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Optimisation automatisée de scénarios pour le système de champ magnétique poloïdal dans les tokamaks Model-based control-oriented scenario construction in tokamaks

Keywords: Tokamak, plasma scenario, ITER, optimal control

This thesis is concerned with developing and applying numerical tools in order to optimize the operation of the poloidal magnetic field (PF) system in tokamaks. The latter consists of a set of coils and power supplies which have the purpose of controlling the plasma shape and position, as well as driving the plasma current. The global context of our work is introduced in Chapter 1.

Chapter 2 describes our approach, which consists in applying optimal control methods to the Free-Boundary plasma Equilibrium (FBE) problem, which is composed of force balance equations in the plasma coupled to Maxwell's equations in the whole tokamak. The numerical tool employed here is the FEEQS.M code, which can be used either (in the direct mode) as a solver of the FBE problem or (in the inverse mode) to minimize a certain function under the constraint that the FBE equations be satisfied. Each of these 2 modes ( direct and inverse ) subdivides into a static mode (which solves only for a given instant) and an evolution mode (which solves over a time window). The code is written in Matlab and based on the Finite Elements Method. The non-linear nature of the FBE problem is dealt with by means of Newton iterations, and Sequential Quadratic Programming (SQP) is used for the inverse modes. We stress that the inverse evolution mode is a unique feature of FEEQS.M, as far as we know.

After describing the FBE problems and the numerical methods and some tests of the FEEQS.M codes, we present 2 applications. The first one, described in Chapter 3, concerns the identification of the operating space in terms of plasma equilibrium in the ITER tokamak. This space is limited by the capabilities of the PF system, such as the maximum possible currents, field or forces in the PF coils. We have implemented penalization terms in the objective function (i.e. the function to be minimized) of the inverse static mode of FEEQS.M in order to take some of these limits into account. This allows calculating in a fast, rigorous and automatic way the operating space, taking these limits into account.

This represents a substantial progress compared to traditional methods involving much heavier human intervention.

The second application, presented in Chapter 4, regards the development of a fast transition from limiter to divertor plasma configuration at the beginning of a pulse in the WEST tokamak, with the motivation of reducing the plasma contamination by tungsten impurities. Here, FEEQS.M is used in inverse evolution mode. Data from a WEST experimental pulse is used to set up the simulation. The FEEQS.M calculation then provides optimized waveforms for the PF coils currents and power supplies voltages to perform a fast limiter to divertor transition. These waveforms are first tested on the WEST magnetic control simulator (which embeds FEEQS.M in direct evolution mode coupled to a feedback control system identical to the one in the real machine) and then on the real machine. This allowed speeding up the transition from ∼ 1 s to 200 ms.

Résumé

-The statistic and estimations of the evolution of annual world primary energy consumption and world population. Note that the predictions are based on three methods in [START_REF] Nakićenović | Global energy perspectives[END_REF], and the colored bands are the error bars in the predictions.

People nowadays are more and more worried about energy issues on Earth, since the
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energy consumption is soaring with the growth of the total population. It is reported in [START_REF] Ongena | Energy for future centuries: prospects for fusion power as a future energy source[END_REF] that the total world annual energy consumption and the population are raised shapely from the early 1950s, and they will explode from now to 2100, just as it is shown in figure 1.1, where the predictions by three different scenarios [START_REF] Nakićenović | Global energy perspectives[END_REF] are given in colored bands.

When taking a look at the compositions of energy production in table 1.1 and the contributions of different energy sources in table 1.2, one can find that nearly 90 percents of the energy consumption now on Earth are produced by burning fossil fuels.

Worst of all, those fuels will be ran out of in a few hundred years if the current situation is not changed. In addition to the shortage of those fossil fuels, the emission of CO 2 (shown in figure 1.2), from their burning, is increasing exponentially. The large amount of released CO 2 will pollute the atmosphere, modify the climate, rise the sea level, and break the ecological balance on Earth. 

Fuel

Energy consumption and nuclear energy

Nuclear fusion energy and controlled fusion reaction

In order to solve the energy crisis addressed above, people have to seek some other ways to explore the clean (less or no environmental pollution) and sustainable (for an adequate long time) energies.

Nuclear fusion may be a way to produce relative clean and tremendous amount of energy, which could fulfill the world energy consumption for billions of years. The possible fusion reactions are the combinations of deuterium (D) and deuterium (D) plasma (in which the density of electron equals to the charged number × ion density), deuterium (D) and its isotope tritium (T) plasma, deuterium (D) and helium (He) plasma: The products of the fusion reactions in equation (1.1) are charged helium (He 2+ , which is also called α particle), high energy neutron (n) and proton (p + ). The second The ignition condition for the fusion reactions in equation (1.1) is given generally as a candidate on the fusion triple product in [6]:

n i T i τ E 3 × 10 21 m -3 keV • s (1.2)
where n i and T i are the density and temperature of the ions, τ E is the energy confinement time which is defined as τ E = W/P , where W is the thermal energy stored in the hot plasma and P is the heating power.

There are two kinds of schemes being explored to obtain fusion in daily experiment.

One is called inertial confinement fusion, e.g., the National Ignition Facility (NIF)

[7] in Lawrence Livemore National Lab of the US. It utilizes tested energetic lasers to bombard a solid target that is constituted of D and T, in order to trigger fusion reaction in the time range of several nanoseconds (10 -9 s), this kind of fusion reaction is usually designed with the military intentions. The other main scheme is named as magnetic confinement fusion, in which a strong magnetic field is produced to confine the plasma in a torus, such as tokamak [5], stellarator [8], and spheromak [9], typically

Tokamak

the τ E in these machines varies from several milliseconds (ms) to one second (s). The tokamak is considered as the most plausible way to achieve the aim of nuclear fusion energy utilization, and it is the most popular device around the world to research the controllable fusion energy.

Tokamak

Tokamak is a magnetic confinement fusion device, where the magnetic field is produced by external coils and the plasma current. The plasma is controlled by the magnetic field in a vacuum vessel, and external powers are injected into the plasma to increase the triple product in (1.2), then approach ignition. A simple sketch of a tokamak is shown in figure 1.4. There are two kinds of magnetic fields, i.e. toroidal and poloidal magnetic fields. The toroidal magnetic field is produced by the toroidal field (TF) coils (the sky-blue coils in figure 1.4), it is the principal magnetic field to control plasma. The poloidal magnetic field is produced by the plasma current and the poloidal field coils. The poloidal field coils are divided into two parts,
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one is the green coil in the inner center of the torus (see figure 1.4), it is called central solenoid (CS) coil, which is used to provide the energy to start the plasma and sustain the plasma current. The other poloidal field coil is called poloidal field (PF) coil, i.e.

the gray coil in figure 1.4, it is used to control the plasma position and achieve different shapes. Tokamak works as a transformer, in which the toroidal plasma current is the secondary winding and the CS coil is the primary winding. Figure 1.5 shows the cross-section of a tokamak. The plasma is confined inside the blue ellipsoid, which is called the plasma boundary. It is assumed that the toroidal plasma current is only inside the boundary. There are some basic definitions for the plasma geometry in a tokamak:

• Major radius: R (m).

• Minor radius: a (m) =(R max -R min )/2.

• Aspect ratio: A = R/a; inverse aspect ration = 1/A.

• Elongation: κ up = Z max /a; κ down = -Z min /a.

Tokamak

• Triangularity: δ up = (R -R Zmax )/a; δ down = (R -R Zmin )/a.

The D and T fusion reaction will not happen in a tokamak if there is no external power injected into the plasma, because the plasma resistivity decreases as T -3/2 , so when the plasma current and temperature rise, the Ohmic heating (heat only by the CS and PF coils) decreases [10]. In addition to increasing the triple product, additional heating schemes may be used to drive plasma current, allowing access to steady-state operation. The cardinal categories of the heating schemes are:

• Waves drive: electron cyclotron current drive (ECCD) [11,12], ion cyclotron current drive (ICCD) [START_REF] Adam | Review of tokamak plasma heating by wave damping in the ion cyclotron range of frequency[END_REF] and lower hybrid current drive (LHCD) [14].

• Beam drive: neutral beam current drive (NBCD) [15].

The only tokamaks around the world that have produced non-negligible fusion power are the Tokamak Fusion Test Reactor (TFTR) in Princeton [16] and the Joint European Torus (JET) in Oxford [17]. The maximum fusion power are 10.7 MW and 16.1 MW, respectively.

ITER project

It is generally known [18] that the ignition condition of (1.2) is easier to reach in a large tokamak, as can be seen in the τ E scaling law [19]:

τ L E = 0.023I 0.96 P B 0.03 T P -0.73 aux n 0.40 0 M 0.20 P R 1.83 0.06 κ 0.64 τ ELM y E,IP B98(y,2) = 0.0562I 0.93 P B 0.15 T P -0.69 aux n 0.41 0 M 0.19 P R 1.97 0.58 κ 0.78

(1.3)
where I P and B T are the plasma current and toroidal magnetic field, n 0 is the plasma line averaged density, M P is the averaged ion mass and P aus is the injected power. 

Q f usion = P f usion P auxiliary (1.4)
where P f usion is the fusion power, and P auxiliary is the external input power. It means the output power will be 10 times more than the total input power, and ITER will be the first tokamak where plasma self-heating will dominate over external heating. 

WEST tokamak

In order to provide reliable data and experience for future ITER operation, the study of present tokamaks is mainly focused on the physical and engineering problems that are relevant for ITER.

The Tungsten (W) Environment in Steady State Tokamak (WEST) [START_REF] Bucalossi | The WEST project: Testing ITER divertor high heat flux component technology in a steady state tokamak environment[END_REF] is an upgrade from the Tore Supra tokamak [34] in order to test the ITER-like plasma wall interaction material and validate steady-state plasma scenarios in a W machine [START_REF] Wesson | Tokamaks[END_REF]. Plasma volume (V P )/surface area (S P )/cross section area 830 m 3 /690 m 2 / 22 m 2 * Can be increased with limitation on burn duration. * * A total plasma heating power of 110 MW may be installed. 
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The main difference between Tore Supra and WEST is shown in figure 1.7. The divertor coils (symmetrical red rectangles) are installed in WEST to form the divertor configuration. There are also some passive plates in WEST, e.g. the casings of the divertor coils (yellow area), and the magnetic configuration will be changed by the induced currents on these passive plates, especially when the plasma current is increased (decreased) sharply in the ramp up (down) phase. Tokamak operation is a complicated task. In order to reach a certain objective in a given tokamak, e.g., Q f usion = 10 in ITER, one needs to design a so-called scenario ,

Tokamak operation

Tokamak operation

i.e. a trajectory in time of the plasma parameters. This scenario has to be feasible, in the sense that the plasma and the tokamak systems have to remain within a certain operational domain.

The schedule of plasma scenario

The plasma scenario in a tokamak aims at achieving the possible goals with the available actuators, such as the CS and PF coils, various external powers, the fueling and pumping systems. Figure 1.8 shows the schedule of ITER 21 MA plasma operation for 1.5 GW power output, which is released from the ITER Physics Basis 1999, chapter 8 [START_REF]Chapter 8: Plasma operation and control[END_REF]. It should be noted that the updated ITER targets are 15 MA plasma current and 500 MW fusion power [32].

The whole plasma scenario is divided into several phases mainly based on the plasma current (I P ):

• Pre-magnetization (-200s → 0), I P = 0: the CS and PF coils currents are well configured to provide enough Ohmic flux (Φ OH ) and poloidal magnetic fieldnull configuration (poloidal magnetic field B p less than 2 mT), meanwhile, an appropriate working gas (D) pressure is prepared.

• Plasma initiation (0 → 1s), 0 I P 0.1M A: the Φ OH begins to swing down to produce a loop voltage, which breakdowns the working gas and accelerates the charged electrons and ions to generate toroidal I P . For ITER 3 MW electron cyclotron (EC) wave is used to assist the plasma initiation.

• Current ramp-up (1s → 150s), 0.1M A I P 21M A: the Φ OH continues to swing down to provide the energy to increase the I P to its target value of 21 MA.

• Flat-top (150s → 1200s), I P = 21M A: the main phase in tokamak pulse, where enough P auxiliary and fuels are injected into plasma to make the fusion reaction occur. The P f usion ∼ 1.5 GW is produced in this duration.

• Burn termination (1200s → 1300s), 21M A I P 18M A: the burning plasma begins to terminate with the decreasing of the P auxiliary and I P .

• Current ramp-down (1300s → 1500s), 18M A I P 0: I P continues to go down until 0.
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• PF reset (1500s → 2000s), I P = 0: the CS and PF currents come back to 0 and the pulse is finished.

The evolution of the reference plasma boundaries for different phases is shown in figure 1.9. It can be seen that the plasma is initialized at the outer part with a circular shape, then it is elongated vertically and transits to a diverted shape (with an X-point at the bottom) with the increased I P until its target 21 MA. 

Notion of operating space

The operating space in a tokamak is typically constituted of two parts, i.e. the limits of various instabilities in plasma (e.g. MagnetoHydroDynamic (MHD) [START_REF] Tc Hender | MHD stability, operational limits and disruptions[END_REF]) and the accessible engineering limits of the external actuators.

The electron density (n e ) limit is one of the basic instabilities in tokamak plasma operation. Figure 1.10 gives the operating space on the I P and n e for a tokamak by Hugill [START_REF] Greenwald | Density limits in toroidal plasmas[END_REF]. where the electrons can be accelerated as the run-away particles, and in a high-density area where the maximum n e limit is proportional to I P and a (minor radius). Moreover, there is also a limit on the maximum I P that is due to the MHD kink instabilities [START_REF] Troyon | MHD-limits to plasma confinement[END_REF].

Plasma control

The plasma operation will typically terminate outside the operating space of figure 1.10 by disruptions.

The engineering limits in a tokamak operation include, e.g., the maximum CS and PF coils currents/voltages, field (for the super-conducting coils) and forces. The plasma operation will also go to termination, or even the machine may be damaged if these engineering limits are violated.

Plasma control

In order to perform the plasma scenario introduced in Section 1.3.1, a dedicated control system has to be designed. Plasma control is a key area in tokamak research, but with highly complicated workflow. The complexity of the control system, is related to the large number of parameters to be controlled and to the strong and often non-linear
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coupling exists between them.

The typical strategy is to use a combination of the feedforward (FF) and feedback (FB) schemes. In linear systems, FB is enough to maintain the target. Since tokamak is a non-linear system and the control targets in different plasma scenario phases are varied, i.e. the plasma currents, shapes and so on. FF is therefore used to help the FB controller to make the control items closed to the reference values.

The problems in plasma control can be separated into two classes: magnetic control and kinetic control.

Magnetic control

The objects of the plasma magnetic control [START_REF] Ambrosino | Magnetic control of plasma current, position, and shape in Tokamaks: a survey or modeling and control approaches[END_REF] include typically the plasma current, plasma position and the selected gaps between plasma boundary and the first wall. In the magnetic control system, the actuators are the CS and PF systems. The main work in this thesis concerns the magnetic control. There are two FB control loops, i.e. one for the plasma parameters (plasma current, shape and position) and the other for the coils currents. In the plasma parameters FB loop, the output coils currents are based on the deviations between the input targets and the reconstructed ones from the magnetic measurements. While in the second FB scheme for coils currents, the output coils voltages are derived from the differences between the actual coils currents and sum of I F F coils and I F B coils , which are the output of the first FB loop. Proportional, integral as well as derivative (PID) [43] controllers are applied in both FB loops.

The CS and PF coils voltages, which are the sums of the FF and FB waveforms, are the real signals sent to the actuators to perform the magnetic control in WEST tokamak plasma operation.

Magnetic control is a mature scheme in tokamak operations, thanks to the robustness of the accurate magnetic measurements and reliable actuators.

Kinetic control

The objects of the kinetic control in tokamaks [START_REF] Marc | Plasma kinetic control in a tokamak[END_REF] may include, the density and temperature profiles, the plasma profile parameters, fusion power, impurity content, plasma pressure, the radiated power fraction, etc. The control actuators are the auxiliary heating and current driving systems, the fueling system and the pumping system.

The control strategy for kinetic control is also the combination of FF and FB loops.

The FF waveforms are based on the solutions of the flux diffusion and energy balance equations, while the FB results are also obtained according the PID controller. The applications of these kinetic control algorithms can be found in [START_REF] Lister | Plasma control in ITER[END_REF]46,47,48,49].

The kinetic control is interconnected to the magnetic control, because plasma profiles and the magnetic equlibrium mutually influence each other. In this thesis, we will ignore this aspect and assume that the plasma profiles are given.

INTRODUCTION

Thesis scope and organization

The main topic in this manuscript is the construction of scenarios in tokamaks, with specific focus on the CS and PF systems. The tool used to address this topic is a free-boundary equilibrium code FEEQS.M, which is developed by Holger 

Chapter 2

Free-boundary equilibrium problems and the FEEQS.M code

Plasma equilibrium is one of the basic problems in tokamak engineering and physical research, it is widely applied in the areas of plasma control, scenario construction and MHD stability analysis.

In this chapter, the basic free-boundary equilibrium (FBE) equations are firstly introduced in section 2.1. Then, the two kinds of FBE problems, i.e. direct and inverse (both of which can be either static or evolutive), are formulated in section 2.2 and section 2.3, respectively. The ideas and methods of the numerical code FEEQS.M are detailed in section 2.4. Section 2.5 contains verification results regarding the calculation of the derivatives in FEEQS.M. Section 2.6 presents first tests of the inverse evolution mode in the WEST and HL-2M tokamaks. A short summary of this chapter is given in section 3.8.

Free-boundary plasma equilibrium

The essential equations for describing plasma equilibrium in a tokamak are force balance, the solenoidal condition and Ampères law, that read respectively

∇p = J × B , ∇ • B = 0 , ∇ × 1 µ B = J , (2.1)
where p is the plasma kinetic pressure, B is the magnetic field, J is the current density and µ the magnetic permeability. In the quasi-static approximation these equations
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are augmented by Faraday's law in all other conducting structures, and by Ohm's law in coils and passive structures. Hence for the resistive timescale the plasma is in equilibrium and (2.1) holds at each instant of time [START_REF] Grad | Classical diffusion in a tokomak[END_REF].

Under the assumption of perfect axial symmetry, it is convenient to put (2.1) in a cylindrical coordinate system (r, ϕ, z) and to consider only a meridian section of the • the domain F ⊂ H corresponds to those parts that are made of ferromagnetic circuit, i.e. the iron core and return limbs typically;

Free-boundary plasma equilibrium

• the domain C i ⊂ H, 1 ≤ i ≤ M correspond to the M poloidal field coils, where each coil C i has n i wire turns, total resistance R i and cross section |C i |. The coils are part of an electric circuit that contains also N voltage suppliers;

• the domain S ⊂ H corresponds to the passive structures, with conductivity σ;

• the domain L ⊂ H, bounded by the limiter (∂L), corresponds to the domain that is accessible by the plasma.

Then (see [START_REF] Blum | Numerical simulation and optimal control in plasma physics[END_REF] or [START_REF] Jardin | Computational methods in plasma physics[END_REF]), the plasma equilibrium equations in a tokamak at each instant t can be written:

Lψ(r, z, t) = j(r, ψ(r, z, t), t) in H ; ψ(0, z, t) = 0 ; lim (r,z) →+∞ ψ(r, z, t) = 0 ; ψ(r, z, 0) = ψ 0 (r, z) , (2.2) 
where L is a non-linear second-order elliptic differential operator

Lψ := - ∂ ∂r 1 µ(ψ)r ∂ψ ∂r - ∂ ∂z 1 µ(ψ)r ∂ψ ∂z := -∇ • 1 µ(ψ)r ∇ψ , (2.3) with µ[ψ](r, z) = µ f (|∇ψ(r, z)| 2 r -2 ) ≥ µ 0 in F = µ 0 elsewhere. (2.4)
Here, ∇ is the 2D gradient in the (r, z)-plane.

The toroidal current density j is a non-linear function of ψ:

j r, ψ(r, z, t), t =            rp ψ(r, z, t) + 1 µ 0 r f f ψ(r, z, t) in P[ψ(t)] ; I i |C i | in C i , 1 i M ; j S in S ; 0 elsewhere , (2.5)
where the plasma section P[ψ(t)] is the domain bounded by the last closed poloidal magnetic flux line inside L and containing the magnetic axis (r ax , z ax ). The magnetic axis is the point (r ax , z ax ) = (r ax [ψ], z ax [ψ]), where ψ has its global maximum in L. The equation in the plasma domain is the well-known Grad -Shafranov (G-S) equation [START_REF] Grad | Hydromagnetic equilibria and force-free fields[END_REF][START_REF] Vd Shafranov | On magnetohydrodynamical equilibrium configurations[END_REF][START_REF] Lüst | Axialsymmetrische magnetohydrodynamische gleichgewichtskonfigurationen[END_REF]. The current density j P(ψ) := rp (ψ) + 1 µ 0 r f f (ψ) in the plasma domain is non-linear in ψ due to the non-linear functions p and f f , and due to the definition
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of the plasma domain P(ψ). Here, p = p(ψ) is the pressure and

f = f (ψ) is the diamagnetic function, i.e f (ψ) = rB • e ϕ .
For convenience, we introduce also the coordinates (r bd , z bd ) = (r bd [ψ], z bd [ψ]) of the point that determines the plasma boundary. (r bd , z bd ) is either a hyperbolic point of ψ (in the case of a divertor configuration) or the contact point with the limiter ∂L (in the case of a limiter configuration). The different characteristic shapes of P(ψ) are illustrated in figure 2.1 (right): the boundary of P(ψ) either touches the boundary of L, the limiter, or the boundary contains one or more corners (X-points of ψ). The total coil current I i , relates to the voltages

V (t) = [V 1 (t), V 2 (t), . . . , V N (t) in
the suppliers and to self and mutual induction via electric circuit equations:

I i |C i | = N j=1 R ij V j (t) + M k=1 S ik C k ∂ψ(t) ∂t dr dz , 1 ≤ i ≤ M , (2.6)
In the case of simple electrical circuits, e.g. circuits where each coil is connected to only one voltage supplier, we have

R ij = 0 i = j n i R i |C i | i = j and S ij = 0 i = j - 2πn 2 i R i |C i | 2 i = j
and we refer to Appendix A for the general case.

Faraday's law in the passive structure S yields

j S = - σ r ∂ψ(t) ∂t (2.7)

Plasma current profile

The plasma current density j P in equation (2.5) is non-linear in ψ due to the non-linear functions p and f f and the definition of the plasma domain P(ψ). While P(ψ) is fully determined for a given ψ, the two functions p and f f are not determined by the model (2.2)-(2.5). The model (2.2)-(2.5) needs to be augmented by the so-called transport and diffusion equations [56], which determine p and f f . In this thesis, we will assume that, up to some scaling coefficient λ, the functions p and f f are known. But, the domain of p and f f is the interval [ψ bd , ψ ax ] with the scalar values ψ ax and ψ bd being the flux values at the magnetic axis and at the boundary of the plasma:

ψ ax [ψ] := ψ(r ax [ψ], z ax [ψ]) , ψ bd [ψ] := ψ(r bd [ψ], z bd [ψ]) .
(2.8)

Free-boundary plasma equilibrium

So, since the domain of p and f f depends on the poloidal magnetic flux itself, it is more practical to supply those profiles as functions of the normalized poloidal flux ψ(r, z):

ψ(r, z) := ψ(r, z) -ψ ax [ψ] ψ bd [ψ] -ψ ax [ψ] .
(2.9) these two functions, subsequently termed S p and S f f , have, independently of ψ, a fixed domain [0, 1]. In this thesis, we will use the following parameterization for S p and S f f :

S p ψ(r, z) = β R 0 1 -ψ(r, z) α γ S f f ψ(r, z) = (1 -β)µ 0 R 0 1 -ψ(r, z) α γ (2.10)
where R 0 is the major radius of the vacuum vessel and α, β, γ are given parameters.

The detail of the physical interpretation of these parameters can be found in [START_REF] Jl Luxon | Magnetic analysis of non-circular cross-section tokamaks[END_REF].

The parameter β is related to the poloidal beta β p : where B p is the poloidal magnetic field, Γ p is the plasma boundary and L p is its perimeter.

β p = p B
The parameters α and γ describe the peakedness of the plasma current profile, which is related to the plasma internal inductance l i (3):

l i (3) = 2 P B 2 p dV (µ 0 I P ) 2 R 0 (2.12)
The above parameterization of S p and S f f is convenient for many applications, but it does not necessarily represent realistic profiles, especially for H-mode plasmas, where a pedestal exists in the boundary, such as the works presented in the EPED codes [START_REF] Snyder | Characterization of peeling-ballooning stability limits on the pedestal[END_REF][START_REF] Snyder | A first-principles predictive model of the pedestal height and width: development, testing and ITER optimization with the EPED model[END_REF]. It is also possible in FEEQS.M to use arbitrary profiles.

The total plasma current I p (t) is given as:

λ(t) P(ψ)
rS p ψ(r, z, t), t + 1 µ 0 r S f f ψ(r, z, t), t drdz = I p (t) .

(2.13)
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The direct FBE problems

In this section, we present the so-called direct FBE problems, which consist in finding the ψ map for given PF coils currents or PF power supply voltages. We distinguish the direct static problem, which concerns a snapshot at a given time, and the direct evolution problem, which concerns the dynamic evolution of the plasma equilibrium.

These problems are formulated as follows.

Problem 

The inverse FBE problems

In the last section, we have discussed the direct static and evolution FBE problems, where the coils currents I = (I 1 , I 2 , • • • , I M ) or poloidal circuits voltages V (t) are given.

In this section, we introduce the inverse FBE problems, which consist in finding the currents I or voltages V (t) to satisfy a desired plasma scenario. Solving these problems

The inverse FBE problems

is challenging due, among other reasons, to their ill-posedness, their non-linear nature and, especially in the case of the inverse evolution problem, their large size.

Typically, the way to deal with such inverse FBE problems, is an optimal control approach. The currents I or voltages V (t) are the control variables, and the ψ or ψ(t) map describing the equilibria is the state variable. We encode the design goal in an objective function, which is large when the design goal is violated and small otherwise.

The direct static and evolution FBE problems are formulated as follows.

Problem 

with p (ψ(r, z)) = λS p (ψ(r, z)) and f f (ψ(r, z)) = λS f f (ψ(r, z)).
In general, the objective function (ψ(r, z), I) is divided into two parts, i. 

C ψ(r, z) = 1 2 N desi i=2 ψ(r i , z i ) -ψ(r 1 , z 1 ) 2 , ( 2.16) 
and

R( I) = 1 2 M i=1 w i I 2 i , (2.17)
where (r i , z i ) describes the desired plasma boundary and coefficients w i ≥ 0 are called regularization weights. C(ψ(r, z)) 'incites ψ(r, z) to be constant on a prescribed set of N desi points (r i , z i ). The regularization term R( I) enables to work with a well-posed problem, i.e. a problem that is stable to perturbations on the data.

The static inverse solver is used to find the PF coils currents I, which allow the best match with a given plasma shape at a given time.
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In Chapter 3, we use the static inverse solver to identify the plasma equilibrium operating space for the ITER inductive scenario, but with more complex objective functions, involving penalization terms to take into account limits on the coils currents, field and forces.

Problem 4 (Inverse evolution) . Let the evolution of parameters α(t), β(t) and γ(t)

in the definition of (2.10) of S p (ψ(r, z, t), t) and S f f (ψ(r, z, t), t) be known. Additionally assume that the evolution of the total plasma current I P (t) and initial data ψ 0 (r,z) are given. Moreover, let objective(ψ(r, z, t), V (t)) be a non-negative function that is small if ψ(r, z, t) is close to the design goal. Solve the following minimization problem:

min ψ(r,z,t), V (t) objective ψ(r, z, t), V (t) subject to (2.2), (2.5) -(2.7) and (2.13) (2.18) with p (ψ(r, z, t), t) = λ(t)S p (ψ(r, z, t), t) and f f (ψ(r, z, t), t) = λ(t)S f f (ψ(r, z, t), t).
As for the inverse static case, the objective function here is also split into C(ψ(r, z, t))

+ R( V (t)).
Examples for C(ψ(r, z, t)) and R( V (t)) are:

C ψ(r, z, t) = 1 2 T 0 w(t) N desi i=2 ψ r i (t), z i (t), t -ψ r 1 (t), z 1 (t), t 2 dt (2.19) and R V (t) = 1 2 T 0 N i=1 D i V 2 i (t) dt , ( 2.20) 
where the r i (t), z i (t) describe the prescribed plasma boundaries at discrete times in the interval [0,T]. The weights w(t) should be non-negative and D positive definite. C(ψ(r, z, t)) tends to make ψ(r, z, t) constant on a prescribed set of N desi points (r i (t), z i (t)) at each instant t and hence can be used to encode a certain desired evolution of the plasma shape. Other choices of cost function could include penalization of induced currents, voltages in suppliers or loop voltages or any other design goal that can be quantified in terms of the poloidal flux ψ and the voltages V i (t). Tests involving different cost functions for scenario design are presented in section 2.6.

In Chapter 4, we use the inverse evolution FBE solver to develop a fast limiter to divertor transition in WEST.

The FEEQS.M code and its numerical methods

The FEEQS.M code and its numerical methods

We introduce in this thesis the numerical code FEEQS.M (Finite Element EQuilibrium Solver based on Matlab) [START_REF] Blum | Automating the design of tokamak experiment scenarios[END_REF], which utilizes finite elements formulation and inherits the basic ideas of the FBE codes SCED [START_REF] Blum | The self-consistent equilibrium and diffusion code SCED[END_REF] and CEDRES++ [START_REF] Hertout | The CE-DRES++ equilibrium code and its application to ITER, JT-60SA and Tore Supra[END_REF], to solve the direct/inverse static/evolution FBE problems. FEEQS.M uses well established and tested external modules for mesh generation [START_REF] Shewchuk | Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator[END_REF], linear solvers (such as UMFPACK [START_REF] Davis | UMFPACK version 5.2. 0 user guide[END_REF]) and algebraic solver [START_REF] Davis | The University of Florida sparse matrix collection[END_REF]. The finite element method in FEEQS.M allows for a straightforward implementation of Newton methods to handle the strong non-linearities related to the FBE problems. FEEQS.M is based on methods for axisymmetric free boundary plasma equilibria that are described in [START_REF] Blum | Numerical simulation and optimal control in plasma physics[END_REF] and utilizes in large parts vectorizations. Therefore, the running time is comparable to C/C++ implementations.

Moreover, FEEQS.M is also publicly available1 now.

The general idea to solve the direct and inverse FBE problems in FEEQS.M is to find variational formulations of the partial differential equations (PDEs) (2.2), (2.5)-

(2.7). Then, standard linear Lagrangian finite elements are used to discretize the variational formulations and the objective functions. A sequential quadratic programming (SQP) approach is used to solve the optimal control problems, i.e., inverse FBE problems in FEEQS.M.

There are two different approaches to arrive at the finite dimensional SQP formulations for the optimal control problems 3 and 4, which have been stated in section 2.3. In the first one, the optimize-then-discretize approach, one computes first the optimality conditions for the continuous optimization problem, and then discretizes them. The second approach, the discretize-then-optimize approach, discretizes directly the optimization problems. This yields a finite dimensional constrained optimization problem for which a SQP formulation follows immediately from the literature [START_REF] Nocedal | Sequential quadratic programming[END_REF][START_REF] Hinze | Optimization with PDE constraints, 23 of Mathematical Modelling: Theory and Applications[END_REF].

In FEEQS.M, we prefer to work with the discretize-then-optimize approach for the following reason: discretize-then-optimize yields the exact gradient of the discrete objective function, while the optimize-then-discretize approach yields only an approximation. Both approaches involve approximation, but the optimize-then-discretize approach does not yield the exact gradient of either the continuous objective in (2.15), (2.19) and (2.20), or the discretized objective [START_REF] Heumann | Quasi-static free-boundary equilibrium of toroidal plasma with CEDRES++: Computational methods and applications[END_REF]. Therefore, the validation of the
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implementation of a discretize-then-optimize approach is relatively easy compared to an optimize-then-discretize approach.

It remains to specify the discretization of non-linear constraints (2.2), (2.5) and

(2.6), as well as the discretization of the objective functionals. Moreover, as we use SQP, we will also have to provide some details on first and second order derivatives of the discretized objective functionals and constraints. The implementation itself is kept flexible, so that objective functionals can be easily changed and modified. Adding new cost functionals encoding new design goals is simple.

The following subsections will introduce the detailed ideas and methods applied in FEEQS.M, including the variational formulations for the static and evolution FBE problems (section 2.4.1), the discretization formulations for the FBE problems (section 2.4.2 and 2.4.3) and the SQP approaches for the inverse static and inverse evolution FBE problems (section 2.4.4). ρ Γ , that is centered at the origin and contains the geometry of the tokamak, is selected.

Variational formulation on the truncated domain

The FEEQS.M code and its numerical methods

The boundary ∂Ω splits into Γ r=0 := {(r, z) , r = 0} and Γ = ∂Ω \ Γ r=0 . The Sobolev space [START_REF] Haj | Sobolev spaces on an arbitrary metric space[END_REF] V is used:

V := ψ : Ω → R, Ω ψ 2 r drdz < ∞, Ω (∇ψ) 2 r -1 drdz < ∞, ψ |Γ r=0 = 0 ∩ C 0 (Ω).
(2.21)

In the domain of Ω, the equation (2.2) can be written after multiplying the test function ξ ∈ V and doing the integration over the whole area as :

Ω Lψ ξ drdz = Ω j(r, ψ, t) ξ drdz (2.22)
The weak variational formulation of the equation (2.22) can be given after doing integration by parts as:

Ω 1 µ(ψ)r ∇ψ • ∇ξ drdz + ∂Ω 1 µ(ψ)r (∇ψ • n) ξdl = Ω j(r, ψ, t) ξ drdz (2.23)
where n is the inward pointing normal.

The second term in the LHS of the equation (2.23) can be divided into two parts on Γ and Γ r=0 :

∂Ω 1 µ(ψ)r ∂ψ ∂n ξdl = Γ 1 µ 0 r ∂ψ ∂n ξdl + Γ r=0 1 µ 0 r ∂ψ ∂n ξdl (2.24)
where the second term of RHS is 0, so the weak variational formulation of equation (2.23) on the bounded domain Ω is:

Ω 1 µ(ψ)r ∇ψ • ∇ξ drdz + Γ 1 µ 0 r ∂ψ ∂n ξdl = Ω j(r, ψ, t) ξ drdz (2.25)

Galerkin discretizations and their weak variational formulations

In FEEQS.M, we introduce a triangulation Ω h of the domain Ω that resolves the subdomains L, F, C i , S and use standard Lagrangian finite elements with nodal degrees of freedom.

Let b k (r, z) denote the Lagrangian basis functions associated to the vertices of the mesh, e.g., b k vanishes at all mesh vertices except one. Basis functions associated to vertices at r = 0 are excluded from this finite element space X h , as, due to axisymmetry

ψ(0, z) = 0.
For the static case at a fixed time, the finite element approximation ψ h of ψ is:

ψ h (r, z) = |X h | k=1 ψ k b k (r, z) with ψ k ∈ R, 1 ≤ k ≤ |X h |.
(2.26)
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For the discretization in time we introduce N T + 1 not necessarily equidistant col-

location points T 0 ≤ t s ≤ T 1 , 0 ≤ s ≤ N T .
Hence, for the evolution case, the finite element approximation ψ t h of ψ at t = t s is:

ψ s h (r, z) = |X h | k=1 ψ ks b k (r, z) with ψ ks ∈ R, 1 ≤ k ≤ |X h |, 0 ≤ s ≤ N T . (2.27)
The domain of the plasma P(ψ h ) of a finite element function ψ h is bounded by a continuous, piecewise straight, closed line. The critical points (r ax (ψ h ), z ax (ψ h )) and

(r bd (ψ h ), z bd (ψ h )) are the coordinates of certain vertices of the mesh. The saddle point of a piecewise linear function ψ h is some vertex (r 0 , z 0 ) with the following property: and for given current density j S in the passive structures S, we find the coefficients

if (r 1 , z 1 ), (r 2 , z 2 ) . . . (r N , z N ),
ψ k ∈ R, 1 ≤ k ≤ |X h | of ψ h , and λ ∈ R such that: Ω 1 µ(ψ h )r ∇ψ h • ∇ξ drdz -λ P(ψ h ) rS p (ψ h ) + S f f (ψ h ) µ 0 r ξ drdz + c(ψ h , ξ) - M i=1 I i |C i | C i ξdrdz -j S S ξdrdz = 0 ∀ξ ∈ X h , λ P(ψ h ) rS p (ψ h ) + 1 µ 0 r S f f (ψ h ) drdz = I P .
(2.28)

The bilinear form c : V × V on Γ, accounting for the boundary conditions at infinity [START_REF] Albanese | On the solution of the magnetic flux equation in an infinite domain[END_REF], is the second term of LHS in equation (2.25):

c(ψ, ξ) := 1 µ 0 Γ ψ(P 1 )N (P 1 )ξ(P 1 )dS 1 + 1 2µ 0 Γ Γ (ψ(P 1 ) -ψ(P 2 ))M (P 1 , P 2 )(ξ(P 1 ) -ξ(P 2 ))dS 1 dS 2 .
(2.29)
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with G(P 1 , P 2 ) ≈ log( P 1 -P 2 ), which is the fundamental solution of ∇ • 1 µ 0 r ∇ and

M (P 1 , P 2 ) = k P 1 ,P 2 2π(r 1 r 2 ) 3 2 2 -k 2 P 1 ,P 2 2 -2k 2 P 1 ,P 2 E(k P 1 ,P 2 ) -K(k P 1 ,P 2 ) N (P 1 ) = 1 r 1 1 δ + + 1 δ - - 1 ρ Γ and δ ± = r 2 1 + (ρ Γ ± z 1 ) 2 ,
where P i = (r i , z i ). K and E are the complete elliptic integrals of first and second kind, respectively and

k P j ,P k = 4r j r k (r j + r k ) 2 + (z j -z k ) 2 .
The details of the above derivation are shown in [START_REF] Grandgirard | Modélisation de l'équilibre d'un plasma de tokamak[END_REF]Chapter 2.4]. Alternative approaches, that incorporate the boundary conditions at infinity are recently presented in [START_REF] Faugeras | FEM-BEM coupling methods for Tokamak plasma axisymmetric free-boundary equilibrium computations in unbounded domains[END_REF]. The bilinear form c(•, •) follows basically from the so-called uncoupling procedure in [START_REF] Gatica | The Uncoupling of Boundary Integral and Finite Element Methods for Nonlinear Boundary[END_REF] for the usual coupling of boundary integral and finite element methods. In FEEQS.M, it can be shown that for all P 1 , P 2 the integral term (ψ(P 1 ) -ψ(P 2 ))M (P 1 , P 2 )(ξ(P 1 ) -ξ(P 2 )) remains bounded. The Green's function that is used in the derivation of the boundary integral method for the above problem, was used earlier in finite difference methods for the Grad-Shafranov-Schlüter equations [START_REF] Lackner | Computation of ideal MHD equilibria[END_REF].

The same way, we get the following discretized version of equation (2.25) in the evolution mode: For given evolution

V (t) = (V 1 (t), V 1 (t), • • • , V N (t)
) and I P (t) of the voltages and the total plasma current and for given initial conditions

ψ 0 h (r, z) = |X h | k=1 ψ k0 b k (r, z) we find for 1 ≤ s ≤ N T the coefficients ψ ks ∈ R, 1 ≤ k ≤ |X h | of ψ s h , the values I is ∈ R, 1 ≤ i ≤ M and λ s ∈ R such that: Ω 1 µ(ψ s h )r ∇ψ s h • ∇ξ drdz -λ s P(ψ s h ) rS p (ψ s h , t s ) + S f f (ψ s h , t s ) µ 0 r ξ drdz - M i=1 I is |C i | C i ξdrdz + S σ r ψ s h -ψ s-1 h t s -t s-1 ξ drdz + c(ψ s h , ξ) = 0 ∀ξ ∈ X h , N j=1 R ij V j (t s ) + M k=1 S ik C k ψ s h -ψ s-1 h t s -t s-1 drdz = I is |C i | 1 ≤ i ≤ M , λ s P(ψ s h ) rS p (ψ s h , t s ) + 1 µ 0 r S f f (ψ s h , t s ) drdz = I s P .
(2.30)
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Quadrature rules and discretization of the objective functions

The integration over the domain Ω is split into a sum of integrals over the triangles T of the mesh, and we use the barycenter quadrature rule to approximate these integrals: For a triangle with vertex coordinates a i , a j , a k ∈ R 2 the quadrature point is the barycenter b T := 1 3 (a i + a j + a k ) and the quadrature weight ω T is the size |T | of the triangle. Besides the integrals over Ω, the weak formulations (2.28) and (2.30) involve also integrals over the plasma domain P(ψ h ). As the mesh does not resolve the boundary of the plasma domain P(ψ h ), we need to specify also the quadrature rule that is used to approximate integrals over intersections T ∩ P(ψ h ) of triangles with the plasma domain. We use again barycenter quadrature, but here the quadrature point and weight will depend non-linearly on ψ h , which needs to be taken into account when we use linearizations of (2.28) and (2.30), e.g. in Newton or SQP iterations. The technical details of such linearizations can be also found in [START_REF] Heumann | Quasi-static free-boundary equilibrium of toroidal plasma with CEDRES++: Computational methods and applications[END_REF].

The line integrals over Γ in the definition of c(•, •) are split into line integrals over edges on triangles whose vertices are on Γ. Then, the trapezoidal quadrature rule yields an approximation of sufficient accuracy.

For the discretization of the objective functions in the inverse FBE problems. The same barycentric quadrature rule is used to approximate area integrals, while time integrals are approximated by the composite trapezoidal rule.

The discretization of the regularization functionals likewise uses the composite trapezoidal rule for time integrals. Moreover, we represent each voltage as a finite series

V i (t) = Nc j=1 V ij B j (t), 1 ≤ i ≤ n ,
where the B j (t) are the basis functions of a polynomial or spline space over [0, T ]. This yields expressions that are algebraic in the principal unknowns (ψ k and I i for the static case, and ψ ks and V ij for the evolution case, with 1

≤ k ≤ |X h |, 1 ≤ i ≤ m, 1 ≤ s ≤ N T and 1 ≤ j ≤ N c
). So, computation and implementation of first and second order derivatives of such functionals become a mechanical iterated application of the usual rules of differential calculus.

The FEEQS.M code and its numerical methods

SQP formulation for the inverse FBE solvers

Combining the discretized inverse FBE equations with discretized cost and regularization functionals, we arrive at discretized versions of the optimal control formulation (2.30) that is of the general form min u,y J(y, u) s.t. b(y, u) = 0 .

(2.31)

The state variable y, in the case of the evolution problem, contains the unknowns In the terminology of Newton methods we use rather a quasi SQP method, than an

ψ ks 1 ≤ k ≤ |X h |, 1 ≤ s ≤ N T of
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exact SQP method. It is known that such modifications are prone to convergence issues [START_REF] Bonnans | Numerical optimization: theoretical and practical aspects[END_REF], but this doesn't seem to be an issue for our specific application. The Algorithm 1 summarizes the quasi SQP formulation, and should be compared to the exact SQP in Algorithm 4 (see Appendix B ), where it is also required to compute the adjoint states during the iterations. The first and second order derivatives are indicated by subscripts, e.g. J u for the first order of derivative of J. We want to stress that the size of Y in Algorithm 4 scales at least linearly (and quadratically if

N c = O(N T ))
with the number of time steps N T , which causes memory to be the limiting factor for computations with a very large number of time steps. Nevertheless, with the current implementation we can go easily beyond 200 and more time steps, which is sufficient for the applications in mind. Moreover, we avoid the introduction of additional parameters due to iterative solver and make use of fast methods for linear systems with multiple RHS.

Algorithm 1 SQP (quasi) with direct solver u ← u + ∆u 13: end while

Numerical validation tests

We present different numerical tests, that verify that the implementations of derivatives of the non-linear constraints (2.28) and (2.30) in FEEQS.M are correct. These derivatives are the cornerstone of the proposed optimal control approach and appear The following calculations are based on a ITER-like geometry and an equlibrium plasma (see figure 2.3) that corresponds to the currents in the 

Derivatives due to the free-boundary

Let DJ h (ψ h ) ∈ R |X h |×|X h | denote the derivative of the discretization J h (ψ h , b m ) (via quadrature from section 2.4.
3) of the non-linear mapping

J(ψ h , b m ) = P(ψ h ) rS p (ψ h ) + 1 rµ 0 S f f (ψ h , t s ) b m drdz 1 ≤ m ≤ |X h | . (2.32)
This mapping involves the non-linearity due to the free plasma boundary. The linearization is non-standard [START_REF] Heumann | Quasi-static free-boundary equilibrium of toroidal plasma with CEDRES++: Computational methods and applications[END_REF]. In this first test it is verified that for given

ψ h (r, z) = |X h | k=1 ψ k b k (r, z) and perturbation δ h (r, z) = |X h | k=1 δ k b k (r, z) the implementation of DJ h (ψ h ) yields: E FD (ε) := ε -1 J h (ψ h + εδ h , •) -J h (ψ h , •) -DJ h (ψ h ) • δ DJ h (ψ h ) • δ = O(ε).
(2.33)
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The perturbation increment δ is randomly chosen. In table 2.1 we monitor this relative error and observe, as expected, first order convergence.

Convergence of the sensitivities

Another way to validate the implementation of the derivatives appearing in b y (y, u)

would consist in solving the non-linear constraint b(y, u) for y and monitor the convergence. For an accurate implementation of the derivatives the convergence will be quadratic. On the other hand, since in many cases also with inaccurate derivatives one will observe super-linear convergence, this test could fail as indicator for accurate derivatives. The following test is more appropriate: We consider a control u ε that is parametrized by ε ∈ R and suppose we know y 0 that verifies b(y 0 , u 0 ). Then it holds

y 1 ε -y ε = O(ε 2 ) , ( 2.34) 
where y 1 ε is the first Newton iteration for the problem b(y ε , u ε ) = 0 with initial guess y 0 :

b y (y 0 , u ε ) • (y 1 ε -y 0 ) = -b(y 0 , u ε ) (2.35)
The result (2.34) follows from y ε = y 0 +y 0 ε+O(ε 2 ) and 0 = b(y 0 , u ε )+εb y (y 0 , u ε )y 0 + O(ε 2 ). When the exact derivative b y (y 0 , u ε ) in (2.35) is replaced by some approximation A:

A • (y 1 ε -y 0 ) = f (u ε ) -a(y 0 ) .
then y 1 ε will be at most first order approximation of y ε . The first test of this kind is for the variational formulation (2.28) of the static inverse FBE problem. The unperturbed control data u 0 is the data given in the table in figure 2.3 and perturbation is a random incremental current for each coil scaled with ε = 0.5 0 , . . . 0.5 14 . In table 2.1 (4th column) the error E DN (ε) = y ε -y 1 ε is monitored. We observe second order convergence, which shows that we use accurate derivatives. In contrast, the result E CN (ε) = y ε -y 1 ε for a Newton-type iteration method (see 6th column in table 2.1) that follows from the discretization of derivatives of the continuous problem [START_REF] Blum | Numerical simulation and optimal control in plasma physics[END_REF][START_REF] Grandgirard | Modélisation de l'équilibre d'un plasma de tokamak[END_REF] yields only first order convergence.

Repeating the same test for the implementation for weak Galerkin formulation (2.30), based on the discretization and linarization described in sections 2.4.3 and 2.4.4 we observe the expected second order convergence (see table 2.1, 8th and 9th column). This reassures that the implementation in FEEQS.M is correct. ): 1.) the finite difference error E FD (2.33); 2.) the error E DN using the derivatives outlined in section 2.4.2 for the FBE problem (2.28); 3.) the error E CN using derivatives in [START_REF] Blum | Numerical simulation and optimal control in plasma physics[END_REF][START_REF] Grandgirard | Modélisation de l'équilibre d'un plasma de tokamak[END_REF] for the FBE problem (2.28); 4.) the error E DN using the derivatives outlined in sections 2.4.1 and 2.4.4 for the inverse evolution FBE problem (2.30). 

Numerical validation tests

ε i = 1 2 i J in (2.32) Static FBE (2.28) Evolution FBE (2.30) i E FD (ε i ) rate E DN (ε i ) rate E CN (ε i ) rate E DN (ε i ) rate 0 0.
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First applications of the inverse evolution solver

The direct static/evolution as well as inverse static modes have been operational and applied for a long time, whether in FEEQS.M or in other codes. In contrast, the inverse evolution mode has been implemented only recently in FEEQS.M and is a unique feature of the code, as far as we know. Therefore, it is useful to present some of the tests we did for this new mode in order to show that the code works as it should and to familiarize ourselves with it. This is the object of the present section, which describes applications of the inverse evolution mode of FEEQS.M to example problems in the WEST and HL-2M tokamaks. In Chapter 4 we will present a more real-life application: the design of reference waveforms for WEST scenarios and their validation on both the WEST magnetic control simulator and on the real machine.

WEST scenario with different objective functions

In this section, we apply the inverse evolution mode of FEEQS.M to the problem of the transition from limiter to divertor configuration in the WEST tokamak [START_REF] Wesson | Tokamaks[END_REF]. We will test different cost functions and regularization terms in order to find a smooth transition while respecting the maximum and minimum voltages that can be provided by the power supplies to the coils. 

First applications of the inverse evolution solver

Prescribed level sets at all time steps

As a first approach to the problem, we solve the discretized inverse evolution problem (2.31) with J(y, u) := C(y) + R 1 (u), in which:

C(y) := 1 2 N T s=1 N desi i=1 w s ψ s h (r i , z i ) -ψ s h (r 0 , z 0 ) 2 , R 1 (u) := 1 2 w R 1 N i=1 N T s=1 V i (t s ) 2 .
(2.36) The results (see figure 2.6) show that the prescribed level sets coincide fairly well with level sets of the numerical solution at all times, with a tiny discrepancy when the plasma evolves from limiter to divertor configuration. The evolution of the voltages can be seen in figure 2.7. As we are not imposing any constraints on the voltages, it is not very surprising that the voltages limits (the dashed lines) are violated at certain time steps.
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Prescribed level sets at all times and constraint penalization term

Secondly, we add two regularization terms to the objective function to penalize the violation of the voltage limits. That is to say, we solve now the constrained optimization Dashed lines indicate the limits of the power supplies. 

First applications of the inverse evolution solver

FREE-BOUNDARY EQUILIBRIUM PROBLEMS AND THE FEEQS.M CODE

:= C(y) + R 1 (u) + R 2 (u) + R 3 (u) with R 2 (u) := 1 2 L i=1 w R 2,i N T s=1 max(V i (t s ) -V i,max , 0) 3 , R 3 (u) := 1 2 L i=1 w R 3,i N T s=1 max(V i,min -V i (t s ), 0) 3 , (2.37) 
where the weights are w R 2,i = w R 3,i = 1 2 × 10 -16 . The level sets of the flux inside and near the plasma are found to be almost the same as in the previous case (shown in figure 2.6), but the evolution of the voltages, shown in figure 2.8, is slightly different and all voltages, except for V Bb at t= 0.005s, remain now within their limits. By introducing regularization terms with non-uniform weights it would probably be possible to improve this result.

Prescribed level sets at start and end

Assuming that level sets are prescribed at every time step is not very relevant in practical applications, where one aims to solve problems that require a few hundred or thousands of time steps. Providing level sets a each time step is a humongous amount of work that moreover confines the plasma evolution fairly strictly and could prevent from finding the best scenarios. A more relevant task is to find reasonable trajectories for prescribed level sets at the beginning and end only. Therefore, we use in this third case the prescribed boundaries only on some of the time steps, meaning we set in the objective function C(y) in (2.36) the weights w 1 , w 2 , w 3 and w 10 to one but the 
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R 1 (u) + R 2 (u) + R 3 (u)
, where the weights in the regularization terms R 1 (u), R 2 (u)

and R 3 (u) are as in the previous case.

The plasma trajectory of the numerical solution is shown in figure 2.9. It can be seen that the plasma boundary matches the prescribed level sets at the beginning and at the end. However, in between, when there is no prescribed level set, the plasma makes a large downward excursion. The evolution of the voltages is shown in figure 2.10. Limits are respected, except for the divertor coils during the last two time steps.

Clearly, the vertical excursion of the plasma obtained in this simulation is not desirable from an operational point of view. In order to suppress such excursions without having to prescribe level sets in intermediate time steps, a possible idea is to penalize the induced currents in the passive structures. Indeed, fast plasma motions are associated to large induced currents. Penalizing these currents should make the code priviledge smooth plasma trajectories. This strategy is tested in the next section. Voltages (V) Dashed lines indicate the limits of the power supplies.
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Prescribed level sets at start and end with penalization term on induced currents

In order to avoid the fast changes obtained in the previous simulation we add to the objective a new term that penalizes the induced currents

I ps,s := S σ r ψ s+1 h (r, z) -ψ s h (r, z) t s+1 -t s dr dz 1 ≤ s ≤ N T
in passive structures S with conductivity σ. We solve the optimization problem (2.31)

with J(y, u)

:= C 0 (y) + C 1 (y) + R 1 (u) + R 2 (u) + R 3 (u)
and

C 1 (y) = 1 2 w C 1 N T s=1 I 2 ps,s (2.38) 
where

w C 1 = 1 × 10 -6 .
The results, shown in figure 2.11, are quite satisfying: the plasma stays near the equatorial plane even during the time steps when the level set is not prescribed, and evolves in a smooth fashion to its final shape. This shows that the penalization term on induced currents allows finding slowly moving solutions even if we prescribed level sets only in the beginning and end. The evolution of the voltages is shown in figure 2.12 and we highlight that all the voltages remain within the limits.

These tests show that with well tuned cost functions and regularization terms, we can get a smooth plasma limiter to divertor transition within only 50 ms, which is a very short duration, while respecting the voltage limits. Achieving such a fast transition on the real machine may be interesting from the operational point of view in order to avoid plasma contamination by impurities. This however requires FEEQS.M 

First applications of the inverse evolution solver

(V) V Dh V Eh V Fh V Fb V Eb V Db Figure 2
.12: Voltages obtained with prescribed level sets at start and end with penalization term on induced currents (see 2.6.1.4). Dashed lines indicate the limits of the power supplies.
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simulations which are in closer relation to the actual experiments. This will be the topic of Chapter 4.

Full scenario computation for HL-2M tokamak

In the previous section, we have focused on a short slice of a tokamak scenario. In contrast, in this section, we present an inverse evolution calculation of FEEQS.M for a full scenario, which includes the plasma current ramp up, flat top and ramp down phases, for the new tokamak HL-2M [START_REF] Li | The component development status of HL-2M tokamak[END_REF] (see figure 2.13 for the cross-section) in China.

A major objective of this machine is the exploration of ITER related physical issues. Altogether we end up with a constrained optimization problem that has almost one million unknowns, of which approximately a hundred correspond to control unknowns u. We solve this problem in 15 iterations and the computing time is less than 350 s on standard notebook with a 4 × 2.7 GHz processor and 32 GB memory.

R (m)

In figure 2.15 we show the plasma boundary at some selected time steps. As can be seen, the plasma follows well the reference boundary in the whole time interval.

The voltages are shown in figure 2.16. This example shows that the presented approach can construct a full operation scenario for tokamaks with a reasonable amount of computational power. 

Summary

Summary

In this chapter, we firstly introduced the FBE equations. Then four types of FBE problems, i.e., direct static/evolution and inverse static/evolution, have been described.

The recent FEEQS.M code and its variational and discretization formulations applied to solve the FBE problems have been introduced. Verification tests on the calculation of derivatives have been presented. Finally, first tests of the inverse evolution mode for example cases in the WEST and HL-2M tokamaks have been shown. In the following chapters, we present real applications of FEEQS.M. In Chapter 3, we apply the inverse static mode to identify the operating space in terms of plasma equilibrium in ITER. In Chapter 4, we apply the inverse evolution mode to develop a fast limiter to divertor transition in WEST. 
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ITER EQUILIBRIUM OPERATING SPACE IDENTIFICATION

ITER CS and PF requirements and reference separatrix

The latest (July 2017) ITER CS and PF coils data is defined in [START_REF] Gribov | CS and PF coils data and requirements to separatrix positioning for analysis of ITER plasma equilibria and poloidal field scenarios[END_REF], which also gives the maximum currents, field and forces on CS and PF coils, as well as the reference plasma separatrix in detail. In this section, we introduce only the limits which are related to the equilibrium operating space.

ITER CS and PF coils

The ITER CS and PF coils position (R, Z co-ordinates of the conductor cross section centre at 4 K), the radial and vertical dimensions of the conductor cross section (∆R, ∆Z) as well as the total number of turns (N) are given in table 3.1. The layout of CS and PF coils is presented in figure 3.1.

Maximum currents and fields on CS and PF coils

The dependence of the maximum current per turn on the maximum magnetic field on the coil conductor, is obtained by linear interpolation or extrapolation, between or beyond pairs of values given in table 3.2. In this work, only the cases with maximum currents are considered for simplicity, e.g., the current and field limits on CS coils are 45 kA/turn and 12.6 T, respectively. It should be noticed that CS1U and CS1L are connected in series, which means the currents in them are always the same.

ITER CS and PF requirements and reference separatrix

There also exists a limit on the absolute value of imbalance current in the coils PF2 to PF5, i.e., the current flowing in the vertical stabilization converter, which is calculated as:

I imb = I P F 2 + I P F 3 -I P F 4 -I P F 5 (3.1)
should be less than 22.5 kA.

Maximum forces on CS and PF coils

The force limits are mainly the vertical forces on PF coils, the vertical separating and net forces on the CS coils system.

The limits on the vertical forces of PF coils are shown in table 3.3.

The vertical separating (see figure 3.2) and net force limits on the CS coils are 
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ITER CS and PF requirements and reference separatrix

expressed respectively as:

F Z (Sep) = |F Z (U pward)| + |F Z (Downward)| 2 ≤ 120 M N ,
(note that F Z (Downward) has negative sign );

F Z (CS) = | 6 n=1 F Z (CS coils number n )| ≤ 60 M N. (3.2)
where the F Z (U pward) is the force CS3U (possibly pushed up by other CS coils) exerts on the top of the mechanical structure, and defined as the maximum of the following 6 values:

1):

F Z (up, 1) := F Z (CS3U ), 2): F Z (up, 2) := F Z (CS3U ) +F Z (CS2U ), 3): F Z (up, 3) := F Z (CS3U ) +F Z (CS2U )+F Z (CS1U ), 4): F Z (up, 4) := F Z (CS3U ) +F Z (CS2U )+F Z (CS1U ) +F Z (CS1L), 5): F Z (up, 5) := F Z (CS3U ) +F Z (CS2U )+F Z (CS1U ) +F Z (CS1L) +F Z (CS2L), 6): F Z (up, 6) := F Z (CS3U ) +F Z (CS2U )+F Z (CS1U ) +F Z (CS1L) +F Z (CS2L)+F Z (CS1L)
and the F Z (Downward) is the force CS3L (possibly pushed down by other CS coils) exerts on the bottom of the mechanical structure, and defined as the minimum of the following 6 values:

1): F Z (dn, 1) := F Z (CS3L),

2): F Z (dn, 2) := F Z (CS3L) +F Z (CS2L),

3):

F Z (dn, 3) := F Z (CS3L) +F Z (CS2L)+F Z (CS1L), 4): F Z (dn, 4) := F Z (CS3L) +F Z (CS2L)+F Z (CS1L) +F Z (CS1U ), 5): F Z (dn, 5) := F Z (CS3L) +F Z (CS2L)+F Z (CS1L) +F Z (CS1U ) +F Z (CS2U ), 6): F Z (dn, 6) := F Z (CS3L) +F Z (CS2L)+F Z (CS1L) +F Z (CS1U ) +F Z (CS2U )+F Z (CS1U )
where F Z (CS3U ), F Z (CS2U ), . . . F Z (CS3L) are the vertical forces on the CS coils CS3U , CS2U , . . . CS3L.

The above definition of the separating force (F Z (Sep)) is impractical to implement in our model. Hence, in this work we use a simplified treatment for the F Z (Sep), which is described in section 3.3.4.

ITER reference separatrix

The reference plasma boundary for ITER scenario in the flat top phase, as well as the first wall geometry, are shown in figure 3.3.

Previous results on the identification of the ITER equilibrium operating space

Roughly speaking, the objective is to remain close to the reference separatrix. More precise requirements are given in [START_REF] Gribov | CS and PF coils data and requirements to separatrix positioning for analysis of ITER plasma equilibria and poloidal field scenarios[END_REF] and comprise among others:

• downward displacement of the inner divertor leg: 50 mm (maximum);

• upward displacement of the inner divertor leg: 150 mm (maximum);

• inward displacement of the outer divertor leg: 50 mm (maximum);

• outward displacement of the outer divertor leg: 150 mm (maximum);

• inward displacement near the inner limiter: 20 mm (maximum).

Previous results on the identification of the ITER equilibrium operating space

The typical method used in the past to determine the equilibrium operational space, was to run a series of inverse static FBE calculations (see Chapter 2.3 in detail), in which the objective function was of the type: objective = 1 2

N desi i=1 ψ(r i , z i ) -ψ(r desi , z desi ) 2 + 1 2 N i i=1 w i I 2 i (3.3)
where the first part is called cost function, which quantifies the distance between the computed and desired plasma shape; and the second one is called regularization term, which is typically a weighted sum of the squares of the CS and PF coils currents, enables to deal with an ill-posed problem.

In the inverse static FBE calculations, I P and plasma boundary are prescribed, while the plasma current profiles β p and l i (3) and value of Ψ st [START_REF] Timothy C Luce | Inductive flux usage and its optimization in tokamak operation[END_REF] (the poloidal flux from all the contributions of CS and PF coils currents in a specified position inside the plasma area, representing different magnetization states for the CS and PF coils) are varied. This is because in the flat top phase, Ψ st is varied in time due to the inductive flux consumption and plasma current profile, may also change due, e.g., to an L-H transition. The operating space domain is then determined by the limits of the CS and PF coils currents, field and forces. Since these limits are not explicitly implemented in the above objective function (3.3), the weights w i must be tuned carefully until all the limits are respected. This appears as an impractical and time-consuming method.
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Nevertheless, this method has been applied in the past with four independent equilibrium codes (EQ1 [START_REF] Fujieda | TOSCA equilibrium code[END_REF], EQ2 [START_REF] Ta Casper | ITER shape controller and transport simulations[END_REF], EQ3 [START_REF] Ambrosino | XSC plasma control: Tool development for the session leader[END_REF] and EQ4 [START_REF] Najmabadi | The ARIES-AT advanced tokamak, advanced technology fusion power plant[END_REF]) to identify the ITER 15 MA operating space, as it was reported in [START_REF] Kessel | Development of ITER 15 MA ELMy H-mode inductive scenario[END_REF]. The ITER 17 MA operating spaces were also calculated by these four codes, as visible in figure 3.6. Compared to the 15 MA case, the ITER 17 MA case has a smaller domain, as could be expected, since it is more difficult to operate the ITER scenario in a larger I P . It may be noted in figure 3.6 that EQ1 and EQ4 include a pedestal, but not EQ2 and EQ3, which shows that the pedestal does not change the results dramatically.

Instead of using the simple objective function in equation 3.3, another possibility, as done with the CREATE-NL code in [START_REF] Mattei | ITER operational space for full plasma current H-mode operation[END_REF], is to linearize the inverse static FBE problem
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and to express all the limits as inequalities which are function of the coils currents.

This method was also applied on the ITER 15 and 17 MA cases, and the results are In around 2014, the ITER CS and PF6 coils were changed a little in [START_REF] Casper | Development of the ITER baseline inductive scenario[END_REF], and the same method, which is based on the objective function in equation 3. In general, we found that there were no reference ITER 15 and 17 MA equilibrium operating spaces after reviewing all the previous works, since every code had an individual result, and the reason was not yet clear.

A new approach to identify the ITER equilibrium operating space

In the previous works, the objective function was composed of the cost function and regularization term. However, the actual limits on the CS and PF coils currents, field and forces as well as the limits on the deviations from the reference separatrix were not explicitly considered (except via inequalities based on a linearized model in [START_REF] Mattei | ITER operational space for full plasma current H-mode operation[END_REF]). Moreover, these studies are not entirely up to date, since there have been some modifications on the location and number of turns for the CS and PF coils in 2017.

In this thesis, we propose another solution, introducing a new Objective function, which accounts for the true limits (updated in 2017) with the non-linear constraints in a more explicit way. The Objective function includes penalization terms which are activated or increase sharply when the limits are violated.

The new objective function

The new Objective function is expressed as:

Objective = C Shape + C Flux + P Current + P Force (3.4)
where C represents cost functions and P represents penalization terms.

The first term,

C Shape (ψ) = 1 2 N i=2 ψ(r i , z i ) -ψ(r 1 , z 1 )

2

(3.5)
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is identical (or similar) to the cost function in the previous works, and it tends to make all the points (r i , z i ), which describe the target separatrix, belong to the same flux surface. We have to note that C Shape does not directly quantify the physical distance between the actual and the target separatrices. As a consequence, it is not possible to implement tolerances for this distance in the cost function. In present work, we only check these tolerances in post-processing. Being able to directly impose tolerances through the cost function would however be of high practical value, and is a direction for future work.

The second term,

C Flux (I coils ) = 1 2 (M • I coils -Ψ st ) 2 (3.6)
aims at matching the desired value of the flux state Ψ st . In this work, (R 0 , 0), where R 0 is the major radius, is selected as the specified position to calculate all the flux contributions from the CS and PF coils. Here M is the mutual inductance between the CS or PF coils and a toroidal wire at (R 0 , 0), which we pre-calculate with FEEQS.M in magnetostatic mode (i.e. direct static without plasma).

The third and fourth terms penalize respectively the violation of limits on the coils currents and forces. Here a penalization term is not used for the limits on the coils magnetic field for simplicity. Post-processing of the results presented below suggests that taking these limits into account would almost not change the operational domain, and the same is the case for the imbalance current I imb in equation (3.1). In this chapter, we have tested two different types of penalization function, which will be described below in section 3.3.2.

We can see that there is no more regularization term in the new Objective function.

Indeed, it appears not necessary any more, since the C Flux term, which imposes the desired Ψ st , already plays the role of a regularization term.

Mathematical functions for the penalization terms

We have tried two kinds of mathematical functions to penalize the violation of coils currents and forces, which are often used in neural networks: rectifier [START_REF] Andrew L Maas | Rectifier nonlinearities improve neural network acoustic models[END_REF] and softplus 3.3 A new approach to identify the ITER equilibrium operating space [START_REF] Senior | Fine context, low-rank, softplus deep neural networks for mobile speech recognition[END_REF]:

Rectifier: = max(x, 0)

Softplus: = ln(1 + e x ) (3.7)
In FEEQS.M, the quasi-Newton method in [START_REF] Heumann | Quasi-static free-boundary equilibrium of toroidal plasma with CEDRES++: Computational methods and applications[END_REF] is applied to find the solution of the non-linear inverse static FBE problem. The first and second derivatives of the Objective are used to find the direction and the step length of the iterations. Thus, in order to be able to differentiate two times the penalization terms, we modify the general rectifier and softplus to the quasi-rectifier and quasi-softplus, respectively, as:

Quasi-rectifier: = max(x, 0) 3 = max(x 3 , 0)

Quasi-rectifier-modified: = max ( x + 0.5 0.5

) 3 , 0 Quasi-softplus: = ln(1 + e x ) 3 (3.8)
where we also define another quasi-rectifier-modified function to activate the penalization term before the violation of the real limit. The quasi-rectifier, quasi-rectifier-modified and quasi-softplus are presented in figure
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3.9. With quasi-rectifier, the penalization terms are active only when the limit is violated (where x > 0). However, it is intuitive that penalization terms should become active already before the limits are violated, such that the code knows about the existence of these limits before hitting them. What is less clear is from which value of the current or force, and how sharply, the penalization terms should increase. For this reason, in the following sections, we will compare the results obtained with quasirectifier-modified, which activates when the current or force is above half the real limit and grows sharply, and with the quasi-softplus which is always active but grows more smoothly.

Penalization terms for the coils currents and forces

The penalization terms related to the CS and PF coils currents are defined as:

P Current (I coils ) = N coils i=1 f P ( I i -I max,i |I max,i | ) + f P ( I min,i -I i |I min,i | ) (3.9)
and the penalization term for the net force on the CS coils is given as:

P Force-CS (I coils , ψ) = f P ( N CS i=1 F Z,i -F max,CS |F max,CS | ) + f P ( F min,CS -N CS i=1 F Z,i |F min,CS | ) (3.10)
Here F max (resp. F min ) and I max (resp. I min ) represent the upper (resp. lower) limits of force and current, respectively, and f P represents the quasi-rectifier, quasi-rectifiermodified or quasi-softplus in equation (3.8).

The penalization terms for the PF1-6 forces are also not considered here, since almost all the limits are naturally respected, as we have verified by post-processing.

The force penalization term concerns the volume integrated force which, due to axisymmetry, is vertical:

F Z,i = 2π I i S i ∂ z ψ dS 1 ≤ i ≤ N coils (3.11)
where I i is the CS or PF coil current, and S i is the cross-section of the corresponding coil.

A new approach to identify the ITER equilibrium operating space

Penalization term for the separating force on CS coils

The penalization term for the separating force on CS coils is not as easy to express as the other terms in equations 3.9 and 3.10, due to its involved definition given in section 3.1.3. Moreover, we wish to be able to calculate the second and third order derivatives of this term.

Due to these difficulties, we have implemented the penalization term for the CS separating force, in the following form:

P Force-Sep (I coils , ψ) = 6 i=1 6 j=1 f P F Z0 (up,i)+F Z0 (dn,j) 2 -F max,Sep |F max,Sep | (3.12)
where F max,Sep is the limit of the separating force. The definitions of F Z0 (up, i)

and F Z0 (dn, j), as well as the detailed justification of this expression are given in

Appendix C.

At last, the total force penalization term is:

P Force (I coils , ψ) = P Force-CS (I coils , ψ) + P Force-Sep (I coils , ψ) (3.13)
It is worth noting that in the new Objective function (3.4), we have not found it necessary, at least for the applications presented below, to include weights to be adjusted in any of the terms. But the weights could be easily implemented in our approach.

The method to determine the operating space in the l i (3) -Ψ st diagram

In order to determine the operating space in an l i (3) -Ψ st diagram, we scan the plasma current profile parameter l i (3) (we will show later in section 3.7 that β p does not change the operating space much), by scanning γ in equation (2.10), and we scan Ψ st in equation 3.6. The other parameters of plasma current profile in equation (2.10), α and β, are fixed to 1 and 0.65, respectively (β p =0.6 is the nominal value in the flat top phase for ITER inductive cases). Besides, a pedestal is not considered in the plasma current profile just for simplicity, but it would be interesting to explore the influence of the pedestal on the equilibrium operating space in future work.

The total number of inverse static FBE computations is 11 x 14: γ is scanned from 0.2 to 1.2 with a step of 0.1, and Ψ st is scanned from -45 to -175 Wb with a step of
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-10 Wb. During the Ψ st and γ scanning loops, Ψ st is varied from -45 to -175 Wb with a fixed γ. The result of the previous calculation is input as the initial guess for the next one, in order to save computation time. The convergence criterion for stopping the Newton iteration is :

I k+1 -I k 2 I k+1 2 + ψ k+1 -ψ k 2 ψ k+1 2 0 (3.14)
where 0 is set to 1 × 10 -11 .

The operating space can then be visualized by plotting the iso-lines of the currents, field and forces in the different coils, as well as of the boundary deviation metric (gaps) in the l i (3) -Ψ st diagram. In particular, the domain is delimited by iso-lines corresponding to the limit values of these different quantities. The boundary deviation metric used in this work, is shown in figure 3.10. It consists of 20 gaps in the divertor legs and 2 gaps near the inner limiter. Note that by gaps here, we mean distances between the actual and desired separatrix (and not between the separatrix and the limiter). The gaps limits are defined in section 3.1.4.

The computation domain and mesh used in FEEQS.M, are presented in figure 3.11, where it can be seen that different sizes of triangles are used in different areas. iso-contour corresponding to the limit value for each quantity, is given in dashed (current)/plain (field)/dotted (force)/dash dotted (boundary metric) bold. Plain thin lines are beyond the limits. The operating domain is therefore the zone left in white. The symbol '-' in the legend of figure 3.13 (same for the other operating spaces in the rest of this chapter) represents the lower limit and '+' is the upper limit, e.g., the 'Cur-CS1U&L-' represents the lower current limit of CS1U&L coil (which is -45 kA per turn, see table 3.2).
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It can be seen in figure 3.13 that the operating space is small when compared to the previous works in figures 3.5, 3.7 and 3.8, especially for the domains of CS net F Z (CS) and separating F Z (Sep) forces. The smallness of these domains can be attributed to the small values of the forces penalization terms, compared to the other terms in the Objective (and in particular the C Shape term), as it is shown in figure 3.14. Small values of the penalization terms in the Objective do not incite the code to redistribute the coils currents in order to respect the limits. Except the small domains for F Z (CS) and F Z (Sep), the operating spaces for the coils currents are similar to previous works, i.e., Cur-CS1U&L-bounds the high |Ψ st | area, and PF6 (both Cur-PF6+ and Field-PF6) bounds the small l i (3) -|Ψ st | area. Note that figure 3.14 shows that the value of P Current is also small, so there may be possibilities to enlarge the domain of coils currents. Figure 3.14 also shows that the C Flux term stays very small for all the inverse static calculations, meaning that all the prescribed Ψ st are matched,
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Prescribed γ and Ψ st = -45:-10:-175 Wb γ:0.2 γ:0.3 γ:0.4 γ:0.5 γ:0.6 γ:0.7 γ:0.8 γ:0.9 γ:1.0 γ:1. Therefore, in this section, we modify the penalization term for coils currents as:

P Current (I coils ) = N coils i=1 f P ( I i -0.5I max,i 0.5|I max,i | ) + f P ( 0.5I min,i -I i 0.5|I min,i | ) (3.15)
the penalization term for the net CS force F Z (CS) as:

P Force-CS (I coils , ψ) = f P ( N CS i=1 F Z,i -0.5F max,CS 0.5|F max,CS | ) + f P ( 0.5F min,CS -N CS i=1 F Z,i 0.5|F min,CS | ) (3.16)
and the penalization term of CS separating force F Z (Sep) as:

P Force-Sep (I coils , ψ) = 6 i=1 6 j=1 f P F Z0 (up,i)+F Z0 (dn,j) 2 -0.5F max,Sep 0.5|F max,Sep | (3.17)
Note that here we choose a factor of 0.5, but the value may be varied (independently for each limit) if needed. space is mapped by the 11 x 14 calculations. However, figure 3.15 shows that this is a small effect. Furthermore, this effect is taken into account in figure 3.16, in which the y coordinate corresponds to the obtained Ψ st and not the desired Ψ st .

ITER operating space identification with quasi

Although C shape is still dominant in figure 3.17, the code now takes the coil current and force limits more into account. As a result, the domains for the boundary deviations are smaller in figure 3.16 than in figure 3.13, because the code needs to find a compromise between matching the desired plasma shape and matching the coils limits.
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ITER operating space identification with quasi-softplus penalization terms

Generally speaking, the ITER 15 MA operating space identified with the penalization terms based on quasi-rectifier-modified is quantitatively rather similar to what had been found in previous works (figures 3.5 and 3.8).

ITER operating space identification with quasi-softplus penalization terms

Section 3.4 and 3.5 have shown the importance of using penalization terms which become active before the limits are violated. In this section, we will investigate the effect of the shape of the penalization function. Instead of using the quasi-rectifier-modified, which activates close to the limit and increases very sharply, we will use the quasisoftplus, which is always active but grows more smoothly.

ITER 15 MA equilibrium operating space with quasi-softplus

We do similar inverse static FBE calculations in FEEQS.M again here, but with quasisoftplus as penalization terms in the Objective function. The total computation time is increased to about 3.5 hours, which is due to the fact that the code needs more Newton iterations to converge. The latter is probably related to interplay between the many penalization terms.

The ITER 15 MA operating space found using the quasi-softplus is presented in figure 3.18. We can see that it is similar to the operating space found with the quasirectifier-modified presented in the previous section (figure 3.16), although it is globally smaller. To be more specific, the domain is enlarged a bit in the low

l i (3) -high |Ψ st |
corner, but it is substantially reduced in the high l i (3) -low |Ψ st | corner. As a side remark, we can note that this corner is bounded by the max-inner-limiter limit in both cases, which suggests that adding a penalization term for this limit (and, more generally, for boundary deviations) is a useful direction for future work. The values of the different terms of the Objective are given in figure 3.19. We can see that all the C (except C Flux ) and P terms are of the same order of magnitude, which means that with the quasi-softplus, the code tries to find a more global compromise than with the quasi-rectifier-modified, as could be expected.

Chapter 4

Development of a fast limiter to divertor transition in WEST

As mentioned in Chapter 1.2.2, the WEST tokamak aims at testing ITER-like tungsten (W) plasma facing components in steady state operation. However, interactions between plasma and the W first wall can lead to accumulation of W in the plasma, especially when the plasma stays during a long time in limiter configuration at the beginning of the pulse, such as experienced in the JET [START_REF] Joffrin | First scenario development with the JET new ITER-like wall[END_REF][START_REF] Gj Van Rooij | Tungsten divertor erosion in all metal devices: Lessons from the ITER like wall of JET[END_REF][START_REF] Matthews | Plasma operation with an all metal first-wall: comparison of an ITER-like wall with a carbon wall in JET[END_REF] and ASDEX-U [92,93,94] tokamaks. It is therefore important to develop scenarios that minimize the time spent in limiter configuration and switch as soon as possible into divertor configuration.

A typical way to design scenarios in terms of plasma shape evolution is to find adequate PF coils currents at selected times (e.g. using inverse static FBE calculations), and construct temporal waveforms from these snapshots taking into account the voltage capabilities of the PF power supplies and the estimated flux consumption from the plasma, as done, e.g., in [95]. On WEST, the snapshots sequence has been developed by a combination of inverse static FBE calculations (which has the drawback of neglecting the induced currents in the passive structures, in particular when the plasma current is ramped up and down) and trial and error on the machine, and has not been optimized to minimize the time spent in limiter configuration.

In this chapter, we present a more sophisticated method of scenario development based on the inverse evolution mode of FEEQS.M, which we apply in order to speed up the limiter-divertor transition at the beginning of a WEST pulse. More precisely, we use

DEVELOPMENT OF A FAST LIMITER TO DIVERTOR TRANSITION IN WEST

the coils currents waveforms calculated by FEEQS.M as feedforward (FF) trajectories for the plasma control system. Note that on the other hand, we do not use the voltages calculated by FEEQS.M, since the WEST magnetic control strategy (described below) is based on using coils currents to control the plasma position and shape, while another control loop provides adequate voltages to match the desired currents (this approach is applied in many tokamaks and not specific to WEST).

The outline of this chapter is as follows. 

The magnetic control on WEST

The . Magnetic control, i.e. the control of plasma current, position and shape using the poloidal field system, is a key part of the WEST control system. In this section, we introduce the WEST magnetic control architecture.

General magnetic control strategy

A basic introduction to magnetic control in WEST has been given in Chapter 1.4.1, and we present here the control strategy in more detail.

The magnetic control scheme which is embedded in the more general WEST control system is shown in figure 4.1. Its output is a set of voltages (V supply in figure 4.1) to be applied by the power supplies of the poloidal (field) system. The magnetic control scheme is functionally divided into 2 parts: plasma control and poloidal (field) control. 

The magnetic control on WEST

The magnetic control on WEST

Feedback control laws

In practice, I P on WEST is controlled by the voltage of the G0 power supply (see figure 4.3) with a proportional (P) and integral (I) Single-Input/Single-Output (SISO)

control law [START_REF] De Tommasi | Current, position, and shape control in tokamaks[END_REF]:

V G0 = K P (I P -I Ref P ) + K I (I P -I Ref P ) dt (4.1)
where K P and K I are the proportional and integral controller gains, I P and I Ref P are the reconstructed and reference plasma currents, respectively.

The FB control on the plasma position and shape uses the coils currents with a PI Multi-Input/Multi-Output (MIMO) control law [START_REF] Nouailletas | Multi-Inputs/Multi-Outputs control of plasma current and loop voltage on Tore Supra[END_REF]:

I F B coils = A(y -y Ref ) + B (y -y Ref ) dt (4.2)
where The reference coils currents are then obtained by combining the FB term with a FF term:

I Ref coils = I F B coils + I F F coils (4.3)
The FF coils currents are an essential part of the plasma position and shape control.

Indeed, they should in principle determine the nominal trajectory of the plasma position and shape, while the FB part is supposed to make only small corrections to ensure that the position and shape are as close as possible to the desired ones. Our work described below consists in developing FF coils currents waveforms in order to speed up the formation of a divertor configuration. In fact, as already mentioned above, we focus on the beginning of the pulse, when only the position is directly FB controlled.

However, it is essential to understand that the shape is somehow also controlled in this phase, via the FF coils currents.

Each coil current (except for the A coil) is FB controlled by the corresponding coil voltage with a SISO PI controller:

V F B coils = A (I coils -I Ref coils ) + B (I coils -I Ref coils ) dt (4.4)
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where A and B are proportional and integral gains, respectively.

This FB term is combined with a FF coil voltage:

V Ref coils = V F B coils + V F F coils (4.5)
which is defined by:

V F F coils = R coils I Ref coils (4.6)
The vector of reference coils voltages V Ref coils is then converted into a vector of power supplies voltages V supply taking into account the circuits shown in figure 4.3, and V supply is finally sent to the power supplies through a RT network.

WEST scenario sequence

The reference WEST shot which we will use in this chapter is 53259. Figure 4.4 shows an overview of this shot. The plasma current (in blue) starts up at t 0 ≈ 32 s, then it ramps up for the first 3 s of the pulse, followed by a flat top phase for about 6 s, and finally a ramp down over 2 s. The loop voltage used to sustain the plasma current is mainly induced by the swing of the A (CS) coil current (in red).

Figure 4.4 also presents the evolution of the plasma shape. The plasma starts in a limiter configuration after the breakdown, then it is progressively elongated in the vertical direction by increasing the Xb (and Xh) coil current (in purple) starting at t 0 + 0.4 s. Finally, when the Xb (and Xh) currents are large enough (with respect to the plasma current), i.e. around t 0 + 1.6 s, a lower single null (LSN) divertor configuration is formed.

Development of feedforward coils currents for a fast limiter-divertor transition

In this section, we describe in detail our work to construct waveforms of feedforward coils currents (I F F coils ) in order to obtain a faster X-point formation than in shot 53259. For this purpose, we have used the inverse evolution mode of the FEEQS.M code (see Chapter 2.4.2). More precisely, our objective was to modify the I F F coils waveforms after t 0 + 0.4 s (which corresponds to the moment when the X coils are activated in shot 53259), so as to form the X-point as fast as possible.

Development of feedforward coils currents for a fast limiter-divertor transition

The inverse evolution mode of FEEQS.M needs as input an initial flux map ψ 0 , waveforms for I P and for the plasma profile parameters α, β and γ as well as the desired plasma shape and boundary flux ψ bd (the latter is used to account for the flux consumption). We will now describe how these input parameters are set up.

Initial flux map

The initial ψ 0 map is obtained by running the inverse static mode of FEEQS.M (see Chapter 2.4.2), in which the objective is: 

objective = 1 2 N i=2 (ψ(r i,start , z i,start ) -ψ(r 1,start , z 1,start )) 2 + 1 2 w N i=1 I 2 coils,start

Evolution of plasma parameters

The plasma current evolution I P (t) used in the inverse evolution calculation is the experimental one. It should be noted that the transition to divertor shape is performed at the same time as I P is being ramped up. The associated flux consumption will be imposed via the objective function (see below).

The α parameter is set to 1 at all times. The evolution of the other plasma profile 

Objective function

The objective function used for the inverse evolution calculation, is the following:

Objective = 1 2 T end Tstart N desi i=1 ψ r i (t), z i (t), t -ψ r desi (t), z desi (t), t 2 dt + 1 2 T end Tstart (ψ bd -ψ 0 bd ) 2 dt + 1 2 T end Tstart N i=1 D i V i (t) 2 dt (4.8)
The first term is related to the desired shape evolution. We define one desired boundary per time step, using the following method. The third term is a regularization term, where D i = 1 × 10 -9 are the weights for voltages. The degree of polynomials used as a basis for the voltage waveforms is 5.

Result of the inverse evolution calculation

We have run several inverse evolution calculations with different values of the final time T end , in order to assess how fast the divertor configuration could be obtained. The result shown below is for T end = T start + 200 ms, which we found to be a good compromise between speed and limits of the coils currents and voltages (control variables). The time step of this inverse evolution simulation is 5 ms.

The evolution of the desired (blue) and obtained (red) plasma boundary is shown in figure 4.7. It can be seen that the desired boundary is well matched at the beginning 
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Testing the fast limiter-divertor transition in simulation

Before applying the I F F coils computed with the inverse evolution mode of FEEQS.M on a real WEST experiment, it is useful to test them in simulation. In this section, we first introduce the WEST magnetic control simulator [99] which we use for this purpose, before presenting the result of our test.

WEST magnetic control simulator

The WEST magnetic control simulator is identical to the real WEST in what concerns the control scheme (the C++ real-time control algorithms are actually compiled from the Matlab Simulink control programs implemented in the simulator). In order to calculate the plasma evolution, the simulator uses FEEQS.M in the direct evolution mode (see Chapter 2.2). A simple schematic diagram of the WEST magnetic control simulator is shown in figure 4.10.

In order to initialize the simulator, we need an initial equilibrium ψ 0 map. For this purpose, the same method as described in section 4.3.1 is applied.

Testing the fast limiter-divertor transition in simulation
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The evolution of the plasma current in the simulator is calculated according to the following simple model [START_REF] Nouailletas | Multi-Inputs/Multi-Outputs control of plasma current and loop voltage on Tore Supra[END_REF]:

L P M P,A M P,A L A ∂ t I P ∂ t I A = -R P 0 0 -R A I P I A + R P 0 0 1 I P,ni V G0 (4.9)
where L P and L A (respectively R P and R A ) are the plasma and A coil self-inductances (resp. resistances), M P,A is the mutual inductance between the plasma and the A coil, I P,ni is the non-inductive plasma current, and V G0 is the voltage applied to the A coil.

The trajectory of R P and L P is fitted from experimental data with following equations:

V loop = (I P -I P,ni ) • R P + L P • ∂ t I P L P = µ 0 R 0 ln(8 R 0 a 2 1 + κ 2 ) -2 + l i (3) 2 (4.10)
where V loop , I P , a, κ (elongation), R 0 and l i (3) are taken from experimental data, and the I P,ni is 0, since we consider an Ohmic discharge.

Testing the fast limiter-divertor transition in simulation

The evolution of the α, β and γ parameters is set up in the same way as described in section 4.3.2.

Replay of WEST shot 53259 with the simulator

Before testing our new FF coils currents waveforms, we first use the simulator to simply replay shot 53259, i.e. we perform a simulation in which the nominal control objects (I F F coils , I P , plasma position and shape, ...), are read from the WEST pulse scheduling system.

The trajectory of the controlled parameters, i.e. I P and the R and Z coordinates of the plasma center, as well as the loop voltage are presented in figure 4.12 for the simulation (blue) and experiment (red). It can be seen that I P is very well matched and so is the loop voltage. The evolution of the plasma shape in the simulation is compared to the experimental one during the limiter to divertor transition in figure 4.11.

The evolution is qualitatively similar but some differences are visible. In particular, a mismatch exists at the very beginning of the simulation, which is probably related to a difficulty with the initialization of the integral terms in the control algorithms.

Later on, it can be seen that the external major radius of the plasma at the midplane is smaller in the simulation than in the experiment. This is likely caused by the fact that the plasma position which is used for the feedback control is taken directly from FEEQS.M in the simulator, whereas it is obtained from the VACTH reconstruction in the experiment. Finally, a clear mismatch in the vertical position of the plasma can be seen around 34.0 s, which is also visible in figure 4.12. This is related to the fact that the plasma makes a downward vertical excursion during this period. This excursion is caused by an incompatibility of the FF coils currents used in the experiment with the request to maintain the plasma vertically centered (FF waveforms have since then been improved to reduce this excursion). The controller therefore has to find a compromise between FF coils currents and the vertical plasma position. Clearly, the simulator does not react in the same way as the real machine, for reasons which are not entirely clear.

Later in time, the match between the simulated and experimental boundaries is much better. This is already visible in the last plot of figure 4.11 and can also be guessed from the good match in the plasma R and Z after about 34.5 s in figure 4.12. currents, except for mild deviations in X coils around 34 s when the plasma makes the vertical excursion mentioned above.
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We conclude from this replay exercise that the WEST magnetic control simulator is rather consistent with experimental data, although it does not behave exactly in the same way as the real machine. Still, we consider that it is a valuable test bed for our FF coils currents waveforms.

Results of the test

We now replace in the simulator the I F F coils waveforms from pulse 53259 by the ones from our inverse evolution calculation (except for the A coil) from T start to T end . After T end , we set I F F coils as equal to their values at T end , which we scale in proportion to I P , in order to maintain the plasma shape. Note that we keep the same reference of R and Z as in shot 53259. Another option is to use the R and Z from the inverse evolution calculation, but this does not change the result dramatically.

The plasma boundary obtained with the simulator (red) is compared to the desired

Experimental test of the fast limiter-divertor transition on WEST

boundary used in the inverse evolution calculation (blue between T start and T end , green after -the green line is the desired boundary at T end ) in figure 4.14. It can be seen that the plasma shape evolves in a similar way to the desired one. In particular, the shape at t=T end =32.78 s is well matched, showing that the I F F coils from the inverse evolution calculation allow obtaining a diverted configuration much earlier than in pulse 53259 (≈ 0.6 s vs. 1.1 s after the plasma breakdown). A significant vertical excursion is observed right after T end . This is due to the fact that the actuators for the vertical position control change from the D coils to the X coils at this time (this change is activated when the current in the X coils overcomes 6 kA/turn, which fortuitously happens right after T end ). However, the FB control system brings back the plasma to the desired position within 50 ms. The plasma shape is then well maintained for the rest of the simulation.

The trajectory of controlled plasma parameters, i.e. I P , R and Z, is shown in figure 4.15. They match the desired values reasonably well. The most obvious discrepancies are the one related to the above mentioned vertical excursion right after T end as well as a steady mismatch in R and Z by several centimeters at the end of the simulation. We however stress that the simulation time here is only of 1 s. These discrepancies will be taken care of by the integral terms of the FB control laws (as in the simulation shown in figure 4.12). Figure 4.16 shows the FF (from the inverse evolution calculation) and simulated coils currents (except I A ). A moderate mismatch is visible in the first 100 ms, but the FF coils currents are rather well tracked after that.

We conclude from this test that the I F F coils from the inverse evolution simulation are reasonable and worth being tested experimentally.

Experimental test of the fast limiter-divertor transition on WEST

In the previous section, we have tested in simulation the possibility of reaching a divertor configuration only 600 ms after the breakdown thanks to the I F F coils provided by our inverse evolution calculation (combined with the WEST FB control scheme). We will now test this experimentally.
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vertical FB control system struggles to maintain the plasma in place, but eventually succeeds. This struggle is visible in the somewhat erratic behavior of I P , R and Z, as well as in coils currents deviations from the FF waveforms. Altogether, the transition to the divertor configuration is therefore not smooth, in particular with the plasma making contact at times with the antennae protection limiter on the LFS as well as with the upper divertor plate. However, the divertor configuration is obtained several hundreds of ms earlier than in shot 53259, which is an encouraging result. 

SUMMARY AND OUTLOOK

Two main directions can be suggested for near-term future work. The first one is to develop the code and its documentation (and possibly provide trainings) such that tokamak scientists can design and implement by themselves terms for the objective function. Indeed, with the optimal control method, the core of the work lies in choosing and implementing an objective function which accurately translates the constraints or desires of the user.

A second objective could be to evolve from a proof of principle approach to a routine application of the inverse evolution mode of FEEQS.M, for example on WEST.

The inverse static mode is already applied routinely by WEST Session Leaders (SLs) to develop new plasma shapes in relation with experimental needs. The inverse evolution mode is however more complicated to handle and presently not being used by SLs.

To help with this, it would be useful to develop user-friendly procedures and tools (possibly involving a GUI) to run inverse evolution simulations, (optionally) test the explicitly. We never compute neither b -1 y (y k , u k ) nor b -T y (y k , u k ) explicitly. This alternative approach is summarized in Algorithm 4. While the stopping criteria on Algorithm 1, 2, 3 and 4 use the magnitude of the relative increments, other stopping criteria, such as magnitude of relative residuals, could be used. We refer to [START_REF] Deuflhard | Newton methods for nonlinear problems: affine invariance and adaptive algorithms[END_REF] for details of stopping criteria for Newton-type methods for non-linear problems.

Algorithm 4 SQP with direct solver (memory intensive) This implementation should have roughly the same effect as a single penalization term based directly on F Z (Sep), but it offers the advantage of being differentiable.

The first and second derivatives are calculated in the forthcoming section.

C.2 Calculation of the derivatives

We are interested to enforce max(0, f (y, u)) + max(0, g(y, u)) ≤ C via penalty terms.

We introduce f + (y, u) = max(0, f (y, u)) and f s (y, u) = 1 2 (sign(f (y, u) + 1) and the first

  figuration divergée au début d'une décharge dans le tokamak WEST. La motivation est ici la réduction de la contamination du plasma par les impuretés de tungstène. A cette fin, le code FEEQS.M est utilisé dans son mode inverse évolutif . Des données expérimentales de WEST sont utilisées pour paramétrer la simulation. Le calcul FEEQS.M fournit alors des trajectoires optimales pour les courants des bobines poloïdales et les voltages de leurs alimentations afin d'obtenir une transition limité divergé rapide. Ces trajectoires sont testées d'abord sur le simulateur de vol WEST (qui embarque FEEQS.M en mode direct évolutif couplé à un système de rétroaction identique à celui utilisé dans WEST) et ensuite expérimentalement sur WEST. Ceci a permis de passer d'une transition durant 1s à une transition durant 200ms.
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 11 Figure 1.1: World annual energy consumption and population (inserted).-The statistic and estimations of the evolution of annual world primary energy consumption and world population. Note that the predictions are based on three methods in[START_REF] Nakićenović | Global energy perspectives[END_REF], and the colored bands are the error bars in the predictions.

  × 10 9 ton 81000 ∼ 260000 * * * assuming light water reactor; * * when breeder technology is available.
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 12 Figure 1.2: CO 2 concentration in the atmosphere (in ppm). -The black star out of the figure is the CO 2 level in 2008 [4].

  investigated in the daily laboratories on Earth, since it can release huge energy (n ∼ 14.06 MeV) and has the largest reaction cross-section in low energy of the range of 10 keV from figure 1.3.
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 13 Figure 1.3: Cross-sections for the reactions D-D, D-T and D-3 He. -The data in this figure are from [5]
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 14 Figure 1.4: Simplified tokamak structure -

Figure 1 . 5 :

 15 Figure 1.5: Cross-section of a tokamak. -The yellow rectangle is the CS coil and red ones are the PF coils, the blue ellipsoid is the plasma boundary.
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 1 Figure 1.6: ITER -the largest tokamak under construction in the world.
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 17 Figure 1.7: Tore Supra is updated to WEST -Left: Tore Supra cross-section and circular shape (red line); middle: the main parameters of Tore Supra and WEST;right: west cross-section and elongated (divertor) shape (red line).
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 18 Figure 1.8: Plasma operation waveforms for ITER 1.5 GW inductively sustained ignition -
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 19 Figure 1.9: The evolution of the reference plasma shapes. -It is evolved from limiter to lower X-point divertor configurations with the increased I P .
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 1 Figure 1.10: The operating space on the plasma current and density limits for a tokamak. -

Figure 1 .Figure 1 .

 11 Figure 1.11: The block diagram of the WEST magnetic control loop for the plasma current, shape and position -

  tokamak. The primal unknown is the poloidal magnetic flux ψ := rA • e ϕ , the scaled toroidal component of the vector potential A, i.e. B = ∇ × A and e ϕ the unit vector for ϕ. We introduce H = [0, ∞] × [-∞, ∞], the positive half plane, to denote the meridian plane that contains the cross section of the tokamak device. The geometry of the tokamak determines the various subdomains (see figure 2.1):
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 21 Figure 2.1: Left: Geometric description of the poloidal cross section of the tokamak device. Right: Sketch for characteristic plasma shapes during the socalled ramp-up phase. -The ψ-isolines are indicated by black lines. In the beginning (first three pictures) the plasma touches the limiter and becomes more and more elongated (limiter configuration) while finally, it moves into the divertor configuration, where the plasma boundary contains an X-point of the poloidal flux.

  e. cost function (denoted by C) and regularization term (denoted by R): objective ψ(r, z), I = C ψ(r, z) + R( I) (2.15) Examples of cost function and regularization term for the inverse static FBE problem are:
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 22 Figure 2.2: The bounded domain in FEEQS.M -

  denote the counterclockwise ordered neighboring vertices the sequence of discrete gradients ψ 0 -ψ 1 , ψ 0 -ψ 2 . . . ψ 0 -ψ N changes at least four times the sign. Therefore, we can get the following discretized version (modulo quadrature) of equation (2.25) in the static mode: For given coils currents I = (I 1 , I 2 , • • • , I M ) and I P ,

  the poloidal flux and the scaling parameter λ s , 1 ≤ s ≤ N T , hence y ∈ R (|X h |+1)N T . Likewise the constraint b(y, u) = 0 corresponds to (|X h | + 1)N T coupled non-linear equations as the unknowns for the currents I is , 1 ≤ i ≤ m, 1 ≤ s ≤ N T have been eliminated from the formulation (2.30). The coupling in time appears through the electric circuit equations (2.6) and the induction (see (2.5)) in passive structure S that involve temple derivatives of ψ. The control variable u contains a subset of the expansion coefficients V ij , 1 ≤ i ≤ n, 1 ≤ j ≤ N c for the voltages. One could for example prescribe the voltage of a few suppliers and treat only the voltages of the remaining suppliers as unknowns. Another possibility would be to treat only certain coefficients as unknown. E.g. if one works with an expansion in a hierarchical basis, it would be beneficial to prescribe the coefficients for low order terms and keep only coefficients of higher order polynomials. So, in general u ∈ R N with 1 ≤ N ≤ N c n.For the static case, where the current density j S in the passive structure S is given, the state variable y includes ψ k 1 ≤ k ≤ |X h | and λ, the control variable u is the coils currents I. Similar to the evolution case, one could prescribe the current of a few coils, and treat the currents remaining as the unknowns.The SQP formulation for the constrained optimization problem (2.31) involves first and second order derivatives of b(y, u) and J(y, u). But, as we presented in sections 2.4.2 and 2.4.3 explicit expressions for b(y, u) and J(y, u) that are algebraic in u and y, we can also provide explicit expressions for the first and second order derivatives. An inspection of (2.30) shows that the constraint b(y, u) is affine in the control unknown u, hence has vanishing second order derivatives. Moreover, to avoid the expensive assembling of second order derivatives of b(y, u) we neglect those in the SQP iterations.

1 :

 1 ∆u ← 1, ∆y ← 1, y ← y 0 , u ← u 0 2: while ∆u / u > tol, ∆y / y > tol do 3: (∆y, Y) ← -b -1 y (y, u)(b(y, u), b u (y, u)) 4: m 01 ← J T u (y, u), m 10 ← Y T J T y (y, u) 5: M 02 ← J uu (y, u) 6: m 11 ← J uy (y, u)∆y, M 11 ← J uy (y, u)Y 7: m 20 ← Y T J yy (y, u)∆y, M 20 ← Y T J yy (y, u)Y 8: m ← m 01 + m 10 + m 11 + m 20 9: M ← M 02 + M 11 + M T 11 + M 20 10: ∆u ← -M -1 m 11: y ← y + ∆y + Y∆u 12:

2. 5

 5 Numerical validation tests through b y (y, u) in SQP (see Algorithm 1).
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 23 Figure 2.3: Left: The plasma (flux lines and flux intensity) that correspond to the currents in the table. Center: The triangulation of the ITER-geometry. Right: Data for coils. U1-U3 and L1-L3 are upper and lower CS coils. Coils P1-P6 are the PF coils.

Figure 2 .

 2 Figure 2.4 shows the geometry and mesh of WEST. All the results are based on a mesh with 52210 triangles and 27763 vertices. We use N T = 10 time steps with equidistant time step length of 5 ms, the voltage in the A coil (i.e. the central solenoid) is fixed to its minimum value of -1400 V in all the following cases to provide flux swing to drive the plasma current. The degree of the polynomial representation of the voltages is 8. The evolution of the total plasma current I P (t) and the parameters α(t), β(t) and γ(t) for the current density profiles is inspired from Tore Supra (the predecessor of WEST) experimental data and is shown in figure 2.5.
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 2 Figure 2.4: Left: cross-section of WEST showing the iron core F (green), the passive structure Ss (red) and the PF coils C i (light blue). Right: the computation mesh. -The coils numbers 1-9 represent A, Bh, Dh, Eh, Fh, Eh, Dh, Bh, 10-13 represent Xh and 14-17 represent Xb.
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 25 Figure 2.5: The prescribed I P , and the plasma profile parameters α, β and γ for the WEST simulation. -
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 2627 Figure 2.6: Plasma evolution obtained with prescribed level sets at all time steps (see 2.6.1.1). The magenta contour is the plasma boundary and the blue lines are ψ level sets inside the plasma, the red points indicate the desired boundary.
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 29 Figure 2.9: Plasma evolution obtained with prescribed level sets at start and end (see 2.6.1.3). The magenta contour is the plasma boundary and the blue lines are ψ level sets inside the plasma, the red points indicate the desired boundary.
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 210 Figure 2.10: Voltages obtained with prescribed level sets at start and end (see 2.6.1.3). Dashed lines indicate the limits of the power supplies.
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 211 Figure 2.11: Plasma evolution obtained with prescribed level sets at start and end with penalization term on induced currents (see 2.6.1.4). The magenta contour is the plasma boundary and the blue lines are ψ level sets inside the plasma, the red snowflake points indicate the desired boundaries.
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 2132 Figure 2.13: Cross-section of the HL-2M tokamak. Red quadrangles are the poloidal field coils C i , the grey lines are the two layers of the vacuum vessel, and the black line is the limiter L. -

Figure 2 .

 2 Figure 2.16: The voltages of the inverse evolution calculation for HL-2M. -
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 31 Figure 3.1: ITER CS and PF coils configuration. -(The two gray layers are the vacuum vessels.)

  Figure 3.4 gives the result, which shows that the ITER 15 MA scenario could only be operated in a very small area inside the l i (3)-Ψ st diagram, with original design parameters of the CS and PF currents, field and forces limits as well as the first wall geometry. Meanwhile, these studies found that β p played a weak role in the operating space.
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 34 Figure 3.4: ITER 15 MA operating space with original design parameters of poloidal geometry, as well as the limits on CS and PF coils currents, field and forces [84] -

  shown in figure3.7. It can also be seen that the ITER 15 MA (BCOLMN line) has a larger domain of l i (3)-Ψ st than 17 MA (MQPON line). In the corners of the ITER 15 and 17 MA operating spaces, e.g., in Π, Σ, Φ, the forces limits are near to be violated and the deviations of plasma boundary are large.
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 37 Figure 3.7: ITER operating space with the linear inequalities as the objective function [85] -left: ITER 15 MA operating domain in the Ψ st -l i domain (green area); right: ITER 17 MA operating domain in the Ψ st -l i domain (yellow area).

  figure 3.8, where the old boundary represents results with the ITER poloidal system description in 2009.
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 38 Figure 3.8: ITER 15 MA operating space with modified CS and PF6 coils positions in 2014 [86] -
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 39 Figure3.9: Plots for three types of penalization function: quasi-rectifier (blue), quasi-rectifier-modified (green) and quasi-softplus (red) -x=0 represents the limit value for coil current or force, while x= 0.5 for a half limit value.
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 310 Figure 3.10: The definition of the separatrix deviation -a) overall deviations in the divertor and inner limiter gaps; b) the gap in the inner limiter; c) the distances in the divertor legs between the desired (red) and actual (green dot) boundaries.
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 312 Figure 3.12: The computed l i (3) and Ψ st (left), as well as the β p (right) in 11 x 14 inverse static FBE calculations for the ITER 15 MA case, where the penalization terms in the Objective function are based on quasi-rectifier.
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 314 Figure 3.14: Values of all the C and P with quasi-rectifier terms. -Between 2 vertical lines, γ is fixed and Ψ st is decreased from -45 to -175 with a step of -10 Wb.
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 315 Figure 3.15: The computed l i (3) and Ψ st in the 11 x 14 inverse static FBE calculations for the ITER 15 MA case, -in which all the current and force penalization terms are based on quasi-rectifier-modified function.
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 3 Figure 3.16 shows the ITER 15 MA operating space with the quasi-rectifier-modified penalization terms. It is substantially enlarged compared to the result in figure 3.13. The limits on F Z (CS) and F Z (Sep) are not violated anymore anywhere in the diagram. This is connected to the fact that all the values of P Force-CS and P Force-Sep are increased largely with this quasi-rectifier-modified penalization terms, as we can see in figure 3.17. At the same time, the domains for the coils currents and field are also enlarged a bit with the increased values of P Current . The new ITER 15 MA operating space is bounded by the Cur-CS1U&L-in the high |Ψ st | area, which seems logical since the main flux source is the CS. In the low l i (3) -|Ψ st | area, Field-PF6 bounds the operating space. Moreover, in the high l i (3) -low |Ψ st | area, the boundary deviation max-inner-limiter is the main constraint. The values of C Flux are not 0 in all the inverse static calculations, especially in the areas of large prescribed Ψ st . This means that the desired Ψ st are not exactly obtained, which changes the way the l i (3) -Ψ st
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 3317 Figure3.16: ITER inductive 15 MA operating space obtained by FEEQS.Mwhere quasi-rectifier-modified is selected as the penalization function for all the currents and forces, in which all the limits in the currents and forces are decreased by timing a factor of 0.5, see the text for a description.

  Section 4.1 introduces the WEST magnetic control architecture, which is necessary to understand what comes after. Section 4.2 describes the typical WEST scenario in what concerns the plasma shape evolution at the beginning of a pulse. Section 4.3 presents the method used to design a faster limiter to divertor transition with the inverse evolution mode of FEEQS.M. Section 4.5 discusses the validation of this fast transition in simulation, making use of the WEST magnetic control simulator. Section 4.6 presents the first experimental tests of the fast transition on WEST. Section 4.7 presents a summary and discussion of possible directions for future work.
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 41 Figure 4.1: The block diagram of the WEST magnetic control loop. -Reproduced from [100].
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 4242 Figure 4.2 presents the layout of the WEST PF coils. The A coil, also called CS, is used to control I P . The Eh, Eb, Fh and Fb coils are the actuators to FB control the plasma radial position, while the Xh, Xb and Dh as well as Db coils are used to FB control the plasma vertical position.Figure 4.3 shows the WEST poloidal electrical circuits. It can be seen that the in-vessel Xh and Xb coils are each made of 4 sub-coils connected in series and separated from the rest, while the 9 ex-vessel coils are part of a common circuit.

Figure 4 . 3 :

 43 Figure 4.3: The WEST coils electrical circuits. -G stands for generator , i.e. power supply.

  only the Dh/b, Fh/b and Xh/b (see figure 4.2) coils currents are included in I F B coils . y and y Ref are the reconstructed and reference plasma position and shape parameters, respectively. A and B are proportional and integral gain matrices, respectively. The detailed method used to set up these gains is presented in [100].

Figure 4 . 4 :

 44 Figure 4.4: The WEST discharge scenario sequence of shot 53259. -The evolution of I P , I A and I Xb as well as the shape trajectory after the breakdown.

  Figure 4.5: Left: coils currents, adjusted by FEEQS.M to match the VACTH plasma boundary (blue 'x') and experiment (red 'o'); right: initial boundary, as calculated by FEEQS.M (magenta '-') and reconstructed by VACTH (blue 'x').

  parameters β and γ, is obtained from running inverse static FEEQS.M calculations 4.4 Objective function at each time step, and scanning these parameters in order to best match the value of β p + l i (3)/2 estimated by VACTH as well as the experimental value of I Eh + I Eb . The values of β and γ in the time interval of interest are close to 0.5 and 0.8.

  The final desired boundary is taken from the VACTH reconstruction of shot 53259 during the flat top phase. Then the intermediate desired boundaries are obtained by linear interpolation between the initial and the final ones, using a parameterization introduced in [105]. The evolution of the desired plasma boundary is shown in figure 4.6. The second term is related to the flux consumption. The desired flux at the plasma boundary, ψ 0 bd , is obtained from integrating the experimental loop voltage measurement. It is shown in figure 4.8 (blue).

Figure 4 . 7 :

 47 Figure 4.7: Evolution of the plasma boundary from the result of the inverse evolution calculation with FEEQS.M (red '*') compared to the desired boundary (blue '-'). The black dots at the LFS are the movable limiter.

Figure 4 . 8 :

 48 Figure 4.8: The trajectory of plasma boundary flux ψ bd from the result of the inverse evolution calculation with FEEQS.M (red '-•') compared to its desired value (blue '-'). -

Figure 4 . 9 :

 49 Figure 4.9: The trajectory of coils currents from the result of the inverse evolution calculation with FEEQS.M. -Red '-' lines indicate the limits.

Figure 4 .

 4 Figure 4.10: The block diagram of WEST virtual magnetic control loop. -The magnetic control module is the same as the one shown in figure 4.1.

Figure 4 . 12 :

 412 Figure 4.12: Trajectory of loop voltage, I P , R and Z (plasma center) between experimental data (blue) and simulation (red). -

Figure 4 . 13 :

 413 Figure 4.13: Trajectory of experimental (plain) and simulated (dash) voltages (left) and currents (right).

Figure 4 .Figure 4 .

 44 Figure 4.18: Reference (red '-') and experimental (blue plain) trajectories of I P , R and Z (plasma center) in WEST shot 53439. -

FF waveforms in simulationAlgorithm 2 1 y 1 ,Yu

 211 and finally implement them in the experimental pulse schedule.A. CIRCUIT EQUATIONSe.g. G T I = G T S I S + G T C I C = 0. Moreover we introduce a (node) potential U with V = G U and hence V S = G S U and V C = G C U . In summary we arrive at: requires to fix U at one node and to remove the Kirchoff current equation for the same node. We choose an arbitrary node and fix U to zero at this point. This is equivalent to cancel a column (row) in G (G T ), hence in the subsequent linesG • (G T• ) always refers to the reduced matrices. After some tedious calculations we find+ ZG C KG T C + ZG C KG T S MG S KG T C Q = G C KG T C + G C KG T S MG S KG T C and S = -ZG C KG T S M , T = -G C KG T S M ,whereK -1 = -G T C ZG C , and M -1 = -G S KG T S .B. FAST ALGORITHM FOR OPTIMAL CONTROL PROBLEMSJ u (u * ) = 0 . (B.2)An iterative approach to the solution of (B.2) faces two major challenges. First, in each iteration we have to solve the full non-linear problem b(y(u), u) = 0 for y(u)and second, we also need to compute the sensitivities y u (u). The second challenge is addressed by the definition of the adjoint state p(u) ∈ R n viap(u) = -b -T y (y(u))J T y (y(u), u) . (B.3) We see 0 =p T (u) (b u (y(u), u) + b y (y(u), u)y u (u)) =p T (u)b u (y(u), u) -J y (y(u), u)y u (u) ,so the gradient of J(u) can also be expressed asJ u (u) = J u (y(u), u) + p T (u)b u (y(u), u) . (B.4)The Algorithm 2 sketches the gradient descent. Still, this algorithm requires in each Gradient descent 1: ∆u ← 0, y ← y 0 , u ← u 0 2: while ∆u / u > tol do iteration the solution of the non-linear constraint problem b(y(u), u) = 0 and the solution of the linear adjoint problem (B.3) for the evaluation of the reduced gradient J(u). Moreover, the speed of convergence of the gradient descent algorithm is very slow. Fast convergence could be achieved in including second order terms, e.g. the Hessian J uu (u) of the reduced objective function: J uu (u) =Z T (u) J yy (y(u), u) J yu (y(u), u) J uy (y(u), u) J uu (y(u), u) Z(u) + Z T (u) b T yy (y(u), u)p(u) b T yu (y(u), u)p(u) b T uy (y(u), u)p(u) b T uu (y(u), u)p((y(u), u)b u (y(u), u) but the requirement of solving repetitively the non-linear constraints b(y(u), u) = 0 remains a big drawback. Sequential Quadratic Programming (SQP) is an entirely different approach that avoids this drawback and incorporates at the same time second order information. SQP is one of the most effective methods for non-linear constrained optimization with significant non-linearities in the constraints [66, Chapter 18]. To motivate SQP we recall that the previous discussion shows that the control u * is a stationary point of the reduced objective function if and only if there exist states y * and adjoint states p * such that J T y (y * , u * ) + b T y (y * , u * )p * = 0 , J T u (y * , u * ) + b T u (y * , u * )p * = 0 , b(y * , u * ) = 0 , (B.6) More generally, the first order optimality conditions state that if J and b are twice continuously differentiable with Lipschitz continuous second derivatives and (y * , u * ) is a minimizer of (B.1) then there exist p * such that (B.6) holds. A Newton-type method for solving (B.6) are iterations of the type k, u k ) b y (y k , u k ) b u (y k , u k ) k , u k ) J T u (y k , u k ) b(y k , u k ) yy (y k , u k , p k ) H yu (y k , u k , p k ) H uy (y k , u k , p k ) H uu (y k , u k , p k ) := J yy (y k , u k ) J yu (y k , u k ) J uy (y k , u k ) J uu (y k , u k ) + b T yy (y k , u k )p k b T yu (y k , u k )p k b T uy (y k , u k )p k b T uu (y k , u k )p k ,B. FAST ALGORITHM FOR OPTIMAL CONTROL PROBLEMSwhich corresponds to the following quadratic optimization problem with linear conk , u k )J T u (y k , u k ) y k+1 -y k u k+1 -u k s.t b(y k , u k ) + b y (y k , u k )(y k+1 -y k ) + b u (y k , u k )(u k+1 -u k ) = 0 .This sequence of quadratic optimization problems is at the origin of the name sequential quadratic programming.If the linear systems in (B.7) become too large, it is the common practice to pursue the null space approach to arrive at the SQP formulation with the reduced Hessian. In introducingZ k = -b -1 y (y k , u k )b u (y k , u k ) 1 and Y k = -b -1 y (y k , u k ) 0 (B.8)we obtain the identityy k+1 -y k u k+1 -u k = Z k (u k+1 -u k ) + Y k b(y k , u k ) (B.9)and find the following linear system for the incrementu k+1 -u k M(y k , u k )(u k+1 -u k ) = -m(y k , u k ) (B.10) with M(y k , u k ) :=Z T k k , u k ) :=Z T k J T y (y k , u k ) J T u (y k , u k ) k b(y k , u k ) .It is insightful to compare the expressions involved in the reduced formulation (B.10) of SQP to the gradient (B.4) and the Hessian (B.5) of the reduced objective function: the gradient and Hessian of the reduced objective are equal to m(y, u) and M(y, u) only when the state y and control u verify the non-linear direct problem. In general, iterative methods, such as the conjugate gradient (CG) methods, are used to solve (B.10). Within each iteration step two linear systems corresponding to b -1 y (y k , u k ) and b -T y (y k , u k ) (see Algorithm 3) need to be inverted. The CG algorithm (Algorithm 3) appears different than standard formulations, as we update within the Algorithm 3 SQP with CG iterative solver (less memory intensive) 1: ∆u ← 1, ∆y ← 1, y ← y 0 , u ← u 0 , p ← p 0 2: while ∆u / u > tol, ∆y / y > tol do 3: ∆u ← 0, ∆y ← -b -1 y (y, u)b(y, u) 4: ∆p ← -b -T y (y, u)(J T y (y, u) + H yy (y, u, p)∆y) 5: r ← J T u (y, u) + H uy (y, u, p)∆y + b T u (y, b -T y (y, u)(H yu (y, u, p)s + H yy (y, u, p)a) 10: s ← H uu (y, u, p)s + H uy (y, u, p)a + b T u (y, ∆u ← ∆u + αs, ∆y ← ∆y + αa, ∆p ← ∆p + αb 13: ← u + ∆u, y ← y + ∆y, p ← ∆p 19: end while B. FAST ALGORITHM FOR OPTIMAL CONTROL PROBLEMS CG-iterations not only the control but also the state unknown. This avoids solving one additional non-linear direct problem after each CG call. Alternatively, if we have sufficient memory to store M(•, •), we can compute M(•, •)

1 :FF 2 -

 12 ∆u ← 1, ∆y ← 1, y ← y 0 , u ← u 0 , p ← p 0 2: while ∆u / u > tol, ∆y / u > tol do 3: (∆y, Y) ← -b -1 y (y, u)(b(y, u), b u (y, u)) 4: m ← J T u (y, u) + Y T J T y (y, u) + H uy (y, u, p)∆y + Y T H yy (y, u, p)∆y 5: M ← H uu (y, u, p) + Y T H yu (y, u, p) + H uy (y, u, p)Y + Y T H yy (y, u, b -T y (y, u)(J T y (y, u) + H yy (y, u, p)∆y + H yu (y, u, p)∆u) TERM FOR THE CS SEPARATING FORCEWe can simplify it as:|F Z (U pward)| = F Z (U pward) = max 0, F Z (up, 1), F Z (up, 2), . . . , F Z (up, 6) ≥ 0 |F Z (Downward)| = -F Z (Downward) = -min 0, F Z (dn, 1), F Z (dn, 2), . . . , F Z (dn, 6) = max 0, -F Z (dn, 1), -F Z (dn, 2), . . . , -F Z (dn, 6) ≥ 0 (C.3)Using the following definitions:F Z0 (up, i) = max 0, F Z (up, i) 1 ≤ i ≤ 6 Z0 (dn, j) = max 0, -F Z (dn, j) 1 ≤ j ≤ 6 (C.4)it is easy to show that:F Z (Sep) = max 1≤i,j≤6 F Z0 (up, i) + F Z0 (dn, j) 2 (C.5)The inequality F Z (Sep) ≤ F max,Sep (separating force limit) is thus equivalent to the 6 × 6 inequalities:F Z0 (up, i) + F Z0 (dn, j) 2 ≤ F max,Sep 1 ≤ i, j ≤ 6 (C.6)In order to account for the limit on the CS separating force, we therefore use the following penalization terms:P Force-Sep (I coils , ψ) = Z0 (up,i)+F Z0 (dn,j) F max,Sep |F max,Sep | (C.7)where f P represents the penalization function (e.g., quasi-rectifier or quasi-softplus).

  

  

  

  

  

  

Table 1 . 1 :

 11 Available years for different fuels at the current consumption rate[START_REF] Ongena | Energy for future centuries: prospects for fusion power as a future energy source[END_REF].

	Primary

energy source Contribution to energy production/ % (2008)

  

	Oil	33.7
	Coal	23.8
	Gas	29.6
	Fission	5.2
	Hydro-electricity	6.4
	Solar,wind,wood,waste	1.3

Table 1 . 2 :

 12 Contributions of different energy sources to the total energy production [3].

Table 1 .

 1 

3: ITER main parameters and operational capabilities.

Chapter 4. At last in Chapter 5, we

  Heumann at INRIA. It is introduced in Chapter 2. first step to design new scenarios for a new tokamak, is exploring the operating space and this work has been done in the present work with the inverse static mode (see Chapter 2, Section 2.2) of FEEQS.M. It is applied in the ITER case, which is given in Chapter 3. construction itself can be done, with the inverse evolution mode (see Chapter 2, Section 2.3) of FEEQS.M. This work is also done for the fast transition from limiter to divertor on WEST, and the FF trajectory of CS and PF coils currents has been validated by a virtual tokamak control workflow and the WEST real experiment, details are presented in give conclusions of the whole thesis and perspective for the future work.

	The Scenario

1 (Direct static) Let

  parameters α, β and γ in the definition (2.10) of S p (ψ(r, z)) and S f f (ψ(r, z)) be known, and let the currents I i in the coils C i as well as the total plasma current I P and current density j S in the passive structures be given.

	Find ψ and λ such that (2.2), (2.5) and (2.13) hold, with p (ψ(r, z)) = λS p (ψ(r, z))
	and f f (ψ(r, z)) = λS f f (ψ(r, z)) at time t fixed.
	The direct static FBE problem consists in finding the plasma equilibrium for given
	coils currents at a given instant. An example of application of this problem is the
	calculation of an initial condition for the direct evolution problem.
	Problem 2 (Direct evolution) Let the evolution of parameters α(t), β(t) and γ(t)
	in the definition (2.10) of S p (ψ(r, z, t), t) and S f f (ψ(r, z, t), t) be known. Let the evo-
	lution of the voltages V (t) in the poloidal field circuits and the initial data ψ 0 (r, z) be
	given. Additionally assume that the evolution of I P (t) is given. Find the evolution
	of ψ(t) and λ(t) such that (2.2), (2.5)-(2.7) and (2.13) hold, with p (ψ(r, z, t), t) =
	λ(t)S p (ψ(r, z, t), t) and f f (ψ(r, z, t), t) = λ(t)S f f (ψ(r, z, t), t).
	The direct evolution FBE problem combines the plasma equilibrium equations with
	equations describing the evolution of PF coils currents as well as currents in the passive
	structures. It is applied, e.g., in the WEST magnetic control simulator presented in
	Chapter 4.

3 (Inverse static) Let parameters

  

			α, β and γ in the definition (2.10) of
	S p (ψ(r, z)) and S f f (ψ(r, z)) be known, and assume additionally that the total plasma
	current I P and current density j S in the passive structures are given. Moreover, let
	objective(ψ(r, z), I) be a non-negative function that is small if ψ(r, z) is close to the
	design goal. Solve the following minimization problem:
	min	objective ψ(r, z), I	subject to (2.2), (2.5) and (2.13) at time t fixed (2.14)
	ψ(r,z), I		

Table 2 . 1 :

 21 Convergence of the errors E ... and the convergence rate (

		0198034	11647.2	2928.07	645.401
	1	0.0113253 0.81 5485.42	1.09 1125.83	1.38 450.549	0.52
	2	0.0061465 0.88 3362.31	0.70 1182.56 -0.07 31.6012	3.83
	3	0.0032184 0.93 1936.28	0.80 846.373	0.50 36.9223	-0.22
	4	0.0016494 0.96 694.294	1.48 149.343	2.50 10.7593	1.78
	5	0.0008353 0.98 4.26942	7.35 268.207 -0.84 2.66903	2.01
	6	0.0004204 0.99 9.65561 -1.18 145.894	0.88 0.66434	2.01
	7	0.0002109 1.00 2.39544	2.01 70.5145	1.05 0.16571	2.00
	8	0.0001056 1.00 0.60127	1.99 34.6608	1.02 0.04138	2.00
	9	0.0000528 1.00 0.15064	2.00 17.1804	1.01 0.01034	2.00
	10	0.0000264 1.00 0.03770	2.00 8.55259	1.01 0.00258	2.00
	11	0.0000132 1.00 0.00943	2.00 4.26687	1.00 0.00064	2.00
	12	0.0000066 1.00 0.00236	2.00 2.13108	1.00 0.00016	2.00
	13	0.0000033 1.00 0.00059	2.00 1.06495	1.00 0.00004	2.00
	14	0.0000016 1.00 0.00015	2.00 0.53233	1.00 0.00001	2.00
	log(E...(εi+1))-log(E...(εi))			
		log(εi+1)-log(εi)			

Table 2 . 2 :

 22 Maximum and minimum voltages on the poloidal coils of WEST.

	Coil Maximum Voltage (V) Minimum Voltage (V)
	A	1400	-1400
	Bh	1400	-1400
	Dh	2500	-2500
	Eh	2500	-2500
	F h	2500	-2500
	F b	2500	-2500
	Eb	2500	-2500
	Db	2500	-2500
	Bb	1400	-1400
	X h	300	-300
	X b	300	-300

  Voltages obtained with prescribed level sets at all time steps (see 2.6.1.2). Dashed lines indicate the limits of the power supplies.

	3000					V Bh		3000					V Dh
	2000					V Bb		2000					V Eh
						V Xh							V Fh
	-1000 0 1000					V Xb	Voltages (V)	-1000 0 1000					V Fb V Eb V Db
	-2000							-2000				
	-3000	0.01	0.02	0.03	0.04	0.05		-3000	0.01	0.02	0.03	0.04	0.05
											Time (s)	
	Figure 2.8:										

problem (2.31) for J(y, u)

Table 3 . 1 :

 31 Location of the CS and PF conductors, R, Z position and their dimensions (∆R,∆Z) as well as number of turns (N). Data are given in the ITER CATIA system of co-ordinates (TGCS).

	Coil	R,m	Z,m	∆R	∆Z	N
	CS3U	1.6870	5.4640	0.7400	2.0930	554
	CS2U	1.6870	3.2780	0.7400	2.0930	554
	CS1U	1.6870	1.0920	0.7400	2.0930	554
	CS1L	1.6870	-1.0720	0.7400	2.0930	554
	CS2L	1.6870	-3.2580	0.7400	2.0930	554
	CS3L	1.6870	-5.4440	0.7400	2.0930	554
	PF1	3.9431	7.5741	0.9590	0.9841	246.8
	PF2	8.2851	6.5398	0.5801	0.7146	115.2
	PF3	11.9919	3.2752	0.6963	0.9538	185.9
	PF4	11.9630	-2.2336	0.6382	0.9538	169.9
	PF5	8.3908	-6.7269	0.8125	0.9538	216.8
	PF6	4.3340	-7.4665	1.5590	1.1075	459.4

Table 3 . 2 :

 32 Maximum currents in one turn of the CS and PF coils and maximum values of the magnetic field on the coils.

	Coil	Imax	Bmax	Coil	Imax	Bmax
	CS3U	45 kA	12.6 T	PF1	48 kA	6.4 T
		40 kA	13.0 T		48 kA	6.4 T
	CS2U	45 kA	12.6 T	PF2	55 kA	4.8 T
		40 kA	13.0 T		50 kA	5.0 T
	CS1U	45 kA	12.6 T	PF3	55 kA	4.8 T
		40 kA	13.0 T		50 kA	5.0 T
	CS1L	45 kA	12.6 T	PF4	55 kA	4.8 T
		40 kA	13.0 T		50 kA	5.0 T
	CS2L	45 kA	12.6 T	PF5	52 kA	5.7 T
		40 kA	13.0 T		33 kA	6.0 T
	CS3L	45 kA	12.6 T	PF6	48 kA	6.4 T
		40 kA	13.0 T		41 kA	6.5 T
				PF6	52 kA	6.8 T
				0.4K subcooling	41 kA	7.0 T

Table 3 .3:

 3 Maximum vertical forces on the PF coils.

	Coils	Maximum upward force, MN	Maximum downward force, MN
	PF1	110	-150
	PF2	15	-75
	PF3	40	-90
	PF4	90	-40
	PF5	160	-10
	PF6	170	-190
	PF3+PF4	10	-60

http://www-sop.inria.fr/members/Holger.Heumann/Software.html
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FREE-BOUNDARY EQUILIBRIUM PROBLEMS AND THE FEEQS.M CODE

ITER equilibrium operating space identification

In a tokamak, the central solenoid (CS) and poloidal field (PF) coils always have limitations in the current they can carry, the force they can handle and, for superconducting coils such as in ITER, the magnetic field they can tolerate. It is clear that these limitations will translate into restrictions on the accessible domain of plasma equilibria, but it is not easy for a human to determine exactly what these restrictions will be.

We present herein a new method, to identify the equilibrium operating space. This method is applied to the ITER 15 and 17 MA inductive scenarios. Parts of the related work have been published in [START_REF] Song | Automatic identification of the plasma equilibrium operating space in tokamaks[END_REF], and we give in this chapter the details.

In this chapter, the updated ITER CS and PF systems, as well as their limits are firstly described in section 3.1. Then, a review of previous works on identifying the ITER operating space is provided in section 3.2. Our new approach, which is based on the inverse static mode of the FEEQS.M code, is introduced in section 3.3, and applied to ITER with different penalization terms in sections 3.4, 3.5 and 3.6. Moreover, results about the effect of different plasma profile parameters (β p ) on the ITER operating space, are presented in section 3.7. Lastly, a short summary and discussion of this chapter are presented in section 3.8. 

ITER EQUILIBRIUM OPERATING SPACE IDENTIFICATION

ITER operating space identification with quasi-rectifier penalization terms

In this section, we present the ITER 15 MA operating space found with the new Objective function in 3.4, where all the currents and forces penalization terms are based on the quasi-rectifier function in equation 3.8. The total time to run the 11 x 14 inverse static FBE calculations is about 1.5 hours, on a standard HP notebook with a 4 x 2.7 GHz processor and 32 GB memory.

Before presenting the operating space, we show in the left plot of figure 3.12 the position of each of the 11 x 14 inverse static FBE calculations in the l i (3) -Ψ st space, as well as the β p in the right plot. It can be seen that the computed l i (3) are in the range of 0.5 -1, although the prescribed γ are between 0.2 and 1.2. All the Ψ st follow well the target values (from -45 to -175 Wb). All the calculated β p are in the range of 0.53 -0.59, which is close to the ITER nominal value of 0.6.

Figure 3.13 presents the ITER 15 MA equilibrium operating space found with quasirectifier as the coils currents and forces penalization terms. The lines are iso-contours of the coils currents, field and forces, as well as of boundary deviation metrics. The

ITER operating space identification with quasi-rectifier-modified

The ITER 15 MA operating space li(3) 0.5 0.6 0.7 0.8 0.9 1 as already observed in figure 3.12 (left).

As it can be also seen in 3.14, C Shape is the dominant term in the Objective.

Therefore, the code puts the priority on optimizing the boundary deviations. As a result, only the maximum inner divertor leg max-inner-dn in the low l i (3)-|Ψ st | corner of the domain, is above the tolerance (see figure 3.13), all the other boundary deviations are respected.

ITER operating space identification with quasi-rectifiermodified

The ITER 15 MA equilibrium operating space obtained in last section is small due to small values of the penalization terms P Force-Sep and P Force-CS when the limits are not strongly violated.

One possible way to solve this problem, as anticipated in section 3.3.2, is to activate the P Force-Sep and P Force-CS before the limits are violated, and/or to increase them more sharply when the limits are violated. Using the quasi-rectifier-modified function (defined in equation (3.8)) for the penalization terms does both of these (see figure 3.9).

ITER EQUILIBRIUM OPERATING SPACE IDENTIFICATION

The ITER 15 MA operating space li(3) 0.5 0.6 0.7 0.8 0.9 1 

Sensitivity on β p of the operating space

ITER 17 MA equilibrium operating space with quasi-softplus

We also applied the same inverse static FBE calculations with the quasi-softplus based penalization terms for the ITER 17 MA case, and figure 3.20 shows the resulting operational domain.

The ITER 17 MA operating space li(3) 0.5 0.6 0.7 0.8 0.9 1 Generally speaking, the ITER 17 MA operating space found with the quasi-softplus based penalization terms is similar to the previous results shown in figure 3.6.

Sensitivity on β p of the operating space

It was mentioned in [START_REF] Kessel | Development of ITER 15 MA ELMy H-mode inductive scenario[END_REF] that the parameter β p plays a minor role in the ITER equilibrium operating space, but no evidence was given to support this statement. With

ITER EQUILIBRIUM OPERATING SPACE IDENTIFICATION

The ITER 15 MA operating space ( α=1, β=0.5) li(3) 0.5 0.6 0.7 0.8 0.9 1

The 15 MA operating space ( α=1, β=0.8) li(3) 0.5 0.6 0.7 0.8 0.9 1 our approach, it is straightforward to test the effect of β p . This can indeed be done by changing the prescribed β in the plasma profile equation (2.10). 

Summary and discussion

In this chapter, after describing the ITER PF system (including limitations on the coils currents, field and forces) as well as the reference plasma boundary and tolerances on deviations from it, we reviewed previous works on the identification of the ITER 15 and 17 MA operating spaces. The latter use a series of inverse static FBE calculations in which the coils or boundary deviation limits are not explicitly taken into account (except via inequalities on the coils currents based on a linearization around a certain equilibrium). Then, we introduced a new Objective function that includes terms which penalize the violation of the coils currents and forces limits.

These penalization terms, which have been implemented in FEEQS.M, allow for an

Summary and discussion

automatic identification of the ITER operating space with no need for a human to tune parameters. This approach is therefore both more rigorous and faster.

Then, we analyzed the ITER 15 MA operating space found by FEEQS.M and we compared the results with different types of penalization functions: quasi-rectifier, quasi-rectifier-modified and quasi-softplus.

A very limited operating space was found with the quasi-rectifier, which we attribute to the fact that this penalization function becomes active only above the limit, and grows rather slowly. In contrast, the quasi-rectifier-modified and quasi-softplus based penalization terms are active already significantly before the limit is violated and grow much faster as the limit is approached and overcome. As a result, the operating space found with these functions is much larger. Meanwhile, the difference between the latter 2 operating spaces are quite small, meaning that the operating space is not very sensitive to the exact shape of the penalization function. However, the operating space is slightly larger with the quasi-rectifier-modified which is likely due to the fact that quasi-softplus activates further away from the limit, resulting in unnecessary constraints on the coils currents distribution. Broadly speaking, the ITER 15 MA operating space identified with FEEQS.M is similar to the one identified in previous works.

It is likely that there exists better penalization functions than the ones we have used here, providing larger operating spaces. It would be interesting to try to find them. However, the rather weak difference found between the quasi-rectifier-modified and quasi-softplus functions suggests that there is probably not a lot to gain.

Instead, from a practical point of view, the highest priority may be to implement constraints on the plasma shape in an explicit way. This may allow, e.g., to enlarge the domain in the high

Exploiting the rapidity of our new tool, we have repeated the identification of the operating space for 17 MA (with similar results as in previous works) and also for different β p at 15 MA (confirming the small influence of β p on the operating space). The trajectory of coils currents is shown in figure 4.9. It can be seen that all coils remain within their limits (and this is also the case for the voltages, which are not shown here), although the Eh and Eb coils approach their maximal positive currents.

DEVELOPMENT OF A FAST LIMITER TO DIVERTOR TRANSITION IN WEST

The A, Bh and Bb coils currents are ramped down to provide the main flux variation.

As could be expected, the Xh and Xb coils currents are ramped up in order to elongate and divert the plasma, and Xb is ramped up faster than Xh in order to produce a LSN configuration. The Dh and Db currents are almost opposite to each other, meaning that the code uses these coils to produce an essentially radial magnetic field to control the vertical position of the plasma. On the other hand, the currents in the E and F coils are approximately up-down symmetric, meaning that the code uses these coils to produce an essentially vertical field to control the radial position of the plasma. 

DEVELOPMENT OF A FAST LIMITER TO DIVERTOR TRANSITION IN WEST
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Experimental test of the fast limiter-divertor transition on WEST

DEVELOPMENT OF A FAST LIMITER TO DIVERTOR TRANSITION IN WEST

For this purpose, I F F coils waveforms from an inverse evolution calculation (slightly different from the one used above) have been implemented in the pulse schedule of WEST shots between T start = t 0 + 0.4 s and T end = T start + 0.2 s, where t 0 is the plasma breakdown time (the so-called ignitron time more precisely).

The first attempt was in shot 53423. Unfortunately, the result was a loss of vertical control around T end leading to a downward vertical displacement event (VDE). This behavior, which had not been observed with the simulator, may be interpreted as a sign that the real machine is more sensitive than the simulator in terms of vertical control. That said, the simulator results shown in figures 4.12 and 4.15 already pointed to vertical control issues. It should be noted that this phase of the pulse is particularly sensitive regarding vertical control. Indeed, this is a very dynamic phase: I P is ramping up and the plasma shape and position are changing rapidly. Furthermore, the actuators for the vertical FB control during this phase are the rather inefficient D coils, since the X coils take over only when their currents overcome 6 kA/turn. Of course, the vertical control issue becomes more severe as we try to speed up the transition to divertor configuration.

Based on this result, the pragmatic decision was made to keep the same I F F coils waveforms but adjust the vertical position reference (Z Ref ) waveform: instead of using It can be seen in figure 4.17 that the desired boundary is rather well matched during the first half of the [T start ,T end ] period. After this, the plasma moves upward and therefore does not well match the desired boundary anymore. This vertical movement, which can be seen in the third and forth panels of figure 4.18, is essentially due to the Z Ref ramp up which we have introduced to avoid the VDE, as discussed above. The 

Experimental test of the fast limiter-divertor transition on WEST
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Summary and discussion

In this chapter, we have tested for the first time FF coils currents waveforms from an inverse evolution calculation with FEEQS.M in a real tokamak. We have chosen to address the problem of accelerating the formation of a divertor configuration at the beginning of a pulse in WEST, which may be beneficial to reduce plasma contamination by impurities. Before applying the I F F coils on the real machine, we have tested them in a simulator. The tests, both in the simulator and in the real machine, are partly successful in the sense that a divertor configuration is indeed obtained several hundreds of ms faster than usual . However, the transition is not very smooth, and would need to be improved before being used routinely. It should be said that very limited experimental time (4 shots in total) has been devoted to this study.

Several directions may be suggested to make the transition smoother. A simple pragmatic approach could be to try to adjust experimentally the Z Ref waveform without changing the I F F coils . Another option could be to change the objective function in the inverse evolution calculation so as to improve the vertical stability. Of course, the exploration of the various options would benefit from a more accurate WEST simulator.

Chapter 5

Summary and outlook

The results presented in this manuscript show the potential of optimal control methods, and their implementation in the FEEQS.M code, to support tokamak operation.

In particular, after describing the numerical methods and some tests in Chapter 2, we have seen in Chapter 3 that realistic limits of the PF system can be taken into account by means of penalization terms in the cost function of the inverse static mode of FEEQS.M. In this way, the operating space (in terms of plasma equilibrium) can be identified and optimized in an easier and faster way than with previous approaches. We have chosen ITER as a first application case, which allowed us to compare our results with existing ones. We believe that this tool may prove useful in design studies for future tokamaks such as CFETR or in preparation of the operation of new tokamaks like JT60-SA.

In Chapter 4, we have shown that the inverse evolution mode of FEEQS.M can provide optimized FF PF coils currents waveforms which allow obtaining a desired evolution of the plasma shape and position. This inverse evolution mode is a unique feature of FEEQS.M, as far as we know. It may replace the standard method used presently to design such FF waveforms, which typically consists in connecting by hand discrete points developed somewhat independently from each other (by means of inverse static calculations for example). As a proof of principle, we have applied the inverse evolution mode to the problem of accelerating the transition to a diverted configuration at the beginning of a WEST pulse. A faster transition has indeed been obtained, although these early results are polluted by vertical control issues.

Appendix A

Circuit Equations

A.1 Circuit Equations

The external circuit of poloidal field coils and suppliers is represented by a directed graph with nodes and directed edges between nodes. We assign to each directed edge s = (i, j) between two nodes with index i and j a (directed) voltage V s and current I s . For an edge s representing a coil C we have

where R s and n s are the total resistance and the wire turns of the coil.

Then we introduce the incidence matrix G that has entry G s,i = 0 when the node with index i is not contained in the edge with index s = (i, j), or entry G s,i = 1(-1) when the node with index i is contained in the edge with index s = (i, j) and induced orientation coincides (coincides not) with the orientation of the edge. Likewise we can introduce oriented polygons, whose boundaries are the edges of the graph and an incidence matrix C for edges and polygons. Then we have CG = 0 and the Kirchhoff current and voltage laws are:

where the components of V and I are the voltages and currents associated to the edges.

In the following we assume that the edges of the circuit correspond either to a coil or to an external voltage supplier/source. We introduce the subscripts S and C to distinguish between edges corresponding to supplies and edges corresponding to coils,

Appendix B

Fast algorithm for optimal control problems

The following section is a short summary on algorithms for general optimal control problems, where we focus on finite dimensional optimal control problems. This simplifies considerably the presentation, and is also more relevant for this work as we always work with discretized versions of Problem 4 in Chapter 2.3. While most of the subsequent methods are well-known and can be found in excellent text books such as [START_REF] Nocedal | Sequential quadratic programming[END_REF][START_REF] Hinze | Optimization with PDE constraints, 23 of Mathematical Modelling: Theory and Applications[END_REF][START_REF] Bonnans | Numerical optimization: theoretical and practical aspects[END_REF],

we prefer to include this discussion to keep the presentation self-consistent.

We consider the following generic version of an optimal control problem min 

f s (y, u)f (0,1) (y, 0) + g s (y, u)g (0,1) (y, u))(f s (y, u)f (1,0) (y, u) + g s (y, u)g (1,0) (y, u) + nQ n-1 (y, u) f s (y, u)f (1,1) (y, u) + g s (y, u)(g (1,1) (y, u) Q (0,2) n (y, u) = n(n -1)Q n-2 (y, u) f s (y, u)f (0,1) (y, 0) + g s (y, u)g (0,1) (y, u))(f s (y, u)f (0,1) (y, u) + g s (y, u)g (0,1) (y, u) + nQ n-1 (y, u) f s (y, u)f (0,2) (y, u)) + g s (y, u)g (0,2) (y, u)