. The Nikon DS 

Camera Control Unit DS-U2 & DS-5M Camera head and NIS-Elements 

imaging program was used. 
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Abstract 

Micronekton distributions and assemblages were investigated at two shallow seamounts of the 

south-western Indian Ocean (SWIO) using a combination of trawl data and a multi-frequency 

acoustic visualisation technique. La Pérouse seamount (summit depth ~60 m) is located on the 

outskirts of the oligotrophic Indian South Subtropical Gyre (ISSG) province with weak 

mesoscale activities and low primary productivity all year round. The “MAD-Ridge” seamount 

(thus termed in this study; ~240 m) is located in the productive East African Coastal (EAFR) 

province with high mesoscale activities to the south of Madagascar. Higher micronekton 

species richness was recorded at MAD-Ridge compared to La Pérouse. Resulting productivity 

at MAD-Ridge seamount was likely due to the action of mesoscale eddies advecting 

productivity and larvae from the Madagascar shelf rather than local dynamic processes such as 

Taylor column formation. Mean micronekton abundance/biomass, as estimated from 

mesopelagic trawl catches, were lower over the summit compared to the vicinity of the 

seamounts, due to net selectivity and catchability and depth gradient on micronekton 

assemblages. Mean acoustic densities in the night shallow scattering layer (SSL: 10-200 m) 

over the summit were not significantly different compared to the vicinity (within 14 nautical 

miles) of MAD-Ridge. At La Pérouse and MAD-Ridge, the night and day SSL were dominated 

by common diel vertically migrant and non-migrant micronekton species respectively. While 

seamount-associated mesopelagic fishes such as Diaphus suborbitalis (La Pérouse and MAD-

Ridge) and Benthosema fibulatum performed diel vertical migrations (DVM) along the 

seamounts’ flanks, seamount-resident benthopelagic fishes, including Cookeolus japonicus 

(MAD-Ridge), were aggregated over MAD-Ridge summit. Before sunrise, mid-water migrants 

initiated their vertical migration from the intermediate to the deep scattering layer (DSL, La 

Pérouse: 500-650 m; MAD-Ridge: 400-700 m) or deeper. During sunrise, the other taxa 

contributing to the night SSL exhibited a series of vertical migration events from the surface to 

the DSL or deeper until all migrants have reached the DSL before daytime. Possible 

mechanisms leading to the observed patterns in micronekton vertical and horizontal 

distributions are discussed. This thesis contributes to a better understanding of how seamounts 

influence the DVM, horizontal distribution and community composition of micronekton and 

seamount-associated/resident species at two poorly studied shallow topographic features in the 

south-western Indian Ocean. 

Keywords: micronekton, seamount, south-western Indian Ocean, acoustics, seamount-

associated fauna 
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4.1 Introduction 

Seamounts are ubiquitous underwater topographic features, usually of volcanic origin, which 

rise steeply through the water column from abyssal depths. They exhibit various shapes 

(conical, circular, elliptical or elongated) with the summit reaching various depths below the 

sea surface. Shallow seamounts are those reaching into the euphotic zone. As topographic 

obstacles, seamounts may influence prevailing ocean currents by disrupting the oceanic flow 

and causing spatial and temporal variability in the current field (Royer, 1978; White et al., 

2007). The combined interaction of various seamount characteristics, stratification and oceanic 

flow conditions may provide local dynamic responses at seamounts such as formation of a 

Taylor Column or Cone, isopycnal doming (Mohn & Beckmann, 2002), enclosed circulation 

cells and enhanced vertical mixing (White et al., 2007). The aforementioned physical processes 

may cause various responses over seamounts, notably, upwelling and vertical mixing of 

nutrient-rich waters from deeper to shallower layers and enhanced productivity (Boehlert & 

Genin, 1987; Genin, 2004). The enclosed, semi-enclosed circulation pattern around seamounts 

may also be important retention mechanisms for drifting organisms produced over, or advected 

from the far field into the vicinity of the pinnacle (White et al., 2007). 

Seamounts are important for fisheries around the world since they aggregate large pelagic 

organisms of commercial value such as tunas (Fonteneau, 1991; Holland & Grubbs, 2007; 

Dubroca et al., 2013), alfonsinos and orange roughy (Ingole & Koslow, 2005; Bensch et al., 

2009). In the SWIO, seamount-associated fisheries gradually developed since the early 1970s, 

targeting various species, including alfonsinos (Beryx sp.), rubyfish (Plagiogeneion 

rubiginosus), cardinalfish (Epigonus sp.), pelagic armourhead (Pentaceros richardsoni), 

rudderfish (Centrolophus niger), bluenose (Hyperoglyphe antarctica), and later expanded to 

orange roughy (Hoplostethus atlanticus) and oreos (Oreosomatidae) throughout ridge systems 

of the southern Indian Ocean including Walters Shoal and deeper areas such as Madagascar 

and Mozambique ridges (Collette & Parin, 1991; Romanov, 2003; Clark et al., 2007; Parin et 

al., 2008; Rogers et al., 2017). Tunas are subjected to fishing pressures at the Travin Bank, also 

known as the “Coco de Mer” (Indian Ocean), since its discovery in the late 1970s (Marsac et 

al., 2014). Several hypotheses have been proposed to explain the high densities of marine 

megafauna associated with seamounts. La Pérouse seamount may present favourable breeding 

habitats for humpback whales (Dulau et al., 2017). Seamounts may provide navigation aids in 

fish movements and tunas may gather around these features to enhance the encounter rate with 

other con-specifics (Fréon & Dagorn, 2000) or they may be attracted by aggregations of prey 
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(Holland & Grubbs, 2007; Morato et al., 2008). Organisms inhabiting the mesopelagic zone, 

the micronekton, represent an important forage fauna for top predators (Guinet et al., 1996; 

Cherel et al., 2010; Danckwerts et al., 2014; Jaquemet et al., 2014; Potier et al., 2004, 2007, 

2014). 

Micronekton can be divided into the broad taxonomic groups- crustaceans, cephalopods and 

mesopelagic fishes (Brodeur & Yamamura, 2005; De Forest & Drazen, 2009). They typically 

range in size from 2 to 20 cm. Gelatinous organisms are under-represented components of the 

mesopelagic community, with only few authors (Lehodey et al., 2010; Kloser et al., 2016) 

including these organisms in the micronekton group. Micronekton form dense sound-scattering 

layers since some of them reflect sound in the water, due to their swimbladders, hard shells and 

gas inclusions (Simmonds & MacLennan, 2005; Kloser et al., 2009). Different scatterers are 

expected to have different relative frequency responses (Benoit-Bird & Lawson, 2016). While 

organisms with gas-filled structures such as epi-mesopelagic fishes with gas-filled 

swimbladders and gelatinous organisms with pneumatophores dominate the 38 kHz frequency 

(Porteiro & Sutton, 2007; Kloser et al., 2002, 2009; 2016; Davison et al., 2015; Cascão et al., 

2017; Proud et al., 2018), large crustaceans, small copepods, squids and non-gas bearing fishes 

are relatively weak scatterers at this frequency (Cascão et al., 2017; Proud et al., 2018). 

Euphausiid shrimps are better targets at 70 kHz (Furusawa et al., 1994; Simmonds & 

MacLennan, 2005). Smaller plankton are stronger targets at 120 kHz compared to the 38 kHz 

and is a commonly used feature for separating plankton and fish marks on echograms 

(Simmonds & MacLennan, 2005). 

Some micronekton taxa undergo diel vertical migration (DVM) from deep to shallower layers 

(upper 200 m) at dusk and from shallow to deeper layers (below 400 m) at dawn (Lebourges-

Dhaussy et al., 2000; Béhagle et al., 2014; Annasawmy et al., 2018). Other taxa were shown to 

exhibit delayed migration (Watanabe et al., 2002), reverse migration (Alverson, 1961; 

Gjosaeter, 1978, 1984; Marchal & Lebourges-Dhaussy, 1996; Lebourges-Dhaussy, 2000), 

mid-water migration or non-migration (Annasawmy et al., 2018). It is thought that the 

spatial/horizontal distribution of micronekton communities is also not uniform across the 

Atlantic (Judkins & Haedrich, 2018) and SWIO (Annasawmy et al., 2018). Various physical 

processes such as mesoscale eddies, proximity to continental shelves and landmasses, and 

seamounts may influence the distribution of micronekton. Seamounts, by introducing 

irregularities into the pelagic environment, such as a hard substrate, disrupted current flows, 

increased primary productivity, entrapment of plankton, and presence of benthic predators, are 
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thought to influence the abundance, biomass, diversity and taxonomic composition of 

micronekton (Genin 2004; Wilson & Boehlert, 2004; De Forest & Drazen, 2009). 

Although seamounts in other ocean basins are hypothesized to have a general influence on 

mesopelagic communities (De Forest & Drazen, 2009; Tracey et al., 2012), little is known 

about the micronekton dynamics at La Pérouse and MAD-Ridge seamounts, two shallow 

topographic features of the SWIO. La Pérouse is located 90 nautical miles (nmi) to the North 

West of Réunion Island (Fig. 4.1a), on the outskirts of the oligotrophic ISSG province 

(Longhurst, 2007). The summit depth is ~60 m below the sea surface and is 10 km long with 

narrow and steep flanks. MAD-Ridge seamount (thus termed in this study) is located along the 

Madagascar Ridge, 130 nmi to the south of Madagascar (Fig. 4.1b). The summit depth is ~240 

m below the surface and is 33 km long (north to south) and 22 km wide (east to west). MAD-

Ridge is located within an “eddy-corridor” along the Fort Dauphin upwelling area and is 

frequently crossed by mesoscale eddies spinning off the South East Madagascar Current 

(Pollard & Read, 2015; Vianello et al., 2020). These eddies may become trapped over the 

seamount and have an influence on the assemblages and DVM patterns of micronekton 

communities. 

The main objectives of this study are to investigate (1) the prevailing environmental conditions 

at La Pérouse and MAD-Ridge seamounts using satellite data, (2) the vertical and horizontal 

distributions of the scattering layers at MAD-Ridge using acoustic data, (3) the micronekton 

assemblages at La Pérouse and MAD-Ridge using trawl data, and (4) whether La Pérouse and 

MAD-Ridge summits aggregate higher biomasses/densities of micronekton compared to the 

immediate vicinity of the seamounts, using acoustic and trawl data. 

 

4.2 Methods 

4.2.1 Study area and scientific cruises 

La Pérouse cruise (DOI: 10.17600/16004500) was carried at latitude 19°43’S and longitude 

54°10’E on board the RV Antea from the 15th to the 30th of September 2016, departing 

from/returning to Réunion Island (Fig. 4.1a). MAD-Ridge cruise (DOI: 10.17600/16004800 

and 10.17600/16004900) was divided into two legs: Leg 1 from Réunion Island to Fort 

Dauphin (Madagascar) from 8 to 24 November 2016, and Leg 2 from Fort Dauphin 

(Madagascar) to Durban (South Africa) from 26 November to 14 December 2016. MAD-Ridge 
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seamount (latitude 27°28.38’S and longitude 46°15.67’E), was sampled for acoustics and 

trawling during Leg 2 of this cruise on board the RV Antea (Fig. 4.1b). 

 

Figure 4.1 Map of the (a) La Pérouse trawl stations numbered 1 to 10, (b) MAD-Ridge trawl 
stations numbered 1 to 17 plotted on the bathymetry (m). The colour bar indicates depth below 
the sea surface (m). ISSG and EAFR refer to Longhurst’s (1998) biogeochemical provinces. 

“Trawl MZC” refers to Trawl #21 carried in the Mozambique Channel. 
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4.2.2 Satellite monitoring of La Pérouse and MAD-Ridge seamounts 

Delayed-time mean sea level anomalies (MSLAs) at a daily and 1/4° resolution, produced and 

distributed by the Copernicus Marine Environment Monitoring Service project (CMEMS) and 

available at http://marine.copernicus.eu/, were used to describe the mesoscale eddy field at the 

time of La Pérouse and MAD-Ridge cruises. Sea surface chlorophyll (SSC) data, with a daily 

and 4.5 km resolution was downloaded from the MODIS sensor 

(http://oceancolor.gsfc.nasa.gov) and was used to calculate 5-day averages to obtain a proxy of 

surface oceanic primary production. Monthly mean chlorophyll a concentrations for the 

defined regions (La Pérouse: 18.5°-20°S/53°-55°E; MAD-Ridge: 27°-28°S/44°-48°E; Fig. 

4.2c) were averaged from January to December 2016 to investigate the annual variability in 

chlorophyll a concentration/productivity. 

4.2.3 Acoustic surveys 

Acoustic surveys were carried out with a Simrad EK60 echosounder operating at four 

frequencies during both cruises: 38 kHz (750 m of acquired range), 70 kHz (500 m), 120 kHz 

(250 m) and 200 kHz (150 m). The transducers were calibrated prior to the cruises following 

the procedures recommended in Foote et al. (1987). The pulse duration was set at 0.512 ms and 

the transmitted power at 1000 W (38 kHz), 750 W (70 kHz), 200 W (120 kHz) and 90 W (200 

kHz) during data acquisition periods. The water column was correctly sampled to a depth of 

750 m during data acquisition for the 38 kHz frequency. La Pérouse acoustic data were 

intermittently recorded during transits and few mesopelagic trawl stations. The acoustic 

transects during MAD-Ridge transit periods were petal-shaped (Petals I-VII, see Fig. 4.3a), 

starting from the seamount summit either at sunset between 3:48 pm and 4:10 pm Universal 

Time (Petals I-II) or at night between 6:13 pm and 7:20 pm (Petals III-VII) until the next 

morning between 05:38 am and 06:29 am (see Fig. 4.3b-h). 

Acoustic data were processed with the Matecho software (an open source IRD tool computed 

with MATLAB 7.11.0.184, Release 2010b- and based on the Ifremer’s Movies3D software; 

Trenkel et al., 2009; Perrot et al., 2018). Acoustic data sampled during transit (~8-9 knots) and 

trawl stations (~2-3 knots) were processed and echo-integrated separately, with different 

parameters to account for the differing ship speed. Transient (multiple pings) and background 

noises, bottom echoes and attenuated signals were removed using the algorithms designed by 

De Robertis & Higginbottom (2007) and Ryan et al. (2015). The first 10 m below the sea 

surface was removed to account for the presence and over amplification of the signal due to 

surface bubbles. Echo-integrations of acoustic data were performed on 1-m layers at a threshold 



Chapter 4: Micronekton distributions and assemblages 

124 

of -80 dB to exclude scatterers not representative of the micronekton community (Béhagle et 

al., 2017). The echo-integration cell size was fixed at 0.1 nmi during transit periods and at 10 

pings during trawl stations. The volume backscattering strength (Sv, dB re 1 m-1, MacLennan 

et al., 2002) was calculated to obtain the relative acoustic densities of scatterers per unit 

volume. The water column was separated into three depth categories, based on epi-mesopelagic 

layers: surface/shallow (10-200 m), intermediate (200-400 m) and deep (400-750 m). 

Red Green Blue (RGB) composite images were generated in MATLAB (version 2016), based 

on the 38, 70 and 120 kHz MAD-Ridge echo-integrated acoustic data. This acoustic 

visualisation technique is useful in determining the relative contribution of each frequency to 

the overall backscatter, in identifying the different scattering layers and dense micronekton 

aggregations. It is used to enhance and colour-code sample volumes with similar acoustic 

features. The 38, 70 and 120 kHz echo-integrated acoustic data were given in red, green and 

blue colour codes respectively on each RGB plot, with the dynamic of the Sv values for each 

frequency being converted in 256 levels of each colour. A linear transformation of the 

backscatter was applied for each frequency: 

Colour index (fr) [0 to 255] = [255/ (High scale threshold – Low scale threshold)] x [Sv (fr) – 

Low scale threshold], whereby the high scale threshold is the maximum backscatter for hue 

visualisation, the low scale threshold is the minimum backscatter for hue visualisation and Sv 

(fr) is the backscatter value at frequency (fr) which can be the 38 kHz/70 kHz/120 kHz 

frequency. 

In the resulting RGB composite, the “hue” gives the frequency with the highest backscatter. 

On an RGB composite image based on the 38, 70 and 120 kHz echo-integrated acoustic data 

and given in red, green and blue colour codes respectively, a dark red colour indicates a 

dominant but low 38 kHz backscatter, whereas a light red colour indicates a dominant and high 

38 kHz backscatter. The same rule applies to the blue (120 kHz) and green (70 kHz) hues. A 

black dominating hue on the RGB plot indicates that all backscatter values are under the low 

scale threshold of -80 dB. 

4.2.4 Net sampling 

Ten epi-mesopelagic tows were performed at La Pérouse and 17 tows at MAD-Ridge (Fig. 4.1a 

and 5.1b). Trawl MZC (#21) was carried in the Mozambique Channel (Fig. 4.1) and will be 

used as reference for open-water trawls compared to trawls 1-17 carried at MAD-Ridge 

seamount. A 40m long International Young Gadoid Pelagic Trawl (IYGPT) was used, having 
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an 80 mm knotless nylon delta mesh netting at the front tapering and 5 mm at the codend and 

a mouth opening of ~96 m2. The trawl was towed at a ship speed of 2-3 knots at the targeted 

depth for 60 min during La Pérouse cruise and 30 min during MAD-Ridge cruise. During both 

cruises, the sampling depth was that of the sound scattering layer in that ship position and at 

that time of day, with no rigid plan of sampling preselected depths. Trawl depth was monitored 

with a Scanmar depth sensor during both cruises. The total volume of water filtered by the net 

tows was calculated by multiplying the distance travelled during the tows by the area of the 

trawl mouth opening to account for the differing sampling durations during the cruises. The 

total volume of water filtered during La Pérouse ranged from 379 408 m3 to 871 181 m3, and 

from 154 086 m3 to 312 321 m3 during MAD-Ridge. Trawl stations were further classified into 

the categories- summit, flank and vicinity, according to whether they occurred on the summit 

plateaus of the seamounts, on the slopes (carried out within 2 km from the baseline), or within 

the vicinity of the seamounts (i.e. any trawl not carried out on the summit and flanks) (as in 

Marsac et al., 2020). 

The mesopelagic organisms collected during both cruises were sorted on board, divided into 

four broad categories: gelatinous organisms, crustaceans, cephalopods and fishes. The wet 

mass (WM) in grams was recorded for each category. Total length of selected gelatinous 

organisms, abdomen and carapace length of selected crustaceans, dorsal mantle length of 

selected cephalopods and standard length of selected fishes were measured. The micronekton 

components were counted and identified to the lowest possible taxon on board and also onshore 

from frozen samples preserved at -20°C. The total micronekton abundance estimates were 

calculated by dividing the total number of individuals per trawl by the volume of water filtered 

and multiplying by the average thickness of the day/night backscattering layer (100 m) and 

expressed as abundance within the backscattering layer (ind. m-2) (as in Kwong et al., 2018). 

Similarly, the total biomass of organisms collected per trawl (g WM m-2) was calculated by 

dividing the total wet mass (WM g) of micronekton broad categories per trawl by the volume 

of water filtered and multiplying by the average thickness of the day/night backscattering layer 

(100 m). The habitat ranges of available micronekton taxa were obtained from literature 

(Clarke & Lu, 1975; Pearcy et al., 1977; Smith & Heemstra, 1986; van der Spoel & Bleeker, 

1991; Brodeur & Yamamura, 2005; Davison et al., 2015; Romero-Romero et al., 2019). 

Organisms were classified as being epipelagic (<200 m), mesopelagic (from 200 to 1000 m), 

bathypelagic (below 1000 m to ~100 m from the seafloor) and benthopelagic (living near the 

bottom) according to definitions of the vertical zonation of the pelagic ocean from Del Giorgio 
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& Duarte (2002) and Sutton (2013). Detailed fish species size distributions and compositions 

from both La Pérouse and MAD-Ridge cruises are described in Cherel et al. (2020). 

4.2.5 Data visualisation and statistical analyses 

La Pérouse and MAD-Ridge seamount bathymetry data were acquired with the 12 kHz 

frequency of a Simrad EA 500 echosounder. The bathymetry data were interpolated on a 

regular grid using the software Surfer version 10.3.705. Wilcoxon rank sum tests were 

performed to investigate the differences in mesopelagic trawl abundance and biomass estimates 

between La Pérouse and MAD-Ridge, and the mean acoustic densities over the summit and 

vicinity of MAD-Ridge. 

Micronekton species richness was calculated using R (3.3.1) vegan package (version 2.5-1, 

Oksanen et al., 2018). The PRIMER v6 software was used to perform multivariate analyses 

according to Clarke & Warwick (2001) on La Pérouse and MAD-Ridge micronekton 

abundance datasets to test for the effects of depth (shallow, deep or intermediate), trawl 

location (vicinity, flank or summit) and time of day (day or night) on micronekton abundance 

and to identify the shallow-dwelling/deep-dwelling and seamount-associated/resident fauna. 

The fourth root transformation was used on species abundance data to down-weight strongly 

abundant species, thus allowing rare species to exert some influence on the similarity 

calculation (Clarke & Warwick, 2001). Resemblance matrices were created from the Bray-

Curtis measure of similarity and were used to run the SIMPROF (similarity profile) 

permutation testing to identify statistically significant cluster of samples. Non-metric 

dimensional scaling (MDS) were used to produce 2-dimensional ordination of samples 

according to the selected grouping variables Depth category, Trawl location and Time of day. 

Bubble plots were overlaid on the MDS ordination diagrams to represent the relative abundance 

of the selected species per trawl station (plotted at the bubble centres). The larger the bubble, 

the greater the mean number of individuals were captured at that site. One-way ANOSIM 

(analysis of similarities) was calculated to test for significant differences in the micronekton 

community composition according to the factors Depth, Trawl location and Time of Day. The 

SIMPER (similarity percentages) analysis was carried out to identify the taxa contributing most 

to the similarities/dissimilarities within each resultant cluster group. 
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4.3 Results 

4.3.1 Prevailing environmental conditions at La Pérouse and MAD-Ridge 

seamounts 

During La Pérouse cruise in September 2016, the seamount was under the influence of a weak 

cyclonic eddy with a MSLA of ~-10 cm (Fig. 4.2a). The SLA ranged from -26 to 10 cm 

throughout the cruise. MAD-Ridge was under the influence of an eddy dipole with the 

anticyclonic feature being trapped on the seamount during the cruise in November 2016 (Fig. 

4.2b). The MSLA during MAD-Ridge Leg 1 was ~10 cm at the eddy periphery and ~40 cm 

within the core of the anticyclone. The annual primary productivity, derived from satellite 

observations, followed the same pattern in both regions of La Pérouse and MAD-Ridge 

seamounts, with maximum values reached in July, as a result of an intense mixing caused by 

the austral winter trade winds, and minimum values observed during austral summer (January-

March and November-December) (Fig. 4.2c). Both La Pérouse and MAD-Ridge cruises took 

place during a decreasing trend of oceanic productivity. Although, the annual mean chlorophyll 

a concentration depicted the same cycle at both seamounts, chlorophyll a concentrations at 

MAD-Ridge were twice higher than at La Pérouse all year round. 
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Figure 4.2 Averaged sea level anomaly (MSLA) map, with La Pérouse and MAD-Ridge 
seamounts shown as black star symbols, and dated (a) 16-28 September 2016, (b) 14-23 
November 2016. The colour bar indicates the SLA in cm, with positive SLA (red) and negative 
SLA (blue). (c) Averaged satellite image of surface chlorophyll a distribution from 18/09/2016 
to 07/12/2016. Monthly mean surface chlorophyll a values for the region defined by the red 
squares are depicted from January to December 2016. The dates of La Pérouse and MAD-
Ridge cruises are marked by grey bars on the monthly mean plot. The colour bar indicates the 
surface chlorophyll a concentration in mg m-3. 
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4.3.2 Vertical and horizontal distributions of biological scatterers at MAD-Ridge 

The highest mean acoustic densities (Sv) of the 38 kHz frequency were observed at night in 

the surface layer (10-200 m) across all petals (I-VII) at MAD-Ridge (Fig. 4.3a-h). The mean 

acoustic densities in the surface layer showed a decreasing trend at sunrise and during daytime 

(Petals I to VII, Fig. 4.3b-h) while gradually increasing in the deep layer across petals II to VI 

(Fig. 4.3c-g). The intermediate layer showed the lowest acoustic densities compared to the 

surface and deep layers, although a peak can be observed during sunrise when organisms 

vertically migrated towards deeper layers. A peak in daytime acoustic densities in the deep 

layer can be observed across petals II and IV (Fig. 4.3c and 4.3e), that can be attributed to an 

intensification of the backscatter over the seamount flanks (Fig. 4.4a, b and c).
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Figure 4.3(a) Petal-shaped acoustic transects I to VII carried at MAD-Ridge, starting at sunset/night (red/blue) at the summit (star symbol) and 
ending during the day (yellow) at the summit. Arrows give an example of change in ship direction. The Madagascar land mass is shown in grey. 
(b-h) Biomass density (Sv, dB re 1 m-1) estimates for the 38 kHz frequency in the surface (10-200 m, red), intermediate (200-400 m, grey), deep 
layers (400-750 m, black), and total water column (yellow) for Petals I-VII. The time of day is denoted by coloured rectangles and black 
arrowheads denote the change in ship direction. The position of MAD-Ridge seamount is denoted by grey rectangles on plots c-h. 
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Echograms of the 38 kHz frequency showed organisms migrating from below 400 m (deep) to 

above 200 m (surface) at dusk across Petal II (Fig. 4.4a). Biological scatterers were also shown 

to perform a series of DVM events from the intermediate/surface layers to deeper layers before 

sunrise and during sunrise, reaching the DSL before daytime (Fig. 4.4a, b and c). Across petals 

IV, an increase in the mean acoustic densities in the daytime DSL can be observed (Fig. 4.3e), 

indicating a likely downward migratory trend of the biological scatterers to deeper layers and 

preferential association of some micronekton taxa with the flanks of MAD-Ridge seamount 

(Fig. 4.4c). A dense SSL between ~10-200 m and a DSL between ~400-700 m were observed 

throughout the night during MAD-Ridge cruise (Fig. 4.4a, b and c). After vertical migration of 

scatterers to deeper depths at dawn, the day SSL became less dense (compared to the night 

SSL) and persisted in the top 100 m of the water column. Biological scatterers were associated 

with MAD-Ridge seamount summit and flanks both during night-time and daytime. 
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Figure 4.4 Echograms of the 38 kHz frequency during (a) Petal II at sunset, night, sunrise and 
daytime denoted by red, blue, violet and gold coloured rectangles respectively, (b) Petal III, 
and (c) Petal IV. Diel vertical migraton (DVM) at dusk is denoted for Petal II. Circular dotted 
lines denote the series of DVM events from the intermediate layer and from the SSL. The night 
SSL and day SSL are denoted by solid and dotted rectangles respectively. The DSL is denoted 
by solid rectangles. Backscatter from seamount-associated species are also noted. The colour 
bar indicates Sv in dB re 1 m-1. 
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To investigate the influence of MAD-Ridge summit, the mean night-time acoustic densities of 

the 38 kHz frequency between 10 and 250 m over the summit and at the seamount vicinity 

(within 14 nmi from the summit) were investigated along petals III-VII (Fig. 4.5a, b and c). 

Petals I and II were discarded since these transects were incomplete, not being carried from the 

summit. The mean acoustic densities in the top 250 m between the summit and vicinity of 

MAD-Ridge pinnacle were not statistically different (W=43610, p > 0.05). The highest 

acoustic responses to the 38 kHz frequency in the surface layer (10-250 m) at night can be 

observed across Petals IV and V, while Petal VI exhibited the lowest acoustic responses (Fig. 

4.5b). RGB composites of the 38, 70 and 120 kHz frequencies across petals III-VII showed 

distinct scattering layers in the top 150 m of the water column, with some scatterers being 

strong targets at the 38 kHz frequency and others at the 70 and 120 kHz frequencies (Fig. 4.5c). 

The peak in acoustic densities over the summit across petal IV (Fig. 4.5b) may be attributed to 

the relatively high Sv between ~150 and 250 m (i.e. below the night SSL). Patches of relatively 

high Sv (seen as “white patches”) can be observed on the seamount summit across petals IV, 

V and VII (Fig. 4.5c). 

 

Figure 4.5(a) Night-time acoustic transects III to VII from the MAD-Ridge seamount summit 
(star symbol) to 14 nmi from the summit. The Madagascar land mass is shown in grey. Arrow 
indicates ship direction. 
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Figure 4.5(b) Acoustic density (Sv, dB re 1 m-1) estimates for the 38 kHz frequency in the 
surface layer (10-250 m) at night, from the summit (grey bar) to 14 nmi away from the 
seamount (vicinity), for Petals III to VII. 
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Figure 4.5(c) RGB composites of Sv values (dB re 1 m-1) from 10-250 m for the selected acoustic transects III to VII, with the 38, 70 and 120 kHz 
frequencies given red, green and blue colour codes respectively. 
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4.3.3 Taxonomic composition of trawl catches 

At La Pérouse seamount, 144 taxa from 10 trawls representing 7, 13, 17 and 107 taxonomic 

groups of gelatinous organisms, crustaceans, cephalopods and epi-mesopelagic fishes, 

respectively, were collected. At MAD-Ridge, 146 taxa from 17 trawls, representing 5, 10, 17 

and 114 taxonomic groups of gelatinous organisms, crustaceans, cephalopods and epi-

mesopelagic fishes, respectively, were collected. Six individuals of the benthopelagic fish 

species, Cookeolus japonicus, were further collected at MAD-Ridge seamount summit (Fig. 

4.8d, 4.9b and 4.10c). MAD-Ridge and La Pérouse trawls caught 3, 9, 14 and 66 identical taxa 

of gelatinous organisms (jellyfish, salps and pyrosomes), crustaceans, cephalopods and epi-

mesopelagic fishes respectively. 

Micronekton abundance and biomass estimates were greater at MAD-Ridge compared to La 

Pérouse (Fig. 4.6a), however, values were not significantly different (Abundance:, W= 144.5, 

p > 0.05; Biomass: W=115, p > 0.05). Mean micronekton abundance and biomass estimates 

were lower over La Pérouse summit (0.004 ind m-2 and 0.006 g WM m-2) compared to the 

vicinity (0.12 ± 0.10 ind m-2 and 0.24 ± 0.20 g WM m-2). At MAD-Ridge, the summit also 

recorded lower abundance and biomass estimates (0.03 ind m-2 and 0.11 g WM m-2) compared 

to the vicinity (0.33 ± 0.43 ind m-2 and 0.46 ± 0.22 g WM m-2). The species richness was higher 

at MAD-Ridge (maximum species richness of 155) compared to La Pérouse (138), with the 

probability of encountering new or rare species with increasing fishing effort being higher at 

MAD-Ridge (Fig. 4.6b). The length distributions of organisms captured during both La Pérouse 

and MAD-Ridge were heavily skewed towards smaller sizes. Most of the mesopelagic 

organisms captured were less than 100 mm (Fig. 4.6c), except for a few larger nektonic squid 

such as Cranchiidae (339 mm- mantle length) and fish  Nemichthyidae (614mm- standard 

length) during La Pérouse, and one salp (207 mm- total length), squid Ommastrephes bartramii 

(490 mm- mantle length) and fish Nemichthyidae (446 mm) during MAD-Ridge. 
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Figure 4.6 At La Pérouse and MAD-Ridge seamounts, (a) boxplot of total abundance and 
biomass estimates (in ind m-2 and g WM-2 respectively), (b) species richness with increasing 
sampling effort (volume of water filtered in 1000 m3), (c) length distributions of selected 
gelatinous plankton, crustaceans, cephalopods and epi-mesopelagic fishes sampled. 
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Multivariate analysis of the taxa collected at La Pérouse seamount indicated that the sampling 

depth and trawl location were significant factors influencing micronekton community 

composition (ANOSIM, sampling depth: R= 0.38, p < 0.05; trawl location: R= 0.28, p < 0.05). 

However, there were no significant effect of the time of day probably due to the low daytime 

fishing effort (ANOSIM, R= 0.846, p > 0.05). The assemblages from the deep (400-600 m) 

and shallow (0-110m) depth categories were the most dissimilar (SIMPER, average 

dissimilarity= 68.9%), while those from the intermediate and deep categories were the least 

dissimilar (SIMPER, average dissimilarity= 58.1%). The assemblages from the vicinity and 

summit (SIMPER, average dissimilarity= 79.8%) and the flank and summit (SIMPER, average 

dissimilarity= 78.0%) were the most dissimilar, whereas those from the vicinity and flank were 

the least dissimilar (SIMPER, average dissimilarity= 59.3%). A main cluster at 42% similarity 

helped differentiate the night shallow, intermediate and deep tows carried at the flank and 

vicinity from the day trawl performed at the summit of La Pérouse (Fig. 4.7a). 

 

Figure 4.7(a) Similarity cluster dendrogram of species abundance at La Pérouse trawl stations 
1 to 10. Brackets represent cluster groups at 42% (Day shallow summit, Night deep flank, night 
shallow vicinity and flank; night intermediate vicinity and Night deep vicinity). 
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The day shallow trawl over La Pérouse summit sampled a greater percentage abundance and 

biomass of gelatinous organisms, crustaceans and fishes (Fig. 4.7b). Fishes and gelatinous 

organisms were abundantly caught and in greater biomass compared to the other broad 

categories over the seamount’s flanks in the deep layer at night. Gelatinous organisms were 

abundantly caught at all depth categories over the seamount summit, flanks and vicinity. 

Cephalopods were caught most abundantly and in greater biomass during the night shallow 

trawls compared to the night deep, intermediate and day shallow trawls (Fig. 4.7b and 4.9a).
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Figure 4.7(b) Schematic diagram of La Pérouse seamount. Pie charts represent the abundance and biomass of gelatinous organisms in blue, 
crustaceans in orange, cephalopods in violet and fishes in yellow, within the cluster groups.
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Crustaceans were caught in all trawls at La Pérouse seamount (Fig. 4.7b) except the meso-

bathypelagic crustacean Pasiphaea spp. and Neognathophausia that were caught in night deep 

and intermediate trawls only within the vicinity of the seamount as shown by bubble plot 

overlays of the MDS ordination (Fig. 4.7c). The sternoptychid Argyropelecus aculeatus and 

Argyropelecus hemigymnus were absent from the shallow trawls and were caught either in the 

intermediate and/or deep trawls at La Pérouse flanks and vicinity (Fig. 4.7c and 4.9a). The 

myctophid fish Diaphus suborbitalis was caught in high numbers, both in shallow and deep 

layers, on the flanks of La Pérouse seamount at night and were absent from tows conducted 

within the vicinity of the pinnacle (Fig. 4.7d). La Pérouse flanks also hosted four individuals 

of the sternoptychid Argyripnus hulleyi in the deep layer at night (Fig. 4.7d and 4.9a), which is 

the second record in literature of this species in the region (Cherel et al., 2020). 
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Figure 4.7 Bubble plot overlays of the MDS ordination representing the relative abundance of common (c) deep dwelling, (d) and seamount flank 
associated species. Trawl stations are numbered 1 to 10 on the bubble plots and dotted lines denote the 42% similarity clusters. The larger the 
bubble, the greater the number of individuals captured at that trawl station. 
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At MAD-Ridge, sampling depth, time of day and trawl location were significant factors 

influencing the micronekton community composition as shown by multivariate analyses of the 

micronekton taxa and species abundance data (Effect of sampling depth: ANOSIM, R= 0.35, 

p < 0.05; Effect of time of day: ANOSIM, R=0.37, p < 0.05; Effect of trawl location: ANOSIM, 

R=0.21, p < 0.05). A main cluster at 35% similarity confirmed a depth gradient in community 

composition in shallow and deep layers (Fig. 4.8a). Clusters at 30% similarity helped 

differentiate samples collected during night shallow tows at the seamount summit and flanks 

from all other tows carried out during the cruise. The assemblages from the deep (440-550 m) 

and shallow (0-210 m) depth categories were the most dissimilar (SIMPER, average 

dissimilarity= 69.9%; ANOSIM, R= 0.48, p < 0.05), whereas those from the intermediate and 

deep categories were the least dissimilar (SIMPER, average dissimilarity= 50.8%; ANOSIM, 

R=-0.33, R = -0.33, p > 0.05). 

 

Figure 4.8(a) Similarity cluster dendrogram of species abundance at MAD-Ridge trawl 
stations 1 to 17. Brackets represent cluster groups at 35% (Night shallow, vicinity and flank; 
Day deep, vicinity and flank); and 30% similarities (Night shallow, summit and flank). 

 

The majority of crustacean species were caught across all trawls (Fig. 4.8b), except Pasiphaea 

spp. caught in night deep trawls only (Fig. 4.9b). Cephalopods were caught most abundantly 
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and in greater biomasses in the shallow trawls compared to the intermediate and deep trawls 

(Fig. 4.8b and 4.9b). Gelatinous organisms and fishes were abundantly caught across all trawls 

in the shallow, intermediate and deep layers and at MAD-Ridge seamount summit, flanks and 

vicinity (Fig. 4.8b). Juveniles of the reef-associated epipelagic fish Acanthuridae was 

abundantly caught in night shallow trawls in the vicinity of MAD-Ridge seamount and not in 

the deep trawls (Fig. 4.8c and 4.9b). The vertical migrant Ceratoscopelus warmingii 

(Myctophidae) was abundantly caught in the shallow, intermediate and deep layers at the flanks 

and seamount vicinity (Fig. 4.8c and 4.9b). The fish Cyclothone sp. (Gonostomatidae) and A. 

aculeatus (Sternoptychidae) were absent from the shallow trawls during MAD-Ridge cruise 

(Fig. 4.8d and 4.9b). MAD-Ridge seamount attracted the mesopelagic fishes D. suborbitalis, 

Neoscopelus macrolepidotus, Benthosema fibulatum and Diaphus knappi (Fig. 4.8e). The 

summit also consisted of the apparently settled population of the benthopelagic C. japonicus 

as shown by bubble plot overlays of the MDS ordination (Fig. 4.8e).
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Figure 4.8(b) Schematic diagram of MAD-Ridge seamount. Pie charts represent the abundance and biomass of gelatinous organisms in blue, 
crustaceans in orange, cephalopods in violet and fishes in yellow, within the cluster groups. 
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Figure 4.8 Bubble plot overlays of the MDS ordination representing the relative abundance of 
common (c) shallow-dwelling and vertical migratory fish species, (d) deep-dwelling, (e) and 
seamount summit and flank associated fish species. Trawl stations are numbered 1 to 17 on the 
bubble plots and dotted lines denote the 35% and 30% similarity clusters. The larger the 
bubble, the greater the number of individuals captured at that trawl station. 
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4.3.4 Micronekton community compositions and acoustic backscatter intensities 

At La Pérouse seamount, the gelatinous organisms- salps and pyrosomes, unidentified shrimps, 

phyllosoma larvae, the squid Abraliopsis sp., leptocephali and the fish C. warmingii were 

caught across almost all trawls in the night SSL and DSL over the flanks and vicinity of the 

pinnacle (Fig. 4.9a). At MAD-Ridge, pyrosomes, salps, phyllosoma larvae, Abraliopsis sp. and 

the squid Enoploteuthidae were caught across almost all trawls in the day and night SSL, DSL 

and intermediate layer over the summit, flanks and vicinity of the seamount (Fig. 4.9b). The 

myctophid fish Hygophum hygomii was abundantly caught over the summit, flanks and in the 

vicinity of MAD-Ridge (Fig. 4.9b). Since the IYGPT net had no closing device, shallow water 

species might have contributed to the catch in deeper trawls as the net was lowered and 

retrieved. 

The backscatter intensity within the day SSL between 10 and 100 m over La Pérouse summit 

was lower compared to MAD-Ridge summit (Fig. 4.9a and b). Over La Pérouse summit, the 

day SSL consisted of a greater percentage abundance and biomass of gelatinous organisms 

including various types of jellyfishes, salps, and the siphonophore Diphyidae along with three 

leptocephali and one juvenile Chaetodon (Fig. 4.9a). The night SSL during La Pérouse cruise 

extended from the surface to 200 m. Over La Pérouse flanks, the night SSL consisted of high 

numbers of the unidentified crustaceans and the meso-bathypelagic squid Abraliopsis sp. and 

lower numbers of the cephalopods Cranchiidae, Oegopsida, Abralia sp., and Octopoda, and 

epi-, meso- and bathypelagic fishes of the Gonostomatidae, Malacosteidae, Myctophidae, 

Paralepididae and Synodontidae families. The night SSL in the vicinity of La Pérouse included 

similar specimens as those sampled over the flanks, such as pyrosomes, jellyfishes, salps, 

unidentified shrimps, phyllosoma larvae, Abraliopsis sp., Cranchiidae, and Octopoda, and 

various types of fishes of the Myctophidae family. 
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Figure 4.9(a) Schematics of La Pérouse seamount, listing the most dominant taxa (gelatinous organisms in blue, crustaceans in orange, 
cephalopods in violet and fishes in yellow), within the cluster groups. The numbers in brackets indicate the number of individuals caught. 
Organisms are classified as being epi (epipelagic), meso (mesopelagic), bathy (bathypelagic) and bentho (benthopelagic). Echograms of the 38 
kHz frequency at sunset, night, sunrise and daytime are denoted by red, blue, violet and gold coloured rectangles respectively. The series of DVM 
events from the intermediate layer and from the SSL are denoted by circular dotted lines. The night SSL and day SSL are denoted by solid and 
dotted rectangles respectively. The DSL is denoted by solid rectangles. Backscatter from seamount-associated species are also noted. The colour 
bar indicates Sv in dB re 1 m-1. 



Chapter 4: Micronekton distributions and assemblages 

149 

The DSL over the flanks and vicinity of La Pérouse was less dense at night-time compared to 

daytime and was located between 500 and 650 m compared to MAD-Ridge (400-700 m) (Fig. 

4.9a). The night deep trawls over La Pérouse flanks consisted of pyrosomes and the seamount-

associated fish D. suborbitalis in high numbers, the deep-dwelling A. aculeatus, the fish A. 

hulleyi (Cherel et al., 2020), and a variety of crustaceans and squids in lower numbers (Fig. 

4.9a). D. suborbitalis were caught within the night SSL over the flanks of La Pérouse but not 

in the vicinity of the seamount. The night deep tows in the vicinity of La Pérouse consisted of 

the crustaceans Oplophoridae, unidentified shrimps, Sergestidae, Phronima, Funchalia sp., 

Pasiphaea spp., and Neognathophausia, the cephalopods Abraliopsis sp. and Octopoda, the 

weakly migrating/ non-migrating fishes A. aculeatus and A. hemigymnus and diel vertically 

migrating and mid-water migrating fishes of the Gonostomatidae, Melanostomiidae, 

Myctophidae, Stomiidae, Paralepididae, Scorpaenidae and Phosichthyidae families. Mid-water 

migrants showed earlier vertical migration from the intermediate to deeper layers at the end of 

the night, as shown by the echogram of the 38 kHz frequency. The majority of micronekton 

organisms however, migrated from the SSL to the DSL or deeper during sunrise in a series of 

migration events and contributed to the intensification of the backscatter within the DSL during 

daytime. 

The night SSL over MAD-Ridge summit consisted of the gelatinous plankton salps and 

pyrosomes, crustaceans Oplophoridae, and unidentified shrimps, squids Enoploteuthidae, 

Ornithoteuthis volatilis, Abraliopsis sp., and Onychoteuthidae, and a range of diel vertically 

migrating fishes of the Myctophidae, Nomeidae and Melanostomiidae families (Fig. 4.9b). Few 

individuals of the slope-associated benthopelagic fish C. japonicus and juveniles of the reef-

associated fish Chaetodon were collected within the night SSL over MAD-Ridge summit. The 

night SSL over the flanks of MAD-Ridge consisted of the crustaceans Oplophoridae, 

Sergestidae, Funchalia sp., Euphausiacea and Phronima, squids including Ommastrephidae, 

mesopelagic fishes and high numbers of gelatinous plankton. D. suborbitalis were sampled in 

higher numbers within the night SSL over the flanks and in lower numbers within the day deep 

tow over the flanks and within the vicinity of the seamount. 
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Figure 4.9(b) Schematics of MAD-Ridge seamount, listing the most dominant taxa (gelatinous organisms in blue, crustaceans in orange, 
cephalopods in violet and fishes in yellow), within the cluster groups. The numbers in brackets indicate the number of individuals caught. 
Organisms are classified as being epi (epipelagic), meso (mesopelagic), bathy (bathypelagic) and bentho (benthopelagic). Echograms of the 38 
kHz frequency at sunset, night, sunrise and daytime are denoted by red, blue, violet and gold coloured rectangles respectively. The series of 
DVM events from the intermediate layer and from the SSL are denoted by circular dotted lines. The night SSL and day SSL are denoted by solid 
and dotted rectangles respectively. The DSL is denoted by solid rectangles. Backscatter from seamount-associated species are also noted. The 
colour bar indicates Sv in dB re 1 m-1.
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The day SSL over MAD-Ridge flanks comprised squids such as Cranchia scabra, Abraliopsis 

sp., Enoploteuthidae, and fishes such as Nemichthyidae, Paralepididae and leptocephali. The 

day deep tows over the flanks and in the vicinity of MAD-Ridge consisted of a range of 

crustaceans and migrating fish species of the Gonostomatidae, Myctophidae, Chauliodonthidae 

and Photichthyidae families commonly found in deeper layers during daytime. Day and night 

deep tows over the flanks and seamount vicinity consisted of the non-migrating fishes A. 

aculeatus, A. hemigymnus, Cyclothone sp. Echograms of the 38 kHz frequency showed high 

backscatter intensities over the summit and flanks of MAD-Ridge during night-time and 

daytime due to the presence of seamount summit and flank-associated/resident species. Before 

sunset at MAD-Ridge vicinity, the DSL was intensified and scatterers began streaming 

vertically upwards. A dense night SSL was formed within the first 200 m of the water column. 

Some micronekton species started their vertical migration from the DSL or deeper towards the 

SSL before sunset, other species during sunset and at night-time. 

RGB composite images were analysed in conjunction with data of trawls #14, 15 and 16 to 

determine the acoustic responses of the micronekton captured and to make inferences about 

micronekton behaviour at the seamount summit as opposed to the southern Mozambique 

Channel (trawl #21) (Fig. 4.10). Trawls on the seamount summit predominantly sampled dense 

aggregations of organisms (seen as “white patches” on RGB composites), being strong targets 

at the 38, 70 and 120 kHz frequencies, and having a relatively flat response to all three 

frequencies (Fig. 4.10a and c). These trawls predominantly sampled the swimbladdered 

myctophid fishes D. suborbitalis and B. fibulatum over MAD-Ridge flanks (Fig. 4.10a), the 

mesopelagic fishes H. hygomii and N. macrolepidotus, and the benthopelagic fish C. japonicus 

over the summit (Fig. 4.10c). Trawl #15 sampled a greater number of pyrosomes which are 

strong targets at the 38 kHz frequency within the night SSL (Fig. 4.10b). Trawl #21 

predominantly sampled organisms being strong targets at the 38 kHz frequency, with the fish 

H. hygomii, squid Enoploteuthidae, gelatinous pyrosomes and crustaceans Oplophoridae being 

the most abundantly caught (Fig. 4.10d). No dense aggregations (“white patches”) were 

observed on RGB composite of trawl #21, as opposed to trawls over the seamount summit and 

flanks of MAD-Ridge. Organisms were more likely dispersed in the water column in the 

Mozambique Channel as opposed to the seamount summit and flanks where they formed dense 

aggregations.
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Figure 4.10(a-d) RGB composites of Sv values (dB re 1 m-1) of trawls 14 and 15 (flank), 16 
(summit) and 21 (southern Mozambique Channel) during MAD-Ridge. White dotted lines 
represent the trawl path as determined from Scanmar depth sensor. The seamount summit is 
denoted by the black polygon and labelled accordingly. The 38, 70 and 120 kHz frequencies 
were given red, green and blue colour codes respectively. Corresponding frequency diagrams 
of the species count for trawls #14, 15, 16 and 21 and mean ± standard deviation of the 
frequency responses (in dB) during the “horizontal trawl fishing period” are given. Broad 

categories are coloured orange (crustaceans), yellow (fishes), blue (gelatinous organisms), 
and violet (cephalopods). 

 

4.4 Discussion 

4.4.1 Sampling biases and constraints 

Pelagic trawls like the IYGPT have coarse meshes at the front through which an unknown 

fraction of mesopelagic organisms may escape (Kaartvedt et al., 2012). Highly mobile 

micronekton such as cephalopods and fishes may show avoidance reactions to nets, which may 

lead to discrepancies between net-based and acoustic estimates (Reid, 1991; Kaartvedt et al., 

2012). Organisms with fragile bodies, such as gelatinous plankton, may break apart, biasing 

final abundance/biomass estimates (Domokos et al., 2010; Rogers et al., 2017; Proud et al., 

2018). La Pérouse acoustic data at sampling stations were incomplete and hence a thorough 

comparison in mean backscatter between La Pérouse and MAD-Ridge could not be carried out. 

Owing to bad quality acoustic data beyond 750 m, echo-integrations were limited to that depth. 

Biases in acoustic density estimates may arise from variations in fish swimbladder volume (that 

depends on the depth range and subsequent swimbladder compression), the swimbladder size 

distribution and aspect (Benoit-Bird & Lawson, 2016; Cascão et al., 2017; Proud et al., 2018). 

Some organisms also have low acoustic target strengths and hence low acoustic backscatter 

even if found in dense aggregations on seamounts (McClatchie & Combs, 2005). The RGB 

visualisation technique is colour-vision dependent but however, provides information on the 

mean backscatter at all three frequencies on a single plot and at high resolution compared to a 

single frequency echogram. Studies have demonstrated a seasonal effect in the variability of 

micronekon acoustic densities (Wilson & Boehlert, 2004; Cascão et al. 2017) owing to the life 

strategies and behaviour of the seamount-associated fauna. This study therefore, only provided 

a snapshot in time of the composition of micronekton at La Pérouse and MAD-Ridge during a 

declining phase of oceanic productivity. 

4.4.2 Oceanography and biological response 

This thesis highlighted contrasting environmental patterns at La Pérouse and MAD-Ridge. 

While MAD-Ridge was under the influence of strong cyclonic and anticyclonic eddies 



Chapter 4: Micronekton distributions and assemblages 

155 

originating from the South East Madagascar current (Vianello et al., 2020), La Pérouse was 

under the influence of moderate mesoscale activities. As topographic obstacles, seamounts may 

either bifurcate, trap, split or destroy eddies (Schouten et al., 2000; Herbette et al., 2003; 

Adduce & Cenedese, 2004; Sutyrin, 2006; Lavelle & Mohn, 2010). Trapping duration of eddies 

may last for several months, with important estimated effects on biological production and 

plankton retention (Bograd et al., 1997). Eddies are well known in influencing local water 

properties, such as the trapping of anomalous water masses (Swart et al., 2010; Pollard & Read, 

2015), or the advection of coastal waters with high phytoplankton biomass from the coast to 

open waters (Quartly & Srokosz, 2004; Tew-Kai & Marsac, 2009; Kolasinski et al., 2012). 

Coastally upwelled waters of high biological productivity over the southern Madagascar shelf 

(Ramanantsoa et al., 2018) may be trapped by mesoscale features that propagate over MAD-

Ridge. 

Local productivity at MAD-Ridge did not result from a Taylor column (see Chapter 3) since 

the latter may form transiently, under specific conditions of summit depth, water column 

stratification and current speeds (Owens & Hogg, 1980, Freeland, 1994, Mohn et al., 2009, 

Wagawa et al., 2012; Bashmachnikov et al., 2013). Read & Pollard (2017) concluded that 

while, Taylor columns may theoretically be formed over several seamounts of the Madagascar 

Ridge, the relatively strong currents associated with mesoscale eddies may prevent their 

formation or sweep away any incipient Taylor cap before settlement. The complex crescent 

shape of La Pérouse seamount, shallow summit depth and relatively high current speeds were 

not favourable for Taylor column formation (see Chapter 3). The high yearly biological 

productivity at MAD-Ridge and connectivity with neighbouring seamounts of the Madagascar 

Ridge (Letessier et al., 2017) and with the Madagascar shelf might be one of the reasons 

accounting for the greater micronekton species richness and denser SSL and DSL at MAD-

Ridge compared to La Pérouse. Higher mean acoustic responses were also recorded along Petal 

V during MAD-Ridge, which may be an aggregating effect on organisms of the strong local 

gradient of sea level anomalies at the anticyclonic eddy periphery (Sabarros et al., 2009). 

4.4.3 Effect of seamounts on the DVM of micronekton 

As evidenced in this study, the majority of micronekton taxa including various myctophids 

performed daily DVM whereas the deep-dwelling Pasiphaea spp., A. aculeatus, A. 

hemigymnus and Cyclothone sp. did not migrate to surface layers at dusk. Diel vertical 

migration did not occur as a single event, but as a series of events from the mid-water migrants 

which migrated from the intermediate layer to the DSL or deeper before sunrise. The surface 
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migrants migrated from the SSL to the DSL or deeper during sunrise. Various cues such as 

light penetration and intensity, productivity, oxygen minima, temperature, food, clear 

oligotrophic waters and chemoreception of kairomones (chemical cues) released by fish, are 

commonly thought to influence the vertical migration of organisms and the onset of DVM 

(Youngbluth, 1975; Andersen et al., 1998; Cohen & Forward, 2009; Ekau et al., 2010; Bernal 

et al., 2015; Olivar et al., 2012, 2017). Some of the vertically migrating organisms may be 

concentrated on the flanks of the pinnacle. The “topographic blockage” mechanism/sound-

scattering layer interception hypothesis has been previously described (Isaacs & Schwartzlose, 

1965; Genin, 2004; Porteiro & Sutton, 2007; Hirch & Christiansen, 2010), whereby the pre-

dawn migratory descent of some mesopelagic organisms was found to be temporarily halted 

by the seamount topography and presence of predators using the seamount as a barrier to 

concentrate prey (Johnston et al., 2008). This mechanism was hardly observed in the acoustic 

transects throughout La Pérouse and MAD-Ridge cruises. 

4.4.4 Micronekton scattering layers and assemblages at La Pérouse and MAD-

Ridge 

At both La Pérouse and MAD-Ridge seamounts, the night SSL was shown to consist of 

gelatinous organisms (pyrosomes) and a range of common open-water swim-bladdered 

mesopelagic fishes that undergo DVM and are strong acoustic targets at the 38 kHz frequency. 

The day SSL, on the other hand, consisted of non-migrant gelatinous organisms, phyllosoma 

larvae, leptocephali (La Pérouse and MAD-Ridge) and few cephalopods (MAD-Ridge). While 

gelatinous organisms are strong targets at 38 khz, phyllosoma larvae, leptocephali and 

cephalopods are relatively weak targets at this frequency. Scattering layers being strong targets 

at the 70/120 kHz frequencies were observed at various distances from MAD-Ridge summit. 

These biological scatterers were not sampled by the IYGPT net but were shown to be associated 

with the depth of the maximum fluorescence (see Chapter 3). These organisms may be 

phytoplankton-eaters, siphonophores with pneumatophores smaller than those having a high 

response to the 38 kHz frequency (Arthur Blanluet, pers. comm.), or larger crustaceans that 

have a response to the 70 kHz frequency but have escaped the trawls. The day and night SSL 

may also have consisted of organisms that were horizontally advected in addition to species 

showing vertical migration (see Chapter 3). 

A DSL was present both during the day and night at La Pérouse and MAD-Ridge seamounts. 

The DSL is a ubiquitous acoustic signature and is commonly formed by mesopelagic fishes 

and invertebrates (Aksnes et al., 2017; Proud et al., 2017). DSLs were shown to be dominated 
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by non-migrant swimbladdered sternoptychids and gonostomatids in the Atlantic (Fennell & 

Rose, 2015; Ariza et al., 2016), Pacific (Romero-Romero et al., 2019) and Indian Oceans, south 

of Mauritius Island and in the Mozambique Channel (Annasawmy et al., 2018). However, the 

DSL depth is not uniform across ocean basins. The lower limit of the DSL was deeper in the 

SWIO at La Pérouse (500-650m), MAD-Ridge (400-700 m), south of Mauritius and Réunion 

Islands and over the Madagascar Ridge (400-800 m) (Boersch-Supan et al., 2017), compared 

to the Chagos Archipelago in the central Indian Ocean, where it extended from 300 to 600 m 

(Letessier et al., 2015). Micronekton taxa showing delayed vertical migration or no DVM 

contributed to the backscatter intensities within the night DSL. Delayed vertical migration of 

organisms at night is commonly employed by organisms to reduce competition during feeding 

(Watanabe et al., 2002). Some of these organisms were bathypelagic species possibly still 

ascending from depths deeper than 1000 m at the time that the acoustic transects were 

conducted. 

The most common squids sampled at La Pérouse and MAD-Ridge can be divided into the 

following main groups (as defined by Nesis, 1993): nerito-oceanic species that occur over 

seamounts as paralarvae, juveniles or sub-adults (eg. Onychoteuthidae and Histioteuthidae) and 

diel vertically migrating species that are advected over seamounts at night and descend to 

deeper depths at dawn (Abraliopsis sp.-Enoploteuthidae, Histioteuthidae and 

Octopoteuthidae). Abraliopsis sp. may descend deeper than 1000 m during daytime, hence the 

low numbers caught in the day deep trawls. Of the 77 cephalopod taxa reported from the region 

of the Madagascar Ridge (Laptikhovsky et al., 2017), this study sampled only 17 taxa at both 

La Pérouse and MAD-Ridge seamounts, largely under sampling this broad category. Squids 

are also relatively weak acoustic targets at 38 kHz (Simmonds & MacLennan, 2005) and 

studies commonly used a combination of frequencies to locate squid schools (Starr & Thorne, 

1998). A total of 32 species of decapods and lophogastrids were reported from the Madagascar 

Ridge (Letessier et al., 2017). Due to low sampling effort and identification, only 13 and 10 

crustacean taxa were correctly identified at La Pérouse and MAD-Ridge respectively. Studies 

have found elevated abundances of crustacean taxa in the vicinity of seamounts of the South 

West Indian Ridge and have concluded that some taxa may resist advective lost from 

seamounts by active migration (Letessier et al., 2017). These taxa were reported to support rich 

communities of benthopelagic fishes living close to the bottom of the ridge (Vereshchaka, 

1995). 
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The mesopelagic fishes N. macrolepidotus and B. fibulatum are diel vertical migrants, that are 

associated with the summit and flanks of seamounts but can also be found in the open ocean. 

The non-migrant benthopelagic fish species C. japonicus and larvae from the Priacanthidae 

family, on the other hand, were exclusively caught over the summit of MAD-Ridge and were 

hence truly resident at the seamount. Large populations of D. suborbitalis have previously been 

found to be associated with the Equator seamount (close to the shallow peak called Travin 

Bank) in the Indian Ocean (Parin & Prut’ko, 1985; Porteiro & Sutton, 2007). These fishes were 

reported to be located on the slopes at 500-600 m depth during daylight hours and to ascend in 

dense schools to 80-150 m depth at night for feeding on oceanic plankton, mainly copepods 

(Gorelova & Prut’ko, 1985), while at the same time being preyed upon by several top predators 

such as tunas and swordfish (Parin & Prut’ko, 1985). The fish B. fibulatum was found to be 

associated with the Hawaiian Cross seamount summit (330 m below the sea surface) in the 

Pacific (De Forest & Drazen, 2009), but abundance estimates at the seamount depended largely 

on lunar illumination (Drazen et al., 2011). 

4.4.5 Do seamounts have higher abundances/biomasses/densities over the 

summit? 

The physical obstruction created by a seamount has been hypothesized to reduce the density of 

animals over the flanks and summits, particularly at night (eg. Genin et al., 1988; Diekmann et 

al., 2006; De Forest & Drazen, 2009). The lower abundance/biomass estimates of micronekton 

recorded over the summits of La Pérouse and MAD-Ridge compared to the immediate vicinity 

seem to support this hypothesis. However, gas-bearing seamount-associated/resident fauna 

including D. suborbitalis, N. macrolepidotus, B. fibulatum, C. japonicus (MAD-Ridge) and D. 

suborbitalis (La Pérouse), might have formed dense aggregations below the SSL, in close 

proximity to the summits and flanks (hence the “white patches” seen on RGB composites). The 

densities and/or target strengths of these organisms are high. These high acoustic detections 

might also have been caused by deep-water fish aggregations (more commonly described as 

“plumes”) (Bull et al., 2001; O’Driscoll et al., 2012) that were not sampled by the IYGPT net. 

Fish species such as orange roughy which are commercially fished at Walters Shoal along the 

Madagascar Ridge (Collette & Parin, 1991), are poor acoustic targets due to their wax ester 

swimbladders and are known to avoid mesopelagic trawls (Kloser et al., 2002). These plumes 

may represent aggregations of seamount-resident fishes that avoided advective loss from the 

seamounts and formed dense aggregations over the summits and flanks. In the open ocean such 

as the southern Mozambique Channel, micronekton were more dispersed in the water column 

since no dense aggregations (“white patches”) were observed. 



Chapter 4: Micronekton distributions and assemblages 

159 

Various hypotheses may be put forward to explain the preferential association of organisms 

with seamounts. Organisms may associate with La Pérouse and MAD-Ridge: (1) to increase 

feeding efficiency (Vereshchaka, 1995; Wilson & Boehlert, 2004), (2) to take advantage of a 

broader range of habitat diversity created by the topography (Wilson & Boehlert, 2004; 

Porteiro & Sutton, 2007) such as shelter regions for spawning, and (3) to decrease energy loss 

by using this habitat as a shelter during non-feeding intervals whereby in the open ocean 

organisms may have to swim constantly. Benthopelagic animals (such as C. japonicus) were 

reported to prefer rocky seabeds and may take advantage of strong currents over seamounts for 

advection of their main prey items while avoiding being swept from the summit by using rocky 

canyons within the seamount topography as shelter regions (Vereshchaka, 1995). 

The reasons for the observed variability in mean backscatter at MAD-Ridge summit compared 

to the immediate vicinity and the reasons for the observed decrease in trawl abundance/biomass 

estimates at the summit are further discussed with respect to the sampling strategy and IYGPT 

net used. Although trawl surveys are necessary to determine the taxonomic composition of 

micronekton present in the water column in space and time, the composition and biomass 

obtained largely depend on the type of trawl used (Kwong et al., 2018), their catchability 

towards various taxonomic groups of nekton and the depth range sampled. Trawl sampling is 

difficult on shallow topographies because of the high risk of damaging the sampling gear 

(Christiansen et al., 2009). Hence, the time spent surveying the summit is generally limited. 

The trawls #14, 15 and 16 over the summit and flanks of MAD-Ridge were directed to 

specifically sample dense aggregations observed by acoustics and hence the trawl had failed to 

capture the full suite of organisms present at the study sites. While trawl surveys are useful in 

terms of the determination of the species composition and assemblages of micronekton, they 

are also generally expensive, time-consuming and allow a relatively limited collection of 

samples at any given area. Trawl catches provide only a snapshot of the communities dwelling 

at seamounts which depends strongly on the time of day and the sampling depths. 

Active acoustics, on the other hand, while not being able to correctly resolve the taxonomic 

composition of the micronekton fauna yet, provide continuous measurements of the 

mesopelagic layer and can be used to determine organisms’ abundances/densities, movements 

and migrations at various spatial and temporal scales. The combination of active acoustics with 

trawl and Scanmar data in the form of RGB composites provide invaluable insights into the 

distributions, the depths of the different scattering layers, the scattering properties of organisms 

and can be used to speculate about organisms’ aggregating behaviour. Kloser et al. (2002) used 
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a similar approach, but the composite image was produced by assigning a separate colour 

palette to each frequency (12, 38 and 120 kHz) and dynamically optimising the frequencies to 

highlight the amplitude differences in the echogram. The RGB composite approach has the 

added advantage of further highlighting the presence of structures under-sampled by trawls due 

to their patchy distribution (“blue patches” with a high frequency response to the 120 kHz; Fig. 

4.10d, Trawl #21 at ~30 m) and that could be further investigated using multi-frequency 

classification. 

4.5 Concluding remarks 

A combination of datasets (active acoustics and mesopelagic trawls) was used to investigate 

the dynamics of micronekton at two shallow seamounts. The higher year-round oceanic 

productivity, eddy dynamics, advection of productivity from the Madagascar landmass and 

connectivity with neighbouring seamounts and landmasses may result in greater micronekton 

species richness at MAD-Ridge compared to La Pérouse which is located in an oligotrophic 

environment. The night SSL (between 10 and 200 m) over the summit and flanks concentrated 

common open-water species of gelatinous (salps and pyrosomes), crustaceans (Euphausiacea, 

Funchalia sp. and phyllosoma larvae), squids (Enoploteuthidae, C. scabra and Abraliopsis sp.), 

and fishes (leptocephali, H. hygomii and various species of Diaphus spp.). In addition to the 

vertically migrant organisms forming the SSL, this study provided evidence that La Pérouse 

and MAD-Ridge seamounts support an important community of seamount-associated/resident 

fishes (La Pérouse and MAD-Ridge: D. suborbitalis; MAD-Ridge: B. fibulatum and C. 

japonicus) that occur in dense aggregations over the summits and flanks. Despite several 

shortcomings in this work, notably during La Pérouse and MAD-Ridge cruise sampling, this 

study fills an important knowledge gap. The combined use of satellite, mesopelagic trawl and 

acoustic data at the time of the cruises, provides an integrative and accurate picture as to the 

mechanisms involved in micronekton vertical/horizontal distributions and assemblages at 

shallow topographies. More importantly, this study helps contribute to our growing 

understanding of seamount ecosystems in the south-western Indian Ocean. Improving our 

knowledge of the ecosystems associated to shallow seamounts is a key issue towards the 

promotion of specific sustainable use and conservation measures dedicated to protecting such 

critical environments. 
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Inter-chapter II 

 

As shown in Chapter 4, the large-scale oceanic productivity in the vicinity of the MAD-Ridge 

seamount is twice that found at La Pérouse all year round. Both the La Pérouse and MAD-

Ridge cruises took place during a decreasing trend of oceanic productivity in September and 

November-December, respectively. The breeding and foraging patterns of top predators 

including seabirds of the SWIO suggest that austral winter (June-October) is characterised by 

enhanced prey biomasses. The densities of micronekton may hence be several degrees of 

magnitude higher a few weeks after the observed peak in productivity in July than that recorded 

in this study. 

Chapter 4 also showed that the physical obstacles that represent the La Pérouse and MAD-

Ridge seamounts did not perturb the distribution and diel migration of common oceanic 

micronekton taxa. Diel vertical migration of several micronekton taxa started at sunset towards 

the surface layer and at sunrise towards the deep layer such that all migrants reached the DSL 

before daylight, even in presence of the seamounts. Several micronekton taxa, however, are 

non-migrants, i.e. they stayed in the DSL at night-time, while other scatterers stayed in the SSL 

during daylight. Other micronekton communities showed delayed migration strategies to the 

surface at dusk or mid-water migration to the lower limit of the SSL within the intermediate 

layer at night. Micronekton is a broad group consisting of crustaceans, squids and mesopelagic 

fishes, all having specific foraging, migration and behavioural patterns. As shown in Chapter 

2, marine mammals are able to adapt their foraging strategies to utilize the different 

micronekton resources in the epipelagic zone at night (as in the case of Stenella spp. and 

Tursiops spp.) or deeper in the water column (as in the case of sperm and beaked whales). 

Swordfish that is physiologically adapted to dive deeper, may also preferentially associate with 

seamounts as seen in Chapter 2 and utilize the resources found at these topographic features. 

Within the micronekton, some species are commonly oceanic and avoid seamounts, some 

preferentially associate with areas of high oceanic productivity, some taxa aggregate at 

topographic features, whereas others would use a combination of the above strategies. The SSL 

over La Pérouse and MAD-Ridge seamounts did not show enhanced densities relative to the 

immediate vicinity. However, dense aggregations of scatterers were observed during day and 

night at the summits of both seamounts. These aggregations were shown to consist of 

seamount-associated mesopelagic fishes. At MAD-Ridge, benthopelagic fishes further 
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aggregated over the seamount summit. La Pérouse and MAD-Ridge may hence represent 

favourable habitats for these organisms not only in their adult stages, but also in their larval 

forms. As seen in Chapter 2, higher larval fish densities (with the most common family being 

Myctophidae and Gonostomatidae), were recorded at the summits of La Pérouse and MAD-

Ridge which suggest local spawning at both seamounts. 

While acoustics and trawl surveys provide important information on densities, biomasses, 

abundances and taxonomic diversity at different sites and at different depths, these techniques 

provide little information about the link between micronekton and the other components of the 

foodweb. Chapter 5 hence aims at understanding the trophic relationships of the sampled 

micronekton with respect to POM and zooplankton. Tissues of micronekton organisms were 

analysed for stable isotopes of 13C and 15N to determine the sources of primary production and 

the trophic position of individuals respectively. The factors influencing the δ15N and δ13C 

values of consumer tissues were determined. A “seamount effect” in either depletion or 

enhancement of δ15N and δ13C values of micronekton were further investigated by investigating 

the values of omnivorous/carnivorous fishes collected over the flank, summit and vicinity of 

La Pérouse and MAD-Ridge relative to an off-seamount location in the southern Mozambique 

Channel. 
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Abstract 

The stable carbon (δ13C) and nitrogen (δ15N) isotope values of soft tissues of micronekton 

(crustaceans, squids, mesopelagic fishes) and zooplankton were measured from organisms 

collected on the RV Antea at two seamounts located in the south-western Indian Ocean: La 

Pérouse (summit depth ~60 m) and “MAD-Ridge” (thus named in this study; summit depth 

~240 m). Surface particulate organic matter (POM-Surf) showed higher δ13C at MAD-Ridge 

than at La Pérouse. Particulate organic matter and zooplankton were depleted in 15N at the 

oligotrophic La Pérouse pinnacle compared with the more productive MAD-Ridge seamount. 

Gelatinous organisms and crustaceans occupied the lowest and intermediate trophic levels (TL 

~2 and 3 respectively) at both seamounts. Mesopelagic fishes and smaller-sized squids sampled 

at both seamounts occupied TL ~3 to 4, whereas the large nektonic squids Ommastrephes 

bartramii, collected at MAD-Ridge only, exhibited a TL of ~5. The δ15N values of common 

open-water mesopelagic taxa were strongly influenced by specimen size and feeding habits at 

both seamounts, with an increase in δ15N values with increasing size. Carnivorous fish species 

sampled exclusively over the seamounts’ flanks and summits exhibited TL values of ~4, 

irrespective of their wide size ranges. This work could not demonstrate any differences in δ15N 

values of mesopelagic fishes between the seamounts and the surrounding oceanic areas. This 

study segregated cluster of mesopelagic organisms according to their δ13C and δ15N values, 

with variations in stable isotope values reflecting a complex range of processes possibly linked 

to productivity as well as biological and ecological traits of the species (size and feeding mode). 

Keywords: micronekton, crustaceans, fish, δ13C, δ15N, trophic level 
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5.1 Introduction 

Micronekton are a broad group of organisms mostly dwelling in the mesopelagic zone (<1000 

m). They consist of crustaceans (adult euphausiids, hyperiid amphiphods, pelagic decapods 

and mysids), cephalopods (small species and juvenile stages of large oceanic species) and 

fishes (mainly mesopelagic species and juveniles of pelagic fish) (Brodeur & Yamamura, 2005; 

De Forest & Drazen, 2009; Ménard et al., 2014). They range in size from 2-20 cm and represent 

a substantial biomass in oceanic waters (Brodeur & Yamamura, 2005). Many species exhibit 

extensive DVM, thus playing an important role in the biological pump by transporting carbon 

and nutrients from the epipelagic to the mesopelagic zone (Hidaka et al., 2001; Brodeur & 

Yamamura, 2005; Catul et al., 2011; Bianchi et al., 2013). Micronekton also form a key trophic 

link between zooplankton and top predators because they are preyed upon by several species 

of seabird, tuna and billfish (Guinet et al., 1996; Bertrand et al., 2002; Brodeur & Yamamura, 

2005; Potier et al., 2007; Karakulak et al., 2009; Cherel et al., 2010; Danckwerts et al., 2014; 

Jaquemet et al., 2014; Duffy et al., 2017; Watanuki & Thiebot, 2018). Various studies have 

investigated the trophic interactions of micronekton to better understand their role in foodwebs 

across numerous ocean basins (Fanelli et al., 2011b; Colaço et al., 2013; Fanelli et al., 2013; 

Ménard et al., 2014; Valls et al.., 2014a, b; Annasawmy et al., 2018). For instance, mesopelagic 

organisms were shown to transfer energy between primary consumers and deeper benthic and 

benthopelagic animals at Condor seamount in the Atlantic (Colaço et al., 2013). 

Tuna, billfish, pelagic armorheads, alfonsinos and orange roughy are common predators fished 

extensively at seamounts in the Atlantic (Fonteneau, 1991; Morato et al., 2008; Dubroca et al., 

2013), Pacific (Rogers, 1994; Koslow, 1997; Holland et al., 1999; Musyl et al., 2003; Paya et 

al., 2006; Morato et al., 2010) and Indian oceans (Romanov, 2003; Clark et al., 2007; Marsac 

et al., 2014). Although, La Pérouse does not represent an outstanding fishing spot, tuna 

(Thunnus spp.) and swordfish (Xiphias gladius) are present in the vicinity of the seamount 

throughout the year (Marsac et al., 2020). Albacore (Thunnus alalunga), bigeye (T. obesus), 

yellowfin (T. albacares) tuna and swordfish commonly occur along the Madagascar Ridge and 

MAD-Ridge pinnacle (IOTC, www.iotc.org/data-and-statistics). The Madagascar Ridge has 

also been targeted for orange roughy in 1999/2000 before the catch dropped significantly in 

subsequent years (Ingole & Koslow, 2005; Lack et al., 2003). Due to the increased pressure on 

marine organisms, characterizing the overall trophic pathways within pelagic ecosystems 

(Young et al., 2015) contributes to making better informed fisheries and ecosystem-based 

management decisions. 
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Two seamounts of the SWIO, La Pérouse and and an unnamed pinnacle, thereafter named 

“MAD-Ridge”, were studied in an effort to understand how seamounts may affect DVM and 

aggregations of micronekton. While micronekton acoustic densities were not significantly 

different between the summit and immediate vicinity of the pinnacles, dense aggregations of 

scatterers, referred to as seamount-associated species, were recorded over the summit of both 

seamounts during day and night. La Pérouse is situated in the ISSG province (Longhurst, 2007; 

Reygondeau et al., 2013) with low mesoscale activities and primary productivity, whereas 

MAD-Ridge is located within an “eddy corridor” to the south of Madagascar, in a region with 

high occurrence of cyclonic and anticyclonic eddies and relatively high sea surface chlorophyll 

concentrations all year round relative to La Pérouse (see Chapter 4; Halo et al., 2014; Vianello 

et al., 2020). The enhanced productivity on the Madagascar shelf and its offshore entrainment 

by mesoscale eddy interactions (Quartly et al., 2006), were one possible reasons leading to 

greater micronekton acoustic densities at MAD-Ridge relative to La Pérouse. Trapped, 

enclosed circulations known as Taylor columns may also develop over seamounts and 

contribute to the retention of productivity (Genin & Boehlert, 1985; Dower et al., 1992; 

Mouriño et al., 2001; Mohn & White, 2007). No Taylor columns were observed at La Pérouse 

and MAD-Ridge seamounts, however, during the cruises most likely because of the high 

current speeds observed over the summits and the seamount structure not being favourable for 

the development and retention of such features. 

Foodwebs are shaped by a complex set of interactions controlled by the availability of organic 

(C-based nutrients) and inorganic (nitrate, nitrite, phosphate and silicate) nutrients, the 

efficiency of energy transfer to higher trophic levels and the control of species biomass by 

predators (Pomeroy, 2001). Carbon (δ13C) and nitrogen (δ15N) stable isotope analyses are a 

valuable tool for foodweb investigations in deep-sea ecosystems (Michener & Kaufman, 2007) 

and are based on time-integrated assimilated food (Martínez del Rio et al., 2009). 

Trophodynamic studies commonly employ δ13C to investigate the source of organic matter and 

δ15N to determine trophic level and trophic interactions (Michener & Kaufman, 2007). The 

heavier isotopes (13C and 15N) are preferentially retained in tissues of consumers relative to 

their prey, while lighter 12C and 14N isotopes are preferentially excreted (Fry, 2006). Overall, 

there is a small isotopic enrichment of 0.5-1‰ in the heavier 13C isotope of an organism’s 

tissue relative to its diet (Fry, 2006). Differences in δ13C values can thus indicate different 

sources of primary production such as inshore vs offshore, or pelagic vs benthic contributions 

to food intake (Hobson et al., 1994; Rubenstein & Hobson, 2004). In contrast, δ15N values 
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increase stepwise by 2-4‰ in a consumer’s tissue relative to its diet (Vanderklift & Ponsard, 

2003; Michener & Kaufman, 2007; Martínez del Rio et al., 2009), thus allowing the 

discrimination of trophic levels. 

Identification of the trophic position of various biotic components of the pelagic ecosystem is 

essential for our understanding of ecosystem functioning and trophic interactions. Food chain 

length (i.e. number of TLs) is a descriptor of community structure and ecosystem functioning 

(Post et al., 2000). Measuring the length of a food chain integrates the assimilation of energy 

flow through all trophic pathways leading to top predators. The understanding of this is 

essential from an ecosystem-based management perspective, and may provide important 

insights on ecosystem responses to fisheries pressure and/or climate-induced changes. 

Knowledge of micronekton trophic interactions at seamount ecosystems of the SWIO are 

scarce and fragmentary. In order to investigate the trophic pathways at La Pérouse and MAD-

Ridge, δ13C and δ15N values of POM, zooplankton and micronekton were measured and trophic 

levels were estimated using additive isotopic models (as in Post, 2002, and Caut et al., 2009). 

The main goals of this thesis were to investigate at La Pérouse and MAD-Ridge seamounts, 

(1) the trophic interactions of sampled mesopelagic organisms, (2) the influence of trophic 

groups, specimen size and time of sampling (MAD-Ridge only) on δ13C and δ15N values of 

micronekton, (3) the δ13C and δ15N values of omnivorous/carnivorous fishes collected over the 

flank relative to the vicinity of La Pérouse; and summit, flanks and vicinity of MAD-Ridge 

compared with an off-seamount location in the southern Mozambique Channel. 

 

5.2 Material and methods 
5.2.1 Study sites 

5.2.1.1 La Pérouse seamount 

La Pérouse is located on the outskirts of the oligotrophic ISSG province (Longhurst, 1998, 

2007; Reygondeau et al., 2013), 160 km northwest of Réunion Island at latitude 19°43’S and 

longitude 54°10’E (Fig. 5.1a, b). The seamount summit reaches the euphotic zone, being ~60 

m below the sea surface. The summit is 10 km long with narrow and steep flanks and rises 

from a depth of 5000 m from the ocean floor. This pinnacle was sampled on board the RV 

Antea from 15 to 29 September 2016 (DOI: 10.17600/16004500). 
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5.2.1.2 MAD-Ridge seamount 

This topographic feature, located ~240 km to the south of Madagascar, along the Madagascar 

Ridge at latitude 27°29’S and longitude 46°16’E has been named “MAD-Ridge” in this study 

(Fig. 5.1a, c). The seamount rises from a depth of 1600 m from the ocean floor to ~240 m 

below the sea surface. The summit is 33 km long (north to south) and 22 km wide (east to 

west). MAD-Ridge is surrounded by four smaller pinnacles, reaching depths of 600 m, 900 m, 

800 m and 1200 m below the sea surface, between latitudes 27°S-28°S and longitudes 46°E-

46°45’E. The MAD-Ridge pinnacle was sampled on board the RV Antea (DOI: 

10.17600/16004800 and 10.17600/16004900) from 26 November to 14 December 2016.



Chapter 5: Stable isotope patterns of mesopelagic communities 

171 

 

Figure 5.1(a) Location of the MAD-Ridge and La Pérouse seamounts (black diamond symbols) in the East African Coastal (EAFR) and Indian 
South Subtropical Gyre (ISSG) provinces, respectively. Longhurst’s (1998) biogeochemical provinces are delimited by black solid lines. 
Landmasses are shown in grey. Trawls #18-21 in the southern Mozambique Channel are shown by black stars and labelled “Trawl MZC”. Map 

of (b) La Pérouse trawl stations numbered 1 to 10, (c) MAD-Ridge trawl stations numbered 1 to 17 plotted on the bathymetry (m). The colour bar 
indicates depth below the sea surface (m). 
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5.2.2 Satellite observations 

Sea surface chlorophyll data were downloaded from the MODIS dataset 

(http://oceancolor.gsfc.nasa.gov) at a daily and 4.5 km resolution. Five-day averages were calculated to 

obtain a proxy of phytoplankton abundance in the surface layer. To investigate the annual variability in 

surface chlorophyll a concentrations, monthly mean concentrations were averaged from January to 

December 2016 for the defined regions (La Pérouse: 18.5-20°S/53-33°E; MAD-Ridge: 27-28°S/44-

48°E) (Fig. 5.2a). 

 

Figure 5.2(a) Averaged satellite image of surface chlrophyll a concentrations from 18/09/2016 to 
07/12/2016 at La Pérouse and MAD-Ridge (represented by black star symbols). The colour bar indicates 
the mean concentrations in mg m-3. 

 

5.2.3 Sampling and sample processing 

5.2.3.1 Particulate organic matter (POM) 

During both cruises, water samples for stable isotope analyses of POM were collected using Niskin 

bottles mounted on a Sea-Bird 911 + CTD rosette system at approximately 5 m depth (referred to as 

POM-Surf) and at the depth of maximum fluorescence (referred to as POM-Fmax) between ~60 and 125 

m at La Pérouse and ~80 and 150 m at MAD-Ridge. Between 4 and 8 l (depending on the load of each 

sample) of seawater were filtered on precombusted 25 or 47 mm glassfibre of 0.7 µm pore size. The 

filters were oven-dried at 50°C for 24 h and saved at room temperature in aluminium foil until further 

analyses. 
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5.2.3.2 Zooplankton sampling 

Zooplankton samples were collected during daylight only with a Bongo net (300 µm mesh to a maximum 

depth of 500 m and 200 µm mesh to a maximum depth of ~200 m) towed obliquely at La Pérouse (10 

stations). At MAD-Ridge, zooplankton samples were also collected during daylight with a Bongo net 

(300 µm mesh to a maximum depth of 500 m towed obliquely and 63 µm mesh to the depth of the 

maximum fluorescence towed vertically) at 19 stations. The nets were fitted with a flowmeter and were 

towed at a vessel speed of 1.5-2 knots for 15-20 min (0.28 m2 mouth area). Zooplankton samples from 

the 200 and 300 µm meshes at La Pérouse and, from the 63 and 300 µm meshes at MAD-Ridge were 

combined at each station. The combined samples at each station were sieved on a stack of seven sieves 

of decreasing mesh size and divided into six fractions: >4000 µm, 4000-2000 µm, 2000-1000 µm, 1000-

500 µm, 500-250 µm, 250-125 µm during La Pérouse and MAD-Ridge and a 7th fraction (125-63 µm) 

during MAD-Ridge only. Each fraction was oven-dried at 50°C for 24 h and frozen on board at -20°C 

before being analysed for stable isotope analyses (section 5.2.4). Zooplankton abundances, biomasses 

and taxa composition at the seamounts and off-seamount locations are investigated in Noyon et al. 2020. 

5.2.3.3 Trawl sampling 

During both cruises, a 40-m long International Young Gadoid Pelagic Trawl (IYGPT) net (codend with 

0.5 cm knotless nylon delta mesh; front tapering end with 8 cm mesh; ~96 m2 mouth opening) was towed 

at a vessel speed of 2-3 knots for 60 min during La Pérouse and for 30 min during MAD-Ridge to sample 

mesopelagic organisms. Trawls were carried out in the shallow (0-200 m), intermediate (200-400 m) 

and deep (below 400 m) layers during both cruises (Table 5.1). Trawl stations at La Pérouse and MAD-

Ridge (Fig. 5.1b, c) were further classified into the categories summit, flank and vicinity, according to 

whether they occurred on the summit plateaus of the seamounts, along the flanks (seafloor depth of 300-

1300 m) or in the immediate vicinity (depth >1300 m). Four other mesopelagic trawls (#18-21) were 

conducted in the southern Mozambique Channel (depth >4000 m) during the MAD-Ridge cruise as 

reference stations for non-seamount locations within the EAFR province (Fig. 5.1a). 
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Table 5.1 Summary of trawl stations during La Pérouse and MAD-Ridge cruises 
 

Cruis

e 

Tra

wl # 

Latitude 

Beginnin

g (°S) 

Longitu

de 

Beginnin

g(°E) 

Maximu

m Trawl 

Depth 

(m) 

Seabed Depth 

(m) 

Trawl Position Day/Night 

La 
Pérouse 

1 19.77 54.09 590 2300 Vicinity Night 

 2 19.79 54.10 400 1240 Flank Night 

 3 19.65 53.85 90 4300 Vicinity Night 

 4 19.68 54.15 110 860 Flank Night 

 5 19.76 54.18 35 65 Summit Day 

 6 19.72 54.18 60 800 Flank Night 

 7 19.63 54.10 500 3100 Vicinity Night 

 8 19.80 54.17 430 1220 Flank Night 

 9 19.81 54.08 240 1750 Vicinity Night 

 10 19.76 54.21 250 1500 Vicinity Night 

MAD- 
Ridge 

1 27.41 45.67 500 1560 Vicinity 
(northwest) 

Day 

 2 27.65 46.43 542 1515 Vicinity 
(northwest) 

Night 

 3 27.44 46.23 43 1560 Vicinity 
(northwest) 

Night 

 4 27.67 46.44 100 310 Flank (west) Day 

 5 27.75 46.28 324 1610 Vicinity 
(southwest) 

Night 

 6 27.69 46.46 45 605 Flank (southwest) Night 

 7 27.64 46.37 437 1680 Vicinity 
(southwest) 

Day 

 8 27.78 46.35 38 940 Flank (south) Night 

 9 27.70 46.45 76 1420 Vicinity 
(southeast) 

Night 

 10 27.60 46.53 470 950 Flank (northeast) Day 

 11 27.69 46.53 90 940 Flank (northeast) Night 

 12 27.41 46.38 550 1520 Vicinity (north) Night 

 13 27.65 46.31 460 1190 Flank (north) Day 

 14 27.68 46.27 210 575 Flank (west) Night 

 15 27.67 46.22 150 330 Flank (west) Night 

 16 27.59 46.32 205 240 Summit Night 

 17 27.51 46.32 550 1340 Vicinity 
(northwest) 

Day 
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Cruise Trawl 

# 

Latitude 

Beginning 

(°S) 

Longitude 

Beginning(

°E) 

Maximum 

Trawl 

Depth (m) 

Seabed Depth (m) Trawl Position Day/Night 

MAD-
Ridge 

18 28.25 41.26 550 4620 south Mozambique 
Channel 

Night 

 19 28.24 41.21 83 4630 south Mozambique 
Channel 

Night 

 20 28.82 37.39 450 4420 south Mozambique 
Channel 

Night 

 21 28.80 37.35 104 4420 south Mozambique 
Channel 

Night 
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All organisms collected with the trawl were sorted on board, divided into four broad categories 

(gelatinous, crustaceans, cephalopods and fishes), counted and identified to the lowest possible 

taxon. Individuals from these four broad categories were randomly selected according to their 

occurrence and abundance and measured (total length for selected gelatinous organisms, 

abdomen and carapace length for selected crustaceans, dorsal mantle length for cephalopods 

and standard length for fishes). Approximately 2-5 mg of soft tissues of these selected 

individuals (muscle tissue for leptocephali, muscle abdomen for crustaceans, mantles for 

squids, dorsal muscle for fishes) and whole salps and pyrosomes, were sampled on board in 2 

ml Eppendorf tubes and stored at -20°C, before being processed in the laboratory to determine 

δ13C and δ15N values (section 5.2.4). A full list of selected gelatinous and micronekton taxa 

used in stable isotope analyses is given in the Appendix (Table C). 

5.2.4 Stable isotope analysis 

Micronekton and zooplankton samples were freeze-dried using Christ Alpha 1-4 LSC freeze-

dryers for 48 h and ground to a fine homogeneous powder using an automatic ball mill 

RETSCH MM200. As variations in lipid composition may influence δ13C and δ15N values 

(Bodin et al., 2009; Ryan et al., 2012), lipids were removed from zooplankton and micronekton 

samples with dichloromethane on an accelerated solvent extraction system (ASE®, Dionex; 

Bodin et al., 2009). Prior to δ13C analyses, POM filters and zooplankton samples were reacted 

with 1 N HCl to remove carbonates (Cresson et al., 2012). Untreated subsamples of POM and 

zooplankton were used to measure δ15N because acid treatment may lead to the loss of 

nitrogenous compounds (Kolasinski et al., 2008). POM filters were cut, folded and put into tin 

capsules. Approximately 400-600 µg of each zooplankton and micronekton sample were 

weighed and placed in tin capsules. These samples were run through continuous flow on a 

Thermo Scientific Flash EA 2000 elemental analyser coupled to a Delta V Plus mass 

spectrometer at the Pôle de Spectrométrie Océan (Plouzané, France). The samples were 

combusted in the elemental analyser to separate CO2 and N2. A reference gas set was used to 

determine isotopic ratios by comparison. The isotopic ratios are expressed in the conventional 

δ notations as parts per thousand (‰) deviations from the international standards: 

δ13C or δ15N (‰) = [(Rsample/Rstandard) − 1] x 1000 

where R is the ratio of 13C/12C or 15N/14N. 
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5.2.5 Data analyses 

5.2.5.1 Overall δ13C and δ15N signatures 

Shapiro-Wilk and Bartlett tests were computed to test for the assumptions of normality and 

homogeneity of variances. Links between δ13C and δ15N values and the foodweb components 

(POM-Surf, POM-Fmax, zooplankton, gelatinous organisms, crustaceans, squids and fishes), 

were investigated using Kruskal-Wallis (KW) tests and pairwise comparisons in R (version 

3.3.1) because the data did not follow normal distributions. Kruskal-Wallis tests and pairwise 

comparisons were also computed to investigate whether there was a significant difference in 

δ13C and δ15N values for each the foodweb component between La Pérouse and MAD-Ridge. 

To assess the association between δ13C and δ15N values, Spearman rank correlation coefficients 

were calculated with all foodweb components at each seamount. Wilcoxon rank sum tests 

investigated the effect of time (day or night) on δ13C and δ15N values of gelatinous plankton 

and micronekton at MAD-Ridge only (because a single daylight trawl was conducted at La 

Pérouse and too few species were caught). To test for the effect of trawl position with respect 

to the seamounts on δ13C and δ15N values of omnivorous/carnivorous fishes, Wilcoxon Rank 

sum tests and KW tests were performed on the La Pérouse and MAD-Ridge datasets, 

respectively. 

5.2.5.2 Layman community-wide metrics 

The Layman community-wide metrics SEAc and the δ13C and δ15N ranges (Layman et al., 

2007) were calculated using the SIBER package (version 2.1.4, Jackson et al., 2011). The SEAc 

(sample-size-corrected standard ellipse area) describes the overall extent of the isotopic niches. 

The SEAc is robust for sample sizes >10 (Daly et al., 2013), which is the case for all the broad 

categories within this study. The SEAc of each foodweb component was described in terms of 

the space occupied by the group on a δ15N-δ13C plot based on all the individuals sampled within 

the group. The δ13C and δ15N ranges were used to describe and compare the overall extents of 

the foodwebs at the La Pérouse and MAD-Ridge sites. Increased δ13C range would be expected 

in foodwebs with multiple basal sources with varying δ13C values suggesting niche 

diversification at the base of the foodweb, whereas the δ15N range describes the sampled food 

chain lengths (Portail et al., 2016). 

5.2.5.3 Trophic level estimations 

Different models have been applied across several studies to estimate the trophic level of 

organisms: additive model with a fixed enrichment factor, additive enrichment model with a 

variable isotopic enrichment or scaled model with decreasing isotopic enrichment factors 
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(Minagawa & Wada, 1984; Post, 2002; Caut et al., 2009; Hussey et al., 2014). Ménard et al. 

(2014) and Annasawmy et al. (2018) used a fixed enrichment factor of 3.2‰ to estimate trophic 

levels of foodweb components POM, zooplankton, gelatinous plankton and micronekton 

collected in the SWIO. In this study, two alternative trophic enrichment assumptions were 

compared to estimate the trophic level of all the measured individuals within the groups 

(zooplankton, gelatinous organisms, crustaceans, squids and fishes) at La Pérouse and MAD-

Ridge. 

The TPA model (additive model with constant isotopic enrichment) was proposed by 

Minagawa & Wada (1984) and Post (2002) with the reference level set at a trophic level of 2 

for the primary consumer and a fixed and additive enrichment factor of 3.2‰: 

Trophic level, TPA = 2.0 + 
RSTUVW+R

STUXYVZ[Y\+]^_`aZbY

cd2
    Eq. 1 

where, δ15Ni is the nitrogen isotopic composition of any given micronekton taxon i, δ15Nprimary 

consumer is the δ15N reference baseline value at trophic level 2, and 3.2‰ is an estimate of the 

trophic enrichment factor between consumers and their primary prey (Michener & Kaufman, 

2007; Vanderklift & Ponsard, 2003). The δ15N values of POM, primary consumers and 

zooplankton have been used in trophic level calculations as isotopic baseline (e.g. Lorrain et 

al., 2015). Primary consumers are generally used as baseline to reduce errors in estimations 

(Martínez del Rio et al., 2009). Salps are known filter-feeders that have been used as baseline 

in previous studies in the region (Ménard et al., 2014). At La Pérouse, the mean δ15N values of 

six pyrosomes and one salp specimen was estimated at 5.31 ± 0.31‰ and was used as δ15Nprimary 

consumer to estimate the trophic position of all upper trophic level individuals that were collected. 

At MAD-Ridge, the mean δ15N values of six salps was 4.22 ± 1.01‰ and was used as δ15Nprimary 

consumer to estimate the trophic position of all individuals sampled. 

The second model, TPC, is an additive trophic enrichment model with variable isotopic 

enrichment, estimated from a meta-analysis study on fish muscle (Caut et al. 2009): 

TEF = -0.281 δ15Nprimary consumer + 5.879, where TEF is the trophic enrichment factor 

TPC = 2.0 + [(δ15Ni - δ15Nprimary consumer)/TEF]     Eq. 2 

5.2.5.4 Micronekton habitat ranges and feeding mode 

Information on habitat ranges of selected micronekton individuals was obtained from the 

literature (Clarke & Lu, 1975; Pearcy et al., 1977; Smith & Heemstra, 1986; van der Spoel & 
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Bleeker, 1991; Brodeur & Yamamura, 2005; Davison et al., 2015; Romero-Romero et al., 

2019). Organisms were classified as being epipelagic (<200 m), mesopelagic (from 200 to 1000 

m), bathypelagic (below 1000 m to ~100 m from the seafloor) and benthopelagic (living near 

the bottom) according to definitions of the vertical zonation of the pelagic ocean from Del 

Giorgio & Duarte (2002) and Sutton (2013). The feeding modes of gelatinous plankton and 

selected micronekton were obtained from the literature and are summarised in the Appendix 

section (Table C). Organisms were classified into the four trophic groups filter-feeders (salps 

and pyrosomes), detritivores (leptocephali), omnivores (mainly crustaceans and the fish species 

Ceratoscopelus warmingii) and carnivores (most mesopelagic fishes and squids). Crustaceans 

were classified as omnivores because they prey on zooplankton, such as euphausiids and 

copepods and are also known for occasional herbivory (Hopkins et al., 1994; Birkley & 

Gulliksen, 2003; Mauchline, 1959; Foxton & Roe, 1974). Most mesopelagic fishes were 

classified as carnivores since they were reported to be zooplankton feeders, preying on 

copepods, amphipods, euphausiids and ostracods (Dalpadado & Gjøsaeter, 1988; Pakhomov et 

al., 1996; Tanaka et al., 2007; Hudson et al., 2014; Bernal et al., 2015; Carmo et al., 2015; 

Young et al., 2015), with no herbivorous feeding strategy except C. warmingii, that has 

developed an adaptive response to competition in low-productive environments (Robison, 

1984). For species with unknown diets, the feeding mode was determined based on the feeding 

habit identified from species within the same genus. 

In order to give an overview of the foodwebs at the La Pérouse and MAD-Ridge seamounts, 

hierarchical cluster analyses (average grouping methods) were carried out on resemblance 

matrices (calculated using Euclidean distances) of normalised δ13C and δ15N values per 

gelatinous plankton and micronekton species at each seamount and for all sampled stations in 

PRIMER v6 software according to Clarke & Warwick (2001). Further cluster analyses were 

performed on log-transformed δ13C values and normalised δ13C and δ15N values of 

micronekton (excluding the outliers salps, pyrosomes, Funchalia sp. and leptocephali) for each 

seamount. 

5.2.5.5 Effect of size on δ15N values of micronekton 

The size distributions of all gelatinous and micronekton organisms captured during the La 

Pérouse and MAD-Ridge cruises were heavily left-skewed with most organisms being <100 

mm in length due to net catchability and selectivity. To test for the effect of size on δ15N values, 

gelatinous and micronekton organisms <100 mm were considered and linear regressions were 

computed. Linear models were developed to investigate the effect of body lengths on δ13C and 
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δ15N values of gelatinous and micronekton individuals and to investigate the difference in δ15N 

values with respect to size between La Pérouse and MAD-Ridge. Additionally, eight 

micronekton specimens were selected according to their common occurrence at both 

seamounts, relatively large sample sizes and wide body length ranges, and their δ15N values 

were compared between the two seamounts. Information on the migration patterns of these 

eight taxa was obtained from the literature (Utrecht et al., 1987; Butler et al., 2001; Feunteun 

et al., 2015; Romero-Romero et al., 2019).. Linear regressions were fitted to δ15N values of 

these eight taxa according to their body lengths and the seamount factor (whether δ15N values 

were significantly different between La Pérouse and MAD-Ridge). To investigate if the 

seamount has an effect on the size and related diet of fish, δ15N values of selected omnivorous/ 

carnivorous fish species collected on the summits, flanks, vicinity of the seamounts and the 

southern Mozambique Channel, were examined using linear models. 

 

5.3 Results 

5.3.1 Prevailing environmental conditions at La Pérouse and MAD-Ridge 

seamounts 

Sea surface chlorophyll concentrations followed the same seasonal pattern in both regions of 

La Pérouse and MAD-Ridge seamounts, although concentrations were twice as high at MAD-

Ridge (0.10-0.22 mg m-3) relative to La Pérouse (0.04-0.13 mg m-3) all year round (Fig. 5.2b). 

A peak in productivity was observed in July in both the ISSG and EAFR provinces because of 

intense mixing caused by austral trade winds. Both La Pérouse and MAD-Ridge cruises took 

place during a declining phase of oceanic productivity in the region. 
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Figure 5.2(b) Monthly mean sea surface chlorophyll a concentrations (mg m-3) from January 
to December 2016 for the regions defined by the red squares in Figure 5.2(a). The dates of the 
La Pérouse and MAD-Ridge cruises are marked by grey bars. 

 

5.3.2 General foodweb structure 

The description of the foodweb structure included POM collected at the surface (POM-Surf) 

and at the depth of maximum fluorescence (POM-Fmax), zooplankton at both seamounts, two 

taxonomic groups of gelatinous organisms (salps and pyrosomes), and 42 and 49 taxonomic 

groups of micronekton, representing 145 and 180 individuals at La Pérouse and MAD-Ridge, 

respectively. At both La Pérouse and MAD-Ridge, the foodweb components were segregated 

in their δ13C (La Pérouse: KW, H=170.5, p < 0.05; MAD-Ridge: KW, H=268.1, p < 0.05) and 

δ15N values (La Pérouse: KW, H=153.1, p < 0.05; MAD-Ridge: KW, H=127.4, p < 0.05) (Fig. 

5.3). POM-Surf and POM-Fmax did not differ significantly in their δ13C and δ15N values at 

both seamounts (p > 0.05). At La Pérouse, gelatinous organisms exhibited higher δ13C values 

compared with POM-Surf and POM-Fmax (p < 0.05), and they exhibited lower δ13C and δ15N 
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values than crustaceans, fishes and squids at both seamounts (p < 0.05). Crustaceans, fishes 

and squids did not differ significantly in their δ15N values (p > 0.05), but they differed in their 

δ13C values at La Pérouse (p < 0.05). Crustaceans did not differ significantly from squids in 

their δ13C values (p > 0.05), whereas all other categories differed in their δ13C values at MAD-

Ridge (p < 0.05). Squids did not differ significantly from crustaceans and fishes in their δ15N 

values (p > 0.05) but 15N was more depleted in crustaceans relative to fishes at MAD-Ridge (p 

< 0.05). At La Pérouse (all depths combined), POM, zooplankton and micronekton covered a 

large δ13C range of ~11‰ (-17.2 to -28.0‰), with POM-Fmax and the unidentified caridean 

crustacean representing the lowest and highest values, respectively. The δ15N values of all 

micronekton individuals ranged from 2.5‰ (fish: leptocephali) to 13.3‰ (fish: Coccorella 

atrata). At MAD-Ridge (all depths combined), POM, zooplankton and micronekton also 

covered a large δ13C range of ~10‰ (-17.1 to -27.2‰), with POM-Surf and the fish species 

Chauliodus sloani representing the lowest and highest values, respectively. The δ15N values of 

sampled micronekton individuals ranged from 2.3‰ (fish: leptocephali) to 13.5‰ (fish: 

Argyropelecus aculeatus). 
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Figure 5.3(a) Bivariate plot of δ15N and δ13C values (‰) for particulate organic matter at the 

surface (POM-Surf) and the maximum fluorescence (POM-Fmax), zooplankton, gelatinous 
organisms, crustaceans, squids and mesopelagic fishes sampled at La Pérouse seamount. 
Standard ellipse areas (coloured solid lines), calculated using SIBER, provide estimates of the 
size of the isotopic niche for each of these categories. 
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Figure 5.3(b) Bivariate plot of δ15N and δ13C values (‰) for particulate organic matter at the 

surface (POM-Surf) and the maximum fluorescence (POM-Fmax), zooplankton, gelatinous 
organisms, crustaceans, squids and mesopelagic fishes sampled at MAD-Ridge seamount. 
Standard ellipse areas (coloured solid lines), calculated using SIBER, provide estimates of the 
size of the isotopic niche for each of these categories. 

 

Standard ellipse corrected areas (SEAc) refer to the trophic niche widths of the broad categories 

at La Pérouse and MAD-Ridge. At La Pérouse, POM-Surf and POM-Fmax showed 

overlapping standard ellipses with the largest SEAc (3.2 and 3.8‰2, respectively) among all 

components of the foodweb (Fig. 5.3a). Gelatinous organisms showed the smallest SEAc of 

0.92‰2. Crustaceans, squids and fishes had overlapping standard ellipses with SEAc values of 

2.3, 1.2 and 2.9‰2, respectively (Fig. 5.3a). At MAD-Ridge, POM-Surf and POM-Fmax also 

exhibited overlapping standard ellipses (SEAc= 4.8 and 2.0‰2, respectively), but with greater 
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variability in POM-Surf δ15N values. Crustaceans, squids and fishes had overlapping standard 

ellipses with SEAc of 3.0, 3.6 and 3.2‰2, respectively (Fig. 5.3b). 

The δ13C and δ15N values of the foodweb components POM-Surf, POM-Fmax, zooplankton, 

gelatinous organisms, crustaceans, squids and fishes were significantly different between La 

Pérouse and MAD-Ridge (δ13C: KW, H=474.4, df=13, p < 0.05; δ15N: KW, H=311.3, df=13, 

p < 0.05, Fig. 5.4). Pairwise comparisons showed δ13C values of POM-Surf, zooplankton and 

fishes to differ significantly between La Pérouse and MAD-Ridge (p < 0.05 each) (Fig. 5.4). 

The median δ13C and δ15N values of lower trophic level foodweb components: POM-Surf, 

POM-Fmax and zooplankton were greater at MAD-Ridge (δ13C: -23.1, -24.1, -20.9‰; δ15N: 

6.3, 6.1 and 8.9‰, respectively) than at La Pérouse (δ13C: -23.7, -24.1, -22.1‰; δ15N: 5.5, 4.9 

and 7.5‰, respectively) (Fig. 5.4). Gelatinous organisms, crustaceans and fishes displayed 

higher median δ13C values at La Pérouse (-21.5, -18.4 and -18.7‰, respectively) than at MAD-

Ridge (-22.4, -18.6 and -19.1‰, respectively) (Fig. 5.4). Gelatinous organisms, crustaceans, 

squids and fishes also exhibited higher median δ15N values at La Pérouse (5.2, 9.8, 10.7 and 

10.4‰, respectively) than at MAD-Ridge (3.7, 8.8, 9.5 and 10.0‰, respectively) (Fig. 5.4) but 

differences were not statistically significant (p > 0.05 each). The δ13C values of crustaceans, 

squids and mesopelagic fishes encompassed the same narrow range at La Pérouse and MAD-

Ridge (-17.2 to -21.0‰ and -17.1 to -21.1‰, respectively). Gelatinous salps and pyrosomes 

exhibited δ13C values of -18.2 to -21.7‰ at La Pérouse and -19.0 to -23.5‰ at MAD-Ridge. 
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Figure 5.4 Boxplots of δ13C and δ15N values (‰) of the foodweb components POM-Surf, POM-
Fmax, zooplankton (Zoopk), gelatinous organisms (Gel), crustaceans (Crust), squids and 
mesopelagic fishes at La Pérouse (PER) and MAD-Ridge (MAD). Groups having significantly 
different δ13C and δ15N values (‰) are shown by solid blue lines. 
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5.3.3 Relationships between δ13C and δ15N values 

Ascending the foodweb, from POM-Surf to mesopelagic fishes at La Pérouse and MAD-Ridge 

seamounts, there was a general increase in δ13C and δ15N values (Figs. 5.3 and 5.4). There was 

a significantly positive correlation between δ13C and δ15N values of all sampled components 

of the foodweb at La Pérouse and MAD-Ridge seamount stations (p < 0.05), with Spearman 

correlation coefficients of r= 0.74 and r= 0.51, respectively. 

5.3.4 Trophic levels at La Pérouse and MAD-Ridge seamounts 

Albeit small differences in trophic positions between the two methods, they both identified the 

same organisms at the lowest (leptocephali and gelatinous organisms) and highest 

(mesopelagic fishes excluding leptocephali, and squids) trophic positions. For comparison with 

other studies published in the region (Ménard et al., 2014; Annasawmy et al., 2018), the 

additive trophic enrichment model with fixed enrichment factor, TPA, (Eq. 1), is explored in 

further details. 

Leptocephali showed estimated TL values (from Eq. 1) of 1.9 and 1.8 at both La Pérouse and 

MAD-Ridge, respectively (Fig. 5.5a, b). TL values of crustaceans fell between 2.7 (La Pérouse 

and MAD-Ridge: Funchalia sp.) and 3.7 (La Pérouse: Sergestidae; MAD-Ridge: 

Oplophoridae). Squids had TL values of 3.6 (Abraliopsis sp.) and 4.0 (Histioteuthis spp.) at La 

Pérouse. At MAD-Ridge seamount, smaller-sized nektonic squids (26-111 mm DML) 

displayed TL values of 3.2 (Enoploteuthidae) and 3.6 (Abraliopsis sp.), and larger-sized 

nektonic squids (365-367 mm DML) had TL values of 4.0 (Histioteuthis spp.) and 4.8 (O. 

bartramii). TL values of fishes (excluding leptocephali) fell between 3.2 (C. warmingii) and 

4.5 (C. atrata) at La Pérouse and between 2.6 (Decapterus macarellus) and 4.4 (Stomias 

longibarbatus) at MAD-Ridge (Fig. 5.5a, b). Overall, the TL values of the micronekton broad 

categories displayed the same range of TL values at both seamounts. 
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Figure 5.5(a) δ15N (mean ± S.D.) values (‰) and estimated trophic level (TL as estimated from 

the TPA method) of POM-Surf, POM-Fmax, zooplankton, gelatinous and sampled micronekton 
species at the La Pérouse seamount. Taxa are placed in their broad categories and δ15N 
compositions are sorted in ascending order of their values. 
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Figure 5.5(b) δ15N (mean ± S.D.) values (‰) and estimated trophic level (TL as estimated from 

the TPA method) of POM-Surf, POM-Fmax, zooplankton, gelatinous and sampled micronekton 
species at the MAD-Ridge seamount. Taxa are placed in their broad categories and δ15N 
compositions are sorted in ascending order of their values. 

 

5.3.5 Effect of feeding mode of gelatinous plankton and micronekton on stable 

isotope values 

The trophic groups identified by cluster analyses are in general agreement with the postulated 

feeding habits of the group members at both La Pérouse and MAD-Ridge seamounts, although 

significant differences exist when individual species are considered. The cluster analyses based 

on δ13C and δ15N values identified two main groups, designated I and II, and two subgroups 

within group I and group II at La Pérouse and MAD-Ridge (Fig. 5.6a). At La Pérouse, Group 

I included the filter-feeding pyrosomes (IA) and the detritivorous leptocephali (IB) that showed 
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similar δ13C values (-21.5 ± 0.2 and -20.4 ± 0.5‰, respectively) and δ15N values (5.2 ± 0.2 and 

4.9 ± 2.1‰, respectively). Group IIa compared a single salp specimen (δ13C: -18.2‰ and δ15N: 

5.9‰) and an omnivorous crustacean Funchalia sp. with similar δ13C and δ15N values (-18.7 

± 0.6 and 7.5 ± 0.5‰, respectively). All other crustaceans having an omnivorous feeding mode 

displayed greater δ15N values (10.0 ± 1.1‰) and were thus segregated within subgroup IIB 

along with carnivorous mesopelagic fishes and squids (Fig. 5.6a). All values are given in mean 

± S.D. 

  

Figure 5.6(a) Hierarchical clustering (Euclidean distance of normalised data subjected to 
averaged grouping) of δ13C and δ15N values (‰) of sampled gelatinous organisms, 

crustaceans, squids and mesopelagic fishes at La Pérouse seamount. Roman numerals at the 
tree branches identify groups of species belonging to the different trophic guilds: group I– 
filter-feeders and detritivores; group II- omnivores and carnivores; subgroup IA- filter-
feeders; subgroup IB- detritivores; subgroup IIA- filter-feeders and omnivorous crustaceans; 
subgroup IIB- omnivorous and carnivorous micronekton. 

 
At MAD-Ridge, Group I included filter feeding pyrosomes (IA) and salps, and detritivorous 

leptocephali (IB) that exhibited the most depleted δ13C and δ15N values relative to omnivorous 

and carnivorous micronekton (Fig. 5.6b). Group II was subdivided into Group IIA and included 

the squid O. bartramii, the fishes Promethichthys prometheus and S. longibarbatus, all three 

having carnivorous feeding modes with similar δ13C values and the highest δ15N values for the 
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greatest sizes. The single large squid Histioteuthis spp. (DML: 367 mm) showed a high δ15N 

value of 10.7‰ and a more depleted δ13C value of -21.0‰ compared with O. bartramii, P. 

prometheus and S. longibarbatus. This squid was hence segregated from subgroup IIA. All 

other omnivorous and carnivorous organisms exhibited lower δ15N values (Fig. 5.6b) and were 

thus included within subgroup IIB. Cluster analyses run on δ13C and δ15N values of 

micronekton and excluding the outliers salps, pyrosomes, Funchalia sp. and leptocephali, also 

segregated individuals according to their feeding mode at MAD-Ridge (p < 0.05). 

 

 

Figure 5.6(b) Hierarchical clustering (Euclidean distance of normalised data subjected to 
averaged grouping) of δ13C and δ15N values (‰) of sampled gelatinous organisms, 

crustaceans, squids and mesopelagic fishes at MAD-Ridge. Roman numerals at the tree 
branches identify groups of species belonging to the different trophic guilds: group I– filter-
feeders and detritivores; group II- omnivores and carnivores; subgroup IA- filter-feeders; 
subgroup IB- detritivores; subgroup IIA- highest trophic level mesopelagic fishes at MAD-
Ridge; subgroup IIB- omnivorous and carnivorous micronekton.  

5.3.6 Effect of size of micronekton on δ15N values 

The δ15N values of individuals were significantly influenced by their sizes at both La Pérouse 

(F1,113=6.695, p < 0.05) and MAD-Ridge (F1, 160= 23.33, p < 0.05), with increasing δ15N values 

as the size of the organisms increased (La Pérouse: δ15Ngelatinous and micronekton <100 mm= 8.83 + 0.02 

x Size; MAD-Ridge: δ15N gelatinous and micronekton <100 mm= 7.33 + 0.03 x Size). Eight micronekton 
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species were further selected according to sample size, their common occurrence at both 

seamounts, their wide body length ranges, differing feeding modes and vertical migration 

patterns. The δ15N values of the selected species Sigmops elongatus (carnivore; diel vertical 

migrator) and C. warmingii (omnivore; diel vertical migrator) were significantly influenced by 

their lengths (Fig. 5.7a, 5.7b, Table 5.2), with higher δ15N values at La Pérouse than at MAD-

Ridge. The δ15N values of the fish A. aculeatus (carnivore, mid-water migrant) and of the 

crustacean Funchalia sp. (omnivore, diel vertical migrator) were significantly influenced by 

their lengths but were not significantly different between La Pérouse and MAD-Ridge (Fig. 

5.7c, 6.7d, Table 5.2). The mesopelagic fish D. suborbitalis and the squid Abraliopsis sp. (both 

carnivores and diel vertical migrators) exhibited the same range of δ15N values irrespective of 

size at La Pérouse and MAD-Ridge (Fig. 5.7e, 5.7f, Table 5.2). For the same body length, 

Abraliopsis sp. showed higher δ15N values at La Pérouse relative to MAD-Ridge (Fig. 5.7f). 

Models fitted to C. sloani (carnivore, diel vertical migrator) and leptocephali (detritivore, 

migrant or non-migrant depending on species) were not significant (Fig. 5.7g, 5.7h, Table 5.2). 

The detritivorous leptocephali had varied δ15N values irrespective of size and irrespective of 

the sampling location. 
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Figure 5.7 δ15N values (‰) of (a) fish: Sigmops elongatus, (b) fish: Ceratoscopelus warmingii, 
(c) fish: Argyropelecus aculeatus, (d) crustacean: Funchalia sp., (e) fish: Diaphus suborbitalis, 
(f) squid: Abraliopsis sp., (g) fish: Chauliodus sloani, (h) fish: leptocephali, plotted against 
size in mm [standard length for (a)-(c), (e), (g)-(h); abdomen and carapace length for (d); 
dorsal mantle length for (f)], at La Pérouse (squares) and MAD-Ridge (stars). Simple linear 
regressions for δ15N values versus size are plotted for (a)-(d).
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Table 5.2 Linear regression models fitted to δ15N values (‰) with respect to body length in mm (SL, standard length for fishes; TL, total length 

for leptocephali larvae; ACL, abdomen and carapace length for the crustacean; DML, dorsal mantle length for the squid specimen) and the 
seamount variable (whether values were significantly different between La Pérouse and MAD-Ridge) of 8 micronekton taxa- Sigmops elongatus 
(fish), Ceratoscopelus warmingii (fish), Argyropelecus aculeatus (fish), Funchalia sp. (crustacean), Diaphus suborbitalis (fish), Abraliopsis sp. 
(squid), Chauliodus sloani (fish), and leptocephali (fish). 

Taxon Regression equation Adjusted 

r2 (%) 

F-

statistic 

Degrees 

of 

freedom 

P-value 

Sigmops elongatus δ15N = 9.15 + 0.0157 x SL – 1.2210 x seamount 85.2 46.0 13 < 0.05 for size and seamount 
 La Pérouse: δ15N = 9.15 + 0.0157 x SL     
 MAD-Ridge: δ15N = 7.93 + 0.0157 x SL      

Ceratoscopelus warmingii δ15N = 7.61 + 0.0249 x SL - 0.9521 x seamount 72.4 18.0 11 < 0.05 for size and seamount 
 La Pérouse: δ15N = 7.61 + 0.0249 x SL     
 MAD-Ridge: δ15N = 6.66 + 0.0249 x SL     

Argyropelecus aculeatus δ15N = 8.57 + 0.0331 x SL - 0.0272 x seamount 16.5 2.87 17 < 0.05 for size;  
     > 0.05 for seamount 

Funchalia sp. δ15N = 4.23 + 0.0496 x ACL - 0.3460 x seamount 72.7 13.0 7 < 0.05 for size;  
     > 0.05 for seamount 

Diaphus suborbitalis δ15N = 11.5 - 0.0151 x SL + 0.7594 x seamount 43.8 4.51 7 > 0.05 for size;  
     < 0.05 for seamount 

Abraliopsis sp. δ15N = 10.3 + 0.0069 x DML - 1.006 x seamount 56.2 8.06 9 > 0.05 for size;  
     < 0.05 for seamount 

Chauliodus sloani δ15N = 10.2 - 0.0065 x SL + 0.7431 x seamount 12.5 1.64 7 > 0.05 for size and seamount 
Leptocephali larvae δ15N = 7.18 - 0.0170 x TL – 1.1971 x seamount 25.3 2.69 8 > 0.05 for size and seamount 
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The δ15N values of omnivorous/ carnivorous fishes collected in the vicinity of the La Pérouse 

and MAD-Ridge seamounts and in the southern Mozambique Channel were significantly 

influenced by individual body size (F3,171 = 10.3, Adjusted R2=13.8, p < 0.05) (Fig. 5.8a). 

However, there were no significant influence of body size on the δ15N values of seamount 

flank- and summit-associated fish species D. suborbitalis (La Pérouse and MAD-Ridge), B. 

fibulatum, D. knappi and C. japonicus (F1,10= 0.07, p > 0.05) at MAD-Ridge. These seamount 

flank- and summit-associated fish species (Cherel et al., 2020) exhibited minimum and 

maximum δ15N values of 9.8‰ (B. fibulatum) and 11.2‰ (D. suborbitalis) for individuals 

ranging in size from 38 mm (D. suborbitalis) to 328 mm (C. japonicus) (Fig. 5.8b). Despite 

the differing sizes of these seamount flank- and summit-associated fish species, they exhibited 

an estimated TL value (TPA model) of ~4 at both La Pérouse and MAD-Ridge pinnacles. 
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Figure 5.8(a) δ15N values (‰) of mesopelagic fishes from La Pérouse and MAD-Ridge 
seamount vicinities (LP_Vicinity and MR_Vicinity respectively) and from the Mozambique 
Channel, plotted against their standard lengths (mm). Simple linear regressions are plotted. 
(b) Bivariate plots of δ15N and δ13C values (‰) for selected seamount flank- and summit- 
associated fish species D. suborbitalis at La Pérouse (LP) and B. fibulatum, D. knappi, C. 
japonicus and D. suborbitalis at MAD-Ridge (MR) seamounts. Standard lengths are given in 
mm. 

 

5.3.7 Effect of time of day on δ13C and δ15N values at MAD-Ridge seamount 

Gelatinous and micronekton organisms sampled at MAD-Ridge exhibited similar δ13C values 

(-19.6 and -19.4‰ respectively) during day and night (W= 3055.5, p > 0.05). However, 

individuals collected during daylight showed higher median δ15N values (9.22‰) than those 

collected at night (8.12‰) (W= 4757.5, p < 0.05). 
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5.3.8 Seamount effect on δ13C and δ15N values of omnivorous/carnivorous fishes 

The δ13C and δ15N values of omnivorous/carnivorous fishes had overlapping ranges at La 

Pérouse flank and vicinity stations; as well as overlapping ranges at MAD-Ridge flank, summit 

and vicinity and Mozambique Channel stations (Fig. 5.9). There were no significant differences 

in δ13C (W= 1619, p > 0.05) of omnivorous/carnivorous fishes collected between flank stations 

and the vicinity of La Pérouse seamount, whereas a significant difference was observed for 

δ15N values between flank (median: 10.1‰) and vicinity (median: 10.8‰) stations (W= 1876, 

p < 0.05). There was also no significant differences in δ13C values (KW, H= 1.0, df= 2, p > 

0.05) of omnivorous/carnivorous fishes collected in the southern Mozambique Channel, the 

vicinity, flank and summit of MAD-Ridge. However, there was a significant difference in δ15N 

values (KW, H= 8.5, df= 3, p > 0.05) of omnivorous/carnivorous fishes collected from the 

southern Mozambique Channel (median: 10.6‰) and in the vicinity of MAD-Ridge (median: 

10.0‰). 

 

Figure 5.9 Boxplots of δ13C and δ15N values (‰) of omnivorous/carnivorous mesopelagic 
fishes at La Pérouse flank (n = 50 samples) and vicinity (n = 60 samples) stations and, MAD-
Ridge vicinity (n =91 samples), flank (n = 38 samples) and summit (n = 4 samples), and 
stations from the southern Mozambique Channel (n = 28 samples). Outliers are shown as star 
symbols. 
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5.4 Discussion 

To our knowledge, this thesis is the first to investigate trophic interactions of mesopelagic 

communities at La Pérouse and MAD-Ridge seamounts using δ13C and δ15N stable isotopes. 

The foodweb components POM-Surf, POM-Fmax, zooplankton, gelatinous organisms and 42 

and 49 taxonomic groups of micronekton were identified at La Pérouse and MAD-Ridge, 

respectively. Despite the low sample sizes for some species, the datasets used in this study 

provide a first overview of the trophic relationships of micronekton at both seamounts. 

5.4.1 Sampling bias and constraints 

The full suite of foodweb components could not be sampled at both seamounts because of trawl 

gear catchability, selectivity and net avoidance of some species of squids and larger fishes. 

Stable isotopes have numerous limitations in the extent to which they can be used to elucidate 

complex foodweb dynamics. Isotopic baselines vary seasonally and spatially (Ménard et al., 

2014), and organisms or tissues within a single individual may incorporate the isotopic signal 

of their diets at varying rates, thereby influencing the stable isotope values of individuals 

(Martínez del Rio et al., 2009). The use of pelagic tunicates as isotopic baseline in TL 

calculations can also be problematic because pelagic tunicates may be members of an alternate 

microbial foodweb (Pakhomov et al., 2019). There have been concerns in previous studies of 

the inappropriate use of fixed discrimination factors for trophic position estimations (Caut et 

al., 2009; Hussey et al., 2014). However, as shown in Olivar et al. (2019) for myctophid species, 

and in this study for zooplankton and micronekton, the methods for trophic position estimates 

maintained the essential differences among all species. Furthermore, the δ15N values of 

gelatinous plankton and micronekton were significantly different between day and night 

samples at MAD-Ridge. This was probably due to the sampling depth, because night-time 

samples were collected in the shallow, intermediate and deep layers, whereas daylight samples 

were collected mostly in the deep layer (apart from two leptocephali collected in the shallow 

depth category). Previous studies found higher δ15N and δ13C values with depth, which have 

been linked to the increase of δ15N in POM with depth (Kolasinski et al., 2012; Fanelli et al., 

2013). However, as the IYGPT net had no closing device, the effect of sampling depth on δ13C 

and δ15N values of individuals could not be investigated further. 

Recent studies have cautioned against the use of a fixed additive nitrogen enrichment factor of 

~3.2-3.4‰ that is commonly used to estimate the trophic position of an organism relative to its 

diet. Caut et al. (2009) showed that the consumer taxonomic group and consumer tissue 

significantly affect the discrimination factor used in trophic level calculations, and Hussey et 
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al. (2014) stressed that the enrichment between consumers and their primary prey items 

becomes narrower in the upper parts of a food chain. Bastos et al. (2017) developed a novel 

method using food-specific trophic discrimination factors to estimate trophic positions of 

omnivorous fishes given that plant-based and animal-based materials in diets are not 

assimilated in the same manner. Olivar et al. (2019) observed small variations in trophic level 

calculations of mesopelagic fishes when using alternative models to estimate trophic positions. 

However, those authors also concluded that the important differences among species are 

retained by all trophic models, similarly to the findings of this study. 

5.4.2 Trophic interactions at La Pérouse and MAD-Ridge seamounts 

Particulate organic matter collected at the surface generally consists of phytoplankton, bacteria, 

faecal pellets and detritus (Riley, 1971; Saino & Hattori, 1987; Fabiano et al., 1993; Dong et 

al., 2010; Liénart et al., 2017). The δ13C values of POM (collected at the surface and at the 

Fmax depth) were different at the La Pérouse and MAD-Ridge seamounts. δ13C baselines can 

be affected by various processes such as latitude, nutrient source, depth, ocean mixing and 

primary productivity (Fry, 2006). Research has found that chlorophyll a concentrations 

explained the variability in POM δ13C values within the EAFR province but not in the ISSG 

(Annasawmy et al., 2018). Surface chlorophyll a concentrations at MAD-Ridge (within the 

EAFR province) was greater than at La Pérouse (within the ISSG) all year round (see Chapter 

4), likely a result of terrestrial input of nutrients from the Madagascar landmass, upwelling 

events on the shelf to the south of Madagascar (Ramanantsoa et al., 2018), offshore advection 

of this shelf productivity through cross-shelf transport (Noyon et al., 2018) and vertical mixing 

in the mesoscale eddy system over MAD-Ridge (De Ruijter et al., 2004; Vianello et al., 2020). 

High levels of photosynthetic rate (currently occurring at the south Madagascar upwelling and 

being transported south), would induce higher δ13C POM values at MAD-Ridge compared with 

the oligotrophic La Pérouse (Fry, 1996; Savoye et al., 2003). Surface POM at MAD-Ridge 

might have possibly been both of marine and terrestrial origin, yielding higher δ13C values 

relative to surface POM at La Pérouse, which might have consisted of phytoplankton with no 

terrestrial POM input. 

The δ13C-δ15N correlations of all foodweb components were not relatively strong at the La 

Pérouse and MAD-Ridge seamounts (r = 0.74 and 0.51 respectively) at the times of the cruises. 

A strong correlation during periods of high productivity would have supported the hypothesis 

of a unique and isotopically homogeneous pelagic food source (Fanelli et al., 2013; Papiol et 

al., 2013; Preciado et al., 2017), i.e. a single source of carbon for plankton (Fanelli et al., 2009). 
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The relatively weaker correlation observed in this study suggests a wide array of sources of 

production sustaining the different assemblages once the main input from surface production 

has decreased (Fanelli et al., 2011a, b; Papiol et al., 2013), or exploitation of organic matter at 

different stages of degradation from fresh phytodetritus to highly recycled (Fanelli et al., 2009), 

or refractory materials such as chitin from copepod exoskeleton becoming abundant in sinking 

marine snow or inorganic carbonates (Polunin et al., 2001). This would be the case in low 

productive environments such as the ISSG, where production at La Pérouse would be reduced 

in September and thus zooplankton would have to expand their food spectrum, as demonstrated 

by the larger span of their niche widths over the δ13C range. Alternatively, the δ13C-δ15N 

correlations could reflect temporal variations in the baseline isotope values coupled with 

varying rates of isotopic incorporation (Fanelli et al., 2009, 2011b, 2013). Higher trophic level 

organisms such as large crustaceans and fishes reportedly do not show seasonal patterns in their 

isotope values owing to their much slower tissue turnover rates (Polunin et al., 2001). 

Additional seasonal studies are required to investigate POM and resulting zooplankton δ13C 

and δ15N signatures in July when surface oceanic phytoplankton production is enhanced within 

the ISSG and EAFR provinces. 

Among the mesopelagic organisms sampled, gelatinous plankton exhibited the lowest trophic 

level (~2), crustaceans showed an intermediate trophic level (~3), and smaller squids and 

mesopelagic fishes exhibited TL values between 3 and 4, as estimated from the TPA method. 

Assuming a fixed and additive trophic fractionation of 3.2‰ (for comparison with other SWIO 

studies), the overall range of δ15N values implied a two-step (3 trophic levels) and three-step 

(four trophic levels) pelagic food chain at La Pérouse and MAD-Ridge seamounts, 

respectively. Unfortunately, no top predators were sampled during these cruises to provide 

information on higher trophic level organisms. Earlier studies within the EAFR province, 

showed swordfish Xiphias gladius collected off the coast of Madagascar to have a TL of ~4.7 

(δ15N: 14.0 ± 0.59‰). Specimens collected within the ISSG province had a TL of ~5.2 (δ15N: 

15.1 ± 0.36‰) (Annasawmy et al., 2018). Several authors described the number of trophic 

levels averaging between four and six in marine ecosystems, from primary consumers to top 

predators, and appearing higher in coastal environments, reefs and shelves and lower in oceanic 

upwelling systems (Arreguín-Sánchez et al., 1993; Browder, 1993; Christensen & Pauly, 1993; 

Bulman et al,, 2002). Similar to those studies, it seems that both La Pérouse and MAD-Ridge 

seamounts exhibit trophic levels typical of oceanic systems, although small variations may 
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exist in the δ13C and δ15N values of an organism’s tissues according to various environmental, 

behavioural and physiological factors (Ménard et al., 2014; Annasawmy et al., 2018). 

5.4.3 Influence of feeding mode and size on δ13C and δ15N values 

The trophic guilds established at La Pérouse and MAD-Ridge seamounts were segregated in 

terms of δ13C and δ15N values, from depleted (detritivores and filter-feeders) to enriched 

(omnivores and carnivores) isotope values, highlighting the fact that these trophic guilds 

consist of species that exploit distinct classes of resources (Bulman et al., 2002; Papiol et al., 

2013; Choy et al., 2016). The large range of δ13C values (~-17 to - 23‰) when gelatinous 

organisms are considered together with crustaceans, squids and mesopelagic fishes suggests 

that these organisms exploit different sources of production, thus giving rise to different trophic 

pathways (Ménard et al., 2014). Gelatinous filter-feeders such as salps and pyrosomes ingest a 

variety of suspended particles (Harbou, 2009; Conley, 2017) and leptocephali include a wide 

range of species feeding on detrital material (Otake et al., 1993) such as larvacean houses and 

faecal pellets (Lecomte-Finiger et al., 2004; Feunteun et al., 2015) and hence exhibited depleted 

δ13C values relative to other micronekton broad categories. Species depleted in 13C reportedly 

feed near the base of the chain and are closely associated with plankton relative to fishes with 

higher δ13C values (Polunin et al., 2001). 

Crustacean taxa were at intermediate trophic levels at both seamounts, below that of strict 

carnivores and above that of detritivores or filter-feeding organisms. Some species of 

crustaceans would prey on chaetognaths (Heffernan & Hopkins, 1981), molluscs, olive-green 

debris containing phytoplankton and protists (Hopkins et al., 1994) and they would share 

common food sources with mesopelagic fishes by foraging on copepods, decapods and 

euphausiids (Fanelli et al., 2009). Similar to previous studies conducted in the SWIO (Ménard 

et al., 2014; Annasawmy et al., 2018), crustaceans exhibited overlapping isotopic niches with 

carnivorous mesopelagic fishes and squids at both seamounts. The narrow range of δ13C values 

and the greater overlap of isotopic niches between crustaceans and carnivorous squids and 

mesopelagic fishes at both seamounts might suggest some degree of similarity in the diet 

components with low level of resource partitioning and a high level of competition among 

these broad categories (Fanelli et al., 2009) or alternatively, different diets but with prey items 

having similar isotopic compositions. 

Whereas lower trophic level components, POM-Fmax and zooplankton showed significantly 

different and higher δ15N values at MAD-Ridge relative to La Pérouse (most likely because of 
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differing productivity and fast turnover rate of these organisms), higher trophic level 

components such as crustaceans, squids and fishes showed no significant differences in their 

δ15N values between the two seamounts. There are several hypotheses for similar isotopic 

signatures of higher trophic levels when baseline levels differ. Firstly, the sampled organisms 

might not have had time to incorporate the isotopic composition of their most recent diets, 

especially if transient productivity bouts had impacted the density or composition of their diet. 

Whereas some studies reported tissue turnover rates of ~0.1-0.2% per day in deep-sea fishes 

(Hesslein et al., 1993), other studies showed a lack of tissue turnover information in more 

specific mesopelagic families including Myctophidae and Stomiidae (Choy et al., 2012). 

Second, the difference in the δ15N values of POM and zooplankton observed at La Pérouse and 

MAD-Ridge, although significant, may have been too negligible to be reflected in the δ15N 

values of higher trophic levels. Third, the number of squid and crustacean specimens analysed 

for stable isotopes might not be large enough to reflect the full diversity in the isotopic 

signatures, and hence the apparent lack of variations in δ15N values for these individuals 

between the two seamounts. Finally, as a result of movements, zooplankton grazers and 

subsequent trophic levels might have fed on prey components that are not those sampled in the 

water column, leading to a mismatch in isotopic signatures between lower and higher trophic 

levels. 

In this study, δ15N values of micronekton were correlated to body size. This phenomenon was 

observed in various organisms such as phytoplankton, zooplankton, decapods and fishes and 

across numerous studies (Sholto-Douglas et al., 1991; France et al., 1998; Waite et al., 2007; 

Ventura & Catalan, 2008; Hirch & Christiansen, 2010; Choy et al., 2012, 2015; Papiol et al., 

2013) and is probably attributable to size-related predation. As organisms grow in size, they 

can feed further up the foodweb on larger prey with greater δ15N values (Parry, 2008; Ménard 

et al., 2014). For those species whose δ15N values (S. elongatus, C. warmingii and Abraliopsis 

sp.) were significantly influenced by size, their δ15N values were greater (around 1‰ 

difference) at La Pérouse than at MAD-Ridge for the same body lengths. As suggested in Parry 

(2008), if the δ15N values, and hence the TL of an organism, are influenced by size, then the 

δ15N signal will also depend on baseline values and the variables that affect an organism’s size 

such as feeding mode, growth rate, body condition and available prey items. As δ15N values of 

POM and zooplankton were higher at MAD-Ridge than at La Pérouse, we hypothesize that 

those intermediate TLs at the oligotrophic La Pérouse seamount had a different trophic 
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functioning, with the diet of those species being based on a larger proportion of higher TL prey 

than at MAD-Ridge. 

Body size did not have an effect on δ15N values of leptocephali that encompass a wide range 

of species having a detritivorous and opportunistic feeding mode at both seamounts. Such lack 

of effect was also observed for C. sloani individuals ranging in size from 66 to 184 mm at La 

Pérouse and from 77 to 199 mm at MAD-Ridge. These individuals are semi-migrants, caught 

in deep and intermediate trawls during both day and night. Individuals 45-178 mm long feed 

on myctophids and other fish species (Utrecht et al., 1987; Butler et al., 2001) with prey items 

being more than 63% of their own length (Clarke, 1982). Smaller individuals were reported to 

feed on euphausiids (Butler et al., 2001). The trawls in this study failed to capture smaller C. 

sloani individuals that may have had a different diet and possibly different δ15N values relative 

to larger individuals. There might also be a trophic plateau whereby subsequent increases in 

trophic position with size are not possible due to physical constraints on the organism or lack 

of appropriate prey of higher trophic levels, as was observed with O. bartramii specimens from 

the central north Pacific (Parry, 2008). 

5.4.4 Seamount effect on δ13C and δ15N values of fish species 

Omnivorous/carnivorous fishes sampled in the southern Mozambique Channel exhibited 

slightly enriched δ15N values relative to those sampled in the vicinity of the MAD-Ridge 

seamount. Productivity in the southern Mozambique Channel may be both entrained from the 

African landmass and locally generated within mesoscale eddies, hence leading to enhanced 

chlorophyll a concentration, micronekton abundances and enriched δ15N values within tissues 

of micronekton (Tew-Kai & Marsac, 2009; Annasawmy et al., 2018). For an increase in 

phytoplankton biomass to take place at the seamounts, physical processes leading to retention 

(e.g. Taylor columns trapping a body of water), enrichment (e.g. localised upwelling and uplift 

of nutrients) and concentration of productivity must co-occur (Bakun, 2006). However, as seen 

at La Pérouse and MAD-Ridge seamounts, the current speeds were too strong during the 

cruises, and the seamount structures unfavourable for Taylor column formation and for 

significant retention and assimilation of productivity. This would have inhibited any 

subsequent energy transfer to higher trophic levels, potentially explaining the lack of 

differences in δ15N values between the seamount and the area not influenced by the seamount. 

Seamount-associated fish species D. suborbitalis, B. fibulatum and C. japonicus (Cherel et al., 

2020), sampled at the summit and on the flanks of MAD-Ridge showed similar δ13C, δ15N and 
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TL values irrespective of their size, similarly to D. suborbitalis sampled at La Pérouse. This 

most likely reflects similar food sources at the summit and flanks of both pinnacles or ingestion 

of different prey items having similar isotopic composition. These fishes may associate with 

the La Pérouse and MAD-Ridge summits and flanks owing to enhanced availability of prey 

and/or the quiescent shelters offered by the topography. All seamount-associated fish 

individuals collected on the summit and flanks of La Pérouse and MAD-Ridge with the IYGPT 

net were adults, previously reported to prey on copepods (Go, 1986; Olivar et al., 2019; Vipin 

et al., 2018) and chaetognaths (Appelbaum, 1982), organisms present in similar proportions on 

and away from both seamounts (Noyon et al., 2020). 

Although δ13C and δ15N values may depend on a range of factors, there were few differences 

between δ13C and δ15N values of mesopelagic fishes sampled at La Pérouse and MAD-Ridge 

and those collected in the Indian Ocean, within the oligotrophic ISSG province (A. aculeatus 

δ13C and δ15N values: -18.6 and 9.5‰, C. sloani: -18.1 and 9.5‰, and L. gemellarii: -18.5 and 

9.9‰; Annasawmy et al., 2018) and the western Mozambique Channel (A. aculeatus: -18.4 

and 10.0‰ and L. gemellarii: -18.4 and 11.1‰; Annasawmy et al., 2018). Even though 

mesopelagic fishes exhibit small variations in their δ13C and δ15N values across different 

studies in various oceanic environments, they generally occupy trophic positions between 2 

and 4, irrespective of the approach used to estimate trophic positions (Fanelli et al., 2011b; 

Choy et al., 2012, 2015, 2016; Colaço et al., 2013; Ménard et al., 2014; Valls et al., 2014a,b; 

Denda et al., 2017b; Annasawmy et al., 2018; Olivar et al., 2019). Despite the possible bias 

induced by the different time-scales in sampling (Mill et al., 2008), within a stable isotope 

approach, the trophic positions of mesopelagic fishes across numerous studies confirmed 

similar dietary patterns and food sources with similar isotopic compositions. Hence, these 

mesopelagic fish species by their opportunistic feeding mode may play a similar trophic role 

across different environments (Olivar et al., 2019). 

5.5 Concluding Remarks 

This study has shown that despite the different productivity at the two shallow seamounts and 

the significant differences in lower trophic level δ13C and δ15N values, crustaceans, smaller-

sized squids and mesopelagic fishes, because of their varied feeding modes, occupy trophic 

positions between 3 and 4. Specimen size had an influence on the δ15N values of most 

individuals, although that also depended on the life strategy and feeding mode of the species 

considered. The δ13C and δ15N values of mesopelagic organisms sampled during both cruises 

reflected those of typical oceanic systems and the seamounts did not seem to have any impact 
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on the overall isotopic signatures of the mesopelagic taxa sampled. However, the few 

seamount-associated/resident fishes sampled showed similar δ15N values and trophic levels 

irrespective of their size at the summits and flanks of the pinnacles. La Pérouse and MAD-

Ridge seamounts may hence be important foraging grounds for the few taxa that preferentially 

associate with their slopes and summits, and thus benefit from the varied habitat types that the 

seamounts offer relative to the open ocean environment. 
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6.1 Introduction 

This research project was motivated by the fact that SWIO seamounts are currently subject to 

anthropogenic pressures resulting from fishing and pollution and are potentially at risk of future 

mining and dredging activities while still being poorly explored scientifically. Two research 

cruises were conducted in 2016 at the La Pérouse and MAD-Ridge seamounts with the aims of 

studying the current-topography interactions and the resulting biological responses of 

phytoplankton, mesozooplankton, ichthyoplankton and micronekton communities. 

6.2 Review of the thesis aims and objectives 

The overarching aim of this thesis was to investigate the patterns among micronekton 

communities at the La Pérouse and MAD-Ridge seamounts in the SWIO. A combination of 

satellite, in situ environmental, mesopelagic trawl, acoustic and stable isotope data were used 

to address the thesis objectives. Satellite and in situ environmental data were employed to 

describe the prevailing environmental patterns at both seamounts. Mesopelagic trawl and 

acoustic data were used to investigate the assemblages and vertical and horizontal distributions 

of micronekton as influenced by the pinnacles and the physical oceanographic processes. Stable 

isotope data were used to study the trophic relationships of micronekton with respect to 

zooplankton and POM at both seamounts. 

It was first necessary to provide an overview of all the physical processes that might result 

from current-topography interactions and the resulting biological responses recorded from 

phytoplankton, zooplankton, micronekton communities and associated/ resident fishes at 

seamounts that have been extensively studied in the Atlantic and Pacific basins (Chapter 1). 

Since the geographic focus of this study is the SWIO, Chapter 2 provided an overview of the 

ridge systems in the region, along with the physical oceanographic processes that likely have 

an impact on all trophic levels. Special focus has been paid to top predators of micronekton, 

which are fished in the region. Chapter 2 also outlined the previous seamount cruises in the 

region and the main results on the assemblages of lower trophic level compartments- 

phytoplankton, mesozooplankton and ichthyoplankton communities at La Pérouse and MAD-

Ridge. 

The horizontal and vertical patterns in micronekton’s distributions as influenced by physical 

oceanographic processes and topographic features were investigated in Chapter 3. Theoretical 

calculations were implemented to determine the likelihood of Taylor column formation at La 

Pérouse and MAD-Ridge. Micronekton’s DVM patterns were revisited in light of the acoustic 

and environmental data collected. 
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Chapter 4 aimed at investigating the year-round sea surface productivity at La Pérouse and 

MAD-Ridge using satellite data. The assemblages of the micronekton communities at the 

summits, flanks and vicinities of the seamounts were studied, along with the scattering 

intensities in the SSL and DSL. A combination of mesopelagic trawl data and multi-frequency 

acoustic visualisation technique have been used to investigate the composition of the SSL and 

the dense aggregations observed over the summit of MAD-Ridge. Micronekton’s vertical and 

horizontal distributions and the different migration strategies of various species are analysed 

in more detail. 

Chapter 5 investigated the trophic position of several micronekton taxa with respect to other 

components of the foodweb such as zooplankton and POM at both La Pérouse and MAD-

Ridge. The various factors possibly influencing the isotopic composition of a consumer’s tissue 

are also discussed. 

6.3 La Pérouse and MAD-Ridge seamount ecosystems 

Both the La Pérouse seamount, located to the northwest of Réunion Island and MAD-Ridge, 

located to the south of Madagascar, represent elevated topographies in an otherwise deep ocean 

that extends to 2000 and 5000 m in some places (see Fig. 2.15). The La Pérouse seamount 

which has been created by a volcanic hotspot, is not part of a ridge system unlike MAD-Ridge 

that is bounded by several other topographic features along the Madagascar Ridge. Both 

seamounts have shallow summits that extend into the euphotic zone, with the summit of La 

Pérouse being well above the mean depth of the maximum fluorescence. The shape of the 

summits of both pinnacles also differ, with La Pérouse being crescent-shaped and MAD-Ridge 

being circular. 

Both seamounts are located in two different oceanographic regimes and biogeochemical 

provinces, characterised by different mesoscale activities and primary productivity. Indeed, 

annual sea surface chlorophyll a concentrations at MAD-Ridge were twice greater than at La 

Pérouse all year-round, despite the same seasonal patterns in both regions. A peak in 

productivity occurs throughout the region in austral winter (July) as a result of intense mixing 

caused by the austral winter trade winds, as opposed to lower wind stress recorded at the time 

of the La Pérouse and MAD-Ridge cruises (spring and summer). Furthermore, being located 

in the ISSG province, the La Pérouse seamount is under the influence of the oligotrophic 

conditions of this gyre. The large-scale anticyclonic rotation of the gyre causes downwelling 

and limited supply of nutrients or biogenic pigments to the sunlit zone, hence decreasing 

productivity all year-round (Jena et al., 2013). The MAD-Ridge seamount, being found in the 



Chapter 6: General Discussion and Conclusion 

209 

EAFR province and within an “eddy-corridor” to the south of Madagascar, experiences higher 

productivity and mesoscale activities all year round. 

As seen in Chapters 1 and 3, seamounts may bifurcate, trap, split, rebound or destroy eddies. 

La Pérouse was located at the edge of a cyclonic eddy with an average speed of 12 km per day 

during the first part of the cruise (Marsac et al., 2020), and did not seem to have any substantial 

effects on the eddy dynamics. MAD-Ridge seamount was frequently crossed by mesoscale 

eddies with 38.5%, 25.4% and 30% dipoles, cyclones or anticyclones occurrences, respectively 

within a 90 km radius from the summit, between 1993 to 2016 (Vianello et al., 2020). During 

MAD-Ridge cruise Legs 1 and 2, a cyclonic-anticyclonic eddy dipole was located near the 

seamount, with the anticyclone positioned on the pinnacle. Altimetry data tracked both eddies 

back to the 12th of November with the dipole being fully formed but still remaining attached to 

the EMC (Vianello et al., 2020). The dipole was subsequently detached from the Madagascar 

coast and travelled south-westward within the MAD-Ridge seamount area where it remained 

trapped for two weeks. The anticyclonic part was subsequently split into two cores on the 7th 

of December before dissipation. Another similar dipole was then shown to interact with MAD-

Ridge seamount (Vianello et al., 2020). 

Eddies formed off the Madagascan coast trap water masses from the EMC and possibly larvae 

from the surroundings, which are then advected to the MAD-Ridge region (Crochelet et al., 

2020). These vortices maybe trapped on the seamount for several weeks. Eddy trapping or 

splitting depend on a combination of factors related to the potential vorticity anomaly 

associated with the pinnacle, the steepness of the seamount, the distance between the vortex 

and the seamount, the vortex radii, among other factors (Herbette et al., 2003). The fact that 

eddies have to travel through uneven and hilly dynamic topography along the Madagascar 

Ridge may reduce their potential vorticity by dissipation of the energy whenever the vortices 

encounter a steep bottom, eventually leading to their splitting and/or decay. The MAD-Ridge 

seamount is sufficiently close to the site of eddy formation off the Madagascan coast to allow 

the eddies-entrained water masses and biological productivity to reach the pinnacle before 

eventually splitting and/or decaying. Due to the high occurrences of eddies in the region; this 

process seems to be a common phenomenon for the resident fauna at MAD-Ridge. 

As seen in Chapter 1, current-topography interactions may also lead to the formation of 

isopycnal doming, Taylor columns, tidal amplifications, internal waves and enhanced vertical 

mixing. These processes may trigger a biological response from phytoplankton communities. 

No isopycnal doming was observed from temperature, salinity and density fields over the 
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summit of MAD-Ridge possibly due to the anticyclone. Doming is generated when the fluid is 

forced to rise over the topographic feature. Due to the anticyclonic rotation of the eddy at 

MAD-Ridge, fluid was depressed instead. As for the La Pérouse seamount, the available 

datasets from the cruise do not allow the accurate determination of whether an isopycnal 

doming occurred over the pinnacle. Based on theoretical calculations, Taylor columns are not 

likely to be formed over the La Pérouse and MAD-Ridge seamounts most likely because of a 

combination of factors related to the seamounts’ shapes/sizes, depth of summit (as in the case 

of La Pérouse that is shallow) and the prevailing current speeds. 

As shown in Chapter 1, tides may also interact with topographic features resulting in the 

formation of closed circulation cells, internal waves, flow rectification and trapped waves. 

Weak tidal amplitudes were recorded near La Pérouse, but authors also reported disturbances 

in the distribution of flow in the vertical plane when the flow encountered the flanks of the 

pinnacle (Marsac et al., 2020). MAD-Ridge and some of the other deeper surrounding 

seamounts having summit depths between 500 and 1500 m, were reported to be sites of strong 

vertical mixing due to internal tides. Internal tides occur when strong tidal currents encounter 

a steep topography in a stratified ocean. These internal tides allow nutrients to enter the 

euphotic layer, thus promoting productivity. At MAD-Ridge, mixing mostly occurred on the 

edge of the seamount above the 700 m contour and none occurred above the summit (Koch-

Larrouy et al., in review). Modelling studies have further shown that non-linear processes such 

as lee waves could occur on the side of each seamount within the complex seamount group 

around the MAD-Ridge pinnacle, along with high likelihood of strong propagative internal 

tides (Koch-Larrouy et al., in review). These physical processes were shown to influence the 

biological productivity, with an intensification of chlorophyll in the region of internal tides’ 

generation on the side of the MAD-Ridge seamount (Koch-Larrouy et al., in review). 

La Pérouse seamount is thus located in an oligotrophic environment with no observed 

significant increase in primary production brought about by interactions between the pinnacle 

and the local flow. On the other hand, various physical processes may bring about an increase 

in productivity at MAD-Ridge, (1) advection of productivity from the Madagascan coast by 

mesoscale eddies in the vicinity of the pinnacle, (2) local enrichment processes within 

mesoscale eddies, (3) internal tide generation leading to enhanced vertical mixing and 

productivity. Authors however have reported no observed enrichment/depletion in zooplankton 

biovolumes and abundances over the summits of both La Pérouse and MAD-Ridge relative to 

off-seamount locations (Noyon et al., 2020). No gap formation as described in Chapter 1 were 
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observed either. As seen in Chapter 1, several mechanisms are likely to promote aggregation 

of zooplankton over seamounts: 

(1) the topographic blockage mechanism whereby the predawn descent of some mesopelagic 

taxa is blocked by the topography was not observed over both pinnacles. 

(2) depth retention 

The observed increase of weakly migrating zooplankton communities over a greater depth 

range at MAD-Ridge station 18 would suggest that some organisms were able to maintain their 

depths in the water column possibly to benefit from enhanced foraging opportunities. Authors 

also observed spatial differences in zooplankton abundances with higher productivity on the 

leeward flank of La Pérouse due to small circulation cells being created along the seamount 

slopes. These processes likely enhanced nutrient and chlorophyll availability for zooplankton 

communities that maintained their dwelling depth at this site (Marsac et al., 2020). 

(3) trophic focusing 

This mechanism occurs when prey from the flowing water over the summit become trapped 

and hence support higher trophic levels. The currents speed might have been too strong and the 

likely presence of predators over both seamounts might not have allowed permanent retention 

of zooplankton over the summit. 

Furthermore, as seen in Chapter 4, due to the high risk associated with damaging the sampling 

gears, the summits of both La Pérouse and MAD-Ridge were poorly sampled and hence have 

not captured the full spectrum of mesozooplankton and micronekton communities present at 

these sites, likely biasing net-based estimates. 

Studies have argued against bottom-up transfer of energy from locally generated phytoplankton 

above seamounts since phytoplankton entrapment of the order of weeks/months are thought 

necessary to have a significant effect on zooplankton and micronekton (Genin & Dower, 2007). 

However, MAD-Ridge station 19 close to the seamount slopes exhibited enhanced 

picoplankton biomass. Station 18 showed enhanced records of small weakly migrating 

zooplankton communities over a greater depth range and enhanced fish larval densities and 

micronekton acoustic estimates. Enhanced turbidity on the slopes may have resulted in an 

increase in primary production and currents may have entrained this productivity towards 

station 18. The physical process leading to the biological responses described at station 18 may 

be a quasi-permanent feature at that location or secondary and tertiary trophic levels are able 

to rapidly adapt and preferentially stay at depths with enhanced foraging opportunities. 
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Higher epipelagic and mesopelagic larval densities of different developmental stages were 

recorded over the summits of both pinnacles relative to off-seamount locations (excluding 

station 18) (Harris et al., 2020). As shown in Chapter 1, larvae released over a seamount may 

settle into the benthos (if the larvae are benthic), be swept off by currents or retained by local 

physical processes. The fact that MAD-Ridge summit showed higher larval densities relative 

to off-seamount locations, mostly of the Myctophidae, Bregmacerotidae, Gonostomatidae and 

Molidae families, would suggest local spawning (Harris et al., 2020). Additionally, although 

the summits of the pinnacles recorded relatively high current speeds, the foraging opportunities 

or specific habitat structure with possibility of shelter sites offered by the topography and by 

stony and soft corals may favour the retention of these taxa over the summit. 

Higher species richness and micronekton acoustic densities were also recorded at MAD-Ridge 

relative to La Pérouse and are most likely attributed to a combination of the local physical 

processes discussed previously: (1) productivity and larvae driven from the shelf by eddies, (2) 

productivity associated with mesoscale eddies, (3) internal tides generation and enhanced 

mixing. The enhanced primary productivity at MAD-Ridge may attract zooplankton and hence 

provide greater prey availability for micronekton at MAD-Ridge. Lagrangian models have 

further shown that larval dispersions can be very far between seamounts in the region and their 

coastal systems, with larval distances increasing with pelagic larval duration (Crochelet et al., 

2020). The greater proportion of neritic larvae at MAD-Ridge seamount relative to La Pérouse 

(Harris et al., 2020) seem to support the hypothesis of connectivity between MAD-Ridge and 

the Madagascar shelf. Authors have further noted decreased probability of larvae generated 

from the seamounts reaching their coastal systems (Crochelet et al., 2020). This would suggest 

a dominant “one-way” transport of larvae from the shelf to the seamounts of the Madagascar 

ridge, most likely owing to the prevailing structure of the current circulation system in this 

region as seen in Chapter 2. 

Additionally, as seen in Chapter 4, the SSL consisted of common diel vertically migrating 

organisms at night above the summits of both La Pérouse and MAD-Ridge and also at off-

seamount locations. However, dense aggregations of scatterers were recorded only over the 

summits and flanks of both seamounts during day and night, relative to the open ocean. A 

combination of acoustic and trawl surveys have revealed these dense aggregations to consist 

of taxa known to preferentially associate with seamounts and rocky bottoms such as D. 

suborbitalis (La Pérouse and MAD-Ridge), B. fibulatum, N. macrolepidotus and C. japonicus 

(MAD-Ridge only). Dense aggregations over seamount summits have been previously 

observed from acoustic transects over seamounts of the SWIR, the Equator (Indian Ocean), 
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Southeast Hancock (Pacific) seamounts and the Graveyard seamount complex (New Zealand) 

and may have consisted of a range of mesopelagic and benthopelagic taxa (Parin & Prut’ko, 

1985; Boehlert, 1988; O’Driscoll et al., 2012; Letessier et al., 2017). 

Gonostomatids of adult forms were not sampled over the summits and poorly sampled over the 

flanks of both seamounts relative to myctophids (adult and larval forms) sampled over the 

summit and/or flanks of MAD-Ridge and La Pérouse. This might suggest that, compared to 

myctophids, larval forms of Gonostomatidae would associate with the summit and move to 

surrounding waters in their adult forms. Myctophidae consists of a wider diversity of species 

compared to Gonostomatidae (Davis et al., 2014), that have probably evolved to adapt to a 

wider range of habitat types apart from the open-water oceanic habitat. Unfortunately, trawl 

records of both adult and larval forms of both species are insufficient to accurately test this 

hypothesis. The only notable observation is the high association of large populations of some 

myctophids (D. suborbitalis and B. fibulatum) with seamounts in the Indian and Pacific Oceans 

(Parin & Prut’ko, 1985; Drazen et al., 2011). 

As mentioned in Chapter 1, the interactions of fishes with seamounts may be divided into 

different groups: (1) Diurnal vertically migrating taxa to the surface layer at dusk and that are 

advected to the seamount summit by surface currents, (2) weakly migrant/non-migrant fishes 

that are not able to counter the currents and are advected over the benthopelagic zone around 

seamounts, (3) adults of meso- and bathypelagic species that live in the benthopelagic zone to 

increase feeding efficiency, and (4) “pseudooceanic” or “neritopelagic” species that 

preferentially associate with seamounts and resist advection off the pinnacles. A combination 

of all these interactions are likely to occur at La Pérouse and MAD-Ridge. A strong SSL was 

recorded at night-time over the La Pérouse and MAD-Ridge seamounts. These organisms may 

have been advected to the summit by surface currents, although it might be argued that these 

organisms may benefit from the seamount slopes having the more favourable currents to ascend 

to the surface layer at dusk. 

Large populations of D. suborbitalis have been reported off the slopes of the Equator seamount 

in the Indian Ocean and to ascend in dense schools over the pinnacle at dusk (Parin & Prutko, 

1985). As seen in Chapter 4, D. suborbitalis also seem to preferentially associate with the La 

Pérouse and MAD-Ridge slopes and to ascend to the summit at night. As seen in Chapter 1, to 

prevent advective loss from the summit, these organisms would have to use their active 

locomotory capacities to decrease nearest-neighbour distances and orient themselves in the 

direction of other con-specifics. Some taxa may have shown the “feed-rest” hypothesis, i.e. 
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fishes would rest in the quiescent shelter offered by the topography and sense the environment 

above the pinnacle to take advantage of flow-advected prey. Members of the Priacanthidae 

family, C. japonicus, most likely exhibited this strategy. As shown in Chapter 5, seamount-

associated fishes displayed similar trophic levels irrespective of their body sizes compared to 

some of the other fish species, indicating foraging on the same prey items or on prey having 

similar trophic levels on the summits of the seamounts. The summits of both seamounts may 

be important feeding grounds for some mesopelagic/benthopelagic taxa that are able to resist 

advective loss by strong currents. However, some communities may also have actively avoided 

the seamount due to greater presence of predators. The high densities of various marine 

organisms including seabirds, swordfish and whales being able to predate on a wide range of 

micronekton taxa and at various depths (as seen in Chapter 2), in the vicinities of La Pérouse 

and MAD-Ridge do not exclude the latter hypothesis. 

While fishes have been extensively studied in this (and previous) research work, little attention 

has been paid to cephalopods and crustaceans in the vicinity of seamounts. The scarcity of data 

related to cephalopod ecology at seamounts partly arise due to the inability to efficiently 

capture these organisms in the nets. Unlike fish that tend to be herded by nets, squids are able 

to turn and rapidly escape through the meshes (Clarke, 2007). Top predators are believed to be 

more accurate “samplers” of cephalopods because cephalopod beaks may be identified from 

the stomach contents of their predators (Clarke, 2007). Stomach content of swordfish 

specimens collected close to MAD-Ridge seamount during a 2009 - 2010 survey 

(https://wwz.ifremer.fr/lareunion/Projets/Grands-pelagiques/IOSSS-ESPADON), 

recorded the cephalopods Chiroteuthis spp., O. bartramii and S. oualaniensis and other 

crustaceans and fishes to a lesser extent (unpublished data). However, the problem with this 

approach is that the beaks of cephalopods may persist in the guts of top predators for extended 

periods. Given that many of these top predators are highly mobile, the presence of beaks in 

their guts may not reflect the importance of seamounts as habitats for cephalopods. 

The trawls in this study collected two O. bartramii specimens at MAD-Ridge and a greater 

number of lower trophic level cephalopod taxa. As shown in Chapter 4, Abraliopsis sp. were 

caught in larger numbers relative to all other cephalopod species at the La Pérouse and MAD-

Ridge seamounts’ flanks and in the open ocean. While Abraliopsis sp. were caught at various 

depth categories, they were mostly found in the shallow layer at night, reflecting their diel 

migration strategies. These organisms were also abundantly recorded at the northern portion of 

the SWIR (Laptikhovsky et al., 2017) and were among the dominating species at the Great 

Meteor seamount in the north Atlantic (Diekmann et al., 2006; Diekmann & Piatkowski, 2004). 
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Other families caught at La Pérouse and MAD-Ridge included specimens of the 

Onychoteuthidae, Histioteuthidae, Enoploteuthidae, Cranchiidae, Sepiolidae, 

Ommastrephidae, Chtenopterygidae and Spirulidae families. During the 2009 cruise on the RV 

Dr Fridtjof Nansen, all the above named families were collected at the station closest to MAD-

Ridge seamount (see Laptikhovsky et al., 2017). However, maximum cephalopod diversity 

were associated with the subtropical convergence zone along the SWIR (Laptikhovsky et al., 

2017). 

Nesis (1993) has described several ecological groups of cephalopods that associate with 

seamounts: diel vertically migrating species (such as Abraliopsis sp.-Enoploteuthidae, and 

some Histioteuthidae) that are advected over seamounts at night and descend to deeper depths 

at dawn; nerito-oceanic species (including Enoploteuthidae, Onychoteuthidae and 

Histioteuthidae) that occur over seamounts as paralarvae, juveniles or sub-adults; 

benthopelagic species (such as Sepiolidae- typically benthic or neritic; FAO, 2005) that spawn 

on the bottom but rise into midwater above the seamount; non-migrating species (including 

some Cranchiidae and Octopoteuthidae) advected over the tops or slopes of seamounts by 

currents; pelagic species (including Ommastrephidae) that may be advected over seamounts as 

larvae but avoid areas over the summits of shallow seamounts as juveniles and adults. 

However, as mentioned by Clarke (2007), all the species found associated with seamounts, also 

have circumpolar and ocean wide distributions as shown by the diets of top predators. Only 

very few benthic cephalopod species without pelagic life stages can be considered permanently 

associated with seamounts but even these were reported to have wide distributions and were 

poorly sampled in this and other studies (Clarke, 2007). Some cephalopods are believed to use 

seamounts largely as spawning grounds and as foraging grounds to a lesser extent (Clarke, 

2007). However, due to the paucity of data, this hypothesis remains to be verified. 

Crustaceans also represent an important group within the micronekton that have been poorly 

sampled and identified in this study. The La Pérouse and MAD-Ridge cruises recorded the 

following order and/or families of crustaceans at both seamounts (Oplophoridae, Sergestidae, 

Caridea, Euphausiacea, Penaeidae, Pasiphaeidae, Gnathophausiidae, Phronimidae and 

Cystisomatidae), at La Pérouse only (Hyperridea, Phrosinidae, Scinidae) and Oxycephalidae 

at MAD-Ridge only. Some of these taxa are similar to those sampled along the SWIR during 

the 2009 RV Dr Fridtjof Nansen cruise (see Letessier et al., 2017). Increased numerical 

abundance and species richness of several crustacean taxa were reported over seamounts of the 

SWIR and Walters Shoal relative to off-seamount locations (Letessier et al., 2017). The authors 
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attributed such observations to the topographic blockage mechanism, to organisms being able 

to actively resist advection from the pinnacles and that make use of the different pelagic and 

benthic habitat types that seamounts offer. The mesopelagic trawl datasets in this study did not 

allow this hypothesis to be tested further. Moreover, as seen in Chapters 2 and 4, gelatinous 

taxa seem to have a ubiquitous distribution irrespective of the presence of topographic features. 

Despite the high breakability of species in nets, the sheer numbers and biomasses of whole 

individuals usually dominate the trawl catches or are secondly dominant after the mesopelagic 

fishes. 

The different components of the micronekton have different spatial patterns with respect to 

topographic features such as seamounts. While some species do not seem to be influenced by 

seamounts (such as gelatinous organisms), others may preferentially associate with seamounts 

and prevent advection from the pinnacles or avoid such features (such as few mesopelagic 

fishes and crustaceans). Other species may have oceanic lifestyles but associate with elevated 

topographic features at specific time periods during their life cycle (eg. some fishes and squids 

when they spawn). Micronekton communities also show varied patterns in their horizontal and 

vertical distributions as shown in Chapters 3 and 4 and in their trophic relationships (as shown 

in Chapter 5) and these will be further discussed below. 

6.4 Horizontal and vertical distributions of micronekton 

As shown in Chapters 3 and 4, some micronekton communities migrate horizontally, towards 

sites with enhanced foraging opportunities. The different locomotory capacities of these 

organisms may allow them to respond to enhanced prey availability by swimming to 

advantageous foraging grounds. As shown previously, the different micronekton components 

have different interactions with the La Pérouse and MAD-Ridge seamounts and hence will not 

be discussed further. 

Diel vertical migration of the mesopelagic community represents one of the Earth’s largest 

daily animal migration when taken as a whole. The stimulus for triggering this vertical 

movement is believed to be a change in light intensity (Frank & Widder, 2002). The main 

biological reason is thought to be the enhanced foraging opportunities at the surface and 

decreased predation rate than in daytime. A number of zooplankton taxa which are important 

prey items of micronekton undertake nocturnal migrations (Lampert, 1989). One of the main 

hypothesis put forward to explain the migration of the zooplankton is the presence of larger 

and nutritionally richer algal cells at dusk in the euphotic zone and/ or decreased risk of being 
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detected by a predator by day (Lampert, 1989). Migrant micronekton may hence be following 

the movements of their main prey to the surface at dusk. 

The horizontal and vertical distributions of micronekton may also depend largely on their 

swimming speeds. The sustained swimming speeds of myctophids were estimated at 75 cm s-

1, with larger individuals having higher rates than smaller ones (Benoit-Bird & Au, 2006). 

Shrimps were reported to have sustained swimming speeds of 6 cm s-1, with the rates increasing 

with larger individuals (Benoit-Bird & Au, 2006). However, macroplankton crustaceans, 

micronekton fishes and squids may exhibit different swimming speeds for migrational, 

foraging and escape swimming (Ignatyev, 1996). Organisms having overall body lengths of 1-

5 cm were observed to adapt their swimming speeds with fastest swimming during escape (20-

50 cm s-1 for crustaceans and fishes, and 20-70 cm s-1 for squids), intermediate swimming 

during foraging (2-10 cm s-1 for crustaceans, 2.5-30 cm s-1 for fishes and 30 cm s-1 for squids) 

and lower swimming speeds during migration (0.5–3 cm s-1 for crustaceans, 1.5–10 cm s-1 for 

fishes and 1–3 cm s-1 for squids) (Ignatyev, 1996). 

Notwithstanding the varied swimming speeds of the broad micronekton groups, while 

micronekton are thought to be evenly distributed in the bathypelagic zone, high variability in 

their distributions exist in upper layers of the water column (Lambert et al., 2014). Some 

organisms may hence be too weak to overcome some of the strong physical currents they are 

subjected to in the upper layers and may hence be concentrated or dispersed at specific sites. 

Mesoscale eddies for example, provide mechanisms that dissipate or aggregate micronekton 

communities (as seen in Chapter 3). Enhanced predation pressures also exist in upper layers, 

probably leading to enhanced local variability, while only few organisms (mostly 

Globicephalinae, sperm and beaked whales) are able to dive to 1000 m to forage on deeper 

fauna as seen in Chapter 2. However, these marine mammals probably prey on larger-sized 

squids (Clarke, 2007) that already have patchy distributions in the open ocean. 

The vertical migration patterns of the different micronekton taxa are also not uniform as seen 

in Chapters 3 and 4. While some taxa are active migrants to the surface at dusk and to deeper 

layers at dawn (such as various myctophids), others are non-migrants (eg. Cyclothone) and 

weakly/non-migrants (e.g. some sternoptychids). Still other taxa, as shown in Chapter 4, 

undertake mid-water migration to the lower limit of the SSL at night-time and back to the DSL 

before daytime. Upward and downward migrations seem to occur in a series of events. 

Differential migration strategies used by smaller and larger fishes have been reported, with 

smaller fishes (swimming at slower speed) leaving their location first (Benoit-Bird & Au, 
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2006). Differential use of habitat at different times of the night by organisms in order to reduce 

competition between individuals in dense aggregations have also been reported (Benoit-Bird 

& Au, 2006). Migrating organisms possibly have to compromise between the need to feed and 

to avoid predators. Different individuals within the micronekton communities likely have 

different preferred habitats in order to strike a balance between the selective pressures of 

optimising foraging while avoiding competition and predators. 

Furthermore, the permanent distribution of some taxa at deeper depths during both day and 

night (eg. Cyclothone) may be linked to these organisms having developed distinct 

evolutionary traits such as small and simple, larval-like body structure which would allow them 

to survive in food-poor environments at greater depths (Miya & Nishida, 1996). Deep-dwelling 

Cyclothone individuals exhibited lower δ15N values relative to relatively larger, diel migratory 

deep sea fishes which forage at the surface at dusk (Chapter 5). Diel migratory fishes have 

higher energetic needs due to the energy spent in vertically migrating hundreds of metres up 

and down the water column daily. Such energetic costs have to be met by higher probability 

for these organisms to forage on greater abundances of prey and/or on prey of greater energetic 

content. Some mesopelagic fish and squid taxa have developed bioluminescent organs, 

enabling them to forage, attract a mate, recognize con-specifics or camouflage themselves 

against predators in deep-sea environments (Young et al., 1979; Young, 1983; Mensinger & 

Case, 1990; Catul et al., 2011; Davis et al., 2014). While it is difficult to disentangle all the 

factors that may have led to the horizontal and vertical migration strategies of individual 

species, organisms clearly have morphological adaptations enabling them to exploit a wide 

range of vertical and horizontal habitat types. 

 

6.5 Trophic relationships and importance of micronekton in foodwebs 

The stable isotope values of carbon, which may help differentiate sources of primary 

production, were significantly different between the POM at the surface of the La Pérouse and 

MAD-Ridge seamounts, with higher median values at MAD-Ridge (Chapter 5). Primary 

production at MAD-Ridge may result from a wide range of sources as seen previously in this 

Chapter relative to La Pérouse that is located in a less dynamic and oligotrophic system. Due 

to the anticyclonic conditions during the MAD-Ridge cruise, the depth of the maximum 

fluorescence was within the same range as that measured in a weak cyclonic eddy at La 

Pérouse. The higher median δ15N values of the POM at the maximum fluorescence, collected 

within the anticyclonic eddy at MAD-Ridge possibly reflect the more active physical dynamics 

influencing productivity at MAD-Ridge relative to La Pérouse. 
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Stable isotope values of all micronekton communities, however, did not reveal major 

differences between the La Pérouse and MAD-Ridge seamounts (Chapter 5). At both 

seamounts, gelatinous salps and pyrosomes occupied the lowest trophic level (TL 2). This is 

linked to the filter feeding strategy of these organisms that ingest a variety of suspended 

particles in their different environments (Harbou, 2009; Conley, 2017). The sampled 

crustaceans occupied an intermediate trophic level (TL ~3). This group comprises different 

species having feeding modes relative to that of organisms that prey on zooplankton, 

euphausiids, and copepods, and are known for occasional herbivory. Mesopelagic fishes and 

smaller-sized squids occupied TL between 3 and 4 at both seamounts. Some 

carnivorous/omnivorous diel vertical migrators (fishes S. elongatus, C. warmingii and squid 

Abraliopsis sp.), however exhibited slightly greater δ15N values at La Pérouse relative to MAD-

Ridge with respect to body size compared to other organisms that showed no significant 

differences. While small variability may exist within species, overall patterns reveal stable 

isotope values linked to size since, as individuals grow bigger, they generally feed on larger 

prey. 

Seamount-associated fishes, however, displayed similar trophic levels irrespective of their 

wide body sizes (Chapter 5). As seen previously, this suggest foraging on similar organisms or 

organisms having similar trophic levels. This seem to confirm the importance of La Pérouse 

and MAD-Ridge summits and flanks as feeding grounds for some mesopelagic/benthopelagic 

taxa foraging on populations of calanoids and chaetognaths. The complex diversity of 

organisms within the micronekton reflect a complex set of embedded processes linked to 

feeding mode, size and possibly productivity, foraging patterns, tissue turnover rate of 

individuals, time of day and depth. The different crustacean, smaller-sized fishes and squids 

species studied may channel the same amount of energy to top predators. Larger nekton O. 

bartramii are at a higher trophic level than micronekton and may provide more energy to 

predators. They are the preferred prey of deeper diving swordfish, especially in oligotrophic 

systems like the ISSG (Ménard et al., 2013; Annasawmy et al., 2018). Top predators capable 

of foraging at deeper depths and on larger nekton can take advantage of this additional resource 

in oligotrophic environments of the ISSG where prey resources are limited. The sheer biomass 

of all the different micronekton species in more eutrophic environments, on the other hand, 

may provide a wider range of food sources for the various top predators. 
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6.6 Ecosystem functioning at seamounts 

This study has shed new light on the ecosystem functioning at two poorly studied topographic 

features of the SWIO. When placed in a broader context in the region (Fig. 6.1a), total 

micronekton acoustic densities at the La Pérouse seamount is typical of the ISSG province, 

whereas acoustic responses at the MAD-Ridge seamount is typical of the EAFR province (Fig. 

6.1b). Micronekton acoustic densities were greater within the EAFR and at the MAD-Ridge 

seamount relative to the ISSG and the La Pérouse seamount, probably due to the effect of 

mesoscale eddies and enhanced productivity in the EAFR (Fig. 6.1b). No clear enhancement 

of micronekton was observed at the seamounts relative to the surrounding ocean in the 

biogeochemical provinces. However, high backscatter intensities were observed in the surface 

layer during the day at both seamounts probably due to the presence of dense scatterers 

aggregating over the seamounts’ summits and flanks. 

 

Figure 6.1(a) Map of the MICROTON stations (black triangles) and La Pérouse seamount (red 
dot) in the ISSG province, of the MESOP 2009 stations (diamond symbols) (Annasawmy et al., 
2018), Madagascar shelf station (blue square) and MAD-Ridge stations (red squares) in the 
EAFR province. Longhurst’s (2007) biogeochemical provinces (ISSG and EAFR) are delimited 

by black solid lines. 
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Figure 6.1(b) Mean sA during MESOP 2009 cruise in the EAFR, MICROTON cruise in the 
ISSG provinces (Annasawmy et al., 2018), at MAD-Ridge and La Pérouse seamounts and over 
the Madagascar shelf for day and night sections: grey for the surface layer (10-200 m), white 
for the intermediate layer (200-400 m), and black for the deep layer (400-740 m). 

 

As seen in Table 6.1, the ecosystem functioning at both the La Pérouse and MAD-Ridge 

seamounts are complex. Local physical processes such as Taylor columns and isopycnal 

domings leading to significant phytoplankton enhancement were not observed during the La 

Pérouse and MAD-Ridge cruises. No major zooplankton enrichment were observed at MAD-

Ridge and at La Pérouse, except on the leeward side of the seamount (Marsac et al., 2020). 

Ichthyoplankton enhancements were recorded on MAD-Ridge summit, suggesting spawning 

sites (Harris et al., 2020). No ichthyoplankton enhancements were observed on the La Pérouse 

summit relative to off-seamount locations, possibly owing to small sample sizes. While, 

micronekton acoustic densities were lower at the seamounts relative to the surrounding ISSG 
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and EAFR biogeochemical provinces, both seamounts hosted resident fishes over the summits 

and flanks. These seamount-associated species exhibited the same trophic levels at both 

pinnacles despite their different size ranges. Despite the differing productivity and eddy 

dynamics at both pinnacles, the micronekton sampled exhibited the same range of trophic 

levels. Micronekton would thus channel similar amount of energy to higher trophic levels such 

as humpback whales and marine birds foraging in the vicinity of the seamounts. 

Table 6.1 Summary of the ecosystem functioning at the La Pérouse and MAD-Ridge seamounts. 
Crosses indicate that the corresponding attribute was not observed while tick marks indicate 
that the corresponding attribute has been observed and recorded. 

Attribute La Pérouse MAD-Ridge Additional comments 

Local physical enrichment 
from Taylor column/ doming 
of isopycnals 

  

Internal tide generation at MAD-
Ridge (Koch-Larrouy et al., in 
review) 

Phytoplankton enhancement 
relative to off-seamount 
locations 

  

Only moderate picoplankton 
biomass over the summit of MAD-
Ridge 

Zooplankton enhancement 
relative to off-seamount 
locations 

 

 

No major enrichment observed. 
except on the leeward side of La 
Pérouse 

Ichthyoplankton enhancement 
relative to off-seamount 
locations 

 

 

La Pérouse and MAD-Ridge may 
serve as spawning sites 

Greater micronekton acoustic 
response relative to off-
seamount locations 

  

Greater at MAD-Ridge relative to 
La Pérouse 

Seamount-associated species Presence of D. 
suborbitalis 

Presence of D. 
suborbitalis, C. 
japonicus, B. 
fibulatum 

Presence at seamounts’ summits and 
flanks during day and night 

Presence of micronekton 
predators 

Humpback 
whales 

Marine birds Marine birds and humpback whales 
use both seamounts during their 
breeding season 
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Trophic levels (TL) of 
gelatinous organisms and 
micronekton 

Gelatinous: ~2 

Crustaceans: ~3 

Smaller-sized 
squids: ~3 to 4 

Fishes: 3 to 4 

Gelatinous: ~2 

Crustaceans: ~3 

Smaller-sized 
squids: ~3 to 4 

Larger-sized 
squids: ~5 

Fishes: 3 to 4 

Seamount-associated species D. 
suborbitalis, C. japonicus, B. 
fibulatum exhibited a TL of 4 
despite their different size ranges 

 

Despite being ubiquitous topographic features in the world’s oceans, seamounts and their 

ecosystems are still poorly known. Only 0.4-4% of the world’s seamount population have been 

directly sampled for scientific research (Kvile et al., 2014). Data sharing and accessibility 

represent further important obstacles in seamount research. This study therefore adds to the 

current knowledge pool of the ecosystem functioning at seamounts. An important finding in 

this study is the presence of dense aggregations over the summits and flanks of La Pérouse and 

MAD-Ridge during day and night. This finding is similar to previous other studies, whereby 

fish were found in close association with seamounts in over 150 cases (Kvile et al., 2014). 

Despite their complex topographies or local physical processes, seamounts were shown to 

confer selective advantages to aggregating fishes that utilize these features for feeding, 

spawning or resting (Porteiro & Sutton, 2007). Feeding the observations from this study in 

global databases such as the SEEF (Seamount Ecosystem Evaluation Framework) (Kvile et al., 

2014) may help identify knowledge gaps, characterize peculiarities of individual seamounts 

and further test potential seamount effects to understand which factors are driving the dynamics 

of the different types of seamounts. 

6.7 Growing interest in commercialising micronekton communities 

Cephalopod fisheries already exist targeting a wide range of species (Roper et al., 1984). Due 

to their sheer numbers and ubiquitous nature, interests in exploiting mesopelagic fishes is 

rapidly growing (Dalpadado & Gjøsæter, 1988). Vertically migrating myctophids are reported 

to contain triglycerides, potassium, sodium and calcium and to lack harmful bacteria 

(Gopakumar et al., 1983), making their commercialisation attractive to many interested parties. 

In the Arabian Sea, the mesopelagic myctophid stock has been estimated at 20-100 million tons 

with a potential yield of ~200 000 tons per year (Gjøsæter & Kawaguchi, 1980; Catul et al., 

2011). In order to meet the ever-increasing demand for more fish for domestic use and export 

and in the face of a growing human population, other viable options to increase fish production 
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and hence to ensure the human food security are being explored. Commercial exploitation of 

mesopelagic organisms may be used for human consumption, as fishmeal in aquaculture farms 

and for providing nutraceuticals. Previous studies have estimated that ~2.7% of the most recent 

global estimate of mesopelagic fish would be needed for a global aquaculture production of 67 

million tons (FAO, 2014). It was further estimated that 5 billion tons of mesopelagic biomass 

could result in 1.25 billion tons of food for human consumption (St John et al., 2016), and that 

lanternfishes are highly attractive sources of raw materials in the production of nutraceutical 

products (Koizumi et al., 2014). 

However, commercial fishing of mesopelagic taxa will lead to a number of issues if not 

sustainably managed. As seen with the Antarctic krill, predator foraging grounds overlap with 

fisheries (Hinke et al., 2017), putting an additional pressure on the predators. Moreover, 

mesopelagic taxa are increasingly being impacted by microplastic pollution through ingestion 

(Wieczorek et al., 2018) and through plastic contaminants (Rochman et al., 2014). This may 

put a negative pressure on the stocks of mesopelagic organisms but also on their predators. 

Even when foraging prey are abundant, tunas were found to show a decline in condition due to 

variabilities in the size structure and nutritional composition of their prey (Golet et al., 2015). 

Climate change is another pressure to which organisms will have to adapt. Additionally, as 

seen in Chapter 2, some sites such as seamounts are already under fishing pressures and all the 

related pollution impacts linked to fishing. Mesopelagic fishing can further enhance fishing 

gear pollution, by-catch rates of top predators, and depletion of the resource (if not 

appropriately managed) at these already vulnerable ecosystems. In any case, trial catch in the 

Oman Sea were too low to support fishing costs (Valinassab et al., 2007) and to date, the correct 

fishing methods, gears and vessel size still need to be identified for a viable fishery. 

6.8 Conservation measures and issues 

As seen previously, the La Pérouse and MAD-Ridge seamounts host important benthic 

habitats, seamount-resident/associated fauna, are important sites for several top predator 

species (some of which being of commercial interests), and probably contain mineral resources 

such as manganese and other polymetallic nodules. Both seamounts are of significant interests 

for fishing and deep-sea mining and nowadays, they both potentially suffer the adverse effects 

of fishing and pollution. Deep-sea bottom trawling may remove coral habitats with negative 

impacts on benthic biodiversity, foraging and spawning grounds of several species in the 

foodweb. As seen in Chapters 1 and 2, the effective implementation of conservation measures 

is challenging, especially on the high seas, where illegal, unreported and unregulated fishing 

occur due to the inability to control and monitor activities owing to the remoteness of locations 



Chapter 6: General Discussion and Conclusion 

225 

and the associated costs. Hence, conservation measures that are set-up should ensure 

appropriate monitoring and control plans to prevent illegal activities on the high seas. 

Management actions will also require a balance between exploitation (to satisty fisher’s needs, 

guarantee jobs and food security) and conservation (to protect vulnerable resources and ensure 

sustainability of fish stocks). Conservation measures are seldom effective if enforced without 

concerting all the relevant parties such as scientists, government officials, fishery managers, 

fishers, and the local population. Scientific research on seamount ecosystems are of paramount 

importance to improve the knowledge base on seamount-associated communities and to 

facilitate discussion between managing bodies. As seen previously, countries in the SWIO 

often lack scientific, technical, human-resource and management capacities that will enable 

effective conservation plans and implementation. In addition to the current managing bodies 

that are sometimes blocked in their managing capacities, a special regional task-force providing 

scientific, technical, human-resource and management capacities (not only for key species such 

as tunas) but also all fauna and the benthic environment, should be set-up. There is an urgent 

need to recognize that ecosystems function as a whole and the different components or species 

do not function independently of each other. 

Furthermore, as seen in Chapters 1 and 2, several potential management actions could be 

implemented such as site-specific regulations or activity-specific regulations, single MPAs or 

whole MPA networks. The La Pérouse seamount is not part of a ridge system and does not 

seem to support a large diversity of species relative to MAD-Ridge. Regulations banning 

possible future bottom trawling to protect the seamount habitat and temporary fishing closures 

during the breeding season of humpback whales are some measures that could be promoted. 

MPA networks are often deemed more successful than other management actions since 

significant spill-over effects may occur if the networks are appropriately located. To have a 

significant impact, we have further seen in Chapter 2, that the MPAs will need to have at least 

four or five of the following features: older (>10 years), larger (>100 km2), isolated by deep 

water or sand, non-extractive and effectively enforced (Edgar et al., 2014). 

The set-up of MPA networks for at least 10 years along the Madagascar Ridge, covering at 

least 100 km2 around each pinnacle having an elevation of more than 1500 m and reaching into 

the euphotic zone (such as the MAD-Ridge and Walters Shoal seamounts) are among possible 

conservation measures. They may prove beneficial for benthic habitats, mesopelagic organisms 

having specific life patterns at these seamounts and for top predators using the pinnacles as 

foraging grounds, during their migration routes and breeding seasons. Bottom, mid-water 
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trawling and mining activities would have to be banned at these seamounts to protect the 

integrity of the associated ecosystems. Moreover, since seamounts from the Madagascan shelf 

to MAD-Ridge are located within the EEZ of Madagascar, conservation measures and actions 

could only be implemented by Madagascar. Scientific and financial support, as well as, 

assistance for enforcement, could be sought from other nations. The other seamounts along the 

Madagascar Ridge, since they are located in areas beyond national jurisdiction, could only be 

preserved by promoting cooperation with member states at the regional and international level. 

While MPA networks may prove highly beneficial if appropriately set-up and enforced, they 

may be faced with significant oppositions from states in the region, fisheries operators or 

managers, governing bodies and mining lobbyists. Presently, the prospect of high economic 

yields do not encourage efforts to preserve the resources even if conservation actions can 

sustainably support, in the medium term, not only fish stocks of commercial value, but also 

whole ecosystems which are under various anthropogenic pressures. 
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6.9 Future Perspectives 

6.9.1 Multi-frequency acoustic classification 

While this thesis work has allowed to address the knowledge deficit as to the horizontal and 

vertical distributions, the assemblages and trophic relationships of micronekton communities 

with respect to environmental conditions at the La Pérouse and MAD-Ridge seamounts, 

significant knowledge gaps still remain. One significant gap identified stems from the low 

number of mid-water trawls that have been conducted owing to the multi-disciplinary nature 

of the cruises. As seen in Chapter 4, the trawl sampling failed to capture the full range of 

organisms present due to avoidance reactions and escape from the nets, damage done to soft-

bodied individuals and inadequate sampling over the summits. The net used was further 

selective in the size range of organisms that have been captured. Crustaceans and squids were 

poorly represented in net-based estimates. 

The multi-frequency acoustic visualisation technique employed in this study is useful in 

identifying scattering layers with similar frequency responses at their respective depths and 

identifying dense aggregations of scatterers. However to be able to classify the overall acoustic 

backscatter into a number of acoustic groups corresponding to biological samples, an algorithm 

tool that discriminates groups of scatterers in the first 200 m of the water column has to be 

developed and calibrated for each dataset. Such multi-frequency classification techniques have 

already been explored (Anderson et al., 2007; Soto, 2010; Woillez et al., 2012; Kloser et al., 

2016; Béhagle et al., 2017) and typically uses a combination of frequencies to discriminate 

several acoustic classes. 

Different organisms have different frequency responses. While the backscatter of fluid-like and 

elastic-shelled organisms increases with the size/frequency between 38 and 120 kHz; that of 

larvae and adult-swimbladdered fish remains relatively constant or decreases between 38 and 

120 kHz frequencies (Korneliussen & Ona, 2003). The combination of RGB composites and 

trawl surveys (as seen in Chapter 4) can be used to identify and create acoustic classes from 

the different groups of scatterers. This would apply to cases such as: (i) the dense aggregations 

over the summits of La Pérouse and MAD-Ridge pinnacles; (ii) the aggregations dominating 

RGB composites within the depth of the maximum fluorescence; (iii) the night-time SSL over 

the summits of the seamounts; and (iv) under-represented groups such as the “blue patches” 

observed on RGB composite of trawl #21 during MAD-Ridge. Pairwise frequency differences 

(Δ Sv 70-38, Δ Sv 120-38) and the sums Δ Sv 38 + 120 + 70 can be used as discriminatory 

variables for the classification of the different acoustic classes. Each class will form libraries 

of acoustic groups. Thresholds will have to be determined to obtain the best comprise in 
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separating the different acoustic groups. The thresholds can be calculated from the mean and 

standard deviation of the libraries. A confidence interval index will also have to be determined 

based on the percentages of acoustic backscatter well classified and that classified in another 

acoustic class. The libraries of acoustic groups can further be investigated statistically using a 

K-means clustering. 

Once the acoustic classes have been confidently determined, these criteria can be used to 

classify the acoustic backscatter from the whole cruise transects into the identified groups. 

Trawl surveys can be used to complement acoustic surveys in validating the groups. However, 

since acoustic data were not recorded during six out of ten trawl surveys during the La Pérouse 

cruise, applying multi-frequency acoustic techniques to this dataset will be more risky. 

Furthermore, due to the nature of the system, trawl surveys were not mono-specific, and hence, 

confidently attributing acoustic groups to distinct biological samples is more risky. However, 

a combination of RGB composites with trawl transects (Chapter 4), and RGB plots with 

Scanfish transects can be used. The Scanfish recorded the temperature and fluorescence 

profiles horizontally and vertically in the first 100 m of the water column during MAD-Ridge 

cruise (Herbette, unpublished data). Using a combination of trawl and environmental data sets, 

combined with RGB composites and multi-frequency classification algorithms may allow a 

more accurate classification of the different groups: dense swim-bladdered fish aggregations, 

gelatinous organisms and plankton-like organisms associating with the maximum fluorescence. 

6.9.2 Trace metal analyses 

Micronekton may concentrate trace elements such as Mercury, Cadmium, Zinc, Copper, 

Selenium, Lead, Iron and Chromium. While zinc, copper, chromium, iron and selenium are 

essential elements, mercury, cadmium and lead can be potentially toxic (Bodin et al., 2017). 

Essential elements are those which are important for the normal functioning of the cell, such 

as enzyme cofactors (e.g. zinc is a cofactor to over 300 enzymes, Chasapis et al., 2012) and 

antioxidants (e.g. selenium, Tingii, 2008). Mercury, on the other hand, is known to be 

methylated by microorganisms, to bioaccumulate in marine biota and to biomagnify along the 

food chain, with predators showing higher tissue concentrations than their main prey items 

(Bustamante et al., 2006). In the marine environment, methyl mercury is the most stable, but 

also the most toxic form to organisms (Cossa et al., 1990). The bioaccumulation and 

biomagnification of toxic trace elements can thus be harmful to micronekton and top predators 

if a significant transfer occurs. 
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Ultimately, high concentrations of hazardous trace elements in tissues of top marine predators 

such as tunas and swordfish can lead to food insecurity if the trace element concentrations 

exceed the guideline values established by the Ministry of Agriculture, Fisheries and Food 

(MAFF, 2000). Recommended guideline values have been established at 0.3 µg/g wet weight 

(ww) for mercury, 0.2 µg/g ww for cadmium, 50 µg/g ww for zinc, 20 µg/g ww for copper and 

2 µg/g ww for lead (Asante et al., 2010). Concentrations of essential minerals in tissues of 

micronekton, on the other hand, will provide knowledge on the nutritional composition of the 

species that support top marine predators in pelagic ecosystems. While trace element 

concentrations in tissues of top pelagic predators of the Indian Ocean have been previously 

described (Bodin et al., 2017), knowledge of trace mineral concentration in tissues of 

micronekton is scarce and fragmentary in other ocean basins (Asante et al., 2008, 2010), and 

non-existent in the south-western Indian Ocean. 

The combined actions of terrigenous inputs and washouts of trace minerals and nutrients into 

coastal Malagasy waters from land and advection of these nutrients and minerals by mesoscale 

cyclonic and anticyclonic eddies to MAD-Ridge may lead to greater trace mineral 

concentrations in tissues of micronekton at MAD-Ridge relative to La Pérouse. Highly 

migratory top predators consuming micronekton at the MAD-Ridge seamount may have higher 

or similar trace element concentrations. As shown in Asante et al. (2008), higher trophic 

animals may retain higher concentrations of trace elements than lower trophic organisms. The 

micronekton species from La Pérouse and MAD-Ridge cruises, previously selected for stable 

isotope analyses, will be used to investigate trace mineral dynamics as part of a post-doctoral 

project starting January 2020 at the SFA (Seychelles Fishing Authority) and GET (Géosciences 

Environnement Toulouse), and funded by the WIOMSA (Western Indian Ocean Marine 

Science Association) MARG I grant. The concentrations of trace minerals in tissues of migrant 

vs. non-migrant micronekton taxa will be investigated to determine the horizontal distribution 

of trace minerals in the water column. These minerals will also be studied with respect to body 

size and feeding habits of the different micronekton taxa. The relationship between 

concentrations of trace minerals and stable isotope (δ13C and δ15N) values in tissues of sampled 

micronekton will be determined. 
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6.10 Conclusion 

The SWIO is a contrasted region with elevated bathymetric features, circulation patterns in the 

form of currents and mesoscale eddies, and water masses navigating through its ridge systems. 

This region hosts a wide range of marine organisms including seabirds, turtles, cetaceans, 

whales, sharks, tunas, billfishes and demersal fishes. Tunas, billfishes, demersal fishes and a 

few shark species are targeted by industrial fisheries. Interactions also occur between fisheries 

activities and other components of the megafauna. As shown in this thesis, the La Pérouse and 

MAD-Ridge seamounts represent elevated topographies in the SWIO, offering varied habitat 

types in an otherwise deep and open ocean environment. Various organisms in the region are 

associated with the La Pérouse or MAD-Ridge seamounts during their breeding season, 

foraging or migration patterns. These two seamounts possibly host coral communities thus 

attracting a wide range of benthopelagic organisms. Acoustic detections during this study have 

suggested permanent residency of biological scatterers over the seamounts during day and 

night. The shelter-like character and possibly enhanced foraging opportunities for these 

organisms may explain this observation. 

The La Pérouse and MAD-Ridge seamounts did not show elevated concentrations of 

zooplankton and micronekton communities relative to off-seamount locations. Elevated 

concentrations of ichthyoplankton were observed on MAD-Ridge summit relative to off-

seamount habitats. The physical and biological environment at both seamounts may not be 

attractive enough for adult forms of some mesopelagic taxa relative to other regions of the 

EAFR province including the more productive Madagascar shelf and Mozambique Channel. 

Some taxa possibly avoid the seamounts due to higher predation risk. This thesis has 

demonstrated that micronekton is a diverse group of organisms exhibiting different migrating, 

foraging, spawning patterns and trophic levels. A combination of trawl and acoustic surveys 

have shown that some organisms perform their daily DVM irrespective of the presence of the 

seamounts. Other organisms, such as few lanternfishes, reside at the seamounts’ flanks during 

the day and vertically migrate to the seamount summits at dusk. The different migrants may 

vary their speed, direction and timing of their daily migration to take advantage of prey items 

at different spatial and temporal scales. This may allow prey and space partitioning to avoid 

competition. DVM may also depend on the physiological limit of the species and the differing 

life stages within the same species. For some organisms, including the widely distributed 

Cyclothone sp., it is more advantageous to stay at deeper depths. Some organisms in the 

mesopelagic realm depend mostly on sinking particles through degradation of organic matter, 

part of which comes from the faecal matter of migrants that forage in the euphotic zone. Despite 
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their varied migration and foraging strategies, micronekton (crustaceans, mesopelagic fishes 

and smaller-sized squids) occupy trophic levels between three and four at both seamounts, thus 

potentially channeling similar amounts of energy to top predators present at these sites. 

Mesopelagic organisms (from gelatinous plankton to nekton) support a wide variety of 

predators in the region, which are able to physiologically forage at various depths and cover a 

wide spatial range to reach most productive sites. Although the La Pérouse and MAD-Ridge 

seamounts did not show enhanced diversity and biomass of organisms relative to the 

surrounding ocean, both pinnacles are important sites for specific communities that would 

suffer from various anthropogenic pressures if appropriate conservation measures were not 

implemented. This thesis underlined the need to conduct more multi-disciplinary scientific 

research work in the SWIO in order to identify and fill important knowledge gaps, allowing 

the detection of vulnerable marine ecosystems, and proposing an Ecosystem Approach to 

Fisheries (EAF) management and marine spatial planning strategies. 
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APPENDIX 

 

Table A. Physical oceanographic processes observed at few seamounts of the Atlantic and Pacific Oceans. 

Seamount Attributes 

Oceanographic Factors 

Observations References 

Isopycnal doming Alarcón seamount (Entrance to the Gulf of California) 

East Pacific Rise 

Torres et al., 2004  

Minami-kasuga seamount (NW Pacific) Lavelle et al., 2010 

Great Meteor seamount Genin and Boehlert, 1985 

Over a 400-m high feature in the Gulf Stream system Mohn & Beckmann, 2002 

Owens & Hogg, 1980 

Taylor column Corner Rise seamount (NW Atlantic) Owens & Hogg, 1980 

Sedlo seamount (N Atlantic) Mohn et al., 2009 

Cobb seamount (Pacific) Freeland, 1994 

Emperor seamounts (N Pacific) Wagawa et al., 2012 

Minami-kasuga seamount (NW Pacific) Genin & Boehlert, 1985 

 Condor seamount Bashmachnikov et al., 2013 

 Madagascar Ridge; Any Taylor column formed may be swept away by 
mesoscale eddies 

Read & Pollard, 2017 

Cobb seamount Codiga & Eriksen, 1997 
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Tidal amplification and 
rectification 

Fieberling Guyot Eriksen, 1991, 1995; Brink, 1995; Kunze & 
Toole, 1997 

Rockall Bank (Atlantic) Huthnance, 1974 

Yermak Plateau (Arctic) Hunkins, 1986 

Cross seamount (Pacific) Noble & Mullineaux, 1989 

Great Meteor seamount Mohn & Beckmann, 2002 

 Porcupine Bank (W of Ireland) Mohn, 2002 

Internal waves and turbulent 
mixing 

Fieberling Guyot Toole et al., 1997 

Irving Seamount Lavelle et al., 2004 

Middle of What seamount (Indian Ocean) Read & Pollard, 2017 

Sapmer seamount (Indian Ocean) Read & Pollard, 2017 
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Table B. Physical oceanographic processes and associated biological responses observed at few seamounts of the Atlantic and Pacific Oceans. 

Ecological 

Factors 

Observations Physical processes Biological responses References 

Phytoplankton 
enhancement 

 

 

 

 

 

 

 

Rockall Bank (NE 
Atlantic) 

Taylor cap, Tidal rectification, 
generation of dome of cold, dense 
water 

30% increase in annual chlorophyll a levels over 
the summit 

Mohn & White, 2007 

Great Meteor 
seamount 

 Different phytoplankton species and greater 
chlorophyll a concentrations relative to surrounding 
environment 

Mouriño et al., 2001 

Minami-Kasuga 
seamount 

Taylor column, dome-like structures Enhanced chlorophyll a concentrations with 
residence time of several days 

Genin & Boehlert, 1985 

Senghor seamount Tidal dynamics  Particulate organic carbon (POC) export, pulses of 
primary production into the euphotic zone 

Turnewitsch et al., 2016 

Seine seamount  Higher suspended POC concentrations Kiriakoulakis et al., 2009; 
Vilas et al., 2009 

Komahashi No. 2 
seamount (W 
Pacific) 

Topographic-current interactions, 
upward transport of nutrients in the 
euphotic zone 

Occasional increase in chlorophyll a concentrations Furuya et al., 1995 

Cobb seamount  2-5 times increase in chlorophyll a that lasted for 2-
3 weeks 

Dower et al., 1992; 
Comeau et al., 1995 

Zooplankton 
enhancement 

Minami-kasuga 
seamount 

Within and above a dome of cold 
dense water 

Increase in zooplankton densities Genin & Boehlert, 1985 
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Seamount-
associated 
species 

Seine seamount Suitable environment for benthopelagic fish species such as Macroramphosus sp., Capros 
ager, Anthias anthias, Callanthias ruber and Centracanthus cirrus 

Christiansen et al., 2009 

Seamount-
associated 
species 

Equator seamount 
(Indian Ocean) 

Diaphus suborbitalis resides at ~500-600 m seamount slope during the day (to avoid 
predation) and ascends in dense schools to ~80-150 m at night while feeding on copepods 
and Cyclothone species 

Parin & Prut’ko, 1985 

 south Atlantic and 
north Pacific 
seamounts 

Presence of mesopelagic sternoptychid fish Maurolicus muelleri Boehlert & Genin, 1987; 
Boehlert et al., 1994 

 Southeast Hancock 
seamount (central 
N Pacific) 

Dense aggregations of M. muelleri and Gnathophausia longispina remain on the seamount’s 
flanks at ~400 m during the day and migrate to ~50 m above the summit every night. 

Shallow scattering layer is displaced ~2-7 km in the direction consistent with the current 
direction above the summit every night 

Boehlert & Seki, 1984; 
Boehlert & Genin, 1987; 
Boehlert, 1988; Wilson & 
Boehlert, 1990; Wilson & 
Boehlert, 2004 

  Spawning site for individuals of M. muelleri Boehlert et al., 1994; 
Brodeur & Yamamura, 
2005 

 Dom João de 
Castro seamount 

Spawining site for Ceratoscopelus maderensis Sobrinho-Concalves & 
Cardigos, 2006 
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Table C. Mean body length (mm) of gelatinous organisms (total length from mouth to anus); squids (dorsal mantle length); crustaceans (abdomen 
and carapace length); fishes (standard length), total number of specimens (n), habitat range, feeding mode, δ15N and δ13C (‰), and mean estimated 

trophic level (Mean TL from TPA model) for the species or taxa on which stable isotope analyses were performed at La Pérouse (ISSG) and MAD-
Ridge (EAFR) seamounts. Values are mean ± standard deviation. 

 

Broad Class Order/ 
Suborder/Infraorder 

Family/ Species Habitat 
Range 

Feeding 
Mode 

Seamount 
cruises 

Trawl 
No. 

n Mean Size 
(mm) 

Mean δ15N 
(‰) 

Mean δ13C 
(‰) 

Mean TL (TPA 
model) 

Gelatinous Pyrosomatida Pyrosomatidae 

Unidentified 
pyrosomes 

Mesopelagic Filter Feeder La Pérouse 

MAD-Ridge 

MZC 

3, 6, 7 

2, 6 

18 

6 

4 

2 

20.1 ± 4.8 

23.8 ± 9.0 

22.3 ± 10.5 

5.2 ± 0.20 

3.3 ± 0.31 

3.8 ± 0.13 

-21.5 ± 0.17 

-22.9 ± 0.64 

-22.4 ± 0.73 

2.0 ± 0.06 

1.7 ± 0.10 

1.9 ± 0.04 

 Salpida Salpidae 

     Salpa sp. 

Mesopelagic Filter Feeder La Pérouse 

MAD-Ridge 

MZC 

6 

5, 6, 11 

18 

1 

6 

1 

NA 

29.5 ± 14.2 

28.5 

5.9 

4.2 ± 1.19 

6.4 

-18.2 

-21.5 ± 1.44 

-23.2 

2.2 

2.0 ± 0.37 

2.7 

Crustaceans Euphausiacea Euphausiidae Mesopelagic Omnivore MAD-Ridge 6 2 23.7 ± 1.20 7.7  ± 0.18 -19.4 ± 0.27 3.1 ± 0.06 

 Decapoda Unidentified shrimps Mesopelagic Omnivore La Pérouse 4, 7 4 36.0 ± 3.91 8.8 ± 0.29 -18.0 ± 0.27 3.1 ± 0.09 

 Decapoda 

…..Pleocyemata 

Oplophoridae 

 

Mesopelagic-
Bathypelagic 

Omnivore 

 

La Pérouse 

MAD-Ridge 

1, 2, 7 

1, 2, 5 

6 

8 

49.0 ± 9.65 

47.2 ± 11.8 

10.4 ± 0.89 

9.5 ± 0.47 

-18.3 ± 0.26 

-18.1 ± 0.33 

3.6 ± 0.28 

3.7 ± 0.15 

 …….Caridea Pasiphaeidae 

     Pasiphaea spp. 

Mesopelagic-
Bathypelagic 

Omnivore 

 

La Pérouse 

 

9 2 

 

70.4 ± 20.5 

 

9.8 ± 0.23 

 

-18.0 ± 0.53 

 

3.4 ± 0.07 

 

 …….Caridea Unidentified 
caridean shrimps 

Mesopelagic Omnivore La Pérouse 

MAD-Ridge 

2, 8 

2, 5 

3 

4 

48.6 ± 7.41 

55.2 ± 8.89 

10.1 ± 1.69 

9.2 ± 0.75 

-17.7 ± 0.40 

-17.5 ± 0.19 

3.5 ± 0.53 

3.5 ± 0.23 

 Decapoda 

…..Dendrobranchiata 
Penaeidae 

     Funchalia sp. 

Mesopelagic-
Bathypelagic Omnivore 

 

La Pérouse 

MAD-Ridge 

MZC 

3, 8 

5, 6, 8 

18 

4 

6 

2 

66.0 ± 7.66 

54.7 ± 14.9 

68.6 ± 7.42 

7.5 ± 0.47 

6.6 ± 0.88 

7.2 ± 0.68 

-18.7 ± 0.57 

-18.6 ± 0.18 

-19.1 ± 0.44 

2.7 ± 0.15 

2.7 ± 0.28 

2.9 ± 0.21 

 Decapoda 

…..Dendrobranchiata 
Sergestidae 

 

Mesopelagic 
Omnivore 

 

La Pérouse 

MAD-Ridge 

MZC 

1, 2 

2 

18 

3 

6 

4 

71.7 ± 5.83 

47.2 ± 16.6 

65.3 ± 13.8 

10.7 ± 1.30 

8.3 ± 0.67 

9.5 ± 0.71 

-18.8 ± 0.15 

-19.5 ± 0.47 

-19.3 ± 0.27 

3.7 ± 0.40 

3.3 ± 0.21 

3.7 ± 0.22 
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Broad Class Order/ 
Suborder/Infraorder 

Family/ Species Habitat 
Range 

Feeding Mode Seamount 
cruises 

Trawl 
No. 

n Mean Size 
(mm) 

Mean δ15N 
(‰) 

Mean δ13C 
(‰) 

Mean TL (TPA 
model) 

Squids Oegopsida 
Enoploteuthidae 

Mesopelagic-
Bathypelagic 

Carnivore 
MAD-Ridge 11 

2 34.1 ± 16.8 8.0 ± 0.06 -18.6 ± 0.42 3.2 ± 0.02 

  Enoploteuthidae 

     Abraliopsis sp. 

Mesopelagic- 
Bathypelagic 

Carnivore 

 

La Pérouse 

MAD-Ridge 

3, 4, 6 

2, 9, 10 

6 

6 

27.0 ± 8.26 

26.2 ± 6.06 

10.5  ± 0.45 

9.5 ± 0.39 

-18.4 ± 0.48 

-18.3 ± 0.45 

3.6 ± 0.14 

3.6 ± 0.12 

  Histioteuthidae 

     Histioteuthis spp. 

Mesopelagic Carnivore 

 

La Pérouse 

MAD-Ridge 

9 

10 

2 

1 

29.2 ± 0.35 

367.0 

11.7 ± 0.10 

10.7 

-19.1 ± 0.01 

-21.0 

4.0 ± 0.03 

4.0 

  Ommastrephidae 

     Ornithoteuthis 
volatilis 

Mesopelagic 
Carnivore 

 

MAD-Ridge 12, 14, 
16 

4 

 

90.1 ± 52.2 

 

9.0 ± 0.93 

 

-18.5 ± 0.18 

 

3.5 ± 0.29 

 

  Ommastrephidae 

     Ommastrephes 
bartramii 

Mesopelagic 
Carnivore 

 

MAD-Ridge 

MZC 

1 

20 

1 

1 

364.8 

NA 

13.2 

13.8 

-17.4 

-17.3 

4.8 

5.0 

  Ommastrephidae 

     Eucleoteuthis 
luminosa 

Mesopelagic 
Carnivore 

 

MAD-Ridge 2 
1 

 

111.3 

 

9.4 

 

-17.7 

 

3.6 
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Broad Class Order/ 
Suborder/Infraorder 

Family/ Species 

 

Habitat 
Range 

Feeding 
Mode 

Cruises Trawl 
No. n 

Mean Size 
(mm) 

Mean δ15N 
(‰) 

Mean δ13C 
(‰) 

Mean TL 

 

Fishes Anguiliformes Leptocephali 

 

Epipelagic Detritivore 

 

La Pérouse 

MAD-Ridge 

2, 3, 4 

3, 4, 6 

5 

6 

135.3 ± 55.3 

135.1 ± 61.3 

4.9 ± 2.07 

3.7 ± 1.48 

-20.4 ± 0.52 

-20.7 ± 0.30 

1.9 ± 0.65 

1.8 ± 0.46 

 Aulopiformes Evermannellidae 

     Coccorella atrata 

Mesopelagic Carnivore 

 

La Pérouse 

 

9 1 

 

92.8 

 

13.3 

 

-17.7 

 

4.5 

 

  Evermannellidae 

     Evermannella indica 

Mesopelagic Carnivore 

 

La Pérouse 

 

1, 2 4 

 

109.9 ± 9.19 

 

12.2 ± 0.19 

 

-17.9 ± 0.19 

 

4.2 ± 0.06 

 

  Paralepididae 

 

Epipelagic-
Bathypelagic 

Carnivore 

 

La Pérouse 

 

4, 8 4 

 

64.4 ± 18.9 

 

9.1 ± 0.42 

 

-19.7 ± 0.50 

 

3.2 ± 0.13 

 

 Beryciformes Diretmidae 

     Diretmus argenteus 

Mesopelagic Carnivore 

 

MAD-Ridge 

 

7 1 

 

30.3 

 

8.8 

 

-19.9 

 

3.4 

 

 Gadiformes Bregmacerotidae 

     Bregmaceros 
maclellandi 

Mesopelagic 
Carnivore 

 

La Pérouse 

 

9 
2 

 

67.5 ± 4.0 

 

10.1 ± 0.40 

 

-18.8 ± 0.23 

 

3.5 ± 0.13 

 

 Myctophiformes Neoscopelidae 

   Neoscopelus 
macrolepidotus 

Mesopelagic-
Benthopelagi
c over slope 
regions 

Carnivore 

 

MAD-Ridge 

 

10 
2 

 

80.9 ± 49.3 

 

10.8 ± 0.44 

 

-19.2 ± 0.37 

 

4.1 ± 0.14 

 

  
Neoscopelidae 

     Neoscopelus microchir 

Mesopelagic-
Benthopelagi
c over slope 
regions 

Carnivore 

 

MAD-Ridge 

 

10 
2 

 

59.8 ± 19.3 

 

11.0 ± 0.05 

 

-19.0 ±0.10 

 

4.1 ± 0.02 

 

  Myctophidae 

     Benthosema fibulatum 

Mesopelagic Carnivore 

 

MAD-Ridge 

 

14 2 

 

79.1 ± 12.8 

 

9.7 ± 0.25 

 

-18.7 ± 0.13 

 

3.7 ± 0.08 

 

  Myctophidae 

     Benthosema suborbitale 

Mesopelagic Carnivore 

 

MAD-Ridge 

 

3, 6 3 

 

26.4 ± 2.71 

 

8.7 ± 0.24 

 

-19.4 ± 0.14 

 

3.4 ± 0.07 

 

Fishes Myctophiformes Myctophidae 

     Bolinichthys 
photothorax 

Mesopelagic 
Carnivore 

 

La Pérouse 

 

9, 10 
4 

 

67.5 ± 7.78 

 

11.0 ± 0.46 

 

-18.8 ± 0.15 

 

3.8 ± 0.14 
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  Myctophidae 

     Ceratoscopelus 
warmingii 

Mesopelagic 
Omnivore 

 

La Pérouse 

MAD-Ridge 

1, 4, 8, 9 

2, 3, 6 

8 

6 

55.4 ± 11.0 

42.0 ± 14.0 

9.0 ± 0.46 

7.7 ± 0.59 

-18.9 ± 0.40 

-18.9 ± 0.33 

3.2 ± 0.14 

3.1 ± 0.18 

  Myctophidae 

     Diaphus 
brachycephalus 

Mesopelagic 
Carnivore 

 

La Pérouse 

MAD-Ridge 

8 

5 

2 

2 

32.0 ± 2.12 

35.9 ± 6.43 

11.3 ± 0.04 

10.5 ± 0.48 

-19.2 ± 0.13 

-19.3 ± 0.09 

3.9 ± 0.01 

4.0 ± 0.15 

  Myctophidae 

     Diaphus diadematus 

Mesopelagic Carnivore 

 

MAD-Ridge 

 

5, 7 4 

 

32.0 ± 3.41 

 

9.8 ± 0.39 

 

-19.9 ± 0.18 

 

3.7 ± 0.12 

 

  Myctophidae 

     Diaphus effulgens 

Mesopelagic Carnivore 

 

MAD-Ridge 

 

5 2 

 

90.7 ± 22.5 

 

10.3 ± 1.44 

 

-19.1 ± 0.21 

 

3.9 ± 0.45 

 

  Myctophidae 

     Diaphus knappi 

Mesopelagic- 
Epibenthic 

Carnivore 

 

MAD-Ridge 

 

16 2 

 

53.1 ± 11.0 

 

10.2 ± 0.07 

 

-19.4 ± 0.16 

 

3.9 ± 0.02 

 

  Myctophidae 

     Diaphus lucidus 

Mesopelagic Carnivore 

 

La Pérouse 

MZC 

10 

20 

2 

2 

73.1 ± 12.1 

62.0 ± 10.3 

12.1 ± 0.05 

11.0 ± 0.45 

-19.0 ± 0.76 

-19.2 ± 0.04 

4.1 ± 0.02 

4.1 ± 0.14 

  Myctophidae 

     Diaphus metoclampus 

Mesopelagic 
Carnivore MZC 

20 
2 58.1 ± 1.12 12.1 ± 0.07 -19.6 ± 0.06 4.4 ± 0.02 

  Myctophidae 

     Diaphus mollis 

Mesopelagic Carnivore 

 

La Pérouse 

MAD-Ridge 

10 

5, 7 

2 

4 

44.4 ± 5.09 

55.5 ± 6.48 

11.1 ± 0.42 

10.7 ± 0.84 

-18.8 ± 0.04 

-19.4 ± 0.07 

3.8 ± 0.13 

4.0 ± 0.26 

  
Myctophidae 

     Diaphus perspicillatus 

Mesopelagic 
Carnivore 

 

La Pérouse 

MAD-Ridge 

4, 10 

2, 5, 7, 9, 
12 

4 

10 

53.4 ± 8.26 

56.0 ± 4.59 

10.7 ± 0.28 

10.2 ± 0.53 

-19.0 ± 0.42 

-19.1 ± 0.24 

3.7 ± 0.09 

3.9 ± 0.17 

  Myctophidae 

     Diaphus richardsoni 

Mesopelagic Carnivore 

 

La Pérouse 

MAD-Ridge 

8 

15 

2 

2 

40.7 ± 3.54 

36.9 ± 10.1 

11.3 ± 0.45 

9.1 ± 0.53 

-19.5 ± 0.13 

-19.3 ± 0.15 

3.9 ± 0.14 

3.5 ± 0.17 

Fishes Myctophiformes Myctophidae 

     Diaphus splendidus 

Mesopelagic Carnivore 

 

La Pérouse 

 

8 2 

 

51.4 ± 6.36 

 

9.6 ± 0.06 

 

-18.7 ± 0.35 

 

3.4 ± 0.02 

 

  
Myctophidae 

     Diaphus suborbitalis 

Mesopelagic-
over slope 
regions 

Carnivore 

 

La Pérouse 

MAD-Ridge 

2, 4 

10, 14, 
17 

4 

6 

54.7 ± 15.1 

72.3 ± 5.93 

10.7 ± 0.42 

11.2 ± 0.23 

-18.6 ± 0.15 

-18.8 ± 0.44 

3.7 ± 0.13 

4.2 ± 0.07 
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  Myctophidae 

     Hygophum hygomii 

Mesopelagic Carnivore 

 

MAD-Ridge 

 

2, 3, 6, 
12, 17 

12 

 

53.4 ± 4.73 

 

10.1 ± 0.93 

 

-19.0 ± 0.68 

 

3.8 ± 0.29 

 

  Myctophidae 

     Lampanyctus spp. 

Mesopelagic Carnivore 

 

La Pérouse 

 

8 2 

 

45.0 ± 6.51 

 

9.7 ± 0.89 

 

-18.7 ± 0.30 

 

3.4 ± 0.28 

 

  Myctophidae 

     Lampanyctus alatus 

Mesopelagic Carnivore 

 

MAD-Ridge 

 

3, 5, 10 6 

 

41.0 ± 2.69 

 

8.8  ± 0.43 

 

-19.2 ± 0.54 

 

3.4 ± 0.13 

 

  Myctophidae 

     Lobianchia dofleini 

Mesopelagic 
Carnivore MZC 

20 
2 35.1 ± 2.12 12.1 ± 0.62 -18.9 ± 0.42 4.5 ± 0.19 

  Myctophidae 

     Lobianchia gemellarii 

Mesopelagic Carnivore 

 

La Pérouse 

MAD-Ridge 

9, 10 

5, 7 

4 

4 

42.0 ± 2.50 

41.1 ± 2.50 

11.4 ± 0.35 

10.9 ± 0.57 

-18.9 ± 0.14 

-19.3 ± 0.27 

3.9 ± 0.11 

4.1 + 0.18 

  Myctophidae 

     Myctophum fissunovi 

Mesopelagic Carnivore 

 

MAD-Ridge 

 

6, 14 3 

 

62.7 ± 2.70 

 

9.8 ± 0.17 

 

-19.2 ± 0.25 

 

3.8 ± 0.05 

 

  Myctophidae 

     Myctophum nitidulum 

Mesopelagic Carnivore 

 

La Pérouse 

MAD-Ridge 

4 

6, 14 

2 

2 

56.3 ± 14.2 

67.4 ± 4.88 

9.5 ± 0.17 

9.5 ± 0.59 

-19.0 ± 0.23 

-19.3 ± 0.66 

3.3 ± 0.05 

3.6 ± 0.19 

  Myctophidae 

     Nannobrachium spp. 

Mesopelagic-
Bathypelagic 

Carnivore 

 

La Pérouse 

 

10 2 

 

111.5 ± 15.6 

 

10.2 ± 0.92 

 

-18.5 ± 0.10 

 

3.5 ± 0.29 

 

  Myctophidae 

     Notoscopelus 
resplendens 

Mesopelagic-
Bathypelagic 

Carnivore 

 

MAD-Ridge 

 

3 
2 

 

35.6 ± 3.04 

 

8.1 ± 0.04 

 

-18.4 ± 0.01 

 

3.2 ± 0.01 

 

  Myctophidae 

 

     Scopelopsis 
multipunctatus 

Mesopelagic 

Carnivore 

 

MAD-Ridge 

 

5 

2 

 

37.9 ± 3.61 

 

9.7 ± 0.54 

 

-20.1 ± 0.29 

 

3.7 ± 0.17 

 

 Perciformes Carangidae 

     Decapterus macarellus 

Mesopelagic Carnivore 

 

MAD-Ridge 

 

7 2 

 

121.0 

 

6.2 ± 0.18 

 

-18.4 ± 0.37 

 

2.6 ± 0.06 

 

  Gempylidae            
…..Nealotus tripes 

Mesopelagic 
Carnivore La Pérouse 

9 
1 202.8 12.1 -18.3 4.1 
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  Gempylidae 

     Promethichthys 
prometheus 

Mesopelagic-
Benthopelagi
c 

Carnivore 

 

La Pérouse 

MAD-Ridge 

4 

14 

2 

2 

219.3 ± 6.01 

300.1 ± 91.5 

9.6 ± 0.01 

12.0 ± 0.06 

-17.6 ± 0.18 

-17.9 ± 0.13 

3.3 

4.4 ± 0.02 

  Priacanthidae 

     Cookeolus japonicus 

Mesopelagic-
Benthopelagi
c 

Carnivore 

 

MAD-Ridge 

 

16 2 

 

268.0 ± 84.9 

 

10.7 ± 0.47 

 

-18.3 ± 0.35 

 

4.0 ± 0.15 

 

 Stephanoberyciformes Melamphaidae 

     Scopelogadus mizolepis 

Mesopelagic Carnivore 

 

La Pérouse 

 

9, 10 4 

 

66.3 ± 11.2 

 

10.2 ± 0.52 

 

-18.9 ± 0.10 

 

3.5 ± 0.16 

 

 Stomiiformes Gonostomatidae 

     Cyclothone sp. 

Mesopelagic-
Bathypelagic 

Carnivore 

 

MAD-Ridge 

 

7 2 

 

24.7 ± 1.98 

 

8.7 ± 0.45 

 

-19.8 ± 0.14 

 

3.4 ± 0.14 

 

  

Gonostomatidae 

     Sigmops elongatus 

Mesopelagic-
Bathypelagic 

Carnivore 

 

La Pérouse 

 

MAD-Ridge 

 

MZC 

1, 7, 8, 
10 

2, 5, 10, 
12 

 

20 

8 

8 

 

2 

147.6 ± 63.5 

111.5 ± 45.9 

 

201.8 ± 35.6 

11.5 ± 0.94 

9.7 ± 1.05 

 

12.0 ± 0.21 

-18.4 ± 0.64 

-18.8 ± 0.60 

 

-18.3 ± 0.05 

3.9 ± 0.30 

3.7 ± 0.33 

 

4.4 ± 0.07 

  Gonostomatidae 

     Margrethia obtusirostra 

Mesopelagic Carnivore 

 

MAD-Ridge 

 

12 2 

 

33.8 ± 2.69 

 

11.2 ± 0.26 

 

-19.0 ± 0.25 

 

4.2 ± 0.08 

 

  Phosichthyidae 

     Vinciguerria nimbaria 

Mesopelagic Carnivore 

 

La Pérouse 

 

8, 10 4 

 

38.7 ± 13.6 

 

11.4 ± 0.74 

 

-18.8 ± 0.10 

 

3.9 ± 0.23 

 

  Sternoptychidae 

     Argyropelecus 
aculeatus 

Mesopelagic 
Carnivore 

 

La Pérouse 

MAD-Ridge 

1, 2, 7, 8 

1, 2, 5, 7, 
10, 12 

8 

12 

50.4 ± 15.5 

55.4 ± 17.5 

10.2 ± 0.87 

10.4 ± 1.23 

-18.8 ± 0.38 

-19.0 ± 0.56 

3.5 ± 0.27 

3.9 ± 0.39 

  Sternoptychidae 

     Argyropelecus 
hemigymnus 

Mesopelagic 
Carnivore 

 

MAD-Ridge 

 

13 
1 

 

27.4 

 

11.6 

 

-18.9 

 

4.3 

 

  
Stomiidae 

     Astronesthes sp. 

Mesopelagic 
Carnivore 

 

La Pérouse 

MAD-Ridge 

2, 3, 8, 9, 
10 

5 

5 

1 

88.2 ± 24.4 

122.3 

9.7 ± 0.48 

10.1 

-18.1 ± 0.36 

-18.0 

3.4 ± 0.15 

3.8 
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  Stomiidae 

     Chauliodus sloani 

Mesopelagic-
Bathypelagic 

Carnivore 

 

La Pérouse 

MAD-Ridge 

8, 9 

1, 5, 10 

4 

6 

125.1 ± 51.1 

138.9 ± 53.3 

11.1 ± 1.0 

10.4 ± 0.65 

-18.5 ± 0.31 

-18.5 ± 0.84 

3.8 ± 0.31 

3.9 ± 0.20 

 Stomiiformes Stomiidae 

     Diplophos rebainsi 

Mesopelagic-
Bathypelagic 

Carnivore 

 

MAD-Ridge 

 

1 2 

 

93.3 ± 3.54 

 

10.6 ± 0.06 

 

-19.2 

 

4.0 ± 0.02 

 

  Stomiidae 

     Diplophos taenia 

Mesopelagic Carnivore 

 

La Pérouse 

MAD-Ridge 

9 

5 

2 

1 

77.3 ± 7.64 

175.5 

9.6 ± 0.07 

9.9 

-19.3 ± 0.22 

-18.9 

3.3 ± 0.02 

3.8 

  Stomiidae 

     Echiostoma barbatum 

Mesopelagic-
Bathypelagic 

Carnivore 

 

MAD-Ridge 

 

9, 10, 11 6 

 

71.2 ± 5.39 

 

9.4 ± 1.0 

 

-18.4 ± 0.30 

 

3.6 ± 0.31 

 

  
Stomiidae 

     Eustomias sp.  

Mesopelagic-
Bathypelagic 

Carnivore 

 

La Pérouse 

MAD-Ridge 

4, 8, 9, 
10 

2, 12 

4 

3 

96.4 ± 19.8 

102.7 ± 11.6 

9.4 ± 0.94 
9.0 ± 0.11 

-18.3  ± 0.48 

-18.7 ± 0.16 

3.3 ± 0.29 

3.5 ± 0.03 

  Stomiidae 

     Idiacanthus fasciola 

Mesopelagic-
Bathypelagic 

Carnivore 

 

La Pérouse 

 

4, 7, 10 3 

 

249.6 ± 10.3 

 

11.1 ± 1.22 

 

-17.6 ± 0.24 

 

3.8 ± 0.38 

 

  Stomiidae 

     Melanostomias sp. 

Mesopelagic Carnivore 

 

La Pérouse 

MAD-Ridge 

4, 7, 8, 9 

5, 9, 12 

7 

3 

71.4 ± 14.1 

87.4 ± 13.4 

10.1 ± 0.64 

9.6 ± 0.65 

-18.3 ± 0.25 

-18.3 ± 0.51 

3.5 ± 0.20 

3.7 ± 0.20 

  Stomiidae 

     Photonectes sp. 

Mesopelagic Carnivore 

 

La Pérouse 

 

9, 10 2 

 

121.1 ± 6.43 

 

11.8 ± 0.62 

 

-18.1 ± 0.62 

 

4.0 ± 0.19 

 

  Stomiidae 

     Photostomias sp. 

Mesopelagic-
Bathypelagic 

Carnivore 

 

La Pérouse 

 

4, 9 3 

 

85.9 ± 22.9 

 

11.3 ± 1.04 

 

-18.1 ± 0.30 

 

3.9 ± 0.33 

 

  Stomiidae 

     Stomias boa 

Mesopelagic Carnivore 

 

La Pérouse 

 

10 1 

 

145.0 

 

10.8 

 

-18.4 

 

3.7 

 

  Stomiidae 

     Stomias longibarbatus 

Mesopelagic-
Bathypelagic 

Carnivore 

 

La Pérouse 

MAD-Ridge 

8 

2 

1 

1 

248.9 

289.9 

11.4 

12.0 

-18.3 

-18.3 

3.9 

4.4 
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Figure A. Example of classification of CTD stations (#3, 5 and 13) of the MAD-Ridge cruise. The 
absolute dynamic topography (line 1) together with the Okubo-Weiss parameters (line 2) give an 
indication of how the stations are located according to the dipole observed during MAD-Ridge. The 
contours of the anticyclone (dashed blue) and the cyclone (plain blue) are superimposed with the 
vectors of the surface geostrophic currents (black arrows). However, due to its spatial and temporal 
resolution, altimetry is not accurate enough to classify stations located less than 30 km from each 
other. Conservative Temperature (CT) vs. Absolute Salinity (SA) diagrams (line 3) provide a more 
accurate information: waters trapped within the anticyclone have a salinity maximum on the sigma=26 
kg m-3 density layer. This is confirmed by the vertical profiles of CT in °C and SA in g kg-1 (line 4). 
Vertical profiles of oxygen in µmol kg-1 (line 5) also show that the layer with maximum oxygen 
concentrations is thicker in the anticyclone. Finally, the sea surface temperature (SST) in °C and sea 
surface salinity (SSS) in PSU recorded along the ship track (line 6) clearly identify a density front at 
the interface of the cyclone and anticyclone. All the other CTD stations during Leg 1 of MAD-Ridge 
cruise were classified the same way. 

 


