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Hervé Guillard, Directeur de Recherche, INRIA, Sophia Antipolis
Blaise Faugeras, Ingénieur de Recherche, CNRS, Université Côte d’Azur
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Abstract

This thesis is concerned with developing and applying numerical tools in
order to optimize the operation of the poloidal magnetic field (PF) system
in tokamaks. The latter consists of a set of coils and power supplies which
have the purpose of controlling the plasma shape and position, as well as
driving the plasma current. The global context of our work is introduced
in Chapter 1.

Chapter 2 describes our approach, which consists in applying optimal con-
trol methods to the Free-Boundary plasma Equilibrium (FBE) problem,
which is composed of force balance equations in the plasma coupled to
Maxwell’s equations in the whole tokamak. The numerical tool employed
here is the FEEQS.M code, which can be used either (in the“direct” mode)
as a solver of the FBE problem or (in the “inverse” mode) to minimize
a certain function under the constraint that the FBE equations be sat-
isfied. Each of these 2 modes (“direct” and “inverse”) subdivides into a
“static” mode (which solves only for a given instant) and an “evolution”
mode (which solves over a time window). The code is written in Matlab
and based on the Finite Elements Method. The non-linear nature of the
FBE problem is dealt with by means of Newton iterations, and Sequential
Quadratic Programming (SQP) is used for the inverse modes. We stress
that the “inverse evolution” mode is a unique feature of FEEQS.M, as far
as we know.

After describing the FBE problems and the numerical methods and some
tests of the FEEQS.M codes, we present 2 applications.

The first one, described in Chapter 3, concerns the identification of the
operating space in terms of plasma equilibrium in the ITER tokamak. This
space is limited by the capabilities of the PF system, such as the maximum



possible currents, field or forces in the PF coils. We have implemented
penalization terms in the “objective” function (i.e. the function to be min-
imized) of the “inverse static” mode of FEEQS.M in order to take some
of these limits into account. This allows calculating in a fast, rigorous
and automatic way the operating space, taking these limits into account.
This represents a substantial progress compared to “traditional” methods
involving much heavier human intervention.

The second application, presented in Chapter 4, regards the development
of a fast transition from limiter to divertor plasma configuration at the
beginning of a pulse in the WEST tokamak, with the motivation of reducing
the plasma contamination by tungsten impurities. Here, FEEQS.M is used
in “inverse evolution” mode. Data from a WEST experimental pulse is
used to set up the simulation. The FEEQS.M calculation then provides
optimized waveforms for the PF coils currents and power supplies voltages
to perform a fast limiter to divertor transition. These waveforms are first
tested on the WEST magnetic control simulator (which embeds FEEQS.M
in “direct evolution” mode coupled to a feedback control system identical
to the one in the real machine) and then on the real machine. This allowed
speeding up the transition from ∼ 1 s to 200 ms.

Keyword : Tokamak, plasma scenario, ITER, optimal control.



Résumé

Cette thèse concerne le développement et l’application d’outils numériques
permettant d’optimiser l’utilisation du système de champ magnétique polöıdal
dans les tokamaks. Ce dernier est constitué d’un ensemble de bobines et
d’alimentations électriques dont le rôle est de contrôler la forme et la posi-
tion du plasma ainsi que de générer le courant plasma. Le contexte général
de notre travail est décrit dans le Chapitre 1.

Le Chapitre 2 présente notre approche du problème, qui consiste à appliquer
des méthodes de contrôle optimal au problème d’Equilibre à Frontière Libre
(EFL). Ce dernier est composé d’une équation d’équilibre des forces dans
le plasma couplée aux équations de Maxwell dans l’ensemble du tokamak.
L’outil numérique employé ici est le code FEEQS.M, qui peut être utilisé
soit (dans le mode dit � direct �) pour résoudre le problème EFL soit
(dans le mode dit � inverse �) pour minimiser une certaine fonction-coût
sous la contrainte que les équations d’EFL soient satisfaites. Chacun de
ces deux modes (� direct � et � inverse �) se subdivise en un mode �
statique� (qui s’applique à un instant donné) et un mode� évolutif� (qui
s’applique sur un intervalle de temps). Le code est écrit en langage Matlab
et utilise la méthode des éléments finis. La nature non-linéaire du problème
d’EFL est traitée au moyen d’itérations de Newton, et une méthode de
type programmation séquentielle quadratique est appliquée pour les modes
inverses. Nous soulignons que le mode � inverse évolutif � est, à notre
connaissance, une caractéristique unique de FEEQS.M.

Après avoir décrit les problèmes d’EFL ainsi que les méthodes numériques
utilisées et quelques tests de FEEQS.M, nous présentons deux applications.
La première, décrite dans le Chapitre 3, concerne l’identification du domaine
opérationnel en termes d’équilibre plasma pour le tokamak ITER. Ce do-
maine est contraint par les limites du système de champ polöıdal portant par
exemple sur les courants, forces ou champs magnétiques dans les bobines.
Nous avons implémenté des termes de pénalisation dans la fonction-coût
du mode � statique inverse � de FEEQS.M pour prendre en compte ces



limites. Ceci nous a permis de calculer de façon rapide, rigoureuse et au-
tomatique le domaine opérationnel, ce qui représente un progrès substantiel
par rapport aux méthodes � traditionnelles � qui impliquent une inter-
vention humaine beaucoup plus lourde.

La seconde application, présentée au Chapitre 4, concerne le développement
d’une transition rapide d’une configuration plasma � limitée � à une con-
figuration � divergée � au début d’une décharge dans le tokamak WEST.
La motivation est ici la réduction de la contamination du plasma par les
impuretés de tungstène. A cette fin, le code FEEQS.M est utilisé dans son
mode � inverse évolutif �. Des données expérimentales de WEST sont
utilisées pour paramétrer la simulation. Le calcul FEEQS.M fournit alors
des trajectoires optimales pour les courants des bobines polöıdales et les
voltages de leurs alimentations afin d’obtenir une transition � limité � -
� divergé � rapide. Ces trajectoires sont testées d’abord sur le � simula-
teur de vol � WEST (qui embarque FEEQS.M en mode � direct évolutif
� couplé à un système de rétroaction identique à celui utilisé dans WEST)
et ensuite expérimentalement sur WEST. Ceci a permis de passer d’une
transition durant 1s à une transition durant 200ms.

Mots− clés : Tokamak, scénario plasma, ITER, contrôle optimal.
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Chapter 1

Introduction

1.1 Energy consumption and nuclear energy

1.1.1 Energy consumption around the world

Figure 1.1: World annual energy consumption and population (inserted). - The
statistic and estimations of the evolution of annual world primary energy consumption and
world population. Note that the predictions are based on three methods in [1], and the
colored bands are the error bars in the predictions.

People nowadays are more and more worried about energy issues on Earth, since the
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1. INTRODUCTION

energy consumption is soaring with the growth of the total population. It is reported
in [2] that the total world annual energy consumption and the population are raised
shapely from the early 1950s, and they will “explode” from now to 2100, just as it is
shown in figure 1.1, where the predictions by three different scenarios [1] are given in
colored bands.

When taking a look at the compositions of energy production in table 1.1 and
the contributions of different energy sources in table 1.2, one can find that nearly 90
percents of the energy consumption now on Earth are produced by burning fossil fuels.
Worst of all, those fuels will be ran out of in a few hundred years if the current situation
is not changed.

Fuel Reserved (2009) Years left at the current consumed rate
Coal 0.9 × 1012 ton 210

Crude oil 1.3 × 1012 barrels 30 ∼ 40
Natural gas 190 ×1012 m3 60 ∼ 70

Uranium (ore) 4.7 × 106 ton 85 ∼ 270 ∗
Uranium (sea water) 4.5 × 109 ton 81000 ∼ 260000 ∗∗

∗ assuming light water reactor;
∗∗ when breeder technology is available.

Table 1.1: Available years for different fuels at the current consumption rate [2].

Primary energy source Contribution to energy production/ % (2008)
Oil 33.7

Coal 23.8
Gas 29.6

Fission 5.2
Hydro-electricity 6.4

Solar,wind,wood,waste 1.3

Table 1.2: Contributions of different energy sources to the total energy production [3].

In addition to the shortage of those fossil fuels, the emission of CO2 (shown in figure
1.2), from their burning, is increasing exponentially. The large amount of released
CO2 will pollute the atmosphere, modify the climate, rise the sea level, and break the
ecological balance on Earth.
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1.1 Energy consumption and nuclear energy

Figure 1.2: CO2 concentration in the atmosphere (in ppm). - The black star out
of the figure is the CO2 level in 2008 [4].

1.1.2 Nuclear fusion energy and controlled fusion reaction

In order to solve the energy crisis addressed above, people have to seek some other
ways to explore the clean (less or no environmental pollution) and sustainable (for an
adequate long time) energies.

Nuclear fusion may be a way to produce relative clean and tremendous amount
of energy, which could fulfill the world energy consumption for billions of years. The
possible fusion reactions are the combinations of deuterium (D) and deuterium (D)
plasma (in which the density of electron equals to the charged number × ion density),
deuterium (D) and its isotope tritium (T) plasma, deuterium (D) and helium (He)
plasma:

2
1D +2

1 D →3
2 He(0.82 MeV ) +1

0 n(2.45 MeV )
2
1D +3

1 T →4
2 He(3.52 MeV ) +1

0 n(14.06 MeV )
2
1D +3

2 He→4
2 He(3.67 MeV ) +1

1 p(14.67 MeV )

(1.1)

The products of the fusion reactions in equation (1.1) are charged helium (He2+,
which is also called α particle), high energy neutron (n) and proton (p+). The second

3



1. INTRODUCTION

one is usually investigated in the daily laboratories on Earth, since it can release huge
energy (n ∼ 14.06 MeV) and has the largest reaction cross-section in low energy of the
range of 10 keV from figure 1.3.

Figure 1.3: Cross-sections for the reactions D-D, D-T and D-3He. - The data in
this figure are from [5]

The ignition condition for the fusion reactions in equation (1.1) is given generally
as a candidate on the fusion triple product in [6]:

niTiτE > 3× 1021m−3keV · s (1.2)

where ni and Ti are the density and temperature of the ions, τE is the energy confine-
ment time which is defined as τE = W/P , where W is the thermal energy stored in the
hot plasma and P is the heating power.

There are two kinds of schemes being explored to obtain fusion in daily experiment.
One is called inertial confinement fusion, e.g., the National Ignition Facility (NIF)
[7] in Lawrence Livemore National Lab of the US. It utilizes tested energetic lasers
to bombard a solid target that is constituted of D and T, in order to trigger fusion
reaction in the time range of several nanoseconds (10−9s), this kind of fusion reaction
is usually designed with the military intentions. The other main scheme is named as
magnetic confinement fusion, in which a strong magnetic field is produced to confine
the plasma in a torus, such as tokamak [5], stellarator [8], and spheromak [9], typically

4



1.2 Tokamak

the τE in these machines varies from several milliseconds (ms) to one second (s). The
tokamak is considered as the most plausible way to achieve the aim of nuclear fusion
energy utilization, and it is the most popular device around the world to research the
controllable fusion energy.

1.2 Tokamak

Tokamak is a magnetic confinement fusion device, where the magnetic field is produced
by external coils and the plasma current. The plasma is controlled by the magnetic
field in a vacuum vessel, and external powers are injected into the plasma to increase
the triple product in (1.2), then approach ignition.

Figure 1.4: Simplified tokamak structure -

A simple sketch of a tokamak is shown in figure 1.4. There are two kinds of magnetic
fields, i.e. toroidal and poloidal magnetic fields. The toroidal magnetic field is produced
by the toroidal field (TF) coils (the sky-blue coils in figure 1.4), it is the principal
magnetic field to control plasma. The poloidal magnetic field is produced by the plasma
current and the poloidal field coils. The poloidal field coils are divided into two parts,

5



1. INTRODUCTION

one is the green coil in the inner center of the torus (see figure 1.4), it is called central
solenoid (CS) coil, which is used to provide the energy to start the plasma and sustain
the plasma current. The other poloidal field coil is called poloidal field (PF) coil, i.e.
the gray coil in figure 1.4, it is used to control the plasma position and achieve different
shapes. Tokamak works as a transformer, in which the toroidal plasma current is the
secondary winding and the CS coil is the primary winding.

r (m)

Z
 (

m
)

0

CS

PF

PF

R R
max

Z
min

Z
max

R
Zmin

R
Zmax

R
min

Figure 1.5: Cross-section of a tokamak. - The yellow rectangle is the CS coil and red
ones are the PF coils, the blue ellipsoid is the plasma boundary.

Figure 1.5 shows the cross-section of a tokamak. The plasma is confined inside the
blue ellipsoid, which is called the plasma boundary. It is assumed that the toroidal
plasma current is only inside the boundary. There are some basic definitions for the
plasma geometry in a tokamak:

• Major radius: R (m).

• Minor radius: a (m) =(Rmax −Rmin)/2.

• Aspect ratio: A = R/a; inverse aspect ration ε = 1/A.

• Elongation: κup = Zmax/a; κdown = −Zmin/a.

6



1.2 Tokamak

• Triangularity: δup = (R−RZmax)/a; δdown = (R−RZmin)/a.

The D and T fusion reaction will not happen in a tokamak if there is no external
power injected into the plasma, because the plasma resistivity decreases as T−3/2, so
when the plasma current and temperature rise, the Ohmic heating (heat only by the
CS and PF coils) decreases [10]. In addition to increasing the triple product, additional
heating schemes may be used to drive plasma current, allowing access to steady-state
operation. The cardinal categories of the heating schemes are:

• Waves drive: electron cyclotron current drive (ECCD) [11, 12], ion cyclotron
current drive (ICCD) [13] and lower hybrid current drive (LHCD) [14].

• Beam drive: neutral beam current drive (NBCD) [15].

The only tokamaks around the world that have produced non-negligible fusion power
are the Tokamak Fusion Test Reactor (TFTR) in Princeton [16] and the Joint European
Torus (JET) in Oxford [17]. The maximum fusion power are 10.7 MW and 16.1 MW,
respectively.

1.2.1 ITER project

It is generally known [18] that the ignition condition of (1.2) is easier to reach in a
large tokamak, as can be seen in the τE scaling law [19]:

τLE = 0.023I0.96
P B0.03

T P−0.73
aux n0.40

0 M0.20
P R1.83ε0.06κ0.64

τELMy
E,IPB98(y,2) = 0.0562I0.93

P B0.15
T P−0.69

aux n0.41
0 M0.19

P R1.97ε0.58κ0.78 (1.3)

where IP and BT are the plasma current and toroidal magnetic field, n0 is the plasma
line averaged density, MP is the averaged ion mass and Paus is the injected power.
It is indeed visible from the scaling law that τE increases fast with R. The L and
ELMy in equation (1.3) denote the confinement modes which are called L-mode and
H-mode. H-mode has a higher confinement than L-mode, and that is why the H-mode
selected as a reference for ITER operation. H-mode was obtained in many devices
(ASDEX [20], ASDEX-U [21], JET[22], JT-60U [23], DIIID [24], Alcator C-Mod [25],
TCV [26],HL-2A[27], EAST [28] and KSTAR [29] etc).

The International Thermonuclear Experimental Reactor (ITER) in figure 1.6 is the
largest tokamak under construction in the world [30]. Its budget up to 2010 is more
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1. INTRODUCTION

than 15 billion Euros, which is invested by the six main economic powers [31]. The
objective of ITER is to demonstrate the scientific and technological feasibility of fusion
energy [32]. The main parameters are given in table 1.3. One of the prime targets of
the ITER project is to validate Qfusion = 10:

Qfusion =
Pfusion
Pauxiliary

(1.4)

where Pfusion is the fusion power, and Pauxiliary is the external input power. It means
the output power will be 10 times more than the total input power, and ITER will be
the first tokamak where plasma self-heating will dominate over external heating.

Figure 1.6: ITER - the largest tokamak under construction in the world.

1.2.2 WEST tokamak

In order to provide reliable data and experience for future ITER operation, the study
of present tokamaks is mainly focused on the physical and engineering problems that
are relevant for ITER.

The Tungsten (W) Environment in Steady State Tokamak (WEST) [33] is an up-
grade from the Tore Supra tokamak [34] in order to test the ITER-like plasma wall
interaction material and validate steady-state plasma scenarios in a W machine[35].
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1.2 Tokamak

Parameter Attributes
Fusion power (Pfusion) 500 MW (700MW )∗

Fusion power gain (Qfusion) > 10 (for 400s inductive scenario)
> 5 (for steady-state scenario)

Plasma major/minor (R/a) radius 6.2/2.0 m
Plasma vertical elongation/triangularity 1.85/0.48

Plasma current (IP ) 15 MA (17MA)∗

Toroidal field at 6.2 m 5.3 T
Injected power (Pauxiliary) 73 MW (110MW )∗∗

Plasma volume (VP )/surface area (SP )/cross section area 830 m3/690 m2/ 22 m2

∗Can be increased with limitation on burn duration.
∗∗ A total plasma heating power of 110 MW may be installed.

Table 1.3: ITER main parameters and operational capabilities.

Figure 1.7: Tore Supra is updated to WEST - Left: Tore Supra cross-section and
circular shape (red line); middle: the main parameters of Tore Supra and WEST;right:
west cross-section and elongated (divertor) shape (red line).
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1. INTRODUCTION

The main difference between Tore Supra and WEST is shown in figure 1.7. The
divertor coils (symmetrical red rectangles) are installed in WEST to form the divertor
configuration. There are also some passive plates in WEST, e.g. the casings of the
divertor coils (yellow area), and the magnetic configuration will be changed by the
induced currents on these passive plates, especially when the plasma current is increased
(decreased) sharply in the ramp up (down) phase.

1.3 Tokamak operation

Figure 1.8: Plasma operation waveforms for ITER 1.5 GW inductively sus-
tained ignition -

Tokamak operation is a complicated task. In order to reach a certain objective in a
given tokamak, e.g., Qfusion = 10 in ITER, one needs to design a so-called “scenario”,

10



1.3 Tokamak operation

i.e. a trajectory in time of the plasma parameters. This scenario has to be feasible, in
the sense that the plasma and the tokamak systems have to remain within a certain
operational domain.

1.3.1 The schedule of plasma scenario

The plasma scenario in a tokamak aims at achieving the possible goals with the available
actuators, such as the CS and PF coils, various external powers, the fueling and pump-
ing systems. Figure 1.8 shows the schedule of ITER 21 MA plasma operation for 1.5 GW
power output, which is released from the � ITER Physics Basis 1999, chapter 8 �
[36]. It should be noted that the updated ITER targets are 15 MA plasma current and
500 MW fusion power [32].

The whole plasma scenario is divided into several phases mainly based on the plasma
current (IP ):

• Pre-magnetization (−200s → 0), IP = 0: the CS and PF coils currents are well
configured to provide enough Ohmic flux (ΦOH) and poloidal magnetic field-
null configuration (poloidal magnetic field Bp less than 2 mT), meanwhile, an
appropriate working gas (D) pressure is prepared.

• Plasma initiation (0→ 1s), 0 6 IP 6 0.1MA: the ΦOH begins to swing down to
produce a loop voltage, which breakdowns the working gas and accelerates the
charged electrons and ions to generate toroidal IP . For ITER 3 MW electron
cyclotron (EC) wave is used to assist the plasma initiation.

• Current ramp-up (1s → 150s), 0.1MA 6 IP 6 21MA: the ΦOH continues to
swing down to provide the energy to increase the IP to its target value of 21 MA.

• Flat-top (150s → 1200s), IP = 21MA: the main phase in tokamak pulse, where
enough Pauxiliary and fuels are injected into plasma to make the fusion reaction
occur. The Pfusion ∼ 1.5 GW is produced in this duration.

• Burn termination (1200s → 1300s), 21MA > IP > 18MA: the burning plasma
begins to terminate with the decreasing of the Pauxiliary and IP .

• Current ramp-down (1300s→ 1500s), 18MA > IP > 0: IP continues to go down
until 0.

11
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• PF reset (1500s→ 2000s), IP = 0: the CS and PF currents come back to 0 and

the pulse is finished.

The evolution of the reference plasma boundaries for different phases is shown in

figure 1.9. It can be seen that the plasma is initialized at the outer part with a circular

shape, then it is elongated vertically and transits to a diverted shape (with an X-point

at the bottom) with the increased IP until its target 21 MA.

Figure 1.9: The evolution of the reference plasma shapes. - It is evolved from
limiter to lower X-point divertor configurations with the increased IP .

1.3.2 Notion of operating space

The operating space in a tokamak is typically constituted of two parts, i.e. the limits

of various instabilities in plasma (e.g. MagnetoHydroDynamic (MHD) [37]) and the

accessible engineering limits of the external actuators.

The electron density (ne) limit is one of the basic instabilities in tokamak plasma

operation. Figure 1.10 gives the operating space on the IP and ne for a tokamak by

Hugill [38].
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1.4 Plasma control

Figure 1.10: The operating space on the plasma current and density limits for
a tokamak. -

It shows that the plasma operation in a tokamak is bounded by a low-density region
where the electrons can be accelerated as the run-away particles, and in a high-density
area where the maximum ne limit is proportional to IP and a (minor radius). Moreover,
there is also a limit on the maximum IP that is due to the MHD kink instabilities [39].
The plasma operation will typically terminate outside the operating space of figure 1.10
by disruptions.

The engineering limits in a tokamak operation include, e.g., the maximum CS and
PF coils currents/voltages, field (for the super-conducting coils) and forces. The plasma
operation will also go to termination, or even the machine may be damaged if these
engineering limits are violated.

1.4 Plasma control

In order to perform the plasma scenario introduced in Section 1.3.1, a dedicated control
system has to be designed. Plasma control is a key area in tokamak research, but with
highly complicated workflow. The complexity of the control system, is related to the
large number of parameters to be controlled and to the strong and often non-linear
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coupling exists between them.
The typical strategy is to use a combination of the feedforward (FF) and feedback

(FB) schemes. In linear systems, FB is enough to maintain the target. Since tokamak
is a non-linear system and the control targets in different plasma scenario phases are
varied, i.e. the plasma currents, shapes and so on. FF is therefore used to help the FB
controller to make the control items closed to the reference values.

The problems in plasma control can be separated into two classes: magnetic control
and kinetic control.

1.4.1 Magnetic control

The objects of the plasma magnetic control [40] include typically the plasma current,
plasma position and the selected gaps between plasma boundary and the first wall. In
the magnetic control system, the actuators are the CS and PF systems. The main work
in this thesis concerns the magnetic control.

Figure 1.11: The block diagram of the WEST magnetic control loop for the
plasma current, shape and position -

Figure 1.11 presents the principle of the WEST magnetic control loop, where the
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1.4 Plasma control

control targets are the plasma current, shape and position. The FF waveforms of the

CS and PF coils currents are calculated by some numerical models [41, 42], while the

FF waveforms of the CS and PF coils voltages are based on the coils currents and

resistances.

There are two FB control loops, i.e. one for the plasma parameters (plasma current,

shape and position) and the other for the coils currents. In the plasma parameters FB

loop, the output coils currents are based on the deviations between the input targets

and the reconstructed ones from the magnetic measurements. While in the second FB

scheme for coils currents, the output coils voltages are derived from the differences

between the actual coils currents and sum of IFFcoils and IFBcoils, which are the output of

the first FB loop. Proportional, integral as well as derivative (PID) [43] controllers are

applied in both FB loops.

The CS and PF coils voltages, which are the sums of the FF and FB waveforms,

are the real signals sent to the actuators to perform the magnetic control in WEST

tokamak plasma operation.

Magnetic control is a mature scheme in tokamak operations, thanks to the robust-

ness of the accurate magnetic measurements and reliable actuators.

1.4.2 Kinetic control

The objects of the kinetic control in tokamaks [44] may include, the density and temper-

ature profiles, the plasma profile parameters, fusion power, impurity content, plasma

pressure, the radiated power fraction, etc. The control actuators are the auxiliary

heating and current driving systems, the fueling system and the pumping system.

The control strategy for kinetic control is also the combination of FF and FB loops.

The FF waveforms are based on the solutions of the flux diffusion and energy balance

equations, while the FB results are also obtained according the PID controller. The

applications of these kinetic control algorithms can be found in [45, 46, 47, 48, 49].

The kinetic control is interconnected to the magnetic control, because plasma pro-

files and the magnetic equlibrium mutually influence each other. In this thesis, we will

ignore this aspect and assume that the plasma profiles are given.
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1.5 Thesis scope and organization

The main topic in this manuscript is the construction of scenarios in tokamaks, with
specific focus on the CS and PF systems. The tool used to address this topic is a
free-boundary equilibrium code FEEQS.M, which is developed by Holger Heumann at
INRIA. It is introduced in Chapter 2.

The first step to design new scenarios for a new tokamak, is exploring the operating
space and this work has been done in the present work with the inverse static mode
(see Chapter 2, Section 2.2) of FEEQS.M. It is applied in the ITER case, which is
given in Chapter 3.

Scenario construction itself can be done, with the inverse evolution mode (see
Chapter 2, Section 2.3) of FEEQS.M. This work is also done for the fast transition
from limiter to divertor on WEST, and the FF trajectory of CS and PF coils cur-
rents has been validated by a virtual tokamak control workflow and the WEST real
experiment, details are presented in Chapter 4.

At last in Chapter 5, we give conclusions of the whole thesis and perspective for
the future work.
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Chapter 2

Free-boundary equilibrium
problems and the FEEQS.M code

Plasma equilibrium is one of the basic problems in tokamak engineering and physical
research, it is widely applied in the areas of plasma control, scenario construction and
MHD stability analysis.

In this chapter, the basic free-boundary equilibrium (FBE) equations are firstly
introduced in section 2.1. Then, the two kinds of FBE problems, i.e. direct and inverse
(both of which can be either static or evolutive), are formulated in section 2.2 and
section 2.3, respectively. The ideas and methods of the numerical code FEEQS.M are
detailed in section 2.4. Section 2.5 contains verification results regarding the calculation
of the derivatives in FEEQS.M. Section 2.6 presents first tests of the inverse evolution
mode in the WEST and HL-2M tokamaks. A short summary of this chapter is given
in section 3.8.

2.1 Free-boundary plasma equilibrium

The essential equations for describing plasma equilibrium in a tokamak are force bal-
ance, the solenoidal condition and Ampères law, that read respectively

∇p = J×B , ∇ ·B = 0 , ∇× 1
µ

B = J , (2.1)

where p is the plasma kinetic pressure, B is the magnetic field, J is the current density
and µ the magnetic permeability. In the quasi-static approximation these equations
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are augmented by Faraday’s law in all other conducting structures, and by Ohm’s

law in coils and passive structures. Hence for the resistive timescale the plasma is in

equilibrium and (2.1) holds at each instant of time [50].

Under the assumption of perfect axial symmetry, it is convenient to put (2.1) in a

cylindrical coordinate system (r, ϕ, z) and to consider only a meridian section of the

tokamak. The primal unknown is the poloidal magnetic flux ψ := rA · eϕ, the scaled

toroidal component of the vector potential A, i.e. B = ∇×A and eϕ the unit vector

for ϕ. We introduce H = [0,∞] × [−∞,∞], the positive half plane, to denote the

meridian plane that contains the cross section of the tokamak device. The geometry of

the tokamak determines the various subdomains (see figure 2.1):

Figure 2.1: Left: Geometric description of the poloidal cross section of the
tokamak device. Right: Sketch for characteristic plasma shapes during the so-
called ramp-up phase. - The ψ-isolines are indicated by black lines. In the beginning
(first three pictures) the plasma touches the limiter and becomes more and more elongated
(limiter configuration) while finally, it moves into the divertor configuration, where the
plasma boundary contains an X-point of the poloidal flux.

• the domain F ⊂ H corresponds to those parts that are made of ferromagnetic

circuit, i.e. the iron core and return limbs typically;
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2.1 Free-boundary plasma equilibrium

• the domain Ci ⊂ H, 1 ≤ i ≤ M correspond to the M poloidal field coils, where
each coil Ci has ni wire turns, total resistance Ri and cross section |Ci|. The coils
are part of an electric circuit that contains also N voltage suppliers;

• the domain S ⊂ H corresponds to the passive structures, with conductivity σ;

• the domain L ⊂ H, bounded by the limiter (∂L), corresponds to the domain that
is accessible by the plasma.

Then (see [51] or [52]), the plasma equilibrium equations in a tokamak at each instant
t can be written:

Lψ(r, z, t) = j(r, ψ(r, z, t), t) in H ;

ψ(0, z, t) = 0 ;

lim
‖(r,z)‖→+∞

ψ(r, z, t) = 0 ;

ψ(r, z, 0) = ψ0(r, z) ,

(2.2)

where L is a non-linear second-order elliptic differential operator

Lψ := − ∂

∂r

(
1

µ(ψ)r
∂ψ

∂r

)
− ∂

∂z

(
1

µ(ψ)r
∂ψ

∂z

)
:= −∇ ·

(
1

µ(ψ)r
∇ψ
)
, (2.3)

with

µ[ψ](r, z) = µf(|∇ψ(r, z)|2r−2)

{
≥ µ0 in F

= µ0 elsewhere.
(2.4)

Here, ∇ is the 2D gradient in the (r, z)-plane.
The toroidal current density j is a non-linear function of ψ:

j
(
r, ψ(r, z, t), t

)
=


rp′
(
ψ(r, z, t)

)
+ 1

µ0r
ff ′
(
ψ(r, z, t)

)
in P[ψ(t)] ;

Ii
|Ci| in Ci, 1 6 i 6M ;
jS in S ;
0 elsewhere ,

(2.5)

where the plasma section P[ψ(t)] is the domain bounded by the last closed poloidal
magnetic flux line inside L and containing the magnetic axis (rax, zax). The magnetic
axis is the point (rax, zax) = (rax[ψ], zax[ψ]), where ψ has its global maximum in L. The
equation in the plasma domain is the well-known Grad− Shafranov (G-S) equation
[53, 54, 55]. The current density jP(ψ) := rp′(ψ) + 1

µ0r
ff ′(ψ) in the plasma domain is

non-linear in ψ due to the non-linear functions p′ and ff ′, and due to the definition
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of the plasma domain P(ψ). Here, p = p(ψ) is the pressure and f = f(ψ) is the
diamagnetic function, i.e f(ψ) = rB · eϕ.

For convenience, we introduce also the coordinates (rbd, zbd) = (rbd[ψ], zbd[ψ]) of
the point that determines the plasma boundary. (rbd, zbd) is either a hyperbolic point
of ψ (in the case of a divertor configuration) or the contact point with the limiter ∂L
(in the case of a limiter configuration). The different characteristic shapes of P(ψ) are
illustrated in figure 2.1 (right): the boundary of P(ψ) either touches the boundary of
L, the limiter, or the boundary contains one or more corners (X-points of ψ).

The total coil current Ii, relates to the voltages ~V (t) = [V1(t), V2(t), . . . , VN (t)
]

in
the suppliers and to self and mutual induction via electric circuit equations:

Ii
|Ci|

=
N∑
j=1

RijVj(t) +
M∑
k=1

Sik
∫
Ck

∂ψ(t)
∂t

dr dz , 1 ≤ i ≤M , (2.6)

In the case of simple electrical circuits, e.g. circuits where each coil is connected to
only one voltage supplier, we have

Rij =

{
0 i 6= j
ni

Ri|Ci| i = j
and Sij =

{
0 i 6= j

− 2πn2
i

Ri|Ci|2 i = j

and we refer to Appendix A for the general case.
Faraday’s law in the passive structure S yields

jS = −σ
r

∂ψ(t)
∂t

(2.7)

2.1.1 Plasma current profile

The plasma current density jP in equation (2.5) is non-linear in ψ due to the non-linear
functions p′ and ff ′ and the definition of the plasma domain P(ψ). While P(ψ) is fully
determined for a given ψ, the two functions p′ and ff ′ are not determined by the model
(2.2)-(2.5). The model (2.2)-(2.5) needs to be augmented by the so-called transport
and diffusion equations [56], which determine p′ and ff ′. In this thesis, we will assume
that, up to some scaling coefficient λ, the functions p′ and ff ′ are known. But, the
domain of p′ and ff ′ is the interval [ψbd, ψax] with the scalar values ψax and ψbd being
the flux values at the magnetic axis and at the boundary of the plasma:

ψax[ψ] := ψ(rax[ψ], zax[ψ]) , ψbd[ψ] := ψ(rbd[ψ], zbd[ψ]) . (2.8)
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2.1 Free-boundary plasma equilibrium

So, since the domain of p′ and ff ′ depends on the poloidal magnetic flux itself, it
is more practical to supply those profiles as functions of the normalized poloidal flux
ψ(r, z):

ψ(r, z) := ψ(r, z)− ψax[ψ]
ψbd[ψ]− ψax[ψ]

. (2.9)

these two functions, subsequently termed Sp′ and Sff ′ , have, independently of ψ, a
fixed domain [0, 1]. In this thesis, we will use the following parameterization for Sp′

and Sff ′ :

Sp′
(
ψ(r, z)

)
= β

R0

(
1− ψ(r, z)α

)γ
Sff ′

(
ψ(r, z)

)
= (1− β)µ0R0

(
1− ψ(r, z)α

)γ (2.10)

where R0 is the major radius of the vacuum vessel and α, β, γ are given parameters.
The detail of the physical interpretation of these parameters can be found in [57].

The parameter β is related to the poloidal beta βp:

βp = p

B2
pa/2µ0

;

p =
∫
P
pr ds∫

P
r ds

Bpa =

∫
Γp
Bpdl∫

Γp
dl

= µ0IP
Lp

(2.11)

where Bp is the poloidal magnetic field, Γp is the plasma boundary and Lp is its
perimeter.

The parameters α and γ describe the peakedness of the plasma current profile,
which is related to the plasma internal inductance li(3):

li(3) =
2
∫
P
B2
pdV

(µ0IP )2R0
(2.12)

The above parameterization of Sp′ and Sff ′ is convenient for many applications,
but it does not necessarily represent realistic profiles, especially for H-mode plasmas,
where a pedestal exists in the boundary, such as the works presented in the EPED
codes [58, 59]. It is also possible in FEEQS.M to use arbitrary profiles.

The total plasma current Ip(t) is given as:

λ(t)
∫
P(ψ)

(
rSp′

(
ψ(r, z, t), t

)
+ 1
µ0r

Sff ′
(
ψ(r, z, t), t

))
drdz = Ip(t) . (2.13)
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2.2 The direct FBE problems

In this section, we present the so-called “direct” FBE problems, which consist in finding
the ψ map for given PF coils currents or PF power supply voltages. We distinguish
the direct static problem, which concerns a snapshot at a given time, and the direct
evolution problem, which concerns the dynamic evolution of the plasma equilibrium.
These problems are formulated as follows.

Problem 1 (Direct static) Let parameters α, β and γ in the definition (2.10) of
Sp′(ψ(r, z)) and Sff ′(ψ(r, z)) be known, and let the currents Ii in the coils Ci as well
as the total plasma current IP and current density jS in the passive structures be given.
Find ψ and λ such that (2.2), (2.5) and (2.13) hold, with p′(ψ(r, z)) = λSp′(ψ(r, z))
and ff ′(ψ(r, z)) = λSff ′(ψ(r, z)) at time t fixed.

The direct static FBE problem consists in finding the plasma equilibrium for given
coils currents at a given instant. An example of application of this problem is the
calculation of an initial condition for the direct evolution problem.

Problem 2 (Direct evolution) Let the evolution of parameters α(t), β(t) and γ(t)
in the definition (2.10) of Sp′(ψ(r, z, t), t) and Sff ′(ψ(r, z, t), t) be known. Let the evo-
lution of the voltages ~V (t) in the poloidal field circuits and the initial data ψ0(r, z) be
given. Additionally assume that the evolution of IP (t) is given. Find the evolution
of ψ(t) and λ(t) such that (2.2), (2.5)-(2.7) and (2.13) hold, with p′(ψ(r, z, t), t) =
λ(t)Sp′(ψ(r, z, t), t) and ff ′(ψ(r, z, t), t) = λ(t)Sff ′(ψ(r, z, t), t).

The direct evolution FBE problem combines the plasma equilibrium equations with
equations describing the evolution of PF coils currents as well as currents in the passive
structures. It is applied, e.g., in the WEST magnetic control simulator presented in
Chapter 4.

2.3 The inverse FBE problems

In the last section, we have discussed the direct static and evolution FBE problems,
where the coils currents ~I = (I1, I2, · · · , IM ) or poloidal circuits voltages ~V (t) are given.
In this section, we introduce the inverse FBE problems, which consist in finding the
currents ~I or voltages ~V (t) to satisfy a desired plasma scenario. Solving these problems
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is challenging due, among other reasons, to their ill-posedness, their non-linear nature
and, especially in the case of the inverse evolution problem, their large size.

Typically, the way to deal with such inverse FBE problems, is an optimal control
approach. The currents ~I or voltages ~V (t) are the control variables, and the ψ or ψ(t)
map describing the equilibria is the state variable. We encode the design goal in an
objective function, which is large when the design goal is violated and small otherwise.

The direct static and evolution FBE problems are formulated as follows.

Problem 3 (Inverse static) Let parameters α, β and γ in the definition (2.10) of
Sp′(ψ(r, z)) and Sff ′(ψ(r, z)) be known, and assume additionally that the total plasma
current IP and current density jS in the passive structures are given. Moreover, let
objective(ψ(r, z), ~I) be a non-negative function that is small if ψ(r, z) is close to the
design goal. Solve the following minimization problem:

min
ψ(r,z),~I

objective
(
ψ(r, z), ~I

)
subject to (2.2), (2.5) and (2.13) at time t fixed (2.14)

with p′(ψ(r, z)) = λSp′(ψ(r, z)) and ff ′(ψ(r, z)) = λSff ′(ψ(r, z)).

In general, the objective function (ψ(r, z), ~I) is divided into two parts, i.e. cost
function (denoted by C) and regularization term (denoted by R):

objective
(
ψ(r, z), ~I

)
= C

(
ψ(r, z)

)
+R(~I) (2.15)

Examples of cost function and regularization term for the inverse static FBE prob-
lem are:

C
(
ψ(r, z)

)
= 1

2

Ndesi∑
i=2

(
ψ(ri, zi)− ψ(r1, z1)

)2
, (2.16)

and

R(~I) = 1
2

M∑
i=1

wi I
2
i , (2.17)

where (ri, zi) describes the desired plasma boundary and coefficients wi ≥ 0 are called
regularization weights. C(ψ(r, z)) “’incites” ψ(r, z) to be constant on a prescribed set
of Ndesi points (ri, zi). The regularization term R(~I) enables to work with a well-posed
problem, i.e. a problem that is stable to perturbations on the data.

The static inverse solver is used to find the PF coils currents ~I, which allow the
best match with a given plasma shape at a given time.
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In Chapter 3, we use the static inverse solver to identify the plasma equilibrium
operating space for the ITER inductive scenario, but with more complex objective
functions, involving penalization terms to take into account limits on the coils currents,
field and forces.

Problem 4 (Inverse evolution) . Let the evolution of parameters α(t), β(t) and γ(t)
in the definition of (2.10) of Sp′(ψ(r, z, t), t) and Sff ′(ψ(r, z, t), t) be known. Addition-
ally assume that the evolution of the total plasma current IP (t) and initial data ψ0(r,z)
are given. Moreover, let objective(ψ(r, z, t), ~V (t)) be a non-negative function that is
small if ψ(r, z, t) is close to the design goal. Solve the following minimization problem:

min
ψ(r,z,t),~V (t)

objective
(
ψ(r, z, t), ~V (t)

)
subject to (2.2), (2.5)− (2.7) and (2.13)

(2.18)
with p′(ψ(r, z, t), t) = λ(t)Sp′(ψ(r, z, t), t) and ff ′(ψ(r, z, t), t) = λ(t)Sff ′(ψ(r, z, t), t).

As for the inverse static case, the objective function here is also split into C(ψ(r, z, t))
+ R(~V (t)).

Examples for C(ψ(r, z, t)) and R(~V (t)) are:

C
(
ψ(r, z, t)

)
= 1

2

∫ T

0
w(t)

Ndesi∑
i=2

(
ψ
(
ri(t), zi(t), t

)
− ψ

(
r1(t), z1(t), t

))2
dt (2.19)

and

R
(
~V (t)

)
= 1

2

∫ T

0

N∑
i=1

Di V
2
i (t) dt , (2.20)

where the
(
ri(t), zi(t)

)
describe the prescribed plasma boundaries at discrete times

in the interval [0,T]. The weights w(t) should be non-negative and D positive defi-
nite. C(ψ(r, z, t)) tends to make ψ(r, z, t) constant on a prescribed set of Ndesi points
(ri(t), zi(t)) at each instant t and hence can be used to encode a certain desired evolu-
tion of the plasma shape. Other choices of cost function could include penalization of
induced currents, voltages in suppliers or loop voltages or any other design goal that
can be quantified in terms of the poloidal flux ψ and the voltages Vi(t). Tests involving
different cost functions for scenario design are presented in section 2.6.

In Chapter 4, we use the inverse evolution FBE solver to develop a fast limiter to
divertor transition in WEST.
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2.4 The FEEQS.M code and its numerical methods

We introduce in this thesis the numerical code FEEQS.M (Finite Element EQuilibrium
Solver based on Matlab) [60], which utilizes finite elements formulation and inher-
its the basic ideas of the FBE codes SCED [61] and CEDRES++ [62], to solve the
direct/inverse static/evolution FBE problems. FEEQS.M uses well established and
tested external modules for mesh generation [63], linear solvers (such as UMFPACK
[64]) and algebraic solver [65]. The finite element method in FEEQS.M allows for a
straightforward implementation of Newton methods to handle the strong non-linearities
related to the FBE problems. FEEQS.M is based on methods for axisymmetric free
boundary plasma equilibria that are described in [51] and utilizes in large parts vec-
torizations. Therefore, the running time is comparable to C/C++ implementations.
Moreover, FEEQS.M is also publicly available1 now.

The general idea to solve the direct and inverse FBE problems in FEEQS.M is to
find variational formulations of the partial differential equations (PDEs) (2.2), (2.5)-
(2.7). Then, standard linear Lagrangian finite elements are used to discretize the vari-
ational formulations and the objective functions. A sequential quadratic programming
(SQP) approach is used to solve the optimal control problems, i.e., inverse FBE prob-
lems in FEEQS.M.

There are two different approaches to arrive at the finite dimensional SQP formula-
tions for the optimal control problems 3 and 4, which have been stated in section 2.3. In
the first one, the optimize-then-discretize approach, one computes first the optimality
conditions for the continuous optimization problem, and then discretizes them. The
second approach, the discretize-then-optimize approach, discretizes directly the opti-
mization problems. This yields a finite dimensional constrained optimization problem
for which a SQP formulation follows immediately from the literature [66, 67].

In FEEQS.M, we prefer to work with the discretize-then-optimize approach for
the following reason: discretize-then-optimize yields the exact gradient of the discrete
objective function, while the optimize-then-discretize approach yields only an approx-
imation. Both approaches involve approximation, but the optimize-then-discretize ap-
proach does not yield the exact gradient of either the continuous objective in (2.15),
(2.19) and (2.20), or the discretized objective [68]. Therefore, the validation of the

1http://www-sop.inria.fr/members/Holger.Heumann/Software.html
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implementation of a discretize-then-optimize approach is relatively easy compared to
an optimize-then-discretize approach.

It remains to specify the discretization of non-linear constraints (2.2), (2.5) and
(2.6), as well as the discretization of the objective functionals. Moreover, as we use
SQP, we will also have to provide some details on first and second order derivatives of
the discretized objective functionals and constraints. The implementation itself is kept
flexible, so that objective functionals can be easily changed and modified. Adding new
cost functionals encoding new design goals is simple.

The following subsections will introduce the detailed ideas and methods applied
in FEEQS.M, including the variational formulations for the static and evolution FBE
problems (section 2.4.1), the discretization formulations for the FBE problems (section
2.4.2 and 2.4.3) and the SQP approaches for the inverse static and inverse evolution
FBE problems (section 2.4.4).

2.4.1 Variational formulation on the truncated domain

Figure 2.2: The bounded domain in FEEQS.M -

In FEEQS.M, a semi-circle area Ω ⊂ H in figure 2.2 with a sufficiently large radius
ρΓ, that is centered at the origin and contains the geometry of the tokamak, is selected.
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The boundary ∂Ω splits into Γr=0 := {(r, z) , r = 0} and Γ = ∂Ω \ Γr=0. The Sobolev
space [69] V is used:

V :=
{
ψ : Ω→ R,

∫
Ω
ψ2r drdz <∞,

∫
Ω

(∇ψ)2r−1 drdz <∞, ψ|Γr=0 = 0
}
∩ C0(Ω).

(2.21)
In the domain of Ω, the equation (2.2) can be written after multiplying the test

function ξ ∈ V and doing the integration over the whole area as :∫
Ω
Lψ ξ drdz =

∫
Ω
j(r, ψ, t) ξ drdz (2.22)

The weak variational formulation of the equation (2.22) can be given after doing
integration by parts as:∫

Ω

1
µ(ψ)r

∇ψ · ∇ξ drdz +
∫
∂Ω

1
µ(ψ)r

(∇ψ · n) ξdl =
∫

Ω
j(r, ψ, t) ξ drdz (2.23)

where n is the inward pointing normal.
The second term in the LHS of the equation (2.23) can be divided into two parts

on Γ and Γr=0: ∫
∂Ω

1
µ(ψ)r

∂ψ

∂n
ξdl =

∫
Γ

1
µ0r

∂ψ

∂n
ξdl +

∫
Γr=0

1
µ0r

∂ψ

∂n
ξdl (2.24)

where the second term of RHS is 0, so the weak variational formulation of equation
(2.23) on the bounded domain Ω is:∫

Ω

1
µ(ψ)r

∇ψ · ∇ξ drdz +
∫

Γ

1
µ0r

∂ψ

∂n
ξdl =

∫
Ω
j(r, ψ, t) ξ drdz (2.25)

2.4.2 Galerkin discretizations and their weak variational formulations

In FEEQS.M, we introduce a triangulation Ωh of the domain Ω that resolves the sub-
domains L,F,Ci, S and use standard Lagrangian finite elements with nodal degrees of
freedom.

Let bk(r, z) denote the Lagrangian basis functions associated to the vertices of the
mesh, e.g., bk vanishes at all mesh vertices except one. Basis functions associated to
vertices at r = 0 are excluded from this finite element space Xh, as, due to axisymmetry
ψ(0, z) = 0.

For the static case at a fixed time, the finite element approximation ψh of ψ is:

ψh(r, z) =
|Xh|∑
k=1

ψkbk(r, z) with ψk ∈ R, 1 ≤ k ≤ |Xh|. (2.26)
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For the discretization in time we introduce NT + 1 not necessarily equidistant col-

location points T0 ≤ ts ≤ T1, 0 ≤ s ≤ NT . Hence, for the evolution case, the finite

element approximation ψth of ψ at t = ts is:

ψsh(r, z) =
|Xh|∑
k=1

ψksbk(r, z) with ψks ∈ R, 1 ≤ k ≤ |Xh|, 0 ≤ s ≤ NT . (2.27)

The domain of the plasma P(ψh) of a finite element function ψh is bounded by a

continuous, piecewise straight, closed line. The critical points (rax(ψh), zax(ψh)) and

(rbd(ψh), zbd(ψh)) are the coordinates of certain vertices of the mesh. The saddle point

of a piecewise linear function ψh is some vertex (r0, z0) with the following property:

if (r1, z1), (r2, z2) . . . (rN , zN ), denote the counterclockwise ordered neighboring vertices

the sequence of discrete gradients ψ0 − ψ1, ψ0 − ψ2 . . . ψ0 − ψN changes at least four

times the sign.

Therefore, we can get the following discretized version (modulo quadrature) of equa-

tion (2.25) in the static mode: For given coils currents ~I = (I1, I2, · · · , IM ) and IP ,

and for given current density jS in the passive structures S, we find the coefficients

ψk ∈ R, 1 ≤ k ≤ |Xh| of ψh, and λ ∈ R such that:

∫
Ω

1
µ(ψh)r

∇ψh · ∇ξ drdz − λ
∫

P(ψh)

(
rSp′(ψh) +

Sff ′(ψh)
µ0r

)
ξ drdz + c(ψh, ξ)

−
M∑
i=1

Ii
|Ci|

∫
Ci

ξdrdz − jS
∫
S

ξdrdz = 0 ∀ξ ∈ Xh,

λ

∫
P(ψh)

(
rSp′(ψh) + 1

µ0r
Sff ′(ψh)

)
drdz = IP .

(2.28)

The bilinear form c : V ×V on Γ, accounting for the boundary conditions at infinity

[70], is the second term of LHS in equation (2.25):

c(ψ, ξ) := 1
µ0

∫
Γ
ψ(P1)N(P1)ξ(P1)dS1

+ 1
2µ0

∫
Γ

∫
Γ
(ψ(P1)− ψ(P2))M(P1,P2)(ξ(P1)− ξ(P2))dS1dS2.

(2.29)
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with G(P1,P2) ≈ log(‖ P1−P2 ‖), which is the fundamental solution of ∇ · 1
µ0r
∇ and

M(P1,P2) =
kP1,P2

2π(r1r2)
3
2

(
2− k2

P1,P2

2− 2k2
P1,P2

E(kP1,P2)−K(kP1,P2)

)

N(P1) = 1
r1

(
1
δ+

+ 1
δ−
− 1
ρΓ

)
and δ± =

√
r2

1 + (ρΓ ± z1)2 ,

where Pi = (ri, zi). K and E are the complete elliptic integrals of first and second
kind, respectively and

kPj ,Pk
=

√
4rjrk

(rj + rk)2 + (zj − zk)2 .

The details of the above derivation are shown in [71, Chapter 2.4]. Alternative
approaches, that incorporate the boundary conditions at infinity are recently pre-
sented in [72]. The bilinear form c(·, ·) follows basically from the so-called uncou-
pling procedure in [73] for the usual coupling of boundary integral and finite ele-
ment methods. In FEEQS.M, it can be shown that for all P1, P2 the integral term
(ψ(P1) − ψ(P2))M(P1,P2)(ξ(P1) − ξ(P2)) remains bounded. The Green’s function
that is used in the derivation of the boundary integral method for the above problem,
was used earlier in finite difference methods for the Grad-Shafranov-Schlüter equations
[74].

The same way, we get the following discretized version of equation (2.25) in the
evolution mode: For given evolution ~V (t) = (V1(t), V1(t), · · · , VN (t)) and IP (t) of
the voltages and the total plasma current and for given initial conditions ψ0

h(r, z) =∑|Xh|
k=1 ψk0bk(r, z) we find for 1 ≤ s ≤ NT the coefficients ψks ∈ R, 1 ≤ k ≤ |Xh| of ψsh,

the values Iis ∈ R, 1 ≤ i ≤M and λs ∈ R such that:∫
Ω

1
µ(ψsh)r

∇ψsh · ∇ξ drdz − λs
∫
P(ψs

h)

(
rSp′(ψsh, ts) +

Sff ′(ψsh, ts)
µ0r

)
ξ drdz

−
M∑
i=1

Iis
|Ci|

∫
Ci

ξdrdz +
∫
S

σ

r

ψsh − ψ
s−1
h

ts − ts−1
ξ drdz + c(ψsh, ξ) = 0 ∀ξ ∈ Xh ,

N∑
j=1

RijVj(ts) +
M∑
k=1

Sik
∫
Ck

ψsh − ψ
s−1
h

ts − ts−1
drdz = Iis

|Ci|
1 ≤ i ≤M ,

λs
∫
P(ψs

h)

(
rSp′(ψsh, ts) + 1

µ0r
Sff ′(ψsh, ts)

)
drdz = IsP .

(2.30)
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2.4.3 Quadrature rules and discretization of the objective functions

The integration over the domain Ω is split into a sum of integrals over the triangles T of

the mesh, and we use the barycenter quadrature rule to approximate these integrals: For

a triangle with vertex coordinates ai,aj ,ak ∈ R2 the quadrature point is the barycenter

bT := 1
3(ai + aj + ak) and the quadrature weight ωT is the size |T | of the triangle.

Besides the integrals over Ω, the weak formulations (2.28) and (2.30) involve also

integrals over the plasma domain P(ψh). As the mesh does not resolve the boundary

of the plasma domain P(ψh), we need to specify also the quadrature rule that is used

to approximate integrals over intersections T ∩ P(ψh) of triangles with the plasma

domain. We use again barycenter quadrature, but here the quadrature point and

weight will depend non-linearly on ψh, which needs to be taken into account when we

use linearizations of (2.28) and (2.30), e.g. in Newton or SQP iterations. The technical

details of such linearizations can be also found in [68].

The line integrals over Γ in the definition of c(·, ·) are split into line integrals over

edges on triangles whose vertices are on Γ. Then, the trapezoidal quadrature rule yields

an approximation of sufficient accuracy.

For the discretization of the objective functions in the inverse FBE problems. The

same barycentric quadrature rule is used to approximate area integrals, while time

integrals are approximated by the composite trapezoidal rule.

The discretization of the regularization functionals likewise uses the composite

trapezoidal rule for time integrals. Moreover, we represent each voltage as a finite

series

Vi(t) =
Nc∑
j=1

VijBj(t), 1 ≤ i ≤ n ,

where the Bj(t) are the basis functions of a polynomial or spline space over [0, T ].

This yields expressions that are algebraic in the principal unknowns (ψk and Ii for

the static case, and ψks and Vij for the evolution case, with 1 ≤ k ≤ |Xh|, 1 ≤ i ≤ m,

1 ≤ s ≤ NT and 1 ≤ j ≤ Nc). So, computation and implementation of first and second

order derivatives of such functionals become a mechanical iterated application of the

usual rules of differential calculus.
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2.4.4 SQP formulation for the inverse FBE solvers

Combining the discretized inverse FBE equations with discretized cost and regulariza-
tion functionals, we arrive at discretized versions of the optimal control formulation
(2.30) that is of the general form

min
u,y

J(y,u) s.t. b(y,u) = 0 . (2.31)

The state variable y, in the case of the evolution problem, contains the unknowns
ψks 1 ≤ k ≤ |Xh|, 1 ≤ s ≤ NT of the poloidal flux and the scaling parameter λs,
1 ≤ s ≤ NT , hence y ∈ R(|Xh|+1)NT . Likewise the constraint b(y,u) = 0 corresponds
to (|Xh| + 1)NT coupled non-linear equations as the unknowns for the currents Iis,
1 ≤ i ≤ m, 1 ≤ s ≤ NT have been eliminated from the formulation (2.30). The
coupling in time appears through the electric circuit equations (2.6) and the induction
(see (2.5)) in passive structure S that involve temple derivatives of ψ. The control
variable u contains a subset of the expansion coefficients Vij , 1 ≤ i ≤ n, 1 ≤ j ≤ Nc for
the voltages. One could for example prescribe the voltage of a few suppliers and treat
only the voltages of the remaining suppliers as unknowns. Another possibility would
be to treat only certain coefficients as unknown. E.g. if one works with an expansion
in a hierarchical basis, it would be beneficial to prescribe the coefficients for low order
terms and keep only coefficients of higher order polynomials. So, in general u ∈ RN

with 1 ≤ N ≤ Ncn.
For the static case, where the current density jS in the passive structure S is given,

the state variable y includes ψk 1 ≤ k ≤ |Xh| and λ, the control variable u is the coils
currents ~I. Similar to the evolution case, one could prescribe the current of a few coils,
and treat the currents remaining as the unknowns.

The SQP formulation for the constrained optimization problem (2.31) involves first
and second order derivatives of b(y,u) and J(y,u). But, as we presented in sections
2.4.2 and 2.4.3 explicit expressions for b(y,u) and J(y,u) that are algebraic in u and
y, we can also provide explicit expressions for the first and second order derivatives. An
inspection of (2.30) shows that the constraint b(y,u) is affine in the control unknown
u, hence has vanishing second order derivatives. Moreover, to avoid the expensive
assembling of second order derivatives of b(y,u) we neglect those in the SQP iterations.
In the terminology of Newton methods we use rather a quasi SQP method, than an
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exact SQP method. It is known that such modifications are prone to convergence issues
[75], but this doesn’t seem to be an issue for our specific application. The Algorithm
1 summarizes the quasi SQP formulation, and should be compared to the exact SQP
in Algorithm 4 (see Appendix B ), where it is also required to compute the adjoint
states during the iterations. The first and second order derivatives are indicated by
subscripts, e.g. Ju for the first order of derivative of J . We want to stress that the
size of Y in Algorithm 4 scales at least linearly (and quadratically if Nc = O(NT ))
with the number of time steps NT , which causes memory to be the limiting factor for
computations with a very large number of time steps. Nevertheless, with the current
implementation we can go easily beyond 200 and more time steps, which is sufficient for
the applications in mind. Moreover, we avoid the introduction of additional parameters
due to iterative solver and make use of fast methods for linear systems with multiple
RHS.

Algorithm 1 SQP (quasi) with direct solver
1: ∆u← 1, ∆y← 1, y← y0, u← u0

2: while ‖∆u‖/‖u‖ > tol, ‖∆y‖/‖y‖ > tol do
3: (∆y,Y)← −b−1

y (y,u)(b(y,u),bu(y,u))
4: m01 ← JTu (y,u), m10 ← YTJTy (y,u)
5: M02 ← Juu(y,u)
6: m11 ← Juy(y,u)∆y, M11 ← Juy(y,u)Y
7: m20 ← YTJyy(y,u)∆y, M20 ← YTJyy(y,u)Y
8: m←m01 + m10 + m11 + m20

9: M←M02 + M11 + MT
11 + M20

10: ∆u← −M−1m
11: y← y + ∆y + Y∆u
12: u← u + ∆u
13: end while

2.5 Numerical validation tests

We present different numerical tests, that verify that the implementations of deriva-
tives of the non-linear constraints (2.28) and (2.30) in FEEQS.M are correct. These
derivatives are the cornerstone of the proposed optimal control approach and appear
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through by(y,u) in SQP (see Algorithm 1).
The following calculations are based on a ITER-like geometry and an equlibrium

plasma (see figure 2.3) that corresponds to the currents in the table of figure 2.3. The
total plasma current is IP = 15MA, and parameters for the plasma current density in
equation (2.10) are: R0 = 6.2m , α = 2.0, β = 0.5978 and γ = 1.395.

coil Ii[At]
U3 −1.400× 106

U2 −9.500× 106

U1 −20.388× 106

L1 −20.388× 106

L2 −9.000× 106

L3 3.564× 106

P1 5.469× 106

P2 −2.266× 106

P3 −6.426× 106

P4 −4.820× 106

P5 −7.504× 106

P6 17.240× 106

Figure 2.3: Left: The plasma (flux lines and flux intensity) that correspond to the
currents in the table. Center: The triangulation of the ITER-geometry. Right: Data for
coils. U1-U3 and L1-L3 are upper and lower CS coils. Coils P1-P6 are the PF coils.

2.5.1 Derivatives due to the free-boundary

Let DJh(ψh) ∈ R|Xh|×|Xh| denote the derivative of the discretization Jh(ψh, bm) (via
quadrature from section 2.4.3) of the non-linear mapping

J(ψh, bm) =
∫
P(ψh)

(
rSp′(ψh) + 1

rµ0
Sff ′(ψh, ts)

)
bm drdz 1 ≤ m ≤ |Xh| . (2.32)

This mapping involves the non-linearity due to the free plasma boundary. The lin-
earization is non-standard [68]. In this first test it is verified that for given ψh(r, z) =∑|Xh|

k=1 ψkbk(r, z) and perturbation δh(r, z) =
∑|Xh|

k=1 δkbk(r, z) the implementation of
DJh(ψh) yields:

EFD(ε) :=
∥∥ε−1 (Jh(ψh + εδh, ·)− Jh(ψh, ·)

)
−DJh(ψh) · δ

∥∥
‖DJh(ψh) · δ‖

= O(ε). (2.33)
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The perturbation increment δ is randomly chosen. In table 2.1 we monitor this relative
error and observe, as expected, first order convergence.

2.5.2 Convergence of the sensitivities

Another way to validate the implementation of the derivatives appearing in by(y,u)
would consist in solving the non-linear constraint b(y,u) for y and monitor the con-
vergence. For an accurate implementation of the derivatives the convergence will be
quadratic. On the other hand, since in many cases also with inaccurate derivatives
one will observe super-linear convergence, this test could fail as indicator for accurate
derivatives. The following test is more appropriate: We consider a control uε that is
parametrized by ε ∈ R and suppose we know y0 that verifies b(y0,u0). Then it holds

y1
ε − yε = O(ε2) , (2.34)

where y1
ε is the first Newton iteration for the problem b(yε,uε) = 0 with initial guess

y0:
by(y0,uε) · (y1

ε − y0) = −b(y0,uε) (2.35)

The result (2.34) follows from yε = y0+y′0ε+O(ε2) and 0 = b(y0,uε)+εby(y0,uε)y′0+
O(ε2). When the exact derivative by(y0,uε) in (2.35) is replaced by some approxima-
tion A:

A · (y1
ε − y0) = f(uε)− a(y0) .

then y1
ε will be at most first order approximation of yε.

The first test of this kind is for the variational formulation (2.28) of the static
inverse FBE problem. The unperturbed control data u0 is the data given in the table
in figure 2.3 and perturbation is a random incremental current for each coil scaled with
ε = 0.50, . . . 0.514. In table 2.1 (4th column) the error EDN(ε) = ‖yε−y1

ε‖ is monitored.
We observe second order convergence, which shows that we use accurate derivatives. In
contrast, the result ECN(ε) = ‖yε − y1

ε‖ for a Newton-type iteration method (see 6th
column in table 2.1) that follows from the discretization of derivatives of the continuous
problem [51, 71] yields only first order convergence.

Repeating the same test for the implementation for weak Galerkin formulation
(2.30), based on the discretization and linarization described in sections 2.4.3 and 2.4.4
we observe the expected second order convergence (see table 2.1, 8th and 9th column).
This reassures that the implementation in FEEQS.M is correct.
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εi = 1
2
i J in (2.32) Static FBE (2.28) Evolution FBE (2.30)

i EFD(εi) rate EDN(εi) rate ECN(εi) rate EDN(εi) rate
0 0.0198034 11647.2 2928.07 645.401
1 0.0113253 0.81 5485.42 1.09 1125.83 1.38 450.549 0.52
2 0.0061465 0.88 3362.31 0.70 1182.56 −0.07 31.6012 3.83
3 0.0032184 0.93 1936.28 0.80 846.373 0.50 36.9223 −0.22
4 0.0016494 0.96 694.294 1.48 149.343 2.50 10.7593 1.78
5 0.0008353 0.98 4.26942 7.35 268.207 −0.84 2.66903 2.01
6 0.0004204 0.99 9.65561 −1.18 145.894 0.88 0.66434 2.01
7 0.0002109 1.00 2.39544 2.01 70.5145 1.05 0.16571 2.00
8 0.0001056 1.00 0.60127 1.99 34.6608 1.02 0.04138 2.00
9 0.0000528 1.00 0.15064 2.00 17.1804 1.01 0.01034 2.00
10 0.0000264 1.00 0.03770 2.00 8.55259 1.01 0.00258 2.00
11 0.0000132 1.00 0.00943 2.00 4.26687 1.00 0.00064 2.00
12 0.0000066 1.00 0.00236 2.00 2.13108 1.00 0.00016 2.00
13 0.0000033 1.00 0.00059 2.00 1.06495 1.00 0.00004 2.00
14 0.0000016 1.00 0.00015 2.00 0.53233 1.00 0.00001 2.00

Table 2.1: Convergence of the errors E... and the convergence rate
( log(E...(εi+1))−log(E...(εi))

log(εi+1)−log(εi) ): 1.) the finite difference error EFD (2.33); 2.) the error
EDN using the derivatives outlined in section 2.4.2 for the FBE problem (2.28); 3.) the
error ECN using derivatives in [51, 71] for the FBE problem (2.28); 4.) the error EDN

using the derivatives outlined in sections 2.4.1 and 2.4.4 for the inverse evolution FBE
problem (2.30).
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Coil Maximum Voltage (V) Minimum Voltage (V)
A 1400 −1400
Bh 1400 −1400
Dh 2500 −2500
Eh 2500 −2500
Fh 2500 −2500
Fb 2500 −2500
Eb 2500 −2500
Db 2500 −2500
Bb 1400 −1400
Xh 300 −300
Xb 300 −300

Table 2.2: Maximum and minimum voltages on the poloidal coils of WEST.

2.6 First applications of the inverse evolution solver

The direct static/evolution as well as inverse static modes have been operational and
applied for a long time, whether in FEEQS.M or in other codes. In contrast, the
inverse evolution mode has been implemented only recently in FEEQS.M and is a
unique feature of the code, as far as we know. Therefore, it is useful to present some of
the tests we did for this new mode in order to show that the code works “as it should”
and to familiarize ourselves with it. This is the object of the present section, which
describes applications of the inverse evolution mode of FEEQS.M to example problems
in the WEST and HL-2M tokamaks. In Chapter 4 we will present a more “real-life”
application: the design of reference waveforms for WEST scenarios and their validation
on both the WEST magnetic control simulator and on the real machine.

2.6.1 WEST scenario with different objective functions

In this section, we apply the inverse evolution mode of FEEQS.M to the problem of
the transition from limiter to divertor configuration in the WEST tokamak [35]. We
will test different cost functions and regularization terms in order to find a smooth
transition while respecting the maximum and minimum voltages that can be provided
by the power supplies to the coils.
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Figure 2.4 shows the geometry and mesh of WEST. All the results are based on

a mesh with 52210 triangles and 27763 vertices. We use NT = 10 time steps with

equidistant time step length of 5ms, the voltage in the A coil (i.e. the central solenoid)

is fixed to its minimum value of −1400V in all the following cases to provide flux

swing to drive the plasma current. The degree of the polynomial representation of

the voltages is 8. The evolution of the total plasma current IP (t) and the parameters

α(t), β(t) and γ(t) for the current density profiles is inspired from Tore Supra (the

predecessor of WEST) experimental data and is shown in figure 2.5.

Figure 2.4: Left: cross-section of WEST showing the iron core F (green),
the passive structure Ss (red) and the PF coils Ci (light blue). Right: the
computation mesh. - The coils numbers 1-9 represent A, Bh, Dh, Eh, Fh, Eh, Dh, Bh,
10-13 represent Xh and 14-17 represent Xb.

2.6.1.1 Prescribed level sets at all time steps

As a first approach to the problem, we solve the discretized inverse evolution problem

(2.31) with J(y,u) := C(y) +R1(u), in which:

C(y) := 1
2

NT∑
s=1

Ndesi∑
i=1

ws
(
ψsh(ri, zi)− ψsh(r0, z0)

)2
,

R1(u) := 1
2
wR1

N∑
i=1

NT∑
s=1

Vi(ts)2 .

(2.36)
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Figure 2.5: The prescribed IP , and the plasma profile parameters α, β and γ

for the WEST simulation. -

Here, C(y) is the discretization of the cost function (2.19) introduced in Section 2.3,

and aims to prescribe a desired level set for every time step, and the weights are wi = 1

for 1 < i < NT and w1 = wNT
= 0.5. The weight of the regularization term R1(u) is

fixed to wR1 = 1× 10−11.

The results (see figure 2.6) show that the prescribed level sets coincide fairly well

with level sets of the numerical solution at all times, with a tiny discrepancy when the

plasma evolves from limiter to divertor configuration. The evolution of the voltages

can be seen in figure 2.7. As we are not imposing any constraints on the voltages, it

is not very surprising that the voltages limits (the dashed lines) are violated at certain

time steps.

2.6.1.2 Prescribed level sets at all times and constraint penalization term

Secondly, we add two regularization terms to the objective function to penalize the

violation of the voltage limits. That is to say, we solve now the constrained optimization
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Figure 2.6: Plasma evolution obtained with prescribed level sets at all time steps (see
2.6.1.1). The magenta contour is the plasma boundary and the blue lines are ψ level sets
inside the plasma, the red points indicate the desired boundary.
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Figure 2.7: Voltages obtained with prescribed level sets at all time steps (see 2.6.1.1).
Dashed lines indicate the limits of the power supplies.
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Figure 2.8: Voltages obtained with prescribed level sets at all time steps (see 2.6.1.2).
Dashed lines indicate the limits of the power supplies.

problem (2.31) for J(y,u) := C(y) +R1(u) +R2(u) +R3(u) with

R2(u) := 1
2

L∑
i=1

wR2,i

NT∑
s=1

max(Vi(ts)− Vi,max, 0)3 ,

R3(u) := 1
2

L∑
i=1

wR3,i

NT∑
s=1

max(Vi,min − Vi(ts), 0)3 ,

(2.37)

where the weights are wR2,i = wR3,i = 1
2 × 10−16.

The level sets of the flux inside and near the plasma are found to be almost the
same as in the previous case (shown in figure 2.6), but the evolution of the voltages,
shown in figure 2.8, is slightly different and all voltages, except for VBb at t= 0.005s,
remain now within their limits. By introducing regularization terms with non-uniform
weights it would probably be possible to improve this result.

2.6.1.3 Prescribed level sets at start and end

Assuming that level sets are prescribed at every time step is not very relevant in prac-
tical applications, where one aims to solve problems that require a few hundred or
thousands of time steps. Providing level sets a each time step is a humongous amount
of work that moreover confines the plasma evolution fairly strictly and could prevent
from finding the best scenarios. A more relevant task is to find reasonable trajecto-
ries for prescribed level sets at the beginning and end only. Therefore, we use in this
third case the prescribed boundaries only on some of the time steps, meaning we set
in the objective function C(y) in (2.36) the weights w1, w2, w3 and w10 to one but the
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Figure 2.9: Plasma evolution obtained with prescribed level sets at start and end (see
2.6.1.3). The magenta contour is the plasma boundary and the blue lines are ψ level sets
inside the plasma, the red points indicate the desired boundary.

remaining weights w4, w5, ...w9 to zero. Introducing

C0(y) := 1
2

∑
s={1,2,3,10}

Ndesi∑
i=1

(
ψsh(ri, zi)− ψsh(r0, z0)

)2
for brevity, we solve hence here the optimization problem (2.31) with J(y,u) := C0(y)+

R1(u) + R2(u) + R3(u), where the weights in the regularization terms R1(u), R2(u)

and R3(u) are as in the previous case.

The plasma trajectory of the numerical solution is shown in figure 2.9. It can be

seen that the plasma boundary matches the prescribed level sets at the beginning and

at the end. However, in between, when there is no prescribed level set, the plasma

makes a large downward excursion. The evolution of the voltages is shown in figure

2.10. Limits are respected, except for the divertor coils during the last two time steps.

Clearly, the vertical excursion of the plasma obtained in this simulation is not desirable

from an operational point of view. In order to suppress such excursions without having

to prescribe level sets in intermediate time steps, a possible idea is to penalize the

induced currents in the passive structures. Indeed, fast plasma motions are associated

to large induced currents. Penalizing these currents should make the code priviledge

smooth plasma trajectories. This strategy is tested in the next section.
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Figure 2.10: Voltages obtained with prescribed level sets at start and end (see 2.6.1.3).
Dashed lines indicate the limits of the power supplies.

2.6.1.4 Prescribed level sets at start and end with penalization term on
induced currents

In order to avoid the fast changes obtained in the previous simulation we add to the
objective a new term that penalizes the induced currents

Ips,s :=
∫
S

σ

r

ψs+1
h (r, z)− ψsh(r, z)

ts+1 − ts
dr dz 1 ≤ s ≤ NT

in passive structures S with conductivity σ. We solve the optimization problem (2.31)
with J(y,u) := C0(y) + C1(y) +R1(u) +R2(u) +R3(u) and

C1(y) = 1
2
wC1

NT∑
s=1

I2
ps,s (2.38)

where wC1 = 1× 10−6.
The results, shown in figure 2.11, are quite satisfying: the plasma stays near the

equatorial plane even during the time steps when the level set is not prescribed, and
evolves in a smooth fashion to its final shape. This shows that the penalization term
on induced currents allows finding slowly moving solutions even if we prescribed level
sets only in the beginning and end. The evolution of the voltages is shown in figure
2.12 and we highlight that all the voltages remain within the limits.

These tests show that with well tuned cost functions and regularization terms,
we can get a smooth plasma limiter to divertor transition within only 50 ms, which
is a very short duration, while respecting the voltage limits. Achieving such a fast
transition on the real machine may be interesting from the operational point of view in
order to avoid plasma contamination by impurities. This however requires FEEQS.M
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Figure 2.11: Plasma evolution obtained with prescribed level sets at start and end with
penalization term on induced currents (see 2.6.1.4). The magenta contour is the plasma
boundary and the blue lines are ψ level sets inside the plasma, the red snowflake points
indicate the desired boundaries.
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Figure 2.12: Voltages obtained with prescribed level sets at start and end with penaliza-
tion term on induced currents (see 2.6.1.4). Dashed lines indicate the limits of the power
supplies.
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simulations which are in closer relation to the actual experiments. This will be the
topic of Chapter 4.

2.6.2 Full scenario computation for HL-2M tokamak

In the previous section, we have focused on a short slice of a tokamak scenario. In
contrast, in this section, we present an inverse evolution calculation of FEEQS.M for
a full scenario, which includes the plasma current ramp up, flat top and ramp down
phases, for the new tokamak HL-2M [76] (see figure 2.13 for the cross-section) in China.
A major objective of this machine is the exploration of ITER related physical issues.
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Figure 2.13: Cross-section of the HL-2M tokamak. Red quadrangles are the
poloidal field coils Ci, the grey lines are the two layers of the vacuum vessel,
and the black line is the limiter L. -

The settings for the computations are the following: the parameters IP , α, β and γ
are prescribed as shown in figure 2.14. The length of time steps in the ramp up phase
(from 0.1s to 2s) and ramp down phase (from 8.1s to 10s) is 0.1s, while in the flat
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top phase (from 2.3s to 8s) it is 0.3s. In total we have 60 time steps. The objective

function is J(y,u) = C(y) +R(u), with C(y) the discretization of (2.19) and R(u) the

discretization of (2.20). Plasma boundaries are prescribed for every time step and the

weights w and Dii are 1 and 1× 10−10. The computational mesh is divided into 30583

triangles, and the total number of vertices is 15367. The degree of polynomials for the

voltage waveforms is 8.
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Figure 2.14: The prescribed IP , and the parameters of the plasma profile for
the full scenario simulation of HL-2M. -

Altogether we end up with a constrained optimization problem that has almost one

million unknowns, of which approximately a hundred correspond to control unknowns

u. We solve this problem in 15 iterations and the computing time is less than 350 s on

standard notebook with a 4× 2.7GHz processor and 32GB memory.

In figure 2.15 we show the plasma boundary at some selected time steps. As can

be seen, the plasma follows well the reference boundary in the whole time interval.

The voltages are shown in figure 2.16. This example shows that the presented ap-

proach can construct a full operation scenario for tokamaks with a reasonable amount

of computational power.
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Figure 2.15: Level lines (blue) of the magnetic flux inside the plasma at selected times
for the calculation of a full scenario (ramp up, flat top, ramp down) for HL-2M, based on
60 time steps with prescribed boundaries (green dots) at each time step.
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Figure 2.16: The voltages of the inverse evolution calculation for HL-2M. -

2.7 Summary

In this chapter, we firstly introduced the FBE equations. Then four types of FBE
problems, i.e., direct static/evolution and inverse static/evolution, have been described.
The recent FEEQS.M code and its variational and discretization formulations applied
to solve the FBE problems have been introduced. Verification tests on the calculation
of derivatives have been presented. Finally, first tests of the inverse evolution mode for
example cases in the WEST and HL-2M tokamaks have been shown. In the following
chapters, we present “real” applications of FEEQS.M. In Chapter 3, we apply the
inverse static mode to identify the operating space in terms of plasma equilibrium in
ITER. In Chapter 4, we apply the inverse evolution mode to develop a fast limiter to
divertor transition in WEST.
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Chapter 3

ITER equilibrium operating
space identification

In a tokamak, the central solenoid (CS) and poloidal field (PF) coils always have limita-

tions in the current they can carry, the force they can handle and, for superconducting

coils such as in ITER, the magnetic field they can tolerate. It is clear that these lim-

itations will translate into restrictions on the accessible domain of plasma equilibria,

but it is not easy for a human to determine exactly what these restrictions will be.

We present herein a new method, to identify the equilibrium operating space. This

method is applied to the ITER 15 and 17 MA inductive scenarios. Parts of the related

work have been published in [77], and we give in this chapter the details.

In this chapter, the updated ITER CS and PF systems, as well as their limits are

firstly described in section 3.1. Then, a review of previous works on identifying the

ITER operating space is provided in section 3.2. Our new approach, which is based on

the inverse static mode of the FEEQS.M code, is introduced in section 3.3, and applied

to ITER with different penalization terms in sections 3.4, 3.5 and 3.6. Moreover, results

about the effect of different plasma profile parameters (βp) on the ITER operating space,

are presented in section 3.7. Lastly, a short summary and discussion of this chapter

are presented in section 3.8.
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Table 3.1: Location of the CS and PF conductors, R, Z position and their dimensions
(∆R,∆Z) as well as number of turns (N). Data are given in the ITER CATIA system of
co-ordinates (TGCS).

Coil R,m Z,m ∆R ∆Z N
CS3U 1.6870 5.4640 0.7400 2.0930 554
CS2U 1.6870 3.2780 0.7400 2.0930 554
CS1U 1.6870 1.0920 0.7400 2.0930 554
CS1L 1.6870 -1.0720 0.7400 2.0930 554
CS2L 1.6870 -3.2580 0.7400 2.0930 554
CS3L 1.6870 -5.4440 0.7400 2.0930 554
PF1 3.9431 7.5741 0.9590 0.9841 246.8
PF2 8.2851 6.5398 0.5801 0.7146 115.2
PF3 11.9919 3.2752 0.6963 0.9538 185.9
PF4 11.9630 -2.2336 0.6382 0.9538 169.9
PF5 8.3908 -6.7269 0.8125 0.9538 216.8
PF6 4.3340 -7.4665 1.5590 1.1075 459.4

3.1 ITER CS and PF requirements and reference separa-
trix

The latest (July 2017) ITER CS and PF coils data is defined in [78], which also gives
the maximum currents, field and forces on CS and PF coils, as well as the reference
plasma separatrix in detail. In this section, we introduce only the limits which are
related to the equilibrium operating space.

3.1.1 ITER CS and PF coils

The ITER CS and PF coils position (R, Z co-ordinates of the conductor cross section
centre at 4 K), the radial and vertical dimensions of the conductor cross section (∆R,
∆Z) as well as the total number of turns (N) are given in table 3.1. The layout of CS
and PF coils is presented in figure 3.1.

3.1.2 Maximum currents and fields on CS and PF coils

The dependence of the maximum current per turn on the maximum magnetic field
on the coil conductor, is obtained by linear interpolation or extrapolation, between or
beyond pairs of values given in table 3.2. In this work, only the cases with maximum
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3.1 ITER CS and PF requirements and reference separatrix

Figure 3.1: ITER CS and PF coils configuration. - (The two gray layers are the
vacuum vessels.)

currents are considered for simplicity, e.g., the current and field limits on CS coils are

45 kA/turn and 12.6 T, respectively. It should be noticed that CS1U and CS1L are

connected in series, which means the currents in them are always the same.

There also exists a limit on the absolute value of imbalance current in the coils

PF2 to PF5, i.e., the current flowing in the vertical stabilization converter, which is

calculated as:

Iimb = IPF2 + IPF3 − IPF4 − IPF5 (3.1)

should be less than 22.5 kA.

3.1.3 Maximum forces on CS and PF coils

The force limits are mainly the vertical forces on PF coils, the vertical separating and

net forces on the CS coils system.

The limits on the vertical forces of PF coils are shown in table 3.3.

The vertical separating (see figure 3.2) and net force limits on the CS coils are
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Table 3.2: Maximum currents in one turn of the CS and PF coils and maximum values
of the magnetic field on the coils.

Coil Imax Bmax Coil Imax Bmax

CS3U 45 kA 12.6 T PF1 48 kA 6.4 T
40 kA 13.0 T 48 kA 6.4 T

CS2U 45 kA 12.6 T PF2 55 kA 4.8 T
40 kA 13.0 T 50 kA 5.0 T

CS1U 45 kA 12.6 T PF3 55 kA 4.8 T
40 kA 13.0 T 50 kA 5.0 T

CS1L 45 kA 12.6 T PF4 55 kA 4.8 T
40 kA 13.0 T 50 kA 5.0 T

CS2L 45 kA 12.6 T PF5 52 kA 5.7 T
40 kA 13.0 T 33 kA 6.0 T

CS3L 45 kA 12.6 T PF6 48 kA 6.4 T
40 kA 13.0 T 41 kA 6.5 T

PF6 52 kA 6.8 T
0.4K subcooling 41 kA 7.0 T

Table 3.3: Maximum vertical forces on the PF coils.

Coils Maximum upward force, MN Maximum downward force, MN
PF1 110 -150
PF2 15 -75
PF3 40 -90
PF4 90 -40
PF5 160 -10
PF6 170 -190
PF3+PF4 10 -60
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expressed respectively as:

FZ(Sep) = |FZ(Upward)|+ |FZ(Downward)|
2

≤ 120 MN ,

(note that FZ(Downward) has negative sign );

FZ(CS) = |
6∑

n=1
FZ(CS coils number “n”)| ≤ 60 MN.

(3.2)

where the FZ(Upward) is the force CS3U (possibly pushed up by other CS coils) exerts
on the top of the mechanical structure, and defined as the maximum of the following 6
values:
1): FZ(up, 1) := FZ(CS3U),
2): FZ(up, 2) := FZ(CS3U) +FZ(CS2U),
3): FZ(up, 3) := FZ(CS3U) +FZ(CS2U)+FZ(CS1U),
4): FZ(up, 4) := FZ(CS3U) +FZ(CS2U)+FZ(CS1U) +FZ(CS1L),
5): FZ(up, 5) := FZ(CS3U) +FZ(CS2U)+FZ(CS1U) +FZ(CS1L) +FZ(CS2L),
6): FZ(up, 6) := FZ(CS3U) +FZ(CS2U)+FZ(CS1U) +FZ(CS1L) +FZ(CS2L)+FZ(CS1L)
and the FZ(Downward) is the force CS3L (possibly pushed down by other CS coils)
exerts on the bottom of the mechanical structure, and defined as the minimum of the
following 6 values:
1): FZ(dn, 1) := FZ(CS3L),
2): FZ(dn, 2) := FZ(CS3L) +FZ(CS2L),
3): FZ(dn, 3) := FZ(CS3L) +FZ(CS2L)+FZ(CS1L),
4): FZ(dn, 4) := FZ(CS3L) +FZ(CS2L)+FZ(CS1L) +FZ(CS1U),
5): FZ(dn, 5) := FZ(CS3L) +FZ(CS2L)+FZ(CS1L) +FZ(CS1U) +FZ(CS2U),
6): FZ(dn, 6) := FZ(CS3L) +FZ(CS2L)+FZ(CS1L) +FZ(CS1U) +FZ(CS2U)+FZ(CS1U)
where FZ(CS3U), FZ(CS2U), . . . FZ(CS3L) are the vertical forces on the CS coils
CS3U , CS2U , . . . CS3L.

The above definition of the separating force (FZ(Sep)) is impractical to implement
in our model. Hence, in this work we use a simplified treatment for the FZ(Sep), which
is described in section 3.3.4.

3.1.4 ITER reference separatrix

The reference plasma boundary for ITER scenario in the flat top phase, as well as the
first wall geometry, are shown in figure 3.3.
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Figure 3.2: A simple sketch illustrating the separating force FZ(Sep) on CS
coils -

Figure 3.3: ITER first wall geometry and the reference flat top separatrix -
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3.2 Previous results on the identification of the ITER equilibrium
operating space

Roughly speaking, the objective is to remain close to the reference separatrix. More
precise requirements are given in [78] and comprise among others:

• downward displacement of the inner divertor leg: 50 mm (maximum);

• upward displacement of the inner divertor leg: 150 mm (maximum);

• inward displacement of the outer divertor leg: 50 mm (maximum);

• outward displacement of the outer divertor leg: 150 mm (maximum);

• inward displacement near the inner limiter: 20 mm (maximum).

3.2 Previous results on the identification of the ITER
equilibrium operating space

The typical method used in the past to determine the equilibrium operational space,
was to run a series of inverse static FBE calculations (see Chapter 2.3 in detail), in
which the objective function was of the type:

objective = 1
2

Ndesi∑
i=1

(
ψ(ri, zi)− ψ(rdesi, zdesi)

)2 + 1
2

Ni∑
i=1

wi I
2
i (3.3)

where the first part is called cost function, which quantifies the distance between the
computed and desired plasma shape; and the second one is called regularization term,
which is typically a weighted sum of the squares of the CS and PF coils currents, enables
to deal with an ill-posed problem.

In the inverse static FBE calculations, IP and plasma boundary are prescribed,
while the plasma current profiles

(
βp and li(3)

)
and value of Ψst [79] (the poloidal flux

from all the contributions of CS and PF coils currents in a specified position inside the
plasma area, representing different magnetization states for the CS and PF coils) are
varied. This is because in the flat top phase, Ψst is varied in time due to the inductive
flux consumption and plasma current profile, may also change due, e.g., to an L-H
transition. The operating space domain is then determined by the limits of the CS and
PF coils currents, field and forces. Since these limits are not explicitly implemented in
the above objective function (3.3), the weights wi must be tuned carefully until all the
limits are respected. This appears as an impractical and time-consuming method.
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Nevertheless, this method has been applied in the past with four independent equi-
librium codes (EQ1 [80], EQ2 [81], EQ3 [82] and EQ4 [83]) to identify the ITER 15
MA operating space, as it was reported in [84]. Figure 3.4 gives the result, which shows
that the ITER 15 MA scenario could only be operated in a very small area inside the
li(3)-Ψst diagram, with original design parameters of the CS and PF currents, field and
forces limits as well as the first wall geometry. Meanwhile, these studies found that βp
played a weak role in the operating space.

Figure 3.4: ITER 15 MA operating space with original design parameters of
poloidal geometry, as well as the limits on CS and PF coils currents, field and
forces [84] -

As a result, the ITER divertor dome, CS and PF geometry as well as the maximum
currents and fields on PF1-6 were redesigned in 2009 to have a larger domain, as shown
in figure 3.5.

The ITER 17 MA operating spaces were also calculated by these four codes, as
visible in figure 3.6. Compared to the 15 MA case, the ITER 17 MA case has a smaller
domain, as could be expected, since it is more difficult to operate the ITER scenario in
a larger IP . It may be noted in figure 3.6 that EQ1 and EQ4 include a pedestal, but not
EQ2 and EQ3, which shows that the pedestal does not change the results dramatically.

Instead of using the simple objective function in equation 3.3, another possibility, as
done with the CREATE-NL code in [85], is to linearize the inverse static FBE problem
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3.2 Previous results on the identification of the ITER equilibrium
operating space

Figure 3.5: ITER 15 MA operating space with new (2009) poloidal geometry
and the limits on CS and PF coils currents, field and forces [84] - left: the original
design and updated divertor geometry, as well as PF6 position; right: the new ITER 15
MA operating space.

Figure 3.6: ITER 17 MA operating space with the updated (2009) poloidal
geometry [84] -
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3. ITER EQUILIBRIUM OPERATING SPACE IDENTIFICATION

and to express all the limits as inequalities which are function of the coils currents.
This method was also applied on the ITER 15 and 17 MA cases, and the results are
shown in figure 3.7. It can also be seen that the ITER 15 MA (BCOLMN line) has a
larger domain of li(3)-Ψst than 17 MA (MQPON line). In the corners of the ITER 15
and 17 MA operating spaces, e.g., in Π,Σ,Φ, the forces limits are near to be violated
and the deviations of plasma boundary are large.

Figure 3.7: ITER operating space with the linear inequalities as the objective
function [85] - left: ITER 15 MA operating domain in the Ψst - li domain (green area);
right: ITER 17 MA operating domain in the Ψst - li domain (yellow area).

In around 2014, the ITER CS and PF6 coils were changed a little in [86], and the
same method, which is based on the objective function in equation 3.3, was used to
identify the new ITER 15 MA equilibrium operating space. The results are shown in
figure 3.8, where the “old boundary” represents results with the ITER poloidal system
description in 2009.

In general, we found that there were no reference ITER 15 and 17 MA equilib-
rium operating spaces after reviewing all the previous works, since every code had an
individual result, and the reason was not yet clear.

3.3 A new approach to identify the ITER equilibrium op-
erating space

In the previous works, the objective function was composed of the cost function and
regularization term. However, the actual limits on the CS and PF coils currents, field
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3.3 A new approach to identify the ITER equilibrium operating space

Figure 3.8: ITER 15 MA operating space with modified CS and PF6 coils
positions in 2014 [86] -

and forces as well as the limits on the deviations from the reference separatrix were not
explicitly considered (except via inequalities based on a linearized model in [85]). More-
over, these studies are not entirely up to date, since there have been some modifications
on the location and number of turns for the CS and PF coils in 2017.

In this thesis, we propose another solution, introducing a new Objective function,
which accounts for the true limits (updated in 2017) with the non-linear constraints in
a more explicit way. The Objective function includes penalization terms which are
activated or increase sharply when the limits are violated.

3.3.1 The new objective function

The new Objective function is expressed as:

Objective = CShape + CFlux + PCurrent + PForce (3.4)

where C represents cost functions and P represents penalization terms.
The first term,

CShape(ψ) = 1
2

N∑
i=2

(
ψ(ri, zi)− ψ(r1, z1)

)2 (3.5)
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3. ITER EQUILIBRIUM OPERATING SPACE IDENTIFICATION

is identical (or similar) to the cost function in the previous works, and it tends to make

all the points (ri, zi), which describe the target separatrix, belong to the same flux

surface. We have to note that CShape does not directly quantify the physical distance

between the actual and the target separatrices. As a consequence, it is not possible

to implement tolerances for this distance in the cost function. In present work, we

only check these tolerances in post-processing. Being able to directly impose tolerances

through the cost function would however be of high practical value, and is a direction

for future work.

The second term,

CFlux(Icoils) = 1
2

(M · Icoils −Ψst)2 (3.6)

aims at matching the desired value of the flux state Ψst. In this work, (R0, 0), where

R0 is the major radius, is selected as the specified position to calculate all the flux

contributions from the CS and PF coils. Here M is the mutual inductance between the

CS or PF coils and a toroidal wire at (R0, 0), which we pre-calculate with FEEQS.M

in magnetostatic mode (i.e. direct static without plasma).

The third and fourth terms penalize respectively the violation of limits on the coils

currents and forces. Here a penalization term is not used for the limits on the coils

magnetic field for simplicity. Post-processing of the results presented below suggests

that taking these limits into account would almost not change the operational domain,

and the same is the case for the imbalance current Iimb in equation (3.1). In this

chapter, we have tested two different types of penalization function, which will be

described below in section 3.3.2.

We can see that there is no more regularization term in the new Objective function.

Indeed, it appears not necessary any more, since the CFlux term, which imposes the

desired Ψst, already plays the role of a regularization term.

3.3.2 Mathematical functions for the penalization terms

We have tried two kinds of mathematical functions to penalize the violation of coils

currents and forces, which are often used in neural networks: rectifier [87] and softplus
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3.3 A new approach to identify the ITER equilibrium operating space

[88]:

Rectifier: = max(x, 0)

Softplus: = ln(1 + ex)
(3.7)

In FEEQS.M, the quasi-Newton method in [68] is applied to find the solution of
the non-linear inverse static FBE problem. The first and second derivatives of the
Objective are used to find the direction and the step length of the iterations. Thus,
in order to be able to differentiate two times the penalization terms, we modify the
general rectifier and softplus to the quasi-rectifier and quasi-softplus, respectively, as:

Quasi-rectifier: =
(

max(x, 0)
)3 = max(x3, 0)

Quasi-rectifier-modified: = max
(
(x+ 0.5

0.5
)3, 0

)
Quasi-softplus: =

(
ln(1 + ex)

)3 (3.8)

where we also define another quasi-rectifier-modified function to activate the penaliza-
tion term before the violation of the real limit.

x

-0.5 0 0.5

f P
(x

)

0

0.5

1

1.5

2

2.5

Quasi-rectifier

Quasi-softplus

Quasi-rectifier-reduced-bds

Figure 3.9: Plots for three types of penalization function: quasi-rectifier (blue),
quasi-rectifier-modified (green) and quasi-softplus (red) - x=0 represents the limit
value for coil current or force, while x= 0.5 for a half limit value.

The quasi-rectifier, quasi-rectifier-modified and quasi-softplus are presented in figure
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3.9. With quasi-rectifier, the penalization terms are active only when the limit is
violated (where x > 0). However, it is intuitive that penalization terms should become
active already before the limits are violated, such that the code “knows” about the
existence of these limits before hitting them. What is less clear is from which value
of the current or force, and how sharply, the penalization terms should increase. For
this reason, in the following sections, we will compare the results obtained with quasi-
rectifier-modified, which activates when the current or force is above half the real limit
and grows sharply, and with the quasi-softplus which is always active but grows more
smoothly.

3.3.3 Penalization terms for the coils currents and forces

The penalization terms related to the CS and PF coils currents are defined as:

PCurrent(Icoils) =
Ncoils∑
i=1

fP (Ii − Imax,i
|Imax,i|

)

+ fP (Imin,i − Ii
|Imin,i|

)

(3.9)

and the penalization term for the net force on the CS coils is given as:

PForce−CS(Icoils, ψ) = fP (
∑NCS

i=1 FZ,i − Fmax,CS
|Fmax,CS |

)

+ fP (
Fmin,CS −

∑NCS
i=1 FZ,i

|Fmin,CS |
)

(3.10)

Here Fmax (resp. Fmin) and Imax (resp. Imin) represent the upper (resp. lower) limits
of force and current, respectively, and fP represents the quasi-rectifier, quasi-rectifier-
modified or quasi-softplus in equation (3.8).

The penalization terms for the PF1-6 forces are also not considered here, since
almost all the limits are naturally respected, as we have verified by post-processing.

The force penalization term concerns the volume integrated force which, due to
axisymmetry, is vertical:

FZ,i = 2π Ii
Si

∫
∂zψ dS 1 ≤ i ≤ Ncoils (3.11)

where Ii is the CS or PF coil current, and Si is the cross-section of the corresponding
coil.

62



3.3 A new approach to identify the ITER equilibrium operating space

3.3.4 Penalization term for the separating force on CS coils

The penalization term for the separating force on CS coils is not as easy to express as
the other terms in equations 3.9 and 3.10, due to its involved definition given in section
3.1.3. Moreover, we wish to be able to calculate the second and third order derivatives
of this term.

Due to these difficulties, we have implemented the penalization term for the CS
separating force, in the following form:

PForce−Sep(Icoils, ψ) =
6∑
i=1

6∑
j=1

fP

( FZ0(up,i)+FZ0(dn,j)
2 − Fmax,Sep
|Fmax,Sep|

)
(3.12)

where Fmax,Sep is the limit of the separating force. The definitions of FZ0(up, i)
and FZ0(dn, j), as well as the detailed justification of this expression are given in
Appendix C.

At last, the total force penalization term is:

PForce(Icoils, ψ) = PForce−CS(Icoils, ψ) + PForce−Sep(Icoils, ψ) (3.13)

It is worth noting that in the new Objective function (3.4), we have not found
it necessary, at least for the applications presented below, to include weights to be
adjusted in any of the terms. But the weights could be easily implemented in our
approach.

3.3.5 The method to determine the operating space in the li(3) - Ψst

diagram

In order to determine the operating space in an li(3) - Ψst diagram, we scan the plasma
current profile parameter li(3) (we will show later in section 3.7 that βp does not
change the operating space much), by scanning γ in equation (2.10), and we scan Ψst

in equation 3.6. The other parameters of plasma current profile in equation (2.10), α
and β, are fixed to 1 and 0.65, respectively (βp =0.6 is the nominal value in the flat top
phase for ITER inductive cases). Besides, a pedestal is not considered in the plasma
current profile just for simplicity, but it would be interesting to explore the influence
of the pedestal on the equilibrium operating space in future work.

The total number of inverse static FBE computations is 11 x 14: γ is scanned from
0.2 to 1.2 with a step of 0.1, and Ψst is scanned from -45 to -175 Wb with a step of
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3. ITER EQUILIBRIUM OPERATING SPACE IDENTIFICATION

-10 Wb. During the Ψst and γ scanning loops, Ψst is varied from -45 to -175 Wb with
a fixed γ. The result of the previous calculation is input as the initial guess for the
next one, in order to save computation time. The convergence criterion for stopping
the Newton iteration is :

‖Ik+1 − Ik‖2

‖Ik+1‖2
+ ‖ψk+1 − ψk‖2

‖ψk+1‖2
6 ε0 (3.14)

where ε0 is set to 1× 10−11.
The operating space can then be visualized by plotting the iso-lines of the cur-

rents, field and forces in the different coils, as well as of the boundary deviation metric
(gaps) in the li(3) - Ψst diagram. In particular, the domain is delimited by iso-lines
corresponding to the limit values of these different quantities.
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Figure 3.10: The definition of the separatrix deviation - a) overall deviations in
the divertor and inner limiter gaps; b) the gap in the inner limiter; c) the distances in the
divertor legs between the desired (red) and actual (green dot) boundaries.

The boundary deviation metric used in this work, is shown in figure 3.10. It consists
of 20 gaps in the divertor legs and 2 gaps near the inner limiter. Note that by gaps
here, we mean distances between the actual and desired separatrix (and not between
the separatrix and the limiter). The gaps limits are defined in section 3.1.4.

The computation domain and mesh used in FEEQS.M, are presented in figure 3.11,
where it can be seen that different sizes of triangles are used in different areas.
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3.4 ITER operating space identification with quasi-rectifier penalization
terms

Figure 3.11: The computation domain and mesh used to solve the inverse
static FBE problem with FEEQS.M for ITER. - The red rectangles represent coils,
the black line is the first wall and the blue lines are the vacuum vessel.

3.4 ITER operating space identification with quasi-rectifier
penalization terms

In this section, we present the ITER 15 MA operating space found with the new
Objective function in 3.4, where all the currents and forces penalization terms are
based on the quasi-rectifier function in equation 3.8. The total time to run the 11 x 14
inverse static FBE calculations is about 1.5 hours, on a standard HP notebook with a
4 x 2.7 GHz processor and 32 GB memory.

Before presenting the operating space, we show in the left plot of figure 3.12 the
position of each of the 11 x 14 inverse static FBE calculations in the li(3) - Ψst space,
as well as the βp in the right plot. It can be seen that the computed li(3) are in the
range of 0.5 - 1, although the prescribed γ are between 0.2 and 1.2. All the Ψst follow
well the target values (from -45 to -175 Wb). All the calculated βp are in the range of
0.53 - 0.59, which is close to the ITER nominal value of 0.6.

Figure 3.13 presents the ITER 15 MA equilibrium operating space found with quasi-
rectifier as the coils currents and forces penalization terms. The lines are iso-contours
of the coils currents, field and forces, as well as of boundary deviation metrics. The
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Figure 3.12: The computed li(3) and Ψst (left), as well as the βp (right) in 11 x 14
inverse static FBE calculations for the ITER 15 MA case, where the penalization terms in
the Objective function are based on quasi-rectifier.

iso-contour corresponding to the limit value for each quantity, is given in dashed (cur-
rent)/plain (field)/dotted (force)/dash dotted (boundary metric) bold. Plain thin lines
are beyond the limits. The operating domain is therefore the zone left in white. The
symbol ‘-’ in the legend of figure 3.13 (same for the other operating spaces in the rest
of this chapter) represents the lower limit and ‘+’ is the upper limit, e.g., the ‘Cur-
CS1U&L-’ represents the lower current limit of CS1U&L coil (which is -45 kA per turn,
see table 3.2).

It can be seen in figure 3.13 that the operating space is small when compared to
the previous works in figures 3.5, 3.7 and 3.8, especially for the domains of CS net(
FZ(CS)

)
and separating

(
FZ(Sep)

)
forces. The smallness of these domains can be

attributed to the small values of the forces penalization terms, compared to the other
terms in the Objective (and in particular the CShape term), as it is shown in figure
3.14. Small values of the penalization terms in the Objective do not “incite” the
code to redistribute the coils currents in order to respect the limits. Except the small
domains for FZ(CS) and FZ(Sep), the operating spaces for the coils currents are similar
to previous works, i.e., Cur-CS1U&L- bounds the high |Ψst| area, and PF6 (both Cur-
PF6+ and Field-PF6) bounds the small li(3) - |Ψst| area. Note that figure 3.14 shows
that the value of PCurrent is also small, so there may be possibilities to enlarge the
domain of coils currents. Figure 3.14 also shows that the CFlux term stays very small
for all the inverse static calculations, meaning that all the prescribed Ψst are matched,
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The ITER 15 MA operating space 
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Figure 3.13: ITER inductive 15 MA operating space obtained by FEEQS.M. -
where quasi-rectifier is selected as the penalization function for all the currents and forces,
see the text for a description.

as already observed in figure 3.12 (left).
As it can be also seen in 3.14, CShape is the dominant term in the Objective.

Therefore, the code puts the “priority” on optimizing the boundary deviations. As a
result, only the maximum inner divertor leg max-inner-dn in the low li(3)-|Ψst| corner
of the domain, is above the tolerance (see figure 3.13), all the other boundary deviations
are respected.

3.5 ITER operating space identification with quasi-rectifier-
modified

The ITER 15 MA equilibrium operating space obtained in last section is small due to
small values of the penalization terms PForce−Sep and PForce−CS when the limits are
not strongly violated.

One possible way to solve this problem, as anticipated in section 3.3.2, is to activate
the PForce−Sep and PForce−CS before the limits are violated, and/or to increase them
more sharply when the limits are violated. Using the quasi-rectifier-modified function
(defined in equation (3.8)) for the penalization terms does both of these (see figure 3.9).
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Figure 3.14: Values of all the C and P with quasi-rectifier terms. - Between 2
vertical lines, γ is fixed and Ψst is decreased from -45 to -175 with a step of -10 Wb.

Therefore, in this section, we modify the penalization term for coils currents as:

PCurrent(Icoils) =
Ncoils∑
i=1

fP (Ii − 0.5Imax,i
0.5|Imax,i|

)

+ fP (0.5Imin,i − Ii
0.5|Imin,i|

)

(3.15)

the penalization term for the net CS force FZ(CS) as:

PForce−CS(Icoils, ψ) = fP (
∑NCS

i=1 FZ,i − 0.5Fmax,CS
0.5|Fmax,CS |

)

+ fP (
0.5Fmin,CS −

∑NCS
i=1 FZ,i

0.5|Fmin,CS |
)

(3.16)

and the penalization term of CS separating force FZ(Sep) as:

PForce−Sep(Icoils, ψ) =
6∑
i=1

6∑
j=1

fP

( FZ0(up,i)+FZ0(dn,j)
2 − 0.5Fmax,Sep
0.5|Fmax,Sep|

)
(3.17)

Note that here we choose a factor of 0.5, but the value may be varied (independently
for each limit) if needed.
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Figure 3.15: The computed li(3) and Ψst in the 11 x 14 inverse static FBE
calculations for the ITER 15 MA case, - in which all the current and force penalization
terms are based on quasi-rectifier-modified function.

Figure 3.16 shows the ITER 15 MA operating space with the quasi-rectifier-modified
penalization terms. It is substantially enlarged compared to the result in figure 3.13.
The limits on FZ(CS) and FZ(Sep) are not violated anymore anywhere in the diagram.
This is connected to the fact that all the values of PForce−CS and PForce−Sep are
increased largely with this quasi-rectifier-modified penalization terms, as we can see in
figure 3.17. At the same time, the domains for the coils currents and field are also
enlarged a bit with the increased values of PCurrent. The new ITER 15 MA operating
space is bounded by the Cur-CS1U&L- in the high |Ψst| area, which seems logical since
the main flux source is the CS. In the low li(3) - |Ψst| area, Field-PF6 bounds the
operating space. Moreover, in the high li(3) - low |Ψst| area, the boundary deviation
max-inner-limiter is the main constraint. The values of CFlux are not 0 in all the
inverse static calculations, especially in the areas of large prescribed Ψst. This means
that the desired Ψst are not exactly obtained, which changes the way the li(3) - Ψst

space is mapped by the 11 x 14 calculations. However, figure 3.15 shows that this is a
small effect. Furthermore, this effect is taken into account in figure 3.16, in which the
y coordinate corresponds to the obtained Ψst and not the desired Ψst.

Although Cshape is still dominant in figure 3.17, the code now takes the coil current
and force limits more into account. As a result, the domains for the boundary devi-
ations are smaller in figure 3.16 than in figure 3.13, because the code needs to find a
compromise between matching the desired plasma shape and matching the coils limits.

69



3. ITER EQUILIBRIUM OPERATING SPACE IDENTIFICATION

li(3)

0.5 0.6 0.7 0.8 0.9 1

Ψ
s
t /

 W
b

-160

-140

-120

-100

-80

-60

The ITER 15 MA operating space 

Cur-CS1U&L-

Field-CS1U

Field-CS1L

Cur-CS2L-

Field-CS2L

Cur-PF5-

Field-PF5

Cur-PF6+

Field-PF6

max-inner-dn

max-outer-dn

max-inner-limiter

I
imb

operating space

Figure 3.16: ITER inductive 15 MA operating space obtained by FEEQS.M -
where quasi-rectifier-modified is selected as the penalization function for all the currents
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Prescribed γ and Ψ
st

 = -45:-10:-175 Wb

γ:0.2 γ:0.3 γ:0.4 γ:0.5 γ:0.6 γ:0.7 γ:0.8 γ:0.9 γ:1.0 γ:1.1 γ:1.2

O
b

j-
v
a

lu
e

0

1

2

3

4

5
quasi-rectifier with modified limit for ITER 15 MA

C
Shape

P
Current

P
Force-CS

P
Force-Sep

C
Flux

Figure 3.17: Values of all the C and P with quasi-rectifier-modified terms, in
which all the limits of currents, CS separating and net forces are multiplied by
a factor of 0.5. - Between 2 vertical lines, γ is fixed and Ψst is decreased from -45 to
-175 with a step of -10 Wb.

70



3.6 ITER operating space identification with quasi-softplus penalization
terms

Generally speaking, the ITER 15 MA operating space identified with the penaliza-

tion terms based on quasi-rectifier-modified is quantitatively rather similar to what had

been found in previous works (figures 3.5 and 3.8).

3.6 ITER operating space identification with quasi-softplus
penalization terms

Section 3.4 and 3.5 have shown the importance of using penalization terms which be-

come active before the limits are violated. In this section, we will investigate the effect

of the shape of the penalization function. Instead of using the quasi-rectifier-modified,

which activates close to the limit and increases very sharply, we will use the quasi-

softplus, which is always active but grows more smoothly.

3.6.1 ITER 15 MA equilibrium operating space with quasi-softplus

We do similar inverse static FBE calculations in FEEQS.M again here, but with quasi-

softplus as penalization terms in the Objective function. The total computation time

is increased to about 3.5 hours, which is due to the fact that the code needs more

Newton iterations to converge. The latter is probably related to interplay between the

many penalization terms.

The ITER 15 MA operating space found using the quasi-softplus is presented in

figure 3.18. We can see that it is similar to the operating space found with the quasi-

rectifier-modified presented in the previous section (figure 3.16), although it is globally

smaller. To be more specific, the domain is enlarged a bit in the low li(3) - high |Ψst|

corner, but it is substantially reduced in the high li(3) - low |Ψst| corner. As a side

remark, we can note that this corner is bounded by the max-inner-limiter limit in

both cases, which suggests that adding a penalization term for this limit (and, more

generally, for boundary deviations) is a useful direction for future work. The values of

the different terms of the Objective are given in figure 3.19. We can see that all the

C (except CFlux) and P terms are of the same order of magnitude, which means that

with the quasi-softplus, the code tries to find a more “global” compromise than with

the quasi-rectifier-modified, as could be expected.
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The ITER 15 MA operating space 
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where quasi-softplus function is selected as the penalization function for all the currents
and forces, see the text for a description.
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3.6.2 ITER 17 MA equilibrium operating space with quasi-softplus

We also applied the same inverse static FBE calculations with the quasi-softplus based
penalization terms for the ITER 17 MA case, and figure 3.20 shows the resulting oper-
ational domain.

The ITER 17 MA operating space 
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Figure 3.20: ITER inductive 17 MA operating space obtained by FEEQS.M -
where quasi-softplus function is selected as the penalization function for all the currents
and forces, see the text for a description.

It has a similar Cur-CS1U&L limitation in the high |Ψst| area to the 15 MA case.
However, the 17 MA domain is considerably reduced by limitations on the PF6 current
and field, especially in the low li(3) - |Ψst| corner, since more PF6 current is required
when IP is increased. The boundary deviation max-inner-limiter also reduces the
domain in the high li(3) - small |Ψst| corner.

Generally speaking, the ITER 17 MA operating space found with the quasi-softplus
based penalization terms is similar to the previous results shown in figure 3.6.

3.7 Sensitivity on βp of the operating space

It was mentioned in [84] that the parameter βp plays a minor role in the ITER equi-
librium operating space, but no evidence was given to support this statement. With
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The ITER 15 MA operating space ( α=1, β=0.5) 
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The 15 MA operating space ( α=1, β=0.8) 
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Figure 3.21: The ITER 15 MA operating spaces with different prescribed β and βp in
plasma profile, the penalization terms are based on the quasi-softplus function.

our approach, it is straightforward to test the effect of βp. This can indeed be done by
changing the prescribed β in the plasma profile equation (2.10).

Figure 3.21 presents the ITER 15 MA equilibrium operating spaces obtained with
β=0.5 (which results in βp=0.4-0.45) and β=0.8 (βp=0.66-0.73), using the quasi-softplus
for the penalization terms. We can see that they are similar to each other, and also
similar to the case in figure 3.18, where β=0.65 (βp=0.53-0.59), confirming the moderate
effect of βp on the operating space.

3.8 Summary and discussion

In this chapter, after describing the ITER PF system (including limitations on the coils
currents, field and forces) as well as the reference plasma boundary and tolerances on
deviations from it, we reviewed previous works on the identification of the ITER 15
and 17 MA operating spaces. The latter use a series of inverse static FBE calculations
in which the coils or boundary deviation limits are not explicitly taken into account
(except via inequalities on the coils currents based on a linearization around a certain
equilibrium). Then, we introduced a new Objective function that includes terms
which penalize the violation of the coils currents and forces limits.

These penalization terms, which have been implemented in FEEQS.M, allow for an
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automatic identification of the ITER operating space with no need for a human to tune
parameters. This approach is therefore both more rigorous and faster.

Then, we analyzed the ITER 15 MA operating space found by FEEQS.M and
we compared the results with different types of penalization functions: quasi-rectifier,
quasi-rectifier-modified and quasi-softplus.

A very limited operating space was found with the quasi-rectifier, which we attribute
to the fact that this penalization function becomes active only above the limit, and
grows rather slowly. In contrast, the quasi-rectifier-modified and quasi-softplus based
penalization terms are active already significantly before the limit is violated and grow
much faster as the limit is approached and overcome. As a result, the operating space
found with these functions is much larger. Meanwhile, the difference between the latter
2 operating spaces are quite small, meaning that the operating space is not very sensitive
to the exact shape of the penalization function. However, the operating space is slightly
larger with the quasi-rectifier-modified which is likely due to the fact that quasi-softplus
activates further away from the limit, resulting in unnecessary constraints on the coils
currents distribution. Broadly speaking, the ITER 15 MA operating space identified
with FEEQS.M is similar to the one identified in previous works.

It is likely that there exists “better” penalization functions than the ones we have
used here, providing larger operating spaces. It would be interesting to try to find
them. However, the rather weak difference found between the quasi-rectifier-modified
and quasi-softplus functions suggests that there is probably not a lot to gain.

Instead, from a practical point of view, the highest priority may be to implement
constraints on the plasma shape in an explicit way. This may allow, e.g., to enlarge
the domain in the high li(3) - low |Ψst| corner.

Exploiting the rapidity of our new tool, we have repeated the identification of the
operating space for 17 MA (with similar results as in previous works) and also for
different βp at 15 MA (confirming the small influence of βp on the operating space).
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Chapter 4

Development of a fast limiter to
divertor transition in WEST

As mentioned in Chapter 1.2.2, the WEST tokamak aims at testing ITER-like tung-
sten (W) plasma facing components in steady state operation. However, interactions
between plasma and the W first wall can lead to accumulation of W in the plasma,
especially when the plasma stays during a long time in limiter configuration at the
beginning of the pulse, such as experienced in the JET [89, 90, 91] and ASDEX-U
[92, 93, 94] tokamaks. It is therefore important to develop scenarios that minimize
the time spent in limiter configuration and switch as soon as possible into divertor
configuration.

A typical way to design scenarios in terms of plasma shape evolution is to find
adequate PF coils currents at selected times (e.g. using inverse static FBE calculations),
and construct temporal waveforms from these snapshots taking into account the voltage
capabilities of the PF power supplies and the estimated flux consumption from the
plasma, as done, e.g., in [95]. On WEST, the snapshots sequence has been developed by
a combination of inverse static FBE calculations (which has the drawback of neglecting
the induced currents in the passive structures, in particular when the plasma current is
ramped up and down) and trial and error on the machine, and has not been optimized
to minimize the time spent in limiter configuration.

In this chapter, we present a more sophisticated method of scenario development
based on the inverse evolution mode of FEEQS.M, which we apply in order to speed up
the limiter-divertor transition at the beginning of a WEST pulse. More precisely, we use
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the coils currents waveforms calculated by FEEQS.M as feedforward (FF) trajectories
for the plasma control system. Note that on the other hand, we do not use the voltages
calculated by FEEQS.M, since the WEST magnetic control strategy (described below)
is based on using coils currents to control the plasma position and shape, while another
control loop provides adequate voltages to match the desired currents (this approach
is applied in many tokamaks and not specific to WEST).

The outline of this chapter is as follows. Section 4.1 introduces the WEST magnetic
control architecture, which is necessary to understand what comes after. Section 4.2
describes the typical WEST scenario in what concerns the plasma shape evolution at
the beginning of a pulse. Section 4.3 presents the method used to design a faster
limiter to divertor transition with the inverse evolution mode of FEEQS.M. Section 4.5
discusses the validation of this fast transition in simulation, making use of the WEST
magnetic control simulator. Section 4.6 presents the first experimental tests of the
fast transition on WEST. Section 4.7 presents a summary and discussion of possible
directions for future work.

4.1 The magnetic control on WEST

The WEST control system [96], which is based on the Discharge Control System (DCS)
of ASDEX-U [97], has allowed obtaining successfully the first plasma in December 2016
[98]. It can now operate routinely the WEST plasma scenarios in limiter and divertor
configurations, in a stable and reliable way [99]. Magnetic control, i.e. the control of
plasma current, position and shape using the poloidal field system, is a key part of
the WEST control system. In this section, we introduce the WEST magnetic control
architecture.

4.1.1 General magnetic control strategy

A basic introduction to magnetic control in WEST has been given in Chapter 1.4.1,
and we present here the control strategy in more detail.

The magnetic control scheme which is embedded in the more general WEST control
system is shown in figure 4.1. Its output is a set of voltages (Vsupply in figure 4.1) to
be applied by the power supplies of the poloidal (field) system. The magnetic control
scheme is functionally divided into 2 parts: plasma control and poloidal (field) control.
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4.1 The magnetic control on WEST

Figure 4.1: The block diagram of the WEST magnetic control loop. - Repro-
duced from [100].

The plasma control part provides the poloidal control part with coils currents or voltages

requests, depending on the position of the Switch in figure 4.1. Note that in the present

case, the former applies in what concerns the position and shape control, i.e. currents

requests are used. These requests are adjusted to feedback (FB) control the plasma

current, position and shape. In the present case, we focus on the beginning of the

pulse, when only the (R,Z) position of the plasma center is FB controlled. The poloidal

control part then turns these inputs into voltages requests for the power supplies, after

adding FF contributions. The plasma current, position and shape, are provided by the

real time (RT) equilibrium reconstruction code VATCH [101], whose input are magnetic

measurements by pick-up coils and flux loops [102].

Figure 4.2 presents the layout of the WEST PF coils. The A coil, also called CS, is

used to control IP . The Eh, Eb, Fh and Fb coils are the actuators to FB control the

plasma radial position, while the Xh, Xb and Dh as well as Db coils are used to FB

control the plasma vertical position. Figure 4.3 shows the WEST poloidal electrical

circuits. It can be seen that the in-vessel Xh and Xb coils are each made of 4 sub-coils

connected in series and separated from the rest, while the 9 ex-vessel coils are part of

a common circuit.
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Figure 4.2: The poloidal geometry of WEST, and a typical diverted plasma
shape, where red ‘o’ is the magnetic axis and black ‘x’ is the X-point. - The red
areas are the coils, the purple ones are iron, and the gray areas are the vacuum vessels and
passive plates.

Figure 4.3: The WEST coils electrical circuits. - G stands for “generator”, i.e.
power supply.
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4.1.2 Feedback control laws

In practice, IP on WEST is controlled by the voltage of the G0 power supply (see
figure 4.3) with a proportional (P) and integral (I) Single-Input/Single-Output (SISO)
control law [103]:

VG0 = KP (IP − IRefP ) +KI

∫
(IP − IRefP ) dt (4.1)

where KP and KI are the proportional and integral controller gains, IP and IRefP are
the reconstructed and reference plasma currents, respectively.

The FB control on the plasma position and shape uses the coils currents with a PI
Multi-Input/Multi-Output (MIMO) control law [104]:

IFBcoils = A(y − yRef ) +B

∫
(y − yRef ) dt (4.2)

where only the Dh/b, Fh/b and Xh/b (see figure 4.2) coils currents are included in IFBcoils.
y and yRef are the reconstructed and reference plasma position and shape parameters,
respectively. A and B are proportional and integral gain matrices, respectively. The
detailed method used to set up these gains is presented in [100].

The reference coils currents are then obtained by combining the FB term with a
FF term:

IRefcoils = IFBcoils + IFFcoils (4.3)

The FF coils currents are an essential part of the plasma position and shape control.
Indeed, they should in principle determine the “nominal” trajectory of the plasma
position and shape, while the FB part is supposed to make only small “corrections” to
ensure that the position and shape are as close as possible to the desired ones. Our work
described below consists in developing FF coils currents waveforms in order to speed
up the formation of a divertor configuration. In fact, as already mentioned above, we
focus on the beginning of the pulse, when only the position is directly FB controlled.
However, it is essential to understand that the shape is somehow also controlled in this
phase, via the FF coils currents.

Each coil current (except for the A coil) is FB controlled by the corresponding coil
voltage with a SISO PI controller:

V FB
coils = A′(Icoils − IRefcoils) +B′

∫
(Icoils − IRefcoils) dt (4.4)
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where A′ and B′ are proportional and integral gains, respectively.

This FB term is combined with a FF coil voltage:

V Ref
coils = V FB

coils + V FF
coils (4.5)

which is defined by:

V FF
coils = RcoilsI

Ref
coils (4.6)

The vector of reference coils voltages V Ref
coils is then converted into a vector of power

supplies voltages Vsupply taking into account the circuits shown in figure 4.3, and Vsupply
is finally sent to the power supplies through a RT network.

4.2 WEST scenario sequence

The reference WEST shot which we will use in this chapter is 53259. Figure 4.4 shows

an overview of this shot. The plasma current (in blue) starts up at t0 ≈ 32 s, then it

ramps up for the first 3 s of the pulse, followed by a flat top phase for about 6 s, and

finally a ramp down over 2 s. The loop voltage used to sustain the plasma current is

mainly induced by the swing of the A (CS) coil current (in red).

Figure 4.4 also presents the evolution of the plasma shape. The plasma starts

in a limiter configuration after the breakdown, then it is progressively elongated in

the vertical direction by increasing the Xb (and Xh) coil current (in purple) starting at

t0 +0.4 s. Finally, when the Xb (and Xh) currents are large enough (with respect to the

plasma current), i.e. around t0 + 1.6 s, a lower single null (LSN) divertor configuration

is formed.

4.3 Development of feedforward coils currents for a fast
limiter-divertor transition

In this section, we describe in detail our work to construct waveforms of feedforward

coils currents (IFFcoils) in order to obtain a faster X-point formation than in shot 53259.

For this purpose, we have used the inverse evolution mode of the FEEQS.M code (see

Chapter 2.4.2).
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transition

Figure 4.4: The WEST discharge scenario sequence of shot 53259. - The evolution
of IP , IA and IXb as well as the shape trajectory after the breakdown.

More precisely, our objective was to modify the IFFcoils waveforms after t0 + 0.4 s
(which corresponds to the moment when the X coils are activated in shot 53259), so as
to form the X-point as fast as possible.

The inverse evolution mode of FEEQS.M needs as input an initial flux map ψ0,
waveforms for IP and for the plasma profile parameters α, β and γ as well as the
desired plasma shape and boundary flux ψbd (the latter is used to account for the flux
consumption). We will now describe how these input parameters are set up.

4.3.1 Initial flux map

The initial ψ0 map is obtained by running the inverse static mode of FEEQS.M (see
Chapter 2.4.2), in which the objective is:

objective = 1
2

N∑
i=2

(ψ(ri,start, zi,start)− ψ(r1,start, z1,start))2 + 1
2
w

N∑
i=1

I2
coils,start (4.7)

where (ri,start, zi,start) are the boundary points provided by the magnetic reconstruction
code VACTH for shot 53259 at Tstart = t0 + 0.4 s= 32.5812 s. Only the currents in the
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Figure 4.5: Left: coils currents, adjusted by FEEQS.M to match the VACTH plasma
boundary (blue ‘x’) and experiment (red ‘o’); right: initial boundary, as calculated by
FEEQS.M (magenta ‘-’) and reconstructed by VACTH (blue ‘x’).

Eh and Eb coils are free to be varied, all other currents are set to their experimental
values. The weight w = 1× 10−10. The plasma current is set to its experimental value,
IP,start = 314.14 kA. The plasma profile parameters α, β and γ are set in the same way
as described in the following section 4.3.2.

The inverse static calculation results are shown in figure 4.5. It can be seen that
the VACTH plasma boundary is well matched, but that the Eh and Eb coils currents
are a little different to their experimental values. The cause of this deviation, which is
typically observed when performing this type of exercise for any WEST pulse, has not
been identified yet.

4.3.2 Evolution of plasma parameters

The plasma current evolution IP (t) used in the inverse evolution calculation is the
experimental one. It should be noted that the transition to divertor shape is performed
at the same time as IP is being ramped up. The associated flux consumption will be
imposed via the objective function (see below).

The α parameter is set to 1 at all times. The evolution of the other plasma profile
parameters β and γ, is obtained from running inverse static FEEQS.M calculations
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at each time step, and scanning these parameters in order to best match the value of
βp + li(3)/2 estimated by VACTH as well as the experimental value of IEh + IEb. The
values of β and γ in the time interval of interest are close to 0.5 and 0.8.

4.4 Objective function

The objective function used for the inverse evolution calculation, is the following:

Objective = 1
2

∫ Tend

Tstart

Ndesi∑
i=1

(
ψ
(
ri(t), zi(t), t

)
− ψ

(
rdesi(t), zdesi(t), t

))2
dt

+ 1
2

∫ Tend

Tstart

(ψbd − ψ0
bd)2 dt

+ 1
2

∫ Tend

Tstart

N∑
i=1

Di Vi(t)2 dt

(4.8)

The first term is related to the desired shape evolution. We define one desired boundary
per time step, using the following method. The final desired boundary is taken from the
VACTH reconstruction of shot 53259 during the flat top phase. Then the intermediate
desired boundaries are obtained by linear interpolation between the initial and the final
ones, using a parameterization introduced in [105]. The evolution of the desired plasma
boundary is shown in figure 4.6.

The second term is related to the flux consumption. The desired flux at the plasma
boundary, ψ0

bd, is obtained from integrating the experimental loop voltage measurement.
It is shown in figure 4.8 (blue).

The third term is a regularization term, where Di = 1 × 10−9 are the weights for
voltages. The degree of polynomials used as a basis for the voltage waveforms is 5.

4.4.1 Result of the inverse evolution calculation

We have run several inverse evolution calculations with different values of the final time
Tend, in order to assess how fast the divertor configuration could be obtained. The result
shown below is for Tend = Tstart + 200 ms, which we found to be a good compromise
between speed and limits of the coils currents and voltages (control variables). The
time step of this inverse evolution simulation is 5 ms.

The evolution of the desired (blue) and obtained (red) plasma boundary is shown
in figure 4.7. It can be seen that the desired boundary is well matched at the beginning

85



4. DEVELOPMENT OF A FAST LIMITER TO DIVERTOR
TRANSITION IN WEST

Figure 4.6: Left: the plasma boundary at Tstart (blue) and the desired boundary at Tend

(magenta); right: the linear interpolated desired boundaries between Tstart and Tend.

of the time interval [Tstart,Tend]. At the end, small deviations are visible, but the final

obtained boundary is almost diverted.

The evolution of the plasma boundary flux (red) is compared to the desired values

(blue) in figure 4.8. A very good match can be seen.

The trajectory of coils currents is shown in figure 4.9. It can be seen that all coils

remain within their limits (and this is also the case for the voltages, which are not

shown here), although the Eh and Eb coils approach their maximal positive currents.

The A, Bh and Bb coils currents are ramped down to provide the main flux variation.

As could be expected, the Xh and Xb coils currents are ramped up in order to elongate

and divert the plasma, and Xb is ramped up faster than Xh in order to produce a LSN

configuration. The Dh and Db currents are almost opposite to each other, meaning

that the code uses these coils to produce an essentially radial magnetic field to control

the vertical position of the plasma. On the other hand, the currents in the E and F

coils are approximately up-down symmetric, meaning that the code uses these coils to

produce an essentially vertical field to control the radial position of the plasma.
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Figure 4.7: Evolution of the plasma boundary from the result of the inverse evolution
calculation with FEEQS.M (red ‘*’) compared to the desired boundary (blue ‘-’). The
black dots at the LFS are the movable limiter.
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Figure 4.8: The trajectory of plasma boundary flux ψbd from the result of the
inverse evolution calculation with FEEQS.M (red ‘-•’) compared to its desired
value (blue ‘-’). -

4.5 Testing the fast limiter-divertor transition in simula-
tion

Before applying the IFFcoils computed with the inverse evolution mode of FEEQS.M on a
real WEST experiment, it is useful to test them in simulation. In this section, we first
introduce the WEST magnetic control simulator [99] which we use for this purpose,
before presenting the result of our test.

4.5.1 WEST magnetic control simulator

The WEST magnetic control simulator is identical to the real WEST in what concerns
the control scheme (the C++ real-time control algorithms are actually compiled from
the Matlab Simulink control programs implemented in the simulator). In order to
calculate the plasma evolution, the simulator uses FEEQS.M in the direct evolution
mode (see Chapter 2.2). A simple schematic diagram of the WEST magnetic control
simulator is shown in figure 4.10.

In order to initialize the simulator, we need an initial equilibrium ψ0 map. For this
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Figure 4.10: The block diagram of WEST virtual magnetic control loop. - The
magnetic control module is the same as the one shown in figure 4.1.

purpose, the same method as described in section 4.3.1 is applied.

The evolution of the plasma current in the simulator is calculated according to the
following simple model [104]:

(
LP MP,A

MP,A LA

)(
∂t IP
∂t IA

)
=
(
−RP 0

0 −RA

)(
IP
IA

)
+
(
RP 0
0 1

)(
IP,ni
VG0

)
(4.9)

where LP and LA (respectively RP and RA) are the plasma and A coil self-inductances
(resp. resistances), MP,A is the mutual inductance between the plasma and the A coil,
IP,ni is the non-inductive plasma current, and VG0 is the voltage applied to the A coil.
The trajectory of RP and LP is fitted from experimental data with following equations:

Vloop = (IP − IP,ni) ·RP + LP · ∂t IP

LP = µ0R0

(
ln(8R0

a

√
2

1 + κ2 )− 2 + li(3)
2

) (4.10)

where Vloop, IP , a, κ (elongation), R0 and li(3) are taken from experimental data, and
the IP,ni is 0, since we consider an Ohmic discharge.
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The evolution of the α, β and γ parameters is set up in the same way as described
in section 4.3.2.

4.5.2 Replay of WEST shot 53259 with the simulator

Before testing our new FF coils currents waveforms, we first use the simulator to simply
“replay” shot 53259, i.e. we perform a simulation in which the nominal control objects
(IFFcoils, IP , plasma position and shape, ...), are read from the WEST pulse scheduling
system.

The trajectory of the controlled parameters, i.e. IP and the R and Z coordinates
of the plasma center, as well as the loop voltage are presented in figure 4.12 for the
simulation (blue) and experiment (red). It can be seen that IP is very well matched
and so is the loop voltage. The evolution of the plasma shape in the simulation is
compared to the experimental one during the limiter to divertor transition in figure 4.11.
The evolution is qualitatively similar but some differences are visible. In particular,
a mismatch exists at the very beginning of the simulation, which is probably related
to a difficulty with the initialization of the integral terms in the control algorithms.
Later on, it can be seen that the external major radius of the plasma at the midplane
is smaller in the simulation than in the experiment. This is likely caused by the fact
that the plasma position which is used for the feedback control is taken directly from
FEEQS.M in the simulator, whereas it is obtained from the VACTH reconstruction in
the experiment. Finally, a clear mismatch in the vertical position of the plasma can be
seen around 34.0 s, which is also visible in figure 4.12. This is related to the fact that
the plasma makes a downward vertical excursion during this period. This excursion is
caused by an incompatibility of the FF coils currents used in the experiment with the
request to maintain the plasma vertically centered (FF waveforms have since then been
improved to reduce this excursion). The controller therefore has to find a compromise
between FF coils currents and the vertical plasma position. Clearly, the simulator does
not react in the same way as the real machine, for reasons which are not entirely clear.
Later in time, the match between the simulated and experimental boundaries is much
better. This is already visible in the last plot of figure 4.11 and can also be guessed
from the good match in the plasma R and Z after about 34.5 s in figure 4.12.

The experimental and simulated evolution of coils voltages (left) and currents (right)
is shown in figure 4.13. Both voltages and currents are well matched, especially the
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4. DEVELOPMENT OF A FAST LIMITER TO DIVERTOR
TRANSITION IN WEST

Figure 4.11: Plasma shape evolution: simulation (red) and real data (green) for the
WEST shot 53259.
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4.5 Testing the fast limiter-divertor transition in simulation
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Figure 4.13: Trajectory of experimental (plain) and simulated (dash) voltages (left) and
currents (right).

currents, except for mild deviations in X coils around 34 s when the plasma makes the
vertical excursion mentioned above.

We conclude from this “replay” exercise that the WEST magnetic control simulator
is rather consistent with experimental data, although it does not behave exactly in the
same way as the real machine. Still, we consider that it is a valuable test bed for our
FF coils currents waveforms.

4.5.3 Results of the test

We now replace in the simulator the IFFcoils waveforms from pulse 53259 by the ones
from our inverse evolution calculation (except for the A coil) from Tstart to Tend. After
Tend, we set IFFcoils as equal to their values at Tend, which we scale in proportion to IP ,
in order to maintain the plasma shape. Note that we keep the same reference of R and
Z as in shot 53259. Another option is to use the R and Z from the inverse evolution
calculation, but this does not change the result dramatically.

The plasma boundary obtained with the simulator (red) is compared to the desired
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4.6 Experimental test of the fast limiter-divertor transition on WEST

boundary used in the inverse evolution calculation (blue between Tstart and Tend, green
after - the green line is the desired boundary at Tend) in figure 4.14. It can be seen that
the plasma shape evolves in a similar way to the desired one. In particular, the shape
at t=Tend=32.78 s is well matched, showing that the IFFcoils from the inverse evolution
calculation allow obtaining a diverted configuration much earlier than in pulse 53259
(≈ 0.6 s vs. 1.1 s after the plasma breakdown). A significant vertical excursion is
observed right after Tend. This is due to the fact that the actuators for the vertical
position control change from the D coils to the X coils at this time (this change is
activated when the current in the X coils overcomes 6 kA/turn, which fortuitously
happens right after Tend). However, the FB control system brings back the plasma to
the desired position within 50 ms. The plasma shape is then well maintained for the
rest of the simulation.

The trajectory of controlled plasma parameters, i.e. IP , R and Z, is shown in figure
4.15. They match the desired values reasonably well. The most obvious discrepancies
are the one related to the above mentioned vertical excursion right after Tend as well as
a steady mismatch in R and Z by several centimeters at the end of the simulation. We
however stress that the simulation time here is only of 1 s. These discrepancies will be
taken care of by the integral terms of the FB control laws (as in the simulation shown
in figure 4.12).

Figure 4.16 shows the FF (from the inverse evolution calculation) and simulated
coils currents (except IA). A moderate mismatch is visible in the first 100 ms, but the
FF coils currents are rather well tracked after that.

We conclude from this test that the IFFcoils from the inverse evolution simulation are
reasonable and worth being tested experimentally.

4.6 Experimental test of the fast limiter-divertor transi-
tion on WEST

In the previous section, we have tested in simulation the possibility of reaching a di-
vertor configuration only 600 ms after the breakdown thanks to the IFFcoils provided by
our inverse evolution calculation (combined with the WEST FB control scheme). We
will now test this experimentally.
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4. DEVELOPMENT OF A FAST LIMITER TO DIVERTOR
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Figure 4.14: Evolution of plasma boundary from the virtual simulation loop (red) and
the inverse evolution calculation (blue between Tstart and Tend, green after).
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4.6 Experimental test of the fast limiter-divertor transition on WEST

Figure 4.15: Reference (red ‘-’) and simulated (blue plain) trajectory of IP , R
and Z (plasma center). -

Figure 4.16: Reference (dashed) and simulated (plain) trajectories of coils
currents (except A). -
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4. DEVELOPMENT OF A FAST LIMITER TO DIVERTOR
TRANSITION IN WEST

For this purpose, IFFcoils waveforms from an inverse evolution calculation (slightly
different from the one used above) have been implemented in the pulse schedule of
WEST shots between Tstart = t0 + 0.4 s and Tend = Tstart + 0.2 s, where t0 is the
plasma breakdown time (the so-called “ignitron” time more precisely).

The first attempt was in shot 53423. Unfortunately, the result was a loss of vertical
control around Tend leading to a downward vertical displacement event (VDE). This
behavior, which had not been observed with the simulator, may be interpreted as a
sign that the real machine is more sensitive than the simulator in terms of vertical
control. That said, the simulator results shown in figures 4.12 and 4.15 already pointed
to vertical control issues. It should be noted that this phase of the pulse is particularly
sensitive regarding vertical control. Indeed, this is a very dynamic phase: IP is ramping
up and the plasma shape and position are changing rapidly. Furthermore, the actuators
for the vertical FB control during this phase are the rather inefficient D coils, since the
X coils take over only when their currents overcome 6 kA/turn. Of course, the vertical
control issue becomes more severe as we try to speed up the transition to divertor
configuration.

Based on this result, the pragmatic decision was made to keep the same IFFcoils

waveforms but adjust the vertical position reference (ZRef ) waveform: instead of using
ZRef = 0, a ZRef ramp up by 10cm between Tstart and Tend was introduced. This
allowed avoiding the VDE in shot 53439, which we describe below.

Figure 4.17 shows the evolution of the plasma boundary from the VATCH recon-
struction of WEST shot 53439 (red), compared to the desired boundary used in the
inverse evolution calculation (blue between Tstart and Tend and cyan after). The first
3 rows show the period [Tstart,Tend], while the following rows are after Tend (the cyan
dashed line indicates the desired boundary at Tend for reference). Figure 4.18 shows
the reference (red) and experimental (blue) trajectories of IP , R and Z (plasma center).
Finally, figure 4.19 shows the FF (dashed) and experimental (plain) trajectories of the
coils currents (except A).

It can be seen in figure 4.17 that the desired boundary is rather well matched during
the first half of the [Tstart,Tend] period. After this, the plasma moves upward and
therefore does not well match the desired boundary anymore. This vertical movement,
which can be seen in the third and forth panels of figure 4.18, is essentially due to the
ZRef ramp up which we have introduced to avoid the VDE, as discussed above. The
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4.6 Experimental test of the fast limiter-divertor transition on WEST

Figure 4.17: Evolution of plasma boundary from the VACTH reconstruction (red) of
WEST shot 53439 compared to the desired boundary used in the inverse evolution calcu-
lation of FEEQS.M (blue between Tstart and Tend and cyan after).
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4. DEVELOPMENT OF A FAST LIMITER TO DIVERTOR
TRANSITION IN WEST

vertical FB control system “struggles” to maintain the plasma in place, but eventually

succeeds. This struggle is visible in the somewhat erratic behavior of IP , R and Z, as

well as in coils currents deviations from the FF waveforms. Altogether, the transition

to the divertor configuration is therefore not smooth, in particular with the plasma

making contact at times with the antennae protection limiter on the LFS as well as

with the upper divertor plate. However, the divertor configuration is obtained several

hundreds of ms earlier than in shot 53259, which is an encouraging result.

Figure 4.18: Reference (red ’-’) and experimental (blue plain) trajectories of
IP , R and Z (plasma center) in WEST shot 53439. -
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4.6 Experimental test of the fast limiter-divertor transition on WEST
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4.7 Summary and discussion

In this chapter, we have tested for the first time FF coils currents waveforms from
an inverse evolution calculation with FEEQS.M in a real tokamak. We have chosen
to address the problem of accelerating the formation of a divertor configuration at the
beginning of a pulse in WEST, which may be beneficial to reduce plasma contamination
by impurities. Before applying the IFFcoils on the real machine, we have tested them in a
simulator. The tests, both in the simulator and in the real machine, are partly successful
in the sense that a divertor configuration is indeed obtained several hundreds of ms
faster than “usual”. However, the transition is not very smooth, and would need to be
improved before being used routinely. It should be said that very limited experimental
time (4 shots in total) has been devoted to this study.

Several directions may be suggested to make the transition smoother. A simple
pragmatic approach could be to try to adjust experimentally the ZRef waveform with-
out changing the IFFcoils. Another option could be to change the objective function in
the inverse evolution calculation so as to improve the vertical stability. Of course, the
exploration of the various options would benefit from a more accurate WEST simulator.
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Chapter 5

Summary and outlook

The results presented in this manuscript show the potential of optimal control methods,

and their implementation in the FEEQS.M code, to support tokamak operation.

In particular, after describing the numerical methods and some tests in Chapter

2, we have seen in Chapter 3 that realistic limits of the PF system can be taken into

account by means of penalization terms in the cost function of the inverse static mode

of FEEQS.M. In this way, the operating space (in terms of plasma equilibrium) can be

identified and optimized in an easier and faster way than with previous approaches. We

have chosen ITER as a first application case, which allowed us to compare our results

with existing ones. We believe that this tool may prove useful in design studies for

future tokamaks such as CFETR or in preparation of the operation of new tokamaks

like JT60-SA.

In Chapter 4, we have shown that the inverse evolution mode of FEEQS.M can

provide optimized FF PF coils currents waveforms which allow obtaining a desired

evolution of the plasma shape and position. This inverse evolution mode is a unique

feature of FEEQS.M, as far as we know. It may replace the standard method used

presently to design such FF waveforms, which typically consists in connecting “by

hand” discrete points developed somewhat independently from each other (by means

of inverse static calculations for example). As a proof of principle, we have applied

the inverse evolution mode to the problem of accelerating the transition to a diverted

configuration at the beginning of a WEST pulse. A faster transition has indeed been

obtained, although these early results are “polluted” by vertical control issues.
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5. SUMMARY AND OUTLOOK

Two main directions can be suggested for near-term future work. The first one is
to develop the code and its documentation (and possibly provide trainings) such that
tokamak scientists can design and implement by themselves terms for the objective
function. Indeed, with the optimal control method, the core of the work lies in choosing
and implementing an objective function which accurately translates the constraints or
desires of the user.

A second objective could be to evolve from a “proof of principle approach” to a
routine application of the inverse evolution mode of FEEQS.M, for example on WEST.
The inverse static mode is already applied routinely by WEST Session Leaders (SLs) to
develop new plasma shapes in relation with experimental needs. The inverse evolution
mode is however more complicated to handle and presently not being used by SLs.
To help with this, it would be useful to develop user-friendly procedures and tools
(possibly involving a GUI) to run inverse evolution simulations, (optionally) test the
FF waveforms in simulation and finally implement them in the experimental pulse
schedule.
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Appendix A

Circuit Equations

A.1 Circuit Equations

The external circuit of poloidal field coils and suppliers is represented by a directed
graph with nodes and directed edges between nodes. We assign to each directed edge
s = (i, j) between two nodes with index i and j a (directed) voltage Vs and current Is.
For an edge s representing a coil C we have

Is = ZssVs + (~FC( d
dt
ψ))s := ns

Rs
Vs − 2π n

2
s

Rs

1
C

∫
C

d

dt
ψdrdz , (A.1)

where Rs and ns are the total resistance and the wire turns of the coil.
Then we introduce the incidence matrix G that has entry Gs,i = 0 when the node

with index i is not contained in the edge with index s = (i, j), or entry Gs,i = 1(−1)
when the node with index i is contained in the edge with index s = (i, j) and induced
orientation coincides (coincides not) with the orientation of the edge. Likewise we
can introduce oriented polygons, whose boundaries are the edges of the graph and an
incidence matrix C for edges and polygons. Then we have CG = 0 and the Kirchhoff
current and voltage laws are:

GT ~I = 0 and C~V = 0 ,

where the components of ~V and ~I are the voltages and currents associated to the edges.
In the following we assume that the edges of the circuit correspond either to a coil

or to an external voltage supplier/source. We introduce the subscripts S and C to
distinguish between edges corresponding to supplies and edges corresponding to coils,
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A. CIRCUIT EQUATIONS

e.g. GT ~I = GT
S
~IS + GT

C
~IC = 0. Moreover we introduce a (node) potential ~U with

~V = G~U and hence ~VS = GS
~U and ~VC = GC

~U . In summary we arrive at:

−Z−1 0 GC

0 0 GS

GT
C GT

S 0


~IC~IS
~U

 =

−Z−1 ~FC( ddtψ)
~VS
0

 . (A.2)

or, to be close with the notation from CEDRES++,−Z−1 0
0 0

GT
C GT

S

(~IC
~IS

)
+

GC

GS

0

(~U) =

 0
~VS
0

−
Z−1 ~FC( ddtψ)

0
0

 . (A.3)

Well-posedness requires to fix ~U at one node and to remove the Kirchoff current equa-
tion for the same node. We choose an arbitrary node and fix ~U to zero at this point.
This is equivalent to cancel a column (row) in G (GT ), hence in the subsequent lines
G· (GT

· ) always refers to the reduced matrices.
After some tedious calculations we find~IC~IS

~U

 =

R S ∗
∗ ∗ ∗
Q T ∗

~FC( ddtψ)
~VS
0

 , (A.4)

with
R = I + ZGCKGT

C + ZGCKGT
SMGSKGT

C

Q = GCKGT
C + GCKGT

SMGSKGT
C

and
S = −ZGCKGT

SM , T = −GCKGT
SM ,

where K−1 = −GT
CZGC , and M−1 = −GSKGT

S .
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Appendix B

Fast algorithm for optimal
control problems

The following section is a short summary on algorithms for general optimal control
problems, where we focus on finite dimensional optimal control problems. This simplifies
considerably the presentation, and is also more relevant for this work as we always work
with discretized versions of Problem 4 in Chapter 2.3. While most of the subsequent
methods are well-known and can be found in excellent text books such as [66, 67, 75],
we prefer to include this discussion to keep the presentation self-consistent.

We consider the following generic version of an optimal control problem

min
u,y

J(y,u) s.t. b(y,u) = 0 , (B.1)

where y ∈ Rn and u ∈ Rm are the so-called state and control variables. The constraint
b(y,u) = 0 with b(y,u) ∈ Rn is the discretization (in space and time) of (2.2), (2.5)
and (2.6).

The optimization problem (B.1) is a constrained optimization problem that can be
recast as an unconstrained optimization problem. For this we introduce the reduced
objective function Ĵ(u) := J(y(u),u), with y(u) such that b(y(u),u) = 0. The
gradient of Ĵ(u) is

Ĵu(u) = Ju(y(u),u) + Jy(y(u),u)yu(u) .

where the subscripts u and y indicate the derivatives with respect to u and y. Some
control u∗ is called the stationary point of the reduced objective function if and only if
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B. FAST ALGORITHM FOR OPTIMAL CONTROL PROBLEMS

Ĵu(u∗) = 0 . (B.2)

An iterative approach to the solution of (B.2) faces two major challenges. First, in
each iteration we have to solve the full non-linear problem b(y(u),u) = 0 for y(u)
and second, we also need to compute the sensitivities yu(u). The second challenge is
addressed by the definition of the adjoint state p(u) ∈ Rn via

p(u) = −b−Ty (y(u))JTy (y(u),u) . (B.3)

We see
0 =pT (u) (bu(y(u),u) + by(y(u),u)yu(u))

=pT (u)bu(y(u),u)− Jy(y(u),u)yu(u) ,

so the gradient of Ĵ(u) can also be expressed as

Ĵu(u) = Ju(y(u),u) + pT (u)bu(y(u),u) . (B.4)

The Algorithm 2 sketches the gradient descent. Still, this algorithm requires in each

Algorithm 2 Gradient descent
1: ∆u← 0, y← y0, u← u0

2: while ‖∆u‖/‖u‖ > tol do
3: ∆y← 1
4: while ‖∆y‖/‖y‖ > tol do
5: ∆y← −b−1

y (y,u)b(y,u)
6: y← y + ∆y
7: end while
8: p← −b−Ty (y,u)JTy (y,u)
9: ∆u← JTu (y,u) + bTu(y,u)p

10: u← u−∆u
11: end while

iteration the solution of the non-linear constraint problem b(y(u),u) = 0 and the
solution of the linear adjoint problem (B.3) for the evaluation of the reduced gradient
Ĵ(u). Moreover, the speed of convergence of the gradient descent algorithm is very
slow. Fast convergence could be achieved in including second order terms, e.g. the
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Hessian Ĵuu(u) of the reduced objective function:

Ĵuu(u) =ZT (u)
(
Jyy(y(u),u) Jyu(y(u),u)
Juy(y(u),u) Juu(y(u),u)

)
Z(u)

+ ZT (u)
(

bTyy(y(u),u)p(u) bTyu(y(u),u)p(u)
bTuy(y(u),u)p(u) bTuu(y(u),u)p(u)

)
Z(u)

(B.5)

with

Z(u) =
(
−b−1

y (y(u),u)bu(y(u),u)
1

)
,

but the requirement of solving repetitively the non-linear constraints b(y(u),u) = 0
remains a big drawback.

Sequential Quadratic Programming (SQP) is an entirely different approach that
avoids this drawback and incorporates at the same time second order information.
SQP is one of the most effective methods for non-linear constrained optimization with
significant non-linearities in the constraints [66, Chapter 18]. To motivate SQP we
recall that the previous discussion shows that the control u∗ is a stationary point of
the reduced objective function if and only if there exist states y∗ and adjoint states p∗

such that
JTy (y∗,u∗) + bTy (y∗,u∗)p∗ = 0 ,

JTu (y∗,u∗) + bTu(y∗,u∗)p∗ = 0 ,

b(y∗,u∗) = 0 ,

(B.6)

More generally, the first order optimality conditions state that if J and b are twice
continuously differentiable with Lipschitz continuous second derivatives and (y∗,u∗) is
a minimizer of (B.1) then there exist p∗ such that (B.6) holds. A Newton-type method
for solving (B.6) are iterations of the type Hk

yy Hk
yu bTy (yk,uk)

Hk
uy Hk

uu bTu(yk,uk)
by(yk,uk) bu(yk,uk) 0

yk+1 − yk
uk+1 − uk

pk+1

 = −

JTy (yk,uk)
JTu (yk,uk)
b(yk,uk)

 (B.7)

with(
Hk

yy Hk
yu

Hk
uy Hk

uu

)
:=
(

Hyy(yk,uk,pk) Hyu(yk,uk,pk)
Huy(yk,uk,pk) Huu(yk,uk,pk)

)
:=(

Jyy(yk,uk) Jyu(yk,uk)
Juy(yk,uk) Juu(yk,uk)

)
+
(

bTyy(yk,uk)pk bTyu(yk,uk)pk
bTuy(yk,uk)pk bTuu(yk,uk)pk

)
,
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which corresponds to the following quadratic optimization problem with linear con-
straints:

min
uk+1,yk+1

(
1
2

(
yk+1 − yk
uk+1 − uk

)T (Hk
yy Hk

yu
Hk

uy Hk
uu

)
+
(
JTy (yk,uk)
JTu (yk,uk)

))(
yk+1 − yk
uk+1 − uk

)
s.t b(yk,uk) + by(yk,uk)(yk+1 − yk) + bu(yk,uk)(uk+1 − uk) = 0 .

This sequence of quadratic optimization problems is at the origin of the name sequential
quadratic programming.

If the linear systems in (B.7) become too large, it is the common practice to pursue
the null space approach to arrive at the SQP formulation with the reduced Hessian. In
introducing

Zk =
(
−b−1

y (yk,uk)bu(yk,uk)
1

)
and Yk =

(
−b−1

y (yk,uk)
0

)
(B.8)

we obtain the identity(
yk+1 − yk
uk+1 − uk

)
= Zk(uk+1 − uk) + Ykb(yk,uk) (B.9)

and find the following linear system for the increment uk+1 − uk

M(yk,uk)(uk+1 − uk) = −m(yk,uk) (B.10)

with

M(yk,uk) :=ZTk
(

Hk
yy Hk

yu
Hk

uy Hk
uu

)
Zk

and

m(yk,uk) :=ZTk
((

JTy (yk,uk)
JTu (yk,uk)

)
+
(

Hk
yy Hk

yu
Hk

uy Hk
uu

)
Ykb(yk,uk)

)
.

It is insightful to compare the expressions involved in the reduced formulation (B.10)
of SQP to the gradient (B.4) and the Hessian (B.5) of the reduced objective function:
the gradient and Hessian of the reduced objective are equal to m(y,u) and M(y,u)
only when the state y and control u verify the non-linear direct problem.

In general, iterative methods, such as the conjugate gradient (CG) methods, are
used to solve (B.10). Within each iteration step two linear systems corresponding to
b−1

y (yk,uk) and b−Ty (yk,uk) (see Algorithm 3) need to be inverted. The CG algorithm
(Algorithm 3) appears different than standard formulations, as we update within the
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Algorithm 3 SQP with CG iterative solver (less memory intensive)
1: ∆u← 1, ∆y← 1, y← y0, u← u0, p← p0

2: while ‖∆u‖/‖u‖ > tol, ‖∆y‖/‖y‖ > tol do
3: ∆u← 0, ∆y← −b−1

y (y,u)b(y,u)
4: ∆p← −b−Ty (y,u)(JTy (y,u) + Hyy(y,u,p)∆y)
5: r← JTu (y,u) + Huy(y,u,p)∆y + bTu(y,u)∆p
6: s← −r
7: while ‖r‖ > tol do
8: a← −b−1

y (y,u)bu(y,u)s
9: b← −b−Ty (y,u)(Hyu(y,u,p)s + Hyy(y,u,p)a)

10: s̃← Huu(y,u,p)s + Huy(y,u,p)a + bTu(y,u)b
11: α← rT r

sT s̃
12: ∆u← ∆u + αs, ∆y← ∆y + αa, ∆p← ∆p + αb
13: r̃← r + αs̃
14: β ← r̃T r̃

rT r
15: s← −r̃ + βs
16: r← r̃
17: end while
18: u← u + ∆u, y← y + ∆y, p← ∆p
19: end while
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B. FAST ALGORITHM FOR OPTIMAL CONTROL PROBLEMS

CG-iterations not only the control but also the state unknown. This avoids solving one
additional non-linear direct problem after each CG call.

Alternatively, if we have sufficient memory to store M(·, ·), we can compute M(·, ·)
explicitly. We never compute neither b−1

y (yk,uk) nor b−Ty (yk,uk) explicitly. This
alternative approach is summarized in Algorithm 4. While the stopping criteria on
Algorithm 1, 2, 3 and 4 use the magnitude of the relative increments, other stopping
criteria, such as magnitude of relative residuals, could be used. We refer to [106] for
details of stopping criteria for Newton-type methods for non-linear problems.

Algorithm 4 SQP with direct solver (memory intensive)
1: ∆u← 1, ∆y← 1, y← y0, u← u0, p← p0

2: while ‖∆u‖/‖u‖ > tol, ‖∆y‖/‖u‖ > tol do
3: (∆y,Y)← −b−1

y (y,u)(b(y,u),bu(y,u))
4: m← JTu (y,u) + YTJTy (y,u) + Huy(y,u,p)∆y + YTHyy(y,u,p)∆y
5: M← Huu(y,u,p) + YTHyu(y,u,p) + Huy(y,u,p)Y + YTHyy(y,u,p)Y
6: ∆u← −M−1m
7: ∆y← ∆y + Y∆u
8: p← −b−Ty (y,u)(JTy (y,u) + Hyy(y,u,p)∆y + Hyu(y,u,p)∆u)
9: u← u + ∆u

10: y← y + ∆y
11: end while
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Appendix C

Penalization term for the CS
separating force

C.1 Re-expressing the CS separating force constraint in
a form compatible with our approach

In ITER, the CS coils CS3U , CS2U , . . . CS3L undergo electromagnetic forces FZ(CS3U),

FZ(CS2U), . . . FZ(CS3L) (the averaged z-component of the force). The forces FZ(up, 1), FZ(up, 2),

. . . , FZ(up, 6) and FZ(dn, 1), FZ(dn, 2), . . . , FZ(dn, 6), are based on those forces and

their definitions can be found in Chapter 3.1.3. FZ(Upward) is the maximum value of

(0, FZ(up, 1), FZ(up, 2), . . . , FZ(up, 6)), while FZ(Downward) is the minimum value of

(0, FZ(dn, 1), FZ(dn, 2), . . . , FZ(dn, 6)). The separating force on the CS coils is defined

as:

FZ(Sep) := |FZ(Upward)|+ |FZ(Downward)|
2

(C.1)

with

FZ(Upward) := max
(

0, FZ(up, 1), FZ(up, 2), . . . , FZ(up, 6)
)

FZ(Downward) := min
(

0, FZ(dn, 1), FZ(dn, 2), . . . , FZ(dn, 6)
) (C.2)
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C. PENALIZATION TERM FOR THE CS SEPARATING FORCE

We can simplify it as:

|FZ(Upward)| = FZ(Upward)

= max
(

0, FZ(up, 1), FZ(up, 2), . . . , FZ(up, 6)
)
≥ 0

|FZ(Downward)| = −FZ(Downward)

= −min
(

0, FZ(dn, 1), FZ(dn, 2), . . . , FZ(dn, 6)
)

= max
(

0,−FZ(dn, 1),−FZ(dn, 2), . . . ,−FZ(dn, 6)
)
≥ 0

(C.3)

Using the following definitions:

FZ0(up, i) = max
(
0, FZ(up, i)

)
1 ≤ i ≤ 6

FZ0(dn, j) = max
(
0,−FZ(dn, j)

)
1 ≤ j ≤ 6

(C.4)

it is easy to show that:

FZ(Sep) = max
1≤i,j≤6

FZ0(up, i) + FZ0(dn, j)
2

(C.5)

The inequality FZ(Sep) ≤ Fmax,Sep (separating force limit) is thus equivalent to
the 6× 6 inequalities:

FZ0(up, i) + FZ0(dn, j)
2

≤ Fmax,Sep 1 ≤ i, j ≤ 6 (C.6)

In order to account for the limit on the CS separating force, we therefore use the
following penalization terms:

PForce−Sep(Icoils, ψ) =
6∑
i=1

6∑
j=1

fP

( FZ0(up,i)+FZ0(dn,j)
2 − Fmax,Sep
|Fmax,Sep|

)
(C.7)

where fP represents the penalization function (e.g., quasi-rectifier or quasi-softplus).
This implementation should have roughly the same effect as a single penalization term
based directly on FZ(Sep), but it offers the advantage of being differentiable.

The first and second derivatives are calculated in the forthcoming section.

C.2 Calculation of the derivatives

We are interested to enforce max(0, f(y, u)) + max(0, g(y, u)) ≤ C via penalty terms.
We introduce f+(y, u) = max(0, f(y, u)) and fs(y, u) = 1

2(sign(f(y, u)+1) and the first
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C.2 Calculation of the derivatives

and second derivatives are:

Qn(y, u) = max(0, f+(y, u) + g+(y, u)− C)n := Qn1 (y, u)

Q(1,0)
n (y, u) = nQn−1(y, u)

(
fs(y, u)f (1,0)(y, u) + gs(y, u)g(1,0)(y, u)

)
Q(0,1)
n (y, u) = nQn−1(y, u)

(
fs(y, u)f (0,1)(y, u) + gs(y, u)g(0,1)(y, u)

)
Q(2,0)
n (y, u) = n(n− 1)Qn−2(y, u)(

fs(y, u)f (1,0)(y, 0) + gs(y, u)g(1,0)(y, u))(fs(y, u)f (1,0)(y, u) + gs(y, u)g(1,0)(y, u)
)

+ nQn−1(y, u)
(
fs(y, u)f (2,0)(y, u)) + gs(y, u)g(2,0)(y, u)

)
Q(1,1)
n (y, u) = n(n− 1)Qn−2(y, u)(

fs(y, u)f (0,1)(y, 0) + gs(y, u)g(0,1)(y, u))(fs(y, u)f (1,0)(y, u) + gs(y, u)g(1,0)(y, u)
)

+ nQn−1(y, u)
(
fs(y, u)f (1,1)(y, u) + gs(y, u)(g(1,1)(y, u)

)
Q(0,2)
n (y, u) = n(n− 1)Qn−2(y, u)(

fs(y, u)f (0,1)(y, 0) + gs(y, u)g(0,1)(y, u))(fs(y, u)f (0,1)(y, u) + gs(y, u)g(0,1)(y, u)
)

+ nQn−1(y, u)
(
fs(y, u)f (0,2)(y, u)) + gs(y, u)g(0,2)(y, u)

)
(C.8)

In FEEQS.M, these derivatives are applied in the Objective function, especially for
the penalization terms of CS separating force FZ(Sep).
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