Sebastien Jaquemet 
  
François Le 
  
Pavanee Annasawmy 
email: angelee-pavanee.annasawmy@ird.fr
  
Jean-François Ternon 
  
Anne Lebourges-Dhaussy 
  
Gildas Roudaut 
  
Steven Herbette 
  
Frédéric Ménard 
  
Pascal Cotel 
  
Francis Marsac 
  
Yves Cherel 
  
Evgeny V Romanov 
  
Fréderic Ménard 
  
  
  
  
  
  
Carbonate removal and Encapsulation equipment

Mass Spectrometry analyses were run by Jean-Marie Munaron and Clement Tanvet (UMR LEMAR, Plouzané, Brest), who have spent long hours in front of the mass spectrometer and computer to validate the stable isotopes data. I would also like to acknowledge the captain and crew of the RV Antea for providing assistance during the data collection. I admire their professionalism and for providing efficient and quick solutions to unexpected problems encountered during our cruises, such that the scientific data collection and cruise plan were not affected.

XIV

Thesis Abstract

Seamounts are ubiquitous topographic features across all ocean basins. They rise steeply through the water column from abyssal depths. Depending on their size, shape and summit depths, seamounts reportedly have an influence on the physical flow regimes which may promote the aggregation of zooplankton, micronekton, and top predators above or in the immediate vicinity of their summits. Micronekton form a key trophic link between zooplankton and top marine predators, and are divided into the broad categories: crustaceans, cephalopods and mesopelagic fishes. The vertical and horizontal distributions, assemblages and trophic relationships of micronekton were investigated at two shallow seamounts of the south-western Indian Ocean. La Pérouse is a steep bathymetric feature rising from a deep seabed located at 5000 m and with a summit depth at ~60 m below the sea level. This seamount is located at the north-western periphery of the oligotrophic Indian South Subtropical Gyre province. A seamount to the south of Madagascar, named "MAD-Ridge" in this study, has a summit depth at ~240 m below the sea level and rises from a base at ~1600 m. MAD-Ridge is located within an "eddy corridor" within the productive East African Coastal Province. The micronekton acoustic densities were greater at MAD-Ridge relative to La Pérouse, in accordance with the difference in productivity between the two sites. Physical processes within the cyclonic mesoscale eddy sampled during the MAD-Ridge cruise led to enhanced micronekton acoustic densities in the eddy relative to the MAD-Ridge seamount. While the shallow scattering layer (0-200 m) consisted of common oceanic micronekton species, the summits and flanks of La Pérouse and MAD-Ridge both showed presence of resident or seamount-associated fish species during day and night. Micronekton were also shown to exhibit a range of migration strategies such as diel vertical migration, mid-water migration and no diel migration. However, despite the differing productivity between both pinnacles, crustaceans, smaller-sized squids and mesopelagic fishes exhibited trophic levels ranging from 3 to 4 at both seamounts. This thesis highlights important knowledge gaps on seamount ecosystems and ecological patterns associated to shallow pinnacles. It also underlines the importance of studying seamount ecosystems of the south-western Indian Ocean in order to promote management and conservation measures for a sustainable use of such specific environments.

Synthèse des travaux en français

Les monts sous-marins sont des structures bathymétriques s'élevant de manière abrupte dans la colonne d'eau depuis une profondeur d'au moins 1000 m. Ils sont le plus souvent d'origine volcanique et sont répartis dans tous les bassins océaniques. En tant qu'obstacle topographique, les monts sous-marins peuvent être sources d'enrichissement biologique en influençant la circulation océanique qui impacte la disponibilité en sels nutritifs et les communautés marines le long de la chaine alimentaire [START_REF] Pitcher | Seamounts: Ecology, Fisheries & Conservation[END_REF]. Les monts sous-marins peuvent également créer des perturbations locales qui favorisent l'agrégation des organismes marins, du phytoplancton aux prédateurs supérieurs. Le Pétrel de Barau, un oiseau marin qui s'alimente sur des zones productives en phytoplancton et en micronecton, comme la ride qui s'étend au sud de Madagascar, en est un exemple bien décrit [START_REF] Pinet | Sex-specific foraging strategies throughout the breeding season in a tropical, sexually monomorphic small petrel[END_REF]. Ainsi les monts sousmarins sont souvent considérés comme des points chauds de biodiversité (Morato et al., 2010), avec un certain degré d'endémisme répertorié dans la littérature, en particulier pour les espèces benthiques (Richer de [START_REF] De Forges | Diversity and endemism of the benthic seamount fauna in the southwest Pacific[END_REF][START_REF] Worm | Predator diversity hotspots in the blue ocean[END_REF]. Il a été constaté que 30-40% de la faune en poisson sur le sommet du Walters Shoal est endémique aux groupes d'îles connues comme les "West-Wind Islands" [START_REF] Collette | Shallow-Water Fishes of Walters Shoals, Madagascar Ridge[END_REF]. Les monts sous-marins sont connus également pour agréger des espèces de poissons à forte valeur commerciale comme les thons et les poissons à rostre [START_REF] Fonteneau | Monts sous-marins et thons dans l'Atlantique tropical est[END_REF][START_REF] Holland | Fish visitors to seamounts: Tunas and billfish at seamounts[END_REF], Marsac et al., 2014) et sont par conséquent soumis à une pression de pêche. Environ 15% des prises de thons à la palangre dans la zone de la Réunion provient de deux carrés statistiques adjacents au mont La Pérouse [START_REF] Marsac | Seamount effect on circulation and distribution of ocean taxa at and near La Pérouse, a shallow seamount in the southwestern Indian Ocean. Deep-Sea II[END_REF].

Cependant, force est de constater que les monts sous-marins de l'océan Indien sont peu étudiés comparés aux monts Condor, Great Meteor, Vema et Kelvin de l'Atlantique ou les monts Bowie, Cross, Graveyard, Hancock, Hawaiian-Emperor, Jasper, Lord Howe, et Tasmanian du Pacifique, malgré un effort de pêche non négligeable sur ces structures. Cette thèse s'inscrit dans le cadre d'un projet du IIOE-2 (International Indian Ocean Expedition-2) qui a pour but de mieux comprendre l'écosystème pélagique autour de deux monts sous-marins du sud-ouest de l'Océan Indien. La Pérouse est un mont peu profond qui s'élève à environ 60 m sous la surface de la mer d'une base qui se situe à 5000 m de profondeur. Ce mont est situé au nordouest de l'île de la Réunion, au sein du gyre anticyclonique ISSG (Gyre subtropical du sud de l'Inde). Sur la ride de Madagascar se situe un autre mont peu profond qui s'élève d'une base à 1600 m et qui culmine à environ 240 m sous la surface de la mer. Ce mont a été baptisé MAD-Ridge dans cette étude. Deux campagnes océanographiques ont été organisées en 2016 à bord du navire Antea de l'Institut de recherche pour le développement (IRD, France). Le but de la campagne La Pérouse était de charactériser l'environnement physique et biologique afin ont des impacts très differents sur la circulation océanique. Diverses pertubations de la circulation océanique ont été decrites dans la littérature [START_REF] White | Physical Processes and Seamount Productivity[END_REF]. En tant qu'obstacles topographiques, les monts sous-marins peuvent bifurquer, piéger, fendre ou détruire les tourbillons méso-échelles [START_REF] De Schouten | Translation, decay and splitting of Agulhas rings in the southeastern Atlantic Ocean[END_REF][START_REF] Herbette | Erosion of a surface vortex by a seamount[END_REF][START_REF] Adduce | An experimental study of a mesoscale vortex colliding with topography of varying geometry in a rotating fluid[END_REF][START_REF] Sutyrin | Critical effects of a tall seamount on a drifting vortex[END_REF][START_REF] Lavelle | Motion, commotion, and biophysical connections at deep ocean seamounts[END_REF]. Sous certaines conditions, un relevé topographique peut causer une élévation des isocèles (lignes de densité) (Owens & Hogg, 1980). Il a également été signalé que les monts sous-marins peuvent agir comme des puits d'énergies pour l'énergie des ondes internes et provoquer des perturbations dans les profondeurs de l'océan [START_REF] White | Seamounts: a review of physical processes and their influence on the seamount ecosystem[END_REF]. Les processus liés à la topographie peuvent générer un mélange au-dessus du fond et comprennent la réflexion des ondes internes et la génération de marées internes [START_REF] Eriksen | Internal wave reflection and mixing at Fieberling Guyot[END_REF]Kunze & Llewelllyn Smith, 2004). Sous certaines conditions, des colonnes de Taylor peuvent également être formées au-dessus d'un mont sous-marin. Ces colonnes de Taylor sont des tourbillons anticycloniques qui s'élèvent en colonnes au-dessus du mont et sont formées à partir des interactions entre les courants et le relevé topographique. Ils agissent comme des "pièges" pour les organismes planctoniques qui s'y agrègent en abondance. Si la productivité se trouve piégée sur le mont, cela peut attirer les consommateurs secondaires et tertiaires telles que les zooplanctons, les micronectons et éventuellement les prédateurs supérieurs.

Le chapitre 2 dresse un aperçu des écosystèmes pélagiques du sud-ouest de l'océan Indien.

Cette zone est délimitée à l'ouest par la côte africaine et l'île de Madagascar qui est positionnée en travers du courant sud-équatorial (South Equatorial Current), jouant ainsi un rôle crucial dans la circulation régionale en provoquant une bifurcation du courant en deux branches (nord et sud) sur sa côte orientale et la formation de tourbillons méso-échelles dans le canal du Mozambique et au sud de L'île. Le sud-ouest de l'océan Indien est également caracterisé par deux provinces biogéochimiques définies dans [START_REF] Longhurst | Ecological Geography of the Sea[END_REF][START_REF] Longhurst | The Indian Ocean-Indian South Subtropical Gyre Province (ISSG)[END_REF] comme étant l'ISSG et l'EAFR (Province côtière de l'Afrique de l'Est). La circulation anticyclonique à grande échelle qui prévaut dans l'ISSG entraîne un downwelling physique, qui limite l'apport de nutriments dans les couches de surface [START_REF] Jena | Observation of oligotrophic gyre variability in the south Indian Ocean: Environmental forcing and biological response[END_REF]. D'autre part, les tourbillons méso-échelles qui dominent l'EAFR crés des conditions favorables à la prolifération de phytoplancton. Ces tourbillons méso-échelles sont d'une importance capitale pour les prédateurs supérieurs tels que les thons, espadons et oiseaux marins, qui utilisent ces structures comme zones d'alimentation. Les reliefs sous-marins du sud-ouest de l'océan Indien semblent aussi jouer un rôle important comme zones d'alimentation pour ces prédateurs supérieurs [START_REF] Pinet | Sex-specific foraging strategies throughout the breeding season in a tropical, sexually monomorphic small petrel[END_REF].

Les monts sous-marins du sud-ouest du l'océan Indien sont parmi les moins explorés au monde [START_REF] Bhattacharya | Western Indian Ocean-a glimpse of the tectonic scenario[END_REF], avec seuls 15 monts de l'océan Indien ayant fait l'objet d'études biologiques [START_REF] Sautya | Megafaunal Community Structure of Andaman Seamounts Including the Back-Arc Basin -A Quantitative Exploration from the Indian Ocean[END_REF]. Cette étude contribue donc à améliorer nos connaissances des processus physico-chimique entrainant une réponse biologique à deux monts sous-marins du sud-ouest de l'océan Indien.

Le chapitre 3 de cette thèse se focalise sur l'influence des tourbillons méso-échelles, du plateau continental de Madagascar et des monts sous-marins peu profonds sur la distribution verticale et spatiale du micronecton avec une approche acoustique. Pendant la campagne MAD-Ridge, un dipôle (paire de tourbillons contra-rotatifs) était présent dans les environs de MAD-Ridge avec la composante anticyclonique stationnée sur le mont pendant toute la campagne et la composante cyclonique situé à l'ouest du mont. Le cyclone a causé une remontée de la [START_REF] Porteiro | Midwater Fish Assemblages and Seamounts[END_REF][START_REF] Kloser | Species identification in deep water using multiple acoustic frequencies[END_REF][START_REF] Kloser | Acoustic observations of micronekton fish on the scale of an ocean basin: potential and challenges[END_REF][START_REF] Davison | Acoustic biomass estimation of mesopelagic fish: backscattering from individuals, populations, and communities[END_REF][START_REF] Cascão | Persistent Enhancement of Micronekton Backscatter at the Summits of Seamounts in the Azores[END_REF][START_REF] Proud | From siphonophores to deep scattering layers: uncertainty ranges for the estimation of global mesopelagic fish biomass[END_REF]. Les organismes se situant dans la couche de surface au sein du cyclone de jour étaient peut-être des poissons épi-et mésopélagiques remplis Au cours de mon travail de thèse, j'ai donc mis en évidence que les tourbillons cycloniques peuvent concentrer une forte densité acoustique du micronecton dans la couche de surface (0-micronectoniques qui occupent un habitat profond de jour. Généralement, les tourbillons cycloniques concentrent une forte densité de production primaire dans la couche euphotique, retenant ainsi le zooplancton et, à terme, les poissons mésopélagiques. Les densités acoustiques du micronecton étaient également plus élevées au mont MAD-Ridge comparé à La Pérouse.

La dynamique des structures méso-échelles telles que les tourbillons cycloniques et anticycloniques au sud de Madagascar, augmente la production primaire et concentre une forte biomasse, abondance et densité acoustique du micronecton dans cette zone qui se démarque ainsi de la région oligotrophe du gyre ISSG au sein duquel se situe La Pérouse. Par mes travaux, j'ai mis en évidence que la distribution spatiale du micronecton dans le sud-ouest de l'océan

Indien serait donc influencée par des processus physico-chimiques.

Le chapitre 4 a pour but de déterminer la distribution verticale et les assemblages du Pérouse et MAD-Ridge de jour comme de nuit. Il a déjà été constaté que de grandes populations de D. suborbitalis étaient associées au mont sous-marin de l'Équateur dans l'océan Indien [START_REF] Parin | Thalassal mesobenthopelagic ichthyocoenosis above the Equator Seamount in the western tropical Indian Ocean[END_REF]. Ces poissons se trouveraient sur les pentes à 500-600 m de profondeur pendant la journée et remonteraient en bancs denses et compacts jusqu'à 80 à 150 m de profondeur la nuit pour se nourrir principalement de copépodes (Gorelova & Prut'ko, 1985), tout en étant la proie de plusieurs prédateurs supérieurs tels que les thons et espadons [START_REF] Parin | Thalassal mesobenthopelagic ichthyocoenosis above the Equator Seamount in the western tropical Indian Ocean[END_REF]. Ces espèces forment des bancs compacts sur les monts sous-marins afin de bénéficier probablement des avantages que confèrent ces espaces, tels que l'augmentation de proies, la diversité qu'offrent ces types d'habitats et des sites de repos. Cependant, force est de constater que des estimations plus faibles en abondance et biomasse du micronecton ont été enregistrées sur les sommets de La Pérouse et de MAD-Ridge comparé aux alentours immédiats de ces monts. L'obstruction physique créée par un mont sous-marin est supposée réduire la densité des animaux sur les flancs et les sommets, en particulier la nuit (eg. [START_REF] Genin | Interactions of migrating zooplankton with shallow topography: predation by rockfishes and intensification of patchiness[END_REF][START_REF] Diekmann | A multivariate analysis of larval fish and paralarval cephalopod assemblages at Great Meteor Seamount[END_REF][START_REF] De Forest | The influence of a Hawaiian seamount on mesopelagic micronekton[END_REF].

Par le biais d'analyses d'isotopes stables du δ 13 C et δ 15 N, le chapitre 5 met en évidence les interactions trophiques du micronecton par rapport à la MOP et au zooplancton aux monts La Pérouse et MAD-Ridge. La MOP de surface a enregistré des valeurs en δ 13 C supérieures à MAD-Ridge comparé à La Pérouse. La MOP se constitue généralement de phytoplancton, bactéries, matières fécales et détritus [START_REF] Riley | Particulate organic matter in sea water[END_REF][START_REF] Saino | Geographical variation of the water column distribution of suspended particulate organic nitrogen and its 15 N natural abundance in the Pacific and its marginal seas[END_REF][START_REF] Fabiano | Distribution and composition of particulate organic matter in the Ross Sea (Antarctica)[END_REF][START_REF] Dong | Characterization of particulate organic matter in the water column of the South China Sea using a shotgun proteomic approach[END_REF][START_REF] Liénart | Dynamics of particulate organic matter composition in coastal systems: A spatio-temporal study at multi-systems scale[END_REF]. Les concentrations en chlorophylle de surface étaient plus élevées à MAD-Ridge comparé à La Pérouse (Annasawmy et al., 2019). Les apports nutritifs à MAD-Ridge sont plus élevés qu'à La Pérouse de part l'action des remontées d'eau sur le plateau continental Malgache, entrainant ainsi un enrichissement en phytoplancton [START_REF] Ramanantsoa | Coastal upwelling south of Madagascar: Temporal and spatial variability[END_REF], par l'advection au large de cette productivité côtière et/ou du plateau continental par le transport transversal [START_REF] Noyon | Plankton distribution within a young cyclonic eddy off south-western Madagascar[END_REF], et par un enrichissement au sein des tourbillons méso-échelles qui se déplacent sur le mont MAD-Ridge [START_REF] De Ruijter | Eddies and dipoles around South Madagascar: formation, pathways and large-scale impact[END_REF][START_REF] Vianello | Circulation and hydrography in the vicinity of a shallow seamount on the northern Madagascar Ridge[END_REF]. La Pérouse, se situant loin des influences marquées par les remontées d'eau et loin des tourbillons à forte puissance, bénéficie moins des apports nutritifs, provoquant ainsi des valeurs en δ 13 C moins élevées de la MOP.

Le [START_REF] Porteiro | Midwater Fish Assemblages and Seamounts[END_REF].

L'intégration des observations de cette étude dans des bases de données mondiales telles que le SEEF (Seamount Ecosystem Evaluation Framework) [START_REF] Kvile | A global assessment of seamount ecosystems knowledge using an ecosystem evaluation framework[END_REF] peut aider à identifier les lacunes dans nos connaissances, à caractériser les particularités de chaque mont sous-marin et à tester davantage les effets potentiels des monts sous-marins afin de comprendre quels sont les facteurs qui déterminent la dynamique des différents types de monts. Il est important de mieux comprendre les ecosystèmes associés à différents monts sous-marins afin de pouvoir proposer des mesures de gestion appropriées quant aux ressources associées. Seamounts are ubiquitous features of the world's oceans. Depending on their definition, there are an estimated 200 000 seamounts [START_REF] Kitchingman | Inferences of potential seamount locations from midresolution bathymetric data[END_REF][START_REF] Wessel | Seamount characteristics[END_REF]Clark et al., 2010b) (Fig. 1.1). Seamounts have an elevation >1000 m (IHO, 2008) whereas knolls have an elevation that ranges between 500-1000m. Approximately 30 000-60 000 seamounts and 138 000 knolls have been identified [START_REF] Hillier | Global distribution of seamounts from ship-track bathymetry data[END_REF][START_REF] Costello | Surface Area and the Seabed Area, Volume, Depth, Slope, and Topographic Variation for the World's Seas, Oceans and Countries[END_REF][START_REF] Yesson | The global distribution of seamounts based on 30 arc seconds bathymetry data[END_REF]). An estimated 24 000 to 100 000 large seamounts remain uncharted [START_REF] Hillier | Global distribution of seamounts from ship-track bathymetry data[END_REF][START_REF] Wessel | The Global Seamount Census[END_REF]. Seamounts may also occur as chains perpendicular to a ridge, as isolated topographic features or in clusters [START_REF] Kitchingman | Inferences of potential seamount locations from midresolution bathymetric data[END_REF][START_REF] Etnoyer | BOX 12 | How Large Is the Seamount Biome?[END_REF].

Glossary of principal abbreviations

Most seamounts are the result of intense oceanic volcanism [START_REF] Craig | Global distribution of seamounts from Seasat profiles[END_REF][START_REF] Wessel | Global distribution of seamounts inferred from gridded Geosat/ERS-1 altimetry[END_REF][START_REF] Yesson | The global distribution of seamounts based on 30 arc seconds bathymetry data[END_REF] and are associated with intraplate hotspots, mid-ocean ridges or island arcs [START_REF] Wessel | Seamount characteristics[END_REF][START_REF] Yesson | The global distribution of seamounts based on 30 arc seconds bathymetry data[END_REF]. [START_REF] Kitchingman | Inferences of potential seamount locations from midresolution bathymetric data[END_REF](Source: Clark, 2009).

Figure 1.1 Estimated global distribution of large seamounts with an elevation >1500 m (yellow diamond symbols) based on data described in

The majority of seamounts are composed of basalt [START_REF] Wessel | Seamount characteristics[END_REF]. Approximately 50 million tons of basalt per year are estimated to be required to produce seamounts [START_REF] Iyer | Seamounts -characteristics, formation, mineral deposits and biodiversity[END_REF], alongside several other factors deemed necessary to control the birth and development of such features [START_REF] Craig | Global distribution of seamounts from Seasat profiles[END_REF]). An adequate supply of magma with sufficient hydraulic head and latent heat is deemed essential to penetrate the oceanic lithosphere without freezing during ascent. For a volcano to develop, the lithosphere must remain over the heat source or magma pool for a sufficient amount of time [START_REF] Craig | Global distribution of seamounts from Seasat profiles[END_REF]. In the early stages of formation, seamounts on the deep seafloor may exhibit strong axial symmetry. The seamount may ultimately grow if additional magma is available and if the seafloor is mechanically strong [START_REF] Wessel | Seamount characteristics[END_REF]. Seamounts can be observed using satellite altimetry [START_REF] Wessel | Global distribution of seamounts inferred from gridded Geosat/ERS-1 altimetry[END_REF][START_REF] Kitchingman | Inferences of potential seamount locations from midresolution bathymetric data[END_REF].

Physical processes resulting from current-topography interactions

As topographic obstacles rising from abyssal depths, interactions are expected with the local physical flow regime causing increased hydrodynamic activities in the vicinity of the seamount, relative to the flat abyssal ocean [START_REF] White | Physical Processes and Seamount Productivity[END_REF][START_REF] Mohn | Dynamics at an elongated, intermediate depth seamount in the North Atlantic (Sedlo Seamount, 40°20′N, 26°40′W)[END_REF]. These pinnacles may also disrupt large scale oceanic flow [START_REF] Royer | Ocean Eddies Generated by Seamounts in the North Pacific[END_REF]. Seamounts may be circular, elongated, conical or elliptical in shape and may be shallow, intermediate (summit below the euphotic zone but within the upper 400 m) and deep (summit below 400 m) [START_REF] White | Seamounts: a review of physical processes and their influence on the seamount ecosystem[END_REF].

There is also an ecological definition associated to seamounts with shallow seamounts penetrating the euphotic zone [START_REF] Yesson | The global distribution of seamounts based on 30 arc seconds bathymetry data[END_REF], middle-depth seamounts reaching the base of the euphotic zone from 1500 m depth while deeper seamounts are found below the zone of influence of the deep-scattering layer [START_REF] Pitcher | Seamounts: Ecology, Fisheries & Conservation[END_REF]. The particular combination of seamounts' shapes, sizes and summit depths ultimately determines the physical flow processes.

A variety of flow disturbances have been described [START_REF] White | Physical Processes and Seamount Productivity[END_REF]Fig. 1.2) and a number of flow-topography interactions have been observed at pinnacles of the Atlantic and Pacific

Oceans (Appendix: Table A). 

Eddy-topography interactions

Mesoscale eddies, that range in diameter from 10 to 300 km, are typically produced as a result of wind stress circulation patterns [START_REF] Falkowski | Role of eddy pumping in enhancing primary production in the ocean[END_REF][START_REF] Mann | Dynamics of marine ecosystems: biological-physical interactions in the oceans[END_REF]. These eddies are circulating water masses and are either cyclonic (clockwise rotation in the southern hemisphere) or anticyclonic (anticlockwise rotation in the southern hemisphere) [START_REF] Bakun | Patterns in the ocean: ocean processes and marine population dynamics[END_REF]. The cyclonic rotation may lead to a doming and localized upwelling of cold, deep, nutrient-rich waters into the euphotic zone [START_REF] Falkowski | Role of eddy pumping in enhancing primary production in the ocean[END_REF] whereas anticyclonic rotation may lead to a depression of isotherms and downwelling of nutrient-rich waters.

As topographic obstacles, seamounts may either bifurcate, trap, split or destroy eddies [START_REF] De Schouten | Translation, decay and splitting of Agulhas rings in the southeastern Atlantic Ocean[END_REF][START_REF] Herbette | Erosion of a surface vortex by a seamount[END_REF][START_REF] Adduce | An experimental study of a mesoscale vortex colliding with topography of varying geometry in a rotating fluid[END_REF][START_REF] Sutyrin | Critical effects of a tall seamount on a drifting vortex[END_REF][START_REF] Lavelle | Motion, commotion, and biophysical connections at deep ocean seamounts[END_REF]. Outcomes of eddy-seamount interactions largely depend on the seamount's dimensions (width, height and orientation) (van Geffen & [START_REF] Van Geffen | Interaction of a monopolar vortex with a topographic ridge[END_REF] and current speeds.

Eddies with diameters up to ~37 km have been reported to be formed from the North Pacific current and seamount interactions north of Hawaii [START_REF] Royer | Ocean Eddies Generated by Seamounts in the North Pacific[END_REF]. Some seamounts such as the Emperor Seamount Chain in the Pacific Ocean may act as generators of quasi-stationary mesoscale eddies [START_REF] Bograd | Observations of seamountattached eddies in the North Pacific[END_REF]. Haida eddies from the northeast Pacific have been shown to be associated with Bowie seamount, with the Haida-2000a eddy being trapped on the seamount for a period of 3 months [START_REF] Dower | Physical and Biological Interactions Between Haida Eddies and Seamounts in the NE Pacific[END_REF]. Numerical models have also shown that an eddy may cross a ridge or be rebounded by the topography, preventing the eddy from crossing the ridge on its first encounter (van Geffen & Davies, 2000b).

The propagation of Meddies (Mediterranean Water eddies), formed from the Mediterranean outflow near the continental slope of Portugal, may also have weak, moderate or strong interactions with seamounts of the Atlantic Ocean [START_REF] Bashmachnikov | Interaction of Mediterranean water eddies with Sedlo and Seine Seamounts, Subtropical Northeast Atlantic[END_REF]. Weak interactions can lead to deflection of Meddies after the latter have rotated some distance around large seamounts (van Geffen & Davies, 2000a). The deflection of a Meddy was observed by the Gorringe Bank aka. Gorringe Ridge [START_REF] Bower | Direct evidence of meddy formation off the southwestern coast of Portugal[END_REF] in the Atlantic. At Seine seamount in the subtropical northeast Atlantic, portion of a Meddy was seen to escape the seamount after having performed several rotations around the summit (Baschmachnikov et al., 2009). Strong interactions of Meddies with seamounts can lead to vortex trapping or splitting (Baschmachnikov et al., 2009). Meddies were partially split after collision with Hyères and Irving seamounts [START_REF] Shapiro | Mediterranean lens "Irving" after its collision with seamounts[END_REF] and destroyed by Sedlo [START_REF] Bashmachnikov | Interaction of Mediterranean water eddies with Sedlo and Seine Seamounts, Subtropical Northeast Atlantic[END_REF],

Hyères [START_REF] Richardson | Tracking three meddies with SOFAR floats[END_REF]2000), Josephine [START_REF] Schultz-Tokos | Merging and Migration of two Meddies[END_REF][START_REF] Richardson | A census of Meddies tracked by floats[END_REF], Lion seamounts and pinnacles in the Horseshoe chain in the Atlantic Ocean [START_REF] Richardson | A census of Meddies tracked by floats[END_REF]. A Meddy was further cleaved into two approximate equally sized smaller Meddies by Cruiser and Irving seamounts [START_REF] Richardson | A census of Meddies tracked by floats[END_REF].

Local processes at seamounts-Isopycnal doming

Localised processes are also observed at seamounts, such as isopycnal doming (Owens & Hogg, 1980), formation of enclosed circulation cells [START_REF] Freeland | Ocean circulation at and near Cobb Seamount[END_REF], amplification and rectification of tidal motions [START_REF] Brink | Tidal and lower frequency currents above Fieberling Guyot[END_REF], and increased vertical mixing [START_REF] Kunze | Abyssal Mixing: Where It Is Not[END_REF][START_REF] Eriksen | Internal wave reflection and mixing at Fieberling Guyot[END_REF]. Isopycnal doming, i.e. upwelling on the upstream side of a topographic feature and doming of density surfaces, is due to ocean currents impinging on a seamount (Martin & Christiansen, 2009) or due to the rectification by trapped waves for sub-inertial frequencies [START_REF] Mohn | [END_REF]. The doming of isotherms is generated when the fluid is forced to rise over the pinnacle due to the associated geostropically induced anticyclonic tendency of the flow field [START_REF] Brainard | Past and present distribution, densities and movements of blue whales Balaenoptera musculus in the Southern Hemisphere and northern Indian Ocean[END_REF]. Topographic obstacles may cause a dome-like structure in the temperature, salinity and density fields [START_REF] Torres | Three-dimensional stratified flow over Alarcón Seamount, Gulf of California entrance[END_REF] and can result from Taylor cone formations [START_REF] White | Physical Processes and Seamount Productivity[END_REF].

Local processes at seamounts-Taylor columns

Trapped, enclosed circulations over topographic obstacles are known as Taylor columns (or cones) and have been reported to occur over some seamounts of the Atlantic and Pacific oceans (Appendix: Table A). The Taylor-Proudman Theorem showed that when a steady and homogeneous flow encounters a seamount, an anticyclonic circulation following the isobaths is generated with any fluid being trapped in a stagnant area above the topographic obstacle, thus creating a Taylor column [START_REF] Huppert | Some remarks on the initiation of inertial Taylor columns[END_REF][START_REF] Huppert | Topographically generated eddies[END_REF][START_REF] White | Seamounts: a review of physical processes and their influence on the seamount ecosystem[END_REF]Fig. 1.3). Flow transitioning to equilibrium will cause two counter rotating vortices to form over idealized Gaussian-shaped seamounts, with stronger impinging flows causing the cyclonic vortex to be shed downstream [START_REF] White | Physical Processes and Seamount Productivity[END_REF] while the anticyclonic vortex remains over the seamount (Huppert & Brian, 1976;[START_REF] Lavelle | Motion, commotion, and biophysical connections at deep ocean seamounts[END_REF]. Factors such as seamount's shape, size, depth (of the summit), turbulence, stratification, current speed and direction, may influence the development of a Taylor Column. In those instances where the water column is stratified, the Taylor column does not extend to the sea surface and is hence known as a "Taylor cap" [START_REF] González-Pola | Circulation patterns at Le Danois Bank, an elongated shelf-adjacent seamount in the Bay of Biscay[END_REF]. If the current velocity is too high, a Taylor cap will not persist over the seamount [START_REF] Lavelle | Motion, commotion, and biophysical connections at deep ocean seamounts[END_REF]. A set of nondimensional parameters such as the Rossby number (Ro: a measure for the relative importance of advective and rotational effects), the Burger number (a measure for the strength of stratification) and the fractional height of the seamount (α), may be used as criteria for the formation of localised induced circulation around a seamount [START_REF] Turnewitsch | Evidence for a sedimentary fingerprint of an asymmetric flow field surrounding a short seamount[END_REF][START_REF] White | Physical Processes and Seamount Productivity[END_REF]Fig. 1.4). Taylor caps may form over idealized Gaussian-shaped seamounts for specific combinations of Ro and α [START_REF] Chapman | Formation of Taylor caps over a tall isolated seamount in a stratified ocean[END_REF]) and as such, Taylor columns will only form transiently. [START_REF] White | Physical Processes and Seamount Productivity[END_REF].

Local processes at seamounts-Tidal amplification and rectification

Closed anticyclonic circulation cells around seamounts may also arise through tidal rectification, i.e. the generation of residual mean currents over the seamount by tidal flow (Mohn, 2002;[START_REF] White | Physical Processes and Seamount Productivity[END_REF]. A variety of processes such as seamount-trapped waves, tidal rectification and amplification, generation of internal tides and locally enhanced turbulent mixing, may arise through the interaction of tides with isolated seamounts [START_REF] Mohn | Seamounts in a restless ocean: Response of passive tracers to sub-tidal flow variability[END_REF]. Tidal amplification over seamounts is due to the squeezing of flow as it passes over the topographic feature and formation of wave motions which are trapped at the bottom of the seamount [START_REF] Brink | The effect of stratification on seamount-trapped waves[END_REF] and rotate in an anticyclonic direction about the seamount [START_REF] Beckmann | The effect of flow at Maud Rise on the sea-ice cover -numerical experiments[END_REF]. Periodic tidal forcing is a dominant phenomenon at the Great Meteor seamount in the North Atlantic, leading to closed circulation cells, generation of internal waves, flow rectification and trapped waves [START_REF] Mohn | [END_REF]. Tidal rectification was shown to play an important role in generating anticyclonic circulations above the summit of Porcupine Bank along the shelf-edge west of Ireland and result in dome-like deformations in the temperature and density fields (Mohn, 2002).

Local processes at seamounts-Internal waves and vertical mixing

Seamounts have also been reported to act as energy sinks for internal wave energy which cause perturbations in the deep ocean [START_REF] White | Seamounts: a review of physical processes and their influence on the seamount ecosystem[END_REF]. Topographically related processes that can generate mixing above the bottom include internal wave reflection and generation of internal tides [START_REF] Eriksen | Internal wave reflection and mixing at Fieberling Guyot[END_REF][START_REF] Kunze | The Role of Small-Scale Topography in Turbulent Mixing of the Global Ocean[END_REF]. When internal waves reflect from the bottom, the energy density and vertical current shear produced by the internal wave changes, leading to wave overturn and/or turbulent mixing [START_REF] White | Seamounts: a review of physical processes and their influence on the seamount ecosystem[END_REF]. Studies have shown a 100 to 10 000-fold increase in turbulent mixing at shallow topographic features relative to the far field [START_REF] Lueck | Topographically Induced Mixing Around a Shallow Seamount[END_REF]. Enhanced turbulent mixing at seamounts may aid additional nutrient fluxes to the euphotic zone (Clark et al., 2010b).

Biological responses at seamounts

Seamount productivity

The dynamic conditions at seamounts are suggested to favour enhanced productivity [START_REF] White | Seamounts: a review of physical processes and their influence on the seamount ecosystem[END_REF]. The uplifting of isotherms through Taylor cap formation or internal wave deflection, may bring deeper nutrient rich water over the seamount where, under favourable light conditions, may enhance local productivity in the surface waters above the seamount [START_REF] Dower | Seamount effects" in the zooplankton community near Cobb Seamount[END_REF][START_REF] Genin | Bio-physical coupling in the formation of zooplankton and fish aggregations over abrupt topographies[END_REF][START_REF] White | Seamounts: a review of physical processes and their influence on the seamount ecosystem[END_REF]. In order to have a significant effect on higher trophic levels, phytoplankton entrapment of the order of weeks or months is necessary [START_REF] Boehlert | A review of the effects of seamounts on biological processes[END_REF][START_REF] Rogers | The Biology of Seamounts[END_REF], with anticyclonic vortices generated by topography-current and topography-internal/tidal wave interactions acting as retention mechanisms for this organic matter generated locally or advected from the far field (Vilas et al., 2009).

Zooplankton dynamics at seamounts

In theory, enhanced primary production at seamounts caused by local dynamic currenttopography interactions, offer higher food concentrations to zooplankton communities relative

to the surrounding open ocean [START_REF] Hirch | Zooplankton metabolism and carbon demand at two seamounts in the NE Atlantic[END_REF]. Interactions of zooplankton communities with topographic features have been suggested to result in gap formation (areas devoid of vertically migrating zooplankton) (Fig. 1.5), enhanced patchiness within the gaps and downstream of the seamount [START_REF] Isaacs | Migrant sound scatterers: Interaction with the sea floor[END_REF] and increased numbers of crustacean carcasses over the seamount [START_REF] Haury | Zooplankton distribution around four eastern North Pacific seamounts[END_REF], with the three processes reported to be tightly linked [START_REF] Haury | Zooplankton distribution around four eastern North Pacific seamounts[END_REF][START_REF] White | Seamounts: a review of physical processes and their influence on the seamount ecosystem[END_REF]. [START_REF] Haury | Zooplankton distribution around four eastern North Pacific seamounts[END_REF].

An increase in zooplankton densities has been observed in the waters above Minami-kasuga seamount both within and above a dome of cold dense water [START_REF] Genin | Madagascar Ridge; Any Taylor column formed may be swept away by mesoscale eddies Read & Pollard[END_REF].

However, no significant increase in zooplankton biomass has been observed above Seine, Sedlo [START_REF] Hirch | Zooplankton metabolism and carbon demand at two seamounts in the NE Atlantic[END_REF], Senghor, Ampère [START_REF] Denda | Zooplankton distribution patterns at two seamounts in the subtropical and tropical NE Atlantic[END_REF]Denda et al., 2017a), Cobb [START_REF] Dower | Seamount effects" in the zooplankton community near Cobb Seamount[END_REF], Dom João de Castro [START_REF] Sobrinho-Gonçalves | Fish Larvae Around A Seamount With Shallow Hydrothermal Vents From The Azores[END_REF], Volcano 7 [START_REF] Saltzman | Zooplankton ecology in the eastern tropical Pacific oxygen minimum zone above a seamount: 1. General trends[END_REF] and Condor [START_REF] Carmo | Variability of zooplankton communities at Condor seamount and surrounding areas, Azores (NE Atlantic)[END_REF] seamounts. Gaps devoid of vertically migrating zooplankton have also been observed above the summit of Sixtymile bank [START_REF] Genin | Zooplankton patch dynamics: daily gap formation over abrupt topography[END_REF][START_REF] Haury | Zooplankton distribution around four eastern North Pacific seamounts[END_REF]Fig. 1.5).

The reduction of zooplankton biomass has been attributed to either predation by resident seamount-associated fishes, displacement of migrating and deep-water zooplankton taxa during the day and active avoidance of the seamounts (Martin & Christiansen, 2009;[START_REF] Denda | Zooplankton distribution patterns at two seamounts in the subtropical and tropical NE Atlantic[END_REF]. The physical displacement of migrating zooplankton and predation pressure have been suggested to lead to gap formation in zooplankton distribution [START_REF] Haury | Zooplankton distribution around four eastern North Pacific seamounts[END_REF], with average abundances being higher away from the summit rather than within the gaps [START_REF] Genin | Zooplankton patch dynamics: daily gap formation over abrupt topography[END_REF]. Increased predation pressure has further been hypothesized to result in increased carcasses at Dowd seamount, Fieberling Guyot, Sixtymile bank [START_REF] Haury | Zooplankton distribution around four eastern North Pacific seamounts[END_REF] and above the summit of Jasper seamount [START_REF] Haury | Copepod carcasses in the ocean. I. Over seamounts[END_REF]. This predation pressure is believed to be influenced by the topography itself which blocks zooplankton communities in their pre-dawn descent, exposing them to visual predators in daylight [START_REF] Genin | Bio-physical coupling in the formation of zooplankton and fish aggregations over abrupt topographies[END_REF]Clark et al., 2010b).

In the upper layers of the open ocean, zooplankton represents a key link between primary production and higher trophic levels, such as micronekton and ultimately top predators [START_REF] Potier | Forage fauna in the diet of three large pelagic fishes (lancetfish, swordfish and yellowfin tuna) in the western equatorial Indian Ocean[END_REF]. Some argue, however, against the bottom-up transfer of energy from locally enhanced primary production through upwelling at abrupt features [START_REF] Genin | Seamount Plankton Dynamics[END_REF][START_REF] Morato | Modelled effects of primary and secondary production enhancement by seamounts on local fish stocks[END_REF]. Indeed, as mentioned previously, phytoplankton entrapment of the order of weeks or months would be necessary to have an influence on secondary and tertiary consumers [START_REF] Genin | Seamount Plankton Dynamics[END_REF]. Other mechanisms which have been suggested to promote aggregations of zooplankton over abrupt topographies [START_REF] Genin | Bio-physical coupling in the formation of zooplankton and fish aggregations over abrupt topographies[END_REF][START_REF] Genin | Seamount Plankton Dynamics[END_REF]:

1) Topographic blockage of daily migrating organisms Also known as the "sound-scattering layer interception hypothesis", the "topographic blockage" hypothesis suggests that migrating organisms are blocked by the seamount topography and become trapped above the seamount at dawn before being consumed by predators [START_REF] Genin | Bio-physical coupling in the formation of zooplankton and fish aggregations over abrupt topographies[END_REF]) (Fig. 1.6). The schematic diagram shows the migrating zooplankton to be found on the seamount slopes during the day (Fig. 1.6a). At sunset, the organisms ascend to the photic layer, forming a gap the width of which equals to that of the seamount at the depth where the migrating zooplankton were found during the day (Fig. 1.6b). The zooplankton drift with the surface current, gradually displacing the gap in zooplankton distribution away from the seamount. Other organisms are advected horizontally from the upstream region to above the seamount summit (Fig. 1.6c, d).

At sunrise, the zooplankton start their descent. A layer of zooplankton is found above the entire shallow summit (Fig. 1.6e) and is blocked by the topography, unable to complete their descent to deeper layers (Fig. 1.6f).

2) Accumulation of animals maintaining their depth by swimming against upwelling Some organisms are able to actively swim against vertical currents in order to maintain their position at specific depths in the water column [START_REF] Genin | Swimming Against the Flow: A Mechanism of Zooplankton Aggregation[END_REF]. Counter-upwelling depth retention is believed to occur to avoid more illuminated waters during daytime [START_REF] Genin | Bio-physical coupling in the formation of zooplankton and fish aggregations over abrupt topographies[END_REF].

Organisms would hence remain in deeper layers. Another explanation for depth retention is the preferential association of organisms with layers of high food concentrations.

3) Accumulation by depth retention of animals swimming against downwelling

Zooplankton may also exhibit depth retention by swimming upward against downwelling currents. These counter-downwelling accumulations of organisms have been reported to occur mostly in the photic layer and the exact mechanisms explaining this behaviour are unclear [START_REF] Genin | Bio-physical coupling in the formation of zooplankton and fish aggregations over abrupt topographies[END_REF].

4) Amplification of currents above abrupt features leading to enhanced fluxes of suspended food.

The above mentioned mechanisms that might cause biomass to accumulate at seamounts generate "trophic focusing", whereby prey from large volumes of flowing water is accumulated in a relatively small area above the seamount, subsidizing higher trophic levels such as pelagic fishes and marine mammals that aggregate over their concentrated prey [START_REF] Genin | Bio-physical coupling in the formation of zooplankton and fish aggregations over abrupt topographies[END_REF][START_REF] Carmo | Variability of zooplankton communities at Condor seamount and surrounding areas, Azores (NE Atlantic)[END_REF]. The magnitude of this subsidy depends on the flow speed, the concentration of plankton and detritus and the ability of the resident communities to trap drifting food particles [START_REF] Genin | Seamount Plankton Dynamics[END_REF]. Unlike corals and sponges that remain stationary and wait for currents to bring food, mobile organisms can swim and enhance their encounter rate with their prey [START_REF] Genin | Seamount Plankton Dynamics[END_REF].

Seamount associated fish species

Seamounts allow fish to rest in the quiescent shelters offered by the topography during nonfeeding intervals, while they continuously sense the abundance of prey in the flowing water.

Fish will feed in the flow when the prey flux is high. In the open ocean, fish have to swim constantly to find rich patches of prey [START_REF] Genin | Bio-physical coupling in the formation of zooplankton and fish aggregations over abrupt topographies[END_REF]. This is the basis of the "feed-rest" hypothesis [START_REF] Genin | Seamount Plankton Dynamics[END_REF][START_REF] Porteiro | Midwater Fish Assemblages and Seamounts[END_REF] believed to be supported by the horizontal flux of allochthonous prey that pass seamounts and sustain rich communities living on seamounts [START_REF] Morato | Modelled effects of primary and secondary production enhancement by seamounts on local fish stocks[END_REF]Clark et al., 2010b). Several studies have shown that a number of species can be defined as being "seamount-associated", i.e. they occur almost exclusively or in higher abundance over a seamount as opposed to adjacent waters [START_REF] De Forest | The influence of a Hawaiian seamount on mesopelagic micronekton[END_REF]. A list of common seamount-associated fish species is given in the Appendix section (Table B).

Population maintenance of seamount-associated species in the face of increased current speeds may depend on a range of behavioural and physical mechanisms [START_REF] Wilson | Interaction of ocean currents and resident micronekton at a seamount in the central North Pacific[END_REF].

It has been observed that populations of Maurolicus muelleri and Gnathophausia longispina are able to adjust their depths throughout the night through exposure to differential current directions. Maurolicus muelleri and G. longispina that had been advected from the summit would descend to bottom layers at the seamount flank, then orient in an upflank direction such that they can migrate vertically up the slope to shallower layers by nightfall [START_REF] Wilson | Interaction of ocean currents and resident micronekton at a seamount in the central North Pacific[END_REF]. To prevent advective loss from the seamount, seamount-associated species orient themselves and reduce nearest-neighbour distances, thus allowing individuals to be in the direction that densities of scatterers are the greatest, i.e. toward the summit [START_REF] Wilson | Sunrise swimmers bias acoustic Doppler current profiles[END_REF]. The association of these species with seamounts may hence confer some selective advantages such as "habitat diversification" in which seamounts provide a range of favourable habitats (both pelagic and benthic) (Denda et al., 2017c;[START_REF] Letessier | Seamount influences on mid-water shrimps (Decapoda) and gnathophausiids (Lophogastridea) of the South-West Indian Ridge[END_REF], enhanced feeding success [START_REF] Haury | Copepod carcasses in the ocean. I. Over seamounts[END_REF][START_REF] Wilson | Interaction of ocean currents and resident micronekton at a seamount in the central North Pacific[END_REF], decreased energy loss through the "feed-rest" hypothesis [START_REF] Genin | Seamount Plankton Dynamics[END_REF] and enhanced encounter rate with other con-specifics for reproduction [START_REF] De Forest | The influence of a Hawaiian seamount on mesopelagic micronekton[END_REF].

Mesopelagic organisms at seamounts

The mesopelagic fish species M. muelleri and C. maderensis and the crustacean G. longispina

are few examples of a widespread and common group of organisms collectively called micronekton. They form a substantial biomass with an estimated number of >10 000 million tons of mesopelagic fishes in oceanic waters worldwide and 380 million tons of Antarctic Krill recorded in the Southern Ocean [START_REF] Atkinson | A re-appraisal of the total biomass and annual production of Antarctic krill[END_REF][START_REF] Irigoien | Large mesopelagic fishes biomass and trophic efficiency in the open ocean[END_REF]. Micronekton are a diverse assemblage of crustaceans (including large euphausiids, pelagic decapods, and mysids), cephalopods (small species and juvenile stages of large oceanic species) and fishes (mainly mesopelagic species and juveniles of pelagic nekton) [START_REF] Brodeur | PICES Scientific Report No. 30 Micronekton of the North Pacific[END_REF][START_REF] De Forest | The influence of a Hawaiian seamount on mesopelagic micronekton[END_REF][START_REF] Drazen | Micronekton abundance and biomass in Hawaiian waters as influenced by seamounts, eddies and the moon[END_REF][START_REF] Ménard | Stable isotope patterns in micronekton from the Mozambique Channel[END_REF][START_REF] Annasawmy | Micronekton diel migration, community composition and trophic position within two biogeochemical provinces of the South West Indian Ocean: Insight from acoustics and stable isotopes[END_REF].

They range in size from 2-20 cm. Micronekton organisms are important in the energy transfer to higher trophic levels since several species are preyed upon by apex predators such as tuna, swordfish and seabird [START_REF] Guinet | Consumption of marine resources by seabirds and seals in Crozet and Kerguelen waters: changes in relation to consumer biomass 1962-85[END_REF][START_REF] Bertrand | Tuna food habits related to the micronekton distribution in French Polynesia[END_REF][START_REF] Potier | Forage fauna in the diet of three large pelagic fishes (lancetfish, swordfish and yellowfin tuna) in the western equatorial Indian Ocean[END_REF][START_REF] Cherel | Isotopic niches and trophic levels of myctophid fishes and their predators in the Southern Ocean[END_REF][START_REF] Danckwerts | Biomass consumption by breeding seabirds in the western Indian Ocean: indirect interactions with fisheries and implications for management[END_REF][START_REF] Jaquemet | Contrasted structuring effects of mesoscale features on the seabird community in the Mozambique Channel[END_REF]. They also play a key role in energy transfer to the deep ocean via respiration, excretion and natural mortality [START_REF] Hidaka | Downward transport of organic carbon by diel migratory micronekton in the western equatorial Pacific: its quantitative and qualitative importance[END_REF][START_REF] Catul | A review of mesopelagic fishes belonging to family Mcytophidae[END_REF][START_REF] Bianchi | Diel vertical migration: Ecological controls and impacts on the biological pump in a one-dimensional ocean model[END_REF]. Several species of micronekton undergo diel vertical migrations (DVM) of several hundred metres to the surface waters at dusk and to deeper waters at dawn [START_REF] Lebourges-Dhaussy | Vinciguerria nimbaria (micronekton), environment and tuna: their relationships in the Eastern Tropical Atlantic[END_REF][START_REF] Béhagle | Mesoscale features and micronekton in the Mozambique Channel: An acoustic approach[END_REF][START_REF] Annasawmy | Micronekton diel migration, community composition and trophic position within two biogeochemical provinces of the South West Indian Ocean: Insight from acoustics and stable isotopes[END_REF].

Gelatinous salps and pyrosomes are also commonly caught in mesopelagic trawl surveys. Salps and pyrosomes are pelagic tunicates that feed in surface waters [START_REF] Zeldis | Salp grazing:effects on phytoplankton abundance, vertical distribution and taxonomic composition in a coastal habitat[END_REF][START_REF] Perissinotto | The trophic role of the tunicate Salpa thompsoni in the Antarctic marine ecosystem[END_REF][START_REF] Décima | The unique ecological role of pyrosomes in the Eastern Tropical Pacific[END_REF]. They exhibit non-selective feeding [START_REF] Nishikawa | Distribution of salps near the South Shetland Islands during austral summer, 1990-1991 with special reference to krill distribution[END_REF][START_REF] Kremer | Towards an understanding of salp swarm dynamics[END_REF] and are important in the carbon and nitrogen export to the deep ocean through the sinking of their large and rapidly sinking fecal pellets [START_REF] Bruland | Sinking rates of fecal pellets from gelatinous zooplankton (Salps, Pteropods, Doliolids)[END_REF][START_REF] Morris | Role of salps in the flux of organic matter to the bottom of the Ligurian Sea[END_REF][START_REF] Caron | Composition and degradation of salp fecal pellets: Implications for vertical flux in oceanic environments[END_REF][START_REF] Phillips | Defecation by Salpa thompsoni and its contribution to vertical flux in the Southern Ocean[END_REF][START_REF] Henschke | Rethinking the Role of Salps in the Ocean[END_REF][START_REF] Iversen | Sinkers or floaters? Contribution from salp pellets to the export flux during a large bloom event in the Southern Ocean[END_REF]. They are further important in the rapid sedimentation of microflagellates and coccoliths that are too small to be consumed by other herbivores [START_REF] Iseki | Particulate Organic Matter Transport to the Deep Sea by Salp Fecal Pellets[END_REF]. Salps' fecal pellets thus play an important role in contributing to the energy requirements of bathypelagic organisms [START_REF] Wiebe | Diel vertical migration by Salpa aspera and its potential for large-scale particulate organic matter transport to the deep-sea[END_REF][START_REF] Iseki | Particulate Organic Matter Transport to the Deep Sea by Salp Fecal Pellets[END_REF][START_REF] Kremer | Towards an understanding of salp swarm dynamics[END_REF]. Some species of salps and pyrosomes are known to undertake DVM over several hundred metres to the surface layer at night [START_REF] Wiebe | Diel vertical migration by Salpa aspera and its potential for large-scale particulate organic matter transport to the deep-sea[END_REF][START_REF] Andersen | Pyrosoma atlanticum (Tunicata, Thaliacea): diel migration and vertical distribution as a function of colony size[END_REF][START_REF] Madin | Periodic swarms of the salp Salpa aspera in the Slope Water off the NE United States: Biovolume, vertical migration, grazing, and vertical flux[END_REF][START_REF] Décima | The unique ecological role of pyrosomes in the Eastern Tropical Pacific[END_REF] and even to perform reverse migrations by streaming up the water column during the day [START_REF] Madin | Distribution and vertical migration of salps (Tunicata, Thaliacea) near Bermuda[END_REF]. Some salps are prey to other micronekton such as Cubiceps pauciradiatus [START_REF] Potier | Spatial distribution of Cubiceps pauciradiatus (Perciformes: Nomeidae) in the tropical Indian Ocean and its importance in the diet of large pelagic fishes[END_REF]. Gelatinous plankton are also preyed upon by several apex predators including lancetfish Alepisaurus ferox (albeit in small proportions; [START_REF] Potier | Forage fauna in the diet of three large pelagic fishes (lancetfish, swordfish and yellowfin tuna) in the western equatorial Indian Ocean[END_REF], yellowfin tuna Thunnus albacares [START_REF] Grubbs | Food habits and trophic dynamics of structure-associated aggregations of yellowfin and bigeye tuna (Thunnus albacares and Thunnus obesus) in the Hawaiian Islands: Project description, rationale and preliminary results[END_REF], bluefin tuna Thunnus thynnus, little tunny Euthynnus alletteratus, spearfish Tetrapturus belone, swordfish Xiphias gladius and loggerhead sea turtles Caretta caretta [START_REF] Cardona | Massive Consumption of Gelatinous Plankton by Mediterranean Apex Predators[END_REF].

Several studies have found higher biomasses of micronekton scattering layers at seamounts' flanks and summits relative to the surrounding ocean, e.g. the Emperor seamount in the Pacific (265m, [START_REF] Boehlert | Current-Topography Interactions at Mid-Ocean Seamounts and the Impact on Pelagic Ecosystems[END_REF]; Cross in the Pacific (330 m, [START_REF] Johnston | Temporal patterns in the acoustic signals of beaked whales at Cross Seamount[END_REF]Condor (182-214 m) and Gigante (161 m) in the Azores [START_REF] Cascão | Persistent Enhancement of Micronekton Backscatter at the Summits of Seamounts in the Azores[END_REF]. By contrast, other studies based on net surveys have found reduced micronekton abundance over Cross pinnacle [START_REF] De Forest | The influence of a Hawaiian seamount on mesopelagic micronekton[END_REF][START_REF] Drazen | Micronekton abundance and biomass in Hawaiian waters as influenced by seamounts, eddies and the moon[END_REF] and reduced mesopelagic fish densities, species numbers and diversity above the flanks of Atlantis (250-400 m) and Great Meteor (330 m) seamounts in the NE Atlantic [START_REF] Pusch | The influence of seamounts on mesopelagic fish communities*)[END_REF], and Sixtymile Bank (97 m) in the North Pacific [START_REF] Haury | Zooplankton distribution around four eastern North Pacific seamounts[END_REF].

Several hypotheses have been developed to explain the high abundance and biomass estimates of micronekton typically observed at seamounts: (1) enhanced primary and secondary production due to local physico-chemical processes [START_REF] Dower | Seamount effects" in the zooplankton community near Cobb Seamount[END_REF][START_REF] Mouriño | Variability and seasonality of physical and biological fields at the Great Meteor Tablemount (subtropical NE Atlantic)[END_REF],

(2) advection and retention of organisms from the surrounding ocean [START_REF] Isaacs | Migrant sound scatterers: Interaction with the sea floor[END_REF][START_REF] Genin | Bio-physical coupling in the formation of zooplankton and fish aggregations over abrupt topographies[END_REF][START_REF] Wilson | Interaction of ocean currents and resident micronekton at a seamount in the central North Pacific[END_REF]), (3) the "feed-rest" hypothesis [START_REF] Genin | Madagascar Ridge; Any Taylor column formed may be swept away by mesoscale eddies Read & Pollard[END_REF][START_REF] Porteiro | Midwater Fish Assemblages and Seamounts[END_REF][START_REF] Cascão | Persistent Enhancement of Micronekton Backscatter at the Summits of Seamounts in the Azores[END_REF], (4) lunar-related light illumination in the form of the lunar cycle with increased abundance during the new moon phase [START_REF] Drazen | Micronekton abundance and biomass in Hawaiian waters as influenced by seamounts, eddies and the moon[END_REF], and ( 5) population maintenance at the summit through a combination of physical and behavioural mechanisms such as directed swimming behaviours to prevent advection to the far field [START_REF] Wilson | Interaction of ocean currents and resident micronekton at a seamount in the central North Pacific[END_REF]. The hypotheses formulated to explain low biomasses at seamounts are equally numerous and include: (1) predation, (2) advection of organisms from the summit due to physical processes, (3) active avoidance of the summit (Martin & Christiansen, 2009;[START_REF] Pusch | The influence of seamounts on mesopelagic fish communities*)[END_REF] because of the presence of a hard substrate or increased predator abundance [START_REF] Drazen | Micronekton abundance and biomass in Hawaiian waters as influenced by seamounts, eddies and the moon[END_REF], or because organisms have daytime depths that are deeper than the depth of the summit [START_REF] De Forest | The influence of a Hawaiian seamount on mesopelagic micronekton[END_REF], and

(4) moon phase with a reduction in abundance during full moon [START_REF] Drazen | Micronekton abundance and biomass in Hawaiian waters as influenced by seamounts, eddies and the moon[END_REF].

According to [START_REF] Porteiro | Midwater Fish Assemblages and Seamounts[END_REF], interactions of midwater fishes with seamounts can be divided into four groups:

1) Mesopelagic fauna that undergo their daily vertical migration process by migrating to the epipelagic layer (above 200 m) at night and interacting with seamounts during their migration process (Fig. 1.7). These organisms may be advected over seamounts by surface currents at night and remained trapped at the summit of shallow seamounts at dawn before being predated upon, resulting in a "gap formation" above seamounts. [START_REF] Boehlert | Current-Topography Interactions at Mid-Ocean Seamounts and the Impact on Pelagic Ecosystems[END_REF].

2) Weakly migrant or non-migrant midwater fishes that enter the benthopelagic zone around seamounts. These species may not be able to counter strong currents and are hence advected over seamounts and are found in equally great abundances at seamount and non-seamount stations.

3) Adults of meso-and bathypelagic species that dwell in the benthopelagic realm probably to increase feeding efficiency through the "feed-rest" hypothesis (Fig. 1.8) 4) "Pseudoceanic" or "neritopelagic" species that occur near seamounts and are absent or less abundant in oceanic waters and that resist advection off the seamounts. Black arrows near seamount: adults of meso-and bathypelagic micronekton species dwelling in the benthopelagic zones. Grey arrows near seamount: non-migrant micronekton fish species associating with the benthopelagic layers of seamounts. U-shaped arrows: migrant micronekton fish species associated with the benthopelagic layers of seamounts and performing DVM (Source: [START_REF] Porteiro | Midwater Fish Assemblages and Seamounts[END_REF].

Mechanisms advecting or trapping micronekton at seamounts are equally important since it has been reported that several seamount-dwelling predators rely heavily on migrating micronekton [START_REF] Sutton | Meso-and bathypelagic fish interactions with seamounts and mid-ocean ridges[END_REF]. At the Southeast Hancock seamount, pelagic armorheads, Pseudopentaceros wheeleri, were shown to rely heavily on migrating micronekton (pelagic tunicates, crustaceans and mesopelagic fishes) that were advected and trapped over the summit during their morning descent [START_REF] Seki | Feeding ecology and daily ration of the pelagic armorhead, Pseudopentaceros wheeleri, at Southeast Hancock Seamount[END_REF]. Epibenthic Sebastes spp. have been shown to feed on the crustaceans Euphausia pacifica, advected above Nidever bank by strong currents [START_REF] Genin | Interactions of migrating zooplankton with shallow topography: predation by rockfishes and intensification of patchiness[END_REF]. At Sedlo seamount, the seamount-associated benthopelagic fishes, orange roughy (Hoplostethus atlanticus), were demonstrated to rely on non-migrant deeper meso-and bathypelagic prey items such as large lanternfishes and dragonfishes [START_REF] Barcelos | Feeding Ecology of orange roughy, Hoplostethus atlanticus Colett, 1889, in the Azores Archipelago[END_REF]. Several studies, however, have shown the vulnerability of seamountaggregating fishes to exploitation by commercial fisheries [START_REF] Ingole | Deep-sea ecosystems of the Indian Ocean[END_REF][START_REF] Morato | Vulnerability of seamount fish to fishing: fuzzy analysis of life-history attributes[END_REF][START_REF] Watson | Catches from world seamount fisheries[END_REF].

Large-scale fisheries at seamounts

A large number of seamounts from around the world are subjected to fishing pressures (Clark et al., 2007) (Fig. 1.9) both for primary (that occur exclusively on seamounts) and secondary seamount species (not occurring exclusively on seamounts) (Fig. 1.10a, b). After 10 years of commercial exploitation by Soviet and Japanese vessels and over 800 000 tons of cumulative catch, pelagic armorheads (Pseudopentaceros richardsoni) were reportedly fished to commercial extinction on the Hawaiian and Emperor seamount chains in the 1960s [START_REF] Koslow | The Silent Deep: The Discovery, Ecology and Conservation of the Deep Sea[END_REF]. Strong decreases in orange roughy catch rates over time were observed over New

Zealand seamounts due to extensive bottom trawling [START_REF] Clark | Fisheries for orange roughy (Hoplostethus atlanticus) on searnounts in[END_REF]2001). A pattern of serial depletion of seamount demersal and benthic fish populations has been observed, whereby the fishery drives the target species to near depletion before moving onto new seamounts as catches decline [START_REF] Clark | Fisheries for orange roughy (Hoplostethus atlanticus) on searnounts in[END_REF].

Figure 1.9 Relative size of historical seamount fisheries for Alfonsino (BYX), Orange roughy (ORH), Oreos (OEO), Cardinalfish (CDL), Redfish (RED), Pelagic armorhead (ARM), Mackerel (MAC), Roundnouse grenadier (RNG), Sablefish (SAB), Notothenid cods (NOT) and Toothfish (PTO). Data are gridded by 1° squares. Circle size is proportional to total catch for that grid square, maximum is 85 000 tons (Source: Clark et al., 2007).

Figure 1.10 Global catch of (a) primary seamount species (caught primarily/ exclusively on seamounts), (b) secondary seamount species (not found exclusively/ primarily from seamount habitats), based on data described in [START_REF] Watson | Exploitation patterns in seamount fisheries: a preliminary analysis[END_REF](Source: Watson et al., 2007).

Regular seamount visitors

A number of other fisheries also regularly take place over seamounts such as those for the pelagic top predators, yellowfin, bigeye (Thunnus obesus), albacore (Thunnus alalunga), skipjack (Katsuwonus pelamis) and northern bluefin tunas [START_REF] Fonteneau | Monts sous-marins et thons dans l'Atlantique tropical est[END_REF][START_REF] Watson | Catches from world seamount fisheries[END_REF]Morato et al., 2010b;[START_REF] Dubroca | Seamounts and tuna fisheries: Tuna hotspots or fishermen habits? Collect[END_REF]Marsac et al., 2014) (Fig. 1.10b). These species are not restricted to seamounts but are widely dispersed in oceanic environments and only occasionally converge to seamounts. The residence times of yellowfin tunas ranged from ~15 days at Espiritu Santo seamount in the Gulf of California [START_REF] Klimley | The occurrence of yellowfin tuna (Thunnus albacares) at Espiritu Santo Seamount in the Gulf of California[END_REF] and 18 days at Cross seamount [START_REF] Holland | Fish visitors to seamounts: Tunas and billfish at seamounts[END_REF]. Bigeye tuna had residence times of ~32-98 ± 19 days [START_REF] Holland | Different residence times of yellowfin tuna, Thunnus albacares, and bigeye tuna, T. obesus, found in mixed aggregations over a seamount[END_REF][START_REF] Sibert | Exchange rates of yellowfin and bigeye tunas and fishery interaction between Cross seamount and near-shore FADs in Hawaii[END_REF][START_REF] Holland | Fish visitors to seamounts: Tunas and billfish at seamounts[END_REF] or 25 ± 12 days at Cross [START_REF] Musyl | Vertical movements of bigeye tuna (Thunnus obesus) associated with islands, buoys, and seamounts near the main Hawaiian Islands from archival tagging data[END_REF]. Some seamounts have been documented to be attractive, not only for benthopelagic organisms and tunas, but also billfishes (Morato et al., 2010a), sharks [START_REF] Klimley | Diel movement patterns of the scalloped hammerhead shark (Sphyrna lewini) in relation to El Bajo Espiritu Santo: a refuging central-position social system[END_REF][START_REF] Klimley | Diel movements of scalloped hammerhead sharks, Sphyrna lewini Griffith and Smith, to and from a seamount in the Gulf of California[END_REF][START_REF] Hazin | Review of a small-scale pelagic longline fishery off Northeastern Brazil[END_REF][START_REF] Litvinov | Fish visitors to seamounts: Aggregations of large pelagic sharks above seamounts[END_REF][START_REF] Junior | Feeding strategy of the night shark (Carcharhinus signatus) and scalloped hammerhead shark (Sphyrna lewini) near seamounts off North Eastern Brazil[END_REF][START_REF] Meyer | A multiple instrument approach to quantifying the movement patterns and habitat use of tiger (Galeocerdo cuvier) and Galapagos sharks (Carcharhinus galapagensis) at French Frigate Shoals, Hawaii[END_REF]Morato et al., 2010a;[START_REF] Barnett | Residency and Spatial Use by Reef Sharks of an Isolated Seamount and Its Implications for Conservation[END_REF], sea turtles (Santos et al., 2007;[START_REF] Fiori | Seamount attractiveness to top predators in the southern Tyrrhenian Sea (central Mediterranean)[END_REF][START_REF] Vassallo | Seamounts as hotspots of large pelagic aggregations[END_REF], seabirds [START_REF] Haney | Seabird aggregation at a deep North Pacific seamount[END_REF]Thompson et al., 2007, Morato et al., 2008;[START_REF] Amorim | Spatial variability of seabird distribution associated with environmental factors: a case study of marine important bird areas in the Azores[END_REF][START_REF] Paiva | Oceanographic characteristics of areas used by Cory's shearwaters during short and long foraging trips in the North Atlantic[END_REF][START_REF] Newton | Marine mammal and seabird abundance and distribution around the Davidson Seamount[END_REF][START_REF] Villani | Tyrrhenian seamounts influence on pelagic visitors: cetaceans, seabirds, sea turtles and pelagic fishes[END_REF], and marine mammals such as whales [START_REF] Worm | Predator diversity hotspots in the blue ocean[END_REF][START_REF] Johnston | Temporal patterns in the acoustic signals of beaked whales at Cross Seamount[END_REF][START_REF] Newton | Marine mammal and seabird abundance and distribution around the Davidson Seamount[END_REF][START_REF] Wong | Seasonal occurrence of sperm whales (Physeter macrocephalus) around Kelvin Seamount in the Sargasso Sea in relation to oceanographic processes[END_REF][START_REF] Mcdonald | An acoustic survey of beaked whales at Cross Seamount near Hawaii[END_REF][START_REF] Dulau | Continuous movement behavior of humpback whales during the breeding season in the southwest Indian Ocean: on the road again![END_REF] and dolphins [START_REF] Kaschner | Air-breathing visitors to seamounts: Section A, Marine mammals[END_REF][START_REF] Morato | Evidence of a seamount effect on aggregating visitors[END_REF][START_REF] Giorli | Acoustic detection of biosonar activity of deep diving odontocetes at Josephine Seamount High Seas Marine Protected Area[END_REF]. The main hypotheses explaining why large-scale migratory pelagic species might be attracted to seamounts include: i) Seamounts may provide navigational waypoints to fish movements [START_REF] Holland | Different residence times of yellowfin tuna, Thunnus albacares, and bigeye tuna, T. obesus, found in mixed aggregations over a seamount[END_REF][START_REF] Fréon | Review of fish associative behaviour: Toward a generalisation of the meeting point hypothesis[END_REF][START_REF] Holland | Fish visitors to seamounts: Tunas and billfish at seamounts[END_REF][START_REF] Litvinov | Fish visitors to seamounts: Aggregations of large pelagic sharks above seamounts[END_REF].

Seamounts reportedly have distinct geo-magnetic signatures that tunas and sharks might be able to detect and orient to [START_REF] Walker | Learned magnetic field discrimination in yellowfin tuna,Thunnus albacares[END_REF][START_REF] Meyer | Sharks can detect changes in the geomagnetic field[END_REF] in their large pan-oceanic migrations, also known as "magnetic topotaxis" [START_REF] Klimley | Highly directional swimming by scalloped hammerhead sharks, Sphyrna lewini, and subsurface irradiance, temperature, bathymetry, and geomagnetic field[END_REF]. Seamounts may host these species transiently wherein the fishes briefly leave the seamount to forage for food and orient to the latter after foraging [START_REF] Holland | Fish visitors to seamounts: Tunas and billfish at seamounts[END_REF].

ii) Seamounts may provide enhanced foraging opportunities to top predators [START_REF] Holland | The biology of FADassociated tuna: temporal dynamics of association and feeding ecology[END_REF][START_REF] Klimley | The occurrence of yellowfin tuna (Thunnus albacares) at Espiritu Santo Seamount in the Gulf of California[END_REF][START_REF] Kaschner | Air-breathing visitors to seamounts: Section A, Marine mammals[END_REF][START_REF] Santos | Air-breathing visitors to seamounts: Section B, Sea turtles[END_REF][START_REF] Morato | Evidence of a seamount effect on aggregating visitors[END_REF][START_REF] Johnston | Temporal patterns in the acoustic signals of beaked whales at Cross Seamount[END_REF][START_REF] Giorli | Acoustic detection of biosonar activity of deep diving odontocetes at Josephine Seamount High Seas Marine Protected Area[END_REF].

Foraging opportunities for apex predators may be enhanced at seamounts through the processes mentioned above, including enhanced upwelling events, development and retention of primary and secondary production of the order of weeks or months, the topographic blockage hypothesis and the "feed-rest" hypothesis [START_REF] Genin | Bio-physical coupling in the formation of zooplankton and fish aggregations over abrupt topographies[END_REF][START_REF] Genin | Seamount Plankton Dynamics[END_REF][START_REF] Porteiro | Midwater Fish Assemblages and Seamounts[END_REF][START_REF] Morato | Modelled effects of primary and secondary production enhancement by seamounts on local fish stocks[END_REF]. It has been suggested that humpback whales use seamounts as supplementary feeding areas during their migrations [START_REF] Garrigue | Satellite tracking reveals novel migratory patterns and the importance of seamounts for endangered South Pacific humpback whales[END_REF] and that killer whales and beaked whales may use seamounts as barriers to herd prey into denser groups [START_REF] Heimlich-Boran | Behavioral ecology of killer whales (Orcinus orca) in the Pacific Northwest[END_REF][START_REF] Johnston | Temporal patterns in the acoustic signals of beaked whales at Cross Seamount[END_REF].

iii) Seamounts may represent favourable breeding habitats Seamounts may be attractive as breeding habitats [START_REF] Garrigue | Satellite tracking reveals novel migratory patterns and the importance of seamounts for endangered South Pacific humpback whales[END_REF], as suggested for male humpback whales (Megaptera novaeangliae) visiting La Pérouse seamount in the Indian Ocean for residence times of ~1-17.5 days during the peak of the breeding season, from July to September [START_REF] Dulau | Continuous movement behavior of humpback whales during the breeding season in the southwest Indian Ocean: on the road again![END_REF]Fig. 1.11). The New Caledonian humpback whale population have also been reported to aggregate at Antigonia pinnacle for an average of ~9.4 ± 5.8 days during their breeding period [START_REF] Garrigue | Satellite tracking reveals novel migratory patterns and the importance of seamounts for endangered South Pacific humpback whales[END_REF]. iv) Seamounts may function as "cleaning stations" for oceanic sharks and rays [START_REF] O'shea | Tide-related periodicity of manta rays and sharks to cleaning stations on a coral reef[END_REF][START_REF] Oliver | Oceanic Sharks Clean at Coastal Seamount[END_REF].

Pelagic thresher sharks (Alopias pelagicus) reportedly frequently visit Monad Shoal seamount in the Philippines to interact with the blue streaked cleaner wrasse (Labroides dimidiatus) that remove ectoparasites [START_REF] Oliver | Oceanic Sharks Clean at Coastal Seamount[END_REF]. Cleanerfish at Osprey reef seamount in Australia were also observed removing ectoparasites from the mobulid ray (Manta birostris) and sharks belonging to the Carcharhinidae and Sphyrnidae families which would transit to the seamount [START_REF] O'shea | Tide-related periodicity of manta rays and sharks to cleaning stations on a coral reef[END_REF].

Oceanic fronts have been reported to enhance aggregation of pelagic visitors at seamounts by generating increased allochthonous productivity and hence creating more foraging opportunities [START_REF] Morato | A perspective on the importance of oceanic fronts in promoting aggregation of visitors to seamounts[END_REF]. It has been hypothesized that tunas may force their prey to the surface where they are further concentrated by common dolphins, thus attracting seabirds to the seamount [START_REF] Morato | Evidence of a seamount effect on aggregating visitors[END_REF]. Seamounts may thus be hotspots of pelagic biodiversity, with higher species richness of pelagic predatory fishes associated with the seamount relative to coastal and oceanic regions (Morato et al., 2010a;[START_REF] Worm | Predator diversity hotspots in the blue ocean[END_REF].

Seamount endemism

Seamounts have further been hypothesized to support high levels of endemism, which is one of the most contradicted paradigms in seamount ecology [START_REF] Mcclain | Seamounts: identity crisis or split personality?[END_REF]Rowden et al., 2010aRowden et al., , 2010b)). Endemic species are those that are restricted to a single or chain of seamounts only [START_REF] Stocks | Synoptic views of seamounts: Biogeography and biodiversity of seamounts[END_REF]. Seamount habitats have been speculated to be isolated and hence to promote local speciation leading to seamount species having limited, compressed geographic ranges thereby increasing levels of endemism [START_REF] Hubbs | Initial discoveries of fish faunas on seamounts and offshore banks in the Eastern Pacific[END_REF]. Some authors have reported levels of endemism of 15.4% among invertebrates and 11.6% among fishes from over 100 seamounts worldwide, although 72% of that dataset comes from only five seamounts [START_REF] Wilson | Seamount Biota and Biogeography[END_REF]. Other authors have found levels of endemism of 29-34% over seamounts in the Tasman Sea and southeast Coral Sea [START_REF] De Forges | Diversity and endemism of the benthic seamount fauna in the southwest Pacific[END_REF], endemism of <3% in antipatharian, scleractinian and gorgonian corals at seamounts in the northeast Atlantic [START_REF] Hall-Spencer | Deep-sea coral distribution on seamounts, oceanic islands, and continental slopes in the Northeast Atlantic[END_REF], and endemism in the Pacific octocoral genus Chrysogorgia at New

England and Corner seamounts [START_REF] Pante | An inter-ocean comparison of coral endemism on seamounts: the case of Chrysogorgia[END_REF]. No endemic species of invertebrates and benthopelagic fish were recorded on the summit plateau of Seine [START_REF] Christiansen | The benthopelagic fish fauna on the summit of Seine Seamount, NE Atlantic: Composition, population structure and diets[END_REF], Ampère [START_REF] Christiansen | The fish fauna of Ampère Seamount (NE Atlantic) and the adjacent abyssal plain[END_REF] and the Norfolk ridge [START_REF] Samadi | Seamount endemism questioned by the geographic distribution and population genetic structure of marine invertebrates[END_REF] seamounts.

Much of the debate around endemicity arise from our inability to sample seamount ecosystems and non-seamount pools successfully [START_REF] Rogers | The Biology of Seamounts[END_REF][START_REF] Mcclain | Seamounts: identity crisis or split personality?[END_REF][START_REF] Hart | An application of the theory of island biogeography to fish speciation on seamounts[END_REF].

In the analysis of endemicity, the degree of connectivity of seamounts to neighbouring island and landmasses and recruitment mechanisms are important variables to consider [START_REF] Hart | An application of the theory of island biogeography to fish speciation on seamounts[END_REF]. Contrary to the "seamount endemicity" hypothesis, seamounts have also been postulated to serve as "sources" and/or "sinks" of propagules from nearby habitats, with populations of invertebrates on seamounts being the source of propagules for adjacent slope sinks (Rowden et al., 2010a). This forms the basis of the "stepping stone" hypothesis, whereby seamounts aid species dispersal within the region, possibly powered by large-scale currents and eddies (Wilson & Kaufman, 1987;[START_REF] Boehlert | Populations of the Sternoptychid Fish Maurolicus muelleri on Seamounts in the Central North Pacific[END_REF][START_REF] Christiansen | The fish fauna of Ampère Seamount (NE Atlantic) and the adjacent abyssal plain[END_REF][START_REF] Packmor | Oceanic islands and seamounts as staging posts for Copepoda Harpacticoida (Crustacea) -Shallow-water Paramesochridae Lang, 1944 from the North-East Atlantic Ocean, including the (re-)description of three species and one subspecies from the Madeiran Archipelago[END_REF].

Larval dispersal and seamount connectivity

Marine ecological connectivity between distant ecosystems is mediated through two types of connections: passive circulation connectivity aided by ocean currents and/or active migratory connectivity achieved by actively swimming marine species [START_REF] Cowen | Scaling of Connectivity in Marine Populations[END_REF][START_REF] Popova | Ecological connectivity between the areas beyond national jurisdiction and coastal waters: Safeguarding interests of coastal communities in developing countries[END_REF]. Larval type (long-lived vs. short-lived) and/or larval behaviour (larvae moving vertically in the water column or post-larvae attaching to floating materials) may also significantly influence the dispersal of a population [START_REF] Bradbury | Contrasting larval transport in demersal fish and benthic invertebrates: the roles of behaviour and advective processes in determining spatial pattern[END_REF][START_REF] Cowen | Scaling of Connectivity in Marine Populations[END_REF][START_REF] Stocks | Synoptic views of seamounts: Biogeography and biodiversity of seamounts[END_REF] and hence its endemicity/ connectivity. Larvae released by populations at Fieberling Guyot, Cobb seamount and Porcupine bank were either settled into the benthos (if the larvae were benthic), were swept off the seamounts or were retained in Taylor caps [START_REF] Parker | Dispersal Strategies of the Biota on an Oceanic Seamount: Implications for Ecology and Biogeography[END_REF][START_REF] Kloppmann | The distribution of blue whiting eggs and larvae on Porcupine Bank in relation to hydrography and currents[END_REF]Mohn, 2002) and related features by forming patches of larvae with anomalously high abundances that originate near the summit but are later advected to the far-field and shed from the seamount by shifting impinging currents [START_REF] Mullineau | A test of the larval retention hypothesis in seamountgenerated flows[END_REF]). An increase in larval abundance in the seamount waters at Senghor relative to the open ocean has been recorded, suggesting retention of larvae by mechanisms such as enhanced vertical mixing generated by the displacement of isotherms and isohalines (Denda et al., 2017a). Flow patterns reportedly contribute to seamount connectivity by aiding the transport of M. muelleri from the southern Emperor seamount to the region of Southeast Hancock seamount [START_REF] Boehlert | Populations of the Sternoptychid Fish Maurolicus muelleri on Seamounts in the Central North Pacific[END_REF]. Larval dispersal and exchange may result in significant genetic exchange and mixing between species on seamounts and the surrounding environment [START_REF] Mullineau | A test of the larval retention hypothesis in seamountgenerated flows[END_REF][START_REF] Stocks | Synoptic views of seamounts: Biogeography and biodiversity of seamounts[END_REF], leading to species being genetically connected [START_REF] Samadi | Seamount endemism questioned by the geographic distribution and population genetic structure of marine invertebrates[END_REF].

Seamount conservation and management strategies

Seamount ecosystems may be significantly altered by human activities including deep-sea bottom trawling through the removal of coral habitats, the overexploitation of stocks and seabed mining for cobalt, ferro-manganese nodules and polymetallic sulphides [START_REF] Clark | Impacts of fisheries on seamounts[END_REF][START_REF] Probert | Management and conservation of seamounts[END_REF][START_REF] Pitcher | Seamount fisheries: do they have a future?[END_REF][START_REF] Clark | Spatial management of deep-sea seamount fisheries: balancing sustainable exploitation and habitat conservation[END_REF]. These impacts highlight a pressing need to address the question of conservation and ecosystem-based management of seamounts. Seamounts are good candidates for the set-up of Marine Protected Area (MPA) networks promoted by the OSPAR Convention (OSPAR Commission, 2004) and the Natura 2000 network of protected areas established by member states of the European Commission [START_REF] Santos | Toward the conservation and management of Sedlo Seamount: A case study[END_REF]. Management actions require a balance between exploitation and conservation, both of fisheries and habitats [START_REF] Probert | Management and conservation of seamounts[END_REF]. No single management model is applicable to all seamounts [START_REF] Probert | Management and conservation of seamounts[END_REF]Clark et al., 2010b).

Management tools are likely to include two complementary categories: site-specific (longterm) and activity-related (short-term) [START_REF] Probert | Management and conservation of seamounts[END_REF]Clark et al., 2010b;Clark et al., 2012). Site-specific regulations may include the implementation of single MPA or a network of MPAs and/or no-take zones [START_REF] Probert | Management and conservation of seamounts[END_REF][START_REF] Barnett | Residency and Spatial Use by Reef Sharks of an Isolated Seamount and Its Implications for Conservation[END_REF], identification and conservation of specific pelagic diversity hotspots [START_REF] Worm | Predator diversity hotspots in the blue ocean[END_REF], implementation of catch limits and/or small MPAs for individual features at specific times of the year to protect the target species nursery grounds and spawning aggregations thereby preventing local and serial depletion of stocks [START_REF] Clark | Spatial management of deep-sea seamount fisheries: balancing sustainable exploitation and habitat conservation[END_REF][START_REF] Fontes | Permanent aggregations of a pelagic predator at shallow seamounts[END_REF] and marine reserves to protect seabirds' resting and foraging grounds during their breeding seasons [START_REF] Amorim | Spatial variability of seabird distribution associated with environmental factors: a case study of marine important bird areas in the Azores[END_REF]. Activity-related management measures may comprise effort control through the prohibition of all fishing or specific gear types, set-up of line retrieval times, depth limits, establishment of catch quotas and bycatch quotas and licences or technical modifications to existing fishing gears so they have a lesser impact on seamount ecosystems [START_REF] Clark | Impacts of fisheries on seamounts[END_REF][START_REF] Santos | Air-breathing visitors to seamounts: Section B, Sea turtles[END_REF][START_REF] Probert | Management and conservation of seamounts[END_REF][START_REF] Clark | Deep-sea seamount fisheries: a review of global status and future prospects[END_REF][START_REF] Clark | Spatial management of deep-sea seamount fisheries: balancing sustainable exploitation and habitat conservation[END_REF].

Since most seamounts are located in areas beyond national jurisdiction, conservation measures and actions can only be implemented and enforced in cooperation with member states at a regional and international level (such as the Regional Fisheries Management Organisations), based on scientific information and consistent with international law [START_REF] Probert | Management and conservation of seamounts[END_REF], and based on open dialogue and free exchange of information between all the stakeholders and seamount users [START_REF] Gubbay | Toward the Conservation and Management of the Sedlo Seamount[END_REF]Clark et al., 2010b). Several frameworks and criteria are now available for classifying individual seamounts as ecologically and biologically significant areas (EBSA) [START_REF] Taranto | An Ecosystem Evaluation Framework for Global Seamount Conservation and Management[END_REF], for the economic valuation of seamount ecosystems [START_REF] Ressurreição | Quantifying the direct use value of Condor seamount[END_REF], or for delineating Large Marine Ecosystems (LMEs) [START_REF] Probert | Seamounts, sanctuaries and sustainability: moving towards deep-sea conservation[END_REF] to reduce threats and develop comprehensive and sustainable management strategies. Conservation actions can further be prioritized by grouping seamounts according to their general characteristics [START_REF] Probert | Management and conservation of seamounts[END_REF].

An essential input to all conservation and management actions is the accurate information about the geographic distribution of habitats and their associated biological resources (Clark et al., 2012). Unfortunately, data with respect to benthic habitats are available only for a small percentage of seamounts globally. Significant knowledge gaps exists on seamount ecosystems of the Indian Ocean (Clark et al., 2010b), although ~40 years of fishing mark the history of the South West Indian Ocean seamounts [START_REF] Zucchi | State of knowledge on seamount and hydrothermal vent ecosystems -FFEM-SWIO Project Bibliography study[END_REF]. Regarding non-living resources, permits have been awarded to the Chinese contractor COMRA (China Ocean Mineral

Resources Research and Development Association) for exploration of seabed minerals of the South West Indian Ridge [START_REF] Guduff | Laying the foundations for management of a seamount beyond national jurisdiction[END_REF]. The ocean governance framework in the Western Indian Ocean (WIO) is complex with various legal and institutional frameworks and regional powers including the Nairobi Convention and the Regional Fisheries Bodies-the IOTC (Indian Ocean Tuna Commission), SIOFA (South Indian Ocean Fisheries Agreement)

and SWIOFC (Southwest Indian Ocean Fisheries Commission).

Limited management measures have been implemented by the SIOFA. One such conservation measure is the delineation of 13 benthic protected areas (BPAs) where bottom or midwater trawling are banned. However, these measures do not regulate mining or oil/drilling activities.

Other measures include limits on bottom fishing effort and catch and exclusion of gears (traps and lines). No MPAs have been set-up along the South West Indian Ridge [START_REF] Guduff | Laying the foundations for management of a seamount beyond national jurisdiction[END_REF].

The significant knowledge gaps identified during the 2016 and 2017 SIOFA meetings have been the cause of the rejection of a proposal to convert the SIODFA's BPAs into formal VME (Vulnerable Marine Ecosystem) closures. Future research should thus strategically target these understudied regions, types of seamounts and critical ecological processes. Research should also aim at employing novel sampling and analysis technologies, using predictive modelling tools to predict habitat suitability for benthic species in poorly studied regions [START_REF] Tittensor | Predicting global habitat suitability for stony corals on seamounts[END_REF][START_REF] Guduff | Laying the foundations for management of a seamount beyond national jurisdiction[END_REF] and standardizing data collection and sharing (Clark et al., 2010b).

Conclusion

Some seamounts from the Atlantic and Pacific basins were reported to significantly enhance biomass of primary, secondary and tertiary consumers if physical processes are developed and maintained for a sufficient amount of time to allow a biological response to occur. While processes conducive for biological enhancement has been thoroughly studied at some seamounts of the Atlantic and Pacific oceans (Appendix: Tables A & B), our knowledge pool is limited, especially in the south-western Indian Ocean. Chapter 2 will hence aim at shedding new light on the general pelagic ecosystem within the South West Indian Ocean (SWIO). The prevailing physical processes and topographic features of the SWIO, likely influencing the distribution, abundance and behaviour of lower through to higher trophic levels, will be described.

Thesis Aims and Objectives

This research project was inspired by the recognition that the La Pérouse and MAD-Ridge seamounts may host ecologically and biologically important organisms, that they are being exploited by fisheries and that the significant knowledge gaps have led to a lack of conservative measures to protect the associated ecosystems. This work is the first to investigate the dynamics of mesopelagic communities at La Pérouse and MAD-Ridge.

Chapter 2 is dedicated to a detailed overview of the pelagic ecosystem of the south-western Indian Ocean. The relevance of physical oceanographic processes, seamounts and ridges of the south-western Indian Ocean for top predator species is also presented, along with fisheries impact and governance aspects. The La Pérouse and MAD-Ridge seamounts are introduced as case studies whereby the bathymetry, chemical oceanography, plankton, ichthyoplankton and mesozooplankton communities were investigated during two recent cruises. Chapter 5 interrogates the stable isotope patterns at the La Pérouse and MAD-Ridge seamounts using stable carbon (δ 13 C) and nitrogen (δ 15 N) isotopic values of soft tissues of selected micronekton taxa. The trophic interactions between particulate organic matter (POM), zooplankton, gelatinous organisms and micronekton are studied in more detail, along with the 

Geomorphology and sedimentation

The latitudinal range of the South West Indian Ocean (SWIO) extends from 0 to 30-35°S while the longitudinal range encompasses the area between eastern Africa to 60°E. While the Indian Ocean is the third largest ocean in the world [START_REF] Ingole | Deep-sea ecosystems of the Indian Ocean[END_REF], it remains relatively less well explored scientifically relative to the Atlantic and Pacific Oceans. The geomorphological characteristics of the Indian Ocean comprise islands, mid-ocean ridges, abyssal plains, deep-sea trenches, submarine plateaus and seamounts, with the latter being poorly studied habitats [START_REF] Demopoulos | The Deep Indian Ocean Floor[END_REF][START_REF] Ingole | Deep-sea ecosystems of the Indian Ocean[END_REF]. The distribution of seamounts varies across ocean basins. The Pacific basin accounts for ~8950 potential seamounts relative to the Atlantic, Indian and Southern Oceans (2760, 1650 and 880, respectively) [START_REF] Hillier | Global distribution of seamounts from ship-track bathymetry data[END_REF][START_REF] Kitchingman | How many seamounts are there and where are they located?[END_REF][START_REF] Wessel | Seamount characteristics[END_REF][START_REF] Etnoyer | BOX 12 | How Large Is the Seamount Biome?[END_REF]. The low abundance of seamounts in the Indian Ocean has been associated with the smaller magmatic activity and cooler mantle temperatures in the region [START_REF] Mendel | Seamount volcanism at the super slow-spreading Southwest Indian Ridge between 57°E and 70[END_REF]. Most seamounts present in the Indian Ocean are associated with its ridge systems [START_REF] Ingole | Deep-sea ecosystems of the Indian Ocean[END_REF]Fig. 2.1). The Madagascar Ridge is an elongated plateau that has originated from volcanism of the Marion hotspot [START_REF] Sinha | The crustal structure of the Madagascar Ridge[END_REF][START_REF] Zhang | Interactions between hotspots and the Southwest Indian Ridge during the last 90 Ma: Implications on the formation of oceanic plateaus and intra-plate seamounts[END_REF]Fig. 2.1). It stretches 400 km across and ~1300 km southwards from the Madagascar landmass and connects at 42°S with the Southwest Indian Ridge (SWIR) [START_REF] Sinha | The crustal structure of the Madagascar Ridge[END_REF][START_REF] Zucchi | State of knowledge on seamount and hydrothermal vent ecosystems -FFEM-SWIO Project Bibliography study[END_REF]. The Madagascar ridge system can be separated into two domains north and south of 31°S that differ in sea-floor topography, acoustical basement relief and sediment cover [START_REF] Goslin | Submarine topography and shallow structure of the Madagascar Ridge, western Indian Ocean[END_REF]. In the northern portion of the ridge, sediments are confined in narrow pockets between the numerous basaltic highs on a relatively old crust. In the southern portion of the ridge, the sediment cover is thicker and regularly layered on a younger oceanic crust [START_REF] Goslin | Submarine topography and shallow structure of the Madagascar Ridge, western Indian Ocean[END_REF]. The Mascarene Basin, on the other hand, extends between Madagascar and the Mascarene Plateau [START_REF] Schlich | Initial Reports of the Deep Sea Drilling Project[END_REF]. The Mascarene Plateau was formed from the Réunion hotspot [START_REF] Bonneville | Heat flow over Reunion hot spot track: Additional evidence for thermal rejuvenation of oceanic lithosphere[END_REF]. The shallow part of the Mascarene Plateau is 20-100 m deep along the banks that have steep descending slopes to ~3000-5000 m [START_REF] New | Physical and Biochemical Aspects of the Flow across the Mascarene Plateau in the Indian Ocean[END_REF]. The curvature of the Mascarene ridge is typical of the curvature of an island arc extending ~2000 km from Seychelles to Mauritius [START_REF] Kamen-Kaye | Petroleum Geology of the Mascarene Ridge, Western Indian Ocean[END_REF][START_REF] Gallienne | Epipelagic mesozooplankton distribution and abundance over the Mascarene Plateau and Basin, south-western Indian Ocean[END_REF]. The southern Mascarene Ridge consists of dark, fine-grained, grey basalt and younger volcanic rocks [START_REF] Schlich | Initial Reports of the Deep Sea Drilling Project[END_REF], while the northern portion of the ridge exhibits older rocks [START_REF] Kamen-Kaye | Petroleum Geology of the Mascarene Ridge, Western Indian Ocean[END_REF].

The ocean floor in the Indian Ocean is dominated by sediments containing a high proportion of calcium carbonate [START_REF] Berger | Deep-sea sedimentation[END_REF][START_REF] Kolla | Current-controlled, abyssal microtopography and sedimentation in Mozambique Basin, southwest Indian Ocean[END_REF][START_REF] Demopoulos | The Deep Indian Ocean Floor[END_REF]. Pelagic red clay and turbidites are present in the deepest parts of the Mascarene Basin [START_REF] Mccave | Deep flow in the Madagascar-Mascarene Basin over the last 150000 years[END_REF]. Hard substrata in the Indian Ocean consist of ferromanganese concretions [START_REF] Demopoulos | The Deep Indian Ocean Floor[END_REF] and manganese nodules at ~4000 m depth [START_REF] Ingole | Deep-sea ecosystems of the Indian Ocean[END_REF]. The rubble and coral frameworks at Middle of What seamount along the SWIR were reported to be coated with manganese deposits [START_REF] Narayanaswamy | What lies within; Annelid polychaetes found in micro-habitats of coral/carbonate material from SW Indian Ocean seamounts[END_REF]. Benthic-biological activity and strong bottom currents are deemed responsible for the presence of these nodules at the sediment-water interface [START_REF] Demopoulos | The Deep Indian Ocean Floor[END_REF].

Water masses and circulation patterns

The Indian Ocean exhibits a complex system of water masses (Fig. 2.

2). Warm and salty

Tropical Surface Water occupies the upper layers (within the top 250 m) (Fig. 2.2). Some of the deeper parts to the north-west of Réunion Island consists of Red Sea Intermediate Water [START_REF] Gordon | Stratification and circulation at the Agulhas Retroflection[END_REF] and the upper Circumpolar Deep Water [START_REF] New | On the circulation of water masses across the Mascarene Plateau in the South Indian Ocean[END_REF] [START_REF] New | Physical and Biochemical Aspects of the Flow across the Mascarene Plateau in the Indian Ocean[END_REF]. Bottom and deep waters of the Indian Ocean are mostly derived from the Atlantic and they are constrained to spread through deep fracture zones such as the Atlantis II fracture zone along the SWIR at longitude 57°E and latitude 33°S [START_REF] Muller | Crustal structure of the Southwest Indian Ridge at the Atlantis II Fracture Zone[END_REF][START_REF] Demopoulos | The Deep Indian Ocean Floor[END_REF][START_REF] Mackinnon | Strong transport and mixing of deep water through the Southwest Indian Ridge[END_REF] where strong mixing of these deep-and bottom-waters occurs [START_REF] Mackinnon | Strong transport and mixing of deep water through the Southwest Indian Ridge[END_REF]. Once across the SWIR, depths below 3800 m are occupied by cold Antarctic Bottom Water that leaves the circumpolar current [START_REF] Tomczak | Water mass formation, subduction, and the oceanic heat budget[END_REF][START_REF] Demopoulos | The Deep Indian Ocean Floor[END_REF]. [START_REF] Beal | On the role of the Agulhas system in ocean circulation and climate[END_REF]. The Agulhas Current is fed from the South Equatorial Current (SEC) which is in turn fed from waters coming from the Pacific ocean as the "Indonesian Through-Flow" [START_REF] Tomczak | Water mass formation, subduction, and the oceanic heat budget[END_REF][START_REF] Mccave | Deep flow in the Madagascar-Mascarene Basin over the last 150000 years[END_REF]. The shallow water circulation (upper 500 m), at ~15°S, consists of the westward-flowing and warm SEC that carries waters from the "Indonesian through-flow" across the Indian Ocean through gaps between the Saya de Malha and Nazareth banks at 12-13°S [START_REF] New | Physical and Biochemical Aspects of the Flow across the Mascarene Plateau in the Indian Ocean[END_REF].

The SEC forms a sharp boundary between nutrient-rich waters of the north-western Indian Ocean near Seychelles from the nutrient-poor water masses of the SWIO around the Mascarene Islands [START_REF] New | Physical and Biochemical Aspects of the Flow across the Mascarene Plateau in the Indian Ocean[END_REF][START_REF] Obura | The Diversity and Biogeography of Western Indian Ocean Reef-Building Corals[END_REF]. On reaching the Madagascar landmass, the SEC bifurcates to form the northward and southward branches of the East Madagascar Current (NEMC and SEMC respectively) (Fig. 2.3) [START_REF] Quartly | Eddies in the southern Mozambique Channel[END_REF][START_REF] Mccave | Deep flow in the Madagascar-Mascarene Basin over the last 150000 years[END_REF][START_REF] Quartly | Eddy variability east of Madagascar[END_REF][START_REF] Hall | Expedition 361 summary[END_REF][START_REF] Zucchi | State of knowledge on seamount and hydrothermal vent ecosystems -FFEM-SWIO Project Bibliography study[END_REF]. The northward branch (NEMC)

flows around the northern tip of Madagascar before branching again when reaching the east African coast, to form the East African coastal current (EACC) flowing equatorwards. The resulting southern branch flow southwards through the Mozambique Channel, with mesoscale eddies being formed at the narrower part of the channel at 17°S [START_REF] De Ruijter | Observations of the flow in the Mozambique Channel[END_REF][START_REF] Quartly | Eddies in the southern Mozambique Channel[END_REF][START_REF] Lutjeharms | On the discontinuous nature of the Mozambique Current[END_REF]. Four to seven mesoscale eddies per year transit through the Mozambique Channel, from north to south [START_REF] Schouten | Eddies and variability in the Mozambique Channel[END_REF][START_REF] Tew-Kai | Patterns of variability of sea surface chlorophyll in the Mozambique Channel: a quantitative approach[END_REF], 2010).

The narrow and nutrient-poor SEMC [START_REF] Quartly | Eddies in the southern Mozambique Channel[END_REF] retroflects on reaching the southernmost tip of the Madagascar continental shelf, a process during which various mesoscale eddies and current fragments may become detached [START_REF] Lutjeharms | Characteristics of the currents east and south of Madagascar[END_REF][START_REF] De Ruijter | Eddies and dipoles around South Madagascar: formation, pathways and large-scale impact[END_REF]. The development of mesoscale dipoles (pair of contra-rotating eddies) has been regularly observed to the south of Madagascar where the SEMC separates from the shelf [START_REF] De Ruijter | Eddies and dipoles around South Madagascar: formation, pathways and large-scale impact[END_REF]. These eddies generally propagate in a west-and south-westward direction, with some reaching the Agulhas Current to the south of Africa [START_REF] De Ruijter | Eddies and dipoles around South Madagascar: formation, pathways and large-scale impact[END_REF]. Periods of enhanced dipole formation have been found to coincide with El Niño cycles and the negative phases of the Indian Ocean Dipole [START_REF] De Ruijter | Eddies and dipoles around South Madagascar: formation, pathways and large-scale impact[END_REF]. Upwelling cells also occur on the continental shelf south of Madagascar [START_REF] Machu | First hydrographic evidence of the southeast Madagascar upwelling cell[END_REF]. These are most likely due to the dynamic effects of upwelling favourable wind stress and frictional interaction between the Madagascar continental shelf slope and the southward flowing EMC [START_REF] De Ruijter | Eddies and dipoles around South Madagascar: formation, pathways and large-scale impact[END_REF][START_REF] Machu | First hydrographic evidence of the southeast Madagascar upwelling cell[END_REF][START_REF] Ho | SeaWifs observations of upwelling south of Madagascar: long-term variability and ineraction with East Madagascar Current[END_REF][START_REF] Ramanantsoa | Coastal upwelling south of Madagascar: Temporal and spatial variability[END_REF]. [START_REF] Hall | Expedition 361 summary[END_REF].

Biogeochemical provinces of the SWIO

The East African Coastal Province (EAFR) and Indian South Subtropical Gyre (ISSG) are two major provinces of the SWIO (Fig. 2.4). The ISSG province is bounded by the SEC to the north [START_REF] Longhurst | Ecological Geography of the Sea[END_REF]. The prevailing large-scale anticyclonic circulation pattern of the ISSG leads to a physical downwelling, that limits the supply of nutrients to the surface layers [START_REF] Jena | Observation of oligotrophic gyre variability in the south Indian Ocean: Environmental forcing and biological response[END_REF]. The ISSG province is characterised by low nutrients and chlorophyll a concentrations [START_REF] Jena | Observation of oligotrophic gyre variability in the south Indian Ocean: Environmental forcing and biological response[END_REF] relative to the EAFR which shows higher sea surface primary production and elevated chlorophyll a concentrations all year round [START_REF] Annasawmy | Micronekton diel migration, community composition and trophic position within two biogeochemical provinces of the South West Indian Ocean: Insight from acoustics and stable isotopes[END_REF]. Based on in situ CTD (Conductivity Temperature Depth) data, the mean surface fluorescence concentrations were six times less in the ISSG, with deeper Deep Chlorophyll Maximum (DCM), relative to the Mozambique Channel in the EAFR [START_REF] Annasawmy | Micronekton diel migration, community composition and trophic position within two biogeochemical provinces of the South West Indian Ocean: Insight from acoustics and stable isotopes[END_REF]. The observed pattern could be ascribed to riverine outflow and presence of mesoscale eddies which advected productivity into the Mozambique Channel [START_REF] Pous | Circulation around La Réunion and Mauritius islands in the south-western Indian Ocean: A modeling perspective[END_REF][START_REF] Hood | Biogeochemical and ecological impacts of boundary currents in the Indian Ocean[END_REF][START_REF] Annasawmy | Micronekton diel migration, community composition and trophic position within two biogeochemical provinces of the South West Indian Ocean: Insight from acoustics and stable isotopes[END_REF]. Elevated concentrations of nutrients and chlorophyll a were also observed in the upwelling region south of Madagascar [START_REF] Machu | First hydrographic evidence of the southeast Madagascar upwelling cell[END_REF]. During austral summer, these nutrient-rich waters within the intensified upwelling cells along the south coast of Madagascar are transported offshore by mesoscale eddies [START_REF] Raj | Oceanic and atmospheric influences on the variability of phytoplankton bloom in the Southwestern Indian Ocean[END_REF]. Significant enrichments of nutrients and chlorophyll may occur within mesoscale eddies, with the potential for nutrients to be transported centrally to the euphotic zone by rotary motion within cyclonic eddies [START_REF] Falkowski | Role of eddy pumping in enhancing primary production in the ocean[END_REF] and peripherally within anticyclonic ones [START_REF] Martin | Horizontal dispersion within an anticyclonic mesoscale eddy[END_REF][START_REF] Raj | Oceanic and atmospheric influences on the variability of phytoplankton bloom in the Southwestern Indian Ocean[END_REF]. "Eddy pumping" processes may increase phytoplankton growth in an otherwise oligotrophic ocean [START_REF] Falkowski | Role of eddy pumping in enhancing primary production in the ocean[END_REF]Oschlies & Garcon, 1998) due to the doming of water masses which bring nutrients closer to the surface where irradiance conditions are favourable for phytoplankton growth [START_REF] Longhurst | The Indian Ocean-Indian South Subtropical Gyre Province (ISSG)[END_REF]. Eddies may influence plankton communities by horizontal advection (either by stirring of surface currents around the eddy boundaries or trapping of specific water parcels having unique biological and physical properties), by the vertical transport of nutrients into the photic zone, and by water column stratitication (whereby cells are maintained and concentrated in the photic layer by the eddy) [START_REF] Gaube | Regional variations in the influence of mesoscale eddies on near-surface chlorophyll[END_REF]. During the forced phase, anticyclonic eddies may be characterised by accumulation of warm, chlorophyll-depleted water in the centre and nutrient-enriched water at the outer edge [START_REF] Falkowski | Role of eddy pumping in enhancing primary production in the ocean[END_REF][START_REF] Lévy | Impact of sub-mesoscale physics on production and subduction of phytoplankton in an oligotrophic regime[END_REF][START_REF] Tew-Kai | Influence of mesoscale eddies on spatial structuring of top predators' communities in the Mozambique Channel[END_REF].

Phytoplankton blooms may aggregate secondary and tertiary consumers including zooplankton, micronekton and larger nekton [START_REF] Piontkovski | Multiscale variability of tropical ocean zooplankton biomass[END_REF] that further attract top predators. This transfer of energy from primary producers to top predators is believed to be rapid in the tropical Indian Ocean [START_REF] Longhurst | Ecological Geography of the Sea[END_REF], indicating that prey for top predators becomes readily available shortly after the onset of these blooms [START_REF] Pinet | Sex-specific foraging strategies throughout the breeding season in a tropical, sexually monomorphic small petrel[END_REF].

Biological compartments of the ISSG and EAFR provinces

Phytoplankton pigments

In oligotrophic environments, light and nutrient (including nitrate, silicate and iron) concentrations limit phytoplankton growth [START_REF] Thomalla | Phytoplankton distribution and nitrogen dynamics in the southwest Indian subtropical gyre and Southern Ocean waters[END_REF]. Autotrophic organisms in these areas depend on nutrient recycling or on vertical flux of nutrients from deeper waters into the euphotic zone [START_REF] Altabet | Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization[END_REF]. In such systems, mesoscale eddies may play a significant role in making nutrients available to phytoplankton in the photic layer [START_REF] Falkowski | Role of eddy pumping in enhancing primary production in the ocean[END_REF][START_REF] Mcgillicuddy | Influence of mesoscale eddies on new production in the Sargasso Sea[END_REF]. Previous studies have found enhanced surface total chlorophyll a concentrations (which are general indicators of phytoplankton biomass, [START_REF] Ewart | Microbial dynamics in cyclonic and anticyclonic mode-water eddies in the northwestern Sargasso Sea[END_REF] within cyclones relative to anticyclones of the Mozambique Channel [START_REF] Barlow | Adaptation of phytoplankton communities to mesoscale eddies in the Mozambique Channel[END_REF]. Furthermore, studies have found low concentrations of small phytoplankton cells to characterise subtropical waters in the south-west indian subtropical gyre [START_REF] Thomalla | Phytoplankton distribution and nitrogen dynamics in the southwest Indian subtropical gyre and Southern Ocean waters[END_REF]. This indicates that productivity was based almost entirely on recycled ammonium and urea instead of nitrate [START_REF] Thomalla | Phytoplankton distribution and nitrogen dynamics in the southwest Indian subtropical gyre and Southern Ocean waters[END_REF].

Previous studies conducted in the ISSG province to the south of Mauritius Island (MICROTON cruise-DOI: 10.17600/10110010) and in the EAFR province within the Mozambique Channel (MESOP 2010 cruise-DOI: 10.17600/10110020/30) have shown a pre-dominance of prokaryotes at the sea surface, while flagellates were dominant at the DCM (Fig. 2.5). This is consistent with observations that prokaryotes are present in warm surface waters (>22°C) in the SWIO [START_REF] Barlow | Phytoplankton pigments, functional types, and absorption properties in the Delagoa and Natal Bights of the Agulhas ecosystem[END_REF]2014) and flagellates dominate the DCM in the Mozambique Channel [START_REF] Barlow | Adaptation of phytoplankton communities to mesoscale eddies in the Mozambique Channel[END_REF]. Prokaryotes have a high proportion of the photo-pigment PPC (photoprotective carotenoids) [START_REF] Barlow | Adaptation of phytoplankton communities to mesoscale eddies in the Mozambique Channel[END_REF] in their cells and hence they proliferate at high irradiance, low nutrient surface oligotrophic environments [START_REF] Cavicchioli | Life under nutrient limitation in oligotrophic marine environments: an eco/physiological perspective of Sphingopyxis alaskensis (formerly Sphingomonas alaskensis)[END_REF].

Flagellates, on the other hand, have higher concentrations of total chlorophyll a (whose major role is to absorb light) and PSC (photosynthetic carotenoids) in their cells [START_REF] Barlow | Phytoplankton pigments, functional types, and absorption properties in the Delagoa and Natal Bights of the Agulhas ecosystem[END_REF].

These flagellates are hence better adapted to survive the low-light and nutrient-replete conditions of the DCM. Diatoms were more abundant within the oligotrophic ISSG province relative to the more productive EAFR province. Studies have also found dominance of diatoms in anticyclonic eddies and were related to high rates of vertical mixing [START_REF] Thompson | Contrasting the vertical differences in the phytoplankton biology of a dipole pair of eddies in the south-eastern Indian Ocean[END_REF][START_REF] Ewart | Microbial dynamics in cyclonic and anticyclonic mode-water eddies in the northwestern Sargasso Sea[END_REF]. 

Mesozooplankton

Zooplankton biomass may also be linked to the surrounding productivity and increased food availability. Higher zooplankton biomasses, associated with higher concentrations of nutrients, were recorded in the northern and equatorial Indian Ocean. Comparatively, the ISSG province recorded the lowest nutrient concentrations and zooplankton biomasses [START_REF] Bailey | The Pelagic Distribution of Sea-birds in the Western Indian Ocean[END_REF][START_REF] Rao | Zooplankton Studies in the Indian Ocean[END_REF][START_REF] Madhupratap | Zooplankton standing stock and diversity along an oceanic tract in the Western Indian Ocean[END_REF]. Copepods are generally the numerically dominant zooplankton taxa recorded in the Indian Ocean [START_REF] Gallienne | Epipelagic mesozooplankton distribution and abundance over the Mascarene Plateau and Basin, south-western Indian Ocean[END_REF][START_REF] Conway | Island-coastal and oceanic epipelagic zooplankton biodiversity in the southwestern Indian Ocean[END_REF], followed by chaetognaths, ostracods, tunicates and siphonophores [START_REF] Madhupratap | Zooplankton standing stock and diversity along an oceanic tract in the Western Indian Ocean[END_REF]. Previous studies conducted in the Mozambique Channel recorded enhanced zooplankton biovolume over the African shelf, at divergence and cyclonic eddy stations relative to anticyclonic and frontal stations [START_REF] Huggett | Mesoscale distribution and community composition of zooplankton in the Mozambique Channel[END_REF]. The mesozooplankton community in the Mozambique Channel was found to be strongly dominated by small copepods [START_REF] Dupuy | Trophic relationships between metazooplankton communities and their plankton food sources in the Iles Eparses (Western Indian Ocean)[END_REF], appendicularians, ostracods and chaetognaths [START_REF] Huggett | Mesoscale distribution and community composition of zooplankton in the Mozambique Channel[END_REF]. Copepods can obtain food from different sources of organic matter in dissolved or particulate form, in the form of detritus or living prey [START_REF] Poulet | Factors controlling utilization of non-algal diets by particle-grazing copepods. A review[END_REF], likely explaining their high recorded abundances from surveys in the Mozambique Channel [START_REF] Huggett | Mesoscale distribution and community composition of zooplankton in the Mozambique Channel[END_REF][START_REF] Dupuy | Trophic relationships between metazooplankton communities and their plankton food sources in the Iles Eparses (Western Indian Ocean)[END_REF].

Studies from different regions of the Indian Ocean have found copepods to constitute ~40-90% by number of the diet of lanternfishes, with minor contributions from amphipods, euphausiids, ostracods, chaetognaths, larvaceans, molluscs and polychaetes [START_REF] Dalpadado | Feeding ecology of the lanternfish Benthosema pterotum from the Indian Ocean[END_REF].

Larger lanternfishes were observed to feed on larger prey such as chaetognaths, fish larvae and polychaetes, without completely excluding smaller prey items from their diet [START_REF] Dalpadado | Feeding ecology of the lanternfish Benthosema pterotum from the Indian Ocean[END_REF]. Furthermore, zooplankton fractions remaining in the first 170 m of the water column by day are important prey items of the fishes that surface tuna feed upon [START_REF] Roger | The plankton of the tropical western Indian ocean as a biomass indirectly supporting surface tunas (yellowfin, Thunnus albacares and skipjack, Katsuwonus pelamis)[END_REF].

Micronekton

Micronekton were sampled during previous IRD cruises in the ISSG and EAFR provinces [START_REF] Potier | Influence of mesoscale features on micronekton and large pelagic fish communities in the Mozambique Channel[END_REF][START_REF] Annasawmy | Micronekton diel migration, community composition and trophic position within two biogeochemical provinces of the South West Indian Ocean: Insight from acoustics and stable isotopes[END_REF]. With the sampling seawater volume accounted for, a greater biomass of mesopelagic organisms (crustaceans, squids, mesopelagic fishes and gelatinous plankton), were recorded in the southern and central Mozambique Channel (MESOP 2009 and 2010 cruises) relative to the ISSG (MICROTON cruise) to the south of Mauritius Island [START_REF] Potier | Influence of mesoscale features on micronekton and large pelagic fish communities in the Mozambique Channel[END_REF][START_REF] Annasawmy | Micronekton diel migration, community composition and trophic position within two biogeochemical provinces of the South West Indian Ocean: Insight from acoustics and stable isotopes[END_REF]. The combined action of riverine input and entrainment of productivity and chlorophyll a from the African landmass to the Mozambique Channel by mesoscale eddies may favour the aggregation of zooplankton [START_REF] Huggett | Mesoscale distribution and community composition of zooplankton in the Mozambique Channel[END_REF] and micronekton in the EAFR [START_REF] Annasawmy | Micronekton diel migration, community composition and trophic position within two biogeochemical provinces of the South West Indian Ocean: Insight from acoustics and stable isotopes[END_REF]. Productivity and resulting secondary and tertiary consumer abundances were lower in the ISSG relative to the eutrophic Mozambique Channel.

Among the mesopelagic broad categories, gelatinous organisms and fishes dominated the total biomass estimates across the cruises in the SWIO. Gelatinous organisms were poorly identified during MESOP 2009, 2010 and MICROTON cruises because species broke apart in the nets making identification impossible, hence the low representation of these organisms in total net counts. Mesopelagic fishes and crustaceans dominated the abundance estimates during MICROTON and MESOP 2009. Squids were the most poorly represented in terms of abundance and biomass estimates across all cruises most probably due to net avoidance behaviours of species.

Studies have shown the distribution of micronekton biomass to be seasonal, with highest values recorded south of 20°S in summer and north of 12°S in winter along longitude 110°E [START_REF] Legand | Seasonal variations in the Indian Ocean along 110°E, VI. Macroplankton and micronekton biomass[END_REF]. However, no seasonal pattern in micronekton acoustic backscatter were observed in a latitudinal gradient between 20-50°S [START_REF] Béhagle | Acoustic micronektonic distribution is structured by macroscale oceanographic processes across 20-50°S latitudes in the South-Western Indian Ocean[END_REF]. The authors also noted low backscatter intensities within the surface layer in winter relative to summer in the Polar Frontal Zone [START_REF] Béhagle | Acoustic micronektonic distribution is structured by macroscale oceanographic processes across 20-50°S latitudes in the South-Western Indian Ocean[END_REF]. Micronekton biomasses may be seasonal in the SWIO and tightly linked to the productivity in the region although further studies are required to test this hypothesis.

The mean volume backscatter intensities were also strongly correlated with the position of fronts and water masses [START_REF] Boersch-Supan | The distribution of pelagic sound scattering layers across the southwest Indian Ocean[END_REF]. Mesoscale features such as cyclones recorded greater micronekton acoustic densities relative to anticyclones in the Mozambique Channel [START_REF] Béhagle | Mesoscale features and micronekton in the Mozambique Channel: An acoustic approach[END_REF]. The periphery of eddies exhibited large micronekton aggregations relative to the core [START_REF] Sabarros | Mesoscale eddies influence distribution and aggregation patterns of micronekton in the Mozambique Channel[END_REF]. Other studies found higher species richness of micronekton in divergences and fronts that were characterised by low and high geostrophic velocities but small sea surface height anomalies [START_REF] Lamont | Characterisation of mesoscale features and phytoplankton variability in the Mozambique Channel[END_REF], relative to the core of cyclonic and anticyclonic eddies [START_REF] Potier | Influence of mesoscale features on micronekton and large pelagic fish communities in the Mozambique Channel[END_REF]. Processes enhancing the biomass of micronekton in nutrient poor environments are key in controlling the abundance and distribution of higher trophic level organisms that have high energetic demands [START_REF] Roger | The plankton of the tropical western Indian ocean as a biomass indirectly supporting surface tunas (yellowfin, Thunnus albacares and skipjack, Katsuwonus pelamis)[END_REF]. Bouts of productivity (either seasonal or caused by physical processes) are important to sustain top predator species, especially in the south-western tropical Indian Ocean where background oceanic productivity is low and micronektonic prey are patchily distributed [START_REF] Weimerskirch | Are seabirds foraging for unpredictable resources? Deep[END_REF].

Predator species

Assemblages of seabirds, sea turtles, marine mammals, pelagic fishes and elasmobranches in the SWIO were shown to reflect the broad ecoregions-EAFR, ISSG, and Indian Monsoon Gyre [START_REF] Longhurst | Ecological Geography of the Sea[END_REF] and habitat types-shelf, slope and oceanic [START_REF] Weimerskirch | Are seabirds foraging for unpredictable resources? Deep[END_REF][START_REF] Laran | A Comprehensive Survey of Pelagic Megafauna: Their Distribution, Densities, and Taxonomic Richness in the Tropical Southwest Indian Ocean[END_REF]. Below is a non-exhaustive list of some of the most prominent predators and marine mammals and their preferred dwelling (migrating and foraging) grounds and favourite prey, with respect to the circulation patterns and topographic features of the SWIO.

Seabirds

The tropical WIO is a hotspot for seabird colonies that are concentrated at three major breeding sites-Seychelles, the Mozambique Channel, and the Mascarene Archipelago [START_REF] Tree | The known history and movements of the Roseate tern Sterna dougallii in South Africa and the western Indian Ocean[END_REF][START_REF] Catry | Movements, at-sea distribution and behaviour of a tropical pelagic seabird: the wedge-tailed shearwater in the western Indian Ocean[END_REF][START_REF] Le Corre | Tracking seabirds to identify potential Marine Protected Areas in the tropical western Indian Ocean[END_REF][START_REF] Laran | A Comprehensive Survey of Pelagic Megafauna: Their Distribution, Densities, and Taxonomic Richness in the Tropical Southwest Indian Ocean[END_REF]. Studies suggest that marine birds depart from their respective colonies and commute to predictable productive mesoscale features such as frontal zones, eddies, shelf edges, upwelling zones [START_REF] Weimerskirch | Are seabirds foraging for unpredictable resources? Deep[END_REF] and seamounts [START_REF] Le Corre | Tracking seabirds to identify potential Marine Protected Areas in the tropical western Indian Ocean[END_REF]. Elevated seabird densities have been reported to the south of Madagascar including the Madagascar continental shelf, MAD-Ridge and Walters Shoal seamounts [START_REF] Le Corre | Tracking seabirds to identify potential Marine Protected Areas in the tropical western Indian Ocean[END_REF][START_REF] Mannocci | Predicting top predator habitats in the Southwest Indian Ocean[END_REF].

Breeding Barau's petrels forage mainly on large nektonic squids such as Sthenoteuthis oualaniensis [START_REF] Kojadinovic | Trace Elements in Three Marine Birds Breeding on Reunion Island (Western Indian Ocean): Part 1-Factors Influencing Their Bioaccumulation[END_REF] and epi-, meso-pelagic fishes to the south of Madagascar, including MAD-Ridge and Walters Shoal seamounts, during their long trips between October and March [START_REF] Stahl | Distribution, abundance and aspects of the pelagic ecology of Barau's petrel (Pterodroma baraui) in the south-west Indian Ocean[END_REF][START_REF] Le Corre | Tracking seabirds to identify potential Marine Protected Areas in the tropical western Indian Ocean[END_REF][START_REF] Pinet | Sex-specific foraging strategies throughout the breeding season in a tropical, sexually monomorphic small petrel[END_REF].

Breeding red-tailed tropicbirds of Europa Island and Nosy Vé (southwest Madagascar) also forage around Walters Shoal during austral summer from November to April [START_REF] Le Corre | Tracking seabirds to identify potential Marine Protected Areas in the tropical western Indian Ocean[END_REF]. Breeding shearwaters avoid the shallow waters of the Mascarene region [START_REF] Catry | Movements, at-sea distribution and behaviour of a tropical pelagic seabird: the wedge-tailed shearwater in the western Indian Ocean[END_REF] whereas chick-rearing Barau's petrels forage locally around Réunion Island during their short trips [START_REF] Le Corre | Tracking seabirds to identify potential Marine Protected Areas in the tropical western Indian Ocean[END_REF]. Site fidelity to distant foraging grounds at specific periods is likely supported by the high probability for these birds of finding productive sites with relevant prey items [START_REF] Weimerskirch | Are seabirds foraging for unpredictable resources? Deep[END_REF]. After the breeding period, most of these birds migrate to the central Indian Ocean or eastwards [START_REF] Stahl | Distribution, abundance and aspects of the pelagic ecology of Barau's petrel (Pterodroma baraui) in the south-west Indian Ocean[END_REF][START_REF] Le Corre | Tracking seabirds to identify potential Marine Protected Areas in the tropical western Indian Ocean[END_REF].

Marine birds show annual and seasonal (either summer or winter) or non-seasonal breeding, with the breeding pattern being driven by physical oceanographic patterns which influence the productivity and hence the prey availability [START_REF] Le Corre | Breeding seasons of seabirds at Europa Island (southern Mozambique Channel) in relation to seasonal changes in the marine environment[END_REF][START_REF] Jaquemet | Ocean control of the breeding regime of the sooty tern in the southwest Indian Ocean[END_REF][START_REF] Monticelli | Effects of annual changes in primary productivity and ocean indices on breeding performance of tropical roseate terns in the western Indian Ocean[END_REF][START_REF] Pinet | Sex-specific foraging strategies throughout the breeding season in a tropical, sexually monomorphic small petrel[END_REF]. Foraging seabirds including sooty terns (Sterna fuscata), red-footed boobies (Sula sula) and Audubon's shearwaters (Puffinus Iherminieri) that breed during austral winter (June-October) rely on the presence of subsurface predators such as tunas and dolphins which make prey readily available in the upper layer of the water column [START_REF] Le Corre | Breeding seasons of seabirds at Europa Island (southern Mozambique Channel) in relation to seasonal changes in the marine environment[END_REF][START_REF] Jaquemet | Ocean control of the breeding regime of the sooty tern in the southwest Indian Ocean[END_REF][START_REF] Monticelli | Effects of annual changes in primary productivity and ocean indices on breeding performance of tropical roseate terns in the western Indian Ocean[END_REF]. Seabirds also aggregate in areas with higher oceanic productivity [START_REF] Monticelli | Effects of annual changes in primary productivity and ocean indices on breeding performance of tropical roseate terns in the western Indian Ocean[END_REF] during austral winter when sea surface temperatures are the lowest and when thermal fronts occur [START_REF] Le Corre | Breeding seasons of seabirds at Europa Island (southern Mozambique Channel) in relation to seasonal changes in the marine environment[END_REF]. Seabirds including frigatebirds, sooty terns Sterna fuscata and red-footed boobies Sula sula perform long foraging trips of ~1000 km during the breeding season to feed on flying fish and squids [START_REF] Cherel | Resource partitioning within a tropical seabird community: new information from stable isotopes[END_REF]. The foraging grounds of the Great Frigatebirds Fregata minor were more frequently associated with higher surface chlorophyll concentrations and cyclonic vortices [START_REF] Weimerskirch | Foraging movements of great frigatebirds from Aldabra Island: Relationship with environmental variables and interactions with fisheries[END_REF].

Marine turtles

The WIO is believed to host five species of marine turtles including the green turtle Chelonia mydas, the hawksbill Eretmochelys imbricata, loggerheads Caretta caretta, leatherbacks

Dermochelys coriacea and the olive ridley Lepidochelys olivacea [START_REF] Bourjea | Sea Turtle Bycatch in the West Indian Ocean: Review, Recommendations and Research Priorities[END_REF]. These turtles nest on beaches of countries neighbouring the WIO [START_REF] Bourjea | Sea Turtle Bycatch in the West Indian Ocean: Review, Recommendations and Research Priorities[END_REF] and forage in their national waters [START_REF] Taquet | Foraging of the green sea turtle Chelonia mydas on seagrass beds at Mayotte Island (Indian Ocean), determined by acoustic transmitters[END_REF][START_REF] Bourjea | Sea Turtle Bycatch in the West Indian Ocean: Review, Recommendations and Research Priorities[END_REF][START_REF] Jean | Ultralight aircraft surveys reveal marine turtle population increases along the west coast of Reunion Island[END_REF][START_REF] Mencacci | Influence of oceanic factors on long-distance movements of loggerhead sea turtles displaced in the southwest Indian Ocean[END_REF][START_REF] Ballorain | Seasonal diving behaviour and feeding rhythms of green turtles at Mayotte Island[END_REF]. Loggerhead turtles were reported to consume crustaceans and molluscs in coastal habitats and jellyfish during their pelagic journeys, while leatherbacks were reported to feed exclusively on gelatinous zooplankton [START_REF] Du Preez | First report of metallic elements in loggerhead and leatherback turtle eggs from the Indian Ocean[END_REF]. The foraging patterns of leatherback turtles is also reportedly linked to mesoscale eddies, convergence or upwelling areas that concentrate prey. Leatherback turtles in the Mozambique Channel may remain associated with mesoscale eddies for prolonged periods [START_REF] Lambardi | Influence of ocean currents on long-distance movement of leatherback sea turtles in the Southwest Indian Ocean[END_REF].

Cetaceans

The WIO also reportedly hosts 33 cetacean species including seven species of baleen whales, ten toothed whales and sixteen delphinids [START_REF] Kiszka | Cetacean diversity around the Mozambique Channel island of Mayotte (Comoros archipelago)[END_REF][START_REF] Van Der Elst | Offshore Fisheries of the SouthWest Indian Ocean: their status and the impact on vulnerable species[END_REF].

Due to their coastal or inshore habitats along southern Africa and island states in the region [START_REF] Braulik | Assessment of the Conservation Status of the Indian Ocean Humpback Dolphin (Sousa plumbea) Using the IUCN Red List Criteria[END_REF][START_REF] Viricel | Habitat availability and geographic isolation as potential drivers of population structure in an oceanic dolphin in the Southwest Indian Ocean[END_REF][START_REF] Bouveroux | Another dolphin in peril? Photoidentification, occurrence, and distribution of the endangered Indian Ocean humpback dolphin (Sousa plumbea) in Algoa Bay[END_REF], the delphinid species are less likely associated with seamounts along the Madagascar, South West Indian and Mascarene

Ridges. Risso's dolphins, however, which prefer steep-sloped bottoms near the outer edge of continental shelves, occur off eastern and southern Madagascar [START_REF] Jefferson | Global distribution of Risso's dolphin Grampus griseus: a review and critical evaluation[END_REF].

Delphinids from the region have been reported to feed on mesopelagic prey including fishes, cephalopods and crustaceans [START_REF] Braulik | Assessment of the Conservation Status of the Indian Ocean Humpback Dolphin (Sousa plumbea) Using the IUCN Red List Criteria[END_REF]. In the SWIO, Delphininae and Globicephalinae were reported to optimise their foraging success by feeding at shallow depths in regions of accessible and high prey densities [START_REF] Lambert | Predicting Cetacean Habitats from Their Energetic Needs and the Distribution of Their Prey in Two Contrasted Tropical Regions[END_REF]. Stenella spp. and Tursiops spp. were reported to forage mostly at night in the epipelagic zone (0-200 m), following the vertical migration of mesopelagic communities at dusk [START_REF] Lambert | Predicting Cetacean Habitats from Their Energetic Needs and the Distribution of Their Prey in Two Contrasted Tropical Regions[END_REF].

These species are occasionally able to perform deep dives down to 400 m [START_REF] Benoit-Bird | Prey dynamics affect foraging by a pelagic predator (Stenella longirostris) over a range of spatial and temporal scales[END_REF][START_REF] Lambert | Predicting Cetacean Habitats from Their Energetic Needs and the Distribution of Their Prey in Two Contrasted Tropical Regions[END_REF]. Sperm and beaked whales were shown to dive deeper and exploit prey resources in the bathypelagic zone [START_REF] Lambert | Predicting Cetacean Habitats from Their Energetic Needs and the Distribution of Their Prey in Two Contrasted Tropical Regions[END_REF]Fig. 2.6). Cetaceans respond directly to the density, horizontal and vertical distributions of the deep scattering layer and with respect to their diving abilities [START_REF] Lambert | Predicting Cetacean Habitats from Their Energetic Needs and the Distribution of Their Prey in Two Contrasted Tropical Regions[END_REF][START_REF] Hazen | Meridional patterns in the deep scattering layers and top predator distribution in the central equatorial Pacific[END_REF]. The distribution of pilot whales was associated with high acoustic densities of prey in the mid-and deep layers. Stenella dolphins and false killer whales were correlated with a shallower backscattering layer [START_REF] Lambert | Predicting Cetacean Habitats from Their Energetic Needs and the Distribution of Their Prey in Two Contrasted Tropical Regions[END_REF][START_REF] Hazen | Meridional patterns in the deep scattering layers and top predator distribution in the central equatorial Pacific[END_REF]Fig. 2.6).

Figure 2.6 Modelled vertical distribution of (A) cetaceans and (B) scattering layers (prey items

for top predators) in the water column [Source: [START_REF] Lambert | Predicting Cetacean Habitats from Their Energetic Needs and the Distribution of Their Prey in Two Contrasted Tropical Regions[END_REF].

Compared to the southeast Indian Ocean, the SWIO exhibits low humpback whale (Megaptera novaeangliae) aggregations [START_REF] Best | Winter distribution and possible migration routes of humpback whales Megaptera novaeangliae in the southwest Indian Ocean[END_REF][START_REF] Trudelle | Baleines à bosse de l'Hemisphere sud on fait le point! Etudier les déplacements des baleines à bosse dans leurs zones de reproduction[END_REF]Fig. 2.7). Four breeding sub-stocks of humpback whales have been identified in the SWIO by the International Whaling Commission (Fig. 2.7). The occasional blooms southeast of Madagascar and north of the Crozet Plateau reportedly attract humpback whales and the whale sharks Rhincodon typus to the region [START_REF] Brunnschweiler | Deep-diving behaviour of a whale shark Rhincodon typus during long-distance movement in the western Indian Ocean[END_REF][START_REF] Fossette | Humpback whale (Megaptera novaeangliae) post breeding dispersal and southward migration in the western Indian Ocean[END_REF]. The Mozambique Channel is also reportedly an important habitat for whale sharks probably due to suitable sea surface temperatures and chlorophyll a concentrations [START_REF] Sequeira | Ocean-scale prediction of whale shark distribution[END_REF]. Réunion Island, Madagascar, La Pérouse and Walters Shoal seamounts are important breeding sites for humpback whales during austral winter [START_REF] Best | Winter distribution and possible migration routes of humpback whales Megaptera novaeangliae in the southwest Indian Ocean[END_REF][START_REF] Dulau-Drouot | Occurence and residency patterns of humpback whales off Réunion Island during 2004-10[END_REF][START_REF] Cerchio | Satellite tagging of humpback whales off Madagascar reveals long range movements of individuals in the South West Indian Ocean during the breeding season[END_REF][START_REF] Dulau | Continuous movement behavior of humpback whales during the breeding season in the southwest Indian Ocean: on the road again![END_REF]. The occasional high humpback whale density at Walters Shoal has been reported to be due to the presence of large numbers of the crustacean Systellapsis sp.

and the fish Trachurus at the seamount [START_REF] Best | Winter distribution and possible migration routes of humpback whales Megaptera novaeangliae in the southwest Indian Ocean[END_REF][START_REF] Shotton | Managment of Demersal Fisheries Resources of the Southern Indian Ocean[END_REF]. A high proportion of blue whales were caught along the Madagascar Ridge by Soviet vessels from 1958 to 1973, while these cetaceans reportedly avoided oligotrophic central gyres such as the ISSG (Branch et al., 2007). Within the SWIO, Delphininae and Globicephalinae had low predicted densities in the ISSG province around the Mascarene Islands relative to the more productive Mozambique Channel where predicted densities were the highest [START_REF] Mannocci | Predicting top predator habitats in the Southwest Indian Ocean[END_REF][START_REF] Laran | A Comprehensive Survey of Pelagic Megafauna: Their Distribution, Densities, and Taxonomic Richness in the Tropical Southwest Indian Ocean[END_REF]. A high level of connectivity in terms of whale movements was also observed between the Mascarene and Madagascar regions [START_REF] Dulau | Continuous movement behavior of humpback whales during the breeding season in the southwest Indian Ocean: on the road again![END_REF]. [START_REF] Ersts | Observations of individual humpback whales utilising multiple migratory destinations in the south-western Indian Ocean[END_REF][START_REF] Trudelle | Baleines à bosse de l'Hemisphere sud on fait le point! Etudier les déplacements des baleines à bosse dans leurs zones de reproduction[END_REF].

Billfishes and tunas

The hotspots of the swordfish, Xiphias gladius, in the Indian Ocean were associated with areas of high chlorophyll a concentrations and mesoscale activities to the southeast coast of Madagascar [START_REF] Sabarros | Environmental drivers of swordfish local abundance in the south-west Indian Ocean[END_REF]. Swordfish were shown to undertake large vertical migrations and forage at great depths, to a maximum of 600 m [START_REF] Stillwell | Food and feeding ecology of the swordfish Xiphias gladius in the western North Atlantic Ocean with estimates of daily ration[END_REF]. In the Mozambique Channel, smaller-sized swordfish foraged mostly on mesopelagic fishes (Nomeidae and Diretmidae), while larger individuals preyed on cephalopods Ommastrephidae and Onychoteuthidae [START_REF] Potier | Forage fauna in the diet of three large pelagic fishes (lancetfish, swordfish and yellowfin tuna) in the western equatorial Indian Ocean[END_REF][START_REF] Potier | Spatial distribution of Cubiceps pauciradiatus (Perciformes: Nomeidae) in the tropical Indian Ocean and its importance in the diet of large pelagic fishes[END_REF][START_REF] Ménard | Isotopic evidence of distinct feeding ecologies and movement patterns in two migratory predators (yellowfin tuna and swordfish) of the western Indian Ocean[END_REF][START_REF] Ménard | Pelagic cephalopods in the western Indian Ocean: New information from diets of top predators[END_REF]. However, the foraging pattern of swordfish may not only depend on prey availability, but also on a certain degree of prey selection. Swordfish in the EAFR province that foraged close to Madagascar Island, consumed a greater proportion and diversity of lower trophic level micronekton species relative to similar-sized individuals that consumed a greater proportion of larger-sized squids in the ISSG province [START_REF] Annasawmy | Micronekton diel migration, community composition and trophic position within two biogeochemical provinces of the South West Indian Ocean: Insight from acoustics and stable isotopes[END_REF].

Physical oceanographic processes such as the edge of anticyclonic eddies stimulate phytoplankton growth in surface layers, leading to phytoplankton blooms and high prey densities for adult yellowfin tunas in the Indian Ocean [START_REF] Fonteneau | Mesoscale exploitation of a major tuna concentration in the Indian Ocean[END_REF]. The spatial distributions of large tunas were reported to strongly overlap with Longhust's (2007) biogeochemical provinces [START_REF] Reygondeau | Biogeography of tuna and billfish communities[END_REF]. Few studies have investigated the relationship between catch rate of tuna species and presence of seamounts from the SWIO.

Marsac et al. (2014) have shown that the Coco de Mer seamount at the equator in the Indian

Ocean sustains large catches of skipjack, yellowfin and smaller proportions of bigeye tunas.

The author has suggested that local enrichment processes may lead to an increase in foraging opportunities for these top predators. However, the presence of an anchored ship acting like Fishing Aggregating Devices, along with the geo-magnetic properties of the seamount may jointly contribute to attract predators near the summit [START_REF] Marsac | Le « Coco de Mer », une montagne sous la mer[END_REF].

Yellowfin tunas are known to be non-selective feeders, with their foraging patterns depending on prey availability rather than selectivity [START_REF] Roger | The plankton of the tropical western Indian ocean as a biomass indirectly supporting surface tunas (yellowfin, Thunnus albacares and skipjack, Katsuwonus pelamis)[END_REF]. Yellowfin tunas from the Indian

Ocean have been reported to spend most of their time in the surface layer of the water column [START_REF] Potier | Feeding partitioning among tuna taken in surface and mid-water layers: The Case of Yellowfin (Thunnus albacares) and Bigeye (T. obesus) in the western tropical Indian Ocean[END_REF]2007) in areas in which the mixed layer depth is shallow and the stratification is strong [START_REF] Miller | Climate variability and tropical tuna: Management challenges for highly migratory fish stocks[END_REF]Fig. 2.8). Surface swimming yellowfin tunas from the Seychelles region fed exclusively on stomatopods, whereas the deep-dwelling individuals foraged on crustaceans, crab larvae, fish (including myctophids and small scombridae) and cephalopods [START_REF] Potier | Feeding partitioning among tuna taken in surface and mid-water layers: The Case of Yellowfin (Thunnus albacares) and Bigeye (T. obesus) in the western tropical Indian Ocean[END_REF]2007;[START_REF] Zudaire | Variations in the diet and stable isotope ratios during the ovarian development of female yellowfin tuna (Thunnus albacares) in the Western Indian Ocean[END_REF]. [START_REF] Potier | Feeding partitioning among tuna taken in surface and mid-water layers: The Case of Yellowfin (Thunnus albacares) and Bigeye (T. obesus) in the western tropical Indian Ocean[END_REF] have suggested that the food chain leading to these tunas is relatively short in the WIO since crustaceans and smaller-sized individuals are dominant in the diet. Spawning yellowfin tunas, on the other hand, were reported to feed intensively on cigarfish Cubiceps pauciradiatus due to the specific energy content of this species [START_REF] Zudaire | Variations in the diet and stable isotope ratios during the ovarian development of female yellowfin tuna (Thunnus albacares) in the Western Indian Ocean[END_REF]. Hence, the diets of these top predators may also depend on their specific energetic needs during their life cycle.

Surface swimming bigeye tunas further preyed extensively on stomatopods and cephalopods (including Stenoteuthis oualaniensis and Ornithoteuthis volatilis) and deeper-dwelling individuals fed on cephalopods and fish [START_REF] Potier | Feeding partitioning among tuna taken in surface and mid-water layers: The Case of Yellowfin (Thunnus albacares) and Bigeye (T. obesus) in the western tropical Indian Ocean[END_REF]Fig. 2.8). The myctophid-dominant diet of bigeye tunas is consistent with norturnal and/or twilight feeding, reflecting the DVM of their prey items [START_REF] Sardenne | Trophic niches of sympatric tropical tuna in the Western Indian Ocean inferred by stable isotopes and neutral fatty acids[END_REF]. Free swimming schools of skipjack tunas from the WIO were reported to occur within 25 km of favourable feeding habitats [START_REF] Druon | Skipjack Tuna Availability for Purse Seine Fisheries Is Driven by Suitable Feeding Habitat Dynamics in the Atlantic and Indian Oceans[END_REF] and to have a lower consumption of myctophids but a higher consumption of crustaceans in their diet [START_REF] Sardenne | Trophic niches of sympatric tropical tuna in the Western Indian Ocean inferred by stable isotopes and neutral fatty acids[END_REF]. Albacore tuna caught from the southern coast of South Africa, on the other hand, were shown to preferentially predate on two species of fish (L. hectoris and M. muelleri) and one cephalopod L. lorigera [START_REF] Munschy | Persistent Organic Pollutants in albacore tuna ( Thunnus alalunga) from Reunion Island (Southwest Indian Ocean) and South Africa in relation to biological and trophic characteristics[END_REF]. In subtropical oceanic waters, yellowfin, bigeye and albacore tunas were further reported to forage at different times of the day [START_REF] Olson | Bioenergetics, Trophic Ecology and Niche Separation of Tunas[END_REF]Fig. 2.8). 

Sharks

Little is known about the shark species from the SWIO apart from their high bycatch rates in tuna and swordfish pelagic longline and purse seine fisheries [START_REF] García-Cortés | Size-weight relationships of the swordfish (Xiphias gladius) and several pelagic shark species caught in the Spanish surface longline fishery in the Atlantic, Indian and pacific oceans[END_REF][START_REF] Amandè | Silky shark (Carcharhinus falciformis) bycatch in the French tuna purse-seine fishery of the Indian Ocean[END_REF][START_REF] Rabehagasoa | Isotopic niches of the blue shark Prionace glauca and the silky shark Carcharhinus falciformis in the southwestern Indian Ocean[END_REF]. The stomach contents of several shark species, including the sandbar, Carcharhinus plumbeus [START_REF] Cliff | Sharks caught in the protective gill nets off Natal, South Africa. 1. The sandbar shark Carcharhinus plumbeus (Nardo)[END_REF], dusky shark, Carcharhinus obscurus [START_REF] Dudley | Sharks caught in the protective gill nets off KwaZulu-Natal, South Africa. 10. The dusky shark Carcharhinus obscurus (Lesueur 1818)[END_REF], shortfin mako, Isurus oxyrinchus [START_REF] Groeneveld | Population structure and biology of shortfin mako, Isurus oxyrinchus, in the south-west Indian Ocean[END_REF], blacktip, Carcharhinus limbatus [START_REF] Dudley | Sharks caught in the protective gill nets off Natal, South Africa. 7. The blacktip shark Carcharhinus limbatus (Valenciennes)[END_REF]; tiger, Galeocerdo cuvier, smooth hammerhead, Sphyrna zygaena, scalloped hammerhead, S. lewini, and great hammerhead, S.

mokarran, are dominated by cephalopods and teleosts to a large extent, and elasmobranchs and crustaceans to a lesser extent [START_REF] Smale | Cephalopods in the diets of four shark species (Galeocerdo cuvier, Sphyrna lewini, S. zygaena and S. mokarran) from KwaZulu-Natal, South Africa[END_REF][START_REF] De Bruyn | Sharks caught in the protective gill nets off KwaZulu-Natal, South Africa. 11. The scalloped hammerhead shark Sphyrna lewini (Griffith and Smith)[END_REF]. The dominance of continental-shelf dwelling and deep-water cephalopods in the KwaZulu-Natal area off the coast of southern Africa, is believed to support common dolphins and sharks [START_REF] Smale | Cephalopods in the diets of four shark species (Galeocerdo cuvier, Sphyrna lewini, S. zygaena and S. mokarran) from KwaZulu-Natal, South Africa[END_REF].

The link between shark distribution and seamount presence is poorly established in the SWIO except along the SWIR where male and females of a new catshark species, Bythaelurus naylori sp. n. have been discovered in relatively large numbers [START_REF] Ebert | A new species of deep-sea catshark (Scyliorhinidae: Bythaelurus) from the southwestern Indian Ocean[END_REF]. Males and females of a new species of the catshark, B. bachi, have been discovered at Walters Shoal seamount [START_REF] Weigmann | Bythaelurus bachi n. sp., a new deep-water catshark (Carcharhiniformes, Scyliorhinidae) from the southwestern Indian Ocean, with a review of Bythaelurus species and a key to their identification[END_REF]. Error seamount (Mount Error Guyot) in the north-western Indian Ocean host the catshark B. stewarti that was reported to feed mostly on cephalopods and teleosts [START_REF] Weigmann | A new microendemic species of the deepwater catshark genus Bythaelurus (Carcharhiniformes, Pentanchidae) from the northwestern Indian Ocean, with investigations of its feeding ecology, generic review and identification key[END_REF].

Industrical fisheries in the SWIO

In 2015, the SWIO countries (Southern, Eastern Africa and island states) reportedly produced ~13% of the WIO (FAO Area 51) total fish landings, which itself produced ~40% of the Indian Ocean landings (FAO, 2016). The WIO contributes barely 6% of the global fish catches.

However, several small island countries of the WIO, including Maldives, Mauritius and Seychelles, are heavily reliant on marine fisheries for food security and for the national economies as source of foreign exchange [START_REF] Kimani | Fisheries in the Southwest Indian Ocean. trends and governance challenges[END_REF]. Demersal and industrial fisheries occur in the SWIO and target a range of species as shown below.

Demersal fisheries

Demersal species can be classified into either benthic (those species being negatively buoyant and living off the bottom) or benthopelagic (species that have buoyancy mechanisms to maintain themselves in the water column to feed) [START_REF] Koslow | Energetic and life-history patterns of deep-sea benthic, benthopelagic and seamount-associated fish[END_REF]. Demersal fishes are generally closely associated with reefs and the benthic environment [START_REF] Van Der Elst | Nine nations, one ocean: A benchmark appraisal of the South Western Indian Ocean Fisheries Project (2008-2012)[END_REF] along shelves, continental slopes [START_REF] Everett | Demersal trawl surveys show ecological gradients in Southwest Indian Ocean slope fauna[END_REF] and seamounts. Demersal species, that are closely associated with seamounts, generally have robust bodies with well-developed caudal organs and strong locomotory abilities to avoid advection by strong currents [START_REF] Koslow | Energetic and life-history patterns of deep-sea benthic, benthopelagic and seamount-associated fish[END_REF]. These organisms may hence benefit from shelter regions offered by the topography and from the locally generated and/or advected foraging opportunities [START_REF] Isaacs | Migrant sound scatterers: Interaction with the sea floor[END_REF][START_REF] Genin | Interactions of migrating zooplankton with shallow topography: predation by rockfishes and intensification of patchiness[END_REF][START_REF] Genin | Zooplankton patch dynamics: daily gap formation over abrupt topography[END_REF][START_REF] Seki | Feeding ecology and daily ration of the pelagic armorhead, Pseudopentaceros wheeleri, at Southeast Hancock Seamount[END_REF][START_REF] Koslow | Energetic and life-history patterns of deep-sea benthic, benthopelagic and seamount-associated fish[END_REF]. Some of these deepsea fishes also depend on local physical processes for basin-scale larval dispersal. Populations of adult orange roughy, for example, have been reported to depend on water masses such as AAIW (Antarctic Intermediate Water) and NADW (North Atlantic Deep Water) that provide optimal salinity conditions for larval dispersal (Clark et al., 2010a).

Aggregations of several demersal fish species on seamounts have led to the boom of specific fisheries. Seamounts of the Indian Ocean have been targeted by commercial fishing vessels for primary seamount species including alfonsino (Beryx splendens) and orange roughy (Hoplostethus atlanticus) [START_REF] Ingole | Deep-sea ecosystems of the Indian Ocean[END_REF][START_REF] Bensch | Worldwide review of bottom fisheries in the high seas[END_REF]. Spawning orange roughy were targeted on the Madagascar Ridge, peaking in 1999 and 2000 at around 7000 t, before declining in subsequent years [START_REF] Ingole | Deep-sea ecosystems of the Indian Ocean[END_REF]; FAO, 2016) (Fig. 2.9). This fishery has experienced a boom-and-bust phase following US market demands, with the orange roughy population being reduced to more than 85%, partly due to its slow growth rate, low fecundity and delayed reproduction [START_REF] Lack | Managing risk and uncertainty in deep-sea fisheries: lessons from Orange Roughy[END_REF]. Other bycatch species caught in the orange roughy fishery include black, spiky and smooth oreo (Allocyttus niger, Neocyttus rhomboidalis and Pseudocyttus maculatus respectively) and deep-sea sharks, along with small quantities of black corals (Antipatheria spp.) taken in bottom trawl fishing operations [START_REF] Bensch | Worldwide review of bottom fisheries in the high seas[END_REF]Lack et al., 2013). 

Pelagic fisheries

Small pelagic resources including scads, sardines, anchovies and horse mackerels are also exploited by inshore fishers from the WIO. However, the tonnage contribution of these resources is considerably less than that for large pelagic resources (van der [START_REF] Van Der Elst | Nine nations, one ocean: A benchmark appraisal of the South Western Indian Ocean Fisheries Project (2008-2012)[END_REF].

Large pelagic fish resources comprising yellowfin, bigeye, albacore and skipjack tunas, billfishes (swordfish, marlins, sailfish), sharks, seerfishes (wahoos) and dolphinfish, are widely distributed throughout the WIO [START_REF] Stéquert | Tropical tuna: surface fisheries in the Indian Ocean[END_REF]. While the purse seine fishery operates mostly north of 12°S and in the Mozambique Channel, the longline fishery operates more widely throughout the whole Indian Ocean, to the South of Madagascar, around the Seychelles Plateau and the Mascarene region. Purse seiners catch schools associated with Fish Aggregating Devices and those being unassociated, i.e. swimming freely. The former are caught throughout the WIO, however with a greater intensity in the Somali Basin and in the Mozambique Channel [START_REF] Fonteneau | A worldwide review of purse seine fisheries on FADs[END_REF][START_REF] Fonteneau | Atlas of Indian Ocean tuna fisheries[END_REF]. The free schools are mostly exploited in the Equatorial Counter Current, from 0-10°S [START_REF] Fonteneau | Atlas of Indian Ocean tuna fisheries[END_REF].

Yellowfin tunas from the Indian Ocean (409 000 t in 2017) are exploited industrially by purse seine and longline fisheries, and artisanally by handline, gillnet, pole and line fisheries [START_REF] Iotc | Report of the 21 st Session of the IOTC Scientific Committee[END_REF]. Bigeye tunas (90 000 t in 2017) are primarity exploited by longliners that catch adult fish whereas purse seiners catch juvenile fish between 10°N and 15°S. However, a secondary fishing zone is found between latitudes 25°S-40°S. The centre of the ISSG province has very low bigeye catches [START_REF] Fonteneau | Atlas of Indian Ocean tuna fisheries[END_REF]. Albacore is mostly caught by longline south of 10°S.

The SWIO region has shown a large increase in catches since the 1990s, with some activity in the vicinity of seamounts such as La Pérouse [START_REF] Fonteneau | Atlas of Indian Ocean tuna fisheries[END_REF]. From 2001 to 2017, albacore tuna and swordfish were caught in higher proportions and yellowfin and bigeye tunas in lower numbers by longline fisheries in the vicinity of Réunion Island, as shown with high resolution data (1° square) provided by three fleets of the region (Fig. 2.10). Other pelagic fisheries also occur in the SWIO, such as those for crustaceans, prawns and lobsters [START_REF] Ivanov | Length-Weight Relationship in Some Common Prawns and Lobsters (Macrura, Natantia and Reptantia) From the Western Indian Ocean[END_REF][START_REF] Pollock | The Commercial Fisheries for Jasus and Palinurus Species in the South-east Atlantic and South-west Indian Oceans[END_REF]. Fisheries from the WIO yielded 350 000 tons of crustaceans, dominated by shrimps and crabs in 2003 [START_REF] Van Der Elst | Nine nations, one ocean: A benchmark appraisal of the South Western Indian Ocean Fisheries Project (2008-2012)[END_REF].

French trawlers and a Spanish vessel reportedly caught deep-sea lobster Palinurus barbarae at Walters Shoal seamount [START_REF] Collette | Shallow-Water Fishes of Walters Shoals, Madagascar Ridge[END_REF][START_REF] Bensch | Worldwide review of bottom fisheries in the high seas[END_REF]. Few crustacean fisheries from the Western Indian Ocean are managed on a national level and none is managed collectively at the regional level [START_REF] Van Der Elst | Nine nations, one ocean: A benchmark appraisal of the South Western Indian Ocean Fisheries Project (2008-2012)[END_REF]. High mortality rates of silky sharks Carcharhinus falciformis caught in purse seine fisheries were recorded in the Indian Ocean [START_REF] Poisson | Mortality rate of silky sharks (Carcharhinus falciformis) caught in the tropical tuna purse seine fishery in the Indian Ocean[END_REF]. Bycatch rates from trawl fisheries in the WIO are also non-negligible [START_REF] Fennessy | Incidental capture of elasmobranchs by commercial prawn trawlers on the Tugela Bank, Natal, South Africa[END_REF][START_REF] Fennessy | A review of the offshore trawl fishery for crustaceans on the east coast of South Africa[END_REF][START_REF] Van Der Elst | Nine nations, one ocean: A benchmark appraisal of the South Western Indian Ocean Fisheries Project (2008-2012)[END_REF].

Marine governance in the SWIO

The SWIO supports several industrial, semi-industrial, recreational and artisanal fisheries for both pelagic and demersal resources, many of which are still unregulated or poorly regulated due to a lack of scientific, technical, financial, human-resource and management capacities [START_REF] Kimani | Fisheries in the Southwest Indian Ocean. trends and governance challenges[END_REF][START_REF] Van Der Elst | Nine nations, one ocean: A benchmark appraisal of the South Western Indian Ocean Fisheries Project (2008-2012)[END_REF]. The marine biological resources of the SWIO are threatened by overfishing, bycatch and mortality of discarded organisms, fishery-induced impacts, illegal fishing practices, plastic and agricultural pollution, habitat degradation and deep-sea mining [START_REF] Kimani | Fisheries in the Southwest Indian Ocean. trends and governance challenges[END_REF]. Twelve marine organisms in the SWIO are either listed as near threatened (such as the Indo Pacific humpback dolphins), as vulnerable (including sperm whales, Dugongs, Herald petrels, olive Ridley turtles), and as endangered or critically endangered (for e.g. Barau's petrels, Mascarene petrels, the green, hawksbill, loggerhead and leatherback sea turtles, and hammer sharks) [START_REF] Laran | A Comprehensive Survey of Pelagic Megafauna: Their Distribution, Densities, and Taxonomic Richness in the Tropical Southwest Indian Ocean[END_REF]. Marine mammals, sea turtles and elasmobranchs are at risk of decline since they are incidentally caught by fisheries.

There are still significant knowledge gaps on the biological characteristics, fishing pressure, fish stocks and effects of anthropogenic activities on marine resources of the SWIO (van der Erst et al., 2009). The fact that pelagic resources such as tunas and billfishes are highly migratory across ocean basins and nations' Exclusive Economic Zones (EEZ), further calls for integrative and cooperative science management plans from the different nations in the region [START_REF] Pentz | Can regional fisheries management organizations (RFMOs) manage resources effectively during climate change?[END_REF]. This difficult task is implemented by Regional Fisheries Management Organisations (RFMO). For several stocks (mostly coastal small pelagic and demersal fishes, as well as seamount-associated fishes), the status is uncertain with underreported catches when there are no observers on board, leading to uncertainties in fish stock assessments [START_REF] Kimani | Fisheries in the Southwest Indian Ocean. trends and governance challenges[END_REF]. As usual, fisheries managers are tied between the need to devise policies that maximise social and economic benefits, while balancing the sustainable economic yield of the fishery and ensure viability of the resource [START_REF] Kimani | Fisheries in the Southwest Indian Ocean. trends and governance challenges[END_REF].

According to the FAO, 75% of fisheries from the WIO are being exploited at their maximum biological productivity (i.e. the MSY-Maximum Sustainable Yield), while the remainder are currently overexploited [START_REF] Kimani | Fisheries in the Southwest Indian Ocean. trends and governance challenges[END_REF]. Due to the remoteness of certain areas, monitoring, controlling and surveillance of fishing activities are difficult, especially for illegal, unreported and unregulated (IUU) fishing [START_REF] Kimani | Fisheries in the Southwest Indian Ocean. trends and governance challenges[END_REF]. The RFMOs established under the UN Convention on the Law of the Sea (UNCLOS), are responsible for ensuring the proper management of fish stocks (optimal use and conservation) in the respective regions. RFMOs are the formal institutions enabling cooperation between nations outside of their EEZs.

However, contracting parties whose interests will be negatively impacted can block the reforms proposed by RFMOs or adopt moderate quota reductions instead of approaches such as MPA networks, thus reducing the management capacity of the organisation [START_REF] Gjerde | Ocean in peril: Reforming the management of global ocean living resources in areas beyond national jurisdiction[END_REF][START_REF] Pentz | The 'responsiveness gap' in RFMOs: The critical role of decisionmaking policies in the fisheries management response to climate change[END_REF].

Seventeen RFMOs currently cover the different high-sea regions in the world ocean. In the Indian Ocean, the IOTC (Indian Ocean Tuna Commission) is mandated to manage tuna and tuna-like species in the Indian Ocean EEZs and on the high seas [START_REF] Pentz | Can regional fisheries management organizations (RFMOs) manage resources effectively during climate change?[END_REF]. The rules and decisions adopted by the IOTC apply to countries that are members of the organisation (31 in 2017). These countries are strongly encouraged by international law (Article 17 of the UNFSA) to cooperate and abide by the rules and regulations set by the regional managing body, although IUU fishing may still occur [START_REF] Gjerde | Ocean in peril: Reforming the management of global ocean living resources in areas beyond national jurisdiction[END_REF]. Another RFMO is the South West Indian Ocean Fisheries Commission (SWIOFC), composed of 12 countries. The SWIOFC aims at ensuring sustainable use of living resources (other than tunas and billfishes) in the SWIO region, and promoting the Large Marine Ecosystems (LMEs) approach initiated during the South West Indian Ocean Fisheries Project (SWIOFP) and the Agulhas-Somali Current Large Marine Ecosystem (ASCLME) projects [START_REF] Vousden | Establishing a basis for ecosystem management in the western Indian Ocean[END_REF].

There are increasing incentives for the set-up of MPAs in the region, including on the high seas [START_REF] Laran | A Comprehensive Survey of Pelagic Megafauna: Their Distribution, Densities, and Taxonomic Richness in the Tropical Southwest Indian Ocean[END_REF]. MPAs set-up in several jurisdictions via a high seas treaty targeting Biodiversity Beyond National Jurisdictions (BBNJ) may be of critical importance in protecting high seas ecosystems [START_REF] Pentz | Can regional fisheries management organizations (RFMOs) manage resources effectively during climate change?[END_REF] in the long run. However for a significant positive impact to be observed, the MPAs will need to have four or five of the following features: older (>10 years), larger (>100 km 2 ), isolated by deep water or sand, non-extractive and effectively enforced [START_REF] Edgar | Global conservation outcomes depend on marine protected areas with five key features[END_REF]. Several other conventions such as UNESCO Biosphere Reserves, the UNEP's Convention on Biological Diversity and Regional Seas Programme, Ramsar convention sites and the International Maritime Organization has been developed to better conserve and manage vulnerable sites to fishing and pollution [START_REF] Attwood | International experience of marine protected areas and their relevance to South Africa[END_REF]. A complete closure of certain areas of the high seas to fishing pressure may yield longer benefits via spill over effects into domestic EEZs. A system of MPA networks may also be beneficial via spillover effects and protection of adjacent areas [START_REF] Roberts | Measuring progress in marine protection: A new set of metrics to evaluate the strength of marine protected area networks[END_REF]. Having mobile closures with different areas closed to fishing at different periods may prove more successful than spatial closures or seasonal closures due to high mobility of some species [START_REF] Grantham | Reducing bycatch in the South African pelagic longline fishery: the utility of different approaches to fisheries closures[END_REF]. The downside is the difficulty to perform efficient monitoring, control and surveillance of such entities at reasonable costs, especially on the high seas.

Several areas of the SWIO, including the Mozambique Channel and south of Madagascar are recognised as being biodiversity hotspots and ecologically and biologically significant areas (EBSAs), with significant polymetallic nodules (Fig. 2.12). Nations including China, Germany, India and Korea have exploration permits for deep-sea mining along the SWIR [START_REF] Guduff | Laying the foundations for management of a seamount beyond national jurisdiction[END_REF]. Some management efforts have been initiated in the SWIO such as promotion of responsible fishing practices by the Southern Indian Ocean Deepsea Fishers Association 

Seamounts of the SWIO

Seamounts of the SWIO may add further complexity to the local flow patterns and productivity.

Only 15 seamounts have reportedly been explored biologically from the Indian Ocean [START_REF] Sautya | Megafaunal Community Structure of Andaman Seamounts Including the Back-Arc Basin -A Quantitative Exploration from the Indian Ocean[END_REF]. Seamounts of the SWIO are thus among the least explored systems globally [START_REF] Bhattacharya | Western Indian Ocean-a glimpse of the tectonic scenario[END_REF]. A series of dedicated cruises have started shedding new light on the ecosystems associated to seamounts (Fig. 2 

Seamount Endemism

During an earlier cruise at Walters Shoal seamount (summit depth ~18 m), an endemic alpheid shrimp species, Alpheus waltervadi [START_REF] Kensley | On the zoogeography of southern African decapod Crustacea, with a distributional checklist of the species[END_REF], an endemic isopod, Jaeropsis waltervadi [START_REF] Kensley | Five species of Jaeropsis from the southern Indian Ocean [Crustacea, Isopoda, Asellota][END_REF], and recently, a new species of rock lobster, Palinurus barbarae [START_REF] Groeneveld | A new species of spiny lobster, Palinurus Barbarae (Decapoda, Palinuridae) from Walters Shoals on the Madagascar Ridge[END_REF] Following this expedition, seamounts of the SWIR have been reported to host new species of carnivorous sponges [START_REF] Hestetun | Carnivorous sponges (Porifera, Cladorhizidae) from the Southwest Indian Ocean Ridge seamounts[END_REF]. Sponge diversity and taxonomic composition was further investigated during the 2014 ACEP-III programme on the RV Algoa at Walters Shoal [START_REF] Payne | Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region[END_REF], with nine sponge specimens reported as new to science [START_REF] Payne | Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region[END_REF].

Following these records, endemism seems to occur at SWIO seamounts. However, such observations have to be cautiously interpreted since levels of endemism may be much lower than previously suspected due to the low sampling effort in the region. It is believed that the fauna at seamounts generally reflects the regional species pool (Rogers & Taylor, 2011).

Limited and inconsistent sampling coverage does not allow an accurate testing of the seamount endemism hypothesis [START_REF] Hestetun | Carnivorous sponges (Porifera, Cladorhizidae) from the Southwest Indian Ocean Ridge seamounts[END_REF].

Deep-sea fauna at SWIR seamounts

Reefs are other important components of the SWIO, providing shelter and acting as fish nurseries [START_REF] Salm | Coral Reefs of the Western Indian Ocean: A Threatened Heritage[END_REF][START_REF] Ahamada | Status of the coral reefs of the south west Indian Ocean island states[END_REF][START_REF] Turner | Coral reefs of the Mascarenes, Western Indian Ocean[END_REF]. Studies modelling global habitat suitability for Scleratinian corals and Octocorals have shown the SWIO between 20°S

and 60°S to be one of the most favourable habitats for stony corals from the surface to ~2500 m depth [START_REF] Tittensor | Predicting global habitat suitability for stony corals on seamounts[END_REF][START_REF] Tittensor | Seamounts as refugia from ocean acidification for cold-water stony corals[END_REF]. Stony corals are also likely to be present along seamount peaks of the Madagascar Ridge [START_REF] Tittensor | Predicting global habitat suitability for stony corals on seamounts[END_REF][START_REF] Davies | Global Habitat Suitability for Framework-Forming Cold-Water Corals[END_REF] Deep Water) [START_REF] Pratt | Temporal distribution and diversity of cold-water corals in the southwest Indian Ocean over the past 25,000 years[END_REF]. Coral seamount recorded a greater abundance and species diversity in subfossil Scleractinia relative to the other seamounts, most likely due to the high microbial community, surface chlorophyll concentrations and suitable thermal conditions over a wider depth range [START_REF] Pratt | Temporal distribution and diversity of cold-water corals in the southwest Indian Ocean over the past 25,000 years[END_REF]. The Madagascar Ridge and SWIR were also predicted to be favourable habitats for soft corals Calcaxonia [START_REF] Yesson | Global habitat suitability of cold-water octocorals[END_REF].

Pelagic ecosystem at SWIR seamounts

The Dr Fridtjof Nansen cruise investigated the pelagic ecosystem at five seamounts in the SWIR, including Atlantis, Sapmer (summit depth ~332 m), Middle of What (~1078 m), Coral, and Melville (~120 m) [START_REF] Groeneveld | The RV Dr Fridtjof Nansen in the Western Indian Ocean: voyages of marine research and capacity development[END_REF]. There were little evidence for Taylor column formation at these seamounts due to the relative instability in the flow patterns and strong currents associated with mesoscale eddies and the Agulhas Return Current (Read & Pollard, 2017). However, the generation of internal tides was observed at Coral, Sapmer and Melville banks due to the interactions of barotropic tides with the pinnacles (Read & Pollard, 2017). Factors such as latitude, internal tides, vertical displacement of isopycnals and strong vertical mixing were found to favour the delivery of nutrients to the euphotic zone and to enhance phytoplankton biomass at Coral and Melville (Read & Pollard, 2017).

A seamount effect on phytoplankton was observed on shallow seamounts Coral and Melville due to increased upwelling of organic matter [START_REF] Sonnekus | Phytoplankton and nutrient dynamics of six South West Indian Ocean seamounts[END_REF]. The authors reported higher species richness and abundance of crustaceans including several lophogastrids collected at seamount stations relative to abyssal plains and ridge slopes [START_REF] Letessier | Seamount influences on mid-water shrimps (Decapoda) and gnathophausiids (Lophogastridea) of the South-West Indian Ridge[END_REF].

However, an effect of the SWIR on the backscattering strength could not be detected, although increased backscatter were observed at the Subtropical and Subantarctic Fronts in the vicinity of Coral seamount [START_REF] Boersch-Supan | The distribution of pelagic sound scattering layers across the southwest Indian Ocean[END_REF]. The SWIO has been reported to be a hotspot of cephalopod diversity [START_REF] Laptikhovsky | Cephalopods of the Southwest Indian OceanRidge: A hotspot of biological diversity and absence of endemism[END_REF]. The increase in habitat availability offered by seamounts is believed to be the likely cause for the observed increase in richness of crustaceans and cephalopod communities [START_REF] Vereshchaka | Macroplankton in the near-bottom layer of continental slopes and seamounts[END_REF].

Pollution impact on SWIR seamounts

Seamounts of the SWIO, although being remote and isolated features, are not free from pollution. Marine litter from the SWIR were dominated by fishing gear, with some seamounts-Sapmer seamount and Melville Bank-having a higher abundance of litter items than Atlantis, Middle of What or Coral seamounts [START_REF] Woodall | Deep-sea litter: a comparison of seamounts, banks and a ridge in the Atlantic and Indian Oceans reveals both environmental and anthropogenic factors impact accumulation and composition[END_REF]Fig. 2.14). The fishing gear litter at seamounts of the SWIR were found to be heavily encrusted with corals and hydroids. Fish, crinoids, anemones, sea urchins and brittle stars, on the other hand, used the litter as habitat or as substrata for hiding or egg laying. However, entanglement were also observed and may constitute a negative impact on marine organisms. Plastic items, metal components, and other types of litter further contributed to the pollution of this ridge. The authors estimated that over 38 million litter items are present along seamounts of the SWIO [START_REF] Woodall | Deep-sea litter: a comparison of seamounts, banks and a ridge in the Atlantic and Indian Oceans reveals both environmental and anthropogenic factors impact accumulation and composition[END_REF] partly due to lack of appropriate policies and conservation measures. 

Case Study: La Pérouse and MAD-Ridge seamounts

As part of the Second International Indian Ocean Expedition (IIOE-2) science plan, surveys were conducted at two seamounts in the SWIO. These include La Pérouse seamount and an unnamed pinnacle along the Madagascar Ridge in 2016 on board the RV Antea. La Pérouse is located at 19°43'S and 54°10'E, i.e. ~160 km to the north west of Réunion Island. At 27°29'S and 46°16'E, is located an unnamed seamount lying ~240 km to the south of Madagascar on the northern part of the Madagascar Ridge. This feature has been termed "MAD-Ridge".

Bathymetry

While the water column rises from a depth of 5000 m in the vicinity of La Pérouse seamount (Fig. 2.15a), it extends from the surface to a maximum depth of 2000 to 3000 m [START_REF] Sinha | The crustal structure of the Madagascar Ridge[END_REF] over most of the Madagascar Ridge (Fig. 2.15b). The Madagascar continental slope rises from 1500 m depths to the continental shelf that is ~50 km wide south of Madagascar [START_REF] Goslin | Submarine topography and shallow structure of the Madagascar Ridge, western Indian Ocean[END_REF]. 

Nutrient concentrations

While La Pérouse seamount is located within the oligotrophic ISSG province [START_REF] Longhurst | Ecological Geography of the Sea[END_REF] with low mesoscale activity, MAD-Ridge is located in the EAFR province, within an eddy corridor with significant mesoscale dynamics all year round [START_REF] Vianello | Circulation and hydrography in the vicinity of a shallow seamount on the northern Madagascar Ridge[END_REF]. Figure 2.18 Vertical profiles of nitrate, nitrite, silicate and phosphate in µmol l -1 at La Pérouse seamount.

Phytoplankton communities at MAD-Ridge seamount

The 

Mesozooplankton at La Pérouse and MAD-Ridge vs. Walters Shoal

The mesozooplankton communities at La Pérouse, MAD-Ridge and Walters Shoal seamounts were investigated by [START_REF] Noyon | Comparison of mesozooplankton communities at three shallow seamounts in the South West Indian Ocean[END_REF] and the main findings of their research work are presented below. No clear seamount effect in terms of either enhancement or depletion of mesozooplankton communities were recorded at La Pérouse, MAD-Ridge and Walters Shoal seamounts relative to off-seamount locations. Walters Shoal showed lower abundance of mesozooplankton than the other two seamounts most likely due to seasonality and the mesozooplantkon population dynamics. At La Pérouse, MAD-Ridge and Walters Shoal, the mesozooplankton abundance was strongly dominated by calanoid copepods (70% of the total abundance). The biomass was dominated by copepods and carnivorous chaetognaths at La

Pérouse and MAD-Ridge, and copepods and euphausiids at Walters Shoal.

The eddy dipole likely had an influence on mesozooplankton communities. High abundance and biovolume of zooplankton and over a deeper area were observed in the cyclonic eddy at MAD-Ridge than within the anticyclone where lower zooplankton concentrations in the upper 25 m were observed. The authors note a possible link between the food availability and zooplankton at the cyclonic stations. The edge of the anticyclone was shown to exhibit higher zooplankton abundance than the core of the eddy, matching previous observations that peripheries of eddies are richer [START_REF] Sabarros | Mesoscale eddies influence distribution and aggregation patterns of micronekton in the Mozambique Channel[END_REF]. The authors, however, reported a peak in zooplankton abundance and biovolume at station 18 close to the seamount slope. They attributed this effect to sampling at dusk and DVM of organisms but noted the presence of small organisms that do not perform strong DVM and concluded to a natural patchiness of these organisms at this station and across a greater depth range. The authors reported a system dominated by small mesozooplankton communities at MAD-Ridge, enabling a high biomass of predators to be supported [START_REF] Noyon | Comparison of mesozooplankton communities at three shallow seamounts in the South West Indian Ocean[END_REF]. At La Pérouse, higher zooplankton abundances were recorded downstream relative to upstream, possibly linked to the varied current profile from the north to the south of the pinnacle. The fish larvae at all three seamounts were numerically dominated by the Myctophidae and Gonostomatidae families [START_REF] Harris | Ichthyoplankton assemblages at three shallow seamounts in the South West Indian Ocean[END_REF]. The most abundant myctophid and gonostomatid larval species were Diaphus spp. and Cyclothone sp. at both La Pérouse and MAD-Ridge.

Ichthyoplankton assemblages at La

Larval fish of the Molidae family (Ranzania laevis) were also abundantly caught at MAD-Ridge than at La Pérouse and Walters Shoal. The authors reported presence of all larval developmental stages present at each seamount which they attributed to local spawning of some species near the pinnacles. Larval densities were higher over the summit of both La Pérouse and MAD-Ridge than at off-summit locations, with the exception of station 18 of the MAD-Ridge cruise, which recorded the highest larval density relative to all other stations. The authors suggested DVM of larval taxa might be responsible for the peak observed at station 18. On the summit of La Pérouse and MAD-Ridge, postflexion and preflexion larval developmental stages were most abundantly caught relative to other developmental stages. The eddy dipole interface (between the cyclone and anticyclone) recorded the lowest larval fish density.

Conclusion

The SWIO is an atypical region since it is bounded by the African landmass to the West and with a large island, Madagascar, centrally positioned in the pathway of the SEC leading to the shedding of mesoscale eddies in the Mozambique Channel and to the south of Madagascar.

The deep water masses also have to navigate through fracture zones, banks and ridges to flow through the SWIO. Those ridges constitute important habitats for a wide variety of coral species and sponges. They represent an elevation of the seafloor and allow efficient cold-water coral growth that prefer the high-nutrient water mass uCDW, which is constrained to flow through the numerous basement highs and crests within the ridge. These coral communities may represent important habitats for various benthic organisms, some of which are preferentially associated with seamounts to benefit from shelter regions and enhanced foraging opportunities.

The lower trophic levels of the SWIO include Prochlorococcus, Synechococcus, Picoeukaryotes, diatoms and flagellates. These plankton communities support a wide range of mesozooplankton including copepods, amphipods, euphausiids, ostracods and chaetognaths, which in turn support gelatinous organisms, crustaceans, squids and mesopelagic fishes.

Various predators including seabirds, swordfish and tunas reportedly use the highly dynamic mesoscale eddies and elevated topographic features during their migration patterns or/and as foraging grounds. Swordfish, tunas, breeding seabirds reportedly depend on prey availability and hence tend to aggregate in areas of high prey biomasses. These top predators and demersal organisms are being subjected to fishing pressures in the SWIO and there is an apparent lack of conservation measures to better protect marine resources from anthropogenic disturbances including pollution, fishing and deep-sea mining.

Several cruises and research works have already investigated the benthic assemblages, deepsea fauna, physical oceanography and biological oceanography (phytoplankton, zooplankton and ichthyoplankton) at SWIO seamounts. One compartment of the SWIO that has received little attention to date are the micronekton which, as seen in Chapter 1, constitute a key element in the carbon biological pump and in the trophic link between zooplankton and top predators.

Although some species are able to actively swim, they may be influenced by the complex topography and hydrodynamic patterns of the SWIO and in turn influence the distribution of top predator species. Chapter 3, hence, aims at understanding the distribution of micronekton as influenced by mesoscale eddies, two shallow seamounts and the Madagascar continental shelf in the SWIO. 

Micronekton distribution as influenced by mesoscale eddies, Madagascar shelf and shallow seamounts in the south-western Indian

Ocean: an acoustic approach

Abstract

An investigation of the vertical and horizontal distributions of micronekton, as influenced by mesoscale eddies, the Madagascar shelf and shallow seamounts, was undertaken using acoustic data collected during two research cruises at an unnamed pinnacle (summit depth ~240 m), thereafter named "MAD-Ridge", and at La Pérouse seamount (~60 m) in the south-western Indian Ocean. MAD-Ridge is located to the south of Madagascar, in an "eddy corridor", known both for its high mesoscale activity and high primary productivity. In contrast, La Pérouse is located on the outskirts of the Indian South Subtropical Gyre (ISSG) province, characterised by low mesoscale activity and low primary productivity. During the MAD-Ridge cruise, a dipole was located in the vicinity of the seamount, with the anticylclone being almost stationary on the pinnacle. Total micronekton acoustic densities were greater at MAD-Ridge than at La Pérouse. Micronekton acoustic densities of the total water column were lower within the anticyclone than within the cyclone during MAD-Ridge. Micronekton followed the usual diel vertical migration (DVM) pattern, except within the cyclone during MAD-Ridge where greater acoustic densities were recorded in the daytime surface layer. The backscatter intensities were stronger at the 38 kHz than at the 70 and 120 kHz frequencies in the daytime surface layer at MAD-Ridge cyclonic stations. These backscatter intensities may correspond to gas-filled swimbladders of epi-and mesopelagic fishes actively swimming and feeding within the cyclone or gelatinous organisms with gas inclusions. Findings in this study evidenced that the distributions of micronekton and DVM patterns are complex and are influenced significantly by physical processes within mesoscale eddies. The mesoscale eddies' effects were dominant over any potential seamount effects at the highly dynamic environment prevailing at MAD-Ridge during the cruise. No significant increase in total micronekton acoustic densities was observed over either seamount, but dense aggregations of biological scatterers were observed on their summits during both day and night.

Keywords: micronekton, diel vertical migration, mesoscale eddies, Madagascar shelf, seamount, south-western Indian Ocean

Introduction

Features such as mesoscale cyclonic and anticyclonic eddies, upwelling events, tidal fronts, shelves, seamounts and river runoff play a significant role in regional ecosystems [START_REF] Bakun | Fronts and eddies as key structures in the habitat of marine fish larvae: opportunity, adaptive response and competitive advantage[END_REF][START_REF] Mann | Dynamics of marine ecosystems: biological-physical interactions in the oceans[END_REF][START_REF] Benitez-Nelson | Mesoscale Physical-Biological-Biogeochemical Linkages in the Open Ocean: An Introduction to the results of the E-Flux and EDDIES Programs[END_REF]. Mesoscale cyclonic and anticyclonic eddies are ubiquitous in the world's oceans [START_REF] Chelton | Global observations of nonlinear mesoscale eddies[END_REF]. They have time-scales of approximately 10-30 days and horizontal scales between 10 and 100 km [START_REF] Mann | Dynamics of marine ecosystems: biological-physical interactions in the oceans[END_REF][START_REF] Chelton | Global observations of nonlinear mesoscale eddies[END_REF]. In oligotrophic systems, eddies are important features because they provide mechanisms whereby the physical energy of the ocean is converted to trophic energy to support biological processes [START_REF] Bakun | Fronts and eddies as key structures in the habitat of marine fish larvae: opportunity, adaptive response and competitive advantage[END_REF][START_REF] Godø | Mesoscale Eddies Are Oases for Higher Trophic Marine Life[END_REF]. Cyclonic eddies, through upwelling of nutrients in their centres from deeper layers to the euphotic zone, are usually known to enhance local productivity [START_REF] Owen | Eddies of the California Current System: Physical and ecological characteristics[END_REF][START_REF] Owen | Fronts and eddies in the sea: mechanisms, interactions, and biological effects[END_REF][START_REF] Mcgillicuddy | Eddy-induced nutrient supply and new production in Sargasso Sea[END_REF][START_REF] Mcgillicuddy | Influence of mesoscale eddies on new production in the Sargasso Sea[END_REF][START_REF] Klein | The Oceanic Vertical Pump Induced by Mesoscale and Submesoscale Turbulence[END_REF][START_REF] Huggett | Mesoscale distribution and community composition of zooplankton in the Mozambique Channel[END_REF][START_REF] Singh | Role of cyclonic eddy in enhancing primary and new production in the Bay of Bengal[END_REF]. Anticyclonic eddies may promote the development of frontal structures [START_REF] Bakun | Fronts and eddies as key structures in the habitat of marine fish larvae: opportunity, adaptive response and competitive advantage[END_REF]. In anticyclones, highly productive waters may be entrained laterally from nearby regions to the eddy periphery or upwelling of nutrients may occur along the eddy boundary [START_REF] Mcgillicuddy | Mechanisms of Physical-Biological-Biogeochemical Interaction at the Oceanic Mesoscale[END_REF]. At the frontier between eddies, smaller-scale or submesoscale features (elongated filaments with a 10-km width) have been reported to enhance nutrient supply and primary productivity in oligotrophic conditions [START_REF] Lévy | Impact of sub-mesoscale physics on production and subduction of phytoplankton in an oligotrophic regime[END_REF][START_REF] Lévy | The role of submesoscale currents in structuring marine ecosystems[END_REF][START_REF] Klein | The Oceanic Vertical Pump Induced by Mesoscale and Submesoscale Turbulence[END_REF]. Biological responses to eddies, however, are complex and depend on a range of factors including seasonal modulation of the mixed layer depth [START_REF] Dufois | Impact of eddies on surface chlorophyll in the South Indian Ocean[END_REF], timing, magnitude and duration of nutrient input and also on eddy properties such as the formation, intensity, age and eddy-induced Ekman pumping [START_REF] Benitez-Nelson | Mesoscale Physical-Biological-Biogeochemical Linkages in the Open Ocean: An Introduction to the results of the E-Flux and EDDIES Programs[END_REF].

Continental shelves and seamounts are also features that may lead to enhanced productivity when certain conditions are met. Upwelling regions south of Madagascar have been observed to be biological hotspots with increased productivity [START_REF] Raj | Oceanic and atmospheric influences on the variability of phytoplankton bloom in the Southwestern Indian Ocean[END_REF][START_REF] Ramanantsoa | Coastal upwelling south of Madagascar: Temporal and spatial variability[END_REF] and increased acoustic biomass estimates of pelagic fish and whale sightings [START_REF] Pripp | Physical influence on biological production along the western shelf of Madagascar[END_REF]. Phytoplankton types may also differ between continental shelves and ocean basins, with shelf areas exhibiting larger phytoplankton cells because of the processes leading to high nutrient concentrations in the euphotic zone and cells rapidly take up nutrients [START_REF] Nishino | Impact of an unusually large warm-core eddy on distributions of nutrients and phytoplankton in the southwestern Canada Basin during late summer/early fall 2010[END_REF]. Seamounts are ubiquitous features of the world's oceans and have been reported to influence the prevailing ocean currents [START_REF] Royer | Ocean Eddies Generated by Seamounts in the North Pacific[END_REF][START_REF] White | Physical Processes and Seamount Productivity[END_REF], creating various local dynamic responses such as formation of a Taylor column, isopycnal doming [START_REF] Mohn | [END_REF], enclosed circulation cell [START_REF] White | Physical Processes and Seamount Productivity[END_REF], upwelling, vertical mixing of nutrientrich waters and enhanced productivity [START_REF] Boehlert | A review of the effects of seamounts on biological processes[END_REF][START_REF] Genin | Bio-physical coupling in the formation of zooplankton and fish aggregations over abrupt topographies[END_REF]. In a nutrient-limited environment like the south-western Indian Ocean, processes injecting nutrients into the euphotic zone (such as mesoscale features,seamounts, coastal upwelling events and river runoff) are likely to modulate the chlorophyll a signature by increasing phytoplankton growth, attracting a range of secondary and tertiary consumers such as zooplankton and micronekton.

Mesopelagic micronekton are actively swimming organisms that typically range in size from 2-20 cm.

They include diverse taxonomic groups [START_REF] De Forest | The influence of a Hawaiian seamount on mesopelagic micronekton[END_REF]) such as crustaceans (adult euphausiids, pelagic decapods and mysids), squids (small species and juvenile stages of large oceanic species) and fishes (mainly mesopelagic species and juveniles of other fish) (Brodeur et al., 2005;[START_REF] Brodeur | PICES Scientific Report No. 30 Micronekton of the North Pacific[END_REF][START_REF] Ménard | Stable isotope patterns in micronekton from the Mozambique Channel[END_REF]. Gelatinous organisms are under-represented components of the mesopelagic community [START_REF] Lehodey | Bridging the gap from ocean models to population dynamics of large marine predators: A model of mid-trophic functional groups[END_REF][START_REF] Kloser | Deep-scattering layer, gas-bladder density, and size estimates using a two-frequency acoustic and optical probe[END_REF]. Micronekton are important in the energy transfer to higher trophic levels because they are preyed upon by various top marine predators [START_REF] Guinet | Consumption of marine resources by seabirds and seals in Crozet and Kerguelen waters: changes in relation to consumer biomass 1962-85[END_REF][START_REF] Bertrand | Tuna food habits related to the micronekton distribution in French Polynesia[END_REF][START_REF] Potier | Forage fauna in the diet of three large pelagic fishes (lancetfish, swordfish and yellowfin tuna) in the western equatorial Indian Ocean[END_REF][START_REF] Cherel | Isotopic niches and trophic levels of myctophid fishes and their predators in the Southern Ocean[END_REF][START_REF] Danckwerts | Biomass consumption by breeding seabirds in the western Indian Ocean: indirect interactions with fisheries and implications for management[END_REF][START_REF] Jaquemet | Contrasted structuring effects of mesoscale features on the seabird community in the Mozambique Channel[END_REF]. They also transport energy to deeper regions of the ocean via respiration, excretion and natural mortality [START_REF] Hidaka | Downward transport of organic carbon by diel migratory micronekton in the western equatorial Pacific: its quantitative and qualitative importance[END_REF][START_REF] Catul | A review of mesopelagic fishes belonging to family Mcytophidae[END_REF][START_REF] Bianchi | Diel vertical migration: Ecological controls and impacts on the biological pump in a one-dimensional ocean model[END_REF]. This energy transport is made possible by the extensive DVM patterns of some micronekton species, with the organisms migrating to the upper 200 m of the water column at dusk and below 400 m at dawn [START_REF] Lebourges-Dhaussy | Vinciguerria nimbaria (micronekton), environment and tuna: their relationships in the Eastern Tropical Atlantic[END_REF][START_REF] Béhagle | Mesoscale features and micronekton in the Mozambique Channel: An acoustic approach[END_REF][START_REF] Annasawmy | Micronekton diel migration, community composition and trophic position within two biogeochemical provinces of the South West Indian Ocean: Insight from acoustics and stable isotopes[END_REF]. Diel vertical migration is believed to result from a compromise between the need to feed and to avoid predation [START_REF] Heywood | Diel vertical migration of zooplankton in the Northeast Atlantic[END_REF], with light being the main controlling factor in initiating ascent and descent [START_REF] Heywood | Diel vertical migration of zooplankton in the Northeast Atlantic[END_REF][START_REF] Andersen | Vertical distributions of macroplankton and micronekton in the Ligurian and Tyrrhenian Seas (northwestern Mediterranean)[END_REF][START_REF] Brierley | Diel vertical migration[END_REF]. The distribution of micronekton communities across ocean basins is not uniform [START_REF] Judkins | The deep scattering layer micronektonic fish faunas of the Atlantic mesopelagic ecoregions with comparison of the corresponding decapod shrimp faunas[END_REF]. Some studies have reported higher biomasses of micronekton scattering layers at seamount flanks and summits relative to the surrounding ocean, e.g. the Emperor (265m, [START_REF] Boehlert | Current-Topography Interactions at Mid-Ocean Seamounts and the Impact on Pelagic Ecosystems[END_REF] and Cross seamounts in the Pacific (330 m, [START_REF] Johnston | Temporal patterns in the acoustic signals of beaked whales at Cross Seamount[END_REF];

Condor (182-214 m) and Gigante (161 m) seamounts in the Azores [START_REF] Cascão | Persistent Enhancement of Micronekton Backscatter at the Summits of Seamounts in the Azores[END_REF].

At the ocean-basin scale, the western side of the oligotrophic ISSG biogeochemical province [START_REF] Longhurst | Ecological Geography of the Sea[END_REF]2007) holds reduced micronekton abundances and acoustic densities relative to the dynamic and more productive EAFR province [START_REF] Annasawmy | Micronekton diel migration, community composition and trophic position within two biogeochemical provinces of the South West Indian Ocean: Insight from acoustics and stable isotopes[END_REF]. Within the ISSG and EAFR provinces, features such as eddies, coastal upwelling at the Madagascar shelf and seamounts may further impact the local productivity, resulting in significant variability in micronekton distributions via bottom-up processes. This work investigates the influence of mesoscale eddies, the south Madagascar shelf and two shallow seamounts, La Pérouse and an unnamed pinnacle on the Madagascar Ridge, hereafter called "MAD-Ridge", in shaping micronekton vertical and horizontal distributions by combining data from ship-based platforms (acoustics, current profiler and CTD) and satellite altimetry.

Material and Methods

Cruises

Two research surveys were carried out on board the RV Antea at La Pérouse (19°43'S and 54°10'E) and 

Satellite data

The mesoscale eddy field during both the La Pérouse and MAD-Ridge cruises were described using daily delayed-time Absolute Dynamic Topography (ADT) with 1/4° (~25 km) spatial resolution.

Delayed-time ADT was produced and distributed by the Copernicus Marine Environment Monitoring

Service project (CMEMS) and available at http://marine.copernicus.eu/, from which absolute geostrophic currents have been calculated and used to derive dynamic parameters (see next section).

Delayed-time Mean Sea Level Anomalies (MSLA) data, with 1/4° (~25 km) spatial resolution in the vicinity of MAD-Ridge seamount were also downloaded from http://marine.copernicus.eu/, and used for direct eddy field representation.

Field Sampling

In situ bathymetry

The 12 kHz frequency of a Simrad EA500 echosounder was used to acquire a detailed bathymetry of the seamounts. The bathymetry data were interpolated on a regular grid using the Golden Surfer © software (version 10.3.705).

Hydrographic stations

A Sea-Bird 911+ CTD rosette system equipped with a Wetlabs ECO FL fluorometer was used to profile temperature, fluorescence and dissolved oxygen from the surface to a depth of ~1000 m during the La Pérouse and MAD-Ridge cruises. Discrete samples of chlorophyll a measured by high pressure liquid chromatography was used to calibrate the fluorescence sensor of the CTD during both cruises and to determine the depth range where the maximum chlorophyll a values (Fmax) were found. The integrated chlorophyll a concentrations between 2 and 200 m (mg m -3 ) was calculated by taking the sum of chlorophyll a values in that depth range. The average depths of the thermocline were assessed from the CTD profiles using the 20°C isotherm depth as a proxy.

Two 300 kHz RDI (upward and downward-looking) L-ADCP current profilers attached to the CTD frame were used to investigate the vertical structure of the current field during both cruises. The S-ADCP data were collected with a 75 kHz RDI Ocean Surveyor II. As L-ADCP data were missing at MAD-Ridge stations 2 and 3, S-ADCP data were used instead. Both datasets showed strong correlations which allowed the use of the L-with the S-ADCP [START_REF] Vianello | Circulation and hydrography in the vicinity of a shallow seamount on the northern Madagascar Ridge[END_REF]. For each hydrographic station, the average current speed (in cm s -1 ) over the depth range 104-304 m, was calculated from the west-east zonal ()) and south-north meridional (*) velocity components measured by the S-ADCP or L-ADCP.

A classification of MAD-Ridge hydrographic stations (numbered 1-31, Fig. 3.2) was performed based on their location relative to the mesoscale eddies (cyclonic, anticyclonic, interface between the dipole), to the seamount (summit or flank, both within the anticyclonic eddy) and to the Madagascar shelf. This classification was based on the hydrology (temperature-salinity profiles) of each station and a standard dynamic parameter, the Okubo-Weiss parameter, W [START_REF] Okubo | Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences[END_REF][START_REF] Weiss | The dynamics of enstrophy transfer in two-dimensional hydrodynamics[END_REF][START_REF] Isern-Fontanet | Spatial structure of anticyclonic eddies in the Algerian basin (Mediterranean Sea) analyzed using the Okubo-Weiss parameter[END_REF]. The latter is calculated from equation 1 below, where+, ' is the normal strain, , -the shear strain,

. the relative vorticity, and ) and * (Eq. 2 below) are the surface geostrophic velocity components derived from the absolute dynamic topography (altimetry). The Okubo-Weiss parameter allows the separation of the flow into a vorticity-dominated region (W </0 1 ) and a strain-dominated region (W >0 1 ), with 0 1 = 0.2σW, (σW being the standard deviation in the whole domain) [START_REF] Isern-Fontanet | Spatial structure of anticyclonic eddies in the Algerian basin (Mediterranean Sea) analyzed using the Okubo-Weiss parameter[END_REF]. It has been used widely in the south-western Indian Ocean by [START_REF] Halo | Eddy properties in the Mozambique Channel: A comparison between observations and two numerical ocean circulation models[END_REF] to distinguish the core of eddies (W >/0 1 ) from the periphery of eddies (W </0 1 ) and is given by:

W!=, ' 2 3 + , 4 2 / . 2 Eq. 1,
where:

,5 = However,!W values have to be used cautiously against in situ data because the spatial resolution of the altimetry is low (~25km) relative to each station. Therefore, for each station, the altimetry data were complemented by the available in situ data such as sea surface temperature and salinity obtained from a ship-mounted thermosalinograph and dissolved oxygen obtained from the CTD. This combined set of information allowed us to segregate the stations into different categories (see example for stations 3, 5

and 13 in the Appendix: Fig. A, and Table 3.1). 

Zooplankton sampling

Daytime zooplankton samples were collected with a 200-µm-mesh oblique Bongo net towed at a speed of 1-2 knots to a maximum depth of 200 m during the La Pérouse cruise (0.28 m 2 mouth area). A 200µm-mesh oblique Multinet was towed to a maximum of 200 m during the MAD-Ridge cruise (0.25 m 2 mouth area) [START_REF] Noyon | Comparison of mesozooplankton communities at three shallow seamounts in the South West Indian Ocean[END_REF]. Samples from both cruises were emptied into a 200 µm sieve, poured into sampling jars with filtered seawater and stored in 4% buffered formaldehyde at room temperature on board before being analysed using a Hydroptic Zooscan following the protocols in [START_REF] Gorsky | Digital zooplankton image analysis using the ZooScan integrated system[END_REF]. Detailed zooplankton sampling and analyses were investigated in Noyon et al. 2020.

Acoustic sampling

A Simrad EK60 echosounder operating at four frequencies was used during both the La Pérouse and [START_REF] Trenkel | Overview of recent progress in fisheries acoustics made by Ifremer with examples from the Bay of Biscay[END_REF][START_REF] Perrot | Matecho: An open-source tool for processing fisheries acoustics data[END_REF] was used to process acoustic data from both cruises. Background, transient and impulsive noises along with attenuated signals [START_REF] Perrot | Matecho: An open-source tool for processing fisheries acoustics data[END_REF] were removed using the algorithms designed in De Robertis & Higginbottom (2007) and [START_REF] Ryan | Reducing bias due to noise and attenuation in open-ocean echo integration data[END_REF]. An offset of 10 m below the sea surface was applied to account for the acoustic detection of the surface turbulence. During both cruises, echo-integration of the acoustic data was performed on 1-m layers at an elementary sampling distance unit of 0.1 nmi (nautical mile) and at a threshold of -80 dB to exclude scatterers not representative of the micronekton community [START_REF] Béhagle | Acoustic distribution of discriminated micronektonic organisms from a bi-frequency processing: The case study of eastern Kerguelen oceanic waters[END_REF]. The micronekton acoustic density was determined by the nautical area scattering coefficient NASC (sA, m 2 nmi -2 ), related to the backscattered energy [START_REF] Maclennan | A consistent approach to definitions and symbols in fisheries acoustics[END_REF]. NASC can be used as a proxy of the relative biomass of micronekton provided assumptions that the composition of scattering layers and the resulting scattering properties of micronekton are relatively homogeneous [START_REF] Béhagle | Mesoscale features and micronekton in the Mozambique Channel: An acoustic approach[END_REF]. 

Data visualisation

Vertical distributions of the environmental descriptors (current speed, temperature, and chlorophyll a) 

Statistical analyses

Kruskal Wallis tests and pairwise Wilcoxon rank sum tests were performed to assess the differences in integrated chlorophyll a concentrations between classified hydrographic stations. In order to cover the largest depth range, day and night acoustic transects at 38 kHz frequency were further selected to investigate the micronekton acoustic densities in close proximity to the summits and flanks of the pinnacles (see Fig. 

Taylor column theoretical calculation

The following non-dimensional factors were used to determine the likelihood of a Taylor column formation over La Pérouse and MAD-Ridge summits [START_REF] White | Physical Processes and Seamount Productivity[END_REF], depending on the mean water stratification, the mean flow field, the latitude (earth's rotation effect) and the shape of the seamount:

(1) The Rossby number, Ro, with Ro =+

< =>?+
, where U is the typical flow speed (0.3 m s -1 at La Pérouse and 0.5 m s -1 at MAD-Ridge); @ A B > +C > sin+ DEFGHG)IJK, where C is Earth's angular velocity at 0.0000729 rads s -1 ; the sin+ DEFGHG)IJK is sin(19.72)

at La Pérouse and+sin(27.48) at MAD-Ridge; and L is the average width of the seamounts (10 000 m for La Pérouse and 27 500 m for MAD-Ridge). Ro estimates were calculated at 0.27 at La Pérouse and 0.17 at MAD-Ridge.

(2) The relative height of the seamount (h0) to water depth (H), with α =+ L1 M , where α was calculated at 0.99 at La Pérouse and 0.85 at MAD-Ridge.

(3) A combination of Ro and α gives the blocking parameter Bl (where Bl = N OP ), which controls the formation of a Taylor column [START_REF] White | Physical Processes and Seamount Productivity[END_REF]. A Bl value of 3.66 was calculated at La Pérouse and 4.88 at MAD-Ridge. According to [START_REF] Chapman | Formation of Taylor caps over a tall isolated seamount in a stratified ocean[END_REF], for seamounts taller than α ≈ 0.4, true Taylor caps will form if Ro <0.15 and Bl > ~2 for Gaussian-shaped seamounts with moderate stratification. According to the authors, Taylor cones will not form if the Rossby number exceeds the upper bound of 0.15-0.2.

Results

Synoptic ocean circulation during the MAD-Ridge cruise

A cyclonic/anticyclonic eddy dipole was encountered along the West-East transect (hydrographic stations 1-15) of Leg 1 of the MAD-Ridge cruise, whereas the South-North transect (hydrographic stations 16-31) was mostly located inside the anticyclonic eddy and reached the Madagascar shelf (Fig.

3.2a

). Along the West-East transect, at hydrographic station 5, a sharp front can be observed in the sea surface temperature and salinity data collected from the ship-mounted thermosalinograph, indicating the transition between cyclonic and anticyclonic circulations (Appendix: Fig. A). This transition area coincided with the largest current velocity recorded at the surface (158 cm s -1 ) and in the depth layer 104 and 304 m (99 cm s -1 ) relative to all other stations along the West-East and South-North transects (Fig.

3.2b).

MAD-Ridge hydrographic stations were divided into six categories, according to whether they belonged to the cyclonic eddy (C: stations 2, 3, 4), anticyclonic eddy (AC: stations 10-13, 16-19, 24, 25), dipole interface (Dipole I.: station 5), seamount summit and anticyclonic eddy (Summit/AC: stations 8, 21, 22), seamount flank and anticyclonic eddy (Flank/AC: stations 7, 9, 20, 23) and shelf (Shelf: stations 30, 31).

The other hydrographic stations 1,6,[START_REF] Gubbay | Toward the Conservation and Management of the Sedlo Seamount[END_REF]15,[26][27][28][29] could not be accurately resolved using the criteria mentioned in Section 3.2.3.2 and in the Appendix (Fig. A) and were not assigned to any of the listed categories. 

Hydrography and chlorophyll concentration during the MAD-Ridge cruise

Surface temperatures among the station categories varied between 23.7°C (cyclonic station 4) and 24.9°C (Summit/AC station 21). The cyclonic and shelf stations were characterised by shallower thermocline (79-165 m and 97-117 m, respectively) than the anticyclonic stations. 144 m) relative to the cyclonic and shelf stations, with Fmax values of 0.16-0.30 mg m -3 , 0.25-0.31 mg m -3 and 0.17-0.33 mg m -3 , respectively. Integrated chlorophyll a concentrations were statistically different between the classified hydrographic stations (KW, H=7.59, p < 0.05), especially between the cyclonic and anticyclonic stations (pairwise comparisons, p < 0.05).

The mean ± S.D integrated chlorophyll a concentrations between 2 and 200 m were estimated at 29.1 ± 7.3 mg m -3 and 19.3 ± 2.1 mg m -3 within the cyclonic and anticyclonic eddies respectively.

Micronekton acoustic densities at the MAD-Ridge seamount

West-East Transect

The daytime total micronekton acoustic densities of the 38 kHz echosounder frequency exhibited a decreasing trend along the West-East transect, with the greatest responses recorded across stations 1-2 within the cyclonic eddy during Day_I (1705 m 2 nmi -2 ) (Fig. 3.3a). The lowest acoustic responses were recorded across the Summit/AC station 8 during Day_III (755 m 2 nmi -2 ) and stations 13-15 at the eastern periphery of the anticyclonic circulation during Day_V (702 m 2 nmi -2 ). The night-time total micronekton acoustic densities were greater than the daytime acoustic responses and also exhibited a decreasing trend along the West-East transect. The greatest acoustic densities were recorded during Night_I (3241 m 2 nmi -2 ) between cyclonic stations 3 and 4 and the lowest densities were recorded during Night_IV (1417 m 2 nmi -2 ) between stations 12 and 13 at the anticyclonic periphery (Fig. 3.3a). Differences of 1536 m 2 nmi -2 , 1297 m 2 nmi -2 , 1058 m 2 nmi -2 and 595 m 2 nmi -2 in the micronekton acoustic responses were recorded between Night_I-Day_I, Night_II-Day_II, Night_III-Day_III and Night_IV-Day_IV, respectively. Between anticyclonic stations 10-12 and across stations 13 and 15, the backscatter of the 38 kHz frequency was dominant but lower between ~20 and 80 m relative to the cyclonic stations.

At these anticyclonic stations, the dominant and stronger 120 kHz backscatter between ~80 and 

Environmental factors influencing micronekton distribution during the MAD-Ridge cruise

Median micronekton acoustic densities in the total water column and in the surface layer were the highest within the cyclonic eddy than in any other station category (p < 0.05) (Fig. 3.5a).

The Flank/AC stations showed higher median micronekton acoustic densities of the total water column relative to the Summit/AC stations (Fig. 3.5a). The Summit/AC stations exhibited higher median micronekton acoustic densities in the surface layer than in the AC and Dipole I. stations (p < 0.05) (Fig. 3.5a). Micronekton acoustic densities in the deep layer had the same overlapping ranges across all station categories except over the Summit/AC stations (p < 0.05).

Station 18, which was conducted at sunset, within the anticyclonic eddy showed high micronekton acoustic densities in the total water column (1461 ± 531 m 2 nmi -2 ), with the acoustic backscatter being distributed almost equally in the surface and deep layers (506 ± 345 and 559 ± 298 m 2 nmi -2 respectively) and in lower concentrations in the intermediate layer ( 397± 154 m 2 nmi -2 ). This station can be considered as being anomalous relative to the other anticyclonic stations. However, when this station was removed from the above KW and pairwise analyses, the outcome remained unchanged. To summarise, the cyclonic eddy stations recorded the greatest micronekton acoustic densities of the total water column and were characterised by negative SLA relative to the other station categories (Fig. 3.5a). The cyclonic eddy and shelf stations were characterised by the coldest temperature at 100 m, shallower Fmax, the highest integrated chlorophyll a concentrations between 2 and 200 m and the greatest mean zooplankton biovolumes (Fig. 3.5c-f). The anticyclonic circulation recorded lower micronekton acoustic densities in the total water column than the cyclonic circulation (Fig. 3.5a). These stations were characterised by positive SLA, warmer temperatures at 100 m, deeper Fmax, lower integrated chlorophyll a between 2 and 200 m and higher variability of zooplankton biovolumes than the cyclonic stations (Fig. 

Physical and biological oceanography at La Pérouse seamount

During the La Pérouse cruise, the seamount was under the influence of a weak cyclonic eddy with geostrophic speeds of <1 m s -1 and satellite surface absolute dynamic topography heights of ~1.1 m (Fig. 3.6). ADCP measurements recorded a current velocity of ~10-40 cm s -1 in the vicinity of the La Pérouse seamount, in the upper 200 m [START_REF] Marsac | Seamount effect on circulation and distribution of ocean taxa at and near La Pérouse, a shallow seamount in the southwestern Indian Ocean. Deep-Sea II[END_REF]. Surface temperatures ranged between 23 and 24°C, with a deeper thermocline (152-181 m) at La Pérouse (flanks and offshore stations combined) than at MAD-Ridge cyclonic stations.

Maximum chlorophyll a values of 0.18 -0.44 mg m -3 at Fmax depth between 65 and 140 m were recorded at all stations. 

Comparison of micronekton acoustic densities at both seamounts

Discussion

Oceanographic conditions during the MAD-Ridge and La Pérouse cruises

This thesis demonstrated the strong influence of mesoscale cyclonic and anticyclonic eddies on the physical and biological properties at MAD-Ridge seamount. The doming of isotherms and shallowing of the Fmax depth was observed within the cyclonic eddy during the MAD-Ridge cruise. Such processes are associated with eddy-induced pumping and upwelling of cool, nutrient-rich waters, triggering an increase in primary production in the photic layer [START_REF] Mcgillicuddy | Eddy-induced nutrient supply and new production in Sargasso Sea[END_REF][START_REF] Mcgillicuddy | Influence of mesoscale eddies on new production in the Sargasso Sea[END_REF][START_REF] Klein | The Oceanic Vertical Pump Induced by Mesoscale and Submesoscale Turbulence[END_REF][START_REF] Huggett | Mesoscale distribution and community composition of zooplankton in the Mozambique Channel[END_REF][START_REF] Singh | Role of cyclonic eddy in enhancing primary and new production in the Bay of Bengal[END_REF]. Phytoplankton within mesoscale cyclonic eddies can also grow in response to advection and subsequent retention of surrounding nutrient-rich waters within eddies [START_REF] José | Influence of mesoscale eddies biological production in the Mozambique Channel: Several contrasted examples from a coupled ocean-biogeochemistry model[END_REF][START_REF] Lamont | Characterisation of mesoscale features and phytoplankton variability in the Mozambique Channel[END_REF]). The anticyclonic eddy in this study was characterised by a deeper thermocline and Fmax, with a decrease in productivity in the photic layer than in the cyclonic eddy.

The Madagascar shelf also had a significant effect on the physical and biological processes during the MAD-Ridge cruise. The thermocline and Fmax depth were shallower on the shelf than at the other stations within the anticyclonic eddy. Previous studies have shown that the coastal regions south of Madagascar are more productive than surrounding waters [START_REF] Raj | Oceanic and atmospheric influences on the variability of phytoplankton bloom in the Southwestern Indian Ocean[END_REF][START_REF] Pripp | Physical influence on biological production along the western shelf of Madagascar[END_REF][START_REF] Ramanantsoa | Coastal upwelling south of Madagascar: Temporal and spatial variability[END_REF] owing to coastal upwelling events driven by interactions between the East Madagascar Current and the continental shelf and by upwelling favourable winds [START_REF] Ramanantsoa | Coastal upwelling south of Madagascar: Temporal and spatial variability[END_REF]. This productivity can be entrained by mesoscale features that spin off the East Madagascar Current, farther south, potentially towards MAD-Ridge [START_REF] Noyon | Plankton distribution within a young cyclonic eddy off south-western Madagascar[END_REF][START_REF] Ockhuis | The 'suitcase hypothesis': Can entrainment of meroplankton by eddies provide a pathway for gene flow between Madagascar and KwaZulu-Natal, South Africa?[END_REF].

La Pérouse seamount, on the other hand, is located on the edge of the ISSG and was under the influence of a weak mesoscale eddy field during the cruise there, reflecting average conditions observed throughout the year in this region, as shown by [START_REF] Pous | Circulation around La Réunion and Mauritius islands in the south-western Indian Ocean: A modeling perspective[END_REF] using the OSCAR product (https://podaac.jpl.nasa.gov/dataset/OSCAR_L4_OC_third-deg). Apart from disturbances caused by the seamount to circulation, phytoplankton and zooplankton at a small scale along the flanks [START_REF] Marsac | Seamount effect on circulation and distribution of ocean taxa at and near La Pérouse, a shallow seamount in the southwestern Indian Ocean. Deep-Sea II[END_REF], the average conditions in the La Pérouse area with relatively deep thermocline and Fmax depth, were typical of the oligotrophic ISSG province.

Overall, during the time of the cruises, sea surface chlorophyll concentrations were twice as low within the region of the La Pérouse seamount as at the MAD-Ridge seamount (Annasawmy et al., 2019).

Diel vertical migration of micronekton

Micronekton is a diverse group of organisms capable of demonstrating various swimming behaviours (active swimming or passive drifting) and vertical migration strategies (diel migrants, semi-migrants or non-migrants) [START_REF] Brodeur | PICES Scientific Report No. 30 Micronekton of the North Pacific[END_REF]. In this study, the different DVM patterns of micronekton were observed. Vertically migrating organisms ascended to the surface (above 200 m) at sunset and descended below 400 m at sunrise in the vicinity of both MAD-Ridge and La Pérouse, whereas only a small proportion of non-migrant or semi-migrant micronekton remained in the deep layer by day at both seamounts. On average, a difference of 595 m 2 nmi -2 to 1719 m 2 nmi -2 was recorded between day and night periods at MAD-Ridge (West-East and South-North transects) and a difference of 790 m 2 nmi -2 between day and night at La Pérouse. These differences between alternate day and night periods are likely caused either by the vertical migration of micronekton towards the surface at night for feeding purposes, sometimes from layers deeper than 735 m (i.e. beyond the range set for the 38 kHz transducer in this chapter), and/or the lateral advection of organisms.

Micronekton acoustic densities were greater in the surface layer than in the deep layer during the day at cyclonic eddy stations. This particular finding contradicts the general paradigm that micronekton are located in deeper layers by day (eg. [START_REF] Baliño | Winter distribution and migration of the sound scattering layers, zooplankton and micronekton in Masfjorden, western Norway[END_REF][START_REF] Andersen | Vertical distributions of macroplankton and micronekton in the Ligurian and Tyrrhenian Seas (northwestern Mediterranean)[END_REF][START_REF] Bertrand | Acoustic characterisation of micronekton distribution in French Polynesia[END_REF][START_REF] Lebourges-Dhaussy | Vinciguerria nimbaria (micronekton), environment and tuna: their relationships in the Eastern Tropical Atlantic[END_REF][START_REF] Benoit-Bird | Diel migration dynamics of an island-associated soundscattering layer[END_REF][START_REF] Domokos | Acoustic characterization of the mesopelagic community off the leeward coast of[END_REF][START_REF] Godø | Diel migration and swimbladder resonance of small fish: some implications for analyses of multifrequency echo data[END_REF][START_REF] Godø | Mesoscale Eddies Are Oases for Higher Trophic Marine Life[END_REF][START_REF] Drazen | Micronekton abundance and biomass in Hawaiian waters as influenced by seamounts, eddies and the moon[END_REF][START_REF] Béhagle | Mesoscale features and micronekton in the Mozambique Channel: An acoustic approach[END_REF][START_REF] Menkes | Seasonal oceanography from physics to micronekton in the south-west Pacific[END_REF][START_REF] Béhagle | Acoustic micronektonic distribution is structured by macroscale oceanographic processes across 20-50°S latitudes in the South-Western Indian Ocean[END_REF][START_REF] Bianchi | Global patterns of diel vertical migration times and velocities from acoustic data[END_REF][START_REF] Annasawmy | Micronekton diel migration, community composition and trophic position within two biogeochemical provinces of the South West Indian Ocean: Insight from acoustics and stable isotopes[END_REF].

Micronekton do not only undertake direct swimming in vertical and horizontal planes, but may also drift passively. Previous studies have reported passive drifting of the mesopelagic myctophid Benthosema glaciale with swimming speeds of 0-0.02 m s -1 along weak tidal currents and short bouts of active swimming in a vertical direction with swimming speeds of 0.05 m s -1 , possibly during feeding [START_REF] Torgersen | In situ swimming behaviour of individual mesopelagic fish studied by split-beam echo target tracking[END_REF][START_REF] Kaartvedt | Use of bottom-mounted echo sounders in exploring behavior of mesopelagic fishes[END_REF]. This species has also been reported to undertake reverse DVM, ascending to approximately 200 m by day to forage on midwater plankton [START_REF] Kaartvedt | Use of bottom-mounted echo sounders in exploring behavior of mesopelagic fishes[END_REF]. The reverse DVM pattern is not common, with only some species of zooplankton [START_REF] Ohman | Reverse Diel Vertical Migration: An Escape from Invertebrate Predators[END_REF][START_REF] Lampert | The Adaptive Significance of Diel Vertical Migration of Zooplankton[END_REF] and mesopelagic fishes having been reported to ascend to the surface layer during the day to optimise feeding opportunities [START_REF] Lebourges-Dhaussy | Vinciguerria nimbaria (micronekton), environment and tuna: their relationships in the Eastern Tropical Atlantic[END_REF][START_REF] Kaartvedt | Use of bottom-mounted echo sounders in exploring behavior of mesopelagic fishes[END_REF]. Some micronekton taxa may also preferentially stay in the surface layer during the day to reduce competition during feeding. The micronekton species Myctophum asperum, Myctophum nitidulum, Symbolophorus evermanni, and Chromis brevirostis showed delayed vertical migration at night in the Kuroshio region of the western North Pacific, with specific peak feeding hours and specialisation on different food organisms in order to reduce competition [START_REF] Watanabe | Feeding habits of juvenile surface migratory myctophid fishes (family Myctophidae) in the Kuroshio region of the western North Pacific[END_REF]. Daylight surface observations are rare but were made for the mesopelagic fish Benthosema pterotum in the Gulf of Oman [START_REF] Gjøsaeter | Aspects of the distribution and ecology of the Myctophidae from the Western and Northern Arabian Sea[END_REF][START_REF] Gjøsaeter | Mesopelagic fish, a large potential resource in the Arabian Sea[END_REF], the myctophid Benthosema pterota off the coast of Central America [START_REF] Alverson | Daylight Surface Occurrence of Myctophid Fishes Off the Coast of Central America[END_REF] and the myctophid Vinciguerria nimbaria in the eastern Tropical Atlantic [START_REF] Marchal | Acoustic evidence for unusual diel behaviour of a mesopelagic fish (Vinciguerria nimbaria) exploited by tuna[END_REF][START_REF] Lebourges-Dhaussy | Vinciguerria nimbaria (micronekton), environment and tuna: their relationships in the Eastern Tropical Atlantic[END_REF]. The reasons for the daylight surface occurrence of V. nimbaria has been linked to the presence of potential preys such as zooplankton at the Fmax depth [START_REF] Lebourges-Dhaussy | Vinciguerria nimbaria (micronekton), environment and tuna: their relationships in the Eastern Tropical Atlantic[END_REF]. Previous studies also have found the deep-dwelling cod Micromesistius poutassou which usually resides at a depth of 300-500 m, migrating to the surface of anticyclonic eddies probably to enhance feeding opportunities [START_REF] Godø | Mesoscale Eddies Are Oases for Higher Trophic Marine Life[END_REF]. Micronekton organisms within the cyclonic eddy during MAD-Ridge might have adopted a combination of these strategies and this possibility is discussed in more detail below.

Influence of mesoscale features on micronekton vertical and horizontal distribution

As shown earlier, the vertical and horizontal distributions of micronekton at MAD-Ridge were significantly influenced by mesoscale processes linked to the presence of cyclonic and anticyclonic eddies. The daytime sA values within the eddy dipole interface were the lowest relative to the other hydrographic station categories used in this analysis. [START_REF] Harris | Ichthyoplankton assemblages at three shallow seamounts in the South West Indian Ocean[END_REF] also recorded lower larval fish densities at the eddy dipole interface than at cyclonic and anticyclonic circulation stations. This can be attributed to the strong currents measured at this location that have led to the dispersion of micronekton communities. Alternatively, micronekton may have migrated below the depth range scanned by the 38 kHz transducer at that station due to a combination of strong currents and daytime light intensities.

Overall, acoustic densities of the total water column recorded within the cyclonic eddy were approximately twice as great as those recorded within the anticyclonic circulation during both day and night. The integrated chlorophyll a and zooplankton biovolume maxima found in the cyclonic eddy, matched the micronekton maxima, during day and night. Micronekton biomass is reported to be dependent on the availability of planktonic prey [START_REF] Menkes | Seasonal oceanography from physics to micronekton in the south-west Pacific[END_REF], and hence on the oceanographic drivers of plankton production, as observed in this study. In the anticyclonic eddy, the downwelling mechanism of nutrient-depleted surface waters may have led to a reduction of chlorophyll a concentrations in the euphotic zone, and a subsequent reduction in mesozooplankton abundance and micronekton acoustic densities during both day and night. Previous studies conducted in the Mozambique Channel have also reported lesser micronekton acoustic densities in anticyclonic relative to cyclonic eddies [START_REF] Béhagle | Mesoscale features and micronekton in the Mozambique Channel: An acoustic approach[END_REF].

However, the same authors pointed out some variability in eddy-induced biological responses, with one case of higher micronekton density in an anticyclonic eddy that was attributed to larger and more mobile organisms that are less influenced by mesoscale features than smaller organisms.

The RGB composite images have revealed the presence of a strong and dominant 38 kHz backscatter in the surface layer during the day across the cyclonic eddy (Fig. 3.3c). Previous studies have demonstrated that epi-and mesopelagic fishes with small gas-filled swimbladders and gelatinous plankton with gas inclusions dominate the 38 kHz frequency [START_REF] Porteiro | Midwater Fish Assemblages and Seamounts[END_REF][START_REF] Kloser | Species identification in deep water using multiple acoustic frequencies[END_REF][START_REF] Kloser | Acoustic observations of micronekton fish on the scale of an ocean basin: potential and challenges[END_REF][START_REF] Davison | Acoustic biomass estimation of mesopelagic fish: backscattering from individuals, populations, and communities[END_REF][START_REF] Cascão | Persistent Enhancement of Micronekton Backscatter at the Summits of Seamounts in the Azores[END_REF][START_REF] Proud | From siphonophores to deep scattering layers: uncertainty ranges for the estimation of global mesopelagic fish biomass[END_REF]. The occurrence of these organisms at the surface (10-200 m) by day may be considered a response to the cyclonic eddy exhibiting relatively high integrated chlorophyll a concentrations and zooplankton biovolumes. The question arises, though, whether these micronekton species showed reverse migration strategies and actively remained in the shallow layer by day or whether they were passively entrained with the current within the cyclonic circulation. This shallow scattering layer may also have consisted of gelatinous organisms, which as other zooplankton, responded to the localised cyclonic productivity. The mesoscale cyclonic eddy may also have provided physical mechanisms that led to zooplankton retention and concentration, thereby increasing the encounter rate between micronekton and their prey.

The micronekton organisms, likely epi-and mesopelagic fishes, would then preferentially stay in the surface layer by day to increase their feeding opportunities.

Influence of seamounts on micronekton vertical and horizontal distributions

Dense aggregations of scatterers were observed over deep topographic features labelled X and Y peaking at 430 m and 460 m, during night-time and sunrise, respectively (Figure 3.3b). These dense aggregations may have been migrating during the time of the cruise, upwards over feature X at night or downwards at feature Y at sunrise. Alternatively, they may be nonmigrating organisms that remained preferentially associated with these topographic features during day and night. Studies have suggested that the bottom-trapping mechanism as well as the horizontal flux of non-migrating zooplankton maintain the densities of zooplanktivorous fishes at seamounts of intermediate depth [START_REF] Genin | Seamount Plankton Dynamics[END_REF]. A range of other factors such as the quiescent shelters offered by these topographies and the absence of shallow diving predators [START_REF] Porteiro | Midwater Fish Assemblages and Seamounts[END_REF] may also account for the presence of these dense aggregations at the features labelled X and Y.

Micronekton acoustic densities over the summit and flanks of MAD-Ridge were lower than the acoustic densities recorded within the cyclonic eddy and over the Madagascar shelf.

However, the acoustic densities surrounding MAD-Ridge's summit and flanks were greater than those recorded in the vicinity of the summit and flanks of La Pérouse. Although there were clear mechanisms leading to enhanced productivity within the cyclonic eddy and over the Madagascar shelf, the local physical and biological dynamics over La Pérouse and MAD-Ridge seamounts were less straightforward. No clear enhancement in micronekton acoustic densities was observed over MAD-Ridge compared with the surrounding vicinity (within 14 nmi of the summit) at the time of the cruises (Annasawmy et al., 2019).

In the literature, Taylor columns that form over seamounts are often seen as physical processes that are capable of enhancing productivity and isolating the seamount waters from the largescale environment [START_REF] Genin | Madagascar Ridge; Any Taylor column formed may be swept away by mesoscale eddies Read & Pollard[END_REF][START_REF] Dower | Seamount effects" in the zooplankton community near Cobb Seamount[END_REF][START_REF] Genin | Bio-physical coupling in the formation of zooplankton and fish aggregations over abrupt topographies[END_REF]. The Q, Ro and Bl values were above the threshold set in literature (Chapman & Haidvogel,1992;[START_REF] White | Physical Processes and Seamount Productivity[END_REF], at both La Pérouse and MAD-Ridge during the cruises. The mesoscale eddy activity in the MAD-Ridge area may have dominated any potential seamount effect. The summit of MAD-Ridge during most of the cruise was under the influence of the anticyclonic eddy and current speeds exceeded 0.5 m s -1 , thus making the formation of a Taylor column very unlikely. The MAD-Ridge's seamount shape may also not be favourable to the formation of such features because the threshold set for α values in theoretical calculations was exceeded. Additionally, because of the presence of the anticyclonic eddy feature over MAD-Ridge's summit, there was a downward deflection of isotherms between the surface and ~200 m, instead of an uplifting as seen across other studies [START_REF] Genin | Madagascar Ridge; Any Taylor column formed may be swept away by mesoscale eddies Read & Pollard[END_REF][START_REF] Boehlert | A review of the effects of seamounts on biological processes[END_REF][START_REF] Dower | Seamount effects" in the zooplankton community near Cobb Seamount[END_REF]. MAD-Ridge is located in an "eddy corridor" to the south of Madagascar. Previous studies have found evidence of a westward drift of eddies at an estimated speed of 7.3 ± 1.7 cm s -1 in the vicinity of the pinnacle, along 27°S and 45°E (Pollard & Read., 2017).

Phytoplankton entrapment during several weeks would be needed to allow growth of zooplankton and to attract micronekton species [START_REF] Genin | Madagascar Ridge; Any Taylor column formed may be swept away by mesoscale eddies Read & Pollard[END_REF][START_REF] Boehlert | A review of the effects of seamounts on biological processes[END_REF][START_REF] Dower | Seamount effects" in the zooplankton community near Cobb Seamount[END_REF]. In such a dynamic system, strong currents may continuously sweep away phytoplankton cells from the summit. Phytoplankton retention mechanisms may not be sufficiently long to have a significant impact on higher trophic levels such as zooplankton and micronekton, potentially explaining the lower micronekton acoustic densities recorded directly above MAD-Ridge's summit during the cruise relative to the cyclonic eddy and shelf stations. La Pérouse's pinnacle is believed to cause disruptions in the current velocities because flank stations (within 3 km of the summit) exhibited a larger diversity of current velocities and directions than control stations (10-21 km away) [START_REF] Marsac | Seamount effect on circulation and distribution of ocean taxa at and near La Pérouse, a shallow seamount in the southwestern Indian Ocean. Deep-Sea II[END_REF]. Over La Pérouse seamount, the formation of a Taylor column was very unlikely to have occurred because current speeds of 0.3 m s -1 and greater were recorded. The complex crescent shape of the seamount may not be favourable for the development of a steady anticyclonic circulation characteristic of Taylor columns. The La Pérouse wider region is under the influence of the anticyclonic circulation pattern of the ISSG province characterised by a deep thermocline, a halocline and a DCM at 100-150 m, with chlorophyll a concentrations <0.3 mg m -3 between the surface and 200 m as observed in our study and in [START_REF] Jena | Investigation of the biophysical processes over the oligotrophic waters of South Indian Ocean subtropical gyre, triggered by cyclone Edzani[END_REF][START_REF] Jena | Observation of oligotrophic gyre variability in the south Indian Ocean: Environmental forcing and biological response[END_REF]. Overall mean acoustic densities of micronekton at the La Pérouse seamount were thus typical of those of the ISSG province both during day and night [START_REF] Annasawmy | Micronekton diel migration, community composition and trophic position within two biogeochemical provinces of the South West Indian Ocean: Insight from acoustics and stable isotopes[END_REF].

Common to both La Pérouse and MAD-Ridge seamounts is the presence of dense aggregations of scatterers (seen as "white patches" on RGB composite images, Fig. 3.4b and 3.7c-d) directly above the summits during day and night. A combination of trawls and acoustic data revealed these dense aggregations to consist of the myctophids Diaphus suborbitalis (both La Pérouse and MAD-Ridge), Benthosema fibulatum, Hygophum hygomii and the benthopelagic fish Cookeolus japonicus on MAD-Ridge's summit and flanks (Annasawmy et al., 2019).

Populations of D. suborbitalis have also been reported to be located between 500 and 600 m during the day along the flanks of the Equator seamount in the Indian Ocean, and to ascend to the summit of the seamount at dusk to feed on copepods (Gorelova & Prut'ko, 1985;[START_REF] Parin | Thalassal mesobenthopelagic ichthyocoenosis above the Equator Seamount in the western tropical Indian Ocean[END_REF][START_REF] Porteiro | Midwater Fish Assemblages and Seamounts[END_REF], while B. fibulatum has been found associated with the Hawaiian Cross seamount in the Pacific [START_REF] De Forest | The influence of a Hawaiian seamount on mesopelagic micronekton[END_REF]. Dense aggregations of scatterers were also observed above a ridge off the coast of Baja California and was thought to consist of the fish Sebastodes, anchovy and juvenile hake that prey on migrating zooplankton [START_REF] Isaacs | Migrant sound scatterers: Interaction with the sea floor[END_REF]. Similar aggregations of scatterers were observed on the Southeast Hancock seamount in the central North Pacific, consisting of resident populations of the fish Maurolicus muelleri and the mysid Gnathophausia longispina [START_REF] Boehlert | Populations of the Sternoptychid Fish Maurolicus muelleri on Seamounts in the Central North Pacific[END_REF].

Time-series of acoustic transects showed these organisms to be concentrated on the seamount flanks at 400 m, before rising to the surface at dusk and streaming vertically downwards at dawn, with some scatterers remaining above the flanks at 170 m even during daylight. The association of these fishes with seamounts may confer some selective advantages such as increased feeding opportunities [START_REF] Wilson | Interaction of ocean currents and resident micronekton at a seamount in the central North Pacific[END_REF], increased habitat diversity [START_REF] Wilson | Interaction of ocean currents and resident micronekton at a seamount in the central North Pacific[END_REF][START_REF] Porteiro | Midwater Fish Assemblages and Seamounts[END_REF], shelter areas for spawning, or decreased energy loss by using the seamount as a shelter during non-feeding intervals [START_REF] Cascão | Persistent Enhancement of Micronekton Backscatter at the Summits of Seamounts in the Azores[END_REF]. The maintenance of a population at a seamount also depends on local recruitment or advection of eggs and larvae from the shelf or neighbouring islands and seamounts [START_REF] Boehlert | Populations of the Sternoptychid Fish Maurolicus muelleri on Seamounts in the Central North Pacific[END_REF][START_REF] Diekmann | A multivariate analysis of larval fish and paralarval cephalopod assemblages at Great Meteor Seamount[END_REF]. According to [START_REF] Harris | Ichthyoplankton assemblages at three shallow seamounts in the South West Indian Ocean[END_REF], higher larval densities mostly of the families Myctophidae, Bregmacerotidae, Gonostomatidae and Molidae were recorded at MAD-Ridge's summit. According to those authors, this observation points to some local spawning processes at the pinnacle. The MAD-Ridge seamount is close to shallow and deep topographic features and to the Madagascar shelf, features from which larvae might have been advected [START_REF] Crochelet | Connectivity between seamounts and coastal ecosystems in the South West Indian Ocean[END_REF]. The presence of a greater proportion of neritic species over the summit of MAD-Ridge seamount relative to La Pérouse seems to favour this hypothesis [START_REF] Harris | Ichthyoplankton assemblages at three shallow seamounts in the South West Indian Ocean[END_REF]. The mesoscale activity on the Madagascar shelf and at MAD-Ridge may allow the periodic replenishment of advected larvae over the pinnacle [START_REF] Harris | Ichthyoplankton assemblages at three shallow seamounts in the South West Indian Ocean[END_REF][START_REF] Crochelet | Connectivity between seamounts and coastal ecosystems in the South West Indian Ocean[END_REF], corresponding with enhanced micronekton acoustic densities compared to La Pérouse.

Concluding Remarks

This work has suggested a link between the physical processes leading to enhanced productivity and the biological response of micronekton. Two main processes were identified to have a positive effect on the observed productivity: 1) the influence of the cyclonic eddy through the enrichment of surface waters, 2) the advection of shelf waters with high chlorophyll a concentrations. La Pérouse and MAD-Ridge seamounts did not show any enhanced biomass of micronekton, as reported to be the case for other seamounts. However, despite the differing productivity levels at both seamounts, dense aggregations of scatterers were observed on the summits during day and night. This study has therefore suggested that seamount-associated species were the only seamount effect detected and that in a highly dynamic environment like south of Madagascar, mesoscale features have a stronger influence than seamounts on micronekton acoustic densities.

Inter-chapter I

As seen in Chapter 2, seabirds breed at island states in the SWIO and regularly use seamounts or regions of enhanced productivity such as upwelling at continental shelves and within mesoscale eddies during their foraging trips. Tunas and swordfish may benefit from seamounts in the region for foraging, during their migrations and/or as navigational waypoints. These species also take advantage of mesoscale eddies for enhanced foraging opportunities.

Humpback whales were further reported to use La Pérouse seamount during their breeding season. Different micronekton communities thus support a wide range of top predators in the SWIO. The spatial distribution of micronekton is not uniform across this region, which likely influences the foraging patterns of these predators. It is now well accepted that the spatial distribution of top predators is often associated with prey availability.

Chapter 3 aimed at investigating which feature between two shallow seamounts, the Madagascar continental shelf and mesoscale eddies, would exhibit a greater density of available prey for top predators. Local dynamic processes caused by current-topography interactions such as Taylor columns and isopycnal domings could have contributed to the retention of plankton and aggregation of zooplankton and micronekton over the summits of La Pérouse and MAD-Ridge. However, these anticyclonic circulation cells are unlikely to occur at the seamounts. Both pinnacles recorded lower acoustic densities of micronekton relative to the cyclonic eddy observed during MAD-Ridge. The La Pérouse seamount is located on the outskirts of the ISSG province and is characterised by weaker mesoscale dynamics, deeper thermocline and lower maximum fluorescence, which are typical of oligotrophic marine systems. The MAD-Ridge seamount, on the other hand, is located along the Madagascar ridge in a region with high mesoscale activities. Productivity at the Madagascar shelf were associated with high micronekton acoustic densities. This productivity and micronekton larvae may further be entrained from the shelf to the MAD-Ridge pinnacle by the action of mesoscale eddies. These physical processes may be responsible for the higher acoustic densities recorded at MAD-Ridge relative to La Pérouse.

The micronekton acoustic densities were also not uniform within mesoscale features, with the cyclonic eddy showing greater acoustic estimates relative to the anticyclone encountered during the MAD-Ridge cruise. The shallower depth of the maximum fluorescence, lower temperature values, higher chlorophyll a concentrations in the euphotic zone (as seen in Chapter 3), enriched picoplankton and nanoplankton carbon biomass and greater zooplankton biovolumes (as seen in Chapter 2), may have contributed to this increase in micronekton backscatter intensities within the cyclone. The different micronekton communities may hence be able to respond to physical environmental cues and aggregate in areas with greater productivity and zooplankton prey availability. While the La Pérouse and MAD-Ridge seamounts did not show enhanced acoustic densities of micronekton on their summits and flanks relative to their surroundings, dense aggregations were recorded over their summits. Some organisms may hence preferentially associate with the summits of these pinnacles during day and night.

Acoustics is a powerful tool that can be used to estimate the biomass of mesopelagic organisms throughout whole cruise transects. However, the species composition cannot be accurately determined based solely on acoustic techniques. Chapter 4 will hence investigate the composition of the micronekton communities using a combination of trawl data and a multifrequency acoustic visualisation technique. The composition of the dense aggregations of scatterers observed over the summit of the pinnacles in Chapter 3 will be determined. Chapter 3 has also shown that some micronekton communities swim vertically to the surface at dusk and to deeper layers at dawn. However, the different species within the micronekton may exhibit different migration strategies than just DVM. The seamounts may further influence organisms in their migration patterns and this will be investigated in Chapter 4. Keywords: micronekton, seamount, south-western Indian Ocean, acoustics, seamountassociated fauna

Introduction

Seamounts are ubiquitous underwater topographic features, usually of volcanic origin, which rise steeply through the water column from abyssal depths. They exhibit various shapes (conical, circular, elliptical or elongated) with the summit reaching various depths below the sea surface. Shallow seamounts are those reaching into the euphotic zone. As topographic obstacles, seamounts may influence prevailing ocean currents by disrupting the oceanic flow and causing spatial and temporal variability in the current field [START_REF] Royer | Ocean Eddies Generated by Seamounts in the North Pacific[END_REF][START_REF] White | Physical Processes and Seamount Productivity[END_REF]. The combined interaction of various seamount characteristics, stratification and oceanic flow conditions may provide local dynamic responses at seamounts such as formation of a

Taylor Column or Cone, isopycnal doming [START_REF] Mohn | [END_REF], enclosed circulation cells and enhanced vertical mixing [START_REF] White | Physical Processes and Seamount Productivity[END_REF]. The aforementioned physical processes may cause various responses over seamounts, notably, upwelling and vertical mixing of nutrient-rich waters from deeper to shallower layers and enhanced productivity [START_REF] Boehlert | A review of the effects of seamounts on biological processes[END_REF][START_REF] Genin | Bio-physical coupling in the formation of zooplankton and fish aggregations over abrupt topographies[END_REF]. The enclosed, semi-enclosed circulation pattern around seamounts may also be important retention mechanisms for drifting organisms produced over, or advected from the far field into the vicinity of the pinnacle [START_REF] White | Physical Processes and Seamount Productivity[END_REF].

Seamounts are important for fisheries around the world since they aggregate large pelagic organisms of commercial value such as tunas [START_REF] Fonteneau | Monts sous-marins et thons dans l'Atlantique tropical est[END_REF][START_REF] Holland | Fish visitors to seamounts: Tunas and billfish at seamounts[END_REF][START_REF] Dubroca | Seamounts and tuna fisheries: Tuna hotspots or fishermen habits? Collect[END_REF], alfonsinos and orange roughy [START_REF] Ingole | Deep-sea ecosystems of the Indian Ocean[END_REF][START_REF] Bensch | Worldwide review of bottom fisheries in the high seas[END_REF]. In the SWIO, seamount-associated fisheries gradually developed since the early 1970s, targeting various species, including alfonsinos (Beryx sp.), rubyfish (Plagiogeneion rubiginosus), cardinalfish (Epigonus sp.), pelagic armourhead (Pentaceros richardsoni), rudderfish (Centrolophus niger), bluenose (Hyperoglyphe antarctica), and later expanded to orange roughy (Hoplostethus atlanticus) and oreos (Oreosomatidae) throughout ridge systems of the southern Indian Ocean including Walters Shoal and deeper areas such as Madagascar and Mozambique ridges [START_REF] Collette | Shallow-Water Fishes of Walters Shoals, Madagascar Ridge[END_REF][START_REF] Romanov | Summary and review of Soviet and Ukrainian scientific and commercial fishing operations on the deepwater ridges of the southern Indian Ocean[END_REF]Clark et al., 2007;[START_REF] Parin | On the composition of talassobathyal ichthyofauna and commercial productivity of Mozambique Seamount (the Indian Ocean)[END_REF][START_REF] Rogers | Pelagic communities of the South West Indian Ocean seamounts: R/V Dr Fridtjof Nansen Cruise 2009-410[END_REF]. Tunas are subjected to fishing pressures at the Travin Bank, also known as the "Coco de Mer" (Indian Ocean), since its discovery in the late 1970s (Marsac et al., 2014). Several hypotheses have been proposed to explain the high densities of marine megafauna associated with seamounts. La Pérouse seamount may present favourable breeding habitats for humpback whales [START_REF] Dulau | Continuous movement behavior of humpback whales during the breeding season in the southwest Indian Ocean: on the road again![END_REF]. Seamounts may provide navigation aids in fish movements and tunas may gather around these features to enhance the encounter rate with other con-specifics [START_REF] Fréon | Review of fish associative behaviour: Toward a generalisation of the meeting point hypothesis[END_REF] or they may be attracted by aggregations of prey [START_REF] Holland | Fish visitors to seamounts: Tunas and billfish at seamounts[END_REF][START_REF] Morato | Evidence of a seamount effect on aggregating visitors[END_REF]. Organisms inhabiting the mesopelagic zone, the micronekton, represent an important forage fauna for top predators [START_REF] Guinet | Consumption of marine resources by seabirds and seals in Crozet and Kerguelen waters: changes in relation to consumer biomass 1962-85[END_REF][START_REF] Cherel | Isotopic niches and trophic levels of myctophid fishes and their predators in the Southern Ocean[END_REF][START_REF] Danckwerts | Biomass consumption by breeding seabirds in the western Indian Ocean: indirect interactions with fisheries and implications for management[END_REF][START_REF] Jaquemet | Contrasted structuring effects of mesoscale features on the seabird community in the Mozambique Channel[END_REF][START_REF] Potier | Feeding partitioning among tuna taken in surface and mid-water layers: The Case of Yellowfin (Thunnus albacares) and Bigeye (T. obesus) in the western tropical Indian Ocean[END_REF][START_REF] Potier | Forage fauna in the diet of three large pelagic fishes (lancetfish, swordfish and yellowfin tuna) in the western equatorial Indian Ocean[END_REF][START_REF] Potier | Influence of mesoscale features on micronekton and large pelagic fish communities in the Mozambique Channel[END_REF].

Micronekton can be divided into the broad taxonomic groups-crustaceans, cephalopods and mesopelagic fishes [START_REF] Brodeur | PICES Scientific Report No. 30 Micronekton of the North Pacific[END_REF][START_REF] De Forest | The influence of a Hawaiian seamount on mesopelagic micronekton[END_REF]. They typically range in size from 2 to 20 cm. Gelatinous organisms are under-represented components of the mesopelagic community, with only few authors [START_REF] Lehodey | Bridging the gap from ocean models to population dynamics of large marine predators: A model of mid-trophic functional groups[END_REF][START_REF] Kloser | Deep-scattering layer, gas-bladder density, and size estimates using a two-frequency acoustic and optical probe[END_REF] including these organisms in the micronekton group. Micronekton form dense sound-scattering layers since some of them reflect sound in the water, due to their swimbladders, hard shells and gas inclusions [START_REF] Simmonds | Fisheries Acoustics: theory and practice[END_REF][START_REF] Kloser | Acoustic observations of micronekton fish on the scale of an ocean basin: potential and challenges[END_REF]. Different scatterers are expected to have different relative frequency responses (Benoit-Bird & Lawson, 2016). While organisms with gas-filled structures such as epi-mesopelagic fishes with gas-filled swimbladders and gelatinous organisms with pneumatophores dominate the 38 kHz frequency [START_REF] Porteiro | Midwater Fish Assemblages and Seamounts[END_REF][START_REF] Kloser | Species identification in deep water using multiple acoustic frequencies[END_REF][START_REF] Kloser | Acoustic observations of micronekton fish on the scale of an ocean basin: potential and challenges[END_REF][START_REF] Mcgillicuddy | Mechanisms of Physical-Biological-Biogeochemical Interaction at the Oceanic Mesoscale[END_REF][START_REF] Davison | Acoustic biomass estimation of mesopelagic fish: backscattering from individuals, populations, and communities[END_REF][START_REF] Cascão | Persistent Enhancement of Micronekton Backscatter at the Summits of Seamounts in the Azores[END_REF][START_REF] Proud | From siphonophores to deep scattering layers: uncertainty ranges for the estimation of global mesopelagic fish biomass[END_REF], large crustaceans, small copepods, squids and non-gas bearing fishes are relatively weak scatterers at this frequency [START_REF] Cascão | Persistent Enhancement of Micronekton Backscatter at the Summits of Seamounts in the Azores[END_REF][START_REF] Proud | From siphonophores to deep scattering layers: uncertainty ranges for the estimation of global mesopelagic fish biomass[END_REF].

Euphausiid shrimps are better targets at 70 kHz [START_REF] Furusawa | Prediction of krill target strength by liquid prolate spheroid model[END_REF][START_REF] Simmonds | Fisheries Acoustics: theory and practice[END_REF]. Smaller plankton are stronger targets at 120 kHz compared to the 38 kHz and is a commonly used feature for separating plankton and fish marks on echograms [START_REF] Simmonds | Fisheries Acoustics: theory and practice[END_REF].

Some micronekton taxa undergo diel vertical migration (DVM) from deep to shallower layers (upper 200 m) at dusk and from shallow to deeper layers (below 400 m) at dawn [START_REF] Lebourges-Dhaussy | Vinciguerria nimbaria (micronekton), environment and tuna: their relationships in the Eastern Tropical Atlantic[END_REF][START_REF] Béhagle | Mesoscale features and micronekton in the Mozambique Channel: An acoustic approach[END_REF][START_REF] Annasawmy | Micronekton diel migration, community composition and trophic position within two biogeochemical provinces of the South West Indian Ocean: Insight from acoustics and stable isotopes[END_REF]. Other taxa were shown to exhibit delayed migration [START_REF] Watanabe | Feeding habits of juvenile surface migratory myctophid fishes (family Myctophidae) in the Kuroshio region of the western North Pacific[END_REF], reverse migration [START_REF] Alverson | Daylight Surface Occurrence of Myctophid Fishes Off the Coast of Central America[END_REF]Gjosaeter, 1978Gjosaeter, , 1984;;[START_REF] Marchal | Acoustic evidence for unusual diel behaviour of a mesopelagic fish (Vinciguerria nimbaria) exploited by tuna[END_REF][START_REF] Lebourges-Dhaussy | Vinciguerria nimbaria (micronekton), environment and tuna: their relationships in the Eastern Tropical Atlantic[END_REF], mid-water migration or non-migration [START_REF] Annasawmy | Micronekton diel migration, community composition and trophic position within two biogeochemical provinces of the South West Indian Ocean: Insight from acoustics and stable isotopes[END_REF]. It is thought that the spatial/horizontal distribution of micronekton communities is also not uniform across the Atlantic [START_REF] Judkins | The deep scattering layer micronektonic fish faunas of the Atlantic mesopelagic ecoregions with comparison of the corresponding decapod shrimp faunas[END_REF] and SWIO [START_REF] Annasawmy | Micronekton diel migration, community composition and trophic position within two biogeochemical provinces of the South West Indian Ocean: Insight from acoustics and stable isotopes[END_REF]. Various physical processes such as mesoscale eddies, proximity to continental shelves and landmasses, and seamounts may influence the distribution of micronekton. Seamounts, by introducing irregularities into the pelagic environment, such as a hard substrate, disrupted current flows, increased primary productivity, entrapment of plankton, and presence of benthic predators, are thought to influence the abundance, biomass, diversity and taxonomic composition of micronekton [START_REF] Genin | Bio-physical coupling in the formation of zooplankton and fish aggregations over abrupt topographies[END_REF][START_REF] Wilson | Interaction of ocean currents and resident micronekton at a seamount in the central North Pacific[END_REF][START_REF] De Forest | The influence of a Hawaiian seamount on mesopelagic micronekton[END_REF].

Although seamounts in other ocean basins are hypothesized to have a general influence on mesopelagic communities [START_REF] De Forest | The influence of a Hawaiian seamount on mesopelagic micronekton[END_REF][START_REF] Tracey | Deep-sea fish distribution varies between seamounts: Results from a seamount complex off New Zealand[END_REF], little is known about the micronekton dynamics at La Pérouse and MAD-Ridge seamounts, two shallow topographic features of the SWIO. La Pérouse is located 90 nautical miles (nmi) to the North West of Réunion Island (Fig. 4.1a), on the outskirts of the oligotrophic ISSG province [START_REF] Longhurst | The Indian Ocean-Indian South Subtropical Gyre Province (ISSG)[END_REF]. The summit depth is ~60 m below the sea surface and is 10 km long with narrow and steep flanks. MAD-Ridge seamount (thus termed in this study) is located along the Madagascar Ridge, 130 nmi to the south of Madagascar (Fig. 4.1b). The summit depth is ~240 m below the surface and is 33 km long (north to south) and 22 km wide (east to west). MAD-Ridge is located within an "eddy-corridor" along the Fort Dauphin upwelling area and is frequently crossed by mesoscale eddies spinning off the South East Madagascar Current [START_REF] Pollard | Circulation, stratification and seamounts in the Southwest Indian Ocean[END_REF][START_REF] Vianello | Circulation and hydrography in the vicinity of a shallow seamount on the northern Madagascar Ridge[END_REF]. These eddies may become trapped over the seamount and have an influence on the assemblages and DVM patterns of micronekton communities.

The main objectives of this study are to investigate (1) the prevailing environmental conditions at La Pérouse and MAD-Ridge seamounts using satellite data, (2) the vertical and horizontal distributions of the scattering layers at MAD-Ridge using acoustic data, (3) the micronekton assemblages at La Pérouse and MAD-Ridge using trawl data, and (4) whether La Pérouse and MAD-Ridge summits aggregate higher biomasses/densities of micronekton compared to the immediate vicinity of the seamounts, using acoustic and trawl data.

Methods

Study area and scientific cruises

La Pérouse cruise (DOI: 10.17600/16004500) was carried at latitude 19°43'S and longitude 

Satellite monitoring of La Pérouse and MAD-Ridge seamounts

Delayed-time mean sea level anomalies (MSLAs) at a daily and 1/4° 

Acoustic surveys

Acoustic surveys were carried out with a Simrad EK60 echosounder operating at four In the resulting RGB composite, the "hue" gives the frequency with the highest backscatter. 

Net sampling

Ten epi-mesopelagic tows were performed at La Pérouse and 17 tows at MAD-Ridge (Fig. The mesopelagic organisms collected during both cruises were sorted on board, divided into four broad categories: gelatinous organisms, crustaceans, cephalopods and fishes. The wet mass (WM) in grams was recorded for each category. Total length of selected gelatinous organisms, abdomen and carapace length of selected crustaceans, dorsal mantle length of selected cephalopods and standard length of selected fishes were measured. The micronekton components were counted and identified to the lowest possible taxon on board and also onshore from frozen samples preserved at -20°C. The total micronekton abundance estimates were calculated by dividing the total number of individuals per trawl by the volume of water filtered and multiplying by the average thickness of the day/night backscattering layer (100 m) and expressed as abundance within the backscattering layer (ind. m -2 ) (as in [START_REF] Kwong | An intercomparison of the taxonomic and size composition of tropical macrozooplankton and micronekton collected using three sampling gears[END_REF].

Similarly, the total biomass of organisms collected per trawl (g WM m -2 ) was calculated by dividing the total wet mass (WM g) of micronekton broad categories per trawl by the volume of water filtered and multiplying by the average thickness of the day/night backscattering layer (100 m). The habitat ranges of available micronekton taxa were obtained from literature [START_REF] Clarke | Vertical distribution of cephalopods at 18°N 25°W in the North Atlantic[END_REF][START_REF] Pearcy | Vertical distribution and migration of oceanic micronekton off Oregon[END_REF][START_REF] Smith | Smith's Sea Fishes[END_REF][START_REF] Van Der Spoel | Distribution of Myctophidae (Pisces, Myctophiformes) during the four seasons in the mid North Atlantic[END_REF][START_REF] Brodeur | PICES Scientific Report No. 30 Micronekton of the North Pacific[END_REF][START_REF] Davison | Acoustic biomass estimation of mesopelagic fish: backscattering from individuals, populations, and communities[END_REF][START_REF] Romero-Romero | Differences in the trophic ecology of micronekton driven by diel vertical migration[END_REF].

Organisms were classified as being epipelagic (<200 m), mesopelagic (from 200 to 1000 m), bathypelagic (below 1000 m to ~100 m from the seafloor) and benthopelagic (living near the bottom) according to definitions of the vertical zonation of the pelagic ocean from Del [START_REF] Giorgio | Respiration in the open ocean[END_REF] and [START_REF] Sutton | Vertical ecology of the pelagic ocean: classical patterns and new perspectives[END_REF]. Detailed fish species size distributions and compositions from both La Pérouse and MAD-Ridge cruises are described in [START_REF] Cherel | Micronektonic fish species over three seamounts in the southwestern Indian Ocean[END_REF].

Data visualisation and statistical analyses

La Pérouse and MAD-Ridge seamount bathymetry data were acquired with the 12 kHz frequency of a Simrad EA 500 echosounder. The bathymetry data were interpolated on a regular grid using the software Surfer version 10.3.705. Wilcoxon rank sum tests were performed to investigate the differences in mesopelagic trawl abundance and biomass estimates between La Pérouse and MAD-Ridge, and the mean acoustic densities over the summit and vicinity of MAD-Ridge.

Micronekton species richness was calculated using R (3. The fourth root transformation was used on species abundance data to down-weight strongly abundant species, thus allowing rare species to exert some influence on the similarity calculation [START_REF] Clarke | Change in Marine Communities: An Approach to Statistical Analysis and Interpretation[END_REF]. Resemblance matrices were created from the Bray-Curtis measure of similarity and were used to run the SIMPROF (similarity profile) permutation testing to identify statistically significant cluster of samples. Non-metric dimensional scaling (MDS) were used to produce 2-dimensional ordination of samples according to the selected grouping variables Depth category, Trawl location and Time of day.

Bubble plots were overlaid on the MDS ordination diagrams to represent the relative abundance of the selected species per trawl station (plotted at the bubble centres). The larger the bubble, the greater the mean number of individuals were captured at that site. One-way ANOSIM (analysis of similarities) was calculated to test for significant differences in the micronekton community composition according to the factors Depth, Trawl location and Time of Day. The SIMPER (similarity percentages) analysis was carried out to identify the taxa contributing most to the similarities/dissimilarities within each resultant cluster group.

Results

Prevailing environmental conditions at La Pérouse and MAD-Ridge seamounts

During La Pérouse cruise in September 2016, the seamount was under the influence of a weak cyclonic eddy with a MSLA of ~-10 cm (Fig. 4.2a). The SLA ranged from -26 to 10 cm throughout the cruise. MAD-Ridge was under the influence of an eddy dipole with the anticyclonic feature being trapped on the seamount during the cruise in November 2016 (Fig. 

Vertical and horizontal distributions of biological scatterers at MAD-Ridge

The 

Taxonomic composition of trawl catches

At La Pérouse seamount, 144 taxa from 10 trawls representing 7, 13, 17 and 107 taxonomic groups of gelatinous organisms, crustaceans, cephalopods and epi-mesopelagic fishes, respectively, were collected. At MAD-Ridge, 146 taxa from 17 trawls, representing 5, 10, 17 and 114 taxonomic groups of gelatinous organisms, crustaceans, cephalopods and epimesopelagic fishes, respectively, were collected. Six individuals of the benthopelagic fish species, Cookeolus japonicus, were further collected at MAD-Ridge seamount summit (Fig. 4.8d, 4.9b and 4.10c). MAD-Ridge and La Pérouse trawls caught 3, 9, 14 and 66 identical taxa of gelatinous organisms (jellyfish, salps and pyrosomes), crustaceans, cephalopods and epimesopelagic fishes respectively.

Micronekton abundance and biomass estimates were greater at MAD-Ridge compared to La Pérouse (Fig. 4.6a), however, values were not significantly different (Abundance:, W= 144.5, p > 0.05; Biomass: W=115, p > 0.05). Mean micronekton abundance and biomass estimates were lower over La Pérouse summit (0.004 ind m -2 and 0.006 g WM m -2 ) compared to the vicinity (0.12 ± 0.10 ind m -2 and 0.24 ± 0.20 g WM m -2 ). At MAD-Ridge, the summit also recorded lower abundance and biomass estimates (0.03 ind m -2 and 0.11 g WM m -2 ) compared to the vicinity (0.33 ± 0.43 ind m -2 and 0.46 ± 0.22 g WM m -2 ). The species richness was higher 

Micronekton community compositions and acoustic backscatter intensities

At La Pérouse seamount, the gelatinous organisms-salps and pyrosomes, unidentified shrimps, phyllosoma larvae, the squid Abraliopsis sp., leptocephali and the fish C. The DSL over the flanks and vicinity of La Pérouse was less dense at night-time compared to daytime and was located between 500 and 650 m compared to MAD-Ridge (400-700 m) (Fig.

4.9a

). The night deep trawls over La Pérouse flanks consisted of pyrosomes and the seamountassociated fish D. suborbitalis in high numbers, the deep-dwelling A. aculeatus, the fish A.

hulleyi [START_REF] Cherel | Micronektonic fish species over three seamounts in the southwestern Indian Ocean[END_REF], and a variety of crustaceans and squids in lower numbers (Fig. 

Discussion

Sampling biases and constraints

Pelagic trawls like the IYGPT have coarse meshes at the front through which an unknown fraction of mesopelagic organisms may escape [START_REF] Kaartvedt | Internal wave-mediated shading causes frequent vertical migrations in fishes[END_REF]. Highly mobile micronekton such as cephalopods and fishes may show avoidance reactions to nets, which may lead to discrepancies between net-based and acoustic estimates [START_REF] Reid | Mesopelagic-boundary community in Hawaii: micronekton at the interface between neritic and oceanic ecosystems[END_REF][START_REF] Kaartvedt | Internal wave-mediated shading causes frequent vertical migrations in fishes[END_REF]. Organisms with fragile bodies, such as gelatinous plankton, may break apart, biasing final abundance/biomass estimates [START_REF] Domokos | Acoustic characterization of the mesopelagic community off the leeward coast of[END_REF][START_REF] Rogers | Pelagic communities of the South West Indian Ocean seamounts: R/V Dr Fridtjof Nansen Cruise 2009-410[END_REF][START_REF] Proud | From siphonophores to deep scattering layers: uncertainty ranges for the estimation of global mesopelagic fish biomass[END_REF]. La Pérouse acoustic data at sampling stations were incomplete and hence a thorough comparison in mean backscatter between La Pérouse and MAD-Ridge could not be carried out.

Owing to bad quality acoustic data beyond 750 m, echo-integrations were limited to that depth.

Biases in acoustic density estimates may arise from variations in fish swimbladder volume (that depends on the depth range and subsequent swimbladder compression), the swimbladder size distribution and aspect [START_REF] Benoit-Bird | Ecological Insights from Pelagic Habitats Acquired Using Active Acoustic Techniques[END_REF][START_REF] Cascão | Persistent Enhancement of Micronekton Backscatter at the Summits of Seamounts in the Azores[END_REF][START_REF] Proud | From siphonophores to deep scattering layers: uncertainty ranges for the estimation of global mesopelagic fish biomass[END_REF].

Some organisms also have low acoustic target strengths and hence low acoustic backscatter even if found in dense aggregations on seamounts (McClatchie & Combs, 2005). The RGB visualisation technique is colour-vision dependent but however, provides information on the mean backscatter at all three frequencies on a single plot and at high resolution compared to a single frequency echogram. Studies have demonstrated a seasonal effect in the variability of micronekon acoustic densities [START_REF] Wilson | Interaction of ocean currents and resident micronekton at a seamount in the central North Pacific[END_REF][START_REF] Cascão | Persistent Enhancement of Micronekton Backscatter at the Summits of Seamounts in the Azores[END_REF] owing to the life strategies and behaviour of the seamount-associated fauna. This study therefore, only provided a snapshot in time of the composition of micronekton at La Pérouse and MAD-Ridge during a declining phase of oceanic productivity.

Oceanography and biological response

This thesis highlighted contrasting environmental patterns at La Pérouse and MAD-Ridge.

While MAD-Ridge was under the influence of strong cyclonic and anticyclonic eddies originating from the South East Madagascar current [START_REF] Vianello | Circulation and hydrography in the vicinity of a shallow seamount on the northern Madagascar Ridge[END_REF], La Pérouse was under the influence of moderate mesoscale activities. As topographic obstacles, seamounts may either bifurcate, trap, split or destroy eddies [START_REF] De Schouten | Translation, decay and splitting of Agulhas rings in the southeastern Atlantic Ocean[END_REF][START_REF] Herbette | Erosion of a surface vortex by a seamount[END_REF][START_REF] Adduce | An experimental study of a mesoscale vortex colliding with topography of varying geometry in a rotating fluid[END_REF][START_REF] Sutyrin | Critical effects of a tall seamount on a drifting vortex[END_REF][START_REF] Lavelle | Motion, commotion, and biophysical connections at deep ocean seamounts[END_REF]. Trapping duration of eddies may last for several months, with important estimated effects on biological production and plankton retention [START_REF] Bograd | Observations of seamountattached eddies in the North Pacific[END_REF]. Eddies are well known in influencing local water properties, such as the trapping of anomalous water masses [START_REF] Swart | Observed characteristics of Mozambique Channel eddies[END_REF][START_REF] Pollard | Circulation, stratification and seamounts in the Southwest Indian Ocean[END_REF], or the advection of coastal waters with high phytoplankton biomass from the coast to open waters [START_REF] Quartly | Eddies in the southern Mozambique Channel[END_REF][START_REF] Tew-Kai | Patterns of variability of sea surface chlorophyll in the Mozambique Channel: a quantitative approach[END_REF][START_REF] Kolasinski | Distribution and sources of particulate organic matter in a mesoscale eddy dipole in the Mozambique Channel (south-western Indian Ocean): Insight from C and N stable isotopes[END_REF].

Coastally upwelled waters of high biological productivity over the southern Madagascar shelf [START_REF] Ramanantsoa | Coastal upwelling south of Madagascar: Temporal and spatial variability[END_REF]) may be trapped by mesoscale features that propagate over MAD-Ridge.

Local productivity at MAD-Ridge did not result from a Taylor column (see Chapter 3) since the latter may form transiently, under specific conditions of summit depth, water column stratification and current speeds (Owens & Hogg, 1980[START_REF] Freeland | Ocean circulation at and near Cobb Seamount[END_REF], Mohn et al., 2009[START_REF] Wagawa | Flow fields around the Emperor Seamounts detected from current data[END_REF][START_REF] Bashmachnikov | Topographically induced circulation patterns and mixing over Condor seamount[END_REF]. Read & Pollard (2017) concluded that while, Taylor columns may theoretically be formed over several seamounts of the Madagascar Ridge, the relatively strong currents associated with mesoscale eddies may prevent their formation or sweep away any incipient Taylor cap before settlement. The complex crescent shape of La Pérouse seamount, shallow summit depth and relatively high current speeds were not favourable for Taylor column formation (see Chapter 3). The high yearly biological productivity at MAD-Ridge and connectivity with neighbouring seamounts of the Madagascar Ridge [START_REF] Letessier | Seamount influences on mid-water shrimps (Decapoda) and gnathophausiids (Lophogastridea) of the South-West Indian Ridge[END_REF] and with the Madagascar shelf might be one of the reasons accounting for the greater micronekton species richness and denser SSL and DSL at MAD-Ridge compared to La Pérouse. Higher mean acoustic responses were also recorded along Petal

V during MAD-Ridge, which may be an aggregating effect on organisms of the strong local gradient of sea level anomalies at the anticyclonic eddy periphery [START_REF] Sabarros | Mesoscale eddies influence distribution and aggregation patterns of micronekton in the Mozambique Channel[END_REF].

Effect of seamounts on the DVM of micronekton

As evidenced in this study, the majority of micronekton taxa including various myctophids performed daily DVM whereas the deep-dwelling Pasiphaea spp., A. aculeatus, A.

hemigymnus and Cyclothone sp. did not migrate to surface layers at dusk. Diel vertical migration did not occur as a single event, but as a series of events from the mid-water migrants which migrated from the intermediate layer to the DSL or deeper before sunrise. The surface migrants migrated from the SSL to the DSL or deeper during sunrise. Various cues such as light penetration and intensity, productivity, oxygen minima, temperature, food, clear oligotrophic waters and chemoreception of kairomones (chemical cues) released by fish, are commonly thought to influence the vertical migration of organisms and the onset of DVM [START_REF] Youngbluth | The vertical distribution and diel migration of euphausiids in the central waters of the eastern South Pacific[END_REF][START_REF] Andersen | Vertical distributions of macroplankton and micronekton in the Ligurian and Tyrrhenian Seas (northwestern Mediterranean)[END_REF][START_REF] Cohen | Zooplankton diel vertical migration-a review of proximate control[END_REF][START_REF] Ekau | Impacts of hypoxia on the structure and processes in pelagic communities (zooplankton, macro-invertebrates and fish)[END_REF][START_REF] Bernal | Diet and feeding strategies of mesopelagic fishes in the western Mediterranean[END_REF][START_REF] Olivar | Vertical distribution, diversity and assemblages of mesopelagic fishes in the western Mediterranean[END_REF]Olivar et al., , 2017)). Some of the vertically migrating organisms may be concentrated on the flanks of the pinnacle. The "topographic blockage" mechanism/soundscattering layer interception hypothesis has been previously described [START_REF] Isaacs | Migrant sound scatterers: Interaction with the sea floor[END_REF][START_REF] Genin | Bio-physical coupling in the formation of zooplankton and fish aggregations over abrupt topographies[END_REF][START_REF] Porteiro | Midwater Fish Assemblages and Seamounts[END_REF][START_REF] Hirch | The trophic blockage hypothesis is not supported by the diets of fishes on Seine seamount[END_REF], whereby the predawn migratory descent of some mesopelagic organisms was found to be temporarily halted by the seamount topography and presence of predators using the seamount as a barrier to concentrate prey [START_REF] Johnston | Temporal patterns in the acoustic signals of beaked whales at Cross Seamount[END_REF]. This mechanism was hardly observed in the acoustic transects throughout La Pérouse and MAD-Ridge cruises. A DSL was present both during the day and night at La Pérouse and MAD-Ridge seamounts.

Micronekton scattering layers and assemblages at La Pérouse and MAD-Ridge

The DSL is a ubiquitous acoustic signature and is commonly formed by mesopelagic fishes and invertebrates [START_REF] Aksnes | Light penetration structures the deep acoustic scattering layers in the global ocean[END_REF][START_REF] Proud | Biogeography of the global ocean's mesopelagic zone[END_REF]. DSLs were shown to be dominated by non-migrant swimbladdered sternoptychids and gonostomatids in the Atlantic [START_REF] Fennell | Oceanographic influences on Deep Scattering Layers across the North Atlantic[END_REF][START_REF] Ariza | Vertical distribution, composition and migratory patterns of acoustic scattering layers in the Canary Islands[END_REF]), Pacific (Romero-Romero et al., 2019) and Indian Oceans, south of Mauritius Island and in the Mozambique Channel [START_REF] Annasawmy | Micronekton diel migration, community composition and trophic position within two biogeochemical provinces of the South West Indian Ocean: Insight from acoustics and stable isotopes[END_REF]. However, the DSL depth is not uniform across ocean basins. The lower limit of the DSL was deeper in the SWIO at La Pérouse (500-650m), MAD-Ridge (400-700 m), south of Mauritius and Réunion

Islands and over the Madagascar Ridge (400-800 m) [START_REF] Boersch-Supan | The distribution of pelagic sound scattering layers across the southwest Indian Ocean[END_REF], compared to the Chagos Archipelago in the central Indian Ocean, where it extended from 300 to 600 m [START_REF] Letessier | Enhanced pelagic biomass around coral atolls[END_REF]. Micronekton taxa showing delayed vertical migration or no DVM contributed to the backscatter intensities within the night DSL. Delayed vertical migration of organisms at night is commonly employed by organisms to reduce competition during feeding [START_REF] Watanabe | Feeding habits of juvenile surface migratory myctophid fishes (family Myctophidae) in the Kuroshio region of the western North Pacific[END_REF]. Some of these organisms were bathypelagic species possibly still ascending from depths deeper than 1000 m at the time that the acoustic transects were conducted.

The most common squids sampled at La Pérouse and MAD-Ridge can be divided into the following main groups (as defined by [START_REF] Nesis | Cephalopods of seamounts and submarine ridges[END_REF]: nerito-oceanic species that occur over seamounts as paralarvae, juveniles or sub-adults (eg. Onychoteuthidae and Histioteuthidae) and diel vertically migrating species that are advected over seamounts at night and descend to deeper depths at dawn (Abraliopsis sp.-Enoploteuthidae, Histioteuthidae and Octopoteuthidae). Abraliopsis sp. may descend deeper than 1000 m during daytime, hence the low numbers caught in the day deep trawls. Of the 77 cephalopod taxa reported from the region of the Madagascar Ridge [START_REF] Laptikhovsky | Cephalopods of the Southwest Indian OceanRidge: A hotspot of biological diversity and absence of endemism[END_REF], this study sampled only 17 taxa at both La Pérouse and MAD-Ridge seamounts, largely under sampling this broad category. Squids are also relatively weak acoustic targets at 38 kHz [START_REF] Simmonds | Fisheries Acoustics: theory and practice[END_REF] and studies commonly used a combination of frequencies to locate squid schools (Starr & Thorne, 1998). A total of 32 species of decapods and lophogastrids were reported from the Madagascar Ridge [START_REF] Letessier | Seamount influences on mid-water shrimps (Decapoda) and gnathophausiids (Lophogastridea) of the South-West Indian Ridge[END_REF]. Due to low sampling effort and identification, only 13 and 10 crustacean taxa were correctly identified at La Pérouse and MAD-Ridge respectively. Studies have found elevated abundances of crustacean taxa in the vicinity of seamounts of the South

West Indian Ridge and have concluded that some taxa may resist advective lost from seamounts by active migration [START_REF] Letessier | Seamount influences on mid-water shrimps (Decapoda) and gnathophausiids (Lophogastridea) of the South-West Indian Ridge[END_REF]. These taxa were reported to support rich communities of benthopelagic fishes living close to the bottom of the ridge (Vereshchaka,

The mesopelagic fishes N. macrolepidotus and B. fibulatum are diel vertical migrants, that are associated with the summit and flanks of seamounts but can also be found in the open ocean.

The non-migrant benthopelagic fish species C. japonicus and larvae from the Priacanthidae family, on the other hand, were exclusively caught over the summit of MAD-Ridge and were hence truly resident at the seamount. Large populations of D. suborbitalis have previously been found to be associated with the Equator seamount (close to the shallow peak called Travin Bank) in the Indian Ocean [START_REF] Parin | Thalassal mesobenthopelagic ichthyocoenosis above the Equator Seamount in the western tropical Indian Ocean[END_REF][START_REF] Porteiro | Midwater Fish Assemblages and Seamounts[END_REF]. These fishes were reported to be located on the slopes at 500-600 m depth during daylight hours and to ascend in dense schools to 80-150 m depth at night for feeding on oceanic plankton, mainly copepods (Gorelova & Prut'ko, 1985), while at the same time being preyed upon by several top predators such as tunas and swordfish [START_REF] Parin | Thalassal mesobenthopelagic ichthyocoenosis above the Equator Seamount in the western tropical Indian Ocean[END_REF]. The fish B. fibulatum was found to be associated with the Hawaiian Cross seamount summit (330 m below the sea surface) in the Pacific [START_REF] De Forest | The influence of a Hawaiian seamount on mesopelagic micronekton[END_REF], but abundance estimates at the seamount depended largely on lunar illumination [START_REF] Drazen | Micronekton abundance and biomass in Hawaiian waters as influenced by seamounts, eddies and the moon[END_REF].

Do seamounts have higher abundances/biomasses/densities over the summit?

The physical obstruction created by a seamount has been hypothesized to reduce the density of animals over the flanks and summits, particularly at night (eg. [START_REF] Genin | Interactions of migrating zooplankton with shallow topography: predation by rockfishes and intensification of patchiness[END_REF][START_REF] Diekmann | A multivariate analysis of larval fish and paralarval cephalopod assemblages at Great Meteor Seamount[END_REF][START_REF] De Forest | The influence of a Hawaiian seamount on mesopelagic micronekton[END_REF]. The lower abundance/biomass estimates of micronekton recorded over the summits of La Pérouse and MAD-Ridge compared to the immediate vicinity seem to support this hypothesis. However, gas-bearing seamount-associated/resident fauna including D. suborbitalis, N. macrolepidotus, B. fibulatum, C. japonicus (MAD-Ridge) and D.

suborbitalis (La Pérouse), might have formed dense aggregations below the SSL, in close proximity to the summits and flanks (hence the "white patches" seen on RGB composites). The densities and/or target strengths of these organisms are high. These high acoustic detections might also have been caused by deep-water fish aggregations (more commonly described as "plumes") [START_REF] Bull | Diel variation in spawning orange roughy (Hoplostethus atlanticus, Trachichthyidae) abundance over a seamount feature on the north-west Chatham Rise[END_REF][START_REF] O'driscoll | Species identification in seamount fish aggregations using moored underwater video[END_REF] that were not sampled by the IYGPT net.

Fish species such as orange roughy which are commercially fished at Walters Shoal along the Madagascar Ridge [START_REF] Collette | Shallow-Water Fishes of Walters Shoals, Madagascar Ridge[END_REF], are poor acoustic targets due to their wax ester swimbladders and are known to avoid mesopelagic trawls [START_REF] Kloser | Species identification in deep water using multiple acoustic frequencies[END_REF]. These plumes may represent aggregations of seamount-resident fishes that avoided advective loss from the seamounts and formed dense aggregations over the summits and flanks. In the open ocean such as the southern Mozambique Channel, micronekton were more dispersed in the water column since no dense aggregations ("white patches") were observed.

Various hypotheses may be put forward to explain the preferential association of organisms with seamounts. Organisms may associate with La Pérouse and MAD-Ridge: (1) to increase feeding efficiency [START_REF] Vereshchaka | Macroplankton in the near-bottom layer of continental slopes and seamounts[END_REF][START_REF] Wilson | Interaction of ocean currents and resident micronekton at a seamount in the central North Pacific[END_REF], (2) to take advantage of a broader range of habitat diversity created by the topography [START_REF] Wilson | Interaction of ocean currents and resident micronekton at a seamount in the central North Pacific[END_REF][START_REF] Porteiro | Midwater Fish Assemblages and Seamounts[END_REF] such as shelter regions for spawning, and (3) to decrease energy loss by using this habitat as a shelter during non-feeding intervals whereby in the open ocean organisms may have to swim constantly. Benthopelagic animals (such as C. japonicus) were reported to prefer rocky seabeds and may take advantage of strong currents over seamounts for advection of their main prey items while avoiding being swept from the summit by using rocky canyons within the seamount topography as shelter regions [START_REF] Vereshchaka | Macroplankton in the near-bottom layer of continental slopes and seamounts[END_REF].

The reasons for the observed variability in mean backscatter at MAD-Ridge summit compared to the immediate vicinity and the reasons for the observed decrease in trawl abundance/biomass estimates at the summit are further discussed with respect to the sampling strategy and IYGPT net used. Although trawl surveys are necessary to determine the taxonomic composition of micronekton present in the water column in space and time, the composition and biomass obtained largely depend on the type of trawl used [START_REF] Kwong | An intercomparison of the taxonomic and size composition of tropical macrozooplankton and micronekton collected using three sampling gears[END_REF], their catchability towards various taxonomic groups of nekton and the depth range sampled. Trawl sampling is difficult on shallow topographies because of the high risk of damaging the sampling gear [START_REF] Christiansen | The benthopelagic fish fauna on the summit of Seine Seamount, NE Atlantic: Composition, population structure and diets[END_REF]. Hence, the time spent surveying the summit is generally limited.

The trawls #14, 15 and 16 over the summit and flanks of MAD-Ridge were directed to specifically sample dense aggregations observed by acoustics and hence the trawl had failed to capture the full suite of organisms present at the study sites. While trawl surveys are useful in terms of the determination of the species composition and assemblages of micronekton, they are also generally expensive, time-consuming and allow a relatively limited collection of samples at any given area. Trawl catches provide only a snapshot of the communities dwelling at seamounts which depends strongly on the time of day and the sampling depths.

Active acoustics, on the other hand, while not being able to correctly resolve the taxonomic composition of the micronekton fauna yet, provide continuous measurements of the mesopelagic layer and can be used to determine organisms' abundances/densities, movements and migrations at various spatial and temporal scales. The combination of active acoustics with trawl and Scanmar data in the form of RGB composites provide invaluable insights into the distributions, the depths of the different scattering layers, the scattering properties of organisms and can be used to speculate about organisms' aggregating behaviour. [START_REF] Kloser | Species identification in deep water using multiple acoustic frequencies[END_REF] used a similar approach, but the composite image was produced by assigning a separate colour palette to each frequency (12, 38 and 120 kHz) and dynamically optimising the frequencies to highlight the amplitude differences in the echogram. The RGB composite approach has the added advantage of further highlighting the presence of structures under-sampled by trawls due to their patchy distribution ("blue patches" with a high frequency response to the 120 kHz; Fig.

4.10d, Trawl #21 at ~30 m) and that could be further investigated using multi-frequency classification.

Concluding remarks

A combination of datasets (active acoustics and mesopelagic trawls) was used to investigate the dynamics of micronekton at two shallow seamounts. The higher year-round oceanic 

Inter-chapter II

As shown in Chapter 4, the large-scale oceanic productivity in the vicinity of the MAD-Ridge seamount is twice that found at La Pérouse all year round. Both the La Pérouse and MAD-Ridge cruises took place during a decreasing trend of oceanic productivity in September and November-December, respectively. The breeding and foraging patterns of top predators including seabirds of the SWIO suggest that austral winter (June-October) is characterised by enhanced prey biomasses. The densities of micronekton may hence be several degrees of magnitude higher a few weeks after the observed peak in productivity in July than that recorded in this study.

Chapter 4 also showed that the physical obstacles that represent the La Pérouse and MAD-Ridge seamounts did not perturb the distribution and diel migration of common oceanic micronekton taxa. Diel vertical migration of several micronekton taxa started at sunset towards the surface layer and at sunrise towards the deep layer such that all migrants reached the DSL before daylight, even in presence of the seamounts. Several micronekton taxa, however, are non-migrants, i.e. they stayed in the DSL at night-time, while other scatterers stayed in the SSL during daylight. Other micronekton communities showed delayed migration strategies to the surface at dusk or mid-water migration to the lower limit of the SSL within the intermediate layer at night. Micronekton is a broad group consisting of crustaceans, squids and mesopelagic fishes, all having specific foraging, migration and behavioural patterns. As shown in Chapter 2, marine mammals are able to adapt their foraging strategies to utilize the different micronekton resources in the epipelagic zone at night (as in the case of Stenella spp. and Tursiops spp.) or deeper in the water column (as in the case of sperm and beaked whales).

Swordfish that is physiologically adapted to dive deeper, may also preferentially associate with seamounts as seen in Chapter 2 and utilize the resources found at these topographic features.

Within the micronekton, some species are commonly oceanic and avoid seamounts, some preferentially associate with areas of high oceanic productivity, some taxa aggregate at topographic features, whereas others would use a combination of the above strategies. The SSL over La Pérouse and MAD-Ridge seamounts did not show enhanced densities relative to the immediate vicinity. However, dense aggregations of scatterers were observed during day and night at the summits of both seamounts. These aggregations were shown to consist of seamount-associated mesopelagic fishes. At MAD-Ridge, benthopelagic fishes further aggregated over the seamount summit. La Pérouse and MAD-Ridge may hence represent favourable habitats for these organisms not only in their adult stages, but also in their larval forms. As seen in Chapter 2, higher larval fish densities (with the most common family being Myctophidae and Gonostomatidae), were recorded at the summits of La Pérouse and MAD-Ridge which suggest local spawning at both seamounts.

While acoustics and trawl surveys provide important information on densities, biomasses, 

Introduction

Micronekton are a broad group of organisms mostly dwelling in the mesopelagic zone (<1000 m). They consist of crustaceans (adult euphausiids, hyperiid amphiphods, pelagic decapods and mysids), cephalopods (small species and juvenile stages of large oceanic species) and fishes (mainly mesopelagic species and juveniles of pelagic fish) [START_REF] Brodeur | PICES Scientific Report No. 30 Micronekton of the North Pacific[END_REF][START_REF] De Forest | The influence of a Hawaiian seamount on mesopelagic micronekton[END_REF][START_REF] Ménard | Stable isotope patterns in micronekton from the Mozambique Channel[END_REF]. They range in size from 2-20 cm and represent a substantial biomass in oceanic waters [START_REF] Brodeur | PICES Scientific Report No. 30 Micronekton of the North Pacific[END_REF]. Many species exhibit extensive DVM, thus playing an important role in the biological pump by transporting carbon and nutrients from the epipelagic to the mesopelagic zone [START_REF] Hidaka | Downward transport of organic carbon by diel migratory micronekton in the western equatorial Pacific: its quantitative and qualitative importance[END_REF][START_REF] Brodeur | PICES Scientific Report No. 30 Micronekton of the North Pacific[END_REF][START_REF] Catul | A review of mesopelagic fishes belonging to family Mcytophidae[END_REF][START_REF] Bianchi | Diel vertical migration: Ecological controls and impacts on the biological pump in a one-dimensional ocean model[END_REF]. Micronekton also form a key trophic link between zooplankton and top predators because they are preyed upon by several species of seabird, tuna and billfish [START_REF] Guinet | Consumption of marine resources by seabirds and seals in Crozet and Kerguelen waters: changes in relation to consumer biomass 1962-85[END_REF][START_REF] Bertrand | Tuna food habits related to the micronekton distribution in French Polynesia[END_REF][START_REF] Brodeur | PICES Scientific Report No. 30 Micronekton of the North Pacific[END_REF][START_REF] Potier | Forage fauna in the diet of three large pelagic fishes (lancetfish, swordfish and yellowfin tuna) in the western equatorial Indian Ocean[END_REF][START_REF] Karakulak | Diet composition of bluefin tuna (Thunnus thynnus L. 1758) in the Eastern Mediterranean Sea, Turkey[END_REF][START_REF] Cherel | Isotopic niches and trophic levels of myctophid fishes and their predators in the Southern Ocean[END_REF][START_REF] Danckwerts | Biomass consumption by breeding seabirds in the western Indian Ocean: indirect interactions with fisheries and implications for management[END_REF][START_REF] Jaquemet | Contrasted structuring effects of mesoscale features on the seabird community in the Mozambique Channel[END_REF][START_REF] Duffy | Global trophic ecology of yellowfin, bigeye, and albacore tunas: Understanding predation on micronekton communities at ocean-basin scales[END_REF][START_REF] Watanuki | Factors affecting the importance of myctophids in the diet of the world's seabirds[END_REF]. Various studies have investigated the trophic interactions of micronekton to better understand their role in foodwebs across numerous ocean basins (Fanelli et al., 2011b;[START_REF] Colaço | Trophodynamic studies on the Condor seamount (Azores, Portugal, North Atlantic)[END_REF][START_REF] Fanelli | Trophic webs of deepsea megafauna on mainland and insular slopes of the NW Mediterranean: a comparison by stable isotope analysis[END_REF][START_REF] Ménard | Stable isotope patterns in micronekton from the Mozambique Channel[END_REF]Valls et al.., 2014a, b;[START_REF] Annasawmy | Micronekton diel migration, community composition and trophic position within two biogeochemical provinces of the South West Indian Ocean: Insight from acoustics and stable isotopes[END_REF]. For instance, mesopelagic organisms were shown to transfer energy between primary consumers and deeper benthic and benthopelagic animals at Condor seamount in the Atlantic [START_REF] Colaço | Trophodynamic studies on the Condor seamount (Azores, Portugal, North Atlantic)[END_REF].

Tuna, billfish, pelagic armorheads, alfonsinos and orange roughy are common predators fished extensively at seamounts in the Atlantic [START_REF] Fonteneau | Monts sous-marins et thons dans l'Atlantique tropical est[END_REF][START_REF] Morato | Evidence of a seamount effect on aggregating visitors[END_REF][START_REF] Dubroca | Seamounts and tuna fisheries: Tuna hotspots or fishermen habits? Collect[END_REF], Pacific [START_REF] Rogers | The Biology of Seamounts[END_REF][START_REF] Koslow | Seamounts and the Ecology of Deep-Sea Fisheries: The firm-bodied fishes that feed around seamounts are biologically distinct from their deepwater neighbors-and may be especially vulnerable to overfishing[END_REF][START_REF] Holland | Different residence times of yellowfin tuna, Thunnus albacares, and bigeye tuna, T. obesus, found in mixed aggregations over a seamount[END_REF][START_REF] Musyl | Vertical movements of bigeye tuna (Thunnus obesus) associated with islands, buoys, and seamounts near the main Hawaiian Islands from archival tagging data[END_REF][START_REF] Paya | An overview of the orange roughy (Hoplostethus sp.) fishery off Chile[END_REF]Morato et al., 2010) and Indian oceans [START_REF] Romanov | Summary and review of Soviet and Ukrainian scientific and commercial fishing operations on the deepwater ridges of the southern Indian Ocean[END_REF]Clark et al., 2007;[START_REF] Marsac | Le « Coco de Mer », une montagne sous la mer[END_REF]. Although, La Pérouse does not represent an outstanding fishing spot, tuna (Thunnus spp.) and swordfish (Xiphias gladius) are present in the vicinity of the seamount throughout the year [START_REF] Marsac | Seamount effect on circulation and distribution of ocean taxa at and near La Pérouse, a shallow seamount in the southwestern Indian Ocean. Deep-Sea II[END_REF]. Albacore (Thunnus alalunga), bigeye (T. obesus), yellowfin (T. albacares) tuna and swordfish commonly occur along the Madagascar Ridge and MAD-Ridge pinnacle (IOTC, www.iotc.org/data-and-statistics). The Madagascar Ridge has also been targeted for orange roughy in 1999/2000 before the catch dropped significantly in subsequent years [START_REF] Ingole | Deep-sea ecosystems of the Indian Ocean[END_REF][START_REF] Lack | Managing risk and uncertainty in deep-sea fisheries: lessons from Orange Roughy[END_REF]. Due to the increased pressure on marine organisms, characterizing the overall trophic pathways within pelagic ecosystems [START_REF] Young | The trophodynamics of marine top predators: Current knowledge, recent advances and challenges[END_REF] contributes to making better informed fisheries and ecosystem-based management decisions.

Two seamounts of the SWIO, La Pérouse and and an unnamed pinnacle, thereafter named "MAD-Ridge", were studied in an effort to understand how seamounts may affect DVM and aggregations of micronekton. While micronekton acoustic densities were not significantly different between the summit and immediate vicinity of the pinnacles, dense aggregations of scatterers, referred to as seamount-associated species, were recorded over the summit of both seamounts during day and night. La Pérouse is situated in the ISSG province [START_REF] Longhurst | The Indian Ocean-Indian South Subtropical Gyre Province (ISSG)[END_REF][START_REF] Reygondeau | Dynamic biogeochemical provinces in the global ocean[END_REF] with low mesoscale activities and primary productivity, whereas MAD-Ridge is located within an "eddy corridor" to the south of Madagascar, in a region with high occurrence of cyclonic and anticyclonic eddies and relatively high sea surface chlorophyll concentrations all year round relative to La Pérouse (see Chapter 4; [START_REF] Halo | Eddy properties in the Mozambique Channel: A comparison between observations and two numerical ocean circulation models[END_REF][START_REF] Vianello | Circulation and hydrography in the vicinity of a shallow seamount on the northern Madagascar Ridge[END_REF]. The enhanced productivity on the Madagascar shelf and its offshore entrainment by mesoscale eddy interactions [START_REF] Quartly | Eddies around Madagascar-The retroflection re-considered[END_REF], were one possible reasons leading to greater micronekton acoustic densities at MAD-Ridge relative to La Pérouse. Trapped, enclosed circulations known as Taylor columns may also develop over seamounts and contribute to the retention of productivity [START_REF] Genin | Madagascar Ridge; Any Taylor column formed may be swept away by mesoscale eddies Read & Pollard[END_REF][START_REF] Dower | Seamount effects" in the zooplankton community near Cobb Seamount[END_REF][START_REF] Mouriño | Variability and seasonality of physical and biological fields at the Great Meteor Tablemount (subtropical NE Atlantic)[END_REF][START_REF] Mohn | Remote sensing and modelling of bio-physical distribution patterns at Porcupine and Rockall Bank[END_REF]. No Taylor columns were observed at La Pérouse and MAD-Ridge seamounts, however, during the cruises most likely because of the high current speeds observed over the summits and the seamount structure not being favourable for the development and retention of such features.

Foodwebs are shaped by a complex set of interactions controlled by the availability of organic (C-based nutrients) and inorganic (nitrate, nitrite, phosphate and silicate) nutrients, the efficiency of energy transfer to higher trophic levels and the control of species biomass by predators [START_REF] Pomeroy | Caught in the food web: complexity made simple?[END_REF]. Carbon (δ 13 C) and nitrogen (δ 15 N) stable isotope analyses are a valuable tool for foodweb investigations in deep-sea ecosystems [START_REF] Michener | Stable isotope ratios as tracers in marine food webs: an update[END_REF] and are based on time-integrated assimilated food (Martínez del [START_REF] Del Rio | Isotopic ecology ten years after a call for more laboratory experiments[END_REF].

Trophodynamic studies commonly employ δ 13 C to investigate the source of organic matter and δ 15 N to determine trophic level and trophic interactions [START_REF] Michener | Stable isotope ratios as tracers in marine food webs: an update[END_REF]. The heavier isotopes ( 13 C and 15 N) are preferentially retained in tissues of consumers relative to their prey, while lighter 12 C and 14 N isotopes are preferentially excreted [START_REF] Fry | Stable Isotope Ecology[END_REF]. Overall, there is a small isotopic enrichment of 0.5-1‰ in the heavier 13 C isotope of an organism's tissue relative to its diet [START_REF] Fry | Stable Isotope Ecology[END_REF]. Differences in δ 13 C values can thus indicate different sources of primary production such as inshore vs offshore, or pelagic vs benthic contributions to food intake [START_REF] Hobson | Using stable isotopes to determine seabird trophic relationships[END_REF][START_REF] Rubenstein | From birds to butterflies: animal movement patterns and stable isotopes[END_REF]. In contrast, δ 15 N values increase stepwise by 2-4‰ in a consumer's tissue relative to its diet [START_REF] Vanderklift | Sources of variation in consumer-diet δ 15 N enrichment: a meta-analysis[END_REF][START_REF] Michener | Stable isotope ratios as tracers in marine food webs: an update[END_REF][START_REF] Del Rio | Isotopic ecology ten years after a call for more laboratory experiments[END_REF], thus allowing the discrimination of trophic levels.

Identification of the trophic position of various biotic components of the pelagic ecosystem is essential for our understanding of ecosystem functioning and trophic interactions. Food chain length (i.e. number of TLs) is a descriptor of community structure and ecosystem functioning [START_REF] Post | Ecosystem size determines food chain length in lakes[END_REF]. Measuring the length of a food chain integrates the assimilation of energy flow through all trophic pathways leading to top predators. The understanding of this is essential from an ecosystem-based management perspective, and may provide important insights on ecosystem responses to fisheries pressure and/or climate-induced changes.

Knowledge of micronekton trophic interactions at seamount ecosystems of the SWIO are scarce and fragmentary. In order to investigate the trophic pathways at La Pérouse and MAD-Ridge, δ 13 C and δ 15 N values of POM, zooplankton and micronekton were measured and trophic levels were estimated using additive isotopic models (as in [START_REF] Post | Using stable isotopes to estimate trophic position: models, methods, and assumptions[END_REF][START_REF] Caut | Variation in discrimination factors (Δ 15 N and Δ 13 C): the effect of diet isotopic values and applications for diet reconstruction[END_REF].

The main goals of this thesis were to investigate at La Pérouse and MAD-Ridge seamounts, 

Material and methods

Study sites

La Pérouse seamount

La Pérouse is located on the outskirts of the oligotrophic ISSG province [START_REF] Longhurst | Ecological Geography of the Sea[END_REF][START_REF] Longhurst | The Indian Ocean-Indian South Subtropical Gyre Province (ISSG)[END_REF][START_REF] Reygondeau | Dynamic biogeochemical provinces in the global ocean[END_REF] 

Satellite observations

Sampling and sample processing

Particulate organic matter (POM)

During both cruises, water samples for stable isotope analyses of POM were collected using Niskin bottles mounted on a Sea-Bird 911 + CTD rosette system at approximately 5 m depth (referred to as POM-Surf) and at the depth of maximum fluorescence (referred to as POM-Fmax) between ~60 and 125 m at La Pérouse and ~80 and 150 m at MAD-Ridge. Between 4 and 8 l (depending on the load of each sample) of seawater were filtered on precombusted 25 or 47 mm glassfibre of 0.7 µm pore size. The filters were oven-dried at 50°C for 24 h and saved at room temperature in aluminium foil until further analyses.

Zooplankton sampling

Zooplankton samples were collected during daylight only with a Bongo net (300 µm mesh to a maximum depth of 500 m and 200 µm mesh to a maximum depth of ~200 m) towed obliquely at La Pérouse (10 stations). At MAD-Ridge, zooplankton samples were also collected during daylight with a Bongo net (300 µm mesh to a maximum depth of 500 m towed obliquely and 63 µm mesh to the depth of the maximum fluorescence towed vertically) at 19 stations. The nets were fitted with a flowmeter and were towed at a vessel speed of 1.5-2 knots for 15-20 min (0.28 m 2 mouth area). Zooplankton samples from the 200 and 300 µm meshes at La Pérouse and, from the 63 and 300 µm meshes at MAD-Ridge were combined at each station. The combined samples at each station were sieved on a stack of seven sieves of decreasing mesh size and divided into six fractions: >4000 µm, 4000-2000 µm, 2000-1000 µm, 1000-500 µm, 500-250 µm, 250-125 µm during La Pérouse and MAD-Ridge and a 7 th fraction (125-63 µm)

during MAD-Ridge only. Each fraction was oven-dried at 50°C for 24 h and frozen on board at -20°C before being analysed for stable isotope analyses (section 5.2.4). Zooplankton abundances, biomasses and taxa composition at the seamounts and off-seamount locations are investigated in [START_REF] Noyon | Comparison of mesozooplankton communities at three shallow seamounts in the South West Indian Ocean[END_REF].

Trawl sampling

During both cruises, a 40-m long International Young Gadoid Pelagic Trawl (IYGPT) net (codend with 0.5 cm knotless nylon delta mesh; front tapering end with 8 cm mesh; ~96 m 2 mouth opening) was towed All organisms collected with the trawl were sorted on board, divided into four broad categories (gelatinous, crustaceans, cephalopods and fishes), counted and identified to the lowest possible taxon. Individuals from these four broad categories were randomly selected according to their occurrence and abundance and measured (total length for selected gelatinous organisms, abdomen and carapace length for selected crustaceans, dorsal mantle length for cephalopods and standard length for fishes). Approximately 2-5 mg of soft tissues of these selected individuals (muscle tissue for leptocephali, muscle abdomen for crustaceans, mantles for squids, dorsal muscle for fishes) and whole salps and pyrosomes, were sampled on board in 2 ml Eppendorf tubes and stored at -20°C, before being processed in the laboratory to determine δ 13 C and δ 15 N values (section 5.2.4). A full list of selected gelatinous and micronekton taxa used in stable isotope analyses is given in the Appendix (Table C).

Stable isotope analysis

Micronekton and zooplankton samples were freeze-dried using Christ Alpha 1-4 LSC freezedryers for 48 h and ground to a fine homogeneous powder using an automatic ball mill RETSCH MM200. As variations in lipid composition may influence δ 13 C and δ 15 N values [START_REF] Bodin | ASE extraction method for simultaneous carbon and nitrogen stable isotope analysis in soft tissues of aquatic organisms[END_REF][START_REF] Ryan | Accounting for the effects of lipids in stable isotope (δ 13 C and δ 15 N values) analysis of skin and blubber of balaenopterid whales[END_REF], lipids were removed from zooplankton and micronekton samples with dichloromethane on an accelerated solvent extraction system (ASE®, Dionex; [START_REF] Bodin | ASE extraction method for simultaneous carbon and nitrogen stable isotope analysis in soft tissues of aquatic organisms[END_REF]. Prior to δ 13 C analyses, POM filters and zooplankton samples were reacted with 1 N HCl to remove carbonates [START_REF] Cresson | Spatio-temporal variation of suspended and sedimentary organic matter quality in the Bay of Marseilles (NW Mediterranean) assessed by biochemical and isotopic analyses[END_REF]. Untreated subsamples of POM and zooplankton were used to measure δ 15 N because acid treatment may lead to the loss of nitrogenous compounds [START_REF] Kolasinski | Effects of acidification on carbon and nitrogen stable isotopes of benthic macrofauna from a tropical coral reef[END_REF]. POM filters were cut, folded and put into tin capsules. Approximately 400-600 µg of each zooplankton and micronekton sample were weighed and placed in tin capsules. These samples were run through continuous flow on a Thermo Scientific Flash EA 2000 elemental analyser coupled to a Delta V Plus mass spectrometer at the Pôle de Spectrométrie Océan (Plouzané, France). The samples were combusted in the elemental analyser to separate CO2 and N2. A reference gas set was used to determine isotopic ratios by comparison. The isotopic ratios are expressed in the conventional δ notations as parts per thousand (‰) deviations from the international standards:

δ 13 C or δ 15 N (‰) = [(Rsample/Rstandard) -1] x 1000
where R is the ratio of 13 C/ 12 C or 15 N/ 14 N.

Data analyses

Overall δ 13 C and δ 15 N signatures

Shapiro-Wilk and Bartlett tests were computed to test for the assumptions of normality and homogeneity of variances. Links between δ 13 C and δ 15 N values and the foodweb components (POM-Surf, POM-Fmax, zooplankton, gelatinous organisms, crustaceans, squids and fishes),

were investigated using Kruskal-Wallis (KW) tests and pairwise comparisons in R (version 3.3.1) because the data did not follow normal distributions. Kruskal-Wallis tests and pairwise comparisons were also computed to investigate whether there was a significant difference in δ 13 C and δ 15 N values for each the foodweb component between La Pérouse and MAD-Ridge.

To assess the association between δ 13 C and δ 15 N values, Spearman rank correlation coefficients were calculated with all foodweb components at each seamount. Wilcoxon rank sum tests investigated the effect of time (day or night) on δ 13 C and δ 15 N values of gelatinous plankton and micronekton at MAD-Ridge only (because a single daylight trawl was conducted at La Pérouse and too few species were caught). To test for the effect of trawl position with respect to the seamounts on δ 13 C and δ 15 N values of omnivorous/carnivorous fishes, Wilcoxon Rank sum tests and KW tests were performed on the La Pérouse and MAD-Ridge datasets, respectively.

Layman community-wide metrics

The Layman community-wide metrics SEAc and the δ 13 C and δ 15 N ranges [START_REF] Layman | Can stable isotope ratios provide for community-wide measures of trophic structure?[END_REF] were calculated using the SIBER package (version 2. 1.4, Jackson et al., 2011). The SEAc (sample-size-corrected standard ellipse area) describes the overall extent of the isotopic niches.

The SEAc is robust for sample sizes >10 [START_REF] Daly | Comparative Feeding Ecology of Bull Sharks (Carcharhinus leucas) in the Coastal Waters of the Southwest Indian Ocean Inferred from Stable Isotope Analysis[END_REF], which is the case for all the broad categories within this study. The SEAc of each foodweb component was described in terms of the space occupied by the group on a δ 15 N-δ 13 C plot based on all the individuals sampled within the group. The δ 13 C and δ 15 N ranges were used to describe and compare the overall extents of the foodwebs at the La Pérouse and MAD-Ridge sites. Increased δ 13 C range would be expected in foodwebs with multiple basal sources with varying δ 13 C values suggesting niche diversification at the base of the foodweb, whereas the δ 15 N range describes the sampled food chain lengths [START_REF] Portail | Food-Web Complexity in Guaymas Basin Hydrothermal Vents and Cold Seeps[END_REF].

Trophic level estimations

Different models have been applied across several studies to estimate the trophic level of organisms: additive model with a fixed enrichment factor, additive enrichment model with a variable isotopic enrichment or scaled model with decreasing isotopic enrichment factors [START_REF] Minagawa | Stepwise enrichment of 15 N along food chains: further evidence and the relation between δ 15 N and animal age[END_REF][START_REF] Post | Using stable isotopes to estimate trophic position: models, methods, and assumptions[END_REF][START_REF] Caut | Variation in discrimination factors (Δ 15 N and Δ 13 C): the effect of diet isotopic values and applications for diet reconstruction[END_REF][START_REF] Hussey | Rescaling the trophic structure of marine food webs[END_REF]. [START_REF] Ménard | Stable isotope patterns in micronekton from the Mozambique Channel[END_REF] and [START_REF] Annasawmy | Micronekton diel migration, community composition and trophic position within two biogeochemical provinces of the South West Indian Ocean: Insight from acoustics and stable isotopes[END_REF] used a fixed enrichment factor of 3.2‰ to estimate trophic levels of foodweb components POM, zooplankton, gelatinous plankton and micronekton collected in the SWIO. In this study, two alternative trophic enrichment assumptions were compared to estimate the trophic level of all the measured individuals within the groups (zooplankton, gelatinous organisms, crustaceans, squids and fishes) at La Pérouse and MAD-Ridge.

The TPA model (additive model with constant isotopic enrichment) was proposed by [START_REF] Minagawa | Stepwise enrichment of 15 N along food chains: further evidence and the relation between δ 15 N and animal age[END_REF] and [START_REF] Post | Using stable isotopes to estimate trophic position: models, methods, and assumptions[END_REF] with the reference level set at a trophic level of 2

for the primary consumer and a fixed and additive enrichment factor of 3.2‰:

Trophic level, TPA = 2.0 + R ST U V W+R ST U XYVZ[Y\+]^_`aZbY cd2
Eq. 1

where, δ 15 Ni is the nitrogen isotopic composition of any given micronekton taxon i, δ 15 Nprimary consumer is the δ 15 N reference baseline value at trophic level 2, and 3.2‰ is an estimate of the trophic enrichment factor between consumers and their primary prey [START_REF] Michener | Stable isotope ratios as tracers in marine food webs: an update[END_REF][START_REF] Vanderklift | Sources of variation in consumer-diet δ 15 N enrichment: a meta-analysis[END_REF]. The δ 15 N values of POM, primary consumers and zooplankton have been used in trophic level calculations as isotopic baseline (e.g. Lorrain et al., 2015). Primary consumers are generally used as baseline to reduce errors in estimations [START_REF] Del Rio | Isotopic ecology ten years after a call for more laboratory experiments[END_REF]. Salps are known filter-feeders that have been used as baseline in previous studies in the region [START_REF] Ménard | Stable isotope patterns in micronekton from the Mozambique Channel[END_REF]. At La Pérouse, the mean δ 15 N values of six pyrosomes and one salp specimen was estimated at 5.31 ± 0.31‰ and was used as δ 15 Nprimary consumer to estimate the trophic position of all upper trophic level individuals that were collected. At MAD-Ridge, the mean δ 15 N values of six salps was 4.22 ± 1.01‰ and was used as δ 15 Nprimary consumer to estimate the trophic position of all individuals sampled.

The second model, TPC, is an additive trophic enrichment model with variable isotopic enrichment, estimated from a meta-analysis study on fish muscle [START_REF] Caut | Variation in discrimination factors (Δ 15 N and Δ 13 C): the effect of diet isotopic values and applications for diet reconstruction[END_REF]): TEF = -0.281 δ 15 Nprimary consumer + 5.879, where TEF is the trophic enrichment factor TPC = 2.0 + [(δ 15 Ni -δ 15 Nprimary consumer)/TEF] Eq. 2

Micronekton habitat ranges and feeding mode

Information on habitat ranges of selected micronekton individuals was obtained from the literature [START_REF] Clarke | Vertical distribution of cephalopods at 18°N 25°W in the North Atlantic[END_REF][START_REF] Pearcy | Vertical distribution and migration of oceanic micronekton off Oregon[END_REF][START_REF] Smith | Smith's Sea Fishes[END_REF][START_REF] Van Der Spoel | Distribution of Myctophidae (Pisces, Myctophiformes) during the four seasons in the mid North Atlantic[END_REF][START_REF] Brodeur | PICES Scientific Report No. 30 Micronekton of the North Pacific[END_REF][START_REF] Davison | Acoustic biomass estimation of mesopelagic fish: backscattering from individuals, populations, and communities[END_REF][START_REF] Romero-Romero | Differences in the trophic ecology of micronekton driven by diel vertical migration[END_REF]. Organisms were classified as being epipelagic (<200 m), mesopelagic (from 200 to 1000 m), bathypelagic (below 1000 m to ~100 m from the seafloor) and benthopelagic (living near the bottom) according to definitions of the vertical zonation of the pelagic ocean from Del [START_REF] Giorgio | Respiration in the open ocean[END_REF] and [START_REF] Sutton | Vertical ecology of the pelagic ocean: classical patterns and new perspectives[END_REF]. The feeding modes of gelatinous plankton and selected micronekton were obtained from the literature and are summarised in the Appendix section (Table C). Organisms were classified into the four trophic groups filter-feeders (salps and pyrosomes), detritivores (leptocephali), omnivores (mainly crustaceans and the fish species

Ceratoscopelus warmingii) and carnivores (most mesopelagic fishes and squids). Crustaceans were classified as omnivores because they prey on zooplankton, such as euphausiids and copepods and are also known for occasional herbivory [START_REF] Hopkins | Structure and trophic ecology of a low latitude midwater decapod and mysid assemblage[END_REF][START_REF] Birkley | Feeding Ecology in Five Shrimp Species (Decapoda, Caridea) from an Arctic Fjord (Isfjorden, Svalbard), with Emphasis on Sclerocrangon boreas (Phipps, 1774)[END_REF][START_REF] Mauchline | The Biology of the Euphausiid Crustacean, Meganyctiphanes norvegica (M. Sars)[END_REF][START_REF] Foxton | Observations on the Nocturnal Feeding of some Mesopelagic Decapod Crustacea[END_REF]. Most mesopelagic fishes were classified as carnivores since they were reported to be zooplankton feeders, preying on copepods, amphipods, euphausiids and ostracods [START_REF] Dalpadado | Feeding ecology of the lanternfish Benthosema pterotum from the Indian Ocean[END_REF][START_REF] Pakhomov | Prey composition and daily rations of myctophid fishes in the Southern Ocean[END_REF][START_REF] Tanaka | Feeding habits of mesopelagic fishes off the coast of western Kyushu, Japan[END_REF][START_REF] Hudson | Myctophid feeding ecology and carbon transport along the northern Mid-Atlantic Ridge[END_REF][START_REF] Bernal | Diet and feeding strategies of mesopelagic fishes in the western Mediterranean[END_REF][START_REF] Carmo | Feeding ecology of the Stomiiformes (Pisces) of the northern Mid-Atlantic Ridge. 1. The Sternoptychidae and Phosichthyidae[END_REF][START_REF] Young | The trophodynamics of marine top predators: Current knowledge, recent advances and challenges[END_REF], with no herbivorous feeding strategy except C. warmingii, that has developed an adaptive response to competition in low-productive environments [START_REF] Robison | Herbivory by the myctophid fish Ceratoscopelus warmingii[END_REF]. For species with unknown diets, the feeding mode was determined based on the feeding habit identified from species within the same genus.

In order to give an overview of the foodwebs at the La Pérouse and MAD-Ridge seamounts, hierarchical cluster analyses (average grouping methods) were carried out on resemblance matrices (calculated using Euclidean distances) of normalised δ 13 C and δ 15 N values per gelatinous plankton and micronekton species at each seamount and for all sampled stations in PRIMER v6 software according to [START_REF] Clarke | Change in Marine Communities: An Approach to Statistical Analysis and Interpretation[END_REF]. Further cluster analyses were performed on log-transformed δ 13 C values and normalised δ 13 C and δ 15 N values of micronekton (excluding the outliers salps, pyrosomes, Funchalia sp. and leptocephali) for each seamount.

Effect of size on δ 15 N values of micronekton

The size distributions of all gelatinous and micronekton organisms captured during the La Pérouse and MAD-Ridge cruises were heavily left-skewed with most organisms being <100 mm in length due to net catchability and selectivity. To test for the effect of size on δ 15 N values, gelatinous and micronekton organisms <100 mm were considered and linear regressions were computed. Linear models were developed to investigate the effect of body lengths on δ 13 C and δ 15 N values of gelatinous and micronekton individuals and to investigate the difference in δ 15 N values with respect to size between La Pérouse and MAD-Ridge. Additionally, eight micronekton specimens were selected according to their common occurrence at both seamounts, relatively large sample sizes and wide body length ranges, and their δ 15 N values were compared between the two seamounts. Information on the migration patterns of these eight taxa was obtained from the literature [START_REF] Utrecht | Growth and seasonal variations in distribution of Chauliodus sloani and C. danae (pisces) from the mid north atlantic[END_REF][START_REF] Butler | Mesopelagic fishes of the Arabian Sea: distribution, abundance and diet of Chauliodus pammelas, Chauliodus sloani, Stomias aznis, and Stomias nebulosus[END_REF][START_REF] Feunteun | Stable isotopic composition of anguiliform leptocephali and other food web components from west of the Mascarene Plateau[END_REF][START_REF] Romero-Romero | Differences in the trophic ecology of micronekton driven by diel vertical migration[END_REF].. Linear regressions were fitted to δ 15 N values of these eight taxa according to their body lengths and the seamount factor (whether δ 15 N values were significantly different between La Pérouse and MAD-Ridge). To investigate if the seamount has an effect on the size and related diet of fish, δ 15 N values of selected omnivorous/ carnivorous fish species collected on the summits, flanks, vicinity of the seamounts and the southern Mozambique Channel, were examined using linear models.

Results

Prevailing environmental conditions at La Pérouse and MAD-Ridge seamounts

Sea surface chlorophyll concentrations followed the same seasonal pattern in both regions of La Pérouse and MAD-Ridge seamounts, although concentrations were twice as high at MAD-Ridge (0.10-0.22 mg m -3 ) relative to La Pérouse (0.04-0.13 mg m -3 ) all year round (Fig. 5.2b).

A peak in productivity was observed in July in both the ISSG and EAFR provinces because of intense mixing caused by austral trade winds. Both La Pérouse and MAD-Ridge cruises took place during a declining phase of oceanic productivity in the region. 

General foodweb structure

The description of the foodweb structure included POM collected at the surface (POM-Surf)

and at the depth of maximum fluorescence (POM-Fmax), zooplankton at both seamounts, two taxonomic groups of gelatinous organisms (salps and pyrosomes), and 42 and 49 taxonomic groups of micronekton, representing 145 and 180 individuals at La Pérouse and MAD-Ridge, respectively. At both La Pérouse and MAD-Ridge, the foodweb components were segregated in their δ 13 C (La Pérouse: KW, H=170.5, p < 0.05; MAD-Ridge: KW, H=268.1, p < 0.05) and δ 15 N values (La Pérouse: KW, H=153.1, p < 0.05; MAD-Ridge: KW, H=127.4, p < 0.05) (Fig. 5.3). POM-Surf and POM-Fmax did not differ significantly in their δ 13 C and δ 15 N values at both seamounts (p > 0.05). At La Pérouse, gelatinous organisms exhibited higher δ 13 C values compared with POM-Surf and POM-Fmax (p < 0.05), and they exhibited lower δ 13 C and δ 15 N values than crustaceans, fishes and squids at both seamounts (p < 0.05). Crustaceans, fishes and squids did not differ significantly in their δ 15 N values (p > 0.05), but they differed in their δ 13 C values at La Pérouse (p < 0.05). Crustaceans did not differ significantly from squids in their δ 13 C values (p > 0.05), whereas all other categories differed in their δ 13 C values at MAD-Ridge (p < 0.05). Squids did not differ significantly from crustaceans and fishes in their δ 15 N values (p > 0.05) but 15 N was more depleted in crustaceans relative to fishes at MAD-Ridge (p < 0.05). At La Pérouse (all depths combined), POM, zooplankton and micronekton covered a large δ 13 C range of ~11‰ (-17.2 to -28.0‰), with POM-Fmax and the unidentified caridean crustacean representing the lowest and highest values, respectively. The δ 15 N values of all micronekton individuals ranged from 2.5‰ (fish: leptocephali) to 13.3‰ (fish: Coccorella atrata). At MAD-Ridge (all depths combined), POM, zooplankton and micronekton also covered a large δ 13 C range of ~10‰ (-17.1 to -27.2‰), with POM-Surf and the fish species

Chauliodus sloani representing the lowest and highest values, respectively. The δ 15 N values of sampled micronekton individuals ranged from 2.3‰ (fish: leptocephali) to 13.5‰ (fish:

Argyropelecus aculeatus). 

Relationships between δ 13 C and δ 15 N values

Ascending the foodweb, from POM-Surf to mesopelagic fishes at La Pérouse and MAD-Ridge seamounts, there was a general increase in δ 13 C and δ 15 N values (Figs. 5.3 and 5.4). There was a significantly positive correlation between δ 13 C and δ 15 N values of all sampled components of the foodweb at La Pérouse and MAD-Ridge seamount stations (p < 0.05), with Spearman correlation coefficients of r= 0.74 and r= 0.51, respectively.

Trophic levels at La Pérouse and MAD-Ridge seamounts

Albeit small differences in trophic positions between the two methods, they both identified the same organisms at the lowest (leptocephali and gelatinous organisms) and highest (mesopelagic fishes excluding leptocephali, and squids) trophic positions. For comparison with other studies published in the region [START_REF] Ménard | Stable isotope patterns in micronekton from the Mozambique Channel[END_REF][START_REF] Annasawmy | Micronekton diel migration, community composition and trophic position within two biogeochemical provinces of the South West Indian Ocean: Insight from acoustics and stable isotopes[END_REF], the additive trophic enrichment model with fixed enrichment factor, TPA, (Eq. 1), is explored in further details.

Leptocephali showed estimated TL values (from Eq. 1) of 1.9 and 1.8 at both La Pérouse and MAD-Ridge, respectively ( 

Effect of feeding mode of gelatinous plankton and micronekton on stable isotope values

The trophic groups identified by cluster analyses are in general agreement with the postulated feeding habits of the group members at both La Pérouse and MAD-Ridge seamounts, although significant differences exist when individual species are considered. The cluster analyses based on δ 13 C and δ 15 N values identified two main groups, designated I and II, and two subgroups within group I and group II at La Pérouse and MAD-Ridge (Fig. 5.6a). At La Pérouse, Group I included the filter-feeding pyrosomes (IA) and the detritivorous leptocephali (IB) that showed similar δ 13 C values (-21.5 ± 0.2 and -20.4 ± 0.5‰, respectively) and δ 15 N values (5.2 ± 0.2 and 4.9 ± 2.1‰, respectively). Group IIa compared a single salp specimen (δ 13 C: -18.2‰ and δ 15 N: 

Effect of size of micronekton on δ 15 N values

The δ 15 N values of individuals were significantly influenced by their sizes at both La Pérouse (F1,113=6.695, p < 0.05) and MAD-Ridge (F1, 160= 23.33, p < 0.05), with increasing δ 15 N values as the size of the organisms increased (La Pérouse: δ 15 Ngelatinous and micronekton <100 mm= 8.83 + 0.02

x Size; MAD-Ridge: δ 15 N gelatinous and micronekton <100 mm= 7.33 + 0.03 x Size). Eight micronekton species were further selected according to sample size, their common occurrence at both seamounts, their wide body length ranges, differing feeding modes and vertical migration patterns. The δ 15 N values of the selected species Sigmops elongatus (carnivore; diel vertical migrator) and C. warmingii (omnivore; diel vertical migrator) were significantly influenced by their lengths (Fig. 5.7a, 5.7b, Table 5.2), with higher δ 15 N values at La Pérouse than at MAD-Ridge. The δ 15 N values of the fish A. aculeatus (carnivore, mid-water migrant) and of the crustacean Funchalia sp. (omnivore, diel vertical migrator) were significantly influenced by their lengths but were not significantly different between La Pérouse and MAD-Ridge (Fig.

5.7c, 6.7d, Table 5.2). The mesopelagic fish D. suborbitalis and the squid Abraliopsis sp. (both carnivores and diel vertical migrators) exhibited the same range of δ 15 N values irrespective of size at La Pérouse and MAD-Ridge (Fig. 5.7e, 5.7f, Table 5.2). For the same body length, Abraliopsis sp. showed higher δ 15 N values at La Pérouse relative to MAD-Ridge (Fig. 5.7f).

Models fitted to C. sloani (carnivore, diel vertical migrator) and leptocephali (detritivore, migrant or non-migrant depending on species) were not significant (Fig. 5.7g, 5.7h, Table 5.2).

The detritivorous leptocephali had varied δ 15 N values irrespective of size and irrespective of the sampling location. 

Discussion

To our knowledge, this thesis is the first to investigate trophic interactions of mesopelagic communities at La Pérouse and MAD-Ridge seamounts using δ 13 C and δ 15 N stable isotopes.

The foodweb components POM-Surf, POM-Fmax, zooplankton, gelatinous organisms and 42 and 49 taxonomic groups of micronekton were identified at La Pérouse and MAD-Ridge, respectively. Despite the low sample sizes for some species, the datasets used in this study provide a first overview of the trophic relationships of micronekton at both seamounts.

Sampling bias and constraints

The full suite of foodweb components could not be sampled at both seamounts because of trawl gear catchability, selectivity and net avoidance of some species of squids and larger fishes.

Stable isotopes have numerous limitations in the extent to which they can be used to elucidate complex foodweb dynamics. Isotopic baselines vary seasonally and spatially [START_REF] Ménard | Stable isotope patterns in micronekton from the Mozambique Channel[END_REF], and organisms or tissues within a single individual may incorporate the isotopic signal of their diets at varying rates, thereby influencing the stable isotope values of individuals (Martínez del [START_REF] Del Rio | Isotopic ecology ten years after a call for more laboratory experiments[END_REF]. The use of pelagic tunicates as isotopic baseline in TL calculations can also be problematic because pelagic tunicates may be members of an alternate microbial foodweb [START_REF] Pakhomov | Utility of salps as a baseline proxy for food web studies[END_REF]. There have been concerns in previous studies of the inappropriate use of fixed discrimination factors for trophic position estimations [START_REF] Caut | Variation in discrimination factors (Δ 15 N and Δ 13 C): the effect of diet isotopic values and applications for diet reconstruction[END_REF][START_REF] Hussey | Rescaling the trophic structure of marine food webs[END_REF]. However, as shown in Olivar et al. (2019) for myctophid species, and in this study for zooplankton and micronekton, the methods for trophic position estimates maintained the essential differences among all species. Furthermore, the δ 15 N values of gelatinous plankton and micronekton were significantly different between day and night samples at MAD-Ridge. This was probably due to the sampling depth, because night-time samples were collected in the shallow, intermediate and deep layers, whereas daylight samples were collected mostly in the deep layer (apart from two leptocephali collected in the shallow depth category). Previous studies found higher δ 15 N and δ 13 C values with depth, which have been linked to the increase of δ 15 N in POM with depth [START_REF] Kolasinski | Distribution and sources of particulate organic matter in a mesoscale eddy dipole in the Mozambique Channel (south-western Indian Ocean): Insight from C and N stable isotopes[END_REF][START_REF] Fanelli | Trophic webs of deepsea megafauna on mainland and insular slopes of the NW Mediterranean: a comparison by stable isotope analysis[END_REF]. However, as the IYGPT net had no closing device, the effect of sampling depth on δ 13 C and δ 15 N values of individuals could not be investigated further.

Recent studies have cautioned against the use of a fixed additive nitrogen enrichment factor of ~3.2-3.4‰ that is commonly used to estimate the trophic position of an organism relative to its diet. [START_REF] Caut | Variation in discrimination factors (Δ 15 N and Δ 13 C): the effect of diet isotopic values and applications for diet reconstruction[END_REF] showed that the consumer taxonomic group and consumer tissue significantly affect the discrimination factor used in trophic level calculations, and [START_REF] Hussey | Rescaling the trophic structure of marine food webs[END_REF] stressed that the enrichment between consumers and their primary prey items becomes narrower in the upper parts of a food chain. [START_REF] Bastos | Are you what you eat? Effects of trophic discrimination factors on estimates of food assimilation and trophic position with a new estimation method[END_REF] developed a novel method using food-specific trophic discrimination factors to estimate trophic positions of omnivorous fishes given that plant-based and animal-based materials in diets are not assimilated in the same manner. Olivar et al. (2019) observed small variations in trophic level calculations of mesopelagic fishes when using alternative models to estimate trophic positions.

However, those authors also concluded that the important differences among species are retained by all trophic models, similarly to the findings of this study.

Trophic interactions at La Pérouse and MAD-Ridge seamounts

Particulate organic matter collected at the surface generally consists of phytoplankton, bacteria, faecal pellets and detritus [START_REF] Riley | Particulate organic matter in sea water[END_REF][START_REF] Saino | Geographical variation of the water column distribution of suspended particulate organic nitrogen and its 15 N natural abundance in the Pacific and its marginal seas[END_REF][START_REF] Fabiano | Distribution and composition of particulate organic matter in the Ross Sea (Antarctica)[END_REF][START_REF] Dong | Characterization of particulate organic matter in the water column of the South China Sea using a shotgun proteomic approach[END_REF][START_REF] Liénart | Dynamics of particulate organic matter composition in coastal systems: A spatio-temporal study at multi-systems scale[END_REF]. The δ 13 C values of POM (collected at the surface and at the Fmax depth) were different at the La Pérouse and MAD-Ridge seamounts. δ 13 C baselines can be affected by various processes such as latitude, nutrient source, depth, ocean mixing and primary productivity [START_REF] Fry | Stable Isotope Ecology[END_REF]. Research has found that chlorophyll a concentrations explained the variability in POM δ 13 C values within the EAFR province but not in the ISSG [START_REF] Annasawmy | Micronekton diel migration, community composition and trophic position within two biogeochemical provinces of the South West Indian Ocean: Insight from acoustics and stable isotopes[END_REF]. Surface chlorophyll a concentrations at MAD-Ridge (within the EAFR province) was greater than at La Pérouse (within the ISSG) all year round (see Chapter 4), likely a result of terrestrial input of nutrients from the Madagascar landmass, upwelling events on the shelf to the south of Madagascar [START_REF] Ramanantsoa | Coastal upwelling south of Madagascar: Temporal and spatial variability[END_REF], offshore advection of this shelf productivity through cross-shelf transport [START_REF] Noyon | Plankton distribution within a young cyclonic eddy off south-western Madagascar[END_REF] and vertical mixing in the mesoscale eddy system over MAD-Ridge [START_REF] De Ruijter | Eddies and dipoles around South Madagascar: formation, pathways and large-scale impact[END_REF][START_REF] Vianello | Circulation and hydrography in the vicinity of a shallow seamount on the northern Madagascar Ridge[END_REF].

High levels of photosynthetic rate (currently occurring at the south Madagascar upwelling and being transported south), would induce higher δ 13 C POM values at MAD-Ridge compared with the oligotrophic La Pérouse (Fry, 1996;Savoye et al., 2003). Surface POM at MAD-Ridge might have possibly been both of marine and terrestrial origin, yielding higher δ 13 C values relative to surface POM at La Pérouse, which might have consisted of phytoplankton with no terrestrial POM input.

The δ 13 C-δ 15 N correlations of all foodweb components were not relatively strong at the La Pérouse and MAD-Ridge seamounts (r = 0.74 and 0.51 respectively) at the times of the cruises.

A strong correlation during periods of high productivity would have supported the hypothesis of a unique and isotopically homogeneous pelagic food source [START_REF] Fanelli | Trophic webs of deepsea megafauna on mainland and insular slopes of the NW Mediterranean: a comparison by stable isotope analysis[END_REF]Papiol et al., 2013;[START_REF] Preciado | Food web functioning of the benthopelagic community in a deep-sea seamount based on diet and stable isotope analyses[END_REF], i.e. a single source of carbon for plankton [START_REF] Fanelli | Food-web structure and trophodynamics of mesopelagic-suprabenthic bathyal macrofauna of the Algerian Basin based on stable isotopes of carbon and nitrogen[END_REF].

The relatively weaker correlation observed in this study suggests a wide array of sources of production sustaining the different assemblages once the main input from surface production has decreased (Fanelli et al., 2011a, b;[START_REF] Papiol | Food web structure and seasonality of slope megafauna in the NW Mediterranean elucidated by stable isotopes: Relationship with available food sources[END_REF], or exploitation of organic matter at different stages of degradation from fresh phytodetritus to highly recycled [START_REF] Fanelli | Food-web structure and trophodynamics of mesopelagic-suprabenthic bathyal macrofauna of the Algerian Basin based on stable isotopes of carbon and nitrogen[END_REF],

or refractory materials such as chitin from copepod exoskeleton becoming abundant in sinking marine snow or inorganic carbonates [START_REF] Polunin | Feeding relationships in Mediterranean bathyal assemblages elucidated by stable nitrogen and carbon isotope data[END_REF]. This would be the case in low productive environments such as the ISSG, where production at La Pérouse would be reduced in September and thus zooplankton would have to expand their food spectrum, as demonstrated by the larger span of their niche widths over the δ 13 C range. Alternatively, the δ 13 C-δ 15 N correlations could reflect temporal variations in the baseline isotope values coupled with varying rates of isotopic incorporation [START_REF] Fanelli | Food-web structure and trophodynamics of mesopelagic-suprabenthic bathyal macrofauna of the Algerian Basin based on stable isotopes of carbon and nitrogen[END_REF](Fanelli et al., , 2011b[START_REF] Fanelli | Trophic webs of deepsea megafauna on mainland and insular slopes of the NW Mediterranean: a comparison by stable isotope analysis[END_REF]. Higher trophic level organisms such as large crustaceans and fishes reportedly do not show seasonal patterns in their isotope values owing to their much slower tissue turnover rates [START_REF] Polunin | Feeding relationships in Mediterranean bathyal assemblages elucidated by stable nitrogen and carbon isotope data[END_REF].

Additional seasonal studies are required to investigate POM and resulting zooplankton δ 13 C and δ 15 N signatures in July when surface oceanic phytoplankton production is enhanced within the ISSG and EAFR provinces.

Among the mesopelagic organisms sampled, gelatinous plankton exhibited the lowest trophic level (~2), crustaceans showed an intermediate trophic level (~3), and smaller squids and mesopelagic fishes exhibited TL values between 3 and 4, as estimated from the TPA method.

Assuming a fixed and additive trophic fractionation of 3.2‰ (for comparison with other SWIO studies), the overall range of δ 15 N values implied a two-step (3 trophic levels) and three-step (four trophic levels) pelagic food chain at La Pérouse and MAD-Ridge seamounts, respectively. Unfortunately, no top predators were sampled during these cruises to provide information on higher trophic level organisms. Earlier studies within the EAFR province, showed swordfish Xiphias gladius collected off the coast of Madagascar to have a TL of ~4.7

(δ 15 N: 14.0 ± 0.59‰). Specimens collected within the ISSG province had a TL of ~5.2 (δ 15 N:

15.1 ± 0.36‰) [START_REF] Annasawmy | Micronekton diel migration, community composition and trophic position within two biogeochemical provinces of the South West Indian Ocean: Insight from acoustics and stable isotopes[END_REF]. Several authors described the number of trophic levels averaging between four and six in marine ecosystems, from primary consumers to top predators, and appearing higher in coastal environments, reefs and shelves and lower in oceanic upwelling systems [START_REF] Arreguín-Sánchez | A Trophic Box Model of the Coastal Fish Communities of the Southwestern Gulf of Mexico[END_REF][START_REF] Browder | A pilot model of the Gulf of Mexico continental shelf[END_REF][START_REF] Christensen | Flow Characteristics of Aquatic Ecosystems[END_REF][START_REF] Bulman | Trophic ecology of the mid-slope demersal fish community off southern Tasmania, Australia[END_REF]. Similar to those studies, it seems that both La Pérouse and MAD-Ridge seamounts exhibit trophic levels typical of oceanic systems, although small variations may exist in the δ 13 C and δ 15 N values of an organism's tissues according to various environmental, behavioural and physiological factors [START_REF] Ménard | Stable isotope patterns in micronekton from the Mozambique Channel[END_REF][START_REF] Annasawmy | Micronekton diel migration, community composition and trophic position within two biogeochemical provinces of the South West Indian Ocean: Insight from acoustics and stable isotopes[END_REF].

Influence of feeding mode and size on δ 13 C and δ 15 N values

The trophic guilds established at La Pérouse and MAD-Ridge seamounts were segregated in terms of δ 13 C and δ 15 N values, from depleted (detritivores and filter-feeders) to enriched (omnivores and carnivores) isotope values, highlighting the fact that these trophic guilds consist of species that exploit distinct classes of resources [START_REF] Bulman | Trophic ecology of the mid-slope demersal fish community off southern Tasmania, Australia[END_REF][START_REF] Papiol | Food web structure and seasonality of slope megafauna in the NW Mediterranean elucidated by stable isotopes: Relationship with available food sources[END_REF][START_REF] Choy | Finding the way to the top: how the composition of oceanic mid-trophic micronekton groups determines apex predator biomass in the central North Pacific[END_REF]. The large range of δ 13 C values (~-17 to -23‰) when gelatinous organisms are considered together with crustaceans, squids and mesopelagic fishes suggests that these organisms exploit different sources of production, thus giving rise to different trophic pathways [START_REF] Ménard | Stable isotope patterns in micronekton from the Mozambique Channel[END_REF]. Gelatinous filter-feeders such as salps and pyrosomes ingest a variety of suspended particles [START_REF] Harbou | Trophodynamics of salps in the Atlantic Southern Ocean[END_REF][START_REF] Comeau | Relationship between phytoplankton production and the physical structure of the water column near Cobb Seamount, northeast Pacific[END_REF] and leptocephali include a wide range of species feeding on detrital material [START_REF] Otake | Dissolved and particulate organic matter as possible food sources for eel leptocephali[END_REF] such as larvacean houses and faecal pellets [START_REF] Lecomte-Finiger | Leptocephali, these unappreciated larvae[END_REF][START_REF] Feunteun | Stable isotopic composition of anguiliform leptocephali and other food web components from west of the Mascarene Plateau[END_REF] and hence exhibited depleted δ 13 C values relative to other micronekton broad categories. Species depleted in 13 C reportedly feed near the base of the chain and are closely associated with plankton relative to fishes with higher δ 13 C values [START_REF] Polunin | Feeding relationships in Mediterranean bathyal assemblages elucidated by stable nitrogen and carbon isotope data[END_REF].

Crustacean taxa were at intermediate trophic levels at both seamounts, below that of strict carnivores and above that of detritivores or filter-feeding organisms. Some species of crustaceans would prey on chaetognaths [START_REF] Heffernan | Vertical Distribution and Feeding of the Shrimp Genera Gennadas and Bentheogennema (Decapoda: Penaeida) in the Eastern Gulf of Mexico[END_REF], molluscs, olive-green debris containing phytoplankton and protists [START_REF] Hopkins | Structure and trophic ecology of a low latitude midwater decapod and mysid assemblage[END_REF] and they would share common food sources with mesopelagic fishes by foraging on copepods, decapods and euphausiids [START_REF] Fanelli | Food-web structure and trophodynamics of mesopelagic-suprabenthic bathyal macrofauna of the Algerian Basin based on stable isotopes of carbon and nitrogen[END_REF]. Similar to previous studies conducted in the SWIO [START_REF] Ménard | Stable isotope patterns in micronekton from the Mozambique Channel[END_REF][START_REF] Annasawmy | Micronekton diel migration, community composition and trophic position within two biogeochemical provinces of the South West Indian Ocean: Insight from acoustics and stable isotopes[END_REF], crustaceans exhibited overlapping isotopic niches with carnivorous mesopelagic fishes and squids at both seamounts. The narrow range of δ 13 C values and the greater overlap of isotopic niches between crustaceans and carnivorous squids and mesopelagic fishes at both seamounts might suggest some degree of similarity in the diet components with low level of resource partitioning and a high level of competition among these broad categories [START_REF] Fanelli | Food-web structure and trophodynamics of mesopelagic-suprabenthic bathyal macrofauna of the Algerian Basin based on stable isotopes of carbon and nitrogen[END_REF] or alternatively, different diets but with prey items having similar isotopic compositions.

Whereas lower trophic level components, POM-Fmax and zooplankton showed significantly different and higher δ 15 N values at MAD-Ridge relative to La Pérouse (most likely because of differing productivity and fast turnover rate of these organisms), higher trophic level components such as crustaceans, squids and fishes showed no significant differences in their δ 15 N values between the two seamounts. There are several hypotheses for similar isotopic signatures of higher trophic levels when baseline levels differ. Firstly, the sampled organisms might not have had time to incorporate the isotopic composition of their most recent diets, especially if transient productivity bouts had impacted the density or composition of their diet.

Whereas some studies reported tissue turnover rates of ~0.1-0.2% per day in deep-sea fishes [START_REF] Hesslein | Replacement of Sulfur, Carbon, and Nitrogen in Tissue of Growing Broad Whitefish (Coregonus nasus) in Response to a Change in Diet Traced by δ34S, δ13C, and δ15N. Can[END_REF], other studies showed a lack of tissue turnover information in more specific mesopelagic families including Myctophidae and Stomiidae [START_REF] Choy | Global trophic position comparison of two dominant mesopelagic fish families (Myctophidae, Stomiidae) using amino acid nitrogen isotopic analyses[END_REF].

Second, the difference in the δ 15 N values of POM and zooplankton observed at La Pérouse and MAD-Ridge, although significant, may have been too negligible to be reflected in the δ 15 N values of higher trophic levels. Third, the number of squid and crustacean specimens analysed for stable isotopes might not be large enough to reflect the full diversity in the isotopic signatures, and hence the apparent lack of variations in δ 15 N values for these individuals between the two seamounts. Finally, as a result of movements, zooplankton grazers and subsequent trophic levels might have fed on prey components that are not those sampled in the water column, leading to a mismatch in isotopic signatures between lower and higher trophic levels.

In this study, δ 15 N values of micronekton were correlated to body size. This phenomenon was observed in various organisms such as phytoplankton, zooplankton, decapods and fishes and across numerous studies [START_REF] Sholto-Douglas | 13 C/ 12 C and 15 N/ 14 N isotope ratios in the Southern Benguela Ecosystem: indicators of food web relationships among different size-classes of plankton and pelagic fish; differences between fish muscle and bone collagen tissues[END_REF][START_REF] France | Mapping trophic continua of benthic foodwebs: body size-δ 15 N relationships[END_REF][START_REF] Waite | Food web structure in two counter-rotating eddies based on δ 15 N and δ 13 C isotopic analyses[END_REF][START_REF] Ventura | Incorporating life histories and diet quality in stable isotope interpretations of crustacean zooplankton[END_REF][START_REF] Hirch | The trophic blockage hypothesis is not supported by the diets of fishes on Seine seamount[END_REF][START_REF] Choy | Global trophic position comparison of two dominant mesopelagic fish families (Myctophidae, Stomiidae) using amino acid nitrogen isotopic analyses[END_REF][START_REF] Choy | Trophic structure and food resources of epipelagic and mesopelagic fishes in the North Pacific Subtropical Gyre ecosystem inferred from nitrogen isotopic compositions[END_REF][START_REF] Papiol | Food web structure and seasonality of slope megafauna in the NW Mediterranean elucidated by stable isotopes: Relationship with available food sources[END_REF] and is probably attributable to size-related predation. As organisms grow in size, they can feed further up the foodweb on larger prey with greater δ 15 N values [START_REF] Parry | Trophic variation with length in two ommastrephid squids, Ommastrephes bartramii and Sthenoteuthis oualaniensis[END_REF][START_REF] Ménard | Stable isotope patterns in micronekton from the Mozambique Channel[END_REF]. For those species whose δ 15 N values (S. elongatus, C. warmingii and Abraliopsis sp.) were significantly influenced by size, their δ 15 N values were greater (around 1‰ difference) at La Pérouse than at MAD-Ridge for the same body lengths. As suggested in [START_REF] Parry | Trophic variation with length in two ommastrephid squids, Ommastrephes bartramii and Sthenoteuthis oualaniensis[END_REF], if the δ 15 N values, and hence the TL of an organism, are influenced by size, then the δ 15 N signal will also depend on baseline values and the variables that affect an organism's size such as feeding mode, growth rate, body condition and available prey items. As δ 15 N values of POM and zooplankton were higher at MAD-Ridge than at La Pérouse, we hypothesize that those intermediate TLs at the oligotrophic La Pérouse seamount had a different trophic functioning, with the diet of those species being based on a larger proportion of higher TL prey than at MAD-Ridge.

Body size did not have an effect on δ 15 N values of leptocephali that encompass a wide range of species having a detritivorous and opportunistic feeding mode at both seamounts. Such lack of effect was also observed for C. sloani individuals ranging in size from 66 to 184 mm at La

Pérouse and from 77 to 199 mm at MAD-Ridge. These individuals are semi-migrants, caught in deep and intermediate trawls during both day and night. Individuals 45-178 mm long feed on myctophids and other fish species [START_REF] Utrecht | Growth and seasonal variations in distribution of Chauliodus sloani and C. danae (pisces) from the mid north atlantic[END_REF][START_REF] Butler | Mesopelagic fishes of the Arabian Sea: distribution, abundance and diet of Chauliodus pammelas, Chauliodus sloani, Stomias aznis, and Stomias nebulosus[END_REF] with prey items being more than 63% of their own length [START_REF] Clarke | Feeding habits of stomiatoid fishes from Hawaiian waters[END_REF]. Smaller individuals were reported to feed on euphausiids [START_REF] Butler | Mesopelagic fishes of the Arabian Sea: distribution, abundance and diet of Chauliodus pammelas, Chauliodus sloani, Stomias aznis, and Stomias nebulosus[END_REF]. The trawls in this study failed to capture smaller C.

sloani individuals that may have had a different diet and possibly different δ 15 N values relative to larger individuals. There might also be a trophic plateau whereby subsequent increases in trophic position with size are not possible due to physical constraints on the organism or lack of appropriate prey of higher trophic levels, as was observed with O. bartramii specimens from the central north Pacific [START_REF] Parry | Trophic variation with length in two ommastrephid squids, Ommastrephes bartramii and Sthenoteuthis oualaniensis[END_REF]. [START_REF] Tew-Kai | Patterns of variability of sea surface chlorophyll in the Mozambique Channel: a quantitative approach[END_REF][START_REF] Annasawmy | Micronekton diel migration, community composition and trophic position within two biogeochemical provinces of the South West Indian Ocean: Insight from acoustics and stable isotopes[END_REF]. For an increase in phytoplankton biomass to take place at the seamounts, physical processes leading to retention (e.g. Taylor columns trapping a body of water), enrichment (e.g. localised upwelling and uplift of nutrients) and concentration of productivity must co-occur [START_REF] Bakun | Fronts and eddies as key structures in the habitat of marine fish larvae: opportunity, adaptive response and competitive advantage[END_REF]. However, as seen at La Pérouse and MAD-Ridge seamounts, the current speeds were too strong during the cruises, and the seamount structures unfavourable for Taylor column formation and for significant retention and assimilation of productivity. This would have inhibited any subsequent energy transfer to higher trophic levels, potentially explaining the lack of differences in δ 15 N values between the seamount and the area not influenced by the seamount.

5.4.4

Seamount-associated fish species D. suborbitalis, B. fibulatum and C. japonicus [START_REF] Cherel | Micronektonic fish species over three seamounts in the southwestern Indian Ocean[END_REF], sampled at the summit and on the flanks of MAD-Ridge showed similar δ 13 C, δ 15 N and TL values irrespective of their size, similarly to D. suborbitalis sampled at La Pérouse. This most likely reflects similar food sources at the summit and flanks of both pinnacles or ingestion of different prey items having similar isotopic composition. These fishes may associate with the La Pérouse and MAD-Ridge summits and flanks owing to enhanced availability of prey and/or the quiescent shelters offered by the topography. All seamount-associated fish individuals collected on the summit and flanks of La Pérouse and MAD-Ridge with the IYGPT net were adults, previously reported to prey on copepods [START_REF] Go | Diet and feeding chronology of mesopelagic micronektonic fish, Diaphus suborbitalis, in Suruga Bay, Japan[END_REF]Olivar et al., 2019;[START_REF] Vipin | Population Dynamics of Spinycheek Lanternfish Benthosema fibulatum (Gilbert and Cramer 1897), Caught off the South-west Coast of India[END_REF] and chaetognaths [START_REF] Appelbaum | Studies on food organisms of pelagic fishes as revealed by the 1979 North Atlantic Eel Expedition[END_REF], organisms present in similar proportions on and away from both seamounts [START_REF] Noyon | Comparison of mesozooplankton communities at three shallow seamounts in the South West Indian Ocean[END_REF].

Although δ 13 C and δ 15 N values may depend on a range of factors, there were few differences and 4, irrespective of the approach used to estimate trophic positions (Fanelli et al., 2011b;[START_REF] Choy | Global trophic position comparison of two dominant mesopelagic fish families (Myctophidae, Stomiidae) using amino acid nitrogen isotopic analyses[END_REF][START_REF] Choy | Trophic structure and food resources of epipelagic and mesopelagic fishes in the North Pacific Subtropical Gyre ecosystem inferred from nitrogen isotopic compositions[END_REF][START_REF] Choy | Finding the way to the top: how the composition of oceanic mid-trophic micronekton groups determines apex predator biomass in the central North Pacific[END_REF][START_REF] Colaço | Trophodynamic studies on the Condor seamount (Azores, Portugal, North Atlantic)[END_REF][START_REF] Ménard | Stable isotope patterns in micronekton from the Mozambique Channel[END_REF]Valls et al., 2014a,b;Denda et al., 2017b;[START_REF] Annasawmy | Micronekton diel migration, community composition and trophic position within two biogeochemical provinces of the South West Indian Ocean: Insight from acoustics and stable isotopes[END_REF]Olivar et al., 2019). Despite the possible bias induced by the different time-scales in sampling [START_REF] Mill | Massspectrometer bias in stable isotope ecology[END_REF], within a stable isotope approach, the trophic positions of mesopelagic fishes across numerous studies confirmed similar dietary patterns and food sources with similar isotopic compositions. Hence, these mesopelagic fish species by their opportunistic feeding mode may play a similar trophic role across different environments (Olivar et al., 2019).

Concluding Remarks

This study has shown that despite the different productivity at the two shallow seamounts and the significant differences in lower trophic level δ 13 C and δ 15 N values, crustaceans, smallersized squids and mesopelagic fishes, because of their varied feeding modes, occupy trophic positions between 3 and 4. Specimen size had an influence on the δ 15 N values of most individuals, although that also depended on the life strategy and feeding mode of the species considered. The δ 13 C and δ 15 N values of mesopelagic organisms sampled during both cruises reflected those of typical oceanic systems and the seamounts did not seem to have any impact on the overall isotopic signatures of the mesopelagic taxa sampled. However, the few seamount-associated/resident fishes sampled showed similar δ 15 N values and trophic levels irrespective of their size at the summits and flanks of the pinnacles. La Pérouse and MAD-Ridge seamounts may hence be important foraging grounds for the few taxa that preferentially associate with their slopes and summits, and thus benefit from the varied habitat types that the seamounts offer relative to the open ocean environment.

Introduction

This research project was motivated by the fact that SWIO seamounts are currently subject to anthropogenic pressures resulting from fishing and pollution and are potentially at risk of future mining and dredging activities while still being poorly explored scientifically. Two research cruises were conducted in 2016 at the La Pérouse and MAD-Ridge seamounts with the aims of studying the current-topography interactions and the resulting biological responses of phytoplankton, mesozooplankton, ichthyoplankton and micronekton communities.

Review of the thesis aims and objectives

The overarching aim of this thesis was to investigate the patterns among micronekton 

La Pérouse and MAD-Ridge seamount ecosystems

Both the La Pérouse seamount, located to the northwest of Réunion Island and MAD-Ridge, located to the south of Madagascar, represent elevated topographies in an otherwise deep ocean that extends to 2000 and 5000 m in some places (see Fig. 2.15). The La Pérouse seamount which has been created by a volcanic hotspot, is not part of a ridge system unlike MAD-Ridge that is bounded by several other topographic features along the Madagascar Ridge. Both seamounts have shallow summits that extend into the euphotic zone, with the summit of La Pérouse being well above the mean depth of the maximum fluorescence. The shape of the summits of both pinnacles also differ, with La Pérouse being crescent-shaped and MAD-Ridge being circular.

Both seamounts are located in two different oceanographic regimes and biogeochemical provinces, characterised by different mesoscale activities and primary productivity. Indeed, annual sea surface chlorophyll a concentrations at MAD-Ridge were twice greater than at La Pérouse all year-round, despite the same seasonal patterns in both regions. A peak in productivity occurs throughout the region in austral winter (July) as a result of intense mixing caused by the austral winter trade winds, as opposed to lower wind stress recorded at the time of the La Pérouse and MAD-Ridge cruises (spring and summer). Furthermore, being located in the ISSG province, the La Pérouse seamount is under the influence of the oligotrophic conditions of this gyre. The large-scale anticyclonic rotation of the gyre causes downwelling and limited supply of nutrients or biogenic pigments to the sunlit zone, hence decreasing productivity all year-round [START_REF] Jena | Observation of oligotrophic gyre variability in the south Indian Ocean: Environmental forcing and biological response[END_REF]. The MAD-Ridge seamount, being found in the EAFR province and within an "eddy-corridor" to the south of Madagascar, experiences higher productivity and mesoscale activities all year round.

As seen in Chapters 1 and 3, seamounts may bifurcate, trap, split, rebound or destroy eddies.

La Pérouse was located at the edge of a cyclonic eddy with an average speed of 12 km per day during the first part of the cruise [START_REF] Marsac | Seamount effect on circulation and distribution of ocean taxa at and near La Pérouse, a shallow seamount in the southwestern Indian Ocean. Deep-Sea II[END_REF], and did not seem to have any substantial effects on the eddy dynamics. MAD-Ridge seamount was frequently crossed by mesoscale eddies with 38.5%, 25.4% and 30% dipoles, cyclones or anticyclones occurrences, respectively within a 90 km radius from the summit, between 1993 to 2016 [START_REF] Vianello | Circulation and hydrography in the vicinity of a shallow seamount on the northern Madagascar Ridge[END_REF]. During MAD-Ridge cruise Legs 1 and 2, a cyclonic-anticyclonic eddy dipole was located near the seamount, with the anticyclone positioned on the pinnacle. Altimetry data tracked both eddies back to the 12 th of November with the dipole being fully formed but still remaining attached to the EMC [START_REF] Vianello | Circulation and hydrography in the vicinity of a shallow seamount on the northern Madagascar Ridge[END_REF]. The dipole was subsequently detached from the Madagascar coast and travelled south-westward within the MAD-Ridge seamount area where it remained trapped for two weeks. The anticyclonic part was subsequently split into two cores on the 7 th of December before dissipation. Another similar dipole was then shown to interact with MAD-Ridge seamount [START_REF] Vianello | Circulation and hydrography in the vicinity of a shallow seamount on the northern Madagascar Ridge[END_REF].

Eddies formed off the Madagascan coast trap water masses from the EMC and possibly larvae from the surroundings, which are then advected to the MAD-Ridge region [START_REF] Crochelet | Connectivity between seamounts and coastal ecosystems in the South West Indian Ocean[END_REF]. These vortices maybe trapped on the seamount for several weeks. Eddy trapping or splitting depend on a combination of factors related to the potential vorticity anomaly associated with the pinnacle, the steepness of the seamount, the distance between the vortex and the seamount, the vortex radii, among other factors [START_REF] Herbette | Erosion of a surface vortex by a seamount[END_REF]. The fact that eddies have to travel through uneven and hilly dynamic topography along the Madagascar Ridge may reduce their potential vorticity by dissipation of the energy whenever the vortices encounter a steep bottom, eventually leading to their splitting and/or decay. The MAD-Ridge seamount is sufficiently close to the site of eddy formation off the Madagascan coast to allow the eddies-entrained water masses and biological productivity to reach the pinnacle before eventually splitting and/or decaying. Due to the high occurrences of eddies in the region; this process seems to be a common phenomenon for the resident fauna at MAD-Ridge.

As seen in Chapter 1, current-topography interactions may also lead to the formation of isopycnal doming, Taylor columns, tidal amplifications, internal waves and enhanced vertical mixing. These processes may trigger a biological response from phytoplankton communities.

No isopycnal doming was observed from temperature, salinity and density fields over the summit of MAD-Ridge possibly due to the anticyclone. Doming is generated when the fluid is forced to rise over the topographic feature. Due to the anticyclonic rotation of the eddy at MAD-Ridge, fluid was depressed instead. As for the La Pérouse seamount, the available datasets from the cruise do not allow the accurate determination of whether an isopycnal doming occurred over the pinnacle. Based on theoretical calculations, Taylor columns are not likely to be formed over the La Pérouse and MAD-Ridge seamounts most likely because of a combination of factors related to the seamounts' shapes/sizes, depth of summit (as in the case of La Pérouse that is shallow) and the prevailing current speeds.

As shown in Chapter 1, tides may also interact with topographic features resulting in the formation of closed circulation cells, internal waves, flow rectification and trapped waves.

Weak tidal amplitudes were recorded near La Pérouse, but authors also reported disturbances in the distribution of flow in the vertical plane when the flow encountered the flanks of the pinnacle [START_REF] Marsac | Seamount effect on circulation and distribution of ocean taxa at and near La Pérouse, a shallow seamount in the southwestern Indian Ocean. Deep-Sea II[END_REF]. MAD-Ridge and some of the other deeper surrounding seamounts having summit depths between 500 and 1500 m, were reported to be sites of strong La Pérouse seamount is thus located in an oligotrophic environment with no observed significant increase in primary production brought about by interactions between the pinnacle and the local flow. On the other hand, various physical processes may bring about an increase in productivity at MAD-Ridge, (1) advection of productivity from the Madagascan coast by mesoscale eddies in the vicinity of the pinnacle, (2) local enrichment processes within mesoscale eddies, (3) internal tide generation leading to enhanced vertical mixing and productivity. Authors however have reported no observed enrichment/depletion in zooplankton biovolumes and abundances over the summits of both La Pérouse and MAD-Ridge relative to off-seamount locations [START_REF] Noyon | Comparison of mesozooplankton communities at three shallow seamounts in the South West Indian Ocean[END_REF]. No gap formation as described in Chapter 1 were observed either. As seen in Chapter 1, several mechanisms are likely to promote aggregation of zooplankton over seamounts:

(1) the topographic blockage mechanism whereby the predawn descent of some mesopelagic taxa is blocked by the topography was not observed over both pinnacles.

(2) depth retention

The observed increase of weakly migrating zooplankton communities over a greater depth range at MAD-Ridge station 18 would suggest that some organisms were able to maintain their depths in the water column possibly to benefit from enhanced foraging opportunities. Authors also observed spatial differences in zooplankton abundances with higher productivity on the leeward flank of La Pérouse due to small circulation cells being created along the seamount slopes. These processes likely enhanced nutrient and chlorophyll availability for zooplankton communities that maintained their dwelling depth at this site [START_REF] Marsac | Seamount effect on circulation and distribution of ocean taxa at and near La Pérouse, a shallow seamount in the southwestern Indian Ocean. Deep-Sea II[END_REF].

(3) trophic focusing This mechanism occurs when prey from the flowing water over the summit become trapped and hence support higher trophic levels. The currents speed might have been too strong and the likely presence of predators over both seamounts might not have allowed permanent retention of zooplankton over the summit.

Furthermore, as seen in Chapter 4, due to the high risk associated with damaging the sampling gears, the summits of both La Pérouse and MAD-Ridge were poorly sampled and hence have not captured the full spectrum of mesozooplankton and micronekton communities present at these sites, likely biasing net-based estimates.

Studies have argued against bottom-up transfer of energy from locally generated phytoplankton above seamounts since phytoplankton entrapment of the order of weeks/months are thought necessary to have a significant effect on zooplankton and micronekton [START_REF] Genin | Seamount Plankton Dynamics[END_REF].

However, MAD-Ridge station 19 close to the seamount slopes exhibited enhanced picoplankton biomass. Station 18 showed enhanced records of small weakly migrating zooplankton communities over a greater depth range and enhanced fish larval densities and micronekton acoustic estimates. Enhanced turbidity on the slopes may have resulted in an increase in primary production and currents may have entrained this productivity towards station 18. The physical process leading to the biological responses described at station 18 may be a quasi-permanent feature at that location or secondary and tertiary trophic levels are able to rapidly adapt and preferentially stay at depths with enhanced foraging opportunities.

Higher epipelagic and mesopelagic larval densities of different developmental stages were recorded over the summits of both pinnacles relative to off-seamount locations (excluding station 18) [START_REF] Harris | Ichthyoplankton assemblages at three shallow seamounts in the South West Indian Ocean[END_REF]. As shown in Chapter 1, larvae released over a seamount may settle into the benthos (if the larvae are benthic), be swept off by currents or retained by local physical processes. The fact that MAD-Ridge summit showed higher larval densities relative to off-seamount locations, mostly of the Myctophidae, Bregmacerotidae, Gonostomatidae and Molidae families, would suggest local spawning [START_REF] Harris | Ichthyoplankton assemblages at three shallow seamounts in the South West Indian Ocean[END_REF]. Additionally, although the summits of the pinnacles recorded relatively high current speeds, the foraging opportunities or specific habitat structure with possibility of shelter sites offered by the topography and by stony and soft corals may favour the retention of these taxa over the summit.

Higher species richness and micronekton acoustic densities were also recorded at MAD-Ridge relative to La Pérouse and are most likely attributed to a combination of the local physical processes discussed previously: (1) productivity and larvae driven from the shelf by eddies, (2) productivity associated with mesoscale eddies, (3) internal tides generation and enhanced mixing. The enhanced primary productivity at MAD-Ridge may attract zooplankton and hence provide greater prey availability for micronekton at MAD-Ridge. Lagrangian models have further shown that larval dispersions can be very far between seamounts in the region and their coastal systems, with larval distances increasing with pelagic larval duration [START_REF] Crochelet | Connectivity between seamounts and coastal ecosystems in the South West Indian Ocean[END_REF]. The greater proportion of neritic larvae at MAD-Ridge seamount relative to La Pérouse [START_REF] Harris | Ichthyoplankton assemblages at three shallow seamounts in the South West Indian Ocean[END_REF] seem to support the hypothesis of connectivity between MAD-Ridge and the Madagascar shelf. Authors have further noted decreased probability of larvae generated from the seamounts reaching their coastal systems [START_REF] Crochelet | Connectivity between seamounts and coastal ecosystems in the South West Indian Ocean[END_REF]. This would suggest a dominant "one-way" transport of larvae from the shelf to the seamounts of the Madagascar ridge, most likely owing to the prevailing structure of the current circulation system in this region as seen in Chapter 2.

Additionally, as seen in Chapter 4, the SSL consisted of common diel vertically migrating organisms at night above the summits of both La Pérouse and MAD-Ridge and also at offseamount locations. However, dense aggregations of scatterers were recorded only over the Southeast Hancock (Pacific) seamounts and the Graveyard seamount complex (New Zealand) and may have consisted of a range of mesopelagic and benthopelagic taxa [START_REF] Parin | Thalassal mesobenthopelagic ichthyocoenosis above the Equator Seamount in the western tropical Indian Ocean[END_REF][START_REF] Boehlert | Current-Topography Interactions at Mid-Ocean Seamounts and the Impact on Pelagic Ecosystems[END_REF][START_REF] O'driscoll | Species identification in seamount fish aggregations using moored underwater video[END_REF][START_REF] Letessier | Seamount influences on mid-water shrimps (Decapoda) and gnathophausiids (Lophogastridea) of the South-West Indian Ridge[END_REF].

Gonostomatids of adult forms were not sampled over the summits and poorly sampled over the flanks of both seamounts relative to myctophids (adult and larval forms) sampled over the summit and/or flanks of MAD-Ridge and La Pérouse. This might suggest that, compared to myctophids, larval forms of Gonostomatidae would associate with the summit and move to surrounding waters in their adult forms. Myctophidae consists of a wider diversity of species compared to Gonostomatidae [START_REF] Davis | Species-specific bioluminescence facilitates speciation in the deep sea[END_REF] [START_REF] Parin | Thalassal mesobenthopelagic ichthyocoenosis above the Equator Seamount in the western tropical Indian Ocean[END_REF][START_REF] Drazen | Micronekton abundance and biomass in Hawaiian waters as influenced by seamounts, eddies and the moon[END_REF].

As mentioned in Chapter 1, the interactions of fishes with seamounts may be divided into different groups: (1) Diurnal vertically migrating taxa to the surface layer at dusk and that are advected to the seamount summit by surface currents, (2) weakly migrant/non-migrant fishes that are not able to counter the currents and are advected over the benthopelagic zone around seamounts, (3) adults of meso-and bathypelagic species that live in the benthopelagic zone to increase feeding efficiency, and (4) "pseudooceanic" or "neritopelagic" species that preferentially associate with seamounts and resist advection off the pinnacles. A combination of all these interactions are likely to occur at La Pérouse and MAD-Ridge. A strong SSL was recorded at night-time over the La Pérouse and MAD-Ridge seamounts. These organisms may have been advected to the summit by surface currents, although it might be argued that these organisms may benefit from the seamount slopes having the more favourable currents to ascend to the surface layer at dusk.

Large populations of D. suborbitalis have been reported off the slopes of the Equator seamount in the Indian Ocean and to ascend in dense schools over the pinnacle at dusk (Parin & Prutko, 1985). As seen in Chapter 4, D. suborbitalis also seem to preferentially associate with the La Pérouse and MAD-Ridge slopes and to ascend to the summit at night. As seen in Chapter 1, to prevent advective loss from the summit, these organisms would have to use their active locomotory capacities to decrease nearest-neighbour distances and orient themselves in the direction of other con-specifics. Some taxa may have shown the "feed-rest" hypothesis, i.e.

fishes would rest in the quiescent shelter offered by the topography and sense the environment above the pinnacle to take advantage of flow-advected prey. Members of the Priacanthidae family, C. japonicus, most likely exhibited this strategy. As shown in Chapter 5, seamountassociated fishes displayed similar trophic levels irrespective of their body sizes compared to some of the other fish species, indicating foraging on the same prey items or on prey having similar trophic levels on the summits of the seamounts. The summits of both seamounts may be important feeding grounds for some mesopelagic/benthopelagic taxa that are able to resist advective loss by strong currents. However, some communities may also have actively avoided the seamount due to greater presence of predators. The high densities of various marine organisms including seabirds, swordfish and whales being able to predate on a wide range of micronekton taxa and at various depths (as seen in Chapter 2), in the vicinities of La Pérouse and MAD-Ridge do not exclude the latter hypothesis.

While fishes have been extensively studied in this (and previous) research work, little attention has been paid to cephalopods and crustaceans in the vicinity of seamounts. The scarcity of data related to cephalopod ecology at seamounts partly arise due to the inability to efficiently capture these organisms in the nets. Unlike fish that tend to be herded by nets, squids are able to turn and rapidly escape through the meshes [START_REF] Clarke | Seamounts and Cephalopods[END_REF]. Top predators are believed to be more accurate "samplers" of cephalopods because cephalopod beaks may be identified from the stomach contents of their predators [START_REF] Clarke | Seamounts and Cephalopods[END_REF] [START_REF] Laptikhovsky | Cephalopods of the Southwest Indian OceanRidge: A hotspot of biological diversity and absence of endemism[END_REF]. However, maximum cephalopod diversity were associated with the subtropical convergence zone along the SWIR [START_REF] Laptikhovsky | Cephalopods of the Southwest Indian OceanRidge: A hotspot of biological diversity and absence of endemism[END_REF]. [START_REF] Nesis | Cephalopods of seamounts and submarine ridges[END_REF] has described several ecological groups of cephalopods that associate with seamounts: diel vertically migrating species (such as Abraliopsis sp.-Enoploteuthidae, and some Histioteuthidae) that are advected over seamounts at night and descend to deeper depths at dawn; nerito-oceanic species (including Enoploteuthidae, Onychoteuthidae and Histioteuthidae) that occur over seamounts as paralarvae, juveniles or sub-adults;

benthopelagic species (such as Sepiolidae-typically benthic or neritic; FAO, 2005) that spawn on the bottom but rise into midwater above the seamount; non-migrating species (including some Cranchiidae and Octopoteuthidae) advected over the tops or slopes of seamounts by currents; pelagic species (including Ommastrephidae) that may be advected over seamounts as larvae but avoid areas over the summits of shallow seamounts as juveniles and adults.

However, as mentioned by [START_REF] Clarke | Seamounts and Cephalopods[END_REF], all the species found associated with seamounts, also have circumpolar and ocean wide distributions as shown by the diets of top predators. Only very few benthic cephalopod species without pelagic life stages can be considered permanently associated with seamounts but even these were reported to have wide distributions and were poorly sampled in this and other studies [START_REF] Clarke | Seamounts and Cephalopods[END_REF]. Some cephalopods are believed to use seamounts largely as spawning grounds and as foraging grounds to a lesser extent [START_REF] Clarke | Seamounts and Cephalopods[END_REF]. However, due to the paucity of data, this hypothesis remains to be verified.

Crustaceans also represent an important group within the micronekton that have been poorly

sampled and identified in this study. The La Pérouse and MAD-Ridge cruises recorded the following order and/or families of crustaceans at both seamounts (Oplophoridae, Sergestidae, Caridea, Euphausiacea, Penaeidae, Pasiphaeidae, Gnathophausiidae, Phronimidae and Cystisomatidae), at La Pérouse only (Hyperridea, Phrosinidae, Scinidae) and Oxycephalidae at MAD-Ridge only. Some of these taxa are similar to those sampled along the SWIR during the 2009 RV Dr Fridtjof Nansen cruise (see [START_REF] Letessier | Seamount influences on mid-water shrimps (Decapoda) and gnathophausiids (Lophogastridea) of the South-West Indian Ridge[END_REF]. Increased numerical abundance and species richness of several crustacean taxa were reported over seamounts of the SWIR and Walters Shoal relative to off-seamount locations [START_REF] Letessier | Seamount influences on mid-water shrimps (Decapoda) and gnathophausiids (Lophogastridea) of the South-West Indian Ridge[END_REF]. The authors attributed such observations to the topographic blockage mechanism, to organisms being able to actively resist advection from the pinnacles and that make use of the different pelagic and benthic habitat types that seamounts offer. The mesopelagic trawl datasets in this study did not allow this hypothesis to be tested further. Moreover, as seen in Chapters 2 and 4, gelatinous taxa seem to have a ubiquitous distribution irrespective of the presence of topographic features.

Despite the high breakability of species in nets, the sheer numbers and biomasses of whole individuals usually dominate the trawl catches or are secondly dominant after the mesopelagic fishes.

The different components of the micronekton have different spatial patterns with respect to topographic features such as seamounts. While some species do not seem to be influenced by seamounts (such as gelatinous organisms), others may preferentially associate with seamounts and prevent advection from the pinnacles or avoid such features (such as few mesopelagic fishes and crustaceans). Other species may have oceanic lifestyles but associate with elevated topographic features at specific time periods during their life cycle (eg. some fishes and squids when they spawn). Micronekton communities also show varied patterns in their horizontal and vertical distributions as shown in Chapters 3 and 4 and in their trophic relationships (as shown in Chapter 5) and these will be further discussed below.

Horizontal and vertical distributions of micronekton

As shown in Chapters 3 and 4, some micronekton communities migrate horizontally, towards sites with enhanced foraging opportunities. The different locomotory capacities of these organisms may allow them to respond to enhanced prey availability by swimming to advantageous foraging grounds. As shown previously, the different micronekton components have different interactions with the La Pérouse and MAD-Ridge seamounts and hence will not be discussed further.

Diel vertical migration of the mesopelagic community represents one of the Earth's largest daily animal migration when taken as a whole. The stimulus for triggering this vertical movement is believed to be a change in light intensity [START_REF] Frank | Effects of a decrease in downwelling irradiance on the daytime vertical distribution patterns of zooplankton and micronekton[END_REF]. The main biological reason is thought to be the enhanced foraging opportunities at the surface and decreased predation rate than in daytime. A number of zooplankton taxa which are important prey items of micronekton undertake nocturnal migrations [START_REF] Lampert | The Adaptive Significance of Diel Vertical Migration of Zooplankton[END_REF]. One of the main hypothesis put forward to explain the migration of the zooplankton is the presence of larger and nutritionally richer algal cells at dusk in the euphotic zone and/ or decreased risk of being detected by a predator by day [START_REF] Lampert | The Adaptive Significance of Diel Vertical Migration of Zooplankton[END_REF]. Migrant micronekton may hence be following the movements of their main prey to the surface at dusk.

The horizontal and vertical distributions of micronekton may also depend largely on their swimming speeds. The sustained swimming speeds of myctophids were estimated at 75 cm s - 1 , with larger individuals having higher rates than smaller ones [START_REF] Benoit-Bird | Extreme diel horizontal migrations by a tropical nearshore resident micronekton community[END_REF].

Shrimps were reported to have sustained swimming speeds of 6 cm s -1 , with the rates increasing with larger individuals (Benoit- [START_REF] Benoit-Bird | Extreme diel horizontal migrations by a tropical nearshore resident micronekton community[END_REF]. However, macroplankton crustaceans, micronekton fishes and squids may exhibit different swimming speeds for migrational, foraging and escape swimming [START_REF] Ignatyev | Pelagic fishes and their macroplankton prey: Swimming speeds[END_REF]. Organisms having overall body lengths of 1-5 cm were observed to adapt their swimming speeds with fastest swimming during escape (20-50 cm s -1 for crustaceans and fishes, and 20-70 cm s -1 for squids), intermediate swimming during foraging (2-10 cm s -1 for crustaceans, 2.5-30 cm s -1 for fishes and 30 cm s -1 for squids)

and lower swimming speeds during migration (0.5-3 cm s -1 for crustaceans, 1.5-10 cm s -1 for fishes and 1-3 cm s -1 for squids) [START_REF] Ignatyev | Pelagic fishes and their macroplankton prey: Swimming speeds[END_REF].

Notwithstanding the varied swimming speeds of the broad micronekton groups, while micronekton are thought to be evenly distributed in the bathypelagic zone, high variability in their distributions exist in upper layers of the water column [START_REF] Lambert | Predicting Cetacean Habitats from Their Energetic Needs and the Distribution of Their Prey in Two Contrasted Tropical Regions[END_REF]. Some organisms may hence be too weak to overcome some of the strong physical currents they are subjected to in the upper layers and may hence be concentrated or dispersed at specific sites.

Mesoscale eddies for example, provide mechanisms that dissipate or aggregate micronekton communities (as seen in Chapter 3). Enhanced predation pressures also exist in upper layers, probably leading to enhanced local variability, while only few organisms (mostly Globicephalinae, sperm and beaked whales) are able to dive to 1000 m to forage on deeper fauna as seen in Chapter 2. However, these marine mammals probably prey on larger-sized squids [START_REF] Clarke | Seamounts and Cephalopods[END_REF] that already have patchy distributions in the open ocean.

The vertical migration patterns of the different micronekton taxa are also not uniform as seen in Chapters 3 and 4. While some taxa are active migrants to the surface at dusk and to deeper layers at dawn (such as various myctophids), others are non-migrants (eg. Cyclothone) and weakly/non-migrants (e.g. some sternoptychids). Still other taxa, as shown in Chapter 4, undertake mid-water migration to the lower limit of the SSL at night-time and back to the DSL before daytime. Upward and downward migrations seem to occur in a series of events.

Differential migration strategies used by smaller and larger fishes have been reported, with smaller fishes (swimming at slower speed) leaving their location first [START_REF] Benoit-Bird | Extreme diel horizontal migrations by a tropical nearshore resident micronekton community[END_REF]. Differential use of habitat at different times of the night by organisms in order to reduce competition between individuals in dense aggregations have also been reported [START_REF] Benoit-Bird | Extreme diel horizontal migrations by a tropical nearshore resident micronekton community[END_REF]. Migrating organisms possibly have to compromise between the need to feed and to avoid predators. Different individuals within the micronekton communities likely have different preferred habitats in order to strike a balance between the selective pressures of optimising foraging while avoiding competition and predators.

Furthermore, the permanent distribution of some taxa at deeper depths during both day and night (eg. Cyclothone) may be linked to these organisms having developed distinct evolutionary traits such as small and simple, larval-like body structure which would allow them to survive in food-poor environments at greater depths [START_REF] Miya | Molecular phylogenetic perspective on the evolution of the deep-sea fish genus Cyclothone (Stomiiformes: Gonostomatidae)[END_REF]. Deep-dwelling Cyclothone individuals exhibited lower δ 15 N values relative to relatively larger, diel migratory deep sea fishes which forage at the surface at dusk (Chapter 5). Diel migratory fishes have higher energetic needs due to the energy spent in vertically migrating hundreds of metres up and down the water column daily. Such energetic costs have to be met by higher probability for these organisms to forage on greater abundances of prey and/or on prey of greater energetic content. Some mesopelagic fish and squid taxa have developed bioluminescent organs, enabling them to forage, attract a mate, recognize con-specifics or camouflage themselves against predators in deep-sea environments [START_REF] Young | Luminescence from non-bioluminescent tissues in oceanic cephalopods[END_REF][START_REF] Young | Oceanic bioluminescence: An overview of general functions[END_REF][START_REF] Mensinger | Luminescent properties of deep sea fish[END_REF][START_REF] Catul | A review of mesopelagic fishes belonging to family Mcytophidae[END_REF][START_REF] Davis | Species-specific bioluminescence facilitates speciation in the deep sea[END_REF]. While it is difficult to disentangle all the factors that may have led to the horizontal and vertical migration strategies of individual species, organisms clearly have morphological adaptations enabling them to exploit a wide range of vertical and horizontal habitat types.

Trophic relationships and importance of micronekton in foodwebs

The stable isotope values of carbon, which may help differentiate sources of primary production, were significantly different between the POM at the surface of the La Pérouse and MAD-Ridge seamounts, with higher median values at MAD-Ridge (Chapter 5). Primary production at MAD-Ridge may result from a wide range of sources as seen previously in this

Chapter relative to La Pérouse that is located in a less dynamic and oligotrophic system. Due to the anticyclonic conditions during the MAD-Ridge cruise, the depth of the maximum fluorescence was within the same range as that measured in a weak cyclonic eddy at La

Pérouse. The higher median δ 15 N values of the POM at the maximum fluorescence, collected within the anticyclonic eddy at MAD-Ridge possibly reflect the more active physical dynamics influencing productivity at MAD-Ridge relative to La Pérouse.

Stable isotope values of all micronekton communities, however, did not reveal major differences between the La Pérouse and MAD-Ridge seamounts (Chapter 5). At both seamounts, gelatinous salps and pyrosomes occupied the lowest trophic level (TL 2). This is linked to the filter feeding strategy of these organisms that ingest a variety of suspended particles in their different environments [START_REF] Harbou | Trophodynamics of salps in the Atlantic Southern Ocean[END_REF][START_REF] Comeau | Relationship between phytoplankton production and the physical structure of the water column near Cobb Seamount, northeast Pacific[END_REF] Seamount-associated fishes, however, displayed similar trophic levels irrespective of their wide body sizes (Chapter 5). As seen previously, this suggest foraging on similar organisms or organisms having similar trophic levels. This seem to confirm the importance of La Pérouse and MAD-Ridge summits and flanks as feeding grounds for some mesopelagic/benthopelagic taxa foraging on populations of calanoids and chaetognaths. The complex diversity of organisms within the micronekton reflect a complex set of embedded processes linked to feeding mode, size and possibly productivity, foraging patterns, tissue turnover rate of individuals, time of day and depth. The different crustacean, smaller-sized fishes and squids species studied may channel the same amount of energy to top predators. Larger nekton O.

bartramii are at a higher trophic level than micronekton and may provide more energy to predators. They are the preferred prey of deeper diving swordfish, especially in oligotrophic systems like the ISSG [START_REF] Ménard | Pelagic cephalopods in the western Indian Ocean: New information from diets of top predators[END_REF][START_REF] Annasawmy | Micronekton diel migration, community composition and trophic position within two biogeochemical provinces of the South West Indian Ocean: Insight from acoustics and stable isotopes[END_REF]. Top predators capable of foraging at deeper depths and on larger nekton can take advantage of this additional resource in oligotrophic environments of the ISSG where prey resources are limited. The sheer biomass of all the different micronekton species in more eutrophic environments, on the other hand, may provide a wider range of food sources for the various top predators.

Ecosystem functioning at seamounts

This study has shed new light on the ecosystem functioning at two poorly studied topographic features of the SWIO. When placed in a broader context in the region (Fig. 6.1a), total micronekton acoustic densities at the La Pérouse seamount is typical of the ISSG province, whereas acoustic responses at the MAD-Ridge seamount is typical of the EAFR province (Fig. As seen in Table 6.1, the ecosystem functioning at both the La Pérouse and MAD-Ridge seamounts are complex. Local physical processes such as Taylor columns and isopycnal domings leading to significant phytoplankton enhancement were not observed during the La Pérouse and MAD-Ridge cruises. No major zooplankton enrichment were observed at MAD-Ridge and at La Pérouse, except on the leeward side of the seamount [START_REF] Marsac | Seamount effect on circulation and distribution of ocean taxa at and near La Pérouse, a shallow seamount in the southwestern Indian Ocean. Deep-Sea II[END_REF].

Ichthyoplankton enhancements were recorded on MAD-Ridge summit, suggesting spawning sites [START_REF] Harris | Ichthyoplankton assemblages at three shallow seamounts in the South West Indian Ocean[END_REF]. No ichthyoplankton enhancements were observed on the La Pérouse summit relative to off-seamount locations, possibly owing to small sample sizes. While, micronekton acoustic densities were lower at the seamounts relative to the surrounding ISSG and EAFR biogeochemical provinces, both seamounts hosted resident fishes over the summits and flanks. These seamount-associated species exhibited the same trophic levels at both pinnacles despite their different size ranges. Despite the differing productivity and eddy dynamics at both pinnacles, the micronekton sampled exhibited the same range of trophic levels. Micronekton would thus channel similar amount of energy to higher trophic levels such as humpback whales and marine birds foraging in the vicinity of the seamounts. directly sampled for scientific research [START_REF] Kvile | A global assessment of seamount ecosystems knowledge using an ecosystem evaluation framework[END_REF]. Data sharing and accessibility represent further important obstacles in seamount research. This study therefore adds to the current knowledge pool of the ecosystem functioning at seamounts. An important finding in this study is the presence of dense aggregations over the summits and flanks of La Pérouse and MAD-Ridge during day and night. This finding is similar to previous other studies, whereby fish were found in close association with seamounts in over 150 cases [START_REF] Kvile | A global assessment of seamount ecosystems knowledge using an ecosystem evaluation framework[END_REF].

Despite their complex topographies or local physical processes, seamounts were shown to confer selective advantages to aggregating fishes that utilize these features for feeding, spawning or resting [START_REF] Porteiro | Midwater Fish Assemblages and Seamounts[END_REF]. Feeding the observations from this study in global databases such as the SEEF (Seamount Ecosystem Evaluation Framework) [START_REF] Kvile | A global assessment of seamount ecosystems knowledge using an ecosystem evaluation framework[END_REF] may help identify knowledge gaps, characterize peculiarities of individual seamounts and further test potential seamount effects to understand which factors are driving the dynamics of the different types of seamounts.

Growing interest in commercialising micronekton communities

Cephalopod fisheries already exist targeting a wide range of species [START_REF] Roper | FAO Species Catalogue: Cephalopods of the world, An annotated and illustrated catalogue of species of interest to fisheries[END_REF]. Due to their sheer numbers and ubiquitous nature, interests in exploiting mesopelagic fishes is rapidly growing [START_REF] Dalpadado | Feeding ecology of the lanternfish Benthosema pterotum from the Indian Ocean[END_REF]. Vertically migrating myctophids are reported to contain triglycerides, potassium, sodium and calcium and to lack harmful bacteria [START_REF] Gopakumar | Studies on Lantern Fish (Benthosema plerotum) I[END_REF], making their commercialisation attractive to many interested parties.

In the Arabian Sea, the mesopelagic myctophid stock has been estimated at 20-100 million tons with a potential yield of ~200 000 tons per year [START_REF] Gjøsaeter | A review of the world resources of mesopelagic fish[END_REF][START_REF] Catul | A review of mesopelagic fishes belonging to family Mcytophidae[END_REF]. In order to meet the ever-increasing demand for more fish for domestic use and export and in the face of a growing human population, other viable options to increase fish production and hence to ensure the human food security are being explored. Commercial exploitation of mesopelagic organisms may be used for human consumption, as fishmeal in aquaculture farms and for providing nutraceuticals. Previous studies have estimated that ~2.7% of the most recent global estimate of mesopelagic fish would be needed for a global aquaculture production of 67 million tons (FAO, 2014). It was further estimated that 5 billion tons of mesopelagic biomass could result in 1.25 billion tons of food for human consumption [START_REF] St John | A dark hole in our understanding of marine ecosystems and their services: Perspectives from the mesopelagic community[END_REF], and that lanternfishes are highly attractive sources of raw materials in the production of nutraceutical products [START_REF] Koizumi | Lipid and Fatty Acids of Three Edible Myctophids, Diaphus watasei, Diaphus suborbitalis, and Benthosema pterotum: High Levels of Icosapentaenoic and Docosahexaenoic Acids[END_REF].

However, commercial fishing of mesopelagic taxa will lead to a number of issues if not sustainably managed. As seen with the Antarctic krill, predator foraging grounds overlap with fisheries [START_REF] Hinke | Identifying Risk: Concurrent Overlap of the Antarctic Krill Fishery with Krill-Dependent Predators in the Scotia Sea[END_REF], putting an additional pressure on the predators. Moreover, mesopelagic taxa are increasingly being impacted by microplastic pollution through ingestion [START_REF] Wieczorek | Frequency of Microplastics in Mesopelagic Fishes from the Northwest Atlantic[END_REF] and through plastic contaminants [START_REF] Rochman | Polybrominated diphenyl ethers (PBDEs) in fish tissue may be an indicator of plastic contamination in marine habitats[END_REF]. This may put a negative pressure on the stocks of mesopelagic organisms but also on their predators.

Even when foraging prey are abundant, tunas were found to show a decline in condition due to variabilities in the size structure and nutritional composition of their prey [START_REF] Golet | The paradox of the pelagics: why bluefin tuna can go hungry in a sea of plenty[END_REF].

Climate change is another pressure to which organisms will have to adapt. Additionally, as seen in Chapter 2, some sites such as seamounts are already under fishing pressures and all the related pollution impacts linked to fishing. Mesopelagic fishing can further enhance fishing gear pollution, by-catch rates of top predators, and depletion of the resource (if not appropriately managed) at these already vulnerable ecosystems. In any case, trial catch in the Oman Sea were too low to support fishing costs [START_REF] Valinassab | Lantern fish (Benthosema pterotum) resources as a target for commercial exploitation in the Oman Sea[END_REF] and to date, the correct fishing methods, gears and vessel size still need to be identified for a viable fishery.

Conservation measures and issues

As seen previously, the La Pérouse and MAD-Ridge seamounts host important benthic habitats, seamount-resident/associated fauna, are important sites for several top predator species (some of which being of commercial interests), and probably contain mineral resources such as manganese and other polymetallic nodules. Both seamounts are of significant interests for fishing and deep-sea mining and nowadays, they both potentially suffer the adverse effects of fishing and pollution. Deep-sea bottom trawling may remove coral habitats with negative impacts on benthic biodiversity, foraging and spawning grounds of several species in the foodweb. As seen in Chapters 1 and 2, the effective implementation of conservation measures is challenging, especially on the high seas, where illegal, unreported and unregulated fishing occur due to the inability to control and monitor activities owing to the remoteness of locations and the associated costs. Hence, conservation measures that are set-up should ensure appropriate monitoring and control plans to prevent illegal activities on the high seas.

Management actions will also require a balance between exploitation (to satisty fisher's needs, guarantee jobs and food security) and conservation (to protect vulnerable resources and ensure sustainability of fish stocks). Conservation measures are seldom effective if enforced without concerting all the relevant parties such as scientists, government officials, fishery managers, fishers, and the local population. Scientific research on seamount ecosystems are of paramount importance to improve the knowledge base on seamount-associated communities and to facilitate discussion between managing bodies. As seen previously, countries in the SWIO often lack scientific, technical, human-resource and management capacities that will enable effective conservation plans and implementation. In addition to the current managing bodies that are sometimes blocked in their managing capacities, a special regional task-force providing scientific, technical, human-resource and management capacities (not only for key species such as tunas) but also all fauna and the benthic environment, should be set-up. There is an urgent need to recognize that ecosystems function as a whole and the different components or species do not function independently of each other.

Furthermore, as seen in Chapters 1 and 2, several potential management actions could be implemented such as site-specific regulations or activity-specific regulations, single MPAs or whole MPA networks. The La Pérouse seamount is not part of a ridge system and does not seem to support a large diversity of species relative to MAD-Ridge. Regulations banning possible future bottom trawling to protect the seamount habitat and temporary fishing closures during the breeding season of humpback whales are some measures that could be promoted.

MPA networks are often deemed more successful than other management actions since significant spill-over effects may occur if the networks are appropriately located. To have a significant impact, we have further seen in Chapter 2, that the MPAs will need to have at least four or five of the following features: older (>10 years), larger (>100 km 2 ), isolated by deep water or sand, non-extractive and effectively enforced [START_REF] Edgar | Global conservation outcomes depend on marine protected areas with five key features[END_REF].

The set-up of MPA networks for at least 10 years along the Madagascar Ridge, covering at least 100 km 2 around each pinnacle having an elevation of more than 1500 m and reaching into the euphotic zone (such as the MAD-Ridge and Walters Shoal seamounts) are among possible conservation measures. They may prove beneficial for benthic habitats, mesopelagic organisms having specific life patterns at these seamounts and for top predators using the pinnacles as foraging grounds, during their migration routes and breeding seasons. Bottom, mid-water trawling and mining activities would have to be banned at these seamounts to protect the integrity of the associated ecosystems. Moreover, since seamounts from the Madagascan shelf to MAD-Ridge are located within the EEZ of Madagascar, conservation measures and actions could only be implemented by Madagascar. Scientific and financial support, as well as, assistance for enforcement, could be sought from other nations. The other seamounts along the Madagascar Ridge, since they are located in areas beyond national jurisdiction, could only be preserved by promoting cooperation with member states at the regional and international level.

While MPA networks may prove highly beneficial if appropriately set-up and enforced, they may be faced with significant oppositions from states in the region, fisheries operators or managers, governing bodies and mining lobbyists. Presently, the prospect of high economic yields do not encourage efforts to preserve the resources even if conservation actions can sustainably support, in the medium term, not only fish stocks of commercial value, but also whole ecosystems which are under various anthropogenic pressures.

6.9 Future Perspectives

Multi-frequency acoustic classification

While this thesis work has allowed to address the knowledge deficit as to the horizontal and vertical distributions, the assemblages and trophic relationships of micronekton communities with respect to environmental conditions at the La Pérouse and MAD-Ridge seamounts, significant knowledge gaps still remain. One significant gap identified stems from the low number of mid-water trawls that have been conducted owing to the multi-disciplinary nature of the cruises. As seen in Chapter 4, the trawl sampling failed to capture the full range of organisms present due to avoidance reactions and escape from the nets, damage done to softbodied individuals and inadequate sampling over the summits. The net used was further selective in the size range of organisms that have been captured. Crustaceans and squids were poorly represented in net-based estimates.

The multi-frequency acoustic visualisation technique employed in this study is useful in identifying scattering layers with similar frequency responses at their respective depths and identifying dense aggregations of scatterers. However to be able to classify the overall acoustic backscatter into a number of acoustic groups corresponding to biological samples, an algorithm tool that discriminates groups of scatterers in the first 200 m of the water column has to be developed and calibrated for each dataset. Such multi-frequency classification techniques have already been explored [START_REF] Anderson | Classifying multi-frequency fisheries acoustic data using a robust probabilistic classification technique[END_REF][START_REF] Soto | Acoustic study of macrozooplankton off Peru: biomass estimation, spatial patterns, impact of physical forcing and effect on forage fish distribution[END_REF][START_REF] Woillez | Multifrequency species classification of acoustic-trawl survey data using semi-supervised learning with class discovery[END_REF][START_REF] Kloser | Deep-scattering layer, gas-bladder density, and size estimates using a two-frequency acoustic and optical probe[END_REF][START_REF] Béhagle | Acoustic distribution of discriminated micronektonic organisms from a bi-frequency processing: The case study of eastern Kerguelen oceanic waters[END_REF] and typically uses a combination of frequencies to discriminate several acoustic classes.

Different organisms have different frequency responses. While the backscatter of fluid-like and elastic-shelled organisms increases with the size/frequency between 38 and 120 kHz; that of larvae and adult-swimbladdered fish remains relatively constant or decreases between 38 and 120 kHz frequencies [START_REF] Korneliussen | Synthetic echograms generated from the relative frequency response[END_REF]. The combination of RGB composites and trawl surveys (as seen in Chapter 4) can be used to identify and create acoustic classes from the different groups of scatterers. This would apply to cases such as: (i) the dense aggregations Once the acoustic classes have been confidently determined, these criteria can be used to classify the acoustic backscatter from the whole cruise transects into the identified groups.

Trawl surveys can be used to complement acoustic surveys in validating the groups. However, since acoustic data were not recorded during six out of ten trawl surveys during the La Pérouse cruise, applying multi-frequency acoustic techniques to this dataset will be more risky.

Furthermore, due to the nature of the system, trawl surveys were not mono-specific, and hence, confidently attributing acoustic groups to distinct biological samples is more risky. However, a combination of RGB composites with trawl transects (Chapter 4), and RGB plots with Scanfish transects can be used. The Scanfish recorded the temperature and fluorescence profiles horizontally and vertically in the first 100 m of the water column during MAD-Ridge cruise (Herbette, unpublished data). Using a combination of trawl and environmental data sets, combined with RGB composites and multi-frequency classification algorithms may allow a more accurate classification of the different groups: dense swim-bladdered fish aggregations, gelatinous organisms and plankton-like organisms associating with the maximum fluorescence.

Trace metal analyses

Micronekton may concentrate trace elements such as Mercury, Cadmium, Zinc, Copper, Selenium, Lead, Iron and Chromium. While zinc, copper, chromium, iron and selenium are essential elements, mercury, cadmium and lead can be potentially toxic [START_REF] Bodin | Trace elements in oceanic pelagic communities in the western Indian Ocean[END_REF].

Essential elements are those which are important for the normal functioning of the cell, such as enzyme cofactors (e.g. zinc is a cofactor to over 300 enzymes, [START_REF] Chasapis | Zinc and human health: an update[END_REF] and antioxidants (e.g. selenium, [START_REF] Tingii | Selenium: its role as antioxidant in human health[END_REF]. Mercury, on the other hand, is known to be methylated by microorganisms, to bioaccumulate in marine biota and to biomagnify along the food chain, with predators showing higher tissue concentrations than their main prey items [START_REF] Bustamante | Total and organic Hg concentrations in cephalopods from the North Eastern Atlantic waters: Influence of geographical origin and feeding ecology[END_REF]. In the marine environment, methyl mercury is the most stable, but also the most toxic form to organisms [START_REF] Cossa | Le mercure en milieu marin. Biogéochimie et écotoxicologie[END_REF]. The bioaccumulation and biomagnification of toxic trace elements can thus be harmful to micronekton and top predators if a significant transfer occurs.

Ultimately, high concentrations of hazardous trace elements in tissues of top marine predators such as tunas and swordfish can lead to food insecurity if the trace element concentrations exceed the guideline values established by the Ministry of Agriculture, Fisheries and Food (MAFF, 2000). Recommended guideline values have been established at 0.3 µg/g wet weight (ww) for mercury, 0.2 µg/g ww for cadmium, 50 µg/g ww for zinc, 20 µg/g ww for copper and 2 µg/g ww for lead [START_REF] Asante | Trace elements and stable isotope ratios (δ 13 C and δ 15 N) in fish from deep-waters of the Sulu Sea and the Celebes Sea[END_REF]. Concentrations of essential minerals in tissues of micronekton, on the other hand, will provide knowledge on the nutritional composition of the species that support top marine predators in pelagic ecosystems. While trace element concentrations in tissues of top pelagic predators of the Indian Ocean have been previously

described [START_REF] Bodin | Trace elements in oceanic pelagic communities in the western Indian Ocean[END_REF], knowledge of trace mineral concentration in tissues of micronekton is scarce and fragmentary in other ocean basins [START_REF] Asante | Trace elements and stable isotopes (δ 13 C and δ 15 N) in shallow and deep-water organisms from the East China Sea[END_REF][START_REF] Asante | Trace elements and stable isotope ratios (δ 13 C and δ 15 N) in fish from deep-waters of the Sulu Sea and the Celebes Sea[END_REF], and non-existent in the south-western Indian Ocean.

The combined actions of terrigenous inputs and washouts of trace minerals and nutrients into coastal Malagasy waters from land and advection of these nutrients and minerals by mesoscale cyclonic and anticyclonic eddies to MAD-Ridge may lead to greater trace mineral concentrations in tissues of micronekton at MAD-Ridge relative to La Pérouse. Highly migratory top predators consuming micronekton at the MAD-Ridge seamount may have higher or similar trace element concentrations. As shown in [START_REF] Asante | Trace elements and stable isotopes (δ 13 C and δ 15 N) in shallow and deep-water organisms from the East China Sea[END_REF], higher trophic animals may retain higher concentrations of trace elements than lower trophic organisms. The micronekton species from La Pérouse and MAD-Ridge cruises, previously selected for stable isotope analyses, will be used to investigate trace mineral dynamics as part of a post-doctoral project starting January 2020 at the SFA (Seychelles Fishing Authority) and GET (Géosciences Environnement Toulouse), and funded by the WIOMSA (Western Indian Ocean Marine Science Association) MARG I grant. The concentrations of trace minerals in tissues of migrant vs. non-migrant micronekton taxa will be investigated to determine the horizontal distribution of trace minerals in the water column. These minerals will also be studied with respect to body size and feeding habits of the different micronekton taxa. The relationship between concentrations of trace minerals and stable isotope (δ 13 C and δ 15 N) values in tissues of sampled micronekton will be determined.

Conclusion

The SWIO is a contrasted region with elevated bathymetric features, circulation patterns in the form of currents and mesoscale eddies, and water masses navigating through its ridge systems.

This region hosts a wide range of marine organisms including seabirds, turtles, cetaceans, whales, sharks, tunas, billfishes and demersal fishes. Tunas, billfishes, demersal fishes and a few shark species are targeted by industrial fisheries. Interactions also occur between fisheries Some taxa possibly avoid the seamounts due to higher predation risk. This thesis has demonstrated that micronekton is a diverse group of organisms exhibiting different migrating, foraging, spawning patterns and trophic levels. A combination of trawl and acoustic surveys have shown that some organisms perform their daily DVM irrespective of the presence of the seamounts. Other organisms, such as few lanternfishes, reside at the seamounts' flanks during the day and vertically migrate to the seamount summits at dusk. The different migrants may vary their speed, direction and timing of their daily migration to take advantage of prey items at different spatial and temporal scales. This may allow prey and space partitioning to avoid competition. DVM may also depend on the physiological limit of the species and the differing life stages within the same species. For some organisms, including the widely distributed Cyclothone sp., it is more advantageous to stay at deeper depths. Some organisms in the mesopelagic realm depend mostly on sinking particles through degradation of organic matter, part of which comes from the faecal matter of migrants that forage in the euphotic zone. Despite their varied migration and foraging strategies, micronekton (crustaceans, mesopelagic fishes and smaller-sized squids) occupy trophic levels between three and four at both seamounts, thus potentially channeling similar amounts of energy to top predators present at these sites.

Mesopelagic organisms (from gelatinous plankton to nekton) support a wide variety of predators in the region, which are able to physiologically forage at various depths and cover a wide spatial range to reach most productive sites. Although the La Pérouse and MAD-Ridge seamounts did not show enhanced diversity and biomass of organisms relative to the surrounding ocean, both pinnacles are important sites for specific communities that would suffer from various anthropogenic pressures if appropriate conservation measures were not implemented. This thesis underlined the need to conduct more multi-disciplinary scientific research work in the SWIO in order to identify and fill important knowledge gaps, allowing the detection of vulnerable marine ecosystems, and proposing an Ecosystem Approach to Fisheries (EAF) management and marine spatial planning strategies.

Annasawmy, P., Ternon, J-F., Cotel, P., Demarcq, H., Cherel, Y, Romanov, E., Roudaut, G., Lebourges-Dhaussy, A., Ménard, F., Marsac, F., 2019. Micronekton (#3, 5 and 13) of the MAD-Ridge cruise. The absolute dynamic topography (line 1) together with the Okubo-Weiss parameters (line 2) give an indication of how the stations are located according to the dipole observed during MAD-Ridge. The contours of the anticyclone (dashed blue) and the cyclone (plain blue) are superimposed with the vectors of the surface geostrophic currents (black arrows). However, due to its spatial and temporal resolution, altimetry is not accurate enough to classify stations located less than 30 km from each other. Conservative Temperature (CT) vs. Absolute Salinity (SA) diagrams (line 3) provide a more accurate information: waters trapped within the anticyclone have a salinity maximum on the sigma=26 kg m -3 density layer. This is confirmed by the vertical profiles of CT in °C and SA in g kg -1 (line 4). Vertical profiles of oxygen in µmol kg -1 (line 5) also show that the layer with maximum oxygen concentrations is thicker in the anticyclone. Finally, the sea surface temperature (SST) in °C and sea surface salinity (SSS) in PSU recorded along the ship track (line 6) clearly identify a density front at the interface of the cyclone and anticyclone. All the other CTD stations during Leg 1 of MAD-Ridge cruise were classified the same way.
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  d'évaluer un possible impact du guyot sur la productivité océanique dans une zone généralement qualifiée d'oligotrophe, traversée par le courant sud-équatorial. Le thème général de la campagne MAD-Ridge était d'étudier l'influence des processus physiques liés aux interactions entre la circulation océanique et la topographie sur la production biologique autour du mont sous-marin. Alors que les bas niveaux trophiques-le phytoplancton, zooplancton, l'ichthyoplancton ainsi que les prédateurs supérieurs ont été étudiés dans cette zone, peu d'études se sont intéressées au micronecton. Le micronecton est constitué principalement de crustacés, céphalopodes et poissons mésopélagiques qui mesurent de 2 à 20 cm en longueur. Bien que les gélatineux ne fassent pas officiellement partie de ce groupe, les salpes et pyrosomes, constituent une biomasse importante dans les chaluts mésopélagiques et jouent un rôle capital dans la pompe biologique de carbone. Certaines espèces de gélatineux sont les proies des poissons mésopélagiques et de prédateurs superieurs tels que le thon. Mes travaux de thèse ont donc pour but de contribuer à combler des lacunes sur le compartiment micronectonique associé aux écosystèmes des monts sous-marins. Les objectifs principaux étant (i) d'étudier la distribution horizontale et verticale du micronecton en fonction des tourbillons méso-échelles, du plateau continental de Madagascar et de reliefs sous-marins (chapitre 3), (ii) de décrire les communautés présentes et les différentes stratégies de migration de certaines espèces (chapitre 4), (iii) de déterminer les modes alimentaires et le niveau trophique du micronecton dans le réseau trophique pélagique (chapitre 5). Dans le cadre de cette étude, les données satellites de chlorophylle de surface, d'anomalie de hauteur d'eau, de bathymétrie et de courant géostrophique ont été téléchargées des sites MODIS, COPERNICUS et de la NASA. Pendant les campagnes La Pérouse et MAD-Ridge, une CTD couplée à un profileur de courant-L-ADCP et d'un capteur de fluorescence, a été utilisée pour enregistrer des profils de courant, fluorescence, température, salinité et oxygène dissous de la surface jusqu'à plus de 1000 m de profondeur. L'eau de mer a été prélevée en surface et à la profondeur du maximum de chlorophylle, puis filtrée à bord du bateau pour des analyses d'isotopes stables du carbone et de l'azote. Un échosondeur à quatre fréquences (38, 70, 120 et 200 kHz) a également été utilisé pour enregistrer la distribution spatiale et verticale du micronecton en continu pendant MAD-Ridge et de façon ponctuelle au cours de la campagne La Pérouse. Ces enregistrements ont été traités et analysés à terre avec le logiciel Matecho. Un chalut mésopélagique a été utilisé au cours des campagnes pour collecter le micronecton de jour comme de nuit et à différentes profondeurs. Les différentes communautés mésopélagiques ont été identifiées à bord du bateau et lors d'un atelier organisé à l'Université du Cap en Afrique du Sud avec des experts en taxonomie. A terre, les échantillons destinés aux analyses d'isotopes stables ont été lyophilisés, broyés, délipidés, décarbonatés (matière organique particulière-MOP-et zooplancton uniquement), encapsulés et analysés au spectromètre de masse au LEMAR à Brest. Les isotopes stables du carbone (δ 13 C) apportent des informations sur les sources de production primaire et le régime alimentaire alors que les isotopes stables de l'azote (δ 15 N) renseignent sur la position trophique de l'individu dans la chaine alimentaire. Cette thèse se décline donc sur cinq chapitres principaux, suivis d'une discussion générale. Le chapitre 1 fournit une description détaillée des interactions entre les processus physiques et les monts sous-marins pouvant conduire à une réponse biologique des niveaux trophiques faibles et supérieurs. Des exemples sont donnés de monts sous-marins ayant fait l'objet de nombreuses études dans l'Atlantique et le Pacifique. Certains monts peuvent atteindre la zone euphotique, d'autres la zone intermédiaire et d'autres encore sont plus profonds, le sommet n'atteignant pas 400 m sous la surface de la mer. Les monts sous-marins peuvent également être de forme circulaire, conique, elliptique ou allongée et peuvent faire partie d'une ride, d'un groupe de monts ou être isolé. De part leurs tailles, formes et structures, les monts sous-marins

  thermocline et des eaux plus denses, ainsi qu'un enrichissement biologique caractérisé par des concentrations en chlorophylle plus élevées comparé à l'anticyclone. Les densités du micronecton étaient faibles dans l'anticylone et sur le sommet et les flancs du mont MAD-Ridge par rapport aux densités mesurées dans le tourbillon cyclonique et sur le plateau continental de Madagascar. Le micronecton a suivi le schéma habituel de migration nycthémérale, montant verticalement à la surface au crépuscule et descendant vers les couches plus profondes (moins de 400 m) à l'aube, sauf dans le tourbillon cyclonique pendant MAD-Ridge où des densités acoustiques plus importantes ont été enregistrées dans la couche de surface diurne. Ces densités acoustiques au sein du cyclone dans la couche de surface de jour, ont démontré une forte réponse au 38 kHz comparé au 70 et 120 kHz. Des études antérieures ont démontré que les poissons épi-et mésopélagiques ayant de petites vessies natatoires remplies de gaz et le plancton gélatineux ayant des inclusions de gaz, dominent la fréquence de 38 kHz

  de gaz qui nageaient et se nourrissaient activement dans le cyclone, ou des organismes gélatineux avec des inclusions de gaz. Comme démontré dans ce chapitre, il y a peu de probabilité d'un enrichissement local causé par des interactions courants-topographie comme la formation de colonnes de Taylor ou la remontée des isocèles aux monts La Pérouse et MAD-Ridge. Les processus d'enrichissement rencontrés pendant la campagne MAD-Ridge, à savoir une forte productivité primaire et une densité élevée du micronecton, sont principalement liés aux upwellings au sud de Madagascar et à la dynamique des tourbillons méso-échelles, et probablement aussi à l'activité d'ondes internes.

  micronecton aux monts La Pérouse et MAD-Ridge. La migration nycthémérale du micronecton est importante pour le transfert de nutriments et d'éléments essentiels de la surface vers les profondeurs. J'ai démontré que certaines espèces du micronecton sont capables d'effectuer de grandes migrations nycthémérales vers la surface (couche 0-200 m) au crépuscule et vers les profondeurs (>400 m) à l'aube. A l'aube, on observe plusieurs vagues de migration de la couche intermédiaire (200-400 m) vers les profondeurs (>400 m) et de la couche de surface vers les profondeurs. Il y a donc plusieurs stratégies de migration. Certaines espèces de la communauté mésopélagique migrent en-dessous de 800 m (probablement afin d'échapper aux prédateurs visuels) alors que d'autres espèces sont non-migrantes et se situent principalement dans la couche de surface (comme certains gélatineux) ou en profondeur telles que les Cyclothone sp., de jour comme de nuit. Les données acoustiques analysées au cours de ma thèse ont également mis en évidence que la couche de surface (0-200 m) est constituée d'espèces de micronecton communes à divers bassins océaniques. Par contre, certaines espèces de poissons mésopélagiques, telle que les Diaphus suborbitalis, s'associent uniquement aux sommets et flancs des monts sous-marins La

  chapitre 5 décrit egalement que la MOP et le zooplancton ont des valeurs isotopiques inférieures aux crustacés, céphalopodes et poissons mésopélagiques à La Pérouse et à MAD-Ridge. Le niveau trophique des espèces de micronecton est influencé par le mode alimentaire de l'individu et la taille. Les omnivores (crustacés qui se nourrissent principalement de zooplancton et de matières végétales) et carnivores (poissons mésopélagiques et céphalopodes qui se nourrissent essentiellement de copépodes, d'amphipodes, d'euphausiacés et d'ostracodes) sont fortement enrichis en δ 15 N comparé aux filtreurs (salpes et pyrosomes) et détritivores (larves leptocéphales). Les filtreurs et détritivores ont généralement un niveau trophique de 2. Les crustacés, poissons mésopélagiques et petits céphalopodes se situe généralement à un niveau trophique entre 3 et 4, au-dessus du zooplancton et en-dessous des prédateurs supérieurs tels que les thons et les espadons. La taille d'un individu a généralement une influence sur ces valeurs de δ 15 N en raison de la relation taille-proie (un individu plus grand ingérera une proportion plus importante de proies de grande taille ayant un δ 15 N plus élevé que des proies de taille inférieure). Cette relation a été observée pour plusieurs espèces de micronecton. Cependant, il a été observé que les poissons mésopélagiques et benthopélagiques associés de façon quasi-permanente sur les sommets et les flancs de La Pérouse et de MAD-Ridge, ont le même niveau trophique quelles que soient leurs tailles. Ceci peut s'expliquer par le fait que ces espèces se nourrissent de proies similaires, ou bien de proies différentes mais ayant le même niveau trophique. Le micronecton est donc un maillon important dans la chaine alimentaire de par la prédation qu'il exerce sur le zooplancton et comme source d'alimentation pour les prédateurs supérieurs tels que les thons et les espadons. Les différents processus contrôlant la distribution spatiale et verticale du micronecton méritent d'être détaillés car les prédateurs supérieurs marins dépendent de ce groupe, et indirectement les populations humaines par la pêche et ses autres activités économiques associées. Il est donc important de mieux comprendre le fonctionnement des écosystèmes marins associés aux monts sous-marins notamment le rôle des processus physiques qui influencent les différents maillons trophiques, afin de proposer des mesures adaptées à la conservation de ces espaces et à une exploitation raisonnée et durable de leurs ressources marines.Cette étude a démontré le fonctionnement de l'écosystème de deux relevés topographiques peu étudiés du sud-ouest de l'océan Indien. Lorsqu'on replace les monts La Pérouse et MAD-Ridge dans un contexte régional, les densités acoustiques totales du micronecton au mont La Pérouse sont typiques de celles de la province de l'ISSG, tandis que les réponses acoustiques au mont MAD-Ridge sont typiques de celles de la province de l'EAFR. Les densités acoustiques en micronectons étaient plus élevées dans l'EAFR et au mont sous-marin MAD-Ridge comparé à la province de l'ISSG et le mont sous-marin La Pérouse, probablement en raison de l'effet des tourbillons méso-échelle et de la productivité accrue dans l'EAFR. Aucune augmentation nette du micronecton n'a été observée aux monts sous-marins par rapport à l'océan environnant dans les provinces biogéochimiques. Cependant, des agréggations denses ont été observées collées aux sommets des deux monts pendant la journée, probablement en raison de la présence de poissons s'agrégeant de façon quasi-permanente sur les sommets et les flancs de ces monts.Bien que les relevés topographiques soient omniprésents dans les océans du monde, les monts sous-marins et leurs écosystèmes sont encore mal connus. Seuls 0,4 à 4 % de la population mondiale des monts sous-marins ont été directement échantillonnés pour la recherche scientifique[START_REF] Kvile | A global assessment of seamount ecosystems knowledge using an ecosystem evaluation framework[END_REF]. Le partage et l'accessibilité des données constituent autant d'obstacles importants à la recherche sur les monts sous-marins. La présente étude vient donc enrichir les connaissances actuelles sur le fonctionnement de l'écosystème des monts sousmarins. Un résultat important de cette étude est la présence d'agréggations denses sur les sommets et les flancs de La Pérouse et de MAD-Ridge de jour comme de nuit. Ce résultat est similaire à celui d'autres études précédentes, dans lesquelles des poissons ont été trouvés en association étroite avec des monts sous-marins dans plus de 150 cas (Kvile et al., 2014). Malgré leurs topographies complexes et leurs processus physiques locaux, il a été démontré que les monts sous-marins confèrent des avantages sélectifs au regroupement des poissons qui utilisent ces caractéristiques pour s'alimenter, se reproduire ou se reposer

Figure 1 . 2

 12 Figure 1.2 Characteristic features of motion at an isolated southern hemisphere seamount. These features, including a vertical circulation cell, isopycnal doming and anticyclonichorizontal circulation, are shown near the summit depth, superimposed on oscillatory currents and oscillatory temperature and salinity distributions. The occurrence, properties and variability of these features depend on local turbulence K, internal waves ! "# (propagating horizontally and vertically), and on incident mean current ! $%&' , eddies ( $%&' , tidal and other oscillations Uvar, and possibly wind-driven currents Uwind (Source: adapted from Lavelle & Mohn, 2010).

Figure 1 . 3

 13 Figure 1.3 Characteristic features of motion at an isolated seamount, including flow patterns, and features such as Taylor columns, isopycnal doming and processes such as enhanced vertical mixing [Source: adapted from Henry et al., 2012].

Figure 1 . 4

 14 Figure 1.4 Diagram of the main factors controlling the localised dynamic processes at isolated topographic features, with Ut representing the tidal flow; U, the mean flow; ρ the water density with depth; L the seamount width in m; h0 is the height of the seamount relative to the water depth H; N, the vertical stratification, Ω, the Earth's angular velocity, and f, the Coriolis parameter[START_REF] White | Physical Processes and Seamount Productivity[END_REF].

Figure 1 .

 1 Figure 1.5(a-e) Sequential acoustic transects of the 120 kHz frequency across Sixtymile Bank (west of California, USA), showing a gap formation in zooplankton distributions over the summit. By the last transect (e), the gap had advected ~3 km eastward and was beginning to fill with intrusions of zooplankton carried by the currents (Source:[START_REF] Haury | Zooplankton distribution around four eastern North Pacific seamounts[END_REF].

Figure 1 . 6

 16 Figure 1.6 Schematic showing the bottom trapping of vertically migrating zooplankton (horizontal grey bar) over a seamount (black polygon) where the summit is deeper than the photic layer but shallower that the daytime depth of migrating zooplankters. Sun and moon symbols indicate day and night. The current is considered to flow from left to right throughout the water column for simplicity (Source: adapted from Genin & Dower, 2007).

Figure 1 .

 1 Figure 1.7 Time-series from 19:31 pm to 06:30 am of acoustic transects of the 38 kHz frequency over Southeast Hancock seamount on 17-18 July 1984. (a) At dusk, the scattering layers (consisting mainly of the fish M. muelleri), migrated vertically up the water column to ~50 m. (b) The scattering layer developed around the seamount at night. (c) The scattering layer remained stationary in the surface waters throughout the night and as light intensity increased, some scatterers moved downward. (d) Some scatterers remained above the seamount flanks late in the morning at depths as shallow as ~170 m (Source[START_REF] Boehlert | Current-Topography Interactions at Mid-Ocean Seamounts and the Impact on Pelagic Ecosystems[END_REF]).

Figure 1 . 8

 18 Figure 1.8 Interactions between the different groups of deep-pelagic fishes and seamounts of various heights with the summit entering (a) epipelagic layers, (b) mesopelagic layers, and (c) bathypelagic layers. Horizontal arrows: non-migrant and weakly migrant meso-and bathypelagic fishes that are laterally advected to the benthopelagic zone around seamounts. Vertical arrows: Vertically migrating fishes interacting with the seamounts during their DVM.

Figure 1 .

 1 Figure 1.11 Received Argos locations from humpback whales tagged in Réunion in 2013 (F: Female, M: Male). Male humpback whales engaged in localized behaviour in Réunion Island, La Pérouse seamount, St Brandon Shoal and Madagascar, while females engaged in localized behaviour at Réunion Island and Ile Sainte-Marie (Source: Dulau et al., 2017).

Chapter 3

 3 examines the influence of mesoscale eddies, continental shelf and the shallow seamounts, La Pérouse and MAD-Ridge, on the vertical and horizontal distributions of micronekton. The conditions for the formation of Taylor columns are presented. The influence of environmental variables and productivity on micronekton communities at La Pérouse and MAD-Ridge are investigated. Micronekton's diel vertical migration patterns are also revisited in light of the acoustic and environmental data collected. Chapter 4 investigates the prevailing environmental conditions at the La Pérouse and MAD-Ridge seamounts using satellite data. The distributions and assemblages of micronekton communities are presented, using a combination of mesopelagic trawl data and a multifrequency acoustic visualisation technique. This acoustic visualisation technique has allowed the investigation of the relative contribution of each frequency to the overall backscatter and identification of dense aggregations of scatterers associated with the seamounts' summits and flanks. Micronekton's vertical and horizontal distributions and the different migration strategies of various species are analysed in more detail.

Figure 2 . 1

 21 Figure 2.1 Major ridge system, basins and two hotspots of the Indian Ocean bounded by the African, Asian, Australian and Antarctic continents [Source: adapted from Tomczak & Godfrey, 2002].

Figure 2 . 2

 22 Figure 2.2 Temperature-Salinity diagrams indicating the water masses in the SWIO. Conservative Temperature (°C) vs. Absolute Salinity (g kg -1 ) (as in Vianello et al., 2020) profiles (a) to the North West of Réunion Island, and (b) south of Madagascar, showing the AAIW (Antarctic Intermediate Water), SICW (South Indian Central Water), SAMW (Sub-Antarctic Mode Water), STUW (Subtropical Under Water) and Tropical surface Waters. The Red Sea Water and uCDW (upper Circumpolar Deep Water) were observed to the north-west of Réunion Island.

Figure

  Figure 2.3 Schematic diagram of major surface currents (yellow and orange arrows) in the SWIO, labelled AC (Agulhas Current), SEC (South Equatorial Current), SEMC (South East Madagascar Current), NEMC (North East Madagascar Current), EACC (East Africa Coastal Current), ARC (Agulhas Return Current), AL (Agulhas Leakage). Atmospheric circulation over Southern Africa is also shown (grey lines). The Mozambique Channel (MC) and Transkei Basin (TB) are labelled. The Intertropical Convergence Zone (ITCZ) and the Congo AirBoundary (CAB) (dashed lines) are labelled. U1476, U1477, U1478, U1474, U1479 and U1475 represent drill sites during the International Ocean Discovery Program, IODP, JOIDES Resolution, Expedition 361. The colour bar indicates bathymetry (m) [Source: Hall et al., 2017].

Figure 2 .

 2 Figure 2.4 Longhurst's (1998) biogeochemical provinces EAFR (East African Coastal Province) and ISSG (Indian South Subtropical Gyre) of the SWIO.

Figure 2 . 5

 25 Figure 2.5 Relative contributions of diatoms, flagellates and prokaryotes within the ISSG and EAFR provinces.

Figure 2 . 7

 27 Figure 2.7 Trajectories of humpback whale stocks and sub-stocks (coloured) recognised by the International Whaling Commission. Arrows represent the postulated migration routes of humpback whales in the SWIO from the sub-Antarctic region [Source:[START_REF] Ersts | Observations of individual humpback whales utilising multiple migratory destinations in the south-western Indian Ocean[END_REF][START_REF] Trudelle | Baleines à bosse de l'Hemisphere sud on fait le point! Etudier les déplacements des baleines à bosse dans leurs zones de reproduction[END_REF].

Figure 2 . 8

 28 Figure 2.8 Schematic illustration of the niche partitioning of ALB (Albacore tuna), BET (Bigeye tuna), SKJ (Skipjack tuna) and YFT (Yellowfin tuna) in the western Indian Ocean. The bars represent the importance of the main prey categories (squid: black; crustacean: white; fish: grey) in the diet of each predator. The histograms represent the size distribution of the prey for each predator with the maximum prey size being 500 mm [Source:[START_REF] Olson | Bioenergetics, Trophic Ecology and Niche Separation of Tunas[END_REF].

Figure 2 .

 2 Figure 2.9 Catches (in 1000 tons) from 1977-2015 for the most commonly caught deep-sea fishes from the Southern Indian Ocean (Source: FAO, 2016).

Figure 2 .

 2 Figure 2.10 Longline catches (by 1° square) of yellowfin (YFT), bigeye (BET), albacore (ALB) tunas and swordfish (SWO) in tons from France (Réunion Island), Mauritius and Seychelles fleets in the SWIO from 2001-2017. Neighbouring countries' Exclusive Economic Zones are shown by blue lines [Data Souce: IOTC C/E database, 2018].

Figure 2 .

 2 Figure 2.11 Longline catches (by 5° square) of yellowfin (YFT), bigeye (BET), albacore (ALB) tunas and swordfish (SWO) in tons from 1995 to 2015, combining all longline fleets operating in the Indian Ocean. Isobaths are represented in the background (1000 m depth interval). The 2000 m isobaths is represented by a black line [Data sources: IOTC C/E database, (2018) and ETOPO1 database].

(

  SIODFA) and implementation of benthic protected areas (BPA) on the high seas within the Southern Indian Ocean Fisheries Agreement (SIOFA) boundary. However, significant knowledge gaps identified during the 2016-2017 SIOFA meetings have led to the rejection of a proposal to convert SIODFA's BPAs into formal VME (Vulnerable Marine Ecosystem) closures (Guduff et al., 2018). More recently, five new protected areas on the high seas have been declared by SIOFA at its MoP5 (5 th Meeting of the Parties in 2018) encompassing Atlantis Bank, Coral seamount, Fool's Flat, Middle of What seamount and Walters Shoal seamount (IUCN, 2018). However, these closures apply only to bottom trawling and do not cover other fishing gears. Very few areas are regularly or completely closed on the high seas of the SWIO, with few exceptions to the south-eastern coast of South Africa and further south towards the Southern Ocean[START_REF] Guduff | Laying the foundations for management of a seamount beyond national jurisdiction[END_REF].

Figure 2 .

 2 Figure 2.12 Map of the SWIO showing the distribution of seamounts having elevations >1000 m and protected, closed and access regulated areas. The EEZ and extended continental shelf of states in the region are denoted, along with areas with conservation incentives. Deep sea mining exploration for polymetallic sulphides, crusts and nodules by China, Germany, India and Korea are shown (Source:[START_REF] Guduff | Laying the foundations for management of a seamount beyond national jurisdiction[END_REF].

Figure 2 .

 2 Figure 2.13 Seamounts being the focus of dedicated research cruises from 1964 to 2017: La Pérouse-in the Mascarene Basin; MAD-Ridge-along the Madagascar Ridge; WS-Walters Shoal at the southern tip of the Madagascar Ridge; Atlantis, Sapmer, MoW-Middle of What, Melville and Coral along the SWIR. The colour bar represents depth (m) below the sea surface.

  and in the Southern Indian Ocean (UNEP, 2006). Deep-sea polychaetes were sampled at Coral, Melville, Middle of What and Atlantis seamounts across the SWIR. The most common benthic organisms along the SWIR were hard corals, octocorals and sponges (Rogers & Taylor, 2011). Atlantis Bank was also shown to host large populations of sea fans, siphonophores, lobsters and crabs. Across the SWIR, at Coral, Melville, Middle of What and Atlantis seamounts, a total of 122 solitary and 27 colonial scleractinian corals were collected at depths between 172 and 1395 m, corresponding to specific water masses including the subtropical waters, AAIW and uCDW (upper Circumpolar

Figure 2 .

 2 Figure 2.14 Benthic litter densities (items ha -1 ) and composition, observed by remotely operated vehicle video systems, for seamounts of the SWIR [Source: adapted from Woodall et al., 2015].

Figure 2

 2 Figure 2.15 Bathymetry along the West-East and South-North transects at (a) La Pérouse and (b) MAD-Ridge seamounts.The colour bar represents the depth (m) below the sea surface.

  Mesoscale cyclonic and anticyclonic eddies spin off the SEMC and are advected to MAD-Ridge seamount. The dipole occurrence within the vicinity of MAD-Ridge pinnacle was estimated at 38.5% from 1993 to 2016. During MAD-Ridge cruise, an eddy dipole was present in the vicinity of the pinnacle, with the anticyclonic eddy being stationed on the seamount. The resulting mesoscale activity during MAD-Ridge cruise led to the shoaling of nutrients (nitrate, nitrite, phosphate and silicate) in the euphotic zone within the cyclonic eddy and over the shelf, and deepening of nutrients within the anticyclone (Fig.2.17).

Figure 2 .

 2 Figure 2.17 Concentrations of nitrate, nitrite, silicate and phosphate (µmol l -1 ) along cyclonic (labelled C) and anticyclonic (labelled AC) stations across the West-East and the anticyclonic (AC) stations and shelf (labelled S) stations across the South-North transects during MAD-Ridge cruise.

  authors Rocke et al. (2020) investigated the pico-and nanoplankton composition in the upper 250 m of the water column at MAD-Ridge seamount and the main findings of the research are presented below. The MAD-Ridge cruise recorded enriched picoplankton and nanoplankton carbon biomass within the cyclonic eddy (probably partially due to the higher nitrite concentrations), and at the edges of the anticyclonic eddy. In the anticyclone sampled during the cruise, picoeukaryotes and Prochlorococcus dominated carbon biomass over Synechococcus. Picoeukaryotes dominated the bulk of the carbon biomass within the size fraction (0.2-2 µm) along the West-East and North-South transects, likely resulting from suitable conditions brought about by fresh nutrients and organic matter being entrained from the Madagascar shelf to the euphotic zone at MAD-Ridge. Overall, low picoplankton biomass were recovered over the MAD-Ridge pinnacle itself due to possible current disturbance and competition between different phytoplankton types for regenerated nutrients. However, the authors reported a peak in picoplankton biomass near the slope of the seamount at station 19(Fig. 2.19) between 40-100 m depth. They attributed this peak to a response due to enhanced turbidity on the slopes[START_REF] Vianello | Circulation and hydrography in the vicinity of a shallow seamount on the northern Madagascar Ridge[END_REF] along with nutrient enrichment from the anticyclone which likely contributed to the resuspension of organic matter into the water column[START_REF] Rocke | Pico-and nanoplankton composition on a seamount, south of Madagascar, using flow cytometry[END_REF].[START_REF] Jasmine | Hydrographic and productivity characteristics along 45°E longitude in the southwestern Indian Ocean and Southern Ocean during austral summer 2004[END_REF] have shown pico-and nanoplankton to contribute ~90% of total chlorophyll a present in oligotrophic areas. Picoplankton are believed to be dominant under nitrate-depleted conditions due to their high surface area to volume ratio and sustain secondary production (mostly zooplankton) through the microbial foodweb[START_REF] Jasmine | Hydrographic and productivity characteristics along 45°E longitude in the southwestern Indian Ocean and Southern Ocean during austral summer 2004[END_REF].

Figure 2 .

 2 Figure 2.19 Integrated Prochlorococcus, Synechococcus and Picoeukaryotes carbon biomass (in µgC m -2 ) and chlorophyll concentrations (in mg m -2 ) for all stations within the cycylone (labelled C) along the West-East and within the anticyclone (labelled AC) along the North-South transects during the MAD-Ridge cruise [Source: Rocke et al., 2020].

  Pérouse and MAD-Ridge vs. Walters ShoalThe ichthyoplankton faunal assemblages were investigated at La Pérouse, MAD-Ridge and Walters Shoal by[START_REF] Harris | Ichthyoplankton assemblages at three shallow seamounts in the South West Indian Ocean[END_REF] are the main findings of these studies are summarized below. MAD-Ridge recorded a greater number of species, species diversity and density of fish larvae than La Pérouse and Walters Shoal (Fig.2.20). MAD-Ridge further recorded a greater number of neritic fish larvae relative to La Pérouse and Walters Shoal (Fig.2.20). The authors attributed these observations to the transport of larvae from the nearby coastal waters and from the Madagascar continental slope by mesoscale eddies.

Figure 2 .

 2 Figure 2.20 Larval fish densities (no. 100 m -3 ) and bottom depth (m) at each station for (a) La Pérouse, (b) MAD-Ridge and (c) Walters Shoal. DS represents stations found in the deep-sea, SL represent slope stations, SU-summit stations [Source: Harris et al., 2020].

  MAD-Ridge seamounts (27°29'S and 46°16'E). La Pérouse (summit depth ~60 m) is located along the north-western boundary of the ISSG province and MAD-Ridge (summit depth ~240 m) is located on the southern boundary of the EAFR (Fig.3.1a). The La Pérouse cruise (DOI: 10.17600/16004500) investigated the area within 10-18 km around the seamount from the 15 to 30 September 2016 (Fig. 3.1b). The MAD-Ridge Leg 1 cruise (DOI: 10.17600/16004800) was divided into a West-East transect (248 km long from hydrographic station 1 to 15) and a South-North transect (292 km long from hydrographic station 16 to 31) and took place from the 8 to 24 November 2016 (Fig. 3.1a and 3.2a).

Figure 3

 3 Figure 3.1(a) Map of MAD-Ridge and La Pérouse CTD stations (diamond symbols) conducted in the East African Coastal (EAFR) and Indian South Subtropical Gyre (ISSG) provinces respectively. Longhurst's (1998) biogeochemical provinces are delimited by black solid lines. Landmasses are shown in grey and seamount summits in red. (b) The La Pérouse CTD stations are plotted on the bathymetry (m). The colour bar represents the depth below the sea surface.

Leg 1

 1 of the MAD-Ridge cruises: 38 kHz at 1000 W transmitted power, 70 kHz (acquired range of 500 m) at 750 W, 120 kHz (250 m) at 200 W and 200 kHz (150 m) at 90 W. The water column was correctly sampled to a depth of 735 m during data acquisition for the 38 kHz frequency of the La Pérouse cruise,with data being of poor quality below that depth. For comparison with the La Pérouse cruise, echointegrated acoustic data for the 38 kHz frequency of the MAD-Ridge cruise has also been selected down to 735 m in this chapter. The pulse duration was set at 0.512 ms. The transducers were calibrated prior to both cruises following the procedures recommended in[START_REF] Foote | Calibration of acoustic instruments for fish density estimation: a practical guide[END_REF]. MAD-Ridge acoustic data were collected along the West-East and South-North transects (Fig.3.2a) at a vessel speed of 8-9 knots. Additional transects were also conducted during day and night in close proximity to the MAD-Ridge summit and flanks at vessel speed of 8-9 knots (see Fig. 3.7 a, b) The Matecho software (an open source IRD tool computed with MATLAB 7.11.0.184, Release 2010band based on the IFREMER's Movies3D software;

  The volume backscattering strength (Sv, dB re 1 m-1 ; MacLennan et al., 2002) was also calculated for each frequency (38 kHz, 70 kHz and 120 kHz) to obtain the relative acoustic density of scatterers per unit volume and was used to generate Red Green Blue (RGB) composite images (see next section). The water column at the 38 kHz frequency was separated into the following depth categories, based on epipelagic and mesopelagic layers: surface (10-200 m), intermediate (200-400 m), deep (400-735 m) and total water column (10-735 m). Diurnal and nocturnal periods were assessed using Matecho software through visual analysis of the echograms.

  were mapped from the surface to ~1000 m (except for chlorophyll) along the West-East and South-North transects of MAD-Ridge Leg 1 (Fig.3.2b, c) using the Section mode of the software Ocean Data View(ODV, version 4.5.7;[START_REF] Schlitzer | Ocean Data View[END_REF]. The chlorophyll a data were only mapped from the surface to 300 m because values were below the minimum level of detection deeper than that (Fig.3.2d). Data interpolation between sampling stations was carried out using the DIVA (Data-Interpolating Variational Analysis) gridding option in ODV that spatially interpolates observations on a regular grid in an optimal way by taking into account coastlines and bathymetric features to structure and divide the domain on which estimations are performed. Acoustic data were represented using RGB colour coding. RGB composite images were generated in MATLAB (version 2016) based on the 38 kHz, 70 kHz and 120 kHz echo-integrated acoustic data of selected transects during the MAD-Ridge and La Pérouse cruises. The 38, 70 and 120 kHz echointegrated acoustic data were given in red, green and blue colour codes respectively on each RGB plot, with the dynamic of the Sv values in dB for each frequency being converted in 256 levels (0-255) of each colour. A linear transformation of the backscatter was applied to each frequency (fr): Colour index (fr) = [255/ (High scale threshold -Low scale threshold)] × [Sv (fr) -Low scale threshold], Eq. 3 where the high and low scale thresholds are the maximum and minimum backscatter for hue visualisations, respectively. Sv (fr) is the backscatter value at each frequency. This acoustic visualisation technique is useful in determining the relative contribution of each frequency to the overall backscatter (red means that Sv 38 is dominant, and similarly for green and blue, Sv 70 and Sv 120 are respectively dominant) and to identify dense aggregations of scatterers (Sv 38, Sv 70 and Sv 120 all dominant and seen as "white patches"). On a RGB composite image based on the 38, 70 and 120 kHz frequencies, a dark red colour indicates a dominant but low 38 kHz backscatter, whereas a light red colour indicates a dominant but high 38 kHz backscatter. The same rule applies to the green (70 kHz) and blue (120 kHz) hues. Kloser et al. (2002) used a similar approach, but the composite image was produced by assigning a separate colour palette to each frequency (12, 38 and 120 kHz) and dynamically optimising the frequencies to highlight the amplitude differences in the echogram.

  3.7a, b). As the 38 kHz frequency data did not follow a normal distribution, nonparametric Wilcoxon rank sum tests were performed to investigate the overall acoustic densities in each of the depth categories (surface: 10-200 m, intermediate 200-400 m and deep: 400-735 m) between La Pérouse and MAD-Ridge seamounts, and between day and night. Daytime acoustic density estimates representing the vertical distribution of micronekton across the depth categories (surface, intermediate, deep and total water column: 10-735 m) and averaged over 0.4 nmi on each side of the classified stations during MAD-Ridge cruise were investigated using non-parametric Kruskal-Wallis (KW) tests and pairwise Wilcoxon rank sum tests. All statistical tests were performed with version 3.3.1 of the R package.

Figure 3

 3 Figure 3.2(a) Satellite surface absolute dynamic height (m) on 19 November 2016 during MAD-Ridge cruise. Geostrophic velocity vectors (m s -1 ) (black arrows) and the position of CTD stations numbered 1 to 31 (grey dots) are superimposed along the West-East (W-E) and South-North (S-N) transects. The Madagascan landmass is shown in orange.

Figure 3 . 2

 32 Figure 3.2 Vertical distributions of (b) current speed (cm s -1 ), (c) temperature (°C), and (d) chlorophyll a (mg m -3 ) for MAD-Ridge Leg 1 West-East transect (CTD stations labelled 1-15, left panels) across the cyclonic (C) and anticyclonic (AC) eddies, and South-North transect (CTD stations labelled 16-31, right panels ) across the anticyclonic eddy and on the Shelf (Sf). Thhe MAD-Ridge seamount and the Madagascan shelf are shown in grey.

  The anticyclonic, Summit/AC and Flank/AC stations were characterised by a relatively deeperthermocline (159-219 m, 206-209 m and 181-212 m, respectively)(Fig. 3.2c). Fmax values of 0.35-0.38 mg m -3 and 0.62-0.74 mg m -3 were recorded at the cyclonic and shelf stations respectively, at depths of 54-122 m and 56-73 m, respectively (Fig. 3.2d). The anticyclonic, Summit/AC and Flank/AC stations had deeper Fmax depths (82-129 m, 131-153 m and 101-

Figure 3

 3 Figure 3.3(a) West-East (W-E) transect of MAD-Ridge: Mean micronekton acoustic density (sA, m 2 nmi -2 ) from Day_I to Day_V and Night_I to Night_IV: grey for surface layer (10-200 m), white for intermediate layer (200-400 m) and black for deep layer (400-735 m). Stacked bars are labelled: C (Cyclonic), C/D.I (Cyclonic/Dipole Interface), S/AC (Summit/ Anticyclonic), AC (Anticyclonic), AC/P (Antycyclonic/Eddy periphery) and D.I (Dipole Interface).

Figure 3

 3 Figure 3.3(b) Echogram of the 38 kHz frequency across CTD stations 6-8 (denoted by striped bars). Deep topographic features X and Y and MAD-Ridge seamount are labelled in red. The colour bar indicates sA in m 2 nmi -2 . Periods corresponding to sunset, night, sunrise and day are denoted by red, blue, violet and gold horizontal rectangles, respectively.

Figure 3

 3 Figure 3.3(c) RGB composite images of Sv values (dB re 1 m -1) across cyclonic CTD stations 2-3 and 4 and anticyclonic stations 10-12 and stations 13-15 (denoted by striped bars). The 38, 70 and 120 kHz frequencies were given red, green and blue colour codes, respectively, as explained in the methods. Periods corresponding to sunset, night, sunrise and day are denoted by red, blue, violet and gold horizontal rectangles, respectively.

Figure 3

 3 Figure 3.4(a) South-North (S-N) transect of MAD-Ridge: Mean micronekton acoustic density (sA, m 2 nmi -2 ) from Day_VI to Day_X and Night_VI to Night_IX: grey for surface layer (10-200 m), white for intermediate layer (200-400 m) and black for deep layer (400-735 m).Stacked bars are labelled: AC (Anticyclonic), AC/F/S (Anticyclonic/Flank/Summit), S/F/AC (Summit/Flank/Anticyclonic), AC/P (Anticyclonic/Eddy periphery) and AC.P/S (Anticyclonic eddy periphery and shelf), S/AC (Summit/Anticyclonic) and AC.P (Anticyclonic eddy periphery).

Figure 3

 3 Figure 3.4(b) RGB composite images of Sv values (dB re 1 m -1 ) at anticyclonic CTD stations 21-23 and shelf stations 30-31 (labelled by striped bars). The 38 kHz, 70 kHz and 120 kHz frequencies were given red, green and blue colour codes, respectively. Periods corresponding to sunset, night, sunrise and day are denoted by red, blue, violet and gold horizontal rectangles, respectively on the plots.

Figure 3

 3 Figure 3.5(a) Boxplots of the total micronekton acoustic densities (sA, m 2 nmi -2 ) of the 38 kHz frequency in the deep (400-735 m), intermediate (200-400 m), surface layers (10-200 m) and total water column (10-735 m) for the transects at CTD stations[10][11][12][13][16][17][18][19] 24, 25 (AC: anticyclonic); 2, 3, 4 (C: cyclonic); 5(Dipole Interface); 7, 9, 20, 23 (Flank/AC); 30, 31 (Shelf); and 8, 21, 22 (Summit/AC) of the MAD-Ridge cruise.

  3.5b-f). The seamount summit stations did not exhibit remarkable micronekton acoustic densities, nor integrated chlorophyll a and mean zooplankton biovolumes among station categories (Fig. 3.5a, e, f). The station at the dipole interface recorded the lowest micronekton acoustic densities, although values were not significant (p < 0.05) compared with the other station categories, and were characterised by slightly negative SLA (Fig. 3.5a, b) and the highest mean current speed between of 99.1 m s -1 relative to all other stations (mean ± S.D. of 40.6 ± 19.2 m s -1 ).

Figure 3 . 5

 35 Figure 3.5 Mean and standard deviations of the variables (b) SLA (m), (c) Temperature at 100 m, (d) Fmax depth (m), (e) integrated chlorophyll a between 2-200 m (mg m -3 ), and (f) zooplankton biovolume (mm 3 m -3 ) plotted for the AC, C, Dipole I., Flank/AC, Shelf and Summit/AC stations.

Figure 3 . 6

 36 Figure 3.6 Satellite surface absolute dynamic height (m) on 16 September 2016 during the La Pérouse cruise showing La Pérouse seamount (black star). Geostrophic velocity vectors (m s - 1 ) (black arrows) are superimposed. Réunion landmass is shown in orange.

  Wilcoxon tests performed on the 38 kHz frequency showed the overall acoustic densities of the depth categories (surface, intermediate and deep) differed significantly between La Pérouse and MAD-Ridge and between day and night (p < 0.05) along the transects mapped in Fig. 3.7. The mean acoustic densities for the 38 kHz frequency of the total water column (10-735 m) were lower over La Pérouse summit and flanks (Fig. 3.7a) during day (653 ± 689 m 2 nmi -2 ) and night (903 ± 600 m 2 nmi -2 ) relative to MAD-Ridge (Day: 1448 ± 1268 m 2 nmi -2 ; Night: 2261 ± 1035 m 2 nmi -2 ) summit and flanks (Fig. 3.7b). During the day and the night, the surface layer displayed a greater percentage of acoustic responses relative to the deep layer both at La Pérouse (Day -Surface: 87.5%, Day -Deep: 7.2%; Night -Surface: 94.2%, Night -Deep: 0.6%) and MAD-Ridge (Day -Surface: 57.2%, Day -Deep: 34.6%; Night -Surface: 74.3%, Night -Deep: 17.0%). The intermediate layer displayed percentage acoustic densities of 5-9% during day and night and at both seamounts.

Figure 3 . 7

 37 Figure 3.7 Map of La Pérouse and MAD-Ridge, daytime (yellow lines) and night-time (blue lines) acoustic transects plotted on the bathymetry. The colour bar indicates bathymetry (m) and the scale bar is given. Bar charts of mean micronekton acoustic densities (sA, m 2 nmi -2 ) ± standard deviations during day and night: grey for surface layer (10-200 m), white for intermediate layer (200-400 m) and black for deep layer (400-735 m) at (a) La Pérouse and (b) MAD-Ridge. RGB composite images showed relatively low but dominant 38 kHz backscatter between depths of ~20 and 60 m both at La Pérouse (Fig. 3.7c) and MAD-Ridge (Fig. 3.7d) during the day. A stronger response to the 120 kHz frequency relative to the 38 kHz frequency was observed between ~100 and 180 m at La Pérouse and between ~100 and 125 m at MAD-Ridge during the day. At night, the 38 kHz backscatter was overall stronger and more dominant relative to the 70 kHz backscatter between depths of ~20 and 180 m both at La Pérouse and MAD-Ridge (Fig. 3.7e and 3.7f). Regions of high acoustic densities (seen as "white patches" on RGB composite images) were observed at the La Pérouse and MAD-Ridge summits during day and night (Fig. 3.7c, d, e and f).

Figure 3

 3 Figure 3.7 RGB composite images of SV values (dB re 1 m -1 ) of (c) La Pérouse day, (d) MAD-Ridge day, (e) La Pérouse night and (f) MAD-Ridge night. The MAD-Ridge and La Pérouse summits are shown in black. The 38, 70 and 120 kHz frequencies were given red, green and blue colour codes respectively. Regions of high SV are denoted by "white patches" on the RGB composites.
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 4 Photo Credit: Ukarapo T. Mungunda (Honours in Marine Biology, UCT) Photo title: The Beauty and the Beast Digital Imaging Techniques: Nikon Stereoscopic Zoom Microscope SMZ1500 with a ring light and fibre optic arms, at 0.75 X Magnification. The Nikon DS Camera Control Unit DS-U2 & DS-5M Camera head and NIS-Elements imaging program was used.

  54°10'E on board the RV Antea from the 15 th to the 30 th of September 2016, departing from/returning to Réunion Island (Fig. 4.1a). MAD-Ridge cruise (DOI: 10.17600/16004800 and 10.17600/16004900) was divided into two legs: Leg 1 from Réunion Island to Fort Dauphin (Madagascar) from 8 to 24 November 2016, and Leg 2 from Fort Dauphin (Madagascar) to Durban (South Africa) from 26 November to 14 December 2016. MAD-Ridge seamount (latitude 27°28.38'S and longitude 46°15.67'E), was sampled for acoustics and trawling during Leg 2 of this cruise on board the RV Antea (Fig. 4.1b).
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 41 Figure 4.1 Map of the (a) La Pérouse trawl stations numbered 1 to 10, (b) MAD-Ridge trawl stations numbered 1 to 17 plotted on the bathymetry (m). The colour bar indicates depth below the sea surface (m). ISSG and EAFR refer to Longhurst's (1998) biogeochemical provinces. "Trawl MZC" refers to Trawl #21 carried in the Mozambique Channel.

  frequencies during both cruises: 38 kHz (750 m of acquired range), 70 kHz (500 m), 120 kHz (250 m) and 200 kHz (150 m). The transducers were calibrated prior to the cruises following the procedures recommended in[START_REF] Foote | Calibration of acoustic instruments for fish density estimation: a practical guide[END_REF]. The pulse duration was set at 0.512 ms and the transmitted power at 1000 W (38 kHz), 750 W (70 kHz), 200 W (120 kHz) and 90 W (200 kHz) during data acquisition periods. The water column was correctly sampled to a depth of 750 m during data acquisition for the 38 kHz frequency. La Pérouse acoustic data were intermittently recorded during transits and few mesopelagic trawl stations. The acoustic transects during MAD-Ridge transit periods were petal-shaped (Petals I-VII, see Fig. 4.3a), starting from the seamount summit either at sunset between 3:48 pm and 4:10 pm Universal Time (Petals I-II) or at night between 6:13 pm and 7:20 pm (Petals III-VII) until the next morning between 05:38 am and 06:29 am (see Fig. 4.3b-h). Acoustic data were processed with the Matecho software (an open source IRD tool computed with MATLAB 7.11.0.184, Release 2010b-and based on the Ifremer's Movies3D software;[START_REF] Trenkel | Overview of recent progress in fisheries acoustics made by Ifremer with examples from the Bay of Biscay[END_REF][START_REF] Perrot | Matecho: An open-source tool for processing fisheries acoustics data[END_REF]. Acoustic data sampled during transit (~8-9 knots) and trawl stations (~2-3 knots) were processed and echo-integrated separately, with different parameters to account for the differing ship speed. Transient (multiple pings) and background noises, bottom echoes and attenuated signals were removed using the algorithms designed by De Robertis & Higginbottom (2007) and[START_REF] Ryan | Reducing bias due to noise and attenuation in open-ocean echo integration data[END_REF]. The first 10 m below the sea surface was removed to account for the presence and over amplification of the signal due to surface bubbles. Echo-integrations of acoustic data were performed on 1-m layers at a threshold of -80 dB to exclude scatterers not representative of the micronekton community[START_REF] Béhagle | Acoustic distribution of discriminated micronektonic organisms from a bi-frequency processing: The case study of eastern Kerguelen oceanic waters[END_REF]. The echo-integration cell size was fixed at 0.1 nmi during transit periods and at 10 pings during trawl stations. The volume backscattering strength (Sv, dB re 1 m-1 , MacLennan et al., 2002) was calculated to obtain the relative acoustic densities of scatterers per unit volume. The water column was separated into three depth categories, based on epi-mesopelagic layers: surface/shallow (10-200 m), intermediate (200-400 m) and deep (400-750 m). Red Green Blue (RGB) composite images were generated in MATLAB (version 2016), based on the 38, 70 and 120 kHz MAD-Ridge echo-integrated acoustic data. This acoustic visualisation technique is useful in determining the relative contribution of each frequency to the overall backscatter, in identifying the different scattering layers and dense micronekton aggregations. It is used to enhance and colour-code sample volumes with similar acoustic features. The 38, 70 and 120 kHz echo-integrated acoustic data were given in red, green and blue colour codes respectively on each RGB plot, with the dynamic of the Sv values for each frequency being converted in 256 levels of each colour. A linear transformation of the backscatter was applied for each frequency: Colour index (fr) [0 to 255] = [255/ (High scale threshold -Low scale threshold)] x [Sv (fr) -Low scale threshold], whereby the high scale threshold is the maximum backscatter for hue visualisation, the low scale threshold is the minimum backscatter for hue visualisation and Sv (fr) is the backscatter value at frequency (fr) which can be the 38 kHz/70 kHz/120 kHz frequency.

  On an RGB composite image based on the 38, 70 and 120 kHz echo-integrated acoustic data and given in red, green and blue colour codes respectively, a dark red colour indicates a dominant but low 38 kHz backscatter, whereas a light red colour indicates a dominant and high 38 kHz backscatter. The same rule applies to the blue (120 kHz) and green (70 kHz) hues. A black dominating hue on the RGB plot indicates that all backscatter values are under the low scale threshold of -80 dB.

  4.1a and 5.1b). Trawl MZC (#21) was carried in the Mozambique Channel (Fig.4.1) and will be used as reference for open-water trawls compared to trawls 1-17 carried at MAD-Ridge seamount. A 40m long International Young Gadoid Pelagic Trawl (IYGPT) was used, having an 80 mm knotless nylon delta mesh netting at the front tapering and 5 mm at the codend and a mouth opening of ~96 m 2 . The trawl was towed at a ship speed of 2-3 knots at the targeted depth for 60 min during La Pérouse cruise and 30 min during MAD-Ridge cruise. During both cruises, the sampling depth was that of the sound scattering layer in that ship position and at that time of day, with no rigid plan of sampling preselected depths. Trawl depth was monitored with a Scanmar depth sensor during both cruises. The total volume of water filtered by the net tows was calculated by multiplying the distance travelled during the tows by the area of the trawl mouth opening to account for the differing sampling durations during the cruises. The total volume of water filtered during La Pérouse ranged from 379 408 m 3 to 871 181 m 3 , and from 154 086 m 3 to 312 321 m 3 during MAD-Ridge. Trawl stations were further classified into the categories-summit, flank and vicinity, according to whether they occurred on the summit plateaus of the seamounts, on the slopes (carried out within 2 km from the baseline), or within the vicinity of the seamounts (i.e. any trawl not carried out on the summit and flanks) (as in[START_REF] Marsac | Seamount effect on circulation and distribution of ocean taxa at and near La Pérouse, a shallow seamount in the southwestern Indian Ocean. Deep-Sea II[END_REF].

  3.1) vegan package (version 2.5-1,[START_REF] Oksanen | Package 'vegan': Community Ecology Package, R package version 2[END_REF]. The PRIMER v6 software was used to perform multivariate analyses according to[START_REF] Clarke | Change in Marine Communities: An Approach to Statistical Analysis and Interpretation[END_REF] on La Pérouse and MAD-Ridge micronekton abundance datasets to test for the effects of depth (shallow, deep or intermediate), trawl location (vicinity, flank or summit) and time of day (day or night) on micronekton abundance and to identify the shallow-dwelling/deep-dwelling and seamount-associated/resident fauna.

4

  .2b). The MSLA during MAD-Ridge Leg 1 was ~10 cm at the eddy periphery and ~40 cm within the core of the anticyclone. The annual primary productivity, derived from satellite observations, followed the same pattern in both regions of La Pérouse and MAD-Ridge seamounts, with maximum values reached in July, as a result of an intense mixing caused by the austral winter trade winds, and minimum values observed during austral summer (January-March and November-December) (Fig.4.2c). Both La Pérouse and MAD-Ridge cruises took place during a decreasing trend of oceanic productivity. Although, the annual mean chlorophyll a concentration depicted the same cycle at both seamounts, chlorophyll a concentrations at MAD-Ridge were twice higher than at La Pérouse all year round.

Figure 4 . 2

 42 Figure 4.2 Averaged sea level anomaly (MSLA) map, with La Pérouse and MAD-Ridge seamounts shown as black star symbols, and dated (a) 16-28 September 2016, (b) 14-23 November 2016. The colour bar indicates the SLA in cm, with positive SLA (red) and negative SLA (blue). (c) Averaged satellite image of surface chlorophyll a distribution from 18/09/2016 to 07/12/2016. Monthly mean surface chlorophyll a values for the region defined by the red squares are depicted from January to December 2016. The dates of La Pérouse and MAD-Ridge cruises are marked by grey bars on the monthly mean plot. The colour bar indicates the surface chlorophyll a concentration in mg m -3 .

  highest mean acoustic densities (Sv) of the 38 kHz frequency were observed at night in the surface layer (10-200 m) across all petals (I-VII) at MAD-Ridge (Fig. 4.3a-h). The mean acoustic densities in the surface layer showed a decreasing trend at sunrise and during daytime (Petals I to VII, Fig. 4.3b-h) while gradually increasing in the deep layer across petals II to VI (Fig. 4.3c-g). The intermediate layer showed the lowest acoustic densities compared to the surface and deep layers, although a peak can be observed during sunrise when organisms vertically migrated towards deeper layers. A peak in daytime acoustic densities in the deep layer can be observed across petals II and IV (Fig. 4.3c and 4.3e), that can be attributed to an intensification of the backscatter over the seamount flanks (Fig. 4.4a, b and c).

Figure 4

 4 Figure 4.3(a) Petal-shaped acoustic transects I to VII carried at MAD-Ridge, starting at sunset/night (red/blue) at the summit (star symbol) and ending during the day (yellow) at the summit. Arrows give an example of change in ship direction. The Madagascar land mass is shown in grey. (b-h) Biomass density (Sv, dB re 1 m -1 ) estimates for the 38 kHz frequency in the surface (10-200 m, red), intermediate (200-400 m, grey), deep layers (400-750 m, black), and total water column (yellow) for Petals I-VII. The time of day is denoted by coloured rectangles and black arrowheads denote the change in ship direction. The position of MAD-Ridge seamount is denoted by grey rectangles on plots c-h.

Figure 4 . 4

 44 Figure 4.4 Echograms of the 38 kHz frequency during (a) Petal II at sunset, night, sunrise and daytime denoted by red, blue, violet and gold coloured rectangles respectively, (b) Petal III, and (c) Petal IV. Diel vertical migraton (DVM) at dusk is denoted for Petal II. Circular dotted lines denote the series of DVM events from the intermediate layer and from the SSL. The night SSL and day SSL are denoted by solid and dotted rectangles respectively. The DSL is denoted by solid rectangles. Backscatter from seamount-associated species are also noted. The colour bar indicates Sv in dB re 1 m -1 .

Figure 4

 4 Figure 4.5(a) Night-time acoustic transects III to VII from the MAD-Ridge seamount summit (star symbol) to 14 nmi from the summit. The Madagascar land mass is shown in grey. Arrow indicates ship direction.

Figure 4

 4 Figure 4.5(b) Acoustic density (Sv, dB re 1 m -1 ) estimates for the 38 kHz frequency in the surface layer (10-250 m) at night, from the summit (grey bar) to 14 nmi away from the seamount (vicinity), for Petals III to VII.

Figure 4

 4 Figure 4.5(c) RGB composites of Sv values (dB re 1 m -1) from 10-250 m for the selected acoustic transects III to VII, with the 38, 70 and 120 kHz frequencies given red, green and blue colour codes respectively.

  at MAD-Ridge (maximum species richness of 155) compared to La Pérouse (138), with the probability of encountering new or rare species with increasing fishing effort being higher at MAD-Ridge (Fig.4.6b). The length distributions of organisms captured during both La Pérouse and MAD-Ridge were heavily skewed towards smaller sizes. Most of the mesopelagic organisms captured were less than 100 mm (Fig.4.6c), except for a few larger nektonic squid such as Cranchiidae (339 mm-mantle length) and fish Nemichthyidae (614mm-standard length) during La Pérouse, and one salp (207 mm-total length), squid Ommastrephes bartramii (490 mm-mantle length) and fish Nemichthyidae (446 mm) during MAD-Ridge.

Figure 4 . 6

 46 Figure 4.6 At La Pérouse and MAD-Ridge seamounts, (a) boxplot of total abundance and biomass estimates (in ind m -2 and g WM -2 respectively), (b) species richness with increasing sampling effort (volume of water filtered in 1000 m 3 ), (c) length distributions of selected gelatinous plankton, crustaceans, cephalopods and epi-mesopelagic fishes sampled.

Figure 4

 4 Figure 4.7(a) Similarity cluster dendrogram of species abundance at La Pérouse trawl stations 1 to 10. Brackets represent cluster groups at 42% (Day shallow summit, Night deep flank, night shallow vicinity and flank; night intermediate vicinity and Night deep vicinity).

Figure 4

 4 Figure 4.7(b) Schematic diagram of La Pérouse seamount. Pie charts represent the abundance and biomass of gelatinous organisms in blue, crustaceans in orange, cephalopods in violet and fishes in yellow, within the cluster groups.
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 47 Figure 4.7 Bubble plot overlays of the MDS ordination representing the relative abundance of common (c) deep dwelling, (d) and seamount flank associated species. Trawl stations are numbered 1 to 10 on the bubble plots and dotted lines denote the 42% similarity clusters. The larger the bubble, the greater the number of individuals captured at that trawl station.

Figure 4

 4 Figure 4.8(a) Similarity cluster dendrogram of species abundance at MAD-Ridge trawl stations 1 to 17. Brackets represent cluster groups at 35% (Night shallow, vicinity and flank; Day deep, vicinity and flank); and 30% similarities (Night shallow, summit and flank).

Figure 4

 4 Figure 4.8(b) Schematic diagram of MAD-Ridge seamount. Pie charts represent the abundance and biomass of gelatinous organisms in blue, crustaceans in orange, cephalopods in violet and fishes in yellow, within the cluster groups.
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 48 Figure 4.8 Bubble plot overlays of the MDS ordination representing the relative abundance of common (c) shallow-dwelling and vertical migratory fish species, (d) deep-dwelling, (e) and seamount summit and flank associated fish species. Trawl stations are numbered 1 to 17 on the bubble plots and dotted lines denote the 35% and 30% similarity clusters. The larger the bubble, the greater the number of individuals captured at that trawl station.

  warmingii were caught across almost all trawls in the night SSL and DSL over the flanks and vicinity of the pinnacle (Fig. 4.9a). At MAD-Ridge, pyrosomes, salps, phyllosoma larvae, Abraliopsis sp. and the squid Enoploteuthidae were caught across almost all trawls in the day and night SSL, DSL and intermediate layer over the summit, flanks and vicinity of the seamount (Fig. 4.9b). The myctophid fish Hygophum hygomii was abundantly caught over the summit, flanks and in the vicinity of MAD-Ridge (Fig. 4.9b). Since the IYGPT net had no closing device, shallow water species might have contributed to the catch in deeper trawls as the net was lowered and retrieved. The backscatter intensity within the day SSL between 10 and 100 m over La Pérouse summit was lower compared to MAD-Ridge summit (Fig. 4.9a and b). Over La Pérouse summit, the day SSL consisted of a greater percentage abundance and biomass of gelatinous organisms including various types of jellyfishes, salps, and the siphonophore Diphyidae along with three leptocephali and one juvenile Chaetodon (Fig. 4.9a). The night SSL during La Pérouse cruise extended from the surface to 200 m. Over La Pérouse flanks, the night SSL consisted of high numbers of the unidentified crustaceans and the meso-bathypelagic squid Abraliopsis sp. and lower numbers of the cephalopods Cranchiidae, Oegopsida, Abralia sp., and Octopoda, and epi-, meso-and bathypelagic fishes of the Gonostomatidae, Malacosteidae, Myctophidae, Paralepididae and Synodontidae families. The night SSL in the vicinity of La Pérouse included similar specimens as those sampled over the flanks, such as pyrosomes, jellyfishes, salps, unidentified shrimps, phyllosoma larvae, Abraliopsis sp., Cranchiidae, and Octopoda, and various types of fishes of the Myctophidae family.

Figure 4

 4 Figure 4.9(a) Schematics of La Pérouse seamount, listing the most dominant taxa (gelatinous organisms in blue, crustaceans in orange, cephalopods in violet and fishes in yellow), within the cluster groups. The numbers in brackets indicate the number of individuals caught. Organisms are classified as being epi (epipelagic), meso (mesopelagic), bathy (bathypelagic) and bentho (benthopelagic). Echograms of the 38 kHz frequency at sunset, night, sunrise and daytime are denoted by red, blue, violet and gold coloured rectangles respectively. The series of DVM events from the intermediate layer and from the SSL are denoted by circular dotted lines. The night SSL and day SSL are denoted by solid and dotted rectangles respectively. The DSL is denoted by solid rectangles. Backscatter from seamount-associated species are also noted. The colour bar indicates Sv in dB re 1 m -1 .

  4.9a). D. suborbitalis were caught within the night SSL over the flanks of La Pérouse but not in the vicinity of the seamount. The night deep tows in the vicinity of La Pérouse consisted of the crustaceans Oplophoridae, unidentified shrimps, Sergestidae, Phronima, Funchalia sp., Pasiphaea spp., and Neognathophausia, the cephalopods Abraliopsis sp. and Octopoda, the weakly migrating/ non-migrating fishes A. aculeatus and A. hemigymnus and diel vertically migrating and mid-water migrating fishes of the Gonostomatidae, Melanostomiidae, Myctophidae, Stomiidae, Paralepididae, Scorpaenidae and Phosichthyidae families. Mid-water migrants showed earlier vertical migration from the intermediate to deeper layers at the end of the night, as shown by the echogram of the 38 kHz frequency. The majority of micronekton organisms however, migrated from the SSL to the DSL or deeper during sunrise in a series of migration events and contributed to the intensification of the backscatter within the DSL during daytime. The night SSL over MAD-Ridge summit consisted of the gelatinous plankton salps and pyrosomes, crustaceans Oplophoridae, and unidentified shrimps, squids Enoploteuthidae, Ornithoteuthis volatilis, Abraliopsis sp., and Onychoteuthidae, and a range of diel vertically migrating fishes of the Myctophidae, Nomeidae and Melanostomiidae families (Fig. 4.9b). Few individuals of the slope-associated benthopelagic fish C. japonicus and juveniles of the reefassociated fish Chaetodon were collected within the night SSL over MAD-Ridge summit. The night SSL over the flanks of MAD-Ridge consisted of the crustaceans Oplophoridae, Sergestidae, Funchalia sp., Euphausiacea and Phronima, squids including Ommastrephidae, mesopelagic fishes and high numbers of gelatinous plankton. D. suborbitalis were sampled in higher numbers within the night SSL over the flanks and in lower numbers within the day deep tow over the flanks and within the vicinity of the seamount.

Figure 4

 4 Figure 4.9(b) Schematics of MAD-Ridge seamount, listing the most dominant taxa (gelatinous organisms in blue, crustaceans in orange, cephalopods in violet and fishes in yellow), within the cluster groups. The numbers in brackets indicate the number of individuals caught. Organisms are classified as being epi (epipelagic), meso (mesopelagic), bathy (bathypelagic) and bentho (benthopelagic). Echograms of the 38 kHz frequency at sunset, night, sunrise and daytime are denoted by red, blue, violet and gold coloured rectangles respectively. The series of DVM events from the intermediate layer and from the SSL are denoted by circular dotted lines. The night SSL and day SSL are denoted by solid and dotted rectangles respectively. The DSL is denoted by solid rectangles. Backscatter from seamount-associated species are also noted. The colour bar indicates Sv in dB re 1 m -1 .
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 4 Figure4.10(a-d) RGB composites of Sv values (dB re 1 m -1) of trawls14 and 15 (flank), 16 (summit) and 21 (southern Mozambique Channel) during MAD-Ridge. White dotted lines represent the trawl path as determined from Scanmar depth sensor. The seamount summit is denoted by the black polygon and labelled accordingly. The 38, 70 and 120 kHz frequencies were given red, green and blue colour codes respectively. Corresponding frequency diagrams of the species count for trawls#14, 15, 16 and 21 and mean ± standard deviation of the frequency responses (in dB) during the "horizontal trawl fishing period" are given. Broad categories are coloured orange (crustaceans), yellow (fishes), blue (gelatinous organisms), and violet (cephalopods).

  At both La Pérouse and MAD-Ridge seamounts, the night SSL was shown to consist of gelatinous organisms (pyrosomes) and a range of common open-water swim-bladdered mesopelagic fishes that undergo DVM and are strong acoustic targets at the 38 kHz frequency.The day SSL, on the other hand, consisted of non-migrant gelatinous organisms, phyllosoma larvae, leptocephali (La Pérouse and MAD-Ridge) and few cephalopods (MAD-Ridge). While gelatinous organisms are strong targets at 38 khz, phyllosoma larvae, leptocephali and cephalopods are relatively weak targets at this frequency. Scattering layers being strong targets at the 70/120 kHz frequencies were observed at various distances from MAD-Ridge summit. These biological scatterers were not sampled by the IYGPT net but were shown to be associated with the depth of the maximum fluorescence (see Chapter 3). These organisms may be phytoplankton-eaters, siphonophores with pneumatophores smaller than those having a high response to the 38 kHz frequency (Arthur Blanluet, pers. comm.), or larger crustaceans that have a response to the 70 kHz frequency but have escaped the trawls. The day and night SSL may also have consisted of organisms that were horizontally advected in addition to species showing vertical migration (see Chapter 3).

  productivity, eddy dynamics, advection of productivity from the Madagascar landmass and connectivity with neighbouring seamounts and landmasses may result in greater micronekton species richness at MAD-Ridge compared to La Pérouse which is located in an oligotrophic environment. The night SSL (between 10 and 200 m) over the summit and flanks concentrated common open-water species of gelatinous (salps and pyrosomes), crustaceans (Euphausiacea, Funchalia sp. and phyllosoma larvae), squids (Enoploteuthidae, C. scabra and Abraliopsis sp.), and fishes (leptocephali, H. hygomii and various species of Diaphus spp.). In addition to the vertically migrant organisms forming the SSL, this study provided evidence that La Pérouse and MAD-Ridge seamounts support an important community of seamount-associated/resident fishes (La Pérouse and MAD-Ridge: D. suborbitalis; MAD-Ridge: B. fibulatum and C. japonicus) that occur in dense aggregations over the summits and flanks. Despite several shortcomings in this work, notably during La Pérouse and MAD-Ridge cruise sampling, this study fills an important knowledge gap. The combined use of satellite, mesopelagic trawl and acoustic data at the time of the cruises, provides an integrative and accurate picture as to the mechanisms involved in micronekton vertical/horizontal distributions and assemblages at shallow topographies. More importantly, this study helps contribute to our growing understanding of seamount ecosystems in the south-western Indian Ocean. Improving our knowledge of the ecosystems associated to shallow seamounts is a key issue towards the promotion of specific sustainable use and conservation measures dedicated to protecting such critical environments.

  abundances and taxonomic diversity at different sites and at different depths, these techniques provide little information about the link between micronekton and the other components of the foodweb. Chapter 5 hence aims at understanding the trophic relationships of the sampled micronekton with respect to POM and zooplankton. Tissues of micronekton organisms were analysed for stable isotopes of 13 C and 15 N to determine the sources of primary production and the trophic position of individuals respectively. The factors influencing the δ 15 N and δ 13 C values of consumer tissues were determined. A "seamount effect" in either depletion or enhancement of δ 15 N and δ 13 C values of micronekton were further investigated by investigating the values of omnivorous/carnivorous fishes collected over the flank, summit and vicinity of La Pérouse and MAD-Ridge relative to an off-seamount location in the southern Mozambique Channel.

  the trophic interactions of sampled mesopelagic organisms, (2) the influence of trophic groups, specimen size and time of sampling (MAD-Ridge only) on δ 13 C and δ 15 N values of micronekton, (3) the δ 13 C and δ 15 N values of omnivorous/carnivorous fishes collected over the flank relative to the vicinity of La Pérouse; and summit, flanks and vicinity of MAD-Ridge compared with an off-seamount location in the southern Mozambique Channel.

  , 160 km northwest of Réunion Island at latitude 19°43'S and longitude 54°10'E (Fig. 5.1a, b). The seamount summit reaches the euphotic zone, being ~60 m below the sea surface. The summit is 10 km long with narrow and steep flanks and rises from a depth of 5000 m from the ocean floor. This pinnacle was sampled on board the RV Antea from 15 to 29 September 2016 (DOI: 10.17600/16004500).

Figure 5

 5 Figure 5.1(a) Location of the MAD-Ridge and La Pérouse seamounts (black diamond symbols) in the East African Coastal (EAFR) and Indian South Subtropical Gyre (ISSG) provinces, respectively. Longhurst's (1998) biogeochemical provinces are delimited by black solid lines. Landmasses are shown in grey. Trawls #18-21 in the southern Mozambique Channel are shown by black stars and labelled "Trawl MZC". Map of (b) La Pérouse trawl stations numbered 1 to 10, (c) MAD-Ridge trawl stations numbered 1 to 17 plotted on the bathymetry (m). The colour bar indicates depth below the sea surface (m).

  //oceancolor.gsfc.nasa.gov) at a daily and 4.5 km resolution. Five-day averages were calculated to obtain a proxy of phytoplankton abundance in the surface layer. To investigate the annual variability in surface chlorophyll a concentrations, monthly mean concentrations were averaged from January to December 2016 for the defined regions (La Pérouse: 18.5-20°S/53-33°E; MAD-Ridge: 27-28°S/44-48°E) (Fig.5.2a).

Figure 5

 5 Figure 5.2(a) Averaged satellite image of surface chlrophyll a concentrations from 18/09/2016 to 07/12/2016 at La Pérouse and MAD-Ridge (represented by black star symbols). The colour bar indicates the mean concentrations in mg m -3 .

  at a vessel speed of 2-3 knots for 60 min during La Pérouse and for 30 min during MAD-Ridge to sample mesopelagic organisms. Trawls were carried out in the shallow (0-200 m), intermediate(200-400 m) and deep (below 400 m) layers during both cruises (Table5.1). Trawl stations at La Pérouse and MAD-Ridge (Fig.5.1b, c) were further classified into the categories summit, flank and vicinity, according to whether they occurred on the summit plateaus of the seamounts, along the flanks (seafloor depth of 300-1300 m) or in the immediate vicinity (depth >1300 m). Four other mesopelagic trawls (#18-21) were conducted in the southern Mozambique Channel (depth >4000 m) during the MAD-Ridge cruise as reference stations for non-seamount locations within the EAFR province (Fig.5.1a).

Figure 5

 5 Figure 5.2(b) Monthly mean sea surface chlorophyll a concentrations (mg m -3 ) from January to December 2016 for the regions defined by the red squares in Figure 5.2(a). The dates of the La Pérouse and MAD-Ridge cruises are marked by grey bars.

Figure 5

 5 Figure 5.3(a) Bivariate plot of δ 15 N and δ 13 C values (‰) for particulate organic matter at the surface (POM-Surf) and the maximum fluorescence (POM-Fmax), zooplankton, gelatinous organisms, crustaceans, squids and mesopelagic fishes sampled at La Pérouse seamount.Standard ellipse areas (coloured solid lines), calculated using SIBER, provide estimates of the size of the isotopic niche for each of these categories.

Figure 5

 5 Figure 5.3(b) Bivariate plot of δ 15 N and δ 13 C values (‰) for particulate organic matter at the surface (POM-Surf) and the maximum fluorescence (POM-Fmax), zooplankton, gelatinous organisms, crustaceans, squids and mesopelagic fishes sampled at MAD-Ridge seamount.Standard ellipse areas (coloured solid lines), calculated using SIBER, provide estimates of the size of the isotopic niche for each of these categories.
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 54 Figure 5.4 Boxplots of δ 13 C and δ 15 N values (‰) of the foodweb components POM-Surf, POM-Fmax, zooplankton (Zoopk), gelatinous organisms (Gel), crustaceans (Crust), squids and mesopelagic fishes at La Pérouse (PER) and MAD-Ridge (MAD). Groups having significantly different δ 13 C and δ 15 N values (‰) are shown by solid blue lines.

  Fig. 5.5a, b). TL values of crustaceans fell between 2.7 (La Pérouse and MAD-Ridge: Funchalia sp.) and 3.7 (La Pérouse: Sergestidae; MAD-Ridge: Oplophoridae). Squids had TL values of 3.6 (Abraliopsis sp.) and 4.0 (Histioteuthis spp.) at La Pérouse. At MAD-Ridge seamount, smaller-sized nektonic squids (26-111 mm DML) displayed TL values of 3.2 (Enoploteuthidae) and 3.6 (Abraliopsis sp.), and larger-sized nektonic squids (365-367 mm DML) had TL values of 4.0 (Histioteuthis spp.) and 4.8 (O. bartramii). TL values of fishes (excluding leptocephali) fell between 3.2 (C. warmingii) and 4.5 (C. atrata) at La Pérouse and between 2.6 (Decapterus macarellus) and 4.4 (Stomias longibarbatus) at MAD-Ridge (Fig. 5.5a, b). Overall, the TL values of the micronekton broad categories displayed the same range of TL values at both seamounts.

Figure 5

 5 Figure 5.5(a) δ 15 N (mean ± S.D.) values (‰) and estimated trophic level (TL as estimated from the TPA method) of POM-Surf, POM-Fmax, zooplankton, gelatinous and sampled micronekton species at the La Pérouse seamount. Taxa are placed in their broad categories and δ 15 N compositions are sorted in ascending order of their values.

Figure 5

 5 Figure 5.5(b) δ 15 N (mean ± S.D.) values (‰) and estimated trophic level (TL as estimated from the TPA method) of POM-Surf, POM-Fmax, zooplankton, gelatinous and sampled micronekton species at the MAD-Ridge seamount. Taxa are placed in their broad categories and δ 15 N compositions are sorted in ascending order of their values.

  5.9‰) and an omnivorous crustacean Funchalia sp. with similar δ 13 C and δ 15 N values (-18.7 ± 0.6 and 7.5 ± 0.5‰, respectively). All other crustaceans having an omnivorous feeding mode displayed greater δ 15 N values (10.0 ± 1.1‰) and were thus segregated within subgroup IIB along with carnivorous mesopelagic fishes and squids (Fig.5.6a). All values are given in mean ± S.D.

Figure 5

 5 Figure 5.6(a) Hierarchical clustering (Euclidean distance of normalised data subjected to averaged grouping) of δ 13 C and δ 15 N values (‰) of sampled gelatinous organisms, crustaceans, squids and mesopelagic fishes at La Pérouse seamount. Roman numerals at the tree branches identify groups of species belonging to the different trophic guilds: group Ifilter-feeders and detritivores; group II-omnivores and carnivores; subgroup IA-filterfeeders; subgroup IB-detritivores; subgroup IIA-filter-feeders and omnivorous crustaceans; subgroup IIB-omnivorous and carnivorous micronekton.

Figure 5

 5 Figure 5.6(b) Hierarchical clustering (Euclidean distance of normalised data subjected to averaged grouping) of δ 13 C and δ 15 N values (‰) of sampled gelatinous organisms, crustaceans, squids and mesopelagic fishes at MAD-Ridge. Roman numerals at the tree branches identify groups of species belonging to the different trophic guilds: group I-filterfeeders and detritivores; group II-omnivores and carnivores; subgroup IA-filter-feeders; subgroup IB-detritivores; subgroup IIA-highest trophic level mesopelagic fishes at MAD-Ridge; subgroup IIB-omnivorous and carnivorous micronekton.

Figure 5 .

 5 Figure 5.7 δ 15 N values (‰) of (a) fish: Sigmops elongatus, (b) fish: Ceratoscopelus warmingii, (c) fish: Argyropelecus aculeatus, (d) crustacean: Funchalia sp., (e) fish: Diaphus suborbitalis, (f) squid: Abraliopsis sp., (g) fish: Chauliodus sloani, (h) fish: leptocephali, plotted against size in mm [standard length for (a)-(c), (e), (g)-(h); abdomen and carapace length for (d); dorsal mantle length for (f)], at La Pérouse (squares) and MAD-Ridge (stars). Simple linear regressions for δ 15 N values versus size are plotted for (a)-(d).

  The δ 15 N values of omnivorous/ carnivorous fishes collected in the vicinity of the La Pérouse and MAD-Ridge seamounts and in the southern Mozambique Channel were significantly influenced by individual body size (F3,171 = 10.3, Adjusted R 2 =13.8, p < 0.05) (Fig.5.8a).However, there were no significant influence of body size on the δ 15 N values of seamount flank-and summit-associated fish species D. suborbitalis (La Pérouse and MAD-Ridge), B. fibulatum, D. knappi and C. japonicus (F1,10= 0.07, p > 0.05) at MAD-Ridge. These seamount flank-and summit-associated fish species[START_REF] Cherel | Micronektonic fish species over three seamounts in the southwestern Indian Ocean[END_REF] exhibited minimum and maximum δ 15 N values of 9.8‰ (B. fibulatum) and 11.2‰ (D. suborbitalis) for individuals ranging in size from 38 mm (D. suborbitalis) to 328 mm (C. japonicus) (Fig. 5.8b). Despite the differing sizes of these seamount flank-and summit-associated fish species, they exhibited an estimated TL value (TPA model) of ~4 at both La Pérouse and MAD-Ridge pinnacles.

Figure 5

 5 Figure 5.8(a) δ 15 N values (‰) of mesopelagic fishes from La Pérouse and MAD-Ridge seamount vicinities (LP_Vicinity and MR_Vicinity respectively) and from the Mozambique Channel, plotted against their standard lengths (mm). Simple linear regressions are plotted. (b) Bivariate plots of δ 15 N and δ 13 C values (‰) for selected seamount flank-and summitassociated fish species D. suborbitalis at La Pérouse (LP) and B. fibulatum, D. knappi, C. japonicus and D. suborbitalis at MAD-Ridge (MR) seamounts. Standard lengths are given in mm.
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 59 Figure 5.9 Boxplots of δ 13 C and δ 15 N values (‰) of omnivorous/carnivorous mesopelagic fishes at La Pérouse flank (n = 50 samples) and vicinity (n = 60 samples) stations and, MAD-Ridge vicinity (n =91 samples), flank (n = 38 samples) and summit (n = 4 samples), and stations from the southern Mozambique Channel (n = 28 samples). Outliers are shown as star symbols.

  Seamount effect on δ 13 C and δ 15 N values of fish species Omnivorous/carnivorous fishes sampled in the southern Mozambique Channel exhibited slightly enriched δ 15 N values relative to those sampled in the vicinity of the MAD-Ridge seamount. Productivity in the southern Mozambique Channel may be both entrained from the African landmass and locally generated within mesoscale eddies, hence leading to enhanced chlorophyll a concentration, micronekton abundances and enriched δ 15 N values within tissues of micronekton (Tew

  between δ 13 C and δ 15 N values of mesopelagic fishes sampled at La Pérouse and MAD-Ridge and those collected in the Indian Ocean, within the oligotrophic ISSG province (A. aculeatus δ 13 C and δ 15 N values: -18.6 and 9.5‰, C. sloani: -18.1 and 9.5‰, and L. gemellarii: -18.5 and 9.9‰; Annasawmy et al., 2018) and the western Mozambique Channel (A. aculeatus: -18.4 and 10.0‰ and L. gemellarii: -18.4 and 11.1‰; Annasawmy et al., 2018). Even though mesopelagic fishes exhibit small variations in their δ 13 C and δ 15 N values across different studies in various oceanic environments, they generally occupy trophic positions between 2

  communities at the La Pérouse and MAD-Ridge seamounts in the SWIO. A combination of satellite, in situ environmental, mesopelagic trawl, acoustic and stable isotope data were used to address the thesis objectives. Satellite and in situ environmental data were employed to describe the prevailing environmental patterns at both seamounts. Mesopelagic trawl and acoustic data were used to investigate the assemblages and vertical and horizontal distributions of micronekton as influenced by the pinnacles and the physical oceanographic processes. Stable isotope data were used to study the trophic relationships of micronekton with respect to zooplankton and POM at both seamounts.It was first necessary to provide an overview of all the physical processes that might result from current-topography interactions and the resulting biological responses recorded from phytoplankton, zooplankton, micronekton communities and associated/ resident fishes at seamounts that have been extensively studied in the Atlantic and Pacific basins (Chapter 1).Since the geographic focus of this study is the SWIO, Chapter 2 provided an overview of the ridge systems in the region, along with the physical oceanographic processes that likely have an impact on all trophic levels. Special focus has been paid to top predators of micronekton, which are fished in the region. Chapter 2 also outlined the previous seamount cruises in the region and the main results on the assemblages of lower trophic level compartmentsphytoplankton, mesozooplankton and ichthyoplankton communities at La Pérouse and MAD-Ridge.The horizontal and vertical patterns in micronekton's distributions as influenced by physical oceanographic processes and topographic features were investigated in Chapter 3. Theoretical calculations were implemented to determine the likelihood of Taylor column formation at La Pérouse and MAD-Ridge. Micronekton's DVM patterns were revisited in light of the acoustic and environmental data collected.Chapter 4 aimed at investigating the year-round sea surface productivity at La Pérouse and MAD-Ridge using satellite data. The assemblages of the micronekton communities at the summits, flanks and vicinities of the seamounts were studied, along with the scattering intensities in the SSL and DSL. A combination of mesopelagic trawl data and multi-frequency acoustic visualisation technique have been used to investigate the composition of the SSL and the dense aggregations observed over the summit of MAD-Ridge. Micronekton's vertical and horizontal distributions and the different migration strategies of various species are analysed in more detail.Chapter 5 investigated the trophic position of several micronekton taxa with respect to other components of the foodweb such as zooplankton and POM at both La Pérouse and MAD-Ridge. The various factors possibly influencing the isotopic composition of a consumer's tissue are also discussed.

  vertical mixing due to internal tides. Internal tides occur when strong tidal currents encounter a steep topography in a stratified ocean. These internal tides allow nutrients to enter the euphotic layer, thus promoting productivity. At MAD-Ridge, mixing mostly occurred on the edge of the seamount above the 700 m contour and none occurred above the summit (Koch-Larrouy et al., in review). Modelling studies have further shown that non-linear processes such as lee waves could occur on the side of each seamount within the complex seamount group around the MAD-Ridge pinnacle, along with high likelihood of strong propagative internal tides(Koch-Larrouy et al., in review). These physical processes were shown to influence the biological productivity, with an intensification of chlorophyll in the region of internal tides' generation on the side of the MAD-Ridge seamount(Koch-Larrouy et al., in review).

  summits and flanks of both seamounts during day and night, relative to the open ocean. A combination of acoustic and trawl surveys have revealed these dense aggregations to consist of taxa known to preferentially associate with seamounts and rocky bottoms such as D. suborbitalis (La Pérouse and MAD-Ridge), B. fibulatum, N. macrolepidotus and C. japonicus (MAD-Ridge only). Dense aggregations over seamount summits have been previously observed from acoustic transects over seamounts of the SWIR, the Equator (Indian Ocean),

  6.1b). Micronekton acoustic densities were greater within the EAFR and at the MAD-Ridge seamount relative to the ISSG and the La Pérouse seamount, probably due to the effect of mesoscale eddies and enhanced productivity in the EAFR (Fig.6.1b). No clear enhancement of micronekton was observed at the seamounts relative to the surrounding ocean in the biogeochemical provinces. However, high backscatter intensities were observed in the surface layer during the day at both seamounts probably due to the presence of dense scatterers aggregating over the seamounts' summits and flanks.

Figure 6

 6 Figure 6.1(a) Map of the MICROTON stations (black triangles) and La Pérouse seamount (red dot) in the ISSG province, of the MESOP 2009 stations (diamond symbols)[START_REF] Annasawmy | Micronekton diel migration, community composition and trophic position within two biogeochemical provinces of the South West Indian Ocean: Insight from acoustics and stable isotopes[END_REF], Madagascar shelf station (blue square) and MAD-Ridge stations (red squares) in the EAFR province.[START_REF] Longhurst | The Indian Ocean-Indian South Subtropical Gyre Province (ISSG)[END_REF] biogeochemical provinces(ISSG and EAFR) are delimited by black solid lines.

Figure 6

 6 Figure 6.1(b) Mean sA during MESOP 2009 cruise in the EAFR, MICROTON cruise in the ISSG provinces[START_REF] Annasawmy | Micronekton diel migration, community composition and trophic position within two biogeochemical provinces of the South West Indian Ocean: Insight from acoustics and stable isotopes[END_REF], at MAD-Ridge and La Pérouse seamounts and over the Madagascar shelf for day and night sections: grey for the surface layer(10-200 m), white for the intermediate layer(200-400 m), and black for the deep layer (400-740 m).

  species D. suborbitalis, C. japonicus, B. fibulatum exhibited a TL of 4 despite their different size ranges Despite being ubiquitous topographic features in the world's oceans, seamounts and their ecosystems are still poorly known. Only 0.4-4% of the world's seamount population have been

  over the summits of La Pérouse and MAD-Ridge pinnacles; (ii) the aggregations dominating RGB composites within the depth of the maximum fluorescence; (iii) the night-time SSL over the summits of the seamounts; and (iv) under-represented groups such as the "blue patches" observed on RGB composite of trawl #21 during MAD-Ridge. Pairwise frequency differences (Δ Sv 70-38, Δ Sv 120-38) and the sums Δ Sv 38 + 120 + 70 can be used as discriminatory variables for the classification of the different acoustic classes. Each class will form libraries of acoustic groups. Thresholds will have to be determined to obtain the best comprise in separating the different acoustic groups. The thresholds can be calculated from the mean and standard deviation of the libraries. A confidence interval index will also have to be determined based on the percentages of acoustic backscatter well classified and that classified in another acoustic class. The libraries of acoustic groups can further be investigated statistically using a K-means clustering.

  activities and other components of the megafauna. As shown in this thesis, the La Pérouse and MAD-Ridge seamounts represent elevated topographies in the SWIO, offering varied habitat types in an otherwise deep and open ocean environment. Various organisms in the region are associated with the La Pérouse or MAD-Ridge seamounts during their breeding season, foraging or migration patterns. These two seamounts possibly host coral communities thus attracting a wide range of benthopelagic organisms. Acoustic detections during this study have suggested permanent residency of biological scatterers over the seamounts during day and night. The shelter-like character and possibly enhanced foraging opportunities for these organisms may explain this observation.The La Pérouse and MAD-Ridge seamounts did not show elevated concentrations of zooplankton and micronekton communities relative to off-seamount locations. Elevated concentrations of ichthyoplankton were observed on MAD-Ridge summit relative to offseamount habitats. The physical and biological environment at both seamounts may not be attractive enough for adult forms of some mesopelagic taxa relative to other regions of the EAFR province including the more productive Madagascar shelf and Mozambique Channel.
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Chapter 2: Pelagic ecosystem and seamounts of the south-western Indian Ocean

  

	2
	factors likely influencing stable isotope compositions. A seamount effect is further investigated
	by comparing the stable isotope values of omnivorous/ carnivorous fishes sampled at the
	seamounts' flanks, vicinities and summits relative to the southern Mozambique Channel. The
	stable isotope values of the seamount-associated fish species identified in Chapter 5 are L'Homme et la Mer
	analysed.
	Chapter 6 highlights key findings from Chapters 3-5 and expands on their implications to science, fishers and management. Chapter 6 further discusses the overall micronekton acoustic Homme libre, toujours tu chériras la mer !
	densities at the La Pérouse and MAD-Ridge seamounts relative to the wider geographic area La mer est ton miroir ; tu contemples ton âme
	within the ISSG and EAFR provinces. Knowledge gaps and fruitful avenues of future research Dans le déroulement infini de sa lame,
	are key elements outlined in a forward-looking perspective. Et ton esprit n'est pas un gouffre moins amer.
	Tu te plais à plonger au sein de ton image;
	Tu l'embrasses des yeux et des bras, et ton coeur
	Se distrait quelquefois de sa propre rumeur
	Au bruit de cette plainte indomptable et sauvage.
	Vous êtes tous les deux ténébreux et discrets:
	Homme, nul n'a sondé le fond de tes abîmes;
	Ô mer, nul ne connaît tes richesses intimes,
	Tant vous êtes jaloux de garder vos secrets!
	Et cependant voilà des siècles innombrables
	Que vous vous combattez sans pitié ni remord,
	Tellement vous aimez le carnage et la mort,
	Ô lutteurs éternels, ô frères implacables!
	Charles Baudelaire, 1861

.1 The South West Indian Ocean: General Overview

  

2.3 Schematic diagram of major surface currents (yellow and orange arrows) in the SWIO, labelled AC (Agulhas Current), SEC (South Equatorial Current), SEMC (South East Madagascar Current), NEMC (North East Madagascar Current), EACC (East Africa Coastal Current), ARC (Agulhas Return Current), AL (Agulhas Leakage). Atmospheric circulation over Southern Africa is also shown (grey lines). The Mozambique Channel (MC) and Transkei

  

	Basin
	(TB) are labelled. The Intertropical Convergence Zone (ITCZ) and the Congo Air Boundary
	(CAB) (dashed lines) are labelled. U1476, U1477, U1478, U1474, U1479 and U1475 represent
	drill sites during the International Ocean Discovery Program, IODP, JOIDES Resolution,
	Expedition 361. The colour bar indicates bathymetry (m) [Source:

  .13). Some of these cruises include earlier expeditions forming part of the IIOE (International Indian Ocean Expedition) on the RV Anton Brunn at Walters Shoal seamount in 1964, devoted mainly to benthic biology. Soviet expeditions on the RV Akademik Kurchatov (6 th cruise) and RV Rift (2 nd cruise) in 1983, RV Vityaz II (17 th cruise) in 1988, the RV Akademik Mstislav Keldysh (7 th cruise) in1984-1985, 

were conducted at seamount ecosystems of the SWIO. However, some of the resulting publications from these Soviet expeditions are either inaccessible or written in Russian. More recent seamount cruises in the SWIO include expeditions at Walters Shoal as part of the ACEP-III (African Coelacanth Ecosystem Programme) programme on the RV Algoa in 2014. Atlantis, Sapmer, Middle of What, Melville and Coral seamounts of the SWIR (Fig. 2.13) were investigated during recent cruises on the RV Dr Fridjtof Nansen in 2009 and on the RV James Cook in 2011. La Pérouse and MAD-Ridge seamounts were explored in 2016 on the RV Antea and Walters Shoal in 2017 on the RV Marion Dufresne.

Chapter 3: Influence of mesoscale eddies, shallow seamounts and continental shelf on micronekton's distribution

  Extrait du Petit poème des poissons de la mer

	Je me suis penché sur la mer
	Pour communiquer mon message
	Aux poissons:

«Voilà ce que je cherche et que je veux savoir» Les petits poissons argentés

Du fond des mers sont remontés

Répondre à ce que je voulais…

Antonin

Artaud, 1926 

Table 3 .

 3 1 List of MAD-Ridge Leg 1 classified hydrographic stations: UN for unresolved; C for Cyclonic; D.I for Dipole Interface; AC for Anticyclonic; S for summit; F for flank; Sf for Shelf.

	Station	Day/	ADT	MSLA	Vorticity	Okubo-Weiss	Temper-	Salinity	Sea floor	Classifi-
	Number	Sunset	(m)	(m)	(s -1 )	(s -2 )	ature (°S) TSG	(PSU) TSG	(m) Depth	cations
	1	Day	0.89	-0.19	-1.21E-05	1.63E-11	23.68	35.36	1573	UN
	2	Day	0.82	-0.27	-1.97E-05	5.00E-11	23.92	35.36	1930	C
	3	Sunset	0.84	-0.25	-2.94E-05	-5.32E-10	23.89	35.38	1630	C
	4	Day	0.96	-0.15	-1.50E-05	-4.97E-10	23.72	35.30	1730	C
	5	Day	1.08	-0.03	-5.80E-07	1.02E-10	24.37	35.14	1460	D.I
	6	Day	1.21	0.10	1.49E-05	6.14E-11	24.71	35.18	1760	UN
	7	Day	1.30	0.20	2.86E-05	-3.34E-10	24.40	35.21	670	F/AC
	8	Day	1.33	0.23	3.15E-05	-4.92E-10	24.39	35.22	240	S/AC
	9	Day	1.36	0.25	3.14E-05	-5.33E-10	24.33	35.22	645	F/AC
	10	Day	1.42	0.32	3.01E-05	-5.85E-10	24.31	35.28	1600	AC
	11	Day	1.46	0.36	2.86E-05	-6.71E-10	24.49	35.28	1733	AC
	12	Day	1.45	0.37	2.54E-05	-5.62E-10	24.55	35.29	1585	AC
	13	Day	1.41	0.35	2.55E-05	-6.09E-10	24.42	35.28	1505	AC
	14	Day	1.31	0.27	1.81E-05	-3.23E-10	24.40	35.23	1964	UN
	15	Day	1.18	0.16	6.75E-07	7.35E-11	24.79	35.28	2110	UN
	16	Day	1.25	0.22	1.94E-05	-2.80E-10	24.25	35.21	1927	AC
	17	Day	1.34	0.28	1.95E-05	-2.20E-10	24.57	35.29	2380	AC
	18	Sunset	1.41	0.32	2.44E-05	-3.40E-10	24.58	35.28	1674	AC
	19	Day	1.43	0.33	2.69E-05	-4.79E-10	24.38	35.22	1668	AC
	20	Day	1.41	0.31	2.76E-05	-4.98E-10	24.65	35.23	720	F/AC
	21	Day	1.4	0.30	2.77E-05	-5.06E-10	24.84	35.24	257	S/AC
	22	Day	1.41	0.30	2.63E-05	-4.58E-10	24.40	35.24	255	S/AC
	23	Day	1.41	0.30	2.58E-05	-4.32E-10	24.77	35.24	621	F/AC
	24	Day	1.4	0.28	2.42E-05	-3.50E-10	24.77	35.24	1502	AC

  resolution, produced and distributed by the Copernicus Marine Environment Monitoring Service project (CMEMS) and available at http://marine.copernicus.eu/, were used to describe the mesoscale eddy field at the

	time of La Pérouse and MAD-Ridge cruises. Sea surface chlorophyll (SSC) data, with a daily
	and	4.5	km	resolution	was	downloaded	from	the	MODIS	sensor
	(http://oceancolor.gsfc.nasa.gov) and was used to calculate 5-day averages to obtain a proxy of
	surface oceanic primary production. Monthly mean chlorophyll a concentrations for the
	defined regions (La Pérouse: 18.5°-20°S/53°-55°E; MAD-Ridge: 27°-28°S/44°-48°E; Fig.
	4.2c) were averaged from January to December 2016 to investigate the annual variability in
	chlorophyll a concentration/productivity.					

  1) of trawls14 and 15 (flank), 16 (summit) and 21 (southern Mozambique Channel) during MAD-Ridge. White dotted lines represent the trawl path as determined from Scanmar depth sensor. The seamount summit is denoted by the black polygon and labelled accordingly. The 38, 70 and 120 kHz frequencies were given red, green and blue colour codes respectively.

	Corresponding frequency diagrams
	of the species count for trawls #14, 15, 16 and 21 and mean ± standard deviation of the
	frequency responses (in dB) during the "horizontal trawl fishing period" are given. Broad
	categories are coloured orange (crustaceans), yellow (fishes), blue (gelatinous organisms),
	and violet (cephalopods).
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 5 1 Summary of trawl stations during La Pérouse and MAD-Ridge cruises

	Cruis	Tra	Latitude	Longitu	Maximu	Seabed Depth	Trawl Position	Day/Night
	e	wl #	Beginnin	de	m Trawl	(m)		
			g (°S)	Beginnin	Depth			
				g(°E)	(m)			
	La		19.77	54.09	590	2300	Vicinity	Night
	Pérouse							
			19.79	54.10	400	1240	Flank	Night
			19.65	53.85	90	4300	Vicinity	Night
			19.68	54.15	110	860	Flank	Night
			19.76	54.18	35	65	Summit	Day
			19.72	54.18	60	800	Flank	Night
			19.63	54.10	500	3100	Vicinity	Night
			19.80	54.17	430	1220	Flank	Night
			19.81	54.08	240	1750	Vicinity	Night
		10	19.76	54.21	250	1500	Vicinity	Night
	MAD-		27.41	45.67	500	1560	Vicinity	Day
	Ridge						(northwest)	
			27.65	46.43	542	1515	Vicinity	Night
							(northwest)	
			27.44	46.23	43	1560	Vicinity	Night
							(northwest)	
			27.67	46.44	100	310	Flank (west)	Day
			27.75	46.28	324	1610	Vicinity	Night
							(southwest)	
			27.69	46.46	45	605	Flank (southwest)	Night
			27.64	46.37	437	1680	Vicinity	Day
							(southwest)	
			27.78	46.35	38	940	Flank (south)	Night
			27.70	46.45	76	1420	Vicinity	Night
							(southeast)	
		10	27.60	46.53	470	950	Flank (northeast)	Day
		11	27.69	46.53	90	940	Flank (northeast)	Night
		12	27.41	46.38	550	1520	Vicinity (north)	Night
		13	27.65	46.31	460	1190	Flank (north)	Day
		14	27.68	46.27	210	575	Flank (west)	Night
		15	27.67	46.22	150	330	Flank (west)	Night
		16	27.59	46.32	205	240	Summit	Night
		17	27.51	46.32	550	1340	Vicinity	Day
							(northwest)	

Table 5 .

 5 2 Linear regression models fitted to δ 15 N values (‰) with respect to body length in mm (SL, standard length for fishes; TL, total length for leptocephali larvae; ACL, abdomen and carapace length for the crustacean; DML, dorsal mantle length for the squid specimen) and the

	seamount variable (whether values were significantly different between La Pérouse and MAD-Ridge) of 8 micronekton taxa-Sigmops elongatus
	(fish), Ceratoscopelus warmingii (fish), Argyropelecus aculeatus (fish), Funchalia sp. (crustacean), Diaphus suborbitalis (fish), Abraliopsis sp.
	(squid), Chauliodus sloani (fish), and leptocephali (fish).				
	Taxon	Regression equation	Adjusted	F-	Degrees	P-value
			r 2 (%)	statistic	of	
					freedom	
	Sigmops elongatus	δ 15 N = 9.15 + 0.0157 x SL -1.2210 x seamount	85.2	46.0	13 < 0.05 for size and seamount
		La Pérouse: δ 15 N = 9.15 + 0.0157 x SL				
		MAD-Ridge: δ 15 N = 7.93 + 0.0157 x SL				
	Ceratoscopelus warmingii δ 15 N = 7.61 + 0.0249 x SL -0.9521 x seamount	72.4	18.0	11 < 0.05 for size and seamount
		La Pérouse: δ 15 N = 7.61 + 0.0249 x SL				
		MAD-Ridge: δ 15 N = 6.66 + 0.0249 x SL				
	Argyropelecus aculeatus	δ 15 N = 8.57 + 0.0331 x SL -0.0272 x seamount	16.5	2.87	17 < 0.05 for size;
						> 0.05 for seamount
	Funchalia sp.	δ 15 N = 4.23 + 0.0496 x ACL -0.3460 x seamount	72.7	13.0	7 < 0.05 for size;
						> 0.05 for seamount
	Diaphus suborbitalis	δ 15 N = 11.5 -0.0151 x SL + 0.7594 x seamount	43.8	4.51	7 > 0.05 for size;
						< 0.05 for seamount
	Abraliopsis sp.	δ 15 N = 10.3 + 0.0069 x DML -1.006 x seamount	56.2	8.06	9 > 0.05 for size;
						< 0.05 for seamount
	Chauliodus sloani	δ 15 N = 10.2 -0.0065 x SL + 0.7431 x seamount	12.5	1.64	7 > 0.05 for size and seamount
	Leptocephali larvae	δ 15 N = 7.18 -0.0170 x TL -1.1971 x seamount	25.3	2.69	8 > 0.05 for size and seamount

  , that have probably evolved to adapt to a wider range of habitat types apart from the open-water oceanic habitat. Unfortunately, trawl records of both adult and larval forms of both species are insufficient to accurately test this hypothesis. The only notable observation is the high association of large populations of some myctophids (D. suborbitalis and B. fibulatum) with seamounts in the Indian and Pacific Oceans (

  However, the problem with this approach is that the beaks of cephalopods may persist in the guts of top predators for extended periods. Given that many of these top predators are highly mobile, the presence of beaks in their guts may not reflect the importance of seamounts as habitats for cephalopods. The trawls in this study collected two O. bartramii specimens at MAD-Ridge and a greater number of lower trophic level cephalopod taxa. As shown in Chapter 4, Abraliopsis sp. were caught in larger numbers relative to all other cephalopod species at the La Pérouse and MAD-Ridge seamounts' flanks and in the open ocean. While Abraliopsis sp. were caught at various Chtenopterygidae and Spirulidae families. During the 2009 cruise on the RV Dr Fridtjof Nansen, all the above named families were collected at the station closest to MAD-

	Other families caught at La Pérouse and MAD-Ridge included specimens of the
	Onychoteuthidae,	Histioteuthidae,	Enoploteuthidae,	Cranchiidae,	Sepiolidae,
	Ommastrephidae, Ridge seamount (see				

. Stomach content of swordfish specimens collected close to MAD-Ridge seamount during a 2009 -2010 survey (https://wwz.ifremer.fr/lareunion/Projets/Grands-pelagiques/IOSSS-ESPADON), recorded the cephalopods Chiroteuthis spp., O. bartramii and S. oualaniensis and other crustaceans and fishes to a lesser extent (unpublished data).

depth categories, they were mostly found in the shallow layer at night, reflecting their diel migration strategies. These organisms were also abundantly recorded at the northern portion of the SWIR

[START_REF] Laptikhovsky | Cephalopods of the Southwest Indian OceanRidge: A hotspot of biological diversity and absence of endemism[END_REF] 

and were among the dominating species at the Great Meteor seamount in the north Atlantic

[START_REF] Diekmann | A multivariate analysis of larval fish and paralarval cephalopod assemblages at Great Meteor Seamount[END_REF][START_REF] Diekmann | Species composition and distribution patterns of early life stages of cephalopods at Great Meteor Seamount (subtropical North-east Atlantic)[END_REF]

).

  Abraliopsis sp.), however exhibited slightly greater δ 15 N values at La Pérouse relative to MAD-Ridge with respect to body size compared to other organisms that showed no significant differences. While small variability may exist within species, overall patterns reveal stable isotope values linked to size since, as individuals grow bigger, they generally feed on larger prey.

	. The sampled
	crustaceans occupied an intermediate trophic level (TL ~3). This group comprises different
	species having feeding modes relative to that of organisms that prey on zooplankton,
	euphausiids, and copepods, and are known for occasional herbivory. Mesopelagic fishes and
	smaller-sized squids occupied TL between 3 and 4 at both seamounts. Some
	carnivorous/omnivorous diel vertical migrators (fishes S. elongatus, C. warmingii and squid
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 6 1 Summary of the ecosystem functioning at the La Pérouse and MAD-Ridge seamounts. Crosses indicate that the corresponding attribute was not observed while tick marks indicate that the corresponding attribute has been observed and recorded.

Table C .

 C distribution and assemblages at two shallow seamounts in the south-western Indian Ocean: Insights from /doi.org/10.1016/j.pocean.2019.102161Olivar, M.P., Hulley, P.A., Castellón, A., Emelianov, M., López, C., Tuset, V.M., Contreras, T., Molí, B., 2017. Mesopelagic fishes across the tropical and equatorial Atlantic: biogeographical and vertical patterns. Progr. Oceanogr. 151: 116-137.Olivar, M.P., Bode, A., López-Pérez, C., Hulley, P.A., Hernández-León, S., 2019. Trophic position of lanternfishes (Pisces: Myctophidae) of the tropical and equatorial Atlantic estimated using stable isotopes. ICES J Mar. Sci. DOI: 10.1093/icesjms/fsx243. Mean body length (mm) of gelatinous organisms (total length from mouth to anus); squids (dorsal mantle length); crustaceans (abdomen and carapace length); fishes (standard length), total number of specimens (n), habitat range, feeding mode, δ 15 N and δ 13 C (‰), and mean estimated trophic level(Mean TL from TPA model) for the species or taxa on which stable isotope analyses were performed at La Pérouse (ISSG) and MAD-Ridge (EAFR) seamounts. Values are mean ± standard deviation. Figure A. Example of classification of CTD stations

	Broad Class Broad Class	Order/ Suborder/Infraorder Order/ Suborder/Infraorder Myctophidae Family/ Species Family/ Species Myctophidae Gempylidae Stomiidae	Habitat Range Habitat Range Mesopelagic Mesopelagic Mesopelagic-Benthopelagi Bathypelagic Mesopelagic-	Feeding Mode Feeding Mode Omnivore Carnivore Carnivore Carnivore	Seamount cruises Cruises La Pérouse MAD-Ridge La Pérouse La Pérouse	Trawl No. Trawl No. 1, 4, 8, 9 2, 3, 6, 12, 17 4 8, 9	n n 8 12 2 4	Mean Size (mm) Mean Size (mm) 55.4 ± 11.0 53.4 ± 4.73 219.3 ± 6.01 125.1 ± 51.1	Mean δ 15 N (‰) Mean δ 15 N (‰) 9.0 ± 0.46 10.1 ± 0.93 9.6 ± 0.01 11.1 ± 1.0	Mean δ 13 C (‰) Mean δ 13 C (‰) -18.9 ± 0.40 -19.0 ± 0.68 -17.6 ± 0.18 -18.5 ± 0.31	Mean TL (TPA model) Mean TL 3.2 ± 0.14 3.8 ± 0.29 3.3 3.8 ± 0.31
	Squids Fishes	Oegopsida Anguiliformes Stomiiformes	Enoploteuthidae Leptocephali Ceratoscopelus warmingii Hygophum hygomii Promethichthys Chauliodus sloani prometheus Myctophidae Stomiidae	Mesopelagic-Bathypelagic Epipelagic c Mesopelagic Mesopelagic-	Carnivore Detritivore Carnivore Carnivore	MAD-Ridge La Pérouse MAD-Ridge MAD-Ridge MAD-Ridge La Pérouse MAD-Ridge	11 2, 3, 4 2, 3, 6 14 1, 5, 10 8 1	2 5 6 2 6 2 2	34.1 ± 16.8 135.3 ± 55.3 42.0 ± 14.0 300.1 ± 91.5 138.9 ± 53.3 45.0 ± 6.51 93.3 ± 3.54	8.0 ± 0.06 4.9 ± 2.07 7.7 ± 0.59 12.0 ± 0.06 10.4 ± 0.65 9.7 ± 0.89 10.6 ± 0.06	-18.6 ± 0.42 -20.4 ± 0.52 -18.9 ± 0.33 -17.9 ± 0.13 -18.5 ± 0.84 -18.7 ± 0.30 -19.2	3.2 ± 0.02 3.1 ± 0.18 3.9 ± 0.20 4.4 ± 0.02 1.9 ± 0.65 3.4 ± 0.28 4.0 ± 0.02
	acoustics Suborder/Infraorder and mesopelagic Order/ Family/ Species Pyrosomatida Pyrosomatidae Unidentified …..Dendrobranchiata Sergestidae Enoploteuthidae Abraliopsis sp. Histioteuthidae Histioteuthis spp. trawl Mesopelagic data. Habitat Range Mesopelagic-Bathypelagic Mesopelagic Aulopiformes Evermannellidae Coccorella atrata Mesopelagic Evermannellidae Mesopelagic Benthosema suborbitale Myctophiformes Myctophidae Bolinichthys photothorax Mesopelagic Myctophidae Diaphus brachycephalus Mesopelagic Myctophidae Diaphus diadematus Mesopelagic Diaphus splendidus Myctophidae Diaphus suborbitalis Mesopelagic-over slope regions Lampanyctus spp. Myctophidae Lampanyctus alatus Mesopelagic Myctophidae Mesopelagic Decapterus macarellus Gempylidae …..Nealotus tripes Mesopelagic Priacanthidae Cookeolus japonicus Mesopelagic-Benthopelagi c Bathypelagic Stephanoberyciformes Melamphaidae Scopelogadus mizolepis Mesopelagic Stomiidae Astronesthes sp. Mesopelagic Diplophos rebainsi Stomiidae Diplophos taenia Mesopelagic Stomiidae Mesopelagic-https:/Broad Class Gelatinous Fishes pyrosomes Salpida Salpidae Salpa sp. Mesopelagic Crustaceans Euphausiacea Euphausiidae Mesopelagic Decapoda Unidentified shrimps Mesopelagic Decapoda …..Pleocyemata Oplophoridae Mesopelagic-Bathypelagic …….Caridea Pasiphaeidae Pasiphaea spp. Mesopelagic-Bathypelagic …….Caridea Unidentified caridean shrimps Mesopelagic Decapoda …..Dendrobranchiata Penaeidae Funchalia sp. Mesopelagic-Bathypelagic Ommastrephidae Ornithoteuthis volatilis Mesopelagic Evermannella indica Myctophidae Mesopelagic Lobianchia dofleini Stomiiformes Gonostomatidae Mesopelagic-Bathypelagic Bathypelagic Echiostoma barbatum Ommastrephidae Ommastrephes bartramii Mesopelagic Ommastrephidae Eucleoteuthis luminosa Mesopelagic Paralepididae Epipelagic-Bathypelagic Beryciformes Diretmidae Diretmus argenteus Mesopelagic Gadiformes Bregmacerotidae Bregmaceros maclellandi Mesopelagic Diaphus effulgens Myctophidae Diaphus knappi Mesopelagic-Myctophidae Lobianchia gemellarii Mesopelagic Cyclothone sp. Mesopelagic-Bathypelagic Stomiidae Mesopelagic-Bathypelagic Eustomias sp. Epibenthic Myctophidae Mesopelagic Myctophidae Myctophum fissunovi Mesopelagic Gonostomatidae Stomiidae Mesopelagic-Bathypelagic Sigmops elongatus Idiacanthus fasciola Myctophiformes Neoscopelidae Neoscopelus macrolepidotus Mesopelagic-Benthopelagi c over slope regions Neoscopelidae Neoscopelus microchir Mesopelagic-Benthopelagi c over slope regions Myctophidae Mesopelagic Diaphus lucidus Myctophidae Mesopelagic Myctophidae Myctophum nitidulum Mesopelagic Stomiidae Mesopelagic Myctophidae Mesopelagic-Gonostomatidae Mesopelagic Melanostomias sp. Diaphus metoclampus Myctophidae Diaphus mollis Mesopelagic Nannobrachium spp. Bathypelagic Stomiidae Mesopelagic Margrethia obtusirostra Myctophidae Diaphus perspicillatus Mesopelagic Myctophidae Notoscopelus Mesopelagic-Bathypelagic Phosichthyidae Mesopelagic Photonectes sp. Stomiidae Mesopelagic-Vinciguerria nimbaria Bathypelagic resplendens Sternoptychidae Mesopelagic Photostomias sp. Myctophidae Mesopelagic Myctophidae Mesopelagic Argyropelecus aculeatus Stomiidae Mesopelagic Stomias boa Decapoda Mesopelagic Benthosema fibulatum Myctophidae Mesopelagic Diaphus richardsoni Scopelopsis Sternoptychidae Mesopelagic Stomiidae Mesopelagic-Fishes Myctophiformes Myctophidae Mesopelagic multipunctatus Perciformes Carangidae Mesopelagic Bathypelagic Argyropelecus hemigymnus Stomias longibarbatus	Prog. Feeding Mode Filter Feeder Omnivore Carnivore Carnivore Carnivore Carnivore Carnivore Carnivore Carnivore Carnivore Carnivore Carnivore Carnivore Carnivore Carnivore Carnivore Carnivore Filter Feeder Omnivore Omnivore Omnivore Omnivore Omnivore Omnivore Carnivore Carnivore Carnivore Carnivore Carnivore Carnivore Carnivore Carnivore Carnivore Carnivore Carnivore Carnivore Carnivore Carnivore Carnivore Carnivore Carnivore Carnivore Carnivore Carnivore Carnivore Carnivore Carnivore Carnivore Carnivore Carnivore Carnivore Carnivore Carnivore Carnivore Carnivore Carnivore Carnivore Carnivore Carnivore Carnivore Carnivore Carnivore Carnivore	Oceanogr. Seamount cruises La Pérouse MAD-Ridge 3, 6, 7 Trawl No. 2, 6 MAD-Ridge MZC 2 18 La Pérouse MAD-Ridge 3, 4, 6 2, 9, 10 La Pérouse MAD-Ridge 9 10 MAD-Ridge 3, 4, 6 La Pérouse 9 La Pérouse 1, 2 La Pérouse 9, 10 La Pérouse MAD-Ridge 8 5 MAD-Ridge 5, 7 La Pérouse MAD-Ridge 2, 4 10, 14, 17 MAD-Ridge 3, 5, 10 20 La Pérouse 9 MAD-Ridge 16 La Pérouse 9, 10 La Pérouse MAD-Ridge 2, 3, 8, 9, 178. n 6 4 6 4 6 6 2 1 6 1 4 4 2 2 4 4 6 6 1 2 4 10 5 5 1 La Pérouse MAD-Ridge 9 5 2 1 MAD-Ridge 9, 10, 11 6 MZC 18 2 La Pérouse MAD-Ridge MZC 6 5, 6, 11 18 1 6 1 MAD-Ridge 6 2 La Pérouse 4, 7 4 La Pérouse MAD-Ridge 1, 2, 7 1, 2, 5 6 8 La Pérouse 9 2 La Pérouse MAD-Ridge 2, 8 2, 5 3 4 La Pérouse MAD-Ridge MZC 3, 8 5, 6, 8 18 4 6 2 MAD-Ridge 12, 14, 16 4 MAD-Ridge 5 2 MZC 2 MAD-Ridge 7 2 MAD-Ridge MZC 1 20 1 1 MAD-Ridge 2 1 La Pérouse 4, 8 4 MAD-Ridge 7 1 La Pérouse MAD-Ridge 16 2 La Pérouse MAD-Ridge 9, 10 5, 7 4 4 La Pérouse La Pérouse 4, 8, 9, 10 4 1, 7, 8, 10 8 MAD-Ridge 3 2, 12 La Pérouse 10 2 MAD-Ridge 6, 14 3 MAD-Ridge 2, 5, 10, 8 La Pérouse 4, 7, 10 3 12 9 2 MAD-Ridge 10 2 MAD-Ridge 10 2 MAD-Ridge 14 2 MZC 20 2 MZC La Pérouse MAD-Ridge 4 6, 14 2 2 MZC 2 La Pérouse 4, 7, 8, 9 7 20 20 2 La Pérouse 10 2 MAD-Ridge 12 2 MAD-Ridge 5, 9, 12 3 La Pérouse MAD-Ridge 10 5, 7 2 4 La Pérouse 9, 10 2 La Pérouse MAD-Ridge 4, 10 2, 5, 7, 9, 12 4 10 MAD-Ridge La Pérouse 8, 10 4 3 2 La Pérouse 4, 9 3 La Pérouse 1, 2, 7, 8 8 La Pérouse 8 2 MAD-Ridge 5 2 MAD-Ridge La Pérouse 10 1 1, 2, 5, 7, 12 10, 12 La Pérouse 1, 2 3 MAD-Ridge 3, 6 3 MAD-Ridge 15 2 MAD-Ridge 13 1 La Pérouse 8 1 La Pérouse 8 2 MAD-Ridge 7 2 MAD-Ridge 2 1	Mean Size (mm) 20.1 ± 4.8 23.8 ± 9.0 47.2 ± 16.6 65.3 ± 13.8 27.0 ± 8.26 26.2 ± 6.06 29.2 ± 0.35 367.0 135.1 ± 61.3 92.8 109.9 ± 9.19 67.5 ± 7.78 32.0 ± 2.12 35.9 ± 6.43 32.0 ± 3.41 54.7 ± 15.1 72.3 ± 5.93 41.0 ± 2.69 202.8 268.0 ± 84.9 66.3 ± 11.2 88.2 ± 24.4 122.3 77.3 ± 7.64 175.5 71.2 ± 5.39 22.3 ± 10.5 NA 29.5 ± 14.2 28.5 23.7 ± 1.20 36.0 ± 3.91 49.0 ± 9.65 47.2 ± 11.8 70.4 ± 20.5 48.6 ± 7.41 55.2 ± 8.89 66.0 ± 7.66 54.7 ± 14.9 68.6 ± 7.42 90.1 ± 52.2 90.7 ± 22.5 35.1 ± 2.12 24.7 ± 1.98 364.8 NA 111.3 64.4 ± 18.9 30.3 53.1 ± 11.0 42.0 ± 2.50 41.1 ± 2.50 96.4 ± 19.8 147.6 ± 63.5 102.7 ± 11.6 73.1 ± 12.1 62.7 ± 2.70 111.5 ± 45.9 249.6 ± 10.3 67.5 ± 4.0 80.9 ± 49.3 59.8 ± 19.3 79.1 ± 12.8 62.0 ± 10.3 56.3 ± 14.2 67.4 ± 4.88 201.8 ± 35.6 71.4 ± 14.1 58.1 ± 1.12 111.5 ± 15.6 33.8 ± 2.69 87.4 ± 13.4 44.4 ± 5.09 55.5 ± 6.48 121.1 ± 6.43 53.4 ± 8.26 56.0 ± 4.59 38.7 ± 13.6 35.6 ± 3.04 85.9 ± 22.9 50.4 ± 15.5 40.7 ± 3.54 37.9 ± 3.61 145.0 55.4 ± 17.5 71.7 ± 5.83 26.4 ± 2.71 36.9 ± 10.1 27.4 248.9 51.4 ± 6.36 121.0 289.9	Mean δ 15 N (‰) 5.2 ± 0.20 3.3 ± 0.31 8.3 ± 0.67 9.5 ± 0.71 10.5 ± 0.45 9.5 ± 0.39 11.7 ± 0.10 10.7 3.7 ± 1.48 13.3 12.2 ± 0.19 11.0 ± 0.46 11.3 ± 0.04 10.5 ± 0.48 9.8 ± 0.39 10.7 ± 0.42 11.2 ± 0.23 8.8 ± 0.43 12.1 10.7 ± 0.47 10.2 ± 0.52 9.7 ± 0.48 10.1 9.6 ± 0.07 9.9 9.4 ± 1.0 3.8 ± 0.13 5.9 4.2 ± 1.19 6.4 7.7 ± 0.18 8.8 ± 0.29 10.4 ± 0.89 9.5 ± 0.47 9.8 ± 0.23 10.1 ± 1.69 9.2 ± 0.75 7.5 ± 0.47 6.6 ± 0.88 7.2 ± 0.68 9.0 ± 0.93 10.3 ± 1.44 12.1 ± 0.62 8.7 ± 0.45 13.2 13.8 9.4 9.1 ± 0.42 8.8 10.2 ± 0.07 11.4 ± 0.35 10.9 ± 0.57 9.4 ± 0.94 11.5 ± 0.94 9.0 ± 0.11 12.1 ± 0.05 9.8 ± 0.17 9.7 ± 1.05 11.1 ± 1.22 10.1 ± 0.40 10.8 ± 0.44 11.0 ± 0.05 9.7 ± 0.25 11.0 ± 0.45 9.5 ± 0.17 9.5 ± 0.59 12.0 ± 0.21 10.1 ± 0.64 12.1 ± 0.07 10.2 ± 0.92 11.2 ± 0.26 9.6 ± 0.65 11.1 ± 0.42 10.7 ± 0.84 11.8 ± 0.62 10.7 ± 0.28 10.2 ± 0.53 11.4 ± 0.74 8.1 ± 0.04 11.3 ± 1.04 10.2 ± 0.87 11.3 ± 0.45 9.7 ± 0.54 10.8 10.4 ± 1.23 10.7 ± 1.30 8.7 ± 0.24 9.1 ± 0.53 11.6 11.4 9.6 ± 0.06 6.2 ± 0.18 12.0	Mean δ 13 C (‰) -21.5 ± 0.17 -22.9 ± 0.64 -19.5 ± 0.47 -19.3 ± 0.27 -18.4 ± 0.48 -18.3 ± 0.45 -19.1 ± 0.01 -21.0 -20.7 ± 0.30 -17.7 -17.9 ± 0.19 -18.8 ± 0.15 -19.2 ± 0.13 -19.3 ± 0.09 -19.9 ± 0.18 -18.6 ± 0.15 -18.8 ± 0.44 -19.2 ± 0.54 -18.3 -18.3 ± 0.35 -18.9 ± 0.10 -18.1 ± 0.36 -18.0 -19.3 ± 0.22 -18.9 -18.4 ± 0.30 -22.4 ± 0.73 -18.2 -21.5 ± 1.44 -23.2 -19.4 ± 0.27 -18.0 ± 0.27 -18.3 ± 0.26 -18.1 ± 0.33 -18.0 ± 0.53 -17.7 ± 0.40 -17.5 ± 0.19 -18.7 ± 0.57 -18.6 ± 0.18 -19.1 ± 0.44 -18.5 ± 0.18 -19.1 ± 0.21 -18.9 ± 0.42 -19.8 ± 0.14 -17.4 -17.3 -17.7 -19.7 ± 0.50 -19.9 -19.4 ± 0.16 -18.9 ± 0.14 -19.3 ± 0.27 -18.3 ± 0.48 -18.4 ± 0.64 -18.7 ± 0.16 -19.0 ± 0.76 -19.2 ± 0.25 -18.8 ± 0.60 -17.6 ± 0.24 -18.8 ± 0.23 -19.2 ± 0.37 -19.0 ±0.10 -18.7 ± 0.13 -19.2 ± 0.04 -19.0 ± 0.23 -19.3 ± 0.66 -18.3 ± 0.05 -18.3 ± 0.25 -19.6 ± 0.06 -18.5 ± 0.10 -19.0 ± 0.25 -18.3 ± 0.51 -18.8 ± 0.04 -19.4 ± 0.07 -18.1 ± 0.62 -19.0 ± 0.42 -19.1 ± 0.24 -18.8 ± 0.10 -18.4 ± 0.01 -18.1 ± 0.30 -18.8 ± 0.38 -19.5 ± 0.13 -20.1 ± 0.29 -18.4 -19.0 ± 0.56 -18.8 ± 0.15 -19.4 ± 0.14 -19.3 ± 0.15 -18.9 -18.3 -18.7 ± 0.35 -18.4 ± 0.37 -18.3	Mean TL (TPA model) 2.0 ± 0.06 1.7 ± 0.10 3.3 ± 0.21 3.7 ± 0.22 3.6 ± 0.14 3.6 ± 0.12 4.0 ± 0.03 4.0 1.8 ± 0.46 4.5 4.2 ± 0.06 3.8 ± 0.14 3.9 ± 0.01 4.0 ± 0.15 3.7 ± 0.12 3.7 ± 0.13 4.2 ± 0.07 3.4 ± 0.13 4.1 4.0 ± 0.15 3.5 ± 0.16 3.4 ± 0.15 3.8 3.3 ± 0.02 3.8 3.6 ± 0.31 1.9 ± 0.04 2.2 2.0 ± 0.37 2.7 3.1 ± 0.06 3.1 ± 0.09 3.6 ± 0.28 3.7 ± 0.15 3.4 ± 0.07 3.5 ± 0.53 3.5 ± 0.23 2.7 ± 0.15 3.9 ± 0.45 4.5 ± 0.19 3.4 ± 0.14 3.5 ± 0.29 4.8 5.0 3.6 3.2 ± 0.13 3.4 3.9 ± 0.02 3.9 ± 0.11 4.1 + 0.18 3.3 ± 0.29 3.9 ± 0.30 3.5 ± 0.03 4.1 ± 0.02 3.8 ± 0.05 3.7 ± 0.33 3.8 ± 0.38 3.5 ± 0.13 4.1 ± 0.14 4.1 ± 0.02 4.1 ± 0.14 3.3 ± 0.05 3.6 ± 0.19 4.4 ± 0.07 3.5 ± 0.20 4.4 ± 0.02 3.5 ± 0.29 3.7 ± 0.20 4.2 ± 0.08 4.0 ± 0.19 3.8 ± 0.13 4.0 ± 0.26 3.9 ± 0.23 3.2 ± 0.01 3.9 ± 0.33 3.7 ± 0.09 3.5 ± 0.27 3.9 ± 0.17 3.9 ± 0.14 3.7 ± 0.17 3.7 3.9 ± 0.39 3.7 ± 0.08 2.7 ± 0.28 2.9 ± 0.21 3.7 ± 0.40 3.4 ± 0.07 4.3 3.9 3.5 ± 0.17 3.4 ± 0.02 2.6 ± 0.06 4.4
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MAD-Ridge seamount

This topographic feature, located ~240 km to the south of Madagascar, along the Madagascar Ridge at latitude 27°29'S and longitude 46°16'E has been named "MAD-Ridge" in this study (Fig. 5.1a, c). The seamount rises from a depth of 1600 m from the ocean floor to ~240 m below the sea surface. The summit is 33 km long (north to south) and 22 km wide (east to west). MAD-Ridge is surrounded by four smaller pinnacles, reaching depths of 600 m, 900 m, 800 m and 1200 m below the sea surface, between latitudes 27°S-28°S and longitudes 46°E-46°45'E. The MAD-Ridge pinnacle was sampled on board the RV Antea (DOI: 10.17600/16004800 and 10.17600/16004900) from 26 November to 14 December 2016.

List of Figures

X

List of

Stable isotope patterns of mesopelagic communities over two shallow seamounts of the south-western Indian Ocean

Pavanee Annasawmy 

Abstract

The stable carbon (δ 13 C) and nitrogen (δ 15 N) isotope values of soft tissues of micronekton (crustaceans, squids, mesopelagic fishes) and zooplankton were measured from organisms collected on the RV Antea at two seamounts located in the south-western Indian Ocean: La

Pérouse (summit depth ~60 m) and "MAD-Ridge" (thus named in this study; summit depth ~240 m). Surface particulate organic matter (POM-Surf) showed higher δ 13 C at MAD-Ridge than at La Pérouse. Particulate organic matter and zooplankton were depleted in 15 N at the oligotrophic La Pérouse pinnacle compared with the more productive MAD-Ridge seamount.

Gelatinous 

Seamount Attributes

Oceanographic Factors

Observations

Tidal amplification and rectification

Fieberling Guyot [START_REF] Eriksen | Observations of amplified flows atop a large seamount[END_REF][START_REF] Eriksen | Waves, mean flows, and mixing at a seamount[END_REF][START_REF] Brink | Tidal and lower frequency currents above Fieberling Guyot[END_REF]Kunze & Toole, 1997 Rockall Bank (Atlantic) [START_REF] Huthnance | On the diurnal tidal currents over Rockall Bank[END_REF] Yermak Plateau (Arctic) [START_REF] Hunkins | Anomalous diurnal tidal currents on the Yermak Plateau[END_REF] Cross seamount (Pacific) Dense aggregations of M. muelleri and Gnathophausia longispina remain on the seamount's flanks at ~400 m during the day and migrate to ~50 m above the summit every night.

Shallow scattering layer is displaced ~2-7 km in the direction consistent with the current direction above the summit every night [START_REF] Boehlert | Enhanced micronekton abundance over mid-Pacific seamounts[END_REF][START_REF] Boehlert | A review of the effects of seamounts on biological processes[END_REF][START_REF] Boehlert | Current-Topography Interactions at Mid-Ocean Seamounts and the Impact on Pelagic Ecosystems[END_REF][START_REF] Wilson | Acoustic measurement of micronekton distribution over Southeast Hancock Seamount, central Pacific Ocean[END_REF][START_REF] Wilson | Interaction of ocean currents and resident micronekton at a seamount in the central North Pacific[END_REF] Spawning site for individuals of M. muelleri [START_REF] Boehlert | Populations of the Sternoptychid Fish Maurolicus muelleri on Seamounts in the Central North Pacific[END_REF][START_REF] Brodeur | PICES Scientific Report No. 30 Micronekton of the North Pacific[END_REF] Dom João de Castro seamount Spawining site for Ceratoscopelus maderensis Sobrinho-Concalves & Cardigos, 2006