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Transport and spectral properties of low-dimensional superconductors in the presence of spin-
dependent fields

The interplay between superconductivity and spin-dependent fields is known to lead to striking phenomena, like
critical field enhancement, magnetoelectric effects and the appearance of Yu-Shiba-Rusinov bound states at magnetic
impurities. In this thesis, we investigate these effects in low dimensional systems.

We first demonstrate that the combination of both spin-orbit and Zeeman fields in superconducting one-dimensional
systems leads to the appearance of an inhomogeneous phase at low magnetic field and high critical temperature. We show
that the ground state corresponds to a zero-current state where the current stemming from spin-orbit coupling, called
anomalous charge current, is exactly compensated by the current coming from the wave-vector of the superconducting
order parameter. We also discuss how it is possible to predict the appearance of the anomalous current from symmetry
arguments based on the SU(2)-covariant formalism.

In a second part, we consider a type-II superconducting thin film in contact with a Néel skyrmion. The skyrmion
induces spontaneous currents in the superconducting layer, which under the right condition generate a superconducting
vortex in the absence of external magnetic fields. We compute the magnetic field and current distributions in the
superconducting layer in the presence of the Néel skyrmion.

In the last part of this thesis, we focus on the appearance of Yu-Shiba-Rusinov states in the superconducting
crystal β-Bi2Pd. We propose effective models in order to explain recent experimental results showing a double spatial
oscillation of the local density of states at Shiba energy. We demonstrate that the minimal condition to reproduce this
double oscillation is the presence of two superconducting channels connected via a hopping term or via a magnetic
impurity. These effective models can be easily generalized to describe the spectrum of multiband superconductors with
magnetic impurities.

Keywords : superconductivity, spin-dependent fields, superconducting inhomogeneous phase, anomalous current,
Néel skyrmion, Yu-Shiba-Rusinov states.

Propriétés spectrales et de transport de supraconducteurs à basse dimension en présence de champs
dépendant du spin

Lorsqu’un supraconducteur est soumis à des champs dépendant du spin, on observe l’émergence de nouveaux
phénomènes comme l’augmentation du champ magnétique critique, des effets magnétoélectriques ou encore l’apparition
d’états de bord de Yu-Shiba-Rusinov autour d’impuretés magnétiques. Dans cette thèse, on s’intéresse à ces effets dans
des systèmes de basse dimension.

Tout d’abord, on démontre que la combinaison d’un champ Zeeman avec un couplage spin-orbite dans des systèmes
supraconducteurs unidimensionnels induit une phase inhomogène à faible champ magnétique et haute température
critiques. On montre que l’état fondamental correspond à un état de courant nul, où le courant induit par le couplage
spin-orbite, nommé courant de charges anomal, est exactement compensé par le courant venant du vecteur d’onde du
paramètre d’ordre supraconducteur. On discute également la possibilité de prédire l’apparition du courant anomal à
partir d’arguments de symétrie basés sur le formalisme covariant SU(2).

Dans un second temps, on considère une couche mince supraconductrice de type II en contact avec un skyrmion
de Néel. Ce dernier induit des courants spontanés dans la couche supraconductrice, pouvant conduire à l’émergence
d’un vortex supraconducteur en l’absence de champ magnétique extérieur. Les distributions de champ magnétique et
de courant sont calculées dans le supraconducteur en présence du skyrmion de Néel.

La dernière partie de cette thèse est consacrée à l’étude de l’apparition d’états de Yu-Shiba-Rusinov dans le cristal
β-Bi2Pd. On propose des modèles effectifs pour expliquer les récents résultats expérimentaux montrant une double
oscillation spatiale de la densité d’états locale à l’énergie de Shiba. On démontre que la condition minimale pour
reproduire cette double oscillation correspond à la présence de deux canaux supraconducteurs connectés via un terme
de saut ou via une impureté magnétique. Ces modèles effectifs peuvent facilement être généralisés pour décrire le spectre
de supraconducteurs multi-bandes en présence d’impuretés magnétiques.

Mots-clés : Supraconductivité, champs dépendant du spin, phase supraconductrice inhomogène, courant anomal,
skyrmion de Néel, états de Yu-Shiba-Rusinov.
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Résumé en Français

La supraconductivité en présence de champs dépendant du spin a été étudiée de
façon approfondie dans des systèmes de basse dimension, comme des nanofils semi-
conducteurs, dans le contexte des états liés de Majorana, en raison de leur potentiel
application en tant que qubits topologiques. L’interaction entre supraconductivité et
champs de spin est également à l’origine de phénomènes physiques impressionnants,
comme l’augmentation du champ critique, les effets magnétoélectriques ou encore l’ap-
parition d’états liés de Yu-Shiba-Rusinov en présence d’impuretés magnétiques. Dans
cette thèse, on se propose d’étudier chacun des trois effets cités, dans différents sys-
tèmes. Tout d’abord, on s’intéresse à la phase supraconductrice hélicale et aux courants
anomaux provenant de l’interaction entre le champ Zeeman et le couplage spin-orbite
dans deux systèmes supraconducteurs quasi-unidimensionnels distincts. Ensuite, on
étudie la formation d’un vortex supraconducteur liée aux effets magnétoélectriques in-
duits par la présence d’un skyrmion de Néel couplé par effet de proximité à un film
supraconducteur fin. Finalement, la dernière partie de ce manuscrit est dédiée à la
construction de modèles effectifs permettant de comprendre de façon qualitative le
couplage entre des impuretés magnétiques et la supraconductivité dans des supracon-
ducteurs non-conventionnels comme le cristal β-Bi2Pd.

Phase hélicale et effets magnétoélectriques dans des fils supraconducteurs

La première partie de cette thèse est consacrée à la description de supraconducteurs
quasi-unidimensionnels en présence d’un champ Zeeman et d’une interaction spin-orbite
de type Rashba. En particulier, on étudie deux systèmes. Le premier correspond à un
fil supraconducteur dans lequel le champ coexiste avec le couplage spin-orbite, tandis
que le second est un système à deux fils, dans lequel l’appariement supraconducteur
et les champs dépendant du spin sont respectivement présents dans deux fils distincts.
En principe, ces systèmes pourraient être réalisés expérimentalement, par exemple en
utilisant un supraconducteur organique pour le système à un fil.

Dans un premier temps, on s’intéresse à l’apparition de courants de charges induits
par le couplage spin-orbite, appelés courants anomaux. Pour cela, on introduit le for-
malisme covariant SU(2), dans lequel les champs Zeeman et spin-orbite sont décrits
respectivement par les potentiels scalaire et vecteur des champs magnétoélectriques
SU(2). Par le biais de cette formulation, on construit une expression générale du cou-
rant au premier ordre des champs Zeeman et spin-orbite pour des systèmes 1D, que
l’on applique ensuite aux deux systèmes décrits dans ce chapitre. Dans le cas du sys-
tème à un fil, on prédit que le courant anomal peut apparaître uniquement si le champ
Zeeman possède deux composantes, l’une parallèle et l’autre perpendiculaire au champ
de spin-orbite. Dans le cas du système à deux fils, la composante du champ Zeeman
parallèle au champ de spin-orbite est suffisante pour induire le courant anomal.
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Ces prédictions sont ensuite confimées par des calculs explicites utilisant le forma-
lisme de fonctions de Green de Gor’kov. Pour cela, on déduit l’expression des fonctions
de Green qui décrivent le système à partir du Hamiltonien écrit dans la base de Nambu
spin, pour les deux systèmes, dans la limite de faible couplage spin-orbite α pF � Tc,
où α est la constante de couplage spin-orbite, pF est l’impulsion de Fermi et Tc est la
température critique. Cela nous permet de calculer explicitement l’expression du cou-
rant, ainsi que le paramètre d’ordre supraconducteur auto-cohérent. On démontre ainsi
que l’état fondamental est en fait un état sans courant, dans lequel le courant anomal
est compensé par le courant provenant du vecteur d’onde q du paramètre d’ordre su-
praconducteur. Il est intéressant de remarquer que dans le cas du système à deux fils,
l’état de courant nul correspond en fait à deux courants circulant dans des directions
opposées dans chacun des fils. Enfin, si l’on impose q = 0, le courant de charge est fini
et correspond au résultat prédit grâce au formalisme covariant SU(2).

Dans cette partie, on s’intéresse également à l’émergence de la phase supracon-
ductrice inhomogène induite par la présence du couplage spin-orbite, et appelée phase
hélicale. En développant la relation d’auto-cohérence en séries de q, on s’aperçoit que
la combinaison du champ Zeeman avec l’interaction spin-orbite conduit à l’apparition
de cette phase hélicale à faible champ magnétique et pour toute température T < Tc0.
On peut aussi remarquer que de façon analogue au courant anomal, dans le système à
un fil, la phase hélicale n’est présente que si les deux composantes du champ Zeeman,
parallèle et perpendiculaire au champ de spin-orbite, sont non-nulles. De même, dans
le cas du système à deux fils, la composante parallèle du champ Zeeman est suffisante
à l’émergence de la phase hélicale.

Afin de tracer le diagramme de phase du système à un fil, représentant l’évolution
de la température en fonction de l’amplitude du champ Zeeman appliqué, nous avons
étudié ce système dans la limite d’un fort couplage spin-orbite α pF � Tc. Dans ce
cas-là, l’approche la plus simple consiste à diagonaliser le Hamiltonien, et donc à tra-
vailler dans la base hélicale. On démontre ainsi que lorsque le ratio α pF/h augmente, h
étant l’amplitude du champ Zeeman, l’appariement supraconducteur est modifié, pas-
sant d’un couplage inter-bandes à un couplage intra-bandes. Dans la limite α pF � h,
on peut donc négliger le couplage inter-bandes et calculer l’expression des fonctions
de Green séparément pour chaque bande électronique. Le diagramme de phase est en-
suite obtenu en résolvant numériquement l’équation d’auto-cohérence, et représenté
pour diverses orientations du champ Zeeman et plusieurs valeurs de la constante de
couplage spin-orbite α. On montre notamment que la présence de l’interaction spin-
orbite augmente la valeur du champ magnétique critique. Lorsque le champ Zeeman
est purement parallèle au champ de spin-orbite, on retrouve exactement le diagramme
de phase FFLO, ce qui peut être expliqué par le fait que le couplage spin-orbite peut
être éliminé du Hamiltonien par changement de jauge.

Une possible application de ces systèmes consisterait à les utiliser en tant que liai-
son faible entre deux supraconducteurs identiques pour créer une jonction Josephson
anomale, ou jonction ϕ0. Le vecteur d’onde supraconducteur q jouerait ainsi le rôle
de la différence de phase requise pour générer un courant dans la jonction, élargis-
sant les possibilités d’application de ces jonctions ϕ0 dans les dispositifs de stockage
d’information.
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Génération de vortex supraconducteurs par le biais de skyrmions de Néel

La deuxième partie de ce manuscrit est consacrée à un autre effet lié à l’interaction
entre la supraconductivité et les champs dépendant du spin : la possibilité de créer des
vortex d’Abrikosov en l’absence d’un champ magnétique extérieur.

Pour cela, on considère un film supraconducteur de type II, d’épaisseur dS, caracté-
risé par sa longueur de cohérence ξ et par la longueur de pénétration de London λ� dS.
Ce supraconducteur est en contact avec une couche ferromagnétique d’épaisseur dF,
dans laquelle un skyrmion de Néel de rayon R est présent. On suppose également que
la couche ferromagnétique présente une interaction spin-orbite bidimensionnelle.

En principe, dans un tel système, il est possible de générer un vortex dans la couche
supraconductrice de deux façons différentes : soit par couplage électromagnétique di-
rect entre le skyrmion et le supraconducteur, soit par effet de proximité. Pour une
couche ferromagnétique uniforme en contact avec un supraconducteur, si l’aimantation
est très inférieure au premier champ critique, µ0M � Hc1, l’interaction électroma-
gnétique standard ne peut pas générer de vortex. Et même dans le cas où M serait
supérieure à Hc1, il est possible d’éviter la formation de vortex en concevant les couches
supraconductrice et ferromagnétique de manière à ce que µ0M � Hc1 dS/dF, ce qui
peut être facilement obtenu en utilisant une couche ferromagnétique beaucoup plus
fine que la couche supraconductrice. Dans cette étude, on va donc négliger l’interaction
électromagnétique directe et s’intéresser uniquement à l’effet de proximité en supposant
que le champ d’échange et l’interaction spin-orbite pénètrent dans le supraconducteur
sur une distance correspondant à l’épaisseur atomique a, où a � dS. Cela induit une
polarisation de spins dans le supraconducteur qui donne naissance à des courants à
l’interface entre les deux couches, et crée un champ magnétique. Si ce dernier est suf-
fisamment fort, il peut à son tour générer un vortex sous le skyrmion, en l’absence de
champ magnétique extérieur.

Afin d’obtenir la condition d’émergence du vortex supraconducteur, on s’intéresse
à l’énergie libre du système dans l’approche de London, en considérant que la su-
praconductivité est bien développée, c’est-à-dire que T � Tc. Dans le formalisme de
Ginzburg-Landau, le couplage entre le supraconducteur et l’ordre magnétique induit
par le skyrmion est décrit par un invariant de Lifshitz. La première étape de cette étude
consiste donc à construire cet invariant dans le formalisme de London.

La condition d’apparition du vortex supraconducteur est ensuite obtenue en minimi-
sant l’énergie libre, plus exactement en comparant cette énergie avec et sans vortex. On
démontre ainsi que la création du vortex est favorisée par un fort couplage spin-orbite,
et par l’augmentation du rayon du skyrmion. De plus, on montre qu’il est également
possible de générer un vortex multiquanta, c’est-à-dire un vortex portant plus d’un
quantum de flux Φ0, en augmentant encore la constante de couplage spin-orbite et/ou
le rayon du skyrmion.

Pour finir, on considère que l’interaction spin-orbite est suffisamment importante
pour créer un vortex portant un unique quantum de flux, et on calcule la distribution
de champ magnétique et de courant dans la couche supraconductrice. On observe alors
que chacune de ces distributions peut s’écrire comme la somme de deux composantes,
l’une provenant du skyrmion, et la seconde du vortex lui-même. On met en évidence la
compétition entre ces deux contributions, qui induit par exemple plusieurs changements
dans le sens de rotation du courant dans la couche supraconductrice.

Cette étude nous ouvre plusieurs perspectives. Tout d’abord, même si la condition
d’émergence du vortex n’est pas atteinte, il est toujours possible de créer des vortex
en appliquant au système un champ magnétique extérieur supérieur à Hc1. Dans ce
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cas-là, nos calculs d’énergie libre démontrent une interaction attractive qui va pié-
ger les vortex au skyrmion pour une orientation donnée du champ magnétique. Pour
l’orientation opposée, les vortex devraient être repoussés par le skyrmion. Cet effet
d’attraction/répulsion entre le skyrmion et les vortex pourrait en principe être détecté
expérimentalement. L’effet inverse à celui étudié dans cette thèse, c’est-à-dire la géné-
ration d’un skyrmion dans la couche ferromagnétique par effet de proximité avec un
vortex supraconducteur, est aussi suggéré par nos résultats, et devrait pouvoir être
observé expérimentalement par microscopie à force magnétique ou par effet Hall topo-
logique dans des systèmes comme Nb/Co/Pt. Remarquons finalement que de récents
travaux montrent la possible existence d’états liés de Majorana dans des paires skyr-
mion/vortex, ouvrant ainsi de nouvelles perspectives de contrôle spatial de ces états.

Supraconductivité multibande en présence d’impuretés magnétiques

La dernière partie de ce manuscrit est consacrée à l’étude de la dépendence spatiale
des états liés de Yu-Shiba-Rusinov induits par des impuretés paramagnétiques dans
des supraconducteurs non-conventionnels.

Ce travail a été motivé par des résultats expérimentaux obtenus récemment par
le groupe de José Ignacio Pascual (CIC nanoGUNE, San Sebastián, Espagne) sur le
cristal supraconducteur β-Bi2Pd en présence d’impuretés formées par des atomes de
Vanadium. De façon surprenante, la densité d’états locale (LDOS) de Shiba de ce
matériau est caractérisée par une double oscillation spatiale. Pour expliquer ce résultat,
nous avons construit des modèles effectifs permettant d’identifier les mécanismes à
l’origine de la double oscillation.

Afin de modéliser les bandes électroniques du matériau, une approche possible
consiste à utiliser des simulations basées sur le modèle tight-binding (modèle des liaisons
fortes). Bien que le supraconducteur β-Bi2Pd soit caractérisé par des bandes électro-
niques de surface (et même des bandes 3D), nous avons choisi de réduire le problème à
un système 1D. Un tel modèle n’est évidemment pas adapté pour décrire les expériences
citées ci-dessus, mais peut nous fournir une première compréhension des mécanismes
fondamentaux à l’origine de la dépendence spatiale des états de Yu-Shiba-Rusinov. Plus
particulièrement, nos modèles 1D permettent de répondre à deux questions simples :
est-ce qu’une impureté magnétique couplée à une bande électronique hélicale (c’est-
à-dire caractérisée par une dispersion linéaire en impulsion p) permet d’obtenir des
oscillations spatiales de la LDOS de Shiba ? Et quelle est la condition minimale pour
observer une double oscillation de cette LDOS ? Dans ce but, le goupe d’Alfredo Levy
Yeyati, de l’Universidad Autónoma de Madrid, a considéré un modèle tight-binding
1D, qui peut être représenté par des fils à la limite continue. Afin de guider leurs
simulations, nous avons développé deux modèles analytiques en 1D.

Le premier modèle correspond à un fil supraconducteur présentant une dispersion
hélicale. En présence d’une impureté magnétique, on démontre que des états de Yu-
Shiba-Rusinov apparaissent dans le gap supraconducteur, mais qu’ils sont caractérisés
par une absence d’oscillations spatiales de la LDOS non polarisée. La dépendence
spatiale des états de Shiba observée dans le supraconducteur β-Bi2Pd ne peut donc
pas être expliquée par des bandes électroniques purement hélicales. On peut cependant
remarquer dans ce modèle que la LDOS polarisée présente une oscillation spatiale, qui
pourrait en principe être détectée expérimentalement par un microscope à effet tunnel
muni d’une pointe magnétique.
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Nous avons ensuite construit un modèle à deux fils supraconducteurs présentant une
dispersion quadratique, connectés par un terme de saut. Une impureté magnétique est
couplée au fil supérieur. Comme on peut s’y attendre, des états de Yu-Shiba-Rusinov
sont localisés dans ce fil, et leur énergie n’est pas affectée par la présence du second fil.
On montre également que la LDOS (polarisée et non-polarisée) présente une double
oscillation spatiale, dont les fréquences correspondent respectivement à la somme et à
la différence des impulsions de Fermi de chaque fil.

La condition minimale pour obtenir une double oscillation spatiale de la densité
d’états locale de Shiba semble donc être la présence de deux bandes électroniques,
participant toutes deux à la supraconductivité. De plus, une dispersion hélicale d’au
moins l’une des deux bandes supprimerait cette double oscillation. Il est donc nécessaire
de considérer d’autres types de dispersions, par exemple quadratiques ou non-purement
hélicale.

Cependant, cette étude est toujours en cours, et pour une compréhension complète
des résultats expérimentaux, ces modèles effectifs vont à terme être accompagnés de
simulations numériques basées sur des modèles tight-binding prenant en compte la
structure de bande réelle de β-Bi2Pd. Ces simulations sont actuellement en cours de
réalisation par M. Alvarado Herrero et A. Levy Yeyati.

Pour finir, on peut noter que les modèles effectifs construits dans ce manuscrit
pourraient être facilement généralisés pour décrire le spectre de supraconducteurs mul-
tibandes en présence d’impuretés magnétiques.
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Resumen en Español

Debido a su potencial aplicación en la creación de qubits topológicos, la interacción
entre la superconductividad y los campos dependientes del espín en sistemas de baja
dimensionalidad ha sido ampliamente estudiada en el contexto de los estados localiza-
dos de Majorana en hilos semiconductores. Es sabido que dicha interacción conduce
a resultados sorprendentes, tales como la mejora del campo magnético crítico, efec-
tos magnetoeléctricos y la aparición de los estados localizados Yu-Shiba-Rusinov en
presencia de impurezas magnéticas. En esta tesis investigamos cada uno de estos tres
efectos en diferentes sistemas. En una primera parte, estudiamos la fase helicoidal y las
corrientes anómalas que surgen de acción conjunta de las interacciones de Zeeman y de
espín-órbita en dos superconductores cuasi-unidimensionales distintos. A continuación,
investigamos la formación de un vórtice superconductor en relación con los efectos ma-
gnetoeléctricos originados por un skyrmion de Néel que está acoplado por proximidad
a una lámina superconductora. Por último, la parte final de la tesis se centra en la
construcción de modelos efectivos que nos permitan entender cualitativamente el aco-
plo entre las impurezas magnéticas y la superconductividad en superconductores no
convencionales, como el β-Bi2Pd.

Estados helicoidales y efectos magnetoeléctricos en hilos superconductores

La primera parte de esta tesis describe superconductores cuasi-unidimensionales en
presencia de interacciones Zeeman y espín-órbita (SO por sus siglas en inglés) del tipo
Rashba. En particular, estudiamos dos tipos de sistemas. El primero consiste en un hilo
superconductor en el cual ambas interacciones existen simultáneamente, mientras que
el segundo es un sistema compuesto por dos hilos en el cual el emparejamiento super-
conductor y los campos dependientes del espín se encuentran separados espacialmente.
En principio, dichos sistemas pueden ser realizados experimentalmente, por ejamplo
utilizando superconductores orgánicos para el sistema de un solo hilo.

Comenzamos discutiendo la aparición de corrientes debidas a la interacción espín-
órbita, denominadas corrientes anómalas, usando el formalismo de covarianza SU(2),
por el cual los campos de Zeeman y de espín-órbita se escriben como el potencial
escalar y vector, respectivamente, de un campo SU(2) electromagnético. En el marco
de esta formulación, obtenemos una expresión general de la corriente para sistemas
unidimensionales a primer orden en el campo Zeeman y de espín-órbita y la aplicamos
en la descripción de ambos sistemas descritos en este capítulo. En el caso de un único
hilo, predecimos que solamente cuando el campo Zeeman tiene una componente paralela
y otra ortogonal al campo de espín-órbita aparece una corriente anómala finita. En el
caso del sistema compuesto por dos hilos, demostramos que un campo Zeeman paralelo
al campo de espín-órbita es condición suficiente para inducir una corriente anómala.

Estas predicciones son corroboradas por cálculos detallados utilizando funciones
de Green en el formalismo de Gor’kov. Partiendo del Hamiltoniano de ambas confi-
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guraciones derivamos las funciones de Green que describen el sistema en el límite de
acoplamiento SO débil, αpF � Tc, donde α es la constante de espín-órbita, pF es el
momento de Fermi y Tc es la temperatura crítica. En este límite podemos obtener
explícitamente la expresión de la corriente, junto con la del parámetro de orden au-
toconsistente. Descubrimos que el estado fundamental del sistema es, de hecho, un
estado de corriente total nula en el cual la corriente anómala es compensada por la cor-
riente derivada del vector de onda q del parámetro de orden superconductor. Resulta
interesante comprobar que en el caso del sistema compuesto por dos hilos el estado
de corriente nula corresponde a dos corrientes opuestas fluyendo a través de cada uno
de los hilos. Finalmente, al imponer q = 0, la corriente de carga anómala es finita y
obtenemos los resultados predichos por el formalismo de covarianza SU(2).

Asimismo, investigamos la aparición de una fase superconductora inhomogénea, lla-
mada fase helicoidal, debida a la presencia de interacción espín-órbita. Al considerar la
relación de autoconsistencia en valores de q no nulos, descubrimos que la coexistencia
de interacciones Zeeman y espín-órbita resultan en la aparición de dicha fase helicoi-
dal para campos magnéticos débiles y cualquier temperatura menor a la temperatura
crítica, T < Tc0. Nótese que, de manera similar a la corriente anómala, la fase inho-
mogénea aparece únicamente si tanto las componentes paralelas y perpendiculares del
campo Zeeman con respecto al de espín-órbita son finitas en el sistema de un único
hilo, mientras que en el sistema de dos hilos tan solo hace falta que la componente
paralela sea no nula.

Para representar el diagrama de fase campo magnético-temperatura del sistema de
un único hilo estudiamos la relación de autoconsistencia para campos de espín-órbita
grandes αpF � Tc. Para ello, es conveniente trabajar en una base diagonal, también
llamada base helicoidal. Demostramos que a medida que la proporción αpF/h aumenta,
donde h es el campo de Zeeman, las correlaciones superconductoras pasan de suceder
entre bandas (interbanda) a suceder dentro de cada una de las bandas (intrabanda).
Por lo tanto, en el límite donde αpF � h, podemos despreciar el emparejamiento
interbanda y derivar las funciones de Green para cada una de las bandas por separado.
Resolver numéricamente la relación de autoconsistencia de este modo, obtenemos el
diagrama de fases para varios orientaciones del campo de Zeeman y diversos valores
de la constante de espín-órbita, α. Mostramos que la presencia de interacción SO de
manera global incrementa el campo magnético crítico. Cuando los campos de espín-
órbita y Zeeman son paralelos, podemos obviar el acoplamiento espín-órbita por medio
de una transformación gauge, de modo que recuperamos un diagrama de fases FFLO.

Estos sistemas podrían ser usados como un enlace débil entre dos superconductores
idénticos para crear uniones ϕ0-Josephson anómalas. En dichos sistemas, el vector de
onda superconductor jugaría el papel de la diferencia de fase necesaria para generar
una corriente a través de la unión, pudiendo abrir nuevas aplicaciones a este tipo de
uniones ϕ0 en dispositivos de memoria.

Generación de vórtices superconductores a través de skyrmions de Néel

En una segunda parte, vamos a estudiar otro de los efectos procedentes de la inter-
acción entre superconductividad y campos dependientes del espín : la posible aparición
de vórtices de Abrikosov en ausencia de campos magnéticos externos.

Para ello, consideramos una lámina fina superconductora de tipo II con un grosor
dS, caracterizada por su longitud de coherencia ξ y su longitud de penetración de
London λ � dS. El superconductor está en contacto con un material ferromagnético
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de grosor dF que alberga un skyrmion de Néel de radio R. Además, asumimos que la
capa ferromagnética presenta interacción de espín-órbita bidimensional.

En principio, tanto el acoplamiento electromagnético directo entre el skyrmion y el
superconductor, y el efecto de proximidad magnético pueden resultar en la nucleación
de un vórtice. Para une capa ferromagnética uniforme en contacto con un supercon-
ductor, si la magnetización es menor que el primer campo crítico, µ0M � Hc1, la
interacción electromagnética estándar no puede nuclear un vórtice. Incluso en el caso
en que M supera el valor de Hc1, es posible evitar la formación del vórtice diseñando
las capas ferromagnética y superconductora de tal manera que µ0M � Hc1 dS/dF, lo
cual se puede conseguir fácilmente si el ferromagneto es mucho más fino que el super-
conductor. Pues en este trabajo, vamos a dejar de lado este efecto y nos centramos
solamente en el efecto de proximidad asumiendo que el campo de canje y la interacción
de espín-órbita tienen en el superconductor una longitud de penetración atómica a, con
a� dS. Esto induce una polarización de espín en el superconductor, que da lugar a una
supercorriente en la superficie de contacto entre este y la capa ferromagnética, creando
un campo magnético. Si el campo magnético es suficientemente grande, el vórtice se
genera debajo del skyrmion sin necesidad de un campo magnético externo.

Para obtener la condición necesaria para que el vórtice superconductor aparezca,
derivamos la energía libre del sistema en la aproximación de London, considerando
que la superconductividad está perfectamente establecida, i.e., T � Tc. En términos
de la energía libre de Ginzburg-Landau, el acoplo entre el superconductor y el orden
magnético inducido por el skyrmion se puede describir a través de una invarianza de
Lifshitz. Por consiguiente, comenzamos el estudio de este sistema construyendo tal
invariante en la aproximación de London.

Con ello, minimizando la energía libre, concretamente comparando el valor de la
energía con y sin vórtice, obtenemos la condición que ha de cumplirse para generar
un vórtice en la capa superconductora. En este trabajo, mostramos que un acoplo de
espín-órbita grande y/o un skyrmion de gran radio favorecen la aparición del vórtice.
Además, demostramos que también es posible generar un vórtice multicuántico, i.e., un
vórtice que tiene más de un cuanto de flujo Φ0, incrementando de nuevo la constante
de acoplo de espín-órbita y/o el radio del skyrmion.

Finalmente, consideramos una interacción de espín-órbita suficientemente grande
como para generar un vórtice de un cuanto de flujo, y calculamos la distribución del
campo magnético y de la corriente en la capa superconductora. Mostramos cómo ambas
distribuciones han de escribirse como la suma de dos componentes, una proveniente del
skyrmion y la segunda generada por el vórtice en sí. Destacamos además la competición
entre ambas distribuciones, que lleva por ejemplo a varios cambios en la dirección de
rotación de la corriente en la lámina superconductora.

Incluso si la condición para la emergencia del vórtice no se cumple, es posible nuclear
los vórtices en la capa superconductora aplicando simplemente un campo magnético
externo mayor que Hc1. En este caso, nuestros cálculos de la energía libre demuestran
un acoplo atractivo que unirá los vórtices al skyrmion en una de las orientaciones del
campo magnético. En la orientación opuesta, los vórtices serán eliminados por el skyr-
mion. Esta atracción o repulsión del skyrmion por los vórtices puede ser, en principio,
detectada experimentalmente. Nuestros resultados también sugieren el efecto inverso, es
decir, la nucleación de un skyrmion debido a la proximidad de un vórtice superconduc-
tor, y podría en principio ser observado experimentalmente gracias a la microscopía de
fuerza magnética o al efecto Hall topológico en sistemas como Nb/Co/Pt. Es importante
recalcar que recientemente se ha demostrado que este tipo de pares skyrmion/vórtice
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han de conllevar estados ligados de Majorana, abriendo nuevas perspectivas para el
control espacial de Majorana.

Superconductividad en multibandas en presencia de impurezas mágneticas

Finalmente, la última parte de la tesis está dedicada al estudio de la dependen-
cia espacial de los estados Yu-Shiba-Rusinov (YSR o Shiba) inducidos por impurezas
paramagnéticas en superconductores no convencionales.

Este trabajo está motivado por resultados experimentales recientemente obtenidos
por el grupo de José Ignacio Pascual (CIC nanoGUNE, San Sebastián, Spain) basados
en el cristal superconductor β-Bi2Pd en presencia de impurezas de Vanadio. De forma
sorprendente, se ha encontrado una oscilación espacial de doble periodo de la densidad
local de estados (LDOS) de Shiba en este material. Con el fin de explicar este resul-
tado, nos centraremos en desarrollar modelos efectivos que sirvan para identificar los
mecanismos en el origen de esta doble oscilación.

Una posible aproximación para modelar la estructura de bandas del electrón es
usar simulaciones basadas en el modelo de enlace fuerte (usualmente conocido como
modelo de "tight-binding"). A pesar de que hay observaciones que indican bandas de
superficie en 2D (e incluso algunas bandas de volumen) que participan en la dispersión
de electrones del β-Bi2Pd, elegiremos simplificar este problema a un sistema unidimen-
sional. Por supuesto, este modelo no es aplicable para describir los experimentos ; sin
embargo, puede proporcionarnos un entendimiento fundamental acerca de los mecanis-
mos en el origen de la dependencia espacial de los estados de Shiba. Específicamente,
nuestros modelos unidimensionales nos permiten entender dos cuestiones básicas, a
saber, cuándo una impureza magnética acoplada a una banda helicoidal da a lugar
a oscilaciones espaciales de Shiba y cuál es la mínima condición para observar una
oscilación espacial doble de los estados YSR. Para abordar estas cuestiones, el grupo
de Alfredo Levy Yeyati de la Universidad Autónoma de Madrid, usó un modelo uni-
dimensional de tight-binding que en el límite continuo se puede representar mediante
hilos. Con el fin de guiar sus simulaciones, debemos por tanto desarrollar dos modelos
analíticos efectivos unidimensionales.

El primer modelo consiste en un solo hilo superconductor con dispersión helicoidal.
Demostramos que, en presencia de una impureza magnética, estados de Shiba aparecen
en el gap superconductor, aunque estos se caracterizan por la ausencia de oscilaciones
espaciales de los LDOS no polarizados. Por tanto, la dependencia espacial de los estados
YSR no puede explicarse basándonos en bandas puramente quirales. Nótese que los
LDOS con polarización de espín del hilo helicoidal muestran una oscilación espacial,
que en principio podría ser detectados de forma experimental gracias a un STM con
puntas magnéticas en materiales reales.

Después hemos desarrollado un modelo para dos hilos : dos hilos superconductores
con una dispersión cuadrática se conectan a través de un término de efecto túnel. Una
impureza magnética se acopla al hilo superior. Como cabía esperar, los estados de Shiba
están localizados en dicho hilo superior, y su energía no se ve afectada por la presen-
cia del segundo hilo. Puede verse cómo ambos LDOS, polarizados y no polarizados,
muestran una oscilación espacial doble con frecuencias que corresponden a la suma y
la diferencia de los momentos de Fermi de cada hilo.

Por tanto, la condición mínima para obtener una oscilación espacial de doble periodo
de los estados de Shiba parece estar presente en dos bandas electrónicas, siendo sendas
particípes en la superconductividad. Además, una dispersión helicoidal de al menos
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una de las bandas eliminaría la oscilación doble de la LDOS. Es por tanto necesario
considerar otro tipo de dispersiones como, por ejemplo, cuadrática o al menos una
dispersión que no sea perfectamente helicoidal.

Sin embargo, este trabajo está aún en progreso y, para un entendimiento completo
del experimento, estos cálculos del modelo efectivo serán acompañados por simulaciones
numéricas basadas en modelos de enlace fuerte, teniendo en cuenta la estructura de
bandas real de β-Bi2Pd. Estas simulaciones están siendo actualmente realizadas por
M. Alvarado Herrero y A. Levy Yeyati.

Finalmente, destacamos que estos modelos efectivos podrían ser fácilmente genera-
lizables para describir el espectro de los superconductores de multibanda en presencia
de impurezas magnéticas.
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Chapter 1

General introduction

T
he presence of a magnetic field in a s-wave superconductor is detrimental
in two distinct ways. First, if the magnetic field interacts with the motion of the

superconducting electrons, it induces opposite Lorentz forces on each electron of the
Cooper pairs, which spreads the pairs and can even break them for fields larger than the
critical magnetic field. This is the orbital effect. On the other hand, if the field interacts
with the spin of the electrons, it induces a spin polarization which tends to align the
opposite spins of the Cooper pair electrons in the same direction, thus breaking the
pairs. This is the Pauli paramagnetic effect, due to the Zeeman effect on conduction
electrons. Usually, the critical field is determined by both orbital and paramagnetic
effects. We will go back on these mechanisms in Chapter 3.

In some materials like heavy fermion superconductors or thin superconducting films
(like Al films) with an in-plane magnetic field, the paramagnetic effect becomes predo-
minant. Peter Fulde, Richard Ferrell, Anatoly Larkin and Yurii Ovchinnikov predicted
in 1964 the existence of a new superconducting state emerging in the presence of a
Zeeman field, the so-called FFLO state [1, 2]. This state appears at low temperatures
T < 0.56Tc0 and magnetic field h > 1.07Tc0, where Tc0 is the critical temperature
in the absence of magnetic field, and is characterized by a spatially dependent order
parameter, as we show in Chapter 3, leading to enhance the critical field at low tempe-
ratures. Despite its prediction more than 50 years ago, the FFLO state has only been
experimentally evidenced very recently [3], mainly because of the difficulty to stabilize
this phase, which is very sensitive to impurities and orbital effect.

If the superconductor in a Zeeman field also displays spin-orbit interaction, new
phenomena emerge due to the interplay between both spin fields. Among them, we can
cite the critical field enhancement related to the existence of a helical phase, another
type of inhomogeneous superconducting phase which appears at high temperatures
and low magnetic fields, briefly described in Chapter 3. Contrary to the FFLO case,
such a superconducting helical state is expected to exist even in the presence of im-
purities, which has motivated numerous investigations in two and three-dimensional
systems [4, 5, 6, 7, 8, 9]. In addition to this non-uniform phase, magnetoelectric ef-
fects stemming from the coupling between spin and charge degrees of freedom, namely
anomalous charge currents, may appear in superconductors with both Zeeman and
spin-orbit interactions [10, 11, 12, 13]. In infinite systems, the ground state corres-
ponds to a zero current state in which these anomalous currents are compensated by
the currents coming from the spatial modulation of the superconducting order para-
meter [6]. In realistic setups, such (finite) systems could be used for example in the
realization of ϕ0-Josephson junctions [14]. The appearance of such anomalous currents
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in superconducting wires in the presence of both Rashba spin-orbit and Zeeman fields,
together with the helical superconducting state is the topic of Chapter 4.

Another interesting phenomenon resulting from the interplay between supercon-
ductivity and spin-dependent fields is the possible emergence of a vortex in a super-
conducting layer proximity coupled to a ferromagnet hosting a Néel skyrmion with
spin-orbit interaction, in the absence of external magnetic field [15]. The nucleation of
vortices in type-II superconductors in the presence of a magnetic field Hc1 < H < Hc2,
where Hc1 and Hc2 are respectively the lower and upper critical fields characterizing
type-II superconductors, was predicted by Alexei Abrikosov in 1957 [16]. Due to the
negative surface energy of such superconductors, the magnetic flux can penetrate the
material in a regular array of tubes, the so-called Abrikosov vortices, each carrying a
quantum of flux Φ0 = h/2 e. This coexistence of superconducting and normal states
was anticipated by Ginzburg and Landau with their classification of two types of su-
perconductors. However, it has been demonstrated that it is also possible to nucleate
a vortex even in the absence of an external magnetic field. Indeed, in the system des-
cribed at the beginning of the present paragraph, the coupling between Zeeman and
spin-orbit interactions in the skyrmion (which can basically be seen as a vortex of
spins) leads to the appearance of anomalous currents, which induce a spin polarization
at the interface with the superconductor due to the proximity effect. Then, if this cur-
rent is sufficiently strong, the associated magnetic field can nucleate a vortex in the
superconducting layer, which surprisingly can even carry more than one quantum of
flux Φ0. We emphasize that such skyrmion/vortex pair is expected to host Majorana
zero modes [17], which are one of the most promising candidates for the realization
of qubits [18, 19, 20, 21, 22, 23, 24, 25, 26]. Chapter 5 is devoted to the study of the
vortex emergence in a superconducting layer proximity coupled to a Néel skyrmion.

Up to now, we have presented examples in which the entire superconducting sys-
tem was subjected to the action of spin-dependent fields. However, it is also possible
to induce a localized exchange field acting like a Zeeman field in a superconductor,
via magnetic impurities. The effect of such impurities on s-wave superconductors was
investigated by Luh Yu, Hiroyuki Shiba and A. I. Rusinov in the 1960’s, who found
the appearance of localized bound states in the superconducting gap, the so-called
Yu-Shiba-Rusinov states [27, 28, 29, 30]. The underlying mechanism is once again the
paramagnetic effect, which locally breaks Cooper pairs : the impurity couples to one
of the electron of the pair, whereas the remaining one forms a spin polarized bound
state. Yu-Shiba-Rusinov states are characterized by a spatially oscillating and decaying
local density of states (LDOS), which allowed them to be detected experimentally for
the first time in 1997, thanks to the development of Scanning Tunneling Microscopy
(STM) [31]. This field is still very much under investigation, mainly because of two
potential applications : First, it has been demonstrated that chains of magnetic im-
purities on top of superconductors lead to the appearance of Majorana zero modes.
Then, Yu-Shiba-Rusinov states in low-dimensional superconductors were proposed as
a probe to determine the nature of superconducting correlations, namely singlet or
triplet pairing [32]. This last idea was one of the motivations of recent experiments by
the group of José Ignacio Pascual in CIC nanoGUNE (San Sebastián, Spain) on the
superconductor β-Bi2Pd in the presence of Vanadium impurities. They obtained a ra-
ther surprising result : the LDOS of Yu-Shiba-Rusinov states displays a double period
spatial oscillation. In Chapter 6, we focus on building effective models to explain this
result.

In this thesis, we study the three effects previously mentioned stemming from the
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interaction between superconductivity and spin-dependent fields in low-dimensional
systems : the emergence of a helical phase, the appearance of anomalous charge cur-
rents, and the presence of Yu-Shiba-Rusinov states induced by a magnetic impurity in
a non-conventional superconductor.

In Chapter 2, we present the main results of the Ginzburg-Landau theory and of
Gor’kov reformulation of the BCS theory. The aim of this chapter is to briefly introduce
some of the fundamental concepts needed to understand the rest of this work.

Chapter 3 is an introduction to inhomogeneous superconductivity through the des-
cription of the FFLO and helical phases. Using qualitative arguments, we explain the
emergence of both phases. Moreover, we present the Green’s function formalism which
will be used in the next chapter and applying it to a superconducting system in the
presence of a Zeeman field, we provide the FFLO field-temperature phase diagram.

In Chapter 4, we study the helical phase and anomalous currents stemming from
the interplay between Zeeman and Rashba spin-orbit interactions in two distinct quasi
one-dimensional superconductors. We first show that it is possible to predict the form of
the anomalous currents in terms of the spin fields using the SU(2)-covariant formalism.
Then, using the Green’s function formalism introduced in Chapter 3, we derive the
complete expression of such currents together with the self-consistent order parameter,
in the limit of weak spin-orbit interaction with respect to the critical temperature, and
show that the ground state corresponds indeed to a zero-current state. Finally, the
field-temperature phase diagram is obtained in the limit of strong spin-orbit coupling
with respect to the critical temperature Tc.

In Chapter 5, we investigate the magnetoelectric effects stemming from a Néel
skyrmion proximity coupled to a superconducting thin film. In the presence of strong
spin-orbit interaction, we show that the skyrmion induces charge currents at the inter-
face between both layers, and a magnetic field which may lead to the generation of a
vortex. From the expression of the free energy of the system, we derive the necessary
condition for the appearance of this vortex, and compute the magnetic field and current
distributions in the superconductor.

Finally, Chapter 6 is devoted to the building of effective models in order to unders-
tand qualitatively the coupling between magnetic impurities and superconductivity in
non-conventional superconductors like β-Bi2Pd. To this purpose, we study two models
in which 1D electronic bands are represented by wires : A one-dimensional supercon-
ductor with helical dispersion and a two wire model with a quadratic dispersion in
which the impurity is coupled only to the upper superconductor.
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Chapter 2

Brief survey of theories of
superconductivity

A
fter the experimental discovery of superconductivity by H. Kamerlingh
Onnes in 1911 [33], different phenomenological theories were developed to explain

the main properties of superconductors. In 1935, Fritz and Heinz London built a theory
based on electrodynamics to explain the perfect diamagnetism observed in supercon-
ducting materials [34], generalized to non-local treatment by Brian Pippard in 1953
[35]. However, the most complete phenomenological description of superconductivity
was realized by Vitaly Ginzburg and Lev Landau in 1950 [36]. Associating electroma-
gnetism and thermodynamics, this approach allowed to describe Meissner effect, and
highlighted the two superconducting characteristic lengths, namely the magnetic field
penetration length, already obtained by London, and the coherence length.

It was not until 1957 that the first microscopic description of superconductivity was
developed by John Bardeen, Leon Cooper and Robert Schrieffer [37]. This BCS theory
is based on the fact that in the superconducting state, two electrons with opposite
spins and momenta are coupled via an efective attractive interaction mediated by
phonons, forming the so-called Cooper pairs [38]. This theory is in fact a many-body
theory describing the behaviour of Cooper pairs. It recovers the main characteristics of
conventional superconductors : The Meissner effect, the penetration length or specific
heats.

However, BCS formalism can be quite complicated to use, specifically to describe
inhomogeneous superconductivity, where the superconducting order parameter is spa-
tially dependent. This problem was solved in two different ways : Bogoliubov-De Gennes
method consists in diagonalizing the BCS Hamiltonian [39], whereas Lev Gor’kov rewor-
ked the BCS formalism in term of Green’s functions [40]. One of the most remarkable
result coming from this last reformulation was the demonstration that the Ginzburg-
Landau theory corresponds to a limiting case of the BCS theory, valid near the critical
temperature Tc [41].

In this chapter, we first introduce the main results of the Ginzburg-Landau theory.
Specifically, we derive the Ginzburg-Landau free energy and equations which contains
the two superconducting characteristic lengths. In a second part, after a very brief intro-
duction to the BCS Hamiltonian, we present the Gor’kov Green’s function formalism.
In particular, we derive the self-consistency equation, which will be used in Chapter
4. Notice that this chapter is only an introduction to some fundamental concepts of
superconducting theories, which are needed to understand the rest of this thesis. To
get access to a more complete description, in particular for the BCS theory which is
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not detailed here, the reader could refer, for example, to Refs. [42, 43].

2.1 Ginzburg-Landau approach

The Ginzburg-Landau theory was developed in the continuity of Landau’s second
order phase transition theory [44, 45]. This one describes the transition from a high
symmetry state to a reduced symmetry state, characterized by a parameter called the
order parameter : In the high symmetry state, this parameter vanishes, and becomes
finite when the symmetry breaks. Landau’s theory is based on the expansion of the
free energy in powers of the order parameter near the transition.

Following Landau’s theory, Ginzburg and Landau described the transition between
normal and superconducting states at temperatures close to the critical temperature
Tc. They assumed a complex superconducting order parameter Ψ (~r) = Ψ0 e

iϕ(~r) des-
cribing the superconducting electrons and derived an expansion of the free energy in
powers of |Ψ|. Then, by the mean of variational calculations, they obtained two dif-
ferential equations, the so-called Ginzburg-Landau equations, which allow to define
the superconducting current and to determine the two characteristic lengths of the
superconducting state.

The triumph of this theory is related to several results and predictions, specifically
the spatial variation of the superconducting electron density and the classification of
superconductors in two types, predicting the mixed phase where the superconducting
and normal phase coexist.

Next, we present the Ginzburg-Landau free energy. Then, from variational treat-
ment, we derive the so-called Ginzburg-Landau equations, leading to the definition of
two characteristic lengths : The penetration length and the coherence length. Finally,
we show how the ratio between these two lengths allow to classify superconductors in
two types.

2.1.1 The Ginzburg-Landau free energy

At temperatures close to the critical temperature Tc, where the transition between
the normal and the superconducting states happens, the free energy density can be
expanded over powers of |Ψ| [44, 45] :

fS = fN + a |Ψ|2 +
b

2
|Ψ|4 +

1

2m?

∣∣∣∣(~
i
~∇+ e? ~A

)
Ψ

∣∣∣∣2 +
~B2

2µ0

, (2.1)

where µ0 is the vacuum permeability, a and b are temperature-dependant parameters
and fN is the free energy density of the normal state, ~A is the vector potential and
~B = ~∇× ~A is the magnetic induction.

To understand the transition between the normal and superconducting states, we
first study the difference of free energy density fN − fS in the absence of gradient and
magnetic field :

∆f = aΨ2
0 +

b

2
Ψ4

0 . (2.2)

The minimization of ∆f with respect to Ψ0 imposes that b must be positive. Indeed, if
we take b negative, the minimum of the free energy would occur for very large values
of Ψ2

0, which makes the expansion inadequate. This minimization gives a + bΨ2
0 = 0,

6



CHAPTER 2. BRIEF SURVEY OF THEORIES OF SUPERCONDUCTIVITY

(a)

Ψ

∆F

•
0

a > 0

(b)

Ψ

∆F

•
Ψ∞

•
−Ψ∞

a < 0

Figure 2.1 – Ginzburg-Landau free energy density in : (a) the normal state (T > Tc) (b) the
superconducting state (T < Tc).

thus leading to the following expression for the order parameter amplitude :

Ψ2
0 = −a

b
. (2.3)

Then, two situations arise depending on the sign of the parameter a, as illustrated in
Fig. 2.1. If a > 0, Ψ2

0 is negative and the only possible solution is Ψ2
0 = 0. This is

the normal state. On the other hand, if a < 0, the order parameter Ψ2
0 is finite and

positive : This is the superconducting state. The minimum of energy is reached for
∆F = −a2/2 b and the equilibrium value of the order parameter is called Ψ∞. The
transition between the normal and superconducting states being related to the sign of
a, we thus define it as a = a0 (T − Tc), where a0 is positive and the temperature T is
close to Tc.

2.1.2 The Ginzburg-Landau equations

The free energy density Eq. (2.1) is a functional of two variables : The order pa-
rameter Ψ and the potential vector ~A. Standard variational calculations lead to the
Ginzburg-Landau differential equations :

aΨ + b |Ψ|2 Ψ +
1

2m?

(
−i ~ ~∇+ e? ~A

)2
Ψ = 0 , (2.4)

and
~j =

i~ e?

2m?

(
Ψ?~∇Ψ−Ψ~∇Ψ?

)
− e?

2

m?
~A |Ψ|2 . (2.5)

By comparing the expression (2.5) with the usual quantum-mechanical current, one can
identify the mass and the charge of the superconducting charge carriers, the so-called
Cooper pairs : m? = 2m and e? = 2 e, where m and −e are respectively the mass and
the charge (e > 0) of the electron. Eq. (2.5) can also be written :

~j =
e

m
Ψ2

0

(
~∇ϕ+ 2 e ~A

)
= 2 eΨ2

0 ~vs , (2.6)

where ~vs =
1

2m

(
~∇ϕ+ 2 e ~A

)
is the velocity of the superconducting electrons in a

gauge-invariant form. This equation allows to identify the modulus of the supercon-
ducting order parameter with the density of superconducting electrons ns :

Ψ2
0 =

1

2
ns . (2.7)
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2.1.3 Two characteristic lengths : Penetration length and cohe-
rence length

A superconducting material is characterized by two lengths, namely the London
penetration length and the coherence length. They can be derived from the Ginzburg-
Landau equations (2.4) and (2.5).

Coherence length

In the absence of magnetic field, Eq. (2.4) reads :

aΨ + b |Ψ|2 Ψ− ~2

4m
∆Ψ = 0 . (2.8)

Near the critical temperature, one can neglect higher order in |Ψ|2, leading to the
following differential equation :

∆Ψ− 1

ξ
Ψ = 0 . (2.9)

This equation involves the coherence length ξ defined by :

ξ (T ) =
ξ0√

1− T
Tc

, (2.10)

where ξ0 =

√
~2

4ma0 Tc
is the coherence length at zero temperature. This characteristic

length can be interpreted as the average distance between the two electrons of the
Cooper pairs.

London penetration length

At equilibrium in the superconducting state, Ψ = Ψ∞ and the current Eq. (2.5)
reads :

~j = −e
2 ns
m

~A . (2.11)

Replacing ~j in the Maxwell-Ampere equation µ0
~j = ~∇ × ~B = −∆ ~A, we obtain the

London equation :

∆ ~A− 1

λ
~A = 0 , (2.12)

where we have defined the London penetration length λ :

λ =

√
m

µ0 e2 ns
. (2.13)

This characteristic length describes the exponential decreasing of a magnetic field in a
superconducting material, which explains the Meissner effect. Notice that contrary to
the London theory, in the Ginzburg-Landau formalism λ is a function of the tempera-
ture : ns = −2 a0 (T − Tc) /b.
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(a)

T

H

Hc

superconducting phase

normal phase

(b)

T

H

Hc1

Hc2

Meissner phase

Mixed phase

normal phase

Figure 2.2 – Temperature-field phase diagrams of superconductors : (a) Type-I supercon-
ductor. When the magnetic fields exceeds Hc1, the material becomes normal. (b) Type-II
superconductor. In the mixed phase Hc1 < H < Hc2 , the superconducting and normal states
coexist, forming Abrikosov vortices.

2.1.4 Two types of superconductors

Both characteristic lengths λ(T ) and ξ(T ) are connected by a parameter called the
Ginzburg-Landau parameter κ :

κ =
λ(T )

ξ(T )
, (2.14)

which is independent of the temperature near Tc. The value of this parameter defines
the two types of superconductors :

• if κ <
1√
2
, we have a superconductor of type I ;

• if κ >
1√
2
, we talk about type-II superconductivity.

These two types of superconductors exhibit really different properties. Type-I super-
conductors are characterized by a perfect diamagnetism until a critical magnetic field
Hc, where the metal becomes normal. From an energetic point of view, these super-
conductors present a positive surface energy between the normal and superconducting
states.

On the other hand, type-II superconductors display a negative surface energy, na-
mely normal and superconducting states can coexist in the same material. In this
case, we observe two critical fields Hc1 and Hc2. For magnetic fields smaller than the
first critical field Hc1, the superconductor behaves like a perfect diamagnet. When the
applied magnetic field exceeds Hc2, the material becomes normal. However, between
these two values a new state appears, called the mixed phase or Shubnikov phase. It
is characterized by the appearance of normal areas where the magnetic field penetrate
the material, and surrounded by circulating supercurrents : The so-called Abrikosov
vortices [16]. More details concerning vortices are provided in Chapter 5.
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In conclusion to this section, we have presented the main results of the Ginzburg-
Landau theory : The Ginzburg-Landau differential equations, the penetration and cohe-
rence lengths and the classification of superconductors in two groups. In the following,
we introduce the Gor’kov Green’s function formalism of the microscopic BCS theory.

2.2 Gor’kov formalism for the BCS theory
It was shown in 1956 by Leon Cooper that in the superconducting state, electrons

were coupled by pairs, forming the so-called Cooper pairs [38]. The effective attractive
interaction between two electrons is mediated by phonons : Qualitatively, an elec-
tron polarizes the ions of the crystal lattice along its trajectory, thus creating positive
charges, which in turn attract a second electron. This last one is therefore connected
to the first electron by an effective attractive interaction, forming a Cooper pair.

The Fermi sea is unstable against the creation of Cooper pairs, which condense
until equilibrium, forming a Bose-like condensate of Cooper pairs. Bardeen, Cooper
and Schrieffer described this condensate state in a historical paper by the mean of
many-body and mean-field theories, recovering the main experimental results of super-
conductivity [37]. To this purpose, they introduced the following effective mean-field
Hamiltonian 1 :

HBCS =

∫
d3~r ψ†α(~r)

[
− ~2

2m
~∇2 − µ+ V (~r)

]
ψα(~r) + ∆?(~r)

∫
d3~r ψ↓(~r)ψ↑(~r)

+ ∆(~r)

∫
d3~r ψ†↑(~r)ψ

†
↓(~r) , (2.15)

where the summation over repeated indices is implicit, and the creation and annihi-
lation operators ψ†α(~r) and ψα(~r) of an electron at position ~r and spin α follow the
anti-commutation relations 2 :

{ψα(~r), ψβ(~r ′)} = {ψ†α(~r), ψ†β(~r ′)} = 0 ; (2.16a)

{ψα(~r), ψ†β(~r ′)} = δαβ δ(~r − ~r ′) . (2.16b)

The first term of Eq. (2.15) describes the energy of a single electron, which includes a

kinetic term − ~2

2m
~∇2−µ, where µ is the chemical potential, and a potential term V (~r).

The two other terms represent the energy associated to the superconducting pairing,
where we define the superconducting order parameter ∆(~r) as :

∆(~r) = γ 〈ψ↓(~r)ψ↑(~r)〉 . (2.17)

In the case of a constant order parameter, most of the characteristics of s-wave homo-
geneous superconductors can be obtained from Eqs. (2.15) and (2.17).

Shortly after the publication of the BCS theory, researchers began to investigate
inhomogeneous superconductivity. To simplify the BCS treatment of such problems,
Lev P. Gor’kov reworked the equations of motions of annihilation and creation operators
involved in the BCS theory in terms of Green’s functions [40]. Gor’kov formalism allows

1. Readers interested in details can refer to Refs. [42, 43].
2. Notice that in this thesis, we kept the most common denominations, i.e. Ψ(~r) refers to the

superconducting order parameter of the Ginzburg-Landau theory (which is called ∆(~r) in the BCS
theory), whereas ψ corresponds to the annihilation operator of the BCS theory.
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to get access to some information about the system, like the energy spectrum or the
field-temperature phase diagram, in a rather simple way. This is the main subject of the
present section : We present the Gor’kov Green’s function formalism, which will be used
in Chapters 3 and 4 to describe superconductivity in the presence of spin-dependent
fields.

2.2.1 Gor’kov equations

The main idea of Gor’kov was to formulate the BCS theory in terms of Green’s
functions. In this case, the equations of motion, called Gor’kov equations, can be solved
exactly, thus allowing to have the expression of the Green’s functions. From these
expressions, we can have access to fundamental characteristics of the superconductor
like the energy spectrum, as we will see in this section, or the field-temperature phase
diagram (see Sec. 2.2.2 and Chapter 3). To illustrate how Gor’kov formalism works,
we consider an isolated superconductor with potential V (~r) = 0 and a constant order
parameter ∆. From the BCS Hamiltonian written in momentum space, we derive the
evolution equations of annihilation and creation operators and then write them in terms
of Green’s functions. Finally, we solve these equations and derive the energy spectrum
of the system.

In momentum space, the BCS Hamiltonian Eq. (2.15) reads :

HBCS =

∫
d3~p

[
ξ ψ†α(~p)ψα(~p) + ∆? ψ↓(~p)ψ↑(−~p) + ∆ψ†↑(~p)ψ

†
↓(−~p)

]
(2.18)

where ξ =
p2

2m
−µ is the quasiparticle energy. Although we did not mention it explicitly

until now, the annihilation and creation operators are functions of the imaginary time
τ : ψα(~p) = ψα(~p, τ).

The evolution equations of creation and annihilation operators are given by the
commutator of these operators with the BCS Hamiltonian :

∂τψ↑(~p) = [ψ↑(~p), HBCS] = −ξ ψ↑(~p)−∆ψ†↓(−~p) ; (2.19a)

∂τψ
†
↓(~p) =

[
ψ†↓(~p), HBCS

]
= ξ ψ†↓(~p)−∆? ψ↑(−~p) , (2.19b)

where ∂τ = ∂/∂τ .
We now introduce two Green’s functions as originally proposed by Gor’kov [40].

The first Green’s function, G, is called normal Green’s function and describes how an
electron with momentum ~p propagates during a time τ . The second Green’s function
F † was introduced by Gor’kov to describe superconducting correlations, and is called
anomalous Green’s function :

Gαβ (~p, τ) = −〈Tτ ψα (~p, τ) ψ†β (~p, 0)〉 ; (2.20)

F †αβ (~p, τ) = 〈Tτ ψ†α (~p, τ) ψ†β (−~p, 0)〉 , (2.21)

where Tτ is the time-ordering operator and α, β label the spin. The brackets 〈...〉
represent the average value on the ground state at zero temperature, or a statistical
average on the grand canonical Gibbs distribution at finite temperature.

The key point of this theory is that the evolution equations of the Green’s functions
(2.20) and (2.21) contain the time derivatives of the annihilation and creation operators

11
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ψ↑ and ψ†↓ :

∂Gαβ

∂τ
= −δαβ − 〈Tτ

∂ψα(~p, τ)

∂τ
ψ†β(~p, 0)〉 ; (2.22)

∂F †αβ
∂τ

= 〈Tτ
∂ψ†α(~p, τ)

∂τ
ψ†β(−~p, 0)〉 . (2.23)

Therefore, after replacing Eqs. (2.19a) and (2.19b) into Eqs. (2.22) and (2.23) and
taking the temporal Fourier transform, we obtain the so-called Gor’kov equations :

(iωn − ξ) G+ ∆ iσy F † = 1 ; (2.24a)
(iωn + ξ) F † −∆? iσy G = 0 , (2.24b)

where G and F † are the spin matrices of components Gαβ(~p, τ) and F †αβ(~p, τ), σy is

a Pauli matrix, and ωn = 2 π T

(
n+

1

2

)
(n ∈ Z) are the Matsubara frequencies at

temperature T .
These Gor’kov equations Eq. (2.24) can be solved exactly, leading to the expressions

of G and F † :

G = − iωn + ξ

ω2
n + ξ2 + |∆|2

1 ; (2.25a)

F † = − ∆?

ω2
n + ξ2 + |∆|2

iσy . (2.25b)

From the expression of the Green’s functions Eq. (2.25), we can derive the energy
spectrum ε of the system, which is given by the poles of the G and F † after performing
the analytical continuation iωn → ε :

ε± = ±
√
ξ2 + |∆|2 . (2.26)

Therefore, we have seen that the Gor’kov equations allow to obtain the spectral
properties of a superconductor in a simple way. However, to be fully equivalent to the
BCS theory, these equations must be completed by the self-consistency relation, obtai-
ned from the expression of the superconducting order parameter Eq. (2.17), which gives
access to macroscopic characteristics, like the critical magnetic field and temperature.
This is the point of the following section.

2.2.2 The self-consistency relation

According to Gor’kov formulation, the superconducting order parameter ∆(~r) Eq.
(2.17) can be expressed in terms of the anomalous Green’s function F↓↑ :

∆(~r) = γ F↓↑ (~r, 0) , (2.27)

where F↓↑ (~r, 0) = F↓↑ (~r, ~r, 0) is written in time and position space. In frequency-
momentum space, it reads :

∆? = γ T
∑
ωn

∫
F †↓↑ (~p, ωn)

d3~p

(2 π)3
, (2.28)

12
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where the summation is made over all Matsubara frequencies. This equation (2.28) is
called self-consistency relation, and allows to have access to many properties of the
superconductor.

To obtain the field-temperature phase diagram of a superconductor in the presence
of a magnetic field as we do in Chap. 3 and 4, it is more convenient to reformulate the
self-consistency relation Eq. (2.28) in a way which eliminates γ. In the following, we
derive this second expression of the self-consistency relation in the specific case of 1D
systems, which are studied in the next two chapters.

The superconducting order parameter being a constant, we can equalize this equa-
tion for two different temperatures :

Tc
∑
ωn

∫ +∞

−∞

F †↓↑ (p, ωn)

∆?
dp = Tc0

∑
ω0
n

∫ +∞

−∞

F †↓↑ (p, ω0
n)

∆?
dp , (2.29)

where Tc0 is the critical temperature of a uniform superconductor in the absence of
fields, whereas Tc can be the critical temperature of a superconductor with a Zeeman
field or spin-orbit coupling for example. For the isolated superconductor, the anomalous
Green’s function F †↓↑ (p, ω0

n) is given by Eq. (2.25b). Considering that the chemical
potential is the largest energy involved in the problem, namely µ� Tc0, and since F †
only depends on ξ, one can transform the p integral of the right part of Eq. (2.29) into
a ξ integral, following 3 : ∫ +∞

−∞
dp ≈ 2N(0)

∫ +∞

−∞
dξ , (2.30)

where N(0) = 1/vF is the density of states at the Fermi level, and vF is the Fermi
velocity. We can then use the residue technique to integrate F †↓↑ (p, ω0

n) over ξ, leading
to :

Tc
∑
ωn

∫ +∞

−∞

F †↓↑ (p, ωn)

∆?
dp =

2

vF
Tc0
∑
ω0
n

π

|ω0
n|
, (2.31)

By adding and subtracting the term
2

vF
Tc
∑
ωn

π

|ωn|
to Eq. (2.31), and noticing that

the sum over all Matsubara frequencies of the anomalous Green’s function F †↓↑ (p, ωn)
is equal to twice the sum over positive Matsubara frequencies of the real part of
F †↓↑ (p, ωn), we arrive to the following equation :

ln

(
T

Tc0

)
= Tc

∑
ωn≥0

[
vF
2

∫ +∞

−∞
Re

(
F †↓↑ (p, ωn)

∆?

)
dp− π

ω

]
, (2.32)

which is the expression of the self-consistency relation that we will use in Chapters
3 and 4 to determine the field-temperature phase diagram. Indeed, if we consider a
superconductor in the presence of a Zeeman field h, which is taken into account in
the anomalous Green’s function F †↓↑, it is quite easy to extract h as a function the
temperature T from Eq. (2.32). Moreover, this relation allows to describe also inho-
mogeneous superconductors, characterized by a spatially dependent order parameter.
This last point will be specifically detailed in Chapter 3.

3. As we will see in Chapter 4, the integration becomes more complicated in the presence of spin-
orbit interaction.
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2.3 Conclusion
The goal of this chapter was to present briefly the main ideas of two theories

of superconductivity, namely the phenomenological Ginzburg-Landau theory, and the
Gor’kov reformulation of the microscopic BCS theory.

From the expression of the Ginzburg-Landau free energy, we derived differential
equations, the so-called Ginzburg-Landau equations, which led to some important re-
sults : The expression of the two characteristic lengths and the classification of super-
conductors in two groups.

Then, we introduced the Gor’kov formalism, and derived the self-consistency rela-
tion. This reformulation of the BCS theory in terms of Green’s function is particularly
adapted to study inhomogeneous superconductivity, and will be used in Chapters 3
and 4.

14



Chapter 3

Introduction to inhomogeneous
superconductivity

T
he present chapter provides an introduction to inhomogeneous superconducti-
vity, a topic which will be addressed in Chapter 4 for 1D superconductors in the

presence of spin-orbit interaction. We focus specifically on two types of non-uniform
superconducting states : The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase [1, 2],
which was the first inhomogeneous phase predicted, and the helical phase, which ap-
pears in the presence of spin-orbit interaction [46].

These non-uniform states emerge in s-wave superconductors in the presence of a
Zeeman field, and are both characterized by a spatially dependent order parameter,
leading to a critical magnetic field enhancement with respect to the critical field of
uniform superconductors, where the order parameter is constant. However, they have
different physical origins. The FFLO state stems from the Pauli paramagnetic effect :
when a Zeeman field is applied on a superconductor, it can induce a finite momentum of
the Cooper pairs, which in turn involves spatial oscillations of the order parameter. On
the other hand, the helical state originates from the interplay between spin-orbit and
Zeeman interactions, which also yields a finite momentum of the Cooper pairs. This
state has been largely investigated in 2D and 3D superconductors due to the variety of
resulting phenomena : magnetoelectric effects [11, 12, 14, 47, 48, 49, 50], triplet pairing
[51, 52], and critical field enhancement larger than in the FFLO state [4, 5].

In a first section, we present the main characteristics of the FFLO phase. After a
brief description of the two pair-breaking effects, namely the orbital and the Pauli pa-
ramagnetic effects, we qualitatively explain how the second one can induce the FFLO
phase. Then, we use the Gor’kov formalism introduced in the previous chapter to study
the self-consistency relation of a one-dimensional superconductor in the presence of a
magnetic field, and we provide its field-temperature phase diagram. Recent experimen-
tal evidences of the FFLO phase are also briefly presented. The second section of this
chapter is devoted to the helical phase. By the mean of spectral and phenomenologi-
cal arguments, we briefly explain why this phase appears in superconductors in the
presence of spin-orbit interaction.

This chapter allows to introduce methods that will be used in Chapter 4 to study
inhomogeneous superconductivity in the presence of spin-orbit interaction. Moreover,
the FFLO state will be exploited as a reference, with which we will always compare
the helical phase obtained in Chapter 4.
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3.1 First prediction of inhomogeneous superconduc-
tivity : The FFLO state

The FFLO state was predicted in 1964 by Peter Fulde and Richard Ferrell, and by
Anatoly Larkin and Yurii Ovchinnikov in two different works for s-wave superconduc-
tors in the presence of a Zeeman magnetic field [1, 2].

Generally, in type-II superconductors, the presence of a magnetic field stronger
than the critical field destroys superconductivity in two mechanisms : The orbital pair-
breaking effect, responsible for the appearance of superconducting vortices, and the
Pauli paramagnetic pair-breaking effect. This last one originates from the interaction
between the magnetic field and the spin of the superconducting electrons, called Zeeman
interaction, which induces a spin polarization breaking Cooper pairs if the field is
sufficiently strong. However, it exists a critical value of the magnetic field larger than
the critical field of the uniform superconducting state under which Cooper pairs are not
broken : The finite momentum of the pairs induced by Zeeman effect is compensated
by spatial oscillations of the superconducting order parameter. This is the FFLO state.

In this section, we first briefly introduce the two pair-breaking effects and quali-
tatively explain the origin of the FFLO state. Then, using the Gor’kov formalism in-
troduced in Chapter 2, we derive the self-consistency equation of a superconductor in
the presence of a Zeeman field, allowing for a spatially dependent order parameter. We
show how the appearance of the FFLO phase can be deduced from the self-consistency
relation and provide the field-temperature phase diagram. Finally, we present recent
experimental evidences of the existence of the FFLO state.

3.1.1 Two pair-breaking mechanisms

When a magnetic field ~B is applied on a superconductor, Cooper pairs can be
destroyed in two ways. The first one is the orbital pair-breaking effect, resulting from
the Lorentz force ~FLorentz = e

(
~v × ~B

)
, where ~v is the electron velocity. This force is

opposite for each electron of the Cooper pair due to their opposite momenta ~p = m~v,
as illustrated in Fig 3.1a. If the magnetic field is sufficiently strong, the kinetic energy
of the Cooper pair becomes higher than the one of two single electrons, and the pair
breaks. This effect leads to the emergence of Abrikosov vortices (see Chapter 5), and

superconductivity is destroyed at the second critical field Horb
c2 =

Φ0

2 π ξ2
, where Φ0 is

the superconducting quantum of flux and ξ is the coherence length.
The second pair-breaking mechanism is the Pauli paramagnetic effect. It originates

from the interaction between the magnetic field and the spin of electrons, called Zeeman
interaction and described by the Hamiltonian operator

ĥZeeman = ~h · ~σ , (3.1)

where ~σ are the Pauli matrices and we used the notation ~h = g µB ~B/2, g being the
gyromagnetic factor (g ≈ 2 for electrons) and µB the Bohr magneton. The Zeeman
interaction leads to a splitting of the energy bands between spin up and down, as
illustrated in Fig. 3.2, which induces a spin polarization in the normal state. In the
case of s-wave superconductivity, Cooper pairs are made of two electrons with opposite
spins, and thus are not interacting with the field. However, if the magnetic field becomes

larger than the second critical field HP
c2 =

√
2

∆

g µB
, single electrons are energetically
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(a)

~p

~FLorentz

-~p

~FLorentz

~B

(b)

Sz = +1
2

Sz = −1
2

Figure 3.1 – (a) When we apply a magnetic field on Cooper pairs, the Lorentz force drives
electrons in opposite directions because of their opposite momenta. (b) Electrons of Cooper
pairs have opposite spins. The presence of a Zeeman field, which implies a spin polarization
of electrons, can break the pair.

E

p

↑
↓

Figure 3.2 – Zeeman energy spectrum. The zero field energy band (dashed line) is split into
two bands when we apply a magnetic field, one for spin-up electrons (red line) and the other
for spin-down electrons (blue line).

more favorable than Cooper pairs, which are broken. The critical field HP
c2 is called the

paramagnetic limit [53, 54].
The relative importance of both pair-breaking effects is determined by the Maki

parameter [55] :

αM =
√

2
Horb
c2

HP
c2

. (3.2)

This parameter is usually much smaller than unity, and thus the paramagnetic effect is
negligible. However, in some materials like heavy fermion superconductors, 2D super-
conductors with an in-plane magnetic field or low-dimensional superconductors, this
effect becomes predominant, and has been observed in thin superconducting films, like
for example Al films [56]. Next, we explain qualitatively how the paramagnetic effect
can lead to the FFLO state.

3.1.2 Qualitative arguments for the appearance of the FFLO
state

In order to understand why the FFLO state appears, we study the simplest case
of a one-dimensional (1D) superconductor at zero temperature in the presence of a
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E

p• •

↑
↓

−pF + δpF pF + δpF

Figure 3.3 – In the presence of a magnetic field, the momentum of the Cooper pair electrons
is shifted from pF to pF + δpF for electrons with spin up, and from from −pF to −pF + δpF
for electrons with spin down.

magnetic field, whose the orbital effect is neglected.

In the absence of magnetic field, Cooper pairs are formed by two electrons with
opposite momenta pF and −pF at the Fermi surface. Therefore, the total momentum of
a Cooper pair is zero. But when a magnetic field ~B is applied on the superconductor, the
Zeeman splitting implies momentum shifts from pF to p↑ = pF+δpF for the electron with
spin up, and from −pF to p↓ = −pF +δpF for the electron with spin down, where δpF =
µB B/vF and vF the Fermi velocity. This effect is illustrated in Fig. 3.3. The resulting
momentum of the Cooper pair is then finite and equal to p↑+p↓ = 2 δpF. The presence
of such a non-vanishing center-of-mass momentum implies that the superconducting
order parameter exhibits a spatially dependent phase in real space such that :

∆ (x) = ∆ ei q x , (3.3)

where the amplitude ∆ of the superconducting order parameter is a function of the
temperature, as proposed by Fulde and Ferrel in 1964 [1]. Moreover, this description
shows that at zero temperature, the FFLO phase is defined for all values of the magnetic
field : The paramagnetic limit does not exist in 1D [57]. However, in 2D and 3D the
wave vector δpF depends on the direction of vF. It is thus impossible to find a unique
value of q which compensates exactly the Zeeman splitting for all the electrons of the
Fermi surface. The paramagnetic limit is thus preserved. Notice nevertheless that the
critical field of the FFLO phase is still higher than the uniform one a zero temperature.

This is a simple way to understand why the FFLO state can appear in supercon-
ductors in the presence of a field acting on spins. In the next section we provide a
microscopically description of the effect at finite temperature. Specifically we present
the Gor’kov equations of such a 1D superconductor in Nambu spin basis. From these
equations, the self-consistency relation is deduced, which allows to present the field-
temperature phase diagram.

18



CHAPTER 3. INTRODUCTION TO INHOMOGENEOUS
SUPERCONDUCTIVITY

3.1.3 Characteristics of the FFLO phase of a quasi-1D super-
conductor

In this section, we introduce the formalism which is used in the following chap-
ter to describe non-uniform superconducting wires at finite temperature. In quasi-1D
superconductors, electrons are confined in one direction, thus preventing the orbital ef-
fect. The effect of a magnetic field is then purely paramagnetic and one should expect
the appearance of the FFLO phase. However, it has been demonstrated that quantum
fluctuations would kill superconductivity in such low-dimensional systems [58]. Des-
pite this, superconductivity has been reported in quasi-1D materials like some organic
superconductors [57, 59, 60]. Such compounds consist of weakly coupled 1D chains.
The interchain coupling is described by a hopping parameter t. If the hopping integral
t� Tc, then the system can be described by a strictly 1D model. On the other hand,
as it has been established in [61], the mean-field treatment is justified if t � T 2

c /µ,
where µ is the chemical potential. So for T 2

c /µ � t � Tc, the critical fluctuations of
the superconducting order parameter are effectively suppressed, and the system can be
treated as a strictly superconducting 1D wire.

The Hamiltonian of an infinite superconducting wire along the x-direction in the
presence of a general Zeeman field ~h (Eq. 3.1) with an oscillating superconducting order
parameter ∆(x) = ∆ ei q x as introduced in Eq. (3.3) reads :

H =

∫
dpΨ†

(
ĥN + ĥSC

)
Ψ , (3.4)

where Ψ =
(
ψ↑(p+ q/2), ψ↓(p+ q/2), −ψ†↓(−p+ q/2), ψ†↑(−p+ q/2)

)T
is the spinor

containing the annihilation and creation operators in Nambu spin basis. The Hamilto-
nian operator ĥN describes the system in the normal state :

ĥN =

(
ξ +

q2

8m

)
τz +

q p

2m
+ ~h · ~σ . (3.5)

Here ξ =
p2

2m
−µ is the quasiparticle energy, and σx,y,z, τx,y,z are the Pauli matrices ac-

ting respectively in spin and Nambu space. The superconducting term ĥSC is expressed
in Nambu basis as :

ĥSC = −∆ τx . (3.6)
To compute the self-consistency equation, we use the Green’s function formalism (see
Chapter 2). Close to the normal-superconducting phase transition, and assuming that
this phase is of second order, ∆� T , one can expand the Green’s function G in series
of ∆. At first order in ∆, G reads :

G ≈ GN +GN ĥSCGN , (3.7)

where GN is the normal state Green’s function, obtained by solving the equation of
motion for the Green’s functions

(
iωn − ĥN

)
GN = 1. In Nambu space, GN reads

GN =

(
G− 0
0 G+

)
, (3.8)

where the matrix Gλ (λ = ±) is defined in the spin basis :

Gλ =
iωn + λ ξ + λ q2

8m
− q p

m
+ ~h · ~σ(

iωn + λ ξ + λ q2

8m
− q p

m

)2
− h2

, (3.9)
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where h = |~h| is the modulus of the Zeeman field.
In this formalism, the self-consistency relation Eq. (2.32) derived in Chapter 2 can

be written :

ln

(
Tc
Tc0

)
= 2Tc

∑
ωn>0

[
vF
8

Re
(∫ +∞

−∞
Tr
(
G

∆
τx

)
dp

)
− π

ωn

]
. (3.10)

Assuming that the chemical potential is the largest energy involved in the problem,
µ � Tc, h, and noticing that G Eqs. (3.7 - 3.9) only depends on ξ, one can turn the
p integration in Eq. (3.10) into ξ integration, using Eq. (2.30). A simple way of seeing
the emergence of the FFLO phase is to expand Eq. (3.10) in series with respect to the
wave-vector q :

ln

(
Tc
Tc0

)
= −2 π Tc

∑
ωn>0

[
h2

ωn (ω2
n + h2)

+
ωn (ω2

n − 3h2)

4 (ω2
n + h2)3

v2F q
2

]
. (3.11)

The equilibrium value of q is obtained by maximizing Eq. (3.11) with respect to q, which
is the equivalent of minimizing the Ginzburg-Landau free energy [57]. The absence of
linear term in q in the expansion of the self-consistency relation Eq. (3.11) implies that
we need to expand it at higher order to derive the equilibrium value of the wave-vector.

However, the sign of the second order term in q, C =
∑
ωn>0

ωn (ω2
n − 3h2)

4 (ω2
n + h2)3

, is sufficient

to predict the behaviour of the superconductor, as illustrated in Fig. 3.4 :

• when C < 0, the maximum of Eq. (3.11) is obtained for q = 0, corresponding to
the uniform phase ;

• when C > 0, the maximum of Eq. (3.11) corresponds to a finite value of q. This
is the FFLO state.

The transition between the uniform and the FFLO states occurs when C vanishes,
i.e. at coordinates (T ? = 0.56Tc0, h

? = 1.07Tc0), where T ? and h? are the tricritical
temperature and magnetic field.

The (h, T )-phase diagram of a 1D superconductor is presented in Fig. 3.5. For
T > T ?, the modulated phase does not exist (q = 0). However, for T < T ?, the critical
field is larger for the modulated phase (solid line) than for the uniform one (dashed
line) : The FFLO state is the most stable one. When T → 0, the transition line between
the FFLO and normal states diverges, due to the absence of paramagnetic limit in 1D
highlighted in Sec. 3.1.2). Notice that this phase diagram does not depend on the
direction of the magnetic field.

Finally, we have to emphasize an important point concerning the form of the space
dependent order parameter ∆(x). For more convenience in the calculations, we used
the form proposed by Fulde and Ferrel in 1964 (Eq. 3.3). However, another solution,
proposed by Larkin and Ovchinnikov [2], gives the most stable inhomogeneous phase :
∆(x) = ∆ cos(q x). Notice that due to this late expression of the order parameter, the
FFLO phase is sometimes referred as multiple-q phase.

In the next section, we provide some experimental evidences of the existence of the
FFLO state. We briefly explain why this phase is complicated to detect, and present
recent experiments on two types of potential candidates : Heavy fermion and layered
organic superconductors.
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Tc

0
q2

FFLO

C > 0

uniform

C < 0

Figure 3.4 – The sign of the second order term in q of the expansion of the self-consistency
relation is sufficient to determine the superconducting phase : If C < 0, this is the uniform
phase, whereas C > 0 corresponds to the modulated phase

Figure 3.5 – Field-temperature phase diagram of a 1D superconductor. For T > T ? =
0.56Tc0, the superconductor is in the uniform state. But for T < T ?, the transition line
between the BCS and normal states (dashed line) has to be replaced by transition line between
the FFLO and normal states (solid line).
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3.1.4 Experimental evidence of the existence of the FFLO state

Despite its prediction more than 50 years ago, the FFLO state has been observed
for the first time very recently [62]. Indeed, this inhomogeneous phase is not obvious
to detect experimentally because of two requirements :

• As we explained in Sec. 3.1.1, the paramagnetic effect must be dominant over the
orbital effect, which is not the case in most of the type-II superconductors.

• The superconductor must be very clean, because impurities are detrimental to
the FFLO state [63].

Therefore, the material must display a very large Maki parameter αM � 1, and a mean
free path larger than the coherence length ξ � l, which ensures that it is very clean.
Among the possible candidates, two materials were widely investigated over the past
twenty years : Heavy fermion superconductors and layered organic superconductors
with an in-plane magnetic field.

Heavy fermion superconductors
Heavy fermion materials are intermetallic compounds containing a partly filled 4f or

5f energy band. At low temperature, the strongly interacting electrons can be described
by weakly interacting fermionic quasiparticles, where the mass has been renormalized :
The effective mass can be as high as 1000m, where m is the electronic mass. This high
effective mass implies that the orbital field Horb

c2 and therefore the Maki parameter αM

increase, thus leading to a dominant paramagnetic effect.
Several heavy electron superconductors were proposed as potential candidates for

the FFLO state, in particular CeCoIn5 [64], which satisfies both requirements (αM � 1
and ξ � l). Calorimetric measurements show indeed a transition between two su-
perconducting phases at low temperature and high magnetic field [65], which could
correspond to the transition between the BCS and the FFLO state. However, it was
finally demonstrated that this transition corresponds to a spin-density wave ordering
[66]. This is another aspect of the difficulties to observe the FFLO state : Such super-
conducting transitions and critical fields exceeding the paramagnetic limit are common
features of unconventional superconducting states like the FFLO state or triplet su-
perconductivity.

Layered organic superconductors
In quasi-2D (1D) organic superconductors, the orbital motion is restricted to the

crystal plane (chain). Therefore, when a magnetic field is applied parallel to the layers
(wires), the orbital effect is suppressed. Moreover, since these superconductors are very
clean, they are perfect candidates for the FFLO detection. A critical field nearly diver-
ging at low temperatures has been observed in several compounds, like λ-(BETS)2GaCl4
or (TMTSF)2X, where the anion X can be PF6 or ClO4. Such a feature can be inter-
preted as a strong evidence for the presence of the FFLO state.

More recently, the field-temperature phase diagram of the layered organic supercon-
ductor κ-(BEDT-TTF)2Cu(NCS)2 has been experimentally established in the presence
of an in-plane magnetic field [62] (Fig. 3.6). This result was obtained from heat capa-
city and magnetocaloric measurements, and compared with previous measurements :
Nuclear magnetetic resonance (NMR) [67, 68], rf penetration depth [69] and earlier spe-
cific heat measurements [70]. In this phase diagram, the FFLO state is clearly visible
at low temperature (T < 4.13 K) and high magnetic field (B > 20.7 T).
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Figure 3.6 – Field-temperature phase diagram of the organic superconductor κ-(BEDT-
TTF)2Cu(NCS)2 in the presence of an in-plane magnetic field, obtained from calorimetric
measurements (black points) [62]. Data points from other works are included for comparison :
rf penetration depth (green) [69], NMR (purple and red) [67, 68] and previous calorimetric
(blue) [70] measurements. The FFLO phase is clearly visible.

In the next section, we briefly introduce another type of inhomogeneous supercon-
ductivity, which appears in the presence of spin-orbit interaction : the helical state.

3.2 Another type of inhomogeneous superconducti-
vity : The helical state

In the previous section, we described the FFLO phase stemming from the parama-
gnetic effect in a superconductor in the presence of a Zeeman magnetic field. Now, we
consider that spin-orbit interaction is also present in the superconductor, leading to a
new type of modulated phase called the helical phase. In this section, we qualitatively
explain the origin of this phase, which will be investigated at the microscopical level
for quasi-1D superconductors in Chap. 4.

The helical phase appears due to the interplay between the Zeeman (Eq. 3.1) and
spin-orbit (SO) interactions. In particular, Rashba-type SO coupling, which is consi-
dered in the next chapter, is described by the following Hamiltonian operator :

ĥso = α (~σ × ~p) · ~n , (3.12)

where α is the spin-orbit coupling constant and ~n is a unit vector along the polar axis.
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To illustrate the following explanations, we consider a 2D system in the (x, y)-plan
with a Zeeman field ~h applied parallel to the surface 1. In this case, the SO interaction
described by Eq. (3.12) reads : ĥso = α (py σx − px σy). The presence of both spin-orbit
and Zeeman fields leads to split the energy spectrum into two helical bands represented
in Fig. 3.7 and characterized by the energy :

Eλ(p) = ξ + λ

√
h2 + α2 p2 + 2α (~p× ~ez) · ~h , (3.13)

where λ = ± labels the bands and ~ez is the unit vector in the direction normal to the
surface.

In the limit of large spin-orbit α pF � h, the energy Eq. (3.13) can be expanded at
first order in h :

Eλ(p) ≈ ξ + λα pF + λα (~p× ~ez) · ~h . (3.14)

In the superconducting state for large SO, pairing occurs between two electrons with
opposite spins in the same band, as we will demonstrate in Chap. 4 Sec. 4.3. Therefore,
the interplay between SO and Zeeman interactions implies momentum shifts from ± p
to ± p+ q/2 such that the paired states are degenerate : Eλ(p+ q/2) = Eλ(−p+ q/2),
where q = −2α (~p× ~ez) · ~h/vF is obtained from Eq. (3.14). As in the FFLO state
described in Sec. 3.1.2, Cooper pairs have a finite total momentum, which results in
spatial oscillations of the superconducting order parameter such that ∆(~r) = ∆ ei ~q·~r.

From a phenomenological point of view, the appearance of the helical phase re-
sults from an additional term in the Ginzburg-Landau free energy Eq. (2.1) [10, 71].
This linear-in-gradient term is called Lifshitz invariant and reads for the previous 2D
system 2 :

FL = ε(α)~ez ·
[
~h×

(
Ψ? ~∇Ψ−Ψ ~∇Ψ?

)]
, (3.15)

where ε(α) is a function of the SO coupling constant α. This Lifshitz invariant is
finite only in the presence of a non-zero wave-vector ~q, and allows to describe the
magnetoelectric effects involved in a superconductor by the interplay between SO and
Zeeman interactions [72]. Such an invariant is constructed in Chapter 4 in the context of
one-dimensional systems. Notice that at the level of the Ginzburg-Landau free energy,
the FFLO phase arises from a change of sign of the quadratic-in-gradient term (see Eq.
2.1), which is conceptually different from the helical state. Moreover, the competition
between these two states has been studied in many references [4, 6, 7, 73, 74, 75, 76], and
here we simply highlight the fact that when both helical and FFLO-like modulations
coexist in a system, this involves two regions in the (h, T )-phase diagram with different
magnitudes of q. This effect can be observed in the quasi-1D systems studied in Chapter
4.

1. Such arguments are more complicated to show in 1D systems. In this case it is necessary to take
into account at least two components of the Zeeman field, one parallel and the other one normal to
the SO vector, h� and h⊥. Indeed, the normal component h⊥ ensures the hybridization of the bands
describing up and down electrons into two helical bands, whereas the parallel component h� induces
the shift in momentum between the two electrons of the Cooper pairs.

2. In the Ginzburg-Landau theory, Ψ corresponds to the superconducting order parameter.
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Figure 3.7 – Energy spectrum of a normal metal in the presence of spin-orbit interaction
of Rashba type. SO coupling induces a shift between the bands of spin up and spin down
electrons, represented by dashed lines. In the presence of a normal Zeeman field hx (with
respect to SO coupling), a gap is opened, leading to the appearance of the helical bands
labeled + and −. The interplay between the parallel component of the Zeeman field hz and
SO interaction implies a shift in momentum at a given energy between up and down electrons.

3.3 Conclusion

In this chapter, we introduced two superconducting inhomogeneous phases, namely
the FFLO and the helical states. Both appear in the presence of a Zeeman magnetic
field, but have different physical origins.

The emergence of the FFLO phase can be understood from the paramagnetic ef-
fect caused by the Zeeman magnetic field. This effect induces a finite center-of-mass
momentum for the Cooper pairs, which in turn implies a spatially oscillating super-
conducting order parameter. To illustrate this point, we derived the self-consistency
equation for a 1D superconductor in the presence of a Zeeman field using the Green’s
function formalism in Nambu spin basis. This method will be used also in Chapter 4 for
1D superconductors in the presence of both Zeeman and spin-orbit interactions. From
the self-consistency relation, we determined the tricritical point, namely the critical
temperature and magnetic field where the FFLO phase appears, and represented the
(h, T )-phase diagram of a 1D superconductor.

On the other hand, the helical phase originates from the interplay between spin-orbit
and Zeeman interactions. Using spectral arguments, we explained how the combination
of both interactions leads to finite-in-momentum Cooper pairs, involving a spatially
dependent order parameter. We showed that from a phenomenological point of view,
the interplay between both Zeeman and spin-orbit fields is described by an additional
term in the Ginzburg-Landau energy, the Lifshitz invariant.

In the next chapter, we investigate this helical phase in low-dimensional supercon-
ductors. Using the SU(2)-covariant formalism, we derive an expression of the Lifshitz
invariant for 1D systems in terms of SU(2) fields. Then, within the Green’s function
formalism introduced in Chapter 2, we explicitly compute the charge current related
to this Lifshitz invariant together with the self-consistency relation, and provide the
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(h, T )-phase diagram in the limit of strong spin-orbit interaction.
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Chapter 4

Helical state and magnetoelectric
effects in superconducting wires

S
uperconductivity in low dimensional systems with spin-orbit coupling (SOC)
and a Zeeman field has been intensively studied in the context of Majorana zero-

energy modes [77, 78, 79, 80, 81, 82]. On the other hand the interplay between super-
conductivity and spin-dependent fields is also known to lead to striking phenomena
as long-range triplet correlations [51, 52], critical field enhancement [4, 5] and ma-
gnetoelectric effects stemming from the coupling between charge and spin degrees of
freedom [11, 12, 14, 47, 48, 49, 50]. This chapter is devoted to the study of the two
latter effects, namely inhomogeneous superconductivity and the appearance of anoma-
lous charge currents, for the particular case of quasi-1D systems. Two different setups
are investigated : A single wire in which superconductivity, spin-orbit interaction and
a Zeeman field coexist in the wire, and a double wire system in which superconduc-
ting pairing and the spin-dependant fields are spatially separated. In principle, these
setups could be realized experimentally, from the organic superconductors mentioned
in Chap. 3 for the single wire system, and using the two wire semiconducting systems
presented in Refs. [83, 84, 85, 86] for the second setup, where one of the wires is a
superconductor whose diameter is much smaller than the coherence length. However to
fully describe this realistic system, the section of the wire must be taken into account
in the calculations, which is beyond the scope of this chapter.

First, we briefly introduce the SU(2)-covariant formalism, in which the SOC and
exchange field are written as the vector and scalar potentials respectively of the SU(2)
magnetoelectric fields. With the help of this formulation we explore the appearance
of the magnetoelectric effect, namely anomalous charge currents. We determine the
condition under which such currents are allowed by symmetry for both setups, and
express them in terms of the SU(2) electric and magnetic fields.

In a second part, we explicitly compute the anomalous currents together with the
self-consistency equation and confirm the predictions made by the SU(2)-covariant
consideration. Specifically we show that the combination of both spin-orbit and Zeeman
fields results in the emergence of a modulated phase at low magnetic field and any
temperature T < Tc0. We also demonstrate that the anomalous current is exactly
compensated by the current coming from the wave-vector of the superconducting order
parameter, leading to a zero-current ground state. Specifically, in the one wire case, a
tilted Zeeman field ~h with respect to the spin-orbit field must be present to generate the
anomalous current and the enlarged modulated phase : If ~h is purely parallel or normal
to the spin-orbit field, no anomalous current is produced. For the two wire system, the
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situation is rather different. The system behaves as a quasi two-dimensional system, and
anomalous currents and high temperature inhomogeneous phase are present even when
~h is parallel to the SOC. In the latter case the zero-current ground state corresponds
in fact to two finite currents flowing in each wires in opposite directions.

Finally, we study the self-consistency equation in the regime of large spin-orbit
coupling α pF with respect to the critical temperature Tc for the one-wire setup. In this
case it is convenient to work in the helical basis. We show that increasing the spin-
orbit field with respect to the Zeeman field changes the superconducting correlations
from interband to intraband. Then we provide a complete field-temperature phase
diagram for different orientations of the Zeeman field and several values of the spin-
orbit coupling constant α.

4.1 Spin-galvanic effects in superconducting wires
Magnetoelectric effects in the superconducting state are reminiscence of the widely

studied spin Hall and Edelstein effects in normal conductors [87, 88, 89, 90]. These
effects consist of generation of a spin current or spin density, respectively, by a charge
current. In particular, the Edelstein effect has been theoretically demonstrated in 2D
systems with Rashba SO interaction, and due to possible applications in spintronics,
it has been largely investigated over the past few decades [91, 92, 93, 94, 95]. The
inverse Edelstein effect, also known as spin-galvanic effect, describes the generation of
an electric current via a spin density.

These effects also exist in the superconducting state [12, 14, 15, 72, 96, 97, 98].
They were first studied by Edelstein for 2D superconductors in the presence of Rashba
spin-orbit coupling [72]. Specifically, the interplay between superconductivity, spin-
orbit interaction and a Zeeman field leads to the appearance of anomalous charge cur-
rents. To understand this magnetoelectric effect from a general perspective, we briefly
introduce the SU(2)-covariant formalism [99, 100] which describes systems with linear-
in-momentum SOC, and provides a way to determine the conditions of appearance of
anomalous currents.

4.1.1 Brief introduction to the SU(2)-covariant formalism

To understand the main outcome of the SU(2)-covariant formalism, let us introduce
the general Hamiltonian operator of a system with a linear-in-momentum spin-orbit
coupling and a Zeeman (or exchange) field :

ĥ0 =
p2

2m
− µ+ ~h · ~σ − Ωa

i pi σ
a , (4.1)

where µ is the chemical potential, ~h is the Zeeman field, σa are the Pauli matrices and
Ωa
i represents the SOC constant. Particular cases are : Ωy

x = −Ωx
y = α in Eq. (4.1),

which corresponds to Rashba SOC, or Ωx
x = −Ωy

y = β which describes the linear in
momentum Dresselhaus spin-orbit interaction [101]. Notice that lower (upper) indices
i = x, y, z label space (spin) variables and sum over repeated indices is implied.

Without any loss of generality, it is possible to write ĥ0 (Eq. 4.1) such that the linear-
in-momentum SOC and the Zeeman field enter as a SU(2) gauge potential [99, 100] :

ĥ0 =
(pi −Ai)2

2m
− µ̃+A0 , (4.2)
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where between Eqs. (4.1) and (4.2), the chemical potential has been shifted without
physical consequences : µ → µ̃ = µ − (Aai )

2 /8m. The SU(2) scalar potential A0 =
Aa0 σa/2 describes either a Zeeman magnetic field in a normal metal or an intrinsic
exchange field in a ferromagnetic metal, whereas the vector potential Ai = Aai σa/2
represents spin-orbit interaction.

In analogy to usual electrodynamics, the Hamiltonian Eq. (4.2) is written in terms of
a SU(2) four-potential Aµ, where µ labels space (µ = x, y, z) via spin-orbit interaction
and time (µ = 0) via the Zeeman field. This Hamiltonian is invariant under the gauge
transformations Ψ → U Ψ and Aµ → U Aµ U−1 − i (∂µU)U−1, where U is a SU(2)
rotation matrix [99]. Following the analogy to electrodynamics one defines the SU(2)
field strength tensor Fµν as :

Fµν = ∂µAν − ∂νAµ − i [Aµ, Aν ] . (4.3)

We consider now a superconductor at temperature close to its critical temperature
Tc. Equilibrium properties can be described within the Ginzburg-Landau theory (see
Chapter 2). Specifically the coupling between spin and charge degrees of freedom is
described by an additional term in the Ginzburg-Landau free energy Eq. (2.1), FL,
the so-called Lifshitz invariant [10, 71]. For arbitrary linear-in-momentum SOC and
dimension, the Lifshitz invariant can be written as [97, 102] :

FL ∼ Ti vi , (4.4)

where vi ∝ ∂iϕ is the superfluid velocity and Ti is a polar vector which is odd under
time reversal and SU(2) gauge invariant. In other words this vector has to be expressed
in terms of the SU(2) magnetic and electric fields and covariant derivatives ∇̃µ =
∂µ · −i [Aµ, ·].

The anomalous current induced in a system is then proportional to the polar vector
Ti. The latter can be constructed using SU(2) gauge symmetry arguments only. In Ref.
[97], the Lifshitz invariant in the lowest order in the exchange field and in the SOC
(this one being assumed to be homogeneous) was identified, and the anomalous current
was found to be proportional to the following expression of the fields :

ji ∼ Fa0k Faki = Ea ×Ba , (4.5)

where Ea
i = Fa0i and Ba

i = εijk Fajk are the SU(2) electric and magnetic fields respecti-
vely, and εijk is the Levi-Civita symbol. From Eq. 4.3 , we can notice that the SU(2)
magnetic field only exists in two-dimensional systems, which implies that the above
result, Eq. 4.5, is only finite for 2D and 3D, but gives zero in 1D systems.

To illustrate the result of expression Eq. (4.5), let us consider a two-dimensional
system in the x − y plane with homogeneous and time-independent Zeeman and Ra-
shba spin-orbit fields. Specifically, the SOC is described by the Hamiltonian Hso =
α (py σ

x − px σy) leading to a two component vector potential : Ayx = 2mα = −Axy .
In this case, the electric field has two components F0x = mα (Ax0 σz −Az0 σx) /2 and
F0y = mα (Ay0 σz −Az0 σy) /2, whereas the magnetic field is given by Fxy = m2 α2 σz =
−Fyx. This leads to an in-plane current jx,y ∼ ±m3 α3Ay,x0 when the Zeeman field is
applied in y or x direction respectively, in agreement with the Edelstein result, Ref.
[71].

4.1.2 One dimensional systems

The situation is rather different in a one-dimensional system, for which the SU(2)
magnetic field Ba is zero and therefore, according to Eq. (4.5) no anomalous current
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should appear at first order in the exchange field. But, on the other hand, it is known
that in wires with a 1D SOC such current can be finite [11, 48], namely, when at
least two components of the magnetic field, one longitudinal and one transverse to the
spin-orbit field, are finite. In order to understand this result we seek for an invariant
of higher order in the exchange field (Eq. 4.4) : Clearly in a pure 1D system only the
electric field is finite and the next leading order contribution to the current can be
constructed as a product of covariant derivatives of the electric field. Specifically the
first finite term in leading order of the fields is 1 :

ji ∼
(
∇̃kF0k

)a (
∇̃0F0i

)a
. (4.6)

From Eq. (4.3), the electric field for a 1D system with time-independent fields is
given by

F0x = −∂xA0 − i [A0, Ax] . (4.7)

The second term is the field induced, for example, by homogeneous exchange field and
SOC. The first term is only finite if the exchange field is inhomogeneous exchange as
in the case of a spin texture.

We first consider a homogeneous situation, for which the exchange field has an
arbitrary direction and the SOC is, without loss of generality, Hso = α pσz, such
that the vector potential has only one finite component Azx = −2mα. In this case
F0x = −imαAa0 [σa, σz] /2 and hence the anomalous current obtained from Eq. (4.6)
reads :

jx ∼ −m3 α3
[
(Ax0)2 + (Ay0)

2
]
Az0 . (4.8)

This result coincides with the one obtained in Refs.[11, 48] in leading order in the
exchange field.

A gauge equivalent situation to the previous one is a system without SOC but with
an inhomogeneous exchange field that for example varies in only x-direction [52]. In
such a case the electric field is finite due to the first term in Eq. (4.7). As a specific
example we consider a spiral exchange such that the SU(2) scalar potential has three
components Ax0 = 2h cos (Qx), Ay0 = 2h sin (Qx) and Az0 = 2hz. In this case, F0x =
Qh [sin (Qx)σx − cos (Qx)σy] and the anomalous current reads :

jx ∼ Q3 h2 hz . (4.9)

As expected the currents of Eqs. (4.8) and (4.9) coincides after identifying the gauge
equivalence between the SOC parameter mα and the wave vector Q of the magnetic
texture.

4.1.3 The double wire setup : A quasi-2D system

In this section, we focus on the particular case of two spatially separated wires
connected via a hopping term, as illustrated in Fig. 4.2. One of the wire is a supercon-
ductor, whereas the second one a normal metal with both parallel Zeeman and SOC
fields. In a pure 1D system when the SOC and exchange field vectors are parallel, clearly
no SU(2) fields are generated and hence no magnetoelectric effects can take place (Eq.
4.6). In other words, such situation implies that the SOC can be gauged out, and no
current is generated. In the two wire system the situation is different, because strictly

1. I. V. Tokatly, private correspondence
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speaking the system is not 1D and the coupling between the wires prevents such a pure
gauge situation.

Namely, the fields depend not only on the spatial coordinate along the wires, but
also on the one perpendicular to them denoted as z in Fig. 4.2, such that the system
behaves as a 2D system. If we assume that SOC and exchange field are parallel, with
the only non-zero components of the potentials being Azx and Az0, then according to Eq.
(4.3) the SU(2) fields are finite and determined by F z0z = −∂zAz0 for the electric field
and F zzx = ∂zAzx for the magnetic field. Therefore, from the above symmetry arguments,
specifically from Eq. (4.5) one expects a finite anomalous current even when the SOC
and exchange fields are parallel. The amplitude of such a current will be linear in both
fields : jx ∼ αhz.

The above analysis only explains whether the anomalous currents are allowed by
symmetry or not. However, it is important to emphasize that in systems in which
superconductivity and spin-dependent fields spatially coexist, one should compute the
superconducting order parameter self-consistently allowing for a spatially dependent
phase, as done for the FFLO case in Chapter 3. The ground-state corresponds to a
zero-current state [6] and therefore the anomalous current obtained above has to be
compensated by the current induced by the phase gradient of the condensate wave
function. In the next section we compute explicitly the equilibrium value of the wave-
vector q and the currents for weak spin fields, and show that the ground-state is indeed
a zero-current state.

4.2 Self-consistent order parameter for weak spin-orbit
coupling

In this section, we derive the self-consistency equation in terms of the Green’s
functions in Nambu spin basis using the model introduced in Chapter 3. The system
is studied in the limit of weak spin-orbit interaction and small wave-vector q. We then
compute the anomalous charge current induced in the wire, and compare the result
from those obtained by the above symmetry arguments. Finally, we show explicitly
that in the ground-state the anomalous current is exactly compensated by the current
induced by the spatial dependence of the superconducting phase.

4.2.1 Single wire system

Let us consider the particular case of an infinite superconducting wire along the
x-direction, in the presence of Rashba SOC and a Zeeman field (Fig. 4.1).

Model and Hamiltonian

The Hamiltonian describing the system has the same form as Eq. 3.4, with an
additional SOC term in the non-superconducting part ĥN. We assume that the Zeeman
field ~h = (hx, 0, hz) is applied in the x − z plane, and that the wire is on a substrate
parallel to the x− z plane such that the SOC is along the z-direction :

ĥN =

(
ξ +

q2

8m
+ α pσz

)
τz +

q p

2m
+
α q

2
σz + ~h · ~σ . (4.10)
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Figure 4.1 – The first setup is made of an infinite superconducting wire with SOC and a
Zeeman field with two components, one longitudinal and one transverse to the spin-orbit field.

Here ξ =
p2

2m
− µ is the quasiparticle energy, µ is the chemical potential, α is the

spin-orbit coupling constant and σx,y,z, τx,y,z are the Pauli matrices acting respectively
in spin and Nambu space. Throughout this chapter, we take ~ = kB = 1.

Near the second-order transition, ∆ � T , the Green’s function G describing the
system can be expanded in series of ∆. At first order in ∆, G reads :

G ≈ GN +GN ĥSCGN , (4.11)

where the superconducting hamiltonian ĥSC was introduced in Chapter 3, Eq. (3.6).
The Green’s function in the normal state GN has the same form as Eq. (3.8) in Nambu
space :

GN =

(
G− 0
0 G+

)
, (4.12)

where the matrix Gν (ν = ±) now includes SOC :

Gν =
iωn + ν ξ + ν q2

8m
− q p

2m
+ ~h · ~σ − ασz

(
ν p− q

2

)(
iωn + ν ξ + ν q2

8m
− q p

2m

)2
−
(
hz − ν α p+ α q

2

)2 − h2x . (4.13)

Next, we will use the expression of the Green’s function G Eqs. (4.11 - 4.13) to write
the self-consistency relation (Eq. 3.10), and derive the expression of the wave-vector q
near the emergence of the modulated phase.

Self-consistent order parameter

We recall the expression of the self-consistency relation given in Chapter 3, Eq.
(3.10) :

ln

(
Tc
Tc0

)
= 2Tc

∑
ωn>0

[
vF
8

Re
(∫ +∞

−∞
Tr
(
G

∆
τx

)
dp

)
− π

ωn

]
. (4.14)
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In the presence of spin-orbit interaction, the integral over p is more complicated to eva-
luate than in the FFLO case. Indeed, the Green’s function G Eqs. (4.11 - 4.13) contains
linear terms in p coming from SOC, thus preventing a straightforwardly transformation
of the integral over p to an integral over ξ as we did in Chapter 3.

In order to compute the p integral in Eq. 4.14 we assume that both, the Zeeman
field and SOC, are small such that hx, hz � Tc and α pF � Tc (where pF is the Fermi
momentum) and expand the Green’s function G from Eq. (4.11) in series of hx, hz and
α p, after substitution of Eq. (4.12-4.13). Moreover, since the wave-vector q is small
near the emergence of the modulation phase, we also expand G over q. Because of the
integration over momentum, only terms even in p will contribute, allowing to transform
the integral over p into an integral over the quasiparticle energy ξ following :∫ +∞

−∞
dp = 2

∫ +∞

−µ
N (ξ) dξ , (4.15)

where N (ξ) =

√
m

2 (ξ + µ)
is the density of states at energy ξ. We assume that the

chemical potential is the largest energy involved in the problem : µ � Tc, Eso, where
Eso = 1

2
mα2 and set the lower integration limit to −∞. In the expansion of the Green’s

function G we keep terms up to order α3 p4, where p2 = 2m (ξ + µ). This means that
we have to keep terms up to (ξ/µ)2 by expanding N (ξ). Thus, the integral in Eq. (4.15)
can be approximated as :∫ +∞

−∞
dp→ 2

vF

∫ +∞

−∞

(
1− ξ

2µ
+

3 ξ2

8µ2

)
dξ , (4.16)

where vF =
√

2m/µ. The ξ integration is then performed using the residue technique.
Therefore we obtain the following expression for the self-consistency relation :

ln

(
Tc
Tc0

)
= 2π Tc

∑
ωn≥0

[
−h

2
x + h2z
ω3
n

+
7 p2F
ω7
n

h2x hz α
3 q − v2F

4ω3
n

q2
]
. (4.17)

Contrary to the FFLO case Eq. (3.11), the self-consistency relation Eq. (4.17) displays
a linear term in q, ensuring that the modulated phase is more stable than the uniform
phase for all temperatures T < Tc0. Indeed, the equilibrium value q0 of the wave-vector
is obtained by maximizing Eq. (4.17) with respect to q, which is the equivalent of
minimizing the Ginzburg-Landau free energy :

q0 = 14m2 α3 h2x hz
Γ7

Γ3

, (4.18)

where Γs =
∑
ωn>0

1

ωsn
. Hence the modulation requires both finite spin-orbit coupling and

a tilted Zeeman field, which is neither perpendicular nor aligned with the SOC (both
hx and hz need to be finite). This leads to anisotropic effects that must be observable
when the Zeeman field is rotated with respect to the spin-orbit field.

Notice that the appearance of a wave-vector q proportional to α3 occurs because
of the compensation of the linear terms in α, stemming from the expansion of the
density of states N (ξ), Eq. (4.16), in the limit of a large chemical potential µ � Tc.
The details of this calculation are provided in Appendix A. However, in the opposite
limit, namely µ� Tc, such compensation should not occur, which explains why in this
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case, a linear-in-α current is found [48]. Finally, we emphasize that for a non-quadratic
dispersion, this compensation of the linear-in-α terms would not be complete, leading
to q ∼ α.

Next, we compute the charge current in the wire, and show that in the ground-
state, the current coming from the superconducting wave-vector compensates exactly
the anomalous current.

Charge current

The charge current operator is proportional to the velocity operator v̂ =
∂ĥN
∂p

, such

that in terms of the Green’s function G, the charge current reads :

j = −e Tc
2

∑
ωn

∫ +∞

−∞

dp

2 π

[ p
m

TrG+ αTr (Gσz) +
q

2m
Tr (Gτz)

]
, (4.19)

where the second term in Eq. (4.19) stems from the anomalous velocity in the presence
of SOC. To obtain a finite current from Eq. (4.19), the Green’s function G has to be
expanded up to second order in ∆ :

G ≈ GN +GN ĥSCGN +GN ĥSCGN ĥSCGN , (4.20)

where hSC is given by Eq. (4.23) the normal state Green’s functions GN is obtained
from Eqs. (4.12) and (4.13).

Using Eq. (4.16) to compute the integral over p, we obtain the following expression
for the current :

j = 2 e Tc ∆2 vF
(
14 m2 α3 h2x hz Γ7 − q Γ3

)
. (4.21)

The current in the ground-state is obtained by replacing q by its equilibrium value q0.
i.e. by substituting Eq. (4.18) in Eq. (4.21). This leads to a cancellation in the right
hand side of Eq. (4.21). This is not surprising since the true ground-state has to be a
zero-current state as demonstrated in Ref. [6] for a 2D system by minimization of the
free energy with respect to q.

Moreover, at q = 0, one finds that this result is in agreement with the one obtained
in Sec. 4.1 from the SU(2) covariant formulation Eq. (4.8) and with previous works [11,
48] : In leading order in SOC and Zeeman field, the anomalous current is proportional
to α3 h2x hz.

4.2.2 Double wire system

In this section we consider a different setup made of two infinite wires coupled
via a hopping term, as illustrated Fig. 4.2. Experimentally, such double wire systems
have been realized in semiconducting systems, as for example GaAs wires separated
by an insulating AlGaAs barrier [83, 84, 85, 86]. In our case, one of the wires is a
superconductor, and may exhibit a spatially oscillating order parameter ∆(x) = ∆ ei q x,
which could be done in the realistic systems described above if the superconducting
wire has a diameter much smaller than the coherence length. The second wire is in the
normal state and has a SOC and local exchange field. We assume that these fields are
parallel to each other.
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Figure 4.2 – In the second system, superconducting and magnetic correlations and fields are
spatially separated into two different wires, coupled via a hopping term. We consider the case
where the spin-orbit and Zeeman fields are parallel.

Model and Hamiltonian

The Hamiltonian of the system has the same form as Eq. (3.4) enlarged over the
wire space and taking into account the additional SOC term, such that :

ĥN =

(
ξ +

q2

8m

)
τz +

q p

2m
+ t τz ηx +

(
α p τz +

α q

2
+ hz

)
σz
η0 + ηz

2
, (4.22)

where t is the hopping energy and ηx,y,z are the Pauli matrices acting in wire space. To
simplify, we have considered that the quasiparticle energy ξ is the same in both wires.
In this basis, the superconducting Hamiltonian operator ĥSC is expressed as :

ĥSC = −∆ τx
η0 − ηz

2
. (4.23)

As we did for the one wire system, we assume that the temperature is closed to the
critical temperature Tc, such that ∆ � T and can be treated perturbatively. At first
order in ∆ the Green’s function describing the double wire system is obtained from
Eq. (4.11), where GN can be written in Nambu-spin basis as

GN =


G−− 0 0 0

0 G−+ 0 0
0 0 G+− 0
0 0 0 G++

 , (4.24)

where Gνκ are 2×2 matrices in the wire space, and ν = ±1 (κ = ±1) corresponds to
the Nambu (spin) indices. Specifically,

Gνκ =
iωn + ν

(
ξ + q2

8m

)
− q p

2m + κ
(
hz − ν α p+ α q

2

) η0−ηz
2 + ν t ηx[

iωn + ν
(
ξ + q2

8m

)
− q p

2m

] [
iωn + ν

(
ξ + q2

8m

)
− q p

2m + κ
(
hz − ν α p+ α q

2

)]
− t2

.

(4.25)
The total Green’s function is then obtained by substituting Eqs. (4.24, 4.25) into
Eq. (4.11). Next we use the self-consistency relation written in terms of the Green’s
function G to derive the expression of the wave-vector q near the emergence of the
modulated phase.
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Self-consistent order parameter

In Nambu spin wire basis, the self-consistency equation for the superconducting
order parameter reads :

ln

(
Tc
Tc0

)
= 2Tc

∑
ωn>0

[
vF
8

Re
(∫ +∞

−∞
Tr
(
G

∆
τx
η0 − ηz

2

)
dp

)
− π

ωn

]
, (4.26)

where Tc0 is the critical temperature of the isolated superconducting wire, i.e. for t = 0.
As we explained for the one wire system, the presence of spin-orbit interaction

prevents to directly transform the p integral of Eq. 4.26 into a ξ integral, as it has
been done in the FFLO case, Chapter 3. Therefore, we assume that the Zeeman and
spin-orbit interactions, as well as tunneling are small such that t, hz, α pF � Tc, and
again that the chemical potential is the largest energy involved : µ� Tc, Eso. We then
expand the Green’s function G in Eq. (4.11) in series of hz, α p and t, after replacing
Eqs. (4.24, 4.25). Moreover, since the wave-vector q is small near the emergence of the
modulation phase, we also expand G over q.

Only terms even in momentum survive the momentum integration in Eq. (4.26). As
in Sec. 4.2.1, we can then change the integration variable to ξ, see Eq. (4.15). To keep
consistently all terms with same power of the small parameter ξ/µ one has to expand
N (ξ) up to first order. Then the self-consistency equation reduces to :

ln

(
Tc
Tc0

)
= −2π Tc

∑
ωn>0

[
t2

2ω3
n

+
3

8ω5
n

αhz t
2 q +

v2F
4ω3

n

q2
]
. (4.27)

As we already mentioned in Sec. 4.2.1, the presence of a linear term in q in the self-
consistency relation Eq. 4.27 implies that the modulated phase is more stable than the
uniform one for all temperatures T < Tc0. The calculation details of this linear term
are provided in Appendix B. The equilibrium value q0 of the superconducting wave
vector is obtained by maximizing Eq. (4.27) with respect to q, which is the equivalent
of minimizing the Ginzburg-Landau free energy. We obtain :

q0 = − 3

4 v2F
αhz t

2 Γ5

Γ3

. (4.28)

Contrary to the single wire system, the x-component of the field is not needed to
generate the inhomogeneous phase. Indeed the two wire system behaves as quasi 2D,
as we will discuss next, and therefore one expects to get a magnetoelectric effect also
in the case of parallel SOC and exchange field. In the next section we determine the
anomalous charge currents that appear when q = 0 and, as we shown in Sec. 4.1 are
allowed by symmetry.

Anomalous charge current

The total charge current in the two wire system of Fig. 4.2 is given by the sum of
the current flowing in the superconducting wire, jS, and in the normal wire, jN :

j = jS + jN . (4.29)
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Figure 4.3 – In the ground state, each wire carries a finite current with opposite directions,
corresponding to a zero current state. However, when the superconducting order parameter is
constant (q = 0), a finite current flows in each wire with the same direction. This is a finite
current state, corresponding to an excited state.

In terms of the Green’s function G expanded at second order in ∆ Eqs. (4.20, 4.24,
4.25), these components read :

jS = −e T
2

∑
ωn

∫ +∞

−∞

dp

2 π

[
p

m
Tr
(
G
η0 − ηz

2

)
+

q

2m
Tr
(
Gτz

η0 − ηz
2

)]
; (4.30)

jN = −e T
2

∑
ωn

∫ +∞

−∞

dp

2 π

[
p
m
Tr
(
G η0+ηz

2

)
+ q

2m
Tr
(
Gτz

η0+ηz
2

)
+ αTr

(
Gσz

η0+ηz
2

)]
.

(4.31)

Using Eq. (4.15) to compute the integrals over p as explained in the previous section,
one obtains the following expressions for the currents :

jS = −e Tc ∆2

(
5

4 vF
αhz t

2 Γ5 + 2 q vF Γ3

)
; (4.32)

jN = −e Tc ∆2 1

4 vF
αhz t

2 Γ5 . (4.33)

By replacing q by its equilibrium expression q0 from Eq. (4.28), one can easily check
that the total current, Eq. (4.29), is zero in the ground-state. However, the current in
each wire is finite with jS = −jN, as illustrated in Fig. 4.3. This is a remarkable result
that shows that even though the ground state corresponds to a zero total current state,
finite currents may flow in each of the wires.

The anomalous current predicted in Sec. 4.1.3 is obtained by imposing q = 0. It is
finite and linear in α and hz :

j = − 3

2 vF
e Tc ∆2 αhz t

2 Γ5 . (4.34)

This result is in agreement with the symmetry arguments discussed in Sec. 4.1.3.

4.3 Superconducting wire with a strong spin-orbit cou-
pling

In the previous section, the self-consistency relation was derived in the case of
weak spin-orbit interaction : α pF � Tc. In this section, we study the one wire system
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illustrated in Fig. 4.1 in the opposite case, namely a strong spin-orbit coupling α pF �
Tc. In this case, it is convenient to rewrite the normal Hamiltonian in the diagonal basis,
the so-called helical basis. From the knowledge of the helical Hamiltonian, we derive the
expression of the normal Green’s function describing the system in the helical basis,
from which we obtain the self-consistency equation by neglecting interband pairing
contributions. We then determine the expression of the superconducting wave-vector q
near the emergence of the modulated phase, in the limit of small Zeeman field hx, hz �
Tc. We show that in the same same way as the small spin-orbit case, the necessary
condition for the appearance of the inhomogeneous phase at all temperatures T < Tc0
is the presence of a tilted Zeeman field with respect to the spin-orbit field. We finally
present the (hx, hz, T )-phase diagram for various orientations of the Zeeman field and
various values of the spin-orbit coupling constant.

4.3.1 Normal state Green’s functions in the helical basis

In the limit of strong spin-orbit interaction, Tc � α pF (but still Eso = mα2/2� µ),
it is convenient to study the single wire system (Fig. 4.1) in the diagonal basis. We
first consider this system in the absence of superconductivity, and derive the diagonal
Hamiltonian and the corresponding Green’s function. In a second part, we deduce the
expression of the Green’s function describing the system in the presence of supercon-
ductivity from the normal Green’s function.

The Hamiltonian operator describing the wire in the absence of superconductivity
in Nambu spin space is defined by Eq. (4.10) by setting the wave-vector q = 0 :

ĥN = (ξ + α pσz) τz + ~h · ~σ , (4.35)

where σx,y,z and τx,y,z are the Pauli matrices acting in spin and Nambu space, and ξ is
the quasiparticle energy.

To diagonalize the Hamiltonian Eq. (4.35), it is necessary to define a rotation matrix
U such that ĥN → ĥhel = U † ĥN U , where ĥhel is the Hamiltonian operator in the helical
basis :

ĥhel = ξ τz −
λ

2
[(ε+ + ε−) τ0 + (ε+ − ε−) τz] , (4.36)

where ε± = ±
√
h2x + (hz ± α p)2, τ0 is the identity matrix and λ = ± labels the two

energy bands. The matrix U reads in the Nambu basis :

U =

(
Ũ (φp) 0

0 Ũ (π + φ−p)

)
, (4.37)

where the matrix Ũ is defined in the spin basis by :

Ũ (φp) = e−i
φp
2
σy , (4.38)

and the phase φp is such that :

φp = arccos

 hz + α p√
h2x + (hz + α p)2

 . (4.39)
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From the expression of the normal Hamiltonian Eq. (4.35), it is possible to derive
the expression of the normal Green’s function GN in the helical basis by solving the
equation of motion for the Green’s functions

(
iωn − ĥhel

)
GN = 1 :

GN =

(
Gλ (p, ωn) 0

0 −Gλ (−p, −ωn)

)
, (4.40)

where Gλ corresponds to the normal Green’s function associated with the band λ :

Gλ (p, ωn) =
1

iωn − ξ + λ
√
h2x + (hz + α p)2

. (4.41)

Notice that to distinguish Green’s functions between spin and helical spaces, we use
capital letters G in the spin basis, and scripted letters G for the helical basis.

From the knowledge of the normal Green’s function in the helical basis GN (Eq.
4.40), we can derive the expression of the Green’s function of the system in the presence
of superconductivity. Near the transition between the normal and superconducting
states, ∆ � Tc and the Green’s function G can be expanded at first order in ∆. In
spin basis, the expansion of the Green’s function G is given by Eq. (4.11). Using the
relation between G and G, namely G = US G

(
US
)†, Eq. (4.11) can be written in the

following way :
G = GSN −∆GSN

(
US
)†
τx US GSN . (4.42)

The rotation matrix in the presence of superconductivity US is obtained from the
expression of U (Eqs. 4.37 - 4.38), where the momentum is shifted by a factor q/2, such
that ± p→ ± p+ q/2 :

US =

Ũ (φp+ q
2

)
0

0 Ũ
(
π + φ−p+ q

2

) . (4.43)

In the same way, GSN corresponds to normal Green’s function where the momentum has
been shifted by q/2 :

GSN =

(
Gλ
(
p+ q

2
, ωn

)
0

0 −Gλ
(
−p+ q

2
, −ωn

)) . (4.44)

Next, we write the expression of the self-consistency relation in terms of the helical
Green’s function G Eqs. (4.42 - 4.44), and derive the expression of the wave-vector q
near the emergence of the modulated phase.

4.3.2 Emergence of the modulated phase

Let us now consider the self-consistency relation Eq. (4.14). Using the transfor-
mation G = US G

(
US
)†, we can derive its expression in terms of the helical Green’s

function G :

ln

(
Tc
Tc0

)
= 2Tc

∑
ωn>0

[
vF
8

Re
(∫ +∞

−∞
Tr
(
G
∆

(
US
)†
τx US

)
dp

)
− π

ωn

]
. (4.45)
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Using the expression of G Eqs. (4.42 - 4.44), we can compute the expression of the trace
in Eq. (4.45), which contains two finite terms :

Tr
(
G
∆

(
US
)†
τx US

)
=2

[
sin2

(η
2

)∑
λ

Gλ
(
p+

q

2
, ωn

)
Gλ
(
−p+

q

2
, −ωn

)
+ cos2

(η
2

)∑
λ 6=λ′
Gλ
(
p+

q

2
, ωn

)
Gλ′
(
−p+

q

2
, −ωn

)]
, (4.46)

where η = φ−p+q/2 − φp+q/2. The first term of Eq. (4.46) describes intraband pairing
correlations, whereas the second one corresponds to interband pairing. In the regime
of strong spin-orbit interaction, α pF � hx, hz, Tc and Eso = mα2/2 � µ, the phase
difference η → π at zeroth order in the Zeeman field, thus allowing to neglect interband
pairing terms. Therefore, the self-consistency relation Eq. (4.45) becomes :

ln

(
Tc
Tc0

)
= Tc

∑
ωn≥0, λ

[
vF
2

Re
(∫ +∞

−∞
Gλ
(
p+

q

2
, ωn

)
Gλ
(
−p+

q

2
, −ωn

)
dp

)
− π

ωn

]
.

(4.47)
The method used to perform the p integration in Eq. (4.47) is quite different from

the one used in Sec. 4.2.1 for the small spin-orbit limit. Indeed in the regime of strong
spin-orbit interaction, we consider only intraband pairing terms, which allows to treat
each band separately. Therefore, it is possible to compute the integral in the customary
way [103] : Because the Green’s functions Gλ are peaked around the Fermi energy pλF,
we can turn the p integral into a ξ integral as we did in Eq. (2.30) but for each band
separately : ∫

dp→ 1

vF

∫
dξ , (4.48)

and we can approximate the momentum p by pλF in the α p and q p terms, where

pλF = λmα +
√

2mµ+m2 α2 , (4.49)

is the Fermi momentum of the band λ, obtained by neglecting the Zeeman contribution
with respect to the SOC : hx, hz � α pF. In such a way the ξ integration can be
performed straightforwardly.

Finally the self-consistency relation Eq. (4.47) reads :

ln

(
Tc

Tc0

)
= 2π Tc

∑
ωn≥0, λ

 2ωn

4ω2
n +

[
q vλF − λ

(√
h2x +

(
hz + αpλF + α q/2

)2 −√h2x +
(
hz − αpλF + α q/2

)2)]2 − 1

2ωn

 .

(4.50)

To see the emergence of the modulated phase, we consider that the Zeeman field and
the wave-vector q are small : hx, hz � Tc and q � pF. Therefore, the self-consistency
relation Eq. (4.50) can be expanded over hx, hz and q :

ln

(
Tc
Tc0

)
= 2π Tc

∑
ωn≥0

[
−h

2
z

ω3
n

+
3h2x hz

2ω3
n α p

2
F
q − v2F

4ω3
n

q2
]
. (4.51)

Be aware that the self-consistency relation Eqs. (4.50) and (4.51) was obtained by
considering only intraband pairing. In this case, we can notice that when hz = 0, Eq.
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(4.51) leads to Tc = Tc0, which seems to indicate that superconductivity is not affected
by the Zeeman field when this one is normal to the spin-orbit interaction. However,
we have to keep in mind that taking interband correlations into account in Eq. (4.46)
would modify this result by terms of order h2x/α2 p2F in Eq. (4.51).

As expected from the weak spin-orbit case, the self-consistency relation Eq. (4.51)
displays a linear term in q which leads to the emergence of an inhomogeneous super-
conducting state at wave-vector

q0 =
3h2x hz
4αµ2

, (4.52)

where q0 is estimated by maximizing Eq. (4.51) with respect to q, as we did in Sec.
4.2.1. Similarly to Eq. (4.18), q0 is proportional to both longitudinal and transverse
components of the Zeeman field, then inducing a modulated phase for each temperature
T < Tc0 as long as hx and hz are finite.

In the next section, we solve the self-consistency equation for general values of q, hx
and hz (Eq. 4.50) and obtain the (hx, hz, T )-phase diagrams for different orientations
of the Zeeman field and different values of the spin-orbit constant α.

4.3.3 Field-temperature phase diagrams

We now consider general values of the wave-vector q and solve numerically the
self-consistency relation Eq. (4.50). To this purpose, we proceed in the following way :
First, the temperature is extracted from the self-consistency relation Eq. (4.50) as a
function of both magnetic field modulus h and wavevector q. The wave-vector q is then
determined such that it maximizes the temperature at a given h, which is equivalent
to minimize the Ginzburg-Landau free energy.

Following this procedure we plot in Fig. 4.4a the (hx, hz, T )-phase diagram for
different orientations of the field for α = 0.05 vF (α pF = 100Tc0). One can first observe
the anisotropy induced by spin-orbit interaction : At fixed critical field (temperature),
the critical temperature (field) increases when θ decreases, θ corresponding to the angle
between the field and the wire (see Fig. 4.1). This means that the superconducting
phase is widened when the field tends to be normal to the SOC. As expected from Eq.
(4.51), the purely parallel h = hz (θ = π/2) or purely perpendicular h = hx (θ = 0) to
the spin-orbit field correspond to particular cases in which the linear term in q in Eq.
(4.51) is zero.

When the field is longitudinal (hx = 0), we get back to the FFLO case : The
modulated phase emerges at the tricritical point (T ? = 0.56Tc0, h

? = 1.07Tc0). This
effect was already predicted in Sec. 4.1 : when the spin-orbit and Zeeman fields are
parallel, the SOC can be gauged out, and we obtain an effective Hamiltonian equivalent
to Eq. (3.4), leading to the FFLO state.

In the opposite case, namely when the Zeeman field is transverse to the SOC (hz =
0), we obtain a rather different effect : The wave-vector q vanishes, and Tc is not
modified with respect to Tc0 within leading order in hx/α pF � 1. As we mentioned
previously, this result comes from the fact that we neglect interband correlations in
the self-consistency relation Eq. (4.50). However, including interband pairing requires
to take into account the second line of Eq. (4.46), which is beyond the scope of the
present calculation.

We can also compare the (hx, hz, T )-phase diagrams for different values of the
spin-orbit coupling constant α for hx = hz, as illustrated in Fig. 4.4b. The blue curve
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represents the transition line between the normal and superconducting states in the
absence of SOC, whereas the three others correspond to three finite values of α. Glo-
bally, the presence of spin-orbit interaction enlarges the superconducting phase. The
important gap between the line α = 0 and the lines α 6= 0 comes from the fact that in
the second case we considered large values of α : α pF � Tc. Let us focus on the tran-
sition lines corresponding to α 6= 0. At temperatures T > T ? = 0.56Tc0, these curves
cannot be distinguished from each other due to the very small values of q. These ones
can be estimated from Eq. (4.52) for a small Zeeman field : for example at h = 0.5Tc0,
θ = π/4 and α = 0.05 vF, q ≈ 10−10 pF, which weakly influences the critical tempera-
ture. But these values significantly increase for temperatures smaller than the tricritical
temperature, related to the competition between helical and FFLO-like modulations
that we mentioned in Chapter 3 : At large temperatures, the modulation coming from
the helical state dominates, whereas below the tricritical temperature T ? = 0.56Tc0,
the modulation stems mainly from the FFLO-like state.
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(a)

(b)

Figure 4.4 – (h, T )-phase diagrams for a one-dimensional superconductor with µ = 103 Tc0.
(a) Transition lines between the normal and the superconducting states in the presence of spin-
orbit interaction α = 0.05 vF (αpF = 100Tc0), for different orientations of the Zeeman field ;
h = |~h| represents the modulus of the field, whereas θ corresponds to the angle between ~h and
the wire. (b) Phase diagram for different values of the spin-orbit coupling constant : α = 0,
α = 0.01 vF (αpF = 20Tc0), α = 0.05 vF (αpF = 100Tc0) and α = 0.1 vF (αpF = 200Tc0).
The Zeeman field is taken such that hx = hz (θ = π/4).
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4.4 Conclusion
In this chapter, we explored several effects related to the interplay between super-

conductivity and spin-dependent fields. Two systems were studied : A superconducting
wire where both spin-orbit and Zeeman fields coexist (Fig. 4.1), and a double wire sys-
tem in which superconducting pairing and spin-dependent fields are spatially separated
(Fig. 4.2).

We first investigated the appearance of anomalous charge currents within the SU(2)
covariant formulation, and determined the leading order contributions to j in the SOC
and Zeeman field, in terms of the magnetic and electric SU(2) fields. In the case of
a single wire we confirmed that a finite anomalous current can only appear when the
Zeeman field has a component parallel and one orthogonal to the SOC [11, 48]. In the
case of the two wires system, there is a finite SU(2) magnetic field and we predicted
that a Zeeman field parallel to the spin-orbit field is sufficient to induce an anomalous
current.

In Sec. 4.2, we derived the self-consistency equation for both setups in the presence
of weak SOC α pF � Tc, using the Green’s function formalism introduced in Chapter
3. Because of the presence of SOC, the integral in Eq. (4.14) has to be calculated with
certain care by expanding the Green’s function over the Zeeman field and SOC. For the
one wire system, we found that the wave-vector q was finite only if both components
of the Zeeman field, parallel and orthogonal to the SOC, were finite, thus involving an
inhomogeneous superconducting phase for each temperature T < Tc0. In the case of
the two wire setup, the parallel component of the field is sufficient to have a finite q.

In addition we computed the expression of the anomalous charge current for both
systems and found that the ground-state corresponds in fact to a zero-current state,
where the anomalous contribution is compensated by the contribution from the super-
conducting wave vector. However, if we impose q = 0, the anomalous charge current is
finite and we obtain the results predicted in Sec. 4.1 by simple symmetry arguments.
In the double wire system, the total zero-current state consists of two opposite currents
flowing in each of the wires.

Sec. 4.3 was devoted to the self-consistency study of the single wire system in the
presence of strong SOC α pF � Tc. To this purpose, it was convenient to introduce
the helical basis. We showed that when the ratio α pF/h increases, superconducting
correlations change from interband to intraband, which was also demonstrated in two
dimensions in [9]. Thus, neglecting interband pairing, we derived the self-consistency
relation, which allowed to obtain the (hx, hz, T )-phase diagram for different orienta-
tions of the Zeeman field and several values of the spin-orbit constant. We highlighted
the anisotropy caused by SOC and showed that large values of α and the ratio hx/hz
allows for a more robust superconducting state. Moreover, we showed that when the
spin-orbit and Zeeman fields are purely parallel, we recover the FFLO phase diagram,
which can be explained by the fact that SOC can be gauged out.

In the next chapter, we investigate another effect resulting from the interplay bet-
ween superconductivity and spin-dependent fields : We show that a skyrmion proximity
coupled to a 2D superconductor can generate a superconducting vortex in the absence
of external magnetic field.
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Chapter 5

Generation of a superconducting
vortex via Néel skyrmions

S
uperconductor-ferromagnet heterostructures [104, 105, 106, 107] in
the presence of spin-orbit and exchange interactions are attracting great interest

due to the possible realization of topological qubits based on Majorana fermions [77,
78, 79, 108, 109, 110, 111, 112] and the fact that such systems display unconventional
magnetoelectric effects [11, 12, 14, 49, 97, 101, 113, 114, 115, 116, 117, 118, 119, 120,
121]. Similarly to the 1D systems studied in Chapter 4, the interplay between spin-
orbit coupling and a homogeneous Zeeman or exchange field may lead to spontaneous
supercurrents and hybrid structures.

From a SU(2)-covariant formulation of spin dependent fields, it is possible to show
that a spin-orbit coupling and homogeneous Zeeman field is equivalent to an inhomo-
geneous magnetic texture that, in combination with superconducting correlations, may
support spontaneous currents under certain symmetry conditions [12, 52, 122]. In this
chapter, we investigate such a 2D heterostructure, namely a type-II superconducting
layer proximity coupled to a ferromagnet hosting a Néel skyrmion. We show that the
magnetoelectric effect induced by the skyrmion in the presence of a sufficiently strong
spin-orbit interaction may lead to the nucleation of a vortex in the superconductor,
without any external magnetic field.

First, we briefly present the two types of vortices involved in this problem, namely
magnetic skyrmions and Abrikosov superconducting vortices. After a short descrip-
tion of the main properties of skyrmions, focusing more specifically on the case of a
Néel skyrmion in a ferromagnetic layer, we discuss the structure of vortices in a thin
superconducting film, which allows to introduce the method used next to study the
nucleation of a vortex via Néel skyrmions. In a second part, we present the setup
investigated in this chapter, namely a superconducting layer in contact with a Néel
skyrmion, and derive the free energy describing the system. Then, we compute the ma-
gnetic field induced by the skyrmion, and show that its component normal to the layer
can induce a vortex in the superconducting film. To this purpose, we minimize the free
energy and obtain the condition which must be fulfilled for the vortex nucleation. We
also show that for a sufficiently strong spin-orbit interaction, it is possible to stabilize
a multiquanta vortex. Finally, we compute the magnetic field and current distributions
in the superconducting layer in the presence of the vortex.
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5.1 Two types of vortices : Magnetic skyrmions and
Abrikosov superconducting vortices

In this section, we first give a brief overview of the physics of magnetic skyrmions,
presenting in particular the case of a Néel skyrmion in a ferromagnetic layer. Then,
we introduce the problem of a vortex in a superconducting thin film and from the
expression of the free energy of the system, we compute the magnetic field and current
distributions in the layer.

5.1.1 Néel skyrmion in a ferromagnetic layer

Although they were originally proposed to explain hadrons in nuclear physics [123],
skyrmions turned out to be relevant in condensed matter physics. These inhomogeneous
magnetic structures have attracted great interest because of their nanoscale dimension
(1 - 100 nm), topological robustness and the low current density needed to move them.
Such features make them good candidates as information carriers in future memory
devices [124, 125, 126, 127, 128]. Moreover, it has been shown that skyrmions could
be stabilized when proximity coupled to an s-wave superconductor [129, 130]. In this
case, intriguing phenomena can be observed : spontaneous current generation [131],
Majorana bound states [132, 133], Weyl points [134] or Yu-Shiba-Rusinov-like states
[135].

Such structures, which can be seen as spin vorticies, are characterized by the follo-
wing spin profile [136] :

~S (~r) = (cos Φ (θ) sin Θ (r), sin Φ (θ) sin Θ (r), cos Θ (r)) , (5.1)

where ~r = (r cos θ, r sin θ) are the polar coordinates, Θ (r) describes the boundary
conditions and Φ (θ) = mθ + γ encodes the topological properties of the skyrmion,
m and γ being respectively the vorticity and the helicity. Those topological numbers
characterize two kinds of magnetic skyrmions : Spiral (or Bloch) skyrmions, for which
m = 1 and γ = ± π/2, and hedgehog (or Néel) skyrmions reading m = 1 and γ =
0 or π. These two possible structures are illustrated in Fig. 5.1. Notice that m = −1
corresponds to anti-skyrmions.

Specifically in this chapter, we are interested in the case of a ferromagnet of thick-
ness dF hosting a Néel skyrmion (Fig. 5.3). From Eq. (5.1), the Néel skyrmion, with
topological numbers m = 1 and γ = 0, is characterized by the following spin profile :

~S(~r) = η sin Θ(r)~er + cos Θ(r)~ez, (5.2)

where ~er is the radial unit vector and ~ez the unit vector normal to the layer. The
profile function Θ(r) must obey the boundary conditions Θ(0) = π and Θ(∞) = 0.
For the analytical calculations below, we assume that Θ(r) = π (1− r/R) for r < R,
and otherwise 0, where R denotes the radius of the skyrmion. The constant η = ±1
describes the skyrmion winding.

In the following we present the other physical object involved in our problem,
namely a vortex in a superconducting thin layer.

5.1.2 Superconducting vortices in a thin film

When an external magnetic field ~B is applied on a type-II superconductor such
that Hc1 < µBB < Hc2 where Hc1 (Hc2) is the lower (upper) critical field, a new

46



CHAPTER 5. GENERATION OF A SUPERCONDUCTING VORTEX VIA NÉEL
SKYRMIONS

(a) (b)

Figure 5.1 – (a) A Bloch skyrmion (γ = π/2). (b) A Néel skyrmion (γ = 0).

state called the mixed (or Shubnikov) state appears (see Chapter 2). In this case,
the magnetic field screening decreases and the field penetrates partially the material
through spatially separated tubes of magnetic flux, the so-called Abrikosov vortices
[16].

In this section, we consider the particular case of a magnetic field applied normal
to a superconducting thin film of thickness dS, characterized by the coherence length
ξ and the London penetration length λ � dS. The magnetic field induces currents in
the superconducting layer, leading to the appearance of a hard core vortex of radius
ξ. Assuming that the superconductivity is well developed, i.e. T � Tc, we first derive
the expression of the free energy using the London approach, which assumes that the
current generated does not modify the modulus of the superconducting order parameter
[39]. This is always the case for Abrikosov vortices, except the narrow core region.
Then, we compute the expressions of the current and magnetic field distributions in
the superconducting layer.

Free energy of the system

The free energy of the superconducting layer can be written as

F = F0 + Fsc + Fmag , (5.3)

where F0 is the free energy in the absence of superconductivity and magnetic texture,
and Fsc is the kinetic term related to the superconducting current energy, which reads :

Fsc =

∫
1

2
mns v

2
s (~r, z) d2~r dz , (5.4)

where ns and ~vs are respectively the density and the velocity of the superconducting
electrons. Using the expression of ~vs defined in Chapter 2 Eq. (2.6) in the context of
the Ginzburg-Landau theory, which can be transposed to the London approximation
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by writing the superconducting order parameter Ψ such that Ψ = Ψ0 e
iϕ where Ψ0 is

a constant and ns = Ψ2
0/2, and assuming that the density of superconducting current

energy is nearly constant through the width dS � λ, we obtain the following expression
for Fsc :

Fsc =

∫
1

2µ0 λeff

[
~φ(~r)− ~A(~r)

]2
d2~r , (5.5)

where λeff = λ2/dS is the effective screening length for the superconductor, ~φ is the
gradient of the local superconducting phase (multiplied by ~/2e), and ~A(~r) is the
vector potential averaged over the thickness of the layer. In the presence of a vortex,
the expression for the vector ~φ can be obtained from the London equation as [39] :

~φ(r) =
Φ0

2 π r
~eθ , (5.6)

where ~eθ is the unit orthoradial vector.
Finally, the last component Fmag of the free energy Eq. (5.3) represents the energy

of the magnetic field ~B = ~∇× ~A :

Fmag =

∫ ~B2(~r, z)

2µ0

d2~r dz . (5.7)

In order to compute the superconducting current density ~J = −∂f/∂ ~A in the
thin film, where f is the free energy density in the superconducting layer such that

F =

∫
f d2~r, it is necessary to derive the expression of the potential vector ~A. This is

the subject of the next section.

Expression of the vector potential

Using the Maxwell-Ampere equation in the London gauge, µ0
~j = ~∇× ~B = −∆ ~A,

and the expression of the current density for dS � λ in the plane z = 0, namely :

~j = − ∂f
∂ ~A

δ(z) =
1

µ0 λeff

[
~φ(~r)− ~A(~r)

]
δ(z) , (5.8)

it is possible to derive a differential equation for the vector potential ~A :

−∆ ~A(~r, z) +
1

λeff
~A(~r) δ(z) =

1

λeff
~φ(~r) δ(z) . (5.9)

To solve this equation and obtain the expression of ~A, we work in Fourier space. To this
purpose, we introduce the following three and two-dimensional Fourier transforms :

~Akl =

∫
~A(~r, z) ei (

~k·~r+l z) d2~r dz ; (5.10)

~Ak =
1

2π

∫
~Akl dl =

∫
~A(~r) ei

~k·~r d2~r ; (5.11)

~φk =

∫
~φ(r) ei

~k·~r d2~r = i
Φ0

k
~e⊥ , (5.12)

where the unit vector ~e⊥ is represented in Fig. 5.2.
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~r
~er

~k

θ
~ek

~eθ

~e⊥

Figure 5.2 – The sets of coordinates (~er, ~eθ) and (~ek, ~e⊥), respectively corresponding to the
real space and the Fourier space.

Then, the Fourier transform of Eq. (5.9) is obtained from Eqs. (5.10 - 5.12), leading
to the following equation :

~Akl =
1

λeff

~φk − ~Ak
k2 + l2

. (5.13)

Therefore, the expression of ~Ak can be obtained by performing the integration of Eq.
(5.13) over l using Eq. (5.11) :

~Ak =
~φk

1 + 2 k λeff
. (5.14)

It is now possible from Eq. (5.14) to derive the expression of the current density in the
superconducting layer, as done in the following.

Current distribution in the superconducting layer

The current distribution in the superconducting layer may be obtained from the
free energy density 1 :

~Jv(~r) = − ∂f
∂ ~A

=
1

µ0 λeff

[
~φ(~r)− ~A(~r)

]
. (5.15)

In the Fourier space and after replacing ~Ak by its expression using Eq. (5.14), this
equation becomes :

~Jv
k =

2 i
1 + 2 k λeff

Φ0

µ0

~e⊥ . (5.16)

The current density in position space may be recovered by performing the inverse
Fourier transform of Eq. (5.16), taking into account that ~e⊥ = − sin θ ~er + cos θ ~eθ, as
illustrated in Fig. 5.2. In the limit ξ � r � λeff, it reads :

~Jv(~r) =
Φ0

2 π µ0 λeff r
~eθ , (5.17)

1. The index v which appears in the current and magnetic field distributions will be useful in
the next sections to make the difference between the contributions coming from the vortex or the
skyrmion, labelled s.
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Hence, we have shown that supercurrents induced by the normal magnetic field ~B are
present around the vortex, and decrease with distance. Next, we compute the density
of magnetic field in the superconducting layer.

Magnetic field distribution in the superconducting layer

The magnetic field distribution can be calculated using the relation ~B = ~∇ × ~A,
which reads in Fourier space :

~Bv
kl = −i k

(
~ek × ~Akl

)
− i l

(
~ez × ~Akl

)
, (5.18)

which gives, after replacing ~Akl by its expression, derived from Eqs. (5.13) and (5.14) :

~Bv
kl =

2

1 + 2 k λeff

Φ0

k2 + l2
(k ~ez − l ~ek) , (5.19)

In order to obtain the magnetic field distribution in the superconducting layer, we
integrate Eq. (5.19) over l. Since the external magnetic field is applied normal to the
layer, only the normal component of ~Bv

k is finite :

~Bv
k =

Φ0

1 + 2 k λeff
~ez . (5.20)

Finally, the magnetic field distribution in the thin film is obtained from the inverse
Fourier transform of ~Bv

k and reads in the limit ξ � r � λeff :

~Bv(r) =
Φ0

4 π λeff r
~ez . (5.21)

Therefore, from the free energy expressed in London approximation, we have derived
the magnetic field and current distributions in a superconducting layer hosting a vortex.

In the next section, we investigate the formation of a composite topological ex-
citation between a magnetic skyrmion and a superconducting vortex in a ferroma-
gnet/superconductor (F-S) bilayer with Rashba spin-orbit coupling, in the absence of
external magnetic field. In contrast to Ref. [137], the superconducting vortex is initially
absent. We show that the generation of a vortex may occur via the magnetoelectric
effect induced by the skyrmion in the presence of a sufficiently strong spin-orbit cou-
pling. By evaluating the free energy of the system, we derive the conditions required for
the creation of this vortex, and compute the current and magnetic field distributions
in the superconductor.

5.2 Superconducting layer in contact with a Néel skyr-
mion : Free energy

We consider a type-II superconducting thin film of thickness dS, characterized by
the coherence length ξ and the London penetration length λ� dS, as described in Sec.
5.1.2. The superconductor is in contact with a ferromagnet of thickness dF hosting a
Néel skyrmion of radius R, characterized by the spin profile Eq. (5.2), as illustrated
in Fig. 5.3. We assume that a two-dimensional spin-orbit interaction is present in the
ferromagnetic layer and described by the Rashba constant αR.
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Figure 5.3 – A thin superconducting film proximity-coupled to a ferromagnetic layer hosting
a Néel skyrmion. The F layer has thickness dF and the S layer dS.
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In principle both the direct electromagnetic coupling between the skyrmion and the
superconductor [138], and the magnetic proximity effect may result in the nucleation
of a vortex. For a uniform ferromagnetic layer in contact with a superconductor, it
is possible to avoid vortex formation via the standard electromagnetic interaction by
designing the F and S layers such that µ0M � Hc1 dS/dF, which may be easily fulfilled
if the ferromagnetic layer is much thinner than the superconducting one. Hence in this
work, we neglect the direct electromagnetic effect and we only focus on the proximity
effect by assuming that the exchange field and spin-orbit interaction penetrate the
superconductor over the atomic thickness a, where a � dS, as illustrated in Fig. 5.4.
It induces a spin polarization in the superconductor, which gives rise to a supercurrent
at the interface between F and S, and creates a magnetic field. If this magnetic field
is sufficiently strong, a vortex is then generated below the skyrmion, without external
magnetic field.

Let us consider temperatures for which superconductivity is well developed, i.e.,
T � Tc . As we already did in Sec. 5.1.2 for vortices in a thin superconducting film,
we derive the free energy of the system within the London approach, which assumes
that the modulus of the superconducting order parameter is not modified by the cur-
rent generated. The criterion of applicability of this formalism is well known (see for
example Ref. [39]) : the current density should be much smaller than the critical current
density jc ∝ Φ0/µ0 λ

2 ξ. The computation of the current (see Sec. 5.4.2) shows that
this approach is completely justified to describe the vortex generation by the skyrmion
while R� ξ.

The free energy of the F/S bilayer can be written as

F = F0 + Fsc + Fmag + FL , (5.22)

where F0 is the free energy in the absence of superconductivity and magnetic texture.
In the following, we omit this term, which does not influence the generation of the
vortex. The superconducting current energy Fsc and the energy of the magnetic field
Fmag are given by Eqs. (5.5) and (5.7).

The last contribution to the free energy, FL in Eq. (5.22), corresponds to the cou-
pling energy between the superconductor and the magnetic order induced by the skyr-
mion. By proximity effect, the interplay between the exchange field and the Rashba
spin-orbit interaction in the ferromagnetic layer induces a spin polarization in the su-
perconducting film. This may give rise for example to a spontaneous current in the
bulk superconductor near the interface to F, in the absence of an external magnetic
field [49, 72]. For T close to Tc, such an interaction is described by the Lifshitz in-
variant [5, 71, 139]. At low temperatures and for dS � λ, one can consider that the
spin-orbit interaction is averaged over dS. In this case the energy FL can be written as
(see Appendix C.1) :

FL =

∫
~α(r) ·

[
~φ(~r)− ~A(~r)

]
d2~r , (5.23)

where ~φ is given by Eq. (5.6) and ~α(r) = α(r)~eθ = η α0 sin Θ(r)~eθ. The expression of
the constant α0 is also derived in Appendix C.1 and incorporates the Rashba constant
αR, the exchange energy hex, the thickness of the superconducting film dS and the
proximity length a :

α0 ≈
1

4µ0 e λeff

a

dS

αR hex
v2F

. (5.24)

In order to derive the vortex nucleation condition and the magnetic field and current
distributions in the superconducting layer, it is necessary to get the expression of the
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FERROMAGNET

SUPERCONDUCTOR

dF

dS � a

dS � λ

hex, αR

Figure 5.4 – By proximity effect, the exchange and spin-orbit interactions penetrate the
superconductor over the atomic thickness a, generating a spin polarization which in turn may
induce a supercurrent at the interface between the layers.

vector potential ~A. Using the same method as in Sec. 5.1.2, we can derive a differential
equation for ~A from the Maxwell-Ampere equation and the current density for dS � λ
in the plane z = 0 :

−∆ ~A(~r, z) +
1

λeff
~A(~r) δ(z) =

1

λeff
~φ(~r) δ(z) + µ0 ~α(r) δ(z) . (5.25)

This equation can be solved exactly in Fourier space. To this purpose, we use the
Fourier transforms defined in Eqs. (5.10 - 5.12) and introduce the following one, acting
on ~α(~r) :

~αk =

∫
~α(r) ei

~k·~r d2~r = iαk ~e⊥ , (5.26)

such that αk = 2π

∫ ∞
0

r α(r) J1(k r) dr where J1(k r) is a Bessel function of first kind.

Solving Eq. (5.25) in Fourier space, we obtain the following expressions for ~Akl and
~Ak, which are respectively the Fourier transforms of ~A(~r, z) and ~A(~r) :

~Akl =
2 k

k2 + l2
1

1 + 2 k λeff

(
~φk + µ0 λeff ~αk

)
; (5.27)

~Ak =
1

1 + 2 k λeff

(
~φk + µ0 λeff ~αk

)
. (5.28)

These expressions of ~Akl and ~Ak, Eqs. (5.27) and (5.28), are similar to the ones obtained
for the isolated superconducting layer (Eqs. 5.14 and 5.13), but enlarged with a term
induced by the presence of the skyrmion, proportional to ~αk. In the next section, we
focus more particularly on these terms, and compute the expression of the magnetic
field stemming from the Néel skyrmion. Then, by comparing the free energy Eq. (5.22)
with and without vortex, we derive the condition for the vortex nucleation, and study
the possibility that it carries more than one quantum of flux.
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5.3 Creation of a superconducting vortex

This section is devoted to investigate the condition to nucleate a vortex in the
superconducting layer. To this purpose, we first assume that there is no vortex, and
compute the magnetic field distribution coming from the skyrmion.

5.3.1 Magnetic field induced by the skyrmion

Because of the spontaneous current generated by the skyrmion in the supercon-
ducting film, a magnetic field is created. We first consider that there is no vortex. In
this case, the term proportional to ~φk in Eq. (5.28) is absent and we can derive the
expression of the magnetic field distribution in the superconducting layer. Similarly
to Eq. (5.18), the magnetic field stemming from the skyrmion, ~Bs

kl, reads in Fourier
space :

~Bs
kl =

2 k λeff
1 + 2 k λeff

1

k2 + l2
µ0 αk (k ~ez − l ~ek) , (5.29)

Following the method introduced in Sec. 5.1.2, the magnetic field distribution in the
superconducting layer is obtained from Eq. (5.29) after integrating over l and perfor-
ming the inverse Fourier transform. Notice that only the normal component to the layer
survives the l integration. Considering that the skyrmion is small compared to λeff and
focusing on small distances r from the center of the skyrmion (r � λeff), we finally
obtain the normal component of the magnetic field distribution in the superconducting
layer :

Bs(r) =
1

2
η µ0 α0

∫
k Γ(k) J0(k r) dk , (5.30)

where Γ(k) =

∫ R

0

r sin(π
r

R
) J1(k r) dr and J0(k r), J1(k r) are Bessel functions of first

kind. This field distribution is represented by the blue line in Fig. 5.5. As expected,
outside of the skyrmion Bs(r) decreases and vanishes very fast. Moreover, one can check
that the magnetic flux associated to Bs(r) is equal to zero.

Because of the presence of this magnetic field normal to the layer, a vortex may
appear in the superconducting layer. Next, we investigate this vortex nucleation by
minimization of the free energy.

5.3.2 Superconducting vortex generation

The condition for the superconducting vortex creation can be derived by comparing
the free energy of the system with and without a vortex. We replace ~A by its expression,
(Eqs. 5.27 and 5.28), into the kinetic, magnetic and magnetoelectric terms Eqs. (5.5,
5.7 and 5.23) to the free energy. The resulting F can be written as a sum of three
terms, derived in Appendix C.2, Eq. (C.17) :

F = Fv + Fs + Fint . (5.31)

The first one, proportional to Φ2
0, describes the self-energy of the vortex. The second

term, proportional to α2
R, describes the energy of the current induced by the skyrmion,

whereas the third term, proportional to Φ0 αR, corresponds to the interaction energy
between the vortex and such currents.
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In the limit ξ � r � λeff, we can write the self-energy of the vortex in the following
way :

Fv =
1

π µ0 λeff

(
Φ0

2

)2

ln

(
2
λeff
ξ

)
. (5.32)

Moreover, by assuming R� λeff, the current energy and the interaction term read :

Fs = − µ0

8π

∫
α2
k dk ; (5.33)

Fint = 2 η
Φ0 α0

π
R . (5.34)

The difference of free energy, ∆F = F − Fs, between the states with and without
vortex reads after replacing α0 by its expression (Eq. 5.24) :

∆F =
Φ2

0

2 π2 µ0 λeff

[
π

2
ln

(
2
λeff
ξ

)
+ 0.180 η

hex
kB Tc

a

dS

αR

vF

R

ξ

]
, (5.35)

where kB is the Boltzmann constant, Tc is the critical temperature of the superconduc-
tor and the coherence length is given by ξ = 0.180 ~ vF/kB Tc.

The condition for the vortex nucleation is determined by ∆F < 0, which requires
that η αR < 0 : The vortex polarity is determined by the sign of η, combined with the
Rashba constant αR. In the opposite case, namely if η αR > 0, the appearance of the
vortex is energetically not favorable. We thus consider αR > 0, which implies η = −1.
Therefore, the vortex generation condition reads :

heff
kB Tc

αR

vF

R

ξ
>

π

0.36
ln

(
2
λeff
ξ

)
, (5.36)

where heff = hex a/dS is the average effective exchange energy, with a� d.
The condition Eq.(5.36) gives the features of the ferromagnetic layer required to induce
a vortex inside the superconducting film without any external magnetic field. Quali-
tatively, this result shows that if αR or R increase, so does the magnetic field Bs (Eq.
5.30), thereby favoring the appearance of the vortex.

Next, we discuss the possibility of nucleating a vortex carrying more than one
superconducting flux quantum Φ0, which was not considered until now.

5.3.3 Multiquanta vortices

The free energy Fn in the presence of a n-quanta vortex, with n > 1, is given by :

Fn = n2 Fv + Fs + nFint . (5.37)

The optimal value of n can be estimated by minimizing Fn with respect to n :

nop ≈ −
Fint

2Fv
=

π

0.72 ln(2λeff
ξ

)

heff
kB Tc

αR

vF

R

ξ
. (5.38)

Therefore, upon raising the Rashba coupling and/or the radius of the skyrmion, it is
possible to stabilize a multiquanta vortex carrying the integer value of nop supercon-
ducting flux quanta.

In the following, we investigate the magnetic field and current distributions in the
superconducting layer. For simplicity, we assume that the spin-orbit interaction is too
weak to have a vortex with vorticity larger than 1.
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Figure 5.5 – Magnetic field distribution in the superconducting layer. The vortex nucleation
condition for a vortex with vorticity 1 is fulfilled : R = 50 ξ, αR = 0.1 vF and heff = 20 kB Tc.
The blue line corresponds to the magnetic field distribution without vortex, whereas the
orange one is in the presence of the vortex.

5.4 Magnetic field and current distributions

Here, we suppose that the vortex was nucleated in the superconducting layer, and
that it carries only one quantum of flux. As it was shown in Sec. 5.1.2, the magnetic field
and current distributions are modified by the vortex. We then derive these distributions
and show how they compete with the magnetic field and current originating from the
skyrmion.

5.4.1 Magnetic field distribution

The presence of the vortex modifies the magnetic field distribution. In addition to
the component Bs (Eq. 5.30), stemming from the current induced by the skyrmion
in the superconducting layer, there is a term originating from the vortex itself, Bv,
determined in Sec. 5.1.2 (Eq. 5.21). The total magnetic field distribution normal to the
layer can thus be written as

Bz(r) = Bs(r) +Bv(r) . (5.39)

for ξ � r � λeff.
The magnetic field distribution Bz(r) is shown in Fig. 5.5 (orange line). It is assumed

that the condition for the appearance of a vortex is fulfilled. As expected, both Bz and
Bs follow the spin direction of the skyrmion, with a sinusoidal-like shape : it is negative
near the center, and positive for r & 0.65R. At r = R, the amplitude of the magnetic
field decreases away from the skyrmion. The component Bs tends to zero very fast,
whereas Bz vanishes far from the center. It decreases slowly because of the presence of
the vortex, whose component Bv is proportional to 1/r.

Next, we investigate the current distribution in the superconducting layer.
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5.4.2 Current distribution

As with the magnetic field distribution Eq. (5.39), the current ~J in the supercon-
ducting layer can be written as the sum of two contributions : one induced directly by
the skyrmion, ~Js, and a second stemming from the vortex, ~Jv, which was derived in
Sec. 5.1.2 (Eq. 5.17).

~J(r) = ~Js(r) + ~Jv(r) , (5.40)

where ~Js may be obtained by using the method introduced in Sec. 5.1.2 : We compute
~Jv(~r) = −∂f/∂ ~A, where f is the density of free energy, in the absence of the vortex.
Then, using the skyrmion part of the vector potential ~Ak (Eq. 5.28), we derive the
expression of the current density in Fourier space, which reads :

~J s
k = i

2 k λeff
1 + 2 k λeff

αk ~e⊥ . (5.41)

The expression of ~Js is obtained after an inverse Fourier transform of Eq. (5.41). Under
the same assumptions as before, ξ � r � λeff and R� λeff, it reads :

~Js(r) = −α0

∫
k Γ(k) J1(k r) dk ~eθ ; (5.42)

The current lines in the film are shown in Fig. 5.6a. We used the same parameters as
in (Fig. 5.5).

Around the vortex (r < 0.20R), the current is dominated by the contribution from
the vortex and flows counterclockwise. As it can be in seen Fig. 5.6b, in this region the
current is positive and decreases like 1/r. For larger values of r within the skyrmion
(0.20R < r < 0.95R), the current distribution has a sinusoidal shape, and is dominated
by the contribution from the skyrmion. In this region, the current loops are clockwise.
Finally, for r > 0.95R, the current is again dominated by the contribution from the
vortex. It decreases slowly with distance, and tends to zero far from the skyrmion.
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(a) (b)

Figure 5.6 – (a) Current lines in the superconducting layer. The vortex nucleation condition
for a vortex with vorticity 1 is fulfilled : R = 50 ξ, αR = 0.1 vF and heff = 20 kB Tc. The
dashed black lines represent the changes in the rotation direction of the current loops. The
thickness of the lines represents the amplitude of the current. (b) Distribution of the current
J in the superconducting layer.

5.5 Conclusion
In this chapter, we explored the magnetoelectric effects resulting from the interplay

between a superconductor and a ferromagnetic layer hosting a Néel skyrmion. We
assumed that the magnetization in the F layer was sufficiently weak to neglect the
direct electromagnetic coupling, thus focusing only on the proximity effect between the
layers. We showed that the magnetic texture of the skyrmion induces a current and
a magnetic field in the superconducting layer, which may in turn lead to generate an
Abrikosov vortex.

To this purpose, we derived the free energy of the system in the London approach.
By minimization of this free energy, namely comparing the energy with and without
vortex, we obtained the condition which must be fulfilled to generate a vortex in S : If
the Rashba coupling exceeds a threshold value (given by Eq. 5.36), the skyrmion can
nucleate a superconducting vortex by magnetoelectric proximity effect in the absence
of an applied external field. Surprisingly, we also demonstrated that this vortex may
carry more than one quantum of flux Φ0 for a sufficiently strong spin-orbit interaction.

Finally, we investigated the magnetic field and current distributions in the supercon-
ducting layer. These distributions correspond in fact to the sum of two contributions,
one stemming from the skyrmion, and the second coming from the vortex itself. We
have emphasized the competition between them, which leads for example to several
changes of the rotation direction of the current in the layer.

In the next chapter, we focus on another possible effect resulting from the interplay
between superconductivity and spin-dependent fields : the appearance of Yu-Shiba-
Rusinov bound states in the presence of paramagnetic impurities.
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Chapter 6

Multiband superconductivity in the
presence of magnetic impurities

D
ue to their antagonist characters, the coexistence between superconduc-
ting and magnetic orders has attracted numbers of investigations, leading for

example to the prediction of the FFLO state introduced in Chapter 3. Another example
of striking physics stemming from the interplay between magnetism and superconduc-
tivity is the effect of paramagnetic impurities on superconductivity. Such impurities
break locally Cooper pairs, inducing bound states in the superconducting gap. First
predicted in the late 1960’s [27, 28, 29, 30], these so-called Yu-Shiba-Rusinov (YSR or
Shiba) states were detected experimentally in 1997 thanks to the development of Scan-
ning Tunneling Microscopy (STM) [31]. During the last decade, the interest on Shiba
states was further enhanced by the discovery of Majorana zero modes in chains of ma-
gnetic atoms coupled to topological superconductors [18, 19, 20, 21, 22, 23, 24, 25, 26].

This chapter is motivated by a collaboration with the experimental group of José
Ignacio Pascual from CIC-nanoGUNE. The focus of this collaboration is the study of
the local spectral properties of the superconducting crystal β-Bi2Pd in the presence of
Vanadium adatoms. β-Bi2Pd is known to display topologically protected surface states
and suspected to host unconventional pairing [140, 141]. The recent experiments by J.
Zaldívar and J. I. Pascual show an unexpected double period spatial oscillation of the
LDOS at Shiba energy. The aim of this chapter is to provide simple effective models
to identify the mechanisms at the origin of this double oscillation. Our simple models
could be used to gain a first qualitative overview about the spectrum of multiband
superconductors in the presence of magnetic impurities.

A possible approach to model electronic band structures is to use simulations based
on tight-binding calculations. Although there are observations that point towards 2D
surface bands (and even some bulk bands) involved in electron scattering of β-Bi2Pd
[141], we have chosen to reduce the problem to a 1D system. Even though such a model
will not give a complete description of the experiments, it provides a first fundamental
understanding of the mechanisms at the origin of the spatial dependence of Shiba
states. Specifically, our 1D models allow to answer two basic questions, namely whether
a magnetic impurity coupled to a helical band may lead to Shiba spatial oscillations,
and what is the minimal condition to observe a double period spatial oscillation of
YSR states. To this purpose, the group of Alfredo Levy Yeyati from the Universidad
Autónoma de Madrid, considered a 1D tight-binding model, which in the continuous
limit can be represented by wires. In order to guide their simulations, we thus developed
two effective 1D analytical models, which are presented in this chapter.
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First, we briefly describe the main properties of YSR states in a superconducting
wire in the presence of a magnetic impurity. From the Green’s function of the system,
we derive the energy of Shiba states and compute the non-polarized and spin-polarized
local densities of states (LDOS) at Shiba energy. We highlight the presence of a spatial
oscillation of the LDOS and the phase-shift between electron and hole components.

Then, after introducing the main experimental results obtained by J. Zaldívar and J.
I. Pascual on β-Bi2Pd coupled to Vanadium adatoms, we develop a first effective model,
made of a single superconducting wire with helical dispersion in order to reproduce the
spin-polarization of β-Bi2Pd energy bands. We show that the Shiba states induced by a
magnetic impurity do not produce any spatial oscillations of the non-polarized LDOS,
thus failing to describe β-Bi2Pd.

The second model presented in this chapter is illustrated in Fig. 6.7. Two super-
conducting wires with quadratic dispersion are connected via a hopping term, and the
magnetic impurity is coupled only to the upper wire. We demonstrate that the presence
of the two wires is the minimal ingredient to obtain the double spatial oscillation of the
LDOS at Shiba energy. In this case, the oscillation frequencies correspond respectively
to the sum and difference of the Fermi momenta associated to each wire.

6.1 Introduction to Yu-Shiba-Rusinov bound states

Yu-Shiba-Rusinov bound states were predicted in the 1960’s independently by three
theoreticians, Luh Yu [27], Hiroyuki Shiba [28] and A. I. Rusinov [29, 30]. Their work
focused on the effect of a single paramagnetic impurity embedded in an s-wave super-
conductor. Because of the Pauli paramagnetic pair-breaking effect presented in Chapter
3, the presence of such an impurity is detrimental to superconductivity. The interaction
between the (classical) spin of the impurity and Cooper pairs leads to the appearance
of a pair of bound states in the superconducting gap (Fig. 6.1) : These are the so-called
YSR states [142, 143]. They are characterized by spatial oscillations of the LDOS at
a specific energy, the Shiba energy, which allowed the first experimental detection of
Shiba states in 1997 [31]. Yazdani et al. investigated the local density of states (LDOS)
of a Niobium (Nb) crystal in the superconducting state (around 4 K), in the presence of
single Manganese (Mn) and Gadolinium (Gd) adatoms. STM measurements revealed
the presence of excitations in the superconducting gap, corresponding to the predic-
ted Shiba states. Notice that the first observation of YSR states in two-dimensional
superconductors was done very recently, in 2015 [144].

In this section, we derive the Shiba energy and the LDOS in the particular case of
a 1D superconductor in the presence of a magnetic impurity.

6.1.1 Energy of the Shiba states

The Shiba energy at which YSR states appear can be obtained from the poles of
the Green’s function describing an s-wave superconductor in the presence of a magnetic
impurity. To simplify the problem, we consider an infinite superconducting wire along
the x-axis with a constant order parameter ∆ in the presence of a single localized
magnetic impurity. We assume that the impurity interacts with the superconductor
via a scalar potential V (x) = ~h · ~σ δ(x), where ~h is the exchange field of the impurity
and σx,y,z are the Pauli matrices acting in spin space. In this case, the Green’s function
G of the impurity-superconductor system in position space is derived from the Dyson
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Figure 6.1 – In the absence of magnetic impurity, a superconductor is characterized by a gap
at energy −∆ < E < ∆ (left panel). In the presence of a single localized magnetic impurity
(right panel), a pair of subgap bound states, the Shiba states, appears with opposite energies
(red lines).

equation :

G(x′, x) = G0(x
′, x) +

∫
dy G0(x

′, y)V (y)G(y, x) , (6.1)

where G0 is the Green’s function of the superconductor in the absence of the impurity.
We now explain how to obtain the expression of the local Green’s function G(x, x),
which characterizes the system made by the impurity and the superconductor. After
replacing V (y) by its expression, we can perform the integration and derive the general
expression of G(x, x′) :

G(x′, x) = G0(x
′, x) +G0(x

′, 0)~h · ~σ G(0, x) , (6.2)

Taking x′ = 0 in Eq. (6.2), we obtain the expression of the Green’s function G(0, x) :

G(0, x) =
[
1−G0(0)~h · ~σ

]−1
G0(−x) , (6.3)

where we set G(0, 0) = G(0) and G(−x) = G(−x, 0). Then, taking x′ = x in Eq.
(6.2) and replacing G(0, x) by its expression using Eq. (6.3), we obtain the general
expression of the Green’s function of the system :

G(x, x) = G0(x, x) +G0(x)~h · ~σ
[
1−G0(0)~h · ~σ

]−1
G0(−x) . (6.4)

We are now able to extract the Shiba energy from Eq. (6.4). Moreover, we can no-
tice that the poles of the Green’s function G(x, x) are all contained in the term[
1−G0(0)~h · ~σ

]−1
, and therefore we focus only on this term.

We first compute the Green’s function G0(0) =

∫
G0(p) dp/2π. In Nambu spin

space, the Green’s functionG0(p) describing the superconducting wire without impurity
is obtained from the equation of motion

(
iωn − ĥ0

)
G0 = 1, where the superconducting

Hamiltonian operator is defined by

ĥ0 = ξ τz −∆ τx , (6.5)
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where ξ =
p2

2m
− µ is the quasiparticle energy and τx,y,z are the Pauli matrices acting

in Nambu space. Therefore, the Green’s function G0(p) reads :

G0(p) = − iωn + ξ τz −∆ τx
ω2
n + ξ2 + ∆2

, (6.6)

where ωn are the Matsubara frequencies. Assuming that the chemical potential µ is the
largest energy involved in this problem and noticing that G0(p) only depends on ξ, the
calculation of G0(0) is performed by transforming the p integration into a ξ integration,
as we did in Chapter 2 (we set ~ = 1) :

G0(0) ≈ 1

π vF

∫
G0(ξ) dξ , (6.7)

where vF is the Fermi energy. Then, using the residue technique for the ξ integration,
we obtain :

G0(0) = − iωn −∆ τx

vF
√
ω2
n + ∆2

. (6.8)

It is now straightforward to derive the expression of
[
1−G0(0)~h · ~σ

]−1
:

[
1−G0(0)~h · ~σ

]−1
=

ω2
n

(
1 + J2

)
+ ∆2

(
1− J2

)
− 2 iωn J2 ∆ τx −

√
ω2
n + ∆2

[
iωn

(
1 + J2

)
−∆

(
1− J2

)
τx
]
~J · ~σ

ω2
n (1 + J2)2 + ∆2 (1− J2)2

,

(6.9)

where we took ~J = ~h/vF. The energy of the Shiba states εs is obtained from the poles
of Eq. (6.9) after performing the analytical continuation iωn → ε :

εs = ±∆
1− J2

1 + J2
. (6.10)

We obtain two opposite values of the Shiba energy, which is a direct consequence of the
electron-hole symmetry imposed by the Nambu basis. Notice that this energy does not
depend on the impurity spin orientation nor on the dimensionality of the system. The
variation of εs with the impurity strength J is illustrated in Fig. 6.2. At J = 1, the sign
of the Shiba energy εs changes : A topological transition occurs, which modifies the su-
perconducting ground state parity. Two important limits have to be taken into account
when studying YSR states. Indeed, when J � 1, the impurity is sufficiently strong to
modify the order parameter, which is not constant anymore and spatially oscillates. In
the opposite limit, namely J � 1, Shiba physics occurs as long as the superconducting
critical temperature Tc is larger than the Kondo temperature [145]. Otherwise, the sys-
tem must be studied within the Kondo framework, where the impurity spin cannot be
considered as classical. Notice that usually J ∼ 1 in STM measurements, thus avoiding
these two problematic limits. These STM measurements give access to the polarized
and non-polarized LDOS, characterized by spatial oscillations in the YSR states. Next,
we analytically derive the LDOS of the 1D system considered in this part.
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Figure 6.2 – Variation of the Shiba energy with the impurity strength J . The red curve
represents the energy of the electron, whereas the blue one corresponds to the hole energy. At
J = 1, the sign of the energy changes : A topological transition occurs.

6.1.2 Local density of states

The non-polarized and polarized LDOS, ν(x) and Sn(x) respectively, where n =
x, y, z, read in Nambu spin space :

ν(x) =
1

4
TrσGii(x, x) ; (6.11)

Sn(x) =
1

4
Trσ (Gii(x, x)σn) , (6.12)

where Trσ corresponds to the trace over spins and i refers to the Nambu components
of the matrix Green’s function G(x, x). The index i = 1 gives access to the LDOS
of electrons, whereas i = 2 corresponds to holes. Since we are only interested in the
spatially dependent part of the LDOS, δν(x) and δSn(x), we in fact derive the spin
trace of δGii(x, x) in Eqs. (6.11, 6.12), where δG(x, x) corresponds to the spatially-
dependent part of Eq. (6.4) :

δG(x, x) = G0(x)~h · ~σ
[
1−G0(0)~h · ~σ

]−1
G0(−x) . (6.13)

The Green’s function G0(±x), is given by the Fourier transform of G(p) :

G0(±x) =

∫
e± i p xG0(p)

dp

2π
, (6.14)

where in this case, G0(p) is an even function of p, implying that G0(x) = G0(−x).
As we already did in the previous part, we turn the p integration into ξ integration.

To this purpose, we need to replace the p in the exponential by its expression with
respect to ξ : p = ±

√
2m (ξ + µ) ≈ pF + ξ/vF.

G0(±x) =

∫ +∞

−∞

(
ei (pF+ξ/vF) |x| + e−i (pF+ξ/vF) |x|

)
G0(ξ)

dξ

2 π vF
. (6.15)

One can notice that the Green’s function G0(ξ) may be written as a sum of two com-
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ponents Geven(ξ) and Godd(ξ), respectively even and odd in ξ, defined by :

Geven(ξ) = − iωn −∆ τx
ω2
n + ξ2 + ∆2

; (6.16)

Godd(ξ) = − ξ τz
ω2
n + ξ2 + ∆2

. (6.17)

Then, doing the change ξ → −ξ in the negative exponential term, we finally obtain
the following expression for G0(±x) :

G0(±x) =
1

π vF

[
cos(pF |x|)

∫ +∞

−∞
ei |x| ξ/vF Geven(ξ) dξ + i sin(pF |x|)

∫ +∞

−∞
ei |x| ξ/vF Godd(ξ) dξ

]
.

(6.18)
Performing the ξ integration using the residue technique, G0(±x) reads :

G0(x) = G0(−x) = −NF e
−|x|/ζ

[
iωn −∆ τx√
ω2
n + ∆2

cos (pF |x|)− τz sin (pF |x|)

]
, (6.19)

whereNF = 1/vF is the density of states at the Fermi level and we put ζ = vF/
√
ω2
n + ∆2.

Notice that we can also write this expression in a more condensed way :

G0(x) = G0(−x) = −iNF e
−|x|(1/ζ−i pF ĝ) ĝ τz , (6.20)

where ĝ =
ωn τz + ∆ τy√

ω2
n + ∆2

.

Finally, replacing Eqs. (6.9) and (6.19) in Eq. (6.13) and taking the trace over
spins, both at the positive Shiba energy ε → εs = +∆ (1− J2) / (1 + J2), we obtain
the following expressions for the spatially-dependent parts of non-polarized and spin
polarized LDOS :

δν(x) =
NF

2
e−2 |x|/ζs

εs
ε2 − ε2s

∆
[
1 +

εs
∆

cos (2 pF |x| ∓ θ)
] J

1 + J2
; (6.21)

δSn(x) = −NF

2
e−2 |x|/ζs

εs
ε2 − ε2s

∆
[
1 +

εs
∆

cos (2 pF |x| ∓ θ)
]
Jn , (6.22)

where ζs = vF (1 + J2) /2 J ∆ is the characteristic length describing the spatial decay
of the LDOS at Shiba energy and 2 θ represents the spatial shift between the LDOS of
electrons and holes (the minus sign corresponds to electrons) such that

θ =

{
arctan

(
2 J

1−J2

)
when J 6= 1

π
2

when J = 1
. (6.23)

The non-polarized LDOS is illustrated in Fig. 6.3. We can first notice that the LDOS,
described by Eqs. (6.21) and (6.22), spatially oscillates, and second that it decays
exponentially with distances, which means that Shiba states are localized around the
impurity. Notice that the LDOS depends on the dimensionality of the system : It is
multiplied by a factor 1/pF r in 2D and 1/(pF r)

2 in 3D, where r is the distance from
the impurity [32].

The first experimental detection of YSR states in 1997 was made using a STM [31].
Scanning a very pure Nb crystal in contact with a single magnetic impurity (Mn and
Gd), Yazdani et al. obtained the tunneling spectra of the sample, which is proportio-
nal to the non-polarized LDOS [145]. This experiment clearly showed the phase shift
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Figure 6.3 – Spatial dependence of the Shiba bound states with positive energy, highlighting
the phase shift between electron and hole states. The LDOS vanishes at large distances x
from the impurity, showing the localized character of YSR states. The parameters used for
this figure are J = 0.6 and ∆/µ = 0.1.

between electron and hole LDOS. It is also possible to have experimentally access to
the polarized LDOS via a spin-polarized STM. In this case, the metallic tip used to
scan the sample surface, made of normal metal, is replaced by a magnetized tip [146].

The recent progress of technologies has enabled to better characterize Shiba states
properties, for example with higher energy resolution in STM measurements. Combined
with the topological properties of YSR states, this has motivated new investigations in
this field, both theoretical and experimental. For example, it has been demonstrated
that one-dimensional chains of magnetic impurities on top of an s-wave superconductor
lead to the appearance of Majorana bound states [18, 19, 20, 21, 22, 23, 24, 25, 26],
which are possible candidates for the construction of topologically protected qubits.

In the next section, we present a very recent experiment on YSR states in β-Bi2Pd
in the presence of Vanadium (V) adatoms, realized by J. Zaldívar and J. I. Pascual 1.
This experiment has motivated our investigations on the subject, presented in Secs.
6.3 and 6.4.

6.2 Superconducting crystal β-Bi2Pd in the presence
of Vanadium impurities

The recent observation of topologically protected surface states in the supercon-
ducting crystal β-Bi2Pd, whose structure is illustrated in Fig. 6.4, has attracted great
interest on this material [140]. Moreover, it is suspected to host non-conventional su-
perconducting pairing, involving both spin-singlet and spin-triplet components of the
order parameter [141].

A possible way of detecting this unconventional pairing would consist in measuring
the spin-polarized LDOS of Shiba states induced in β-Bi2Pd by a magnetic impurity,

1. CIC nanoGUNE, 20018 Donostia-San Sebastián, Spain
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as proposed in Ref. [32]. Although in 3D materials YSR states are not easily detectable
because of the fast decay of the LDOS spatial oscillations, it has been shown that in
NbSe2 bulk crystal the LDOS was spatially extended [144]. This feature was attributed
to the 2D character of the electronic band structure. Therefore in β-Bi2Pd, one should
also expect to have extended Shiba states, which could be used as a probe to determine
the superconducting correlations.

Following this idea, J. Zaldívar and J. I. Pascual investigated experimentally the
effect of the electronic band structure of β-Bi2Pd on the YSR states induced by Vana-
dium adatoms 2. In this section, we give a brief report of their results :

• Three YSR excitations appear in the superconducting gap, labeled A, B and C
as illustrated in Fig. 6.5a, which may be attributed to the three spin-polarized
d-orbitals of Vanadium [147].
• The non-polarized LDOS of the Shiba state A (Shiba states B and C give es-

sentially the same oscillatory pattern) is presented in Fig. 6.5b. We can observe
spatial oscillations of this LDOS, with a phase shift between electron and hole-
like excitations, as we predicted theoretically in Sec. 6.1. Moreover, the oscillatory
pattern is developed over several nanometers from the impurity, resembling the
extended LDOS found for Fe atoms in NbSe2 [144], which seems to confirm the
possibility of using the YSR states of β-Bi2Pd as a probe to detect unconventional
superconducting pairing. Finally, Fig. 6.5b shows an unexpected double period
spatial oscillation of the LDOS.
• We can also compare Shiba states with quasiparticle interferences (QPI), which

are virtual bound states appearing in the normal state due to electron scattering.
In Fourier space, we can see two peaks of the LDOS for the YSR state A, corres-
ponding to the double oscillation observed in real space, whereas five peaks arise
for the QPI, measured far from the superconducting gap. This result is presented
in Fig. 6.6.

From these measurements, several open questions arise : How can we explain the
double period spatial oscillation of the LDOS at Shiba energy ? Why in the normal state
the number of oscillation periods of the LDOS is different from the superconducting
state ? To answer these questions, a possible approach is to use numerical simulations
based on tight-binding models describing the energy bands involved in the appearance
of Shiba states. In order to simplify the analytical treatment of this problem, we have
chosen to reduce the system to 1D, which obviously cannot provide a full description
of the experiment, but should provide a first fundamental understanding of the mecha-
nisms involved in the appearance of Shiba states in non-conventional superconductors
in the presence of magnetic impurities. In the continuous limit, 1D tight-binding mo-
dels can be approximated by 1D systems. This is why in the next two sections, we
study analytically effective 1D models of superconductors in the presence of a magne-
tic impurity, which can be useful to guide simulations. Specifically, in this manuscript
we choose to focus on the first problem : explain the double oscillation of the LDOS at
Shiba energy.

2. To be published.
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Figure 6.4 – Crystal structure of the superconductor β-Bi2Pd.

(a)
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Figure 6.5 – Spectral and spatial properties of Yu-Shiba-Rusinov states in β-Bi2Pd, obtained
by J. Zaldívar and J. I. Pascual from STM measurements. (a) Experimental spectra. Three
YSR states are detected inside the superconducting gap, labelled A, B and C (from lower to
higher energy). (b) Spatial variations of the electron (blue line) and hole-like (red line) Shiba
state A, characterized by a double period oscillation.
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Figure 6.6 – Spectral comparison between the Shiba state A and QPI at energy 3.6 meV
(above the superconducting gap). The YSR state is characterized by two peaks, whereas five
peaks appear for QPI.

6.3 First model : Single superconducting band with
helical dispersion

In order to understand the oscillatory pattern of the LDOS of Shiba states obser-
ved in β-Bi2Pd, we built effective models of one-dimensional superconductors in the
presence of a magnetic impurity. The first model consists in a single superconducting
wire with helical dispersion. First, we show that the presence of a magnetic impurity
coupled to the helical wire induces Shiba states with the same energy as the one obtai-
ned in Sec. 6.1.1. Then, we demonstrate through the calculation of the non-polarized
LDOS that Shiba spatial oscillations cannot be explained by purely chiral bands.

6.3.1 Model

We consider an s-wave superconducting wire along the x-axis with helical disper-
sion and a constant order parameter ∆. We suppose that a single localized magnetic
impurity is coupled to the wire, described by the potential V (x) = ~h · ~σ δ(x), where
σx,y,z are the Pauli matrices acting in spin space. Notice that in the whole chapter we
take ~ = 1.

In Nambu spin space, the Hamiltonian without impurity ĥ0 reads :

ĥ0 = (p vF σz − µ) τz −∆ τx , (6.24)

where the Pauli matrices τx,y,z label Nambu space.
Using the equation of motion for the Green’s functions

(
iωn − ĥ0

)
G0 = 1, where

ωn are the Matsubara frequencies, one can write the Green’s function in the absence
of impurity G0 in Nambu spin space :

G0(p) = −
[iωn + (p vF σz − µ) τz −∆ τx]

[
ω2
n + ∆2 + (p vF σz + µ)2

][
ω2
n + ∆2 + (p vF − µ)2

] [
ω2
n + ∆2 + (p vF + µ)2

] . (6.25)

In the next subsections, we compute the Shiba energy and the LDOS of states of this
system, using the same method as in Sec. 6.1.
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6.3.2 Shiba energy

The Shiba energy is given by the poles of the Green’s function G(x, x) defined in Eq.

(6.4) , which are all contained in the term
[
1−G0(0)~h · ~σ

]−1
. The Green’s function

G0(0) is defined by the inverse Fourier transform of G0(p) at x = 0 (see Eq. 6.7), and
can be computed directly by integrating Eq. (6.25) with respect to p using the residue
method. Notice that in this case, because of the linear dispersion, we don’t need to
transform the p integral into a ξ integral as we did until now. Therefore, the Green’s
function G0(0) reads :

G0(0) = − 1

2 vF

iωn −∆ τx√
ω2
n + ∆2

, (6.26)

where vF is the Fermi velocity.

Therefore, the term
[
1−G0(0)~h · ~σ

]−1
reads :

[
1−G0(0)~h · ~σ

]−1
=

1

ω2
n (1 + J2)2 + ∆2 (1− J2)2

[
ω2
n

(
1 + J2

)
+ ∆2

(
1− J2

)
−2 iωn J2 ∆ τx −

√
ω2
n + ∆2

(
iωn

(
1 + J2

)
−
(
1− J2

)
∆ τx

)
~J · ~σ

]
,

(6.27)

where ~J = ~h/2 vF. The poles of Eq. (6.27) give the Shiba energy εs after performing
the analytical continuation iωn → ε :

εs = ±∆
1− J2

1 + J2
. (6.28)

Except the expression of the impurity strength J with respect to the exchange field
h, we obtain exactly the same expression for the energy as Eq. (6.10). This energy is
a characteristic of YSR states and does not depend on the direction of the impurity
magnetization.

Next, we derive the non-polarized and polarized LDOS of this system.

6.3.3 Local density of states

The spatially dependent part of the non-polarized and polarized LDOS δν(x) and
δSn(x), where n = x, y, z, is given by Eqs. (6.11) and (6.12), where we take the spin
trace of δG(x, x) instead of G(x, x) :

δν(x) =
1

4
Trσδ Gii(x, x) ; (6.29)

δSn(x) =
1

4
Trσ (δ Gii(x, x)σn) , (6.30)

where δG(x, x) is given by Eq. (6.13) and the index i labels the component of δG(x, x)
in Nambu space ; i = 1 corresponds to the LDOS of electrons, whereas i = 2 corresponds
to hole LDOS.

To compute the Green’s function G0(±x), let us write G0(p) as a sum of two terms,
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one even in p and the other one odd in p : G0(p) = Geven(p) +Godd(p), where

Geven(p) = −(iωn −∆ τx) (ω2
n + ∆2 + p2 v2F + µ2)− µ τz (ω2

n + ∆2 − p2 v2F + µ2)[
ω2
n + ∆2 + (p vF − µ)2

] [
ω2
n + ∆2 + (p vF + µ)2

] ;

(6.31)

Godd(p) = −p vF
(ω2

n + ∆2 + p2 v2F − µ2) τz + 2µ (iωn −∆ τx)[
ω2
n + ∆2 + (p vF − µ)2

] [
ω2
n + ∆2 + (p vF + µ)2

] σz . (6.32)

Then, using Eq. (6.14) together with the residue method, we can compute Geven(x) and
Godd(x), and finally obtain the expression of G0(±x) :

G0(±x) = Geven(x)± iGodd(x) , (6.33)

where

Geven(x) = − e−|x|/ζ

2
√
ω2
n + ∆2 vF

[
(iωn −∆ τx) cos

(
2µ |x|
vF

)
−
√
ω2
n + ∆2 τz sin

(
2µ |x|
vF

)]
;

(6.34)

Godd(x) = −i e−|x|/ζ

2
√
ω2
n + ∆2 vF

[
(iωn −∆ τx) sin

(
2µ |x|
vF

)
−
√
ω2
n + ∆2 τz cos

(
2µ |x|
vF

)]
σz ,

(6.35)

where ζ = vF/
√
ω2
n + ∆2. Replacing Eqs. (6.33 - 6.35) and (6.27) in δG(x, x) (Eq.

6.13), we finally obtain the spatially dependent part of the non-polarized and polarized
LDOS at positive Shiba energy εs = +∆ (1− J2) / (1 + J2) for electrons and holes
from Eqs. (6.29) and (6.30) :

δν(x) =
NF

2
e−2|x|/ζs

εs
ε2 − ε2s

J

1 + J2
∆ ; (6.36)

δS±x (x) = −NF

2
e−2|x|/ζs

εs
ε2 − ε2s

√
J2
x + J2

y

1 + J2
∆ cos

(
2µ |x|
vF

+ θ±x

)
; (6.37)

δS±y (x) = −NF

2
e−2|x|/ζs

εs
ε2 − ε2s

√
J2
x + J2

y

1 + J2
∆ cos

(
2µ |x|
vF

− θ±y
)

; (6.38)

δSz(x) = −NF

2
e−2|x|/ζs

εs
ε2 − ε2s

Jz
1 + J2

∆ , (6.39)

where ζs = vF
(
1 + J2

)
/2 J ∆ is the spatial decay of the LDOS and NF = 1/vF is the

density of states at Fermi energy. The angles θ±x,y show the shift between electron and

holes polarized LDOS and are such that tan θ±x =
(1− J2) Jy ∓ 2 J Jx
(1− J2) Jx ± 2 J Jy

= 1/ tan θ±y ,

where θ+x,y corresponds to electrons and θ−x,y corresponds to holes.
Due to its helical dispersion, this system presents a peculiar behaviour : The spatial

oscillations that we should normally observe in the non-polarized LDOS Eq. (6.36) are
absent. Therefore, this model cannot explain the experimental results obtained in Sec.
6.2. Interestingly, the polarized LDOS Sx and Sy (Eqs. 6.37 and 6.38) present a spatial
oscillation and a phase shift between electron and hole states, which could be measured
using STM with magnetic tips.

In the next section, we present a second effective model, made of two superconduc-
ting wires connected via a hopping term.
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Figure 6.7 – The second effective model is made of two superconducting wires Su and Sd
with quadratic dispersion, connected via a hopping term. A magnetic impurity is coupled to
Su.

6.4 Second model : Two superconducting wires cou-
pled via a hopping term

We have seen in the previous section that a single helical wire cannot involve spatial
oscillations of the non-polarized Shiba LDOS. Here, we consider a two wire model :
Two superconducting wires with a quadratic dispersion are connected via a hopping
term. A magnetic impurity is coupled to one of the wires, involving YSR states. We
demonstrate that in this case the LDOS presents a double spatial oscillation, with
frequencies corresponding respectively to the sum and difference of the Fermi momenta
of each wire. By showing that the presence of two (non chiral) coupled bands is the
minimal condition to observe Shiba double period oscillation, this model is a first step
in the understanding of the mechanisms leading to the appearance of YSR states in
β-Bi2Pd (Sec. 6.2).

6.4.1 Model

We consider two identical infinite s-wave superconducting wires Su and Sd along
the x-axis, connected via a hopping term t as illustrated in Fig. 6.7. We assume
that a magnetic impurity is coupled to Su, described by the potential V (x) = ~h ·
~σ δ(x) (1η + ηz) /2, where σx,y,z, ηx,y,z are the Pauli matrices acting respectively on
spin and wire spaces, and 1η is the identity matrix in wire space.

In Nambu-wire space, the Hamiltonian without impurity ĥ0 reads :

ĥ0 = (ξ τz −∆ τx) 1η + t τz ηx , (6.40)

where ξ = p2/2m − µ is the quasiparticle energy, µ is the chemical potential and ∆
is the superconducting order parameter, which is assumed to be constant. The Pauli
matrices τx,y,z label Nambu space.

Using the equation of motion for the Green’s functions
(
iωn − ĥ0

)
G0 = 1 where

ωn are the Matsubara frequencies, one can write the zeroth-order Green’s function G0

in Nambu-wires space :

G0(p) = −
(iωn −∆ τx)

(
ω2
n + ∆2 + ξ2 + t2 − 2 ξ t ηx

)
+
[
(ξ + t ηx)

(
ω2
n + ∆2

)
+ (ξ − t ηx)

(
ξ2 − t2

)]
τz

t4 + 2 t2 (ω2
n + ∆2 − ξ2) + (ω2

n + ∆2 + ξ2)
2 .

(6.41)
In the next to subsections, we compute the Shiba energy and the LDOS of states of
this two wire model, using the same method as in Sec. 6.1.
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6.4.2 Shiba energy

The Shiba energy is given by the poles of the Green’s function G(x, x) defined in
Eq. (6.4), enlarged over the wire space :

G(x, x) = G0(x, x) +G0(x)~h · ~σ 1η + ηz
2

[
1−G0(0)~h · ~σ 1η + ηz

2

]−1
G0(−x) . (6.42)

The poles ofG(x, x) are therefore all contained in the term
[
1−G0(0)~h · ~σ (1η + ηz) /2

]−1
of Eq. (6.42). The Green’s function G0(0) is defined by the inverse Fourier transform

of G0(p) at x = 0 : G0(0) =

∫
G0(p) dp/2π. Assuming that the chemical potential µ

is the largest energy involved in this problem, namely ξ � µ , and noticing that G0(p)
only depends on ξ, it is possible to turn the p integral into a ξ integral using Eq. (6.7).
Then, the ξ integral is calculated from the residue technique :

G0(0) = − 1

vF

iωn −∆ τx√
ω2
n + ∆2

, (6.43)

where vF is the Fermi velocity.

We can then compute the term
[
1−G0(0)~h · ~σ (1η + ηz) /2

]−1
, which gives in wire

basis : [
1−G0(0)~h · ~σ (1η + ηz) /2

]−1
=

(
M̂ 0
0 1

)
, (6.44)

where the matrix M̂ is defined in spin Nambu space by :

M̂ =
ω2
n

(
1 + J2

)
+ ∆2

(
1− J2

)
− 2 iωn J2 ∆ τx −

√
ω2
n + ∆2

[
iωn

(
1 + J2

)
−∆

(
1− J2

)
τx
]
~J · ~σ

ω2
n (1 + J2)

2
+ ∆2 (1− J2)

2 ,

(6.45)
with ~J = ~h/vF. Let us notice that the matrix M̂ is exactly equal to Eq. (6.9) which
gives the Shiba energy in the one wire system with quadratic dispersion, described in
Sec. 6.1. From the form of Eq. (6.44), we can see that the Shiba states are localized in
the upper wire Su, which is coupled to the impurity. The energy of the YSR states εs
is thus exactly the same as Eq. (6.10) :

εs = ±∆
1− J2

1 + J2
. (6.46)

This energy does not depend on the hooping between the wires t, and is independent
of the direction of the impurity exchange field ~h.

In the following, we derive the expression of the LDOS of this two-wire model at
the Shiba energy.

6.4.3 Local density of states

The spatially dependent part of the non-polarized and spin polarized LDOS δν(x)
and δSn(x), where n = x, y, z, is given by Eqs. (6.29) and (6.30), enlarged to take into
account the presence of both wires :

δν(x) =
1

4
Trσ,ηδ Gii(x, x) ; (6.47)

δSn(x) =
1

4
Trσ,η (δ Gii(x, x)σn) , (6.48)
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where the trace Trσ,η is made over spin and wire bases, and the index i labels the
component of δG(x, x) in Nambu space : i = 1 corresponds to the LDOS of electrons,
whereas i = 2 corresponds to hole LDOS. The spatially dependent part of the Green’s
function, δ G(x, x), is given by the second term of Eq. (6.42) :

δG(x, x) = G0(x)~h · ~σ 1η + ηz
2

[
1−G0(0)~h · ~σ 1η + ηz

2

]−1
G0(−x) , (6.49)

To compute the Green’s functions G0(±x) appearing in δG(x, x), it is worth noting
that G0(p) can be written as a sum of even and odd components in ξ, namely G0(p) =
Geven(ξ) +Godd(ξ), such that

Geven(ξ) = −(iωn −∆ τx) (ω2
n + ∆2 + ξ2 + t2) + t (ω2

n + ∆2 − ξ2 + t2) τz ηx

t4 + 2 t2 (ω2
n + ∆2 − ξ2) + (ω2

n + ∆2 + ξ2)2
; (6.50)

Godd(ξ) = ξ
2 t (iωn −∆ τx) ηx − (ω2

n + ∆2 + ξ2 − t2) τz
t4 + 2 t2 (ω2

n + ∆2 − ξ2) + (ω2
n + ∆2 + ξ2)2

. (6.51)

The Green’s function G0(±x) can thus be calculated using Eq. (6.18), which gives :

G0(±x) = −NF e
−|x|/ζ

[(
iωn −∆ τx√
ω2
n + ∆2

cos (pF |x|)− τz sin (pF |x|)

)
cos

(
t

vF
|x|
)

+

(
τz cos (pF |x|) +

iωn −∆ τx√
ω2
n + ∆2

sin (pF |x|)

)
ηx sin

(
t

vF
|x|
)]

,

(6.52)

where NF = 1/vF is the density of states at the Fermi energy and ζ = vF/
√
ω2
n + ∆2.

Finally, after replacing Eqs. (6.52) and (6.44) into the Green’s function Eq. (6.49),
the LDOS at positive energy εs = +∆ (1− J2) / (1 + J2) are derived from Eqs. (6.53)
and (6.54) :

δν(x) =
NF

2
e−2|x|/ζs

εs
ε2 − ε2s

∆

[
1 +

εs
∆

cos (2 pF |x| ∓ θ) cos

(
2 t
|x|
vF

)]
J

1 + J2
;

(6.53)

δSn(x) = −NF

2
e−2|x|/ζs

εs
ε2 − ε2s

∆

[
1 +

εs
∆

cos (2 pF |x| ∓ θ) cos

(
2 t
|x|
vF

)]
Jn

1 + J2
,

(6.54)

where θ is defined in Eq. (6.23) and ζs = vF (1 + J2) /2 J ∆ is the characteristic length
describing the spatial decay of the Shiba LDOS.

Our main result is the presence of a double spatial oscillation of the LDOS Eqs.
(6.53) and (6.54), illustrated in Fig. 6.8. The frequencies of these oscillations correspond
respectively to the sum and difference of the Fermi momentum of each wire, pF± t/vF.
Moreover, we recover the phase shift of 2 θ between electron and hole LDOS, which
only occurs for the oscillation of frequency 2 pF.

Therefore we have demonstrated through effective models that the necessary condi-
tion to observe a double spatial oscillation of the LDOS at Shiba energy may be the
presence of two non helical bands, participating both in the superconductivity.
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Figure 6.8 – Spatial dependence of the Shiba bound states with positive energy, highlighting
the phase shift between electron and hole states. A double period spatial oscillation with
frequencies 2 pF and 2 t/vF can be observed. The parameters used for this figure are J = 0.6,
∆/µ = 0.1 and t/µ = 0.2.

6.5 Conclusion

In this chapter, we investigated the appearance of Yu-Shiba-Rusinov bound states
in superconductors coupled to a magnetic impurity. Our work was motivated by experi-
ments recently realized by J. Zaldívar and J. I. Pascual on β-Bi2Pd crystal superconduc-
tors in the presence of Vanadium impurities. STM measurements showed three Shiba
states in the superconducting gap, originating from the three spin-polarized d-orbitals
of Vanadium. Surprisingly, they have found that each Shiba state was characterized
by a double period spatial oscillation of the LDOS, whereas in the normal state, QPI
displayed five oscillations of the LDOS.

Specifically, we focused on explaining the double oscillation of the LDOS. To this
purpose, we considered different effective models. In a first case, we studied a single su-
perconducting wire with helical dispersion in order to reproduce the spin-polarization
of the spectrum of β-Bi2Pd. In the presence of a magnetic impurity, we demonstra-
ted that Shiba states appear in the superconducting gap, but are characterized by the
absence of spatial oscillations of the non-polarized LDOS. Therefore, the spatial de-
pendence of YSR state cannot be explained by purely chiral bands. Notice that the
spin-polarized LDOS of the helical wire shows a spatial oscillation, which could in
principle be detected experimentally by STM with magnetic tips in real materials.

Then, we studied a second model made of two superconducting wires with quadratic
dispersion, connected via a hopping term (see Fig. 6.7). We coupled the upper wire to a
magnetic impurity and investigated the appearance of YSR bound states. As expected,
we found that Shiba states were localized in the upper wire, and that their energy is not
affected by the presence of the second wire. We showed that both the non-polarized and
spin-polarized LDOS display a double spatial oscillation with frequencies corresponding
to the sum and the difference of the Fermi momenta of each wire.

Therefore, the necessary condition to obtain a double spatial oscillation of the
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Shiba states seems to be the presence of two electronic bands, participating both in
the superconductivity. Moreover, a helical dispersion of at least one of the bands would
kill the double oscillation of the LDOS. It is thus necessary to consider other types
of dispersions, for example a quadratic dispersion as we did in Sec.6.4, or at least a
non-perfectly helical dispersion.

Finally, we outline that the effective models developed in this chapter could be easily
generalized to describe the spectrum of multiband superconductors in the presence of
magnetic impurities. The next step is to understand the mismatch between Shiba and
QPI oscillations of the LDOS in β-Bi2Pd, namely to explain why Shiba states present
a double spatial oscillation, whereas in the normal state QPI display five oscillations of
the LDOS. A possible explanation is that the magnetic impurity is coupled to only two
bands of the energy spectrum, which are thus the only bands involved in the appearance
of YSR states.
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Chapter 7

General conclusion

I
n this thesis, we investigated the interplay between low-dimensional supercon-
ductivity and spin-dependent fields, namely Zeeman and Rashba spin-orbit fields.

This work allows a better understanding of several effects which can arise, in particu-
lar the enhancement of the critical magnetic field related to the helical phase which
emerges in the presence of Zeeman and Rashba interactions, the magnetoelectric effects
stemming from the combination of both interactions, and the appearance of Yu-Shiba-
Rusinov states originating from a paramagnetic impurity coupled to the superconduc-
tor.

In Chapter 4, we considered two distinct systems : a superconducting wire in which
Zeeman and spin-orbit interactions coexist, and a two wire setup in which supercon-
ducting pairing and spin-dependent fields are spatially separated. We first showed that
it is possible to predict the form of the anomalous charge current in terms of the Zee-
man and spin-orbit fields from the SU(2) covariant formalism. We further confirmed
this result by computing the anomalous currents within the framework of Gor’kov
Green’s function formalism for both systems, in the limit of small spin-orbit interac-
tion α pF � Tc. Then, we determined the self-consistent order parameter, and showed
that the combination of both Zeeman and spin-orbit fields may lead to the appearance
of a superconducting inhomogeneous phase for each temperature T < Tc0. Moreover,
we proved that the ground state of each setup is in fact a zero-current state in which
the anomalous charge current is compensated by the current stemming from the wave-
vector of the superconducting order parameter. Finally, we investigated the limit of
large spin-orbit interaction α pF � Tc for the one wire system, and still using the
self-consistency relation, we obtained the field-temperature phase diagram for different
orientations of the Zeeman field and several values of the spin-orbit coupling constant.
As expected from the small spin-orbit limit, when the Zeeman field is purely parallel
to the SO field, we obtain the well-known FFLO phase diagram.

Several perspectives result from this work. First, we emphasize that in principle such
systems could be achieved experimentally, for example using organic superconductors
for the first setup, and a semiconducting double wire system in which one of the wires
is superconducting with a small section (smaller than the coherence length) for the
two wire setup. However, to really describe these realistic cases, it would be necessary
to take into account the proximity effects present in both experimental setups, which
become rather complicated. Moreover, we have outlined that the systems presented
in this chapter could be used as weak links between two identical superconductors to
create anomalous ϕ0-Josephson junctions [14, 148], similarly as [149]. In such systems,
the superconducting wave vector would play the role of the phase difference needed to
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generate a current in the junction, which would open new possibilities of application
of these ϕ0-junctions in memory devices [150].

In Chapter 5, we studied the possible emergence of a vortex in a type-II super-
conductor proximity coupled to a Néel skyrmion, in the absence of external magnetic
fields. Due to the interplay between Zeeman and spin-orbit interactions, the skyrmion
induces a spin polarization in the superconducting layer, which may lead to the appea-
rance of supercurrents at the interface, and a spontaneous magnetic field which can in
turn nucleate a vortex in the superconductor. From the minimization of the free energy,
we derived the condition on the spin-orbit coupling constant for the vortex emergence,
and thus have shown that it is even possible for the vortex to carry more than one
quantum of flux for a sufficiently strong spin-orbit interaction.

We can provide some outlooks to this work. Even if the Rashba coupling threshold
condition for the vortex emergence is not reached, it is possible to nucleate vortices in
the superconducting layer simply by applying an external magnetic field larger than
Hc1. In this case, our free energy calculations have demonstrated an attractive cou-
pling which will pin vortices to the skyrmion for one orientation of the magnetic field.
For the opposite orientation, the vortices should be pushed away by the skyrmion
[137]. Such decoration/antidecoration of the skyrmion by vortices can be, in principle,
detected experimentally. The inverse effect, namely the nucleation of a skyrmion via
the proximity of a superconducting vortex is also suggested by our results, and could
in principle be observed experimentally via magnetic force microscopy or topological
Hall effect in systems like Nb/Co/Pt [151]. It has been recently demonstrated that
such skyrmion/vortex pair should support Majorana bound states [17], opening new
perspectives for Majorana spatial control.

Finally, in Chapter 6, we investigated the spatial dependence of Yu-Shiba-Rusinov
states induced by the presence of paramagnetic impurities in superconductors. In order
to understand qualitatively the coupling between the magnetic impurity and supercon-
ductivity in non-conventional multiband superconductors, we studied simplified quasi
1D models in which 1D electronic bands are modeled by wires. More specifically, we
built two effective 1D models : a superconducting wire with a helical dispersion, and a
two wire system with a quadratic dispersion in which the impurity is coupled to only
one of the wires. Two results emerged from these models : a helical band does not
lead to spatial oscillations of the Shiba states, and the minimal condition to describe
a double period spatial oscillation of YSR states is the presence of at least two non
helical bands, participating both in the superconductivity.

This work was motivated by recent experiments from J. Zaldívar and J. I. Pascual
on β-Bi2Pd crystal superconductors in the presence of Vanadium impurities, in which
a double period oscillation of the Shiba states was found. In this manuscript, we have
chosen to reduce the problem to a 1D system to provide a first fundamental unders-
tanding of the mechanisms at the origin of the spatial dependence of Shiba states.
However, to give a quantitative explanation of the experimental results, our effective
models must be complemented by more accurate models, as for example tight-binding
simulations taking into account the 2D and 3D character of the bands of β-Bi2Pd,
which is the object of our on-going collaboration with M. Alvarado Herrero and A.
Levy Yeyati.
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Annexe A

One wire system : Linear-in-q term of
the self-consistency equation

Let us consider the system represented in Fig. 4.1, made of an infinite supercon-
ducting wire along the x-direction, in the presence of a two component Zeeman field
~h = (hx, 0, hz) and Rashba spin-orbit interaction α pσz. The Zeeman field implies
spatial oscillations of the superconducting order parameter ∆(x) = ∆ ei q x.

In this appendix, we explain how we obtained the linear term in q in the self-
consistency equation Eq. (4.14) in the limit of small fields with respect to the critical
temperature Tc. Specifically, we first expand the self-consistency equation in hx, hz,
q and α, keeping only the term proportional to h2x hz α q. Then we perform the inte-
gration over p and show that this term does not contribute to the expansion of the
self-consistency equation.

A.1 Self-consistency equation
Let us recall the self-consistency equation Eq. (4.14) :

ln

(
Tc
Tc0

)
= 2Tc

∑
ωn≥ 0

[
vF
2

∫ +∞

−∞
Re (F ) dp− π

ωn

]
, (A.1)

where F =
1

4
Tr
(
G

∆
τx

)
and the expression of the Green’s function G is obtained from

Eqs. (4.11 - 4.13). Specifically, after doing the change p → p + q/2 which does not
modify the integral, F reads :

F = −1

2

(iω + ξp − α p+ hz) (iω − ξp+q + α (p+ q) + hz) + h2x
(iω − ξp+q − α (p+ q)− hz) (iω − ξp+q + α (p+ q) + hz)− h2x
× 1

(iω + ξp + α p− hz) (iω + ξp − α p+ hz)− h2x
+ (α→ −α, hz → −hz) ,

(A.2)

where ξp =
p2

2m
− µ, µ being the chemical potential, and ξp+q = ξp +

q p

m
+

q2

2m
. To

simplify, we will only study the first term, and add the term where α → −α and
hz → −hz at the end.

To integrate this function analytically, we need to simplify it. Therefore, we will
assume that several parameters are small with respect to the critical temperature Tc :
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The Zeeman field components hx and hz, the spin-orbit energy α pF and the energy
associated to the superconducting wave-vector q vF, where pF (vF) is the Fermi momen-
tum (velocity). Moreover, we consider that the chemical potential is the largest energy
involved in this system : µ� Tc.

A.2 Expansion in hx and hz

First, we consider that the Zeeman field component hx is small : hx � Tc. Therefore,
we expand the anomalous Green’s function Eq. (A.2) at second order in hx :

F ≈−
1

(iω + ξp + αp− hz) (iω − ξp+q − αp− α q − hz)

−
h2x
2

[
1

(iω + ξp + αp− hz) (iω + ξp − αp+ hz) (iω − ξp+q − αp− α q − hz) (iω − ξp+q + αp+ α q + hz)

+
1

(iω + ξp + αp− hz)2 (iω + ξp − αp+ hz) (iω − ξp+q − αp− α q − hz)

+
1

(iω + ξp + αp− hz) (iω − ξp+q − αp− α q − hz)2 (iω − ξp+q + αp+ α q + hz)

]
. (A.3)

We only keep the second order term in hx in Eq. (A.3), that we call Fh2x , and expand
it at first order in hz by considering that hz � Tc. Then the linear term in hz reads :

Fh2
xhz
≈ −h

2
x hz
2

[
1

(iω + ξp + αp)
2

(iω + ξp − αp) (iω − ξp+q − αp− α q) (iω − ξp+q + αp+ α q)

− 1

(iω + ξp + αp) (iω + ξp − αp)2 (iω − ξp+q − αp− α q) (iω − ξp+q + αp+ α q)

+
1

(iω + ξp + αp) (iω + ξp − αp) (iω − ξp+q − αp− α q)2 (iω − ξp+q + αp+ α q)

− 1

(iω + ξp + αp) (iω + ξp − αp) (iω − ξp+q − αp− α q) (iω − ξp+q + αp+ α q)
2

+
2

(iω + ξp + αp)
3

(iω + ξp − αp) (iω − ξp+q − αp− α q)

− 1

(iω + ξp + αp)
2

(iω + ξp − αp)2 (iω − ξp+q − αp− α q)

+
1

(iω + ξp + αp)
2

(iω + ξp − αp) (iω − ξp+q − αp− α q)2

+
1

(iω + ξp + αp)
2

(iω − ξp+q − αp− α q)2 (iω − ξp+q + αp+ α q)

+
2

(iω + ξp + αp) (iω − ξp+q − αp− α q)3 (iω − ξp+q + αp+ α q)

− 1

(iω + ξp + αp) (iω − ξp+q − αp− α q)2 (iω − ξp+q + αp+ α q)
2

]
. (A.4)

A.3 Linear term in q

Since we are interested in the emergence of the modulated phase, one can consider
that the wave vector of the superconducting order parameter is small : q vF � Tc. The

terms containing q have the form :
q

m
(p±mα). The spin-orbit energy Eso =

1

2
mα2

being small with respect to the chemical potential, which is equivalent to α� vF, the
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total term
q

m
(p±mα) is small with respect to Tc, so we can expand Eq. (A.4) in q.

Moreover, we are only interested in the linear-in-q term :

Fh2xhzq ≈ −h
2
x hz

q

2m

[
p+mα

(iω + ξp + α p)2 (iω + ξp − α p) (iω − ξp − α p)2 (iω − ξp + α p)

+
p−mα

(iω + ξp + α p)2 (iω + ξp − α p) (iω − ξp − α p) (iω − ξp + α p)2

− p+mα

(iω + ξp + α p) (iω + ξp − α p)2 (iω − ξp − α p)2 (iω − ξp + α p)

− p−mα

(iω + ξp + α p) (iω + ξp − α p)2 (iω − ξp − α p) (iω − ξp + α p)2

+
2 (p+mα)

(iω + ξp + α p) (iω + ξp − α p) (iω − ξp − α p)3 (iω − ξp + α p)

+
p−mα

(iω + ξp + α p) (iω + ξp − α p) (iω − ξp − α p)2 (iω − ξp + α p)2

− p+mα

(iω + ξp + α p) (iω + ξp − α p) (iω − ξp − α p)2 (iω − ξp + α p)2

− 2 (p−mα)

(iω + ξp + α p) (iω + ξp − α p) (iω − ξp − α p) (iω − ξp + α p)3

+
2 (p+mα)

(iω + ξp + α p)3 (iω + ξp − α p) (iω − ξp − α p)2

− p+mα

(iω + ξp + α p)2 (iω + ξp − α p)2 (iω − ξp − α p)2

+
2 (p+mα)

(iω + ξp + α p)2 (iω + ξp − α p) (iω − ξp − α p)3

+
2 (p+mα)

(iω + ξp + α p)2 (iω − ξp − α p)3 (iω − ξp + α p)

+
p−mα

(iω + ξp + α p)2 (iω − ξp − α p)2 (iω − ξp + α p)2

+
6 (p+mα)

(iω + ξp + α p) (iω − ξp − α p)4 (iω − ξp + α p)

+
2 (p−mα)

(iω + ξp + α p) (iω − ξp − α p)3 (iω − ξp + α p)2

− 2 (p+mα)

(iω + ξp + α p) (iω − ξp − α p)3 (iω − ξp + α p)2

− 2 (p−mα)

(iω + ξp + α p) (iω − ξp − α p)2 (iω − ξp + α p)3

]
. (A.5)
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A.4 Expansion in α

Finally, assuming that α pF � Tc, we expand the linear-in-q term Eq. (A.5) at first
order in α. The linear term in α is thus :

Fh2xhzqα ≈ −αh
2
x hz

q

2m

[
4 p2

(
5

(iωn + ξ) (iω − ξ)6
+

2

(iω + ξ)2 (iω − ξ)5

− 1

(iω + ξ)4 (iω − ξ)3
− 1

(iω + ξ)5 (iω − ξ)2

)
+m

(
4

(iω + ξ) (iω − ξ)5
+

3

(iω + ξ)2 (iω − ξ)4

+
2

(iω + ξ)3 (iω − ξ)3
+

1

(iω + ξ)4 (iω − ξ)2

)]
. (A.6)

We will now integrate this term with respect to p.

A.5 Integration over p
Since the linear term of the anomalous Green’s function only depends on ξ and p2,

we will transform the integral over p into an integral over ξ using Eq. (4.16) :∫ +∞

−∞

p2

m
f(ξ) dp ≈ 2

vF

∫ +∞

−∞
ξ f(ξ) dξ +

4µ

vF

∫ +∞

−∞
f(ξ) dξ . (A.7)

Using this transformation, we can then integrate Eq. (A.6) by the residue method.

The term proportional to m in Eq. (A.6) gives
2π α h2x hz q

vF ω5
, whereas the p2 term gives

−2 π α h2x hz q

vF ω5
. Therefore the linear term in α does not contribute to the linear-in-q

term in the self-consistency equation, and we have to go to the order 3 in α to have a
finite contribution, provided in Eq. (4.17).
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Annexe B

Two wire system : Linear-in-q term of
the self-consistency equation

Let us consider the system illustrated in Fig. 4.2. It is made of two infinite wires
along the x-direction, spatially separated but connected via a hopping term t. The first
wire is a normal wire with Rashba spin-orbit interaction α pσz and a Zeeman field
hz parallel to the spin-orbit field. The second one is a superconductor, whose order
parameter can oscillate due to the presence of the Zeeman field : ∆(x) = ∆ ei q x.

In this appendix, we explain how we obtained the linear term in q of the self-
consistency equation Eq. (4.27) in the limit of small fields with respect to the critical
temperature Tc. Specifically, we first expand the self-consistency equation in t, hz,
q and α pF, keeping only the term proportional to t2 hz α q. Then, we perform the
integration over p, and show that this term gives a finite contribution to the self-
consistency equation.

B.1 Self-consistency equation
Let us recall the self-consistency equation Eq. (4.26) :

ln

(
Tc
Tc0

)
= 2Tc

∑
ωn≥ 0

[
vF
2

∫ +∞

−∞
Re (F ) dp− π

ωn

]
, (B.1)

where F =
1

4
Tr
(
G

∆
τx
η0 − ηz

2

)
and the expression of the Green’s function G is obtai-

ned from Eqs. (4.11), (4.24) and (4.25). Specifically, after doing the change p→ p+q/2
which does not modify the integral, F reads :

2F = − iωn − ξp+q − αp− α q − hz
(iωn − ξp+q) (iωn − ξp+q − αp− α q − hz)− t2

× iωn + ξp + αp− hz
(iωn + ξp) (iωn + ξp + αp− hz)− t2

− iωn − ξp+q + αp+ α q + hz
(iωn − ξp+q) (iωn − ξp+q + αp+ α q + hz)− t2

× iωn + ξp − αp+ hz
(iωn + ξp) (iωn + ξp − αp+ hz)− t2

,

(B.2)

where ξp =
p2

2m
− µ, µ being the chemical potential, and ξp+q = ξp +

q p

m
+

q2

2m
.

To integrate this function analytically, we need to simplify it. Therefore, we will
assume that several parameters are small with respect to the critical temperature Tc :
The hopping term t, the Zeeman field component hz, the spin-orbit energy α pF and
the energy associated to the superconducting wave-vector q vF, where pF (vF) is the
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Fermi momentum (velocity). Moreover, we consider that the chemical potential is the
largest energy involved in this system : µ� Tc.

B.2 Expansion in t

First, let us consider that the hopping term t is small with respect to the critical
temperature : t� Tc. Therefore, we expand the anomalous Green’s function Eq. (B.2)
at second order in t, it reads :

F ≈− 1

(iωn + ξp) (iωn − ξp+q)

− t2

2

[
1

(iωn + ξp) (iωn − ξp+q)2 (iωn − ξp+q − α p− α q − hz)

+
1

(iωn + ξp)
2 (iωn − ξp+q) (iωn + ξp + α p− hz)

+
1

(iωn + ξp) (iωn − ξp+q)2 (iωn − ξp+q + α p+ α q + hz)

+
1

(iωn + ξp)
2 (iωn − ξp+q) (iωn + ξp − α p+ hz)

]
. (B.3)

The zeroth order term of Eq. (B.3) corresponds to the anomalous Green’s function of
an isolated superconducting wire. Therefore, this term will not contribute to the linear-
in-q term of the self-consistency equation. In what follows, we keep only the second
order term in t, that we call Ft2 .

B.3 Expansion in hz

Then we expand the anomalous Green’s function Eq. (B.3) at first order in hz by
considering that hz � Tc and keep only the linear term in hz, Ft2hz :

Ft2hz ≈ −
t2 hz

2

[
1

(iωn + ξp) (iωn − ξp+q)2 (iωn − ξp+q − α p− α q)2

+
1

(iωn + ξp)
2 (iωn − ξp+q) (iωn + ξp + α p)2

− 1

(iωn + ξp) (iωn − ξp+q)2 (iωn − ξp+q + α p+ α q)2

− 1

(iωn + ξp)
2 (iωn − ξp+q) (iωn + ξp − α p)2

]
. (B.4)

In the following, we will expand Eq. (B.4) over q. To simplify the expression, one can
make the change p → p − q in the first and third terms of Eq. (B.4), which will not
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change the integral in the self-consistency equation Eq. (B.1). We obtain :

Ft2hz → −
t2 hz

2

[
1

(iωn + ξp−q) (iωn − ξp)2 (iωn − ξp − α p)2

+
1

(iωn + ξp)
2 (iωn − ξp+q) (iωn + ξp + α p)2

− 1

(iωn + ξp−q) (iωn − ξp)2 (iωn − ξp + α p)2

− 1

(iωn + ξp)
2 (iωn − ξp+q) (iωn + ξp − α p)2

]
. (B.5)

B.4 Linear term in q

Since we are interested in the emergence of the modulated phase, one can consider
that the wave vector of the superconducting order parameter is small : q vF � Tc. We
are only interested in the linear-in-q term of the self-consistency equation :

Ft2hzq ≈ −t2 hz
q p

2m

[
1

(iωn + ξ)2 (iωn − ξ)2 (iωn − ξ − α p)2

+
1

(iωn + ξ)2 (iωn − ξ)2 (iωn + ξ + α p)2

− 1

(iωn + ξ)2 (iωn − ξ)2 (iωn − ξ + α p)2

− 1

(iωn + ξ)2 (iωn − ξ)2 (iωn + ξ − α p)2

]
, (B.6)

where we have written ξ instead of ξp for more simplicity.

B.5 Expansion in α

Finally, assuming that α pF � Tc, we will expand the linear-in-q term Eq. (B.6) at
first order in α. The linear term in α is thus :

Ft2hzqα ≈ 2 t2 hz α q
p2

m

[
1

(iωn + ξ)5 (iωn − ξ)2
− 1

(iωn + ξ)2 (iωn − ξ)5

]
. (B.7)

We can now analytically integrate this term with respect to p.

B.6 Integration over p

Since the linear term of the anomalous Green’s function only depends on ξ and p2,
we will transform the integral over p to an integral over ξ using :∫ +∞

−∞

p2

m
f(ξ) dp ≈ 2

vF

∫ +∞

−∞
ξ f(ξ) dξ +

4µ

vF

∫ +∞

−∞
f(ξ) dξ . (B.8)
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Using this transformation, it is then straightforward to integrate Eq. (B.7) :∫ +∞

−∞
Ft2hzqα dp ≈ 4 t2 hz α q

vF

[∫ +∞

−∞

ξ

(iωn + ξ)
5

(iωn − ξ)2
dξ + 2µ

∫ +∞

−∞

dξ

(iωn + ξ)
5

(iωn − ξ)2

−
∫ +∞

−∞

ξ

(iωn + ξ)
2

(iωn − ξ)5
dξ − 2µ

∫ +∞

−∞

dξ

(iωn + ξ)
2

(iωn − ξ)5

]
.

(B.9)

Using the residue technique to integrate over ξ, we obtain :∫ +∞

−∞
Ft2hzqα dp ≈ − 3 π

4 vF ω5
t2 hz α q . (B.10)

Then, the linear-in-q term of the self-consistency equation Eq. (B.1), that we call B,
reads :

B = −2 π Tc
∑
ω>0

3

8ω5
t2 hz α q . (B.11)

Contrary to the one wire system, the Zeeman component hx, which is normal to the
spin-orbit field, is not needed to generate the linear-in-q term in the self-consistency
relation.
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Annexe C

Free energy of the S/F bilayer in the
presence of a Néel skyrmion

C.1 Derivation of the magnetoelectric energy FL

In this appendix, we derive the expression of the coupling energy between the
superconductor and magnetic order induced by the skyrmion, the so-called Lifshitz
invariant FL (Eq. 5.23). We start from the Ginzburg-Landau free energy (see Chapter
2, Eq. 2.1) :

FGL = FGL
0 +

∫
1

4m

∣∣∣D̂Ψ
∣∣∣2 d3~r + FGL

L , (C.1)

where FGL
0 contains all the terms without derivative of Ψ and D̂ =

(
−i ~ ~∇+ 2 e ~A

)
is the gauge-invariant momentum operator. Because of the interplay between the ex-
change field hex and the Rashba spin-orbit interaction in the ferromagnetic layer proxi-
mity coupled to the superconducting thin film, the order parameter may be spatially
modulated (see Chapter 3) : Ψ = Ψ0 e

i ~q·~r, where Ψ0 is a constant.
Within the Ginzburg-Landau formalism, the Lifshitz invariant FGL

L reads [5, 71,
139] :

FGL
L = ε

∫ (
~ez × ~S

)
·
[
Ψ? D̂Ψ + h.c.

]
d3~r , (C.2)

where ε is a constant proportional to the Rashba spin-orbit coupling constant αR. In
the following, we focus on deriving an estimate of ε.

From the minimization of the free energy FGL with respect to ~q for ~A = ~0, it is
possible to obtain the expression of the wave-vector ~q as a function of ε :

q = −4m

~
ε . (C.3)

Moreover, from Ref. [6] we have an estimate of q :

q ≈ αR hex
~ v2F

. (C.4)

Thus, by comparing both expressions for q, Eqs. (C.3) and (C.4), we get the following
estimate of ε :

ε ≈ −αR hex
4mv2F

. (C.5)
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Contrary to the Ginzburg-Landau formalism, in which temperatures must be close
to the critical temperature Tc, the London approach is valid for T � Tc. However, it
is possible to rewrite the Ginzburg-Landau free energy (Eqs. C.1-C.2) in the London
approach by taking Ψ = Ψ0 e

iϕ, where Ψ0 is constant such that Ψ2
0 = ns/2, and ns is

the density of superconducting electrons. Thus, the free energy becomes :

F = F0+Fmag+
e2 ns
2m

∫ (
~φ− ~A

)2
d3~r+e ns

αR hex
4mv2F

∫ (
~ez × ~S

)
·
(
~φ− ~A

)
d3~r , (C.6)

where F0 is the free energy in the absence of superconductivity and magnetic field,
Fmag corresponds to the energy of the magnetic field, defined in Eq. (5.7), and ~φ is the
gradient of the local superconducting phase, given in Eq. (5.6).

For the thin superconducting film of thickness dS � λ, the quantity ~φ− ~A is almost
constant over dS. We emphasize that the spin-orbit interaction and the exchange field
penetrate the superconducting layer over a distance a, corresponding to the atomic thi-
ckness. We also assume that the magnetization in the ferromagnetic layer is weak, thus
the Zeeman field is negligible compared to the exchange field. Then we can compute
the integrals of Eq. (C.6) over the direction normal to the layer, z :

F = Fmag +
dS

2µ0 λ2

∫ (
~φ− ~A

)2
d2~r +

αR hex a

4µ0 e λ2 v2F

∫ (
~ez × ~S

)
·
(
~φ− ~A

)
d2~r , (C.7)

where λ is the London penetration length, derived in Chapter 2 (Eq. 2.13). Finally,
introducing the effective screening length λeff = dS/λ

2, we obtain the final expression
of the free energy of the F/S bilayer :

F = F0 + Fmag +
1

2µ0 λeff

∫ (
~φ− ~A

)2
d2~r + α0

∫ (
~ez × ~S

)
·
(
~φ− ~A

)
d2~r , (C.8)

where α0 is defined by :

α0 =
1

4µ0 e λeff

a

dS

αR hex
v2F

. (C.9)

The third term of the free energy (C.8) is the superconducting current energy Fsc (Eq.
5.5), whereas the last term corresponds to the magnetoelectric energy FL (Eq. 5.23).

C.2 Final expression of the free energy F

Here, we explain how we reworked the above free energy Eq. (C.8) to obtain the
expression defined in Eq. (5.31).

Each term of the free energy F (in which we omit the term F0) can be written in
terms of the Fourier transforms ~Akl, ~Ak, ~φk and ~αk (Eqs. 5.10, 5.11, 5.12 and 5.26) :

Fsc =
1

(2 π)2
1

2µ0 λeff

∫ ∣∣∣~φk − ~Ak

∣∣∣2 d2~k ; (C.10)

FL =
1

(2 π)2

∫
~α?k ·

(
~φk − ~Ak

)
d2~k ; (C.11)

Fmag =
1

(2 π)3

∫ ∣∣∣ ~Bkl

∣∣∣2
2µ0

d2~k dl , (C.12)
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where ~Bkl is the Fourier transform of ~B, which may be obtained from Eq. (5.19) :∣∣∣ ~Bkl

∣∣∣2 =
(
k2 + l2

) ∣∣∣ ~Akl∣∣∣2 =
4 k2

k2 + l2
1

(1 + 2 k λeff)2

(
Φ0

k
+ µ0 λeff αk

)2

, (C.13)

where the expression of ~Akl is given by (Eq. 5.27). After replacing ~Ak by its expression
Eq. (5.28) in Eqs. (C.10) and (C.11) and performing the l integration in Eq. (C.12),
we get the following :

Fsc =
λeff

4 π µ0

∫
k

(1 + 2 k λeff)2
(2 Φ0 − µ0 αk)

2 dk ; (C.14)

FL =
1

2 π

∫
λeff k

1 + 2 k λeff
(2 Φ0 − µ0 αk)αk dk ; (C.15)

Fmag =
1

2 π µ0

∫
(Φ0 + µ0 λeff k αk)

2

(1 + 2 k λeff)2
dk . (C.16)

Finally, the free energy F = Fsc + FL + Fmag can be ordered with respect to Φ0 and
αk :

F =
Φ2

0

2π µ0

∫
dk

1 + 2 k λeff
− µ0 e

2

4 π

∫
k λeff

1 + 2 k λeff
α2
k dk − Φ0 e

π

∫
k λeff

1 + 2 k λeff
αk dk .

(C.17)
The first term of Eq. (C.17), proportional to Φ2

0, is the self-energy of the vortex, Fv.
The second one is proportional to α2

k, and corresponds to the current energy induced
by the skyrmion, Fs, whereas the third term, depending on the product Φ0 αk, is the
energy resulting from the interaction between the vortex and the skyrmion, called Fint.
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Transport and spectral properties of low-dimensional superconductors in the presence
of spin-dependent fields

The interplay between superconductivity and spin-dependent fields is known to lead to striking pheno-
mena, like critical field enhancement, magnetoelectric effects and the appearance of Yu-Shiba-Rusinov
bound states at magnetic impurities. In this thesis, we investigate these effects in low dimensional sys-
tems.
We first demonstrate that the combination of both spin-orbit and Zeeman fields in superconducting
one-dimensional systems leads to the appearance of an inhomogeneous phase at low magnetic field
and high critical temperature. We show that the ground state corresponds to a zero-current state
where the current stemming from spin-orbit coupling, called anomalous charge current, is exactly
compensated by the current coming from the wave-vector of the superconducting order parameter.
We also discuss how it is possible to predict the appearance of the anomalous current from symmetry
arguments based on the SU(2)-covariant formalism.
In a second part, we consider a type-II superconducting thin film in contact with a Néel skyrmion. The
skyrmion induces spontaneous currents in the superconducting layer, which under the right condition
generate a superconducting vortex in the absence of external magnetic fields. We compute the magnetic
field and current distributions in the superconducting layer in the presence of the Néel skyrmion.
In the last part of this thesis, we focus on the appearance of Yu-Shiba-Rusinov states in the supercon-
ducting crystal β-Bi2Pd. We propose effective models in order to explain recent experimental results
showing a double spatial oscillation of the local density of states at Shiba energy. We demonstrate
that the minimal condition to reproduce this double oscillation is the presence of two superconducting
channels connected via a hopping term or via a magnetic impurity. These effective models can be
easily generalized to describe the spectrum of multiband superconductors with magnetic impurities.

Keywords : superconductivity, spin-dependent fields, superconducting inhomogeneous phase, ano-
malous current, Néel skyrmion, Yu-Shiba-Rusinov states.

Propriétés spectrales et de transport de supraconducteurs à basse dimension en présence
de champs dépendant du spin

Lorsqu’un supraconducteur est soumis à des champs dépendant du spin, on observe l’émergence de
nouveaux phénomènes comme l’augmentation du champ magnétique critique, des effets magnétoélec-
triques ou encore l’apparition d’états de bord de Yu-Shiba-Rusinov autour d’impuretés magnétiques.
Dans cette thèse, on s’intéresse à ces effets dans des systèmes de basse dimension.
Tout d’abord, on démontre que la combinaison d’un champ Zeeman avec un couplage spin-orbite
dans des systèmes supraconducteurs unidimensionnels induit une phase inhomogène à faible champ
magnétique et haute température critiques. On montre que l’état fondamental correspond à un état de
courant nul, où le courant induit par le couplage spin-orbite, nommé courant de charges anomal, est
exactement compensé par le courant venant du vecteur d’onde du paramètre d’ordre supraconducteur.
On discute également la possibilité de prédire l’apparition du courant anomal à partir d’arguments de
symétrie basés sur le formalisme covariant SU(2).
Dans un second temps, on considère une couche mince supraconductrice de type II en contact avec un
skyrmion de Néel. Ce dernier induit des courants spontanés dans la couche supraconductrice, pouvant
conduire à l’émergence d’un vortex supraconducteur en l’absence de champ magnétique extérieur. Les
distributions de champ magnétique et de courant sont calculées dans le supraconducteur en présence
du skyrmion de Néel.
La dernière partie de cette thèse est consacrée à l’étude de l’apparition d’états de Yu-Shiba-Rusinov
dans le cristal β-Bi2Pd. On propose des modèles effectifs pour expliquer les récents résultats expéri-
mentaux montrant une double oscillation spatiale de la densité d’états locale à l’énergie de Shiba. On
démontre que la condition minimale pour reproduire cette double oscillation correspond à la présence
de deux canaux supraconducteurs connectés via un terme de saut ou via une impureté magnétique.
Ces modèles effectifs peuvent facilement être généralisés pour décrire le spectre de supraconducteurs
multi-bandes en présence d’impuretés magnétiques.

Mots-clés : Supraconductivité, champs dépendant du spin, phase supraconductrice inhomogène,
courant anomal, skyrmion de Néel, états de Yu-Shiba-Rusinov.
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