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Anthony R. Poggioli

2019

Supervised By:

Lydéric Bocquet
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Abstract

Nanofluidics research is motivated both by intrinsic interest in the novel transport phenomena

observable only at the (sub-)nanometric scale, and by applications including energy generation,

desalination, macromolecular analysis, and microscopy. Two key considerations in the develop-

ment of such technologies are 1) the control of nonlinear ionic transport and 2) the characterization

of electrostatic, frictional, and other interactions of solid-liquid interfaces with bulk electrolyte so-

lutions. In this manuscript, I develop a coherent theory of ion-selectivity and nonlinear ionic

transport in nanopores & 1 nm in diameter, rationalizing previous experimental work and offering

new routes in the development of desalination, energy generation, and other exotic functionalities.

I then explore each of the above considerations separately. First, I explore the limits of contin-

uum theory in rationalizing nonlinear coupled transport observed experimentally in ångströmetric

channels, revealing the irrelevance of the Navier-Stokes description of the fluid dynamics at this

scale and highlighting the role of the frictional characteristics of the confining material. Finally, I

examine the surface-controlled modification of applied electric fields in scanning ion conductance

microscopy, proposing a new approach for the imaging of surface charge that may substantially

improve on the spatial resolution of current techniques.

Résumé

La recherche en nanofluidique est motivée à la fois par l’intérêt intrinsèque des nouveaux phénomènes

de transport observables uniquement à cette échelle, mais aussi par les applications qui en résultent

comme la production d’énergie, le dessalement, l’analyse macromoléculaire et la microscopie. Deux

points clés pour le développement de telles technologies sont : 1) le contrôle du transport ionique

non-linéaire et 2) la caractérisation des propriétés électrostatiques, frictionnelles et autres des in-

terfaces solide-liquide avec des solutions électrolytiques. Dans ce manuscript, je m’intéresse à la

sélectivité ionique ainsi qu’au transport non-linéaire des ions dans les nanopores. Je développe

une théorie cohérente qui permet de rationaliser les travaux expérimentaux précédents et ouvre

des nouvelles voies pour le dessalement et la génération d’énergie. J’explore ensuite chacun des



deux points clés cites précédemment. D’abord, j’étudie les limites de l’approche en milieu continu

à travers l’exemple du couplage non-linéaire observé pour le transport dans des canaux qui font

quelques ångström d’épaisseur. Dans ce cadre, je montre que l’équation de Navier-Stokes ne per-

met plus de décrire correctement la dynamique des fluides (à cette échelle), et je mets en évidence

l’importance des propriétés de friction du matériau qui confine le liquide. Enfin, j’explore l’effet

des propriétés de surface sur le champ électrique appliqué en Microscopie à conductance ionique

à balayage (Scanning Ion Conductance Microscopy en anglais). Je propose une nouvelle approche

pour l’imagerie de la charge de surface qui pourrait améliorer considérablement la résolution spa-

tiale des techniques actuelles.
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5.1 Schematic showing the configuration considered in Khair & Squires (2008). An
electrolyte is in contact with a solid substrate, forming a solid-liquid interface on
the x − z plane. There is a discontinuity in the surface charge density, and hence
in the surface conductivity, along the line x = 0, with zero surface charge for
x < 0 and nonzero surface charge for x > 0, and an external field E∞ = E∞x̂ is
applied along the interface. The blue arrows indicate currents entering and leaving
a control volume of infinitesimal length δx and height h much smaller than the
healing (Dukhin) length `Du and larger than the characteristic extent of the diffuse
layer, the Debye length λD: λD < h� `Du. . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Schematic of the typical configuration of a scanning ion conductance microscope
(SICM). A substrate is submerged in electrolyte solution, acquiring a surface charge
σ. A typically nanometric pipette of interior tip radius Rtip, tip thickness τ , interior
base radius Rbase, and length LP is held at a height H above the substrate, and a
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5.4 Comparison of numerical FEM results (blue dots) for the conductance as a function
of separation distance H to the scaling derived by Nitz et al. (1998) (solid black
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color-coded dots indicate the numerical values of δG calculated via FEM simulation,
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inset shows the fit coefficient α (Eq. 5.25) as a function of Du (purple dots) for the
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5.6 Conductance anomaly δG (Eq. 5.9) as a function of separation distance H for
several values of the patch size Rpatch, as indicated in the legend. The color-coded
dots indicate the numerical values of δG calculated via FEM simulation, and the
solid black lines indicate fits to the numerical data based on Eq. 5.26. The inset
shows the fit coefficient β (Eq. 5.26) as a function of Rpatch (purple dots) for the
three curves shown in the main plot and an additional curve calculated for Rpatch =
1.5. The solid black line in the inset shows a best fit of the form β = β0R

3
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A.1 A sketch of the configuration considered in Sec. A.1. A dissolved, monovalent ionic
species at equilibrium in a semi-infinite domain is in contact with a charged planar
boundary of surface charge density σ at z = 0. Far from the boundary, the total
ionic concentration and electrostatic potential take their bulk values, c(∞) = c∞
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built up via the accumulation of counterions (green) and the exclusion of coions
(orange) in order to compensate the charge of the boundary. This accumulation
of ionic charge within the so-called diffuse or Debye layer results in a nonzero
electrostatic potential, sketched here in red. The characteristic scale of the diffuse
layer is the Debye length λD, as indicated here and discussed in the text. . . . . . 118
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potential normalized by the potential at the wall φ/φw versus z/λD. b and c)
Respectively, the coion and counterion concentrations, normalized by the total ionic
concentration in the bulk, cco/c∞ and ccount/c∞, versus z/λD. In each panel, the
curves are colored according to `Du/λD, as indicated in the legend in panel b. The
subplot in panel a shows the rescaled wall potential, eφw/kBT , as a function of
`Du/λD. The subplot in panel c shows the total, cw, counter-, cwcount, and coion, cwco,
concentrations at the wall normalized by c∞ as a function of `Du/λD. The dashed
lines in the subplots in panels a and c show, respectively, the asymptotic behavior
of the rescaled wall potential, ψw ∼ 2ln(`Du/λD) (Eq. A.23), and the normalized
counterion and total ionic concentrations, cwcount, cw ∼ (`Du/λD)2/2 (Eq. A.24) as
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C.1 Control sample test. a-c) Streaming current measured in a control sample without
any channels as a function of the pressure. We varied the applied voltage from −100
to +100 mV (color coded from blue to red). d-f) Same measurements as for panels
a-c (colored symbols) but compared with the streaming current measured with 200
graphite channels (black symbols). The streaming current is around 4 orders-of-
magnitude larger, which confirms that channels remain mechanically stable and are
not delaminated under pressure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
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Chapter 1

INTRODUCTION

Nanofluidics, the study of fluid flow in conduits having minimum dimensions between one and

several hundred nanometers, has existed as a discipline distinct from, e.g., nanotechnology or

membrane or colloid science, for over two decades (Eijkel & van den Berg, 2005; Schoch et al.,

2008; Bocquet & Charlaix, 2010). The justification for distinguishing nanofluidics from other

related disciplines lies more in the exotic phenomena unique to these length scales than to its

numerous technical applications. Theoretically, these novel phenomena are anticipated based

on two criteria: 1) the strong interaction of the fluid with the solid-liquid interface owing to

the relatively large surface-to-volume ratios typical of the nanoscale, and 2) the breakdown of

the continuum description of the solute and solvent transport as molecular length scales are

approached (Bocquet & Charlaix, 2010). Practially, however, there remain substantial difficulties

in the ready and reproducible fabrication of devices with confinements approaching molecular

scales (. 1 nm). Furthermore, the continuum description of fluid transport has been found to

be quite robust down to 1 − 2 nm, with only slight modifications–chiefly, the relaxation of the

no-slip condition (Bocquet & Charlaix, 2010). For these reasons, the majority of the nanofluidics

literature is focused on exploring the novel transport phenomena induced by the interaction of the

fluid with the confining boundary–typically, electrostatic interaction of a charged interface with a

confined electrolyte solution subjected to external forcing.

In addition to the intrinsic interest in cataloging and rationalizing transport phenomena unique

to the nanoscale, nanofluidic research is motivated by a variety of technical applications. Among

them are the synthetic mimicry of exotic transport phenomena observed in nature, such as acti-

vation, ionic pumping, signal generation, and mechanosensitivity (Schasfoort et al., 1999; Perozo

et al., 2002; Karnik et al., 2005; Vásquez et al., 2008; Kim et al., 2009; Jiang & Stein, 2011; Pang

et al., 2011; Bonthuis & Golestanian, 2014; Chun & Chung, 2015; Fu et al., 2017; Zhao et al.,
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2017); applications to filtration (Bocquet & Charlaix, 2010; Picallo et al., 2013), energy gener-

ation (van der Heyden et al., 2006; Ren & Stein, 2008; Bocquet & Charlaix, 2010; Siria et al.,

2013; Rankin & Huang, 2016; Siria et al., 2017), and other topics in membrane science; macro-

and biomolecular detection (Misakian & Kasianowicz, 2003; Schiedt et al., 2005; Vlassiouk et al.,

2009; Zhou et al., 2011); and microscopy of soft substrates (Hansma et al., 1989; Nitz et al.,

1998; Klenerman et al., 2011; Sa et al., 2013; McKelvey et al., 2014; Dorwling-Carter et al., 2018;

Maddar et al., 2019). Many of these applications hinge on inducing and controlling ion-selectivity

and nonlinear transport, as well as on characterizing material-dependent solid-liquid interactions

(e.g., slippage) beyond generic electrostatic interactions. Additionally, both intrinsic interest and

the potential for novel technical applications pushes researchers to probe beyond the regime of

continuum nanofluidics, exploring for example extreme (sub-nanometric) confinement (Geim &

Grigorieva, 2013; Radha et al., 2016; Esfandiar et al., 2017).

In this thesis, I address two related questions: 1) under what conditions, and by what mech-

anisms, may a nonlinear response of ionic current (and other fluxes) in an electrolyte solution

be obtained in devices of (sub-)nanometric scale?, and 2) what is the role of surface charge in

nanometrically-confined ionic transport? In particular, I consider the role of surface charge as

characterized by the Dukhin number,

Du ≡ `Du

R
≡ κsurf/κbulk

R
≡ |σ|/ec

R
, (1.1)

where κsurf is a surface conductivity characterizing charge transport in the vicinity of a solid-

liquid interface, κbulk is a bulk conductivity characterizing charge transport far from any such

interfaces, σ is the density of surface charge on the interface, c is the total ionic concentration,

`Du ≡ κsurf/κbulk ≡ |σ|/ec is the Dukhin length, reaching values of O(100 nm) for typical surface

charge densities and ionic concentrations, and R is a typical length scale of the transport. In

colloid science, R is the colloid radius, and in nanofluidics R is the minimum dimension (radius

or half-width) of the nanometric conduit.

This dimensionless parameter was first introduced for, and is routinely applied in, the study of

the electrokinetics of colloids (Delgado et al., 2005; Posner, 2009). The applications to nanofluidics

have been less frequent and more particular; see, for example, Bocquet & Charlaix (2010); Picallo

et al. (2013), as well as recent publications citing the work presented in this thesis: Dal Cengio &

Pagonabarraga (2019); Graf et al. (2019); Macha et al. (2019). Researchers in nanofluidics more
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frequently consider the ratio of the Debye length λD to the confinement scale R. The Debye length

is defined as

λD ≡
√
kBTεrε0
e2c

, (1.2)

and it characterizes the thickness of the electrical diffuse layer (EDL) forming in electrolyte solu-

tions in the vicinity of a charged solid-liquid interface. In particular, many authors have stated

that the parameter λD/R controls both nonlinear transport and ionic selectivity (Woermann, 2003;

Cervera et al., 2006; Constantin & Siwy, 2007; Liu et al., 2007; Vlassiouk et al., 2008b; White &

Bund, 2008; Perry et al., 2010; Ai et al., 2010; Nguyen et al., 2010; Cheng & Guo, 2010; Kubeil

& Bund, 2011; Lan et al., 2011; Laohakunakorn & Keyser, 2015; Siria et al., 2017), though this

assertion has been challenged by numerical and experimental results (White et al., 2006; White

& Bund, 2008; Kovarik et al., 2009; Kubeil & Bund, 2011; Lan et al., 2011; Laohakunakorn &

Keyser, 2015; He et al., 2017; Lin et al., 2018), including those presented in Chapters 2 and 3 of

this manuscript.

1.1 Layout of the Thesis

Chapters 2 and 3 address both of the questions posed above simultaneously. In Chapter 2, I

consider the role of the Dukhin number in nonlinear ionic transport in nanofluidic devices. I

develop a theoretical framework within the context of Poisson-Nernst-Planck theory to treat the

phenomenon of ionic current rectification (ICR) analytically. ICR is the nanofluidic analogue of

the classical semiconductor diode, and it is the prototypical and most extensively studied example

of nonlinear nanofluidic transport. My results indicate that the Dukhin number, rather than

λD/R, is the principle parameter controlling both ionic selectivity and nonlinearity; in particular,

it is found that both an asymmetry in Dukhin number and a maximum Du ∼ 1 are necessary

and sufficient conditions for rectification. These results both rationalize previous numerical and

experimental work indicating that substantial rectification and selectivity is obtainable outside of

the regime of Debye overlap, as well as suggest promising new avenues for improved efficiency of

energy generation and desalination techniques.

In Chapter 3, I extend this theoretical framework to consider simultaneous electrical (volt-

age) and mechanical (pressure) forcing in the nonlinear (Du ∼ 1) regime. It is found that the

conductance of a conical nanopore subjected to an applied voltage shows a pronounced, gating-
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like sensitivity to mechanical forcing, returning to the ordinary linear response regime only when

subjected to large pressures. This response is in contrast to the typical linear response scenario,

and it is characteristic of a mechanical transistor-like response, in which ionic current is gated

by an external mechanical forcing. These results are a step towards the synthetic realization of

some of the exotic transport phenomena observed in nature, and the theoretical results are indeed

corroborated by experimental results obtained in the group.

Chapters 4 and 5 break off, treating either the conditions for nonlinear transport (Ch. 4) or

the role of the Dukhin length (Ch. 5) outside the context of nonlinear nanofluidic transport. In

Chapter 4, I develop a theoretical framework to rationalize experiments conducted in the group

measuring ionic current in ångströmetric channels subject to applied voltage and pressure. The

experiments reveal a streaming (pressure-driven) conductance that is strongly dependent on both

the applied voltage and the confining material–either hexagonal boron nitride (hBN) or graphite.

At this scale, the continuum picture of a distinct EDL and bulk is no longer applicable, as only

one or two layers of molecules are present. Furthermore, the ordinary continuum description

(Navier-Stokes) of the solvent dynamics is inapplicable as well, as the concepts of a transverse

viscosity or velocity gradient are no longer meaningful. I employ a phenomenological treatment

of the frictional forces present in the system to develop a continuum approach that successfully

reproduces the key qualitative results of the experiments, illustrating the important role of the

different frictional characteristics of hBN and graphite.

In Chapter 5, I leave aside the question of nonlinear transport, instead focusing on the role of

the Dukhin length in surface charge detection via scanning ion conductance microscopy (SICM).

This work corroborates theoretically and numerically our hypothesis that isolated ‘patches’ of

surface charge induce disturbances in applied electric fields that scale in spatial extent with the

Dukhin length, and that these patches may therefore be imaged via SICM. This hypothesis is

motivated by the work of Khair & Squires (2008), who first demonstrated theoretically the surface-

controlled modification of applied electric fields, and of Lee et al. (2012), who demonstrated

experimentally and numerically that the effective size of nanopores inferred from conductance

measurements at low concentration scales with the Dukhin length rather than the physical pore

size due to the discontinuity in surface charge at the ends of the nanopore. The results of Chapter

5 indicate that this effect may be used to infer relative surface charge density magnitude and the
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structure of isolated charged features, potentially improving upon the spatial resolution of current

SICM-based surface charge detection by one-to-two orders-of-magnitude.

Finally, in Chapter 6, I offer some overall conclusions and perspectives from the thesis, as well

as potential directions for future work.
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Chapter 2

BEYOND THE TRADEOFF: DYNAMIC SELECTIVITY IN IONIC
TRANSPORT AND CURRENT RECTIFICATION

Abstract In this Chapter, I derive one-dimensional equations for ionic transport in large-aspect-

ratio (L/R� 1) nanopores in the limit of no Debye overlap (λD/R� 1). I solve these equations,

along with the well known equations for ionic transport in the limit of strong Debye overlap

(λD/R� 1), for the current-voltage relationship in so-called concentration diodes, in which ionic

current rectification (ICR) is induced by an asymmetry in reservoir concentration. In line with

recent experimental results, and in contrast to the typical theoretical understanding of ICR, I

find that substantial rectification may be obtained when the maximum Dukhin number Du ≡
|σ|/ecR in the nanopore is of order one, irrespective of the value of λD/R. I show that this is

because the Dukhin number, rather than Debye overlap, controls the selectivity of the nanopore.

This result suggests the possibility of designing large-nanopore (10− 100 nm), high-conductance

membranes exhibiting significant ion-selectivity. Such membranes would have potentially dramatic

implications for the efficiency of osmotic energy conversion and separation techniques. Numerical

solutions for ICR induced by geometric and charge asymmetry are also presented, illustrating the

universality of the underlying mechanism of dynamic selectivity, and limiting and linear response

conductances are derived. The latter are potentially useful for the experimental determination of

surface charge densities. The majority of this work is presented in ‘Beyond the tradeoff: Dynamic

selectivity in ion transport and current rectification’ (Poggioli et al., 2019, J. Phys. Chem. B,

123, 1171–1185).

2.1 Introduction

The work presented in this thesis is principally motivated by a desire to understand under what

conditions and via what mechanisms nonlinear ionic transport can be obtained in strongly confined

systems. The prototypical (and simplest) example of such nonlinear transport is ionic current

rectification (ICR), illustrated in Fig. 2.1a. In ICR ionic currents driven through nanopores by
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applied voltages of equal magnitude and opposite sign are found to be of unequal magnitude, in

analogy to solid-state semiconductor diodes (Shockley, 1949; Bocquet & Charlaix, 2010). ICR

has been extensively studied experimentally and via continuum simulations (e.g., Ai et al., 2010;

Cervera et al., 2006; Constantin & Siwy, 2007; Liu et al., 2007; Nguyen et al., 2010; Siwy &

Fuliński, 2002; Wang et al., 2007; Kubeil & Bund, 2011; Lan et al., 2011; Laohakunakorn &

Keyser, 2015; White & Bund, 2008; Kovarik et al., 2009; Li et al., 2013), though comparatively

few studies have examined the phenomenon analytically (Picallo et al., 2013; Siwy & Fuliński,

2002; Vlassiouk et al., 2008b). Experimentally, it is found that ICR may be induced by unequal

reservoir concentrations (Cheng & Guo, 2007), asymmetric geometries (Cervera et al., 2006; Perry

et al., 2010; Siwy & Fuliński, 2002; Vlassiouk & Siwy, 2007; Kovarik et al., 2009; White et al.,

2006), or asymmetric surface charge distributions (Karnik et al., 2007; Nguyen et al., 2010; Li

et al., 2013).

ICR is generally understood to be a consequence of the accumulation or depletion of ionic

concentration induced by a gradient in ion selectivity along the length of a nanopore (Woermann,

2003). The key parameter controlling the local selectivity is accordingly understood to be the

ratio of the local Debye length λD to the local nanopore radius R. The Debye length is defined

as (Appendix A)

λD ≡
√

εrε0kBT

e2
∑

j z
2
j cj

, (2.1)

where εr and ε0 are, respectively, the relative dielectric permittivity of the solvent and the vac-

uum permittivity, kB is the Boltzmann constant, T is the thermodynamic temperature, e is the

elementary charge, zj is the valence of the jth ionic species, and cj is the concentration of the jth

ionic species. As illustrated in Fig. 2.1b, this length scale characterizes the thickness of the diffuse

layer of net ionic charge that forms in the vicinity of charged surfaces (Appendix A; Bocquet &

Charlaix, 2010). As the diffuse layer must counterbalance the surface charge, a region of strong

Debye layer overlap, λD/R & O(1), should be highly selective to counterions, while a region of

weak Debye overlap, λD/R� 1, should be essentially non-selective.
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Figure 2.1: a) Sketch of a rectified current response. As illustrated here, a positive voltage bias
results in a relatively lower conductance G = ∂I/∂∆V and hence corresponds to the reverse-bias
state, while a negative voltage bias results in a relatively higher conductance and hence corresponds
to the forward-bias state. b) Definition of the Debye length. In the vicinity of a charged solid-
liquid interface, a diffuse layer forms in which the total and counterion concentrations are enhanced
and the coion concentrations are suppressed. The characteristic thickness of this diffuse layer is
given by the Debye length λD, as defined in Eq. 2.1 and discussed at length in Appendix A. The
enhancement of counterion concentration and the suppression of coion concentration results in a
net ionic charge density nc, the integral of which must balance the surface charge density σ, a
condition known as local electroneutrality. In addition to the modified ionic densities, the net
ionic charge results in a deviation of the electrostatic potential φ from its value in the bulk. c)
Sketch of the Debye layer in a conical nanopore with negative surface charge density. Here, the
base radius is taken to be much larger than the Debye length, while the tip radius is taken to be
smaller than the Debye length, resulting in a region of Debye overlap in the vicinity of the tip.
Debye overlap is commonly understood to result in significant ion selectivity, while the absence
of Debye overlap in the base of the nanopore is understood to result in essentially non-selective
transport there. d) Illustration of ionic depletion in the vicinity of the conical nanopore tip under
a positive voltage bias (that is, an applied field directed from base to tip). Near the tip, the high
selectivity results in enhancement of the cation (counterion) transference t+ and suppression of
the anion (coion) transference t−, while both the cation and anion transference take their bulk
values in the essentially non-selective base. The result at steady state is a depletion of ionic
concentration in the vicinity of the tip and a suppressed nanopore conductance corresponding to
the reverse-bias state.
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Debye overlap has significant consequences for ionic transport through the pore. In order to

illustrate the underlying physical mechanisms, consider a conical nanopore with a uniform surface

charge density, as discussed in Woermann (2003). When λD/R & O(1) in the vicinity of the

nanopore tip, continuity of the chemical potential between the tip and the connected reservoir

results in the formation of a local Donnan equilibrium as discussed in Appendix A, and this region

is highly selective to (positive) counterions (Fig. 2.1c). The tip is then a region of increased

transference of cations and suppressed transference of anions. Thus, when an external electric

field is directed from the (non-selective) base to the (highly selective) tip, both cations and anions

pass from regions of relatively lower to relatively higher transference, and the result at steady state

is a depletion of ionic concentration in the nanopore interior (Fig. 2.1d). The depletion of charge

carriers results in a decrease of the local conductivity and corresponds to the low conductance

(reverse-bias) diode state. On the other hand, if the direction of the applied field is inverted, both

ionic species pass from regions of relatively high to relatively low transference, resulting in an

accumulation of ionic concentration. This accumulation of charge carriers likewise results in a high

conductance (forward-bias) state. Altogether, we anticipate that two criteria are prerequisite for

the observation of nonlinear ionic transport generally, and ionic current rectification in particular:

1) a maximum value of λD/R & 1 and 2) a gradient in λD/R, and hence in the local ionic

selectivity, across the pore. The mechanism of concentration accumulation and depletion in ICR

has been extensively corroborated numerically (Ai et al., 2010; Vlassiouk et al., 2008b; Cervera

et al., 2006; Constantin & Siwy, 2007; Liu et al., 2007; Nguyen et al., 2010; Cheng & Guo, 2010;

Kubeil & Bund, 2011; Lan et al., 2011; Laohakunakorn & Keyser, 2015; White & Bund, 2008)

and experimentally (Perry et al., 2010).

However, recent studies have indicated not only that the parameter λD/R fails to predict the

occurrence or strength of rectification, but also that significant rectification may be obtained even

when the Debye length is one-to-three orders of magnitude smaller than the minimum nanopore

radius (Kovarik et al., 2009; Kubeil & Bund, 2011; Lan et al., 2011; Laohakunakorn & Keyser, 2015;

White & Bund, 2008; White et al., 2006; Jubin et al., 2018; He et al., 2017; Lin et al., 2018). To my

knowledge, no consistent alternative criterion has been proposed to predict the occurrence of ICR.

Furthermore, while there have been many numerical simulations of ICR within the Poisson-Nernst-

Planck (PNP) or Poisson-Nernst-Planck-Stokes (PNPS) framework, few studies have offered a
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detailed theoretical analysis of the phenomenon, and these studies are typically confined to quite

specialized scenarios, (e.g., Picallo et al., 2013).

In this Chapter, I examine ionic transport and current rectification in the limits of no Debye

overlap (λD/R � 1) and strong Debye overlap (λD/R � 1). I find that the nanopore selectivity

is not determined by the relative value of the Debye length λD compared to the pore radius R,

but rather by a dynamic criterion related to the relative magnitudes of the surface and bulk

ionic conductances. This introduces the so-called Dukhin length `Du, defined as the ratio of the

surface conductivity to the bulk conductivity in the nanopore (Bocquet & Charlaix, 2010). The

Dukhin length can be adequatly rewritten in terms of the charge density on the pore surface, σ, as

`Du = (|σ|/e)/c, with c the bulk salt concentration (Bocquet & Charlaix, 2010). A dimensionless

Dukhin number is accordingly introduced as (Appendix A)

Du ≡ `Du

R
≡ |σ|
ecR

. (2.2)

The Dukhin length approaches values of hundreds of nanometers for typical surface charges in the

range of 10 − 100 mC m−2 and concentrations in the range of 0.1 − 1 mM, one-to-two orders of

magnitude larger than the corresponding Debye lengths.

As I demonstrate below, substantial ionic selectivity may be obtained when the nanopore radius

is comparable to the Dukhin length, i.e., when Du ∼ 1. This is consistent with numerical results

indicating substantial ion-selectivity may be obtained in highly charged pores with radii much

larger than the Debye length (Vlassiouk et al., 2008a), and it is in stark contrast to traditional

ion-selective membranes, which typically have subnanometric pore sizes (Siria et al., 2017). I

term this mechanism dynamic selectivity, in contrast to the ‘thermodynamic’ picture of ionic

selectivity based on Debye overlap and the formation of a Donnan equilibrium at the ends of the

nanopore, (e.g., Woermann, 2003; Plecis et al., 2005; Bocquet & Charlaix, 2010). The possibility

of obtaining significant selectivity for large (10− 100 nm) pores may have significant implications

for, e.g., osmotic energy generation; I will discuss this point in more detail below.

Furthermore, I will show below that a gradient in the local Dukhin number along the length

of the nanopore results in a repartitioning of the fraction of the ionic transport carried in the

non-selective bulk and in the highly selective Debye layer. It is this repartitioning, rather than

Debye overlap and the formation of a local Donnan equilibrium at one end of the nanopore, that

results in ICR.
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Though I am particularly interested in rationalizing those experimental (Lan et al., 2011; Jubin

et al., 2018; Kovarik et al., 2009; White et al., 2006; He et al., 2017; Lin et al., 2018) and numerical

(Kubeil & Bund, 2011; Laohakunakorn & Keyser, 2015; White & Bund, 2008; Jubin et al., 2018;

Vlassiouk et al., 2008a) results indicating that substantial rectification and selectivity may be

obtained in the absence of Debye overlap, I will examine ionic transport in both the limit of no

overlap and strong overlap. This is done for completeness and to illustrate the similarity of the

results for both rectification and selectivity at these opposing ends of parameter space, consistent

with the assertion that the Dukhin number is the principal parameter controlling rectification and

selectivity, with λD/R having only a secondary quantitative influence.

I will start by deriving one-dimensional transport equations from a radial integration of the

axisymmetric PNP equations in the limit λD/R� 1 and Du ∼ 1 and comparing the form of these

equations to the more well known one-dimensional transport equations valid in the limit of strong

overlap (λD/R� 1) (e.g., Bocquet & Charlaix, 2010; Picallo et al., 2013). From these transport

equations, I am able to derive simple implicit expressions for the current-voltage (IV) response in a

concentration diode. To my knowledge, these solutions have not been presented previously in the

literature. Additionally, I will give numerical solutions of these transport equations for a geometric

diode (rectification induced by an asymmetric, continuously varying radius) and a charge diode

(rectification induced by an asymmetric, continuously varying surface charge density distribution).

These solutions will further illustrate the universality of the underlying mechanism of dynamic

selectivity in ICR and the key role of the Dukhin number. Finally, I derive analytical expressions

for general limiting and linear response conductances directly from the transport equations that

will be useful in estimating, for example, surface charge densities from rectified IV curves.

2.2 1D Transport Equations

In this section, I derive one-dimensional transport equations for the electrostatic potential and

total ionic concentration at the nanopore centerline from the axisymmetric PNP equations in the

limit of no overlap λD/R � 1 and compare them to the well-known one-dimensional transport

equations valid in the limit of strong overlap λD/R � 1. In both cases, the derivation relies on

the geometric constraint R0/L0 � 1, where R0 is a scale of the nanopore radius, and L0 is a

characteristic scale of variation of the nanopore geometry. Such a slowly varying approximation
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implies that a Poisson-Boltzmann (PB) equilibrium holds locally on each cross-section (Fair &

Osterle, 1971; Rankin & Huang, 2016). The consequences of a local PB equilibrium are explored

in detail in Appendix A, and I will make use of the results developed there in my derivation.

2.2.1 No Overlap (λD/R� 1)

I first focus on the limit that λD/R � 1 and Du � λD/R. The results obtained in this limit

demonstrate that the Dukhin number is the principal parameter controlling selectivity and ICR,

and that ICR may occur even in the absence of Debye overlap anywhere along the length of the

nanopore, consistent with experimental observations. There is no Debye overlap in the center

of the nanopore so that the electrolyte there is electroneutral, and we may partition the ionic

concentrations and electrostatic potential as follows (Fair & Osterle, 1971):

c±(x, r) =
c0(x)

2
+ δc±(x, r), and (2.3)

φ(x, r) = φ0(x) + δφ(x, r), (2.4)

where c0(x) ≡ c(x, 0) is the value of the total ionic concentration c ≡ c+ + c− at the nanopore

centerline (r = 0), φ0(x) ≡ φ(x, 0) is the electrostatic potential at the nanopore centerline,

and δc±(x, r) and δφ(x, r) are the radial deviations in the ionic concentrations and electrostatic

potential induced by the formation of a screening Debye layer in the vicinity of the nanopore wall.

In Eq. 2.3, we have assumed a symmetric (z:z) salt. In what follows, we will assume a monovalent

(1:1) salt in which the cation and anion have identical mobility and diffusion coefficients.

With this notation and these assumptions, the steady-state PNP equations reduce to

j± = −D
(
∂xc± ±

e

kBT
c±∂xφ

)
, (2.5)

d

dx

(∫ R

0

2πrdrj±

)
≡ dJ±

dx
= 0, (2.6)

εrε0
∂r (r∂rδφ)

r
+ nc ≈ εrε0∂

2
Zδφ+ nc = 0, (2.7)

c = c0cosh

(
eδφ

kBT

)
, and (2.8)

nc = −ec0sinh

(
eδφ

kBT

)
, (2.9)
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where D is the diffusion coefficient, and nc ≡ e(c+ − c−) is the ionic charge density. In Eq. 2.7 I

have neglected the portion of the radial Laplacian induced by the curvature of the nanopore wall

as it is suppressed by a factor λD/R � 1 relative to ∂2
r , and I have introduced the coordinate

Z ≡ R − r. Eq. 2.5 gives the Nernst-Planck parameterization of the ion number flux densities

in the along-flow (x) direction; Eq. 2.6 is the cross-sectionally integrated continuity equation at

steady state; Eq. 2.7 is the Poisson equation, retaining only the radial component of the electric

field divergence in accordance with the slowly varying approximation; and Eqs. 2.8 and 2.9 are the

distributions of the total ionic concentration and ionic charge density obtained from the Boltzmann

distribution, applied on the assumption of a slowly varying geometry. Finally, I have neglected

advection as it is found to have only a minor influence on ICR over most of parameter space

(Ai et al., 2010; Vlassiouk et al., 2008a), and such an approach allows for tractable analytical

derivations.

Before continuing, I introduce dimensionless rescaled variables, as listed in Table 2.1. I rescale

the x-coordinate by the total nanopore length L, the surface charge σ by its maximum magnitude

|σ|max, the nanopore radius by its minimum value Rmin, and the ionic concentrations by the average

of the reservoir concentrations c. I further recast Eqs. 2.5 and 2.6 in terms of the rescaled solute

flux J ≡ J+ + J− ≡
∫

dAj and ionic current I ≡ J+− J− ≡
∫

dAi. With these modifications, the

rescaled governing equations become

j = − (∂xc+ nc∂xφ) , (2.10)

i = − (∂xnc + c∂xφ) , (2.11)

dJ

dx
=
dI

dx
= 0, (2.12)

(
λref
D

Rmin

)2

∂2
Zδφ+ nc = 0, (2.13)

c = c0cosh(δφ), and (2.14)

nc = −c0sinh(δφ), (2.15)

where I have introduced a reference Debye length λref
D ≡

√
kBTεrε0/e2c, defined in terms of the

mean reservoir concentration c.
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quantity variable rescaled

position x x→ Lx

radius R R→ RminR

concentration c c→ cc

ionic charge density nc nc → ecnc

electrostatic potential φ φ→ (kBT/e)φ

chemical potential µ± µ± → kBTµ±

flux density j± j± → (Dc/L)j±

surface charge σ σ → |σ|maxσ

Table 2.1: Independent and dependent variables and their rescaled dimensionless counterparts.

We differentiate Eq. 2.14 (2.15) with respect to x, insert the result into Eq. 2.10 (2.11), and

integrate on the cross-section to obtain

J

πR2
= −dc0

dx
− 〈δc〉

c0

dc0

dx
− 〈nc〉

c0

c0
dφ0

dx
, and (2.16)

I

πR2
= −c0

dφ0

dx
− 〈nc〉

c0

dc0

dx
− 〈δc〉

c0

c0
dφ0

dx
, (2.17)

where 〈〉 ≡ A−1
∫

dA denotes a cross-sectional average. The integral of the charge density is set

by the condition of local electroneutrality, a necessary consequence of a local PB equilibrium (Ap-

pendix A, Eq. A.41); the integral of δc may be evaluated using PB equilibrium theory (Appendix

A, Eq. A.45) in the limit λD/R� 1. The condition of local electroneutrality requires that

〈nc〉
c0

= −2Duref
σ

Rc0

≡ −2Du(x), (2.18)

where Duref ≡ |σ|max/ecRmin is a reference Dukhin number, and Du(x) is the local Dukhin number.

Note that Duref is defined to be always positive, but Du(x) ≡ S|Du(x)| carries the sign of the local

surface charge density. In the preceding, S ≡ sign(σ) is the sign of the surface charge. The

integral of δc is evaluated on the assumption of a local PB equilibrium (Eqs. 2.13 through 2.15)

in Appendix A (Eq. A.45). The result is

〈δc〉
c0

= 4
λD

RminR





√[
Du

2(λD/RminR)

]2

+ 1− 1



 , (2.19)
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where Du(x) is the local value of the Dukhin number, and λD(x) ≡ λref
D /
√
c0(x) is the local Debye

length. Inserting Eqs. 2.18 and 2.19 into Eqs. 2.16 and 2.17, we obtain the one-dimensional

transport equations valid in the limit λD/R� 1:

J

πR2
= −


dc0

dx
+ 4

λD
RminR





√[
Du

2(λD/RminR)

]2

+ 1− 1




dc0

dx
− 2Du(x)c0

dφ0

dx


 , and (2.20)

I

πR2
= −


c0

dφ0

dx
− 2Du(x)

dc0

dx
+ 4

λD
RminR





√[
Du

2(λD/RminR)

]2

+ 1− 1



 c0

dφ0

dx


 , (2.21)

where I and J are of course constant along the length of the nanopore (Eq. 2.12).

In the limit (λD/RminR)/Du→ 0, the average deviation in the total ionic concentration (Eq.

2.19) reduces to
〈δc〉
c0

= 2|Du(x)|. (2.22)

This limit is particularly relevant in rationalizing experimental observations of significant selectiv-

ity and rectification when the Debye length is much smaller than the scale of confinement but the

Dukhin number is of order one. Furthermore, the resulting transport equations are analytically

tractable in the case of a concentration diode. Inserting Eq. 2.22 into Eqs. 2.16 and 2.17 (or

equivalently taking the limit of Eqs. 2.20 and 2.21 as (λD/RminR)/Du→ 0), we obtain

J

πR2
= −

[
dc0

dx
+ 2|Du(x)|

(
dc0

dx
− Sc0

dφ0

dx

)]
, and (2.23)

I

πR2
= −

[
c0
dφ0

dx
− S2|Du(x)|

(
dc0

dx
− Sc0

dφ0

dx

)]
. (2.24)

Note that we have implicitly assumed in Eqs. 2.23 and 2.24 that the sign of the surface charge S

does not change along the length of the nanopore. If the sign of the surface charge does change

at one (or several) points along the length of the nanopore, Eqs. 2.23 and 2.24 may be applied in

each region delineated by a discontinuity in S(x), matching c0 and φ0 at each discontinuity. (More

about the proper boundary conditions for Eqs. 2.23 and 2.24 will be said below.)

It is useful to distinguish between those terms in Eqs. 2.23 and 2.24 that arise from transport

outside of the Debye layer (bulk transport) and those arising from transport within the Debye

layer (surface transport). In the equation for the solute flux (Eq. 2.23), the terms represent, from

left to right, bulk diffusion, surface diffusion, and surface electrophoretic mass transport. In the
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equation for the ionic current (Eq. 2.24), the terms represent bulk electrophoretic current, surface

charge diffusion, and surface electrophoretic current. We see that the local Dukhin number, which

sets the cross-sectionally averaged ionic charge (Eq. 2.18), as well as the cross-sectionally averaged

excess concentration when λD/RminR � Du (Eq. 2.22), determines the ratio of surface to bulk

transport. Motivated by this observation, we quantify the ratio of the surface transport to the

total transport by the following surface transport ratio (STR):

STR(x) ≡ 2|Du(x)|
1 + 2|Du(x)| . (2.25)

We see immediately that the partitioning of the transport into surface and bulk components

adjusts along the length of the nanopore and is controlled locally by the Dukhin number. In the

case that there is a large asymmetry in Dukhin number on either end of the nanopore, this can

result in a substantial repartitioning of the transport in the nanopore interior, the consequences

of which will be explored in the following sections.

An illustrative form of Eqs. 2.23 and 2.24 is obtained by introducing the definition of the local

Dukhin number, Eq. 2.18, and defining the coion and counterion fluxes Jco/count ≡ (J±SI)/2 and

chemical potentials µco/count ≡ ln(c0/2)± Sφ. Inserting these definitions into Eqs. 2.23 and 2.24,

we obtain

Jco

πR2
= −c0

2

dµco

dx
, and (2.26)

Jcount

πR2
= −

(
c0

2
+ 2Duref

|σ|
R

)
dµcount

dx
. (2.27)

In Eqs. 2.26 and 2.27, we recognize c0/2 as the concentration of both coions and counterions

at the nanopore centerline. Further, in Eq. 2.27, we recognize 2Duref |σ|/R as the additional

concentration accumulated in the Debye layer (Eq. 2.22). The term 2Duref |σ|/R × dµcount/dx

in Eq. 2.27 represents the entirety of the surface transport in the nanopore; this indicates that

coions are perfectly excluded from the Debye layer in the limit λD/R� Du (R dimensioned).

2.2.2 Strong Overlap (λD/R� 1)

In the limit λD/R → ∞, the profiles of ionic concentrations and electrostatic potential become

radially uniform (Bocquet & Charlaix, 2010). This is shown explicitly in Appendix A, Sec. A.2.3.
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In this case, the transport equations are, from Eqs. 2.10 and 2.11,

J

πR2
= −

(
dc

dx
+ nc

dφ

dx

)
, and (2.28)

I

πR2
= −

(
dnc
dx

+ c
dφ

dx

)
, (2.29)

where c, nc, and φ are the radially uniform total ionic concentration, ionic charge density, and

electrostatic potential, respectively. As a consequence of the local PB equilibrium, the ionic charge

density nc must verify electroneutrality (Eqs. 2.18 and A.49): nc = −2Duref(σ/R) = −2Du(x)c.

The transport equations (Eqs. 2.28 and 2.29) thus become

J

πR2
= − dc

dx
+ 2Du(x)c

dφ

dx
, and (2.30)

I

πR2
= +2

d

dx
[Du(x)c]− cdφ

dx
. (2.31)

I will employ Eqs. 2.23 (2.30) and 2.24 (2.31) below to develop an implicit analytical solution

for the current-voltage (IV) relationship in a concentration diode and numerical solutions for the

IV relationships in geometric and charge diodes in the limit of no (strong) overlap.

2.2.3 Boundary Conditions

Before solving Eqs. 2.23 and 2.24 or Eqs. 2.28 and 2.29, we must take care to ensure that we

are imposing appropriate boundary conditions at the nanopore ends. This is a nontrivial question

because the rapid variation in local Dukhin number (from a nonzero value in the nanopore interior

to zero in the reservoir) that occurs on either end of the nanopore means that the slowly varying

approximation we have used to impose a local PB equilibrium breaks down (Picallo et al., 2013).

In one-dimensional PNP-based models of nanopore ionic transport, this is typically taken into

account by imposing continuity of the chemical potential µ± = lnc± ± φ across the junction and

local electroneutrality on either side (Cervera et al., 2006; Constantin & Siwy, 2007; Vlassiouk

et al., 2008b; Bocquet & Charlaix, 2010; Picallo et al., 2013). This is justified as follows: The rapid

variation in local geometry and surface charge and consequently in the local Dukhin number results

in localized deviations from equilibrium and electroneutrality and rapid variations in electrostatic

potential and ionic concentrations. The scale of this adjustment region is given by the Debye

length. (See Shockley (1949) for an extensive discussion of this point in the equivalent context
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of semiconductor physics.) Thus, in the limit λD/L → 0, the adjustment region may be treated

as a point discontinuity in the ionic concentrations and electrostatic potential. However, as the

ionic flux densities j± = −c±∂xµ± are proportional to the gradient of the chemical potential, the

discontinuities in ionic concentration and electrostatic potential must be such that continuity of

chemical potential is maintained, ensuring finite ionic fluxes. Outside of this adjustment region,

the ions again locally equilibrate, and thus local electroneutrality is imposed on either side of the

junction.

No Overlap (λD/R� 1)

In the limit of no overlap (λD/R� 1), the profiles of electrostatic potential and ionic concentra-

tions are radially nonuniform, and we must ensure that the chemical potentials just inside the ends

of the nanopore are equal to the uniform reservoir values everywhere on the cross-section. However,

as we have already assumed a radially uniform chemical potential in locally applying a PB equilib-

rium, this condition is satisfied by equating the chemical potential in the connecting reservoir to

the value on the nanopore centerline. Furthermore, as the ionic charge vanishes at the nanopore

centerline, imposition of electroneutrality there amounts to imposing (c0
+)`/r = (c0

−)`/r = c
`/r
0 /2,

where ‘`/r’ indicates the value just inside the left/right end of the nanopore. Chemical continuity

across the junction thus requires ln(cL/R/2) ± V
L/R

res = ln(c
`/r
0 /2) ± φ

`/r
0 , where cL/R and V

L/R
res

are, respectively, the total ionic concentration and electrostatic potential imposed in the left/right

reservoir. This condition is satisfied by (Fair & Osterle, 1971; Rankin & Huang, 2016)

c
`/r
0 = cL/R, and (2.32)

φ
`/r
0 = VL/R. (2.33)

We note that this condition still results in finite discontinuities in the ionic concentrations and

electrostatic potential within the Debye layer.

Strong Overlap (λD/R� 1)

In the opposing limit of strong overlap (λD/R � 1), the profiles of ionic concentration and

electrostatic potential are radially uniform, and the ionic charge density is therefore uniform and

nonvanishing everywhere on the cross-section. The conditions of chemical continuity and local
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electroneutrality applied between the reservoir and nanopore interior are the same conditions

imposed when considering the formation of a Donnan equilibrium, and we may directly transcribe

the results derived in Appendix A, Sec. A.3 (Eqs. A.58 and A.59):

c`/r = cL/R

√
1 + (2DuL/R)2, and (2.34)

φ`/r = V L/R
res + S

1

2
ln

(√
1 + (2DuL/R)2 + 2DuL/R√
1 + (2DuL/R)2 − 2DuL/R

)
, (2.35)

with the ‘reservoir’ Dukhin numbers DuL/R defined as

DuL/R ≡
|σ|`/r

ecL/RR`/r

, (2.36)

where |σ|`/r and R`/r are, respectively, the surface charge magnitude and nanopore radius at the

left/right end of the nanopore.

We note that Eqs. 2.34 and 2.35 describe the formation of a local Donnan equilibrium at either

end of the nanopore, and the second term on the RHS of Eq. 2.35 proportional to the sign of the

surface charge corresponds to the Donnan potential at equilibrium.

2.3 Dynamic Selectivity

As noted above, in the slowly varying limit (R0/L0 � 1) considered here, the ionic concentration

profiles on the cross-section deviate negligibly from those predicted by PB equilibrium theory.

We may therefore apply this equilibrium theory to determine how the ionic selectivity on the

cross-section is influenced by Debye overlap (λD/R) and the Dukhin number. Using Eqs. 2.18

and 2.19, we determine the cross-sectionally averaged total concentration, 〈c〉 = 〈δc〉+ c0, and the

cross-sectionally averaged co- and counterion concentrations, 〈cco/count〉 = (〈c〉 ± S〈nc〉) /2:

〈c〉
c0

= 1 + 4
λD

RminR





√[
Du(x)

2(λD/RminR)

]2

+ 1− 1



 , and (2.37)

〈cco/count〉
c0

=
1

2
+ 2

λD
RminR





√[
Du(x)

2(λD/RminR)

]2

+ 1− 1



∓ |Du(x)|. (2.38)
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We take the ratio 〈ccount〉/〈c〉 as a metric of selectivity:

〈ccount〉
〈c〉 =

1
2

+ 2 λD
RminR

{√[
Du(x)

2(λD/RminR)

]2

+ 1− 1

}
+ |Du(x)|

4 λD
RminR

{√[
Du(x)

2(λD/RminR)

]2

+ 1− 1

}
+ 1

. (2.39)

This result is plotted in Fig. 2.2 against Du for several values of λD/RminR. Its value ranges

between 1/2, indicating the total average concentration is equally partitioned between coions and

counterions, and the nanopore is locally non-selective, and unity, indicating that the entirety of

the average concentration is due to counterions, and the nanopore is perfectly selective. We find

that, in the range 0 < λD/R < 2(10−1), the nanopore selectivity is strongly influenced by the

local Dukhin number in the range 10−1 < Du < 101 (Fig. 2.2). In comparison, the influence of

λD/R on selectivity for this range of λD/R is substantially less pronounced.
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Figure 2.2: The ratio of the cross-sectionally averaged counterion concentration to the cross-
sectionally averaged total concentration, a metric of the nanopore selectivity, as a function of
Dukhin number. The lines are colored according to λD/R, as indicated in the legend. The dashed
(dot-dashed) line indicates the curve obtained in the limit λD/R→∞ (→ 0).
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2.3.1 From Equilibrium to Dynamic Selectivity

An upper limit on the selectivity induced by Debye overlap may be obtained by considering the

selectivity of the nanopore entrance/exit in the limit λD/R→∞. In this case, a Donnan equilib-

rium forms at the nanopore tips, and we may calculate the ratio of the counterion concentration

to the total concentration according to Eqs. A.57 and A.58:

ccount

c
=

1

2

√
1 + (2|Du|)2 + 2|Du|√

1 + (2|Du|)2
. (2.40)

This upper limit exceeds the selectivity obtained above for λD/R = 2(10−1) only slightly (Fig.

2.2), indicating that the nanopore selectivity rapidly saturates for values of λD/R & 1/5.

A lower limit, valid when λD/R� Du, is obtained from Eq. 2.39. In this case, we find

〈ccount〉
〈c〉 =

1

2

(
1 +

2|Du|
1 + 2|Du|

)
≡ 1

2
(1 + STR) , (2.41)

where in the second equality I have made use of Eq. 2.25. Eq. 2.41 shows the deep connection

between transport and selectivity and can be made more intuitive as follows. As shown above,

the Debye layer in this limit is perfectly selective, so that the ratio of counterion concentration to

total concentration is unity. As always, the bulk is perfectly non-selective, so that the ratio there

is 1/2. As the STR is the ratio of surface transport to total transport, the ratio of bulk-to-total

transport is 1− STR, and we may estimate the total selectivity on the cross-section based on the

partitioning of the ionic transport as

1

2
× (1− STR)

︸ ︷︷ ︸
bulk

+ 1× STR︸ ︷︷ ︸
surface

=
1

2
(1 + STR) .

We thus recover the result given in Eq. 2.41. This result illustrates that it is the selectivity in the

bulk and surface weighted by the dynamic partitioning of the ionic transport that controls local

selectivity.

Together, the upper and lower limits on selectivity (Eqs. 2.40 and 2.41, respectively), define an

envelope of selectivity variation with λD/R (Fig. 2.2). The conclusion of these results is apparent:

the principal parameter controlling nanopore selectivity is not λD/R but the local Dukhin number.

This result may be understood as follows: when λD/R is small, the local Dukhin number controls
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the fraction of the transport in the Debye layer (Eq. 2.25). It also controls the selectivity of the

Debye layer, which we show explicilty by calculating 〈δccount〉/〈c〉 from Eqs. 2.37 and 2.38:

〈δccount〉
〈c〉 =

2 λD
RminR

{√[
Du(x)

2(λD/RminR)

]2

+ 1− 1

}
+ |Du(x)|

4 λD
RminR

{√[
Du(x)

2(λD/RminR)

]2

+ 1− 1

}
+ 1

−−−−−−−−→
λD/RminR

Du
→0

STR(x), (2.42)

where in the second expression on the RHS I have taken the limit (λD/RminR)/Du→ 0. A large

value of Du means that the majority of the ionic flux is carried within the Debye layer, and

that this region is highly selective. Thus, even though the unselective bulk region takes up the

majority of the cross-section, the majority of the transport must pass through the highly selective

but relatively small Debye layer. As this process is controlled by the local Dukhin number and

the local partitioning of ionic currents, both of which adjust dynamically, I refer to it as dynamic

selectivity.

On the other hand, when λD/R is large, a significant surface charge (as quantified by the

Dukhin number) must still be present to draw counterions into (and exclude coions from) the

nanopore and thus render the nanopore highly selective. This is indicated in the Donnan result

for the selectivity (Eq. 2.40). All together, the result is the dominance of the local Dukhin number

in determining the local nanopore selectivity (Fig. 2.2).

These results suggest that a nanopore may exhibit significant selectivity when the pore size

is comparable to the Dukhin length. As noted above, the Dukhin length reaches hundreds of

nanometers for typical ionic concentrations (0.1 − 1 mM) and surface charge densities (10 − 100

mC m−2). This is in strong contrast to traditional ion-selective membranes, which have typically

subnanometric pore sizes (Siria et al., 2017), and indeed to the typical picture of ion-selectivity as

occurring only in the presence of strong Debye overlap (λD/R� 1) (Bocquet & Charlaix, 2010).

I explore this idea in Sec. 2.6 below by examining the ion selectivity in large nanopores

(λD/R � 1) under an applied concentration difference and voltage in a uniform nanopore, and

under an applied voltage in a conical nanopore.
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2.4 Analytical Solutions for the Concentration Diode

In this section, I illustrate the principal role of the Dukhin number in ICR by developing implicit

expressions for the IV relationships in concentration diodes in the regime of no overlap (λD/R� 1)

using Eqs. 2.23 and 2.24 subject to boundary conditions 2.32 and 2.33, and in the regime of strong

overlap (λD/R � 1) using Eqs. 2.30 and 2.31 subject to boundary conditions 2.34 and 2.35. I

will show that the IV curves are structurally similar in both limits, showing strong rectification

irrespective of whether there is overlap nowhere along the nanopore or strong overlap everywhere

along the nanopore. This provides strong evidence that 1) λD/R ∼ 1 somewhere along the

nanopore is not a necessary condition for the observation of ICR, and 2) a gradient in the value of

λD/R along the length of the nanopore, from a value λD/R� 1 to a value λD/R ∼ 1 is likewise

unnecessary to induce rectification. Instead, we will find 1) that a maximum Du ∼ 1 is a (rough)

criterion for maximum rectification, and 2) that ICR is driven by an asymmetry in Dukhin number

across the nanopore.

As the rectification is fundamentally a consequence of the mechanism of dynamic selectivity

outlined above, there is no fundamental mechanistic difference between ionic diodes induced by

asymmetric geometry, differences in reservoir concentration, or (continuous) asymmetric surface

charge profiles induced by, e.g., differences in reservoir pH. I focus here on the concentration diode

because I am able to derive illustrative analytical solutions.

2.4.1 Fluxes Across a Concentration Diode

I consider here the uniform nanopore configuration shown schematically in the inset of Fig. 2.3a: a

nanopore of uniform radius and uniform (negative) surface charge density connects two reservoirs

of unequal concentration, with the concentration in the left reservoir cL exceeding that in the

right reservoir cR. A voltage ∆V is applied in the left reservoir while the right reservoir is held at

ground. The local Dukhin number along the length of the nanopore is given by

Du(x) = −Duref

c
, (2.43)

where the reference Dukhin number Duref ≡ |σ|/ecR is defined in terms of the magnitude of the

uniform surface charge density, the average of the two reservoir concentrations, and the uniform

nanopore radius. I have omitted the subscript zero on the concentration, and I will continue
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to omit the subscript in what follows, recalling that the indicated total ionic concentrations and

electrostatic potentials are centerline values when we are in the no overlap regime, and the uniform

values over the entire cross-section when we are in the strong overlap regime.

Note that, because the surface charge density and nanopore radius do not vary along the

length of the nanopore, the variation in the local Dukhin number is determined entirely by the

variation in the local concentration. In addition to the reference Dukhin number, I introduce the

reservoir Dukhin numbers in accordance with Eq. 2.36 as DuL ≡ Duref/cL and DuR ≡ Duref/cR,

respectively. The ratio of Dukhin numbers DuR/DuL = cL/cR ≥ 1 is then simply the ratio of

reservoir concentrations. With these definitions, we can express the reference Dukhin number as

Duref =
2

Du−1
L + Du−1

R

. (2.44)

I will formulate the results below in terms of the maximum Dukhin number in the system, DuR,

corresponding to the minimum reservoir concentration, and the concentration ratio DuR/DuL =

cL/cR. Note that, while I do not impose particular values for the reservoir concentrations in this

rescaled, dimensionless model, the concentration ratios considered here are consistent with the

range of concentrations considered experimentally, typically between 0.1 mM and 1 M.

No Overlap (λD/R� 1)

With the local Dukhin number given in Eq. 2.43, Eqs. 2.23 and 2.24 become

J

π
= −

[
dc

dx
+ 2Duref

(
dlnc

dx
+
dφ

dx

)]
, and (2.45)

I

π
= −

[
c
dφ

dx
+ 2Duref

(
dlnc

dx
+
dφ

dx

)]
. (2.46)

With the boundary conditions given in Eqs. 2.32 and 2.33, we can directly integrate Eq. 2.45 for

the solute flux:

(
DuR
DuL

+ 1

)
J

2π
=

(
DuR
DuL

− 1

)
+ 2DuR

[
ln

(
DuR
DuL

)
+ ∆V

]
, (2.47)

where I have used Eq. 2.44 and the definitions of DuL and DuR to rewrite the result in terms of

the maximum Dukhin number DuR and the ratio DuR/DuL = cL/cR.
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Using Eq. 2.45, we solve for cdφ/dx in terms of J and dc/dx, insert the result into Eq. 2.46,

and integrate. The result can be combined with Eq. 2.47 to obtain

ln

(
DuR
DuL

)
+ ∆V =

(
1 +

I

J

)
ln

[
DuR
DuL

+ 2DuR
(
1− I

J

)

1 + 2DuR
(
1− I

J

)
]
. (2.48)

Eq. 2.48 may be used to determine the applied voltage as a function of the ratio I/J for given

values of DuR and DuR/DuL, and the result can be combined with Eq. 2.47 to determine the solute

flux and ionic current as a function of applied voltage. IV curves obtained using Eqs. 2.47 and 2.48

are plotted in Fig. 2.3 for a fixed value of DuR = 1 and several values of DuR/DuL ≡ cL/cR ≥ 1.

Figure 2.3: Current-voltage (IV) relationship in the concentration diode. a) IV curves obtained
from Eqs. 2.47 and 2.48 in the limit of no Debye overlap (λD/R � 1). b) IV curves obtained
from Eqs. 2.51 through 2.53 in the limit of strong overlap (λD/R� 1). All curves are calculated
for DuR = 1, and they are colored according to DuR/DuL = cL/cR as indicated in the legend in
panel b. In both panels, the dashed black lines indicate the limiting conductances G+ and G−,
obtained in the limits ∆V → ±∞, and calculated according to Eqs. 2.60 and 2.62 in panel a, and
Eqs. 2.66 and 2.68 in panel b, for DuR/DuL = 10. The inset in panel a shows a sketch of the
geometry considered here.
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Strong Overlap (λD/R� 1)

We insert the local Dukhin number (Eq. 2.43) into the transport equations valid in the limit

λD/R� 1, Eqs. 2.30 and 2.31, to obtain

J

π
= − dc

dx
− 2Duref

dφ

dx
, and (2.49)

I

π
= −cdφ

dx
. (2.50)

Again, we may immediately integrate Eq. 2.49, applying the boundary conditions given in Eqs.

2.32 and 2.33, to obtain

(
DuR
DuL

+ 1

)
J

2π
=



√(

DuR
DuL

)2

+ (2DuR)2 −
√

1 + (2DuR)2


+ 2DuR (∆VD + ∆V ) , (2.51)

where I have defined

∆VD ≡ V `
D − V r

D

≡ 1

2
ln





[√
(DuR/DuL)2 + (2DuR)2 − 2DuR

] [√
1 + (2DuR)2 + 2DuR

]

[√
(DuR/DuL)2 + (2DuR)2 + 2DuR

] [√
1 + (2DuR)2 − 2DuR

]



 ,

(2.52)

the difference between the Donnan potentials on either end of the nanopore.

Again proceeding as in the case of strong overlap, we solve Eq. 2.49 for cdφ/dx, insert the

result into Eq. 2.50, and then substitute Eq. 2.51 into the result to obtain

∆VD + ∆V =
I

J
ln

[√
(DuR/DuL)2 + (2DuR)2 − 2DuR(I/J)√

1 + (2DuR)2 − 2DuR(I/J)

]
. (2.53)

I plot IV curves obtained from Eqs. 2.51 through 2.53 in Fig. 2.3b. We note immediately the

similarity between the IV curves obtained in the limits of no overlap (λD/R � 1, Fig. 2.3a)

and strong overlap (λD/R � 1, Fig. 2.3b). These results illustrate that Debye overlap has only

a secondary quantitative influence on the degree of rectification, and that the main parameter

controlling rectification is the Dukhin number.

2.4.2 Limiting Conductances

In this section, I examine the behavior of the IV curves shown in Fig. 2.3 in more detail by

deriving expressions for voltage-independent limiting conductances in several different scenarios.

I examine the regimes of no overlap (λD/R� 1) and strong overlap (λD/R� 1) in turn.
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No Overlap (λD/R� 1)

As anticipated, as DuR/DuL = cL/cR → 1, representing equal reservoir concentrations, the IV

curve becomes progressively more linear, and in the limit of no overlap the conductance approaches

a limiting value representing the sum of the bulk and surface electrophoretic contributions (Boc-

quet & Charlaix, 2010; Siria et al., 2013):

G = Gbulk +Gsurf , with (2.54)

Gbulk ≡ π, and (2.55)

Gsurf ≡ 2πDuref . (2.56)

This result is obtained by solving Eqs. 2.45 and 2.46 with dc/dx = 0 and c ≡ 1. In dimensioned

terms, these conductances are given by (Siria et al., 2013)

Gbulk =
πR2

L

e2D

kBT
cres, and (2.57)

Gsurf =
2πR

L

eD

kBT
|σ|, (2.58)

where cres ≡ cL ≡ cR is the concentration in both reservoirs. This limiting conductance is indicated

by the blue curve in Fig. 2.3a.

As a concentration difference is applied (DuR/DuL > 1) and increased, the IV curves become

progressively more rectified. This is due to the asymmetry in selectivity between the left and

right ends of the nanopore. The Dukhin number at the right end is held fixed at one, resulting

in substantial selectivity for positive coions at that end (Fig. 2.2). On the other hand, as the

Dukhin number on the left end is decreased via an increasing reservoir concentration cL, the

counterion selectivity at this end rapidly decreases, approaching the non-selective limit for values

of DuR/DuL > 10 (Fig. 2.2).

I next examine the limiting currents and differential conductances G ≡ ∂I/∂∆V when DuR

and DuR/DuL are held fixed and ∆V → ±∞, denoted I± and G±, respectively. From Eq. 2.48,

we see that the logarithm on the right-hand side must diverge as the voltage diverges for a fixed

concentration ratio DuR/DuL. In the limit |∆V | → ∞, the ionic current and solute flux will be in

the same direction for the negative surface charge density assumed here, such that the coefficient

of the logarithm 1 + I/J > 0. Thus, when ∆V → +∞, the argument of the logarithm must
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diverge. This requires that I/J → 1 + (2DuR)−1 ≡ STR−1
R , where STRR is the surface transport

ratio at the right end of the nanopore (Eq. 2.25). Combined with Eq. 2.47, this gives for the

current and conductance when ∆V → +∞
(

2πDuref

STRR

)−1

I+ =
1

2DuR

(
DuR
DuL

− 1

)
+ ln

(
DuR
DuL

)
+ ∆V, and (2.59)

G+ =
Gsurf

STRR

≡ 2πDuref
1 + 2DuR

2DuR
. (2.60)

Likewise, as ∆V → −∞, Eq. 2.48 indicates that the argument of the logarithm must vanish, and

thus I/J → STR−1
L . By the same procedure we find

(
2πDuref

STRL

)−1

I− =
1

2DuR

(
DuR
DuL

− 1

)
+ ln

(
DuR
DuL

)
+ ∆V, and (2.61)

G− =
Gsurf

STRL

≡ 2πDuref
1 + 2DuL

2DuL
. (2.62)

The limiting conductances are indicated by the dashed black lines in Fig. 2.3a for DuR = 1 and

DuR/DuL = 10.

As DuR becomes smaller for a fixed value of the ratio DuR/DuL, the asymmetry in nanopore

selectivity between either end of the nanopore becomes weaker (Fig. 2.2), and consequently

the voltage magnitude that leads to significant concentration accumulation or depletion becomes

larger. This means that, for an experimentally feasible range of applied voltages, the IV curve

linearizes as DuR is decreased. From Eq. 2.48, we see that as DuR → 0 for a fixed value of

DuR/DuL, I/J → ∆V/ln(DuR/DuL). This is true so long as the numerator and denominator of

the logarithm are� 0, which, from our discussion above, requires that the voltage magnitude not

be too large. We find from this limit and Eq. 2.47 a limiting conductance

G→
2
(

DuR
DuL
− 1
)

(
DuR
DuL

+ 1
)

ln
(

DuR
DuL

)Gbulk, (2.63)

valid for fixed DuR/DuL when DuR � 1. Note that the prefactor in Eq. 2.63 approaches unity

and G→ Gbulk in the limit DuR/DuL → 1, as it must.

Finally, I examine the limit DuR → ∞ for fixed DuR/DuL. In this case, the entire nanopore

becomes perfectly selective for counterions (Fig. 2.2), and the IV curve again linearizes. Unlike in

the case that DuR � 1, however, I find that the IV curve is linear irrespective of the magnitude
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λD/R� 1 λD/R� 1

condition G

cmax/cmin = 1 Gbulk +Gsurf

√
G2

bulk +G2
surf

Dumax � 1 2(cmax/cmin−1)
(cmax/cmin+1)ln(cmax/cmin)

×Gbulk
2(cmax/cmin−1)

(cmax/cmin+1)ln(cmax/cmin)
×Gbulk

Dumax →∞ Gsurf Gsurf

|∆V | → ∞
Gmin = 1+2Dumax

2Dumax
×Gsurf

Gmax = 1+2Dumin

2Dumin
×Gsurf

Gmin =

√
1+(2Dumax)2

2Dumax
×Gsurf

Gmax =

√
1+(2Dumin)2

2Dumin
×Gsurf

Table 2.2: Limiting conductances for the concentration diode and the conditions under which
they obtain in the limits of no overlap (λD/R � 1) and strong overlap (λD/R � 1). The
results are written generically in terms of the maximum and minimum reservoir concentrations,
cmax and cmin, respectively, and the corresponding maximum and minimum Dukhin numbers,
Dumax ≡ |σ|/ecminR and Dumin ≡ |σ|/ecmaxR, imposed on either end of the nanopore. Gmax and
Gmin are, respectively, the maximum and minimum conductances obtained as |∆V | → ∞. (See
Eqs. 2.60, 2.62 and 2.75, 2.76 for the case of no overlap, and Eqs. 2.66, 2.68 and 2.83, 2.84
for the case of strong overlap.) The bulk (Gbulk) and surface (Gsurf) electrophoretic condutances
are given in Eqs. 2.55/2.57 and 2.56/2.58, respectively. Note that, in the case of strong overlap
(λD/R� 1), the partitioning between ‘surface’ and ‘bulk’ transport is not strictly meaningful, as
there is no distinct surface layer; however, the terms Gsurf and Gbulk retain the same form they
have in the no overlap (λD/R� 1) limit.

of the applied voltage for large DuR. From Eq. 2.25, we note that, as Du→∞, STR→ 1. Thus,

as DuR → ∞ for fixed DuR/DuL, STRL → STRR → 1, and, from Eqs. 2.60 and 2.62, we find

G+ → G− → Gsurf . In this case, the conductance is dominated by the (concentration-independent)

surface contribution.

Each of the limiting conductances discussed above, and the conditions under which they obtain,

are listed in Table 2.2.

Strong Overlap (λD/R� 1)

I now derive the conductances in the corresponding limits in the strong overlap regime. I begin

with the limit that DuR/DuL = cL/cR = 1, i.e., that the reservoir concentrations are equal and the

IV curve is therefore linear. Solving Eqs. 2.49 and 2.50 with dc/dx = 0 and c =
√

1 + (2Duref)2
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(see Eq. 2.34 with cL = cR = 1 and DuL = DuR = Duref), we find

G =
√
G2

bulk +G2
surf , (2.64)

with Gbulk and Gsurf as given in Eqs. 2.55/2.57 and 2.56/2.58. The result given in Eq. 2.64

is indicated by the blue curve in Fig. 2.3b. Note that in the regime of strong overlap there is

no distinct surface layer and the conductance is not meaningfully partitioned into a bulk and a

surface term. In this case, what is referred to as surface transport is better understood as that

portion of the transport due to the excess counterion concentration induced by the surface charge.

However, for consistency I will continue to use the definitions of Gsurf and Gbulk in what follows.

Next, I examine the case that the magnitude of the applied voltage diverges. We see from Eq.

2.53 that, as ∆V → +∞, the denominator of the logarithm must tend to zero. This requires that

I/J →
√

1 + (2DuR)2/2DuR. With Eq. 2.51 we find for the current and conductance in this limit

I+

2πDuref

=

√
1 + (2DuR)2

2DuR

{[√
1 + (2DuL)2

2DuL
−
√

1 + (2DuR)2

2DuR

]
+ ∆VD + ∆V

}
, and (2.65)

G+ =

√
1 + (2DuR)2

2DuR
Gsurf , (2.66)

where I have used the definition of Gsurf given in Eq. 2.56.

Likewise, when ∆V → −∞, we find from Eq. 2.53 that I/J →
√

1 + (2DuL)2/2DuL. Thus,

from Eq. 2.51, we have

I−
2πDuref

=

√
1 + (2DuL)2

2DuL

{[√
1 + (2DuL)2

2DuL
−
√

1 + (2DuR)2

2DuR

]
+ ∆VD + ∆V

}
, and (2.67)

G− =

√
1 + (2DuL)2

2DuL
Gsurf . (2.68)

The limiting conductances are indicated by the dashed black lines in Fig. 2.3b for DuR = 1 and

DuR/DuL = 10.

From Eqs. 2.52 and 2.53, we find that to lowest order in DuR as DuR → 0 with fixed DuR/DuL,

I/J = ∆V/ln(DuR/DuL). This is identical to the result obtained above for λD/R � 1, and the

conductance in this limit is likewise given by Eq. 2.63. Likewise, for DuR → ∞ and fixed

DuR/DuL, G+ and G− both saturate to Gsurf , as in the no overlap limit. These limiting conduc-

tances are indicated along with the corresponding results for λD/R� 1 in Table 2.2.
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2.4.3 Rectification Ratio

I am now in a position to discuss the rectification ratio, defined as

rectification ratio ≡ |I(−|∆V |)− I(∆V = 0)|
|I(+|∆V |)− I(∆V = 0)| . (2.69)

I plot this ratio in Fig. 2.4 as a function of DuR for fixed concentration ratios DuR/DuL = cL/cR

and in the limits of no overlap (λD/R� 1, Fig. 2.4a) and strong overlap (λD/R� 1, Fig. 2.2b).

In general, the rectification ratio is a function of the voltage magnitude |∆V |; for definiteness, I

take |∆V | = 20, which corresponds to a dimensioned applied voltage of approximately 500 mV.

We note from Fig. 2.4 that the rectification ratio is generally larger in the case of extreme overlap,

though it is of the same order in either case.

In both limits, the rectification ratios display a peak for a finite value of DuR (Fig. 2.4). This

peak is nearly coincident for a given value of DuR/DuL in the limits of no overlap (λD/R� 1, Fig.

2.4a) and extreme overlap (λD/R � 1, Fig. 2.4b). In both limits, the peak grows and is shifted

to higher values of DuR as DuR/DuL = cL/cR is increased. The value of DuR corresponding to the

peak rectification ratio Dupeak
R is of order one over much of the parameter space (0.2 < Dupeak

R < 2

for 3 ≤ DuR/DuL ≤ 102).

The fact that the rectification ratio shows a peak at a finite value of DuR can be understood

as follows: By taking the ratio of the limiting conductances valid when |∆V | → ∞ (Eqs. 2.60 and

2.62 in the case of no overlap, or Eqs. 2.66 and 2.68 in the case of strong overlap), we see that

there is an upper limit on the maximum rectification. In the case of no overlap, it is given by

rectification ratio −−−−−→
|∆V |→∞

STRR

STRL

=

DuR
DuL

+ 2DuR

1 + 2DuR
−−−−→
DuR→0

DuR
DuL

, (2.70)

where in the limit on the RHS we have taken DuR → 0 with the concentration ratio DuR/DuL

fixed; this corresponds to the maximum of the theoretical rectification curve and indicates that

this theoretical maximum is set by the concentration ratio. Likewise, in the limit of strong overlap,

we take the ratio of the conductances given in Eqs. 2.66 and 2.68 to find

rectification ratio −−−−−→
|∆V |→∞

√√√√
(

DuR
DuL

)2

+ (2DuR)2

1 + (2DuR)2
−−−−→
DuR→0

DuR
DuL

, (2.71)

where again we take the limit that DuR → 0 with DuR/DuL fixed to find that the theoretical

maximum rectification is also given by the concentration ratio in the limit of strong overlap.
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Figure 2.4: Rectification ratio as a function of maximum Dukhin number DuR. a) Rectification
ratio in the limit of no overlap (λD/R� 1), calculated from Eqs. 2.47 and 2.48. b) Rectification
ratio in the limit of strong overlap (λD/R � 1), calculated according to Eqs. 2.51 and 2.53.
In both panels, the curves are evaluated at |∆V | = 20 (≈ 500 mV) and colored according to
DuR/DuL = cL/cR as indicated in the legend. The dashed lines in panels a and b indicate the
theoretical maximum rectification ratios for no overlap (panel a, Eq. 2.70) and strong overlap
(panel b, Eq. 2.71), valid in the limit |∆V | → ∞, for DuR/DuL = 10.

However, in the case that DuR � 1, the local Dukhin number is everywhere much smaller than

one, and the nanopore is therefore only weakly selective for counterions (Fig. 2.2). It thus takes

very large voltages to engender significant ion accumulation or depletion, voltages much larger

than the practical upper limit in nanofluidic experiments (∼ 1 V), and the IV curve is effectively

linearized.

On the other hand, when DuR →∞ (with DuR/DuL fixed), G+ → G− → Gsurf in both the no

overlap and strong overlap regimes. (See the discussion in the preceding section and Eqs. 2.60/2.66

and 2.62/2.68 for the case of no overlap / strong overlap.) This indicates that the IV curve is

strictly linear in this limit, irrespective of the voltage magnitude. This is because the local Dukhin

number is everywhere much larger than one and the entirety of the ionic transport is carried by

counterions. There is therefore no gradient in ion selectivity along the length of the nanopore. In

this case, the conductance is given by the (concentration-independent) surface conductance (Eq.

2.58). Thus, the location of Dumax
R represents a compromise between the non-selective (DuR → 0)
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and perfectly selective (DuR →∞) limits.

The occurrence of a maximum rectification ratio for a finite value of DuR and a fixed value of

the ratio DuR/DuL is exactly analogous to the common observation of a maximum rectification

ratio for a finite concentration or surface charge density and a fixed geometry in conical diodes,

(e.g., Ai et al., 2010; Cervera et al., 2006; Vlassiouk et al., 2009; Zhou et al., 2011). In that case,

the ratio of Dukhin numbers is fixed by the ratio of base and tip radii, while the variation of

concentration or surface charge results in a variation of the maximum Dukhin number occuring

at the tip of the conical nanopore. As in the concentration diode, the location of the maximum is

determined by a compromise between the non-selective (high concentration or low surface charge)

and perfectly selective (low concentration or high surface charge) limits. I will discuss the role

of dynamic selectivity in diodes induced by asymmetric geometry (and surface charge density

distributions) below.

2.5 Dynamic Selectivity and Limiting Conductances in Generic Diodes

2.5.1 Rectification in Generic Diodes

From our understanding of the role of the Dukhin number in controlling local selectivity we

conclude that ICR is generically a consequence of inequality of the Dukhin numbers imposed

on either end of a nanopore, irrespective of whether that asymmetry is induced by a difference

in reservoir concentrations, an asymmetric geometry, or an asymmetric surface charge density

distribution (or any combination thereof). This is corroborated by the results shown in Fig. 2.5,

where I compare an IV curve obtained from the above solution for a concentration diode (Figs.

2.5a and d, Eqs. 2.47 and 2.48) to numerical solutions of the transport equations for the IV

curve in a geometric (Figs. 2.5b and e) and a charge diode (Figs. 2.5c and f). These solutions

are obtained from Eqs. 2.23 and 2.24 subject to boundary conditions 2.32 and 2.33. Here and

in the rest of this Chapter, I will focus primarily on results obtained in the limit of no overlap

(λD/R � 1). The results obtained in the strong overlap regime (λD/R � 1) are qualitatively

similar.

In order to illustrate rectification induced by an asymmetric geometry, I assume a linear

variation in the nanopore radius from the maximum radius (minimum Dukhin number) on the

left to the minimum radius (maximum Dukhin number) on the right. The surface charge density
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Figure 2.5: a-c) Schematics of diodes induced by a) unequal reservoir concentrations, b) asymmet-
ric geometry, and c) asymmetric surface charge distribution. d-f) IV curves obtained for DuR = 1
and DuL = 0.1 for d) the concentration diode shown in a, e) the geometric diode shown in b, and
f) the charge diode shown in c. In panels d-f, the dashed yellow and red lines show the maximum
and minimum conductances obtained when |∆V | → ∞ and calculated according to Eqs. 2.75
and 2.76, respectively. In panels e and f, the dashed purple line indicates the linear response
conductance valid in the vicinity of ∆V = 0 for the charge and geometric diodes and calculated
according to Eq. 2.89. The IV curves shown in panels d-f are calculated in the limit of no overlap
(λD/R� 1).

is taken to be fixed and negative, and the reservoir concentrations are taken to be equal. This

configuration is shown schematically in Fig. 2.5b. Likewise, I illustrate rectification induced by

a continuous, asymmetric surface charge profile by imposing a negative surface charge density

whose magnitude varies linearly from a minimum density (minimum Dukhin number) on the left

to a maximum density (maximum Dukhin number) on the right. In this case, I impose a constant

nanopore radius and equal reservoir concentrations. This configuration is shown schematically in

Fig. 2.5c. In all three cases, I take DuL = 0.1 and DuR = 1. We immediately see from Figs. 2.5d

through f that the qualitative structure of the rectified IV curve is essentially the same over a

given range of voltage (−40 ≤ ∆V ≤ +40 here). Indeed, in each case the rectification ratio (Eq.

2.69) is ∼ 3 for |∆V | = 40. The qualitative similarity of the IV curves obtained in these three

different configurations illustrates the primary role of the Dukhin number in rectification and the
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equivalence of the underlying mechanism of dynamic selectivity in each case.

2.5.2 General Expressions for the Limiting Conductances and Selectivities When |∆V | → ∞

In this section, I show that the above expressions obtained for the limiting conductances when

|∆V | → ∞ (Eqs. 2.60 and 2.62 in the case of no overlap, and Eqs. 2.66 and 2.68 in the

case of strong overlap) obtained for the concentration diode are particular examples of general

expressions relating the minimum (maximum) Dukhin number imposed at one end of the nanopore

to the maximum (minimum) conductance obtained for large imposed voltages. I also derive

expressions for the limiting ion-selectivities when |∆V | → ∞ in the more interesting case of large

nanopores (λD/R � 1). For the geometric and charge diodes, these correspond to the minimum

and maximum selectivities obtainable by varying the applied voltage. These expressions are valid

for concentration, geometric, and charge diodes (or any combination thereof), as illustrated in Fig.

2.5 for the limiting conductances. In the course of this discussion, I illustrate general features of the

evolution of the Dukhin number profile in the nanopore interior as a function of applied voltage,

further illustrating the principal role of dynamic selectivity in the accumulation or depletion of

concentration in the nanopore interior and hence in ICR.

The general expressions for limiting conductances in generic diodes, along with those derived

below for the linear response near ∆V = 0 in geometric and charge diodes, will allow observations

of rectified IV curves to be related to, for example, the surface charge density. The surface charge

density is difficult to estimate directly and is often estimated by observing the saturation of the

conductance at the surface-dominated value for low concentrations, (e.g., Stein et al., 2004; Karnik

et al., 2005; Secchi et al., 2016b). However, the inference of surface charge from conductance

measurements typically relies on a linear response, in which case the relation between surface

charge and the saturating conductance at low concentration is known analytically, (e.g., Stein

et al., 2004; Bocquet & Charlaix, 2010; Siria et al., 2013). It is not clear a priori how this

framework may be extended to, e.g., conical nanopores, where ICR is inherent to the IV response

below a certain concentration. To my knowledge, general analytical results for the relationship

between surface charge and conductance do not exist in the literature for rectified IV curves,

except in certain specialized scenarios, (e.g., Picallo et al., 2013).

I will focus primarily on the no overlap limit (λD/R � 1), as the occurrence of selectivity
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generally and ICR in particular in large nanopores is more novel and potentially relevant for

applications to energy harvesting and separation techniques (as discussed in Sec. 2.6 below).

However, I will also develop the expressions for the limiting conductances in the strong overlap

regime (λD/R� 1) for completeness.

No Overlap (λD/R� 1)

As |∆V | → ∞, the solute flux (Eq. 2.23) will be dominated by the surface electrophoretic mass

transport, J/πR2 ∼ S2|Du|cdφ/dx = S2Duref(|σ|/R)dφ/dx. Integrating in x, we find

J = −S

(∫

L

dx

2πR|σ|

)−1

Duref∆V. (2.72)

In order to obtain a condition on the flux ratio I/J that holds in the limit |∆V | → ∞, we

solve Eqs. 2.23 and 2.24 for the concentration gradient dc/dx in terms of I/J , the local Dukhin

number, and the (divergent) solute flux:

dc

dx
= −S

I
J

+ S
(

1 + 1
2|Du|

)

2 + 1
2|Du|

J

πR2
. (2.73)

On physical grounds, the concentration gradient cannot diverge everywhere in the nanopore in-

terior, even in the limit that |∆V | → ∞. Accordingly, the prefactor in Eq. 2.73 must vanish as

the solute flux diverges. This requires that I/J → −S(1 + 1/2|Du|) ≡ −S/STR, where in the

second equality I have made use of Eq. 2.25. As the ratio I/J is spatially uniform at steady

state, this condition requires the Dukhin number in the nanopore interior to approach a uniform

value, which I will designate Duu. Likewise, I designate the corresponding surface transport ratio

STRu ≡ 2Duu/(1 + 2Duu). With this result for the flux ratio I/J and Eq. 2.72 we find for the

current

I =

(∫

L

dx

2πR|σ|

)−1
Duref

STRu

∆V. (2.74)

The mechanism of concentration accumulation/depletion is driven by the gradient in Dukhin

number induced by the asymmetry between the maximum (Dumax) and minimum (Dumin) Dukhin

numbers imposed on either end of the nanopore. Thus, for very strong applied voltages, the

accumulation (depletion) will cease when the concentration everywhere is such that the uniform

Dukhin number in the interior is equal to Duu = Dumin (Dumax). At one end of the nanopore, the
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concentration gradient then must diverge to match the divergence in the solute flux (Eq. 2.72)

while allowing the Dukhin number to deviate from its uniform interior value and adjust to the

appropriate boundary condition.

This mechanism is illustrated in Fig. 2.6: In Figs. 2.6a through c, I show the profiles of

centerline concentration as a function of the applied voltage for the concentration (Fig. 2.6a),

geometric (Fig. 2.6b), and charge (Fig. 2.6c) diodes shown schematically in Figs. 2.5a through

c, respectively. In the case of the concentration diode, Eq. 2.73 may be integrated to obtain an

implicit expression for the concentration profile, while for the geometric and charge diodes it is

necessary to solve the transport equations (Eqs. 2.23 and 2.24) numerically to obtain the concen-

tration profiles. As for the IV curves shown in Figs. 2.5d through f, the profiles are calculated for

DuL = 0.1 and DuR = 1. The qualitative structure of the concentration profiles is quite different

in the three configurations considered; however, in each case, there is increasing depletion (accu-

mulation) of concentration in the nanopore interior for increasing magnitude positive (negative)

voltage. Note that the sign of the voltage resulting in accumulation/depletion would be inverted

for a positive surface charge, rather than the negative surface charge considered here.

However, in Figs. 2.6d through f, we see that the evolution of the local Dukhin number

profiles |Du(x)| with applied voltage are strikingly similar in the three configurations, even though

the concentration profiles are quite different. In each case, an increasing magnitude positive

(negative) voltage results in a growing region in the nanopore interior where |Du| ≈ Dumax = DuR

(|Du| ≈ Dumin = DuL). Fig. 2.6 illustrates the key role of the local Dukhin number in controlling

the accumulation/depletion of concentration in the nanopore and hence in ICR. It also illustrates

that, in the extreme limit that |∆V | → ∞, the Dukhin number will approach a uniform value equal

to the maximum or minimum Dukhin number imposed at one end of the nanopore. (Whether

it approaches Dumax or Dumin depends on the sign of the applied voltage and the surface charge

density.) Thus, denoting the maximum and minimum limiting conductances as Gmax and Gmin,

respectively, we find from Eq. 2.74

Gmax =
Gsurf

STRmin

≡ Gsurf
1 + 2Dumin

2Dumin

, and (2.75)

Gmin =
Gsurf

STRmax

≡ Gsurf
1 + 2Dumax

2Dumax

. (2.76)
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Figure 2.6: a-c) Profiles of centerline total ionic concentration along the length of the a) concentra-
tion diode shown schematically in Fig. 2.5a, b) the geometric diode (Fig. 2.5b), and c) the charge
diode (Fig. 2.5c). d-f) The corresponding profiles of local Dukhin number for the concentration
(d), geometric (e), and charge (f) diodes. The dashed black lines in d-f indicate the minimum
and maximum imposed Dukhin numbers at either end of the nanopore, DuL = 0.1 and DuR = 1,
respectively. In all panels, the curves are colored according to the applied voltage, as indicated in
the colorbar on the right. All curves are obtained in the limit of no overlap (λD/R� 1).

In these equations, Gsurf is the surface conductance obtained when Duref → ∞ and only the

surface terms in Eq. 2.21 are relevant (Frament & Dwyer, 2012):

Gsurf =

(∫

L

dx

2πR|σ|

)−1

Duref
dim.−−→ eD

kBT

(∫

L

dx

2πR|σ|

)−1

, (2.77)

where I have redimensionalized in the second line. This expression reduces to that given in Eqs.

2.56 and 2.58 in the case of a nanopore of uniform radius and surface charge density. The limiting

conductances predicted using Eqs. 2.75 and 2.76 are shown in Figs. 2.5d through f (dashed yellow

and red lines).

We note that, by setting |σ| ≡ R ≡ 1 and identifying Dumin = DuL and Dumax = DuR, we

recover Eqs. 2.60 and 2.62 from Eqs. 2.76 and 2.75, respectively.

Figs. 2.6d through f show that the Dukhin number has not fully approached a uniform value

everywhere in the nanopore interior even for |∆V | = +40; however, Figs. 2.5d through f indicate



39

that the differential conductance is roughly equal to its limiting value for |∆V | & 10 − 20 (∼
250 − 500 mV). Note, however, that the voltage necessary to reach the limiting conductance

depends on both the maximum Dukhin number in the system Dumax and the asymmetry in Dukhin

numbers, quantified by the ratio Dumax/Dumin. (See Fig. 2.4 and related discussion.) Thus, we

note that care must be taken in applying Eqs. 2.75 and 2.76 to experimental IV curves. This

difficulty can be avoided by instead fitting the surface charge to the linear response conductance

G0 obtained in the vicinity of ∆V = 0; we will obtain an analytical expression for G0 in the

following section.

Using the asymptotic expressions for the solute flux (Eq. 2.72) and ionic current (Eqs. 2.74

through 2.77) we can calculate the co-/counterion fluxes Jco/count = (J ± SI)/2 and derive expres-

sions for the counterion selectivities Scount ≡ |Jcount|/(|Jco| + |Jcount|) in the limits ∆V → ±∞.

The results are

Smax
count =

1 + 4Dumax

2 + 4Dumax

(reverse− bias); (2.78)

Smin
count =

1 + 4Dumin

2 + 4Dumin

(forward− bias). (2.79)

We see that the ion-selectivity is maximized in the reverse-bias (low conductance) configuration

and reaches a value of ∼ 83% for Dumax = 1. The coion selectivity is of course given by the

relation Sco + Scount = 1. Note that the counterion selectivity will fall between 1/2 and 1, while

the coion selectivity will fall between 0 and 1/2.

Strong Overlap (λD/R� 1)

I now derive the corresponding general expressions for the maximum and minimum conductances

in the limit of strong overlap (λD/R� 1). From Eq. 2.30, we see that J/πR2 ∼ S2|Du|cdφ/dx =

S2|Duref |(|σ|/R)dφ/dx as |∆V | → ∞, as in the no overlap limit. Thus, the solute flux is again

given by Eq. 2.72.

Following a similar procedure as we did in the no overlap case, we solve Eqs. 2.30 and 2.31 for

the concentration gradient dc/dx in terms of the flux ratio I/J and the solute flux J . We find

dc

dx
= 4Duref |Du| d

dx

( |σ|
R

)
−
(

1 + S2|Du| I
J

)
J

πR2
. (2.80)
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The first term on the RHS is bounded for all applied voltages. Thus, to ensure a finite concentra-

tion gradient as |∆V |, and hence J , diverges, the prefactor of the second term on the RHS must

vanish as |∆V | → ∞. This requires that I/J → −S/2Duu, where Duu is again a uniform Dukhin

number in the nanopore interior. We thus find for the asymptotic ionic current

I =
Gsurf

2Duu
∆V, (2.81)

where Gsurf is the surface conductance given in Eq. 2.77. However, in this case, owing to the

Donnan concentrations that bulid up at either end of the nanopore (see Eq. 2.34), the uniform

interior Dukhin number is not simply one of the imposed values (DuL/R, Eq. 2.36) at the ends of

the nanopore. Instead, it is given by one of the interior Dukhin numbers defined by

Du`/r ≡
|σ|`/r

ec`/rR`/r

=
DuL/R√

1 + (2DuL/R)2
, (2.82)

where I have made use of Eq. 2.34 in the second equality.

Thus, from Eqs. 2.81 and 2.82, we find for the limiting conductances

Gmax = Gsurf

√
1 + (2Dumin)2

2Dumin

, and (2.83)

Gmin = Gsurf

√
1 + (2Dumax)2

2Dumax

. (2.84)

These results confirm those for the special case of the concentration diode given in Eqs. 2.66 and

2.68.

2.5.3 Conductance in the Vicinity of ∆V = 0

As noted above, it can be difficult to apply the limiting conductances derived in the previous

section to experimental results, as the linearization of the IV curve depends on the magnitude

of the applied voltage and the imposed Dukhin numbers. I will therefore derive here a general

expression for the linear response conductance valid in the vicinity of ∆V = 0. This expression is

valid for rectification induced by an asymmetry in geometry or surface charge density (though not

concentration for reasons that will be discussed below), and it may be used to infer information

about the surface charge density from rectified experimental IV curves. I will focus only on the

limit of no overlap (λD/R � 1) because this is the more experimentally relevant regime and
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because the linear response conductance in the presence of strong overlap (λD/R � 1) is no

longer analytically tractable due to the nontrivial, spatially inhomogeneous Donnan equilibrium

in a pore of nonuniform geometry and/or surface charge density.

In the case of the concentration diode, the imposed concentration difference means that there

is a difference in chemical potentials between the reservoirs for at least one of the ionic species

irrespective of the applied voltage, and there is thus no clear state about which to linearize.

However, for the geometric and charge diodes equilibrium obtains when ∆V = 0, and we can

linearize about this equilibrium to obtain an expression for the differential conductance G0 ≡
∂I/∂∆V |∆V=0 in the vicinity of ∆V = 0. The equilibrium state is characterized by ∆V = 0 =⇒
Jco = Jcount = 0 and the (centerline) concentration, electrostatic potential, and chemical potential

profiles c ≡ 1, φ ≡ 0, and µco ≡ µcount ≡ −ln2, respectively. We introduce a perturbative

forcing δV (|δV | � 1), which induces fluxes δJco and δJcount. The applied voltage perturbs the

concentration and electrostatic potential profiles such that c→ 1 + c′ and φ→ 0 + φ′, with c′ = 0

on either end of the nanopore and φ′ varying between δV on the left and 0 on the right end of

the nanopore. The chemical potentials become µco/count → −ln2 + c′ ± Sφ′, from which we define

µ′co/count ≡ c′ ± Sφ′.

We linearize Eqs. 2.26 and 2.27 to find

δJco

πR2
= −1

2

dµ′co

dx
, and (2.85)

δJcount

πR2
= −

(
1

2
+ 2Duref

|σ|
R

)
dµ′count

dx
. (2.86)

Integration of Eqs. 2.85 and 2.86 along the length of the nanopore gives

δJco = +S
1

2

(∫

L

dx

πR2

)−1

δV, and (2.87)

δJcount = −S
1

2

[∫

L

dx

πR2 (1 + 4Duref |σ|/R)

]−1

δV. (2.88)

From these results we may calculate the conductance at ∆V = 0 as G0 ≡ δI/δV ≡ S(δJco −
δJcount)/δV . We find

G0 =

(
2

∫

L

dx

πR2

)−1

︸ ︷︷ ︸
Gbulk

0

+

[
2

∫

L

dx

πR2(1 + 4Duref |σ|/R)

]−1

︸ ︷︷ ︸
Gsurf

0

, (2.89)
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where I have partitioned the result into bulk and surface contributions. The conductances pre-

dicted from Eq. 2.89 are shown in Fig. 2.5 for a diode induced by a linear variation in i) nanopore

radius (Fig. 2.5e) and ii) surface charge density (Fig. 2.5f).

For the sake of illustration, I derive an explicit expression for G0 in a conical nanopore with

a linearly varying radius and uniform surface charge density. Many studies have looked at ICR

in such nanopores, (e.g., Ai et al., 2010; Cervera et al., 2006; Constantin & Siwy, 2007; Kovarik

et al., 2009; Lan et al., 2011; Laohakunakorn & Keyser, 2015; Liu et al., 2007; Vlassiouk & Siwy,

2007; White & Bund, 2008; Woermann, 2003; Siwy & Fuliński, 2002), and our result will be useful

in relating rectified IV curves to surface charge densities in conical nanopores.

I take the radius to vary linearly between a maximum at the base of the conical nanopore, Rbase,

and a minimum at the tip, Rtip. This gives for the magnitude of the radial slope |dR/dx| = α−1 (in

rescaled variables), where α ≡ Rbase/Rtip. We insert this into Eq. 2.89, along with the condition

that the surface charge density is uniform |σ| = 1, and evaluate the integrals to find

Gbulk
0 = π

α

2
, and (2.90)

Gsurf
0 =

α− 1

ln
(

1+4Dutip

1+4Dutip/α

)2πDutip. (2.91)

In the above, I have recognized that Duref = Dutip ≡ |σ|/ecresRtip, the Dukhin number defined in

terms of the uniform surface charge density magnitude, reservoir concentration, and tip radius.

Redimensioning Eqs. 2.90 and 2.91, we find

Gbulk
0 =

πRbaseRtip

2L

e2D

kBT
cres, and (2.92)

Gsurf
0 =

α− 1

ln
(

1+4Dutip

1+4Dutip/α

) 2πRtip

L

eD

kBT
|σ|. (2.93)

Note that, in the limit of a uniform nanopore α→ 1, the sum of Eqs. 2.90 (2.92) and 2.91 (2.93)

agrees with the sum of Eqs. 2.55 (2.57) and 2.56 (2.58), as it must.

We find that the dependence of the surface conductance on the surface charge (through the

terms proportional to Dutip appearing in the logarithm) is more complicated than a linear propor-

tionality, indicating that the results for the conductance in a conical nanopore reported in Frament

& Dwyer (2012), for example, cannot be näıvely applied to the linear response conductance ob-

tained for |∆V | � kBT/e (in dimensioned terms). The conductance derived in Frament & Dwyer
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(2012) indicates a linear proportionality between the surface conductance and the magnitude of

the surface charge density, and we obtain the expression for the surface conductance given therein

from Eq. 2.93 only in the limit that 4Dutip � α.

2.6 Dynamic Selectivity and Transport in Large Nanopores

In this section, I consider the implications of the mechanism of dynamic selectivity detailed in Sec.

2.3 for transport in large nanopores–i.e., nanopores having radii much larger than the Debye length

(λD/R � 1). I will make use of the results derived in Sec. 2.5.2 for the limiting conductances

and selectivities in the no overlap regime.

I first consider a nanopore of uniform negative surface charge density σ and constant radius

R connecting a left reservoir of concentration cL and applied voltage ∆V to a grounded right

reservoir of concentration cR ≤ cL (Fig. 2.7, inset). This is the same configuration considered in

developing an analytical solution for ICR in the conical diode in Sec. 2.4 above.

From Eqs. 2.47 and 2.48, I calculate the cation (counterion) selectivity S+ ≡ |J+|/(|J+| +
|J−|) as a function of the maximum imposed Dukhin number DuR and for fixed values of the

concentration ratio DuR/DuL = cL/cR (Fig. 2.7). We see that for moderate concentration ratios

(cL/cR ≤ 10), a maximum Dukhin number DuR of order one results in selectivities of ∼ 70−80%.

In the inset of Fig. 2.7 I show the cation selectivity as a function of applied voltage ∆V ,

again colored according to concentration ratio cL/cR, and at a fixed DuR = 1. Recall that the

voltage is applied in the high concentration reservoir; this corresponds to the reverse-bias (low

conductance / maximum selectivity) state of the concentration diode. Under an applied voltage,

the anion flux is reduced and eventually shut down as the anion chemical potential differential

∆µ− = ln(cL/cR) − ∆V decreases and vanishes. This results in a rapid increase in the cation

selectivity as small voltages are applied in the high concentration reservoir and a peak cation

selectivity of 100% when ∆V = ln(cL/cR) and J− = 0. We see in the inset of Fig. 2.7 that

the cation selectivity saturates at a value that is independent of cL/cR as ∆V is increased above

ln(cL/cR) and anions begin to flow from the right to the left reservoir. This saturation value is

given by Eq. 2.78, and for DuR = 1 we find that the saturation value of the cation selectivity is

∼ 83%. These results suggest that the nanopore selectivity may be tuned with the application of

small external applied voltages.
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Figure 2.7: Cation selectivity for the diffusive flux in the absence of an applied voltage (∆V = 0)
as a function of the maximum imposed Dukhin number DuR. The curves are colored according
to the corresponding value of cL/cR, as indicated in the legend. The fluxes are calculated for
a nanopore of uniform negative surface charge density and constant radius, as indicated in the
schematic in the upper left. The inset shows the selectivity as a function of applied voltage for a
fixed value of DuR = 1. The curves are colored according to cL/cR, as in the main panel.

While the zero-voltage selectivity is not as optimal as traditional ion-selective membranes,

which have counterion selectivity ratios ∼ 99%, this tradeoff is more than made up for by pore

diameters that are of the order of the Dukhin length and thus one-to-two orders-of-magnitude

larger.

Let us consider two prototypical situations in which such effects could be usefully harnessed.

Reverse electrodialysis (RED) is one of a few proposed techniques for the conversion of the osmotic

energy associated with the salinity contrast between fresh and saltwater to electrical energy. This

technique depends on ion-selective diffusive fluxes of the type discussed above and shown in Fig.

2.7 across stacks of alternating cation- and anion-selective membranes. The principal limiting

factor in commercialization of this process is the low conversion efficiency engendered by the high

membrane resistance due to the subnanometric pores in typical ion-selective membranes (Siria

et al., 2017). My results suggest that this problem may be circumvented by using large-pore
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(10 − 100 nm) membranes with pore diameters and surface charges tailored to the operating

concentrations such that a maximum Dukhin number of order one is achieved.

Another phenomenon of interest is traditional electrodialysis (ED), in which an electric field

is applied across stacks of cation- and anion-selective membranes in order to separate ions from

brackish source water. In this case, what is of interest is the selectivity of the ionic flux induced by

an applied voltage in the absence of a concentration differential. To this end, I first consider as a

benchmark the performance (in terms of both selectivity and conductance) of a uniform nanopore–

i.e., a nanopore with constant (negative) surface charge density and radius; I then compare this

to the performance of a conical nanopore having the same length, surface charge density, and

tip radius Rtip. That is, I hold the tip Dukhin number Dutip ≡ |σ|/ecRtip fixed while increasing

the ratio of base and tip radii α ≡ Rbase/Rtip above unity. The scenario under consideration

is sketched in an inset in Fig. 2.8. The goal in increasing the opening angle is to improve the

conductance compared to the uniform nanopore without a great cost to the nanopore selectivity.

In the case of a uniform nanopore, the conductance and selectivity are voltage independent and

given by Eq. 2.54 and either of Eqs. 2.78 and 2.79 (with Dumax ≡ Dumin ≡ Dutip), respectively.

This is indicated by the blue curves in Figs. 2.8a, showing the cation selectivity as a function of

voltage, and 2.8b, showing the apparent conductance Gapp ≡ I/∆V normalized by the uniform

nanopore conductance.

The influence of introducing a conical structure (i.e., increasing α ≡ Rbase/Rtip above one) on

the cation selectivity is shown in Fig. 2.8a. In the vicinity of ∆V = 0, the selectivity drops as α

is increased, decreasing from the theoretical limit of ∼ 83% (Eq. 2.78) to ∼ 74% as α is increased

from 1 to 10; however, as ∆V is increased, the selectivity again rapidly approaches the theoretical

limit for large positive voltages. We see in Fig. 2.8a that a voltage as small as ∼ 1 V (∆V = 40)

is enough to achieve a selectivity very nearly identical to the uniform nanopore selectivity.

I plot in Fig. 2.8b the influence of increasing α ≡ Rbase/Rtip on the apparent conductance.

We see that the limiting apparent conductance for large positive applied voltages is substantially

increased as α is increased. Increasing α to 3 is enough to approximately double the conductance,

while α = 10 results in a conductance that is more than four times larger than the uniform pore

conductance. We can derive the relationship between the limiting conductance in the reverse-bias

state Gmin and the uniform conductance Guni by first performing the integration in Eq. 2.77
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Figure 2.8: a) Cation selectivity in a conical nanopore as a function of applied voltage and colored
according to the ratio of base and tip radii α ≡ Rbase/Rtip ≥ 1, as indicated in the legend.
b) Apparent conductance Gapp ≡ I/∆V normalized by the conductance of a uniform (α = 1)
nanopore (Eqs. 2.54 through 2.56) as a function of ∆V and colored according to α ≡ Rbase/Rtip,
as in a. The inset in panel a shows a schematic representation of the geometry considered here.
All curves are calculated with a Dukhin number at the tip Dutip = 1.

with |σ| = 1 and imposing a linear variation in the radius to find Gsurf = 2πDutip(α − 1)/lnα.

We then combine this result with Eq. 2.76, recognizing that 2πDutip × (1 + 2Dutip)/2Dutip =

π+2πDutip ≡ Guni, the uniform reference nanopore conductance (Eqs. 2.54 through 2.56), to find

Gmin

Guni

=
α− 1

lnα
. (2.94)

The results for a conical nanopore shown in Fig. 2.8 and given in Eqs. 2.78 and 2.94 indicate

that 1) substantial selectivity may be achieved in large (i.e., high conductance) uniform radius

nanopores if the surface charge and pore radius is tailored to the operating concentrations such

that Dutip ∼ 1 and 2) the conductance may be even further enhanced by introducing a conical

shape to the nanopore while holding the tip radius fixed. Together, these results suggest that,

e.g., desalination processes based on ED may be made substantially more efficient by using high
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peak rect. ratio λD/Rtip Dutip reference

10 6(10−4) 1.3 He et al. (2017)

15 0.014 0.38 Lin et al. (2018)

4.6 0.046 0.41 Cervera et al. (2006)

2.4 0.082 1.3 Jubin et al. (2018)

6.5 0.17 4.8 Kovarik et al. (2009)

5.2 0.33 2.9 Cervera et al. (2006)

1.9 0.61 1.0 White & Bund (2008)

Table 2.3: Maximum rectification ratios in conical nanopores for fixed Dukhin ratios (Dumax/Dumin

= Rbase/Rtip) along with corresponding values of λD/Rtip and Dutip, as estimated from the lit-
erature. Note that the peak rectification ratios cannot be directly compared as they are not all
calculated at the same reference voltage magnitude. (The reference voltage magnitudes range
between 400 mV and 2 V.)

surface charge, large, conical nanopores.

2.7 Discussion

2.7.1 A Reanalysis of ICR Data in the Literature

These results suggest that inequality of the Dukhin numbers imposed on either end of a nanopore

is the only criterion for the occurrence of ICR. Further, they suggest that Du ∼ 1 is a (rough)

criterion for the maximization of rectification. To this end, I have reinterpreted data for conical

nanopores in the literature in terms of the (maximal) tip Dukhin number (Table 2.3). We see that

substantial rectification may be obtained even when the minimum radius is two-to-three orders-

of-magnitude larger than the Debye length, but that peak rectification consistently corresponds

to Du ∼ 1, consistent with our theoretical description of dynamic selectivity and its role in ICR

in the limit of no overlap (λD/R� 1).

In selecting experimental and numerical data from the literature, I searched for any rectifi-

cation data that was obtained by imposing a continuous variation in concentration, geometry,

and/or surface charge. Immediately, this excludes data obtained in charge diodes containing a
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discontinuity in the magnitude and/or sign of the surface charge, (e.g., Li et al., 2013; Nguyen

et al., 2010; Karnik et al., 2007). The important distinction between diodes containing discontinu-

ities in the local Dukhin number or the sign of the local surface charge and those considered here

will be discussed in the following section. I additionally searched for rectification ratios (either

directly reported or inferred from reported IV curves) that displayed a local maximum as the

maximum Dukhin number was varied (via variations either in reservoir concentration or surface

charge density) while the Dukhin ratio was held fixed. In the end, all of the data that fit these

criteria were found to come from conical nanopores.

2.7.2 A Note on the Distinction Between Intrinsic and Extrinsic Diodes

Briefly, I note that we have been concerned here with ICR induced by continuous variations in the

local Dukhin number and in the presence of surface charge of a single sign. This is in contrast to

both classical bipolar diodes, containing regions of both positive and negative surface charge, (e.g.,

Picallo et al., 2013; Nguyen et al., 2010; Constantin & Siwy, 2007; Vlassiouk & Siwy, 2007), and

unipolar diodes, (e.g., Karnik et al., 2007; Wang et al., 2007; Li et al., 2013), containing regions

of zero and nonzero surface charge. I term the latter intrinsic diodes, as in this case the zone

of depletion or accumulation is localized to the intrinsic discontinuity in either the local Dukhin

number or the sign of the surface charge. I term the type of diodes considered here extrinsic

diodes, in contrast to the previous terminology and in recognition of the fact that, in this case,

the rectification is due to an imposed inequality in the Dukhin numbers on either end of the

nanopore, rather than an intrinsic discontinuity.

Intrinsic diodes are typically found to exhibit much stronger rectification (Li et al., 2013;

Vlassiouk & Siwy, 2007) due to the presence of a localized intrinsic accumulation/depletion zone.

Picallo et al. (2013) showed analytically that, in the limit of high surface charge (Du → ∞),

bipolar diodes exhibit ideal Shockley behavior, typical of classical p-n junction semiconductor

diodes (Shockley, 1949). In this case, the current is described by I = Isat [1− exp (−e∆V/kBT )],

where Isat is the finite saturation current obtained for large positive (reverse-biased) voltages.

This is in strong contrast to the behavior of extrinsic diodes as detailed above, in which two finite

limiting conductances are observed for large positive or negative voltages, and it is further notable

because it illustrates that rectification in intrinsic diodes is maximized as Du → ∞, rather than
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being washed out.

2.8 Conclusions and Perspectives

We may summarize the main results of this Chapter as follows:

• The principal parameter controlling selectivity in nanopores is the Dukhin number Du ≡
|σ|/ecR, rather than the ratio of the Debye length to the confinement scale λD/R.

• In the case that λD/R � 1, the Dukhin number controls the nanopore selectivity via a

dynamic repartitioning of the ionic transport along the length of the nanopore between the

non-selective bulk and the highly selective surface layer, a mechanism we term dynamic

selectivity.

• An asymmetry in Du, rather than in λD/R, is the only necessary condition for ICR, and

a maximum Du ∼ 1, rather than a maximum λD/R & 1, is the only criterion for the

maximization of rectification. This rationalizes many experimental studies showing that

ICR may be obtained in pores with radii up to three orders-of-magnitude larger than the

Debye length, and that rectification is maximized when the surface charge density magnitude

|σ| or reservoir concentration c is adjusted such that Du ∼ 1.

• Substantial ion selectivity may be obtained in pores with radii comparable to the Dukhin,

rather than Debye, length. This is a much less stringent design criterion, as typical Dukhin

lengths (10− 100 nm) are one-to-two orders-of-magnitude larger than corresponding Debye

lengths (1− 10 nm).

Crucially, the last point suggests the possibility of designing large, conical pore ion-selective

membranes. The tip radius and surface charge density of such membrane nanopores can be tai-

lored to the operating concentrations in order to obtain significant ion-selectivity (80−90%) while

achieving orders-of-magnitude larger conductances than those obtained in traditional (subnano-

metric) ion-selective membranes. The implications for the design of much more efficient osmotic

energy conversion (RED) and desalination/filtration (ED) devices is profound, as the key limit-

ing factor in commercialization of such technologies is the poor efficiency due to low membrane

conductance.
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Chapter 3

DRAMATIC PRESSURE-SENSITIVE ION CONDUCTION IN
CONICAL NANOPORES: TOWARDS A MECHANICAL IONIC

TRANSISTOR

Abstract In the previous Chapter, I examined ionic selectivity and transport in nanofluidic

devices theoretically, recovering a diode-like behavior analogous to that observed in doped semi-

conductor devices. However, nanofluidics offers an additional degree-of-freedom compared to solid

state devices–namely, the solvent flow and the associated advective ion transport. In this Chapter,

I theoretically examine ionic transport in confinement under coupled mechanical (pressure) and

voltage forcing by extending the effective one-dimensional framework developed in the previous

Chapter to include the solvent flux, solute advection, and pressure. Before doing this, however,

I present the results of experiments performed in the group examining ion conduction in conical

nanopores under coupled pressure and voltage forcing in the regime wherein there is no Debye

overlap (λD/R � 1), but the Dukhin number is of order one (Du ∼ 1). From the results of

the previous Chapter, we anticipate a nonlinear response, and indeed we find that the pressure-

response of the ionic current in the presence of an applied voltage is nonlinear and highly sensitive

to very small pressures, similar to a mechanical transistor-like effect. In addition to the inclusion

of solvent flow, I extend the theoretical framework to allow for perturbative deviations from local

electroneutrality and hence the formation of so-called spatially charged zones (SCZs), wherein

the sum of the surface charge and the radially integrated ionic charge density is nonzero. SCZ-

formation is known to be fundamental to the current response of doped semiconductor devices

(Shockley, 1949), and I show here that the formation and deformation of an SCZ mediates the

coupled, highly nonlinear pressure-voltage response. The one-dimensional transport equations are

numerically integrated in an asymmetric domain similar to the experimental geometry, and the

results are compared favorably with the experimental observations. This theoretical framework

allows me to obtain a functional relationship between the conductance and the ionic concentration

at low pressure, rationalizing the observed nonlinearity in the pressure-response, and to recover
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the electrical and streaming conductances at high pressures. The content of this Chapter is pre-

sented in ‘Dramatic pressure-sensitive ion conduction in conical nanopores’ (Jubin et al., 2018,

Proc. Natl. Acad. Sci. U.S.A., 115, 4063–4068).

3.1 Introduction

In Chapter 2, we began our theoretical consideration of nonlinear ionic transport in strong con-

finement with a detailed treatment of ionic current rectification (ICR), the simplest and most

ubiquitous example of nonlinear transport in nanofluidics. We found that the main parameter

controlling both nanopore selectivity and the occurrence of nonlinear transport is the Dukhin

number, Du ≡ |σ|/ecR, and that Debye overlap, indicated by a value of the ratio of the local

Debye length to the local nanopore radius λD/R > 1, is of secondary importance. Indeed, high

selectivity and ICR occur equally well in pores with strong Debye overlap everywhere (λD/R� 1)

and no Debye overlap anywhere (λD/R� 1). My aim in this Chapter will be to extend the frame-

work of Chapter 2 in order to examine more exotic nonlinear transport processes under coupled

mechanical (pressure) and voltage forcing.

We are interested in examining transport under coupled pressure-voltage forcing for two rea-

sons. In the first place, while ICR in particular and the Poisson-Nernst-Planck (PNP) framework

generally are analogous to the theory of electron/hole transport in semiconductor devices (Boc-

quet & Charlaix, 2010), pressure forcing, solvent flow, and advection are absent from PNP and

collectively represent an additional degree-of-freedom unique to nanofluidics. For this reason,

understanding the influence of this additional degree-of-freedom on ionic transport in strong con-

finement is of intrinsic interest.

More broadly, when examining the variety of ionic transporters found in nature, one observes

a wealth of exotic transport processes including voltage gating, activation, and mechanosensitivity

(Bonthuis & Golestanian, 2014; Perozo et al., 2002; Vásquez et al., 2008; Tybrandt, 2017; Coste

et al., 2012; Wu et al., 2017) that are unobtainable in the laboratory. In particular, the ability to

tune the ionic conduction by an external stimulus remains challenging to achieve artificially. The

nanofluidic equivalent of the transistor, as pioneered by Schasfoort et al. (1999) and Karnik &

Castelino (2006), still poses many difficulties for efficient implementation in nanofluidic circuitry.

More generally, the non-linear response of ionic transport in nanopores to coupled forcings and
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forcings other than applied electric fields, and its relation to the nanopore geometry, remains

poorly understood. While ICR has been extensively characterized in the literature, the extension

to driving forces other than the electric forcing remains largely unexplored up to now. Of particular

interest in this context is the response of the ionic current to mechanical forcing beyond the linear

response regime. The ability to tune the conduction by such an external stimulus would open

up the possibility of designing advanced fluidic circuitry, such as the hypothetical memristor

response (Chua, 2013). However, the low Reynolds number hydrodynamics governing nanometric

fluid transport are essentially time-reversible and resolutely linear in pressure forcing, suggesting

the a priori impossibility of a non-linear mechanical response. Accordingly, the ionic response to

mechanical driving is usually described in terms of a streaming current that is linear in pressure

drop and verifies the Onsager symmetry relations (Bocquet & Charlaix, 2010).

I will begin this Chapter by presenting the results of experiments conducted in the group

examining the ionic current response of a conical, glass nanopipette under coupled pressure and

voltage forcing. These experiments are conducted in the limit of no overlap (λD/R� 1) and finite

Dukhin number (Du� λD/R), and in addition to the anticipated ICR in the absence of applied

pressure, we find that the response of the streaming current to pressure is strongly nonlinear in the

presence of an applied voltage, and that the ionic conductance is likewise highly sensitive to, and

thus tunable by, applied pressure. Even more striking is the fact that this behavior is observed

for small imposed pressure drops, while the classical linear response is recovered at large imposed

pressure drops, at odds with the expected linear response scenario.

I then derive one-dimensional transport equations valid in the no overlap, finite Dukhin num-

ber regime, extending the approach developed in the previous chapter. I include the additional

influence of solvent flow and advective ionic transport, as well as perturbative deviations from

local electroneutrality. In order to rationalize the experimental results, I numerically integrate

the one-dimensional transport equations in an asymmetric domain similar to the experimental

geometry. While the transport equations I develop here are more general than those considered

in Chapter 2, the price is that they are in general analytically insoluble. However, I am able to

obtain analytical results for the conductance at low pressure, the current at high pressure, and a

general relationship between the deformation of the spatially charged zone (SCZ) and the response

of the ionic current to coupled pressure-voltage forcing valid at all pressures and voltages.
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3.2 Motivating Experiments

Experiments were conducted in the group on conical glass nanocapillaries, which constitute easily

fabricated and readily reproducible physical models of a single conical nanopore. The radial

profiles of the nanocapillaries were characterized via scanning electron microscopy (SEM). The

interior radius varied between 250 µm on the upstream end and 165±15 nm at the tip over a length

of approximately 3 mm, corresponding to a half angle of approximately 5◦. (See Fig. 3.1b.) During

the experiments, ionic current was measured as a function of applied voltage (−400 < ∆V < +400

mV) and pressure (0 < ∆P < 1500 mbar) at a fixed molarity of potassium chloride (KCl), as

illustrated in Fig. 3.1a.

The results of experiments conducted at a molarity [KCl] = 10−3 M and natural pH ≈ 6 are

shown in Figs. 3.1c and d. At this concentration and pH, the surface charge of glass is approx-

imately 10 − 20 mC m−2 (Iler, 1979; Behrens & Grier, 2001; Laohakunakorn & Keyser, 2015),

corresponding to a nominal maximum Dukhin number occurring at the tip of the nanopipette of

Dutip ≈ 0.3 − 0.6. As the maximum Dukhin number is of order one, we anticipate substantial

rectification of the current-voltage (IV) curve in the absence of applied pressure, and indeed this is

what we observe (Fig. 3.1c), in agreement with the results of Chapter 2 and previous observations

(White & Bund, 2008; Lan et al., 2011; Laohakunakorn & Keyser, 2015). Conversely, for ∆V = 0,

the pressure-driven response behaves as expected and a streaming current is generated, linear in

∆P (Figs. 3.1c, inset and 3.1d). This streaming current originates from the pressure-induced ad-

vection of ions within the Debye screening layer that forms in the vicinity of solid-liquid interfaces

(Schoch et al., 2008). It is given by the Smoluchowski result (Appendix B), which, in a conical

nanopore with linearly varying radius of slope α1, takes the form Istm = πRtipα1µEO×∆P , where

Rtip is the minimum radius occurring at the tip of the nanopipette, and µEO ≡ (ε/η)(−ζ) is the

signed, dimensioned EO mobility (Appendix B, Eq. B.23). This is obtained by retaining only

the streaming current term S|µEO|dP0/dx in Eq. 3.25 and integrating along the length of the

nanopipette. In this expression for the EO mobility, ζ is the so-called zeta potential, a generaliza-

tion of the wall potential appearing in Eq. B.23 that accounts for a nonzero hydrodynamic slip

length at the solid-liquid interface. Quantitatively, the streaming conductance Sstm ≡ Istm/∆P

obtained at zero applied voltage is Sexp
stm = 0.153 nA bar−1, corresponding to a zeta potential of
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Figure 3.1: Experimental setup with single conical glass nanopipette and experimental response
of the ionic current I to applied voltage ∆V and pressure ∆P . a.) Sketch. b.) SEM image. c.)
Current-voltage curves for increasing values of ∆P , as indicated in the legend. d.) Additional
current induced by applied pressure, IP , as a function of ∆P for several different values of ∆V ,
as indicated in the legend. The arrow in panel c indicates Ioffset, the offset in IP compared to the
linear response obtained for ∆V = 0, for −400 mV, and the inset shows the total ionic current
as a function of ∆P for the values of ∆V indicated in the legend in panel d. The experimental
data are fit according to Eq. (3.1) (solid lines). All measurements correspond to a molarity
[KCl] = 10−3 M, pH ' 6, and a nominal tip radius of R0 = 165± 15 nm.
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ζ ' −42 mV in agreement with the literature (Iler, 1979).

The behavior for combined finite ∆V and ∆P differs dramatically from the behavior observed

when only one forcing is nonzero. As shown in Fig. 3.1c, the IV response changes qualitatively for

increasing applied pressures, linearizing for pressures & 200 mbar. Similarly, for a given applied

voltage drop ∆V , the current-pressure (IP) response is dramatically nonlinear for small pressures

∆P . 50 mbar. As shown in Fig. 3.1d, this non-linearity is particularly apparent if we examine

the additional current induced by pressure, IP ≡ I(∆P,∆V ) − I(∆P = 0,∆V ), as a function of

∆P for fixed values of ∆V . As shown in Fig. 3.1d, for any voltage drop the pressure dependence

of IP is well described by a simple expression of the form:

IP (∆P ) = Sstm∆P + Ioffset
a1 ∆P 1/2 + a2 ∆P

1 + a1 ∆P 1/2 + a2 ∆P
, (3.1)

where the fitting coefficients {ai} and Ioffset are functions of the voltage drop ∆V . This highlights

a small pressure response of the current that scales as IP ∼ ∆P 1/2, while the linear regime

IP ∼ ∆P is recovered for large pressure. The square-root dependence of the ionic current on

pressure as ∆P → 0 suggests that the response is non-analytic at ∆P = 0, within the accuracy of

the experiments. This response is at odds with a more näıve analysis, which would suggest that

the pressure-induced response at small ∆P should take the form of a Taylor expansion in odd

powers of ∆P , IP ' b1∆P + b3∆P 3 + . . . , where the coefficients of the expansion may themselves

be expressed as (even) analytic expansions in ∆V . As highlighted by Fig. 3.1d, the response

to mechano-electric driving forces is highly non-linear and far stronger than such considerations

would suggest.

Surprisingly, while the pressure response observed here is highly non-linear for small ∆P (and

any finite ∆V ), the limiting slope of the IP curves obtained for large ∆P is independent of voltage

and equal to the slope obtained when ∆V = 0 (Fig. 3.1d). In this large ∆P regime, the IP response

is again characterized by a linear relationship, but now with a voltage-dependent offset current

(Eq. 3.1). The offset current represents a substantial enhancement of the streaming current that

would be obtained in the ordinary linear response regime; this can be seen by comparing the linear

IP curves corresponding to ∆V = 0 and −400 mV (Fig. 3.1d).

Finally, I again emphasize this drastically non-linear behavior is obtained when no Debye-layer

overlap occurs in the nanocapillary; the Debye layer here is ∼ 10 nm thick, an order of magnitude

smaller than the minimum nanocapillary radius, Rtip = 165± 15 nm.
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Figure 3.2: Experimental a) apparent and b) differential conductance as a function of applied
pressure for several different values of applied voltage, as indicated in the legend in panel b.

Altogether, these results are best described in terms of a pressure-dependent ionic conduc-

tance. I report in Figs. 3.2a and b, respectively, both the apparent conductance Gapp ≡ I/∆V

and the differential conductance Gdiff ≡ ∂∆V I. Both quantities highlight a strong sensitivity of

the conductance to pressure for small applied pressures. Depending on the applied voltage, the

conductance increases or decreases with ∆P , with variations of up to 100% for a change of pres-

sure as small as 100 mbar. The result is an ionic conduction that is dramatically dependent on

external mechanical conditions, behavior that is similar to mechanical gating observed in natural

ionic transporters, and which constitutes a mechanical transistor-like effect.

3.3 1D Advective-Electrodiffusive Transport Equations

As noted above, our starting point in Chapter 2 was the Poisson-Nernst-Planck (PNP) system of

equations. In applying these equations, I assumed that advective ionic transport was negligible in
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comparison to diffusive and electrophoretic transport. When the only applied forcing is a voltage

differential, this amounts to neglecting the quantitative influence of the electro-osmotic flow, a

good assumption over much of parameter space (Ai et al., 2010; Vlassiouk et al., 2008a). However,

as I am interested here in the ionic transport under coupled voltage and pressure forcing, it will

be necessary to account for the solvent flow, pressure, and advective ionic transport explicitly.

Thus, in addition to the PNP equations, modified by the inclusion of advective terms in the

Nernst-Planck parameterization of the ionic fluxes, we must also include the Stokes equations,

statements of solvent mass and momentum conservation valid at the low Reynolds numbers typical

of nanofluidic experiments. Together, these comprise the so-called Poisson-Nernst-Planck-Stokes

(PNPS) framework. By extending the procedure applied in the previous Chapter for a large-

aspect-ratio nanopore in the regime of no Debye overlap (λD/R � 1) and finite Dukhin number

(Du � λD/R), we will derive effective one-dimensional transport equations for the ionic and

solvent fluxes.

The full axisymmetric PNPS equations are

jx± = −D
(
∂xc± ±

e

kBT
c±∂xφ

)
+ uxc±, (3.2)

jr± = −D
(
∂rc± ±

e

kBT
c±∂rφ

)
+ urc±, (3.3)

∂xj
x
± +

∂r(rj
r
±)

r
= 0, (3.4)

0 = −∂xP + nc(−∂xφ) + η

[
∂2
xux +

∂r(r∂rux)

r

]
, (3.5)

0 = −∂rP + nc(−∂rφ) + η

[
∂2
xur +

∂r(r∂rur)

r
− ur
r2

]
, (3.6)

∂xux +
∂r(rur)

r
= 0, and (3.7)

εrε0

[
∂2
xφ+

∂r(r∂rφ)

r

]
+ nc = 0. (3.8)

In the above, jx± (ux) and jr± (ur) are, respectively, the ion number flux densities (hydrodynamic

velocities) along the nanopore axis (x-direction) and in the radial direction, η is the dynamic

viscosity of water, and P is the mechanical pressure. All other symbols take their usual meaning

(see Chapter 2). As in Chapter 2, I have assumed that the diffusion coefficients for the two species

are identical.
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Eqs. 3.2 and 3.3 give the Nernst-Planck parameterization of the longitudinal and radial ionic

fluxes, respectively, modified by the inclusion of an advective flux; Eq. 3.4 is a statement of local

conservation of ion number; Eqs. 3.5 and 3.6 are, respectively, the longitudinal and radial sol-

vent momentum conservation equations neglecting advective acceleration, consistent with the low

Reynolds numbers typical of nanofluidic experiments; Eq. 3.7 is a statement of local conservation

of solvent volume; and Eq. 3.8 is the Poisson equation.

I partition the ionic charge nc ≡ e (c+ − c−) into a component satisfying a local Poisson-

Boltzmann (PB) equilibrium, nPB
c (x, r), and a deviation from local equilibrium, δnc(x), which

a priori needn’t be confined to the Debye layer and is thus assumed to be radially uniform.

PB theory requires local electroneutrality when summing over the contributions of the ions and

surface to the total charge (Appendix A), so that the local equilibrium charge density must satisfy

〈nPB
c 〉 + 2σ/R = 0, where the angled brackets indicate a cross-sectional average, σ is the surface

charge density at the solid-liquid interface, and R is the local radius. Thus, δnc(x) ≡ 〈nc〉+ 2σ/R

represents the density of net spatial charge at a location x along the nanopore. I assume that the

net spatial charge is small compared to the surface charge, i.e., that |δnc| � |〈nPB
c 〉| = 2|σ|/R.

In particular, this implies that, within the Debye layer where the equilibrium ionic charge is

significant, nc ≈ nPB
c , whereas outside of the Debye layer (in the bulk), nc ≈ δnc. I further assume

that |〈δnc〉|/e � c such that we may neglect the perturbation to the total ionic concentration

induced by the net spatial charge. These assumptions will be validated in the numerical results

presented below.

Eqs. 3.2 through 3.8 are dramatically simplified if we apply the assumptions of scale separation

(R/L � 1) and no Debye overlap (λD/R � 1). The former assumption allows us to locally

neglect longitudinal gradients, except in the forcing terms ∂xφ and ∂xP , and the radial velocity

and ionic fluxes. The latter assumption allows us to partition the ionic concentrations as c±(x, r) =

c0(x)/2 + δc±(x, r) and the electrostatic potential as φ(x, r) = φ0(x) + δφ(x, r), where c0(x) ≡
c(x, r = 0) and φ0(x) ≡ φ(x, r = 0) are the centerline total ionic concentration and electrostatic

potential, respectively, and δc±(x, r) and δφ(x, r) are, respectively, the radial deviations in the

ionic concentrations and electrostatic potential induced by the Debye layer. (See Chapter 2, Eqs.

2.3 and 2.4 and Appendix A.)

Before writing down the simplified PNPS equations obtained with the above assumptions, I
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variable notation rescaled

position x x→ Lx

radius R R→ RminR

concentration c c→ cc

ionic charge density nc nc → ecnc

electrostatic potential φ φ→ (kBT/e)φ

chemical potential µ± µ± → kBTµ±

flux density j± j± → (Dc/L)j±

surface charge σ σ → |σ|maxσ

hydrodynamic velocity u u→ (D/L)u

pressure P P → kBTcP

electro-osmotic mobility µEO µEO → µEO/µEP

diffusio-osmotic mobility µDO µDO → µDO/D

Table 3.1: Model variables and their rescaled dimensionless counterparts.

rescale the model variables according to Table 3.1. In addition to the rescalings introduced in the

preceding Chapter, I rescale the velocity by D/L and the pressure by kBTc. In the preceding,

L is a scale of longitudinal variation in the geometry, and c is the average of the two imposed

reservoir concentrations. Note that these scales are taken for convenience, and the rescaled terms

are not necessarily of order one. I further rescale the electro-osmotic (EO) mobility µEO by

the electrophoretic mobility µEP ≡ eD/kBT and the diffusio-osmotic (DO) mobility µDO by the

diffusion coefficient D. Rewriting the ionic flux densities (Eq. 3.2) in terms of the total ion number

and charge flux densities, j ≡ jx+ + jx− and i ≡ e(jx+ − jx−), respectively, we find after rescaling

j = −
(
∂xc+ nPB

c ∂xφ
)
− δnc

dφ0

dx
+ uxc0 + uxδc, (3.9)

i = −
(
∂xn

PB
c + c∂xφ

)
− dδnc

dx
+ uxδnc + uxn

PB
c , (3.10)

0 = −∂xP + nc

(
−dφ0

dx

)
+ nPB

c (−∂xδφ) +
1

Peosm

∂r(r∂rux)

r
, (3.11)

0 = −∂rP + nPB
c (−∂rδφ) , (3.12)
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(
λref
D

Rmin

)2
∂r (r∂rδφ)

r
+ nPB

c = 0, (3.13)

δc = c0 (coshδφ− 1) , and (3.14)

nPB
c = −c0sinhδφ., (3.15)

where I have introduced a reference Debye length λref
D ≡ (εrε0kBT/e

2c)1/2, defined in terms of the

average of the reservoir concentrations c, and an osmotic Péclet number, defined as

Peosm ≡
(R2

min/η)(kBTc/L)× L
D

≡ R2
minkBTc

ηD
. (3.16)

The term (R2
min/η)(kBTc/L) is the product of a scale of the Hagen-Poiseuille hydraulic conduc-

tivity kHP = R2(8η)−1 (Appendix B) and a scale of an osmotic pressure gradient dΠosm/dx =

kBTdc/dx, and it therefore gives the scale of an osmotic velocity Uosm. For this reason, we may

interpret the above parameter as an osmotic Péclet number Peosm = UosmL/D.

In Eqs. 3.9, 3.11, and 3.12 I have made use of the fact that δφ is substantially different from

zero only within the Debye layer to make the approximation nc∇δφ ≈ nPB
c ∇δφ, and in Eq. 3.13

to make the approximation nc ≈ nPB
c . Note that Eqs. 3.13 through 3.15 describe the local PB

quasi-equilibrium holding in the radial direction at each point x along the nanopore.

3.3.1 Radially Integrated Continuity Equations

Radial integration of Eqs. 3.4 and 3.7 give

dJ

dx
=
dI

dx
=
dQ

dx
= 0, (3.17)

where J ≡
∫
A

dAj and I ≡
∫
A

dAi are the total ion number and ion charge fluxes, respectively,

and Q ≡
∫
A

dAux is the total volumetric solvent flux.

Eq. 3.8 may likewise be radially integrated, subject to the Guassian boundary condition

n̂ ·E(x, r = R) = +σ/εrε0 (in dimensioned variables), where n̂ is the unit normal vector pointing

out of the solid boundary into the fluid (Appendix A). After rescaling, the result is

(
λref
D

L

)2
1

πR2

d

dx

[
πR2

(
−dφ0

dx

)]
= δnc. (3.18)
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3.3.2 Centerline Momentum Equation

Combining the Boltzmann distribution obtained in Eqs. 3.14 and 3.15 with the radial momentum

balance, Eq. 3.12, and integrating gives an osmotic pressure balance in the radial direction (Ajdari

& Bocquet, 2006):

P (x, r) = P0(x) + δc(x, r), (3.19)

where P0(x) ≡ P (x, r = 0) is the pressure at the nanopore centerline. Inserting Eq. 3.19 into Eq.

3.11 gives (
dP0

dx
+ δnc

dφ0

dx

)
+

(
nPB
c

dφ0

dx

)
+

(
δc
dlnc0

dx

)
=

1

Peosm

∂r (r∂rux)

r
, (3.20)

where, on the LHS, I have segregated the forcing terms into, from left to right, the pressure

gradient and electric body force associated with the net spatial charge, which together induce a

quadratic Hagen-Poiseuille flow, and the electro-osmotic and diffusio-osmotic driving forces, which

both induce plug-like flows.

3.3.3 Radial Integration of the Ionic Fluxes and Momentum Equation

We note that the first terms in parentheses on the RHS of Eqs. 3.9 and 3.10 are identical to the

simplified Nernst-Planck equations considered in Chapter 2 (Eqs. 2.10 and 2.11), and hence we

may directly transcribe the results for the radial integration of these terms obtained in Chapter 2

(Eqs. 2.23 and 2.24). Furthermore, the second terms on the RHS of Eqs. 3.9 and 3.10 are radially

uniform, and the third terms depend on r only through the hydrodynamic velocity ux(x, r). Hence,

we may immediately write

J

πR2
= −

[
dc0

dx
+

2Duref |σ|
R

dµcount

dx

]
− δnc

dφ0

dx
+

Q

πR2
c0 + 〈uxδc〉, and (3.21)

I

πR2
= −

[
c0
dφ0

dx
− S2

2Duref |σ|
R

dµcount

dx

]
− dδnc

dx
+

Q

πR2
δnc + 〈uxnPB

c 〉, (3.22)

where we recall that S ≡ sign(σ) is the sign of the surface charge density, and the counterion

chemical potential is given by

µcount = ln
(c0

2

)
− Sφ0. (3.23)

In order to determine the volumetric solvent flux Q and to evaluate the final terms on the RHS

of Eqs. 3.21 and 3.22, we must first radially integrate the centerline momentum equation, Eq.
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3.20, for the velocity profile ux(x, r). The current and ion number fluxes are then calculated by

integrating the resulting flow profiles multiplied by the ionic concentrations over the cross-section.

This procedure is described in detail in Appendix B. With the results given there, we find for our

final system of one-dimensional transport equations

J

πR2
= −

(
dc0

dx
+ δnc

dφ0

dx

)
− 2Duref |σ|

R
(1 + κ)

dµcount

dx
− µDO

(
dP0

dx
+ δnc

dφ0

dx

)
+

Q

πR2
c0,

(3.24)

I

πR2
= −

(
dδnc
dx

+ c0
dφ0

dx

)
+ S

2Duref |σ|
R

(1 + κ)
dµcount

dx
+ S|µEO|

(
dP0

dx
+ δnc

dφ0

dx

)
+

Q

πR2
δnc,

(3.25)

Q

πR2
= −L(R)

(
dP0

dx
+ δnc

dφ0

dx

)
− µDO

dlnc0

dx
+ S|µEO|

dφ0

dx
, (3.26)

dJ

dx
=
dI

dx
=
dQ

dx
= 0, and (3.27)

(
λref
D

L

)2
1

πR2

d

dx

[
πR2

(
−dφ0

dx

)]
= δnc. (3.28)

In the above, in addition to the normalized DO and EO mobility coefficients, µDO and |µEO|,
respectively, I have introduced the Hagen-Poiseuille hydraulic conductivity L(R), defined as

L(R) ≡ PeosmR
2

8
, (3.29)

and κ, the ratio of the electro-/diffusio-osmotic (acvective) ion flux to the electrophoretic/diffusive

flux, defined as

κ ≡ 2
εrε0
ηD

(
kBT

e

)2

≈ 0.45. (KCl in water, 293 K). (3.30)

From left to right, the terms on the RHS of Eqs. 3.24 and 3.25 represent the sum of bulk

diffusion and electrophoresis, the sum of surface electro-diffusion and electro-/diffusio-osmotic

transport, surface transport induced by the Hagen-Poiseuille (pressure-driven) flow (the streaming

fluxes), and bulk advection.

I note that the advective term Qδnc appearing in Eq. 3.25, when combined with Eq. 3.26,

results in a term that is quadratic in δnc. For both consistency with our assumption of small

deviations from electroneutrality and numerical stability, it is necessary to neglect this term. This

is done in the theoretical results presented below.
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3.3.4 A Note on the Radial Integration Procedure

Before examining the experimental results obtained in conical glass nanopores, I note the con-

trasting procedures available for reducing the ‘effective dimensionality’ of the PNP equations (i.e.,

the electro-diffusive terms in Eqs. 3.2) from a two-dimesional axisymmetric system to a quasi-one

dimensional system. In deriving the above transport equations (Eqs. 3.24 through 3.28), as well as

the simplified transport equations presented in Chapter 2 for the case that advection is negligible

(Eqs. 2.23 and 2.24), I have made use of the local Boltzmann equilibrium expressions for the total

ionic concentration and ionic charge distributions, inserting them into the local Nernst-Planck pa-

rameterizations for the ionic fluxes to obtain equations that are linear in the centerline gradients

with transport coefficients that depend on the local ionic concentration or charge density (Eqs.

2.16 and 2.17). I am then able to apply the results of PB equilibrium theory to calculate the

average of the total ionic concentration and ionic charge density on the cross-section in the limit

of no overlap (Appendix A), and thus to obtain radial integrations of the transport equations that

are exact in the limits R/L→ 0 and λD/R→ 0.

This procedure is in contrast to at least two other integration procedures applied in the lit-

erature: 1) the Fick-Jacobs approach (Malgaretti et al., 2015, 2016) and 2) the ‘näıve’ averaging

approach (Cervera et al., 2006; Constantin & Siwy, 2007; Vlassiouk et al., 2008b; Picallo et al.,

2013), in which the one-dimensional transport equations valid in the limit of strong overlap (Eqs.

2.28 and 2.29) are assumed to remain approximately valid in the absence of overlap, with the

cross-sectionally averaged ionic concentrations and electrostatic potential replacing the radially

uniform values appearing in the strong-overlap equations. The Fick-Jacobs approach is applied

specifically to rectification in conical channels in Dal Cengio & Pagonabarraga (2019). This ap-

proach relies on the introduction of a complicated ‘effective free energy’ that is defined implicitly

in terms of unknown model variables, and this effective free energy accounts for the entropic influ-

ence of confinement. As in the approach applied here and in Chapter 2, the Fick-Jacobs approach

relies only on a separation of longitudinal and transverse scales (R/L � 1), and the transport

equations so obtained take particularly simple forms in the limits of no overlap (λD/R� 1) and

strong overlap (λD/R � 1). Indeed, it can be shown that the equations obtained via the Fick-

Jacobs approach are precisely identical to those obtained here and in Chapter 2. The advantage

of my approach is that it is conceptually more straightforward, avoiding the introduction of an
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‘effective free energy’.

The latter ‘näıve’ procedure was applied in the treatment of the electro-diffusive terms in the

published version of this work (Jubin et al., 2018). In addition to a separation of longitudinal

and transverse scales (R/L � 1), this approach assumes that the average of the product of

model variables (or their gradients) is roughly equivalent to the product of their averages, a less

rigorous assumption. (See Cervera et al. (2006) and the Supporting Information of Jubin et al.

(2018).) Here, for the sake of consistency, I have applied the more rigorous methodology originally

employed to treat ICR in Chapter 2 and the published version of that work (Poggioli et al., 2019).

While either procedure gives results that are qualitatively identical and in complete qualitative

agreement with the experiments described below, the more rigorously obtained equations applied

here give more quantitatively accurate results than those applied in Jubin et al. (2018).

3.4 Theoretical Results

I now examine numerical solutions to the one-dimensional transport equations, Eqs. 3.24 through

3.28, in a simplified geometry characteristic of the conical nanopipettes examined experimentally

in Section 3.2. I consider two regions of constant radial slope: dR/dx = −α1 in the interior of

the nanopipette and dR/dx = +α2 in the downstream reservoir; the radial profile is taken to vary

continuously between these two limiting regions. The imposed radial profile is given by

R(x) =
1− [(x/`) + k1]

1− e2[(x/`)+k1]
+

1 + αres [(x/`) + k1]

1− e−2[(x/`)+k1]
+ k2, (3.31)

where ` is a transition length, rescaled by the reference length L (Table 3.1), and k1 and k2 are

constants chosen such that the minimum radius R(0) = 1 occurs at x = 0. Note that I have

taken L = Rtip/α1 so that |dR/dx| = 1 in the nanopipette interior in rescaled variables, and

dR/dx = αres ≡ α2/α1 in the downstream reservoir. The model geometry and transition length

are illustrated in the inset of Fig. 3.3. I take α1 = 0.1, a typical radial slope estimated from SEM

profiles, and α2 = 10.

The boundary conditions are imposed in the reservoirs at x = ±∞. The applied voltage

and pressure are imposed in the upstream reservoir, φ(−∞) = ∆V and P (−∞) = ∆P , while

the downstream reservoir is held at ground and reference pressure, φ(+∞) = P (+∞) = 0. The

reservoir concentrations are fixed and equal, c(±∞) = 1, and the reservoirs are electroneutral,
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Figure 3.3: A sketch of the geometry of the glass nanocapillary. The inset shows a zoom-in of the
model geometry in the vicinity of the tip. The radius is taken to vary between two regions of linear
variation over a length scale ` as indicated, and these regions are characterized by (unrescaled)
radial slopes α1 = 0.1 in the interior and α2 = 10 in the exterior.

δnc(±∞) = 0. Note that here and throughout the rest of the Chapter I will drop the subscript

zero, taking care to recall that the quantities indicated are centerline values.

The values of all of the dimensionless parameters appearing in Eqs. 3.24 through 3.28 and

governing the solution were estimated for the experiments presented above: Dutip ' 0.5, λref
D /L =

α1λ
ref
D /Rtip ' 0.0058, |µEO| ' 0.37, µDO ' 0.075, Peosm ' 66.4. Additionally, I (arbitrarily)

take a rescaled transition length of ` = 0.1. These parameters are used in all of the numerical

calculations presented below.

The numerical results for the response of the current to applied voltage and pressure are

reported in Fig. 3.4, and the results for the conductance are reported in Fig. 3.5. Crucially,

this theoretical framework reproduces all of the essential qualitative features of the experiments.

Comparing the experimental results – Figs. 3.1c-d and 3.2 – to the theoretical predictions –

Figs. 3.4 and 3.5 – we see that we successfully recover a strong, non-linear dependence of the

ionic conduction on pressure (Figs. 3.2c and d) resulting in a highly sensitive response of the

pressure-induced current IP to pressure (Fig. 3.4b). Furthermore, we note that the theoretical

results are quantitatively consistent with the experimental results; indeed, given the minimal
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assumptions made in deriving Eqs. 3.24 through 3.28, and the fact that they are all satisfied

in the experiments reported above, we expect these one-dimensional results to be essentially as

accurate as a full three-dimensional simulation within the full PNPS framework.
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Figure 3.4: Model-derived response of the ionic current I to applied voltage ∆V and pressure
∆P in a conical geometry (Fig. 3.3). a.) Current-voltage curves for increasing values of ∆P , as
indicated in the legend. b.) Additional current induced by applied pressure, IP , as a function of
∆P for several different values of ∆V . The inset in panel a shows the current as a function of
∆P for several different values of ∆V , colored according to the labels in panel b. In panel b, the
model predictions are fit according to Eq. 3.1, similar to Fig. 3.1 for the experimental data. The
slope of the dashed black line in panel a indicates the value of G0, and that in panel b indicates
the value of Sstm (Eq. 3.49).

The prediction for the pressure-dependence of the current IP shown in Fig. 3.4b is successfully

described by Eq. 3.1, in full agreement with the experimental results shown in Fig. 3.1d. This

demonstrates that the experimental behavior IP ∼ ∆P 1/2 measured for low pressure-drop is fully

recovered by the model, indicating a strong sensitivity to applied pressure for small pressures.

Finally, the theoretical IV curves are observed to linearize as pressure is increased, in accordance
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Figure 3.5: Model-derived a) apparent and b) differential conductance as a function of applied
pressure for several different values of applied voltage, as indicated in the legend in panel b.

with the experimental observations shown in Fig. 3.1c, with the conductance for all voltages

approaching the conductance at zero voltage drop, ∆V = 0 (Fig. 3.4a). The apparent offset in the

linear streaming current for large applied pressures is asymmetric in applied voltage, growing much

more quickly for negative than for positive values of ∆V , in full agreement with its experimental

counterpart.

3.5 Discussion: Deformation of the SCZ

I now show that this nontrivial behavior originates in the sensitivity of the SCZ to the balance

between electrical and mechanical forcing. I first note that there is a direct analytical relationship

between the formation and deformation of an SCZ and the coupled, nonlinear voltage-pressure

response. Beginning with the Poisson equation, Eq. 3.28, we integrate once to obtain

FD(x) = FD(−∞) + δq(x), (3.32)
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where FD ≡ επR2(−dφ/dx) is the electric displacement flux, ε ≡ (λref
D /L)2 = (α1λ

ref
D /Rtip)2 is the

rescaled permittivity, and I have introduced the cumulative charge

δq(x) ≡
∫ x

−∞
dx′πR2δnc(x

′). (3.33)

We integrate this result across the model domain, applying the appropriate boundary conditions

at x = ±∞ for the electrostatic potential φ, to obtain

FD(−∞) = Gbulk

[
ε∆V −

∫ +∞

−∞

dx

πR2
δq

]
, (3.34)

where I have introduced the bulk conductance Gbulk, defined as

Gbulk ≡
(∫ +∞

−∞

dx

πR2

)−1

. (3.35)

We may relate this result to the ionic current by examining the limiting behavior of each

of the terms from left to right on the RHS of Eq. 3.25 as x → −∞. As FD(−∞) tends to a

constant value as x → −∞ (Eq. 3.34), we find from the Poisson equation, Eq. 3.28, that δnc

must vanish faster than 1/R2, and therefore πR2dδnc/dx → 0. From Eq. 3.34, we find that the

bulk electrophoretic current Ibulk
EP ≡ πR2cdφ/dx tends to a nonzero constant as x→ −∞, given by

Ibulk
EP (−∞) = FD(−∞)/ε. From Eq. 3.26, we see that dµcount/dx must vanish no slower than 1/R2

as x→ −∞, and hence the term proportional to dµcount/dx on the RHS of Eq. 3.25 must vanish.

And finally, as the volumetric solvent flux Q is a constant and πR2dφ/dx tends to a constant, the

last and second-to-last terms must vanish as δnc. We thus have

I = Ibulk
EP (−∞), (3.36)

i.e., the ionic current is carried entirely by the bulk electrophoretic current far in the nanopipette

interior. Combining this with the above-noted relationship between Ibulk
EP (−∞) and FD(−∞) and

Eq. 3.34, we find

I = Gbulk

[
∆V − 1

ε

∫ +∞

−∞

dx

πR2
δq(x)

]
. (3.37)

This result explicitly confirms that the nonlinear response results from the deformation of the

SCZ under coupled pressure-voltage forcing. From the model results, we learn that for small im-

posed pressures, the current is dominated locally by the bulk and surface electrophoretic currents

along with the EO current.
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On the other hand, for large ∆P , the linearization of the IP response is found to correspond

to an increase in importance of the local streaming current, such that the current is dominated

by the local electrophoretic, EO, and streaming current responses. I discuss each of these two

regimes in turn.

Low Pressure Regime

In this regime, the striking result is the dramatic sensitivity of the conductance to applied pressure.

As suggested by Eq. 3.1, the current IP exhibits an apparent square-root dependence on pressure

drop in this regime, so that the model predicts G ∼ ∆P 1/2.

The conductance in this regime may be estimated by retaining only the electro-phoretic and

EO terms in the expression for the ionic current (Eq. 3.25):

I ≈ Ibulk
EP + Isurf

EP + IEO = −πR2c
dφ

dx
− 2πRDutip(1 + κ)

dφ

dx
. (3.38)

Integrating in x, we find for the apparent conductance G ≡ I/∆V :

G−1 =

∫
+∞

−∞

dx

πR2
[
c+

2Dutip(1+κ)

R

] , (3.39)

where the (non-linear) pressure dependence is hidden in the concentration profile c(x; ∆P,∆V ).

The above result for the apparent conductance (Eq. 3.39) shows that for small imposed pressure,

the variation in the apparent conductance with pressure drop, G(∆P ), may be understood in

terms of the pressure-induced variations in the concentration profile c(∆P ) relative to equilibrium.

Concentration profiles are plotted in Figs. 3.6a and b. These profiles exhibit a strong sensitivity

to applied pressure when ∆P . 150 mbar, with the concentration everywhere relaxing to the

reservoir value as the linearizing pressure ∆Plin ≈ 200 mbar is approached.

The equivalence of Eq. 3.39 and the more general Eq. 3.37 in describing the current response

at low ∆P implies a direct relationship between the net spatial charge δnc and the concentration

field. This is illustrated in Fig. 3.6, where I have also plotted profiles of the cumulative charge in

the nanopore (Eq. 3.33). The structural similarity between the cumulative charge and the excess

concentration relative to the reservoir value δc ≡ c− 1 is immediately apparent.

This suggests a back-of-the-envelope argument to account for the square-root variation of the

conductance with pressure, G ∼ ∆P 1/2, highlighted in Eq. 3.1. Under a pressure drop, one may
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Figure 3.6: Model-derived profiles of local concentration (panels a and b) and cumulative charge
(panels c and d) for ∆V = −400 mV (a, c) and ∆V = +400 mV (b, d). The profiles are colored
according to increasing values of ∆P , as indicated in the legend in panel a.

anticipate a simple mechanical balance for the SCZ between the electrostatic and pressure forces.

This typically takes the form δq×Eapp ∼ R2
tip∆P , where δq is the cumulative charge in the SCZ,

and Eapp is variation in the induced electric field under an applied pressure. Equivalently, one

may interpret the force balance in terms of a balance between the Maxwell stress and the applied

pressure: εE2
app/2 ∼ ∆P . The equivalence of these perspectives requires that the cumulative

charge in the SCZ be proportional to the induced electric field, δq ∼ Eapp, in agreement with the

Poisson equation, Eq. 3.28. Solving for δq yields δq ∼ ±
√

∆P . Furthermore, as noted above, the

variation in the concentration field is found to scale with the cumulative charge. We thus have

δc ∼ δq ∼ ±
√

∆P . From Eq. 3.39, this variation in the concentration leads to a modification of

the conductance that scales as δG(∆P ) ∼ ±
√

∆P for small imposed pressures.
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While this scaling is established a posteriori, it revovers the apparent square-root correction

to the conductance in the applied pressure, in full agreement with the corresponding variation

observed in the experiments and theory (Figs. 3.2 and 3.5). It also suggests that the origin

of the square-root dependence is in the contribution to the mechanical balance on the SCZ of

the Maxwell stress tensor, and its quadratic dependence on the electric field. Interestingly, this

dependence is expressed for the present conical geometry, but disappears for cylindrical geometries

with constant radius.

High Pressure Regime

In this regime, the current response is linear in applied voltage and pressure (Figs. 3.1 and

3.4). This puzzling behavior can be rationalized analytically by noting from the numerical results

that 1) the current is dominated by the electro-phoretic, EO, and streaming contributions, 2) the

concentration is homogenized and equal to the reservoir concentration c ≡ 1, and 3) the volumetric

solvent flux is dominated by the (pressure-driven) Hagen-Poiseuille (HP) contribution. From the

third point, we find for the solvent flux and pressure gradient

Q =
Peosm

8

(∫ +∞

−∞

dx

πR4

)−1

∆P, and (3.40)

−dP
dx

=

(∫ +∞

−∞

dx

R4

)−1
∆P

R4
, (3.41)

respectively. Inserting this result into the expression for the local streaming current Istm =

−πR2|µEO|(dP/dx), we obtain

Istm =

(∫ +∞

−∞

dx

πR4

)−1

|µEO|
∆P

R2
. (3.42)

Eq. 3.32 may be rewritten as

Ibulk
EP (x) = I +

1

ε
δq(x), (3.43)

where I have applied Eq. 3.36 and noted that c ≡ 1 and therefore Ibulk
EP (x) = πR2(−dφ/dx) =

FD(x)/ε in the high-pressure limit. The total ionic current in this limit is given approximately by

the sum of the bulk and surface electrophoretic, EO, and streaming currents:

I = −πR2

[
1 +

2Dutip(1 + κ)

R

]
dφ

dx
+ Istm =

[
1 +

2Dutip(1 + κ)

R

]
Ibulk

EP + Istm. (3.44)
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We solve this equation for Ibulk
EP and insert the result into Eq. 3.43 to find

I − Istm

1 +
2Dutip(1+κ)

R

= I +
1

ε
δq. (3.45)

We rearrange this equation, divide by πR2, insert Eq. 3.42 for the streaming current, and integrate

in x to obtain

I
(
G−1

0 −G−1
bulk

)
= γ|µEO|∆P +

1

ε

∫ +∞

−∞

dx

πR2
δq, (3.46)

where γ is an order-one constant defined as

γ ≡
(∫ +∞

−∞

dx

πR4

)−1 ∫ +∞

−∞

dx

πR4

[
1 +

2Dutip(1 + κ)

R

]−1

, (3.47)

and I have introduced the linear-response conductance

G−1
0 =

∫ +∞

−∞

dx

πR2

[
1 +

2Dutip(1 + κ)

R

]−1

, (3.48)

valid at high ∆P and in the vicinity of ∆V = 0 (Fig. 3.4c). Finally, we combine Eq. 3.46 with

Eq. 3.37 to obtain

I = G0∆V + Sstm∆P, (3.49)

where Sstm ≡ γG0|µEO|.
This result, though formally clear, is striking in several aspects. First, in this regime, the

current is shown to be linear in both voltage drop ∆V and pressure drop ∆P , in full agreement

with the experimental results. Furthermore, the conductance and streaming current take their

linear response values, i.e., those calculated at vanishing voltage and pressure drop. Indeed, with

the exception of small corrections induced by the inclusion of the surface electrophoretic and EO

contribution, the streaming conductance Sstm ≡ γG0|µEO| ≈ Gbulk|µEO| takes the value obtained

by assuming that the streaming current alone drives the local current response at high pressure

everywhere in the nanopore.

3.6 Conclusions and Perspectives

The key results of this Chapter may be summarized as follows:

• As in the case of ICR (Chapter 2), nonlinear ionic transport occurs when the maximum

Dukhin number in an asymmetric nanofluidic device is of order-one, irrespective of the

value of λD/R.
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• The ionic conductance in a conical nanopore may be sensitively tuned by applied pressures.

In the present experiments and theoretical results, we demonstrate increases/decreases in

conductance of up to 100% under slight variations in the applied pressure.

• The highly nonlinear response to coupled mechanical and electrical forcing is mediated by the

formation and deformation of an SCZ. This deformation results in an apparent square-root

dependence of the ionic current response on ∆P at low pressure.

The possibility to mechanically tune conduction mimics a mechanical transistor functionality,

with the pressure opening or closing conductance channels. In organisms, the mechano-sensitive

response of dedicated pores is of crucial importance in preventing fatal osmotic shocks by activating

channels under hydrostatic or diffusio-osmotic forces (Bonthuis & Golestanian, 2014; Perozo et al.,

2002; Vásquez et al., 2008). Here the response to pressure is of a different type, as the pressure is

found to tune rather than open or close the electric conduction channels.

I conclude by noting that such a mechano-sensitive behavior may also find applications in the

context of membrane science, where the possibility to activate or inhibit the electric conduction by

small pressure stimuli could be of interest for various applications. For example, in the context of

osmotic (blue) energy, the maximum achievable power is proportional to the electric resistance of

the membrane (Siria et al., 2017), and the present non-linear couplings may allow for mechanical

tunability of the extracted power.
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Chapter 4

MOLECULAR STREAMING AND ITS VOLTAGE CONTROL IN
ÅNGSTRÖM-SCALE CHANNELS

Abstract As in the preceding Chapter, I present here experimental results and corresponding

theory demonstrating nonlinear pressure-voltage coupling in ionic transport. However, the ori-

gin of the coupling detailed in this Chapter is distinct from that examined in Chapter 3. In

the preceding Chapter I discussed nonlinear, coupled transport in large (10 − 100 nm) pores in-

duced by surface charge effects; here, the channels examined are of molecular scales (7 Å) and

the surface charge is negligibly small when the coupling is maximized. The channels are manu-

factured from hexagonal boron nitride and graphene via the process of van der Waals assembly

detailed previously (Geim & Grigorieva, 2013; Radha et al., 2016; Esfandiar et al., 2017), and ionic

current is measured experimentally under applied pressure and voltage, revealing a transistor-

like electrohydrodynamic effect. An applied bias of a fraction of a volt increases the measured

pressure-driven ionic transport (characterized by streaming mobilities) by up to 20 times. This

gating effect is observed in both graphite and hexagonal boron nitride channels but exhibits

marked material-dependent differences. I use a modified continuum framework accounting for the

material-dependent frictional interaction of water molecules, ions, and the confining surfaces to

explain the differences observed between channels made of graphene and hexagonal boron nitride.

This work is presented in ‘Molecular streaming and its voltage control in ångström-scale channels’

(Mouterde et al., 2019, Nature, 567, 87–90).

4.1 Introduction

Over the past decade, the ability to reduce the dimensions of fluidic devices to the nanometer scale–

by using nanotubes (Fornasiero et al., 2008; Siria et al., 2013; Secchi et al., 2016b,a; Tunuguntla

et al., 2017) or nanopores (Garaj et al., 2010; Joshi et al., 2014; Jain et al., 2015; Feng et al., 2016;

Hong et al., 2017; Abraham et al., 2017), for example–has led to the discovery of unexpected water-

and ion-transport phenomena (Eijkel & van den Berg, 2005; Schoch et al., 2008; Howorka & Siwy,
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2009). More recently, van der Waals assembly of two-dimensional materials (Geim & Grigorieva,

2013) has allowed researchers to create artificial channels with ångström-scale precision (Radha

et al., 2016). Such channels push fluid confinement to the molecular scale, where the limits of the

continuum transport theory applied in preceding Chapters are challenged (Bocquet & Charlaix,

2010). Water films on this scale can rearrange into one or two layers with strongly suppressed

dielectric permittivity (Schlaich et al., 2016; Fumagalli et al., 2018) or form a room temperature

ice phase (Algara-Siller et al., 2015). Ionic motion in such confined channels is affected by direct

interactions between the channel walls and the hydration shells of the ions (Esfandiar et al., 2017),

and water transport becomes strongly dependent on the channel wall material (Tocci et al., 2014).

In this Chapter, I will first present experiments conducted in the group examining ionic trans-

port in such devices. The ionic current is measured as a function of applied pressure and voltage,

again finding nontrivial and highly nonlinear couplings between the mechanical and electrical forc-

ing, as in Chapter 3. However, the origin of this coupling must be much different in this case for

two reasons. In the first place, previous conductance measurements performed on ångström-scale

devices fabricated in the same manner as the devices examined here have demonstrated that the

surface charges in hexagonal boron nitride (hBN) and graphite channels are three-to-four orders-

of-magnitude smaller than those measured in boron nitride and carbon nanotubes (BNNTs and

CNTs, respectively) (Esfandiar et al., 2017). Though at the lowest concentrations considered

experimentally the extreme confinement does lead to a Dukhin number of order one in the more

highly charged graphite channels (though not in hBN), surface charge effects cannot be at the

origin of the nonlinear coupling found here because the coupling persists and is enhanced as the

concentration is increased (see Figs. 4.4d and e and 4.5b and c). This is true even though, as the

concentration is increased, the Dukhin number is decreased to values of order 10−4 − 10−3.

Secondly, we found in Chapters 2 and 3 that a necessary condition for nonlinear transport

in larger (10 − 100 nm) pores and channels is an asymmetry in the Dukhin numbers imposed

on either end of the pore–typically induced either by an asymmetry in channel geometry or in

reservoir conditions (total ionic concentration or pH). However, no such asymmetry is present

here (though an asymmetry in the geometry of the reservoirs does have an important impact on

our measurements, as will be discussed below). Thus, the origin of the nonlinear pressure-voltage

couplings must be quite different from the mechanisms at play in larger pores and channels.



76

After presenting these experimental results, I will detail my efforts to rationalize these ob-

servations theoretically on the basis of what I term an ‘extended Poisson-Nernst-Planck (PNP)

framework’. In particular, as only one or two adjacent layers of water molecules are present in

the channels, the Stokes description of the water transport is inapplicable here. Furthermore, the

ionic velocities must be modified by the interaction of the ions with the confining walls. In order

to account for these effects, I consider a force balance on the individual ions and on a control

volume containing both water molecules and ions, considering three phenomenological forces: the

frictional interactions between ions and the wall, between water molecules and the wall, and be-

tween the ions and water molecules. The description is still fundamentally hydrodynamic, as I

consider only mean quantities and neglect fluctuations. I selected this approach in order to derive

qualitative insight into the experimental results without resorting to more complex and costly

methods (e.g., ab initio molecular dynamics simulation) by using an approach that retains the

relative simplicity of the continuum description while still accounting for the more dramatic effects

of extreme confinement. Indeed, we will see below that the model developed here does reproduce

many of the qualitative features of the experiments.

4.2 Experiments

Our devices were fabricated following previously reported procedures (Radha et al., 2016; Esfan-

diar et al., 2017). In brief, a free-standing silicon nitride (SiN) membrane of around 500 nm in

thickness provided mechanical support and served to separate the two reservoirs connected by the

channels. On the membrane, a rectangular hole of approximately 3 µm × 26 µm was defined by

lithography and plasma etching. The channels were made by van der Waals assembly of three

layers–bottom, spacer, and top–of two-dimensional crystals of either graphite or hBN. First, a

bottom layer of around 10-to-50-nm-thick graphite or hBN was transferred onto the hole in the

SiN membrane and etched from the back side, which projected the hole into the bottom layer.

Following this, pre-patterned bilayer graphene spacers (about 6.8 Å thick) in the form of parallel

ribbons about 130 nm wide and separated also by about 130 nm were transferred onto the bottom

crystal and aligned perpendicular to the long axis of the rectangular hole. Finally, a thick (about

100− 150 nm) top crystal of graphite or hBN was transferred onto the spacers covering the hole

(Fig. 4.1). The lateral extent of the top crystal defined the length of the channels. The end result



77

Figure 4.1: Ångström-scale channel devices. a) Optical image of a device with ångström channels.
The light pink square is the silicon nitride membrane, which has a rectangular hole shown by
the red dotted line. Covering the hole, the bottom graphite layer, spacer, and top graphite layer
are placed. Bottom and top graphite are visible in the image in light and bright yellow colors,
respectively. b) Atomic force microscopy (AFM) image of the bilayer graphene spacer lines on
the device. The histogram of the heights (below the AFM image) shows that the spacer is about
0.7± 0.1 nm thick.

was devices with N = 200 channels of micrometric length L, height h0 = 6.8 Å, and nominal

width w = 130 nm.

The channels connected two macroscopic reservoirs filled with KCl solution of concentration

c and containing chlorinated Ag/AgCl electrodes for voltage imposition and electrical current

measurement. As previously reported (Esfandiar et al., 2017), the net current I at high salt

concentration is typically of the order of a few picoamps per channel for applied voltages of a few

tens of millivolts and varies linearly with voltage and concentration as expected for this ultra-

confined system with small surface charge. The experiments presented here are focused on the

ionic current driven by the pressure drop ∆P and the effect of the additional potential difference

∆V applied along the channel. For this, ∆V was imposed in the lower reservoir connected directly

to the hole in the Si/SiN substrate via a patch-clamp amplifier with a current resolution of 0.1 pA,

while the upper reservoir connected to the channels was held at ground (Fig. 4.2). We applied

the pressure in both directions across the channel and found no influence on the reported results
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Figure 4.2: Experimental setup for pressure- and voltage-driven current. Schematic: ångström
channels (fabricated on a Si/SiN wafer) separate two reservoirs containing KCl solutions. The
entry and exit of the channel are on either side of the wafer. We set the voltage ∆V and the
pressure ∆P along the channels and monitored the resulting current I. Right panel: illustration
of ions moving in water under strong confinement (only one layer of top and bottom graphite
walls is shown for clarity). Positive streaming currents indicate that potassium ions move faster
than chloride ions inside the channel.

(see Appendix C, Fig. C.2). Note that, consistent with the applied voltage, pressure applied

from the bottom side in Fig. 4.2 is denoted as positive. Control experiments used similar devices

but without channels and yielded no current upon application of ∆P or ∆V , confirming that

our devices were structurally stable and, for example, did not delaminate under pressure (see

Appendix C, Fig. C.1).

This setup (Fig. 4.2) allows us to measure the pressure driven component of the ionic current,

referred to as the streaming current Istr ≡ I(∆P,∆V ) − I(0,∆V ). Figure 4.3 illustrates the

behavior in the absence of applied bias (∆V = 0), with Fig. 4.3a showing the time response of

Istr when stepping ∆P up to 125 mbar in 25 mbar increments. Each step lasts 20 s, and the

delay between successive steps is likewise 20 s. After an initial overshoot, Istr rapidly reaches a

steady state and, once the pressure is released, quickly returns to zero. The measured current is

positive for positive applied pressures. This is consistent with a pressure-driven flow that gradually

increases with pressure gradient and conveys a net positive charge owing to the suppression of

the potassium mobility under strong confinement (Esfandiar et al., 2017, right panel of Fig. 4.2).

However, the theoretical results presented below suggest that the origins of the current response
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Figure 4.3: Pressure-driven current without applying bias. a) Istm as a function of time for
graphite channels, c = 1 mM; L = 5.7± 0.1 µm. Current overshoots once the pressure is applied,
and we consider only the steady-state regime in this study. b) Streaming current per channel,
Istm/N , as a function of the pressure gradient ∆P/L for channels in panel a, and with different
KCl concentrations c. For each c, the line corresponds to the best linear fit. c) Electro-osmotic
mobility µ as a function of the KCl concentration (linear-logarithmic coordinates; dashed line
is a guide to the eye). Error bars represent a) error in the currents measured during temporal
evolution (±0.1 pA), b) standard error, and c) uncertainty in the fit value. Three devices were
measured and showed the same behavior.

may be more complicated than this simplified picture.

For concentrations between 1 and 300 mM (the range examined experimentally), the steady-

state current reached after each pressure increment (Fig. 4.3a) increases linearly with the pres-

sure gradient (Fig. 4.3b). From the measured slopes, we calculate the streaming mobility

µ ≡ Istr/(NA∆P/L), where A = wh0 is the channel cross-sectional area. The streaming mo-

bility weakly depends on salt concentration, varying by less than 50% if the concentration is

increased by a factor of 300 (Fig. 4.3c). However, the absolute value of µ is surprisingly high; it

is of the order of 10−7 m2 V−1 s−1, which is in the range of the bulk potassium electrophoretic

mobility µK+ = 7.6 × 10−8 m2 V−1 s−1 and an order of magnitude larger than streaming mobil-

ities reported in the literature. (For example, the streaming mobility for SiO2 channels is about

0.1µK+ .)

In order to facilitate a direct comparison between the mobilities observed here and those

typically encountered in the literature, we consider the measured streaming mobility in terms of

the corresponding zeta potential, which has the dimension of an electrostatic potential. The zeta

potential takes the place of the wall potential in the expression for the electro-osmotic mobility
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(Appendix B, Eq. B.23) when the slip length is nonzero. We emphasize, however, that the

Smoluchowski formulae (Appendix B, Eqs. B.23 and B.24) for the electro-osmotic velocity, and,

indeed, the physical concept of electro-osmosis itself, is fully irrelevant in a channel with height

much smaller than the Debye length, let alone in the channels examined here, which are too small

to allow the formation of a diffuse screening layer at all. The calculation of the zeta potential serves

only to highlight the dramatic disagreement between the mobilities measured here and those that

would be predicted via continuum theory that is valid in conduits of much greater dimension.

Using bulk water properties (viscosity η = 1 mPa s and relative permittivity εr ≈ 80.1) gives

us an apparent zeta potential, ζ = −µη/εrε0, of roughly −0.4 V, at least ten times the typical

values in the literature (Siria et al., 2013; Sze et al., 2003; Geismann et al., 2007) which are of the

order of kBT/e ≈ 25 mV. Recent studies of confined water indicate that its out-of-plane relative

permittivity can be markedly suppressed (Fumagalli et al., 2018) to εconf ≈ 2 whereas η remains

close to the bulk value (Radha et al., 2016), which would translate into an even larger apparent

ζ of −16 V. However, as noted above, such a large apparent zeta potential does not reflect an

anomalously high surface potential on graphite but instead the high streaming mobility arising

from the unusually fast transport of water, and hence hydrated ions, at molecular distances from

the channel surfaces.

Figure 4.4 shows pressure-driven streaming currents measured under different applied voltage

biases, allowing us to explore how the pressure-induced current couples to electric forces at these

molecular scales. Figure 4.4a shows the time response of Istr when applying pressure and voltage

simultaneously, revealing a considerable coupling between them. In particular, we see that Istr

is increased by more than 100% for ∆V = 50 mV compared to its value when ∆V = 0. As

illustrated in Fig. 4.4b, the effects of ∆P and ∆V do not simply add; although the current

always remains proportional to the pressure gradient, irrespective of the applied bias, the slope

of this linear dependence–the streaming mobility µ(∆V )–varies with ∆V according to Istr =

µ(∆V ) × A × N × ∆P/L. The dependence of the streaming current on voltage indicates an

unexpected interplay between mechanical and electric driving forces. To disentangle these effects

further, we plot in Fig. 4.4d mobilities measured in graphite channels and normalized by µK+ as

a function of applied voltage and concentration.

We also compare the streaming effects in graphite channels with those of similar channels
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Figure 4.4: Streaming current for different biases and channel materials. a) Pressure-driven Istm

for a graphite device at different ∆V . L = 5.7±0.1 µm; KCl concentration, 100 mM. The pressure
applied for 20 s intervals is gradually increased to 125 mbar in 25 mbar steps. b) Streaming current
per channel for the same device as a function of ∆P/L (bias ∆V ranges from −75 to +75 mV;
color coded). c) Streaming current for similar devices but with hBN walls; same experiments
and color coding as in a and b. d) Streaming mobility (normalized by the K+ electrophoretic
mobility) as a function of ∆V for different KCl concentration for the graphite devices. Curves
are the quadratic fits. e) Same as in panel d but with hBN channels. Linear fits; L = 16 ± 0.1
µm. f) Extended PNP prediction for the streaming mobility using different friction coefficients
between the water, ions and well, with a factor of 100 between low and high friction. Low friction
reproduces the quadratic gating observed for graphite in panel d, while high friction leads to the
linear gating observed for hBN in panel e. In panels a through c, error bars represent measurement
uncertainty, and in d and e, uncertainty in the fit value.
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made from hBN. In terms of crystal structure and atomic flatness, hBN is an analogue of graphite

(Keerthi et al., 2018). However, unlike graphite, hBN is electrically insulating. Our hBN devices

were fabricated using the same procedures as before and had the same parameters including h0,

and their behavior was similar to that of graphite devices in that Istr varied linearly in ∆P (see

Figs. 4.4c, C.2, and C.3) with a slope (streaming mobility µ) that varies as a function of the

applied bias. However, the dependence of the steaming mobility on the applied voltage µ(∆V )

differs greatly between the two materials: µ shows a quadratic response to electric bias for graphite

(Fig. 4.4d), whereas it is essentially linear over the entire measurement range for hBN (Fig. 4.4e).

The data can be described for graphite by

µ(∆V ) = µ0

[
1 + α

(
∆V − Vmin

Vref

)2
]
, (4.1)

and for hBN by

µ(∆V ) = µ0

(
1 + β

∆V

Vref

)
, (4.2)

where Vref = kBT/e ≈ 25 mV is the thermal voltage, µ0 is a mobility, and α and β are dimensionless

parameters accounting for the voltage response. Typically, Vmin is found to be of the order of

Vref , and to decrease with concentration. The voltage susceptibility α increases linearly with

concentration (Figs. 4.5a and b), reaching a value close to unity for a high concentration of 300

mM. The characteristic mobility µ0 is typically of the order of µK+ for both systems. However,

similar to α in graphite, the bias susceptibility β for hBN increases linearly with c (Fig. 4.5c).

Owing to the linear voltage coupling, the sign of the streaming current for hBN can be inverted for

negative biases (Fig. C.3). For both materials, the sensitivity of Istr to voltage bias is very large,

in contrast to other known control or gating mechanisms (Schasfoort et al., 1999; Kim et al., 2009;

Jiang & Stein, 2011; Karnik et al., 2005; Pang et al., 2011). For graphite channels, a relatively

small voltage (∆V ≈ 75 mV) yields streaming mobilities that are up to about 20 times as large

as the bulk potassium mobility, taken as a reference. This corresponds to zeta potentials of up

to 2 V assuming bulk water properties, and about 100 V if the relative permittivity appropriate

to water in confinement εconf is used. Although the effect is still large for hBN, it is substantially

smaller than that in graphite channels. This observation echoes the smaller slip length for water

on hBN as compared to graphite (Secchi et al., 2016a; Tocci et al., 2014; Xie et al., 2018).
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Figure 4.5: Concentration dependence of the fit parameters of the gate-controlled mobility. We
report the fitting parameters of the voltage-gated streaming current. a, b) The quadratic depen-
dence of the gated streaming current observed in graphite channels (Fig. 4.4d) and described by
Eq. 4.1: a) Vmin plotted as a function of the concentration; b) α as a function of the concentra-
tion. c) We report the fitting parameter β as a function of the concentration for hBN channels; β
describes the linear dependence of the streaming current observed for hBN channels (Fig. 4.4e)
as given by Eq. 4.2. The dashed lines in panels b and c are linear fits.

4.3 Theory

Taken together, our findings indicate that the applied bias voltage acts as a gate for pressure-driven

streaming currents. Although it is tempting to rationalize this behavior in terms of capacitive

gating, as is assumed, for example, in the description of flowFET-type devices, the fluidic ana-

logues of field-effect-transistors (Schasfoort et al., 1999), such an explanation fails to capture key

experimental observations such as the stark difference in the voltage dependencies of the gated

streaming mobilities in graphite and hBN. Any explanation based on the capacitive gating mech-

anism also neglects the electrohydrodynamic coupling between ion and water transport under

ångström-scale confinement, which is usually described in terms of the Poisson-Nernst-Planck-

Stokes (PNPS) framework commonly used to describe ionic transport in biological or artificial

channels (see Chapter 3). However, similar to the capacitive gating model, the unmodified PNPS

framework is also unable to account for all our observations, in particular the qualitatively different

bias dependence of µ seen for graphite and hBN as summarized in Eqs. 4.1 and 4.2. We attribute

this to the strong confinement encountered in our devices, which renders the Stokes equation irrel-

evant when describing flow within the water/ion layer, owing to the strong and direct interactions

of the moving ions and water molecules with the confining walls. I therefore develop in this section
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a modified continuum description that does not incorporate the Stokes equation, instead relying

on a first-principles, phenomenological force balance to describe the frictional interaction of the

ions and water molecules with the confining walls.

4.3.1 Governing equations

At scales greater than about 1 nm, the influence of water motion on the ionic fluxes is accounted

for by (1) appending the Stokes equation for the solvent velocity to the typical PNP description

of the ionic transport and (2) including an ionic drift velocity set by the balance of forces between

the electric force on the individual ion and the frictional force between the ion and water in the

Nernst-Planck parameterization of the solute fluxes. Both assumptions are inapplicable here owing

to the extreme confinement scale of the channels considered, which approaches the diameter of the

water molecules and hydrated ions themselves. In particular, application of the Stokes equation

to predict the hydrodynamic velocity relies on the assumption of a spatially homogeneous and

isotropic scalar viscosity, an assumption that cannot be valid when a single layer of water molecules

is present. A priori, we would expect strong interaction between the ions and walls, and the water

molecules and walls. The former supposition is supported by the results of Esfandiar et al. (2017),

where the chloride mobility in both graphite and hBN devices of the type examined here was

observed to be reduced by approximately 65% compared with bulk. The latter is supported

by the present results when combined with the simple, first-principles, phenomenological model

detailed below.

In order to develop an alternative description of the water transport and ionic drift more

appropriate to the extreme confinement considered here, I consider the force balances on the

individual ions and on a control volume of infinitesimal length along the channel containing both

ions and water molecules. I include three phenomenological forces: the frictional interactions of

(1) water with walls, (2) ions with walls, and (3) ions with water. I emphasize that this is the

simplest possible coherent approach to capture the modification in the qualitative behavior of

the ion dynamics owing to the extreme confinement. Quantifying the friction to achieve a more

quantitatively accurate treatment would probably necessitate more in-depth modeling (such as ab

initio molecular dynamics).
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Including the ion-wall interaction, a force balance on an individual ion gives:

0 = ±e
(
−dφ
dx

)
− ξ± (v± − vw)− λ±v±, (4.3)

where v± is the velocity of the positive or negative ion species, vw is the water velocity, and φ

is the electrostatic potential. From left to right, the terms represent (1) the electric body force

on the positive or negative ion, (2) the frictional force of the water on the ion, parameterized by

friction coefficients ξ± for the cation and anion species, and (3) the frictional force of the wall on

the ions, parameterized by friction coefficients λ±. Note that I have assumed that all of the ions

interact appreciably with the walls, a reasonable assumption here given the extreme confinement.

We solve Eq. 4.3 for the ion velocities v± to obtain:

v± = ±µ±
(
−dφ
dx

)
+ α±vw. (4.4)

I have introduced the ionic mobilities µ± ≡ e/ (ξ± + λ±) and the normalized water-ion friction co-

efficients α± ≡ ξ±/ (ξ± + λ±). The former parameters are constrained by the experimental results

of Esfandiar et al. (2017); the latter parameters characterize how effectively the drag of the water

flow is able to overcome frictional resistance on the ions from the wall and engender ionic trans-

port. We note that the definition of α± may be rearranged to give λ±/ξ± = (1− α±) /α±. This

indicates that values of α± � 1 corresponds to stronger ion-wall than ion-water friction, whereas

values of α± approaching unity indicate relatively weaker ion-wall than ion-water interaction.

From the above definitions, we see that the sums of the ion-water and ion-wall friction co-

efficients are constrained by the experimentally measured mobilities reported in Esfandiar et al.

(2017), ξ±+λ± = e−1µ±, while the relative importance of the ion-wall and ion-water interactions,

characterized by the ratios λ±/ξ± = (1− α±) /α±, is not.

I next consider the force balance on a control volume of width and height equal to the channel

width w and height h0, respectively, and of infinitesimal length δx in the along-channel direction.

The total volume of the control volume is then δV ≡ wh0δx. The total electric body force is given

by e (ρ+ − ρ−)× (−dφ/dx)× δV , and the net pressure force is given by wh0× (−dP/dx)× δx. In

the preceding, ρ± are the ionic densities (per unit volume) at the position x coincident with the

center of the control volume, and P is the pressure. Note that this notation is in contrast with

that used in the preceding Chapters, where c± denoted the ionic concentrations, and is chosen to
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agree with the notation adopted in the published version of this work (Mouterde et al., 2019). The

total frictional force due to ion-wall interactions is − (ρ+λ+v+ + ρ−λ−v−) δV . Finally, I introduce

a coefficient λ0 characterizing the frictional interaction of water molecules with the walls such

that −λ0vw is the force per unit wall area acting on the water molecules, and −λ0vw ×wδx is the

total frictional force on the control volume due to water-wall interaction. The force balance on

the control volume thus gives:

0 = e(ρ+ − ρ−)

(
−dφ
dx

)
δV +

(
−dP
dx

)
δV − (ρ+λ+v+ + ρ−λ−v−) δV − λ0

h0

vwδV. (4.5)

Before solving the above for the water velocity vw, we use Eq. 4.4 and the definitions of µ±

and α± to rewrite the total ion-wall friction force per unit volume δV , ρ+λ+v+ + ρ−λ−v−, as

ρ+λ+v+ + ρ−λ−v− =

e (ρ+ − ρ−)

(
−dφ
dx

)
− e (α+ρ+ − α−ρ−)

(
−dφ
dx

)
+ (κ+ρ+ + κ−ρ−) vw,

(4.6)

where I have defined κ± ≡ eα± (1− α±) /µ± and made use of the identities λ±µ± ≡ e (1− α±)

and λ±α± ≡ κ±. We insert this result into equation 4.5 and solve for vw to obtain:

vw = Kapp (ρ+, ρ−)

[(
−dP
dx

)
+ e (α+ρ+ − α−ρ−)

(
−dφ
dx

)]
, (4.7)

where Kapp (ρ+, ρ−) is a concentration-dependent apparent hydraulic conductance, given by

Kapp (ρ+, ρ−) ≡ 1
λ0
h

+ κ+ρ+ + κ−ρ−
. (4.8)

To better interpret the significance of the parameter α± and the non-intuitive form in which

the electric field appears in Eq. 4.7, I use the above results to calculate the difference of the

electric force f±e and the ion-wall friction force f±ion−wall on a given ionic species:

f±e − f±ion−wall = ±eα±ρ±
(
−dφ
dx

)
− κ±ρ±vw. (4.9)

Let us examine two extreme limits: When α± = 0, ξ±/λ± = 0, indicating that only ion-wall (rather

than ion-water) friction is relevant. Further, from the above definition, κ± ∝ α± (1− α±) = 0,

and the net (electric less ion-wall friction) force vanishes. Thus, in this case, all of the electric

force on the given ionic species in the control volume is balanced by the strong ion-wall interaction

such that the given ionic species does not communicate any electric force to the water molecules.

(See Eq. 4.7 with α+ and/or α− set to zero.)
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On the other hand, when α± = 1, λ±/ξ± = 0, indicating that only ion-water friction is

relevant, and all of the electric force on the ions is communicated to the water molecules such that

f±e − f±ion−wall = ±eρ± (−dφ/dx). (Again, κ± ∝ α± (1− α±) = 0.)

I emphasize that the behavior described in Eqs. 4.7 and 4.8 is in strong contrast to what is

observed for conduits with confinement scales (radius or height) greater than about 1 nm, in which

the Hagen-Poiseuille equation holds (Bocquet & Charlaix, 2010). In this case, we would have a

concentration-independent conductance KHP = h0/λ0 and a net electric driving force equal to the

total electric driving force e (ρ+ − ρ−) (−dφ/dx). KHP is recovered in the high water friction limit,

λ0/h� κ+ρ+ + κ−ρ−, and both KHP and the total electric driving force are recovered outside of

confinement where α± = 1 (equivalent to no ion-wall friction: λ± = 0).

It is necessary to use Eqs. 4.7 and 4.8 instead of Hagen-Poiseuille to capture the full range of

qualitative behavior observed in the experimental µ(∆V ) curves. This emphasizes the importance

of the two-dimensionality of the flow, resulting in a strong frictional interaction between the

channel walls, water, and ions.

We insert Eq. 4.7 into the general Nernst-Planck parameterization for the ionic fluxes, j± =

D± (−dρ±/dx) + v±ρ±, to obtain

j± = µ±

[
kBT

e

(
−dρ±
dx

)
± ρ±

(
−dφ
dx

)]
+ α±vwρ±, (4.10)

where D± are the cation/anion diffusion coefficients, and we have made use of the Einstein relation,

D± = kBTµ±/e.

At steady state, the conservation equations become

d (hvw)

dx
=
d (hj±)

dx
= 0. (4.11)

Finally, the electrostatic potential φ is related to the total charge density e (ρ+ − ρ−) via the

Poisson equation:
d

dx

[
εrε0h

(
−dφ
dx

)]
= he (ρ+ − ρ−) . (4.12)

4.3.2 Model Geometry and Boundary Conditions

As I am mainly interested in capturing the qualitative features of the ionic current response, I

adopt a simplified one-dimensional geometry. The model geometry adopted here is sketched in
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Fig. 4.6. A channel of uniform height h0 = 7 Å and length L = 5 µm connects two reservoirs of

divergent geometry. It is necessary to include the reservoirs in some capacity in our calculations

to capture the entrance/exit effects associated with the discontinuous change in ionic mobility as

the ions enter/exit the channel. The rate of divergence of the reservoir heights is asymmetric,

qualitatively mimicking the asymmetry of the experimental reservoirs (Fig. 4.2). The height

profile h(x) is given by:

h(x)

h0

=





Γ`

(
x

L
+

1

2

)2

+ 1, x < −L
2

1, x ∈
[
−L

2
,+

L

2

]

Γr

(
x

L
− 1

2

)2

+ 1, x > +
L

2
.

(4.13)

The parameters Γ` and Γr are the rates of divergence of the reservoir geometries; the larger Γ

is, the more abrupt the transition to the open reservoir. I take Γ` = 5 and Γr = 20. Although

the magnitudes of Γ` and Γr influence the quantitative predictions of the model, the qualitative

behavior of the mobilities is similar so long as Γ` < Γr. I present a more extensive discussion of

the sensitivity of the model predictions to the relative and absolute magnitudes of Γ` and Γr in

Appendix C.

The reservoir conditions are imposed at x = ±∞. In the left reservoir, we apply a voltage and

pressure:

φ(x = −∞) = ∆V, and (4.14)

P (x = −∞) = ∆P. (4.15)

In the right reservoir, the voltage and pressures are held fixed at reference values arbitrarily set

to zero:

φ(x = +∞) = P (x = +∞) = 0. (4.16)

The total ionic density in both reservoirs is held fixed at the imposed reservoir concentration ρres,

and both reservoirs are assumed to be electroneutral such that

ρ±(x = ±∞) =
ρres

2
. (4.17)
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Figure 4.6: Sketch of the model geometry. A channel of uniform height h0 = 7 Å and length L = 5
µm connects two asymmetric, divergent reservoirs of variable height h(x). The asymmetry in the
rate of divergence of the reservoir heights qualitatively mimics the asymmetry of the experimental
geometry. A voltage φ = ∆V and pressure P = ∆P are applied in the left reservoir (at x = −∞);
the voltage and pressure are held fixed at φ = 0, P = 0 in the right reservoir (x = +∞). The
total ionic concentration in both reservoirs is held fixed at ρ = ρres.

4.3.3 Variation of Ion Mobilities µ± and Normalized Water-Ion Friction Coefficients α±

I impose the following profiles for the ionic mobilities:

µ± =
(
µbulk
± − µconf

±
)

1−

tanh
(
x+L

2

λadj

)
− tanh

(
x−L

2

λadj

)

2


+ µconf

± , (4.18)

where µbulk
± and µconf

± are, respectively, the ionic mobilities in bulk (the reservoirs) and in confine-

ment (the channels), and λadj is an adjustment length, which I take to be 0.3 nm, smaller than any

other length scale in the system. To qualitatively account for the reduction in chloride mobility,

I take µconf
± = 0.5µbulk

± . Similarly, I impose for the normalized water-ion friction coefficients

α± =
(
1− αconf

±
)

1−

tanh
(
x+L

2

λadj

)
− tanh

(
x−L

2

λadj

)

2


+ αconf

± . (4.19)

4.3.4 Results

Calculations were performed using the finite element method. Figs. 4.7a-c show the results of the

above model for low water-wall (λ0/h0 = 1011 kg m−3 s−1) and water-ion (α+ = 1⇐⇒ λ+/ξ+ = 0;

α− = 0.7 ⇐⇒ λ−/ξ− ≈ 0.43) friction, and Figs. 4.7d-f, the results for high water-wall (λ0/h0 =
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1013 kg m−3 s−1) and water-ion (α+ = α− = 0.01 ⇐⇒ λ+/ξ+ = λ−/ξ− = 99) friction. We

first note that in both cases we reproduce the linear dependence of the streaming current on the

pressure gradient for both zero and non-zero applied voltages (Figs. 4.7b and e), in agreement

with the experiments (Figs. 4.4b and c).

We observe in the low-friction configuration (Figs. 4.7a-c) a streaming mobility that depends

quadratically on the applied voltage with a minimum mobility occurring for ∆V = Vmin < 0

(Fig. 4.7c). This qualitative behavior is in agreement with the experimental results obtained

for graphite (Fig. 4.4d). Likewise, the high-friction results (Figs. 4.7d-f) reproduce the linear

dependence of the streaming mobility on ∆V (Fig. 4.7f) that is observed experimentally in hBN

(Fig. 4.4e). The frictional characteristics of these results are consistent with the typically much

lower friction (larger slip lengths) observed on graphite than in hBN (Secchi et al., 2016a; Tocci

et al., 2014; Xie et al., 2018). We note that, in addition to taking low to moderate values of

λ±/ξ± ≈ 0−1, it is necessary to take α+ > α− to recover the qualitative behavior of graphite. On

the other hand, it is necessary to take α+ ≈ α− . 0.1 to recover the qualitative behavior of hBN.

This suggests that frictional interaction of the wall with the ions is weaker generally in graphite,

and that it is stronger for chloride than potassium, while in hBN the frictional interaction of the

ions with the wall is fairly strong for both species.

The numerical results presented here for the low-friction (graphite-like) configuration indicate

that µ(∆V = 0) is independent of concentration, roughly consistent with the minimal variation

observed in the experiments (Fig. 4.3c). However, the linear dependence of the mobility on

concentration for non-zero applied voltages (Figs. 4.4d and e) is not observed in the model

(Fig. 4.7c). Conversely, at higher friction (Figs. 4.7d–f), µ(∆V = 0) varies strongly with the

concentration, as well as the gated mobility (Fig. 4.7f). This suggests the possibility that the

concentration, applied voltage, and friction are coupled in ways not accounted for in our simple

model.

The model results depend crucially on the difference in water flow characteristics between

the two materials through the concentration-dependent conductance given in Eq. 4.8. However,

the nature of this dependence is intricate. The model results indicate that, in addition to the

advective current engendered by the applied pressure, the streaming current characteristics depend

crucially on the modification of the electrophoretic current IEP ∝ ρE via the modification of the
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Figure 4.7: Prediction of the streaming current from extended Poisson-Nernst-Planck modeling.
a) Mobility without applied voltage as a function of KCl concentration in linear-logarithmic co-
ordinates for low water-wall friction and α+ > α−. b) Streaming current per channel Istr for 300
mM as a function of the pressure gradient ∆P/L for ∆V varying from −75 (blue data) to +75
mV (red data). For each voltage, the dashed line corresponds to the linear fit of the data made
to extract the mobility. c) Streaming mobility µ normalized by the K+ electrophoretic mobility
µK+ and plotted as a function of the applied voltage for KCl concentration varying from 100 mM
(blue data) to 1 M (red data). d-f) Same is in panels a-c but with high water-wall friction and
α+ = α−. Parameters: a-c) λ0/h0 = 1011 kg m−3 s−1, α+ = 1, α− = 0.7; d-f) λ0/h0 = 1013 kg m−3

s−−1, α+ = 0.01, α− = 0.01. Dashed lines in panels a and d are guides to the eye corresponding
to a constant value of µ and a linear variation with concentration, respectively.
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concentration and electrostatic fields (figure not shown) by coupled voltage and pressure effects.

An example of the influence of voltage on the evolution of the concentration fields in the presence

of a fixed applied pressure gradient ∆P/L = 30 mbar µm−1 and a reservoir molarity [KCl] = 300

mM is shown in Figs. 4.8c and d. We see that both the applied pressure and voltage modify

the concentration profile across the channel (and induce charge separation, not shown). The

modification of the concentration profile due to pressure is much stronger in hBN (Figs. 4.8a and

c), and it is also much more sensitive to applied pressure and voltage in hBN than in graphite. This

latter characteristic is consistent with the smaller streaming mobilities observed in the graphite-

like configuration observed in our numerical results (Figs. 4.7c and f). Additionally, we see that

the evolution of the concentrations under coupled pressure-voltage forcing is different in the two

materials. It is this difference, and the corresponding difference in the response of the advective

and electrophoretic currents, that determines the difference between the two material behaviors.

There are several aspects of the observations in graphite that I am not able to reproduce: (1)

the non-monotonicity of the dependence of µ(∆V = 0) on concentration, (2) the linear dependence

of the mobility on concentration when a voltage is applied, and (3) the magnitude of the mobilities

measured at high concentration under an applied voltage. Indeed, the model consistently predicts

mobilities in the quadratic (graphite-like) regime that are smaller than those observed in the

linear (hBN-like) regime (Figs. 4.7c and f). This is not an issue of the voltage range examined,

as the mobilities are found to saturate or even reduce at much higher voltages. Likewise, there

is much that I have not included in this model: in particular, steric effects and ionic correlations

generally, as well as the ‘granular’ nature of water, which might be important at this length

scale. Nonetheless, the model does reproduce much of the key qualitative behavior, and its

success depends on the strong differences in the frictional characteristics of hBN and graphite,

and further on the incorporation of the retarding influence of the ions on the water transport,

an effect that is exclusively two-dimensional. Thus, these results illustrate the two-dimensional

character of the flow and the limit of the continuum description of matter.

Ultimately, we conclude that the different material responses observed in Fig. 4.4 for channels

made from hBN and graphite can be traced back to the difference of molecular friction of water

and ions on these two materials. This is in agreement with expectations for the friction of water

on these two materials (Secchi et al., 2016a; Tocci et al., 2014; Xie et al., 2018). A remarkable
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Figure 4.8: Total ionic concentration profiles from extended Poisson-Nernst-Planck modeling. a-d)
Total ionic concentration profiles as a function of the normalized position x/L along the channel
without (panels a and b) and with (panels c and d) applied pressure for c = 300 mM. The dashed
vertical lines segregate the channel interior, x/L ∈ (−0.5, +0.5), from the left (x/L < −0.5) and
right (x/L > +0.5) reservoirs. The curves are colored according to the applied voltage from −50
(blue) to +50 mV (orange). a) The high-friction (hBN-like) configuration with ∆P/L = 0. b) The
low-friction (graphite-like) behavior with ∆P/L = 0. c) The high-friction (hBN-like) configuration
with ∆P/L = 30 mbar µm−1. d) The low-friction (graphite-like) behavior with ∆P/L = 30 mbar
µm−1.
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feature of this framework is that the observed nonlinear bias response thus has its roots in the fun-

damental nature of interactions between confining walls, water molecules and ions. For instance,

the minimum mobility seen in Fig. 4.4d arises from the slight asymmetry in device geometry

which is at the origin of different frictions (induced by the confinement) and modifies locally the

transport rates of ions on each side. Although the simple model reproduced our experimental

results qualitatively (Fig. 4.7), it cannot account for the large amplitude of the bias voltage effect

seen with graphite channels. Better agreement will require more comprehensive evaluation of the

effects of strong confinement (including the suppressed dielectric constant), which are expected

to modify not only water and ion dynamics but also the adsorption of the ions (Takasaki et al.,

2017). Furthermore, the metallicity of graphite can substantially modify ionic interactions and

thereby ion concentrations. I anticipate that extending ab initio molecular simulations of water

friction (Tocci et al., 2014), to include the effect of ions, will provide further insight beyond the

simple picture proposed here.

4.4 Conclusions and Perspectives

Our experimental system allows us to probe purely two-dimensional flow of water and ions, a

configuration very different from the one-dimensional transport through nanotubes. Thanks to

the lateral extension of the ångström channels, streaming currents under molecular confinement

become measurable. Hence, such devices are an interesting platform in which to mimic the

behavior of biological channels in terms of stimuli responsive behavior such as voltage gating,

where ions are driven through ångström-scale confinement by coupled osmotic pressure and electric

forcing. This is of relevance for gaining new insights into the electromechanical coupling at the

root of the mechanosensitivity observed in recently discovered biological ionic channels (Coste

et al., 2012) (TRAAK, TREK, PIEZO). Furthermore, the observed friction-based electric gating

opens a new route to achieve flow-control under extreme confinement where small voltages induce

strong responses, which would constitute an important step towards building nanofluidic circuits

responding to external stimuli.
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Chapter 5

DUKHIN LENGTH AND SURFACE CHARGE DETECTION IN
SCANNING ION CONDUCTANCE MICROSCOPY

Abstract In this Chapter, I use a combination of analytical techniques and finite element model-

ing to examine the modification induced by isolated surface charge features to the signal obtained

via scanning ion conductance microscopy (SICM). Our hypothesis, that isolated surface charge

patches may be detected at sufficiently large Dukhin length using SICM, is based on the mech-

anism of surface-controlled modification of an applied electric field first proposed by Khair &

Squires (2008). Indeed, the theoretical results presented here show a substantial signal that is de-

tectable using current SICM techniques and that scales with the Dukhin number as hypothesized.

The results also indicate that the lower limit on the spatial resolution of this technique is set by

the inner radius of the scanning ion conductance microscope. Altogether, the results suggest that

this technique may be applied to SICM measurements using nanotubes inserted into nanopipettes

(Secchi et al., 2016a,b), potentially improving the spatial resolution of current SICM-based surface

charge measurements by one-to-two orders-of-magnitude. This work was conducted with Sara Dal

Cengio of the University of Barcelona.

5.1 Introduction

In this Chapter I focus on the applications of the mechanism proposed by Khair & Squires (2008)

for the surface-controlled modification of an applied electric field to the detection of surface

charge via scanning ion conductance microscopy (SICM). The relevant details of the Khair &

Squires (2008) mechanism are given in Appendix D, and the configuration these authors consider

is sketched in Fig. 5.1. Briefly, they consider an electrolyte solution above and in contact with a

planar solid-liquid interface occupying the x− z plane. The electrolyte is subjected to an applied

electric field E∞ = E∞x̂ running parallel to the interface and perpendicular to a surface charge

discontinuity along the line x = 0. This discontinuity separates a region of zero surface charge

(x < 0) from a region of nonzero surface charge (x > 0) (Fig. 5.1). The authors consider the
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case that the spatial extent of the perturbation to the applied field induced by the surface charge

discontinuity, the so-called ‘healing length’ `H , is large compared to the Debye length λD. This

allows them to model the enhanced conductivity in the diffuse layer as a discontinuous surface

conductivity κs(x) = κ0
sΘ(x), where κ0

s is the uniform nonzero value for x > 0, and Θ(x) is the

Heaviside theta function. Furthermore, as they do not resolve the details of the diffuse layer, they

take the bulk conductivity κb to be a constant. Continuity of charge applied along the solid-liquid

interface, balancing the in-plane divergence of current with that entering or leaving the surface,

gives the following boundary condition:

∂yφ|y=0 + `Du∂x [Kλ`Du
(x)∂xφ|y=0] = 0, (5.1)

where φ is the electrostatic potential, and `Du ≡ κ0
s/κb is the Dukhin length, defined dynamically

in terms of the surface and bulk conductivities. It is shown in Appendix A that this definition

is equivalent to the equilibrium definition in terms of the surface charge density, `Du ≡ |σ|/ec,
provided Poisson-Boltzmann equilibrium theory is sufficient to describe the structure of the diffuse

layer. The function Kλ`Du
(x) ≡ κs(x)/κ0

s is the normalized surface charge distribution. I generalize

the theoretical distribution given above, κs(x)/κ0
s = Θ(x), to allow for a finite transition length

λ`Du; in this case, κ0
s ≡ κs(x→∞) is defined to be the maximum, asymptotic value of the surface

conductivity far from the ‘discontinuity’ at x = 0.

Eq. 5.1 may be obtained by integrating the steady state charge continuity equation ∇ · i = 0

in the direction normal to the solid-liquid interface over a distance h from the interface larger than

the diffuse layer thickness but much smaller than the healing length, λD < h� `H . Alternatively,

it may be obtained by summing the fluxes entering and exiting the infinitesimal control volume

sketched in Fig. 5.1 and setting the result to zero.

The problem statement is completed by imposing continuity of charge in the bulk, ∇ · i =

κb∇ ·E = 0 =⇒ ∇ ·E = 0, and continuity with the applied electric field E∞ = E∞x̂ far from the

discontinuity at x = 0. After rescaling the spatial coordinate by the Dukhin length, r → `Dur,

the electric field by the magnitude of the applied field, E → E∞E, and hence the electrostatic

potential as φ→ `DuE∞φ, Khair & Squires (2008) obtain the following set of equations:

∇2φ = 0, (5.2)

φ −−−→
r→∞

−x, and (5.3)



97

x

y

σ = 0
κs = 0

σ ≠ 0
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Figure 5.1: Schematic showing the configuration considered in Khair & Squires (2008). An elec-
trolyte is in contact with a solid substrate, forming a solid-liquid interface on the x − z plane.
There is a discontinuity in the surface charge density, and hence in the surface conductivity, along
the line x = 0, with zero surface charge for x < 0 and nonzero surface charge for x > 0, and
an external field E∞ = E∞x̂ is applied along the interface. The blue arrows indicate currents
entering and leaving a control volume of infinitesimal length δx and height h much smaller than
the healing (Dukhin) length `Du and larger than the characteristic extent of the diffuse layer, the
Debye length λD: λD < h� `Du.

∂yφ|y=0 + ∂x [Kλ(x)∂xφ|y=0] = 0, (5.4)

where, in Eq. 5.3, r ≡
√
x2 + y2, is the radial distance from the surface charge discontinuity.

Modeling the diffuse layer with a surface conductance and assuming a constant bulk conductivity

allows the authors to neglect the solute dynamics entirely. From Eqs. 5.2 through 5.4, we see

that the problem has been reduced to an effective sourceless electrostatics problem with an exotic

boundary condition (Eq. 5.4). Furthermore, comparison of Eq. 5.4 to the Gaussian boundary

condition E ·n̂ = σ/ε, allows us to interpret this exotic boundary condition in terms of an effective

surface charge density that is functionally dependent on the electrostatic potential, σeff [φ] =

∂x [Kλ(x)∂xφ|y=0].

Numerical solutions to these equations are presented in Appendix D, Fig. D.2. However, the

relevant result is apparent from Eqs. 5.2 through 5.4 directly, where we see that the two privileged
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length scales appearing in the problem are the transition length λ and unity (i.e., the Dukhin

length in dimensioned terms). In the limit λ→ 0–that is, in the limit that that transition length is

vanishingly small compared to the Dukhin length–unity is the only privileged length scale, and we

conclude that the healing length in this case is given by the Dukhin length. Thus, the requirement

that the healing length be much larger than the Debye length reduces to the condition `Du/λD � 1.

The result that the apparent size of surface charge discontinuities in bulk scales with the Dukhin

length motivates the central hypothesis of this work: surface charge discontinuities generally, and

surface charge ‘patches’ with extents much smaller than the Dukhin length in particular, may

be detected experimentally by measuring the deformation of an applied field/current within a

distance `Du of a substrate. This hypothesis is corroborated by the results of Lee et al. (2012),

who demonstrate that the apparent size of nanopores at low salt concentrations as inferred from

conductance measurements is given by the Dukhin length, rather than the physical pore size, due

to the discontinuity in surface charge at the ends of the pore.

One candidate for experimental detection of surface charge based on this hypothesis is scanning

ion conductance microscopy (SICM) (Hansma et al., 1989). The basic SICM setup is sketched in

Fig. 5.2: a substrate is submerged in an electrolyte solution, acquiring a surface charge σ, and

a pipette of nanometric interior tip radius Rtip, tip thickness τ , interior base radius Rbase, and

length LP is held at some distance H above the substrate. An electric field is generated between

an electrode inserted into the base of the pipette far from the substrate and held at a fixed voltage

∆V and a ground electrode inserted into the bulk solution far from the point of measurement.

This electric field drives a current through the pipette and across the substrate. As the separation

distance H decreases, the increased access resistance between the pipette tip and substrate results

in a decrease in the magnitude of the current (Nitz et al., 1998). In the absence of surface charge

effects, the geometric dependence of the current can be used to infer the separation distance H

and hence the surface topography. The semi-analytical results of Nitz et al. (1998) show that the

conductance G ≡ I/∆V is related to the tip and separation geometry via

G(H) = GP

[
1 +

`geo(Rtip, Rbase, τ, LP )

H

]−1

, (5.5)

where `geo is an effective geometric length scale depending on the details of the pipette geometry,

and GP is the pipette conductance in bulk, measured when the pipette is far from the substrate.
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In the model of Nitz et al. (1998), the geometric length scale is given by `geo = 3/2· ln (1 + τ/Rtip)·
Rbase ·Rtip/LP .

Figure 5.2: Schematic of the typical configuration of a scanning ion conductance microscope
(SICM). A substrate is submerged in electrolyte solution, acquiring a surface charge σ. A typically
nanometric pipette of interior tip radius Rtip, tip thickness τ , interior base radius Rbase, and length
LP is held at a height H above the substrate, and a voltage is applied via an electrode in the base
of the pipette far from the substrate. A second electrode is held at ground in the bulk solution
far from the measurement point, and the resulting ionic current through the pipette is measured.
The current is in general a function both of the surface charge and the details of the geometry
including the separation distance H, allowing information about the substrate topography and
surface charge to be extracted.

Typically, SICM measurements are conducted at high ionic concentrations so that both the

diffuse layer thickness λD ∝ c−1/2 and the Dukhin length `Du ∝ c−1 are small compared to

the separation distance and tip radius, and surface charge effects may therefore be neglected

(Klenerman et al., 2011; McKelvey et al., 2014). However, some recent work (e.g., McKelvey

et al., 2014; Dorwling-Carter et al., 2018; Maddar et al., 2019) has focused on detecting surface

charge via surface-induced rectification (SIR) (Sa et al., 2013). These measurements are performed



100

at lower ionic concentrations, such that the Debye and/or Dukhin length becomes comparable to

the separation distance H. In this case, the access conductance (and typically also the pipette

conductance) is modified by the presence of surface charge and the resulting surface currents,

generally leading to a rectified ionic current response. (See Chapter 2.) The modification of the

current response by the surface charge as the pipette tip approaches the substrate may then be

used to extract the sign and magnitude of the surface charge density via comparison to finite

element method (FEM) simulation (McKelvey et al., 2014). This technique is able to resolve

charged features of the order of 1 µm or larger in size (McKelvey et al., 2014; Dorwling-Carter

et al., 2018; Maddar et al., 2019).

In this Chapter, I explore theoretically and numerically a fundamentally different technique

for surface charge detection based on the Khair & Squires (2008) mechanism described above. As

noted previously, this mechanism and the results of Lee et al. (2012) suggest the possibility of re-

solving sharply defined surface charge features with extents much smaller than the Dukhin length,

potentially improving upon the accuracy of SICM charge mapping based on SIR. In what follows,

I combine FEM simulation with semi-analytical scaling in order to determine the dependence of

the current response on surface charge, separation distance, and size of the surface charge feature.

As three-dimensional modeling of this problem has proven to be computationally intensive owing

principally to the implicit, discontinuous, second-order boundary condition (Eq. 5.4), I will fo-

cus instead on results obtained with two-dimensional axisymmetric and translationally invariant

models.

5.2 Theory and Finite Element Modeling

In this section, I combine FEM-based numerical modeling with semi-analytical scalings derived

via a Green’s function approach similar to that applied in Appendix D to the problem of Khair

& Squires (2008). Much of the work is focused on modeling the additional current produced by

an isolated, circular patch of surface charge and understanding how this additional current scales

with parameters such as the separation distance H, patch radius Rpatch, and Dukhin number

Du. These basic questions are readily answered using a two-dimensional axisymmetric model in

which the pipette approaches along the axis passing through the center of the charged patch and

running perpendicular to the substrate. However, in order to understand the lateral structure of
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the current response, I will also consider a two-dimensional translationally invariant configuration

featuring a semi-infinite charged strip. Both of these cases are treated in turn below.

5.2.1 Two-Dimensional Axisymmetric Model

The axisymmetric model configuration is sketched in Fig. 5.3. For simplicity, the interior pipette

radius R and pipette thickness τ are taken to be constant. The pipette is held fixed at a distance

H above the center of an isolated charged patch of radius Rpatch located on an otherwise neutral

substrate. The origin of the cylindrical coordinate system is taken to be the center of the patch,

with the z coordinate extending upward from the substrate along the centerline of the pipette. In

what follows, I rescale the spatial coordinates by the interior pipette radius R and the potential

by the thermal voltage kBT/e. All other geometric length scales (H, Rpatch, τ , LP ) are then

understood to be in units of the interior radius. The boundary condition given in Eq. 5.1 thus

becomes

∂zφ|z=0 = −Du
∂r [rK(Rpatch − r)∂rφ|z=0]

r
≡ −σeff [φ](r), (5.6)

where I’ve defined the Dukhin number in terms of the interior pipette radius as

Du ≡ `Du

R
, (5.7)

and K(Rpatch − r) is a smoothed numerical approximation to Θ(Rpatch − r); the dependence on

the transition length λ is suppressed, as it will always be much smaller than the Dukhin length

in what follows.

The boundary conditions imposed in the model are illustrated in Fig. 5.3. The boundary

condition of Khair & Squires (2008) (Eq. 5.6) is applied at the bottom boundary (the solid-liquid

interface), and a fixed voltage ∆V is applied on the exterior boundary at the base of the pipette,

far from the substrate. All other external boundaries are held at ground. The walls of the pipette

are assumed to be uncharged, and so a vanishing normal field, ∇φ · n̂ = 0, is imposed there. As

before, steady state charge conservation requires in the bulk

∇2φ = 0. (5.8)

Eq. 5.8, along with the boundary condition given in Eq. 5.6 and the remaining boundary condi-

tions illustrated in Fig. 5.3 and described above, constitutes the effective electrostatics problem

to be solved numerically.
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∂zϕ |z= 0 = − σeff[ϕ]

∇
ϕ⋅n̂=0
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Figure 5.3: Schematic of the two-dimensional axisymmetric model configuration. A pipette of
uniform thickness τ , constant interior radius R, and length LP is held a distance H above an
otherwise uncharged substrate containing an isolated patch of surface charge of radius Rpatch.
The radial coordinate is measured in the plane of the solid-liquid interface from the center of the
charged patch, and the z coordinate is measured vertically from the substrate into the pipette
along the pipette axis, indicated by the thin dotted vertical line. The total radial extent of the
domain is R + τ + ∆Rdomain, and the total vertical extent is H + LP . The model boundary
conditions are indicated in the schematic.

I begin by examining the current response in the absence of a charged patch. Fig. 5.4 shows

the numerically calculated conductance, in units of Rκb, as a function of the separation distance

for τ = 0.1, LP = 10, and ∆Rdomain = 10. The numerical data are compared with a best fit of the

scaling proposed by Nitz et al. (1998) (Eq. 5.5). We see that this scaling performs reasonably well

given the simplicity of their model. In fact, the best-fit value of the geometric length scale is found

to be `num
geo = 0.0146, which compares very favorably with the value predicted by the model of Nitz

et al. (1998), `geo = 3/2 · ln(1+ τ)/LP = 0.0143. The numerically determined pipette conductance

Gnum
P = 0.296 is about 6% lower than the theoretical value based on the pipette geometry and

bulk conductance, which in dimensionless terms is GP = π/LP = 0.314. This is likely due to the
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non-negligible access resistance present even when the pipette is far from the substrate owing to

the relatively small pipette aspect ratio (LP = 10).

0 1 2 3 4 5

H

0.25

0.26

0.27

0.28

0.29

0.3

c
o
n
d

u
c
ta

n
c
e

fit, G = G
P
(1 + l

geo
/H)

-1

numerical

Figure 5.4: Comparison of numerical FEM results (blue dots) for the conductance as a function of
separation distance H to the scaling derived by Nitz et al. (1998) (solid black curve). The pipette
conductance GP and geometric length scale `geo are calculated via a least-squares best fit. The
model parameters are: τ = 0.1, LP = 10, and ∆Rdomain = 10, and the best-fit parameters are
`num

geo = 0.0146 and Gnum
P = 0.296.

I next examine the modification to the current response induced by the presence of a charged

patch. I characterize this modification by the conductance anomaly δG, defined as

δG(H; Du) ≡ G(H; Du)−G(H; Du = 0). (5.9)

Before examining the numerical results, I derive an approximate scaling for this conductance via

the Green’s function approach. Much of this derivation follows closely that presented in Appendix

D. To begin with, we decompose the electrostatic potential as φ = φ(0) + δφ, where φ(0) satisfies

Eq. 5.6 with Du = 0 (∂zφ
(0)|z=0 = 0), Eq. 5.8, and the remaining boundary conditions given in

Fig. 5.3. I then propose to solve the following problem for δφ, the perturbation to the potential

induced by the charged patch:

∇2δφ = 0, (5.10)
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δφ −−−→
ρ→∞

0, and (5.11)

∂zδφ|z=0 = −Du
∂r [rΘ(Rpatch − r)∂rφ|z=0]

r
, (5.12)

where, in Eq. 5.11, ρ ≡
√
r2 + z2 is the distance from the center of the patch. Note that it is the

full potential appearing on the RHS of Eq. 5.12.

I have neglected the geometrically complex no flux boundary conditions induced by the pipette

(Fig. 5.3) in Eq. 5.11. This is because including these boundary conditions would render the

problem intractable. Strictly speaking, this approximation should only be valid when the Dukhin

length and the patch size are smaller than either the height or the internal radius of the pipette;

however, we will find that the scaling so obtained is more robust than these limits would suggest.

From the development in Appendix D, we learn that δφ may be decomposed in terms of a Green’s

function G(r, r0) as

δφ(r) = −
∫

dΣsG(r, rs)∂z0δφ|z0=0, (5.13)

where rs ≡ r0|z0=0 is the source point coordinate confined to the solid-liquid interface, G(r, rs) is

a three dimensional Green’s function G(r, r0) evaluated on the interface, G(r, rs) ≡ G(r, r0)|z0=0,

and dΣs is a surface element on the interface. This decomposition is valid for the Green’s function

satisfying

∇2
r,r0

G(r, r0) = −δ(3)(r − r0), (5.14)

G(r, r0) −−−−−→
ρ,ρ0→∞

0, and (5.15)

∂z,z0G(r, r0)|z,z0=0 = 0. (5.16)

Eqs. 5.14 and 5.15 are verified by the fundamental solution to Laplace’s equation in three dimen-

sions, G1(r, r0) = 1/4π|r − r0|; however, in order to satisfy the no flux condition on the x − y
plane (Eq. 5.16), we must add to G1(r, r0) its reflection about this plane, G2(r, r0) ≡ G1(r′, r0) ≡
G1(r, r′0). In the preceding, a prime indicates reflection about the x−y plane–e.g., r′ ≡ (x, y,−z).

Adding these two contributions to the Green’s function and evaluating at z0 = 0 gives

G(r, rs) =
1

2π|r − rs|
. (5.17)

Inserting Eq. 5.17 into Eq. 5.13 and differentiating with respect to the source point coordinate

r, we obtain

δE(r) = −
∫

dΣs
r − rs

2π|r − rs|3
∂z0δφ|z0=0, (5.18)
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where δE is the perturbation to E(0) ≡ −∇φ(0) induced by the charged patch. The additional cur-

rent induced by the surface charge may be evaluated as δI = −2π
∫ 1

0
rdrδEz(H, r) ∝ −πδEz(H, 0).

We thus evaluate Eq. 5.18 at r = Hẑ to obtain

δE(H, 0) = −
∫

dΣs
Hẑ − rs

2π (H2 + r2
s)

3/2
∂z0δφ|z0=0. (5.19)

The only angular dependence is contained in rs, and this term is killed by angular integration.

Inserting Eq. 5.12 into the remaining term proportional to ẑ, we obtain

δEz(H, 0) = Du

∫ ∞

0

drs
H

(H2 + r2
s)

3/2
∂rs [rsΘ(Rpatch − rs)∂rsφ|z0=0] . (5.20)

Integrating by parts, we obtain

δEz(H, 0) = −3DuH

∫ Rpatch

0

drs
r2
s

(H2 + r2
s)

5/2
Er(rs, 0). (5.21)

In order to proceed further, I follow Lee et al. (2012) in employing a perturbative approach to

Eq. 5.21. I insert the unperturbed field E
(0)
r (rs, 0) into the RHS in order to obtain the first order

correction to the electric field in Du:

δE(1)
z (H, 0) = −3DuH

∫ Rpatch

0

drs
r2
s

(H2 + r2
s)

5/2
E(0)
r (rs, 0). (5.22)

I next make the a priori drastic assumption that we may neglect the geometric dependence of

the unperturbed field; this assumption is justified by the success of the scaling so obtained in

characterizing the numerical results found below. As the unperturbed field must scale linearly

with the applied voltage, this gives for the current anomaly

δI ∝ −δE(1)
z (H, 0) ∝ Du∆V

∫ Rpatch

0

drs
3Hr2

s

(H2 + r2
s)

5/2
= Du∆V

R3
patch

H
(
H2 +R2

patch

)3/2
, (5.23)

and hence for the conductance anomaly

δG ∝ Du
R3

patch

H
(
H2 +R2

patch

)3/2
. (5.24)

Fig. 5.5 shows the numerically calculated conductance anomaly δG (Eq. 5.9) as a function

of the separation difference H for several values of Du and Rpatch = 1. (The remaining model

parameters are τ = 0.1, LP = 10, and ∆Rdomain = 10.) For reference, the maximum values of
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the conductance anomalies are between 1 and 10% of the height-dependent conductance obtained

when Du = 0 (Eq. 5.5, Fig. 5.4). Typical set points when conducting scanning measurements

using SICM are on the order of 0.1 to 1% of the asymptotic current obtained when the pipette

is far from the substrate (Korchev et al., 1997; Klenerman et al., 2011). This indicates that the

signal calculated here is accessible using current SICM techniques, perhaps after calibration with

a neutral substrate or at low Dukhin number.
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Figure 5.5: Conductance anomaly δG (Eq. 5.9) as a function of separation distance H for several
values of the Dukhin number Du (Eq. 5.7), as indicated in the legend. The color-coded dots
indicate the numerical values of δG calculated via FEM simulation, and the solid black lines
indicate fits to the numerical data based on Eq. 5.25. The inset shows the fit coefficient α
(Eq. 5.25) as a function of Du (purple dots) for the three curves shown in the main plot and an
additional curve calculated for Du = 3. The solid black line in the inset shows the linear best fit to
the fit coefficients. All curves are calculated for Rpatch = 1, τ = 0.1, LP = 10, and ∆Rdomain = 10.

I fit the numerical data presented in Fig. 5.5 to a scaling of the form

δG = α(Du)
R3

patch

H
(
H2 +R2

patch

)3/2
, (5.25)

based on the result given in Eq. 5.24. We see that this scaling characterizes the dependence of

δG on the separation distance extremely well. I plot in the inset of Fig. 5.5 the scaling coefficient

α(Du) as a function of the Dukhin number. From Eq. 5.24, we anticipate α to be linear in Du,
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and indeed this is what is observed in the inset. The scaling given in Eq. 5.24 thus appears to

adequately describe the dependence of the conductance anomaly on both Dukhin number and

separation distance. Furthermore, the observed linear scaling of the signal with Du for a fixed

value of Rpatch = 1 suggests that the disturbance to the bulk electric field indeed scales with the

Dukhin length, consistent with our hypothesis.

In Fig. 5.6, I again show δG as a function of H, now with a fixed Dukhin number, Du = 5,

and several values of Rpatch. I fit these curves to a scaling of the form

δG = β(Rpatch)
Du

H
(
H2 +R2

patch

)3/2
. (5.26)

The scaling works reasonably well for each of the values of Rpatch, though it appears to work

best for Rpatch ∼ 1. The inset in Fig. 5.6 shows a cubic fit of the form β(Rpatch) = β0R
3
patch to

the scaling coefficient in Eq. 5.26. We see that β is indeed cubic in Rpatch as anticipated from

Eq. 5.24. This cubic dependence on the patch size (normalized by the interior pipette radius)

means that even for very large Dukhin numbers it will be difficult to resolve charged features much

smaller than the interior pipette radius. This partially contradicts our hypothesis, as it reveals

that, though the apparent size of the patch does indeed scale with the Dukhin length, as indicated

in Eq. 5.24 and Fig. 5.5, the signal is also a function of the ratio of the patch size to the interior

pipette radius. Indeed, the (cubic) dependence on patch size is much stronger than the (linear)

dependence on Dukhin length (Eq. 5.24, Figs. 5.5 and 5.6), indicating that the pipette radius

sets a rough lower limit on the resolution of charge detection based on the method proposed here.

5.2.2 Two-Dimensional Translationally Invariant Model

In order to get a sense of the structure of lateral scanning measurements, in which the pipette is

held at a fixed height and moved across the patch, I move from a two-dimensional axisymmetric

to a two-dimensional translationally invariant geometry. The configuration of the translationally

invariant FEM model is sketched in Fig. 5.7. The charged patch is now a charged strip of half-

width Rpatch centered on the line x = 0. Likewise, the pipette is now a channel of half-width

R ≡ 1. (See the inset in Fig. 5.7.) The centerplane of the pipette is parallel to the centerline of

the charged strip and offset a horizontal distance xc from the center of the strip. As before, the

thickness and length of the pipette are τ and LP , and the tip of the pipette is held at a separation
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Figure 5.6: Conductance anomaly δG (Eq. 5.9) as a function of separation distance H for several
values of the patch size Rpatch, as indicated in the legend. The color-coded dots indicate the
numerical values of δG calculated via FEM simulation, and the solid black lines indicate fits to
the numerical data based on Eq. 5.26. The inset shows the fit coefficient β (Eq. 5.26) as a
function of Rpatch (purple dots) for the three curves shown in the main plot and an additional
curve calculated for Rpatch = 1.5. The solid black line in the inset shows a best fit of the form
β = β0R

3
patch to the fit coefficients. All curves are calculated for Du = 5, τ = 0.1, LP = 10, and

∆Rdomain = 10.

distance H from the substrate. Note that the boundary condition becomes in this configuration

∂yφ|y=0 = −Du ∂x [Θ (Rpatch − |x|) ∂xφ|y=0] . (5.27)

As before, the electrostatic potential satisfies the Laplace equation (Eq. 5.8) in bulk, and the

remaining boundary conditions are indicated in Fig. 5.7 and identical to those imposed in the

axisymmetric case (Fig. 5.3).

This configuration is not as physically realistic as the axisymmetric configuration considered

above, but it allows me to move the center of the pipette off of the center of the patch without going

to a fully three-dimensional model. Given the high computational cost of the three-dimensional

model, I use the translationally invariant configuration to simulate scanning measurements in the

hope that qualitative features of the results found here carry over to the fully three-dimensional

case.
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Figure 5.7: Schematic of the two-dimensional translationally invariant model configuration. A
pipette of uniform thickness τ , constant interior half-width R, and length LP is held a distance H
above an otherwise uncharged substrate containing an isolated strip of surface charge of half-width
Rpatch. The x coordinate is measured in the plane of the solid-liquid interface from the center of
the charged strip and perpendicular to its axis; the y coordinate is measured vertically from the
substrate into the electrolyte. The pipette axis (dotted line) is located a horizontal distance xc
from the center of the charged strip. The inset shows a schematic, three-dimensional side view of
the pipette, charged strip, substrate, and electrolyte. The total horizontal extent of the domain
is LLx + Rpatch + xc + R + τ + LRx , and the total vertical extent is H + LP . The model boundary
conditions are indicated in the schematic.

In Fig. 5.8, I show the conductance anomaly obtained from a lateral scan over a patch of

half-width Rpatch = 1 at several different separation distances H ∈ [0.2, 1] (in units of the pipette

half-width). Fig. 5.8a shows the results for Du = 0.5. The signal is roughly 1 − 6% of the

background conductance obtained in the absence of any surface charge, indicating that the patch

is detectable even when Dukhin length is smaller than both the patch (Du < Rpatch) and the

pipette half-width (Du < 1). The signal shows local maxima in the vicinity of xc = ±Rpatch and

a local minimum at xc = 0; this suggests that the current is more sensitive to the discontinuity

than to the uniform charge in the center of the patch for this value of Du and Rpatch. The location
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of these maxima could potentially be used to obtain a reasonable estimate of the boundaries of

the charged patch. Additionally, there is a sharp break in the slope of the curve in the vicinity of

xc = ±(Rpatch + R), the point where, moving from the center of the patch at xc = 0, the pipette

passes entirely off of the patch (Fig. 5.7). The curve obtained for Du = 1 (figure not shown)

is structurally identical, though the difference between the peak signal at xc ≈ ±Rpatch and the

signal at xc = 0 is smaller. Comparing the panels of Fig. 5.8, it is clear that the peak signal and

the signal at xc = 0 both increase monotonically with Du, as anticipated. The results for Du . 1

suggest that information about the magnitude of the surface charge, along with the structure of

the patch, may be readily inferred from the lateral structure of the conductance measurements.
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Figure 5.8: Conductance anomaly as a percentage of the unperturbed conductance and as a
function of pipette position for a) Du = 0.5, b) Du = 2, and c) Du = 5, and for several different
separation distances H, as indicated in the legend in panel a. The color-coded dots are FEM
results, and the corresponding curves are guides to the eye. The red shading indicates the location
of the charged patch. For all runs, Rpatch = 1, τ = 0.1, LP = 10, LLx = 10, and LRx = 10.

The structure of the signal passes through two inversions as Du is increased. First, for Du = 2

(Fig. 5.8b), we see that the peak signal is now at the center of the patch (xc = 0), and there are no

longer local maxima in the vicinity of the patch boundaries at xc = ±Rpatch. As for Du . 1, there

is a sharp slope-break in the vicinity of xc = ±(Rpatch + R). This suggests that the signal may
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still be sensitive to the boundaries of the patch, even though localized peaks at the discontinuities

are no longer present. Increasing the Dukhin number further, we see for Du = 5 (Fig. 5.8c)

a complete inversion in the structure of the signal compared to those obtained for Du ≤ 1. In

addition to the absolute maximum at xc = 0, the slope-breaks have become local minima; indeed,

the conductance anomaly actually becomes negative, indicating that the current is weaker than

what would be obtained in the absence of a charged patch.

That the locations of the slope-breaks (Du = 0.5, 2) or peak negative conductance anomaly

(Du = 5) roughly coincides with xc = ±(Rpatch +R) is confirmed in Fig. 5.9, where I plot lateral

scans of the conductance anomaly for the same three Dukhin numbers shown in Fig. 5.8 and

several patch sizes (Rpatch = 1, 1.5, 2) for a fixed separation distance H = 0.2. The thin vertical

lines indicate xc = ±(Rpatch +R), and it is clear that the substantial breaks or inversions in slope

occur very close to this point. This result suggests that information about the patch size may

readily be inferred from the lateral structure of the signal even in the absence of localized peaks

in the vicinity of the discontinuities. More generally, Fig. 5.9 shows clearly that the shape of the

δG(xc) curve is highly dependent on both Dukhin number and patch size. However, even given

this substantial variability in the signal structure, the results of this and the preceding section

indicate that 1) the lateral structure of the current response over an isolated charged feature may

be used to infer the size of the feature, and 2) the scaling of the current with Dukhin number over

the center of a charged patch may be used to identify at least relative differences in surface charge

density magnitude. Full three-dimensional modeling will be necessary to to verify these results,

especially those from the translationally invariant model, and to compare to experiments.

5.3 Conclusions and Perspectives

This work was motivated by the hypothesis that small, isolated charged features create distur-

bances in applied electric fields that scale with the Dukhin length, and that these disturbances

may be measured via SICM in order to infer information about both the extent of the charged fea-

tures and the magnitude of their surface charge. This hypothesis is corroborated by the following

results:

• The numerically calculated signal scales with the Dukhin number (Figs. 5.5 and 5.8), at

least for small to intermediate Dukhin numbers, in agreement with our analytical prediction
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Figure 5.9: Conductance anomaly as a percentage of the unperturbed conductance and as a
function of pipette position for a) Du = 0.5, b) Du = 2, and c) Du = 5, and for several different
patch half-widths Rpatch, as indicated in the legend in panel a. The color-coded dots are FEM
results, and the corresponding curves are guides to the eye. The color-coded thin vertical lines
indicate the corresponding values of ±(Rpatch + R), the point at which the pipette passes from
over the patch to adjacent to the patch. For all runs, H = 0.2, τ = 0.1, LP = 10, LLx = 10, and
LRx = 10.

(Eq. 5.24).

• This signal is of the order of 1 − 10% of the background signal obtained in the absence of

surface charge, indicating that it may readily be measured via existing SICM techniques

(Figs. 5.5, 5.6, 5.8, and 5.9, and associated discussion).

• The boundaries of a charged strip may be inferred from readily apparent features of the

lateral profile of the conductance anomaly (Figs. 5.8 and 5.9, and associated discussion).

It should be noted, however, that we have also found that the resolution is limited by the size

of the interior pipette radius. Furthermore, I have entirely neglected the solute dynamics in the

treatment presented here. This means that I have implicitly neglected the influence of both ionic

current rectification (ICR) in the pipette and surface-induced rectification (SIR) on the signal.
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These last two points suggest that the technique discussed in this Chapter would be ideal for

nanotube-based SICM measurments using individual nanotubes of radii on the order of a single

nanometer inserted into nanopipettes (Secchi et al., 2016a,b). This is true both because of the

nanometric resolution of charged features that such a nanopipette would provide and because

typical Dukhin lengths reach hundreds of nanometers for ionic concentrations on the order of

1 mM. Nanometric pipettes and large Dukhin lengths lead to Dukhin numbers on the order of

10− 100, more than sufficient to suppress both ICR and SIR entirely. (See Chapter 2.)

The next steps for this project are confirmation of the above results using a fully three-

dimensional FEM model and comparison of these theoretical predictions to experimental results

obtained from nanotube SICM measurements.
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Chapter 6

CONCLUSIONS, OUTLOOKS, AND FUTURE WORK

The primary contribution of this manuscript is the understanding of the role of Dukhin number

in both ion-selectivity and nonlinear transport. It is shown in Chapters 2 and 3 that 1) it is

Dukhin, rather than Debye, overlap that determines nanopore selectivity, 2) an asymmetry in

selectivity, as determined by an asymmetry in Dukhin number, is a necessary condition for ionic

current rectification under an applied voltage, and 3) this nonlinearity extends to other forcings,

in particular pressure forcing, when they are coupled with an applied voltage. The results for ion-

selectivity may have potentially profound implications for desalination via electrodialysis (ED)

and for energy generation via reverse electrodialysis (RED); in both of these technologies, a key

limiting factor on their commercial viability is the poor conversion efficiency due to the small pore

sizes necessary to achieve Debye overlap and the consequently large nanopore resistances. The

results of Chapter 2 indicate that pores an order-of-magnitude larger in radius than typical ion-

selective nanopores may readily exhibit significant ion-selectivity if their surface charge is tailored

to achieve Dukhin numbers of order one. This would correspond to a reduction in nanopore

resistance by two orders-of-magnitude. An immediate next step is therefore the experimental

demonstration of substantial selectivity in large nanopores, and the viability of large nanoporous

membranes in ED and RED.

Furthermore, this new understanding of nonlinear nanofluidic transport suggests the possi-

bility of designing tailored nanopore and membrane functionalities, perhaps mimicking some of

the exotic transport phenomena observed in biological ion transporters. One such functionality

is mechanosensitive gating. Though they do not reproduce the full open/closed gating effect, the

experimental results of Chapter 3 (and Chapter 4) go a long way in realizing such a phenomenon

in the laboratory. In the context of the nonlinear response of ionic flux to coupled forcings, one

promising avenue for future investigation is the experimental and theoretical exploration of cou-

pled voltage-concentration forcing. Concentration forcing is particularly relevant in nature; one of
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the biological functions of mechanosensitive pores is the regulation of osmotic shock, in which the

activation of pores is controlled by osmotic pressure differentials induced by concentration anoma-

lies. Indeed, the exploration of coupled concentration-voltage forcing in the nonlinear regime has

the potential to be phenomenologically rich, owing to the fact that concentration differentials

result in asymmetric Dukhin number, diffusive and diffusio-osmotic forcing, osmotic forcing, and

voltage forcing due to the resulting differential in Nernst potential. As such, a combined the-

oretical and experimental examination of coupled concentration-voltage forcing in the nonlinear

regime is a natural continuation of the work presented in Chapter 3.

Chapter 4 is itself a natural continuation of both the work presented in Chapters 2 and 3, and

of the project of nanofluidics itself. The goal of systematically exploring fluidic and ionic transport

beyond the limits of continuum theory is only now beginning to be realized as technology is being

developed to reliably fabricate channels with confinement scales below 1 nm. The experiments

presented examining coupled voltage and pressure forcing in such strong confinement does indeed

show substantial nonlinearity in the current response, as in Chapter 3, though the phenomenology

is much richer, and the origin much different, in this context. The theoretical treatment in Chapter

4 highlights the completele inapplicability of traditional continuum fluid dynamics (i.e., Navier-

Stokes) and the severe limitations of even the significantly modified continuum description applied

there. For this reason, a molecular dynamics model of the ionic transport in those systems is

necessary. Such a model would provide a more detailed and less phenomenological understanding

of the fluid and ion dynamics, and would elucidate the role of frictional characteristics and perhaps

other factors in the pronounced material-sensitivity of the experimental results.

Chapter 5 is likewise a natural continuation of Chapters 2 and 3. The latter two chapters

illustrated the importance of the Dukhin length, an often overlooked parameter, in nanofluidic

transport. Chapter 5 goes further, illustrating a context in which the Dukhin length behaves as

a physical length scale, setting the effective size of small surface charge features. The work of

Chapter 5 is on going; the numerical observations will have to be verified using a fully three-

dimensional model. Furthermore, the preliminary results suggest that charge-detection based on

the mechanism proposed therein could improve upon the spatial resolution of current techniques

by an order-of-magnitude or more. Thus, confirmation of this prediction via nanotube-based

scanning ion conductance microscopy is an immediate goal from this work.
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The work presented in this thesis offers both fundamental contributions to the theoretical

understanding of technological applications and a foundation for future work in more fundamental

research. In the context of blue energy generation, for example, RED has been offered as one of

only a few potential mechanisms for converting the free energy of salt-and-freshwater mixing into

mechanical energy, and it is now understood to be too inefficient to compete with current energy

generation techniques (Siria et al., 2017). Along with diffusio-osmotic energy generation (Siria

et al., 2013, 2017), large-pore RED as proposed in Chapter 2 suggests a new path forward for

the design of low resistance membranes offering power densities that are comparable to current

technologies. Likewise, while ED-based desalination is already present in the desalination market,

a recent review identified the design of low resistance and high selectivity membranes as a key

step in rendering ED a dominant, energy-efficient alternative to, for example, reverse osmosis

(Campione et al., 2018). In the domain of fundamental science, on the other hand, not only do

Chapters 2 and 3 offer a new understanding of the occurrence of nonlinear transport in ‘large’

nanopores, but Chapter 4 presents a first step in the experimental and theoretical investigation

of truly two-dimensional flows–flows which are no longer amenable to description by the Navier-

Stokes equations. This study will remain foundational as this group and other researchers continue

to probe two-dimensional hydrodynamics, the break down of continuum mechanics, and the rich

taxonomy of phenomena associated therewith.
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Appendix A

SOME USEFUL RESULTS FROM THE POISSON-BOLTZMANN
EQUILIBRIUM

Abstract In this Appendix I compile some useful results pertaining to the Poisson-Boltzmann

(PB) equilibrium that will be used throughout the manuscript. I start with a simple treatment

of PB equilibrium in the vicinity of a charged wall in order to derive and illustrate the physical

importance of the Debye and Dukhin lengths. I then derive some useful results for the local

PB equilibrium on a circular cross-section, relevant for the treatment of ionic transport out of

equilibrium discussed in Chapters 2 and 3. Finally, I apply these results to recover the Donnan

equilibrium: the equilibrium of a nanopore connecting two reservoirs of equal concentration and

electrostatic potential in the limit of strong overlap (λD/R� 1).

A.1 PB in the Vicinity of a Charged Wall

I consider the scenario sketched in A.1: a dissolved, monovalent ionic species in a semi-infinite

domain is at equilibrium in the vicinity of a charged, infinite, planar wall of surface charge density

σ. As is done throughout the manuscript, I adopt here a mean field description of the ions and

assume a sufficiently dilute solution that the equilibrium ionic density is proportional to the one-

body equilibrium (Boltzmann) distribution. Further, I model the solvent as a uniform dielectric

of relative permittivity εr. In this case, at equilibrium, the mean ionic densities c± must verify

the Boltzmann distribution, while the mean electrostatic potential φ must satisfy the Poisson

equation:

c± =
c∞
2
e
∓ eφ
kBT , and (A.1)

εrε0
d2φ

dz2
+ nc = 0, (A.2)

where c∞ is the total ionic concentration far from the wall, and nc ≡ e(c+− c−) is the ionic charge

density. Far from the wall, the ionic concentrations and electrostatic potential return to their
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undisturbed bulk values:

c±(z →∞) =
c∞
2
, and (A.3)

φ(z →∞) = 0. (A.4)

Additionally, the electric field is subject to the Gaussian boundary condition at the wall:

dφ

dz

∣∣∣∣
z=0

= − σ

εrε0
, (A.5)

where I have assumed that the bounding material is either a conductor or an insulator of sufficient

thickness that it sustains no electric field.

σ

bulk: c(∞) = c∞, ϕ(∞) = 0

∼λD
diffuse/Debye 

layer

z

|ϕ |
Figure A.1: A sketch of the configuration considered in Sec. A.1. A dissolved, monovalent ionic
species at equilibrium in a semi-infinite domain is in contact with a charged planar boundary
of surface charge density σ at z = 0. Far from the boundary, the total ionic concentration
and electrostatic potential take their bulk values, c(∞) = c∞ and φ(∞) = 0, respectively. In
the vicinity of the boundary, a net ionic charge is built up via the accumulation of counterions
(green) and the exclusion of coions (orange) in order to compensate the charge of the boundary.
This accumulation of ionic charge within the so-called diffuse or Debye layer results in a nonzero
electrostatic potential, sketched here in red. The characteristic scale of the diffuse layer is the
Debye length λD, as indicated here and discussed in the text.
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A.1.1 PB Equation and the Debye and Dukhin Lengths

We introduce the rescaled potential ψ ≡ eφ/kBT and combine Eqs. A.1 and A.2 to find

d2ψ

dz2
− 1

λ2
D

sinhψ = 0. (A.6)

This is the Poisson-Boltzmann (PB) equation for the electrostatic potential at equilibrium. I have

introduced in Eq. A.6 the Debye length, a key quantity in nanofluidics, defined for a monovalent

salt as

λD ≡
√
kBTεrε0
e2c∞

, (A.7)

or, generalizing to the case that there are several ionic species present, with the j -th ionic species

having signed valence zj and bulk concentration c∞j ,

λD ≡
√

kBTεrε0
e2
∑

j z
2
j c
∞
j

. (A.8)

The Debye length is the only length scale appearing in the PB equation. It is thus natural

to rescale the normal coordinate by λD: ξ ≡ z/λD. With this rescaling, we can rewrite the PB

equation, Eq. A.6, and the boundary conditions given in Eqs. A.4 and A.5 as

d2ψ

dξ2
− sinhψ = 0, (A.9)

dψ

dξ

∣∣∣∣
ξ=0

= −S
`Du

λD
, and (A.10)

ψ(ξ →∞) = 0, (A.11)

where S ≡ sign(σ) is the sign of the surface charge density, and I have introduced the Dukhin

length, defined as

`Du ≡
|σ|
ec∞

. (A.12)

We note from Eq. A.10 that the ratio of the Dukhin length to the Debye length sets the (rescaled)

electric field strength normal to the boundary at the wall.

We multiply Eq. A.9 by dψ/dξ, recognizing that (sinhψ)dψ/dξ = dcoshψ/dξ, to obtain

1

2

d

dξ

(
dψ

dξ

)2

=
d

dξ
coshψ. (A.13)
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Integration of this equation between ξ and ∞ gives the first integral of the PB equation:

1

2

(
dψ

dξ

)2

= coshψ − 1. (A.14)

This result may be related to the total ionic concentration via Eq. A.1:

c

c∞
= 1 +

1

2

(
dψ

dξ

)2

. (A.15)

This result relates the accumulation of ions within the diffuse layer to the field strength normal

to the boundary. In particular, we may insert the Gaussian boundary condition for the normal

field at the wall given in Eq. A.10 into Eq. A.15 to determine an expression for the total ionic

concentration at the wall cw ≡ c(ξ = 0):

cw
c0

= 1 +
1

2

(
`Du

λD

)2

. (A.16)

This result suggests that the ratio `Du/λD determines the ratio of total ionic concentration in the

diffuse layer to the total ionic concentration in the bulk. The relationship between the Dukhin

length and the accumulation of charge carriers in the diffuse layer will be used below to connect

the ‘equilibrium’ definition of the Dukhin length given in Eq. A.12 to the ‘dynamic’ definition of

the Dukhin length as the ratio of surface to bulk conductivities discussed in Chapters 2 and 5.

A.1.2 Solution of the PB Equation

We solve Eq. A.14 for dψ/dξ to obtain

dψ

dξ
= −S

√
2(coshψ − 1) = −2sinh

ψ

2
, (A.17)

where we have made use of the identity
√

(coshx− 1)/2 = sign(x)sinh(x/2). The factor −S in

the first equality in Eq. A.17 comes from the fact that a positive surface charge induces a positive

surface potential and hence a negative value of dψ/dξ (and vice versa). This equation is readily

integrated and solved for ψ to obtain

ψ = 2ln

(
1 + γe−ξ

1− γe−ξ
)
, (A.18)

where γ ≡ tanh(ψw/4), and ψw ≡ ψ(ξ = 0) is the potential at the wall. In order to determine ψw,

we use Eq. A.10 to evaluate Eq. A.14 at ξ = 0. We find

coshψw = 1 +
1

2

(
`Du

λD

)2

, (A.19)

which may be used to relate `Du/λD to ψw and hence to γ ≡ tanh(ψw/4).
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A.1.3 Diffuse Layer Structure

We may relate the solution for the rescaled electrostatic potential, Eq. A.18, to the ionic concen-

trations via Eq. A.1. From this equation, we may determine the total ionic concentration c and

charge density nc as

c = c∞coshψ, and (A.20)

nc = −ec∞sinhψ, (A.21)

respectively. We may also calculate the coion and counterion concentrations cco and ccount, respec-

tively, as

cco/count =
c∞
2
e∓Sψ. (A.22)

From Eq. A.18 (and equally well from Eqs. A.9 and A.10), we see that the rescaled electrostatic

potential takes the form ψ = S|ψ(ξ, `Du/λD)|. In particular, this scaling indicates that 1) the

extent of the diffuse layer is O(1) when rescaled by the Debye length, and 2) the structure of the

diffuse layer is determined by the ratio `Du/λD. This is illustrated in Fig. A.2, where I plot ψ

and the co- and counterion concentrations as a function of ξ. We indeed observe that, while the

structure of the diffuse layer changes significantly with `Du/λD when `Du/λD & 1, the extent of

the diffuse layer is O(1) even for very large values of this parameter. We thus conclude that the

Debye length sets the characteristic size of the charged ionic diffuse layer forming in

the vicinity of the charged wall.

As they will be useful in the developments presented in Appendix B and Chapters 2 and 3, I

give here the asymptotic expressions for the electrostatic potential and the coion, counterion, and

total ionic concentrations at the wall as `Du/λD →∞. From Eq. A.19 we have

e|ψw| ∼
(
`Du

λD

)2

=⇒ |ψw| ∼ 2ln

(
`Du

λD

)
,

`Du

λD
→∞. (A.23)

From Eqs. A.20, A.22, and A.23 we find

cw
c∞
∼ cwcount

c∞
∼ 1

2

(
`Du

λD

)2

, and (A.24)

cwco → 0,
`Du

λD
→∞. (A.25)

These asymptotic expressions are illustrated in the insets in Figs. A.2a and c. In particular, we

find that the asymptotic expression for the wall potential, Eq. A.23, is valid for `Du/λD & 3.
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Figure A.2: Structure of the diffuse layer in the vicinity of a charged planar wall. a) Electrostatic
potential normalized by the potential at the wall φ/φw versus z/λD. b and c) Respectively, the
coion and counterion concentrations, normalized by the total ionic concentration in the bulk,
cco/c∞ and ccount/c∞, versus z/λD. In each panel, the curves are colored according to `Du/λD,
as indicated in the legend in panel b. The subplot in panel a shows the rescaled wall potential,
eφw/kBT , as a function of `Du/λD. The subplot in panel c shows the total, cw, counter-, cwcount,
and coion, cwco, concentrations at the wall normalized by c∞ as a function of `Du/λD. The dashed
lines in the subplots in panels a and c show, respectively, the asymptotic behavior of the rescaled
wall potential, ψw ∼ 2ln(`Du/λD) (Eq. A.23), and the normalized counterion and total ionic
concentrations, cwcount, cw ∼ (`Du/λD)2/2 (Eq. A.24) as `Du/λD →∞.

A.1.4 Electroneutrality

Integrating the Poisson equation, Eq. A.2, in z, we find

εrε0Ez(0) +

∫ ∞

0

dznc = 0, (A.26)

where Ez ≡ −dφ/dz is the z-component of the electric field. Applying the Gaussian boundary

condition, Eq. A.5, we obtain

σ +

∫ ∞

0

dznc = 0. (A.27)

This result indicates that the ionic charge integrated normal to the charged boundary exactly

compensates the surface charge density at every point along the boundary. This condition of

local electroneutrality is a necessary consequence of the Poisson-Boltzmann equilibrium in

any configuration, as we will see below. This condition has important consequences even out-

of-equilibrium because, in the limit of a strong separation of longitudinal and transverse length
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scales, an approximate PB equilibrium holds on each cross-section.

A useful form of the electroneutrality condition is obtained by rescaling nc by ec∞ and z by

λD:

S
`Du

λD
+

∫ ∞

0

dξ
nc
ec∞

= 0. (A.28)

We see that `Du/λD is the magnitude of the (rescaled) net charge accumulated in the diffuse layer.

A.1.5 Concentration Accumulation in the Diffuse Layer

I now determine the accumulation of total ionic concentration within the diffuse layer. This result

will be applied in the following section examining PB equilibrium on a circular cross-section, and

the results therein are used in the derivation of the one-dimensional transport equations in the

limit that λD is much smaller than the scale of confinement (see Chapters 2 and 3).

We consider the integated excess total ionic concentration δc ≡ c− c∞ = c∞(coshψ − 1) (Eq.

A.20):

∫ ∞

0

dz
δc

c∞
= λD

∫ 0

ψw

dψ

(
dψ

dξ

)−1
δc

c∞
= λD

∫ ψw

0

dψsinh
ψ

2
= 2λD

(
cosh

ψw
2
− 1

)
, (A.29)

where in the second equality I have inserted Eq. A.17 and again used the identity coshx − 1 =

2sinh2(x/2). Finally, we apply the identity
√

(coshx+ 1)/2 = cosh(x/2) to Eq. A.19 and insert

the result into Eq. A.29 to obtain

∫ ∞

0

dz
δc

c∞
= 2λD



√

1 +

(
`Du

2λD

)2

− 1


 . (A.30)

We see from Eqs. A.19, A.28, and A.30 that the ratio of the Dukhin length to the Debye

length controls both the magnitude of the surface potential and the accumulation of charge and

ionic concentration within the diffuse layer. The larger the ratio `Du/λD, the stronger the induced

potential at the surface and the greater the accumulation within the diffuse layer. Furthermore,

we will see in the next section and in Chapters 2 and 3 that the ratio of the Dukhin length to the

confinement scale R is the key parameter determining the occurrence of selectivity and nonlinear

ionic transport in nanofluidic systems.
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A.2 PB on a Circular Cross-Section

I now consider the PB equilibrium of a monovalent electrolytic solution in the interior of a charged

annulus of surface charge density σ, as sketched in Fig. A.3. (Note that I am considering a single

cross-section in an extended cylindrical or conical geometry such that the surface charge density

and ionic concentrations still have dimensions of charge per unit area and number per unit volume,

respectively.)

r

|ϕ |
λD/R ≪ 1 λD/R ≫ 1

λD

r

|ϕ |

R

Figure A.3: A sketch of the configuration considered in Sec. A.2. A dissolved, monovalent ionic
species at equilibrium in a circular domain is in contact with a ring of surface charge density σ at
r = R. When λD/R� 1, a diffuse layer of thickness ∼ λD forms in the vicinity of the boundary,
and the structure of the diffuse layer is similar to the diffuse layer in the vicinity of a charged
planar boundary. On the other hand, when λD/R � 1, the potential and ionic concentration
profiles homogenize on the cross-section, and there is no distinct diffuse layer.

Following Fair & Osterle (1971), we partition the electrostatic potential as

φ(r) = φ0 + δφ(r), (A.31)

where the radial-dependence is contained only in δφ(r), which is induced by deviations from

electroneutrality. Integration of the radial ionic flux equation at equilibrium, 0 = jr±/D± =



125

(−dc±/dr)± c±(−dδψ/dr), then gives

c± =
c0

2
e∓δψ, (A.32)

where δψ ≡ eδφ/kBT is the rescaled potential deviation and c0 is the constant of integration.

This constant must be the same for both species such that c+ = c− and the solution is therefore

electroneutral when δφ = 0.

Note that, in general, since the diffuse layer forming on the boundary may overlap itself at the

center of the cross-section, δφ(r = 0) 6= 0 and c+(0) 6= c−(0). However, in the limit λD/R � 1,

the solution will be electroneutral at the center and δφ will vanish there. In this case, φ0 and c0

are the centerline values of the elctrostatic potential and total ionic concentration, respectively.

The potential deviation must verify the radial Poisson equation:

εrε0
1

r

d

dr

(
r
dδφ

dr

)
+ nc = 0, (A.33)

subject to the Gaussian boundary condition at the wall (r = R) and the axisymmetry condition

at r = 0:
dδφ

dr

∣∣∣∣
r=R

= +
σ

εrε0
, and (A.34)

dδφ

dr

∣∣∣∣
r=0

= 0. (A.35)

We obtain the radial PB equation by inserting Eq. A.32 into Eq. A.33, rewriting in terms of δψ,

and introducing the rescaled coordinate ρ ≡ r/R:

1

ρ

d

dρ

(
ρ
dδψ

dρ

)
=

(
R

λD

)2

sinhδψ. (A.36)

This equation is subject to the boundary conditions (Eqs. A.34 and A.35)

dδψ

dρ

∣∣∣∣
ρ=1

= +S
Du

(λD/R)2
, and (A.37)

dδψ

dρ

∣∣∣∣
ρ=0

= 0, (A.38)

where I have introduced the Dukhin number, defined as

Du ≡ `Du

R
≡ |σ|
ec0R

. (A.39)
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As shown in Chapters 2 and 3, this is the key parameter controlling selectivity and nonlinear ionic

transport in confined geometries. As noted in Chapters 2 and 5, a ‘dynamic’ definition of the

Dukhin number as the ratio of surface to bulk conductivities is sometimes given; the equivalence

of these definitions in the case that a local PB equilibrium holds along the length of the nanopore

will be demonstrated by considering the accumulation of excess charge carriers in the diffuse layer

in Sec. A.2.2 below.

Unlike the case of a single planar boundary discussed above, the radial PB equation (Eq.

A.36) has no solution in general. However, useful information may be determined in general

(electroneutrality), in the limit λD/R � 1 (average excess total ionic concentration), and in the

limit λD/R� 1 (radial uniformity of concentration and potential profiles). Each of these will be

discussed in turn below.

A.2.1 Electroneutrality

We multiply the Poisson equation (Eq. A.33) by 2πr, integrate in r, and apply the Gaussian

boundary condition, Eq. A.34, and the axisymmetry condition, Eq. A.35, to obtain

2πRσ +

∫ R

0

2πrdrnc = 0. (A.40)

Dividing by the cross-sectional area, πR2, we find

2σ

R
+ 〈nc〉 = 0, (A.41)

where 〈 〉 ≡ A−1
∫
A

dA denotes a cross-sectional average. Like Eq. A.27, Eq. A.41 is a statement of

the condition of local electroneutrality. We see that the electroneutrality condition is a necessary

consequence of the PB equilibrium, irrespective of whether we are in the regime of no overlap

(λD/R� 1) or overlap (λD/R & 1).

A useful form of the electroneutrality condition, Eq. A.41, is obtained by rescaling nc by ecref ,

where cref is some reference concentration, and the radius R(x) and surface charge density σ(x)

(which we allow to vary along the length of the nanopore) by some reference radius Rref and

surface charge density magnitude |σ|ref , respectively:

S
2Duref |σ′|

R′
+ 〈n′c〉 = 0, (A.42)
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where σ′ ≡ σ/|σ|ref , R
′ ≡ R/Rref , and n′c ≡ nc/ecref are the rescaled surface charge density, radial

profile, and ionic charge density, respectively, and we have introduced a reference Dukhin number

Duref ≡ |σ|ref/ecrefRref .

A.2.2 Average Excess Concentration in the Limit of No Overlap (λD/R→ 0)

We begin by expanding the Laplacian in the radial PB equation (Eq. A.36) and examining the

scaling of each term in λD/R as λD/R→ 0:

d2δψ

dρ2

︸ ︷︷ ︸
∼(λD/R)−2

+
1

ρ

dδψ

dρ︸ ︷︷ ︸
∼(λD/R)−1

=
sinhδψ

(λD/R)2

︸ ︷︷ ︸
∼(λD/R)−2

. (A.43)

The scaling of the gradient terms comes from the fact that significant variation in the potential

is confined to the diffuse layer when there is no overlap, and the diffuse layer has a characteristic

thickness λD/R in rescaled coordinates. We thus anticipate that the second gradient term, induced

by the curvature of the boundary, becomes negligible as λD/R → 0. This is physically intuitive,

as we expect the diffuse layer to see only a flat boundary when its extent is much smaller than

the radius of curvature.

Thus, defining a new coordinate Z ≡ 1 − ρ, we obtain the planar PB equation in the limit

λD/R � 1. We may therefore directly transcribe the result given in Eq. A.30 for the integrated

excess ionic concentration:

∫ ∞

0

dZ δc
c0

= 2
λD
R





√
1 +

[
Du

2(λD/R)

]2

− 1



 . (A.44)

The relevant quantity in the derivation of the one-dimensional transport equations in this limit

(Chapter 2) is the cross-sectionally averaged excess ionic concentration, 〈δc〉 = 2π
∫∞

0
dZδc/π:

〈δc〉
c0

= 4
λD
R





√
1 +

[
Du

2(λD/R)

]2

− 1



 . (A.45)

Note that, in this limit, c0 is the actual total ionic concentration at the center of the circular

domain (i.e., on the nanopore centerline).

In Chapters 2 and 5, a dynamic definition of the Dukhin length is given as the ratio of

the surface to the bulk conductivities, κsurf and κbulk, respectively. This can be connected to
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the equilibrium definition of the Dukhin length in terms of the surface charge density and bulk

concentration given in Eq. A.12 via Eq. A.45, which gives the total excess charge carriers

πR2〈δc〉 accumulated within the diffuse layer. The surface and bulk conductivities are defined

by the relations Isurf = 2πR × κsurf × E and Ibulk = πR2 × κbulk × E, respectively, with E the

applied electric field. Assuming the currents are dominated by the electrophoretic contributions,

we therefore have κbulk ∝ c0 and κsurf ∝ πR2〈δc〉/2πR = R〈δc〉/2. We consider the case of a

large nanopore, taking the limit `Du/λD → ∞ in Eq. A.45 to find that 〈δc〉 → 2Duc0. Thus,

κsurf ∝ (R/2)× 2Duc0 = `Duc0 =⇒ κsurf = `Duκbulk, and we have

`Du =
κsurf

κbulk

. (A.46)

Furthermore, the ratio of the surface to the bulk conductances, Gsurf and Gbulk, respectively, is

given by Gsurf/Gbulk = 2πRκsurf/πR
2κbulk = 2`Du/R, such that

2Du =
Gsurf

Gbulk

. (A.47)

A.2.3 Homogenization of the Concentration and Potential Profiles in the Limit of Strong Overlap

(λD/R→∞)

In the opposing limit, λD/R → ∞, the gradient terms in Eq. A.43 no longer vary with λD/R

as the scale of variation of the gradient saturates at the radius (unity in rescaled coordinates)

as λD/R increases. On the other hand, the source term on the RHS becomes negligibly small in

comparison. Thus, we anticipate that the rescaled potential deviation verifies (1/ρ)d[ρ(dδψ/dρ)] ≈
0. Furthermore, for any fixed finite value of the Dukhin number, the Gaussian boundary condition,

Eq. A.37, reduces to dψ/dρ|ρ=1 = 0 as λD/R→∞. Thus, δψ, and therefore ψ and φ, approaches

a constant value in this limit. From Eqs. A.32, we see that the ionic concentration profiles are

likewise uniform in the limit of strong overlap. Furthermore, Eq. A.41 determines the value of

nc = 〈nc〉 = −2σ/R. Thus, the solution in this limit takes the form

dφ

dr
=
dc

dr
= 0, and (A.48)

nc = −2σ

R
. (A.49)
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We conclude that in the limit of strong overlap (λD/R� 1) the profiles of electrostatic

potential and ionic concentration are radially uniform. This will continue to be approx-

imately valid in a nanopore out-of-equilibrium, though the radially uniform potentials and ionic

concentrations will in this case vary along the length of the nanopore.

A.3 Donnan Equilibrium

Finally, I consider the equilibrium of a nanopore of uniform radius R � λD and surface charge

density σ connecting two reservoirs of equal concentration cres and electrostatic potential Vres. (It

is useful to take Vres 6= 0 for the developments in the main text, even if it is equal in both reservoirs

here.) The configuration considered here is sketched in Fig. A.4.

In general, the equilibrium condition reduces to equality of the chemical potential. In the case

of a dilute solution that I consider throughout the manuscript, the chemical potential is composed

of an electrostatic and an entropic ideal gas term (Barrat & Hansen, 2003):

µ± = kBT ln(c±Λ3)± eφ, (A.50)

where 1/Λ3 is an arbitrary reference concentration. In a quantum statistical derivation of the

chemical potential, the length scale Λ emerges naturally as the thermal de Broglie wavelength.

Our equilibrium conditions are the spatial homogeneity of the chemical potential and elec-

troneutrality in both the reservoirs and the nanopore (see Eq. A.41). In the reservoirs, elec-

troneutrality requires c+ = c− = cres/2, and the reservoir chemical potentials are therefore

µres
± = kBT ln

(
cresΛ

3

2

)
± eVres. (A.51)

In the nanopore, we first note that, since we are in the regime of strong overlap, the ionic

concentrations and electrostatic potential will be radially uniform (Eqs. A.48 and A.49). Further-

more, the accumulation of a net ionic charge within the pore to balance the surface charge will

result in a shift in the electrostatic potential in the pore relative to the reservoir. I denote the pore

potential and ionic concentrations as Vpore and cpore
± . The chemical potential and electroneutrality

condition in the pore are thus

µpore
± = kBT ln

(
c±Λ3

)
± eVpore, and (A.52)

2σ

R
+ nc = 0, (A.53)
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c = cres
ϕ = Vres

c = cres
ϕ = Vres

| ϕ
−V

res
|

x

x

VD

x

ccount

cco

μ+ − eVres
μ− + eVres

2R ≪ 2λD

Figure A.4: A sketch of the configuration considered in Sec. A.3. A cylindrical nanopore of uniform
radius R � λD and surface charge density σ connects two reservoirs of equal concentration cres

and electrostatic potential Vres. The surface charge induces an accumulation of counterions and
an exclusion of coions in the pore, and this results in the build up of a Donnan potential VD in the
pore interior. The ionic concentrations and electrostatic potential vary rapidly at the ends of the
nanopore, but at equilibrium the adjustments must be such that the cation and anion chemical
potentials are spatially uniform.

respectively.

We equate the chemical potentials in the reservoirs (Eq. A.51) and in the pore (Eq. A.52)

and solve for the ionic concentrations in the pore:

cpore
± =

cres

2
e
∓ e(Vpore−Vres)

kBT . (A.54)

Taking the product of the cation and anion concentrations in the pore, we find

cpore
+ cpore

− =
c2

res

4
. (A.55)
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Taking the ratio of the anion to the cation concentration in the pore and solving for the shift in

the electrostatic potential, VD ≡ Vpore − Vres, we find

VD =
1

2

kBT

e
ln

(
cres
−
cres

+

)
. (A.56)

The potential shift VD is termed the Donnan potential.

We may solve Eqs. A.53 and A.55 for the ionic concentrations in the pore. The result is

cpore
± =

cres

2

[√
1 + (2Du)2 ∓ S2Du

]
, (A.57)

where I have introduced a Dukhin number Du = |σ|/ecresR. From this, we determine the total

ionic concentration to be

cpore = cres

√
1 + (2Du)2. (A.58)

We insert the result given in Eq. A.57 into Eq. A.56 to obtain another useful expression for the

Donnan potential:

VD = S
1

2

kBT

e
ln

[√
1 + (2Du)2 + 2Du√
1 + (2Du)2 − 2Du

]
. (A.59)

These results will be applied in Chapter 2 when I consider ionic transport in nanopores having

radii much smaller than the Debye length. Though in this case we will be out-of-equilibrium,

continuity of the chemical potential at both ends of the nanopore will result in the formation of

a local Donnan equilibrium.
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Appendix B

DERIVATION OF THE ELECTRO-OSMOTIC,
DIFFUSIO-OSMOTIC, AND STREAMING SOLVENT AND ION

FLUXES

Abstract In this Appendix, I derive the expressions for the solvent and ion fluxes induced by

the Hagen-Poiseuille, electro-osmotic, and diffusio-osmotic flows in the limits λD/R → 0 and

(λD/R)/Du → 0. These results are applied in the derivation of the one-dimensional transport

equations in Chapter 3.

B.1 Governing Equations and Boundary Conditions

Our starting point in this Appendix will be the rescaled longitudinal momentum equation derived

in Chapter 3 (Eq. 3.20),

dP0

dx
+ δnc

dφ0

dx︸ ︷︷ ︸
Hagen−Poiseuille

+ nPB
c

dφ0

dx︸ ︷︷ ︸
electro−osmosis

+ δc
dlnc0

dx︸ ︷︷ ︸
diffusio−osmosis

=
1

Peosm

∂r (r∂rux)

r
, (B.1)

along with the local Poisson equation (Chapter 3, Eq. 3.13),

(
λref
D

Rmin

)2

∂2
Zδφ+ nPB

c = 0, (B.2)

where I have made the approximation ∂r(r∂rδφ)/r ≈ ∂2
Zδφ, valid in the limit of no overlap

(λD/R � 1) (Appendix A). In the preceding, Z ≡ R − r, where R(x) is the local nanopore

radius. Additionally, assuming a local PB equilibrium, we will apply the Boltzmann distributions

for the radial deviation in the total ionic concentration δc and the ionic charge density nPB
c :

δc = c0 (coshδφ− 1) , and (B.3)

nPB
c = −c0sinhδφ. (B.4)

Finally, we will frequently use the first integral of the PB equation (Appendix A, Eq. A.17),

∂Zδφ = −2
Rmin
√
c0

λref
D

sinhδφ, (B.5)
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in changing the variable of integration from Z to δφ when calculating the cross-sectionally inte-

grated transport coefficients. Note that the prefactor Rmin
√
c0/λ

ref
D appears in Eq. B.5 but not

A.17 because we have rescaled Z by the minimum radius Rmin rather than the local Debye length

λref
D /
√
c0.

The definitions of the terms appearing in Eqs. B.1 through B.5 are given in Chapter 3. Note

that variables are rescaled as in Chapter 3 (Table 3.1).

The forcing terms on the LHS of Eq. B.1 have been segregated into those resulting in the

parabolic Hagen-Poiseuille (HP) flow uHP and the plug-like electro-osmotic (EO) and diffusio-

osmotic (DO) flows, uEO and uDO, respectively. Owing to the linearity of the Stokes (low Reynolds

number) momentum equation, we may solve for each of these flows individually and obtain the

total flow as ux = uHP + uEO + uDO.

We neglect hydrodynamic slip such that each of the flows is subject to the no-slip condition:

uHP(x, r = R) = uEO(x, r = R) = uDO(x, r = R) = 0. (B.6)

Furthermore, axisymmetry requires the shear to vanish at the nanopore centerline:

∂ruHP(x, r = 0) = ∂ruEO(x, r = 0) = ∂ruDO(x, r = 0) = 0. (B.7)

B.2 Hagen-Poiseuille and Streaming Fluxes

B.2.1 Flow Profile and Solvent Flux

We begin with the HP flow, satisfying

dP0

dx
+ δnc

dφ0

dx
=

1

Peosm

∂r(r∂ruHP)

r
. (B.8)

Radial integration of Eq. B.8, subject to the no-slip and axisymmetry conditions given in Eqs. B.6

and B.7, respectively, is straight forward, as the forcing terms on the LHS are radially uniform.

The results for the velocity profile uHP and volumetric flux QHP are

uHP = −2L(R)

[
1−

( r
R

)2
](

dP0

dx
+ δnc

dφ0

dx

)
, and (B.9)

QHP

πR2
= −L(R)

(
dP0

dx
+ δnc

dφ0

dx

)
, (B.10)



134

where I have introduced the HP hydraulic conductivity L(R), given by

L(R) ≡ PeosmR
2

8
. (B.11)

B.2.2 Current and Ion Number Flux

The streaming current is defined as

Istm ≡
∫ R

0

2πrdruHPn
PB
c . (B.12)

Note that, in order to be consistent with the definition of the streaming current in the literature,

I do not include the deviation from electroneutrality δnc in Eq. B.12; however, this contribution

to the current is accounted for in the expression for the total advective current (Eq. B.55).

On the assumption of no overlap (λD/R � 1), we may write the cross-sectional integral as
∫ R

0
2πrdr ≈ 2πR

∫∞
0
dZ. Furthermore, since the PB ionic charge density is significantly different

from zero only within the diffuse layer, we may linearize the HP velocity (Eq. B.9) as

uHP = −4LZ
R

(
dP0

dx
+ δnc

dφ0

dx

)
+O

(
Z

R

)2

. (B.13)

From the local Poisson equation (Eq. B.2), we may write the PB ionic charge distribution as

nPB
c = −(λref

D /Rmin)2∂2
Zδφ. Thus, inserting these results into Eq. B.12, we find

Istm = 2πR×
(
λref
D

Rmin

)2

×
[

4L
R

(
dP0

dx
+ δnc

dφ0

dx

)]
×
∫ ∞

0

dZ Z∂2
Zδφ

= πR2Peosm

(
λref
D

Rmin

)2(
dP0

dx
+ δnc

dφ0

dx

)(
Z∂Zδφ|∞0 −

∫ ∞

0

dZ∂Zδφ

)

= πR2Peosm

(
λref
D

Rmin

)2

δφw

(
dP0

dx
+ δnc

dφ0

dx

)
.

In the second line I have inserted the definition of the HP hydraulic conductivity (Eq. B.11) and

integrated by parts. We thus write for the streaming current

Istm = +SπR2|µEO|
(
dP0

dx
+ δnc

dφ0

dx

)
, (B.14)

where I have anticipated the result for the EO mobility given in Eq. B.23. In Eq. B.14, S ≡ sign(σ)

is the sign of the surface charge density.
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The streaming ion number flux is defined as

Jstm =

∫ R

0

2πrdruHPδc. (B.15)

As in the case of the streaming current, the bulk advective transport QHPc0 is segregated from

Jstm but included in the total advective ion number flux (Eq. B.53). We insert the linearized HP

velocity (Eq. B.13) into Eq. B.15 and evaluate the integral in the no overlap limit (λD/R� 1):

Jstm = πR2Peosm

(
dP0

dx
+ δnc

dφ0

dx

)∫ ∞

0

dZδcZ. (B.16)

Evaluating the integral by parts, we find

Jstm = −πR2Peosm

(
dP0

dx
+ δnc

dφ0

dx

)∫ ∞

0

dZ

∫ ∞

Z

dZ ′δc. (B.17)

In order to evaluate the integral in Eq. B.17, we apply the Boltzmann distribution for the deviation

in the total ionic concentration (B.3) and the first integral of the PB equation (B.5):

∫ ∞

Z

dZ ′δc =
1

2

λref
D

√
c0

Rmin

∫ |δφ|

0

d|δφ|cosh|δφ| − 1

sinh(|δφ|/2)
= 2

λref
D

√
c0

Rmin

[
cosh

( |δφ|
2

)
− 1

]

=⇒
∫ ∞

0

dZ

∫ ∞

Z

dZ ′δc = 2
λref
D

√
c0

Rmin

∫ ∞

0

dZ

[
cosh

( |δφ|
2

)
− 1

]

=

(
λref
D

Rmin

)2 ∫ |δφw|

0

d|δφ|cosh(|δφ|/2)− 1

sinh(|δφ|/2)

=

(
λref
D

Rmin

)2

4ln

[
cosh

( |δφw|
4

)]
.

Inserting this result into Eq. B.17 and anticipating the expression for the DO mobility µDO given

in Eq. B.38, we find

Jstm = −πR2µDO

(
dP0

dx
+ δnc

dφ0

dx

)
. (B.18)

B.3 Electro-osmosis

B.3.1 Flow Profile and Solvent Flux

We next consider the EO flow, which verifies

nPB
c

dφ0

dx
=
∂r(r∂ruEO)

r
, (B.19)
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along with the no-slip and axisymmetry conditions given in Eqs. B.6 and B.7, respectively. We

first use Eq. B.2 to recast Eq. B.19 in a form that is easily integrated radially by eliminating the

PB ionic charge density nPB
c in favor of the radial deviation in the electrostatic potential δφ:

∂r

[
r∂r

(
uEO +

1

2
κ
dφ0

dx
δφ

)]
= 0. (B.20)

where we have defined

κ ≡ 2Peosm

(
λref
D

Rmin

)2

≡ 2
εrε0
ηD

(
kBT

e

)2

. (B.21)

In the second equivalence I have applied the definitions of Peosm and λref
D given in Chapter 3 (Eq.

3.16 and the text following Eq. 3.13). We note that κ is a material property of the solvent and

solute and approximately 0.45 for potassium chloride (KCl) in water at room temperature. The

transport equations derived in Chapter 3 (Eqs. 3.24 and 3.25) indicate that κ is the ratio of the

electro-osmotic/diffusio-osmotic current to the surface electrophoretic/diffusive current. Radial

integration of Eq. B.21 is trivial and gives

uEO = +S|µEO|
(

1− |δφ||δφw|

)
dφ0

dx
, (B.22)

where I have introduced the EO mobility µEO, rescaled by the electrophoretic mobility µEP ≡
eD/kBT and given by

µEO ≡ −S
κ

2
|δφw| ≡

1

µEP

εrε0
η

(
−kBT

e
δφw

)
= −Sκln

[
Duref

(λref
D /Rmin)

√
c0

]
. (B.23)

In the third equality I have applied the asymptotic expression for |δφw| valid in the limit (λD/R)/Du→
0 (Appendix A, Eq. A.23). The factor −S corresponds to the fact that a negative surface charge

results in the accumulation of an excess of positive counterions in the diffuse layer, and the motion

of these ions under an applied electric field induces a flow in the same direction and along the

direction of the electric field (and vice versa). The contribution of
√
c0 in ln[Duref/(λref

D /Rmin)
√
c0]

= ln[Duref/(λref
D /Rmin)] − ln(c0)/2 is typically negligible in the limit we are considering, and so I

will approximate µEO as a constant. This is consistent with what is typically done in the literature.

In the limit of no overlap (λD/R � 1), δφ = 0 outside of the (thin) diffuse layer and thus

over the bulk of the cross-section. From Eq. B.22, we see that this corresponds to a uniform EO

velocity denoted u∞EO and given by

u∞EO = +S|µEO|
dφ0

dx
. (B.24)
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This result, along with the expression given in Eq. B.23 for the EO mobility in terms of the wall

potential, is known as the Smoluchowski equation. Overall, we see that the nonzero ionic charge

in the diffuse layer results in a hydrodynamic body force that is balanced by shear in this region.

The result is a uniform plug flow over the bulk of the cross-section with a velocity given by Eq.

B.24.

Radial integration of Eq. B.22 gives

QEO = πR2u∞EO − S|µEO|
dφ0

dx

∫ R

0

2πrdr
δφ

δφw
, (B.25)

and in the limit of no overlap (λD/R� 1), the integral of δφ may be evaluated as

∫ R

0

2πrdrδφ = 2πR

∫ ∞

0

dZδφ. (B.26)

Inserting Eq. B.5 into Eq. B.26, we obtain

∫ R

0

2πrdrδφ = 2πR× 2
λref
D

Rmin
√
c0

∫ δφw/2

0

duu cschu

−−−−−→
λD/R

Du
→0

4πR
λref
D

Rmin
√
c0

∫ S∞

0

duu cschu = Sπ3R
λref
D

Rmin
√
c0

.

Dividing by the asymptotic value of δφw (Appendix A, Eq. A.23), we find

∫ R

0

2πrdr
δφ

δφw
= −π

3R

2
Duref

(λrefD /Rmin)
√
c0

Duref

ln
[

(λrefD /Rmin)
√
c0

Duref

] −−−−−→
λD/R

Du
→0

0.

Thus, inserting this result into Eq. B.25, we find

QEO

πR2
= u∞EO = +S|µEO|

dφ0

dx
, (B.27)

consistent with the fact that uEO = u∞EO everywhere on the cross-section except in the negligibly

thin diffuse layer.

B.3.2 Current and Ion Number Flux

I define the EO current as

IEO ≡
∫ R

0

2πrdruEOn
PB
c . (B.28)
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Inserting Eq. B.22 and the Boltzmann distribution for the ionic charge (Eq. B.4) into Eq. B.28,

we have

IEO = −µEO
dφ0

dx

∫ R

0

2πrdr

(
1− |δφ||δφw|

)
nPB
c = −|µEO|

dφ0

dx
2πRc0

∫ ∞

0

dZ

(
1− |δφ||δφw|

)
sinh|δφ|,

(B.29)

where in the second equality we have recognized that the signs of the EO mobility and the PB

ionic charge density cancel each other and made use of the no overlap limit λD/R� 1 to simplify

the integral. We insert Eq. B.5 to find

IEO = −|µEO|
dφ0

dx
πR

λref
D

√
c0

Rmin

∫ |δφw|

0

d|δφw|
(

1− |δφ||δφw|

)
sinh|δφ|

sinh(|δφw|/2)

= −2πR× κ×
[
4
λref
D

√
c0

Rmin

sinh2

( |δφw|
4

)]
× dφ0

dx
.

(B.30)

The term in square brackets may be evaluated asymptotically using the fact that

|δφw| ∼ 2ln

[
Duref |σ|

(λref
D /Rmin)

√
c0

]

in the limit Du/(λD/R)→∞ (Appendix A, Eq. A.23):

sinh2

( |δφw|
4

)
∼ e|δφw|/2

4
∼ 1

4

Duref |σ|
(λref

D /Rmin)
√
c0

=⇒ 4
λref
D

√
c0

Rmin

sinh2

( |δφw|
4

)
∼ Duref |σ|.

With Eq. B.23, we thus find for the EO current

IEO = −2πRDuref |σ|κ
dφ0

dx
. (B.31)

The EO ionic number flux is defined as

JEO ≡
∫ R

0

2πrdruEOδc. (B.32)

Following the same procedure as above for the EO current, we insert the expression for the EO

velocity (Eq. B.22), the Boltzmann distribution for the deviation in the total ionic concentration

(Eq. B.3), and the first integral of the PB equation (Eq. B.5) and apply the no overlap limit to

obtain

JEO = +S|µEO|
dφ0

dx
πRc0

λref
D

√
c0

Rmin

∫ |δφw|

0

d|δφ|
(

1− |δφ||δφw|

)
cosh|δφ| − 1

sinh(|δφ|/2)

= +S2πR× κ×
{
λref
D

√
c0

Rmin

[2sinh(|δφw|/2)− |δφw|]
}
× dφ0

dx
.

(B.33)
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The term in curly brackets may be evaluated in the limit Du/(λD/R) → ∞ using the fact that

(Appendix A, Eq. A.23)

|δφw| ∼ 2ln

[
Duref |σ|

(λref
D /Rmin)

√
c0

]

=⇒ 2sinh

( |δφw|
2

)
∼ exp

( |δφw|
2

)
,

which indicates that this term tends to Duref |σ|. Thus,

JEO = +S2πRDuref |σ|κ
dφ0

dx
. (B.34)

B.4 Diffusio-osmosis

B.4.1 Flow Profile and Solvent Flux

Finally, we consider the DO flow, which satisfies

δc
dlnc0

dx
=

1

Peosm

∂r(r∂ruDO)

r
=

1

Peosm

∂2
ZuDO, (B.35)

subject to the no-slip and axisymmetry conditions given in Eqs. B.6 and B.7. In the second

equality in Eq. B.35 we have neglected the portion of the Laplacian associated with the curvature

of the nanopore wall. This is justified because the region of nonzero shear is confined to the diffuse

layer, and I assume λD/R� 1.

We integrate Eq. B.35 twice to obtain

uDO = −Peosm
dlnc0

dx

∫ Z

0

dZ ′
∫ ∞

Z′
dZ ′′δc. (B.36)

The indefinite integral on the RHS may be evaluated in the same manner as the corresponding

definite integral appearing in Eq. B.17. The result is

∫ Z

0

dZ ′
∫ ∞

Z′
dZ ′′δc = 4

(
λref
D

Rmin

)2{
ln

[
cosh

(
δφw

4

)]
− ln

[
cosh

(
δφ

4

)]}
.

Thus, inserting this result into Eq. B.36, we obtain

uDO = −µDO

{
1− ln [cosh(|δφ|/4)]

ln [cosh(|δφw|/4)]

}
dlnc0

dx
, (B.37)
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where I have introduced µDO, the DO mobility normalized by the diffusion coefficient:

µDO ≡
κ

2
4ln

[
cosh

( |δφw|
4

)]
≡ 1

D

εrε0
η

(
kBT

e

)2

4ln

[
cosh

( |δφw|
4

)]

−−−−−→
λD/R

Du
→0

1

D

εrε0
η

kBT

e

(
kBT

e
|δφw|

)
.

(B.38)

The uniform DO velocity far outside of the diffuse layer is given by

u∞DO = −µDO
dlnc0

dx
. (B.39)

The excess concentration in the diffuse layer induces an excess osmotic pressure, and this pressure

varies along the length of the nanopore in the presence of an applied concentration differential

(or a locally variable centerline concentration). This additional pressure gradient is balanced by

a shear. As for the EO flow, outside of the diffuse layer the velocity is uniform, and the result in

the limit of no overlap (λD/R� 1) is a plug-like flow with a uniform value over the cross-section

given by Eq. B.39.

Radial integration of Eq. B.37 gives

QDO = πR2u∞DO + µDO
dlnc0

dx

∫ R

0

2πrdr
ln [cosh(δφ/4)]

ln [cosh(δφw/4)]
. (B.40)

The denominator of the integral in Eq. B.40 diverges as ln[Duref |σ|/(λref
D /Rmin)

√
c0] as Du/(λD/R)→

∞, while the integral of the numerator can be evaluated as

∫ R

0

2πrdrln

[
cosh

(
δφ

4

)]
= 2πR

∫ ∞

0

dZln

[
cosh

(
δφ

4

)]

= πR
λref
D

Rmin
√
c0

∫ |δφw|

0

dδφ
ln [cosh (δφ/R)]

sinh(δφ/2)
−−−−−→
λD/R

Du
→0

4πR
λref
D

Rmin
√
c0

∫ ∞

0

du
ln(coshu)

sinh(2u)

=
π3R

12

λref
D

Rmin
√
c0

.

We thus find

∫ R

0

2πrdr
ln [cosh(δφ/4)]

ln [cosh(δφw/4)]
= −π

3R

6
Duref

(λrefD /Rmin)
√
c0

Duref

ln
[

(λrefD /Rmin)
√
c0

Duref

] −−−−−→
λD/R

Du
→0

0.

Inserting this result into Eq. B.40, we obtain

QDO

πR2
= u∞DO = −µDO

dlnc0

dx
. (B.41)



141

B.4.2 Current and Ion Number Flux

The DO current is defined as

IDO ≡
∫ R

0

2πrdruDOn
PB
c . (B.42)

We note from Eqs. B.21, B.37, and B.38 that the DO velocity may be written as

uDO = −2κln

[
cosh(|δφw|/4)

cosh(|δφ|/4)

]
dlnc0

dx
. (B.43)

Inserting this expression for uDO and the Boltzmann distribution for the ionic charge density (Eq.

B.3) into Eq. B.42 and evaluating the integral in the limit of no overlap (λD/R � 1), we find

(with Eq. B.5)

IDO = S2πRκ
dlnc0

dx

λref
D

√
c0

Rmin

∫ |δφw|

0

d|δφ|ln
[

cosh(|δφw|/4)

cosh(|δφ|/4)

]
sinh|δφ|

sinh(|δφ|/2)
. (B.44)

Evaluating the integral, we find, in the limit (λD/R)/Du→ 0,

IDO = +S2πRDuref |σ|κ
dlnc0

dx
. (B.45)

Adding this result to Eq. B.31, we find

IDO + IEO

πR2
= S

2Duref |σ|
R

κ
dµcount

dx
. (B.46)

The DO ion number flux is defined as

JDO ≡
∫ R

0

2πrdruDOδc. (B.47)

Application of the same procedure used above results in

JDO = −2πRκ
dlnc0

dx

λref
D

√
c0

Rmin

∫ |δφw|

0

d|δφ|ln
[

cosh(|δφw|/4)

cosh(|δφ|/4)

]
cosh|δφ| − 1

sinh(|δφ|/2)
. (B.48)

Evaluation of the integral in the limit (λD/R)/Du→ 0 gives

JDO = −2πRDuref |σ|κ
dlnc0

dx
. (B.49)

The sum of Eqs. B.34 and B.49 is

JDO + JEO

πR2
= −2Duref |σ|

R
κ
dµcount

dx
. (B.50)
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B.5 Summary of Results

I compile the key results of this Appendix. Summing Eqs. B.10, B.27, and B.41, we find for the

total volumetric solvent flux

Q

πR2
= −L

(
dP0

dx
+ δnc

dφ0

dx

)
− µDO

dlnc0

dx
+ S|µEO|

dφ0

dx
, (B.51)

where the HP hydraulic conductivity L is given by

L(R) ≡ PeosmR
2

8
. (B.52)

Similarly, we sum Eqs. B.18 and B.50, including the additional contribution of bulk advection

Qc0, to find for the total advective ion number flux

Jadv

πR2
= −2Duref |σ|

R
κ
dµcount

dx
− µDO

(
dP0

dx
+ δnc

dφ0

dx

)
+

Q

πR2
c0, (B.53)

where κ is the ratio of the electro-/diffusio-osmotic ion transport to the electrophoretic/diffusive

transport and is given by

κ ≡ 2
εrε0
ηD

(
kBT

e

)2

≈ 0.45 (KCl in water, 293 K). (B.54)

Finally, we sum Eqs. B.14 and B.46 and the additional advective flux associated with the

deviation from electroneutrality Qδnc to find for the total advective current

Iadv

πR2
= S

2Duref |σ|
R

κ
dµcount

dx
+ S|µEO|

(
dP0

dx
+ δnc

dφ0

dx

)
+

Q

πR2
δnc. (B.55)
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Appendix C

SUPPLEMENTARY MATERIAL FOR CHAPTER 4:
MOLECULAR STREAMING AND ITS VOLTAGE CONTROL IN

ÅNGSTRÖM-SCALE CHANNELS

Abstract In this Appendix, I present supplementary material pertaining to the experiments and

theory presented in Chapter 4: Molecular Streaming and its Voltage Control in Ångström-Scale

Channels.

C.1 Experiments

C.1.1 Streaming current measurements

Figs. C.2a-c show the streaming current measurements as a function of the applied pressure for

a sample containing no channels (varying from 0 to 250 mbar). The pressure is applied via a

pressure pump (AF1, Elveflow), and ∆V is controlled via a patch-clamp amplifier (Axopatch

200B, Molecular Devices) with the ground electrode on the top side. Note that a positive value

of ∆P corresponds to a pressure applied through the hole in the SiN substrate, and a positive

∆V corresponds to an electric field directed into this hole. For a sample containing no channels,

we did not detect any significant current. Figs. C.1d-f compare the streaming current measured

for the control sample and a graphite device containing 200 channels. In the case of graphite

channels, the streaming current is four orders-of-magnitude larger than the noise measured in the

control sample.

To investigate the pressure dependence of the streaming current, we performed streaming cur-

rent measurements applying the pressure in successive increments on each side of the membrane.

The inversion of the pressure gradient fully reverts the streaming current sign as presented in

Extended Data Fig. C.2; this confirms the linear dependence of the streaming current on the

mechanical forcing.

The molecular streaming current Istr as a function of the pressure gradient ∆P/L is shown
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Figure C.1: Control sample test. a-c) Streaming current measured in a control sample without
any channels as a function of the pressure. We varied the applied voltage from −100 to +100 mV
(color coded from blue to red). d-f) Same measurements as for panels a-c (colored symbols) but
compared with the streaming current measured with 200 graphite channels (black symbols). The
streaming current is around 4 orders-of-magnitude larger, which confirms that channels remain
mechanically stable and are not delaminated under pressure.



145

Figure C.2: Gated pressure-driven current. Streaming current per channel plotted as a function of
∆P/L with ∆V ranging between −100 and +100 mV (color coded from blue to red with increasing
voltage difference), KCl concentration of 100 mM and hBN channels of length L = 16± 0.1 µm.

in Fig. C.3 for both graphite and hBN devices and for different KCl concentrations and applied

voltages. The streaming current varies linearly with the driving force ∆P/L.

C.2 Theory

C.2.1 Geometric Sensitivity

The effect of the reservoir geometry on the numerical model predictions is illustrated in Fig. C.4.

In this plot I show the influence of both the relative and absolute magnitudes of Γ` and Γr on the

predicted µ(∆V ) responses for both the low-friction (graphite-like) and high-friction (hBN-like)

configurations. Between the blue and yellow curves, I vary the absolute magnitudes of Γ` and Γr

by an order of magnitude while keeping the ratio Γ`/Γr fixed. We see that the magnitudes of Γ`

and Γr have no influence on the qualitative (linear or quadratic) behavior of the mobility curves

and have only a slight quantitative influence on the graphite configuration. I also vary the ratio

Γ`/Γr (red and purple versus blue and yellow curves). In the graphite response, we see that the

minima in the red and purple (Γ`/Γr = 1/8) and the blue and yellow (Γ`/Γr = 1/4) curves are
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Figure C.3: Gated pressure-driven current and material dependency. Streaming current per chan-
nel plotted as a function of ∆P/L for a KCl concentration varying from 1 to 300 mM and with
∆V ranging between −100 and +100 mV (color coded from blue to red with increasing voltage
difference). a-d) The channel length L for graphite is 5.7 ± 0.1 µm. e-h) For hBN, L = 16 ± 0.1
µm.

coincident, even as we vary the absolute magnitudes of Γ` and Γr by an order of magnitude. This

indicates that in the model, for fixed values of the friction coefficients, the asymmetry determines

the location of the minimum mobility in graphite. Likewise, in the hBN curves, we see that the

asymmetry is the only geometric characteristic that determines the slope of the µ(∆V ) curve.

As a final note on the model geometry, a one-dimensional model of the type that I have applied

here is strictly valid only if the slope verifies |dh/dx| � 1. Formally, this condition is not satisfied

deep in the reservoirs. However, variations of the various profiles in the reservoir occur over length

scales that are found to be at most of the order of the channel length L so that |dh/dx| < Γh0/L,

which remains very small. Note furthermore that reservoirs are included merely to qualitatively

capture the influence of (1) the device asymmetry and (2) the entrance/exit effects associated

with the abrupt change in anion mobility at the entrance and exit of the slit. Previous work using

this approach to include the reservoirs within a one-dimensional PNPS model was successful in

capturing the nontrivial qualitative behavior of the ionic current under applied pressures and

voltages (Chapter 3).
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Figure C.4: Effect of the asymmetry of the system. The plots show µ(∆V ) versus ∆V as a
function of asymmetry. a) Low-friction (graphite-like) behavior. In this plot, we take c = 100
mM, α+ = 1, α− = 0.7, µ+ = µbulk

+ , µ− = 0.5µbulk
− , and λ0/h0 = 1011 kg m−3 s−1, as in the

main text, while varying the geometric parameters Γ` and Γr, as indicated in the legend. b)
High-friction (hBN-like) behavior, c = 100 mM, α+ = 0.01, α− = 0.01, µ+ = µbulk

+ , µ− = 0.5µbulk
− ,

and λ0/h0 = 1013 kg m−3 s−1

C.2.2 Transition Behavior

In Figs. C.5a-c, I show the influence of the friction parameters for high, low, and intermediate

friction on the gated mobilities, and in Figs. C.5d-f I show the relative pressure dependence of

the normalized potential e∆φ/kBT along the channel axis. Here, ∆φ is defined as the potential

variation with an applied pressure ∆φ ≡ φ (∆V, ∆P = 30 mbarµm−1) − φ (∆V,∆P = 0). The

modification of the electrostatic potential, and hence the electric field, under coupled pressure-

voltage forcing contributes–along with the modification of the concentration field (Fig. 4.8)–to the

modification of the electrophoretic current under an applied pressure. Figs. 4.8 and C.5 illustrate

the complex interplay of competing interactions that contribute to the surprisingly simple linear

streaming response observed in the model.
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Figure C.5: Influence of the friction parameters on the model predictions. a-c) Plots show
µ(∆V ) versus ∆V for different concentrations (c = 100 mM, 300 mM, and 1 M) and friction
parameters. a) Low-friction (graphite-like) behavior. In this plot, we take α+ = 1, α− = 0.7,
µ+ = µbulk

+ , µ− = 0.5µbulk
− , and λ0/h0 = 1011 kg m−3 s−1. b) Intermediate-friction behav-

ior, α+ = 0.02, α− = 0.01, µ+ = µbulk
+ , µ− = 0.5µbulk

− , and λ0/h0 = 5 × 1012 kg m−3 s−1.
c) High-friction (hBN-like) behavior, α+ = 0.01, α− = 0.01, µ+ = µbulk

+ , µ− = 0.5µbulk
− , and

λ0/h0 = 1013 kg m−3 s−1. d-f) Pressure-induced variation of the normalized electric potential
∆φ ≡ φ (∆V, ∆P = 30 mbarµm−1) − φ (∆V, ∆P = 0) plotted as a function of the normalized
channel coordinate x/L for ∆V = −50, 0, and +50 mV. The dashed vertical lines segregate
the channel interior, x/L ∈ (−0.5, +0.5), from the left (x/L < −0.5) and right (x/L > +0.5)
reservoirs. The curves are colored according to the applied voltage from −50 (blue) to +50 mV
(orange). Panels d-f correspond to the parameters of panels a-c, respectively. g) Table of friction
parameters corresponding to the data shown in a-c. The table also shows the decomposition of
λw(c) into its three main components for the concentrations considered here.
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Appendix D

DUKHIN LENGTH AS ELECTROSTATIC HEALING LENGTH:
SOME RESULTS FROM KHAIR & SQUIRES (2008)

Abstract In this Appendix, I rederive some of the results presented in Khair & Squires (2008)

for the perturbation to an applied electric field induced by a discontinuity in surface charge–and

hence surface conductivity. These authors consider only the uniform electrolyte outside of the

diffuse layer on the assumption that the ‘healing length’ characterizing the spatial scale of the

perturbation to the applied field is much larger than the Debye length λD, which characterizes the

extent of the diffuse layer. Furthermore, they show that this healing length is given by the Dukhin

length, defined dynamically as the ratio of the surface conductivity κs to the bulk conductivity κb:

`Du ≡ κs/κb. Altogether, this suggests that surface charge discontinuities should have an ‘effective

extent’ into the bulk given by the Dukhin length, and that the influence of these discontinuities

may therefore be detectable well outside the diffuse layer. The treatment presented here differs

from that presented in Khair & Squires (2008) in that I begin directly with a more formal Green’s

function approach for developing an implicit integral solution, afterwards making a connection

to the development presented in Khair & Squires (2008) in terms of an ‘effective surface charge

distribution’. The Green’s function approach will lay the foundation for the scaling calculations

presented in Chapter 5, in which the ideas developed in Khair & Squires (2008) are applied in the

context of scanning ion conductance microscopy.

D.1 Problem Statement

The configuration considered in Khair & Squires (2008) is shown schematically in Fig. D.1.

Electrolyte is in contact with a solid substrate, forming a solid-liquid interface on the x− z plane,

and an external electric field E∞ = E∞x̂ is applied along the interface. Khair & Squires (2008)

consider a discontinuity in surface charge along the line x = 0 such that the surface charge is zero

for x < 0 and nonzero for x > 0. The surface charge density is independent of z, making the

problem translationally invariant and hence effectively two-dimensional.
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Figure D.1: Schematic showing the configuration considered in Khair & Squires (2008). An
electrolyte is in contact with a solid substrate, forming a solid-liquid interface on the x− z plane.
There is a discontinuity in the surface charge density, and hence in the surface conductivity, along
the line x = 0, with zero surface charge for x < 0 and nonzero surface charge for x > 0, and
an external field E∞ = E∞x̂ is applied along the interface. The blue arrows indicate currents
entering and leaving a control volume of infinitesimal length δx and height h much smaller than
the healing (Dukhin) length `Du and larger than the characteristic extent of the diffuse layer, the
Debye length λD: λD < h� `Du.



151

In the treatment of Khair & Squires (2008), it is assumed that the perturbation to the applied

electric field induced by a discontinuity in surface charge occurs over a healing length `H that is

much larger than the characteristic extent of the diffuse layer, the Debye length λD: `H � λD.

In this case, we need not resolve the detailed structure of the diffuse layer, instead treating the

enhanced electrophoretic conductivity therein as a surface conductance. As a diffuse layer forms

only when the surface charge is nonzero, the surface conductivity is nonzero only for x > 0.

Denoting this nonzero value as κ0
s, the surface conductivity distribution considered in Khair &

Squires (2008) is given by

κs(x) = κ0
sΘ(x), (D.1)

where Θ(x) is the Heaviside theta function. Furthermore, as we do not resolve the diffuse layer,

we may assume that the salt concentration, and hence the bulk conductivity κb, is uniform.

In order to understand the influence of the variable surface conductivity on the field structure,

we consider the expression of charge conservation at steady state along the solid-liquid interface.

We must have that the negative divergence of current along the surface is balanced by vertical

current leaving the surface (and vice versa). This may be understood intuitively by summing the

currents leaving the control volume illustrated in Fig. D.1 and setting the result to zero at steady

state. The result is

Ey|y=0 + `Du
d

dx
[Kλ`Du

(x)Ex|y=0] = 0, (D.2)

where I have introduced the normalized surface conductivity distribution Kλ`Du
(x) ≡ κs(x)/κ0

s,

taken κ0
s ≡ κs(x→∞) to be the maximum, asymptotic value of κs(x) far from the discontinuity,

and applied the dynamic definition of the Dukhin length discussed in Appendix A (Eq. A.46):

`Du ≡ κ0
s/κb. As demonstrated in Appendix A, this definition is equivalent to the definition in

terms of the surface charge density magnitude |σ|, `Du ≡ |σ|/ec, so long as Poisson-Boltzmann

equilibrium theory is adequate in describing the structure of the diffuse layer. The subscript λ`Du

on the normalized surface conductivity distribution Kλ`Du
(x) refers to the spatial extent of the

region of surface charge variation; the surface charge variation becomes an apparent discontinuity

in the limit λ→ 0, and we have K0(x) = Θ(x), corresponding to the case considered in Khair &

Squires (2008).

We must impose steady state continuity of the current density i = κbE in the bulk: ∇ · i = 0.

As we neglect the electrolyte dynamics in the bulk, assuming a constant bulk conductivity κb, this
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reduces to the condition that the electric field be solenoidal:

∇ · E = 0. (D.3)

Furthermore, the field must return to its imposed value far from the discontinuity:

E −−−→
r→∞

E∞, (D.4)

where r ≡
√
x2 + y2 is the distance from the discontinuity.

Eqs. D.2 through D.4 fully characterize the problem; however, before continuing, we non-

dimensionalize the problem by introducing the following rescalings: r → `Dur; E → E∞E; φ →
`DuE∞φ. In the preceding, φ is the electrostatic potential. Furthermore, it will be convenient in

developing the Green’s function solution to partition the electrostatic potential into a portion due

to the applied field and an additional portion φ′ representing the perturbation to the applied field

induced by the surface charge discontinuity. With these modifications our governing equations

become

∇2φ′ = 0, (D.5)

φ′ −−−→
r→∞

0, (D.6)

∂yφ
′|y=0 +

d

dx
[Kλ(x)∂xφ|y=0] = 0, and (D.7)

φ = φ′ − x+ f(x, y). (D.8)

Note, in Eq. D.7, that the perturbed field φ′ appears in the first term on the LHS, while the total

field φ appears in the second. In Eq. D.8, f(x, y) is a harmonic function verifying the conditions

∇f → 0 as r → ∞ and, from Eq. D.7, ∂yf(x, y)|y=0 = 0. As we will see below, it is necessary

to include this term because of the logarithmic divergence of the fundamental solution (Green’s

function) to the Laplace equation in two dimensions, and its presence will have no influence on

the solution.

Before proceeding to the Green’s function solution of Eqs. D.5 through D.8, we note that

this system of equations becomes scale invariant when the spatial coordinate is rescaled by the

Dukhin length only in the limit λ → 0. This indicates that `Du is the characteristic scale of the

perturbation to the applied field, and hence equal to the healing length `H introduced above, when



153

the extent of the discontinuity is much smaller than `Du (λ� 1). As the Dukhin length sets the

lower limit on the magnitude of the healing length, we learn first of all that our description is valid

in the limit `Du/λD � 1. More importantly, we learn that a rapid variation in surface charge over

a length scale much smaller than the Dukhin length (an apparent surface charge discontinuity) is

expressed by a disturbance in the bulk that is of the order of `Du. This immediately suggests the

possibility of resolving small scale surface charge features on substrates submerged in electrolytes,

and the applications to surface charge microscopy are discussed in detail in Chapter 5.

D.2 Green’s Function Solution

D.2.1 Green’s Theorem and Formal Inversion

We begin with Green’s theorem for the Laplacian operator:

∫

Ω

ddr
(
f∇2g − g∇2f

)
=

∮

∂Ω

dΣΣΣ · (f∇g − g∇f) , (D.9)

where f and g are arbitrary functions of the spatial coordinates, Ω is the spatial domain, here the

upper half plane, ∂Ω is the domain boundary, and dΣΣΣ is a surface element with direction given

by the outward normal. We define a Green’s function G′ satisfying

∇2
rG
′(r, r0) = ∇2

r0
G′(r, r0) = −δ(3)(r− r0). (D.10)

We will choose convenient boundary conditions for the Green’s function in what follows. We insert

the Green’s function and the perturbation φ′ into Green’s theorem, Eq. D.9, making use of Eqs.

D.5 and D.10, and change the variable of integration to r0 to obtain

φ′(r) =

∮

∂Ω

dΣΣΣ0 · (G′∇φ′ − φ′∇G′) . (D.11)

From boundary condition D.6, the second term on the RHS vanishes on the boundary at infinity,

and we can similarly eliminate the first term by requiring that G′(r, r0) → 0 as |r0| → ∞ or

|r| → ∞. We then find

φ′(r) =

∫ +∞

−∞
dx0 [φ′(x0, 0)∂y0G

′|y0=0 −G′|y0=0∂y0φ
′|y0=0] . (D.12)

In order to connect with the boundary condition at y = 0 (Eq. D.7), which contains ∂yφ
′ directly,

we would like to eliminate the first term on the RHS of Eq. D.12 by setting ∂yG
′|y=0 = 0. However,
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in imposing Neumann conditions on the Green’s function, we must be careful not to violate the

divergence theorem, which, from Eq. D.10, requires

−1 = − lim
L→∞
〈∂yG′|y=0〉L × 2L+ lim

R→∞

∫ π

0

Rdθ∂rG
′|r=R, (D.13)

where 〈 〉L indicates an average over x− x0 ∈ (−L,+L). We anticipate that the Green’s function

will be proportional to the logarithm such that the second term on the RHS will be a constant,

independent of R. This constant may be set to−1 by proper choice of the proportionality constant.

The first term on the LHS will remain finite as L → ∞ only if 〈∂yG′|y=0〉 = 0. Thus, we may

impose a uniform value of zero for the y-derivative of the Green’s function on the x-axis. The

solution may therefore be decomposed as

φ(r) = −x−
∫ +∞

−∞
dx0G(x, y;x0, 0)∂y0φ|y0=0, (D.14)

where we have introduced a shifted Green’s function

G(x, y;x0, y0) ≡ G′(x, y;x0, y0)− f(x, y)∫ +∞
−∞ dx0∂y0φ|y0=0

. (D.15)

As f is a harmonic function, this Green’s function still satisfies Eq. D.10. However, this Green’s

function no longer must vanish as r →∞. Instead, we need only require that the gradient vanish

at infinity to ensure that we match the applied electric field. In summary, we must solve for the

Green’s function satisfying

∇2
r,r0
G(r, r0) = −δ(3)(r− r0), (D.16)

∇r, r0G(r, r0) −−−−−→
r, r0→∞

0, and (D.17)

∂y, y0G(r, r0)|y, y0=0 = 0. (D.18)

D.2.2 Green’s Function and the Effective Surface Charge Density

The fundamental solution to the Laplace equation in two dimensions is

G1(r, r0) = − ln
[
(x− x0)2 + (y − y0)2]

4π
. (D.19)

That this verifies Eq. D.16 is readily verified by direct calculation of ∇2G1 for |r− r0| 6= 0, along

with application of the divergence theorem. Furthermore, its verification of Eq. D.17 is readily
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apparent as the gradient of the logarithm decays as 1/|r − r0|. However, this Green’s function

does not satisfy the boundary condition given in Eq. D.18. Applying the method of images, we

add to the Green’s function given in Eq. D.19 its reflection about the x-axis:

G2(r, r0) ≡ G1(r′, r0) ≡ G1(r, r′0) ≡ − ln
[
(x− x0)2 + (y + y0)2]

4π
, (D.20)

where r′ ≡ (x,−y) and r′0 ≡ (x0,−y0). The full Green’s function is thus given by

G(r, r0) = − ln
[
(x− x0)2 + (y − y0)2]+ ln

[
(x− x0)2 + (y + y0)2]

4π
, (D.21)

which, by direct calculation, can be shown to satisfy the boundary conditions given in Eqs. D.17

and D.18. Furthermore, as r′, r′0 /∈ Ω, this Green’s function still verifies Eq. D.16 on the upper

half plane.

Finally, we evaluate Eq. D.21 along y0 = 0, insert the result into Eq. D.14, and apply the

boundary condition given in Eq. D.7 to obtain

φ(r) = −x−
∫ +∞

−∞
dx0

ln
[
(x− x0)2 + y2

]

2π

d

dx0

[Kλ(x0)∂x0φ|y0=0] . (D.22)

We make the connection to the treatment of Khair & Squires (2008) by noting that Eq. D.7

may be combined with the Gaussian boundary condition for the normal electric field in the vicinity

of the charged surface of a conducting or thick insulating material, E · n̂ = σ/ε, to reinterpret the

problem in terms of an effective surface charge density:

σeff(x) ≡ d

dx
[Kλ(x)∂xφ|y=0] . (D.23)

We may then obtain an integral equation for this effective surface density by inserting Eq. D.23

into Eq. D.22 and then inserting this decomposition for the electrostatic potential back into Eq.

D.23. The result is

σeff(x) +
1

π

∫ +∞

−∞
dx0

[
K ′λ(x)

x− x0

− Kλ(x)

(x− x0)2

]
σeff(x0) +K ′(x) = 0, (D.24)

where here a prime indicates differentiation with respect to x. The effective surface charge density

is of course related to the electrostatic potential via, from Eqs. D.22 and D.23,

φ(r) = −x−
∫ +∞

−∞
dx0

ln
[
(x− x0)2 + y2

]

2π
σeff(x0). (D.25)
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We see from Eq. D.22 why it was necessary to include f(x, y) in Eq. D.25. As r → ∞,

φ→∞ owing to the divergence of the logarithmic Green’s function in two dimensions; however,

E ≡ −∇φ→ x̂ = E∞, which is all that is required from a physical point of view.

Finally, we note that, whereas Khair & Squires (2008) compute the solution for the electrostatic

potential by discretizing Eqs. D.24 and D.25, we find it easier to numerically solve the PDE

statement of the problem (Eqs. D.5 through D.8) directly via the finite element method (FEM).

In Chapter 5 we explore the applications of the results of Khair & Squires (2008) to surface charge

microscopy; in this case, the Green’s function method is used to develop quasi-analytical scalings

for the dependence of the electric field on the setup geometry and the Dukhin number.

D.3 Khair & Squires (2008) Solution

Finally, I present for completeness the FEM solution of the Khair & Squires (2008) problem for a

diffuse transition from zero to nonzero surface conductance given by

Kλ(x) =
1 + tanh(2x/λ)

2
, (D.26)

where λ is the transition length in units of `Du. Note that this is the same functional dependence

used to model the transition in Khair & Squires (2008), where they take λ = 2/15 ≈ 0.133.

Figs. D.2a-c show the structure of the electrostatic potential (colored equipotential lines) and

electric field (solid black field lines) in the vicinity of the ‘discontinuity’ at x = 0 for λ = 2 (Fig.

D.2a), λ = 0.5 (Fig. D.2b), and λ = 0.1 (Fig. D.2c). The corresponding normalized surface

conductance distributions are shown in Figs. D.2d-f. We see that a value of λ > 1 leads to a

diffuse perturbation to the applied electric field, with a healing length likewise larger than unity

(Fig. D.2a), whereas the structure of the perturbation appears to become independent of λ as

λ→ 0 (Figs. D.2b and c). This is consistent with our above inference, that the ‘apparent size’ of

a transition much smaller than the Dukhin length scales with the Dukhin length in the bulk.

Finally, we note that the magnitude of the perturbation to the applied field becomes stronger

as λ → 0. This is indicated by the increased density of the field lines in the vicinity of x = 0 in

Figs. D.2b and c.
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Figure D.2: Structure of electrostatic potential and electric field in the presence of an applied
electric field and in the vicinity of an increasingly confined (from left to right) transition from zero
to nonzero surface conductance. Panels a-c) show the equipotential (colored) and field (solid black)
lines in the vicinity of a transition from zero to nonzero surface conductance centered at x = 0 for
a transition length λ = 2 (panel a), λ = 0.5 (panel b), and λ = 0.1 (panel c). Panels d through f
show the corresponding normalized surface conductance profiles Kλ(x), plotted according to Eq.
D.26.
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Delgado, A. V., Gonzàlez-Caballero, F., Hunter, R. J., Koopal, L. K., & Lyklema, J. 2005.

Measurement and Interpretation of Electrokinetic Phenomena. Pure Appl. Chem., 77, 1753–

1805.

Dorwling-Carter, L., Aramesh, M., Han, H., Zambelli, T., & Momotenko, D. 2018. Combined

ion conductance and atomic force microscope for fast simultaneous topographical and surface

charge imaging. Anal. Chem., 90, 11453–11460.

Eijkel, J. C. T., & van den Berg, A. 2005. Nanofluidics: what is it and what can we expect from

it? Microfluid. Nanofluid., 1, 249–267.

Esfandiar, A., Radha, B., Wang, F. C., Yang, Q., Hu, S., Garaj, S., Nair, R. R., Geim, A. K., &

Gopinadhan, K. 2017. Size effect in ion transport through angstrom-scale slits. Nature, 358,

511–513.

Fair, J. C., & Osterle, J. F. 1971. Reverse electrodialysis in charged capillary membranes. J.

Chem. Phys., 54, 3307–3316.



160

Feng, J., Graf, M., Liu, K., Ovchinnikov, D., Dumcenco, D., Heiranian, M., Nandigana, V., Aluru,

N. R., Kis, A., & Radenovic, A. 2016. Single-layer MoS2 nanopores as nanopower generators.

Nature, 536, 197–200.

Fornasiero, F., Park, H. G., Holt, J. K., Stadermann, M., Grigoropoulos, C. P., Noy, A., & Bakajin,

O. 2008. Ion exclusion by sub-2-nm carbon nanotube pores. Proc. Natl. Acad. Sci. U.S.A., 105,

17250–17255.

Frament, C. M., & Dwyer, J. R. 2012. Conductance-based determination of solid-state nanopore

size and shape: An exploration of performance limits. J. Phys. Chem. C, 116, 23315–23321.

Fu, Y. M., Wan, C. J., Zhu, L. Q., Xiao, H., Chen, X. D., & Wan, Q. 2017. Hodgkin-Huxley

artificial synaptic membrane based on protonic/electronic hybrid neuromorphic transistors. Adv.

Biosyst., 2, 1700198.

Fumagalli, L., Esfandiar, A., Fabregas, R., Hu, S., ares, P., Janardanan, A., Yang, Q., Radha, B.,

Taniguchi, T., Watanabe, K., Gomila, G., Novoselov, K. S., & Geim, A. K. 2018. Anomalously

low dielectric constant of confined water. Science, 360, 1339–1342.

Garaj, S., Hubbard, W., Reina, A., Kong, J., Branton, D., & Golovchenko, J. A. 2010. Graphene

as subnanometre trans-electrode membrane. Nature, 467.

Geim, A. K., & Grigorieva, I. V. 2013. Van der Waals heterostructures. Nature, 499, 419–425.

Geismann, C., Yaroshchuk, A., & Ulbricht, M. 2007. Permeability and electrokinetic charac-

terization of poly(ethylene terephthalate) capillary pore membranes with grafted temperature-

responsive polymers. Langmuir, 23, 76–83.

Graf, M., Lihter, M., Unuchek, D., Sarathy, A., Leburton, J.-P., Kis, A., & Radenovic, A. 2019.

Light-enhanced blue energy generation using MoS2 Nanopores. Joule, 3, 1549–1564.

Hansma, P. K., Drake, B., Marti, O., Gould, S. A., & Prater, C. B. 1989. The scanning ion-

conductance microscope. Science, 243, 641–643.



161

He, X., Zhang, K., Li, T., Jiang, Y., Yu, P., & Mao, L. 2017. Micrometer-scale ion current

rectification at polyelectrolyte brush-modified micropipets. J. Am. Chem. Soc., 139, 1396–

1399.

Hong, S., , Constans, C., Martins, M. V. S., Seow, Y. C., Carriò, J. A. G., & Garaj, S. 2017.
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RÉSUMÉ

La recherche en nanofluidique est motivée par l’intérêt intrinsèque des nouveaux phénomènes de transport observables
uniquement à cette échelle, et par les applications qui en résultent comme la production d’énergie, le dessalement,
l’analyse macromoléculaire et la microscopie. Deux points clés pour le développement de telles technologies sont : 1) le
contrôle du transport ionique non-linéaire et 2) la caractérisation des propriétés électrostatiques, frictionnelles et autres
des interfaces solide-liquide avec des solutions électrolytiques. Dans ce manuscript, je m’intéresse à la sélectivité ionique
ainsi qu’au transport non-linéaire des ions dans les nanopores. Je développe une théorie cohérente qui permet de ratio-
naliser les travaux expérimentaux précédents et ouvre des nouvelles voies pour le dessalement et la génération d’énergie.
J’explore ensuite chacun des deux points clés cites précédemment. D’abord, j’étudie les limites de l’approche en mi-
lieu continu à travers l’exemple du couplage non-linéaire observé pour le transport dans des canaux qui font quelques
ångström d’épaisseur. Dans ce cadre, je montre que l’équation de Navier-Stokes ne permet plus de décrire correctement
la dynamique des fluides (à cette échelle), et je mets en évidence l’importance des propriétés de friction du matériau qui
confine le liquide. Enfin, j’explore l’effet des propriétés de surface sur le champ électrique appliqué en Microscopie à con-
ductance ionique à balayage (Scanning Ion Conductance Microscopy). Je propose une nouvelle approche pour l’imagerie
de la charge de surface qui pourrait améliorer considérablement la résolution spatiale des techniques actuelles.

MOTS CLÉS

nanofluidique, ångströfluidique, non-linéaire, transport, hydrodynamique, microscopie

ABSTRACT

Nanofluidics research is motivated both by intrinsic interest in the novel transport phenomena observable only at the
(sub-)nanometric scale, and by applications including energy generation, desalination, macromolecular analysis, and mi-
croscopy. Two key considerations in the development of such technologies are 1) the control of nonlinear ionic transport
and 2) the characterization of electrostatic, frictional, and other interactions of solid-liquid interfaces with bulk electrolyte
solutions. In this manuscript, I develop a coherent theory of ion-selectivity and nonlinear ionic transport in nanopores
& 1 nm in diameter, rationalizing previous experimental work and offering new routes in the development of desalination,
energy generation, and other exotic functionalities. I then explore each of the above considerations separately. First, I ex-
plore the limits of continuum theory in rationalizing nonlinear coupled transport observed experimentally in ångströmetric
channels, revealing the irrelevance of the Navier-Stokes description of the fluid dynamics at this scale and highlighting
the role of the frictional characteristics of the confining material. Finally, I examine the surface-controlled modification
of applied electric fields in scanning ion conductance microscopy, proposing a new approach for the imaging of surface
charge that may substantially improve on the spatial resolution of current techniques.
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nanofluidics, ångströfluidics, nonlinear, transport, hydrodynamics, microscopy


