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Chapter 1

Introduction (francgais)

1.1 Contexte

Dans le cadre des études de siireté pour les réacteurs nucléaires, les codes de calcul
(ou simulateurs numériques) sont essentiels pour comprendre, modéliser et prévoir
des phénomeénes physiques. Ces outils prennent en entrée un grand nombre de parametres
caractéristiques du phénomeéne étudié ou liés a sa modélisation physique et numérique. Les
informations relatives a certains de ces parametres sont souvent limitées ou incertaines, cela
peut étre dii & une absence ou manque de données, des erreurs de mesure ou de modélisation
ou encore a une variabilité naturelle des parametres. Ces parametres d’entrée, et par
conséquent la sortie du simulateur sont donc entachés d’une certaine incertitude. On
parle alors de propagation des incertitudes. Il est donc important de considérer non seulement les
valeurs nominales des entrées, mais aussi I’ensemble des valeurs possibles dans leurs domaines de
variation. Une prise en compte des incertitudes des entrées ainsi que leurs effets sur 'incertitude
de la sortie est donc une étape importante pour les études de siireté.

La démarche générale de traitement des incertitudes dans les codes de calcul a fait ’objet
de nombreux travaux dans les derniéres décennies. Dans la littérature générale consacrée au
sujet (De Rocquigny et al., 2008; Ghanem et al., 2017), la démarche méthodologique usuelle
se décompose en quatre étapes clés. Cette démarche générique est illustrée par la Figure 2.1.
La premiére étape, étape A, est la spécification du probléme, qui consiste a définir le
systéme & étudier (modele, simulateur ou encore processus de mesure), identifier les variables
d’entrée incertaines ou fixées, ainsi que les quantités d’intérét a étudier (qui dérivent des vari-
ables de sortie du modele). L’étape B consiste ensuite 4 quantifier les incertitudes des
variables d’entrée. Dans le cadre probabiliste, les incertitudes des variables d’entrée aléatoires
sont modélisées par des distributions de probabilités totalement ou partiellement connues (Hel-
ton, 1997; Oberkampf et al., 2001). Le choix de ces modeles probabilistes dépend des éventuelles
données disponibles, des avis des experts ou encore de données bibliographiques. Récemment
Bae et al. (2004) et Swiler et al. (2009) ont proposé d’autres méthodes de quantification pour
les incertitudes épistémiques, i.e. liées au manque de connaissance plus qu’au caractere aléatoire
du phénomene. Ces méthodes reposent entre autres sur la théorie de [’évidence aussi appelée
théorie de Dempster-Shafer (Dempster, 1967; Shafer, 1976). Dans I’étape C, les incertitudes
sont propagées : I'objectif est de quantifier comment les incertitudes en entrée se répercutent
sur la ou les sorties prédites par le modele, et plus précisément sur la quantité d’intérét. Cette
quantité d’intérét qui dérive des sorties du modele est étroitement liée aux objectifs de I’étude.
Il peut s’agir de la moyenne ou de la dispersion de la sortie, d'une probabilité de dépassement

11



12 CHAPTER 1. INTRODUCTION (FRANCAIS)

d’une valeur critique ou encore d’un quantile. Différentes approches spécifiques, déterministes ou
reposant sur la simulation Monte-Carlo, ont été développées en fonction de la quantité d’intérét
considérée (Cannamela, 2007). En parallele de la propagation des incertitudes, une analyse
de sensibilité, étape C’ de la démarche, peut aussi étre réalisée. L’analyse de sen-
sibilité vise a déterminer comment la variabilité des parameétres en entrée influe
sur la valeur de la sortie ou de la quantité d’intérét (Saltelli et al., 2004; Iooss, 2011).
Elle permet ainsi d’identifier et éventuellement quantifier, pour chaque parametre d’entrée ou
groupe de parametres, sa contribution a la variabilité de la sortie. L’analyse de sensibilité peut
avoir différents objectifs : hiérarchisation des parameétres en entrées par ordre d’influence sur la
variabilité de la sortie, ou encore séparation des entrées en deux groupes, celles jugées significa-
tivement influentes sur Iincertitude de la sortie et celles dont 'influence peut étre négligée. Cette
séparation des variables d’entrée en deux groupes est appelée criblage (ou screening). Les résul-
tats de I'analyse de sensibilité apportent des informations précieuses sur l'influence des entrées
incertaines, la compréhension du modele et du phénomene physique sous-jacent. Ils peuvent aussi
étre utilisés pour diverses fins : réduction des incertitudes en ciblant les efforts de caractérisation
sur les entrées les plus influentes, simplification du modele en fixant les entrées non-influentes a
des valeurs de référence ou encore validation du modele vis-a-vis du phénoméne modélisé. Ces
enjeux expliquent les nombreux travaux récents autour d’outils et méthodes statistiques pour
I’analyse de sensibilité. L’une des méthodes les plus classiquement utilisées dans les applications
industrielles repose sur une décomposition de la variance de la sortie (Hoeffding, 1992; Sobol,
1993), ou chaque terme de la décomposition représente la part de la contribution d’une entrée ou
d’un groupe d’entrées a la variance de la sortie. Cette approche conduit & ’obtention des indices
de Sobol’. Ces indices facilement interprétables présentent en pratique plusieurs inconvénients
(estimation cofiteuse en nombre de simulations, information partielle apportée par la variance).
Pour pallier ces limitations, d’autres approches basées sur des mesures de dépendance ont
récemment été proposées (Da Veiga, 2015). Ces mesures présentent de nombreux avantages, qui
seront exposés dans ce qui suit, et ont donné des résultats prometteurs sur plusieurs applications
industrielles (De Lozzo and Marrel, 2016b).

Dans le cadre de ’analyse de sensibilité des simulateurs numériques, les travaux
réalisés dans cette thése ont pour objectif de proposer des nouvelles méthodes statis-
tiques innovantes basées sur les mesures de dépendance, permettant de répondre
efficacement aux problématiques posées par leur mise en ceuvre sur des applications
industrielles.

1.2 Analyse de sensibilité globale basée sur les mesures de
dépendance

Comme mentionné précédemment, les méthodes de 1’Analyse de Sensibilité (AS) visent & déter-
miner la facon dont la variabilité des entrées d’'un modele influe sur la variabilité de sa sortie.
On distingue deux grands domaines : I’Analyse de Sensibilité Locale (ASL) et I’Analyse
de Sensibilité Globale (ASG).

L’analyse de sensibilité locale étudie la variation de la sortie pour des petites variations
des entrées autour de leurs valeurs de référence (aussi appelées valeurs nominales). Parmi les
méthodes pour ’ASL, les principales sont celles basées sur les dérivées partielles (Alam et al.,
2004; Pujol, 2009) et celles basées sur la modélisation adjointe (Hall et al., 1982; Cacuci, 1981,
2003). La premiére consiste a estimer les dérivées partielles du modele numérique par rapport a
chaque entrée, au point nominal. Ces dérivées partielles représentent 'effet de la perturbation
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Etape C : Propagation des
sources d’incertitude

A4

Etape A : Spécification du probléme
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Figure 1.1 — Schéma général de la méthodologie de traitement des incertitudes issu de De Roc-
quigny et al. (2008).

de chaque entrée sur la perturbation totale de la sortie et sont directement interprétées comme
des indices de sensibilité locale relatifs a chaque entrée. L’estimation de ces indices peut étre
réalisée grace a des techniques de planification d’expériences de type One-At-a-Time (OAT)
qui consistent a ne perturber qu’une entrée a la fois en fixant les autres entrées a leurs valeurs
nominales (Morris, 1991). L’approche basée sur la modélisation adjointe est quant & elle une
méthode purement analytique qui peut étre utilisée lorsqu’une formule analytique du modele est
explicitement connue. La modélisation adjointe est intrusive d’un point de vue numérique, ce
qui signifie que son application nécessite le développement d’'un modele de calcul des dérivées
partielles suivant chaque direction. Cette méthode n’est donc pas utilisable dans le cas de
simulateurs de type “boite noire” ol seules les entrées et sorties du modeéle sont accessibles.

Ces méthodes d’ASL ne prennent donc pas en compte les incertitudes des variables d’entrée
dans I’ensemble de leur domaine de variation. Pour évaluer et quantifier I'impact de 'incertitude
globale de chaque entrée sur la sortie, des méthodes statistiques d’Analyse de Sensibilité
Globale (ASG) ont été développées. Contrairement & ’ASL, I'approche globale nécessite de
caractériser l'incertitude des entrées sur leur domaine de variation (étape B, Figure 2.1), via par
exemple I'attribution d’une loi de probabilité au vecteur des entrées. Les méthodes statistiques
pour ’ASG reposent ensuite le plus souvent sur des simulations de type Monte-Carlo du modele,
i.e. sur un échantillonnage aléatoire des variables d’entrées selon leurs distributions de proba-
bilités. Parmi les méthodes usuelles pour 'ASG, figurent les mesures d’ASG basées sur les
dérivées qui conduisent a ’obtention des indices DGSM, pour Derivative-based Global Sensitivity
Measures (Kucherenko et al., 2009; Kucherenko and Iooss, 2017; Sobol and Kucherenko, 2010).
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La construction de ces indices est basée sur une généralisation des mesures de sensibilité locale
en moyennant les dérivées partielles par rapport a chaque entrée sur son domaine de variation
Cependant, I'estimation de ces indices nécessite un grand nombre d’appels au code, ce qui limite
considérablement son utilisation dans le cas de modele cotiteux!. Pour pallier cet inconvénient,
des stratégies d’estimation basées sur I'utilisation de métamodeles pour approximer la sortie du
modele ont été proposées. On peut citer les travaux de Sudret and Mai (2015) basés sur des
polynoémes du chaos ou encore ceux de De Lozzo and Marrel (2016a) utilisant des métamodéles
processus Gaussiens. Une autre approche classiquement utilisée pour ’ASG repose sur la dé-
composition de la variance de la sortie, ou chaque terme de la décomposition représente la part
de la contribution d’une entrée ou d’un groupe d’entrées a la variance de la sortie. Initialement
introduite dans Hoeffding (1948a), cette décomposition est communément appelée : décomposi-
tion ANOVA (pour ANalysis Of VAriance). Des indices de sensibilités sont directement issus de
cette décomposition : il s’agit des indices de Sobol” (Sobol, 1993), mentionnés précédemment.
Les indices de Sobol’ ont 'avantage d’étre facilement interprétables mais leurs expressions
font intervenir des intégrales multidimensionnelles dont I'estimation par des méthodes de type
Monte-Carlo nécessitent en pratique un trés grand nombre de simulations du modele (plusieurs
dizaines de milliers). Leur estimation directe est donc souvent impossible dans le cas de simula-
teurs cotliteux en temps de calcul. Plusieurs travaux ont été développés pour réduire les efforts
d’estimation de ces indices. D’autres approches supposant des régularités supplémentaires du
modele et basées sur des méthodes de décomposition spectrale ont aussi été proposées. On peut
citer par exemple la méthode FAST (FAST pour Fourier Amplitude Sensitivity Testing) intro-
duite dans Cukier et al. (1973) puis étudiée dans Lemaitre (2014) et Tooss and Lemaitre (2015).
Des méthodes comme E-FAST (FEzxtended Fourier Amplitude Sensitivity Testing) et RBD-FAST
(Random Balance Design Fourier Amplitude Sensitivity Testing) respectivement introduites dans
Saltelli et al. (1999) et Tarantola et al. (2006) proposent des améliorations de la méthode FAST
classique. Le nombre d’appels au modele avec ces méthodes demeure néanmoins important. La
aussi, une alternative possible consiste & estimer ces indices via des métamodeles : 1'estimation
des indices de Sobol’ par des polynémes de chaos, des polynémes locaux ou encore des processus
Gaussiens ont été respectivement proposés dans Sudret (2008), Da Veiga et al. (2009) et Marrel
et al. (2009). Ces approches nécessitent cependant d’arriver & construire un métamodele suffisam-
ment prédictif, ce qui peut s’avérer compliqué dans le cas de simulateurs fortement non-linéaires
et/ou dans le cas d’un grand nombre de variables d’entrées. Par ailleurs, indépendamment des
difficultés liées a leur estimation, les indices de Sobol” ne considerent que la variance de la sortie
et n’évaluent donc pas l'influence de chaque entrée sur I’ensemble de la loi de probabilité de la
sortie. Ils ne sont donc pas équivalents a 'indépendance entre la sortie et chacune des entrées
(exception faite des indices de Sobol’ totaux).

Les mesures de dépendance, récemment introduites pour I’ASG par Da Veiga (2015),
permettent de pallier plusieurs des limitations listées précédemment. Tout d’abord, ces mesures
quantifient d’un point de vue probabiliste la dépendance entre chaque entrée et la sortie. Ainsi la
nullité d’une mesure de dépendance entre une entrée et la sortie est équivalente a I’'indépendance
de ces deux variables aléatoires. Ces mesures peuvent étre utilisées d’un point de vue quantitatif
pour hiérarchiser les entrées par ordre d’influence sur la sortie, aussi bien que d’un point vue
qualitatif, pour effectuer un criblage des entrées, via des tests statistiques par exemple (De Lozzo
and Marrel, 2016b). L’utilisation de tests statistiques pour identifier les variables non influentes
offre un cadre statistique et mathématique plus rigoureux et précis qu'une simple appréciation
et comparaison des mesures de sensibilité. Cela évite en particulier le choix arbitraire d’une

LCofiteux fait ici référence & la durée nécessaire pour chaque simulation du modéle ou code de calcul, qui
limite le nombre total de simulations possibles.
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valeur seuil pour les mesures de sensibilité, au-dela de laquelle une variable d’entrée est con-
sidérée comme influente. Parmi les mesures de dépendance existantes dans la littérature, on
peut citer tout d’abord les mesures de dissimilarité introduites par Baucells and Borgonovo
(2013). L’idée de construction de ces mesures est basée sur la comparaison de la distribution de
probabilité de la sortie avec sa distribution lorsqu’une entrée donnée est fixée. Ces mesures appar-
tiennent en fait & une plus large classe basée sur la f-divergence de Csiszar (Csiszar, 1972). Cette
derniére regroupe plusieurs notions de dépendance plus anciennes comme la distance d’Hellinger
(Hellinger, 1909), la divergence de Kullback-Leibler (Kullback and Leibler, 1951) ou encore la
distance de variation totale (Rudin et al., 1992). D’ailleurs, Da Veiga (2015) souligne aussi les
liens entre la f-divergence de Csiszar et I'information mutuelle introduite par Shannon (1948)
ainsi qu’avec I'information mutuelle du carré de perte (Suzuki et al., 2009), ces mesures peuvant
étre interprétées comme des mesures de dissimilarité. A noter que les indices de Sobol’ peuvent
aussi étre définis comme des mesures de dissimilarité (Chabridon, 2018). En dépit de leurs pro-
priétés théoriques intéressantes, l'estimation des mesures basées sur la f-divergence de Csiszar

s’avere en pratique cofiteuse en nombre de simulations, en particulier en grande dimension?.

D’autres mesures de dépendance dont I’estimation souffre moins du “fléau de la dimension”
ont aussi été proposées par Da Veiga (2015). Parmi elles, figure la covariance de distance
basée sur l'utilisation des fonctions caractéristiques (Székely et al., 2007). Il a été démontré
que cette mesure de dépendance possede des bonnes propriétés pour tester I'indépendance en
grande dimension entre deux variables aléatoires (Székely and Rizzo, 2013; Yao et al., 2018). 11
a aussi été mis en lumiere que la covariance de distance fait partie d’'une classe plus large de
mesures de dépendance (Székely and Rizzo, 2013), basées sur des objets mathématiques appelés
noyaux caractéristiques (Sriperumbudur et al., 2010). Ces mesures de dépendance s’avérent en
pratiques tres efficaces pour tester I'indépendance entre des variables aléatoires de différente
nature : variables scalaires, vectorielles, catégorielles, etc. Parmi elles, le critere d’indépendance
de Hilbert—Schmidt noté HSIC pour Hilbert Schmidt Independence Criterion (Gretton
et al., 2005a), généralise la notion de covariance entre deux variables aléatoires et permet ainsi
de capturer un tres large spectre de formes de dépendance entre les variables. Pour cette raison,
Da Veiga (2015), puis De Lozzo and Marrel (2016b) se sont intéressés a 'utilisation des mesures
HSIC pour 'ASG et les ont comparées aux indices de Sobol’. A noter que la mesure HSIC
coincide avec la covariance de distance pour un choix particulier de noyaux (Székely and Rizzo,
2013). Comme illustré par De Lozzo and Marrel (2016b), les indices HSIC présentent aussi
Pavantage d’avoir un faible coiit d’estimation (en pratique quelques centaines de simulations
contre plusieurs dizaines de milliers pour les indices de Sobol’) et leur estimation pour ’ensemble
des entrées ne dépend pas du nombre d’entrées. De plus, des tests statistiques d’indépendance
basés sur les mesures HSIC ont aussi été développés par Gretton et al. (2008), dans un cadre
asymptotique. Plus récemment, une premiere extension a un cadre non-asymptotique a été
proposée par De Lozzo and Marrel (2016b), qui ont aussi montré lefficacité et le grand intérét
des tests statistiques basés sur les HSIC pour réaliser un criblage des variables d’entrée.

Pour toutes ces raisons, on s’intéresse dans le cadre de cette thése aux mesures
de dépendance de type HSIC pour ’ASG des simulateurs numériques. Plus précisé-
ment, 1’objectif est de proposer des nouveaux développements théoriques, méthodo-
logiques et applicatifs autour sur ces mesures.

2La grande dimension désigne ici un grand nombre de variables d’entrée.
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1.3 Description du cas test applicatif

Cette these s’inscrit dans le cadre de la démonstration de siireté et de maitrise des risques des
Réacteurs a Neutrons Rapides refroidis au sodium (RNR-Na, Figure 1.2) de Génération IV,
menée par le CEA et ses partenaires. Comme leurs noms l'indiquent, les RNR utilisent ’énergie
cinétique élevée des neutrons pour fusionner les noyaux d’uranium, par opposition aux réacteurs
a neutrons thermiques (Réacteurs & Eau Pressurisée par exemple) ou les neutrons sont ralentis
pour augmenter la probabilité d’interagir avec les atomes d’uranium. Dans le cadre des études
de stireté, plusieurs scénarios d’accidents graves du réacteur sont étudiés a travers des essais ex-
périmentaux et des simulations numériques. Les accidents graves sont ceux qui conduisent a une
fusion partielle ou totale du coeur du réacteur. L’évolution dans le temps de diverses grandeurs
physiques liées & l'accident (aussi appelés transitoires accidentels) permettent aux physiciens de
mieux comprendre les phénomeénes physiques mis en jeu et d’évaluer le comportement du cceur.
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Figure 1.2 — Schéma général de fonctionnement d’un réacteur RNR-Na, extrait de Droin (2016).

1.3.1 Présentation du réacteur RNR-Na et de ’accident ULOF

Comme le montre la Figure 1.2, le fonctionnement général d’un réacteur nucléaire RNR-Na est
basé sur des échanges thermiques produisant de 1’énergie électrique. La chaleur produite par
fission de 'uranium au coeur du réacteur est transmise composante par composante jusqu’a la
turbine qui entraine le générateur et permet la production d’énergie électrique. Trois circuits
principaux assurent ces échanges thermiques :
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e Le circuit primaire (sodium). La grande quantité de chaleur produite au cceur du
réacteur fait augmenter la température du sodium qui circule a l'intérieur du cceur. Pour
évacuer la puissance thermique, les pompes primaires envoient continuellement du sodium
froid dans le cceur. La chaleur du circuit primaire est transférée au circuit secondaire par
I'intermédiaire de I’échangeur de chaleur.

e Le circuit secondaire (sodium). La chaleur du circuit primaire transférée au secondaire
est ensuite transmise au générateur de vapeur.

e Le circuit vapeur (eau liquide — vapeur). La détente de la vapeur générée entraine la
turbine.

e Le circuit de refroidissement (eau). La vapeur en sortie de turbine est condensée par
le circuit de refroidissement (condenseur contenant de l’eau froide en provenance d’une
source froide).

Dans le cadre des études d’accidents graves, on considere ici le scénario accidentel de type
ULOF (Unprotected Loss Of Flow), qui correspond au transitoire de perte de débit primaire non
protégé. Cette perte de débit, résulte du dysfonctionnement des pompes primaires sans reprise de
secours ni chute des barres de controle. La perte du débit entraine un échauffement progressif du
coeur. Cette hausse de la température peut ensuite entrainer une ébullition du sodium accélérant
la hausse de température, et pouvant conduire, in fine, a la fusion partielle ou totale du cceur.

1.3.2 Présentation de ’outil physique orienté conception MACARENa

En support a ’étude des scénarios accidentels tels que 'ULOF, le CEA a entrepris le développe-
ment d’outils de calculs analytiques simulant les différents phénomenes physiques régissant ces
transitoires. Ces outils sont beaucoup plus rapides que des codes mécanistes : une ou deux heures
pour une simulation avec les premiers, contre plusieurs jours ou semaines avec les seconds. Ainsi,
ces codes rapides permettent d’envisager une prise en compte des incertitudes sur les parametres
d’entrée (variables physiques, variables de modele ...), via des approches statistiques basées sur
des simulations de type Monte-Carlo.

On considére ici outil orienté conception MACARENa (Modélisation de ’ACcident d’Arrét
des pompes d'un Réacteur refroidi au sodium) qui modélise la phase d’initiation et la phase
primaire de 'accident ULOF. Cet outil, développé dans le cadre d’une précédente theése au
CEA, a été partiellement validé sur la base de données expérimentales et de résultats de sim-
ulation des codes mécanistes (Droin, 2016). Des études réalisées dans cette méme thése, ont
montré que la séquence accidentelle prédite par le simulateur varie considérablement en fonction
des parametres d’entrée : parametres liées a la conception ou la configuration du cceur avant
I’accident, parametres caractéristiques du déroulement du transitoire, parametres des modeéles
physiques tels que les contre-réactions neutroniques, etc. Il est donc essentiel de prendre en
compte ’incertitude de ces parameétres et d’évaluer précisément, au travers d’une
analyse de sensibilité, leur impact sur les résultats de 1’outil. Il s’agit entre autres
d’identifier les parameétres significativement influents en vue par exemple d’une réduc-
tion des incertitudes dans de futures études. Ainsi, des premiéres études d’analyse de sensibilité
ont été réalisées dans Droin (2016) en distinguant deux type d’incertitudes en entrée : les in-
certitudes irréductibles (ou aléatoires) inhérentes a la variabilité naturelle des phénomenes et les
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incertitudes réductibles (ou épistémiques) liées au manque de connaissance® (Hora, 1996; Dantan
et al., 2013). Dans le premier cas, ces incertitudes sont modélisées par une distribution de proba-
bilité, estimées sur les données expérimentales, des données issues de simulations ou des données
de conception du cceur. Dans le second cas, la modélisation des incertitudes ne s’appuie que
sur des avis d’experts : il n'y a souvent pas de distribution de probabilité clairement identifiée,
seulement un intervalle de variation. L’hypothése d’une distribution uniforme sur cet intervalle
est alors souvent réalisée dans Droin (2016). Il est alors important d’évaluer ’impact de
la méconnaissance de la loi de probabilité de ces variables ou du choix arbitraire
d’une loi sur les résultats de ’analyse de sensibilité.

Le scénario ULOF modélisé avec le simulateur MACARENa constitue ainsi le cas
test fil rouge (désigné ULOF-MACARENa) sur lequel seront appliqués les méthodes
et outils développés dans cette theése.

1.4 Problématiques et objectifs

Comme expliqué précédemment, les mesures HSIC sont des outils efficaces dans le cadre de I’ ASG.
Suivant le cas d’étude, ces mesures peuvent étre utilisées pour cribler ou hiérarchiser les entrées
par ordre d’influence sur la sortie. Pour hiérarchiser les entrées par ordre d’influence, des indices
de sensibilité normalisés ont été proposés par Da Veiga (2015). Pour réaliser un criblage des
entrées, des tests d’indépendance basés sur la statistique HSIC sont individuellement effectués
entre chaque entrée et la sortie (De Lozzo and Marrel, 2016b). A Dissue de ces tests, ’hypothese
de I'indépendance est retenue ou rejetée. Les entrées dont I’hypothese d’indépendance avec la
sortie est rejetée sont considérées comme significativement influentes sur la sortie. A la lumiére
de ces travaux récents sur les mesures HSIC pour I’ASG, nous proposons dans cette theése des
extensions et améliorations pour répondre aux deux objectifs suivants.

Analyse de sensibilité globale en présence d’incertitudes de second niveau. Les
mesures HSIC sont particulierement efficaces pour ’ASG lorsque les distributions de probabilité
de toutes les entrées sont parfaitement connues. Cependant, dans certains cas, comme celui
du cas test ULOF-MACARENa, des incertitudes sur le modele probabiliste des entrées peu-
vent exister. Ces incertitudes proviennent généralement d’une divergence d’avis d’experts, d’un
manque total ou partiel de données pour caractériser suffisamment les distributions ou encore
d’un manque de confiance sur la qualité des données existantes. Ces incertitudes sur les distri-
butions de probabilité seront qualifiées dans ce manuscrit d’incertitudes de second niveau, pour
les dissocier des incertitudes sur les variables elle-mémes (incertitudes de premier niveau). En
présence d’incertitudes de second niveau, on désignera par ASGI1 l'analyse de sensibilité de la
sortie du simulateur en fonction des entrées incertaines lorsque le modele probabiliste des entrées
est connu et fixé. On appellera alors ASG2, I’analyse de sensibilité visant a quantifier
I’impact des incertitudes des lois des entrées sur les résultats d’ASG1.

Dans ce contexte, un premier objectif de cette thése est de proposer une méthodolo-
gie efficace pour ’ASG2 nécessitant un nombre raisonnable d’appels au code. Cette
étude fera l’objet du chapitre 4 de ce manuscrit.

Amélioration de la qualité du criblage basé sur les mesures HSIC. Comme men-
tionné auparavant, un des objectifs de ’ASG peut étre de réaliser un criblage des entrées, en
utilisant des tests statistiques d’indépendance entre chaque entrée et la sortie. Un test statistique
d’indépendance est une procédure de décision entre deux hypotheses : 'hypothese nulle suivant

3Ce point sera discuté plus en détails dans les chapitres suivants.
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laquelle une entrée donnée et la sortie sont indépendantes et son opposée, I’hypothese alterna-
tive. Dans cette prise de décision et suivant la taille de I’échantillon disponible, cette décision
statistique a une probabilité non nulle d’étre fausse. La probabilité d’avoir tort sous I’hypothese
nulle est généralement appelée erreur de premiére espéce ou niveau de test. La probabilité que le
test se trompe sous I’hypothése alternative est quant a elle appelée erreur de seconde espéce. Le
contréle théorique et pratique du niveau des tests d’indépendance est possible et fixé générale-
ment & un seuil de 5% ou 10%. En revanche, a I’heure actuelle il n’y a aucun contrdle théorique
ni pratique de I'erreur de seconde espéce.

Pour les tests basés sur les mesures HSIC, on souléve ainsi deux points importants afin
d’améliorer la robustesse des tests et de mieux contréler ’erreur de seconde espece. Le premier
point est de s’affranchir du choix non justifié théoriquement des noyaux associés aux HSIC. En ef-
fet, des choix heuristiques sont généralement adoptés pour la définition de ces noyaux et peuvent
impacter les résultats des tests. Le deuxiéme point d’amélioration consiste a controler et idéale-
ment diminuer 'erreur de seconde espéce des tests afin d’augmenter la probabilité d’atteindre
un criblage parfait.

Ainsi, le second objectif de cette thése est de proposer une procédure de test
agrégeant plusieurs tests unitaires basés sur des mesures HSIC avec des noyaux
différents. Les résultats théoriques et numériques de cette méthodologie seront
présentés au chapitre 5.

1.5 Organisation du document

Dans l'objectif de répondre aux deux problématiques introduites dans la précédente section,
ce document sera organisé comme suit. Aprés un chapitre reprenant 'introduction en version
anglaise, le chapitre 3 présente une revue théorique et méthodologique des mesures HSIC. De
nouveaux développements autour de leur estimation a partir d'un échantillon généré suivant une
loi de probabilité différente de celle des entrées (loi alternative) sont ensuite proposés. Ensuite,
I’accent sera mis sur les tests d’indépendance basés sur les mesures HSIC. Des généralités sur les
tests statistiques d’indépendance et en particulier la vitesse de séparation uniforme qui permet de
juger de la qualité d’un test donné sont présentées. Enfin, les tests d’indépendance construits a
partir de la statistique HSIC sont introduits, d’abord en version asymptotique avant de proposer
une version non-asymptotique de ces tests.

A la lumiére des techniques d’estimation proposées dans le chapitre 3, une méthodologie pour
I’ASG2 utilisant un seul échantillon (bien choisi) est proposée dans le chapitre 4. L’efficacité
de la méthodologie est illustrée sur un exemple analytique et plusieurs choix méthodologiques
possibles sont comparés. Une application sur le cas test du transitoire ULOF-MACARENa est
réalisée afin de prendre en compte 'incertitude sur les lois de certains parametres d’entrée et
d’évaluer leur impact sur 'ASG1. Enfin, pour ouvrir de nouvelles perspectives applicatives, la
méthodologie d’ASG2 est étendue au traitement des incertitudes épistémiques et comparée a
I’approche Dempster-Shafer.

Dans le chapitre 5, une procédure innovante d’agrégation de plusieurs tests HSIC est dévelop-
pée. 1l s’agit plus précisément d’agréger plusieurs paramétrisations des mesures HSIC. Cette
proposition s’appuie sur une étude préalable de 'erreur de second ordre du test unitaire basé
sur la mesure HSIC et plus particulierement sur la vitesse de séparation du test. A partir de la,
un test agrégé est proposé et I'on démontre que cette procédure peut étre quasiment optimale
pour un choix adéquat de la collection de parameétres a agréger. Des exemples numériques sont
implémentés et permettent d’un co6té, de comparer les différents choix méthodologiques, et d’un
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autre coté, d’illustrer lefficacité de la procédure en la comparant a d’autres tests de la littéra-
ture. Enfin, la méthodologie est appliquée au cas test du transitoire ULOF-MACARENa afin de
réaliser un criblage des entrées incertaines.

En conclusion, les chapitres 6 et 7 présentent respectivement en versions anglaise et francaise,
une synthese des nouvelles méthodes développées dans ce document en support a ’analyse de sen-
sibilité des simulateurs numériques. Les perspectives de ces travaux et les possibles améliorations
sont aussi discutées.



Chapter 2

Introduction (english)

2.1 Context

As part of safety studies for nuclear reactors, computation codes (or numerical
simulators) are fundamental for understanding, modelling and predicting physical
phenomena. These tools take a large number of input parameters, characterizing the studied
phenomenon or related to its physical and numerical modelling. The information related to
some of these parameters is often limited or uncertain, this can be due to the lack or absence of
data, measurement or modelling errors or even a natural variability of the parameters. These
input parameters, and consequently the simulator output, are thus uncertain. This is
referred to as uncertainty propagation. It is important to consider not only the nominal values of
inputs, but also the set of all possible values in the variation range of each uncertain parameter.
It is therefore important to take into account the input uncertainties and their effects on the
output, which constitutes a major step for safety studies.

The generic approach to deal with uncertainties in computation codes has been extensively
studied in the past few decades. In the general literature on the subject (De Rocquigny et al.,
2008; Ghanem et al., 2017), the usual methodological approach is divided into four key steps.
This generic approach is illustrated by Figure 2.1. The first step, step A, is the specifica-
tion of the problem, which consists in defining the system to be studied (model, simulator
or measurement process), identifying uncertain or fixed input variables, as well as the quantities
of interest to be studied (derived from the model output variables). Step B then aims to
quantifying the input uncertainties. In the probabilistic framework, these uncertainties are
modelled by fully or partially known probability distributions (Helton, 1997; Oberkampf et al.,
2001). The selection of such probabilistic models depends on eventual available data, expert
opinions or bibliographic databases. Recently, Bae et al. (2004) and Swiler et al. (2009) propose
alternative quantification methods for epistemic uncertainties, i.e. more related to the lack of
knowledge than the randomness of the phenomenon. One of the main approaches used by these
methods is the theory of evidence, also known as the Dempster-Shafer theory (Dempster, 1967;
Shafer, 1976). At step C, uncertainties are propagated: the objective is to quantify how
input uncertainties affect the output(s) predicted by the model, and more precisely the quan-
tity of interest. This quantity of interest deriving from the model outputs is directly linked
to the objectives of the study. This may include the output mean or dispersion, a probability
of exceeding a critical value or a quantile. Various specific approaches, deterministic or based
on Monte-Carlo simulations, have been developed according to the studied quantity of interest
(Cannamela, 2007). Alongside uncertainty propagation, a sensitivity analysis, step C’ of
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the approach, can be conducted. The sensitivity analysis aims to determine how the
variability of the input parameters affects the value of the output or the quantity of
interest (Saltelli et al., 2004; Tooss, 2011). It thus allows to identify and perhaps quantify, for
each input parameter or group of parameters, its contribution to the variability of the output.
The purpose of sensitivity analysis can be to prioritize input parameters by order of influence on
the output variability, or to separate the inputs into two groups: those which mostly influence
the output uncertainty and those whose influence can be neglected. This input splitting into
two groups is known as “screening”. The sensitivity analysis results provide valuable information
for the impact of uncertain inputs, the comprehension of the model and the underlying physical
phenomenon. It can also be used for various purposes: reducing uncertainties by targeting char-
acterization efforts on most influential inputs, simplifying the model by setting non-influential
inputs to reference values, or validating the model with respect to the modeled phenomenon.
These issues explain the amount of recent studies on statistical tools and methods for sensitivity
analysis. One of the most commonly used methods in industrial applications is based on a decom-
position of the output variance (Hoeffding, 1992; Sobol, 1993), each term of the decomposition
represents the contribution share of an input or a group of inputs to the output variance. As a
result of this approach, Sobol’s indices are obtained. These easy-to-interpret indices have several
practical drawbacks (expensive estimation in terms of the number of the code simulations, partial
information provided by the variance). To overcome these limitations, other approaches based
on dependence measures have recently been proposed (Da Veiga, 2015). These measures have
several advantages, which are described below, and have produced promising results in several
industrial applications (De Lozzo and Marrel, 2016b).

In the scope of sensitivity analysis for numerical simulators, the work carried out
in this thesis seeks to propose new innovative statistical methods based on depen-
dence measures, to effectively address some issues raised by their implementation
on industrial applications.

2.2 Global sensitivity analysis based on dependence mea-
sures

As previously stated, Sensitivity Analysis (SA) methods aim to determine how the variability
of a model’s inputs affects its output variability. Two main fields are distinguished: Local
Sensitivity Analysis (LSA) and Global Sensitivity Analysis (GSA).

Local sensitivity analysis studies the output variation for small input shifts near their reference
values (also called nominal values). Among LSA methods, the principal ones are those based
on partial derivatives (Alam et al., 2004; Pujol, 2009) and those based on adjoint modeling
(Hall et al., 1982; Cacuci, 1981, 2003). The first involves estimating the partial derivatives of
the numerical model with respect to each input at its nominal point. These partial derivatives
represent the effect of each input perturbation on the total output perturbation and are directly
interpreted as local sensitivity indices. These indices can be estimated using One-At-a-Time
(OAT) experimental design techniques, which consist of perturbating only one input at a time by
fixing the other inputs to their nominal values (Morris, 1991). The adjoint modeling approach is
a purely analytical method that can be used when an analytical formula of the model is explicitly
known. The adjoint modeling is numerically intrusive, which means that its application requires
the development of a model for computing partial derivatives in each direction. This method is
therefore not applicable in the case of “black box” simulators where only the inputs and outputs
of the model are accessible.
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Figure 2.1 — General scheme for the methodology of uncertainty treatment from De Rocquigny
et al. (2008).

All these LSA methods thus fail to consider the input uncertainties over their whole varia-
tion range. To assess and quantify the global impact of each input uncertainty on the output,
statistical methods of Global Sensitivity Analysis (GSA) have been developed. In contrast
to LSA, the global approach requires characterizing the input uncertainties over their variation
range (step B, Figure 2.1), for example by assigning a probability distribution to the input
vector. The statistical methods for GSA are mostly based on Monte Carlo simulations of the
model, i.e. on a random sampling of inputs according to their probability distributions. Com-
mon GSA methods include the Derivative-based Global Sensitivity Measures, also called DGSM
indices (Kucherenko et al., 2009; Kucherenko and Tooss, 2017; Sobol and Kucherenko, 2010).
The construction of these indices is based on a generalization of local sensitivity measures by
averaging partial derivatives with respect to each input over its range of variation. However,
estimating these indices requires a large number of code calls, which considerably limits its use
in the case of expensive models!. To overcome this disadvantage, estimation strategies based on
the use of metamodels approximating the model output have been proposed. We can mention
the works of Sudret and Mai (2015) based on chaos polynomials or those of De Lozzo and Marrel
(2016a) using Gaussian process metamodels. Another approach conventionally used for the GSA
is based on the decomposition of the output variance, where each term of the decomposition
represents the part of the contribution of an input or a group of inputs to the output variance.
Originally introduced in Hoeffding (1948a), this decomposition is commonly called : ANOVA
decomposition (for ANalysis Of VAriance). Sensitivity indices are directly derived from this de-

IExpensive refers here to the time spent on each simulation of the model or computation code, which limits
the total number of possible simulations.
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composition: these are the Sobol’ (Sobol, 1993) indices, mentioned above. Sobol’s indices are
easily interpretable, but their expressions involve multidimensional integrals whose estimation
by Monte-Carlo methods requires in practice a very large number of model simulations (several
tens of thousands). Their direct estimation is therefore very often impossible for time-consuming
simulators. Several studies have been developed to reduce the estimation budget of these indices.
Other approaches requiring additional model regularities and based on spectral decomposition
methods were also considered. Examples include the FAST method (FAST for Fourier Amplitude
Sensitivity Testing) introduced in Cukier et al. (1973) and then studied in Lemaitre (2014) and
Tooss and Lemaitre (2015). Methods such as E-FAST (Extended Fourier Amplitude Sensitivity
Testing) and RBD-FAST (Random Balance Design Fourier Amplitude Sensitivity Testing) intro-
duced in Saltelli et al. (1999) and Tarantola et al. (2006) respectively suggest some improvements
of the classical FAST method. Nevertheless, the number of model calls using these methods is
still very high. Here again, a possible option is to estimate these indices using metamodels: the
estimation of Sobol’ indices by chaos polynomials, local polynomials or Gaussian processes have
been respectively proposed in Sudret (2008), Da Veiga et al. (2009) and Marrel et al. (2009).
Such approaches, however, require the ability to construct a sufficiently predictive metamodel,
which can be complicated for highly non-linear simulators and/or for a large number of input
variables. Moreover, regardless of the difficulties associated with their estimation, Sobol’ indices
only consider the variance of the output and do not evaluate the impact of each input on the
whole probability distribution of the output. They are thus not equivalent to the independence
between the output and each input (except for the total Sobol’ indices).

The dependence measures recently introduced for the GSA by Da Veiga (2015), make it
possible to overcome several of the limitations listed above. First, these measures quantify from
a probabilistic point of view the dependence between each input and output. Thus, the nullity
of a dependence measure between an input and the output is equivalent to the independence of
these two random variables. These measures can be used quantitatively to prioritize the inputs
in order of influence on the output, as well as qualitatively to perform the screening of inputs, for
instance by using statistical tests like those in De Lozzo and Marrel (2016b). The use of statistical
tests to identify non-influential variables provides a more rigorous and accurate statistical and
mathematical framework than a simple assessment and comparison of sensitivity measures. In
particular, this avoids the arbitrary choice of a threshold value for sensitivity measures, beyond
which an input variable is considered influential. Among the existing dependence measures
in the literature, we can first mention the dissimilarity measures introduced by Baucells
and Borgonovo (2013). The idea of constructing these measures is based on comparing the
probability distribution of the output with its distribution when a given input is fixed. These
measures actually belong to a broader class based on Csiszar’s f-divergence (Csiszar, 1972).
This latter includes several older notions of dependence such as Hellinger’s distance (Hellinger,
1909), Kullback-Leibler’s divergence (Kullback and Leibler, 1951) or the total variation distance
(Rudin et al., 1992). Moreover, Da Veiga (2015) also highlights the links between Csiszar’s
f-divergence and the mutual information introduced by Shannon (1948) as well as with the
mutual information of the loss square (Suzuki et al., 2009), these measures can be interpreted
as dissimilarity measures. Note that Sobol’ indices can also be defined as dissimilarity measures
(Chabridon, 2018). Despite their interesting theoretical properties, the estimation of measures
based on Csiszar’s f-divergence is in practice costly in terms of the number of simulations,

particularly in large dimension?.

Other dependence measures whose estimation suffers less from the “Curse of dimensionality”
have also been proposed by Da Veiga (2015). Among them is the distance covariance based

2The large dimension here refers to a large number of input variables.
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on the characteristic functions (Székely et al., 2007). It has been shown that this dependence
measure has good properties for testing the independence between two random variables in
large dimensions (Székely and Rizzo, 2013; Yao et al., 2018). It has also been shown that the
distance covariance is part of a larger class of dependence measures (Székely and Rizzo, 2013),
based on mathematical objects called characteristic kernels (Sriperumbudur et al., 2010). These
dependence measures are highly effective for testing the independence between random variables
of various types: scalar, vector, categorical, etc. Among them, the Hilbert-Schmidt Independence
Criterion denoted HSIC (Gretton et al., 2005a), generalizes the notion of covariance between
two random variables and thus makes it possible to capture a very wide spectrum of forms of
dependence between the variables. For this reason, Da Veiga (2015), then De Lozzo and Marrel
(2016b) investigated the use of HSIC measures for GSA and compared them to Sobol’ indices.
Note that the HSIC measures is identical to the distance covariance for a particular choice of
kernels (Székely and Rizzo, 2013). As illustrated by De Lozzo and Marrel (2016b), HSIC indices
also have the advantage of having a low estimation cost (in practice a few hundred simulations
compared to several tens of thousands for Sobol’ indices) and their estimation for all inputs
does not depend on the number of inputs. In addition, statistical independence tests based on
HSIC measures have also been developed by Gretton et al. (2008), in an asymptotic framework.
More recently, a first extension to a non-asymptotic framework has been proposed by De Lozzo
and Marrel (2016b), which have also shown the effectiveness and great interest of HSIC-based
statistical tests to screen input variables.

For all these reasons, this thesis focuses on HSIC-type dependence measures for
the GSA of numerical simulators. More precisely, the objective is to propose new
theoretical, methodological and applicative developments around these measures.

2.3 Description of test case application

This thesis is part of the demonstration of safety and risk control of the Generation IV sodium-
cooled Fast Neutron Reactors (RNR-Na, Figure 2.2), conducted by the CEA and its partners.
As their names imply, RNRs use the high kinetic energy of neutrons to fuse uranium nuclei, in
contrast to thermal neutron reactors (Pressurized Water Reactors, for example) where neutrons
are slowed down to increase the probability of interacting with uranium atoms. As part of the
safety studies, several severe reactor accident scenarios are studied through experimental tests
and numerical simulations. Serious accidents are defined as those that lead to partial or total
fusion of the reactor core. The temporal evolution of various accident-related physical quan-
tities (also known as accidental transients) allows physicists to better understand the physical
phenomena involved and to evaluate the behaviour of the core.

2.3.1 Presentation of the RNR-Na reactor and the ULOF accident

As shown in Figure 2.2, the general operation of an RNR-Na nuclear reactor is based on heat
exchanges producing electrical energy. The heat produced by fission of uranium in the reactor
core is transmitted to the turbine component by component, which powers the generator and
produces electrical energy. Three main circuits ensure these heat exchanges:

e The primary circuit (sodium). The large amount of heat produced in the reactor core
increases the temperature of the sodium flowing inside the core. To evacuate the thermal
power, the primary pumps continuously inject cold sodium into the core.
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Figure 2.2 — General operating scheme of an RNR-Na reactor, from Droin (2016).

e The secondary circuit (sodium). The heat from the primary circuit transferred to the
secondary circuit is then transmitted to the steam generator.

e The steam circuit (liquid water - steam). The expansion of the generated steam

powers the turbine.

e The cooling circuit (water). The steam at the turbine outflow is condensed by the
cooling circuit (condenser containing cold water from a cold source).

In severe accident studies, we consider here the ULOF accident scenario (Unprotected Loss
Of Flow), which corresponds to the transient of unprotected primary flow loss. This loss of flow
rate is due to the dysfunction of the primary pumps without emergency restart or fall of the
control rods. The loss of flow leads to a gradual heating of the core. This temperature increase
can then lead to sodium boiling, accelerating the temperature increase, and may lead, in fine, to

partial or total fusion of the core.

2.3.2 Presentation of the MACARENa design-oriented physical tool

In support of the study of accident scenarios such as ULOF, the CEA has started the development
of analytical computational tools simulating various physical phenomena ruling these transients.
These tools are much faster than mechanistic codes: one or two hours for a simulation using the
first tools, compared to several days or weeks with the second ones. These fast codes thus make
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it possible to take into account input uncertainties (physical variables, model variables, etc.), via
statistical approaches based on Monte Carlo simulations.

We consider here the design-oriented tool MACARENa (French: Modélisation de I’ACcident
d’Arrét des pompes d’un Réacteur refroidi au sodium) which models the initiation and the primary
phases of the ULOF accident. This tool, previously developed as part of a PhD thesis at the CEA,
has been partially validated using experimental data and simulation results from mechanistic
codes (Droin, 2016). Studies carried out in this same thesis have shown that the accident sequence
predicted by the simulator varies considerably according to the inputs: parameters related to
the design or configuration of the core before the accident, parameters characteristic of the
transient sequence, parameters of physical models such as neutronic back-reactions, etc. It is
consequently crucial to take into account the uncertainty of these parameters and
to accurately assess, through a sensitivity analysis, their impact on the simulator
results. This includes identifying significantly influential parameters, in order for example
to reduce uncertainties in upcoming studies. Thus, first sensitivity analysis studies were carried
out in Droin (2016) by distinguishing two types of input uncertainties: the irreducible (or random)
uncertainties inherent in the natural variability of phenomena and the reducible (or epistemic)
uncertainties related to lack of knowledge ® (Hora, 1996; Dantan et al., 2013). In the first case,
the uncertainties are modelled by a probability distribution, estimated from experimental data,
simulation data or core design data. In the second case, uncertainty modelling is based only
on expert opinion: there is often no clearly identified probability distribution, only a range of
variation. The hypothesis of a uniform distribution over this interval is then often assumed in
Droin (2016). It is therefore important to evaluate the impact of a lack of knowledge
of these variables probability distribution or the arbitrary choice of a distribution
on the sensitivity analysis results.

The ULOF scenario modelled by the MACARENa simulator thus constitutes the
main thread test case (called ULOF-MACARENa) on which the methods and tools
developed in this thesis will be applied.

2.4 Issues and objectives

As explained above, HSIC measures are effective tools for GSA purpose. Depending on the study
case, these measures can be used either to screen or prioritize inputs in order of influence on
the output. To prioritize the inputs in order of influence, normalized sensitivity indices have
been proposed by Da Veiga (2015). To perform input screening, independence tests based on
HSIC statistics are performed individually between each input and the output (De Lozzo and
Marrel, 2016b). At the end of these tests, the hypothesis of independence is either accepted or
rejected. Inputs whose independence assumption with the output is rejected are considered to
have a significant influence on the output. In the light of these recent works on HSIC measures
for the GSA, we propose in this thesis some extensions and improvements to adress the following
two objectives.

Global sensitivity analysis for second-level uncertainties. HSIC measures are effective
for GSA when the probability distributions of all inputs are fully known. However, in some cases,
such as the ULOF-MACARENa test case, uncertainties about the probabilistic input model may
exist. These uncertainties generally stem from a divergence of expert opinions, a total or partial
lack of data to sufficiently characterize the distributions or a lack of confidence in the quality
of existing data. These uncertainties on probability distributions will be referred to in this

3This point will be discussed in more detail in the following chapters.



28 CHAPTER 2. INTRODUCTION (ENGLISH)

manuscript as second-level uncertainties, to dissociate them from uncertainties on the variables
themselves (first-level uncertainties). In the presence of second-level uncertainties, the sensitivity
analysis of the simulator output will be referred to as GSA1, when the probabilistic input model
is known and fixed. We will then call GSA2, the sensitivity analysis aiming to quantify
the impact of uncertainties of input distributions on GSA1 results.

In this context, a first objective of this thesis is to propose an efficient method-
ology for GSA2 requiring a reasonable number of code calls. This study will be the
subject of chapter 4 of this manuscript.

Improvement of the quality of screening based on HSIC measures. As mentioned
above, one of the objectives of GSA may be to perform input screening, using statistical tests of
independence between each input and the output. A statistical independence test is a decision-
making procedure between two hypotheses: the null hypothesis that a given input and the
output are independent and its opposite, the alternative hypothesis. In this decision making and
depending on the size of the available sample, this statistical decision has a non-zero probability
of being false. The probability of being wrong under the null hypothesis is generally called first-
kind error or level of test. The probability that the test is wrong under the alternative hypothesis
is called second-kind error. Theoretical and practical control of the level of independence tests
is possible and generally set at a threshold of 5% or 10%. By contrast, there is currently no
theoretical or practical control of the second-kind error.

For tests based on HSIC measures, two important points are raised in order to improve the
robustness of the tests and better control the second-kind error. The first point is to avoid the
theoretically unjustified choice of the kernels associated to HSIC measures. Indeed, heuristic
choices are generally adopted for the definition of these kernels and can impact the test results.
The second point for improvement is to control and ideally reduce the second-kind error of the
tests, in order to increase the probability of achieving a perfect screening.

Thus, the second objective of this thesis is to propose a test procedure that aggregates several
unit tests based on HSIC measures with different kernels. The theoretical and numerical results
of this methodology will be presented in chapter 5.

2.5 Organization of the document

In order to address the two issues introduced in the previous section, this document will be
organized as follows. After a chapter with the introduction written in English, chapter 3 presents
a theoretical and methodological review of HSIC measures. New developments around their
estimation from a sample generated according to a probability distribution different from the
prior one of the inputs (alternative distribution) are then proposed. Then, the focus will be on
independence tests based on HSIC measures. General background on statistical independence
tests and in particular the uniform separation rates over classes of regular alternatives, allowing
to adjudge the quality of a given test is presented. Finally, statistical independence tests based
on HSIC statistics are introduced, first in the asymptotic then non-asymptotic frameworks.

In light of the estimation techniques proposed in Chapter 3, a methodology for GSA2 using
a well-chosen single sample is proposed in Chapter 4. The effectiveness of the methodology is
illustrated with an analytical example and several possible methodological choices are compared.
An application on the test case of the ULOF-MACARENa transient is performed, in order to
take into account the distribution uncertainties of some inputs and to evaluate their impact on
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GSA1. Finally, to open up new application perspectives, the GSA2 methodology is extended to
the treatment of epistemic uncertainties and compared to the Dempster-Shafer approach.

In chapter 5, an innovative procedure for aggregating several HSIC tests is developed. More
precisely, it involves aggregating several parameterizations of HSIC measures. This procedure is
based on a preliminary study of the second-kind error of single tests based on HSIC measures and
more particularly on the separation rate of these tests over classes of regular alternatives. From
this point on, an aggregated test is proposed and it is shown that this procedure can be nearly
optimal for an appropriate choice of the collection of parameters to be aggregated. Numerical
examples are implemented and allow, on the one hand, to compare the different methodological
choices and, on the other hand, to illustrate the effectiveness of the procedure by comparing it
with other tests in the literature. Finally, the methodology is applied to the ULOF-MACARENa
transient test case to perform a screening of uncertain inputs.

In conclusion, chapters 6 and 7 respectively present in English and French versions, a synthesis
of the new methods developed in this document in support of the sensitivity analysis of numerical
simulators. The prospect for this work and some possible improvements are also discussed.






Chapter 3

Review and theoretical

developments around
Hilbert-Schmidt dependence
measures (HSIC)

3.1 Introduction and motivations

Since the earlier work of Sobol (1993), theoretical, methodological and applicative works in
support of Global Sensitivity Analysis (GSA) for numerical simulators have grown increasingly.
Several approaches and procedures have been proposed and further developed. Among them,
variance-based methods follow the perspective of Sobol (1993), by computing the impact of each
input on the variance of the output. Statistical estimation of Sobol’ indices (Saltelli et al., 2010;
Owen, 2013) as well as the properties of the associated estimators have been widely investigated
(Janon et al., 2014; Da Veiga and Gamboa, 2013). However, despite their good theoretical
and practical properties as well as the ease of their interpretation, Sobol’ indices suffer from
several limitations. First, due to the multidimensional integrations in their analytical formulas,
the estimation of each Sobol’” index requires in practice a large number of simulations (several
thousands), which prevents their direct use for time-consuming codes. In such cases, alternative
methods of estimation using surrogate models have been developed (Oakley and O’Hagan, 2004;
Da Veiga et al., 2009; Marrel et al., 2009). But, as explained in the Introduction (Chapter 1 in
French and Chapter 2 in English), the construction of a surrogate model can be complicated in
many cases. Moreover, the computation cost of all Sobol’ indices depends directly on the number
of inputs, which makes them not convenient to perform a preliminary screening in high dimension.
In addition to that, a noteworthy point raised by Da Veiga (2015) is that this approach only
focuses on the variance of the output. Yet, the variance is partially informative on the output
distribution. Other less used approaches such as derivative measures (Kucherenko et al., 2009;
Sobol and Kucherenko, 2010) and dissimilarity measures (Baucells and Borgonovo, 2013; Csiszar,
1972) have been explored. All these measures are good indicators for the global impact of input
uncertainties on the output. Moreover, from a theoretical point of view, these measures and
their associated estimators have good properties. Nevertheless, practically speaking, a common
drawback of these measures is the slowness of the convergence of estimators in high dimension,
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also known as the “curse of dimensionality”.

In the light of these elements, Da Veiga (2015) recently proposes a very interesting approach
to deal with the limitations of Sobol’ indices and other usual GSA methods. This new approach
is based on mathematical tools called dependence measures. As its name implies, a dependence
measure between two random variables is zero if and only if these random variables are in-
dependent. The definition of a dependence measure includes many well-known other notions
related to the independence. Among them, we mention all the classical measures based on the
f-divergence of Csiszar (Csiszéar, 1972), the mutual information based on the notion of entropy
(Shannon, 1948) and the distance covariance based on characteristic functions (Székely et al.,
2007). The most valuable family of dependence measures are those based on Reproducing Kernel
Hilbert Spaces (RKHS, Aronszajn, 1950). Originally used in machine learning, these measures
offer several advantages comparing to other dependence measures. Indeed, they are easy to adapt
for multidimensional random variables and are cheap to estimate! comparing to other existing
measures. In addition, they can be generalizable to other types of random variables (categorical
variables, permutations, graphs, etc.). One of the earlier RKHS dependence measures is the
Kernel Canonical Correlation (KCC), introduced in Bach and Jordan (2002). Unfortunately, the
estimation of the KCC is not practical, as it requires an extra regularization, which has to be
adjusted. Other dependence measures based on RKHS, easier to estimate have been proposed
later. For instance, the Kernel Mutual Information (KMI, Gretton et al., 2003, 2005b) and the
COnstrained COvariance (COCO, Gretton et al., 2005¢,b), which are relatively easy to interpret
and implement, have been widely used. Last but not least, one of the most interesting kernel de-
pendence measure is the Hilbert-Schmidt Independence Criterion (HSIC, Gretton et al., 2005a).
The HSIC has a very low computational cost and seems to numerically outperform all the pre-
vious RKHS measures (Gretton et al., 2005a). This is the reason why we focus our attention on
this dependence measure for GSA.

3.2 Definition of HSIC and link with independence

Throughout the rest of this document, the numerical model is represented by the relation:
Y =M(Xy,...,Xq),

where X1, ..., Xy and Y are respectively the d uncertain inputs and the uncertain output, evolv-
ing in one-dimensional real areas respectively denoted A7,...,X; and ). M denotes the nu-
merical simulator. We note X = (X1,...,Xy) the vector of uncertain inputs. As part of the
probabilistic approach, the d inputs are assumed to be continuous and independent random
variables with known densities. These densities are respectively denoted fi,..., f4. Finally,
flz1,. .. zq) = fri(z1) X ... X fq(xq) denotes the density of the random vector X. As the model
M is not known analytically, a direct computation of the output probability density as well as
dependence measures between X and Y is impossible. Only observations (or realizations) of M
are available. It is therefore assumed in the following that we have a n-sample of inputs and

associated outputs (X(i)7 Y(i))1<i<n, where Y = M(X®) fori=1,...,n.

3.2.1 General principle and definition

The idea of constructing the HSIC measure (Gretton et al., 2005a) between an input Xj and
the output Y, is based on a generalization of the “classical” notion of covariance between these

LCheap here means that the required number of observations (here code simulations) is small.
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random variables. Covariance only detects linear dependence and its nullity is not equivalent to
independence. In contrast, HSIC measures allow to simultaneously take into account
many forms of dependence between X; and Y, relying on particular Hilbert spaces
called Reproducing Kernel Hilbert Spaces (RKHS). The reader can refer to Aronszajn
(1950) for a complete bibliography on RKHS spaces.

Definition 3.1. Let S be an arbitrary set and H be a Hilbert space of real-valued functions on
S with a scalar product denoted { , Y¢. The Hilbert space H is said to be a RKHS if, for all s in
S: the application h € H — h(s) is a continuous linear form.

The particularity and interest of RKHS spaces is the Riesz representation theorem. This
representation consists in associating to each value of the starting set, a function in the RKHS.
Each element is then represented by a random functional variable belonging to a space having
good properties.

Proposition 3.1 (Riesz representation theorem). Let H be a RKHS space associated to a set S
and with a scalar product denoted ( , )3;. Then, for all s in S there is a unique ps in H such
that: h(s) = (h,s)2, for all h in H.

According to Riesz theorem, we associate the variation domain X, (resp. )) of X}, (resp. Y)
with a RKHS space denoted Hy (resp. G). We denote respectively by ¢ and 1, the functional
random variables representing X and Y in the RKHS spaces Hy and G. It is then possible to
define an operator between the random variables X; and Y by defining an operator between ¢y,
and ¢. The idea of Gretton et al. (2005a) is to use the covariance operator in the RKHS spaces.
Introduced in Baker (1973) and studied in Fukumizu et al. (2004), this operator is defined in a
similar way of the usual covariance. The definition of such an operator requires first defining a
product operator between two elements belonging to two different RKHS. This product, called
the tensor product, is defined as follows:

Definition 3.2 (Tensor product). We define the tensor product between ¢y in Hy and ¥ in G
as being the operator:

@Y G — Hy

From the previous definition, the covariance operator between two elements ¢ and v is
defined by analogy with the usual notion of covariance as

Cr =E[pr @] —E[gr] ®E[¢)].

Note that, the last operator is well-defined as shown in Gretton (2019, Section 3). An interesting
property of this operator is that it takes into account all the transformations ¢y of X and ¢ of
Y respectively belonging to the RKHS #H; and G, through the following formula

(D, Crtp) i, = Cov (r(Xk), (V) -

This means that, if the operator C}, is identically equal to zero and if the RKHS associated with
X and Y are sufficiently rich?, then C} can be used to characterize the independence between
X and Y. Assuming that Cy is independence-characterizing, it remains to statistically check its
nullity. A direct verification from the operator expression being difficult, Gretton et al. (2005a)
define an associated measure based on the Hilbert-Schmidt norm of the operator.

2This point will be detailed later.
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Definition 3.3 (Norm of Hilbert-Schmidt). Let G and H be two Hilbert spaces and A an operator
mapping from G to H. The Hilbert-Schmidt norm of the operator A is defined as

1AlRs = D (uis Avy)3e,
.3
where (ui);5q and (vj);5, are orthonormal bases respectively of H and G. In addition, if |A|ns
is finite, then the operator A is reffered to as a “Hilbert-Schmidt operator”.

In particular, the covariance operator C} is a Hilbert-Schmidt operator, as demonstrated
for example in Gretton (2019, Section 3). Thus, the Hilbert-Schmidt Independence Criterion
between X and Y is defined as the square of the Hilbert-Schmidt norm of Cj:

HSIC(XIW Y)Hk;g = HCk H%IS

Remark. In the following, the notation HSIC(Xy,Y )y, ¢ is replaced by HSIC(Xy,Y) in order
to lighten the expressions.

Remark. It is also possible and interesting to consider the greatest singular value of the operator
Cy, to study the dependence between Xy and Y . This notion is called the Constrained Covariance
(Gretton et al., 2005b,c). The Constrained Covariance can be valuable to seek the transformations
of X andY maximizing the covariance, which correspond to the singular functions associated to
the largest singular value of Cy. This can be particularly useful for detecting particular forms of
dependence such as linear one.

3.2.2 Kernel-based representation and characterization of independence

As explained in the previous section, the construction of HSIC measures first requires to re-
spectively associate RKHS spaces Hj to the variation domains X,k = 1,...,d and G to ).
The HSIC characteristics depend entirely on the choice of these RKHS. This choice consists in
associating a mapping function that assigns to each element of the domain a representative func-
tional in the RKHS and a scalar product that defines the nature of the relationships between the
representatives and so between the elements of the domain. The application that defines this
scalar product is called kernel and is defined as follows:

Definition 3.4. Let (H,{, Y%) be a RKHS space associated with a set S. For all s € S, we
denote by @ the representative functional of s in H. The RKHS kernel associated with the couple
(S,H) is the symmetrical application defined by:
ly : Sx8§ — R
(S,sl) = <Q057905’>’H'

Unless otherwise stated, the kernels associated with the input X3,k =1, ..., d, will be denoted
li,k =1,...,d, while the kernel associated with the output Y will be denoted .

Reformulation of HSIC. The authors of Gretton et al. (2005a) show that the HSIC measure
between an input X and the output Y can be expressed using the kernels [, and [ in a more
convenient form:

HSIC(X}, Y) = E [lx(Xy, Xp)U(Y, Y")] + E [I), (X, Xp)] E[1 (Y, Y")] (3.1)
—2E [E [Ix (X5, X3) | XK] EL (YY) | Y]],
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where (X7,..., X)) is an independent and identically distributed copy of (X1,...,Xq) and Y’ =
M(XT, ..., X)).

Among the most frequently used RKHS kernels in the literature, we can mention the lin-
ear, polynomial, Gaussian, Laplacian and Bergman kernels (Berlinet and Thomas-Agnan, 2011;
Scholkopf et al., 2004).

Independence with universal kernels. The nullity of HSIC(X},Y) is not always equiva-
lent to the independence between X and Y: this characteristic depends on the RKHS associated
to Xj and Y. In particular, if the kernels I, and [ belong to the specific class of universal kernels
(Micchelli et al., 2006), the nullity of HSIC is equivalent to the independence. A kernel is said
to be universal if the associated RKHS is dense in the space of continuous functions w.r.t. the
infinity norm. However, the universality is a very strong assumption, especially on non-compact
spaces. Let us mention as example the Gaussian kernel (the most commonly used for real vari-
ables) which is universal only on compact subsets Z of R? (Steinwart, 2001). This kernel is
defined for a pair of variables (z,z’) € R? x RY by:

ka(z,2') = exp (=A|lz = 2'|[3) , (3.2)

where ) is a fixed positive real parameter, also called the bandwidth parameter of the kernel and
I]l2 is the Euclidean norm in RY.

First referred to as probability-determining kernels by Fukumizu et al. (2004), the notion of
characteristic kernels (Fukumizu et al., 2008), which is a weaker assumption than universality,
has been lately introduced. It has been proven that when the kernels [ and [; are characteristic
then, HSIC(Xy,Y) = 0 if and only if (iff) X} and Y are independent (Gretton, 2015; Szabé and
Sriperumbudur, 2018). In particular, the Gaussian kernel defined in Formula (3.2) is character-
istic on the entire R? (Fukumizu et al., 2008).

Remark. Despite that theoretically HSIC(X},Y) = 0 is equivalent to the independence
between X, and Y, a good choice of the kernel bandwidths is required in practice.
Indeed, as it will be further investigated in Chapter 5, a wise choice of these parameters guarantees
a better behavior of HSIC estimators and better properties of the associated independence tests.
Unfortunately, the best choice is unknown in practice, as it depends on the joint density of
(Xk,Y). For this, intrinsic characteristics of these random variables can be used. In particular,
two main options are usually adopted in practice for the adjustment of A (resp. ) the bandwidth
of the kernel associated to Xy (resp. Y ) in Equation (3.2): whether the inverse of empirical
variance of Xy, (resp. Y ), or the inverse of empirical median of | Xy — X}|13 (resp. |Y —Y'||3),
where X, (resp. Y') is an independent copy of Xy, (resp. Y, cf. Gretton et al., 2008; Sugiyama
and Suzuki, 2011; Zhang et al., 2012). To deal with this problem and avoid heuristic choices, some
existing works such as Sugiyama and Yamada (2012) propose methods based on cross-validation
to suitably select bandwidths. On our side, we chose to explore another solution based on an
aggregated HSIC-based test. Thus, as it will be described in Chapter 5 and in Meynaoui et al.
(2019), a well-chosen collection of single HSIC tests is aggregated through a single statistical test
to improve the power.
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3.2.3 Use for first-level GSA

Several methods based on the use of HSIC measures have been developed for first-level GSA
(GSA1)3. In this paragraph, we mention three possible approaches: sensitivity indices proposed
by Da Veiga (2015), asymptotic tests of Gretton et al. (2008) and permutation (also referred to
as bootstrap) tests initially introduced by De Lozzo and Marrel (2016b) and further investigated
in Meynaoui et al. (2019).

HSIC-based sensitivity indices. These indices directly derived from HSIC measures,
classify the input variables X1, .., X4 by order of influence on the output Y. They are defined
for all k € {1,...,d} by:

HSIC(Xy,Y)
V/HSIC(Xy, X) HSIC(Y,Y)

RIQ{SIC,k = (3.3)

The normalization in (3.3) implies that RHSIC i is bounded and included in the range [0, 1]
which makes its interpretation easier. Other similar HSIC-based sensitivity indices are available
in the literature. Examples include the distance correlation defined in Székely et al. (2009,
Section 2), and based on the distance covariance. Note that, the distance correlation is also the
R¥q;c indice when the HSIC measure is the distance covariance?. We also mention the optimised
criterion of (Blaschko and Gretton, 2009) used for taxonomy clustering and the kernel alignment
defined in (Cortes et al., 2012).

In practice, R%{SIC,k can be estimated using a plug-in approach:

HSIC(X,,,Y)
\/ FISIC( Xy, X;)HSIC(Y, V)

RHSIC k= (3.4)

These indices can be used to rank inputs by order of impact and perform GSAI.

Other approaches based on statistical HSIC-tests of independence are also possible to perform
GSA1l. According to the available number of simulations, these tests are mainly used under
two versions: asymptotic and non-asymptotic tests. This point will be detailed later in a
dedicated section of this chapter.

3.3 Statistical inference around HSIC measures

The first aim of this section is to present the usual estimators of HSIC measures along with
their properties. Thereafter, we introduce a new method for estimating these measures using
alternative samples, generated according to a law different from the prior law of inputs. The
characteristics of the obtained estimators are demonstrated.

31t is recalled that GSA1 here refers to the classical sensitivity analysis of the simulator output as a function
of the uncertain inputs when the probabilistic model of the inputs is known and fixed (cf. Sections 1.4 and 2.4).

4Indeed, there exists a particular choice of kernels for which the HSIC is the distance covariance, as shown in
(Sejdinovic et al., 2013).
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3.3.1 Statistical estimation under prior distributions

In this paragraph, we present HSIC estimators, as well as their characteristics. As a reminder,
we assume that we have a n-sample of independent realizations (X(Z),Y(Z))1 <j<n Of the in-
puts/output couple (X,Y) where X = (Xi,...,Xy), according to the prior law of inputs

flxy,. .. zq) = fi(xr) x ..o X fa(zg).

Monte Carlo estimation. From Formula (3.1), authors of Gretton et al. (2005a) propose
to estimate each HSIC(Xy,Y') by

— 1 1 2
HSIC(Xy,Y) = — > (Li)igLig + 7 > (Li)iglar = 5 > (Lw)igLie, (35)

1<ij<n 1<i,j.qr<n 1<ijr<n

where Ly, and L are the matrices defined for all 7,5 € {1,...,n} by (Ly);; = lk(Xlii),X,(cj)) and
(L);; =1 (y(i)’y(j)),

Remark. The estimator in Equation (5.5) is part of a class of estimators called V-statistics
(on behalf of Richard Von Mises), which are biased (but asymptotically unbiased) by contrast
with unbiased estimators called U-statistics (U for unbiased) where diagonal terms are removed.
Moreover, these two estimators as well as the bias term, all have the same computation cost
(Song et al., 2012). Table 3.1 describes the characteristics of these two types of estimators.

’ U-statistic estimators \ V-statistic estimators
Without bias Asymptotically unbiased
Variance of order 1/n Variance of order 1/n
Approximation of the asymptotic law by a Approximation of the asymptotic law by a
Gamma distribution under independence Gamma distribution under independence
Practical to numerically implement but less Very practical to numerically implement
practical than V-statistic estimators
Computational complexity is n> Computational complexity is n>

Table 3.1 — Comparison of the characteristics of U-statistical and V-statistical HSIC estimators.

These V-statistic estimators can also be written in the following more compact form (see
Gretton et al., 2005a):

— 1
HSIC(X},Y) = — Tr(LyHLH), (3.6)
n

where H is the matrix defined for all 4, j € {1,...,n} by H; ; = §; ; —1/n, with §; ; the Kronecker
symbol between ¢ and j which is equal to 1 if i = j and 0 otherwise.

Characteristics of HSIC estimators. Under the assumption of independence between
X and Y and the assumption I (zx, ) = l(y,y) = 1 (as in the case of Gaussian kernels), the

estimator H/SI\C(X k, Y) is asymptotically unbiased, its bias converges in O(%), while its variance

converges to 0 in O(-%). Moreover, the asymptotic distribution of n x H/S-E(Xk, Y') is an infinite

sum of independent x? random variables, which can be approximated by a Gamma law (Serfling,
2009) with shape and scale parameters, respectively denoted -y and Sy:
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where ef and vy are respectively the expectation and the variance of H/SI\C(X;€7 Y), ie.
er = E|HSIC(X,, V)|, v = Var (H/SI\C(Xk,Y)) .

The reader can refer to Gretton et al. (2008) and De Lozzo and Marrel (2016b) for more details
on e and v and their estimation.

3.3.2 Statistical estimation under alternative distributions

In this part, we first demonstrate that HSIC measures presented in Section 3.2.1 can be expressed
and then estimated using a sample generated from a probability distribution of inputs which is not
their prior distribution. This sampling distribution will be called “alternative law” or “modified
law”. The characteristics of these new HSIC estimators (bias, variance, asymptotic law) will be
demonstrated. These estimators will then be used in the proposed methodology for
27d_level global sensitivity analysis in Section 4.2.

3.3.2.1 Expression and estimation of HSIC from a sample drawn with alternative
distributions

The purpose of this paragraph is to express HSIC measures between the inputs X, ..., Xgq and
the output Y, using d random variables X, ..., X4 whose laws are different from those of
X1, ..., X4. We assume that their densities denoted fi, f2, ..., fq have respectively the same
supports as f1, ..., fg. We denote in the following by X and Y respectively the random vector
X = (Xq,...,X4) and the associated output ¥ = M(X). Finally, we designate by f(z1,..,zq4) =
ﬂ(ml) X fg(xg) X o X fd(m‘d) the density of X.

Changing the probability laws in HSIC expression is based on a technique commonly used
in the context of importance sampling (see e.g. Cannamela, 2007). This technique consists in
expressing an expectation E [g(Z)], where Z is a random variable with density fz, by using a
random variable Z with density f whose support is the same as that of fz. This gives the
following expression for E [¢(Z)]:

= z z)dz = z f2(2) ~(z2)dz = 7 7‘702(2)
E[g(2)] = /supp@)g( ) f2(2) d /Supp(z)gu 0 7 d Elgm e R

where the notation Supp(Z) designates the support of Z.

The HSIC measures, formulated as a sum of expectations in Equation (3.1), can then be
expressed under the density fg by adapting Equation (3.7) to more general forms of expectations.
Hence, we obtain:

HSIC(X},Y) = H + HZH} — 2H}, (3.8)

where (H, ;lg)lgzgz; are the real numbers defined by:
H} = (1K, KUY, Vw(X)w(X)| 5 HE = B [1(X, X (X)w(X)];

HP=E [z(?, ?')w()?)w()?/)} and H! = E [E [zk()?,w XD)w(X') | Xk] E [z(f/, Yw(X') | ?] w()N()} ,

where X' is an independent and identically distributed copy of )NC, Y = M(f(’ ) and w = j;
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Formula (3.8) shows that HSIC(X},Y") can then be estimated using a sample generated from
f , provided that f has the same support than the original dens1ty f. Thus, if we consider

a n-sample of independent realizations (X( ),Y(z)) i where X is generated from f and
1<i<n

YO = ./\/l()?(i)) for i =1,...,n, we propose the following V-statistic estimator of HSIC(Xy, Y):
HSIC(X,Y) = H} + H2H? — 21, (3.9)
where (ﬁfc)lglg are the V-statistics estimators of (Hé)1§l§4.
Proposition 3.2. Similarly to Equation (5.6), this estimator can be rewritten as:
HSIC(X,,Y) = %Tr (WEkWH1EH2) , (3.10)
where W, Ek, Z, H, and Hy are the matrices defined by:

L= (&%) 3 L= (170 70) W = Diag (w(X")) _
S, n <i1<n

1 1
H =1I,— ~UW;: Hy=1I,— ~WU;
n n

1<i,j<n

with I, is the identity matrixz of size n and U the matriz filled with 1.
The proof of this proposition is detailed in Appendix 3.6.1.

Remark. Similarly to Equation (3.4), the sensitivity index R%{SIC,I@ can also be estimated using
the sample (X(i),f/(i)) by:

1<i<n

HSIC(X,Y)

R‘HSIC k= (3'11)

\/ HSIC(X, X, HSIC(Y, Y)

3.3.2.2 Statistical properties of HSIC alternative estimators

In this section, we show that the estimator HSIC(X},Y) has asymptotic properties similar to
those of the estimator HSIC(X,Y"): same asymptotic behaviors of expectation and variance and

same type of asymptotic distribution. The properties presented in the following are proved in
Appendices 3.6.2, 3.6.3 and 3.6.4.

Proposition 3.3 (Bias). The estimator ITI‘S\IE(X;C,Y) is asymptotically unbiased and its bias
converges in O(%) Moreover, under the hypothesis of independence between Xy and Y and the
assumption lg(xy, xx) = U(y,y) = 1, its bias is:

_ 1
(Ek - Exk,w)(Ewk - Ey,w) - ﬁ(Ew - Emk)(Ew - Ey)

w

E [ESTE(Xk, Y)} — HSIC (X4, Y) =

=3

F BB~ 1)+ 0(%), (3.12)
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where
E, =E _wQ()Af)} , E,, =E [lk <Xk7)2]/<:> wi (X5) wk(fé)} ;
B, =E[1(V,V") w (X0 waX0)],  Bow =E [l (% %) wf(X0) (X)),
E,.=E {l (17,17’) w? (X _k) w,k()?',k)} , EY =E {Wi()zkﬂ :
ES* =E [0 (X)),
w and wy respectively denote the functions i , Q, X_y, is the random vector extracted from
X by removing the k-th coordinate, )~(’_k an z'ndepel;zdent and identically distributed copy of X_y

d
and w_g(z_) = ] wr(x,) with x_y the vector extracted from the vector (x1,..,x4) by removing

"2k
the k-th coordinate.

Under the independence assumption, an asymptotically unbiased estimator of the bias of
HSIC(X%,Y) can be obtained by replacing each expectation in (3.12) by its empirical estimator.

Proposition 3.4 (Variance). Under the independence hypothesis between X, and Y, the variance

of ﬁ_S\iE(Xk, Y) (denoted here V) converges to 0 in O(-). More precisely, the variance Uy can
be expressed as:

72(n —4)(n —5) ~ 9 1
Oy = Ey o [Esalh } O(—~), 3.13
E S = D(n—2)(n—3) 12 3,.4[h1,2,34]7 | + (n?’) (3.13)
(1,2,3,4)
where h1234 = 1 Z [(lk)nu w + ()t los —2 ()t lt,v}, where the notation corre-

’ (t,u,v,s)
sponds to the sum over all permutations (t,u,v,s) of (1,2,3,4). The notations (Ix)pq, lpq and

wy, respectively denote Iy ()?,Ep),)?,i@), l(f’(”),f’@) and i(f((p)). Finally, the notation E, ,

means that the expectation is done by integrating only with respect to the variables indexed by p
and q.

An estimator 9y, of 9, can be deduced from Equation (3.13):

- 2(n — 4)(n — 5)

Oy = 17(B® B)1 3.14
F =D - m 3 BB (3.14)
~ 4 ~ ~
with ® is the Hadamard product and B = Z B,., where the matrices (Br> s are defined
1<r
r=1 - =

for all (i,5) € {1,...,n}? by:
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(51%3' = (Zlc)i,jwiwj (E] —l~z —l~g +Z> ) (EQ)i,j = —(ZNk)i,.wz' (ZNi,jwj —E _ZNj,.wj +lF> )

(ES)i,j = _(Tk).,jwj (lNi,jwi — 1, w; —Tg +7) ) (§4)i,j = (lNk) (li,jwiwj — 1, w; _Z;‘,.wj +7) ;

where w; = W, ; and the terms (l~;€)i,,7 (k)5 k), b, Z~J and [ are the empirical means (denoted
with a bar above):

(ZNk)i,- = Ly ()?zii)v;(k> Wk(f(k)’ l~z =L <?(i),?) W—k()?—k)v

() = Ly (Xk)?k) wi(Xn), =1L (17',17) wor(X_).

Theorem 3.1 (Asymptotic law). In a similar way as n X H/SI\C(Xk, Y), one can prove that the

—_——

asymptotic distribution of n x HSIC(Xj, Y)2 can be approzimated by a Gamma distribution, whose

~ ~ ~ € ~ nv
parameters 3, and By, are given by Y, = -~ and B, = —k, where €, and ¥y are the expectation
€

Vg k
and variance of HSIC(Xy,Y), i.e. e = E [HSIC(Xk, Y)} and Oy = Var (HSIC(Xk,Y)).

In practice, these parameters are respectively estimated by the empirical estimator for € and
the estimator given by Equation (3.13) for ¢y.

Remark. From a practical point of view, the greater Var (wk()?k)), the greater the number of
stmulations required to accurately estimate HSIC(Xy,Y). It is therefore highly recommended to
check that Var (wk()?k)> is finite. For instance, in the case of densities with compact supports,
it is enough to check that wy is finite on its support.

3.3.2.3 Illustration on an analytical example

In this paragraph, we illustrate via a numerical application the behavior and the convergence of

the modified estimators HSIC, according to the size of the inputs/output sample. For that, we
consider the analytic model M inspired from Ishigami’s model (Ishigami and Homma, 1990) and
defined by:

M(X1, Xo, X3) = sin(X;) + 1.8 sin?(Xo) + 0.5 X3 sin(X,), (3.15)

where the inputs X1, X5 et X3 are assumed to be independent and follow a triangular distribution

1
on [0,1] with a mode equal to 7 We denote by Y the output variable Y = M(X).

We consider standardized Gaussian kernel HSIC measures (see remark 3.2.2) between each
input Xy, £ = 1...3 and the output Y. The objective is to estimate these measures from
samples where the inputs are independent and identically distributed but generated from a
uniform distribution on [0, 1] (here the modified law). For this, we consider Monte Carlo samples
of size n = 100 to n = 1500 and for each sample size, the estimation process is repeated 200
times, with independent random samples.
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Figure (3.1) presents as a boxplot the convergence graphs of the estimators ﬁ_S\ia(X kY).
Results for the estimator H/SI\C(X k,Y) computed with samples generated from the original law
(namely triangular) are also given. Theoretical values of HSIC are represented in red dotted
lines. We observe that for small sample sizes (n < 500), the modified estimators HSIC(X},Y)

have more bias and variance than the estimators H/Sﬁ(X k,Y). But, from size n = 700, both
estimators have similar behaviors.

— — —
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Figure 3.1 — Convergence plots of the estimators @(Xk, Y) and ES\IE(Xk, Y') for Ishigami
function, according to the sample size n. Theoretical values are represented in red dashed lines.

On this same example, we are now interested in the classification of the input variables by
order of influence. For this, the sensitivity index R%{SICJC (k=1,...,d) is computed from both

ITI_S\fE(Xk, Y) and ﬁSI\C(Xk, Y') using Equations (3.11) and (3.4). The obtained sensitivity indices
are respectively denoted f{HSIC and ﬁHSIC' In either case, the inputs are ordered by decreasing
estimated values of R%{SIC. For each sample size, the rates of good ranking of inputs given by

~2 ~2
Rysic and Rygpe estimators are also computed. Results are given in Table (3.2). As one
might expect, prior estimators are more efficient for ranking the inputs. However,
this example illustrates that, even for small sample sizes (e.g n = 200), modified estimators

~2
Rygic have good ranking ability. Once again, for medium and high sample sizes (n > 500 here),
these two types of estimators have the same ability to rank the inputs.
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| | n=100 [ »n=200 [ n=300 | n>500 |
| Ruse || s8% | 93s% | 9% | 100% |
| Rpsio || 100% | 100% | 100% | 100% |

~2
Table 3.2 — Good ranking rates of input variables using modified estimators Ryg;c and prior

~2
estimators Rygrc
for the Ishigami function, for different sample sizes n.

3.4 Statistical tests of independence based on HSIC

The purpose of this section is to present and discuss different options for independence tests
using HSIC (and consequently, more carefully screen inputs). For this, we start by reminding
the general principle of statistical tests and the characteristics to assess their quality. We then
present a review of the most frequently known independence tests and the reasons for considering
those based on HSIC. Thereafter, we present the two main approaches for HSIC tests, namely
the asymptotic and the non-asymptotic tests. Finally, a new non-asymptotic HSIC-based test
with more theoretical guarantees than those currently used, is proposed.

3.4.1 Review on non-parametric tests of independence

Let us first introduce some notations and assumptions. We consider here a numerical simulator
of d scalar inputs which are not necessarily independent, and we assume that we have ¢ scalar
outputs which are viewed as a vector of ¢ components denoted Y = (¥7,...,Y,). We also denote
by X = (Xi,...,Xp), a group of p inputs viewed as a single vector. The couple (X,Y) is
considered as continuous with a joint density fx,y. Moreover, the marginal densities of X and
Y are respectively denoted fx and fy. We also denote by fx ® fy, the product of the marginal
densities fx and fy defined as follows:

fx @ fy :(z,y) € RP xR = fx(z)fy(y).

The density fx y is assumed to be unknown as well as the marginals fx and fy. We address
here the question of testing the null hypothesis (Hp): “X and Y are independent” against the
alternative hypothesis (H;): “X and Y are dependent”. Testing independence between X and Y
is then equivalent to test (Ho) : “fx,y = fx ® fy” against (H1) : “fxy # fx ® fy”. Moreover,
we assume that we have an n-sample (XM Y1) (X®) y() of iid. random variables
with common density fxy. The probability measure associated to this n-sample is denoted
Py, . By analogy, Pr, gy, designates the probability measure associated to this n-sample with
common density fx ® fy. The densities fxy, fx and fy are assumed to be bounded and M
denotes the maximum of their infinity norms®: My = max{|| fx,v |loos || Fx|loos | /¥ [loc }-

3.4.1.1 Generalities on statistical tests of independence

Basic definition. A test of independence A is a statistical procedure, testing two hypothesis.
The first one, usually called the null hypothesis and denoted (Hy), is defined as

(Ho): “X and Y are independent”.

5The infinity norm of a bounded function g on a set S is defined as ||g|jco = sup { |g(t)| : t € S }.
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While the second one, called the alternative hypothesis and denoted (), is defined as
(H1): “X and Y are dependent”.

To achieve this, a test statistic S A is computed from the set of observations, which means that
8a = 8a (XD, ¥ D), (X, v 1)),

Depending on the value of the test statistic gA, we reject or not the null hypothesis (Ho).
For example, if Sa is an estimator of a dependence measure between X and Y (whose nullity
is equivalent to the independence between these two random variables), then the test A rejects
(Ho) for large values of Sa. Therefore, the critical value from which the test rejects independence
depends on the chosen test statistic. In addition, the test function A can be defined as

A=15,.0, -
where Cg is the critical value associated to test statistic Sa. The null hypothesis is then re-
jected if and only if A = 1.

Errors of first and second-kind. The quality of a statistical test is naturally determined
by the risks of misjudging dependence and independence between X and Y. The first-kind er-
ror of the test A is the probability of (Hy) being rejected, while X and Y are independent. The
level of the test A is an upper bound of the first-kind error. Similarly, the second-kind error is
the probability of (Hg) not being rejected, while X and Y are dependent. An independence test
having a small second-kind error (lower than a chosen threshold 3) is called (1 — §)-powerful
(see Lehmann and Romano, 2006; Siegmund, 2013 for more details on theory of statistical tests).
Thus, a “good” test of independence should ideally have small first and second-kind errors. Note
that, 15% and 2"4 kind errors can’t be minimized at once, when either of them is reduced the other
is raised. In practice, the tests of independence are built to have a small first-kind error(generally
set at 5% or 10%). All the efforts are then concentrated to minimize the second-kind error.

Uniform separation rate. In a non-asymptotic framework, the uniform separation rate (Ba-
raud, 2002) is a good indicator for the quality of a given statistical test of independence. As
mentioned above, the first objective is to control the first kind error and this property is usually
true by construction of the test. More precisely, if a in (0,1) is the level of the test A, meaning
that

Pfx®fy (A = 1) <o,

then the first-kind error is controlled by a. In other words, if X and Y are independent, the
probability that the test A rejects the independence hypothesis is less than « (in practice the
value of « is chosen at o = 5% or @ = 10%). The second objective is to control the 2"d-
kind error. However, we already know that if X and Y are weakly dependent in the sense
that [|fx,y — fx ® fy|l, is very small, it is difficult to control the 2"d-kind error. This leads
to the definition of the uniform separation rate associated to the test A, which is the
smallest distance | fxy — fx ® fy||, between fxy and fx ® fy from which dependence
is detectable using the test A. More precisely, the uniform separation rate p (A,Cs, 8) of
the test A, over a class Cs of alternatives fxy such that fxy — fx ® fy satisfies smoothness
assumptions, w.r.t. the La-norm, is defined for all 5 in (0,1) by

p(A,Cs,8) =inf< p >0, sup  Ppo, (A=0)<3p, (3.16)
fx,vyEF,(Cs)
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where F,(Cs) = {fx,v. fx,y — [x ® fy €Cs,|[fx,y — fx @ fy|l, > p}. To avoid any misunder-
standing, let us highlight that fx and fy always denote the marginals of the function fx y.

This definition extends to the non-asymptotic framework, the notion of critical radius intro-
duced and studied for several examples in a series of Ingster papers (see e.g. Ingster, 1993a,b). A
test of level a having the optimal performances, should then have the smallest possible uniform
separation rate (up to a multiplicative constant) over Cs. To quantify this, let us introduce, as
in Baraud (2002), the non-asymptotic minimax rate of testing, defined by

p(c(saa?ﬂ):iAnfp(Aomcévﬂ)v (317)

where the infimum is taken over all a-level tests of (Ho) against (#H;). If the uniform separation
rate of a test is upper-bounded up to a constant by the non-asymptotic minimax rate of testing,
then this test is said to be optimal in the minimaz sense. The problem of non-asymptotic
minimax rate of testing based on HSIC measures will be more closely explored in Chapter 5.

3.4.1.2 Classical non-parametric tests of independence

To test independence between X and Y, many approaches have been explored in the last few
decades. Among them, Hoeffding (1948b) proposes an independence test based on the differ-
ence between the distribution function of (X,Y") and the product of the marginal distribution
functions. This test has good properties in the asymptotic framework, it is consistent and
distribution-free under the null hypothesis. But, it is only designated to univariate continu-
ous random variables. The authors of Bergsma and Dassios (2014) propose an improvement of
Hoeffding’s test, which is applicable to discrete, continuous or mixture of discrete and continu-
ous distributions. Lately, Weihs et al. (2018) propose to extend Hoeffding’s test to the case of
multivariate random variables.

More efficient alternatives to test independence between X and Y are based on RKHS spaces.
These tests can be implemented without any density estimation or high dimensional integration.
As a result, they are more resistant to dimensionality. A first RKHS-based asymptotic indepen-
dence test is performed using general large deviation inequalities (Gretton et al., 2005a). A more
optimal asymptotic independence test based on a Gamma approximation of the distributions
of HSIC estimators under (Hg) is proposed by Gretton et al. (2008). This last statistical test
remains by far the most commonly used kernel-based test for independence. A generalization
of this test for the joint and mutual independence of several random variables is presented in
Pfister et al. (2018). We also mention the RKHS-based test of Pdoczos et al. (2012), based on
a new dependence measure called Copula-based kernel dependency measure. Yet, this test is
more conservative than the test of Gretton et al. (2008), since it is based on large deviation
inequalities rather than the asymptotic distributions of the estimators under (Hp). Another
worth-mentioning RKHS test is built from the distance covariance® (Székely and Rizzo, 2013;
Yao et al., 2018). We also mention the statistical test of independence based on the kernel mutual
information recently proposed by Berrett and Samworth (2017). This new statistical test seems
to achieve comparable results with the classical tests based on HSIC.

One of the objectives of this thesis is to improve the performance of these HSIC
statistical tests of independence for screening purposes.

6We recall that the distance covariance can be seen as an HSIC measure with specific kernel choices.
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3.4.2 Existing HSIC-based statistical tests of independence

By now, we present the two manners to use HSIC measures to test the independence between X
and Y: the asymptotic and the non-asymptotic approaches. The asymptotic approach is built
upon the assumption that the law of HSIC estimator under the independence can be approached
by the asymptotic Gamma distribution introduced in Section 3.3.1. Otherwise, if this assumption
is not justified, it is necessary to use non-asymptotic tests, based on permutations.

A first theoretical test. Since the nullity of HSIC is equivalent to the independence
between X and Y, testing independence is equivalent to test

(Ho) : HSIC(X,Y) = 0  against (Hy) : HSIC(X,Y) > 0.

The statistic estimator H/SI\C(X ,Y) is then a natural choice to test independence between

X and Y. The corresponding test rejects independence if @(X ,Y) is significantly large.
Specifically, for a € (0,1), we consider the statistical test which rejects (Hy) if

H/SE(X, Y) > q1—a;

where g1 _,, denotes the (1 — «a)-quantile of H/Sﬁ(X ,Y) under (Hg). The associated test function
is defined by
A, = ]l@(X,Y) S e (3.18)
Then, the null hypothesis is rejected if and only if A, = 1. By definition of the quantile, this
theoretical test is of non-asymptotic level «, that is if fxy = fx ® fv,

Pfx‘y (Aa = 1) <a.

Note that analytical computation of the quantile g; _,, is not possible since its value depends
on the unknown marginals fx and fy of the couple (X,Y). The estimation of ¢;_, therefore
depends on the framework in which we are placed. Note also that the theoretical test can be
defined in an equivalent way using the p-value”. To achieve this, the independence is rejected
when the p-value is lower than a.

Asymptotic tests. In the asymptotic framework, the estimation of the quantile g;_,, is

performed using the Gamma approximation of the distribution of H/Sﬁ(X ,Y) under (Ho) as
shown in Gretton et al. (2008). Similarly, the p-value (denoted P) of the test can be estimated
in the asymptotic framework using the Gamma approximation (denoted G) as

P~1-—Fg, (n « HSIC(X, Y)Obs> : (3.19)

where Fg is the cumulative distribution function of G' and H/SI\C(X ,Y)obs is the observed value
of the random variable HSIC(X,Y).

Permutation tests. Outside the asymptotic framework, i.e. for small sample size n, the
quantile gq;_, can be estimated using permutation-based technique as proposed by De Lozzo

"The p-value of the test is the probability that, under (Ho), the test statistic (in this case, PTSI\C(X7 Y)) is
greater than or equal to the value observed on the data.
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and Marrel (2016b). We denote Z,, = (X, Y®),-,<,, the original sample and HSIC (Z,,) the
associated estimator. We consider B independent and uniformly distributed random permuta-
tions of {1,...,n}, denoted 71, ..., 75, independent of Z,,. Then, we define for each permutation
73, the corresponding permuted sample Z7 = (X V(7)) ;. and we estimate the following
permuted test statistics

O* =HUSIC(Z™), b=1,...,B.
Under (Ho), that is if fxy = fx ® fy, each permuted sample Z7> has the same distribution

than the original sample Z,. Hence, the random variables Vil *» p = 1,..., B, have the same
distribution as HSIC(X,Y"). In order to estimate the quantile ¢;_,, we denote

JaRdtd) < o*®@ <...< (B

the order statistics associated to ﬁ*l, ceey H*B. Therefore, the quantile ¢; _, can be estimated
using the permutation approach by ¢i_, defined as

G1_ o = F*(BO-0)T) (3.20)

where [.] denotes the ceiling function. The p-value (denoted p) of the permutation test can also
be computed by:

1

B
b= Z 1ﬁ*b>@(X,Y)' (3.21)
b=1

s

Although it is heuristically known that the level of the majority of permutation tests can
be controlled, there is no theoretical guarantee in the specific case of HSIC tests. In the next
section, we propose a modification of the “classical” version, so that we can show that its level
can be controlled by an arbitrarily small a.

Other HSIC-based tests. Further HSIC-based independence tests are worth mentioning.
More particularly, the wild bootstrap test of Chwialkowski et al. (2014) based on an external
randomization of X and Y samples. This is performed by using random processes associated
to X and Y which have some theoretical properties. The resulting test has asymptotically the
good level. We also mention the asymptotic approach of Zhang et al. (2018). This last approach
is spectral i.e. the asymptotic distribution of the HSIC estimator under H, is approximated by
estimating the eigenvalues of an operator called the “integral operator”.

3.4.3 New version of non-asymptotic HSIC-based tests of indepen-
dence

In order to control the level of HSIC tests in the non-asymptotic framework, we propose here
a modification of the previous permutation test. To do so, we keep the same notations. If we

denote by F' the cumulative distribution function of H/Sﬁ(X ,Y) under fx ® fy, then F can be
estimated by F' defined for all ¢ € R by

B
F(t) = & > Liue, (3.22)

Yet, instead of considering the generalized inverse of F to approximate the quantile, we apply
a trick, based on Romano and Wolf (2005, Lemma 1), which consists in adding the original
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sample to the Monte Carlo sample in order to obtain a test of non-asymptotic level
«. For this, we denote

H*B+' —HSIC(X,Y), and H*M < H*® < < F*B+Y

the order statistic. Then, the permuted quantile with Monte Carlo approximation ¢j_, is thus
defined as

Zl\l—a = ﬁ*(((B‘H)(l*a)])’ (323)
where [.] denotes the ceiling function.

The permuted test with Monte Carlo approximation ﬁa is then defined as

Ao = Tseixy) > o (3.24)

Proposition 3.5. Let o be in ]0,1[ and A, the test defined by Equation (3.24). Then, under
(Ho), that is if fxy = fx ® fy, we have

P, (&a - 1) <a, (3.25)

this permuted test with Monte Carlo approximation is thus of prescribed non-asymptotic level c.

3.5 Synthesis

In this chapter, we detailed the Global Sensitivity Analysis (GSA) based on HSIC (Hilbert-
Schmidt Independence Criterion). This choice is motivated by the advantages of HSIC compar-
ing to other dependence measures: broad spectrum of captured dependence, good proprieties
of estimators, easy to implement, low cost of estimation, etc. We started by reviewing basic
background information on HSIC measures: principle and definition, which extends the well-
known notion of linear covariance by projecting the code inputs and output into some Hilbert
spaces having better characteristics. We also recalled sufficient conditions so that HSIC be
independence-characterizing. The main approaches proposed in the literature for using HSIC for
GSA were then presented: normalized sensitivity indices, asymptotic and non-asymptotic tests
of independence. As a follow-up, the “usual” HSIC statistical estimators and their proprieties
were described. The link between these estimators and the HSIC-based statistical tests was also
highlighted. Thereafter, we presented a new method to estimate these measures using an “alter-
native sample” (with a different distribution than the prior one). The characteristics of these new
estimators and the associated statistical tests were demonstrated. In the last section, we focus
our attention to the HSIC-based statistical tests of independence. Indicators to assess the quality
of the tests were presented, in particular the notion of uniform separation rate. The formulation
of asymptotic and non-asymptotic versions of HSIC tests were subsequently detailed. Finally, an
improvement in the commonly used non-asymptotic tests was proposed, this new version having
more theoretical guarantees for testing the independence.

These different elements will be used later in the next two methodological chapters. In partic-
ular, the statistical estimation under an alternative law will be helpful in Chapter 4
to build the methodology for GSA with second level uncertainty. The develop-
ments around HSIC tests, on the other hand, will be useful for our methodology of
aggregated tests proposed in Chapter 5, for screening purpose.
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3.6 Proofs

3.6.1 Proof of Proposition 3.2

In this annex, we prove that:
o~ 1 ~ -
HSIC(X, V) = — Tr (WLkWHlLH2> .
n

Firstly, we evaluate the matrix Wzk W H; LH o coefficients before computing its trace. The matrix
W being diagonal, we write for 7,5 € {1,...,n}:

(WLyW)i; = (Li)i s Wi, Wi ;.

The coefficient of the matrix W L,W H; indexed by ¢ and j can therefore be computed:

n

(WZkWHl)i,j = Z(Zk)i,TWi,iWr,r(Hl)r,]

r=1
Ly 1
- Z(Lk)i,TWi,iWT,T((ST,j - ﬁWj,j)
r=1
~ 1 < ~
= (Lg)i jWiiW;j,; — - ;(Lk)i,rwi,iwr,rwj,j~

Subsequently, the matrix WZkWH 1]~L coefficients are obtained:

n
(WLyWHL)s; = > (WLyWHi )i Ly
r=1
1 e ~ ~
= Z < Lk i, z ) 7"7" - E Z;(Lk)i,swi,iws,swr,r> Lr,j

n

- Z(Ek)i,rzr,jWi,iWr,r - % Z(Lk 0,8 z z Z

r=1 s=1
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Finally,

(WEkWHli)i,T(HQ)T,j

M=

(WLyWH,LHy); ; =

ﬂ
I
-

[
M=

s

- - 1
(WLeWH L) (61 = W)

r=1
~ ~ 1 & ~ ~
= (WLgWH:L)i j — =Y (WL WH,L); , Wy,
n r=1
no_ _ 1 _ B
= Z(Lk)i,rLr,jWi,iWr,r - — Z (Lk)i,er,jWi,iWs,sWr,r
r=1 " 1<r,s<n
1 n no_ B 1 _ ~
- E Z Z(Lk)i,sLs,rWi,iWs,s - ﬁ Z (Lk)i,qu,rWi,iWq,qu,p Wr,r
r=1 \s=1 1<p,g<n
noo_ N 1 _ _
= Z(Lk)i7rLr7jWi,iWr,r - Z (Lk)i,er,jWi7iWs,sWr,r
r=1 n 1<r,s<n
1 - 1 -~
- E Z (Lk)i,sLs,TWi,iWs,sWr,r + E Z (Lk:)i,qu,rWi,iWq,qu,pWr,r'
1<r,s<n 1<r,p,q<n

Summing up the matrix WZkWH 1EH2 diagonal terms, then dividing by n? gives:

1 ~ ~ 1 -~ 1 ~ ~
I (WLkWﬂlLHz) = > (Lo LiWe W + s > E)eaWeiWay D LpeWp Wi,
1<i,r<n 1<i,q<n 1<p,r<n

2 ~ ~
Y Z (Lk)i,SLi,TWi,iWS,SWT,T‘
n 1<i,r,s<n

By definition of fk, L and W, the three terms of the last equation are respectively the
estimators defined in Formula (3.9).

3.6.2 Proof of Proposition 3.3

To lighten formulas, we denote (ly);,; = (Z,C)” sl = L,j and w; = W;;. We also denote
HSICy (X, Y') the U-statistic associated to the estimator HSIC(X},Y") defined as follows

HSICy(Xy,Y) = N > Wil jwiw; +W > (W)iglpqwiwwpw,
% (ig)eiy (i.d.p.a) €7
2

*W Z (lk)i,jli,rwiijr
? (igr)ein

— ALV 2V oSV,
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n!
where (n)s = 7)' and 47 is the set of all s-tuples drawn without replacement from the set
n —s)!

{1,...,n}. We also recall that

HSIC(X,Y) =3 Z (k)i jli jwiw; + v Z (I )i, jlp,qwiwjwpwy
1<i,j<n 1<i,j,p,a<n

2
3 > Wil pwiwjw,

1<ijr<n

—H} +H} —2H},

Denote the null hypothesis (Hox): “Xj; and Y are independent”. Then, under (Ho ) the
estimator ﬁS\iGU(Xk,Y) is centered. The bias of the estimator ﬁ_§f6(Xk,Y) is then equal
to that of ES\EE(Xk,Y) - ﬁ_S\féU(Xk,Y) under this same assumption. We first compute the
expression of ES\IE(Xk, Y) - ES\I'éU(Xk, Y'), before computing its expectation. Let us compute
ITI—S\iE(X;C, Y)-— IfI_S\iEU(Xk,Y) term by term:

n

~ 1

Hi E (I)iili sw? - E (lk)i jli, jwiw;,
i=1 =1 Fen

~9 27U
H —HYY= — Y [()iilyqwiwjwg + 40k )i jliqwiwjwg + (k)i jlg.qwiwjw?]
(4,3,9) €%

6 1
- > Wiglpqwiwwpwg + 0(-3),

n(n)s . )
(i,9,p,9) €3}
.~ 1
Hj —Hy Y= s [(Ik)iili jwiws + (I)i jliiwiw; + (I)i li jwiw?]
<iZj<n
- 3 Z (Ik)i jli rwiwjw, + O( 5)-
’I’L( ) k i,5b,r g Wr
(,5,r) €%

These expressions can be simplified by replacing (Ix);; = l;; = 1

~1  ~1U 1 1
Hlli _Hk =— Zw? — m Z (lk)i’jli,jwiwﬁ

1<i#j<n

H —HpY = (1 qwiwjwg + 4(1k)i,jliqwi wiwg + (In)s jwiw;w}]

6 1
- > (Wk)ijlpqwiwjwpw, + O(-3),

(4,4,p,q) €1}

Hi —HyY = [l jwiwy + (k)i jwiw; + (k)i jli jwiw? |

1
Z (lk.)i,jlivrwiijr + O(ﬁ)

(i,g,r)eiy
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By computing the expectation of these three estimators under Hg x, we have:

B (AL -] = (B -E,E,),

o 1 6 1
E[H - H}Y| = = (BuE, +4Es, w By +EuEx,) — = E;, B, +0(=),

~ ~ 1 _ 3 1
BB - Y] = = (BN By + B2 By + By By) — = B, By +0(-5).

From these last equations, we obtain:

_ 1
(Ek _]Exk,W)(E ¥ _]Ey,W) - ﬁ(Ew _Exk)(Ew _]Ey)

w w

E [ﬁs\IE(Xk,Y) - ﬁS\IEU(Xk,Y)} -

=3

1
+ EEw(Ew _1) + O(ﬁ)

Finally, the bias of ﬁS\fE(Xk, Y) under (Ho,x) is written:
2 _ 1
E(Ek _]Exk,w)(E g _]Ey,w) - E(Ew _Exk)(Ew _]Ey)

w w

E[HSIC(X;, Y)] — HSIC(X},Y) =
1 1
+ - E,(E,-1)+ O<ﬁ)'

3.6.3 Proof of Proposition 3.4

In order to compute the variance of HSIC(X},Y') and to determine its asymptotic distribution
under Hg j, general theorems on V-statistics must be used. For this, we write this last estimator
as a single V-statistic. By analogy with theorem 1 of Gretton et al. (2008), we have:

— 1 ~
HSIC(Xi,Y) =~ > hijgr
" 1<iGar<n
where
_ 1 (4,3,9,7)
hijar =73 D W) rdewtwiwy + (1) by, sy wws — 2(1 ) ule v Wiy,
(t,u,v,s)

the sum represents all ordered quadruples (¢, u, v, s) drawn without replacement from (i, j, g, 7).

This equality is easily obtained by decomposing the last sum into three sums, then by writ-
ing that:

(4,5,9,7) 1

1 1
~ > ol > (k) tuliuwiwy, = > ()il gwiwy,
1<4,j,q,7r<n (t,u,v,s) 1<i,j<n
1 1 (4,3,9,7) 1
— > 1 > () by swiwwyws = -y > (Wiglgrwiwswquw,,
1<i,j,q,r<n  (t,u,v,s) 1<i,5,¢,r<n
(4,3,9,7) 1

1 1
—~ > 1 > W) rulewwiwyw, =— Y (Wijlirwiwjw,.

! n
1<ig,q,r<n  (tu,0,s) 1<i,j,r<n
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The result is then obtained by combining the last three equalities.

Remark. The U-statistic associated to the estimator HSIC(Xy,Y) is written:

— 1
HSICU(Xk,Y):n—M Z Rijqr-

in

(i7j1QaT)€Z4

Under Hg,x, the estimators n x ﬁ_S\iE(Xk, Y) et nx ﬁ_S\fU(Xk, Y') have the same asymptotic
behavior (see e.g. Serfling, 2009). Moreover, Hoeffding variance decomposition of HSICy (X}, Y)

is written: 14
— n N r ne 4
Var (HSICy(X,Y) ) = < ) Z ( > ( )CT’
( ) 4 r=1 4 A=

where C?” = Var <E[7L17273_’4 ‘ Xl, ‘e ,XT]) , T = 1, e 74.

—_~

1
Moreover, under H x, the variance of HSICy (X4, Y) converges to 0 in O(—Q):
n

Var(SICy (X4, ¥) = 2 P 4 0,

Under Hox, G2 = Eq 5 [Eq’r[ﬁl’2’3’4]2], where the notation E, ¢ designates the expectation by
integrating only w.r.t variables X, and Xj.

Moreover, by detailing the different terms of Ei,j,p,qa we easily show that:

6hijgr = (Ik)ijwiw; (L + lgrwqwy) + (k)i qwiwg (lig + Lirwjwe) + ()i ewiwy (L + 1 qwjwy)

+ (k) j.qwiwg (L, + li pwiwy) + (I) jrwjwe (e + lg iwqw;) + (Ik) g rwqwr (lgr + 1 jwiw;)

1 (4,5,q,r)
3 (g;w (It uwewy (L Wy + Ly pwy)
where
()i, =B [Dn (X0, %) wn(X0)] b =E[L (YO, )w (X)),
()5 =B [Le (X0, X ) wn(X0)], 4 =E[L (YD, )w p(x )],
(Ip) =E {Zk (X1;7Xk)wk(Xk)} , I=E [E (Y',Y) W—k(X_;g)} .

We therefore write under Hg y:

6Eq,r {EW} = (I)s,jwiw, (le‘ — 1, — 1. +7) — () .ws (L jwy — L, — L w; +1)

— (lk),’jwj (li’jwi — li,‘wi - lj,‘ + l) — (lk) (li,jwiwj — lz,wl - lj,‘wj + l) .
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- 1 ~ ~
Eqyr {him} can be estimated empirically by E(B)i’j’ where B is the matrix defined in For-

mula (3.13). The variance (5 can be estimated by (3 = (B® B)1. Formula (3.13) is then

36n2
obtained by replacing the expression of (5 in Hoeffding’s decomposition.

3.6.4 Proof of Theorem 3.1

The asymptotic distribution of the V-statistic n x ﬁ_S\ia(X &, Y) (as well as the U-statistic n x

ES\EU (Xk,Y)) is given by Theorem 5.5.2, page 194 of Serfling (2009), which gives a formulation
of the asymptotic distributions of degenerate V-statistics (and U-statistics). Indeed, we can

easily show that under H, j the statistic HSIC(X},Y) is degenerate.

Theorem. Under Hg i we have the two following convergence theorems:

n x ASIC (X3, Y —>Z)\lzl,

n x OSIC. (X3, Y —>Z)\l ~1)

where (Z}),~, are independent and identically distributed random variables of distribution N'(0,1)
and ()‘l)lzl_ are the eigenvalues of the following operator:

A(g) 12— /ﬁijqr(gv Zj, 2> 2r) 9(Zj) dFjqr

where the integral is w.r.t. the distributions of the random variables Z;, Z; and Z,.

+oo

To conclude, the distribution Z )\ZE? can be approximated by a Gamma distribution according
I=1

to Gretton et al. (2008). In fact, it is an infinite sum of independent random variables of distri-

bution x? (Chi two). The asymptotic distribution of the V-statistic n x HSIC(X}, Y) under Ho
is a Gamma distribution, whose parameters can be estimated based on the empirical expectation

and variance of n x HSIC(Xy,Y) (see section 3.3.2.2).

3.6.5 Proof of Proposition 3.5

Let a be in (0,1). In order to prove that the permuted test with Monte Carlo approximation
A, is of prescribed level o, we use the following lemma of Romano and Wolf (2005).

Lemma 3.1 (Romano and Wolf (2005, Lemma 1)). Let Ry, ..., Rp41 be (B+1) exchangeable
random variables. Then, for all u in (0,1)

B
1
: (BH <1 + ZﬂRbZRBH) < U) < u.

b=1
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Recall that for all 1 < b < B,
H* =HSIC(Z7) and H*B = HSIC (Z,) = HSIC (Z77+1),
where 7511 = id is the identity permutation of {1,..., B + 1} (deterministic).

Assume that fxy = fx ® fy. Then the random variables ﬁ*l, .. .,ﬁ*B and H*B+1 are ex-
changeable. Indeed, let m be a (deterministic) permutation of {1,...,B + 1} and let us prove
that

(I;T*l, el PAI*B7 }AI*B'H) and (f[*”(l), . ﬁ[*”(BH)) have the same distribution.
(3.26)

1st case: if (B + 1) = B + 1. Then, since the permutations (7,)1<p<p are i.i.d., they are
exchangeable. Hence, (7x(1),...,Tr(p)) is an i.i.d. sample of uniform permutations of {1,...,n},
independent of Z,, and (3.26) holds by construction.

2nd case: if 7(B+1) # B+ 1. Then,
A*(B+1) — HSIC (Z,TL“(B“)) — HASIC (Zn) . where Z, = Z,;~".
In particular, for all b in {1,..., B},

~T7r(b)OT

— T —_ —1
A" —HSIC (277" = ASIC ( 71, ) if 7(b) # B+ 1,

~ — —— ([ ~idor}
H*™®) = HSIC (Z,,) = HSIC (Zn ”<B+1>> if 7(b) = B+ 1.
Therefore, in order to prove (3.26), it is sufficient to prove that {Tﬂ(l)orﬂ_(gﬂ), . ,Tﬂ(B)oﬁ:(lBH)}
is an i.i.d. sample of uniform permutations of {1,...,n} independent of Z.,. Let A be a mesurable
set, and o1, ...,0p be (fixed) permutations of {1,...,n}. Then,
> -1 _ -1 _
IP(Zn €A, o Ta(B+1) = s =+ Tn(B) © To(py1) = UB)
=P(Zy" """ € A, Tr(1) = 019 Tu(B41)s- - - » Tn(B) = OB © Tn(B41))
=E[P(Zy" "™ € A, Tr(1) = 010 Ta(B41)s- - - Tn(B) = OB © Tu(B4+1)| Ta(B+1)) ] -
This leads to
> -1 -1
P(Zn € A, Tr(1) OT‘n-(B—&-l) =01, «-+y Tn(B) OTﬂ(B+1) = O'B)
B
=E|P(Z, € A) x H ]P(Tw(b) =00 Tw(B+1)’T7r(B+1)) X
b=1

b#n—1(B+1)

P(id = 07-1(p11) © Te(B4+1)|Tr(B41) |+ (3.27)
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where (3.27) holds by independence of all permutations 7, and of Z,, and since, if fxy = fx® fy,
Zy" " and Z,, have the same distribution. Hence,

- . .
P(Zn €A, ) 0T (B+1) = Ly -+ Tr(B) © To(pi1) = UB)

=K

B-1
1 :
IP(Z” S A) <n'> IP(ld = O0n-1(B+1) © Tw(B+1)’Tw(B+1))] s

B—-1
1 _
=P(Z, € A) (m) IP(T,T(B+1> = aﬂil(BH)) ;

—P(Z, € A) (;v>B’

This ends the proof of the exchangeability of the (ﬁ;f’#)lgbg B+l

Then, by applying Lemma 3.1 to the ( b H**)1<p<B+1, We obtain

Preofy (Aa = 1) Piyofy ( SIC > g1 - a)
F*BHL S ﬁ*(((BH)(pa)]))

]lﬁ*b<ﬁ*5’+1 > |—(B + 1)<1 - Oéﬂ)

- Pfx@fy (Z ]lﬁ*b>H*B+1 > LQ(B + 1)J) (328)

1
B+1 ( 1ﬁ*b>ﬁ*3+l> < 0‘)
=1

B+1-[(B+1)(1-a)]=|a(B+1)],

(3.29)

where (3.28) comes from the fact that

and (3.29) is obtained from Lemma 3.1.



Chapter 4

Global sensitivity analysis for
second level uncertainties

4.1 Issues and objectives

As previously outlined in Chapter 1 (in French) and Chapter 2 (in English), numerical simulators
are powerful tools for modeling, studying and better comprehending natural phenomena. For
many reasons, the inputs of these simulators are often uncertain or poorly known. Studies are
therefore carried out to take these uncertainties into account. In the probabilistic framework,
the inputs and output are modeled by random variables. The probability distribution of each
input may be perfectly known or itself uncertain'. For the last case, we differentiate in this
manuscript two “levels” of Global Sensitivity Analysis (GSA):

First-level uncertainties and GSA1. For given probability distributions of the inputs,
we call first-level GSA or GSA1, the “usual” Global Sensitivity Analysis between the uncertain
inputs of the model and its output. Using classical methods, GSA1 studies can only be performed
when the input probability distributions are perfectly (or assumed to be) known. Figure 4.1
illustrates the general principle of GSAL.

Second-level input uncertainties and GSA2. In some cases, the probability distributions
characterizing the uncertain inputs may themselves be uncertain. These uncertainties may be
related to a divergence of expert opinion on the probability distribution assigned to each input
or a lack of information to characterize this distribution. The modeling of this lack of knowledge
on input laws can take many forms:

e the type of the input distribution is uncertain (uniform, triangular, normal law, ...);

e the distribution is known but its parameters are uncertain (e.g., known normal distribution
with unknown mean and variance, eventually estimated on data).

e the lack of knowledge about the distribution is a mixture of uncertainties about its type
and its parameters (e.g. discrete law on a set of distributions with uncertain parameters
for each of them).

The resulting uncertainties on the input laws are referred to here as second-level uncertainties. To
handle this type of uncertainties in GSA studies, two main approaches are possible: Aggregating

1Further clarifications below.

o7
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Figure 4.1 — General principle of GSAL.

uncertainties or Separating them. The first one consists in considering simultaneously both first
and second level uncertainties, as a unique uncertainty. The lack of knowledge can then be sum-
marized by a single-level uncertainty and represented by a well-defined probability distribution.
In this case, the most intuitive choice for this distribution (and also the most commonly adopted)
is the mixture distribution. Another solution for aggregating could be to integrate GSA1 results
over the uncertainties on input distributions (Chabridon et al., 2017). By contrast, the principle
of separating uncertainties is to dissociate the impacts of first and second uncertainties on the
output. Certainly, the approach of separating uncertainties is more difficult to manipulate and
requires more model simulations comparing to the approach of aggregating uncertainties. How-
ever, it provides a more complete picture and allows to avoid the loss of information due to the
aggregation. For this reason, we choose to deal with second-level uncertainties by separating the
input uncertainties from the probabilistic model uncertainties.

In this framework, 2"-level uncertainties can be modeled by a probability law on a set of
possible probability laws of inputs or by a probability law on the parameters of a given input law
(e.g. Gaussian distribution with probability law on mean and/or variance). In any case, these
27d_level uncertainties can significantly change the GSA1 results performed by HSIC or any other
dependence measure. In Figure 4.2, we illustrate in a trivial way how the input distributions
can change the GSA1 results. The main purpose of second-level GSA (GSA2) is then
to answer the following questions: «What impact do 2"9-level uncertainties have
on the GSA1 results 7» and «What are the most influential ones and those whose
influence is negligible ?». The GSA2 results and conclusion can then be used to prioritize the
characterization efforts on the inputs whose uncertainties on probability laws have the greatest
impact on GSA1 results. Figure 4.3 summarizes the general principle of GSA2.

Practical problems raised by GSA2. In practice, the realization of GSA2 raises several
issues and technical obstacles. First, it is necessary to characterize GSA1 results, i.e. to define
a quantity of interest which is representative of GSA1, in order to compare the results obtained
for different laws of the inputs. Then, the impact of each uncertain input law on this quantity
of interest has to be evaluated. For this, sensitivity indices measuring the dependence between
GSA1 results and each input pdf have to be defined. We propose to call them 2"¢-level indices
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Figure 4.2 — Basic illustration of the impact of second-level uncertainties on GSA1 results.
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Figure 4.3 — General principle of GSA2.

(or GSA2 indices). In order to estimate these measures, an approach based on a “double Monte
Carlo loop” could be considered. In the outer loop, a Monte Carlo sample of input laws is sorted,
while the inner loop aims at evaluating the GSA1 results associated to each law. For each law
selected in the outer loop, the inner loop consists in generating a Monte Carlo sample of code
simulations (set of inputs/output) and to compute GSA1 results. The process is repeated for
each input law. At the end of the outer loop, the impact of input pdf on the GSA1 results can
be observed and quantified by computing GSA2 indices. Unfortunately, this type of double loop
approach requires in practice a very large number of simulations which is intractable for time
expensive computer codes. Therefore, other less expensive approaches must be developed.

To answer these different issues (choice of the quantity of interest, definition
of GSA2 indices and reduction of the budget of simulations), we propose in this
chapter a “single loop” Monte Carlo methodology for GSA2 based on both 15t-level
and 2"9-level HSIC dependence measures.
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This chapter is organized as follows. In Section 4.2, the full methodology for GSA2 is pre-
sented: a single inputs/output sample is used, taking advantage of the new HSIC estimators
introduced in section 3.3.2. The GSA2 principle and the related practical issues are first de-
tailed. The proposed general algorithm of GSA2 is then developed, followed by dedicated sec-
tions focusing on major technical elements. In Section 4.3, the methodology is illustrated on an
analytical example, thereby comparing different options and technical choices of the methodol-
ogy. The proposed methodology is applied to the accident scenario ULOF described in Chapters
1 (in French) and 2 (in English), simulated with MACARENa code. Finally, the methodology is
compared with the extra-probabilistic approach of Dempster-Shafer which deals with epistemic
uncertainties.

4.2 New methodology for second-level GSA

Let us first introduce some useful notations and assumptions. We assume here that the inputs
are independent and continuous random variables with a probability density function, denoted
pdf.

The inputs Xi,..., Xy vary according to unknown probability distributions respectively de-
noted Px,,...,Px, and we denote by Px = Px, x ... x Px, the joint distribution of the vector
X of inputs. Similarly, we denote by Ppy ,...,Pp, , the probability laws of the uncertain dis-
tributions Px,,...,Px,.

4.2.1 Issues raised by GSA2

We present in what follows the different issues and technical locks raised by the realization of a
GSA2.

4.2.1.1 Characterization of GSA1 results

The realization of GSA2 requires a prior characterization of GSA1 results. This characterization
consists in associating to a given input distribution Px = Px, X...XxPx,, a measurable quantity
R which represents GSA1 results. To choose this quantity of interest, we propose the following
options introduced in §3.2.3 and all based on HSIC:

e Vector Rgc = (R?{SICJ, e ,R%ISIC’d) of sensitivity indices. The quantity of interest
R = R3gc is thereby a vector of d real components.

e Ranking of inputs X3, ..., X; using the indices RIQ{SICJ, cen RI%ISIC,d . In this case, the
quantity of interest R is a permutation on the set {1,...,d}, which verifies that R(k) = j
if and only if the variable X is the k-th in the ranking.

e Vector P = (Py,...,P4) of p-values associated with asymptotic independence
tests. In this case, the quantity of interest R = P is a vector of d components in [0, 1]%.

e Vector p = (p1,...,pa) of p-values associated with permutation independence
tests. The quantity of interest R = p is a vector of d components in [0, 1]¢.

4.2.1.2 Definition of GSA2 indices

By analogy with formulas (3.1), it is possible to build 2"d-level HSIC measures between the
probability distributions Px,,...,Px, and the quantity of interest R. This involves to define
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Figure 4.4 — General scheme for GSA2 using the “double loop”approach.

RKHS kernels Ip,,...,lp, on input distributions and a RKHS kernel [z on the quantity of
interest R. This point will be further detailed in Section 4.2.3. Thus, assuming all the kernels
are defined, we propose the 2"4-level HSIC measures defined for k = 1..d by:
HSIC(Px,,R) =E [ip, (Px,,Px,)Ir(R,R")] + E [lp, (Px,,P%,)]E[lz (R,R)]
— 9K [E [Ip, (Px,.Py,) | Px,] E [l (R,R)) | R]], (4.1)

where ]P”Xk is an independent and identically distributed copy of Px, and R’ the GSA1 results
associated to Py, .

From 2"d-level HSIC measures, we can define GSA2 indices by:

B HSIC(Py, , R)
VHSIC(Px, , Py, ) HSIC(R, R)

R%{SIC(]P)XM R) , for k =1..d. (4.2)

4.2.1.3 Monte Carlo estimation

To estimate R%q;0(Px,, R), for k = 1..d, one has to dispose of a n;-sized sample (]Pg?, ROYicicn,
of (Px,R). For this, we could consider a double loop Monte Carlo approach as shown in
Figure 4.4. In the outer loop, at each iteration 4, a distribution ]Pg? is randomly generated
from Pp, = Pp,, X ... x Pp, . The quantity of interest R associated to this distribu-
tion ]P’g? is provided by a 2" loop. This inner loop consists in generating a no-sized sample
(Xfi’j)7 . ,Xc(li’j))lgjgnz where X follows Pg?. The ny corresponding outputs (Y #9)); <<, are
computed in this inner loop. Once this loop performed, the quantity of interest R is computed
from £ = (Xfi’j), R X(gi’j), Y(i’j))lgjgm. This process is repeated for each IP’;? of the outer

loop. At the end, 2"-level HSIC can be estimated from the sample (Pg?, R(i))lgigm by:

HSIC(Py,,R) = %TT(LDkHLRHL (4.3)
1
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where Lp, and Lg are the matrices defined for all (z,5) € {1,...,n1} by: (Lp, )i = lp, (Pg?k , Pgi),
(LR)i; = lr (RW,RYW) and H the matrix defined in Formula (3.6).

From 2"%-level HSIC estimators, GSA2 indices can be estimated using plug-in and Formula
(4.3) by:
HSIC(Px,,R)

~2
Rusic (PXk7R) Y —— ———
\/ASIC(Py, , P, )ASIC(R, R)

. (4.4)

Consequently, this Monte Carlo double-loop approach requires a total of nyns code simula-
tions. For example, if n; = 100 and ns = 1000, the computation of GSA2 HSIC indices requires
10% code calls. This approach is therefore not tractable for CPU-time expensive simulators.

To overcome this problem and reduce the number of code-calls, we propose a

single-loop Monte Carlo approach to obtain the sample (Pgé),R(i))lgignl, which re-

quires only n, simulations, and allows to consider a large sample P of distributions
Px. This new algorithm is detailed in the next section.

4.2.2 General algorithm for computing GSA2 indices with a single
Monte Carlo loop

In this part, we detail our algorithm to estimate the GSA2 HSIC indices (and Rjgc) from a

unique inputs/output sample £. We assume that inputs are generated from a unique and known

probability distribution denoted Px = Px, x ... x Px, with density denoted f(z1,...,7q4) =

fi(z1)x...x fy(xq). The options for choosing f will be discussed in Section 4.2.4. The algorithm

consists of 3 steps:

e Step 1. Build a unique ny-sized sample £ from f
In this step, we first draw a sample X = (X(i))1<i<n2 according to f, then we compute
the associated outputs Y = (Y(i)) 1<i<ny’ to obtain a sample £ = (X,Y) of inputs/output.
Thus, in what follows, all the formulas for modified HSIC will be used with the alternative
sample &, f being the alternative distribution. Hence, in all the modified HSIC formulas,
the alternative sample will be (X,Y) = (X,Y).

e Step 2. Perform n; GSA1 from &

First, we generate a n;-sized sample of input distributions according to Pp, . This sample of

distributions is denoted P = (]P’g?) B and the density associated to each distribution
1_i§n1

Pg? is denoted f(*) = ( 1@, ey f;z)). The objective is then to compute the GSA1 results

R associated to each distribution IP’;?, using only £. The options proposed for R() in
Section 4.2.1.1 are distinguished:

- Vector R = (R?{’é?c’l,..wR?{’é?c’d) of sensitivity indices. In this case, each
. ~92 P
Rf{éﬁ)c is estimated by Rygjc ; given by Equation (3.11) with £ = (X, Y).
- Ranking of inputs Xi,..., Xy using the indices R%{SIC,U . 7R%ISIC’d . These

~2
rankings are obtained by ordering the coordinates of Rygjc vectors; still estimated
from &€ and Equation (3.11).
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- Vector R() = (Pgi)7 ... ,PS)) of p-values associated with asymptotic indepen-
dence tests. By analogy with Equation (3.19), each P,(j) is estimated thanks to the
properties of the modified estimators:

P = B, (ng X f@iﬁ(x,g"),y)obs) Ck=1,....d (4.5)
where ng is the cumulative distribution function of Gamma law approximating the
asymptotic law of ny x HSIC(X", Y).

- Vector R() = (pgi), . ,pg)) of p-values associated with permutation indepen-

dence tests. Using the same notations as in Formula (3.21), each p,(f) is estimated

by:

B
~() _ 1 B
Pk B b_zl]lﬁs\la[b](X,ii),Y)>ﬁS\IE(X£”,Y)’ k=1,...,d. (4.6)

e Step 3. Estimate GSA2 indices

Finally, the GSA2 indices Riqi(Px,,R) are estimated with the sample (Pgé)ﬂi(i))lgig,“
using Formulas (4.3) and (4.4). The computation of matrices Lp,, k =1,...,d and Ly requires
the definition of specific RKHS kernels Ip,, £ = 1,...,d and lg. This item is detailed in the
next section.

4.2.3 Choice of characteristic kernels for probability distributions and
for quantities of interest

In this part, we present examples of characteristic RKHS kernels for probability distributions
and for the different quantities of interest R, these kernels being involved in Formula (4.3) (and
as a result in Equation (4.4)).

Characteristic RKHS kernel for probability distributions. Before defining a char-
acteristic kernel for distributions, we first introduce the Maximum Mean Discrepancy (MMD)
defined in Gretton et al. (2012). If we consider two distributions P; and Ps having the same
support and if K denotes a RKHS kernel defined on the common support of P; and P, then the
MMD between Py and Py induced by K is defined as:

MMDy (Py, Po) = E[K (Z1, Z1)] — 2E[K (Z1, Z2)] + E[K (Z2, Z3)], (4.7)

where 7y, Zs are random variables respectively with laws Py, Py and Z], Z} are independent
and identically distributed copies respectively of Z;, Zs.

Authors of Gretton et al. (2012) establish that when K is characteristic, the MMD associated
to K defines a distance. From MMD distance, Sriperumbudur et al. (2010) defines Gaussian
RKHS kernels between probability distributions in a similar way to Formula (3.2):

Ip(P1,Ps) = exp (—AMMD7 (P;,P,)), (4.8)
where A is a positive real parameter.

It has been shown in Christmann and Steinwart (2010) that when the common support
of distributions is compact, the Gaussian MMD-based kernel is universal (and consequently
characteristic). We can then define kernels ip,, k =1,...,d introduced in Formula (4.1) by:

I, (Bx,,Px;) = exp (—)\k MMD? (IP’Xk,IPX;C)> : (4.9)
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where Mg, K =1,...,d are positive real parameters.

From a practical point of view, one can choose )y, as the inverse of s?, the empirical variance
w.r.t MMD distance (i.e. Ay = 1/s2):

s2 = ni% > wun, (P Py, ).,
i=1

— _ J R
where the distribution Px, is defined as, Px, = — IF’g()k
n

i=1

Characteristic RKHS kernel for permutations as quantity of interest. When GSA1
results R is a permutation (see Section 4.2.1.1), we propose to use Mallows kernel K, (Jiao and
Vert, 2018), the Mallows kernel is universal (and characteristic Mania et al., 2018). This kernel
is given, for two permutations o, ¢’ by:

Ky (o,0") = exp (—Ang(o,0")), (4.10)

where ) is a positive real parameter and ny is the number of discordant pairs between o and ¢’:

na(0,0") = Y [Mom<o om0} + Lotm>o) Lo (<o ()] - (4.11)

1<r<s<d

In practice, if a ni-sample of o is available, we propose to choose A as the inverse of the
empirical mean of ng(o,o’) i.e.

1 1 N 0 ()
3= D 3 na(e®, 0,

nl(nl-— 1 iti=1

where (O'(i))l <i<n, is the sample of permutations associated to the ni-sample of distributions.
Characteristic RKHS kernel for real vectors as quantities of interest. In cases

where R is a vector of R?, the usual Gaussian kernel defined in Formula (3.2) can be considered.

4.2.4 Possibilities for the unique sampling distribution

We propose three different possibilities for the single draw density f(zi,...,zq4) = fy(71) X
... X fy(xq) which is used to generate the unique sample & in Step 1 of the algorithm (Section
4.2.2). Note here that the support of each f;, k = 1,...,d must be X}, (the variation domain
of X, see Section 3.2). To have a density f, close to the set of all possible densities and
more particularly to the most likely ones, we propose to use either a mixture distribution or two
barycenter distributions, namely the Wasserstein barycenter and the symmetric Kullback-Leibler
barycenter. Figure 4.5 gives an example of these barycenter distributions.

Option 1: mixture distribution. The mixture density f,, (see e.g. Everitt and Hand,
1981; Titterington et al., 1985) of a random density probability f is defined by:

Far = Eslf] = /f 1 AF(f), (4.12)
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with f lying in F with probability distribution measure dF.
If F is discrete over a finite parametric set {fg,, ..., fo,, }, the mixture density is written as

m

Fae=>_ fo, F(fo,). (4.13)
r=0

If the density f depends on a parameter which is generated according to a continuous density
7 over O, the mixture density is defined by

Ty = /@ fo m(0) db. (4.14)

Option 2: symmetrized Kullback-Leibler barycenter. The symmetric Kullback-
Leibler distance (Johnson and Sinanovic, 2001) is a distance obtained by symmetrizing the
Kullback-Leibler divergence. It is defined for two real distributions p and v by:

D3 (p,v) =

dQy
dQ2
For a finite set of unidimensional and equiprobable densities {f1,..., fin}, the symmetrized

Kullback-Leibler barycenter fi can not directly be expressed using densities. However, the
distribution Qg of density f defined by:

(KL(pllv) + KL(v[|p), (4.15)

N)\)—l

where K L(Q1]|Q2) = / log(——==)dQ; is the Kullback-Leibler divergence.

1

. (Hﬂ)
T =g o drt — g (1.16)

(i)

is a very good approximation of symmetrized Kullback-Leibler barycenter (see Veldhuis, 2002
for detailed proofs).

To generalize the Formula (4.16) to a probabilistic set of one-dimensional densities, we pro-

pose:
]E]]-‘ [ln f]

— 1
=—-FE + — 4.17
T = 3B U]+ - [ (417)

where Ey [f] and Ep [In f] are mixture functions of random functions f and In f (given by Equation
4.12).

Option 3: Wasserstein barycenter distribution. The Wasserstein distance (see e.g.
Givens and Shortt, 1984; Villani, 2003) of order p between two real distributions p and v with
the same support A is defined by:

Wyt = ([ e yﬁdv(z,w)l/p, (418)

YET (1,v)
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Figure 4.5 — Graphical representations of the mixture distribution, the barycentric distribu-
tions in the sense of Wasserstein and in the sense of Kullback-Leibler for three distributions:
uniform, triangle with mode 0.5 and normal with mean 0.8 and standard deviation 0.1, which
are equiprobable and defined on [0,1].

where I'(u, v) is the set of probability measures on A x A with marginals p and v.

Note that in the general case, when referring to the Wasserstein distance (without specifying
the order) we refer to Wasserstein distance of order 2.

For a finite set F of unidimensional and equiprobable densities, the Wasserstein barycenter
density (Agueh and Carlier, 2011) is the one whose quantile function is the mean of the quantile
functions of the elements of the set F:

1
Tw =1 Y 4 (4.19)
Fl e

where gy, denotes the quantile function of Wasserstein barycenter, |F| the cardinal of the set F
and ¢y the quantile function associated to f.

To generalize Formula (4.19) to a probabilistic set of one-dimensional densities, we propose
to use

Gw = Erlay], (4.20)

where Er[gy] is the mixture quantile function of the quantile functions (qs) ;>

4.2.5 Discussion about the supports of the distributions

The reader might wonder if the methodology remains applicable when the potential distributions
of inputs don’t have a common support. Before answering this question, we mention that in real-
applications, we generally deal with physical quantities having a bounded range of admissible
values, linked to physical constraints (e.g. a chemical concentration lies between 0 and 1). For
this reason, we use pdf with bounded support to represent the uncertainties of these quantities
on their range of variations. Moreover, we focus here on equal supports but, it is also interesting
to know if the methodology is still valid if we remove the hypothesis of common supports. We
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already know that the only required condition to use the importance sampling technique is that
the support of the prior distribution be contained in the support of the sampling one. Hence, in
the case of different supports, choosing a sampling distribution with a support covering all those
of the possible distributions resolves this limitation. This leads us to the second point: when
supports are equal, all the points of the sample are used to estimate the HSIC for each assumed
pdf. Conversely, a discordance of the supports leads to a loss of information, this loss being
all the more important as the supports differ. To illustrate this, we consider the two extreme
configurations given in Figure 4.6. On the left, the three densities have the same support, the
budget of computation is used to compute the HSIC of each pdf. In contrast, on the right, the
supports are totally disjoint (worst configuration) and the use of importance sampling technique
is equivalent to dividing the simulation budget into three parts, only a third of simulations are
used to estimate the HSIC for each case of pdf. Besides, in the case of disjoint supports, the
“single loop” methodology turns into the usual “double loop” approach.

o (@]
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N ¢ Density 2 N * Density 2
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* Sampling density * Sampling density
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Figure 4.6 — Two examples of the sampling distribution for three possible densities. In the
first case, the three densities have the same support, while in the second case, the three densities
have totally disjoint supports.

4.3 Application of GSA2 methodology

In this part, our proposed methodology is first applied to an analytical model. The three differ-
ent options proposed in Section 4.2.4 to generate the unique sample are studied and compared.
Moreover, the benefit of this new methodology comparing to a “double loop” approach is high-
lighted. Thereafter, the whole methodology is applied to the nuclear ULOF-MACARENa test

case.

4.3.1 Analytical example

Our proposed “single loop” methodology for GSA2 is first tested on the analytical model pre-
sented in Section 3.3.2.3. We recall that this model is defined on the set [0, 1]* by h(X1, X2, X3) =
sin(X;) + 1.5 sin?(X3) 4+ 0.5 X3 sin(X1). The inputs X;, X5 and X3 are assumed here to be
independent and their probability distributions Px,, Px, et Px, can equiprobably be the laws
Py, Pr et Py, where
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e Py is the uniform distribution on [0, 1],
e Pp is the triangular distribution on [0, 1] with mode 0.4,

e Py is the truncated normal distribution on [0, 1] with mean 0.6 and standard deviation
0.2.

In practice, such second-level uncertainty as described above is encountered when there is a
divergence of several expert opinions. More precisely, they all agree on the range of variation of
an input but, their opinions differ on the type of the probability distribution. To illustrate this,
consider here the three following expert opinions:

e The first expert claims that except the range of variation, no other information can be
assumed on the uncertain variable;

e The second adds that the most likely value is 0.4;

e The third thinks that the mean and the standard deviation can respectively be assumed
equal to 0.6 and 0.2.

Following the principle of maximum entropy for expert elicitation (Meyer and Booker, 2001;
O’Hagan et al., 2006), the information provided by each expert can respectively be modeled by
the distributions Py, Pr and Py. Thus, the uniform distribution on the set {Py, Py, Py} seems
to be a natural choice for the second-level uncertainty in this case.

The objective here is to estimate from a single inputs/output sample, the 2"d-level GSA
indices R%—ISIC (Px,,R)k=1...q indices of the model Y = h(X) for different sample sizes. For this,
we use HSIC measures for GSA1 (and R%{SIC (Xk,Y)r=1.. q indices) with standardized Gaussian
kernel. We characterize GSA1 results by the vector of 1%%-level Rfjgic (option 1 in Section 4.2.2).
To compute the 2"d-level R? ¢ indices, MMD-based kernels Ip, (Equation 4.8) are used for input
distributions and the standardized Gaussian kernel (Equation 3.2) is used for GSA1 results.

Remark. The other quantities of interest characterizing GSAI1 results could be studied in a
similar way.
4.3.1.1 Computation of theoretical values

In order to compute theoretical values of 2"d-level HSIC and Rfjgc indices, we consider the
finite set of the n; = 27 possible triplet of input probability distributions. The 1%t-level RIQ{SIC
vector associated to each distribution is then computed with a sample of size ny = 1000 (which
ensures the convergence of HSIC estimators). Theorical values of 2"d-level HSIC are estimated
with Formula (4.3):

- HSIC(Px,,R) = 0.0414,
- HSIC(Px,,R) = 0.0261,
- HSIC(Px,,R) = 0.0009.
The theorical values of 27d-level R%SIC(PXk,R) indices can also be computed:
- Rigic(Px,, R) = 0.4152,
- Riqc(Px,, R) = 0.2516,
- Riisio(Px,, R) = 0.0086.
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We observe that Rig;c(Px, , R) is considerably larger than Rfjg;o(Px,, R), while Rigo(Px,, R)
is negligible compared to the other two. In this example, the lack of knowledge on Px, has there-
fore no influence on 1¢-level R%—ISIC' Furthermore, the uncertainty on Px, has a much higher
impact than the one of Px,, which remains non-negligible. Consequently, characterization efforts
must be targeted in priority on Px,, followed-up by Px,.

4.3.1.2 GSA2 with our single loop approach

In the following, HSIC; (Px,, R), HSICy (Px,, R) and HSICk (Px,,R), k = 1,...,3 denote the
2nd_Jevel HSIC measures respectively associated to mixture law, Wasserstein barycenter law and

symmetrized Kullback-Leibler barycenter law. Similarly, ﬁf{SIQ v (Px,, R), ﬁ?{SIC,W(PXmR)

~2
and Rygie x (Px,,R), k =1,...,3 are the derived 2"d-level Rfig¢, indices.

In this section, we apply the methodology proposed in Section 4.2.2 to estimate GSA2 HSIC-
based indices. For this, we consider Monte Carlo samples of sizes ny = 100 to no = 1500. The es-
timations are repeated independently 200 times from independent samples. The results obtained
with the three modified laws are given by Figure 4.7. The theoretical values of R%{SIC (Px,,R) are

~2 ~2
represented in dotted lines. In this case, the estimators Rygc a(Px,, R) and Rygic x (Px,, R)
seem to have similar behaviors for both small and higher sample sizes. The dispersion of these
two estimators remains high for small sizes (especially for ny < 200) and becomes satisfying

~2
from ny = 700. The estimators Rygic w (Px,,R) have a higher variance than the two previous
estimators, particularly for small and medium sample sizes (300 < ngy < 700).

In addition, we compare the ability of the three estimators to correctly order Px, ,k=1...3
by order of influence. For this, we compute for each sample size, the ratio of times when they
give the good theoretical ranking. Table (4.1) gives the good ranking rates of 2"d-level R%{SIC
estimators w.r.t the sample size. These results confirm that the estimators based on mixture and
Kullback-Leibler barycenter laws outperform those based on Wasserstein barycenter law. Both

ﬁiISIC,M(PXMR) and ﬁf—ISIC,K(PXmR) yield highly accurate ranking from ny = 500 against

~2
ng = 700 for Rygcw (Px,,R). Furthermore, the Kullback-Leibler barycenter seems to give
slightly better results for small samples no < 300, this being reversed from ny = 500. The lower

performance of Wasserstein barycenter law could be explained by the fact that the ratio S

w
becomes very high in the neighborhood of 0.
] no \ 100 \ 200 \ 300 \ 500 \ 700 \ 1000 \ 1500 \
=)
Rusic.m (Px,, R) 74% 79% 84% 94.5% 97% 100% 100%
=3
RHSIC,K(PXk>R) 75.5% 79% 87% 92% 97% 99.5% 99.5%
Rusiow (Px,, R) | 575% | 71% 7% 82% 91% | 93.5% | 98%

~2
Table 4.1 — Good ranking rates of (Px,);,_, 5 given by the estimators Rygic a(Px,,R),

ﬁ?{SIC,K(]P)XMR) and f{?{SIQW(IP’Xk,R) for the model h, w.r.t the size ny of samples.
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Figure 4.7 — Convergence plots of the estimators Rygc a(Px,,R), Rusicw (Px,,R) and

~2
Ryusic xk (Px,;R),k = 1,...,3, for the model h and w.r.t the size ny of samples. Theoretical
values are represented in dotted lines.

4.3.1.3 Comparison with Monte Carlo “double loop” approach

In this part, we compare the “single loop” estimation of 2"4-level HSIC measures with the “double
loop” estimation. For this, we consider a total budget n = 1026 simulations for both methods
and propose the following test:

e For the “double loop” approach, a sample of size no = 38 is generated for each triplet
of input distributions (n = ny X ny = 1026 simulations). The computed “double loop”

~2
estimators are denoted Rygic(Px,,R),k=1...3.

e For the “single loop” approach, we apply the proposed methodology with no, = 1026 to
~2 ~2
compute the “single loop” estimators Rygrc a7 (Px,,, R) and Ryggio x(Px,,R), k=1...3.

This numerical test is repeated 200 times with independent Monte Carlo samples. Figure 4.8
shows the dispersion of the obtained estimators. Theoretical values are shown in dotted lines.
We observe that the “double loop” estimators have much more variability than “single loop” ones
(especially for the distribution Px,). We even observe a much larger bias (especially for Px,)
for the “double loop” approach. Good ranking rates are given by Table 4.2 and confirm that our
proposed “single loop” approach significantly outperforms the “double loop” approach.
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This example illustrates the interest of the “simple loop” approach which allows a much more
accurate estimation of 2"4-level HSIC measures. Indeed, for a given total budget of n simulations,
15t-level HSIC are computed via modified HSIC from ny, = n simulations in our “single loop”
approach against ng = n/n; in the “double loop” one. Even if classical estimators converge
faster than modified ones, the number of simulations available for their estimation is drastically
reduced with the double loop approach.

On this same analytical function, other numerical tests with different hypotheses on the input
distributions (more different from each other) have been performed and yield similar results and
conclusions.
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Figure 4.8 — Comparison of convergence plots of 2"d-level GSA indices by “double loop” ap-

~2  ~2 ~2 ~2
proach (R), = Rygic(Px,,R)) and by “single loop” approach (R, ; = Rygsicm(Px,,R) and
~2 ~2
Ry x = Rusic .k (Px,,R)) for the model h and n = 1026. Theorical values are represented in

dotted lines.

] Double loop \ Single loop \
—2 — =
Rysic(Px,, R) Rusic.m (Px,: R) Rusic .k (Px,: R)
67.5% 100% 99%

Table 4.2 — Comparison of good ranking rates of “double loop” and “single loop” estimators,
for model h and n = 1026.

4.3.1.4 GSAZ2 using other quantities of interest

It is fair to wonder if GSA2 conclusions vary according to the chosen quantity of interest. For
this, we focus here on the other quantities of interest previously defined. Namely, the ranking by
R?qc indices and the P-values vector. In both cases, we consider the associated RKHS kernels
as described in Section 4.2.3. Let us explore these two choices one-by-one.

¢ Ranking by R%{SIC. Since the convergence of 15%-level RIQ{SIC automatically implies the
convergence of the ranking by these indices, the convergence of 2"d-level Rig; using the ranking
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is at least as fast as the one using 1%*-level Riq;c. Based on the results of Section 4.3.1.2, we
consider a unique sample of size ny = 1000 to accurately estimate the 2"d-level R¥jqc using the
ranking. Denoting by R the input ranking, the obtained 2"%-level R%{SIC values are:

- R&gio(Px,, R) = 0.3830,
- Rigic(Px,, R) = 0.0958,
- Riigic(Px,, R) ~ 0.

We notice that the gaps between these values are more significant than those using 15t-level
RIQ{SIC. This is probably due to the stability of the ranking compared to the numerical values of
1°t-level Rig;c. Indeed, only significant shifts of 1%-level R¥jq; contribute to 2"d-level Riqc
using the ranking. In this case, we can safely conclude that Px, is the major contributor of
the ranking uncertainty. The robustess of GSA2 results can then considerably improved merely
by reducing Px, uncertainties. Furthermore, as one can expect, less characterization efforts are
required to increase the robustness of the ranking compared to 15t-level R%{SIC.

e P-values vector. By considering the p-values vector as the quantity of interest, two points
are highlighted. Firstly, the 2"%-level R%{SIC estimators show a large variance, regardless of the
estimation method of the p-values (i.e. by Gamma approximation or by permutations), even for
very big sample sizes such as ng = 5000. In addition, the three estimated values are small (not
exceeding 0.2). To better understand these results, we focus on the estimated p-values for each
possible input distribution. For this, we use the permutation method with B = 1000 resamplings
for each estimation. The obtained results show that the p-values associated to the inputs X,
and X5 are almost equal to zero (exactly zero numerically), regardless of the input distribution.
Furthermore, the p-values associated to the input X3 are low and in most cases below 107°.
Thus, the high variance of 2"-level Rigc is due to the difficulty of estimating the p-values for
each given input distribution. Besides, GSA2 using the p-values is not relevant here. Indeed,
the null hypothesis is not reliable in any case, GSA1 conclusions do not depend on the input
distribution. The difference between these results and those based on 1"-level Rq;c can be
explained by the fact that the p-values are mainly focused on assessing the confidence of the null
hypothesis of each input considered individually, while 1"9-level Rqc are designed to compare
the influence of inputs on the output.

4.3.2 Application on ULOF-MACARENa test case

Now, the objective is to apply the whole “single loop” methodology detailed in this chapter to the
MACARENa simulator, presented in Chapters 1 and 2 (Sections 1.3.2 and 2.3.2 respectively),
which simulates the ULOF (Unprotected Loss Of Flow) accident on sodium-cooled fast reactor.
The simulator MACARENa has a total of 26 input parameters, which are either random or
epistemic. In his work, Droin (2016) considered a total of 26 uncertain inputs of the simulator,
which are either random or epistemic variables. They were assumed to be independent and their
uncertainties were modeled with fixed probability distributions, listed in Table 4.3. Only first
level of uncertainties were considered.

Among the outputs computed by the MACARENa simulator to describe the ULOF accident,
the first instant of sodium boiling, denoted here Y, is of major interest for safety assessment.
The preliminary GSA studies of Droin (2016) showed the predominant influence of 3 parameters
onY:

e X;: external pressure drop discrepancy (Variable 4 in Table 4.3),
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e X,: primary mass flow rate (Variable 8 in Table 4.3),

e Xj3: Lockart-Martinelli correction value (Variable 25 in Table 4.3).

However, due to lack of data and knowledge, uncertainty remains on the distributions Px,,
Px, and Px, respectively of X;, X» and X3. More precisely, in consultation with physical experts
of the domain, we can reasonably assume (for these 3 inputs) the type of law as known but its
parameters as uncertain, as described in Table 4.5. The notations N;(a,b,m, ), T(a,b,c) and
U(a,b) are respectively, the truncated normal law of mean m and standard deviation o on [a, ],
the triangular law on [a,b] with mode ¢ and the uniform law on [a,b]. The uncertainty on o
results from a prior knowledge (no available data), while the uncertainties on ¢ and m are due
to their estimation using few existing partial data.

In this framework, the objective is then to assess how each uncertainty on input pdf can
impact the results of sensitivity analysis of Y.

Methodological choices. In order to perform GSA2, we apply our proposed algorithm
with the following methodological choices (see Section 4.2.2):

e the unique sample for each input is generated according to the mixture law,
e the quantity of interest characterizing GSA1 results is the vector R¥gc,

e the RKHS kernel based on the MMD distance is used for input distributions and the
standardized Gaussian kernel is used for GSA1 results.

Choices of sample sizes n; and ny,. We consider a Monte Carlo sample of size no = 1000
for the unique sample. This choice is motivated by two main reasons, firstly the calculation time
of one simulation of MACARENa (between 2 and 3 hours on average) which limits the total
number of simulations and secondly the results obtained on the analytical three-dimensional
example of Section 4.3.1. Furthermore, for the sample of distributions, we consider a Monte
Carlo sample of n; = 200 triplets of pdf. These two choices for n; and no will then be justified
later in this section, by checking the convergence of estimators.

By applying our 2" GSA methodology, with all these choices, we obtain the following 2"-
level sensitivity indices values:

2

- Ryusic m(Px,, R) = 0.5341,
~2

- Rysic.n (Px,, R) = 0.3317,

2
- Ryusic v (Px;, R) = 0.0753.

Consequently, uncertainty on Py, mainly impacts GSA1 results, followed by Px,, while Px,
has a negligible impact. Therefore, the efforts of characterization must be targeted on Px, to
improve the confidence in GSA1 results.

Remark. A deeper analysis of the 200 GSA1 results shows that X5 is almost all the time the
predominant input (99% of cases). On the other hand, the rank of X3 or Xy varies: X3 is the
least influential input in 63% of cases, against 37% for X;.
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Nominal core configuration
U . Probability Distribution parameters
Brevain/parametsis distribution P1 P2 P3 P4
1- Nominal core power (%Pnom) Truncated normal 1 30 0.93 1.07
2- Irradiation cycle (-) Discrete Uniform 1 2
3- Cold sodium temperature in the secondary loops (K) Truncated normal 618 30 608 628
4- External pressure drop discrepancy (%) Uniform -0.1 +0.1
5- Natural convection mass flow rate in the secondary I — 01 35 0 0.2
loops (%)
6- Natural convection mass flow rate in the outer- Uniiforis 0.05 0.15
subassembly flow (%)
7- Outer subassembly flow (%Qunom ass) Truncated normal 0.027 30 0 0.054
Transient characteristics
. Probability Distribution parameters
Uncertain parameters L.
distribution P1 P2 P3 P4
8- Primary mass flow rate halving time (s) Triangular 5 10 15
9- Secondary mass flow rate halving time (s) Uniform 1 3
Modelling uncertainties
Uncertai . Probability Distribution parameters
e distribution PL | P2 | P3 | Pa
10- Steel penetration in the fertile inner fertile zone? Discrete Uniform 0 1
(yes or no)
11- Upper steel plug thickness (m) Uniform 0.01 | 0.07
12- Dlscrep:.ancy related to the Nusselt number R T— 0 3a 02 +0.2
calculation (%)
13- Discrepancy related to the calculation of axial fuel
dilatation neutronic feedback coefficient (%) Troncated nomsal ? S || -8 | a8
14- Discrepancy related to the calculation of sodium Truncated normal 0 30 | -0.30 | +0.30
dilatation/voiding neutronic feedback coefficient
(%)
15- Discrepancy related to the calculation of the Truncated normal 0 30 | -0.30 | +0.30
diagrid neutronic feedback coefficient (%)
16- Discrepancy related to the calculation of the Truncated normal 0 30 | -0.23 | +0.23
Doppler neutronic constant (%)
17- Discrepancy related to the calculation of steel Truncated normal 0 30 | -0.30 | +0.30
relocation neutronic feedback coefficient (%)
18- Discrepancy related to the calculation of fuel Truncated normal 0 30 | -0.30 | +0.30
relocation neutronic feedback coefficient (%)
19- Discrepancy related to the calculation of thermal Truncated normal 0 30 | -0.30 | +0.30
dilatation resulting in the control rods insertion in
the core (%)
20- Dlscrepz.mcy related to the residual power Truncated normal 0 3 01 +01
calculation (%)
21- Hot pool sodium volumic fraction affected by the :
ULOF transient (%) Uniform 0-2 0.7
22- Cold pool sodium volumic fraction affected by the :
ULOF transient (%) Uniform 0-2 0-7
23- Sodium vapour quality at dry-out (-) Triangular 0.2 0.7 | 0.95
24- Sodium overheating temperature (K) Uniform 0 30
25- Corrective factor applied on the Lockhart- .
Martinelli coefficient (-) Unifsrm 92 3
26- Discrepancy on the Wallis velocity calculation (%) Uniform -0.5 0.5

Table 4.3 — List of the 26 uncertain inputs of MACARENa test case, as well as the associated
probability distributions. The legend of the parameters of each distribution is presented in Table
4.4. The table is taken from Droin (2016).
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Probability Distribution parameters
distribution P1 P2 P3 P4
Uniform Minimum Maximum - -
Triangular Minimum Modal value Maximum -
Truncated Normal Mean Star_1de_|rd Minimum Maximum
deviation

Table 4.4 — Parameters of uniform, triangular and truncated normal probability distributions
of MACARENa test case. The table is taken from Droin (2016).

] Law of input \ Nature \ Uncertain parameter ‘
Px, N:(—0.1,0.1,0,0) o ~U(0.03,0.05)
Py, T(0, 20, ¢) c~U(8,15)
Px, T(0.8,2,m) m ~U(1,1.5)

Table 4.5 — Uncertainties on the laws Px, ,Px, and Px, for MACARENa test case.

In the light of GSA2 results, this alternation between the rank of X3 and Xy is therefore
mainly driven by the uncertainty on Px,, to a lesser extend by Px,, while Px, has no impact.
Moreover, Xo whose distribution is not the most influential on GSA1 result, is surprisingly, the
most influential input on Y. This example illustrates, if necessary, that GSA2 aims to capture
an information that is different but complementary to that of GSA1.

In order to assess the accuracy of 2"-level RIQ{SIC estimation, we use a non-asymptotic boot-
strapping approach (see e.g. Efron and Tibshirani, 1994). For this, we first generate Monte Carlo
subsamples with replacement from the initial sample (of 1000 simulations), then we re-estimate
2" level Rijgre using these samples. We consider in particular subsamples of sizes no = 100 to
ng = 800. For each size, the estimation is repeated independently B = 20 times. Furthermore, to
reduce computational efforts, we consider a sample of distributions of reduced size n; = 30 and
generated with a Space-Filling approach. More precisely, the vector (o, c,m) is sampled with a
Maximum Projection Latin Hypercube Design (Joseph et al., 2015) of size n; = 30 and defined
on the cubic domain [0.03,0.05] x [8,15] x [1, 1.5].

Figure 4.9 presents as a boxplot the mismatch between the value estimated from the initial
sample and the values estimated from subsamples. We first observe a robustness of estimation:
the means of estimators seem to match the value given by the initial sample. We notice also
high dispersions for small and medium sizes (ny < 400) and small dispersions for medium and
big sizes (ne > 500). Therefore, it can be deduced that the estimations of GSA2 indices with
the sample of ny = 1000 simulations have converged, the stabilization of the estimations being
satisfactory from no = 700.

We also test the robustness of the estimation in terms of ranking of input distributions. Table
(4.6) gives for each subsample size, the rate of times that the ranking matches with the ranking
obtained on the initial sample. The results given by Table (4.6) validate the conclusions drawn
from convergence plots (4.9).

After considering the quantity of interest as the 15t-level R%{SIC vector, it would be interesting
to know whether or not GSA2 conclusions change if we consider other quantities of interest. For
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Figure 4.9 — Convergence plots of the estimators Rygio 2 (Px,, R) for MACARENa test case,
according to the sample size ny. Theoretical values are represented in red dashed lines.

[ mp=100 [ ny3=200 [ ng =300 | ng =400 [ nyg =500 [ nyg =600 [ ny >700 ]
y 45% | 5% [ 1% | % | 9% | 95% [ 100% |

~2
Table 4.6 — Good ranking rates given by the estimators Rygjc (Px,, R) for MACARENa test
case w.r.t the size ns of the unique sample.

this, we present in Table 4.7 the 2"%-level R%{SIC indices using the three quantities of interest
proposed in this chapter. We first remark that for the three chosen quantities of interest, the
distribution Px, is always and significantly the predominant. In this application case, regardless
of the chosen quantity of interest, the uncertainty on Py, has to be first and foremost reduced
to stabilize GSA1 results.

~2 ~2 ~2
R Rpsion®Px.R) | RisicnPxa®) | Rugiow(PxsR) |
Vector of Rigic 0.5341 0.3317 0.0753
Ranking by R¥gic 0.2311 0.0848 0.0069
Vector of P-values 0.1821 0.0925 0.1064

Table 4.7 — The 2"-level Rfjg o obtained according to each chosen quantity of interest, for
MACARENa test case.

4.4 Conclusion and Prospect

In this chapter, we proposed a new methodology for second-level Global Sensitivity Analysis
(GSA2) based on Hilbert-Schmidt Independence Criterion (HSIC). When input distributions
are uncertain, GSA2 purpose is to assess the impact of these uncertainties on GSA results.
In order to perform GSA2, we presented a new “single loop” Monte Carlo methodology to
address problems raised by GSA2: characterization of GSA results, definition of 2"d-level HSIC
measures and limitation of the calculation budget. This methodology calls for a single sample
generated according to a “reference distribution” (related to the set of all possible distributions)
and relies judiciously on the modified estimators introduced in Chapter 3 (Section 3.3.2). Three
options have been proposed for the reference distribution: mixture law and barycentric laws w.r.t
symmetrized Kullback-Leibler distance or Wasserstein distance. Analytical example show that
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the estimation of 2"d-level HSIC seems to be more accurate using the two first options rather than
the Wasserstein barycenter. We also illustrated the great interest of the “single loop” approach
compared to the “double loop” approach. Finally, the whole methodology has been applied to
the MACARENa test case to take into account uncertain parameter of probability distributions
of three inputs. This application illustrates how GSA2 can provide additional information to
classical GSA.

Several points of the methodology could be more investigated in future research. First, we
could focus on comparing Space-Filling Design (see e.g. Pronzato and Miiller, 2012; Cioppa,
2002; Wang and Shan, 2007) techniques and Monte Carlo methods for the sampling of input dis-
tribution in the case of probabilistic densities (pdf) with uncertain parameters. Indeed, sampling
the uncertain parameters of pdf following a Space-Filling design could improve the accuracy of
the estimators of GSA2 indices. Another interesting perspective would be to build independence
tests based on 2"d-level HSIC estimators. This could be achieved by identifying the asymptotic
distributions of these estimators under the assumption of independence between distributions
and GSA1 results?, or using the common permutation method.

Furthermore, this new approach for GSA2 could also be compared to the classical approach
of epistemic GSA in the framework of Dempster-Shafer theory (see Smets, 1994; Alvarez, 2009).
Indeed, Dempster-Shafer theory gives a description of random variables with epistemic uncer-
tainty, which is to associate with an epistemic variable Z on a set A, a mass function representing
a probability measure on the set P(A) of all A-subsets. This lack of knowledge is reflected in
Dempster-Shafer theory by an upper and lower bound of the cumulative distribution function
and can be viewed as 2°%-level of uncertainty.

Another potential prospect could be to make the connection between our approach and
Perturbed-Law based Indices (PLI, Lemaitre et al., 2015). These indices are used to quan-
tify the impact of a perturbation of an input density on the failure probability (probability that
a model output exceeds a given threshold). To compare our GSA2 indices with PLI, the proba-
bility of failure could be considered as the quantity of interest characterizing GSA results in our
methodology. Last but not least, GSA2 method can be compared to the approach proposed in
Chabridon (2018) which models 2"d-level uncertainties as a uni-level uncertainty on the vector
(0, X), where O is the vector of uncertain parameters.

2Indeed, this is the null hypothesis for testing independence in the framework of GSA2.






Chapter 5

Aggregated tests of independence
based on HSIC measures:
theoretical properties and
applications to (Global Sensitivity
Analysis

5.1 Issues and objectives

As previously explained in the Introduction 1.1 and 2.1, the screening can be the main objective
of a GSA. To achieve this goal, statistical tests of independence based on HSIC measures are a
efficient method. Depending on the available data size, HSIC tests can be performed either in an
asymptotic or non-asymptotic framework (cf. Section 3.4). The asymptotic HSIC test proposed
by Gretton et al. (2008) can be used when enough simulations of the code are available. This
test is based on the asymptotic distribution of HSIC estimator under the assumption of indepen-
dence. However, when the number of observations is too weak, the asymptotic distribution is
no longer applicable. In this case, a non-asymptotic version of HSIC tests has to be developed,
as introduced by De Lozzo and Marrel (2016b). Furthermore, the definition of HSIC measures
as well as the associated tests requires a choice of RKHS kernels respectively associated to each
input and to the output. One may then wonder about the choice of these kernels and their
impact on the independence tests. Heuristic choices are adopted in practice but without any
guarantee on the quality of the test.

In order to know what is a “relevant” choice of kernels (regarding the HSIC-based indepen-
dence tests), one needs an objective evaluation criterion. As presented in Section 3.4.1.1, the
criteria typically used to assess the quality of a statistical test are its level and power. The
level is the probability of wrongly deciding the dependence (rejecting Hy while X and Y are
independent) and the power is the probability of correctly deciding the dependence (rejecting
Ho while X and Y are dependent). So, the power is directly linked to the second-kind error!
(probability of complementary events). In practice, both HSIC-test versions, asymptotic and

IProbability of accepting the hypothesis Hg of independence while X and Y are dependent.
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non-asymptotic, are built to control the level (frequently set at 5% or 10%). These tests have
then a good ability to correctly detect the non-influential inputs. Therefore, a good remaining
criterion for comparing tests of same levels but based on different kernel choices can be the power
of the tests. This amounts to comparing the ability of tests to detect the influential inputs. Un-
fortunately, the optimal kernels (in terms of power) depend on the unknown joint distributions
between each input and the output. It will thus be valuable to further explore the link
between these kernel choices and the power of associated tests, with the objective
of providing a more robust methodology for input screening, and this, regardless of
the number of available simulations.

Theoretically speaking, since the power varies according to the unknown type of dependence
between each input and the output, we propose to argue in terms of the non-asymptotic uniform
separation rate introduced in Section 3.4.1.1. The first question to be addressed involves then the
optimal HSIC test in the minimax sense (see Section 3.4.1.1 for the complete definition of minimax
optimality). Theoretical advances to study the minimax testing in various contexts were proposed
in many papers over the past years. Among them, we mention for example Ingster and Suslina
(1998) and Laurent et al. (2012) for minimax signal detection testing. However, only few works
exist for the problem of minimax independence testing. The notable works are those of Ingster
(Ingster, 1989, 1993b) and those of Yodé (Yodé, 2004, 2011). Still, these works are provided in
the asymptotic framework. As far as we know, no minimax rate of testing independence was
yet proved in the non-asymptotic framework. A primary goal of this chapter will be to
provide a minimax theoretical test based on HSIC measure defined with Gaussian
kernels.

Beyond the problem of minimax rate for HSIC independence tests, the straightforward prac-
tical construction of a minimax test is impossible. Indeed, this construction depends on the
unknown regularity of the joint density. The objective is then to construct a minimax test which
does not need any smoothness property. These tests are generally called minimax adaptive (or
assumption free). It has been shown that a standard logarithmic price is sometimes inevitable
for adaptivity (Spokoiny, 1996). The problem of adaptivity has received a good attention in the
literature. We mention for instance Baraud et al. (2003) for linear regression model testing with
normal noise and Butucea and Tribouley (2006) for testing the equality of two samples densi-
ties. For the specific case of testing independence, the adaptive testing procedure introduced in
Yodé (2011) seems to be the only currently existing. As mentioned above, this test is purely
asymptotic, but we are interested here in the non-asymptotic framework. Recently, an interest-
ing approach of testing developed in Fromont et al. (2013) consists in testing the equality of the
intensities of two Poisson processes by aggregating several kernels in a unique testing procedure.
It has been shown in Fromont et al. (2013) that this procedure is adaptive over several regularity
spaces. Inspired by these works, and following the work of Gretton et al. (2008) and Gretton and
Gyorfi (2010), we consider in this chapter a procedure of testing independence which
aggregates a collection of Gaussian-kernel HSIC tests.

To study the adaptive properties of our procedure, we will consider the two popular spaces
of regularity, namely Sobolev and Nikol’skii-Besov spaces. The proposed procedure is shown
to be adaptive over the well-known Sobolev spaces. Moreover, the upper bound of its uniform
separation rate over Nikol’skii-Besov balls seems optimal compared to “classical” testing rates in
other frameworks. This suggests that this test may also be adaptive over Nikol’skii-Besov spaces.

The structure of this chapter is as follows. In Section 5.2, we first provide theoretical con-
ditions to control the second-kind error of the non-asymptotic HSIC-test introduced in Section
3.4.3. This step leads us to sharply upper bound the uniform separation rate of any HSIC-
test with a given Gaussian-kernel over Sobolev and Nikol’skii-Besov spaces. In Section 5.3, we
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introduce our general HSIC-based aggregated procedure of testing, as well as its practical imple-
mentation. The aggregated procedure is shown to have the smallest possible upper bound of the
uniform separation rate up to a small factor over Sobolev and Nikol’skii-Besov spaces. In addi-
tion, this upper bound is shown to be optimal over Sobolev spaces in Section 5.4, which means
that the aggregated procedure is adaptive over these spaces. In Section 5.5, we first illustrate
the procedure through some analytical examples. Different methodological choices are tested
and compared. Subsequently, the performance of the procedure is compared to other “classical”
independence tests. Finally, the methodology is applied to the test case ULOF-MACARENa in-
troduced in Section 1.3 (in French) and 2.3 (in English). This real data case offers the opportunity
to explore new methodological aspects of the procedure and to identify practical perspectives of
improvement.

5.2 Performance of single HSIC-based tests of indepen-
dence

All along this chapter, we will focus on HSIC measures based on Gaussian kernels. The objective
here is to study the performance of single HSIC tests w.r.t. the bandwidth parameters of the
chosen Gaussian kernels. This helps to better understand the behavior of HSIC tests w.r.t. the
kernel parameters. For this, we will first provide theoretical guarantees for each single HSIC test
to be at least of power 5 in (0,1). Then, the final purpose of this first section will be to sharply
upper bound the uniform separation rate w.r.t. the bandwidths. This allows to determine the
optimal uniform separation rate to be achieved. As stated earlier, this optimal separation rate
depends on the regularity of the joint density and, consequently, we will focus here on Sobolev
and Nikol’skii-Besov regularity spaces.

5.2.1 Some notation and assumptions

For the sake of clarity and reduced complexity of demonstrations, we make some minor modifica-
tions to the assumptions and notations introduced so far. In particular, we consider a numerical
simulator with d scalar inputs and ¢ scalar outputs. We aim to study the independence of a
subgroup of p inputs denoted X = (XM, ..., X)) and the output denoted Y = (Y1), ... V@),
In addition, a sample (X;, Y;)1<i<n of size n of (X,Y) is available. The random variables X and
Y are assumed to be continuous with marginal densities respectively denoted f; and fo, while
the joint density of (X,Y") is denoted f with associated probability distribution P;. We also
denote by f1 ® fs, the product of the marginal densities f; and fy defined as

f1® f2:(z,y) €ERP X R f1(2) fa(y).

Let g5 be the density of the standard Gaussian distribution on R® defined for all z € R® by

g.(x) = ﬁ exp (—é Z) . (5.1)

For any bandwidths A = (A1,...,A,) € (0,400)? and p = (1, ..., fbg) € (0,400)4, we define
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for any z € RP and y € RY,

1 T Tp
= — — ., — 2
(@) /\1.../\pg”<x\1’ ’A,,)’ (52)
1 Y1 Yq
buy) = ——¢ () 5.3
w(y) PR o (5.3)

We then define the Gaussian kernels, for z,z’ € R?P and y,vy’ € RY,

ka(z,2") = pa(x — '), 1u(y,y") = ouly —¢). (5.4)

We denote by HSIC, ,, (f) the HSIC measure defined in (3.1), where the kernels k and [ are
respectively the Gaussian kernels £y and [,,. Furthermore, we consider here U-statistic estimators
for HSIC) ,, (f) . For this, we introduce the following U-statistics, respectively of order 2, 3 and
4

)

—(2) 1
HSIC/\,M = m Z k)\ (X“XJ)ZM (}/“Y'j)’
(i,5)€iy

Asic) - L STk (X0, X)) L (Y5, V)

A’“in(n—l)(n—Z) . . A iy <xg3) godr),
(4,3,r) €1y
and @ 1
HSIC, , = Yo (X X)) (Yo, V),

nn—1)(n—2)(n—3)

(i,d,q,m) €1}

where i” is the set of all r-tuples drawn without replacement from the set {1,...,n}. We then
estimate HSIC) , (f) by the U-statistic

— (2 (1) _—(3)
HSIC,,, = HSIC, , + HSIC, , — 2HSIC, .. (5.5)

Finally, the theoretical independence test of level o introduced in Section 3.4.3 and associated
to HSIC, ,, (f) is denoted A)#, while the permuted test is denoted A)*.

5.2.2 Control of the second-kind error in terms of HSIC

For an arbitrarily small 8 given in (0,1), Lemma 5.1 provides a first non-asymptotic condition
on the alternative f ensuring that the probability of second kind error of the theoretical test
under Py is at most equal to 8. This condition is given for the value of HSIC, ,(f). It involves

the variance of the estimator HSIC A, Which is finite since this estimator is a bounded random
variable.

Lemma 5.1. Let (X;,Y;)1<i<n be an i.i.d. sample with distribution Py and consider the test
statistic HSIC, ,, defined by (5.5). Let o, 5 in (0,1), and qf‘;"a be the (1 —a)-quantile of HSIC) ,,
under Pr gf,. Then Pf(H/SEML < ") < B as soon as

Varf(H/S-EML) + A

HSICy . (f) = 3 I o
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Lemma 5.1 gives a threshold for HSIC} ,,(f) from which the dependence between X and Y is
detectable with probability at least 1 — 3 using Gaussian kernels £k and [, with given bandwidths
A and p. Furthermore, it would be useful to give more explicit conditions w.r.t. the bandwidths
A and p and the sample size n. The objective of this section is to provide a condition w.r.t. A, u
and n on the theoretical value HSIC}, ,,, so that the test A)* has a second kind error controlled
by € (0,1). For this, Lemma 5.1 already provides a condition involving Var;(HSIC, ,) and
q{\’f o It is therefore necessary to establish sharp upper bounds for these two quantities w.r.t. A,
w and n. Propositions 5.1 and 5.2 give these upper bounds.

Proposition 5.1. Let (X;,Y;)1<i<n be an i.i.d. sample with distribution P; and consider the

test statistic H/SE,\M defined by (5.5). Assume that the densities f, f1 and fo are bounded. Then,

— 1 1
VaI'f(HSIC,\“u) S C(Mf7p, C]) {n + )\1/\#1,&”2} B
e Apl1ee g

where My = max (|| flloo, [|.f1]loos | f2lloc)-
Proposition 5.2. Let (X;,Y:)1<i<n be an i.i.d. sample with distribution P; and consider the
test statistic HSIC) ,, defined by (5.5). Let o in (0,1) and " be the (1—a)-quantile of HSIC, ,,

—x

under Py of,. Assuming that the densities f1, fo are bounded,

1
max (A1...Ap , f1.fig) <1 and ny/A1..Appa...pqg > log (a) > 1.

Then,
O < Clfilloo, I f2lloc, 2, @) |

1
T < og|—|.
e N/ A Ap it - fhg (Oé>

Combining Lemma 5.1, Propositions 5.1 and 5.2, we can then give a sufficient condition on
HSIC,,,, depending on the parameters A, 1 and the sample size n in order to control the second
kind error by . This result is presented in Corollary 5.1.

Corollary 5.1. Let (X;,Y;)1<i<n be an i.i.d. sample with distribution Py and consider the test
statistic HSIC) ,, defined by (5.5). Let o, 8 in (0,1), and qi"_”a be the (1 —a)-quantile of HSIC, ,
under Py gf,. Assume that the densities f, fi and fa are bounded, and that

1
max (A1...Ap , f1.-fig) <1 and ny/A1..Appa...pqg > log (a) > 1.

Then, one has Pf(H/SE)\,M < g™ < B as soon as

HSIC)\M(f) > O(Mfap7Qaﬂ) { !

1 1
— + log () ,
vn N/ A1 Aplig e fig «
where My = max (|| flloo; [[f1lloc, l.f2]lo0)-

Note that the right hand term given in Corollary 5.1 is not computable in practice since it
depends on the unknown density f. However, this dependence is weak since it only depends on
the infinite norm of f and its marginals. For a given 8 € (0,1), Corollary 5.1 provides a condition
on the value of HSIC} ,(f) ensuring that the probability of second kind error of the theoretical
test under such f is at most equal to 5. We now want to express such conditions in terms of the
Lo-norm of the function f — f; ® fs, for the sake of interpretation, and in order to be able to
determine separation rates with respect to this Lo-norm for our test.
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5.2.3 Control of the second-kind error in terms of Ly-norm

In order to express a condition on the Ly-norm of the difference f — fi; ® f2 ensuring a probability
of second kind error controlled by 3, we first give in Lemma 5.2 a link between HSIC, , and

If = f1® fall3

Lemma 5.2. Let Y = f — f1 ® fo. The HSIC measure HSICy ,,(f) associated to kernels kx and
l,, and defined in Equation (3.1) can be written as

HSIC)\,;L(JC) = <1z[}a P * (90)\ & ¢H)>2’

where px and ¢, are the functions respectively defined in Equations (5.2) and (5.3). Moreover,
the notation {.,.)o designates the usual scalar product in the space Ly. One can easily deduce
that

1
BSIC (1) = 5 (W1 + 10 (o 861 - 10— v (r @ 0)B). 6.0

The Theorem 5.1 gives a sufficient condition on ||f — f; ® fa]|2, for the second kind error of
the test AM* to be upper bounded by j.

Theorem 5.1. Let (X;,Y)1<i<n be an i.i.d. sample with distribution Py and consider the test
statistic HSICy ,, defined by (5.5). Denote 1 = f — f1 ® fo. Let o, 5 in (0,1), and qf"_“a be the
(1 — a)-quantile of H/S-EML under Py g,. Assume that the densities f, fi and fa are bounded,

and that )
max (A1...Ap , f1...fg) <1 and ny/A1. . Appa...pg > log (a> > 1.

One has Pf(ﬁS—EA,M < g}M")) < B as soon as

C(M
1618 > 1= (2 @ ) + - (fmﬂﬂ>1%(;>_

AL Ap i g

where My = max (|| f|loo, | f1]lo0s | f2ll0), and C(Mg,p,q, 8) denotes a positive constant depend-
ing only on its arguments.

In the condition given in Theorem 5.1, appears a compromise between a bias term |[¢) — 1 x
(ox @ ¢,,)|13 and a term induced by the square-root of the variance of the estimator H/Sﬁ,\ﬂ.
Comparing the conditions on the HSIC given in Corollary 5.1 and on || f — f1 ® f2||3 given in
Theorem 5.1, the meticulous reader may notice that the term in 1/4/n has been removed. This
suppression seems to be necessary to obtain optimal separation rates according to the literature
in other testing frameworks. This derives from quite tricky computations that we point out here
and that directly prove Theorem 5.1. By combining Lemmas 5.1 and 5.2, direct computations
lead to the condition

Varf(H/SEA’#)

+ 2" 5.7
ﬂ 1 ( )

19113 > 1% = ¥ % (2 @ S 13 = ¥ * (x @ G 13 + 2

If one directly considers the upper bound of the variance Vary (H/SEA ) given in Proposition
5.1, one would get the unwanted 1/y/n term. The idea is to take advantage of the negative term
—[|¢ * (ox @ ¢,,)||3 to compensate such term. To do so, we need a more refined control of the
variance given in the technical Proposition 5.3.
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Proposition 5.3. Let (X;,Y:)1<i<n be an i.i.d. sample with distribution P; and consider the
test statistic HSIC |, defined by (5.5). Assume that the densities f, fi and fa are bounded. Then,

9 * (o @ 6,113 L _CMyp9)

Var;(HSIC, ) < C(My) n At Apht oo pign®’
e Ap - flg

where My = max (|| f[loo; [[f1loc, [l f2llo0)-

Finally, using standard inequalities such as v/a + b < v/a 4+ v/b and 2v/ab < da + b/§ for all
positive a, b and J, one can prove

Var  (HSIC C(My, C (My,p,q,
B n N/ A1 Ap it fig

which leads to Theorem 5.1 when combined with Equation (5.7) and Proposition 5.2. Notice
that such trick is already present in Fromont et al. (2013).

5.2.4 Uniform separation rate

The bias term in Theorem 5.1 comes from the fact that we do not estimate ||f — f1 ® f2||3 but
HSICy ,(f). In order to have a control of the bias term w.r.t A and p, we assume that f— fi ® fo
belongs some class of regular functions. We introduce the two following classes: Sobolev balls
(isotropic case) and Nikol’skii-Besov balls (anisotropic case).

5.2.4.1 Case Sobolev balls
For d € N*, § > 0 and R > 0, the Sobolev ball SJ(R) is the set defined by

S3(R) = {s R = R | s e LYRY) NL*(RY), /Rd | w]|?®)3(u)2du < (27r)dR2}, (5.8)

where § denotes the Fourier transform of s defined by §(u) = / s(x)e!™® dz, (.,.) denotes the
Rd
usual scalar product in R? and ||.|| the Euclidean norm in R.
Lemma 5.3 gives an upper bound for the bias term in the case when f — f; ® fo belongs to
particular Sobolev balls.

Lemma 5.3. Let iy = f — f1 ® fo. We assume that 1) € Sngq(R), where § € (0,2] and S3(R)
is defined by (5.8). Let ¢y and ¢, be the functions respectively defined in Equations (5.2) and
(5.3). Then we have the following inequality,

P

q
1o — 9 * (o2 @ 6,13 < Clp,q, 6, R) |3 A2+ 3 12
j=1

i=1

One can deduce from Theorem 5.1 upper bounds for the uniform separation rates (defined in
(3.16)) of the test A)* over Sobolev balls.
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Theorem 5.2. Let o, 8 € (0,1) and consider the same notation and assumptions as in Theorem
5.1. Let § € (0,2] and R > 0. Then, the uniform separation rate p (AY*, S5, (R), ) defined in

(3.16) over the Sobolev ball Sngq( ) can be upper bounded as follows

[p (A)", 82, (R), ﬁ)f < C(p,q,0,R) i)\% + iuz(s n C (Mg, p,q, ) log (1) ,
p+q > 2 i < g ny/AL - Aph - g o
(5.9)

where My = max (|| f|loc, || f1lloo, [ f2lloc), C(My,p,q,8) and C(p,q,6,R) are positive constants
depending only on their arguments.

One can now determine optimal bandwidths (A\*, u*) in order to minimize the right-hand side
of Equation (5.9). To do so, the idea is to find for which (A, u) both terms in the right hand
side of (5.9) are of the same order w.r.t. n. We also provide an upper bound for the uniform
separation rate of the optimized test A;\t*’”* on Sobolev balls.

Corollary 5.2. Consider the assumptions of Theorem 5.2, and define for alli in {1,...,p} and
forallj in {1,...,q},

A== n—2/(45+p+a)
The uniform separation rate of the test Ag*’” over the Sobolev ball S,

p+q( ) is controlled as
follows

p (A8, (R),B) < C (My,p,q,0, 8,6, R) n~ 20/ Gr0rsa), (5.10)

Note that, in the definition of the Sobolev ball Sg +q(R), we have the same regularity param-

eter 6 > 0 for all the directions in RPT4. This corresponds to isotropic regularity conditions.
We now introduce other classes of functions allowing to take into account possible anisotropic
regularity properties.

5.2.4.2 Case of Nikol’skii-Besov balls

For d € N*, § = (61, ...,04) € (0,+00)? and R > 0, we consider the anisotropic Nikol’skii-Besov
ball Vg ;(R) defined by

Ngd(R) = {s ‘R R | s has continuous partial derivatives DimJ of order |4;| w.r.t u;, and

(5.11)

Vi=1,...,d, ui,...,uq,v € R, HDiwiJs(ul, ey Ui F U, Ug) — Diwds(ul, cntd)|lz < Rl

where [4;| denotes the floor function of ¢; if d; is not integer and |d; | = d; — 1 if 4; is an integer.
We give in the following proposition an upper bound of the bias term, similar to that of Lemma

5.3, in the case when f — f; ® fo belongs to particular Nikol’skii-Besov balls.

Lemma 5.4. We assume that ) € N§p+q( ), where § = (V1 .oy Vp, Y1, -0y Yq) € (0,2]PT9. Then,
we have the following inequality,

[ — ¥ * (ox ® ¢ I3 < C(R,6) Z)\Q”w-zu%

i=1 j=1
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As in Section 5.2.4.1, one can deduce from Theorem 5.1 upper bounds for the uniform sepa-
ration rates of the test AN over Nikol’skii-Besov balls.

Theorem 5.3. Let o, 8 € (0,1) and consider the same notation and assumptions as in Theorem
5.1. Let § = (V1, ., Vpy Y1,y s7q) € (0,2]P9 and R > 0. Then, the uniform separation rate
p (AN NS 1 o(R),B) defined in (3.16) over the Nikol’skii-Besov ball N, (R) can be upper
bounded as follows

A ) 2 g 2v; - 275 C(Mf7p7Q7ﬂ) 1
[0 (ALY N3 by g(R), B)]” < C(R,6) § A; "+§ i+ log (= ]. (5.12)
= = N/ A1 Ap it - fig o

where My = max (|| flloo, | f1lloos | f2llo0), C (My,p,q,8) and C(R,d) are positive constants de-
pending only on their arguments.

As in Section 5.2.4.1, we now determine optimal bandwidths (\*, #*) which minimize the
right-hand side of Equation (5.12) and compute an upper bound for the uniform separation rate
of the optimized test A} *" on Nikol’skii-Besov balls.

Corollary 5.3. Consider the assumptions of Theorem 5.3, and define for alli in {1,...,p} and
forall j in {1,...,q},

)\;F = n_27l/[’/i(1+471)] and /J;( = n_zn/['Yj(1"‘471)]7

1 &K1 1
where 1 is defined by — = Z —+ Z —,
O il
The uniform separation rate of the test AN *" over the Nikol’skii-Besov ball Nf’erq(R) is
controlled as follows

p (AX NGy (R), B) < C (My,p.q,0, 8, 0) =2/ (0540, (5.13)

Notice that the upper bound obtained for Nikol’skii-Besov balls in Corollary 5.3 is analogue
to that obtained for Sobolev balls in Corollary 5.2. Indeed, if we consider the same regularities
in all directions in the case of Nikol’skii-Besov balls: v; = ... =1, =y = ... = 7,4, we obtain
a similar upper bound. These upper bounds obtained in Corollaries 5.2 and 5.3 remind the
asymptotic minimax separation rate of testing independence w.r.t. the Ly-norm over Hélder
spaces Ingster (1989); Yodé (2004). However, the test having a rate with the smallest upper
bound is not adaptive, it depends on the regularity parameter 6. In the next section, for the
purpose of adaptivity, we build an aggregated testing procedure taking into account a collection of
bandwidths (A, 1) € Ax U. In particular, this avoids the delicate choice of arbitrary bandwidths.
We then prove that the uniform separation rate of this aggregated procedure is of the same order
as the smallest uniform separation rate of the chosen collection, up to a logarithmic term.

5.3 Aggregated non-asymptotic kernel-based test

In Section 5.2, we consider single tests based on Gaussian kernels associated to a particular choice
of the bandwidths (A, ). However, applying such a procedure leads to the question of the choice
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of these parameters. There is as yet no justified method to choose A and p. In many cases,
authors choose these parameters w.r.t the available data (X;,Y;)1<i<n by taking for example X
(resp. p) as the empirical median or standard deviation of the X;’s (resp. the Y;’s), which is
not necessarily an optimal choice. To avoid this delicate choice, we consider in this section an
aggregated testing procedure combining a collection of single tests based on different bandwithds.

5.3.1 The aggregated testing procedure

Consider now a finite or countable collection A x U of bandwidths in (0, +00)P x (0, +00)?. Con-
sider a collection of positive weights {W/\,u | (A, ) € A x U} such that Z(A,u)eAxU e~Wan < 1.

For a given a € (0,1), we define the aggregated test which rejects (Hy) if there is at least one
(A, p) € A x U such that

FSICy, > ¢

— )
—uge CAm

where u,, is the less conservative value such that the test is of level «, and is defined by

U sup{u>0 ; Pf1®f2< sup (H/SI\C)\,#fqlA’“ *wu> >0> §a}. (5.14)
(M\R)EAXU Tue &

We should mention here that the supremum in Equation (5.14) exists. Indeed, one may notice
that the function

ur Prat, < sup (H/Sﬁ,\w —r ) > O)
(A p)EAXU I—ue "

is well defined for w in the interval (0,inf{exp(wx ,);A € A, u € U}), non-decreasing, and con-
verges to 0 and 1 respectively at the boundaries of this interval.

The test function A, associated to this aggregated test, takes values in {0,1} and is defined
by
Ay,=1 = sup (H/SI\CA,M — q)"“ s ) > 0. (5.15)
(M) EAXU I—uae “hn
It is easy to check that the test A, is of level «, this is directly derived from the definition of
uq. Note that in order to guarantee the level of the aggregated procedure, the level a of each
single test A)* is here replaced by the corrected level uq exp(—wy ;).

For computational limitations, the collections A and U are finite in practice. Moreover, note
that, as for the quantile, the correction u, of the level is not analytically computable since it
depends on the unknown marginals f; and fs. In practice, it can also be approached by a
permutation method with Monte Carlo approximation, as done in Albert (2015). More precisely,
consider the notations of Section 3.4.2. First, generate By independent and uniformly distributed
random permutations of {1,...,n}, denoted 71, ..., 7p,, independent of Z,, and compute for each
(A, 1) € AxU and each u > 0 the permuted quantile with Monte Carlo approximation (ji"_“ "

as defined in (3.23).

Second, in order to estimate the probabilities under Py s, in Equation (5.14), generate Bg
independent and uniformly distributed random permutations of {1,...,n}, denoted k1, ...,kp,,
independent of Z,, and of 71, ..., 7,. Denote for all permutation &y, the corresponding permuted
statistic

e YA

H}, = HSICy . (Z5)
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Then, the correction u, is approached by

B2
o =supqu>0; — » 1 . <ay. (5.16)
* ’ BQ bz:; maX(,\7#)EAXu{H>\FM—qA‘M }>0

1—ue “Xm

In the end, the aggregated testing procedure with permutation approach rejects the null hypoth-
esis if -
max HSIC, , — ¢™* o ) > 0.
(M p)EAXU ( M T e nn

In the next section, we will provide a uniform separation rate similar to that of Corollaries
5.2 and 5.3 for the aggregated test A,. This uniform separation rate will be given in the two
cases mentioned earlier in Section 5.2.4 where f — f; ® fo belongs to isotropic Sobolev balls or
to anisotropic Nikol’skii-Besov balls.

5.3.2 Oracle type conditions for the second-kind error

As a reminder, our goal is to construct a testing procedure with a uniform separation rate as small
as possible and whose implementation does not require any information about the regularity of
the difference f — f1 ® fa.

The main advantage of the aggregated procedure is that its second kind error is as small as
the one of the single test corresponding to the best bandwidths in the collection A x U with a
corrected level. The main argument is highlighted in Lemma 5.5.

Lemma 5.5. Let o,  in (0,1), and consider the aggregated test A, defined in (5.15). Then,
Uy > o« and

a0 (s, <o)

According to Lemma 5.5, if there exists at least one (A, ) € A x U such that the associated
single test Ai’:,”,“ has a probability of second kind error at most equal to 3, then the probability
of the second kind error of the aggregated test A, is at most equal to 5.

We now give an oracle inequality for the uniform separation rate of the aggregation procedure
A,. This inequality given in the following theorem shows the interest of this testing procedure.

Theorem 5.4. Let o, 8 € (0,1), {(kx,l,) | (M) € Ax U} a collection of Gaussian kernels
and {wx | (A ) € Ax U} a collection of positive weights, such that Doeaxy € < L

We also assume that all bandwidths (A, 1) in A x U wverify the conditions given in Theorem 5.1,
and that f, f1 and fy are bounded. Then, the test A, of level o defined in Equation (5.15) has
a uniform separation rate p (A, Cs, 3) which can be upper bounded as follows

o IfCs=38),,(R), where § € (0,2] and R > 0, then

1 1
A, S5 (R).B) <C(M §) inf log =
[p< ) p+q( )7ﬁ)] = ( fapacbﬁa )()\,/Ll)réAXU{n /7)\1...)\;,,111.../111 (Og (a>+w)\,l‘«>
p

q
DAY }
j=1

i=1

where My = max (|| flloo, | f1lloos || f2]loo) and C (My,p,q,8,9) is a positive constant depending
only on its arguments.
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o IfCs = Nz‘s’pﬂ(R), where § = (V1 ooy Vp, Y1y oy Yq) € (0,2]PT2 and R > 0, then

1 1
ALNS  (R),B < C(M §) inf log | =
NI €O 00 it (i (v (1) )

P

q
“e e
j=1

i=1
where C (My,p,q,,0) is a positive constant depending only on its arguments.

According to Theorem 5.4, the uniform separation rate of the aggregated testing procedure
A, is the infimum of all (A, 1) € Ax U, up to the additional term wy ,. This theorem can also be
interpreted as an oracle type condition for the second kind error of the test A,. Indeed, without
knowing the regularity of f — fi ® fo, we prove that the uniform separation rate of A, is of the
same order as the smallest uniform separation rate over (A, u) € A x U, up to wy .

5.3.3 Uniform separation rate over Sobolev balls and Nikol’skii-Besov
balls

In this section, we provide an upper bound of the uniform separation rate p (Ay, Cs, 3) of the
multiple testing procedure A, over the classes of Sobolev balls and Nikol’skii-Besov balls. For
this, we consider the collections A and U of parameters A and p respectively, defined by

A={@ ™ 27M) s (my g, ..., my ) € (NF)PY, (5.17)
and

U={@™,...,27m249) 5 (ma1,...,May) € (N*)7}. (5.18)
In addition, we associate to every A = (27™41 ..., 27™2) in A and p = (27™21, ..., 27™2q) in

U the positive weights
u 7r ! T
wWxy =2 log (ml,i X ) +2 log (m27» X > , 5.19
’ ; 7 ; NG (5.19)
so that Z(A,#)eAxU e~ “xu = 1. Corollary 5.4 provides these upper bounds.
Corollary 5.4. Assuming that loglog(n) > 1, o, 8 € (0,1) and A, the test defined in (5.15),

with the particular choice of A, U and the weights (W/\w)(,\ weaxu defined in (5.17), (5.18) and

(5.19). Then, the uniform separation rate p (A, Cs,B) of the aggregated test A, can be upper
bounded as follows.

o IfCs =8, ,(R), where § € (0,2] and R > 0, then,

p (A, S0, ,(R),B) < C(My,p,q,e,B,0)

6/(46
log log(n) 20/otpra) (5 20)
n ’ '

where My = max ([ f[|oo; [[f1loc, Il f2llo0)-
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o IfCs = Ng’pﬂ(R), where 6 = (U1, .., Vp, Y14+ -57%q) € (0,2]PT% and R > 0, then,

p(Aa,NQCS (R)aﬂ) SC(Mf,p,(LOZ,B,(S)

p+4q

<1°g1°g(”)>2”/(1+4m (5.21)
n ’ ’

1 P 11
where = S =+ — and My =max (|| f]loo: | filloo: [l f21ls0)-

Vs
i=1 v =1 "

According to Corollary 5.4, the rate of the aggregation procedure over the classes of Sobolev
balls and Nikol’skii-Besov balls is in the same order of the best rate of single tests (given in
Theorem 5.1), up to a loglog(n) factor.

5.4 Lower bound for uniform separation rates over Sobolev
balls.

In this section, we study the optimality of the single test introduced in Corollary 5.2 and of the
aggregated testing procedure defined in Corollary 5.4 over Sobolev balls. For this, we first present
a general method based on a Bayesian approach to lower bound the non-asymptotic minimax
separation rate of testing as defined in (3.17). The general idea of this method is due to Ingster
(1993a) and relies on Lemma 5.6.

Lemma 5.6. Let o, 5 in (0,1) such that a + § < 1. Let p, > 0 and Cs some regularity space.
We recall that the set F, (Cs) is the set defined as

FoCs)={fi f—f1® fa €Cs,||f — f1r @ fall2 > pu}-

Let v,, be a probability measure on F, (Cs) and P,, the probability measure defined for all
measurable set A in RPTY by

Py, (4) = [ Pr)dv, (1),

Denote for all p > 0,
B[fp(C(;)] =inf sup Py(A,=0),
Ra feF,(Cs)
where the infimum is taken over all a-level tests of (Ho) against (Hi). Assume there exists a
distribution fo that satisfies (Ho) such that the probability measure P, is absolutely continuous
w.r.t. Py, and verifies

Ep,, [LQ (Zn)] <1+4(1-a-p)?, (5.22)
- . . dpP,
where the likelihood ratio L,, is defined by L,, = de* . Then, for all p < p, we have that
fo

B[Fo(C5)] > B-

It follows that
p(ct§7a7ﬁ) = lAnfp(AOmC(Saﬁ) Z P -
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We aim at proving that
o = O~ 20/ (45 +p+a)
n

is a lower bound for the non-asymptotic minimax rate of testing over Sobolev balls Sg q(R),
for some positive constant C', that is, p (Sg+q(R),a,ﬂ) > pr. According to Lemma 5.6, it is
sufficient to find a probability distribution v,: over F,x (S5, ,(R)) so that the condition (5.22)

p+q
holds.

To do so, we generalize the construction of Butucea (2007) to our multidimensional framework.
The idea is to construct a finite set of alternatives (fy)s by perturbing the uniform density on
[0, 1] x [0,1]%, and define v,: as a uniform mixture of these alternatives. For this, consider the
function G defined for all ¢ in R by

G(t) = exp (_1—(41“?3)2) T_1,-1/2) (t) — exp (—1_(41_’_1)2) T_1/2,0) (t). (5.23)

One may notice that G is continuous, with support in [-1,0] and that [, G(t)dt = 0. The
function G together with its Fourier transform has valuable properties for our study.

Let (hy,)n be a sequence of positive numbers to be specified later, and consider an integer M,
such the M,,h, = 1 (possibly rounded to the nearest integer). Denote I, , ; = {1,..., M}’ x

{1,..., M, }7. For all 0 = (0(;1)) j.yer,, M {1, 1M define for all (z,y) in R? x RY,

n,p,q

p q
f9 (zv y) = ]1[0,1]P+‘? (ZL‘, y) + hi+(p+q) Z o(j,l) H Ghn (zr - ]rhn) H th, (ys - lshn)7 (524)
r=1 s=1

(3D €In,p.q

where for all h > 0, G,(-) = (1/h) G(-/h). One may notice that for all 6, the alternative fy is
supported in [0, 1]P*4. Moreover, since the integral of G over R equals 0, the marginals fp 1 and
fo,2 of fg are respectively the uniform densities on [0, 1] and [0, 1]9. Proposition 5.4 justifies the
choice of these alternatives.

Proposition 5.4. Let § > 0 and R > 0. Fiz a sequence (hy,), of positive numbers and consider

an integer M, such the M,h, = 1. Then, for all & = (0¢1)) 1€l ., N {—1,1}M£+q, the
function fy defined in Equation (5.24) satisfies the following properties.

1. The function fy is a density function for h, small enough.

2. The function fo — fo1 ® fo.2 belongs to the Sobolev ball S

o+q(R2) for n large enough.

3. The function fo is such that ||fo — fo1 ® fo.2ll,, = C(p, qQ)hs.

Let us now consider a uniform mixture v,- of the alternatives (fy), for 6 in {—1, 1}Mﬁ+q.
Note that this is equivalent to considering a random alternative fo where © = (0; 1) (er, .,
with i.i.d. Rademacher components O ; ;.

Following Lemma 5.6, let P, be the probability measure defined for all measurable set A in RPT4
by

1
R =[P = s S Ba) (5:25)
’ gef—1,13ME"1

where 7 is the distribution of a (MEZ19)-sample of i.i.d. Rademacher random variables. Propo-
sition 5.5 justifies the use of these alternatives and this probability measure to prove the lower
bound.
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Proposition 5.5. Let o, 8 in (0,1) such that o+ § < 1 and let 6 > 0. Denote fy the uniform
density on [0,1]PT9. There exists some positive constant C(p,q,, 3,0) such that, if we set

hn = C(p, g, B,6)n~ 2/ (404pta), (5.26)
and define P, by Equations (5.24) and (5.25), then we have
dp, 2
7(Zn)
APy,

P <144(l-a-BP2

for n large enough.

Finally, combining Lemma 5.6 with Propositions 5.4 and 5.5, we obtain a lower bound for
the non-asymptotic minimax separation rate of testing in Theorem 5.5.

Theorem 5.5. Consider a, 5 in (0,1) such that o+ 8 < 1. Let 6 > 0 and R > 0. Then, there
exists a positive constant C(p, q, «, 3,0, R) such that

P (S31y(R), 0, 8) > Cp,g, 0, B,0, R) n~ 2/ o5wta),
for n large enough.

Theorem 5.5 proves that each single test introduced in Corollary 5.2 is optimal in the minimax
sense over Sobolev balls Sz‘f 4q(R) for d in (0,2] since the upper and lower bounds coincide up to
constants. Moreover, the aggregated testing procedure defined in Corollary 5.4 is optimal up to
a logarithmic term over Sobolev balls. Since it does not depend on the prior knowledge of the

regularity parameter ¢, it is adaptive.

5.5 Application of the HSIC-based testing procedure method-
ology

In this section, we illustrate the practical implementation of the proposed methodology. For this,
we first rely on several analytical data generating mechanisms of dependence. Subsequently, an
application of the methodology to the case of ULOF-MACARENa simulator is provided.

5.5.1 Numerical simulations

Now, several analytical tests based on intensive numerical simulations will be performed for two
main goals. Firstly, to assess the effectiveness of this new testing approach and secondly to test
and compare the possible methodological choices. To achieve this, we first numerically illustrate
that the power of the approximated single-HSIC test A)M* is almost equal to the power of the
theoretical test AM* defined in Equation (3.18). A similar verification is also carried out for
the aggregated procedure. Secondly, we compare and discuss different strategies of aggregation.
These strategies of aggregation are then compared to single-HSIC tests. Finally, a comparison
with the non parametric independence procedure of Berrett and Samworth (2017) is proposed,
based on the analytical test cases provided by the authors.
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5.5.1.1 Assessment of the power of permuted HSIC-tests

In this section, we first numerically illustrate that permuted single HSIC tests approximate very
well the power of the theoretical tests, as soon as enough permutations are used for the estimation
of the threshold value (the quantile under the null hypothesis). The level of the permuted tests
being guaranteed by Proposition 3.5, the permutation approach does not affect the quality of
these tests. Thereafter, a similar study will be conducted for the aggregated testing procedure
introduced in Section 5.3.1. All along this section, we rely on the following analytical model M,
inspired from the Ishigami function from Ishigami and Homma (1990). Let X3, X5 and X35 be
independent uniform random variables on [0, 1], we define the model M as follows:

M(X1, X2, X3) = sin(X;) + 4sin*(X5) + 0.5X4 sin(X,),

defining the random variable Y = M(X1, X2, X3). The analytical illustrations of this section
are focused on the random couple (X1,Y).

e For the single test. In order to evaluate the approximation accuracy of permuted single
HSIC tests, we consider here the heuristic kernel parameterization based on X; and Y intrinsic
characteristics. More precisely, the kernel bandwidth associated to X; (resp. Y') is the empirical
standard deviation of X7 (resp. Y). In the following analytical illustrations, we draw results for
three sample sizes: n = 50,100,200 and two test levels: o = 0.05 and 0.001. For each sample
size n and test level «, we first estimate the theoretical power of the test. To achieve this, a
preliminary step is to estimate the theoretical (1 — «)-quantile (denoted ¢, ) of the estimator

H/SI\C(Xl, Y) under the null hypothesis. For this, we re-estimate 500000 times H/SI\C(Xl, Y), we

use at each time a different n-sample (Xl(i),Y(i))lgiSn of (X1,Y) under the null hypothesis?.
Once the quantile g;_, is estimated, we generate 1000 different n-samples of (X1,Y") according
to its true distribution. From these 1000 samples, we estimate the “theoretical” power By (n, @)

of this HSIC-test as being the ratio of times that the estimator @(Xl, Y') exceeds the quantile
q1—«- The second step consists in estimating the power of permuted tests for different number
of permutations B. The chosen values of B are: 10, 20, ..., 100, 200, ..., 2500. For each
value of n, @ and B, we generate 1000 different times a n-sample of (X1,Y") according to its
distribution. For each sample, we estimate HSIC(X;,Y), as well as the quantile ¢;_,, using B
random permutations of the sample. From this, we deduce the power 8(B,n, «) of the permuted
test, as being the ratio of times the estimated value of HSIC(X71,Y") exceeds the estimated value
of the quantile. To compare the powers of theoretical and permuted tests (resp. Fin(n, ) and
B(n,a, B)), we consider the relative absolute error Err(n,a, B) defined as

|ﬂ(n7 Q, B) 7 /Bth(n7 Oé)|
ﬁth<n7 Oé) ’

The results obtained for o = 0.05 and different n values are given by Figure 5.1. We can see that
the approximation accuracy of the permuted approach tends to increase as n increases. This
can be explained by the fact that the power of the theoretical test increases as the sample size
increases, the permuted test becomes then less and less sensitive to the error due to Monte Carlo
estimation of the quantile ¢q;_,. Moreover, the power of the theoretical test is more difficult
to estimate for small sizes, which explains the fluctuations observed for n = 50. Generally,

Err(n,a,B) =

2To generate an independent n-sample of (X1,Y’) under the null hypothesis, we first generate an independent
2n-sample of X7. Only the first n elements are used to compute the marginal sample of Y and the remaining n
elements are considered to be the marginal sample of X;1. We thus obtain a n-sample of (X1,Y) with realizations
of X7 independent of those of Y.
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the permutation approach allows to obtain the theoretical test power with an acceptable level
of precision, even for small values of B. In particular, we observe for n = 50 that aside from
very small values of B and two outliers, the absolute relative error is always lower than 10%.
Moreover, from n = 100 this error is mostly inferior than 10% and no observed error is over 5%
for n = 200.

n=50 and a =0.05 n=100 and a =0.05 n =200 and a =0.05

15% 20%
15% 20%
15% 20%

10%
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Err(n,a,B)
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i
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Figure 5.1 — Absolute relative error between the powers of the theoretical and permuted HSIC-
tests, w.r.t the number B of permutations, for sample sizes n = 50,100 and 200. The presumed
level of tests is o« = 0.05. The red (resp. orange) dashed line represents the error threshold of
10% (resp. 5%).

In order to study the impact of changing the test level on the accuracy of the permutation
approximation, we show in Figure 5.2 the relative absolute error of the power w.r.t. n and B
for the extreme level value @ = 0.001. Contrary to the case a = 0.05, we observe here much
less precision of the power approximation. In particular, for n = 50, B = 2000 permutations
are required to obtain satisfactory accuracy (against B = 30 for o = 0.05). Similar observations
are done for n = 100 and 200 with respectively B = 1200 and B = 500 permutations required
(against B = 30 and B = 10 for a = 0.05).

e For the aggregated procedure. The objective here is to check that the permutation
approach does not impact the quality of the aggregated HSIC procedure. Before that, let us

describe the practical implementation of the aggregated testing procedure, based on permuta-

tion approach. Considering the sample (Xl(i),Y(i))lgign of (X1,Y) and a collection of kernel

bandwidths (A, ) € A x U, this procedure relies on Algorithm 1. Note that, the computational
complexity of Algorithm 1 is O ((By + Bz) x |A| x |U| x n?), corresponding to the estimation
of HSIC for different permutations and widths in Step 0. The two remaning steps do not add
any additional cost w.r.t to the sample size n. Furthermore, the procedure requires the memory
storage of an array of size (By + Bz + 1) x |A] x |U| x n?.

By now, let us go back to our initial goal: compare the power (of the aggregated test) using
the permuted approach, with the theoretical power.

- Theoretical power. From a given sample of size n and for a given collection of
bandwidths A x U, we propose to compute the theoretical power of the aggregated test as
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n=50 and a =0.001 n =100 and a =0.001 n =200 and a =0.001
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Figure 5.2 — Absolute relative error between the powers of the theoretical and the permuted
HSIC-tests, w.r.t the number B of permutations, for sample sizes n = 50,100 and 200. The
presumed level of tests is @ = 0.001. The red (resp. orange) dashed line represents the error
threshold of 10% (resp. 5%).

follows. The value of u, is still computed by dichotomy but, using a “theoretical” value of P,

(for each possible u). For this, the quantile qi"_ﬂue,wk‘u is computed for each (A, ), with a sample

of 500000 values of H/SI\CML (X1,Y) drawn under the null hypothesis. An estimation of P, is
then deduced by computing 1000 times HSIC) ,(X:,Y) with different i.i.d samples generated
under the null hypothesis. The value of P, is the ratio of times that at least one HSIC) ,(X1,Y)

is greater than its associated quantile qi\fu The stop criterion for u, computation is

e “xm’
the same as in Algorithm 1. Knowing the theoretical value of u,, we estimate for each (A, u)

the theoretical quantiles qi"_"u R by using the 500000 values of H/SI\CML(Xl,Y). We then

generate 1000 i.i.d samples and for each one, we compute the H/Sﬁ,\,u(Xl, Y') associated to all
(A, p) in A x U. The theoretical power is then considered to be the ratio of samples for which at

least one H/Sﬁ,\,u(Xl, Y) exceeds its associated quantile qi\fu R
- Permuted power. For our numerical tests, we consider 6 different collections of
bandwidths (A, x U,),,. <7, defined for all r by

A x U, ={1,1/2,...,1/27 1}

and choose the uniform weights defined for all (X, u1) as wj , = log(r?). Note that, the case r = 1
corresponds to the single test with A = = 1.

In all the following, the presumed level of the tests is set at & = 0.05 and By = 500 per-
mutations are used to estimate the probabilities P,. We consider different values of n and Bj:
n = 50,100, 200 and B; = 100, 200, 500, 1000, ..., 5000. For each triplet (r,n, B1), the procedure
of aggregated test with permutation is implemented for 1000 different samples according to Al-
gorithm 1. The power of aggregated test with permutation is then the ratio of times that the
null hypothesis is rejected. Results in terms of absolute relative error on power are given by
Figure 5.3. Notice that, regardless of the n value, the required value of By to well approximate
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Algorithm 1 Aggregated procedure using permutations

Step 0. For each (A, u), we compute two sets of independent permutations of
(X{”,Y(i))lgign repectively denoted Z,*,b = 1...B; and Z;",b = 1...By (cf. notation
in Section §5.3.1). Two samples of permuted HSIC) ,(X1,Y"), denoted ﬁ;bul, b=1...B; and

ﬁ;i’f, b=1...DB; are computed, respectively from Z»"", b =1...B; and Z,;>",b=1...By. The
role and use of these two sets of permuted HSIC is explained in the next step.

Step 1. This step aims at numerically estimating the u, defined in Equation (5.14). A
very straightforward approach to estimate u, is to proceed by dichotomy on the interval [c, M],
where M = inf(y ,)eaxv € (uq belonging to this interval as demonstrated in §5.3.1). For
this, u, is initialized at u := a(1 + M)/2 and for each considered value of u, we estimate the
following probability P,:

P, = Pf1®f2< sup (H/SI\CML — qi"_‘fue,wM) > O>.
(Mu)EAXU

. 77%b,1 3
A, using the set HY " b =

1...B; of permuted HSIC. Then, we estimate P, according to Equation (5.16) and using the

To achieve this, we first estimate for each (A, 1) the quantile qi\’f‘ e

set ﬁ;?f, b= 1...Bs. Thereafter, the dichotomy interval is updated by comparing P, and a.

Furthermore, we propose the following stop criterion: %maz — Umin < 10”3 Umin, Where Umqq and
Umin are respectively the upper and the lower bounds of the current dichotomy interval. The u,,
thus estimated is denoted 4.

Step 2. For each couple (A, i), the estimated value of H/Sﬁ,\#(X 1,Y) is compared with

. 2,
quantile qlfﬂae,wk,u
X1 and Y if there is at least one (A, ) such that

. The aggregated testing procedure rejects the independence hypothesis of

H/SE)\,M(Xl, Y) > q’\’“

1—Gge” “2n "

the theoretical power increases with 7. In fact, the supremum in Equation (5.16) becomes more
difficult to estimate as the number 72 of aggregated tests increases. Unsurprisingly, for a given
B; value, the accuracy of the power estimation increases with n as in the case of single tests. In
particular, we observe that for n = 50, the biggest error becomes less than 10% from B; = 3500
(case with r = 7), while this threshold seems to be achieved from B; = 3000 for r = 4,5,6 and
from B; = 500 for r = 2,3. For bigger sample sizes n = 100 and 200, a good approximation of
the theoretical test is achieved from small values of By (B; < 1000), even for a relatively large
number of aggregated tests. In particular, for n = 200, an error smallest than 10% is reached for
all tested B; values.

5.5.1.2 Performance of the aggregated procedure

The objective of this section is to compare the methodological choices of the aggregated procedure
and to assess its performance. More precisely, we first investigate different choices of collections
A and U, associated weights and sizes of each collection. A comparison with the single HSIC test
is also carried out. Thereafter, the aggregated procedure is compared to the test of independence
based on the mutual information, recently proposed by Berrett and Samworth (2017). Indeed,
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Figure 5.3 — Absolute relative error between the powers of the theoretical and permuted aggre-
gated HSIC procedures w.r.t. the number B; of permutations, for the sample sizes n = 50, 100
and 200 and the collection A and U sizes r. The presumed level of tests is o = 0.05. The black
dashed line represents the error threshold of 10%.

the latter has been compared to some classical existing procedures (among which single HSIC-
tests), through several analytical examples and seems to efficiently detect some forms of weak
dependence. All along this section, we will consider the same analytical examples as Berrett
and Samworth (2017). These examples consider the three following different mechanism of
dependence (i), (ii) and (iii), each one with a varying parameter.

(i) Defining the joint density f; of the couple (X,Y) for all (z,y) in [—m, 7] by
1
filz,y) = ype) {1 + sin(lx) sin(ly)} .

Densities f; with [ = 1...10 will be considered here.

(ii) Considering X and Y as

X =LcosO + %, Y =Lsin® + %,

where L, ©, 1 and ¢ are independent, with L is uniform on {1,...,l} for some [ in N, ©
is uniform on [0, 27| and &1, 2 are standard normal. In addition, the chosen values of | are
1,...,10.

(iii) Defining X as uniform on [—1,1]. For a given p > 0, Y is defined as
Y = |X| e,
where ¢ is standard normal independent with X. The considered values of p are 0.1,0.2, ..., 1.

In addition, we will also consider the following bi-variate case: X = (X3, X3) and Y = (¥1,Y3)
where (X1,Y1) is generated according to any described mechanisms above, while Xo, Y5 are
independent uniform distributions on [0, 1] and independent from (X7, Y7).
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Comparison of different strategies of aggregation. In our aggregated procedure, col-
lections of bandwidths A and U have to be chosen. There is certainly no universal best collections
that would ensure optimal test power; the optimal bandwidth depends on the intrinsic character-
istics of X and Y and their dependency structure. Consequently, it seems relevant to consider the
possible bandwidths relatively to the standard deviations of X and Y. Moreover, the standard
deviation is the usual choice for bandwidth in the literature on single HSIC-test (Zhang et al.,
2012). We assume here that the exact values of standard deviations of X and Y, respectively
denoted s and s, are known®. Note that, in practice s and s’ will be estimated most of the time,
but experience feedback allows us to assume that the error of estimation of s and s’ does not
significantly impact the performance of the single test. Indeed, standard deviation estimators
converge in most cases rapidly w.r.t. n. More particularly, this estimation error is small com-
pared to the estimation error of the quantiles. Similar aggregated tests performance are then
obtained using Monte Carlo estimated standard deviations.

First of all, we propose to illustrate the impact of bandwidth for single tests. For this, we
consider the uni-variate mechanism of dependence (ii) with [ = 2. Moreover, we consider, as
possible bandwidths A and p respectively associated to X and Y, multiple or dyadic fractions
of s and s’ respectively. For each couple of (A, i), the power of single HSIC tests is computed.
Figure 5.4 shows the obtained power maps w.r.t. (A, u), for different sample sizes. First, we
can observe that bandwidths significantly impact the power: in this case, there is an optimal
area around (A, p) = (s/4,s'/4) with a power close to one for n = 200. The power decreases
progressively as we go away from this area, until being null for very high and very low values of
bandwidths, this observation is also mentioned in Fukumizu et al. (2009). Moreover, we can see
that the regularity of the maps increases with the sample-size (just like the power for each point,
obviously). Similar conclusions were observed for the other analytical cases with one or several
best-power areas. This illustrates that an arbitrary choice of bandwidths is not relevant and
justifies the interest of considering several bandwidths through an aggregation strategy. From
these results, we can consider aggregating procedures based on collections A and U of types

A={ss/2,...,8/27 '}, U={s,s/2,....8/2 7"}, (5.27)

where 1 belongs to N*.
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Figure 5.4 — Power map of single HSIC test w.r.t. to kernel widths A and p respectively
associated to X and Y, for sample sizes n = 50, 100 and 200.

3In practice, when only a n-sample of (X,Y) is available, we estimate these standard deviations by usual
Monte Carlo estimators.
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Note that, generally speaking, small bandwidths intensify the local dissimilarities between
the joint density and the product of the marginals. On the contrary, large bandwidth values are
better to catch the global dependence. This explains the reason why small bandwidths values
(w.r.t. standard deviations) give better results in Figure 5.4. Indeed, the dependence form (ii)
with [ = 2 is more local than global due to the presence of Cosine and Sine functions respectively
in the equations defining X and Y. By now, let us compare the possible choice of weights
associated to the collections A and U described above. We study in particular two types of
weights: uniform and exponential weights. We recall that uniform weights depend only on the
cardinals of A and U, they are defined for all (A, u) as

Wi = log(rQ).

Furthermore, the exponential weights are adapted to the collections defined in Equation (5.27).
They are defined, by analogy with Equation (5.19), for all (s/2%,s'/27) as

i+1)%(j + 1)
Ws/2i 5" )25 = log Z M . (528)

u?v?
1<u,v<r

The results obtained with the two types of weights are given by Figure 5.5, for different collection
sizes r and sample sizes n. In this application, the uniform weights strategy seems to give a better
power than the exponential weights one. But, we can observe a different behavior w.r.t. r. For
the uniform weights, the power increases until a specific r (r = 3 or 4 w.r.t n), before decreasing
with 7, to being lower than power with exponential weights. On the contrary, the power with
exponential weights has a more robust behavior, since it increases with r until it stabilizes. The
uniform strategy is perhaps more convenient for small values of r (in practice r < 4), whereas
the exponential strategy performs better for bigger values of . We can also observe that the two
aggregated strategies yield a greater power than the single test (which corresponds to the case
r = 1), as soon as a sufficient sizes of collection are chosen. Indeed, in this case the dependence
is more accurately captured with small bandwidth values (smaller than the standard deviations).
Similar conclusions have been drawn from the other analytical examples, which are not presented
here for the sake of brevity.

Comparison with Mutual Information Test. To complete these numerical tests, we
propose to compare our aggregated procedure with some existing reference tests of independence.
For this, we rely on the analytical examples of Berrett and Samworth (2017) presented above
and consider a sample size n = 200. In their paper, Berrett and Samworth (2017) numerically
compare the powers of several independence tests. More precisely, they compare their Mutual
Information Test (called MINT) with that based on the copula defined in Kojadinovic and Holmes
(2009), the distance covariance (Székely et al., 2007), the Kendall’s tau introduced in Bergsma
and Dassios (2014) and the single HSIC using the permutation method (Gretton et al., 2008)
with B = 1000 permutations. For this last test, same kernel bandwidths defined for multivariate
variables are chosen for X and for Y in Berrett and Samworth (2017):

1 1
M= gmedian {I1IX; = X;13:i<j} and p?= gmedian{HYi —Y;|5:i<j},
where p (resp. ¢) is the dimension of X (resp. Y) and |.||, (resp. ||.|lp) is the Euclidean norm
in dimension p (resp. q). For the sake of consistency, we make here slightly different choices for

these bandwidths, by taking A and p such that

~ 1 o 5 1 o
)\2:§mean{||Xi—Xj||§:z<]} and uzzémean{H}Q—Y}Hg:z<3}. (5.29)
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Figure 5.5 — Power of aggregated procedures with uniform and exponential weights, w.r.t. the
number 7 of aggregated bandwidths in each direction, for sample sizes n = 50,100 and 200.

Notice that, when X (resp. Y ) is one-dimensional, then A (resp. fi) is the empirical estimator of
the standard deviation of X (resp. Y). In Berrett and Samworth (2017), the most powerful tests
on the analytical uni-variate and bi-variate examples (i), (ii) and (iii) are the MINT and single
HSIC test. Let us compare the performances of these two tests with our aggregated procedure
with the following methodological choices:

e The bandwidths associated to X (resp. Y') are chosen to be the same for all directions and
belong to the collection A (resp. U) defined as

A=(A/2,...,0/2% and U= (i, 7i/2,...,7/2%),
where A and [i are the bandwidths introduced in Equation (5.29).
e Exponential weights of Equation (5.28) are chosen.

e Algorithm 1 is used with B; = 3000 and By = 500.

For each example, the power of the different testing procedures is estimated using 1000 different
samples of (X,Y). The obtained power curves are given by Figure 5.6, w.r.t parameters [ and p.
No procedure of testing constantly yields the best performances. For the case (i), the MINT and
the HSIC aggregated procedure have competitive results, much better than single HSIC. For the
mechanism (ii), the MINT is the most powerful method, then comes the aggregated procedure,
single HSIC giving the worst results. For the last example (iii), results are opposite. Thus, the
HSIC aggregated procedure seems to yield intermediate results between MINT and single HSIC:
it provides better results on average, regardless of the mechanism of dependence between the
variables. Moreover, in the majority of the presented examples, the HSIC aggregated procedure
performs better than the single HISC test.

It may occur that the aggregation procedure with dyadic fractions of standard deviations
as bandwidths yields weaker performance than single HSIC tests. This is the case when the
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Figure 5.6 — Power curves of MINT, single HSIC test and aggregated procedure for the mecha-

nisms of dependence (i), (ii) and (iii) in the uni-variate (p = ¢ = 1) and the bi-variate (p = ¢ = 2)
cases.

dissimilarity between the joint density and the product of the marginals is very global. In such
cases, it is more useful to take into account large bandwidth values (more precisely, higher than

standard deviations). To illustrate this point, we consider a new modified version of Ishigami
function, defined as

M(X1, Xo, X3) = sin(X;) + 4 sin?(Xz) + 0.2 X3 sin(X;), (5.30)
where the inputs X, X5 et X3 are independent and follow a uniform distribution on [0, 1]. Let
Y be the output variable Y = M (X7, X5, X3). Figure 5.7 shows the power map of the single
HSIC test of the couple (X1,Y) w.r.t. the bandwidth values A and u respectively associated
to X7 and Y. The sample size chosen for this analytical example is n = 200. Moreover, the
power of the test associated to each couple of bandwidths (), ) is estimated using 200 different
samples. We observe here that the single tests associated to the bandwidths in the area beyond
standard deviations have a good power. This area is then to be considered in this case. In order
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Figure 5.7 — Power map of single HSIC test w.r.t. the kernel bandwidth A and p respectively
associated to X; and Y, for modified Ishigami function and a sample size n = 200. The standard
deviations of X and Y are respectively denoted s and s’.

to validate this intuition, we consider the collections A, and U, defined as
A, ={s,2s,...,2"s} and U, ={s,2¢,...,2"s'},

where s and s’ are respectively the standard deviations of X; and Y, while r in N*. Note that, as
previously, the case r = 1 corresponds to the heuristic single HSIC test. For each r in {1, 2, 3,4}
and n in {50,100,200}, we consider the aggregated procedure using the uniform weights and
implemented with B; = 500 and By = 3000. Table 5.1 shows the powers of the tests w.r.t. r
and n, estimated each time using 200 different samples. For all the values of n, the aggregated
procedure gives better results than single HSIC tests when r = 3 and has comparable power
values for » = 4. This suggests that the aggregation in the increasing directions of bandwidths
can be a good approach when the nature of the dependence is more global in nature.

] \ r=1 \ r=2 \ r=3 \ r=4 ‘
| n=50 | 042 | 044 [ 047 [ 042 |
[ n=100 | 073 ] 069 | 082 [ 070 |
[ n=200 [ 096 [ 098 [ 1.00 [ 098 |

Table 5.1 — Power of the aggregated HSIC tests for modified Ishigami function w.r.t. r the
number of aggregated bandwidths at each direction and n the sample size.

Depending on the nature of the dependence (local or global), it appears that it will be more
relevant to aggregate either dyadic fractions or multiples of standard deviations. In practice, as
the nature of the dependence (local or global) is often unknown, we can recommend two possible
strategies of aggregation. The first approach could consist in considering both small and big
bandwidth values around the standard deviation: for example, the collection will includes the
standard deviation and its half and double in both directions.
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Another suitable solution, if the sample size is large enough, could be to use a part of the
initial sample to identify “relevant” bandwidth choices, while the rest of the sample is kept to
perform the aggregated tests. On the first part of the sample, the relevant bandwidths could
be the ones that lead to minimal p-values of single HSIC tests, among some possibly interesting
values bandwidths (e.g. some multiples and dividers by 2 of the standard deviations). Note that
the number of selected bandwidths could be also limited to 3 or 4, to avoid decreasing power
of the aggregated procedure (especially if uniform weights are used). In this last approach, the
choice of the proportion of simulations to be set aside to find the interesting bandwidths remains
an interesting research prospect.

Even if the optimal choice of the elements of the collection depends on the test case and
remains to be explored further, our aggregate procedure makes it possible to take into account
several scales of dependence simultaneously, and thus makes it possible to detect a wider spectrum
of dependency relationship.

5.5.2 Nuclear safety application

Our current objective is to apply and further explore the methodology and its various aspects
by facing it with the real data case of MACARENa Simulator, presented in Chapters 1 and 2
(sections 1.3.2 and 2.3.2 respectively), which simulates the ULOF (Unprotected Loss Of Flow)
accident on sodium-cooled fast reactor. For this, we consider here all the 26 uncertain and
independent inputs identified by Droin (2016) and listed in Table 4.3. For the sake of clarity,
the 26 inputs will be denoted X1, ..., X6 (numbering according to their order of appearance in
Table 4.3). As in Section 4.3.2, the output of interest, denoted Y, is the first instant of sodium
boiling. Note that, to focus on simulations with boiling, the support of variable 4, the external
pressure drop discrepancy, is here reduced to [—0.1,0.04], still with a uniform distribution. For
this study, a Monte Carlo sample of size n = 697 of inputs and associated outputs is available
(from Droin, 2016). Based on this sample, we examine the performance of input screening based
on HSIC-tests (single and aggregated), w.r.t. the number of simulations. For all the statistical
independence HSIC-tests used in this section, the level is set at a = 5%.

Screening using the aggregation methodology. By now, we study the performance of
the aggregated testing procedure proposed above. As we do not have any prior information on
the nature (local or global) of the dependence between the inputs and the output, we propose
here to consider the following bandwidth collections A and U respectively associated to X and
Y defined as

A=1{s/2,5,2s} and U ={s'/2,¢, 25},

where s and s’ are respectively the standard deviations of X and Y. Moreover, the uniform
strategy for weights is adopted. From the initial sample of size n = 697, we first apply the
methodology using Algorithm 1 with B; = 2000 and Bs = 500. The inputs selected by the
aggregated tests of level o = 5% are X1, Xo, X4, X5 and Xo4%. Let us now study the convergence
and robustness of these screening results with respect to sample size n. For each given sample
size n = 50, 100, 150, 200, 300, 400, 500 and each input identified as “influential”, we estimate the
selection rate® of the aggregated procedure using 200 subsamples of size n. Figure 5.8 represents
the simulation results. As we can observe, the inputs X, and Xg are quickly detected by the test
even with few simulations (since n = 50). It seems reasonable to think that these inputs may also
have the strongest and most global dependence with Y. In contrast, the dependence between

4The interpretation of these results in the physical sense can be further conducted.
5The selection rate indicates the percentage of times that the variable is selected for the screening.
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the other selected inputs X;, Xo, Xo4 and the output Y are more challenging to detect. We
observe for instance that, to exceed the fifty-fifty chance to select X; as influential, the sample
size must at least be equal to n = 500. Furthermore, medium sample sizes are sufficient to have
a good chance to select the inputs X and Xs4. The inputs X, X5, Xo4 have perhaps a lower
or more local dependence with the output.
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Figure 5.8 — Convergence of the selection rate for each “influential” input of MACARENa
simulator based on aggregated HSIC tests for each input w.r.t. the sample size n.

Screening using heuristic single HSIC tests. Let us now compare the performance
of the aggregated procedure with the single heuristic test. At the beginning, we use the total
available sample to get an insight of the screening results using the single test. To do so, we
rely on HSIC-based asymptotic tests of independence® presented in Section 3.4.2. The p-values
associated to each of the 26 inputs are then estimated using the Gamma approximation of HSIC
estimators under the null hypothesis. Table 5.2 indicates the inputs whose asymptotic p-values
(estimated using the whole sample of size 697) are less than 5%. Thus, the inputs X, X, X4, X3
and Xo4 are selected by the single tests of level & = 5%. The screening results given with the
single tests are then in line with those obtained using our aggregated procedure. By now, we
compare the screening results with smaller sample sizes of the single test and the aggregated
procedure. For this, we consider the same sizes as in the case of the aggregated procedure
n = 50,100, 150, 200, 300, 400, 500. In addition, we estimate for each size n the corresponding
rate of selection using 200 different subsamples of size n. We show in Figure 5.9 the obtained
results. We notice that generally, the results obtained by both tests are very similar. However,
the single tests which focus only on the standard deviation as bandwidth seems on this example
to detect influential variables a little faster than aggregated tests. In particular, the rate of

6Before applying HSIC-based independence tests with the Gamma approximation, we checked that the use of
the asymptotic framework is justified.
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selection exceeds 50% earlier for X5 and Xa4 using the single test (n = 200 for X5 and n = 100
for X24).

’ Input ‘ X1 ‘ XQ ‘ X4 ‘ Xg ‘ X24 ‘
[ P-value | 1.21x 102 | 2.84 x 1077 | 0 | 0 | L11x107 M ]

Table 5.2 — Asymptotic p-values less than 10% among MACARENa inputs, from usual HSIC-
test with Gaussian kernels and heuristic bandwidth parameters.
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Figure 5.9 — Convergence of the selection rate for each “influential” input of MACARENa
simulator based on single HSIC tests w.r.t. the sample size n.

Discussion. Assuming that the detected inputs are effectively influential (which is a quite
fair assumption considering the convergence graphs), it would be instructive to understand why
the heuristic test gives here better results than the aggregated procedure. For this, we represent
in Figure 5.10 the maps of the probability that the HSIC estimators are lower than the observed
value (one minus the p-value) for the inputs X7, Xy and X4 and using the initial sample of
size n = 697. The graphics show that for these three inputs, the performance of single tests
are maximized using bandwidths around the standard deviations. This means that in this case,
the aggregation does not provide any new information, since the heuristic unit test is already
well located. But once again, since the nature of the dependence (local/global) is unknown
in the general case, the interest of the aggregated procedure is to take into account several
dependence scales simultaneously. Even if we cannot totally avoid a heuristic choice since we
consider collections of dyadic dividers and multiples of the standard deviations but, the impact
of this choice is more relaxed and this is the whole interest of the aggregated procedure.
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Figure 5.10 — Probability under the null hypothesis to be lower than the observed HSIC value
(one minus the p-value) maps of the inputs X7, X2 and Xo4 using the total available sample of
size n = 697.

5.6 Conclusion and Prospect

In this chapter, we present a new methodology to build statistical tests of independence based
on HSIC measures. These tests are developped to screen the inputs of a numerical simulator.
The principle of this methodology is based on the aggregation of several HSIC tests, in order to
improve the ability of the test to detect the influential inputs. This methodology is motivated on
one side by the efficiency of HSIC for screening, and on the other side by the unjustified heuristic
choices for the kernels associated to these measures. To introduce this methodology, we consider
the HSIC measures based on Gaussian kernels and focus on the bandwidth parameters involved
in these kernels.

Theoretical characteristics of each independence test with a given Gaussian kernel (i.e. with
given bandwidths) are first studied. In particular, sharp upper bounds of the uniform separation
rate over classes of regular alternatives is demonstrated. We also establish lower bounds for
these uniform separation rates, proving thus the optimality of our procedure. Subsequently, we
propose the aggregated methodology based on a collection of single HSIC tests, each one of them
is defined using a different bandwith in the Gaussian kernel. This procedure is shown to be
nearly adaptive over Sobolev spaces, meaning that it achieves the optimal uniform separation
rate over all these spaces simultaneously (up to a logarithmic term).

Numerical studies are performed to assess the performance of the methodology. In particular,
different strategies of aggregation are studied and compared. In addition, the practical interest of
this testing methodology is highlighted by comparison with single HSIC and other independence
tests. Significant improvement of the power of single HSIC tests can be achieved. Moreover, the
procedure performs well comparing to other existing independence tests.

Future works could attempt to improve some technical points of the methodology and to
extend its scope. First, the choice of the bandwidth collections remains to explore. Indeed, it
seems that small bandwidth values are more suitable to detect local dependence, while large
ones are more adapted to capture more global dependence. An improvement of the methodology
for capturing both types of dependence could be considered. In particular, we can study in
more details the performance of collections with both small and large values or alternately set a
proportion of the sample aside for bandwidth selection.

Another important improvement is to define and implement the computation of the p-value
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associated to the aggregated procedure. In fact, the p-value can be seen as the minimal level
value such that the null hypothesis is not rejected. The p-value of the aggregated procedure can
then be estimated by dichotomy.

It would also be interesting to further study the link between the type of variables (continuous,
discrete, etc.) and the bandwidth collections to be chosen. Furthermore, it would also be valuable
to extend the aggregation to other types of characteristic kernels and not only Gaussian ones.

Another natural continuation of these works would be the asymptotic version of the aggrega-
tion procedure, where the permutation approach is replaced by the method based on asymptotic
distributions of HSIC estimators under the hypothesis of independence.

Finally, in the framework of uncertainty treatment of expensive simulators with lot of un-
certain inputs, Quasi-Monte Carlo (Niederreiter, 1992; Caflisch, 1998) and Space-Filling Design
methods (Pronzato and Miiller, 2012; Husslage et al., 2011) are often used to optimally cover
the space of the inputs. These sampling techniques considerably improve the convergence rates
of estimators based on expectations, such as the HSIC estimators. Howerver, some statistical
assumptions in the HSIC-based tests (independence of the observations) are not satisfied any-
more. In particular, the estimation of quantiles should be corrected (like any estimators of order
statistics). So, to increase the scope of application of our methodology, an attractive perspective
would be to adapt the methodology to such kind of designs.

5.7 Proofs

All along the proofs, we set Z = (X,Y) and Z; = (X,,Y;) for all 4 in {1,...,n}. We also denote
by A, B and C positive universal constants whose values may change from line to line.

5.7.1 Proof of Lemma 5.1

Let « and § be in (0,1). We aim here to give a condition on HSIC} ,(f) w.r.t. the variance
Var;(HSIC, ;) and the quantile qf’f‘a, so that the statistical test A)* has a second kind error

controlled by . For this, we use Chebyshev’s inequality. Since H/SE,\ u is an unbiased estimator
of HSIC, ,.(f),

— HSIC
Py [ [HSICy ,, — HSICAM(f)’ > W < B.
We then have the following inequality:
J— HSIC
P; | HSIC,,, < HSIC, . (f) — Varf(;CW <B.

Consequently, one has Py (H/SI\CML < qi"fa) < f3, as soon as

Var¢(HSIC ,,) n q)"”

HSIC), ,,(f) > 5 M
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5.7.2 Proof of Proposition 5.1

In order to provide an upper bound of the variance Var f(H/SEA7M) w.r.t. the bandwidths A, p
and the sample-size n, let us first give the following lemma for a general U-statistic of any order
rin {1,...,n}.

Lemma 5.7. Let h be a symmetric function with r < n inputs, Vi,...,V, be independent and
identically distributed random variables and U, be the U-statistic defined by

Un: (TL—?")! Z h(%l,...,wT)~

n!
(ila-uvir)ei?

The following inequality gives an upper bound of the variance of Uy,

2 2

Var(U,) < C(r) (” 432 ) , (5.31)

n  n?

where o = Var (E[h(V1,...,V,) | Vi]) and s*> = Var (h(V4,...,V})).

Proof of Lemma 5.7. First, using Hoeffding’s decomposition (see e.g. (Serfling, 2009, Lemma A,
p. 183)), the variance of U,, can be decomposed as

it = (1) 2 () (=0

c=1

where (. = Var(E[h(V1,..., V) | Vi,..., VC]).

Let us now prove that, for alln € N*, r € {1,...,n} and c € {1,...,r},

(Z> ) C) (2 - Z) = % (5.32)

We first write

) O () it
:C) T i!c)! x (n(—&T—Lc_—r);T)! <L ;1T)!‘ (5.33)
Moreover,
nl=n-r)!xnh—-r+l)x...x(n—r+r)
>n—r)!xn—r+1)",
and

n=r)! = (n=2r+o)lxn—2r+c+1)x...x(n—=2r+c+r—c)
< (n=2r4+o)!x(n—r+1)"7°
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Then, we have
(n—r7)! X(n—r)!< 1
(n+c—2r)! nl T (n—r+1)

Furthemore, using that n > r, one can write

n—r+1 1_"= 1
n B n
> 1o r—1
r
1
o
1
This leads to, —— < T Finally, Equation (5.33) leads to Equation (5.32).

n—r+1"n

By upper bounding each term in Hoeffding’s decomposition of the variance of U, according
to Equation (5.32), we obtain the following inequality:

Var(U,) < C(r) Z % (5.34)

On the one hand, ¢; = 0?. On the other hand, using the law of total variance (see e.g. Weiss
(2006)), for all ¢ in {2,..,r}: (. < s?. By injecting this last inequality in Equation (5.34), we
obtain for all n in N*:

o? 52
Var(U,) < C —+ =,
() < 00) (5 + )
which achieves the proof of Lemma 5.7. O

Let us now apply Lemma 5.7 in order to control the variance of H/SﬁML w.r.t A, g and n.

For this, we first recall that H/SEA,H can be written as a single U-statistic of order 4 Gretton
et al. (2008) as

SIC,, - 1 -
bW n(n —1)(n —2)(n — 3) (i,j,qz,r:)eig i4,q,T
where the general term h; j 4, of H/SI\CA’H is defined as
1 Gaar)
higar =77 2 (talsa + Keulow = 2ktalia) (5.35)

" (tuv,w)

where k; o, (resp. l; ) is defined for all ¢, win {1,...,n} as ky , = k(Xy, Xy) (vesp. U, = 1(Y;,Yy))
and the sum represents all ordered quadruples (¢,u,v,w) drawn without replacement from
(Z" j7 q’ r)'

Thus, using Lemma 5.7, the variance of H/SI\CA,N can be upper bounded as follows:

Var; (H/Sﬁ,\)u) <c (UQ(/\,,U) I 32(/\,M)> ’ (5.36)

n n2

where recalling that Z; = (X;,Y;) for all 4 in {1,...,n}, Uz@\aﬂ) = Vary (E[h1,2,3,4 | Z1]) and
s2(\,p) = Varg (h12,3.4)-
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5.7.2.1 Upper bound of o?(\, )

By now, we upper bound 2(\, i) defined in Equation (5.36) w.r.t. A and p. For this, we first
notice that in the cases when ky(Xg, Xp)!, (Y, Yy) is independent from Z;, the variance of its
expectation conditionally on Z; equals 0. That are the cases when a, b, c and d are all different
from 1. We then have the following inequality:

6
*(\p) <CY i\ ),

=1

030 ) = Vary (Bl (X, o)L (V1. ¥Y2) | ), 30 ) = Vary (Bl (X2, X )b (¥, ¥a) | X1])
a3(\ u) = Vary (E[kx (X3, X9)1u(Y1,Y2) | Y1]),  0f(X, p) = Vary (E[kA(Xth)lu(Yl»Ya) | Z1])
O'g(/\’ /.L) = Vary (E[k)\(XQa Xl)lu(}/Q’Yfi) | Xl])’ Ug(/\’ :u) =, Vary (E[k)\(X% X3)ZM(}/27Y1) | YVlD :

Case 1. Upper bound of o (X, i)

oF O 1) SE [(Elk (X1, X2)lu (Y1, Y2) | Z1))°]
SE [Ea (X1, Xo)l, (Y1, Y2)kx (X1, X3)1,(Y1,Y3)].

Moreover, we have

E [k (X1, Xo)ka (X1, X3)1 (Y1, Y2)1,(Y1, Y3)]

w

=/ ka(@1, @2)ka (@1, 23) 1 (g1, y2)lu (v, ws) [ F @k, vie)derdys.
(RP xRR?) =1

By upper bounding f(x2,y2) and f(z3,y3) by ||f]|cc, we have

3
ot (A n) < Hf||§o/ ko (@1, 22)kx (21, 23) L (y1, y2) L (y1, w3) £, ) [ ] dewdyn

(RP xR4)3 paiiet

= || 1% /RPXRQ {/Rp kx(ﬂilaxz)dl’z] [/Rp kx(wl»fs)dxs} {/Rq Z;L(ylvyz)dyz]

[/]Rq lu(yl,ys)d%} f(w1,y1)dwdy;.

Finally, using that /

kx(.,x)dx = / [,(.,y)dy = 1, we write
Rp Ra

ot m) < [I£I1%- (5-37)
Case 2. Upper bound of o2(), p)
o3\ 1) SE [(E[ka (X1, X)lu(¥a,Ya) | X))’
<E[(E [k (X0, X2) | X2))°] (B (1,0, v)))?

<E [kx (X1, Xa)kr (X1, X3)] (B [1,(Y, Ya)] ).
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Moreover, it is easy to see that by upper bounding fi(z2) and f1(z3) by || f1lleo, and recalling
that / kx(z1,z)dz = 1, we have,
RP

E [kx (X1, Xa)kx (X1, X3)] = /R

< fill%

Besides, upper bounding fa(y3) by || f2|le in the integral form of E [I,,(Y3,Ys)] gives

|: . k)\(xl,l‘g)fl(l‘g)dl‘g] |: kk(xl,x3)f1(x3)dx3 fl(.ﬁl)dl‘l

RP

E{1,(Ys, Yo) < [| f2]loe-

By combining these inequalities, we obtain
a3 (A 1) < || fill3ll foll- (5.38)

Case 3. Upper bound of o3(\, 1)
This case is similar to case 2 by exchanging X by Y and ky by [,,. Thus, we have the inequality

a3\ ) < Al (5-39)
Case 4. Upper bound of o3(\, 1)
o3\ ) <E [(Elhn (X1, X2)lu (11, Y3) | Z1])°]
<E[ka (X1, X2)ka (X1, X4)lu (Y1, Y3)1, (Y1, Y5)] .

By upper bounding f1(22), fi(z4) by |[fillec and f2(ys), fa(ys) by [|f2]lec in the integral form of
E [k})\()(l,)(2)]{:,\()(1,A)(él)lu(yvl,Y:c,)lu(}/l,}/'5)}7 we obtain

o\ 1) < 1 llZ N fall3 (5.40)
Case 5. Upper bound of o2 (\, )
200 ) <E[(B[E(Xa, X0)L(V2, Y3) | X1])]
<E [k (X2, X1)kx(Xa, X1)1,(Ya, Y3),(Yy, Ys)]

By upper bounding f(x2,y2) and f(x4,y4) by || f|lcc in the integral form of the last expectation,
we have

a3 (M) < I3 (5.41)

Case 6. Upper bound of o2 (\, i)
This case is similar to case 5 by exchanging X by Y and k) by [,,. We have then the inequality

3 (A 1) < IIfI1%- (5.42)
Finally, by combining inequalities (5.37), (5.38), (5.39), (5.40), (5.41) and (5.42), we have the

following inequality
o?(A, ) < C(My). (5.43)



5.7. PROOFS 113

5.7.2.2 Upper bound of s%(\, i)
Let us first recall that the general term of the U-statistic ﬁSI\CA,M is written as

(1,2,3,4)
1
h1,2,3,4(ZhZZuZ?nZ4) = 5 Z k)\(quXv) [lu(yuay'u) +l,u‘(Ywath) _2Z,u,(Yu7Yw)]~

" (u,v,w,t)
Moreover, all the terms of the last sum have the same distribution. We then have
s*(\, p) = Vary (h12,3.4(Z1, Z2, Z3, Z4))
< CVary (ka (X1, X5) [1(Y, Y2) + (Y, Vi) — 20, (Y3, Y3)]),
It follows that,

Vary (hi,2,3.4(Z1, Z2, Z3, Z4)) < C [Vary (kx(X1, X2)1,(Y1,Y2)) + Vary (kx (X1, X2)l,(Y3,Ys))

<

+  Vary (kx(X1, X2)1,(Y1,Y3))]

< C (B [k (X1, X2)5(Y1,Y2)] + B [k} (X1, X2)12 (Y3, V)]
+  E[K(X1, X)) (Y1,Y3)]),

In order to bring back to multivariate normal densities, we express k3 and li as

k?\ = L and 2 = —#
2 L q b
(47’()5)\1...)\1; f (471')5#1.../1,(1
A 1%
where M = — and /' = —.
2 A

Consequently, the expectation E [k3 (X1, X3)IZ(Y1,Y2)] can be expressed as

1

E [k3 (X1, X2)2(Y1,Ys)] = —
[ a ] (47r)%>\1)\pﬂlﬂlq

E [k (X1, Xo)l,w (Y1, Y2)]

1
= = / Ex(z1, 22)l0 (Y1, y2) f (21, y1) f (22, y2 ) dzidaedy  dys.
(Am) 72 A Appen .. fig J (R xRa)2

By upper bounding f(x2,y2) by ||f|lec in the last integral, we have

/ kx (1, w2) L (Y1, y2) f (w1, y1) f (22, y2 )dzidoody: dys
(RPxR%)2

§||f||<>o/R . [ A kx(xl’l‘z)d@] [/R lu’(y17y2)dy2} f(z1,y1)dzidy;
P x R4 P q

= flloo-
This leads to,

e 540

E [k} (X1, X2)%(Y1,Y2)] < )
: (4m) 72 A1 Appig e fhg

We can easily show by similar argument that

f1lloollfolloe
(A7) 5N At e flg

E [k3 (X1, X2)l%(Y3, Y)] < (5.45)
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and

[/l

E [k3 (X1, Xo)I2(Y1,Y3)] < — . (5.46)
| : ) (A7) 52 Ay A oo g
From Equations (5.44), (5.45) and (5.46), we have
M
s\ p) < C(My) (5.47)

(4 )pﬂ Al.. /\pul...,uq.

From Equations (5.43) and (5.47) we obtain the following inequality for Vary (H/S-E )

— 1 1
Varf(HSICAVM) < C(Mf,p, q) {Tl + )\1)\#1#7’12} .
s Aple g

5.7.3 Proof of Proposition 5.2

To give an upper bound for the quantile q1 o W.r.t A and p, we use concentration inequalities for
general U-statistics. However, sharp upper bounds are obtained only for degenerate U-statistics
(see e.g. Houdré and Reynaud-Bouret (2003)). We recall that, a U-statistic U,, = U, (V4, ..., V;)
is degenerate if E[U,, | V3,...,V;] =0 for all ¢ in {1, ..., — 1}. The first step to upper bound qi\’_“a
is then to write H/SI\CA,M as a sum of degenerate U-statistics. For this, we rely on the ANOVA-
decomposition (ANOVA for ANalyse Of VAriance, see e.g. Sobol (2001)) of the symmetrical
function h; ;4. introduced in Equation (5.35). We then write:

(m q,r) (4,4,4,T)

hij,q.r Z ht Z Mt w0 + hi 4.5, (5.48)

(t,u) (tuv)

where the first (resp. the second) sum represents all ordered pairs (¢,u) (resp. triplets (¢, u,v))
drawn without replacement from (i, 7, ¢,r) and the terms h¢ y, ¢y and h; j 4 are defined as

ht,u =E [hi,j,q,r | Ztv Zu] )

(t w,v)
ht,u,v :E[Zqu|ZtaZu7Z Z ht’u’
(t/ u’)
_ 1 (,3,q,7) (z 3,47)
hiJ’q’r = hi,j,q,r — 6 Z ht U,V Z ht e
(t,u,v) (t,u)

Hence, by summing all terms h; j 4 » for (¢, 7, ¢, ) in i} and then dividing by n(n—1)(n—2)(n—3),
we have

— _—(2,D) _—(3,D) _—(4,D)
HSIC, , = 6HSIC, , +4HSIC, , +HSIC, , , (5.49)
where
——(2D) ——(3,D)
HSIC, , " = Z hij; , HSIC, ), 7m > hijg
(1 J)€iy (i.4,q) €l
——=(4,D) 1 ~
HSIC = Ri g
Ao nn—1)(n—-2)(n—-3 Z S

(i,3,q,r)€iy
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— (2,D) ——(3,D)
Lemma 5.8. Let us assume that f = f1 ® f2. Then, the U-statistics HSIC, , ~, HSIC, , = and

__—_(4,D)
HSIC, ,,  are degenerated.

Proof. According to Theorem 2 of Gretton et al. (2008), if f = f1 ® f2, we have:

Ehijar | Zi] =

——(2,D
We then easily show that HSICE\y L : is degenerated by writing
Blhij | Zi] = Elhijqr | Zi] = 0. (5.50)

——(3,D)
Moreover, to prove that HSIC, , = is degenerated, we have

Elhijq | Zis Zj] =Blhijqr | Zi, Zi] — Blhij | Ziy Z5] — Blhi g | Zi] — Blhyq | Zj]
=h; ; —h;; (by definition of h,; ; and Equation (5.50)) (5.51)
=0.

——(4,D)
Finally, to show that HSIC, , = is degenerated, we write

Elhijar | Zis Zj, Zg) = Elhijqr | Zis Zj, Zgl — Pijig — hij — hig — hijg

=0, (5.52)
0

——.(r,D)
Once we have upper bounds of the (1 — a)-quantiles of HSICA o with 7 in {2,3,4} under

the assumption f = f; ® f2, an upper bound of the quantile ‘hfa is naturally obtained. In fact,
we can easily show that,

, A, A, A,
@t < 6q1fa/3,2 + 4q1fa/3,3 + qlfua/3,4
——(r,D)
where q1 a , is the (1 — a)-quantiles of HSICA,H under the assumption f = f; ® fo.

5.7.3.1 Upper bound of ¢}"* ,
In this part, we give an upper bound of q{\ “a 5. For this, we use the concentration inequality
3.5, page 15 of Giné et al. (2000), given for degenerated U-statistics of order 2. We write for all

t>0: ,
OO

K= (m)aX 1ijllocs M? = Z E[hij]
¥ (i)eig

1
Z hijl >t| < Aexp <_A min
(4,5)€iy

where A is an absolute positive constant,

? = max IIZE i (Zi,y)] Hoo,IIZE (135 (2, Z)] llo
J=1
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t
By setting e = —, and using Equation (5.53), we obtain
n

M’\ L "\ K )

1 1
P ﬁ| Z hijl > ¢ <Aexp<—Am1n

(i,5)€iy
Therefore, we have for all € > 0,
1 n’e nt/3¢2/3 nel/?
P ﬁ| Z hz,]‘ > SAmaX |:eXp <—AZ\4_> , eXp <—IW) , eXp (_W>:| .
(6,5)€ig
o . . L1 —==(2.D)
By adjusting the constant A, we can replace in the last inequality — Z h;; by HSIC, ,

(i,5)€iy

———(2,D) n2e ni/3:2/3 nel/2
P (HSIC)\7M | > E) S A max [eXp (-AZW_) , €XP <_W) , eXpP (_W>:| .

Furthermore, if ¢, is a positive number verifying
n’eq nt/3¢2/3 nel/?
O(:AmaX exp <—AM),eXp —W , eXp —m .

Then, we can easily show the following inequality

@t o < can (5.54)

By now, we upper bound ¢, (and consequently qi\’_” w,2)> in the 3 following cases.

AM

In this case, ¢, is expressed as
AM 1
Ea = —%5 (log <> +log (A)) .
n e

We can then upper bound ¢, as
CM 1
Ea S 5 IOg — + 1 y
n «

for some absolute positive constant C. Furthermore, considering the values of « such that

log (é) > 1, we obtain
2CM 1
Ea S TIOg (a) . (555)

2
Case 1. a = Aexp (_n €a>

Let us upper bound M w.r.t A, i and n. For this, we first write

M?= )" E[h};] <n’E[hi,).

(i,5)€iy
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Moreover, using the law of total variance, we have under the hypothesis f = f1 ® fa,

E[hT o] = Var (E[h1 234 | Z1, Z2))
S Var (h1727374) .

Furthermore, we have shown in Annexe 5.7.2.2 that,

C (Mf,pa Q)
Var (h < — e
ar( 1727374) - )‘1-~-)\p/1/1~-~/~tq
Hence, we can upper bound M as follows,
Cc(M
< CMppgn (5.56)
/\1...)\1,,[1,1.../1(]
Consequently, by combining Equations (5.55) and (5.56), we obtain
C (Mg, p, 1
o, < —S\Mrpd) mg(>. (5.57)
N/ A1 Ap it - fig o
n4/3€a/3
Case 2. a = AeXp 7W
In this case, e, verifies that,
AL?/3 1
2/3 _ =
€= <log <a) + log (A)) .
Thus, &, can be upper bounded as
CL 1\
€a < — log (> , (5.58)
n o

Let us upper bound L w.r.t n, A and u. For this, knowing that h; ; is symmetrical we write
n
L* = || > E[h (Zi, )] oo
i=1

Moreover, according to Gretton et al. (2008) page 10, we have under the hypothesis f = f1 ® fa,

hi.j(Zi, Z;) = é[kA(Xqu) + (k)= (B = (k) 5] [0a (Y3, Y5) + (). = ()i — (). 5]
where <k>\>~,~ = E[ki/\(Xl,Xj)], (k‘)\)i}. = E[k’)\(X“XJ) I Xi]7 (k‘)\>.’j = E[k)\(X“XJ) | X]] and
(Lu)..., (LW)i,., (1,).,; are defined in a similar way.

Hence, we write for all y = (y1,v2) € R?,

1211 = g i)+ (). Bl (3 ,) | X1~ Bl (e )]

XPMEwﬁ+UMW—EW0%%)Hﬂ—EWO%mﬂ-
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Therefore, we have the following inequality for hf (Zi, Y),
hi(Ziy) < C[mxi,ylﬁ + (k)% + (B[ex(X:, X)) | Xa])? + (E[mxiyyﬂ)ﬂ

1o )? + 002+ (B0 Y5) | VP + (BI85 02)?)

Using that (X3,...,X,) and (Y7,...,Y,,) are independent, we write

L* < Cn SU%R]E [kA(Xi7y1)2 + (k)2 + (B[RA(X3, X5) | X)) + (E[k/\(XuleQ]
Y1,Y2

SB[ (Vi sa)? + )2 + (B0, 7) | P + (BLL (i 0a)?)

Each term can be upper bounded by similar arguments as 5.7.2.2, we then have

1 1
L2<CM»n<1+ >(1+ >
- ( j) Al-“)\p H1---g

Thus, using that A;...A\, <1 and py...p4 < 1, we obtain:

C(My)vn
AL Ap il g

L<

(5.59)

By combining Equations (5.58) and (5.59), we have

M 1\1*?
VAL Ap e pignd/? a

Moreover, knowing that Ai...A\pp1...14 < 1, we obtain

S — L — ] o0

1/2
NEY
Case 3. a = Aexp <_AK1/2>
In this case, ¢, is expressed as

1/2
el/? = AKTE <log (i) + log (A)) .

n

Using that log (é) > 1 and by adjusting the value of A, we upper bound ¢, as

Ea < ’%{ {log <;)r (5.61)

4
K< ———. 5.62
- Al...)\p,ul...,uq ( )

Morover, we can easily show that



5.7. PROOFS 119

By combining Equations (5.61) and (5.62), we obtain:

C Ak
VN R 1 . 5.63
f-a2 = AL Apfi - g [Og <a>] o

1
log (> < 1, we have the
AL Aplhe hgt e}

' N/ A Ap it fhg «a

5.7.3.2 Upper bound of qi\fa,?’

using (5.57), (5.60) and (5.63) and the fact that

following inequality

_—_(3,D)
In this part, we give an upper bound for the (1 — a)-quantile of HSIC, , . For this, we use the

concentration inequality (c), page 1501 of Arcones and Gine (1993). We write for all ¢t > 0,

Bt*/?
M?2/3 & K1/241/6p~1/4 |

P n_3/2| Z hijq >t | < Aexp|—

(g, €

(5.65)

where K = || j4lloo, M? = E[h?, 3] and B is an absolute positive constant.

t
— 75 and using Equation (5.65), we have

By setting € = oy

[ Bne?/3 }

1
P E| Z hijql >e| < Aexp ~NE L KA

(i,9,9) €%

Moreover, by adjusting the value of B, we can write

——(3,D) Bne?/3
P (|HSIC/\7H | > 6) < Aexp [_M2/3 n Kl/%l/ﬁ} . (5.66)

Furthermore, if €, is a positive number verifying

anf/ 3

Aexp |— ] = q, (5.67)

M2/3 4 K126}/

then, we have the following inequality

d1-a,3 S €a
In order to upper bound g, in (5.67), we set v, = 53)/6 and we obtain
A A
Bnyt = K'/?1og () Yo + M?/310g () . (5.68)
« @

The polynomial Equation (5.68) is not resolvable. However, it is possible to give an upper bound
of its roots. Indeed,

«

A
Bny} < 2max {Kl/Q'ya,MQ/S} log ( ) .
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Case 1. max [Kl/Q'yCw M2/3] = K2y,
In this case, 7, verifies the following inequality,

5 2K'/? A
¥ < log | — ).
Bn «

< K (g (4))
Ea_32n2 og o .
4 1

1 1
% , log <> < 1 and log <> > 1, we have
1-:ApH1..- g )\1~«~>\p/11~~/$qn o «

e (3)
ta < log ( — ).
n >‘1"'/\pﬂl"'uq «

Case 2. max {K1/27a,M2/3} = M>?/3

In this case,
W M?3 oo (A
< —I.

Therefore, £, can be upper bounded as

e [ ()]

Moreover, using the law of total variance, it is easy to see that under the hypothesis f = f1 ® fa,

Hence,

Since K <

€a <

M2 = Var (h1’2’3) S C' Var (h1,2,3’4) . (569)
Then, according to Annexe 5.7.2.2, M can be upper bounded as
C(Mf?pa q)

M< —
\/)\1.‘.>\p,U,1...‘LLq
Hence,
C(M 1
. < (My,p,q) log(L),

N/ AL Ap it - fig @

1 1
since — log(—) < 1. To conclude, in all cases we have the following inequality for qi"_“ .3
n @ ’

qi‘f’ag < C(“fl”ooa ||f2||ooap7 q) log (1> )
’ N/ A1 Ap it fig @

5.7.3.3 Upper bound of q{\’faA

_—_(4,D)
In this part, we give an upper bound for the (1 — «a)-quantile of HSIC , - For this, we use the

concentration inequality (d), page 1501 of Arcones and Gine (1993). We have for all t > 0:

! h t
ﬁ| Z hijaqrl >t | < Aexp (B K) ’

(i,4,q,r)€iy
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where A and B are absolute positive constants and K = ||E1,2,3’4

|OO'

t
By setting e = —;, we have

n2’
1 7 €
P H| Z hijar|l >€| < Aexp | —Bn ak

(i,4,9,m) €3}

1

- —(4,D)
Furthermore, by adjusting the constant B, we replace — Z hijqr by HSIC, , . We
n ;

(i,4,q,m) €1}

———(4,D) 3
P (|HSIC>\7H | > 5) < Aexp (—Bn, / K) . (5.70)

Moreover, if €, is a positive number verifying

Aexp (—Bnﬁ) o, (5.71)

61 la4 < Ea-

write

then,

By resolving Equation (5.71), we obtain

BK AN1?
Ea=—5 |log| — .
n [0

CK 1\1?
Ea S 5 lOg — .
mn «

4

Therefore, we can easily show that

A

Moreover, by using the inequality K < N o L Ve have
1---ApH1..-fhg
C 1\’
Ap E s — | _ .
qlia’4 - )\1.../\p,u1...,uqn2 <Og <a>>
Consequently,
C 1
0l < log () : (5.72)
’ N/ A1 Ap it - fig e}

To conclude, under the hypothesis of Proposition 5.2, the quantile qi‘;“ ». can be upper bounded
under the hypothesis f = f1 ® fa as follows,

o < C ([ f1lloos 1 f2ll 0, 25 @) log (1> .
T/ AL Aphin g «

5.7.4 Proof of Corollary 5.1

The proof of this corollary is immediately obtained from Lemma 5.1, Proposition 5.1 and Propo-
sition 5.2.

(5.73)
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5.7.5 Proof of Lemma 5.2

Recalling the formulation of HSIC, ,(f) given in Equation (3.1) with k = ky and | = [, we
obtain

HSIC),,(f) = /( ) S, sy
RP xR%)2

=) / k(s ) (') () (@) (3 ) ddyd dy’
(RP xR9)2
+ / (2, 7Y, (0, 4') f1.(2) fo) o (') foy')ddyda’dy
(RP xRa)?

This expression can be factorized using the symmetry of the kernels k) and [,,:

HSIC) ,(f) = /

(Rp xRe)?

(2 (9. [f@c,y) - fl(w)fz(y)] [f@c',y’) ) )| dedydatay
_ / a2, ) (9, 4 Y0 (2, )0 o) dardyda’dy
(RP xR2)?

where ¥(z,y) = f(z,y) — fi(z) f2(y).

Thereafter, we reformulate this equation by replacing ky(z,z’) with ¢(z — z’) and replacing
I\(y,y') with ¢,(y — '), where ¢, and ¢, are respectively the functions defined in Equations
(5.2) and (5.3):

HSIC, . (f) :/

(2, y) [/ V(' y ) oa(x — 2" )ou(y —y')da'dy’ | dazdy
RP xRRa RP xRa

= /Rpqu ¢($7y) [w * ((P)\ X d)u)] (x,y) dl‘dy
:<1/}5 1/} * (QDA o2 QSIL))Z-

5.7.6 Proof of Proposition 5.3

First notice that according to Equations (5.36) and (5.47), one can write:

C (vapa Q)
AL Aphty - pign?’

— C
V&I‘f(HSIC)\,#) S gVarf (]E[h17273,4 | Zl]) + (574)

where hq 2 3.4 is defined in Equation (5.35).
To prove the intended result from the last equation, we aim now to upper bound Vary (E[h1 2,34 | Z1])

by [[Y * (o ® du) ||]]242 up to a positive constant which depends only on M. The following lemma
gives such an upper bound.

Lemma 5.9. For all X in (0,4+00)? and p in (0,+00)9, we have

Vary (Elh1 234 | Z1]) < C(My) [[¢* (o2 @ ¢)I5, -
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Proof. The first step to upper bound Vary (E[h12,34 | Z1]) is to rewrite hy 234 by isolating all
the terms depending on Z;.

(1,2,3,4)
hi2,3.4 =0 Z et b + ke wlow — 2kl o)
(tu,0,w)
(2,3,4)
Z [kl,ull,u + kl,ulv,w + ku,vll,w - kw,vlw,l - ku,llu,v - kl,ull,v] + R(ZQa Z37 Z4)7

(u,v,w)

2
T4l

where the last sum represents all triplets (u, v, w) drawn without replacement from (2, 3,4) and
R(Zy, Zs3, Z4) is a random variable depending only on Z5, Z3 and Zj.

Then,
(2,3,4)
h1,2,3,4 = R(Z27 ZS7 Z4) + ﬁ ( Z : [kl,u(ll,u - ll,v) - ku,l(lu,v - lv,w) - (kw,v - ku,v)ll,w] .

The random variable R(Zs, Z3, Z,) being independent from Z;, the variance of its expectation
conditionally to Z; is equal to 0. It is then easy to see that Vary (E[h1,23.4 | Z1]) can be upper
bounded as follows:

Varf (E[h1’2,3’4 | Zl]) S C[Varf (E[k’l’z(ll,g — 11’3) | Zl]) + Varf (E[k/‘g’l([z"g — l3,4) ‘ X1D
+Vary (E[(k23 — kas)liz | Y1]) ], (5.75)

By now, we reformulate the function 9 * (px ® ¢,) in a simpler form in order to link its Lo-
norm with the upper bound given in Equation (5.75). For notational convenience, we denote
Gr =Y * (pr ® ¢,). We then write

Ganla,y) = /R U e ) Ay
P x R4

= [ e (1) - L)) R0
RP xR xR
= B[ ) (1) - 107 )]
where (X’,Y’) and Y are independent random variables with respective densities f and fs.

Thereafter, the conditional expectations in Equation (5.75) can all be expressed as follows:

Elk12(l12 —l13) | Z1]= G u(X1, Y1),
Elka1(l2,3 —l3,4) | X1]=E[Gxu(X1,Y3) | X4],
E[(ko,3 — ka3)li2 | Yi|=E[Gy (X3, Y1) | Y1].

Thus, using the law of total variance Weiss (2006), we have the following upper bound for
Varf (E[h1’2,3,4 | Zl])Z

Varg (E[h2,3.4 | Z1]) < C|Vary (Gy u(X1, Y1) + Varg (G (X1, ¥3)) + Vary (Gy, (X3, Y1) |-
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On the other hand, it is straightforward to upper bound the three variances in the last equation
as

Vary (Gu(X1, Y1) < [ flloe Gl
Vars (Gu(X1, Y2))< 11 ® falloo 1GalE, -
Vars (G, (X3, Y1))< |11 @ folloo IGAIE, -

Consequently, combining the three last Equations with Equation (5.75) gives us the following
upper bound of Vary (E[h1 234 | Z1]):

Vary (Elh1 234 | Z1]) < C(My) ¢ * (o2 @ 8)I5, -

We then obtain as a result of Equation (5.74) and Lemma 5.9:

C(My) [+ (px ® 87, C (My,p.q)
+ 5-
n AL Aplin - g

Varf(H/Sﬁ,\M) <

5.7.7 Proof of Lemma 5.3

The objective here is the provide an upper bound of the bias term [|1) — ¢ * (o) ® QSH)H]%? w.r.t

A and g, when ¢ € 8, (R), where § € (0,2]. We first set b = ¢ * (ox @ ¢,,) — ¥, using that
b € LY(RPT9) NIL2(RPT9), Plancherel’s theorem gives that

s
(2m)P 9 |IBlIE,, =lBIIZ,

=[(1 — ox @ B)PIE,- (5.76)
Let us denote g; as in Equation (5.1), the real function defined for all z € R as g¢1(z) =

1
V2T

exp(—2%/2). We then obviously have the following equation
P T; 71 Y
oA @ du(z,y) = {91 <Z>} [91 <]>] :
g H AT jI;Il Hy \ My
Moreover, it is known that g1 = v/27¢g;, and that the Fourier transform of a tensor product of
functions is the product of Fourier transform of each of these functions. We also recall that if G

is a real function and @ > 0 then, the Fourier transform of z — 1/a- G (z/a) is u — G (au). We
then obtain

ox @ 6,(6,¢) =)= T] on (o) T 92 (15¢)
i=1 j=1

=exp (NG + ..+ NE+pIG + . +12)/2).
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Thereafter, using Equation (5.76), the bias term ||b|\i2 can then expressed as follows

2
IbllE, =ﬁ / (1 —oxp (A . A I+t u3c3>/2)) (&, Q) déd¢
2
) (1 —exp (—(A2E2 + ...+ A2 + pdc? +...+u§§§)/2)> . .
a5 | o 16 QI (e, OF? ded.

(5.77)
In order to upper bound the last integral, one can first notice that for all A, £ in (0, +00)? and

11, € in (0, +00)P, we have: A\J&F + ...+ A& + piCF + ...+ pacq < [\ IP[1(€ O)]I?. We then
obtain for all (£, ) in RPT7\ {0},

T—exp (—(A3F + ...+ X282+ 3G + ...+ pu23)/2) _ Lo (SO mIPNE Ol1%/2)

IO . IGBIR
<Ol sup TR,
Loexp(ZH/2)

For ¢ in (0, 2], the function H — 7572 is bounded in (0, 400). Indeed, it is continuous

on (0,400), tends to 0 in +oo and has a finite limit at 0 (1/2 if § = 2 and 0 otherwise). Hence,
we thus obtain for all (¢,¢) in RP*\ {0},

2
(1 exp (— (2t 4 A2 B +u3<3)/2))

& Ol°

< CEONIN wI*.

Thereafter, using Holder’s inequality if 6 > 1 and the concavity of ¢ + % on R, if § < 1, it is
straightforward to see that

P q
I w1 < Cpg,6) [ DA+ 1’| (5.78)
i=1 j=1
Hence, combining the two last inequalities gives
2 £ ! N
IB17, < Clova.0) |0 + 3| [ QPO OF dedc
i=1 j=1

Recalling that ¢ belongs to the Sobolev ball S%

o+q(12), we obtain

P q
I = (pa ® du)IE, < Clpq, 6, R) | D AP+ > p2

i=1 j=1
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5.7.8 Proof of Theorem 5.2

We easily deduce from Theorem 5.1 and Lemma 5.3 that if ) belongs to the Sobolev balls Sp+q( )
with & in (0, 2], Pf(H/Sﬁ,\,M < g ) < 8 as soon as

p q
M, 1
1612, > Clpa,6,R) [ SN2+ 320 | 4 — S Anp ) log<).

P = ! N/ A1 Aplht - g e

It now follows from the definition (3.16) of the uniform separation rate that

A)\ 786 2<C ’ 75,R A25 (Mf p7qa5) 1 (1>
[ ( ey p+q( )5)] = (pq ; +;M n\/>\1 p,ul - Mg o8 Q

5.7.9 Proof of Corollary 5.2

The objective here is to give the uniform separation rate having the smallest upper bound w.r.t.
the sample-size n, when 1 belongs to a Sobolev ball S, (R) with ¢ in (0,2]. For this, we recall

P+q
that according to Theorem 5.2, we have
C(My,p.q,B) 1
AN S8 L (R),B)])* < Cp,a,6,R) | D AP 4+ 2 OB tog ().
[ ( P+ )] ; ; n\/)q ApHa - - fq a

In order to have the smallest behavior of the right side of the last inequality w.r.t. n, one has
then to choose bandwidths \* = (A],..., Ay) and p* = (p3, ..., py) w.r.t. n in such a way that

1
)\*25 *20
Z +ZM and ny/AT A

-
= g

have the same behavior in n. Thereafter, it is clear that all A}’s and s have the same behavior
w.r.t. n. It obviously follows that for all ¢ in {1,...,p} and all j in {1,...,q}, we have

)\;k = /JJ;< — n72/(45+p+q).

Consequently, the separation rate p (A)‘ o 7S;,qu( ), 6) can be upper bounded as

p (DX, 80,4(R). B) < C (My,p,q. . B,8) n~2/ 5050,

' = ptq

5.7.10 Proof of Lemma 5.4

The objective here is to give an upper bound of the bias term [[¢) — ¥ * (ox ® ¢,) [, w.r.t. A
and p1, when 1) belongs to a Nikol'skii-Besov ball Ng . ,(R), with § = (v1,...,1p,71,...,7,) In
(0,2]P+4. We first set b = 1) * () ® ¢,,) — ¢ and we write

b(xvy) :"/} * (SDA ® ¢#)(‘r»y) - 'L/}(mvy)
- / D@ Yor@ — o) buly — v')da'dy’ — P(z,p).
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Moreover, using Equations (5.2) and (5.3), the fonction b can be written in terms of the functions
gp and g, defined in Equation (5.1) as

1 1 — ] T, — T Y1 — Y Ya — Ye
bz, :—/ oy < L P Lo <) da'dy’ — ¥,
(z,9) A Aph - g V49 A N )P\ ip v —v@y)

:/w(:ﬂl + AU, Ty ApUp, Y1 F V1, - Yg F LgUq)Gp (Ut - Up) g (vt .., vg) dudv — (2, y).

Thereafter, using that / gp = / gq = 1, the function b can be expressed as
R Ra

b(z,y) = /gp(ul, e Up)gq (e, ., vg) {1/1(9314-/\11“, e T AU, Y1V, - - YgT g Ve) — U (2, y)} dudv.
Let us from now define for all ¢ in {1,...,p} and j in {1,..., ¢}, the functions by ; and by ; by

by i(z,y) = /gp(ul, ceUp)ge(v1, - vg)w (T, Y ua, - -, 1) dudo,

by (x,y) = /gp(ul, coUp) e (1, ., Ugwa (T, Y U, L Up, T, - -, ;) dudy,
where the function wy ; is defined as
wi(T, Yy, U, - u) = V(@A UL, - TN Tig 1, - Tpy Y)Y (1A UL, - BN %1, Ty T, Y)s
while the function ws ; is defined as

Wa (T, Y, UL, Up, V1, -, 05) = (21 AU, T+ ApUp, Y1 VL, - Y 05 Y 5 Yg)

= (@1 + Aut, o T+ ApUp, Y1+ AV - Y1 1V 1, Yy -5 Yg)-

It is then easy to see that the function b is the sum of all the functions b ; and by ;

p q
b(x7y) = Zbl,i(xay) + ZbQ,](xay)
i=1 j=1

One can then deduce that it would be sufficient for the control of the LLs-norm of b, to control
the La-normes of all the functions b; ; and by ;. Using the triangular inequality, we have

P q
1Blles <> Nb1ill, + > [1ba2,5]
i=1 J=1

g, foralliin {1,...,p} and jin {1,...,¢}. We

L. (5.79)

By now, let us upper bound [|by ;|7 and [|bs;
distinguish two cases

Case 1. 0<y; <1
We first recall that [[b1;||7, can be written as

2
||b1,i||]i2 :/{/gp(ul,...,up)gq(vl,...,Uq)w17i(x,y,u1,...,ui) dudv| dzdy.

We use the following lemma from page 13 of Tsybakov (2009).
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Lemma 5.10. Let p: R? x RY — R be a Borel function, then we have the following inequality:

/(/P(G»Z)d9>2dz < V (/p2(9,z)dz>1/2 der

By applylng Lemma 5.10 to ((’LL, ’U), (:E7 y)) = gp(ul, e ,Up)gq(l}h e ,vq)wu(x, Y,Upy .- aui)7
we obtain:

1/2 2
Hbl,ini < [/ (/ gﬁ(ul, . 7up)gg(vl, . ,Uq)w%i(x,y,ul, ceeyUg) d:cdy) dudv}

2

1/2
= [/gp(ul,...,up)gq(vl,...,vq) (/wii(x,y,ul,...,ui) dxdy) dudv} . (5.80)

On the other hand, since ¢ belongs to the Nikol’skii-Besov ball N . . (R), we have:

1/2
(/wii(x, Yy ULy ey W) dxdy) < RN g™

We then have by injecting this last inequation in Equation (5.80), that

1b1all2, < C(R,vi) A

Case 2. 1 <y; <2
In this case the function 1 has continuous first-order partial derivatives. Using Taylor expansion
with integral form of the remainder w.r.t. the i*® variable of 1, we have:

1
wl’i(:r,y,ul,...,ui):)\iui/ (].—T)D}’(/J(xl+)\1U1,...7£Ei+T>\iui,$i+1,...7y)d7'.
0

where D} denotes the first-order partial derivative of ¢ w.r.t. the i*? variable.

Thereafter, by injecting the last equation in the expression of b, ;, we obtain:

1
bri(z,y) = /Aiuigp(ul,-~-7Up)9q(111,~--ﬂ’q)[/ (1T)Dill/f($1+>\1ul,-~-7$i+7'>\¢u7:7%:+17--~7y)d7'] dudv.
0

Furthermore, using the fact that g, is the density function of the multivariate normal distribution
with mean 0 and covariance matrix equals identity, we have that / wigp(ua, ..., up)du; = 0. The

function b, ; can then be written as

1
bii(z,y) = /)\iuigp(ul, ceUp)ge(v1, ., Ug) {/ (1- T)Dilwl,,'(z, Yy ULy vy TUG) dT:| dudwv.
0

We have then the following equation for the Lo-norm of by ;:

1 2
||b1,i\|f‘2 = / {/ Aitigp(Ut, ..., Up)gq(vi, ..., vg) </ (177)Di1w1,i(x, Yy ULy ooy TUG) d7> dudv} dxdy.
0
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By now, we use as in Case 1 of Lemma 5.10 in order to upper bound |[b1 ;|7 . We then obtain:

2 2

1 1/2
||b17i||H%2 < </ {/ ()\iuigp(ul, cUp)Ge (1, -, Ug) / (1-— T)Dilw17i(m,y,u1, e TUG) dr) dmdy] dudv)
0

1 2 1/2 2
= </)\iuigp(u1,...,up)gq(vl,...,vq) {/(/ (1 —T)Dilwm(x,y,ul,...,Tui) d7’> dxdy] dudv> )

0

We apply a second time Lemma 5.10. For this, consider the function p((z,y),7) = (1 —
7)D}lwy i(z,y,u1,. .., Tu;), we then have:

1 1/2 2
2
||b17i||]%2 < (/ Aitigp(ur, ..., Up)gq(vi, . .., vg) L/ (1-7) </ (Dilwl,i(ac, Y, ULy ,Tui)) dxdy) dT] dudv) .
0
(5.81)
On the other hand, using that 1/ belongs to the Nikol’skii-Besov ball N . (R):

pt+q

l/,;—l

1/2
(/ (Dilwm(x, Yy UL,y ... ,Tui))2 dxdy) < R)\;’i71|rui

We then obtain by injecting this last inequation in Equation (5.81), that

[b1:]I2, < C(R,vi) AP

Besides, for all j in {1,..., ¢}, by similar arguments:

Oy
1b2,511F, < C(R, 7)1 "

Consequently, according to Equation (5.79), we have the following upper bound of ||b|\]%2

P

q

Vi 2v;

Ibl2, < C(R,6) | SN+ i
Jj=1

=1

5.7.11 Proof of Theorem 5.3

The proof of this theorem is similar to that of Theorem 5.2. Indeed, assuming the conditions of
Theorem 5.1, we have according to this theorem and Lemma 5.4 that if ¢ belongs to J\/'Q‘S’Z,Jrq(R)7

with 6 = (v1,...,Vp, Y1, --,7) in (0,2]PT%, then Pf(H/Sﬁ,\,M < qf"_“a) < 3 as soon as

p

q
v ; C(Mf7p7q7ﬁ) 1
VI, > C(R.O) | DN+ D | + log {5 )-
|| L ) Z ; J n )\1...)\pﬂ1.~o/~jlq «

i=1

One can then conclude from the definition (3.16) of the uniform separation rate that

[0 (AN NS, o(R), 8)]” < C(R,6) if”+iﬂ2‘” ;- COpal) g, <1>
a V2, ptq\ i)y = ’ - v = J N/ A1 Aplt - g «

1=
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5.7.12 Proof of Corollary 5.3

We aim here to give the uniform separation rate having the smallest upper bound w.r.t. the
sample-size n, when ¢ belongs to a Nikol’skii-Besov ball N§p+q(R), withd = (v1,...,Vp, 71, -, %)
in (0,2]PT9. We first recall that Theorem 5.3 shows that:

A>\7H 5 2 2u; 27, (Mf,p7Qa6) 1 (1> .
[P (83,5 ,4y(R),8)]” < C(R.0) ;A +Zu N T WA

So as to minimize the right side of the last inequality w.r.t. n, we have to choose bandwidths
A= (AL, Ap) and p* = (i3, ..., p;) wr.t. nsuch as

*2U; *2 j 1
Z)\ +Z v and ny/AT At

*
i=1 1o Hyg

have the sarne behavior in n. Let us set for all 4 in {1,...,p} and all j in {1,...,q}, A} =n®
and pj = =nb. Tt is than clear that for all i and all j:

1 p q
2aiv; = 27 =~ lz ar+ Y bs] ~ 1. (5.82)
r=1 s=1

One can first express all a;’s and all b;’s w.r.t a; as

V1 V1
a;=a;— and b; =a;—.

v; ")/j
Thereafter, using Equation (5.82) we have the following:

—a1ly
2n

2&1 vy =

_2/,7

We then first write that a; = ——————.
T uAn+1)

We next obtain for all ¢ and for all j that:

—2n —2n
=—— and b= ——-—.
vi(4n+1) 7 4 +1)

Consequently, the separation rate p( /\/2 erq( ), ﬁ) can be upper bound as

p(AXH NS,y (R), B) < C (My,p,q,0,,6) n” 57
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5.7.13 Proof of Lemma 5.5

Let « be in (0, 1), we first prove that u, > «. For this, we apply Bonferroni’s Inequality:

Pr ot ( sup (HSICA’H _ qii(ﬂ#) > 0)

(A p)eAXU
—_— A,
:Pf1®f2 ( U {HSIC)\”U‘ > ql_ﬂae*wxu })
(N, u)EAXU
S Z Pf1®f2 (HSIC)\#L > qi\;ﬂae_wk,u)
(Mu)EAXU
<X e
(M,p)EAXU
< a.

Then, by definition of u, we have: u, > «. Thereafter, we obtain:

Py (A =0) =Pf( i {H/SEA’ <qt - WM}>
(

A pu)EAXU

< inf P(H/SE <Mt )
7(/\7M1)I€1A><U ! A"‘*ql—uae Ao

< inf P(@ <gh* )
_(/\,uﬁreleU f A

- (A,ui)renj\xU {Pf (A/\ T T 0)} ’

which concludes the proof.

5.7.14 Proof of Theorem 5.4
Let o and /8 be in (0,1). According to Lemma 5.5, Py (A, = 0) < 3 as soon as there exists (A, p)
in A x U such that
A,
Pr(aMt.,, =0)<8.

Then, according to Theorem 5.2 (resp. Theorem 5.3) if ¢ belongs to Nz‘;pﬂ( ) (resp. ¥ belongs
to Sg +q(R)): we take the infimum of the upper bounds for the uniform separation rates of the

1 1
single tests over A x U while replacing log ( ) by log ( ) + Wi -

5.7.15 Proof of Corollary 5.4

Let us start with the case where v belongs to /\/’Q‘i’pw(R). In this case, using Theorem 5.4, we
have the following inequality for p (Aq, N3, ,(R), B),

5 2 . 1 1
[ (AOHNZ p+q( ) B)] S C(Mf7p7Q7ﬁ75) O, lLl)EAXU{\//\l [1 - g (lOg (a> +W)\,H>

p

Z)\QVL +Zu2% }
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Let us take \* = (2711, ..., 27™») and p* = (27™21, ..., 27 ™2.4), where the integers My 155
m3q,...,ms; . are defined as follows

2n

. | n PReEED) 4 | n )
I (e R [ RN (e |

where - Z Z —

Then, we obviously have

[P (B NS (R >ﬁﬂ2s<xqux%ﬁ¢»[V“y”Ai*.”Myl(bg(;>+w”ﬁw)

300+ 30|

Besides, using the inequalities

o n peET) PR n R
M1 = 1082 log log(n) and Ma; =08 log log(n) ’

we upper bound (A})~*/? and (u})~"/% by
* n O\ N
o0 =it () g it ()
Therefore, we obtain
O Nt 2 < (s )T (5.5
Let us now upper bound wy- ,«, we first write

Wxx, *—2210g m“xw/\[ —|—2210g m2]><7r/\[)

i=1

=2log (m},...mj ,m3 .. .mz’q) +2(p + q) log(7/V/6).
Moreover, it is easy to see that

2n 2n
ol — 1 d pi<————1 .
My = v;(1+ 4n) og(n) and 41} < v; (1 +4n) &)

Then,
log(mj y...m7 ,m3,...m5 ) < C(6)loglog(n).

Thereafter, wy« ,~ can be upper bound as

wis e < C(0)loglog(n). (5.84)

ES
my
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From Equations (5.83) and (5.84), we have

4n
1 1 log'1 +4m
e (1o () erse ) S Clad) (PEEED T (s
ny/AT AT a n

We aim now to upper bound -7, (A7)*"* 4-3>29_, (u})*?. For this, we first write

. n % . q £ Sl n % 1
sz (g ) )7t miazon () )

We then have the following inequalities for (A\f)*** and (u})*",

4n 4n
log 1 (144n) log'1 [CE=TD)
()\?)21/1- < 22w ( 0og Og(n>> ' and (M";)2’Yj < 22’Yj ( og og(n)> ' )

n n
Therefore, we obtain

P

q -
loglog(n)\ @+
} : 2% § : 2% <O( = 7 . .
+ 2 ) ( " (5 86)

i=1
Consequently, from Equations (5.85) and (5.86),

21
loglog(n)\ @+m
— .

p(Aas N3 iy (R), B) < C (My,p,q, a, 3,6) <

In the case where i belongs to Sg+q

Vi=...=Vp=71=...=7 =0, lead to

(R), the same arguments above is applied by taking

loglog(n)\ 0+4m

p(Aa,Soy,(R),B) < C(My,p,q,,f3,0) (gng()> ,
1 1
h _——= p—
where - = (p+q)

5.7.16 Proof of Lemma 5.6

Assume there exists a distribution fy that satisfies (Ho) such that the probability measure P,
is absolutely continuous w.r.t. Py, and verifies Equation (5.22).
Let us first lower bound B[F,, (Cs)] w.r.t. the distributions P,, and Py,,

B[Fo.(Cs)] = infP, (Aa=0)
= 1- supPl,p* (A, =1)

@

> l-—a—sup|P, (Aa=1)— P (Aq=1)|.
Ao

We denote by HPVP* — Py,
Py,. We recall that,

H v the total variation distance between the distributions P,, and

1P

y/’*_PfU :sup|PVp*(E)_PfU(E){7
Ee€&

v
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where £ is the space of measurable sets. We then obtain

B[Fp.(C5)] 21 —a—||P,,. = Pr|lpy -

Notice that,

1Py, = Prollpy = sup [P, (E) — P, (E)] = sup [Pty (E) = Py, (E)] .

It is then straightforward to show that

1
[P, = Pl = 5 [ 120, ~1] 4P

= %Epfo HLVP* (Zn) — 1|]
% (EP,«O [Lip* (Zn)} - 1) 1/2’

where the last inequality holds by applying Cauchy-Schwarz and the fact that E Py, [Ll,p* (Zn)] =
1. Thus,

IN

Vo

BlF,.(Cs)] =21 —a— % (Epfo [LQ (Zn)] B 1)1/2'
If the condition (5.22) holds, we then obtain
B[Fp. (Cs)] > B.
Furthermore, using that 7, (Cs) C F,(Cs) for all p < p,, we have
B1F,(Cs5)] > B.
Let us now prove that this implies the lower bound

p(Cora,8) = inf p (BasCs. B) = pu. (5.87)

Assume 3[F,, (Cs)] > B, then

VA, sup Py (Ay=0)> 4.
F€F,, (Cs)

In particular, since the family {F, (Cs)} . is non increasing for the inclusion,
VA, p(An,Cs,8)=inf¢p>0; sup Py(Ay=0) <> p.,
fe]:p (C5)

which directly implies (5.87).

5.7.17 Proof of Proposition 5.4

Proof of 1. Let us prove that the functions fy are probability density functions for n large
enough.
First, it is obvious from Equation (5.24) that

/ fola,y) drdy =1,
Rpr+a
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since f1 ® fo is a probability density function and that / G(z)dz = 0. It remains to check that
R

fo is a non-negative function for n large enough.
Let j = (j1,.--,Jp) in{1,..., M, }? and l = (l4,...,l1) in {1,..., M, }?. Knowing that for all
1 <r<pandall 1 <s<gq, the supports of the functions Gy, (- — jr-hy) and G, (- — Ishy,) are

respectively the intervals ((jr — 1)hn,j,.hn} and ((ls —Dhy, lshn], the support of the function

P
9n,j,l - (m7y) = H Ghn (xr - jrhn) H Ghn (ys - lshn) (5'88)

r=1 s=1
is the set ) .
Dy = [T (Ge = Dhnsdoha] x TT (s = Do, Lk (5.89)
r=1 s=1

These supports are then disjoint for different multi-indexes (4,1) in I, ; , and have as union set
(0,1]P*4 (since Myh,, = 1). In particular, for all (x,y) in (0,17

P q p+q
) 1
>> b [T Gner—geha) [T Cn s )| < g ( sup |cxt>>
r=1 s=1 n

(G, 1)EIn p,q te[—1,0]
_
(ehn)erq'

Hence, if (z,y) belongs to [0, 1]P*4, then

h(S

f@(xay) 2 1- Ev

which is non negative for h,, small enough. Otherwise, fp(z,y) = 0. In particular, for all (z,y)
in RPT4, fp(z,y) > 0 which ends the proof of this first point.

Proof of 2. Let us prove that the functions fy — f1 ® f2 belong to the Sobolev ball Sg +q(R)
for n large enough. This point relies on Lemma (Butucea, 2007, Lemma 2) recalled bellow.

Lemma 5.11 (Butucea (2007)). Let G be the function defined in Equation (5.23). Then G is

an infinitely differentiable function such that / G(x)dx = 0. Its Fourier transform verifies
R

|G (u)| < Cexp(—ay/Ju]) as  |u] = o0,
for some positive constants C and a. Moreover, G is an infinitely differentiable and bounded
function.

According to the Fourier transform properties, we write

p q
]?e(uv v) = .]/t\1®f2(uv U)+hi+(p+q) Z aj,l H eXp(iurjrhn)é(hnur) H exp(ivslshn)é(hnvs)'

(G0 €E€In p,q r=1 s=1
Then,

Folu,v) = f ® fo(u,v)

~ 2
‘ = Hl:’ﬂ(u7 U) + H2,n(u7 ’U)a (590)
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where the functions H; , and H,,, are respectively defined by

p q
Hy p(u,v) = MEFIRZH2OD TT |G (hyur ) [ 1G (havs) I, (5.91)
r=1 s=1
HQJL (U, ’U) = h26+2(p+q) Z 9j17110j2712 gjl,llJsz (hnu? hn’U), (592)

(jlvll)EIn,p,q
(j27l2)61n,p,q
(31,01)#(F2,12)

where the vectors ji, j2, I1 and [y in the last sum are defined as j1 = (Ji,1,---,J1.p), J2 =
(j271, e ,jg,p), l1 = (l171, ceey qu) and lg = (l271, e ,l27q). In addition, the function ghh’h,b is
defined as

P q
Gjtngata < (u,0) = [T exp (tur (e = j2,)) G (ur) P T T exp (vs (s — 10,6)) 1G(0s) P (5.93)

r=1 s=1

~ PO 2
By now, we aim to upper bound the integral of the function (u,v) ~ ||(u, v)||?® | fo(u,v) — f1 @ fa(u,v)

First, one easily show, as in Equation (5.78), that

P q
1(w, )1 < Cpyq, 8) | D Jual® + Y oy | - (5.94)
i=1 j=1
We then obtain from Equations (5.91) and (5.94) the following result,

p+q—1
/ mme%AAMwmmUscm%aMwﬂﬁﬁmﬁﬂ(/M%Gmwﬂdﬁ(/u%maPM)
Rp+a R R

cm%MmeW(Au%&m%Q(AéwFMYH1.

The functions ¢ |t|2‘5|@(t)|2 and z — |G(2)|? being integrable according to Lemma 5.11, we
have

IN

| M) i (o) dude < Cova.8) (M)

< C(p,q,9). (5.95)

To complete this point of the proof, we demonstrate a similar equation for Hj,. Starting from
the expression of Hs ,, in (5.92), we write

L Mol fa (o dudo =SS 08 [ 002G (00) du

(J1:11)€Ln,p,q
(J2,12)€ln,p,q
(J1,11)#(d2,12)

Therefore, according to the triangular inequality, we obtain

+
< hyta

(J1,11)€In,p q
(J2,12)€ln,p,q
(F1,11)#(G2,l2)

o) ) i

L 001G 0) ).
pTq

(5.96)
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We first assume that all the components of the vectors (J1,11) and (jo,l2) are different. Knowing

that G is differentiable, the function |G 1> = GG is also differentiable. We apply an integration
by parts to the functlon G 1 ja,ls W.I.t. the variable uq,

1 =T qu
dudp= — G —d
/]Rerq ||(U,U)|| gjl,ll,jg,lQ(u v) dudv i(ra — . ) ,/Rp+qu |:||(u7v)|| g]1,l1,j2,l2(u7v)] oo du, v
o [ o i G St g, g,
2(31,1 - j2,1) Rp+a OUL |G (u1)?
(5.97)

Moreover, it is straightforward to see that the first term on the right side of Equation (5.97) is
equal to zero. Indeed, for all @ in R and (ua, ..., u,,v) in RPT771 we have the following

ul1=-+a

l[n(u,v)|259j1,z1,j2,12<u,v>} < @z, up. )| (1G(@) + |G (-a)?) H Gl H G,

Uy=—a
In addition, according to Lemma 5.11 we obviously obtain for all ug, ..., u,,v the following
lim |[(a,us,..., ”Ltp,v)||2‘§|§(a)|2 = lim |[(a,uq,... ,up,v)\|26\@(fa)|2 =0. (5.98)
|a]—+o0 la]—+o00

It follows from Equation (5.97) that

. 9 Gjr 11 ,jo,ls (U, V)
u,v 2(sg’l 1,42, \ U, U dUdv:;/ { U, v 26G Q}Wdudv.
/Rp+q s I Gi 11212 (1, 0) (J1,1 = J2,1) Jrota duy 1w, ) [I7G ()] G (uy)|2

(5.99)
From Equation (5.99), we perform an integration by parts w.r.t. us,

(j171 - j271)(j1,2 - j2,2) / ”(uv U)||26gj1711,j2,l2 (ua 'U) dudv

Rr+a

. . uz=-too
R (e O e I
Rp+a—1 8u |G(U1)|2 Uy =—00 dU2

9 - - e (u,
—/ 5 {|(u,v)||25|G(U1)|2|G(uz)|2}Wdudv
Rt Gt O |G (1) ?|G (u2))]

Moreover, by analogy with Equation (5.98), we can easily show using Lemma 5.11 that

o { oG St g

U =—00

This leads to

(= g2 )2 =22) [ N0 Gty gaia(v) dude
pTq

2 o .
= | g N P16 PG )} Fibanda ) g g,
Re+a Ou10ug |G (u1) PG (u2)?
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By repeating this last process for the variables us, ..., up,v1,...,v4, we get

p+q

= (z’)p+fJ/ ort {|| (u,v)||* H |G u,) 2 H \G } - €j1,117j2,l2(qU7U)A dudv
mo+a O .. Ovg [[—1 1G(ur) P T2y |G (vs) 2
(5.100)

p q
0= ) L0 =100 [ 008G, 115000, 0) e
r=1 s=1 R

Starting from Equation (5.100), we perform a second integration by part w.r.t. u;. We write

orPtayy
/IR . m(uav)Rh,ll,jmb (U‘?U) dudv
p+q ... 0y

1 ortayy M= gy
= ————(u,0)Rj, 1, o 1o (1, —d
i(jl,l _j2,1) /IRF+Q L |:8U1...8Uq (U‘ U) ]1,l1J2,l2(u 'U):| o du1 v
1 / 3p+q+1W

R

_ R; ol dud 5.101
i(J1,1 = J2.1) Jrota 52u13U2~--8Uq(u’U) oty (t,0) v, { )

where the functions W and Rj, ;, j,.1, are defined as

W (u,0) = [l 0) [ T 1G (o) P TT IG (o)

(u ) g]1,517]27l2 (u ’U)
|G )P T, |Glos) 2

Rj1711’j2,l2 :

Let us now show that the first term in the right side of Equation (5.101) is equal to zero. Using
the differentiability of G, we write

p q
e L V (Lol ) (AT
. ap+q(_ LN <
= @) g w0 T] 6 T G}
0 4 Ak LN KR
gl G g g o [ G TG} .10

Furthermore, according to Lemma 5.11 we obviously have

) N orta P .
i 162 {0 2 IT 16 TG | <o
q r=2 s=1

|uy | =400

In addition,
9 A 2 orta 265 S 2 oA 2
%\G(Ulﬂ M{H(U,U)H g|G(Ur)\ H'G(US)‘

N w) = A U p+aq
= {G( )agil ) +G(ul)agil )}&j { u, v |\25H G (u, |2H G (v, |2}




5.7. PROOFS 139

Gl(u)
8u1
ous with a bounded support. Thus, we deduce according to Riemann-Lebesgue lemma Bochner
and Chandrasekharan (1949) that

Moreover, is the Fourier transform of  — ixG(x) which is L;-integrable as it is continu-

lim Glw)

=0.
|uq | =400 8u1

It follows that

G (uy)

o L]

lim
|uy | =400

o 5 TG TT G = 0
e e L 1] G T G l=o

We then obtain from Equation (5.102) that

orta { s T A IR 2} Gty ot (1,0)
a9, 9, u,v G Uy I | G Vs Ajla 1,J2,02 (™% _
|:8u1 -~-8Uq ”( )” 711| ( )‘ s:1| ( )l fﬂ):l ‘G(U'r) 2 q_l |G('Us)|2

s=

U1 =-400
} 0.

U =—00

Therefore, we have according to Equation (5.101) that

oPtay
/]R . m(uﬂv)RjullJé,lQ (’U,,U) dudv
pt+q ... 0y

1 / ap+q+1W
(11— Jo1) Jreta 02uiOus ... Oy,

(u, V)R, 1y jo,1a (1w, v) dudo.
Repeating this last process for the variables ua, ..., up,v1,...,v4 gives

orPtayy
/]R . m(uﬂv)thlhjmlz (u,v) dudv
ptq ... 0y

B (i)P+e / _PrOW (w,0)Rj, 1, gy (uw,0) dudv.  (5.103)
Hle(jl,r — j2,r) ngl(lLS . lLs) Ro+a 62U1 L 8211,1 ) J1,01,52,02 \ Wy . .

By injecting this last Equation (5.103) in Equation (5.100), we obtain

| M)t aga () dude
B (—1)pta / 92+
Hf:1(j1,7" - j2,7*)2 HZ:1(ll,s - ll,S)2 R

By analogy with the last equation, we can show that in the general case for two different vectors
(jlall) and (jg,lg) that

_— R 1. dudwv.
e agul.uaqu(uav) ]1,517]2712(u7’u) udv

L MGt aga () dude
pTq

—1)IS1l+IS2] o2+
= ( ) (u7v)1}1,l17j2712 (U,’U) dudw,

Hresl (Ji,r — Jo,r)? H5652 (l1,s —11,5)% Jrpta Hresl 02%u, H5682 02w,

where S; (resp. Ss) is the set of indices r (resp. s) such that ji, # jo ., (vesp. l1s # l1,5), while
the notation | - | designates the cardinal. In addition, the function T is defined as

gj17l1¢j21l2 (u7 'U)

es, 1Gw)? Tl es, |Gl

z}'lvll1j2ul2 : (U,U) =
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Moreover, one can easily show using Lemma 5.11 that independently from the values of ji,[;
and jo,lo, we have

o2+
Rp+a HrGSl azur HsES'z 821}5

We deduce using Equation (5.96) the following

< C(p,q,0)h5 Y 0
(J1,11)€In,pq
(J2,02)€ln,p,q
(31,11)#(j2,l2)

(uv U)E17l17j2712 (uv U) dudv| < C(p, Q)'

1
resS; (jl,r - j2,7‘)2 H5652 (Zl,s - ll,s)2 ’

/R )P ) e

(5.104)
Furthermore,
> 1
(41,11)€Inp.q HTG& (1, = Jo.r)? Hs652 (li,s = 11,s)?
(j2,12)ETn p,q
(J1,11)#(G2,l2)
S Y
D=1 (j1,11)Eln.p.q Hr631 (-]177“ _-]27"") Hsesz( 1,s — 175)
(42,02)€ln.p.q
(G1,11)#(G2,12)
99
ptaq M.,
N (PO e 1
2 ()| 3
=1 j#k=1 ]
Hence,
1 p+q My, M l- v
)3 — = (P g | S M
iz Mhes e =g Tes, e = 1”25\ 0 |
(42,02)€ln p.q
(J1,01)#(G2,l2)
9
p+q M,
pP+q + 1
e
9=1 =1
Thus, using the convergence of the sum }~,_ 1/1%, we obtain
1
— < Clp,g)MpT.
(jhll)ZeIn,P.q HT€31 (]117" o jsz)Q H8€52 (llvs o l173)2
(j2:l2)E€ln,p,q
(J1,01)#(g2,12)
We deduce from Equation (5.104) that
/ | (w, )[|*° Ho  (u, v) dudv| < C(p,q,6). (5.105)
Rpta

Consequently, combining Equations (5.90), (5.95) and (5.105) we have the following

/}R X ||(u7v)||25 ‘f@(u,v) — fl ® fg(u,v)‘z dudv < C(p,q,0).
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By well choosing the constant of the sequence (h,), w.r.t. p,q and ¢, the constant C(p,q,d) in
the last equation can be replaced by R, which achieves this point of the proof.

Proof of 3. Let us prove that, for all § € {—1,1}Mﬁ+q
Cn_Qé/(46+p+q).

Since, [, G(t)dt = 0, we know that fo1 = Ljg17» and fo2 = Ljg1je, thus fo1 @ fo2 = Ljg1jr+a
and

, fo satisfies || fo — fo1 ®f9,2||]L2 =

fo— fou ® foo = ROTPHD Z 0,0 9n.5,0(T, ),
(4.D)€EIn,pq

where the functions g, ;; are defined in (5.88), with disjoint supports.

In particular,
2 5 2
Lo — hi +2ete) E ||gn,jyl||]]42 .

(4D €In,p,q

Il fo — fo1 @ fo2

Moreover, for all (4,1) € I, p.q,

p q
”gn,j,l”ﬂ%2 = / [H G%n (xr - ]Thn) H G%Ln (ys - lshn)] dxl ce dxpdyl cee dyq
s=1

r=1
P q
= [H ( / G, (xr —jrhn)dwrﬂ x [H ( / G, (ys — zshn>dys>1 :
r=1 R s=1 R
and for all k£ in {1,..., M, }, a simple change of variables implies that
1 t — kh 1 C
Gi (t—khy)dt = — [ G? “)dt = —/Gztdt = —
since G belongs to La(R).
We thus deduce that
2 C(p7 q)
9n.5.llL, = o (5.106)

and that, since the cardinality of I,, , , equals MP*9,

Clp,
1fo = for @ foallf, = h22T2WFD) x METI x }fﬁ? = C(p, q)h2’.

5.7.18 Proof of Proposition 5.5

Let Z,, = (X;,Y:)1<i<n be an i.i.d sample with common uniform distribution Py, on [0, 1]P*+4.
For simplicity, denote for all 1 < i <n and all (4,1) in I, p 4,

p q
aijo = b0 g, 50(X;, V) = WO T G, (X = eha) [T G, (V) = L),

r=1 s=1

where gy, j; is defined in Equation (5.88), such that fp(X;,Y;) =1+ Z(j,l)eln . 0, ai,j,1- Note
that a; j; # 0 if and only if (X;,Y;) belongs to the set Dy; ;) defined in Equation (5.89).
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Then, since fo = 1o 1jp+q, the likelihood ratio equals

ap,
L (Z) = 3@ / H (X;, Yi)m(d6)
=Eo|[] |1+ Y Ounais]|-
i:]‘ (jvl)eln,f)yq

where © = (O ))jer,,, has iid. Rademacher components ©(;;), and Eg[] denotes the
expectation w.r.t. ©.

Noticing that for all 1 < i < n, there exists a unique (j,{) in I, p 4 such that a; ;; # 0, we

obtain
1+ Y Ogpaiu= [ (+6gyais).
(jVI)GI‘n/J’)(I (j7l)€In>P=’1
Thus,

| II TI0+egnaes)

(4,0 €L p,q =1

(jvl)eln,p,q =1 1=1

Moreover, for € in {—1,1},

n n

k
[Ta+ea;)=1+> ¢ ) iy gl - - - Qi 0
=1 k=1

1<i1<...<ip<n
Hence, by cancelling the odd terms, we obtain

[n/2]

1o 1
§H(1—ai], §H —&—aml —l—l- Z Z iy g0 -+ Qigye .l
=1 i=1

k=1 1<i1<...<i2k<n
[n/2]

—1+2Ak,gla

where [-] denotes the integer part, and

Akji = > iy gl - - - Qg il (5.107)

1<y <...<igp<n

Thus,
[n/2] 2
Lz = ] 1+ Z A | = ] Q+B).
(G)E€Ln p.q (1) ELn p.q
where
[n/2] [n/2]
Bjy =2 Z Apji+ Y AjiAw . (5.108)

k,k'=1
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Then,
Mp+q £
[L,(Z,)) =1+ Z > Bjia, - Bj i, (5.109)
m=1 (.717l1)a ,(jme)

#
where Z means that the indexes are all distinct.

After tedious computations, up to a possible permutation of the indexes (j1,11), .-, (Jm,lm),
as a sum of terms of the form

we can express the product By, 1, ... Bj, 1.
(n/2]  [n/2]
2P Z Z 2Ak1,j1,l1 X Aké’,j;,l’g X ... X Ak” gl (5.110)
ki=1kY ... k" =1
or
[n/2] [n/2]
2Q Z Z Ak17]1711Ak1,]17l1 X Ak;’,jé,lé X ... X Aku ol (5111)
ki ki =1kY ... kY =1
where P and Q are integers, M € {m —1,...,2m — 2} and (j5,15),..., (i, 3s) are drawn in

(jo,12), -, (Jm,lm) such that each (j,,I.) for 2 < r < m appears exactly once or twice. To
be more precise, P and @ count the number of indexes (j, 1), appearing exactly once in the
product.

First note that in Equation (5.110), the index (j1,!1) appears only once. Moreover

Ef, [Akl,jl,zl X Ay oy XX Ay ,jM,lM}
= E E s E : Efo [ail,l,jhll XX iy opy 551501 X
’L‘111<...<’L41,2k1 i211<...<i2,2k;/ iA111<"'<iAl,2k;\//[
X aig,hjé’l'z X ... X ai2,2ké”j§’l/2 X ... X a’iM,l,jﬁw,l}w X ... X ailvf,zk?\’/jﬁwl;w]

If 41,1 appears at least twice in the sums, that is there exists 2 < r < M and 1 < s < 2k such
that i1,1 = 4y, then, a;, | j,1,a:,, 5,0, = 0 since Dj, ;, N D; ;. = 0. Otherwise, if ;) appears
only once, by independence between the (X;,Y;);, we obtain that

Efo |:ai1,lgjlal1 X X Qiy gy 1501 X iy 1,550 XX aiM,kaf VIVELY:

= Efo [ail,l,jhll] X ]Efo |:ai1,27j1’l1 < X Qiy opy 5d1501 X iy 1,551 XX ai]\LQk;\'J ’j}/[,lﬁw} =0

Hence,

Efo [Akl,jhll X Aké’vjé’lé X ... X Ak// =0.

dhgli]
and thus, all the terms of the form (5.110) have a null expectation.

Let us now consider Equation (5.111) (where the index (j1,!1) appears twice).

Efo[Aky 1 10 X Agg X Apy gpay X oo X Apy e 1=

E E : E s E ]Efo [ai1,17j17l1 Koo XAy o) 451,00 Xai'Ll,lel x

i1,1 < <2k 1] << 12>1<'“<i2,2k/2’ iM,1<...<iM’2k§\//I

1 2J15l1

1, 2k’

X ... X ai’l o g1l X Qo 1,54,0, X ... X aig,zkg;j&% X ... X aiM,l,j}Wl§\4 X ... X aiM,%?\’/[’j;\/I’lﬁw]
|



144 CHAPTER 5. GSA USING AN AGGREGATED HSIC-BASED PROCEDURE TESTS

If there exists at least one index i;,. or 2'1 that can be isolated, then by independence,

Eg, [ail,hjl,ll Xowoo X @iy oy yjn,ln X Qi ga,dy X X Qir vk X
U1
X ai2’l’jéyl/2 X ... X aiz,zkg’jé’l/z X ... X aiMxl’jﬁ\l’liM X ... X aiM,’A’le’j;u’l/I\/I] =0.
Hence, the remaining terms are obtained for ky = ky and iy s = 47, for all 1 < s < 2k;.

These arguments are being valid for any index (j,,1,), we obtain that @ = 0 and

Es, [thh e Bjm.,lm}

[n/2]
_ 2 2
= E E E Ef @i gug, X oo % A3y ey daily X X
kiyenkm=1141,1<...<i1,2k; im, 1 <o <l 2k,
2 2
X @iy 3 gm0 X i o ,jm,lm]
[n/2]

= > >, Eq

ki,ooo,km=11,...,I,,C{1,..n}
Card(Iy)=2k

2 2
H A5y 51,0 X ... X H ai'm).j'm.yl'm.‘| .

i1€1 im €Im

2 =

L Jmsbm

If the subsets I, are not pairwise disjoints, the product [[; <, a? g XX epa
0, since the supports Dy;, ;. are disjoint.
Thus,

[n/2]

IEfo [thh s Bjm,lm] = Z Z Efo

Eiyeoskm=1T1,....I,nC{1,..n}
IpNIg=0,Yr#s
Card(I,)=2ky

2 2
H ai17j17l1 XX H ainl;j7nal7n‘|

i1€1 im €Im

[n/2]
_ 2 2
= > > I Epla? jond - x T Erlad, il
E1km =111, T C{1,..n} i1€11 im€lm

IrNIg=0,Yr#s
Card(Iy)=2ky

by independence of the (X, Y:)i1<i<n-
Besides, for all 1 < ¢ < n, Ey, [aij’l] = h20+2p+2q Hgn,j,l”iz = C(p, q)h29+P*4 by Equation
(5.106). Thus,

[n/2]

Efo [thh o Bjm,lm] — Z Z (C(p, q)h3L§+P+q)2k1+...+2km

Eiyeoskm=11T1,....I,nC{1,..n}
IpNIg=0,Vr#s
Card(I,)=2ky

[n/2]
n 21 +...42k
= C h25+p+q 1 m )
> (2k1,...,2km7nzml2kr>( (p, q)h2’tPT9)

kiyeroskm=1 r=
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n

Moreover, the multinomial coefficient <2k1, 2k = 21%«)

can be upper-bounded
by n2k1t-+2km  Hence,

[n/Q] [n/Q]
Z Z (C(p, Q)n X h7216+p+Q)2k1+~-+2km

k1=1 km=1
n/2] o
> (Clp, q)n x hPTPT)

k=1

Efo [thll s Bjrmlm]

IN

m

Furthermore, for h,, defined in (5.26) (for any constant C(p, q, «, 53, 9)),
C(p,q) n x h2FPHa = C(p, q,a, B, 8)n~ P/ (40+p+a) 7 /9

for n large enough, and thus, by property of geometric series, we get

[n/2] & 264+p+q12
S {[Ctpq) n s s} ¢ ACRD XL o, ) e,
k=1 1- [C(p, q) n x h?fﬂﬂrq]

We recall that the constant C(p, ¢) may vary from line to line. This being true for all (4,1) €
I, p.q, from Equation (5.109), we deduce that

MPta
- p+q .
Epo [{L”(Zn)}ﬂ 1+ Z <M;:l ) [C(p,q) n x hié+p+q]2
m=1
M:;Jrq

14 Z {Mﬁ"’q [C(p, q) n X hffﬂ’ﬂf}m

m=1

IN

MPta

n

1+ Z [C’(p, q) n? x hffﬂﬂrq]m,

m=1

IN

since (ijq) < [MP+4)]"™ and M, h,, = 1.

Finally, for h,, defined in (5.26), with

)

1 2(1 —a — )2 >1/(46+p+'”

C(p,q,a,B,6) = (C(p’q) x T p—ce

we directly obtain that

2(1 —a—pB)?
1+4(1 —a—p)?
Hence, by property of the geometric series we obtain,

[C(p,q) n® x hy>*r+a]
1= [C.q) 2 x W37+
<1+4(1—-a-pB)?

C(p, q) n* x hotrta — < 1.

Epy | (Lo(Z0)*] <1+

which ends the proof of Proposition 5.5.






Chapter 6

Conclusion and Prospects
(english)

Summary of the main contributions

The general scope of this manuscript is the Global Sensitivity Analysis (GSA) of numerical
simulators, which consists in studying the impact of input uncertainties on the output. One pos-
sible and efficient method to perform GSA is based on the use of dependence measures, which
quantify the probabilistic dependence between each input and the output. Indeed, under some
assumptions, the measure of dependence between a given input and the output equal zero if and
only if the two random variables are independent. Many statistical methods then evaluate the
degree of dependence according to the estimated value of these measures. In this work, we focus
in particular on the measure of dependence called HSIC (for Hilbert-Schmidt Independence Cri-
terion). Indeed, HSIC measures are attractive tools to perform GSA, in view of their theoretical
properties as well as the characteristics of the associated estimators. The objective of this thesis
is to propose new theoretical and methodological tools, to face some limitations in the practical
use of HSIC measures for GSA.

Statistical inference around HSIC measures

A first contribution of this Phd thesis are some theoretical developments around the estima-
tion of HSIC. An estimation of HSIC using a sample from an alternative law of inputs, different
from the prior one is proposed. To do this, we proposed weighted estimators based on importance
sampling techniques. We also demonstrate the properties of these new estimators (bias, variance
and asymptotic law), which are similar to the properties of the usual estimators. Moreover,
asymptotic and non-asymptotic tests of independence built with these new estimators are also
presented. These theoretical developments are a key step for the methodology suggested below,
for the sensitivity analysis of a model whose input distributions are uncertain.
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Methodology of GSA for uncertain probabilistic distributions of in-
puts

As a continuation of the work on the first contribution, the case of second-level Global Sen-
sitivity Analysis (denoted here GSA2) is then discussed. Indeed, when the probability laws of
the inputs are uncertain (e.g. due to lack of of knowledge), the purpose of GSA2 is to assess
the impact of these uncertainties on the results of the usual GSA of the code output (denoted
here GSA1 for first-level GSA). To perform GSA2, we proposed a new “single loop” Monte-
Carlo methodology to answer various issues raised by GSA2 (characterization of GSA1 results,
definition of 2"%-level dependence measures and reduction of the calculation budget).

This methodology is based on a unique sample of inputs and associated outputs, drawn ac-
cording to a well-chosen reference law. Three options have been proposed for this law: mixture
distribution and barycentric distributions in the sense of Wasserstein and symmetric Kullback-
Leibler distances. The construction of these distributions has been detailed and supported by
illustrative examples. This new methodology seems to have good performances comparing to the
straightforward “double loop” methodology and significantly reduces the simulation budget. In
addition, the methodology is efficiently applied to the simulator MACARENa (French: Modéli-
sation de ’ACcident d’Arrét des pompes d’un Réacteur refroidi au sodium), developed by CEA
to simulate the accidental scenario “Unprotected Loss Of Flow” (ULOF) for a sodium-cooled
fast reactor, in the framework of safety demonstration.

These two contributions are the subject of two oral communications and a pa-
per under revision for the scientific journal SIAM/ASA Journal on Uncertainty
Quantification and currently available on the platform HALL.

e Meynaoui, A., Marrel, A., and Laurent-Bonneau, B. (2018). Méthodologie basée sur les
mesures de dépendance HSIC pour 'analyse de sensibilité de second niveau. Actes des
50¢éme Journées de Statistique (JDS 2018).(in French). Saclay, France.

e Meynaoui, A., Marrel, A., and Laurent-Bonneau, B. (2018). Statistical methodology for
second-level sensitivity analysis with dependence measures for numerical simulators. SIAM
conference on Uncertainty Quantification. Garden Grove, California, USA.

e Meynaoui, A., Marrel, A., and Laurent, B. (2019). New statistical methodology for second-
level global sensitivity analysis. Submitted to STAM/ASA JUQ, under revision and avail-
able at arXiv preprint arXiv:1902.07030.

Theoretical development of an adaptive test of independence based
on HSIC measures

This contribution involves the development of an HSIC-based testing procedure which aggre-
gates several possible Gaussian kernel parametrizations. The objective is to overcome the prior
choice of the kernels defining the HSIC and to give some theoretical guarantees (in terms of the
non-asymptotic uniform separation rate) of the single and aggregated HSIC tests. For this, we
first upper bound the uniform separation rate of the single tests over the regularity spaces of
Sobolev and Nikol’skii balls. Then, we aggregate several single tests, and obtain similar upper
bounds for the uniform separation rate of the aggregated procedure over the same regularity
spaces. One other main result is the lower bound for the separation rate over Sobolev balls.
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This lower bound allows to deduce that the aggregated procedure is adaptive in the minimax
sense over Sobolev balls. In addition, given that the obtained sharp bounds over Nikol’skii balls
are compared to the “classical” optimal separation rates over these spaces obtained for other
statistical tests, the aggregated procedure seems to be optimal over Nikol’skii balls spaces as
well.

Methodology of screening based on aggregated HSIC tests

In the continuity of the preceding works, the last contribution consist in using the procedure
of HSIC aggregated test and the associated theoretical developments for screening purpose. For
this, we propose a statistical methodology having a better ability to detect the dependence be-
tween the inputs and the output. We first propose a practical implementation of a non-asymptotic
HSIC-test of level «, for any chosen parametrization. Then, analytical evaluation of the small-
est uniform separation rate of theoretical tests over all parametrizations is demonstrated. The
methodology is implemented on some analytical examples to investigate different ways of aggre-
gating tests and to assess its efficiency . Lastly, the proposed methodology is illustrated on the
test case of ULOF scenario with MACARENa simulator.

These last two contributions are the subject of an oral communication and a
submitted paper which is currently available on the platform HALL.

e Meynaoui, A., Albert, M., Laurent, B., and Marrel, A. (2019). Aggregated tests of inde-
pendence based on HSIC measures. European Meeting of Statisticians, Palermo, Italy.

e Meynaoui, A., Albert, M., Laurent, B., and Marrel, A. (2019). Adaptive test of indepen-
dence based on HSIC measures. arXiv preprint arXiv:1902.06441.

Prospects

Some methodological and theoretical points can be improved and better investigated, to further
extend the application scope of the proposed work. Moreover, the methodological developments
proposed here could be compared to some existing methodologies in other frameworks.

A first possible improvement is to extend the two proposed methodologies (GSA2 and aggre-
gated procedure of testing) to samples which are not generated according to pure Monte Carlo
designs. Indeed, Space-Filling or Quasi-Monte Carlo designs which ensure a good coverage or
repartition of points in the input space are often used in practice. This designs have the advan-
tage of converging the estimators (of an expectation) more rapidly, especially in high dimension
(large number of inputs), but do not have all the basic properties of Monte Carlo designs such
as the independence of the realizations. In particular, the estimation of the quantiles involved
in our statistical tests to compute the critical value should be corrected.

Moreover, it would be interesting to propose screening independence tests in the framework
of GSA2. Meaning to perform statistical tests of independence between input distributions
and GSAL1 results. These independence tests will provide a more rigorous framework for GSA2
and allows to assess the dependence between input distributions and GSA1 results with more
theoretical guarantees.

Another potential extension of this methodology is to combine the conclusions drawn from
the GSA1 and GSA2. Once GSA2 is performed, the input distributions which have no impact
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on GSAI1 results can be set as a reference distribution, the GSA1 results can then be considered
as the average results w.r.t. the GSA2 most influential input distributions. By analogy with
the GSA2, this study can also be performed using the unique sample and importance sampling
techniques.

The GSA2 methodology can also be compared to other methodologies such as Perturbed-Law
based Indices (Lemaitre et al., 2015) or the approach proposed by Chabridon et al. (2017) dealing
with the estimation of failure probabilities in the presence of second-level uncertainties.

Furthermore, some theoretical and methodological improvements or extensions can be con-
ducted for the aggregated testing procedure. In particular, we can attempt to show that the
aggregated procedure is also adaptive over Nikol’skii balls. Indeed, the sharp upper bounds of
the uniform separation rate obtained over these spaces support the intuition that the aggregated
procedure is adaptive over these spaces.

Further works can also aim to extend the methodological scope of aggregated procedure. We
may focus on taking into account other types of kernels than the Gaussian one. In addition, the
choice of the collections of parameter bandwidths (or kernels), their relationships with the types
of the inputs and the output (discrete, functional, etc.) and with the nature of the dependence
(local, global) need to be more fully explored. A first possible solution for the selection of these
parameters can be to choose a group of parameters containing both small and large values to cover
more dependence forms. Another solution can be inspired from the cross-validation methods.
A part of the available sample is set aside to identify the “good” bandwidths, while the other
part is used to perform the aggregated test. In order to make this last procedure more robust,
we can repeat the evaluation of the best bandwidths for different partitions of the initial sample
and keep the bandwidths having in average the better performance (in terms of rate of selection
of inputs).

Some other improvements such as the computation of the p-value associated to the aggregated
procedure as well as the definition of an asymptotic framework can theoretically and practically
be proposed.



Chapter 7

Conclusion et Perspectives
(francgais)

Résumé des principales contributions

Le sujet de ce manuscrit est I’Analyse de Sensibilité Globale (ASG) des simulateurs numériques,
qui consiste a étudier 'impact des incertitudes des variables d’entrée du simulateur sur la (ou
les) sorties. Une méthode possible et efficace pour effectuer PASG est basée sur I'utilisation des
mesures de dépendance, quantifiant d’'un point de vue probabiliste la dépendance entre chaque
entrée et la sortie. En effet, sous certaines hypotheses, la mesure de dépendance entre une entrée
et la sortie est égale a zéro si et seulement si les deux variables aléatoires sont indépendantes.
Des méthodes statistiques permettent alors de quantifier le degré de dépendance en fonction de
la valeur estimée des mesures. Plus particulierement, nous nous intéressons ici a la mesure de
dépendance dénommée HSIC pour Hilbert-Schmidt Independence Criterion. Les mesures HSIC
sont des outils pertinents et efficaces pour réaliser une ASG, compte tenu de leurs propriétés
théoriques ainsi que des caractéristiques des estimateurs statistiques associés. Dans ce contexte,
I'objectif de cette thése est de proposer des nouveaux outils théoriques et méthodologiques au-
tour de l'utilisation des mesures HSIC pour I’ASG, afin d’étendre encore davantage leur spectre
applicatif et permettre une utilisation plus robuste.

Inférence statistique autour des mesures HSIC

Une premiéere contribution de cette these est de proposer des développements théoriques autour
de 'estimation des HSIC. Plus précisément, une estimation des HSIC a partir d’un échantillon
issu d’une loi alternative des entrées, différente de la loi a priori, est proposée. Pour ce faire, des
estimateurs pondérés basés sur des techniques d’échantillonnage préférentiel sont proposés. Les
propriétés de ces nouveaux estimateurs (biais, variance et loi asymptotique), qui sont similaires
aux propriétés des estimateurs usuels sont démontrées. De plus, des tests d’indépendance asymp-
totiques et non asymptotiques construits avec ces nouveaux estimateurs sont également proposés.
Ces développements théoriques constituent une étape clé pour la méthodologie développée ensuite
pour 'analyse de sensibilité d’un simulateur dont les distributions des entrées sont incertaines.

151



152 CHAPTER 7. CONCLUSION ET PERSPECTIVES (FRANCAIS)

M¢éthodologie d’ASG pour les distributions incertaines des entrées

Dans le prolongement des travaux relatifs a la premiere contribution, le cas de I’Analyse de
Sensibilité Globale de second niveau (en abrégé ASG2) est ensuite abordé. En effet, lorsque
les lois de probabilité des entrées sont incertaines (par exemple en raison d’un manque de con-
naissance), 'objectif de ’ASG2 est d’évaluer 'impact de ces incertitudes sur les résultats de
I'ASG usuelle de la sortie du simulateur (dénommée ici ASG1 pour ASG de premier niveau).
Pour réaliser ’ASG2, une nouvelle méthodologie Monte-Carlo “simple boucle” est développée et
permet de répondre aux diverses questions soulevées par ’ASG2, a savoir la caractérisation des
résultats de PASG1, la définition de mesures de dépendance de 2"%-niveau et la réduction du
budget de simulations.

Cette méthodologie est basée sur un échantillon unique des entrées et sorties associées, tiré
suivant une loi de référence bien choisie. Trois options ont été proposées pour cette loi : la dis-
tribution de mélange et les distributions barycentriques au sens des distances de Wasserstein et
de Kullback-Leibler symétrisée. La construction de ces distributions a été détaillée et accompag-
née par des exemples illustratifs. Cette nouvelle méthodologie présente de bonnes performances
par rapport a la méthodologie classique “double boucle” et permet de considérablement réduire
le budget de simulations. De plus, la méthodologie a été efficacement appliquée au simula-
teur MACARENa (Modélisation de ’ACcident d’Arrét des pompes d’un Réacteur refroidi au
sodium), développé par le CEA pour simuler le scénario accidentel de “Perte de débit non pro-
tégée” (ULOF, pour Unprotected Loss Of Flow) pour un réacteur rapide refroidi au sodium, dans
le cadre d’'une démonstration de sireté.

Ces deux contributions ont fait I’objet de deux communications orales et d’un
article en cours de révision pour la revue scientifique STAM/ASA Journal on Un-
certainty Quantification. Cet article est actuellement disponible sur la plateforme
HALL.

e Meynaoui, A., Marrel, A., and Laurent-Bonneau, B. (2018). Méthodologie basée sur les
mesures de dépendance HSIC pour I'analyse de sensibilité de second niveau. Actes des
50éme Journées de Statistique (JDS 2018).(in French). Saclay, France.

e Meynaoui, A., Marrel, A., and Laurent-Bonneau, B. (2018). Statistical methodology for
second-level sensitivity analysis with dependence measures for numerical simulators. STAM
conference on Uncertainty Quantification. Garden Grove, California, USA.

e Meynaoui, A., Marrel, A., and Laurent, B. (2019). New statistical methodology for second-
level global sensitivity analysis. Submitted to STAM/ASA JUQ, under revision and avail-
able at arXiv preprint arXiv:1902.07030.

Développement théorique d’un test d’indépendance adaptatif basé
sur les mesures HSIC

Cette contribution porte sur le développement d’une procédure de test basée sur les HSIC
qui agrége plusieurs paramétrisations possibles des noyaux (noyaux gaussiens en 1’occurrence).
L’objectif est d’éviter le choix subjectif des parametres des noyaux intervenant dans la définition
du HSIC et de fournir certaines garanties théoriques des tests simples et agrégés (en termes
de vitesse de séparation uniforme non asymptotique). Pour cela, des majorations fines des
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vitesses de séparation uniforme des tests simples sur des espaces de régularité de types Sobolev
et Nikol’skii sont d’abord obtenues. Ensuite, plusieurs tests simples sont ensuite agrégés et
des bornes supérieures similaires aux précédentes sont obtenues pour la vitesse de séparation
uniforme de la procédure agrégée, sur les espaces de Sobolev et Nikol’skii. Un autre résultat
principal est la démonstration d’une borne inférieure pour la vitesse de séparation sur les espaces
de Sobolev. Cette borne inférieure permet de déduire que la procédure agrégée est adaptative
au sens minimax sur les espaces de Sobolev. En outre, les vitesses obtenues sur les espaces de
Nikol’skii sont comparées aux vitesses de séparation optimales “classiques” sur ces mémes espaces
obtenues pour d’autres tests statistiques : la procédure agrégée semble également étre optimale
sur les espaces de Nikol’skii.

M¢éthodologie de criblage basée sur les tests HSIC agrégés

Dans la continuité des travaux précédents, la derniere contribution de cette these consiste a
utiliser la procédure agrégée et les développements théoriques associés afin de réaliser un criblage
des variables d’entrées. L’objectif est ainsi d’améliorer la capacité de détection de la dépendance
entre une entrée et la sortie et de permettre un criblage plus robuste au choix des parametres
des noyaux. Pour cela, nous proposons une méthodologie pratique permettant tout d’abord de
construire un test HSIC agrégé de niveau « dans un cadre non asymptotique et quelle que soit la
collection de parametres choisie pour les noyaux. Des collections et poids associés sont d’ailleurs
proposés. L’évaluation de la plus petite vitesse de séparation uniforme des tests théoriques sur
I’ensemble des paramétrisations est ensuite démontrée. La méthodologie est mise en ceuvre sur
plusieurs exemples analytiques pour étudier et comparer les différentes options d’agrégation des
tests et pour évaluer l'efficacité générale de la méthode. Enfin, la méthodologie proposée est
illustrée sur le cas test du scénario ULOF avec le simulateur MACARENa.

Ces deux derniéres contributions font ’objet d’une communication orale et d’un
document soumis et actuellement disponible sur la plateforme HALL.

e Meynaoui, A., Albert, M., Laurent, B., and Marrel, A. (2019). Aggregated tests of inde-
pendence based on HSIC measures. European Meeting of Statisticians, Palermo, Italy.

e Meynaoui, A., Albert, M., Laurent, B., and Marrel, A. (2019). Adaptive test of indepen-
dence based on HSIC measures. arXiv preprint arXiv:1902.06441.

Perspectives

Certains points méthodologiques et théoriques peuvent étre améliorés et mériteraient d’étre
approfondis, pour étendre encore davantage la portée applicative des travaux proposés. En
outre, les développements méthodologiques proposés ici pourraient étre comparés a certaines
méthodologies existantes dans d’autres cadres applicatifs.

Une premiére amélioration possible est d’étendre les deux méthodologies proposées (ASG2 et
procédure de test agrégée) aux échantillons qui ne sont pas générés suivant des tirages Monte-
Carlo purs. En effet, les plans de types Space-Filling ou Quasi-Monte-Carlo qui assurent une
bonne couverture ou répartition des points dans 1’espace des entrées sont trés souvent utilisés en
pratique dans la prise en compte des incertitudes en simulation numérique. Ces plans présentent
lavantage d’obtenir une convergence plus rapide des estimateurs (d’une espérance), en particulier
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en grande dimension (grand nombre des entrées), mais ne possédent pas toutes les propriétés des
plans purs Monte-Carlo telles que 'indépendance des réalisations. En particulier, ’estimation
des quantiles intervenant dans nos procédures de tests statistiques nécessite d’étre corrigée et
adaptée.

Par ailleurs, il serait intéressant de proposer des tests d’indépendance pour le criblage dans le
cadre de ’ASG2, i.e. des tests statistiques d’indépendance entre les distributions des entrées et
les résultats d’ASG1. Ces tests d’indépendance apporteront un cadre statistique plus rigoureux
pour ’ASG2 et permettront d’évaluer la dépendance entre les distributions des entrées et les
résultats d’ASG1 de maniere plus robuste et avec davantage de garanties théoriques.

Une autre extension envisageable consiste & combiner les conclusions tirées de '’ASG1 et de
I’ASG2. A partir des résultats d’ASG2, les distributions des entrées qui n’ont pas d’impact sur
les résultats d’ASG1 pourront étre fixées a une distribution de référence et les résultats d’ASG1
pourront étre considérés comme les résultats moyens par rapport aux distributions des entrées
les plus influentes de ’ASG2. Comme pour ’ASG2, cette ASG1 “moyenne” pourra étre réalisée a
partir d’'un échantillon unique en utilisant les estimateurs pondérés inspirés de 1’échantillonnage
préférentiel.

La méthodologie de ’ASG2 peut également étre comparée a d’autres approches telles que
celle basée sur des indices obtenus par perturbation des lois (Lemaitre et al., 2015) ou celle
proposée par Chabridon et al. (2017) portant sur l’estimation des probabilités de défaillance en
présence d’incertitudes de second niveau.

Concernant la procédure de test agrégée, certaines améliorations ou extensions théoriques et
méthodologiques peuvent étre apportées. En particulier, il pourrait étre intéressant de démontrer
que la procédure agrégée est également adaptative sur les espaces de Nikol’skii. En effet, les
bornes supérieures fines des vitesses de séparation uniforme obtenues sur ces espaces renforcent
I'intuition que la procédure agrégée est aussi adaptative sur ces espaces.

D’autres travaux peuvent également viser a étendre le champ applicatif de la procédure
agrégée. On pourra par exemple envisager de prendre en compte d’autres types de noyaux. Plus
généralement, le choix des collections des paramétrisations (ou noyaux), leurs relations avec les
types d’entrées et de sorties (discrétes, fonctionnelles, etc.) et avec la nature de la dépendance
(locale, globale) méritent d’étre explorés plus en profondeur. Une premiére solution possible pour
une sélection plus optimale des parametres de la collection pourrait étre de choisir un groupe de
parametres contenant a la fois des petites et grandes valeurs pour couvrir davantage de formes
de dépendance. Une autre solution serait de s’inspirer des méthodes de validation croisée. Une
partie de ’échantillon disponible est mise de c6té pour identifier les “bons” parametres, tandis
que l'autre partie est utilisée pour effectuer le test agrégé. Afin de rendre cette derniere procédure
plus robuste, elle pourra étre répétée pour différentes partitions de ’échantillon initial.

Enfin, d’autres améliorations telles que le calcul de la p-valeur associée a la procédure agrégée
ainsi que la définition d’un cadre asymptotique pourront étre développées d’un point de vue
théorique et pratique.
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Résumé

Dans le cadre des études de sfireté pour les réacteurs nucléaires, les simulateurs numériques
sont essentiels pour comprendre, modéliser et prévoir des phénomeénes physiques. Les informa-
tions relatives a certaines entrées des simulateurs sont souvent limitées ou incertaines. L’Analyse
de Sensibilité Globale (ASG) vise alors & déterminer comment la variabilité des parameétres en
entrée influe sur la valeur de la sortie ou de la quantité d’intérét. Les travaux réalisés dans cette
thése ont pour objectif de proposer des nouvelles méthodes statistiques basées sur les mesures
de dépendance pour 'ASG des simulateurs numériques. On s’intéresse plus particulierement
aux mesures de dépendance de type HSIC (Hilbert-Schmidt Independence Criterion). Apres les
Chapitres 1 et 2 introduisant le contexte général et les motivations de la theése respectivement
en versions francaise et anglaise, le Chapitre 3 présente d’abord une revue générale des mesures
HSIC, dans un cadre théorique et méthodologique. Ensuite, des nouveaux développements au-
tour de l'estimation des mesures HSIC a partir d’un échantillon alternatif et s’inspirant des
techniques d’échantillonnage préférentiel sont proposés. Grace a ces développements théoriques,
une méthodologie efficace pour ’ASG en présence d’incertitudes sur les distributions de proba-
bilité des entrées est développée dans le Chapitre 4. La pertinence de la méthodologie proposée
est démontrée d’abord sur un cas analytique avant d’étre appliquée au simulateur MACARENa
modélisant un scénario accidentel de type ULOF (Unprotected Loss Of Flow), sur un réacteur a
neutrons rapides refroidi au sodium. Le Chapitre 5 porte ensuite sur le développement d’un test
d’indépendance agrégeant plusieurs paramétrisations des noyaux intervenant dans les HSIC. La
méthodologie proposée permet ainsi de capturer un plus large spectre de dépendance entre les
entrées et la sortie. L’optimalité de cette méthodologie est tout d’abord démontrée d’un point
de vue théorique. Ses performances et son intérét applicatif sont ensuite illustrés sur plusieurs
exemples analytiques ainsi que sur le cas du simulateur MACARENa.

Abstract

As part of safety studies for nuclear reactors, numerical simulators are essential for under-
standing, modelling and predicting physical phenomena. However, the information on some of
the input variables of the simulator is often limited or uncertain. In this framework, Global
Sensitivity Analysis (GSA) aims at determining how the variability of the input parameters af-
fects the value of the output or the quantity of interest. The work carried out in this thesis
aims at proposing new statistical methods based on dependence measures for GSA of numerical
simulators. We are particularly interested in HSIC-type dependence measures (Hilbert-Schmidt
Independence Criterion). After Chapters 1 and 2 introducing the general context and motiva-
tions of the thesis in French and English versions respectively, Chapter 3 first presents a general
review of HSIC measures, in a theoretical and methodological framework. Subsequently, new de-
velopments around the estimation of HSIC measures from an alternative sample and inspired by
importance sampling techniques are proposed. As a result of these theoretical developments, an
efficient methodology for GSA in the presence of uncertainties of input probability distributions
is developed in Chapter 4. The relevance of the proposed methodology is first demonstrated on
an analytical case before being applied to the MACARENa simulator modeling a ULOF (Un-
protected Loss Of Flow) accidental scenario on a sodium-cooled fast neutron reactor. Finally,
Chapter 5 deals with the development of an independence test aggregating several parametriza-
tions of HSIC kernels and allowing to capture a wider spectrum of dependencies between the
inputs and the output. The optimality of this methodology is first demonstrated from a the-
oretical point of view. Then, its performance and practical interest are illustrated on several
analytical examples as well as on the test case of the MACARENa simulator.



	Introduction (français)
	Contexte
	Analyse de sensibilité globale basée sur les mesures de dépendance
	Description du cas test applicatif
	Présentation du réacteur RNR-Na et de l'accident ULOF
	Présentation de l'outil physique orienté conception MACARENa

	Problématiques et objectifs
	Organisation du document

	Introduction (english)
	Context
	Global sensitivity analysis based on dependence measures
	Description of test case application
	Presentation of the RNR-Na reactor and the ULOF accident
	Presentation of the MACARENa design-oriented physical tool

	Issues and objectives
	Organization of the document

	Review and theoretical developments around Hilbert-Schmidt dependence measures (HSIC)
	Introduction and motivations
	Definition of HSIC and link with independence
	General principle and definition
	Kernel-based representation and characterization of independence
	Use for first-level GSA

	Statistical inference around HSIC measures
	Statistical estimation under prior distributions
	Statistical estimation under alternative distributions
	Expression and estimation of HSIC from a sample drawn with alternative distributions
	Statistical properties of HSIC alternative estimators
	Illustration on an analytical example


	Statistical tests of independence based on HSIC
	Review on non-parametric tests of independence
	Generalities on statistical tests of independence
	Classical non-parametric tests of independence

	Existing HSIC-based statistical tests of independence
	New version of non-asymptotic HSIC-based tests of independence

	Synthesis
	Proofs
	Proof of Proposition 3.2
	Proof of Proposition 3.3
	Proof of Proposition 3.4
	Proof of Theorem 3.1
	Proof of Proposition 3.5


	Global sensitivity analysis for second level uncertainties
	Issues and objectives
	New methodology for second-level GSA
	Issues raised by GSA2
	Characterization of GSA1 results
	Definition of GSA2 indices
	Monte Carlo estimation

	General algorithm for computing GSA2 indices with a single Monte Carlo loop
	Choice of characteristic kernels for probability distributions and for quantities of interest
	Possibilities for the unique sampling distribution
	Discussion about the supports of the distributions

	Application of GSA2 methodology
	Analytical example
	Computation of theoretical values
	GSA2 with our single loop approach
	Comparison with Monte Carlo "double loop" approach
	GSA2 using other quantities of interest

	Application on ULOF-MACARENa test case

	Conclusion and Prospect

	Aggregated tests of independence based on HSIC measures: theoretical properties and applications to Global Sensitivity Analysis
	Issues and objectives
	Performance of single HSIC-based tests of independence
	Some notation and assumptions
	Control of the second-kind error in terms of HSIC
	Control of the second-kind error in terms of L2-norm
	Uniform separation rate
	Case Sobolev balls
	Case of Nikol'skii-Besov balls


	Aggregated non-asymptotic kernel-based test
	The aggregated testing procedure
	Oracle type conditions for the second-kind error
	Uniform separation rate over Sobolev balls and Nikol'skii-Besov balls

	Lower bound for uniform separation rates over Sobolev balls.
	Application of the HSIC-based testing procedure methodology
	Numerical simulations
	Assessment of the power of permuted HSIC-tests
	Performance of the aggregated procedure

	Nuclear safety application

	Conclusion and Prospect
	Proofs
	Proof of Lemma 5.1
	Proof of Proposition 5.1
	Upper bound of 2 (,)
	Upper bound of s2 (,)

	Proof of Proposition 5.2
	Upper bound of q1-,2,
	Upper bound of q1-,3,
	Upper bound of q1-,4,

	Proof of Corollary 5.1
	Proof of Lemma 5.2
	Proof of Proposition 5.3
	Proof of Lemma 5.3
	Proof of Theorem 5.2
	Proof of Corollary 5.2
	Proof of Lemma 5.4
	Proof of Theorem 5.3
	Proof of Corollary 5.3
	Proof of Lemma 5.5
	Proof of Theorem 5.4
	Proof of Corollary 5.4
	Proof of Lemma 5.6
	Proof of Proposition 5.4
	Proof of Proposition 5.5


	Conclusion and Prospects (english)
	Conclusion et Perspectives (français)
	Bibliography

